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Mathias Ritzmann (Clinic for Swine, LMU, Oberschleißheim) who substantially contributed

to the in vivo needle-free powder immunization study.

Many thanks to Florian Vetter, Christoph Müller, and Prof. Dr. Franz Bracher (Depart-

ment of Pharmacy, Center for Drug Research, LMU) for performing the GC-MS measure-

ments.

Special thanks go to my Bachelor students Lisa Völk and Denis Hüwel, whose stud-
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I

INTRODUCTION

Section 2 of this chapter has been published as L. Engelke, G. Winter, S. Hook, and J. En-

gert, Recent insights into cutaneous immunization: How to vaccinate via the skin, Vaccine

33(37) (2015) 4663-74. This article was written by myself.

1 Objectives and outline of this thesis

The aim of this thesis is to evaluate selected active intradermal delivery techniques and

their potential for cutaneous vaccination. This work focuses in particular on needle-free

powder injection and skin microporation using microneedles (MNs) or laser microporation

for intradermal antigen delivery. This thesis shall provide an insight into the challenges

and opportunities in the development of needle-free vaccination routes via the skin. Fur-

thermore it aims to highlight the great potential of the cutaneous route of vaccination to

serve as an alternative to conventional immunization by intramuscular (i.m.) injection.

Different aspects of the development of needle-free vaccination techniques are addressed

experimentally and discussed in relation to historical and most recent research. In partic-

ular, the intradermal deposition, reproducibility and efficiency of delivery, the induction of

an immune reponse, the ease of administration, the simplicity of design and the associated

cost-efficiency of development and large scale manufacturing are addressed.

In chapter II a novel design of a hand-held, needle-free powder injector is studied for cuta-

neous vaccination using a sugar-based microparticle vaccine. In the course of this study, a

highly concentrated vaccine using ovalbumin (OVA) as model antigen has been developed

using a two-step manufacturing process combining collapse lyophilization and cryogenic

milling. The model vaccine properties and long-term storage stability are assessed. More-

over, the loading of the powder injector is characterized by studying the vaccine adhesion

onto the device membrane using different oily adhesives. These oily adhesives allow not

only for a fixation of the vaccine powder, but can also serve as adjuvant upon intradermal

delivery. Therefore, the oily adjuvant is brought in contact with the concentrated vac-

cine to assess the long-term stability. Finally, the immune response by needle-free powder

injection is evaluated in vivo using the novel injector device.

Chapter III focuses on the intradermal delivery of micro- and nanoparticles using solid

1



I. Introduction

microneedles (MNs). Compared to the complex engineering required for the development of

the powder injector, solid MNs are easy and cost-efficient to manufacture in large scale and

commercially available in various configurations. In this chapter the intradermal delivery

of micro- and nanoparticles ranging from 0.1 µm to 7.0 µm using two different types of

solid MNs is characterized. Thereby, the influence of the particle size as well as the MN tip

geometry and application sequence on the intradermal penetration depth and quantitative

deposition is studied.

Furthermore, in chapter IV the intradermal delivery of macromolecules and particles from

water-soluble films upon fractional laser microporation is evaluated. In comparison to

solid MNs, the skin barrier is breached using a fractional erbium:yttrium aluminum garnet

(Er:YAG) laser poration device. The intra- and transdermal delivery of fluorescently-

labeled dextrane as well as micro- and nanoparticles of 5.0 µm and 0.5 µm from polyvinyl

alcohol (PVA)-based film patches is studied over 24 hours upon skin laser microporation.

The different intradermal delivery techniques presented in this thesis allow for a compari-

son of the utilized approaches with respect to simplicity of design and intradermal delivery

efficiency. Research beyond this thesis can be benchmarked against the results and obser-

vations presented here. This thesis not only provides a profound overview of needle-free

cutaneous vaccination approaches, but also identifies critical aspects and requirements of

intradermal vaccine delivery.

2



2 Recent insights into cutaneous immunization: how to vaccinate via the skin

2 Recent insights into cutaneous immunization: how

to vaccinate via the skin

2.1 Introduction

The skin has been used to induce protective immunity against highly infectious diseases

since the very first recorded vaccinations against smallpox in 1796 [1, 2]. Jenners break-

through eventually lead to the eradication of smallpox by mass vaccination programs, where

vaccines were initially administered by subcutaneous (s.c.) inoculation with a lancet and

later performed using needle-free jet injectors and bifurcated needles for intradermal (i.d.)

vaccine delivery [1, 3, 4]. Furthermore, bacille Calmette-Guérin (BCG) vaccines have been

administered intradermally since the early 1920s to prevent tuberculosis [5–7].

Although the skin has been known for centuries to be an attractive site for immuniza-

tion, recent developments in needle-free systems have renewed the interest in cutaneous

vaccination, here defined as the induction of an immune response upon topical, intrader-

mal, or intraepidermal delivery of a vaccine [8]. This route of immunization, sometimes

also referred to as skin vaccination or transcutaneous immunization, takes advantage of

the unique immunological features of the skin immune system [9–11]. The two uppermost

skin layers, the epidermis and the dermis, have a high density of immunocompetent cells

such as Langerhans cells (LCs) and dermal dendritic cells (dDCs) (Fig. I.1) [12]. These

antigen-presenting cells (APCs) play an important role in developing adaptive immunity

through the processing and presenting of antigen [13, 14]. Delivering a vaccine to the

skin has been shown to elicit similar or even higher immune responses compared to i.m.

injection, even in some cases using lower vaccine doses [15–22]. This could be of special

significance for pandemics, when vaccine supply is limited and dose reduction is neces-

sary. By evoking humoral, cellular and, in some cases, mucosal immune responses [23–25],

cutaneous vaccination holds the potential to expand the range of applications beyond con-

ventional prophylactic immunization into therapeutic vaccination for cancer and human

immunodeficiency virus (HIV) infections [26, 27].

The demand for a safe, pain-free and simple alternative to i.d. and i.m. needle injection

has led to the development of alternative techniques to deliver vaccines to the skin. Intra-

dermal vaccination, usually performed with needle and syringe (N&S), can be regarded as

the first approach of cutaneous vaccination. However today, the variety of strategies has

been expanded, including conventional i.d. injection, but also needle-free vaccine delivery

3



I. Introduction

Figure I.1: Professional antigen presenting cells of the superficial skin. Three subsets of
professional antigen presenting cells have been identified within the two topmost layers
of the skin. Whereas a high density of Langerhans cells (LCs) can be found within the
epidermis, CD1+ and CD14+ dermal dendritic cells (dDCs) reside in the underlying dermis.

techniques, stratum corneum (SC)-disruptive approaches, and passive targeting strate-

gies [28]. The simplest techniques involve the passive diffusion of protein or DNA vaccines

into intact skin or skin pretreated by tape stripping or abrasion of the SC [29–34]. Active

vaccination approaches deliver the antigen directly to immunocompetent cells either by

needle-free jet and powder injection or by creating microchannels or transient cavities in

the upper skin layers [35–37]. Such active microporation techniques include the use of

microneedles, thermal microporation, radiofrequency ablation, and laser poration, as well

as electroporation and sonoporation. Here we will review the latest advances in the field of

needle-free cutaneous vaccination with special consideration being given to DNA or RNA

vaccines and the use of adjuvants for cutaneous vaccination.
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2.2 Vaccination via the skin

2.2.1 Antigen presentation

The aim of vaccination is to activate the acquired immune system to induce long-lasting

protection against specific pathogens [38]. Upon encountering a pathogen APCs mature

and migrate towards draining lymph nodes [13]. By up-regulating antigen-loaded ma-

jor histocompatibility complexes (MHCs) class I and II as well as co-stimulatory surface

molecules, mature APCs initiate the proliferation and differentiation of näıve T cells into

effector and memory T cells [13, 39]. Typically, exogenous antigens are presented via

(MHC-II complexes to CD4+ T cells, comprising T helper cells (Th cells) and regulatory

T cells (Tregs), whereas CD8+ T cells (cytotoxic T cells, CTL) interact with cytosol-derived

endogenous antigens loaded onto MHC-I [40, 41]. However this segregation of antigen pre-

sentation is not complete as distinct subsets of APCs are able to cross-present exogenous

antigens via MHC-I to prime CD8+ T cells [42, 43]. This cross-priming is expected to play

an essential role for eliciting immune responses against tumor or virus-infected cells [42].

In addition to the MHC-restricted presentation of proteins and peptides, APCs are able to

process and present non-protein antigens, such as lipids, glycolipids and lipopeptides [44].

Surface molecules of the CD1 family are loaded with lipid antigens via endocytotic path-

ways [45], subsequently priming natural killer T cells (NKTs), which respond by secreting

large amounts of Th1 and Th2 cytokines and influencing dendritic cell (DC) matura-

tion [46, 47]. LCs have been found to express large amounts of the group 1 family of CD

molecule CD1a and moderate amounts of CD1c [48, 49]. However, all identified molecules

of group one and two of the CD1 family have been found on dDCs [49, 50]. CD1d is the

only molecule of the CD1 family that has also been detected in mice [51].

2.2.2 Acquired Immune Responses

CD8+ T cells that differentiate and proliferate upon MHC-I interaction into CTLs [41, 52]

are able to lyse transformed or infected cells through the production of granzymes and

perforin [53]. CD4+ T helper cells play a role in modulating a variety of immune responses.

This includes cellular, humoral, regulatory and inflammatory responses [54]. B cells may

be activated in either a T cell dependent or independent manner [55]. Upon activation

näıve B cells differentiate into antibody secreting plasma cells and memory B cells [56].

Four different subsets of T helper cells are known to reside in the skin Th1, Th2, Th17

and Th22 [51]. Promoted by IL-12, non-polarized CD4+ T cells differentiate into Th1
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cells, typically secreting interferon gamma (IFN-γ) and IL-2 [57]. The polarization to-

wards the Th2 subset is enhanced by IL-4 and these cells secrete IL-4, IL-5, IL-10 and

IL-13 [57]. While IFN-γ promotes a switch towards IgG2a in mice and stimulates cellular

immune responses, IL-4 induces the synthesis of IgG1 and IgE [58]. IL-23 induces the

proliferation of Th17 cells that secrete IL-17 and often IL-22 [59, 60]. The Th22 subset,

which has been identified recently, can be characterized by the secretion of IL-22 and in

the absence of IL-17 or IFN-γ [61, 62]. Healthy skin harbors approximately 8 % mainly

Th1-biased effector memory T cells as well as a substantial numbers of central memory

and regulatory T cells [63].

2.2.3 Dendritic cell subsets

While the dendritic cell network in the skin differs between mice and human, some simi-

larities exist. The main dendritic cell subsets that have been identified in mice and human

skin are the epidermal LCs and dDCs. In both species LCs form a continuous network

throughout epidermal keratinocytes and can be characterized by their expression of the

lectin receptor langerin (CD207) [51, 64]. In mice, the dDC population constitutes of der-

mal resident DCs, namely CD103+ DCs and CD11b+ DCs, as well as migratory LCs [65].

Langerin-negative CD11b+ DCs represent the main dermal dendritic cell subset, (approxi-

mately 70 % of DC) residing in the dermal skin layer [66]. Langerin-positive CD103+ DCs

are found below the epidermal-dermal junction [67]. In addition to these two dermal res-

ident DCs, a third dDC subset has been identified, expressing MHC-II and CD11c, but

no CD11b, CD103 or langerin on the cell surface [66, 68]. However, the phenotype of this

DC subset has not yet been fully identified [64]. It has been reported that CD11b+ DCs

play the main role in initiating CD4+ T cell responses, although all dDCs were able to

present viral antigens [69]. Furthermore, CD11b+ DCs were critical promoters of the local

proliferation of effector and regulatory T cells [70]. As regards Th1/Th2 differentiation,

CD103+ DCs induced IgG2a/c and IgG2b responses, whereas LCs provided an IgG1-based

humoral immune response [71]. Interestingly CD103+ DCs are the only DC subset reported

to be capable of cross-priming CD8+ T cells [69].

