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The Individual Cognitive Resources Underlying Students’
Mathematical Argumentation and Proof Skills

From Theory to Intervention

Abstract

Handling mathematical argumentation and proof proficiently is regarded as an important
learning goal within mathematics in general and at the beginning of university education in
particular. At university, mathematical proof is introduced as the central method of mathematics
as a scientific discipline. Despite this importance as a major learning goal, students were
repeatedly shown to have severe difficulties with mathematical argumentation and proof. With
the MIMAPS project (Measuring and Improving Mathematical Argumentation and Proof Skills)
we strive to obtain insights into first-year university students” mathematical argumentation and
proof skills and to develop and evaluate strategies to effectively support students in the
acquisition of these skills. We were especially interested in the consequences of interpreting
mathematical argumentation and proof skills as a complex cognitive skill that depends on several
underlying individual cognitive resources such as knowledge facets and skills.

To structure our research, a framework by Blomeke, Gustafsson, and Shavelson (2015) for
competencies and underlying resources was adapted to mathematical argumentation and proof
skills taking prior mathematics education research into consideration. The resulting framework
fosters a comprehensive view of mathematical argumentation and proof skills, combining three
aspects, the underlying individual resources, the situations that require the use of mathematical
argumentation and proof skills, and the processes leading to an observable performance.

As an initial step of the project a descriptive literature review was conducted. Results revealed
that a comprehensive approach to mathematical argumentation and proof skills has rarely been
taken in mathematics education research. Most studies rather focus on specific resources,
processes, or situations in the context of mathematical argumentation and proof skills. In
particular, many studies consider one or two resources of mathematical argumentation and
proof skills but do not examine multiple resources at the same time, so that little evidence on
the relative influence of individual resources on mathematical argumentation and proof skills
exists.

Based on these findings, we conducted a correlational study assessing six individual cognitive
resources of first-year mathematics students as well as their performance in proof construction
and proof validation. Data were quantitatively analyzed using Generalized Linear Mixed Models
to examine the relative influence of the individual resources on students’ performance in proof
construction and proof validation. Results verify and extend prior findings that mathematical
argumentation and proof skills are knowledge intensive, that is participants’ mathematical
content knowledge has a substantial influence. Further, both domain-specific and domain-
general resources have an influence on students’ mathematical argumentation and proof skills,
yet the domain-specific resources predominate. Also mathematical strategic knowledge, which
has been little researched so far, plays an important role both in proof construction and in proof
validation. Our study could not replicate the influence of problem-solving skills on mathematical
argumentation and proof skills that were previously shown to have an impact in secondary school
geometry proof construction contexts (Chinnappan, Ekanayake, & Brown, 2012; Ufer, Heinze, &




Reiss, 2008). Among several explanations, this difference may particularly be related to varying
conceptualizations and operationalizations of problem-solving skills in these studies, and to the
selection and use of domain-general vs. domain-specific strategies to approach mathematical
proofs, which may change with the level of experience and mathematical expertise. Thus, pupils
starting with mathematical proof may rely more on weak, domain-general problem-solving
strategies, whereas university students may have more reliable, domain-specific strategies at
hand.

In a third step, an intervention study was designed that explicitly acknowledges the resources
underlying mathematical argumentation and proof skills. The intervention was intended to
support the resources of mathematical argumentation and proof skills and thereby indirectly also
the overall skill using two different approaches inspired by research from instructional design:
The one-by-one approach explicitly separated the instruction regarding the four potential
resources of mathematical argumentation and proof skills and supported them individually. The
simultaneous approach, however, focused on the resources concurrently, creating an integrated
learning experience and fostering connections between the resources. Results emphasize that
students in both conditions improved substantially regarding most resources. Despite being
antithetic, both approaches yield comparable learning effects, implying that the central tenet of
the part-task / whole-task debate that whole-task learning is superior, cannot be directly
transferred to the resource-based approaches for supporting students’ mathematical
argumentation and proof skills. The results for overall mathematical argumentation and proof
skills are mixed, and initially weaker students appear to benefit more from the intervention,
especially from the simultaneous approach.

In summary, our project revealed that mathematical argumentation and proof skills indeed
depend on several individual cognitive resources but that their relative influence differs largely
when analyzing their impact in a comprehensive way. The project also gave statistical evidence
for the individual importance of each resource and underlined the impact of domain-specific
resources. It further showed that resources can be supported effectively and that they give rise
to novel ways of instruction on mathematical argumentation and proof skills. The MIMAPS
project thus contributes to current research both with a research framework fostering a
comprehensive perspective on mathematical argumentation and proof skills as well as by three
studies providing several new findings related to research on students’ individual underlying
resources, their importance, and ways to support these. Several questions arose, particularly
regarding the interplay and importance of problem-solving skills and mathematical strategic
knowledge, which need to be addressed in future studies.
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Introduction

1 Introduction

Scientific communities from different disciplines have distinct methods to generate scientific
knowledge. Physicists conduct experiments, psychologists employ experimental methods such
as observation or intervention studies, literature researchers apply the hermeneutic circle and
mathematicians use proof. Since the ancient Greeks, proof is so inherent to the nature of
mathematics as a science (Jahnke, 2010) and so unique to mathematics that mathematics is
called a proving science (Heintz, 2000). Today, handling mathematical argumentation is an
important goal within mathematics classrooms world-wide (e.g., Common Core State Standards
Initiative, 2010; KMK, 2012; National Council of Teachers of Mathematics, 2000) and first proofs
are introduced to students in school, for example, Bhaskara’s proof of the Pythagorean theorem
(see Nelsen, 1993, p. 4) or the proof for the irrationality of the square root of 2. Yet, the first time
students get in touch with proof as a scientific method relying on formalism and an axiomatic
underpinning is at university when they first encounter proof-based analysis or linear algebra
lectures in their mathematics studies.

In Germany and many other countries, this introduction of proof based mathematics coincides
with the transition from secondary school to university. Research from the past decades (e.g., M.
Clark & Lovric, 2009; Griinwald, Kossow, Sauerbier, & Klymchuk, 2004; Moore, 1994; Rach,
Heinze, & Ufer, 2014; Reichersdorfer, Ufer, Lindmeier, & Reiss, 2014; A. Selden, 2011; Tall, 1991)
has repeatedly shown that students struggle exactly at this point and has given substantial
evidence that their struggles are at least in part caused by problems with handling mathematical
proof (e.g., A. Selden, 2011; A. Selden & Selden, 2013; Tall, 1992, 2008; Weber, 2003). Studies
within the German educational system reflect students’ difficulties quantitatively: After the first
semester 34% - 45% of mathematics students drop out (Dieter & Torner, 2012) and
approximately 47% of the German students starting a mathematics bachelor program leave
university without any degree (Heublein, Richter, Schmelzer, & Sommer, 2014). Furthermore,
data from the United States of America, for example by Seymour and Hewitt (1997), as well as
preliminary data from the recent “Talking about leaving, revisited” project (Seymour & Ferrare,
2015) also indicate high switching rates (30 - 60%) from mathematics to other subjects.

One explanation for students’ difficulties in handling mathematical argumentation and proof and
the high interindividual variation in students’ performance brought forward by prior research is
the fact that mathematical argumentation and proof skills comprise a complex cognitive skill
(e.g., Chinnappan et al., 2012; Reichersdorfer et al., 2014; Reiss, Heinze, & Klieme, 2002;
Schoenfeld, 1985), in Europe often even conceptualized as a competence (e.g., Klieme & Leutner,
2006; Koeppen, Hartig, Klieme, & Leutner, 2008; Weinert, 1999). That is, mathematical
argumentation and proof skills are conceptualized as the latent disposition to handle
mathematical arguments and proofs, which requires the integration of several different
resources such as knowledge facets, skills, or beliefs, and is enacted via several processes within
different situations.

The assumption that several individual resources are needed to be successful in situations
involving mathematical argumentation and proof skills, can be easily illustrated. It is impossible
for a student to construct a mathematical proof without having the mathematical content
knowledge at hand (e.g., the definitions of the objects within the task) or knowing the acceptance
criteria a mathematical proof is subject to. In consequence, identifying those underlying
resources and estimating their relative importance could offer valuable knowledge when trying
to support students. Results would not only give further theoretical insights on the structure of
mathematical argumentation and proof skills as a complex cognitive skill, but also uncover those
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resources required to be successful in handling mathematical argumentation and proof and
thereby possibly disclose ways to support students in acquiring these skills.

The approach of examining the resources underlying mathematical argumentation and proof
skills complements prior qualitative and quantitative research (e.g., Chinnappan et al., 2012;
Schoenfeld, 1985; Ufer et al., 2008; Weber, 2001) and can be based on Schoenfeld’s claim (20123,
p. 231):

People’s in-the-moment decision making when they teach, and when they
engage in other well practiced, knowledge intensive activities, is a function of
their knowledge and resources, goals, and beliefs and orientations. Their
decisions and actions can be “captured” (explained and modeled) in detail
using only these constructs.

Schoenfeld (1985, 2012a) gave evidence for this claim in various studies, focusing on problem
solving and mathematical proof construction as well as on a set of non-mathematics related
activities. Similar approaches were also taken by other researchers (e.g., Chinnappan et al., 2012;
Ufer et al., 2008) and for other topics and areas such as teaching skills or vocational education
(e.g., Mulder, Gulikers, Biemans, & Wesselink, 2009; Shulman, 1987).

The fact that Schoenfeld’s claim is about “knowledge intensive activities” in general and not only
mathematical argumentation and proof skills or problem-solving skills, highlights another issue
mainly unattended by mathematics education research, that is the relation of mathematical
argumentation and proof skills to scientific reasoning and argumentation skills in general (e.g.,
Dunbar & Klahr, 2012; Fischer, Kollar, et al.,, 2014; Klahr & Dunbar, 1988; Kuhn, 2002;
Zimmerman, 2000). Although proof is a genuine mathematical method, the processes used for
handling mathematical argumentation and proof, such as generating hypotheses or new
evidence, and the demands posed in these situations are closely related to domain-general
scientific reasoning and argumentation processes, which in this case handle mathematical
objects and are subject to the norms of the local mathematical community. Embedding
mathematical argumentation and proof skills in this way into the broader research context allows
to connect to and possibly utilize prior research from psychology, education, and related fields.
Here, especially research on the processes of scientific reasoning and argumentation may be
useful to describe mathematical argumentation and proof skills, leading to a shared terminology
and insights that can be compared and possibly transferred within different domains in future.
Even though students’ struggles with mathematical proof have been recognized by research for
a long time and several attempts have been made to support students (e.g., Mevarech & Fridkin,
2006; Moore, 1994), up to now the situation hardly changed little as drop out and switching rates
are still comparatively high (Dieter & Toérner, 2012; Heublein et al., 2014). Realizing these
shortcomings, we initiated the MIMAPS project (Measuring and Improving Mathematical
Argumentation and Proof Skills) to create seminal knowledge regarding theory as well as practice.
Here, we report results from three studies that shed light on students’ mathematical
argumentation and proof skills, the activities of proof construction and proof validation, as well
as their relation to diverse content-specific, domain-specific, and domain-general individual
cognitive resources. These results are then used as a basis for two instructional approaches to
support students’ mathematical argumentation and proof skills.

In the spirit of Mark Twain’s quote

It ain’t what you don’t know that gets you into trouble. It's what you know for
sure that just ain’t so.




Introduction

the project responds to existing qualitative studies (e.g., Schoenfeld, 1985; Schoenfeld, 20123;
Weber, 2001) and tries to quantitatively investigate the generalizability of prior research findings
regarding the resources of mathematical argumentation and proof skills in the context of
university mathematics.

As basis for this project we created a research framework based on the work by Bldmeke et al.
(2015), conceptualizing mathematical argumentation and proof skills as a complex cognitive skill,
enclosing not only the underlying resources, but also the situations that require mathematical
argumentation skills as well as the processes leading to an observable performance. The
framework was gradually refined throughout the project to match prior research findings from
mathematics education research as well as those within the project.

In a first step, we conducted a literature review on research focusing on mathematical
argumentation and proof skills in secondary and tertiary contexts. Results highlight current
research foci regarding several resources, processes, as well as situations in the context of
mathematical argumentation and proof and how these are examined and combined within
research.

Consequently, in a correlational study, we assessed six cognitive resources suggested by prior
research as well as students’ performance in two situations that require their mathematical
argumentation and proof skills. Using Generalized Linear Mixed Models, we closely examined the
relative impact of the individual resources in the context of proof construction — the creation of
a mathematical proof for a given claim — and proof validation — the reading and judging of the
correctness of a given mathematical proof. Here, three domain-specific and three domain-
general individual cognitive resources that were suggested by prior research were compared
regarding their relative influence in both situations. Results extend prior findings that handling
mathematical argumentation and proof is a knowledge-intense activity, yet not all potential
resources could be validated as underlying mathematical argumentation and proof skills.

The third study was designed as an intervention study, trying to support students in their
acquisition and learning of overall mathematical argumentation and proof skills by means of four
suggested underlying resources. Two different approaches based on the part-task / whole-task
debate from instructional design (e.g., Branch & Merrill, 2011; van Merriénboer & Kester, 2007),
focusing on the resources one-by-one vs. focusing on them simultaneously, were compared.
Analyses contrast both approaches regarding their effects on the resources as well as on overall
mathematical argumentation and proof skills and examine their feasibility.

These three studies are presented in chapter 5, preceded by three theoretical chapters. First, the
basis of this thesis is formed by trying to disentangle the notions of reasoning, argumentation,
and proof and highlighting the social character of mathematical proof. Furthermore, a bridge
towards scientific reasoning and argumentation is built (chapter 2) to put the research within this
project into a larger frame and enable a critical discussion of the applicability of a framework for
scientific reasoning and argumentation skills in the context of mathematical argumentation and
proof. Building on this foundation, the current state of research on mathematical argumentation
and proof skills is discussed (chapter 3). Here, an existing general framework for complex
cognitive skills, covering their various aspects is introduced and the different aspects of the
framework are discussed in depth in the context of mathematical argumentation and proof
thereafter. We elaborate on the various resources suggested by prior research as underlying
mathematical argumentation and proof skills, various frameworks for processes involved when
handling mathematical argumentation and proof, as well as various situations, respectively
activities in this context. Both chapters are fundamental for chapter 4 displaying our research
framework, which describes mathematical argumentation and proof skills in a comprehensive
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way, incorporating various resources, processes, and situations based on prior research findings,
and describing the research questions guiding this project.

The final chapter 6 comprehensively presents the results from all three studies, highlights central
aspects, and discusses them in an integrated way. Finally, the limitations of the project and its
findings are discussed, and an outlook containing implications and a research agenda with
important questions that could not be addressed or arose in the current studies is given.
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2 Reasoning, Argumentation, and Proof

Outline The terms reasoning, argumentation, and proof are widely used, yet there are no
generally accepted definitions. To form a solid theoretical base for this thesis, we first review
definitions of reasoning, argumentation, and proof in the context of diverse theoretical
frameworks and research traditions. Afterwards, we outline the inherently social nature of
mathematical proof and the relevance of socio-mathematical norms for students’ argumentation
and proof skills. Finally, we position mathematical argumentation and proof skills in the more
general research on scientific reasoning and argumentation to highlight connections between
both and to address further facets and underlying research that are often not recognized within
the scope of mathematics education research.

2.1 Delineating and Separating Terms

Although often mentioned together, reasoning, argumentation, and proof refer to at least
partially distinct activities and associated products. All three are part of a relatively large cluster
of terms, also including for example justification, proving and arguing, which are defined vaguely
and partially overlapping in (mathematics) education research (e.g., Aberdein, 2009; Cirillo,
Kosko, Newton, Staples, & Weber, 2015; Osborne & Patterson, 2011; Reid & Knipping, 2010).
Their definitions, meanings, and connotations differ according to research traditions (or
perspectives), the particular focus of research, and the specific data being analyzed. Thus, they
are still subject to some debate and confusion (e.g., Reid & Knipping, 2010). The framework for
this project outlined below is based on terms and definitions from (educational) psychology as
well as mathematics education to be able to connect to research from both disciplines.
Additionally, some alternative definitions are shortly described to highlight differences and to
avoid misconceptions.

Within the three terms reasoning, argumentation, and proof, reasoning is often interpreted as
the most elementary activity, defined as the process of drawing a conclusion from principles and
evidence (Leighton & Sternberg, 2003). The result of this activity can be either a statement,
thought or decision (often implicit in action), which has to have some systematic relation to the
given principles, evidence or more generally speaking premises. The most common example in
the context of mathematics is drawing a deductive inference, but also inductive or abductive
reasoning as well as reference to authority fall within this definition (Johnson-Laird, 2000). The
term reasoning, therefore, is broad, yet limited to single steps of inference rather than multiple.
Although the term argument can be interpreted as a single reason for or against something, a
structured sequence of reasons and claims, or as a certain type of social exchange (Hornikx &
Hahn, 2012), the term argumentation within educational psychology and mathematics education
is often used in the second sense as a sequence of inferences or assertions, leading from a given
premise to a conclusion (e.g., Douek, 2007; Halpern, 2002; Reiss & Ufer, 2009; Toulmin, 2003).
Contrasting reasoning and argumentation, this way of defining argumentation implies that
reasoning can be seen as drawing single inferences, whereas argumentation rather refers to the
combination of multiple inferences to a (more or less) logical chain in order to provide evidence
for or against a given claim (Reichersdorfer et al., 2012; Reiss, Heinze, Renkl, & Grof3, 2008) or
explore a given task, problem, or situation (e.g., Reiss & Ufer, 2009). Following these definitions,
reasoning is obviously needed for argumentation and can be seen as an underlying activity.

In contrast, other research traditions use the term reasoning for what we defined as
argumentation (e.g., Lithner, 2008). The difference between reasoning and argumentation is
then often attributed to a shift between the aims underlying these activities or their setting: In

5




The Resources Underlying Students’ Mathematical Argumentation and Proof Skills

this tradition, reasoning is usually used to denote an individual activity (e.g., reasoning about a
phenomenon when reading about it), whereas argumentation is used to denote reasoning
processes within groups (e.g., Andriessen, 2009; Felton & Kuhn, 2001; Voss & Van Dyke, 2001),
often also explicitly aimed at convincing group members or others that a claim, hypothesis, or
point of view is correct or true (e.g., van Eemeren & Grootendorst, 1999).

Here, we will follow the first definition of argumentation. Based on it, argumentation can have
various forms and features, for example, it can be more or less long, deductive, logically correct,
and / or convincing. Each of these characteristics is of varying importance for its acceptance,
depending on the context and its aim and can be used to evaluate a given argumentation (see
section 2.2). This fact is often used to define a (mathematical) proof* as a certain kind of
argumentation that satisfies certain norms within the mathematical community. One such norm,
which is often mentioned, is the sole acceptance of deductive inferences (see further Dawkins &
Weber, 2016; Heinze & Reiss, 2003). For example, Meyer (2007, p. 21) defines constructing a
mathematical proof as an activity where a claim is formally, step-by-step deductively inferred
from known theorems or definitions in a valid way. In comparison to argumentation, three
characteristics of proof stand out: “formally”, “deductively”, and “inferred from known theorems
or definitions in a valid way”. All three features refer to socio-mathematical norms (see Yackel &
Cobb, 1996) that define what is required for an argumentation to be a proof. Requiring all three,
Meyer’s (2007) definition is close to what is often called a formal proof (Hales, 2008; Hanna &
Jahnke, 1993), thereby relatively strict and close to what is sometimes called derivation
(Aberdein, 2009). Hales (2008, p. 1371) defines a (completely) formal proof as

a proof in which every logical inference has been checked all the way back to
the fundamental axioms of mathematics. All the intermediate logical steps are
supplied, without exception.

This definition of proof corresponds to an ideal proof that is hardly ever achieved in mathematical
practice as checking inferences back to the fundamental axioms or providing all logical steps
would make proofs incredibly long and mainly useless for practice (e.g., Hanna, 1989; Jahnke &
Ufer, 2015). Accordingly, proofs are usually constructed and communicated in an abbreviated
way where “routine logical steps are omitted” (Hales, 2008, p. 1371) in such a way that the proof
remains in principle formalizable (Alama & Kahle, 2013). A definition taking this into account is
provided by Bell (1976, p. 26), defining proof very openly as

a directed tree of statements, connected by implications, whose end point is
the conclusion and whose starting points are either in the data or are generally
agreed facts or principles

and mainly resembles our definition of argumentation.

In this project we decided to adhere to an intermediate course taken by A. J. Stylianides (2007),
defining a proof as a mathematical argument, that is a connected sequence of assertions, that is
subject to several characteristics? and social norms. His definition corresponds well to the recent
suggestion by Weber (see Cirillo et al., 2016) that

! Within this project, we conceptualize proof mainly as an object and examine student’s skills to
handle these as well as the processes involved in handling them. Thus, we do not discuss the
concept of proof in detail, which would be an additional topic (see further Reid & Knipping, 2010).
2 In his article, he mentions three categories of these characteristics: set of accepted statements,
modes of argumentation, and modes of argument representation.
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proof might be best understood as a cluster concept as in the case of Lakoff
(1990). The idea is that proof in mathematical practice might be an argument
that contains a large number of features (e.g., being purely deductive, highly
convincing, perspicuous, within a representation system, and socially
sanctioned) but does not necessarily contain all of them with no single feature
being common amongst every proof. Consequently, there is not a decision
procedure in which you can definitively say that an argument is (or is not) a
proof, if it has (or lacks) some property and one should avoid elevating any
singular property (e.g., being convincing) as the essence of proof (see Weber,
2014, for a discussion of this issue).

Except for these restrictions in form and features for an argument to become a proof, a
distinction between the epistemological viewpoint as well as a logical and cognitive distance is
often highlighted (Balacheff, 1988; Boero, Garuti, Lemut, & Mariotti, 1996; Duval, 1995;
Pedemonte, 2007). (Pedemonte, 2008, p. 385) speaks of a

“structural gap” between argumentation and proof because in argumentation
inferences are based on content while in proof they follow a deductive scheme
(data, claim, and inference rules).

Epp (2003) denotes this gap as a shift towards a “different logical and linguistic world” than the
one “normally inhabited” and Downs and Mamona-Downs (2005) compare learning
mathematical proof with learning an “entirely new language”. This linguistic aspect is also
supported by J. Selden and Selden (1995), who point out that producing mathematically sound
statements (i.e., proofs or parts of it) out of informally written statements (i.e., arguments) is a
significant barrier when constructing and validating proofs.

Both difference and connection between argumentation and proof are reflected in Brunner’s
(2013) continuum between argumentation as an everyday kind of reasoning®, which in her
framework is the umbrella term for argumentation and proof, and formal-deductive
mathematical proof (Figure 1). Between both ends of the spectrum is a continuum of more or
less mathematics-related and more or less deductive kinds of argumentation, for example, logical
argumentation underpinned with mathematical formulas. The connection between
argumentation and proof is also emphasized by the introduction of cognitive unity by several
Italian researchers (e.g., Boero, Garuti, & Mariotti, 1996; Mariotti, 2006; Pedemonte, 2007) who
despite of the structural gap see a productive connection between argumentation and proof and
highlight the benefits of argumentation for proof.

* The German term used by Brunner is “Begriinden”.
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Reasoning
Argumentation Logical
Everyday . . Argumentation Formal-Deductive
. Using Mathematical . .
Argumentation Tools Using Mathematical Proof
Tools

Figure 1. The continuum of reasoning connecting argumentation and proof (Brunner, 2013).

The perspective on argumentation and proof introduced in this thesis corresponds best to the
tradition of proving as problem solving (G. J. Stylianides, Stylianides, & Weber, in press), because
we implicitly view the creation of an argumentation and more specifically of a proof as a special
case of problem solving where students are asked to use deductions (or other inferences) to
achieve the goal of proving a claim and thereby solving the given problem. The other two
traditions (proving as convincing and proving as a socially embedded activity) mentioned by G. J.
Stylianides et al. (in press) are of minor importance here, although we highly acknowledge both
aspects. We also deem conviction (of oneself and / or others) as an important aim of handling
mathematical proofs (i.e., for both proof construction and proof comprehension). Yet, we do not
limit handling mathematical proofs or more generally argumentation to this goal as multiple
researchers have outlined a broader set of goals for proofs (e.g., Bell, 1976; de Villiers, 1990;
Hanna, 1990). Furthermore, as discussed above, the concept of mathematical proof is dependent
on socio-mathematical norms, which presupposes a social embedding.

2.2 Mathematical Proof in the Context of Communities

As introduced above, mathematical proofs are argumentations that are subject to certain norms,
so-called socio-mathematical norms (e.g., Yackel & Cobb, 1996), which qualify them to be
accepted as mathematical proofs. These norms are not intrinsic to mathematical proof but are
established by the local mathematical community. A famous quote from Manin (2010, p. 45) puts
it this way:

A proof becomes a proof only after the social act of “accepting it as a proof”.

Devlin (2003) illustrates this by showing that even today a “proof”, which may be 100% correct,
still must be socially accepted to be “correct”. For this he uses Hales’ purported proof (2002) of
Kepler’s sphere-packing conjecture. It was rejected by the mathematical community after four
years of close examination by twelve referees because they were not able to ascertain its
correctness.

Hence, mathematical proofs and doing mathematics, in general, cannot be seen as an absolute
concept, but must always be regarded within the social context (e.g., Op 't Eynde, Corte, &
Verschaffel, 2002), because working with proofs is “an inherently social activity” (Schoenfeld,
1992, p. 335). Crucial for this perspective is the fact that there is not one mathematical
community, but that there are multiple communities and that the concept of proof is dependent
on shared norms within these. For example, in some 7th grade classrooms, the act of ripping off
two vertices, respectively angles, of a paper triangle and placing these next to the third angle, so
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that a straight line is generated (Figure 2), which students already know corresponds to a straight
angle of 180°, may be accepted as a proof for the sum of interior angles of a triangle.

& ,‘0‘

-

Figure 2. Sketch of the “proof” for the sum of interior angles by ripping of the vertices of a triangle.

In other classroomes, this “proof” may not be accepted. Here a proof using the parallel postulate
and alternate angles may be constructed (Figure 3), thus explicitly referring to already known
mathematical objects and properties. Research mathematicians, on the other hand, may require
even more information, for example about the underlying geometrical space, to be sure that the
parallel postulate as the argument connecting the given data and claim (i.e., warrant using
Toulmin’s (2003) terminology) holds.

S

Figure 3. Sketch of the proof using the parallel postulate.

A further issue in the context of the social character of mathematical proofs, especially within
education, is the diversity of (didactical) proof concepts. Already in his first sentence, Bell (1976,
p. 23) speaks of proofs as the aspect of mathematics that probably “shows the widest variation
in approaches”. Wittmann and Midller (1988) broadly distinguish between three different types
of (didactical) proofs

e formal-deductive proof

e experimental proof

e operative proof (“inhaltlich-anschaulicher Beweis”)
These types of proofs are dissected even further by Brunner (2013, p. 52 ff), using a framework
on proof approaches by Leiss and Blum (2006), and also by Biehler and Kempen (2016). Which of
these didactical proof concepts are accepted as a valid mathematical proof and which do not
(independent of the quality of the individual purported proof) is again up to the context and
community. Shifts regarding the acceptance of these proof concepts in different communities
can be the cause of serious issues and problems, for example for students in the transition
towards proof-based mathematics courses within university. Tall (1992, p. 495 ff) describes this
transition as a shift from concept, intuition, and experience based mathematics towards a kind
of mathematics based on formal definitions and logical deductions.
Transitioning from school to university, the local mathematical community changes, other norms
apply, and hence different proof concepts are accepted (e.g., Biehler & Kempen, 2016; Dreyfus,
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Nardi, & Leikin, 2012; Kempen, 2016). For example, operative proofs may have been very well
accepted and even encouraged at school, but may not suffice at university. It is therefore
mandatory for first-year students to recognize and learn the norms applied at university in
general and specific courses in particular.

Weber, Inglis, and Mejia-Ramos (2014, p. 11) further propose aligning university students’ proof
concepts with those of (research) mathematicians as a goal of university mathematics
instruction. This process of alignment has been researched by scientists from several
backgrounds, including mathematics education, psychology, sociology, and anthropology.
Descriptions range from a rather one-sided enculturation of the new students in the already
existing university community by communicating these norms, to social-constructivist views of
shared co-construction of norms by lecturers, tutors, and students (e.g, Hemmi, 2008; Miiller-
Hill & Kempen, in preparation; Nickerson & Rasmussen, 2009; Pfeiffer, 2011). For example, Perry,
Samper, Camargo, Molina, and Echeverry (2009) highlight that learning to prove corresponds to
the participation in proving activities within the community of mathematical discourse, following
the idea of entering a community of practice (Wenger, 1999), rather than to a “passive”
enculturation.

This issue is aggravated by the fact that the transition into the university mathematical
community neither happens instantly nor that there is one “mathematical community” (not even
in mathematical research), but that there may be several communities for example in different
content or research areas. Finally, there is increasing evidence that the norms used in teaching
at university are not equivalent to those of research mathematicians (e.g., Weber et al., 2014).

2.3 Mathematical Argumentation and Proof Skills

The two past sections highlight that mathematical proofs can be seen as a subset of mathematical
argumentation and that the distinction between both relies on socio-mathematical norms.
Further, there is a continuum (Brunner, 2013) between both argumentation and proof (see
Figure 1) that partially reflects the enculturation of students to the concept of mathematical
proof by applying increasingly strict norms regarding their validity. For first-year university
students, this enculturation has not reached its final state, which is for example reflected by
findings that teaching practices of mathematicians do not reflect their research practices (e.g.,
Heintz, 2000; Hersh, 1999; Weber et al., 2014).

Based on this notion and understanding of proof, we will therefore in the following use the term
mathematical argumentation and proof skills to denote university students’ skills to handle
argumentations according to the norms of the university mathematical community, for example,
to construct valid proofs or to validate purported proofs against these norms. We thereby
consider the fact that the acceptance criteria for argumentations to be “mathematical proofs” at
the university are not identical to the standards of the international mathematical research
community, which are aimed at mathematical proofs by researchers. Thus students’ purported
proofs are often positioned between what we above called argumentation and mathematical
proof. This approach can be considered as analogue to the term reasoning-and-proving
introduced by G. J. Stylianides (2008) to account for the various formulations used for proof and
argumentation related activities in school curricula.

2.4 Connecting Mathematical Proof to Scientific Reasoning

The concept of proof is genuine to mathematics and proof is often characterized as “the most
important characteristic of modern mathematics” (Hanna, 1991). Yet, other disciplines also
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engage in similar scientific activities to ascertain claims, and ultimately argumentation can be
found throughout research and more practice related activities in all disciplines. Thus,
considering research findings on argumentation skills from other disciplines could be highly
valuable for research on mathematical argumentation and proof skills to connect and contrast
findings in particular as underlying psychological processes and phenomena can be expected to
be closely related.

One way of interlinking and setting mathematical argumentation and proof skills into a broader
frame can be achieved using the concept of scientific reasoning skills (e.g., Bao et al., 2009; Klahr
& Dunbar, 1988; Kuhn, 2002), which currently is referred to as a 21st century skill (e.g., National
Research Council, 2012; OECD, 2013) and is promoted by educational initiatives globally (e.g.,
Obama, 2009). Although the term “reasoning” is used, the term scientific reasoning is not
correctly interpreted when using the definition of reasoning outlined in section 2.1. Here,
reasoning is meant in a broader sense, which is why scientific reasoning is also often referred to
as argumentative thinking, scientific thinking (see Zimmerman, 2000), or lately also as scientific
reasoning and argumentation (SRA)* (Fischer, Kollar, et al., 2014), attempting to show that it
embraces more than drawing single inferences.

As Opitz, Heene, and Fischer (2015) point out, three different conceptualizations of scientific
reasoning and argumentation are common in literature (Figure 4): Two of them conceptualize
scientific reasoning and argumentation mainly on a skill-level. In accordance with Inhelder and
Piaget (1958), one conceptualization views scientific reasoning as one general ability. The other
conceptualization, for example, taken by Livermore (1964), is characterized by viewing scientific
reasoning and argumentation as a collection of several, basically unrelated skills. Finally, the third
conceptualization focuses more on the process of scientific reasoning, which is regarded in close
relation to the process of problem solving. The latter perspective is taken for example by Klahr
and Dunbar (1988). Generally, Opitz et al. (2015) observed a shift towards this last
conceptualization within the assessment of scientific reasoning and argumentation skills in the
last 30 years.

One Skill Several, Independent Skills Problem Solving

Figure 4. Different conceptualizations of scientific reasoning (Opitz et al., 2015).

According to Schunn and Anderson (1999), the term scientific reasoning covers all skills that are
required for making scientific discoveries and progress. Thereby scientific reasoning “involves a
diverse collection of cognitive activities, rather than single cognitive process” (Schunn &
Anderson, 1999, p. 337). Mathematical argumentation and proof skills therefore easily fit in this

* Throughout this thesis the terms “scientific reasoning” and “scientific reasoning and
argumentation” will be used mostly equivalently, as the latter solely highlights the inclusion of
argumentation within reasoning but is otherwise equivalent to “scientific reasoning”.
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line of research as mathematical proof is a central scientific method within the field of
mathematics to make scientific progress and as it also comprises several activities (see section
3.3). To proceed like this has several advantages:

e A cross-disciplinary language, which renders research results understandable as well as
comparable between domains, is used.

e [t allows the application of process models of scientific reasoning and argumentation in
the context of mathematical argumentation and proof skills.

e Existing research results from domains other than mathematics, especially from
psychology and education, can be taken into account when doing research on
mathematical argumentation and proof skills.

e |t allows to differentiate between domain-specific and domain-general aspects of
mathematical argumentation and proof skills.

e |t simplifies the process of finding commonalities between different domains, for
example, to find cross-domain or domain-general aspects of (mathematical)
argumentation and proof (see further Fischer, Wecker, et al., 2014).

e [t allows researchers to combine parts of this project’s data with data from other studies
on scientific reasoning and argumentation when meta-analytically reanalyzing the data.

Research on scientific reasoning originates in the 1950s as a consequence of the cognitive
revolution, with groundbreaking work by Bruner, Goodnow, and Austin (1956) as well as Inhelder
and Piaget (1958). Here, seminal work was done within developmental psychology, later also by
educational and more generally by cognitive psychology as well as science education. Since the
1950s, substantial research has been devoted to scientific reasoning (e.g., Dunbar & Klahr, 2012;
Fischer, Kollar, et al., 2014; Giere, Bickle, & Mauldin, 2005; Klahr & Dunbar, 1988; Koslowski,
1996; Kuhn, 2002; Schunn & Anderson, 1999; Sodian & Bullock, 2008; Zimmerman, 2000) and
several theoretical, as well as empirical advances, have been made.

2.4.1 The Dual Search Space

A major step forward in understanding and describing processes of scientific reasoning and also
mathematical argumentation and proof was made by Klahr and Dunbar (1988) by creating the
dual search model of scientific discovery, which according to Klahr and Dunbar (1988, p. 32) is “a
general model of scientific reasoning that can be applied to any context in which hypotheses are
proposed and data is collected”. The framework connects two different positions in research on
scientific reasoning (Zimmerman, 2000, p. 101), as it encompasses domain-specific knowledge
and domain-general knowledge, respectively strategies, and therefore allows to examine the
interactions between both facets (see further van Joolingen & de Jong, 1997). It frames scientific
reasoning as a process of problem solving, which can be described as a guided search,
information gathering, and information processing task (see Newell & Simon, 1972; Simon, 1978;
Zimmerman, 2000) that takes place in two separate but related search spaces (Klahr & Dunbar,
1988; van Joolingen & de Jong, 1997). Both hypothesis space and experiment space should be
understood according to the information processing approach by Newell and Simon (1972) as
representations of the problem situation that include an initial state, a goal state, and a set of
operators that allow to advance from one state within that space to another state.

The crucial idea underlying the dual problem space approach is the existence of two separated
spaces: The hypothesis space that is related to the search for a hypothesis, its formulation, and
its refinement and the experiment space that is related to any kind of experimentation, data
gathering, or evidence generation used to evaluate this hypothesis. Still, according to Klahr and
Dunbar (1988) both are connected in such a way that the search in the hypothesis space is guided
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by prior knowledge and results from the experiment space, whereas search in the experiment
space is influenced by the current hypothesis and available domain-general strategies (Figure 5).

Drives Experiment \ /—\

Hypothesis Space Experiment Space

Generates Knowledge
and

Inspires Hypothesis

)

Searching, Restructuring,
and Adopting
Evidence Generation

S
/

Figure 5. Operations and connections within the dual search space (Klahr & Dunbar, 1988).

The use of this framework by Klahr and Dunbar (1988) for mathematical argumentation and
proof processes is not straight forward as it was intended for scientific domains that are based
on mainly inductive empirical evidence, that is data, statistics, artefacts, or materials that
corroborate a claim or position. Accordingly, the role of deductions within the framework and
whether they should be regarded as part of the hypothesis space or the experiment space
remains open. If they are attributed to the former, most processes in the context of mathematical
proof are related to the hypothesis space, and the experiment space is limited to activities such
as exploring and conjecturing as well as to illustrative objects such as specific examples or
sketches. This approach has been taken for example by Philipp (2012), focusing explicitly on
activities in the context of exploring. However, in the context of mathematical proof that mainly
relies on deductive inferences, this approach appears less fruitful. If, in contrast, deductions are
attributed to the experiment space and thereby are interpreted as a way to create mathematical
evidence, the dual space framework can be used more purposefully for proof construction
activities. The process of adapting a hypothesis however also requires deductive reasoning
processes but is part of the hypothesis space. Accordingly, mapping deductions entirely to either
the hypothesis space or the experiment space appear unreasonable in the context of
mathematical proof. Thus, to purposefully use the framework in this context, deductions related
to the hypothesis should be included in the hypothesis space whereas those related to creating
mathematical evidence should be included in the experiment space.

An illustration of the framework by Klahr and Dunbar (1988) for mathematical argumentation
and proof processes using this last approach is given in the example below. It is based on the
following task given by Koedinger (1998, p. 320) and encompasses a newly-created description
of a fictional proof construction process by a fictional student called Luke.

A “kite” is a special kind of quadrilateral whose four sides form two pairs of
congruent adjacent segments. In other words, a kite is a quadrilateral ABCD
with AB congruent to CB and AD congruent to CD.

Investigate these figures called kites using whatever tools you would like and
discover and write down what must be true of every kite.

The description of the process is inspired by Koedinger’s (1998) task analysis and interview
results. The student’s work is idealized to a certain degree, because his intentions and mental
processes would of course not be accessible and the student may have made more faults or given
up. Also, some “prolonging” steps have been omitted when they were not helpful for the
demonstration of the dual search space.
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lllustration of the use of the dual search space framework for mathematical argumentation
and proof processes

Description Coding

First thing after reading the task, Luke starts to draw a sketch of a Experiment space
kite. Since he has never done this before, he is not quite sure how to

do this, and his first sketch ends up being just a regular quadrilateral

and no kite (Figure 6).

Being unhappy with the kite, he tries again, this time trying to

“construct” one. He finally manages to do so by using several

subsidiary circles (Figure 7).

e

Figure 6. Creation of a first sketch of a kite.

S

Figure 7. Creation of the first constructed kite.

Having created the kite, he carefully looks at it and forms the Hypothesis space
hypothesis that opposite angles are equal.
To confirm his hypothesis, he constructs another kite with arbitrary, Experiment space

but different lengths (Figure 8). By observing the angles, he sees two
seemingly differing angles on the left and right of the kite. Carefully
measuring the two seemingly different angles with his protractor
Luke finds out,

that his initial hypothesis is invalid. Hypothesis space

A

Figure 8. Creation of the second constructed kite.
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Description Coding

Not exactly knowing how to go on, he also measures the other two Experiment space
angles to see, whether they are also unequal. To his surprise, both

angles are roughly the same size.

To confirm this, he measures the angles of the initial kite again, Experiment space
constructs another kite, and measures the angles of interest. For all

three kites, both angles have the same size.

After doing so, he develops a new hypothesis: The angles at the top Hypothesis space
and bottom of his kites are of equal size.

To prove his hypothesis, he creates a new, bigger sketch (Figure 9), Experiment space
including both angles (highlighted at the points A and C), and some

subsidiary lines.

Enticed by the sketch, he has the initial idea to use the sum of interior

angles and neighboring angles to show that both angles are equal.

As he starts to compute £ DBA, he writes ZDBA + ZBAC + 90° = 180°

and therefore ZDBA = 180° - 90° - ZBAC = 90° - ZBAC. Having

written that down he pauses for a moment, reconsidering what he

just wrote, because he had the feeling something was odd. After

rereading what he had just written and looking at the sketch, he

crosses out both lines because he realized that he does not know for

sure that ZAMB = 90°.

