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1 English abstract 

Aims: Hypoxia due to high altitude or otherwise altered fraction of inspired O2 affects 

cerebral mechanisms. Human brain function can be assessed indirectly via 

examination of local changes in haemodynamics in fMRI. The aim of this study was to 

examine if adaptation to normobaric hypoxia determines divergent activation in the 

brain regions supplied by the main cerebral arterial vessels. 

Methods: Visual and motor paradigms were used to shed light on the activation of 

different brain regions in fMRI under normobaric hypoxic conditions in 16 healthy male 

subjects. Hypoxia was produced by reducing the percentage of O2 in an inhaled gas 

mixture resulting in normobaric hypoxia with an FiO2 of 13 %. Participants had to 

complete a total of 3 MRI sessions to study different oxygen conditions: normoxia (FiO2 

= 0.21, normal pressure), short-time (7 ± 1 min, FiO2 = 0.13, normal pressure), long-

time hypoxia (8 h and 29 ± 24 min, FiO2 = 0.13, normal pressure). Each session lasted 

approximately 30 min, consisting of two fMRI runs (1 visual task, 1 motor task) which 

were pseudo-randomized between participants, followed by the structural sequence. 

Cerebral symptoms of AMS were assessed by means of the LLS and it was examined 

if symptomatic AMS has consequences on brain activation patterns measured as ∆S 

values. 

Results: Mean ∆S during normoxia was 2.43 ± 0.80 % due to motor stimulation, and 

3.49 ± 1.41 % due to visual stimulation. During motor stimulation, the mean signal 

change due to short-time hypoxia was 0.55 ± 0.30 % and 0.82 ± 0,62 % due to long-

time hypoxia. During visual stimulation, the mean signal change due to short-time 

hypoxia was 1.79 ± 0.69 %. Long-time hypoxia led to a mean signal change of 2.02 ± 

1.18 %. Repeated ANOVA measures with factors task (motor, visual) and the hypoxic 

conditions (short-time hypoxia, long-time hypoxia) showed a main effect of task (F (1, 

15) = 52.10, p < 0.001), but no main effect of the hypoxic condition (F (1, 15) = 1.79, p 

= ns). 

Conclusions: Hypoxia led to diminished cerebral activation during motor and visual 

stimulation in spite of a preserved cerebral function. The oxygenation changes 

associated with brain activation seem more influential on the motor area, rather than 

the visual cortex. Therefore, the capability of the human brain to acclimatise to chronic 

hypoxic conditions may vary in the motor and the visual system. 
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2 Deutsche Zusammenfassung 

Ziele: Hypoxie aufgrund großer Höhe oder eines anderweitig veränderten Anteils von 

eingeatmetem O2-Gehalts beeinflusst zerebrale Mechanismen. Die menschliche 

Gehirnfunktion kann indirekt über den Nachweis lokaler hämodynamischer 

Veränderungen im fMRT bestimmt werden. Das Ziel dieser Studie war es, zu 

untersuchen, ob die Anpassung an normobare Hypoxie eine unterschiedliche 

Aktivierung in von den drei Hauptgefäßen versorgten Gehirnregionen erzeugt. 

Methoden: Bei 16 gesunden, männlichen Probanden wurden visuelle und motorische 

Testparadigmen angewendet, um die Aktivierung verschiedener Hirnregionen im 

fMRT unter normobaren, hypoxischen Bedingungen aufzuklären. Hypoxie wurde mit 

Hilfe eines sauerstoffreduzierten Gasgemischs (O2-Anteil 13%) erzeugt. Die 

Probanden mussten insgesamt 3 MRT-Sitzungen absolvieren, um verschiedene 

Sauerstoffzustände zu untersuchen: Normoxie (FiO2 = 0,21), Kurzzeithypoxie (7 ± 1 

min Hypoxie, FiO2 = 0,13), Langzeithypoxie (8 h und 29 ± 24 min Hypoxie, FiO2; = 

0,13). Jede Sitzung dauerte ca. 30 min und bestand aus je zwei fMRI-Durchgängen (1 

visuelle Aufgabe, 1 motorische Aufgabe). Die zerebralen Symptome einer 

Höhenkrankheit wurden mittels des LLS bewertet und der Einfluss einer 

Höhenkrankheit auf die Gehirnaktivierungsmuster im fMRT untersucht. 

Resultate: Die mittlere BOLD-Signalveränderung während Normoxie betrug bei 

motorischer Stimulation 2,43 ± 0,80% und bei visueller Stimulation 3,49 ± 1,41%. Bei 

motorischer Stimulation betrug sie nach Kurzzeithypoxie 0,55 ± 0,30% und 0,82 ± 

0,62% nach Langzeithypoxie. Bei visueller Stimulation betrug die mittlere 

Signaländerung aufgrund von Kurzzeithypoxie 1,79 ± 0,69 und aufgrund 

Langzeithypoxie 2,02 ± 1,18%. ANOVA-Messungen mit den Faktoren Aufgabe 

(motorisch, visuell) und hypoxische Bedingungen (Kurzzeithypoxie, Langzeithypoxie) 

zeigten einen Effekt der Aufgabe (F (1, 15) = 52.10, p <0.001), aber keinen Effekt der 

hypoxischen Bedingung (F (1, 15) = 1,79, p = ns) auf die BOLD-

Signalwertänderungen. 

Schlussfolgerungen: Hypoxie führte zu einer verminderten Hirnaktivität im fMRT bei 

motorischer und visueller Stimulation trotz erhaltener Hirnfunktion. Die mit der 

Gehirnaktivierung verbundenen Veränderungen der Oxygenierung scheinen eher 

Einfluss auf den motorischen Bereich als den visuellen Kortex zu haben. Die 

Adaptationsfähigkeit an chronische hypoxische Zustände scheint sich demzufolge 

zwischen dem motorischen und dem visuellen System zu unterscheiden. 
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3 Abbreviations 

∆S ................................................................................... BOLD signal intensity change 

2,3-BPG .................................................................................. 2,3-bisphosphoglycerate 

ACA .......................................................................................... anterior cerebral artery 

ADP ......................................................................................... adenosine diphosphate 

AMS ....................................................................................... acute mountain sickness 

ANOVA ......................................................................................... analyses of variance 

AP ......................................................................................................... action potential 

ASL ............................................................................................... arterial spin labelling 

ATP ......................................................................................... adenosine triphosphate 

BA ............................................................................................................. basilar artery 

BOLD ............................................................................ blood-oxygen-level-dependent 

CBF ................................................................................................ cerebral blood flow 

CBVv ............................................................................. venous cerebral blood volume 

CDO2 ......................................................................................... cerebral delivery of O2 

CMRO2 ............................................................................ cerebral metabolic rate of O2 

CO2 ........................................................................................................ carbon dioxide 

CVR ..................................................................................... Cerebrovascular reactivity 

deoxyHb ............................................................................ deoxygenated haemoglobin 

EPO ......................................................................................................... erythropoietin 

FiO2 ............................................................................................ fraction of inspired O2 

fMRI ............................................................... functional Magnetic Resonance Imaging 

FTT ................................................................................................... finger tapping test 

FWE .................................................................................................... familywise error 

FWHM ................................................................................. full-width at half-maximum 

Glc ................................................................................................................... Glucose 

GLM .............................................................................................. general linear model 

GMN ................................................................................................. grey matter nulled 

HACE .............................................................................. high altitude cerebral edema 

HAPE ............................................................................ high altitude pulmonary edema 

Hb ............................................................................................................. haemoglobin 

HE ......................................................................................... Hypoxic Encephalopathy 

HIF .......................................................................................... Hypoxia-inducible factor 
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HRF ........................................................................... hemodynamic response function 

LLS .................................................................................................. Lake Louise Score 

LMU ............................................................................. Ludwig-Maximilians-Universität 

MCA ........................................................................................... middle cerebral artery 

MCAv ................................................................... middle cerebral artery blood velocity 

MNI ............................................................................... Montreal Neurological Institute 

NMR ............................................................................... Nuclear Magnetic Resonance 

NO ............................................................................................................... nitric oxide 

O2 ...................................................................................................................... oxygen 

OEF ............................................................................................. O2 extraction fraction 

OXPHOS .............................................................................. oxidative phosphorylation 

oxyHb .................................................................................... oxygenated haemoglobin 

p.d.u. ......................................................................................... procedure defined unit 

PaCO2 ............................................................. partial pressure of CO2 in arterial blood 

PaO2 .................................................................. partial pressure of O2 in arterial blood 

PCA .........................................................................................posterior cerebral artery 

PCO2 ........................................................................................ partial pressure of CO2 

PET ............................................................................... positron emission tomography 

pH ................................................................................. concentration of hydrogen ions 

PMC ............................................................................................. primary motor cortex 

PO2 .............................................................................................. partial pressure of O2 

POI ....................................................................................................... point of interest 

PRES ................................................... posterior reversible encephalopathy syndrome 

PVC .............................................................................................. primary visual cortex 

R2* .......................................................................... effective transverse relaxation rate 

RR ......................................................................................................... blood pressure 

RT ............................................................................................................. reaction time 

SaO2 ..................................................................................... arterial oxygen saturation 

SD ................................................................................................... standard deviation 

SDB .................................................................................... sleep-disordered breathing 

SNR ................................................................................................ signal to noise ratio 

TCD ............................................................................. transcranial Doppler ultrasound 

TE .................................................................................................................. echo time 

VASO .................................................................................. vascular space occupancy 
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Ve ..................................................................................................... expiratory Volume 

VEGF ....................................................................... Vascular endothelial growth factor 

x̅  ......................................................................................................... arithmetic mean 
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5 Introduction 

5.1 Hypoxia at altitude 

Air is one of the foundations of life for humans, animals and plants. Humans can 

survive without food for about 40 days, without water for about five days, but can only 

survive without air for just a couple of minutes. Air contains 21 % oxygen (O2), thus the 

fraction of inspired O2 (FiO2) is 0.21 accordingly. Humans need it to oxidize nutrients 

and keep the metabolism going. Every human cell is dependent on continuous influx 

of O2. The influx of O2 into the cell happens only by diffusion of O2-molecules through 

the cell membrane. However, transportation of O2 solely by diffusion is not possible in 

an organism as complex as the human body. According to Fick’s second law, diffusion 

is only physiologically efficient over very short distances of ≤ 10 µm (Behrends, 2010), 

as diffusion velocity declines by the square of the distance (Erdélyi, 2013): 

��
�� = � ���

��� 

ρ is number of atoms per unit volume, x is distance in [m], t is time in [s], D is diffusion 

coefficient in [m2/s] 

Long distances can be covered with the help of transport mediums like haemoglobin 

(Hb) in erythrocytes. The main function of the lungs is intake of sufficient amounts of 

O2 from the atmosphere and simultaneously the emission of metabolically generated 

carbon dioxide (CO2), both via gas exchange in the alveoli. The alveolar membrane is 

the gas exchange surface. Lung capillaries carrying deoxygenated blood contact the 

alveoli and form the very thin membrane, so diffusion of gases between the inspired 

air and the blood can quickly happen. On average one capillary runs across three 

alveoli (Behrends, 2010) forming a short section in which the diffusion-driven gas 

exchange happens. While the blood flows through this contact section, the different 

partial pressures of capillary and alveolar gases gradually equalize. Diffusion 

equilibrium is normally reached after one third of the contact section (Behrends, 2010). 

During certain circumstances like physical exercise, excess CO2 is produced, and cells 

require increased O2. The body responds to this change by increasing the breathing 

and heart rate, maximizing the rate of possible gas exchange. This increased demand 

is not satisfied by increased diffusion, since it depends only on fixed variables. O2 

intake is therefore only increased by enhanced perfusion of lung capillaries. Lung 
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activity is regulated by chemoreceptors measuring the partial pressure of O2 (PO2), 

partial pressure of CO2 (PCO2) and concentration of hydrogen ions (pH) in blood and 

spinal fluid. In vertebrates, Hb can be oxygenated (oxyHb), or deoxygenated 

(deoxyHb), and it increases the O2 carrying ability of a litre of blood from 2.7 ml 

physically dissolved to approximately 250 ml bound to haem (Behrends, 2010). O2 is 

almost exclusively transported by Hb, so O2 transport depends on Hb concentration. A 

Hb molecule consists of four subunits which are globular proteins with an embedded 

haem group. A haem group consists of an Fe2+ ion located in the centre of the porphyrin 

ring. The Fe2+ ion bound in fact is responsible for the reversible binding of O2. 

There are two conformational forms of Hb. If O2 content in blood is low and none of the 

four haem groups has bound O2, Hb is in a tense form and has low affinity to O2. The 

Fe2+ ion sticks a little bit out of the plane of the whole porphyrin ring. 

