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ABSTRACT

Obsessive-compulsive disorder (OCD) is a highly debilitating psychiatric disorder. While
current accounts of pathophysiological models emphazise the role of cortico-striato-
thalamo-cortical (CSTC) circuitry, there is accumulating evidence indicating other brain
regions to be critically involved in disease mechanisms. Furthermore, first evidence points
towards potential alterations in neurodevelopment to be of importance in OCD. However,
the majority of studies examining structural alterations in OCD have focused on assessing
locally confined measures, effectively disregarding potential network-like relationships
between various brain regions. Though recent evidence indicated hippocampus volume
alterations to be of importance in OCD, a relationship between structure and symptoms
was lacking when assessing symptoms in isolation. In this regard, it appears to be unclear,
whether patients with specific symptom profiles may also present with differential changes

in hippocampus morphology.

With the translation of graph theoretical concepts used in modern network science to
brain research, it is now feasible to model the brain in terms of structural and functional
networks, to assess topological features, and to identify differences between healthy
subjects and psychiatric populations. Against this background, the first two Projects of the
current thesis aimed at assessing differences in structural brain networks between OCD
patients and healthy controls employing network modeling techniques and graph
theoretical analyses methods. More specifically, Project 1 focused on the assessment of
networks derived on the basis of white matter tractography. It was shown that regions
outside the typically described CSTC circuitry appear to be of importance. In this regard,
the left uncinate fasciculus connecting temporo-limbic to frontal areas may be critically
involved. Additionally, various network measures indicated a potentially important role for
amygdala and the temporal pole. Project 2 focused on the examination of networks based
on gyrification covariance patterns, where gyrification was used as a proxy for
neurodevelopment. It was shown that differences in gyrification-based covariance patterns
may potentially be linked to time-locked periods of neurodevelopment, underlining the
proposition of neurodevelopmental changes in OCD. Project 3 applied clustering methods
to group patients according to their entire symptom profiles and subsequently related
cluster status to hippocampus volumes. Results indicated that different symptom profiles

indeed go along with volumetric differences in hippocampus, generally implying the



potential usefulness of taking into consideration the interrelation between various

symptoms.

Taken together, the projects underline the necessity to further clarify the role of brain
regions not typically associated with OCD pathophysiology and to incorporate these into
current models. Additionally, the likely involvement of neurodevelopmental factors for the
disease will hopefully spark new research while the consideration of symptom
interrelations may be of use to reveal structure-symptom relationships that were

previously not assessable.



ABBREVIATIONS

ACC - anterior cingulated cortex

BG - basal ganglia

BOLD - blood-oxygen-level dependent
CBT - cognitive behavioral therapy
CSTC - cortico-striato-thalamo-cortical
CcT - computed tomography

DLPFC - dorsolateral prefrontal cortex
DSI - diffusion spectrum imaging
DWI - diffusion weighted imaging
DTI - diffusion tensor imaging

GPe - globus pallidus externa

GPi - globus pallidus interna

GLM - general linear model

IGI - local gyrification index

IOFC - lateral orbitofrontal cortex
mOFC - medial orbitofrontal cortex
MRI - magnetic resonance imaging
NBS - network-based statistic

NOS - number of streamlines

0oCD - obsessive-compulsive disorder
OFC - orbitofrontal cortex

PCC - posterior cingulate

PET - positron emission tomography
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SSNRI - selective serotonin-norepinehrine reuptake inhibitor
SSRI - selective serotonin reuptake inhibitor

SMA - supplementary motor area

SNr - substantia niagra

SPECT - single-photon emission computed tomography

TBI - traumatic brain injury

TBSS - tract-based spatial statistics

UF - uncinate fasciculus

VBM - voxel-based morphometry

VBR - ventricle to brain matter ratio
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Chapter 1

General Introduction

1.1 Phenomenology of Obsessive-Compulsive Disorder

Consider the following episode:

After drowning the last zip of freshly brewed hot coffee you are getting ready to leave the
apartment. What’s on the agenda for today? 8 o’clock, meeting with your boss; 9 o’clock,
meeting with a client to discuss business strategies for a new start-up; in the afternoon,
team meeting to implement new SOPs etc. As you are pulling out of your driveway it
suddenly hits you. Did | turn of the stove after making coffee? What if | left it on? Maybe
even the moka is still sitting on the stove. Should | go back and check? I'd be running late
though. But if | don’t check and it is still on, god knows what might happen? The whole
place might burn down! The doubt prevails and you go back to check. The stove is turned
off and the moka is safely sitting in the sink. You are sensing a feeling of relief and finally

drive off to work.

The above example or some variant thereof is most likely familiar to many of us. A quick
thought suddenly appearing, causing doubt and anxiety or distress leads us to perform a
certain behavior to reduce the distress. After performing the behavioral act, the distress
disappears and we move on. Something quite similar happens in case of obsessive-
compulsive disorder (OCD), though with a major and important difference. While a healthy
person will most likely be relieved after performing a specific act and be reassured that the
cause of discomfort has been resolved, patients suffering from OCD experience a short
temporary relief, only to find themselves in the same situation over and over again for
extended periods of time. They enter a circle of intrusive thoughts leading to distress and
anxiety which leads to ritualized behavior and temporary relief. The following section will
define the disorder more formally and report basic facts about symptoms, epidemiology,

course, and treatment options.



1.1.1 Symptoms

OCD is a severely debilitating psychiatric disorder formally characterized by obsessions, i.e.
intrusive and unwanted recurrent thoughts, images, or urges, and compulsions, i.e. acts
that are performed in a repetitive manner. The performed acts can be mental and/or
behavioral in nature and normally aim at reducing feelings of anxiety and distress often
induced by obsessions. Furthermore the obsessions are recognized as products of the own
mind (American Psychiatric Association, 2013). While a small percentage of patients may
suffer either from obsessions or compulsions, the majority (>95%) report both symptoms
to co-occur (Shavitt et al., 2014). The disease presents with a broad variety of symptoms
from different symptom dimensions and is thus often considered to be rather
heterogeneous (Leckman et al., 1997; Pauls et al., 2014). Clinically, the most prevalent
symptom dimensions appear to be related to: contamination and cleaning; doubt about
harm and checking; unacceptable thoughts and mental rituals; symmetry and ordering;
cleanliness and washing as well as hoarding (Leckman et al., 1997; Williams et al., 2013).
Importantly, up to 80% of all patients present with more than just one symptom (Ruscio et
al., 2010) and cases of pure subtypes are extraordinarily rare, further highlighting the
disease’s heterogeneity (Mataix-Cols, Rosario-Campos, & Leckman, 2005). Despite the fact
that diagnostics of OCD is typically based solely on the presence of obsessions,
compulsions, and some form of distress or anxiety, a recent study points towards
impairments in various neuropsychological domains that partially predict differential
effects in response to cognitive behavioral therapy (CBT) or pharmacological treatment
(D'Alcante et al., 2012). Meta-analytic aggregation of neuropsychological impairments in
OCD however, revealed only small to medium effect sizes for various domains
(Abramovitch, Abramowitz, & Mittelman, 2013) and the authors generally question the

usefulness of neuropsychological alterations as potential endophenotypes.

1.1.2 Epidemiology, Disease Burden, and Comorbidity

With a one year prevalence of 1.2% among adults and a lifetime prevalence of 2.3%
(Ruscio et al., 2010), OCD is ranked as the fourth most common psychiatric disorder (Veale
& Roberts, 2014), with estimated annual costs in excess of 10 billion dollars in the US alone
(Eaton et al., 2008). Additionally, OCD has a profound impact on patient’s quality of life
which is comparable to the impact reported in schizophrenia and depressive disorders and

larger than for example in heroin dependence and hemodialysis patients (Macy et al.,



2013). First evidence also indicates a differential effect of obsessions and compulsions on
quality of life (Stengler-Wenzke et al., 2007). A recent study highlighted the significantly
increased risk of completed suicide (odds ratio=9.83) as well as attempted suicide (odds
ratio=5.45) in OCD patients compared to healthy controls (Fernandez de la Cruz et al.,
2017). The risk was reduced when adjusting for other psychiatric comorbidities,
nevertheless remained at a substantially high level, pointing to important interaction
effects of comorbidities for the disease. It is estimated that at least 50% of all patients
additionally suffer from one or more psychiatric disorders (Abramowitz, Taylor, & McKay,
2009). The most common comorbid psychiatric disorders among OCD patients are major
depressive disorder (MDD) with over 25%, obsessive-compulsive personality disorder and
various forms of anxiety disorders (Brakoulias et al., 2017). However, accounts of other
comorbid disorders are frequent. For example, reported co-occurrence rates of OCD and
attention deficit/hyperactivity disorder (ADHD) have been rather inconsistent with
estimates ranging between 0-60%, with variations likely due to methodological,
theoretical, and phenomenological differences (Abramovitch et al., 2015). Additionally,
Pallanti et al. (2011) reported a relationship between treatment non-responders and
comorbid disorders while Hasler et al. (2005) provide evidence for a relationship between
comorbid disorder and different symptom dimensions that patient’s are suffering from.
Finally, Hofer et al. (2018) reported that for adolescent and young adults prior OCD is a risk
factor for developing bipolar disorder, bulimia nervosa, and anxiety disorders. Taken
together, OCD can be described as a common psychiatric disorder with high impact on

well-being and functioning that is commonly associated with other comorbid disorders.

1.1.3. Course

Disease onset is typically gradual (Abramowitz et al., 2009), however accounts of patients
developing OCD like symptoms within weeks after traumatic brain injury (TBI) have been
published (Childers et al., 1998). For a general overview of brain injuries associated with
the development of OCD see Rydon-Grange and Coetzer (2015). In the US, the average age
of onset is 19.5 years with more than 25% of all patients reporting an onset as early as 14
years or younger (Ruscio et al., 2010). Results from a large international collaboration
study reported the average onset to be about 18 years (Brakoulias et al., 2017). The
distribution of age of onset typically reveals a bimodal distribution with an early peak in

adolescence and a second peak in early adulthood (Rasmussen & Tsuang, 1986) and there



is an ongoing debate regarding a sensible cut-off to define early and late onset OCD
(Anholt et al., 2014). Interestingly, late onset OCD (age at onset > 35 years) was found to
be rather uncommon with fewer than 15% of all cases (Rasmussen & Eisen, 1992).
Additionally, Grant et al. (2007) provided first evidence of potentially better response to
CBT in late onset OCD. If untreated, OCD has in most cases a chronic course (Abramowitz
et al., 2009). In adults, remission rates without treatment are comparably low, i.e. about
20%, as reported by Skoog and Skoog (1999) in a forty year follow-up study. Similarly, a
further study comprising over 200 patients found a partial recovery in only 22.1% of all

patients over a five-year course without treatment (Eisen et al., 2013).

1.1.4 Treatment Options

The two most common treatment options for OCD are pharmacotherapy and various forms
of psychological treatment. Meta-analytic results of randomized controlled trials provide
evidence for efficacy of selective serotonin reuptake inhibitors (SSRIs) with a mean effect
size of 0.91 (Eddy et al., 2004) and thus SSRIs are recommended as the first line of
pharmacological treatment, though other pharmacological treatment options are
available, e.g. clomipramine and venlafaxin. On the other side of the spectrum, CBT was
identified to be effective (Abramowitz, 2006) with effect sizes of 1.31 for comparisons
between patients treated with CBT and waiting-list patients (Ost et al., 2015).
Nevertheless, Eisen et al. (2013) report relapse rates of 59% for pharmacologically treated,
remitted patients, while rates for patients treated with CBT are found to be lower but still
undesirably high (O'Neill & Feusner, 2015). For an extensive review of both treatment
approaches see Abramowitz et al. (2009). Apart from CBT and pharmacological treatment,
there has been an increased interest in alternative options such as deep-brain stimulation
and surgical intervention for treatment resistant cases as well as prescription of
neuroleptics (Hirschtritt, Bloch, & Mathews, 2017). Furthermore, preliminary evidence
points towards the potential benefit of transcranial direct current stimulation for

treatment resistant patient (Brunelin et al., 2018).



1.2. Pathogenesis and Neurobiology of OCD

One of the very first accounts of pharmacological intervention for OCD, using the mono-
amine oxidase inhibitor phenelzine, dates back to the late 1960’s. In a case study, Annesley
(1969) mentions: “The discovery that certain neurotic illnesses will respond specifically to
drugs implies a biochemical basis for some of these disorders”. It took some 20 years until
an article called: “Neurobiology of obsessive compulsive disorder: a possible role for
serotonin” appeared in the Journal of Clinical Psychiatry (Winslow & Insel, 1990), explicitly
using the word “neurobiology” in combination with OCD. More than 25 years later and
mainly driven by the advent of in-vivo neuroimaging methods but also results from other
fields such as pharmacological studies, genetics as well as animal model research etc.,
hundreds of articles have been published, aiming at further illucidating the neurobiological
foundations of OCD by constantly refining disease models. Current accounts of
pathogenesis identify genetic and environmental factors as well as neurobiological
alterations as key factors. The following section will briefly describe aspects of genetics and
environmental factors before providing a more extensive description of the prevailing
neurobiological model, taking into account historical evidence on functional as well as
structural brain alterations. Due to the scope of this manuscript, the descriptions will be
selective and tend towards results based on human neuroimaging studies. Nevertheless,
various lines of evidence derived from multiple methods have certainly influenced the

current conceptualization of circuitry thought to be involved in OCD pathophysiology.

1.2.1 Genetic and Environmental Factors

Due to the fact that SSRIs are considered the first-line pharmacological treatment in OCD
with proven efficacy, there has been a substantial interest in examining serotonin
transporter polymorphisms. A recent meta-analysis of genetic association studies indeed
reported an association of such polymorphisms with OCD as well as a gender specific
polymorphism involving catecholamine modulation with trend significant results for
dopamine- and glutamate-related polymorphisms (Taylor, 2013). However, association of
genes was overall modest. Furthermore, it appears likely that there are substantial
interactions between effects of multiple genes and phenotypic heterogeneity typically
observed in OCD (Sinopoli et al., 2017). Meta-analysis of twin studies indicated that the

largest proportion of variance in OCD symptoms is accounted for by additive genetic



effects as well as non-shared environmental factors (Taylor, 2011) pointing towards a
complex interplay of biopsychosocial factors. For an attempt to integrate genetic,
environmental, and neurobiological findings into a comprehensive model, see Pauls et al.

(2014).

1.2.2 A Neurobiological Model of OCD

Several lines of evidence from multiple fields of study were aggregated over the years to
form what is now often referred to as the cortic-striato-thalamo-cortical (CSTC) model of
OCD. As can already be derived from the name, the model implicates several key regions
such as basal ganglia (BG), various cortical regions, and thalamus. Furthermore it
emphasizes the circuit character due to anatomical connections forming a loop.
Historically, the BG were considered to be merely responsible for the “automatic execution
of learned motor plans” (Marsden, 1982) and thus simply labeled a motor control organ. In
line with this interpretation, the idea of a BG involvement in cognitive or even emotional
processing was typically rejected. With a substantial increase in research efforts and the
integration of various anatomical and physiological findings, this traditional view started to
change. A seminal review by Alexander, DeLong, and Strick (1986) eventually shifted the
concept of BG being a system only subserving motor functions towards being a system of
segregated circuits with potentially different functional properties. This change in concept
brought about strong implications also for clinical research. Namely, that damage to
circuits may lead to alterations not only in motor behavior but possibly even cognition.
Furthermore, it was suddenly conceivable that damage within a segregated circuit may
result in a different outcome, i.e. symptom, than damage located within another circuit.
Thus, symptoms were not necessarily limited to the motor domain. Soon after this
conceptual shift, these ideas were absorbed by clinical researchers interested in OCD as
well as other disorders and it was hypothesized that a pathogenetic mechanism of OCD
may be a dysfunction in BG / striatal and thalamocortical circuits, though various authors
favored slightly different structures and functional relationships in their accounts to
describe neurobiological models of OCD (Insel, 1988; Modell et al., 1989; Rapoport & Wise,
1988). Fueling this new focus of research were studies conducted in OCD using various
newly established neuroimgaing methods such as computed tomography (CT) and
magnetic resonance imaging (MRI). While the first CT study conducted in OCD (Insel et al.,

1983) reported no differences in ventricle to brain matter ratio (VBR), soon thereafter



multiple studies reported not only alterations in VBR (Behar et al., 1984) but also
alterations in caudate volume (Luxenberg et al., 1988) and ventricular volume (Stein et al.,
1993). Similarly, MRI-based studies revealed volume alterations mainly in caudate
(Robinson et al., 1995; Scarone et al., 1992) and ACC (Garber et al., 1989). However, some
studies also reported no differences between patients and controls (Aylward et al., 1996;
Kellner et al., 1991). Altogether, MRI and CT studies appeared to confirm alterations in BG
to be present in OCD. In parallel, new imaging methods provided results strongly impacting
the conceptualization of neurobiological models of OCD. While CT as well as MRI only
provided information about structural measures, PET and brain perfusion single-photon
emission computed tomography (SPECT) had the advantage of deriving information about
metabolism, a marker essentially related to brain function. Now it was possible to not only
study structural abnormalities between patient and control groups, but also derive
information about functional differences as well as observe functional changes in response
to therapy or symptom provocation. A seminal study conducted using positron emission
tomography (PET) reported increased metabolic rates in orbital gyrus and caudate (Baxter
et al., 1987). The finding of increased ortbital gyrus metabolisms has since been replicated
multiple times (Baxter et al., 1988; Nordahl et al., 1989; Sawle et al., 1991) with some
studies also indicating alterations in various other regions such as the anterior cingulated
cortex (ACC) (Perani et al., 1995; Swedo et al., 1989). Furthermore pre-/post-treatment
PET studies found activity in orbitofrontal cortex (OFC) to decrease with pharmacological
intervention. For a comprehensive review of PET and SPECT studies as well as early
structural MRI studies, see Saxena et al. (1998). Several studies additionally found
decreased metabolism in caudate (Benkelfat et al., 1990; Mindus & Nyman, 1991; Saxena
et al., 1999) and loss of pathological correlations between key regions, i.e. OFC, thalamus
and caudate (Baxter et al., 1992; Schwartz et al.,, 1996). Taken together, multiple
independent studies found increased orbitofrontal metabolism in comparison to healthy
subjects while there was evidence for increased caudate metabolism as well as

involvement of thalamus.

As a general framework, fronto-striatal-thalamic circuits are considered to possess a direct
and an indirect pathway (Saxena & Rauch, 2000). Originating within the frontal cortex,
extensive projections excite striatal regions. Subsequently, a direct, inhibiting pathway
projects to the globus pallidus interna (GPi) and substantia niagra (SNr) that in turn has an
inhibiting effect on medial dorsal thalamus. Thus striatal inhibition of the inhibitory GPi

and SNr leads to an increased excitation of thalamus and feedback to cortex. The indirect



pathway is based on inhibiting striatal projections to globus pallidus externa (GPe) and
subthalamic nucleus that in turn send inhibiting projections directly to GPi and SNr and
thus enhance the inhibiting effect on medial dorsal thalamus, effectively inhibiting
feedback to cortex. Additionally, Saxena and Rauch (2000) propose that different sub-
regions of frontal cortex project to separate striatal target regions, with projections from
supplementary motor area (SMA) targeting putamen, dorsolateral prefrontal cortex
(DLPFC) targeting the dorsolateral head of caudate nucleus, OFC targeting the
ventromedial head of caudate, and ACC, posterior cingulate (PCC), and parahippocampal
gyrus projecting to nucleus accumbens. Translating these basic features of fronto-striatal-
thalamic circuitry to OCD pathophysiology, Saxena and Rauch (2000) proposed a response
bias towards various stimuli in OCD that is mediated by frontal-subcortical circuits. In
healthy condition the processing of stimuli is assumed to be mediated via the direct
pathway with a counter balancing influence of the inhibiting, indirect pathway. In OCD
patients, the authors suggest the existence of an imbalance between direct and indirect
pathways in favor of the direct excitatory pathway. As a result, stimuli draw attention to
themselves resulting in the inability to switch to other forms of behavior while also
resulting in performing behaviors in a ritualistic manner. This mechanism is supposed to be
responsible for the production of findings of hyperactive circuitry typically reported in
neuroimaging studies. About a decade later, the framework of CSTC circuitry involvement
is still considered the main foundation of neurobiological models of OCD. In a seminal
paper, Milad and Rauch (2012) summarized the state of the art regarding the subsystems
assumed to be involved in the pathophysiology of OCD. Additionally, they discuss the role
of various regions outside the classical CSTC circuits regarding disease mechanisms and
argue for a much needed extension of the classical framework (for a graphical
representation of their model, see Figure 1). In this conceptualization, there are three
explicitly separated circuits, each related to specific functions: the affective circuit linked to
affect and reward processing; the dorsal cognitive circuit linked to working memory and
executive functions; the ventral cognitive circuit linked to motor and response inhibition.
However, Milad and Rauch (2012) claim the CSTC model to be insufficient and suggest
other regions to be of importance. One critique involves the assumption of segregated
fronto-striatal circuits. Especially in case of the reward circuitry, this assumption was
shown to be flawed and connections are indeed more integrated than previously assumed

(Haber & Knutson 2010).
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Figure 1. lllustration of components and pathways implicated in circuitry important for the
pathophysiology of obsessive-compulsive disorder. Abbreviations: ACC, anterior cingulate
cortex. DLPFC, dosrolateral prefrontal cortex. nc. accumbens, nucleus accumbens. OFC,
orbitofrontal cortex. vmPFC, ventromedial prefrontal cotex. Modified from Milad & Rauch

(2012).

One main aspect highlighted by Milad and Rauch (2012) refers to apparently differential
functional aspects of OFC. Even though findings are somewhat contradictory regarding the
directionality of activity alterations, i.e. hyper- vs. hypoactivity, the authors nevertheless
posit, that lateral OFC (IOFC) and medial OFC (mOFC) are most likely involved in different
functional impairments in OCD. Additionally, the ACC has been described as a region
important for error monitoring (Bush et al., 2002; van Veen & Carter, 2002) and conflict
detection (Gehring, Himle, & Nisenson, 2000). In OCD patients, a hyperactivity has been
described during tasks assessing interference processing indicating abnormal error
processing capabilities that may mediate decision making (Schlosser et al., 2010).
Furthermore, the ACC has been implicated in fear conditioning processes, i.e. activity in
dorsal ACC was reported to correlate with galvanic skin response during fear conditioning.
Here, galvanic skin response is taken as a physiologic proxy for fear learning (Linnman et
al., 2011; Milad et al., 2007). Finally, Milad and Rauch (2012) suggest to further clarify the

role of amygdala for pathophysiological models of OCD. This claim has gained very recent
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support by a meta-analysis evaluating emotional processing in OCD (Thorsen et al., 2018).
Here, the authors identified fMRI- as well as PET-based studies assessing differences in
responses between emotionally valenced and neutral stimulation. Compared with healthy
controls, in OCD patients, an increase in activity was reported for bilateral amygdala, with
stronger activation in unmedicated patients. Furthermore, activation in OFC, ACC and
precuneus was related to symptom severity while comorbidity with mood and anxiety
disorders was related to higher activation in amygdala, putamen, as well as insula and
decreased activation in left amygdala and right ventro-medial prefrontal cortex (vmPFC).
Taken together, while there is no doubt regarding the general involvement of CSTC circuits
in the pathophysiology of OCD, different accounts that emphasize slightly varying
structures and functional relationships have been put forward over the years (Aouizerate
et al., 2004; Baxter et al., 1996; Del Casale et al., 2011; Huey et al., 2008; Insel, 1988; Kwon
et al., 2009; Menzies et al., 2008; Milad & Rauch, 2012; Modell et al., 1989; Rapoport &
Wise, 1988; Saxena, Bota, & Brody, 2001; Saxena et al., 1998; Saxena & Rauch, 2000). The
current trend appears to facilitate research efforts aiming at elucidating the role of brain
regions outside the classical CSTC circuits. This is for example reflected in a recent proposal
of a neurobiological model for compulsive behavior put forward by van den Heuvel et al.
(2016). Here a total of five circuits are proposed. Three of them are in accordance with the
model proposed by Milad and Rauch (2012), namely the dorsal and ventral cognitive circuit
as well as the affective circuit. As an extension, van den Heuvel et al. (2016) incorporate
two additional circuits, i.e. a sensorimotor circuit connecting SMA, putamen and thalamus
that is supposed to subserve stimulus-response based habitual behavior and a fronto-
limbic circuit incorporating the amygdala and connections to vmPFC and thalamus,

assumed to be important for processes of extinction.

In the past, OCD has also been discussed as a disorder featuring a neurodevelopmental
component (Huyser et al., 2009; Rosenberg & Keshavan, 1998). As the development of
gyrification has been shown to occur largely between the last two trimesters of gestation
until about one year of age (Armstrong et al., 1995), measures thereof appear to be
potentially useful markers of neurodevelopment. In line with this assumption, several
studies provided evidence of alterations of gyrification in disorders associated with a
neurodevelopmental component such as autism spectrum disorder (Ecker et al., 2016) and
schizophrenia (Palaniyappan & Liddle, 2012; Palaniyappan et al., 2016; Palaniyappan et al.,

2015). Evidence for alterations of gyrification in OCD is however somewhat heterogeneous
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with many studies reporting hypogyrification (Rus et al., 2017; Shim et al., 2009; Wobrock
et al., 2010) while others report hypergyrification (Fan et al., 2013).

1.2.3 Structure — Symptom Relationship in OCD

There is now accumulating evidence for structural brain alterations in OCD. For reviews
and meta-analyses on white matter alterations see Fontenelle et al. (2009), Piras et al.
(2013), Koch et al. (2014); for reviews on gray matter alterations see Radua and Mataix-
Cols (2009), Boedhoe, Schmaal, Abe, Alonso, et al. (2017), Boedhoe, Schmaal, Abe, Ameis,
et al. (2017), Hu et al. (2017); for a combined review of GM and WM alterations based on
VBM studies see Piras et al. (2015). Besides descriptive findings of structural alterations,
various studies assessed whether these alterations are going along with clinical measures
such as symptom severity or specific symptoms. Meta-analytic results by Rotge et al.
(2009) reveled a relationship between symptom severity and thalamic volumes. Alvarenga
et al. (2012) report the symptom dimension “aggression” to positively correlate with GM
volumes of left parietal cortex, while volumes of left insula, putamen and inferior OFC
were negatively correlated. Scores for the “sexual/religious” dimension positively
correlated with right lateral OFC as well as DLPFC and negatively correlated with ACC.
Finally, hoarding scores positively correlated with left OFC while a negative correlation
with parahippocampal gyrus was reported. Using a different instrument as well as
approach to compute scores, van den Heuvel et al. (2009) similarly describe a relationship
between different symptom dimensions and distinct brain regions. Here, GM volumes in
caudate as well as WM volumes in parietal regions correlated with contamination/washing
symptoms. Harm/checking symptoms correlated negatively, with GM and WM volumes in
the temporal pole. Additionally symmetry/ordering symptoms correlated negatively with
GM volume in right motor cortex, insula and parietal cortex, while a positive correlation
with temporal GM and WM was found. Finally, symmetry/ordering symptoms were
reported to correlate with overall GM and WM volumes. Gilbert et al. (2008) provide
evidence for a negative correlation between washing symptoms and Brodman area 6, i.e.
frontal cortex. Clearly, studies use different measures to assess symptoms and report
various brain regions to be associated with different symptoms and additionally in
sometimes contradicting directions. Also, while several studies do report such correlations
(Fontenelle et al., 2011; Ha et al., 2009; Lochner et al., 2012) others do not (Nakamae et

al.,, 2011; Zarei et al., 2011). Of note, the largest meta-analysis on subcortical volumetric
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differences in OCD patients conducted to date reported alterations to be found in the
hippocampus as well as pallidum (Boedhoe, Schmaal, Abe, Ameis, et al., 2017) while other
subcortical regions typically assumed to play a major role in OCD were not found to display
altered volumes. Additionally, no relationships between volumetric alterations and
symptoms were described. In general, answering the question whether and how structural
alterations are related to symptoms may be useful to identify and differentiate between
state and trait markers for the disease. Trait markers are typically defined as a
characteristic that allows diagnosing a disease while state markers refer to characteristics
that are related to a process of a disease and reflect current severity (Davis et al., 2015). In
summary, the currently available data does not allow to draw definitive conclusions on
state or trait markers in OCD, nevertheless it appears promising to conduct further
research, taking into consideration different approaches in order to disentangle potential

relationships between structure and symptoms.
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1.3 Methodological Considerations

Neuroimaging methods such as CT, MRI, and diffusion weighted imaging (DWI) are
representatives of only one class of methods available to study brain morphology. Their
main strength clearly stems from the human in-vivo applicability. However, in its current
form, these methods are only able to provide information on the macro- and mesoscopic
level of brain structure with rather limited capabilities to indirectly infer regionally specific
information on microstructure (Lerch et al.,, 2017). Thus, this limitation should be
considered when interpreting data and drawing conclusions. Apart from issues regarding
the acquisition and meaning of measured signals, a major component of studying brain
morphology involves complex analyses techniques, e.g. reconstruction algorithms as well
as statistical concepts. The following section addresses three aspects: firstly, it will provide
a brief overview of selected measures and analysis strategies typically employed to study
brain morphology. Secondly, it introduces recent advances in studying brain morphometry
in the framework of network science and graph theoretical concepts. For the following
sections, the focus will be mainly on data derived from in-vivo human MR-imaging. Thirdly,
a brief overview of the measures and methods used to study brain morphometry in the

current studies will be presented.

1.3.1 Classical Approaches to Study Brain Morphology
1.3.1.1 Volume and Surface Based Methods

To date, the most prevalent approaches to examine MRI-based morphology and
alterations thereof can be differentiated into volume and surface based methods (Clarkson
et al., 2011). Brain data derived from MRl is typically stored in three dimensional matrices.
Each element of such a matrix is considered a voxel, i.e. the three dimensional analog to a
pixel, that represents information about some anatomically relevant parameter. Voxel-
based methods directly operate on the elements of this matrix. Though transformations
(linear as well as nonlinear) are common, the “units” being analyzed will always remain
voxels. As an example, in the framework of voxel-based morphometry (VBM), images are
spatially normalized into a common space using linear and nonlinear transformations,
segmented into various tissue classes and spatially smoothed before computing statistics
on the voxel level (Ashburner & Friston, 2000; Whitwell, 2009). Similarly, when working

with surface based methods, processing of data involves creating surface models and
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deriving brain morphological parameters in three dimensional space (Dale, Fischl, &
Sereno, 1999; Fischl, Sereno, & Dale, 1999). Instead of voxels, the “units” being analyzed
are vertices. Nevertheless, analyses will typically be conducted on individual data points
reflecting an anatomical property. Examples of surface based morphometry can be found
in studies of cortical thickness (Fischl & Dale, 2000), a measure that is computed vertex-
wise from the distance between two surfaces, i.e. gray / white matter boundary and gray

matter / cerebrospinal fluid boundary.

1.3.1.2 Commonly Used Statistical Analysis Framework

The most prevalent statistical framework used to assess and compare morphological
properties, derived either from volume or surface based methods, is the GLM, i.e. general
linear model (Christensen, 2011). This statistical approach yields information about local
morphological properties only, since one linear regression model is fitted to every single
voxel or vertex, thus resulting in statistical maps with parameters / p-values for each voxel
within a volume, or vertex for each surface. For both, volume as well as surface based
approaches, the interrelation between measures from different voxels or vertices is not
specifically considered. While these approaches are entirely valid in its own right and have
provided many new insights into structural brain alterations associated with OCD (Piras et
al., 2013; Piras et al., 2015) as well as other disorders (Whitwell, 2009), they nevertheless
do not allow to draw inferences about the interplay between various anatomical regions.
Especially in light of neurobiological models of OCD pathopyhsiology that emphasize a
circuit character with interdependent anatomical regions, a framework that has the
capacity to explicitly model such interdependencies could potentially be very fruitful and

informative.

1.3.1.3 Assessing Relationships Between Symptoms and Morphological Alterations

The majority of studies conducted in OCD aimed at establishing a relationship between
structural alterations and different symptoms and/or symptom severity. In general, various
measures, e.g. cortical thickness, volume etc., are typically correlated with scores from
guestionnaires aiming at identifying significant correlations. Two slightly different
approaches are commonly used in this regard. One possibility is correlating the severity on

a specific symptom scale, e.g. washing or checking, with a morphological parameter. Here,
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each symptom is treated as an independent quantity and the interrelation between
various symptom types is not further addressed (Carmona et al., 2007; Matsumoto et al.,
2010; Park & Jeong, 2015; Tang et al., 2015; Zarei et al., 2011). Another way is to use
information either from questionnaires that specifically aim at deriving information about
symptom dimensions (Rosario-Campos et al., 2006) such as contamination, aggression or
symmetry, or to combine information from various subscales into symptom dimensions,
for example symmetry/ordering or harm/checking (Mataix-Cols et al., 1999; Okada et al.,
2015; van den Heuvel et al., 2009). In both cases, the focus is on individual symptoms or
symptom dimensions. However, it is conceivable that the entire symptom profile of a
patient may be related to morphological alterations. Hence, taking into consideration

interrelations between the various symptoms/symptom dimensions might be of value.

