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I Introduction 6 

I. INTRODUCTION 

Maternal diabetes is one of the most common metabolic disorders complicating 

pregnancy. Prevalence estimates in 2015 assumed that 20.9 million (16.2 %) of 129.4 

million live births were affected by hyperglycemia (IDF, 2015). Maternal diabetes can 

either result from preexisting type 1 or type 2 diabetes, or occurs during late pregnancy 

and hence is defined gestational diabetes mellitus (GDM) (ADA, 2016). Human 

epidemiological studies demonstrate that intra-uterine exposure to hyperglycemia, 

regardless of the type of maternal diabetes, has short- and long-term negative 

consequences for both the mother and the offspring (FETITA et al., 2006; FRASER 

& LAWLOR, 2014; MCCANCE, 2015). Even more alarming is the evidence from a 

large multicenter, multicultural, observational study involving 25.000 pregnant 

women, revealing that less severe degrees of hyperglycemia as such in overt diabetes 

mellitus are also associated with maternal/fetal and neonatal negative outcomes 

(GROUP et al., 2008).  

The impact of maternal diabetes on the offspring is extremely difficult to study in 

humans. Conversely, experimental animal models offer the possibility to investigate 

the consequences of maternal hyperglycemia and the underlying molecular 

mechanisms at different developmental stages. To date, animal models of maternal 

diabetes were mainly established in rodents (JAWERBAUM & WHITE, 2010; 

PASEK & GANNON, 2013), with considerable numbers using chemical diabetes 

induction with clear disadvantages. Only few models  represent clinically-relevant 

hyperglycemic levels (DAMASCENO et al., 2013) that are comparable to the tightly 

regulated glycemic control observed in pregnant diabetic women. Therefore, there is 

a need to develop clinically relevant experimental models of maternal diabetes. Pigs 

are an excellent and well-established animal model in diabetes research, closely 

resembling aspects of human glucose metabolism, including physiological metabolic 

alterations during pregnancy (PÈRE & ETIENNE, 2007; WOLF et al., 2014; 

RENNER et al., 2016a). 

The aim of present study was to first generate and characterize a novel genetically 

engineered porcine model of mild diabetes, characterize glucose control and insulin 

sensitivity of this model during the pregnant state and evaluate effects of in utero 

exposure to mild maternal hyperglycemia on the offspring.  
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II. REVIEW OF THE LITERATURE  

1. Metabolic and morphological adaptations during pregnancy 

in humans 

Metabolism encompasses complex networks of tightly regulated cellular processes 

that sustain a physiological balance in biological systems. Within these networks, 

maintenance of energy balance is a fundamental task that mainly involves i) 

maintenance of physiological glucose levels; ii) adequate insulin production and 

secretion; iii) adequate insulin response in peripheral insulin-sensitive tissues; and iv) 

maintenance of optimal glycogen and lipid storage to be catabolized at times of caloric 

restriction (BERG et al., 2007). Pregnancy is a transitional state that accounts for 

tremendous metabolic adaptations compared to the non-pregnant state. Those include 

changes in glucose metabolism, whole body insulin sensitivity, insulin secretion, lipid 

metabolism and, less studied, changes in protein metabolism (HADDEN & 

MCLAUGHLIN, 2009). In the context of pregnancy, glucose and energy metabolism 

are of particular relevance since the mother must meet the needs of a progressively 

increasing energy demand to allow a sufficient supply of nutrients for fetal 

development. In addition, these metabolic changes are critical to prepare the maternal 

organism for delivery and lactation as well as to provide adequate energy storages for 

the growing fetus upon birth (HADDEN & MCLAUGHLIN, 2009). In the first part of 

the literature review, the main metabolic changes in glucose and lipid metabolism that 

occur during normal pregnancy in humans will be described and compared to 

adaptations observed in large animal models, particularly in the pig. In the second part, 

pregnancy-associated metabolic changes in the context of a (pre-) diabetic state in 

humans and large animal models are in focus. 

 Changes in glucose metabolism  

Glucose homeostasis involves a network of metabolic processes that maintain 

circulating glucose levels within a physiological range. In humans, this range 

comprises fasting plasma glucose concentrations between 70 mg/dl to 90 mg/dl, in a 

physiological non-pregnant state (ADA, 2016). Maintenance of normoglycemia is 

therefore a balance between the rates of glucose entering the circulation and glucose 

disposal to peripheral tissues. Circulating plasma glucose is derived from external 

sources like nutrients absorbed through the small intestine, or from endogenous 
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sources such as the breakdown of glycogen stores via glycogenolysis as a primary 

energy source or by endogenous hepatic glucose production via gluconeogenesis, e.g. 

during longer fasting periods (GAGLIARDINO, 2005). Glucose removal from the 

blood stream is a strictly regulated process involving the key gluco-regulatory 

hormone insulin that stimulates glucose uptake into peripheral tissues and inhibits 

hepatic glucose production (DEFRONZO et al., 1983; DEFRONZO & 

FERRANNINI, 1987). In the fasting state, when glucose is only provided by 

endogenous sources (mainly by the liver), the rate of hepatic glucose production is 

equivalent to the rate of basal glucose-uptake. Thus, circulating glucose concentrations 

mainly reflect hepatic glucose production (DEFRONZO et al., 1989). Upon glucose 

load, plasma glucose levels increase and stimulate insulin secretion as well as insulin 

biosynthesis in the pancreas. Insulin inhibits hepatic glucose production and enhances 

glucose uptake in insulin sensitive tissues, mainly skeletal muscle, liver and fat 

(DEFRONZO et al., 1983; DEFRONZO & FERRANNINI, 1987).  

Generally, fasting glucose levels are decreased by 10 to 20 % in healthy pregnant 

women compared to healthy non-pregnant women (BLACKBURN, 2013). The lower 

glucose concentrations during pregnancy are attributed to dilution effects in volume 

distribution of glucose (KALHAN & ADAM, 1980), as well as to continuous 

increased demand in glucose utilization by the fetal-placental unit, especially during 

the last trimester (KALHAN et al., 1979; HADDEN & MCLAUGHLIN, 2009; 

ANGUEIRA et al., 2015). As to compensate fasting plasma glucose (FPG) decay 

endogenous glucose production is increased by 16 to 30 % in pregnant women with 

the progression of pregnancy (KALHAN et al., 1979; CATALANO et al., 1992; 

ASSEL et al., 1993), and gluconeogenesis is the preferred pathway contributing to 

glucose production during the fasting state in pregnant women (KALHAN et al., 

1997). Contrary to the fasting state, postprandial glucose levels during pregnancy are 

increased, and plasma glucose concentrations remain elevated for longer period 

following a meal, as compared to the non-pregnant state. Elevated postprandial 

glucose levels result from a minor impairment in glucose tolerance mainly due to 

changes in insulin sensitivity as explained below (DI CIANNI et al., 2003; HADDEN 

& MCLAUGHLIN, 2009; ANGUEIRA et al., 2015).  

 Insulin sensitivity  

In order to understand glucose homeostasis, primary physiological variables such as 

ß-cell response to glucose and tissue insulin sensitivity are pivotal parameters that can 
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be assessed by a variety of methods in diabetes research. The hyperinsulinemic-

euglycemic clamp (HIC) is the gold-standard method to determine in vivo insulin 

sensitivity (DEFRONZO et al., 1979). Contrary to the standard glucose and insulin 

stimulation tests (including oral and intravenous), where insulin sensitivity is mainly 

estimated through surrogated indexes, in the HIC, insulin sensitivity can be directly 

assessed by glucose infusion rate.  In a HIC setup, after an overnight fasting, insulin 

is infused at a constant rate, as to achieve a steady state of hyperinsulinemia. This 

suppresses endogenous production of insulin by ß-cells and glucose by the liver, as 

well as stimulates glucose uptake by peripheral tissues, mainly in skeletal muscle and 

adipose tissue. Simultaneously, glucose is infused at a variable rate, as to maintain a 

defined fasting plasma glucose concentration within the physiological range (also 

defined as euglycemic state). Therefore, the glucose amount infused throughout the 

steady state equals the glucose amount taken up by insulin-sensitive peripheral tissues. 

Consequently, the glucose infusion rate during steady state provides an absolute index 

of whole body insulin sensitivity. In insulin sensitive subjects, higher glucose infusion 

rates are required to maintain euglycemia as glucose is rapidly taken up and utilized 

by insulin sensitive tissues during the hyperinsulinemic condition. In contrast, in 

insulin resistant subjects, lower glucose infusion rates are necessary to maintain 

euglycemia as glucose uptake and utilization is reduced proportionally to the degree 

of insulin resistance in these subjects (DEFRONZO et al., 1979; MUNIYAPPA et al., 

2008; KIM, 2009). 

Studies using the hyperinsulinemic-euglycemic clamp have demonstrated that in the 

first 10-12 weeks of gestation insulin sensitivity is normal, compared to the non-

pregnant state (CATALANO et al., 1991; CATALANO et al., 1992). With progression 

of pregnancy, insulin sensitivity is reduced by 50 to 70 % in the third trimester in 

healthy pregnant women (RYAN et al., 1985; BUCHANAN et al., 1990; CATALANO 

et al., 1991; CATALANO et al., 1992; CATALANO et al., 1993; SIVAN et al., 1997). 

Reduced insulin sensitivity during pregnancy results from a marked reduction in 

insulin action in maternal peripheral tissues, especially in skeletal muscle and adipose 

tissue (BUTTE, 2000; DI CIANNI et al., 2003; HADDEN & MCLAUGHLIN, 2009; 

ANGUEIRA et al., 2015) and is the main event contributing to increased nutrient 

provision for the fetus (BUTTE, 2000; DI CIANNI et al., 2003). Although the 

molecular mechanisms underlying physiological insulin resistance in pregnancy are 

not completely understood, they involve impairment of insulin signaling to 
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downstream targets within the insulin signaling cascade (BARBOUR et al., 2007). 

Insulin-mediated glucose uptake is initiated by binding of insulin to the α-subunit of 

the insulin receptor tyrosine kinase (IR) in insulin-sensitive tissues. This induces a 

conformational change in the two subunits of the IR, resulting in autophosphorylation 

of several tyrosine kinase substrates in the IR. The active IR, subsequently 

phosphorylates downstream signaling molecules, including insulin-receptor substrate 

(IRS) proteins (IRS-1 and IRS-2 are important mediators in muscle and adipose 

tissue), which act as scaffolds to recruit and mediate signaling complexes (BOUCHER 

et al., 2014). Among them, recruitment of type 1A PI3-kinase (PI3K) is known to be 

directly involved in facilitating translocation of intracellular glucose receptors 

(GLUT) into the plasma membrane (BACKER et al., 1992; ALESSI & DOWNES, 

1998). Although the molecular mechanisms are not fully understood, it involves 

activation of AKT and subsequent phosphorylation cascade of PH-domain containing 

proteins including the serine/threonine protein kinase B (PKB)/AKT and the atypical 

protein kinase C (PKC) ζ isoform (PKCζ) that ultimately are recruited to the plasma 

membrane and facilitate intracellular-membrane-vesicles-containing GLUT receptors 

to translocate into the plasma cell membrane (BRYANT et al., 2002; ROWLAND et 

al., 2011). Reduced phosphorylation levels on the tyrosine kinase of IR, indicating IR 

impairment activity, were demonstrated in purified IR from skeletal muscle of 

pregnant women (SHAO et al., 2000). Moreover, IRS1 phosphorylation is reduced in 

muscle and liver of an experimental rat model of pregnancy, as well as in skeletal 

muscle of healthy pregnant women (DAMM et al., 1993; SAAD et al., 1997). In 

addition, reduced translocation of GLUT receptors has been identified. GLUT4 protein 

expression is significantly reduced in subcutaneous adipose tissue of healthy pregnant 

as compared to non-pregnant women (OKUNO et al., 1995). Friedman et al. 

demonstrated that insulin-induced GLUT4 translocation was reduced by 32 % in 

skeletal muscle of healthy pregnant women as compared to non-pregnant controls 

(FRIEDMAN et al., 1999). On the basis of understanding the underlying molecular 

mechanisms of insulin resistance, pregnancy-related endocrine changes have been 

intensively investigated (RYAN & ENNS, 1988; HANDWERGER & FREEMARK, 

2000; NEWBERN & FREEMARK, 2011). Progesterone has in vivo insulin 

desensitization effects particularly on hepatic glucose production in pregnant rats 

(NELSON et al., 1994). Plasma cortisol concentrations are greatly increased in human 

pregnancy (KIRWAN et al., 2002), and glucocorticoid treatment interfered with IR 
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signaling and IRS-1 expression in vivo in rats (GIORGINO et al., 1993). Lactogen 

hormones including human placental lactogen (hPL) and prolactin (PRL) stimulate 

maternal food intake by targeting in vivo leptin resistance in the rat brain 

(AUGUSTINE & GRATTAN, 2008). In addition, hPL stimulates in vitro insulin 

secretion in rat, mouse and human islets (BRELJE et al., 1993). Transgenic mice 

overexpressing human placental growth hormone (hPGH), demonstrated that hPGH 

enhances p85α subunit of PI3K which, in turn, impairs IRS1 and PI3K complex 

activity, thus blocking downstream insulin signaling in skeletal muscle 

(BANDYOPADHYAY et al., 2005; BARBOUR et al., 2005). In addition to 

pregnancy-associated hormones, others have investigated the role of adipose tissue-

specific cytokines, known as adipokines, and their contribution to insulin resistance. 

During pregnancy adipose tissue expansion takes place (CLAPP et al., 1988; ROJAS-

RODRIGUEZ et al., 2015) and adipokines like leptin, adiponectin and tumor necrosis 

factor alpha (TNF-α) have been implicated with increased insulin resistance in 

pregnancy (BARBOUR et al., 2007). Plasma leptin concentrations increase throughout 

gestation (BUTTE et al., 1997) and they correlate with maternal insulin and increase 

maternal fat mass (HIGHMAN et al., 1998; VIRKAMAKI et al., 1999). TNF-α is 

related with obesity-induced insulin resistance by inhibiting the activity of the IR 

(HOTAMISLIGIL et al., 1996) and so far is the only signaling factor that directly 

correlates with progressive changes in insulin sensitivity in vivo in humans (KIRWAN 

et al., 2002). The role of adiponectin as an insulin-sensitizing hormone in obese and 

type 2 diabetes patients is well described (ARITA et al., 1999; HOTTA et al., 2000; 

WEYER et al., 2001). Also, adiponectin levels were found reduced during the 3rd 

trimester of pregnancy compared to the non-gravid state, in agreement with reduced 

adiponectin mRNA expression in white adipose tissue of lean pregnant women 

(CATALANO et al., 2006). 

 Insulin secretion 

In addition to insulin sensitivity, β-cell function is the other pivotal variable impacting 

glucose metabolism. Glucose challenging tests are standard methods used to determine 

in vivo insulin secretion and therefore to assess ß-cell function and response. They are 

mainly performed with an oral or intravenous administration of a glucose bolus, and 

the effects of endogenous insulin secretion on systemic glucose clearance are 

evaluated based on frequently blood sampling (CERSOSIMO et al., 2014). 

Alternatively, ß-cell function can be assessed by the hyperglycemic clamp (HGC) test, 
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where ß-cell function is assessed under maximal stimulatory conditions (DEFRONZO 

et al., 1979). After an overnight fasting, plasma glucose concentration is acutely raised 

by intravenous infusion of glucose, and hyperglycemia is constantly held by 

continuous glucose infusion. To maintain the desired hyperglycemic plateau, the 

glucose infusion is adjusted based on frequent plasma glucose measurements. Because 

the plasma glucose concentration is held constant, the glucose infusion rate is a 

measure of insulin secretion capacity and β-cell function. Under this constant 

hyperglycemia setup, non-diabetic subjects reveal a biphasic pattern of plasma insulin 

response with a first phase insulin response (approximately the first 10 min) 

characterized by an early burst of insulin, followed by a gradually progressive increase 

in plasma insulin concentrations (second phase) (DEFRONZO et al., 1979; 

CERSOSIMO et al., 2014).  

Longitudinal studies on glucose tolerance upon intravenous glucose challenge indicate 

that insulin response is increased within the first weeks of pregnancy (12-14 week), 

achieving maximum levels during the third trimester, and returning to normal values 

after term (CATALANO et al., 1991; CATALANO et al., 1993). By the third 

trimester, both basal and postprandial insulin secretion levels are increased compared 

to non-pregnant state. This is accompanied by increased insulin secretion both in the 

1st phase (time 0 to 5 min.) and 2nd phase (from 5 until end test) (CATALANO et al., 

1991). Similarly, increased insulin response was observed during oral glucose 

tolerance tests in pregnant women, with a 120 % increased 1st phase insulin response 

during weeks 12-14 of gestation (BOWES et al., 1996). The capacity to compensate 

with increased insulin secretion during pregnancy is therefore an adaptive mechanism 

to maintain normoglycemia in pregnant women (BUTTE, 2000; DI CIANNI et al., 

2003). Despite development of insulin resistance in healthy pregnant women, glucose 

tolerance is only slightly reduced and associated with moderately elevated 

postprandial glucose levels (CATALANO et al., 1991; CATALANO et al., 1993; 

BOWES et al., 1996). These are essential to provide sufficient glucose to the fetus 

during interrupted periods of energy intake (BUTTE, 2000; DI CIANNI et al., 2003; 

ANGUEIRA et al., 2015). The inability to compensate the increased demand for 

insulin during pregnancy underlies the pathophysiological mechanisms of 

development of GDM (BUCHANAN et al., 2007). Hence, the insulin producing β-

cells must undergo several morphological and functional adaptions that are further 

discussed in 1.3. 
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 Changes in lipid metabolism  

Like glucose metabolism, lipid metabolism is also target of many physiological 

alterations during pregnancy. There is a great effort during the first two trimesters of 

pregnancy to promote accumulation of maternal lipid storages that can be later 

mobilized as energy source during the last trimester (BUTTE, 2000). Thus, 

morphological and functional changes occur at the level of adipocytes within the 

adipose tissue. There is an increase in adipose tissue expansion which is promoted by 

hypertrophy of fat cells (HERRERA, 2000; ROJAS-RODRIGUEZ et al., 2015). It is 

estimated that 3.3 kg of additional fat is stored within the first 15 weeks of normal, 

non-obese pregnancy (CLAPP et al., 1988). Concomitantly increased levels of 

pregnancy-related hormones and insulin are thought to facilitate the increased fat 

deposition in adipocytes by favoring lipogenesis and inhibiting lipolysis (HERRERA 

& DESOYE, 2016). In fact, the number of insulin receptors as well as insulin-mediated 

lipogenesis are increased in adipocytes in the first trimester of pregnancy (BAIRD, 

1986) which is then reduced by the development of insulin resistance (SIVAN et al., 

1999). Similar to glucose concentrations, circulating levels of triglycerides, non-

esterified fatty acids, cholesterol and phospholipids are reduced within the first eight 

weeks of pregnancy. Cholesterol is mainly canalized to the placenta for the synthesis 

of steroid hormones while fatty acids serve as building blocks e.g. for the synthesis of 

new cell membranes (BUTTE, 2000). Upon initial reduction, circulating lipid 

metabolites are found elevated following the first eight weeks of pregnancy. This is 

mainly due to increased lipid synthesis in the liver and reduced clearance of lipids from 

the circulation due to a decreased activity of lipases, particularly hepatic lipase 

(SATTAR et al., 1997). In parallel with increased levels of total cholesterol and 

triglycerides, levels of lipoproteins are also found elevated with progression of 

pregnancy and remain elevated until delivery (HERRERA & DESOYE, 2016). There 

is an overall increase in circulating high-density lipoproteins (HDL), low density 

lipoproteins (LDL), very low density lipoproteins (VLDL) and triacylglycerols 

(SATTAR et al., 1997; BUTTE, 2000). Elevation of the lipoprotein content is in line 

with increased levels of cholesterol ester transfer protein (CETP) found by several 

studies (SILLIMAN et al., 1993; IGLESIAS et al., 1994; ALVAREZ et al., 1996). 

CETP catalyzes the transfer of triglycerides in exchange of cholesterol esters to HDL 

and LDL lipoproteins.  
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In the 3rd trimester of pregnancy, where most of glucose is shuttled to the fetal-

placental unit to meet fetal energy demand, maternal metabolism relies on lipid content 

as a primary energy source. Thus, a switch from an anabolic state of building and 

storing lipid mass is replaced by a catabolic state of activation and utilization of the 

lipid reservoir (BUTTE, 2000; DI CIANNI et al., 2003). Hence, lipolysis and fat 

mobilization takes place, which is consistent with increased circulating free fatty acids 

(FFA), triglycerides and lipoproteins (HERRERA & DESOYE, 2016). Furthermore, 

in periods of prolonged (48 h) and shorter fasting (18 h), where most intermediates of 

carbohydrate metabolism are utilized for glucose production by gluconeogenesis, lipid 

oxidation is highly increased with accelerated production of ketone bodies. In fact, 

fatty acids and β-hydroxybutyrate products are increased in the circulation during 

fasting periods and are generated faster in pregnant women as compared to the non-

pregnant state (METZGER et al., 1980; METZGER, 1991).  

 Pancreas morphology, β-cell mass and mechanisms of β-cell adaptation 

to pregnancy  

During pregnancy, there is a continuous increase in insulin demand caused by the 

physiological endocrine-metabolic “insult” intrinsic to pregnancy. In order to respond 

to increased insulin secretion, the endocrine fraction of the pancreas is subject of major 

morphological and functional adaptions that contribute to enhanced insulin 

responsiveness. These major adaptions will be reviewed here mainly based on animal 

studies (especially mice) due to the obvious scarcity and heterogeneity among human 

samples.   

The pancreas is the organ mainly responsible for glucose homeostasis, since it 

produces the hormone insulin which is necessary to regulate circulating glucose levels. 

Insulin is produced exclusively by the β-cells, those comprising one out of five 

endocrine cell types in the pancreas (α-cells secrete glucagon; PP-cells secrete 

pancreatic polypeptide; δ-cells secrete somatostatin and ε-cells secrete ghrelin 

(MARICHAL, 2010). β-cells can either be organized in cell clusters of pancreatic 

islets or in small numbers of dispersed β-cells within the pancreas known as isolated 

β-cells (BOUWENS & PIPELEERS, 1998; DOLENŠEK et al., 2015). β-cells are the 

most abundant cell type within the islets (with exception for birds), however, with 

great differences in cell type proportion distribution and cytoarchitecture among 

species (KIM et al., 2009; STEINER et al., 2010). Human islets have reduced β-cell 

content (60 % β-cells) and increased α-content (30 % α-cells) as compared to 70 % β-
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cells and 20 % α-cells in murine islets, respectively (CABRERA et al., 2006). The 

cytoarchitecture of human islets is characterized by a heterogeneous β-cell 

distribution, while murine islets have a core of β-cells surrounded by the other cell 

types (BRISSOVA et al., 2005; CABRERA et al., 2006). Porcine islets resemble more 

human islets, where small β-cell clusters are scattered among the other endocrine cells 

types (CABRERA et al., 2006; STEINER et al., 2010).  

In order to compensate for the increased insulin demand due to reduced insulin 

sensitivity, the endocrine pancreas must enhance insulin synthesis and secretion 

capacity by expanding β-cell mass. It is known that β-cells can change in number 

(hyperplasia) and size (hypertrophy) during periods of increased insulin demand such 

as growth, pregnancy, or obesity (RIECK & KAESTNER, 2010). A great number of 

studies indicate that murine islets show a 3 to 4-fold increase in β-cell mass during 

pregnancy and proliferation of existing β-cells is the predominant underlying 

mechanism. (PARSONS et al., 1992; SORENSON & BRELJE, 1997; RIECK et al., 

2009; RETNAKARAN et al., 2016). Placental lactogens (SORENSON et al., 1993) 

and other regulatory hormones like serotonin (KIM et al., 2010) and menin (KARNIK 

et al., 2007) are involved in the regulation of β-cell mass during pregnancy in rodents. 

In humans, there is also evidence for an increased β-cell mass during pregnancy, 

although to a much smaller extent. Van Assche and co-workers reported a 2-fold 

increase in β-cell mass in five pregnant women (with an increase in number and size 

of β-cells) (VAN ASSCHE et al., 1978), whereas Butler et al. reported a smaller (1.4-

fold) increase in β-cell mass in 18 pregnant women around gestational week 25 

(BUTLER et al., 2010). The Butler study reported an increased number of small islets 

instead of enlargement of pre-existing islets with no changes in replication. Contrary 

to mice, where proliferation (PARSONS et al., 1992; RIECK et al., 2009) and 

hypertrophy (SORENSON & BRELJE, 1997; RIECK et al., 2009) of pre-existing 

islets were shown to be the preferential mechanisms of β-cell mass expansion, the data 

are contradictory in humans. The study by the Butler team shed light on the generation 

of new β-cells via neogenesis (generation of β-cells from non-differentiated 

precursors) since the increase in β-cell numbers resulted from newly formed islets as 

well as increase in insulin positive duct cells (BUTLER et al., 2010). In line with this 

finding a study conducted by Kou et al. on 72 pancreata obtained from autopsies of 

individuals without a history of pancreatitis or any type of diabetes (not involving 

pregnancy) observed that islet number rather than islet size was the main parameter 
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determining β-cell mass (KOU et al., 2014). Regulation of β-cell mass during 

pregnancy in the pig remains to be investigated.  

 Metabolic adaptions to pregnancy in large animal models with focus on 

the pig  

Experimental animal models that naturally depict the most common metabolic features 

of human pregnancy are of great value. They allow not only a comprehensive 

understanding of the physiological metabolic processes during pregnancy, but also the 

study of pregnancy complicated by metabolic disorders such as diabetes. Like humans, 

pigs use glucose as the major energy substrate for the fetus (FORD et al., 1984; PERE, 

1995, 2001). This is also true for other large animals like cows (FERRELL et al., 1983) 

and sheep (CHRISTENSON & PRIOR, 1978; MESCHIA et al., 1980). Blood samples, 

collected at the end of gestation revealed fetal glucose extractions of 0.3 mmol/L 

(PERE, 1995, 2001), 0.2 mmol/L (FOWDEN et al., 1997) and 0.32 mmol/L 

(COMLINE et al., 1979) in pigs. These values are comparable with fetal glucose 

extractions found in two human studies: 0.38 mmol/L (HOLME et al., 2015) and 0.34 

mmol/L (KUO, 1991), but lower than one report 0.6 mmol/L in humans (METZGER 

et al., 1985).  

Regarding fasting glucose levels during pregnancy in sows, most studies report no 

alterations in FPG between the pregnant and non-pregnant state (AHERNE et al., 

1969; REYNOLDS et al., 1985; DUEE et al., 1987; SIMOES NUNES et al., 1987; 

PÈRE et al., 2000; PÈRE & ETIENNE, 2007). Glucose-lowering effects of insulin, 

measured upon ingestion of a meal, were progressively reduced in primiparous sows, 

at mid pregnancy (59 days) and the end of pregnancy (106 days) resulting in 

significantly increased postprandial glucose levels, as compared to non-pregnant 

controls (PÈRE & ETIENNE, 2007). Pregnancy-related reduced glucose tolerance in 

primiparous sows is similar to observations in healthy pregnant women (KUHL, 1991; 

PIVA et al., 1991; HOMKO et al., 2001). Fasting insulin concentrations were reported 

to be unaltered in pregnant sows vs. non-pregnant controls (BOUILLON HAUSMAN, 

1986; SCHAEFER et al., 1991), while some studies observed decreased fasting insulin 

during pregnancy (SIMOES NUNES et al., 1987; PÈRE et al., 2000). Insulin 

sensitivity is also altered during pregnancy in pigs. Studies in pregnant sows at term, 

using hyperinsulinemic-euglycemic clamps (PÈRE & ETIENNE, 2007), oral glucose 

tolerance tests  (PÈRE & ETIENNE, 2007) and intravenous glucose tolerance tests 

(GEORGE et al., 1978; SCHAEFER et al., 1991; PÈRE & ETIENNE, 2007), 
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demonstrated that, like in humans, pigs showed a slight reduction in glucose tolerance 

(more pronounced at end of pregnancy), together with a decreased insulin sensitivity. 

In healthy pregnant women insulin resistance and elevated insulin secretion 

immediately return to the normal state postpartum (HOMKO et al., 2001; MAZAKI-

TOVI et al., 2011), whereas in pigs, insulin resistance and impaired glucose tolerance 

are still present throughout lactation and normalize after weaning (PÈRE & ETIENNE, 

2007). In fact, development of insulin resistance in pregnancy seems to be a conserved 

metabolic adaptation among species occurring not only in pigs, but also in sheep 

(DUEHLMEIER et al., 2013), goats (DEBRAS et al., 1989), dogs (CONNOLLY et 

al., 2004), rats (LETURQUE et al., 1984; LETURQUE et al., 1986; ROSSI et al., 

1993) and mice (MUSIAL et al., 2016). Of relevance, the degree of glucose tolerance 

in pregnant pigs can be influenced by the type of diet (VAN DER PEET-

SCHWERING et al., 2004; CORSON et al., 2008b; METGES et al., 2014). Sows fed 

from day 85 of gestation a standard diet containing non-starch polysaccharides 

supplemented with 164 g of fat (soybean oil) revealed increased body mass, back fat 

gain and decreased glucose tolerance during lactation as compared with pregnant 

controls fed a standard diet (VAN DER PEET-SCHWERING et al., 2004). In addition, 

Metges et al. demonstrated that pregnant sows (gestation day 84) fed a high 

protein/low carbohydrate diet were more insulin resistant compared with sows fed an 

isoenergetic low protein/ high carbohydrate diet and sows fed an isoenergetic standard 

diet. It was suggested that low carbohydrate fed sows, adapted to a dietary deficit in 

glucose by increasing insulin resistance, glucagon concentrations, decreasing glucose 

oxidation, and stimulating gluconeogenesis (METGES et al., 2014). Thus, diet 

supplementation in the pig during pregnancy can be used to manipulate maternal 

glucose metabolism towards an aggravated phenotype of impaired glucose tolerance, 

as seen in obese pregnant women (CATALANO et al., 1999).  

Similar to humans, increased lipid mobilization towards the end of pregnancy is also 

observed in pregnant sows which revealed elevated circulating FFA near term (day 

110) (PÈRE et al., 2000; PÈRE & ETIENNE, 2007). However, compared to humans, 

hyperlipidemia appears later in pigs, and is greater during the lactation period 

coinciding with the more pronounced insulin resistance phenotype (PÈRE & 

ETIENNE, 2007). Altogether, despite some differences, physiological metabolic 

adaptations to pregnancy in pigs resemble those in humans, making the pig a relevant 

animal model of human pregnancy that can be used to investigate molecular 
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mechanisms underlying pregnancy complicated by diabetes and its deleterious 

consequences for the offspring.  

2. Maternal diabetes: preconceptional and gestational diabetes 

mellitus 

 Definition, prevalence and diagnostic criteria  

Pregnancy is often defined as a transitory “diabetogenic” event (DI CIANNI et al., 

2003). This is due to its intrinsic physiological alterations in glucose-insulin 

metabolism which resemble complications seen in diabetes. However, contrary to the 

diabetic state, healthy pregnant women still maintain circulating glucose levels within 

physiological ranges that are defined by specific glycemic threshold values (BUTTE, 

2000; HADDEN & MCLAUGHLIN, 2009). Two forms of maternal diabetes are 

known: (1) preconceptional diabetes mellitus (PCDM) that includes pregnant women 

previously diagnosed either with type 1 or type 2 diabetes and (2) gestational diabetes 

mellitus (GDM), defined as “any degree of glucose intolerance with an onset or first 

recognition during pregnancy,” particularly arising around the 24th week of gestation 

(ADA, 2016). Both types of maternal diabetes are considered as a high-risk condition 

for the mother and the child. The International Diabetes Federation (IDF) reported that 

over the year 2015, 20.9 million (16.2 %) of 129.4 million live births (to women aged 

20-49 years) were affected by hyperglycemia. Of those, 85.1 % were due to GDM, 7.4 

% due to other types of diabetes first detected during pregnancy and 7.5 % due to 

diabetes detected prior to pregnancy (IDF, 2015). The prevalence of maternal diabetes 

is related to ethnicity, with the highest prevalence in South-East Asia (24 %), Middle 

East and North Africa (21.8 %), and much influenced by the socioeconomic status, 

with 87.6 % prevalence in low and middle income countries. In Europe the prevalence 

is 13.7 % with 1.7 million live births affected in 2015 (IDF, 2015).  

The same diagnostic criteria used to identify individuals in the population with 

diabetes (either type 1 or type 2) are applied to diagnose women with PCDM. Those 

consist of defined threshold values for specific diagnostic criteria. Thus, diabetes 

mellitus, is diagnosed when one of the following criteria is met: (1) FPG (with fasting 

being defined as non-caloric intake for a period of at least 8 h) ≥ 126 mg/dl, or (2) 

postprandial glucose (PG) levels two hours after a standardized oral glucose tolerance 

test (in humans a glucose load using 75 g anhydrous glucose dissolved in water) ≥ 200 
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mg/dl, or (3) glycated hemoglobin (HbA1c), a monitoring parameter of long-term 

blood glucose is ≥ 6.5 % (ADA, 2016).  

For decades there has been an extensive debate on defining clear cutoff criteria for 

GDM (HOUSHMAND et al., 2013; MCINTYRE et al., 2015). This was due to, 

heterogeneous criteria applied to define glucose tolerance in pregnancy (which 

initially focused primarily on maternal risk to develop type 2 diabetes rather than poor 

pregnancy outcomes), and second, to some uncertainty to which extent milder degrees 

of hyperglycemia during pregnancy impact maternal and neonatal outcomes. As a 

result of the current epidemic rise in obesity that has led to more cases of women in 

childbearing age with undiagnosed type 2 diabetes (LAWRENCE et al., 2008), it 

became mandatory to redefine GDM criteria. Furthermore, a large multinational 

cohort study, the Hyperglycemia and Adverse Pregnancy Outcomes (HAPO) study, 

was performed to clarify the impact of minor degrees of hyperglycemia (FPG 75 to 

100 mg/dL; 1h PG 106-212 mg/dL; 2h PG 90-178 mg/dL) during pregnancy on 

maternal/offspring adverse outcomes (GROUP et al., 2008). The study was conducted 

on a large group of 25.000 pregnant women undergoing a 75-g oral glucose tolerance 

test at 24-28 weeks of gestation. From this study, a continuous association between 

the degree of maternal glycemia and the risk of adverse maternal, fetal and neonatal 

outcomes was demonstrated (GROUP et al., 2008). Importantly, the risk association 

of maternal hyperglycemia with adverse neonatal outcomes was reported in maternal 

glycemia degrees less severe than overt diabetes mellitus (GROUP et al., 2008), and 

was independent of maternal obesity (which in combination with GDM aggravated the 

risk for deleterious outcomes) (CATALANO et al., 2012). Taking these considerations 

into account, the American Diabetes Association (ADA) redefined the diagnostic 

criteria for GDM as follows. If women at their initial prenatal visit present risk factors 

for type 2 diabetes, (those including Body Mass Index (BMI) ≥ 25 kg/m2 with 

additional risk factors like physical inactivity, family history of diabetes, high risk 

race/ethnicity, hypertension ≥ 140/90 mmHg or undergoing hypertension therapy, 

HDL cholesterol levels < 35 mg/dL and/or triglyceride levels ≥ 250 mg/dL, history of 

cardiovascular diseases, polycystic syndrome, HbA1c levels ≥ 5.7 %, or any other 

clinical condition associated with insulin resistance previously diagnosed) they should 

be tested for diabetes mellitus using the standard diagnostic criteria. If diabetes is 

confirmed during the 1st trimester, women should be classified with type 2 diabetes. If 

women do not present any of the risk factors above, they should be diagnosed for GDM 
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within weeks 24-28 of gestation (ADA, 2016). However, as a result of the HAPO 

study, the GDM diagnostic criteria differ and are stricter as compared to the standard 

type 1 and 2 criteria. Thus, GDM diagnostic criteria can be accomplished following 

either a one-step or a two-step screening approach. A one-step approach involves 

performing a 75-g oral glucose tolerance test within weeks 24-28 of gestation with 

samples collected at fasting, 1-h and 2-h following the glucose load. Women are 

diagnosed with GDM when any of the following parameters are met: FPG ≥ 92 mg/dL, 

or 1-h PG ≥ 180 mg/dL or 2-h PG ≥ 153 mg/dL (threshold values defined according 

to the International Association of the Diabetes Pregnancy Study Groups) 

(INTERNATIONAL ASSOCIATION OF et al., 2010; ADA, 2016). In a two-step 

approach, step one consists of a 50 g glucose load test (non-fasting), with plasma 

measurements at 1-h post glucose load. If plasma glucose levels are ≥ 140 mg/dL, they 

proceed to step two with a 100 g oral glucose tolerance test (OGTT) (plasma 

measurements at fasting, 1-h, 2-h and 3-h after OGTT). The diagnosis of GDM is 

confirmed if at least two of the following parameters are met: FPG ≥ 95 mg/dL, 1-h 

PG ≥ 180 mg/dL, 2-h PG ≥ 155 mg/dl and 3-h PG ≥ 140 mg/dL (threshold values 

defined by Carpenter/Coustand) (CARPENTER & COUSTAN, 1982; ADA, 2016) or 

FPG ≥ 105 mg/dL, 1-h PG ≥ 190 mg/dL, 2-h PG ≥ 165 mg/dl and 3-h PG ≥ 145 mg/dL 

(threshold values defined by the National Diabetes Data Groups) (GROUP, 1979; 

ADA, 2016). The decision for the one-step or two-step procedure is of debate 

(VANDORSTEN et al., 2013). The one-step procedure using the threshold criteria 

from the IADPSG has been adopted internationally and therefore, it is the preferential 

approach (DURAN et al., 2014). Nevertheless, it has been under discussion, since 

these criteria raise the prevalence of women diagnosed with GDM, and it is not yet 

clear if this results in an overestimation of the number GDM cases with need for 

medical intervention and costs (VANDORSTEN et al., 2013). The two-step approach 

is the preferential route in the US which has updated its guidelines in 2013 by The 

American College of Obstetricians and Gynecologists (COMMITTEE ON 

PRACTICE, 2013). Long-term outcome studies using both approaches are needed and 

are currently ongoing to commit to an internationally applicable diagnostic regimen 

(ADA, 2016). 

