
Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

 

 

Tethered 

Photopharmacology 

 

 

 

 

 

 

 

 

Philipp Florian Willi Leippe 

aus 

Ulm, Deutschland 

2018 

  



ii 

Erklärung 

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 

von Herrn Prof. Dr. Dirk Trauner betreut. 

 

Eidesstattliche Versicherung 

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. 

 

 

 

 

München, den 25. Mai 2018 

 

 

 

         Philipp Leippe 

 

 

 

 

 

 

Dissertation eingereicht am:  29. Mai 2018 

1. Gutachter:     Prof. Dr. Dirk Trauner 

2. Gutachter:    Prof. Dr. Anja Hoffmann-Röder 

Mündliche Prüfung am:  27. Juli 2018 

  



iii 
 

Danksagung 

Zunächst möchte ich meinem Doktorvater, Prof. Dr. Dirk Trauner, herzlich für die spannende 

Zeit in seinem Forschungslabor danken. Die Trauner group war und ist geprägt von 

wissenschaftlichem Können und Wissen auf höchstem Niveau, kombiniert mit unablässigem 

Forscherdrang und sucht ihresgleichen. Weiterhin möchte ich ihm für die Möglichkeit danken, 

für meine Forschungsarbeit auch andere Laboratorien in Lille und Heidelberg besuchen zu 

dürfen, als auch für die Möglichkeit, meine Forschung auf Konferenzen in Orten wie Harvard 

und Berlin präsentieren zu können.  

Ein halbes Jahr meines Promotionsstudiums verbrachte ich in zwei Aufenthalten am Pasteur 

Institut in Lille, Frankreich. Dort arbeitete ich als Gast in den Laboratorien von Dr. Jérôme 

Vicogne und Dr. Colette Dissous. Ich möchte Jérôme und Colette für ihre sehr herzliche 

Aufnahme in Lille danken. Mein besonderer Dank gilt Jérôme, denn zu Beginn meiner 

Doktorarbeit war, als Absolvent eines Chemiestudiums mit Fokus auf organische Chemie, 

mein Wissen, was Biologie angeht, sehr limitiert. Jérôme hat mit viel Zeit und Geduld all meine 

ungeduldigen Fragen beantwortet und ich schätze mich glücklich, dass ich von seinem Wissen 

und seiner Kompetenz profitieren konnte. 

Das letzte Jahr meines Promotionsstudiums verbrachte ich als Gast am Max-Planck-Institut 

für medizinische Forschung in Heidelberg. Ich möchte Prof. Dr. Kai Johnsson für seine 

großzügige Unterstützung danken, die es mir ermöglichte, in Heidelberg meine Doktorarbeit 

abzuschließen. 

An dieser Stelle möchte ich Dr. Johannes Broichhagen für die Zusammenarbeit in München, 

Lausanne und Heidelberg als auch für seine Freundschaft herzlich danken. Des Weiteren 

möchte ich einige meiner längsten Labor-Freunde erwähnen; Mariia Palchyk, James Frank, 

Katharina Hüll und Tom Podewin, die das Labor zu einem Ort gemacht haben, an welchen 

man jeden Morgen gerne zurückkehrt. Vielen Dank auch für das Korrekturlesen an Helen 

Farrants und Johannes!  

Zuallerletzt möchte ich meiner Familie für ihre immerwährende Unterstützung danken: Danke 

Mama Martina, Papa Matthias, Anna und Daria für eure liebevolle Art! 

 

  



iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

Corpora non agunt nisi fixata 

PAUL EHRLICH, 1913 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



v 
 

Publications 

Sections of this work have been published in peer-reviewed journals: 

(1) Broichhagen, J.; Damijonaitis, A.; Levitz, J.; Sokol, K. R.; Leippe, P.; Konrad, D.; Isacoff, 
E. Y.; Trauner, D. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-
Tethered Photochromic Ligand. ACS Cent. Sci. 2015, 1 (7), 383–393. 

(2) Levitz, J.; Broichhagen, J.; Leippe, P.; Konrad, D.; Trauner, D.; Isacoff, E. Y. Dual Optical 
Control and Mechanistic Insights into Photoswitchable Group II and III Metabotropic Glutamate 
Receptors. Proc. Natl. Acad. Sci. U.S.A 2017, 114 (17), E3546-E3554. 

(3) Leippe, P.; Koehler Leman, J.; Trauner, D. Specificity and Speed: Tethered 
Photopharmacology. Biochemistry 2017, 56 (39), 5214–5220. 

(4) Podewin, T.; Ast, J.; Broichhagen, J.; Fine, N.H.F., Nasteska, D.; Leippe, P.; Gailer, M., 
Buenaventura, T.; Kanda, N.; Jones, B.J., M’Kadmi, C.; Baneres, J.-L.; Marie, J.; Tomas, A., 
Trauner, D.; Hoffmann-Röder, A.; Hodson, D.J. Conditional and Reversible Activation of Class 
A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS Cent. Sci. 2018, 4 
(2), 166–179. 

Further publications in peer-reviewed journals include: 

(5) Hartrampf, F. W. W.; Barber, D. M.; Gottschling, K.; Leippe, P.; Hollmann, M.; Trauner, D. 
Development of a Photoswitchable Antagonist of NMDA Receptors. Tetrahedron 2017, 73 
(33), 4905–4912. 

(6) Westphal, M.; Schafroth, M. A.; Sarott, R.; Imhof, M.; Bold, C.; Leippe, P.; Dhopeshwarkar, 
A.; Grandner, J.; Katritch, V.; Mackie, K.; Trauner, D.; Carreira, E. M.; Frank, J. A. Synthesis 
of Photoswitchable Δ9-Tetrahydrocannabinol Derivatives Enables Optical Control of 
Cannabinoid Receptor 1 Signaling. J. Am. Chem. Soc. 2017. 

Manuscripts in Preparation: 

(7) Leippe, P.; Winter, N.; Sumser, M. P.; Trauner, D. Expanding the Toolbox of 
Photoswitchable Potassium Channel Blockers. Submitted to ACS. Chem. Neurosci. 

(8) Leippe, P.; Broichhagen, J.; Maggio, K., Martoriati, A.; Morel, M.; Mougel, A.; Dissous, C.; 
Trauner, D.; Vicogne, J. Conversion of the Human Insulin Receptor into a Glutamate Receptor 
and a Photoreceptor 

 

  



vi 

Project Affiliation Disclosure 

In this statement, I proclaim that the findings in the following thesis are the results of an effort 

involving more individuals than myself. Not only have others significantly contributed to this 

work, but it was also influenced by many more people through discussions and an exchange 

of ideas. Alongside the supervision of Prof. Dr. Dirk Trauner, here I list, in no particular order, 

the individuals that significantly contributed to this work: 

Chapter 1. Introduction to Tethered Photopharmacology 

Dr. Julia Koehler Leman1 (models of SNAP_mGluR2 and LihIR, as well as title art). 

1Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 Fifth 
Avenue, New York, New York 10010, United States. Department of Biology and Center 
for Genomics and Systems Biology, New York University, New York, New York 10003, 
United States 

Chapter 2. Optical Control of Receptor Tyrosine Kinases 

Dr. Johannes Broichhagen1, Dr. Katia Maggio2, Dr. Alain Martoriati2, Dr. Marion Morel3, 

Alexandre Mougel4, Dr. Colette Dissous3, Dr. Jérôme Vicogne4, Chiara Zambarda1, Dr. Ada 

Cavalcanti-Adam1. 

1Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg. 2EA 4479, 
IFR 147, Université Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France. 
3Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University 
Lille Nord de France, Institut Pasteur de Lille, Lille, France, 2EA. 4UMR CNRS 8161 
CNRS, Université de Lille, Institut Pasteur de Lille, 1 rue du Pr Calmette, 59021 Lille 
Cedex, France. 

Chapter 3. Optical Control of Potassium Channels 

Dr. Nils Winter1 (synthesis), Dr. Cameron Lee2 (antibody modifications). 

1Department of Chemistry and Center for Integrated Protein Science Munich, Ludwig-
Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany. 
2Novartis Institutes for BioMedical Research (NIBR), Boston, MA.  

Chapter 4. Tethered Photopharmacology of the AMPA Receptor 

Dr. Prashant Donthamsetti1 (patch clamp), Dr. Ehud Isacoff1,2,3. 

1Department of Molecular and Cell Biology, University of California,Berkeley, CA 
94720. 2Helen Wills Neuroscience Institute, University of California, Berkeley, CA 
94720. 3Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA 
94720. 

Chapter 5. Tethered Photopharmacology of the μ-Opioid Receptor 



vii 
 

Nil Patel1 and Seva Katrich1 (molecular docking), Mariia Palchyk (technician), Niklas Bargenda 

(intern), Dr. Ahmed Ali2 (AM-II), Manuel Gailer2 (AzoDAMGO). 

1Department of Biological Sciences, Bridge Institute, University of Southern California, 
Los Angeles, CA 90089, USA. 2Department of Chemistry and Center for Integrated 
Protein Science Munich, Ludwig-Maximilians-Universität München, Butenandtstrasse 
5-13, 81377 Munich, Germany. 

Chapter 6. Optical Control of the Smoothened Receptor 

Alexander Gisnapp (intern), Johannes Morstein1. 

1Department of Chemistry and Center for Integrated Protein Science Munich, Ludwig-
Maximilians-Universität München, Butenandtstrasse 5-13, 81377 Munich, Germany. 

Chapter 7. Photoswitchable Receptor Tyrosine Kinase Inhibitors 

Simon Dresbach (intern). 

Chapter 8. Further Synthesis and Biology 

Lukas Brunner (intern). 

  



viii 

Summary 

Light as a trigger is ideal to perturb biological function due to its high spatial and temporal 

precision. This is evidenced by the ever-expanding arsenal of genetically-encoded optical tools 

available to scientists today. These tools are summarized by the umbrella term ‘optogenetics’ 

and have had an especially transformative impact on neuroscience, since light is able to match 

the high speed and precision of neuronal processes. Alternatively, ‘photopharmacology’ can 

be employed which describes the use of photoswitchable drugs acting on non-genetically 

modified targets to enable their optical control. As an extension of pharmacology, it offers the 

same advantages, such as acute onset and facile translatability from bench to bedside, but 

also suffers from some of pharmacology’s disadvantages, primarily from its lack of target 

selectivity. While this lack of selectivity is often regarded as an issue of ‘selectivity for one 

target over another’, side-effects also arise from a drugs’ action on the desired target but at the 

wrong site, i.e. the wrong cell or organ. While much effort in drug development is directed at 

identifying more and more selective drugs, many effective drugs that are widely prescribed 

have an extensive polypharmacology which we are only beginning to understand. This double-

edged sword of polypharmacology may offer huge untapped potential, as long as its effects 

can be limited to a certain area. One possibility to spatially confine a drugs’ effect lies in the 

combination with genetic methods that allow for precise targeting to specific populations of 

cells. To this end, an anchoring-site can be genetically introduced into the cell of interest and 

subsequently be provided with function by labeling it with a drug, an approach that is described 

as ‘tethered pharmacology’. The photoswitchable variant thereof, ‘tethered 

photopharmacology’, provides reversibility as well as an additional layer of temporal control. 

In this thesis, I will give a general introduction to the concept of tethered photopharmacology 

(chapter 1). Then, I will describe an approach that employs tethered photoswitches to render 

chimeric receptor tyrosine kinases light-sensitive (chapter 2). Next, I introduce an improved 

series of photoswitchable K+ channel blockers and elaborate on antibody-photoswitch 

conjugates that target K+ channels (chapter 3). I will then describe the design of a tethered 

photoswitch for the wild-type AMPA receptor, and show its preliminary biological 

characterization (chapter 4). Approaches towards expanding tethered photopharmacology to 

the μ-opioid receptor are described in chapter 5. The synthesis of a freely-diffusible 

photoswitch for the smoothened receptor is presented in chapter 6. In chapter 7, the synthesis 

of photoswitchable kinase inhibitors is described. Lastly, chapter 8 summarizes miscellaneous 

work on various biological targets. In summary, I will demonstrate how the combination of 

synthetic chemistry with genetic engineering can afford new tools for elucidating biological 

questions, and outline future directions that tethered photopharmacology could take. 
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1 Introduction to Tethered Photopharmacology 

Pharmacology is concerned with the use, effects and mode of action of drugs. Traditionally, 

many drugs are small molecules (SM) that interact with a target protein and elicit a desired 

effect (Figure 1a). Such a drug can be chemically functionalized with a photoswitch (Figure 1b) 

to render it light-sensitive (Figure 1c). Upon illumination, these so-called photochromic ligands 

(PCLs) change their efficacy and/or affinity towards their biological target, which is a protein in 

most cases. Consequently, depending on the nature of the drug, the protein target can be 

activated, inhibited or modulated in a light-dependent fashion; or in other words, the target can 

be turned ‘ON’ or ‘OFF’. Light is a powerful trigger since it offers unmatched spatiotemporal 

precision. This approach represents an extension of pharmacology and is appropriately termed 

Photopharmacology.1 PCLs operate on wild-type proteins and have been created for a wide 

range of diverse targets, including ligand-gated ion channels (such as AMPA,2,3 NMDA4), G 

protein-coupled receptors (GPCRs, such as μ-Opioid5), voltage-gated Na+ and K+ channels6,7 

and receptor-linked enzymes (such as the ANP receptor8).  

Commonly used photoswitches are azobenzenes (Figure 1b), as they isomerize upon 

illumination with light (~320–350 nm) from their thermodynamically-favored, elongated trans-

configuration to the bent cis-configuration. This isomerization is accompanied by a large 

change in geometry and in distance of the 4- and 4’-position (~13 Å to ~8 Å).9 In addition, there 

is a large increase in polarity. The cis-isomer can isomerize back to the trans-isomer under 

thermal conditions with a half-life of milliseconds to days. This feature, as well as the switching 

wavelength, can be readily tuned by choosing the substitution pattern of the azobenzene.10 For 

instance, azobenzene can also isomerize from trans- to cis- by illumination with light of longer 

wavelengths (~400–450 nm), when the electron density is increased by appropriate 

substitutions. Therefore, by using light of two different wavelengths, the switch can reversibly 

be toggled between its trans- and cis-configuration.  

Another strategy to render proteins light-sensitive is by using a photoswitchable tethered ligand 

(PTL, Figure 1d and Figure 2a). Here, a cysteine-mutation is introduced to the target protein 

and covalently conjugated to a PTL molecule that incorporates a maleimide handle. In PTLs, 

the tether and photoswitch are not necessarily part of the pharmacophore, i.e. do not 

necessarily interact with the protein, and the cis-trans isomerization serves to position the 

ligand in or out of its binding pocket. Consequently, the cysteine mutation has to be carefully 

screened to identify a suitable mutation site and the position on the protein of interest (POI) 

has a large impact on the PTLs activity. Indeed, the site of mutation might even dictate whether 

the PTL acts as an agonist or as an antagonist.11–13 The attachment site, along with length and 
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geometry of the tether between maleimide and photoswitch, therefore determines the 

biological effect. The PTL approach is the first example of Tethered Photopharmacology and 

has successfully been applied to a variety of proteins such as K+ channels (Kv,14 TREK-1,15 

HyLighter16), ionotropic glutamate receptor (kainate17 and NMDA12), metabotropic glutamate 

receptors,11 pentameric ligand-gated ion channels (nAChR18) and trimeric ligand-gated ion 

channels (P2X19). 

 

Figure 1. Photopharmacology: controlling biological function with light. a) A ligand 
(orange) interacts with a protein (grey), resulting in a biological effect. b) The photochromic 
ligand (PCL) concept. c) Photoisomerization of azobenzene upon illumination with different 
wavelengths of light (h1 and h2). d) The photoswitchable tethered ligand (PTL) concept.  

Because of their genetically-encoded specificity and high spatiotemporal control, PTLs have 

found several applications for the optical control of biological systems, ranging from in vitro to 

in vivo.20–22 In a notable example, PTLs could identify the role of Kolmer-Agduhr neurons in the 

spinal cord of freely moving zebrafish larvae.22 To this end, the light-gated ionotropic ligand 

channel LiGluR was expressed in these neurons via transgenic zebrafish lines and then 

labelled with the PTL ‘MAG1’. After stimulation by light, the larval fish showed ‘spontaneous 

swim behavior’, identifying a positive drive of Kolmer-Agduhr neurons to the underlying ‘central 

pattern generator’ neuronal network.  

Despite many reported studies, a major drawback of these early examples of tethered 

photopharmacology lies in their reliance on cysteine-maleimide bioconjugation. Prima facie, 

the introduction of a unique cysteine is a relatively small change to the protein and is unlikely 

to affect its expression, trafficking and function. Nevertheless, cysteines introduce a 

considerable amount of free energy to the protein and the free thiol or thiolate can undergo 

redox reactions, especially when surface exposed, and may disrupt the pattern of disulfide 

bonds required for proper protein folding.23 In addition, the requisite maleimide chemistry is 

less-than-ideal as maleimides undergo hydrolysis at physiological pH to form maleamic acid 

which in turn is unreactive towards sulfhydryls.24 Lastly, the design of PTLs is complicated by 

the required mutational cysteine-screen to identify suitable conjugation sites.25 As an 
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alternative to cysteine-mutation, Chin and coworkers introduced unnatural amino acids to the 

MAPK Kinase MEK1 by Amber codon suppression (Figure 2d).26 Here, the unnatural amino 

acid contains a strained alkene/alkyne in its side chain and is conjugated to a PTL termed 

photo-BOLT via bioorthogonal tetrazine click chemistry.27 While this approach is attractive and 

allowed for the optical control over the MAPK signaling cascade, Amber codon suppression is 

technically challenging and photo-BOLT has not yet been applied to receptors or ion channels. 

To overcome these limitations and to make tethered photopharmacology more applicable to in 

vivo experiments, we introduced photoswitchable orthogonal-remotely tethered ligands 

(PORTLs) for the metabotropic glutamate receptor 2 (mGluR2) in 2015.28 The PORTL is 

composed of three parts: (i) photoswitchable ligand, (ii) a long and flexible linker and (iii) a 

bioconjugation motif. For bioconjugation, PORTLs rely on self-labeling protein tags, such as 

the SNAP-tag. The SNAP-tag is a ~20 kDa mutant of the DNA-repair protein O6-alkylguanine-

DNA alkyltransferase that reacts specifically and rapidly (rate constant ~105 - 106 M-1 s-1)29 with 

O6-alkylated benzyl guanine (BG) derivatives in a single turn-over reaction (Figure 2b).30 The 

SNAP-tag is cloned to the POI, usually as an N- or C-terminal fusion protein; but, if required, a 

circularly permutated SNAP-tag can also be introduced into flexible loops. SNAP-fusions are 

well tolerated by many transmembrane proteins, are usually used for fluorophore labelling, and 

a wealth of SNAP-tagged receptors are commercially available, which can be readily 

repurposed for PORTLs.31 Benzyl guanines are essentially inert in aqueous buffers to regular 

cysteines or other nucleophiles that are present under physiological conditions. The SNAP-

receptor gains light-sensitivity only after covalent attachment of the PORTL (Figure 2c). Since 

the PORTL attachment site is remote, the self-labeling protein tag can also be attached to a 

protein in vicinity of the protein target. In the case of a transmembrane protein, the tag can be 

localized to the cell membrane by fusion with a membrane anchor and laterally act on the 

endogenously expressed target receptor. This was described very recently for the AMPA and 

muscarinic acetylcholine (mACh) receptors by Tadross and coworkers (Figure 2e) in an 

approach termed ‘drugs acutely-restricted by tethering’ (DART).32 The anchored self-labeling 

protein tag was labelled with a non-photoswitchable, tethered antagonist, which then acted 

remotely on wild-type AMPA receptors. Clearly, the same strategy readily applies to PORTLs. 

We term these molecules acting from a separate, close-by protein on an endogenous receptor 

‘para-PORTL’ (para from the Greek word for beside, next to, near; Figure 2f).  
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Figure 2. Tethered Photopharmacology: from photoswitchable tethered ligands to 
photoswitchable orthogonal remotely-tethered ligands. a) The photoswitchable tethered 
ligand (PTL) approach relies on a cysteine mutation which is conjugated to a photoswitch via 
cysteine-maleimide chemistry. b) In the photoswitchable orthogonal remotely-tethered ligand 
(PORTL) approach, a self-labeling protein tag (e.g. SNAP-tag) is employed as bioconjugation 
method. The SNAP-tag reacts specifically with benzyl guanine-functionalized payloads. 
Guanine is released in this reaction and the payload is covalently and permanently attached 
to the SNAP-tag. c) In the PORTL strategy, the SNAP-tag is genetically introduced as a fusion 
to the metabotropic glutamate receptor. The light-sensitivity is only gained after labelling with 
the PORTL and upon illumination with light of different wavelengths the receptor can be turned 
ON and OFF in a reversible fashion. d) The photo-BOLT system by Chin and coworkers.26 
Photo-BOLT relies on a photoswitchable inhibitor which is bolted the MAPK Kinase to MEK1 
via a bioorthogonal ‘Click’ reaction with an unnatural amino acid. e) The approach by Tadross 
and coworkers where a self-labeling Halo-tag fused to a membrane anchor was expressed 
and labelled it with a ‘drug-acutely restricted by tethering’ (DART).32 The DART then acts 
inhibitory and remotely on endogenous receptors present on the cell membrane. This approach 
was demonstrated for the ligand-ion channel AMPA and extended to the muscarinic 
acetylcholine receptor (mAChR). f) A combination of DART and PORTL gives rise to the para-
PORTL, allowing the PORTL approach to be extended to endogenous receptors. 

PORTL was pioneered on the mGlu receptors. These belong to the Class C subgroup of the 

GPCR superfamily and are widely, but not exclusively, expressed in neurons. mGluRs feature 

a large extracellular ligand binding domain (LBD) that binds the excitatory neurotransmitter 
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glutamate.33 Glutamate is sandwiched between two large lobes connected by a flexible hinge 

region. The binding event results in a large conformational change which resembles the 

movement of the venus flytrap plant Dionaea muscipula upon catching its prey. Consequently, 

the LBD is commonly referred to as a ‘Venus flytrap domain’. The conformational change is 

transmitted through a rigid, cysteine-rich domain (CRD) to the helical seven transmembrane- 

domain (7 TMD), which in turn couples to a G-protein. There are eight subtypes of mGluR with 

distinct biological functions that are hard to discriminate by traditional pharmacology. Tethered 

(photo)pharmacology can provide a solution, by encoding the SNAP-tag on mGluR subtypes, 

subtype-specific activation by light can be achieved after labeling with a PORTL molecule 

(BGAG12). Figure 3 serves as a model to visualize size and dimensions of the dimeric 

SNAP_mGluR2 fusion after labelling with BGAG12, for calibration a sphere with 5 nm diameter 

is shown (grey sphere).  

 

Figure 3. Model of a dimeric SNAP-mGluR2 labelled with the PORTL (BGAG12). Grey: 
mGluR2, green: SNAP-tag, orange: glutamate, multicolored: BGAG12. Abbreviations: LBD 
ligand binding domain, CRD cysteine-rich domain, 7 TMD seven-helix transmembrane domain. 
Please note that this model is modeled after the glutamate-unbound LBD crystal structure and 
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only serves to illustrate concept, relative size and dimensions of the labelled construct. (pdb: 
5kzq, 4or2, 5cni, 3kzy) 

The remoteness of the bioconjugation site has several consequences for the design of PORTL 

molecules: 

(i) A long, flexible, soluble and inert linker is required to span the distance between 

ligand binding site and bioconjugation handle. Polyethylene glycol (PEG) linkers 

fulfill these criteria; they are harmless, water soluble and do not adhere to protein 

surfaces. In addition, they are commercially available as monodisperse polymers 

of distinct lengths, facilitating syntheses of small libraries of PORTLs with 

increasing linker lengths. 

(ii) In contrast to the PTL approach, it is unlikely that photoswitching results in a 

significant change of length or pointing angle of the ligand headgroup due to the 

long overall length and flexibility of the linker. 

(iii) Similar to a PCL, the biological activity is caused by a change in efficacy or affinity 

upon photoswitching, and the photoswitch is necessarily a part of the 

pharmacophore. Therefore, photoswitching results in a change of affinity or efficacy 

of the PORTL. PORTLs can therefore be conceptualized as ‘PCLs on a leash’. 

(iv) The tethering ensures high local concentrations, since the tether is rarely in its fully 

extended conformation due to statistical sampling of the space. Even by low 

estimates, the effective molarity (Meff) of the headgroup is in the millimolar 

range.32,34  

(v) The high EM allows photoswitchable ligands to be employed with low or modest 

target affinities. It is important that the inactive form of the photoswitch has 

negligible affinity, otherwise the high Meff might result in background activity. 

(vi) The high EM can be advantageous in more complex experiments, e.g. application 

of PORTLs by intracranial injections, since it allows wash-free application at low-

doses that produce no effect in free solution.  

(vii) This is important since the PORTL molecule inherits its parent-drugs’ selectivity 

profile and gains its target specificity only after bioconjugation. The PORTL only 

produces an effect after capture by the self-labeling protein tag and the resulting 

increase in local concentration. 

(viii) Most bioconjugation reactions follow second-order rate constants and low doses of 

PORTL molecules require reactions with high rates. Only a handful of methods like 

self-labeling proteins and strain-promoted inverse electron-demand Diels-Alder 

cycloaddition fulfil this requirement. 
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A PORTL can be thought of as a molecule with two or more separate functional parts 

connected by a linker (Figure 4). In the case of mGluR PORTLs, the molecules are made 

up of a photoswitchable pharmacophore that consists of an azobenzene (violet/blue) and 

a glutamate headgroup (orange) on one side and is fused via the long PEG linker (black) 

to a benzylguanine (BG, green) on the other side. The different parts can be interchanged 

and synthetically tailored to the specific need or application. The bioconjugation motif can 

be chosen as BG (for SNAP), benzylcytosine (BC, bright green, for CLIP) or chloroalkane 

(for Halo). The tether can be shortened or extended to adjust the EM or the tether can be 

branched to bear additional functionality, e.g. a second photoswitchable headgroup or a 

fluorophore. The substitution pattern of the azobenzene can be changed to tune the 

activation/deactivation wavelength, e.g. activation by violet (380 nm) or blue light (460 nm). 

mGluR PORTLs are denoted as follows: BXAGn,y B = benzyl; X = G (guanine) or C 

(cytosine); A = azobenzene; G = glutamate, n = number of PEG repeats; y = activation 

wavelength (no number equals 380 nm). In addition, ClAG n,y describes the Halo-tag 

reactive variant (Cl = Chloro). The combination of PORTLs with orthogonal reactivity 

(BG/BC) and activation wavelengths (380/460 nm) offers the opportunity to simultaneously 

control more than one receptor subtype in the same cell. We recently demonstrated this by 

expressing CLIP_mGluR2 and SNAP_mGluR7 in the same cell, labelling with 

BCAG12/BGAG12,460 and activating/deactivating both subtypes independently from each 

other.35  

 

Figure 4. Chemistry LEGO: PORTLs for the metabotropic glutamate receptors (mGluRs). The 
different functional parts are highlighted to show the high modularity and interchangeability of 
these multivalent molecules.36 
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Very recently, Berry et al. virally expressed SNAP_mGluR2 in retinal ganglion cells (RGCs) of 

blind rd1 mice and labelled it with BGAG12,460.37 One intravitreal injection at a concentration of 

500 nM was enough to produce a uniform OFF light response upon exposure of these rd1 

retinae to light that is similar to the OFF light response of wild-type mice retinae. Then, LiGluR 

(vide supra, PTL-conjugated light-gated ion channel) was additionally targeted to RGCs to 

restore ON light responses as previously described.21,38 Together, SNAP_mGluR2 and LiGluR 

could restore ON and OFF light responses. This restored visual acuity (i.e. clarity of vision) in 

living, blind rd1 mice. The mice could differentiate between parallel and perpendicular bars of 

light in behavioral light-avoidance experiments. When BGAG12,460 was employed together with 

the FDA-approved excipient additive β-cyclodextrine, compound release was slowed and light-

guided behavior of mice persisted for a remarkable duration of 6 weeks after one single 

intravitreal injection. This impressive and elegant work highlights the robustness and 

practicability of PORTL molecules and their potential for in vivo applications. The eye is an 

attractive organ for gene therapy due to its immune privilege which circumvents 

immunogenicity of the viral vector. In addition, viral particles can be delivered directly by 

subretinal injection. Due to these advantages, Luxturna®, a treatment to restore vision in 

patients with RPE65 mutation-associated retinal dystrophy, was the first gene therapy 

approved for human patients by the FDA in late 2017.39 Today, it seems plausible that the 

PORTL technology may find applications in human medicine, wherever gene therapy can 

deliver or alter the target protein. However, gene therapy is still in its infancy and 

immunogenicity of the exogenous gene and its mode of delivery is hard to predict.  

In principle, PORTL molecules don't necessitate tethering to the receptor itself or even a protein 

in its vicinity but could also be linked via strong binders that furnish target specificity (Figure 

5a). Such strong binders can be full-size antibodies, which can be synthetically modified with 

PORTLs (Figure 5b). Due to the advances with antibody-drug conjugates (ADCs), the 

chemistry of antibody-modification has been refined to a high level of sophistication40 and could 

be exploited for the synthesis of antibody-photoswitch conjugates (APCs). Nevertheless, 

smaller biologics that are more easily produced and modified might be more amenable to this 

approach. Recombinant single chain immunoglobulin (Ig) derivatives like nanobodies (Nb) as 

well as non-Ig antibody-mimetics such as monobodies, anticalins or affibodies41 can be 

expressed with high yields from bacteria and can straightforwardly be modified to carry a 

SNAP-tag or an unnatural amino acid for subsequent PORTL labelling.42 Very recently, 

Farrants et al. capitalized on this idea by cloning the SNAP-tag on a Nb.43 In this case, the Nb 

recognizes GFP,44 which is fused N-terminally with mGluR2. After conjugation of SNAP-Nb 

with BGAG12, robust photoactivation of GFP_mGluR2 was achieved. Up to now, this 
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represents the most remote attachment site of PORTL molecules. Genetic modification is still 

required to make the GFP-fusion but the outlined principles should apply to nanobodies that 

target the receptor itself. Allosteric nanobodies for the extracellular domain of mGluR2 have 

been developed as of now45 and they could be modified and loaded with BGAGs to ultimately 

photocontrol endogenous receptors without any genetic modification.  

Even more ambitiously, the biological binder could be replaced by a small molecule that binds 

allosterically in a subtype-selective manner. Subtype-selective agonists or antagonists for 

mGluRs have been challenging to develop due to the high similarity of the orthosteric glutamate 

binding pocket,33 but a variety of positive and negative allosteric modulators (PAMs and NAMs) 

exist.46 A bivalent molecule of an allosteric modulator tethered to a photoswitch could be 

synthesized; for mGluR2, the high-affinity PAM ‘BINA’ could be employed (Figure 5b). 

Exploiting the high-affinity of BINA for mGluR2, the low-affinity glutamate-photoswitch could be 

targeted to the allosteric site. This leads to an increase in Meff around the receptor and the 

photoswitch then acts on the orthosteric site through its long tether. These high-affinity PCLs 

would be fully synthetic and significantly smaller, which could aid their biodistribution and 

bioavailability. In addition, the high-affinity PCLs forego the need for biological binders, which 

could be hampered by immunogenicity. 

 

Figure 5. Strategies without genetic modification of the target receptor. a) PORTLs can 
be endowed with target specificity by fusion to a strong allosteric binder. b) This binder can be 
a full-size antibody, or smaller protein binders like nanobodies or affibodies. Even more, the 
binding can be assumed by allosteric modulators (BINA), to obtain fully-synthetic, high-affinity 
PORTLs (pdb: 1igt, 3g9a, 2kzi). The structures in b) are true to scale. 

In this thesis, I seize the opportunities outlined in this introduction. However, its main focus lies 

on an approach that employs PORTL molecules to render chimeric receptor tyrosine kinases 

light-sensitive (chapter 2). Next, I introduce an improved series of photoswitchable K+ channel 

blockers and elaborate on antibody-photoswitch conjugates that target K+ channels in chapter 

3. I will then describe the design of a para-PORTL for the AMPA receptor, and show its 

preliminary biological characterization in chapter 4. Approaches towards expanding the 

PORTL concept to the μ-opioid receptor are described in chapter 5. The synthesis of a PCL 
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for the smoothened receptor is presented in chapter 6. In chapter 7, the synthesis of 

photoswitchable kinase inhibitors is described. Lastly, chapter 8 summarizes miscellaneous 

work on various biological targets.  
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2 Optical Control of Receptor Tyrosine Kinases 

2.1 Abstract 

Understanding the complex orchestra between a signaling ligand, its target receptor and the 

signaling events followed by receptor activation is crucial to deciphering cell and animal 

behavior. Many ligands, their receptors and effector proteins are today understood to the 

molecular detail. However, the spatial and temporal precision of receptor activation and the 

dynamics of their interactions with intracellular signaling and effector proteins remain poorly 

understood. To date, central questions in cell signaling remain enigmatic: How are signals 

integrated along the signaling cascades? How are signaling patterns like oscillation or waves 

created, sensed and processed? What are the dynamics of signaling complexes that assemble 

upon receptor activation? What role does receptor internalization play? To elucidate these 

questions, a tool that allows for repeated, reversible, and adjustable activation of a cell 

signaling pathway is required. Here, I present the engineering and characterization of light-

activatable receptor tyrosine kinases by a fusion of synthetic chemistry with molecular biology. 

2.2 Introduction 

In mammals, three major classes of transmembrane receptors are involved in the transmission 

of extracellular input signals to the cytosol. (i) Ligand-gated ion channels transmit fast and 

short-lasting signals by changing the cell’s electrical potential. For instance, these receptors 

are involved in synaptic transmission in the brain. (ii) G protein-coupled receptors (GPCRs) 

are responsible for a myriad of functions ranging from sensing light over olfactory stimuli to 

regulating metabolism. (iii) Receptor linked enzymes (RLEs), of which the major class are 

receptor tyrosine kinases (RTKs), sense growth factors and hormones. RTKs are involved in 

the control of critical cellular processes like metabolism and cell cycle control, and constitute 

an important target for diabetes and cancer therapy.47 

58 RTKs have been described in humans. They consist of a large extracellular domain (ECD) 

connected to an intracellular kinase (TK) domain by a single-pass transmembrane (TM) α-helix 

(Figure 6a). According to the canonical picture of RTK activation, they mostly exist as 

monomers at the cell membrane and dimerize or oligomerize upon ligand binding, triggering 

activation of their intracellular TK domains. The insulin receptor (IR) is an exception, as it exists 

as preformed dimers in its inactive form (Figure 6b). Furthermore, in the inactive receptor, the 

TK domains are auto-inhibited and only have residual kinase activity. Upon ligand binding, the 

receptors undergo a conformational change, which results in juxtaposition and trans-

autophosphorylation of the inhibitory loop of the TK domains. In other words, the TK domains 

cross-phosphorylate each other triggering a large increase in kinase activity. Subsequently, 
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many of the receptor’s intracellular tyrosine residues are phosphorylated, which produces 

binding sites for adapter proteins. A host of receptor-specific and common adaptors assemble 

around the phosphorylated TK domain and various signaling pathways are activated. Among 

these are the AKT/PKB (protein kinase B) and the canonical Ras/MAP (mitogen-activated 

protein) kinase pathways, whose activations can be followed by the increase in 

phosphorylation of AKT and Erk1/2 (MAP Kinase), respectively.  

An unusual kind of an RTK was cloned in 2003 from the parasitic worm Schistosoma mansoni 

(SmVKR).48 As expected for an RTK, phylogenetic and structural analysis of SmVKR indicated 

a high similarity of the intracellular domain to that of the IR. Surprisingly, and in stark contrast 

to typical RTKs, the ligand binding domain showed a high sequence homology  with the venus 

flytrap domains (VFT) from Class C GPCRs, such as the GABAB or the mGlu receptors. 

Accordingly, this novel class of RTKs was named Venus Kinase Receptors (VKRs). 

Later, the amino acid L-arginine (L-arg) was identified as the ligand for SmVKR and it was 

shown that L-arg binding to the VFT functionally results in phosphorylation of its TKD.49 In the 

parasitic worm, SmVKR is involved in oogenesis (i.e. sexual reproduction), which occurs in the 

mammalian host. Therefore, inhibition of SmVKR is an attractive target in the hunt for new 

drugs for this hard-to-treat parasitic disease. Moreover, VKRs recently gained increased 

attention due to their discovery in other pathogen vectors such as the malaria-spreading 

mosquito Aedes aegypti.50 In later studies, genes encoding VKRs have been identified in in a 

large variety of invertebrates (and particularly in insects) and it is now evident that they form a 

special and distinct class of RTKs, which is absent in vertebrates.51 

 

Figure 6. Structure of receptor tyrosine kinases and Venus Kinase Receptors. a) RTKs 
are made up by a large extracellular domain connected to a tyrosine kinase domain via a 
single-pass α-helix. In VKRs, the large extracellular domain is replaced by a venus flytrap 
domain. Upon stimulation of RTKs or VKRs by their ligands, networks of signaling proteins are 
activated, among them are the AKT and the MAPK pathways. b) The insulin receptor dimer, 
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adapted from Goodsell.52 Its ECD adopts an inverted V-shape and binds insulin (red) on its 
outer edge.  

Early investigations of the biology of VKRs were carried out in oocytes from the frog Xenopus 

laevis (Figure 7). The immature, fully-grown oocyte (Dumont Stage 6) is in a G2-arrested state, 

in which it can remain for a long time. Only induction by external stimuli abolishes this arrest 

state, and the oocyte then maturates and is primed for fertilization. This maturation is 

accompanied by germinal vesicle breakdown (GVBD), which can be easily observed by the 

appearance of a white spot on the pigmented, brown animal pole of the oocyte. In the female 

frog, this maturation is triggered by the steroid hormone progesterone, which acts through an 

unknown receptor to activate intracellular kinase-dependent signaling pathways. These are 

amplified by positive feedback loops so that the stimulation is irreversible, i.e. the oocyte 

switches binary from an ‘OFF’ (immature) to an ‘ON’ (mature) state.53 GVBD can also be 

triggered by other molecules that induce downstream kinase activity, e.g. insulin, which likely 

binds to endogenously expressed insulin receptor-like growth factor (IGF) 1 receptor.54 

Oocytes are large in diameter (~1 mm) and are a robust assay for kinase activity. After injection 

of exogenous RNA encoding for VKRs, they can be used for highly-sensitive and qualitative 

tests for kinase-activity by simple observation of GVBD in response to potential ligands. In 

addition, the molecular components of the RTK-downstream signaling cascade are present in 

the oocyte, enabling the identification of VKR effectors and interaction partners. Taken 

together, these features make Xenopus oocytes an ideal model system to study RTKs. 

 

Figure 7. Xenopus laevis oocytes as assay system for kinase activity. The oocytes of 
female Xenopus laevis frogs (upper left) are large in diameter (~1 mm) and can be 
microinjected with mRNA (bottom left) for expression of proteins. Oocytes undergo germinal 
vesicle breakdown (GVBD) in response to outside stimuli that result in an increase of kinase 
activity. GVBD can be observed by the formation of a white spot on the brown animal pole of 
the oocyte (right). 
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Due to the successes of photopharmacology on receptors that contain a LBD with a venus 

flytrap motif, such as the glutamate-gated ion channels AMPA and NMDA, the ANP or mGlu 

and GABAb receptors, we became interested in the presence of these VFD in other membrane 

proteins. Indeed, it seems that this widespread motif originates from ancient periplasmic 

binding proteins (PBPs) found in prokaryotes and that their evolutionary fusion with 

transmembrane proteins gave rise to small-molecule binding receptors.55 Photopharmacology 

relies on small-molecule photoswitches. RTKs are not amenable to photopharmacology at first 

sight, since they sense large peptide molecules such as insulin (MW = 5.8 kDa), and it is 

unlikely that incorporation and photoswitching of a small-molecule changes the shape or 

geometry of such a large molecule enough to have a large impact on ligand binding. 

In this context, we came across the VKRs in 2008. Due to their late cloning and notable 

absence from classical animal models such as Drosophila melanogaster and C. elegans, the 

biological role of VKRs, their downstream signaling pathways, and their ligands were still 

largely unclear. Nevertheless, we envisioned that these VKRs could be repurposed and made 

light-sensitive by utilizing a photoswitch based on their small-molecule ligand. To this end, the 

VKR from the honeybee Apis mellifera (AmVKR) was chosen.56 Work on the AmVKR was 

initiated by Dr. Harald Janovjak and conducted together with Dr. Johannes Broichhagen during 

their time in the Trauner laboratory. This work was started in close collaboration with Dr. Colette 

Dissous and Dr. Jerome Vicogne, who discovered the VKRs in 2003. From the start, the work 

on AmVKR was hampered by three main issues in mammalian cells:  

(i) bad (surface-) expression, 

(ii) unclear downstream signaling and  

(iii) an incomplete picture of its ligands (supposedly including L-arginine).  

Despite extensive work on AmVKR, these hurdles could not be overcome (see PhD thesis Dr. 

Johannes Broichhagen). Consequently, it was decided to discontinue work on invertebrate 

VKRs but instead engineer chimeric receptors guided by the VKR structure but based on 

mammalian protein domains. 

2.3 Results and Discussion 

2.3.1 Design 

Chimeric receptors were constructed based on three RTKs, the (i) human insulin receptor 

(hIR), (ii) the epidermal growth factor receptor (EGFR) and (iii) the hepatocyte growth factor 

receptor (HGFR or Met). The extracellular domain (ECD) was completely removed after the 

transmembrane (TM) α-helix and fused to the rat mGluR2 domain, including its rigid cysteine-

rich domain (CRD). The mGluR2 domain additionally carries a SNAP-tag for bioconjugation on 
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its N-terminus and originates from the SNAP_mGluR2 construct which was already validated 

for photoswitching with PORTL molecules (BGAGs, see chapter 1).28 Between mGluR2-CRD 

and TM, an additional 2-3 amino acids were introduced to allow for some flexibility. In addition, 

the construct carries the non-cleavable signal peptide from mGluR5 on its N-terminus, to 

ensure trafficking to the cell-membrane, and an HA epitope for immunoprecipitation or 

immunodetection. These constructs were termed LihIR, LiEGFR and LiMet and are supposedly 

a) activated by glutamate and b) activatable by light after labelling with the photoswitch 

(BGAG). See Figure 8 for visualization of the molecular components and their approximate 

sizes.  

 

Figure 8. LiRTK model. Red: RTK domains, grey: mGluR2 domains, green: SNAP-tag, 
multicolor: BGAG PORTL; abbreviations: TKD tyrosine kinase domain, TM (transmembrane), 
LBD ligand binding domain. (pdb: 3kzy, 5kzq, 2mfr, 1irk) 

2.3.2 Activation of LiRTKs by L-Glutamate in Xenopus Oocytes 

Since the LiRTKs are engineered receptors, several questions have to be carefully 

investigated: 

(i) Are LiRTKs expressed? 
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(ii) Are they inactive in absence of L-glutamate or are they constitutively active? 

(iii) Do LiRTKs show an increase in kinase activity in response to addition of L-

glutamate? 