Binding of O2 to the Fe2+ ion draws the Fe2+ more into the plane of the porphyrin ring. 

This causes a conformational shift to a more relaxed form. A relaxed state encourages 

O2 to bind to the other haem groups within Hb. Hence, O2 binding is cooperative. After 

O2 has been bound to all four haem components, the Hb molecule is saturated. The 

affinity of Hb to O2 is modulated by various factors, e. g. pH, CO2 and 2,3-

bisphosphoglycerate (2,3-BPG). Binding of O2 itself influences the affinity, too. See 

chapter 5.1.1 for further details. 

The driving force for the gas exchange in the peripheral tissue is the difference in local 

PO2 and PCO2 between incoming oxygenated arterial blood and surrounding tissue. 

In these peripheral tissues, local PO2 and pH is low because cells consume O2 and 

produce H+ ions through oxidative phosphorylation (OXPHOS), while PCO2 is high. 

OXPHOS is a pathway in human metabolism which cells use to oxidize nutrients and 

release energy to reform adenosine triphosphate (ATP). OXPHOS takes place at the 

inner membrane of the mitochondria. 

At the semipermeable membrane of neurons, there is a potential difference. It is based 

on the different concentration of ions (Na+, K+, Cl-) between the outside and the inside 

of the cell, resulting in ion gradients. The arrival of an action potential (AP) triggers a 

cascade that includes Ca2+ influx, neurotransmitter release, binding of neurotransmitter 

on the post-synaptic side, and opening of ion channels for Na+ and K+ (Buxton et al., 

2004). Afterwards, Na+, K+ and Ca2+ must be transported against their gradients back 

into the cell to re-establish the original ion distributions and the synaptic cleft must be 

cleansed of Neurotransmitters before the arrival of the next AP (Buxton et al., 2004). 
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Thus, the energy cost of neural activity arises mainly from the regeneration from 

signalling processes. As in most biological systems, this energy is gained by the 

conversion of ATP to adenosine diphosphate (ADP).  

Particularly sensitive to a lack of O2 is the brain. Insufficient supply of O2 to the brain 

tissue is only tolerated for a short period of time and brain cells start decaying less than 

5 min after their O2 supply terminates (Goldman and Schafer, 2016). Consequently, 

cerebral hypoxia can cause severe brain damage and eventually results into death. 

Such hypoxic situations can appear acutely by failure of circulation due to cardiac 

arrest or arrhythmias with delayed reanimation, burying or drowning accidents. In 

patients with chronic hindered lung function due to tumours or pulmonary diseases, 

decreased arterial O2 saturation (SaO2) might occur. In the last three days of life there 

are clinical phenomena which lead to dramatically declining SaO2: apnoea periods, 

Cheyne-Stokes breathing, peripheral cyanosis and pulselessness of radial artery (Hui 

et al., 2015). Quite similar situations are well known in high altitude or mountain 

medicine since the PO2 is lowered at high altitude. Barometric pressure is the 

hydrostatic pressure of air against surface of the earth. Since the air components at 

low elevations are compressed by the weight of the air components above them, the 

barometric pressure is great. At higher elevations, air components are more dispersed 

and barometric pressure is lower since there is less weight of air from above. The 

proportion of each gas component in the air is constant up to 12000 m although 

barometric pressure decreases, but gains of altitude result in a lower PO2 in the 

inspired air. PO2 in the atmosphere decreases with increasing altitude. At sea level 

PO2 is ~ 160 mmHg. At 5500 m it is about half and at 8500 m it is only about one third 

of PO2 at sea level. 
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Figure 1: The gradual relation among atmospheric PO2, altitude gain and the 

concomitant neurological effects. Gradual exposure, e. g. by walking, to lowered 

atmospheric PO2 in high altitudes leads to neurological impairments. With increasing 

altitude, these impairments show increasing severity. On the right, some major 

mountains are displayed for reference (Wilson M. H. et al., 2009). 

 

5.1.1 Adaption to hypoxia 

Insufficient supply of the brain with O2 poses an acute life-threatening situation. 

Exposure to high altitude and therefore hypobaric hypoxia can lead to a spectrum of 

pathophysiological effects on the brain. The first symptom usually is headache. Acute 

mountain sickness (AMS) may then develop. AMS rarely occurs at altitudes as low as 

2000 m and symptoms typically develop within 6 to 10 hours after ascent, but 

sometimes as early as 1 hour (Hackett and Roach, 2001). The Lake Louise Consensus 

Group defined AMS as the presence of headache in an unacclimatised person who 

has recently arrived at an altitude above 2500 m plus the presence of one or more of 

the following symptoms: gastrointestinal symptoms (anorexia, nausea, vomiting, etc.), 
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insomnia, dizziness and lassitude or fatigue (Sutton et al., 1992). To diagnose AMS, 

the Lake Louise Score (LLS) is being used. AMS can develop in varying severity in 

individuals following rapid ascent to high altitudes (Sagoo et al., 2016, p. 1). 

Consequently, trekkers which climb up to high altitudes try to acclimatise themselves 

to hypoxia. Acclimatisation is the sum of physiological adaption processes in the 

human organism due to acute exposition to high altitude see. The main contributors 

are shown in figure 2. By acclimatization, a proper O2 supply to the tissues can be 

maintained despite reduced PO2. Acute exposition of the organism to a reduced PO2 

is compensated by an increased breathing frequency, pulmonary vasoconstriction, 

increased O2 affinity of Hb, stimulated erythropoiesis, increased heart rate, increased 

blood pressure (RR) and increased urination (high altitude diuresis) (Feddersen and 

Ausserer, 2015). These mechanisms facilitate the sufficient supply of O2 to the brain 

(Sagoo et al., 2016, pp. 1–2). 

 

 

 

Figure 2: Simplified diagram showing the main processes of adaption to a decreased 

PO2 at high altitude. Lowered atmospheric PO2 activates chemoreceptors that increase 

heart rate and breathing frequency. Additionally, hypoxia-inducible factor-1 (HIF-1) 

through production of nitric oxide (NO), erythropoietin (EPO) and vascular endothelial 

growth factor (VEGF) cause vasodilation, angiogenesis and erythropoiesis. Metabolic 

processes of OXPHOS are also a substantial stimulus for vasodilation and breathing 

frequency. (Feddersen and Ausserer, 2015) 
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The increased breathing frequency is the foremost effect of hypoxia and results in an 

hypoxia-induced hyperventilation which reaches its highest level after two weeks 

(Berghold and Schaffert, 2009) of exposure to hypoxia. This hypoxic ventilatory 

response is based on a lowered PO2 which is registered by the chemoreceptors in the 

glomus caroticum. Information from these receptors is conducted to the respiratory 

centre in the brain stem, breathing rate rises and the PO2 in the blood increases. 

Hypocapnia due to this hyperventilation is an adverse, yet compelling effect. Hypoxic 

pulmonary vasoconstriction via the Euler-Liljestrand mechanism increases pressure in 

the arterial vessels and serves a homogenized ventilation/perfusion rate in the lungs. 

The increased pressure however rises the risk of outflow of fluid into the alveoli. 

The affinity of Hb to bind O2 rises at high altitude because of allosteric modulation of 

CO2. It binds to the α-amino group of Hb and forms carbaminohaemoglobin (Lehninger 

et al., 2013). This decreases Hb's affinity for O2 and is known as the Bohr effect (see 

figure 3). This mechanism shifts the SaO2 curve to the right. On the other hand, when 

CO2 levels in the blood decrease, CO2 are released from Hb increasing the O2 affinity. 

Up to altitudes of 2000 – 4000 m there is also an increase of 2,3-BPG in erythrocytes 

(Behrends, 2010). Allosteric modulation of Hb by 2,3-BPG counteracts the effect of 

hypocapnia and shifts the SaO2 curve to the left and decreases O2 affinity. 
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Figure 3: The oxyHb dissociation curve with SaO2 on the vertical axis and PO2 in the 

blood on the horizontal axis, supplemented by altering factors such as pH, 2,3-BPG 

and CO2. The standard dissociation curve (blue) has a sigmoid shape due to the 

conformational change of the Hb molecule induced by the binding of O2 to Fe2+. Among 

other factors not displayed, pH, 2,3-BPG and CO2 can shift the curve to the right or the 

left. A rightward shift (red dotted) indicates that Hb has a lowered affinity to O2, making 

it easier for the Hb to release O2. A leftward shift indicates the opposite of this condition 

(Behrends, 2010). 

 

Besides hyperventilation, the most important acute temporal mechanism to maintain 

SaO2 is a sympathetic increase of the cardiac output which is achieved mainly by an 

increase of the heart rate (Berghold and Schaffert, 2009). The heart rate decreases to 

previous levels after acclimatization took place (Feddersen and Ausserer, 2015) 

During the first hours of altitude exposition, an elevated haematocrit can be observed. 

It originates of a loss of plasma through altitude diuresis and leads to a relative increase 

of blood cells per unit of blood and thus the O2 transport capacity of the blood rises. 

HIFs are transcription factors that respond to decreases in O2. Specifically, HIF-1 

increases NO production through increased inducible NO synthase expression and 
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subunit 4-2 of cytochrome c oxidase expression (Poyton and Hendrickson, 2015). 

VEGF is a growth factor involved in angiogenesis that restores the O2 supply to tissues 

when blood circulation is inadequate. VEGF binds tyrosine kinase receptors on the cell 

surface, causing them to dimerize and become activated through transphosphorylation 

(Ross et al., 2012; Shweiki et al., 1992) and leading to angiogenesis, thus ultimately 

increasing perfusion of the tissues (Palmer and Clegg, 2014). Additionally, an absolute 

increase in the number of erythrocytes manifests after about 2-3 weeks due to the 

kidney producing and secreting the cytokine EPO to increase the production of 

erythrocytes in the bone marrow. 

5.1.2 Pathology of AMS, HAPE, HACE 

Breathing hypoxic air reduces the driving gradient of O2 and thus the attenuated O2 

cascade can compromise the adequate supply of O2 to the tissues (Wilson et al., 

2009). There have been promoted four stages of hypoxia to describe impairments in 

subjects exposed to acute hypoxia (Carrier, 2006): 

1. Indifferent stage: People are not generally aware of the effects of hypoxia at this 

stage. The primary symptoms are a loss of night vision and a loss of colour 

vision. These changes can occur at relatively modest altitudes (as low as 1200 

m). SaO2 is typically 90 - 95 %. 

2. Fully compensatory stage: In healthy people, this stage may occur at altitudes 

between 3000 – 4500m. The body generally has the ability to stave off further 

effects of hypoxia by increasing the rate and depth of ventilation and heart rate. 

SaO2 during this phase is typically 80 - 90 %. 

3. Partial compensatory stage: In this state, people are unable to compensate for 

the lack of O2 and nervous system functioning begins to degrade. AMS occurs. 

Unfortunately, not everyone recognizes or experiences the signs and symptoms 

associated with this stage. SaO2 during this phase typically is 70 - 80 %. 

4. Critical stage: This is the terminal stage leading up to death. People are almost 

completely incapacitated physically and mentally. People in this stage will lose 

consciousness, convulsions may occur, breathing will be afflicted and finally 

death occurs. SaO2 is less than 70 %. 

The effects of hypoxia are being attributed to the reduced PO2, regardless of how it is 

achieved. There are however, some physiological effects of hypobaria, apart from 
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those of hypoxia (West et al., 2012). Research data about the difference of hypobaric 

and normobaric hypoxia is sparse, but it seems that in normobaric hypoxia AMS occurs 

more seldom and expiratory Volume (Ve) is lower than in hypobaric hypoxia of the 

same PO2 (West et al., 2012). However, other reports state that the cardiorespiratory 

parameters and the severity of AMS were similar between hypobaric and normobaric 

hypoxia (Richard et al., 2014). 

A threshold altitude and barometric pressure for neurological symptoms, attributable 

to hypobaric hypoxia in resting individuals, can be assumed to be roughly between 

2200 - 2500 m altitude and 560 – 585 mmHg barometric pressure (Muhm et al., 2007; 

Swenson and Bärtsch, 2014b). The severe hypoxia experienced by climbers at 

extreme altitudes is known to be associated with cerebral dysfunction (Bärtsch and 

Bailey, 2014; Virués-Ortega et al., 2004). This suggests that cerebral oxygenation 

might not be fully maintained through adaptive responses, which may include changes 

in cerebral blood flow (CBF) (Bärtsch and Bailey, 2014; Wilson et al., 2011, p. 2020). 