Figure 9. Kite with angles.

Having failed to use the angles, he looks at the sketch again, this time Experiment space
focusing more on “what he really knows”. That basically amounts to

AB = BC and AD = DC. That in mind, he realizes that both

“upper and lower” triangle have the diagonal BD in common, as well

as two sides of the same length.

He mumbles: Aha, that’s how it works. It’s true!

He, therefore, writes down: Experiment space
The triangle ABD and BCD have three sides of the same length. Per

definition AB = BC and AD = DC. The third line BD is literally

the same in both triangles, so it has the same length.

Knowing this, we can use the “side-side-side” rule to see that both

triangles are congruent.

But then, as congruent triangles have the same angles, the angels Experiment space
ZBAD and ZDCB must be the same because they are the

corresponding angles in both triangles.

Rereading what he has written, Luke is satisfied and concludes that Hypothesis space
his hypothesis was correct and is now proven.
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2.4.2 Domain-specificity vs. Domain-generality

Examining the example above more closely, not only focusing on both spaces, it becomes clear
that Luke benefits from his conceptual and procedural mathematical knowledge (e.g., de Jong &
Ferguson-Hessler, 1996; Hiebert & Lefevre, 1986). For example, he uses his procedural
mathematical knowledge on how to use the compass for his constructions, and conceptual
knowledge such as the sum of interior angles or the “side-side-side” rule. Still, he may eventually
have been able to construct the proof even without this underlying mathematical knowledge,
that is only with domain-general knowledge and strategies (Abel, 2003; Chinnappan et al., 2012),
such as drawing a sketch (which he did at the very beginning) and using, for example, thought
experiments, argumentation (without referring to mathematical content knowledge), or folding.
The question about the domain-specificity or domain-generality of scientific reasoning and
argumentation skills was a controversy from its very beginning. According to Osborne (see his
contribution to Fischer, Wecker, et al., 2014) many definitions and frameworks for scientific
reasoning tried to emphasize its domain-generality, that is they tried to point out that the skill is
independent of domain-specific knowledge. This is also reflected by the review by Voss, Wiley,
and Carretero (1995) who see scientific reasoning as a “general intellectual skill” and therefore
as rather domain-general. This view is understood when focusing particularly on the processes
involved in scientific reasoning activities, the underlying strategies, or the personal
epistemological beliefs, rather than on the outcomes of scientific reasoning activities. For
example, creating a hypothesis is a skill (or process, depending on the conceptualization of
scientific reasoning), which (at least at first sight) appears as it can be applied across various
domains. Yet, studies (e.g., Voss, Tyler, Yengo, & others, 1983) showed that there are significant
group differences in the quality of the created hypotheses, with experts having domain-specific
knowledge outperforming all other groups. Furthermore, experts from other domains, that is
without domain-knowledge, performed not only significantly worse than the domain experts but
also roughly on the level of undergraduate students, which were neither “experts” nor did they
have extensive domain-specific knowledge.

Research from the last decades provided increasing evidence that scientific reasoning indeed is
dependent on domain knowledge (e.g., Klahr & Dunbar, 1988; van Joolingen & de Jong, 1997;
Voss et al., 1983), a view that today is mainly agreed upon by experts (Zimmerman, 2007). For
example, a study by Schunn and Anderson (1999) with experts and students with diverse
backgrounds such as psychology, physical science, social science, and arts revealed that domain-
specific as well as domain-general resources can be beneficial in scientific reasoning and
argumentation activities. In their study, the overall quality of domain-experts’ solutions was
superior to those of the other participants. However, they were also able to show that domain-
general experiment design skills improved the quality of solutions.

Although today scientific reasoning and argumentation skills are acknowledged to be domain-
specific to a certain degree, that is they draw on domain-specific knowledge facets such as
conceptual, procedural, or strategic knowledge (see Kuhn, Schauble, & Garcia-Mila, 1992;
Weber, 2001), the discussion is not finished (Fischer, Chinn, Engelmann, & Osborne, in
preparation). Moreover, theoretical and educational questions regarding the transfer of
strategies and the effectiveness of domain-general interventions in particular are still under
debate as they are questioned by some researchers (e.g., Sweller, 1990; Tricot & Sweller, 2014)
and emphasized by others (e.g., Chinnappan & Lawson, 1996; D. W. Eccles & Feltovich, 2008).

A reasonable approach, consistent with the findings regarding the importance of domain-specific
knowledge, is to conceptualize scientific reasoning and argumentation skills as a complex
cognitive skill that has several underlying skills and knowledge facets, which are partly domain-
specific and partly domain-general. Still, the questions about the impact of each underlying
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resource, the possibility of transfer between domains (of each resource and the overall skill), as
well as ways to intervene (again, regarding each resource and the overall skill) remain widely
open for future research.

Accordingly, scientific reasoning skills correspond to mathematical argumentation and proof
skills regarding multiple aspects, for example regarding the underlying resources and their
domain-specificity or -generality, which will be addressed in this project. Further, similarities can
also be found on a process level.

2.4.3 The SRA-Framework

A recent approach to scientific reasoning and argumentation by Fischer, Kollar, et al. (2014)
avoids presupposing any claim about domain-specificity or domain-generality or underlying
resources by making an implicit definition of scientific reasoning and argumentation via three
epistemic modes and eight epistemic activities, which describe the underlying aims and the
processes of scientific reasoning and argumentation. Thereby, this approach belongs to the third
category in the classification by Opitz et al. (2015) and describes scientific reasoning and
argumentation skills as problem solving via observable processes.

Understanding Understanding
A A
| |
| |
| |
| |
Pure Basic : Use-inspired Theory-aimed : Science-based
Research | Basic Research Reasoning and | Reasoning and
(Bohr) : (Pasteur) Argumentation : Argumentation
| | in Practice
| |
| |
____________ m—— - et i
| |
| |
| |
I Pure Applied | Artefact-centered
: Research : Reasoning and
| (Edison) I Argumentation
| |
| |
| |
| |
» Use > Use

Figure 10. Epistemic modes of research (Stokes, 1997) (left) and scientific reasoning and argumentation (Fischer, Kollar, et al.,
2014) (right).

To structure the context scientific reasoning and argumentation processes may occur in, Fischer,
Kollar, et al. (2014) introduce three epistemic modes focusing on the aims underlying scientific
reasoning and argumentation processes(Figure 10, right). These are based on work by Stokes
(1997) (Figure 10, left) and describe three fundamentally different areas of scientific reasoning
and argumentation based on two aims: use and understanding.
Theory-aimed reasoning and argumentation:
Scientific reasoning and argumentation activities mainly driven by the aim understanding,
that is the wish to advance theory building about natural or social phenomena, are
contained in the first epistemic mode, which is called theory-aimed reasoning and
argumentation (Fischer, Kollar, et al., 2014). It is the analogue to Bohr’s quadrant in
Stokes’ (1997) framework and is characterized by the generation and testing of
hypotheses to explore underlying mechanisms, without having any application in mind.
An example could be a student using experiments during a physics lesson to determine
the local g-constant to understand the concept of gravity better.
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Artefact-centered reasoning and argumentation:

The second epistemic mode, characterized by “use” as the underlying aim, is called
artefact-centered reasoning and argumentation and is analogue to Edison’s quadrant in
Stokes’ (1997) framework. It denotes scientific reasoning and argumentation that is
centered around a specific artefact (e.g., a dynamic geometry software sheet in
mathematics or a prototype in physics), often using circular, iterative steps of
development of the artefact to solve a current problem. Although this is done using
scientific methods and underlying theories, the activities are not aimed at creating a new
theory that exceeds the one artefact / problem given.

Science-based reasoning and argumentation in practice:

The third epistemic mode of scientific reasoning and argumentation, analogue to
Pasteur’s quadrant, is labeled science-based reasoning and argumentation in practice. It
denotes learners’ scientific reasoning processes in practice, which are aimed at solving
specific, real-world problems by building on scientific methods and theories and at the
same time refining those. Most importantly, a solution of a given problem is neither solely
academic in nature nor purely applied, but comprises both a practical and theoretical
advancement. Typical, broad examples from mathematics could be financial mathematics
research done in or on behalf of insurance companies. It is evoked by practical problems
of the company, but ideally answers both, the practical problem as well as theoretical
guestions regarding probabilistic processes. Although associated closely with academia,
many cases of design-based research (e.g., Collins, Joseph, & Bielaczyc, 2004; The Design-
Based Research Collective, 2003) also belong to this category, as ideally both a theoretical
advancement and a designed object (e.g., learning environment) are the aims and results
of this methodology.

Building on the epistemic modes and the context they provide for scientific reasoning and
argumentation, the framework by Fischer, Kollar, et al. (2014) describes eight processes, so-
called epistemic activities that are assumed to be sufficient to describe the processes during any
kind of scientific reasoning in either of the epistemic modes and across domains (Figure 11).

Problem Identification
(P1)

Perceiving a mismatch
between an available
explanation and a
problem;
Creating a problem
representation

Questioning
(Qu)

Creating one or more
initial questions

Hypothesis Generation
(HG)

Possible answers to the
questions are derived
from models, theoretic
frameworks or the
current situation

Construction and
Redesign of Artifacts
(CR)

A prototypical object,
axiomatic system, or
another object that can
be used to work on the
problem is created

Evidence Generation
(EG)

Evidence is generated
which may or may not
help to support the
hypothesis

Evidence Evaluation
(EE)

Evaluating the created
evidence according to
certain norms and goals

Drawing Conclusions
(DC)

Integrating different
pieces of evidence;
Reevaluating the initial
claim considering the
new evidence

Communicating and
Scrutinizing
(CO)

Sharing and discussing
individual reasoning and
argumentation results
within a community

Figure 11. Epistemic activities of scientific reasoning and argumentation (Fischer, Kollar, et al., 2014).

It is worthwhile to notice that the epistemic activities do not have a specific order, do not have
to be entailed in every scientific reasoning and argumentation process, and can be nested in
several levels as well as repeated several times (Figure 12). A good example for this is a typical
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proof task given to university students, starting with “Prove, that X” (lannone & Inglis, 2010; A. J.
Stylianides & Stylianides, 2006, p. 205). The genteel reader will notice that a formulation like this
stifles the activities of questioning and hypothesis generation because an (even not so
experienced) student will instantly know that the claim (X) within the task is true and that the
student “just” needs to find a way to prove it. Then, when actually proving the main claim (X) of
the task by generating evidence for it and evaluating it, the student may encounter sub-problems
(problem identification), which may lead to questioning, hypothesis generation, and so on (Figure
12). Also, when deducing one line of the proof after the other, the student may (and perhaps
should (see Inglis & Alcock, 2012)) be in a constant transition between evidence generation (e.g.,
writing a line or deducting a fact) and evidence evaluation when checking the logical structure of
that line and the consistency with what the student has done before.

Level 1 oo EG EE EG oo EE oo

Level 2 Pl Qu HG EG ooe EE DC

Figure 12. An example of epistemic activities nested in two levels during scientific reasoning and argumentation, with the second
level being evoked during an evidence evaluation process.

To illustrate the use and application of the framework and in particular the epistemic activities
in the context of mathematical proof construction processes, the example from Luke from the
dual search space (see section 2.4.1) is picked up. Here, we describe the main steps on the first
level of the task, partially giving short indications of second level (sub-problem) processes,
without going into detail there.
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lllustration of the use of the epistemic activities to code mathematical argumentation and
proof processes

No Description Coding

1 First thing after reading the task, Problem

identification

2 Luke starts to draw a sketch of a kite. Since he has never done Construction of
this before, he is not quite sure how to do this, and his first artefacts
sketch ends up being just a regular quadrilateral and no kite
(see Figure 6).

3 Being unhappy with the kite, he tries again, this time trying to Sub-problem:
“construct” one. He finally manages to do so by using several Evidence
subsidiary circles (see Figure 7). evaluation;

Drawing
Conclusions;
Construction of
artefacts

4 Having created the kite, he carefully looks at it and forms the Hypothesis
hypothesis that opposite angles are equal. generation

5 To confirm his hypothesis, he constructs another kite with Evidence
arbitrary, but different lengths (see Figure 8). generation

6 By observing the angles, he sees two seemingly differing angles Evidence
on the left and right of the kite. evaluation

7 Carefully measuring the two seemingly different angles with his Evidence
protractor Luke finds out, generation

8 that his initial hypothesis is invalid. Evidence

evaluation

9 Not exactly knowing how to go on, he also measures the other Evidence
two angles to see, whether they are also unequal. generation

10 To his surprise, both angles are roughly the same size. Hypothesis

generation

11 To confirm this, he measures the angles of the initial kite again, Evidence
constructs another kite, and measures the angles of interest. generation

12 For all three kites, both angles have the same size. Evidence

evaluation

13 After doing so, he develops a new hypothesis: The angles at the Hypothesis
top and bottom of his kites are of equal size. generation

14 To prove his hypothesis, he creates a new, bigger sketch (see Construction of
Figure 9), including both angles (highlighted at the points A and artefacts

C), and some subsidiary lines.
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No Description Coding
15 Enticed by the sketch, he has the initial idea to use the sum of Evidence
interior angles and neighboring angles to show that both angles generation
are equal. (or sub-problem)
16 As he starts to compute £ DBA, he writes ZDBA + ZBAC + Evidence
90° = 180° and therefore /DBA = 180° - 90° - /BAC = 90° - generation
ZBAC
17 Having written that down he pauses for a moment, Evidence
reconsidering what he just wrote because he had the feeling evaluation
something was odd.
18 After rereading what he had just written and looking at the Evidence
sketch, evaluation
19 he crosses out both lines because he realized that he does not Drawing
know for sure that ZAMB = 90°. conclusions
20 Having failed to use the angles, he looks at the sketch again, Evidence
this time focusing more on “what he really knows”. generation
21 That basically amountsto AB = BC and AD = DC. Evidencg
generation
22 That in mind, he realizes that both “upper and lower” triangle Evidence
have the diagonal BD in common, as well as two sides of the generation
same length.
23 He mumbles: Aha, that’s how it works. It’s true! Drawing
conclusions
24 He therefore writes down: Evidence
The triangle ABD and BCD have three sides of the same length. generation
25 Per definition AB = BC and AD = DC. Evidencg
generation
26 The third line BD is literally the same in both triangles, so it has Evidence
the same length. generation
27 Knowing this, we can use the “side-side-side” rule to see that Evidence
both triangles are congruent. generation
28 But then, as congruent triangles have the same angles, the Evidence
angels ZBAD and ZDCB must be the same, because they are generation
the corresponding angles in both triangles.
29 Rereading what he has written, Evidence
evaluation
30 Luke is satisfied and concludes that his hypothesis was correct Drawing
and is now proven. conclusions
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3 Current State of Research

Outline This chapter reviews current research related to mathematical argumentation and proof
skills. First, we introduce a framework to characterize mathematical argumentation and proof
skills as a complex cognitive skill. The framework combines three different research aspects; the
individual resources underlying the skill, the processes the skill is enacted in and the situations
that require the skill. Each of the three aspects is then regarded in-depth and current research
findings relevant to this project are presented.

Mathematical argumentation and proof have always been among the most prominent topics
within mathematics education and neighboring disciplines such as philosophy of mathematical
practice (e.g., Hanna, 2000; Lakatos, 1976). Numerous papers have been dedicated to the
importance of mathematical argumentation and proof, conceptions of proof, aims of proofs, as
well as on students’ shortcomings related to proofs (e.g., Boero, 1999; de Villiers, 1990; Duval,
1992; Hanna, 1990; Harel, 1999; Jahnke, 2007; Lakatos, 1976; Reid & Knipping, 2010; Stylianou,
Blanton, & Rotou, 2015; Thurston, 1994; Yackel & Cobb, 1996). Yet, in her review, Mariotti (2006,
p. 173) comes to the conclusion that there is

a move away from early studies, focused on students’ (and more rarely
teachers’) conceptions of proof, and generally speaking on difficulties that
pupils face in coping with proof and proving, towards more recent studies
where researchers present and discuss opinions on whether and how is it
possible to overcome such difficulties through appropriate teaching
interventions.

Alongside this shift in research, three other changes in research on mathematical argumentation
and proof can be seen:

First, there is an increased focus, especially in empirical research, on argumentation and proofin
higher education, that is in (under)graduate mathematics (e.g., Andriessen, 2009; Attridge &
Inglis, 2013; Biggs, 1989; Jaworski, Treffert-Thomas, & Bartsch, 2009; Jones, 2000; Rach & Heinze,
2011; A. Selden, 2011; Trenholm, Alcock, & Robinson, 2016). Here, especially the transition from
secondary to tertiary education (e.g., M. Clark & Lovric, 2008; Corriveau & Bednarz, 2017; De
Guzman, Hodgson, Robert, & Villani, 1998; Gueudet, 2008), the starting and undergraduate
phase at university (e.g., Alcock, Attridge, Kenny, & Inglis, 2014; Alcock & Inglis, 2009;
Maciejewski & Star, 2016; Moore, 1994; Rach & Heinze, 2013; Rach et al., 2014; Reichersdorfer
et al., 2014), as well as the transition to proof-based mathematics courses are of interest.’
Although the focus on higher education and undergraduate mathematics is a general trend,
mirrored in the Research in Undergraduate Mathematics Education (RUME) conference with its
20th anniversary in 2017, the foundation of journals like the International Journal of Research in
Undergraduate Mathematics Education in 2015, or the creation of research centers like the
Kompetenzzentrums Hochschuldidaktik Mathematik (Centre for Higher Mathematics Education)
in 2010, this trend has particular influence on mathematics education research regarding
mathematical proof at university.

> It should be noted that the transition from secondary to university education coincidences with
the transition to proof-based mathematics in Germany and several other countries. Yet, for
example, in the United States of America, the transition to proof-based mathematics will only
occur later after taking basic calculus courses.
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Second, there is a shift away from conceptual questions about proof towards the processes
employed when handling mathematical argumentation and proof (see Weber, 2004). This can be
seen on a conceptual level, for example by Reid and Knipping (2010) distinguishing between
research on proof and proving, and on an empirical level, where an increasing number of studies
analyze argumentation and proof construction process (e.g., Carrascal, 2015; Kirsten, 2017,
Koichu & Leron, 2015; Ottinger, Kollar, & Ufer, 2017; Sandefur, Mason, Stylianides, & Watson,
2013; Van Spronsen, 2008; Watson, Sandefur, Mason, & Stylianides, 2013) (c.f. section 3.3).
Last, alongside this second change, the third shift is the acknowledgment that mathematical
argumentation and proof skills are used in a wider variety of situations than the construction of
novel proofs. Reading, comprehending, and validating proofs, as well as the (pedagogically
effective) presentation of proofs, play an increasingly important role in mathematics education
research (e.g., Alcock & Wilkinson, 2011; Hodds, Alcock, & Inglis, 2014; Inglis & Alcock, 2012; Lai
& Weber, 2014; Lai, Weber, & Mejia-Ramos, 2012; Mejia-Ramos & Inglis, 2009a; Roy, Alcock, &
Inglis, 2010; A. Selden & Selden, 2003, 2015a; Yang & Lin, 2008).

3.1 Combining Perspectives on Mathematical Argumentation and Proof
Skills

A consequence of these shifts is the development of multiple research perspectives focusing on
different aspects of mathematical argumentation and proof skills. One way to integrate these
perspectives is to conceptualize mathematical argumentation and proof skills as a complex
cognitive skill, that is as a latent cognitive (and partially affective-motivational) disposition
underlying a person’s performance (measured relative to given norms) in certain situations (e.g.,
Klieme & Leutner, 2006; Koeppen et al., 2008; van Merriénboer, Jelsma, & Paas, 1992; Weinert,
1999)°. Accordingly, mathematical argumentation and proof skills constitute an individual
disposition, which is not directly accessible for researchers, but determines students’
performance in situations that require mathematical argumentation and proof skills. In turn, as
a latent construct students’ mathematical argumentation and proof skills depend on the
availability of several individual resources. This conceptualization has been proposed by several
theoretical and empirical accounts within and outside of mathematics education (e.g.,
Chinnappan et al., 2012; De Corte et al., 2000; Schoenfeld, 1985; Ufer et al., 2008). The idea of
underlying resources is based on the elementary insight that in order to handle a mathematical
proof, a person is required to have a certain amount of mathematical content knowledge (e.g.,
definitions of the objects within the proof), may need to employ various problem-solving
heuristics when constructing a proof, and needs to constantly monitor the progress during proof
construction. A well-known example of a framework incorporating the idea of underlying
resources is the framework by Shulman (1986) for teaching skills, introducing multiple distinct
underlying knowledge facets including for example pedagogical content knowledge and
pedagogical knowledge.

® The definition of complex cognitive skills used here is analogue to the concept of a competence
used in European educational research. As the concept of competence is less familiar in English-
speaking research, we chose to utilize the word complex cognitive skill for this project. Both
concepts are used mainly interchangeably in this thesis, yet the concept of a competence may
explicitly include affective-motivational resources, whereas this is not explicitly stated for
complex cognitive skills. Still, for example Schoenfeld (1985) or De Corte, Verschaffel, and Op ’ t
Eynde (2000) include corresponding resources (e.g., belief systems) in their models for complex
cognitive skills.
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Mathematical argumentation and proof skills can therefore be regarded as dependent on a set
of underlying resources, which are needed to successfully handle argumentation and proof in
various situations. Thus, the success of mathematical argumentation and proof activities is
dependent on the availability of these underlying resources and on the specific demands that are
posed by the situation the argumentation and proof skills are needed in. Still, this set of resources
itself and the relative influence of each resource of this set on overall mathematical
argumentation and proof skills, respectively students’ performance in a given situation, are
largely unknown (see section 3.2).

The nature of mathematical argumentation and proof skills as a complex cognitive skill, its
relation to underlying resources, as well as the processes and situations it is connected to, can be
conceptualized using a recent framework by Blémeke et al. (2015) that focuses on the
assessment of complex cognitive skills in higher education and is embedded in research on
teaching skills. The framework combines the three perspectives, highlighting their connections,
and models complex cognitive skills in a continuum of three layers (Figure 13), so that different
cognitive and affective-motivational dispositions underlie certain situation-specific skills, which
in turn lead to observable behavior. Here, the term ,,situation-specific skills“ is used for processes
connecting the dispositions underlying the complex cognitive skill and the performance (Bldmeke
et al.,, 2015, p. 7). These are internal processes that are not directly accessible for researchers or
external observers, however some characteristics of these processes may be inferred from
students’ behavior, interactions, verbal utterances, or other observable processes.

}( 3 Disposition ' i
P Cognition | Interpretation | |
o | Perception Decision | Observable |
P ; Making ! Behavior ;
P Affect- | | 3
b motivation ! i

Figure 13. Framework of Blomeke et al. (2015) connecting multiple aspects of complex cognitive skills.

The framework thus connects individuals’ resources with their observable performance in certain
situations, which is modulated (see also Schoenfeld, 2010) by specific processes.

Following this perspective, a decent understanding of mathematical argumentation and proof
skills has to involve knowledge about the resources and processes required in order to be
successful in various situations that require mathematical argumentation and proof skills, as well
as their relation among and between each other.

3.2 Resources

So far, no general framework for the resources underlying mathematical argumentation and
proof skills exists, and no definite list of resources has been given. In contrast, there are several
frameworks related to the resources underlying problem solving, self-regulated learning, and
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proof construction. These frameworks as well as several individual studies can be used to identify
and characterize potential resources that are likely to underlie mathematical argumentation and
proof skills. In doing so, the assumption is made that the resources underlying problem solving
or self-regulated learning may also be underlying mathematical argumentation and proof skills
in general. This seems likely, as handling mathematical argumentation and proof can be seen as
a specific kind of problem solving and also requires self-regulation. The assumption is empirically
validated in this project as the status of the potential resources is empirically checked in our
correlational study (see section 5.2).

Schoenfeld (1985) introduced a framework consisting of four different resources required for
successful mathematical problem solving (Figure 14): Besides various forms of mathematical
knowledge such as facts and algorithmic procedures, which he terms resources’, general
problem-solving heuristics (e.g., Abel, 2003; Gigerenzer, 2008; Simon, 1978; Todd & Gigerenzer,
2001), that is domain-general strategies and techniques that can be used for unfamiliar
problems, are needed. He further mentions that contro/ mechanisms are needed, such as
planning and monitoring, as well as belief systems, for example about one-self, mathematics, or
the topic.

Resources
(i.e., Mathematical Heuristics Control Belief Systems
Knowledge)

Figure 14. Resources underlying problem-solving skills according to Schoenfeld (1985).

Although labeled differently, the same resources are found in the framework by De Corte et al.
(2000) in the context of self-regulated learning, which they label “categories of aptitude required
to obtain a mathematical disposition”. Besides a domain-specific knowledge base, heuristic
methods, and beliefs related to mathematical learning and problem solving, they mention
metaknowledge as well as self-regulatory skills, and thereby describe Schoenfeld’s control
category more closely.

Domain-specific

Knowledge Base Heuristic Methods Metaknowledge

Self-regulatory Skills Beliefs

Figure 15. Resources required for a mathematical disposition according to De Corte et al. (2000).

The framework of resources for problem-solving skills by Carlson and Bloom (2005) can be
regarded as a next step in the development of these frameworks, as it is based on an extensive
literature review, complemented by a qualitative analysis of mathematicians problem-solving
behavior to identify those resources that “occurred consistently in the problem-solving process”
(Carlson & Bloom, 2005, p. 66). Here, Carlson and Bloom inferred the resources employed while
solving problems from mathematicians’ observable behavior and oral statements. As result of

" The term ,resources” in Schoenfeld’s framework is used to describe knowledge facets only,
whereas it is used to describe any kind of disposition underlying a complex cognitive skill within
this project.

26




Current State of Research

their work they list resources, that is conceptual knowledge, facts, and algorithms, heuristics such
as drawing a graph or computational heuristics, affect including beliefs and motivation, as well
as the skill to monitor one’s own behavior including self-talk or other reflective behavior (Figure
16). Later K. Clark, James, and Montelle (2014) suggested adding a fifth category related to a
person’s behavior within groups.

Resources Heuristics Affect Monitoring

Figure 16. Resources of problem-solving skills according to Carlson and Bloom (2005).

Complementing these more general frameworks, two frameworks are drawn from quantitative
studies in the context of proof construction in secondary school geometry classrooms: In their
study, Ufer et al. (2008) were able to show that declarative and procedural mathematical
knowledge as well as problem-solving skills contributed significantly to the explanation of
students’ performance in proof construction (Figure 17).

Declarative Procedural Problem-solvin
Mathematical Mathematical ) 9
Skills
Knowledge Knowledge

Figure 17. Resources quantitatively demonstrated by Ufer et al. (2008) in the context of secondary school geometry proof
construction.

Chinnappan et al. (2012) replicated the majority of these results, again finding a significant
contribution of content knowledge and general problem-solving skills (Figure 18). Furthermore,
they showed an impact of mathematical reasoning skills conceptualized as a “broad range of
reasoning skills that students activate in the context of solving a range of classroom mathematics
problems” (Chinnappan et al., 2012, p. 3), which were operationalized by using students’ grade
10 final scores.

. General . .
Content Knowledge Methodological Problem-solving Mathematlca}l Reasoning
Knowledge Skills Skills

Figure 18. Resources quantitatively demonstrated by Chinnappan et al. (2012) in the context of secondary school geometry proof
construction.

Not included in Chinnappan et al.’s quantitative study (2012) but emphasized throughout their
paper as a fourth resource is methodological knowledge, which has been proposed by Heinze
and Reiss (2003) based on a study of proof validation in secondary school classrooms. Following
the definition of Heinze and Reiss, methodological knowledge is knowledge about various types
of proofs, their nature and purposes, as well as acceptance criteria for mathematical proofs.

Despite the number of resources already presented within these relatively exhaustive
frameworks, several other resources have been proposed over time. For example, Raman (2003)
suggested a persons’ epistemologies, which have not been explicitly mentioned in any of the
reviewed frameworks. Furthermore, Weber (2001) suggested mathematical strategic knowledge
as a resource, that is knowledge about cues and hints within mathematical tasks that lead to
promising concepts and methods for tackling the task. Evidence for this was subsequently found
by several studies (e.g., Reiss & Heinze, 2004; A. Selden & Selden, 2008). Also conditional
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reasoning skills, which are supposed to be essential for deductive reasoning and therefore
especially for the handling of proof, have been proposed (see Alcock, Bailey, Inglis, & Docherty,
2014; Epp, 2003; Johnson-Laird, 2000; Johnson-Laird & Byrne, 2002).

On a meta-level, the comparison of the frameworks and studies highlights several points about
resources underlying mathematical argumentation and proof skills:

1. The resources differ in their domain-generality: Whereas content knowledge is restricted
to a specific mathematical content area, methodological knowledge is valid across
mathematical content areas, and problem-solving heuristics may even be used across
various domains.

2. The resources comprise various types of knowledge and skills: Examining the resources
by prior research, conceptual, procedural, and strategic knowledge facets (de Jong &
Ferguson-Hessler, 1996) as well as several different skills can be identified.

3. The resources depend heavily on their categorization and labeling: Each of the
frameworks uses slightly different terms (i.e., mathematical knowledge base, resource,
declarative and procedural mathematical knowledge) and conceptualizations, leading to
a varying number of resources as well as varying conceptual breadth of the individual
resources.

4. Empirical results regarding the influence of a certain resource largely depend on its
conceptualization and operationalization: Although the results of both quantitative
studies (Chinnappan et al., 2012; Ufer et al., 2008) point into similar directions, the
differences regarding resources and conceptualizations used in the frameworks
subsequently also lead to partially differing findings.

5. Although various frameworks exist, many based on a certain amount of empirical
evidence, the importance of the individual resources for mathematical argumentation
and proof skills is largely unknown. Here, the studies by Ufer et al. (2008) and Chinnappan
et al. (2012) have given first insights, but they are limited in their scope as multiple
potential resources were not included.

6. Although combining multiple frameworks and studies in this review on resources
underlying mathematical argumentation and proof skills, this list of resources is most
likely incomplete and incorporates only those resources that are deemed to have a
substantial impact.

7. Sofar, most research regarding resources has been focusing on problem solving or proof
construction. For other situations such as reading a proof, little information regarding the
underlying resources is available, mostly originating from corollary findings or based on
similar activities in other domains (Bleiler, Thompson, & Krajcevski, 2014; Chi, Bassok,
Lewis, Reimann, & Glaser, 1989; Inglis & Alcock, 2012; Ko & Knuth, 2013; Mokhtari &
Reichard, 2002; A. Selden & Selden, 2003; Weber & Mejia-Ramos, 2011).

3.3 Processes

For researchers, the processes involved in handling mathematical argumentation and proof are
of particular importance. As mathematical argumentation and proof skills themselves are a latent
construct and therefore are not accessible, the enacted processes offer a primary access to
examine and evaluate the underlying skill beyond the mere consideration of performance. This
approach has been used much in qualitative studies (e.g., Knipping, 2008; Koichu & Leron, 2015;
Pfeiffer, 2010; J. Selden & Selden, 2009; Smith, 2006; Weber, 2004, 2008) and is increasingly
receiving attention by quantitative research as modern technology facilitates to observe
processes efficiently in the context of mathematical argumentation and proof skills even at a
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large scale (e.g., Kirsten, 2017; Ottinger et al., 2017; Ufer, Heinze, & Reiss, 2009b; Vogel et al.,
2016).

Still, up to now research regarding processes in the context of mathematical argumentation and
proof skills has mainly focused on proof construction and problem solving in general and only
first insights into other situations such as proof comprehension exist (e.g., Alcock & Weber, 2005;
Weber, 2008; Weber & Mejia-Ramos, 2011; Weber, Mejia-Ramos, Inglis, & Alcock, 2013).
Accordingly, current research on processes in the context of mathematical argumentation and
proof rather cover only certain aspects. Moreover, it is partially unclear which processes mediate
between students’ individual resources and their performance in various situations.

Three process frameworks for problem solving, proof construction, and scientific reasoning and
argumentation are laid out in the following and compared regarding their individual processes
as well as the larger phases within these frameworks.

3.3.1 Problem Solving

Constructing mathematical proofs is often regarded as a problem-solving activity and seminal
work on problem solving had a strong focus on this activity. A classical model resulting from this
research that has often been used, mainly in slightly modified forms, in the context of
mathematical argumentation and proof (e.g., Kapa, 2001; Kelly, 2006; Mason, 1982; Nunokawa,
1994) is Polya’s (1945) framework for problem solving. It comprises four different phases
describing an idealized problem-solving process (Figure 19) and starts with the understanding
the problem. After that, the problem solver first should devise a reasonable plan for tackling the
problem and subsequently carry out the plan. Having done this, the problem solver is supposed
to look back at the results and check their correctness. Within Polya’s framework, the problem
solver is allowed (and probably expected) to switch back and forth between these phases
multiple times, for example when getting stuck in carrying out a plan and having to devise a new
plan, or shifting from looking back to planning after noticing that the result is wrong.

Understanding Devising a Carrying out

the Problem Plan the Plan Looking Back

Figure 19. Phases while solving problems (Polya, 1945).

Although aimed mainly at mathematical problem solving, the formulation of the phases (Figure
19) denotes the general applicability of Polya’s framework. Its phases can be used across many
disciplines, be applied to different sorts of problems, and be used for example across all epistemic
modes (see section 2.4.3). Still, the framework has to be adapted and elaborated for specific
situations, especially when attempting to code individual, observable processes for research
purposes.

3.3.2 Proof Construction

In contrast to Polya’s general approach, the framework created by Boero (1999) focuses explicitly
on the construction of mathematical proofs. It consists of six phases aiming to describe
mathematics experts’ behavior when constructing a mathematical proof (Figure 20). These
phases can be divided into two larger types of phases: a conjecturing and exploration phase
(including the production of a conjecture, formulation of the statement and exploration of the
content) and a phase directed more closely to constructing the argumentation and final proof
(including selection and enchaining of coherent theoretical arguments into a deductive chain,
organization of the enchained arguments into a proof and approaching a formal proof).
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Production of a Formulation of the Exploration of the
Conjecture Statement Content

Selection and
Enchaining of Coherent,
Theoretical Arguments
into a Deductive Chain

Organization of the
Enchained Arguments
into a Proof

Approaching a Formal
Proof

Figure 20. Phases while constructing mathematical proofs (Boero, 1999).

According to Boero, the six phases are not meant to be in linear order, nor can they be clearly
separated in every case. He also highlights that the phase of approaching a formal proof may not
be part of every proof construction process as a formal proof is often neither desired nor
achievable within a reasonable amount of time and work. In comparison to the framework by
Polya (1945), Boero’s (1999) framework stresses the construction of a mathematical proof out of
the initial argumentation by allocating three of his phases to this part. Further, Boero omits
Polya’s last phase of reflecting and looking back.

3.3.3 Scientific Reasoning and Argumentation

In a more general approach, the framework by Fischer, Kollar, et al. (2014) outlined in section
2.4.3 aims to describe the processes within any kind of scientific reasoning and argumentation
activity. Conceptually it is therefore situated in-between the frameworks by Polya and Boero: On
the one hand, it is (at least from its name) more closely focused on argumentation like Boero’s
framework instead of problem solving in general. On the other hand it is domain-general like
Polya’s framework and allows an application in a large number of settings, ranging from
evidence-based reasoning of social workers (Ghanem, Kollar, Fischer, Lawson, & Pankofer, 2016)
to problem solving of future teachers (Csanadi, Kollar, & Fischer, 2016).

Contrary to both Boero’s and Polya’s frameworks, the framework by Fischer et al. explicitly
includes the process of communicating and scrutinizing the results and devotes a separate
process to it. Fischer et al. thereby acknowledge the social context of scientific reasoning and
argumentation not only in terms of social norms, but also that results of these processes are
usually meant to be shared within a community where these will be subject to a social acceptance
process that may lead to the rejection or refinement of the results. The first part, that is the
communication, is at least partially mentioned in Boero’s framework which includes "the
production of a text for publication" in his fifth process (Boero, 1999, p. 3). Here, the process of
communicating the results is therefore identified with writing down the proof in a readable way
that corresponds to the socio-mathematical norms of the local community (e.g., including rigor
definitions of each variable that may have been omitted during the construction process). Heinze
and Reiss (2007, p. 342) furthermore suggested to add the seventh phase acceptance by the
mathematical community to Boero’s framework.

3.3.4 The Trichotomy of Proof Construction

Based on the common features and differences of all three frameworks a trichotomy of larger
main phases of constructing a mathematical proof can be identified (Figure 21), which has also
been described by Schwarz, Hershkowitz, and Prusak (2010). First, the given mathematical
proposition as well as its premises have to be understood and a chain of arguments, not
necessarily building on definitions and axioms, has to be created in order to solve the problem
behind the given mathematical proposition. During this main phase, an informal argumentation
is created connecting the proposition to the premise to justify that the proposition holds.
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Creating a Deductive Writing and
Solving the Problem . Communicating the
Chain Proof

Figure 21. Trichotomy of proof construction.

Speaking in terms of Boero’s framework, this refers to the phases 1 to 3, yet so far no absolutely
clear line of argumentation and especially no clear deductive chain building on existing theorems
is established. In Polya’s terms, the problem may already be solved as Polya’s framework neither
explicitly includes the adaption of the solution to some standards of the community nor the
communication of the solution.

A. Selden and Selden (2013) call this first phase the problem-oriented part, Tall (1992) the creative
phases of mathematical thinking, and Pedemonte (2008) would argue that the argumentative
part is over, yet the transformation into a proof is still missing.

This transformation of the argumentation into an (at least mental) proof represents the second
main phase creation of a deductive chain of arguments. De Guzman et al. (1998) call this
transformation the transition from the ordinary logic of everyday life to the logic of mathematics.
Here, the connection between the proposition and the premises gained in the first main phase
are transformed into a deductive argumentative chain. In Boero’s framework, this is included in
the phases 4 and 5. Depending on the notion of a formal proof, it may also entail (parts of) phase
6, because approaching a formal proof includes filling logical gaps and reconsidering how evident
the used theorems and inferences are.

The distinction between the two main phases solving the problem and creating a deductive chain
mimics the views by Duval (1992) and Balacheff (1999), distinguishing clearly between
argumentation and mathematical proof (French: argumentation and démonstration). It further
matches the classification of proofs as being a specific kind of argumentation (see section 2.1),
as the argument created in the first main phase is refined into an argumentation that complies
with the local socio-mathematical norms in the second phase and thereby may be accepted as a
proof, if correctly communicated in the third main phase. The distinction between the first two
main phases also acknowledges the gap between argumentation and proof (Pedemonte, 2007).
Despite this important distinction of both main phases, research under the term of cognitive
unity examines how both main phases are connected and emphasizes that there is also a
continuum between argumentation and proof (e.g., Boero, Garuti, & Mariotti, 1996; Pedemonte,
2007; Zazkis, Weber, & Mejia-Ramos, 2014).

Whereas the second main phase may be purely mental, rearranging and reinterpreting the
solution of the problem from the first phase to obtain a deductive chain ascertaining the given
claim, the third main phase, writing and communicating the proof, explicitly addresses the
process of writing down the deductive chain achieved in the last phase according to the local
socio-mathematical norms. Depending on the norms, this includes a sufficiently detailed
representation of the argumentative chain, which is understandable and may entail the use of
algebraic notation, correctly defined variables, definitions, and sentential connectives. This
corresponds to the fifth phase in Boero’s framework (organization of the enchained arguments
in a proof), which comprises the production of a proof for publication, as well as to the eighth
epistemic activity (communicating and scrutinizing).

The sixth phase of Boero’s framework (approaching a formal proof) is for the most part not
included within the three main phases of the trichotomy, as formal proofs are rarely desired in
mathematical practice. Boero (1999) himself mentions that “this phase may be lacking in
mathematicians theorems” and refers to Thurston (1994) stating that creating completely formal
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proofs is “practically impossible”. To include Boero’s sixth phase into the model, a fourth main
phase should be added.

Although the third main phase of proof construction is sometimes not emphasizes in research
and practice, it may be important to examine whether students’ are able to correctly write down
a proof, using mathematical notation (see Ottinger, Kollar, & Ufer, 2016), in a way that
corresponds to the local socio-mathematical norms. Otherwise the proof as the product of these
activities may not be accepted as a valid proof by the local community, even though the
underlying problem has been solved and a purely deductive argumentative chain has been (at
least mentally) created (see section 2.2). For example, J. Selden and Selden (1995) showed in
their study that this unpacking of informally written statements into mathematical arguments
using logical symbols and variables is an obstacle for many students.