(iv) Does the glutamate-based photoswitch BGAG8 activate the receptor upon 

illumination with light of the appropriate wavelength? 

We produced mRNA coding for LihIR, LiMet and LiEGFR and expressed them in defollucillated 

Xenopus laevis oocytes by microinjection. It should to be noted that LiEGFR could not be 

expressed in oocytes, probably due to an intrinsic incompatibility of the EGFR TKD with the 

oocyte expression system.  

Then, L-glutamate (L-glu) was added (~4 h after  microinjection) and stimulation of kinase-

activity was qualitatively assayed on the next day (after ~18 h) by observing and counting the 

appearance of the white spot on the brown animal pole of the oocyte (more than 14 out of 20 

= GVBD; less than 6 = no GVBD; indicated by + or – on the bottom of Figure 9).  

Experiments where protein is detected, by Western Blotting (WB), had to be completed within 

5 h after microinjection, because cleavage and degradation of receptor proteins was observed 

at later time points. Accordingly, all treatments, e.g. addition of L-glu, were conducted ~4 h 

post-microinjection. After 5 h post-microinjection, the oocytes (n = 2 x 20 per condition/column 

on WB) were lysed and the lysate was divided into two equal parts. One part was used to 

directly detect cytosolic, high-abundance signaling proteins by WB, such as Akt and Erk. The 

other part was subjected to immunoprecipitation (IP) and then WB. Progesterone (PG) was 

included as a positive control, to confirm the health and correct development stage of the 

oocytes and rule out variances due the oocyte-donating animal. 

Several conclusions can be drawn from GVBD and immunoblotting assays with L-glu 

stimulated oocytes (Figure 9): 

(i) Expression of LihIR and LiMet was confirmed by detection of their HA epitope (top 

lane ‘HA’).  

(ii) LihIR and LiMET have no effect on GVBD or phosphorylation of Akt and Erk in 

absence of stimulation by L-glu.  

(iii) Oocytes expressing LihIR and LiMet undergo GVBD in response to L-glu. 

(iv) Oocytes expressing LihIR and LiMet are phosphorylated/activated on RTKs upon 

stimulation by L-glu (PY100 lane) 

(v) This results in phosphorylation of the two major signaling proteins Akt and Erk (pAkt 

and pErk lanes). 
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(vi) As negative control oocytes were injected with mRNA for dead kinase mutants of 

the LiRTKs (a single point mutation in the TKD which completely abolishes kinases 

activity). These do not show GVBD or phosphorylation under the stimulating 

condition, showing that L-glu acts through the LiRTK and that the effect is due to 

kinase activity.  

 

Figure 9. LihIR and LiMet are sensitive to L-glutamate. 20 oocytes each were used for each 
IP, WB and GVBD (in total 60 oocytes per vertical lane). DK= dead kinase, neg. ctrl.; PG = 
progesterone, pos. ctr.  

These experiments were performed at least in three separate, independent experiments using 

oocytes from different animals (see supporting information for additional and uncropped 

original blots) and indicates that we are able to convert the human receptors for insulin and for 

the hepatocyte growth factor into glutamate receptors by replacing their extracellular domain 

with the ligand binding domain from the metabotropic glutamate receptor. 

2.3.3 Activation of LiRTKs by Light 

Encouraged by these results, we next assayed if the photoswitch together with light stimulation 

can elicit the same effects as L-glu alone. Again, LihIR, LiMet and their dead kinase mutants 

were expressed in oocytes by microinjection of RNA. 3 h post-injection, the oocytes were 

placed into a labelling solution containing 100 μM BGAG8 (the PORTL molecule) in buffer. After 

1 h incubation at r.t., the oocytes were removed from the labelling solution and placed into 

fresh buffer. Then, light stimulation was performed from the top using a UV handheld lamp 

(power 12 W, excitation ~350 nm) as follows: 1 min illumination, 5 min dark, 5 cycles. As 

before, one set of oocytes (n = 20 eggs) was observed and counted for GVDB after ~18 h. The 
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second set (n = 20 eggs) was subjected to IP and WP for protein detection of chimeras. The 

third set (n = 20 eggs) was used for detection of cytosolic signaling proteins. 

Several observations and conclusions can be drawn from GVBD and immunoblotting assays 

with light-stimulated oocytes (Figure 10):  

(i) Oocytes expressing chimeras and labelled with BGAG8 are inactive in the dark. 

(ii) When illuminated with UV light, the oocytes undergo GVBD, and are 

phosphorylated both on receptor level and on downstream signaling level. 

(iii) AG8 is a negative labeling control and lacks the BG for bioconjugation. Oocytes 

treated with AG8 are not affected by illumination.  

(iv) No effect is observed with the dead kinase mutants. 

(v) Non-injected oocytes serve as another control to show that neither BGAG8 or AG8 

have an effect in absence of chimera. 

Taken together, this is conclusive evidence that we are able to convert the insulin and the 

hepatocyte growth factor receptor into light-activatable receptors.  

 

Figure 10. LihIR and LiMet labelled with BGAG8 can be activated by light. 20 oocytes each 
were used for each IP, WB and GVBD (in total 60 oocytes per vertical lane). DK = dead kinase, 
neg. ctrl.; PG = progesterone, pos. ctr.; BGAG8 = PORTL molecule; AG8 = PORTL without the 
bioconjugation motif, negative labeling control. 

2.3.4 Influence of the TMD of LihIR on Chimera Activation 

Due to their relevance to human medicine, RTKs have been the focus of extensive research 

efforts. Nevertheless, it still remains unclear how the information from ligand-binding to the 

ECD is relayed to the TKD, partly due to the challenges of expressing full-length RTKs for 
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biophysical and structural characterization by X-Ray crystallography or Cryo-EM.57,58 It is an 

astonishing feat that in receptors of over 1300 amino acids in size (only one monomer) this 

critical part of signal transduction is accomplished by a single transmembrane α-helix of only 

around 20-25 amino acids. The hIR TM helix has a repeat of three isoleucines at its N-terminal, 

membrane embedded part, and we reasoned that by adding or removing one isoleucine we 

could reposition the helix inside of the membrane (i.e. ‘push’ our ‘pull’ it out of the membrane) 

which should have a large impact on receptor activation. Accordingly, we cloned a ‘extended’ 

and a ‘truncated’ version of LihIR and investigated them in oocytes (Figure 11). Strikingly, the 

truncation by only one amino acid completely abolished kinase activity. On the other hand, the 

extension was not entirely deleterious but lowered LihIRs apparent affinity for glutamate. 1 mM 

L-glu is sufficient to induce full GVBD in oocytes for the ‘normal’ LihIR, while the extended 

variant only underwent full GVBD at 5 mM. In addition, the extended variant did activate the 

Erk and JNK pathways but not the AKT pathway. This confirms the crucial role of the TM helix 

in the LihIR construct and could be an interesting entry point for the generation of variants with 

reduced affinities or altered downstream signaling. 

 

Figure 11. Influence of a single amino acid insertion or deletion in the fusion region. 20 
oocytes each were used for each IP, WB and GVBD (in total 60 oocytes per vertical lane). DK 
= dead kinase, neg. ctrl.; PG = progesterone, pos. ctr 

2.3.5 Activation of LiRTKs by Light in Mammalian Cells 

LiRTKs would be an even more useful tool if they could be expressed in mammalian cells. To 

this end, LiRTKs were subcloned on a bicistronic vector (pIRES2-AcGFP1). By bicistronic 

expression, the expression levels of LiRTKs and GFP are linked, and it was anticipated that 

this would allow for selection of populations of cells with different expression levels by 

fluorescence-activated cell sorting (FACS). Cell lines were chosen with no or little expression 

of the parent wild-type RTK to avoid issues due to hetero-dimerization of wild-type RTKs with 

LiRTKs. Several cell lines were investigated for expression of the LiRTKs, including Hela, 
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HEK293T, MCF7, MDCK-II and PC12. Many experimental and technical issues were 

encountered. For instance, Hela and HEK293T cells had high background phosphorylation 

levels of AKT and Erk, making any further increases due to LiRTK activity difficult to observe. 

On the other hand, MCF7 did not respond well to transfection by electroporation and in general 

were extremely tedious to culture due to their tendency to form piles when growing on culture 

dishes. Lastly, PC12 partially underwent differentiation into neuronal precursor cells when 

expressing LiRTKs, which made the further culturing impossible. Due to these issues, it was 

later decided to focus on MDCK-II cells expressing LihIR and LiEGFR. 

MDCK-II cells were transfected with LihIR and LiEGFR (on pIRES2_AcGFP1) (and their dead 

kinase mutants) by electroporation. Then cells were selected by antibiotic resistance to 

Geneticin® and FACS-sorted for GFP expression. These cells were then employed for the 

subsequent experiments. 

Expression of LiRTKs in mammalian cells was technically challenging. In contrast to the 

experiments in Xenopus oocytes, a high level of background phosphorylation was observed, 

which could be due to several reasons: 

(i) L-glu is present in the growth medium used for mammalian cells, fetal calf serum 

(FCS) contains ~1 mM L-glu.59 Therefore, normal growth medium (10% FCS) 

contains ~100 μM L-glu stemming from serum alone. This is likely enough to fully 

activate the chimera, since the EC50 of L-glu for mGluR2 is in the two-digit 

micromolar range.60 

(ii) RTKs are never fully cis-autoinhibited since this would preclude the initial trans-

phosphorylation that is required for receptor activation. The TKD is therefore 

thought to ‘breathe’ between states of high or low kinase activity.47 In addition, 

overexpression of RTKs leads to constitutive activation in absence of ligand.61 

Therefore, the expression levels of the chimeras are very likely to have a crucial 

influence on their background activity and stimuli-responsiveness. 

(iii) The activated chimera activates downstream signaling pathways that promote cell 

survival and proliferation. Therefore, cells are selected during culturing that express 

activated chimera in absence of stimulation, i.e. highly expressing cells where an 

increase in activation can be hard to observe. 

These issues are also amplified by the biochemical assays used to detect RTK activation. 

Most commonly, RTK activation is observed by an increase in phosphorylation, detected 

by immunoblotting with phospho-specific anti-RTK antibodies. These antibodies usually 

detect low amounts of phospho-protein, and are in are visualized and amplified by a HRP-
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conjugated secondary antibody. Therefore, a low percentage of phospho-protein of an 

overexpressed RTK is enough to saturate the signal on the only semi-quantitative method 

of WB. In contrast, the detection of phosphorylated downstream proteins might be easier 

since these pathways can compensate for the high level of continuous activation during 

the cell culturing by downregulation, making them more responsive to an additional 

stimulation. 

First experiments were performed by L-glu addition to cells expressing LiRTKs, and in 

many cases, an increase in downstream Erk phosphorylation was observed. Nevertheless, 

reproducibility of these experiments was an issue, possibly due to unidentified interactions 

of L-glu with endogenous proteins, obscuring the results. Consequently, chimera activation 

was probed by light after labeling with the PORTL molecule BGAG8. This is the ‘cleaner’ 

experimental approach, limiting off-target effects, since BGAG8 is bioorthogonal and 

excess molecule is washed out after the labeling reaction. Light was applied using LED 

arrays as previously described and should not cause any phototoxic effects at the 

employed intensities and durations.62  

Accordingly, MDCK-II cells stably expressing LihIR were labelled with 10 μM BGAG8 in the 

dark and at 37°C for 45-60 min in reduced medium (0.5% FCS/OptiMEM/0.1% DMSO), 

which in addition serves to starve the cells and lower the background phosphorylation of 

Erk/Akt. Then, the labeling medium was removed, replaced with HBSS/HEPES and cells 

were constantly illuminated with an LED array equipped with 24 LEDs (380 nm or 505 nm) 

for the indicated time at 37°C. Two controls were included, one where cells were not 

starved, and the other to exclude unspecific effects of DMSO vehicle or light application. 

Directly after the indicated illumination time, cells were washed with ice-cold PBS, placed 

on ice, lysed and subjected to WB (Figure 12). While no increase in phosphorylation of 

LihIR was be observed, likely due to the reasons outlined above, a transient increase in 

phosphorylation of Erk was observed that peaked around 2 minutes and decreased to 

basal levels at 10 min. Longer illumination of 15 or 20 min did not lead to increased or 

sustained receptor activation. Control cells that were only treated with the vehicle (0.1% 

DMSO) did not show any effects upon illumination (‘neg’). Non-transfected (‘mock’) cells 

were treated exactly like the 20 min time point LihIR cells and did not show any increase 

on Erk level, ruling out non-specific effects by the illumination. 
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Figure 12. Activation of LihIR by light in MDCK-II cells. †Non-starved cells. ‡Negative 
control, cells treated exactly like 15 min time point, but only incubated with 0.1% DMSO 
(instead BGAG8). Mock control is non-transfected MDCK-II cells treated like the 20 min time 
point cell. 

Following the same protocol, MDCK-II cells expressing LiEGFR were assayed, but this time 

different light protocols were followed (Figure 13). It should to be noted, that after an initial bout 

of violet light (380 nm), which isomerizes the photoswitch to its cis-isomer, the LiRTK should, 

on these timescales, stay ‘ON’ due to its bistability. Only after illumination with green light (here: 

505 nm), the photoswitch isomerizes back to trans-, turning the LiRTK ‘OFF’. The experiment 

was conducted in a duplicate in presence of the EGFR-inhibitor Gefitinib (1 μM), as negative 

control. 

By comparison of the pErk level of illuminated conditions B-F to the dark pErk level in A, several 

conclusions can be made: 

(i) A: dark panel. 

(ii) B: Illumination with green light for 20 min leads to a small increase on pErk level, 

which is consistent with the fact that the PSS under green light contains a higher 

percentage of cis-isomer than the PSS in the dark. 

(iii) C: Illumination with violet light for 20 min leads to activation of the chimera with a 

~3-fold increase in Erk phosphorylation that is sustained over 20 min in the dark. 

(iv) D: Similar to C, Illumination with violet light for 30 min leads to activation of the 

chimera followed by 10 min in the dark leads to a ~3-fold increase in Erk 
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phosphorylation. This indicates that thermal relaxation in the dark from cis- to trans- 

is likely not occurring to a significant at these timescales. 

(v) E: The largest increase in Erk phosphorylation was observed in cells illuminated 

with green light for 20 min followed by activating violet light for 20 min. The increase 

in pErk is ~5-fold. 

(vi) F: Reversing the wavelengths of E, i.e. first violet and then green light, ceases the 

activation of the receptor, observed by the decrease in pErk to ‘green’ levels 

(compare to B). This decrease is unlikely due to downregulation of Erk itself 

(compare to C and D). Therefore, F serves as an indication that the photoswitching 

of the receptor is reversible, i.e. that the LiRTK can not only be switched ‘ON’ but 

also ‘OFF’. 

 

Figure 13. Activation of LiEGFR by light in MDCK-II cells. a) WB, b) Light-stimulation 
protocol (time in minutes). c) Bands were integrated with ImageJ and pErk divided by tErk, 
then normalized to pErk/tErk of condition A (=1). The absence of the tEGFR in the rightmost 
lane is an experimental artifact. 

In summary, both LihIR and LiEGFR could be activated by light after labelling with the 

photoswitch BGAG8. The downstream Erk activation via LihIR was only transient, while 

LiEGFR light-stimulation led to sustained Erk phosphorylation. This indicates that the LiRTK 

inherits their parent RTKs signaling features. Therefore, LiRTK can potentially be used for time- 

and spatially-resolved studies of the events following RTK activation. The reversibility of ON 

and OFF photoswitching could be illustrated by following different light protocols for LiEGFR 

stimulation. It should be noted that western blotting is not an appropriate method for observing 

signaling events in a time-resolved manner. Great care was taken not to introduce outside 

variances, cells were treated exactly in the same manner except the different light protocols. 

Nevertheless, WB is only a semi-quantitative method and integrates the signal over a 

population of a few hundred thousand cells. However, signaling pathways should be studied 
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on a single cell level since every cell is different and integrates outside stimulation. The bulk 

observation can be misleading and misrepresent the single-cell events. One textbook example 

of this is the maturation (GVBD) of Xenopus oocytes (vide supra).53,63 Despite these limitations, 

the experiments shown above are a strong indication that LiRTKs are indeed activated by light.  

Lastly, the astonishing events are highlighted here that have to happen on a molecular level to 

cause a light-induced effect on Erk phosphorylation: (i) a photoswitch is covalently attached to 

a protein, (ii) absorbs a photon of the appropriate energy and isomerizes to cis-, (iii) this 

induces ‘closure’ of the venus-flytrap, ligand-binding domain, (iv) which in turn is transmitted 

through the cell membrane to the intracellular tyrosine kinase domain, (v) ultimately resulting 

in kinase activation and initiation of downstream signaling events. 

2.3.6 Control of Cell Adhesion in MDCK-II Cells Expressing LiEGFR 

A431 cells overexpressing EGFR loose cell-to-cell adhesion upon addition of EGF 

(unpublished observations by Chiara Zambarda, Growth Factor Mechanobiology Group, MPI 

for Medical Research Heidelberg). To observe and analyze this, cells were seeded on 

micropatterned dishes, where cells can only attach and grow on circular islands. These dishes 

are produced by adapting published protocols,64,65 where a glass coverslip was PEGylated and 

this layer was removed by UV irradiation through a mask, i.e. photomasking. The A431 cells 

were seeded on these dishes to form round, confluent islets of cells and upon EGF addition, 

the cells seemed to ‘contract’, forming a pile in the islet’s middle. This can then be quantified 

by comparing the areas that are covered by cells before and after EGF addition.  

We asked if cells expressing LiEGFR upon L-glu addition exhibit the same behavior as the 

A431 upon EGF addition. To this end, MDCK-II cells expressing LiEGFR were seeded on the 

micropatterned dishes and a timelapse video with a 30 sec frame rate was recorded (Figure 

14). Before stimulation, the cells move around and completely fill out the round islets. Upon 

addition of L-glu (to a final conc. of 1 mM, 1/100 dilution from 100 mM stock) at t = 10 min, the 

cells lose cell-to-cell adhesion (see t = 11, 13, 18 min). In overall, the cell islets ‘contract’, a 

process that is immediate and rapid and can be followed on a minute timescale. The response 

is reversible, and the cells relax and re-expand to the previous state (t = 40 min). 

Importantly, the negative controls (MDCK-II ‘mock’, non-transfected) and MDCK-II/LiEGFR_dK 

(dead kinase mutant) do not contract after L-glu addition (see chapter 2.5.4). 

MDCK/LiEGFR_LBD cells that express a mutant with lower affinity for L-glu (R57A)66, exhibit 

the contraction but to a smaller extent, i.e. less cells contract and less pronounced. 
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Figure 14. Time-lapse of MDCK-II cells stably expressing LiEGFR. L-glu (1 mM) was added 
after t = 10 min. For clarity, the upper right islet is marked with a white circle, representing the 
area covered by cells at t = 0 min. 

The contraction of MDCK-II/LiEGFR is similar to the response of A431-EGFR upon EGF 

addition (unpublished results from Chiara Zambarda) but more heterogeneous. On a single 

cell level, it is obvious that some MDCK-II/LiEGFR cells show a strong response, but that other 

cells do not contract at all. This is most likely due to highly variable levels of receptor 

expression, which is a common issue of traditional stable expression from cDNA.67 

Experiments are underway to directly detect the LiEGFR receptor on cell-to-cell level by 

immunofluorescence. 

That RTKs such as EGFR can influence the mechanobiology of cells is an active and new field 

of research and the knowledge of the mechanisms underlying these observations and their 

significance is incomplete. In collaboration with the ‘Growth Factor Mechanobiology’ group we 

are actively working on identifying the molecular components underlying the signal 

transduction that must lie between binding of EGF/L-glu and the phenotypic response 

(‘contraction’). In addition, we are planning to adapt these experiments for labelling with the 

photoswitch ‘BGAG8’ and producing the same contraction with light. 
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2.4 Summary and Outlook 

Here, several Receptor Tyrosine Kinases (RTKs) were converted into glutamate receptors and 

then into photoreceptors. This was accomplished by engineering chimeric receptors in analogy 

to Venus Kinase Receptors (VKRs), a special class of RTKs only found in invertebrates. We 

cloned chimeras featuring the venus-flytrap, ligand-binding domain of the metabotropic 

glutamate receptor 2 and the intracellular domains from a selection of human RTKs. In addition, 

these chimeras carry a self-labeling protein tag (i.e. SNAP-tag) on its extracellular N-terminus. 

Experiments in a Xenopus laevis assay indicate that LiRTKs can be activated by the amino 

acid L-glutamate (L-glu). Moreover, after reaction of the SNAP-tag with a photoswitchable 

orthogonal remotely-tethered ligand (PORTL), the LiRTK gains light sensitivity. The labeled 

LiRTK can be activated by light in both the Xenopus laevis assay and in mammalian MDCK-II 

cells. We demonstrated that this approach is not only applicable to the insulin receptor but also 

to other RTKs, such as EGFR and Met. 

These LiRTKs can be expressed in mammalian cells, and enable optical control over the 

downstream MAPK signaling pathway. Moreover, they can control the mechanobiology of 

epithelial cells; in MDCK-II/LiEGFR cells stimulation by L-glu leads to a loss of cell-to-cell 

adhesion. 

While we could clearly demonstrate the LiRTK concept, all conclusions in mammalian cells are 

based on downstream observations, such as Erk activation or cell contraction. We are still in 

the process of observing the activation of the receptor by light or L-glu on the receptor level 

itself, i.e. the increase in RTK kinase activity. Investigations are ongoing to produce 

mammalian cells lines expressing LiRTKs on a more physiological level. In combination with 

microscopy-based readouts, these cell lines will allow perturbation of LiRTKs by light in a 

spatiotemporally defined manner, while observing the readout in real-time. 
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2.5 Supporting Information 

 

Supporting Figure 1. Elk1/SRF (from Qiagen) transcriptional dual luciferase readout of Erk 
activity in Hela cells transfected with LihIR and stimulated with L-glu. 

2.5.1 Xenopus Laevis Oocytes 

RNA was produced by mMESSAGE mMACHINE™ T7 Transcription Kit (Invitrogen #AM1344) 

according to the manufacturer’s instructions.  

mRNA preparation: 

DNA was linearized by digesting 5 μg of DNA (on pcDNA3.1 vector) by the FastDigest 

(ThermoScientific, #00151181) protocol with PmeI (MssI) (Thermo Scientific, #FD1344) for 1.5 

h at 37 °C. Afterwards, subsequent addition of 250 μL absolute EtOH, followed by 10 μL of 3 

M NaOAc was carried out before storing the solution at -20 °C overnight for precipitation of the 

linearized plasmid, which was then isolated by centrifugation for 20 minutes at 12,000 rpm at 

4 °C. After removal of the supernatant, DNA was dissolved in 15 μL dH2O and 1 μg was 

reverse-transcribed by using the mMessage mMachine T7 transcription kit (life technologies, 

#AM1344) according to the manufacturer’s instructions. Pure mRNA was taken up in nuclease-

free water, aliquoted and stored at -20 °C. 

Injection and treatment: 

Female frogs were anesthetized, oocytes were surgically harvested, washed and stored in 

ND96 buffer. Oocytes were defolliculated manually with forceps before injection with cRNA (60 

ng) coding for the construct. L-Glutamate was added to reach the appropriate final 
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concentration for stimulation (1 mM or 5 mM) 3 h after cRNA Injection. GVBD was observed 

after 15 h. 

For immunoprecipitation and western blotting, the oocytes were lysed 5 h after cRNA injection 

(i.e. before GVBD). 

For the light-stimulation experiments, oocytes were incubated at 19°C for 1 h with BGAG8 (1% 

DMSO in ND96 buffer), 3 h after cRNA injection was performed. The oocytes were transferred 

back to ND96 buffer and illuminated at 365 nm in cycles (12 W, 1 min UV, 5 min dark, 5 

repetitions). GVBD was observed after approximately after 15 h. 

 

Supporting Figure 2: GVBD scores and WB identifiers/layout. July 2017  

Original Blots (July 2017): 

GVBD 0/20 14/20 0/20 0/20 0/20 13/19 0/20 0/20 0/20 0/20 12/19.

IDENTIFIER # 3 1 2 5 9 7 8 12 14 15 16

conditions

mRNA IR IR IR IRDK MET MET MET METDK Ctrl Ctrl Ctrl

BGAG SPL15 SPL15 SPL14 SPL15 SPL15 SPL15 SPL14 SPL15 SPL15 SPL14 PG+DMSO

light UV UV UV UV UV UV UV UV UV

results

GVBD OK OK OK

total IR/MET OK OK OK OK OK OK OK OK

Phospho OK OK

P‐ERK OK OK OK

P‐Akt OK OK OK

BLOT1

GVBD 0/20 13/19 0/18 0/12 10/15. 0/12 14/20 SPL 15 = BGAG8

NUMERSO 18 4 6 11 10 13 17 SPL14 = AG8

IDENTIFIER #

mRNA IR IR IRDK MET MET MET‐DK Ctrl

treatment glut 1mM glut 1mM glut 1mM glut 1mM PG+DMSO

results

GVBD OK OK OK

total IR/MET OK OK OK OK OK OK

Phospho OK OK

P‐ERK OK OK OK

P‐Akt OK OK OK

BLOT2
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Original Blots (November 2014): 
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Original Blots (November 2016): 
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Cropped bots (spring 2016): 

 

 

  



2. Optical Control of Receptor Tyrosine Kinases 

36 

2.5.2 Western Blotting 

Western blotting protocol: 

• Cells were placed on ice, medium was removed and washed with cold PBS (2mL). 

• Cell lysis buffer was prepared: 0.5 vol% phosphatase inhibitor (Sigma, #P5726-5ML) and 

0.25 vol% protease (Sigma, #P8340) inhibitor were added to 100 μL cold RIPA-SDS buffer. 

• Cell lysis buffer was added to the wells and the cells were scrubbed off and transferred to a 

1.5 mL Eppendorf tube. The cell suspension was centrifuged (14000 rpm, 4 °C). The 

supernatant was transferred carefully to a new tube without disturbing the DNA pellet. 

• For determination of protein concentrations, a BCA assay was performed using a BCA kit 

(ThermoScientific, #23225) on a colorimetric platereader (Thermo Scientific, MultiscanEX) 

according to the the manufacturer’s instructions. 

• For each sample 20-30 μg of protein was added to 7.5 μL of NuPAGE blue LDS sample buffer 

(4X, life technologies, #NP0007) and 3 μL Redox buffer (10X) and filled up to a total volume of 

30 μL with ddH2O. Samples were heated to 70 °C for 10 min prior to loading on a SDS-PAGE 

gel (4-12% NuPAGE Bis-Tris Plus Gel, life technologies, #BG04120BOX or #WG1401BOX ). 

Electrophoresis was carried out at 80-180 V. 

• Protein was transferred on a PVDF membrane (1.5-2 h, 55-65 V) before blocking the 

membrane with caseine blocking buffer for 30 min at r.t., then the primary antibody (usual 

dilution 1/1000 in recommended primary antibody buffer) was added and incubated at 4 °C 

overnight under agitation. The membrane was washed 5 times 5-10 min each with PBS (0.05% 

Tween-20) before the secondary antibody was added (1/30000 dilution in blocking buffer) and 

incubated at r.t. for 30-45 min under agitation. The membrane was washed 2 times, 5-10 min 

each, with PBS (0.05% Tween-20) and one time with cold PBS. 

• After removal of washing buffer, the membrane was treated with chemiluminiscent substrate 

(Pico, Thermo Scientific, #34080 or Dura, Thermo Scientific, #34076F ) according to the 

manufacturer’s instructions. CL-XPosure X-ray film (Thermo Scientific, #OK196129) was 

exposed to luminiscence signal for a duration of 30 seconds to 20 minutes prior to 

development. Blots were scanned and processed with ImageJ for integration of signals. 

• For incubation with a different primary antibody, the membrane was stripped with stripping 

buffer (Gene Bio Application, #CST0100) and washed with 2 times with PBS (0.05% Tween-

20) before repeating the above steps. 



 

37 
 

2.5.3 Supplementary Western Blots (cropped) 
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2.5.4 Supporting Contraction Timelapse Videos 

 

Supporting figure: MDCK-II mock cells (non-transfected). L-Glu (1 mM) was added at t = 10 

min.  
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Supporting figure: MDCK-II/LiEGFR_LBD (low-affinity mutant). L-Glu (1 mM) was added at t = 

10 min.  
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Supporting figure: MDCK-II/LiEGFR_dk (dead-kinase mutant). L-Glu (1 mM) was added at t = 

10 min.  

2.5.5 Plasmid Maps and DNA Sequences 

 LihIR 
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 LiMet 
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 LiEGFR 
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 KTR-Erk_mScarlet 
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2.5.6 Fluorescent Erk reporters 

To take full advantage of the spatiotemporal precision that a light-activatable LiRTKs offer, the 

experimental setup has to be performed so that both light-stimulation as well as the 

downstream readout can be performed with a resolution of milliseconds to minutes. To this 

end, a downstream Erk readout could be employed, more specifically ‘kinase translocation 

reporters’ (KTRs).68,69 These consist of a fluorescent protein (FP) fused to a combined nuclear 

localization and nuclear export sequence (NLS and NES). The NLS/NES sequence is 

engineered to be a substrate for the Erk kinase, and is phosphorylated upon Erk activation in 

such a way that the KTR construct is exported from the nucleus into the cytosol. This enables 

real-time measurement of Erk activity by following the ratio of FP between the nucleus and the 

cytosol. The available, published KTR-Erk reporters are not compatible with the LiRTKs 

because they are fluorescent at wavelengths that are required for the activation/deactivation 

of the LiRTKs. Therefore, a KTR-Erk sensor was cloned utilizing the monomeric, bright FP 

‘mScarlet’ with maximum absorbance at 569 nm, which is red-shifted enough to allow for 

orthogonal ON/OFF photoswitching of the LiRTKs.70 

The advanced, fully-motorized DMi8 inverted wide field microscope (Leica) is an attractive 

platform for these experiments. It allows automatization of the protocols for light stimulation 

and readout, and at the same time allows the light to be applied only to a part of the dish, to 

demonstrated the spatial features of light activation. Complex, customized protocols can be 

easily programmed, e.g. light stimulation for N seconds on position XYZ is followed by a 

fluorescent readout at time M.  

To validate the KTR-Erk Sensor, it was transiently transfected in Hela cells and saturating 

insulin was added. Indeed, the translocation of KTR-Erk_mScarlet out of the nucleus could be 

followed in real-time peaking at 16 min, which normalized to baseline levels 30 minutes post-

stimulation (Figure 15). 
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Figure 15. Hela cells transfected with KTR-Erk_mScarlet and stimulated with insulin. 
Several time points are depicted (minutes). 

2.5.7 Compounds 

Detailed experimental procedures for the synthesis of all employed photoswitches are 

described in: 

Broichhagen, J., Damijonaitis, A., Levitz, J., Sokol, K.R., Leippe, P., Konrad, D., Isacoff, E.Y., 

Trauner, D., 2015. Orthogonal Optical Control of a G Protein-Coupled Receptor with a SNAP-

Tethered Photochromic Ligand. ACS Cent. Sci. 1, 383–393.  
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3 Optical Control of Potassium Channels 

3.1 Introduction 

Neurons are excitable cells that generate electrical signals, called action potentials. Upon 

receiving information, they propagate these signals along their cell body and transmit them to 

other neurons by synaptic transmission. 

Action potentials are primarily shaped by two components: a transient inward current of Na+ 

ions and a delayed outward current of K+ ions. When a neuron is depolarized from its resting 

potential (around -70 mV) to threshold potentials (around -50 mV) by a cationic 

neurotransmitter-gated channel (e.g. AMPA), voltage-gated Na+ (Nav) channels open (Figure 

16). This causes a rapid and transient inward flow of Na+ ions along their concentration 

gradient, resulting in a sudden further depolarization of the membrane. The depolarization 

induces a delayed opening of voltage-gated K+ (Kv) channels. K+ ions then flow outwards, since 

K+ ion concentration is higher inside than outside of the cell. The efflux of K+ repolarizes and 

resets the membrane potential to its resting value and primes the neuron for a new action 

potential.  

 

Figure 16. The first recorded action potential from Hodgkin and Huxley in 1939.71 The 
action potential was recorded between the in- and outside of a giant axon from squids. 

Action potentials are at the heart of neuronal signal transduction and the interplay between 

many neurons connected to networks and circuits in the brain is the foundation of animal 

behavior. To sculpt the circuitries’ responses to input signals, action potentials come in many 

shapes and frequencies. Contributing to that diversity in excitability, K+ channels exhibit a broad 

variety of gating properties. This is manifested in the large number of different K+ channel 

subtypes expressed in neurons. In total, four families encode a total of 78 K+ channel subtypes: 
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voltage-gated (Kv), two-pore domain (K2P), Ca2+-activated (KCa) and inwardly-rectifying (Kir). 

The largest family, Kv channels, counting 40 different genes in the human genome.72 K+ 

channels constitute important drug targets for a variety of diseases, not only in the CNS but 

also for metabolic or autoimmune disorders. Unfortunately, it has been difficult to target K+ 

channels in a subtype-selective manner with traditional pharmacology, since most K+ channel 

modulators interact with the pore region, a region with high sequence homology among 

subtypes. Due to this absence of selective openers or blockers, the target identification of K+ 

channels has largely been limited to information obtained from genetic diseases or rodent 

knockout models, greatly slowing down ion channel drug discovery.73 

The physiological action of K+ channels takes place on a millisecond timescale. Therefore, 

tools that allow perturbation of K+ channels on this timescale are highly useful, such as 

photoswitchable channel blockers. In 2004, Trauner, Kramer and Isacoff described such a 

photoswitchable blocker for the Shaker K+ channel.14 These blockers are based on 

tetraethylammonium (TEA), a quaternary ammonium (QA) and an unselective blocker of K+ 

channels. TEA was modified with a photoswitchable azobenzene and this enabled optical 

control over Shaker channel gating and allowed for remote control of neuronal firing by light in 

neurons. These compounds based on QAs, such as MAQ,14 AAQ74 and DENAQ75 have shown 

great promise in the field of vision restoration (Figure 18a). In particular, DENAQ confers light-

sensitivity to degenerated retinae from blind mice and is a potential treatment for eye diseases, 

e.g. retinitis pigmentosa and age-related macular degeneration.75 These compounds primarily 

act through intracellular block of the TEA binding site of K+ channels and are use-dependent, 

open-state blockers.6 Despite their potential, one drawback has been their low target affinity 

with effective concentrations in the high micromolar to single-digit millimolar range.6 This is 

presumably due to their permanent charge, which prevents these molecules from efficiently 

crossing the cell membrane to reach their site of action. While this issue is partly compensated 

for by uptake through pore channels such as P2X7, the comparatively low potency remains a 

challenging issue.76 In the first part of the chapter, this matter is overcome with the design, 

synthesis and electrophysiological characterization of an improved series of photoswitchable 

channel blockers based on the non-charged local anesthetic bupivacaine (Chapter 3.2.1). 

One way to furnish photoswitchable blockers with target specificity for a K+ channel subtype 

could lie in the fusion of small-molecule drugs with antibodies. The field of antibody-drug 

conjugates (ADCs) was mostly pioneered in cancer therapy. There, conjugation of cytotoxic 

drugs to antibodies that recognize specific markers on cancer cells allow drugs to be targeted 

to specific populations, without harming the healthy surrounding tissue. These advances 

culminated in FDA approvals for drugs like trastuzumab emtansine (Kadcycla®), which has 
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shown efficacy in HER2 positive breast cancer. Fueled by these successes, the requisite 

chemistry of antibody-drug conjugates (ADCs) has been refined to a satisfying degree of 

sophistication over the last decade.40 We envisioned that by attaching a photoswitchable K+ 

channel blocker to an antibody, we could photoswitch endogenous K+ channels with subtype 

specificity. Kv channels are mostly buried in the membrane with only the loop between 

transmembrane helices S1 and S2 accessible from the extracellular side (Figure 17a). In the 

second chapter, we describe the synthesis of antibody-photoswitch conjugates (APCs) 

targeting the S1-S2 loop of Kv1.1 and Kv2.1 and their electrophysiological characterization 

(Chapter 3.2.2). 

 

Figure 17. Concept of antibody-photoswitch conjugates a) left: Scheme based on the 
bacterial MthK, adapted from David Goodsell77 right: Shaker K+ structure b) A photochromic 
blocker is tethered to an antibody. The antibody binds to the exposed S1-S2-loop allowing the 
remotely attached photochromic blocker to light-gate the channel. 

3.2 Results and Discussion 

3.2.1 Photochromic Blockers Based on Bupivacaine 

One strategy to equip drugs with light-sensitivity is termed ‘azo-extension’.78 In this approach, 

furnishing drugs with a photoswitch is achieved by identifying positions in their chemical 

structure where modification changes the biological activity but where the modification is not 

completely deleterious. After functionalizing that position with a photoswitch, it is likely that 

photoisomerization leads to light-dependent change in biological activity. Accordingly, we 

envisioned to install an azobenzene in the para-position of the pipecolic amide of bupivacaine 

(Figure 18b). Isomerization of the azobenzene from its cis- to its trans-configuration by light 

should then change the PCLs efficacy and/or affinity to the K+ channel, enabling optical control 

over K+ currents (Figure 18c). It should be noted that bupivacaine contains an asymmetric 

carbon but is sold and used as a racemic mixture. Therefore, the synthesis was planned 

without stereoselectivity and in a modular fashion to yield a short series of three 

azobupivacaines AB1-3 bearing different substituents on the azobenzene to finetune switching 

wavelengths and photswitching kinetics. 



 

51 
 

 

Figure 18. Logic and design of photoswitchable azobupivacaines AB1-3. a) 
Photoswitchable blockers based on TEA. b) ‘Azo-extension’ strategy of azobupivacaines. c) 
Azobupivacaines AB1-3 block channels in one configuration while allow ion flow in the other. 

The synthesis of AB1-3 commenced with acyl chloride formation of pipecolic acid (1) followed 

by amide bond formation with 4-bromo-2,6-dimethylaniline to give pipecholyl xylidine 2. Direct 

treatment of 2 with n-butylbromide furnished tertiary amine 3 in fair overall yields (Scheme 1). 

Pd-catalyzed amination of 3 using LiHMDS as the nitrogen source, followed by direct 

deprotection of the silyl groups furnished aniline 4 as the common precursor for further 

derivatization. AB1 was then accessed by a Baeyer-Mills reaction of 4 with nitrosobenzene. 

Treatment of 4 with t-BuONO followed by trapping of the resultant diazonium ion with N,N-

dimethylaniline furnished AB3 in moderate yields. Aniline 6 was obtained from 4 after Baeyer-

Mills reaction with 4-nitronitrosobenzene followed by reduction of the nitro group using sodium 

sulfite. Amide bond formation of 6 with chloroacetyl chloride, followed by a Finkelstein reaction 

and careful substitution with ammonia furnished AB2 in good overall yields. 
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Scheme 1: Synthesis of AB1-3. 

Next, the photoswitching properties of AB1-3 were evaluated by means of UV/Vis 

spectroscopy. The optimal wavelengths for cis-to-trans isomerization were determined in a 

wavelength-screen by changing the illumination wavelength while looking at minimal/maximal 

extinction at the absorbance maximum near the π-π* transition, as described previously.79 

UV/Vis spectra of AB1-3 were then recorded under illumination of these optimal switching 

wavelengths (Figure 19, upper panels; AB1: cis = 360 nm (light gray), trans = 420 nm (violet); 

AB2: cis = 380 nm (dark gray), trans = 500 nm (green); AB3: cis = 460 nm (blue); no 

illumination is black in all cases. Both AB1 and AB2 exhibit bistable behavior, e.g. slow thermal 

relaxation back to the trans-isomer in the dark (Figure 19, lower panel). This is an 

advantageous property in photoswitches since it allows to switch using a short bout of light as 

opposed to constant illumination. AB3 is red-shifted and exhibits fast thermal relaxation in the 

dark. Red-shifting can be beneficial in applications such as vision restoration, where a quick 

turn-off in the dark is required. In addition, longer-wavelength light allows deeper tissue 

penetration. 
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Figure 19. Top: UV/Vis spectra of AB1-3 (15 μM in DMSO) in the dark (black) and illuminated 
at the indicated wavelengths. Bottom: Photoswitching is stable over many cycles. a) Black: 
dark-adapted, violet: 420 nm, light gray: 360 nm; b) Black: dark-adapted, green: 500 nm, dark 
gray: 380 nm and c) Black: dark-adapted, blue: 460 nm. 

To evaluate the effect of ABs on Kv channels, HEK293T cells were transiently transfected with 

the slowly-desensitizing, delayed-rectifier Kv2.1 channel. Prior to compound wash-in, a current-

voltage(IV) -curve was recorded for normalization to account for cell-to-cell variances like size, 

conductance or expression. In particular, K+ currents were evoked by depolarization from -80 

to +40 mV in whole-cell voltage-clamp mode. Then, ABs were washed in and illuminated with 

the appropriate wavelength to isomerize to the trans-configuration (i.e. violet/green or dark) 

while recording two IV-curves (Figure 20a). Maximum block was only achieved after the second 

IV (trans-) which is consistent with the mechanism of a use-dependent open channel blocker.80 

Next, two IV-curves were recorded under the appropriate switching wavelengths to the cis-

configuration (grey) to unblock the channel. The block was more pronounced at high voltages 

which indicates a channel block from the intracellular side (Figure 20b).80 We tested AB1-3 at 

different concentrations and determined AB2 as the most potent compound, showing the 

maximum photodependent block at 5 M (Figure 20c and Supporting Figure 3). As such, AB2 

blocks 70.1 ± 1.5% of K+ current under green light, of which 58.8 ± 4.7% can be relieved under 

UV-illumination (Figure 20b,c). Interestingly, the substitution at the para-position of the 

azobenzene impacts potency greatly since both AB1 and AB3 showed a decreased block 

(Figure 20c). At a high concentration of 100 M AB1 blocked under violet light with Imax = 0.22 

± 0.03 and unblocked under UV-light with Imax= 0.64 ± 0.03 (n = 4 cells). AB3 was only soluble 

up to 50 M in extracellular buffer and at this concentration blocked currents in the dark with 

Imax = 0.25 ± 0.06 while unblocking under blue illumination with Imax = 0.67 ± 0.07 (n = 4 cells). 
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To ultimately highlight the reversibility and rapid speed of block and unblock with AB2, we 

switched between UV/green illumination while holding the cell at +20 mV (Figure 20d). 

 

 

Figure 20. Light-gated Kv2.1 currents by AB1-3 in HEK293T cells transiently transfected 
with Kv2.1. a) After recording an initial IV-curve in 10 mV steps from -80 to +40 mV, AB2 (5 
M) was washed in, followed by illumination with green light (500 nm) to isomerize AB2 to its 
trans-configuration, leading to a block of K+ current. After isomerization to its cis-configuration 
by UV-light (380 nm), the blocking could be reversed. b) Representative single-cell IV-curve 
before wash-in, and in presence of AB2 under illumination with 380 or 500 nm. c) Maximum 
light-gated currents were normalized to the maximum current before wash-in in the dark. AB1 
(5 M) opened the channel under UV-light (360 nm) with Imax. = 0.86 ± 0.04, while blocking 
under violet light (420 nm) (Imax =0.60 ± 0.03). AB2 (5 M) showed currents of Imax = 0.89 ± 0.05 
under UV-light (380 nm) and Imax. = 0.30 ± 0.01 under green light (500 nm). AB3 showed no 
significant block at 5 M with Imax. (460 nm) = 0.95 ± 0.01 and Imax. (dark) = 0.89 ± 0.01. d) To 
demonstrate the reversibility and fast kinetics of block and unblock, the cell was held at -20 
mV while switching with UV/green light (380/500 nm) in presence of AB2 (5 M). 