The reported prevalence of AMS varies widely (Wilson M. H. et al., 2009, p. 175), but 

the incidence of AMS was shown to be ~ 0 % at 2500 - 3000 m, ~ 10 % between 3000 

- 4000 m, ~ 15 % between 4000 - 4500 m, ~ 50% between 4500 - 5000 m, and ~ 34 

% over 5000 m (Bärtsch and Bailey, 2014; Vardy et al., 2006). Neurological 

consequences will vary greatly from person to person and with rate of ascent (Bärtsch 

and Bailey, 2014; Wilson M. H. et al., 2009). 

AMS can be followed by high altitude pulmonary edema (HAPE) and high altitude 

cerebral edema (HACE), both with potentially lethal outcome (Hackett and Roach, 

2001). HACE is a severe form of AMS and a clinical diagnosis which is defined as the 

occurrence of encephalopathic signs of vertigo, ataxia, altered consciousness, or all of 

them in someone with AMS (Hackett and Roach, 2001). Thus, HACE represents the 

end-stage of AMS clinically and pathophysiologically (Hackett and Roach, 2001). 

Results of MRI studies of simulated ascents to very high altitudes in pressure 

chambers suggests that mild cytotoxic edema might be more prevalent in persons with 

symptoms of AMS (Feddersen et al., 2015; Wilson M. H. et al., 2009). Such cytotoxic 

edema may occur when O2 delivery is lowered because of decreased perfusion in the 

posterior parts of the brain and this may result in dysfunction of Na+/K+-ATPase 

(Feddersen et al., 2015; Wilson M. H. et al., 2009). AMS evolving into HACE is 

characterized by dysfunction of the posterior parts of the brain (Feddersen et al., 2015, 

2015). Although HACE is far more common at higher altitudes, there are case reports 
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of HACE at 2500 m (Wilson M. H. et al., 2009). HAPE is the pulmonary form of acute 

altitude illness and a type of noncardiogenic pulmonary edema (Zafren, 2014, p. 30). 

Cardinal symptom of HAPE is dry cough. Only late in the sickness does bloody sputum 

and respiratory distress develop (Hackett and Roach, 2001). As HAPE progresses, 

resting tachycardia, tachypnoea and cerebral symptoms (50 % of those with HAPE 

have AMS and 14 % have HACE) become more pronounced (Hackett and Roach, 

2001). The estimated mortality among persons with untreated HAPE is 50 % (Bartsch 

and Swenson, 2013). The pathophysiology of HAPE is not completely understood, but 

it is characterized by high pulmonary artery pressures that lead to a protein-rich and 

mildly haemorrhagic edema and is a form of hydrostatic pulmonary edema with altered 

alveolar-capillary permeability (Swenson et al., 2002). The incidence of those severe 

forms of AMS however is much lower. It is 6 % - 15 % when people reach altitudes of 

4500 m – 5500 m within 1 - 2 days (Bartsch and Swenson, 2013). 

5.2 Physiological principles of fMRI 

5.2.1 Nutrients and energy consumption of the brain 

O2 and Glucose (Glc) are essential for the metabolism of the brain to generate 

chemical energy in the form of the ATP molecule. The brain is a highly oxidative organ 

with only sparse endogenous reserve for energy metabolism, producing more than 90 

% of its chemical energy through OXPHOS of Glc (Tuunanen and Kauppinen, 2006, 

p. 102). In the first stage of this metabolic pathway, glycolysis in the cytoplasm converts 

the Glc molecule to two molecules of pyruvate and generates two ATP molecules from 

ADP. Glycolysis uses no O2 and ATP gain is low, but it is very fast (Behrends, 2010). 

Pyruvate and O2 diffuse then into the mitochondria, enter the tricarboxylic acid cycle 

and result in six molecules of H2O and CO2, and the conversion of 36 ADP molecules 

to ATP (Behrends, 2010; Buxton et al., 2004). Much more ATP is generated in this 

second stage and the net Glc metabolism is as follows: 

�	
���	 + 6�� → 6��� + 6
�� (+38���) 
The cerebral O2 consumption in normal, conscious, young humans is ~ 3.5 ml/100 

g/min (Rowell, 1993). The brain therefore, which is only about 2 % of total body weight, 

accounts for about 20 % of the resting total body O2 consumption, making it the most 

O2 dependent organ in the body (Ainslie, Wilson et al., 2014). 
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5.2.2 Physiological cerebral delivery of O2 

O2 reaches the brain via Hb molecules in the blood. The O2 supply to the brain depends 

on SaO2 and CBF (Ainslie, Wilson et al., 2014). The arteries contain almost only oxyHb 

until the Hb molecules in the blood reach the capillary bed where some of the O2 is 

released to the cerebral neurons. Therefore, the capillary region and the draining 

venules contain blood with both oxyHb and deoxyHb. 

The fraction of O2 carried by an element of blood that is removed in passing through 

the capillary bed is called the O2 extraction fraction (OEF) and is defined as follows 

(Xu et al., 2012): 

��� = [��]����� �! − [��]#�$%&'[��]����� �!  

[��]����� �! and [��]#�$%&' (in mmol O2/ml blood) are O2 contents in arterial and venous 

blood. 

Under most circumstances, considerations of [O2] only need to focus on Hb bound O2, 

as the amount dissolved in plasma is ~ 1.8 % of that bound to Hb and thus negligible 

(Xu et al., 2012). In the brain, OEF is typically ∼ 40 % (Buxton, 2013, p. 3). Since the 

human brain has a limited capacity for substrate storage and a high cerebral metabolic 

rate e.g. of O2 (CMRO2), a precise regulation of CBF is critical for the maintenance of 

constant nutrient and O2 supply (Brown and Ransom, 2007). One can assume that 

cerebral workload would increase CMRO2 and CBF in the same way to maintain this 

supply. However, positron emission tomography (PET) and fMRI studies revealed that 

in humans large, stimulus-induced increases in CBF were accompanied by only small 

increases in CMRO2 (Davis et al., 1998; Fujita et al., 1999). These data indicate that, 

during short-time functional activation, CBF and CMRO2 are not directly coupled 

(Mintun et al., 2001). 

5.3 Physiological basis of fMRI 

OxyHb is diamagnetic and magnetically indistinguishable from brain tissue. Hb can 

also be desaturated of O2 and, because of unpaired electrons, altered in its magnetic 

properties to become paramagnetic (Thulborn et al., 1982). Human neural activity is 

sampled indirectly with high spatial resolution indirectly, by detecting changes in blood 

oxygenation that are linked, but not equivalent, to changes in neuronal activity of 

regions of the brain that contain motor, sensory, language or memory functions (Frahm 
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et al., 1994; Menon et al., 1995; Mulert and Lemieux, 2010). Those are the so-called 

“functional areas”. In general, it has been observed that in brain images based on 

gradient echo techniques with a suitable echo time TE, signal amplitudes are 

temporarily enhanced in regions of neuronal activation (Mulert and Lemieux, 2010). 

Functional magnetic resonance imaging (fMRI) is a non-invasive imaging technique 

based on the principles of nuclear magnetic resonance (NMR) to measure and localize 

those specific functions of the human brain (Mulert and Lemieux, 2010). In MRI, 

radiofrequency pulses are applied to induce precession of nuclear spin magnetic 

moments in the tissue or object of interest and electromagnetic induction produces a 

signal, which decays with a time constant called the effective transverse relaxation rate 

(R2
*) (Rodgers et al., 2016). This relaxation rate is often expressed in terms of 

relaxation times T2
* (Rodgers et al., 2016): 

��∗ = 1 +�∗⁄  

The varying chemical and structural properties of tissues have characteristic effects on 

the time evolution of the MR signal, allowing the generation of images with widely 

varying contrast (Rodgers et al., 2016). Paramagnetic deoxyHb alters the magnetic 

susceptibility of blood (Thulborn et al., 1982), and the difference in susceptibility 

between blood in vessels and the surrounding tissue creates local magnetic field 

distortions that decrease the net MR signal (Buxton, 2013, p. 3). 

The idea that changes in blood oxygenation could drive measurable signal changes in 

brain MRI was introduced by Ogawa and colleagues in 1990 (Ogawa et al., 1990). The 

blood-oxygen-level-dependent (BOLD) technique makes use of blood as an intrinsic 

factor (Ogawa et al., 1990), rendering intravenous application of paramagnetic contrast 

agents (Belliveau et al., 1991) or radioactive substances unnecessary (Raichle, 1983). 

In an animal experiment with this MRI technique that is sensitive to the local magnetic 

field distortions, it has been shown by Ogawa that the brain tissue surrounding these 

vessels had a low signal (Ogawa et al., 1992): When the rats breathed a gas mixture 

containing 10 % CO2, there was much less signal loss near the venous vessels. It was 

proposed that breathing CO2 increases CBF, decreases CMRO2 and reduces OEF in 

the brain. The venous blood contained more oxyHb, and the total amount of deoxyHb 

was reduced (Buxton, 2013, p. 3). The MRI signal therefore was sensitive to OEF. This 

initial experiment still used CO2 as an external agent to produce the change in blood 

oxygenation, but it was shown further that intrinsic changes in blood oxygenation 
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happen in normal physiology associated with changes in neural activity as well 

(Buxton, 2013, p. 3; Ogawa et al., 1992). 

When a functional area of the brain is activated by a motor task, such as finger tapping 

or cognitive tasks, the additional neural signalling processes result in a locally 

increased requirement for energy. An increased CMRO2 in the related brain area is the 

result (Buxton and Frank, 1997). As the local stores of O2 in tissues adjacent to 

capillaries are consumed by glycolysis and waste products build up, various chemical 

vasodilatory signals cause a vasomotor reaction in arterial sphincters upstream of the 

capillary bed, causing vasodilation of these vessels (Glover, 2011, p. 2). By that 

hemodynamic response, the increased blood flow restores the local O2 level to 

overcome the deficit. As mentioned, when an area of brain is activated, the blood flow 

increases much more than the CMRO2 would demand (Fox and Raichle, 1986). 

Despite the increase in CMRO2, the hemodynamic response leads to an additional 

reduction in the OEF, as there is more O2 in the venous blood due to the 

overcompensating CBF. This means there are two primary consequences of neural 

activity: more local CBF and an increase in oxygenation concentration. The important 

physiological parameters that influence the BOLD effect are the CMRO2, the CBF, and 

the venous cerebral blood volume (CBVv) (Mulert and Lemieux, 2010). Figure 4 shows 

these contributors linking neural activity to BOLD response. 
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Figure 4: Schematic diagram showing the several physiologic contributions linking 

neural activity to BOLD response intensity. During neural activity, CMRO2 and CBF 

increase. CBF far exceeds the additional CMRO2 requirements due to activity. The 

result is a decreased OEF and thus decreased local deoxyHb concentration. 

Additionally, CBF independently increases CBVv, which acting on its own would 

increase deoxyHb concentration. Overall however, the excessive CBF effect 

dominates and causes a decrease in deoxyHb concentration as well as an associated 

increase in BOLD response intensity (Rodgers et al., 2016). 

 

CBF can be quantified in terms of the rate of delivery of arterial blood volume ∆VB/∆t 

to the capillaries of a particular volume V or mass m of brain tissue (Mulert and 

Lemieux, 2010). CBV is defined as volume of blood per volume brain tissue (Uh et al., 

2009). CMRO2, assuming both unidirectional O2 transport from capillaries and close to 

zero tissue O2 tension at mitochondrial sites, can be related to OEF and CBF (Ho et 

al., 2008): 

�-+�2 = ��� ∗ �/� ∗ 012�32415 
According to the O2 limitation model, shown in figure 5, a large CBF/CMRO2 ratio 

during brain activation is required to maintain a steep O2 gradient between the capillary 

space and the site of brain tissue mitochondria, facilitating O2 diffusion into the tissue 

due to limited diffusion of O2 from capillaries to mitochondrial sites (Buxton and Frank, 

1997; Ho et al., 2008). 
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Figure 5: Illustration of the O2 limitation model showing brain compartments, their 

corresponding PO2 during rest and activation and the resulting O2 flux from vessels to 

mitochondria (Gjedde, 2006). O2 diffuses from the high concentration in the capillaries 

to a low concentration in the mitochondria. To match higher CMRO2 due to activity, the 

gradient towards the mitochondria. Diffusion distance from capillaries to mitochondria 

is fixed and mitochondrial PO2 is near 0, so mean capillary PO2 must be increased 

must be increased to increase the O2 flux (red arrow). This requires that the OEF must 

be reduced, so CBF must increase more than CMRO2. (Uludag et al., 2005) 

 

The results of Ho et al. showed a consistent CBF/CMRO2 ratio, derived from additive 

BOLD responses to graded visual stimulation during elevated CBF baseline (Ho et al., 

2008). 

This O2 limitation model implies that a drop in arterial O2 tension should result in 

augmented CBF response and thus vasodilation in order to sustain a low OEF during 

brain activation (Ho et al., 2008). 