In human skin, three additional langerin-negative subsets of DCs have been identified, re-

ferred to as CD1a+, CD14+ and CD141hi DCs [72–74]. Several studies have highlighted

the potential of the different DCs subsets in influencing the direction of the immune re-

sponse with the CD14+ DC subset being shown to preferentially induce a Th1-biased

response [14, 75] and to promote the secretion of large amounts of different immunoglob-
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Figure I.2: T cell differentiation upon activation by CD14+ dermal dendritic cells (dDCs)
or Langerhans cells (LCs) and cross-presentation of CD141hi dDCs. After antigen process-
ing, dDCs and LCs migrate toward draining lymph nodes, presenting the antigen via the
major histocompatibility complexes I and II (MHC-I, MHC-II). By interaction with the
T cell receptor (TCR), CD4+ and CD8+ T cells are activated. CD14+ dDCs promote the
differentiation of CD4+ T cells into follicular T helper cells (Tfh) and T helper 1 (Th1)
cells that secrete large amounts of IL-2, IFN-γ and TNF. Both T cell subsets stimulate the
differentiation and proliferation of antibody-secreting plasma cells, which elicit an IgG2a,
IgA, and IgM based immune response. On the other hand, LCs induce the differentiation of
CD4+ T cells into Th2 cells, indicated by the secretion of IL-4, IL-5, IL-10, and interleukin
(IL)-13, and boosting IgG1 and IgE secreting plasma cells. Moreover, CD8+ T cells differ-
entiate and proliferate upon interaction with LCs or CD141hi dDCs into IL-2 and IFN-γ
secreting cytotoxic T cells (CTLs) providing a cellular immunity. The differentiation of
the Th1 and Th2 subset is furthermore enhanced by IL-12 and IL-4, respectively.

ulins [14, 76]. The recently discovered CD141hi DC subset was shown to efficiently cross-

present exogeneous antigens to CD8+ T cells in the periphery [74].

The role of LCs is more complex with these abundant cells being reported to have a role

in maintaining tolerance in healthy skin but then being able to induce T cell activation in

response to infection [77]. In this case LCs showed a superior ability to initiate antiviral

immunity by priming CD8+ T cells and to induce Th17 responses [75, 78, 79].

Figure I.2 gives an overview of the predominant activation routes of the different human DC

subsets. Although functional homologues to mouse DCs could be identified, the existing

differences in the expression patterns of surface molecules on human and mouse DC affects

the transferability of in vitro and in vivo study results. Another issue impacting on the
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transferability of mouse data to humans is the difference in the skin between mice and

humans. Mouse skin is thinner and has more hair follicles [80]. Therefore, data from mice

must be interpreted with caution.

2.3 Adjuvants for cutaneous vaccination

The best studied adjuvants for cutaneous vaccination are derived from bacterial adenosine

diphosphate (ADP)-ribosylating exotoxins [29, 81–84]. Cholera toxin (CT), Escherischia

coli heat-labile toxin (LT), or subunits of these proteins have commonly been utilized to

elicit or enhance the response towards a vaccine given via the cutaneous route [29, 33, 81]. It

was shown that CT and LT applied onto intact mouse skin induce the production of toxin-

specific antibodies [81]. Moreover, CT-adjuvanted formulations induced superior immune

responses against diphtheria and tetanus toxoid [81, 82, 85]. It has not yet been clarified

how bacterial ADP-ribosylating toxins influence the type of immune reaction. However,

several studies report the induction of Th2-biased immunity [81, 86]. Additionally, CTL

proliferation has been observed, indicating activation of epidermal LCs [87].

The second group of adjuvants that were utilized cutaneously are specific ligands of toll-like

receptors (TLRs) [88]. These receptors play a major role in the detection of pathogens

and are therefore an ideal target for enhancing the immune reaction [89]. One of the most

important adjuvants of TLR ligands to date are the CpG oligodeoxynucleotides (ODN) [90].

Prokaryotic CpG motifs are less methylated and are therefore recognized by TLR9, a

receptor subtype of the TLR family [91–93]. CpG ODN induce the production of pro-

inflammatory cytokines such as IL-12 and IFN-α [89], promoting a Th1 biased immune

response upon vaccination [88, 94]. Furthermore, TLR9 agonists have been shown to be

able to convert an established Th2-based immune response upon DNA vaccination into a

Th1-directed response [95].

Other TLR ligands, such as imiquimod (TLR7 ligand) or polyinosinic:polycytidylic acid

(poly I:C) (TLR3 ligand) have also been investigated for cutaneous vaccination [96, 97].

Both adjuvants elicit the proliferation of CD8+ T cells, thereby indicating a cellular immune

response [96–98]. Moreover, poly I:C additionally provides a Th1/Th2-balanced humoral

immunity [97]. Imiquimod has until now mainly been studied with the focus on tumor

immunity [96, 99]. As a commercial product it is already in use as an immunomodulator

for the treatment of human papillomavirus (HPV) infections [100]. Although imiquimod

can be administered cutaneously alone it showed a superior activation of the immune

system when combined with anti-CD40 ligands or UV light [96, 99].

8



2 Recent insights into cutaneous immunization: how to vaccinate via the skin

As shown in table I.1, there is a wide variety of adjuvants that have been utilized in

cutaneous vaccination studies, also including alum [88, 101], Quillaja saponins [15], and

other chemical substances [102]. Additional investigations are necessary to further clarify

how the type of adjuvant used and the route of administration influence the type of immune

response generated.

In addition, the extent of skin irritation upon delivery to the skin using different adjuvants

needs to be evaluated, and a suitable experimental model to investigate immediate and

long-term skin reactions remains to be developed. One example highlighting this aspect is

alum as cutaneous vaccination adjuvant, which has been used for i.d. immunization against

hepatitis A before [103, 104]. Adverse reactions after i.d. injection have been reported,

such as long lasting skin papules and dermatitis [104]. Furthermore, it was shown that

aluminum hydroxide can lead to the development of persistent intradermal granulomas

when used for i.d. hyposensitization [105]. This implies that alum adjuvants might not be

suitable for vaccination strategies that involve an i.d. vaccine delivery.

2.4 Needle-free injection techniques for cutaneous vaccination

2.4.1 Jet injection

The very first approach of needle-free vaccination used jet injectors. In the 1950s multiple

use nozzle jet injectors (MUNJIs) were extensively used in mass immunization programs

and played a major role in the smallpox eradication [3]. However, increasing numbers of

hepatitis B infections as well as epidemiologic and animal-model studies provided growing

evidence that cross infections were linked to the utilization of MUNJIs, causing the ter-

mination of jet vaccination campaigns [28, 106]. The discovered safety issues finally led to

the development of disposable syringe jet injectors (DSJIs) and single-use disposable jet

injector (SUDJI) [28, 107].

Conventional jet injector systems actuate a piston using a spring or compressed gas [3].

By pressing the fluid through a nozzle with a diameter of 80 − 360 µm [3], a liquid jet is

generated that encounters the skin with a velocity between 100− 200 m/s [108]. The high

impaction force of the jet initiates a piercing of the skin surface including the underlying

tissue [109]. After reaching a critical depth, the liquid does not penetrate further into

the tissue but instead forms a liquid depot in the skin [110]. Under these conditions it is

possible to achieve either a mainly subcutaneous (s.c.), or intramuscular (i.m.) deposition

of the liquid [28]. However, due to inter-individual variations, jet injector systems might
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Table I.1: Overview of adjuvants, sorted by the extent of utilization, and their effects
on the immune response upon cutaneous vaccination compared to non-adjuvanted (w/o)
studies.

Adjuvant Cutaneous Antigen Type of Investigated Reference

vaccination immunity parameter

technique

w/o Intact skin OVA, TT, DT Th2a IgG1 ↑ [31,171,203]

Tape stripping OVA Th2a IgG1 ↑, IgE [32]

Microneedles DT Th2a IgG1/IgG2a ↑ [132]

Laser poration DT, bGal Th2a IgG1 ↑, IgE [149]

ADP-ribosylating toxins

Whole protein, subunits, Intact skin TT, LT, DT Th2a IgG1 ↑, IL-5 ↑ [81,86]

or recombinant subunits Warm waxing pDNA Th2a, Cellular IgG1 ↑, IL-4 ↑, [23,168]

of Cholera toxin (CT), CTL

E. coli heat-labile Nanoparticles pDNA, OVA Th1b INF-γ ↑ [83,84]

toxin (LT) Microneedles DT, Influenza Th1b IgG1/IgG2a ↓ [85,132]

Powder injection Influenza Th1b, Mucosal IgG2a ↑, IFN-γ ↑, [18,25]

IgA

TLR agonists

CpG (TLR9) Laser poration Phl p 5, bGal Th1b IgG2a ↑, IL-4 ↓ [149,153]

Electroporation SIINFEKL Cellular CTL [159]

Powder injection Influenza Th1b, Mucosal, IgG2a ↑, IFN-γ ↑, [25,88]

Cellular IgA, CTL

Imiquimod (TLR7) Intact skin SIINFEKL + Cellular CTL [96,99]

anti-CD40 mAb

(i.v.)/UVB

Poly (I:C) (TLR3) Microneedles OVA Th1c, Cellular IgG2c ↑, CTL [97,98]

Quillaja saponins

Quil-A Nanopatch Influenza n.d. IgG [15]

QS-21 Powder injection Influenza Mucosal IgA [18]

Alum Tape stripping bGal n.d. IgG [101]

Powder injection DT Th2b IgG1 ↑, IL-4 ↑ [88]

Other adjuvants

c-di-AMP Nanoparticles OVA n.d. OT-II cell [173]

proliferation ↑
Mannan-coated liposomes Hair plucking pDNA Th1b IFN-γ ↑ [34]

Deformable liposomes Hair plucking pDNA Mucosal IgA [175-177,188]

Poly[di(carboxylate- Microneedles HBsAg n.d. IgG [102]

phenoxy)phosphazene]

a Evaluated by IgG1/IgG2a ratio.
b Investigated parameter compared to non-adjuvanted (w/o) cutaneous vaccination.
c Investigated parameter compared to vaccination by injection.

w/o - Without adjuvant.

n.d. - No differentiation between humoral Th1/Th2, cellular, or mucosal immunity.
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fail to reach the target tissue and often induce local reactions (related to the penetration

depth) such as pain, bruising, and redness of the vaccination site [28, 110].

Novel approaches using a pulsed jet are expected to minimize these effects [111]. The re-

cently developed pulsed jet injector system employs a voltage-regulated piezoelectric trans-

ducer [112]. The activation leads to a fast expansion of the piezoelectric elements, simulta-

neously accelerating a piston which pushes the liquid through a nozzle of 50−100 µm [112].

In comparison to conventional jet injectors, the pulsed piezoelectrical technology can cre-

ate narrow liquid jets of very small volumes between 2 − 15 µL [112]. By controlling the

velocity and jet volume, it is possible to achieve penetration depths around 200 µm or to

target layers of the skin specifically [112, 113]. The pulsed microjet technology represents a

promising strategy to perform cutaneous vaccination, targeting the upper layers of the skin

and diminishing the risk of pain and bruising. However, high production and disposable

costs might remain major issues for the establishment of pulsed jet injectors as single-use

devices.

2.4.2 Powder injection

The principle of ballistic powder injection, often referred to as biolistics, was exploited for

vaccination for the first time in 1996 [114]. The immune response after cutaneous powder

injection of a DNA vaccine was investigated using the gene gun technology [114]. As

summarized by Kis et al., different kinds of particles and technologies have been utilized

to deliver dry particles into the epidermal layer of the skin [35]. The basic mechanism of

injection involves the fast expansion of helium gas to accelerate the particles towards the

skin [115, 116]. When the particles encounter the surface, high impaction forces result in

the penetration of the particles into the epidermal and dermal layer [117, 118]. A bench-top

device that uses a pressure-regulated helium gas supply has been developed [119]. With

this system, it was reported that a higher pressure resulted in deeper jet penetration,

whereas the particle distribution increased with the nozzle diameter [119].

Two types of particles have been commonly used for powder injection. With the gene gun,

or the closely related particle-mediated epidermal delivery (PMED) technology, 1 − 3 µm

DNA- or protein-coated gold particles are delivered into the skin. Sugar-based particles

with a lower density but larger size (between 20 − 70 µm) are used for epidermal powder

immunization (EPI) [114, 120]. Powder injection facilitates the administration of both

DNA or RNA vaccines and conventional protein vaccines in a dry, solid state [18, 121].