TREK-1 is a two-pore domain K+ (K2p) channel which is widely expressed in the central nervous 

system (CNS) and exhibits unique physiological and pharmacological properties.81 Initially 

described as ‘background’ or ‘leak’ channel, this channel was cloned in 1996.82 It is described 

as an outward rectifier but has a comparatively high probability of opening at negatively 

membrane potentials. Therefore, TREK-1 opening sets the membrane potential closer to the 

potassium equilibrium potential. TREK-1 is activated by a variety of molecules, such as lipids 

and general anesthetics, but is also responsive to nociceptive stimuli like membrane stretch.83 
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TREK-1 is implicated in processes ranging from neuroprotection, anesthesia and pain, to mood 

disorders such as depression. It also constitutes a fairly novel drug target.84,85 TREK-1 is only 

weakly sensitive to quaternary ammoniums like TEA.86 Therefore, optical control of TREK-1 

blockade using the photoswitch MAQ could only be enabled at very high local concentrations 

by tethering MAQ to a genetically introduced cysteine at its pore region.15 While this elegant 

approach could unravel TREK-1 contributions to hippocampal GABAb signaling, it is limited by 

the requirement of genetic modification, and by the inherent drawbacks of cysteine-maleimide 

chemistry, such as reactivity towards glutathione or hydrolysis. We were intrigued by the first 

description of ‘leak’ channels in myelinated nerves in 1992, which identified bupivacaine as a 

leak channel blocker,87 and accordingly hypothesized that azobupivacaines could photoswitch 

this channel. First, the inability of permanently charged PCLs to block TREK-1 was 

reassessed. Indeed, after transfection of HEK293T cells with TREK-1, no block by AAQ in 

neither the cis- nor its trans- configuration was observed, even at 100 μM (Supporting Figure 

4). Then, AB1-3 (Figure 21a) were tested by looking at the IV-relationship from -80 to +40 mV. 

Again, one IV-curve for normalization was recorded before wash-in of compounds AB1-3. The 

cell was then illuminated with light of the appropriate wavelength for the trans-isomerization. 

(i.e. violet/green nm or dark). The channel was then unblocked by illumination with UV or blue 

light. Interestingly, and in contrast to the experiments with Kv2.1, AB1 emerged as the most 

efficacious compound for potentiating TREK-1 currents (Figure 18b and Supporting Figure 5). 

cis-AB1 potentiates TREK-1 at 100 M with a maximum normalized current of Imax, norm. = 1.20 

± 0.06 while trans-AB1 blocks the channel efficiently with Imax, norm. = 0.39 ± 0.07 (Figure 21c). 

Two aspects of TREK-1 blockade by AB1-3 were different in comparison to Kv2.1. First, TREK-

1 blocking and unblocking was fully apparent at the first recorded IV-step. Secondly, the 

percentage of block did not increase at positive potentials. Together, this points to a different 

mechanism of channel blockade on TREK-1 compared to Kv2.1. 
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Figure 21. Light-gated TREK-1 currents by AB1-3 in HEK293T cells transiently 
transfected with TREK-1. a) After recording an initial IV-curve in 10 mV steps from -80 to +40 
mV, AB1 (100 μM) was washed in, followed by illumination with violet light (420 nm) to 
isomerize to trans-AB1, leading to a block of K+ current. After isomerization to cis-AB1 by UV-
light (360 nm), the block was not only reversed but the channel was potentiated to larger 
currents than before wash-in. b) Representative single-cell IV-curve before wash-in, and in 
presence AB1 under illumination with UV-light (360 nm) and violet light (420 nm). c) Over 
multiple cells, maximum light-gated currents were normalized to the maximum current before 
wash-in in the dark. AB1 (100 μM) opened the channel under UV light (360 nm) with Imax. = 
1.29 ± 0.06, while blocking under violet light (420 nm, Imax =0.39 ± 0.07). AB2 (100 μM) showed 
currents of Imax = 1.01 ± 0.10 under UV light (380 nm) and Imax. = 0.44 ± 0.08 under green light 
(500 nm). AB3 (50 μM) blocked the current in in trans-configuration (Imax. = 0.50 ± 0.10) but 
could not be unblocked significantly under illumination with blue light (460 nm, Imax. = 0.63 ± 
0.07). d) To demonstrate the reversibility and fast kinetics of block and unblock, the cell was 
held at +20 mV while switching with UV/violet light (360/420 nm) in presence of AB1 (100 μM).  

Having set the stage in transfected cells, we tested AB2 for effects in coronal brain slices of 

the mouse hippocampus CA2 region, where Kv2.1 is highly expressed.88 Action potentials 

(APs) were evoked in whole-cell current-clamp mode by injection of an above-threshold 

current. In the dark, trans-AB2 allowed for AP firing by inhibiting potassium channels. Due to 

the bistable behavior of AB2, a short flash of UV-light (380 nm) was sufficient to silence AP 



 

57 
 

firing (Figure 22a). Silencing and unsilencing could be performed on a millisecond timescale 

(Figure 22b). Similar to HEK293T cells, transiently transfected with TREK-1, K+ currents were 

blocked rapidly by switching between UV/green light (380/500 nm) in brain slices (Figure 22c).  

 

Figure 22. Optical control of AP firing of hippocampal neurons in acute brain slices. a) 
A short flash of UV light (380 nm) was sufficient to silence AP firing. b) Switching between 
silenced and unsilenced mode proceeds in milliseconds c) K+ current was evoked by 
depolarization to +60 mV and potentiated by switching UV/green light (380/500 nm). 

In conclusion, we report three novel photoswitchable channel blockers which operate on Kv2.1 

at low concentrations. In addition, these compounds act as photochromic blockers on the K2p 

channel TREK-1. An opposing trend in efficacy in dependence on the azobenzene could be 

observed between the two channels. TREK-1 could not accommodate large substitutions on 

the azobenzene with the smallest photoswitch AB1 exhibiting the largest potentiation of K+ 

current. Furthermore, the cis-configuration could not only relieve the block, but showed an 

agonistic effect, potentiating the K+ currents towards larger values. On Kv2.1, the glycine-

substituted AB2 proved to be the most potent photoswitch.  

Potassium channels are implicated in processes ranging from cancer and metabolism to 

neurological and cardiovascular diseases. However, this huge therapeutic potential has 

remained largely untapped due to the lack of selective pharmacology, which additionally limited 

target validation to genetic knockout models.72 While photoswitchable blockers like 

azobupivacaine inherit their parent drugs’ unselectivity, the additional layer of control by 
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confining its activity in area and in time using light makes them a useful tool. The beauty of 

photopharmacology lies in its simplicity: it requires no genetic manipulation and can be applied 

as normal drugs while only requiring additional delivery of light, which is often already 

developed due to the abundance of fluorescence and microscopy techniques in life science 

research. Currently, we are actively working on equipping azobupivacaines and other 

photoswitchable blockers with additional functionality. By tethering these photoswitches to 

nanobodies, monobodies, toxins or other easily-modifiable, small protein-based strong binders 

that can take over the function of a full-sized antibody, we hope to combine the advantages of 

small-molecule photoswitches with the specificity of antibody binding (chapter 3.2.2).  

3.2.2 Antibody-Photoswitch Conjugates (APCs) 

The potential for using antibodies that target extracellular epitopes to deliver payloads subtype-

specifically to Kv channels was exemplified and highlighted by Sack et al. in 2013. There, the 

use of a singlet-oxygen generating, porphyrin-labelled anti-Kv4.2-IgG  was describe to 

selectively photoablate Kv4.2 channels.89 The photosensitizer porphyrin was attached by lysine 

labelling with activated NHS-esters. A photosensitizer has multiple turnovers and singlet-

oxygen has a long half-maximal reactive distance of approximately 40 Å.90 Therefore, the 

stoichiometry of porphyrin:antibody, as well as the exact location of conjugation, is unlikely to 

have a large influence on photoablation. Our approach of antibody-photoswitch conjugates 

(APCs) was aimed at linking photoswitchable blockers to antibodies and in this fashion equip 

them with subtype specificity. Since these blockers have to physically reach the external TEA 

blocking site rather than acting from a remote distance, a more controllable method than lysine 

labelling was necessary for antibody modification. More specifically, a method was required 

that labels residues at a defined stoichiometry and at a defined location on wild-type, 

commercially-available antibodies. The selected conjugation strategy is inspired by patent 

procedures from Novartis.91,92 These describe how the four interchain disulfides are mildly 

reduced by TCEP in presence of the doubly-alkylating agent 1,3-dichloroacetone. The 1,3-

dichloroacetone immediately and in situ rebridges the heavy and light chains of the antibody 

and inserts a ketone. The ketone is subsequently reacted with the aminooxy bioconjugation 

handle to irreversibly form an oxime and yield the APCs (Figure 23).  
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Figure 23. Strategy for antibody-photoswitch conjugation. Mild reduction by TCEP only 
occurs on the four interchain disulfide (black), which is not disrupting the IgG structure and is 
directly trapped by the double-alkylating agent 1,3-dichloroacetone. The rebridged keto-IgG is 
not susceptible to further reduction anymore and the inserted ketone serves as a 
bioconjugation handle. The photoswitchable blocker is attached to an aminooxy group via a 
long PEG-tether. The aminooxy group reacts in an irreversible, bioorthogonal reaction with the 
ketone to form an oxime, linking the antibody-photoswitch conjugate (APC). 

To span the distance between the antibody and the TEA binding site on the K+ channel, a long, 

flexible linker is required. As an estimation, a ‘molecular tape’ measure of maleimide-QA 

compounds with increasing linker lengths was described by Miller et al. in 2000. They 

concluded that the transmembrane-extracellular ends of the most distant S1 and S3 helices of 

the Shaker channel are only at a distance of around 30 Å away from the pore mouth. Therefore, 

we hoped that the monodisperse PEG12 linker, which has an approximate end-to-end distance 

of 46 Å according to the manufacturer (see SI for details), would be sufficient to span the gap 

of the antibody binding site on the closer S1-S2 loop to the external TEA blocking site, even 

when considering the additional bulk of the antibody. Even though most channel blockers 

(except MAQ) work from the intracellular side, we hoped to block the external TEA site by 

ensuring very high local concentrations around the channel by the antibody-binding. A careful 

survey of commercially available antibodies for Kv’s was conducted. The antibody had to fulfil 

several important criteria: (i) binding to extracellular epitopes, (ii) it must be monoclonal and (ii) 

it must have been validated in a few applications, such as immunohistology. In addition, the 

antibody had to target channels with an external TEA binding site. We found two antibodies 

from the UC Davis Neuromab facility targeting Kv1.1 (clone K36/15) and Kv2.1 (clone K39/25) 

that fulfilled these criteria and selected them for our APCs. 

Next, we moved to the synthesis of the photoswitch 3.5. It was accessed through a 4 step 

reaction sequence. 3.8 was prepared in a 4 step sequence from the commercial dye disperse 

red and then reacted with PhthNO-PEG12-NHS-ester. This was followed by amide coupling 
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with the betaine 3.3 and deprotection of the phthalimide using hydrazine hydrate to afford the 

final bioconjugation-ready aminooxy photoswitch 3.5. 

 

Scheme 2. Synthesis of the red-shifted 3.5. 

Next, the conditions of the aforementioned patent procedures were optimized to the microgram 

scale using a cheap, control-antibody MOPC-21 (mouse IgG1, kappa monoclonal isotype 

control, see chapters 3.4.2.1, 3.4.2.2 and 3.4.2.3). Then, Kv1.1- and Kv2.1-IgGs were 

conjugated with 3.5 and checked for intactness on SDS-PAGE (Figure 24a). The shift to higher 

molecular weight for the 3.5 (MW = 1042) conjugated Azo-Kv1.1- and Azo-Kv2.1-IgGs was 

easily observable. The antibody/azobenzene ratio was estimated from absorbance 

spectroscopy by nanodrop. Due to the high extinction coefficients of azobenzenes, the 

absorption of the photoswitch moiety can easily be observed at low concentrations (typical 

APC concentration 1-10 μM). The absorption at 280 nm was taken for estimation of antibody 

concentration and the absorption at 460 nm for determining the azobenzene concentration. 

Using the appropriate extinction coefficients for antibody and azobenzene, the approximate 

conjugation ratio was determined to be very close to the theoretical value of 4 azobenzenes 

per antibody (see chapter 3.4.2.5 for an example calculation). Next, to check for specific 

antibody-antigen binding, HEK293T cells were transfected with plasmids for Kv1.1 (rat) and 

Kv2.1 (rat), lysed, and analyzed by western blot. Both modified antibodies bound to Kv1.1 

(expected MW 57 kDa) and Kv2.1 (expected MW 105-125 kDa, Figure 24b) as expected. 
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Figure 24. Kv1.1-IgGs and Kv2.1-IgGs conjugated to 3.5. a) SDS-PAGE of the IgGs under 
non-reducing conditions. The rightmost lane is the molecular weight maker. b) HEK293T cells 
were transiently transfected either with Kv1.1 (rat) or Kv2.1 (rat) and YFP as transfection 
control. The lysate was immunoblotted and probed with the indicated wild-type, or conjugated 
IgG (1 μg/mL). Detection was performed using a PE conjugated fluorescent anti-mouse 
secondary AB (Biolegend #406708 or #407108). In between the sample lanes, lanes were 
charged with molecular weight marker, which fluoresces at 72 kDa.  

After having the modified antibodies in hand, functional characterization at the 

electrophysiology setup was performed. HEK293T cells were transfected with Kv1.1 or Kv2.1 

and multiple conditions were explored for the incubation with the Azo-Kv-IgGs: 

- Incubation at 2 μg/mL or 10 μg/mL Azo-Kv-IgG directly added to the extracellular bath 

solution, at r.t. for a duration of 15-60 min. 

- Application through a second “puffing” pipette (pressurized ejection of compound). The 

pipette was positioned in the near vicinity of the patched cell, ejection of up to 1 mg/mL 

of Azo-Kv-IgG. 

- Incubation at higher concentrations in the incubator, at 37 °C for 30 min (up to 20 

μg/mL) in reduced serum medium (OptiMEM).  

K+ currents were then evoked by ramps or IV-steps from -80 to +40 mV under illumination of 

either blue light (460 nm, cis-isomer) or in the dark (trans-isomer), while looking for light-

dependent blockade of the ion channel. Unfortunately, under none of the tested labelling 

conditions any effects of illumination could be observed and the data is therefore not shown 

here. 
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At this stage, we hypothesized that the lack of observed photoswitching could be due to the 

red-shifted nature of the photoswitch. In our hands, red-shifted azobenzenes require higher 

light intensities for the cis-isomerization with the photostationary state (PSS) showing a larger 

percentage of trans-isomer due to the fast thermal relaxation in aqueous environments. The 

block of the red-shifted 3.5 APCs is expected to occur by the trans-isomer, i.e. in the dark. 

Therefore, incubation with the APC in the absence of illumination should lead to a decrease in 

K+ current. Indeed, this could be observed in a few isolated cells but in the absence of clear 

photoswitching effects, i.e. unblock/opening of the channel by illumination to the cis-isomer, 

the effects of the APC on Kv channel gating were hard to decipher and inconclusive.  

In pursuit of a functional photoswitch, we opted to use an amide-substituted azobenzene which 

should exhibit bistable photoswitching behavior, i.e. slow thermal back-relaxation in the dark, 

allowing for a PSS with a higher percentage of cis-isomer. In addition, we simplified the 

synthesis, since the purification after final phthalimide deprotection of 3.5 was problematic due 

to the high reactivity of the aminooxy moiety, even with trace amounts of ketones. Therefore, 

the synthesis was redesigned such as to bear a Boc-group instead of the phthalimide to enable 

clean deprotection with neat TFA without a final chromatographical purification step. The 

synthesis yielded the bistable, aminooxy-photoswitch 3.8 (Scheme 3) in 4 steps starting from 

3.6. To streamline our efforts, it was decided to focus on the Kv2.1 channel from this point on. 

 

Scheme 3. Synthesis of bistable 3.8. 

The 3.8-conjugated Kv2.1-IgG antibody was again evaluated for quality by SDS-PAGE and 

western blot. We performed the SDS-PAGE under non-reducing as well as reducing conditions 

(by DTT+β-ME heated to 70°C for 10 min, Figure 25a). While wild-type, unmodified, IgGs are 

reduced to heavy and light chains, the ketone- or azo-inserted IgGs are not susceptible to 

further reduction. There is a distinct shift in mobility after attachment of the azobenzene. 



 

63 
 

UV/Vis-spectroscopy confirmed a conjugation ratio close to 4. Specificity of the modified 

antibodies was confirmed by immunblot (Figure 25b). 

 

Figure 25. Kv2.1-IgGs conjugated to 3.8. a) SDS-PAGE of the IgGs under non-reducing (left) 
or reducing conditions (right). b) HEK293T cells were transfected with Kv2.1 and YFP, mock 
transfection with YFP alone served as negative control. The lysate was immunoblotted and 
probed with the indicated conjugated IgG (1 μg/mL). was performed using a PE conjugated 
anti-mouse secondary AB (Biolegend #407108). 

In addition, the 3.8-Kv2.1-IgG conjugate was evaluated in fixed cells by confocal imaging with 

the hope of observing antibody-antigen binding in a setting more transferable to the 

electrophysiological patch-clamp setup (in contrast to western blots). Therefore, HEK293T 

cells transiently transfected with GFP_Kv2.1 (C-terminal fusion protein) were incubated for 6 h 

at 37°C degrees with 3.8-Kv2.1-IgG (10 μg/mL) and secondary Alexa-647 conjugated antibody 

(10 μg/mL). Confocal images confirmed colocalization of the green GFP_Kv2.1 and the Alexa 

647 signal, although some unspecific binding of the secondary antibody was observed in the 

Alexa 647 channel (Figure 26). 

The patch-clamp experiments were repeated using the same aforementioned antibody 

incubation methods 3.8-Kv2.1-IgG. IV-steps and ramps were recorded under either UV-light 

(380 nm, cis-isomer) or green light (500 nm, trans-isomer). After an exhaustive set of 

experiments, mostly varying antibody incubation conditions (i.e. concentrations, additives, 

buffers, incubation time and temperature; data not shown), no light-dependent effects on Kv2.1 

gating could be observed. 
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Figure 26. HEK293T cells were transfected with Kv2.1_GFP, fixed and incubated with Azo-
Kv2.1-IgG (3.8 conjugate). Secondary antibody conjugation was performed using an Alexa 
Fluor 647 goat anti-mouse antibody (ThermoFisher Scientific #A-21241). 

Altogether, we successfully synthesized and characterized a set of APCs for Kv1.1 and Kv2.1. 

The binding of APCs to the Kv1.1 and Kv2.1 channel was confirmed both by western blot and 

live-cell imaging. Discouragingly, none of the APCs showed any light-dependent effects in 

patch-clamp experiments. Taken together, we hypothesized that the linker between the 

photoswitch and the bioconjugation handle (aminooxy group) must be the issue. The linker 

could be preventing the photoswitch from reaching its site of action, either by its nature 

(hydrophilic vs hydrophobic), length (too short), or by its placement on the photoswitch. To 

investigate this, we returned to Kv2.1 experiments with freely diffusible photoswitche-linker 

comibnations. The PEGylated compounds 3.9 and bupivacaine-based 3.10 were tested. In 

addition, we prepared two compounds with a hydrophobic chain fused to the azobenzene, 3.11 

and 3.12 (Scheme 4). The compounds were tested at either 50 μM or 100 μM, depending on 

solubility (n = 3 cells each). In short, none of the compounds showed any light-dependent block 

of Kv2.1. 
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Scheme 4. Further compounds tested in patch clamp experiments on Kv2.1. 

In conclusion, basic parameters of the structure-activity relationship of photoswitchable 

blockers are still unclear. Since the basic structure of these blocker allow a wide variety of 

substitutions in para-position to the azobenzene,6 our intuition initially guided us to attach the 

long chain necessary for this APC approach on this position. It now seems clear that 

attachment of a linker on this position is deleterious to channel block and that further work must 

be directed at identifying novel linker-photoswitch combinations. 
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3.3 Summary and Outlook 

A short series of novel photoswitches based on the general anesthetic bupivacaine, termed 

azobupicacaines AB1-3, was presented. AB1-3 are non-permanently charged and enable 

optical control over the voltage-gated K+ channel Kv2.1 at one to two orders of magnitude lower 

concentrations than the previously described, quaternary-ammonium (QA) ion based 

photoswitches. In addition, AB1-3 light-gate the two-pore domain K+ channel TREK-1 by 

exploiting a mode of action different from QA block and without use-dependence. An opposing 

trend in efficacy was observed for the effects on Kv2.1 and TREK-1 varying with the 

azobenzenes substituents, which could serve as the entry point for an improved, more-

selective generation of azobupivacaines. AB1-3 efficiently control the hyperpolarization of 

hippocampal neurons in acute mouse brain slices and using light as the trigger, AB1-3 could 

efficiently silence and unsilence action potential firing in a reversible manner.  

In addition, the synthesis and characterization of antibody-photoswitch conjugates (APCs) 

based on the combination of small-molecule photochromic blockers with subtype-specific K+ 

channel antibodies is described. While the preparation of APCs in a very defined manner 

without interfering with the antibody-antigen binding could be exemplified, APCs targeting 

extracellular epitopes of Kv1.1 and Kv2.1 did not exhibit any functional effects. More 

specifically, the APCs did not show opening or blockage of Kv1.1 or Kv2.1 channels after 

incubation and upon illumination. Therefore, the influence of the tether between the antibody 

and photoswitchable head group was reevaluated. It now seems clear that the placement of 

the tether is a crucial determinant of the Kv channel blockade. Future work should be directed 

at deciphering the structure-activity relationship of the small-molecule photochromic blockers. 

In addition, future APCs should be based on bivalent photoswitch-fluorophore combinations to 

confirm the antibody binding during the electrophysiological experiments in situ.  
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3.4 Supporting Information 

3.4.1 Synthesis 

Synthesis of AzoBupivacaines (ABs) 1-3 was performed by Dr. Nils Winter and are described 

in his thesis. 

 (E)-N-(4-((4-Aminophenyl)diazenyl)phenyl)-N-ethylethane-1,2-diamine (3.1) 

N
N

N

H2N

NH2

 

3.1 was synthesized as previously described in 4 steps from the commercially available dye 

Disperse Red 1.93 

TLC (NEt3/MeOH/CH2Cl2 = 0.1/1/9) = 0.30. 

1H NMR (400 MHz, CDCl3) δ 7.86 – 7.70 (m, 4H), 6.86 – 6.71 (m, 4H), 4.08 – 3.92 (m, 2H), 

3.49 (dq, J = 11.4, 6.9 Hz, 3H), 2.99 (t, J = 6.8 Hz, 2H), 1.68 (s, 3H), 1.24 (q, J = 7.1 Hz, 2H). 

13C NMR (101 MHz, CDCl3) δ 149.6, 148.1, 146.1, 143.6, 124.4, 124.1, 114.84, 111.4, 53.4, 

45.6, 39.9, 12.2. 

HRMS (ESI): m/z calc. C16H22N5
+ (M+H)+: 284.1870, found: 284.1871. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 4.04 (cis), 4.13 min 

(trans). 

UV/Vis (LCMS): max1 = 420 nm, max2 = 446 nm. 

 N-(Carboxymethyl)-N,N,N-triethylethanammonium chloride (3.3) 

HO

O

N

Cl  

In a round-bottomed flask, triethylamine (2.00 g, 19.8 mmol) and methyl bromoacetate (3.02 g, 

19.7 mmol) were combined. A magnetic stirring bar was added and the reaction mixture was 

stirred at room temperature. Within 1 h, the reaction mixture had solidified. After 4 h, 37% HCl 

(10 mL) was added and the reaction mixture was heated at 100 °C with stirring for 4 h. The 

reaction mixture was concentrated under reduced pressure, providing a white solid that was 

washed with diethyl ether. The crude product was dissolved in a minimal amount of water and 

then precipitated with acetone. The white solid was collected by filtration and dried under 

vacuum to yield the desired product (1.54 g, 39%). 



3. Optical Control of Potassium Channels 

68 

1H NMR (400 MHz, D2O) δ 3.97 (s, 2H), 3.52 (q, J = 7.3 Hz, 6H), 1.26 (t, J = 7.3 Hz, 9H). 

 (E)-N-(2-((4-((4-Aminophenyl)diazenyl)phenyl)(ethyl)amino)ethyl)-1-((1,3-

dioxoisoindolin-2-yl)oxy)-3,6,9,12,15,18,21,24,27,30,33,36-

dodecaoxanonatriacontan-39-amide (3.2) 

O
O

N

O

O

12

O

N
H

N

N
N

NH2  

In a small vial with a magnetic stirring bar, Phth-NO-dPEG(12)-NHS (Iris Biotech #PEG4630, 

20.0 mg, 23.2 μmol, 1.0 equiv.) was dissolved in 1mL of anhydrous CH3CN, and to this solution 

were added 3.1 (13.2 mg, 46.6 μmol, 2.0 equiv.) and DIPEA (6 μL, 46.5 μmol, 2.0 equiv.). The 

orange reaction mixture was stirred at r.t. overnight. The reaction mixture was concentrated 

under reduced pressure and the crude product was dissolved in 0.1% aq. formic acid. The 

crude material was purified by reverse-phase chromatography on a 5 g SepPak C8 SPE 

cartridge (0%-30% CH3CN/H2O + 0.1% FA). The product containing fractions were lyophilized 

to provide 3.2 as a glassy orange solid (22.8 mg, 95%).  

TLC (NEt3/MeOH/CH2Cl2 = 0.1/1/9) = 0.67. 

1H NMR (400 MHz, CD3CN) δ 7.81 (s, 4H), 7.69 (d, J = 8.9 Hz, 2H), 7.61 (d, J = 8.6 Hz, 2H), 

6.85 (d, J = 8.9 Hz, 2H), 6.80 – 6.66 (m, 3H), 4.60 (s, 2H), 4.31 – 4.24 (m, 2H), 3.79 – 3.72 (m, 

2H), 3.63 (t, J = 6.1 Hz, 2H), 3.59 – 3.41 (m, 48H), 3.36 (q, J = 6.4 Hz, 2H), 2.33 (t, J = 6.0 Hz, 

2H), 1.16 (t, J = 7.0 Hz, 3H). 

HRMS (ESI): m/z calc. for C51H76N6O16
+ (M+H)+: 1029.5391, found 1029.5424; m/z calc. for 

C51H77N6O16 (M+2H)+: 515.2732, found: 515.2739. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.44 min. 

UV/Vis (LCMS): max1 = 452 nm. 

 (E)-2-((4-((4-((1-((1,3-Dioxoisoindolin-2-yl)oxy)-39-oxo-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxa-40-azadotetracontan-42-

yl)(ethyl)amino)phenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-oxoethan-1-

ammonium formate (3.4) 

O
O

N

O

O

12

O

N
H

N

N
N

N
H

O

N
HCOO-
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In a small vial with a magnetic stirring bar, 3.3 (22.8 mg, 22.2 μmol, 1.0 equiv) was dissolved 

in 2 mL of dry CH3CN, and to this solution were added 3.2 (21.7 mg, 110.9 μmol, 5.0 equiv.) 

and pyridine (88 μL, 1.11 mmol, 50 equiv.). T3P (50% wt in EtOAc, 706 μL, 1.11 mmol, 50 

equiv.) was added to the reaction mixture, which was stirred r.t. overnight. The next day, the 

reaction mixture was concentrated under reduced pressure and the crude product was 

dissolved in 0.1% aqueous formic acid.  The crude was purified by reverse phase 

chromatography on a 5g SepPak C8 SPE cartridge (0%-20% CH3CN/H2O + 0.1% FA). The 

product-containing fractions were lyophilized to provide 3.4 as an orange solid (17.4 mg, 65%).  

1H NMR (400 MHz, CD3CN) δ 12.79 (br s, 1H), 8.60 (s, 1H), 7.79 (d, J = 9.7 Hz, 10H), 6.85 

(dd, J = 20.3, 7.4 Hz, 3H), 4.54 (br s, 2H), 4.31 – 4.23 (m, 2H), 3.75 (t, J = 4.2 Hz, 2H), 3.63 (t, 

J = 6.1 Hz, 2H), 3.56 – 3.46 (m, 48H), 3.37 (q, J = 6.4 Hz, 3H), 2.65 (br s, 6H), 2.34 (t, J = 6.1 

Hz, 2H), 1.32 (br s, 9H), 1.17 (t, J = 7.0 Hz, 3H). 

HRMS (ESI): m/z calc. for C59H93N7O17
+ (M+): 1170.6544, found 1170.6599; m/z calc. for 

C59H93N7O17 (M++H+): 585.8309, found 585.8320. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.20 min. 

UV/Vis (LCMS): max1 = 451 nm. 

 (E)-2-((4-((4-((1-(Amoxy)-39-oxo-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxa-40-

azadotetracontan-42-yl)(ethyl)amino)phenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-

oxoethan-1-amine diformate (3.5) 

O
O

H3N
12

O

N
H

N

N
N

N
H

O

N
HCOO-

HCOOH

 

In a small vial with a magnetic stirring bar, 3.4 (10.8 mg, 8.9 μmol) was dissolved in 2 mL of 

anhydrous CH2Cl2, and to this solution was added hydrazine hydrate (89 μL, 1.8 mmol). A 

white precipitate formed almost immediately and the reaction mixture was stirred at r.t. 

overnight. After 0.5 h, an aliquot of the reaction mixture was diluted in acetonitrile (1 mL) 

containing a few drops of methyl ethyl ketone (MEK) for LCMS analysis— the major peak 

observed has m/z values consistent with the expected oxime condensation product (m/z = 

+365.5 and +547,8 for M+2H and M+H, respectively). The solvent was evaporated under a 

stream of nitrogen and the crude product was dissolved in 0.1% aq. formic acid. The crude 

material was purified by reverse phase chromatography on a 5g SepPak C8 SPE cartridge 

(0%-20% CH3CN/H2O + 0.1% FA). Two major orange-colored bands were collected and 
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aliquots were analyzed by LCMS after diluting in acetonitrile containing MEK. The earlier 

eluting orange band has m/z values consistent with the expected MEK oxime condensation 

product. The later eluting orange band has m/z values consistent with the formaldehyde oxime 

condensation product (+351,5, +526,7 for M+2H and M+H, respectively). The desired product-

containing fractions were lyophilized to provide 3.5 as an orange solid (1.2 mg 10%). The 

formaldehyde oxime condensation product was discarded. The aminoxy compound was 

dissolved in water to provide a 5 mM stock solution and stored at –20°C when not being used. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.20 min. 

LRMS (ESI): m/z calc. for C55H97N7O15
2+ (M++MEK+H+) 547.7. 

UV/Vis (LCMS): max1 = 454 nm. 

HRMS (ESI): m/z calc. for C51H91N7O15
2+ (M++CH2O+ H+): 520.8281, found 520.8291. 

Note: The aminooxy compound was highly reactive and requires careful handling to avoid any 

sources of ketones or aldehydes. In fact, it was observed that extra-pure formic acid which is 

routinely used in LCMS and HRMS systems has sufficient amounts of formaldehyde 

contamination to react aminoxy compounds fully to the condensed product. Due to the low 

isolated amounts and high reactivity, no NMR spectra were recorded. 

 tert-Butyl (3-(1,3-dioxoisoindolin-2-yl)propoxy)carbamate (3.13) 

N O

H
N

O

O
O

O  

N-(3-Bromopropyl)phthalimide (2.45 mg, 9.10 mmol, 1.0 equiv.), N-hydroxycarbamate (1.33 g, 

10.00 mmol, 1.1 equiv.) were mixed in dry toluene (20 mL) under a nitrogen atmosphere before 

addition of DBU (1.50 mL, 10.00 mmol, 1.1 equiv.). The reaction mixture was heated to 110 °C 

for several hours while stirring vigorously. An orange-brow oil separated from the solution. The 

reaction mixture was extracted with DCM (200 mL) against citrate solution (10% wt to pH = 5.5 

with HCl, 200 mL). The organic layer was washed with citrate solution (10% wt to pH = 5.5 with 

HCl, 3x200 mL) and then dried over MgSO4 before concentration in vacuo. The crude material 

was purified by flash column chromatography (DCM/EtOAc = 9/1) to yield 1.85 g of the desired 

product as a white solid (0.42 mmol, 63%). 

TLC (DCM/EtOAc= 9/1) = 0.67, stain: ninhydrin. 

1H NMR (400 MHz, Methanol-d4) δ 7.89 – 7.83 (m, 2H), 7.83 – 7.76 (m, 2H), 3.84 (t, J = 6.3 

Hz, 2H), 3.78 (t, J = 7.1 Hz, 2H), 1.97 (p, J = 6.6 Hz, 2H), 1.46 (s, 9H). 
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 tert-Butyl (3-aminopropoxy)carbamate (3.14) 

H2N O

H
N

O

O

 

3.13 was dissolved in MeOH (9.3 mL) and hydrazine hydrate (5.8 mL) was added. The reaction 

mixture was stirred at r.t. overnight before concentration to dryness in vacuo. The residue was 

triturated, suspended in CHCl3 and filtered. The solid was washed with a copious of CHCl3 

before the filtrate was concentrated to yield a yellowish oil. After purification by flash column 

chromatography (MeOH/DCM/aq. NH3 = 20/80/1), 3.14 was obtained as colorless solid (606 

mg, 3.18 mmol, 55%)  

1H NMR (400 MHz, CDCl3) δ 3.93 (t, J = 6.0 Hz, 2H), 2.84 (t, J = 6.6 Hz, 2H), 1.76 (p, J = 6.3 

Hz, 2H), 1.46 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ 157.0, 81.6, 74.9, 39.2, 31.5, 28.2. 

HRMS (ESI): m/z calc. for C8H19O3N2
+ (M+H+): 191.1390, found 191.1390. 

 (E)-2-((4-((4-(2-((tert-Butoxycarbonyl)amino)acetamido)phenyl)diazenyl)phenyl) 

amino)-N,N,N-triethyl-2-oxoethan-1-ammonium formate (3.7) 

N
N

H
N

N
H

O

N HCOO-

O

BocHN

 

tert-Butyl (E)-(2-((4-((4-aminophenyl)diazenyl)phenyl)amino)-2-oxoethyl)carbamate 3.6 (55 

mg, 0.15 mmol, 1.0 equiv.), 3.3 (45 mg, 0.23 mmol, 1.5 equiv.), HBTU (68 mg, 0.18 mmol, 1.2 

equiv.) were combined in DMF (1 mL) and DIPEA (52 μL, 0.30 mmol, 2.0 equiv.) was added. 

Reaction progress was monitored by LCMS and judged to be complete after ca. 30 min. The 

reaction mixture was acidified using a few drops of formic acid and purified on a 2 g SepPak 

C18 SPE cartridge (0%-30% CH3CN/H2O + 0.1% FA). Product containing fractions were 

identified by LCMS, combined and concentrated in vacuo to dryness to yield the desired 

product as a yellow-orange glaze (34 mg, 61 μmol, 41%). 

1H NMR (400 MHz, Methanol-d4) δ 7.89 (t, J = 8.4 Hz, 4H), 7.78 (t, J = 8.5 Hz, 4H), 4.19 (d, J 

= 4.7 Hz, 2H), 3.90 (s, 2H), 3.67 (q, J = 7.2 Hz, 6H), 1.48 (s, 9H), 1.39 (t, J = 7.2 Hz, 9H). 

13C NMR (400 MHz, Methanol-d4) δ 169.4, 161.8, 157.2, 149.4, 148.7, 141.1, 139.8, 126.5, 

123.3, 123.2, 120.1, 119.7, 79.4, 56.2, 54.4, 43.7, 27.3, 6.6. 
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HRMS (ESI): m/z calc. for C27H39O4N6
+ (M+H+):511.3027, found 511.3024. 

 (E)-1,4-Dioxo-1-((4-((4-(2-triethylammonio)acetamido)phenyl)diazenyl)phenyl)amino)-

7,10,13,16,19,22,25,28,31,34,37,40,43-tridecaoxa-3-azahexatetracontan-46-oate 

(3.9) 

N
N

N
H

H
N

O

N

O

N
H

O

O
13

O

O

 

3.7 (34 mg, 62 μmol, 1.0 equiv.) was deprotected at r.t. for 10 min using 1 mL neat TFA. TFA 

was removed in a gentle stream of nitrogen before the residue was dried under HV. The residue 

was dissolved in DMF, before sequential addition of PEG13-diacid (polypure #37137-1295, 51 

mg, 74 μmol, 1.2 equiv.), HBTU (25 mg, 66 μmol, 1.05 equiv.) and DIPEA (53 μL, 0.30 mmol, 

5.0 equiv.). The reaction mixture was stirred for 1 h at r.t. when LCMS analysis indicated full 

conversion. The reaction mixture was acidified using a few drops of FA and purified on a 5 g 

SepPak C18 SPE cartridge (0%-25% CH3CN/H2O + 0.1% FA). Product containing fractions 

were identified by LCMS, combined and dried in vacuo to yield the desired product as an 

orange glaze (38 mg, 35 μmol, 56%). 

HRMS (ESI): m/z calc. for C52H85O18N6
- (M-H)-: 1081.5926, found:1081.5922. 

 (E)-2-((4-((4-(50-(Ammoniooxy)-4,46-dioxo-

7,10,13,16,19,22,25,28,31,34,37,40,43-tridecaoxa-3,47-

diazapentacontanamido)phenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-oxoethan-1-

ammonium bis-(trifluroacetate) (3.8) 

N
N

N
H

H
N

O

N

O

N
H

O

O
13

N
H

O

O
NH3

2 F3CCOO-

 

3.9 (100 μL of 0.1M in DMF, 10 μmol, 1.0 equiv.) and 3.14 (24 μL of 0.5M in DMF, 12 μmol, 

1.2 equiv.) were combined and HBTU (5.0 mg, 12 μmol, 1.2 equiv.) and DIPEA (4.2 μL, 24 

μmol, 2.0 equiv.) were added. The reaction was stirred at r.t. overnight before LCMS analysis 

indicated incomplete conversion. Therefore, the same amounts of all reagents except 3.9 were 

added to the reaction mixture again. After an additional hour of stirring, the reaction mixture 

was acidified using a few drops of FA and purified on a 5 g SepPak C18 SPE cartridge (0%-
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30% CH3CN/H2O + 0.1% FA). Product containing fractions were identified by LCMS and dried 

in vacuo to yield the desired product as an orange glaze (5.8 mg, 4.5 μmol, 45%). 

HRMS (ESI): m/z calc. for C60H102O20N8
- (M-H)-: 1254.7210, found: 1254.7197 

For deprotection, neat TFA (0.2 mL) was added and allowed to stand at r.t. for 10 min before 

removal of all volatiles in a gentle stream of nitrogen. The residue was dried under HV. 

Quantitative yield was assumed. A small quantity of the product was tested for reactivity and 

purity by addition of a drop of acetone. LCMS analysis showed one clean peak with an m/z (+) 

of 1195, consistent with the expected m/z of the acetone condensation product.  

1H NMR (400 MHz, DMSO-d6) δ 11.05 (s, 1H), 10.65 (s, 4H), 10.36 (s, 1H), 8.30 (t, J = 5.6 
Hz, 1H), 7.91 (td, J = 12.0, 7.2 Hz, 5H), 7.81 (dd, J = 9.1, 2.8 Hz, 4H), 4.24 (d, J = 4.3 Hz, 
2H), 4.03 – 3.90 (m, 5H), 3.51 (s, 65H), 3.11 (q, J = 6.6 Hz, 2H), 2.44 (t, J = 6.5 Hz, 2H), 2.31 
(t, J = 6.4 Hz, 3H), 1.71 (t, J = 6.7 Hz, 2H), 1.28 (q, J = 7.2 Hz, 10H). 

13C NMR (101 MHz, DMSO) δ 171.1, 170.6, 168.8, 162.8, 158.8, 158.5, 158.1, 148.9, 148.0, 
142.3, 140.6, 124.1, 123.9, 120.6, 119.8, 72.6, 70.2, 70.1, 70.0, 70.0, 67.2, 67.2, 56.8, 55.4, 
54.5, 43.3, 36.6, 36.3, 35.5, 28.0, 7.9.  

HRMS (ESI): m/z calc. for C58H97N8O18
- (M+acetone-2H)-: 1193.6926, found: 1193.6928; m/z 

calc. for C58H99N8O18
+ (M+acetone)+: 1195.7077, found:1195.7086. 

 (E)-1-Butyl-2-((4-((4-(2,2-dimethyl-4,11,53-trioxo-3,6,14,17,20,23,26,29,32,35, 

38,41,44,47,50-pentadecaoxa-5,10,54-triazahexapentacontan-56-amido)-3,5-

dimethylphenyl)diazenyl)phenyl)carbamoyl)piperidin-1-ium formate (3.10) 

N
N

H
N

O

H
N

O H
N

O

O

13 O

H
N O

N
H

O

O

HCOO-

N
H  

(E)-N-(4-((4-(2-aminoacetamido)phenyl)diazenyl)-2,6-dimethylphenyl)-1-butylpiperidine-2-

carboxamide (27 mg, 59 μmol, 1.0 equiv.), PEG13-diacid (polypure #37137-1295, 49 mg, 71 

μmol, 1.2 equiv.), DIPEA (51 μL, 0.30 mmol, 5 equiv.) and HBTU (24 mg, 62 μmol, 1.05 equiv.) 

were added to DMF (0.5 Ml). The reaction mixture was stirred for 1 h at r.t., when LCMS 

analysis indicated full conversion of the starting azobenzene. The reaction mixture was 

acidified with a few drops of FA and purified on a 5 g SepPak C18 SPE cartridge (0%-40% 

CH3CN/H2O + 0.1% FA). Product containing fractions were identified by LCMS, combined and 

dried in vacuo to obtain the desired product as a yellow solid (32 mg, 28 μmol, 48%). 

HRMS (ESI): m/z calc. for C56H91N6O18
- (M-H)-: 1135.6395, found:1135.6394. 
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The entire product of the previous step was dissolved in DMF (0.7 mL) and 3.14 (6.5 mg, 34 

μmol, 1.2 equiv.), HBTU (13 mg, 34 μmol, 1.2 equiv.) and DIPEA (10 μL, 56 μmol, 2.0 equiv.) 

were added. The reaction mixture was stirred overnight at r.t., when LCMS analysis indicated 

full conversion of the starting azobenzene. The reaction mixture was acidified with a few drops 

of FA and purified on a 5g SepPak C18 SPE cartridge (0%-40% CH3CN/H2O + 0.1% FA). 