Finally, the three main phases should not be understood as a linear sequence, although this may
be the case for some proof processes. Students, as well as experts, may frequently switch
between all three main phases, possibly leading to synergy or discord (see further Balacheff,
1999; Boero, 1999; Boero, Garuti, & Mariotti, 1996; Pedemonte, 2007). For example, students
who have advanced a bit in solving the given problem may try to write their progress down using
acceptable mathematical notation and by that may be able to see what the next step in the
problem-solving phase is just by looking at the written formula, text, or graph. Or the necessity
to create a deductive chain may induce students to use a fixed formal scheme (e.g., complete
induction), which in turn helps to solve the problem.

3.3.5 Conclusions

The frameworks, the respective processes, phases, and also main phases within the trichotomy
of proof construction highlight that important processes in the context of mathematical
argumentation and proof skills have been identified by prior research, that research has started
to examine the processes, and that there are several current approaches to these. This is
underlined by the fact that the frameworks above have been used — at least with slight adaptions
to the context — successfully to describe or analyze argumentation processes, both within and
outside of mathematics.

The discussion of the frameworks further shows that both Polya’s (1945) and Fischer, Kollar, et
al.’s (2014) frameworks are not fully capable of describing proof construction processes, as they
do not explicitly incorporate the creation of a deductive proof out of the (informal)
argumentation. Obviously, this is a matter of operationalization of the various processes. The
second main phase of the trichotomy could be subsumed into the existing processes of the
framework, but without additional sub-processes, no clear distinction between the construction
of deductive and other types of arguments is possible. Thus, explorative argumentation
processes, the construction of argumentations following an already existing plan, as well as the
construction of a deductive chain of arguments would be described by the same processes and
would, therefore, be indistinguishable, which may be desirable in some, but not all situations and
research contexts. An example for this can be seen in section 2.4.3, where we showed how the
epistemic activities can be used for coding the processes during the construction of mathematical
argumentation and proof. In the example, the evidence generated before line 23 can be seen as
part of the first main phase of the trichotomy, where the student tries to create an argument for
his hypothesis. In line 23 (“He mumbles: Aha, that’s how it works. It’s true!”), he seems to have
solved the problem and understood why his hypothesis has to hold. Thus, all evidence generated
thereafter refers to the second and third main phase of the trichotomy and has to be seen as
epistemologically different to the evidence created before line 23. Still, both types are coded in
the same category “evidence generation”.
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To understand the process of mathematical proof construction in a comprehensive way, all three
main phases of the trichotomy are inherently important as it does make a difference from an
educational perspective whether students were not able to solve the underlying problem, to
structure their solution in the form of a deductive chain, or to write down and thus communicate
their proof.

Comparing the frameworks, it also becomes clear that examining the processes in the context of
mathematical argumentation and proof skills can be done on different levels of precision or
resolution. Whereas the framework by Fischer, Kollar, et al. (2014) can be used to describe
students’ processes in a very detailed way, possibly using the processes to code on the level of
sentences, “units of meaning”, or short time intervals (see further Strijbos, Martens, Prins, &
Jochems, 2006; Strijbos & Stahl, 2007) as done in the example in section 2.4.3, the other
frameworks rather correspond to broader phases, for example understanding the problem in
Polya’s framework, that involve a couple of sub-processes. Which precision of analysis is
desirable, obviously is subject to the research context.

Speaking of context, the frameworks above primarily relate to the processes of an individual
while solving a problem, constructing a proof or employing scientific reasoning and
argumentation. Yet, this is also often done within dyads or (learning) groups. If and how the
processes change in a social context, whether new processes have to be added, and which of
them predict the quality of the outcome are still largely open questions (see Ottinger et al., 2017;
Vogel et al., 2016).

Finally, the processes described in the frameworks further highlight a problem intrinsic to this
perspective on mathematical argumentation and proof skills: The observable processes that are
accessible to researchers, are only approximations of the mental processes that are the initial
objects of interest.

3.4 Situations

The process frameworks laid out above are mainly concerned with, or applicable to, the
construction of mathematical argumentation and proof. Yet, mathematical argumentation and
proof skills go beyond these specific situations. Based on the framework by Giaquinto (2005) who
suggested three general mathematical activities (making it, presenting it, and taking it in), Mejia-
Ramos and Inglis (2009a, 2009b) structure the situations that comprise the domain in which
mathematical argumentation and proof skills are applied.They describe the situations in the
context of mathematical argumentation and proof in terms of three central argumentative
activities (Figure 22, ovals), namely constructing a novel argument, reading a given argument,
and presenting an available argument, which are also often named proof construction, proof
reading, and proof presentation (e.g., Hodds et al., 2014; Roy et al., 2010; A. Selden & Selden,
2015a; Weber, 2004). Each of the three activities entails several sub-activities (Figure 22,
rectangles), which Mejia-Ramos and Inglis describe in more depth according to their givens,
goals, and products (see also Table 1) based on the work of de Villiers (1990).
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Estimation of Problem Evaluation Combrehension Demonstration: Explanation to
Truth Exploration P Understanding an Audience
Justification Conviction of Demonstration:
an Audience Validity

Figure 22. Framework of argumentative activities by Mejia-Ramos and Inglis (2009a).

According to their framework, constructing a novel argument refers to situations where either a
given problem has to be explored in order to derive a new claim, a novel argument is constructed
to estimate the truth of a given claim, or a justification for a claim in the form of a proof has to
be constructed. Among these three, the term proof construction corresponds best to the last
situation, as here a given claim, which can be assumed to be correct, has to be justified with a
mathematical proof. Thus, proof construction in their framework stands for the attempt to
construct a valid proof for a given claim, which corresponds to the socio-mathematical norms of
the local community (A. Selden & Selden, 2015a) and thereby matches the definition used in this
thesis (see section 2.1).

Table 1. Detailed description of activities related to reading arguments (Mejia-Ramos & Inglis, 2009a, p. 90).

Reading a Given Argument

Comprehension Evaluation
Given An argument An argument and a set of criteria
Assess the argument against the
Goal Understand the argument ) - & &
given criteria
Possibly sub-arguments with the An assessment (yes/no or
Product given argument’s statements as continuous) and possibly a
claims justification of the assessment

Within reading a given argument, Mejia-Ramos and Inglis (2009a, 2009b) distinguish two
different activities, namely comprehension and evaluation (Table 1). Both differ in all three
categories of the framework (givens, goals, and products): For example, for the activity of
comprehension only an argument or proof is given, whereas for the evaluation a set of criteria is
given in addition, reflecting, for example, the socio-mathematical norms (see also section 2.2).
Furthermore, the goals of both activities differ between understanding the argument for
comprehension and assessing the argument against the given criteria for evaluation.

Trying to align terminology in current research on mathematical proof based on a small literature
review, A. Selden and Selden (2015a) add a further facet to this differentiation. They divide proof
evaluation into the two activities of proof validation and proof evaluation. Both activities differ
slightly in the goal they pursue: Whereas proof validation purely tries to assess the validity of the
given argument as a mathematical proof, that is if it complies with the given norms, proof
evaluation additionally encompasses other criteria such as beauty, elegance, or novelty.
Although proof validation is included in proof evaluation in the sense that every proof evaluation
also includes a proof validation, we use both terms in this thesis. First, the notion of proof
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validation better matches what students usually are asked to do in school and university
education, namely to validate the correctness of a proof and not to judge, for example, its beauty.
Second, the “additional” criteria used for proof evaluation are often quite vague (see Inglis &
Aberdein, 2015) and accordingly it is hard to ensure that these are handled appropriately. Thus,
proof validation activities stand out from proof evaluation activities in the sense that they are
more well-defined. Third, proof validation is closer related to proof construction than proof
evaluation, because the process of validating one’s own inferences, arguments, and partial
proofs is an important process during proof construction (see frameworks for processes in
section 3.3), whereas determining the beauty or elegance may not be the primary criterion
during proof construction.

Finally, proof presentation comprises four sub-activities, which mainly differ regarding their
goals, which vary from convincing other, demonstrating one’s own understanding,
demonstrating the validity of the given proof, to explaining the proof to the audience.

Overall, a literature review (Mejia-Ramos & Inglis, 2009a) based on the framework showed that
current research literature from mathematics education focuses largely on construction (approx.
63% of the reviewed articles), to a smaller extent on reading (approx. 18 %) and none of the
reviewed articles focused on presentation. Again, argument and proof construction is shown to
be predominant in research. Yet, the proportion of papers (18%) on proof reading underline the
already-mentioned increasing interest in proof reading (e.g., Alcock & Wilkinson, 2011; Conradie
& Frith, 2000; Hodds et al., 2014; Inglis & Alcock, 2012; Lin & Yang, 2007; Mejia-Ramos, Fuller,
Weber, Rhoads, & Samkoff, 2012; Mejia-Ramos & Weber, 2014; A. Selden & Selden, 2015a;
Weber, 2015; Weber et al., 2014; Weber & Mejia-Ramos, 2011; Weber et al., 2013; Yang, 2012;
Yang & Lin, 2008). These findings and developments further correspond to the fact that recent
secondary school curricula not only contain argument and proof construction, but also their
validation. The US Common Core State Standards Initiative (2010) speaks of the ability to
“construct viable arguments and critique the reasoning of others” and also the German KMK
standards (2012) encompass the comprehension and validation of given mathematical claims as
part of mathematical argumentation. Similar inclusions of proof validation can be found
increasingly worldwide.

3.4.1 Proof Construction

The construction of novel proofs is often conceived as a central learning goal (e.g., Blanton,
Stylianou, & David, 2003; Hanna, 2000; Stylianou et al., 2015). Thus, mathematics education
research has a particular focus on this activity (see also Mejia-Ramos & Inglis, 2009a; Mejia-
Ramos & Inglis, 2009b) and many researchers have contributed to the topic. One line of research
is concerned with the quantitative assessment of students’ performance in constructing novel
proofs and the analysis of underlying mechanisms (e.g., Healy & Hoyles, 2000; Heinze, Reiss, &
Rudolph, 2005; A. Selden & Selden, 2012; Senk, 1985; The International Commission on
Mathematical Instruction (ICMI), 1966; Weber, 2001, 2003) showing that students from
secondary school as well as from university have difficulties with mathematical proofs in general
and proof construction in particular. These difficulties with handling mathematical proofs are
often regarded as one important cause for high drop-out rates (e.g., Dieter & Torner, 2012;
Heublein, Richter, Schmelzer, & Sommer, 2012; Heublein et al., 2014; Seymour & Ferrare, 2015;
Seymour & Hewitt, 1997) in mathematics degree programs at the university level (Jones, 2000),
especially within the first semesters.

One reason for students’ difficulties that is put forward frequently is the so-called abstract
character of proof-based mathematics (see section 2.1). For example, Mamona-Downs and
Downs (2005) point out that students are confused by mathematical proofs and that this
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confusion constrains students in constructing and handling mathematical proofs. Dieter and
Torner (2012) speak of an abstraction shock and others mention a distance to real life and the
shift to other representational systems (see Goldin, 1998). Based for example on didactical proof
concepts, proof per se does not require abstraction® as for example created by mathematical
notation. Still, the desired degree of generality, which is often achieved using algebraic
mathematical notation, and other constraints by the local socio-mathematical norms, often lead
to this perceived abstraction. There is not a single cause for this abstract character of
mathematical proofs but multiple (e.g., M. Clark & Lovric, 2008; Dorfler & MclLone, 1986; Healy
& Hoyles, 2000; Mariotti, 2006; Moore, 1994; Rach & Heinze, 2016; Weber, 2012; Winter, 1983;
Zaslavsky, Nickerson, Stylianides, Kidron, & Winicki-Landman, 2012):

1. The mathematical, formal-symbolic notation and representation used.

2. The sole reliance on deductive arguments based on an axiomatic theory.

3. The epistemological discrepancy between proofs students are asked to construct and
students’ conceptions of proof, as they often lack a “need for proof” and are unaware of
the various goals behind mathematical proof.

A second line of research is devoted to comparisons between the behavior of novices and experts
when handling mathematical proofs. In particular, it is examined how mathematical proof is
taught, how instruction can help to align the behavior of novices with that of experts, and if this
alignment is beneficial for students’ performance (see Weber, 2009). For example, Schoenfeld
(1992) compared the activities of students and a mathematics faculty member during working
on a non-standard mathematics problem showing that the expert spend a substantial amount of
time for making sense of the problem whereas the students almost immediately chose an
approach to tackle the tasks and kept working on it although not making progress. Further,
Weber (2001) compared undergraduate students’ to doctoral students’ proof construction
processes, concluding that the primary cause for undergraduate students problems may be a lack
of mathematical strategic knowledge.

Partially based on this last finding of Weber (2001), a third line of research regarding proof
construction examines the proof production styles or strategies used when constructing proofs:
Based on research on representation systems by Goldin (1998), Weber and Alcock (2004, 2009)
introduced the distinction between syntactic and semantic® reasoning or proof production styles.
A syntactic proof production is characterized by the predominant use of the “representation
system of proof” (see Weber & Alcock, 2009), including, for example, formal-symbolic notation,
definitions, and first-order-logic. Using this proof production style, proving is based on
manipulating definitions, equations, or other relevant data (Weber & Alcock, 2004). In contrast,
a semantic proof production style also regards representations of mathematical concepts from
other representation systems, in particular including less formal descriptions and interpretations
such as examples, graphs, sketches, or gestures that are used as a basis for producing the proof
(Weber & Alcock, 2004). Figure 23 and Figure 24 illustrate both proof production styles for two
real analysis tasks.

8 Examples that proof as a concept does not rely on mathematical notation are illustrated by
Byrne (2010) or Nelsen (1993). For a discussion about the nature of formalism for mathematical
proof see for example (Tanswell, 2012).

® The semantic proof production style was later also termed referential proof production (e.g.,
Alcock & Weber, 2010) to highlight the use of reference objects such as examples while
constructing proofs (see further Lockwood, Ellis, & Lynch, 2016).
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Figure 23. Example of a proof constructed using a syntactic proof production style.
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Figure 24. Example of a proof constructed using a semantic proof production style by drawing an informal sketch of a convergent
sequence.
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Based on qualitative data from several prior studies, Weber and Alcock (2009) come to the
conclusion that although there are many arguments for or against either proof production style
and many mathematics teachers and lecturers may prefer semantic proof production, "neither
strategy seems to be superior to the other strategy" for producing valid mathematical proofs.
Yet, the different proof production styles may lead to different levels of conviction and
understanding (Weber & Alcock, 2004). They suggest that both proof production styles can lead
to robust learning about mathematical content and proof construction. Additionally, several
studies (Alcock & Weber, 2010; Pinto & Tall, 1999) underline that different students favor
different proof production styles and are quite consistent in doing so, at least within the same
mathematical content area (Mejia-Ramos, Weber, & Fuller, 2015).

Initially, Weber (2004) proposed a third proof production styles for proof construction, which
was later abandoned. This third category was the procedural proof production, characterized by
students trying to apply a certain procedure, that is a series of steps that the student believes to
be a reasonable approach for the proof. Common procedures are algorithms (e.g., using the
guadratic formula to solve a quadratic equation) or specific approaches to proofs (e.g., using
complete induction).

3.4.2 Proof Reading

Compared to proof construction, proof reading and the associated sub-activities have only
recently attracted attention in research (e.g., Alcock & Weber, 2005; Beitlich et al., 2014; Inglis
& Alcock, 2012; Lin & Yang, 2007; Mejia-Ramos et al., 2012; Weber, 2008; Yang & Lin, 2008).
One line of research regarding proof reading tries to capture students’ and experts’ proof reading
behavior by recording and analyzing their eye-movement and gazing behavior. Although this line
of research was already initiated in the 1980s (e.g., Just & Carpenter, 1980; Levie & Lentz, 1982),
the broader availability of eye-trackers has yielded many new findings. For example, Beitlich et
al. (2014) examined whether and how mathematic majors and university mathematicians use
(decorative) pictorial information included in proofs during proof comprehension. Findings
emphasize that participants switched back and forth between picture and text several times,
likely attempting to connect and integrate both. Inglis and Alcock (2012) compared the eye-
movement of beginning undergraduate students and experienced mathematicians during proof
validation and found that undergraduate students spend significantly more time on surface
features of mathematical proofs, a result also underlined by A. Selden and Selden (2003).
Furthermore, Inglis and Alcock (2012) found that expert mathematicians shifted their attention
significantly more often back and forth between different segments or lines of proofs, again
possibly trying to integrate both parts and to see connections between both. Weber and Mejia-
Ramos (2011) further describe two different activities when reading proof: A zooming in when
focusing on small parts such as individual inferences or short steps of the proof, and a zooming
out when for example looking at the overall structure of the proof. Furthermore, an initial proof
skimming is under debate (Inglis & Alcock, 2012; Weber et al., 2013).

Building on this research on proof reading, another line of research focuses more directly on
students’ and experts’ proof validation behavior and the ways they obtain conviction that proofs
are valid (e.g., Alcock & Weber, 2005; Healy & Hoyles, 2000; Heinze & Reiss, 2003; Inglis & Alcock,
2012; A. Selden & Selden, 2003; Ufer, Heinze, Kuntze, & Rudolph-Albert, 2009; Weber, 2008;
Weber et al., 2014; Weber et al., 2013). Results reveal that in spite of the conceived view, experts
use authoritarian as well as other, non-deductive evidence to gain conviction (e.g., Geist, Lowe,
& Van Kerkhove, 2010; Heinze, 2010; Weber et al., 2014), and that there is a mismatch between
their behavior as (research) mathematicians and their behavior in educational settings, where
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they often strictly disapprove the use of non-deductive evidence to gain conviction (Weber et al.,
2014).

For school and university students, results show struggles with proof validation, often related to
students’ inappropriate proof schemes or proof conceptions (e.g., Harel & Sowder, 1998; Healy
& Hoyles, 2000; Heinze & Reiss, 2003). Further, the acceptance of different types of proofs
relating to educational proof concepts, for example generic proofs or visual proofs, and their
educational use are currently studied (Alcock, 2009; Biehler & Kempen, 2016; Inglis & Mejia-
Ramos, 2009; Kempen, 2016; Malek & Movshovitz-Hadar, 2011; Rowland, 2001, 2013).

3.4.3 Proof Presentation

Research focusing explicitly on proof presentation is scarce. So far, it has been examining mainly
the presentation of proofs by teachers and lecturers, taking an educational perspective on the
situation. Overall, teaching of mathematical argumentation and proof at the university level is
often conceived as traditional. Many researchers (e.g., Davis & Hersh, 1981; Siebert, Rach, &
Heinze, 2013; Thurston, 1994; Weber, 2012) see typical lectures in advanced mathematics
organized around a definition, theorem, and proof structure. Mathematical proofs are then often
presented not as a process, but as a product (Alibert & Thomas, 1991; M. Clark & Lovric, 2008;
Siebert et al., 2013). That is, the final proof is introduced to students in a linear style, without
highlighting the process of obtaining the proof, for example by illustrating the proving process or
including heuristic information alongside the presentation. Thus, students are confronted with
an unrealistic image of problem-solving or proof construction processes, possibly confusing them
and inhibiting their proof construction (Alibert & Thomas, 1991, p. 215).

A main line of research regarding proof presentation focuses on lecturers and teachers intentions
and techniques when presenting proofs (e.g., Hemmi, 2010; Weber, 2012) as well as their
perspectives on what constitutes good pedagogical proofs (see Lai & Weber, 2014; Lai et al.,
2012), that is proofs arranged and structured in such a way that they allow students without prior
understanding to comprehend it. Based on an interview study, Weber (2012) highlights that most
lecturers actually expressed the desire to use proofs for illustrative purposes and in an
explanatory way, yet lack the pedagogical strategies and “provide little guidance to students on
how to engage in the complicated process of reading and comprehension of proofs” (Weber,
2012, p. 478). Similar, in an exploratory interview study, Alcock (2010) identified four modes of
thinking (instantiation, structural thinking, creative thinking, and critical thinking) that
mathematics experts indicate as important for students in order to produce mathematical proofs
effectively. Yet, based on the same interviews, Alcock (2010, p. 78) concludes that these experts
mainly emphasize structural thinking, that is generating “a proof for a statement by using its
formal structure”, in courses meant to introduce students to argumentation and proof, partially
distorting students’ view of mathematical proof. Based on an observational study enriched by
interviews, Lew, Fukawa-Connelly, Mejia-Ramos, and Weber (2016) point out another problem:
Even if lecturers have best intentions and verbally give methodological and conceptual ideas as
a supplement to the written down proof, students may still not take those up due to their
practice of focusing on the written parts as these are supposed to be more important. Still, based
on a case-study Fukawa-Connelly (2012) highlights that instructors have more educational
strategies at hand than often expected.

Currently, there are several ideas how to overcome the mismatch between taught behavior and
actual behavior. For example, Fukawa-Connelly (2012) advocates structured proofs for university
lectures. Similarly, many researchers (e.g., Hilbert, Renkl, Kessler, & Reiss, 2008; Kollar et al.,
2014; Reichersdorfer, 2013; Reichersdorfer et al., 2012; Reiss, Heinze, & Kessler, 2007; Reiss et
al., 2008; Renkl, Hilbert, & Schworm, 2009) are working on heuristic worked-out examples, which
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mimic the proving process including steps that are not visible in the written-down proof and
illustrate the use of heuristics during the proving process. Although this research so far is
primarily concerned with secondary mathematics and showed mixed effects at university (e.g.,
Kollar et al., 2014), other ways of representing proofs and scaffolding students’ engagement with
proofs such as e-proofs (Alcock, 2009; Alcock & Wilkinson, 2011) or self-explanation trainings
(Hodds et al., 2014) are also developed for university contexts.

3.4.4 Relations Between Situations

So far, few studies examine the interplay between proof validation and proof construction (e.g.,
Pfeiffer, 2009a, 2011; Ufer, Heinze, Kuntze, et al., 2009). Some studies conceptualize proof
validation and proof construction as two separate skills or as two subskills of one overall
mathematical argumentation skill, finding a significant, yet weak correlation between both (Ufer,
Heinze, Kuntze, et al., 2009). Other research highlights that the activity of proof construction
entails proof validation as a process (e.g., A. Selden & Selden, 2003), that both are intrinsically
linked (Cilli-Turner, 2013), and that both can lead to reciprocal learning effects, that is “the ability
to validate proofs can improve the ability to construct proofs” and vice versa (Pfeiffer, 2009a,
2011). In contrast, considerable research does not distinguish between these activities or
subskills and rather speaks of proof skills in general (e.g., Hanna, 2000). As already pointed out
by A. Selden and Selden (2015a), there is currently little research on the relation between the
concepts of proof construction, proof reading, and proof presentation and their conceptual
status remains somewhat unclear.

3.5 Educational Consequences of Conceptualizing Mathematical
Argumentation and Proof Skills as a Complex Cognitive Skill

The review of current literature summarized above reveals that mathematical argumentation
and proof skills can reasonably be conceptualized as a complex cognitive skill, including several
resources, processes, and situations. From a research perspective, this analytic conceptualization
(see Blomeke et al., 2015) is a promising approach to better understand students’ mathematical
argumentation and proof skills and underlying mechanisms. Moreover, according results can be
—and in parts have already been — used to enrich teaching, learning, and support of mathematical
argumentation and proof skills. Solid knowledge about the various aspects of students’
mathematical argumentation and proof skills and their interplay may provide a sound basis to
create effective means to support students. Koedinger (1998, p. 319) points out more generally:

Developing a model of these skills is a key step toward creating effective
learning environments [...]. This model can then provide design guidance in
creating elements of a learning environment

Thus, one consequence of acknowledging the dependence of mathematical argumentation and
proof skills on several underlying resources is the fact that no longer a solitary skill has to be
acquired or supported in learning environments, but rather multiple resources, as well as their
combination in form of mathematical argumentation and proof skills. Based on knowledge about
the underlying resources and their relative influence, those with a high impact can be explicitly
supported, looking for learning gains of the resources and overall mathematical argumentation
and proof skills. As for their high influence on overall mathematical argumentation and proof
skills, these underlying resources represent generic candidates for first educational intervention
attempts to support students. Yet, a high relative influence does not imply that these resources
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can effectively be supported. Here, further research is needed to examine whether these
resources can be effectively supported and if, and under which condition, gains within the
resources also transfer to overall mathematical argumentation and proof skills.

This resource-based approach to support students is especially interesting as up to now, despite
content knowledge, most resources outlined in section 3.2 are (in our experience) not explicitly
taught, neither at school nor university and prior research (e.g., Heinze, 2007; Mevarech &
Fridkin, 2006; Perels, Glrtler, & Schmitz, 2005; Schoenfeld, 1982) suggests that students’
individual resources can be effectively supported. However, so far studies mainly focused solely
on one resource, for example on meta-cognition or problem-solving skills, not aiming to support
multiple resources, and often only assessed learning gains regarding this one, specific resource.
Thus, it is unclear whether possible effects of explicit teaching of multiple resources are restricted
to resources themselves or if they transfer to overall mathematical argumentation and proof
skills. Furthermore, it is unclear what instructional design should be used to organize support for
multiple resources within a single course.

First hints can be found in research from instructional design that has focused on complex
cognitive skills for a longer period of time. In particular, researchers have debated about the
effectiveness of part-task and whole-task approaches (e.g., ). R. Anderson, Reder, & Simon, 1996;
Branch & Merrill, 2011; Lim, Reiser, & Olina, 2009), trying to determine whether it is more
effective to decompose a larger task into several part-tasks and teach these individually, or to
directly focus on the whole task.

Based on classical learning theories (e.g., J. R. Anderson, 1996, 2002) some instructional
approaches assume that complex tasks can be decomposed into part-tasks and recommend to
train each of these separately. Part-task approaches are guided by the idea that instruction on
part-tasks is of higher instructional clarity for the students, that each part-task is easier to master
for learners, and that learning gains on the part-tasks easily transfer to learning gains on the
overall task. Sociocultural and situated conceptions of learning (e.g., Brown, Collins, & Duguid,
1989; Greeno, 1998; Lave & Wenger, 1991; The Cognition and Technology Group At Vanderbilt,
1990) contest these approaches and highlight the situatedness of learning. Based on these
conceptions of learning, whole task-approaches (e.g., van Merriénboer & Kester, 2007; van
Merriénboer & Kirschner, 2007) reject the atomization of tasks, give evidence for the
situatedness of learning, and point to difficulties associated with attempts to transfer from part-
tasks to the overall task (e.g., J. R. Anderson et al., 1996; R. E. Clark & Estes, 1999; van
Merriénboer, de Croock, & Jelsma, 1997).

Although the question which of both approaches is superior in which conditions is not answered
definitely, the current understanding is that complex cognitive skills benefit from whole-task
approaches. Transferring these results and approaches from instructional design back to
mathematical argumentation and proof skills, it is reasonable to assume that teaching the various
resources in a simultaneous, integrated way may be positive for overall mathematical
argumentation and proof skills. Yet, it is unclear whether findings regarding part-tasks and whole-
tasks can be transferred to the level of resources underlying a complex cognitive skill, as the
resources have to be used non-sequentially at different points during mathematical
argumentation and proof skills and thereby exhibit a higher complexity than the part-tasks
mostly focused in instructional design.

Based on the approach to support the resources underlying mathematical argumentation and
proof skills, foremost the support of domain-general resources is desired by some educators
(e.g., D. W. Eccles & Feltovich, 2008) hoping for positive effects not only for mathematical
argumentation and proof skills, but also for other skills relying on the same resource. Still, the
effectiveness of domain-general trainings is debatable (see further Chinnappan & Lawson, 1996;
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D. W. Eccles & Feltovich, 2008; Sweller, 1990; Tricot & Sweller, 2014) and is largely dependent
on the possibility to transfer general resources acquired in one task or domain to the use in other
tasks or domains (see J. R. Anderson et al., 1996; J. R. Anderson, Reder, & Simon, 1997; Greeno,
1997 for a critical discussion). It is therefore especially interesting to examine the influence of
domain-general resources on mathematical argumentation and proof skills and evaluate how
effective these can be supported.

Based on the suggestion by Richey and Nokes-Malach (2014, pp. 209-210) the resources
underlying students’ mathematical argumentation and proof skills may also be used for
formative assessment. For example, at the beginning of students’ mathematics studies at
university a systematic analysis of the availability of these resources can inform students about
their individual deficits and advantages. Also lecturers may benefit from results about the
availability of resources within their classes to adapt their curricula based on this information
before engaging in teaching mathematical argumentation and proof. Similarly, Schoenfeld
(2012b) claims that one aim of teachers is to ensure that all students have the appropriate
resources available.

Besides the resources, also acknowledging the processes may have manifold consequences for
teaching. Based on future research results on the importance and impact of the individual
processes that constitute performance in different situations that require mathematical
argumentation and proof skills (see Ottinger et al., 2017), frameworks for the processes may
allow teachers to systematically focus and cover these and thereby help students structure their
individual activities. The processes can be included in instruction either explicitly by informing
students about the processes, their connections, and how to regulate them, or implicitly by
modeling these processes during proof construction or validation as done in analogue research
on problem solving (see Heinze, 2007; Schoenfeld, 1992). Prior research has shown that the
processes can also be integrated into heuristic worked-out examples (e.g., Beitlich, 2015; Hilbert
et al., 2008; Kollar et al., 2014; Reiss et al., 2008). A similar approach leading to substantial effects
examined by Hodds et al. (2014) is a self-explanation training that makes explicit use of the
process models of proof comprehension to support students in structuring their own proof
reading. Besides the benefits that students may acquire, also teachers may profit from explicit
knowledge about the processes in different situations as this may have a positive impact on their
professional vision (e.g., Goodwin, 1994; Sherin & van Es, 2009; Stahnke, Schueler, & Roesken-
Winter, 2016), diagnostic skills (see Csapd & Szendrei, 2011; Stidkamp & Praetorius, 2017), and
overall teaching skills.
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4 Research Framework and Guiding Questions

Outline The first part of this chapter describes the research framework for mathematical
argumentation and proof skills created for this project. We further give conceptualizations for
each potential resource of mathematical argumentation and proof skills that is included in this
project. Finally, we formulate and discuss the research questions quiding this project.

Based on the work by Blémeke et al. (2015) and a growing amount of research from mathematics
education (see chapter 3), mathematical argumentation and proof skills have to be seen as a
complex cognitive skill entailing three important aspects: The underlying individual resources,
the situations that require the use of mathematical argumentation and proof skills, and the
processes leading to an observable performance. Each of these aspects has already received
some attention by mathematics education research as well as neighboring disciplines. However,
although several researchers underline that knowledge about the interplay within and between
the aspects of a complex cognitive skill — such as mathematical argumentation and proof skills —
is central to understand it (e.g., Blomeke et al., 2015; Heinze & Reiss, 2009; Schoenfeld, 1985,
2010; Ufer et al., 2008), research connecting these aspects is scarce.

To gain insights into mathematical argumentation and proof skills understood as a complex
cognitive skill, especially focusing on the underlying cognitive resources and their relative impact,
we first created a research framework including resources, processes, and situations in the
context of mathematical argumentation and proof skills. Based on this framework, we conducted
three consecutive studies (Figure 25):

e Aliterature review (see section 5.1) analyzing the aspects of mathematical argumentation
and proof skills addressed by current research,

e a correlational study (see section 5.2) using Generalized Linear Mixed Models to
empirically evaluate the relative impact of various resources on students’ performance in
proof construction and proof validation, and

e an intervention study (see section 5.3) to examine and contrast two ways to support
students’ mathematical argumentation and proof skills and the underlying resources.

Research Literature Correlational Intervention
Framework Review Study Study

Figure 25. lllustration of the research framework and the three subsequent studies within our MIMAPS project.

4.1 Research Framework

Our MIMAPS project is based on a framework that was newly created, explicitly acknowledging
the three aspects of mathematical argumentation and proof skills outlined in chapter 3. The
framework is based on the work of Blomeke et al. (2015) and was adapted for the specific case
of mathematical argumentation and proof skills (Figure 26) by incorporating key aspects of prior
frameworks from mathematics education research (see chapter 3).
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Figure 26. Research framework of our project.

In particular, we used the framework by Mejia-Ramos and Inglis (2009a, 2009b) to describe the
different situations relevant for mathematical argumentation and proof skills'® and the epistemic
activities framework (Fischer, Kollar, et al., 2014) for the processes in the context of mathematical
argumentation and proof. The latter framework was chosen for three reasons: First, the
framework by Fischer, Kollar, et al. (2014) comprises more processes than the other frameworks
allowing a finer analysis regarding each of these processes. Second, compared to the frameworks
by Polya (1945) and Boero (1999) it is neither too focused on proof construction (which only is
one situation in the context of mathematical argumentation and proof skills) nor too general
making it hard to examine more detailed, argumentation-specific processes. Third, the
framework allows connecting to domain-general research in the context of argumentation from
other disciplines, facilitates meta-analyses, and is a further step towards a shared terminology.
However, the selected epistemic activities framework appears to be suitable to describe only
some of the situations included in our framework, namely proof construction and to a certain
extent proof reading but not proof presentation. Thus, additional processes may have to be
added for proof presentation at some point in future. For the purpose of our project, this
limitation is acceptable, as we are not concerned with the processes of proof presentation.

The selection of a framework for students’ individual resources underlying their mathematical
argumentation and proof skills was more difficult, as prior research results, terminology,
conceptualization, and operationalizations differed, and neither of the portrayed frameworks
alone was satisfactory.

19 Here, we used the terms proof construction, proof validation, etc. instead of the initial
formulations (e.g., argument construction, argument validation), as these are more frequently
used in current research, also by the initial investigators (e.g., Inglis, Mejia-Ramos, Weber, &
Alcock, 2013; Mejia-Ramos et al., 2012; Mejia-Ramos & Weber, 2014; Mejia-Ramos et al., 2015;
A. Selden & Selden, 2015a, 2015b).
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4.1.1 Resources of Mathematical Argumentation and Proof Skills —

Revisited

Based on the individual resources suggested by prior research findings (see section 3.2), a total
of nine potential resources were selected for inclusion in our project (Figure 27), as they are
distinct resources, either supported by some empirical evidence or by a strong theoretical basis.
However, the included resources do not represent an exhaustive selection and the framework
regarding the resources should, therefore, be rather seen as a selection of central, potential
resources based on prior research findings.

Content- Conceptual Procedural
ifi Mathematical Mathematical
specitic Knowledge Knowledge
Mathematical Strategic Methodological

Knowledge Knowledge
Domain-
specific

Affective Aspects Beliefs

Domain- Problem-solving Metacognitive Conditional
general Skills Awareness Reasoning Skills

Figure 27. Potential resources of mathematical argumentation and proof skills included in this thesis.

As prior research used several, partially overlapping definitions for these resources, each will be
shortly conceptualized in the following. Furthermore, we will categorize the resources regarding
two research frameworks:

Different types of knowledge included as resources are structured using the framework
by de Jong and Ferguson-Hessler (1996) that resulted from a literature review. Among
other things, de Jong and Ferguson-Hessler (1996) distinguish conceptual, procedural, and
strategic knowledge. The first two are often included in different cognitive models and
frameworks for knowledge (e.g., J. R. Anderson, 1982, 1983; Schneider, 2006; Star, 2005;
Star & Stylianides, 2013). In contrast, strategic knowledge, sometimes also termed
conditional knowledge, is not always explicitly mentioned in frameworks and, for
example, sometimes included into procedural knowledge (e.g., Alexander & Judy, 1988;
Baroody, Feil, & Johnson, 2007). Yet, research on problem solving (e.g, Bransford,
Sherwood, Vye, & Rieser, 1986; Gok, 2010; Polya, 1945; Schoenfeld, 1985), self-regulation
(Schraw, Crippen, & Hartley, 2006), and, for example, also medical education (e.g., Mayer,
2010) highlights the need for domain-specific as well as for domain-general strategic
knowledge, so that we chose to include it as an individual type of knowledge as proposed
by de Jong and Ferguson-Hessler (1996).

Domain-specificity and -generality of the resources will be classified by a slightly adapted
framework by Chinnappan and Lawson (1996). Within their framework, Chinnappan and
Lawson (1996) distinguish between task-specific, domain-specific, and domain-related
resources. However, as task-specific appears too narrow for our research purpose, the
resources are categorized as content-specific, that is belonging to a specific mathematical
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content area such as infinite series, domain-specific, that is belonging to the field of
mathematics, and domain-general resources, that is being not specific to mathematics
and hence being applicable also outside of mathematics.™* Obviously, content-specific
resources are also domain-specific, but at least when conceptualizing the different
included resources we wanted to highlight this difference, which will not play a role in
later analysis of data.

In addition, we will provide an example for each of the resources within a university mathematics

setting to illustrate how they will be operationalized within this project (see also the individual

descriptions within the studies (chapter 5)).

4.1.1.1 Resource 1: Conceptual Mathematical Knowledge

Conceptual mathematical knowledge is among the resources mentioned most often in prior
research. It is usually defined as knowledge about concepts, definitions, principles, propositions,
and other mathematical information (see Hiebert & Lefevre, 1986, pp. 3-4; Star & Stylianides,
2013). It is knowledge consisting of individual pieces, sometimes called factual knowledge (see
also L. W. Anderson, Krathwohl, & Bloom, 2001; Krathwohl, 2002), which are (more or less)
closely linked to each other (see de Jong & Ferguson-Hessler, 1996). These links between the
individually pieces can therefore be seen as at least as important as the individual pieces.
Conceptual knowledge is often conceived as the basis for a profound understanding of topics
(e.g., Schneider, 2006) as well as for mathematical argumentation and proof skills (Hilbert et al.,
2008).

Conceptual knowledge has to be categorized as content-specific, yet knowledge of certain basic
mathematical concepts (e.g., conceptual knowledge of arithmetic) may be perceived as relevant
across different content areas or even across domains. Within this study, the focus will be on the
content-specific part of conceptual knowledge, which was also used for the operationalization
and measurement within this project. An example of content-specific conceptual knowledge is
the definition of a Cauchy sequence, and its links to the definition of convergence and the
theorem that every Cauchy sequence converges within the real numbers.

4.1.1.2 Resource 2: Procedural Mathematical Knowledge

Besides conceptual knowledge, procedural knowledge is included in this study as a second
resource. It refers to knowledge about rules, procedures, action-sequences, and algorithms for
solving mathematical problems (Hiebert & Lefevre, 1986, pp. 7-8). It entails content-specific
aspects as well as domain-specific aspects, yet in this project the focus will be on the former.
Examples are the application of the geometric series formula while rewriting an equation, or
testing a convergence criterion on a given sequence. Both examples demonstrate that procedural
knowledge can also entail factual knowledge (e.g., knowledge about convergence criteria).
Therefore, it is sometimes hard to distinguish between conceptual/factual knowledge and
procedural knowledge. Anyhow, both types are supposed to be highly interlinked (Rittle-

1 We chose this definition of domain-general to account for research questioning the claim of
domain-generality and advocating the term cross-domain (see Fischer, Wecker, et al., 2014), as
in this context it is more important that the resource is not specific to mathematics, rather than
making a claim about how general it is. This notion is also in accordance to the notion used by
Chinnappan and Lawson (1996). Further, domain-general is interpreted in the sense that an
according resource may be useful or applicable also outside of mathematics. If it proves to be
predictive for a certain performance in certain other domains is another, empirical question.
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Johnson, Schneider, & Star, 2015; Rittle-Johnson, Siegler, & Alibali, 2001) and many learning
theories suggest that conceptual knowledge can be transformed into procedural knowledge (see
Vanlehn, 1996). Thus, the categorization of knowledge requires background knowledge about
the general setting and prior experiences of the participants. Nevertheless, it is often seen to be
worthwhile on a practical and conceptual level to distinguish both types of knowledge (see Rittle-
Johnson & Schneider, 2014).

4.1.1.3 Resource 3: Mathematical Strategic Knowledge

Following the first two resources, mathematical strategic knowledge seems to be the direct
consequence according to the framework of de Jong and Ferguson-Hessler (1996). Still, it has
been scarcely included in mathematics education research and has been suggested first by
Weber (2001) as a resource on its own. Weber (2001, p. 101) describes mathematical strategic
knowledge as “knowledge of how to choose which facts and theorems to apply”. The term
“strategic knowledge” (sometimes also “conditional knowledge”) is used in a variety of ways and
contexts, some not addressing its domain-generality or -specificity (de Jong & Ferguson-Hessler,
1996; Schraw et al., 2006, p. 114), others using it in the context of problem solving thereby
implying a domain-generality (e.g., Gok, 2010, p. 114). Here, we use the term following Weber’s
definition, thus corresponding to knowledge about hints and cues in mathematical task
descriptions (and in later phases of proof construction or handling of proof), which suggest a
certain method or approach. Examples are using an g/2-approach when dealing with &-8-
continuity or knowing that a task description containing a “Show that X holds for all natural
numbers”-formulation, where X stands for an arbitrary mathematical statement that depends on
a natural number (e.g., “The expression n*-n is divisible by 3."), is likely to require a proof by
complete induction. Hence, mathematical strategic knowledge refers to domain- and partially
content-specific knowledge.