If the brain is in resting state, neural activity is low and CBF is at base level. As 

mentioned before, 40% of O2 is extracted from the blood in the capillary region. A 

constant OEF of the resting brain leads to a fixed deoxyHb/oxyHb ratio in the capillary 

region and venous vessels. When Hb loses some of its O2 to become deoxyHb, the 

magnetic properties change and alter the magnetic susceptibility of blood. Venous 

blood contains a relatively high concentration of paramagnetic deoxyHb, but brain 

tissue is diamagnetic. The difference in magnetic conditions between blood vessels 

and the surrounding tissue creates local magnetic field distortions which lead to rapid 
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dephasing of excited spins that shorten T2* and lead to a signal loss in T2*-weighted 

images that decrease the net MR signal. In a 3 Tesla magnetic field, the level of 

deoxyHb in the venous vessels and capillaries is sufficient to reduce the MR signal in 

the brain by ∼ 10% in the baseline state (Buxton, 2013, p. 3). 

Directly after the onset of neuronal activation via an external stimulus (or even 

spontaneous brain activity) the CMRO2 and the consumption of O2 is increased. Thus, 

neuronal activity leads to an increased O2 extraction and a higher concentration of 

deoxyHb. There is a slight signal decrease, resulting in an initial dip of the fMRI signal 

(Mulert and Lemieux, 2010). This initial dip is not always observed and has been 

reported for high field strengths (Buxton, 2001; Mulert and Lemieux, 2010). 2-4 s after 

stimulus onset haemodynamic response results in a strong increase in local CBF and 

CBVv, with opposing effects. More O2 is transported to the site of activation, leading to 

a washout of deoxyHb and an oversupply of oxyHb in the vicinity of increased neuronal 

activity. Since oxyHb is diamagnetic, the magnetic properties of blood and brain tissue 

are more similar, field distortions are reduced, and the local image intensity increases 

(Deichmann, 2010). The increase in CBVv is associated with a higher concentration of 

deoxyHb and a lowering of the signal (Deichmann, 2010). However, the effect of the 

CBF increase outpaces the signal reduction caused by the higher CMRO2 and CBVv 

values, resulting in a positive BOLD response for about 5 – 10 s (Deichmann, 2010). 

CMRO2 and CBF return to their baseline levels after about 10 s, but the relaxation of 

CBVv is slower, so for a certain time there is an increased concentration of deoxyHb 

due to the higher blood volume, which reduces the signal, resulting in a signal 

undershoot (Deichmann, 2010; Mulert and Lemieux, 2010). Some researcher however 

state, that the origin of post-stimulus BOLD undershoot is still controversial (Kim and 

Ogawa, 2012, p. 1201). Figure 6 shows a generic haemodynamic response to a 

stimulus and the temporal relation of its contributing physiological processes (adapted 

from (Mulert and Lemieux, 2010)). 
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Figure 6: A typical haemodynamic response function following a stimulus, showing a 

negative initial dip, a strong positive BOLD response, and a subsequent negative 

undershoot (Mulert and Lemieux, 2010). Signal response is indicated in procedure 

defined units. These phenomena can be explained with the different time constants of 

the underlying physiological parameters: CMRO2, CBF and CBVv. (Mulert and 

Lemieux, 2010) 

 

5.4 CBF and altered FiO2 

Brain perfusion is highly sensitive to changes in the partial pressure of CO2 in arterial 

blood (PaCO2)(Davis et al., 1998; Fox and Raichle, 1986; Mandeville, Marota, Ayata, 

Moskowitz et al., 1999) and, to a lesser degree, the partial pressure of O2 in arterial 

blood (PaO2 ) (Kety and Schmidt, 1945). Early studies (Cohen et al., 1967; Kety and 
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Schmidt, 1948), demonstrated that resting CBF does change with hypoxia and 

hyperoxia, thereby suggesting that CBF regulates O2 delivery, although it was noted 

that blood O2 levels but not tissue O2 levels likely triggered these CBF changes (Mintun 

et al., 2001). Complementary it was shown that, hypercapnia causes an increase in 

CBF and hypocapnia causes decreased CBF. 

Given the occurrence of reduced SaO2 in circumstances like exercise or ascent to high 

altitude, as well as during diseases such as chronic lung disfunction or heart failure, 

this might be a bit surprising. As mentioned, a fall in PaO2 and thus hypoxia, produces 

cerebral vasodilatation. A number of fMRI studies have shown that during brain 

activation CBF can rise up to six fold higher values than those of CMRO2 (Davis et al., 

1998; Fox and Raichle, 1986; Kim et al., 1999). Although there is a crucial need for O2, 

mild to moderate hypoxic hypoxia seems to be quite well tolerated and cerebral 

haemodynamic response, neural metabolism, and higher brain functions are well 

preserved within a relatively wide working range in SaO2 (Ho et al., 2008; Mintun et al., 

2001; Rostrup et al., 2005; Shimojyo et al., 1968). 

Ascent to high altitude can result in an impairment in neuronal processing, e.g. 

arithmetic, memory, language, perception, and psychomotor skills (Ainslie, Wilson et 

al., 2014; Wilson et al., 2009). Such impairments in neural functioning may result in 

inadequate behaviour in dangerous circumstances during high altitude climbing, and 

are reflected in a number of deaths in high altitude above 8000 m (Firth et al., 2008). 

The underlying pathophysiological mechanisms may both relate to disturbed 

cerebrovascular function and apoptosis of neurons, i. e. by loss of grey and white 

matter tissue, even following return to sea level (Foster et al., 2015). Hemosiderin 

deposits as a result of microhaemorrhages, have also been shown in humans who 

have experienced HACE (Schommer et al., 2013). However, a comparison of studies 

is difficult due to numerous factors including varying altitude, length of stay, time of 

follow‐up measurement or repeated altitude exposure between measurements. 

Cerebrovascular reactivity (CVR) to changes in CO2 is an additional important marker 

for the functional capacity of cerebral vessels. Reduced magnitude of CVR to changes 

in CO2 has been suggested to indicate impaired vascular function (Sobczyk et al., 

2014). Although studies have shown that cortical and anterior to posterior CBF 

differences exist in the response to normobaric hypoxia (Binks et al., 2008; Willie et 

al., 2012), it remains unclear if regional (r) CVR differences assessed by BOLD MRI 
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remain upon return to sea level once acid‐base balance has been restored and the 

lasting effects of high altitude exposure can be observed (Foster et al., 2015). 

Hypoxia on its own is a cerebral vasodilator, reflected in a rise in CBF in proportion to 

the severity of isocapnic hypoxia (Cohen et al., 1967; Yang et al., 1994). Upon ascent 

to high altitude, the fall in PaO2 tends to cause vasodilatation especially at levels below 

40 - 45 mmHg (Ainslie and Ogoh, 2010; Swenson and Bärtsch, 2014a). However, the 

drop in PaO2 stimulates the peripheral chemoreceptors and the hypoxia-induced 

activation of peripheral chemoreceptor activity leads to hyperventilation (Swenson and 

Bärtsch, 2014a). This mechanism of compensation lowers PaCO2 which is a trigger for 

cerebral vasoconstriction (Ainslie and Ogoh, 2010). This way the cerebrovascular 

region gets contradictory signals during exposure to acute hypoxia. That means the 

balance between the degree of hypoxia and hypocapnia, controlled by changes in 

ventilation, are the critical determinants of CBF and O2 supply to the brain respectively 

(Ainslie, Wilson et al., 2014; Swenson and Bärtsch, 2014a). In spite of the importance 

of these regulatory mechanisms, most studies have measured the velocity response 

of the middle cerebral artery (MCAv) to hypoxia, assuming blood gas reactivity is 

similar for different brain regions (Willie et al., 2012). Study of regional differences in 

human brain blood flow however, has been limited and even contradictory. 

5.4.1 BOLD change in hypoxia 

Using BOLD fMRI techniques, it is possible to study perfusion of the brain itself, instead 

of just measuring CBF in blood vessels supplying the brain. Several studies have 

examined different regions of the brain. During a short, 3 min lasting exposure to 12 % 

FiO2, Bandettini et al found no change in BOLD response amplitude using finger 

tapping as a motor activation paradigm (Bandettini et al., 1997). Tuunanen et al. 

showed in their study, that BOLD activation volume decreased as a function of 

declining SaO2 in the brain structures involved in execution of a motor task, but visual 

evoked potentials were not affected by hypoxia, which indicates that processing in the 

primary visual cortex (PVC) is sustained (Ho et al., 2008; Tuunanen and Kauppinen, 

2006). Examining BOLD response during visual stimulation in the presence of hypoxic 

hypoxia (FiO2 = 12 %), Ho et al. showed that relative to normoxia, hypoxic hypoxia 

caused a decrease in activation areas of T2* BOLD responses, a decrease in the BOLD 

response size, a loss of the initial overshoot and a decrease in the size of the post-

stimulus undershoot from BOLD response (Ho et al., 2008, p. 185). 
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5.4.1 Cerebral activation in hypoxia 

The most commonly used test to detect motor speed dysfunction is the finger tapping 

test (FTT) from the Halstead-Retain Neuropsychological Battery. This test has proved 

its efficiency to discover slight motor dysfunctions (Peña-Casanova et al., 1997; 

Virués-Ortega et al., 2004). Other motor tests have obtained similar effects, for 

instance the Purdue Pegboard Test, sensitive to speed, motor coordination and 

precision (Bolmont et al., 2000; Virués-Ortega et al., 2004). 

Effects of high altitude manifests as lower motor speed and precision, as compared to 

subjects’ sea level performance (Berry et al., 1989; Virués-Ortega et al., 2004; West, 

1984). The extent of environmental O2 reduction required to demonstrate this effect is 

variable and in field studies motor deterioration may be confounded with fatigue, a 

variable associated with both motor delay and altitude gain (Bolmont et al., 2000). It is 

not clear if motor deficits are a direct consequence of altitude hypoxia, although the 

results of one study suggested that the effect of fatigue is probably spurious (Sharma 

et al., 1975). 

Regard at al. noted that finger tapping was significantly impaired in 25 % of alpinists 

with a long history of high and extreme altitude exposures (Regard et al., 1989). 

Delayed reaction time (RT) in complex target-detection tasks is the most frequently 

reported effect of altitude (Virués-Ortega et al., 2006). Abnormal motor function has 

frequently been reported in the altitude literature, for example, evident in reduced 

speed and precision in finger tapping (Berry et al., 1989; Hornbein et al., 1989). 

Roach at al. showed significant relationship of reaction time with acute altitude 

exposure: a marked increase in mistakes during reaction tests following cognitive 

testing emerges after ascent to altitude from sea level (Roach et al., 2014, pp. 816–

817). However, following 16 days of acclimatization to high altitude, reaction test 

scores resemble those seen at sea level (Roach et al., 2014, pp. 816–817). This 

phenomenon has been observed in a variety of experimental settings, including high 

mountaineering expeditions and hypobaric chambers (Bolmont et al., 2001; Kramer et 

al., 1993) and significant impairment has been demonstrated at altitudes as low as 

1500 m (Denison et al., 1966), although more consistent abnormality is found above 

6000 m (Hornbein et al., 1989). 

Petrassi et al. concluded in their review: some learning impairment has been robustly 

demonstrated on the manikin task at rest at ~ 2400 m, with increases in reaction time 

on orientation tasks from ~ 2100 m, and increased errors in arithmetic and decision 
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making by ~ 3700 m (Petrassi et al., 2012). Working memory has been affected as low 

as ~ 2800 m in some studies, but not until ~ 4300 m in others (Petrassi et al., 2012). 

In simple tests on the other hand, performance appears to be better preserved with 

increased altitude. This preservation of simple tasks suggests psychomotor 

performance is maintained and the insufficiencies in complex tasks are cognitive 

effects (Petrassi et al., 2012, p. 978). 

Mild hypoxia at moderate altitudes of ~ 1200 m - 1500 m has been shown to cause 

visual degradation under scotopic conditions and under photopic conditions at ~ 3000 

m (Petrassi et al., 2012). 

Colour discrimination can also be altered (Bouquet et al., 2000; Leid and Campagne, 

2001). Concentration of respiratory blood gases must also be considered, since 

hyperventilation (of room air) induced hypocapnia has been shown to improve visual 

sensitivity and contrast discrimination (Wald et al., 1942). Conversely, a rise in PCO2 

was associated with a decrease in rod sensitivity. It is unclear how hypocapnia affects 

visual sensitivity. Hypocapnia alone causes constriction of retinal blood vessels and 

hypoxia present at an altitude of ~ 4600 m, but not ~ 3800 m, is sufficient to overcome 

hypocapnic vasoconstriction (Brinchmann-Hansen and Myhre, 1990; Petrassi et al., 

2012). 