 Consequences of maternal diabetes  

Human epidemiological and experimental animal studies demonstrate that intra-

uterine exposure to hyperglycemia, regardless of which type of maternal diabetes, has 
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short- and long-term negative consequences for both the mother and the offspring 

(FETITA et al., 2006; FRASER & LAWLOR, 2014; MCCANCE, 2015). Thus, 

maintenance of normoglycemia in pregnancy is imperative for reducing adverse 

maternal, fetal and neonatal outcomes. In PCDM, the onset of diabetes is prior to 

gestation and therefore, poorly maternal glycemic control (especially within the 1st 

trimester) has great impact on early embryonic development (ORNOY et al., 2015). A 

systematic meta-analysis review, involving 14.099 women with type 1 diabetes and 

4.035.373 women from background population revealed a 2-to 5-fold increased risk 

for the development of congenital malformations, perinatal mortality, preterm delivery 

and large for gestational age births in women with type 1 diabetes (COLSTRUP et al., 

2013). Moreover, despite generally milder glycemic impairment in women with type 

2 compared with type 1 diabetes, both diabetes types showed poor pregnancy 

outcomes in a systematic meta-analysis (BALSELLS et al., 2009). In fact, women with 

type 2 diabetes showed higher risk of perinatal mortality compared to type 1 diabetic 

women and were not significantly different from type 1 women in rates of congenital 

malformations, stillbirth and neonatal mortality (BALSELLS et al., 2009). In the case 

of GDM, the rate of fetal congenital malformations is not increased compared with 

normal pregnancy (SCHAEFER et al., 1997; FARRELL et al., 2002). Nevertheless, 

despite lower impairment in glucose control compared to type 1 and type 2 diabetic 

women, several deleterious consequences for both mother and offspring are known. 

Macrosomia, defined as weight at birth >4.000 g (LUBCHENCO, 1970; KC et al., 

2015), occurs in 30 % of the neonates of diabetic mothers (UVENA-CELEBREZZE 

& CATALANO, 2000) and a linear relationship between this outcome and the degree 

of maternal hyperglycemia has been supported by different studies, including 

pregnancies complicated by GDM (HILL et al., 2005; YOGEV et al., 2005; GROUP 

et al., 2008). Macrosomia is usually accompanied by disproportional growth of 

shoulders and abdomen in comparison to the head, thus contributing to serious 

obstetric complications such as bone injuries, shoulder dystocia, increased emergency 

cesarean section and assisted deliveries (KC et al., 2015). As a result of an intrauterine 

hyperglycemic environment, fetal hyperinsulinemia was long hypothesized 

(PEDERSEN, 1954) and is in line with findings of elevated cord blood C-peptide 

levels in GDM offspring (GROUP et al., 2008) and increased insulin levels in the 

amniotic fluid of both PCDM and GDM fetuses (SILVERMAN et al., 1995). 
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In addition to deleterious neonatal outcomes, both PCDM and GDM have an impact 

beyond the perinatal period. Studies with Pima Indians, a population with the highest 

prevalence of type 2 diabetes (KNOWLER et al., 1978), were the first to demonstrate 

an increased incidence of type 2 diabetes in the offspring as a consequence of exposure 

to a hyperglycemic intrauterine environment (DABELEA et al., 2000; LINDSAY et 

al., 2000). In the Pima Indian population, offspring of diabetic mothers had an 

increased incidence of type 2 diabetes compared to the offspring of type 2 diabetic 

fathers (LINDSAY et al., 2000). Another study conducted in siblings of Pima Indians, 

in which one of the siblings was born before maternal development of type 2 diabetes, 

revealed 45 % higher incidence of diabetes in the offspring whose mothers were 

diabetic during pregnancy as compared to 9% incidence for those siblings where the 

mother became diabetic after pregnancy (DABELEA et al., 2000). Because the Pima 

Indian population is particular in terms of small genetic variability (WILLIAMS et al., 

1992) and since the development of type 2 diabetes has partially a genetic contribution 

(MORRIS et al., 2012), the impact of hyperglycemia in utero could still be argued. 

Using individuals from populations with higher genetic variability, increased 

impairment of glucose tolerance and reduced insulin secretion was demonstrated in 

adult offspring from type 1 diabetic mothers (without any presence of islet-

autoantibodies of type 1 diabetes) as compared to offspring of diabetic type 1 fathers 

(SOBNGWI et al., 2003). Like in PCDM, offspring of GDM mothers also have a 

greater risk to develop metabolic complications during childhood and adult life. A 

follow-up study in offspring (age 18-27) of GDM, revealed reduced insulin sensitivity, 

β-cell function and glucose tolerance compared with the offspring of background 

population (KELSTRUP et al., 2013). Moreover, the prevalence of IGT and type 2 

diabetes in offspring (age 18-27) of diet-treated GDM mothers was 26 % compared 

with 4 % in the offspring from the background population (CLAUSEN et al., 2008). 

Earlier reports also support an increased prevalence of IGT (CLAUSEN et al., 2009), 

or of IGT and type 2 diabetes (SILVERMAN et al., 1995; PLAGEMANN et al., 1997) 

in offspring of GDM mothers.    

 Animals models of maternal diabetes  

Diabetes in pregnancy results in an unfavorable hyperglycemic intrauterine 

environment for the growing fetus, thus supporting the onset of maternal, fetal, 

neonatal and perinatal complications. With the current epidemic rise in obesity in both 

economically favorable and unfavorable countries, and the increased number of 
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women developing GDM and type 2 diabetes it is imperative to understand the 

pathophysiological consequences of maternal hyperglycemia and to develop 

appropriate disease prevention/treatment strategies. Due to obvious ethical reasons, 

human studies, don´t allow to fully explore the molecular mechanisms underlying 

maternal diabetes and poor offspring outcomes. Therefore, animal models, in 

particular large animal models, are of great value as they can bridge the gap between 

rodent models and humans (WOLF et al., 2014; RENNER et al., 2016a). Different 

methods can be applied to induce hyperglycemia prior/during pregnancy, and 

according to the onset, they intended to mimic PDCM (hyperglycemia before or during 

early pregnancy with either features of type 1 or type 2 diabetes) or GDM 

(hyperglycemia in late phase of pregnancy with mild maternal glycemia) 

(JAWERBAUM & WHITE, 2010; PASEK & GANNON, 2013). Pancreatectomy was 

the first method used to induce maternal diabetes. This method involves partial or total 

removal of the pancreas by surgery, resulting in corresponding degrees of diabetes. As 

a highly invasive procedure, it generates a high degree of inflammation with high post-

surgical mortality rates and is therefore not commonly used anymore (PASEK & 

GANNON, 2013). More recently, other methods such as chemical targeted ablation of 

β-cells (either with streptozotocin or alloxan), diet-induced diabetes and genetically 

engineered animal models became preferential strategies. Chemically induced 

maternal diabetes is described in multiple species including rats, mice, rabbits, sheep 

and pigs (JAWERBAUM & WHITE, 2010; PASEK & GANNON, 2013). This 

strategy has been extensively used with dose administrations either before pregnancy 

or right after mating in rodents as to evaluate congenital malformations potentially 

induced by hyperglycemia (SIMAN et al., 2000; HIGA et al., 2007; MORGAN et al., 

2008; SUGIMURA et al., 2009). In addition, dose titration of these compounds, type 

and route of administration, animal strain and age are all variables that play a role in 

inducing either mild maternal hyperglycemia (FPG levels within 117 – 176 mg/dl) or 

severely maternal hyperglycemia (FPG levels > 200-360 mg/dl) during pregnancy 

(DAMASCENO et al., 2013). Rodent studies using chemically-induced-mild-maternal 

diabetes resulted in β-cell hyperplasia, increased pancreatic insulin content and 

elevated in vivo insulin secretion in fetuses evaluated at term (KERVRAN et al., 1978; 

BIHOREAU et al., 1986a). However, adult animals exposed to mild maternal 

hyperglycemia were glucose intolerant due to a reduced glucose-induced insulin 

secretion (BIHOREAU et al., 1986b; AERTS et al., 1988; GAUGUIER et al., 1991). 
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Distinct effects were observed in neonates from chemically-induced severe maternal 

hyperglycemia. In these animals, although β-cell mass was increased, the islets 

contained few insulin granules suggesting insulin secretion exhaustion (AERTS et al., 

1990) In adulthood, β-cells were hyperactive and secreted more insulin however, 

insulin sensitivity was reduced (AERTS et al., 1990). In a study of chemically-induced 

maternal diabetes in pigs, hyperglycemia in the late phase of pregnancy impacted the 

energy status of the offspring. Piglets born to diabetic sows showed increased liver 

weight together with increased liver protein content as well as higher glycogen and 

lipid content. No differences were reported for litter size and birth weights of the 

piglets (EZEKWE et al., 1984). Chemical induction of maternal diabetes has been 

widely used, particularly in mice, and these experiments reflected important proof of 

principle studies in which impaired maternal glucose metabolism may be transmitted 

to the offspring by exposure to hyperglycemia in utero. Nevertheless, it is a very 

artificial method in which the natural etiology of the disease is omitted and side effects 

with cytotoxicity in other organs cannot be excluded (LENZEN, 2008).  

Genetic engineering of important genes involved in glucose metabolism is a strategy 

that has generated a great number of diabetic animal models (type 1 and 2), particularly 

in rodents. However, only a small number of studies used this strategy in the context 

of maternal diabetes and until present, all these studies were performed in rodents. 

Genetically engineered strains like the non-obese diabetic (NOD) mice (KOLB, 1987) 

and Akita mouse (YOSHIOKA et al., 1997) are examples of type 1-like diabetes 

models, hence being used to investigate consequences of PCDM in the offspring. 

Wild-type embryos transferred into diabetic NOD mice show an increased rate of 

congenital embryo malformations and oocytes of diabetic NOD mice show a higher 

number of chromosomal abnormalities (OTANI et al., 1991). Macrosomia and 

increased insulin content have been reported in the offspring of NOD mice (FORMBY 

et al., 1987). Wild-type offspring born to Akita mice show metabolic alterations 

including reduced glucose tolerance, decreased body weight (BW) and bone mineral 

density, and those alterations are more pronounced in male offspring (GRASEMANN 

et al., 2012). Other mouse models were generated by targeting genes which play 

important roles in β-cell expansion during pregnancy. Those include the global 

heterozygous prolactin receptor deficient mice (Prlr+/-) (HUANG et al., 2009), the 

conditional knockout c-Met in the pancreas (PancMet KO) (DEMIRCI et al., 2012), 

the global conditional serotonin receptor knockout (Htr2b-/-) mice (KIM et al., 2010), 
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the conditionally overexpressed menin in β-cells (βMen1) (KARNIK et al., 2007) and 

the depleted Forkhead box D3 (FOXD3) transcriptional factor (Foxd3fl/-) mice 

(PLANK et al., 2011). These animals maintain normal glucose levels before pregnancy 

and β-cell mass is preserved (with exception for the Prlr+/- and Foxd3fl/- mice in which 

β-cell mass deterioration occurs already before pregnancy). With progression of 

pregnancy, β-cell expansion as a compensatory mechanism is impaired, so the animals 

render diabetic during pregnancy. Although these models have contributed to a better 

understanding of the role of specific factors and signaling pathways in β-cell expansion 

in murine pregnancy, most have not explored consequences of maternal diabetes in 

offspring. A recent study using a mouse model of maternal insulin resistance that 

develops transient hyperglycemia during pregnancy due to a liver-specific knockout 

of the insulin-receptor (LIRKO mouse model), showed metabolic alterations in the 

wild-type offspring of diabetic mothers during post-natal life. Those included low birth 

weight followed by rapid weight gain. Plasma concentrations of glucose and insulin 

were increased. In addition, the offspring developed alterations in β-cell mass and 

increased fat deposition as shown by an increase in adipocyte size (KAHRAMAN et 

al., 2014).  

Finally, nutrition manipulation can be used to alter maternal metabolism during 

pregnancy. In humans, obesity is a well described risk factor of type 2 diabetes and 

GDM (DABELEA & CRUME, 2011). In the context of maternal diabetes, nutrition 

manipulation has been extensively used in rodent models, and to a smaller extent in 

large animal models, to describe the impact of environmental factors on metabolic 

changes in the offspring and the development of type 2 diabetes later in life 

(WILLIAMS et al., 2014). In mice, high fat diet (HFD) has been shown to impair 

maternal food intake, body composition, glucose and lipid metabolism, leptin 

concentrations and placental nutrient transport (WILLIAMS et al., 2014). In the 

offspring, HFD leads to hypertension, insulin resistance, dyslipidemia and hepatic 

steatosis and even the “transmission” to type 2 diabetes in later offspring generations 

as well as behavioral and mental changes (WILLIAMS et al., 2014). Dietary 

interventions using HFD have also been used in large animal models. HFD before and 

throughout pregnancy in ewes induced maternal insulin resistance and increased 

plasma glucose levels at mid gestation (FORD et al., 2009). Offspring from these 

pregnancies were evaluated at fetal stage (75 days of gestation) and exhibited 

increased pancreas weight and β-cell mass with increased β-cell proliferation (FORD 
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et al., 2009). Another study with diet-induced obesity in sheep reported early placental 

inflammation with changes in fetal lipid metabolism like increased circulating fatty 

acids, triglycerides and cholesterol (ZHU et al., 2010). Due to their value in the food 

chain, dietary studies were performed in sows during pregnancy as to improve piglet 

birth performance and to optimize the natural variance in birth weights in piglets 

within the same litter (ANDERSON et al., 1971; AVERETTE et al., 1999). A study 

using diet supplementation with different oil types during gestation in sows 

demonstrated larger birth weights, when the diet was supplemented with palm oil or 

olive oil (LAWS et al., 2007). Using the same oil supplementation principle, Corson 

et al. showed that maternal glucose tolerance is decreased upon HFD-feeding during 

gestation, however these effects were seen only in the group feed in the first half of 

gestation (CORSON et al., 2008b). Reduced glucose tolerance as a consequence of 

HFD-feeding was also observed by others (VAN DER PEET-SCHWERING et al., 

2004). 

In summary, different approaches in different animal species have been used to induce 

diabetes prior to/during pregnancy proving that experimental animals are valid and 

valuable tools to understand the mechanisms by which maternal hyperglycemia 

modulates fetal metabolism and perpetuates metabolic dysfunctions in the offspring. 

Nevertheless, the majority of the understanding comes from rodent studies, which 

cannot be directly translated into human patients. The pig is an excellent and well-

established model in diabetes research, as several aspects of the human glucose 

metabolism, including physiological alterations in pregnancy are depicted in pigs 

(GEORGE et al., 1978; PERE, 1995; FOWDEN et al., 1997; PÈRE & ETIENNE, 

2007; WOLF et al., 2014). In addition, for evaluating the impact of maternal 

hyperglycemia at a phenotypical and molecular level in the offspring, pigs become a 

much more suitable model compared to mice. Not only the fetal developmental stages 

in pigs resemble more the developmental stages in humans, the last fetal 

developmental stage (which accounts for period of great maternal metabolic changes 

impacting the fetus), occurs in utero in both pigs and humans, whereas this phase 

occurs postnatally in mice (LITTEN-BROWN et al., 2010).   

 

The aim of present study was to first generate and characterize a novel genetically 

engineered porcine model of mild diabetes, characterize glucose control and insulin 
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sensitivity of this model during the pregnant state and evaluate effects of in utero 

exposure to mild maternal hyperglycemia on the offspring.  
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III. ANIMALS, MATERIAL AND METHODS  

1. Animals 

Animals included in this study were hemizygous transgenic pigs expressing the mutant 

insulin C93S as well as age-matched non-transgenic controls on a German Landrace-

Swabian Hall background. In most cases littermate controls were used. During the 

whole study pigs were housed under controlled conditions in planar pens covered with 

straw, had ad libitum access to water and were fed a commercial diet Table 1. All 

animal experiments were approved by the responsible animal welfare authority 

(Regierung von Oberbayern, AZ 55.2-1-54-2531-26-06 and 55.2-1-54-2532-68-11). 

Table 1: Diet composition 

 Piglets up to 25 kg Juvenile and adult pigs 

MJ ME/kg 14.6 13.8 

Crude protein % 21.7 21.5 

Crude fat % 3.2 3.3 

Crude ash % 6.3 6.6 

Crude fiber % 5.6 7.4 

Calcium % 9.2 8.0 

Phosphorus % 5.8 5.4 

Sodium % 2.4 1.8 

Magnesium % 3.1 2.4 

ME: metabolized energy 

2. Materials  

 Chemicals 

Acetic Acid (glacial) Roth, Karlsruhe 

Agarose UltraPureTM Invitrogen, Karlsruhe 

Braunol® B. Braun, Melsungen 

Bromophenol Blue Roth, Karlsruhe  

1.4-Dithiothreitol (DTT) Biomol GmbH, Hamburg 

EDTA (Ethylenediaminetetraacetic acid) Roth, Karlsruhe and VWR, 

Darmstadt 
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Ethanol Roth, Karlsruhe 

Ethidium bromide (1mg/ dL) Merck, Darmstadt 

Glycerin (Glycerol) Roth, Karlsruhe 

Glucosteril® 50% Glucose solution  Fresenius Kabi, Standort 

Neufahrn 

H2O2 (Hydrogen peroxide) Roth, Karlsruhe 

HCl (Hydrochloric acid) VWR, Darmstadt 

Histokitt Glaswarenfabrik Karl Hecht 

MgCl2 (Magnesium chloride) Fluka Chemie, Schweiz 

Mayer‘s Hemalum solution Merck, Darmstadt 

Na3C6H5O7 (Sodium citrate) Merck, Darmstadt 

NaCl (Sodium chloride) Merck, Darmstadt 

Na2HPO4 (Di-sodiumhydrogenphosphate-2-

hydrate) 

Merck, Darmstadt 

NaOH  (Sodium hydroxide) Roth, Karlsruhe and VWR, 

Darmstadt 

Roti-Histofix 4 % Roth, Karlsruhe 

Sodium chloride solution (0.9%) B. Braun, Melsungen 

Tris (Tris-(hydroxymethyl) aminomethane) Roth, Karlsruhe 

Xylene   Applichem GmbH, Darmstadt 

 Consumables 

Adhesive tape  Tesa SE, Hamburg 

Adhesive tissue tape Henry Schein® Vet GmbH, 

Hamburg 

Aluminium spray CP – Pharma, Burgdorf 

Careflow® 3 Fr, 200 mm   Argon Medical Devices, USA 

Catheter stopper with injection cap Fresenius Kabi, Standort 

Neufahrn 

CBAS® Heparin Coated Clear PU Cath 7Fr Access Technologies, USA 

Combitips® plus (2.5 mL, 10 mL) Eppendorf, Hamburg 

Cover slips (24x40 mm) VWR International GmbH, 

Darmstadt 

Discofix® multi-way cock system B. Braun, Melsungen 
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Discofix® 3-way stop-cock with connection 

line (10 cm) 

B. Braun, Melsungen 

Disposable syringes (2, 5, 10, 20 mL) Henry Schein® Vet GmbH, 

Hamburg 

Gauze pads (7.5 cm x 7.5 cm) Hartmann, Austria 

Neolus® hypodermic needles (30 G) Terumo, Eschborn 

Falcon® centrifuge tubes (15, 50 mL) Becton Dickinson, Heidelberg 

Fixomull stretch BSN medical GmbH, Hamburg  

FreeStyle Precision® glucose stripes                      Abbott, USA 

Hypodermic needles (18 G, 20 G) Henry Schein® Vet GmbH, 

Hamburg 

Monovette® blood collection system  

(Plasma, EDTA, 9 mL) 

Sarstedt, Nümbrecht  

 

Nylon membrane (Nylon-N+)  GE Healthcare, UK 

OP-Cover (60 x 90 cm) A. Albrecht, Aulendorf 

Original Perfusor® Line (50cm) B. Braun, Melsungen 

Original Perfusor® syringes (50 mL) B. Braun, Melsungen 

Parafilm® M American Can Company, USA 

PCR reaction tubes (0.2 mL)  Braun, Wertheim 

Pipette tips with filter Axygen Inc., USA 

SafeGrip® latex gloves SLG, Munich 

Scalpel blade sterile No.36  Medicon eG, Tuttlingen 

Sempermed® supreme latex OP gloves Sempermed, USA 

Sephadex G-50 columns GE Healthcare limited, Munich 

Skin adhesive spray  A. Albrecht, Aulendorf 

Star Frost® microscope slides Engelbrecht, Edermünde 

3-way-stopcock Variostop® Clinico GmbH, Bad Hersfeld 

Surgibond tissue glue (SMI) SMI AG, Belgium 

Surgicryl® suture material  

(USP 2-0 without needle) 

SMI AG, Belgium 

Surgicryl suture  

(USP 2/0 with needle DS30) 

SMI AG, Belgium 

Surgicryl suture  

(USP 2/0 with needle DS36) 

SMI AG, Belgium 
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Test tube peg wrack Polylab, India 

Uni-Link embedding cassettes Engelbrecht, Edermünde 

 Devices 

Agarose gel electrophoresis chamber OWL Inc., USA 

ART-Micra D-8 tissue-homogenizer ART, Müllheim 

AU 480 analyzer Beckman & Coulter, USA 

Benchtop 96 tube working rack Stratagene, USA 

BX41 light microscope Olympus, Hamburg 

DP72 video camera Olympus, Hamburg 

FreeStyle Precision® neo glucometer Abbott, USA 

Gel documentation system Bio Rad, Munich 

Genome Analyzer IIx, Illumina® Illumina®, USA 

HemoCue® Glucose 201+ Glucometer Radiometer GmbH, Willich 

Hybrid mini 38 hybridisation oven H. Saur, Reutlingen 

HM 315 microtome Microm, Walldorf 

Injectomat® MC Agilia, infusion pumps Fresenius Kabi, Bad Homburg 

Incubator 37 °C Wagner + Munz, Munich 

Incubator 60 °C Memmert, Schwabach 

inoLab® pH meter 7110 WTW, Weilheim 

LB 2111 γ-counter Berthold, Bad Wildbad 

Object micrometer Zeiss, Oberkochen 

Mastercycler® gradient Eppendorf, Hamburg 

Microwave DAEWOO, Korea 

Multichannel pipette mLine® (300 µl)                     Sartorius, USA 

Multipipette® plus Eppendorf, Hamburg 

NanoDrop ND-1000 spectrophotometer  NanoDrop Technologies, USA 

Pipettes (1000 µl, 200 µl, 100 µl, 10 µl, 2 µl) Gilson Inc., USA 

Power Pac 300 gel electrophoresis unit Bio Rad, Munich 

RH Basic heating plate with magnetic stirrer IKA, Staufen 

Shandon Citadel tissue processor 1000 Thermo Fisher Scientific, 

Schwerte 

Select vortexer Select BioProducts, USA 

Sony video graphic printer UP-895CE Sony, USA 



III Animals, Material and Methods 32 

TBS 88 tissue embedding system Medite, Burgdorf 

Tecan infinite M200Pro ELISA reader Tecan, Swizerland 

Thermomixer 5436 Eppendorf, Hamburg 

WB 6 water bath Preiss-Daimler Group, Puschwitz 

X-ray cassette Rego, Augsburg 

 

Centrifuges:  

Eppendorf Centrifuge 5430 R Eppendorf, Hamburg 

Eppendorf Centrifuge 5810 R Eppendorf, Hamburg 

Heraeus Sepatech Megafuge 1.0R Heraeus, Munich 

Rotanta 460R  Hettich, Tuttlingen 

 

Scales:  

Analytic balance Sartorius, Göttingen 

Analytic balance MS 100 Schippers GmbH, Kerken 

Kern EOB 15K5, animal balance Kern und Sohn GmbH, Barlingen-

Frommern 

 Antibodies and drugs  

 Antibodies 

Polyclonal guinea pig anti-porcine insulin Dako Cytomation, Hamburg 

AP-conjugated goat anti-guinea pig IgG Southern Biotech, USA 

 Drugs 

Altrenogest (Regumate®) Serumwerke Bernburg, Bernburg 

Azaperon (Stresnil®) Jansen Pharmaceutica, Belgium 

Cefquinom (Cobactan® 2.5%) Intervet, Unterschleißheim 

Choriongonadotropine (hCG) (Ovogest®) Intervet, Unterschleißheim 

Cloprostenol (Estrumate-Schwein®) Intervet, Unterschleißheim 

Embutramid, Mebezoniumiodid, 

Tetracainhydrochlorid (T61®) 

Intervet, Unterschleißheim 

Insulin (Insuman® rapid) Sanofi-Aventis Deutschland 

GmbH, Frankfurt 

Isobar® Isoflurane Intervet, Unterschleißheim 
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Ketamine hydrochloride (Ursotamin®) Serumwerke Bernburg, Bernburg 

Leukase® N Kegel Dermapharm AG 

Meloxicam (Metacam®) Boehringer Ingelheim, Ingelheim 

Pregnant Mare Serum Gonadotropin (PMSG) 

(Intergonan®) 

Intervet, Unterschleißheim 

TaurolockTM Hep 500, Catheter lock solution TauroPharm GmbH, Winsen 

Xylazine 2 % WDT, Garbsen 

 Buffers and solutions 

DNA loading buffer (10×): 

10 % glycerol in distilled water 

1 spatula tip of Bromophenol Blue 

0.5 M NaOH until color turns blue 

Aliquoted and stored at 4 °C 

 

dNTP-mix: 

2 mM dATP, dCTP, dGTP, dTTP 

Mixed in distilled water 

Aliquoted and stored at -20 °C 

 

Southern blot church buffer: 

1% BSA 

1 mM EDTA, pH 8.0 

500 mM sodium-phosphate buffer pH 7.2 

7% SDS 

 

Southern blot high stringency buffer: 

1 mM EDTA, pH 8.0 

40 mM sodium-phosphate buffer pH 7.2 

1% SDS 

 

Southern blot low stringency buffer: 

0.5% BSA 

1 mM EDTA 

40 mM sodium-phosphate buffer pH 7.2 
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5% SDS 

Southern blot neutralisation solution: 

0.5 M Tris 

1.5 M NaCl 

pH 7.5 

 

Southern blot strand break solution: 

0.5 M NaOH 

1.5 M NaCl 

 

Southern blot 20x SSC: 

0.3 M Na-Citrate 

3 M NaCl 

 

TAE buffer (50×): 

242 g 2 M Tris 

100 mL 0.5 M EDTA (pH 8.0) 

57 mL glacial acetic acid 

1000 mL distilled water 

Filtrated and autoclaved for storage 

Before usage diluted to single concentration 

 

TBS buffer: 

90 g NaCl 

60.5 g Tris 

1000 mL distilled water 

pH adjusted to 7.6, autoclaved and diluted to single concentration before use 

 

100 mM Tris HCl (pH 8.5): 

12.114 g Tris 

1000 mL distilled water 

pH adjusted to 8.5, autoclaved  



III Animals, Material and Methods 35 

 Kits 

QiaexII Gel Extraction kit  Qiagen, Hilden 

Porcine C-peptide ELISA kit                                     Mercodia, Sweden 

NexttecTM Genomic DNA Isolation Kit Nexttec GmbH, Leverkusen 

Porcine Insulin RIA Kit Millipore, USA 

RNeasy® Mini total RNA isolation Kit  Qiagen, Hilden 

Vector® Red Substrate Kit (AP) Biozol, Eching 

Wizard genomic DNA purification Kit®  Promega, USA 

 Other reagents  

BamHI restriction enzyme Fermentas, St. Leon Roth 

Bovine serum albumin (BSA)  Roth, Karlsruhe 

DNA labeling α-[32P]-dCTP PerkinElmer, Netherlands 

DNase I, RNase-free (1 U/µL) Thermo Scientific, Schwerten 

dNTPs (dATP, dCTP, dGTP, dATP) MBI Fermentas, St. Leon Roth 

Gene RulerTM (1 kb DNA ladder) MBI Fermentas, St. Leon Roth 

Goat serum MP Biomedicals, France 

Klenow fragment exo- (5 U/µL) Fermentas, St. Leon Roth 

Lambda DNA EcoRI + HindIII Fermentas, St. Leon Roth 

10 x PCR buffer Qiagen GmbH, Hilden 

Pig serum MP Biomedicals, France 

SuperScript® III Reverse Transcriptase (200 

U/µL) 

Thermo Scientific, Schwerten 

Taq DNA Polymerase (5 U/mL) Agrobiogen, Hilgertshausen 

 Software 

Graph Pad Prism® version 5.02 GraphPad Software Inc., USA 

MagellanTM data analysis version 7.2 Tecan, Swizerland 

Olympus VisiomorphTM image analysis Visiopharm, Denmark 

LBIS immunoassay software version 3.3.0.0 Berthold Technologies GmbH, 

Bad Wildbad 
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3. Methods  

 Generation of INSC93S transgenic pigs  

 Expression construct, SCNT and embryo transfer 

INSC93S transgenic pigs were generated by additive gene transfer into somatic cells 

followed by somatic cell nuclear transfer (SCNT) and embryo transfer. The expression 

vector designed by Dr. Nikolai Klymiuk and Dr. Christina Landbrecht-Schessl (Chair 

for Molecular Animal Breeding and Biotechnology, LMU Munich) consists of three 

major fragments: a 1.3-kb fragment of the porcine insulin promoter, a 1.0-kb fragment 

of the porcine full-length insulin gene sequence including the three exons and a 

neomycin resistance cassette (Figure 1). In exon 3 of the insulin gene, a TA point 

mutation at nucleotide position 336 was inserted, leading to an amino acid exchange 

from cysteine to serine at position 93 in the amino acid sequence of the insulin protein 

and subsequently a loss of an intra-insulin-A-chain disulfide bond. The porcine insulin 

(INS) promoter is active exclusively in the β-cells of the pancreas (GRZECH et al., 

2010). The expression vector was transfected into male porcine fetal fibroblasts of 

both the German Landrace and the Swabian-Hall pig breed. Selection of positive cell 

clones was performed in a G418 containing culture medium. Pools of stable 

transfected cell clones were used for SCNT using in vitro maturated oocytes as 

described in (KUROME et al., 2015). Briefly, a single donor cell was inserted into the 

perivitelline space of an enucleated oocyte, followed by fusion with electrical pulses. 

After culturing (1 to 2 days), the cloned embryos were transferred laparoscopically 

into the oviduct of estrus-synchronized surrogate gilts. In total, 503 cloned embryos 

were transferred into five recipients, of which two went to full term. Cell culture 

experiments were executed by Dr. Annegret Wünsch, SCNT and embryo transfer 

experiments were performed by Dr. Mayuko Kurome and Dr. Barbara Kessler (Chair 

for Molecular Animal Breeding and Biotechnology, LMU Munich).  
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 Identification of INSC93S transgenic animals  

Both polymerase chain reaction (PCR) and Southern blot analyses were used to 

identify INSC93S transgenic animals. In addition, Southern blot analysis allowed to 

determine the number of integration sites of the INSC93S transgene in the F0-generation 

and possible segregation events in the F1-generation. 

 Polymerase chain reaction (PCR) 

3.2.1.1. Genomic DNA isolation from tails  

Tail punches were obtained and stored at -20 °C. Genomic DNA was isolated using 

the “nexttecTM Genomic DNA Isolation Kit from Tissue and Cells” (nexttec GmbH, 

Leverkusen) according to the manufacturer’s instructions. Briefly, samples were cut 

in small pieces of a diameter < 1 mm and were incubated with an appropriate lysis 

buffer. Samples were incubated overnight at 60°C in a thermomixer. Lysates were then 

purified using nexttecTM clean columns to elute purified DNA. 

3.2.1.2. PCR reaction 

Previous purified DNA was amplified in a PCR reaction. The following specific 

primers directed to the sequence of the neomycin resistance cassette were used to 

differentiate between transgenic and non-transgenic pigs:  

 

Figure 1: INSC93S expression construct 

The insulin gene (1.0-kb) is flanked by the porcine insulin promoter (1.3-kb) and 

the removable neomycin resistance cassette. Within the insulin gene fragment, 

boxes represent exons whereas connective lines between boxes represent introns. 

Unfilled boxes depict coding sequence regions (cds) whereas filled boxes represent 

untranslated regions (UTR) on the message RNA sequence. In the last exon the 

point mutation at nucleotide position 366 is indicated. 
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NeoP(f):   5´-CTG TGC TCG ACG TTG TCA C-3´ 

NeoS(r):   5´-GAA GAA CTC GTC AAG AAG GCG ATA G-3´ 

 

In addition, a control PCR using ß-actin (ACTB) was run in parallel with the same 

samples as loading and DNA integrity control. ACTB specific primers are listed 

below:  

 

ACTB (f):  5´-TGG ACT TCG AGC AGA GAT GG-3´ 

ACTB (r):  5´-CAC CGT GTT GGC GTA GAG G-3´ 

 

PCR components were mixed on ice to a final volume of 25 µL in 0.2 mL reaction 

tubes. Genomic DNA from wildtype (WT) pigs served as control and distilled water 

was used as a non-template control. Details for master mix ingredients and PCR 

conditions are listed in Table 2 and Table 3. 

Table 2: Master mix components per PCR reaction 

Master Mix components INSC93S  

µL 

ACTB 

µL 

10× PCR buffer 2.5 2.5 

MgCl2 (15 mM) 2.5 2.5 

dNTPs (2 mM) 5 5 

Primer (f) (10 µM) 0.4 0.5 

Primer (r)(10 µM) 0.4 0.5 

Taq Polymerase (5 U/µL) 0.2 0.2 

Aqua dest. 13 12.8 

DNA template 1 1 

Table 3: PCR reaction conditions for both INSC93S and ACTB 

Denaturation 95 °C 4 min.  

Denaturation 95 °C 30 sec.   

Annealing 62 °C 30 sec.  35x 

Elongation 72 °C 30 sec.   

Final elongation 72 °C 5 min.  

Termination 4 °C 5 min.  

3.2.1.3. Agarose gel electrophoresis 

An agarose gel electrophoresis was run to visualize the final PCR products. Therefore, 

a 2 % agarose gel was prepared by heating 1 × TAE buffer with 1 g/100 mL universal 
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agarose in the microwave. After cooling down to about 55 °C, ethidium bromide was 

added to the mixture in a concentration of 0.5 µg/mL and the gel was decanted into an 

electrophoresis chamber (OWL Inc., USA) for polymerization. 

 

Samples were mixed with 2.5 µL 10× DNA loading buffer and pipetted individually 

into the slot chambers of the gel. Six µL of Gene RulerTM 1 kb DNA molecular weight 

marker (MBI Fermentas) was included for the determination of DNA fragment sizes. 