4.1.1.4 Resource 4: Methodological Knowledge

Methodological knowledge (Heinze & Reiss, 2003) refers to knowledge about the functions and
the nature of mathematical proof as a concept (see de Villiers, 1990; Hanna & Jahnke, 1996; Reid
& Knipping, 2010) and about the acceptance criteria for mathematical proofs within the local
mathematical community (see Dawkins & Weber, 2016; Fallis, 2003; Geist et al., 2010; Hanna,
1990; Heinze, 2010; Mariotti, 2006). According to the framework by de Jong and Ferguson-
Hessler (1996), methodological knowledge can be interpreted as conceptual knowledge, as it
refers to principles that apply within the domain of mathematics.

Although methodological knowledge partly depends on the socio-mathematical norms within
the local mathematical community (see section 2.2), three important aspects are often
highlighted (Heinze & Reiss, 2003): The proof scheme, which relates to the reasoning patterns
used for individual inferences within a proof, for example that examples cannot be used in order
to prove a statement; the proof structure, which refers to the overall structure of a proof, for
example leading from the premises to the claim in a linear proof and not allowing circular
reasoning; the chain of conclusions *2, which relates to the warrants and backings allowed in a
proof, that is only prior accepted knowledge and already proven statements are allowed.

So far, several studies underline the importance of methodological knowledge for mathematical
argumentation and proof skills (e.g., Healy & Hoyles, 2000; Heinze & Reiss, 2003; Ufer, Heinze,
Kuntze, et al., 2009), each time using participants’ performance on proof validation tasks as a
measure of their methodological knowledge.

12 Both, , chain of conclusions” (e.g., Heinze & Reiss, 2003) and “logical chain” (e.g., Kuntze, 2008)
have been used in prior research to denote this aspect.
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4.1.1.5 Resource 5: Problem-solving Skills & Heuristics

A problem is usually defined as a task, in which the problem solver is “not aware of any obvious
solution method” (Mayer & Wittrock, 2006, p. 287) and which therefore represents a barrier to
its solution™® (Dérner, 1979, p. 10). Based on this definition, problem solving is understood as an
act of cognitive processing, directed at transforming a given situation into a specified goal
situation (Mayer & Wittrock, 2006, p. 287). Problem-solving skills, that is the disposition to solve
problems successfully over a range of domains, are often conceived as a complex cognitive skill
(e.g., Schoenfeld, 1985), having various underlying resources on its own. In comparison to
mathematical argumentation and proof skills, the resources, as well as the overall skill, are seen
as domain-general. In particular, problem-solving skills in general do not require any of the
domain-specific resources mentioned before. As problem solving is usually a heuristic process,
based on preliminary decisions for strategies that do not necessarily lead to a solution, problem-
solving heuristics are often mentioned as a major resource. These comprise strategies, methods,
and rules, which can guide problem-solving processes, yet do not guarantee success (e.g., Abel,
2003; Polya, 1945). Examples are means-end analysis, drawing a sketch, or working backwards
(see Polya, 1945, p. 69 f.; Schoenfeld, 1985, p. 44 f.). Heuristics are mostly conceived as domain-
general, although some conceptions (e.g., Chinnappan & Lawson, 1996; Koichu, Berman, &
Moore, 2007) also include domain-specific strategies. To clearly distinguish heuristics and
mathematical strategic knowledge, we only regard domain-general heuristics.

A classic example of a domain-general problem is the three jug problem. Here, three jugs of a
specified size are given, each holding a specified amount of liquid, and the problem solver is
asked to obtain a desired amount of liquid in one of the jugs by filling them into each other.

4.1.1.6 Resource 6: Metacognitive Awareness

Based on the work of Flavell (1979, p. 906) metacognition is defined as “knowledge and cognition
about [one’s own] cognitive phenomena”. As cognition includes the encoding, memorizing, and
recalling of information, metacognition can be understood as the skill to monitor and regulate
these cognitive processes (Schraw et al., 2006). Metacognition is supposed to be important
during problem solving (e.g., Schoenfeld, 1987) to monitor one’s progress and direct oneself in a
(hopefully) successful direction towards the solution of the problem (see also section 2.4.1).
Therefore, it is also relevant for handling mathematical argumentation and proof and is
suggested as another domain-general resource, also underlying problem-solving skills (e.g.,
Schoenfeld, 1985). Since metacognition itself is not directly accessible for researchers and usually
measured indirectly using students’ self-reports on metacognitive knowledge and behavior
(Schraw, 1998; Schraw & Dennison, 1994), it is included as “metacognitive awareness”,
conceptualized as the degree one is aware of one’s own metacognition, in this project.

4.1.1.7 Resource 7: Conditional Reasoning Skills

Conditional statements are if-then rules connecting a premises to a conclusion, for example, "If |
train hard enough, | can become a Jedi". Conditional reasoning skills thus refer to handling such
conditional statements, that is to draw correct inferences and to judge the truth of derived
statements, using for example modus ponens or modus tollens (e.g., Evans, Clibbens, & Rood,
1995; Inglis & Simpson, 2008; Johnson-Laird, 2000; Johnson-Laird & Byrne, 2002). Given the

13 According to this definition, the status of a task as a problem is not intrinsic to the task, but
depends on the person (problem solver) and therefore is interindividually different. For instance,
the example given below will be a problem for almost all persons who did not encounter the task
before, but after solving a similar problem, the task may not represent a problem anymore.
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conditional statement above, an according task is: “Given Yoda is a Jedi, is it true that he trained
hard?” Here, the statement “Yoda trained hard” does not follow (necessarily) from the rule
above, given that “Yoda is a Jedi”, and therefore the conclusion is wrong (affirmation of the
consequent).

Conditional reasoning skills are often connected to deductive reasoning skills in general (e.g.,
Attridge, 2013; Attridge & Inglis, 2013; Chinnappan et al., 2012; Evans et al., 1995; Evans,
Newstead, & Byrne, 1993) and are therefore supposed to be underlying students’ argumentation
and proof skills (e.g., Epp, 2003). Conditional reasoning skills are assumed to be domain-general.

4.1.1.8 Resource 8: Beliefs

Mathematics-related beliefs are mostly defined as “implicitly and explicitly held subjective
conceptions about mathematics education, the self as a mathematician, and the social context”
(De Corte et al., 2000, pp. 689-690; Op ‘'t Eynde et al., 2002, p. 14). Although there are some
ambiguities in the definition and measurement of beliefs (e.g., Torner, 2002), they are awarded
a key role in many mathematics related processes such as learning, handling mathematical
problems, or handling mathematical argumentation and proof (e.g., Roesken, Pepin, & Toerner,
2011; Schoenfeld, 1985) and are often separated from affective characteristics (e.g., Hannula et
al., 2016) as some research traditions emphasize their cognitive rather than affective aspects (see
Furinghetti & Pehkonen, 2002, pp. 40-41). Their influence is supposed to be mediated by
cognitive as well as conative and affective processes (Op 't Eynde et al., 2002; Schoenfeld, 2010).

4.1.1.9 Resource 9: Affective Characteristics

Affect regarding mathematics is conceived as influencing success and failure in mathematics in
general (e.g., Di Martino & Zan, 2011; Hannula, 2006; Pekrun, 1992) as well as in handling
mathematical argumentation and proof in specific. A common example is mathematics anxiety
(e.g., Hembree, 1990). Besides beliefs, which are at conceived as at least partially affective”,
Hannula et al. (2016) name motivation and emotions as two broad categories of affect, which
are often divided into rapidly changing and continuously fluctuating state variables, and relatively
stable trait variables. Among state variables, academic achievement emotions of students
(Pekrun, Goetz, Titz, & Perry, 2002) such as joy, hope, pride, or anxiety have been highlighted as
impacting students’ performance, based on the control-value theory (Pekrun, 2006).

4.2 Guiding Research Questions

The overall aim of our MIMAPS project is to find effective means to adequately assess (university
students’) mathematical argumentation and proof skills and subsequently to support the
acquisition and learning of mathematical argumentation and proof skills. In particular, we are
interested in the individual cognitive resources underlying students’ mathematical
argumentation and proof skills and their use for research and education.

As the initial step for our project, we created the research framework just outlined, which
combines three main perspectives on mathematical argumentation and proof skills and
therefore allows the integration of prior research findings from different perspectives into one
single framework. It allows to explore the connections between different aspects of
mathematical argumentation and proof skills and acquire a comprehensive view of mathematical
argumentation and proof skills.

1% As beliefs are conceived as in parts cognitive and affective, depending on the research tradition
(see Furinghetti & Pehkonen, 2002, pp. 40-41), we chose to include beliefs and affective
characteristics as two separate resources for this project.
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4.2.1 Reviewing Current Research

Based on the newly-created research framework, the first study of the project is a descriptive
literature review (see section 5.1) that contributes to a comprehensive view of mathematical
argumentation and proof skills by reviewing prior research on mathematical argumentation and
proof skills and by examining closer the different aspects focused within current research, as well
as the combinations of aspects.

RQl Which resources, processes, and situations in the context of mathematical
argumentation and proof skills are currently addressed by mathematics education
research? Is there research focusing on the individual aspects of mathematical
argumentation and proof skills in a comprehensive way? Which combinations of
aspects have been examined?

Here, it was of special interest to classify research regarding the different resources, processes,
and situations they focused on. It was desired to determine whether research rather addressed
single sub-aspects within one of the three aspects, that is for example solely examining beliefs as
a single resource, or if research also addressed multiple resources, processes, or situations.
Finally, research on relations between the different aspects, that is, for example, studies
examining the influence of problem-solving skills on proof validation, were of major interest as
they allow to shed a comprehensive light on mathematical argumentation and proof skills,
combining the aspects of the framework and highlighting the relations between the aspects of
the framework currently examined in mathematics education research.

4.2.2 The Impact of Students’ Individual Resources in Different Situations

To obtain a deeper understanding of mathematical argumentation and proof skills in terms of
the underlying cognitive resources, our second study (see section 5.2) assessed the influence of
several potential resources included in the framework on first-year university students’
performance in handling mathematical argumentation and proof skills in different situations.
Research was guided by the question:

RQ2 Whatis the relative influence of the potential individual resources underlying students’
mathematical argumentation and proof skills on their performance in proof
construction and validation? Can differences regarding the influence of domain-specific
and domain-general resources be observed?

To analyze the potential different influence of the underlying individual resources in different
situations, proof construction and proof validation were chosen, as they are predominant both
within university students’ academic life and mathematics education research (Mejia-Ramos &
Inglis, 2009a, 2009b). Furthermore, we only included cognitive resources outlined in our research
framework. This was done for methodological reasons because assessing all nine resources of
the framework would have resulted in a high testing load for participants. Also, the approach to
first focus on cognitive resources is a common approach used to obtain an initial picture of their
influence (e.g., Chinnappan et al., 2012; Herppich et al., 2017; Klieme & Leutner, 2006; Ufer et
al., 2008). The approach is further underpinned by the fact that non-cognitive resources are often
conceived to modulate respectively moderate the cognitive resources (e.g., Herppich et al., 2017;
Op 't Eynde et al., 2002; Schoenfeld, 2010), thus having no or only minor direct effects and
potentially to vary heavily across students (see Furinghetti & Morselli, 2009), therefore requiring
a very nuanced analysis. Furthermore, also methodological knowledge was excluded because it
has been so far mostly assessed indirectly, using the performance in proof validation as a

50




Research Framework and Guiding Questions

measure (e.g., Heinze & Reiss, 2003; Ufer, Heinze, Kuntze, et al., 2009). Since proof validation
was studied as a part of mathematical argumentation and proof skills, we did not include
methodological knowledge as a separate resource.

The resources included in the study are shown in Figure 28. Based on prior research findings, we
assumed that all these resources have a non-negative relation to students’ performance in proof
construction and proof validation. For students’ performance on proof validation, we expected
conceptual mathematical knowledge as well as conditional reasoning skills as two important
resources, both needed for checking the individual facts and inferences within the given proofs.
For proof construction, we also assumed an influence of conditional reasoning skills, as
constructing a mathematical proof entails the construction of a deductive chain of arguments.
More importantly we expected an influence of conceptual and procedural mathematical
knowledge as well as problem-solving skills as suggested by prior research (Chinnappan et al.,
2012; Ufer et al., 2008).

Besides analyzing the influence of the underlying resources in the situations of proof construction
and proof validation, the study also aimed to advance the systematization of the relationship
between proof validation and proof construction, as their conceptual status as a) two
independent skills, b) two subskills of overall mathematical argumentation and proof skills, or c)
two situations requiring the same skill, is still unclear (e.g., A. Selden & Selden, 2015a)"™. Based
on the prior research findings discussed in section 3.4.4 that highlight the relation between both
and conceptualize proof validation an important process during proof construction, we also
addressed the question:

RQ3 How do students’ proof validation skills relate to their proof construction skills? Can
their proof validation skills add to the explanation of their proof construction skills
beyond the included individual resources?

To address this question, we first examined the correlation between proof construction and
proof validation skills. Here, we expected a positive, weak correlation based on prior findings
(Ufer, Heinze, Kuntze, et al., 2009). Further, we examined the impact of students’ proof validation
skills when included as another predictor of students’ proof construction skills in the statistical
models employed. In case it adds to the explanation of students’ proof construction skills beyond
the included individual resources, this can be interpreted as a sign that proof validation skills
themselves adds to proof construction skills or that yet another resource, which was not included
in this analysis (e.g., methodological knowledge), is jointly underlying both skills. If alternatively,
students’ proof validation skills correlate with students’ proof construction skills but do not add
to its explanation beyond the included individual resources, the correlation between both skills
has to be interpreted as an artefact of the included individual resources and that no signs for
other shared resources can be found.

> Within this project and the underlying research framework, we have chosen perspective c).
Still, for reasons of simplicity we will also use the terms proof validation skills and proof
construction skills to denote students’ skills in handling argumentation and proof tasks in the
according situations.
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Proof Validation

RQ 2
RQ 3
Cognitive Resources
Conceptual Procedural Mathematical
Mathematical Mathematical Strategic
Knowledge Knowledge Knowledge
> Proof
-------------------------------------------------------------- Construction
RQ 2
Problem-solving Metacognitive Conditional
Skills Awareness Reasoning Skills

Figure 28. Relation between cognitive resources, proof validation, and proof construction skills examined in the correlational
study.

4.2.3 Supporting Mathematical Argumentation and Proof Skills Using
Underlying Resources

The third study (see section 5.3) of our project examined the educational implications of
conceptualizing mathematical argumentation skills as a complex cognitive skill with several
underlying resources.

Based on research from instructional design, especially the part-task / whole-task debate (see
section 3.5), two approaches for supporting the resources underlying students’ mathematical
argumentation and proof skills arise: A one-by-one approach, which focuses on and tries to
support each resource at a time, and a simultaneous approach, which focuses on and tries to
support the resources at the same time. Thus, the third study aimed to answer the following
question:

RQ4 What are the differences between two instructional approaches that aim at supporting
the resources individually one-by-one or simultaneously in terms of students’
acquisition of individual resources as well as overall mathematical argumentation and

proof skills?

To address this question, four cognitive resources of mathematical argumentation and proof
skills were included in a training concept (mathematical knowledge®®, mathematical strategic
knowledge, problem-solving skills, and methodological knowledge). Affective characteristics and
beliefs were again excluded, this time with the additional reason that several studies had
underlined that affective (trait) aspects as well as beliefs regarding mathematics are relatively
stable and difficult to change (see Kloosterman, Raymond, & Emenaker, 1996). Further, the
number of included, potential resources had to be limited to four in order to decrease the
complexity and length of the intervention (both for students and the design of the study in
general).

'® Here, mathematical knowledge refers to conceptual and procedural knowledge, which were
not distinguished within the intervention for educational purposes as students might have
conceived the difference as problematic.
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We hypothesized that the one-by-one approach would be superior regarding learning gains for
students’ resources underlying mathematical argumentation and proof skills. We assumed that
students profit from covering the resources individually throughout the intervention, giving them
enough room to focus on each one, and having a superior instructional clarity. However, we
hypothesized the simultaneous approach would yield better learning gains for students’ overall
mathematical argumentation and proof skills. We expected that students are better able to
integrate the resources into overarching strategies to approach proof problems by that
approach, as the resources are used concurrently throughout the intervention and students
therefore are better able to purposefully apply them when handling mathematical proofs.
Further, this hypothesis is underlined by the findings of the part-task / whole-task debate that
regard whole-task approaches as superior for the learning of a complex cognitive skill.
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5 Studies

5.1 Research on Mathematical Argumentation and Proof Within PME -
Results From a Descriptive Review

5.1.1 Introduction

Mathematics'’ is a proving science (Heintz, 2000). As such handling mathematical argumentation
and proof represent central mathematical activities (Hanna & Jahnke, 1996; Jahnke & Ufer, 2015;
Ubuz, Dincer, & Bulbul, 2012). Many standard documents for secondary schools worldwide put
forward mathematical argumentation and proof skills as a central goal of mathematics learning
(e.g., Common Core State Standards Initiative, 2010; KMK, 2012; National Council of Teachers of
Mathematics, 2000), which becomes even more important at the university level, where
mathematical proof is introduced as the central method of mathematics as a scientific discipline.
Accordingly, argumentation and proof also represent a major line of research in mathematics
education and have been approached from a variety of perspectives within the last decades (e.g.,
Hanna, 1990; Mariotti, 2006).

Today, it is widely agreed that mathematical argumentation and proof skills comprise a complex
cognitive skill (Blomeke et al., 2015; Schoenfeld, 1985; van Merriénboer & Kirschner, 2007) and
therefore require several underlying resources, such as knowledge facets, skills, beliefs, or
affective characteristics, in order to be successful in handling mathematical argumentation or
proof (e.g., Blomeke et al., 2015; Schoenfeld, 1985). At the same time, research increasingly
focuses on different situations in the context of argumentation and proof such as reading or
presenting arguments and examines specific processes therein more closely.

Although it is obviously desirable to examine mathematical argumentation and proof skills from
multiple different perspectives and thereby capture its whole breadth, research on underlying
resources, processes, and situations in the context of mathematical argumentation and proof
need to be purposefully combined to achieve this. Thus, one aim of research on mathematical
argumentation and proof skills must be an increasingly coherent understanding of these facets,
ultimately leading to the creation of effective means of support for students’ mathematical
argumentation and proof skills.

To contribute to this aim, we conducted a descriptive literature review, giving an overview of
recent research on mathematical argumentation and proof in secondary and tertiary education.
This research method does not create new evidence per se and also does not meta-analytically
combine prior evidence, but it allows to structure prior research, to highlight connections, and
to point out desiderata, therefore building a basis for future research. To extensively cover the
diversity of research perspectives on mathematical argumentation and proof skills in this review,
we use a broad conceptualization of mathematical argumentation and proof skills as a
foundation, guided by a framework of Bldmeke et al. (2015) that is embedded in research on
teaching skills and the assessment of complex cognitive skills in higher education. Based on this
framework, we structure existing research according to three different perspectives on
mathematical argumentation and proof skills: The underlying individual resources, the situations

7 A shorter and less detailed report of this study has been presented at the conferences PME 39
and GDM 2015 and published in the respective proceedings volumes (Sommerhoff, Ufer, &
Kollar, 2015a, 2015b).
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that require the use of mathematical argumentation and proof skills, and the processes leading
to an observable performance.

5.1.2 Theoretical Framework

5.1.2.1 Argumentation and Proof

To set the stage for the review, we first consider the definition of mathematical argumentation
and proof skills used in the sequel. There is a general ambiguity regarding the use of the words
argumentation, reasoning, proof, and their verbal forms such as proving (e.g., Reid & Knipping,
2010). One major distinction pointed out, for example by Balacheff (1999), is that there are two
meanings associated with argumentation within the field of mathematics: On the one hand,
mathematical argumentation can be characterized as a social-discursive activity aimed at
convincing a listener or group of listeners. This view is often highlighted by general educational
research (e.g., Nussbaum, 2008; Voss & Van Dyke, 2001) and some works in argumentation
theory (e.g., Andriessen, 2009; van Eemeren & Grootendorst, 1999). On the other hand,
argumentation can also be seen as an activity that is aimed at the generation, exploration, and
validation of (mathematical) conjectures and hypotheses regarding their objective and individual
rationality (Kollar et al., 2014; Pedemonte, 2007; Reichersdorfer et al., 2014). This can be done
individually or in groups and possibly to persuade others (or oneself), but can also have various
other goals (see de Villiers, 1990; Hanna & Jahnke, 1996; Herbst, Miyakawa, & Chazan, 2010).
For this review, the latter view is adopted. Based on this view, mathematical proof is mostly seen
as a specific form of mathematical argumentation that is subject to (often implicit, and possibly
changing) social norms of the mathematical community (see Dawkins & Weber, 2016; Yackel &
Cobb, 1996). Three central, but not exhaustive norms (Heinze & Reiss, 2003) are the sole use of
deductive inferences, an appropriate structure of the proof, and the explicit reference to the
underlying mathematical theory. This difference between argumentation and proof is
characterized by (Pedemonte, 2008, p. 385):

There is a “structural gap” between argumentation and proof because in
argumentation inferences are based on content while in proof they follow a
deductive scheme (data, claim, and inference rules).

Accordingly, mathematical argumentation and proof skills refer to students’ skills in handling
mathematical argumentations and proofs, as members of a mathematical community.

Based on this conceptualization of proof, we limit the scope of our review on research on
mathematical argumentation and proof in secondary and tertiary education, as proof is usually
introduced in secondary school and does not represent a central theme before.

5.1.2.2 Mathematical Argumentation and Proof Skills as a Complex Cognitive Skill

Mathematical argumentation and proof skills are often interpreted as a domain-specific complex
cognitive skill and, especially in the European context, as a competence (see Klieme & Leutner,
2006; Koeppen et al., 2008; Weinert, 1999). That is, they are conceptualized as a latent cognitive
and (partially) affective-motivational disposition underlying a person’s performance in certain
situations (Koeppen et al., 2008).

In accordance with this view, the framework of Blomeke et al. (2015) highlights three aspects of
a general complex cognitive skill: Different cognitive and affective-motivational dispositions
underlying certain situation-specific skills that in turn lead to observable behavior.

Here, we adapt this framework by Blémeke et al. (2015) as it combines three primary foci in
research on mathematical argumentation and proof skills: The resources underlying
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mathematical argumentation and proof skills (e.g., Chinnappan et al., 2012; Schoenfeld, 1985;
Ufer et al., 2008), the processes they are enacted in (e.g., Boero, 1999), and the performance in
specific situations that may pose different domain-specific demands on students (e.g., Mejia-
Ramos & Inglis, 2009a; Mejia-Ramos & Inglis, 2009b).

4 4 N\ 4
Resources Processes Situations
Conceptgal Problem Construction of
Mathematical e
Identification Arguments
Knowledge
Procedural Mathematical . .
Mathematical Argumentation giﬂgtrgte;ﬁ ifafggng
Knowledge and Proof Skills 9
Problem- Evidence Presentation of
solving Skills Generation Arguments
- - J -
Underlie Are Enacted in Lead to

Performance in

Figure 29. Three aspects of mathematical argumentation and proof skills as a complex cognitive skill; adapted from the framework
by Blomeke et al. (2015).

Each of these three aspects of mathematical argumentation and proof skills are elaborated on in
the following, using prior frameworks from mathematics education to describe different sub-
aspects, resulting in the research framework used in this review (see Figure 29), which is then
used to characterize recent research on mathematical argumentation and proof skills with
respect to its focus on either of these three aspects, specific sub-aspects, and their combinations.

5.1.2.2.1 Resources Underlying Mathematical Argumentation and Proof Skills

Within the last decades, several resources for mathematical argumentation and proof skills have
been proposed, like mathematical content knowledge such as concepts and procedures,
methodological knowledge, or problem-solving skills (e.g., Heinze & Reiss, 2003; Schoenfeld,
1985). The proposed resources vary regarding their domain-specificity (see Chinnappan &
Lawson, 1996) as well as regarding their nature as knowledge facets, beliefs, and affective
characteristics (de Jong & Ferguson-Hessler, 1996; Hannula, 2006).

The resources for mathematical argumentation and proof skills included in this review were
partially derived from research on more general activities such as problem solving (e.g.,
Schoenfeld, 1985) or self-regulated learning (e.g., De Corte et al., 2000), or were inferred from
gualitative studies, as for example mathematical strategic knowledge (e.g., Weber, 2001). Up to
now, no exhaustive list of resources of mathematical argumentation and proof skills is available
and there is only little empirical evidence available regarding the predicitivity of each proposed
resource for students’ performance in situations requiring mathematical argumentation and
proof skills. To date, mostly either qualitative studies have been conducted, or the quantitative
studies have focused only on single resources, therefore neither accounting for the possibly of
confounded variables nor for interactions between the variables, both of which may alter the
results of the hitherto existing studies. Here, only first studies (e.g., Chinnappan et al., 2012; Ufer
et al.,, 2008), have been conducted, examining multiple resources at once and thereby
contributing to more reliable estimates for the individual predictivity of the resources.
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Combining various central frameworks and studies (Chinnappan et al.,, 2012; De Corte et al.,
2000; Leder, Pehkonen, & Torner, 2002; Schoenfeld, 1985; Ufer et al., 2008; Weber, 2001), we
identified six resources that were deemed the most relevant resources for this review:
Mathematical content knowledge (MCK) consists of knowledge of those mathematical concepts
that form the context or basis for the argumentation processes. This comprises conceptual
knowledge of definitions, facts, and properties, as well as procedural knowledge, such as
technical, routine aspects and procedures (Hiebert, 1986; Rittle-Johnson et al., 2015).
Mathematical strategic knowledge (MSK) refers to knowledge about cues and hints within
mathematical tasks and problems that indicate concepts, methods, or representation systems
that can be used productively for the given task (Weber, 2001).

Methodological knowledge (MK) is knowledge of the nature and the functions of the concept
mathematical proof. It furthermore contains knowledge about the local and global acceptance
criteria for a valid proof (Healy & Hoyles, 2000; Heinze & Reiss, 2003; A. J. Stylianides, 2007).
Problem-solving skills (PSS) consist of general problem-solving skills and knowledge about
general heuristics, such as means-end-analysis (e.g., Chinnappan et al., 2012; Polya, 1945;
Schoenfeld, 1985), which are not limited to the domain of mathematics.

Finally, there are beliefs (BE) about mathematics education, the self as a mathematician, and the
social context (e.g., Leder et al., 2002; Op 't Eynde et al., 2002, p. 14; Schoenfeld, 2010) as well
as dffective characteristics (AC) such as emotions and motivation towards mathematics (e.g.,
Hannula, 2006).

5.1.2.2.2 Processes of Mathematical Argumentation — The Epistemic Activities Framework
Besides the resources underlying mathematical argumentation and proof skills, special emphasis
has to be put on the specific processes that individuals apply to master situations that pose
argumentation and proof demands. These processes have been described from various
perspectives, for example as processes during problem solving (Polya, 1945), the processes of
(expert) mathematicians when constructing proofs (Boero, 1999; Kirsten, 2017), or as the
activities involved in general scientific reasoning practices (Fischer, Kollar, et al., 2014).

The latter framework, proposed by Fischer, Kollar, et al. (2014), focuses on scientific reasoning
and argumentation from an interdisciplinary point of view. Research on these processes is often
seen as initiated by findings by Inhelder et al. (1958), has advanced throughout the last decades
(see Kuhn, 2002; Sodian & Bullock, 2008; Zimmerman, 2000), and focuses on the activities during
processes of scientific discovery and inquiry, such as identifying problems, formulating research
guestions and hypotheses, generating evidence for these and evaluating it (Fischer, Kollar, et al.,
2014; Kuhn, 2002). Accordingly, mathematical argumentation and proof skills can be seen as a
domain-specific instantiation of scientific reasoning and argumentation skills and can, therefore,
be described using the general process model for scientific reasoning and argumentation by
Fischer, Kollar, et al. (2014). The framework is helpful, as it contains more processes and is,
therefore, more nuanced than the other models (e.g., Boero, 1999) and allows to describe
processes in situations other than proof construction. Finally, it also permits to compare results
of the review with other domains, as the same terminology is used.

The framework comprises eight so-called epistemic activities (see Table 2 for a description of
each and an illustration in the context of students within a geometry classroom) that are sub-
processes of scientific reasoning and argumentation processes and can be used to describe the
(cognitive'®) processes during mathematical argumentation. Albeit their linear presentation,

8 Obviously, the actual cognitive processes cannot be observed. The epistemic activities,
however represent observable processes that are suggested to correspond to different cognitive
processes and therefore can be used as proxies of these.
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they do not need to occur in this specific order, can be iterated, possibly in loops, and not
necessarily all of them have to be present in an argumentative process.

Table 2. Overview of epistemic activities by Fischer, Kollar, et al. (2014).

Epistemic Activity

Description

lllustrations

Problem Identification

(P1)

Questioning

(Qu)

Hypothesis Generation
(HG)

Construction and
Redesign of Artefacts
(CR)

Evidence Generation
(EG)

Evidence Evaluation
(EE)

Drawing Conclusions
(DC)

Communicating and
Scrutinizing
(CO)

Perceiving a mismatch concerning
the explanation of a problem and
building a problem representation

One or more initial questions are
identified

Possible answers to the questions
are derived from models,
theoretic frameworks, or other
sources

Development of a prototypical
object, axiomatic system, or
another object used to work on
the problem

Evidence for the hypothesis is
generated

Evaluating evidence according to
certain norms

Integrating different pieces of
evidence, reevaluating the initial
claim considering the new
evidence

Sharing and discussing
argumentations within a
community

Students observe
(seemingly) contradicting
statements that call for a
scientific explanation or
clarification.

Students ask themselves
whether it is possible that
both statements are true at
the same time.

Students generate the
hypothesis that it can be
inferred from statement 1,
that statement 2 is false.

Students generate a DGS-
worksheet™ to (inductively)
check the hypothesis.

Students use deductive
inferences to conclude from
statement 1 that statement
2 cannot be true.

Students check after every
step / inference whether
these are coherent, support
the hypothesis, and lead to
the desired goal.

Students reflect upon the
generated evidence, connect
different parts of the proof,
and if necessary reevaluate
the initial hypothesis based
on the produced evidence.

Students present their
arguments / proof to each
other and check their validity
critically.

19 pGS-worksheets are digital representations of geometric figures within a dynamic geometry
system (e.g., GeoGebra, Cinderella), which allow the dynamic reconfiguration of objects, for

example by dragging.

59




The Resources Underlying Students’ Mathematical Argumentation and Proof Skills

5.1.2.2.3 Situations Involving Mathematical Argumentation and Proof Skills

The third aspect highlighted by Bldmeke et al. (2015) is the performance in different situations
that pose different demands on students. These can be structured using a framework suggested
by Mejia-Ramos and Inglis (2009a, 2009b), categorizing different activities in the context of
argumentation and proof based on work by Giaquinto (2005) regarding their givens, goals, and
products. Mejia-Ramos and Inglis divide argumentative activities associated with mathematical
argumentation and proof into the three categories construction of novel arguments, reading
arguments and presenting arguments, each with a few sub-categories (see Figure 30). Even
though this distinction seems partly similar to the processes described by the epistemic activities,
especially since Mejia-Ramos and Inglis talk about “activities”, their categorization rather refers
to the different overall goals of mathematical argumentation and proof activities and therefore
refers to situations, rather than to the (sequence of) sub-processes within these. Out of the three
situations not all are (perceived as) equally important in mathematics and mathematics
education research: In their review Mejia-Ramos and Inglis (2009a) reveal that a large proportion
of research is focused on the construction of novel arguments. Still, Mejia-Ramos and Inglis
(2009a) also highlight the importance of the other two situations in educational learning and
assessment settings. In recent research, reading arguments is seen as multi-faceted (e.g., A.
Selden & Selden, 2015a) and is mostly perceived from a student’s perspective (e.g., Alcock,
Hodds, Roy, & Inglis, 2015; Hodds et al., 2014; Lin & Yang, 2007; Samkoff & Weber, 2015; A.
Selden & Selden, 2003; Yang & Lin, 2008), whereas the scarce research on argument presentation
mostly relates to teachers and lecturers (e.g., Fukawa-Connelly, 2014; Lai & Weber, 2014; Roy et

al., 2010).
Estimation of Problem Evaluation Comorehension Demonstration: Explanation to
Truth Exploration P Understanding an Audience
Justification Conviction of Demonstration:
an Audience Validity

Figure 30. Activities in the context of mathematical argumentation and proof (ovals) and their sub-categories (rectangles) (Mejia-
Ramos & Inglis, 2009a).

5.1.3 Aims and Research Questions

Our descriptive literature review sets out to analyze recent research on mathematical
argumentation and proof skills in secondary and tertiary education to provide a comprehensive
view on this research and thereby support the creation and refinement of a coherent view of
mathematical argumentation and proof skills.

To achieve this, we investigated which of the three aspects of mathematical argumentation and
proof skills highlighted by our research framework have been examined within mathematics
education research between 2010 and 2014. Here, we specifically not only examined the aspects
individually but also explored which combinations have been researched and give insights into
their connection. By identifying these patterns within research on these aspects, new directions
for future research in understanding and supporting mathematical argumentation and proof
skills as a complex cognitive skill can be identified.
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The review was guided by the following questions:

RQl To which extent does research on mathematical argumentation and proof consider the
different resources, sub-processes, and situations associated with mathematical
argumentation and proof skills?

RQ2 Does research explore connections between the three aspects? Which combinations of
resources, processes (epistemic activities), and situations are being considered in
research on mathematical argumentation and proof skills? Can research gaps be
identified with regard to a comprehensive understanding of mathematical
argumentation and proof skills?

As the review is of exploratory nature, no explicit prior hypotheses were made.

5.1.4 Method

5.1.4.1 Literature Selection

As the basis for the review, the proceedings of the International Group for the Psychology of
Mathematics Education (IGPME) were chosen, as the IGPME represents one of the largest,
international societies for mathematics education research. Within the proceedings, we only
considered the research reports (RRs), that is the highest contribution category, which is only
accepted after a double-blind peer review by at least two reviewers and has acceptance rates
around 50%. Overall, the research reports can be considered as a fair representation of recent,
good-quality, international mathematics education research.

Out of the proceedings, the research reports from five years, published between 2010 and 2014,
were selected, amounting in a total of 782 research reports.

5.1.4.2 Coding

The coding of the research reports was divided into two rounds: Within the first round, an initial
coding regarding the research topic and the focused educational level was performed. The coding
was meant to extract the research reports relevant to this review, that is research reports
focusing on mathematical argumentation and proof within secondary or tertiary education. The
content of the whole research report was used for this coding, not only the abstract.

For the second round of coding, a detailed, theory-based coding scheme was created to
categorize the research reports according to the resources investigated, the epistemic activities
studied, and the situation(s) examined in the study.

The research foci of each report concerning the three aspects and according sub-aspects were
then coded based on the coding scheme, again using the content of the whole research report.
That is, those resources, processes, and situations that were related to the research interest of
each report were extracted. Any resources, processes, and situations that were not part of the
research focus were not included. For example, if participants of a study were talking about or
discussing a mathematical problem only for methodological purposes of the study (e.g., as a
“thinking aloud” technique) this would neither be coded as the processes of communication and
scrutinizing, nor as the situation of presenting arguments, as none of these were of research
interest (see for example Buchbinder & Zaslavsky, 2013).

Resources: For each of the resources, we coded if it was a variable central to the research reports
(e.g., it was the sole focus of the report), if it was considered as substantial (e.g., it was analyzed
together with other resources), if it was only mentioned (e.g., as a variable to be controlled), or
if it did not occur at all. We also included a category for further resources, which had not been
included in our list.
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Processes: Each of the processes from the epistemic activities framework was coded individually
and on different levels. Given the case that a process was part of the research interest of a
research report, it was assigned to one of the following four codes, based on the way it was
addressed in the research report: It was coded as normative, if the process was characterized
from a normative point of view, for example when giving a theoretical model for it. It was coded
descriptive, if the process was characterized in a descriptive way, for example when describing a
students’ hypothesis generation. Furthermore, it was coded as problem, if a specific study
addressed the process as a reason for students’ problems, which was either revealed as such or
for which further evidence was given. Finally, it was coded as supported, if the process was
explicitly supported or fostered, for example when using scaffolds to support students’
hypothesis generation.

Situations: The situations involving mathematical argumentation and proof skills were coded in
the categories argument construction, argument reading, and argument presentation where
possible. Furthermore, the codes not explicit and multiple were introduced, when either the
situation was not explicated in the report, for example in a theoretical paper, or the research
interest concerned multiple situations.

Additionally, we coded information about the research method employed in the research reports
and the number of participants in case of an empirical study. We also coded further information,
for example relating to the location of the researchers, types of analyses employed, and
connections to professional development of teachers, but these will not be part of this article.
As a third step, the results of the descriptive analysis were safeguarded by rereading several
examples of research reports from each category to ensure coding quality and to gain a further
gualitative insight into the research reports.

5.1.4.3 Coding Quality

The coding scheme described above was refined in several rounds of coding training by two
coders. After these rounds, the inter-rater reliability for the coding reached a good level with a
mean inter-rater reliability of Kmean = .77 (SD = .15), based on a double coding of 15% of the
research reports. Except for the inter-rater reliabilities of the epistemic activities drawing
conclusions (k = .56) and communicating and scrutinizing (x = .46) all inter-rater reliabilities were
acceptable (k > .64).

5.1.5 Results

5.1.5.1 Descriptive Results

The first round of coding revealed that out of the total sample of 782 research reports, 532 (68%)
articles were situated in secondary (44%) or tertiary (24%) education and 160 (20%) research
reports focused on mathematical argumentation and proof (MA&P) (see Table 3).
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Table 3. Distribution of research reports regarding the educational level and focus on mathematical argumentation and proof
based on the first round of coding.

Focus

MA&P Other Focus
E’ Sec./Ter. Level 129 RRs 403 RRs 532 RRs
3
g Educ.
3 Other Educ 31 RRs 219 RRs 250 RRs
w Level

160 RRs 622 RRs 782 RRs

Based on these results, 129 (16%) research reports met the inclusion criteria of being situated in
secondary and tertiary education and focusing on mathematical argumentation and proof.
Examining the research methods used within these research reports (see Figure 31; left side), a
clear focus on qualitative research (57%) can be seen, followed by quantitative research (26%),
mixed methods (11%), and theoretical papers (6%). This is also reflected by the results regarding
the number of participants (see Figure 31, right side). Although the number of participants spans
the whole range from 0 to 2590, the highest percentage of articles can be found in the range
from one to five (23%), respectively in the categories from 1 to 20 participants’.
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Figure 31. Distribution of research reports regarding research method (left) and number of participants (right).

5.1.5.2 Research on the Three Aspects of Mathematical Argumentation and Proof Skills

Resources

Following our research framework outlined above, we started our analysis with the resources.
Here, mathematical content knowledge was studied most frequently (47% of the research
reports; see Figure 32). Only 24% considered methodological knowledge and 18% problem-
solving skills. Mathematical strategic knowledge, beliefs, and affective characteristics were
studied even less frequently (3%, 5%, and 3%, resp.). All in all, only 22% of the research reports
considered at least two resources simultaneously (i.e., two or more resources were coded as
central or substantial), and over two-thirds of these cases focused on mathematical content
knowledge in combination with any one other resource.

2% please notice that the categories used to analyze the number of participants are not of equal
size in order to allow a finer analysis and capture different kinds of studies. However, the differing
sizes also lead to the low number of studies with six to ten and eleven to 20 students as compared
to the higher categories.
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Figure 32. Resources focused on within the research reports.

Situations

Regarding the situations involving mathematical argumentation and proof skills (see Figure 33,
left side), almost 60% of the research reports focused on argument construction, whereas only
7% examined argument reading and 1% argument presentation. The number of reports including
two or more situations is also low with 7%. Almost a third of the research reports (29%) could
not be associated with one of these three activities, for example, because the report was

theoretical or did not specify any activity.
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Figure 33. Situations (left) and epistemic activities (right) focused in the research reports.