Other studies indicate that both PO2 and PCO2 affect dark adaptation and visual 

sensitivity, as these experiments show that early scotopic sensitivity is delayed by 

hypoxia and hastened by hypocapnia and hyperoxia (Connolly and Hosking, 2006). 

These results suggest that rod photoreceptor function is subpar when breathing air at 

sea level (Petrassi et al., 2012). 
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6 Aims 

This work is a prospective observational study. The aim of the study was to examine 

the cerebral mechanisms of adaptation to normobaric hypoxia. Visual and motor 

paradigms were used to shed light on the activation of different brain regions in fMRI 

under normobaric hypoxic conditions. With an FiO2 of 13 % (equivalent to an altitude 

of 4000 m) inhaled by healthy subjects, it was examined if adaptation to normobaric 

hypoxia determines divergent activation in the brain regions supplied by the different 

main cerebral arterial vessels: the anterior cerebral artery (ACA), the middle cerebral 

artery (MCA), the posterior cerebral artery (PCA), and the basilar artery (BA). 

By using the FTT and visual stimulation through a checkerboard, it was examined if 

these motor and visual activations lead to a decreased activation in fMRI of the motor 

and visual brain area after 5 min exposition to 13 % O2, and if it is being raised again 

after 8 h of adaption to hypoxia. Additionally, the question occurred if there is a different 

level of activation in the brain areas supplied by MCA and PCA during acute hypoxia 

and if 8 h lasting hypoxia influences the level of activation in the brain regions supplied 

by MCA and PCA. Finally, it was examined if symptomatic AMS, evident by a LLS ≥ 3, 

has consequences on brain activation patterns measured as BOLD ∆S values. 
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7 Subjects and Methods 

7.1 Participants 

A total of 16 healthy male subjects participated in the study. Arithmetic mean (x̅) of age 

was 22.9 with a standard deviation (SD) of 2.2 years, ranging in age from 20 to 28 

years. In the following, SD will be indicated by ±. Only male participants were included. 

Gender disposition to AMS seems unlikely, but cannot be completely ruled out (female 

cycle may influence development of AMS) (Berghold and Schaffert, 2009). None of the 

participants took any medication or had any disease. All participants were right-

handed. Right-handedness was verified through the Edinburgh Handedness Inventory 

modified by Salmaso & Longoni (x̅ laterality quotient 99.4 ± 2.4) (Salmaso and Maria 

Longoni, 1986) because they had to execute FTT with their right hand fingers. 

Furthermore, none of the participants had exceeded an altitude of more than 2500 m 

from six months before the study until the study took place (to neglect bias of existing 

altitude adaption) and none had a history of HAPE/HACE ever. 

Since MRI examination had to be conducted, common exclusion criteria regarding 

MRI, e. g. claustrophobia, metal in the body, etc., were also applied. Inclusion and 

exclusion criteria were identified by a medical history questionnaire. 

Recruiting of participants was done via an e-mail distributor by the student’s council of 

the medical department of the Ludwig-Maximilians-Universität (LMU) in Munich (Breite 

Liste Gesundheit) and through multiple bulletin-board appeals at the medical faculty of 

the LMU, the Deutscher Alpenverein, the Deutsche Höhenmedizinische Gesellschaft 

(BExMed) and the Österreichische Höhenmedizinische Gesellschaft (ÖGAHM). A first 

preselection took place because recruitment could only be done on set times. Study 

conditions were presented at an informative meeting. 

7.2 Study protocol 

This study was part of a larger study on the influence of hypoxia on brain adaptation. 

Hypoxia can artificially be produced either by reducing the barometric pressure which 

results in hypobaric hypoxia (as in a decompression chamber) or by reducing the 

percentage of O2 in an inhaled gas mixture resulting in normobaric hypoxia. The latter 

method was used in this study. The hypoxic gas mixture was composed of 13 % O2 

(FiO2 = 0.13) balanced with N2 (normal pressure). Hypoxia with FiO2 = 0.13 was 
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maintained during the entire MRI sessions via a respiratory mask connected to an 

OxyMount hypoxia machine located outside of the scanner (Oxy Mount, Mountain Air 

6001 /XA; OxyTherm GmbH, Coburg, Germany). The participants also wore this mask 

during the baseline condition without being connected to the hypoxia machine, to 

ensure identical conditions. SaO2 and heart rate were measured continuously using a 

finger-mounted pulse oximeter clip on the left index finger (9550 Onyx II; Nonin 

Medical, Plymouth, USA). MR imaging was performed on a 3 Tesla standard clinical 

MR scanner (Signa HDx, GE Healthcare, Milwaukee, USA) with 8 receiving channels. 

Structural imaging was performed using a T1-weighted fast spoiled gradient-echo 

recalled (FSPGR) sequence (TR/TE = 6.9/3.2 ms, flip angle 15°, field of view 220 mm, 

matrix size 256 x 256, voxel size 0.9 x 0.9 x 0.6 mm). Functional imaging was made 

using a T2*-weighted gradient-echo (GRE) multislice echo planar imaging (EPI) 

sequence (TR/TE = 2101.0/35 ms, flip angle 90°, field of view 240 mm, matrix size 64 

x 64, voxel size 3.8 x 3.8 x 4.0 mm). Diffusion weighted data were acquired using an 

EPI sequence (TR/TE = 6200.0/88.7 ms, flip angle 90°, field of view 220 mm, matrix 

size 128 x 128, voxel size 0.9 x 0.9 x 5.5 mm). Each participant had to complete a total 

of three MRI sessions lasting approximately 30 min each, consisting of two fMRI runs 

(1 visual task, 1 motor task) which were pseudo-randomized between participants, 

followed by the structural sequence. Two sessions were executed on the first day. 

Thereby, the first session implied baseline conditions with room air (FiO2 = 0.21, normal 

pressure) followed by hypoxia exposure to the hypoxic gas mixture (FiO2 = 0.13, 

normal pressure) for an average of 7 ± 1 min before the second session started. In the 

following, the condition in this second run is referred to as short-time hypoxia. In the 

baseline condition, all five sequences were executed while in the short-time hypoxia 

the structural sequence was skipped since we did not expect any volume changes 

between baseline and short-time hypoxia. To measure effects under long-time 

hypoxia, on the subsequent day participants spent on average 8 h and 29 ± 24 min in 

a hypoxic chamber with FiO2 = 0.13 balanced with N2 (normal pressure) before the 

MRI trial started. During the long-time hypoxia exposition, the participants stayed in 

the rooms of a commercial centre for altitude training (Institut für Höhentraining – 

Höhenbalance München, Spiegelstraße 9, 81241 München) where hypoxia in the 

rooms was maintained by a hypoxia generator (VPSA-S330, Version V1.1, 2008, B-

Cat High Altitude, 4004 MB Tiel, Holland). To ensure uninterrupted hypoxia between 

the hypoxic chamber and the MR scanner at Klinikum Großhadern Abt. 
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Neuroradiologie, gas respiratory masks connected to containers filled with a mixture of 

13 % O2 and 87 % N2 were used. 

Cerebral symptoms of AMS were assessed by means of the LLS in the hypoxic 

chamber every hour as well as before and after the MRI scan. Severe AMS was treated 

immediately according to the guidelines of the Wilderness Medical Society (Feddersen 

et al., 2015; Luks et al., 2010). LLS was used to investigate symptoms of AMS 

containing a self and foreign-rating scale ranging from 0 to 29 (Feddersen et al., 2015; 

Roach et al., 1992). Subjects with a score ≥ 3 were considered symptomatic, when 

headache and one other AMS symptom occurred. 

During MRI examination, participants were lying in the MR scanner with their head 

carefully fixed. Both fMRI runs that were executed on each of the three sessions 

consisted of 8 active and 9 baseline blocks and were lasting 20 s each. This led to a 

total of approximately 6 min per run. In the visual paradigm, participants had to fixate 

the centre of a contrast-reversing (8 Hz) black and white checkerboard (Tuunanen, 

Vidyasagar et al., 2006) in the active condition and they had to fixate a stationary black 

square on white background in the baseline condition. In the motor task participants 

had to execute intermittent finger tapping with all five fingers of their right hand. 

Thereby participants’ finger tapping was monitored by tapping on the two buttons of a 

response pad with the right index and middle finger (Lumina LP-400 response pads 

for fMRI, Cedrus Corporation, San Pedro, USA). They were told to start and stop the 

tapping following start and stop commands given through MRI compatible earphones. 

7.3 Data analysis 

7.3.1 Functional imaging 

Functional imaging data of both fMRI runs of all three sessions of all 16 participants 

were processed the same way using statistical parametric mapping (SPM8) 

implemented in MATLAB 7.7 (MathWorks Inc., Sherborn, MA, USA) (Friston et al., 

1994). Thereby, pre-processing consisted of motion correction, co-registration, 

segmentation, normalization, and smoothing. To correct possible head movement of 

participants during the fMRI run, motion correction was applied using the two pass 

procedure by registering all images of one fMRI scanning series to the mean of the 

images after the first realignment (Friston et al., 1996). Subsequently, the structural 

image volume was co-registered to the mean image of the corresponding functional 
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image series. The co-registered structural image volume was segmented and the 

estimated parameters to transform images into the standard space defined by the 

Montreal Neurological Institute (MNI) were used to normalize the functional and the 

structural images (Albrecht et al., 2010). Finally, images were smoothed using an 8 

mm full-width at half-maximum (FWHM) isotropic Gaussian kernel to compensate for 

individual gyral variability and to attenuate high frequency noise to improve signal to 

noise ratio (SNR) (Albrecht et al., 2010). 

After pre-processing was finished single subject analysis was executed by computing 

statistical parametric maps by means of the general linear model (GLM) (Friston et al., 

1994). Thereby, regressors corresponding to the onsets of the tapping/visual blocks 

were convolved with the canonical hemodynamic response function (HRF). To 

suppress activation following head movement, realignment parameters were included 

as additional regressors. 

To investigate activation in response to FTT/visual stimuli we used the primary contrast 

images and applied a random-effects group analysis while correcting by means of the 

familywise error (FWE) rate with p < 0.05 for the FTT/visual task. Thereby, FWE 

correction corresponds to the powerful Bonferroni-related procedure correcting for 

multiple comparisons across whole brain volume. Since the first session was executed 

under normal conditions independently from the other two sessions, that experiment 

was used as a pilot study applying the resulting activation as a mask for small volume 

correction to the other two hypoxia sessions. 

To obtain physiological SNR, mean values for the tapping/visual condition and the 

corresponding constant (normoxia) in the activated regions were determined on single-

subject level using a point of interest (POI) strategy. A POI was individually defined for 

each subject as the voxel in the functionally relevant area that displayed the highest 

activation amplitude during any of the runs (Table 1).  These values of the individual 

subjects have been used to calculate the mean values of the subjects in the different 

MRI sessions (Table 1). T2
*-weighted MR signal changes due to FTT and visual 

stimulation are referred to as BOLD signal intensity changes (∆S) . 

For statistical analysis of normoxia, short-time and long-time hypoxia, mean SNR 

values were submitted to repeated measures analyses of variance (ANOVA) where p 

values < 0.05 were considered significant. 
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7.3.2 Structural imaging 

In order to identify possible tissue volume changes between the baseline and the long-

time hypoxia condition we used the voxel-based morphometry (VBM8) plug-in for 

longitudinal data from SPM8 (Ashburner and Friston, 2000). One participant had to be 

excluded from this analysis due to missing structural images. To be able to compare 

tissue volumes of anatomical scans acquired on different time points, data had to be 

pre-processed using intra-subject realignment, bias correction, segmentation, and 

normalization. For statistical analysis of longitudinal data, flexible factorial analysis with 

the two factors subject (15 subjects) and time (2 time points) while correcting by means 

of the FWE with p < 0.05 were applied. 

7.3.3 Statistical analysis 

To compare the fractional stimulus-evoked BOLD responses of visual and motor 

activation during hypoxia, the normoxic baseline values were normalized to each other. 

Relative changes due to hypoxia were derived by adapting the corresponding values 

of the hypoxic conditions accordingly with respect to the values obtained in the 21% 

O2 baseline condition. Thus, the results of the motor paradigm and the visual paradigm 

could be compared. 

Subject-specific ∆S values were separated in groups of participants showing AMS 

(LLS ≥ 3) and participants not showing AMS (LLS < 3). ∆S of the two groups were 

examined on a significant impact of AMS on ∆S values. 

As mentioned, all statistical tests were conducted using paired t-tests (two tails) with p 

values < 0.05 considered statistically significant. All values in the following are shown 

as mean ± SD. 