An electric field with a voltage of 130 V was applied so that DNA samples migrate 

according to their size. After separation DNA samples were visualized under 

ultraviolet (UV) light. 

 Southern blot  

3.2.2.1. Isolation of genomic DNA from ear punches 

Tissue was obtained from ear punches and genomic DNA was isolated with the Wizard 

genomic DNA purification Kit® (Promega) according to the manufacturer’s 

instructions. Briefly, tissue pieces of 3-5 mm were lysed overnight by incubation at 

55°C in a thermomixer. After overnight digestion, stepwise purification was 

performed to remove larger non-digestible components, RNA and proteins. Purified 

samples were mixed with isopropanol for DNA precipitation. DNA was washed with 

70 % ethanol, air-dried and reconstituted with rehydration solution. Genomic DNA 

concentrations were measured using a NanoDrop ND-1000 (NanoDrop Technologies) 

spectrophotometer.  

3.2.2.2. Restriction enzyme digestion and gel electrophoresis 

Genomic DNA was digested into smaller fragments by overnight incubation at 37°C 

with the restriction enzyme BamH1 (MBI Fermentas). Fragments were loaded into a 

1 % agarose gel and separated by electrophoresis as described in 3.2.1.3. Following 

electrophoresis, the gel was treated with 0.3M hydrochloric acid for 45 min. to further 

digest larger fragments (larger than 15 kb) and subsequently incubated with a DNA 

double-strand break solution for 45 min. Thereafter, the gel was incubated with 

neutralization solution for 20 min. Finally, genomic DNA was transferred to a positive 

loaded Nylon membrane (Nylon-N+, GE Healthcare) by capillary transfer for 24 

hours. After the transfer the membrane was soaked with neutralization solution for 5 
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min. and air-dried. Transferred DNA was cross-linked to the membrane by UV-light 

irradiation at a dose of 120 J/cm2. Then the membrane was stored at room temperature. 

3.2.2.3. Radioactive labeling of the probe  

A specific probe to the neomycin resistance cassette of the INSC93S expression vector 

was generated for detection of the integrated INSC93S transgene. Probes were amplified 

by PCR using the same transgene-specific primers and protocol as described in 3.2.1.2. 

Plasmid DNA containing the INSC93S construct served as template. After 

electrophoresis, bands were removed from the gel and the amplified probe DNA was 

eluted with QiaexII Gel Extraction kit (Qiagen) according to manufacturer’s 

instructions. The DNA concentration was estimated by comparison of DNA band 

intensity to the band intensity of the known molecular weight standard Lambda DNA 

EcoRI + HindIII (MBI Fermentas) on an agarose gel. Probes were radioactively 

labeled with α-[32P]-dCTP (Perkin-Elmer, Netherlands), using a fragment of 

Polymerase I (Klenow exo-), which integrates radiolabeled nucleotides. Next, probes 

were denatured at 97 °C for 10 min. and directly placed on ice. Subsequently, single 

strand DNA probes were hybridized in a mixture with random primers (3 g/l), an 

appropriate buffer, a 0.33 M mix of dTTs, α-[32P]-dCTP (3000 Ci/mmol) and distilled 

water for 1 hour at 37 °C. Unincorporated nucleotides were removed by centrifugation 

through Sephadex G-50 columns. Finally, radioactive labeled probes were denaturized 

at 97°C for five min. a second time and stored on ice.  

3.2.2.4. Hybridization and signal detection 

Previously, blotted Hybond-N+ Nylon membranes were pre-wetted with 5 x SSC and 

pre-hybridized in 30 mL of Southern blot church buffer for one hour at 58°C in a 

hybridization oven. Previously labelled probes were diluted with Southern blot church 

buffer and were allowed to hybridize to the nylon membranes overnight at 58°C under 

permanent rotation in the hybridization oven. After hybridization washing steps were 

performed as follows: 2 x with low-stringency buffer at room temperature and 2 x with 

high-stringency buffer at 58°C. For signal detection, membranes were exposed to X-

ray films in an X-ray cassette for at least 24 hours at -80°C. X-ray films were 

developed in developing and fixing solutions according to the manufacturer’s protocol 

and subsequently analyzed.  
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 Quantification of expression levels of the endogenous and mutant 

insulin by next generation sequencing 

Expression levels of INS and INSC93S transcripts in pancreas samples from five founder 

boars and from F1 offspring of founder boars 9748 and 9776 respectively were 

quantified by next generation sequencing of RT-PCR products as described in 

(RENNER et al., 2013).  

3.2.3.1. RNA isolation from pancreas 

Total RNA was extracted from pancreatic tissue using RNeasy® Mini total RNA 

isolation Kit (Qiagen) according to the manufacturer´s instructions. Briefly, frozen 

pancreatic tissue (30-50 mg) was homogenized with recommended buffer using an 

ART-Micra D-8 tissue-homogenizer (23,500 rpm). Lysates were centrifuged (3 min., 

14,000 rpm, 4°C) and supernatants were mixed 1:1 with ethanol (70%). Total RNA 

was eluted with clean-up columns in 50 μl RNase-free water. After RNA elution, RNA 

concentration was measured using a NanoDrop ND-1000 spectrophotometer 

(NanoDrop Technologies). RNA quality was evaluated by agarose gel electrophoresis. 

3.2.3.2. DNaseI digest and reverse transcription 

Purified RNA was digested with DNaseI to eliminate possible contaminants of 

genomic DNA. Therefore, 800 ng of total RNA from each sample were incubated 

together with DNaseI (10 U/µl) at a final concentration of 1 U/µl and an appropriate 

lysis buffer for 30 min. at 37°C on a thermomixer. DNaseI was inactivated by 

incubation at 75°C for ten min. followed by cooling down on ice for several min. Ten 

µl DNaseI digested RNA were reverse transcribed using random hexamer primers and 

SuperScriptTM II Reverse Transcriptase (Invitrogen) according to the manufacturer’s 

instructions. Complementary DNA was stored at -20 °C until further processing.  

3.2.3.3. PCR  

Complementary DNA (cDNA) samples were then amplified by PCR. Table 4 and 

Table 5 indicate the used PCR reagents and PCR reaction conditions respectively.  

The following primers were used for cDNA amplification of insulin (INS):  

Insulin(f):   5´-CGGGAGGCGGAGAACCCTCA-3‘ 

Insulin (r):  5‘-CCCTCAGGGGCGGCCTAGTT-3‘ 
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Table 4 Master mix components per PCR reaction 

Master Mix components Insulin  

µL 

10× PCR buffer (Qiagen) 2 

MgCl2 (25 mM) (Qiagen) 1.25 

Q-solution (Qiagen) 4 

dNTPs (2 mM) 2 

Primer (f)(10 µM) 0.4 

Primer (r) (10 µM) 0.4 

Taq Polymerase (5 U/µL) 8.75 

Distilled water 1 

cDNA template 1 

Table 5: PCR reaction conditions for INS. 

Denaturation 95 °C 4 min  

Denaturation 95 °C 30 sec   

Annealing 62 °C 30 sec  35x 

Elongation 72 °C 45 sec   

Final elongation 72 °C 10 min  

Termination    

 

Agarose gel electrophoresis was performed as described in 3.2.1.3.  

3.2.3.4. Next generation sequencing 

Next generation sequencing was used to determine the expression level of the mutant 

insulin C93S and endogenous insulin transcripts respectively using an Illumina 

Genome Analyzer IIx (>10,000 reads per sample). Next generation sequencing 

analysis was performed by Dr. Stefan Krebs, Laboratory of Functional Genome 

Analysis, Gene Center, LMU Munich. 

 Phenotypic characterization of INSC93S transgenic pigs before 

pregnancy 

After generation and genotypic characterization, the metabolic phenotype of INSC93S 

transgenic animals was further characterized. Fasting and non-fasting plasma glucose 

levels, and glucose tolerance was investigated in five INSC93S founder boars. From 

those, founders 9776 and 9748, with the most pronounced phenotype, were chosen for 

further investigations and were bred to wild-type sows. Data of F1 offspring of founder 

9776 is presented while results of F1 offspring of founder 9748 are only mentioned in 
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the text. BW gain, (fasting) glucose concentrations, glucose tolerance and insulin 

secretion as well as total β-cell volume were evaluated. The phenotype of offspring 

from founder 9776 was followed until the F4 generation as well as during pregnancy.   

 Body weight (BW) gain and (fasting) blood glucose levels (FBG) 

BW was recorded using a standard large animal scale when animals were 57, 72, 153 

and 175 days of age.  

For determination of (non-)fasting blood glucose levels, a blood drop was taken from 

a superficial ear vein using a blood lancet. Samples were directly measured with a 

FreeStyle Precision® neo glucometer. Blood glucose was regularly evaluated in all 

founder boars from 15 to 207 days of age.  

 Metabolic tests 

To assess in vivo glucose clearance and therefore, investigate glucose tolerance and 

insulin secretion, mixed meal glucose tolerance tests (MMGTT) and intravenous 

glucose tolerance tests (IVGTT) were performed in INSC93S transgenic pigs and non-

transgenic littermates at four and seven months of age.  

3.3.2.1. Surgical implantation of marginal ear vein catheters 

Three days prior to the glucose challenge marginal ear vein catheters were placed 

under general anesthesia. This assured stress-free, frequent blood sampling in 

unrestrained animals during the tests. Anesthesia was induced by intramuscular 

injection of azaperone (2 mg / kg BW) and ketamine hydrochloride (20 mg / kg BW) 

and maintained by ketamine (20 mg / kg BW) and xylazine (0.05 mg / kg BW). Under 

anesthesia, animals were positioned in dorsal recumbence and the internal and external 

area of the ear was shaved, washed with soap and finally aseptically prepared using a 

7.5% povidon-iodide containing solution (Braunol®) and an alcohol-based disinfectant 

(Kodan®). A marginal ear vein was punctured with a cannula (Figure 2: Catheter 

placement into a marginal ear vein 

(A) Ear vein punctured with cannula, (B) Guide wire insertion, (C) Skin expansion 

with dilatator, (D) Catheter placement, (E) Blood collection and (F) Catheter suture.  

A) followed by straight insertion of a guide wire through the cannula ~ 20 cm upstream 

into the vein (Figure 2 B). Subsequently, the needle was gently removed without 

pulling the wire. A dilator was placed over the wire and was pushed forward several 

millimeters to expand the skin opening and facilitate the insertion of the catheter 1 mm 
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in diameter (Figure 2 C). The dilator was removed and the catheter (Careflow® 3 Fr, 

200 mm) was inserted over the wire into the vein (Figure 2 D). Once the catheter was 

fully inserted the guide wire was removed. To assess proper function of the catheter a 

blood sample was withdrawn using a 2 mL syringe. (Figure 2 E). An inject stopper 

was placed to lock the catheter followed by catheter flushing with 0.9% NaCl. The 

catheter was fixed to the ear with one suture and secured with adhesive tape (Figure 2 

F). Finally, the catheter was filled with TauroLock® solution containing heparin to 

preserve its patency. Catheter placement was performed by Dr. Simone Renner and 

Dr. Istvan Novak (Chair for Molecular Animal Breeding and Biotechnology, LMU 

Munich).  

 

 

 

3.3.2.2. Mixed meal oral glucose tolerance test (MMGTT) 

Six days prior to the metabolic tests animals were housed in individual pens with straw 

bedding and free access to water. During the adaption period animals were normally 

fed with standard pig food according to age and BW. One day prior to the MMGTT 

BWs were recorded using a standard large animal scale. Animals were fasted for 18 

hours prior to the MMGTT. A mixed meal-glucose mixture was prepared by mixing 

50% glucose (2 g/kg BW) with commercial pig food (90 g for 4-month-old and 400 g 

for 7-month-old animals). Extension tubes (50 cm) were connected to the catheters 

Figure 2: Catheter placement into a marginal ear vein 

(A) Ear vein punctured with cannula, (B) Guide wire insertion, (C) Skin expansion 

with dilatator, (D) Catheter placement, (E) Blood collection and (F) Catheter suture. 
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and secured on the back of the pigs with one stripe of tape. The mixed meal was given 

at the time point zero and the time until the meal was fully eaten was recorded. Blood 

samples were taken at -10, 0, 15, 30, 45, 60, 90 and 120 min. relative to meal 

administration and processed as described in 3.3.3. Also, pig behavior was recorded 

throughout the test.  

3.3.2.3. Intravenous glucose tolerance test (IVGTT) 

For IVGTTs the same standard housing conditions were applied as previously 

described in 3.3.2.2. Animals were fasted for 18 hours prior to the test. At time point 

0, a glucose bolus (0.5 g/kg BW) was injected into the ear vein catheter within the 

minimum time possible and the injection duration was recorded. Immediately 

afterwards, the catheter was flushed with 20 mL of 0.9% isotonic NaCl solution. Blood 

samples were collected at time points -10, 0, 1, 3, 5, 7, 10, 15, 20, 30, 40, 50, 60 and 

90 min. relative to the glucose load. Samples were processed as described in 3.3.3. 

Throughout the test the pig behavior was recorded.  

 Sample processing  

Immediately after collection in nine mL plasma EDTA collection tubes, samples were 

placed on ice, centrifuged (1,500 x g for 15 min. at 4°C) and stored at -80°C for further 

analyses. 

3.3.3.1. Determination of plasma glucose concentrations by spectrophotometry 

Glucose was analyzed with an automated analyzer (Beckman & Coulter AU480 

Analyzer). Optical density was measured with a photometric lamp. Determination of 

plasma glucose was performed by Dr. Birgit Rathkolb, Helmholtz Zentrum Muenchen.  

3.3.3.2. Determinations of plasma insulin concentration by radioimmunoassay 

(RIA)  

Insulin concentrations were assessed using a porcine insulin RIA kit (Millipore) 

according to the manufacturer’s instructions. In this assay a fixed concentration of 125I-

labeled insulin is mixed with an unknown concentration of unlabeled insulin present 

in the porcine plasma samples. Both substrates compete for a constant but limited 

concentration of binding sites of anti-insulin antibodies. Subsequently, the antibody-

bound tracer is separated from the unbound radioactive tracer by precipitation. The 

antibody-bound fraction is measured in a γ-counter. Insulin concentrations of unknown 

samples were calculated with LBIS immunoassay software (version 3.3.0.0). All 
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samples were measured in duplicates and only values with a coefficient of variance 

(CV) less than 10% were accepted. The detection limit of this assay is 1.611 µU/mL.  

 Quantitative-stereological analyses of the pancreas    

Quantitative stereological analyses of the pancreas were performed to investigate 

differences in volume density and total volume of β-cell between INSC93S transgenic 

pigs and non-transgenic littermate controls.  

3.3.4.1. Pancreas preparation and random systematic sampling  

Pancreata from F1 offspring of founder 9776 were collected at an age of 13 months 

(388.57 19.5 days). Following euthanasia, the entire pancreas was explanted. Then 

connective tissue was removed and the pancreas was weighed. The pancreatic ring was 

cut between the lobus pancreatis sinister and the connective lobe and brought into a 

straight position. For subsampling the length of the pancreas was determined and tissue 

slices (thickness 0.5 cm) were cut out every 2.5 cm over the whole length of the organ, 

tilted to the left side and prefixed in 4% neutral buffered formalin for 8 hours. Then 

tissue samples were selected according to a random systematic sampling procedure as 

described in (ALBL et al., 2016). Briefly, tissue slices were covered by a 1 cm2 point-

counting grid. All points of the counting grid hitting pancreatic tissue were marked, 

counted and their sum was divided by 20 and defined the quotient Y. Then a random 

number X between one and quotient Y was chosen. Finally, tissue samples of about 1 

cm2 at position X, X+Y, X+2*Y, X+3*Y until X+20*Y were selected, placed in 

embedding cassettes and routinely processed with a tissue processor (Shandon Citadel 

tissue processor 1000). Following paraffin embedding with the TBS 88 Paraffin 

Embedding System, sections of 3 µm thickness were cut with a HM 315 microtome, 

mounted on 3-aminopropyltriethoxysilane-treated glass slides and placed in an 

incubator at 37 °C to dry until immunohistochemical staining. 

3.3.4.2. Immunohistochemical staining of insulin-positive cells 

The immunohistochemistry technique was used to stain insulin-positive cells. 

Pancreatic tissue sections were deparaffinized in xylene for 15 min. and rehydrated in 

gradually decreasing alcohol concentrations (99%, 96%, 70% alcohol and distilled 

water). The indirect alkaline phosphatase (AP) immunohistochemistry method was 

used. The individual steps of the protocol are indicated in Table 6. Finally, slides were 

dehydrated in gradually increasing alcohol concentrations (distilled water, 70%, 96%, 
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99% alcohol), cleared in xylene and mounted with cover slips using the quick-

hardening mounting medium histokitt.  

Table 6: Immunohistochemistry staining protocol for insulin 

 Protocol step Purpose Incubation 

time  

1. Hydrogen peroxide (1%) Blocking of endogenous 

peroxidase  

15 min 

2. TBS buffer Washing 10 min 

3. Goat serum 1:10 in TBS  Blocking unspecific binding 30 min 

4. Primary antibody (Polyclonal 

guinea pig anti-porcine insulin) 

1:1000 in TBS  

Primary antibody  60 min 

5. TBS buffer Washing 10 min 

6. Secondary antibody (AP-

conjugated goat anti-guinea pig 

IgG) 1:100 in TBS + 5 % porcine 

serum  

Secondary antibody 60 min 

7. TBS buffer Washing 10 min 

8. Vector® Red chromogen diluted in 

100 mM Tris HCl (pH 8.5) 

Color reaction 20 min 

9. Distilled water Washing 5 sec 

10. Mayer´s hemalum solution  Counterstaining  10 min 

11. Running tap water Washing  5 min 

3.3.4.3. Quantitative stereological analyses  

Volume density of -cells in the pancreas and total -cell volume was determined 

using the computer-assisted Olympus VisiomorphTM image analysis system with the 

NEWCast software coupled to a light microscope (Olympus, BX41) and a color video 

camera (Olympus DP72). With the 20x objective selected (total magnification 200x), 

an automated-random-image-sampling of 50 % of the total tissue area in each slide 

was performed. For each image generated, the software automatically recognized red-

stained insulin positive cells and blue-stained pancreatic tissue and attributed a 

numeric score per region identified. Thus, total -cell area A(β-cell,50%) and total area of 

pancreatic tissue A(Pan,50%) was calculated from the sum of all scores. From these areas, 
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the volume density of -cells in the pancreas (Vv(β-cell/Pan)) was determined by dividing 

the total β-cell by the total pancreas area [Vv(β-cell/Pan) = A(β-cell,50%) /A(Pan,50%)]. The total 

β-cell volume V(β-cell,Pan) was then calculated by multiplying Vv(β-cell/Pan) with the total 

pancreas volume (V (Pan)). V(Pan) is defined by the quotient of the pancreas weight and 

the specific weight of the pig pancreas (sp. W. (Pan)= 1.07 g/cm3). The specific weight 

of the pig pancreas was determined by the submersion method as previously described 

(Scherle 1970). 

 Phenotypic characterization of INSC93S transgenic sows and wild-type 

littermates during pregnancy 

Effects of the expression of the mutant insulin C93S were investigated during 

pregnancy in pregnant INSC93S transgenic sows (INSC93S-p) and pregnant wild-type 

sows (wt-p) and these animals were named ‘study group’ in the following chapters. 

As a control group for physiological adaptations during pregnancy in wt sows non-

pregnant wt sows (wt-np) were included.  

 Reproduction management of sows 

3.4.1.1. Estrus synchronization and artificial insemination 

Wild-type (n=9) and INSC93S transgenic sows (n=3) aged 9 ± 0.84 months were estrus 

synchronized by a 16-day once daily oral application of Altrenogest (Regumate®, 20 

mg/animal per day). Ovulation was induced 48 hours after the last Regumate® 

administration by a single intramuscular injection of Pregnant Mare Serum 

Gonadotropin (Intergonan®; 750 I.U. per animal) followed by a single intramuscular 

injection of Choriongonadotropin (Ovogest®, 750 I.U. per animal) 76 hours later. 

Twenty-four and 48 hours after Ovogest® injection, sows were artificially inseminated 

with semen from the same wt boar. Pregnancy was confirmed by ultrasonography 21 

days after insemination. Sows were group-housed until 107 of pregnancy.    

3.4.1.2. Birth induction  

At day 107 of pregnancy sows were placed in individual maternity pens for adaption. 

On day 112 of pregnancy birth was induced by a single intramuscular injection of 

cloprostenol (Estrumate®, 0.175 mg per animal). Farrowing took place between 24 to 

36 hours after birth induction.  
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 Fasting blood glucose levels throughout gestation 

To assess effects of pregnancy on fasting glucose homeostasis, blood glucose levels 

were measured between gestational weeks three and sixteen in regular intervals. Four 

wt-p and three INSC93S-p sows as well as four wt-np and three INSC93S-np sows were 

included in the measurements. Following an 18-hour fasting period blood was 

collected and blood glucose measured as described in 3.3.3.1 

 Glucose clamps 

Two types of glucose clamps, the hyperinsulinemic-euglycemic clamp (HIC) and the 

hyperglycemic clamp (HGC), were performed during pregnancy. Hence in vivo insulin 

sensitivity and β-cell function were characterized. Sows included in the HIC and HGC 

were 13 ± 0.15 months of age. The HIC and HGC were performed at gestational week 

80 ± 2.30 gestational week 86 ± 2.82 respectively. 

3.4.3.1. Surgical implantation of arterial and central venous catheters  

At gestational day 71 ± 2.5 catheters were inserted into the carotic artery and external 

jugular vein under general anesthesia.  

Anesthesia was induced by intramuscular injection of azaperone (2 mg / kg BW) and 

ketamine hydrochloride (20 mg / kg BW) and maintained by inhalation of 1% 

isoflurane. Peri-surgical analgesia was provided by an intravenous injection of 

Metamizol (50 mg per kg BW). Under anesthesia, animals were positioned in dorsal 

recumbence and the jugular groove was shaved, washed with soap and finally 

aseptically prepared using a 7.5% povidon-iodide containing solution (Braunol®) and 

an alcohol-based disinfectant (Kodan®). A skin incision of about five centimeters 

length was made in the sulcus jugularis. The carotic artery and the external jugular 

vein were exposed, surrounding connective tissue was removed and two fixation 

sutures were placed proximally and distally around the artery and vein respectively. 

Following arteriotomy/venotomy a CBAS® Heparin Coated catheter was inserted 15 

cm into the artery and vein respectively. A proximal and distal ligature was applied to 

inhibit blood reflux and hold catheters in place. Subsequently, the operation wound 

was sutured in two layers and Leukase® N Kegel (Dermapharm AG) were placed 

between the tissue layers to provide local analgesia. For external fixation the catheters 

were tunneled separately through the skin up to the back of the neck using a tunneling 

instrument and were fixed with single-sutures to the skin, covered with gauze and 

secured with tape. Post-surgical analgesia was provided by intravenous injection of 
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Metamizol (50 mg/kg BW) for two days and cefquinom 2.5% was administered intra-

muscularly once daily for three days (2 mL per 25 kg BW) to prevent infections of the 

surgical site. Both catheters were flushed once daily with 50 IU heparin/mL 0.9% 

isotonic sodium chloride solution. Glucose clamps were performed following a 

recovery period of one week. Catheter placement was performed by Dr. Simone 

Renner (Chair for Molecular Animal Breeding and Biotechnology, LMU Munich). 

3.4.3.2. Hyperinsulinemic-euglycemic clamp (HIC) 

HICs were performed to directly assess insulin sensitivity in vivo and to uncover 

insulin resistant states (DEFRONZO et al., 1979). During HIC, insulin is infused at a 

constant rate while variable rates of glucose are infused in parallel in order to maintain 

euglycemia. Once steady state conditions are achieved, the glucose infusion rate is a 

direct measure of glucose uptake by insulin-sensitive peripheral tissues and therefore 

a direct measure of whole body insulin sensitivity. Prior to the HIC, sows were fasted 

overnight. At the day of the HIC sows were placed in individual and space-restricted 

pens to avoid free movement. Plasma insulin concentration was raised by insulin 

infusion (Insuman® rapid) at a rate of 1 mU/kg BW/min into the jugular vein. Blood 

glucose was clamped at a level of 75 mg/dl. This euglycemic glucose level was 

maintained by variable glucose infusion rates using a 40% glucose solution. For 

determination of the glucose infusion rate blood glucose concentration was measured 

from arterial blood every five min. using a FreeStyle Precision® neo Glucometer 

(Abbott) until the end of test. Total clamp duration was 180 min. and steady-state was 

considered to be reached two hours following the start of the insulin infusion. During 

steady-state blood samples were collected in nine mL plasma EDTA collection tubes 

every ten min., i.e.at 130, 140, 150, 160, 170 and 180 min. relative to the start of the 

insulin infusion for further analyses. The glucose infusion rate (GIR) a measurement 

of whole body insulin sensitivity was expressed as mg of infused glucose per kg BW 

per minute. Blood samples were processed as described in 3.3.3. Plasma glucose and 

insulin levels were measured as described in 3.3.3.1and 3.3.3.2.  

3.4.3.3. Hyperglycemic clamp (HGC)  

HGCs were performed to evaluate β-cell function (DEFRONZO et al., 1979). During 

the HGC plasma glucose concentration was acutely raised to a certain hyperglycemic 

level by administration of a glucose bolus followed by a variable glucose infusion rate. 

Sows were placed in individual and space restricted pens following an 18-hour 
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overnight fasting period. Plasma glucose concentration was raised to 300 mg/dl by a 

glucose bolus followed by variable glucose infusion. To adjust glucose infusion rate 

blood glucose concentration was measured every five min. until the end of the assay 

at 90 min., using the HemoCue® Glucose 201+ Glucometer (Radiometer GmbH). 

Blood samples were collected in nine mL plasma EDTA collection tubes every ten 

min. throughout the entire test period. Fifty min. after the start of the glucose infusion 

an arginine bolus (5 g per animal) was injected into the jugular vein to determine 

maximal insulin secretion capacity. Following collection blood samples were 

processed as described in 3.3.3. Plasma glucose and insulin levels were measured as 

described in 3.3.3.1and 3.3.3.2. 

 Mixed-meal oral glucose tolerance test (MMGTT) 

MMGTTs during pregnancy were performed in three wt-np, nine wt-p and three 

INSC93S-p sows at gestational day 92 ± 3.61. The procedure was performed as 

previously described in 3.3.2.2. and samples were processed as described in 3.3.3. 

Plasma glucose and insulin levels were measured as described in 3.3.3.1and 3.3.3.2. 

 Phenotypic characterization of neonatal piglets  

The effects of chronic exposure to mild hyperglycemia during gestation were 

investigated in neonatal wt piglets born to wt and INSC93S tg sows. In the following 

chapters wt piglets born to INSC93S tg sows are referred to as wt/tg and wt piglets born 

to wt sows are referred to as wt/wt respectively.  

 Glucose challenge tests in newborn piglets  

3.5.1.1. Oral glucose tolerance test (OGTT) 

OGTT were performed in neonatal piglets (wt/wt: n=18, and wt/tg: n=13) born to three 

tg and two littermate wt sows. The principle of an OGTT is the same as of an MMGTT 

with the exception that during an OGTT solely a glucose bolus is administrated 

through a nasogastric tube. Therefore, this procedure is suitable for suckling piglets 

which cannot yet digest a meal. Piglets were separated from the sows immediately 

after birth to avoid first colostrum uptake. Subsequently, animals were weighed. 

Following a recovery period of 15-30 min. after birth a bolus of 50 % glucose solution 

(2 g/kg body weight) was administrated via a nasogastric tube. Blood glucose 

concentrations were measured at time points 0, 15, 30, 45, 60, 90 and 120 min. relative 

to the glucose load from blood drops taken from a superficial ear vein with a FreeStyle 
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Precision® neo Glucometer. In addition, one mL blood samples were collected at time 

points 0, 30, 60 and 120 min. in nine mL plasma EDTA collection tubes from the 

jugular vein and processed as described in 3.3.3. Plasma glucose and insulin levels 

were measured as described in 3.3.3.1and 3.3.3.2. 

3.5.1.2. Assessment of plasma metabolites by spectrophotometry.  

EDTA-plasma samples collected during the OGTT (time point 0 and 120 min. relative 

to the glucose load) were assessed for different clinical chemical parameters (Table 7) 

of six wt/tg and six wt/wt piglets that were randomly selected from all five sows (two 

wt/tg piglets from each of the three INSC93S transgenic sows and three wt piglets from 

each of the two wt sows). Analyses were performed by spectrophotometry (Beckman 

& Coulter AU480 Analyzer) as previously described in 3.3.3.1  

Table 7:  Clinical chemical parameters 

 Carbohydrate metabolism Glucose 

Lactate 

LDH 

 Lipid metabolism Cholesterol 

HDL 

LDL 

Lipase 

NEFA 

Triglycerides 

Non esterified fatty acids (NEFA) 

 Necropsy 

At day one of age 12 wt/wt and 13 wt/tg piglets underwent necropsy. Anesthesia was 

induced by intramuscular injection of ketamine (20 mg/kg BW) and azaperone 

(2 mg/kg BW) followed by euthanasia via intra-cardial injection of Embutramid, 

Mebezonium, Tetracain (T61, 4 - 6 mL T 61 / 50 kg BW). Subsequently, BW, crown-

rump length (CRL) and organ weights (heart, kidneys, liver, lung, pancreas, spleen) 

and the weight of the carcass defined as the whole body excluding all organs but 

including head and brain were recorded. Relative CRL and relative organ weights were 

determined by dividing the absolute organ weights by the BW of respective piglet.  
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 Statistical analysis  

All data are presented as means ± standard error of the mean (SEM). The results of 

oral, mixed-meal and intravenous glucose tolerance tests as well as glucose clamps 

(GIR) were statistically evaluated by analysis of variance (PROC MIXED; SAS 8.2) 

taking the fixed effects of Group (INSC93S vs. wt control), Time (relative to glucose 

administration, steady-state during HIC) and interaction of Group*Time into account. 

Statistical differences regarding clinical-chemical parameters were evaluated by 

analysis of variance (General Linear Models; SAS 8.2) taking the fixed effects of 

Group (wt/tg vs. wt/wt), Time (0 min. and 120 min.) and the interaction Group*Time 

into account. Absolute and relative BW, CRL and organ weights were statistically 

evaluated by analysis of variance (PROC GLM; SAS 8.2) taking the fixed effect of 

Group (wt/tg vs. wt/wt) into account. Differences between two groups regarding 

quantitative-stereological analyses, expression levels and areas under the 

glucose/insulin curve were evaluated by Mann-Whitney-U test in combination with an 

exact test procedure (SPSS 21.0). Area under the curve (AUC) for insulin and glucose 

were calculated using Graph Pad Prism® software (version 5.02). P values less than 

0.05 were considered to be significant. 
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IV. RESULTS 

1. Generation of INSC93S transgenic pigs by SCNT 

Transgenic pigs were established by additive gene transfer and SCNT technology. As 

a result of the amino acid exchange in the coding sequence of the insulin gene, the 

disulfide bond within the A-chain is disrupted and consequently a misfolded proinsulin 

protein is generated Figure 3). The mutant insulin accumulates in the endoplasmic 

reticulum by formation of high-molecular-weight complexes possibly interfering with 

the secretion of the endogenous insulin (Liu et al. 2010).  

 
A total of 503 INSC93S transgenic reconstructed embryos were transferred into the 

oviducts of five cycle-synchronized recipient gilts from which two pregnancies went 

to term (Table 8). Five out of ten piglets were born alive. The overall efficiency of 

nuclear transfer experiments from the two established pregnancies was 2.42 % 

(calculated by the total number of alive piglets of pregnancy 1 and 3 per respective 

number of transferred embryos).  

 

Figure 3: Proinsulin amino acid sequence 

Proinsulin amino acid sequence composed of the A-chain, B-chain and the connecting 

peptide (C-peptide). The A- and B-chain of the insulin are connected by two interchain 

and one intrachain disulphide bonds. The arrow depicts the amino acid exchange 

cysteine to serine at position 93 (C93S) within the mutant insulin.  
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Table 8: Overview of NT experiments 

Embryo 

Transfer 

Somatic 

cells 

Transferred 

embryos 

Pregnancy 

established 

Delivered 

piglets 

Alive 

piglets 

      

1 PFF 14 95 + 3 

(9748- 

9750) 

2 

(9748, 

9750) 

2 PFF 14 95 - - - 

3 PFF 26 112 + 7 

(9772- 

9778 

3 

(9774, 

9776, 

9777) 

4 PFF 26 101 - - - 

5 PFF 26 100 - - - 

Total -  503 2/5 10 5 

  

Porcine fetal fibroblasts (PFF) 

 Identification of INSC93S transgenic pigs by PCR and Southern blot 

PCR experiments using transgene specific primers were used to identify INSC93S 

transgenic animals. Figure 4 shows a representative example of an INSC93S 

genotyping PCR, in which four out of nine animals were identified as INSC93S 

transgenic pigs. In addition, Southern blot experiments were performed to prove 

correct identification of transgenic animals by PCR, as well as to identify the number 

of integration sites of the INSC93S transgene. 
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Figure 5 depicts an example of Southern blot experiments of all founder boars from 

embryo transfer n°3 and F1 offspring of founder 9776. Integration of the INSC93S 

transgene could be detected in founders (9773 – 9778) (Figure 5 A). According to the 

expression level and results from the glucose tolerance test (see 1.2 and 2.1) founders 

9748 and 9776 were selected for further characterization and mated to wildtype sows. 

Southern blot analyses of F1 offspring from founder 9748 (data not shown) and 9776 

(Figure 5 B) showed the same transgene integration pattern as the respective founder 

boar, confirming germline transmission of the INSC93S transgene and a single 

integration site in the genome in these two lines.  

Figure 4: Identification of INSC93S transgenic pigs by PCR 

(A) INSC93S PCR for detection of the INSC93S transgene; (B) ACTB PCR using the 

same genomic DNA samples for the control of DNA integrity; (tg): INSC93S transgenic 

pigs; (wt): non-transgenic littermate control pigs; M: 1kb DNA ladder marker; +: 

primer positive control (genomic DNA of a previously confirmed INSC93S tg pig); -: 

primer negative control (genomic DNA of a previously confirmed wt pig); W: internal 

negative control (distilled water).  
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Figure 5: Southern blot analysis of INSC93S founders and F1 offspring of founder 
9776 

X-ray exposed membranes, labeled with a transgene-specific radioactive probe for the 

detection of the INSC93S transgene in (A) seven INSC93S transgenic founder boars and 

(B) F1 offspring of founder 9776. The identical transgene integration pattern in F1 

offspring from founder 9776 argues for one single integration site of the INSC93S 

transgene.  

 

 Founders 9776 and 9748 exhibited the highest INSC93S expression level 

Next, gene expression analyses of pancreatic tissue from the five living founder boars 

(9776, 9748, 9777, 9750 and 9774) as well as from F1-offspring of founder boar 9748 

and 9776 were performed. Good quality RNA according to the presence of distinct 

28S and 18S ribosomal RNA bands without considerable RNA degradation was 

obtained from all animals and was reverse transcribed. RT-PCR using insulin-specific 

primers was run to determine the presence of insulin transcripts. Insulin cDNA 

transcripts were detected in all five founders as well as in F1 offspring from founder 

9748 and 9776 (Figure 6 A). RT-PCR with ACTB primers was run on the same cDNA 

samples as internal positive control. A signal of equal intensity was detected in all 

animals indicating that RNA was successfully reverse transcribed into cDNA (Figure 

6 B). Minus RT control PCR revealed no signal (Figure 6 C) indicating complete 

DNase digest and excluding genomic DNA contamination of cDNA samples. 
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Next, INSC93S/INS ratios were determined from cDNA amplicons by next generation 

sequencing. Founder 9776 exhibited the highest INSC93S/INS ratio (0.599), followed 

by founders 9748 (0.315), 9777 (0.169), 9750 (0.051) and 9774 (0.002). Transgenic 

F1 piglets exhibited similar INSC93S/INS ratios as their respective founders: F1 

offspring of founder 9776 (0.552 ± 0.035, n=3) and F1 offspring of founder 9748 

(0.304 ± 0.006, n=3) (Figure 7).  