Processes

In line with this focus on argument construction as the most important situation focused on in
the research reports, evidence generation was the most frequently studied epistemic activity
(53%; see Figure 33, right side), followed by evidence evaluation (26%) and hypothesis generation
(24%). Nevertheless, all epistemic activities were studied at least in some form in some research
report.

Examining the different perspectives on epistemic activities, data reveal that half of them
(problem identification, questioning, construction and redesign of artefacts, and drawing
conclusions) were only characterized descriptively within the research reports. Hypothesis
generation and generating evidence were described normatively once, whereas communicating
and scrutinizing were described normatively 10 times. Solely evidence generation and evidence
evaluation were characterized as problems (3 respectively 2 times) and were object of explicit
support (3 times each) within the research reports.
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Conjecturing 30% Complete 24%

Evidence Evaluation 14%
Evidence Generation 32%

Figure 34. Percentage of research reports belonging to the four clusters of processes.

A qualitative analysis of those research reports that are focusing on at least one epistemic activity
(96 of 129 research reports), revealed four clusters of research reports (see Figure 34). This
finding could also be supported by a subsequent TwoStep cluster analysis using Schwarz’s
Bayesian Criterion and a Log-Likelihood distance measure based on the occurrence of the

epistemic activities as criteria for similarity.
From the resulting clusters, two focus on one epistemic activity only, whereas the other two
focus on multiple epistemic activities concurrently. Out of the four clusters the evidence
generation cluster that solely focuses on evidence generation, constitutes the largest cluster with
32% of the 96 research reports included in this particular analysis. A representative of this cluster
is a research report on unjustified assumptions in geometry proofs, which analyzed students’
written geometry proofs regarding these assumptions (Dreyfus & Dvora, 2011). The second
largest cluster with 30% of the research reports is the conjecturing cluster that focuses on the
activities of hypothesis generation, construction and redesign of artefacts, and evidence
generation (see Figure 35, upper part). A representative of this cluster is a qualitative study
examining how students use dynamic geometry software (i.e., GeoGebra) to obtain solutions for
a geometry task for example by systematically dragging points (Jacinto & Carreira, 2013). The
third biggest cluster with 24% of the research reports is the complete process cluster that
incorporates research reports focusing on a broad range of epistemic activities at once (see
Figure 35, lower part). A representative of this cluster is a research report on the role of dynamic
geometry on the process of exploration, conjecturing, and proving geometrical problems
(Samper, Camargo, Perry, & Molina, 2012). Finally, the smallest cluster with 14% of the research
reports is the evidence evaluation cluster that focuses solely on the epistemic activity of evidence
evaluation. A representative of this cluster is an eye-tracking study examining the role of pictures

while reading proofs (Beitlich et al., 2014).
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Figure 35. Percentage of research reports within the conjecturing cluster (upper part) and complete cluster (lower part) focusing
on each epistemic activity.

Besides the differences regarding their focus within the argumentation process, all four clusters
also differ regarding their mean sample sizes and the employed research methods. The mean
sample size in the evidence generation cluster is 85, whereas the other clusters have mean
sample sizes of 50 and below, with the evidence evaluation cluster having the smallest mean
sample size of 32. All four clusters mostly contain qualitative research reports. Here, both clusters
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examining multiple epistemic activities (i.e., complete and conjecturing clusters) comprise an
especially high percentage of qualitative research with 77% respectively 79%, whereas the
percentage of quantitative studies is higher in those clusters limited to one epistemic activity
(38% evidence evaluation, 29% evidence generation).

5.1.5.3 Connections Between the Three Aspects

To identify patterns within recent research relating to the three aspects of mathematical
argumentation and proof skills, we extracted those research reports that simultaneously focused
on two of these aspects, respectively certain sub-aspects, and used bubble charts to visualize the
according combinations (see Figures 36, 37, and 38). Within the bubble charts, each combination
of sub-aspects from both investigated aspects is represented by a circle whose area is
proportional to the number of research reports that fall within this combination of categories.
Processes and Situations

Data revealed a close connection between the situation examined and the processes investigated
in the context of mathematical argumentation and proof skills in the reviewed research reports
(see Figure 36). That is, research reports with a focus on argument construction predominantly
studied the activities of hypothesis and evidence generation (see Figure 36, lowest line), but also
occurrences of all other epistemic activities can be found in this situation. In contrast, the
research reports on argument reading focused exclusively on evidence evaluation (see Figure 36,
second lowest line), and the few research reports on argument presentation focused on evidence
evaluation and communicating and scrutinizing. Finally, those studies considering multiple

situations focused relatively evenly on most processes except for drawing conclusions.
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Figure 36. Bubble chart of connections between processes and situations.

Processes and Resources

Examining Figure 37, it can be observed that mathematical content knowledge as well as
methodological knowledge are examined in connection with all sub-processes of mathematical
argumentation and proof skills within the examined research reports, whereas most other
resources are limited to few processes. Here, especially the omission of the two first processes
(problem identification and questioning) in connection with the resource problem-solving skills
is remarkable.

66




Studies

Affective Characteristics - T Y Y Y . .
Beliefs - : . [ ) 1 o [

3 Problem-solving Skills - T Y ‘ . ‘ .
e
=
o
2 .
e Mathematical _ | ), ) 1 . ®

Strategic Knowledge

Methodological Knowledge - . . . . ‘ ‘
Mathematical _
Content Knowledge . . ‘ ‘ ‘ ‘

PI Qu HG CR EG EE
Processes

Figure 37. Bubble chart of connections between processes and resources.

Resources and Situations

DC

Cco

Frequencies

30

Data on the connections between resources and situations reveals that argument construction is
perceived as closely related to mathematical content knowledge, methodological knowledge,
and problem-solving skills, yet mathematical strategic knowledge, beliefs, and affective
characteristics are rarely among the focused resources (see Figure 38). As there are only few
studies examining argument reading and argument presentation, little can be said about the
resources included within that research. Still, for argument reading, a picture similar to argument
construction emerges, however the focus is more on methodological knowledge than on content
knowledge and problem-solving skills. Argument presentation is only linked to methodological
knowledge and affective characteristics, and none of the other resources is being regarded in this

situation.
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Figure 38. Bubble chart of connections between resources and situations.
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5.1.6 Discussion

The aim of our review was to analyze the inclusion of different resources, processes, and
situations as well as their combinations in recent mathematics education research on
argumentation and proof skills. The results illuminate to which extent recent research
contributes to a comprehensive understanding of mathematical argumentation and proof skills,
aiming to uncover gaps in the recent research landscape and to reveal perspectives for further
research.

Findings regarding the inclusion of different resources in research show a clear focus on only
three: mathematical content knowledge, methodological knowledge, and problem-solving skills.
As mathematical content knowledge and problem-solving skills are widely discussed in the
relevant literature and their influence has also been empirically underlined (e.g., Chinnappan et
al., 2012; Ufer et al., 2008), this comes as no surprise. Still, affective characteristics and beliefs
have been highlighted as important resources for a long time (e.g., Furinghetti & Morselli, 2009;
Leder et al., 2002; Morris, 2007; Schoenfeld, 1985; Stylianou et al., 2015; Weber & Mejia-ramos,
2014), thus the low number of research reports focusing on these is somewhat puzzling. Reasons
may be related to issues regarding their conceptualization and assessment (e.g., Torner, 2002)
or the fact that affective characteristics (especially trait aspects) and beliefs have partially proven
to be hard to change and therefore may be regarded less (Kloosterman et al., 1996).
Furthermore, the low number of published research reports is likely to be an artefact of
publication bias (see Kiihberger, Fritz, & Scherndl, 2014) as beliefs and affective characteristics
in general are often perceived as rather modulating the effects of cognitive resources and not
having larger direct effects (e.g., Herppich et al., 2017; Op 't Eynde et al., 2002; Schoenfeld, 2010).
Thus, such research showing low or no effects may not have been accepted for publication.

The findings further emphasize that most studies consider only single resources of mathematical
argumentation and proof skills without accounting for other resources at the same time and
therefore not controlling for possible confounded variables or interactions between different
resources. Such focused analyses on individual resources are necessary as a first approach to
understand complex cognitive skills and their resources. Nevertheless, they bear the potential of
overlooking important effects arising from the interplay of multiple resources such as
confounding variables or interaction effects, as overall mathematical argumentation and proof
skills require the coordination of multiple resources within different processes and different
situations. Here, further studies including multiple resources and comparing the relative
influence of these resources on mathematical argumentation and proof skills would be valuable.
Following Koedinger (1998), such knowledge is particularly important to develop a model of
mathematical argumentation and proof skills as well as its resources, which would be a key step
towards creating effective learning environments.

The results regarding the processes in focus of recent research show a strong concentration on
four epistemic activities, especially evidence generation and evidence evaluation. Based on
standard tasks in the context of proof at university, usually starting with “Prove, that” (lannone
& Inglis, 2010; A. J. Stylianides & Stylianides, 2006, p. 205), this is not surprising. In this context,
students neither need to identify a problem, nor develop a question or a hypothesis, as the
statement to prove is already known to be true (Heinze, Cheng, Ufer, Lin, & Reiss, 2008, p. 451).
Yet, especially instruction in secondary school also offers different situations where students
engage in mathematical inquiry and conjecturing (e.g., Koedinger, 1998; Lin, Yang, Lee, Tabach,
& Stylianides, 2012), work with (mathematically) authentic problem situations (e.g., Kramarski,
Mevarech, & Arami, 2002; Weiss, Herbst, & Chen, 2009), and work collaboratively, discussing and
arguing about the topics (e.g., Chen & Chiu, 2015; Chinn & Clark, 2013; Reichersdorfer et al.,
2012). At least in these situations, the other processes should be of high importance, which so
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far is only partially reflected in mathematics education theory (Boero, 1999) and, according to
our results as well as those by Mejia-Ramos and Inglis (2009a), also only scarcely in research. As
these activities gain importance in curricula worldwide (e.g., KMK, 2012; National Council of
Teachers of Mathematics, 2000), more emphasis should be put here in future research.

The analysis of the research reports according to the processes they focus on revealed that only
about 50% of the research reports consider more than one of the epistemic activities, reflecting
that research on the whole argumentative process is scarce. Here, a cluster analysis revealed
more detailed findings, highlighting the existence of four clusters regarding the researched
processes: The complete cluster, whose reports mainly examine the whole argumentative
process (as identified by the epistemic activities), made up only 24% of the examined reports
involving at least one of the processes explicitly. However, with 32% the conjecturing cluster
represents a substantial amount of research focusing on conjecturing and hypotheses
generation, a focus that is important for example for inquiry learning, mathematical modeling,
or argumentative activities beyond proof. Although controlled by a qualitative check of the
research reports within each category, we acknowledge, that the validity of a cluster analysis on
binary variables can be questioned. Thus, it would be valuable for future research to employ a
more detailed coding of the processes, allowing a more meaningful cluster analysis. This was also
intended for this review by including different ways of handling the processes in research
(normative, descriptive, problem, and supported; see section 5.1.4.2). However, the more
elaborate coding scheme resulted in more categories, thereby reducing the number of studies
per category. A viable alternative for future research may be the inclusion of further variables,
for example different subject groups, distinguishing pupils, students, and professionals.
Examining the results of the literature review regarding the focused situations, the construction
of novel arguments appears to be the main situation of contemporary research interest (57% of
the included research reports). This matches the results of Mejia-Ramos and Inglis (2009a)
perfectly, who found a focus on argument construction in 63% of their sample, but no
contribution at all to argument presentation and few regarding the reading of arguments. This
strong focus on situations where the construction of novel arguments is the main goal may be
one reason why certain epistemic activities, respectively their combinations, are studied in more
detail than others. However, already Mejia-Ramos and Inglis (2009a) suggested that argument
presentation and argument comprehension may be key activities during students’ learning
activities and students’ assessment at university and that there is little knowledge regarding
both. Based on the findings of the review, research on both situations remains scarce.
Analyzing the connections between the different aspects, it becomes clear that research focuses
largely on specific combinations of resources, processes, and situations. Thus, combinations and
interactions of the different perspectives are seldom studied in depth; a limitation regarding the
breadth of research that could already be observed regarding the individual aspects.
Furthermore, in comparison to other domains, mathematical argumentation and proof skills
appear to be rarely researched in a comprehensive way incorporating multiple processes,
resources, or situations (see Erduran & Jiménez-Aleixandre, 2008; Khine, 2012), possibly due to
a large part of research more directed towards proof as a concept than proof as a process or
individual skill (see Reid & Knipping, 2010). Still, Mariotti (2006, p. 173) sees a shift in research,
expecting future research to focus less on the conceptions of proof.

The employed bubble charts (see Figures 36-38) offer a clear view of many connections between
the three aspects that were not represented in the included research reports. Obviously, not all
combinations are of the same importance, but from a theoretical view several further
connections should be interesting. For example, the relation of the resource problem-solving
skills to problem identification and questioning as initial processes during problem solving,
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conjecturing, and proof construction, might be an interesting connection, as these processes may
shape the whole process.

Of course, the results of this review regarding the foci within the three aspects and their
combinations must be handled with care: First, although partially backed up by similar findings
in other reviews (Matos, 2013; Mejia-Ramos & Inglis, 2009a), the results of a review are certainly
somewhat dependent on the inclusion and exclusion of different sources for papers. Focusing on
the proceedings of the International Group for Psychology of Mathematics Education bears the
danger of overlooking research that is published elsewhere. Yet, this is also the case when
journals are used as sources.

Second, the gaps identified in the reviewed literature, especially within the combinations among
the different aspects, can have several reasons. One possible reason, although unlikely in our
eyes, is that several (sub-)aspects of mathematical argumentation and proof skills are already
well understood so that they are no longer in the focus of research. Another possible reason is
publication bias (e.g., Kiihberger et al., 2014), leading to fewer publications on certain aspects,
respectively combinations of aspects, which show only marginal effects. For example, it may well
be that researchers have addressed the influence of mathematical strategic knowledge on proof
reading and it turned out to be only marginal (cf. Hodds et al., 2014) and therefore no such papers
were published.

Third, the frameworks used to structure the three aspects (resources, processes, and situations)
have to be seen as “in development”. Although the frameworks are widely accepted, there is few
research on their adequacy and categorizations using other aspects or dimensions may lead to
somewhat different results.

Overall, our literature review reveals that with 20% of all included research reports, there is a
sound basis of research on mathematical argumentation and proof. Still, the perspectives taken
on mathematical argumentation and proof skills in the reviewed research reports are often
restricted to specific aspects such as single epistemic activities or one or few resources and
mostly concentrate on argument and evidence construction. However, multiple theoretical
accounts describing argumentation and proof processes within and outside of mathematics (e.g.,
Boero, 1999; Fischer, Kollar, et al., 2014; Mejia-Ramos & Inglis, 2009a; Schoenfeld, 1985)
emphasize that handling mathematical argumentation and proof comprises more processes, is
needed in more situations, and possibly requires more resources than explored so far. Here,
theoretical models connecting the three aspects resources, processes, and situations are needed,
describing for example the role of the resources in different processes and which processes are
employed in which situations. Furthermore, the findings of this descriptive review reveal several
gaps within recent research. These should be reflected on a theoretical basis regarding their
importance for argumentation and proof processes and then analyzed empirically, also
appreciating well-designed studies that show negative, no, or minimal effects. Overall, it may be
time to build on the existing basis of research on the resources, processes, and situations and to
start studying the relations and interactions between the different facets of mathematical
argumentation and proof skills to obtain a coherent picture as well as more detailed knowledge
on approaches to foster students’ mathematical argumentation and proof skills effectively.

The findings from the review further suggest that there is mostly qualitative research on
argumentation and proof skills in mathematics education, a finding that reflects a more general
predominance of qualitative methods in mathematics education research (Matos, 2013), and
that the percentage of qualitative research is especially high when taking broader perspectives
on mathematical argumentation and proof skills. Thus, up to now research on mathematical
argumentation and proof skills is mostly qualitative in nature, enabling the generation of
theoretical models as well as hypotheses, for example regarding the influence of the resources.
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Although this research is needed in initial steps, small-scale studies are often not reasonable to
create further reliable scientific evidence for or against these hypotheses or models, nor can they
be used to measure the impact of the individual resources on students’ performance. They
therefore only give initial evidence that should be complemented by future quantitative research
that allows examining the individual influences of resources or their interactions in more detail.
Corresponding quantitative results can help to ascertain or, where needed, adjust findings from
theoretical and qualitative research and vice versa, theoretical and qualitative research can build
on these results and interpret and integrate them into prior models and conceptions. And
although taking a broader perspective of mathematical argumentation and proof skills in
guantitative research will pose methodological problems, for example regarding sample size or
time for testing, it is important to find ways to study the complex interactions of the often
disconnected aspects described in existing research.

Another aspect currently not addressed by research is the impact of control or self-regulation
(e.g., De Corte et al., 2000; Schoenfeld, 1985, 1987) on mathematical argumentation and proof
processes and how these can be integrated in models for either their resources or also their
processes, for example as meta-processes, controlling, selecting, and mediating between the
other processes. So far, the coordination of various processes during mathematical
argumentation and proof activities is mainly unclear.

Concluding, the relative importance of different situations and different epistemic activities in
mathematics education research has to be seen in conjunction with the overall goals of
mathematics instruction. These were and still are more focused on argument construction. Still,
we cannot expect to gather a comprehensive understanding of mathematical argumentation and
proof skills while having blind spots in our research. A broader view on mathematical
argumentation and proof skills incorporating resources, processes, and situations can also help
to reconsider if the exclusive focus on argument construction is a desirable and viable goal for
mathematics education.
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5.2 The Impact of Individual Cognitive Resources on Students’
Mathematical Argumentation and Proof Skills

5.2.1 Introduction

Argumentation?® skills represent an increasingly important learning goal across domains (e.g.,
Berland & McNeill, 2010; Halpern, 1998; National Research Council, 2012) and are often labeled
as 21 century skills (e.g., Trilling & Fadel, 2009). In mathematics, domain-specific argumentation
skills have been an important educational goal for decades (Hanna & Jahnke, 1996) and are part
of standard documents and curricula for secondary education worldwide (Common Core State
Standards Initiative, 2010; KMK, 2012). At university level, these skills become even more crucial
and represent one of the most important learning goals (Alibert & Thomas, 1991; Jones, 2000;
National Council of Teachers of Mathematics, 2000), because here mathematical proofs are
introduced as the core method of mathematics as a scientific discipline. Research has repeatedly
revealed that not only secondary school students (e.g., Healy & Hoyles, 2000), but also university
students have severe problems with handling proof, be it with the construction of proofs (Weber,
2003) or the validation of given purported proofs (A. Selden & Selden, 2003).

One reason for these difficulties and the large variation in students’ performance in handling
proofs can be related to the limited availability of multiple cognitive resources underlying their
performance in constructing and validating proofs (Blomeke et al., 2015). Although prior research
has suggested a number of such resources (e.g., Schoenfeld, 1985; Weber, 2001), for example
conceptual mathematical knowledge, problem-solving skills, metacognition, or mathematic
strategic knowledge, their relative importance for a learner’s mathematical argumentation and
proof skills remains mainly unclear. Some of these resources and their relative importance on
overall mathematical argumentation and proof skills have been studied intensively in the past
(e.g., conceptual knowledge; Chinnappan, Ekanayake & Brown, 2012), while others (e.g.,
mathematical strategic knowledge; Weber, 2001) have not yet been thoroughly addressed.
Starting from a theoretical description of the cognitive resources necessary for handling proofs
and the way they influence students’ performance, we present an empirical study that sheds
light on the relative influence of various individual cognitive resources on students’ performance
in handling proofs, more specifically in the construction of proofs and the validation of given,
purported proofs. We highlight commonalities and differences between both, proof construction
and validation, and specifically evaluate the influence of domain-specific and domain-general
resources on mathematical argumentation and proof skills. Our main goal is to identify resources
that are needed to show high performance in handling mathematical proof tasks. Besides giving
theoretical insights this may also be the fundament to create effective means for supporting
students' acquisition of mathematical argumentation and proof skills.

5.2.2 Conceptualizing Mathematical Argumentation and Proof Skills

5.2.2.1 Argumentation vs. Proof

As mathematics is a proving science (Heintz, 2000), argumentation and proof are ubiquitous in
mathematics and learning to deal with proofs constitutes an important research area in

21 parts of this study and preliminary analyses have been presented at the conferences PME 40
and GDM 2016 and published in the respective proceedings volumes (Sommerhoff, Ufer, &
Kollar, 2016b, 2016c).
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mathematics education. Still, there is no universally accepted definition of mathematical
reasoning, argumentation, and proof and often enough, they are not clearly defined (Reid &
Knipping, 2010). In this article, we define argumentation analogous to Halpern (2002) and
Toulmin (2003), as a sequence of (in general not necessarily deductive) inferences, leading from
given premises to a conclusion, aimed at providing evidence for or against a given claim
(Reichersdorfer et al., 2012; Reiss et al., 2008) or exploring a given task, problem, or situation
(e.g., Reiss & Ufer, 2009).

Building on this, a proof can be defined as a mathematical argumentation that is subject to
several characteristics and restrictions (A. J. Stylianides, 2007), often referred to as socio-
mathematical norms (Yackel & Cobb, 1996). Stylianides (2007) names three categories of such
characteristics that is a set of accepted statements, modes of argumentation, and modes of
argument representation (see further methodological knowledge by Heinze and Reiss (2003) for
an alternative conceptualization). Although socio-mathematical norms are specific to a social
context, norms concerning proof are considered to be highly consistent internationally (see
Dawkins & Weber, 2016; Heintz, 2000): Only deductive arguments are permitted (modes of
argumentation). These deductions have to build on an underlying, axiomatic framework and to
use only those statements as warrants that were already deduced and are accepted as “known”
within the social context (set of accepted statements). Furthermore, the arguments of a proof
have to be written out in such detail that the proof is in principle formalizable (Alama & Kahle,
2013). Yet, this degree of formality varies widely, especially from early to more advanced
lectures.

5.2.2.2 Proving as Problem Solving

Proving, that is the process of constructing mathematical proofs, is often conceptualized as a
problem-solving process (e.g., Polya, 1945) since students normally do not have direct means to
construct a proof and this inaccessibility of a direct solution is often used to define a problem
(e.g., Dorner, 1979; Mayer, 1983; Schoenfeld, 1985). The process of proving itself is then often
regarded from an information-processing perspective (J. R. Anderson, 1993; Simon, 1978),
characterizing it as a (dual) search space (Klahr & Dunbar, 1988; Newell & Simon, 1972). In short,
problem solvers need to create an appropriate representation of the problem (problem space)
and use available operations (e.g., experimentation, restructuring, algebraic computations,
deductions) to navigate within that representation to progress from the starting point to the
solution of the problem. Here, special emphasis lies on the creation and structuring of the
problem space(s) and the subsequent identification and selection of appropriate operations that
help the problem solver to get closer to the solution.

5.2.2.3 Mathematical Argumentation and proof skills as a Latent Variable

Building on these definitions and conceptions, the present study analyzes students’
mathematical argumentation and proof skills. Following theoretical considerations (Blomeke et
al., 2015 ) we consider students’ mathematical argumentation and proof skills as a latent
variable, which becomes visible in students’ individual performance in different, specific
situations that involve dealing with mathematical argumentation and proof. This performance is
observable, can be judged against local, socio-mathematical norms and can serve as an indicator
for their mathematical argumentation and proof skills (see Figure 39, right side). It comes along
through the application of students’ mathematical argumentation and proof skills during a
process of coping with the demands of the situation. How well students can cope with these
demands is largely determined by the availability of cognitive resources, such as domain-specific
knowledge or problem-solving skills.
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Figure 39. Relation between students' resources, their mathematical argumentation and proof skills, and the situations posing
different demands on students (based on Blémeke et al., 2015).

Accordingly, students’ cognitive resources can be used to explain their performance in different
situations and therefore allow inferences on their mathematical argumentation and proof skills,
which cannot be measured directly. The resulting data gives insights on how successful students
differ from less successful students, and which resources are most important when dealing with
argumentation and proof in various ways. Thus, the information is vital as a basis to understand
students' achievements and problems in handling proof.

5.2.3 Situations Related to Mathematical Argumentation and Proof

When working with proofs, students can be faced with different situations posing different
demands: Students may be asked to construct a proof or to think through an already existing
proof with the aim of understanding the underlying arguments, for example to answer questions
about the proof or to provide feedback to a peer. These various demands occur in the form of
learning or assessment tasks, or during their mathematical work, for example when trying to find
and argue for solutions to problems within or outside mathematics. Up to now, research in
mathematics education mostly focusses on the situation of proof construction, yet other
situations come to the fore slowly (e.g., Alcock & Weber, 2005; Inglis & Alcock, 2012; A. Selden
& Selden, 2003, 2015a; Weber, 2008).

Mejia-Ramos and Inglis (2009a, 2009b) proposed a framework based on the work of Giaquinto
(2005) that highlights three main types of situations in the context of mathematical
argumentation and proof: The construction of a novel proof, the reading of a given proof, and
the presentation of a given proof.

For proof reading, the subcategories by Mejia-Ramos and Weber were later taken up by A. Selden
and Selden (2015a) in a qualitative research review, coining the terms proof comprehension,
proof validation, and proof evaluation for these three subcategories. Here, proof comprehension
refers to the activity of reading a proof that is known to be true (e.g., from a reliable textbook)
with the aim of understanding it. Proof validation and proof evaluation, in contrast, refer to the
reading of a (purported) proof from a questionable source. This could, for example, be a proof
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constructed by a fellow student. The goal of proof validation is to judge a proofs’ correctness,
relative to the current, local, socio-mathematical norms, whereas proof evaluation also includes
a judgement regarding further criteria such as beauty or simplicity.

Although the three main categories — construction, reading, and presenting — are per se equally
important, proof construction and proof reading dominate learning and assessment in most
university programs as well as research in mathematics education (Mejia-Ramos & Inglis, 2009a).
For example, students spend a major amount of time on their exercise sheets or in tutorials
accompanying their lectures, both mostly focusing on proof construction. Besides construction,
students also spend considerable time on reading proofs, here mostly on proof comprehension,
for example when learning from books, or proof validation, for example when reading a peer’s
purported proofs for an exercise sheet.

This focus on proof construction and reading is reflected in research on mathematical
argumentation and proof. In their literature review of 131 quantitative research articles, Mejia-
Ramos and Inglis (2009a) found 82 papers (73 %) addressing proof construction, 24 papers (21%)
addressing proof reading and zero papers (0%) addressing proof presentation. Our review on 782
research reports of the proceedings of the Annual Conferences of the International Group for the
Psychology of Mathematics Education (see section 5.1) revealed similar numbers.

In summary, students are faced with different situations that require their mathematical
argumentation and proof skills and therefore also their underlying resources. Up to now, it is
unclear if and how the usage of the resources differs between these situations.

5.2.4 Resources Underlying Mathematical Argumentation and Proof Skills

In the context of constructing mathematical argumentations and proofs, several frameworks, as
well as studies, document the influence of certain resources like domain-specific knowledge or
problem-solving skills on students’ performance (Chinnappan et al., 2012; Hellmich, Hartmann,
& Reiss, 2002). However, similar research on the impact of these and other resources on proof
validation and proof evaluation performance is scarce (e.g., Inglis & Alcock, 2012; Ko & Knuth,
2013) and only vaguely mentions resources such as domain-specific content knowledge or
specific mathematics-related strategies. Thus, research on the resources underlying
mathematical argumentation and proof skills so far does not distinguish between different
situations although these may reasonably require different resources for a successful handling
of proof.

Reviewing general frameworks for problem solving (e.g., Schoenfeld, 1985) or self-regulated
learning (e.g., De Corte et al., 2000), mostly cognitive and affective resources have been
discussed, often accompanied by beliefs (Op 't Eynde et al., 2002). Yet, although affective aspects
and beliefs are repeatedly highlighted as crucial for argumentation and proof construction
processes (e.g., Furinghetti & Morselli, 2009; Schoenfeld, 1983), empirical studies so far were not
able to show consistent results (e.g., Heinze & Reiss, 2009). This may result from ambiguities in
the definition of the diverse affective constructs (Furinghetti & Pehkonen, 2002; Grootenboer &
Marshman, 2016; Hannula, 2006) or methodological issues regarding especially the
measurement of state characteristics (Hannula, 2006; Térner, 2002). Further, multiple studies
gave evidence for the high stability of students’ beliefs and attitudes towards mathematics (e.g.,
Kloosterman et al., 1996).

In contrast, several studies (e.g., Chinnappan et al., 2012; Ufer et al., 2008) were able to show
the high relevance of cognitive resources such as specific knowledge facets or problem-solving
skills. In consequence, the present study focuses solely on cognitive resources in order to create
a more nuanced picture.
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A number of cognitive resources underlying students’ mathematical argumentation and proof
skills are mentioned in existing literature. Among those, six resources stand out, since they either
appear in multiple frameworks or their influence has been established on strong theoretical or
empirical grounds.

In analogy to Chinnappan and Lawson (1996) these resources can be broadly categorized as
content-specific, domain-specific, and domain-general resources. Here, content-specific refers to
resources that are bound to a specific content area and are therefore heavily restricted in their
range of applicability. An example is the definition of a Cauchy series within the content area of
infinite sequences. In contrast, domain-specific resources are not tied to a specific content area,
but allow for near transfer to other content areas, problems, or situations within mathematics.
An example is the Gaussian elimination algorithm. Finally, domain-general resources are
characterized by their wide applicability throughout different domains. That is, they allow for
transfer to a broad set of situations in domains such as mathematics, biology or history. An
example is the strategy of means-end analysis.

So far, most empirical studies did not study these resources in combination, so that little is known
about their interplay and their relative importance. Furthermore, up to now, no comparisons
between their influences within different situations involving mathematical argumentation and
proof skills were made.

5.2.4.1 Conceptual and Procedural Mathematical Knowledge

Two fundamental content-specific resources discussed as underlying students’ mathematical
argumentation and proof skills (Ufer et al., 2008) are conceptual and procedural mathematical
knowledge (Hiebert & Lefevre, 1986). The necessity of underlying mathematical knowledge can
be seen as in line with several developmental theories like Piaget's stages of cognitive
development (Inhelder & Piaget, 1958) or van Hiele’s stage theory of understanding in geometry
(Fuys, Geddes, & Welchman Tischler, 1984; van Hiele & van Hiele-Geldorf, 1978), which regard
stages of increasing depth of conceptual knowledge as prerequisites for the development of
more complex skills, such as mathematical argumentation and proof skills, at higher stages.
Furthermore, Anderson’s theory of cognitive skill acquisition (1982) underlines the importance
of specific knowledge for a cognitive skill such as handling proofs. From an information-
processing perspective (J. R. Anderson, 1993; Simon, 1978), theorems and definitions constitute
problem-solving operators (see Klahr & Dunbar, 1988) that need to be purposefully combined to
generate a deductive chain of arguments in proof construction, respectively be matched with a
given chain of arguments to comprehend or validate proofs. A more elaborate cognitive
representation of these operators as well as relations between them are considered central to
direct search processes in the problem space (Chinnappan & Lawson, 1996). Furthermore, rich
conceptual knowledge of the concepts involved in a proof, for example, prototypical examples,
special cases, non-examples to a given concept, or counter-examples to wrong propositions
support semantic evaluation processes while constructing or validating proofs (Lockwood et al.,
2016). Beyond these conceptual aspects, procedural knowledge (de Jong & Ferguson-Hessler,
1996; Rittle-Johnson et al., 2015) may serve as a problem-solving operator to restructure the
problem representation using routine, technical skills such as algebraic manipulations or
calculation techniques. Accordingly, models of self-regulated learning and problem solving (De
Corte et al., 2000; Schoenfeld, 1985) emphasize the role of mathematical knowledge to perform
complex, domain-specific skills.

So far, several empirical studies provided evidence of the influence of mathematical knowledge
on students’ mathematical argumentation and proof skills: For example, the studies of
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Chinnappan et al. (2012), as well as Ufer et al. (2008), found geometry content knowledge to be
the most important predictor of secondary students' geometry proof skills.

In this study, we conceptualize conceptual mathematical knowledge to relate to knowledge
about the mathematical content area used in the statement to be proved or in the proof itself.
Similarly, procedural knowledge refers to knowledge of technical, routine aspects that are
applied in the proof. Examples are the definition of a Cauchy sequence, linked to several other
facts regarding infinite series, for conceptual knowledge, and applying the geometric series while
solving an equation for procedural knowledge.

5.2.4.2 Mathematical Strategic Knowledge (MSK)

The construct mathematical strategic knowledge (MSK) was first introduced by Weber (2001). In
a qualitative study with undergraduate and doctoral students, he observed that although
students had the knowledge about concepts and procedures necessary to perform certain
proofs, they lacked the mathematical strategic knowledge to apply it appropriately. Reiss and
Heinze (2004) found similar results for pupils trying to solve geometry tasks. To address this lack
of knowledge, Weber defined mathematical strategic knowledge as “knowledge of how to
choose which facts and theorems to apply” (Weber, 2001, p. 101) and highlighted different
aspects of strategic knowledge (e.g., knowledge of which theorems are important and when they
will be useful, knowledge of when and when not to use ‘syntactic’ strategies). Weber thus
characterizes mathematical strategic knowledge as a domain-specific version of general
problem-solving strategies, respectively heuristics. In particular, Weber conceptualized
mathematical proof tasks as complex problem-solving tasks (Weber, 2001, p. 111) and justifies
mathematical strategic knowledge by using analogies to heuristics in general problem solving
(e.g., Abel, 2003). The concept of mathematical strategic knowledge is also related to the more
general notion of conditional knowledge (Lehmann & Magidor, 1992), often defined as “knowing
when and why to use” certain pieces of knowledge, and is also examined more generally as
strategic knowledge in other disciplines (Paris, Lipson, & Wixson, 1983; van Gog, Paas, & van
Merriénboer, 2004).

Despite these relations, mathematical strategic knowledge has to be clearly distinguished from
these concepts, as it entails only domain-specific strategic knowledge. For example, the strategy
“If a proof asks to show an equality for all natural numbers, complete induction could be
promising” is neither part of conceptual or procedural knowledge, as it is a heuristic strategy that
only allows transfer over several content areas in mathematics, but cannot be classified as a
problem-solving heuristic as it only relates to mathematics.

Mathematical strategic knowledge is relevant throughout constructing or validating a proof, each
time helping to decide what step to do next or to understand why certain steps are done and
judge whether these can be effective. Adopting an information-processing view, mathematical
strategic knowledge refers to knowledge about possible operators, which can be used in the
problem space of a specific proof, and knowledge about when to apply which of these. It can be
seen as especially important immediately after the creation of the problem space, which greatly
relies on content knowledge, as it governs the direction of the problem-solving process and will
constrain, hopefully in a positive way, the number of possible operations within that problem
space.

In this study, we conceptualize mathematical strategic knowledge to relate to knowledge about
domain-specific strategies linking certain cues and hints in tasks as well as proofs to mathematical
concepts or methods that can be especially useful to tackle the task. For example, using an g/2-
approach when dealing with g-3-continuity.
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5.2.4.3 Methodological Knowledge (MeK)

Methodological knowledge (Heinze & Reiss, 2003) is suggested as a further resource required for
handling mathematical proofs as it entails knowledge about different types of proofs, their
nature and purposes, as well as acceptance criteria for mathematical proofs (de Villiers, 1990;
Hanna & Jahnke, 1996). Methodological knowledge is dependent on the local mathematical
community and contains the standards (socio-mathematical norms) set within the community
(see Dawkins & Weber, 2016; Fallis, 2003; Heinze, 2010).

Heinze and Reiss (2003) name three core aspects of methodological knowledge: The proof
scheme, the proof structure, and the chain of conclusions relating to the accepted types of
inferences, the overall structure of the proof, and the logical sequence of neighboring inferences
and arguments.

Up to now, the importance of methodological knowledge was emphasized by several studies
(e.g., Healy & Hoyles, 2000; Heinze & Reiss, 2003; Ufer, Heinze, Kuntze, et al., 2009), yet their
assessment is unsatisfactory: So far, students’ methodological knowledge was assessed indirectly
using their performance in proof validation tasks, which can be assumed to be dependent on
methodological knowledge, yet is likely to also have other underlying resources and therefore
only partially reflects methodological knowledge (see Figure 39).

5.2.4.4 Problem-solving Skills (PSS)

General problem-solving skills are widely discussed in the context of proof (Chinnappan et al.,
2012; A. Selden & Selden, 2013; Ufer et al., 2008; Weber, 2005), as constructing proofs is often
conceptualized as a problem-solving process. Here, the availability of domain-general problem-
solving heuristics (Polya, 1945) and the ability to apply these purposefully, as well as self-
regulation and metacognition are in focus. The influence of heuristics and the ability to apply
them has been stated as an important factor in several theoretical frameworks (e.g., Schoenfeld,
1985) and also been empirically underpinned by a few studies in secondary school geometry
classrooms (e.g., Chinnappan et al., 2012; Ufer et al., 2008). Although there are doubts about the
transfer of these strategies, their domain-generality, and therefore their broad effectiveness
(Sweller, 1990; Tricot & Sweller, 2014), numerous studies underlie their benefits (e.g.,
Chinnappan & Lawson, 1996; D. W. Eccles & Feltovich, 2008).

In this study, we conceptualize problem-solving skills as the knowledge about domain-general
heuristics as well as the ability to apply them in content-independent situations such as the three
jug problem.

5.2.4.5 Metacognitive Awareness (MA)

Metacognition is another repeatedly mentioned resource in the context of mathematical
argumentation and proof skills (De Corte et al., 2000; Reiss et al., 2002; Schoenfeld, 1985, 1987;
Zohar & Peled, 2008). Metacognition refers to knowledge and cognition about cognition as
introduced by Flavell (1979) or put differently, to the monitoring and regulation of cognition.
Most models of problem solving and self-regulation assign a central role to metacognition for
learning of and performance on complex tasks (De Corte et al., 2000; Griffin, Wiley, & Salas,
2013), including proof construction (Heinze & Reiss, 2007). Kramarski et al. (2002) as well as
Lingel, Neuenhaus, Artelt, and Schneider (2014) were able to show a positive influence of
metacognition on students’ performance in mathematical tasks and also Lockwood et al. (2016)
mention its importance when exploring and proving conjectures. Although metacognition plays
an important role in problem solving, is regarded as domain-general and is sometimes seen as a
specific part of problem solving, it cannot be seen as equal to problem-solving skills or heuristics,
respectively, as it is, by definition, not restricted to the context of problems. Further,
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metacognition is assumed to be domain-general and concerned with monitoring and knowledge
of cognition in general, thereby unlike mathematical strategic knowledge that is specific to
mathematics. Yet, the latter might be utilized in metacognitive activities. In the context of proof,
metacognition should be especially important when checking if the current step during the
construction or validation of a proof aligns with the preceding steps and whether the
argumentation is still directed towards the desired conclusion.

In this study, we conceptualize metacognitive awareness as the degree to which students are
aware of their ability to reflect upon, understand, and control their learning.

5.2.4.6 Conditional Reasoning Skills (CRS)

Probably the most central norm for the acceptance of an argumentation as a proof is the sole
use of deductive inferences within the argumentation. Accordingly, conditional reasoning skills,
that is being able to correctly make or judge different types of deductive inferences, for example
modus ponens or tollens (“If it is raining, the sky is cloudy. The sky is not cloudy, therefore it
cannot be raining”), can be hypothesized to exert a positive influence on an individual’s
mathematical argumentation and proof skills (Heinze & Kwak, 2002). Several studies have
researched students’ skills in conditional reasoning and the effects of explicit teaching (e.g., Inglis
& Simpson, 2008, 2009), often motivated by the theory of formal discipline (Attridge & Inglis,
2013). Some qualitative studies have underlined that this kind of formal reasoning is actually
used in proof construction and proof validation (Weber, 2008). Yet, neither an empirical relation
of conditional reasoning skills to proof construction, nor to proof validation skills has been
explicitly shown so far.

In this study, we conceptualize conditional reasoning skills to relate to the skill to correctly accept
or reject logical inferences such as modus ponens, modus tollens, affirming the consequent, and
denying the antecedent.

Summarizing, all presented cognitive resources are regarded as important resources for
mathematical argumentation and proof skills and were already in part empirically established as
such. However, all of these resources are likely to be positively correlated and therefore the
existing evidence on their influence on mathematical argumentation and proof skills is likely to
be flawed. Up to now, there are very few studies that examine several of these resources
simultaneously (see section 5.1). Accordingly, it is unknown, whether the various potential
resources can be empirically separated and what their relative influence on the performance in
different proof related situations such as proof construction and validation is.