Product containing fractions were identified by LCMS, combined and dried in vacuo to obtain 

the desired product as a yellow solid (18 mg, 13 μmol, 22% over 2 steps). 

HRMS (ESI): m/z calc. for C64H107N8O20
- (M-H)-: 1307.7607, found: 1307.7606. 

 (E)-N-(4-((4-aminophenyl)diazenyl)phenyl)dodecanamide (3.15) 

N
N

H
N

H2N

O

4,4‘-diazoniline (212 mg, 1 mmol, 2.0 equiv.), dodecanoic acid (100 mg, 0.5 mmol, 1.0 equiv.), 

HBTU (209 mg, 0.55 mmol, 1.1 equiv.) and DIPEA (0.17 mL, 1 mmol, 2.0 equiv.) were 

combined in DMF (2 mL). The reaction was stirred at r.t. overnight. The product was extracted 

against aq. 10% LiCl, water (2x) and brine. The organic layer was dried over MgSO4 and 

concentrated in vacuo to yield the desired product as a yellow solid (134 mg, 0.34 mmol, 68%). 

1H NMR (400 MHz, CDCl3) δ 7.74 (dd, J = 21.7, 8.6 Hz, 4H), 7.58 (d, J = 8.5 Hz, 2H), 7.22 (s, 

1H), 6.67 (d, J = 8.5 Hz, 2H), 3.96 (s, 2H), 2.31 (t, J = 7.6 Hz, 2H), 1.67 (p, J = 7.5 Hz, 2H), 

1.37 – 1.10 (m, 16H), 0.81 (t, J = 6.7 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ 171.4, 149.4, 149.3, 145.6, 139.4, 124.9, 123.4, 119.7, 114.7, 

38.0, 31.9, 29.6, 29.6, 29.5, 29.4, 29.4, 29.3, 25.6, 22.7, 14.2. 

HRMS (ESI): m/z calc. for C24H35N4O+ (M+H)+: 395.2805, found: 395.2808. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 7.16 min. 

UV/Vis (LCMS): max = 394 nm. 

  (E)-2-((4-((4-dodecanamidophenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-

oxoethan-1-ammonium formate (3.11) 

N
N

H
N

N
H

O
O

N

HCOO-
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3.15 (40 mg, 0.10 mmol, 1.0 equiv), 3.3 (22 mg, 0.11 mmol, 1.1 equiv.), HBTU (42 mg, 0.11 

mmol, 1.1 equiv) and DIPEA (35 μL, 0.20 mmol, 2.0 equiv.) were combined in DMF (1 Ml). 

After 3.5 h, the reaction mixture was acidified with a few drops of FA and purified on a 5g 

SepPak C8 SPE cartridge (0%-45% CH3CN/H2O + 0.1% FA). Product containing fractions 

were identified by LCMS, combined and dried in vacuo to obtain the desired product as a yellow 

foam (15 mg, 28 μmol, 28%). 

1H NMR (400 MHz, DMSO-d6) δ 12.20 (br s, 1H), 10.31 (s, 1H), 8.50 (s, 1H), 7.93 – 7.74 (m, 

8H), 4.45 (s, 2H), 3.55 (q, J = 8.4, 7.5 Hz, 6H), 2.35 (t, J = 7.4 Hz, 2H), 1.27 (dd, J = 16.1, 8.6 

Hz, 26H), 1.64 – 1.55 (m, 2H), 0.84 (t, J = 6.5 Hz, 3H). 

13C NMR (101 MHz, DMSO) δ 172.3, 163.2, 148.7, 147.8, 142.7, 141.2, 123.9, 123.8, 120.6, 

119.6, 56.9, 54.5, 37.0, 31.8, 29.5, 29.5, 29.4, 29.3, 29.2, 29.1, 25.5, 22.6, 14.4, 7.9. 

HRMS (ESI): m/z calc. for C32H50N5O2
+ (M)+: 536.3959, found: 536.3965. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.18 min. 

UV/Vis (LCMS): max = 368 nm. 

 (E)-1-Butyl-2-((4-((4-(2-dodecanamidoacetamido)phenyl)diazenyl) 

phenyl)carbamoyl)piperidin-1-ium formate (3.12) 

N
N

H
N

N
H

O

NH

O

N
H

O

HCOO

 

(E)-N-(4-((4-(2-Amminoacetamido)phenyl)diazenyl)-2,6-dimethylphenyl)-1-butylpiperidine-2-

carboxamide (23 mg, 43 μmol, 1.0 equiv.), dodecanoic acid (8.6 mg, 43 μmol, 1.0 equiv.), 

HBTU (18 mg, 47 μmoL, 1.1 equiv.) and DIPEA (38 μL, 0.22 mmol, 5.0 equiv.) were combined 

in DMF (1 mL) and stirred for 45 min at r.t. when LCMS analysis indicated full conversion. The 

reaction mixture was acidified with a few drops of FA and purified on a 5 g SepPak C18 SPE 

cartridge (0%-50% CH3CN/H2O + 0.1% FA). Product containing fractions were identified by 

LCMS, combined and dried in vacuo to obtain the desired product as a yellow foam (25 mg, 

39 μmol, 91%). 

1H NMR (400 MHz, DMSO-d6) δ 10.35 (s, 1H), 9.44 (s, 1H), 8.20 (t, J = 5.9 Hz, 1H), 8.15 (s, 

1H), 7.87 (d, J = 8.8 Hz, 2H), 7.81 (d, J = 8.8 Hz, 2H), 7.59 (s, 2H), 3.91 (d, J = 5.8 Hz, 2H), 

3.22 – 3.12 (m, 1H), 3.10 – 2.98 (m, 1H), 2.78 – 2.64 (m, 1H), 2.35 (s, 1H), 2.24 (s, 6H), 2.16 
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(t, J = 7.4 Hz, 2H), 1.92 (d, J = 11.6 Hz, 1H), 1.73 (d, J = 10.1 Hz, 2H), 1.53 (dt, J = 14.8, 6.5 

Hz, 5H), 1.25 (d, J = 6.8 Hz, 17H), 0.87 (dt, J = 17.7, 7.1 Hz, 6H). 

13C NMR (101 MHz, DMSO-d6) δ 173.3, 168.9, 163.6, 150.6, 148.0, 142.4, 138.0, 137.0, 124.1, 

122.1, 119.7, 67.4, 56.2, 51.5, 43.3, 35.6, 31.8, 30.3, 29.5, 29.4, 29.3, 29.2, 29.1, 28.1, 25.7, 

24.8, 23.2, 22.6, 20.6, 19.3, 18.8, 14.4, 14.4. 

HRMS (ESI): m/z calc. for C38H59N6O3
+ (M)+: 647.4643, found: 647.4652. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) 4.70 min. 

UV/Vis (LCMS): max = 356 nm. 

3.4.2 Antibody Modifications 

 Determining the detection limit of Antibody-detection by SDS-PAGE 

To determine the limit of detection for full size IgGs as well as well as evaluate reduction 

conditions of IgGs to heavy and light chains on SDS-PAGE gels (NuPAGE 4-12% Bis-Tris, 12 

well) in combination with InstantBlue Coomassie (Expedeon) protein stain, a dilution series 

was performed.  

Lanes were loaded with MOPC-21-IgG as follows: 

Per lane: total volume 30 μL, TCEP 0 (non-reducing) or 0.017 M (reducing) 

Lanes: 1: 0.025 μg, 2: 0.025 +TCEP, 3: 0.375 μg, 4: 0.375 μg + TCEP, 5: 0.75 μg, 6: 0.75 μg 

+ TCEP, 7: 1.5 μg, 8: 1.5 μg + TCEP 

Gel was run for 75 min at 200 V in the ThermoScientific Mini Gel Tank. Gel was removed from 

its casing and stained overnight with InstantBlue Coomassie (Expedeon). 

As little as 0.325 μg of MOPC-21-IgG could be detected using these conditions. Reducing 

conditions showed no full-size antibody but two bands migrating further on the gel, indicative 

of quantitative reduction of IgG to heavy and light chains. 

 Optimization of antibody modification procedure to the microgram scale 

The ketone insertion reaction procedure was adapted for microgram scale reactions from 

procedures described in US patents #US2015032126 and #US20150150998. 

Optimization of IgG reduction by TCEP: 

20 pmol of MOPC-21 IgG (3 μg) were reduced using increasing amounts of TCEP (0 nmol, 0.8 

nmol, 1.2 nmol, 1.6 nmol, 2.0 nmol, 2.4 nmol, 2.8 nmol, 3.2 nmol, 3.6 nmol, 500 nmol) were 
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incubated at 4 °C for 30 min. Then, the samples were analyzed per SDS-PAGE and with 

InstantBlue Coomassie (Expedeon) staining. 

Observations:  

An increasing trend with higher TCEP equivalents towards reduction was observed. Only with 

500 nmol TCEP, full reduction was observed. Possibly, in absence of the alkylating agent DCA 

the antibody is reoxidized to the full-size IgG when using only a small amount of TCEP. 

Optimization of Ketone insertion: 

IgG reacted with DCA and TCEP under different stochiometries. The reaction was allowed to 

proceed in 0.25 M TRIS Ph 7.3 (total volume 30 μL) at 4 °C overnight followed SDS-PAGE and 

InstantBlue Coomassie (Expedeon) staining. If antibody is reduced by TCEP and DCA is 

inserted, it is expected that only one clean band at the full-size IgG is present. The modified 

antibody with the inserted ketone can’t be reduced by the reducing gel conditions. 

Lanes were loaded as followed: 

Tube /lane 1 2 3 4 5 6 7 

IgG (μg) 1.5 1.5 1.5 1.5 1.5 1.5 1.5 

pmol IgG 20 20 20 20 20 20 20 

TCEP (equiv.) 120 120 180 180 240 240 300 

DCA (equiv.) 4000 4000 4000 4000 4000 4000 4000 

Reducing gel? N Y N Y N Y N 

 

Observations:  

Cleanest bands were for lane 6 and 7. Therefore, it was concluded that 240-300 equiv TCEP 

in presence of 4000 equiv. is the optimal stoichiometry for ketone insertion. 

 

 Final conditions for all antibody modifications 

General procedure for the synthesis of keto-IgGs (procedure is shown with keto-MOPC-

21 IgG) 

 Stock solutions:  

A 0.1 mg/mL stock solution of MOPC-21 (BioXCell, catalog # BE0083) was prepared by diluting 

7.4 μL of 6.75 mg/mL stock with 493 μL of 0.25 M pH 7.3 TRIS buffer. A 20 mg/mL stock 

solution of 1,3-dichloroacetone (DCA) was prepared by dissolving 26.2 mg of DCA in 1.31 mL 

DMSO. A 4 mM stock solution of TCEP x HCl was prepared by diluting 10 μL of 0.5 M TCEP 
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x HCl with 1.25 mL milliQ water. The 0.5 M stock solution of TCEP x HCl was prepared by 

dissolving 69.7 mg of TCEP x HCl in 0.486 mL milliQ water.  

Reaction:  

In a microcentrifuge tube at room temperature, 6.8 μL of 20 mg/mL DCA was combined with 

400 μL of 0.1 mg/mL MOPC-21 (4000:1 DCA:IgG). The tube was vortexed and cooled to 4 °C. 

In a separate microcentrifuge tube, 20 μL of 4 mM freshly prepared TCEP x HCl was added 

and cooled to 4 °C. Using a pipette, the entire volume of the MOPC-21/DCA solution was 

added to the TCEP x HCl solution and the resulting solution was mixed thoroughly by repeated 

pipetting (300:1 TCEP:IgG). The reaction mixture allowed to stand at 4 °C overnight. The 

antibody was purified the next morning by membrane filtration using an Amicon centrifugal filter 

with 10 kDa MWCO (10 min, 14000 rcf). After concentration, the retentate was diluted to ~500 

μL with PBS pH 7.4 and concentration was repeated. In total, seven concentration steps were 

performed, using PBS pH 7.4 as diluent each time. The final retentate was collected via 

centrifugation according to the manufacturer’s instructions into a tared tube and then weighed 

to determine the retentate volume (60.5 mg = 60.5 μL, assuming d = 1 mg/μL). The 

concentration of keto-MOPC-21 was determined by absorbance spectroscopy: A280 = 0.628, 

corresponding to 0.46 mg/mL using ε280 of 1.36 mL·mg-1·cm-1. Recovery of keto-MOPC-21 was 

70% (28 μg).   

The following samples were analyzed by SDS-PAGE on a NuPage 4-12% Bis-Tris gel with 

MES running buffer at 200V for 25 min: 

 Keto-MOPC-21 (0.69 μg) diluted with PBS and NuPage LDS sample buffer 

 Keto-MOPC-21 (0.69 μg) diluted with PBS and reduced with 1 μL 1M TCEP x HCl for 

15 min at 37 °C, then diluted with NuPage LDS sample buffer 

 MOPC-21 (1 μg) diluted with 0.25 M pH 7.3 Tris and NuPage LDS sample buffer 

 MOPC-21 (1 μg) diluted with 0.25 M pH 7.3 Tris and reduced with 1 μL 1 M TCEP x 

HCl for 15 min at 37°C, then diluted with NuPage LDS sample buffer 

 Blue-Elf Protein MW Markers (Jena Bioscience) 

The gel was removed from its plastic casing and stained using InstantBlue Coomassie 

(Expedeon). Keto-MOPC-21 and MOPC-21 were observed to migrate near the 165 kDa MW 

marker, consistent with an intact IgG (~150 kDa). The reduced MOPC-21 migrated as two 

bands near the 24 kDa and 57 kDa MW markers, consistent with complete reduction of the 

interchain disulfide bonds yielding separate HC (~50 kDa) and LC (~25 kDa). The reduced 
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keto-MOPC-21 migrated near the 165 kDa MW marker, consistent with successful crosslinking 

with DCA, where reduction-insensitive thioether bonds have replaced disulfides. 

General procedure for the synthesis of oxime-IgGs (procedure is shown for CF488DI-anti-

Kv2.1-IgG) 

Stock solutions: 

A 1 M stock solution of 3,5-diaminobenzoic acid (DABA) was freshly prepared by dissolving 

49.6 mg DABA in 326 μL DMSO. 

A 5 mg/mL stock solution of CF488DI aminooxy (Biotium, catalog #92177) was prepared by 

dissolving 1 mg CF488DI aminooxy in 200 μL DMSO. 

Reaction: 

Keto-Kv2.1-IgG was prepared from 10 μg anti-Kv2.1 IgG (Antibodies Incorporated, catalog 

#75-159) following the general procedure for keto-IgG synthesis. To purified keto-Kv2.1-IgG in 

PBS pH 7.4 at room temperature in a microcentrifuge tube was added PBS pH 7.4 (26.3 μL), 

DMSO (17.4 μL), 1M DABA (10 μL), and 5mg/mL CF488DI aminooxy (2.6 μL, 300 eq). The 

keto-Kv2.1-IgG target concentration was 0.1mg/mL, the DMSO target concentration was 30% 

vol/vol, and the DABA target concentration was 0.1 M. The reaction mixture was stored at r.t., 

protected from light, overnight. The next morning the reaction was diluted to ~500 μL by 

addition of PBS pH 7.4 and the antibody was purified by membrane filtration using an Amicon 

centrifugal filter with 10 kDa MWCO (10 min, 14000 rcf) using the same procedure as described 

for keto-IgG purification. The final retentate was collected via centrifugation according to the 

manufacturer’s instructions into a tared tube and then weighed to determine the retentate 

volume (41.8 mg = 41.8 μL, assuming d = 1 mg/μL). The concentration of CF488DI-oxime-

Kv2.1-IgG was determined by absorbance spectroscopy: A280 = 0.12, corresponding to 88 

μg/mL using ε280 of 1.36mL·mg-1 ·cm-1. An absorbance peak at 466 nm was observed, 

indicative of successful conjugation: A466 = 0.16. Recovery of CF488DI-oxime-Kv2.1-IgG was 

37% (3.7 μg) over two steps. 

The following samples were analyzed by SDS-PAGE on a NuPage 4-12% Bis-Tris gel with 

MES running buffer at 200V for 25min: 

 Keto-Kv2.1-IgG (0.31 μg) diluted with PBS and NuPage LDS sample buffer 

 CF488DI-oxime-Kv2.1-IgG (0.18 μg) diluted with PBS and NuPage LDS sample buffer 

 MOPC-21 (0.25, 0.5, 1, and 2 μg) diluted with PBS and NuPage LDS sample buffer 
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 Blue-Elf Protein MW Markers (Jena Bioscience) 

The gel was removed from its plastic casing and imaged with a Bio-Rad fluorescent imager 

using settings for Alexa Fluor 488.  After fluorescent imaging, the gel was stained using 

InstantBlue Coomassie (Expedeon).  In the Coomassie-stained gel, CF488DI-oxime-Kv2.1-

IgG migrated at a position very similar to keto-Kv2.1-IgG, MOPC-21, and the 165 kDa MW 

marker. The band intensity was slightly less than the 0.25 μg MOPC-21 band, consistent with 

the CF488DI-oxime-Kv2.1-IgG stock concentration being ~100 μg/mL. The band migrating 

near the 165kDa MW marker for CF488DI-oxime-Kv2.1-IgG fluoresced intensely, indicating 

successful conjugation. The presence of multiple weakly-fluorescing, faster-migrating bands 

was also noted for this sample (these bands were not apparent in the Coomassie-stained gel). 

Notes: DMSO was added to improve solubility of CF488DI aminooxy in the reaction mixture. 

 Synthesis of keto-anti-Kv2.1-IgG 

Procedure as described for MOPC-21 IgG. 

Amounts:  

- 100 μL anti-Kv2.1-IgG (1.07 mg/mL, 107 ng), 900 μL 0.25 M TRIS pH 7.3 

- 17 μL DCA (20 mg/mL)  

- 50 μL freshly prepared 4 mM TCEP x HCl 

Weight of retentate after Amicon filtration: 51.8 mg = 51.8 μL, assuming d = 1 mg/μL. The 

concentration of keto-anti-Kv2.1-IgG was determined by absorbance spectroscopy: A280 = 

2.162, corresponding to 1.59 mg/mL using ε280 of 1.36 mL·mg-1·cm-1. Recovery of keto-anti-

Kv2.1-IgG was 77% (82.4 ng).  

 Synthesis of 3.8-anti-Kv2.1-IgG conjugates 

Procedure as described for CF488DI-anti-Kv2.1-IgG. 

Amounts: 

- 31.4 μL keto-anti-Kv2.1-IgG (1.59 mg/mL, 50 μg) 

- 6 μL DABA (1 M in DMSO) 

- 96 nmol 3.8 (9.6 μL of 10 mM stock) 

- PBS pH 7.4 (13 μL) 

Weight of retentate after Amicon filtration: 44.6 μg = 44.6 μL, assuming d = 1 mg/μL. 

The concentration of keto-anti-Kv2.1-IgG was determined by absorbance spectroscopy: A280 = 

1.468, corresponding to 1.08 mg/mL using ε280 of 1.36 mL·mg-1·cm-1. Recovery of keto-anti-
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Kv2.1-IgG was 96% (1.08 mg/mL * 44.6 μL = 48.2 μg). Using ma (IgG) = 156 kDa, this amounts 

to 309 pmol (48.2 μg / (156,000 g/mol)). A second absorption peak at 367 nm was indicative 

of successful conjugation with azobenzene: A367 = 0.638. This corresponds to a concentration 

of 26.4 μM of azobenzene 3.8 using ε280 of 20000 mL·mol-1·cm-1 (which is an averaged 

absorption of a bis-amide sustituted azobenzene) which amounts to 1.18 nmol (26.4 μM * 44.6 

μL). This accounts to a conjugation ratio of 3.82 molecules of 3.8 per anti-Kv2.1-IgG antibody 

(1.18 nmol / 309 pmol). 

3.4.3 Cell Culture and Electrophysiology 

Plasmids 

Kv1.1, Kv2.1 and GFP_ Kv2.1 on pcDNA3.1 were a kind gift from James Trimmer (UC Davis). 

TREK-1 and TREK-2 on pcDNA3.1 were a kind gift from Joshua Levitz (Cornell). 

Cell Culture and whole-cell electrophysiology. HEK293T (obtained from Leibniz-Institute 

DSMZ: #305) cells were maintained in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal calf serum (Biochrom, Merk Millipore, Germany) in a 10% CO2 

atmosphere at 37 °C and were split at 80-90% confluency. Medium was removed and the cells 

were washed with PBS before cell detachment with trypsin. Cells were taken up in fresh 

medium and counted. 40-60,000 cells were plated on acid-etched glass coverslips in 500 μL 

full medium. DNA (per coverslip: TREK1 (50 ng) and YFP (50 ng) or GFP_ Kv2.1 (50 ng)) was 

diluted in jetPRIME® buffer (per coverslip: 50 μL) and jetPRIME® transfection reagent (per 

coverslip: 0.5 μL) was added. After mixing and 10 min incubation, the DNA-jetPRIME® mixture 

was added to the cells. Medium was exchanged after 4-5 hours. Electrophysiology was 

performed 16-36 h post-transfection. Electrophysiology was performed using a standard 

electrophysiology setup equipped with a HEKA Patch Clamp EPC10 USB amplifier and 

PatchMaster software (HEKA Electronic). Micropipettes were generated from “Science 

Products GB200-F-8P with filament” pipettes using a Narishige PC-10 or PC-100 vertical 

puller. The patch pipette resistance varied between 5-9 M. The bath solution contained (in 

mM): NaCl (137), KCl (4), MgCl2 (1), CaCl2 (1.8), HEPES (10), D-glucose (10), pH to 7.4 with 

NaOH. The pipette solution contained (in mM): KCl (12), K-gluconate (140), HEPES (10), 

MgATP (4), Na2GTP (0.4), NaCl (4), pH to 7.4 with KOH. All analyzed cells were first visualized 

to contain YFP or GFP_Kv2.1 by irradiation at 480 nm using a Polychrome V (Till Photonics) 

monochromator. All patch clamp experiments were performed at room temperature. For 

photoswitching, light was applied using the epifluorescence coupling equipped with a 

Polychrome V (Till Photonics) monochromator.  
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3.4.4 Brain Slice Preparation 

Hippocampal brain slices were prepared from mice strain C57Bl6JRj (postnatal day 10-14) as 

described previously.2 Briefly, mice were euthanized, the skull was quickly removed and the 

brain placed in ice cold saline solution saturated with carbogen (95/5 = O2/CO2). The saline 

solution contained (in mM): 87 NaCl, 2.5 KCl, 1.25 NaH2PO4, 25 NaHCO3, 0.5 CaCl2, 7 MgCl2, 

25 D-glucose, 75 sucrose. Coronal brain slices of 250 mM thickness were prepared using 

Campden vibrating microtome 7000smz-2. Prior to recording, the brain slice was placed in 

artificial cerebrospinal fluid and saturated carbogen (95/5 = O2/CO2). The artificial 

cerebrospinal fluid contained (in mM): 125 NaCl, 2.5 KCl, 1.25 NaH2PO4, 1 MgCl2, 2 CaCl2, 26 

NaHCO3, and 20 D-glucose. Experiments were performed in continuous flow of aCSF in 

presence of AB2 (50 M). 

3.4.5 Supporting Figures 

 

Supporting Figure 3. Light-dependent dose response of AB2 block of Kv2.1. 
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Supporting Figure 4. The permanently-charged photoswitchable blocker AAQ has no 
effect on TREK-1 upon isomerization. 

 

Supporting Figure 5. Light-dependent dose response of AB1 block of TREK-1. 
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3.4.6 Immunohistochemsitry 

Expression of Kv1.1 and Kv2.1 in HEK293T cells with transient transfection: 

Day 1 

seed HEK293T cells on a LabTek (coated with Fibronectin) or on an ibidi slide. 

• Prepare Fibronectin-solution (50 μL Fibronectin stock solution (1 mg/mL) + 4.95 mL 1x PBS 

+ Mg, Ca). Transfer 400 μL of Fibronectin solution into LabTek wells (LabTeks II #1.5). 

Incubate LabTek at 37°C, 10% CO2 for 45 min. Then, remove Fibronectine solution.  

• Plate HEK293T cells (1.4 104 cells / 400 μL cell culture medium (DMEM/10% FCS) per 

well) into LabTek chambers. Incubate HEK293T cells at 37°C, 10% CO2 for approximately 

24 h. 

Day 2 

Transfection of the HEK293T cells. 

• On the next day, inspect HEK293T cells whether they grew sufficiently. 

• Prepare transfection mix in the following order (Transfection mix per well of LabTek II #1.5) 

- Add Opti-MEM (40 μL Opti-MEM - x μL (DNA) into a new reaction tube. 

- Add appropriate volume of DNA (usually x μL of a 100 ng/μL dilution). 

- Add 0.6 μL TurboFect to each reaction mix, mix thoroughly, incubate transfection 

mixtures for 20 min at room temperature. 

- Meanwhile remove half of the cell culture medium (200 μL) from LabTeks harbouring cells. 

• After incubation of transfection mixtures, add transfection mixtures to cells drop by drop. 

After adding the transfection mixtures, rock LabTeks gently back and forth to dispense 

transfection mixture. Incubate cells at 37 °C, 10 % CO2 for 4 h - 6 h. 

• After incubation, remove the transfection mixture from plated cells and add 400 μL of 

DMEM/10 % FCS in each well. Incubate cells at 37°C, 10 % CO2 overnight. 

Day 3 

On the next day, inspect HEK293T cells and check for florescence using the UV lamp and 

appropriate filters on the microscope (cell culture). 

Labelling with one Antibody in HEK293T cells (with fixation but not with permeabilisation). 

• wash with 2 x 200 μL DPBS 

• fix the cells with 1 x 200 μL PFA (4%) in PEM, 20 min 21 °C, fixation 

• wash with 2 x 200 μL DPBS 

• block with 1 x 200 μL DPBS + 1% BSA, 45 min 21 °C, blocking 

• stain with 1 x 200 μL antibody (1 μg/mL) in DPBS + 1 % BSA, 18 h 4 °C 

• wash with 3 x 200 μL DPBS 
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At this point cells can be imaged by fluorescence microscopy. 

Labelling with two Antibodies in HEK293T cells (with fixation but not with permeabilisation). 

• wash with 2 x 200 μL DPBS 

• fix the cells with 1 x 200 μL PFA (4%) in PEM, 20 min 21 °C, fixation 

• wash with 2 x 200 μL DPBS 

• block with 1 x 200 μL DPBS + 1% BSA, 45 min 21 °C, blocking 

• stain with 1 x 200 μL antibody 1 (2, 4 or 8 μg/mL) in DPBS + 1 % BSA, 18 h 4 °C 

Day 4 

• wash with 2 x 200 μL DPBS 

• stain with 1 x 200 μL antibody 2 (1 μg/mL) in DPBS + 1% BSA, 10 h 4 or 21 °C 

• wash with 3 x 200 μL DPBS 

At this point cells can be imaged by fluorescence microscopy 
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3.4.7 Spectral Data 

 (E)-N-(4-((4-Aminophenyl)diazenyl)phenyl)-N-ethylethane-1,2-diamine (3.1) 
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 N-(Carboxymethyl)-N,N,N-triethylethanammonium chloride (3.3) 
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  (E)-N-(2-((4-((4-Aminophenyl)diazenyl)phenyl)(ethyl)amino)ethyl)-1-((1,3-

dioxoisoindolin-2-yl)oxy)-3,6,9,12,15,18,21,24,27,30,33,36-

dodecaoxanonatriacontan-39-amide (3.2) 
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 (E)-2-((4-((4-((1-((1,3-Dioxoisoindolin-2-yl)oxy)-39-oxo-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxa-40-azadotetracontan-42-

yl)(ethyl)amino)phenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-oxoethan-1-

ammonium formate (3.4) 
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 tert-Butyl (3-(1,3-dioxoisoindolin-2-yl)propoxy)carbamate (3.13) 
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 tert-Butyl (3-aminopropoxy)carbamate (3.14) 
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 (E)-2-((4-((4-(2-((tert-Butoxycarbonyl)amino)acetamido)phenyl)diazenyl)phenyl) 

amino)-N,N,N-triethyl-2-oxoethan-1-ammonium formate (3.7) 
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 (E)-2-((4-((4-(50-(Ammoniooxy)-4,46-dioxo-7,10,13,16,19,22,25,28,31,34,37,40,43-

tridecaoxa-3,47-diazapentacontanamido)phenyl)diazenyl)phenyl)amino)-N,N,N-

triethyl-2-oxoethan-1-ammonium bis-(trifluroacetate) (3.8) 
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 (E)-N-(4-((4-aminophenyl)diazenyl)phenyl)dodecanamide (3.15) 
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 (E)-2-((4-((4-dodecanamidophenyl)diazenyl)phenyl)amino)-N,N,N-triethyl-2-

oxoethan-1-ammonium formate (3.11) 
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 (E)-1-Butyl-2-((4-((4-(2-dodecanamidoacetamido)phenyl)diazenyl) 

phenyl)carbamoyl)piperidin-1-ium formate (3.12) 

 



3. Optical Control of Potassium Channels 

98 

  



 

99 
 

4 Tethered Photopharmacology of the AMPA Receptor 

4.1 Introduction 

Ionotropic glutamate receptors (iGluRs) are the major mediators of excitatory synaptic 

transmission. Upon arrival of an action potential in the axon-terminal of the presynaptic neuron, 

glutamate is released into the synaptic cleft. This spike in glutamate concentration opens 

postsynaptically expressed iGluRs, triggering an efflux of K+ and an influx of Na+ and/or Ca2+ 

ions, resulting in a depolarization of the cell membrane and an excitatory postsynaptic potential 

(EPSP). Above-threshold EPSPs can in turn trigger voltage-gated Na+ channels and hence 

generate an action potential. To date, 18 iGluR subunits have been identified which are 

classified according to their sensitivity to agonists (AMPA, kainate, and NMDA). Among these, 

AMPA receptors carry the bulk of the fast excitatory current, producing fast-rising, quickly-

desensitizing and high-amplitude EPSPs with a time to peak of around 1 ms.94 AMPA receptors 

are tetramers composed of four closely relates subtypes (GluA1-4) which predominantly form 

a symmetric ‘dimer of dimers’ of GluA2 with either GluA1, GluA3 or GluA4.95 While traditional 

pharmacology has been crucial to identify the different iGluR classes and untangle their 

contributions to synaptic transmission, its utility is limited not only by their imperfect selectivity 

profile but also by the ubiquity and abundance of iGluR expression, which at the same time is 

highly regulated and varied. For instance, AMPA receptors are not only defined by their subunit 

composition but are also subject to alternative splicing or editing, giving rise to a huge number 

of possible subunit combinations.95 Adding another layer of complexity, their precise function 

is influenced by expression level, location or trafficking and is modulated by auxiliary and 

regulatory proteins.95–97 Even more so, when moving from this molecular level to a circuitry of 

neurons it is easy to see how a systemic application of drugs with limited subtype-selectivity is 

a tool far too crude to study events of glutamergic synaptic transmission in detail.  

One possibility of studying proteins in one population of cells over another is by genetic 

targeting. For instance, membrane-tethered toxins can be expressed in specific cell 

populations and block endogenous ion channels.98 One drawback of this method compared to 

pharmacology is the lack of acute onset which could cause complications such as 

compensatory gene expression. Shields et al. described an alternative strategy termed ‘drugs 

acutely restricted by tethering’ (DART) to combine the cell-type specificity and endogenous-

protein specificity of genetic methods with the acute onset of pharmacology (Figure 27a).32 

Therein, the AMPAR antagonist YM90K is synthetically modified with bioconjugation motif 

(Halo-tag ligand), separated by a long PEG36 chain as tether. The Halo-tag is a self-labelling 

protein tag (size: ~34 kDa) derived from the a bacterial haloalkane dehalogenase.99 It reacts 

with chloroalkanes (Halo-tag ligand) with high speed and specificity. The Halo-tag is fused to 
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a membrane anchor, and by expressing it in AMPAR-positive cells and subsequent labelling 

with the tethered antagonist, endogenous AMPARs can be antagonized. The large advantages 

of this approach over other genetically encoded approaches lie in the inactivity of the Halo-tag 

prior to application of the tethered antagonist and that it does not require modification of the 

receptor itself. We envisioned that we could equip this tethered DART antagonist with another 

layer of control by incorporation of the photoswitch ShuBQX-3 (Figure 27b). ShuBQX-3 is a 

photoswitchable antagonist of the AMPAR and was introduced by the Trauner group in 2017.79 

It is derived from quinoxaline-2,3-dione antagonists such as DNQX or zonampanel/YM90K 

which allow for a variety of substitutions in the 6-position of their core structure. Applied as a 

freely diffusible photoswitch, it is an antagonist in its trans-form, blocking glutamate-induced 

AMPAR currents entirely. Upon illumination and isomerization to the cis-configuration, about 

50% of the block is relieved (in presence of 300 μM L-glu). The envisioned hybrid molecule of 

ShuBXQ-3 and YM90K-DART that is termed ‘para-PORTL’ (Figure 27c). It represents a 

refinement of the photoswitchable orthogonal remotely-tethered ligands (PORTL) 

demonstrated in 2015 for the SNAP-tagged metabotropic glutamate receptors (mGluRs; see 

chapter 1 for more details on PORTL).28 While the SNAP-tag in the PORTL concept resides 

on the receptor of interest, the tag in para-PORTL is even further removed to a protein its near 

vicinity, e.g. a membrane anchor or a membrane-bound auxiliary or regulatory protein (para 

from the Greek word for beside, next to, near). 

 

Figure 27. para-PORTL concept and design. a) Drugs acutely restricted by tethering (DART) 
by Shields et al.32 b) By incorporating a photoswitch in the DART molecule, optical control can 
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be achieved by the obtained para-PORTL. (ATD: amino terminal domain, LBD: ligand binding 
domain, TMD: transmembrane domain, EPSP: excitatory postsynaptic potential). 

4.2 Results and Discussion 

The synthesis of para-PORTL 4.10 was started by a nucleophilic aromatic substitution of 

electron-poor, commercially available starting material 4.1 with the ethyl ester of 4-

aminobutanoic acid (Scheme 5). The reaction was carried out with a limiting two equivalents 

of cesium carbonate in DMSO to avoid ester hydrolysis. 4.2 was then coupled to 1-Boc-1-

phenylhydrazine 4.3 in a Buchwald-Hartwig cross-coupling reaction employing palladium 

diacetate as catalyst and t-Bu3P as ligand. 4.4 was subsequently reduced by palladium on 

carbon and hydrogen gas to afford aniline 4.5. A condensation reaction with oxalyl chloride 

furnished quinoxaline-2,3-dione 4.6. The ester was saponified by sodium hydroxide in a 

mixture of MeOH and THF, providing the free acid 4.7. A PEG36 tether was then installed by 

amide coupling to H2N-PEG36-COOtBu. By addition of neat TFA, the molecule was deprotected 

globally to obtain the azobenzene moiety and the free acid handle. Finally, amide coupling to 

Halo-Tag ligand afforded the para-PORTL 4.10 over a total of 8 linear synthetic steps.  

 

Scheme 5. Synthesis of para-PORTL 4.10. 

The para-PORTL 4.10 was then evaluated in an in vitro labelling experiment. To this end, 

purified Halo-tag protein (MW ~34 kDa) was incubated with a fourfold excess of 4.10 and then 

directly loaded on a SDS-PAGE precast gel (Figure 28). The clean shift to higher molecular 

weight is indicative of successful labeling with 4.10. As positive control, Halo-tag protein was 

labelled with the fluorescent Halo-TMR, which is 6-carboxytetramethylrhodamine amide 

coupled to Halo-tag ligand (Lane 3 in a) and b). To determine if 4.10 labels the Halo-tag protein 
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to completion, it was labelled in a first reaction with 4.10 and afterwards in a second reaction 

with Halo-TMR. The absence of TMR fluorescence is indicative of full labelling in the first 

reaction with 4.10 (lane 4 in b). 

 

Figure 28. In vitro labelling of purified Halo-tag protein with para-PORTL 4.10. a) Protein 
was labelled as indicated and total protein amount was detected by UV-induced fluorescence 
(Bio-Rad Mini-Protean stain-free™ precast gels). Overlay with near-infrared fluorescent ladder. 
The Halo-tag protein shows a clear shift in molecular weight upon reaction with the ca. 2.3 kDa 
para-PORTL (lane 1 and 2). TMR-labelled Halo-tag shows bleed-through into the protein 
detection channel (lane 3). The Halo-tag is labelled to completion by the para-PORTL, a later 
incubation with Halo-TMR leads to no TMR-labelling (lane 4). b) Same as a) but TMR-
fluorescence channel. 

As of now, the electrophysiological evaluation of 4.10 is only in its very early stages. In 

preliminary experiments, 4.10 was tested by Dr. Prashant Donthamsetti (Isacoff lab, UC 

Berkeley) in patch-clamp recordings (Figure 37). The AMPAR (GluA1, non-desensitizing 

mutant) was opened by application of L-glu (1 mM). 4.10 was then able to photoblock 11.9 ± 

2.3% of the inward current (n = 9 cells) after photoisomerization to cis (380 nm, grey). Under 

blue light (460 nm), no effect was observed. The small block observed with orange light (600 

nm) is likely an effect of the light’s first harmonic oscillation (300 nm), which is isomerizing a 

fraction of 4.10 to cis. Therefore, 4.10 is inactive in its trans-configuration while the cis-isomer 

acts as a competitive antagonist. 
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Figure 29. Photoblock of AMPAR by para-PORTL 4.10. Blue: 460 nm, grey: 360 nm, orange: 
600 nm.  

That the cis-isomer of 4.10 is the active configuration is unexpected and in stark contrast to 

the initial expectations (compare to Figure 27). The freely diffusible photoswitch ShuBQX-3 

was active in its trans-isomer.3 In addition to being trans-active, ShuBQX-3 exhibited a strong 

bathochromic shift in switching wavelengths. More specifically, in DMSO or in aqueous Ringer-

Buffer, ShuBQX-3 behaved like a normal azobenzene in UV/Vis experiments, with optimal 

switching wavelengths of 380 nm (trans to cis) and 460 nm (cis to trans). However, when 

ShuBQX-3 was applied to HEK293T cells expressing AMPAR, the optimal wavelength for 

trans- to cis-isomerization in patch-clamp experiments was 460 nm. In an attempt to explain 

this bathochromic shift, the authors consulted the X-ray structure of MPXQ bound to the 

AMPAR.100 In this structure, the guanidinium moiety of an arginine (R-485) is positioned near 

the quinoxaline-2,3,-dione core of the antagonist MPQX. Consequently, the authors ascribed 

the observed bathochromic shift to similar interactions of this arginine with the quinoxaline-2,3-

dione core of ShuBQX-3. This was corroborated by UV/Vis-experiments in which a DMSO 

solution of ShuBQX-3 was spiked with L-arginine or guanidine (20 equiv.). In both cases, a 

bathochromic shift was observed that was comparable to the one observed in the patch-clamp 

experiments. In conclusion, trans-ShuBQX-3 binds competitively (with L-glu) to AMPAR, the 

interaction with arginine results in the bathochromic shift, and the receptor-bound trans-

ShuBQX-3 is isomerized to cis by illumination with blue light (460 nm). This triggers the release 

of ShuBQX-3 from the binding pocket. 

In 4.10, the installation of the PEG chain likely restrains the positioning of the quinoxaline-2,3-

dione core in the AMPAR binding pocket. Therefore, trans-4.10 cannot be accommodated 

anymore while the ‘smaller’ cis-isomer still fits into the binding pocket, antagonizing the 
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receptor. Unfortunately, the amplitude of photoblock under physiological concentrations of L-

glu (1 mM) is likely too low to efficiently block AMPAR-mediated synaptic transmission in 

neurons, which is the primary goal. 

In the PORTL concept, the use of low-affinity ligands can be advantageous (see chapter 1). 

Improvements of photoblock will therefore not be aimed at improving the affinity but rather at 

increasing the effective concentration of tethered 4.10 around the AMPAR. This will be tackled 

by two strategies, i) cloning of Halo-membrane anchors that position 4.10 more efficaciously 

and ii) by introducing multivalent, dendritic ligands that have multiple photoswitches attached 

to one bioconjugation motif. 
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4.3 Conclusion and Outlook 

A novel approach, termed para-PORTL, is illustrated on the AMPA receptor which represents 

an improvement and a refinement of the PORTL concept. In para-PORTL, the bioconjugation 

tag is removed from the receptor itself to a protein in its near vicinity, e.g. an auxiliary or a 

scaffold protein. Since no modification of the receptor is required, the para-PORTL concept 

better reflects the underlying receptor biology. The biological investigation is currently 

underway in collaboration with the Isacoff laboratory and first experiments were promising, 

showing a light-dependent block of AMPAR (GluA1-L497Y, non-desensitizing point mutant). 

Due to their central role in synaptic transmission, dysregulation or dysfunction of AMPA 

receptors often result in neurological diseases with massive human cost such as epilepsy or 

Alzheimer’s.101,102 para-PORTLs permit perturbation of endogenous AMPA receptors with light 

and could be an useful tool to study physiological and pathophysiological processes with 

AMPAR contribution. For instance, the subunit composition governs the ratio of Ca2+ 

impermeable (CI) and permeable (CP) AMPA receptors, which is a major determinant of 

excitotoxicity and is linked to diseases like amyotrophic lateral sclerosis.103 The ratio of CP/CI-

AMPARs is also influenced by their association with auxiliary subunits of which a large variety 

has been identified, such as transmembrane AMPA receptor regulatory proteins (γ2-8 TARPs), 

cornichons, Shisas and GSG1L.104 By fusing a Halo-tag to the different auxiliary subunits and 

labelling with a para-PORTL molecule, associated populations of AMPARs may be blocked 

and unblocked using light. This could help to break down contributions of subunit-AMPAR 

complexes to disease states. 
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4.4 Supporting Information 

4.4.1 Synthesis 

LCMS was performed on a Shimadzu MS2020 connected to a Nexerra UHPLC system 

equipped with a Waters ACQUITY UPLC BEH C18 1.7 μm 2.1x50 mm column. Buffer A: 0.05% 

HCOOH in H2O Buffer B: 0.05% HCOOH in acetonitrile. Analytical gradient was from 10% to 

90% B within 4.0 min with 1 mL/min flow.  

 Ethyl 4-((5-chloro-2-nitro-4-(trifluoromethyl)phenyl)amino)butanoate (4.2) 

NO2

H
NCl

F3C

O

O

 

1,5-Dichloro-2-nitro-4-(trifluoromethyl)benzene (2.01 g, 7.73 mmol, 1.04 equiv.) and ethyl 4-

aminobutanoate (1.25 g, 7.46 mmol, 1.0 equiv.), cesium carbonate (6.00 g, 15.35 mmol, 2.96 

equiv.) and DMSO (30 mL) were heated to 80 °C overnight. The reaction mixture was diluted 

with water (600 mL) and extracted with EtOAc (4 x 400 mL). The combined organic layers were 

washed against water (400 mL), 10% aq. LiCl solution (400 mL) and brine (400 mL), and dried 

over MgSO4 before concentration in vacuo. The residue was purified by flash column 

chromatography (EtOAc/hexanes = 1/5) to yield the desired product as a citron-yellow, waxy 

solid (1.37 g,3.86 mmol, 52%). 