1.3.2 Network-science Inspired Approaches to Study Brain Morphology

In 2005, several researchers independently proposed to use the term ‘connectome’ to
refer to a comprehensive map of all structural elements and their connections, together
forming the human brain (Hagmann, 2005; Sporns, Tononi, & Kotter, 2005). This
conceptualization as an underlying foundational principle sparked tremendous research
interest eventually leading to the field of connectomics. As mentioned above, frameworks
that have the capacity to model networks of anatomical (and functional) relationships are
highly desirable. With rapid progress in the field of complex network analysis and the
impact of network science as a transdisciplinary theory (Boccaletti et al., 2006; Newman,
2010), translation of principles and practices to the study of brain networks are appearing
rapidly while constantly increasing in scope and size (Bullmore & Sporns, 2009). The
translation of concepts was dramatically simplified by conceptualizing human brain
networks in terms of connectivity matrices’, therefore allowing to directly apply concepts
that were developed in the mathematical framework of graph theory and largely based on
working with matrices. The main workhorse for network-based analyses of brain data is
therefore the mathematical framework of graph theory, which is briefly introduced below.
Additionally, general approaches to graph definition and assessment of brain networks are

addressed and the clinical impact of network-based studies is outlined.

Here, a connectivity matrix is a square matrix in which each element A; indicates the presence or
absence of a connection between the structural elements i and j.
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1.3.2.1 General Framework

Conceptualizing the brain as a network and applying graph theoretical concepts for
analyses requires the definition of graphs, i.e. a set of nodes and edges. Nodes are the
basic building blocks of the network, while edges represent some form of connection
between the nodes, together resulting in an abstract representation of the network in
guestion using matrix notation. This framework is rather flexible as the definition of nodes
can range all the way from single cells, or even smaller, up to macroscopically defined
anatomical regions such as gyri. Likewise, the definition of edges can be based for example
on synaptic connectivity derived from tracing studies, measures of structural association
derived from DWI-based fiber tracking, or even correlation between blood-oxygen-level
dependent (BOLD) signals indicating a statistical association of functional coupling
between nodes (for a thorough introduction to the framework as well as applications to
brain network analyses see Sporns (2012); for a comprehensive and more technical

introduction see Fornito, Zalesky, and Bullmore (2016).

1.3.2.2 Construction of Brain Networks

In light of the explosion of research conducted on brain function and the ever increasing
applications of network-based analyses to functional networks, it nevertheless remains
vital to also study structural brain networks spanning all levels from molecular to the
macro scale. In the end “structural connectivity provides an obligatory foundational model
for understanding functional localization at molecular, cellular, systems, and behavioral
organization levels” (Swanson & Bota, 2010). In case of MR-derived structural networks,
multiple approaches are commonly used for graph construction (Griffa et al., 2013). Nodes
are typically defined on the basis of parcellated high resolution anatomical imaging data
according to predefined atlas-based regions of interest. Atlases in turn are commonly
based on either anatomical landmarks such as sulci and gyri, or cytoarchitectonic maps.
Recent developments aim at parcellating the brain based not only on anatomical
landmarks or cytoarchitecture, but to provide a multi-modal parcellation scheme
incorporating landmarks and cytoarchitecture, as well as prior knowledge of function and
connectivity (Glasser et al., 2016). The way in which an edge is defined, in turn determines
what kind of graph is constructed and thus what type of analyses methods and algorithms
can be applied. The most commonly defined graphs are either undirected or directed and

the connections are either weighted or unweighted (Rubinov & Sporns, 2010). For
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example, edges defined as synaptic connections, i.e. at the microscopic level, inherently
carry information about the directionality of a connection, whereas edges defined on the
basis of tractography only carry undirected information. Similarly, a graph can contain
information about the connection strength, e.g. number and type of synapses, rendering it
to be weighted, or can simply indicate whether a connection is present or not, rendering it
binary. The definition of edges, measuring some form of connectivity, can be broadly
separated into two approaches, though other approaches exist. Firstly, it is possible to
derive measures of connectivity on the basis of the concept of structural covariance
(Alexander-Bloch et al., 2013). Structural covariance refers to the observation that in
populations, quantification of specific morphological properties within one brain region
typically covaries with the same property in other brain regions, e.g. cortical thickness
values measured in Broca’s area across subjects covary with cortical thickness values in
Wernicke’s area (Lerch et al., 2006). Secondly, structural connectivity can be inferred from
DWI by applying tractography algorithms for example to model a tensor (as is done in DTI,
see Mori and Zhang (2006)) that yields information on the directionality of diffusion within
a specific voxel, thus allowing the reconstruction of main fiber bundles in the brain (Soares
et al.,, 2013). In order to derive a proxy for structural connectivity between two brain
regions, a fiber tracking algorithm may be initiated from a parcellated brain region, i.e.
node of the graph, following the principle diffusion direction indicated by the tensor in
each voxel. If there is a continuous connection between the initial node and some other
node in question, the two regions are assumed to be connected (Lazar, 2010). Repeating
this approach for every possible combination of nodes allows to reconstruct a
macroanatomical whole brain connectivity matrix (Guye et al.,, 2010). The resolution is
directly related to the parcellation scheme, i.e. a fine-grained parcellation increases the
resolution while a gross parcellation scheme decreases resolution. The major difference
between networks based on structural covariance and those based on diffusion weighted
imaging, is the fact that structural covariance can be only measured across a group of
subjects, while diffusion weighted imaging allows to infer connectivity within a single
subject. This limits the possibility to use structural covariance to derive subject-specific,

individual parameters (Alexander-Bloch et al., 2013).
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1.3.2.3 Assessment of Brain Networks

Historically, two seemingly opposing concepts regarding the functional principles of the
brain have been widely discussed. On the one hand, proponents of localizationism
emphasize that in the brain, specific functions are localized in specific modules, e.g. Broca's
region is functionally specialized for speech production. On the other hand, the standpoint
of holisms, conceptualizes the brain as a system that in its entirety is important for
producing behavior and in which a function cannot be assigned exclusively to one region
alone (Kanwisher, 2010; Northoff, 2014). Interestingly, these approaches can be related to
organizational properties that are simultaneously found in the brain, namely functional
segregation, and functional integration (Sporns et al., 2005; Tononi, Sporns, & Edelman,
1994). Following these two fundamental organizational principles, a wide array of
measures has been developed to quantitatively assess brain network topology in terms of
functional segregation and integration. Measures of segregation are aiming at the
guantification of groups or modules that are densely interconnected, thus allowing for a
high degree of specialization, for example the clustering coefficient that can be computed
for nodes as well as for an entire network. Measures of integration are typically based on
finding shortest paths, i.e. the shortest number of steps needed to traverse between two
specific nodes (Rubinov & Sporns, 2010). Relating both measures in terms of a ratio yields
a global metric called small-worldness, a concept that was introduced by Watts and
Strogatz (1998). In their seminal work they described a graph to possess the attribute of
small-worldness if many nodes are not direct neighbors but rather cluster together, i.e.
average clustering is rather high, while at the same time, every node can be reached via
few steps, in other words the path length is rather low. The principle of small-worldness
was shown to apply to a myriad of networks (Newman, 2010) including the brain (Bassett
& Bullmore, 2006). Taken together, the brain is an organ inherently combining two
fundamental organization principles, namely functional segregation as well as functional
integration in order to allow for flexibility in cognition as well as behavior (Deco et al.,
2015). A vast number of measures have been used to characterize various properties of
segregation and integration capabilities of brain networks (Rubinov & Sporns, 2010;

Sporns, 2013b) as well as other organizational principles (Fornito et al., 2016).
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1.3.2.4 Clinical Impact of Network-based Studies

In general, the assessment of structural brain networks can be conducted in healthy brains
in order to infer patterns of connectivity and also inform underlying relationships with
patterns of brain dynamics (Sporns, 2013a). Furthermore, the same methods can be
applied to examine psychiatric populations or patients suffering from neurological
disorders. Traditionally, studies examining structural as well as functional brain imaging
data in psychiatric populations often report changes in a multitude of different, discrete
brain regions. However, interpreting focal changes in isolation may ignore important and
relevant relationships between regions, especially in light of the massive
interconnectedness of brain regions resulting in complex circuitry (Hulshoff Pol &
Bullmore, 2013). In this regard, network-based approaches allow us to draw conclusions
about brain organization and pathological mechanisms that extend beyond treating
regions in isolation with the potential to derive new theories about aetiopathology (Fornito
& Bullmore, 2015). An ever increasing body of literature suggests that brain disorders
indeed go along with alterations in structural as well as functional large-scale brain
networks (Fornito, Zalesky, & Breakspear, 2015; Griffa et al., 2013; Wen, He, & Sachdev,
2011). Consequently, recent endeavors led to the foundation of pathoconnectomics, i.e.
the mapping of abnormal brain networks, under the assumption that psychiatric disorders
are in fact disorders that manifest on the level of networks and therefore require an
examination of network level organization (Rubinov & Bullmore, 2013). In order to better
understand the underlying pathogenetic principles and meachnisms of psychiatric
disorders, different perspectives can be utilized to examine networks. More precisely,
networks can be interrogated at the circuit level, on the level of topology or by employing
hypothesis-free, data-driven approaches on a connectome-wide basis (Fornito & Bullmore,
2015). As an example of the circuit level perspective, Seeley et al. (2009) could show that
specific dementia syndromes differentially target functional connectivity networks.
Regarding network topology, interesting results regarding the importance of hubs and
their implication in a broad range of different brain disorders were provided by (van den
Heuvel & Sporns, 2013), while the data-driven approach taken in connectome-wide studies
allows for unbiased assessment of global network characteristics. As an example, Zalesky
et al. (2011) could show that white matter network efficiency in schizophrenia was not
associated with performance regarding intellectual ability while it was associated in

healthy control subjects.
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1.3.3 Methods and Measures used in Current Studies

The following section briefly describes the methods used to construct the brain graphs
analyzed in Project 1 and 2 as well as the measure used in project 3. Of note, the
descriptions are conceptual and several intermediate steps are not explicitly mentioned.
All three projects described in this thesis strongly draw on Freesurfer, a software suite
designed to allow processing and analysis of brain imaging data (Dale et al., 1999; Fischl et
al., 1999). In short, a high resolution structural T1-weighted image (Figure 2A) was used to
identify gray/white matter (Figure 2B, colored in red) as well as gray matter/pial
boundaries (Figure 2B, colored in green). Based on these boundaries, two corresponding
surfaces were reconstructed for each subject (Figure 2C). Subsequently the brain was
parcellated according to an atlas into discrete cortical and subcortical brain regions (Figure
2D). In case of Project 3, hippocampus volumes were computed for each subject based on
subcortical volumetric data (lower part of Figure 2D). For Project 1 and 2, the parcellated
brain regions were defined as the nodes thus allowing the derivation of connectivity
matrices (Figure 2E). Figure 3 illustrates the derivation of the connectivity measure used
within Project 1 and 2. In both cases, the resulting connectivity matrices were depicting

undirected, weighted graph.

A B

Figure 2: lllustration of node derivation

A) T1-weighted MR image. B) Identification of gray matter/white matter boundary, depicted in
red, and white matter/pial boundary, depicted in green. C) Reconstructed surface representa-
tion. D) Atlas-based parcellation into descrete cortical and subcortical brain regions. E) Arrange-
ment of nodes in form of an adjacency matrix.
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For Project 1, the edge weights were defined on the basis of fiber tracking algorithms that
derive information about white matter tracts on the basis of DWI data. More specifically,
for every possible combination of nodes, an algorithm is initiated that follows the principle
diffusion direction derived by fitting a tensor to each voxel’s FA data and tracking is
stopped in accordance with various termination criteria (Figure 3A). For Project 2, the edge
weights were defined on the basis of local gyrification indices (IGl). The index is computed
by dividing the pial surface area under a ROl that is adjacent to the pial surface by the size
of the ROI itself (Schaer et al., 2008). Thus, a large index indicates that the surface area
below the ROl is large when compared to the ROl itself, pointing towards stronger cortical
convolution, i.e. gyrification (Figure 3B). IGIs were computed for evenly spaced vertices
(white dots in top row of Figure 3B) over the cortical surface, and subsequently averaged
within nodes. After acquiring the IGIs and adjusting their values for the effects of various
covariates, a correlation between every possible pair of nodes was computed and

subsequently used as the edge weight (Figure 3B).
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1.4 Aims of the Thesis

The overall goal was two-fold. Firstly, to employ innovative brain network modeling and
analyses techniques to examine how alterations in MRI-derived structural brain networks
may inform pathophysiological models of OCD as well as aiming at generating new
hypotheses that can potentially be examined using other morphological techniques. To this
end, connectome-wide anatomical networks were constructed based on parcellations of
high resolution T1l-weighted MRI sequences and two different measures of structural
connectivity. In the first project, connectivity networks were derived from DTI tractography
allowing to draw inferences about macroanatomical, white matter structural connectivity
differences as well as topological properties. In the second project, the framework of
structural covariance was applied using a network based approach in conjunction with
local gyrification indices as a measure related to neurodevelopmental aspects. Probing
whether alterations in gyrification based networks exist can potentially inform
neurobiological models of OCD in this regard. Secondly, in light of recent findings regarding
hippocampal volume alterations in OCD (see section 1.2.3) it was examined whether the
consideration of symptom profiles allowed to identify relationships between hipopcampal
volumes and symptom related parameters that extend beyond simple associations found

between isolated symptoms and morphological alterations.
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Chapter 2

Project 1: “Connectomics-based
structural network alterations in

obsessive-compulsive disorder”

The current chapter includes the research article “Connectomics-based structural network
alterations in obsessive-compulsive disorder”. This article provides evidence for an
involvement of mainly temporo-limbic regions in OCD that are typically associated with
emotion processing by analyzing brain networks derived from structural T1-weighted MRI
data in conjunction with (DTI). It thus provides further support of the need to revise the
classical model of pathophysiology. The article was published in Translational Psychiatry in

2016.

Contributions:

Authors: Tim Jonas Reess, Oana Georgiana Rus, Ruben Schmidt, Marcel A. de Reus, Michael

Zaudig, Gerd Wagner, Claus Zimmer, Martijn P. van den Heuvel, Kathrin Koch

The author of this thesis is the first author of the manuscript. T.J.R., K.K., O.G.R., with the
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participants and conducted data acquisition. T.J.R., R.S., M.A.D.R, M.P.v.d.H performed
analyses and contributed analytic tools. T.J.R. wrote the manuscript in consultation with
0.G.R,, RS.,, M.Ad.R,, M.Z, G.W,, C.Z,, M.P.v.d.H., K.K. All authors discussed the results

and revised the final manuscript.
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ORIGINAL ARTICLE

Connectomics-based structural network alterations in

obsessive-compulsive disorder

TJ Reess'?, OG Rus'?, R Schmidt®, MA de Reus* M Zaudigs, G Wagnerﬁ, C Zimmer', MP van den Heuvel*” and K Koch'??

Given the strong involvement of affect in obsessive-compulsive disorder (OCD) and recent findings, the current cortico-striato-
thalamo-cortical (CSTC) model of pathophysiology has repeatedly been questioned regarding the specific role of regions involved in
emotion processing such as limbic areas. Employing a connectomics approach enables us to characterize structural connectivity on a
whole-brain level, extending beyond the CSTC circuitry. Whole-brain structural networks of 41 patients and 42 matched healthy
controls were analyzed based on 83 x 83 connectivity matrices derived from cortical and subcortical parcellation of structural T1-
weighted magnetic resonance scans and deterministic fiber tracking based on diffusion tensor imaging data. To assess group
differences in structural connectivity, the framework of network-based statistic (NBS) was applied. Graph theoretical measures were
calculated to further assess local and global network characteristics. The NBS analysis revealed a single network consistently displaying
decreased structural connectivity in patients comprising orbitofrontal, striatal, insula and temporo-limbic areas. In addition, graph
theoretical measures indicated local alterations for amygdala and temporal pole while the overall topology of the network was
preserved. To the best of our knowledge, this is the first study combining the NBS with graph theoretical measures in OCD. Along with
regions commonly described in the CSTC model of pathophysiology, our results indicate an involvement of mainly temporo-limbic

regions typically associated with emotion processing supporting their importance for neurobiological alterations in OCD.

Translational Psychiatry (2016) 6, €882; doi:10.1038/tp.2016.163; published online 6 September 2016

INTRODUCTION
Obsessive-compulsive disorder (OCD) is a psychiatric disorder
characterized by recurrent, persistent and intrusive thoughts or
images typically causing distress or anxiety (that is, obsessions),
and repetitive behaviors aimed at reducing the feeling of anxiety
(that is, compulsions).1 Traditionally, alterations in cortico-striato-
thalamo-cortical (CSTC) circuitry have been associated with the
pathophysiology of OCD.? The CSTC model differentiates between
affective and cognitive circuits, reflecting an impact of associated
structures on emotional and cognitive functioning. However, it has
recently been pointed out that the prevailing model does not
specifically take into account the involvement of other structures
such as amygdala and hippocampus and their interactions with
frontal areas in mediating anxiety.? Likewise, Menzies et al.>
concluded that several brain regions outside of the classical CSTC
model may play a role in the pathophysiology. Based on a review
of voxel-based morphometry (VBM) studies in OCD and in line
with the aforementioned studies, Piras et al.* similarly state an
involvement of structural alterations in regions outside of the
CSTC loops such as temporo-limbic regions to be relevant in OCD.
Taken together, there is emerging evidence suggesting several
brain regions other than fronto-thalamo-cortical areas to play a
major role in the pathophysiology of OCD.

Progress has been made in identifying structural alterations in a
broad range of psychiatric diseases using various methods such as

VBM,> and diffusion-weighted imaging.® With the advent of
connectomics, it is now feasible to shift the view from a regional
perspective toward a network perspective based on the integra-
tion of various forms of anatomical data to assess connectivity of
networks in brain disease,’ including psychiatric disorders.®'° The
conceptualization of the brain as a complex network calls for
different approaches in modeling and analysis to infer information
from brain magnetic resonance (MR) images and the mathema-
tical framework of graph theory has proven to be especially useful
in the analysis of such data.'’ A broad range of measures can be
calculated to assess topological properties of underlying brain
graphs.'? Assessing these measures, one can potentially derive
information about fundamental organizational properties in a
specific group or compute differences between groups'® (for
example, healthy controls vs psychiatric populations).'*

To date, most studies addressing network alterations in OCD
have focused on functional networks derived from resting-state
functional magnetic resonance imaging (rs-fMRI)."”>'® Within a
control network comprising frontal, parietal and cingulate cortex,
as well as precuneus, thalamus and cerebellum, patients displayed
alterations in small-world parameters.'® A recent study'® found
decreased connectivity within the limbic system (amygdala and
hippocampus) potentially related to problems with implicit
learning and emotion processing observable in OCD patients. In
addition, the same study reported an increase in connectivity
within the executive/attention network in OCD possibly related to
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Correspondence: TJ Reess, Department of Neuroradiology & TUM-Neuroimaging Center (TUM-NIC), Klinikum rechts der Isar, Technische Universitat Miinchen, Ismaninger Strasse

22, Miinchen 81675, Germany.

E-mail: tim.reess@tum.de

These authors contributed equally to this work.

Received 9 November 2015; revised 11 July 2016; accepted 18 July 2016



27

Connectomics-based structural network alterations
TJ Reess et al

Y-BOCS total

Medication
SSRI
TCA
SSRI+antipsychotic
SSRNI
SSRI+methylphenidate
SSNRI+methylphenidate
NDRI+SSNRI
Benzodiazepine+antipsychotic

Table 1. Demographic and clinical sample characteristics
Characteristics OCD (n=41) HC (n=42) P-value
n (%) or Mean + s.d. (range) n (%) or Mean + s.d. (range)
Female 27 (65.9%) 24 (57.1%) P=0.42
Age (Years) 32.5+10.0 (20-63) 31.8+8.3 (20-57) P=0.73
Age of onset 15.9+6.40 —
Disease duration 16.8+10.6 —

22.0+5.4 (15-36) —

Obsession 11.4+3.2 (4-17) S
Compulsions 10.6 +3.5 (0-19) —
OCI-R total 25.2+9.2 (9-47) —
Hoarding 2.6+29 (0-11) —
Checking 59+3.2(1-12) —
Ordering 3.5+3.7 (0-12) —_
Neutralizing 1.9+26 (0-10) —
Washing 46+3.7 (0-11) —
Obsessing 6.8+3.0 (1-12) —
BDI 18.1+11.4 (0-53) =t
Comorbidities 22 (53.7%) —
Depression 12 (29.3%) —
Anxiety 3(7.3%) —_
Depression and anxiety 3 (7.3%) —
Personality disorder 1 (2.4%) —
Eating disorder 1 (2.4%) —
Depression, anxiety, ADHD 1 (2.4%) —
Depression, eating disorder, personality disorder 1 (2.4%) —

29 (70.7%) —_
16 (55.2%) —
4 (13.8%) —
3 (10.3%) —_
2 (6.9%) p—
1 (3.4%) —
1 (3.4%) —_
1 (3.4%) —_
1 (3.4%) —

Abbreviations: ADHD, attention deficit hyperactivity disorder; BDI, Beck Depression Inventory; HC, healthy controls; NDRI, norepinephrine-dopamine reuptake
inhibitor; OCD, obsessive-compulsive disorder; OCI-R, Obsession-Compulsion Inventory revisited; SSNRI, selective serotonin-norepinephrine reuptake
inhibitor; SSRI, selective serotonin reuptake inhibitor; TCA, tricyclic antidepressant; Y-BOCS, Yale-Brown Obsessive-Compulsive Scale.

excessive monitoring and impairments in coping with threat/
uncertainty. Only very few studies have examined alterations in
structural networks in OCD using the method of connectomics.
One study'® focused on cortical thickness and due to the nature of
the specific measure had to disregard subcortical structures
assumed to be of major importance in OCD. The only study®®
defining structural networks based on diffusion data, reports
disrupted topological organization in OCD as well as reduced
nodal efficiency in frontal and parietal regions as well as the
caudate.

An important question is whether functional alterations
observed across studies have a structural correlate. Thus far, no
study to date has focused on structural network alterations in OCD
using/adopting a network-based statistic (NBS) approach.'* The
current study aims at examining differences in the structural
connectome in a fairly large sample of 41 OCD patients and 42
healthy controls based on the combination of anatomical and
fiber tracking data derived from high-resolution structural MR
scans and diffusion tensor imaging. Two approaches are used: NBS
is applied to assess differences in specific topological features of
networks, effectively controlling for the multiple comparison
problem. Second, graph theoretical measures are applied to
further identify potential changes in topologic properties. Since
there is accumulating evidence for an involvement of regions
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outside the CSTC circuits in OCD, we expected to find structural
alterations in areas not limited to CSTC loops. More specifically,
due to the nature of the disease we expected an involvement of
areas implicated in anxiety and emotion processing.

MATERIALS AND METHODS
Participants
A total of n=41 patients with OCD as the primary diagnosis according to
DSM-IV criteria were included in the study. All diagnoses were made by an
experienced psychiatrist from the Windach Institute and Hospital of
Neurobehavioural Research and Therapy specialized in the treatment of
OCD. As a control group n=42 age- and gender-matched healthy subjects
were included (for demographic and clinical characteristics see Table 1).
Exclusion criteria for both groups were a history of clinically important
head injuries, seizures or neurological diseases. There were no significant
differences between healthy controls and OCD patients regarding age
(t-test; P=0.73) and gender 0(2—test; P=0.42). At time of the study, n=12
patients were drug-naive or medication-free for at least 3 weeks. No
patients were excluded due to comorbidities and n= 22 patients had one
or more comorbid diagnoses. Healthy controls with a history of psychiatric
illness were excluded. All patients and controls were right-handed as
assessed by Annett’s handedness inventory.?' The patients were recruited
from the Windach Institute and Hospital of Neurobehavioural Research and
Therapy, Germany. To assess clinical severity of obsessive-compulsive



symptoms, patients were handed the self-rated version of the Yale-Brown
Obsessive-Compulsive Scale (Y-BOCS)*22* as well as the Obsession-
Compulsion Inventory revisited (OCI-R).2>?° In addition, the Beck Depres-
sion Inventory (BDI)*”?® was used to assess depressive symptoms. The
study was approved by the local Ethics Committee of the Klinikum rechts
der Isar, Mlnchen.

Image acquisition

MRI was conducted on a 3 T Philips Ingenia (Philips Healthcare, Best, the
Netherlands) using a 12-channel (SENSE) head coil. Structural imaging
consisted of a T1-weighted 3D MPRAGE sequence (170 slices, sagittal
orientation, 240x240 matrix, 1mm isotropic resolution, TR=9 ms,
TE=4ms, flip angle=8°), and a diffusion-weighted imaging sequence
(60 slices, 112x112 matrix, 2 mm isotropic resolution, TR=9000 ms,
TE=57 ms, flip angle =90°, 32 diffusion directions, b-value =1000 s mm~2,
two b=0 images).

Image processing

Based on the high-resolution T1-weighted structural image, the cortical
and subcortical structures as well as the brain stem were parcellated using
Freesurfer (V5.1., http://surfer.nmr.mgh.harvard.edu/). Processing included
automatic segmentation into gray and white matter tissue compartments
followed by parcellation of the gray matter mask into distinct brain regions
based on a normalized template. The resulting parcellation consisted of a
total of 83 distinct brain regions of which 68 were cortical (34 per
hemisphere), 14 subcortical (7 per hemisphere: thalamus, caudate,
putamen, pallidum, hippocampus, amygdala, nucleus accumbens) and 1
represented the brainstem?® ' (see Supplementary Figure 1 for illustration
of nodes). This parcellation scheme comprises several nodes that are
thought to play an important role in the pathophysiology of OCD. Of
special interest are several subcortical (for example, caudate, putamen,
nucleus accumbens, amygdala, thalamus), as well as cortical regions
(rostral middle frontal, medial orbital frontal, insula). In addition, this
scheme is in line with studies examining other psychiatric diseases®*? and
may thus facilitate comparison of results across diagnostic categories.
Diffusion data were corrected for movement and eddy-current
distortions by realigning all diffusion-weighted images to the diffusion
unweighted (b=0) scan. A tensor was fitted to each voxel’s individual
diffusion profile by applying a robust fitting method.** Based on the fitted
tensors, FA values as well as the preferred direction of diffusion
(represented by the principal eigenvector) were calculated for each voxel.

Tractography

Reconstruction of white matter tracts was based on Fiber Assignment by
Continuous Tracking (FACT).>*® To initiate tracking, eight seeds were
placed in every voxel assigned to be white matter tissue based on the
brain mask. Starting from each seed, tracking proceeded along the main
diffusion direction propagating from voxel to voxel. Fiber tracking was
terminated if the FA-value in a given voxel was < 0.1, the angle between
the preferred diffusion direction of two subsequent voxels exceeded 45° or
the streamline exceeded the brain mask.

Graph construction

A graph is the representation of a network in mathematical terms and is
defined by a set of nodes, and a collection of edges describing the
interactions between the nodes. To perform network analysis, a graph
representing the structural connectivity network was constructed indivi-
dually for each participant. Each node was assigned a specific brain region
derived from the previous parcellation step. For every possible pair of
nodes (N;N)) it was determined whether a connection, that is a continuous
streamline between N; and N;, was present or not. If present, the value of
the connection was assigned the value of the number of streamlines (NOS)
as indicated by the fiber tracking results. If a connection was absent, the
connectivity value was set to zero. In this manner, for every participant, a
single undirected, NOS-weighted graph was constructed. To avoid the
influence of spurious connections, all edges with a streamline count of < 2
were set to zero. A group threshold was applied to balance the influences
of false-positive and false-negative reconstructions of tracts.>’ In a first
step, for each group separately, edges that were present in at least 60% of
all group members were retained while all other edges were set to zero. In
a second step, all edges that were present in at least 60% of the entire
sample were retained. All subsequent analyses were conducted using the
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output from applying the 60% threshold within the entire sample. To
check the stability of results, we additionally thresholded all matrices with
varying thresholds, ranging from 30 to 90% with 5% increments and
repeated all analysis (see Supplementary Tables 7 and 8).

NBS analysis

Group differences between structural connectivity matrices were exam-
ined using the framework of the NBS introduced by Zalesky et al.'* NBS is a
recently developed nonparametrical method to avoid the multiple
comparison problem encountered when conducting mass univariate
significance testing in graphs. Statistical significance is established for
specific subsets of nodes that are mutually connected in topological rather
than physical space. The first step in the analysis requires the calculation of
a test statistic (here t-statistic) for each individual edge based on the
differences in connectivity values (that is, NOS) between groups. Second, a
primary component-forming threshold (here P < 0.01, uncorrected) is
applied to identify all edges displaying potential differences in connectivity
strength. Third, all subthreshold edges are assessed for mutual connec-
tions forming clusters in topological space that may point toward the
existence of non-chance clusters. Permutation testing is then applied to
compute P-values for every component previously identified. To this end,
steps 1 through 3 are repeated for each of the 5000 random permutations
of group assignments (that is, patient or control), with noting the
maximum cluster sizes of components resulting in a null distribution for
the largest component size. The final hypothesis test is then carried out for
the empirically determined components by comparing their sizes with the
proportion of permutations yielding a component with equal or greater
size. The final result controls the family-wise error rate at cluster level with
P < 0.05. Visualization of NBS networks was conducted using graphViz V2.3
(www.graphviz.org).®®

Graph theoretical analyses

All measures were calculated on the individual structural connectivity
matrices using the Brain Connectivity Toolbox (http://www.brain-connec
tivity-toolbox.net/)'? under Matlab (R2014a, http://mathworks.com) and
subsequently compared between groups. The following graph metrics
were calculated for global description of the networks: (1) normalized
global weighted clustering (y), (2) normalized characteristic weighted path
length (2), (3) global strength, (4) total fiber counts. To calculate y and A, for
every participant’s brain network a set of 1000 random networks with
identical degree sequence was formed. Subsequently for each of these
networks, the weighted clustering coefficient and characteristic weighted
path length were calculated and used for normalization. For description of
nodal properties, the following node-specific (that is, region specific) graph
metrics were calculated: (1) weighted clustering coefficient, (2) shortest
weighted path length, (3) nodal strength. All comparisons involving graph
measures were tested using permutation-based testing (10 000 permuta-
tions) corrected for multiple comparisons using false discovery rate (FDR)-
correction® if applicable.

Analysis of nodal volumes

Volume differences on a nodal level can in principle lead to differences in
the number of reconstructed streamlines and thus drive parts of the
results. To check for such influences, a group comparison for the volumes
of all nodes was conducted using permutation testing (10 000 permuta-
tions) and FDR-correction.

Correlations

Potential relationships between clinical scores (Y-BOCS, OCI-R, BDI) and
network measures were assessed including the NOS of edges comprising a
significantly different cluster in the NBS analysis, as well as graph
measures, displaying significant differences on a local and global scale.
All correlations were corrected for multiple comparisons using FDR-
correction.

Influence of medication status

To assess the influence of medication status on results, we separately
compared the subgroup of patients receiving medication with all healthy
controls. This decision was based on the fact that the subsample of
patients not receiving any medication (n=12) was likely to cause a lack of
power in the statistical analysis. Instead, using the above mentioned
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L medial orbitofrontal cortex

L temporal pole

L putamen

Linsula

L amygdala

L pallidum

L entorhinal cortex

Figure 1.
NBS, network-based statistic; OFC, orbitofrontal cortex.

approach, it was assessed whether the effects under consideration
increased or decreased in magnitude, indicating a possible influence of
medication status.

RESULTS

NBS of structural connectivity alterations in OCD

NBS analysis revealed a single network of decreased structural
connectivity in OCD as compared with healthy controls (P=0.009).
The network comprised a total of seven nodes connected by
seven edges. The entire network was confined to the left
hemisphere and included the following nodes: medial orbito-
frontal cortex (mOFC), putamen, pallidum, amygdala, entorhinal
cortex, insula and temporal pole (see Figure 1 for a depiction of
the entire network structure). All connections between nodes
were impaired in patients, that is, for each edge within the cluster,
the NOS was consistently reduced in patients (see Table 2). For
illustration purposes see Figure 2 depicting the aggregated
streamline trajectories comprising the edges within the signifi-
cantly impaired cluster for patients and healthy controls.

The analyses results obtained by varying the initial thresholds
are presented in Supplementary Table 7. Overall, the NBS results
were stable with only minor differences in cluster size for the most
extreme thresholds (80-90%).