By targeting the epidermal and dermal layers of the skin, powder injection efficiently
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exploits the unique immunology of the skin. It induces comparable or higher antibody

titers compared to conventional vaccination and holds the potential to elicit cellular and

mucosal immune responses [25, 121–123]. Moreover, powder injection might represent

a convenient strategy for genetic immunization and holds great potential for a range of

applications, such as the treatment of type 1 diabetes [124]. Powder injection also allows for

the combination of different vaccine formulations. Deng et al. developed a delivery system

that comprises protein-loaded nanoparticles in microparticles (nano-in-micro) for ballistic

powder injection, a system that could also be exploited for genetic skin vaccination [125].

The increased stability of dry vaccine formulations delivered by pain-free powder injection

circumvents the storage issue of liquid vaccines. However, the analytical effort for vac-

cine characterization remains high. Moreover, helium gas as accelerator medium increases

the device production costs. Because of changing skin properties, the total amount of

intracutaneous powder deposition can vary, representing a major challenge for EPI.

2.5 Microporation technologies

2.5.1 Microneedles

Microporation technologies for the delivery of macromolecular drugs, biopharmaceuticals

and vaccines are developing rapidly [36, 126]. These technologies promote the formation

of micron-sized pores into the skin, transiently breaching the main protective barrier [36].

Four main types of microneedles have been developed: solid, coated, hollow, and dis-

solving microneedles [reviewed in [127–129]]. The most common technique for cutaneous

vaccination involves the direct coating of antigen onto solid microneedles [15–17]. How-

ever, dissolving microneedles have also been extensively investigated [130, 131]. The aim

of this technology as regards vaccination is to pierce the SC bringing the vaccine in con-

tact with cutaneous APCs [132]. By avoiding penetration into deeper dermal regions,

safe, minimally-invasive and pain-free immunization can be achieved [132]. The utiliza-

tion of mechanical applicators, such as the Macroflux® technology (Zosano, USA) or the

MicronJet® device (Nanopass technologies, Israel) minimizes confounding factors and al-

lows for a uniform administration [128]. Different microneedle technologies for vaccination

are widely investigated in research and clinical trials [16, 97, 133–135]. One system, cur-

rently attracting attention, is the Nanopatch� Technology (Vaxxas, Australia), which is

under investigation with an undisclosed vaccine candidate and was given WHO funding

for a polio vaccination research project [136–138]. Comparative studies using microneedle
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arrays have demonstrated superiority over intradermal or intramuscular vaccination in a

number of applications [16, 17, 97]. Comparable or higher antibody titers and Th1/Th2

balanced immune responses were observed [16, 97, 139].

Microporation technologies, most notably microneedles, have become a popular tool for

cutaneous vaccination. Over the last decade, production costs of microneedles have been

minimized and the reproducibility of insertion has been improved by utilizing mechanical

applicators. However, achieving an even coating thickness on solid microneedles, defined

breaking points of dissolving microneedles, and, in general, the release of the antigen

from the microneedle system are critical parameters [140, 141]. Dissolving or decomposing

microneedles are particularly promising technologies if mechanical and physicochemical

stability of the biocompatible materials can be ensured.

2.5.2 Thermal microporation technologies

The application of short heat pulses is the basic principle that is shared by all thermal

microporation technologies [36]. The heat pulses are applied to locally restricted areas

of the superficial skin creating microchannels due to decomposition and vaporization of

the treated tissue [142]. The short duration ensures a negligible heat transfer that would

otherwise damage the surrounding tissue [36].

At present, three different strategies that utilize this technology have been developed. One

method developed by the now defunct Altea Technologies (USA) employed electrically

resistive filaments that were heated by a controlled voltage pulse [143, 144]. Another

approach, termed radio frequency ablation (RF), is the basis of the ViaDerm� technology

(Transpharma Medical, Israel) [145, 146]. This technique uses an array of microelectrodes

to induce ionic vibrations within the surrounding skin cells [147]. Laser-based systems

represent the third strategy of thermal microporation. Originally developed for medical

surgery [148], these devices use infrared light at λ = 2.94 µm generated by an Erbium

doped yttrium aluminum garnet (Er:YAG) laser [149]. The absorption of the infrared light

induces vibrations within the water molecules leading to vaporization [148, 150]. Currently,

several laser poration systems are available, such as the P.L.E.A.S.E.® laser device (Precise

Laser Epidermal System, Pantec Biosolutions, Liechtenstein) or the Epiture Easytouch�

system (Norwood Abbey, Australia) [36, 151].

Depending on the microporation systems being used and the conditions under which it

is used, micron-sized pores of 30 − 200 µm in diameter and 30 − 200 µm in depth are

created, facilitating vaccine delivery to cutaneous APCs [144, 151, 152]. Several reports
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have shown that cutaneous vaccination using laser poration elicits Th2-typed immune

responses [149, 153]. Interestingly, it was also observed that T cell polarization can be

changed by targeting different skin layers [149]. Moreover, nano- and microparticles can

be delivered into the dermis upon laser microporation, indicating the potential for combined

cutaneous delivery approaches [154].

Similarly to microneedles, ablative microporation technologies allow the selective targeting

of specific skin layers. However, the epidermal and dermal layer thicknesses differ with

and between individuals, representing a major challenge for the reproducibility of abla-

tive microporation. In addition, these systems are costly and less convenient due to the

requirement for an additional step applying antigen after microporation. These disadvan-

tages are shared by the time-consuming vaccination strategies that use electroporation or

sonoporation. The simultaneous application of vaccine is feasible for both systems but it

remains unclear how the antigen is affected by the electric current or the ultrasound used

to create the micropores.

2.6 Transdermal electroporation

The first investigations using transdermal electroporation (EP) for cutaneous vaccination

were conducted in 1999 by Misra et al. [155]. Derived from in vitro transfection experi-

ments of DNA into living cells [156, 157], this technique is used to temporarily disrupt the

organized structure of the skin. It was shown that electrical pulses create transient and

reversible pores, allowing for the permeation of a drug into the tissue [37, 158]. These local

transport regions (LTRs) are generated in the SC by exceeding a predetermined voltage

threshold between 50 − 100 V [158].

Different outcomes of the vaccination efficacy of transdermal EP have been reported. Hu-

moral immune responses to diphtheria toxoid (DT) were lower as compared to intrader-

mal injection, whereas higher antibody titres to myristylated peptide (MYR) were re-

ported [155]. Moreover, equivalent cellular responses were observed for EP and conven-

tional i.d. vaccination [159]. Most notably, Zhao et al. reported that electroporation alone

promoted the migration of LCs to regional lymph nodes [159]. This indicates the ability of

electroporation to serve as a physical adjuvant, an advantage that could be exploited for

combined cutaneous vaccination approaches.
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2.7 Sonoporation

During the last decade the application of ultrasound, referred to as sonoporation or sonophore-

sis, was identified as a promising technology for vaccination via the skin [160]. Similarly

to transdermal EP, ultrasound at a frequency of 20 kHz creates localized transient regions

changing the barrier properties of the skin [161]. Remarkably, the structural changes remain

for several hours without inducing severe skin damage [162]. The prolonged permeability

allows for the stepwise application of ultrasound and drugs or vaccines. Additionally, a

simultaneous application of the vaccine and sonoporation is feasible [163].

The potential of low-frequency ultrasound to induce an immune response in mice has been

investigated using tetanus toxoid as a model vaccine [160, 164]. It was shown that the

concentration of the chemical enhancer sodium lauryl sulfate (SDS), which is commonly

utilized for sonoporation, affects the vaccination outcome [164]. Whereas higher antibody

titers were detected using a 0.5 % (w/w) SDS solution during sonication, lower titres

were elicited when SDS was not used or when higher concentrations were used [164]. Fur-

thermore, the application of low-frequency ultrasound alone triggered the activation of

LCs [160]. Interestingly, even non-disruptive sonication conditions enhance the cytokine

production, which could also affect the immune response [165]. As with transdermal EP,

sonoporation can be used as a potential adjuvant for cutaneous vaccination.

2.8 Stratum corneum-disruptive approaches

The complete removal of the SC to circumvent its barrier capacity is one of the oldest

techniques to enhance transdermal drug delivery and can be achieved by tape stripping

or skin abrasion [166]. By directly applying a protein vaccine to the viable epidermis, a

Th2-type immune response is elicited [32]. Furthermore, skin abrasion was recently trialed

in humans and resulted in the development of a humoral and cellular immunity [167].

Transfollicular delivery of vaccines after hair plucking has been investigated as an alter-

native strategy of minimally-invasive vaccination. Several pretreatments, such hot or cold

waxing, and cyanoacrylate skin surface stripping (CSSS) can be used to create channels

in the skin or to induce the hair follicles into growth stage before the application of the

vaccine [23, 168]. This approach evokes both humoral and cellular immunity [23].
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2.9 Passive targeting strategies

The easiest way to perform cutaneous vaccination is to apply antigen to intact skin. Ef-

ficient immunization has been achieved using protein vaccines, although molecules larger

than five hundred daltons usually cannot pass the intact SC [169], which would be nec-

essary to directly deliver antigen to dermal APCs. However, Naito et al. reported that

ovalbumin applied without adjuvant for more than 16 hours elicited a humoral immune

response in mice [170]. Further exploiting this strategy of contact prolongation, hydrogel

patch formulations were recently investigated [171]. It was proposed that hydrogel-based

approaches facilitate the delivery of antigenic proteins between 45− 150 kDa [31]. The cu-

taneous delivery of vaccines through intact skin has been suggested to occur by three main

mechanisms: The generation of a concentration gradient, a widening of intracellular gaps

due to hydration, and transfollicular diffusion [31]. Several studies in mice and humans

confirmed the successful activation of LCs and the induction of antigen-specific Th2-biased

immune responses using hydrogel patches [31, 171, 172]. Moreover, it was demonstrated

that antigen-loaded nanoparticles were efficiently delivered via hair follicles in intact skin

and provide the ability to stimulate antigen-specific CD4+ and CD8+ T cells [173].

Although these approaches represent the least invasive method of cutaneous vaccination,

the induction of a protective immunity comparable to other techniques remains to be

proven. It could be expected that even minimally invasive approaches elicit stronger im-

mune responses compared to the passive diffusion strategies. However, there is also the

potential to combine passive and minimally invasive technologies.

Vesicular systems act as both chemical adjuvants and physical delivery systems for cuta-

neous vaccination. They form vehicles for the cutaneous delivery of protein and DNA

or RNA vaccines, facilitating passive diffusion into the intact or physically-pretreated

skin [174]. Various vesicular systems, reported to elicit immune responses to different

extents, have been investigated including charged liposomes [174], niosomes [175], trans-

fersomes [176], ethosomes [177], cubosomes [178] and fusogenic vesosomes, which contain

bilayer destabilizing agents [179].These vehicle systems represent a further alternative for

DNA- or RNA-based vaccination and can be easily combined with several other active

vaccine delivery technologies [174, 179].
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Table I.2: Overview of routes that have been investigated for genetic skin vaccination using
nucleic acid (NA) vaccines.

Cutaneous vaccination pNA encoded antigen Adjuvant Reference

technique

SC-disruptive and passive vaccine delivery techniques

SC removed Influenza + [34]

HBsAg − [189]

Warm waxing bGal, OVA + [23]

Bacillus anthracis antigen PA63, + [168]

HIV-1 gp160

Liposomes JEV E protein − [174]

HBsAg − [188]

Nanoparticles bGal + [83]

Microporation techniques

Microneedles Hepatitis C virus protein − [187]

Thermal poration rdAd vector expressing bGal − [24]

Powder injection Influenza +/− [122,184,185]

HBsAg − [121]

GAD65 − [124]

Rabies virus − [186]

Jet injection Influenza − [180]

bGal +/− [181]

Plasmodium falciparum − [182]

circumsporozoite protein

HIV-1 gp160, p17, p24, p37B, +/− [183,191,222,223]

rev, reverse transcriptase

2.10 Potential of genetic skin vaccination

Genetic vaccination using DNA or RNA is a novel approach of evoking protective immune

responses against infectious diseases. Cutaneous vaccination offers several strategies for

introducing antigen-encoding nucleic acid vaccines to cells. Jet injection [180–183], powder

injection delivering gold particles with the gene-gun, PMED� or EPI technique[122, 184–

186], microneedles [187], sonoporation [162], cationic liposomes (termed lipoplexes) [174,

188], SC-disruptive approaches [189], and transfollicular delivery routes [23] have been

shown to facilitate cutaneous vaccination. Additionally, transdermal electroporation is

expected to efficiently enhance skin vaccination with nucleic acid vaccines [190, 191] as

electroporation also enhanced the immune response upon intramuscular DNA vaccina-

tion [192].