Figure 6: RT-PCR products 

(A, B, C) PCR products from cDNA samples of five founder boars and F1-offspring 

from founder 9748 and 9776. (A) INSC93S PCR, (B) ACTB PCR and (C) DNaseI 

digested RNA products proving no genomic DNA contamination; M: pUC Mix 

molecular weight marker; gDNA: positive control (genomic DNA); W: distillated 

water as non-template control. 
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2. Phenotypic characterization of INSC93S transgenic pigs 

 INSC93S transgenic founders exhibited unaltered (fasting) blood glucose 

levels but impaired intravenous glucose tolerance 

Following expression analysis, effects of INSC93S expression on non-fasting and fasting 

blood glucose levels were assessed in the five INSC93S transgenic founder boars. Data 

were collected from fed animals between 15 to 46 days of age (prior to weaning) and 

after an overnight fasting period between 52 and 207 days of age (after weaning). All 

founders exhibited (fasting) glucose concentrations within the normal range for pigs 

(Figure 8). Therefore, INSC93S transgenic founders have unaltered fasting blood 

glucose levels.  

0.0 0.2 0.4 0.6 0.8

9776 (F1)

9776 (F0)

9748 (F1)

9748 (F0)

9777 (F0)

9750 (F0)

9774 (F0) 9776 (F1)
9776 (F0)
9748 (F1)
9748 (F0)
9777 (F0)
9750 (F0)
9774 (F0)

INSC93S/C94Y : INS transcript ratio

Figure 7: Expression levels of the INSC93S transgene   

Quantification of INSC93S/INS transcript ratios by next-generation sequencing of the 

five living founder boars as well as of F1-offspring from founder 9748 and 9776.

Founders 9776 and 9748 exhibited the highest expression levels of the INSC93S

transgene. F1 offspring revealed similar INSC93S/INS ratios as their respective founders.
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In addition, effects of INSC93S expression on glucose tolerance were investigated in an 

IVGTT in the five living INSC93S transgenic founders and two age-matched wt animals. 

At the time of the IVGTT the animals were 237 ± 3.67 days old. After intravenous 

glucose bolus (0.5 g/kg body weight), transgenic founders 9776 and 9748 revealed 

decelerated decline of blood glucose and distinctly reduced insulin secretion compared 

to transgenic founders 9750, 9774, 9777 and wt controls (Figure 9A and B). These 

findings are in line with gene expression data. Founders 9776 and 9748, which 

exhibited the highest INSC93S expression levels (shown previously in Figure 7D), 

revealed an aggravated phenotype in terms of glucose control as compared to founders 

9750, 9774 and 9777.  
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Figure 8: (Fasting) blood glucose levels in INSC93S transgenic founder boars

Non-fasted values represent measurements before weaning. After weaning, 

glucose levels were determined after an 18-hour fasting period. Highlighted in 

grey is the reference range of blood glucose for pigs.  
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According to the gene expression and IVGTTs results, founders 9776 and 9748 

revealed the highest expression levels of the mutant insulin C93S, as well as an 

impaired glucose clearance and insulin secretion phenotype therefore, they were mated 

with wt sow and effects on F1 offspring were evaluated. Data from F1 offspring from 

founder 9766 is presented. The data from 9748 is mentioned in the text.  

 Body weight is unaltered in INSC93S transgenic pigs  

BW gain was assessed in F1 offspring from founder boar 9748 and 9776. Data were 

collected in regular intervals from 57 to 175 days of age in F1 offspring from founder 

9776 and eight to 168 days of-age in offspring from founder 9748. There were no 

0 20 40 60 80 100
0

100

200

300

400

500

600
wt - 9711
wt - 9765
tg - 9748
tg - 9750
tg - 9774
tg - 9776
tg - 9777

Time (minutes)

G
lu

co
se

 (m
g/

dl
)

0 20 40 60 80 100
0

20

40

60

80

100

120

140

160

180
wt - 9711
wt - 9765
tg - 9748
tg - 9750
tg - 9774
tg - 9776
tg - 9777

Time (minutes)

In
su

lin
 (µ

U
/m

l)

A

B

Figure 9: Intravenous glucose tolerance in INSC93S tg founder boars 

IVGTTs of 8-months-old INSC93S transgenic founders depict impaired intravenous 

glucose tolerance of founders 9776 and 9748. (A) Plasma glucose concentration; (B)

plasma insulin concentration. INSC93S transgenic (tg) and age-matched wt controls (wt). 
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significant differences observed in body weight gain between INSC93S transgenic and 

wt animals of both lines (Figure 10).   

    

 
 

To evaluate the effect of INSC93S expression on glucose metabolism, IVGTTs and 

MMGTTs were performed at four and seven months of age. INSC93S transgenic and wt 

animals from the F1 and F4 generation were included in the tests.  

 INSC93S transgenic pigs showed reduced oral and intravenous glucose 

tolerance at four and seven months of age  

IVGTTs were performed in 4- and 7-month-old transgenic pigs (n=11) and eight 

littermate controls. Fasting plasma glucose (FPG) levels at four and seven months were 

significantly elevated in INSC93S transgenic pigs compared to wt controls (FPG4 months 

= 136.4 ± 6.108 vs. 88.8 ± 4.010, p= 0.006) (Figure 11 A) and (FPG7 months = 133.4 ± 

9.173 vs. 73.9 ± 4.430, p= 0.0014) (Figure 12 A). Fasting plasma insulin was reduced, 

but not significantly, in INSC93S transgenic animals compared to controls at both ages 

(Insulin 4 months = 5.939 ± 1.139 vs. 8.348 ± 0.929, p=0.5842) (Figure 11 C) and (Insulin 

7 months = 6.629 ± 0.712 vs. 11.471 ± 1.050, p=0.348) (Figure 12 C). After an 

intravenous glucose challenge (0.5 g/kg body weight), INSC93S transgenic animals 

exhibited significantly elevated plasma glucose levels and reduced insulin secretion 
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Figure 10: Unaltered body weight gain in INSC93S transgenic pigs. 

Body weight measurement in F1-offspring of founder 9776. There were no significant 

differences between the two groups at any time point. Data are means ± SEM.  
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compared to non-transgenic littermates both at four and seven months of age (Figure 

11 A, C and Figure 12 A, C). Glucose tolerance was significantly reduced in INSC93S 

transgenic pigs at both ages tested. This was demonstrated by a reduced glucose 

clearance resulting in an increased area under the glucose curve (AUC glucose) at four 

months (AUC glucose 4 months = 21156 ± 879 vs. 12812 ± 841, p<0.001) (Figure 11 A, 

B), as well as at seven months of age (AUC glucose 7 months = 21766 ± 1126 vs. 10841 

± 286, p<0.001) (Figure 12  A, B). In parallel, the AUC of insulin was significantly 

reduced in INSC93S transgenic pigs as compared to wt littermates at four and seven 

months of age, respectively (AUC insulin 4 months = 1132 ± 150 vs. 2479 ± 248, 

p<0.001) (Figure 11 C, D) and (AUC insulin 7 months = 1301 ± 138 vs. 2797 ± 251, 

p=0.001) (Figure 12 C, D). Although there were no significant gender-related 

differences in glucose tolerance at four months of age (data not shown), INSC93S 

transgenic females revealed an aggravated impairment of glucose tolerance compared 

to INSC93S tg males at seven months of age (AUC glucose 7 months = 23694 ± 1576 vs. 

19453 ± 892, p<0.05) (Figure 13 A, B). In line with glucose levels, impaired insulin 

secretion was aggravated in INSC93S tg females as compared to INSC93S tg males (AUC 

insulin 7 months = 1011 ± 112 vs. 1650 ± 174, p<0.05) (Figure 13 C, D). These results 

demonstrate that INSC93S transgenic pigs showed significantly reduced FPG levels as 

well as a distinct impairment of intravenous glucose tolerance and reduced insulin 

secretion that was stable in its manifestation between four and seven months of age. 

Moreover, INSC93S transgenic females developed a more pronounced impairment of 

glucose tolerance compared to INSC93S transgenic males only at seven months of age.  
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Figure 11: Intravenous glucose tolerance in 4-month-old INSC93S transgenic pigs 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; INSC93S transgenic pigs 

(tg) and non-transgenic controls (wt) of the F1 and F4 generation; data are means ± 

SEM; (*) p<0.05; (**) p<0.01; (***) p<0.001.  
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Figure 12: Intravenous glucose tolerance in 7-month-old INSC93S transgenic pigs 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; INSC93S transgenic 

animals (tg) and non-transgenic littermate control animals (wt) of the F1 and F4 

generation; data are means ± SEM; (*) p<0.05; (**) p<0.01; (***) p<0.001.  
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Furthermore, the same animal group was subjected to MMGTTs. Oral digestion of 

dietary constituents present in a standard mixed meal combined with a glucose bolus 

represents a more physiological test compared with the intravenous glucose challenge. 

Following oral glucose uptake, glucose-induced insulin secretion is potentiated by 

incretin hormones produced in enteroendocrine cells and also other factors like gastric 

emptying play a role for glucose clearance and are not considered following an 

intravenous glucose bolus. MMGTTs were performed in 4-month-old transgenic pigs 

(n=11) and seven wt littermate controls as well as in 7-month-old transgenic pigs (n=9) 

and six littermate controls. FPG levels tended to be reduced at 4 months of age and 

-10 0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

wt m (n=3)
wt f (n=4)
tg m (n=5)
tg f (n=6)

Time (minutes)

G
lu

co
se

 (m
g/

dl
)

wt m wt f tg m tg f
0

10000

20000

30000

ns

*

AU
C

 G
lu

co
se

-10 0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

wt m (n=3)
wt f (n=4)
tg m (n=5)
tg f (n=6)

Time (minutes)

In
su

lin
 (µ

U/
m

l)

wt m wt f tg m tg f
0

1000

2000

3000

4000 ns

*

AU
C

 In
su

lin

A B

C D

Figure 13: Intravenous glucose tolerance in 7-month-old INSC93S transgenic pigs, 
gender effects 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; INSC93S transgenic 

animals (tg) and non-transgenic littermate control animals (wt); (m) male; (f) female; 

data are means ± SEM; (*) p<0.05. 
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were significantly reduced at seven months of age in INSC93S transgenic pigs as 

compared to controls (FPG4months= 144.0 ± 8.085 vs. 88.1 ± 2.870, p= 0.058) and 

(FPG7months= 140.7 ± 14.066 vs. 81.9 ± 1.286, p=0.036) (Figure 14 A and Figure 15 

A). Like in IVGTTs, fasting plasma insulin levels were unaltered in both age groups 

(Insulin 4 months = 9.234 ± 1.159 vs. 9.471 ± 1.396, p= 0.9676) and (Insulin 7 months = 

7.574 ± 0.818 vs. 9.811 ± 1.642, p= 0.7986) (Figure 14 C and Figure 15 C). After an 

oral glucose challenge (2 g/kg body weight) mixed with commercial pig food adjusted 

for body weight, blood glucose concentrations started to increase at time point 15 

minutes relative to the oral glucose plus food load in both groups. In both age groups, 

glucose tolerance was reduced in INSC93S tg animals as compared to wt controls (AUC 

glucose 4 months = 29051 ± 2834 vs. 13209 ± 497, p<0.001) and (AUC glucose 7 months = 

26489 ± 2764 vs. 12891 ± 582, p<0.001) (Figure 14 A, B and Figure 15 A, B). In line 

with increased glucose levels, insulin secretion was reduced in INSC93S transgenic 

animals. Although at four months of age, total AUC insulin was not different from wt 

animals (AUC insulin 4 months =3801 ± 403 vs. 4121 ± 341, p=0.651), INSC93S transgenic 

pigs showed a significant delay in peak insulin secretion. While wt animals reached 

maximum plasma insulin levels at 30 min, INSC93S transgenic pigs reached their 

maximum insulin levels only at 90 min, and the insulin peak level of tg animals never 

reached that of non-transgenic controls (AUC 4 months 0-30min = 1202.7 ± 135.882 vs. 

643.0 ± 71.417, p=0.007) (Figure 14 C, D). However, at seven months of age, insulin 

secretion was significantly reduced in INSC93S transgenic pigs (AUC 7 months = 2901 ± 

324 vs. 5627 ± 863, p<0.05) (Figure 15 C, D). Compared with insulin secretion four 

months of age, INSC93S transgenic pigs secreted 24 % less insulin at seven months of 

age (AUC 4 months = 3801.4 ± 403.241 vs. AUC 7 months = 2901 ±324, p=0.197) ( Figure 

15 E). 

In addition, two patterns of insulin curves in wt animals were observed during the 

MMGTT: a monophasic curve at four months and a biphasic curve at seven months of 

age. In the monophasic curve, insulin concentrations peaked at 30 minutes (50.8 ± 

4.269 µU/mL) after the glucose intake and started to constantly decrease thereafter 

(Figure 14 B). In the biphasic curve two insulin peaks were observed. A first insulin 

peak (56.0 ± 13.689 µU/mL) at 30 minutes followed by a decrease in insulin 

concentration up to 60 minutes and a second insulin peak (70.2 ± 17.128 µU/mL) that 

occurred at 90 minutes followed by a constant decrease in insulin concentration until 

the end of the MMGTT, i.e. at 120 minutes (Figure 15 B). These fluctuations were 
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observed in parallel to the respective glucose curves. INSC93S transgenic animals only 

revealed monophasic curves. In summary, INSC93S transgenic pigs showed impaired 

oral glucose tolerance at four and seven months of age. Different from IVGTT, insulin 

secretion was delayed but not reduced at four months and reduced at seven months of 

age.  
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Figure 14: Oral glucose tolerance in 4-month-old INSC93S transgenic pigs 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; INSC93S transgenic pigs 

(tg) and non-transgenic littermate control animals (wt) from F1 and F4 generation; 

data are means ± SEM; (*) p<0.05; (**) p<0.01; (***) p<0.001. 
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Figure 15: Oral glucose tolerance in 7-month-old INSC93S transgenic pigs. 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; (E) AUC insulin at four 

and seven months; INSC93S transgenic pigs (tg) and non-transgenic littermate control 

animals (wt); data are means ± SEM; (*) p<0.05; (**) p<0.01; (***) p<0.001. 

 

F1-offspring from founder boar 9748 revealed a similar phenotype, i.e. reduced 

glucose tolerance and insulin secretion in an IVGTT and OGTT at four and seven 

months of age. However, the effect of INSC93S expression on FBG levels was less 
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pronounced. Therefore, all further investigations were performed in offspring from 

founder 9776. 

 Low-grade reduction of the total β-cell volume in INSC93S pigs   

Next, total β-cell volume was investigated. In total, four INSC93S transgenic and three 

age-matched wildtypes were analyzed. At the time of necropsy animals were 

389 ± 19.5 days of age. No significant difference in pancreas weight between INSC93S 

transgenic animals and wt controls could be detected at the time of necropsy (217.9 ± 

15.0 vs. 191.8 ± 26.6, p=0.289), respectively. Quantitative stereological analysis of the 

pancreas revealed a reduced, although not significant, total β-cell volume in INSC93S 

transgenic pigs compared to wt littermates. Volume density of β-cells in the pancreas 

and total β-cell volume was reduced by 35 % (Vv(β-cell/Pan) = 0.875 ± 0.07, n=4 vs 1.34 

± 0.29, n=3, p=0.114) and 22 %, (V(β-cell,Pan) = 1779.34 ± 198.16, n=4 vs. 2295.70 ± 

355.89, n=3, p= 0.114), respectively Figure 16 A and B). 
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Figure 16: Quantitative stereological analysis of the pancreas 

(A) Volume density of β-cells in the pancreas (Vv(β-cell/Pan)) and (B) total β-cell 

volume (V(β-cell, Pan)); total β-cell volume is decreased by 22 % in tg pigs compared 

to non-transgenic littermates (p=0.114). Data are means ± SEM; ns: p>0.05.  
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3. Phenotype of INSC93S tg sows during pregnancy 

Next, glucose and insulin metabolism in the context of pregnancy were investigated. 

Physiological metabolic changes during pregnancy, were characterized in wt-pregnant 

(wt-p) sows compared with wt non-pregnant (wt-np) controls, hence, serving as a 

control group for the effects of pregnancy in sows. Moreover, metabolic changes in 

prediabetic INSC93S transgenic pregnant sows (INSC93S-p) were investigated. 

 Fasting glucose levels in INSC93S transgenic sows during pregnancy 

Eighteen hours fasting glucose levels were monitored twice weekly in INSC93S-p (n=3), 

wt-p (n=4), INSC93S-np (n=3) and wt-np (n=4) during gestational week three to sixteen. 

Pregnant and non-pregnant INSC93S transgenic sows exhibited similar significantly 

elevated fasting glucose levels (INSC93S-p: 88.952 ± 2.122 and INSC93S-np: 90.306 ± 

2.888) compared to wt-p (53.330 ± 0.858 and wt-np 50.330 ± 1.119) sows (p< 0.0001) 

(Figure 17 A, B). No further increase in fasting glucose levels was observed during 

pregnancy in INSC93S-p sows compared to INSC93S-np sows (Figure 17 A, B). This was 

also the case in wt-p and wt-np sows. These results indicate that pregnancy did not 

affect fasting glucose levels of wt and INSC93S transgenic sows. 
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Figure 17: Fasting glucose levels in INSC93S transgenic sows during pregnancy 

(A) Fasting glucose concentrations from gestational week three to 16. (B) Mean 

glucose levels from gestational week three to 16 of pregnant (INSC93S-p) and non-

pregnant (INSC93S-np) INSC93S transgenic sows as well as pregnant (wt-p) and non-

pregnant (wt-np) wildtype sows. Data are means ± SEM. a, b: different letters depict 

significant differences.  
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 Insulin sensitivity is reduced to the same extent in pregnant INSC93S 

transgenic and wt sows 

HIC were performed to investigate changes in insulin sensitivity during pregnancy 

(gestational week 80 ± 2.30). Initially, insulin sensitivity of wt-p (n=4) and wt-np 

(n=3) was investigated. In a second step, insulin sensitivity in the pregnant state of wt-

p (n=4) and INSC93S-p (n=3) was evaluated. Steady state conditions were successfully 

achieved at 130 min in the two groups. This was shown by constant glucose infusion 

rates during 130 and 180 minutes. Additionally, plasma insulin (wt-p 0.374 ± 0.057 

ng/mL vs. wt-np 0.321 ± 0.047 ng/mL, p=0.488 and  tg-p 0.383 ± 0.060ng/mL vs. wt-

p 0.450 ± 0.065 ng/mL, p=0.456) and glucose (wt-p 67.2 ± 1.880 mg/dl vs. wt-np 67.1 

± 1.965 mg/dl, p= 0.968 and tg-p 70.3 ± 4.066 mg/dl vs. wt-p 70.9 ± 1.656 mg/dl, p= 

0.893) levels were maintained during that period in all four groups (Figure 18 A and 

Figure 19 A). GIR was reduced by 35 % in wt-p sows compared with wt-np (9.020 ± 

0.267 vs. 14.064 ± 0.930, p = 0.028) (Figure 18 B and C), whereas GIR in INSC93S-p 

sows was reduced to the same extend as in wt-p sows (6.335 ± 0.456 vs 6.834 ± 0.317, 

p=0.633) (Figure 19 B and C). Importantly, the coefficient of variance (CV) of the 

GIR during the steady state was ≤5 % in both groups (wt-p 4.53 % vs. wt-np 5.13 % 

tg-p 4.62 % vs. wt-p 3.0 %). Taken together, these results demonstrate that pregnancy 

reduced insulin sensitivity in pigs, however, insulin sensitivity in pregnant INSC93S 

transgenic sows was not further impaired compared to wt-p sows. 
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Figure 18: Hyperinsulinemic-euglycemic clamps in wt sows during pregnancy 

(A) Plasma glucose and insulin concentrations during steady-state of the HIC. (B) 

Glucose infusion rate (GIR) during steady-state. (C) Average GIR during steady 

state. Pregnant wildtype sows (wt-p); non-pregnant wildtype sows (wt-np); Data are 

expressed as means ± SEM. (*) p<0.05, (**) p<0.01, (***) p<0.001.  
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Figure 19: Hyperinsulinemic-euglycemic clamps in tg sows during pregnancy 

(A): Plasma glucose and insulin concentrations during steady-state of the HIC. (B) 

Glucose infusion rate (GIR) during steady-state. (C) Average GIR during steady 

state. Pregnant INSC93S transgenic sows (INSC93S-p); pregnant non-transgenic 

controls (wt-p); Data are expressed as means ± SEM. (*) p<0.05, (**) p<0.01, (***) 

p<0.001.   
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 ß-cell function is significantly impaired in INSC93S-p sows 

HGC tests were performed to assess β-cell function of INSC93S-p and wt-p sows 

(gestational week 86 ± 2.82). Animals were clamped at a hyperglycemic level of 300 

mg/dl (INSC93S-p 326.7 mg/dl ± 4.97 vs. wt-p 326.6 mg/dl ± 10.03, p= 0.993) by a 

variable infusion of a 40% glucose solution during the time course of the clamp (Figure 

20 A). First phase insulin secretion (0-10 min) did not significantly differ between 

INSC93S-p and wt-p sows (0.114 ng/mL ± 0.006 vs 0.264 ± 0.073, p= 0.189) (Figure 

20 B). However, second phase insulin response (10-90 min) was significantly impaired 

in INSC93S-p compared with wt-p sows as indicated by significantly lower plasma 

insulin concentrations in all time points (Figure 20 B). Overall total insulin response 

was 71 % reduced in INSC93S-p sows compared to wt-p sows (AUC= 19.9 ± 5.49 vs 

79.7 ± 8.81, p= 0.0045) (Figure 20 C). Correspondingly, the reduced insulin secretion, 

GIR was lower in INSC93S-p compared with wt-p sows, and significantly different at 

time points 20, 25, 60 and 70 min (Figure 20 D). However, total GIR did not reach 

significance between INSC93S-p and wt-p sows (9.041 ± 0.324 vs. 12.694 ± 1.368, 

p=0.077) (Figure 20 D and E). Both INSC93S-p and wt-p responded with increased 

insulin secretion to the arginine bolus at 50 min (Figure 20 B). Despite the reduced 

insulin secretion in INSC93S-p, the increment in insulin response (50 to 60 min) 

following the arginine bolus was not different compared to wt-p (0.141 ± 0.03 vs 0.214 

± 0.026, p=0.229). Together these results indicate that INSC93S-p sows have reduced 

insulin secretion, reflecting impaired β-cell function.   

 

  

 

 



IV Results 77 

 

0 10 20 30 40 50 60 70 80 90
0

100

200

300

400

wt-p (n=4)
INSC93S-p (n=3)

Arginine

Time (minutes)

G
lu

co
se

 (m
g/

dl
)

0 10 20 30 40 50 60 70 80 90
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4 wt-p (n=4)
INSC93S-p (n=3)

**
** *** ***

******
*** *** ***

Arginine

Time (minutes)

In
su

lin
 (n

g/
m

l)

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

wt-p (n=4)
INSC93S-p (n=3)

Arginine

* *** * *

Time (minutes)

G
IR

 (m
g/

kg
*m

in
)

wt-p INSC93S-p
0

20

40

60

80

100

**AU
C

 In
su

lin

wt-p INSC93S-p
0

5

10

15 ns

G
IR

 (m
g/

kg
*m

in
)

A

B C

D E

Figure 20: Hyperglycemic clamps during pregnancy 

(A) Plasma glucose concentration; (B) Plasma insulin levels; (C) Area under the 

insulin curve (AUC insulin); (D) Glucose infusion rate (GIR); (E) Mean glucose 

infusion rate; pregnant INSC93S transgenic sows (INSC93S-p); pregnant non-transgenic 

littermate controls (wt-p); - non-pregnant controls (wt-np); Date are expressed as 

means ± SEM; (*) p<0.05; (**) p<0.01; (***) p<0.001. 
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 Low-grade impairment of glucose tolerance in wt-p and pronounced 

impairment in INSC93S-p sows 

MMGTs were performed in nine wt-p, three INSC93S-p and three age-matched wt-np 

sows. This allowed characterization of glucose metabolism and insulin response in 

wild-type pigs during pregnancy, as well as to investigate how INSC93S transgenic sows 

respond to extra metabolic demands during the pregnant state as compared to wt-p 

sows. Wt-np and wt-p pigs showed unaltered fasting glucose levels (65.0 ± 0.996 vs. 

67.0 ± 4.272 mg/dl, p=0.863), whereas INSC93S-p sows exhibited significantly 

elevated, borderline hyperglycemic values (104.8 ± 1.530, p<0.01) (Figure 21 A). 

Although INSC93S-p sows exhibited elevated fasting glucose, fasting insulin levels did 

not differ from wt-p control sows (5.45 ± 3.17 vs. 7.33 ± 1.77, p= 0.911) (Figure 21 

B). Upon oral glucose challenge (2 g/kg body weight), glucose levels rose in all three 

groups and reached maximum levels at 30 min for both wt-np and wt-p sows, 

respectively (93.7 ± 2.554 and 114.1 ± 5.027 mg/dl, p=0.077). INSC93S-p sows showed 

rising glucose levels until 60 min (209.7 ± 1.888 mg/dl). From 30 min after oral 

glucose load, wt-p sows had significantly elevated glucose levels until the end of the 

MMGTT as compared to wt-np sows, but glucose levels were significantly lower than 

in INSC93S-p sows for all time points (Figure 21 A). This resulted in a significantly 

increased AUC glucose in wt-p as compared to wt-np (AUC= 3866 ± 642.8 vs. 1254.9 

± 183.1, p<0.01) (Figure 21 B) but significantly reduced AUC glucose compared with 

INSC93S-p sows (3866 ± 642.8 vs. 8754.7 ± 989.6, p<0.05) (Figure C). Insulin response 

was enhanced in wt-p and impaired in INSC93S-p sows compared to wt-np. Wt-p sows 

which showed significantly higher glucose levels than wt-np sows secreted 

significantly more insulin from time point 30 min compared to wt-np sows (Figure 21 

D). Despite not significant, AUC insulin of wt-p tended to be higher than AUC insulin 

of wt-np (7984 ± 881.1 vs. 4726.7 ± 682.0, p=0.0636) (Figure 21 E). In parallel, tg-p 

sows which showed impaired glucose tolerance revealed reduced and delayed insulin 

secretion as compared to wt-p sows (Figure 21 B). This led to a significant reduction 

in AUC insulin between tg-p and wt-p sows (4607.7 ± 119.2 vs. 7984 ± 881.1, p<00.1) 

(Figure 21 F).  
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Figure 21: MMGTT during pregnancy. 

(A) Plasma glucose levels; (B, C) AUC glucose: area under the glucose curve; (D) 

Plasma insulin levels; (E, F) AUC insulin: area under the insulin curve; pregnant 

INSC93S transgenic sows (INSC93S-p), pregnant non-transgenic control animals (wt-p) 

and non-pregnant, non-transgenic control animals (wt-np); Data are means ± SEM; a, 

b, c: different letters depict significant differences; (*) p<0.05; (**) p<0.01.  
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4. Effects of mild maternal hyperglycemia on offspring  

 Wt piglets born to mild diabetic INSC93S transgenic sows revealed 

elevated FPG and a tendency of reduced glucose tolerance despite 

increased insulin secretion at birth 

Effects of chronic exposure to mild hyperglycemia in utero were investigated in 

newborn piglets. Differences in glucose metabolism and insulin response were 

investigated during OGTTs at birth in 18 wt piglets born to wt sows and 12 wt piglets 

born to INSC93S transgenic sows. At birth wt/tg piglets showed elevated glucose levels 

compared to wt/wt piglets (83.4 ± 9.353 vs. 54.133 ± 4.810, p= 0.0553) (Figure 22 A). 

Results from fasting insulin revealed that 58 % of wt/tg piglets showed insulin 

concentrations above the detection limit of the ELISA (≤ 1.611 µU/mL) as compared 

to 11 % of wt/wt, suggesting that wt/tg piglets have higher insulin levels as compared 

to wt/wt piglets (Figure 22 B). Following oral glucose administration (2 g/kg body 

weight), wt/tg exhibited significantly elevated glucose levels from 30 min until the end 

of the OGTT (Figure 23 A). When corrected to baseline values, AUC glucose was not 

significant although, it tended to be higher in wt/tg compared to AUC glucose of wt/wt 

piglets, (14278.3 ± 1520.7 vs. 11438.6 ± 783.7, p=0.0790) (Figure 23 B). Insulin 

response to glucose load was also different in wt/tg piglets which exhibited elevated 

insulin levels especially at the end (120 min.) of the OGTT (27.8 ± 6.834 vs. 14.2 ± 

1.573, p<0.001) (Figure 23 C). Total AUC insulin of wt/tg piglets (corrected to 

baseline levels) tended to be higher than total AUC insulin from wt/wt (2108.2 ± 

380.967 vs. 1417.3 ± 234.390, p= 0.0864) (Figure 23 D). Together these results 

suggest that chronic exposure to maternal mild hyperglycemia has effects on early 

glucose response and insulin secretion in wt/tg piglets. 
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Figure 22: Fasting glucose and insulin levels at birth in offspring of INSC93S tg 
and wt control sows 

(A) Plasma glucose levels and (B) Plasma insulin levels in 18 wt/wt piglets and 12 

wt/tg piglets); wt piglets born to wt sows (wt/w); wt piglets born to INSC93S transgenic 

sows (wt/tg); dotted line depicts the detection limit of the insulin assay (1.611 µU/mL); 

(**) p<0.01.  
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 Prenatal exposure to mild hyperglycemia altered lipid metabolism and 

glycolysis-related metabolites in wt offspring. 

Plasma samples were collected at 0 and 120 min during OGTTs to determine changes 

in metabolites involved in carbohydrate and lipid. Six wt/tg and six wt/wt piglets were 

investigated. At birth (0 min), wt/tg piglets exhibited significantly increased 

concentrations of total cholesterol (43.4 ± 3.624 vs. 31.7 ± 2.826, p= 0.034) (Figure 

24 A), LDL (36.2 ± 2.360 vs. 29.4 ± 1.557, p=0.041) (Figure 24 B ) and HDL (19.4 ± 

1.777 vs. 14.0 ± 1.557, p=0.025) (Figure 24 C) compared to wt/wt. Triglycerides, 

NEFA and lipase were not changed (Figure 24 D, E and F). When comparing 

metabolite changes during OGTT (0 to 120 min), most of the alterations occurred in 

metabolites directly involved in glucose metabolism. Glucose was significantly 
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Figure 23: Oral glucose tolerance tests in newborn piglets. 

(A) Plasma glucose levels; (B) AUC glucose: area under the glucose curve; (C) Plasma 

insulin levels; (D) AUC insulin: area under the insulin curve; wt piglets born to wt 

sows (wt/wt); wt piglets born to INSC93S tg sows (wt/tg); Data are means ± SEM; (*) 

p<0.05; (**) p<0.01. 
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increased at 120 in both groups and was significantly different in wt/tg compared to 

wt/wt (208.1 ± 20.162 vs. 168.1± 14.231, p=0.0465) (Figure 25 A). Lactate 

concentrations decreased in both groups after 120 min but with less extended in wt/tg 

(4.413 ± 0.780 vs. 2.390 ± 0.185, p= 0.149) (Figure 25 B). LDH was significant 

increased after 120 in wt/tg compared to wt/wt (626.0 ± 79.845 vs. 452.0 ± 39.615, p= 

0.028) (Figure 25 and Figure 24 C). These results indicate that wt/tg piglets showed 

differential lipid profile at birth and key elements of the glycolysis pathway were 

differently regulated upon 120 min OGTT in wt/tg compared to wt/wt.  
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Figure 24: Lipid metabolic parameters in offspring of INSC93S tg sows and wt 
controls 

(A, B, C, D, E and F) Differential lipid parameters evaluated in plasma samples 

collected at 0 min (right after birth) and 120 min (time after oral glucose bolus). Data 

are means ± SEM, a, b and c: different letters depict significant differences.  
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 Unaltered morphological parameters in wt piglets chronically exposed 

to mild maternal hyperglycemia  

At the end of the study, body and organ weights were investigated in all 14 wt/tg and 

11 wt/wt piglets at day one of age. No significant difference in absolute and relative 

body weights, CRL and organ weights could be detected between the two groups. 

Although not significant, relative liver and heart weights tended to be higher in wt/tg 

compared wt/wt animals (Table 9).  
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Figure 25: Carbohydrate metabolic parameters in offspring born to INSC93S tg 
sows and born to wt controls 

(A, B and C) Carbohydrate parameters of the glycolytic pathway evaluated in plasma 

samples collected at 0 min (right after birth) and 120 min (time after oral glucose 

bolus). Data are means ± SEM, a, b and c: different letters depict significant 

differences.  
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Table 9: Body and organ weights in 1-day-old piglets 

Parameter LSMeans Pvalue 

 wt/tg wt/wt  

    

Body weight (day 0) (g) 1358.775 1399.369 0.756 

Body weight (day 1) (g) 1473.806 1476.686 0.974 

CRL (cm) 28.223 28.559 0.785 

relCRL 2.550 2.583 0.676 

Pancreas (g) 2.109 1.998 0.549 

relPancreas 0.141 0.138 0.649 

Liver (g) 44.338 40.929 0.429 

relLiver  3.001 2.762 0.067 

Heart (g) 12.593 11.536 0.349 

relHeart  0.851 0.789 0.066 

Kidneys (g) 5.505 5.815 0.572 

relKidneys 0.371 0.395 0.265 

Lungs (g) 43.024 46.475 0.280 

relLungs 2.982 3.196 0.222 

Spleen (g) 2.130 2.093 0.888 

relSpeen 0.142 0.141 0.980 

Carcass (g) 1149.384 1142.208 0.936 

relCarcass  78.267 77.783 0.758 

Relative to the body weight (rel)
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V. DISCUSSION 

Maternal hyperglycemia is detrimental for the fetus as it increases the risk to develop 

metabolic diseases as obesity or diabetes in adulthood. Effects of maternal diabetes 

and underlying mechanisms are difficult to study in humans and have not been fully 

clarified by animal models. Transgenic pigs expressing the mutant insulin C93S were 

characterized before and during pregnancy. This novel animal model enables the 

investigation of deleterious effects of chronic intrauterine exposure to mild forms of 

hyperglycemia on the offspring at different developmental stages, e.g. embryo, fetus 

and offspring.  

1. Generation and phenotypic characterization of INSC93S 

transgenic pigs before pregnancy 

Five living INSC93S transgenic founders resulted from SCNT and embryo transfer 

experiments (KUROME et al., 2015). The nuclear transfer efficiency was 2.42 %, 

which is in line with the range of SCNT cloning efficiency (0.5 % to 5 %) in the pig 

(AIGNER et al., 2010). Different integration patterns of the INSC93S transgene among 

the five INSC93S founders were observed in Southern blot analyses (Figure 5 A). This 

result is expected as these animals resulted from pools of stably transfected cell clones 

whereby the INSC93S construct has randomly integrated into the genome. Gene 

expression data revealed differences in the expression level of the INSC93S transgene 

between the five transgenic founders (Figure 7). This outcome is also expected and 

results from effects of random integration. It is well known that expression levels are 

dependent on the number of integration sites as well as they are influenced by the 

integration site due to differences in chromatin remodeling of neighboring DNA 

(WOLF et al., 2000; RECILLAS-TARGA, 2006). We selected founders 9776 and 

9748 as they showed the highest expression levels of the INSC93S transgene and 

revealed IGT and reduced insulin secretion during an IVGTT (Figure 9). These results 

not only proved that the phenotype of INSC93S transgenic pigs is specifically triggered 

by the expression of the mutant insulin C93S rather than triggered by disruption of a 

functional gene (possibly caused by random integration of the INSC93S transgene) as 

they indicate that the effects of INSC93S expression in the development of a mild 

diabetic phenotype are dose-dependent. Moreover, we demonstrated that INSC93S is 

stable within the genome and is inherited by germline transmission to offspring. 
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Transgenic F1 offspring of 9776 (Figure 7) and 9748 (data not shown) showed the 

same INSC93S integration pattern and also a similar INSC93S/INS transcript ratio in the 

pancreas as their respective founder (Figure 7). These results argue in favor of one 

single integration site of the INSC93S transgene copies.  