Graph analysis

The overall topology of the networks was found to be in the small-
world regime for both groups with the normalized global
clustering coefficient y>1 (meanzs.d.; patients: y=3.0604+
0.2456; controls: y=3.0016 + 0.1324; P=0.183) and the normalized
characteristic global path length A~1 (patients: A=1.2125+
0.0891; controls: A=1.2052 + 0.1085; P=0.748). There was a trend
for a reduced global degree strength in patients (meanz+s.d,;
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Left: Black nodes and red edges comprise a cluster of significantly
impaired structural connectivity in patients based on NBS results
(p=0.009). Right: Magnified view of the cluster (not to scale).

L, left; mOFC, medial orbitofrontal cortex.

Connectome map representing nodes (circles) and edges (lines) of the structural network for the whole group. L, left;

patients: 3986.2 + 771.0; controls: 4281.0 +651.7; P=0.056), as well
as a trend for a reduced total fiber count in patients (mean +s.d.;
patients: 165430+31996; controls: 177 660+ 27 044; P=0.063).
For local topological measures, the following significant differ-
ences were found: (1) decreased weighted clustering coefficients
of left amygdala (P <0.001, FDR-corrected), left temporal pole
(P < 0.001, FDR-corrected) and right temporal pole (P=0.002, FDR-
corrected); (2) increased shortest weighted path length of left
amygdala (P < 0.001, FDR-corrected), (3) decreased nodal strength
of left amygdala (P < 0.001, FDR-corrected). For nodes with signifi-
cant differences based on uncorrected results see Supplementary
Table 1. Regarding the stability of graph measure results, all results
for amygdala are stable across the entire range of thresholds.
There is some minor variation in significant differences for the
weighted clustering coefficients and shortest weighted path
lengths (see Supplementary Table 8). For a depiction of the
global graph measures plotted as a function of connectivity matrix
density see Supplementary Figure 2.

Analysis of nodal volumes

Analysis of nodal volumes vyielded no significant differences
(P> 0.05, FDR-corrected) for any of the nodes derived from cortical
parcellation. See Supplementary Table 2 for details regarding the
volume comparisons of all nodes comprising the NBS cluster.

Correlation between clinical scores and connectivity parameters
There were no significant correlations between clinical scores and
connections found to be impaired in the NBS analysis or for global
and local graph measures (see Supplementary Tables 4-6 for
reports of trend correlations between clinical scores and graph
measures).
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Table 2.

Number of streamlines of edges comprising the network displaying significant group differences based on NBS analysis

Network edges

NOS-value OCD mean +s.d.

NOS-value HC mean +s.d. P-value/t-statistic

L putamen-L amygdala 4141 +2243
L pallidum-L amygdala 166.9+151.2
L putamen-L temporal pole 239.7 +140.5
L amygdala-L temporal pole 393.0+169.0
L temporal pole-L insula 1104 +116.4
L mOFC-L insula 51.9+62.2

L amygdala-L entorhinal cortex 138.6 +104.0

656.4 + 249.6 P <0.001, t=4.13
317.6 +231.9 P <0.001, t=3.65
365.7 +212.6 P=0.002, t=3.18
533.0+246.7 P=0.003, t=3.01
204.3+168.8 P=0.004, t=2.99
126.8+136.8 P=0.005, t=2.94
2234+162.3 P=0.006, t=2.83

Abbreviations: HC, healthy controls; L, left; mOFC, medial orbitofrontal cortex; NBS, network-based statisticc NOS, number of streamlines; OCD,
obsessive-compulsive disorder. Mean + s.d. for the number of streamlines for each edge within the NBS cluster.

pallidum

putamen

/

temporal pole

mOFC

insula

amygdala

entorhinal cortex

Figure 2.

Illustration of the streamline trajectories comprising the edges of the significant NBS component. (a) For better anatomical reference,

the nodes within the NBS component were extracted from the fsaverage segmentation and projected on the fsaverage anatomical T1-
weighted image image. Fiber tracking results show aggregrated streamlines within the NBS component over all (b) controls and over all (c)
patients. Aggregate fiber clouds have been downsampled to streamline counts representative of the subject groups. mOFC, medial

orbitofrontal cortex; NBS, network-based statistic.

Influence of medication status

The NBS results obtained from comparing healthy subjects with
patients receiving medication yielded one significant cluster
(P=0.047, corrected). It comprised a total of five nodes connected
by five edges. The entire network was confined to the left
hemisphere and included the following nodes: putamen, palli-
dum, amygdala, insula, and temporal pole. All connections
between nodes were impaired in patients, that is, for each edge
within the cluster, the NOS was consistently reduced in patients
(see Supplementary Table 3).

For local topological measures, the following significant
differences were found: (1) decreased weighted clustering
coefficients of left amygdala (P < 0.002) and left temporal pole
(P<0.002); (2) increased shortest weighted path length of left
amygdala (P<0.001), (3) decreased nodal strength of left
amygdala (P < 0.001).

DISCUSSION

The current study reports on NBS-based structural connectome
differences between OCD patients and healthy controls, as well as
graph theoretical analysis parameters. The NBS analysis revealed a
single network with decreased structural connectivity in OCD. The
affected subnetwork was lateralized to the left side and consisted

of connections between mOFC, putamen, pallidum, amygdala,
entorhinal cortex, insula and temporal pole. Several of these
nodes are commonly implicated in the classical CSTC model of
OCD such as the mOFC, putamen and pallidum providing
evidence of the involvement of altered structural connectivity
between these areas in the pathophysiology of OCD.

Interestingly, the connections between several nodes within the
NBS cluster resemble a fronto-temporal pattern connecting mOFC,
insula, temporal pole, amygdala and entorhinal cortex. Wide-
spread anatomical connectivity between the aforementioned
areas has been described in the literature. A major connection
between the orbital and temporal gyrus is provided through the
uncinate fasciculus (UF)*® which is commonly regarded as forming
part of the limbic system due to connectivity and topology.*'
Fibers are originating in the parahippocampal area, including the
entorhinal cortex and temporal pole, reaching the orbital cortex
after passing the amygdala and the limen insula.*' Some authors
also describe an extension of the UF to the amygdala.*? Using a
diffusion tensor imaging fiber tracking approach in humans, the
anterior insula has been demonstrated to contain fibers connect-
ing orbital/inferior frontal areas and temporal areas with parts of
the fibers overlapping with the UF.*®

Several studies using DWI measures and Tract-based Spatial
Statistics (TBSS) have reported microstructural alterations within
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the UF in OCD, among others a decrease in FA values in left and right
UF, as well as a reduced mean diffusivity in left UF in patients
receiving medication** and an increase in axial diffusivity in left and
right UF in a pediatric sample of OCD patients.*> Regarding our
results, a potential involvement of the UF seems possible as the
connections between the aforementioned nodes are mainly
provided through fibers that closely resemble the trajectory of the
UF (also see Figure 2). Unlike TBSS, the connectomics approach taken
in the current analysis does not focus on voxel-wise white matter
alterations within a skeleton of the main fiber tracts but rather on the
NOS between nodes. However, it is remarkable that there might be a
convergence between results derived using various methods such as
TBSS and NBS. Our results are also in line with a recent review/meta-
analysis*® that comes to the conclusion that reductions in UF
structural connectivity might be interpreted as the correlate of
processing deficits in the emotional domain observed in neuropsy-
chological research conducted with OCD patients.

A large body of evidence points toward wide-spread alterations
in cortical volumes in OCD patients* with changes mainly affecting
frontal, temporal, thalamic and temporo-limbic areas. In addition,
a recent multicenter study®” including over 400 patients, found a
relative decrease of gray matter volume in the inferior frontal
cortex extending to the anterior insula in OCD patients. As
mentioned above, volume differences can lead to differences in
the number of reconstructed streamlines and therefore influence
results. The analysis of volume differences yielded no significant
results between patients and controls for any of the nodes in the
NBS cluster. This indicates that differences in the number of
reconstructed streamlines are most likely not due to regional
changes in volume but may rather indicate a correlate of
underlying pathology. Note that the absence of volumetric
differences in our sample does not necessarily contradict the
findings from meta-analyses as they generally possess a higher
statistical power to detect even subtle differences.

The importance of the amygdala is not specifically considered
in the traditional CSTC model even though there is accumulating
evidence indicating an involvement of this structure in the
disease®®*? and an ongoing debate about its role in the
pathophysiology of OCD.” The NBS result clearly indicates an
involvement of the amygdala. Specifically, within the impaired
NBS cluster it is also the node displaying the highest binary degree
(for example, the highest number of direct neighbors), providing a
link between temporal and striatal areas. The important role is
further underlined by results from graph theoretical measures
indicating a decreased weighted clustering coefficient, a decrease
in weighted degree strength, as well as an increased shortest path
length for left amygdala. The clustering coefficient measures how
strongly connected the neighbors of amygdala are and a decrease
in clustering may thus point toward a decreased structural
connectivity among the directly connected neighbors of the
amygdala. This result might be interpreted such that in OCD,
information normally traversing rather directly between immedi-
ate neighbors in healthy subjects may be more prone to be
mediated via connections involving the amygdala, thus
allowing it to exert an increased control over information flow
between neighbors. As a measure of integration reflecting
information about the connectivity between amygdala and all
remaining nodes, the increase in shortest path length further
indicates that amygdala is not as efficiently connected as
in healthy controls. Taken together, there might be an additive
effect in the sense that information is not only more prone to
travel through amygdala, but also the connectivity between
amygdala and its neighbors, as well as other brain regions is not as
efficient.

Considering anxiety to be a core phenomenon of OCD, the
finding of altered structural connectivity of limbic areas (such as
OFC and amygdala) is especially striking since these areas are
commonly thought to be central to emotion processing and
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behavioral regulation®*** with amygdala playing a central role for

fear and anxiety. Hence, the alterations found in graph measures
substantiate current discussions about the relevance of the
amygdala for OCD and may represent the structural substrate of
the pronounced feelings of anxiety preceding or accompanying
patients” obsessive thoughts and compulsive actions.

Similar to left amygdala, both temporal poles also exhibited a
decreased weighted clustering coefficient. The temporal pole has
been implicated in various domains such as memory,” as well as
emotional processing, coupling sensory stimulation to emotional
responses.”®” There is first evidence of an involvement of altered
temporal pole structure and function in OCD. Van den Heuvel
et al.*® found a negative correlation between checking symptoms
and gray matter and white matter volume. Furthermore, the level
of functional activation in the anterior temporal pole and
amygdala during symptom provocation is reported to be
associated with better subsequent treatment response to
cognitive behavioral therapy.®® Taken together, previous and
current findings provide support for the notion of structural
alterations in amygdala and temporal pole in OCD which may be
clinically relevant and may go along with an increase in functional
activation. The association between increased functional activa-
tion in these limbic core regions and subsequent responsivity to
treatment is in line with the emotional processing theory by Foa,*°
which assumes that activation of limbic (and predominantly
amygdala) regions during the experience of clinical symptoms is a
prerequisite for successful exposure-based treatments for anxiety
disorders. Whether there is a direct association between functional
and structural alterations, as well as an analog association in OCD
between structural alterations in these regions and individual
treatment responsivity remains to be elucidated. To date there is
only one study examining structural white matter network
characteristics in OCD from a network perspective reporting
several alterations in global and local graph measures.*® Their
main findings are a reduction in global efficiency, as well as an
increase in shortest path length, as well as y and A in patients. In
addition, they report a significant correlation between A and the
Y-BOCS obsession score. There are, however, considerable
methodological differences in comparison to our study that might
have caused divergent findings. First and foremost, the composi-
tion of the sample differs regarding the number of patients (n=41
vs n=26), as well as other characteristics (with all patients being
unmedicated with no comorbidities in the study by Zhong
et al®®). Second, several parameters directly influencing the
number of reconstructed streamlines differed substantially, such
as the parcellation scheme which affects the volume of nodes and
thus influences the number of voxels within each ROI to initialize
tracking from. Furthermore, the tracking was initialized from one
seed within each voxel in the study by Zhong et al. compared with
eight seeds in the current study. In addition, we applied a more
liberal threshold (FA-value < 0.1 vs FA-value < 0.2 used by Zhong
et al.) as termination criteria for fiber tracking. Finally, we applied a
60% threshold to all connectivity matrices to find a good balance
between false-positive and false-negative connections (see
Materials and methods section). Taken together, the combination
of differences in sample composition and choices influencing the
number of reconstructed streamlines might explain divergent
findings.

Apart from examinations of structural connectivity, there is an
increasing number of studies using functional MRI to further
elucidate the neurobiological basis of OCD. Géttlich et al.'® report
a decrease in connectivity between limbic (amygdala, hippocam-
pus and parahippocampal gyrus) and basal ganglia, as well as the
default mode and executive/attention network in patients. In
addition, the connectivity within the limbic network was reported
to be impaired. Similarly, Jung et al®’ found an increased
functional connectivity between nucleus accumbens and lateral
orbitofrontal cortex during rest and a decrease in functional



connectivity between nucleus accumbens and amygdala during
incentive processing in patients. These results were interpreted as
evidence in favor of abnormalities in modulatory influence of
affective/motivational states on functional network connections
in patients. Keeping in mind that the concept of functional
connectivity is based on statistical associations and that the
relationship between alterations in function and structure is not a
straight-forward one-to-one mapping but rather complicated,®?
there still seems to be an overlap between regions implicated in
structural networks displaying alterations as shown in this study
(amygdala, mOFC, striatal and temporal regions) and findings
from altered functional connectivity between fronto-striato-
temporal networks. It seems plausible that the structural altera-
tions especially of connections between limbic regions might
contribute to the proposed abnormalities in modulatory influence
of affective/motivational states.

The current study has several limitations. Despite being fairly
large, the examined sample comprised a certain proportion of
patients with comorbid disorders, as well as a mix of medicated
and unmedicated patients. Previous reports indicate an influence
of selective serotonin regftake inhibitor treatment on brain
structure and function.*®* Nevertheless, the analysis of the
subgroup of patients receiving medication is in good accordance
with the primary analysis comparing healthy controls with all
patients. The NBS analysis yielded one significant cluster that was
only slightly varying in size. The magnitude of the differences in
NOS-values increased for all edges in the NBS cluster of the
medicated patients. This effect might be due to true differences in
medication status. Alternatively, the connectivity differences could
be related to differences in symptom severity. On average, the
patient group receiving medication had a higher total Y-BOCS
score than the unmedicated patients though formal statistical
significance was not reached (medicated patients: 22.93 +5.16 vs
unmedicated patients: 19.83 +3.16; P=0.095). The results of the
graph measures computed for the subgroup of medicated
patients were also rather similar to the results obtained from
the original analysis with only the local clustering for the right
temporal pole not reaching statistical significance. This again
could be related to the above mentioned differences. Regarding
the fact that selective serotonin reuptake inhibitors are the first
line of treatment in OCD, influences of medication should be more
rigorously assessed in future studies preferably comparing non-
medicated and medicated groups with healthy controls
separately.

Due to various limitations inherent to the method of fiber
tracking, the accuracy of retrieved streamlines poses an issue in
terms of false-positive and negative connections. To account for
this fact, we applied a group threshold previously shown to strike
a balance between erroneously assigning tracts.>’ In the present
study, a parcellation scheme commonly used in the Freesurfer
suite was applied to increase comparability of results.
Furthermore, the symptom heterogeneity typically found in OCD
patients poses an issue. There is accumulating evidence that
specific symptom dimensions in OCD can go along with specific
alterations in neural processing, as well as structural
alterations.*®8%5 Thus, it seems reasonable to explicitly consider
the heterogeneity of symptom dimensions in future studies by
trying to group patients according to symptom profile or pre-
dominant symptom dimension. Clearly, this approach would call
for even bigger sample sizes to reach sufficient statistical power.

In summary, applying a network-based analysis strategy
comparing structural brain networks of OCD patients and healthy
controls we demonstrate impairments in a specific subnetwork in
patients. Parts of the network overlap with regions commonly
described in the CSTC model of the disease. However, several
implicated regions and their connections are concentrated on a
fronto-temporal axis indicating limbic structures to play a role in
pathology.

32

Connectomics-based structural network alterations
TJ Reess et al

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGMENTS

This study was supported by German Research Foundation (DFG) grants to KK (DFG
KO 3744/2-1) and GW (DFG WA 3001/3-1). TR received a travel stipend from the
Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universitét
Miinchen, to conduct part of the research at the Department of Psychiatry, Brain
Center Rudolf Magnus, University Medical Center Utrecht. The funding agencies had
no influence on the design and conduct of the study including collection,
management, analysis and interpretation of the data, as well as preparation, review
or approval of the manuscript.

REFERENCES

American Psychiatric A. Diagnostic and Statistical Manual of Mental Disorders. Text
Revision (DSM-IV-TR). American Psychiatric Association: Washington, DC, 2000.
Milad MR, Rauch SL. Obsessive-compulsive disorder: beyond segregated cortico-
striatal pathways. Trends Cogn Sci 2012; 16: 43-51.

Menzies L, Chamberlain SR, Laird AR, Thelen SM, Sahakian BJ, Bullmore ET. Inte-

grating evidence from neuroimaging and neuropsychological studies of

obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci

Biobehav Rev 2008; 32: 525-549.

Piras F, Piras F, Chiapponi C, Girardi P, Caltagirone C, Spalletta G. Widespread

structural brain changes in OCD: a systematic review of voxel-based morpho-

metry studies. Cortex 2015; 62: 89-108.

Goodkind M, Eickhoff SB, Oathes DJ, Jiang Y, Chang A, Jones-Hagata LB et al.

Identification of a common neurobiological substrate for mental illness. JAMA

Psychiatry 2015; 72: 305-315.

White T, Nelson M, Lim KO. Diffusion tensor imaging in psychiatric disorders. Top

Magn Reson Imaging 2008; 19: 97-109.

Griffa A, Baumann PS, Thiran JP, Hagmann P. Structural connectomics in brain

diseases. Neuroimage 2013; 80: 515-526.

Korgaonkar MS, Fornito A, Williams LM, Grieve SM. Abnormal structural networks

characterize major depressive disorder: a connectome analysis. Biol Psychiatry

2014; 76: 567-574.

van den Heuvel MP, Mandl RC, Stam CJ, Kahn RS, Hulshoff Pol HE. Aberrant frontal

and temporal complex network structure in schizophrenia: a graph theoretical

analysis. J Neurosci 2010; 30: 15915-15926.

10 Narr KL. Leaver AM. Connectome and schizophrenia. Curr Opin Psychiatry 2015;
28: 229-235.

11 Bullmore ET, Bassett DS. Brain graphs: graphical models of the human brain
connectome. Annu Rev Clin Psychol 2011; 7: 113-140.

12 Rubinov M, Sporns O. Complex network measures of brain connectivity: uses and
interpretations. Neuroimage 2010; 52: 1059-1069.

13 Fornito A, Zalesky A, Breakspear M. Graph analysis of the human connectome:
promise, progress, and pitfalls. Neuroimage 2013; 80: 426-444.

14 Zalesky A, Fornito A, Bullmore ET. Network-based statistic: identifying differences
in brain networks. Neuroimage 2010; 53: 1197-1207.

15 Zhang T, Wang J, Yang Y, Wu Q, Li B, Chen L et al. Abnormal small-world archi-
tecture of top-down control networks in obsessive-compulsive disorder. J Psy-
chiatry Neurosci 2011; 36: 23-31.

16 Shin DJ, Jung WH, He Y, Wang J, Shim G, Byun MS et al. The effects of pharma-
cological treatment on functional brain connectome in obsessive-compulsive
disorder. Biol Psychiatry 2014; 75: 606-614.

17 Hou JM, Zhao M, Zhang W, Song LH, Wu WJ, Wang J et al. Resting-state

functional connectivity abnormalities in patients with obsessive-compulsive dis-

order and their healthy first-degree relatives. J Psychiatry Neurosci 2014; 39:

304-311.

Gottlich M, Kramer UM, Kordon A, Hohagen F, Zurowski B. Decreased limbic and

increased fronto-parietal connectivity in unmedicated patients with obsessive-

compulsive disorder. Hum Brain Mapp 2014; 35: 5617-5632.

19 Kim SG, Jung WH, Kim SN, Jang JH, Kwon JS. Disparity between dorsal and ventral
networks in patients with obsessive-compulsive disorder: evidence revealed by
graph theoretical analysis based on cortical thickness from MRI. Front Hum
Neurosci 2013; 7: 302.

20 Zhong Z, Zhao T, Luo J, Guo Z, Guo M, Li P et al. Abnormal topological organi-

zation in white matter structural networks revealed by diffusion tensor tracto-

graphy in unmedicated patients with obsessive-compulsive disorder. Prog

Neuropsychopharmacol Biol Psychiatry 2014; 51: 39-50.

Annett M. A classification of hand preference by association analysis. Br J Psychol

1970; 61: 303-321.

N

w

I

w

o

~

©

o

1

oo

2

Translational Psychiatry (2016), 1-8



33

Connectomics-based structural network alterations
TJ Reess et al

22 Goodman WK, Price LH, Rasmussen SA, Mazure C, Fleischmann RL, Hill CL et al.
The Yale-Brown Obsessive Compulsive Scale. |. Development, use, and reliability.
Arch Gen Psychiatry 1989; 46: 1006-1011.

23 Hand |, Bittner-Westphal H. Die Yale-Brown Obsessive Compulsive Scale
(Y-BOCS): ein halbstrukturiertes interview zur beurteilung des schweregrades von
denk- und handlungszwéngen. Verhaltenstherapie 1991; 1: 223-225.

24 Steketee G, Frost R, Bogart K. The Yale-Brown Obsessive Compulsive Scale:
interview versus self-report. Behav Res Ther 1996; 34: 675-684.

25 Foa EB, Huppert JD, Leiberg S, Langner R, Kichic R, Hajcak G et al. The obsessive-
compulsive inventory: development and validation of a short version. Psychol
Assess 2002; 14: 485-496.

26 Gonner S, Leonhart R, Ecker W. The Obsessive-Compulsive Inventory-Revised
(OCI-R): validation of the German version in a sample of patients with OCD,
anxiety disorders, and depressive disorders. J Anxiety Disord 2008; 22: 734-749.

27 Beck AT, Steer RA, Brown G. Manual for the Beck Depression Inventory-Il. Psycho-

logical Corporation: San Antonio, TX, USA, 1996.

Hautzinger M, Keller F, Kiihner C, BDI-Il. Beck-Depressions-Inventar Revision. 2.

Auflage (ed.). Pearson Assessment: Frankfurt am Main, Germany, 2009.

29 Fischl B, Sereno M, Dale AM. Cortical surface-based analysis. II: Inflation, flatten-
ing, and a surface-based coordinate system. Neuroimage 1999; 9: 195-207.

30 Fischl B, van der Kouwe A, Destrieux C, Halgren E, Segonne F, Salat DH et al.

Automatically parcellating the human cerebral cortex. Cereb Cortex 2004; 14:

11-22.

Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D et al. An

automated labeling system for subdividing the human cerebral cortex on MRI

scans into gyral based regions of interest. Neuroimage 2006; 31: 968-980.

van den Heuvel MP, Sporns O, Collin G, Scheewe T, Mandl RC, Cahn W et al.

Abnormal rich club organization and functional brain dynamics in schizophrenia.

JAMA Psychiatry 2013; 70: 783-792.

33 Chang LG, Jones DK, Pierpaoli C. RESTORE: robust estimation of tensors by outlier
rejection. Magn Reson Med 2005; 53: 1088-1095.

34 Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review.

NMR Biomed 2002; 15: 468-480.

Mori S, Crain BJ, Chacko VP, van Zijl PC. Three-dimensional tracking of axonal

projections in the brain by magnetic resonance imaging. Ann Neurol 1999; 45:

265-269.

36 Mori S, Kaufmann WE, Davatzikos C, Stieltjes B, Amodei L, Fredericksen K et al.
Imaging cortical association tracts in the human brain using diffusion-tensor-
based axonal tracking. Magn Reson Med 2002; 47: 215-223.

37 de Reus MA, van den Heuvel MP. Estimating false positives and negatives in brain

networks. Neuroimage 2013; 70: 402-409.

Gansner ER, North SC. An open graph visualization system and its applications to

software engineering. Software Pract Exper 2000; 30: 1203-1233.

Benjamini Y, Hochberg Y. Controlling the false discovery rate - a practical and

powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol 1995; 57:

289-300.

40 Ebeling U, von Cramon D. Topography of the uncinate fascicle and adjacent

temporal fiber tracts. Acta Neurochir (Wien) 1992; 115: 143-148.

Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR. Dissecting the uncinate

fasciculus: disorders, controversies and a hypothesis. Brain 2013; 136: 1692-1707.

Thiebaut de Schotten M, Dell'Acqua F, Valabregue R, Catani M. Monkey to human

comparative anatomy of the frontal lobe association tracts. Cortex 2012; 48:

82-96.

Cloutman LL, Binney RJ, Drakesmith M, Parker GJ, Lambon Ralph MA. The varia-

tion of function across the human insula mirrors its patterns of structural con-

nectivity: evidence from in vivo probabilistic tractography. Neuroimage 2012; 59:

3514-3521.

44 Benedetti F, Giacosa C, Radaelli D, Poletti S, Pozzi E, Dallaspezia S et al. Wide-

spread changes of white matter microstructure in obsessive-compulsive disorder:

effect of drug status. Eur Neuropsychopharmacol 2013; 23: 581-593.

Jayarajan RN, Venkatasubramanian G, Viswanath B, Janardhan Reddy YC, Srinath

S, Vasudev MK et al. White matter abnormalities in children and adolescents with

obsessive-compulsive disorder: a diffusion tensor imaging study. Depress Anxiety

2012; 29: 780-788.

46 Piras F, Piras F, Caltagirone C, Spalletta G. Brain circuitries of obsessive compulsive
disorder: a systematic review and meta-analysis of diffusion tensor imaging stu-
dies. Neurosci Biobehav Rev 2013; 37: 2856-2877.

2

==}

3

3

N

3

«

3

©

3

0

4

4

N

4

w

4

v

47 de Wit SJ, Alonso P, Schweren L, Mataix-Cols D, Lochner C, Menchon JM et al.
Multicenter voxel-based morphometry mega-analysis of structural brain scans in
obsessive-compulsive disorder. Am J Psychiatry 2014; 171: 340-349.

48 Via E, Cardoner N, Pujol J, Alonso P, Lopez-Sola M, Real E et al. Amygdala acti-
vation and symptom dimensions in obsessive-compulsive disorder. Br J Psychiatry
2014; 204: 61-68.

49 Simon D, Adler N, Kaufmann C, Kathmann N. Amygdala hyperactivation during

symptom provocation in obsessive-compulsive disorder and its modulation by

distraction. Neuroimage Clin 2014; 4: 549-557.

Cardoner N, Harrison BJ, Pujol J, Soriano-Mas C, Hernandez-Ribas R, Lopez-Sola M

et al. Enhanced brain responsiveness during active emotional face processing in

obsessive compulsive disorder. World J Biol Psychiatry 2011; 12: 349-363.

Simon D, Kaufmann C, Musch K, Kischkel E, Kathmann N. Fronto-striato-limbic

hyperactivation in obsessive-compulsive disorder during individually tailored

symptom provocation. Psychophysiology 2010; 47: 728-738.

52 van Velzen LS, de Wit SJ, Curcic-Blake B, Cath DC, van Vries FE, Veltman DJ et al.

Altered inhibition-related frontolimbic connectivity in obsessive-compulsive dis-

order. Hum Brain Mapp 2015; 36: 4064-4075.

Phelps EA, LeDoux JE. Contributions of the amygdala to emotion processing: from

animal models to human behavior. Neuron 2005; 48: 175-187.

Dolan RJ. The human amygdala and orbital prefrontal cortex in behavioural

regulation. Philos Trans R Soc Lond B Biol Sci 2007; 362: 787-799.

55 Simmons WK, Martin A. The anterior temporal lobes and the functional archi-

tecture of semantic memory. J Int Neuropsychol Soc 2009; 15: 645-649.

Olson IR, Plotzker A, Ezzyat Y. The Enigmatic temporal pole: a review of findings

on social and emotional processing. Brain 2007; 130: 1718-1731.

Blaizot X, Mansilla F, Insausti AM, Constans JM, Salinas-Alaman A, Pro-Sistiaga P

et al. The human parahippocampal region: |. Temporal pole cytoarchitectonic and

MRI correlation. Cereb Cortex 2010; 20: 2198-2212.

van den Heuvel OA, Remijnse PL, Mataix-Cols D, Vrenken H, Groenewegen HJ,

Uylings HB et al. The major symptom dimensions of obsessive-compulsive dis-

order are mediated by partially distinct neural systems. Brain 2009; 132: 853-868.

Olatunji BO, Ferreira-Garcia R, Caseras X, Fullana MA, Wooderson S, Speckens A

et al. Predicting response to cognitive behavioral therapy in contamination-based

obsessive-compulsive disorder from functional magnetic resonance imaging.

Psychol Med 2014; 44: 2125-2137.

60 Foa EB, McNally RJ. Mechanisms of change in exposure therapy. In:Rapee RM (ed).

Current Controversies in the Anxiety Disorders. Guilford Press: New York, NY, USA,

1996, pp 329-343.

Jung WH, Kang DH, Kim E, Shin KS, Jang JH, Kwon JS. Abnormal corticostriatal-

limbic functional connectivity in obsessive-compulsive disorder during reward

processing and resting-state. Neuroimage Clin 2013; 3: 27-38.

62 Wang Z, Dai Z, Gong G, Zhou C, He Y. Understanding structural-functional rela-

tionships in the human brain: a large-scale network perspective. Neuroscientist

2015; 21: 290-305.

Hoexter MQ, de Souza Duran FL, D'Alcante CC, Dougherty DD, Shavitt RG, Lopes

AC et al. Gray matter volumes in obsessive-compulsive disorder before and after

fluoxetine or cognitive-behavior therapy: a randomized clinical trial. Neuro-

psychopharmacology 2012; 37: 734-745.

64 Kraus C, Ganger S, Losak J, Hahn A, Savli M, Kranz GS et al. Gray matter and

intrinsic network changes in the posterior cingulate cortex after selective

serotonin reuptake inhibitor intake. Neuroimage 2014; 84: 236-244.

Harrison BJ, Pujol J, Cardoner N, Deus J, Alonso P, Lopez-Sola M et al. Brain

corticostriatal systems and the major clinical symptom dimensions of obsessive-

compulsive disorder. Biol Psychiatry 2013; 73: 321-328.

5

o

5

5

@

5

S

5

o

5

~N

5

o

5

o

6

6

@

6

x

This work is licensed under a Creative Commons Attribution 4.0

International License. The images or other third party material in this
article are included in the article’s Creative Commons license, unless indicated
otherwise in the credit line; if the material is not included under the Creative Commons
license, users will need to obtain permission from the license holder to reproduce the
material. To view a copy of this license, visit http://creativecommons.org/licenses/
by/4.0/

© The Author(s) 2016

Supplementary Information accompanies the paper on the Translational Psychiatry website (http://www.nature.com/tp)

Translational Psychiatry (2016), 1-8



34

Supplementary Information

Reess TJ, Rus OG, Schmidt R, de Reus MA, Zaudig M, Wagner G, Zimmer C, van den Heuvel MP, Koch K.
Connectomics-based structural network alterations in obsessive-compulsive disorder.

Supplementary Table 1. Group differences for local graph measures significant at a level of
p<0.05, uncorrected.

Supplementary Table 2. Group comparison of volumes (mm?) for nodes comprising the NBS
network.

Supplementary Table 3. Number of streamlines of edges comprising the network displaying
significant group differences based on NBS analysis of only medicated patients (n=29).

Supplementary Table 4. Correlations between significantly impaired edges from the NBS
cluster and clinical scores.

Supplementary Table 5. Correlations between total degree strength and clinical scores.

Supplementary Table 6. Correlations between significantly different local graph measures
and clinical scores.

Supplementary Table 7. NBS results of analysis conducted with various group-thresholds.

Supplementary Table 8. Results for differences in local graph measures and global degree
strength computed for various group thresholds.

Supplementary Figure 1. lllustration of the parcellation scheme used for defining the nodes.

Supplementary Figure 2. Global graph measures and small-worldness plotted as a function of
connectivity matrix densities.



35

Supplementary Table 1. Group differences for local graph measures significant at a level of

p<0.05, uncorrected.