7.4 Ethical Approvement 

The local Medical Ethics Review Committee of the LMU in Munich approved die 

medizinisch rechtliche Unbedenklichkeit of the entire study (Projektnummer: 087-10), 

which was conducted in accordance with the Declaration of Helsinki. Written informed 

consent was obtained by all participants. 
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8 Results 

8.1 Physiological data 

There were no differences (p > 0.05) in mean heart rate between the baseline scans 

(70.4 ± 9.7 bpm), short-time hypoxia (71.3 ± 7.4 bpm) and long-time hypoxia scans 

(73.9 ± 11.3 bpm). The mean SaO2 was significantly higher during the baseline scan 

(97.9% ± 1.2 %) compared to both hypoxia scans (p < 0.001), but no significant 

difference was found between short-time (84.1 ± 3.8 %) and long-time hypoxia (82.8 ± 

4.4 %) scans (p > 0.05). Mean LLS increased from a baseline value of 0 ± 0 to 2 ± 1 

after short-time hypoxia and to 3 ± 2 following long-time hypoxia. A LLS ≥ 3 was 

assessed in 5 subjects after short-time and in 8 subjects after long-time hypoxia. 

 

8.2 BOLD data 

The mean rate of finger tapping in the experiments was 0.65 ± 0.21 Hz during 

normoxia, 0.66 ± 0.31 Hz during short-time hypoxia and 0.66 ± 0.26 Hz. There was no 

significant difference. 

The subjects’ ∆S from subject-specific POIs during visual and motor stimulation are 

shown in Table 1. To distinct BOLD response due to activation from physiological 

noise, fMRI data were adjusted in SPM with motor stimulation height threshold: T = 

3.28, p < 0.001 {unc.} and visual stimulation height threshold: 4.79, p < 0.05 {FEW}. 

 
  

Normoxia Short-time Hypoxia Long-time Hypoxia 

Subj Visual Motor Visual Motor Visual Motor 

1 2,56 1,93 1,47 0,43 0,60 0,69 

3 3,51 2,17 1,95 0,54 2,17 0,24 

4 3,82 2,37 1,66 0,20 1,43 -0,51 

6 7,87 2,76 3,05 0,74 6,00 1,27 

7 1,92 2,42 1,58 0,47 1,01 0,77 

8 4,13 2,49 2,11 0,36 1,72 0,22 

10 1,94 4,29 1,17 0,80 2,34 2,30 

11 4,30 3,40 1,11 0,07 2,11 1,21 
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12 3,15 2,30 2,10 0,95 1,77 0,74 

13 3,24 1,55 1,67 -0,01 1,33 0,56 

14 4,43 1,95 3,50 0,70 2,54 0,81 

16 3,32 1,27 1,21 0,29 2,11 0,31 

17 2,33 1,63 1,73 0,86 1,28 0,98 

18 2,44 2,36 2,02 0,93 1,95 1,14 

19 3,21 3,77 1,36 0,82 1,88 1,07 

20 3,70 2,30 0,89 0,70 1,83 1,27 

Mean 3,49 2,43 1,79 0,55 2,01 0,82 

SD 1,41 0,80 0,69 0,30 1,18 0,62 

Table 1: Individual and mean ∆S parameters of the 16 subjects. Columns show the 

BOLD results of the visual and motor paradigm during the 3 different conditions. ∆S 

were measured in the subject’s POI and are indicated in p.d.u. Bottom rows show the 

mean ∆S and mean SD for each task and condition. 

 

Repeated ANOVA measures with factors task (tapping, visual) and condition 

(normoxia, short-time hypoxia, long-time hypoxia) were done and ∆S are significantly 

different with regards to tasks and conditions (main effect of task: F (1,15) = 19.43, p 

= 0.001; main effect of condition: F (1,15) = 67.09, p < 0.001). Also, significantly 

different signal intensity change across conditions in motor area and visual cortex 

could be asserted (motor areas: F (2,30) = 74.41, p < 0.001; visual cortex: F (2,30) = 

28.18, p < 0.001). Figure 7 shows the mean ∆S of motor and visual stimulation during 

normoxia (baseline) as well as short-time and long-time hypoxia. 
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Figure 7: Mean ∆S under normoxic (baseline) and hypoxic (short-time hypoxia and 

long-time hypoxia) conditions during motor (Motor paradigm) and visual (Visual 

paradigm) stimulation. Data were obtained from the subject-specific POIs. SD is 

indicated by lines atop the bars. (*) indicates significant difference to baseline values 

(p < 0.05). 

 

The mean ∆S during normoxia was 2.43 ± 0.80 % when the subjects were executing 

FTT, and 3.49 ± 1.41 % when they were looking at the checker board. The finger 

tapping paradigm was applied in all subjects and all the subjects had lower ∆S increase 

during hypoxia. During motor stimulation, the mean ∆S due to short-time hypoxia was 

0.55 ± 0.30 % and 0.82 ± 0,62 % due to long-time hypoxia. During visual stimulation, 

the mean ∆S due to short-time hypoxia was 1.79 ± 0.69 %. Long-time hypoxia led to a 
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mean ∆S of 2.02 ± 1.18 %. Repeated ANOVA measures with factors task (FTT, visual) 

and the hypoxic conditions (short-time hypoxia, long-time hypoxia) showed a main 

effect of task (F (1, 15) = 52.10, p < 0.001), but no main effect of the hypoxic condition 

(F (1, 15) = 1.79, p = ns). So, on the one hand the two different paradigms yielded 

significantly different signal amplitudes in their corresponding activated brain areas 

relative to normoxia. On the other hand, the duration of hypoxia (7 ± 1 min versus 509 

± 24 min) had no significant influence on ∆S. To reveal the relative influence of hypoxia 

on mean ∆S values compared to ∆S values in normoxia, normoxic ∆S values were 

normalized using SPM8. Baseline ∆S values due to motor and visual stimulation were 

set to 5 (motor stimulation height threshold: T = 3.28, p < 0.001 {unc.}); visual 

stimulation height threshold: 4.79, p < 0.05 {FEW}) and the corresponding values of 

short-time and long-time hypoxia were aligned accordingly. Figure 8 shows the results 

after normalization of baseline values, and the calculated ∆S values indicate that task-

related mean ∆S is higher due to visual stimulation (2.81 ± 1.01 %) than due to FTT 

(1.42 ± 0.90 %). 

 

 

 

Figure 8: Normalized mean ∆S under short-time and long-time hypoxic conditions 

during visual (Visual paradigm) and motor (Motor paradigm) stimulation. Data were 

obtained from the subject-specific POIs. All ∆S were normalized with respect to 

normoxia (not shown) with corresponding stimulation. SD is indicated by lines atop the 

bars. (**) indicates no significant difference between short-time and long-time hypoxia 

values (p > 0.05). 
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To illustrate the extent of decline in a simple way, i. e. by means of percentage values, 

both normoxic short-time and long-time hypoxia baseline values were artificially set to 

100%. The corresponding mean ∆S of motor and visual stimulation during short-time 

and long-time hypoxia were aligned to their baseline values as well (Figure 9). Hypoxia 

resulted in a signal that constituted approximately 28 % (motor) and 54 % (visual) of 

baseline values. 

 

 

Figure 9: Normalized mean ∆S of motor and visual stimulation during baseline, short-

time and long-time hypoxia. Values are indicated as proportion in % of normoxic ∆S 

values, which were given a value of 5 and set as 100 %. 

 

Correlation of AMS (LLS ≥ 3) to subjects’ ∆S values showed no main effect of 

symptomatic AMS on ∆S (p > 0. 05), probably due to the limited sample size. 

To get a picture of the localisation of activated brain regions, a coloured map of BOLD 

image intensity changes showing the voxelwise average BOLD effect of visual and 

motor activation during normoxia and hypoxia has been created (Figure 10). The 

magnitude of the values evoked by the different hypoxic conditions were quite 

diverging in their amount. To create a presentable image of activation during all 

conditions, a certain threshold for activation values had to be set for each breathing 

condition to either distinguish signal based on activation from noise or irrelevant 

activation (e. g. eye movement, breathing, etc.) and to see activation of the brain at all. 

This means the image is only meant for ease of comprehension and does not allow a 

comparison of the values because different signal thresholds were used. 
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Figure 10: Pseudo-colour map of BOLD image intensity changes in response to visual 

and motor stimulation (Visual and Motor activation) during baseline condition 

(normoxia) as well as short-time and long-time hypoxia condition. 
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9 Discussion 

∆S in hypoxia were lower after visual stimulation than after motor stimulation compared 

to normoxic conditions (p < 0.05). However, the experiments didn’t find significant ∆S 

in the visual or motor cortex, comparing both hypoxic conditions. But the results of the 

experiments show a pronounced effect of hypoxia itself on the BOLD response. The 

values revealed fewer activation areas of BOLD responses relative to normoxia, and a 

decrease in the BOLD response sizes. Visual stimulation in hypoxia led to a ∆S which 

on average was reduced by 46 % during low SaO2. Motor stimulation led to a mean 

signal reduction by 72 %. 

9.1 Changes of ∆S during hypoxia 

In the past, some studies have reported that a decrease in SaO2 reduces fMRI 

responses under an event-related stimulation paradigm. The general hypoxia effect on 

BOLD response found by the visual experiment is quite similar to the BOLD response 

described by other studies using a visual paradigm (Ho et al., 2008; Rostrup et al., 

2005; Tuunanen, Vidyasagar et al., 2006). The study results demonstrate a reduction 

in the size of brain regions showing BOLD responses during visual stimulation in 

hypoxia (Ho et al., 2008; Tuunanen and Kauppinen, 2006). Examining BOLD response 

during visual stimulation in the presence of hypoxic hypoxia, Ho et al. showed that 

relative to normoxia, hypobaric hypoxia caused a decrease in activation areas of T2* 

∆S and the thresholded areas in hypoxia were on average 55 % smaller for the BOLD 

scans (Ho et al., 2008, p. 185). Those groups also showed that the amplitude of BOLD 

response was reduced during acute hypoxia. There has been decreased amplitude, 

absence of initial sharp overshoot and a decrease in the size of the post-stimulus 

undershoot from BOLD response by decreasing SaO2 (Ho et al., 2008). 

That hypoxia decreases BOLD activation volume in the brain structures involved in 

execution of a motor task has been shown previously in animals (Sicard and Duong, 

2005) and humans (Rostrup et al., 2005; Tuunanen and Kauppinen, 2006). Analysis 

for BOLD pixels activated due to normoxia and hypoxia showed that the number of 

pixels declines by ~ 50 % from the supplementary motor area, the supramarginal gyrus 

and the region around the central sulcus (Tuunanen and Kauppinen, 2006). The 

percentage decline in brain volumes showing BOLD in hypoxia was not different 

between the anatomical regions, however (Tuunanen and Kauppinen, 2006). 
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Attenuating effects on ∆S could also be reported by studies in animals (Sumiyoshi et 

al., 2012) and humans (Rostrup et al., 2005). 

9.2 Reasons for BOLD changes in hypoxia: CBF, CMRO2, CBVv 

A detection of statistically significant BOLD response is regarded as a change in neural 

activity at a certain brain location, but interpreting the ∆S as a quantitative reflection of 

the magnitude of underlying change in neural activity or metabolism is problematic 

(Ances et al., 2008). The question arises whether a higher BOLD response in one 

particular region compared to another brain region indicates greater change in neural 

activity or O2 metabolism as well (Ances et al., 2008). There are mainly two sources of 

physiological variability that could explain a discrepancy between the extent of the 

BOLD response and the extent of genuine physiological responses: the ceiling for the 

BOLD response magnitude is limited by the quantity of deoxyHb molecules present at 

baseline. Baseline conditions however can vary across the brain (Davis et al., 1998). 

In modelling the BOLD response, the effect of variable baseline conditions is described 

by the scaling factor M (Ances et al., 2008; Davis et al., 1998). As mentioned earlier, 

the important physiological parameters that influence the BOLD effect are the CMRO2, 

CBF and the CBVv. ∆S in extravascular brain tissue can be approximated as follows 

(Kim and Ogawa, 2012): 

∆S = - ∗ 9Δ�/� �/�⁄ − Δ�-+�� �-+��⁄
Δ�/� �/�⁄ + 1 − 1

; ∗ Δ�/<=
�/<= > 

∆S = - ∗ ? Δ@=��1 − @=�� − 1
; ∗ Δ�/<=

�/<= A 

M is the BOLD calibration constant. SvO2 is the venous blood oxygenation level. β is 

1.5 and is assumed accordingly to Davis and colleagues (Davis et al., 1998). SaO2 is 

assumed to be 100 % at unaffected baseline condition. Haematocrit level in venous 

blood is assumed to be unchanged with stimulus. 