INSC93S transgenic pigs develop a mild diabetic phenotype which is different from 

severe diabetes observed in humans carrying heterozygous INS mutations and different 

from the existing INS mutant animal models, including INSC94Y transgenic pigs 

(HERBACH et al., 2007; RENNER et al., 2013; LIU et al., 2015). In humans, 

dominant INS mutations cause a heterogeneous repertoire of severe forms of diabetes, 

including permanent neonatal diabetes, infancy-onset diabetes (i.e. diabetes diagnosed 

before 12 months of age), type 1b diabetes (i.e. non-autoimmune type 1 diabetes), 

maturity-onset diabetes of the young (MODY), and early-onset type 2 diabetes (STOY 

et al., 2007; COLOMBO et al., 2008; EDGHILL et al., 2008; MOLVEN et al., 2008; 

POLAK et al., 2008). The Munich Ins2C95S mouse model (corresponding mutation of 

the INSC93S transgenic pig), develops hyperglycemia and hypoinsulinemia from the 

fourth week of life (HERBACH et al., 2007). However, in contrast to humans and 

mouse models with mutant insulin genes, our pig model expresses the mutant INSC93S 

as a transgene, while the endogenous INS alleles are intact. Consequently, the 

phenotype of the founder animals was variable due to random transgene insertion and 

consequently different expression levels of INSC93S.  

Previously, transgenic pigs expressing the mutant insulin C94Y were generated, and 

one line developed permanent neonatal diabetes within the first week of life (RENNER 

et al., 2013). This INS mutation results in a proinsulin with one disrupted interchain 

disulfide bond (between the A- and B-chain of the insulin) (RENNER et al., 2013). In 

INSC93S transgenic pigs, the cysteine to serine exchange at position 93 leads to a 

disruption of an intra-A-chain disulfide bond of the proinsulin (Figure 3: Proinsulin 

amino acid sequence 

Proinsulin amino acid sequence composed of the A-chain, B-chain and the connecting 

peptide (C-peptide). The A- and B-chain of the insulin are connected by two interchain 

and one intrachain disulphide bonds. The arrow depicts the amino acid exchange 

cysteine to serine at position 93 (C93S) within the mutant insulin.  The differences in 

the phenotype between these two pig models could be attributed to (i) the expression 

level of the mutant INS (which was 20 % higher in INSC94Y transgenic pigs as 

compared to the INSC93S transgenic founder 9776 with the highest expression level of 
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the mutant insulin C93S  (RENNER et al., 2013) and (ii) possibly to differences in 

intracellular mechanisms to rescue different forms of misfolded insulin (LIU & 

KAUFMAN, 2003; LIU et al., 2005).  

The molecular mechanisms going along with the expression of the mutant insulin 

C93S were not explored in this study. However, it is well established that disruption 

of disulfide bonds causes misfolding of the mutant proinsulin (CHANG et al., 2003), 

blockage of its maturation process, and activation of ER stress response pathways, 

ultimately impairing β-cell function and resulting in β-cell death (IZUMI et al., 2003; 

ZUBER et al., 2004; LIU et al., 2005; PARK et al., 2010; RAJAN et al., 2010). 

Therefore, the translated misfolded proinsulin likely also cause a stress responses in 

the β-cells of INSC93S transgenic pigs (RENNER et al., 2013). Importantly, co-

expression of wt and mutant INS proteins in vitro interfered with secretion of the wt 

insulin, and this was caused by intracellular trapping of wt insulin by expression of 

insulin mutant forms (LIU et al., 2010). Since INSC93S transgenic pigs express both the 

mutant and the endogenous insulin one can speculate that the C93S mutation also 

interferes with wt insulin maturation and secretion by similar mechanisms.  

 INSC93S transgenic pigs develop a mild diabetic phenotype  

We have performed a detailed characterization of glucose tolerance and insulin 

secretion in INSC93S transgenic pigs of the F1 and F4 generation of founder 9776 by 

means of IVGTT and MMGTTs at four and seven months of age. First, we showed 

that, like in humans, glucose and insulin curve responses were influenced by the route 

of glucose administration (ABDUL-GHANI et al., 2006a). When glucose was 

administrated orally, glucose and insulin concentrations were gradually increased in 

wt pigs which reflected the slower rate of glucose absorption as compared with the 

abrupt rise in plasma glucose and insulin concentration following an intravenous 

glucose load. Interestingly, we observed that the insulin responsiveness of 4-month-

old INSC93S transgenic pigs during a MMGTT was better as during an IVGTT. 

Following an intravenous glucose load insulin secretion was reduced while during a 

MMGTT insulin response was only delayed but overall insulin secretion unaltered. 

(Figure 11, Figure 12, Figure 14). It is well known that glucose-induced insulin 

secretion is potentiated when glucose is given orally compared with intravenous 

administration. This is known as the incretin effect (ELRICK et al., 1964; MCINTYRE 

et al., 1964) and is mediated by the two incretin hormones, glucose-dependent 

insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) reviewed in 
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(RENNER et al., 2016b). Both hormones are secreted by enteroendocrine cells in the 

intestine in response to nutrients (DRUCKER, 2006) and upon binding to their specific 

receptors in pancreatic β-cells they potentiate insulin secretion accounting for 20 to 60 

% of the total insulin response (NAUCK et al., 1986a; NAUCK et al., 1986b). Thus, 

these results indicate that although pancreatic β-cells have a functional defect due to 

expression of mutant insulin, they still respond, at least to some extent, to incretins. 

Secondly, we demonstrated that IGT in INSC93S transgenic pigs was aggravated at 

seven months of age as total insulin secretion was not only significantly reduced 

following during IVGTT (Figure 13 C and D) but also during MMGTT (Figure 15 C 

and D). Additionally, first phase (0-10 min) insulin secretion was absent in INSC93S 

transgenic pigs during IVGTT at seven months (Figure 12 C). 

Altered kinetics of insulin secretion are also described in human studies of individuals 

with both IFG and/or IGT (HANEFELD et al., 2003; FESTA et al., 2004; ABDUL-

GHANI et al., 2006b; ABDUL-GHANI et al., 2006a; FÆRCH et al., 2009). Isolated 

IFG in humans is characterized by a decrease in the first phase (first 10 min) insulin 

response during IVGTT and reduced early-phase (first 30 min) insulin secretion during 

OGTT while late-phase (60-120 min) insulin response is maintained normal. 

Individuals with IGT show normal fasting glucose levels but both early- and late-phase 

insulin secretion are accompanied with insulin secretion defects following OGTT. In 

this study, INSC93S transgenic pigs exhibited elevated FPG levels and IGT with 

impairment of both insulin secretion phases corresponding to those seen in pre-diabetic 

humans. In humans, the pathogenesis of IFG and IGT seems to be different and a 

combination of impaired insulin sensitivity with defects in insulin secretion 

(CARNEVALE SCHIANCA et al., 2003; NATHAN et al., 2007). Hepatic insulin 

resistance and insulin secretion defects in individuals with IFG accounts for excessive 

gluconeogenesis, resulting in elevated FPG and excessive early rise of glucose during 

first hour of OGTT (BOCK et al., 2007). However, maintenance of normal muscle 

insulin sensitivity and proper late phase insulin secretion enables plasma glucose levels 

in IFG to decline in late phase to near base line values at the end of OGTT. Contrary, 

individuals with IGT reveal muscle and hepatic insulin resistance as well as 

progressive defects in insulin secretion and thus resulting in elevated glucose levels 

directly after the glucose load and towards the end of OGTT (NATHAN et al., 2007; 

AOYAMA-SASABE et al., 2016). At both four and seven months of age, elevated 

stimulated glucose levels in INSC93S transgenic pigs were clearly associated with an 
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insulin secretion defect caused by the expression of the mutant insulin C93S. These 

results are consistent with reduced β-cell mass at 14 months of age (Figure 15). 

Elevated FPG levels in INSC93S transgenic pigs at four and seven months of age cannot 

be solely explained by defects in insulin secretion as fasting insulin levels in INSC93S 

transgenic pigs were only slightly lower than in wt controls (Figure 11 C, Figure 12 

C, Figure 14 C and Figure 15 C). Since reduced hepatic insulin sensitivity is often an 

acquired defect contributing for elevated fasting glucose levels in humans with IFG, 

hepatic insulin resistance might also play a role in IFG of INSC93S transgenic pigs. To 

address this hypothesis, hyperinsulinemic-euglycemic-clamps with a tracer would be 

required, and these will be done in future experiments. 

Finally, we observed different patterns of insulin secretion curves (monophasic curve 

and biphasic curve) that match decrease and increase of the respective glucose curves 

during MMGTTs (Figure 14 C and Figure 15 C). These distinct curve shapes are most 

likely related to the particular glucose challenge test type used in this study. MMGTTs 

are frequently used in pigs but differ from the standard OGTT protocols widely used 

in the clinic to diagnose human patients with IGT and diabetes mellitus (ADA, 2016). 

Unlike OGTTs in humans, where solely glucose is administrated orally, in MMGTTs, 

glucose plus a certain amount of pig food are mixed as to facilitate oral glucose 

consumption in pigs. As a result, glucose absorption may be influenced by the diet. In 

fact, fiber components are known to affect postprandial absorption of glucose giving 

rise to lower glucose and insulin concentrations, as well as to interfere with gastric 

emptying (JENKINS et al., 1978; TORSDOTTIR et al., 1989). In fact, as to counteract 

these disparities between tests, a recent study in 8-week-old pigs described a redefined 

OGTT method in pigs that resembles the OGTT in humans (MANELL et al., 2016). 

Nevertheless, it is important to point out that different glucose and insulin curve shapes 

have also been identified in humans during OGTTs (TSCHRITTER et al., 2003; 

NOLFE et al., 2012; HAYASHI et al., 2013). While, different insulin curve shape 

patterns strongly predict risk of developing diabetes (HAYASHI et al., 2013), others 

also indicate that individual characteristics such as gender and age are also associated 

to different oral glucose tolerance curve shapes (TSCHRITTER et al., 2003).   

In summary, expression of the mutant INSC93S in pigs triggers an impaired insulin 

response with development of mild hyperglycemia at fasting and reduced glucose 

tolerance following an oral and intravenous glucose challenge. This mild diabetic 
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phenotype in INSC93S transgenic pigs resembles some pre-diabetic phenotype forms in 

humans.  

 Females are slightly more glucose intolerant than male INSC93S 

transgenic pigs 

During IVGTTs performed at seven months of age, female INSC93S transgenic pigs 

showed a more pronounced IGT phenotype as compared to male INSC93S transgenic 

pigs (Figure 13 A, B, C and D). This was accompanied by reduced insulin secretion in 

females as compared to males. This result is contradictory to the results from the 

previously described Munich Ins2C95S mutant mouse model, in which female mice 

depict a significant milder disease phenotype compared to males (HERBACH et al., 

2007). In the Munich Ins2C95S mutant mouse model, this difference could be in part 

attributed to the protective effect of estrogen leading to a less pronounced phenotype 

in females (SCHUSTER, 2011). In fact, studies demonstrated that estrogens 

ameliorate oxidative stress and reduce apoptosis of pancreatic β-cells (LE MAY et al., 

2006), stimulate pancreatic β-cell secretion (ROPERO et al., 1999; BALHUIZEN et 

al., 2010), increase insulin sensitivity (LEE et al., 1999; GONZALEZ et al., 2001) and 

in ovariectomized Ins2C95S mutant females it improved glucose levels although it did 

not rescue β-cell loss (SCHUSTER, 2011) . Studies in the Göttingen Minipig revealed 

sex-related differences with females being more prone for the development of the 

metabolic syndrome and surprisingly revealed that males have higher concentrations 

of both testosterone but also estradiol (CHRISTOFFERSEN et al., 2007). Therefore, 

it could also be the case that in domestic pigs, males are more protected by effects of 

steroid hormones than females. This hypothesis is supported by the fact that this 

gender difference was observed in 7-month- but not in 4 months-old pigs. Seven 

months corresponds to the time when pigs reach sexual maturity.  

 Postprandial insulin secretion deficit is not sufficient to alter growth 

rate of INSC93S transgenic pigs 

Not surprising is the unaltered growth rate of INSC93S transgenic pigs compared with 

wt littermate controls. In humans, INS mutant carriers diagnosed with permanent 

neonatal diabetes are often born small for their gestational age as a consequence of the 

absence of insulin in utero, which acts as a growth factor and therefore promotes fetal 

growth (CAVE et al., 2000; POLAK & CAVE, 2007). In addition, insulin also impacts 

growth during postnatal life as shown by reduced growth rates in prepubertal children 
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with early onset of diabetes mellitus and poor glycemic control (TATTERSALL & 

PYKE, 1973; EDELSTEN et al., 1981; JACKSON, 1984). Transgenic pigs expressing 

the mutant insulin C94Y do not show reduced growth at birth but exhibit a 

progressively reduced growth rate from 2.5 month of age when not rescued with 

exogenous insulin, resulting in 40% reduced BW at 4.5 months of age (RENNER et 

al., 2013). In pigs the major postnatal growth rate occurs within the period from birth 

to six months of age (CORSON et al., 2008a). Contrary to INSC94Y transgenic pigs, 

INSC93S transgenic pigs do neither develop severe fasting hyperglycemia at birth, nor 

during juvenile ages and fasting plasma insulin levels are unaltered compared to 

controls. The insulin deficit in INSC93S transgenic pigs is manifested during 

postprandial periods when insulin secretion capacity is limited in these animals. 

Reduction of β-cell mass is also less pronounced in INSC93S transgenic pigs which are 

not dependent on insulin treatment. Thus, the degree of insulin deficiency is less 

marked in INSC93S than in INSC94Y transgenic pigs and although insulin secretion is 

impaired following a glucose challenge, the amount of insulin secreted seems to be 

enough to sustain normal growth. 

 Total β-cell volume is mildly reduced in INSC93S transgenic pigs 

We reported no differences in absolute and relative pancreas weight and this result is 

in line with unaltered growth rates in INSC93S transgenic pigs. When total β-cell volume 

was determined at 14 months of age in F1 offspring of founder 9776, a slight reduction 

(-22 %) of total β-cell volume was observed. Pancreatic β-cells secrete insulin in 

response to plasma glucose concentrations and thus, maintaining plasma glucose 

levels within a physiological range (NEWSHOLME et al., 2014). Loss of β-cell mass, 

is a feature of both type 1 and type 2 diabetes with reports showing 20 % - 65 % β-cell 

loss in type 2 diabetes (KLOPPEL et al., 1985; BUTLER et al., 2003; RAHIER et al., 

2008) and a substantial loss of 99 % in type 1 diabetes (MEIER et al., 2005). Evidence 

from human studies indicate that depletion of approximately 65 – 80 % of β-cell mass 

leads to insufficient insulin requirement and development of diabetes (KENDALL et 

al., 1990; MEIER et al., 2012). In a study involving eight NGT, 10 IGT and 11 type 2 

diabetic patients who underwent pancreatic surgery, it was demonstrated that β-cell 

area was directly correlated with glucose control in these patients, and the β-cell area 

reduction was 11.4 % in IGT (not significantly different from NGT controls) and 65 

% in type 2 diabetic patients (MEIER et al., 2009). However, insulin and C-peptide 

levels were not significantly decreased in these IGT patients compared with NGT 
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indicating that despite a small decrease of β-cell mass, β-cell function was still 

preserved in this particular group. In contrast, INSC93S transgenic pigs have an acquired 

β-cell function defect by the expression of the mutant INS. Hence, INSC93S transgenic 

pigs depict a model in which expression of the mutant INSC93S is the primary defect 

that alters β-cell function and leads to impairment of insulin secretion especially during 

stimulatory conditions. Under increased secretory demand, increased ER stress 

mediated by misfolding of the mutant INS can thus progressively trigger pancreatic β-

cell death with loss of pancreatic β-cell mass (IZUMI et al., 2003; ZUBER et al., 2004; 

LIU et al., 2005; PARK et al., 2010; RAJAN et al., 2010). This hypothesis is also 

supported by INSC94Y transgenic pigs as these animals develop severe hyperglycemia 

within the first week of age despite unaltered β-cell mass at that stage (RENNER et 

al., 2013). Another factor contributing to progressive reduction of β-cell mass is 

exposure to chronic hyperglycemia. In vitro studies demonstrated that hyperglycemic 

conditions induce β-cell stress by increasing cellular oxidative stress with increased 

production of reactive oxygen and nitrogen species (IHARA et al., 1999; FEDERICI 

et al., 2001; KAISER et al., 2003; MAEDLER et al., 2008). Although INSC93S 

transgenic pigs do not develop severe hyperglycemia, prolonged postprandial 

hyperglycemia levels caused by impaired glucose tolerance in INSC93S transgenic pigs 

could perpetuate a vicious cycle of increased secretory demand of β-cells and thus 

triggering more ER stress responses ultimately leading to some degree of β-cell 

apoptosis (IZUMI et al., 2003; HERBACH et al., 2007; LIU et al., 2007; LIU et al., 

2015). 

2. Metabolic changes of INSC93S transgenic pigs during 

pregnancy 

Next, we characterized the phenotype of INSC93S transgenic pigs during pregnancy. 

In healthy humans, normoglycemia is maintained during pregnancy despite several 

pregnancy-intrinsic-physiological changes that result in a “diabetogenic-like” 

phenotype characterized by (i) elevated postprandial glucose levels, (ii) increased 

whole body insulin resistance and (iii) increased circulating lipids. The hallmark for 

the development of diabetes during pregnancy is the inability to secrete enough 

endogenous insulin to meet the increased demand of insulin during pregnancy. 

Evidence from previous studies in wt pigs indicated that like in humans, pregnancy 

in pigs is a “diabetogenic-like” event where development of insulin resistance and 
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increased lipid mobilization at the end of gestation was observed (GEORGE et al., 

1978; SCHAEFER et al., 1991; PÈRE & ETIENNE, 2007). Therefore, we aimed to 

first characterize pregnancy changes in pigs and our hypothesis was that INSC93S 

transgenic pigs with IGT and mild elevated fasting glycaemia would not be able to 

cope with intrinsic metabolic stress of pregnancy and therefore develop a progressive 

diabetic state during pregnancy. 

 Pregnancy induced decrease in insulin sensitivity in pigs is not further 

impaired in INSC93S-p sows  

In vivo peripheral insulin sensitivity was measured in the third trimester by the gold-

standard technique, the hyperinsulinemic-euglycemic clamp (HIC). An insulin 

infusion rate of 1 mU/kg BW/min that was supposed to fully suppress hepatic insulin 

production was chosen (DEFRONZO et al., 1978; KOOPMANS et al., 2006). Blood 

glucose levels were clamped at a concentration of 75 mg/dl by a varying glucose 

infusion rate resembling a mean normal fasting blood glucose concentration for pigs. 

Glucose infusion rates were 35 % reduced in wt-p sows compared with wt-np controls 

(Figure 18 B and C), whereas GIR was not further reduced in INSC93S-p sows (Figure 

18 F and G). This indicates that, like in humans, insulin sensitivity is physiologically 

reduced during late pregnancy in wt pigs and that the expression of the mutant insulin 

C93S did not further impair insulin sensitivity (although a tendency towards reduced 

insulin sensitivity in tg pigs was observed). The finding of reduced insulin sensitivity 

during pregnancy is also supported by previous studies in the pig (GEORGE et al., 

1978; SCHAEFER et al., 1991; PÈRE et al., 2000; PÈRE & ETIENNE, 2007). The 

fact that insulin sensitivity is not further impaired in INSC93S-p sows is not surprising, 

since the molecular pathomechanism(s) of expression of the mutant INSC93S is 

reflected in defects in insulin secretion, rather than changes in peripheral insulin 

sensitivity. Women with GDM have defects in insulin sensitivity which may precede 

pregnancy (as part of either one or both genetic and environmental contribution) which 

is further impaired during pregnancy (RYAN et al., 1985; BUCHANAN et al., 1990; 

CATALANO et al., 1993; HOMKO et al., 2001). Nevertheless, GDM results from an 

endogenous insulin supply that is insufficient to meet the insulin demand 

(BUCHANAN & XIANG, 2005; BUCHANAN et al., 2007). An interesting point is 

why insulin resistance physiologically occurring during pregnancy combined with the 

intrinsic genetic defect in insulin secretion is not sufficient to trigger distinct 

hyperglycemia in INSC93S-p sows. One possible explanation is the difference in the 
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degree of physiological insulin resistance during pregnancy. In vivo studies measuring 

insulin sensitivity by means of HIC technique in GDM women indicate that insulin 

sensitivity is reduced by 50 % to 80 % compared with only 35 % in INSC93S-p sows 

(RYAN et al., 1985; BUCHANAN et al., 1990; CATALANO et al., 1991; 

CATALANO et al., 1992; CATALANO et al., 1993). Interestingly, GIRs reduced to 

a similar extent are reported among pregnant women with NGT were reported in our 

wt-p group. The molecular mechanisms underlying desensitization to insulin during 

pregnancy in humans are not fully understood. Nevertheless, data from human and 

murine studies, in healthy pregnancy and GDM, suggest that insulin resistance is 

multifactorial, involving a combination of increased maternal adiposity (with 

increased levels of adipokines and cytokines) in addition to desensitization effects of 

placental associated hormones (BARBOUR et al., 2007). Muscle and adipose tissue 

biopsy samples obtained from elective caesarian delivery reveal significant changes in 

IR activity, a decrease in total IRS1 protein concentrations and significantly decreased 

tyrosine phosphorylation of IR and IRS proteins that are aggravated in GDM 

(FRIEDMAN et al., 1999; SHAO et al., 2000; CATALANO et al., 2002; BARBOUR 

et al., 2011). As insulin resistance is physiologically developed in pigs, the same 

molecular mechanisms can be speculated and they can help for a deeper understanding 

on the development of insulin resistance during pregnancy. Understanding of these 

mechanisms can help to develop novel treatment strategies as to reduce insulin 

resistance in GDM patients.   

 Pregnancy is not enough to cause distinct hyperglycemia in INSC93S 

transgenic pigs 

Pregnancy did neither alter FPG in wt nor in INSC93S transgenic pigs. Unaltered FPG 

concentrations during gestation in wt pregnant sows are also reported by others and 

thus our results confirm these previous findings (AHERNE et al., 1969; REYNOLDS 

et al., 1985; DUEE et al., 1987; SIMOES NUNES et al., 1987; PÈRE et al., 2000; 

PÈRE & ETIENNE, 2007). In human pregnancy, different studies report a decrease in 

FPG throughout the course of gestation and, although the molecular mechanisms are 

not clear, it has been attributed to an increase in distribution volume with the 

establishment of pregnancy and to the growth of the fetal-placental unit in the last 

gestational phase (KALHAN et al., 1979; HADDEN & MCLAUGHLIN, 2009; 

ANGUEIRA et al., 2015). In the post-absorptive phase (fasting phase), the liver is the 

main contributor to FPG concentrations obtained by hepatic glucose production and 
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the rate of hepatic glucose production reflects the rate of glucose uptake (DEFRONZO 

et al., 1989). Metabolite turnover rates using tracer isotope dilution methods provide a 

better overview on metabolism as compared with point analysis concentrations which 

give only a static information for a parameter. Using these methods, it was shown that 

glucose turnover rate (appearance of glucose in the maternal circulation) during the 

post-absorptive phase was 16 % increased during pregnancy. This observation goes 

along with decreased glucose concentrations as a result of an increased distribution 

space (KALHAN et al., 1979). Insulin and glucagon are the two major glucoregulatory 

hormones that have a pivotal role in regulating hepatic glucose production (CAHILL 

et al., 1966; FELIG & WAHREN, 1971; UNGER, 1971; ALFORD et al., 1974). 

During prolonged fasting in humans, the decline in plasma insulin levels is a major 

hormone trigger to regulate hepatic glucose production and basal levels of glucagon 

are necessary to maintain hepatic glucose production. During pregnancy in humans, 

basal insulin levels rise, especially with progression of pregnancy (SPELLACY & 

GOETZ, 1963; BLEICHER et al., 1964; CATALANO et al., 1991; CATALANO et 

al., 1993) and reports indicate that glucagon levels do not differ from the non-pregnant 

state (LEBLANC et al., 1976). During our study, insulin levels were not monitored 

throughout pregnancy. However, we do have evidence that at the end of gestation basal 

insulin secretion was not different between the three groups (wt-np, wt-p and tg-p) 

(Figure 21 D). Therefore, it seems that regulation of basal glucose metabolism during 

pregnancy in pigs differs from humans. This hypothesis would also explain why FPG 

in INSC93S-p sows were not further impaired during pregnancy and remain unaltered 

compared with INSC93S-np controls. Women with GDM develop hyperglycemia that 

is a consequence of their inability to compensate for the increased insulin demand due 

to reduced insulin sensitivity compared to healthy pregnant women (RYAN et al., 

1985; CATALANO et al., 1993; HOMKO et al., 2001). We show that insulin 

resistance is not further impaired in INSC93S-p (Figure 18 E and F) and in fact, fasting 

plasma insulin concentrations during the third trimester indicate no additional insulin 

demand in the fasting state (Figure 21 D). Therefore, it could be expected that 

pregnancy-induced metabolic stress per se is not sufficient to provoke a distinct 

hyperglycemic state or overt diabetes in INSC93S transgenic sows. One possible way to 

achieve this would be the feeding of a high-energy-high-fat-diet. It was previously 

shown that the fat level in the diet fed to a sow during gestation is directly related to 

impaired glucose tolerance (VAN DER PEET-SCHWERING et al., 2004). Feeding a 
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high-fat diet combined to INSC93S transgenic pigs during pregnancy could be therefore 

a visible strategy in future studies to combine genetically and environmental factors to 

achieve a distinct diabetic state during pregnancy.  

 HGCs confirm reduced β-cell function in pregnant INSC93S transgenic 

sows  

In vivo β-cell function was evaluated by HGC, in which plasma glucose levels were 

acutely raised and sustained for 90 min at a hyperglycemic plateau of 300 mg/dL by 

variable glucose infusion rates. Because the same steady-state of hyperglycemia was 

achieved in INSC93S-p and wt-p sows (Figure 20 A), insulin response under maximal 

stimulatory conditions could be directly compared in the two groups. HGC confirmed 

that insulin secretion is severely impaired (- 71 %) in INSC93S transgenic compared 

with wt sows during pregnancy (Figure 20 B and C). This indicates that during 

pregnancy, under hyperglycemic conditions, INSC93S-p transgenic sows fail to 

compensate with an adequate insulin response but are able to react in a similar manner 

to an arginine bolus.  

 Pregnancy impaired glucose tolerance in wt-p sows and further 

aggravated glycemic control in INSC93S-p sows due to failure to 

compensate for an increased insulin demand 

In addition to HGC, β-cell function and glucose tolerance were evaluated during 

MMGTT, allowing us to determine glucose and insulin response in a closer natural 

scenario. We demonstrated that pregnancy induced a slight but significant degree of 

IGT in wt sows as shown by increased glycemia following meal ingestion that was 

sustained during one hour upon challenge (Figure 21 A). Wt-p sows secreted more 

insulin as to maintain normoglycemia despite a reduced insulin sensitivity compared 

to np controls (Figure 21 D and E). These results indicate that, like in humans, insulin 

is less effective for controlling circulating glucose in the later pregnancy stages which 

was also verified by others (SCHAEFER et al., 1991; PERE, 2001; PÈRE & 

ETIENNE, 2007), and altogether demonstrate that similar to healthy humans, wt-p 

pigs adapt as to keep sufficient glucose available for the fetuses during times of 

interrupted feeding (BUTTE, 2000; DI CIANNI et al., 2003). The molecular events 

underlying β-cell compensatory mechanisms (either by increasing β-cell function or 

mass) during pregnancy in humans have not been clarified. Rodent islets not only 

differ in terms of islet architecture compared with human and porcine islets 
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(CABRERA et al., 2006; KIM et al., 2009; STEINER et al., 2010), they also feature a 

much higher regeneration capacity (CHICK & LIKE, 1970; BONNER-WEIR et al., 

1983; FINEGOOD et al., 1995; MENGE et al., 2008). From the few studies analyzing 

β-cell mass adaption during pregnancy in humans (VAN ASSCHE et al., 1978; 

BUTLER et al., 2010) a much smaller increment in β-cell mass is seen as compared 

with the dramatic β-cell mass expansion in murine pregnancy, suggesting that human 

β-cells compensate insulin demand by increasing β-cell function of preexisting islets. 

How pigs regulate β-cell mass during pregnancy is not known. Future studies on this 

topic are important and may also shed light on human β-cell mass regulation during 

pregnancy.  

Furthermore, we showed that IGT was aggravated in mildly hyperglycemic, pregnant 

INSC93S transgenic sows compared to pregnant controls (Figure 21 A). The 

postprandial hyperglycemic burden observed in pregnant INSC93S transgenic sows is 

due to inappropriate compensatory insulin secretion capacity that can be explained by 

the expression of the mutant insulin C93S (Figure 21 D and F). The importance of β-

cell function in pregnancy is highlighted in in vitro stimulation studies using isolated 

islets of pregnant rats. It was demonstrated that islets isolated from pregnant rats 

(GREEN & TAYLOR, 1972) or isolated from rats with prolonged exposure to 

physiological progesterone and estrogen concentrations mimicking pregnancy 

conditions (COSTRINI & KALKHOFF, 1971), secreted more insulin to lower glucose 

levels compared with isolated female islets of non-pregnant controls. Increased insulin 

content and insulin secretion was also observed in glucose-stimulated pancreas tissue 

isolated from pregnant rats in comparison to pancreas from non-pregnant controls 

(MALAISSE et al., 1969). In addition, increased rates of proinsulin biosynthesis 

followed with increments in intracellular levels of adenylate cyclase and cyclic AMP 

were found in isolated islets of pregnant rats (BONE & TAYLOR, 1976), supporting 

evidence of increased needs in insulin production by β-cells during pregnancy. 

Because INSC93S transgenic animals show insulin secretion defects (Figure 21 D and 

F) and expression of mutant insulin C93S interferes with wt endogenous proinsulin 

secretion (LIU et al., 2010), these mechanisms may explain the deficit in response 

towards extra insulin demand during pregnancy in INSC93S transgenic sows.  
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 Wildtype neonates born to pre-diabetic INSC93S mothers reveal 

impaired glucose tolerance despite increased insulin secretion  

We demonstrated that wt offspring born to INSC93S mothers developed an insulin 

resistance phenotype at birth with elevated FPG and IGT (Figure 22 A and Figure 23). 

These results are the first to describe in vivo assessment of metabolic changes directly 

after birth in wt offspring in a large animal model of mild maternal hyperglycemia. 

The elevated FPG directly after birth in wt/tg might be a consequence of changes 

occurring during gestation in maternal glucose concentrations in utero, which were 

simultaneously transferred to the fetus. It is well documented that the fetus relies 

primarily on maternal glucose as energy source and that glucose is transferred to the 

fetus by a maternal-placental-fetal glucose gradient (KALHAN et al., 1979; 

KALHAN, 2004). Studies in humans demonstrate a linear relationship between 

maternal and fetal glucose concentrations, and this relationship is observed during 

euglycemia as well as hyperglycemia (WHALEY et al., 1966; TOBIN et al., 1969; 

FOWDEN et al., 1982; SOLTESZ et al., 1985; BOZZETTI et al., 1988; PERE, 1995). 

Like in humans the fetal pig uses glucose as the main substrate for development and 

growth (FORD et al., 1984; PERE, 1995) and elevation of maternal glucose correlates 

with increased fetal glucose levels in the umbilical vein of chronic catheterized fetuses 

(FOWDEN et al., 1982; PERE, 2001).  

Fetal/neonatal hyperinsulinemia is a feature of pregnancies complicated by diabetes, 

and is correlated with maternal degree of hyperglycemia (GROUP et al., 2008; 

METZGER et al., 2010). We could not demonstrate neonatal hyperinsulinemia as the 

large majority of insulin values obtained by RIA assay were below the detection limit 

of this assay. Nevertheless, we have some indication that wt/tg secreted more insulin 

at birth (time 0 min) (Figure 22 B) and showed that upon glucose challenge wt/tg 

piglets adapted with increased insulin secretion as compared to wt/wt offspring (Figure 

23 C and D), indicating that fetal pancreatic endocrine alterations must be present as 

to overcome elevated glucose levels in INSC93S mothers. In vitro evaluation of neonatal 

endocrine pancreas from neonates born to mothers with reduced carbohydrate 

tolerance showed an increased proportion of β-cells (VAN ASSCHE & GEPTS, 

1971). Islet hyperplasia and increased pancreatic insulin content is observed in the rat 

fetal pancreas exposed to a mild-hyperglycemia-induced-model of diabetes 

(KERVRAN et al., 1978; BIHOREAU et al., 1986a). We observed low insulin 

concentrations (less than 5 µU/mL) directly at birth in both groups and this is in line 
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with other reports of insulin measurements in the fetal pig during late gestation (103-

107 days) (FOWDEN et al., 1982; MARTIN et al., 1984; PERE, 1995). The low 

insulin levels are characteristic for pigs in comparison with sheep and cows (HOVE & 

BLOM, 1973; SIERS & TRENKLE, 1973; BASSETT, 1974) and may explain, in part, 

the scarce amount of fat in the piglet at birth compared with other neonates 

(WIDDOWSON, 1950). Human neonates are a remarkable exception in this respect 

as they show a greater fat mass to BW percentage at birth (12 %) compared with less 

than 2 % in piglets (LITTEN-BROWN et al., 2010). 

We report that wt/tg offspring secreted more insulin than wt/wt offspring although, 

glucose concentrations remain significantly higher during OGTT indicating IGT due 

to insulin resistance (Figure 23 A and C). There is a clear evidence that offspring 

prenatally exposed to an intrauterine hyperglycemic environment are at risk to develop 

IGT (SILVERMAN et al., 1995; PLAGEMANN et al., 1997) and type 2 diabetes with 

increasing age (DABELEA et al., 2000; LINDSAY et al., 2000). Whether this is also 

the case in a pre-diabetic maternal environment and the time window to which these 

alterations may occur is less explored. Two human studies addressed the presence of 

insulin resistance at birth as to understand if the same pathophysiological processes 

preceding onset of metabolic syndrome and diabetes in adults would be present before 

and at birth. The study from Dyer et al., performed in a Hispanic cohort of neonates (a 

population group at high risk to develop a metabolic syndrome) showed increased 

insulin resistance following a shortened-frequently-sampled-intravenous-glucose-

tolerance test in large-for-gestational-age term neonates born to mothers with and 

without gestational diabetes compared with that in poorly grown and normal for 

gestational age neonates between 24–48 h of birth (DYER et al., 2007). The study 

from Catalano et al in samples collected from the umbilical vein during delivery 

revealed increased insulin resistance measured by homeostasis model of insulin 

resistance in neonates of obese mothers with a positive correlation between fetal 

adiposity and insulin resistance (CATALANO et al., 2009). Our findings support and 

extend those suggesting that fetal metabolic programming can be influenced by 

chronically exposure to milder forms of maternal glycemia with metabolic alterations 

manifested at birth. We are aware that increased fetal/neonatal body fat mass and fetal 

overgrowth was not observed in this study. Although not significant, relative liver and 

heart weights tented to be higher in wt/tg compared with wt/wt (Table 9). It is worth 

to mention that excessive fetal growth (macrosomia) observed in human neonates 
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exposed to a diabetic intrauterine environment may be a difficult point to assess in 

pigs. This is due to intrinsic natural variation in BW at birth within the same litters 

(FOWDEN et al., 1997). The pig is a polytocous species in which littermates may 

compete for maternal glucose supply (FOWDEN et al., 1997). Therefore, although 

fetal glucose levels are determined primarily by the maternal nutritional state, in pigs, 

the relative placental mass of each fetus and the number of fetuses in the litter may 

influence fetal glucose consumption and fetal glucose concentrations 

(WIDDOWSON, 1971; COMLINE et al., 1979; FOWDEN et al., 1997). In addition, 

differences in placenta morphology among humans and pigs may impact placenta-

nutrient-transport-efficiency, and impact fetal growth. Contrary to the high 

invasive/permeable hemochorial placenta in humans, pigs have a less permeable type 

of placenta, the epitheliochorial (e.g. placenta transport of NEFAs is limited in the pig 

whereas it occurs in the human placenta) (LITTEN-BROWN et al., 2010).     