Weigthed Connectivity
Strength

p-value

Weighted Clustering
Coefficient

p-value

Subcortical structures
L pallidum

R putamen

R pallidum

R n. accumbens
Cortical structures
L entorhinal cortex
L pericalcarine

L precuneus

L temporal pole

R entorhinal cortex

R rostral middle frontal
cortex

R superior parietal cortex
R temporal pole
Rinsula

brain stem

p =0.032; HC > OCD
p =0.021; HC > 0OCD
p =0.002; HC > OCD

p =0.005; HC > OCD

p =0.016; HC > OCD
p =0.024; OCD > HC
p =0.046; HC > OCD
p = 0.007; HC > OCD
p =0.041; HC > OCD

p =0.011; HC > OCD

p =0.027; HC > OCD
p =0.040; HC > OCD
p =0.041; HC > OCD

p =0.013; HC > 0CD

Subcortical structures
R putamen

R n. accumbens

Cortical structures
L hippocampus

L entorhinal cortex

p =0.022; HC>0OCD

p =0.024; HC > OCD

p =0.043; HC > 0OCD

P =0.019; HC > 0CD

HC, healthy controls; OCD, obsessive-compulsive disorder; L, left; R, right; all tests are permutation based with

10000 permutations




Supplementary Table 1 (continued)

Shortest Path Length

p-value

Shortest Path Length

p-value

Subcortical structures
L thalamus

L caudate

L putamen

L pallidum

L hippocampus

Cortical structures
L entorhinal cortex
L isthmuscingulate cortex
L superior parietal cortex

L temporal pole

Brain stem

p = 0.007; HC < OCD
p =0.030; HC< OCD
p =0.040; HC< OCD
p =0.008; HC < OCD

p =0.021; HC<OCD

p = 0.001; HC < OCD
p = 0.043; HC < OCD
p = 0.021; HC < OCD

p =0.006; HC < OCD

p =0.020; HC < OCD

Subcortical structures
R caudate

R putamen

R pallidum

R amygdala

R n. accumbens

Cortical structures
R postcentral

R precentral

R precuneus

R rostral middle frontal
cortex

R superior parietal cortex
R supramarginal gyrus
R temporal pole

R transversetemporal

p =0.039; HC< OCD
p=0.018; HC < OCD
p =0.008; HC < OCD
p=0.018; HC < OCD

p=0.037; HC< OCD

p =0.032; HC < OCD
p =0.020; HC < OCD
p =0.047; HC < OCD

p=0.012; HC< OCD

p =0.015; HC < OCD
p =0.040; HC < OCD
p =0.008; HC < OCD

p =0.031; HC<OCD

HC, healthy controls; OCD, obsessive-compulsive disorder; L, left; R, right; all tests are permutation based with

10000 permutations
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Supplementary Table 2. Group comparison of volumes (mm?) for nodes comprising the NBS

network.
Node Volume (mma) Volume (mm"') Cohen’s d
ocD HC p-value [95% - confidence
mean + SD mean + SD interval]
L putamen 6562.1 + 809.9 6436.1 £ 765.9 p=0.476 -0.16 [-0.59-0.27]
L pallidum 1736.0 £233.7 1804.6 +231.8 p=0.192 0.30[-0.14-0.73]
L temporal pole 2656.1 +£397.0 2702.3 £433.1 p =0.594 0.11 [-0.32 - 0.54]
Linsula 6484.3 £779.6 6633.9 £ 809.3 p =0.408 0.19 [-0.24 - 0.62]
L amygdala 1730.2 £251.2 1786.6 + 228.9 p=0.292 0.24 [-0.20 - 0.67]
L mOFC 4555.0 + 647.0 4698.4 +767.9 p=0.357 0.20[-0.23 - 0.63]
L entorhinal cortex 1807.8 +297.8 1908.6 + 357.4 p=0.168 0.31[-0.13-0.74]

HC, healthy controls; OCD, obsessive-compulsive disorder; L, left; mOFC, medial orbitofrontal cortex; SD,

standard deviation
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Supplementary Table 3. Number of streamlines of edges comprising the network displaying
significant group differences based on NBS analysis of only medicated patients (n=29).

Network edges NOS-value NOS-value
[0, o PR HC p-value / t-statistic
Mean + SD Mean * SD
L putamen — L amygdala 440.2 + 232.9 656.4 + 249.6 p<0.001,t=3.76
L pallidum — L amygdala 173.5+204.3 317.6+231.9 p=0.003,t=3.14
L putamen — L temporal pole 236.3+186.8 365.7 £ 212.6 p=0.006, t =2.87
L amygdala — L temporal pole 384.3+211.4 533.0 £ 246.7 p=0.005t=2.91
L temporal pole — Linsula 109.1 + 148.1 204.3 £ 168.8 p=0.008,t=2.76

Mean * standard deviation for the number of streamlines for each edge within the NBS cluster. NOS, number
of streamlines; L, left; SD, standard deviation

Supplementary Table 4. Correlations between significantly impaired edges from the NBS cluster and
clinical scores. Only trend correlations (p < 0.1) are reported.

Network Eedges clinical score / demographic p-value / pearson correlation
(NOS) information coefficient
L putamen — L amygdala age of onset p=0.079, r=0.288
L pallidum — L amygdala washing (OCI-R) p =0.080, r=-0.284
L putamen — L temporal pole obsessing (OCI-R) p =0.059, r=-0.297
obsession (Y-BOCS) p =0.087, r=-0.270
total (Y-BOCS) p=0.091,r=-0.268

NOS: number of streamlines; All reported p-values are uncorrected
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Supplementary Table 5. Correlations between total degree strength and clinical scores. Only trend
correlations (p < 0.1) are reported.

Global Graph Measures clinical score / demographic p-value,
information correlation coefficient
Global degree strength disease duration p =0.004, r = -0.443*

p=0.416,r=-0.132*

* pearson correlation coefficient; * partial correlation coefficient [controlling for age]

Supplementary Table 6. Correlations between significantly different local graph measures and clinical
scores. Only trend correlations (p < 0.1) are reported.

Local Graph Measures clinical score / demographic p-value,
information correlation coefficient

Amygdala — clustering obsessing (OCI-R) p=0.082,r=0.275*

Amygdala — shortest path length disease duration p =0.055, r=0.302*

p=0.397, r=-0.138"

R temporal pole — clustering hoarding (OCI-R) p=0.016, r =-0.374*
checking (OCI-R) p=0.056, r=0.301*
washing (OCI-R) p = 0.050, r = -0.308*

* pearson correlation coefficient; * partial correlation coefficient [controlling for age]
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Supplementary Table 7. NBS results of analysis conducted with various group-thresholds.

% threshold density (%) cluster size p-value
30 25.51% 4 0.019
35 23.63% 7 0.016
40 22.51% 7 0.015
45 20.86 % i 0.014
50 19.54 % 7 0.013
55 17.95% 7 0.010
60 17.34% ¥ 0.009
65 14.96 % 7 0.009
70 13.69 % 7 0.005
75 11.99% 7 0.005
80 10.11% 6 0.008
85 8.96 % 6 0.006
90 7.49% 6 0.005

All NBS analyses were conducted with 5000 permutations

The significantly impaired cluster for the NBS analysis is essentially stable for the various thresholds.
Only for the 80%, 85%, and 90% threshold the cluster size is reduced by one with the connection

between mOFC and insula not being part of the cluster.
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Supplementary Table 8. Results for differences in local graph measures and global degree
strength computed for various group thresholds.

% weighted Shortest nodal strength Global degree density
threshold  clustering weighted strength (in %)
path
30 no differences L amygdala L amygdala p =0.081 25.51%
35 no differences L amygdala L amygdala p =0.080 23.63%
L entorhinal
40 L amygdala L amygdala L amygdala p =0.080 22.51%
L entorhinal
45 L amygdala L amygdala L amygdala p =0.080 20.86 %
L entorhinal
50 L amygdala L amygdala L amygdala p=0.070 19.54 %
55 L amygdala L amygdala L amygdala p=0.063 17.95%
L temporal pole L entorhinal
60 L amygdala L amygdala L amygdala p =0.056 17.34%
L temporal pole
R temporal pole
65 L amygdala L amygdala L amygdala p =0.054 14.96 %
L temporal pole L entorhinal
R temporal pole
70 L amygdala L amygdala L amygdala p =0.047 13.69 %
L temporal pole L entorhinal
R temporal pole
75 L amygdala L amygdala L amygdala p =0.044 11.99 %
L temporal pole L entorhinal
80 L amygdala L amygdala L amygdala p =0.051 10.11%
L temporal pole L entorhinal L temporal pole
85 L amygdala L amygdala L amygdala p = 0.045 8.96 %
L temporal pole L entorhinal L temporal pole
90 L amygdala L amygdala L amygdala P=0.034 7.49%

L temporal pole
R temporal pole

all tests are permutation based with 10000 permutations

All reported nodes were significantly different regarding the graph measure in question,

based on FDR-corrected, permutation based testing with 5000 permutations
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Supplementary Figure 1. lllustration of the parcellation scheme used for defining the nodes.
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A. Top row: lllustration of all cortical labels used to define cortical nodes, overlayed on the inflated
fsaverage brain. Middle and bottom rows: Same as above with labels being overlayed on the
reconstructed fsaverage brain. B. lllustration of all subcortical labels used to define subcortical nodes,
overlayed on the fsaverage brain. Bankssts: bank of the superior temporal sulcus
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Supplementary Figure 2. Global graph measures and small-worldness plotted as a function of
connectivity matrix densities.
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Chapter 3

Project 2: “Network-based
decoupling of local gyrification in
obsessive-compulsive disorder”

The current chapter includes the research article “Network-based decoupling of local
gyrification in obsessive-compulsive disorder”. This article, for the first time, aimed at
analyzing gyrification-based structural covariance networks in OCD. Results indicated
widespread alterations in OCD that are potentially related to time-locked neurodevelop-

mental periods. The manuscript was published in Human Brain Mapping in 2018.
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1 | INTRODUCTION
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Abstract

Gyrification is associated with cortical maturation and closely linked to neurodevelopmental proc-
esses. Obsessive-compulsive disorder has previously been associated with neurodevelopmental
risk factors. Using graph theoretical modeling we examined structural covariance patterns to assess
potential disruptions in processes associated with neurodevelopment in OCD. In total 97 patients
and 92 healthy controls underwent magnetic resonance imaging. Structural covariance networks
based on local gyrification indices were constructed using an atlas-based parcellation scheme. Net-
work properties were assessed using the network-based statistic as well as global and local graph
theoretical measures. Correlations between gyrification and symptom severity as well as age of
disease onset were examined. Network-based statistic analysis revealed one cluster with signifi-
cantly decreased structural covariance in patients comprising mainly ventral brain regions
(p = .041). Normalized characteristic path length was found to be impaired in patients (p = .051).
On a nodal level, left middle frontal sulcus displayed a significantly decreased local clustering coef-
ficient (p < .001). Finally, gyrification in several inferior frontal nodes significantly correlated with
age of onset but not symptom severity. The decrease in a gyrification-based covariance network in
OCD appears to be mostly confined to ventral areas in which gyrification starts the latest during
development. This pattern may indicate that alterations taking place during development are
potentially time locked to specific periods. Correlations between gyrification in inferio-frontal
nodes and age of onset potentially indicate a structural trait rather than state marker for OCD.
Finally, a trend in impaired global integration capabilities may point towards potentially widespread
global alterations during neurodevelopment in patients.

KEYWORDS
connectome, gyrification, MRI, network, OCD

various species employing a broad range of experimental techniques
(Zilles, Palomero-Gallagher, & Amunts, 2013). Different theoretical

The processes leading to the characteristic differentiation of the brain’s

surface into sulci and gyri, called gyrification, have been studied across

Abbreviations: FDR, false discovery rate; HC, healthy controls; IGI, local
gyrification index; NaSSA, noradrenergic and specific serotonergic
antidepressant; NBS, network-based statistic; NDRI, norepinephrine-dopamine
reuptake inhibitor; OCD, obsessive-compulsive disorder; SSNRI, selective
serotonin-norepinephrine  reuptake inhibitor; SSRI, selective serotonin
reuptake inhibitor; TCA, tricyclic antidepressant; Y-BOCS, Yale-Brown
Obsessive-Compulsive Scale.

accounts have been put forward to explain gyrification (Fernandez,
Llinares-Benadero, & Borrell, 2016; Ronan & Fletcher, 2015; Sun &
Hevner, 2014) with a common assumption that it increases efficiency
regarding metabolic cost via shorter axons and thus increased informa-
tion processing speed (Striedter, Srinivasan, & Monuki, 2015; White,
Su, Schmidt, Kao, & Sapiro, 2010). Further evidence also indicates a
potential relationship between structural connectivity and cortical fold-
ing (Takahashi, Folkerth, Galaburda, & Grant, 2012; Van Essen, 1997).
Additionally, several studies have revealed a structure-cognition

Hum Brain Mapp. 2018;1-11.
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relationship in healthy subjects in terms of associations between local
gyrification and cognitive performance in working memory and mental
flexibility tasks (Gautam, Anstey, Wen, Sachdev, & Cherbuin, 2015) as
well as attention and semantic verbal fluency tasks (Jockwitz et al.,
2017). Interestingly, gyrification has been demonstrated to mainly
occur between the last two trimesters of gestation up to approximately
one year (Armstrong, Schleicher, Omran, Curtis, & Zilles, 1995; White
et al., 2010), thus making it a potential marker for early neurodevelop-
ment. In line with the fact that gyrification is clearly associated with
neurodevelopment, there has been accumulating evidence of altera-
tions in diseases featuring a neurodevelopmental component such as
autism spectrum disorder (Ecker et al., 2016), depression (Han et al.,
2017) and schizophrenia (Palaniyappan & Liddle, 2012; Palaniyappan
et al., 2016; Palaniyappan, Park, Balain, Dangi, & Liddle, 2015). Recent
evidence points towards altered gyrification patterns to be also found
in obsessive-compulsive disorder (OCD) which has previously been dis-
cussed as a disorder with neurodevelopmental risk factors (Huyser,
Veltman, de Haan, & Boer, 2009; Rosenberg & Keshavan, 1998). How-
ever, results regarding alterations in cortical folding in OCD are some-
what heterogeneous with the majority of studies reporting
hypogyrification (Rus et al., 2016; Shim et al., 2009; Wobrock et al.,
2010) or gender-specific hypogyrification (Venkatasubramanian et al.,
2012), and others reporting hypergyrification (Fan et al., 2013). Thus
far, analyses of gyrification patterns were typically based on univariate
(i.e., region of interest) or mass-univariate (e.g., whole-brain, vertex-
wise) approaches yielding information on local changes. While being
entirely valid in their own right, it has recently become feasible to addi-
tionally infer information at a network level employing connectomics-
based methods. Here, the focus is shifted from observing purely local
differences towards observing changes in the covariance between mor-
phological properties within brain regions (Alexander-Bloch, Giedd, &
Bullmore, 2013). Thus far, the evaluation of structural as well as func-
tional brain alterations employing a network level perspective has
revealed important new results that have the potential to further
inform neurobiological models of OCD by providing additional informa-
tion on disease specific alterations in selected parameters of network
complexity (Feusner et al., 2015; Jung et al., 2017; Moreira et al., 2017;
Reess et al., 2016; Shin et al., 2014; Vaghi et al., 2017). To date numer-
ous studies of anatomical covariance based networks (mainly using
measures of cortical thickness or volume) have been conducted (Evans,
2013) and first studies of gyrification-based networks in schizophrenia
have recently been published (Palaniyappan et al., 2016; Palaniyappan
et al., 2015). The aim of our study is to extend recent local findings of
altered gyrification in OCD to the network level, via examination of
gyrification-based covariance networks. To this end we based our anal-
ysis on data previously described in Rus et al. (Rus et al., 2016) but fur-
ther increased the sample size by adding an independent set of
another 42 subjects (OCD = 24, healthy controls = 18) resulting in
total sample sizes of n = 97 patients and n = 92 healthy controls. To
the best of our knowledge, to date no study has examined gyrification-
based networks in OCD employing a connectomics approach. Given
the previously described alterations found in local measures of gyrifica-
tion, it seems likely to also find changes in structural covariance on the

network level. However, this is not a necessity since differences in gyri-
fication derived from local examination do not have to map closely to
differences derived from network analyses examining covariance
between regions, and vice versa. We therefore propose two alternative
scenarios regarding the results. The absence of alterations in
gyrification-based networks regarding global topological measures
might speak in favor of changes that are locally confined (i.e., hardly
tractable by assessing global network measures), and may thus be inter-
preted as potentially independent in mechanism, therefore resulting in
rather focal changes. Alternatively, alterations in global network topol-
ogy may be indicative of impairments in the development of the sys-
tem as a whole. More specifically, changes in measures of segregation
might be indicative of developmental changes on a modular level,
whereas changes in measures of integration might point towards a
potentially common mechanism affecting neurodevelopment on a
rather global level and/or time span. A second line of questioning
addresses potential relationships between gyrification and the age of
disease onset as well as symptom severity. Correlations with age of
onset may further point towards altered gyrification being a neurode-
velopmental risk factor in OCD.

2 | MATERIALS AND METHODS

2.1 | Participants

The study sample comprised three different samples examined at two
centers. A total of n = 97 patients with OCD as the primary diagnosis
were included in the study. Patients of two samples (M1_ocd, n = 39;
M2_ocd, n = 25), both scanned at the Klinikum rechts der Isar, Techni-
sche Universitat Mlnchen, Germany were recruited from the Windach
Institute and Hospital of Neurobehavioral Research and Therapy
(WINTR), an institution specialized in the treatment of OCD. The third
sample (J1_ocd, n = 33) was recruited and scanned at the University
Hospital for Psychiatry and Psychotherapy, Jena, Germany. All subjects
were in-house patients, diagnosed by an experienced psychiatrist

92 age and
41;
M2_hc, n = 19; J1_hc, n = 32). Exclusion criteria for all subjects were a

according to DSM-IV criteria. As a control group n

gender-matched healthy subjects were included (M1_hc, n
history of clinically important head injuries, seizures or neurological dis-
eases. There were no significant differences between healthy controls
and OCD patients regarding age (two-sample t test, two-tailed;
tig7 = —0.667, p = .505) and gender (Chi-Square test; 3210, = 107.79,
p = .281). For demographical and clinical sample characteristics, see
Table 1.

At the time of the study, n = 36 patients were drug-naive or medi-
cation free for at least 3 weeks. No patients were excluded due to
comorbidities and n = 30 patients had one or more comorbid diagno-
sis. Prior to scanning, patients were handed the Yale-Brown Obsessive-
Compulsive Scale (Y-BOCS) to assess clinical severity of obsessive-
compulsive symptoms. The study was approved by the local Ethics
Committee of the Klinikum rechts der Isar, Miinchen and the Ethics
Committee of the University Hospital Jena. The study protocol was in
compliance with the Declaration of Helsinki.
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TABLE 1 Demographic and clinical sample characteristics

Characteristics
Female
age (years)

age of onset

OCD (n = 97)
n (%) or
mean =+ SD (range)

65 (67.0%)
32.5 = 9.1 (19-62)
17.3 = 6.4

HC (n = 92)
n (%) or
mean * SD (range)

54 (58.7%)
30.2 * 9.6 (18-57)

WILEY-2

short, the algorithm provides a ratio between the pial surface area and
cortical sheet surface area, sampled over regions of interest that are
spread over cortex. This approach results in a continuous vertex-based
measure of local gyrification index over the entire cortical surface. For
subsequent graph construction, Freesurfer's Destrieux brain parcella-
tion scheme was applied (Destrieux, Fischl, Dale, & Halgren, 2010) and
all reconstructed brain data were parcellated accordingly yielding a
total of 74 regions within each hemisphere. Quality control was per-
formed using the ENIGMA cortical quality control protocols (http://
enigma.ini.usc.edu/protocols/imaging-protocols/). Destrieux based par-
cellations were additionally overlayed on reconstructed surfaces and
visually checked after running the QA Tools provided on the Freesurfer
webpage (https://surfer.nmr.mgh.harvard.edu/fswiki/QATools).

2.4 | Graph construction

In a first step, the averaged IGI values within each parcellated brain
region were adjusted for age, sex, scan sequence, and total intracranial
volume using multiple regression in line with He, Chen, and Evans,
(2007). The residuals were subsequently used as a proxy for subjects’

IGl. Each brain region derived from the Destrieux parcellation was

Y-BOCS total 20.9 + 6.2 (9-38) -
Obsession 10.5 + 4.0 (0-20) -
Compulsions 10.6 + 3.5 (0-19) -
comorbidities 31 (32.0%) -
depression 21 -
anxiety disorders 10 -
personality disorder 4 -
eating disorder 2 -
ADHD 2 -
medication 56 (57.7%) -
SSRI 43 -
SSNRI 8 -
neuroleptic 5 -

TCA 4 -

methylphenidate 2 -

benzodiazepine 1 -

NDRI 1 -

NaSSA 1 -

Note that multiple comorbid diagnosis as well as different medication
types can be present in a single patient.

Abbreviations: HC, healthy controls; NaSSA, noradrenergic and specific
serotonergic antidepressant; NDRI, norepinephrine-dopamine reuptake
inhibitor; OCD, obsessive-compulsive disorder; SSNRI, selective
serotonin-norepinephrine reuptake inhibitor; SSRI, selective serotonin
reuptake inhibitor; TCA, tricyclic antidepressant; Y-BOCS, Yale-Brown
Obsessive-Compulsive Scale.

2.2 | Image acquisition

Structural magnetic resonance imaging (MRI) at the Munich site was
conducted on a 3T Philips Ingenia (Philips Healthcare, Best, The Neth-
erlands) using a 12-channel (SENSE) head coil (M1_ocd, M1_hc) or a
32-channel (SENSE) head coil (M2_ocd, M2_hc). MRI at the Jena site
was conducted on a 3T Siemens MAGNETOM (Siemens Medical Solu-
tions, Erlangen, Germany) using a 12-channel receive-only head matrix
coil (J1_ocd, J1_hc). Details regarding image acquisition parameters are
given in the Supporting Information.

2.3 | Image processing

Cortical surface reconstruction was conducted using FreeSurfer's
(V5.3.0 http://surfer.nmr.mgh.harvard.edu/) standard processing pipe-
line (Dale, Fischl, & Sereno, 1999; Fischl et al., 2002; Fischl, Sereno, &
Dale, 1999). After reconstruction, local Gyrification Index (IGl) was
computed based on the method developed by Schaer et al. (2008). In

assigned as a node. An edge represented the correlation between the
adjusted IGls of two nodes. Correlations for every possible pair of
nodes (N;, N;) were computed, resulting in a 148 X 148 symmetric
graph, representing a gyrification-based structural covariance network.
To avoid the influence of spurious relationships, significance of correla-
tions was tested and only edges surviving FDR-correction (p < .05)
were retained. Subsequently, to perform network analysis, a graph was
constructed for each group (i.e., OCD patients and healthy controls)
and all edges previously identified as exceeding the FDR-corrected
threshold were set to zero. These FDR-corrected correlation matrices
were subsequently used to conduct a network-based statistic (NBS)
analysis. For computation of graph measures the connectivity matrices
were thresholded over a range of connection densities (see Graph the-
oretical analysis below) in order to preserve the same number of edges
in each group.

2.5 | Network-based statistic analysis

Group differences between IGI based networks were examined using
the framework of the NBS introduced by Zalesky et al. (Zalesky, For-
nito, & Bullmore, 2010). NBS is a nonparametrical method to deal with
the multiple comparison problem encountered in conducting mass uni-
variate significance testing in graphs. Statistical significance is estab-
lished for specific subsets of nodes that are mutually connected in
topological rather than physical space. The first step requires the com-
putation of a test statistic, in this case the difference in Fishers z-trans-
formed group-based correlation coefficients. Second, a primary
component forming threshold (p < .001, two sided test) is applied to
identify all edges displaying potential differences in IGl correlations.
Third, all subthreshold edges are assessed for mutual connections
forming clusters in topological space that may point towards the exis-
tence of non-chance clusters. Permutation testing is then applied to
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compute p values for every component previously identified. For each
of 10,000 permutations, group labels are randomly shuffled resulting in
two new groups with sample sizes being equal to the original groups.
Within each, correlation coefficients between nodes are determined
and subsequently Fisher z-transformed. For each edge the difference in
z-transformed correlation coefficients between groups is computed.
Based on these matrices steps two and three are repeated with noting
the maximum cluster size of components resulting in a null distribution
for largest component size. The final hypothesis test is then carried out
for the empirically determined components by comparing their sizes
with the proportion of permutations yielding a component with equal
or greater size. The final result controls the family-wise error rate at
cluster level with p < .05. Visualization of NBS networks was con-
ducted using BrainNet Viewer (V1.53; Xia, Wang, & He, 2013).

2.6 | Graph theoretical analysis

The following global graph measures were computed: normalized aver-
age clustering coefficient gamma (y) to assess segregation, as well as
normalized average path length lambda (%) to assess integration. Finally
sigma (c=% ) was used as an index of small-worldness. Normalization
of network measures was based on dividing the empirically found mea-
sure by the respective measure computed over a total of 1,000 null
networks created using a rewiring algorithm that preserves the degree
distribution. As a local measure of segregation, node-based normalized
local clustering coefficients were computed. As a local measure of inte-
gration, node-based normalized local efficiencies were computed. Sta-
tistical comparisons for all measures were based on permutation
testing with 1,000 permutations. Subject data was randomly sampled
and assigned to a group while preserving the original group sizes
(healthy controls and OCD). For each resampling, the resulting correla-
tion matrices were binarized and thresholded. As the computation of
graph measures is strongly influenced by fragmented connectivity mat-
rices (Fornito, Zalesky, & Bullmore, 2016) the measures were computed
for a range of densities (0.1-0.5 with increments of 0.05) over which
no fragmentation of graphs occurred. Subsequently, the empirically
found group differences for global and local graph measures were com-
pared with the distribution of group differences constructed from com-
puting the graph measures across all resampled connectivity matrices.
Computing each measure over the given range of densities results in a
curve for each measure that is finally compared between groups over
the entire threshold range using functional data analysis (Ramsay,
2005), effectively accounting for the multiple comparison problem.
Simultaneously taking into account the values over the entire threshold
range effectively avoids the multiple comparison problem typically
encountered if comparing the differences over various density values.
All results were tested at p < .05 based on a two-sided test. For local
graph measures, results are reported at p < .05, using FDR-correction.
For formulas regarding the computation of network measure see Rubi-
nov & Sporns (Rubinov & Sporns, 2010). All measures were calculated
on the group based connectivity matrices using the Graph Analysis
Toolbox (GAT, V1.3.32; Hosseini, Hoeft, & Kesler, 2012) which draws

on algorithms provided in the Brain Connectivity Toolbox (BCT) using
Matlab (R2013a, The MathWorks, Inc., Natick, MA).

2.7 | Correlations with clinical scores

Potential relationships between clinically relevant information (Y-
BOCS, age of onset) and node-based IGIs were assessed using Pearson
correlation coefficients based on data adjusted for age, sex, scanner,
and total intracranial volume. All correlations were corrected for multi-
ple comparisons using FDR-correction at p < .05.

2.7.1 | Assessment for group x age interaction effects

Several studies have revealed differential age trajectories for structural
brain measures such as cortical thickness (Fouche et al., 2017) and vol-
ume (de Wit et al., 2014) between OCD patients and healthy controls.
To examine whether similar effects are present in the current sample, a
separate model assessing group x age interaction effects, controlling
for sex, total intracranial volume, as well as scan sequence was

computed.

2.7.2 | Exploratory subgroup analyses

In order to assess potential effects of medication and comorbidity,
exploratory subgroup analyses were performed. To this end, the patient
group was split into patients with and without medication as well as with
and without comorbidity. Subsequently, three comparisons for medica-
tion effects as well as for effects of comorbidity were conducted: (1)
between patient groups only, (2) patients with medication or comorbidity
vs. healthy controls, and (3) patients without medication or comorbidity
versus healthy controls. Subgroup analyses comprised NBS as well as
graph measures. We additionally performed NBS analyses to evaluate
the influence of early versus late onset by splitting the patient sample
using various thresholds (for details see Supporting Information).

3 | RESULTS

3.1 | NBS of gyrification based network alterations in
OCD

NBS analysis revealed a single network of consistently reduced struc-
tural covariances in OCD patients as compared with healthy controls
(p = .041, corrected, see Figure 1). The network comprised a total of
31 nodes (see Table 2) connected by 34 edges (see Table 3) and was
distributed throughout both hemispheres (see Figure 1).

3.2 | Graph measures describing global and local
network properties

Networks of both groups were found to be in the small-world regime
indicated by vy-values > 1 and A-values ~1 with ¢ exceeding one (see
Table 4). No significant differences were found for o as well as y. How-
ever, the normalized average characteristic path length (1) was different
between groups at trend level (p = .0510) with OCD patients display-
ing a higher A compared with healthy controls. For plots of group dif-
ferences for each graph measure as a function of density see Figure 2.
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FIGURE 1 Network-based statistic analysis results. Visualization of the significantly altered gyrification-based structural covariance net-
work (i.e., decreased covariance) in OCD based on network-based statistic analysis (p = .041). Red dots indicate nodes comprising the clus-
ter, gray lines indicate edges between nodes [Color figure can be viewed at wileyonlinelibrary.com]

3.3 | Local measures

A significant decrease in local clustering within left middle frontal sul-
cus was found in patients (p < .001, corrected). No significant differen-
ces were found for any other nodes regarding local clustering or local
efficiency measures.

3.4 | Correlations with clinical scores

A total of five nodes revealed significant correlations (FDR-corrected)
between IGl values and age of onset (see Table 5 and Supporting Infor-
mation Table S1 for correlations at p < .05, uncorrected). All correla-
tions were positive indicating that later age of onset was associated
with larger IGls. There were no significant correlations between IGI val-
ues and YBOCS-scores for any of the nodes in question.

3.5 | Group X age interaction effects

While age was significantly correlated with IGI values across wide-
spread areas within each group separately (see Supporting Information
Figure S1), there were no group x age interaction effects within the
current sample.

3.6 | Exploratory subgroup analyses
3.6.1 | Effects of medication, comorbidity, and early versus
late onset

There were no significant differences between medicated and unmedi-
cated patients in the NBS analysis (p = .199). Comparison of medicated

patients vs. healthy controls (p = .116) as well as unmedicated patients
versus healthy controls (p = .799) did not yield significant differences.
There were no significant differences between patients with and with-
out comorbidity (p = .930). Comparison of patients with comorbidity
versus healthy controls (p = .189) as well as without comorbidities ver-
sus healthy controls (p = .213) did not vyield significant differences.
There were also no significant differences in NBS results regarding
early versus late onset splits (see Supporting Information for more
details).

4 | DISCUSSION

The current study reports on structural connectome differences in
gyrification-based covariance networks between OCD patients and
healthy controls. The results can be broadly split into three aspects: (1)
NBS results assessing differences in the overall topology of the net-
works, (2) results from graph measures assessing differences in global
as well as local characteristics in network structure, and (3) relation-
ships between gyrification and the age of onset. Firstly, applying the
framework of the NBS, one cluster with consistently decreased struc-
tural coupling in gyrification was identified in OCD. A striking feature
in the pattern of this cluster is the asymmetry of decreased structural
covariances towards rather ventral brain regions. More precisely, nodes
found within the cluster can be broadly assigned to three categories:
(a) inferior-frontal as well as (b) occipito-temporal regions, together
accounting for ~80% of all nodes, and c) parieto-occipital regions in
conjunction with parts of insula accounting for the remaining ~20% of
nodes in the cluster. Interestingly, in OCD patients, Kim, Jung, Kim,
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TABLE 2 Nodes comprising the significantly different network.
based statistic cluster in obsessive-compulsive disorder

Region Node Left  Right
Inferior-frontal Orbital sulci 7 "
Gyrus rectus e
Medial orbital sulcus @
Suborbital sulcus -
Orbital gyrus st
Lateral orbital sulcus e
Horizontal ramus of ant.
4
segment of lateral sulcus
Occipito-temporal ~ Cuneus o %
Lateral occipito-temporal gyrus 52 %
Parahippocampal gyrus v o
Lateral occipito-temporal sulcus 52 S
Lingual gyrus o
Middle occipital gyrus 5
Middle temporal gyrus %
Superior temporal sulcus 52
Medial occipito-temporal sulcus v
and lingual sulcus
Anterior transverse
X
collateral sulcus
Calcarine sulcus 5,
Inferior temporal gyrus 5t
Parietal Precuneus o >
Subparietal sulcus 52
Parieto-occipital Parieto-occipital sulcus 9, 3
Fronto-parietal Central sulcus 5
Insula Long insular gyrus and central %

sulcus of the insula

Jang, and Kwon, (2013) found measures of nodal efficiency to be
decreased in ventral and increased in dorsal nodes of brain networks
constructed on the basis of cortical thickness. However, results are not
directly comparable as it was demonstrated by Gautam et al. (2015)
that cortical thickness and gyrification are typically negatively corre-
lated in a rather unspecific, largely distributed pattern with the excep-
tion of aspects of medial frontal regions that are also negatively
correlated but cover a rather large area and are more pattern-like.