5.2.5 Connection Between Proof Validation and Proof Construction

Although proof construction and proof validation are clearly different activities, with a purported
proof being the prerequisite of proof validation and the goal of proof construction, there are
several links connecting both activities (e.g., Pfeiffer, 2009b, 2011; Powers, Craviotto, & Grassl|,
2010; A. Selden & Selden, 2003), building mainly on two theoretical arguments.

First, taking the perspective of resources underlying proof construction and validation (Figure
39), arelation between both can be expected as some resources are necessary to cope with both
kinds of situations. For example, conceptual mathematical knowledge should be necessary for
both activities: for proof construction to give a warrant for a certain inference and for proof
validation to understand a certain inference and accept it based on its warrant. Also,
mathematical strategic knowledge should be valuable for both activities. It guides proof
construction in the hopefully correct direction and informs the validation process that a certain
approach taken in the purported proof might not be optimal for the given task. Still, both cannot
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be expected to completely draw on the same resources and especially not to the same extent.
For example, problem-solving skills may be more relevant for constructing a proof than for
validating a given proof. Further, during proof construction students need to identify and possibly
connect the relevant conceptual knowledge themselves, whereas during proof validation these
are pre-given and just need to be checked for their correctness and correct implementation.
Second, both construction and validation can be linked on an activity level. Process models of
problem solving (Polya, 1945), scientific reasoning (Fischer, Kollar, et al., 2014), and also
constructing mathematical proofs (Boero, 1999) give a more or less explicit reference to
validation as a part of these processes. Polya mentions it as “looking back”, Fischer et al. include
it as “evidence evaluation”, and also Boero mentions in his expert model for proof construction
that the reliability of arguments has to be checked. Thus, all three models include the validation
of the prior steps taken while solving a problem, creating a coherent scientific argumentation or
constructing a mathematical proof as a kind of monitoring activity. Accordingly, proof validation
can be rightfully seen as an important sub-process of proof construction.

Empirical findings support these arguments, showing positive correlations between students’
performance in proof construction and proof validation. In a study on geometry proof skills with
almost 700 students in 8" grade Ufer, Heinze, Kuntze, et al. (2009) found that students’ validation
skills explained 10% of the variance in students’ proof scores, after controlling for performance
on geometry calculation tasks. Thus, both proof construction and proof validation are partially
connected, but the low explained variance also emphasizes that both also differ vastly.

The correlation between both performances can be interpreted in several ways. Proof validation
tasks have been put forward as measures of students’ methodological knowledge. Accordingly,
the observed correlation between proof validation and proof construction regarding the same
mathematical concepts may be due to several factors, such as content-specific knowledge or
more general knowledge about acceptance criteria. It remains an open question to which extent
there is a relation between validating proofs in one content area and constructing proofs in
another content area. A positive relation, when controlling for conceptual knowledge, may be a
first indication that students indeed transfer knowledge about acceptance criteria from one
content area to another and methodological knowledge underlying proof construction and proof
validation is responsible for their correlation.

5.2.6 The Current Study

Several studies, for example by Healy and Hoyles (2000) or A. Selden and Selden (2003) reveal
not only that students have problems in proof construction as well as proof validation throughout
different age groups, but also show substantial interindividual variation in students’ performance
on proof-related tasks. Summarizing the theoretical model described above, mathematical
argumentation and proof skills are assumed to base on certain cognitive resources students have
acquired during their education. Prior evidence indicates that these resources strongly influence
a students’ chance to be successful when asked to construct, validate or comprehend a given
proof.

The main goal of the current study was to explore the relative influence of individual domain-
specific and domain-general resources on students’ proof construction and validation
performance. Based on prior research, we selected six different cognitive resources, which have
been discussed as important prerequisites of students’” mathematical argumentation and proof
skills: Conceptual mathematical knowledge, procedural mathematical knowledge, mathematical
strategic knowledge, problem-solving skill, metacognitive awareness, and conditional reasoning
skills. Here, we deliberately excluded methodological knowledge as current assessment relies on
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students’ proof validation performance as a proxy, which will be examined more generally within
this study.

Proof Validation

N\
RQ 1 \
\ RQ3
Cognitive Resources \
Conceptual Procedural Mathematical \
Mathematical Mathematical Strategic ‘
Knowledge Knowledge Knowledge
> Proof
-------------------------------------------------------------- RQ 2 Construction
Problem-solving Metacognitive Conditional
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Figure 40. Relations between resources and proof validation (RQ1), resources and proof construction (RQ2), and proof validation
and proof construction (RQ3).

First, we were interested in the role of these resources regarding proof validation and proof
construction (solid lines in Figure 40).

RQ1l

RQ2

What is the relation of the six cognitive prerequisites (conceptual and procedural
mathematical knowledge, mathematical strategic knowledge, problem-solving skills,
metacognitive awareness, and conditional reasoning skills) with students’ performance
in proof validation, when controlling for the other resources?

Based on the role of the selected resources described above and in prior research, we
expected a non-negative relation of all resources to proof validation performance.
Specifically, we expected pronounced relations of basic conceptual mathematical
knowledge and conditional reasoning skills, as we expected students to check the
individual facts and inferences within the given purported proofs.

What is the relation of the six cognitive prerequisites with students’ performance in
proof construction, when controlling for the other resources?

Following literature and prior studies, especially prior regression analyses by Chinnappan
et al. (2012) and Ufer et al. (2008), we expected a non-negative influence of all resources,
specifically for conceptual knowledge and problem-solving skills. Further, we expected an
especially strong relation of procedural mathematical knowledge with proof
construction, since proof construction primarily requires students to perform technical
skills themselves and structure the problem underlying the proof tasks. We also expected
that the influence of conditional reasoning skills would be higher as proof construction
can be interpreted as a complex search process for a deductive chain of arguments.

Furthermore, theoretical arguments suggest a relation between students’ performance in proof
validation and in proof construction. Still, so far it is unclear whether this is due to content-
specific resources underlying both activities, or whether there is a content area overarching
independent resource, such as knowledge about what constitutes an acceptable mathematical
proof (dashed line in Figure 40).
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RQ3 To what extent can students’ proof validation performance explain variance in
students’ proof construction performance over and above the six resources?

As both, proof validation and proof construction performance are cognitive performance
measures relying on students’ mathematical argumentation and proof skills, a positive
correlation can be expected and has already been shown in prior research (Ufer, Heinze,
Kuntze, et al., 2009). Beyond that, given that proof validation performance is assumed to
depend on content-overarching methodological knowledge about acceptance criteria for
mathematical proofs, one would expect it to explain additional variance in students’ proof
construction performance as this knowledge facet is not included in the six resources.
This would also reflect process models of proof construction (e.g., Boero, 1999) or
scientific reasoning (e.g., Fischer, Kollar, et al., 2014), implying that proof validation is a
cognitive sub-process of proof construction that at least partially relies on domain-
specific but content-overarching knowledge.

5.2.6.1 Design and Sample

The analysis presented here is part of a larger study with students from a German university,
which took place in a voluntary course labeled “Mathematical proofs: That’s how to do it!”. For
this study, we analyzed data from the first measurement in the first session of the course. From
the total number of participants two had to be excluded due to sloppy completion of one scale.
The final sample consisted of 64 participants (40 female, 23 male, 1NA), which were in their first
(49) respectively third semester (14) of either a bachelor’s program in mathematics or business
mathematics (48) or a mathematics teacher education program for secondary schools
(Gymnasium, 14). Two students did not indicate their degree program, one did not indicate the
semester. At the time of data collection, all participants had attended a proof-based real analysis
lecture, covering limits of number sequences and infinite series, functions, and continuity.

In the first session of the larger study, we asked participants to complete questionnaires including
subscales for each cognitive resource and items on proof construction as well as proof validation,
respectively. Furthermore, they were asked to fill out additional instruments, which are not
within the scope of this paper.

5.2.6.2 Instruments

To measure students’ individual cognitive resources as well as their performance in proof
construction and proof validation, we adapted several already existing scales and created new
scales. This step was necessary because either no suitable scale for the resources existed (e.g.,
mathematical strategic knowledge) or the scales had to be adapted to the university
mathematics context (e.g., metacognitive awareness).

Proof construction: Students’ performance in constructing proofs was assessed using four
prototypical tasks from a proof-based real analysis lecture. They were chosen spanning several
different types of proof (proof by induction, proof by contradiction, direct proof) and were, at
least in their specific formulation, unknown to the students, although similar items had been part
of their lectures. For each item, students were asked to prove the provided statement and give
reasons for their steps within the proof. Their written answers were scored on a multi-level scale
(0-4) based on the occurrence of the main steps required for the proof.

Proof validation: ltems for proof validation focused on proofs from elementary number theory -
a different content area than for proof construction. The items consisted of a proof task as well
as four purported proofs from students. Each of the proofs was written in a concise, semi-formal
way to avoid an overly use of mathematical symbols or narrative parts. One of the four purported
proofs was correct, the other three each contained an error in one facet of methodological
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knowledge (Heinze & Reiss, 2003), that is an error in the proof scheme, the proof structure, or
the logical chain. Students were asked to read all four purported proofs and subsequently answer
three closed questions on features of the proof as well as judge its overall correctness in a closed
guestion. Additionally, they were asked to provide an explanation for their decision on the
correctness in an open question. Both answers from the closed and the open item regarding the
correctness of the purported proof were processed in a dichotomous consistency rating.

The product of three arbitrary consecutive integers is divisible by 3.

Martin’s proof
Let a € Z be an arbitrary integer. Accordingly the two consecutive integers can be written as a + 1 and a + 2.
We are interested in the product

a-(a+1) (a+2)

Expanding the term yields:
a-(a+1)-(a+2)=a-(a®>+3a+2) =a*+3d®+2a

Since the proposition should hold for an arbitrary integer a, the statement has to hold independently of a. We therefore only look
at the coefficients of the term a3 + 3a® 4 2a. For the sum of these coefficients we get:

1+3+2=6

Accordingly since 3|6 holds, it also holds that 3|a® 4+ 3a® + 2a resp. 3|a- (a+ 1) - (a +2). Thus the product of three arbitrary
consecutive integers is divisible by 3 and we have proven the proposition.

Figure 41. Example item for proof validation with a purported proof containing an error in the logical chain (translated).

Procedural and conceptual knowledge: Because of the two content areas used in proof validation
and construction, it was necessary to assess conceptual and procedural mathematical knowledge
in both content areas separately. We therefore employed four scales for mathematical
knowledge, which were carefully focused on the concepts used in the corresponding proof tasks:
basic conceptual mathematical knowledge (BCMK) and basic procedural mathematical
knowledge (BPMK) from elementary number theory as well as advanced conceptual
mathematical knowledge (ACMK) and advanced procedural mathematical knowledge (APMK)
from real analysis. The two advanced mathematical knowledge scales were based on scales by
Rach and Heinze (2016) and Wagner (2011). The basic mathematical knowledge scales were
based on standardized nation-wide tests for school mathematics (Blum, Drike-Noe, Hartung, &
Koller, 2012).

Problem-solving skills (PSS): Following the theoretical considerations above, we surveyed
students’ general problem-solving skills with tasks that were knowledge-lean (e.g., three jug
problem) thus all participants could be expected to have the required conceptual knowledge at
hand. In particular, the employed items did not require mathematical knowledge as measured in
the four scales described above, except for basic arithmetic calculations. The difficulty of the
items was therefore largely based on the application of domain-general heuristics. These were
mostly needed for the generation of an appropriate problem space and the identification of
suitable operations.

Mathematical strategic knowledge (MSK): To our knowledge, there was no quantitative
instrument to assess mathematical strategic knowledge at the start of our project. We therefore
developed a questionnaire consisting of four main items, each holding four sub-items. For each
main item, a typical task from a proof-based real analysis lecture was provided as well as four
excerpts of the task description. Students were then asked to select those excerpts, which gave
the most important cues on how to tackle the task (closed format). Additionally, they were asked
to explain briefly (open format) which method or concept was hinted at by this information and
how it could be used to solve the task. Items were scored as correct when both parts (closed and
open) corresponded and described a meaningful way to approach the given task. That is, the
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approach could in principle be used to solve the given tasks, even if it might not have worked in
the end due to reasons not foreseeable in the task description.

Finally, the scales for conditional reasoning skills (CRS) (Evans et al., 1995; Inglis & Simpson, 2008,
2009) and for metacognitive awareness (MA) (Schraw & Dennison, 1994) were taken from
literature, translated and adapted to the context.

Prior to the use within the reported study, all scales had been piloted and evaluated for their
goodness. The reliability of the scales was .58 < a < .81, where the .58 corresponds to the only
scale below .6 (mathematical strategic knowledge). As the scale for mathematical strategic
knowledge has been newly developed and is the first of its kind, the scale was deemed to be
acceptable at this point. Over 15% of the open items were coded by two independent coders,
resulting in good interrater reliabilities (x> .76; Kvean = .93; SD = .09).

5.2.6.3 Statistical Analyses

To analyze the impact of the six resources on students’ performance on proof validation (RQ1),
we calculated Generalized Linear Mixed Models (GLMMs) (Bolker et al., 2009; Zuur, leno, &
Saveliev, 2009) using the R packages LME4 (Bates, Machler, Bolker, & Walker, 2015). GLMMs
have several benefits over classical linear regressions. Primarily, they can handle non-normally
distributed dependent variables as for example binary variables (used for proof validation) or
ordinal variables (used for proof construction) using logistic link functions similar to ltem
Response Theory models. Thus, they allow for an analysis of the relation of predictors with
performance on single items, without having to use scale mean values. This increases the power
to detect relations of the predictors. Furthermore, GLMMs allow for controlling for the
dependency of the different observations from a single individual as a random effect. Iltem
difficulty was taken into account as a so-called fixed effects.

The interpretation of regression coefficients in GLMMs is comparable to that in logistic and
ordinal regression analyses. Larger coefficients represent a stronger relation of a predictor, and
the sign of coefficients represents the direction of the relation. We used z-standardized scores
for the resources as predictors. Thus, the coefficients for different predictors in the same model
can also be compared meaningfully. Following the approach recommended by literature (e.g.,
Bolker et al., 2009) we calculated all possible models with the given resources. Based on the AlCc
(Akaike information criterion with a correction for finite sample sizes) we then selected the
optimal model and averaged over those models with a AAICc < 4, that is we averaged over those
models that were indistinguishable close to the optimal model regarding the AlCc criterion.

To analyze the impact of the six resources on students’ performance on proof construction (RQ2),
we slightly adapted the method as students’ performance in proof construction was coded
ordinally. Therefore, the according GLMM was calculated using the R package ordinal
(Christensen, 2015), offering an analysis method analogous to the one used before for the
dichotomous proof validation measures.
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5.2.7 Results

5.2.7.1 Preliminary Analyses

Descriptive statistics of the scales show an acceptable coverage of the possible range, indicating
neither ceiling nor floor effects (see Table 4). The mean difficulty is in @ medium range for most
scales, only the scale for advanced conceptual mathematical knowledge shows a high difficulty
with a mean score of .31.

Table 4. Descriptive statistics of the used scales.

Number of Mean? SD Min Max
Items

Basic Conceptual 11 43 .20 0 .82
Mathematical Knowledge
Basic Procedural Mathematical 7 .56 .18 0 .94
Knowledge
Advanced Conceptual 8 31 .19 0 .75
Mathematical Knowledge
Advanced Procedural 5 40 .18 .09 .94
Mathematical Knowledge
Mathematical Strategic 4 .36 17 .06 .81
Knowledge
Problem-solving Skills 4 .37 21 0 .86
Conditional Reasoning Skills 16 .64 .19 0 1
Metacognitive Awareness 52 2.84 0.34 1.90 3.86
Proof Validation 4 .45 .18 .10 .85
Proof Construction 4 .35 .18 0 .93

Intercorrelations between the individual scales (see Table 5) show weak to moderate Pearson
correlations smaller than r = .45 between the resource scales. Thus, no severe issues with
multicollinearity have to be expected in the following regression analyses.

22 The scale for metacognitive awareness ranges from 1 to 4, based on the Likert scale type items
used to measure it, and mean values of the items are given. All other scales are reported on a
scale from 0 to 1 and solution rates are reported.
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Table 5. Intercorrelations for the cognitive resources.

Cognitive Resources

BPMK  ACMK  APMK

MSK

PSS

CRS

MA

Basic Conceptual
Mathematical 317 448 .292
Knowledge

Basic Procedural
Mathematical .282 .394
Knowledge

Advanced Conceptual
Mathematical 433
Knowledge

Advanced Procedural
Mathematical
Knowledge

Mathematical Strategic
Knowledge

274"

.288

.303°

284"

Problem-solving Skills

Conditional Reasoning
Skills

295"

"p<.05 p<.01, p<.001

5.2.7.2 The Influence of the Resources on Proof Validation Performance

Supporting prior research findings and theoretical predictions, all resources included in the
analysis correlated non-negatively with the proof validation performance (see Table 6, upper
line). Except for basic procedural mathematical knowledge and metacognitive awareness, all
resources showed a significant weak to moderate correlation.

Table 6. Correlations of cognitive resources and proof validation / proof construction performance.

Cognitive Resources

BCMK BPMK ACMK APMK  MSK PSS CRS MA
Proof 503™" 322" 318" 288"
Validation

Proof 319" 380" 218" 263"

Construction

"p<.05 p<.01,  p<.001; NA: Not analyzed

The averaged Generalized Linear Mixed Model (GLMM) for proof validation, calculated to analyze
the impact of the six resources on students’ performance on proof validation (RQ1), can be found
in Table 7 (upper part). It reveals that out of the six individual resources, only basic conceptual
knowledge (= .67; p =.016) and mathematical strategic knowledge (/3 = .54; p = .024) showed
a significant influence on students’ performance in proof validation. Furthermore, problem-
solving skills (B = .47; p = .053) and metacognitive awareness (8 = .37; p = .084) showed a
relatively strong impact, although not reaching significance. Conditional reasoning skills were
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connected slightly negatively with proof validation performance when controlling for the other
resources, and basic procedural mathematical knowledge showed only a weak connection.

Table 7. Regression coefficients of the individual cognitive resources for the optimal, averaged Generalized Linear Mixed Models
for proof validation / construction.

Cognitive Resources

BCMK BPMK ACMK APMK MSK PSS CRS MA
Proof .67 .54
Validation .016 .024
Proof .30 .39 .23
Construction .020 .005 .038

5.2.7.3 The Influence of the Resources on Proof Construction Performance

Again, as expected all resources correlated non-negatively with the proof construction
performance (see Table 6, lower line). Interestingly though, problem-solving skills did not show
a significantly positive correlation with proof construction.

The calculated GLMM to analyze the impact of students’ resources on their performance in proof
construction (see Table 7, lower part) shows significant influences only by domain-specific
resources: advanced procedural mathematical knowledge (8 = .39; p = .005) showed the
strongest relation to proof construction performance, followed by advanced conceptual
mathematical knowledge (f = .30; p = .020) and mathematical strategic knowledge (5 = .23;
p = .038). Furthermore, students’ conditional reasoning skills show a medium impact (S = .20;
p = .068) not reaching significance.

5.2.7.4 Proof Validation as a Predictor of Proof Construction

To analyze the relation of proof validation and proof construction skills, we calculated
Spearman's rank correlation coefficient between students’ mean scores on proof validation and
proof construction tasks. As expected, a significant weak positive correlation of ry(62) = .22,
p = .044 could be observed.

To analyze the predictive value of students’ proof validation performance on their proof
construction performance when controlling for the six cognitive resources, we calculated
another GLMM including students’ mean scores on proof validation tasks as an additional
independent variable besides the six resources. The resulting model shows no significant
influence of students’ proof validation performance on the proof construction performance
(8=.06; p=.389) beyond that of the resources. Including proof validation skills left the regression
coefficients of the six resources largely unchanged (APMK: 8 = .39; p = .005, ACMK: 8 = .30;
p =.021, MSK: B =.23; p =.039).

5.2.8 Discussion

Proof construction and proof validation are regarded as central learning goals and activities for
mathematics students, especially at the university level. Yet, students of all ages have severe
difficulties with both activities (e.g., Healy & Hoyles, 2000; A. Selden & Selden, 2013; Weber,
2003) and differ greatly in their performance. The current study examined to which extent these
differences can be attributed to the availability of various individual cognitive resources
underlying students’ proof construction and proof validation performance (Blomeke et al., 2015).
Several of such cognitive resources have been suggested to underlie students’ mathematical
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argumentation and proof skills, and therefore also their proof validation and proof construction
performance. Yet, their relative influence was rarely studied in the past. The reported study used
multiple GLMMs to estimate the relative influence of each resource on beginning university
students’ proof validation and construction performance. Furthermore, it analyzed the role of
proof validation for solving proof construction tasks.

In the following, we will first discuss the influence of the three domain- respectively content-
specific resources and then focus on the domain-general resources. Subsequently their relation
will be discussed and afterwards we will close with the general results of the study, its
implications, and a short outlook.

Content- and domain-specific knowledge showed a strong impact on students’ performance in
proof validation and construction. Both analyses highlight the impact of these resources, which
proved to be the only significant predictors of students’ performance in our data. Their high
influence is in line with prior research (e.g., Chinnappan et al., 2012; Ufer et al., 2008) and shows
that handling mathematical proofs is a knowledge intensive activity. The results therefore also
match current research on scientific reasoning in general, which underlines its domain-specificity
(e.g., Kuhn, 2002; Schunn & Anderson, 1999; Zimmerman, 2000).

An interesting result from the employed GLMMs is the significant predictivity of mathematical
strategic knowledge on the performance in proof validation and construction (f = .54 for proof
validation; 8 = .23 for proof construction). This resource was introduced by Weber (2001), yet
especially quantitative research related to this resource is scarce. Our study extends Weber's
original work by proposing an instrument to survey students’ mathematical strategic knowledge
systematically. However, this is only a starting point for future assessment and research on this
construct. Further research may comprise an improved theoretical analysis of the construct as
well as its relations to existing knowledge concepts (de Jong & Ferguson-Hessler, 1996).
Especially a clear separation from problem-solving skills and heuristics on the one side,
mathematical content knowledge on the other side, and more general constructs like expertise
on the third side are needed to purposefully include it in future studies. Theoretical insights could
then be quantitatively underlined to offer the basis for a systematic validation of our instrument.
However, based on the results of our study we propose to give mathematical strategic knowledge
a more prominent place in research on mathematical argumentation and proof skills.
Domain-general resources showed no significant impact on both students’ performance in proof
validation and proof construction and results regarding their impact on either one differ between
both models. This contrasts prior research: Two empirical studies (Chinnappan et al., 2012; Ufer
et al.,, 2008) in the context of school geometry proofs have shown a substantial impact of
problem-solving skills on proof construction tasks, while in our data the impact of problem-
solving skills is low and insignificant. One possible explanation may be that the inclusion of
mathematical strategic knowledge in the GLMM reduces the impact of problem-solving skills, as
mathematical strategic knowledge can partially be seen as a domain-specific analogue of
problem-solving heuristics. However, since mathematical strategic knowledge and problem-
solving skills did not correlate significantly (see Table 5) and the correlational analysis (see Table
6) does not show a significant correlation between problem-solving skills and proof construction,
this explanation has to be dismissed.

Alternatively, university students may not have required knowledge about general problem-
solving heuristics for the proof construction tasks as they had domain-specific strategies from
their mathematical strategic knowledge at hand to solve these. Thus, students may not have
applied their general problem-solving skills in these tasks as they had proof-specific strategies at
hand. In contrast, the 9" grade students in the studies by Chinnappan et al. (2012) and Ufer et
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al. (2008) as novices had to rely on their weak problem-solving heuristics (Chinnappan & Lawson,
1996) leading to the high impact of problem-solving skills in both studies.

A third explanation may be that the proof construction tasks centered on a different part of the
problem-solving process than the employed problem-solving tasks: The proof construction tasks
were chosen similar to common tasks from proof-based real analysis lectures so that
participating students likely already knew how to handle tasks like these, could quickly structure
their problem space, and had a set of reasonable operations at hand to perform on the task. The
focus of the tasks, therefore, was on the purposeful combination of the operators to solve the
problem and subsequent formal-deductive aspects of proof construction. In contrast, the
problem-solving tasks were mostly unfamiliar to the students and required students to create
and structure the problem space and identify reasonable operations. Once these were identified,
the actual solution of the task was rather straightforward. This difference in both kinds of tasks
may have led to the fact that the measured problem-solving skills had no significant impact on
the proof construction performance.

Analogous to proof construction, problem-solving skills also had a non-significant impact on
students’ performance in proof validation, yet there is a significant correlation between problem-
solving skills and students’ performance in proof validation. As most students likely had never
encountered explicit proof validation tasks in their lectures before, they may have had to invest
time in structuring these validation problems and finding reasonable operations for refuting or
accepting the given proofs, much like they had to for the problem-solving tasks.

Overall, further insights on the role of problem-solving strategies in proof construction and
validation (focusing on various levels of expertise and different aspects of the problem-solving
process) would be valuable. We advocate that it is important to consider which aspect of a proof
construction or validation task leads to students’ difficulties: Is it the creation and structuring of
the problem space (which relies largely on content knowledge), the availability of permitted and
effective operations within the problem space (which relies on mathematical strategic
knowledge and/or problem-solving heuristics), the correct sequencing of operations within the
problem space (which relies on self-regulation skills and metacognition), or is it the formal-
deductive aspect of proof construction. Regarding the data from this study, especially the low
impact of metacognitive awareness, the first two or last seem to have been the major aspects in
the employed proof construction tasks.

In both models, conditional reasoning skills play a minor role compared to the domain-specific
resources included. For proof validation, this may imply that students rarely check the deductive
structure of a proof on a formal level. Rather they seem to concentrate on the evaluation of the
task statements (conceptual knowledge) and on the general proof approach (mathematical
strategic knowledge). For proof construction, this may imply that students do not create their
proofs inference by inference, but rather focus on the semantics of an inference, for example by
using mental models (Johnson-Laird, 1980; Ufer, Heinze, & Reiss, 2009a), or work with larger
chunks like mimicking whole proof steps from already known proofs. Both strategies would then
rely heavily on their mathematical knowledge, which corresponds to the results from the
GLMMs.

The results regarding the relation of proof validation and proof construction are striking. First, a
significant, positive correlation between students’ proof validation and proof construction
performance was found in our data. Although in this study the tasks for proof validation and
proof construction were related to different content areas, the correlation between both equals
other studies (Ufer, Heinze, Kuntze, et al., 2009) using only one content area, suggesting that
proof validation may be a content-overarching skill. Yet, under control of the six resources, no
impact of proof validation on proof construction could be shown. Thus, it appears that the
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correlation between both is not a sole effect of methodological knowledge (Heinze & Reiss,
2003), which is assumed to underlie both proof construction and proof validation, but rather an
effect of the other included resources. Further, the assumption that proof validation as a sub-
process of proof construction should play an important role for proof construction therefore is
not supported by our data and it seems that the cognitive resources underlying both
performances lead to the observed correlation. This is in line with our theoretical model (see
Figure 3), suggesting that both proof construction and proof validation performance have the
same underlying skill.

5.2.9 Limitations and Conclusions

The analyses employed in this study provide first insights regarding the impact of several
cognitive resources on proof validation and proof construction performance and therefore on
students’ mathematical argumentation and proof skills. Still, the results need to be handled with
care: First, the number of participants for the study is low. Although this limitation could be
partially overcome by using GLMMs for the analysis, a replication of the study with more
participants would be desirable. Second, there is not one way of model selection in GLMM:s.
Accordingly, different methods such as forward inclusion, backward elimination, AlCc based
selection, or averaging may lead to different models, each being optimal in a certain way. Still,
we are confident that the approach taken here is reasonable as it is recommended by GLMM
literature (Bolker et al., 2009; Zuur et al., 2009) and reflects the data well.

Third, the obtained results could naturally be dependent on the conceptualization and
operationalization of the resources and on the content areas of the tasks used for proof
validation and proof construction. Further research would be beneficial to ensure the
generalizability of the results. Here foremost a thorough theoretical analysis of mathematical
strategic knowledge, as well as replication studies, would be desirable.

Concluding, the study gives explicit results on the impact of the different individual cognitive
resources on students’ proof validation and construction performance. Domain- and content-
specific resources such as conceptual mathematical knowledge, procedural mathematical
knowledge, and mathematical strategic knowledge play a superior role in explaining students’
performance, whereas domain-general resources seem to have a weaker influence. A
straightforward implication for university teaching would therefore be to help students improve
their domain-specific resources and not focus on domain-general or knowledge lean
interventions, which show mixed results and are a matter of broad discussion (D. W. Eccles &
Feltovich, 2008; Greiff et al., 2014; Sweller, 1990; Tricot & Sweller, 2014). Still, if this is possible,
to which extent this is possible, and how this is possible, especially for the yet not overly explored
mathematical strategic knowledge, cannot be answered by this study but has to be investigated
in future intervention studies.

Overall, the results give a first insight on what counts to be successful in proof construction and
proof validation at a university entry level and therefore promotes new ideas regarding the
teaching of argumentation and proof at university level.
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5.3 Instructional Approaches to Support Complex Cognitive Skills and
Their Resources: Comparing the Effects of Supporting the Resources
One-by-one or Simultaneously

5.3.1 Introduction

Today??, educators in formal as well as informal learning settings are concerned with increasingly
complex learning goals such as argumentation, information or complex problem solving, as well
as other 21 century skills (e.g., Greiff et al., 2014; National Research Council, 2012; OECD, 2013;
Osborne, 2013; Scherer, 2015; Trilling & Fadel, 2009). Accordingly, one major aim of
interdisciplinary as well as disciplinary educational research is to provide practitioners, teachers,
and lecturers with research results on how these learning goals can best be achieved and how
students can be effectively supported in their learning attempts. In case of mathematical
argumentation and proof skills, this aim is tackled internationally by multiple research groups
(e.g., Andriessen, 2009; Conner, Singletary, Smith, Wagner, & Francisco, 2014; Fukawa-Connelly,
2014; Heinze & Reiss, 2009; Kollar et al., 2014).

Still, research so far often failed to acknowledge mathematical argumentation and proof skills,
as well as other skills, as complex cognitive skills, that is having several underlying resources that
need to be coordinated and integrated to solve given problems or meet certain situations
requiring the complex cognitive skill. In the case of mathematical argumentation and proof skills,
several underlying resources such as mathematical content knowledge, methodological
knowledge, or problem-solving skills have been proposed by prior research (Heinze & Reiss, 2003;
Schoenfeld, 1985) and their influence was pronounced on a theoretical level by process models
and described by multiple studies (e.g., Boero, 1999; A. Selden & Selden, 2013): For example,
students faced with a mathematical proof task require mathematical content knowledge to
identify the objects within the task and unpack their definitions and meaning. As proof tasks
represent problems for students, problem-solving skills are needed to guide students’ search for
a solution and to purposefully apply heuristics to construct a proof, which meets the acceptance
criteria of the local mathematical community.

The resources of mathematical argumentation and proof skills further received at least partial
empirical support (Chinnappan et al., 2012; Ufer et al., 2008), yet they are rarely considered
comprehensively in current research (see section 5.1). That is, although researchers acknowledge
that complex cognitive skills depend on several underlying resources such as knowledge facets
(e.g., Blomeke et al., 2015; Schoenfeld, 2010; Shulman, 1987), these underlying resources are
rarely considered in the design of learning environments.

Yet, acknowledging the resources underlying a complex cognitive skill leads to an instructional
dilemma: Is it favorable to focus on the individual resources and support their acquisition and
thereby indirectly the overarching skill? Or should the focus rather be on the complex cognitive
skill, explicitly including all resources at once? Both approaches appear to have advantages: The
first approach benefits from a higher instructional clarity as all resources are addressed
individually, yet also requires the later transfer from the individual resources to the overall skill.
In contrast, the second approach may be partially overwhelming students with the complex

23 pParts of this study and preliminary analyses have been presented at the conference ICLS 2016
and published in the proceedings (Sommerhoff, Ufer, & Kollar, 2016a).
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cognitive skill and its underlying resources all at once, yet allows an integrated learning of the
resources in an authentic setting that automatically initiates the integration of the resources.
Accordingly, instructional approaches to support students in learning the resources underlying a
complex cognitive skill alongside the complex cognitive skill itself need to be explored and
contrasted regarding their effectiveness. The present study addresses this research gap and gives
first insights on how this twofold aim of supporting the learning of the resources underlying a
complex cognitive skill alongside the complex cognitive skill itself can be achieved.

Related research from instructional design has long been focusing on the support of complex
cognitive skills, in particular part-task and whole-task strategies for learning (e.g., R. C. Anderson,
1968; Lim et al., 2009; Naylor & Briggs, 1963). Here, research contrasted two approaches: the
part-task approach, which focused on the acquisition of individual sub-tasks or steps within a
larger task to later integrate these into the whole task, and the whole-task approach, which
focused on the immediate acquisition of the larger, whole task. One central tenet of that research
was that complex cognitive skills are acquired more efficiently using a whole-task approach. This
raises the question whether it is also more effective to support resources necessary to perform
a complex cognitive skill simultaneously (analogue to the whole-task approach) or whether each
should be developed separately one-by-one (analogue to the part-task approach). As the
resources underlying a complex cognitive skill exceed individual steps or sub-tasks, may have to
be purposefully applied within multiple steps, and require more than a sequential enchainment
as compared to the individual part-tasks, the transfer of the central tenet from the part-task /
whole-task debate is questionable.

In our study, we therefore contrast two instructional approaches to support the development of
mathematical proof skills: A one-by-one approach, which focuses and supports each resource
individually, and a simultaneous approach, which focuses and supports multiple resources in
parallel, both using authentic tasks and settings for mathematical argumentation and proof
activities. We compare students’ learning outcomes resulting from the approaches, both on the
individual resources as well as on their overall argumentation and proof skills to give first insights
into the effects of both approaches and their feasibility in the context of mathematical
argumentation and proof skills as well as more generally.

5.3.2 Background

5.3.2.1 Instructional Approaches for Complex Skills.

The idea that instructional strategies to support the learning of less complex skills may differ from
those to support more complex skills has been raised repeatedly by educators and prior research
(e.g., Branch & Merrill, 2011). Yet, the idea entails serious intricacies, starting with the notion of
skill complexity, which is ill-defined. Furthermore, it is per se unclear which instructional
approach would be suitable for which level or kind of skill complexity.

Naylor and Briggs (1963) gave a first account of task difficulty, differentiating two independent
dimensions: Task complexity, accounting for the individual complexity of the sub-tasks, as well
as task organization, describing the demands posed by the interrelationship between the various
sub-tasks and their integration into the whole task. Their experimental study (Naylor & Briggs,
1963) suggests that tasks with a high sub-task complexity but low task organization benefit from
part-task training. That is, skills for individual sub-tasks are trained, and afterwards connected
using different sequencing strategies (e.g., forward chaining and snowballing). Contrary, tasks
with low sub-task complexity but high task organization benefit from whole-task training.
Further, tasks that require not only the execution and enchaining but also the integration of
several sub-tasks can be more effectively taught using whole-task approaches.
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Subsequent research contrived plausible theoretical arguments as well as empirical evidence for
both approaches: Arguments for the part-task approach are mostly based on classical learning
theories like ACT (J. R. Anderson, 1996) that assume the decomposability of complex skills into
less complex part-skills (J. R. Anderson, 2002). This atomistic approach has been challenged by
sociocultural and situated conceptions of learning that highlight the situatedness of learning
(e.g., Brown et al., 1989; Greeno, 1998; Lave & Wenger, 1991; The Cognition and Technology
Group At Vanderbilt, 1990). The whole-task approach also gained empirical support by evidence
pointing to difficulties associated with attempts to transfer from part-tasks to the whole task (see
J. R. Anderson et al., 1996 for a critical discussion). Fragmentation, compartmentalization, and
the lack of transfer of learning (see further R. E. Clark & Estes, 1999; Perkins & Grotzer, 1997; van
Merriénboer et al., 1997) are often mentioned as the pitfalls of part-task learning.

Today, several studies document the advantages of whole-task learning for a broad range of
learning goals and many educational theories assume that learning is evoked and supported best
by rich, meaningful tasks (van Merriénboer, 2002), which are hard to achieve by focusing solely
on an atomistic approach dissecting whole tasks into its fragments.

However, recent empirical studies highlight that the benefit of focusing one’s attention may
overweight the cost of later transferring and integrating the parts (So, Proctor, Dunston, & Wang,
2013) and that additional research is needed to identify which components and features of a
whole skill influence how effective different learning strategies are (Lim et al., 2009; Wickens,
Hutchins, Carolan, & Cumming, 2013). One such aspect determining the effectivity of
instructional approaches appears to be prior knowledge or attainment (Salden, Paas, & van
Merriénboer, 2006), as with low prior attainment both the part-tasks as well as their integration
have to be learned.

Furthermore, compared to mathematical argumentation and proof skills, what has been
described as ,,complex” skills in earlier research (c.f., Gagné & Merrill, 1990; van Merriénboer,
1997; van Merriénboer, Kirschner, & Kester, 2003) seems to exhibit a lower complexity level. For
example, creating spreadsheets for monthly sales figures (Merrill, 2002) or handling a mechanic
excavator (So et al., 2013) cannot be seen as on the same level as argumentation skills, as here
not only the integration of several sub-tasks or sub-skills in the sense of manual skills, operations,
or activities is required, but rather the integration of various resources underlying the skill, which
have to be monitored, coordinated, and regulated. Further, the resources have to be utilized in
different ways, cannot be sequentially enchained, and have to be used concurrently, interacting
with each other.

5.3.2.2 Complex Cognitive Skills and Underlying Resources

Complex cognitive skills are often conceptualized in the sense of Koeppen et al. (2008) as latent
cognitive dispositions underlying a person’s performance in certain situations. For example,
problem-solving skills refer to the cognitive disposition to succeed in various problem situations,
that is situations in which an undesired initial state has to be transformed into a goal state, yet
the needed operation to achieve this is not at hand (e.g., Dérner, 1979; Mayer & Wittrock, 2006,
p. 287). Examples for different situations requiring problem-solving skills are analytical (assessed
in PISA 2003), interactive (assessed in PISA 2012), or collaborative problem solving (assessed in
PISA 2015) (Greiff, Holt, & Funke, 2013).

Similarly, mathematical argumentation and proof skills refer to the cognitive disposition to
succeed in a set of proof-related situations and activities (Giaquinto, 2005; Mejia-Ramos & Inglis,
2009a; A. Selden & Selden, 2015a). Such situations may ask an individual to construct, that is to
create a valid mathematical proof for a claim (e.g., A. Selden & Selden, 2015a), or validate
mathematical proofs, that is to read a purported proof and judge its correctness. A person’s
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success in these situations will be judged relative to certain norms, which are shared within the
local community and represent an important resource for mathematical argumentation and
proof skills (e.g., Heinze & Reiss, 2003; A. Selden & Selden, 2015a; Ufer, Heinze, Kuntze, et al.,
2009; Yackel & Cobb, 1996). This said, students’ complex cognitive skills as a latent construct are
not independent on their own. Several theoretical, as well as empirical accounts, underline that
complex cognitive skills may require multiple underlying resources. For example, Shulman (1987)
discusses several different knowledge facets (e.g., pedagogical knowledge, content knowledge)
as underlying teaching skills and also problem-solving skills are assumed to have underlying
resources, such as problem-solving heuristics (e.g., Abel, 2003; Schoenfeld, 1985). This kind of
conception can also be found in vocational education, where Mulder et al. (2009, p. 757) speak
of an “integrated set of capabilities consisting of clusters of knowledge, skills, and attitudes”.
Further, also the theoretical discussion and framework by Bldmeke et al. (2015) integrate these
ideas and conceptions, emphasizing the relations between underlying resources, complex
cognitive skill, and task performance.

This conception of complex cognitive skills creates a situation, which is structurally similar to the
part-task / whole-task debate. Here, students’ complex cognitive skill (e.g., mathematical
argumentation and proof skills) can be regarded as analogue to the whole-tasks, whereas the
different resources underlying the complex cognitive skill (e.g., conceptual mathematical
knowledge) are analogue to the part-tasks. This substantially broadens the part-task / whole-task
debate, bringing up the question whether the results from the part-task / whole-task debate can
be transferred. Here, the primary question will be, if the resources should be supported
individually one-by-one or whether they benefit from a simultaneous approach. Further, the
prior availability of the resources may affect the effectiveness of both approaches: Students with
low prior attainment regarding the resources may benefit from the one-by-one approach,
whereas those with a high prior attainment regarding the resources may benefit from the
simultaneous approach. The answer to these question is highly relevant for the teaching and
learning of any complex cognitive skill that is underpinned by several resources.