In our study, elevated insulin levels in wt/tg piglets following an oral glucose challenge 

suggest an excessive β-cell response with development of IGT. This is further 

supported in a prospective study where excess fetal insulin secretion in utero measured 

in the amniotic fluid strongly predicts IGT in childhood, and although most of the 

children with IGT were obese, IGT was not associated with macrosomia by multiple 

logistic analysis (SILVERMAN et al., 1995). In addition, a cross-section study 

involving pre-puberty children revealed that elevated maternal glucose levels during 

gestation are specifically associated with poor insulin sensitivity in the children and 

are positively associated with the offspring’s β-cell responsiveness independent of the 

children´s adiposity grade (BUSH et al., 2011). Interestingly, other studies reported 

lower insulin secretion among offspring of diabetic pregnancies (including GDM) 

(GAUTIER et al., 2001; SOBNGWI et al., 2003; SALBE et al., 2007; KELSTRUP et 

al., 2013). However, in these studies, insulin secretion was analyzed in the offspring 

at adulthood. Animal studies also support this evidence in which increased insulin 

secretion at younger ages follows reduced insulin secretion in adult life (BOLOKER 

et al., 2002; HOLEMANS et al., 2003). Reduced insulin secretion is also observed in 

adult rats which were exposed to mild-hyperglycemia (110 – 140 mg/dL) during 

gestation (GAUGUIER et al., 1991). Thus one could speculate that overstimulated β-

cell response in early life can precede reduced β-cell function and mediate β-cell 

decline and full blown diabetes in later life. The molecular mechanisms by which 

maternal hyperglycemia modulates the offspring´s insulin sensitivity and increased β-
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cell response are not fully understood. As previously mentioned, alterations in the 

morphology of the fetal pancreas with increased β-cell mass and insulin content were 

observed in animal and human studies (VAN ASSCHE & GEPTS, 1971; KERVRAN 

et al., 1978; BIHOREAU et al., 1986a). In addition, alterations in skeletal muscle 

glucose uptake resulting from decreased protein levels of GLUT1 and GLUT4 

transporters have been demonstrated in murine offspring exposed to diabetes in utero 

(BOLOKER et al., 2002). Together these data demonstrate that milder forms of 

hyperglycemia as seen in INSC93S tg sows can affect in utero programming of 

metabolic disorders which are already manifest early in the postnatal period. 

Combined environmental risk factors such as overnutrition in later life, triggering 

exaggerated β-cell response may contribute to exhaustion and decline of β-cell 

function. Ultimately, this may explain increased prevalence of metabolic syndrome 

and type 2 diabetes in the offspring of diabetic mothers.  

 

In addition, we demonstrate that maternal intrauterine exposure to mild hyperglycemia 

has effects on different clinical-chemical parameters in plasma of the offspring. During 

fetal development, mobilization of lipids for fat storage varies tremendously among 

humans and other mammalian species (JONES, 1982). In humans, body fat deposition 

occurs essentially in the last trimester of intrauterine life and accounts for 

approximately 16 % of neonatal body mass at birth (mainly in the form of white-

adipose tissue) (HERRERA & AMUSQUIVAR, 2000). In the pig white adipose tissue 

in significant amounts could not be detected macroscopically in 1-day-old piglets by 

our group and low body fat mass in neonatal piglets is also supported by others 

(WIDDOWSON, 1950; LITTEN-BROWN et al., 2010). These observations are 

consistent with the low levels of triglycerides, NEFAs and lipase observed at birth in 

both wt/tg and wt/wt piglets (Figure 24). We do observe a significant increase in total 

cholesterol which is consistent with increased levels of LDL and HDL in wt/tg 

compared with wt/wt piglets (Figure 24). We recognize that there is limited 

information of comparison of lipid profiles in neonates at term of GDM or diabetic 

mothers with offspring from healthy pregnancies. Lipeski et al. studied children (7-9 

years of age) 20 born to GDM and 22 born to healthy control mothers (matched for 

family history of diabetes and hypercholesterolemia) and reported no differences in 

mean of cholesterol, LDL and total HDL among GDM offspring and controls 

(LIPESKI et al., 1998). Others have determined the prevalence of metabolic markers 



V Discussion 104 

for the metabolic syndrome (including elevated FPG, triglycerides, HDL, waist 

circumference) in children (7-11 years of age) born to GDM and control mothers and 

indicated that 25 % of GDM offspring had at least one significantly changed metabolic 

marker with increased triglycerides being most prevalent (KEELY et al., 2008). In 

children dyslipidemia, obesity, insulin resistance and glucose intolerance are factors 

related to the metabolic syndrome and increase the risk for the development of diabetes 

and cardiovascular diseases in adulthood (BURNS et al.; SCHUBERT et al.; FRANKS 

et al., 2007; JUONALA et al., 2008). Our results suggest that mild maternal 

hyperglycemia had differential effects in lipid metabolism of wt/tg compared with 

controls at birth.  

Furthermore, we evaluated lactate and LDH metabolism as these substrates are directly 

related to glucose metabolism i.e. glucose is the major source of lactate and lactate is 

the major substrate for endogenous glucose production (ADEVA-ANDANY et al., 

2014). Patients with diabetes mellitus show severe alterations in intracellular 

metabolism of glucose in insulin-sensitive tissues including enhanced non-oxidative 

glycolysis with increased lactate production (THORBURN et al., 1990; DEL PRATO 

et al., 1993). In healthy subjects most of the glucose disposal during the postprandial 

period (43.5 %) is metabolized via the oxidative pathway (with pyruvate entering the 

mitochondria and follow the tricarboxylic cycle), 33 % is used for glycogen synthesis 

whereas 23.5 % follows the non-oxidative glycolysis pathway with formation of 

lactate (WOERLE et al., 2003). Although not significantly different, wt/tg piglets 

showed increased plasma lactate at two hours post oral glucose challenge compared 

with wt/wt (Figure 25 B). Consistently LDH was significantly higher two hours post 

oral glucose challenge in wt/tg (Figure 24 C). These results suggest that energy 

production during postprandial period in wt/tg is being enhanced through glycolysis 

via the non-oxidative pathway as compared to controls. Determination of levels of 

pyruvate dehydrogenase (PDH) as well as pyruvate would be necessary to confirm 

these preliminary observations. Interestingly, expression levels of genes involved in 

the mitochondrial oxidative pathway were found reduced in the skeletal muscle from 

patients with diabetes as compared to healthy controls (MOOTHA et al., 2003; PATTI 

et al., 2003), and reduced activity of PDH complex enzymes, are found reduced in 

vitro, in muscle of diabetic patients (ABBOT et al., 2005). Studies in chronic 

catheterized sows and fetal piglets indicate that lactate concentrations are increased in 

the fetal circulation compared to the maternal circulation (PERE, 1995, 2001) which 
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is also true for humans (GILFILLAN et al., 1985; BELL et al., 1989), sheep (BURD 

et al., 1975; CHAR & CREASY, 1976), guinea pigs (CARSTENSEN et al., 1982) and 

rats (SHAMBAUGH et al., 1977), suggesting that lactate is produced from glucose by 

the placenta. In pregnancies complicated by diabetes, excessive maternal blood 

glucose could facilitate overproduction of lactate in the placenta. Indeed, in vitro 

perfusion studies in human placentas from uncomplicated pregnancies perfused with 

gradually increased glucose concentrations indicate that the amount of lactate produce 

by the placenta is proportional to glucose concentration (HAUGUEL et al., 1986). 

Although, this is not confirmed in perfusion studies from placentas from GDM women 

(OSMOND et al., 2000). In contrast, another study indicates a 23% increase in the 

lactate concentration in the umbilical vein in GDM pregnancies (TARICCO et al., 

2009). We report no differences in basal levels of lactate at birth between wt/tg and 

wt/wt, suggesting that there were no differences in the placental lactate production 

among the two groups in this study.
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VI. CONCLUDING REMARKS AND PERSPECTIVES  

INSC93S transgenic pigs expressing the mutant insulin C93S develop mild diabetes 

characterized by elevated fasting glucose levels and impaired glucose tolerance. This 

phenotype is specific to the mutant INSC93S primarily causing a β-cell function defect, 

leading to impairment of insulin secretion, which is mostly evident under glucose-

stimulated conditions. Thus, INSC93S transgenic pigs represent a model of a subtle 

degree of diabetes which resembles a pronounced pre-diabetic state in humans. 

Pregnancy per se was not sufficient to further impair glycemic control in INSC93S 

transgenic pigs. However, it could be demonstrated that even milder degrees of 

hyperglycemia directly impact glucose control at birth in newborn wt piglets. Within 

this work two important questions were raised and should be addressed in future 

studies. First, which molecular events contributed to the metabolic alterations at birth 

in wt/tg piglets? Possible compensatory pancreatic alterations, such as increased β-cell 

mass or function was present in these animals. Development of insulin resistance was 

also suggested, and thus it would be important to determine if impairment of insulin 

signaling is present in peripheral tissues. Organ weight analysis showed that livers of 

wt/tg piglets tended to be heavier and clinical-chemical parameters also indicate 

increased liver metabolism. Therefore, it would be important to determine if the 

observed alterations in plasma metabolites are also associated with liver transcriptome 

changes of associated pathways. In addition, it would be mandatory to evaluate if in 

utero programming of metabolic disorders also persists during later developmental 

stages and if additional environmental risk factors, such as feeding a high-fat-high-

energy diet to the mothers, can contribute to the development of metabolic 

complications in this predisposed offspring. 

Other study applications that go beyond the maternal diabetes field can be explored in 

the INSC93S transgenic pigs. The pronounced pre-diabetic phenotype of these animals 

offers an excellent opportunity to identify possible early biomarkers related to β-cell 

dysfunction and compared to those found in the mild diabetic GIPRdn pig model with 

impaired incretin hormone function (RENNER et al., 2010). Moreover, high-fat diet 

manipulation in INSC93S transgenic pigs can possibly lead to an aggravated 

hyperglycemic phenotype and therefore, allowing to follow disease progression stages 

in a model integrating different comorbidities of diabetes (i.e. excessive weigh gain, 

dyslipidemia and possibly insulin resistance). 
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VII. SUMMARY  

Impaired glucose control in newborn piglets exposed to mild hyperglycemia in 

utero: study in a novel transgenic pig model for mild maternal diabetes  

 

Two types of maternal diabetes can be distinguished: preconceptional diabetes, i.e. 

preexisting type 1 or type 2 diabetes in the mother or gestational diabetes (GDM) with 

its first onset around the 24th week of pregnancy. Maternal diabetes negatively affects 

fetal development as well as triggers intrauterine programming of diseases in the 

offspring’s later life like obesity, impaired glucose tolerance and type 2 diabetes 

mellitus. The deleterious effects of maternal hyperglycemia on mother, fetus and early 

offspring are especially difficult to study in humans. Hence, experimental animal 

models are essential to better understand the consequences of maternal diabetes. The 

pig is an excellent animal model as pigs share many similarities with humans, e.g. fetal 

development is completed intrauterine in humans and pigs while mice are born at a 

more immature state. Until now, the majority of animal models for maternal diabetes 

was established in rodents by different approaches as pancreatectomy, chemical or 

dietary diabetes induction as well as genetic engineering. So far only few models with 

a milder phenotype similar to the mild hyperglycemic levels in mothers due to a tightly 

regulated glycemic control exist. Here, we established a novel porcine model of mild 

maternal diabetes using transgenic pigs expressing the mutant insulin C93S.  

INSC93S transgenic pigs were generated by somatic cell nuclear transfer and embryo 

transfer. Before pregnancy glucose control was investigated by an IVGTT and 

MMGTT and ß-cell mass was determined by quantitative-stereological analyses. For 

pregnancy studies, three INSC93S transgenic (tg) and nine wildtype (wt) sows were 

artificially inseminated with semen of the same wt boar while three wt sows served as 

non-pregnant controls. Fasting blood glucose was monitored weekly throughout 

pregnancy. Within the third trimester, hyperinsulinemic-euglycemic (HIC) and 

hyperglycemic clamps (HGC) as well as and mixed-meal glucose tolerance tests 

(MMGTT) were performed. At birth, wt piglets born to wt sows (wt/wt, n=18) and wt 

piglets born to tg sows (wt/tg, n=13) underwent an oral glucose tolerance test (OGTT) 

before first colostrum intake. Piglets were necropsied on day one for tissue collection. 

INSC93S transgenic pigs show mild impaired fasting glycaemia (IFG), impaired glucose 

tolerance (IGT) and insulin secretion as well as a slightly decreased in β-cell mass (-
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22 %). As observed in humans, insulin sensitivity was reduced in pregnant wt sows 

compared to non-pregnant wild-type controls within the third trimester. Insulin 

sensitivity of pregnant INSC93S transgenic sows was reduced to the same extent. β-cell 

function was severely reduced in INSC93S transgenic pregnant sows, displayed by 

reduced insulin secretion and glucose infusion rate during the HGC. In a MMGTT 

glucose tolerance was nearly, however not fully sustained in wt pregnant vs. non-

pregnant sows by increased insulin secretion, while INSC93S transgenic sows did not 

meet the increased insulin demand. Fasting hyperglycemia in INSC93S tg sows did not 

deteriorate further throughout pregnancy. Wildtype piglets born to wt sows (wt/wt) 

revealed unaltered birth and organ weights compared to wt piglets born to transgenic 

sows (wt/tg). However, glucose tolerance of wt/tg piglets was significantly reduced 

despite increased insulin secretion indicative of an insulin-resistant state. Additionally, 

wt/tg piglets showed significantly increased cholesterol as well as LDL and HDL 

levels. 

In summary, we established a novel transgenic pig model which reveals mild IFG and 

IGT representing a pronounced pre-diabetic state. As pigs and humans exhibit an 

insulin resistant-state during late pregnancy, INSC93S transgenic pigs seems to be a 

valuable model for the evaluation of consequences of mild maternal hyperglycemia on 

the offspring. Indeed, it was demonstrated in our study that mild maternal 

hyperglycemia resulted in impaired glucose tolerance despite increased insulin 

secretion as well as altered lipid metabolism in piglets at birth. This work can be further 

extended as to understand which molecular events contributed to the metabolic 

alterations at birth. Additionally, further studies will show if in utero programming of 

metabolic disorders also persists during later developmental stages, and how 

additional environmental risk-factors, such as feeding a high-fat-high-energy diet to 

the mothers affects their own as well as their offspring’s metabolism.  
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VIII. ZUSAMMENFASSUNG 

Verminderte Glukosetoleranz in neugeborenen Ferkeln infolge einer Exposition 

von maternaler Hyperglykämie: eine Studie in einem neuen transgenen 

Schweinemodell für geringgradigen maternalen Diabetes 

 

Bislang sind zwei Formen von maternalem Diabetes bekannt, einmal der 

präkonzeptionelle Diabetes, d.h. ein bereits vor der Schwangerschaft bestehender Typ 

1 oder Typ 2 Diabetes sowie Gestationsdiabetes, welcher zum ersten Mal zumeist um 

die 24. Gestationswoche auftritt. Maternaler Diabetes kann negative Auswirkungen 

auf die fötale Entwicklung sowie die Entwicklung von Krankheiten wie Adipositas, 

reduzierte Glukosetoleranz und Typ 2 Diabetes mellitus bei den Nachkommen 

begünstigen. Die Untersuchung der Auswirkungen des maternalen Diabetes auf die 

Mutter sowie frühe Entwicklungsstadien der Nachkommen ist beim Menschen kaum 

möglich. Aus diesem Grund sind aussagekräftige Tiermodelle von großer Bedeutung. 

Generell ist das Schwein ein exzellentes Tiermodell, da es sehr viele Ähnlichkeiten 

mit dem Menschen hat, die auch für die Untersuchung von Konsequenzen des 

maternalen Diabetes relevant sind. So wird beim Schwein wie auch beim Menschen 

die fötale Entwicklung intrauterin abgeschlossen, während Mäuse in einem unreiferen 

Stadium geboren werden. Bis heute wurden die meisten Tiermodelle zu diesem Thema 

im Nager mittels von Pankreatektomie, Diabetesinduktion durch chemische 

Substanzen wie Streptozotocin, durch spezielle Diäten oder mittels genetischer 

Modifikationen etabliert. Nur wenige der bislang etablierten Tiermodelle zeigen einen 

milden Phänotyp, d.h. nur eine geringgradige Hyperglykämie, die der Situation von in 

der Regel aufgrund einer engmaschigen Blutzuckerkontrolle gut eingestellten 

Schwangeren entspricht. Deshalb haben wir in der vorliegenden Studie ein neues 

Schweinemodell erstellt, welches eine milde Form von maternalem Diabetes zeigt. 

Transgene Schweine, die das mutierte Insulin C93S exprimieren, wurden mittels 

somatischen Kerntransfers mit anschließendem Embryotransfer erstellt. Zunächst 

wurde die Glukosehomöostase mittels eines intravenösen sowie eine „mixed-meal“ 

Glukosetoleranztests untersucht. Im Anschluss daran wurden weibliche Tiere mit 

Sperma desselben Ebers besamt und innerhalb des dritten Trimesters 

hyperinsulinämische-euglykämische Clamps (HIC), hyperglykämische Clamps 

(HGC) sowie ein „mixed-meal“ Glukosetoleranztest durchgeführt. Unmittelbar nach 

der Geburt und vor der ersten Kolostrumaufnahme wurden bei Ferkeln von nicht 
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transgenen Kontrollsauen (wt/wt, n=18) sowie bei nicht-transgenen Ferkeln von 

INSC93S transgenen Sauen orale Glukosetoleranztests durchgeführt. Zur 

Organprobenentnahme wurden die Ferkel am ersten Lebenstag euthanasiert und 

seziert. 

INSC93S transgene Schweine entwickeln geringgradig erhöhte gefastete 

Blutglukosespiegel, eine reduzierte Glukosetoleranz und Insulinsekretion sowie eine 

reduzierte ß-Zellmasse (-22%). Ähnlich wie beim Menschen zeigten 

Kontrollschweine eine reduzierte Insulinsensitivität im dritten Trimester, die bei 

INSC93S transgenen Schweinen ähnlich ausgeprägt war. Die ß-Zellfunktion während 

der Trächtigkeit war jedoch hochgradig gestört, was durch eine signifikant reduzierte 

Insulinsekretion sowie reduzierte Glukoseinfusion im HGC gezeigt werden konnte. Im 

MMGTT war die Glukosetoleranz bei trächtigen wt Sauen aufgrund einer signifikant 

erhöhten Insulinsekretion zur Kompensation der reduzierten Insulinsensitivität 

beinahe vollständig erhalten, während INSC93S transgene Sauen den erhöhten 

Insulinbedarf nicht vollständig kompensieren konnten und deshalb signifikant erhöhte 

Blutglukosespiegel zeigten. Die bereits bestehende gefastete Hyperglykämie bei 

INSC93S transgene Sauen verschlechterte sich während der Trächtigkeit jedoch nicht. 

Wt/wt Ferkel hatten ein unverändertes Geburtsgewicht sowie Organgewichte im 

Vergleich zu wt/tg Ferkeln. Die Glukosetoleranz von wt/tg Ferkeln war jedoch trotz 

einer signifikant erhöhten Insulinsekretion reduziert, was auf einen Status von 

Insulinresistenz hinweist. Zusätzlich zeigten wt/tg Ferkel signifikant erhöhte 

Plasmakonzentrationen von Gesamt-, sowie LDL- und HDL-Cholesterin. 

In der vorliegenden Studie wurde ein neues transgenes Schweinemodell, das 

geringgradig erhöhte, gefastete Blutglukosespiegel sowie eine reduzierte 

Glukosetoleranz entsprechend einem fortgeschrittenem prä-diabetischem Stadium 

entwickelt, etabliert und charakterisiert. Da Schweine wie auch Menschen während 

der späten Trächtigkeit eine Insulinresistenz entwickeln, erscheint das INSC93S 

transgene Schweinemodell als gut geeignetes Modell, um Auswirkungen des 

maternalen Diabetes auf die Mutter wie auch die Nachkommen untersuchen zu 

können. Es konnte in unserer Studie gezeigt werden, dass Nachkommen von 

prädiabetischen Sauen bereits bei Geburt Veränderungen des Glukosemetabolismus 

wie eine reduzierte Glukosetoleranz sowie Veränderungen im Lipidstoffwechsel 

zeigen. Zukünftige Studien müssen klären, ob diese Veränderungen fortbestehen, sich 

verschlimmern und zu einem Diabetes mellitus führen, welche molekularen 
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Mechanismen zugrunde liegen, und wie zusätzliche Faktoren, wie Adipositas, 

induziert durch das Füttern einer fettreichen-hochkalorischen Diät, sich auf Mütter und 

Nachkommen auswirken. 
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IX. INDEX OF ABBREVIATIONS 

ACTB ß actin 
ADA American Diabetes Association  
AUC area under the curve  
BMI body mass index 
BW body weight 
cDNA complementary deoxyribonucleic acid 
CETP cholesterol ester transfer protein  
CRL crown-rump length 
C-terminal carboxy-terminal 
CV coefficient of variance 
dATP deoxyadenosine triphosphate 
dCTP deoxycytidine triphosphate 
dGTP deoxyguanosine triphosphate 
DNA deoxyribonucleic acid  
dTTP deoxynucleotide triphosphate 
EDTA ethylenediaminetetraacetic acid 
FFA free fatty acids  
FPG fasting plasma glucose 
GDM gestational diabetes mellitus 
GLUT glucose transporter 
HAPO hyperglycemia and Adverse Pregnancy Outcomes 
HbA1c glycated hemoglobin  
HDL high-density lipoproteins 
HFD high fat diet 
HGC hyperglycemic clamp 
HIC hyperinsulinemic-euglycemic clamp 
hPGH human placental growth hormone 
hPL human placental lactogen  

IADPSG 
International Association of the Diabetes Pregnancy Study 
Groups  

IDF International Diabetes Federation  
IFG impaired fasting glucose 
IGT impaired glucose tolerance 
INS insulin  
IR insulin receptor tyrosine kinase 
IRS insulin-receptor substrate 
IVGTT intravenous glucose tolerance test 
LDL low density lipoproteins  
MMGTT mixed-meal glucose tolerance tests 
MODY maturity-onset diabetes of the young 
NEFA Non esterified fatty acids  
N-terminal amino-terminal 
OGTT oral glucose tolerance test 
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PCDM preconceptional diabetes mellitus  
PCR polymerase chain reaction 
PG postprandial glucose 
PI3K phosphatidylinositol 3-kinase  
PKB/AKT protein kinase B  
PKC atypical protein kinase C  
PRL prolactin 
RIA radioimmunoassay 
SCNT somatic cell nuclear transfer 
SEM standard error of means 
TNF-α tumor necrosis factor alpha 
UV ultraviolet 
VLDL very low density lipoproteins  



X Index of figures 114 

X. INDEX OF FIGURES 

Figure 1: INSC93S expression construct ................................................................... 37 

Figure 2: Catheter placement into a marginal ear vein ............................................ 44 

Figure 3: Proinsulin amino acid sequence .............................................................. 54 

Figure 4: Identification of INSC93S transgenic pigs by PCR ..................................... 56 

Figure 5: Southern blot analysis of INSC93S founders and F1 offspring of founder 9776

 .............................................................................................................................. 57 

Figure 6: RT-PCR products .................................................................................... 58 

Figure 7: Expression levels of the INSC93S transgene .............................................. 59 

Figure 8: (Fasting) blood glucose levels in INSC93S transgenic founder boars ......... 60 

Figure 9: Intravenous glucose tolerance in INSC93S tg founder boars ...................... 61 

Figure 10: Unaltered body weight gain in INSC93S transgenic pigs. ......................... 62 

Figure 11: Intravenous glucose tolerance in 4-month-old INSC93S transgenic pigs .. 64 

Figure 12: Intravenous glucose tolerance in 7-month-old INSC93S transgenic pigs .. 65 

Figure 13: Intravenous glucose tolerance in 7-month-old INSC93S transgenic pigs, 

gender effects......................................................................................................... 66 

Figure 14: Oral glucose tolerance in 4-month-old INSC93S transgenic pigs .............. 68 

Figure 15: Oral glucose tolerance in 7-month-old INSC93S transgenic pigs. ............. 69 

Figure 16: Quantitative stereological analysis of the pancreas ................................ 70 

Figure 17: Fasting glucose levels in INSC93S transgenic sows during pregnancy ..... 72 

Figure 18: Hyperinsulinemic-euglycemic clamps in wt sows during pregnancy...... 74 

Figure 19: Hyperinsulinemic-euglycemic clamps in tg sows during pregnancy ...... 75 

Figure 20: Hyperglycemic clamps during pregnancy .............................................. 77 

Figure 21: MMGTT during pregnancy. .................................................................. 79 

Figure 22: Fasting glucose and insulin levels at birth in offspring of INSC93S tg and wt 

control sows ........................................................................................................... 81 

Figure 23: Oral glucose tolerance tests in newborn piglets. .................................... 82 

Figure 24: Lipid metabolic parameters in offspring of INSC93S tg sows and wt controls

 .............................................................................................................................. 84 

Figure 25: Carbohydrate metabolic parameters in offspring born to INSC93S tg sows 

and born to wt controls........................................................................................... 85 

 



XI Index of Tables 115 

XI. INDEX OF TABLES 

Table 1: Diet composition ...................................................................................... 28 

Table 2: Master mix components per PCR reaction ................................................ 38 

Table 3: PCR reaction conditions for both INSC93S and ACTB................................ 38 

Table 4 Master mix components per PCR reaction ................................................. 42 

Table 5: PCR reaction conditions for INS. ............................................................. 42 

Table 6: Immunohistochemistry staining protocol for insulin ................................. 47 

Table 7:  Clinical chemical parameters ................................................................... 52 

Table 8: Overview of NT experiments ................................................................... 55 

Table 9: Body and organ weights in 1-day-old piglets ............................................ 86 

 



XII Reference List 116 

XII. REFERENCE LIST 

Abbot EL, McCormack JG, Reynet C, Hassall DG, Buchan KW, Yeaman SJ. Diverging 
regulation of pyruvate dehydrogenase kinase isoform gene expression in 
cultured human muscle cells. FEBS J 2005; 272: 3004-14. 

Abdul-Ghani MA, Tripathy D, DeFronzo RA. Contributions of beta-cell dysfunction 
and insulin resistance to the pathogenesis of impaired glucose tolerance 
and impaired fasting glucose. Diabetes Care 2006a; 29: 1130-9. 

Abdul-Ghani MA, Jenkinson CP, Richardson DK, Tripathy D, DeFronzo RA. Insulin 
secretion and action in subjects with impaired fasting glucose and 
impaired glucose tolerance: results from the Veterans Administration 
Genetic Epidemiology Study. Diabetes 2006b; 55: 1430-5. 

ADA. 2. Classification and diagnosis of diabetes. American Diabetes Association. 
Diabetes Care 2016; 39: S13-S22. 

Adeva-Andany M, López-Ojén M, Funcasta-Calderón R, Ameneiros-Rodríguez E, 
Donapetry-García C, Vila-Altesor M, Rodríguez-Seijas J. Comprehensive 
review on lactate metabolism in human health. Mitochondrion 2014; 17: 
76-100. 

Aerts L, Sodoyez-Goffaux F, Sodoyez JC, Malaisse WJ, Van Assche FA. The diabetic 
intrauterine milieu has a long-lasting effect on insulin secretion by B cells 
and on insulin uptake by target tissues. Am J Obstet Gynecol 1988; 159: 
1287-92. 

Aerts L, Holemans K, Van Assche FA. Maternal diabetes during pregnancy: 
consequences for the offspring. Diabetes Metab Rev 1990; 6: 147-67. 

Aherne FX, Hays VW, Ewan RC, Speer VC. Glucose and Fructose in the Fetal and 
Newborn Pig1. Journal of animal science 1969; 29: 906-11. 

Aigner B, Renner S, Kessler B, Klymiuk N, Kurome M, Wunsch A, Wolf E. 
Transgenic pigs as models for translational biomedical research. J Mol 
Med (Berl) 2010; 88: 653-64. 

Albl B, Haesner S, Braun-Reichhart C, Streckel E, Renner S, Seeliger F, Wolf E, 
Wanke R, Blutke A. Tissue Sampling Guides for Porcine Biomedical 
Models. Toxicologic Pathology 2016; 44: 414-20. 

Alessi DR, Downes CP. The role of PI 3-kinase in insulin action. Biochim Biophys 
Acta 1998; 1436: 151-64. 

Alford FP, Bloom SR, Nabarro JD, Hall R, Besser GM, Coy DH, Kastin AJ, Schally AV. 
Glucagon control of fasting glucose in man. Lancet 1974; 2: 974-7. 

Alvarez JJ, Montelongo A, Iglesias A, Lasuncion MA, Herrera E. Longitudinal study 
on lipoprotein profile, high density lipoprotein subclass, and postheparin 
lipases during gestation in women. J Lipid Res 1996; 37: 299-308. 

Anderson DM, Elsley FWH, McDonald I, MacPherson RM. A study of the 
relationship between glucose tolerance of sows and the mean birth weight 
of their offspring. The Journal of Agricultural Science 1971; 76: 179-82. 



XII Reference List 117 

Angueira AR, Ludvik AE, Reddy TE, Wicksteed B, Lowe WL, Layden BT. New 
Insights Into Gestational Glucose Metabolism: Lessons Learned From 21st 
Century Approaches. Diabetes 2015; 64: 327-34. 

Aoyama-Sasabe S, Fukushima M, Xin X, Taniguchi A, Nakai Y, Mitsui R, Takahashi 
Y, Tsuji H, Yabe D, Yasuda K, Kurose T, Inagaki N, Seino Y. Insulin Secretory 
Defect and Insulin Resistance in Isolated Impaired Fasting Glucose and 
Isolated Impaired Glucose Tolerance. J Diabetes Res 2016; 2016: 
1298601. 

Arita Y, Kihara S, Ouchi N, Takahashi M, Maeda K, Miyagawa J, Hotta K, 
Shimomura I, Nakamura T, Miyaoka K, Kuriyama H, Nishida M, Yamashita 
S, Okubo K, Matsubara K, Muraguchi M, Ohmoto Y, Funahashi T, 
Matsuzawa Y. Paradoxical decrease of an adipose-specific protein, 
adiponectin, in obesity. Biochem Biophys Res Commun 1999; 257: 79-83. 

Assel B, Rossi K, Kalhan S. Glucose metabolism during fasting through human 
pregnancy: comparison of tracer method with respiratory calorimetry. 
American Journal of Physiology - Endocrinology and Metabolism 1993; 
265: E351-E6. 

Augustine RA, Grattan DR. Induction of central leptin resistance in hyperphagic 
pseudopregnant rats by chronic prolactin infusion. Endocrinology 2008; 
149: 1049-55. 

Averette LA, Odle J, Monaco MH, Donovan SM. Dietary fat during pregnancy and 
lactation increases milk fat and insulin-like growth factor I concentrations 
and improves neonatal growth rates in swine. J Nutr 1999; 129: 2123-9. 

Backer JM, Myers MG, Jr., Shoelson SE, Chin DJ, Sun XJ, Miralpeix M, Hu P, Margolis 
B, Skolnik EY, Schlessinger J, et al. Phosphatidylinositol 3'-kinase is 
activated by association with IRS-1 during insulin stimulation. EMBO J 
1992; 11: 3469-79. 

Baird JD. Some aspects of the metabolic and hormonal adaptation to pregnancy. 
Acta Endocrinol Suppl (Copenh) 1986; 277: 11-8. 

Balhuizen A, Kumar R, Amisten S, Lundquist I, Salehi A. Activation of G protein-
coupled receptor 30 modulates hormone secretion and counteracts 
cytokine-induced apoptosis in pancreatic islets of female mice. Mol Cell 
Endocrinol 2010; 320: 16-24. 

Balsells M, Garcia-Patterson A, Gich I, Corcoy R. Maternal and fetal outcome in 
women with type 2 versus type 1 diabetes mellitus: a systematic review 
and metaanalysis. J Clin Endocrinol Metab 2009; 94: 4284-91. 

Bandyopadhyay GK, Yu JG, Ofrecio J, Olefsky JM. Increased p85/55/50 expression 
and decreased phosphotidylinositol 3-kinase activity in insulin-resistant 
human skeletal muscle. Diabetes 2005; 54: 2351-9. 

Barbour LA, Mizanoor Rahman S, Gurevich I, Leitner JW, Fischer SJ, Roper MD, 
Knotts TA, Vo Y, McCurdy CE, Yakar S, Leroith D, Kahn CR, Cantley LC, 
Friedman JE, Draznin B. Increased P85alpha is a potent negative regulator 
of skeletal muscle insulin signaling and induces in vivo insulin resistance 
associated with growth hormone excess. J Biol Chem 2005; 280: 37489-
94. 



XII Reference List 118 

Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. 
Cellular Mechanisms for Insulin Resistance in Normal Pregnancy and 
Gestational Diabetes. Diabetes Care 2007; 30: S112-S9. 

Barbour LA, McCurdy CE, Hernandez TL, Friedman JE. Chronically increased 
S6K1 is associated with impaired IRS1 signaling in skeletal muscle of GDM 
women with impaired glucose tolerance postpartum. J Clin Endocrinol 
Metab 2011; 96: 1431-41. 

Bassett JM. Diurnal patterns of plasma insulin, growth hormone, corticosteroid 
and metabolite concentrations in fed and fasted sheep. Aust J Biol Sci 
1974; 27: 167-81. 

Bell JD, Brown JC, Sadler PJ, Garvie D, Macleod AF, Lowy C. Maternal and cord 
blood plasma. Comparative analyses by 1H NMR spectroscopy. NMR 
Biomed 1989; 2: 61-5. 

Berg JM, Tymoczko JL, Stryer L. II. Transducing and Storing Energy. In: 
Biochemistry, 6th ednNew York: W. H. Freeman 2007: xxxv, 1026, 86 p. 

Bihoreau MT, Ktorza A, Kervran A, Picon L. Effect of gestational hyperglycemia on 
insulin secretion in vivo and in vitro by fetal rat pancreas. Am J Physiol 
1986a; 251: E86-91. 

Bihoreau MT, Ktorza A, Kinebanyan MF, Picon L. Impaired glucose homeostasis 
in adult rats from hyperglycemic mothers. Diabetes 1986b; 35: 979-84. 

Blackburn ST. Chapter 16: Carbohydrate, Fat and Protein Metabolism. In: 
Maternal, fetal, & neonatal physiology : a clinical perspective, 4th 
ednMaryland Heights, MO: Elsevier Saunders 2013: xiii, 719 p. 

Bleicher SJ, O'Sullivan JB, Freinkel N. Carbohydrate Metabolism in Pregnancy. V. 
The Interrelations of Glucose, Insulin and Free Fatty Acids in Late 
Pregnancy and Post Partum. N Engl J Med 1964; 271: 866-72. 

Bock G, Chittilapilly E, Basu R, Toffolo G, Cobelli C, Chandramouli V, Landau BR, 
Rizza RA. Contribution of hepatic and extrahepatic insulin resistance to 
the pathogenesis of impaired fasting glucose: role of increased rates of 
gluconeogenesis. Diabetes 2007; 56: 1703-11. 

Boloker J, Gertz SJ, Simmons RA. Gestational diabetes leads to the development of 
diabetes in adulthood in the rat. Diabetes 2002; 51: 1499-506. 

Bone AJ, Taylor KW. Metabolic adaptation to pregnancy shown by increased 
biosynthesis of insulin in islets of Langerhans isolated from pregnant rats. 
Nature 1976; 262: 501-2. 

Bonner-Weir S, Trent DF, Weir GC. Partial pancreatectomy in the rat and 
subsequent defect in glucose-induced insulin release. J Clin Invest 1983; 
71: 1544-53. 

Boucher J, Kleinridders A, Kahn CR. Insulin receptor signaling in normal and 
insulin-resistant states. Cold Spring Harb Perspect Biol 2014; 6 

Bouillon Hausman D, T. R. Kasser, R. W. Seerley, and R. J. Martin. Studies of 
gestational diabetes using the pig as a model. In: Swine in biomedical 
research. Tumbleson ME, ed. New York: Plenum Press 1986:  



XII Reference List 119 

Bouwens L, Pipeleers GD. Extra-insular beta cells associated with ductules are 
frequent in adult human pancreas. Diabetologia 1998; 41: 629-33. 

Bowes SB, Hennessy TR, Umpleby AM, Benn JJ, Jackson NC, Boroujerdi MA, 
Sönksen PH, Lowy C. Measurement of glucose metabolism and insulin 
secretion during normal pregnancy and pregnancy complicated by 
gestational diabetes. Diabetologia 1996; 39: 976-83. 

Bozzetti P, Ferrari MM, Marconi AM, Ferrazzi E, Pardi G, Makowski EL, Battaglia 
FC. The relationship of maternal and fetal glucose concentrations in the 
human from midgestation until term. Metabolism - Clinical and 
Experimental 1988; 37: 358-63. 

Brelje TC, Scharp DW, Lacy PE, Ogren L, Talamantes F, Robertson M, Friesen HG, 
Sorenson RL. Effect of homologous placental lactogens, prolactins, and 
growth hormones on islet B-cell division and insulin secretion in rat, 
mouse, and human islets: implication for placental lactogen regulation of 
islet function during pregnancy. Endocrinology 1993; 132: 879-87. 

Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC. 
Assessment of human pancreatic islet architecture and composition by 
laser scanning confocal microscopy. J Histochem Cytochem 2005; 53: 
1087-97. 

Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter 
GLUT4. Nat Rev Mol Cell Biol 2002; 3: 267-77. 

Buchanan TA, Metzger BE, Freinkel N, Bergman RN. Insulin sensitivity and B-cell 
responsiveness to glucose during late pregnancy in lean and moderately 
obese women with normal glucose tolerance or mild gestational diabetes. 
Am J Obstet Gynecol 1990; 162: 1008-14. 

Buchanan TA, Xiang AH. Gestational diabetes mellitus. The Journal of Clinical 
Investigation 2005; 115: 485-91. 

Buchanan TA, Xiang A, Kjos SL, Watanabe R. What Is Gestational Diabetes? 
Diabetes Care 2007; 30: S105-S11. 

Burd LI, Jones MD, Jr., Simmons MA, Makowski EL, Meschia G, Battaglia FC. 
Placental production and foetal utilisation of lactate and pyruvate. Nature 
1975; 254: 710-1. 

Burns TL, Letuchy EM, Paulos R, Witt J. Childhood Predictors of the Metabolic 
Syndrome in Middle-Aged Adults: The Muscatine Study. The Journal of 
Pediatrics 155: S5.e17-S5.e26. 

Bush NC, Chandler-Laney PC, Rouse DJ, Granger WM, Oster RA, Gower BA. Higher 
maternal gestational glucose concentration is associated with lower 
offspring insulin sensitivity and altered beta-cell function. J Clin 
Endocrinol Metab 2011; 96: E803-9. 

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Beta-cell deficit 
and increased beta-cell apoptosis in humans with type 2 diabetes. 
Diabetes 2003; 52: 102-10. 

Butler AE, Cao-Minh L, Galasso R, Rizza RA, Corradin A, Cobelli C, Butler PC. 
Adaptive changes in pancreatic beta cell fractional area and beta cell 
turnover in human pregnancy. Diabetologia 2010; 53: 2167-76. 



XII Reference List 120 

Butte NF, Hopkinson JM, Nicolson MA. Leptin in human reproduction: serum 
leptin levels in pregnant and lactating women. J Clin Endocrinol Metab 
1997; 82: 585-9. 

Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared 
with gestational diabetes mellitus. The American Journal of Clinical 
Nutrition 2000; 71: 1256s-61s. 

Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren PO, Caicedo A. The unique 
cytoarchitecture of human pancreatic islets has implications for islet cell 
function. Proc Natl Acad Sci U S A 2006; 103: 2334-9. 

Cahill GF, Jr., Herrera MG, Morgan AP, Soeldner JS, Steinke J, Levy PL, Reichard 
GA, Jr., Kipnis DM. Hormone-fuel interrelationships during fasting. J Clin 
Invest 1966; 45: 1751-69. 

Carnevale Schianca GP, Rossi A, Sainaghi PP, Maduli E, Bartoli E. The significance 
of impaired fasting glucose versus impaired glucose tolerance: 
importance of insulin secretion and resistance. Diabetes Care 2003; 26: 
1333-7. 

Carpenter MW, Coustan DR. Criteria for screening tests for gestational diabetes. 
Am J Obstet Gynecol 1982; 144: 768-73. 

Carstensen MH, Leichtweiss HP, Schroder H. The metabolism of the isolated 
artificially perfused guinea pig placenta. I. Excretion of hydrogen ions, 
ammonia, carbon dioxide and lactate, and the consumption of oxygen and 
glucose. J Perinat Med 1982; 10: 147-53. 

Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EA. Longitudinal changes in 
insulin release and insulin resistance in nonobese pregnant women. Am J 
Obstet Gynecol 1991; 165: 1667-72. 

Catalano PM, Tyzbir ED, Wolfe RR, Roman NM, Amini SB, Sims EA. Longitudinal 
changes in basal hepatic glucose production and suppression during 
insulin infusion in normal pregnant women. Am J Obstet Gynecol 1992; 
167: 913-9. 

Catalano PM, Tyzbir ED, Wolfe RR, Calles J, Roman NM, Amini SB, Sims EA. 
Carbohydrate metabolism during pregnancy in control subjects and 
women with gestational diabetes. Am J Physiol 1993; 264: E60-7. 

Catalano PM, Huston L, Amini SB, Kalhan SC. Longitudinal changes in glucose 
metabolism during pregnancy in obese women with normal glucose 
tolerance and gestational diabetes mellitus. Am J Obstet Gynecol 1999; 
180: 903-16. 

Catalano PM, Nizielski SE, Shao J, Preston L, Qiao L, Friedman JE. Downregulated 
IRS-1 and PPARgamma in obese women with gestational diabetes: 
relationship to FFA during pregnancy. Am J Physiol Endocrinol Metab 
2002; 282: E522-33. 

Catalano PM, Hoegh M, Minium J, Huston-Presley L, Bernard S, Kalhan S, Hauguel-
De Mouzon S. Adiponectin in human pregnancy: implications for 
regulation of glucose and lipid metabolism. Diabetologia 2006; 49: 1677-
85. 



XII Reference List 121 

Catalano PM, Presley L, Minium J, Hauguel-de Mouzon S. Fetuses of Obese 
Mothers Develop Insulin Resistance in Utero. Diabetes Care 2009; 32: 
1076-80. 

Catalano PM, McIntyre HD, Cruickshank JK, McCance DR, Dyer AR, Metzger BE, 
Lowe LP, Trimble ER, Coustan DR, Hadden DR, Persson B, Hod M, Oats JJ, 
Group HSCR. The hyperglycemia and adverse pregnancy outcome study: 
associations of GDM and obesity with pregnancy outcomes. Diabetes Care 
2012; 35: 780-6. 

Cave H, Polak M, Drunat S, Denamur E, Czernichow P. Refinement of the 6q 
chromosomal region implicated in transient neonatal diabetes. Diabetes 
2000; 49: 108-13. 

Cersosimo E, Solis-Herrera C, Trautmann ME, Malloy J, Triplitt CL. Assessment of 
pancreatic beta-cell function: review of methods and clinical applications. 
Curr Diabetes Rev 2014; 10: 2-42. 

Chang SG, Choi KD, Jang SH, Shin HC. Role of disulfide bonds in the structure and 
activity of human insulin. Mol Cells 2003; 16: 323-30. 

Char VC, Creasy RK. Lactate and pyruvate as fetal metabolic substrates. Pediatr 
Res 1976; 10: 231-4. 

Chick WL, Like AA. Studies in the diabetic mutant mouse. 3. Physiological factors 
associated with alterations in beta cell proliferation. Diabetologia 1970; 6: 
243-51. 

Christenson RK, Prior RL. Uterine blood flow and nutrient uptake during late 
gestation in ewes with different number of fetuses. J Anim Sci 1978; 46: 
189-200. 

Christoffersen BO, Grand N, Golozoubova V, Svendsen O, Raun K. Gender-
associated differences in metabolic syndrome-related parameters in 
Gottingen minipigs. Comp Med 2007; 57: 493-504. 

Clapp JF, 3rd, Seaward BL, Sleamaker RH, Hiser J. Maternal physiologic 
adaptations to early human pregnancy. Am J Obstet Gynecol 1988; 159: 
1456-60. 

Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, Damm 
P. High prevalence of type 2 diabetes and pre-diabetes in adult offspring 
of women with gestational diabetes mellitus or type 1 diabetes: the role of 
intrauterine hyperglycemia. Diabetes Care 2008; 31: 340-6. 

Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, 
Schmidt L, Damm P. Overweight and the metabolic syndrome in adult 
offspring of women with diet-treated gestational diabetes mellitus or type 
1 diabetes. J Clin Endocrinol Metab 2009; 94: 2464-70. 

Colombo C, Porzio O, Liu M, Massa O, Vasta M, Salardi S, Beccaria L, Monciotti C, 
Toni S, Pedersen O, Hansen T, Federici L, Pesavento R, Cadario F, Federici 
G, Ghirri P, Arvan P, Iafusco D, Barbetti F, Early Onset Diabetes Study 
Group of the Italian Society of Pediatric E, Diabetes. Seven mutations in 
the human insulin gene linked to permanent neonatal/infancy-onset 
diabetes mellitus. J Clin Invest 2008; 118: 2148-56. 



XII Reference List 122 

Colstrup M, Mathiesen ER, Damm P, Jensen DM, Ringholm L. Pregnancy in women 
with type 1 diabetes: have the goals of St. Vincent declaration been met 
concerning foetal and neonatal complications? J Matern Fetal Neonatal 
Med 2013; 26: 1682-6. 

Comline RS, Fowden AL, Silver M. Carbohydrate Metabolism in the Fetal Pig 
During Late Gestation. Quarterly Journal of Experimental Physiology and 
Cognate Medical Sciences 1979; 64: 277-89. 

Committee on Practice B-O. Practice Bulletin No. 137: Gestational diabetes 
mellitus. Obstet Gynecol 2013; 122: 406-16. 

Connolly CC, Aglione LN, Smith MS, Lacy DB, Moore MC. Insulin action during late 
pregnancy in the conscious dog. Am J Physiol Endocrinol Metab 2004; 286: 
E909-15. 

Corson AM, Laws J, Laws A, Litten JC, Lean IJ, Clarke L. Percentile growth charts 
for biomedical studies using a porcine model. Animal 2008a; 2: 1795-801. 

Corson AM, Laws J, Litten JC, Dodds PF, Lean IJ, Clarke L. Effect of dietary 
supplementation of different oils during the first or second half of 
pregnancy on the glucose tolerance of the sow. Animal 2008b; 2: 1045-54. 

Costrini NV, Kalkhoff RK. Relative effects of pregnancy, estradiol, and 
progesterone on plasma insulin and pancreatic islet insulin secretion. J 
Clin Invest 1971; 50: 992-9. 

Dabelea D, Hanson RL, Lindsay RS, Pettitt DJ, Imperatore G, Gabir MM, Roumain 
J, Bennett PH, Knowler WC. Intrauterine exposure to diabetes conveys 
risks for type 2 diabetes and obesity: a study of discordant sibships. 
Diabetes 2000; 49: 2208-11. 

Dabelea D, Crume T. Maternal environment and the transgenerational cycle of 
obesity and diabetes. Diabetes 2011; 60: 1849-55. 

Damasceno DC, Sinzato YK, Bueno A, Netto AO, Dallaqua B, Gallego FQ, Iessi IL, 
Corvino SB, Serrano RG, Marini G, Piculo F, Calderon IMP, Rudge MVC. Mild 
Diabetes Models and Their Maternal-Fetal Repercussions. Journal of 
Diabetes Research 2013; 2013: 473575. 

Damm P, Handberg A, Kuhl C, Beck-Nielsen H, Molsted-Pedersen L. Insulin 
receptor binding and tyrosine kinase activity in skeletal muscle from 
normal pregnant women and women with gestational diabetes. Obstet 
Gynecol 1993; 82: 251-9. 

Debras E, Grizard J, Aina E, Tesseraud S, Champredon C, Arnal M. Insulin 
sensitivity and responsiveness during lactation and dry period in goats. 
Am J Physiol 1989; 256: E295-302. 

DeFronzo RA, Ferrannini E, Hendler R, Wahren J, Felig P. Influence of 
hyperinsulinemia, hyperglycemia, and the route of glucose administration 
on splanchnic glucose exchange. Proc Natl Acad Sci U S A 1978; 75: 5173-
7. 

DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for 
quantifying insulin secretion and resistance. Am J Physiol 1979; 237: 
E214-23. 



XII Reference List 123 

DeFronzo RA, Ferrannini E, Hendler R, Felig P, Wahren J. Regulation of splanchnic 
and peripheral glucose uptake by insulin and hyperglycemia in man. 
Diabetes 1983; 32: 35-45. 

DeFronzo RA, Ferrannini E. Regulation of hepatic glucose metabolism in humans. 
Diabetes Metab Rev 1987; 3: 415-59. 

DeFronzo RA, Ferrannini E, Simonson DC. Fasting hyperglycemia in non-insulin-
dependent diabetes mellitus: contributions of excessive hepatic glucose 
production and impaired tissue glucose uptake. Metabolism 1989; 38: 
387-95. 

Del Prato S, Bonadonna RC, Bonora E, Gulli G, Solini A, Shank M, DeFronzo RA. 
Characterization of cellular defects of insulin action in type 2 (non-insulin-
dependent) diabetes mellitus. J Clin Invest 1993; 91: 484-94. 

Demirci C, Ernst S, Alvarez-Perez JC, Rosa T, Valle S, Shridhar V, Casinelli GP, 
Alonso LC, Vasavada RC, Garcia-Ocana A. Loss of HGF/c-Met signaling in 
pancreatic beta-cells leads to incomplete maternal beta-cell adaptation 
and gestational diabetes mellitus. Diabetes 2012; 61: 1143-52. 

Di Cianni G, Miccoli R, Volpe L, Lencioni C, Del Prato S. Intermediate metabolism 
in normal pregnancy and in gestational diabetes. Diabetes Metab Res Rev 
2003; 19: 259-70. 

Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between 
the human and the mouse pancreas. Islets 2015; 7 

Drucker DJ. The biology of incretin hormones. Cell Metabolism 2006; 3: 153-65. 

Duee PH, Simoes Nunes C, Pegorier JP, Gilbert M, Girard J. Uterine metabolism of 
the conscious gilt during late pregnancy. Pediatr Res 1987; 22: 587-90. 

Duehlmeier R, Fluegge I, Schwert B, Ganter M. Insulin sensitivity during late 
gestation in ewes affected by pregnancy toxemia and in ewes with high 
and low susceptibility to this disorder. J Vet Intern Med 2013; 27: 359-66. 

Duran A, Saenz S, Torrejon MJ, Bordiu E, Del Valle L, Galindo M, Perez N, Herraiz 
MA, Izquierdo N, Rubio MA, Runkle I, Perez-Ferre N, Cusihuallpa I, Jimenez 
S, Garcia de la Torre N, Fernandez MD, Montanez C, Familiar C, Calle-
Pascual AL. Introduction of IADPSG criteria for the screening and 
diagnosis of gestational diabetes mellitus results in improved pregnancy 
outcomes at a lower cost in a large cohort of pregnant women: the St. 
Carlos Gestational Diabetes Study. Diabetes Care 2014; 37: 2442-50. 

Dyer JS, Rosenfeld CR, Rice J, Rice M, Hardin DS. Insulin Resistance in Hispanic 
Large-for-Gestational-Age Neonates at Birth. The Journal of Clinical 
Endocrinology & Metabolism 2007; 92: 3836-43. 

Edelsten AD, Hughes IA, Oakes S, Gordon IR, Savage DC. Height and skeletal 
maturity in children with newly-diagnosed juvenile-onset diabetes. Arch 
Dis Child 1981; 56: 40-4. 

Edghill EL, Flanagan SE, Patch AM, Boustred C, Parrish A, Shields B, Shepherd MH, 
Hussain K, Kapoor RR, Malecki M, MacDonald MJ, Stoy J, Steiner DF, 
Philipson LH, Bell GI, Neonatal Diabetes International Collaborative G, 
Hattersley AT, Ellard S. Insulin mutation screening in 1,044 patients with 
diabetes: mutations in the INS gene are a common cause of neonatal 



XII Reference List 124 

diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. 
Diabetes 2008; 57: 1034-42. 

Elrick H, Stimmler L, Hlad CJ, Jr., Arai Y. Plasma Insulin Response to Oral and 
Intravenous Glucose Administration. J Clin Endocrinol Metab 1964; 24: 
1076-82. 

Ezekwe MO, Ezekwe EI, Sen DK, Ogolla F. Effects of maternal streptozotocin-
diabetes on fetal growth, energy reserves and body composition of 
newborn pigs. J Anim Sci 1984; 59: 974-80. 

Færch K, Borch-Johnsen K, Holst JJ, Vaag A. Pathophysiology and aetiology of 
impaired fasting glycaemia and impaired glucose tolerance: does it matter 
for prevention and treatment of type 2 diabetes? Diabetologia 2009; 52: 
1714-23. 

Farrell T, Neale L, Cundy T. Congenital anomalies in the offspring of women with 
type 1, type 2 and gestational diabetes. Diabet Med 2002; 19: 322-6. 

Federici M, Hribal M, Perego L, Ranalli M, Caradonna Z, Perego C, Usellini L, Nano 
R, Bonini P, Bertuzzi F, Marlier LN, Davalli AM, Carandente O, Pontiroli AE, 
Melino G, Marchetti P, Lauro R, Sesti G, Folli F. High glucose causes 
apoptosis in cultured human pancreatic islets of Langerhans: a potential 
role for regulation of specific Bcl family genes toward an apoptotic cell 
death program. Diabetes 2001; 50: 1290-301. 

Felig P, Wahren J. Influence of endogenous insulin secretion on splanchnic 
glucose and amino acid metabolism in man. J Clin Invest 1971; 50: 1702-
11. 

Ferrell CL, Ford SP, Prior RL, Christenson RK. Blood flow, steroid secretion and 
nutrient uptake of the gravid bovine uterus and fetus. J Anim Sci 1983; 56: 
656-67. 

Festa A, D'Agostino R, Jr., Hanley AJ, Karter AJ, Saad MF, Haffner SM. Differences 
in insulin resistance in nondiabetic subjects with isolated impaired 
glucose tolerance or isolated impaired fasting glucose. Diabetes 2004; 53: 
1549-55. 

Fetita L-S, Sobngwi E, Serradas P, Calvo F, Gautier J-F. Consequences of Fetal 
Exposure to Maternal Diabetes in Offspring. The Journal of Clinical 
Endocrinology & Metabolism 2006; 91: 3718-24. 

Finegood DT, Scaglia L, Bonner-Weir S. Dynamics of beta-cell mass in the growing 
rat pancreas. Estimation with a simple mathematical model. Diabetes 
1995; 44: 249-56. 

Ford SP, Reynolds LP, Ferrell CL. Blood flow, steroid secretion and nutrient 
uptake of the gravid uterus during the periparturient period in sows. J 
Anim Sci 1984; 59: 1085-91. 

Ford SP, Zhang L, Zhu M, Miller MM, Smith DT, Hess BW, Moss GE, Nathanielsz 
PW, Nijland MJ. Maternal obesity accelerates fetal pancreatic beta-cell but 
not alpha-cell development in sheep: prenatal consequences. Am J Physiol 
Regul Integr Comp Physiol 2009; 297: R835-43. 

Formby B, Schmid-Formby F, Jovanovic L, Peterson CM. The offspring of the 
female diabetic "nonobese diabetic" (NOD) mouse are large for gestational 



XII Reference List 125 

age and have elevated pancreatic insulin content: a new animal model of 
human diabetic pregnancy. Proc Soc Exp Biol Med 1987; 184: 291-4. 

Fowden AL, Comline RS, Silver M. Pancreatic beta cell function in the fetal pig and 
sow. Q J Exp Physiol 1982; 67: 225-33. 

Fowden AL, Forhead AJ, Silver M, MacDonald AA. Glucose, lactate and oxygen 
metabolism in the fetal pig during late gestation. Exp Physiol 1997; 82: 
171-82. 

Franks PW, Hanson RL, Knowler WC, Moffett C, Enos G, Infante AM, Krakoff J, 
Looker HC. Childhood predictors of young-onset type 2 diabetes. Diabetes 
2007; 56: 2964-72. 

Fraser A, Lawlor DA. Long-term health outcomes in offspring born to women with 
diabetes in pregnancy. Curr Diab Rep 2014; 14: 489. 

Friedman JE, Ishizuka T, Shao J, Huston L, Highman T, Catalano P. Impaired 
glucose transport and insulin receptor tyrosine phosphorylation in 
skeletal muscle from obese women with gestational diabetes. Diabetes 
1999; 48: 1807-14. 

Gagliardino JJ. Physiological endocrine control of energy homeostasis and 
postprandial blood glucose levels. Eur Rev Med Pharmacol Sci 2005; 9: 75-
92. 

Gauguier D, Bihoreau MT, Picon L, Ktorza A. Insulin secretion in adult rats after 
intrauterine exposure to mild hyperglycemia during late gestation. 
Diabetes 1991; 40 Suppl 2: 109-14. 

Gautier JF, Wilson C, Weyer C, Mott D, Knowler WC, Cavaghan M, Polonsky KS, 
Bogardus C, Pratley RE. Low acute insulin secretory responses in adult 
offspring of people with early onset type 2 diabetes. Diabetes 2001; 50: 
1828-33. 

George PB, England DC, Siers DG, Stanton HC. Diabetogenic effects of pregnancy 
in sows on plasma glucose and insulin release. J Anim Sci 1978; 46: 1694-
700. 

Gilfillan CA, Tserng KY, Kalhan SC. Alanine production by the human fetus at term 
gestation. Biol Neonate 1985; 47: 141-7. 

Giorgino F, Almahfouz A, Goodyear LJ, Smith RJ. Glucocorticoid regulation of 
insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat 
skeletal muscle in vivo. J Clin Invest 1993; 91: 2020-30. 

Gonzalez C, Alonso A, Grueso NA, Diaz F, Esteban MM, Fernandez S, Patterson AM. 
Effect of treatment with different doses of 17-beta-estradiol on insulin 
receptor substrate-1. JOP 2001; 2: 140-9. 

Grasemann C, Devlin MJ, Rzeczkowska PA, Herrmann R, Horsthemke B, Hauffa 
BP, Grynpas M, Alm C, Bouxsein ML, Palmert MR. Parental diabetes: the 
Akita mouse as a model of the effects of maternal and paternal 
hyperglycemia in wildtype offspring. PLoS ONE 2012; 7: e50210. 

Green IC, Taylor KW. Effects of pregnancy in the rat on the size and insulin 
secretory response of the islets of Langerhans. J Endocrinol 1972; 54: 317-
25. 



XII Reference List 126 

Group HSCR, Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan 
DR, Hadden DR, McCance DR, Hod M, McIntyre HD, Oats JJ, Persson B, 
Rogers MS, Sacks DA. Hyperglycemia and adverse pregnancy outcomes. N 
Engl J Med 2008; 358: 1991-2002. 

Group NDD. Classification and diagnosis of diabetes mellitus and other categories 
of glucose intolerance. National Diabetes Data Group. Diabetes 1979; 28: 
1039-57. 

Grzech M, Dahlhoff M, Herbach N, Habermann FA, Renner-Müller I, Wanke R, 
Flaswinkel H, Wolf E, Schneider MR. Specific transgene expression in 
mouse pancreatic β-cells under the control of the porcine insulin 
promoter. Mol Cell Endocrinol 2010; 315: 219-24. 

Hadden DR, McLaughlin C. Normal and abnormal maternal metabolism during 
pregnancy. Semin Fetal Neonatal Med 2009; 14: 66-71. 

Handwerger S, Freemark M. The roles of placental growth hormone and placental 
lactogen in the regulation of human fetal growth and development. J 
Pediatr Endocrinol Metab 2000; 13: 343-56. 

Hanefeld M, Koehler C, Fuecker K, Henkel E, Schaper F, Temelkova-Kurktschiev 
T, Impaired Glucose Tolerance for A, Diabetes s. Insulin secretion and 
insulin sensitivity pattern is different in isolated impaired glucose 
tolerance and impaired fasting glucose: the risk factor in Impaired Glucose 
Tolerance for Atherosclerosis and Diabetes study. Diabetes Care 2003; 26: 
868-74. 

Hauguel S, Desmaizieres V, Challier JC. Glucose uptake, utilization, and transfer 
by the human placenta as functions of maternal glucose concentration. 
Pediatr Res 1986; 20: 269-73. 

Hayashi T, Boyko EJ, Sato KK, McNeely MJ, Leonetti DL, Kahn SE, Fujimoto WY. 
Patterns of insulin concentration during the OGTT predict the risk of type 
2 diabetes in Japanese Americans. Diabetes Care 2013; 36: 1229-35. 

Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, 
Wolf E, Aigner B, Wanke R. Dominant-negative effects of a novel mutated 
Ins2 allele causes early-onset diabetes and severe beta-cell loss in Munich 
Ins2C95S mutant mice. Diabetes 2007; 56: 1268-76. 

Herrera E. Metabolic adaptations in pregnancy and their implications for the 
availability of substrates to the fetus. Eur J Clin Nutr 2000; 54 Suppl 1: S47-
51. 

Herrera E, Amusquivar E. Lipid metabolism in the fetus and the newborn. 
Diabetes Metab Res Rev 2000; 16: 202-10. 

Herrera E, Desoye G. Maternal and fetal lipid metabolism under normal and 
gestational diabetic conditions. Horm Mol Biol Clin Investig 2016; 26: 109-
27. 

Higa R, Gonzalez E, Pustovrh MC, White V, Capobianco E, Martinez N, Jawerbaum 
A. PPARdelta and its activator PGI2 are reduced in diabetic embryopathy: 
involvement of PPARdelta activation in lipid metabolic and signalling 
pathways in rat embryo early organogenesis. Mol Hum Reprod 2007; 13: 
103-10. 



XII Reference List 127 

Highman TJ, Friedman JE, Huston LP, Wong WW, Catalano PM. Longitudinal 
changes in maternal serum leptin concentrations, body composition, and 
resting metabolic rate in pregnancy. Am J Obstet Gynecol 1998; 178: 1010-
5. 

Hill JC, Krishnaveni GV, Annamma I, Leary SD, Fall CH. Glucose tolerance in 
pregnancy in South India: relationships to neonatal anthropometry. Acta 
Obstet Gynecol Scand 2005; 84: 159-65. 

Holemans K, Aerts L, Van Assche FA. Lifetime consequences of abnormal fetal 
pancreatic development. J Physiol 2003; 547: 11-20. 

Holme AM, Roland MCP, Lorentzen B, Michelsen TM, Henriksen T. Placental 
Glucose Transfer: A Human In Vivo Study. PLoS ONE 2015; 10: e0117084. 

Homko C, Sivan E, Chen X, Reece EA, Boden G. Insulin Secretion during and after 
Pregnancy in Patients with Gestational Diabetes Mellitus. The Journal of 
Clinical Endocrinology & Metabolism 2001; 86: 568-73. 

Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM. IRS-1-
Mediated Inhibition of Insulin Receptor Tyrosine Kinase Activity in TNF-
α- and Obesity-Induced Insulin Resistance. Science 1996; 271: 665-70. 

Hotta K, Funahashi T, Arita Y, Takahashi M, Matsuda M, Okamoto Y, Iwahashi H, 
Kuriyama H, Ouchi N, Maeda K, Nishida M, Kihara S, Sakai N, Nakajima T, 
Hasegawa K, Muraguchi M, Ohmoto Y, Nakamura T, Yamashita S, Hanafusa 
T, Matsuzawa Y. Plasma concentrations of a novel, adipose-specific 
protein, adiponectin, in type 2 diabetic patients. Arterioscler Thromb Vasc 
Biol 2000; 20: 1595-9. 

Houshmand A, Jensen DM, Mathiesen ER, Damm P. Evolution of diagnostic 
criteria for gestational diabetes mellitus. Acta Obstet Gynecol Scand 2013; 
92: 739-45. 

Hove K, Blom AK. PLASMA INSULIN AND GROWTH HORMONE IN DAIRY COWS; 
DIURNAL VARIATION AND RELATION TO FOOD INTAKE AND PLASMA 
SUGAR AND ACETOACETATE LEVELS. Acta Endocrinologica 1973; 73: 
289-303. 

Huang C, Snider F, Cross JC. Prolactin receptor is required for normal glucose 
homeostasis and modulation of beta-cell mass during pregnancy. 
Endocrinology 2009; 150: 1618-26. 

IDF. The global picture. In: IDF Diabetes Atlas, 7th ednBrussels, Belgium: 
International Diabetes Federation 2015: 62-5. 

Iglesias A, Montelongo A, Herrera E, Lasuncion MA. Changes in cholesteryl ester 
transfer protein activity during normal gestation and postpartum. Clin 
Biochem 1994; 27: 63-8. 

Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, 
Yamada Y. Hyperglycemia causes oxidative stress in pancreatic beta-cells 
of GK rats, a model of type 2 diabetes. Diabetes 1999; 48: 927-32. 

International Association of D, Pregnancy Study Groups Consensus P, Metzger BE, 
Gabbe SG, Persson B, Buchanan TA, Catalano PA, Damm P, Dyer AR, Leiva 
A, Hod M, Kitzmiler JL, Lowe LP, McIntyre HD, Oats JJ, Omori Y, Schmidt 
MI. International association of diabetes and pregnancy study groups 



XII Reference List 128 

recommendations on the diagnosis and classification of hyperglycemia in 
pregnancy. Diabetes Care 2010; 33: 676-82. 

Izumi T, Yokota-Hashimoto H, Zhao S, Wang J, Halban PA, Takeuchi T. Dominant 
negative pathogenesis by mutant proinsulin in the Akita diabetic mouse. 
Diabetes 2003; 52: 409-16. 

Jackson RL. Growth and maturation of children with insulin-dependent diabetes 
mellitus. Pediatr Clin North Am 1984; 31: 545-67. 

Jawerbaum A, White V. Animal models in diabetes and pregnancy. Endocr Rev 
2010; 31: 680-701. 

Jenkins DJ, Wolever TM, Leeds AR, Gassull MA, Haisman P, Dilawari J, Goff DV, 
Metz GL, Alberti KG. Dietary fibres, fibre analogues, and glucose tolerance: 
importance of viscosity. Br Med J 1978; 1: 1392-4. 

Jones CT. Metabolic and hormonal changes around birth. In: The Biochemical 
development of the fetus and neonate. Jones CT, ed. Amsterdam ;New 
York: Elsevier Biomedical Press ; distributed by Elsevier Science Pub. Co. 
1982:  

Juonala M, Viikari JS, Rönnemaa T, Marniemi J, Jula A, Loo B-M, Raitakari OT. 
Associations of Dyslipidemias From Childhood to Adulthood With Carotid 
Intima-Media Thickness, Elasticity, and Brachial Flow-Mediated 
Dilatation in Adulthood The Cardiovascular Risk in Young Finns Study. 
Arteriosclerosis, thrombosis, and vascular biology 2008; 28: 1012-7. 

Kahraman S, Dirice E, De Jesus DF, Hu J, Kulkarni RN. Maternal insulin resistance 
and transient hyperglycemia impact the metabolic and endocrine 
phenotypes of offspring. American Journal of Physiology - Endocrinology 
and Metabolism 2014; 307: E906-E18. 

Kaiser N, Leibowitz G, Nesher R. Glucotoxicity and beta-cell failure in type 2 
diabetes mellitus. J Pediatr Endocrinol Metab 2003; 16: 5-22. 

Kalhan S, Rossi K, Gruca L, Burkett E, O'Brien A. Glucose turnover and 
gluconeogenesis in human pregnancy. J Clin Invest 1997; 100: 1775-81. 

Kalhan SC, D'Angelo LJ, Savin SM, Adam PAJ. Glucose Production in Pregnant 
Women at Term Gestation: SOURCES OF GLUCOSE FOR HUMAN FETUS. J 
Clin Invest 1979; 63: 388-94. 

Kalhan SC, Adam PA. Quantitative estimation of systemic glucose production in 
normal and diabetic pregnancy. Diabetes Care 1980; 3: 410-5. 

Kalhan SC. VII Carbohydrate metabolism. In: Polin, Richard A. Fox, William W. 
Abman, Steven H., 3 edn. physiology Fan, ed. Philadelphia: Saunders 2004: 
390-403. 

Karnik SK, Chen H, McLean GW, Heit JJ, Gu X, Zhang AY, Fontaine M, Yen MH, Kim 
SK. Menin Controls Growth of Pancreatic ß-Cells in Pregnant Mice and 
Promotes Gestational Diabetes Mellitus. Science 2007; 318: 806-9. 

Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a 
literature review. Ann Nutr Metab 2015; 66 Suppl 2: 14-20. 



XII Reference List 129 

Keely EJ, Malcolm JC, Hadjiyannakis S, Gaboury I, Lough G, Lawson ML. Prevalence 
of metabolic markers of insulin resistance in offspring of gestational 
diabetes pregnancies. Pediatr Diabetes 2008; 9: 53-9. 

Kelstrup L, Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O, Clausen TD. 
Insulin resistance and impaired pancreatic beta-cell function in adult 
offspring of women with diabetes in pregnancy. J Clin Endocrinol Metab 
2013; 98: 3793-801. 

Kendall DM, Sutherland DE, Najarian JS, Goetz FC, Robertson RP. Effects of 
hemipancreatectomy on insulin secretion and glucose tolerance in healthy 
humans. N Engl J Med 1990; 322: 898-903. 

Kervran A, Guillaume M, Jost A. The endocrine pancreas of the fetus from diabetic 
pregnant rat. Diabetologia 1978; 15: 387-93. 

Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: A 
comparative study. Islets 2009; 1: 129-36. 

Kim H, Toyofuku Y, Lynn FC, Chak E, Uchida T, Mizukami H, Fujitani Y, Kawamori 
R, Miyatsuka T, Kosaka Y, Yang K, Honig G, van der Hart M, Kishimoto N, 
Wang J, Yagihashi S, Tecott LH, Watada H, German MS. Serotonin regulates 
pancreatic beta cell mass during pregnancy. Nat Med 2010; 16: 804-8. 

Kim JK. Hyperinsulinemic-euglycemic clamp to assess insulin sensitivity in vivo. 
Methods Mol Biol 2009; 560: 221-38. 

Kirwan JP, Hauguel-De Mouzon S, Lepercq J, Challier JC, Huston-Presley L, 
Friedman JE, Kalhan SC, Catalano PM. TNF-alpha is a predictor of insulin 
resistance in human pregnancy. Diabetes 2002; 51: 2207-13. 

Kloppel G, Lohr M, Habich K, Oberholzer M, Heitz PU. Islet pathology and the 
pathogenesis of type 1 and type 2 diabetes mellitus revisited. Surv Synth 
Pathol Res 1985; 4: 110-25. 

KNOWLER WC, BENNETT PH, HAMMAN RF, MILLER M. DIABETES INCIDENCE 
AND PREVALENCE IN PIMA INDIANS: A 19-FOLD GREATER INCIDENCE 
THAN IN ROCHESTER, MINNESOTA. American Journal of Epidemiology 
1978; 108: 497-505. 

Kolb H. Mouse models of insulin dependent diabetes: low-dose streptozocin-
induced diabetes and nonobese diabetic (NOD) mice. Diabetes Metab Rev 
1987; 3: 751-78. 

Koopmans SJ, Mroz Z, Dekker R, Corbijn H, Ackermans M, Sauerwein H. 
Association of insulin resistance with hyperglycemia in streptozotocin-
diabetic pigs: effects of metformin at isoenergetic feeding in a type 2-like 
diabetic pig model. Metabolism 2006; 55: 960-71. 

Kou K, Saisho Y, Sato S, Yamada T, Itoh H. Islet number rather than islet size is a 
major determinant of beta- and alpha-cell mass in humans. J Clin 
Endocrinol Metab 2014; 99: 1733-40. 

Kuhl C. Insulin secretion and insulin resistance in pregnancy and GDM. 
Implications for diagnosis and management. Diabetes 1991; 40 Suppl 2: 
18-24. 



XII Reference List 130 

Kuo PL. Glucose gradients of maternal vein-umbilical vein and umbilical vein-
umbilical artery in normally grown and growth-retarded fetuses. J Perinat 
Med 1991; 19: 421-5. 

Kurome M, Kessler B, Wuensch A, Nagashima H, Wolf E. Nuclear transfer and 
transgenesis in the pig. Methods Mol Biol 2015; 1222: 37-59. 

Lawrence JM, Contreras R, Chen W, Sacks DA. Trends in the prevalence of 
preexisting diabetes and gestational diabetes mellitus among a 
racially/ethnically diverse population of pregnant women, 1999-2005. 
Diabetes Care 2008; 31: 899-904. 

Laws J, Laws A, Lean IJ, Dodds PF, Clarke L. Growth and development of offspring 
following supplementation of sow diets with oil during early to mid 
gestation. Animal 2007; 1: 1482-9. 

Le May C, Chu K, Hu M, Ortega CS, Simpson ER, Korach KS, Tsai MJ, Mauvais-Jarvis 
F. Estrogens protect pancreatic beta-cells from apoptosis and prevent 
insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 2006; 
103: 9232-7. 

Leblanc H, Anderson JR, Yen SS. Glucagon secretion in late pregnancy and the 
puerperium. Am J Obstet Gynecol 1976; 125: 708-10. 