Considering techniques using needles, DNA tattooing is an intensively studied approach

for genetic skin vaccination [193]. It has been shown to facilitate the antigen expression
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in the dermal tissue and to evoke a humoral and cellular immunity [194–196]. By DNA

tattooing, non-professional immune cells provided a superior antigen expression compared

to skin APCs [197, 198]. This indicates that keratinocytes might play a major role for the

induction of an immune response upon cutaneous vaccination using nucleic acids. More-

over, cross-presentation supported by keratinocytes was found be an important route to

prime näıve CD8+ T cells [199, 200]. Regarding the tattooing technique, it remains to

be evaluated whether and to which extent the findings can be transferred to needle-free

genetic vaccination approaches.

Most of these approaches were originally developed for in vitro transfection of living cells

and have now been transferred to antigen delivery [156, 157]. For successful transfection

of skin cells it is essential to introduce the DNA or RNA to skin cell nuclei. This is a

major challenge as penetration through two barriers, the outer cell membrane and the

nuclear membrane, must be achieved. Active delivery approaches, transiently affecting the

integrity of living skin cells, could be expected to elicit a superior immunity compared

to passive delivery approaches. Further investigation is needed to determine the efficacy

of antigen-encoding nucleic acid vaccines compared to conventional immunization using

protein antigens, especially focusing on cutaneous delivery approaches. Table I.2 provides

an overview of different strategies of skin vaccination that have been exploited for DNA or

RNA vaccination.

2.11 Latest trends in cutaneous vaccination

Considering recent developments, microneedles have been particularly in the focus of stud-

ies for cutaneous vaccination. It appears that dissolving or biodegradable microneedles

are suitable for the delivery of conventional protein antigens as well as for the delivery

of amyloid-β in a therapeutic mouse model of Alzheimer's disease [97, 131, 201]. Other

advanced approaches use biodegradable solid or microparticle-containing tips whereby anti-

gen or antigen loaded nanoparticles are released upon dissolution and degradation of the

microneedle matrix [97, 98]. Vaccine-coated nanopatches and cubosome formulations ap-

plied after microneedle pretreatment have also been studied for cutaneous vaccination in

mice [15, 178]. In addition, laser microporation and micro- and nanoparticle delivery

technologies have been successfully utilized to elicit humoral responses to protein anti-

gens [149, 154, 202]. Other cutaneous delivery strategies, which are particularly attractive

for their ease of use, are hydrogel patches and the delivery via hair follicles [168, 203].

Hydrogels based on hyaluronic acid have been shown to elicit an immune response against
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protein antigens after application for 24 h [171, 172]. Moreover, liquid DNA vaccine for-

mulations and also nanoparticles have been delivered via hair follicles indicating the im-

portance of this route of cutaneous vaccination [23, 173].

In addition to the previously discussed needle-free vaccination techniques, which are still

mainly restricted to research, a variety of conventional and needle-free i.d. vaccination de-

vices are currently under investigation, in clinical trials or are already available on the mar-

ket [134, 204, 205]. One example having reached market authorization is the BD Soluvia�

device (Becton-Dickinson, USA) [206], which is utilized for seasonal influenza vaccination

with the i.d. vaccines Intanza�, IDflu�, and Fluzone� (Sanofi Pasteur, France) [206, 207].

Also, the microneedle-based MicronJet® system (Nanopass technologies, Israel) has been

cleared by the Food and Drug Administration (FDA) and was shown to provide an im-

proved immune response compared to i.d. Mantoux or i.m. injection [133, 134, 208].

Moreover, West Pharmaceutical Services (USA) have developed the syringe West intra-

dermal (ID) adapter, which improves the reproducibility of i.d. vaccine delivery by the

Mantoux technique [28]. Intradermal vaccines are developed in order to improve safety

and efficacy and for possible dose sparing effects [209]. While many studies report positive

results as regards immune responses, in some cases i.d. vaccination has been shown to

result in lower antibody titers compared to conventional i.m. vaccination [210].

Although several needle-free jet injector technologies have already been successfully used

for i.m., s.c., and also i.d. vaccination, latest-generation DSJIs are currently undergoing

clinical trials [211–213]. Only recently, the needle-free i.m. administration of the Afluria®

influenza vaccine using the PharmaJet Stratis® (PharmaJet, USA) has been approved by

the FDA, although the device itself is licensed since 2011 [214, 215]. However, other jet

injector devices have also received FDA clearance before and after, such as the Biojector®

2000, Lectrajet®, Avant Guardian� 101, Mini-Ject, or the Injex� system [216–220]. To best

of our knowledge, i.d. vaccines administered by needle-free jet injectors are investigated in

humans but remain to be licensed for combined use [212, 221–223].

2.12 Conclusion

Vaccination is the most important tool in public health care for combating infectious

diseases. However, storage issues for liquid vaccines, the use of syringes and the need for

professional assistance limits its convenience and acceptance. Nevertheless, vaccination by

conventional needle injection represents the state-of-the-art, is highly reliable and provides

good cost-benefit ratio.

19



I. Introduction

Figure I.3: Active vaccine delivery techniques and passive approaches for cutaneous vacci-
nation. The injection, microporation and LTR techniques are displayed in representative
dimensions relative to the epidermal layer of the skin. The dimensions of the devices were
exemplarily chosen using typical sizes of the presented systems. LTR - local transport
region; NPs - nanoparticles. Adapted from [107]

Cutaneous vaccination is an attractive alternative for conventional vaccination. Many dif-

ferent technologies for cutaneous vaccine delivery are under development each with its own

strengths and weaknesses. While the technologies impact on the skin to different extents,

the systems are in general non- or minimally invasive. Figure I.3 gives an overview of active

and passive techniques for cutaneous vaccination. Needle-free jet and powder injection and

microporation technologies overcome the SC using mechanical approaches, whereas elec-

troporation, sonoporation and passive vaccine delivery techniques employ physicochemical

strategies. The passive diffusion of antigen upon topical application is the easiest but also

most time-intensive route of vaccination, limiting its convenience. Finally, it may be that

not all vaccines are suitable for cutaneous vaccination and that it is necessary to evaluate

the safety and effectiveness on a case-by-case basis.

The innovative approaches to a vaccination via the skin discussed here are highly promising

and safe alternatives to conventional needle injection. The potential that new or differ-

ent types of immune responses can be stimulated by cutaneous vaccination as opposed

to conventional i.m. immunization is also intriguing. Although the production costs of

these new vaccines still exceed those of conventional vaccination, the cutaneous vaccine

delivery technologies have the potential to minimize vaccine doses and to bypass common

vaccination-related limitations.
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II

NEEDLE-FREE POWDER INJECTION FOR

CUTANEOUS VACCINATION WITH A HIGHLY

CONCENTRATED OVALBUMIN MODEL

VACCINE

A detailed list of contributions is listed in section 5.

Further results associated to this project have been published as Engert, J. et al., A pi-

lot study using a novel pyrotechnically driven prototype applicator for epidermal powder

immunization in piglets. Int J Pharm 545(1-2) (2018) 215-228.

1 Introduction

Since decades, the idea of needle-free injections appears as a highly attractive approach for

parenteral drug and vaccine delivery, promising low invasiveness, reduced pain, improved

ease of administration, and avoiding the use of sharps. The first jet injector devices were

used for multiple injections during mass immunization programs, leading to high numbers

of cross-infections [1–3]. Later, disposable jet injectors (DSJIs or SUDJIs) were introduced

and, until today, various types of jet injectors were developed and licenced for i.m., s.c., or

i.d. injection [1, 4]. Despite the high number of DSJI systems developed, only a limited

number of devices is commercially used for drug or vaccine administration. Examples are

Sumavel�DosePro� [5] and the tri- and quadrivalent Afluria® vaccines approved for the

use with PharmaJet® Stratis® [6]. More recently, Takeda Pharmaceuticals announced a

collaboration to bring their antibody candidate Entyvio® to the market for s.c. adminis-

tration using the needle-free injecton system PRIME [7]. Although in principle appealing,

jet injectors mostly remained high-cost developments without major advantage over con-

ventional injections using N&S.

In comparison to jet injectors, ballistic powder injection introduces an additional aspect

which underlines a potentially stronger benefit over conventional injections. The admin-

istration of dry formulations by powder injection not only exploits the aforementioned

advantages of needle-free injections, but also exhibits the potential to enhance the storage
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II. Needle-free powder immunization with a highly concentrated model vaccine

stability of the drug candidate. Developments of needle-free powder injectors facilitate

a deposition of various kinds of powders and loadings into the skin, such as 1 − 3 µm

DNA-coated gold microparticles [8–10], 1 − 5 µm polymer microspheres [11], or 20-53 µm

sugar-based microparticles loaded with protein antigens [12, 13]. Due to a superficial deliv-

ery limited to the skin tissue, needle-free powder injection provides the strongest potential

as tool for cutaneous vaccination. The reproducible breaching of the skin barrier to deliver

a vaccine into viable skin layers is the major challenge of powder injection and is highly

dependent on the skin condition [14]. The successfull i.d. delivery into the viable skin with

a high density of APCs allows for an effective induction of immune responses, dependent on

the main skin layer targeted. Whereas humoral and also cellular responses can be elicited

by epidermal LCs, dDCs in the underlying dermal layer mainly provide humoral responses.

However, the underlying immunological processes are complex and dependent on multiple

factors including the type of antigen, adjuvant, as well as the skin layer as discussed in

section 2.

In this study a novel type of powder injector, which differed from predecessor devices by

its type of particle acceleration, was used. The powder injector in this study contained a

pyrotechnically driven particle accelerator [15], whereas the classical gene gun and hand-

held PowderJect® device rely on a helium gas-triggered acceleration of particles [11, 16, 17].

The relatively large dimensions, complex preparation processes, and the use of expensive

helium gas have limited the success of these devices for cutaneous vaccination in the past.

The overall aim of this study was to evaluate the performance of the novel needle-free

powder injector to generate an immune response upon intradermal delivery of a powdered

vaccine.

In this work, three main objectives were addressed. First, based on low-dose vaccine

developments for powder injection [18], a highly concentrated vaccine formulation was

developed using OVA as model antigen (Section 3.1). The trehalose and mannitol-based

vaccine was manufactured by a two-step process combining collapse lyophilization and

cryogenic grinding, generating particles in a size range of 20-80 µm [19]. The properties

of the highly concentrated vaccine was compared to placebo and low-dose formulations,

which were tested for powder injection before [15, 18]. Furthermore, the stability of the

highly concentrated vaccine was evaluated in a long-term stability study over 12 months

(Section 3.2).

To facilitate the intradermal powder administration, the vaccine powder needs to be at-

tached to a titanium (Ti) membrane within the needle-free injection device. To ensure
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particle adhesion, the vaccine powder is homogeneously coated using an oily liquid for

fixation. This liquid may be composed of a mixture of oils with adjuvant properties [20].

Upon device actuation, the oily adjuvant is delivered simultaneously with the vaccine pow-

der into the skin [20]. For this study, a mixture of the oily components in relative ratios of

the Adjuvant System 03 (AS03®) was used. AS03 is an emulsion based on squalene, DL-

α-tocopherol, and polysorbate 80 and was licenced in 2008 for the use with the pandemic

influenza vaccine Pandemrix® [21].

The second objective of this study was focused on the characterization of the adhe-

sion/adjuvant oil properties. The strength of vaccine powder adhesion was evaluated for

different oily liquids and mixtures based on the oily components of AS03 (Section 3.3). The

oil-device membrane interaction was characterized by surface angle measurements and a

correlation between vaccine powder adhesion and adhesion oil properties was evaluated.

Additionally, the effect of the highly concentrated vaccine powder on the oil stability was

evaluated under UV/Vis exposure and thermal stress (Section 3.4).