TLC (EtOAc/hexanes = 1/5): 0.30 (UV + yellow color). 

1H NMR (400 MHz, CDCl3) δ 8.52 (d, J = 0.7 Hz, 1H), 8.40 – 8.18 (m, 1H), 7.04 (s, 1H), 4.18 

(q, J = 7.1 Hz, 2H), 3.42 (td, J = 7.2, 5.5 Hz, 2H), 2.47 (t, J = 6.9 Hz, 2H), 2.19 – 1.99 (m, 2H), 

1.28 (t, J = 7.2 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 172.53, 146.68, 139.76, 129.38, 127.24 (q, J = 5.7 Hz), 122.34 

(q, J = 271.6 Hz), 116.04, 115.42 (q, J = 33.4 Hz), 60.88, 42.58, 31.20, 23.79, 14.21. 

Note: Purity ca. 95%. Ca. 5% contamination with the free acid. The impurity had no impact on 

subsequent reactions. 

HRMS (ESI): m/z calc. for C13H15ClF3N2O4
+ (M+H)+: 355.0667, found: 355.0667. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 4min) = 1.90 min. 

 tert-Butyl 1-phenylhydrazine-1-carboxylate (4.3) 

N

Boc

NH2
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4.3 was prepared according to a published procedure.105 Analytical data matched those 

reported. 

1H NMR (400 MHz, CDCl3) δ 7.52 – 7.41 (m, 2H), 7.42 – 7.27 (m, 2H), 7.13 (ddt, J = 8.6, 7.0, 

1.2 Hz, 1H), 4.23 (s, 3H), 1.52 (s, 9H). 

 tert-Butyl 2-(5-((4-ethoxy-4-oxobutyl)amino)-4-nitro-2-(trifluoromethyl)phenyl)-1-

phenylhydrazine-1-carboxylate (4.4) 

NO2

H
NHN

F3C

O

ON
Boc

 

4.2 (1.06 g, 3.00 mmol, 1.0 equiv.), tert-butyl 1-phenylhydrazine-1-carboxylate (750 mg, 3.60 

mmol, 1.2 equiv.), cesium carbonate (1.37 g, 4.20 mmol, 1.4 equiv.), tBu3PHBF4 (174 mg, 0.60 

mmol, 0.2 equiv.), Pd(OAc)2 (67.4 mg, 0.30 mmol, 0.1 equiv.) and toluene (50 mL) were 

combined in a pressure flask, purged with Argon, sealed and heated to 110 °C for 24 h. The 

reaction mixture was allowed to cool to r.t., filtered over celite, washing with a copious of EtOAc. 

The filtrate was concentrated in vacuo and purified by flash column chromatography 100% 

DCM) to yield the product as a yellow gum (754 mg, 1.43 mmol, 48%).  

TLC (100% DCM): 0.27 (UV+yellow color); SM: 0.49 (UV+yellow color). 

1H NMR (400 MHz, CDCl3) δ 8.40 (d, J = 0.9 Hz, 1H), 8.35 – 8.27 (m, 1H), 7.51 – 7.45 (m, 2H), 

7.32 – 7.26 (m, 2H), 7.14 – 7.08 (m, 2H), 6.07 (s, 1H), 4.05 (q, J = 7.1 Hz, 2H), 3.13 (td, J = 

7.0, 5.5 Hz, 2H), 2.27 (t, J = 7.2 Hz, 2H), 1.83 (p, J = 7.1 Hz, 2H), 1.38 (s, 9H), 1.18 (t, J = 7.1 

Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ 172.5, 152.9, 150.4, 148.6, 141.2, 129.1, 128.2 (q, J = 5.5 Hz), 

125.6, 125.3, 121.5, 103.6 (d, J = 33.0 Hz), 93.6, 83.6, 60.8, 42.4, 31.5, 28.2, 23.8, 14.4. 

Note: CF3 carbon not observed. 

HRMS (ESI): m/z calc. for C24H30F3N4O6
+ (M+H)+: 527.2112, found: 527.2117. 

tR (LCMS) = 3.96 min. 

UV/Vis (LCMS): max1 = 239 nm, max2 = 351 nm (broad). 
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 tert-Butyl 2-(4-amino-5-((4-ethoxy-4-oxobutyl)amino)-2-(trifluoromethyl)phenyl)-1-

phenylhydrazine-1-carboxylate (4.5) 

NH2

H
NHN

F3C

O

ON
Boc

 

4.4 (486 mg, 0.92 mmol, 1.0 equiv.) was dissolved in MeOH (10 mL) and Pd/C (10 wt % Pd, 

195 mg, 0.18 mmol, 0.2 equiv.) was added. The reaction flask was flushed with hydrogen (3x). 

The resulting mixture was stirred at r.t. overnight. The reaction mixture was filtered over celite, 

washing with EtOAc. The filtrate was concentrated and purified by flash column 

chromatography (2% MeOH/DCM) to give the product as a brownish, viscous oil (133 mg, 0.27 

mmol, 29%) 

TLC (5% MeOH/DCM): 0.38 (UV+ninhydrin). 

1H NMR (400 MHz, CDCl3) δ = 7.54 (dt, J = 8.1, 1.1 Hz, 2H), 7.30 – 7.20 (m, 2H), 7.08 – 6.99 

(m, 1H), 6.93 – 6.66 (m, 2H), 6.04 (s, 1H), 4.05 (q, J = 7.2 Hz, 2H), 2.96 (s, 3H), 2.32 (t, J = 

7.3 Hz, 2H), 1.83 (p, J = 7.0 Hz, 2H), 1.33 (s, 9H), 1.17 (t, J = 7.1 Hz, 3H). 

13C NMR (101 MHz, CDCl3): δ = 173.8, 153.7, 143.8, 142.5, 128.6, 128.6, 124.9, 124.5, 121.4, 

116.9, 95.1, 82.4, 60.7, 42.9, 32.1, 28.0, 24.2, 14.2. 

Note: CF3 carbon not observed, C-F couplings not observed. 

HRMS (ESI): m/z calc. for C24H32F3N4O4
+ (M+H)+: 497.2370, found: 497.2371. 

tR (LCMS) = 2.85 min. 

UV/Vis (LCMS): max1 = 198 nm, max2 = 233 nm, max3 = 269 nm. 

 tert-Butyl 2-(4-(4-ethoxy-4-oxobutyl)-2,3-dioxo-7-(trifluoromethyl)-1,2,3,4-

tetrahydroquinoxalin-6-yl)-1-phenylhydrazine-1-carboxylate (4.6) 

N
H

NHN

F3C

O

N
Boc

O

O

O

 

4.5 (133 mg, 0.27 mmol, 1.0 equiv.) was dissolved in DCM (2.7 mL). Triethylamine (82 μL, 

0.59 mmol, 2.2 equiv.) and oxalyl chloride (2 M in DCM, 160 μL, 0.32 mmol, 1.2 equiv.) were 

sequentially added. The reaction mixture was stirred at r.t. for 30 min, quenched by addition of 
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a drop of MeOH and directly purified by flash column chromatography (5% MeOH/DCM). The 

product was obtained as a brown oil (43.5 mg, 79 μmol, 29%).  

TLC (5% MeOH/DCM): 0.19 (UV). 

1H NMR (400 MHz, CDCl3) δ = 7.69 – 7.61 (m, 2H), 7.51 (d, J = 5.7 Hz, 1H), 7.39 – 7.28 (m, 

2H), 7.19 – 7.10 (m, 1H), 7.05 (d, J = 1.8 Hz, 1H), 6.92 (s, 1H), 4.19 – 4.05 (m, 4H), 2.34 (t, J 

= 7.0 Hz, 2H), 1.85 (p, J = 7.1 Hz, 2H), 1.44 (s, 9H), 1.24 (t, J = 7.1 Hz, 3H). 

Note: NH proton of the quinoxaline-2,3-dione is not observed. 

13C NMR (101 MHz, CDCl3): δ = 172.2, 155.3, 154.3, 153.3, 143.0, 141.6, 130.4, 128.8, 125.2, 

121.6, 123.7 (d, J = 272.2 Hz), 117.4, 115.6 (d, J = 5.8 Hz), 110.7 (d, J = 32.5 Hz), 99.4, 83.3, 

60.7, 42.8, 31.1, 28.0, 21.8, 14.2. 

HRMS (ESI): m/z calc. for C26H30F3N4O6
+ (M+H)+: 551.2112, found: 551.2115. 

tR (LCMS) = 3.23 min. 

UV/Vis (LCMS): max1 = 224 nm, max2 = 337 nm. 

 4-(7-(2-(tert-Butoxycarbonyl)-2-phenylhydrazineyl)-2,3-dioxo-6-(trifluoromethyl)-3,4-

dihydroquinoxalin-1(2H)-yl)butanoic acid (4.7) 

N
H

NHN

F3C

O

N
Boc

O

OH

O

 

4.6 (43.5 mg, 79 μmol, 1.0 equiv.) was dissolved in THF/MeOH (1 mL/0.5 mL) and aq. NaOH 

(1 M, 0.16 mL, 0.16 mmol, 2.0 equiv.) was added. The reaction was stirred at r.t. for 1 h, then 

acidified by addition of 50 μL AcOH. The reaction mixture was concentrated in vacuo to 

dryness. The residue was taken up in 900 μL DMSO and 100 μL water and centrifuged (14,000 

rcf, 2 min). The supernatant was purified by HPLC. Product containing fractions were combined 

and freeze-dried. The desired product was obtained in 44% yield (18.1 mg, 35 μmol). 

1H NMR (400 MHz, DMSO-d6) δ = 11.85 (s, 1H), 8.64 (s, 1H), 7.73 – 7.46 (m, 2H), 7.46 – 7.25 

(m, 3H), 7.23 – 7.04 (m, 1H), 6.64 (s, 1H), 3.95 (t, J = 7.3 Hz, 2H), 2.29 (t, J = 7.3 Hz, 2H), 

1.72 (t, J = 7.3 Hz, 2H), 1.38 (s, 9H). 

Note: NH proton of the quinoxaline-2,3-dione is not observed. 
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13C NMR (101 MHz, CDCl3): δ = 174.0, 156.1, 153.6, 153.1, 142.7, 141.7, 131.1, 128.8, 124.5 

(d, J = 272.5 Hz), 125.5, 123.5, 118.5, 114.2 (q, J = 5.2 Hz), 107.2 (q, J = 31.7 Hz), 98.3, 81.8, 

42.3, 31.4, 28.2, 22.1. 

HRMS (ESI): m/z calc. for C24H26F3N4O6
+ (M+H)+: 523.1799, found: 523.1801. 

tR (LCMS) = 2.78 min. 

UV/Vis (LCMS): max1 = 198 nm, max2 = 224 nm, max3 = 337 nm.. 

 tert-Butyl 116-(7-(2-(tert-butoxycarbonyl)-2-phenylhydrazineyl)-2,3-dioxo-6-

(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl)-113-oxo-4,7,10,13,19,22,25,28,31, 

34,37,40,43,46,49,52,55,58,61,64,67,70,73,76,79,82,85,88,91,94,97,100,103,106,10

9-pentatriacontaoxa-112-azahexadecahectanoate (4.8) 

N
H

NHN

F3C

O

N
Boc

O

N
H

O

O OtBu

O
36

 

4.7 (13.1 mg, 25 μmol, 1.0 equiv.) was dissolved in DMSO (0.8 mL) and DIPEA (9.2 μL, 53 

μmol, 2.1 equiv.) and TSTU (9.0 mg, 30 μmol, 1.2 equiv.) were added. The reaction mixture 

was stirred at r.t. for 30 min, before additional DIPEA (18.5 μL, 106 μmol, 4.2 equiv.) and NH2-

PEG36-COOtBu (Iris Biotech #PEG3710, 52.0 mg, 30 μmol 1.2 equiv.) were added. The 

reaction mixture was stirred at r.t. overnight before it was acidified by addition of 40 μL of 

AcOH. The reaction mixture was centrifuged (14,000 rcf, 2 min) and the supernatant was 

subjected to HPLC purification. The product was obtained after freeze-drying of product 

containing fractions in 57% yield (32.0 mg, 14 μmol). 

HRMS (ESI): m/z calc. for C103H184F3N5O43
2+ (M+2H)2+: 1118.6170, found: 1118.6170. 

tR (LCMS) = 3.29 min. 

UV/Vis (LCMS): max1 = 198 nm, max2 = 225 nm, max3 = 337 nm. 
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 (E)-116-(2,3-Dioxo-7-(phenyldiazenyl)-6-(trifluoromethyl)-3,4-dihydroquinoxalin-

1(2H)-yl)-113-oxo-4,7,10,13,19,22,25,28,31,34,37,40,43,46,49,52,55,58,61,64,67, 

70,73,76,79,82,85,88,91,94,97,100,103,106,109-pentatriacontaoxa-112-

azahexadecahectanoic acid (4.9) 

N
H

NN

F3C

O

N

O

N
H

O

O OH

O
36

 

Precooled TFA (0.5 mL) was added to 4.7 (32.0 mg, 14 μmol, 1.0 equiv.) on ice. The reaction 

mixture quickly turned to an orange color and as allowed to stand on ice for 10 min and 

analyzed by LCMS. Then, the reaction mixture was allowed to warm to r.t. and allowed to stand 

for an additional 30 min and again analyzed by LCMS. TFA was removed by a gentle stream 

of nitrogen. The residue was taken up in 900 μL DMSO and 100 μL water, centrifuged (14,000 

rcf, 2 min) and the supernatant was subjected to HPLC purification. The product was obtained 

as an orange, viscous oil (3.9 mg, 1.9 μmol, 13%) 

Note: Due to wrong mass assignments in the LCMS analysis, the reaction progress was 

incorrectly judged to be incomplete after 10 min on ice. Degradation of the product was 

observed upon warming to r.t.. If this reaction was repeated, longer reaction times on ice and 

addition of a cation scavenger (e.g. a drop of water or anisole) are recommended. 

LRMS (ESI): m/z calc. C94H167F3N5O41
3+for (M+3H)3+: 692.4, found: 693.4 

HRMS (ESI): m/z calc. C94H166F3N5O41
3+for (M+2H)2+: 1039.5516 found: 1039.5524. 

tR (LCMS) = 2.94 min. 

UV/Vis (LCMS): max1 = 220 nm, max2 = 263 nm, max3 = 291, max4 = 360 nm. 

 (E)-N-(2-(2-((6-Chlorohexyl)oxy)ethoxy)ethyl)-1-(4-(2,3-dioxo-7-(phenyldiazenyl)-6-

(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl)butanamido)-

3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,8

7,90,93,99,102,105,108-pentatriacontaoxaundecahectan-111-amide (4.10) 
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4.9 (3.9 mg, 1.9 μmol, 1.0 equiv.), DIPEA (2 μL, 11.5 μmol, 6.0 equiv.) and TSTU (0.7 mg, 2.4 

μmol, 1.3 equiv.) were combined in DMSO (200 μL) and stirred at r.t. for 30 min. 2-(2-((6-

Chlorohexyl)oxy)ethoxy)ethan-1-amine (HaloTag-ligand, 1.2 mg, 3.8 μmol, 2.0 equiv.) was 

prepared in a 4 mL dram vial and the solution of the activated acid was added in one portion. 

The reaction mixture was stirred at r.t. overnight. The reaction mixture was acidified by a drop 

of AcOH, centrifuged (14,000 rcf, 2 min) and the supernatant was subjected to HPLC 

purification. The product was obtained as an orange, viscous oil (1.8 μmol, 95%) 

1H NMR (400 MHz, CDCl3) δ 8.08 – 8.01 (m, 2H, trans), 8.00 (s, 1H, trans), 7.70 (s, 1H, trans), 

7.65 – 7.56 (m, 3H, trans), 7.34 (t, J = 7.8 Hz, 1H, cis), 7.24 – 7.16 (m, 0H, cis), 7.00 – 6.92 

(m, 1H, cis), 6.48 (s, 0H, cis), 4.39 – 4.29 (m, 2H), 3.92 – 3.85 (m, 1H), 3.84 – 3.77 (m, 1H), 

3.73 (t, J = 6.2 Hz, 3H), 3.66 – 3.56 (m, 191H), 2.46 (t, J = 6.2 Hz, 3H), 2.40 (t, J = 7.0 Hz, 2H), 

2.11 (q, J = 7.1 Hz, 3H), 1.83 – 1.71 (m, 3H), 1.60 (p, J = 6.8 Hz, 3H), 1.52 – 1.31 (m, 5H). 

Note: Mixture of cis- and trans-isomers. To assign cis- and trans- peaks, the NMR tube was 

illuminated by a UV-handheld lamp for a few minutes and directly measured by NMR (see 

chapter 4.4.2.7). 

HRMS (ESI): m/z calc. for C104H187ClF3N6O42
3+ (M+3H)3+: 761.7446, found: 761.7451. 

tR (LCMS) = 3.30 min. 

UV/Vis (LCMS): max1 = 219 nm, max2 = 263 nm, max3 = 291, max4 = 360 nm. 
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4.4.2 Spectral Data 

 Ethyl 4-((5-chloro-2-nitro-4-(trifluoromethyl)phenyl)amino)butanoate (4.2) 
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 tert-Butyl 1-phenylhydrazine-1-carboxylate (4.3) 
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 tert-Butyl 2-(5-((4-ethoxy-4-oxobutyl)amino)-4-nitro-2-(trifluoromethyl)phenyl)-1-

phenylhydrazine-1-carboxylate (4.4) 
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 tert-Butyl 2-(4-amino-5-((4-ethoxy-4-oxobutyl)amino)-2-(trifluoromethyl)phenyl)-1-

phenylhydrazine-1-carboxylate (4.5) 
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 tert-butyl 2-(4-(4-ethoxy-4-oxobutyl)-2,3-dioxo-7-(trifluoromethyl)-1,2,3,4-

tetrahydroquinoxalin-6-yl)-1-phenylhydrazine-1-carboxylate (4.6) 
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 4-(7-(2-(tert-butoxycarbonyl)-2-phenylhydrazineyl)-2,3-dioxo-6-(trifluoromethyl)-3,4-

dihydroquinoxalin-1(2H)-yl)butanoic acid (4.7) 
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 (E)-N-(2-(2-((6-chlorohexyl)oxy)ethoxy)ethyl)-1-(4-(2,3-dioxo-7-(phenyldiazenyl)-6-

(trifluoromethyl)-3,4-dihydroquinoxalin-1(2H)-yl)butanamido)-

3,6,9,12,15,18,21,24,27,30,33,36,39,42,45,48,51,54,57,60,63,66,69,72,75,78,81,84,8

7,90,93,99,102,105,108-pentatriacontaoxaundecahectan-111-amide (4.10) 
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5 Tethered Photopharmacology of the μ-Opioid Receptor 

5.1 Introduction 

Since antiquity, morphine and related opiates have widely been used for pain relief. As opiates 

also induce euphoria, they also have been abused recreationally for hundreds of years. The 

mechanistic target of opiates is the μ-opioid receptor (MOR), which is a class A GPCR. In 

contrast to Class B or C GPCRs, it features no large extracellular domain and consists of 7 

transmembrane helices (Figure 30a). Its third intracellular loop is coupled to an inhibitory Gi/o 

protein (colored red in Figure 30a). Upon receptor stimulation, the trimeric Gi/o protein binds 

GTP and dissociates into α- and βγ-subunits. The α-subunit inhibits adenylyl cyclase, resulting 

in decreased cAMP levels, while the βγ-subunit opens G protein-coupled inwardly-rectifying 

potassium (GIRK) channels. In addition, MOR, like other GPCRs, can signal in G protein-

independent fashion, e.g. through β-arrestin or activation of downstream kinases. 

The MOR is also the target of non-opiate opioids such as fentanyl and tramadol (Figure 30b). 

Fentanyl is a highly-addictive and extremely potent agonist with an EC50 around 1 nM106 and 

is used as analgesic in the clinic, together with many structural analogs. In recent years, 

fentanyl abuse has increased dramatically, especially in the US. It now is the major cause for 

lethal opioid overdoses with deaths peaking at roughly 64,000 in 2017, and still rising. At these 

numbers, opioid overdoses cause more deaths in the US than gun violence or car accidents.107 

Especially fentanyl is dangerous because it produces respiratory depression to a larger extent 

than other opioids.108  

 

Figure 30. Structure and Pharmacology of the μ-opioid receptor. a) Structure of the active-
state MOR bound to the synthetic agonist BU72. The intracellular loop that binds to the G 
protein is highlighted in red. (pdp 5C1M) b) The MOR has an extensive pharmacology and a 
few examples of MOR agonists are shown (top). Photofentanyl-I (PF-I) and Photofentanyl-II 
(PF-II) according to Schönberger et al.5 PF-II exhibited light-dependent agonism on MOR, 
while PF-I was inactive.  

To develop novel therapies and fight drug addiction it is important to understand the molecular 

processes underlying tolerance and addiction. In the last decades, considerable effort has 
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been directed into the mechanisms of acute MOR signaling, receptor regulation and tolerance 

and their implications on drug tolerance and addiction.109 Novel tools that permit the 

perturbation of MOR with the high spatiotemporal precision that light offers could be highly 

useful to decipher the relationship of receptor activation and regulation to drug tolerance.  

In line with this, we wanted to extend the PORTL concept (see chapter 1) to the MOR. Our 

group published a freely-diffusible photochromic agonist (PCL) for the MOR in 2014.5 There, 

fentanyl was furnished with an azobenzene in two different positions to give access to 

Photofentanyl-I (PF-I) and Photofentanyl-II (PF-II, Figure 30b). While PF-I was inactive, PF-II 

was an agonist in its trans-isomer, i.e. in the dark, activating MOR while its cis-isomer was 

inactive. This was observed by reading out the opening of GIRK channels by voltage-clamp 

electrophysiology.  

A suitable point of attachment of the flexible PEG-linker needed to be identified. The PEG-

chain is required as a tether between the photoswitchable agonist and the bioconjugation motif. 

To this end, we turned to Nil Patel and Seva Katrich (USC) for molecular docking studies. 

Based on the active-state MOR structure (pdb 5C1M), PF-II with PEG chains in different 

positions was docked computationally. Initially, intuition guided us to propose a structure with 

the PEG chain attached to the para-position of the azobenzene. Our reasoning was such that 

this position already tolerated the introduction of the azobenzene, making it likely that 

increasing the bulk there by attaching the PEG chain could be accommodated by the receptor. 

PF-II adopts a similar binding mode as fentanyl itself (Figure 31a) with the azobenzene sticking 

out in direction of the extracellular space. The PEGylated PF-II binds comparably, albeit with 

reduced scores due to steric constraints around the linker. It should be noted that the N-

terminus of MOR in the crystal structure is modified and that its correct conformation is hard to 

predict precisely. 

We also considered to attach the PEG linker on the propionic amide residue (Figure 31b) but 

the linker clearly clashes with the protein, with no exit tunnel remaining.  

In a last design, we proposed to attach an acrylic acid moiety on the phenethyl residue. This 

was inspired by a recent report that described synthetic modification of fentanyl in that 

fashion.106 Subsequently, the acrylic acid was used to attach a PEG chain via amide coupling 

and this did not disrupt the fentanyl’s analgesic properties. Accordingly, we hypothesized that 

the acrylic acid and the PEG chain might be tolerated at the same position on PF-II. The 

docking study revealed that the PEGylated fentanyl can flip in the binding pocket, and therefore 

allow exit of the PEG chain. Unfortunately, this flip was not possible in the PF-II derivative due 

to the presence of the azobenzene.  
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Figure 31. Docking studies with various linker attachment points on PF-II. a) Overlay of 
docked structures for fentanyl (orange sticks), PF-II (green sticks) and tethered PF-II (yellow 
sticks). b) Overlay of docked structures for fentanyl (orange) and tethered PF-II (turquoise). c) 
Overlay of fentanyl orange sticks) and a PEGylated acrylic acid derivative of fentanyl from 
Averick and coworkers106 (beige sticks). The PEGylated acrylic acid derivative of PF-II could 
not be accommodated by the MOR receptor. Computational models are based on active-state 
MOR structure (pdb 5C1M) and were performed by Nil Patel and Seva Katritch (USC). 

According to the docking studies, we proposed the design of fentanyl-based PORTLs 

according to design A. PF-II was to be modified in para-position on the azobenzene, including 

a long PEG chain as tether, linking the photoswitch to a benzylguanine (BG) for SNAP-tag 

labelling (Figure 32). 
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Figure 32. Design of fentanyl-based PORTL molecules. 
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5.2 Results and Discussion 

5.2.1 Synthesis of the PCL Core 

Early syntheses aimed at installing a protected amine in para-position to the azobenzene for 

further derivatization. It quickly became apparent that the acylation with propionyl chloride was 

problematic. With electron-withdrawing substituents on the azobenzene, the acylation reaction 

with propionyl chloride only gave very low conversions and upon heating gave the doubly 

reacted Michael-addition product. Therefore, it was attempted to use the N,N-diallyl-derivative 

as electron-rich protecting group for in a para-position of the azobenzene. While the acylation 

proceeded with high yield, deprotection of the N,N-diallyl amine failed under all conditions 

tested, i.e. basic (KOtBu) or catalytic (Ruthenium catalysts). To circumvent this issue, the 

electron-rich, red-shifted fentanyl PORTL was synthesized first. The synthesis was 

commenced by reductive amination of N-methylaniline with N-Boc-3-aminopropanal to give 5.3 

(Scheme 6). Azobenzene 5.4 was obtained by Azo-coupling with the tetrafluoroborate salt of 

the 4-nitrobenzenediazonium electrophile. The aniline 5.5 was obtained after reduction by 

sodium sulfide in a THF/water mixture and reductively aminated with N-phenethylpiperidin-4-

one to afford 5.6. The final red-shifted photoswitch 5.8 was then obtained after acylation with 

propionyl chloride and Boc-deprotection by EtOAc saturated with gaseous HCl. 

 

Scheme 6. Synthesis of red-shifted photopharmacophore 5.8: 

Since Photofentanyl-II is a cis-active photoswitch, it was anticipated that a bis-amide 

substituted photoswitch might prove more suitable since it can be isomerized to cis more 

efficiently than red-shifted azobenzenes. Therefore, the synthesis of the photoswitch with 

bistable photostationary states was started by amide coupling of Boc-glycine with an excess 

of 4,4’-azodianiline to yield 5.10 (Scheme 7). The final photoswitch 5.13 was then obtained in 

the same manner as for the red-shifted photoswitch by the sequence of reductive amination, 

acylation and deprotection.  
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Scheme 7 Synthesis of photopharmacophore 5.13. 

To investigate if the substitutions on the azobenzene are tolerated by the μ-Opioid receptor 

(MOR), 5.8 and 5.13 were tested by electrophysiology. The μ-Opioid receptor is coupled to a 

Gi/o protein, of which the activated βγ subunit couples to inwardly-rectifying K+ channels 

(GIRKs). Therefore, activation of MOR can be read-out indirectly by measuring the K+ flux over 

the cell membrane via patch-clamp at appropriate K+ concentrations/holding potentials. The 

GIRK read-out very closely reflects both the conformational changes underlying receptor 

activation as well as the downstream activation of effectors. Therefore, HEK293 cells stably 

expressing GIRK1/2 were transiently transfected with N-terminally SNAP-tagged MOR. Two 

variants of SNAP-MOR were used that differed in species (rat or mouse), in signal peptide and 

in linker sequences between the domain. One construct was cloned by Helen Farrants 

(Johnsson group, MPIMF Heidelberg) and the other was a kind gift of J. T. Williams (OHSU). 

Both were validated for expression and surface fluorophore labelling by the respective 

research groups, for details maps see supporting information.  

HEK293 cells stably expressing GIRK1/2 (HEK-GIRK, kind gift from Sonja Kleinlogel)110 were 

transfected with the SNAP_MOR constructs and tested for functional activation by wash-in of 

peptide agonist Leu-Enkephalin (LE) at a saturating concentration. In later experiments, 

DAMGO was used as positive control instead, since it is more stable towards hydrolysis 

(Supporting Figure 6). Both constructs were functional as confirmed by wash-in currents of LE 

or DAMGO.  

Then, the photoswitches 5.8 and 5.13 were tested. After establishing a patch in whole-cell 

mode, the compound was washed in and photoswitching was attempted (Figure 33). Both 

compounds were active in their trans-configuration and could be switched ON and OFF with 

illumination at the respective wavelength. 
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Figure 33. Patch-clamp data of the freely diffusible photoswitches. HEK-GIRK cells were 
transiently transfected with SNAP_MOR. Then, photoswitch was washed in and 
photoswitching was performed at the indicated wavelengths. 

5.2.2 Synthesis of PORTLs 

After establishing that the feely-diffusible, photoswitchable cores enable optical control over 

the SNAP_MOR constructs, the final PORTL molecules 5.14 and 5.15 were accessed by a 

sequence of amide couplings, deprotection and/or ‘click’ azide-alkyne cycloadditions (Scheme 

8). Issues with copper-catalyzed azide-alkyne cycloadditions (CuAAC) were encountered on a 

related project, the benzylguanine-azo-glutamate (BGAGs) PORTL molecules.28 The BGAGs 

with amides in 4,4’-position of the azobenzene required unusually high catalytic loadings of 

Cu(I) and high temperatures to drive the CuAAC to completion. Even more surprising, the red-

shifted BGAG460, where one amide is changed to a dialkylamine, was entirely unreactive in 

CuAAC under all conditions tested. In the end, BGAG460 was synthesized using strain-

promoted azide-alkyne cycloaddition (SpAAC) with a strained dibenzocyclooctyne. We 

hypothesized that the PEG chains are coordinating to the copper-ions, rendering them 

unavailable for catalysis. To avoid this issues, the synthesis of MOR PORTLs was directly 

planned via SpAAC. Next, the MOR PORTLs 5.14 and 5.15 were tested by electrophysiology. 

HEK293 cells expressing SNAP_MOR and GIRK1/2 were labelled with MOR PORTLs at 

micromolar concentrations (1 - 10 μM) at 37 °C for 30-90 min. The labelling solution was then 

replaced with extracellular buffer, cells were patched and illuminated at the appropriate 

wavelengths to isomerize to cis. If no effect was observed upon illumination, the agonists Leu-

Enkephalin (LE) or DAMGO were washed in as positive control to confirm expression of 
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SNAP_MOR and GIRK1/2. Negative experiments were at least repeated twice and are not 

shown here. Unfortunately, neither 5.14 nor 5.15 showed any light-dependent currents. Both 

compounds feature dibenzocyclooctyne which represents a large hydrophobic moiety. Even at 

low concentrations of 1 μM, precipitation of the compounds in labelling solution was observed. 

Accordingly, we hypothesized that the lack of light-dependent currents could be explained by 

failure to label due to low aqueous solubility of the PORTLs. First, the SpAAC was replaced by 

CuAAC (5.19), but led to incomplete conversion and was replaced by amide couplings (5.16 

and 5.17). 5.16 and 5.17 were both assayed for photoswitching in patch-clamp experiments, 

but again no light-dependent effects were observed. In a last attempt, the PEG tether was 

replaced by a simple C10 carbon chain, and this compound was directly washed in at 50 μM, 

but again, no photoswitching could be observed. 

 

Scheme 8. Final MOR PORTLs. 

5.2.3 Cis-stable Photoswitches 

Ideally, PCLs are inactive in the dark and only elicit a biological effect upon illumination. Since 

PF-II and the related photoswitches 5.8 and 5.13 are trans-active, i.e. dark active, we sought 

to reverse the azobenzene logic. Siewertsen et al. reported a bridged 5,6-

dihydrodibenzo[c,g][1,2]diazocine in 2009.111 In these ‘bridged’ azobenzenes, the cis-isomer 
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is the thermodynamically stable configuration and can be photoisomerized to the trans-

configuration by violet/blue light with wavelengths around 370-400 nm. The thermal back-

isomerization is usually slow for this type of a photoswitch. Green light around 480-550 nm 

triggers the photoisomerization back from the trans- to the cis-isomer.111,112  

While the cis-stable, bridged azobenzenes have been employed for optical control of biological 

systems before,113 it has not yet been shown that a trans-active PCL can be converted into a 

cis-active switch by replacing its azobenzene with the bridged variant. One synthesis by 

Woolley et al.113 exists for the diamino-substituted, cis-stable photoswitch core 5.24. In this 

synthesis, the diazene is formed by intramolecular reductive coupling of the nitro groups. This 

is reported with a mixture of Zn dust and Ba(OH)2 in ethanol followed by treatment with HgO. 

This procedure was attempted multiple times in the Trauner laboratory but was not 

reproducible in our hands. Therefore, we revisited an alternative route towards the cis-stable 

photoswitch that was developed by Dr. David Woodmansee and remains unpublished to date. 

With minor modifications to these procedures, the cis-stable photoswitch 5.24 could be 

accessed through a 4-step reaction sequence with satisfying and reproducible yields.  

The synthesis commenced with a radical bromination of 2,2’-ethylene dianiline. The aniline 

groups were then oxidatively coupled by treatment with mCPBA in DCM. The reaction yielded 

a mixture of the desired azobenzene2 and the further oxidized azoxy byproducts. Theoretically, 

two equivalents of mCPBA are required to oxidize the aniline to the nitroso, which subsequently 

reacts with the other aniline to the azobenzene in an intramolecular Baeyer-Mills-reaction. By 

portion wise addition of 2.0 equivalents of mCPBA to 5.21 in DCM, the amount of azoxy 

byproducuts could be minimized and the desired bridged azobenzene 5.22 could be isolated 

in 30% yield. Finally, by Buchwald-Hartwig coupling of 5.22 with tert-butyl carbamate and Boc-

deprotection in neat TFA, the cis-stable azobenzene 5.24 was accessed. 

 

Scheme 9. Synthesis of cis-stable azobenzene 5.24. 

Single crystals of 5.22 suitable for X-ray crystallography could be obtained (Figure 34). The 4- 

and 4’-positions are 6.1 Å apart, very similar in comparison with normal cis-azobenzene114 (6.2 
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Å). The dihedral angle is 7.9°, very similar to the value of 7.7° for cis-azobenzene. The phenyl 

rings in cis-azobenzene are not arranged planar but are rotated by 57° around the C-N bond, 

an angle of 90° would represent the planar arrangement. In cis-5.22 this angle is 71°. 

Therefore, the phenyl rings in the cis-5.22 are more planar to each other than in cis-

azobenzene, which is the major difference in their geometry.  

Next, the optimal wavelengths for the photoisomerization was determined by changing the 

illumination wavelength while recording the absorbance at the trans-5.22 absorbance 

maximum at 492 nm (Figure 34d). The optimal switching wavelengths for cis-to-trans are 400 

nm and >490 nm for trans-to-cis photoisomerization. 

The photoisomerization leads to a change in absorption (Figure 34e), which can easily 

observed by the color change of the 5.22-solution (Figure 34b). The photoisomerization can 

be performed over multiple cycles with no observable decay or degradation (Figure 34f). In the 

dark, thermal relaxation of 5.22 is slow and it can therefore be considered as bistable 

photoswitch on the timescales that are relevant for MOR-targeting photoswitches (Figure 34g). 

 

Figure 34. Photophysical properites of 5.22. a) X-Ray crystal structure of precursor 5.21. b) 
X-Ray crystal structure of the cis-isomer of 5.22. c) A solution of 5.22 in DMSO. Left: dark-
adapted, cis-configuration; right: after illumination with violet light (λ = 400 nm) in the trans-
configuration. d) Wavelength screen in 10 nm steps from 380 nm to 530 nm. e) UV/Vis 
spectrum in the dark-adapted state of 5.22 (black) and after illumination with violet light (λ = 
400 nm). f) Switching was performed by illumination with violet (λ = 400 nm) and green light (λ 
= 500 nm). g) Dark relaxation proceeds with a time constant of τ = 349 min. All spectrums 
were recorded at a concentration of 0.5 mM 5.22 in DMSO. 

After establishing the synthesis of the cis-stable azobenzene, the final steps towards a cis-

stable PCL were performed. 5.24 was amide coupled with Boc-protected glycine. Then, the 
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phenethylpiperidine moiety was attached via reductive amination to yield 5.26. The final cis-

stable photoswitch 5.27 was obtained after acylation using propionylchloride and deprotection 

by HCl gas in EtOAc. 

 

Scheme 10. Synthesis of the cis-stable photofentanyl 5.27. 

The photoswitch 5.27 was tested at a (high) concentration of 50 μM by patch-clamp 

electrophysiology in HEK-GIRK cells transfected with SNAP_MOR. Unfortunately, no light-

dependent effects could be observed (Supporting Figure 7). 

5.2.4 Further synthesis 

The following compound was synthesized according to the design in Figure 31c by Dr. Ahmed 

Ali.  

 

Scheme 11. Structure of AM-II. 

AM-II was tested for effects in SNAP_MOR expressing HEK-GIRK cells. Unfortunately, no 

wash-in currents and no photoswitching could be observed (n = 5). For electrophysiological 

characterization see Supporting Figure 8. 

In collaboration with Manuel Gailer (Hoffmann-Röder group, LMU Munich), a photoswitchable 

version (AzoDAMGO) of the synthetic enkephalin DAMGO was synthesized. To this end, an 

azobenzene was installed on the phenylalanine of DAMGO (Scheme 12). AzoDAMGO was 
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tested for effects in MOR-transfected HEK-GIRK assays, but no effects were observed (n = 8). 

For electrophysiological characterization see Supporting Figure 9. 

 

Scheme 12. Structure of AzoDAMGO. 

5.3 Summary and Outlook 

A variety of photoswitchable derivatives of fentanyl was synthesized. Some of the freely-

diffusible photoswitches enabled photoswitching of the μ-opioid receptor (MOR). 

Unfortunately, attachment of the PEG chain, that is required to span the distance between 

bioconjugation site and ligand binding site, was deleterious to photoswitching. None of the 

PEGylated photoswitches activated the MOR, neither in their trans- nor in their cis-

configuration. 

In an attempt to reverse the logic of photofentanyl-II, its azobenzene was replaced with a cis-

stable, ethylene-bridged variant to yield 5.27. 5.27 was not active on the MOR receptor in both 

its cis- and trans-configuration.  

In conclusion, future PORTL molecules for the MOR should not be designed based on fentanyl. 

Molecular docking studies were performed with photoswitchable variants of carfentanyl (not 

shown). These molecules adapt a different position in the MOR binding site and molecular 

docking suggests that carfentanyl-based photoswitches might be more amenable to the 

PORTL approach.  
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5.4 Supporting Information 

5.4.1 Synthesis 

 tert-Butyl (E)-(2-((4-((4-aminophenyl)diazenyl)phenyl)amino)-2-oxoethyl)carbamate 

(3.6, 5.10) 

N
N

H
N

H2N

O

NHBoc

 

4,4’-Diazoaniline (1.00 g, 4.71 mmol, 2.0 equiv.), N-Boc-Gly-OH (413 mg, 2.36 mmol, 

1.0 equiv.), HBTU (1.79 g, 4.72 mmol, 2.0 equiv.) and DIPEA (1.64 mL, 9.40 mmol, 4.0 equiv.) 

were added successively to a round bottom flask filled with dry THF (20 mL) at 0 °C. The 

reaction mixture was stirred at 0 °C for 45 min before it was allowed to warm to r.t. After 3 h 

the solvent was removed in vacuo and the residue was partitioned between EtOAc and 1 mM 

HCl. The organic layer was washed with water (1x) and brine (1x) before drying over MgSO4. 

After purification by flash column chromatography (1/2 = EtOAc/DCM) 725 mg (1.96 mmol) of 

the product were obtained as an orange solid in in 83% yield. 

TLC (2/1 = EtOAc/DCM) = 0.61. 

1H NMR (400 MHz, MeOH-d4) δ = 7.67 (d, J = 8.9 Hz, 2H), 7.63 – 7.54 (m, 4H), 6.67 – 6.57 

(m, 2H), 3.79 (s, 2H), 1.38 (s, 9H). 

13C NMR (101 MHz, MeOH-d4): δ = 169.2, 157.2, 151.9, 149.2, 144.3, 139.6, 124.6, 122.4, 

119.8, 113.8, 79.3, 48.2, 48.0, 47.8, 47.6, 47.4, 47.2, 46.9, 43.7, 27.3. 

HRMS (ESI): m/z calc. for C19H24N5O3
+ (M+H)+: 370.1874, found: 370.1873. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.52 (cis), 6.67 min 

(trans). 

UV/Vis (LCMS): max = 389 nm. 

 



 

133 
 

 tert-Butyl (E)-(2-oxo-2-((4-((4-((1-phenethylpiperidin-4-yl)amino)phenyl)diazenyl) 

phenyl)amino)ethyl)carbamate (5.11) 

N
N

H
N

HN

O

NHBoc

N

Ph  

3.6 (200 mg, 0.54 mmol, 1.0 equiv.), N-phenethylpiperidin-4-one1 (110 mg, 0.54 mmol, 

1.0 equiv.), sodium triacetoxyborohydride (160 mg, 0.76 mmol, 1.4 equiv.), AcOH (30 μL, 

0.54 mmol, 1.0 equiv.) were added successively to dry DCE (5 mL). The reaction mixture was 

was stirred for 18 h at r.t. before the solvent was removed in vacuo. The residue was extracted 

with EtOAc against NaHCO3, water and brine. The organic layer was dried over MgSO4. After 

purification by flash column chromatography (3/2 = DCM/EtOAc -> EtOAc) the product was 

obtained as an orange solid (68 mg, 0.12 mmol) in 23% yield. 

TLC (2/3 = EtOAc/DCM) = 0.20 (PAA stain, SM: orange-yellow, product: violet). 

1H NMR (400 MHz, MeOH-d4) δ = 77.70 – 7.54 (m, 6H), 7.22 – 7.03 (m, 5H), 6.65 – 6.52 (m, 

2H), 3.78 (s, 2H), 3.33 (tt, J = 10.1, 4.1 Hz, 1H), 2.94 (d, J = 11.6 Hz, 2H), 2.77 – 2.68 (m, 2H), 

2.57 – 2.48 (m, 2H), 2.25 – 2.14 (m, 2H), 2.03 – 1.93 (m, 2H), 1.55 – 1.41 (m, 2H), 1.38 (s, 

9H). 

13C NMR (101 MHz, MeOH-d4): δ = 175.48, 163.51, 157.28, 155.63, 149.98, 146.13, 145.72, 

134.68, 134.48, 132.11, 131.11, 128.64, 126.13, 118.21, 85.65, 66.57, 58.27, 55.29, 49.98, 

39.12, 37.50, 33.61. 

HRMS (ESI): m/z calc. for C32H41N6O3
+ (M+H)+: 557.3235, found: 557.3236. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.99 min. 

UV/Vis (LCMS): max = 420 nm. 
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 tert-Butyl (E)-(2-oxo-2-((4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)ethyl)carbamate (5.12) 

HN

NN

N

N Ph

O

NHBoc

O

 

5.11 (58 mg, 0.104 mmol, 1.0 equiv.) was dissolved in dry DCM (5 mL) under a nitrogen 

atmosphere before addition of dry DIPEA (45 μL, 0.260 mmol, 2.5 equiv.) and propionyl 

chloride (11 μL, 0.125 mmol, 1.2 equiv.). After stirring at r.t. for 36 h, reaction progress was 

checked by LCMS, judged to be incomplete and more propionyl chloride was added (11 μL, 

0.125 mmol, 1.2 equiv.). After stirring for further 4.5 h at r.t., the reaction was quenched by 

addition of a few drops of MeOH before it was loaded directly on a silica column for purification 

(96/4  95/5 = MeOH/DCM). The product was obtained as an orange solid (50 mg, 81.6 μmol) 

in 79% yield. 