Additionally, local measures of efficiency are computed on a nodal
basis and are related to clustering coefficients. Nevertheless, first evi-
dence from Kim et al. (2013) indicates alterations that are following a
dorsal/ventral gradient. Our findings also point to a dorsal/ventral
imbalance based on another anatomical measure, that is, gyrification
covariance networks. Typically, an imbalance in dorsal/ventral fronto-
striatal circuitry appears to be associated especially with cognitive
inflexibility (Gu et al., 2008), with reduced dorsal circuit activity leading
to disinhibition and thus increased activity in ventral fronto-striatal cir-
cuits. Additionally, ventral fronto-striatal circuits have been associated
especially with altered reward processing and the regulation of affect
in OCD (Milad & Rauch, 2012). There is accumulating evidence that
networks constructed on the basis of structural covariance, that is,
cortical thickness as well as gray matter volume, are indicating
synchronized developmental changes (Alexander-Bloch et al., 2013;
Khundrakpam et al., 2013; Zielinski, Gennatas, Zhou, and Seeley,
2010). Regarding the developmental trajectory of gyrification, it has
been proposed that its starting point lies within dorsal parieto-occipital
areas and over the course of development proceeds to superior frontal
and temporal regions before finally continuing to inferior frontal and
temporal regions (Takahashi et al., 2012). The spatial pattern of differ-
ences found in the NBS analysis might be indicative of an impairment
that may be time locked to late stages in neurodevelopment as most of
the affected nodes are located in inferior frontal and inferior temporo-
occipital areas in which gyrification starts latest. Therefore, these ven-
trally located alterations in gyrification-based covariance networks in
OCD patients may potentially be attributable to a common, yet still
unknown, mechanism or cause related to a rather late period in neuro-
development and may indicate a risk factor for the development of
OCD. A similar pattern of alterations in grey matter volumes of mostly
ventrally located brain regions such as the thalamus, hippocampus,
OFC, posterior cingulate cortex and centrum semiovale can be
observed in preterm birth (Ball et al., 2012). Additionally, there appears
to be an overlap between grey matter alterations of ventral brain struc-
tures and associated intrinsic connectivity in preterm born adults as
well (Bauml et al., 2015). Surprisingly, two recent studies have identi-
fied preterm birth and low birth weight (among others) to be risk fac-
tors for developing OCD (Brander et al., 2016; Fevang, Hysing,
Markestad, & Sommerfelt, 2016). Given that IGI values for nodes did
not correlate with symptom severity, alterations may potentially be
interpreted as a trait instead of state marker in line with the notion of
gyrification being a measure that is rather stable over time and revealed
no group x age interaction effects in our sample. One striking feature,
further illustrating the value of connectome based approaches in gen-
eral, is the difference in results between the current study and the find-
ings presented by Rus et al. (2016). Though in both studies the
measure being analyzed is IGI, findings are somewhat different. Rus
et al. (2016) report alterations mainly in insula and dorsal regions (i.e.
inferior and superior parietal, post- and precentral as well as superior
frontal areas) that are confined to the right hemisphere without reveal-
ing significant differences concentrating on ventral regions. This dis-
crepancy in finding is, however, not surprising as both analyses
essentially measure something potentially very different. In one case, it
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TABLE 3 Edges comprising the significantly different NBS cluster in obsessive-compulsive disorder

Side Edge connecting
Left-left Long insular gyrus/central sulcus of the insula Parahippocampal gyrus
Lateral occipito-temporal gyrus Middle temporal gyrus
Long insular gyrus/central sulcus of the insula Calcarine sulcus
Middle temporal gyrus Med. occipito-temporal sulcus/lingual sulcus
Cuneus Orbital sulci
Lingual gyrus Orbital sulci
Precuneus Orbital sulci
Calcarine sulcus Orbital sulci
Parieto-occipital sulcus Orbital sulci
Anterior transverse collateral sulcus Suborbital sulcus
Long insular gyrus/central sulcus of the insula Superior temporal sulcus
Lateral occipito-temporal gyrus Superior temporal sulcus
Parahippocampal gyrus Superior temporal sulcus
Med. occipito-temporal sulcus/lingual sulcus Superior temporal sulcus
Medial orbital sulcus Superior temporal sulcus
Left-right Medial orbital sulcus Cuneus
Gyrus rectus Precuneus
Medial orbital sulcus Precuneus
Suborbital sulcus Precuneus
Parahippocampal gyrus Horiz. ramus of ant. segment of lateral sulcus
Middle temporal gyrus Central sulcus
Middle occipital gyrus Lateral occipito-temporal sulcus
Lateral occipito-temporal sulcus Orbital sulci
Medial orbital sulcus Parieto-occipital sulcus
Long insular gyrus/central sulcus of the insula Subparietal sulcus
right-right Lateral occipito-temporal gyrus Orbital gyrus

Parahippocampal gyrus

Orbital gyrus

Precuneus

Lateral occipito-temporal gyrus
Inferior temporal gyrus

Lateral occipito-temporal sulcus
Lateral orbital sulcus

Orbital sulci

is a vertex-by-vertex comparison of IGls between groups while in the
other case it is the comparison of mutual correlation between IGls of
different brain regions between groups. However, there is also some
overlap regarding correlations with age at onset. Comparing the corre-
lation between IGI and age at onset reported in Rus et al. (2016) with
correlations between average node-wise IGl with age at onset from the
current study reveals a substantial overlap. It should be kept in mind,

Lateral occipito-temporal sulcus
Lateral occipito-temporal sulcus
Lateral orbital sulcus

Orbital sulci

Orbital sulci

Orbital sulci

Parieto-occipital sulcus

Parieto-occipital sulcus

however, that correlations in the current study are significantly corre-
lated at an uncorrected threshold of p < .05 which, on the other hand,
is likely due to the need for multiple comparison adjustment which in
case of network based studies is typically quite extensive. Finally, the
overlap in correlations is not surprising as a large proportion of the
sample is essentially based on the same subjects. Secondly, the overall
network topology assessed by measuring small-worldness showed no
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TABLE 4 Global topological measures of gyrification-based structural covariance networks
Functional data
analysis based
Healthy Obsessive-compulsive permutation test
controls disorder (p values)
Small-world index (o) 1.5019 (0.5029) 1.6104 (0.4589) 0.5480
Normalized average clustering coefficient gamma (y) 1.6492 (0.7182) 1.8363 (0.7910) 0.3460
Normalized average characteristic path length (i) 1.0730 (0.0847) 1.1060 (0.1371) 0.0510

All indices mean * SD.

significant abnormalities in patients. This finding is in line with other
studies employing graph based analysis strategies in schizophrenia
using gyrification based networks (Palaniyappan et al., 2016; Palaniyap-
pan et al.,, 2015) as well as various other structural outcome measures
in OCD (Kim et al., 2013; Reess et al., 2016; Zhong et al., 2014). How-
ever, the normalized average characteristic path length (1) was found
to be decreased in patients at trend level (p = .051) potentially indicat-
ing a decreased global integration capability in patients. Considering
that nodes within the impaired network found using NBS analysis are
mainly distributed ventrally, one might try to probe whether the trend
effect in normalized average characteristic path length is mainly driven
by alterations between ventral nodes. This type of analysis would
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however be circular if conducted within the same data set. The only
node displaying significant differences (FDR-corrected) regarding local
clustering was found to be the left middle frontal sulcus. In OCD, this
node’s clustering coefficient was decreased, indicating that its topologi-
cal neighbors are less well connected with each other than in healthy
controls. This is a potentially relevant finding given the anatomy and
functionality of the middle frontal sulcus. The middle frontal sulcus is
buried within middle frontal gyrus (Destrieux et al., 2010) and overlaps
with dorso-lateral prefrontal cortex (DLPFC), a region that has previ-
ously been associated with planning abilities. Interestingly, van den
Heuvel et al. (2005) report a decreased activity in left DLPFC-striatal
responsiveness in obsessive compulsive disorder to go along with
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FIGURE 2 Global graph-measures as a function of density. (a) Between-group differences in normalized average clustering coefficients, vy.
(b) Between-group differences in normalized average characteristic path length, L. (c) Between-group differences in small-world index, o

[Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 Correlations between node-based local gyrification and
age of onset

p (FDR-
r corrected)
Ih gyrus rectus 0.328 p = .001
Ih suborbital sulcus 0.355 p < .001
rh gyrus rectus 0.346 p < .001
rh subcallosal gyrus 0.318 p = .002
rh medial orbital sulcus 0.372 p < .001

Abbreviations: |h, left hemisphere; rh, right hemisphere; r, Pearson corre-
lation coefficient; FDR, false discovery rate.

impaired task performance during a Tower of London Task assessing
planning abilities. Furthermore, Kaller, Rahm, Spreer, Weiller, and
Unterrainer (2011), similarly employing a Tower of London Task, found
a dissociation between left and right DLPFC function with stronger
activations in the left DLPFC correlating with higher demands on goal
hierarchy in healthy subjects. This is interpreted as a stronger involve-
ment of left DLPFC during goal extraction for a given problem. Hence,
the decreased clustering coefficient of the left middle frontal sulcus
indicating a reduced connectivity among its neighbors may constitute
the structural basis of impaired planning abilities in OCD. However, it
should be noted that a further study reported impairments in DLPFC
activity related to impaired task performance not only for OCD but
also other diagnostic categories including panic disorder and hypochon-
driasis (van den Heuvel et al., 2011). The authors therefore concluded
that a common, disease-unspecific mechanism may underlie the impair-
ments in planning ability. Thirdly, we report significant positive correla-
tions between IGl's in several inferior frontal nodes and age of onset
indicating that smaller IGI values are accompanied by earlier age of dis-
ease onset. The lack of group X age interactions may speak in favor of
differences in gyrification networks indicating a potential early neuro-
developmental risk factor that appears to be independent of age
related developmental trajectories. Additionally, the significant associa-
tion with age of onset suggests that age of onsets itself seems to fur-
ther influence these early alterations. However, due to the cross-
sectional study design it is not possible to draw strong conclusions
about these alterations to be best interpreted as trait markers. Never-
theless, the present findings might be used to generate hypotheses and
spark further research into the subject-matter ideally applying longitu-
dinal study designs. Additionally, it may be interesting to try to assess
whether patients were born pre-term when studying structural brain
alterations in general and gyrification in particular. Previous studies
revealed a relationship between measures of integration and segrega-
tion with therapy outcomes in schizophrenia (Palaniyappan et al.,
2016). Future work might therefore use gyrification-based network
measures to examine relationships between gyrification and therapy
outcome (responder, nonresponder) in OCD as well. Additionally, it
would be of interest to conduct analyses based on sub-graphs that are
binned into phases (e.g., early, mid, late) according to the developmen-
tal scheme of gyrification. Furthermore, comparing the relationship

WILEY-L

between IGI values in OCD patients, their first-degree relatives, and
healthy control subjects might shed more light on the importance of
gyrification as a potential structural endophenotype.

5 | LIMITATIONS

Combining data from various centers using different acquisition proto-
cols in order to substantially increase sample sizes may introduce sys-
tematic biases. This issue was addressed by adjusting IGI values for the
scan sequence and thus coil type used. Nevertheless, some bias that
cannot be removed using the applied statistical tools might remain and
should be acknowledged. Due to the cross-sectional nature of the
study design, it is not possible to draw strong conclusions regarding the
idea of ascribing alterations in covariance patterns to time locked, sen-
sitive periods. Additionally, very recent evidence by Cao et al. (2017)
indicates that patients with various psychiatric disorders (major depres-
sion disorder, schizophrenia, and bipolar disorder |) display deviating
gyrification trajectories over age when compared with healthy controls.
However, the group x age interaction analyses revealed no such differ-
ences within the current sample implying a similar trajectory within
OCD and healthy controls. This, in turn, speaks against a disease-
related neurodegenerative or progressive process and supports our
hypothesis of early neurodevelopmental alterations. Furthermore, the
sample in the current study is age-matched and IGI values were
adjusted for age-effects prior to computing correlation matrices.
Another limiting factor lies within the rather heterogeneous sample
regarding medication status as well as presence of comorbidities. To
the best of our knowledge, there are no studies to date, that systemati-
cally examine the relationship between medication and gyrification.
Additionally, previous work from our group (Rus et al., 2016) revealed
that taking medication status as well as comorbidities into considera-
tion did not significantly affect gyrification differences between OCD
patients and healthy controls. Conducting exploratory sub group analy-
ses of medicated/unmedicated patients as well as patients with and
without comorbidity revealed no significant differences in the NBS
results. However, a lack of significant differences does not necessarily
imply a lack of relationship. Therefore, potential relationships should
still be investigated in the future preferably using substantially larger

sample sizes.
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Supplementary material

Scan parameters for the different samples:
M1ocd / M1hc:

Structural imaging consisted of a T1-weighted 3D MPRAGE sequence (170 slices,
sagittal orientation, 240x240 matrix, 1mm isotropic resolution, TR=9ms, TE=4ms, flip

angle=8°). Data was acquired using a 12 channel (SENSE) head caoil.
M2ocd / M2hc:

Structural imaging consisted of a T1-weighted 3D MPRAGE sequence (230 slices,
sagittal orientation, 368 x 340 matrix, 0.7 x 0.75 x 0.7mm resolution, TR=11ms,
TE=5.1ms, flip angle=8°). Data was acquired using a 32 channel (SENSE) head coil.
Resolution of data within group was downsampled to 1 mm isotropic resolution to

match the resolution of the other two samples.
J1ocd / J1hc:

Structural imaging consisted of a T1-weighted 3D MPRAGE sequence (192 slices,
sagittal orientation, 256x256 matrix, 1mm isotropic resolution, TR=2300ms,
TE=3.03ms, flip angle=9°). Data was acquired using a 12 channel receive-only head

matrix coil.
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NBS analyses of early vs. late onset splits

To evaluate the influence of early (EO) vs. late onset (LO) on NBS results we
split the patient sample into early and late onset OCD. Since there is no
commonly agreed upon criterion to define cutoffs for early and late onset OCD,
with different studies using different criteria (see Taylor, 2011, Table 3), we
applied 5 different cutoffs that naturally influence the sample size (EO <= 10
yrs, n=14; EO <= 12 yrs, n=24; EO =< 14 yrs, n= 33; EO=< 16, n=47; EO=<18 yrs,
n=59). None of the NBS analyses yielded significantly different clusters

between EO and LO.
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Supplementary Table |. Correlations between node-based local gyrification and age

of onset (uncorrected P<0.05)

Node r P
(uncorrected)

Ih fronto-marginal sulcus and gyrus 0.265 P =0.009
Ih subcentral sulcus and gyrus 0.212 P =0.037
Ih anterior cingulated gyrus and sulcus 0.219 P =0.031
Ih opercular part of inferior frontal gyrus 0.220 P =0.030
Ih orbital part of inferior fronal gyrus 0.214 P =0.035
Ih long insular gyrus and central sulcus of insula 0.256 P =0.011
Ih short insular gyri 0.250 P=0.013
Ih orbital gyri 0.223 P =0.028
Ih gyrus rectus 0.328* P =0.001
Ih subcallosal gyrus 0.259 P =0.010
Ih anterior transverse temporal gyrus 0.226 P =0.026
Ih horizontal ramus of ant. segment of lat. 0.268 P =0.008
sulcus

Ih post. ramus of lat. sulcus 0.221 P =0.030
Ih ant. segment of cicular sulcus of insula 0.290 P =0.004
Ih inf. segment of circular sulcus of insula 0.237 P =0.020
Ih sup. segment of circular sulcus of insula 0.256 P =0.011
Ih lateral orbital sulcus 0.229 P =0.024
Ih medial orbital sulcus 0.270 P =0.008
Ih suborbital sulcus 0.355* P < 0.001
rh subcentral gyrus and sulci 0.216 P =0.034
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rh ant. part of cingulated gyrus and sulcus 0.233 P =0.021
rh opercular part of inferior frontal gyrus 0.201 P =0.048
rh triangular part of inferior frontal gyrus 0.238 P=0.019
rh long insular gyrus and central sulcus of insula 0.227 P =0.025
rh gyrus rectus 0.346* P < 0.001
rh subcallosal gyrus 0.318* P =0.002
rh anterior transverse temporal gyrus 0.209 P =0.040
rh vertical ramus of ant. segment of the lateral 0.205 P =0.044
sulcus

rh post. ramus of the lateral sulcus 0.221 P =0.030
rh inf. segment of circular sulcus of insula 0.212 P =0.037
rh sup. segment of circular sulcus of insula 0.231 P =0.023
rh medial orbital sulcus 0.372* P < 0.001
rh orbital sulci 0.257 P =0.011
rh suborbital sulcus 0.302 P =0.003

Ih, left hemisphere; rh, right hemisphere; r, Pearson correlation coefficient computed
on previously adjusted /Gl values; * indicates correlations that are significant

correcting for multiple comparisons using false-discovery rate
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Supplementary Table Il. p-values for subgroup analyses results for graph

measures
Comparison A Y o

HC vs. medicated OCD 0.2970 0.9040 0.7350
HC vs. unmedicated OCD 0.1600 0.1050 0.1530
Medicated OCD vs. unmedicated OCD 0.6780 0.1850 0.2020
HC vs. OCD with comorbidities 0.8440 0.2110 0.2480
HC vs. OCD without comorbidities 0.0780 0.5500 0.7300
OCD with vs. OCD without comorbidities 0.3150 0.6720 0.5730

HC: healthy controls; OCD: obsessive-compulsive disorder; y = normalized average
clustering coefficient; A = normalized average path length; o = small-worldness
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Supplementary Figure 1. Association between IGI and age within patients and
controls. There were no significant group x age interaction effects, controlling
for sex, intracranial volume and scan sequence.

There were no significant group x age interaction effects.
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Chapter 4

Project 3: “Association between
hippocampus volume and symptom
profiles in obsessive-compulsive
disorder”

The current chapter includes the research article “Association between hippocampus
volume and symptom profiles in obsessive-compulsive disorder”. This article aimed at
exploring potential relationships between symptom profiles and hippocampus volume in
OCD. Employing a clustering algorithm allowed to derive symptom profile groups that were
differentially associated with hippocampus volume alterations. The article was published in

Neuroimaging: Clinical in 2018.
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ARTICLE INFO ABSTRACT

Keywords: Background: The hippocampus has recently been identified to play a key role in the pathophysiology of adult

Hippocampus obsessive-compulsive disorder (OCD). Surprisingly, there is only limited evidence regarding the potential re-

Obsessive-compulsive lationships with symptom dimensions. Due to the heterogeneity of symptoms in OCD, we aimed at further

ocb . . examining, whether hippocampal volume differences might be related to symptom profiles instead of single

Symptom dimension 5 A

Freesurfer symptom dimensions.

MRI Methods: In order to find out more about the potential association between clinical symptom profiles and al-
terations in hippocampal volume we categorized a large sample of OCD patients (N = 66) into distinct symptom
profile groups using K-means clustering. In addition, hippocampal volumes of the different symptom profile
groups were compared with hippocampal volumes in a sample of 66 healthy controls.

Results: We found significant differences in hippocampal volume between the different symptom profile groups
which remained significant after correcting for age, sex, total intracranial volume, OCI-total score, depression,
medication, disease duration and scanner. The patient group characterized by overall lower symptom scores and
without high symptom severity in any specific domain showed the highest hippocampal volume. Finally, the
comparison with healthy controls demonstrated significantly lower hippocampal volumes in those patients
whose symptom profile was characterized by a high severity of ordering and checking symptoms.

Conclusions: Present results provide further confirmation for alterations in hippocampus structure in OCD and
suggest that symptom profiles which take into account the multi-symptomatic character of the disorder should
be given greater attention in this context.

1. Introduction et al., 2017). The ENIGMA consortium analysis constitutes the largest
meta-analysis on structural alterations in OCD to date. Employing a

Despite increasing evidence for structural brain alterations in ob- coordinated and standardized analysis approach, meta- and mega-
sessive-compulsive disorder (OCD) the overall picture has to be con- analysis of data from 1830 OCD patients (N = 335 children, N = 1495
sidered as rather heterogeneous with findings reporting both increases adults) and 1759 controls was conducted to identify alterations in
and decreases in gray matter volume, thickness, surface area or gyr- subcortical brain volumes in OCD patients compared to healthy controls
ification (Fan et al., 2013; Kuhn et al., 2013; Nakamae et al., 2012; (Boedhoe et al., 2017). As one of the main findings the analysis revealed
Piras et al., 2015; Rus et al., 2016; Shaw et al., 2015; Shin et al., 2007; the adult patient sample to have significantly increased pallidum and
Venkatasubramanian et al., 2012; Wobrock et al., 2010). In an attempt significantly smaller hippocampus volumes compared to healthy con-
to reduce overall result heterogeneity and to filter out the most trols. The pallidum is regarded as one of the core regions within the
meaningful alterations, an increasing number of meta-analyses pooling frequently discussed cortico-striato-thalamo-cortical (CSTC) circuit. A
data from multiple OCD sites worldwide are emerging in the OCD re- dysbalance within this circuit is assumed to represent a central psy-
search community (Boedhoe et al., 2017; De Wit et al., 2014; Fouche chopathological mechanism underlying obsessions and compulsions in
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OCD. In contrast, the hippocampus has not been the focus of OCD
psychopathophysiology up to now. Its volume, however, is frequently
found to be decreased in other psychiatric disorders such as depression
(Frodl and O'Keane, 2013; Malykhin and Coupland, 2015) and PTSD
(Ahmed-Leitao et al., 2016; O'Doherty et al., 2015). One potential
mechanism underlying volumetric changes in the hippocampus seems
to be uncontrollable stress (i.e., stress perceived as distress) which is
one of the main characteristics of many psychiatric disorders such as
PTSD. Distress has been demonstrated to change neuronal morphology,
suppress neuronal proliferation, and reduce hippocampal volume (Kim
et al., 2015). According to ICD-10, OCD is classified as a stress-related
disorder and patients with OCD tend to report high levels of stress and
anxiety independent of their specific symptoms or symptom profiles
(Stein et al., 2010). Therefore, there is strong reason to assume that
hippocampal volume differences may be clinically relevant in OCD as
well. Of note, the ENIGMA meta-analysis identified hippocampal vo-
lume differences to be larger in medicated patients, however, no re-
lationship with symptoms was found. The ENIGMA study related vo-
lume differences to specific symptoms as assessed by the Y-BOCS
checklist. However, it should be noted that the majority of all OCD
patients are multi-symptomatic and the individual symptom profiles of
OCD patients are heterogeneous to the extent that two patients may
display different overlapping or even non-overlapping symptom pat-
terns (Mataix-Cols et al., 2005). Hence, instead of correlating outcome
measures with specific symptoms one at a time, it may be reasonable to
adopt an approach that accounts for possible interrelations of different
symptom dimensions in patients. The fact that Boedhoe et al. (2017)
found no significant correlations between symptom dimensions and
hippocampus volumes is striking given the clear involvement of volume
differences in patients found in their study. One possible explanation
might be that symptom dimensions were related to structural altera-
tions while controlling for the effects of other symptom dimensions,
therefore effectively treating each symptom in isolation. To find out
more about the clinical relevance of the recently reported differences in
hippocampal structure, the present study employs a cluster analysis
approach on dimensional symptoms to reach a differentiation into
distinct symptom composition profiles, comparing hippocampal vo-
lumes between the different symptom profile groups. Thus, we aimed at
exploring whether taking into account the interrelation between dif-
ferent symptoms, i.e., patients” symptom composition profile, would be
a valuable approach to relate structural alterations to clinically relevant
features. We assumed that if the hippocampus would indeed be dif-
ferentially affected in dependence on specific symptom composition
profiles volume differences should be related to different symptom
profiles. If hippocampus volumes would not be related to symptom
profiles, this would rather speak in favor of a clinically unspecific
hippocampal involvement in the disease.

2. Methods and materials
2.1. Participants

Data from two samples were combined. Sample one (S1) comprised
n = 42 patients and n = 46 healthy controls and sample two (S2)
comprised n = 24 patients and n = 20 healthy controls resulting in a
total size of n = 66 patients with OCD as the primary diagnosis ac-
cording to DSM-1V criteria and n = 66 healthy controls (see Table 1 for
demographic and clinical details). Patients and controls were matched
for sex and age in both samples. All patients were recruited from the
Windach Institute and Hospital of Neurobehavioural Research and
Therapy, Germany, and diagnoses were made by an experienced psy-
chiatrist. Exclusion criteria for all participants were a history of clini-
cally important head injuries, seizures or neurological diseases. At time
of the study, n = 48 patients were drug-naive or medication free for at
least 3 weeks and n = 30 patients had one or more comorbid diagnoses.
To assess clinical severity of obsessive-compulsive symptoms, patients
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Table 1
Demographic and clinical sample characteristics.

Characteristics ocDh HC
n n
Mean * SD Mean * SD

Sample size 66 66
Female 46 (69.7%) 46 (69.7%)
Age (years) 324 = 105 31.6 = 10.3°
Disease duration 16.0 = 10.8
Y-BOCS total 21.0 = 6.2

Obsession 11.0 = 3.6

Compulsions 9.9 + 39
OCI-R total 25.4 *= 10.0

Hoarding 2:3:% 2.6

Checking 55 * 3.6

Ordering 39 + 38

Neutralizing 22 £ 29

Washing 4.8 = 39

Obsessing 6.8 + 3.6
BDI (S1) 18.0 = 11.5
HAM-D (S2) 12.6 = 49
Comorbidities 30 (45.5%)

Depression 23

Anxiety disorder 10

Personality disorder 4

Eating disorder 2

ADHD 2
Medication 48 (72.7%)

SSRI 35

SSRNI 6

Neuroleptic 5

TCA 3

Methylphenidate 1

Benzodiazepine 1

NDRI 1

NaSSA 1

Note that multiple comorbid diagnoses as well as different medication types can be
present in a single patient; abbreviations for medication: NaSSA, noradrenergic and
specific serotonergic antidepressant; NDRI, norepinephrine-dopamine reuptake inhibitor;
SSNRI, selective serotonin-norepinephrine reuptake inhibitor; SSRI, selective serotonin
reuptake inhibitor; TCA, tricyclic antidepressant.

* Two-sample t-test (t(130) = 0.442, p = 0.659).

were administered the self-rated version of the Yale-Brown Obsessive-
Compulsive Scale (Y-BOCS) (Goodman et al., 1989; Hand and Biittner-
Westphal, 1991). The Obsession-Compulsion Inventory revisited (OCI-
R) (Foa et al., 2002; Gonner et al., 2008) was administered to more
specifically assess different symptom dimensions. Additionally, de-
pressive symptoms were evaluated based on the Beck Depression In-
ventory (BDI-II) (Beck et al., 1996; Hautzinger et al., 2009) in patients
of sample S1 and the Hamilton Depression Scale (HAM-D) (Hamilton,
1960) in patients of sample S2. The study was approved by the local
Ethics Committee of the Klinikum rechts der Isar, Miinchen and was
conducted in accordance with the Declaration of Helsinki.

2.2. Image acquisition

Magnetic resonance imaging was conducted on a 3T Philips Ingenia
(Philips Healthcare, Best, The Netherlands) using a 12-channel (SENSE)
head coil. For sample S1, structural imaging consisted of a T1-weighted
3D MPRAGE sequence with an isotropic resolution of 1 mm (170 slices,
sagittal orientation, 240 x 240 matrix, TR = 9ms, TE = 4 ms, flip
angle = 8°) while for sample S2, imaging consisted of a T1-weighted 3D
MPRAGE sequence with a resolution of 0.7 x 0.75 X 0.7 mm (230
slices, sagittal orientation, 368 X 340 matrix, TR = 11ms,
TE = 5.1 ms, flip angle = 8°). Prior to analysis the 24 submillimeter
data sets of sample S2 were downsampled in order for all images to
have a consistent resolution of 1 mm isotropic.
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Fig. 1. Symptom profile composition and hippocampal volumes. Symptom composition analysis (A): Mean scores of each OCI-R item according to cluster membership, grouped by
symptom dimensions. Numbers in parentheses indicate the number of each item in the questionnaire. Within patients analysis (B): Marginal means * standard error. There was a
significant main effect of cluster membership on global hippocampal volume while controlling for age, sex, total intracranial volume, total OCI-R score, clinically relevant depression,

medication, disease duration and scanner (F(2,55) = 3.301, p = 0.044). Between groups analysis (C): Marginal means

+

standard error. There was a significant main effect of cluster on

global hippocampal volume while controlling for age, sex, and total intracranial volume (F(3,125) = 4.752, p = 0.004).

2.3. Image processing

Based on these T1-weighted images, cortical and subcortical struc-
tures were initially segmented and labeled using Freesurfer (Version
6.0, http://surfer.nmr.mgh.harvard.edu/) (Dale et al., 1999; Fischl
et al., 2002; Fischl et al., 1999). Processing included automatic seg-
mentation into gray and white matter tissue compartments followed by
parcellation of the gray matter mask into distinct brain regions and
reconstruction of brain surfaces. These results were subsequently used
to initialize the labeling of hippocampi using the recently released
hippocampal subfield segmentation algorithm implemented in the
Freesurfer package. Compared to previous versions, the labeling rests
on an atlas which was built based on ex vivo MRI data of postmortem
brain tissue acquired at 7T with sub-millimeter resolution and results
have been shown to be in better agreement with histological studies
(Iglesias et al., 2015). Hippocampus segmentations were visually in-
spected and volumes were quantitatively checked for outliers.

2.4. Symptom composition analysis (SCA)

In order to partition the patients according to their symptom com-
position, all OCI-R items were entered into a K-means cluster analysis in
SPSS (IBM Corp. Released 2016. IBM SPSS Statistics for Windows,
Version 24.0. Armonk, NY: IBM Corp). This type of analysis allows to
derive subgroups whose members are characterized by being rather
similar in symptom composition within each subgroup while being as
different as possible in symptom composition to members of other
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subgroups. The number of clusters (k) to be extracted was predefined to
k = 3. This number was chosen in order to extract a number of clusters
that allows for sufficient differentiability of patients while preserving a
relatively large number of subjects per clusters (see Supplementary
Fig. 1 for further details).

2.5. Statistical analysis

Demographic and clinical characteristics of subjects forming the
three different clusters were compared using one-way ANOVAs with the
respective demographic or clinical variable as dependent variable and
cluster membership as factor with three factor levels. In line with
Boedhoe et al. (2017) hippocampus volumes of the left and right
hemisphere were averaged to yield a single hippocampus volume for
each subject. For patients only, an ANCOVA model was fit to assess
cluster-related differences in hippocampus volume while controlling for
the following covariates: age, sex, total intracranial volume, OCI-total
score, depression, medication, disease duration, and scanner. Control-
ling for OCI-total scores allows the assessment of potential effects of
cluster membership irrespective of cluster-specific differences in global
OCI symptom severity. Medication was entered as a dichotomous
variable indicating whether patients were medication naive or medi-
cation free for at least three weeks prior to scanning. HAM-D and BDI
scores were transformed into a dichotomous variable and used as a
proxy to indicate the absence or presence of clinically relevant de-
pressive symptoms. HAM-D scores = 9 and BDI scores = 13 were
considered to indicate the presence of relevant depressive symptoms
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Table 2
Demographic and clinical sample characteristics in the three patient groups.
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Characteristics Cluster 1 Cluster 2 Cluster 3 F-statistic p-Value
Mean *+ SD Mean + SD Mean + SD
n(%) n(%) n(%)
OCI total 23.47 * 8.65 34.12 + 6.46 17.67 + 6.13 34.924 < 0.001
Age 31.38 = 11.20 33.63 = 11.06 31.90 £ 9.72 0.266 0.767
Disease duration 12.88 * 6.61 18.92 = 13.59 15.04 *= 9.58 1.742 0.184
Male 1 (5.9%) 9 (36.0%) 10 (41.7%) 3.531 0.035
Depression 9 (52.9%) 21 (84%) 17 (70.8%) 2.451 0.094
Medication 15 (88.2%) 20 (80.0%) 14 (58.3%) 2.779 0.070

*p < 0.05, Bonferroni-corrected for the total number of ANOVAs computed.

according to the German National Disease Management Guideline De-
pression (DGPPN and KBV, 2015). In a second analysis, potential
cluster-related differences in hippocampus volumes between patients
and healthy controls were assessed. To this end, an ANCOVA model was
fit treating all healthy controls as belonging to one synthetic cluster of
their own resulting in the factor cluster with four levels. Additionally,
the analysis was controlled for the following covariates: age, sex, and
total intracranial volume.

3. Results
3.1. Symptom composition analysis (SCA)

The mean scores of each OCI-R item according to cluster member-
ship are depicted in Fig. 1A. Items are grouped together according to
OCI symptom scales. ANOVA analyses revealed a significant main effect
of cluster on OCI total score (F(2,63) = 34.924,p < 0.001, corrected).
Information regarding demographic characteristics and statistical dif-
ferences between each patient cluster are depicted in Table 2.

3.2. Hippocampus volume

3.2.1. Within patients analysis

There was a significant main effect of cluster on global hippocampus
volume while controlling for age, sex, total intracranial volume, total
OCI-R score, clinically relevant depression, medication, disease dura-
tion, and scanner (F(2,55) = 3.301, p = 0.044, nz = 0.057).
Additionally, there was a significant main effect of sex (F(1,55)

Table 3
ANCOVA model details for within patients analysis.

= 6.429, p = 0.014, q2 = 0.055), total intracranial volume (F(1,55)
= 7.291, p = 0.009, n2 = 0.063), presence or absence of clinically
relevant depression (F(1,55) = 5.613, p = 0.021, n2 = 0.048) and
scanner (F(1,55) = 5.354, p = 0.024, r]2 = 0.017) (see Fig. 1B as well
as Table 3). Post-hoc tests indicated that hippocampus volume was
significantly different between cluster 2 and 3 (p = 0.020, 95% CI
[—562.77, —49.47]) while there was a trend significant difference
between cluster 1 and 3 (p = 0.056, 95% CI [— 432.59, 5.75]) and no
significant difference between clusters 1 and 2 (p = 0.456, 95% CI
[—154.82, 340.21]). For exploratory analyses of hippocampus subfield
volumes see Supplementary Table I.