5.3.2.3 Mathematical Argumentation and Proof Skills and the Underlying Resources

Mathematics educators and educational psychologists widely agree that mathematical
argumentation and proof skills can be seen as a complex cognitive skill, relying on several
cognitive as well as non-cognitive resources. Over the last decades, several such resources have
been proposed: They have been partly derived from models for more general skills like problem
solving (Schoenfeld, 1985) or self-regulated learning (De Corte et al., 2000), been proposed by
qualitative studies (Schoenfeld, 1987; Weber, 2001), and/or been partially empirically validated
(Chinnappan et al., 2012; Ufer et al., 2008).

Based on these various frameworks and findings, the following four resources seem to comprise
important cognitive resources for students’ mathematical argumentation and proof skills (see
section 5.2):

Mathematical content knowledge: One of the most fundamental and best-researched resources
is mathematical content knowledge. Following widely accepted conceptions (e.g., J. R. Anderson,
1996; Hiebert, 1986; Star & Stylianides, 2013), it entails two facets, namely conceptual
mathematical knowledge (CMK), that is a network of knowledge about mathematical facts,
theorems, objects, and their properties, as well as procedural mathematical knowledge (PMK),
that is partly tacit knowledge, which is exercised in the accomplishment of a task (Hiebert &
Lefevre, 1986). Both were shown to have a substantial impact on students’ mathematical
argumentation and proof skills (Chinnappan et al., 2012; Ufer et al., 2008). These results also
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match domain-general research on scientific reasoning underlining the importance of underlying,
domain-specific knowledge (e.g., Kuhn, 2002; Schunn & Anderson, 1999; Zimmerman, 2000).
Mathematical strategic knowledge: In a qualitative study with mathematics students from
different academic levels, Weber (2001) observed that mathematical content knowledge alone
is not sufficient for being successful in constructing proofs. Despite knowing them in principle,
students were often unable to identify concepts or methods necessary for a task or had problems
applying them purposefully. As several studies have underlined this (e.g., Reiss & Heinze, 2004;
A. Selden & Selden, 2013), it is assumed that students require mathematical strategic knowledge
(MSK), that is domain-specific strategies linking cues and hints within tasks with the
mathematical methods and concepts that would be useful in the context of the task (Weber,
2001). In the broader context of research, mathematical strategic knowledge can be seen as a
domain-specific version of general problem-solving heuristics.

Similar knowledge facets have already been studied in other contexts under the term strategic
knowledge, for example regarding problem solving (Gok, 2010) or reading comprehension (Paris
et al., 1983), or as conditional knowledge in artificial intelligence research (Lehmann & Magidor,
1992). The term is further also introduced in general conceptualizations of knowledge (e.g., de
Jong & Ferguson-Hessler, 1996). Still, as the construct has so far received little attention in
mathematics education research, a clear classification and in particular separation from these
constructs (especially regarding problem solving) and other constructs such as experience or
expertise is up to now unfortunately still lacking.

Methodological knowledge: Beyond content and mathematical strategic knowledge, also
methodological knowledge (MK) (Heinze & Reiss, 2003; Ufer, Heinze, Kuntze, et al., 2009) is
assumed to be an important resource underlying mathematical argumentation and proof skills.
It comprises knowledge about acceptance criteria for mathematical proofs (e.g., the rejection of
circular reasoning or the need for an explicit reference to an underlying theoretical background).
Methodological knowledge is not only important when validating given proofs, but also plays an
important role while constructing proofs as it involves those criteria the constructed proof s later
checked against by the mathematical community. As methodological knowledge comprises
knowledge about different types of proofs and their feasibility for certain proof tasks, it is
essential for constructing a valid proof.

General problem-solving skills and heuristics: Next to these three rather domain-specific
resources, the influence of general problem-solving skills (PSS) and heuristics (PSH) on proof
construction has been noted several times (e.g., Polya, 1945; Schoenfeld, 1985). Both, general
problem-solving skills (PSS) and heuristics (PSH), are closely related and mostly conceptualized in
a way that heuristics, that is rules-of-thumb for problem-solving processes, are employed when
solving a problem and accordingly represent an important resource for problem-solving skills
(e.g., Abel, 2003; Schoenfeld, 1985). Their importance is pronounced repeatedly (e.g., Reiss &
Renkl, 2002; Schoenfeld, 1985) and also partially underpinned in the context of geometry proofs
in secondary school contexts (Chinnappan et al., 2012; Ufer et al., 2008).

Proofs can be easily conceptualized as problems in the sense of Dérner (1979) or Schoenfeld
(1985), as these are mostly non-routine tasks for students that they have no immediate solution
strategy at hand for. The process of solving these problems can be regarded from an information
processing perspective (Newell & Simon, 1972; Simon, 1978) and requires the creation of a
problem space, entailing the initial state and the goal state, which have to be connected by using
several operators. This is a multi-step search process that, if successful, generates a deductive
chain of arguments as a solution for the problem (e.g., Heinze et al., 2008; Koichu & Leron, 2015;
Weber, 2005).
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Prior research has mostly underlined the importance of these four cognitive resources (Figure
42) for students’ mathematical argumentation and proof skills. Mathematical content knowledge
as well as problem-solving skills were shown to significantly explain the variance in students’
mathematical proof construction (Chinnappan et al., 2012; Ufer et al., 2008) and also
methodological knowledge shows a connection to their performance in proof construction (Ufer,
Heinze, Kuntze, et al., 2009).

Still, the resources also represent important learning goals themselves, thereby creating a
situation similar to the part-task / whole-task debate from instructional design. In this study, we
aim to support the identified resources individually and by that indirectly also students’ overall
argumentation and proof skills leading to an improved proof construction performance.

Mathematical Strategic Conceptual | Procedural

Knowledge Mathematical Knowledge

Problem-solving Methodological

Knowledge

Skills i Heuristics

Figure 42. Four cognitive resources underlying mathematical argumentation and proof skills.

5.3.3 The Current Study

The present study is a first step to explore how acknowledging the resources underlying a
complex cognitive skill can be functional in supporting the learning of the complex cognitive skill
as well as its resources. The study therefore takes up the part-task / whole task debate from
instructional design (J. R. Anderson et al., 1996; Branch & Merrill, 2011; Lim et al., 2009) in the
pursuit of evidence for the feasibility and respective benefits of a one-by-one and simultaneous
approach for supporting students’ complex cognitive skill and its underlying resources.

This is done by examining students’ mathematical argumentation and proof skills. These
comprise a complex cognitive skill underpinned by several cognitive resources that have been
identified in prior research. In a quasi-experimental study with university students, we
investigated whether supporting each resource separately one-by-one or supporting all
resources simultaneously yields higher learning gains on the resources as well as on overall
mathematical argumentation and proof skills.

The research questions driving the study were:

RQl What are the effects of a one-by-one vs. a simultaneous approach for supporting overall
mathematical argumentation and proof skills alongside its resources on the resources?

Our hypothesis was that the one-by-one approach would be superior in supporting the
individual resources of a complex cognitive skill compared to the simultaneous approach.
Each of the resources for mathematical argumentation and proof tasks as well as their
utilization within argumentation and proof processes are already complex and
shortcomings of students regarding prior knowledge, problem-solving skills, and other
aspects have repeatedly been reported (e.g., Harel & Sowder, 1998; OECD, 2014; Reiss &
Ufer, 2009; Schoenfeld, 1989; A. Selden, 2011). Thus, the results by Naylor and Briggs
(1963) imply that a one-by-one approach should be better suited. Following the
argumentation by Blomeke et al. (2015) we further assumed that instructional clarity
would be higher in the one-by-one condition as each resource was covered individually.
As multiple studies document that mathematical argumentation and proof tasks are
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complex for students (e.g., A. Selden & Selden, 1978; A. Selden & Selden, 2008, 2012;
Weber, 2003), we envisioned that the higher instructional clarity would be helpful for the
improvement of students’ resources.

RQ2 What are the effects of a one-by-one vs. a simultaneous approach for supporting overall
mathematical argumentation and proof skills alongside its resources on the overall
mathematical argumentation and proof skills?

We assumed that the simultaneous approach would yield higher or at least comparable
learning gains compared to the one-by-one approach. This is implied by the results from
Naylor and Briggs (1963) as overall mathematical argumentation and proof skills require
a high degree of “task organization”, that is the underlying resources need to be
purposefully combined and used. Accordingly, an approach integrating the resources and
thereby allowing students to directly experience the simultaneous coordination of the
resources could be favorable and lead to integrated learning. This is further supported by
a prior review on part-task practice (Wickens et al., 2013) that revealed negative effects
of part-task training when parts have to be used concurrently, which is the case with the
resources underlying mathematical argumentation and proof skills.

Furthermore, the one-by-one approach requires students to later, that is after learning
about each resource, integrate the various resources and their use when constructing
mathematical proofs. As this does not arise as naturally as in the simultaneous approach,
where the resources are already used in an integrated way, this should pose another
obstacle for students from the one-by-one approach. In line with this argumentation, also
situated learning theories (Brown et al., 1989; Lave & Wenger, 1991) suggest that
students should benefit from the authentic, meaningful combination of resources as
opposed to addressing them individually without the connections, for example between
mathematical strategic knowledge and problem-solving skills.

5.3.4 Method

5.3.4.1 Design and Participants

To answer the research questions, we adopted a quasi-experimental research design with pre
and post measurement, featuring two conditions corresponding to the one-by-one and
simultaneous approach. The intervention was offered as a voluntary course for mathematics
university students entitled “Mathematical proofs: That’s how to do it!”, which was aimed at
undergraduate students after the first semester. A total of 45 students (18 male, 27 female,
Mage = 20.82) participated in the study. Among them were 36 first year and 9 second year
students who were either enrolled in a (financial) mathematics bachelor’s program or a teaching
degree for secondary education. Independent of the degree program, all participants can be
assumed to have participated in proof-based real analysis lectures, giving the students the
necessary foundation for the course. Of these 45 students, 21 students participated in the one-
by-one condition whereas 24 students participated in the simultaneous condition of the course.
Participants’ mean university entrance grade (M = 1.92*%, SD = 0.52), as well as their final high-
school grade in mathematics (M = 1.86, SD = 0.56), were in-between the best and second-best
grade.

24 Grades are scaled from 1 to 6, with 1 being the best grade.
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5.3.4.2 Procedure

The course was scheduled across three consecutive days after the end of the regular lecture
period and consisted of four two-hour intervention sessions plus two sessions for pretest and
posttest. Without being aware of the difference, participants could choose to participate in one
of both parallel groups, each representing one of the instructional conditions, that is the one-by-
one approach or the simultaneous approach. The course was conducted by two experienced
instructors with a mathematics as well as mathematics education background. Instructors
swapped courses in the middle of the intervention to eliminate instructor effects.

The content of the course was based on the topics and proofs in proof-based real analysis, an
introductory topic in university mathematics that is intensely covered during the first semester.
Both courses covered the same teacher input, content, tasks, and time on task. The only
difference was that tasks and content were arranged in a different order.

For the design of the intervention and the arrangement of the topics and tasks, we structured
both conditions according to two levels within the course: the macro-level and the micro-level.
The macro-level refers to the arrangement of the resources within the course, that is at which
time each of the resources was addressed during the study and whether this was done in a one-
by-one or a simultaneous manner. In contrast, the micro-level refers to instruction for each of
the four resources themselves (Figure 43).

For the teaching of the individual resources, that is the micro-level, we adopted a 4C/ID inspired
instructional design (van Merriénboer, 2013; van Merriénboer & Kirschner, 2007). This was done
for two reasons: First, each of the resources is characterized by a lower task organization, that is
the organization of aspects within the resources require less organization as compared to
complete mathematical argumentation and proof tasks and therefore should benefit from a
rather comprehensive instructional approach (Naylor & Briggs, 1963). Second, we wanted to
parallelize the micro-level for both conditions as we are interested in the effects of the macro-
level and differing instruction on the micro-level may have biased the results.

The employed micro-level design for teaching each of the resources consisted of an initial input
phase with information on the resources, to support the resources directly. This was combined
with a short list of elaboration and monitoring prompts (e.g., “Excerpt all important objects and
properties from the task, explain these in your own words, and compare them to the formal
definition.”, ”"Search the task for keywords that you know from other tasks. What methods did
you use there?”). The prompts were meant as procedural information while solving the proof
construction tasks later. They were intended to scaffold the use and application of the individual
resources during these tasks, to enhance students’ analysis of the task according to each
resource, and to induce students to elaborate and reflect on their knowledge regarding each
resource. The prompts, therefore, ensured an explicit usage of the resources and hindered
students to fall back into their old proof construction behavior. To show how these prompts could
be purposefully applied, the instructor demonstrated the usage of the prompts.

5.3.4.2.1 The One-by-one Condition

The one-by-one condition was intended to support the different resources individually.
Accordingly, the course was split into four individual blocks of two hours on the macro-level.
During each of these four sessions, only one of the four resources was focused explicitly (Figure
43, upper part).

During each session, students worked on exactly four tasks and analyzed them focusing on the
one resource that was covered during that session. Each task was then picked up in a second
session and analyzed regarding the resource focused in that session. After that, the task was
solved and discussed together with the instructor.
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During the analysis process of the students and their work on the tasks, the instructors gave
guidance, provided procedural information, and hinted students to use specific prompts from
the provided list.
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Figure 43. Instructional design used for both conditions within the intervention.

5.3.4.2.2 The Simultaneous Condition

Regarding the macro-level, the simultaneous condition included all four resources during each
session, providing students with the opportunity to integrate the individual resources and see
connections among them. That is, throughout each session, students had to focus on
mathematical content knowledge, mathematical strategic knowledge, methodological
knowledge, as well as problem-solving skills and heuristics while working on the tasks.

Here, input phases were given in the first and third session. As all resources were treated during
each session, it was necessary to give a basic amount of supportive information on all resources
in the first session, so that students would be able to work purposefully with all for resources.
The remaining information was then introduced at the beginning of the third session.
Throughout the course, students from this condition worked on same eight proof tasks as those
in the one-by-one condition, yet always analyzed them regarding two of the resources at once.
The tasks were distributed over the sessions so that each resource would be covered in every
session and each combination of two resources would occur equally often. The tasks that had
already been analyzed and solved were reconsidered briefly in the next session so that each
student worked on each task twice as in the one-by-one condition.

The students from the simultaneous condition received the same amount and kind of guidance
as the students in the one-by-one condition.
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5.3.4.3 Instruments

Pretest and posttest of the study included scales for each of the resources, one for students’
argumentation and proof skills, as well as for covariates and demographic data. Most of the
employed scales were adapted to the content, translated from English, or self-created if no
suitable published scales were available in the literature. We mostly used parallelized tasks for
the pre- and posttest to avoid repetition effects. We preferred this approach over using identical
tasks, as it was especially important for the items within the problem solving and the
mathematical argumentation and proof scale to be unknown and therefore retain a problem
character (e.g., Doérner, 1979; Schoenfeld, 1985). Only for the problem-solving heuristics the
same items were employed in pre- and posttest.

The employed scales had been piloted and evaluated prior to the reported study. Their reliability
was .58 < a < .81, with .58 corresponding to the only scale below .6 (mathematical strategic
knowledge) that had been assessed using only four items. As a newly developed scale for a
construct that has not been assessed quantitatively before, we decided to retain the scale despite
of the low reliability.

The scales contained open as well as closed items. Closed items were evaluated using mark-
recognition software with a subsequent manual control. The open items were coded by two
raters following theory-based coding schemes. Double coding of over 15% of the data led to an
interrater reliability of k > .78 (M =.93; SD = .10). For each scale, sum-scores were calculated and
scaled to values between 0 (worst) and 1 (best). Only the scale for problem-solving heuristics,
which used Likert-type items, remained on a scale from 1 (worst) to 4 (best).

5.3.4.3.1 Dependent Variables

Mathematical content knowledge: The scales for conceptual (8 items) and procedural
mathematical knowledge (5 items) were adapted from existing tests in the context of university
mathematics (Rach & Heinze, 2016; Wagner, 2011) and slightly modified to fit the content area
of the study. The conceptual items focused on assessing fundamental knowledge such as
definitions, theorems, and properties of objects as well as their connections. The procedural
items focused on routine procedures as solving equations or using the formula for the geometric
sum, which were required in the employed proofs throughout the course and the according
scales.

Methodological knowledge: The scale for students’” methodological knowledge was based on
existing scales from secondary school contexts (Heinze & Reiss, 2003; Ufer, Heinze, Kuntze, et al.,
2009). Students’ judgments regarding the validity of purported proofs were used as an indicator
of their methodological knowledge.

Mathematical strategic knowledge: Mathematical strategic knowledge has to our knowledge
not been quantitatively measured up to now. Building on the definition of the construct, we
chose four typical tasks from the real analysis context as the foundation for four items. These
were presented to students alongside four excerpts of the same task description. In a multiple-
choice format students were then asked to select those task descriptions that hint towards a
certain concept or method that would be helpful to solve the task. In a subsequent open
guestion, they were asked to explain their choice and describe what the excerpts would imply.
Closed and open item for each task description were combined using a dichotomous consistency
rating, evaluating whether the selected excerpts combined with the given explanation matched
the given task.

Problem-solving heuristics: To measure students’ knowledge about and use of problem-solving
heuristics, students were asked how often they made use of twelve different, prototypical
problem-solving strategies (e.g., means-end analysis, or creating a sketch) taken from literature
(Polya, 1945). Each of the strategies was reflected in four Likert-Scale items.
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Problem-solving skills: Students’ problem-solving skills were measured using four open items,
asking students to solve problems that did not require domain-specific knowledge (neither
mathematical nor from another domain), except for everyday knowledge and basic arithmetic
skills. The items were then scored on a scale from 0 to 4, evaluating if the main steps for solving
the problem were given and justified adequately.

Mathematical argumentation and proof skills: Besides the resources, a scale for assessing
students’ mathematical argumentation and proof skills consisting of four proof construction
items was included. The tasks were chosen to be novel to the students, yet reflect prototypical
tasks from real analysis lectures as well as those used within the intervention itself. The items
were scored on a scale from 0 to 4, evaluating if the main ideas needed for a valid proof were
given and adequately justified.

5.3.4.3.2 Further Variables

Besides the scales for the dependent variables, a scale for conditional reasoning skills from
literature (Evans et al., 1995; Inglis & Simpson, 2008, 2009) with 16 items was included. As
conditional reasoning skills are considered to be fundamental for any kind of reasoning activity,
important for scholarly activities across disciplines, and were also shown to significantly predict
certain aspects of mathematical argumentation and proof skills (Alcock, Bailey, et al., 2014; Kuhn,
2009; Leighton, 2006; Leighton & Sternberg, 2004), they were included in order to be used as a
covariate in the later comparisons between conditions.

Furthermore, demographic data including gender, degree program, university-entry grade, and
final high-school mathematics grade were gathered.

5.3.4.4 Implementation Check and Process Data

To check the implementation within both conditions and to create process data, students
received prefabricated exercise sheets to work with for all tasks and analyses. The sheets were
gathered and digitalized after every session throughout the intervention (see Figure 44 for an
excerpt of an exercise sheet showing the analysis of a task regarding mathematical strategic
knowledge). Subsequently, it was checked, whether students had explicitly analyzed the task
regarding the resources and whether the analysis was done on a meaningful or a superficial level
(dichotomous coding).

Additionally, a reflection scale on the content covered by the course was created for the posttest,
probing students about several topics that may or may not have been covered by the course
(e.g., “I think | learned a lot regarding problem solving”). To check that both conditions did indeed
convey a one-by-one respectively simultaneous conception of the resources, students were also
asked how separated they perceived the different resources during the intervention (“l think the
course separated the individual prerequisites of proving well”).
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Exercise sheet
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Figure 44. Excerpt of an exercise sheet of a student showing an analysis regarding mathematical strategic knowledge (translated).

5.3.4.5 Statistical Analysis

To answer the first research question, a MANCOVA using the resources as dependent variables
and conditional reasoning skills as the covariate were employed to examine overall differences
between both approaches. In line with this, effects of both approaches on individual resources
were subsequently compared using an ANCOVA with conditional reasoning skills as the covariate.
In the case of significant differences, the results were safeguarded by a further ANCOVA
additionally including the pretest results of the resource.

The second research question was examined first by using an ANCOVA with students’
mathematical argumentation and proof skills as dependent variable and conditional reasoning
skills as covariate, then backing up the analysis with another ANCOVA including the pretest
results as an additional covariate.

Throughout the analyses the significance level was set to 5%.

5.3.5 Results

5.3.5.1 Treatment Check

A qualitative analysis of the documents used throughout the intervention confirmed that
students in both conditions actively analyzed the tasks regarding the respective resources before
solving them and used the provided reflection prompts. Overall, 92.5% (92.6% in one-by-one;
92.4% in simultaneous) of the suggested analyses regarding the resources were done by the
students, 1.9% were completely missing, and 5.6% of the analyses were on a superficial or non-
purposeful level. This indication of a correct implementation of both conditions is further
supported by the results of the posttest: A related samples Friedman two-way analysis of
variance by ranks on the reflection scale regarding the covered topics used in the posttest
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showed overall significant differences between students’ answers on the covered topics
( XZ(G) = 89.048, p < .001). Post-hoc Dunn-Bonferroni tests showed significantly lower values for
both topics not covered during the course (beliefs, quantifier logic) in comparison to those
covered by the course, indicating that students had paid attention throughout the intervention
and were able to identify the resources they had worked on.

Furthermore, a Mann-Whitney U test on the question regarding the perceived separateness of
the resources showed the expected significant difference (U = 327.0, p = .029; Mone-by-one = 3.0 &
Misimultaneous = 3.3) between both experimental conditions, indicating that the participants of the
one-by-one condition perceived the resources as more separated than the students from the
simultaneous condition.

5.3.5.2 Preliminary Analyses

The descriptive results of the employed scales in the pre- and posttest (Table 8) showed
acceptable values. No signs of floor or ceiling effects could be determined and the resulting
variances were acceptable, too. The distributions of the resources and mathematical
argumentation and proof skills within each condition were analyzed regarding normality and
equality of variances, which they passed (Field, 2009; Gravetter & Wallnau, 2016).

To safeguard against possible problems regarding the comparability of the parallelized pre- and
posttest scales, Pearson correlations for each pair of parallelized scales (CMK, PMK, MK, PSS,
MAZ&P) were calculated, showing highly significant correlations (r(43) = .447 - .669, p < .001).

Table 8. Mean values for the scales obtained for both conditions in pre- and posttest.

One-by-One Simultaneous
Pretest Posttest Pretest Posttest
M SD M SD M SD M SD
Conceptual Mathematical 29 .20 38 .24 36 .19 44 15
Knowledge
Procedural Mathematical 36 .18 51 .24 45 .19 54 .20
Knowledge
Methodological Knowledge 40 .16 .54 14 49 17 .55 .16
Mathematical Strategic 35 .16 57 .16 39 .17 69 .18
Knowledge
Problem-solving Heuristics 290 .21 313 .22 295 .23 3.20 .22
Problem-solving Skills 43 19 35 .18 44 .20 40 .18
Mathematical Argumentation 5, 29 .14 36 .18 32 .14

and Proof Skills

The results of the pretest regarding the dependent variables, that is the resources as well as
students’ mathematical argumentation and proof skills, suggest that both conditions were
comparable prior to the intervention (Table 8). This was confirmed by calculating independent
samples t-Tests comparing these variables between both conditions. None of the tests gained
significance (t(43) < 1.622, p > .112), solely methodological knowledge slightly approached
significance (t(43) = 1.745, p = .088) in favor of the participants in the simultaneous condition.
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The same insignificant differences were found for the gathered demographic data and for
students’ conditional reasoning skills (t(43) =.728, p = .361).

5.3.5.3 Effects on the Resources

The descriptive results of the posttest (Table 8) show learning gains within both conditions for
most resources, leading to pre-posttest effect sizes of g = .35 - 1.76 (Table 9). Solely students’
problem-solving skills showed no gains, but rather decreased slightly (gone-by-one = -0.40 &
Gsimultaneous = '017)

Table 9. Longitudinal effect sizes for both conditions.

CMK PMK MK MSK PSH PSS MA&P
One-by-one 040 0.73 091 139 1.06 -040 -0.31

Simultaneous 0.47 0.50 0.35 1.76 1.07 -0.17 -0.28

Comparing the descriptive results of the posttest between both conditions (Table 8), slightly
higher mean scores for all resources within the simultaneous condition as compared to the one-
by-one condition can be observed. A one-way MANCOVA of students’ posttest results on the
resources (CMK, PMK, MK, MSK, PSH, PSS) using students’ conditional reasoning skills as a
covariate and both conditions as a factor showed no significant differences between both
conditions (V = .180, F(6,37) = 1.353, p = .259, Pillai’s trace). However, separate univariate
ANCOVAs on the dependent variables revealed a significant difference between both conditions
on mathematical strategic knowledge (F(1,42) = 5.682, p = .022, nz =.119) while controlling for
conditional reasoning skills. All other ANCOVAs were insignificant (F(1,42) < 1.149, p > .290).

To validate this finding, we calculated another ANCOVA for students’ post-test results on
mathematical strategic knowledge, this time also including students’ pretest results for
mathematical strategic knowledge as a covariate. The according ANCOVA revealed significant
differences in students’ mathematical strategic knowledge between both conditions
(F(1,41) =5.190, p = .028), yielding a medium effect size (n? = 0.112) in favor for the simultaneous
condition.

The results of the ANCOVA are also reflected when examining the learning gains of both
conditions regarding mathematical strategic knowledge: They show significant longitudinal
learning gains (paired samples t-Tests: one-by-one: t(20) = -10.192, p < .001; simultaneous:
t(23) =-7.478, p < .001) from pretest to posttest, yet the effect in the simultaneous condition is
larger (Gone-by-one = 1.39 & Gsimultaneous = 1.76; Figure 45, left side).

Mathematical Strategic Knowledge Methodological Knowledge
1.0 7 O One-by-one 1.0 7 O One-by-one
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Figure 45. Effects of both approaches on mathematical strategic knowledge (left) and methodological knowledge (right).
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Although not reaching statistical significance, the data gives a first indication for a between-
conditions effect of methodological knowledge (Figure 45, right side; F(1,41) = 0.428, p = .517).
The graph shows that the gains in the one-by-one condition (gone-by-one = 0.91; £(20) = -4.238, p <
.001) are larger than in the simultaneous condition (gsimuitaneous = 0.35; t(23) = -1.664, p = .110),
indicating that students in the one-by-one condition caught up with the students from the
simultaneous condition.

5.3.5.4 Effect on Students” Argumentation and Proof Skills

The descriptive results of the pretest and posttest for students’ mathematical argumentation and
proof skills (see Table 8) and the according longitudinal effect sizes in both conditions (gone-by-
one = -0.31 & Gsimutaneous = -0.28) show a slight decrease of students’ performance, possibly due to
after all more difficult posttest items. A one-way ANCOVA on students’ mathematical
argumentation and proof skills in the posttest, controlling for students’ conditional reasoning
skills, showed no significant difference (F(1,42) = 0.337, p = .564) between both conditions. This
is underlined by the analogous ANCOVA, additionally controlling for students’ results on
mathematical argumentation and proof skills from the pretest (F(1,41) = 0.144, p = .706).

To further examine these effects, we performed an exploratory analysis to compare the effects
of both conditions on students with different prior attainment, as prior research implied
according differences. For this, median-splits according to students’ pretest results on
mathematical argumentation and proof skills were calculated, making it possible to examine the
effects of both approaches on initially weaker respectively stronger students. The split resulted
in four groups, a weaker and a stronger group for both instructional approaches. Calculating the
longitudinal effects on the four groups showed mixed effects of the intervention (Table 10).

Table 10. Longitudinal effect sizes on students’ mathematical argumentation and proof skills for the median-split groups.

Number of Pretest Posttest Effect Size g
Students
M SD M SD

5 One-by-one 11 .22 .09 .22 .10 -0.06
-
©
2 Simultaneous 8 15 .11 23 .10 0.74
E’o One-by-one 10 .46 .06 .38 14 -0.81
[
o
ﬁ Simultaneous 16 47 .08 .36 .14 -0.93

Apparently, students with higher initial mathematical argumentation and proof skills did not
benefit from both approaches. On the other hand, results for the initially weaker students
showed that the simultaneous conditions lead to substantial gains, whereas the one-by-one
condition led to a negligible change. Although group sizes are small, the negative effect on the
stronger, simultaneous group was significant (t(15) = 3.137, p = .007), yet the other effects did
not reach significance (p > .072).

5.3.5.5 The Simultaneous Condition — an Illustration of the Effects

The exploratory analysis revealed first signs of an expertise reversal effect, that is initially strong
students, which appear to have more prior knowledge on the resources and connections
between those, benefit less from the intervention as compared to initially weaker students. Here,
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especially weaker students in the simultaneous condition seem to benefit from the intervention,
as the concurrent focus on multiple resources seems to lead to a better integration and handling
of argumentation and proof tasks. For the weaker students, the integration of the resources
therefore seems to be particularly beneficial.

Even though these results cannot be further underpinned statistically, a qualitative examination
may provide insights into the effects of the simultaneous approach for students with low initial
argumentation and proof skills. For this purpose, we provide a deeper analysis of Leia, a student
from the “weaker — simultaneous” group. Leia is 23 years old, in the first year of her bachelor
mathematics studies. She failed both exams from the first semester, which draw heavily on proof
construction.

Let (an)nen be a real sequence with the property that |a, — a,—1| < ¢" for 0 < ¢ < 1. Show,

that (an)nen is a Cauchy sequence.

Problem solving:
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Figure 46. Task description and Leia’s bullet points regarding problem solving (translated).

Leia’s work on the analysis of the given proof task regarding the resource problem solving (Figure
46) shows three main thoughts, each fitting to one of the elaboration and monitoring prompts
given to the students. The first two mirror her attempts to recall the meaning of the property of
the given sequence and to make sense of it, which seems to work out to a certain degree as the
second point correctly reflects the given property. The third point then shows that she has
created a plan for solving the task, even before actively trying to do so in her actual proof
attempt. That is, she plans to use the general problem-solving heuristic of working backwards,
here starting from the defining property of a Cauchy sequence (given in mathematical notation).
This strategy matches her work regarding the mathematical strategic aspects (Figure 47). By
concentrating on the structural parts of the given task, Leia unveils its type, referring to it as a
“Show, that something is X”-task. She then lays out a broad idea on how to solve this type of task,
by finding the properties that have to hold for an object to be a member of the class “X” and then
showing that these properties hold. This mirrors the strategy of working backwards mentioned
in the problem-solving analysis, which starts exactly with these properties.
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Figure 47. Leia’s bullet points regarding mathematical strategic knowledge (translated).

After carrying out both analyses, Leia starts her proof attempt (Figure 48). Apparently, she jumps
quickly into the proof, but is unhappy with her first approach and crosses it out (line 1). As the
crossed-out line is correct and resembles a reasonable approach for the task, it can be assumed
that Leia hesitates because she wants to stick to the information and procedures given to her in
the intervention, asking her to clearly clarify what is given and, in particular, her goal. Starting in
her third line, she then lays out the definition of a Cauchy sequence (with one minor error in line
4), which she then uses in her actual proof attempt, starting from line 6. Here, she can
successfully reduce the property of a Cauchy sequence to the property of the given sequence
(line 8-10) but then fails to explicate the last proof step and conclude that the resulting term
converges to zero as n increases.
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Figure 48. Leia’s proof attempt (translated; line numbers added).
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Leia’s work indicates that especially low attaining students may benefit from a structured
approach to mathematical argumentation and proof tasks. In her case, the explicit discussion of
aspects of the task related to the resources needed for the task, helped her to plan her problem-
solving process and to purposefully integrate and apply her mathematical content knowledge
about Cauchy sequences in her planning process. This may be seen as a result of the combined
focus on two resources, problem solving and mathematical strategic knowledge, in the
simultaneous intervention, as the conjunction of the results regarding both resources appear to
have shaped her solution. Yet, the first line of her proof attempt also highlights that this newly-
acquired, structured approach can also constrain her solution process as she did not just pursue
her first, probably so far usual approach to proving the statement. The new approaches
(analyzing the task according to the given prompts for each resource) and information on the
resources require a certain amount of reprocessing and have to be integrated into Leia’s prior
knowledge and solution process for proof tasks. As she belongs to the low attaining students, the
negotiation process between her prior knowledge and approaches with the new information
introduced in the intervention on how to use the resources to analyze tasks, how to include the
given prompts, and how to make meaning of the according results when working on a proof task,
may reasonably not be as pronounced as for stronger students. Further, her prior approaches to
constructing mathematical proofs may have been prone to error and even though the negation
process may inhibit her to some degree, the gains will likely overweight. In comparison, high
attaining students, who may have solved the task anyhow, will not benefit to this extent and the
inhibition is likely to overweight.

5.3.6 Discussion

Our intervention study examined instructional approaches to support the learning of the
resources underlying mathematical argumentation and proof skills, also aiming at benefits for
the overall skill. For this, a one-by-one approach focusing on each resource individually and a
simultaneous approach, focusing on the resources concurrently, both which were inspired by the
part-task / whole-task debate from instructional design, were compared.

Effects on the resources: The preliminary analyses of the results revealed that explicit training of
the resources of mathematical argumentation and proof skills can lead to remarkable learning
gains when focusing on individual resources. The longitudinal effect sizes between the
parallelized pre- and posttest indicate high positive effects on most resources, especially for
mathematical strategic knowledge and problem-solving heuristics. These high effects on
resources may reflect that both topics are not explicitly focused during university instruction on
mathematics so that initial learning gains are easy to achieve.

Focusing on the differences between the impact of both approaches on the resources, a
MANCOVA did not reveal an overall significant difference for students’ cognitive resources. Solely
students’ learning of mathematical strategic knowledge showed a significantly higher gain in the
simultaneous condition. Although our assumption was that the one-by-one approach would be
superior for the learning of the resources, this result appears reasonable: Mathematical strategic
knowledge refers to knowledge about cues within mathematical tasks that lead to promising
methods or concepts to tackle the tasks, and further refers to knowledge about strategies to
solve these tasks (Weber, 2001). It therefore is related to creating a representation of the
problem (problem space), identifying operators therein, and choosing an operator that may be
useful to accomplish the task. The successful use of mathematical strategic knowledge therefore
corresponds to a rather comprehensive view of tasks and is not only limited to certain steps
within the task. Mathematical strategic knowledge further shows multiple connections to the
other resources, as for example mathematical content knowledge is needed to create the
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problem space and identify the operators. Further, methodological knowledge is needed to
identify what a goal state for the problem is supposed to entail. Accordingly, the simultaneous
approach could be beneficial for this resource as implied by the data as it may emphasize and
strengthen these relations to other resources.

Effects on mathematical argumentation and proof skills: An ANCOVA comparing the posttest
results regarding students’ mathematical argumentation and proof skills did not show a
significant difference between both approaches. Still, examining this result more closely by using
a median-split revealed interesting effects: Whereas the initially stronger students could not
benefit from the intervention, weaker students showed a positive development, having better
learning gains for overall mathematical argumentation and proof skills. Here especially the
students from the simultaneous approach could benefit, suggesting that the integration of the
individual resources is of major importance and succeeds better when addressing the resources
concurrently. This discrepancy between weaker and stronger students could be interpreted as
an expertise reversal effect (Kalyuga, 2007; Kalyuga, Ayres, Chandler, & Sweller, 2003; Kalyuga &
Renkl, 2010; Salden, Aleven, Schwonke, & Renkl, 2010), suggesting that stronger students need
more effort to integrate the new information into their existing resources. Possibly, the findings
may also be caused by a regression to the mean (see James, 1973).

5.3.7 Conclusions and Outlook

The current study highlights that acknowledging the nature of a complex cognitive skill, having
multiple underlying resources, can inspire education and raises new questions for research. We
present first evidence that supporting a complex cognitive skill can not only be achieved by
focusing on the skill itself, but also with a resource-based strategy, explicitly addressing the
resources underlying the complex cognitive skill.

The results show that in the case of mathematical argumentation and proof skills the one-by-one
and the simultaneous approach can both be used to support students, at least regarding the
resources. Here, both approaches yielded substantial learning gains, especially for mathematical
strategic knowledge. Further, both approaches did not show large differences as implied by the
part-task / whole task debate (Branch & Merrill, 2011; van Merriénboer & Kester, 2007), but are
mostly comparable in learning gains.

Regarding the effects on students” mathematical argumentation and proof skills, further studies
are needed. Quantitative studies with larger samples, qualitative studies focusing more intensely
on the processes during the intervention as well as students’ proof construction processes after
the intervention, and studies examining the long-term effects of such an intervention will be able
to further investigate the observed differences regarding prior attainment and examine whether
also stronger students benefit from interventions targeting resources explicitly in the long run.
The results of this study, therefore, have to be seen as the starting point of research regarding
complex cognitive skills and their resources.

Further, including a control condition would be desirable to consolidate the results of this study.
However, there is no generic candidate for this, as the resources are usually not taught in
“regular” university mathematics courses. We would therefore rather propose to compare
intervention approaches acknowledging the underlying resources with several other approaches,
not explicitly taking the resources into account (e.g., Alcock & Simpson, 2002; Blanton et al.,
2003; Heinze et al., 2008; Moore, 1994; Reiss et al., 2007; Samkoff & Weber, 2015; J. Selden &
Selden, 1995). Outcomes could show whether acknowledging the underlying resources is
beneficial for supporting students’ learning. Here, special attention should be paid to the
comparability of the interventions, for example by using academic learning time, time on task, or
equivalent (Brodhagen & Gettinger, 2012) as a general measure.
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Compared to other studies (e.g., Merrill, 2002) where the learning content was (almost)
completely new to the learners, the current study is not concerned with the acquisition of a new
complex cognitive skill. This may be seen as a partial limitation, but should be interpreted as the
advantage of ecological validity. We examined real students in real learning settings, which are
analogous to situations lecturers at university would face when trying to support their students’
mathematical argumentation and proof skills. As these are the relevant situations, it is important
to also examine these and not only lab settings.

Finally, the inclusion of further process measures is another important step for future research
to understand the differences between both conditions better. Sociocultural and situated
learning theories imply that students in the simultaneous condition should perceive the work on
the tasks and accordingly their learning as more meaningful (e.g., Brown et al., 1989; Collins,
Brown, & Newmann, 1989; Lave & Wenger, 1991), inducing positive emotions and task-values
(see J. S. Eccles, 2005; Pekrun, 2006; Pekrun & Stephens, 2012), which may lead to productive
behavior. Contrary, students may be overwhelmed and confused by this approach, possibly
leading to less productive behavior. Thus, including measures for students’ emotions and task-
values would be valuable to observe the effects of the simultaneous condition on students
better.

Our studies’ main goal was to explore whether two different approaches (one-by-one and
simultaneous) that were inspired by research from instructional design would yield different
learning gains regarding a complex cognitive skill and its resources. The results of the study reveal
that both approaches for supporting students’ cognitive resources and their overall
mathematical argumentation and proof skills, do not differ vastly in their effectiveness. Thus,
findings therefore reveal that the tenet of the part-task / whole-task debate (J. R. Anderson et
al., 1996; Branch & Merrill, 2011) that whole-task approaches are favorable in the context of
complex cognitive skills cannot be transferred directly.

The study furthermore shows that including the resources into instruction supporting
mathematical argumentation and proof skills is highly valuable for the learning of the resources
and also has effects on students’ mathematical argumentation and proof skills. Here, students
with different prior attainment appear to benefit differently, and especially students with a low
prior attainment benefit substantially from the simultaneous approach.

Although future research is needed, the study showed a new resource-based approach to
develop powerful interventions that are not only limited to artificial settings with few students,
but can be scaled up (e.g., Looi & Teh, 2015; Sternberg et al., 2006) and are suitable for whole
classes or lectures.
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6 Synthesis

Outline We will first summarize and connect the central findings of our three studies and discuss
them in the larger context of current research. Some limitations of the present studies will be
outlined before completing this thesis by conclusions and an outlook on ongoing and future
research based on the results of this project.

We started the MIMAPS project to acquire a better understanding of the influence of individual,
cognitive resources underlying mathematical argumentation and proof skills on first-year
university students’ performance and how such resources can be used to support students. Our
central aims were to identify cognitive resources that were suggested by prior research to be
underlying mathematical argumentation and proof skills and to empirically determine their
relative impact on students’ performance in handling mathematical argumentation and proof.
These are of particular interest, as resources with a high, positive impact represent candidates
for educational interventions to support the resources themselves as well as students’ overall
mathematical argumentation and proof skills.