Lee AV, Jackson JG, Gooch JL, Hilsenbeck SG, Coronado-Heinsohn E, Osborne CK, 
Yee D. Enhancement of insulin-like growth factor signaling in human 
breast cancer: estrogen regulation of insulin receptor substrate-1 
expression in vitro and in vivo. Mol Endocrinol 1999; 13: 787-96. 

Lenzen S. The mechanisms of alloxan- and streptozotocin-induced diabetes. 
Diabetologia 2008; 51: 216-26. 

Leturque A, Burnol AF, Ferre P, Girard J. Pregnancy-induced insulin resistance in 
the rat: assessment by glucose clamp technique. Am J Physiol 1984; 246: 
E25-31. 

Leturque A, Ferre P, Burnol AF, Kande J, Maulard P, Girard J. Glucose utilization 
rates and insulin sensitivity in vivo in tissues of virgin and pregnant rats. 
Diabetes 1986; 35: 172-7. 

Lindsay RS, Dabelea D, Roumain J, Hanson RL, Bennett PH, Knowler WC. Type 2 
diabetes and low birth weight: the role of paternal inheritance in the 
association of low birth weight and diabetes. Diabetes 2000; 49: 445-9. 

Lipeski LE, Bausserman LL, Gruppuso PA, Vohr BR. Dyslipidemia in Offspring of 
Mothers with Gestational Diabetes [bull] 1543. Pediatr Res 1998; 43: 264-
. 

Litten-Brown JC, Corson AM, Clarke L. Porcine models for the metabolic 
syndrome, digestive and bone disorders: a general overview. Animal 
2010; 4: 899-920. 

Liu CY, Kaufman RJ. The unfolded protein response. Journal of Cell Science 2003; 
116: 1861-2. 

Liu M, Li Y, Cavener D, Arvan P. Proinsulin disulfide maturation and misfolding in 
the endoplasmic reticulum. J Biol Chem 2005; 280: 13209-12. 



XII Reference List 131 

Liu M, Hodish I, Rhodes CJ, Arvan P. Proinsulin maturation, misfolding, and 
proteotoxicity. Proceedings of the National Academy of Sciences 2007; 
104: 15841-6. 

Liu M, Haataja L, Wright J, Wickramasinghe NP, Hua QX, Phillips NF, Barbetti F, 
Weiss MA, Arvan P. Mutant INS-gene induced diabetes of youth: proinsulin 
cysteine residues impose dominant-negative inhibition on wild-type 
proinsulin transport. PLoS ONE 2010; 5: e13333. 

Liu M, Sun J, Cui J, Chen W, Guo H, Barbetti F, Arvan P. INS-gene mutations: from 
genetics and beta cell biology to clinical disease. Mol Aspects Med 2015; 
42: 3-18. 

Lubchenco LO. Assessment of gestational age and development of birth. Pediatr 
Clin North Am 1970; 17: 125-45. 

Maedler K, Schulthess FT, Bielman C, Berney T, Bonny C, Prentki M, Donath MY, 
Roduit R. Glucose and leptin induce apoptosis in human beta-cells and 
impair glucose-stimulated insulin secretion through activation of c-Jun N-
terminal kinases. FASEB J 2008; 22: 1905-13. 

Malaisse WJ, Malaisse-Lagae F, Picard C, Flament-Durand J. Effects of pregnancy 
and chorionic growth hormone upon insulin secretion. Endocrinology 
1969; 84: 41-4. 

Manell E, Hedenqvist P, Svensson A, Jensen-Waern M. Establishment of a Refined 
Oral Glucose Tolerance Test in Pigs, and Assessment of Insulin, Glucagon 
and Glucagon-Like Peptide-1 Responses. PLoS ONE 2016; 11: e0148896. 

Marichal M. Microscopic anatomy of the human islet of Langerhans. In: The Islets 
of Langerhans: Springer 2010: 1-19. 

Martin RJ, Campion DR, Hausman GJ, Gahagan JH. Serum hormones and 
metabolites in fetally decapitated pigs. Growth 1984; 48: 158-65. 

Mazaki-Tovi S, Kanety H, Pariente C, Hemi R, Yissachar E, Schiff E, Cohen O, Sivan 
E. Insulin sensitivity in late gestation and early postpartum period: the 
role of circulating maternal adipokines. Gynecol Endocrinol 2011; 27: 
725-31. 

McCance DR. Diabetes in pregnancy. Best Pract Res Clin Obstet Gynaecol 2015; 
29: 685-99. 

McIntyre HD, Colagiuri S, Roglic G, Hod M. Diagnosis of GDM: a suggested 
consensus. Best Pract Res Clin Obstet Gynaecol 2015; 29: 194-205. 

McIntyre N, Holdsworth CD, Turner DS. New Interpretation of Oral Glucose 
Tolerance. Lancet 1964; 2: 20-1. 

Meier JJ, Bhushan A, Butler AE, Rizza RA, Butler PC. Sustained beta cell apoptosis 
in patients with long-standing type 1 diabetes: indirect evidence for islet 
regeneration? Diabetologia 2005; 48: 2221-8. 

Meier JJ, Menge BA, Breuer TGK, Müller CA, Tannapfel A, Uhl W, Schmidt WE, 
Schrader H. Functional Assessment of Pancreatic β-Cell Area in Humans. 
Diabetes 2009; 58: 1595-603. 



XII Reference List 132 

Meier JJ, Breuer TG, Bonadonna RC, Tannapfel A, Uhl W, Schmidt WE, Schrader H, 
Menge BA. Pancreatic diabetes manifests when beta cell area declines by 
approximately 65% in humans. Diabetologia 2012; 55: 1346-54. 

Menge BA, Tannapfel A, Belyaev O, Drescher R, Muller C, Uhl W, Schmidt WE, 
Meier JJ. Partial pancreatectomy in adult humans does not provoke beta-
cell regeneration. Diabetes 2008; 57: 142-9. 

Meschia G, Battaglia FC, Hay WW, Sparks JW. Utilization of substrates by the ovine 
placenta in vivo. Fed Proc 1980; 39: 245-9. 

Metges CC, Görs S, Lang IS, Hammon HM, Brüssow K-P, Weitzel JM, Nürnberg G, 
Rehfeldt C, Otten W. Low and High Dietary Protein:Carbohydrate Ratios 
during Pregnancy Affect Materno-Fetal Glucose Metabolism in Pigs. The 
Journal of Nutrition 2014; 144: 155-63. 

Metzger BE, Phelps RL, Freinkel N, Navickas IA. Effects of gestational diabetes on 
diurnal profiles of plasma glucose, lipids, and individual amino acids. 
Diabetes Care 1980; 3: 402-9. 

Metzger BE, Rodeck C, Freinkel N, Price J, Young M. Transplacental arteriovenous 
gradients for glucose, insulin, glucagon and placental lactogen during 
normoglycaemia in human pregnancy at term. Placenta 1985; 6: 347-54. 

Metzger BE. Biphasic effects of maternal metabolism on fetal growth. 
Quintessential expression of fuel-mediated teratogenesis. Diabetes 1991; 
40 Suppl 2: 99-105. 

Metzger BE, Persson B, Lowe LP, Dyer AR, Cruickshank JK, Deerochanawong C, 
Halliday HL, Hennis AJ, Liley H, Ng PC, Coustan DR, Hadden DR, Hod M, 
Oats JJ, Trimble ER, Group HSCR. Hyperglycemia and adverse pregnancy 
outcome study: neonatal glycemia. Pediatrics 2010; 126: e1545-52. 

Molven A, Ringdal M, Nordbo AM, Raeder H, Stoy J, Lipkind GM, Steiner DF, 
Philipson LH, Bergmann I, Aarskog D, Undlien DE, Joner G, Sovik O, 
Norwegian Childhood Diabetes Study G, Bell GI, Njolstad PR. Mutations in 
the insulin gene can cause MODY and autoantibody-negative type 1 
diabetes. Diabetes 2008; 57: 1131-5. 

Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, Lehar J, 
Puigserver P, Carlsson E, Ridderstrale M, Laurila E, Houstis N, Daly MJ, 
Patterson N, Mesirov JP, Golub TR, Tamayo P, Spiegelman B, Lander ES, 
Hirschhorn JN, Altshuler D, Groop LC. PGC-1alpha-responsive genes 
involved in oxidative phosphorylation are coordinately downregulated in 
human diabetes. Nat Genet 2003; 34: 267-73. 

Morgan SC, Relaix F, Sandell LL, Loeken MR. Oxidative stress during diabetic 
pregnancy disrupts cardiac neural crest migration and causes outflow 
tract defects. Birth Defects Res A Clin Mol Teratol 2008; 82: 453-63. 

Morris AP, Voight BF, Teslovich TM, Ferreira T, Segre AV, Steinthorsdottir V, 
Strawbridge RJ, Khan H, Grallert H, Mahajan A, Prokopenko I, Kang HM, 
Dina C, Esko T, Fraser RM, Kanoni S, Kumar A, Lagou V, Langenberg C, Luan 
J, Lindgren CM, Muller-Nurasyid M, Pechlivanis S, Rayner NW, Scott LJ, 
Wiltshire S, Yengo L, Kinnunen L, Rossin EJ, Raychaudhuri S, Johnson AD, 
Dimas AS, Loos RJ, Vedantam S, Chen H, Florez JC, Fox C, Liu CT, Rybin D, 
Couper DJ, Kao WH, Li M, Cornelis MC, Kraft P, Sun Q, van Dam RM, 



XII Reference List 133 

Stringham HM, Chines PS, Fischer K, Fontanillas P, Holmen OL, Hunt SE, 
Jackson AU, Kong A, Lawrence R, Meyer J, Perry JR, Platou CG, Potter S, 
Rehnberg E, Robertson N, Sivapalaratnam S, Stancakova A, Stirrups K, 
Thorleifsson G, Tikkanen E, Wood AR, Almgren P, Atalay M, Benediktsson 
R, Bonnycastle LL, Burtt N, Carey J, Charpentier G, Crenshaw AT, Doney 
AS, Dorkhan M, Edkins S, Emilsson V, Eury E, Forsen T, Gertow K, Gigante 
B, Grant GB, Groves CJ, Guiducci C, Herder C, Hreidarsson AB, Hui J, James 
A, Jonsson A, Rathmann W, Klopp N, Kravic J, Krjutskov K, Langford C, 
Leander K, Lindholm E, Lobbens S, Mannisto S, Mirza G, Muhleisen TW, 
Musk B, Parkin M, Rallidis L, Saramies J, Sennblad B, Shah S, Sigurethsson 
G, Silveira A, Steinbach G, Thorand B, Trakalo J, Veglia F, Wennauer R, 
Winckler W, Zabaneh D, Campbell H, van Duijn C, Uitterlinden AG, Hofman 
A, Sijbrands E, Abecasis GR, Owen KR, Zeggini E, Trip MD, Forouhi NG, 
Syvanen AC, Eriksson JG, Peltonen L, Nothen MM, Balkau B, Palmer CN, 
Lyssenko V, Tuomi T, Isomaa B, Hunter DJ, Qi L, Wellcome Trust Case 
Control C, Meta-Analyses of G, Insulin-related traits Consortium I, Genetic 
Investigation of ATC, Asian Genetic Epidemiology Network-Type 2 
Diabetes C, South Asian Type 2 Diabetes C, Shuldiner AR, Roden M, 
Barroso I, Wilsgaard T, Beilby J, Hovingh K, Price JF, Wilson JF, Rauramaa 
R, Lakka TA, Lind L, Dedoussis G, Njolstad I, Pedersen NL, Khaw KT, 
Wareham NJ, Keinanen-Kiukaanniemi SM, Saaristo TE, Korpi-Hyovalti E, 
Saltevo J, Laakso M, Kuusisto J, Metspalu A, Collins FS, Mohlke KL, 
Bergman RN, Tuomilehto J, Boehm BO, Gieger C, Hveem K, Cauchi S, 
Froguel P, Baldassarre D, Tremoli E, Humphries SE, Saleheen D, Danesh J, 
Ingelsson E, Ripatti S, Salomaa V, Erbel R, Jockel KH, Moebus S, Peters A, 
Illig T, de Faire U, Hamsten A, Morris AD, Donnelly PJ, Frayling TM, 
Hattersley AT, Boerwinkle E, Melander O, Kathiresan S, Nilsson PM, 
Deloukas P, Thorsteinsdottir U, Groop LC, Stefansson K, Hu F, Pankow JS, 
Dupuis J, Meigs JB, Altshuler D, Boehnke M, McCarthy MI, Replication DIG, 
Meta-analysis C. Large-scale association analysis provides insights into 
the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 
2012; 44: 981-90. 

Muniyappa R, Lee S, Chen H, Quon MJ. Current approaches for assessing insulin 
sensitivity and resistance in vivo: advantages, limitations, and appropriate 
usage. Am J Physiol Endocrinol Metab 2008; 294: E15-26. 

Musial B, Fernandez-Twinn DS, Vaughan OR, Ozanne SE, Voshol P, Sferruzzi-Perri 
AN, Fowden AL. Proximity to Delivery Alters Insulin Sensitivity and 
Glucose Metabolism in Pregnant Mice. Diabetes 2016; 65: 851-60. 

Nathan DM, Davidson MB, DeFronzo RA, Heine RJ, Henry RR, Pratley R, Zinman 
B, American Diabetes A. Impaired fasting glucose and impaired glucose 
tolerance: implications for care. Diabetes Care 2007; 30: 753-9. 

Nauck M, Stockmann F, Ebert R, Creutzfeldt W. Reduced incretin effect in type 2 
(non-insulin-dependent) diabetes. Diabetologia 1986a; 29: 46-52. 

Nauck MA, Homberger E, Siegel EG, Allen RC, Eaton RP, Ebert R, Creutzfeldt W. 
Incretin effects of increasing glucose loads in man calculated from venous 
insulin and C-peptide responses. J Clin Endocrinol Metab 1986b; 63: 492-
8. 



XII Reference List 134 

Nelson T, Shulman G, Grainger D, Diamond MP. Progesterone administration 
induced impairment of insulin suppression of hepatic glucose production. 
Fertil Steril 1994; 62: 491-6. 

Newbern D, Freemark M. Placental hormones and the control of maternal 
metabolism and fetal growth. Curr Opin Endocrinol Diabetes Obes 2011; 
18: 409-16. 

Newsholme P, Cruzat V, Arfuso F, Keane K. Nutrient regulation of insulin 
secretion and action. Journal of Endocrinology 2014; 221: R105-R20. 

Nolfe G, Spreghini MR, Sforza RW, Morino G, Manco M. Beyond the morphology 
of the glucose curve following an oral glucose tolerance test in obese 
youth. Eur J Endocrinol 2012; 166: 107-14. 

Okuno S, Akazawa S, Yasuhi I, Kawasaki E, Matsumoto K, Yamasaki H, Matsuo H, 
Yamaguchi Y, Nagataki S. Decreased expression of the GLUT4 glucose 
transporter protein in adipose tissue during pregnancy. Horm Metab Res 
1995; 27: 231-4. 

Ornoy A, Reece EA, Pavlinkova G, Kappen C, Miller RK. Effect of maternal diabetes 
on the embryo, fetus, and children: congenital anomalies, genetic and 
epigenetic changes and developmental outcomes. Birth Defects Res C 
Embryo Today 2015; 105: 53-72. 

Osmond DT, Nolan CJ, King RG, Brennecke SP, Gude NM. Effects of gestational 
diabetes on human placental glucose uptake, transfer, and utilisation. 
Diabetologia 2000; 43: 576-82. 

Otani H, Tanaka O, Tatewaki R, Naora H, Yoneyama T. Diabetic environment and 
genetic predisposition as causes of congenital malformations in NOD 
mouse embryos. Diabetes 1991; 40: 1245-50. 

Park SY, Ye H, Steiner DF, Bell GI. Mutant proinsulin proteins associated with 
neonatal diabetes are retained in the endoplasmic reticulum and not 
efficiently secreted. Biochem Biophys Res Commun 2010; 391: 1449-54. 

Parsons JA, Brelje TC, Sorenson RL. Adaptation of islets of Langerhans to 
pregnancy: increased islet cell proliferation and insulin secretion 
correlates with the onset of placental lactogen secretion. Endocrinology 
1992; 130: 1459-66. 

Pasek RC, Gannon M. Advancements and challenges in generating accurate 
animal models of gestational diabetes mellitus. American Journal of 
Physiology - Endocrinology and Metabolism 2013; 305: E1327-E38. 

Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane 
I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, 
Finlayson J, Kahn CR, Mandarino LJ. Coordinated reduction of genes of 
oxidative metabolism in humans with insulin resistance and diabetes: 
Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003; 100: 8466-
71. 

Pedersen J. Weight and length at birth of infants of diabetic mothers. Acta 
Endocrinol (Copenh) 1954; 16: 330-42. 



XII Reference List 135 

Père M-C, Etienne M. Insulin sensitivity during pregnancy, lactation, and 
postweaning in primiparous gilts. Journal of animal science 2007; 85: 101-
10. 

Pere MC. Maternal and fetal blood levels of glucose, lactate, fructose, and insulin 
in the conscious pig. J Anim Sci 1995; 73: 2994-9. 

Pere MC. Effects of meal intake on materno-foetal exchanges of energetic 
substrates in the pig. Reprod Nutr Dev 2001; 41: 285-96. 

Père MC, Etienne M, Dourmad JY. Adaptations of glucose metabolism in 
multiparous sows: effects of pregnancy and feeding level. Journal of 
animal science 2000; 78: 2933-41. 

Piva I, Erle G, Thiella M, Lora L, Strazzabosco M, Sicolo N, Federspil G. A study on 
the hyperinsulinism of late pregnancy. J Endocrinol Invest 1991; 14: 807-
14. 

Plagemann A, Harder T, Kohlhoff R, Rohde W, Dorner G. Glucose tolerance and 
insulin secretion in children of mothers with pregestational IDDM or 
gestational diabetes. Diabetologia 1997; 40: 1094-100. 

Plank JL, Frist AY, LeGrone AW, Magnuson MA, Labosky PA. Loss of Foxd3 results 
in decreased beta-cell proliferation and glucose intolerance during 
pregnancy. Endocrinology 2011; 152: 4589-600. 

Polak M, Cave H. Neonatal diabetes mellitus: a disease linked to multiple 
mechanisms. Orphanet J Rare Dis 2007; 2: 12. 

Polak M, Dechaume A, Cave H, Nimri R, Crosnier H, Sulmont V, de Kerdanet M, 
Scharfmann R, Lebenthal Y, Froguel P, Vaxillaire M, French NDSG. 
Heterozygous missense mutations in the insulin gene are linked to 
permanent diabetes appearing in the neonatal period or in early infancy: 
a report from the French ND (Neonatal Diabetes) Study Group. Diabetes 
2008; 57: 1115-9. 

Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC. Pancreatic beta-cell mass 
in European subjects with type 2 diabetes. Diabetes Obes Metab 2008; 10 
Suppl 4: 32-42. 

Rajan S, Eames SC, Park SY, Labno C, Bell GI, Prince VE, Philipson LH. In vitro 
processing and secretion of mutant insulin proteins that cause permanent 
neonatal diabetes. Am J Physiol Endocrinol Metab 2010; 298: E403-10. 

Recillas-Targa F. Multiple strategies for gene transfer, expression, knockdown, 
and chromatin influence in mammalian cell lines and transgenic animals. 
Mol Biotechnol 2006; 34: 337-54. 

Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, 
Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Göke B, Pfeifer 
A, Wanke R, Wolf E. Glucose Intolerance and Reduced Proliferation of 
Pancreatic β-Cells in Transgenic Pigs With Impaired Glucose-Dependent 
Insulinotropic Polypeptide Function. Diabetes 2010; 59: 1228-38. 

Renner S, Braun-Reichhart C, Blutke A, Herbach N, Emrich D, Streckel E, Wünsch 
A, Kessler B, Kurome M, Bähr A, Klymiuk N, Krebs S, Puk O, Nagashima H, 
Graw J, Blum H, Wanke R, Wolf E. Permanent Neonatal Diabetes in 
INS(C94Y) Transgenic Pigs. Diabetes 2013; 62: 1505-11. 



XII Reference List 136 

Renner S, Dobenecker B, Blutke A, Zols S, Wanke R, Ritzmann M, Wolf E. 
Comparative aspects of rodent and nonrodent animal models for 
mechanistic and translational diabetes research. Theriogenology 2016a; 
86: 406-21. 

Renner S, Blutke A, Streckel E, Wanke R, Wolf E. Incretin actions and 
consequences of incretin-based therapies: lessons from complementary 
animal models. J Pathol 2016b; 238: 345-58. 

Retnakaran R, Ye C, Kramer CK, Connelly PW, Hanley AJ, Sermer M, Zinman B. 
Maternal Serum Prolactin and Prediction of Postpartum beta-Cell 
Function and Risk of Prediabetes/Diabetes. Diabetes Care 2016; 39: 1250-
8. 

Reynolds LP, Ford SP, Ferrell CL. Blood flow and steroid and nutrient uptake of 
the gravid uterus and fetus of sows. J Anim Sci 1985; 61: 968-74. 

Rieck S, White P, Schug J, Fox AJ, Smirnova O, Gao N, Gupta RK, Wang ZV, Scherer 
PE, Keller MP, Attie AD, Kaestner KH. The transcriptional response of the 
islet to pregnancy in mice. Mol Endocrinol 2009; 23: 1702-12. 

Rieck S, Kaestner KH. Expansion of beta-cell mass in response to pregnancy. 
Trends Endocrinol Metab 2010; 21: 151-8. 

Rojas-Rodriguez R, Lifshitz LM, Bellve KD, Min SY, Pires J, Leung K, Boeras C, Sert 
A, Draper JT, Corvera S, Moore Simas TA. Human adipose tissue expansion 
in pregnancy is impaired in gestational diabetes mellitus. Diabetologia 
2015; 58: 2106-14. 

Ropero AB, Fuentes E, Rovira JM, Ripoll C, Soria B, Nadal A. Non-genomic actions 
of 17beta-oestradiol in mouse pancreatic beta-cells are mediated by a 
cGMP-dependent protein kinase. J Physiol 1999; 521 Pt 2: 397-407. 

Rossi G, Sherwin RS, Penzias AS, Lapaczewski P, Jacob RJ, Shulman GI, Diamond 
MP. Temporal changes in insulin resistance and secretion in 24-h-fasted 
conscious pregnant rats. Am J Physiol 1993; 265: E845-51. 

Rowland AF, Fazakerley DJ, James DE. Mapping insulin/GLUT4 circuitry. Traffic 
2011; 12: 672-81. 

Ryan EA, O'Sullivan MJ, Skyler JS. Insulin Action During Pregnancy: Studies with 
the Euglycemic Clamp Technique. Diabetes 1985; 34: 380-9. 

Ryan EA, Enns L. Role of gestational hormones in the induction of insulin 
resistance. J Clin Endocrinol Metab 1988; 67: 341-7. 

Saad MJ, Maeda L, Brenelli SL, Carvalho CR, Paiva RS, Velloso LA. Defects in insulin 
signal transduction in liver and muscle of pregnant rats. Diabetologia 
1997; 40: 179-86. 

Salbe AD, Lindsay RS, Collins CB, Tataranni PA, Krakoff J, Bunt JC. Comparison of 
plasma insulin levels after a mixed-meal challenge in children with and 
without intrauterine exposure to diabetes. J Clin Endocrinol Metab 2007; 
92: 624-8. 

Sattar N, Greer IA, Louden J, Lindsay G, McConnell M, Shepherd J, Packard CJ. 
Lipoprotein subfraction changes in normal pregnancy: threshold effect of 



XII Reference List 137 

plasma triglyceride on appearance of small, dense low density lipoprotein. 
J Clin Endocrinol Metab 1997; 82: 2483-91. 

Schaefer AL, Tong AKW, Sather AP, Beltranena E, Pharazyn A, Aherne FX. 
Preparturient diabetogenesis in primiparous gilts. Canadian Journal of 
Animal Science 1991; 71: 69-77. 

Schaefer UM, Songster G, Xiang A, Berkowitz K, Buchanan TA, Kjos SL. Congenital 
malformations in offspring of women with hyperglycemia first detected 
during pregnancy. Am J Obstet Gynecol 1997; 177: 1165-71. 

Schubert CM, Sun SS, Burns TL, Morrison JA, Huang TTK. Predictive Ability of 
Childhood Metabolic Components for Adult Metabolic Syndrome and Type 
2 Diabetes. The Journal of Pediatrics 155: S6.e1-S6.e7. 

Schuster MS (2011) Impact of 17βEstradiol on β-cell survival of female Munich 
Ins2C95S mutant mice In: Tierärztlichen Fakultät Ludwig-Maximilians-
Universität München Munich 

Shambaugh GE, 3rd, Koehler RA, Freinkel N. Fetal fuels II: contributions of 
selected carbon fuels to oxidative metabolism in rat conceptus. Am J 
Physiol 1977; 233: E457-61. 

Shao J, Catalano PM, Yamashita H, Ishizuka T, Friedman JE. Vanadate enhances 
but does not normalize glucose transport and insulin receptor 
phosphorylation in skeletal muscle from obese women with gestational 
diabetes mellitus. Am J Obstet Gynecol 2000; 183: 1263-70. 

Siers DG, Trenkle AH. Plasma levels of insulin, glucose, growth hormone, free fatty 
acids and amino acids in resting swine. J Anim Sci 1973; 37: 1180-5. 

Silliman K, Tall AR, Kretchmer N, Forte TM. Unusual high-density lipoprotein 
subclass distribution during late pregnancy. Metabolism 1993; 42: 1592-
9. 

Silverman BL, Metzger BE, Cho NH, Loeb CA. Impaired glucose tolerance in 
adolescent offspring of diabetic mothers. Relationship to fetal 
hyperinsulinism. Diabetes Care 1995; 18: 611-7. 

Siman CM, Gittenberger-De Groot AC, Wisse B, Eriksson UJ. Malformations in 
offspring of diabetic rats: morphometric analysis of neural crest-derived 
organs and effects of maternal vitamin E treatment. Teratology 2000; 61: 
355-67. 

Simoes Nunes C, Duee PH, Pegorier JP, Rerat A. Effect of feed intake level in late 
gestation on arterial blood concentrations of energy substrates, insulin 
and glucagon in the chronically catheterized gilt. Reprod Nutr Dev 1987; 
27: 77-87. 

Sivan E, Chen X, Homko CJ, Reece EA, Boden G. Longitudinal study of 
carbohydrate metabolism in healthy obese pregnant women. Diabetes 
Care 1997; 20: 1470-5. 

Sivan E, Homko CJ, Chen X, Reece EA, Boden G. Effect of insulin on fat metabolism 
during and after normal pregnancy. Diabetes 1999; 48: 834-8. 

Sobngwi E, Boudou P, Mauvais-Jarvis F, Leblanc H, Velho G, Vexiau P, Porcher R, 
Hadjadj S, Pratley R, Tataranni PA, Calvo F, Gautier J-F. Effect of a diabetic 



XII Reference List 138 

environment in utero on predisposition to type 2 diabetes. The Lancet 
2003; 361: 1861-5. 

Soltesz G, Harris D, Mackenzie IZ, Aynsley-Green A. The Metabolic and Endocrine 
Milieu of the Human Fetus and Mother at 18-21 Weeks of Gestation. I. 
Plasma Amino Acid Concentrations. Pediatr Res 1985; 19: 91-3. 

Sorenson RL, Brelje TC, Roth C. Effects of steroid and lactogenic hormones on 
islets of Langerhans: a new hypothesis for the role of pregnancy steroids 
in the adaptation of islets to pregnancy. Endocrinology 1993; 133: 2227-
34. 

Sorenson RL, Brelje TC. Adaptation of islets of Langerhans to pregnancy: beta-cell 
growth, enhanced insulin secretion and the role of lactogenic hormones. 
Horm Metab Res 1997; 29: 301-7. 

Spellacy WN, Goetz FC. Plasma insulin in normal late pregnancy. N Engl J Med 
1963; 268: 988-91. 

Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: interspecies 
comparison of islet architecture and composition. Islets 2010; 2: 135-45. 

Stoy J, Edghill EL, Flanagan SE, Ye H, Paz VP, Pluzhnikov A, Below JE, Hayes MG, 
Cox NJ, Lipkind GM, Lipton RB, Greeley SA, Patch AM, Ellard S, Steiner DF, 
Hattersley AT, Philipson LH, Bell GI, Neonatal Diabetes International 
Collaborative G. Insulin gene mutations as a cause of permanent neonatal 
diabetes. Proc Natl Acad Sci U S A 2007; 104: 15040-4. 

Sugimura Y, Murase T, Oyama K, Uchida A, Sato N, Hayasaka S, Kano Y, Takagishi 
Y, Hayashi Y, Oiso Y, Murata Y. Prevention of neural tube defects by loss of 
function of inducible nitric oxide synthase in fetuses of a mouse model of 
streptozotocin-induced diabetes. Diabetologia 2009; 52: 962-71. 

Taricco E, Radaelli T, Rossi G, Nobile de Santis MS, Bulfamante GP, Avagliano L, 
Cetin I. Effects of gestational diabetes on fetal oxygen and glucose levels in 
vivo. BJOG 2009; 116: 1729-35. 

Tattersall RB, Pyke DA. Growth in diabetic children. Studies in identical twins. 
Lancet 1973; 2: 1105-9. 

Thorburn AW, Gumbiner B, Bulacan F, Wallace P, Henry RR. Intracellular glucose 
oxidation and glycogen synthase activity are reduced in non-insulin-
dependent (type II) diabetes independent of impaired glucose uptake. J 
Clin Invest 1990; 85: 522-9. 

Tobin JD, Roux JF, Soeldner JS. HUMAN FETAL INSULIN RESPONSE AFTER ACUTE 
MATERNAL GLUCOSE ADMINISTRATION DURING LABOR. Pediatrics 
1969; 44: 668-71. 

Torsdottir I, Alpsten M, Andersson H, Einarsson S. Dietary guar gum effects on 
postprandial blood glucose, insulin and hydroxyproline in humans. J Nutr 
1989; 119: 1925-31. 

Tschritter O, Fritsche A, Shirkavand F, Machicao F, Haring H, Stumvoll M. 
Assessing the shape of the glucose curve during an oral glucose tolerance 
test. Diabetes Care 2003; 26: 1026-33. 



XII Reference List 139 

Unger RH. Glucagon physiology and pathophysiology. N Engl J Med 1971; 285: 
443-9. 

Uvena-Celebrezze J, Catalano PM. The infant of the woman with gestational 
diabetes mellitus. Clin Obstet Gynecol 2000; 43: 127-39. 

Van Assche FA, Gepts W. The cytological composition of the foetal endocrine 
pancreas in normal and pathological conditions. Diabetologia 1971; 7: 
434-44. 

Van Assche FA, Aerts L, De Prins F. A morphological study of the endocrine 
pancreas in human pregnancy. Br J Obstet Gynaecol 1978; 85: 818-20. 

van der Peet-Schwering CM, Kemp B, Binnendijk GP, den Hartog LA, Vereijken PF, 
Verstegen MW. Effects of additional starch or fat in late-gestating high 
nonstarch polysaccharide diets on litter performance and glucose 
tolerance in sows. J Anim Sci 2004; 82: 2964-71. 

Vandorsten JP, Dodson WC, Espeland MA, Grobman WA, Guise JM, Mercer BM, 
Minkoff HL, Poindexter B, Prosser LA, Sawaya GF, Scott JR, Silver RM, 
Smith L, Thomas A, Tita AT. NIH consensus development conference: 
diagnosing gestational diabetes mellitus. NIH Consens State Sci 
Statements 2013; 29: 1-31. 

Virkamaki A, Ueki K, Kahn CR. Protein-protein interaction in insulin signaling and 
the molecular mechanisms of insulin resistance. J Clin Invest 1999; 103: 
931-43. 

Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE, Tataranni PA. 
Hypoadiponectinemia in obesity and type 2 diabetes: close association 
with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab 
2001; 86: 1930-5. 

Whaley WH, Zuspan FP, Nelson GH. Correlation between maternal and fetal 
plasma levels of glucose and free fatty acids. American Journal of 
Obstetrics and Gynecology 1966; 94: 419-21. 

Widdowson EM. Chemical composition of newly born mammals. Nature 1950; 
166: 626-8. 

Widdowson EM. Intra-uterine growth retardation in the pig. I. Organ size and 
cellular development at birth and after growth to maturity. Biol Neonate 
1971; 19: 329-40. 

Williams L, Seki Y, Vuguin PM, Charron MJ. Animal models of in utero exposure to 
a high fat diet: a review. Biochim Biophys Acta 2014; 1842: 507-19. 

Williams RC, Knowler WC, Pettitt DJ, Long JC, Rokala DA, Polesky HF, Hackenberg 
RA, Steinberg AG, Bennett PH. The magnitude and origin of European-
American admixture in the Gila River Indian Community of Arizona: a 
union of genetics and demography. Am J Hum Genet 1992; 51: 101-10. 

Woerle HJ, Meyer C, Dostou JM, Gosmanov NR, Islam N, Popa E, Wittlin SD, Welle 
SL, Gerich JE. Pathways for glucose disposal after meal ingestion in 
humans. Am J Physiol Endocrinol Metab 2003; 284: E716-25. 



XII Reference List 140 

Wolf E, Schernthaner W, Zakhartchenko V, Prelle K, Stojkovic M, Brem G. 
Transgenic technology in farm animals--progress and perspectives. Exp 
Physiol 2000; 85: 615-25. 

Wolf E, Braun-Reichhart C, Streckel E, Renner S. Genetically engineered pig 
models for diabetes research. Transgenic Res 2014; 23: 27-38. 

Yogev Y, Langer O, Xenakis EM, Rosenn B. The association between glucose 
challenge test, obesity and pregnancy outcome in 6390 non-diabetic 
women. J Matern Fetal Neonatal Med 2005; 17: 29-34. 

Yoshioka M, Kayo T, Ikeda T, Koizumi A. A novel locus, Mody4, distal to D7Mit189 
on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 
(Akita) mutant mice. Diabetes 1997; 46: 887-94. 

Zhu MJ, Du M, Nathanielsz PW, Ford SP. Maternal obesity up-regulates 
inflammatory signaling pathways and enhances cytokine expression in 
the mid-gestation sheep placenta. Placenta 2010; 31: 387-91. 

Zuber C, Fan JY, Guhl B, Roth J. Misfolded proinsulin accumulates in expanded 
pre-Golgi intermediates and endoplasmic reticulum subdomains in 
pancreatic beta cells of Akita mice. FASEB J 2004; 18: 917-9. 

 



XIII Acknowledgments 141 

XIII. ACKNOWLEDGMENTS  

First, I want to express my gratitude to Prof. Dr. Eckhard Wolf for giving me the 

opportunity to perform my doctorate thesis and be part of his prestigious research 

group at the Chair of Molecular Animal Breeding and Biotechnology, as well as for 

reviewing this work. 

I am very thankful to Dr. Simone Renner for mentoring and supporting this work, and 

her valuable input reviewing this manuscript.  

I am thankful to all my colleagues at the Moorversuchsgut, to senior scientists as well 

as my fellow graduate students and our technical assistants. Thank you for your help 

and support. Special thank you to Dr. Nikolai Klymiuk and Dr. Christina Landbrecht-

Schessl for the generation of the INSC93S DNA construct; to Dr. Barbara Keßler and 

Dr. Mayuko Kurome for the cloning and embryo transfer experiments, as well Dr. 

Barbara Keßler and Arne Hinrichs, to their support concerning the work with the pigs; 

to Dr. Andrea Bähr, for the Southern Blot experiments. Also, I am thankful to the 

animal caretakers Harald Paul and Josef Bichler for the help and maintenance of the 

animal experiments.  

I also would like to acknowledge all the external people that directly contributed to 

this work. Those include: Dr. Birgit Rathkolb and Sebastian Kaidel for the 

measurements of the clinical-chemistry parameters at the German Mouse Clinic, Dr. 

Stefan Krebs for performing the next generation sequencing at the GeneCenter.  

I am thankful to Prof. Dr. Rüdiger Wanke and Dr. Blutke for providing me the 

opportunity to perform quantitative-stereological analysis at the Institute of Veterinary 

Pathology.   

A special thank you to my colleague and friend Pauline Peugnet, for the fruitful 

discussions and great support. 

I would like to express my gratitude to EpihealthNet program for the financial support, 

as well to give me the opportunity to experience a dynamic doctoral program, with 

different learning experiences in different countries, and to come across with great 

scientist in a variety of research fields.   

Finally, to Max and my family for their unconditional support.  