3.2.2. Between groups analysis

There was a significant main effect of cluster on global hippocampus
volume while controlling for age, sex, total intracranial volume and
scanner (F(3,125) = 4.752, p = 0.004, r]2 = 0.071). Additionally,
there was a significant main effect of sex (F(1,125) = 10.914
p = 0.001, n2 = 0.081), total intracranial volume (F(1,125) = 17.758
p < 0.001, n2 = 0.088) and scanner (F(1,125) = 6.797 p = 0.010,
n? = 0.034) (see Fig. 1C as well as Table 4). Post-hoc tests were con-
ducted to compare each patient cluster with healthy controls (c1 vs. HC,
c2 vs. HC, ¢3 vs. HC). For this comparison alpha was Bonferroni-cor-
rected to be a = 0.05/3 or a = 0.017. Cluster 2 was found to be sig-
nificantly different from HC (p = 0.012, 95% CI [ — 297.39, — 37.47]).
Differences between cluster 3 and healthy controls (p = 0.063, 95% CI
[—255.23, 6.75]) as well as between cluster 1 and HC were not sig-
nificant (p = 0.366, 95% CI [ — 82.68, 222.46]).

Sum of squares (Typ III) df Mean squares F Significance n? Partial n?

Corrected model 5,342,274.95 10 534,227.50 6.107 < 0.001 0.526
Constant term 3,484,000.10 1 3,484,000.10 39.829 < 0.001 0.420
Cluster 577,495.26 2 288,747.63 3.301 0.044 0.057 0.107
Age 27,210.95 1 27,210.95 0.311 0.579 0.003 0.006
Sex 562,325.53 1 562,325.53 6.429 0.014 0.055 0.105
Icv 637,788.24 1 637,788.24 7.291 0.009 0.063 0.117
OCI total 11,522.83 1 11,522.83 0.132 0.718 0.001 0.002
Depression 490,991.26 1 490,991.26 5.613 0.021 0.048 0.093
Medication 16,746.94 1 16,746.94 0.191 0.663 0.002 0.003
Disease duration 66,142.75 1 66,142.75 0.756 0.388 0.007 0.014
Scanner 168,298.30 1 168,298.30 5.354 0.024 0.017 0.089
Error 4,811,035.05 55 87,473.37

Total 812,213,858.70 66

Corrected total variation 10,153,310.00 65

< =p < 0.05;
ANCOVA model formulation:

hippo,, = 2697.20 — 213.42" clust; — 306.12" clust, — 3.18"age + 275.47"sex + 0.001°ICV + 2.09° OCl o, — 204.19" depression + 38.93"medication + 5.14" disease duration + 231.78" scanner.
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Table 4
ANCOVA model details for between groups analysis.
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Sum of squares (Typ III) df Mean squares F Significance n? Partial 1?

Corrected model 5,882,377.33 7 840,339.618 11.003 < 0.001 0.383
Constant term 9,327,886.03 1 9,327,886.03 122.130 < 0.001 0.496
Cluster 1,088,735.90 3 362,911.97 4.752 0.004 0.071 0.103
Age 6681.42 1 6681.42 0.087 0.768 < 0.001 0.001
Sex 833,600.24 1 833,600.24 10.914 0.001 0.054 0.081
ICV 1,356,312.68 1 1,356,312.68 17.758 < 0.001 0.088 0.125
scanner 519,145.23 1 519,145.23 6.797 0.010 0.034 0.052
Error 9,470,732.19 124 76,376.87

Total 1,647,001,109.00 132

Corrected total variation 15,353,109.51 131

* =p < 0.05;
ANCOVA model formulation:

hippoyo = 2534.54 — 69.89" clust, — 167.43" clust, + 124.29" clust; + 0.70"age + 200.56"sex + 0.001"ICV + 159.60" scanner.

4. Discussion

To find out more about the clinical relevance of hippocampal vo-
lume changes in OCD, in the present study we categorized a large
sample of OCD patients into three distinct symptom profiles and com-
pared alterations in hippocampal volume between the resulting groups.
We further compared the resulting clusters with healthy participants.
With this procedure we aimed at further elucidating the clinical sig-
nificance of hippocampal volume alterations by better accounting for
the clinical heterogeneity of the disorder. The cluster analysis showed
that the relatively large patient sample could be subdivided most ade-
quately into three symptom profile groups. Common to all clusters was
the moderate to high level of obsessing symptoms. This feature thus
does not seem be the major driving factor regarding hippocampus vo-
lume differences. Similar, but less pronounced are the dimensions
neutralizing and hoarding. Here, the overall symptom strength is low to
moderate with slight differences between clusters. The main differences
between clusters could be found for the dimensions washing, ordering,
and checking. Here cluster 1 revealed by far the highest washing scores
while being on par with cluster 3 on ordering and checking symptoms.
Cluster 2 revealed intermediate washing symptoms while scoring the
highest on ordering as well as checking symptoms. On a side note,
cluster 1, characterized by the highest washing symptoms, contained
only a single male patient and 16 female patients. This is in line with
earlier studies reporting washing symptoms predominantly in female
patients (Labad et al., 2008; Mathis et al., 2011; Torresan et al., 2013).
As a main finding the present analysis demonstrated that hippocampus
volume differed significantly between the three groups with post-hoc
tests indicating that cluster 2 had significantly smaller hippocampal
volumes than cluster 3. Importantly, this result was corrected for the
influence of overall symptom severity (i.e., OCI-R total score) which
indicates that the respective symptom profiles account for variation in
hippocampal volume independent of overall symptom severity. Hence,
present findings clearly demonstrate that the classification into dif-
ferent OCD symptom profiles — an approach which has been re-
commended already years ago (Mataix-Cols et al., 2005) — significantly
accounts for variation in hippocampal volume reduction. Additionally,
there was a difference between hippocampal volumes when including a
group of healthy subjects, with post-hoc tests indicating significant
differences between cluster 2 and healthy controls. Present findings
moreover extend recent results from the currently largest meta-analysis
on structural alterations in OCD (i.e., the ENIGMA consortium meta-
analysis) which revealed significantly smaller hippocampal volumes in
adult OCD patients compared to healthy controls (Boedhoe et al.,
2017). The meta-analysis showed the effect to be stronger in medicated
patients compared to controls but not significantly related to clinical
symptoms. However, unlike in the present study, in this meta-analysis
symptom spectra or the interrelation between different symptoms was
not taken into account but symptoms were assessed independently for
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each Y-BOCS checklist symptom dimension. Present findings not only
corroborate the clinical relevance of hippocampal volume alterations in
OCD as reported before (Honda et al., 2017) but strongly suggest that
the interrelation of symptom dimensions should be taken into account
in this regard. As also shown in Fig. 1A, it seems that a high severity of
mainly ordering and checking symptoms (i.e., cluster 2) may be pre-
dominantly indicative of a reduction in hippocampus volume. The
hippocampus is a highly stress-sensitive structure (Kim et al., 2015) and
is often found to be reduced in volume in other stress-related disorders
such as depression (MacQueen, 2009) and PTSD (Ahmed-Leitao et al.,
2016). Hence, there is reason to assume that the association between a
high level of predominantly ordering/checking (cluster 2) and - to a
somewhat lesser extent predominantly washing (cluster 1) symptoms -
and reduced hippocampal volume may be mediated via stress and
stress-related physiological processes going along with these symptom
profiles and their associated behavior. In this context it is interesting to
note that the association remained significant even after correcting for
the comorbidity of depression. Moreover, the association between
symptom profile and hippocampal volume also remained significant
after correcting for the influence of disease duration. In this case, dis-
ease duration did not have a significant effect on hippocampal volume.
This finding seems to contradict the above formulated assumption that
stress going along with the disorder may play a relevant role in this
context. However, findings from meta-analyses on hippocampal vo-
lumes in depression produced relatively conflicting results and sug-
gested that disease duration may be a significant influencing factor
mainly in elderly patients (Eker and Gonul, 2010) (i.e., hippocampal
degenerative processes due to disorder-related stress may become
manifest predominantly in elderly patients who had been suffering from
depression for various years). Of note, the average disease duration
between clusters was not significantly different, i.e., overall effects of
disease duration had no significant influence on this type of analysis.
This finding does therefore not rule out the possibility of disease
duration related effects on hippocampal volumes in general. Apart from
the above mentioned meta-analysis (Boedhoe et al., 2017) which
showed a significantly decreased hippocampal volume in patients with
OCD, a limited amount of previous studies already reported alterations
in hippocampus structure and neurochemistry in patients with OCD.
For instance, Honda et al. (2017) found a decreased hippocampal vo-
lume in OCD patients employing voxel-based analyses and Hong et al.
(2007) observed a bilateral hippocampal shape deformity in OCD pa-
tients compared to healthy controls when performing a shape analysis
of the hippocampus. Regarding hippocampal neurochemistry lower
hippocampal ratio of N-acetyl-L-aspartate/choline (NAA/CHO) which is
considered to indicate loss of neurons and axons has been reported in
patients with OCD (Atmaca et al., 2009). Interestingly, follow-up stu-
dies found these alterations to partly normalize by effective treatment
and clinical improvement (Atmaca et al., 2015). Hence, our finding that
patients with a symptom profile characterized by a high level of
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predominantly checking/ordering symptoms (cluster 2) showed
stronger hippocampal volume differences compared to patients without
a high severity in any specific domain as well as an overall lower
symptom severity (cluster 3) complements these results. Taken to-
gether, present and earlier findings suggest that alterations in hippo-
campal volume in terms of neuroplasticity or partial reversal of tissue
loss may be an indicator of treatment-related clinical improvement
whereas hippocampal volume in terms of volumetric loss may represent
a state marker of disease severity if assessed dimensionally according to
specific symptom spectra or the interrelation between specific symptom
dimensions. Longitudinal study designs might further elucidate an in-
teraction between attenuation of strength in symptom profiles due to
therapy and associated hippocampus volume changes.

5. Limitations

In opposition to the results of the currently largest meta-analysis
(Boedhoe et al., 2017) which found that hippocampal volume reduc-
tions were stronger in medicated patients compared to controls we only
found a trend significant influence of medication on volumes. These
partly conflicting findings may have mainly statistical reasons as it must
be assumed that the meta-analysis based on a sample of 1495 adult
OCD patients had considerably larger detection power than the present
study. The definition of clinically relevant depression was based on two
different questionnaires (self-rated and clinician-rated) resulting from
the aggregation of two different samples. Therefore, the factor de-
pression should be assessed in further studies using the same ques-
tionnaires for the definition of cut-offs.
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Cluster Analysis

In order to determine a sensible number of clusters (k) to be extracted, the cluster analysis was
repeated with various k’s (2 <= k <= 6). For each k, the sum of squared errors of the euclidian
distance between a subject and it’s respective cluster centroid was computed using the following
formula:

K

SSE = Z Z distance(x, c;)?

i=1 x€c;

with K = the number of different clusters, ¢; = the i cluster centroid, and x a vector indicating all
subjects belonging to cluster c;. In order to achieve a sufficiently good differentiability in symptom
profiles while reaching a sufficiently large number of subjects within each cluster, k=3 was chosen.
For a depiction of the number of subjects per cluster with increasing k see Supplementary Figure 1 A)
and for a depiction of the sum of squared errors according to variation in the number of clusters see
Supplementary Figure 1 B)
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Supplementary Figure 1: K-means clustering details. Number of subjects (A) and sum of squared errors
(B) for various numbers of predefined clusters.
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Supplementary Table I: ANCOVA results for cluster effects on hippocampus subfield volumes within
the patient group.

Hippocampus subfield F-statistic | Significance n? Partial n?
Hippocampus tail 4.159 0.021* 0.106 0.131
Presubiculum 4.228 0.020* 0.072 0.133
Molecular layer 2.842 0.067 0.051 0.094
CAl 2.741 0.073 0.050 0.091
GC-ML-DG 2.672 0.078 0.045 0.089
CA4 2.512 0.090 0.041 0.084
Subiculum 1.744 0.184 0.035 0.060
Hippocampal fissure 1.362 0.265 0.023 0.047
CA3 1.320 0.276 0.022 0.046
HATA 1.101 0.340 0.016 0.039
Fimbria 0.730 0.486 0.014 0.026
Parasubiculum 0.460 0.634 0.008 0.016

Values reported are results of the main effects of the variable “cluster”. * = p<0.05, uncorrected for number of subfields. Volumes for left
and right hemisphere were averaged for each subfield. Each model is adjusted for age, sex, total intracranial volume, total OCI-R score,
clinically relevant depression, medication, disease duration and scanner. GC-ML-DG: Granule cell — molecular layer — dentate gyrus; HATA:
hippocampus-amygdala-transition-area. For further details regarding the subfields see Iglesias et al. (1)
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Chapter 5

General Discussion

The current thesis mainly focused on the application of network-based modeling
techniques to examine brain networks derived from in-vivo neuroimaging data acquired in
OCD and healthy controls. Additionally, the potential importance of recognizing symptom
profiles and their relationship with structural hippocampus alterations was assessed. The
following chapter is organized into four sections: Firstly, the results of each project will be
briefly summarized and the implications across projects will be discussed. Secondly,
methodological considerations and limitation are addressed. The third section will touch
on potential future directions in research. Finally, the fourth section will conclude the

thesis.

5.1 Main Findings and Implications across Projects

In order to advance our understanding of neurobiological alterations in OCD from a
network perspective, two studies were conducted that focused on the examination of
structural networks derived from T1-weighted as well as DW imaging: 1) the first project
used deterministic fiber tracking to reconstruct macroanatomical networks based on white
matter fiber connectivity and aimed at the quantification of alterations of these networks
in comparisons with healthy subjects (Reess et al., 2016); 2) the second project aimed at
advancing our understanding of neurodevelopmental aspects in OCD comparing the
covariance patterns of local gyrification indices, a marker that is assumed to be sensitive to
neurodevelopment, between groups (Reess et al., 2018b). A third study was conducted to
explore whether specifically taking into consideration the interrelation between various
symptoms, i.e. symptom profiles, might be of use to disentangle why in some studies, a
brain-behavior correlation is missing. To this end, patients were clustered on the basis of
their entire range of systems and cluster status was related to hippocampus volumes

(Reess et al., 2018a).
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5.1.1 Project 1: Beyond fronto-striato-thalamo-cortical circuitry

As presented above, neurobiological theories of OCD pathophysiology have been
constantly evolving and are regularly revised to incorporate new findings (see section
1.2.2). However, the currently favored model as described in Milad and Rauch (2012) does
not specifically take into consideration various regions assumed to be of importance for
OCD. Furthermore, the majority of studies focus either on functional alterations or
structural alterations that are mainly based on classical approaches to study brain
morphology (see section 1.3.1). Thus, using an innovative, data-driven, whole-brain
network analysis approach, Reess et al. (2016) set out to assess whether analyses
performed at the network level would provide further evidence in favor or against the
assumption that regions outside of CSTC circuitry are of importance in OCD. Given that
anxiety/distress, are cardinal features of OCD, the involvement of areas implicated in

emotion processing seemed very likely.

The analyses yielded several important findings: firstly, using the NBS as a framework, it
was shown that OCD patients displayed a network of connections that was consistently
marked by a decreased structural connectivity in terms of number of streamlines (NOS).
Multiple nodes within this network are commonly associated with OCD pathophysiology
and have been implicated in the CSTC model. Closer assessment of the topology of
impaired connections revealed a striking resemblance with regions adjacent to a major
fiber bundle connecting the orbital and temporal gyrus, namely the uncinate fasciculus
(UF). The UF has been described as being a be part of the limbic system (Von Der Heide et
al., 2013). The second key finding relates to the embedding of amygdala in the network
topology. It was found that left amygdala’s global connectivity strength was decreased in
addition to an increase in shortest path length. Together these measures indicate that
overall the left amygdala appears to be less well connected to neighbors and displays
diminished efficiency of connections. Furthermore, a reduced clustering coefficient
indicates that the topological neighbors of amygdala are less well connected amongst each
other. This diminished connectivity among amygdala’s neighbors may point towards an
altered role of amygdala in mediating information flow between these neighboring nodes.
Information flow that is likely to be rather direct between adjacent nodes in healthy
subjects may thus be more prone to be mediated by amygdala, therefore increasing its
potential control over information flow. Thirdly, clustering coefficients for left and right
temporal pole were also found to be impaired, indicating a potentially similar effect as

reported for amygdala. It was shown that the magnitude of functional activation in
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amygdala as well as anterior temporal pole during symptom provocation is associated with
subsequent treatment response to CBT (Olatunji et al., 2014). The findings of the current
study suggest to further address the importance of the UF for the disorder. Several tract-
based spatial statistics (TBSS) as well as VBM studies previously reported an involvement of
the uncinate in OCD (Benedetti et al., 2013; Jayarajan et al., 2012). Furthermore alterations
in the uncinate were found to be associated with processing deficits in the emotional
domain in OCD (Piras et al., 2013). Importantly, these findings were derived from voxel-
based methods (see Section 1.3.1.2) and are restricted to focal findings. NBS results, on the
other hand, indicate that directly applying fiber tracking algorithms to recover the uncinate
fasciculus may prove useful in further elucidating UF’s role for the pathophysiology.
Interestingly, the alterations found on a network level in OCD do not correlate with various
clinical measures such as overall symptom severity or subscales. However, various edges
comprising the NBS cluster revealed a trend significant (p<0.1) correlation with different
clinical measures such as washing and obsessing scores as well as total Y-BOCS. These
results may be useful for replication studies allowing to drastically decrease the number of
comparisons using region of interest approaches and thus increasing power. Taken
together, the findings provide further evidence for the need to extend the classical CSTC
circuit model to incorporate temporo-limbic regions and connections between these.

Additionally, amygdala appears to play a prominent role in the pathophysiology of OCD.

5.1.2 Project 2: Neurodevelopmental aspects of OCD

First evidence points toward neurodevelopmental aspects to play an important role in OCD
(Huyser et al., 2009) and Rosenberg and Keshavan (1998) proposed that
neurodevelopmental dysplasia may be of importance, especially in case of pediatric OCD.
Gyrification has been proposed as a potential marker for neurodevelopment and it was
previously shown that alterations in gyrification occurs in diseases with a
neurodevelopmental component such as autism spectrum disorder (Ecker et al., 2016) and
schizophrenia (Palaniyappan & Liddle, 2012; Palaniyappan et al., 2016). Evidence for
alterations of gyrification in OCD is relatively scarce and somewhat heterogeneous while
studies were again based on univariate analysis strategies (Fan et al., 2013; Rus et al.,
2017; Shim et al., 2009; Venkatasubramanian et al., 2012; Wobrock et al.,, 2010).
Interestingly, using a network approach employing gyrification-based structural covariance

patterns, Palaniyappan et al. (2015) showed that in schizophrenia, the coordinated
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development of gyrification appears to be impaired. Additionally, various studies indicated
that structural covariance analyses are useful to assess synchronized developmental
changes (Alexander-Bloch et al., 2013; Khundrakpam et al., 2013; Zielinski et al., 2010) and
network approaches to studying gyrification patterns appear to be well suited to further
disentangle factors that may be contributing to pathophysiological mechanisms. More
specifically, measures of segregation and integration can be employed to characterize

whether alterations are potentially more related to modular or global aspects.

The analyses yielded several important findings: NBS analyses revealed one network with
consistently smaller structural covariance in OCD patients as compared with healthy
controls. This network was rather large comprising 31 nodes and 34 edges that were
distributed throughout both hemispheres. The global network topology was found to be in
the small-world regime in OCD patients and did not significantly differ between healthy
controls and patients. However, the normalized average characteristic path length
revealed a trend significant difference (p=0.0510) with higher path length in OCD patients.
Assessment of local measures revealed a significant decrease in local clustering for left
middle frontal sulcus in patients. Finally, several frontal nodes revealed significant positive
correlations between |Gl values and age of onset indicating that larger IGls were associated
with later age of onset. Control analyses were performed to assess group x age interaction
effects as well as exploratory subgroup analyses to assess the stability of results when
taking into consideration the effects of medication, comorbidity, and early vs. late onset.
The decreased structural covariance revealed by the NBS analyses followed a rather
interesting pattern. The nodes and edges involved were mainly concentrated in ventral
brain regions, thus marking an imbalance in the pattern. The developmental trajectory of
gyrification typically follows a specific pattern and proceeds from dorsal parieto-occipital
areas to first superior frontal and temporal regions and finally ends in inferior frontal and
temporal regions (Takahashi et al., 2012). Comparing these patterns with the pattern of
altered gyrification in OCD leads to the proposition, that the decoupling in gyrification
covariance may potentially be time-locked to later stages of development. Furthermore, a
similar pattern of alterations in gray matter has been observed in preterm birth (Ball et al.,
2012). Interestingly, a recently published population-based study reported preterm birth
to be a risk factor for OCD (Brander et al., 2016). The absence of correlation between
symptom severity and nodal IGI values may indicate that IGl is best interpreted as a trait
marker instead of state marker, especially in light of the fact that gyrification is rather

stable over time as well as the lack of group x age interaction effects. Of note, the trend
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significant difference in normalized average characteristic path length may potentially
indicate a decrease in global integration capabilities in patients. However, this may also be
an effect that more strongly affects a subset of nodes, for example the set of nodes found
to be involved in the NBS network. The decrease in local clustering found in patients for
the middle frontal sulcus may be associated with impaired planning abilities in OCD. van
den Heuvel et al. (2005) report a decreased activity in left DLPFC (part of which is the
middle frontal sulcus) and striatal responsiveness while patients performed a Tower of
London Task. Finally, the positive correlation between age of onset and gyrification likely
indicated that structural alterations in gyrification covariance patterns are best understood
as trait instead of state markers, especially in the absence of group x age interaction

effects.

5.1.3 Project 3: The importance of considering symptom profiles

Recent evidence obtained from the largest meta-analysis performed on structural brain
alterations in OCD to date, indicated volume reductions to be present in pallidum as well
as hippocampus (Boedhoe, Schmaal, Abe, Alonso, et al., 2017). While the results regarding
the pallidum are in line with current accounts of pathophysiology, the hippocampus is not
typically associated with OCD pathophysiology and its role for the disease has rarely been
examined. Results from the above mentioned meta-analysis did not report a relationship
between hippocampus volumes and symptoms in OCD, however, the approach taken
correlated individual symptoms with hippocampus volumes, disregarding potential
relationships between symptoms. Since the large majority of patients typically displays a
multitude of symptoms simultaneously (see section 1.1.2), a potential relationship
between the symptom profile, i.e. interrelation between symptoms, and hippocampus

volumes may exist.

In order to assess whether specific symptom profiles, i.e. taking into consideration the
interrelation between various symptoms instead of isolated symptoms, are differentially
related to hippocampus volumes in OCD, a k-means cluster analysis was performed to form
groups of subjects according to their symptom profiles. Subsequently, hippocampus
volumes were compared between each cluster membership group. Hippocampus volumes
were indeed found to be differentially affected among different cluster membership
groups. Of note, the analysis was adjusted for a multitude of confounds including age, sex,

total intracranial volume, total symptom severity score, clinically relevant depression,
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medication, disease duration, as well as scanner. Additionally, a comparison including
healthy subjects was performed. Here, it was shown that patients of one specific cluster
also had significantly different hippocampus volumes when compared to healthy controls.
It could thus be demonstrated, that taking symptom profiles into consideration may be

useful when exploring structure-symptom relationships.

5.1.4 Implications across projects

From a methodological perspective, the application of network based analysis strategies
appears to be useful in several ways: firstly, these approaches allow to advance our
understanding of underlying pathophysiological alterations and potential mechanisms by
adding a perspective that complements traditional univariate analyses strategies.
Secondly, the methods are readily adoptable to accommodate a wide range of different
types of data as was demonstrated in this manuscript. Regarding the clinical perspective,
the results clearly support the view that current accounts of OCD pathophysiology should
incorporate various regions not commonly found in disease models. Additionally,
application of network based analysis strategies allowed to directly generate new
hypotheses (for more information as well as suggestions see section 5.3). The overall
network topology was found to be in the small-world regime when using different
definitions of connectivity, further confirming findings from other studies (Kim et al., 2013;
Palaniyappan et al., 2016; Palaniyappan et al., 2015; Zhong et al., 2014). Thus, it appears
that fundamental organizational principles are largely intact in OCD. Of note, the trend
significant finding of impaired normalized average characteristic path length described in
Project 2 needs further assessment as it indicates potentially altered large scale

organization at least in networks based on gyrification covariance patterns.
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5.2 Limitations & Methodological Considerations

As with any study, several limitations should be considered when interpreting the findings
presented in this manuscript. This section will firstly address issues that are common to all
three studies and are mainly resulting from the heterogeneity of the disorder regarding
symptoms, comorbidities as well as the impact of medication. Secondly, there are
limitations that are specific to the methods of network based analyses. This is especially
true in light of the fact that in general, the field of network science is comparatively new,
and the applications to brain imaging even more so. Therefore, while the strengths are

manifold, so are potential limitations.

5.2.1 Issues regarding sample heterogeneity

With a prevalence of about 2.3% OCD is certainly not considered to be a specifically rare
psychiatric disorder. Nevertheless, trying to disentangle structural and functional
alterations underlying specific symptoms turns out to be a rather difficult endeavor given
the large heterogeneity of symptoms. As described above (see section 1.1.2), the majority
of patients presents with a mix of different symptoms and pure types are rarely described.
This fact leads to a dilemma: one can either choose to acquire immensely large amounts of
data in order to be able to stratify the sample into patient groups. This approach comes at
the price of high financial burdens and takes extended periods of time needed for data
acquisition. On the other hand, one might aim at a more selective composition of smaller
samples comprising patients with a very distinct profile, for example treatment-naive
patients with mainly checking symptoms and generalized anxiety disorder as the only
comorbidity. Even though results of such an approach may be of value, they clearly raise
guestions regarding the generalizability. The fact that the presence of multiple
comorbidities appears to be the rule rather than the exception further complicates the
subject matter. Though one of the main purposes of Project 3 was to disentangle the
influence of symptom profiles and therefore directly addressing the issue imposed by
heterogeneous symptoms, this apparently important factor was not implemented in the
other two studies. This is largely due to the substantial number of subjects needed to
conduct such analyses as well as the fact that it is so far unclear how stable the results,
regarding clustering of patients according to symptom profiles, are. Increasing the number
of parameters that enter the cluster analysis, i.e. number of different symptom items, may

lead to potentially more complex profile patterns. Therefore repeating the cluster analysis
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with a different sample of subjects may well lead to different clusters and therefore
different associations with structural parameters. Taken together, more research is needed
to further disentangle the importance of symptom profiles in OCD. Several studies
conducted using primate animal models of depression report evidence for interaction
effects of disease and SSRI treatment on brain structures (Shively et al., 2017; Willard et
al., 2015). Given that SSRls are the first line pharmacological treatment option in OCD, it
appears sensible to take this factor into account. To address this issue, the analyses
conducted in all projects of this thesis aimed at adjusting for medication effects.
Nevertheless, the broad spectrum of different medications encountered in the samples
was simply binarized to indicate either presence or absence of medication. While this
approach was chosen for practical purposes, future studies that more thoroughly examine
potential effects, e.g. differential effects between SSRIs and for example selective
serotonin-norepinephrine reuptake inhibitors (SSNRIs), are highly desirable. Additionally, it
is conceivable that dose-effect relationships may exist. While first efforts to provide dose
equivalents for antidepressants are undertaken (Hayasaka et al., 2015), the issue is further
complicated by the fact that in OCD also other medications are used (see section 1.1.4).
Taken together, in all three projects outlined above, efforts were made to account for
various influencing factors by adjusting statistical analyses, for example taking into
consideration effects of comorbidity and medication. Subject to replication, the results of
Project 3 raise various questions about best practices on how to incorporate effects of
symptom profiles for future studies and discussions regarding different approaches are

highly welcome.

5.2.2 Issues regarding network-based approaches

A common practice for the derivation of macroscale MRI-based brain nodes is the
application of an atlas-based parcellation scheme to T1-weighted data. Importantly, all
atlases are dealing with the same system, however different approaches during atlas
construction may be used, e.g. various registration techniques or differences regarding
higher or lower target resolution. As mentioned above (see section 1.3.2.2), different
atlases can also be based on various different properties such as cytoarchitectonic
features, anatomical landmarks, functional properties, or other features (de Reus & van
den Heuvel, 2013). While it was shown, that global topological features such as sparsity or

small-worldness are conserved across applications of various different atlases (Bassett et
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al.,, 2011), changes in parcellation scheme resolution were shown to potentially affect
global as well as local graph measures (van Wijk, Stam, & Daffertshofer, 2010), therefore
limiting the possibility to directly compare networks that were constructed based on
different atlases (de Reus & van den Heuvel, 2013). Another caveat relates to differences in
atlas boundaries, or more precisely on the question whether it is sensible to assume clear
cut borders between regions to be functionally important. It has previously been shown
that the density of connections within a connectivity matrix influences the computation of
graph measures (Fornito et al., 2016). In Project 1, edges were defined based on the
number of streamlines, naturally resulting in a rather sparse matrix since not every pair of
nodes will be connected. Nevertheless, the results were computed over a range of density
thresholds to explore potential difference (Supplementary Table 7, Reess et al. (2016)). In
case of Project 2, the use of gyrification based structural covariance provided a dense
matrix, since for every possible pair of nodes one correlation was computed. Here, only
those edges with a significant r-value after FDR-correction were used for the analysis. A
further issue concerns the difficulties associated with the definition and interpretation of
edges. This is especially true for using tractography based methods to define edges.
Various algorithms used for tractography perform somewhat differently while still tending
to reconstruct a high rate of false positive connections (Maier-Hein et al., 2017), and
present with their own inherent limitations (Shi & Toga, 2017). To the best of the author’s
knowledge, virtually every connectome-based study conducted in-vivo in humans so far
was based on undirected graphs, i.e. the directionality of connectivity between nodes has
been neglected. Given the fact that neurons, as the structural and functional units of the
brain, form connections that are clearly directional in nature, what can macroanatomical
structural network analyses offer? With the currently available technology the issue of
directionality does not appear to be solved any time soon, however, using undirected
graphs in the analyses may still lead to interesting hypothesis and narrow down where to
search and what to search for on a more detailed level. Taken together, so far no gold
standard has been established regarding the tracking of macroanatomical white matter
fiber bundles. Nevertheless, improvements in scanner hardware and sequences will likely
provide increased reproducibility and allow for more accurate reconstructions in the
future. As mentioned above (see section 1.3.2.2), structural covariance approaches provide
measures that can only be computed on a group basis, therefore rendering the
opportunity to assist diagnosis on an individual subject basis impossible. Nevertheless,
studies employing the framework of structural covariance may be utilized to generate new

hypotheses as was done suggested in Project 2.
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Finally, there are various issues and pitfalls related to the statistical analysis as well as
thresholding of graphs. One major difficulty arises from the sheer number of statistical
tests typically associated with graph theoretical studies. Since many measures are
computed on a per node basis, the number of tests to be performed increases
exponentially with the number of nodes defined in the network. Since in depth
descriptions of these issues is beyond the scope of this manuscript, the interested reader is
referred to Fornito, Zalesky, and Breakspear (2013), as well as Fornito, Bullmore, and

Zalesky (2017).
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5.3 Future directions

The results presented in this thesis hopefully stimulate future research to further address
the importance and clarify the role of brain morphological alterations in OCD. This section
is divided into three parts. The first part highlights how the results may inspire potential
follow-up experiments that are directly related to the projects described in the thesis. The
second part describes future directions that are emerging at a more global scale regarding
structural brain research in OCD. Finally, the third part briefly addresses emerging ideas on

transdiagnostic approaches to the study of psychiatric disorders.

5.3.1 Potential for follow-up studies in light of current findings

Project 1 provides a framework to formulate a concrete research hypothesis derived from
the results of the NBS analysis, which implicate an involvement of uncinate for the
pathophysiology of OCD. More specifically, the results indicate that there might be a
decreased micro-structural connectivity between fronto-temporal regions. To test this
hypothesis, one might directly employ fiber tracking algorithms. As previous studies found
focal alterations in FA-values in UF, one might also combine the results from fiber tracking,
i.e. NOS and FA values to derive different metrics. Importantly, there are different
approaches to conduct such experiments. The fiber tracking might be chosen to
reconstruct the UF as defined within an atlas, or one might start tracking based on target
and seed regions. With the latter approach, there are more parameters potentially
increasing the sensitivity at the cost of the need to more rigorously correct more multiple
comparisons. In summary, various methods to assess the importance of UF are available

and should be employed to clarify its role for OCD pathophysiology.