To address these aims, we first created a novel framework for mathematical argumentation and
proof skills (see section 4.1). It takes a comprehensive view focusing on three aspects that are
prominent in research on mathematical argumentation and proof skills, the resources underlying
mathematical argumentation and proof skills, the processes the skill is enacted in, and the
situations they are required in. The framework is based on the work by Blomeke et al. (2015) on
complex cognitive skills, using various frameworks from prior mathematics education research
to adapt it to the context of mathematical argumentation and proof skills (see section 4.1).

Research Literature Correlational Intervention
Framework Review Study Study

Figure 49. lllustration of the research framework and the three subsequent studies within our MIMAPS project.

Within our project, we conducted three consecutive studies spanning from theory to
intervention (Figure 49). First, over 750 research reports were reviewed to obtain an overview of
current emphases in research on mathematical argumentation and proof skills. Second, we
examined first-year mathematics students and assessed six potential individual cognitive
resources as well as students’ performance in two situations requiring their mathematical
argumentation and proof skills (proof construction and proof validation). Data were evaluated
using Generalized Linear Mixed Models to determine the relative importance of each resource
in either situation. Third, we compared two different instructional approaches for supporting the
individual resources of mathematical argumentation and proof skills alongside the overall skill in
a quasi-experimental intervention study.

Research was guided by the following questions that will also be used to structure the discussion:

RQl Which resources, processes, and situations in the context of mathematical
argumentation and proof skills are currently addressed by mathematics education
research? Is there research focusing on the individual aspects of mathematical
argumentation and proof skills in a comprehensive way? Which combinations of
aspects have been examined?

RQ2 Whatis the relative influence of the potential individual resources underlying students’
mathematical argumentation and proof skills on their performance in proof
construction and validation? Can differences regarding the influence of domain-specific
and domain-general resources be observed?
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RQ3 How do students’ proof validation skills relate to their proof construction skills? Can
their proof validation skills add to the explanation of their proof construction skills
beyond the included individual resources?

RQ4 What are the differences between two instructional approaches that aim at supporting
the resources individually one-by-one or simultaneously in terms of students’
acquisition of individual resources as well as overall mathematical argumentation and
proof skills?

6.1 Discussion of Central Findings

6.1.1 The Scope of Prior Research

Our initial systematic, descriptive literature review revealed that 20% of the 782 reviewed
research reports focused on mathematical argumentation and proof, thus supporting the
impression that the topic is central in mathematics education research (e.g., Hanna, 1991). The
findings also show that research addresses all three central aspects of our research framework
(resources, processes, and situations) on mathematical argumentation and proof skills, as well
as all sub-aspects of these. However, large discrepancies regarding their importance in research
can be seen. Currently, research focusing on the situation of proof construction, the process of
evidence generation, and the resource mathematical content knowledge clearly dominates,
replicating findings by Mejia-Ramos and Inglis (2009a, 2009b). Moreover, most studies take a
narrow perspective on mathematical argumentation and proof skills. For example, only every
fifth study explicitly considered more than one resource of mathematical argumentation and
proof skills, and only 7% of the studies involved multiple situations of mathematical
argumentation and proof skills. Accordingly, such studies help to better understand individual
aspects but are very limited in their contribution to a comprehensive view of mathematical
argumentation and proof skills. Furthermore, such studies are intrinsically incapable to compare
the importance of the individual resources or to differentiate between the situations
mathematical argumentation and proof skills are used in, as neither sufficient resources nor
multiple situations are included.

These results of our literature review are underlined by the finding that many combinations of
resources, processes, and situations relevant in the context of mathematical argumentation and
proof skills were not addressed at all. This can be interpreted as evidence that these
combinations are already well explored and that no further research is needed. However, we
doubt this as for example there is little empirical knowledge regarding the influence of
mathematical strategic knowledge (Weber, 2001) on proof construction and proof validation so
far, but it proved to be an important predictive resource for students’ performance in our
correlational study (see section 5.2). Another possible interpretation is that these combinations
of sub-aspects are examined but yield small effects or insights, so that this research is not
reported due to publication bias (see Kiihberger et al., 2014). Finally, the combinations that are
currently not in the focus may just be deemed to be of limited interest and are therefore not
examined.

Although there may be good reasons for some individual research gaps, our analyses of research
on the combinations of resources, processes, and situations revealed that there are currently
many combinations that appear not to be examined. Thus, there remain many open questions,
for example regarding the impact of mathematical strategic knowledge on the different
processes during proof construction such as hypothesis generation. Furthermore, not only our
review revealed that the connections between the resources of mathematical argumentation
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and proof skills and students’ performance in various situations appear to be under-researched
so far, but also the results of the correlational study raise several new questions, for example
regarding the varying influence of domain-general problem-solving skills depending on the
availability of domain-specific heuristics. Thus, a systematic approach to the different
connections between the aspects would be valuable.

6.1.2 The Resources Underlying Mathematical Argumentation and Proof
Skills in Proof Construction and Proof Validation

6.1.2.1 Empirical Evidence for the Relevance of Individual Cognitive Resources

To examine the impact of resources underlying mathematical argumentation and proof skills, we
assessed six cognitive resources as well as students’ performance in proof validation and proof
construction and used Generalized Linear Mixed Models to analyze the influence of the resources
on either performance. The empirical findings showed that students’ individual cognitive
resources can indeed be used to model and predict their performance in proof construction and
proof validation. Results thereby support our initial hypotheses and research framework
regarding the status of mathematical argumentation and proof skills as a complex cognitive skill.
Further, prior qualitative (e.g., Schoenfeld, 1985) and quantitative findings (e.g., Chinnappan et
al., 2012; Ufer et al., 2008) regarding the necessity of underlying resources are verified and
extended. In particular, we included a higher number of resources that were suggested as
important for mathematical argumentation and proof skills, and included proof validation as
another important situation requiring students’ mathematical argumentation and proof skills.
Although results emphasize the importance of underlying resources, prior findings regarding the
influence of the individual resources were only partially replicated. Our data verifies the influence
of mathematical content knowledge on proof construction found in prior studies (Chinnappan et
al., 2012; Ufer et al., 2008) but not the high influence of problem-solving skills. The latter may be
due to the sample size and according restrictions to power in this study, yet still implying that the
effect of problem-solving skills was lower as compared to both prior studies. Another potential
cause for the differing results is the influence of the conceptualization and operationalization of
the individual resources on their measured impact. Although each resource within our
framework was guided by prior research and thus some coherence can be assumed, there is a
certain ambiguity in prior research regarding some resources.

First, mathematical strategic knowledge introduced by Weber (2001) has to be better integrated
into current frameworks and its relations to other constructs, for example domain-general
problem-solving skills, conceptual and procedural knowledge, as well as other constructs that are
mentioned in the context of mathematical strategic knowledge, have to be examined and
clarified. Weber and Alcock (2004) also mentioned the selection of a more promising proof
production style (syntactic, semantic) to approach a given task (see section 3.4.1) as another
facet of mathematical strategic knowledge, which yet has to be properly integrated into the
construct. Our project added to the conceptualization of mathematical strategic knowledge by
giving the, to our knowledge, first quantitative operationalization and empirically showing (see
Table 5) that it is mostly independent of the other facets as it shows no significant correlation to
problem-solving skills.

Second, there are varying conceptualizations of problem-solving skills, some including
metacognition as a part of problem-solving skills (e.g., as control or monitoring), others
conceptualizing it as a resource relevant for problem solving, yet in principle more general (see
Carlson & Bloom, 2005; Gok, 2010; Mayer, 1998; Schoenfeld, 1985; Schoenfeld, 1992). Here, a
clearer separation and a common operationalization would be desirable, too.
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Besides these ambiguities, our studies have clearly shown that it is possible to measure multiple
resources of mathematical argumentation and proof skills reliably and mostly independently, as
demonstrated with the six resources in the correlational study. This is an important prerequisite
for further research on the resources underlying mathematical argumentation and proof skills
and thus represents an advancement for this line of research.

6.1.2.2 Domain-specificity of Mathematical Argumentation and Proof Skills

The findings of this project, especially those from the GLMM analysis within the correlational
study, underline that handling mathematical argumentation and proof is a knowledge intensive
activity that largely depends on domain-specific knowledge. For proof construction, all three
content- and domain-specific resources included in the study showed a significant impact, and
for proof validation, conceptual and mathematical strategic knowledge were the most important
resources. Prior research had already revealed the high impact of mathematical content
knowledge for proof construction (Chinnappan et al., 2012; Ufer et al., 2008), but the impact of
mathematical strategic knowledge is a major new result, which is in line with according
gualitative research results from mathematics education (e.g., Reiss & Heinze, 2004; Weber,
2001) as well as views regarding scientific reasoning and argumentation in general that underline
the need for strategic and meta-strategic knowledge (e.g., Sodian & Bullock, 2008, p. 432).
Moreover, the analysis of our intervention study shows that mathematical strategic knowledge
can be effectively trained and especially benefits from an integrated view on the resources of
mathematical argumentation and proof skills. We therefore emphasize mathematical strategic
knowledge as an important resource of mathematical argumentation and proof skills, which so
far is under-researched, and (to our experience) mostly not explicitly covered in mathematics
education at university, but can be fostered effectively.

6.1.2.3 The Importance to Differentiate Between Situations

So far, research on mathematical argumentation and proof skills in general and the underlying
resources in particular, was mainly concerned with proof construction (e.g., Chinnappan et al.,
2012; Mejia-Ramos & Inglis, 2009a; Ufer et al., 2008). This is reflected by the various frameworks
for the underlying resources (see section 3.2) and is also empirically underlined by our descriptive
literature review (see section 5.1; Figure 33, left). Accordingly, little is known about the impact
of students’ individual resources in situations other than proof construction.

To address this research gap, we used Generalized Linear Mixed Models (see Bolker et al., 2009;
Zuur et al., 2009) to examine the influence of six individual cognitive resources in the situations
of proof construction and proof validation. Results reveal that conceptual, procedural, and
mathematical strategic knowledge are the three most important resources for proof
construction, whereas proof validation relies mostly on conceptual knowledge and mathematical
strategic knowledge. Accordingly, one major difference between both situations is the low
impact of procedural knowledge on proof validation whereas it appears to be the most important
resource for proof construction. Further, proof validation appears to rely more on metacognitive
awareness and problem-solving skills than proof construction (see Table 7). However, as (our
local) students are not used to proof validation tasks, we assume that students had no prior
experience on how to address these tasks and possibly possessed no domain-specific strategies
to approach these tasks. Likely, students therefore relied on general problem-solving heuristics,
thereby leading to the observed influence of problem-solving skills. In contrast, students can be
assumed to have already worked on various proof construction tasks, thereby possibly acquiring
domain-specific strategies to approach these tasks, leading to the low impact of problem-solving
skills on proof construction.
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Overall, results reveal that although both situations show a clear emphasis of concept- and
domain-specific resources, both also differ in the impact of the underlying resources. Thus,
results suggest differences also for the mental processes applied in these situations. Future
research therefore needs to distinguish between different types of situations and demands in
the context of mathematical argumentation and proof. Also, more emphasis should be devoted
to proof reading and proof presentation as these do not only show substantial differences to
proof construction, but are also suggested to be especially important in learning settings (Mejia-
Ramos & Inglis, 2009a).

6.1.2.4 The (Lacking) Influence of Problem-solving Skills

As studies by both Ufer et al. (2008) and Chinnappan et al. (2012) had shown an impact of
problem-solving skills on students’ performance in proof construction, the lack of impact on both
proof validation and proof construction in this project is an unexpected finding. Potential reasons
contributing to the observed lack of impact of problem-solving skills are outlined below, each
opening new directions for future research.

6.1.2.4.1 Domain-specific vs. Domain-general Strategies

One key reason for the difference between our and prior studies may be related to the samples
of the studies and the development, selection, and interplay of domain-specific and domain-
general strategies in the context of mathematical argumentation and proof skills, which is up to
now not satisfactorily understood. Both prior studies found a significant impact of problem-
solving skills (Chinnappan et al., 2012; Ufer et al., 2008) examining secondary school pupils, that
is novices in comparison to the university students examined in our project. It is reasonable to
assume that the pupils relied to a greater extent on weak, domain-general problem-solving
strategies, whereas students may have used stronger, domain-specific strategies (see further
Newell, 1980) that they acquired in their remaining secondary school education and their first
semester at university. Thus, the shift in employed strategies towards domain-specific strategies
likely resulted in the lower impact of problem-solving skills. Future studies regarding the
availability of both kinds of strategies and their adaptive selection and use by students would be
valuable (see also Siegler, 1989). Furthermore, longitudinal or quasi-longitudinal studies could
provide insights into the development of the use and selection of domain-specific strategies
(related to mathematical strategic knowledge) and domain-general strategies (problem-solving
heuristics) depending on participants’ amount of expertise and domain-specific knowledge.

6.1.2.4.2 Relation to the Trichotomy of Proof Construction

Considering the theoretical background regarding the processes and phases in the context of
mathematical argumentation and proof skills (see section 3.3), another explanation for the lack
of impact of problem-solving skills arises: The items employed in this project for proof
construction have a medium to high empirical difficulty. Still, students’ difficulties may not be
related to the solving the problem phase of the trichotomy of proof construction as students
already knew similar tasks. The difficulties may be rather related to both other phases, that is
creating a deductive chain of arguments and correctly writing down the final proof. Accordingly,
students’ difficulties when handling the proof construction tasks may not be related to domain-
general problem-solving skills, as these are mainly required in the first phase of the trichotomy.
Accordingly, problem-solving skills may only explain a low amount of the variance in performance
in these tasks as suggested by our data.

6.1.2.4.3 Semantic, Syntactic, and Procedural Proof Production

A third possible explanation contributing to the lack of impact of problem-solving skills is based
on prior research regarding different types of proof production (Weber & Alcock, 2004, 2009).
Weber and Alcock’s (2004) exploratory study revealed that undergraduate students appear to
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rely mostly on syntactic proof production styles, whereas more advanced doctoral students and
professional algebraists use semantic styles to guide their proof production. Accordingly, the
students in our study, especially the weaker students, potentially did not use a semantic proof
production approaches that rely on an understanding of the problem as well as informal
representations and approaches, but rather pursued syntactic and procedural proof production
approaches. In contrast, pupils in prior studies (Chinnappan et al., 2012; Ufer et al., 2008) worked
on geometry proofs that were explicitly linked to informal, non-symbolic representations,
therefore substantially requiring their problem-solving skills.

This explanation corresponds to the presumed expertise reversal effect observed in the
intervention study: Given that undergraduate students predominantly apply syntactic and
procedural proof production approaches (Weber & Alcock, 2004), an explicit training supporting
the resources underlying mathematical argumentation and proof skills and the use of prompts
that scaffold the use of a semantic proof production approach, may influence students leading
to the observed longitudinal effects (see Table 10). For initially stronger students who had
already mastered syntactic and procedural proof production to a certain extent, the new
information and approach to handle proofs may have been hard to integrate into their prior
knowledge and well-established approaches. In comparison, weaker students, who were not yet
able to work profoundly with all three proof production styles, may have benefited from the
intervention as it enabled them to use semantic proof production to a greater extent.

The reliance on syntactic and especially procedural proof production approaches is also a
potential explanation for why students’ conditional reasoning skills did not show a significant
impact in our analyses. Potentially, students do not work on the level of inferences about
mathematical concepts but rather use formal rules, and therefore no impact could be measured
(see A. Selden & Selden, 2003; Weber & Alcock, 2005). This finding may further correspond to
those by Inglis and Alcock (2012) that novices employ less checking of between-the-line
arguments and checking of warrants when reading proofs. Perhaps, the construct of conditional
reasoning skills may be too narrow in the context of mathematical argumentation and proof and
should be replaced by a more general conception of reasoning skills, for example including
further aspects of first-order logic.

6.1.2.4.4 Differences in the Operationalization

Finally, the differences regarding the influence of problem-solving skills may also be due to
differences in the items employed to assess students’ problem-solving skills and the coding used
to analyze students’ answers, as these differ between both prior and our study:

In their study, Chinnappan et al. (2012) assessed problem-solving skills using items that were
largely unrelated to mathematics®®, for example asking students how to find out food
preferences of peers for a party (Chinnappan et al., 2012, p. 874). This ensured the domain-
generality of the items and clearly separated them from the employed geometry proof items.
However, Chinnappan et al. used the same coding procedure for both problem-solving items and
the geometry proof items, which is based on the work by Senk (1989) on geometry proof
problems.

Ufer et al. (2008) on the other hand used items for mathematics-related problem-solving skills
based on Lin (2005), which are somewhat closer to mathematics. These involve, for example,
basic geometrical properties such as symmetry but not the geometrical content or procedures
that were required for the proof tasks. The coding of students’ problem-solving tasks was then
based on the identification and processing of central ideas within the tasks.

%> This judgement assumes that the published example item, which at most required basic
arithmetic operations, is representative for all items.
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Although approaches in both studies differ, both appear as equally reasonable, although each
operationalization also affords a reason for the observed impact of problem-solving skills in their
results: The identical coding in Chinnappan et al. (2012) and the more mathematics related
problem-solving items in Ufer et al. (2008).

In our study, we used a triangulation of both prior approaches: Problem-solving skills were
assessed using mostly mathematics unrelated items, whereas coding was based on the central
ideas strategy used by Ufer et al. (2008). The again differing operationalization in our project may
therefore contribute to the observed lack of impact of problem-solving skills.

Reviewing items of all three studies, differences regarding two main characteristics can be
observed: First, some items are more closely related to mathematics, whereas others are mainly
domain-general. Second, items appear to require different sorts of problem solving. Some items
require a certain “insight” in order to be solved and can be partially related to a Gestalt Theory
conception of problem solving (e.g., Duncker & Lees, 1945; Kaplan & Simon, 1990), whereas
other tasks rather require analytical skills (see example item of Chinnappan et al.), and even
others require the use of several problem-solving operators and heuristics.

Overall, none of these three approaches including conzeptualizations, operationalizations, and
coding can be judged as correct or incorrect, yet they highlight issues in current research that
still have to be overcome.

6.1.3 Proof Construction vs. Proof Validation

Our initial analysis of the relationship between students’ proof validation skills and proof
construction skills revealed a significant correlation between both, which replicates prior findings
(e.g., Ufer, Heinze, Kuntze, et al., 2009). However, in our correlational study the GLMM analysis
that included all six resources and proof validation skills did not show an impact of proof
validation skills on proof construction skills. Thus, proof validation could not explain additional
variance of proof construction beyond that explained by the six resources when jointly analyzing
them. Accordingly, the correlation observed between both appears to be an artifact caused by
one or multiple resource(s) jointly underlying both skills. As our results show that the correlation
between proof construction and proof validation can be explained by the six resources included
in our framework, no evidence points towards another common underlying resource such as
methodological knowledge, which has repeatedly been suggested by prior research (e.g., A.
Selden & Selden, 2003; Ufer, Heinze, Kuntze, et al., 2009). This does not completely rule out that
methodological knowledge is another joint underlying resource, because power might not have
been sufficient to detect it, or because the six resources, especially the domain-specific ones,
may be confounded with methodological knowledge. Here, further research is needed.

Further, it appears that there is at least no strong relation between proof validation skills and
proof construction skills beyond the common resources. Thus, even though proof validation is a
sub-process of proof construction, it apparently does not add to proof construction beyond the
underlying resources.

6.1.4 Approaches to Support the Resources

To explore the educational implications of interpreting mathematical argumentation and proof
skills as a complex cognitive skill we compared two instructional approaches to foster the
underlying resources. Although the intervention study was rather short with only four 2-hour
sessions, three out of the four included resources (content knowledge, methodological
knowledge, and mathematical strategic knowledge) showed substantial learning gains in both
conditions. In contrast, problem-solving skills did not benefit from the short intervention. This
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appears reasonable, because compared to the three domain-specific knowledge facets, problem
solving is a very general skill that requires several underlying resources and their coordination
and integration (e.g., Schoenfeld, 1985). Thus, this result reflects prior findings, which revealed
that supporting problem-solving skills demands a decent amount of time (e.g., Schoenfeld, 1992),
and therefore was to be expected.

The effects of the short intervention on students’ performance in proof construction are mixed.
In contrast to initially stronger students, the initially weaker students in the simultaneous
condition appear to benefit substantially from the intervention. Potentially, this effect may be
interpreted as an expertise reversal effect (see Kalyuga, 2007; Kalyuga et al., 2003; Salden et al.,
2010) or as a regression to the mean (see James, 1973). The results may suggest that the
intervention bore a high complexity for the stronger students as they needed time to integrate
the input into their prior knowledge and behavior. Thus, longer interventions that are less dense,
possibly including a delayed posttest, would be preferable. Further, a study with a larger number
of participants could reveal more nuanced effects on students’ mathematical argumentation and
proof skills and the (interaction) effects regarding prior attainment and instructional approach.
In addition, more qualitative process data, for example in the form of audio / video recordings,
would be valuable to examine weaker and stronger students’ processes when handling proofs,
examine how these processes develop throughout the intervention, and evaluate their influence
on learning gains.

Our findings show that both instructional approaches employed in the intervention study are of
mostly comparable effectiveness with respect to students’ learning gains on the resources and
their overall mathematical argumentation and proof skills. The one-by-one approach, which
focused on each of the resources individually, and the simultaneous approach, which focused on
them at the same time, only resulted in a significantly different learning gain in mathematical
strategic knowledge, which was higher in the simultaneous approach. Thus, our data suggest that
the large advantages of a whole-task approach, a central tenet of the part-task / whole-task
debate in instructional design (e.g., Branch & Merrill, 2011; Fontana, Mazzardo, Furtado, &
Gallagher, 2009; Lim, 2006; Lim et al., 2009; van Merriénboer & Kester, 2007), cannot be directly
transferred to the level of individual cognitive resources and overall mathematical
argumentation and proof skills, at least not in that size. Accordingly, more research is needed to
examine how the acquisition and support of the individual resources underlying a complex
cognitive skill transfer to the overall skill. Furthermore, it would be valuable to compare the
resource-based approaches used in our intervention to other approaches (e.g., Alcock & Simpson,
2002; Blanton et al., 2003; Heinze et al., 2008; Moore, 1994; Reiss et al., 2007; Samkoff & Weber,
2015; J. Selden & Selden, 1995) in order to examine if an approach explicitly focusing on
resources underlying students’ mathematical argumentation and proof skills is superior to other
instructional approaches.

6.2 Limitations

Besides the results of our three studies and their connections, some limitations need to be
mentioned. First, there are common methodological and practical challenges: Naturally, a
literature review is prone to bias resulting from the inclusion and exclusion of different sources
and from the publication bias (see further Kiihberger et al., 2014) within these sources
themselves. Therefore, we have chosen to use conference proceedings from a recognized,
international conference for mathematics education research, an approach that appears less
biased to us then selecting specific journals.
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Both empirical studies of this project are subject to the limitations of field experiments and
ecological validity, such as the inability to randomly assign students to intervention groups. Yet,
we deliberately conducted the intervention study in an ecologically valid way to ensure that the
examined approaches are feasible in real-life situations and could be scaled up to whole classes
and lectures. As both empirical studies were part of a voluntary course, they may further be
prone to selection bias and re-sampling more students after the course was not possible. The
project would certainly have benefited from larger sample sizes to increase the higher power of
statistical hypothesis testing and to obtain more robust estimates of the coefficients for each
resource (correlational study) and of effect sizes (intervention study). This limitation was partially
overcome by using advanced statistical methods (Generalized Linear Mixed Models) and
appropriate statistical parameters for small sample sizes in the correlational study. Finally, a
larger number of students would have made it possible to include a control group for the
intervention study.

Besides these rather generic limitations that apply to most empirical field research to a certain
degree, we belief that the four more nuanced limitations outlined below may also be relevant
for future research.

6.2.1 Conceptualization and Operationalization

An important basis for our studies was the selection of resources that were not only suggested
to underlie mathematical argumentation and proof skills by prior research, but that also allowed
a clear conceptualization, operationalization, and empirical separation of each other. Reviewing
prior research (see also section 3.2) revealed a variety of studies and frameworks that were often
using slightly different terms, conceptualizations, and operationalizations of the resources. In
consequence, either specific conceptualizations had to be adopted, thereby disregarding others,
or prior conceptualizations had to be triangulated by trying to distill common features — a
problem also often encountered in reviews or meta-analyses (e.g., Cooper, Hedges, & Valentine,
2009; Cooper & Koenka, 2012). This lack of agreement on conceptualization and
operationalization limits possibilities to compare results with prior research and to make general
claims, a critique that was also mentioned for example for Hattie’s (2008) second-level meta-
analysis (e.g., Snook, O’ Neill, Clark, O’ Neill, & Openshaw, 2009; Wecker, Vogel, & Hetmanek,
2017).

Accordingly, our results should be seen as dependent on the projects’ conceptualizations and
operationalizations. As this limitation is unavoidable given the degree of agreement regarding
the resources in prior research, we tried to be as transparent as possible regarding the
conceptualization (see section 4.1.1), the operationalization, and the coding (see descriptions
within the individual studies. Furthermore, we classified the resources using the frameworks by
de Jong and Ferguson-Hessler (1996) and Chinnappan and Lawson (1996) to give a better
description and overview. Although the results of this project underline that our approach was
successful, a theory-based effort to create a unique framework for resources of mathematical
argumentation and proof skills would be desirable for future research. For this, existing
frameworks need to be systematically compared, analyzing similarities as well as differences. The
resulting theory-based framework than needs to be aligned to already existing empirical data
and empirically confirmed in subsequent studies to validate the included aspects and verify that
ideally all central resources are included.
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6.2.2 Coverage of Relevant Resources

The comprehensive research approach pursued throughout this project caused practical
limitations in both experimental studies. We intended to measure several individual, cognitive
resources as well as students’ mathematical argumentation and proof skills in multiple situations
in a way conforming to the performance criteria of empirical studies, for example ensuring
reliability and validity (e.g., Bortz & Doring, 2006; Kantowitz, Roediger Ill, & Elmes, 2015). For
this, the scales for the resources and for mathematical argumentation and proof skills in several
situations had to each consist of sufficient items to span the conceptual breadth and allow a
reliable measurement. However, testing time needed to be limited due to organizational reasons
and, more significantly, due to mental fatigue, which can impact task performance (see
Ackerman & Kanfer, 2009; Mockel, Beste, & Wascher, 2015; van der Linden, Frese, & Meijman,
2003) and accordingly may bias research findings. In consequence, the number of resources had
to be limited to six in our correlational study and four in the intervention study, and students’
time for each subscale was limited based on generous timings from a pilot study.

6.2.3 Disregarding the Processes

All three aspects (resources, processes, and situations) of the comprehensive research framework
underlying our project were considered in the literature review, whereas both empirical studies
"only" focused on several resources as well as two situations in the context of mathematical
argumentation and proof skills. Although this still to our knowledge includes more resources and
situations than any prior study, an assessment of the processes may have added significantly to
the value of the empirical studies. Hence, future studies should try to incorporate an assessment
of the processes into their research design, for example by video recording participants’ actions.
However, the inclusion entails further problems as participants’ processes of interest are mental
(see Blomeke et al., 2015) and measures based on observable characteristics can only be seen as
a proxy measure for the former. Examining the example shown in section 2.4.1 reveals that many
processes of interest are not directly accessible even though some are communicated orally or
are enacted or embodied (e.g., Abrahmson & Lindgren, 2014; Alibali & Nathan, 2012), and
therefore can be captured via video recordings. Furthermore, video recording students will fail
to yield additional insights if students are working silently on given tasks and scales. Therefore,
to capture the processes other methodological approaches are needed, for example using think-
aloud-methods (see further Ericsson & Simon, 1998) or using collaborative settings and observing
processes in dyads or groups (e.g., Kirsten, 2017; Nussbaum, 2008; Ottinger et al., 2017). Still, it
also needs to be considered how these different approaches change students’ behavior.

6.2.4 Resources Included in the Intervention Study

A limitation specific to our intervention study is related to the included resources. First, the
number of resources had to be reduced to four in this study, as time was even more limited.
However, there is not sufficient prior research on the teaching of resources underlying
mathematical argumentation and proof skills to make a clear statement how this decision
impacted the effects of our intervention. It may be a limitation, reducing the effects of the
intervention, as not all resources from the working model are included, or be a benefit as
complexity is reduced.

In consequence, we included mathematical content knowledge, mathematical strategic
knowledge, methodological knowledge, and problem-solving skills. As results from the
correlational study were not available at that time, the selection was based on prior existing
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literature. As results of the correlational study revealed later, one of the four resources (problem-
solving skills) was not validated as a resource underlying mathematical argumentation and proof
skills. Further, methodological knowledge had not been included in the correlational study, so
that no definite answer regarding its role can be given.

Overall, not all “resources” included in the intervention study were empirically validated as
resources significantly predicting students’ performance in proof construction in this study. Thus,
results regarding the effect of the intervention on students’ mathematical argumentation and
proof skills might have been more conclusive if the study would have focused only on those
resources that have been empirically underlined.

6.2.5 Structuring Mathematical Argumentation and Proof Skills Based on
Several Resources, Processes, and Situations

One important assumption underlying this project and the research framework is that students’
mathematical argumentation and proof skills can be analytically divided based on several
resources, processes, and situations. This decomposition of mathematical argumentation and
proof skills clearly is only a model. It is used to reduce the complexity of the phenomenon and to
aid the understanding of mathematical argumentation and proof skills (Blomeke et al., 2015). It
helps to structure a monolithic skill by creating smaller entities that are easier accessible, deemed
to be key aspects for understanding the overall skill, and can help to explain the variance in
students’ performance. Although this approach has been taken in several other research areas
with positive results (e.g., Sadler, 2013; Shavelson, 2010; Shulman, 1986), it can be questioned
based on the phrase “the whole is more than the sum of its parts” (see Sadler, 2013, pp. 15-17).
Furthermore, as our research framework (see section 4.1) and the correlational study (see
section 5.2) only include a limited number of resources, which are assumed to be among the
most important resources based on prior research, the model is likely not loss-free and cannot
completely explain students’ argumentation and proof skills. Yet, it is an empirical question how
useful the approach is in describing overall mathematical argumentation and proof skills. Our
project gives evidence that the framework can be used to structure research on argumentation
and proof skills and that the approach appears to be adequate to model students’ mathematical
argumentation and proof skills. Further, based on the results from the intervention study, the
approach also seems beneficial for instruction as learning effects on the resources were mostly
positive. Still, whether the approach is also beneficial for the support of overall mathematical
argumentation and proof skills remains to be verified in subsequent studies.

6.3 Outlook

6.3.1 Ensuring the Generalizability of the Results of the Project

Based on the limitations of the studies of our project, future replication studies as well as further
analogue studies, for example including a longer intervention, are of high value. First, a
replication of the experimental studies within this project with more participants will lead to a
stronger empirical basis and give further evidence for the underlying framework and
methodological approach. Given sufficient data, these studies also allow to use other than linear
models to analyze the data in order to examine more nuanced effects of the resources, for
example regarding very low or high availability of certain resources. Second, analogue studies in
other mathematical content areas, for example, linear algebra, will show if the results of our
studies, such as the relative influence of the resources, are (to some degree) concept-specific.
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Third, a replication of the correlational study with more experienced students or experts will
allow comparisons regarding the importance of the resources between these groups, potentially
unveiling shifts in the importance of some resources with increasing mathematical expertise.
For this project, we decided to focus on first-year university students as research repeatedly
highlighted their struggles, and we aimed to examine the resources underlying their
mathematical argumentation and proof skills to identify those with a high relative impact, leading
to the successful handling of argumentation and proof. This assured ecological validity and allows
to “suggest learning trajectories that might be applicable for many other students as well”
(Weber, 2009, p. 201). Focusing on more experienced students or experts in future studies will
give insights into experts’ use of resources and help to understand the influence on their
performances in various situations. Still, the pedagogical value of such results are often limited
(Weber, 2009), and research within the novice-expert paradigm has repeatedly shown that "it
would be a mistake simply to expose novices to expert models and assume that the novices will
learn effectively” (Donovan, Bransford, Pellegrino, & others, 1999). Accordingly, results could
rather be used to compare the influence of the resources between the groups and to examine
experts’ mathematical argumentation and proof skills as the “goal-state” of university
mathematics education, rather than trying to directly impose experts’ behavior on students via
instructional interventions.

6.3.2 Acknowledging Resources, Processes, and Situations in the Context
of Mathematical Argumentation and Proof Skills

A key finding of our project is that first-year university students’ mathematical argumentation
and proof skills depend on several individual cognitive resources, and that their influence differs
between situations. Thus, results underline the importance of resources and situations in the
context of mathematical argumentation and proof skills. More generally, our MIMAPS project
gave first evidence that the research framework based on the work by Blomeke et al. (2015) is
valuable for planning, conducting, and analyzing research with a comprehensive view on
mathematical argumentation and proof skills. Accordingly, further use of the framework is
desirable. Primarily, the framework can be used to structure future studies with respect to the
different aspects and sub-aspects of the framework, especially to safeguard that all relevant
aspects of mathematical argumentation and proof skills that may bias research results are
included, as for example underlying resources may lead to systematic differences in research
findings. Moreover, the use of the framework would lead to an organized net of systematic
research on mathematical argumentation and proof skills as each study could be positioned
within the framework. Consequently, research would lead to an increasingly coherent and
comprehensive picture of mathematical argumentation and proof skills and research gaps could
be discovered more easily.

From an educational point of view, a major aim is to assure that students have the necessary
resources at hand (see Schoenfeld, 2012b) that are required to effectively engage in their
mathematics studies. This may be especially important at the transition from secondary to
university education, as students enter university with different prior education. Another way to
purposefully use the resources for instruction is by utilizing them to structure proof construction
processes and thereby offer students a scaffold for their work. Thus, a training similar to self-
explanation trainings (Hodds et al., 2014) may prove effective to support students’ proof
construction. Here, not only an analysis of the effects on students’ performance, but also of the
individual processes and how instruction regarding the resources may change and shape these,
would be valuable.

124




Synthesis

Finally, the individual resources of mathematical argumentation and proof skills that showed a
substantial impact within this project are mainly content- and domain-specific. Accordingly,
researchers as well as lecturers may want to focus on such resources when working on
approaches to support students. Here, the project provides evidence that this can be done
effectively, at least on the level of the resources themselves and partially also for the overall skill.
Yet, what the exact conditions for the effectiveness of interventions focusing on the resources of
mathematical argumentation and proof skills are, was not answered definitely. Judging from the
positive effects of the simultaneous approach, which focuses on various resources at the same
time, this type of resource-based intervention seems to be particularly beneficial for weaker
students. Here, more research, especially including longer intervention studies, which allow
students to better process the input and annex it to their prior knowledge, is needed.

6.3.3 The Interplay of Proof Construction and Proof Validation

Within this study, we emphasized that there are different situations that require mathematical
argumentation and proof skills. However, handling argumentation and proof in these situations
can also be educationally used to support students’ mathematical argumentation and proof skills
as well as the individual resources. This can be strategically used in university teaching contexts.
Besides comprehending proofs that are presented in lectures, students have so far been mainly
asked to construct proofs for their lectures and seminars at university. In contrast, proof
validation has been only implicitly included. However, research suggests that proof validation
can inform proof construction (Pfeiffer, 2009a, 2011), can provide rich learning opportunities,
and enables novice students to participate in mathematical practice (Pfeiffer & Quinlan, 2015).
Our findings add to this by showing that students’ performance in both situations partially
depends on the same resources (i.e., conceptual mathematical knowledge, mathematical
strategic knowledge). Thus, by handling mathematical argumentation and proof tasks in one
situation, students indirectly also work on the underlying resources and thereby may reflect,
elaborate, and train these resources, possibly leading to learning gains for the individual
resources and their integration. At least the individual learning gains regarding each resource
may likely transfer also to other situations involving mathematical argumentation and proof tasks
which require the same resources. Thus, handling mathematical argumentation and proof tasks
in one situations may be beneficial for other situations, too (Figure 50).

Leads to Leads to
Learning and Learning and
Integration of Integration of
Proof Validation < Ressources > Proof Construction
Required for Required for
Performance in Performance in

Figure 50. Reciprocal connection between proof validation and proof construction via the underlying resources.

Furthermore, our findings as well as prior research (e.g., Healy & Hoyles, 1998) suggest that
students’ have less difficulties with proof validation than with proof construction. Accordingly,
proof validation tasks may render (the concept of) proof easier accessible for students when
starting to handle proofs at the university and may be especially helpful to train specific resources
such as mathematical strategic knowledge or methodological knowledge. Therefore, a proof
validation alongside proof construction or proof validation before proof construction strategy
may be useful for supporting students in acquiring mathematical argumentation and proof skills.
As empirical evidence for the effectiveness of such strategies is missing, we have already
conducted a mixed-methods study to address this question and data are currently in analysis.

125




The Resources Underlying Students’ Mathematical Argumentation and Proof Skills

6.3.4 The Trichotomy of Proof Construction

Considering both the trichotomy of proof construction (see section 3.3.4) and the lacking impact
of problem-solving skills on students’ proof construction performance in our project, further
research regarding the three phases of the trichotomy is required. Although it has been
repeatedly shown that constructing mathematical proofs is difficult across ages (e.g., Healy &
Hoyles, 2000; A. Selden & Selden, 2013; Weber, 2001), these difficulties, more exactly the specific
phase of the proof construction process that causes these difficulties, may depend on prior
knowledge and problem-solving skills. As pointed out in section 6.1.2.4.2, first-year university
students’ difficulties with constructing proofs may not relate to the first step within the
trichotomy (solving the problem), which mainly requires students’ problem-solving skills, but may
be due to problems with creating the deductive chain, formulating, and writing down the final
proof. Here, insights in the relation between the three phases of the trichotomy, students’
difficulties, and the need for problem-solving skills would be valuable. Results may be able to link
the findings of our project with prior research (Chinnappan et al., 2012; Ufer et al., 2008) showing
that problem-solving skills are an important resource for school pupils’ mathematical
argumentation and proof skills. The assumption that students’ difficulties are related to a later
phase in the trichotomy is also supported by positive effects of heuristic worked-out examples,
which focus largely on problem solving, in school environments (e.g., Hilbert et al., 2008; Reiss
et al., 2008), whereas effects at university appear to be lower (Kollar et al., 2014).

From an educational point of view, the trichotomy of proof construction may prove useful for
instruction on proof construction, as it clearly separates three main phases of proof construction
and could help students to understand, why their solutions for proof tasks are often not accepted
as proofs. Here, methodological knowledge can also be explicitly picked up.

6.3.5 Giving Structure to the Resources

As pointed out in the limitations, the conceptualization, operationalization, and thereby the
separation of the resources underlying mathematical argumentation and proof skills represent
major obstacles (see section 6.1.2.4.4). Here, further clarification based, for example, on the
frameworks by de Jong and Ferguson-Hessler (1996) or Chinnappan and Lawson (1996) would be
valuable. Although our project has made a first step in this direction, future research integrating
current theoretical frameworks is needed to identify, conceptualize, and empirically validate
relevant resources of mathematical argumentation and proof skills. The resulting framework
including conceptualizations, operationalization, and possibly exemplary scales of each resource
would be an important basis to structure and compare future results.

6.4 Resume

The acquisition of mathematical argumentation and proof skills is one of the major learning goals
of university mathematics programs, still mathematics students were repeatedly shown to
struggle. Our MIMAPS project contributes to research on university students’ argumentation and
proof skills with several results and complements existing qualitative (e.g., Schoenfeld, 1985;
Schoenfeld, 2012a; Weber, 2001) and quantitative (Chinnappan et al., 2012; Ufer et al., 2008)
studies regarding the underlying resources. We give a descriptive overview of current research,
highlighting three aspects (resources, processes, and situations) of mathematical argumentation
and proof skills and point out currently under-researched areas. Further, empirical evidence on
the relative importance of several cognitive resources underlying proof construction and proof
validation is given, highlighting the importance of domain-specific knowledge and in particular of
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mathematical strategic knowledge for both situations. We also introduce two resource-based
instructional approaches to support students in their acquisition of mathematical argumentation
and proof skills, empirically quantifying and comparing the effects of both approaches on the
resources and on overall mathematical argumentation and proof skills.

In all three consecutive studies ranging from literature review to intervention, the analytic
approach to examine individual aspects instead of the overall complex cognitive skill has proven
useful to explain the mechanisms underlying mathematical argumentation and proof skills and
thus to obtain a better understanding. The overall framework introduced by our project,
combining resources, processes, and situations in the context of mathematical argumentation
and proof skills, can now be used as a fundament for future systematic research to construct an
increasingly coherent picture of mathematical argumentation and proof skills as a complex
cognitive skill.
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