 

M is a scaling parameter that represents the maximum possible ∆S that would be 

achieved by complete elimination of all deoxyHb (Whittaker et al., 2016). M comprises 

a number of factors determined by the baseline physiological state, as well the 

dependence of ∆R2* on TE, and thus is specific to a subject and region during a 

particular scanning session (Whittaker et al., 2016). The first term in the above 

equation relates to the mismatch between relative O2 consumption and CBF change 
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and the second term relates to the relative CBVv change (Kim and Ogawa, 2012). This 

formula shows that an increase in SvO2, and a decrease in OEF, will increase ∆S, 

while an increase in CBVv decreases ∆S (Kim and Ogawa, 2012). Another potential 

source of variability of the BOLD response is that the coupling of CBF and CMRO2 

could vary across the brain or potentially in the same area under different conditions 

(Ances et al., 2008). 

9.3 CBF 

Considering the importance of cerebral oxygenation, it’s not surprising that 

physiological adjustments taking place during exposure to hypoxia usually can 

maintain global cerebral delivery of O2 (CDO2). The observation of an increased global 

CBF during hypoxia is well established (Ainslie and Subudhi, 2014). Consistent with 

the conservation of (O2) mass principle, cerebral OEF is inversely proportional to CBF 

when metabolism is held constant, and directly proportional to metabolism when CBF 

is held constant (Ainslie et al., 2016). Hypoxia-induced vasodilatation occurs in all 

involved vessels, from the large extracranial and intracranial arteries (Willie et al., 

2012; Wilson et al., 2011) to the arterioles in the pia mater (Wolff et al., 1930). The pial 

arterioles are the principal site for modulation of cerebrovascular resistance and thus 

the vasodilatation, both because their collective surface area is quite big and because 

their tone is coupled to the metabolic state of downstream neurovascular units 

(Iadecola, 2004). These findings of increased CBF persist upon ascent to high altitude 

despite marked hypocapnia, which typically provokes cerebral vasoconstriction 

(Ainslie et al., 2016). Although global CDO2 is maintained at rest and even at maximal 

exercise in hypoxia (Smith et al., 2014), there are reported disparities in regional CBF 

and vascular reactivity (Binks et al., 2008) as well as an overall drop in tissue PO2 

(Ainslie, Shaw et al., 2014). Despite the decrease in tissue PO2, cerebral OEF and 

CMRO2 seem unaltered (Ainslie, Shaw et al., 2014; Kety and Schmidt, 1948). This 

suggests that the nutrient requirements of brain tissue are met when global CDO2 is 

maintained, yet the mechanisms responsible for hypoxia-related neurological 

symptoms and deficits remain uncertain (Ainslie et al., 2016). There is also evidence 

that although global CDO2 is sufficient to maintain overall metabolism, other 

extramitochondrial cellular processes are more sensitive to even small hypoxic insults 

(Ainslie et al., 2016). The synthesis of enzymes and related neurotransmitters (e.g. 

glutamate, serotonin, acetylcholine, dopamine) is very O2 sensitive (Pulsinelli, 1985). 
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It’s important to note that severe hypoxaemia has been associated with 

microhaemorrhages in the corpus callosum of patients with a history of HACE 

(Kallenberg et al., 2008). This could be considered as a situation when the increase in 

CBF is maladaptive. Erythrocyte extravasation was taken to reflect cerebral capillary 

stress failure subsequent to cerebral hyperperfusion and severe blood-brain barrier 

disruption, so these adverse outcomes suggest that the cerebrovascular changes that 

occur in response to severe hypoxaemic stress become maladaptive when they extend 

beyond a normal human physiological reserve (Ainslie et al., 2016). 

The mechanisms that integrate the upstream sensing of SaO2 and downstream 

transduction of the signal into vasodilatory reactivity are still not fully known, but receive 

much focus (Ainslie et al., 2016). The erythrocyte, in addition to its O2 transport role, 

may also function as an O2 sensor and a NO signal transducer capable of affecting 

vasodilatation in hypoxia, thus titrating O2 supply against metabolic demand (Ainslie et 

al., 2016). Erythrocyte-mediated hypoxic vasodilatation mechanisms are dependent 

on the transition of Hb, i. e. from the oxyHb state to the deoxyHb state, which occurs 

at the site of arterioles through to the capillaries. The resultant vasodilatory signals can 

propagate in retrograde fashion to induce vasodilatation throughout all the involved 

cerebral vessels (Hoiland et al., 2016). 

As mentioned, PET scan data reveal that the increase in CBF during isocapnic hypoxia 

is different between brain regions (Binks et al., 2008). Some brain regions receive a 

proportionally greater increase in regional CBF. The most prominent increases in 

regional CBF were seen in the nuclei of the basal ganglia as well as several other 

phylogenetically old brain regions, specifically the putamen, thalamus, nucleus 

accumbens and pallidum (Binks et al., 2008). These areas are mostly perfused by the 

lenticulostriate arteries which are branches of the MCA. 

Investigations comparing the anterior and posterior circulation are sparse. Transcranial 

Doppler ultrasound (TCD) data at sea level indicate greater reactivity to hypoxia in the 

brainstem than cortex (Willie et al., 2012). Willie et al. measured a greater elevation in 

the vertebral artery’s CBFV after a rapid ascent to 5260 m than in the ICA. It seems 

that there is a preferential maintenance of brainstem CBF upon acute exposure to 

hypoxia (Willie et al., 2012). On the other hand, Feddersen et al. report that a sojourn 

at high altitude led to a decrease of CBFV in the PCA and an increase in the MCA 

(Feddersen et al., 2015). It has been shown that there is an increase in sympathetic 

activity at high altitudes (Hainsworth et al., 2007), so this  may be a relevant factor for 
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the CBFV changes as the posterior parts of the blood vessels are less innervated by 

the sympathetic nervous system (Beausang-Linder and Bill, 1981). Additionally, there 

are reports that sympathetic activity influences the reactivity of CBF to PaCO2 (D'Alecy 

et al., 1979; Jordan et al., 2000). Hypoxia-induced elevations in sympathetic nerve 

activity seem to have the potential to affect CBF by both direct and indirect 

mechanisms, e.g. via systemically mediated changes in cardiac output being 

redistributed to the brain (Ainslie, Wilson et al., 2014).  Whether that can explain the 

behaviour of CBFV in the PCA remains unclear (Feddersen et al., 2015). However, it 

is known that hypoperfusion in the PCA occurs in patients with hypoxic brain injuries. 

Cardiac malfunction or asphyxiation may cause brain injury in very hypoxia-sensitive 

areas such as the basal ganglia or the posterior brain areas (Feddersen et al., 2015). 

Hypoperfusion of cerebral tissue can lead to cytotoxic edema and accumulation of 

water in the stroma because of malfunction of the transmembrane pump (Moseley et 

al., 1990). An examination using diffusion-weighted MRI has shown that a lowered 

apparent diffusion coefficient directly preceded AMS symptoms (Hunt et al., 2013). 

AMS may sometimes evolve directly into HACE, which is characterized by dysfunction 

of the posterior parts of the brain. A similar syndrome occurring during normoxia is the 

posterior reversible encephalopathy syndrome (PRES). It develops in patients with 

complex systemic conditions such as eclampsia, after transplantation, infection, 

autoimmune diseases and after cancer chemotherapy (Hunt et al., 2013). CT or MRI 

studies show that the edema is often widespread but predominantly in the parietal and 

occipital brain regions and these reports have detected reduced brain perfusion in 

regions of PRES (Bartynski, 2008). Brubaker et al. compared anterior with posterior 

hemispheric flow and demonstrated significant posterior brain hypoperfusion with 

increased mean transit time, reduced CBVv, and reduced CBF in PRES (Brubaker et 

al., 2005). Susceptibility-weighted MRI detected microhaemorrhages predominantly in 

the splenium of the corpus callosum (Schommer et al., 2013). These 

microhaemorrhages were a highly specific sign of HACE and correlated with the extent 

of the clinical presentation. It has been suggested that PRES develops because of the 

failure of autoregulation and hyperperfusion, but the theory of alternative endothelial 

dysfunction and hypoperfusion and vasoconstriction leading to altered integrity of the 

blood–brain barrier is favoured (Bartynski, 2008). Similar pathophysiological 

considerations might be valid for the development of HACE. Anatomical findings of the 

watershed area between the ACA and the PCA at the splenium might explain this 
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predilection for microhaemorrhages in HACE, in view of the continuous decrease of 

CBFV in the PCA. These findings indicate that the physiological response of CBFV to 

hypobaric hypoxia differs in the anterior and posterior supratentorial parts of cerebral 

circulation despite their similar physiological changes (Feddersen et al., 2015). 

It has also been suggested that changes in global CBF can result from the intake of 

commonly used substances (e.g. caffeine, nicotine, and alcohol), changes in the 

concentration of endogenous substances (e.g. oestrogen and adrenaline), or 

experimental administration of various drugs (Kim and Ogawa, 2012). These global 

CBF changes can affect the dynamics and magnitude of BOLD (Cohen et al., 2002). 

Also, at higher baseline levels of SvO2, the maximal allowable relative change in SvO2 

decreases, and as the relative change in SvO2 diminishes, the BOLD response no 

longer linearly correlates with CBF changes, especially for extremely large CBF 

responses (Lee et al., 2002). However, within the range of normal physiological 

conditions, it is most likely that baseline-condition dependence of BOLD responses is 

due to baseline-condition dependence of CBF responses (Kim and Ogawa, 2012). 

9.4 CBV 

One of the major components contributing to BOLD contrast is the CBVv. Dynamic 

CBF and CBVv changes are intercorrelated, since CBF is dependent on CBVv and 

velocity changes (Kim and Ogawa, 2012). Total CBV change can be either estimated 

from CBF change (Grubb et al., 1974), measured with intravascular injection of a 

contrast agent (Mandeville et al., 1998) or measured by the vascular space occupancy 

(VASO) fMRI method. Total CBV should be subdivided into arterial and venous 

components. Approximately 60 % - 80 % of baseline total CBV is from CBVv (An and 

Lin, 2002). It therefore is assumed that stimulus-induced total CBV changes are 

dominated by CBVv changes (Mandeville, Marota, Ayata, Zaharchuk et al., 1999). 

Delineated by VASO fMRI and grey matter nulled (GMN) fMRI, Shen et al. report that 

the effect of hypoxic hypoxia is a decline in the number of active voxels, meaning that 

the size of the active brain region is reduced during visual stimulation in hypoxic 

hypoxia (Shen et al., 2012). Previous studies using both BOLD and VASO techniques 

confirm these findings (Ho et al., 2008; Tuunanen, Murray et al., 2006; Tuunanen, 

Vidyasagar et al., 2006). Tuunanen et al. proposed a potential explanation to this 

observation (Tuunanen, Murray et al., 2006). Within the brain region surrounding the 

core brain activation region, there is a closer match between O2 consumption and 
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delivery under decreased O2 availability during hypoxic hypoxia, thereby reducing the 

BOLD effect (Shen et al., 2012). The CBVv responses to visual stimulation measured 

by GMN and VASO fMRI methods however, are similar under hypoxic and normoxic 

conditions (Ho et al., 2008; Tuunanen, Murray et al., 2006).This indicates that hypoxic 

hypoxia has little effect on HRF but a significant influence on ∆S (Shen et al., 2012). 

VASO data indicate that hypoxia does not further augment vascular response to brain 

activation and so the BOLD observations are likely to be due to differing OEF under 

the different oxygenation states (Ho et al., 2008). Furthermore, Tuunanen et al. 

determined OEF in the visual cortex during activation in hypoxic hypoxia with the VASO 

method and the visual cortex appeared to show heterogeneity in OEF, i. e. regionally 

varying CMRO2/CBF ratio (Tuunanen, Murray et al., 2006). 

9.5 CMRO2 

The CBF increase during hypoxia is known and has been discussed extensively 

(Ainslie and Subudhi, 2014), but uncertainty exists regarding changes in CMRO2 

(Vestergaard et al., 2016). MRI methods allow non-invasive measurement of mean 

CMRO2, i. e. the brain’s total O2 consumption divided by the total brain volume, based 

on measurement of the concentration of deoxyHb in the sagittal sinus combined with 

measurement of total blood flow to the brain and Fick’s principle (Vestergaard et al., 

2016). Using such a technique, on the one hand there seems to be a significant 

increase in CMRO2 during hypoxic exposure (Smith et al., 2013; Vestergaard et al., 

2016; Xu et al., 2012). Using Kety-Schmidt techniques and blood samples on the other 

hand, found no change in CMRO2 (Ainslie, Shaw et al., 2014; Kety and Schmidt, 1948). 