Project 2 provides evidence that gyrification may be a sensitive marker for
neurodevelopment. In conjunction with findings from preterm born subjects as well as the
notion that preterm birth increases the risk to subsequently develop OCD, it is proposed to
aim at including information about preterm birth when studying OCD. This should
especially hold true for studies examining structural alterations, given the finding that
structural alterations in preterm born adults correlate with functional connectivity
networks (Bauml et al., 2015). Measures to quantify severity of preterm birth such as
gestational week and birth weight may be modeled using regression analysis with

parameters derived from structural brain scans to further address potential “dose-effect”
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relationships. Additionally, it is conceivable that various symptoms may be differentially
linked to these parameters. Therefore, correlating for example gestational week with
symptoms may shed light on symptom specific mechanisms. Of note, the assessment of
such information, i.e. gestation week or birth weight, may be difficult given that many
patients may neither be aware of it nor have the chance to try to acquire it especially in
case of older patients. However, with increased demands regarding medical
documentation standards and digitization, the potential to recover medical records

containing this information is higher, especially in case of younger patients.

Project 3 may spark future research on the role of hippocampus alterations in mediating
various symptoms in OCD. In general the approach of clustering subjects according to an
entire symptom profile can readily be translated to other brain structures of the whole
brain. Logically, one might aim at probing whether cluster membership is not only
associated with differences in hippocampus volumes but whether it may be associated to
other brain regions that are commonly found to show structural alterations such as BG,
thalamus, OFC, putamen, pallidum, etc. Indeed finding those associations would speak in
favor of a dimensional model of OCD that should comprise not only individual dimensions
but instead be based on the entire symptom profile, i.e. inter-relation between various
symptoms. Furthermore, the approach of clustering according to symptom profiles may be

put in relation to above mentioned proxies for preterm birth such as gestational age.

5.3.2. The Promise of Large-scale Imaging Initiatives

In recent years, extraordinary efforts have been made to aggregate data from various labs
world-wide, streamline the analysis process and use meta-analytic approaches to
disentangle structural as well as functional alterations in psychiatric disorders and also
clarify the relationship with genetics (Thompson et al., 2014). These kinds of initiatives
allow unmatched statistical power to also indentify subtle effects and have already
provided new insights not only for OCD (Boedhoe, Schmaal, Abe, Alonso, et al., 2017) but
also a multitude of other psychiatric disorders (see http://enigma.ini.usc.edu/). For
example, Project 3 presented in this thesis was directly inspired by results from Boedhoe,
Schmaal, Abe, Alonso, et al. (2017). Applying network based approaches to these data
appears to be especially promising. However, one drawback that is still unresolved lies in
the fact that these initiatives currently use data that was acquired in different labs, often

using different acquisition parameters. The future might see not only harmonized analysis
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pipelines but maybe even harmonized imaging protocols as well as standardization of

other parameters regarding diagnostics or use of questionnaires.

5.3.3 Transdiagnostic Approaches to Psychiatric Disorders

A recent development, in part also driven by findings from network-based studies, is an
emphasis of transdiagnostic aspects of psychiatric disorders. Today, there are substantial
efforts made to investigate how dimensional approaches to psychiatric illness might be
useful in gaining a deeper understanding of disease mechanisms. Buckholtz and Meyer-
Lindenberg (2012) argue, that psychopathology goes along with disruptions in interregional
relationships of networks and that influences on the network level mediate
psychopathological susceptibility over various domains instead of nosologically discrete
disorder entities. Similarly, Crossley et al. (2014) provide evidence from two strands of
experiments: 1) based on structural connectivity networks derived from DTI in healthy
participant, they isolated hub regions defined as nodes with extraordinarily high
topological centrality to the network. Subsequently, disrupting these hub regions with
computational attacks revealed a disproportionally strong impact on brain network
efficiency; 2) using GM lesion maps from 26 different brain disorders, the authors could
show, that the occurrence of lesions shared among disorders was higher in hub regions,
indicating that hub regions are overall more likely to be implicated in brain disorders. By
means of meta-analysis, (McTeague et al., 2017) provide further evidence that networks
typically associated with flexibility of cognition are vulnerable to psychopathology over a
rather broad spectrum. Furthermore, alterations in brain activation were characterized by

transdiagnostic patterns.
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5.5 Conclusion

The current thesis provides further evidence supporting the notion that current accounts
of pathophysiological models of OCD should be extended to incorporate regions not
classically associated with CSTC circuitry. Furthermore it illustrates the usefulness of
network-based approaches in order to generate research hypotheses by shifting the
perspective from a focal to a more global network perspective. Additionally, it was shown
that neurodevelopmental aspects appear to be important for OCD pathophysiology and
future studies, especially when examining structural measures, are encouraged to exploit
information on circumstances regarding birth, i.e. gestational age or birth weight.
Furthermore, the interesting finding of associations between symptom profiles and
volumetric properties of hippocampus call for further research. Taken together, the
findings presented in this thesis will hopefully stimulate innovative research to better

understand the mechanisms and causes behind the disorder.



93

REFERENCES

Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of adult
obsessive-compulsive disorder: a meta-analysis. Clin Psychol Rev, 33(8), 1163-1171.
doi: 10.1016/j.cpr.2013.09.004

Abramovitch, A., Dar, R., Mittelman, A., & Wilhelm, S. (2015). Comorbidity Between
Attention Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder
Across the Lifespan: A Systematic and Critical Review. Harv Rev Psychiatry, 23(4),
245-262. doi: 10.1097/HRP.0000000000000050

Abramowitz, J. S. (2006). The psychological treatment of obsessive-compulsive disorder.
Can J Psychiatry, 51(7), 407-416. doi: 10.1177/070674370605100702

Abramowitz, J. S., Taylor, S., & McKay, D. (2009). Obsessive-compulsive disorder. The
Lancet, 374(9688), 491-499. doi: 10.1016/s0140-6736(09)60240-3

Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013). The convergence of
maturational change and structural covariance in human cortical networks. J
Neurosci, 33(7), 2889-2899. doi: 10.1523/JNEUROSCI.3554-12.2013

Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally
segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9, 357-381.
doi: 10.1146/annurev.ne.09.030186.002041

Alvarenga, P. G., do Rosario, M. C., Batistuzzo, M. C., Diniz, J. B., Shavitt, R. G., Duran, F. L., .
.. Hoexter, M. Q. (2012). Obsessive-compulsive symptom dimensions correlate to
specific gray matter volumes in treatment-naive patients. J Psychiatr Res, 46(12),
1635-1642. doi: 10.1016/j.jpsychires.2012.09.002

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental
disorders : DSM-5 (5th ed.). Washington, D.C.: American Psychiatric Association.

Anholt, G. E., Aderka, I. M., van Balkom, A. J., Smit, J. H., Schruers, K., van der Wee, N. J., ..
. van Oppen, P. (2014). Age of onset in obsessive-compulsive disorder: admixture
analysis with a large sample. Psychol Med, 44(1), 185-194. doi:
10.1017/S0033291713000470

Annesley, P. T. (1969). Nardil response in a chronic obsessive compulsive. Br J Psychiatry,
115(523), 748.

Aouizerate, B., Guehl, D., Cuny, E., Rougier, A., Bioulac, B., Tignol, J., & Burbaud, P. (2004).

Pathophysiology of obsessive-compulsive disorder: a necessary link between



94

phenomenology, neuropsychology, imagery and physiology. Prog Neurobiol, 72(3),
195-221. doi: 10.1016/j.pneurobio.2004.02.004

Armstrong, E., Schleicher, A., Omran, H., Curtis, M., & Zilles, K. (1995). The ontogeny of
human gyrification. Cereb Cortex, 5(1), 56-63.

Ashburner, J.,, & Friston, K. J. (2000). Voxel-based morphometry--the methods.
Neuroimage, 11(6 Pt 1), 805-821. doi: 10.1006/nimg.2000.0582

Aylward, E. H., Harris, G. J., Hoehn-Saric, R., Barta, P. E., Machlin, S. R., & Pearlson, G. D.
(1996). Normal caudate nucleus in obsessive-compulsive disorder assessed by
guantitative neuroimaging. Arch Gen Psychiatry, 53(7), 577-584.

Ball, G., Boardman, J. P., Rueckert, D., Aljabar, P., Arichi, T., Merchant, N., . . . Counsell, S. J.
(2012). The effect of preterm birth on thalamic and cortical development. Cereb
Cortex, 22(5), 1016-1024. doi: 10.1093/cercor/bhr176

Bassett, D. S., Brown, J. A,, Deshpande, V., Carlson, J. M., & Grafton, S. T. (2011). Conserved
and variable architecture of human white matter connectivity. Neuroimage, 54(2),
1262-1279. doi: 10.1016/j.neuroimage.2010.09.006

Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6),
512-523. doi: 10.1177/1073858406293182

Bauml, J. G., Daamen, M., Meng, C., Neitzel, J., Scheef, L., Jaekel, J., . . . Sorg, C. (2015).
Correspondence Between Aberrant Intrinsic Network Connectivity and Gray-
Matter Volume in the Ventral Brain of Preterm Born Adults. Cereb Cortex, 25(11),
4135-4145. doi: 10.1093/cercor/bhu133

Baxter, L. R., Jr., Phelps, M. E., Mazziotta, J. C., Guze, B. H., Schwartz, J. M., & Selin, C. E.
(1987). Local cerebral glucose metabolic rates in obsessive-compulsive disorder. A
comparison with rates in unipolar depression and in normal controls. Arch Gen
Psychiatry, 44(3), 211-218.

Baxter, L. R,, Jr.,, Saxena, S., Brody, A. L., Ackermann, R. F., Colgan, M., Schwartz, J. M., . ..
Phelps, M. E. (1996). Brain Mediation of Obsessive-Compulsive Disorder
Symptoms: Evidence From Functional Brain Imaging Studies in the Human and
Nonhuman Primate. Semin Clin Neuropsychiatry, 1(1), 32-47. doi:
10.1053/SCNP00100032

Baxter, L. R., Jr., Schwartz, J. M., Bergman, K. S., Szuba, M. P., Guze, B. H., Mazziotta, J. C,, .

. et al. (1992). Caudate glucose metabolic rate changes with both drug and
behavior therapy for obsessive-compulsive disorder. Arch Gen Psychiatry, 49(9),

681-689.



95

Baxter, L. R., Jr., Schwartz, J. M., Mazziotta, J. C., Phelps, M. E., Pahl, J. J., Guze, B. H., &
Fairbanks, L. (1988). Cerebral glucose metabolic rates in nondepressed patients
with obsessive-compulsive disorder. Am J Psychiatry, 145(12), 1560-1563. doi:
10.1176/ajp.145.12.1560

Behar, D., Rapoport, J. L., Berg, C. J., Denckla, M. B., Mann, L., Cox, C,, ... Wolfman, M. G.
(1984). Computerized tomography and neuropsychological test measures in
adolescents with obsessive-compulsive disorder. Am J Psychiatry, 141(3), 363-369.
doi: 10.1176/ajp.141.3.363

Benedetti, F., Giacosa, C., Radaelli, D., Poletti, S., Pozzi, E., Dallaspezia, S., . . . Smeraldi, E.
(2013). Widespread changes of white matter microstructure in obsessive-
compulsive disorder: effect of drug status. Eur Neuropsychopharmacol, 23(7), 581-
593. doi: 10.1016/j.euroneuro.2012.07.002

Benkelfat, C., Nordahl, T. E., Semple, W. E., King, A. C., Murphy, D. L., & Cohen, R. M.
(1990). Local cerebral glucose metabolic rates in obsessive-compulsive disorder.
Patients treated with clomipramine. Arch Gen Psychiatry, 47(9), 840-848.

Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. (2006). Complex networks:
Structure and dynamics. Physics Reports, 424(4-5), 175-308. doi:
10.1016/j.physrep.2005.10.009

Boedhoe, P. S., Schmaal, L., Abe, Y., Alonso, P., Ameis, S. H., Anticevic, A., ... ENIGMA OCD
Working Group. (2017). Cortical Abnormalities Associated With Pediatric and Adult
Obsessive-Compulsive Disorder: Findings From the ENIGMA Obsessive-Compulsive
Disorder Working Group. Am J Psychiatry, epub ahead of print. doi:
10.1176/appi.ajp.2017.17050485

Boedhoe, P. S., Schmaal, L., Abe, Y., Ameis, S. H., Arnold, P. D., Batistuzzo, M. C,, . . . van
den Heuvel, O. A. (2017). Distinct Subcortical Volume Alterations in Pediatric and
Adult OCD: A Worldwide Meta- and Mega-Analysis. Am J Psychiatry, 174(1), 60-69.
doi: 10.1176/appi.ajp.2016.16020201

Brakoulias, V., Starcevic, V., Belloch, A., Brown, C., Ferrao, Y. A., Fontenelle, L. F., . . .
Viswasam, K. (2017). Comorbidity, age of onset and suicidality in obsessive-
compulsive disorder (OCD): An international collaboration. Compr Psychiatry, 76,
79-86. doi: 10.1016/j.comppsych.2017.04.002

Brander, G., Rydell, M., Kuja-Halkola, R., Fernandez de la Cruz, L., Lichtenstein, P.,
Serlachius, E., . . . Mataix-Cols, D. (2016). Association of Perinatal Risk Factors With

Obsessive-Compulsive Disorder: A Population-Based Birth Cohort, Sibling Control



96

Study. JAMA Psychiatry, 73(11), 1135-1144. doi:
10.1001/jamapsychiatry.2016.2095

Brunelin, J., Mondino, M., Bation, R., Palm, U., Saoud, M., & Poulet, E. (2018). Transcranial
Direct Current Stimulation for Obsessive-Compulsive Disorder: A Systematic
Review. Brain Sci, 8(2). doi: 10.3390/brainsci8020037

Buckholtz, J. W., & Meyer-Lindenberg, A. (2012). Psychopathology and the human
connectome: toward a transdiagnostic model of risk for mental illness. Neuron,
74(6), 990-1004. doi: 10.1016/j.neuron.2012.06.002

Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of
structural and functional systems. Nat Rev Neurosci, 10(3), 186-198. doi:
10.1038/nrn2575

Bush, G., Vogt, B. A,, Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., & Rosen, B. R. (2002).
Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl
Acad Sci U S A, 99(1), 523-528. doi: 10.1073/pnas.012470999

Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., . . . Vilarroya, O.
(2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: a
voxel-based morphometry study. Neurosci Lett, 421(3), 218-223. doi:
10.1016/j.neulet.2007.05.047

Childers, M. K., Rupright, J., Jones, P. S., & Merveille, O. (1998). Assessment of
neuroendocrine dysfunction following traumatic brain injury. Brain Inj, 12(6), 517-
523.

Christensen, R. (2011). Plane answers to complex questions : the theory of linear models
(4th ed.). New York: Springer.

Clarkson, M. J., Cardoso, M. J., Ridgway, G. R., Modat, M., Leung, K. K., Rohrer, J. D., . ..
Ourselin, S. (2011). A comparison of voxel and surface based cortical thickness
estimation methods. Neuroimage, 57(3), 856-865. doi:
10.1016/j.neuroimage.2011.05.053

Crossley, N. A., Mechelli, A., Scott, J., Carletti, F., Fox, P. T., McGuire, P., & Bullmore, E. T.
(2014). The hubs of the human connectome are generally implicated in the
anatomy of brain disorders. Brain, 137, 2382-2395. doi: 10.1093/brain/awu132

D'Alcante, C. C., Diniz, J. B., Fossaluza, V., Batistuzzo, M. C., Lopes, A. C., Shavitt, R. G,, . ..
Hoexter, M. Q. (2012). Neuropsychological predictors of response to randomized
treatment in obsessive-compulsive disorder. Prog Neuropsychopharmacol Biol

Psychiatry, 39(2), 310-317. doi: 10.1016/j.pnpbp.2012.07.002



97

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I.
Segmentation and surface reconstruction. Neuroimage, 9(2), 179-194. doi:
10.1006/nimg.1998.0395

Davis, J., Maes, M., Andreazza, A., McGrath, J. J,, Tye, S. J., & Berk, M. (2015). Towards a
classification of biomarkers of neuropsychiatric disease: from encompass to
compass. Mol Psychiatry, 20(2), 152-153. doi: 10.1038/mp.2014.139

de Reus, M. A., & van den Heuvel, M. P. (2013). The parcellation-based connectome:
limitations and extensions. Neuroimage, 80, 397-404. doi:
10.1016/j.neuroimage.2013.03.053

Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015). Rethinking segregation and
integration: contributions of whole-brain modelling. Nat Rev Neurosci, 16(7), 430-
439. doi: 10.1038/nrn3963

Del Casale, A., Kotzalidis, G. D., Rapinesi, C., Serata, D., Ambrosi, E., Simonetti, A., . . .
Girardi, P. (2011). Functional neuroimaging in obsessive-compulsive disorder.
Neuropsychobiology, 64(2), 61-85. doi: 10.1159/000325223

Eaton, W. W., Martins, S. S., Nestadt, G., Bienvenu, O. J., Clarke, D., & Alexandre, P. (2008).
The burden of mental disorders. Epidemiol Rev, 30, 1-14. doi:
10.1093/epirev/mxn011

Ecker, C., Andrews, D., Dell'Acqua, F., Daly, E., Murphy, C., Catani, M., . . . Murphy, D. G.
(2016). Relationship Between Cortical Gyrification, White Matter Connectivity, and
Autism  Spectrum  Disorder. Cereb Cortex, 26(7), 3297-3309. doi:
10.1093/cercor/bhw098

Eddy, K. T., Dutra, L., Bradley, R., & Westen, D. (2004). A multidimensional meta-analysis of
psychotherapy and pharmacotherapy for obsessive-compulsive disorder. Clin
Psychol Rev, 24(8), 1011-1030. doi: 10.1016/j.cpr.2004.08.004

Eisen, J. L., Sibrava, N. J., Boisseau, C. L., Mancebo, M. C., Stout, R. L., Pinto, A., &
Rasmussen, S. A. (2013). Five-year course of obsessive-compulsive disorder:
predictors of remission and relapse. J Clin Psychiatry, 74(3), 233-239. doi:
10.4088/JCP.12m07657

Fan, Q., Palaniyappan, L., Tan, L., Wang, J., Wang, X., Li, C., . . . Liddle, P. F. (2013). Surface
anatomical profile of the cerebral cortex in obsessive-compulsive disorder: a study
of cortical thickness, folding and surface area. Psychol Med, 43(5), 1081-1091. doi:
10.1017/5S0033291712001845

Fernandez de la Cruz, L., Rydell, M., Runeson, B., D'Onofrio, B. M., Brander, G., Ruck, C., . ..

Mataix-Cols, D. (2017). Suicide in obsessive-compulsive disorder: a population-



98

based study of 36 788 Swedish patients. Mol Psychiatry, 22(11), 1626-1632. doi:
10.1038/mp.2016.115

Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from
magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050-11055. doi:
10.1073/pnas.200033797

Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. Il: Inflation,
flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195-207. doi:
10.1006/nimg.1998.0396

Fontenelle, L. F., Harrison, B. J., Yucel, M., Pujol, J., Fujiwara, H., & Pantelis, C. (2009). Is
there evidence of brain white-matter abnormalities in obsessive-compulsive
disorder?: a narrative review. Top Magn Reson Imaging, 20(5), 291-298. doi:
10.1097/RMR.0b013e3181e8f22c

Fontenelle, L. F., Oostermeijer, S., Harrison, B. J.,, Pantelis, C., & Yucel, M. (2011).
Obsessive-compulsive disorder, impulse control disorders and drug addiction:
common features and potential treatments. Drugs, 71(7), 827-840. doi:
10.2165/11591790-000000000-00000

Fornito, A., & Bullmore, E. T. (2015). Connectomics: a new paradigm for understanding
brain  disease. = Eur  Neuropsychopharmacol,  25(5), 733-748. doi:
10.1016/j.euroneuro.2014.02.011

Fornito, A., Bullmore, E. T., & Zalesky, A. (2017). Opportunities and Challenges for
Psychiatry in the Connectomic Era. Biol Psychiatry Cogn Neurosci Neuroimaging,
2(1), 9-19. doi: 10.1016/j.bpsc.2016.08.003

Fornito, A., Zalesky, A., & Breakspear, M. (2013). Graph analysis of the human connectome:
promise, progress, and pitfalls. Neuroimage, 80, 426-444. doi:
10.1016/j.neuroimage.2013.04.087

Fornito, A., Zalesky, A., & Breakspear, M. (2015). The connectomics of brain disorders. Nat
Rev Neurosci, 16(3), 159-172. doi: 10.1038/nrn3901

Fornito, A., Zalesky, A., & Bullmore, E. T. (2016). Fundamentals of Brain Network Analysis.
San Diego, CA: Elsevier.

Garber, H. J., Ananth, J. V., Chiu, L. C., Griswold, V. J., & Oldendorf, W. H. (1989). Nuclear
magnetic resonance study of obsessive-compulsive disorder. Am J Psychiatry,
146(8), 1001-1005. doi: 10.1176/ajp.146.8.1001

Gehring, W. J., Himle, J., & Nisenson, L. G. (2000). Action-monitoring dysfunction in
obsessive-compulsive disorder. Psychol Sci, 11(1), 1-6. doi: 10.1111/1467-
9280.00206



99

Gilbert, A. R., Mataix-Cols, D., Almeida, J. R., Lawrence, N., Nutche, J., Diwadkar, V., . . .
Phillips, M. L. (2008). Brain structure and symptom dimension relationships in
obsessive-compulsive disorder: a voxel-based morphometry study. J Affect Disord,
109(1-2), 117-126. doi: 10.1016/j.jad.2007.12.223

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., . .. Van
Essen, D. C. (2016). A multi-modal parcellation of human cerebral cortex. Nature,
536(7615), 171-178. doi: 10.1038/nature18933

Grant, J. E., Mancebo, M. C.,, Pinto, A., Williams, K. A., Eisen, J. L., & Rasmussen, S. A.
(2007). Late-onset obsessive compulsive disorder: clinical characteristics and
psychiatric comorbidity. Psychiatry Res, 152(1), 21-27. doi:
10.1016/j.psychres.2006.09.015

Griffa, A., Baumann, P. S., Thiran, J. P., & Hagmann, P. (2013). Structural connectomics in
brain diseases. Neuroimage, 80, 515-526. doi: 10.1016/j.neuroimage.2013.04.056

Guye, M., Bettus, G., Bartolomei, F., & Cozzone, P. J. (2010). Graph theoretical analysis of
structural and functional connectivity MRI in normal and pathological brain
networks. MAGMA, 23(5-6), 409-421. doi: 10.1007/s10334-010-0205-z

Ha, T. H., Kang, D. H., Park, J. S., Jang, J. H., Jung, W. H., Choi, J. S., . . . Kwon, J. S. (2009).
White matter alterations in male patients with obsessive-compulsive disorder.
Neuroreport, 20(7), 735-739. doi: 10.1097/WNR.0b013e32832ad3da

Hagmann, P. (2005). From Diffusion MRI to Brain Connectomics. (Doctoral Thesis), Ecole
Polytechnique Fédérale de Lausanne.

Hasler, G., LaSalle-Ricci, V. H., Ronquillo, J. G., Crawley, S. A., Cochran, L. W., Kazuba, D., . ..
Murphy, D. L. (2005). Obsessive-compulsive disorder symptom dimensions show
specific relationships to psychiatric comorbidity. Psychiatry Res, 135(2), 121-132.
doi: 10.1016/j.psychres.2005.03.003

Hayasaka, Y., Purgato, M., Magni, L. R., Ogawa, Y., Takeshima, N., Cipriani, A., . . .
Furukawa, T. A. (2015). Dose equivalents of antidepressants: Evidence-based
recommendations from randomized controlled trials. J Affect Disord, 180, 179-184.
doi: 10.1016/j.jad.2015.03.021

Hirschtritt, M. E., Bloch, M. H., & Mathews, C. A. (2017). Obsessive-Compulsive Disorder:
Advances in Diagnosis and Treatment. JAMA, 317(13), 1358-1367. doi:
10.1001/jama.2017.2200

Hofer, P. D., Wahl, K., Meyer, A. H., Miche, M., Beesdo-Baum, K., Wong, S. F., . . . Lieb, R.

(2018). Obsessive-compulsive disorder and the risk of subsequent mental



100

disorders: A community study of adolescents and young adults. Depress Anxiety,
35(4), 339-345. doi: 10.1002/da.22733

Hu, X., Du, M., Chen, L., Li, L., Zhou, M., Zhang, L., . . . Gong, Q. (2017). Meta-analytic
investigations of common and distinct grey matter alterations in youths and adults
with obsessive-compulsive disorder. Neurosci Biobehav Rev, 78, 91-103. doi:
10.1016/j.neubiorev.2017.04.012

Huey, E. D., Zahn, R., Krueger, F., Moll, J., Kapogiannis, D., Wassermann, E. M., & Grafman,
J. (2008). A psychological and neuroanatomical model of obsessive-compulsive
disorder. J  Neuropsychiatry  Clin  Neurosci, 20(4), 390-408. doi:
10.1176/jnp.2008.20.4.390

Hulshoff Pol, H., & Bullmore, E. (2013). Neural networks in psychiatry. Eur
Neuropsychopharmacol, 23(1), 1-6. doi: 10.1016/j.euroneuro.2012.12.004

Huyser, C., Veltman, D. J., de Haan, E., & Boer, F. (2009). Paediatric obsessive-compulsive
disorder, a neurodevelopmental disorder? Evidence from neuroimaging. Neurosci
Biobehav Rev, 33(6), 818-830. doi: 10.1016/j.neubiorev.2009.01.003

Insel, T. R. (1988). Obsessive-compulsive disorder: a neuroethological perspective.
Psychopharmacol Bull, 24(3), 365-369.

Insel, T. R., Donnelly, E. F., Lalakea, M. L., Alterman, I. S., & Murphy, D. L. (1983).
Neurological and neuropsychological studies of patients with obsessive-compulsive
disorder. Biol Psychiatry, 18(7), 741-751.

Jayarajan, R. N., Venkatasubramanian, G., Viswanath, B., Janardhan Reddy, Y. C., Srinath,
S., Vasudev, M. K., & Chandrashekar, C. R. (2012). White matter abnormalities in
children and adolescents with obsessive-compulsive disorder: a diffusion tensor
imaging study. Depress Anxiety, 29(9), 780-788. doi: 10.1002/da.21890

Kanwisher, N. (2010). Functional specificity in the human brain: a window into the
functional architecture of the mind. Proc Natl Acad Sci U S A, 107(25), 11163-
11170. doi: 10.1073/pnas.1005062107

Kellner, C. H., Jolley, R. R., Holgate, R. C., Austin, L., Lydiard, R. B., Laraia, M., & Ballenger, J.
C. (1991). Brain MRI in obsessive-compulsive disorder. Psychiatry Res, 36(1), 45-49.

Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., . . . Brain
Development Cooperative, Group. (2013). Developmental changes in organization
of structural brain networks. Cereb Cortex, 23(9), 2072-2085. doi:
10.1093/cercor/bhs187

Kim, S. G., Jung, W. H., Kim, S. N., Jang, J. H., & Kwon, J. S. (2013). Disparity between dorsal

and ventral networks in patients with obsessive-compulsive disorder: evidence



101

revealed by graph theoretical analysis based on cortical thickness from MRI. Front
Hum Neurosci, 7, 302. doi: 10.3389/fnhum.2013.00302

Koch, K., Reess, T. J., Rus, O. G., Zimmer, C., & Zaudig, M. (2014). Diffusion tensor imaging
(DTI) studies in patients with obsessive-compulsive disorder (OCD): a review. J
Psychiatr Res, 54, 26-35. doi: 10.1016/].jpsychires.2014.03.006

Kwon, J. S., Jang, J. H.,, Choi, J. S., & Kang, D. H. (2009). Neuroimaging in obsessive-
compulsive  disorder.  Expert Rev  Neurother, 9(2), 255-269. doi:
10.1586/14737175.9.2.255

Lazar, M. (2010). Mapping brain anatomical connectivity using white matter tractography.
NMR Biomed, 23(7), 821-835. doi: 10.1002/nbm.1579

Leckman, J. F., Grice, D. E., Boardman, J., Zhang, H., Vitale, A, Bondi, C., . . . Pauls, D. L.
(1997). Symptoms of obsessive-compulsive disorder. Am J Psychiatry, 154(7), 911-
917. doi: 10.1176/ajp.154.7.911

Lerch, J. P, van der Kouwe, A. J., Raznahan, A., Paus, T., Johansen-Berg, H., Miller, K. L,, . ..
Sotiropoulos, S. N. (2017). Studying neuroanatomy using MRI. Nat Neurosci, 20(3),
314-326. doi: 10.1038/nn.4501

Lerch, J. P., Worsley, K., Shaw, W. P., Greenstein, D. K., Lenroot, R. K., Giedd, J., & Evans, A.
C. (2006). Mapping anatomical correlations across cerebral cortex (MACACC) using
cortical  thickness from MRI.  Neuroimage, 31(3), 993-1003. doi:
10.1016/j.neuroimage.2006.01.042

Linnman, C., Rougemont-Bucking, A., Beucke, J. C., Zeffiro, T. A., & Milad, M. R. (2011).
Unconditioned responses and functional fear networks in human classical
conditioning. Behav Brain Res, 221(1), 237-245. doi: 10.1016/j.bbr.2011.02.045

Lochner, C., Fouche, J. P., du Plessis, S., Spottiswoode, B., Seedat, S., Fineberg, N., . . . Stein,
D. J. (2012). Evidence for fractional anisotropy and mean diffusivity white matter
abnormalities in the internal capsule and cingulum in patients with obsessive-
compulsive  disorder. J  Psychiatry  Neurosci, 37(3), 193-199. doi:
10.1503/jpn.110059

Luxenberg, J. S., Swedo, S. E., Flament, M. F., Friedland, R. P., Rapoport, J., & Rapoport, S. I.
(1988). Neuroanatomical abnormalities in obsessive-compulsive disorder detected
with quantitative X-ray computed tomography. Am J Psychiatry, 145(9), 1089-
1093. doi: 10.1176/ajp.145.9.1089

Macy, A. S., Theo, J. N., Kaufmann, S. C., Ghazzaoui, R. B., Pawlowski, P. A., Fakhry, H. I, . ..
IsHak, W. W. (2013). Quality of life in obsessive compulsive disorder. CNS Spectr,
18(1), 21-33. doi: 10.1017/51092852912000697



102

Maier-Hein, K. H., Neher, P. F., Houde, J. C., Cote, M. A., Garyfallidis, E., Zhong, J., . ..
Descoteaux, M. (2017). The challenge of mapping the human connectome based
on diffusion tractography. Nat Commun, 8(1), 1349. doi: 10.1038/s41467-017-
01285-x

Marsden, C. D. (1982). The mysterious motor function of the basal ganglia: the Robert
Wartenberg Lecture. Neurology, 32(5), 514-539.

Mataix-Cols, D., Rauch, S. L., Manzo, P. A., Jenike, M. A., & Baer, L. (1999). Use of factor-
analyzed symptom dimensions to predict outcome with serotonin reuptake
inhibitors and placebo in the treatment of obsessive-compulsive disorder. Am J
Psychiatry, 156(9), 1409-1416. doi: 10.1176/ajp.156.9.1409

Mataix-Cols, D., Rosario-Campos, M. C., & Leckman, J. F. (2005). A multidimensional model
of obsessive-compulsive disorder. Am J Psychiatry, 162(2), 228-238. doi:
10.1176/appi.ajp.162.2.228

Matsumoto, R., Ito, H., Takahashi, H., Ando, T., Fujimura, Y., Nakayama, K., . . . Suhara, T.
(2010). Reduced gray matter volume of dorsal cingulate cortex in patients with
obsessive-compulsive disorder: a voxel-based morphometric study. Psychiatry Clin
Neurosci, 64(5), 541-547. doi: 10.1111/j.1440-1819.2010.02125.x

McTeague, L. M., Huemer, J., Carreon, D. M., Jiang, Y., Eickhoff, S. B., & Etkin, A. (2017).
Identification of Common Neural Circuit Disruptions in Cognitive Control Across
Psychiatric  Disorders. =~ Am J  Psychiatry, 174(7), 676-685. doi:
10.1176/appi.ajp.2017.16040400

Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T.
(2008). Integrating evidence from neuroimaging and neuropsychological studies of
obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neurosci
Biobehav Rev, 32(3), 525-549. doi: 10.1016/j.neubiorev.2007.09.005

Milad, M. R., Quirk, G. J., Pitman, R. K., Orr, S. P., Fischl, B., & Rauch, S. L. (2007). A role for
the human dorsal anterior cingulate cortex in fear expression. Biol Psychiatry,
62(10), 1191-1194. doi: 10.1016/].biopsych.2007.04.032

Milad, M. R., & Rauch, S. L. (2012). Obsessive-compulsive disorder: beyond segregated
cortico-striatal  pathways.  Trends Cogn  Sci, 16(1), 43-51. doi:
10.1016/j.tics.2011.11.003

Mindus, P., & Nyman, H. (1991). Normalization of personality characteristics in patients
with incapacitating anxiety disorders after capsulotomy. Acta Psychiatr Scand,

83(4), 283-291.