The last section of this chapter focuses on the main objective of this study, the evaluation

of needle-free powder injection for cutaneous vaccination using a highly concentrated OVA

model vaccine (Section 3.5). The in vivo immunization study compared cutaneous immu-

nization using powder injection to conventional i.m. injection. Furthermore, the approach

of simultaneous adjuvant oil delivery using the AS03 oily mixture was studied in compari-

son to paraffin as oily adhesive without expected adjuvant activity despite its known effect

as oily depot in Freund’s adjuvant system [22].

This study reveals a high potential of needle-free powder injection for cutaneous vacci-

nation but also highlights issues and hurdles for the development of highly sophisticated

technologies for intradermal delivery.

2 Materials and Methods

2.1 Materials

Bovine serum albumin (BSA), 5α-cholestane, free and horseradish peroxidase (HRP)-

linked goat anti-porcine IgG antibody, Hydranal® dry methanol, OVA grade V and VII,

mouse anti-OVA antibody, polysorbate 80, porcine albumin, porcine IgG, squalane, squa-

lene, sterile Dulbecco’s phosphate-buffered saline (PBS), 3,3’,5,5’-tetramethylbenzidine

(TMB) substrate, TMB stop reagent, tert-methylbutylether (TMBE), D/L-α-tocopherol,
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Tween® 20 were obtained from Sigma Aldrich (Taufkirchen, Germany). Mannitol, highly

liquid paraffin, polyethylene glycol 400 and 600 (PEG 400, PEG 600), butylated hydrox-

yanisole (BHA), disodium carbonate, potassium chloride, sodium hydrogen carbonate, and

potassium dihydrogen phosphate were from Merck (Darmstadt, Germany). Trehalose di-

hydrate was from VWR Prolabo (Darmstadt, Germany). Adjuvant System 03 (AS03®)

adjuvant emulsion was derived from Pandemrix® vaccine (GlaxoSmithKline, Rixensart,

Belgium) and was kindly provided by the Bavarian State Ministry of Environment and

Public Health. Sodium dihydrogen phosphate dihydrate and disodium hydrogenphosphate

were purchased from AppliChem (Darmstadt, Germany) and sodium chloride was obtained

from Bernd Kraft (Duisburg, Germany). Anti-mouse detection antibody (λex 778 nm and

λem 795 nm) was purchased from LI-COR (Bad Homburg, Germany). NuPAGE® 10 %

Bis-Tris protein gels (1.0 mm, 12 wells) and 2-(N-morpholino)ethanesulfonic acid (MES)

SDS running buffer were obtained from Life technologies (Carlsbad, USA). Sylgard 184

silicone elastomer kit was purchased from Dow Corning (Seneffe, Belgium).

2.2 Preparation of model vaccines and oily adjuvant

2.2.1 Vaccine preparation by collapse lyophilization and cryogenic milling

The model vaccine at 200 µg/mg was prepared by dissolving 2 parts OVA and 8 parts

trehalose dihydrate/mannitol in 1:1 (w/w) ratio in 10 mM PBS (pH 7.0, 50 mM ionic

strength), resulting in 15 % (w/w) solid content. Placebo solutions and compositions

with 25 µg/mg OVA content were prepared similarly. After filtration using a 0.22 µm

cellulose acetate (CA) membrane filter (VWR International, Darmstadt, Germany), 2 g

of the compounded solution was pipetted into type I transparent 10R glass vials (Mglas,

Münnerstadt, Germany), semi-stoppered with 20 mm Westar® RS lyophilization stoppers

(Westpharma, Exton, USA) and collapse lyophilized using an Epsilon 2-6D freeze dryer

(Christ, Osterode am Harz, Germany) using a cycle described before [19]. Subsequently,

lyophilisates were cryomilled in aliquots of 1.5 g using a MM301 CryoMill (Retsch Technol-

ogy, Haan, Germany). Upon pre-cooling using liquid nitrogen, the milling was performed

at 25 Hz for 15 s. The powder was partitioned by sieving into powder particles ranging in

size from 20 − 80 µm and aliquoted into 10R vials under a glovebox flushed with nitrogen

with a relative humidity below 10 %. The final model vaccine contained a dose of 0 µg,

25 µg, or 200 µg OVA per mg vaccine powder. For long-term storage stability analysis,

lyophilisates and cryomilled powder aliquots containing 200 µg/mg OVA were stored at
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2 − 8 °C, 25 °C and 40 °C for up to 12 months. The stability of the highly concentrated

lyophilizates and cryomilled powder was analyzed after 1, 3, 6, 9, and 12 months storage.

For vaccination studies, the OVA-loaded vaccine powder was manufactured under aseptic

conditions. The formulation compounding was performed under laminar air flow (LAF) and

compounded solution was lyophilized under clean room conditions using an Epsilon 2-12D

freeze dryer (Christ, Osterode am Harz, Germany). Equipment with direct product contact

was autoclaved for 121 °C at 2 bar for 15 min or depyrogenized using dry heat at 250 °C

for at least 30 min.

2.2.2 Preparation of liquid vaccine for injection

Approximately 10 mg OVA grade VII was dissolved in 10 mL sterile Dulbeccos PBS and

filtered through a 0.22 µm CA filter (VWR International, Darmstadt, Germany). The OVA

concentration was determined by UV/Vis spectroscopy (λ = 280 nm). Subsequently, the

solution was diluted to a concentration of 0.8 mg/mL OVA and mixed with an equal volume

of AS03 adjuvant emulsion in transparent 10R vials, resulting in a final OVA concentration

of 0.4 mg/mL. The liquid model vaccine emulsion was stored 2 − 8 °C overnight before

application in the in vivo immunization study described in section 2.6.1.

2.2.3 Preparation of oily adjuvant mixtures

The oily adjuvant for in vivo immunization study was prepared based on the mass ratios of

AS03, which delivers 10.69 mg squalene, 11.86 mg DL-α-tocopherol and 4.86 mg polysor-

bate 80 per dose. Furthermore, the adjuvant composition was altered to investigate the

oily adjuvant stability using mass ratios as shown in table II.1. Mixtures were prepared

by weighing the components into a transparent 10R glass vial and mixing under aseptic

conditions using a magnetic stirrer at ∼ 50 rpm. Oily mixture F1 was used for needle-free

powder injection in the in vivo immunization study described in section 2.6.1.

2.3 Analytical characterization of the model vaccine

2.3.1 Turbidity

The turbidity was analyzed upon reconstitution of lyophilisates and cryomilled powder as

described before using a Nephla turbidimeter (Hach Lange, Düsseldorf, Germany). Sam-

ples were reconstituted with highly purified water (hpw) to match the liquid composition

prior lyophilisation. Reconstituted samples were diluted 1:1, transferred into flat-bottom
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Table II.1: Compositions of oily adjuvant mixtures.

Formulation Squalene D/L-α-Tocopherol Polysorbate 80

[%] [%] [%]

F1 39.0 43.3 17.7

F1* 39.0 43.3 17.7

F2 69.5 21.6 8.9

F3 99.9 0.1 -

* stabilized with 0.02 % butylated hydroxyanisole (BHA)

glass cuvettes (Hach Lange, Düsseldorf, Germany) and allowed to stand for 6 h at room

temperature (RT) prior to analysis. The turbidity was determined by analyzing the scat-

tering signal of light at λ = 860 nm at an angle of 90 °and was presented in formazine

nephelometric units (FNU). The turbidity of each condition was determined as average of

three samples.

2.3.2 Subvisible particles by light obscuration

Subvisible particles were analyzed by light obscuration using a PAMAS SVSS-C40 (PA-

MAS, Rutesheim, Germany) upon reconstitution and dilution as described in section 2.3.1.

A volume of 0.4 mL was used to flush the system. Cumulative particle counts ≥ 1 µm,

≥ 5 µm, ≥ 10 µm, and ≥ 25 µm were calculated as the average of three consecutive mea-

surements of 0.3 mL sample using the PMA software (PAMAS, Rutesheim, Germany).

Each sample condition was analyzed in triplicates.

2.3.3 Size exclusion chromatography

Size exclusion-high performance liquid chromatography (SE-HPLC) was carried out using

a Dionex HPLC system equipped with a Dionex UVD170u UV/VIS-detector (Dionex, Id-

stein, Germany). A TSKgel G3000SWxl (Tosoh Bioscience, Stuttgart, Germany) was used

for separation with 50 mM PBS (pH 7.0, 150 mM sodium chloride) as mobile phase. The

samples were reconstituted as described in section 2.3.1. Three samples of each prepara-

tion step and condition were analyzed. The separation was accomplished at a flow rate of

0.5 mL/min and peak areas were evaluated using Chromeleon 6.60 (Dionex, Idstein, Ger-

many). An OVA standard curve using five dilutions was generated to evaluate the total
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protein recovery relative to the liquid formulation prior processing.

2.3.4 Western Blot analysis

For Western Blot analysis, lyophilizate and cryomilled powder samples were reconstituted

as described in section 2.3.1 and diluted to 0.2 mg/mL OVA. Subsequently, the samples

were mixed 1:1 with sample loading buffer (4 % SDS, 20 % glycerol, 0.001 % bromophenol

blue in 250 mM tris(hydroxymethyl)aminomethane (Tris) hydrochloride at pH 6.8) and

heated for 20 min at 90 °C. Separation by sodium dodecyl sulfate polyacrylamide gel

electrophoresis (SDS-PAGE) was performed loading 10 µL sample into a 10 % Bis-Tris

protein gel using MES SDS as running buffer. 5 µL MagicMark� XP Western protein

standard was used as molecular weight standard in the range of 20 − 200 kDa.

After separation, blotting onto a nitrocellulose membrane (Hybond-ECL�, Amersham Bio-

science, Freiburg, Germany) was performed at 100 mV for 1.5 h under cooling. Upon

blotting, OVA detection was performed stepwise under constant shaking at 100 rpm in

a horizontal shaker (VWR Ismaning, Germany). In detail, membranes were blocked

with 5 % BSA in 50 mM Tris-buffered saline containing 0.1 % Tween® 20 (TBS-T,

150 mM NaCl, pH 7.4) for 2 h at RT. After washing with TBS-T, membranes were in-

cubated overnight at 2 − 8 °C with mouse anti-OVA primary antibody diluted in TBS-T

containing 1 % BSA. Subsequently, membranes were washed and anti-mouse detection

antibody (λex 778 nm and λem 795 nm) in TBS-T containing 1 % BSA was added and in-

cubated for 2 h at RT. After washing, membranes were analyzed using a LI-COR Odyssey

scanner (LI-COR, Lincoln, USA).

2.3.5 Residual moisture analysis

The residual moisture content was determined by Karl-Fisher direct injection using a

737 KF coulometer (Metrohm, Filderstadt, Germany). Samples were prepared by weighing

20 − 30 mg lyophilizate or cryomilled powder into 2R vials under a glovebox flushed with

pressurized air at a relative humidity below 10 %. Vials were crimped and approximately

2 mL dry methanol was injected to the dry sample. The samples were placed into an

ultrasonic water bath (Sonorex TK52, Bandelin electronics, Berlin, Germany) for 10 min

extraction. The water content in mg per g methanol was determined by injecting 1 mL

sample into the coulometric titrator. Each sample was analyzed at least four times.
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2.3.6 Differential scanning calorimetry

The thermodynamic behavior of the vaccine lyophilizates and the cryomilled powder was

analyzed by differential scanning calorimetry (DSC) using a Mettler Toledo 821e system

(Gießen, Germany). Approximately 5−15 mg of dry sample was weighed into an aluminum

pan and subsequently cold-sealed under a glovebox flushed with nitrogen and a relative

humidity below 10 %. Sample analysis was performed in two cycles heating from -10 °C to

180 °C with a rate of 10 °C/min. Thermal events were evaluated using the StarE software

(Mettler Toledo, Gießen, Germany). The instrument was calibrated by heating indium

from 0 °C up to 150 °C at rate of 10°C/min. Data were evaluated using OriginPro 9.1.0G

(OriginLab, Northampton, Massachusetts, USA).

2.3.7 X-ray powder diffraction

Mannitol polymorphs in dry samples were analyzed using a XRD 3000 TT diffractome-

ter (Seifert, Ahrenberg, Germany) equipped with a copper anode (λ= 0.154 nm, 40 kV,

30 mA). Measurements were taken between 5 − 45 ° 2-Theta in intervals of 0.1 °2-Theta

with a duration of 4 s. Excipient modifications were qualitatively evaluated by comparison

of the obtained diffraction curves with literature [23, 24].