TLC (MeOH/DCM = 95/5) = 0.30. (Product and starting material run co-polar on TLC; PAA 

stain: SM violet, product yellow.). 

1H NMR (400 MHz, CDCl3) δ = 8.86 (s, 1H), 7.90 – 7.80 (m, 4H), 7.70 – 7.60 (m, 2H), 7.21 – 

7.05 (m, 7H), 5.49 (t, J = 5.9 Hz, 1H), 4.63 (tt, J = 11.4, 3.4 Hz, 1H), 3.93 (d, J = 5.8 Hz, 2H), 

2.96 (d, J = 11.2 Hz, 2H), 2.71 – 2.62 (m, 2H), 2.53 – 2.44 (m, 2H), 2.12 (t, J = 11.6 Hz, 2H), 

1.92 (q, J = 7.4 Hz, 2H), 1.78 (d, J = 11.3 Hz, 2H), 1.51 – 1.36 (m, 11H), 0.97 (t, J = 7.4 Hz, 

3H). 

13C NMR (101 MHz, CDCl3): δ = 173.5, 168.2, 156.7, 152.2, 148.9, 140.8, 140.0, 131.1, 128.6, 

128.4, 126.1, 124.2, 123.5, 119.9, 80.8, 60.3, 53.0, 52.5, 45.6, 33.7, 30.5, 28.7, 28.3, 9.7. 

HRMS (ESI): m/z calc. for C35H45N6O4
+ (M+H)+: 613.3497, found: 613.3498. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.57 (cis), 5.89 

(trans). 

UV/Vis (LCMS): max = 365 nm. 
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 (E)-N-(4-((4-(2-Aminoacetamido)phenyl)diazenyl)phenyl)-N-(1-phenethylpiperidin-4-

yl)propionamide (5.13) 

HN

NN

N

N Ph

O

NH2

O

 

5.12 (18 mg, 29 μmol) was dissolved in dry EtOAc (1 mL) and sat. HCl in EtOAc (3 mL) was 

added. After stirring for 1 h at r.t., the precipitate was filtered off and dried under HV to yield 

the product as an orange HCl salt in quantitative yield (19 mg). 

1H NMR (400 MHz, D2O) δ = 7.82 (dd, J = 8.6, 5.0 Hz, 4H), 7.70 – 7.60 (m, 2H), 7.33 (ddd, J 

= 7.8, 5.6, 1.9 Hz, 4H), 7.29 – 7.20 (m, 3H), 4.68 (tt, J = 8.6, 3.3 Hz, 1H), 3.99 (s, 2H), 3.60 – 

3.53 (m, 2H), 3.31 – 3.23 (m, 2H), 3.16 – 3.04 (m, 2H), 2.95 (dd, J = 9.8, 6.4 Hz, 2H), 2.11 – 

1.99 (m, 2H), 1.94 (q, J = 7.6 Hz, 2H), 1.61 (qd, J = 12.9, 3.8 Hz, 2H), 0.90 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, D2O): δ = 176.7, 165.4, 151.9, 148.6, 140.1, 139.5, 136.1, 130.8, 129.0, 

128.6, 127.3, 123.9, 123.5, 121.0, 57.4, 51.9, 50.2, 41.1, 29.8, 28.3, 27.3, 8.9. 

HRMS (ESI): m/z calc. for C30H37N6O2
+ (M+H)+: 513.2973, found:513.2970. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.13 min. 

UV/Vis (LCMS): max = 365 nm. 

 (E)-1-Azido-N-(2-oxo-2-((4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)ethyl)-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-amide (5.28) 

O

O

HN

N
N

N

N

Ph
O

H
N

O

N3
12
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5.13 (19 mg, 32.4 μmol, 1.0 equiv.) and N3-PEG12-NHS-ester (baseclick #BCL-033, 72 mg, 

97.2 μmol, 3.0 equiv.) were dissolved in dry DMF (1 ml), dry DIPEA (56 μL, 320 μmol, 10 

equiv.) was added and the reaction mixture was stirred at r.t. Reaction progress was monitored 

by LCMS and judged to be complete after 1 h. The reaction mixture was loaded directly on a 

C18 column (Waters Sep-Pak C18 5g) using a gradient of 1 mM HCl and MeCN (100/0  

60/40 = 1 mM HCl/MeCN). Product containing fractions were identified by LCMS, combined 

and freeze-dried to obtain the product as a yellow solid in 66% yield (24.3 mg, 21.3 μmol). 

HRMS (ESI): m/z calc. for C57H86O15N9
- (M-H)-: 1136.6249, found: 1136.6252. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.29 min (cis), 5.44 

(trans). 

UV/Vis (LCMS): max1 = 362 nm. 

 BG-DBCO 

N

O

O

HN

O

N

N
N

HN
NH2  

6-((4-(Aminomethyl)benzyl)oxy)-9H-purin-2-amine, BG-NH2, (14.9 mg, 55 μmol, 1.1 equiv.) 

and DBCO-NHS-ester (Jena Bioscience #CLK-A133-100, 20.1 mg, 5´0 μmol, 1.0 equiv.) were 

combined in dry DMF (500 μL) and dry DIPEA (16.7 μL, 100 μmol, 2.0 equiv.) was added. 

Reaction progress was monitored by LCMS and judged to be complete after 5.5 h. The reaction 

mixture was directly loaded on a C8 column (Waters Sep-Pak C8 2g) and eluted with a gradient 

of 1 mM HCl and MeCN (100/0  60/40 = 1 mM HCl/MeCN). Product containing fractions were 

identified by LCMS, conbined and freeze-dried to obtain the product as a colorless solid 

(8.0 mg 14.3 μmol, 29%). 

1H NMR (400 MHz, DMSO-d6) δ = 8.53 (s, 1H), 8.29 (t, J = 5.9 Hz, 1H), 7.74 – 7.60 (m, 2H), 

7.55 – 7.26 (m, 8H), 7.21 (d, J = 7.9 Hz, 2H), 5.53 (s, 2H), 5.04 (d, J = 14.0 jkHz, 1H), 4.18 (d, 

J = 5.9 Hz, 2H), 3.63 (d, J = 14.0 Hz, 1H), 2.61 (t, J = 8.0 Hz, 1H), 2.29 (t, J = 7.6 Hz, 1H), 2.09 

(ddd, J = 15.4, 7.7, 5.7 Hz, 1H), 1.80 (ddd, J = 16.4, 7.6, 5.7 Hz, 1H). 
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13C NMR (101 MHz, DMSO-d6) δ = 171.6, 171.5, 152.0, 148.9, 140.4, 134.4, 132.9, 130.1, 

129.4, 129.3, 128.6, 128.5, 128.2, 127.8, 127.7, 127.3, 125.6, 123.0, 121.9, 114.7, 108.6, 68.5, 

55.4, 42.2, 30.8, 30.1. 

HRMS (ESI): m/z calc. for C32H26O3N7
- (M-H)-: 556.2103, found: 556.2109. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.75 min. 

UV/Vis (LCMS): max = 290 nm.  

 (E)-1-(8-(4-((4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)amino)-4-oxobutanoyl)-

8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-1-yl)-N-(2-oxo-2-((4-((4-(N-(1-

phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl)amino)ethyl)-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-amide (5.14) 

O

O

HN

N
N

N

N

Ph
O

H
N

O

N
12 N N

N

O

O

HN

O

N

N
N

HN
NH2

 

5.28 (4.1 mg, 3.9 μmol, 1.0 equiv.) and BG-DBCO (2.2 mg, 3.9 μmol, 1.0 equiv.) were 

combined in dry DMSO (300 μL) and stirred o.n. at r.t. The product was directly loaded on a 

C8 column (Waters Sep-Pak C8 2g) and eluted with a gradient of 1 mM HCl and MeCN (100/0 

 60/40 = 1 mM HCl/MeCN).  Product containing fractions were identified by LCMS, combined 

and freeze dried to obtain the desired product as an orange solid (3.2 mg, 1.9 μmol, 49%). 

 tert-Butyl (3-(methyl(phenyl)amino)propyl)carbamate (5.3) 

N NHBoc

 

N-Methylaniline (338 μL, 3.13 mmol, 1.1 equiv.), N-Boc-3-aminopropanal (400 mg, 2.85 mmol, 

1.0 equiv.), AcOH (171 μL, 3 mmol, 1.1 equiv.) and sodium triacetoxyborohydride (1.02 g, 

4.8 mmol, 1.7 equiv.) were added successively to dry DCE (15 mL). The reaction mixture was 

stirred for 4.5 h at r.t., before it was extracted with DCM against NaHCO3 (aq. sat.). The organic 

layer was washed against NaHCO3 (aq. sat.), brine and dried over MgSO4 before purification 
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by flash column chromatography (98/2 = DCM/MeOH), the product was obtained as colorless 

and viscous oil (298 mg, 1.13mmol) in 40% yield. 

TLC (DCM/MeOH = 98/2) = 0.40. (stain: ninhydrin) 

1H NMR (400 MHz, CDCl3) δ = 7.20 – 7.11 (m, 2H), 6.64 (d, J = 7.7 Hz, 3H), 4.51 (s, 1H), 3.33 

– 3.24 (m, 2H), 3.10 (q, J = 6.7 Hz, 2H), 2.85 (s, 3H), 1.70 (p, J = 7.1 Hz, 2H), 1.37 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ = 156.0, 149.2, 129.2, 116.4, 112.4, 79.3, 50.3, 38.6, 38.5, 28.4, 

27.3. 

HRMS (ESI): m/z calc. for C15H25N2O2
+ (M+H)+: 265.1911, found: 265.1916. 

 tert-Butyl (E)-(3-(methyl(4-((4-nitrophenyl)diazenyl)phenyl)amino)propyl)carbamate 

(5.4) 

N NHBoc

N
N

O2N  

5.3 (250 mg, 0.95 mmol, 1.0 equiv.) was dissolved in a mixture of MeCN (10 mL) and 1 M aq. 

NaOAc (10 mL) and cooled to 0 °C. 4-Nitrobenzenediazonium tetrafluoroborate was dissolved 

in MeCN (10 mL), cooled to 0 °C and added dropwise to the solution containing 5.3. After 

complete addition, the reaction mixture was allowed to warm to r.t. and stirred for 20 min. The 

reaction mixture was portioned between DCM (100 mL) and water (30 mL). The organic layer 

was washed with water (2 x 50 mL), brine (50 mL) and dried over MgSO4. After purification by 

flash column chromatography (DCM -> 98/2 = DCM/MeOH), the product was obtained as a 

red solid (358 mg, 0.87 mmol) in 92% yield. 

TLC (DCM/MeOH = 98/2) = 0.33.  

1H NMR (400 MHz, CDCl3) δ = 8.36 – 8.28 (m, 2H), 7.97 – 7.86 (m, 4H), 6.79 – 6.70 (m, 2H), 

4.59 (s, 1H), 3.56 – 3.47 (m, 2H), 3.21 (q, J = 6.8 Hz, 2H), 3.10 (s, 3H), 1.86 (p, J = 7.0 Hz, 

2H), 1.46 (s, 9H). 

13C NMR (101 MHz, CDCl3) δ = 156.8, 156.0, 152.3, 147.4, 143.7, 126.2, 124.7, 122.6, 111.4, 

77.2, 50.1, 38.8, 38.3, 28.4, 27.8. 

HRMS (ESI): m/z calc. for C21H26N5O4
- (M-H)-: 412.1990, found: 412.1990. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 9.19 min. 

UV/Vis (LCMS): max = 550 nm (broad).  



 

139 
 

 tert-Butyl (E)-(3-((4-((4-aminophenyl)diazenyl)phenyl)(methyl)amino)propyl) 

carbamate (5.5) 

N NHBoc

N
N

H2N  

5.4 (350 mg, 0.85 mmol) was dissolved in a mixture of THF (20 mL) and water (20 mL). Sodium 

sulfide (65%, monohydrate, 407 mg, 3.39 mmol, 4.0 equiv.) was added and the reaction 

mixture heated to 80 °C for 1 h before it was allowed to cool to r.t. addition of water (75 mL) 

and NaHCO3 (aq. sat., 75 mL). The aqueous phase was extracted with DCM (3x 75 mL). The 

combined organic layers were washed with NaHCO3 (aq. sat., 100 mL), water (100 mL), brine 

(100 mL) and dried over MgSO4. Purification by flash column chromatography (97.5/2.5 = 

DCM/MeOH) gave the product as an orange solid (280 mg, 0.73 mmol) in 86% yield.  

1H NMR (400 MHz, CDCl3) δ = 7.78 – 7.63 (m, 4H), 6.67 (dd, J = 8.8, 2.1 Hz, 4H), 4.52 (s, 1H), 

3.92 (s, 2H), 3.39 (t, J = 7.3 Hz, 2H), 3.12 (q, J = 6.7 Hz, 2H), 2.96 (s, 3H), 1.75 (p, J = 7.1 Hz, 

2H), 1.39 (d, J = 3.3 Hz, 9H). 

13C NMR (101 MHz, CDCl3) δ = 156.0, 150.5, 150.4, 148.2, 124.4, 124.2, 114.8, 111.6, 79.4, 

50.1, 38.7, 38.4, 28.4, 27.6.  

HRMS (ESI): m/z calc. for C21H28O2N5
- (M-H)-: 382.2248 found: 382.2251. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 7.73 min. 

UV/Vis (LCMS): max1 = 442 nm.  

 tert-Butyl (E)-(3-(methyl(4-((4-((1-phenethylpiperidin-4-

yl)amino)phenyl)diazenyl)phenyl)amino)propyl)carbamate (5.6) 

N NHBoc

N
N

N
H

N
Ph

 

5.5 (96 mg, 0.25 mmol, 1.0 equiv.), N-phenethylpiperidin-4-one (51 mg, 0.25 mmol, 

1.0 equiv.), sodium triacetoxyborohydride (85 mg, 0.40 mmol, 1.6 equiv.) and AcOH (14 μL, 

0.25 mmol, 1.0 equiv.) were combined in dry DCE (5 mL). The reaction mixture was stirred at 

r.t. for 17 h before it was directly purified by flash column chromatography (DCM/MeOH = 98/2 

-> 96/4 -> 94/6). The product was obtained as a red solid (111 mg, 0.19 mmol) in 78% yield. 
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1H NMR (400 MHz, CDCl3) δ = 7.77 (ddd, J = 14.5, 9.2, 2.3 Hz, 4H), 7.35 – 7.26 (m, 2H), 7.22 

(dt, J = 6.7, 2.5 Hz, 4H), 6.77 – 6.69 (m, 2H), 6.68 – 6.60 (m, 2H), 4.58 (s, 1H), 4.06 – 3.53 (m, 

1H), 3.54 – 3.39 (m, 4H), 3.24 – 3.10 (m, 4H), 3.03 (s, 3H), 2.97 – 2.88 (m, 2H), 2.79 (t, J = 

8.2 Hz, 2H), 2.51 – 2.33 (m, 6H), 2.26 – 2.12 (m, 4H), 1.86 – 1.65 (m, 2H), 1.46 (s, 9H).  

13C NMR (101 MHz, CDCl3) δ = 156.1, 150.5, 148.4, 145.3, 144.0, 128.9, 128.7, 126.6, 124.5, 

124.4, 112.9, 111.7, 77.4, 59.9, 52.0, 50.2, 38.8, 38.6, 32.8, 31.4, 28.6, 27.7. 

HRMS (ESI): m/z calc. for C34H47O2N6
+ (M+H)+: 571.3755 found: 571.3767. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.70 min. 

UV/Vis (LCMS): max = 458 nm.  

Note: Acetic acid impurity. 

 tert-Butyl (E)-(3-(methyl(4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)propyl)carbamate (5.7) 

N NHBoc

N
N

N

N
Ph

O
 

5.6 (55 mg, 96 μmol, 1.0 equiv.) was dissolved in dry DCM (1.8 mL) before addition of dry 

DIPEA (42 μL, 240 μmol, 2.5 equiv.) and propionyl chloride (10 μL, 115 μmol, 1.2 equiv.). The 

reaction mixture was stirred overnight at r.t. before it was directly purified by flash column 

chromatography (DCM/MeOH = 96/4) to yield the product as a red solid (56 mg, 89 μmol) in 

93% yield. 

TLC (DCM/MeOH = 96/4) = 0.16. (Product and starting material run copular on TLC, PAA 

stain: SM yellow, product pink.) 

1H NMR (400 MHz, CDCl3) δ = 7.85 – 7.64 (m, 4H), 7.17 (dd, J = 8.9, 2.7 Hz, 2H), 7.14 – 7.05 

(m, 5H), 6.72 – 6.61 (m, 2H), 4.69 – 4.58 (m, 1H), 4.56 (s, 1H), 3.42 (t, J = 7.3 Hz, 2H), 3.13 

(q, J = 6.7 Hz, 2H), 3.00 (s, 3H), 2.94 (dd, J = 8.7, 3.6 Hz, 2H), 2.71 – 2.53 (m, 2H), 2.52 – 

2.42 (m, 2H), 2.16 – 2.02 (m, 2H), 1.92 (q, J = 7.4 Hz, 2H), 1.76 (q, J = 6.7 Hz, 4H), 1.50 – 

1.41 (m, 2H), 1.39 (s, 9H), 0.96 (t, J = 7.4 Hz, 3H). 

13C NMR (101 MHz, CDCl3) δ = 173.5, 156.0, 152.8, 151.5, 143.5, 140.2, 139.5, 131.0, 128.7, 

128.4, 126.0, 125.4, 122.9, 111.4, 79.5, 60.5, 53.1, 52.4, 50.0, 38.7, 38.4, 33.8, 30.6, 28.7, 

28.4, 27.7, 9.7. 
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HRMS (ESI): m/z calc. for C37H49O3N6
- (M-H)-: 625.3872, found: 625.3872 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.67 min. 

UV/Vis (LCMS): max = 455 nm. 

 (E)-N-(4-((4-((3-Aminopropyl)(methyl)amino)phenyl)diazenyl)phenyl)-N-(1-

phenethylpiperidin-4-yl)propionamide dihydrochloride (5.8) 

N NH2

N
N

N

N
Ph

O

x 2 HCl

 

A saturated solution of HCl in dry EtOAc was freshly prepared by bubbling HCl through EtOAc 

for 1 h while stirring. 5.7 (56 mg, 89 μmol) was dissolved in dry EtOAc (2 mL) and HCl sat. in 

dry EtOAc (6 mL) was added. After stirring at r.t. for 3.5 h, the resulting precipitate was filtered 

off, washed with EtOAc and dissolved and transferred with dry MeOH. After solvent removal 

in vacuo, the product was dried under HV and obtained as a violet solid (54 mg, 90 μmol) in 

quantitative yield. 

1H NMR (400 MHz, D2O) δ = 7.87 – 7.79 (m, 2H), 7.77 – 7.69 (m, 2H), 7.34 – 7.23 (m, 4H), 

7.23 – 7.15 (m, 3H), 7.07 – 7.01 (m, 2H), 4.68 – 4.59 (m, 1H), 3.66 (t, J = 7.5 Hz, 2H), 3.54 (d, 

J = 12.6 Hz, 2H), 3.27 – 3.20 (m, 2H), 3.19 (s, 3H), 3.13 – 3.02 (m, 2H), 2.98 (t, J = 8.1 Hz, 

2H), 2.91 (dd, J = 10.0, 6.5 Hz, 2H), 2.12 – 1.81 (m, 6H), 1.57 (tt, J = 14.0, 7.2 Hz, 2H), 0.85 

(t, J = 7.5 Hz, 3H). 

13C NMR (101 MHz, D2O) δ = 177.2, 154.5, 147.3, 140.9, 137.4, 136.1, 131.0, 129.0, 128.7, 

128.7, 127.3, 121.0, 115.2, 57.5, 52.0, 50.5, 50.2, 39.6, 36.9, 29.8, 28.3, 27.4, 24.5, 8.9. 

HRMS (ESI): m/z calc. for C32H43ON6
+ (M+H)+: 527.3493, found: 527.3498. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.65 min (broad 

peak). 

UV/Vis (LCMS): max = 430 nm. 
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 (E)-1-Azido-N-(3-(methyl(4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)propyl)-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-amide (5.29) 

N
H
N

N
N

N

N
Ph

O

O

O
N3

12

 

5.8 (8.1 mg, 14 μmol, 1.0 equiv.), N3-PEG12-NHS-ester (10 mg, 14 μmol, 1.0 equiv.) and dry 

DIPEA (14 μL, 81 μmol, 6.0 equiv.) were combined in dry DMF (1.25 mL). After stirring for 18 h 

at r.t. full conversion was confirmed by LCMS. The product was directly loaded on a C18 

column (Waters Sep-Pak C18 2g) and eluted with a gradient of MeCN and 1 mM HCl (100/0 

 60/40 = 1 mM HCl/MeCN). Product containing fractions were identified by LCMS, combined 

and freeze-dried to obtain the product as a red solid (14.5 mg, 12.6 μmol) in 93% yield. 

HRMS (ESI): m/z calc. for C59H94O14N9
+ (M+H)+: 1152.6915, found: 1152.6924; m/z calc. for 

C59H92O14N9
- (M-H)-: 1150.6769, found: 1150.6766. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.86 min. 

UV/Vis (LCMS): max = 448 nm. 

 (E)-1-(8-(4-((4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)amino)-4-

oxobutanoyl)-8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-1-yl)-N-(3-((4-((4-

(N-(1-phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl)-λ2-

azaneyl)propyl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-

amide (5.15) 

N
H
N

N
N

N

N
Ph

O

O

O
N

12 N
N

N

O

NH

O

O
N

N

N
HN

H2N  

5.29 (5.8 mg, 5.0 μmol, 1.0 equiv.) and BG-DBCO (2.8 mg, 5.00 μmol, 1.0 equiv.) were 

combined in DMSO (400 μL) and stirred at r.t. for 3h before LCMS indicated near quantitative 

conversion. The reaction mixture was purified on a 2 g SepPak C18 SPE cartridge (gradient 

0%-40% CH3CN/H2O + 0.1% FA). Product containing fractions were identified by LCMS, 
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combined and freeze-dried to obtain the desired product as orange solid (6.2 mg, 3.6 μmol, 

73%). 

1H NMR (400 MHz, DMSO-d6) δ 7.89 – 7.76 (m, 5H), 7.60 – 7.46 (m, 2H), 7.41 – 7.30 (m, 5H), 

7.33 – 7.14 (m, 7H), 6.88 – 6.79 (m, 2H), 5.84 (dd, J = 21.0, 16.8 Hz, 1H), 5.53 (s, 1H), 4.74 

(d, J = 16.6 Hz, 2H), 4.53 – 4.42 (m, 2H), 4.32 (s, 1H), 4.18 (t, J = 4.9 Hz, 2H), 4.15 – 3.95 (m, 

1H), 3.59 (dt, J = 17.0, 8.5 Hz, 5H), 3.50 – 3.33 (m, 47H), 3.20 (dd, J = 11.8, 5.3 Hz, 2H), 3.19 

– 3.06 (m, 4H), 3.03 (s, 3H), 2.99 – 2.91 (m, 3H), 2.33 (s, 2H), 2.09 – 1.98 (m, 2H), 1.97 (s, 

2H), 1.92 (d, J = 7.8 Hz, 2H), 1.66 (dp, J = 19.8, 7.2 Hz, 4H), 0.91 (t, J = 7.4 Hz, 3H). 

HRMS (ESI): m/z calc. for C91H122O17N16
2+ (M+2H)2+: 855.4581, found: 855.4594. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.95 min. 

UV/Vis (LCMS): max1 = 280 nm, max2 = 450 nm. 

 (E)-1-(4-(3-((4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)amino)-3-

oxopropyl)-1H-1,2,3-triazol-1-yl)-N-(3-((4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)-λ2-azaneyl)propyl)-

3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-amide (5.19) 

N
H
N

N
N

N

N
Ph

O

O

O
N

12 N
N

NHO
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N

N
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O

 

5.29 (8.7 mg, 7.6 μmol, 1.0 equiv.) and N-(4-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)pent-

4-ynamide (BG-alkyne, 2.7 mg, 7.6 μmol, 1.0 equiv.) were combined in DMSO (0.5 mL) and 

100 μl of a 10 mM solution of each CuSO4 and TBTA were added. Then sodium ascorbate was 

added in one portion (24 mg, 0.12 μmol, 16.0 equiv.). The reaction mixture was stirred at r.t. 

for several days before it was purified on a 2 g SepPak C18 SPE cartridge (gradient 0%-40% 

CH3CN/H2O + 0.1% FA). Product containing fractions were identified by LCMS, combined and 

freeze-dried to obtain the desired product as orange solid (3.5 mg, 2.3 μmol, 31%). 

HRMS (ESI): m/z calc. for C77H113O16N15
2+ (M+2H)2+: 751.9239 (100%), 752.4256 (83%); 

found: 751.9255, 752.4272. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.30 min. 

UV/Vis (LCMS): max1 = 224 nm, max2 = 450 nm. 
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 (E)-N1-(4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)-N43-(3-(methyl(4-((4-(N-

(1-phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl)amino)propyl)-

4,7,10,13,16,19,22,25,28,31,34,37,40-tridecaoxatritetracontanediamide (5.17) 

N
H
N

N
N

N

N
Ph

O

O

O
O

12

NH

ON
N

NHN

H2N

O

 

5.8 (41 mg, 68 μmol, 1.0 equiv.), PEG13-diacid (polypure #37137-1295, 95 mg, 0.14 mmol, 2.0 

equiv.), DIPEA (71 μL; 0.41 mmol, 6.0 equiv.) and HBTU (31 mg, 82 μmol, 1.2 equiv.) were 

combined in DMF (1 mL). The reaction mixture was stirred for 3.5 h before it was concentrated 

and purified by flash column chromatography (DCM/MeOH/AcOH/water = 90/10/1/1). The 

product was obtained as a dark red solid (75 mg, 63 μmol, 92%). 

The product from the first amide coupling (22 mg, 18 μmol, 1.0 equiv.), 6-((4-

(aminomethyl)benzyl)oxy)-9H-purin-2-amine (BG-NH2, 6.0 mg, 22 μmol, 1.2 equiv.), DIPEA 

(13 μL, 74 μmol, 4 equiv.) and HBTU (8.4 mg, 22 μmol, 1.2 equiv.) were combined in DMF (0.7 

mL) and stirred at r.t. for several hours. Then, the reaction mixture was concentrated and the 

residue purified by flash column chromatography (DCM/MeOH = 90/10  80/20). The product 

was obtained as a red solid (13 mg, 8.8 μmol, 48%). 

HRMS (ESI): m/z calc. for C75H112O17N12
2+ (M+2H)2+: 726.4129, found: 726.4147. 

tR (LCMS; MeCN/H2O/formic acid = 40/60/0.1  100/0/0.1 over 10 min) = 2.1 min. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 9.8 min. 

UV/Vis (LCMS): max = 455 nm. 

 (E)-1,4-Dioxo-1-((4-((4-(N-(1-phenethylpiperidin-4-yl)propionamido)phenyl) 

diazenyl)phenyl)amino)-7,10,13,16,19,22,25,28,31,34,37,40,43-tridecaoxa-3-

azahexatetracontan-46-oic acid (5.30) 

H
N

N
N

N

N
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O

O

N
H

O

O OH

O

13
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5.13 (17 mg, 30 μmol, 1.0 equiv.), PEG13-diacid (polypure #37137-1295, 20 mg, 30 μmol, 1.0 

equiv.), HBTU (12mg, 31 μmol, 1.05 equiv.) and DIPEA (21 μL, 0.12 mmol, 4.0 equiv.) were 

combined in DMF (0.3 mL) and stirred at r.t. overnight. The reaction mixture was directly 

purified by flash column chromatography (DCM/MeOH/AcOH = 90/10/1  70/30/1). The 

desired product was obtained as an orange solid (11 mg, 9 μmol, 30%). 

HRMS (ESI): m/z calc. for C60H91O18N6
- (M-H)-: 1183.6395, found: 1183.6361. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 3.20 min. 

UV/Vis (LCMS): max = 354 nm. 

 (E)-N1-(4-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)-N43-(2-oxo-2-((4-((4-(N-

(1-phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl)amino)ethyl)-

4,7,10,13,16,19,22,25,28,31,34,37,40-tridecaoxatritetracontanediamide (5.16) 

H
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5.30 (11 mg, 9 μmol, 1.0 equiv.), 6-((4-(aminomethyl)benzyl)oxy)-9H-purin-2-amine (BG-NH2, 

3.2 mg, 12 μmol, 1.3 equiv.), DIPEA (6.5 μL, 38 μmol, 4.0 equiv.) and HBTU (4.3 mg, 11 μmol, 

1.2 equiv.) were combined in DMF (0.5 mL) and stirred at r.t. overnight. The reaction mixture 

was purified on a 2 g SepPak C18 SPE cartridge (0%-30% = CH3CN/H2O + 0.1% FA). Product 

containing fractions were identified by LCMS, combined and freeze-dried to obtain the desired 

product as orange solid (2.0 mg, 1.4 μmol, 16%). 

HRMS (ESI): m/z calc. for C73H106O18N12
2+ (M+2H)+: 719.3869, found: 719.3886. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 2.99 min. 

UV/Vis (LCMS): max = 355 nm. 
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 (E)-N1-(4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)-N10-(2-oxo-2-((4-((4-(N-

(1-phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl) 

amino)ethyl)decanediamide (5.18) 

H
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N
N O
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O H
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5.13 (13 mg, 25 μmol, 1.0 equiv.) was combined with dodecandioic acid (23 mg, 98 μmol, 4.0 

equiv.), HBTU (10 mg, 27 μmol, 1.1 equiv.) and DIPEA (43 μL, 250 μmol, 10 equiv.) in DMF 

(0.5 mL). The reaction mixture was allowed to stir at r.t. for o.n., before it was acidified and 

purified on a 2 g SepPak C18 SPE cartridge (0%-40% CH3CN in H2O + 0.1% FA). Product 

containing fractions were identified by LCMS and combined. The product was obtained as an 

orange solid after removal of all volatiles (9.7 mg, 13 μmol, 55%) 

The product from the previous step (9.7 mg, 13 μmol, 1.0 equiv.) was combined with BG-NH2 

(4.0 mg, 15 μmol, 1.1 equiv.), HBTU (5.1 mg, 13 μmol, 1.0 equiv.) and DIPEA (4.7 μL, 27 μmol, 

2.0 equiv.) in DMF (0.5 Ml): The reaction mixture was stirred at r.t. o.n., before it was acidified 

and purified on a 2 g SepPak C18 SPE cartridge (0%-35% CH3CN in H2O + 0.1% FA). Product 

containing fractions were identified by LCMS and combined. The product was obtained as an 

orange solid after removal of all volatiles (4.2 mg, 4.3 μmol, 32%) 

HRMS (ESI): m/z calc. for C55H69O5N12
+ (M+H)+: 977.5508, found: 977.5528; m/z calc. for 

C55H67O5N12
- (M-H)-: 975.5363, found: 975.5362. 

 2,2'-(Ethane-1,2-diyl)bis(4-bromoaniline) (5.21) 

Br

Br

NH2

NH2

 

2,2'-(Ethane-1,2-diyl)dianiline (1.27 g, 6.0 mmol, 1.00 equiv.) was dissolved in 60 mL MeCN. 

The flask was wrapped in aluminum foil to keep the reaction in the dark and NBS (99%, 2.12 

g, 11.8 mmol, 2.0 equiv.) was added in portions under vigorous stirring over a time of 6 h. After 
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the addition was complete, the reaction mixture was stirred at r.t. overnight. Conversion was 

checked by LCMS and the reaction was judged to be complete. The solution was extracted 

with 50 mL EtOAc against 50 mL of 0.5 M aq. NaOH (4x). The combined aq. layers were back 

extracted with additional 4 x 50 mL EtOAc. All collected organic layers were combined, dried 

over MgSO4 and concentrated in vacuo. The crude product was adsorbed on silica and loaded 

on a 4 x 20 cm column of silica. The product was eluted with 20-100% EtOAc/hexanes, yielding 

5.21 as a yellow-brown solid (2.00 g, 5.4 mmol, 90%). 

1H NMR (400 MHz, DMSO-d6) δ = 7.17 (d, J = 2.3 Hz, 2H), 7.03 (dd, J = 8.5, 2.3 Hz, 2H), 6.57 

(d, J = 8.5 Hz, 2H), 5.12 (s, 4H), 2.61 (s, 4H).  

13C NMR (101 MHz, DMSO-d6) δ = 145.7, 131.1, 129.0, 127.4, 116.3, 106.8, 29.1.  

HRMS (ESI): calc. for C14H15Br2N2
+ (M+H)+: 368.9597, found: 368.9598.  

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.55 min. 

UV/Vis (LCMS): λmax1 = 205 nm, λmax2 = 245 nm, λmax3 = 300 nm. 

 (Z)-2,9-Dibromo-11,12-dihydrodibenzo[c,g][1,2]diazocine (5.22) 

N N

BrBr

 

5.21 (371 mg, 1.0 mmol, 1.0 equiv.) was dissolved in 15 mL DCM. mCPBA (77%, 449 mg, 

2.0 mmol, 2.00 equiv.) was added in portions over a time of 1 h under continuous stirring. The 

flask was capped and wrapped in aluminum foil to keep the reaction in the dark and the mixture 

was stirred at r.t. over the weekend. 10 mL of an aq. Na2S2O3 solution (10%) were added, 

followed by extraction with 10 mL DCM and washing with 10 mL of 1 M aq. NaOH (4x). The 

aq. layers were back extracted with additional 5 x 10 mL DCM and the combined organic layers 

were washed against 40 mL water (2x) and 40 mL brine (2x). After drying over MgSO4, all 

volatiles were removed in vacuo. The crude product was adsorbed on silica and loaded on a 

4 x 15 cm column of silica, followed by elution with DCM/hexanes (1/5). The product containing 

impure fractions were combined, concentrated to dryness and purified by flash column 

chromatography another two times under the same conditions but on longer and wider 

2 x 20 cm columns of silica. 5.22 was obtained as a yellow, slightly reddish-orange solid (110 

mg, 0.30 mmol, 30%). 

1H NMR (400 MHz, CDCl3) δ = 7.28 (dd, J = 8.4, 2.0 Hz, 2H), 7.16 (d, J = 2.0 Hz, 2H), 6.72 (d, 

J = 8.3 Hz, 2H), 2.99 – 2.88 (m, 2H), 2.79 – 2.65 (m, 2H).  
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13C NMR (101 MHz, CDCl3) δ = 154.1, 132.6, 130.2, 130.0, 120.8, 120.7, 31.4.  

HRMS (EI): calc. for C14H10Br2N2 (M+�): 363.9211, found: 363.9202.  

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.40 min. 

UV/Vis (LCMS): λmax1 = 202 nm, λmax2 = 240 nm, λmax3 = 299 nm, λmax4 = 328 nm. 

 (Z)-di-tert-Butyl-(11,12-dihydrodibenzo[c,g][1,2]diazocine-2,9-diyl)-dicarbamate 

(5.23) 

N N

H
N

H
N

O

OO

O
 

Pd2dba3 (8.1 mg, 8.8 μmol, 0.05 equiv.) and XantPhos (98%, 10.0 mg, 17 μmol, 0.10 equiv.) 

were transferred into a Schlenk tube. The flask was evacuated and backfilled with argon for 

three times, before 2.0 mL anhydrous 1,4-dioxane were added. The reaction mixture was 

stirred for 30 min. tert-Butyl-carbamate (104 mg, 0.89 mmol, 5.1 equiv.), 5.22 (64.4 mg, 

0.176 mmol, 1.0 equiv.) and Cs2CO3 (347.0 mg, 1.07 mmol, 6.0 equiv.) were added 

sequentially together with an additional 2.0 mL of anhydrous 1,4-dioxane. The reaction was 

capped and stirred overnight at 100 °C. After the reaction mixture was allowed to cool to r.t., it 

was extracted with 20 mL EtOAc against 25 mL water (3x). The aq. layers were back extracted 

with additional 3 x 20 mL EtOAc and the combined organic layers were washed with 30 mL 

aq. sat NaHCO3 (2x), 20 mL brine (3x), dried over MgSO4 and concentrated to dryness. The 

resulting crude material was absorbed on silica and loaded on a 2.5 x 25 cm column of silica, 

followed by elution with DCM/hexanes (2 / 1  1 / 0). TLC (ninhydrin staining) showed that the 

product containing fractions also contained residuals of tert-butyl-carbamate. Therefore, 

product containing fractions were combined, concentrated in vacuo and repurified by flash 

column chromatography (5 / 1 = DCM/EtOAc) on a 2.5 x 20 cm column of silica, whereby the 

sample was loaded adsorbed on silica. 5.23 was obtained as a lemon-yellow solid (45.0 mg, 

103 μmol, 59%). 

1H NMR (400 MHz, CDCl3) δ = 7.14 (s, 2H), 7.03 (dd, J = 8.5, 2.2 Hz, 2H), 6.79 (d, J = 8.4 Hz, 

2H), 6.40 (s, 2H), 2.82 (s, 4H), 1.48 (s, 18H).  

13C NMR (101 MHz, CDCl3) δ = 152.6, 150.8, 137.3, 129.3, 120.4, 118.9, 116.6, 80.9, 32.0, 

28.4.  

HRMS (ESI): calc. for C24H31N4O4
+ (M+H)+: 439.2340, found: 439.2345.   

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.90 min. 
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UV/Vis (LCMS): λmax1 = 204 nm, λmax2 = 238 nm, λmax3 = 259 nm, λmax4 = 302 nm, λmax5 = 

333 nm, λmax6 = 408 nm. 

 (Z)-11,12-Dihydrodibenzo[c,g][1,2]diazocine-2,9-diamine (5.24) 

N N

NH2H2N

 

5.23 (44.8 mg, 0.102 mmol) was transferred into a 4 mL dram vial with EtOAc, the solvent was 

removed in vacuo and the sample was dried under HV. 0.75 mL neat TFA were added slowly 

accompanied by red discoloration. The vial was capped and the reaction was monitored by 

LCMS. After 35 min of stirring, the reaction was judged to be complete, and the TFA was 

removed by a stream of nitrogen. The residue was extracted with EtOAc (approx. 1 L) against 

0.2 M aq. NaOH and the aq. layers were back extracted with additional EtOAc. The combined 

organic layers were washed against aq. sat NaHCO3 (2x) and brine, dried over MgSO4 and 

concentrated to dryness. Purification of the crude, red solid by flash column chromatography 

(5% MeOH/DCM) on a 2 x 7 cm column of silica yielded 5.24 as a yellow-brownish solid 

(19.8 mg, 0.0831 mmol, 81%). 

1H NMR (400 MHz, CDCl3) δ = 6.71 (d, J = 8.3 Hz, 2H), 6.45 (dd, J = 8.4, 2.4 Hz, 2H), 6.30 (d, 

J = 2.4 Hz, 2H), 3.59 (s, 4H), 2.72 (s, 4H).  

13C NMR (101 MHz, CDCl3) δ = 147.8, 145.2, 129.8, 121.6, 115.3, 113.3, 32.1. 

HRMS (ESI): calc. for C14H15N4
+ (M+H)+: 239.1291, found: 239.1292.  

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 7 min) = 1.51 min. 

UV/Vis (LCMS): λmax1 = 245 nm, λmax2 = 338 nm, λmax3 = 415 nm. 

 tert-Butyl (Z)-(2-((9-amino-11,12-dihydrodibenzo[c,g][1,2]diazocin-2-yl)amino)-

2-oxoethyl)carbamate (5.25) 

N N

H
NH2N

O

NHBoc

 

5.24 (19.8 mg, 0.0831 mmol, 1.00 eq.), N-Boc-Gly-OH (7.6 mg, 0.043 mmol, 0.52 eq.) and 

HBTU (31.7 mg, 0.0836 mmol, 1.01 eq.) were transferred into a 4 mL dram vial. The vial was 

capped, evacuated and backfilled with nitrogen for three times, before 1.0 mL dry THF were 

added. After DIPEA (29.0 μL, 0.166 mmol, 2.00 eq.) was added dropwise, the reaction mixture 

was stirred for 1 h at 0 °C overnight at room temperature. All volatiles were removed in vacuo 
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and the residue was extracted with EtOAc against 1 mM aq. HCl, additional brine was added 

for breaking the emulsion. The collected aq. layers were back extracted with EtOAc and the 

combined organic layers were washed with water and brine. After drying over MgSO4 and 

concentration in vacuo, the crude material was adsorbed on silica and loaded on a 2 x 14 cm 

column of silica. Elution with EtOAc/DCM (1 / 1) yielded the desired product as a yellow, slightly 

brown-greenish solid (14.9 mg, 0.0377 mmol, 45%). 

1H-NMR (400 MHz, CDCl3) δ = 8.14 (bs, 1H), 7.33 (s, 1H), 7.18 (d, J = 8.5 Hz, 1H), 6.79 (d, J 

= 8.5 Hz, 1H), 6.71 (d, J = 8.3 Hz, 1H), 6.44 (dd, J = 8.3, 2.4 Hz, 1H), 6.26 (d, J = 2.3 Hz, 1H), 

5.22 (bs, 1H), 3.86 (d, J = 6.0 Hz, 2H), 3.60 (bs, 2H), 2.80 – 2.65 (m, 4H), 1.46 (s, 10H).  

13C-NMR (101 MHz, CDCl3) δ = 167.9, 152.1, 147.7, 145.6, 136.2, 129.8, 129.3, 121.5, 120.4, 

120.2, 118.0, 115.5, 115.3, 113.4, 81.0, 38.8, 32.2, 31.8, 28.4. 

HRMS (ESI): calc. for C21H26N5O3
+ (M+H)+: 396.2030, found: 396.2034.  

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 7 min) = 3.44 min. 

UV/Vis (LCMS): λmax1 = 243 nm, λmax2 = 308 nm, λmax3 = 341 nm, λmax4 = 414 nm. 

 tert-Butyl (Z)-(2-oxo-2-((9-((1-phenethylpiperidin-4-yl)amino)-11,12-

dihydrodibenzo[c,g][1,2]diazocin-2-yl)amino)ethyl)carbamate (5.26) 

N N

H
N

H
N

O

NHBoc

N
Ph  

N-Phenethylpiperidin-4-one (98%, 39.4 mg, 0.190 mmol, 0.99 eq.), NaBH(OAc)3 (97%, 

58.7 mg, 0.269 mmol, 1.41 eq.) and AcOH (10.8 μL, 0.189 mmol, 0.99 eq.) were added to 5.25 

(75.4 mg, 0.191 mmol, 1.00 eq.) in a 4 mL dram vial. The vial was capped, the mixture was 

put under a nitrogen atmosphere and 1.8 mL of anhydrous DCE was added. After the dark 

solution was stirred overnight at r.t., the sample was transferred into a 100 mL round-bottom 

flask with DCM and the grass-green solution was adsorbed on celite, loaded on a 3.5 x 14 cm 

column of silica and eluted with 2-8% MeOH/DCM. The desired product was obtained as a 

yellow, slightly greenish solid (64.7 mg, 0.111 mmol, 58%). 