Low O2 availability leads to maximized astrocyte glycolysis and lactate release, and 

the external lactate causes accumulation of prostaglandin E and subsequent 

vasodilation (Gordon et al., 2008). In rats, there has been shown that prolonged 

hypoxia increases the cerebral glycolytic rate (Harik et al., 1994). There is also an 

increased lactate release in the brain and it contributes up to 9 % of total energy 

turnover (Overgaard et al., 2012). Additionally, lactate may inhibit cAMP generation 

and cause a damping of glycolytic rate when lactate concentration rises (Lauritzen et 

al., 2014). Lactate might also act as a volume transmitter, regulating CBF and the brain 

energy turnover of groups of neurons (Bergersen and Gjedde, 2012). 

It is also known that severe ischemia, e.g. in stroke, results in local release of the 

excitatory neurotransmitter glutamate and enhances neural activity, which is harmful 
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for the tissue (Vestergaard et al., 2016). Elevated ventilation rate and concomitant 

hypocapnia has also an effect on the cerebral metabolism, but the reported effect of 

hypocapnia is diverse (Vestergaard et al., 2016). A study on patients with cerebral 

vascular disease showed no conclusive result, as CMRO2 did not change significantly 

during hypocapnia within the whole group of patients, because 10 out of 19 cases 

showed a decrease and other 9 showed an increase of CMRO2 during hypocapnia 

(Tsuda et al., 1987). Another study on healthy humans reported a slight but not 

significant increase in CMRO2 during normoxic hypocapnia (Alexander et al., 1968). 

So, for both hypoxia and hypocapnia, there are publications that imply increased 

metabolic rate and other publications indicating no change. Several reasons may 

contribute to these discrepancies, e.g. different species, experimental conditions and 

pathological effects The increased metabolic rate observed by MRI techniques could 

be a combination of the effects of increased excitability from hypocapnia and increased 

flow from hypoxia (Vestergaard et al., 2016). 

9.6 Coupling of CBF and CMRO2 

The magnitude of the ∆S is dictated by neurovascular coupling, i. e. the relationship 

between CBF and CMRO2, and the physiological phenomenon producing the BOLD 

response is a divergence in CBF and CMRO2 changes (Whittaker et al., 2016). The 

hemodynamic origin of the BOLD response allows only a qualitative estimation of 

neural activity and the non-specific origin of these signal changes is particularly 

problematic for studies of subjects, since undetected pathologies or atypical brain 

physiology may confuse the interpretation of the BOLD response as a certain 

measurement of neural activity (Whittaker et al., 2016). 

The ratio of fractional CBF and CMRO2 responses is defined as n, and calibrated 

BOLD framework can be used to estimate the neurovascular coupling parameter n 

(Whittaker et al., 2016). This approach was introduced by Davis et al. It acquires BOLD 

responses and CBF responses simultaneously under distinct conditions of activation 

and mild hypercapnia (Ances et al., 2008; Davis et al., 1998). The CBF is measured 

with an arterial spin labelling (ASL) technique. This method uses the insight that BOLD 

responses depend on changes both in CBF andCMRO2, whereas ASL signals depend 

solitary on changes in CBF (Blockley et al., 2013). There is evidence that n may be 

modulated by brain region (Ances et al., 2008; Chiarelli et al., 2007) as well as other 
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factors such as age (Schmithorst et al., 2015), attention (Moradi et al., 2012), 

adaptation (Moradi and Buxton, 2013), and stimulus intensity (Liang et al., 2013). 

Previous studies using the calibrated BOLD framework have found values of n ranging 

from ∼2 to 4.2 for cortical regions including the motor and visual areas (Ances et al., 

2008). Specifically, Ances et al. report lower n within the subcortical lentiform nuclei of 

the basal ganglia, compared to parts of the visual cortex (Ances et al., 2008). So, if this 

is a general feature of differences between cortical and subcortical structures, then 

BOLD responses for similar changes in CBF may be substantially weaker in the 

subcortical regions (Ances et al., 2008). Chiarelli and colleagues performed an 

investigation of neurovascular coupling in three cortical brain regions, and found a 

larger proportional increase of n in the (PVC) region compared to the primary motor 

cortex (PMC) region (Chiarelli et al., 2007). An even larger coupling constant was 

observed in the supplementary motor cortex region. This further supports the notion 

that the disproportional rise in the inflow of fully oxygenated arterial blood and 

decreased levels of deoxyHb in the venous vasculature, is not uniform across brain 

regions. 

The fMRI results of the present study suggest that the effect of altered blood 

oxygenation is more influential on the BOLD activation in the motor area supplied by 

the MCA, rather than the PVC region supplied by the PCA. A limitation of this study 

was the relatively small sample size, so the study results might not be representative. 

Previous research has shown the effect of factors like diet and physiological state on 

the cerebral hemodynamic response to stimulus. It may be possible that certain 

subjects showed such genuine physiological differences. 

Quantitative Interpretation of the magnitude of a ∆S is problematic since it is a 

multifaceted occurrence, originating from changes in CBF, CMRO2, and CBVv. The ∆S 

generated by a particular brain region can be characterized as mainly a function of 

CBF changes, but it is heavily adjusted by the physiological parameters M and n 

related to that given brain region. Experimental conditions also play a role. Thus, when 

comparing ∆S between varying cerebral regions, a larger magnitude does not 

mandatorily mirror a larger change in neural activation or cerebral metabolism. Brain 

regions with smaller values of n (assuming similar values of M) are characterized by 

weaker BOLD responses and smaller SNR for a certain change in CBF than regions 

with higher values of n (Ances et al., 2008). So, it is important to note that areas with 

equally substantial changes in neural activity could fail to show a detectable BOLD 
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response because of this. Significant BOLD response however can be interpreted as 

evidence for an underlying change in neural activity (Ances et al., 2008). Taking into 

account that n is larger in the PVC region compared to the PMC region (Chiarelli et al., 

2007), this might apply to the results in this study. Motor stimulation led to weaker ∆S 

compared to visual stimulation. This could either be because of diverging influence of 

hypoxia on changes in BOLD in the separate brain regions or brain regions failing to 

demonstrate BOLD response, albeit significant underlying changes in neural activity, 

due to weaker n in the PMC region. 
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10 Conclusions 

The brain in particular is very dependent on a continuous supply of blood. Perfusion of 

the brain is roughly 50 ml/100 g/min and it is coupled to cerebral metabolism (Goldman 

and Schafer, 2016). Local increase of brain function leads to increased metabolism 

and blood flow in these regions. Brain cells are very sensitive to a lack of O2 and some 

brain cells start dying less than 5 minutes after their O2 supply stops (Goldman and 

Schafer, 2016). Consequently, cerebral hypoxia can quickly lead to severe or even 

potentially deadly brain damage. Loss of consciousness already appears when blood 

supply of the brain drops to 35 – 40 ml/100 g/min or cerebral venous PO2 decreases 

to 19 mmHg or less (McDowall, 1969). The various cell types of the central nervous 

system are different regarding their potential to withstand hypoxic stress. In 

descending order, especially susceptible to O2 deficiency are Oligodendrocytes, 

astrocytes, endothelial cells, connective tissue cells and microglia (Hicks S. P., 1968). 

Many medical conditions can lead to hypoxic brain damage due to deficits of O2 

delivery (Garrido M. M. and Bayarri J. G., 2012): 

 Heart failure followed by respiratory depression secondary to massive blood 

loss, septic or traumatic shock or heart disease (e.g. myocardial infarction or 

ventricular arrhythmia. 

 Respiratory failure followed by cardiac arrest or malfunction as a result of low 

O2 intake (e.g. tracheal obstruction, aspiration, or if the inspired air is poor in 

O2).  

 Reduced O2 carriage by the blood in CO poisoning. 

 Histotoxicity in cyanide poisoning. 

 

The brain by itself can react to low O2 supply by increasing the CBF and when this 

reaction is sufficient to preserve the amount of O2 minimally required, the patient will 

stay asymptomatic. If the reaction does not suffice however, cerebral hypoxia will 

gradually lead to neurological consequences. Only mild hypoxia results in less severe 

neurological symptoms, including dizziness, difficulties with execution of complex 

tasks, diminished memory retrieval, impaired psychomotor behaviour and AMS. If the 

O2 deficit is extended or severe, more serious consequences develop such as loss of 

consciousness, seizures, deep coma, cessation of brainstem reflexes, and brain death 

(Safar, 1986). 
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In the fMRI experiments of the present study, normobaric hypoxia led to decreased 

cerebral activation during motor and visual stimulation in spite of a preserved cerebral 

function. The effect of curtailed SaO2 and its oxygenation changes associated with 

brain activation seems more influential on the activation in the motor area supplied by 

the MCA, rather than the PVC region supplied by the PCA. Therefore, the ability of the 

brain to adapt to chronic hypoxic conditions might differ between the PMC and the 

PVC. Caution should be used however, when interpreting a lower global BOLD 

response as reflecting lower O2 delivery or consumption, since changes in CBF and 

perfusion are possible without changes in metabolism due to compensatory changes 

in OEF (Macey et al., 2014). 

In infants affected by neonatal Hypoxic(-Ischemic) Encephalopathy (HE), the hypoxic 

injury causes damage to the sensorimotor cortex, basal ganglia, thalamus, and brain 

stem (Johnston et al., 2001; Martin et al., 1997). The susceptibility of these brain 

regions to hypoxic injury is likely to be a consequence of excessive activity of excitatory 

synapses (Johnston et al., 2002) and indeed, they have been confirmed to have high 

metabolic rate and are interconnected by functionally active excitatory glutamatergic 

neurons (Alexander and Crutcher, 1990; Johnston et al., 2002). Therefore the selective 

vulnerability of the different regions following neonatal hypoxic injury could be a 

consequence of their position within excitatory circuits (Rocha-Ferreira and Hristova, 

2016). Damage to different neonatal brain regions depends on the severity, the 

duration of the insult, and the developmental stage of the brain (Schmidt-Kastner, 

2015). However, comparison with adult brains is difficult. Actually, the immature brain 

is relatively resistant to hypoxia alone compared to the adult one due to its strong 

protective mechanisms such as the capability to increase CBF (Johnston et al., 2001). 

Advancing age is characterized by a decline in physiological functions and it is a 

complex state, characterized by an accumulation of many pathologies (Daulatzai, 

2015). COPD and untreated sleep-disordered breathing (SDB), such as obstructive 

sleep apnoea and central sleep apnoea, with periodic breathing result in chronic 

hypoxia with intermittent exacerbations of acute hypoxia that are similar to the effects 

of high altitude (Daulatzai, 2015; Peppard et al., 2013). Decreases in SaO2 levels will 

impose stress on the brain and SDB has been associated with substantial grey matter 

loss in several cortical regions (Macey et al., 2008). SDB subjects also show different 

fMRI signals in the sensory and supplementary motor cortex as well as in the thalamus, 
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cerebellar cortex and deep nuclei, cingulated cortex, medial temporal cortex, insula, 

right hippocampus, and midbrain (Macey et al., 2006). 

In another study, a validated regional homogeneity method was employed in 16 adults 

who have immigrated to Qinghai-Tibet Plateau (2300 - 4400 m) for 2 years to 

investigate the local synchronization of resting-state fMRI signals (Chen et al., 2016). 

Compared with sea level controls, global mean regional homogeneity was significantly 

increased in high altitude immigrants as well as a regional increase in the right 

inferolateral sensorimotor cortex (Chen et al., 2016). Furthermore, they showed 

significant inverse correlation with memory search reaction time within the inferolateral 

sensorimotor area in high altitude immigrants (Chen et al., 2016). 

Taking it all in all, the aforementioned observations support the notion that normobaric 

hypoxia seems more influential on the motor cortex and that the ability of the brain to 

adapt to chronic hypoxic conditions might differ between the motor and the visual 

system. 

Hypoxia has been shown to decrease the magnitude of BOLD response to visual and 

motor stimulation. The effect on the BOLD response is tightly linked to CBF (or more 

precisely the Hb concentration) and underlying coupled CMRO2 changes as well as to 

blood volume effects. These main confounders of ∆S seem different in brain regions, 

as shown in the preceding chapters. Changes in the O2 carrying capacity may also 

influence BOLD mechanisms in a way, but such effects have not been investigated. In 

general, many different factors may contribute to a significant intra- and interindividual 

variation in BOLD magnitude (Rostrup, 2006). Future studies should address the issue 

how large precisely a fraction of this variation could be and by which measurable 

physiological variables it could be measured. It should be noted, that a study with 

relative few subjects may be prone to bias because of substantial interindividual 

variation in BOLD magnitude. Although physiological appropriate increases in CBF 

may occur in hypoxia, unnoticed neurotransmitter dysfunction may occur even during 

discreet hypoxic challenges that may be considered maladaptive despite the 

maintenance of CDO2 and delineation of these mechanisms in humans remains a 

considerable challenge and focus of current research efforts (Ainslie et al., 2016). 
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