2.3.8 Scanning electron analysis

Scanning electron microscopy of model vaccine lyophilizates and cryomilled powder was

performed using a Joel JSM-6500F electron microscope (Ebersberg, Germany). Dry sam-

ples were attached to self-adhesive carbon tape (Bal-tec GmbH, Witten, Germany) and

carbon-sputtered using a MED 020 coating system (Bal-tec GmbH, Witten, Germany).

Images were taken at 5.0 kV operation voltage and a magnification of 500x.

2.3.9 Specific surface area analysis

The specific surface area (SSA) of the lyophilizates was determined by nitrogen-cooled

krypton gas adsorption using an Autosorb-1MP analyzer (Quantachrome, Odelzhausen,

Germany). After degassing of 100 − 150 mg sample under vacuum at RT, the krypton

adsorption was determined. Each sample was analyzed twice, measuring eleven points over

a p/p0 range of 0.05 − 0.3. SSAs were evaluated according to the multipoint Brunauer-

Emmert-Teller (BET) fitting method using the Autosorb-1 software.
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2.3.10 Helium pycnometry

The true density of model vaccine lyophilisates was determined by helium pycnometry

(AccuPyc 1330, Micrometrics, Aachen, Germany). Approximately 300 mg lyophilizate

sample was analyzed after ten preliminary cleaning cycles with analytical grade helium.

The true density was calculated as average of six consecutive measurements.

2.3.11 Endotoxin measurements

The endotoxin content of the liquid and reconstituted model vaccines was evaluated based

on kinetic chromogenic limulus amebocyte lysate (LAL) assay. Samples were analyzed

using an EndoSafe®-PTS� portable test system using cartridges with a sensitivity of

0.005 EU/mL (Charles River Laboratories, LArbresle, France) according to the manufac-

turers instructions.

2.4 Vaccine powder adhesion study

2.4.1 Vaccine powder adhesion testing

The adhesion of model vaccine powder to Ti membranes using different liquid mixtures

was tested using a customized drop apparatus as described before [25]. The adhesion of

placebo and OVA-loaded vaccine powder at concentrations of 25 µm/mg and 200 µg/mg

were investigated using the oily mixtures shown in table II.1, squalane, squalene, highly

liquid paraffin, D/L-α-tocopherol, polysorbate 80, PEG400, and PEG600. An area of

20x10 cm2 on Ti membranes were covered with a thin film of liquid mixture using a cotton

swab. Approximately 3 mg model vaccine powder was sprinkled homogenously over the

surface and gently pressed onto the membrane. Excess powder was removed by gentle

tapping and the loaded membrane was fixed to the drop apparatus. The membrane carrier

was accelerated by free fall over 1 m distance using a weight of 382 g. The carrier was

dropped five times and the remaining model vaccine powder was measured by weighing.

Each condition was analyzed in triplicates.

2.4.2 Surface tension and contact angle measurements

The surface tension and contact angles of the oily mixtures as shown in table II.1, squalane,

squalene, highly liquid paraffin, D/L-α-tocopherol, and polysorbate 80 were analyzed using

a drop shape analyzer DSA25S (Küss, Hamburg, Germany). The surface tension was
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determined using the pendant drop configuration and the surface angle of a 2 µL sessile drop

was determined on Ti, hydrophilic glass, and hydrophobic polydimethylsiloxane (PDMS)

surfaces. The contact angle was determined 30 s after first contact with the solid surface.

The work of adhesion as well as polar and disperse interactions were calculated using water

and diiodomethane as hydrophilic and hydrophobic reference liquids. The PDMS surface

was prepared following the instructions of the Sylgard 184 silicon elastomer kit.

2.5 Adjuvant oil stability study

2.5.1 Long-term storage and stress test oil-vaccine

Dry vaccine powder containing 200 µg OVA/mg was prepared as described in section 2.2.1.

Squalene, D/L-α-tocopherol and polysorbate 80 were weighed into a type I clear 10R glass

vial and mixed, matching the compositions definde in table II.1. The inner surface of type

I clear 2R glass vials were covered with ∼ 10 mg of the oily mixture using a cotton swab.

Subsequently, ∼ 50 mg vaccine powder was distributed inside the vial in one half of the

sample set. The inner walls of the transparent 2R vials were completely covered with oily

adhesive alone or with oil+vaccine powder, respectively. All samples were prepared under

a glovebox flushed with nitrogen with a relative humidity below 10 %. Six samples were

prepared for every time point of a specific storage condition, with and without vaccine

powder. For the long-term stability investigations, the samples were stored for six months

at 2 − 8 °C, 25 °C and 40 °C. The stress test involved the exposure to and shielding from

UV light using aluminum foil for 7 d using a Suntest CPS (Heraeus, Original Hanau,

Germany). The UV/Vis stress conditions employed an irradiance of 550 W/m2 for 48.2 h

using light at 200-800 nm, resulting in an illuminance of 6 mio. lux h. During UV/Vis

exposure, a temperature of 35 °C was measured in the Suntest CPS system.

2.5.2 GC-MS analysis

Gas chromatography-mass spectrometry (GC-MS) analysis was performed in full-scan

mode using a Varian Saturn Ion Trap 2000 system equipped with a CP-3800 GC (Var-

ian, Darmstadt, Germany). The separation was achieved using a Varian VF-5ms column

(30 m x 0.25 mm x 0.25 mm) and helium as carrier gas at a flow rate of 1.4 ml/min.

Aliquots of 1 µL sample were injected at 250 °C and electron ionization was performed at

270 °C ion source temperature and 70 eV ionization energy.

For organic extraction of the sample oils, a solution containing 10 µg/mL 5α-cholestane as
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internal reference standard in TMBE was prepared. TMBE with 5α-cholestane was added

to the sample vials to dissolve the oily components. Upon mixing, the suspension was

transferred quantitatively into a tube containing water-free sodium sulfate and centrifuged

for 2 min at 14,000 rpm. The supernatant was diluted 1:2500 using TMBE containing

5α-cholestane and samples were analyzed by GC-MS analysis. Calibration curves of squa-

lene, squalan, and D/L-α-tocopherol were prepared in TMBE containing 5α-cholestane as

internal reference standard. The conditions tested included a five point calibration in the

range of ± 20 % of the highest and lowest expected concentration. The obtained calibra-

tion curves provided good precision and accuracy. Statistical analysis was performed using

OriginPro 9.1.0G (OriginLab, Northampton, Massachusetts, USA).

2.6 In vivo vaccination study in piglets

2.6.1 Immunization

Domestic cross-breed piglets between six and seven weeks old were assigned to four different

vaccination groups by weight II.2. Immunization was performed by needle-free powder

injection or i.m. injection (control). For powder injection, piglets were anesthetized for

10 − 15 min using 5 % isoflurane (Isoba® MAC 1.5 vol % Essex Tierarznei, Munich,

Germany) as inhalational anesthetic. During anesthesia, the vital functions of the pigs

were continuously monitored. The ventrolateral region between mammary ridge and the

lateral side of the body was cleaned with water and bristles were removed using a trimmer.

The application site was marked by tattooing and labeled using a black marker. Two verum

groups received a dose of 1 − 2 mg vaccine powder loaded with 200 µg OVA/mg vaccine

using highly liquid paraffin (B) or oily AS03 adjuvant (C) as adhesive. A dose of 1− 2 mg

vaccine powder without OVA model antigen, attached to the injection device using paraffin,

was applied by powder injection in the placebo group (A). The vaccine was administered

by powder injection on day 0 and 14 to opposite sites of the body. The positive control

group (D) received an i.m. injection of 0.5 mL liquid vaccine, described in section 2.2.2,

into opposite sites of the neck (trapezius muscle) on day 0 and 14. Serum samples for

all groups were collected before and 1 d, 14 d, 21 d, and 28 days after immunization.

The health status of the piglets was checked on a daily basis using a score system. The

experimental protocol was approved by the Government Office of Upper Bavaria, Munich,

Germany (authorization reference number 55.2.1.54 − 2532 − 87 − 12; 30. Aug. 2012).
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Table II.2: Overview of treatment groups in the in vivo immunization study.

Group Route of OVA dose Oil adhesive Adjuvant Immunization

administration time points

A Powder injection - Paraffin - days 0, 14

B Powder injection 200 µg Paraffin - days 0, 14

C Powder injection 200 µg AS03 + days 0, 14

D i.m. 200 µg AS03 + days 0, 14

2.6.2 Quantification of OVA-specific porcine IgG

The OVA-specific antibody titer in serum samples was determined using an direct enzyme-

linked immunosorbent assay (ELISA). In brief, 96-well, clear, flat-bottom microtiter plates

(Nunc Maxisorp�, VWR, Germany) were coated overnight at 2 − 8 °C using 50 µL of

10 µg/mL OVA in 50 mM carbonate-bicarbonate coating buffer (pH 9.6). Microtiter plates

were washed between each subsequent step with 10 mM PBS containing 0.05 % (w/w)

Tween® 20 (PBS-T, pH 7.4, 150 mM NaCl) using a Hydroflex plate washer (Tecan,

Männedorf, Switzerland). Blocking was performed using 100 µL 5 % (m/v) BSA in PBS-T

and incubation for 1 h at RT. Serum samples were diluted 1:25 using 1 % (m/v) BSA in

PBS-T and a two-fold serial dilution was pipetted into every row of the microtiter plate,

resulting in 50 µL per well. Each sample was measured twice. A pooled sample of 28 d

sera of the i.m. control group (D) (1:200) served as positive control in two rows per mi-

crotiter plate. Samples were incubated for 1 h at RT and 50 µL HRP-linked anti-porcine

IgG secondary antibody (1:40,000) was added for 1 h at RT. Detection was performed

by enzymatic reaction using 50 µL TMB substrate solution at RT. Reaction was stopped

after 10 min by directly adding 50 µL TMB stop solution and absorbance was measured

at λ = 450 nm using a Fluostar plate reader (BMG labtech, Offenburg, Germany). The

OVA-specific antibody titer was determined as inflection point upon four parameter logistic

regression of each sample curve using Origin 8G (OriginLab, Northampton, Massachusetts,

USA). Statistical analysis of the antibody titer was performed using ANOVA on ranks

(Kruskal-Wallis, α = 0.05) using SigmaPlot 12.5 (Systat Software, San Jose, California,

USA).
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2.6.3 Quantification of total porcine IgG

Total serum immunoglobulin (Ig)G was determined by sandwich ELISA, which was de-

veloped for the in vivo study. Briefly, coating was performed by incubating 50 µL goat

anti-porcine IgG capture antibody (1:20,000) in 50 mM carbonate-bicarbonate coating

buffer (pH 9.6) overnight at 2 − 8 °C in 96-well, clear, flat-bottom microtiter plates. Be-

tween each following step, microtiter plates were washed with PBS-T (pH 7.4, 150 mM

NaCl) using a Hydroflex plate washer (Tecan, Männedorf, Switzerland). Blocking was per-

formed using 100 µL of 5 % (m/v) BSA in PBS-T, incubating for 1 h at RT. Serum samples

were diluted in 1 % (m/v) BSA in PBS-T. Each sample was analyzed in duplicates using

50 µL sample per well, incubating for 1 h at RT. Detection was performed as described

in section 2.6.2 using HRP-linked anti-porcine IgG (1:20,000) as secondary antibody and

TMB substrate. The porcine IgG concentration of each sample was calculated by means

of a standard curve that was measured separately for each microtiter plate. Dilutions of

porcine IgG and porcine albumin at 1:3.3 ratio in 10 mM PBS (pH 7.4), matching the IgG

content relative to total serum proteins [26], was used to generate the standard curve. The

total porcine IgG ELISA was developed by two-step chessboard titration (CBT) providing

a detection range of 1−100 nm/mL porcine IgG (R2 > 0.999). The developed ELISA pro-

vided low intra- and interassay variability with relative coefficient of variation (CV) < 5 %

except for the high concentration standard, which showed an interassay CV of 14 %. A

standard curve was included to each microtiter plate. Statistical analysis was performed

using SigmaPlot 12.5 applying a one-way ANOVA on ranks (Kruskal-Wallis, α = 0.05).