1H NMR (400 MHz, MeOD-d4) δ = 7.37 (s, 1H), 7.33 – 7.27 (m, 3H), 7.27 – 7.19 (m, 4H), 6.75 

(d, J = 8.5 Hz, 1H), 6.70 (d, J = 8.5 Hz, 1H), 6.47 (dd, J = 8.6, 1.8 Hz, 1H), 6.31 (d, J = 2.3 Hz, 

1H), 3.80 (s, 2H), 3.40 (tt, J = 9.7, 3.9 Hz, 1H), 3.27 (d, J = 12.7 Hz, 2H), 2.97 – 2.90 (m, 4H), 

2.83 – 2.64 (m, 6H), 2.07 (dd, J = 11.5, 2.7 Hz, 2H), 1.58 (q, J = 10.2 Hz, 2H), 1.45 (s, 9H). 

Note:  The signals of two Nsek-H are not observed due solvent proton exchange.  
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13C NMR (101 MHz, MeOD-d4) δ = 170.5, 158.6, 152.7, 148.4, 147.2, 139.4, 138.4, 131.3, 

130.8, 129.8, 129.7, 127.7, 122.7, 121.7, 120.9, 119.3, 114.1, 112.2, 80.7, 60.2, 52.9, 45.0, 

33.2, 32.8, 32.7, 31.4, 28.7. 

Note:  One signal is covered by the MeOD-d4 solvent peaks (see HSQC spectrum). 

HRMS (ESI): calc. for C34H43N6O3
+ (M+H)+: 583.3391, found: 583.3378.  

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 3.48 min. 

UV/Vis (LCMS): λmax1 = 205 nm, λmax2 = 246 nm, λmax3 = 309 nm, λmax4 = 357 nm, λmax5 = 

431 nm. 

 tert-Butyl (Z)-(2-oxo-2-((9-(N-(1-phenethylpiperidin-4-yl)propion-amido)-11,12-

dihydrodibenzo[c,g][1,2]diazocin-2-yl)amino)ethyl)carbamate (5.31) 

N N

H
NN

O

NHBoc

N
Ph

O

 

5.26 (44.6 mg, 0.0765 mmol, 1.00 eq.) was dissolved in 3.8 mL anhydrous DCM in a 4 mL 

dram vial under a nitrogen atmosphere. DIPEA (22.8 μL, 0.131 mmol, 1.71 eq.) and a 1.144 M 

solution of propionylchloride in DCM (73.6 μL, 0.0842 mmol, 1.10 eq.) were added 

accompanied by a color change of the solution from green to red. The vial was capped, flushed 

with nitrogen and wrapped in aluminum foil to keep the reaction mixture in the dark. After 

stirring at r.t. for 1.5 h, reaction progress was checked by LCMS, judged to be incomplete and 

more of the propionylchloride solution was added (20.1 μL, 0.0230 mmol, 0.30 eq.). After 

another 2 h of stirring, the reaction was checked again by LCMS, judged to be incomplete and 

more of the propionylchloride solution (10.0 μL, 0.0114 mmol, 0.15 eq.) was added. The 

reaction mixture was stirred at r.t. overnight, followed by loading the sample directly on a 

2.5 x 22 cm column of silica for purification (DCM/MeOH/AcOH/H2O = 90 / 10 / 0.6 / 0.6). The 

desired product was obtained as a yellowish solid (22.4 mg, 0.0351 mmol, 46%). 

Note:  Complex 1H NMR and 13C NMR spectra, possibly because of multiple configurations 

with high energy barriers. The product was clean according to LCMS. 

HRMS (ESI): calc. for C37H47N6O4
+ (M+H)+: 639.3653, found: 639.3662.   

tR (LC-MS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 3.40 min. 

UV/Vis (LC-MS): λmax1 = 236 nm, λmax2 = 258 nm, λmax3 = 318 nm, λmax4 = 404 nm. 
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 (Z)-N-(9-(2-Aminoacetamido)-11,12-dihydrodibenzo[c,g][1,2]diazocin-2-yl)-N-

(1-phenethylpiperidin-4-yl)propionamide (5.27) 

N N

H
NN

O

NH2

N
Ph

O

 

5.31 (21.7 mg, 0.0340 mmol) was loaded into a scintillation vial and dissolved in 3 mL 

anhydrous EtOAc under an argon atmosphere. 3 mL of EtOAc saturated with HCl gas were 

added slowly. The reaction mixture was stirred for 1.5 h at r.t. accompanied by a discoloration 

from green to red and by formation of a red precipitate. The reaction progress was checked by 

LCMS, judged to be incomplete and 0.5 mL HCl saturated EtOAc were added. After another 

45 min of stirring, LCMS was measured again and 0.5 mL HCl saturated EtOAc were added 

once again. The reaction mixture was stirred for a further 1 h, followed by filtration through a 

cotton wool filled pipette and washing of the remaining red precipitate with anhydrous EtOAc. 

The precipitate was eluted with anhydrous MeOH and concentrated to dryness, yielding a 

brown-yellow solid. The solid was resolved in 0.5 mL of DMSO and filtered through a syringe 

filter (PTFE 0.4) which was rinsed with additional 0.5 mL DMSO. Purification by HPLC yielded 

the desired product as a pale yellow solid (9.9 mg, 0.018 mmol, 53%). 

1H NMR (400 MHz, DMSO-d6) δ 10.45 (s, 1H), 9.25 (s, 1H), 8.11 (s, 3H), 7.45 – 7.19 (m, 7H), 

7.10 – 6.81 (m, 4H), 4.65 (s, 1H), 3.72 (d, J = 5.8 Hz, 2H), 3.56 (s, 2H), 3.27 – 3.06 (m, 4H), 

2.99 – 2.70 (m, 6H), 1.94 (d, J = 13.5 Hz, 2H), 1.71 – 1.47 (m, 2H), 1.28 (d, J = 30.9 Hz, 2H), 

0.67 (s, 3H). 

Note: Doubly charged FA salt. 

HRMS (ESI): calc. for C32H39N6O2
+ [M+H]+: 539.3129, found: 539.3136.   

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 2.20 min. 

UV/Vis (LCMS): λmax1 = 236 nm, λmax2 = 257 nm, λmax3 = 317 nm, λmax4 = 404 nm. 
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5.4.2 Crystallographic Data 

Crystallographic data of 2,2'-(ethane-1,2-diyl)bis(4-bromoaniline). 

net formula 
Mr/g mol−1 
crystal size/mm 
T/K 
radiation 
diffractometer 
crystal system 
space group 
a/Å 
b/Å 
c/Å 
α/° 
β/° 
γ/° 
V/Å3 
Z 
calc. density/g cm−3 
μ/mm−1 
absorption correction 
transmission factor range 
refls. measured 
Rint 
mean σ(I)/I 
θ range 
observed refls. 
x, y (weighting scheme) 
hydrogen refinement 
refls in refinement 
parameters 
restraints 
R(Fobs) 
Rw(F2) 
S 
shift/errormax 
max electron density/e Å−3 
min electron density/e Å−3 

C14H14Br2N2 
370.09 
0.040 × 0.030 × 0.020 
100.(2) 
MoKα 
'Bruker D8 Venture TXS' 
monoclinic 
'P 1 21/c 1' 
7.2468(2) 
13.6374(5) 
6.8983(3) 
90 
100.3960(10) 
90 
670.55(4) 
2 
1.833 
6.028 
Multi-Scan 
0.6749–0.7457 
6842 
0.0392 
0.0358 
3.354–27.482 
1323 
0.0071, 0.5928 
H(C) constr, H(N) refall 
1533 
90 
0 
0.0232 
0.0532 
1.098 
0.001 
0.461 
−0.331 
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Crystallographic data of (Z)-2,9-dibromo-11,12-dihydrodibenzo[c,g][1,2]diazocine. 

net formula 
Mr/g mol−1 
crystal size/mm 
T/K 
radiation 
diffractometer 
crystal system 
space group 
a/Å 
b/Å 
c/Å 
α/° 
β/° 
γ/° 
V/Å3 
Z 
calc. density/g cm−3 
μ/mm−1 
absorption correction 
transmission factor range 
refls. measured 
Rint 
mean σ(I)/I 
θ range 
observed refls. 
x, y (weighting scheme) 
hydrogen refinement 
refls in refinement 
parameters 
restraints 
R(Fobs) 
Rw(F2) 
S 
shift/errormax 
max electron density/e Å−3 
min electron density/e Å−3 

C14H10Br2N2 
366.06 
0.030 × 0.030 × 0.010 
100.(2) 
MoKα 
'Bruker D8 Venture TXS' 
monoclinic 
'P 1 21/c 1' 
9.0147(3) 
17.1183(5) 
8.4172(3) 
90 
99.8120(10) 
90 
1279.91(7) 
4 
1.900 
6.315 
Multi-Scan 
0.6740–0.7457 
14150 
0.0356 
0.0318 
3.285–28.280 
2700 
0.0145, 0.9564 
constr 
3161 
163 
0 
0.0235 
0.0488 
1.034 
0.003 
0.483 
−0.430 

 

 

5.4.3 Plasmids, Cell Culture and Electrophysiology 

HEK-GIRK cells were a kind gift of Sonja Kleinlogel.110 They were maintained in standard 

growth medium DMEM/10% FCS with 400 ug/mL G418. Transfections were performed as 

described previously.115  

The SNAP-MOR plasmids featured: 
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SNAP_MOR (from Helen Farrants): mGluR5 non-cleavable signal peptide, HA-epitope, SNAP-

tag, PGLG linker, MOR (rat) 

SNAP_(MOR) (J.T. Williams): HA cleavable signal peptide, FLAG-tag without enterokinase 

cleavage site, SNAP-tag 8x GS linker, MOR (mouse) 

Patch solutions contained the following: 

 

 

 

Supporting Figure 6. HEK-GIRK transfected with SNAP_MOR (from JT Williams). DAMGO 
was washed in as positive control to confirm functional expression of SNAP_MOR.  

F4', internal Kgluconate, dilute 80:10:10 for end conc

substrate c (mM) M (g/mol) V (L) n (mmol) m (mg) final conc

KCl 15 74.55 0.05 0.75 55.9125 12

Kgluconat 175 234.25 0.05 8.75 2049.688 140

HEPES 12.5 238.31 0.05 0.625 148.9438 10

NaCl 5 58.44 0.05 0.25 14.61 4

MgATP 40 507.18 0.01 0.4 202.872 4

Na2GTP 4 567.14 0.01 0.04 22.6856 0.4

osmo 330.8

HEK_GIRK external solution, high K+, pH 7.4 with KOH, updated Josh recipe

10x 

substrate c (mM) M (g/mol) V (L) n (mmol) m (mg) (m in g)

NaCl 25 58.44 0.5 12.5 730.5 7.305

KCl 120 74.55 0.5 60 4473 44.73

MgCl2 1 203.3 0.5 0.5 101.65 1.0165

CaCl2 2 147.02 0.5 1 147.02 1.4702

HEPES 10 238.31 0.5 5 1191.55 11.9155
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Supporting Figure 7. HEK-GIRK transfected with SNAP_MOR (from JT Williams). 5.27 (50 μM) 
was washed in. Then, photoswitching was attempted using various wavelengths. The 
switching was performed at a holding potential of -80 mV to maximize GIRK currents. No light-
dependent current was observed. DAMGO was washed in at the end of the experiment as a 
positive control to confirm expression of SNAP_MOR and GIRK. The spikes are capacitive 
currents from changing the membrane potential, or from interference from the perfusion system 
and are not edited out.  
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Supporting Figure 8. Electrophysiological characterization of AM-II. 

 

Supporting Figure 9. Electrophysiological characterization of AzoDAMGO. 
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5.4.4 Spectral Data 

 tert-Butyl (E)-(2-((4-((4-aminophenyl)diazenyl)phenyl)amino)-2-oxoethyl)carbamate 

(3.6) 
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 tert-Butyl (E)-(2-oxo-2-((4-((4-((1-phenethylpiperidin-4-yl)amino)phenyl)diazenyl) 

phenyl)amino)ethyl)carbamate (5.11) 
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 tert-Butyl (E)-(2-oxo-2-((4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)ethyl)carbamate (5.12) 
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  (E)-N-(4-((4-(2-Aminoacetamido)phenyl)diazenyl)phenyl)-N-(1-phenethylpiperidin-4-

yl)propionamide (5.13) 
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 BG-DBCO  
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 tert-Butyl (3-(methyl(phenyl)amino)propyl)carbamate (5.3) 
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 tert-Butyl (E)-(3-(methyl(4-((4-nitrophenyl)diazenyl)phenyl)amino)propyl)carbamate 

(5.4) 
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 tert-Butyl (E)-(3-((4-((4-aminophenyl)diazenyl)phenyl)(methyl)amino) 

propyl)carbamate (5.5) 
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 tert-butyl (E)-(3-(methyl(4-((4-((1-phenethylpiperidin-4-

yl)amino)phenyl)diazenyl)phenyl)amino)propyl)carbamate (5.6) 

 

 

 



 

167 
 

 tert-butyl (E)-(3-(methyl(4-((4-(N-(1-phenethylpiperidin-4-

yl)propionamido)phenyl)diazenyl)phenyl)amino)propyl)carbamate (5.7) 
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 (E)-N-(4-((4-((3-aminopropyl)(methyl)amino)phenyl)diazenyl)phenyl)-N-(1-

phenethylpiperidin-4-yl)propionamide dihydrochloride (5.8) 
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 (E)-1-(8-(4-((4-(((2-amino-9H-purin-6-yl)oxy)methyl)benzyl)amino)-4-

oxobutanoyl)-8,9-dihydro-1H-dibenzo[b,f][1,2,3]triazolo[4,5-d]azocin-1-yl)-N-(3-((4-((4-

(N-(1-phenethylpiperidin-4-yl)propionamido)phenyl)diazenyl)phenyl)-λ2-

azaneyl)propyl)-3,6,9,12,15,18,21,24,27,30,33,36-dodecaoxanonatriacontan-39-

amide (5.15) 
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 2,2'-(Ethane-1,2-diyl)bis(4-bromoaniline) (5.21) 
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 (Z)-2,9-dibromo-11,12-dihydrodibenzo[c,g][1,2]diazocine (5.22) 
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 (Z)-di-tert-butyl-(11,12-dihydrodibenzo[c,g][1,2]diazocine-2,9-diyl)-dicarbamate 

(5.23) 
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 (Z)-11,12-dihydrodibenzo[c,g][1,2]diazocine-2,9-diamine (5.24) 
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 tert-butyl (Z)-(2-((9-amino-11,12-dihydrodibenzo[c,g][1,2]diazocin-2-yl)amino)-

2-oxoethyl)carbamate (5.25) 
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  tert-Butyl (Z)-(2-oxo-2-((9-((1-phenethylpiperidin-4-yl)amino)-11,12-

dihydrodibenzo[c,g][1,2]diazocin-2-yl)amino)ethyl)carbamate (5.26) 
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 (Z)-N-(9-(2-aminoacetamido)-11,12-dihydrodibenzo[c,g][1,2]diazocin-2-yl)-N-

(1-phenethylpiperidin-4-yl)propionamide (5.27) 
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6 Optical Control of the Smoothened Receptor 

6.1 Introduction 

Most of our understanding of how genes drive development of animals stems from pioneering 

work on embryogenesis of the fruit fly Drosophila melanogaster,116 which was awarded with 

the 1995 Nobel prize in physiology or medicine to Lewis, Nüsslein-Volhard and Wieschaus. 

Multiple genes were isolated that are vital for Drosophila embryogenesis by mutational studies 

and were named after the according mutants phenotype. Mutants with impaired genes involved 

in the Hedgehog (Hh) signaling pathway loose polarity of the evolving body segments, leading 

to flies with pronounced ‘spikes’ sticking out of their unusually short body. Today, the molecular 

components of the Hh signaling axis are identified: in absence of ligand, the Patched receptor 

is inhibiting Smoothened, keeping it sequestered in vesicles. After activation of Patched by the 

ligand Hh and the cell-surface co-receptor iHog, Smoothened is recruited to the plasma 

membrane where it activates Gli transcription regulator proteins, which in turn trigger 

transcription of target genes (Figure 35b).63 

 

Figure 35. Design of azovismodegib and the Hedgehog signaling pathway. a) 
Azologization strategy for azovismodegib. b) In its inactive state, smoothened remains 
sequestered in vesicles by inhibition through patched. Upon stimulation of Patched by iHog 
and Hedgehog, the inhibition of Smoothened is relieved. Smoothened is then recruited to the 
plasma membrane where it recruits a protein complex and activates Gli transcription regulator 
proteins, ultimately leading to transcription of hedgehog target genes. 
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In humans, mutations of Smoothened are involved in basal cell carcinomas (BCC), which is 

the most prevalent form of cancer in Caucasians.117 Vismodegib (Erivedge®) is a small-

molecule antagonist which was approved for treatment of BCC in 2012, representing the first 

therapeutic targeting the Hh signaling pathway.118 Vismodegib contains a N-aryl benzamide, 

which is a structural motif suitable for replacement by a diazene according to Trauner’s 

azologization strategy (Figure 35a).78 Furthermore, the conformation adopted by Vismodegib 

in the crystal structure with Smoothened suggest that azovismodegib should be 

accommodated in the proteins binding pocket in its trans- but not in its cis-configuration.119  

6.2 Results and Discussion 

Commencing with a Sandmeyer reaction of aniline 6.1 with potassium iodide afforded the 

iodoarene 6.2 in 44% yield. The 2-pyridyl ring was attached by Negishi-coupling with 2-

bromopyridine yielded the biaryl 6.3 in 27%; this reaction proved to be a bottleneck due to the 

complex and tedious preparation of the reactive zinc species and unreliable yields. Attempts 

to improve the synthesis by using 2-pyridyl boronic acids or boronic esters to access the 

desired product via Suzuki coupling were tried and proved unsuccessful. 6.3 was reduced to 

aniline 6.4 in 90% yield by a suspension of powdered iron in a mixture of ethanol and acetic 

acid. Finally, azovismodegib (6.6) was obtained after Baeyer-Mills reaction of 6.4 with 1-

(methylsulfonyl)-4-nitrosobenzene in 76% yield. 

 

Figure 36. Synthesis and UV/Vis-spectroscopy of azovismodegib. a) Synthesis of 
azovismodegib in a four-step reaction sequence. b) UV/Vis spectra of azovismodegib (50 μM 
in DMSO) were recorded in the dark and under illumination with the optimal wavelength for 
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switching to the cis-isomer (360 nm) or to the trans-isomer (420 nm). c) Switching was 
performed in aqueous buffer (50 μM in 95/5 = PBS/DMSO) while recording the absorbance at 
the absorbance maximum (330 nm) over time (τ(360 nm) = 3.73 ± 0.04 min, τ(420 nm) = 1.33 
± 0.002 min).  

Azovismodegib was then tested for photoswitching. After performing a wavelength screen, 

optimal wavelengths for cis/trans-photoswitching were determined to be 360 nm and 420 nm. 

UV/Vis Spectra of azovismodegib were then recorded in the dark and under illumination with 

UV (360 nm) or blue light (420 nm). In addition, the kinetics of photoswitching were measured 

by recording the extinction at the absorbance maximum while switching UV/blue light (Figure 

36c).  

6.3 Summary and Outlook 

Azovismodegib was accessed through a brief synthesis in four steps from commercially 

available starting materials. Azovismodegib behaves like a ‘normal’ photoswitch with bistable 

photostationary states and photoswitching kinetics as expected for azobenzenes with this 

electronic substitution pattern. At this stage, azovismodegib is being investigated for biological 

activity by collaborators (Ben Myers, University of Utah). To this end, NIH/3t3 cells stably 

expressing a Gli-responsive Firefly luciferase reporter (Shh LIGHT2 cells)120 will be stimulated 

by the smoothened agonist SAG in presence of azovismodegib and under illumination with 

light of the appropriate wavelengths. 

If azovismodegib exhibits light-dependent antagonism on Smoothened, it will be employed in 

more complex settings. The Hedgehog signaling axis gives the developing animal polarity, e.g. 

determines where the anterior (head) or posterior (tail) ends are. There are still many gaps in 

our knowledge of how this polarity arises.121,122 With azovismodegib, we want to provide a tool 

which allows for a spatially defined inhibition of Smoothened. This could break down details of 

Hedgehog signaling in dependence of location in the developing animal, e.g. in Drosophila.  
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6.4 Supporting Information 

6.4.1 Synthesis 

 1-Chloro-2-iodo-4-nitrobenzene (6.2) 

I

Cl

NO2

 

2-Chloro-5-nitroaniline (2.00 g, 11.6 mmol, 1.0 equiv.) was dissolved in 2.4 M H2SO4 (32 mL) 

and a NaNO2 (0.91 g, 13.2 mmol, 1.1 equiv.) solution in water (130 mL) was added dropwise 

over 10 min at 0 °C. The resulting mixture was stirred for 1h at 0 °C. Then a KI (3.47 g, 

13.2 mmol, 1.8 equiv.) solution in water (14 mL) was added dropwise over 15 min via dropping 

funnel at 0 °C. After addition of KI was completed, the mixture was stirred for another 2 h at 

room temperature. The reaction mixture was extracted with EtOAc against sodium thiosulfat 

solution three times. The combined organic layers were washed against brine, dried over 

MgSO4 and concentrated in vacuo. The crude product was recrystallized from a mixture of hot 

iPrOH (13.6 mL) and hexane (5.40 mL). 6.2 was obtained as a tan powder in a yield of 44% 

(1.44 g, 5.10 mmol).  

1H-NMR (400 MHz, CDCl3) δ = 8.71 (d, J = 2.5 Hz, 1H), 8.17 (dd, J = 8.8, 2.6 Hz, 1H), 7.61 (d, 

J = 8.8 Hz, 1H).  

13C-NMR (101 MHz, CDCl3) δ = 145.9, 135.1, 129.6, 124.2, 100.0, 98.0.  

HRMS (EI): m/z calc. for C6H3ClINO2 (M+)+: 282.8897, found: 282.8892. 

Note: Too unpolar for LCMS, no elution.  

 (2-Chloro-5-nitrophenyl)pyridine (6.3) 

Cl

NO2

N  

2-Bromopyridine (0.43 mL, 4.52 mmol, 1.6 equiv.) was added to dry THF (5 mL) under argon 

and iPrMgCl (3.47 mL, 4.52 mmol, 1.6 equiv.) was added dropwise at 0 °C. The mixture was 

stirred for 1 h at room temperature. ZnCl2 (717 mg, 4.52 mmol, 1.6 equiv.) was sublimated 

under argon, and dissolved in dry THF (5 mL). The pyridine-2-ylmagnesium bromide solution 

was added to the ZnCl2 solution and heated to 50 °C for 1h (solution 1). 1-Chloro-2-iodo-4-

nitrobenzene (800 mg, 2.82 mmol, 1 equiv., 6.2), bis(triphenylphosphine)palladium-(II)-

chloride (60 mg, 0.09 mmol, 0.03 equiv.) and triphenylphosphine (89 mg, 0.34 mmol, 

0.12 equiv.) were dissolved in dry DMF (5 mL) under argon (Solution 2). Solution 1 was added 
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to solution 2 and heated to 60 °C overnight. The reaction mixture was cooled to room 

temperature, ethyl acetate (100 mL) and 2 M NaOH (100 mL) were added and stirred for 

10 min. The solution was filtered over celite and washed with ethyl acetate (50 mL). The 

organic layer was separated and the aq. layer was extracted with ethyl acetate (3 x 100 mL). 

The combined organic layers were washed with brine and dried over MgSO4. The product was 

purified by flash column chromatography (EtOAc/hexanes = 1/9). 2-(2-chloro-5-

nitrophenyl)pyridine (6.3) was obtained as brown crystals in a yield of 26% (173 mg, 

0.73 mmol).  

TLC (EtOAc/hexanes = 1/9) = 0.35. 

1H-NMR (400 MHz, CDCl3) δ (d, J = 4.9 Hz, 1H), 8.45 (d, J = 2.8 Hz, 1H), 8.14 (dd, J = 8.8, 

2.8 Hz, 1H), 7.78 (td, J = 7.7, 1.7 Hz, 1H), 7.67 – 7.57 (m, 2H), 7.33 (dd, J = 7.6, 4.9 Hz, 1H).  

HRMS (ESI): m/z calc. for C11H8ClN2O2
+ (M+H)+: 235.0269, found: 235.0269. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 7.53 min. 

UV/Vis (LCMS): λmax1 = 194 nm, λmax2 = 226 nm, λmax3 = 270 nm.  

 4-Chloro-3-(pyridine-2-yl)aniline (6.4) 

Cl

NH2

N  

2-(2-Chloro-5-nitrophenyl)pyridine (20 mg, 0.09 mmol, 1.0 equiv., 6.3) was dissolved in a 

mixture of acetic acid/ethanol (1:1, 2 ml) and added to a suspension of Fe (29mg, 0.51 mmol, 

6.0 equiv.) in acetic acid/ethanol (1:2; 5 ml). The reaction mixture was heated to 60 °C for 4 h. 

The reaction mixture was allowed to cool to room temperature, filtered over celite, washed with 

EtOAc (30 mL) and concentrated in vacuo. The oily residue was diluted in EtOAc (30 mL), 

washed with aq. sat. NaHCO3 (2 x 25 mL), water (2 x 10 mL), brine (30 mL) and dried over 

MgSO4. The crude material was purified by flash column chromatography (EtOAc/ hexanes = 

4:1). The desired product was obtained in a yield of 90%.  

TLC (EtOAc/hexanes = 4/1) = 0.30. 

1H-NMR (400 MHz, CDCl3) δ = 8.69 (d, J = 4.5 Hz, 1H), 7.82 – 7.70 (m, 1H), 7.66 (d, J = 7.9 

Hz, 1H), 7.29 – 7.26 (m, 1H), 7.22 (d, J = 8.5 Hz, 1H), 6.92 (d, J = 2.8 Hz, 1H), 6.65 (dd, J = 

8.5, 2.8 Hz, 1H), 3.74 (s, 2H).  

13C-NMR (101 MHz, CDCl3) δ = 155.9, 148.4, 144.4, 138.5, 134.8, 129.7, 123.9, 121.3, 120.0, 

116.7, 115.4.  
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HRMS (ESI): m/z calc. for C11H10ClN2
+ (M+H)+: 205.0527, found: 205.0527.  

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 3.20 min.  

UV/Vis (LCMS): λmax1 = 193 nm, λmax2 = 231 nm, λmax3 = 270 nm.  

Notes: Impurities (silicon grease). 

 (E)-2-(2-Chloro-5-((4-(methylsulfonyl)phenyl)diazenyl)phenyl)pyridine (6.6) 

Cl

N

N

N

S
O O  

4-(Methylsulfonyl)aniline (1.71 g, 10 mmol, 1.0 equiv.) was dissolved in a biphasic mixture of 

DCM/water (40 mL / 40 mL) and Oxone® (6.18 g, 10 mmol) was added in one portion. The 

reaction mixture was stirred vigorously at r.t. for 2h while it changed color to a bright green. 

The reaction mixture was diluted with water (100 mL) and DCM (100 mL). The organic layer 

was separated and dried over MgSO4 and concentrated in vacuo. A part of the solid residue 

(48 mg, 0.26 mmol, 1.5 equiv.) was used without further purification for the next step. It was 

added to 6.4 (56 mg, 0.17 mmol, 1.0 equiv.) dissolved in AcOH (5 mL). The reaction mixture 

was stirred at r.t. for 2 days before it was neutralized with aq. sat. NaHCO3 and extracted with 

DCM. The organic layer was washed with aq. sat. NaHCO3, water and brine for it was dried 

over MgSO4 and concentrated in vacuo. The crude material was purified by flash column 

chromatography (DCM / EtOAc = 9 / 1). The desired product was obtained as an orange solid 

in 76% yield (47 mg, 0.13 mmol). 

TLC (DCM/EtOAc = 1/9) = 0.52. 

1H NMR (400 MHz, CDCl3) δ 8.77 (d, J = 4.8 Hz, 1H), 8.23 (d, J = 2.4 Hz, 1H), 8.07 (q, J = 8.5 

Hz, 4H), 7.95 (dd, J = 8.6, 2.4 Hz, 1H), 7.82 (td, J = 7.7, 1.7 Hz, 1H), 7.72 (d, J = 7.9 Hz, 1H), 

7.66 (d, J = 8.5 Hz, 1H), 7.35 (dd, J = 7.5, 4.9 Hz, 1H), 3.11 (s, 3H). 

13C NMR (101 MHz, CDCl3) δ 155.9, 155.1, 150.8, 149.8, 142.0, 140.2, 136.1, 136.0, 131.2, 

128.6, 126.4, 124.8, 124.1, 123.6, 122.9, 44.6. 

HRMS (ESI): m/z calc. C18H15ClN3O2S+ (M+H)+:  372.0568, found: 372.0564. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 5.20. 

UV/Vis (LCMS): max1 = 235nm, max2 = 226 nm, max3 = 273 nm, max4 = 327 nm. 
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6.4.2 Spectral Data 

 1-Chloro-2-iodo-4-nitrobenzene (6.2) 
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 2-(2-Chloro-5-nitrophenyl)pyridine (6.3) 
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 4-Chloro-3-(pyridine-2-yl)aniline (6.4) 
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 (E)-2-(2-Chloro-5-((4-(methylsulfonyl)phenyl)diazenyl)phenyl)pyridine (6.6) 
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7 Photoswitchable Receptor Tyrosine Kinase Inhibitors 

7.1 Introduction 

Cancer is one of the biggest challenges of modern societies. According to Siegel et al., more 

than one out of three individuals in the US are likely to suffer from some kind of invasive cancer 

in their lifetime, and one out of four deaths in the US is caused by cancer.123 Cancer is a 

disease characterized by uncontrolled cell growth and the spread of its cells from the site of 

origin to other sites in the body.124 The development of human cancer is multistep process 

during which several distinct biological capabilities are acquired: the so-called hallmarks of 

cancer. Defined by Hanahan and Weinberg in 2000, these hallmarks are characteristics shared 

by most types of cancer, namely the capability for autonomous growth signaling, evasion of 

growth inhibitory signals, evasion of apoptotic cell death, unlimited replicative potential, 

angiogenesis (the formation of new blood vessels), and invasion and metastasis.125 Since 

RTKs are key regulators of cell growth and cell cycle growth, mutation or overexpression of 

RTKs is often closely linked to mutagenesis. As such, they constitute an important drug target 

for cancer therapy.126 Tyrosine-kinase-inhibitors (TKIs) can be ATP-mimetics, which block the 

ATP binding pocket of the tyrosine kinase (TK) domain, therefore blocking auto-

phosphorylation and locking the RTK in its auto-inhibited state. 

A major drawback of TKIs is the lack of selectivity against tumor cells versus normal cells. As 

a result, chemotherapy with TKIs is often accompanied by harsh side-effects.127 Indeed, 

photoswitchable drugs could offer a solution to this issue. After systemic application of a 

photoswitchable drug by oral uptake, it is distributed in the body in its dark adapted, inactive 

form. Tumor cells would then be locally exposed to light, and the photoswitchable drug is turned 

ON, resulting in RTK inhibition. Only the illuminated area, i.e. the tumor, is exposed to the 

active drug, limiting off-target effects in healthy, surrounding tissue. This approach combines 

the precision of radiotherapy with the efficacy of chemotherapy and represents another leap 

that photopharmacology could take. 

Axitinib is a small molecule TKI which showed promising results in the treatment of various 

cancer types. For instance, it reduced growth of breast cancer in xenograft tumor mouse 

models and is now approved by the FDA for treatment of metastatic renal cell carcinoma 

(mRCC). It is acting through inhibition of the vascular endothelial growth factor receptors 

(VEGFR) 1-3, mast/stem cell growth factor receptor (c-KIT) and the platelet-derived growth 

factor receptor (PDGFR).128,129 Axitinib is a TKI that blocks the ATP-binding site. For productive 

binding of ATP, the juxtamembrane domain (JM) has to switch from JMin to JMout, which allows 

the DFG motif to switch from its inactive ‘out’ to its active ‘in’ position. Crystal structures of 
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Axitinib in complex with non-phosporylated VEGFR2 revealed that it acts by blocking the JMin 

to JMout transition, thereby locking the RTK in its auto-inhibited state.130 Key interactions of 

Axitinib with the protein are two hydrogen bonds and one hydrophobic stabilization between 

the amide head group with D146, E885 and I804 of VEGFR2. The pyrazol nitrogen atoms are 

acting as hydrogen bond donor or acceptor to the protein backbone.130 The vinylpyridine moiety 

is mostly responsible for solubility an the metabolic and pharmacokinetic properties of the drug. 

We envisioned that Axintinib could be turned into a photoswitchable drug by replacing the 

diarylethene moiety by a diazene. 

7.2 Results and Discussion 

First, unsuccessful syntheses were aimed at installing phenylhydrazine via cross-coupling with 

the 3-halogenated benzopyrazol. Subsequent oxidation of the resulting diarylhydrazine would 

then give the diazene. Therefore, the synthetic route was changed (Scheme 13). 7.1 was 

condensed with hydrazine to yield the aminoindazole 7.2. 7.2 was reacted with 2-

nitrosopyridine131 in a Baeyer-Mills reaction to give access to the heterocyclic azobenzene 7.3. 

The final AzoAxitinib 7.5 was then obtained by Pd-catalyzed cross-coupling with aryl thiol 7.4. 

To fine tune photophysical properties, one diazene with a benzene instead of the pyridine and 

one red-shifted variant were synthesized. Since cross couplings with 7.10, the benzene-

analogue of 7.3 were unsuccessful. Therefore, the reaction sequence was reversed. To this 

end, 7.1 was cross-coupled to aryl thiol 7.4 to yield diaryl sulfide 7.6. Subsequent condensation 

with hydrazine gave access to 7.7. Sandmeyer reaction with potassium iodide yielded the 3-

iodo derivative that was used for X-ray crystallography after recrystallization from ethanol. 7.7 

was then reacted in a Baeyer-Mills reaction with nitrosobenzene to yield 7.8: The red-shifted 

variant 7.9 was obtained by diazotation of 7.7 and subsequent capture with N,N-diethylaniline.  
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Scheme 13. Synthesis of AzoAxitinibs 7.5, 7.8 and 7.9. 

The three photoswitches were then evaluated for their photophysical properties by UV/Vis 

spectroscopy (Figure 36). The photoswitches behave very similar, they all relax back to the 

trans-isomer in the dark. The optimal wavelengths for the cis-isomerization of pyridine-diazene 

7.5 is 380 nm, which is the same wavelength for the phenyl-diazene 7.8. Both absorption 

spectra are very similar, but the kinetics of photoisomerization are different. 7.5 cis-isomerizes 

significantly slower with τ = 0.22 min compared to τ = 0.14 min for 7.8. Both 7.5 and 7.8 

isomerize back to the trans under thermal conditions in the dark. The trans-isomerization of 

7.5 is slower with τ = 0.17 min compared to τ = 0.10 min for 7.8. For azobenzenes, substitution 

in para-position of the diazene bond with an electron-donating substituent leads to red-shifting 

of the cis-isomerization while the thermal backrelaxation to trans is proceeding faster. This is 

not the0 case for the heterocyclic azobenzenes shown here, when an electron-donating 

diethylamine is installed on 7.8, the rate of back-relaxation is slowed. The red-shifted 7.9 is 

isomerized to cis with blue light (460 nm), with τ = 0.13 min. The backrelaxation to trans in the 

dark is significantly slower with τ = 0.42 min. 
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Figure 37. UV/Vis spectroscopy of AzoAxitinibs 7.5, 7.9 and 7.8. 7.5 τ(cis) = 0.22 ± 0.001 
min, τ(trans) = 0.17 ± 0.0002 min; 7.9 τ(cis) = 0.13 ± 0.007 min, τ(trans) = 0.42 ± 0.001 min; 
7.8 τ(cis) = 0.14 ± 0.003 min, τ(trans) = 0.10 ± 0.0001 min;  

7.5 was evaluated for light-dependent bioactivity by a proliferation (MTT) assay of HUVEC cells 

(human umbilical vein endothelial cells, kind gift from Carlo Mümmler, CPC Munich). In the 

dark, 7.5 inhibited cell proliferation with IC50 = 67 nM (Figure 38). Under illumination with violet 

light (390 nm), the IC50 decreased to 183 nM. 

 

Figure 38. MTT assay with HUVEC cells and 7.5. Red: 390 nm, black: dark; error bars 
represent standard deviation. Survival was normalized to vehicle control (0.2% DMSO). IC50 
(dark) = 67 nM; IC50 (390 m) = 183 nM. 
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7.3 Summary and Outlook 

Here, photoswitchable variants of the cancer drug Axitinib were described. Proliferation assays 

indicated that the installation of the photoswitch was not deleterious to the inhibitory effects of 

Axitinib. Nevertheless, the difference in IC50 between trans- and cis- isomers of AzoAxitinib 7.5 

is only ~3-fold. As an assay method, proliferation is a downstream phenotypic effect, is 

dependent on many effects, and can lead to misleading conclusions. To better understand the 

structure-activity relationship (SAR) of cis- and trans-AzoAxitinib, more simple assays, such 

as phosphorylation assays should be employed. This could help with the design of improved 

photoswitches with higher differences in affinity upon photoisomerization. 

AzoAxitinib 7.5 represents a new type of photoswitch that features an indazole and a pyridine. 

Indeed, the photophysical properties of AzoAxitinib 7.5 are very similar to common 

azobenzene derivatives. This class of indazole-containing diazene was only recently described 

by Travieso-Puente et al.132 Their synthesis featured a nucleophilic aromatic substitution to 

form the 5-membered indazole-ring and is limited to strongly electron-deficient aromatics. On 

the other hand, the azo-bonds of AzoAxitinibs 7.5, 7.8 and 7.9 were installed via well-known 

Baeyer-Mills reactions or diazotation from the 3-amino indazole derivative. As such, these 

syntheses represent a facile method of constructing this type of photoswitch and expands the 

‘azologable’ space even further. 
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7.4 Supporting Information 

HUVEC cells were grown in EGM2 medium (Lonza), supplemented with 10% FCS. Cells were 

seeded on two 96w plates (5000 cells/well). After 1d, cells were starved in 1%FCS/EBM2 

(Lonza). Compound was applied, one plate was kept in the dark and one was illuminated by 

an LED array at 390 nm (72 LEDs) from above, 50 ms light pulses every 3 seconds. 1-2h after 

compound application, 2 μL/well VEGF (human, 1 ng/μL) was added. The next day, 10 μL 

MTT/PBS was added, and the MTT assay was performed as previously described.62 

7.4.1 Synthesis 

 2-Mercapto-N-methylbenzamide (7.4) 

O NH

SH

 

Synthesis of 7.4 was carried out according to a literature procedure.133 Briefly, methylamine-

hydrochloride (2.00 g, 29.6 mmol, 2.0 equiv.) was suspended in dry DCM (20 mL) and cooled 

to 0°C. AlMe3 (2 M in toluene, 14.9 mL, 29.8 mmol, 2.0 equiv.) was added dropwise. The 

mixture was stirred at 0 °C for 15 min and allowed to warm to r.t. After the gas evolution ceased, 

N-methyl thiosalicylate (2.50 g, 14.86 mmol, 1.0 equiv.) was added dropwise. The yellow 

reaction mixture was heated to reflux for 6 h. Then, the reaction mixture was cooled to r.t. and 

carefully quenched with 1 M aq. HCl. The organic layer was separated and the aqueous layer 

was extracted with DCM (3 x 30 mL). The combined organic layers were dried over MgSO4 

and evaporated. Recrystallization from diethyl ether yielded 7.4 as colorless crystals (1.33 g, 

7.92 mmol, 53%) suitable for single-crystal X-ray diffraction.  

1H NMR (400 MHz, CDCl3) δ = 7.39 (dd, J = 7.7, 1.4 Hz, 1H), 7.28 (dd, J = 7.9, 1.3 Hz, 1H), 

7.21 (td, J = 7.6, 1.5 Hz, 1H), 7.08 (td, J = 7.5, 1.3 Hz, 1H), 6.33 (s, 1H), 4.73 (s, 1H), 2.94 (d, 

J = 4.9 Hz, 3H).  

13C NMR (101 MHz, CDCl3) δ = 169.5, 132.9, 132.9, 130.8, 130.5, 128.0, 125.0, 26.7.  

HRMS (ESI): m/z calc. for C8H8NOS- [M-H]-: 166.0332, found: 166.0321.  

tR (LCMS, MeCN/H2O/formic acid = 90/10/0.1  10/90/0.1 over 7 min) = 2.57 min.  

UV/Vis (LCMS): λmax = 297 nm. 
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 6-Bromo-1H-indazol-3-amine (7.2) 

Br

HN N

NH2

 

7.2 was synthesized according to a patent procedure.134 Briefly, 4-bromo-2-fluoro-benzonitrile 

(1.00 g, 5.00 mmol, 1.0 equiv.) and hydrazine hydrate (785 μL, 25.0 mmol, 5 equiv.) were 

dissolved in n-butanol (6 mL) and refluxed for 2 h. The reaction mixture was allowed to cool to 

r.t., before filtering over a glass frit. The colorless crystals were washed with EtOAc and dried 

in vacuo to yield the desired product (1.01 g, 4.76 mmol, 95%). 

1H NMR (400 MHz, DMSO-d6) d = 7.64 (d, J = 8.5 Hz, 1H), 7.47–7.38 (m, 1H), 7.02 (d, J = 8.7 

Hz, 1H), 5.48 (s, 2H). 

13C NMR (101 MHz, DMSO-d6) d = 149.8, 142.5, 122.6, 120.8, 120.3, 113.5, 112.3.  

HRMS (ESI): m/z calc. for C7H7BrN3
+ [M+H]+: 211.9818, found: 211.9817. 

 (E)-6-Bromo-3-(pyridin-2-yldiazenyl)-1H-indazole (7.3) 

Br

HN N

N
N

N  

The 2-nitrosopyridine was prepared according to a published procedure.131 The crude nitroso 

compound was extracted and washed according to the original procedure. The product 

containing DCM layers were then carefully concentrated to dryness with the rotary evaporator 

at ~25 °C and the crude tan material was stored at -20°C until further use.  

7.2 (500 mg, 2.4 mmol, 1.0 equiv.) was suspended in AcOH (15 mL) and crude 2-

nitrosopyridine (384 mg, th. 3.6 mmol, th. 1.5 equiv.) was added in one portion. The reaction 

mixture immediately turned green. The reaction mixture was allowed to stir for a few hours 

before it was extracted with DCM against sat. aq. NaHCO3 (3x). The combined organic layers 

were concentrated in vacuo before purification by flash column chromatography (dry load on 

silica) to yield the product as a yellow solid (98 mg, 0.32 mmol, 13%). 