103

Modell, J. G., Mountz, J. M., Curtis, G. C.,, & Greden, J. F. (1989). Neurophysiologic
dysfunction in basal ganglia/limbic striatal and thalamocortical circuits as a
pathogenetic mechanism of obsessive-compulsive disorder. J Neuropsychiatry Clin
Neurosci, 1(1), 27-36. doi: 10.1176/jnp.1.1.27

Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to
basic neuroscience research. Neuron, 51(5), 527-539. doi:
10.1016/j.neuron.2006.08.012

Nakamae, T., Narumoto, J., Sakai, Y., Nishida, S., Yamada, K., Nishimura, T., & Fukui, K.
(2011). Diffusion tensor imaging and tract-based spatial statistics in obsessive-
compulsive disorder. J Psychiatr Res, 45(5), 687-690. doi:
10.1016/j.jpsychires.2010.09.016

Newman, M. E. J. (2010). Networks : An introduction. Oxford, New York: Oxford University
Press.

Nordahl, T. E., Benkelfat, C., Semple, W. E., Gross, M., King, A. C., & Cohen, R. M. (1989).
Cerebral glucose metabolic rates in obsessive compulsive disorder.
Neuropsychopharmacology, 2(1), 23-28.

Northoff, G. (2014). Localization versus holism and intrinsic versus extrinsic views of the
brain: a neurophilosophical approach. Minerva Psichiatr, 55, 1-15.

O'Neill, J., & Feusner, J. D. (2015). Cognitive-behavioral therapy for obsessive-compulsive
disorder: access to treatment, prediction of long-term outcome with
neuroimaging. Psychol Res Behav Manag, 8, 211-223. doi: 10.2147/PRBM.S75106

Okada, K., Nakao, T., Sanematsu, H., Murayama, K., Honda, S., Tomita, M., . . . Kanba, S.
(2015). Biological heterogeneity of obsessive-compulsive disorder: A voxel-based
morphometric study based on dimensional assessment. Psychiatry Clin Neurosci,
69(7), 411-421. doi: 10.1111/pcn.12269

Olatuniji, B. O., Ferreira-Garcia, R., Caseras, X., Fullana, M. A., Wooderson, S., Speckens, A,, .
. . Mataix-Cols, D. (2014). Predicting response to cognitive behavioral therapy in
contamination-based obsessive-compulsive disorder from functional magnetic
resonance imaging. Psychol Med, 44(10), 2125-2137. doi:
10.1017/S0033291713002766

Ost, L. G., Havnen, A., Hansen, B., & Kvale, G. (2015). Cognitive behavioral treatments of
obsessive-compulsive disorder. A systematic review and meta-analysis of studies

published 1993-2014. Clin Psychol Rev, 40, 156-169. doi: 10.1016/j.cpr.2015.06.003



104

Palaniyappan, L., & Liddle, P. F. (2012). Aberrant cortical gyrification in schizophrenia: a
surface-based morphometry study. J Psychiatry Neurosci, 37(6), 399-406. doi:
10.1503/jpn.110119

Palaniyappan, L., Marques, T. R., Taylor, H., Mondelli, V., Reinders, Aats, Bonaccorso, S., . . .
Dazzan, P. (2016). Globally Efficient Brain Organization and Treatment Response in
Psychosis: A Connectomic Study of Gyrification. Schizophr Bull, 42(6), 1446-1456.
doi: 10.1093/schbul/sbw069

Palaniyappan, L., Park, B., Balain, V., Dangi, R., & Liddle, P. (2015). Abnormalities in
structural covariance of cortical gyrification in schizophrenia. Brain Struct Funct,
220(4), 2059-2071. doi: 10.1007/s00429-014-0772-2

Pallanti, S., Grassi, G., Sarrecchia, E. D., Cantisani, A., & Pellegrini, M. (2011). Obsessive-
compulsive disorder comorbidity: clinical assessment and therapeutic implications.
Front Psychiatry, 2, 70. doi: 10.3389/fpsyt.2011.00070

Park, S. E., & Jeong, G. W. (2015). Cerebral white matter volume changes in patients with
obsessive-compulsive disorder: Voxel-based morphometry. Psychiatry Clin
Neurosci, 69(11), 717-723. doi: 10.1111/pcn.12317

Pauls, D. L., Abramovitch, A., Rauch, S. L., & Geller, D. A. (2014). Obsessive-compulsive
disorder: an integrative genetic and neurobiological perspective. Nat Rev Neurosci,
15(6), 410-424. doi: 10.1038/nrn3746

Perani, D., Colombo, C., Bressi, S., Bonfanti, A., Grassi, F., Scarone, S., . . . Fazio, F. (1995).
[18F]FDG PET study in obsessive-compulsive disorder. A clinical/metabolic
correlation study after treatment. BrJ Psychiatry, 166(2), 244-250.

Piras, F., Piras, F., Caltagirone, C., & Spalletta, G. (2013). Brain circuitries of obsessive
compulsive disorder: a systematic review and meta-analysis of diffusion tensor
imaging  studies. Neurosci Biobehav Rev, 37(10), 2856-2877. doi:
10.1016/j.neubiorev.2013.10.008

Piras, F., Piras, F., Chiapponi, C., Girardi, P., Caltagirone, C., & Spalletta, G. (2015).
Widespread structural brain changes in OCD: a systematic review of voxel-based
morphometry studies. Cortex, 62, 89-108. doi: 10.1016/j.cortex.2013.01.016

Radua, J., & Mataix-Cols, D. (2009). Voxel-wise meta-analysis of grey matter changes in
obsessive-compulsive disorder. Br J Psychiatry, 195(5), 393-402. doi:
10.1192/bjp.bp.108.055046

Rapoport, J. L., & Wise, S. P. (1988). Obsessive-compulsive disorder: evidence for basal

ganglia dysfunction. Psychopharmacol Bull, 24(3), 380-384.



105

Rasmussen, S. A., & Eisen, J. L. (1992). The epidemiology and clinical features of obsessive
compulsive disorder. Psychiatr Clin North Am, 15(4), 743-758.

Rasmussen, S. A., & Tsuang, M. T. (1986). Epidemiologic and clinical findings of significance
to the design of neuropharmacologic studies of obsessive-compulsive disorder.
Psychopharmacol Bull, 22(3), 723-729.

Reess, T. J., Rus, O. G., Gursel, D. A., Schmitz-Koep, B., Wagner, G., Berberich, G., & Koch, K.
(2018a). Association between hippocampus volume and symptom profiles in
obsessive-compulsive  disorder. Neuroimage Clin, 17, 474-480. doi:
10.1016/j.nicl.2017.11.006

Reess, T. J., Rus, O. G., Gursel, D. A., Schmitz-Koep, B., Wagner, G., Berberich, G., & Koch, K.
(2018b). Network-based decoupling of local gyrification in obsessive-compulsive
disorder. Hum Brain Mapp. doi: 10.1002/hbm.24071

Reess, T. J., Rus, O. G., Schmidt, R., de Reus, M. A,, Zaudig, M., Wagner, G., . . . Koch, K.
(2016). Connectomics-based structural network alterations in obsessive-
compulsive disorder. Transl Psychiatry, 6(9), e882. doi: 10.1038/tp.2016.163

Robinson, D., Wu, H., Munne, R. A., Ashtari, M., Alvir, J. M., Lerner, G., . . . Bogerts, B.
(1995). Reduced caudate nucleus volume in obsessive-compulsive disorder. Arch
Gen Psychiatry, 52(5), 393-398.

Rosario-Campos, M. C., Miguel, E. C., Quatrano, S., Chacon, P., Ferrao, Y., Findley, D., . ..
Leckman, J. F. (2006). The Dimensional Yale-Brown Obsessive-Compulsive Scale
(DY-BOCS): an instrument for assessing obsessive-compulsive symptom
dimensions. Mol Psychiatry, 11(5), 495-504. doi: 10.1038/sj.mp.4001798

Rosenberg, D. R., & Keshavan, M. S. (1998). A.E. Bennett Research Award. Toward a
neurodevelopmental model of of obsessive--compulsive disorder. Biol Psychiatry,
43(9), 623-640.

Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., . . . Aouizerate, B.
(2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder.
Biol Psychiatry, 65(1), 75-83. doi: 10.1016/j.biopsych.2008.06.019

Rubinov, M., & Bullmore, E. (2013). Fledgling pathoconnectomics of psychiatric disorders.
Trends Cogn Sci, 17(12), 641-647. doi: 10.1016/j.tics.2013.10.007

Rubinov, M., & Sporns, 0. (2010). Complex network measures of brain connectivity: uses
and interpretations. Neuroimage, 52(3), 1059-1069. doi:
10.1016/j.neuroimage.2009.10.003



106

Rus, O. G., Reess, T. J.,, Wagner, G., Zaudig, M., Zimmer, C., & Koch, K. (2017).
Hypogyrification in obsessive-compulsive disorder. Psychol Med, 47(6), 1053-1061.
doi: 10.1017/S0033291716003202

Ruscio, A. M., Stein, D. J.,, Chiu, W. T., & Kessler, R. C. (2010). The epidemiology of
obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol
Psychiatry, 15(1), 53-63. doi: 10.1038/mp.2008.94

Rydon-Grange, M., & Coetzer, R. (2015). What do we know about obsessive-compulsive
disorder following traumatic brain injury? CNS Spectr, 20(5), 463-465. doi:
10.1017/5109285291500053X

Sawle, G. V., Hymas, N. F., Lees, A. J., & Frackowiak, R. S. (1991). Obsessional slowness.
Functional studies with positron emission tomography. Brain, 114 ( Pt 5), 2191-
2202.

Saxena, S., Bota, R. G., & Brody, A. L. (2001). Brain-behavior relationships in obsessive-
compulsive disorder. Semin Clin Neuropsychiatry, 6(2), 82-101.

Saxena, S., Brody, A. L., Maidment, K. M., Dunkin, J. J., Colgan, M., Alborzian, S., . . . Baxter,
L. R., Jr. (1999). Localized orbitofrontal and subcortical metabolic changes and
predictors of response to paroxetine treatment in obsessive-compulsive disorder.
Neuropsychopharmacology, 21(6), 683-693. doi: 10.1016/50893-133X(99)00082-2

Saxena, S., Brody, A. L., Schwartz, J. M., & Baxter, L. R. (1998). Neuroimaging and frontal-
subcortical circuitry in obsessive-compulsive disorder. Br J Psychiatry Suppl(35), 26-
37.

Saxena, S., & Rauch, S. L. (2000). Functional neuroimaging and the neuroanatomy of
obsessive-compulsive disorder. Psychiatr Clin North Am, 23(3), 563-586.

Scarone, S., Colombo, C., Livian, S., Abbruzzese, M., Ronchi, P., Locatelli, M., . . . Smeraldi,
E. (1992). Increased right caudate nucleus size in obsessive-compulsive disorder:
detection with magnetic resonance imaging. Psychiatry Res, 45(2), 115-121.

Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J. P. (2008). A
surface-based approach to quantify local cortical gyrification. I[EEE Trans Med
Imaging, 27(2), 161-170. doi: 10.1109/TMI.2007.903576

Schlosser, R. G., Wagner, G., Schachtzabel, C., Peikert, G., Koch, K., Reichenbach, J. R., &
Sauer, H. (2010). Fronto-cingulate effective connectivity in obsessive compulsive
disorder: a study with fMRI and dynamic causal modeling. Hum Brain Mapp,
31(12), 1834-1850. doi: 10.1002/hbm.20980

Schwartz, J. M., Stoessel, P. W., Baxter, L. R., Jr., Martin, K. M., & Phelps, M. E. (1996).

Systematic changes in cerebral glucose metabolic rate after successful behavior



107

modification treatment of obsessive-compulsive disorder. Arch Gen Psychiatry,
53(2), 109-113.

Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L, & Greicius, M. D. (2009).
Neurodegenerative diseases target large-scale human brain networks. Neuron,
62(1), 42-52. doi: 10.1016/j.neuron.2009.03.024

Shavitt, R. G., de Mathis, M. A., Oki, F., Ferrao, Y. A., Fontenelle, L. F., Torres, A. R,, . ..
Simpson, H. B. (2014). Phenomenology of OCD: lessons from a large multicenter
study and implications for ICD-11. J Psychiatr Res, 57, 141-148. doi:
10.1016/j.jpsychires.2014.06.010

Shi, Y., & Toga, A. W. (2017). Connectome imaging for mapping human brain pathways.
Mol Psychiatry, 22(9), 1230-1240. doi: 10.1038/mp.2017.92

Shim, G., Jung, W. H,, Choi, J. S, Jung, M. H., Jang, J. H., Park, J. Y., ... Kwon, J. S. (2009).
Reduced cortical folding of the anterior cingulate cortex in obsessive-compulsive
disorder. J Psychiatry Neurosci, 34(6), 443-449.

Shively, C. A., Silverstein-Metzler, M., Justice, J., & Willard, S. L. (2017). The impact of
treatment with selective serotonin reuptake inhibitors on primate cardiovascular
disease, behavior, and neuroanatomy. Neurosci Biobehav Rev, 74(Pt B), 433-443.
doi: 10.1016/j.neubiorev.2016.08.037

Sinopoli, V. M., Burton, C. L., Kronenberg, S., & Arnold, P. D. (2017). A review of the role of
serotonin system genes in obsessive-compulsive disorder. Neurosci Biobehav Rev,
80, 372-381. doi: 10.1016/j.neubiorev.2017.05.029

Skoog, G., & Skoog, I. (1999). A 40-year follow-up of patients with obsessive-compulsive
disorder [see commetns]. Arch Gen Psychiatry, 56(2), 121-127.

Soares, J. M., Marques, P., Alves, V., & Sousa, N. (2013). A hitchhiker's guide to diffusion
tensor imaging. Front Neurosci, 7, 31. doi: 10.3389/fnins.2013.00031

Sporns, 0. (2012). Discovering the Human Connectome. Cambridge, Mass.: MIT Press.

Sporns, 0. (2013a). The human connectome: origins and challenges. Neuroimage, 80, 53-
61. doi: 10.1016/j.neuroimage.2013.03.023

Sporns, 0. (2013b). Network attributes for segregation and integration in the human brain.
Curr Opin Neurobiol, 23(2), 162-171. doi: 10.1016/j.conb.2012.11.015

Sporns, 0., Tononi, G., & Kotter, R. (2005). The human connectome: A structural
description of the human brain. PLoS Comput Biol, 1(4), e42. doi:
10.1371/journal.pcbi.0010042



108

Stein, D. J., Hollander, E., Chan, S., DeCaria, C. M., Hilal, S., Liebowitz, M. R., & Klein, D. F.
(1993). Computed tomography and neurological soft signs in obsessive-compulsive
disorder. Psychiatry Res, 50(3), 143-150.

Stengler-Wenzke, K., Kroll, M., Riedel-Heller, S., Matschinger, H., & Angermeyer, M. C.
(2007). Quality of life in obsessive-compulsive disorder: the different impact of
obsessions and compulsions.  Psychopathology, 40(5), 282-289. doi:
10.1159/000104744

Swanson, L. W., & Bota, M. (2010). Foundational model of structural connectivity in the
nervous system with a schema for wiring diagrams, connectome, and basic plan
architecture. Proc Natl Acad Sci U S A, 107(48), 20610-20617. doi:
10.1073/pnas.1015128107

Swedo, S. E., Schapiro, M. B., Grady, C. L., Cheslow, D. L., Leonard, H. L., Kumar, A,, . ..
Rapoport, J. L. (1989). Cerebral glucose metabolism in childhood-onset obsessive-
compulsive disorder. Arch Gen Psychiatry, 46(6), 518-523.

Takahashi, E., Folkerth, R. D., Galaburda, A. M., & Grant, P. E. (2012). Emerging cerebral
connectivity in the human fetal brain: an MR tractography study. Cereb Cortex,
22(2), 455-464. doi: 10.1093/cercor/bhr126

Tang, W., Huang, X, Li, B., Jiang, X., Li, F., Xu, J., . . . Gong, Q. (2015). Structural brain
abnormalities correlate with clinical features in patients with drug-naive OCD: A
DARTEL-enhanced voxel-based morphometry study. Behav Brain Res, 294, 72-80.
doi: 10.1016/j.bbr.2015.07.061

Taylor, S. (2011). Etiology of obsessions and compulsions: a meta-analysis and narrative
review of twin studies. Clin Psychol Rev, 31(8), 1361-1372. doi:
10.1016/j.cpr.2011.09.008

Taylor, S. (2013). Molecular genetics of obsessive-compulsive disorder: a comprehensive
meta-analysis of genetic association studies. Mol Psychiatry, 18(7), 799-805. doi:
10.1038/mp.2012.76

Thompson, P. M., Stein, J. L., Medland, S. E., Hibar, D. P., Vasquez, A. A, Renteria, M. E,, . ..
Alzheimer's Disease Neuroimaging Initiative, Epigen Consortium Imagen
Consortium Saguenay Youth Study Group. (2014). The ENIGMA Consortium: large-
scale collaborative analyses of neuroimaging and genetic data. Brain Imaging
Behav, 8(2), 153-182. doi: 10.1007/511682-013-9269-5

Thorsen, A. L., Hagland, P., Radua, J., Mataix-Cols, D., Kvale, G., Hansen, B., & van den

Heuvel, O. A. (2018). Emotional Processing in Obsessive-Compulsive Disorder: A



109

Systematic Review and Meta-analysis of 25 Functional Neuroimaging Studies. Biol
Psychiatry Cogn Neurosci Neuroimaging. doi: 10.1016/j.bpsc.2018.01.009

Tononi, G., Sporns, O., & Edelman, G. M. (1994). A measure for brain complexity: relating
functional segregation and integration in the nervous system. Proc Natl Acad Sci U
SA, 91(11), 5033-5037.

van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends Cogn
Sci, 17(12), 683-696. doi: 10.1016/].tics.2013.09.012

van den Heuvel, O. A,, Remijnse, P. L., Mataix-Cols, D., Vrenken, H., Groenewegen, H. J.,
Uylings, H. B., . . . Veltman, D. J. (2009). The major symptom dimensions of
obsessive-compulsive disorder are mediated by partially distinct neural systems.
Brain, 132, 853-868. doi: 10.1093/brain/awn267

van den Heuvel, O. A., van Wingen, G., Soriano-Mas, C., Alonso, P., Chamberlain, S. R.,
Nakamae, T., . . . Veltman, D. J. (2016). Brain circuitry of compulsivity. Eur
Neuropsychopharmacol, 26(5), 810-827. doi: 10.1016/j.euroneuro.2015.12.005

van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Cath, D. C., van Balkom, A. J., van
Hartskamp, J., . . . van Dyck, R. (2005). Frontal-striatal dysfunction during planning
in obsessive-compulsive disorder. Arch Gen Psychiatry, 62(3), 301-309. doi:
10.1001/archpsyc.62.3.301

van Veen, V., & Carter, C. S. (2002). The anterior cingulate as a conflict monitor: fMRI and
ERP studies. Physiol Behav, 77, 477-482.

van Wijk, B. C., Stam, C. J.,, & Daffertshofer, A. (2010). Comparing brain networks of
different size and connectivity density using graph theory. PLoS One, 5(10),
e13701. doi: 10.1371/journal.pone.0013701

Veale, D., & Roberts, A. (2014). Obsessive-compulsive disorder. BMJ, 348, g2183. doi:
10.1136/bmj.g2183

Venkatasubramanian, G., Zutshi, A., Jindal, S., Srikanth, S. G., Kovoor, J. M., Kumar, J. K., &
Janardhan Reddy, Y. C. (2012). Comprehensive evaluation of cortical structure
abnormalities in drug-naive, adult patients with obsessive-compulsive disorder: a
surface-based morphometry study. J Psychiatr Res, 46(9), 1161-1168. doi:
10.1016/j.jpsychires.2012.06.003

Von Der Heide, R. J., Skipper, L. M., Klobusicky, E., & Olson, I. R. (2013). Dissecting the
uncinate fasciculus: disorders, controversies and a hypothesis. Brain, 136(Pt 6),
1692-1707. doi: 10.1093/brain/awt094

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of 'small-world' networks. Nature,
393(6684), 440-442. doi: 10.1038/30918



110

Wen, W., He, Y., & Sachdev, P. (2011). Structural brain networks and neuropsychiatric
disorders. Curr Opin Psychiatry, 24(3), 219-225. doi:
10.1097/YC0O.0b013e32834591f8

Whitwell, J. L. (2009). Voxel-based morphometry: an automated technique for assessing
structural changes in the brain. J Neurosci, 29(31), 9661-9664. doi:
10.1523/JNEUROSCI.2160-09.2009

Willard, S. L., Uberseder, B., Clark, A., Daunais, J. B., Johnston, W. D., Neely, D., . .. Shively,
C. A. (2015). Long term sertraline effects on neural structures in depressed and
nondepressed adult female nonhuman primates. Neuropharmacology, 99, 369-
378. doi: 10.1016/j.neuropharm.2015.06.011

Williams, M. T., Mugno, B., Franklin, M., & Faber, S. (2013). Symptom dimensions in
obsessive-compulsive disorder: phenomenology and treatment outcomes with
exposure and ritual prevention. Psychopathology, 46(6), 365-376. doi:
10.1159/000348582

Winslow, J. T., & Insel, T. R. (1990). Neurobiology of obsessive compulsive disorder: a
possible role for serotonin. J Clin Psychiatry, 51 Suppl, 27-31.

Wobrock, T., Gruber, O., Mcintosh, A. M., Kraft, S., Klinghardt, A., Scherk, H., . . .
Moorhead, T. W. (2010). Reduced prefrontal gyrification in obsessive-compulsive
disorder. Eur Arch Psychiatry Clin Neurosci, 260(6), 455-464. doi: 10.1007/s00406-
009-0096-z

Zalesky, A., Fornito, A., Seal, M. L., Cocchi, L., Westin, C. F., Bullmore, E. T., . . . Pantelis, C.
(2011). Disrupted axonal fiber connectivity in schizophrenia. Biol Psychiatry, 69(1),
80-89. doi: 10.1016/j.biopsych.2010.08.022

Zarei, M., Mataix-Cols, D., Heyman, |., Hough, M., Doherty, J., Burge, L., . . . James, A.
(2011). Changes in gray matter volume and white matter microstructure in
adolescents with obsessive-compulsive disorder. Biol Psychiatry, 70(11), 1083-
1090. doi: 10.1016/j.biopsych.2011.06.032

Zhong, Z., Zhao, T., Luo, J., Guo, Z., Guo, M., Li, P, ... Li, Z. (2014). Abnormal topological
organization in white matter structural networks revealed by diffusion tensor
tractography in unmedicated patients with obsessive-compulsive disorder. Prog
Neuropsychopharmacol Biol Psychiatry, 51, 39-50. doi:
10.1016/j.pnpbp.2014.01.005

Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural
covariance in the developing brain. Proc Natl Acad Sci U S A, 107(42), 18191-
18196. doi: 10.1073/pnas.1003109107



111

ACKNOWLEDGEMENTS

Firstly, | would like to thank my main supervisor PD Dr. Kathrin Koch not only for being very
patient whenever | came up with new ideas or the need to “run one more analysis”, but
also for the constant motivation and encouragement, especially considering the
sometimes cumbersome peculiarities of the scientific process. Without her | would have
probably quit along the way. Furthermore | would like to thank Georgiana Rus who | have
had the pleasure to work with over several years of my PhD studies. | think it is fair to say
that as a team we both grew together tremendously and | will always look back with a
smile. A big “Thank you” also goes out to the many people working either in the
Department of Neuroradiology or at the TUM-NIC. | believe the atmosphere among all
students and Pls alike has truly been special and was highly appreciated. Furthermore |
would like to thank Dr. Afra Wohlschlager and Dr. Virginia Flanagin for valuable feedback
and additional supervision during my PhD as well as everyone at the GSN. I'm thankful for
being a part of this great program. | would like to thank Prof. Martijn van den Heuvel and
everyone at the Dutch Connectome Lab at the UMC Utrecht where | had the pleasure to
stay for several months to conduct research. | thoroughly enjoyed the company as well as

the academic input.

| would also like to thank my family who has always encouraged and supported me no
matter what. After many turns along the way it now feels like everything is finally coming
together. Thank you for always believing in me! Finally, | would like to express my gratitude
to Lisa who has been there basically from the start of the thesis and has constantly
supported me with her down to earth attitude, especially in times of doubt. | deeply
appreciate her affection, as well as her energy and enthusiasm even for the smallest

things. Thank you!



112

LIST OF PUBLICATIONS

Network-based decoupling of local gyrification in obsessive-compulsive disorder: a graph
theoretical study.

Reess TJ, Rus OG, Gursel DA, Schmitz-Koep B, Wagner G, Berberich G, Koch K (2018).
Human Brain Mapping, epub ahead of print, DOI: 10.1002/hbm.24071

Association between hippocampus volume and symptom profiles in obsessive-
compulsive disorder.

Reess TJ, Rus OG, Girsel DA, Schmitz-Koep B, Wagner G, Berberich G, Koch K (2018).
Neuroimage: Clinical, 17, 474-480, DOI: 10.1016/j.nicl.2017.11.006

Cortical Abnormalities Associated With Pediatric and Adult Obsessive-Compulsive
Disorder: Findings From the ENIGMA Obsessive-Compulsive Disorder Working Group.
Boedhoe PSW, Schmaal L, Abe Y, Alonso P, Ameis SH, Anticevic A, Arnold PD, Batistuzzo
MC, Benedetti F, Beucke JC, Bollettini |, Bose A, Brem S, Calvo A, Calvo R, Cheng Y, Cho KIK,
Ciullo V, Dallaspezia S, Denys D, Feusner JD, Fitzgerald KD, Fouche JP, Fridgeirsson EA,
Gruner P, Hanna GL, Hibar DP, Hoexter MQ, Hu H, Huyser C, Jahanshad N, James A,
Kathmann N, Kaufmann C, Koch K, Kwon JS, Lazaro L, Lochner C, Marsh R, Martinez-
Zalacain |, Mataix-Cols D, Menchén JM, Minuzzi L, Morer A, Nakamae T, Nakao T,
Narayanaswamy JC, Nishida S, Nurmi E, O'Neill J, Piacentini J, Piras F, Piras F, Reddy YCJ,
Reess TJ, Sakai Y, Sato JR, Simpson HB, Soreni N, Soriano-Mas C, Spalletta G, Stevens MC,
Szeszko PR, Tolin DF, van Wingen GA, Venkatasubramanian G, Walitza S, Wang Z, Yun JY;
ENIGMA-OCD Working Group, Thompson PM, Stein DJ, van den Heuvel OA; ENIGMA OCD
Working Group (2017). American Journal of Psychiatry, epub ahead of print, DOI:
10.1176/appi.ajp.2017.17050485

Structural alterations in patients with obsessive-compulsive disorder: A surface based
analysis of cortical volume, surface area and thickness.

Rus OG, Reess TJ, Zimmer C, Zaudig M, Wagner G, Koch K (2017).

Journal of Psychiatry and Neuroscience, 42(6), 395-403, DOI: 10.1503/jpn.170030



113

Functional and structural connectivity of the amygdala in obsessive-compulsive disorder.
Rus OG, Reess TJ, Wagner G, Zimmer C, Zaudig M, Koch K. (2017).
Neuroimage: Clinical, 13, 246-255, DOI: 10.1016/j.nicl.2016.12.007

Hypogyrifaction in Obsessive-Compulsive Disorder.
Rus OG, Reess TJ, Zimmer C, Zaudig M, Koch K (2017).
Psychological Medicine, 47, 1053-1061, DOI: 10.1017/50033291716003202

Connectomics-based structural network alterations in obsessive-compulsive disorder.
Reess TJ, Rus OG, Schmidt R, de Reus MA, Zaudig M, Wagner G, Zimmer C, van den Heuvel
M P, Koch K (2016).

Translational Psychiatry, 6 (9), e882. DOI: 10.1038/tp.2016.163

Extensive learning is associated with gray matter changes in the right Hippocampus.
Koch K, Reess TJ, Rus OG, Zimmer C (2016).
Neuroimage, 125, 627-632, DOI: 10.1016/j.neuroimage.2015.10.056

Diffusion tensor imaging (DTI) studies in patients with obsessive-compulsive disorder
(OCD): A review.

Koch K, Reess TJ, Rus OG, Zimmer C, Zaudig M (2014).

Journal of Psychiatric Research, 54, 26-35, DOI: 10.1016/j.jpsychires.2014.03.006

Functional connectivity and gray matter volume of the striatum in schizophrenia.
Koch K, Rus OG, ReeB TJ, Schachtzabel C, Wagner G, Schultz CC, Sorg C, Schlésser RGM
(2014).

British Journal of Psychiatry, 205, 204-213, DOI: 10.1192/bjp.bp.113.138099

Personality traits in patients with restless legs syndrome.
Steinig J, Reess T, Klosch G, Sauter C, Zeitlhofer J, Happe S (2013).
Somnologie, 17, 281-283, DOI: 10.1007/s11818-013-0623-z



114

Perception of sleep: Subjective vs. objective sleep parameters in patients with insomnia,
hyper-somnia, parasomnia, and sleep-related movement disorders.

Reess T, Steinig J, Lanz M, Dempewolf S, Bunten S, Happe S (2010).

Somnologie, 14, 253-259, DOI: 10.1007/s11818-010-0491-8



115

CURRICULUM VITAE

EDUCATION

2013 -2018 PhD in Systemic Neurosciences

Ludwig-Maximilians-Universitat Miinchen, Germany

2005-2011 Diploma Psychology

Universitat Bremen, Germany

RESEARCH EXPERIENCE

2012 -2018 Research Associate
Department of Neuroradiology, Klinikum rechts der Isar

Technische Universitat Miinchen, Germany



116

EIDESSTATTLICHE VERSICHERUNG /
AFFIDAVIT

Hiermit versichere ich an Eides statt, dass ich die vorliegende Dissertation ,,Connectomics-
Based Network Analyses and Structure-Symptom Relationships in Obsessive-Compulsive
Disorder” sebststandig angefertigt habe, mich aulRer der angegebenen keiner weiteren
Hilfsmittel bedient und alle Erkenntnisse, die aus dem Schrifttum ganz oder anndhernd
ibernommen sind, als solche kenntlich gemacht und nach ihrer Herkunft unter

Bezeichnung der Fundstelle einzeln nachgewiesen habe.

| hereby confirm that the dissertation ,Connectomics-Based Network Analyses and
Structure-Symptom Relationships in Obsessive-Compulsive Disorder” is the result of my
own work and that | have only used sources or materials listed and specified in the

dissertation.

Munich, 26 April 2018 Tim Jonas Reess



117

DECLARATION OF AUTHOR
CONTRIBUTIONS

Project 1

Authors: Tim Jonas Reess, Oana Georgiana Rus, Ruben Schmidt, Marcel A. de Reus, Michael

Zaudig, Gerd Wagner, Claus Zimmer, Martijn P. van den Heuvel, Kathrin Koch

The author of this thesis is the first author of the manuscript. T.J.R., K.K., O.G.R., with the
help of M.Z.,, C.Z.,, and G.W. conceived the experiment. T.J.R. and O.G.R. recruited
participants and conducted data acquisition. T.J.R., R.S., M.A.D.R, M.P.v.d.H performed
analyses and contributed analytic tools. T.J.R. wrote the manuscript in consultation with
0.G.R,, RS, M.A.d.R.,, M.Z,, GW., C.Z, M.P.v.d.H., K.K. All authors discussed the results

and revised the final manuscript.

Project 2

Authors: Tim Jonas Reess, Oana Georgiana Rus, Deniz A. Giirsel, Benita Schmitz-Koep, Gerd

Wagner, Gétz Berberich, Kathrin Koch

The author of this thesis is the first author of the manuscript. T.J.R. and K.K. with the help
of G.W. and G.B. conceived the experiment. T.J.R., O.G.R., B.S.K., and D.A.G recruited
participants and conducted the data acquisition. G.W. contributed data. T.J.R. performed
analyses. T.J.R. wrote the manuscript in consultation with O.G.R., G.W., and K.K. All

authors discussed the results and revised the final manuscript.



118

Project 3

Authors: Tim Jonas Reess, Oana Georgiana Rus, Deniz A. Giirsel, Benita Schmitz-Koep, Gerd

Wagner, Gétz Berberich, Kathrin Koch

The author of this thesis is the first author of the manuscript. T.J.R., K.K., and O.G.R.
together with G.W. and G.B. conceived the experiment. T.J.R., 0.G.R., D.A.G., and B.S.K.
recruited participants and acquired data. G.W. contributed data and analytic tools. T.J.R.
performed analyses. T.J.R. and K.K. wrote the manuscript in consultation with 0.G.R,,

D.A.G., G.B., and G.W. All authors discussed the results and revised the final manuscript.

Munich, 26 April 2018

Tim Jonas Reess Kathrin Koch (1* supervisor)