3 Results and Discussion

3.1 Development and characterization of a highly concentrated

model vaccine for needle-free intradermal powder injection

3.1.1 Preparation of low and highly concentrated OVA model vaccine

Previous studies have shown that the preparation of a low dose vaccine powder using

OVA as model antigen at a concentration of 25 µg/mg was feasible, resulting in a vaccine

powder with good stability and suitable properties for needle-free powder injection [18,

19]. Considering a maximum dose of 1 − 2 mg vaccine powder delivered by needle-free

intradermal injection, only 25 − 50 µg OVA would be delivered into the skin. Comparable
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doses have been used for cutaneous vaccination in mice [27, 28]. However, the relatively

low potency of OVA as model antigen likely requires a higher dosing in larger animals. To

facilitate a high dosing in the in vivo immunization study in piglets, a highly concentrated

vaccine powder at 200 µg/mg was developed and characterized in relation to low-dose

vaccine formulations.

The simultanous preparation of vaccine at 0 µg/mg, 25 µg/mg, and 200 µg/mg OVA in

one lyophilization cycle was possible and resulted in comparable cake appearance for all

formulations. Temperature probe monitoring revealed a completion of primary drying after

10 − 12 h for 25 µg/mg and 200 µg/mg OVA formulations, applying aggressive primary

drying conditions at +45 °C and 2 mbar as described before [18]. The initiation of secondary

drying after around 31 h at +45 °C and 0.03 mbar highlights the possibility to further

reduce the primary drying time and thereby improve cost and time efficiency for vaccine

manufacturing.

The second step of vaccine preparation for powder injection by cryogenic milling resulted in

a white vaccine powder with comparable appearance for all OVA concentrations. The vac-

cine powder as placebo formulation or 25 µg/mg and 200 µg/mg OVA-loaded formulation

exhibited similar macroscopic properties upon manufacturing.

3.1.2 Ovalbumin antigen stability

The OVA protein stability of model vaccines with concentrations of 25 µg/mg and 200 µg/mg

was evaluated by SE-HPLC. The relative amount of OVA monomer, dimer, and high molec-

ular weight (HMWS) and low molecular weight species (LMWS) during the processing was

evaluated for the low and highly concentrated vaccine formulations (Tab. II.3). The OVA

monomer recovery remained constant at approximately 91 % for the liquid formulations

and after lyophilization and cryogenic milling of 25 µg/mg and 200 µg/mg OVA formula-

tions. Furthermore, around 8.3 % dimer and 1 % HMWS were detected for model vaccine

lyophilizates and the cryomilled powder. Upon cryogenic milling the relative amount of

HMWS increased to 1.6 % and 1.1 % for the 25 µg/mg and 200 µg/mg OVA powder, re-

spectively. Compared to the liquid formulations with 0.9 % and vaccine lyophilizates with

1.4 % and 1.1 % HMWS, the increase was minimal and not considered to affect the vaccine

quality negatively. Also, no fragmentation, indicated by increased LMWS, was detected

by SE-HPLC analysis.

The results suggest that the protein remained stable during collapse lyophilization and

cryogenic milling. Neither increased processing-related aggregation, nor fragmentation
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Table II.3: Protein composition by SE-HPLC of OVA model vaccine at 25 µg/mg and
200 µg/mg prior and after processing by lyophilization and cryogenic milling.

Formulation Monomer Dimer HMWS LMWS

[%] [%] [%] [%]

25 µg/mg OVA

Liquid (Liq) 90.8 ± 0.2 8.3 ± 0.1 0.9 ± 0.1 n.d.

Lyophilizate (Lyo) 90.2 ± 0.1 8.4 ± 0.1 1.4 ± 0.1 n.d.

Cryomilled powder (Cryo) 90.4 ± 0.2 8.0 ± 0.1 1.6 ± 0.1 n.d.

200 µg/mg OVA

Liquid (Liq) 90.7 ± 0.0 8.4 ± 0.0 0.9 ± 0.1 n.d.

Lyophilizate (Lyo) 90.6 ± 0.0 8.5 ± 0.0 1.0 ± 0.0 n.d.

Cryomilled powder (Cryo) 90.6 ± 0.0 8.3 ± 0.0 1.1 ± 0.0 n.d.

was detected. The processing of highly concentrated OVA formulation at 200 µg/mg did

not affect the monomer content negatively.

3.1.3 Subvisible particles and turbidity analysis

The visual appearance and the subvisible particle content of the placebo and OVA-loaded

vaccine was characterized by turbidity and light obscuration analysis upon reconstitution

of lyophilizate and cryomilled powder samples (Fig. II.1). Generally low particle counts

of 1, 000 − 2, 000 particles ≥ 1 µm /mL were detected for all liquid formulations prior to

lyophilization independent of the OVA target content. The particle counts of the placebo

formulation remained low after collapse lyophilization but increased to 4,000 particles/mL

≥ 1 µm upon cryogenic milling. Moreover, OVA-loaded formulations showed largely

concentration- and also processing-dependent particle counts upon collapse lyophiliza-

tion and cryogenic milling. Comparable particle counts of 6,410 particles ≥ 1 µm/mL

and 7,069 particles ≥ 1 µm/mL were detected for vaccine lyophilizates at 25 µg/mg and

200 µg/mg, respectively. However, major differences in the particle counts of low and high

dose vaccine formulations were observed after subsequent cryogenic milling. While the

25 µg/mg cryomilled powder showed 13,602 particles≥ 1 µm/mL, particle counts increased

significantly for the 200 µg/mg vaccine powder with values around 160,000-170,000 parti-

cles/mL in separate batches.
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Figure II.1: Subvisible particle counts of placebo and model vaccine with an OVA content
of 25 µg/mg and 200 µg/mg prior (Liq) and after processing by collapse lyophilization
(Lyo) and cryogenic milling (Cryo). The subvisible particle counts ≥ 1 µm (A), ≥ 10 µm
(B), and ≥ 25 µm (C) per mg dry vaccine and per mL reconstituted formulation are shown.
Furthermore, the turbidity of the reconstituted samples is provided (D).

The observations found for particles ≥ 1 µm were also confirmed by cumulative counts of

larger particles ≥ 10 µm and ≥ 25 µm. While a low number of particles was detected for

all liquid formulations and lyophilizates with values below 40 particles ≥ 10 µm/mL and

less than 5 particles ≥ 25 µm/mL, cryogenic milling led to increased particle counts in the

presence of OVA model antigen. Formulations with high dose OVA of 200 µg/mg exhibited

notably higher particle count of around 4,000 particles ≥ 10 µm/mL and 200 particles

≥ 25 µm/mL where as the low dose OVA vaccine remained relatively low with counts of

around 200 particles/mL and 8 particles/mL ≥ 10 µm and ≥ 25 µm, respectively.

The turbidity of placebo and OVA loaded formulations showed values depending on the
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OVA concentration and the processing step. In general, the turbidity in increased with

increasing OVA content. Lowest values around 0.5− 1 FNU were detected for the placebo

formulation prior and after two-step processing. The OVA vaccine at 25 µg/mg showed

turbidity values between 1−3 FNU, which increased with each processing step. As observed

by subvisible particle analysis, most pronounced differences in turbidity were detected for

the highly concentrated OVA vaccine after cryogenic milling. The liquid formulation and

vaccine lyophilizates at 200 µg/mg OVA provided values between of 3.6 FNU and 4.8 FNU,

whereas the turbidity was increased by cryomilling to up to 25 FNU.

The results suggest that the OVA model antigen concentration represents the major pa-

rameter that influences the subvisible particle quality attribute of the model vaccine for

needle-free intradermal powder injection. The most pronounced increase in subvisible par-

ticle counts and also turbidity was detected for the highly concentrated OVA cryomilled

vaccine powder at 200 µg/mg. In some cases, even visible particles were observed after

reconstitution. Despite the relatively high subvisible particle counts of the 200 µg/mg vac-

cine powder, regulatory requirements for subvisible particulates would be met, allowing a

maximum of 6,000 particles ≥ 10 µm and 600 particles ≥ 25 µm per container for parenteral

formulations [29, 30]. Moreover, with respect to vaccination, particles in the submicron

range could further enhance immune responses and serve as adjuvant for vaccination [31].

The vaccine preparation as a liquid formulation and collapse-dried lyophilizates showed

comparable results for the subvisible particle content independent of the antigen concen-

tration in a range of 0 − 200 µg/mg OVA. The cryomilling process increased the particle

content in all formulations. Empty milling tests (graphs not shown) revealed that about

48,000 particles ≥ 1 µm were generated per milling beaker, which represents the worst

case scenario of foreign matter that could be introduced into the 1.5 g vaccine powder pre-

pared by cryomilling. This means the cryomilling process itself could increase the particle

counts ≥ 1 µm by ∼ 3, 500 particles per milliliter of reconstituted formulation. Similarly,

around 20 additional particles ≥ 10 µm and less than 1 particle ≥ 25 µm would be found

after cryogenic milling of vaccine lyophilizates. Considering the particle counts detected

for particles ≥ 1 µm, this value is well comparable to the difference in particle counts

found for the placebo formulation after cryogenic milling. At an OVA content of 25 µg/mg

particle counts were higher, indicating that the increase in counts was caused not only

by foreign but also protein particles. This observation was even more pronounced for the

highly concentrated vaccine at 200 µg/mg OVA where the largest part of increase in sub-

visible particle counts was most likely generated by proteinaceous matter. Although this
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indicates changes in the physicochemical properties of the OVA model antigen at higher

concentrations, it remains to be assessed if this affects the immunological potency of the

molecule for vaccination.

3.1.4 Lyophilizate and cryomilled powder characteristics

The properties of model vaccine after processing by collapse lyophilization and cryogenic

milling were evaluated by residual moisture, specific surface area and true density analysis.

The residual moisture content of the model vaccine lyophilizates and cryomilled powder

with varying OVA content was determined by Karl-Fischer titration. In general, low mois-

ture contents between 0.4− 0.6 % were found for lyophilizates loaded with 0− 200 µg/mg

OVA (Fig. II.2). Processing by cryogenic milling increased the residual moisture content

to 0.6 − 1.1 %. Comparing the different OVA concentrations revealed a concentration-

dependent non-linear decrease of the residual moisture content most pronounced for the

cryomilled vaccine powder. In general, higher OVA concentrations lowered the residual

moisture content of the vaccine.

The results show that the highly-concentrated OVA vaccine at 200 µg/mg provided a

slightly lower moisture content compared to the 25 µg/mg OVA model vaccine. However,

the differences observed were small and good comparability of the OVA-loaded vaccine

at 25 µg/mg and 200 µg/mg can be assumed. Although the residual moisture content in-

creased after cryomilling, it remained below 1 % for the antigen-loaded vaccine formulations

and provided suitable properties for following studies.

The SSA of the vaccine lyophilizates and the cryomilled powder was determined by mul-

tipoint BET analysis. Figure II.2 shows that an increasing antigen concentration lowers

the SSA of the lyophilizates and cryomilled powder. Within a range from 0 − 200 µg/mg

OVA, the SSA decreased non-linear with increasing OVA concentration from 0.45 m2/g to

0.25 m2/g for the vaccine lyophilizates. Cryogenic milling upon lyophilization increased

the SSA of all formulations to 1.7 − 2 m2/g. The OVA antigen concentration showed

a less pronounced effect on the SSA of the cryomilled powder compared to the vaccine

lyophilizates.

In general, lower SSAs, which are generally associated with larger pores, reduces the speed

of secondary drying leading higher residual moisture contents [32]. However, in this study,

the highly concentrated OVA vaccine at 200 µg/mg exhibited the lowest SSA value but

also the lowest residual moisture content. This observation was likely driven by two effects.

First, as aforementioned, the aggressive lyophilization cycle applied in this study provided
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Figure II.2: Residual moisture content (bars), specific surface area (circles), and true
density (diamond) of model vaccine lyophilizates (Lyo) and cryomilled powder (Cryo)
without antigen (placebo) and with 25 µg/mg and 200 µg/mg OVA.

long primary and secondary drying times at a high temperature of +45 °C, leading to

complete drying for all formulations. Secondly, it has been reported that a higher protein

content leads to faster drying due to lowering of the cake resistance and results in reduced

residual moisture contents. It can be therefore assumed that the increase OVA antigen

concentration had a superior influence on the final moisture content compared to the

lyophizate pore structure.