1H NMR (400 MHz, DMSO-d6) δ 14.27 (s, 1H), 8.80 – 8.72 (m, 1H), 8.25 (d, J = 8.6 Hz, 1H), 

8.08 (td, J = 7.7, 1.7 Hz, 1H), 7.94 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.60 (dd, J = 7.3, 4.8 Hz, 

1H), 7.56 (dd, J = 8.6, 1.5 Hz, 1H). 

13C NMR (101 MHz, DMSO) δ 163.7, 155.6, 150.0, 142.7, 139.4, 128.2, 126.3, 124.7, 121.4, 

114.1, 113.4, 112.3. 
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HRMS (ESI): m/z calc. for C12H9BrN5
+ [M+H]+: 302.0036, found: 302.0037. 

tR (LCMS, MeCN/H2O/formic acid = 90/10/0.1  10/90/0.1 over 7 min) = 4.16 min.  

UV/Vis (LCMS): λmax = 361 nm. 

 (E)-N-Methyl-2-((3-(pyridin-2-yldiazenyl)-1H-indazol-6-yl)thio)benzamide (7.5) 

S

HN N

N
N

N

OHN

 

7.3 (90 mg, 0.30 mmol, 1.0 equiv.), 7.4 (50 mg, 0.30 mmol, 1.0 equiv.), Pd2(dba)3 (5.5 mg, 6 

μmol, 0.02 equiv.), XantPhos (7.0 mg, 12 μmol, 0.04 equiv.) and NaHCO3 (28 mg, 0.33 mmol, 

1.1 equiv.) were combined in a Schlenk flask. The flask was evacuated and backfilled with 

nitrogen for three times, before dry DMF (1 mL) was added. The reaction mixture was heated 

to 120 °C for 24 h before it was allowed to cool to r.t. The reaction mixture was extracted with 

EtOAc against sat. aq. NaHCO3 (3x). The combined organic layers were washed with water 

and brine, dried over MgSO4 and concentrated in vacuo. The desired product was obtained 

after flash column chromatography (dry load, 5% MeOH/DCM) as an orange solid (38 mg, 98 

μmol, 33%). 

1H NMR (400 MHz, DMSO-d6) δ 14.19 (s, 1H), 8.75 (dd, J = 4.9, 1.6 Hz, 1H), 8.42 (q, J = 4.6 

Hz, 1H), 8.30 (d, J = 8.4 Hz, 1H), 8.08 (td, J = 7.8, 1.8 Hz, 1H), 7.84 (d, J = 8.1 Hz, 1H), 7.65 

(s, 1H), 7.59 (dd, J = 7.4, 4.8 Hz, 1H), 7.51 (dd, J = 7.0, 2.1 Hz, 1H), 7.39 – 7.28 (m, 3H), 7.11 

(dd, J = 7.3, 1.7 Hz, 1H), 2.76 (d, J = 4.5 Hz, 3H). 

13C NMR (101 MHz, DMSO) δ 168.3, 163.7, 155.7, 149.9, 142.5, 139.4, 138.0, 135.2, 135.1, 

131.1, 130.9, 128.9, 128.3, 127.1, 126.2, 123.9, 114.7, 113.4, 112.5, 40.6, 40.6, 40.4, 40.4, 

40.2, 40.2, 39.9, 39.7, 39.5, 39.3, 26.6. 

HRMS (ESI): m/z calc. for C20H17N6OS+ [M+H]+: 389:1179, found: 389.1178. 

tR (LCMS, MeCN/H2O/formic acid = 90/10/0.1  10/90/0.1 over 7 min) = 3.53 min.  

UV/Vis (LCMS): λmax = 380 nm. 
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 2-((4-Cyano-3-fluorophenyl)thio)-N-methylbenzamide (7.6) 

S

F
N

HN O

 

7.4 (600 mg, 3.00 mmol, 1.0 equiv.), Pd2(dba)3 (28 mg, 30 μmol, 0.01 equiv.), XantPhos (35 

mg, 60 μmol, 0.02 equiv.) and NaHCO3 (277 mg, 3.30 mmol, 1.1 equiv.) were combined in a 

Schlenk flask. The flask was evacuated and backfilled with nitrogen for three times, before dry 

N-methylpyrrolidinone (3 mL) was added. The reaction mixture was stirred at r.t. for 30 min 

before 4-bomo-2-fluorobenzonitrile 7.1 (506 mg, 3.00 mmol, 1.0 equiv.; dissolved in 3 mL N-

methylpyrrolidinone) was added dropwise. The reaction mixture was heated to 50 °C for 5 h 

before it was allowed to cool to r.t. The reaction mixture was extracted with DCM against water 

(3x). The combined organic layers were washed with water, sat aq. LiCl, brine, dried over 

MgSO4 and concentrated in vacuo. The desired product was obtained after flash column 

chromatography (2% MeOH/DCM) as a white solid (670 mg, 2.34 mmol, 78%). 

1H NMR (400 MHz, CDCl3) δ 7.59 (dd, J = 5.6, 2.6 Hz, 1H), 7.44 (dt, J = 16.4, 5.9 Hz, 4H), 

6.99 (d, J = 8.3 Hz, 1H), 6.90 (d, J = 9.5 Hz, 1H), 6.29 (s, 1H), 3.04 – 2.70 (m, 3H). 

13C NMR (101 MHz, CDCl3) δ 168.2, 164.4, 161.8, 147.9, 147.8, 140.6, 135.8, 133.3, 131.3, 

129.9, 128.9, 128.4, 123.8, 123.8, 115.3, 115.1, 113.9, 98.3, 98.1, 77.4, 77.1, 76.8, 26.8. 

HRMS (ESI): m/z calc. for C15H12FN2OS+ [M+H]+: 287.0649, found: 287.0650. 

 2-((3-Amino-1H-indazol-6-yl)thio)-N-methylbenzamide (7.7) 

S

HN O

HN N

NH2

 

7.6 (573 mg, 2.00 mmol, 1.0 equiv.) and hydrazine hydrate (0.5 mL; 10.0 mmol, 5 equiv.) were 

combined in nBuOH (~7 mL). The reaction mixture was refluxed overnight before it was allowed 

to cool to r.t. The reaction mixture was extracted with EtOAc against sat. aq. NaHCO3 (3x). 

The combined organic layers were washed with brine, dried over MgSO4 and concentrated to 

dryness. The crude material was purified by C18 reverse-phase column chromatography 

(100/0  60/40 = 1 mM aq. HCl/MeCN) to yield the product as colorless crystals (311 mg, 1.04 

mmol, 52%). 
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For X-Ray crystallography, the product was dissolved in MeCN and tBuONO was added. After 

30 min, aq. KI solution was added. Single crystals suitable for X-Ray crystallography were 

obtained by crystallization from hot EtOH.  

1H NMR (400 MHz, Methanol-d4) δ 7.52 (d, J = 8.3 Hz, 1H), 7.33 – 7.26 (m, 1H), 7.24 (s, 1H), 

7.18 – 7.08 (m, 2H), 7.04 – 6.97 (m, 1H), 6.83 (dd, J = 8.4, 1.6 Hz, 1H), 3.97 (q, J = 7.1 Hz, 

1H), 2.74 (s, 3H), 1.89 (s, 1H), 1.18 – 1.06 (m, 1H). 

13C NMR (101 MHz, Methanol-d4) δ 170.4, 149.2, 142.3, 137.0, 135.7, 133.8, 130.8, 130.2, 

127.5, 126.2, 122.6, 120.6, 113.6, 113.2, 48.3, 48.1, 47.9, 47.8, 47.6, 47.4, 47.2, 47.0, 25.4. 

HRMS (ESI): m/z calc. for C15H15N4OS+ [M+H]+: 299.0961, found: 299.0962. 

 (E)-N-Methyl-2-((3-(phenyldiazenyl)-1H-indazol-6-yl)thio)benzamide (7.8) 

S

HN N

N
N

OHN

 

7.7 (52 mg, 0.17 mmol, 1.0 equiv.) was dissolved in 2 mL AcOH and nitrosobenzene (21 mg, 

0.20 mmol, 1.2 equiv.) was added in one portion. The reaction mixture was heated overnight 

at 60 °C before it was allowed to cool to r.t. and extracted with DCM against aq. sat. NaHCO3 

(3x). The combined organic layers were washed with brine, dried over MgSO4 and 

concentrated in vacuo. Purification by flash column chromatography (5% MeOH/DCM) yielded 

the product as an orange solid (14 mg, 37 μmol, 21%). 

1H NMR (400 MHz, DMSO-d6) δ 13.97 (s, 1H), 8.42 (q, J = 4.6 Hz, 1H), 8.34 (d, J = 8.4 Hz, 

1H), 7.98 (d, J = 7.5 Hz, 2H), 7.67 – 7.55 (m, 4H), 7.54 – 7.48 (m, 1H), 7.37 – 7.26 (m, 3H), 

7.08 (d, J = 7.4 Hz, 1H), 2.77 (d, J = 4.3 Hz, 3H). 

HRMS (ESI): m/z calc. for C21H18N5OS+ [M+H]+: 388.1223, found: 388.1226.  

 (E)-2-((3-((4-(Diethylamino)phenyl)diazenyl)-1H-indazol-6-yl)thio)-N-

methylbenzamide (7.9) 

S

HN N

N
N

OHN

N
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7.7 (30 mg, 0.10 mmol, 1.0 equiv.) and TFA (23 μL, 0.30 mmol, 3.0 equiv.) were combined in 

MeCN (15 mL). The reaction mixture was cooled to 0 °C before tBuONO (16 μL, 0.12 mmol, 

1.2 equiv.) was added. After 45 min, N,N-diethylaniline (0.16 mL, 1.00 mmol, 10.0 equiv.) was 

added dropwise. Stirring was continued at 0 °C for 45 min, before the reaction mixture was 

allowed to warm to r.t. and all volatiles were removed in vacuo. The residue was purified by 

flash column chromatography (DCM  5%MeOH/DCM) to yield the product as an orange-red 

solid (43 mg, 94 μmol, 94%). 

1H NMR (400 MHz, CDCl3) δ 12.37 (s, 0H), 8.31 (d, J = 8.4 Hz, 1H), 7.91 – 7.83 (m, 2H), 7.72 

(s, 1H), 7.49 – 7.41 (m, 1H), 7.19 (s, 1H), 7.12 (d, J = 8.4 Hz, 1H), 7.13 – 6.97 (m, 4H), 6.63 

(d, J = 8.8 Hz, 2H), 6.51 (q, J = 4.9 Hz, 1H), 3.35 (q, J = 7.1 Hz, 4H), 2.88 (d, J = 4.7 Hz, 3H), 

1.13 (t, J = 7.0 Hz, 7H). 

13C NMR (101 MHz, CDCl3) δ 169.2, 156.3, 150.3, 143.5, 142.5, 135.6, 135.5, 133.0, 131.0, 

130.9, 128.4, 126.8, 126.6, 125.4, 124.6, 114.8, 113.8, 111.0, 44.7, 27.0, 12.7. 

HRMS (ESI): m/z calc. for C25H27N6OS+ [M+H]+: 459.1962, found: 459.1967. 

tR (LCMS, MeCN/H2O/formic acid = 90/10/0.1  10/90/0.1 over 7 min) = 5.33 min.  

UV/Vis (LCMS): λmax = 482 nm. 
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7.4.2 Spectral Data 

 2-Mercapto-N-methylbenzamide (7.4) 
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 6-Bromo-1H-indazol-3-amine (7.2) 
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 (E)-6-Bromo-3-(pyridin-2-yldiazenyl)-1H-indazole (7.3) 
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 (E)-N-Methyl-2-((3-(pyridin-2-yldiazenyl)-1H-indazol-6-yl)thio)benzamide (7.5) 
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 2-((4-Cyano-3-fluorophenyl)thio)-N-methylbenzamide (7.6) 
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 2-((3-Amino-1H-indazol-6-yl)thio)-N-methylbenzamide (7.7) 
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 (E)-N-Methyl-2-((3-(phenyldiazenyl)-1H-indazol-6-yl)thio)benzamide (7.8) 
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 (E)-2-((3-((4-(Diethylamino)phenyl)diazenyl)-1H-indazol-6-yl)thio)-N-

methylbenzamide (7.9) 
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7.4.3 Crystallographic Data 

 2-Mercapto-N-methylbenzamide (7.4) 
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 4-Bromo-2-fluoro-benzonitrile (7.1) 
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 6-Bromo-1H-indazol-3-amine (7.2) 
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 2-((3-Iodo-1H-indazol-6-yl)thio)-N-methylbenzamide 

 

8 Further Synthesis and Biology 

8.1 ExONatide 

This work was published as: 

Podewin, T.; Ast, J.; Broichhagen, J.; Fine, N.H.F., Nasteska, D.; Leippe, P.; Gailer, M., 
Buenaventura, T.; Kanda, N.; Jones, B.J., M’Kadmi, C.; Baneres, J.-L.; Marie, J.; Tomas, A., 
Trauner, D.; Hoffmann-Röder, A.; Hodson, D.J. Conditional and Reversible Activation of Class 
A and B G Protein-Coupled Receptors Using Tethered Pharmacology. ACS Cent. Sci. 2018, 4 
(2), 166–179. 
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8.1.1 Supporting Information 

N-(4-(((2-Amino-9H-purin-6-yl)oxy)methyl)benzyl)-1-(3-(pyridin-2-yldisulfanyl)propanamido)-

3,6,9,12-tetraoxapentadecan-15-amide (BG-PEG4-SSpy) 

 

6-((4-(Aminomethyl)benzyl)oxy)-9H-purin-2-amine (12.0 mg, 44 μmol, 1.1 equiv.), PEG4-

SDPD (ThermoScientific #26128, 22.0 mg, 44.0 μmol, 1.0 equiv.) and DIPEA (10.5 μL, 

60 μmol, 1.5 equiv.) were combined in anhydrous DMF (1.0 mL) under a nitrogen atmosphere. 

After stirring for 1 h at r.t., the crude reaction mixture was syringe filtered and subjected to RP-

HPLC. The product containing fractions were combined, concentrated in vacuo and freeze-

dried to obtain 17.0 mg (24.0 μmol) of the desired product as a white solid in 60% yield.  

Note: The multiplet at 2.52 – 2.45 ppm was obscured by the solvent signal and was assigned 

by 2D-COSY analysis. 

1H NMR (800 MHz, DMSO-d6) δ [ppm] 12.44 (s, 1H), 8.45 (ddd, J = 4.8, 1.9, 0.9 Hz, 1H), 8.35 

(t, J = 6.0 Hz, 1H), 8.04 (t, J = 5.7 Hz, 1H), 7.82 (ddd, J = 8.0, 7.5, 1.9 Hz, 1H), 7.80 (d, J = 4.3 

Hz, 1H), 7.76 (dt, J = 8.1, 1.1 Hz, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.26 (d, J = 7.9 Hz, 2H), 7.24 

(ddd, J = 7.4, 4.8, 1.1 Hz, 1H), 6.28 (s, 2H), 5.45 (s, 2H), 4.27 (d, J = 5.9 Hz, 2H), 3.62 (t, J = 

6.4 Hz, 2H), 3.48 (d, J = 4.6 Hz, 12H), 3.39 (t, J = 5.9 Hz, 2H), 3.19 (q, J = 5.8 Hz, 2H), 3.00 

(t, J = 7.1 Hz, 2H), 2.53 – 2.52 (m, 2H), 2.37 (t, J = 6.4 Hz, 2H). 

13C NMR (201 MHz, DMSO-d6) δ [ppm] 170.1, 169.8, 159.8, 159.6, 159.2, 155.2, 149.6, 139.3, 

137.8, 135.2, 128.5, 127.2, 121.1, 119.1, 113.5, 109.5, 69.8, 69.7, 69.5, 69.5, 69.0, 66.9, 66.5, 

41.8, 39.9, 38.6, 36.1, 34.5, 34.1. 

HRMS (ESI): m/z calc. for C32H41N8O7S2
- [M-H]-: 713.2545, found: 713.2545. 

UV/VIS (LCMS): λmax1 = 197 nm; λmax2 = 214 nm; λmax3 = 286 nm. 

tR (LCMS, MeCN/H2O/formic acid = 10/90/0.1 → 100/0/0.1 over 10 min) = 4.479 min. 

tR (RP-HPLC, MeCN/H2O/TFA = 5/95/0.1 →  80/20/0.1 over 60 min) = 21.1 min. 
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8.2 APCs for mGluR2 

Similar to the ideas outlined in chapter 3.2.2, an APC for the mGluR2 was synthesized. 

Synthesis and characterization is summarized in Figure 39.  

Electrophysiological characterization was carried out in HEK293T cells transfected with 

GIRK1/2 and mGlur2 (rat). No photoswitchable effects of the APC were observed, the data is 

not shown here. One reason for these negative experiments might be bad quality of the anti-

mGluR2 antibody, multiple unspecific bands were detected by immunoblotting of HEK293T 

cells transfected with mGluR2 (see Figure 39e). 

 

Figure 39. APCs for mGluR2. a) Synthesis of the photoswitchable NOAG molecule b) APC 
conjugation reactions. c) The APC binds to the native mGluR2 and illumination with light of 
different wavelengths enables optical control. d) Coomassie stained SDS-PAGE gel verifies 
successful synthesis of APC (OximeAG-mGluR2). e) Lysate of HEK293T cells transfected with 
mGluR2 was subjected to immunoblotting. 
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8.2.1 Supporting Information 

Synthesis of NOAG 

Azoglutamate28 (4.0 mg, 6.1 μmol, 1.0 equiv.) was combined with Phth-NO-PEG12-(CH2)2-

C(O)NHS (Iris Biotech #PEG4630, 6.3 mg, 7.3 μmol, 1.2 equiv.) and DIPEA (4.2 μL, 24 μL, 

4.0 equiv.) in dry DMF (0.5 mL). The reaction mixture was stirred at r.t. for 3h. The reaction 

mixture was acidified by addition of a few drops of FA and charged on a Waters Sep-Pack 2g 

C18 column. Elution with a gradient of H2O/MeCN +0.1% FA yielded the product as an orange 

glaze (1.1 mg). 

TFA (200 μL) was then added and allowed to stand for 15 min before the TFA was removed 

in a gentle stream of nitrogen. For deprotection of the phthalimide, 2M MeNH2 in THF (500 μL) 

was added and sonicated for 30 min. The residue was acidified by addition of FA and charged 

on a Waters Sep-Pack 2g C18 column. Elution with a gradient of H2O/MeCN +0.1% FA yielded 

the product as an orange glaze (1.2 mg, 1.09 μmol, 18% over 3 steps). 

For HRMS analysis, the product was reacted with a drop of acetone to form the oxime. 

HRMS (ESI): calc. for C53H86N7O20
+ (M+acetone+H)+: 1140.5922, found: 1140.5960; calc. for 

C53H84N7O20
- (M+acetone-H)+: 1138.5777, found: 1138.5773. 

Synthesis of Keto-mGluR2  

Stock solutions: 

 A 0.1 mg/mL stock solution of anti-mGluR2 (ATSBio #AB-N32) was prepared by 
diluting 77 L of 1.3 mg/mL stock (100 g, 6.4110-10 mol) with 923 L of 0.25M pH 7.3 
TRIS buffer.  

• A 20 mg/mL stock solution of dichloroacetone (DCA, Sigma-Aldrich #168548) was 
prepared by dissolving 39.2 mg of DCA in 1.96 mL DMSO.  

• A 4 mM stock solution of TCEP.HCl was prepared by diluting 10 L of 0.5M TCEP.HCl 
with 1.25 mL milliQ water. The 0.5M stock solution of TCEP.HCl was prepared by 
dissolving 37.4 mg of TCEP.HCl in 0.260 mL milliQ water.  

In a 1.5 mL Eppendorf tube at room temperature, 17 L of 20 mg/mL DCA was combined with 

1000 L of 0.1 mg/mL mGluR2-IgG 4000:1 DCA:IgG). The tube was vortexed, spun down and 

cooled to 4°C. In a separate microcentrifuge tube, 50 L of 4mM TCEP.HCl was added and 

cooled to 4°C. Using a pipette, the entire volume of the mGluR2-IgG/DCA solution was added 

to the TCEP.HCl solution and the resulting solution was mixed thoroughly by repeated pipetting 

(300:1 TCEP:IgG). The reaction mixture was stored at 4°C overnight. The antibody was purified 

the next morning by membrane filtration using an Amicon centrifugal filter with 10kDa MWCO 

(10min, 14000rcf). After concentration, the retentate was diluted to ~500uL with PBS pH 7.4 
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and concentration was repeated. In total, seven concentration steps were performed, using 

PBS pH 7.4 as diluent each time. The final retentate was collected via centrifugation according 

to the manufacturer’s instructions into a tared tube and then weighed to determine the retentate 

volume (47.9 mg = 47.9 L, assuming d = 1 mg/uL). The concentration of Keto-mGluR2 was 

determined by absorbance spectroscopy: A280 = 0.882, corresponding to 0.65 mg/mL using 

ε280 of 1.36 mL mg-1 cm-1. Recovery of Keto-mGluR2 was 31% (31.1 g). 

Synthesis of Azo-mGluR2 

Stock solutions: 

• A 1M stock solution of 3,5-diaminobenzoic acid (DABA, Sigma-Aldrich #D12805) 
was freshly prepared by dissolving 49.6 mg DABA in 326uL DMSO. 

A 1.5 mL Eppendorf tube was charged sequentially with PBS (18.9 L), DMSO (7.5 L, final 

conc.: 30vol/vol%), DABA (6 L, final conc.: 0.1 M), AoAG (AminooxyAzoGlutamate, PL421C, 

4.5 L of 6.5 mM DMSO stock, 29 nmol, 300 equiv.) and Keto-mGluR2 (23 L, 15 g, 96 pmol, 

1 equiv.). The resulting solution was mixed thoroughly by repeated pipetting and stored at room 

temperature overnight. The reaction mixture was stored at room temperature, protected from 

light, overnight. The next morning, the reaction was diluted to ~500 L by addition of PBS pH 

7.4 and the antibody was purified by membrane filtration using an Amicon centrifugal filter with 

10kDa MWCO (10min, 14000rcf) using the same procedure as described for Keto-mGluR2 

purification. The final retentate was collected via centrifugation according to the manufacturer’s 

instructions into a tared tube and then weighed to determine the retentate volume (43.0 mg = 

43.0 L, assuming d = 1 mg/L). The concentration of OximeAG-mGluR2 was determined by 

absorbance spectroscopy: A280 = 0.245, corresponding to 180 g/mL using ε280 of 1.36 mL·mg-

1·cm-1. A second absorbance peak at 380 nm was observed, indicative of successful 

conjugation: A378 = 0.090 corresponding to 4.59 M using ε378 of 19611 L·mg-1·cm-1. The 

calculated conjugation ratio of photoswitch is OximeAG/IgG = (4.59 M * 43.0 L) / (180 g * 

43.0 L/156 kDa) = 3.97. Recovery of OximeAG-mGluR2 was 16% (7.74ug) over two steps 

(ketone insertion and oxime condensation). 

Absorptionspectra 

Keto-mGluR2 
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OximeAG-mGluR2 

 

SDS-PAGE of Keto-mGluR2 and OximeAG-mGluR2 

Samples (1   g/lane) were analyzed by SDS-PAGE on a NuPage 4-12% Bis-Tris gel with MES 

running buffer at 180V for ca. 45min: 

The gel was removed from its plastic casing and stained using InstantBlue Coomassie 

(Expedeon). Both unmodified and modified antibodies were observed to migrate near the 

165kDa MW marker, consistent with an intact IgG (~156 kDa). The reduced mGluR2-IgG 

migrated as two bands near the 24kDa and 57kDa MW markers, consistent with complete 

reduction of the interchain disulfide bonds yielding separate HC (~50kDa) and LC (~25kDa). 

The reduced Keto-mGluR2 migrated near the 165kDa MW marker, consistent with successful 

crosslinking with DCA, where reduction-insensitive thioether bonds have replaced disulfides. 
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The band for the OximeAG-mGluR2 conjugate migrates slightly slower than the starting IgG, 

indicative of an increase in molecular weight after conjugation (see zoom-in). 
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8.3 Photocleavable dimerizers and oligomerizers 

Coumarins are widely used as photoremovable ‘photocaging’ groups. Usually, payloads are 

attached in 4-position and released upon irradiation with UV-light (Figure 40a). In comparison 

with other photoremovable groups, e.g. o-nitrobenzyl, coumarin cages exhibit high absorbance 

coefficients at reasonably long wavelengths, together with fast release-rates.135 

Other uses can be envisioned. Often, biological processes are driven by proximity alone, which 

can be taken advantage of by chemical tools, i.e. rapamycin induced dimerization.136 However, 

most chemical tools are irreversible. Recently, we reversibly enabled conditional control over 

SNAP-tagged GLP1-R and GHS-R1a by inclusion of a reductively-cleavable disulfide bridge 

into the designs of benzylguanine-linked peptide agonists, termed ExONatide and GhrelON.137 

An improvement over this method could involve the use of photolabile groups, to allow the 

cleavage to proceed by illumination (Figure 40b). To this end, a few building blocks were 

synthesized to allow for further modification.  

 

Figure 40. Design of photocleavable dimerizers or oligomerizers. BG = benzyl guanine, 
BC = benzyl cytosine, HTL = Halo-tag ligand. 
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8.3.1 Synthesis 

 tert-Butyl (3-((4-(Chloromethyl)-2-oxo-2H-chromen-7-yl)(methyl)amino)propyl) 

carbamate (8.1) 

O O

Cl

N

BocHN  

7-amino-4-(chloromethyl)-2H-chromen-2-one was prepared according to a published 

synthesis route.138 N-(tert-Butoxycarbonyl)-3-aminopropionaldehyde was prepared by 

standard Boc-protection of 3-aminopropanol and subsequent DMP oxidation. 

7-Amino-4-(chloromethyl)-2H-chromen-2-one (245 mg, 1.2 mmol, 1.0 equiv.), 

triacetoxyborohydride (447 mg, 2.8 mmol, 2.3 equiv.), glacial acetic acid (127 μL, 2.2 mmol, 

1.8 equiv.) and N-(tert-Butoxycarbonyl)-3-aminopropionaldehyde were mixed in DCE (10 mL). 

The reaction mixture was stirred at r.t. for 3 h before addition of aq. formaldehyde (37%, 95 μL, 

1.3 mmol, 1.1 equiv.), glacial acetic acid (57 μL, 1.0 mmol, 0.8 eq) and triacetoxyborohydride 

(160 mg, 1.2 mmol, 1.0 eq.). The reaction mixture was stirred at r.t. for a further 4.5 h before it 

was extracted with DCM against sat. NaHCO3 (2x), water (1x) and brine (1x). The organic layer 

was dried over MgSO4, concentrated in vacuo and purified by flash column chromatography 

(2/98 = MeOH/DCM) to obtain 160 mg (0.42 mmol) of a light yellow solid in 35% yield.  

1H NMR (400 MHz, CDCl3): δ 7.45 (d, J = 9.0 Hz, 1H), 6.64 (dd, J = 9.0, 2.6 Hz, 1H), 6.52 (d, 

J = 2.6 Hz, 1H), 6.21 (t, J = 0.9 Hz, 1H), 4.57 (d, J = 0.8 Hz, 2H), 3.46 (dd, J = 14.7, 7.3 Hz, 

2H), 3.19 (q, J = 6.6 Hz, 2H), 3.03 (s, 3H), 1.81 (p, J = 7.0 Hz, 2H), 1.45 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 161.6, 156.3, 156.0, 151.8, 149.8, 125.1, 109.7, 109.0, 106.8, 

98.4, 79.6, 50.0, 41.5, 38.7, 31.0, 28.4, 27.5. 

HRMS (ESI): calc. for C19H26ClN2O4
+ (M+H)+: 381.1576, found: 381.1578. 

 tert-Butyl (2-(methyl(4-methyl-2-oxo-2H-chromen-7-yl)amino)ethyl)carbamate (8.2) 

O ON

NHBoc  
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7-Bromo-4-methylcoumarin was prepared according to a published procedure.139 tert-Butyl (2-

(methylamino)ethyl)carbamate was prepared according to a published procedure.140 

7-Bromo-4-methylcoumarin (46.6 mg, 195 μmol, 1.0 equiv.), tert-butyl (2-

(methylamino)ethyl)carbamate (40.8 mg, 234 μmol, 1.2 equiv.), cesium carbonate 

(190.6 mg585 μmol, 3.0 equiv.), RuPhos (9.1 mg, 19.5 μmol, 0.1 equiv.) and RuPhos Pd G3 

(16.3 mg, 19.5 μmol, 0.1 equiv.) were combined in a schlenk tube. The schlenk tube was 

evacuated and backfilled three times with argon before addition of dry 1,4-dioxane (1 mL). The 

reaction mixture was heated to 100°C and stirred for 3.5 h before LCMS analysis indicated 

consumption of all starting material. The reaction mixture was filtered over celite, the filter cake 

was washed with EtOAc. The solvent was removed in vacuo and the crude residue was purified 

by flash column chromatography (EtOAc/hexanes = 1/3 -> 1/2 -> 1/1) to yield the product as a 

white solid (31.5 mg, 94.8 μmol) in 49% yield. 

1H NMR (599 MHz, CDCl3): δ 7.37 (d, J = 9.0 Hz, 1H), 6.69 – 6.64 (m, 1H), 6.50 (d, J = 2.6 Hz, 

1H), 5.95 (d, J = 1.2 Hz, 1H), 4.78 (s, 1H), 3.53 (t, J = 6.7 Hz, 2H), 3.31 (q, J = 6.5 Hz, 2H), 

3.03 (s, 3H), 2.32 (d, J = 1.2 Hz, 3H), 1.42 (s, 9H). 

13C NMR (151 MHz, CDCl3): δ [ppm] = 162.1, 156.1, 155.9, 152.9, 152.0, 125.6, 109.9, 109.5, 

108.8, 98.2, 79.7, 51.8, 38.8, 38.2, 28.5, 18.6. 

HRMS (ESI): calc. for C18H25N2O4
+ (M+H)+: 333.1809, found: 333.1808. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 7.723 min. 

UV/Vis (LCMS): max1,2,3 = 278, 314, 369 nm.  

 tert-Butyl (2-((4-(hydroxymethyl)-2-oxo-2H-chromen-7-yl)(methyl)amino)ethyl) 

carbamate (8.3) 

O ON

NHBoc

OH

 

8.2 (276 mg, 0.830 mmol, 1.0 equiv.) and SeO2 (184 mg, 1.66 mmol, 2.0 equiv.) were 

combined in dry meta-xylene. The reaction mixture was heated to reflux for 7 h before the 

reaction was judged to be incomplete by LCMS. More SeO2 (55.0 mg, 0.495 mmol, 0.6 equiv.) 

was added and the reaction mixture heated to reflux 16 h. The reaction mixture was allowed 

to cool to r.t. and filtered over celite. The celite was washed with a copious amount of EtOAc 
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before the organic layer was concentrated in vacuo. The blackish residue was redissolved in 

MeOH (10 mL), cooled to 0 °C and NaBH4 (53.0 mg, 1.40 mmol, 1.6 equiv.) was added in 

portions. After stirring for 1 h, the reaction was quenched by addition of a few drops of water. 

The reaction mixture was extracted with EtOAc (3x) and DCM (3x) against water. The 

combined organic layers were dried over MgSO4 and concentrated in vacuo. The residue was 

purified on a Waters Sep-Pak© 5g C18 column (water/MeCN + 0.1% FA, 100/0 -> 80/20, 5% 

increments). Product containing fractions were identified by LCMS, combined and freeze-dried. 

The tan product was obtained in 10% yield over 2 steps (30 mg, 0.086 mmol). 

1H NMR (400 MHz, CDCl3): δ  7.33 (d, J = 9.0 Hz, 1H), 6.68 (d, J = 10.0 Hz, 1H), 6.55 (d, J = 

2.4 Hz, 1H), 6.30 (s, 1H), 4.83 (s, 2H), 4.72 (s, 1H), 3.54 (t, J = 6.8 Hz, 2H), 3.32 (q, J = 6.5 

Hz, 2H), 3.05 (s, 3H), 1.43 (s, 9H). 

13C NMR (101 MHz, CDCl3): δ 162.2, 156.1, 155.9, 154.3, 151.7, 124.4, 109.0, 107.2, 106.3, 

98.5, 79.7, 61.0, 51.8, 38.8, 38.0, 28.4. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) = 6.23 min. 

UV/Vis (LCMS): max1,2,3 = 209, 246, 374 nm. 

HRMS (ESI): calc. for C18H25N2O5
+ (M+H)+: 349.1758, found: 349.1764. 

 (9H-Fluoren-9-yl)methyl (2-((4-(hydroxymethyl)-2-oxo-2H-chromen-7-

yl)(methyl)amino)ethyl)carbamate (8.4) 

O ON

NHFmoc

OH

 

To 8.3 (30.0 mg, 0.086 mmol, 1.0 equiv.) was added neat TFA (1 mL). After 10 min at r.t., 

volatiles were removed by a gentle stream of nitrogen. The residue was redissolved in DMF 

(0.5 mL), DIPEA (0.060 mL, 0.344 mmol, 4.0 equiv.) and Fmoc-OSu (35.0 mg, 0.103 mmol, 

1.2 equiv.)O were added. The reaction was stirred for 30 min before the crude mixture was 

loaded on a Waters Sep-Pak© 2g C18 column and eluted with a gradient of water and MeCN 

(water/MeCN + 0.1% FA, 100/0 -> 80/40, 5% increments). Product containing fractions were 

identified by LCMS, combined and freeze-dried. The product was obtained as a tan solid in 

46% yield over 2 steps (19.0 mg, 0.040 mmol). 
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1H NMR (400 MHz, CDCl3): δ 7.67 (d, J = 7.6 Hz, 2H), 7.44 (d, J = 7.5 Hz, 2H), 7.31 (t, J = 7.4 

Hz, 2H), 7.20 (d, J = 9.2 Hz, 2H), 6.62 – 6.54 (m, 1H), 6.47 (s, 1H), 6.17 (s, 1H), 4.90 (d, J = 

7.6 Hz, 1H), 4.62 (s, 2H), 4.33 (d, J = 6.8 Hz, 2H), 4.02 (t, J = 6.8 Hz, 1H), 3.49 (t, J = 6.5 Hz, 

2H), 3.32 (q, J = 6.4 Hz, 2H), 2.93 (s, 3H). 

13C NMR (101 MHz, CDCl3): δ 156.5, 155.9, 154.3, 151.8, 143.8, 141.3, 127.7, 127.1, 125.0, 

124.4, 120.0, 108.8, 107.1, 106.3, 98.4, 66.7, 60.9, 51.5, 47.3, 38.6, 38.4. 

HRMS (ESI): calc. for C28H27N2O5
+ (M+H)+: 471.1915, found: 471.1917. 

tR (LCMS; MeCN/H2O/formic acid = 10/90/0.1  100/0/0.1 over 10 min) =7.76 min. 

UV/Vis (LCMS): max1,2,3 = 207, 256, 301, 372 nm. 

8.3.2 Spectral Data 

 tert-Butyl (3-((4-(Chloromethyl)-2-oxo-2H-chromen-7-yl)(methyl)amino)propyl) 

carbamate (8.1) 
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 tert-Butyl (2-(methyl(4-methyl-2-oxo-2H-chromen-7-yl)amino)ethyl)carbamate (8.2) 



8. Further Synthesis and Biology 

228 

 

 tert-Butyl (2-((4-(hydroxymethyl)-2-oxo-2H-chromen-7-yl)(methyl)amino)ethyl) 

carbamate (8.3) 
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 (9H-Fluoren-9-yl)methyl (2-((4-(hydroxymethyl)-2-oxo-2H-chromen-7-

yl)(methyl)amino)ethyl)carbamate (8.4) 
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9 Appendix 

9.1 General Remarks Regarding Synthetic Procedures Including Spectroscopy and 

Spectrometry 

All reactions were carried out with magnetic stirring and, if moisture- or air- sensitive, under 

nitrogen or argon atmosphere using standard Schlenk techniques in oven-dried glassware 

(140 °C oven temperature). External bath temperatures were used to record all reaction 

temperatures. Low temperature reactions were carried out in a Dewar vessel filled with distilled 

water/ice (0 °C). High temperature reactions were conducted using a heated silicon oil bath in 

reaction vessels equipped with a reflux condenser or in a sealed flask. Tetrahydrofuran (THF) 

was distilled over sodium and benzophenone prior to use. Dichloromethane (CH2Cl2), 

triethylamine (Et3N), diisopropylethylamine (DIPEA) and diisopropylamine (DIPA) were distilled 

over calcium hydride under a nitrogen atmosphere. All other solvents were purchased from 

Acros Organics as ‘extra dry’ reagents. All other reagents with a purity > 95% were obtained 

from commercial sources (Sigma Aldrich, Acros, Alfa Aesar and others) and used without 

further purification.  

Normal phase flash column chromatography was carried out with Merck silica gel 60 

(0.040-0.063 mm). Reverse phase flash column chromatography was carried out with 
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Macherey-Nagel POLYGOPREP® 100-50 C18 silica gel or on Waters Sep-Pak® C8 or C18 

columns. Analytical thin layer chromatography (TLC) was carried out using Merck silica gel 

60 F254 glass-backed plates and visualized under UV light at 254 nm. 

NMR spectra (1H NMR and 13C NMR) were recorded in deuterated chloroform (CDCl3) on a 

Bruker Avance III HD 400 MHz spectrometer equipped with a CryoProbe™, a Varian VXR400 

S spectrometer, a Bruker AMX600 spectrometer or a Bruker Avance III HD 800 MHz 

spectrometer equipped with a CryoProbe™ and are reported as follows: chemical shift δ in 

ppm (multiplicity, coupling constant J in Hz, number of protons) for 1H NMR spectra and 

chemical shift δ in ppm for 13C NMR spectra. Multiplicities are abbreviated as follows: s = 

singlet, d = doublet, t = triplet, q = quartet, quint = quintet, br = broad, m = multiplet, or 

combinations thereof. Residual solvent peaks of CDCl3 (H = 7.26 ppm, C = 77.16 ppm), d4-

MeOH (H = 3.31 ppmC = 49.00 ppm) were used as an internal reference. NMR spectra 

were assigned using information ascertained from COSY, HMBC, HSQC and NOESY 

experiments. 

High resolution mass spectra (HRMS) were recorded on a Varian MAT CH7A or a Varian 

MAT 711 MS instrument by electron impact (EI) or electrospray ionization (ESI) techniques at 

the Department of Chemistry, Ludwig-Maximilians-University Munich.  

LCMS was performed on an Agilent 1260 Infinity HPLC System, MS-Agilent 1100 Series, Type: 

1946D, Model: SL, equipped with an Agilent Zorbax Eclipse Plus C18 (100 x 4.6 mm, particle 

size 3.5 micron) RP column with a constant flow-rate of 1 or 2 mL/min. 

X-ray data collections were performed either on an Oxford Diffraction Xcalibur diffractometer, 

on a Bruker D8Quest diffractometer or on a Bruker D8Venture at 100 K or at 173 K using 

MoKα-radiation (λ = 0.71073 Å, graphite monochromator). The CrysAlisPro software (version 

1.171.33.41) [CrysAlisPro, Oxford Diffraction Ltd., Version 1.171.33.41 (release 06-05-2009 

CrysAlis171.NET)] was applied for the integration, scaling and multi-scan absorption correction 

of the data. The structures were solved by direct methods with SIR97218 and refined by least-

squares methods against F2 with SHELXL-97. All non-hydrogen atoms were refined 

anisotropically. The hydrogen atoms were placed in ideal geometry riding on their parent atoms 

UV/Vis spectroscopy was performed using a VARIAN Cary 50 Scan UV/Vis spectrometer. 

Compound solution was placed in a standard quartz cuvette (d = 1 cm) illuminated by a light 

fiber cable from above. 

All yields are isolated, unless otherwise specified. 
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9.2 Abbreviations 

A Ampere 

Å Angstrom 

a.u.  Arbitrary units 

Ac Acetyl 

ADC antibody-drug conjugate 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor, GluA 

ANP atrial natriuretic peptide 

APC antibody-photoswitch conjugate 

Asc Ascorbate 

BC 2-((4-(aminomethyl)benzyl)oxy)pyrimidin-4-amine, benzyl 

cytosine 

BG 6-((4-(aminomethyl)benzyl)oxy)-7H-purin-2-amine, benzyl 

guanine 

BGAG Benzyl guanine azobenzene glutamate 

BINA Biphenyl-indanone A  

BME β-mercaptoethanol 

Boc tert-butoxycarbonyl 

br broad 

brsm based on recovered starting material 

BSA bovine serum albumin 

Bu butyl 

C Celsius 

COSY correlation spectroscopy 

CRD cysteine-rich domain 

CuAAC Copper-catalyzed azide-alkyne-cylcoaddition 

DABA 3,5-diaminobenzoic acid 

DBCO dibenzocyclooctyne 

DCA 1,3-dichloroacetone 

DCE 1,2-dichloroethane 

DCM dichloromethane 

DIPEA ethyldiisopropylamine 

DMEM Dulbecco’s modified eagle medium 

DMF N,N-dimethylformamide 
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DMSO Dimethylsulfoxide 

DNA desoxyribonculeic acid 

EC50 half-maximal effective concentration 

EGFR epidermal growth factor receptor 

EI electron impact 

equiv. equivalents 

ESI electrospray ionization 

Et ethyl 

FA formic acid 
 

FBS ftal bovine serum 

FCS Fetal calf serum 

Fmoc fluorenylmethoxycarbonyl 

FP Fluorescent proteinj 

g gram 

GFP green fluorescent protein 

GHS-R1a growth hormone secretagogue receptor 1a 

GIRK G protein-coupled inward rectifying receptor 

GLP1-R glucagon-like peptide 1 receptor 

GLP-1R glucagon-like peptide-1 receptor 

GPCR G protein-coupled receptor 

GVBD germinal vesicle breakdown 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HRMS high-resolution mass spectrometry 

HRP Horseradish peroxidase 

HV High vacuum 

Hz Hertz 

IC50 half-maximal inhibitory concentration 

IR Insulin Receptor 

LB luria broth 

LBD ligand binding domain 

LCMS liquid chromatography–mass spectrometry 

LF lipofectaime 

MAG maleimide azobenzene glutamate 

MAP mitogen-activated protein 
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Meff effective molarity 

Met hepatocyte growth factor receptor 

mGluR metabotropic glutamate receptor 

NMDA N-methyl-D-aspartate receptor 

NMR nuclear magnetic resonance 

PAGE polyacrylamide gel electrophoresis 

PBS phosphate buffered saline 

PCL Photochromic ligand 

PEG polyethylene glycol 

Ph phenyl 

PORTL Photoswitchable orthogonal remotely-tethered ligand 

ppm parts per million 

PTL Photoswitchable tethered ligand 

RGCs retinal ganglion cells 

s seconds 

SAR structure-activity relationship 

SM small molecule 

SpAAC Strain-promoted azide-alkyne-cycloaddition 

TEA Triethylamine 

TFA trifluoroacetic acid 

TK tyrosine kinase 

TLC  thin layer chromatography 

TM transmembrane 

VFT Venus flytrap 

VKR venus kinase receptor 

WB western blot 
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