The true density of the OVA vaccine was assessed by helium pycnometry. The results show

that the true density of the lyophilizates decreases slightly with increasing OVA concen-

tration (Fig. II.2). Placebo vaccine lyophilizates provided a density of 1.58 g/cm3 whereas

OVA-loaded lyophilizates exhibited values of 1.55 g/cm3 and 1.50 g/cm3 at concentrations

of 25 µg/mg and 200 µg/mg, respectively. The results show that the OVA concentration

provided a notable impact on the residual moisture content and SSA of the lyophilizates

and cryomilled powder. However, lower SSA values were not obtained due to densification

of the lyophilizate formulation at higher OVA concentrations but these were most likely

derived from differences in freezing and drying behavior during lyophilization. On the

other hand, an inferior effect of the OVA content on the true density was observed.

Previous studies at 25 µg/mg OVA using a ternary mixture of trehalose, mannitol, and

dextrane with 15 % solid content have found comparable results of with values of ∼ 1.5 %
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II. Needle-free powder immunization with a highly concentrated model vaccine

Figure II.3: XRPD patterns of placebo and model vaccine lyophilizates with 25 µg/mg and
200 µg/mg OVA.

moisture content of the cryomilled powder, 0.3 m2/g and 1.5 m2/g SSA of lyophilizates

and cryomilled powder, and a true density of the cryomilled powder around 1.5 g/cm3 [18].

Comparing the true density measurements of the lyophilizates in this study and the cry-

omilled powder in the previous study indicates that cryogenic milling did not notably affect

the true density of the vaccine. More likely, the formulation composition and, to a lower

extent, the lyophilization process impact the final SSA and density of the product [18].

The results obtained in this study at a high concentration of 200 µg/mg OVA were well

comparable to the placebo and low dose formulations used in this setup but also compared

to the previous study referenced above.

3.1.5 Characterization of excipient modification

The crystallinity of mannitol was investigated by X-ray powder diffraction (XRPD) and

DSC. The qualitative investigation of mannitol polymorphs by XRPD revealed that δ-

mannitol was formed by collapse lyophilization independent of the OVA content in the

range of 0 µg/mg to 200 µg/mg (Fig. II.3). The δ-modification of mannitol was confirmed

by a peak at 9.7 °2-Theta in all formulations. The absence of a peak at 17.9 °2-Theta

indicates that no mannitol hydrate was formed during lyophilization. The profiles suggest

that trehalose remained in the amorphous state during drying. Furthermore, the XRPD

profile did not change upon cryogenic milling for all formulations.

DSC analysis of the OVA vaccine at different concentrations revealed a comparable melting
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3 Results and Discussion

Figure II.4: DSC thermograms (A) of placebo and 25 µg/mg and 200 µg/mg OVA-loaded
vaccine lyophilizates (Lyo) and cryomilled powder (Cryo) and peak enthalpies (B) of the
second mannitol melting endotherm around 150-155 °C in dependence of the OVA vaccine
concentration.

profile for all formulations. The detected endothermic events occured in comparable tem-

perature ranges between 100 − 160 °C (Fig. II.4). Within this range, vaccine lyophilizates

showed overlapping thermal events between 90-145 °C and a distinct melting endotherm

around 150 − 155 °C. The peak enthalpy at 150 − 155 °C thereby decreased non-linear

with increasing OVA antigen concentration. No differences in the DSC profiles were ob-

served between vaccine lyophilizates and the cryomilled powder of the respective OVA

concentration.

Previous studies have reported an endothermic peak around 166 °C that is associated

with the melting of different modifications of mannitol, including the δ-modification [24,

33]. The δ-mannitol polymorph is a thermodynamically instable modification at ambient

conditions, with a relatively high kinetic stability [24]. This modification remains stable

upon mechanical stress and long-term storage [24]. In fact, cryogenic milling of the vaccine

lyophilizates did not change the mannitol modification of the vaccine formulations. Besides

that, heating at rates below 10 K/min induces the transition of δ-mannitol into the β-

modification, which consequently contributes to the endothermic melting of this mannitol

polymorph [24, 33].

The literature value of mannitol melting was confirmed by analysis of the pure crystalline

excipient used in this study, which showed a melting endotherm around 166 °C (data not

shown). The combined analysis of crystalline mannitol in combination with crystalline tre-

halose revealed a shifting of the mannitol melting endotherm towards lower temperatures

by up to 5 °C (data not shown). These findings suggest that the melting peak of crystalline
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mannitol within the multi-component formulations used in this study ocurred at a tem-

perature below 166 °C. It can be assumed that the endothermic peak around 150− 155 °C

was derived from the melting of crystalline δ-mannitol within the sample. The drop of

peak enthalpy with increasing OVA concentration would indicate a decrease of crystalline

content in the vaccine lyophilizates and cryomilled powder with increasing antigen content.

However, the analysis of additional OVA concentrations would be required to confirm this

hypothesis.

In the formulation composition used in this study, mannitol acted as a bulking agent,

leading to a stable lyophilizate cake and cryomilled powder. It can be expected that the

presence of a crystalline mannitol modification increases the density of the final product.

With the generation of kinetically stable δ-mannitol by freeze-drying it was possible to

take advantage of a good storage stability and increased density compared to amorphous

mannitol. It has to be noted that a higher OVA antigen content most likely reduced the

relative amount of crystalline mannitol in the sample, consequently reducing the density

(Section 3.1.4). However, the high comparability of measured density values at all OVA

concentrations from 0 − 200 µg/mg reveal that despite a lower degree of crystallinity, the

highly concentrated OVA vaccine provided suitable properties for needle-free intradermal

powder injection.

3.2 Long-term stability of the highly concentrated vaccine

3.2.1 Ovalbumin antigen stability

The long-term stability of the highly concentrated vaccine at 200 µg/mg OVA was evalu-

ated over a period of 12 months, storing model vaccine lyophilizates and cryomilled powder

at 2 − 8 °C, 25 °C, and 40 °C. The antigen stability during the long-term stability study

was evaluated by SE-HPLC and Western blot analysis. SE-HPLC results showed con-

stantly high monomer contents around 90 % for the lyophilizate and cryomilled powder

over 12 months storage at up to 40 °C (Fig. II.5). Similarly, the dimer and high molecular

weight species (HMWS) content remained constant around 8 − 9 % and 1 %, respectively.

Also, no formation of LMWS was detected by SE-HPLC over time. The total protein

recovery decreased slightly over a storage period of 12 months but stayed above ∼ 90 %

for all storage conditions.

The antigenicity of the protein after vaccine processing and storage at different conditions

was assessed by Western blot analysis. The Western blots of the vaccine formulation at
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Figure II.5: Relative OVA monomer, dimer, and oligomer composition (bars, left Y-axis)
and total protein recovery (symbols, right Y-axis) of the highly concentrated 200 µg/mg
OVA vaccine lyophilizates and cryomilled powder at stability study initiation (T0) and
after 12 months storage at 2 − 8 °C, 25 °C, 40 °C.

200 µg/mg OVA prior and after processing by lyophilization and cryogenic milling showed

up to five bands associated with the OVA antigen (Fig. II.6). The most pronounced band

was detected around 40 kDa associated to OVA monomer. Moreover, a distinct dimer

band of approximately 80 kDa as well as a trimer band of around 120 kDa were observed

above the OVA monomer. In some cases, further bands at higher molecular weights were

seen, however these were no longer clearly distinguishable. Besides higher molecular weight

species, an additional band was detected directly below the OVA monomer band. This

lower band exhibited a slightly lower molecular weight and showed higher mobility during

electrophoretic separation by SDS-PAGE. The low band provided a molecular weight below

40 kDa and was considered a fragment of the OVA monomer with maintained antigenicity.

Over a storage period of 12 months, comparable patterns of relative OVA composition were

detected for stored lyophilizates and the cryomilled powder. The antigenicity of the protein

during processing and storage was maintained. A slight increase in band intensity of the

OVA low molecular weight fragment was observed, however relative to the monomer band

intensity, the observed change was negligible. Furthermore, no differences were detected

between cold, ambient, and accelerated storage conditions.

The results obtained by SE-HPLC and Western blot analysis show that the OVA antigen

remained stable during 12 months storage at up to 40 °C. Unlike previous studies, which
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Figure II.6: Western blots of model vaccine lyophilizates (A) and cryomilled powder (B)
at 200 µg/mg OVA during 12 months storage at 2−8 °C, 25 °C, 40 °C. The bands detected
by Western blot analysis correspond to the OVA monomer (a), dimer (b), oligomers (c, d),
and lower molecular weight species (e). The latter were not detected by SE-HPLC.

observed a loss of antigenicity of influenza vaccine-loaded cryomilled vaccine powder after

6 months storage at 40 °C [15], the model antigen OVA used in this study maintained the

antigenicity over storage time and exhibited a comparable monomer, dimer, and oligomer

composition at all times.

3.2.2 Subvisible particles and turbidity analysis

The physicochemical stability of the vaccine lyophilizates and cryomilled powder with

200 µg/mg OVA was studied by light obscuration and turbidity analysis. As discussed in

section 3.1.3, the subvisible particle counts of the model vaccine at initial testing remained

constant prior and after collapse lyophilization with counts below 50 particles ≥ 1 µm per

mg dry vaccine (Fig. II.7). Cryogenic milling of the vaccine lyophilizates increased the
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Figure II.7: Cumulative subvisible particle counts ≥ 1 µm and turbidity of reconstituted
highly concentrated 200 µg/mg OVA vaccine lyophilizates (A, C) and cryomilled powder
(B,D) over 12 months storage at 2 − 8 °C, 25 °C, 40 °C.

subvisible particle content significantly to about 1,300 particles ≥ 1 µm/mg.

The storage of the vaccine lyophilizates and cryomilled powder at 2 − 8 °C, 25 °C, and

40 °C over 12 months revealed constant particle counts for lyophilizates and a decrease

in subvisible particles ≥ 1 µm for the cryomilled powder (Fig. II.7). Over a period of 12

months, the cumulative counts of particles ≥ 1 µm did not change in stored model vaccine

lyophilizates independent of the stoarge condition. For the cryomilled powder, on the other

hand, a slight decrease of particle counts ≥ 1 µm to approximately 500-1,000 particles/mg

was detected. Thereby, higher counts were found for cold storage whereas the storage at

an accelerated temperature of 40 °C led to lower particle counts. The difference in particle

counts observed after 12 months, was derived from a software update of the analytical

instrument and was not considered to reflect a real change in particle counts for the model

vaccine.

The cumulative counts of particles ≥ 10 µm and ≥ 25 µm showed values below 2 parti-

cles/mg vaccine for all samples (data not shown). No clear trends could be detected for
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larger particles over a storage period of 12 months at different conditions. Considering the

distribution of subvisible particles, it can be concluded that the main fraction of particles

found in the model vaccine were smaller than 10 µm and only a minor amount of larger

particles would delivered into the skin upon needle-free powder injection. Per vaccine dose

of 1 − 2 mg cryomilled vaccine powder a maximum of 4,000 particles in the micron size

range would be delivered into the skin.

The analysis of the sample turbidity showed a comparable trend over time as observed for

the subvisible particle counts. Higher turbidity values were generally associated with a

higher count of particles ≥ 1 µm and a decrease of turbidity over 12 months storage was

observed.

The decrease of subvisible particle counts and turbidity could be explained by intermolec-

ular changes, e.g. particle or aggregate ripening, within the dry formulation. It can be

assumed that over time, larger protein aggregates were formed which could not be de-

tected by light obscuration due to fast sedimentation, or by protein stability analysis, e.g.

SE-HPLC. Stress testing at elevated temperatures accelerated structural changes within

the dry vaccine, leading to higher amounts of insoluble OVA aggregates and lower particle

counts and turbidity values. Although this hypothesis was supported by decreasing par-

ticle counts, no increase in soluble aggregates could be detected by SE-HPLC or Western

blot analysis (Section 3.2.1). However, a slight decrease in total protein recovery was ob-

served, indicating a loss of protein by formation of insoluble OVA antigen aggregates in

the cryomilled powder. However it has to be noted that due to the generally high pro-

tein concentration after reconstitution around 30 mg/mL, the loss in protein by insoluble

particle formation might not be clearly detectable.

Considering the low number of particles that would be delivered by needle-free intradermal

powder injection and the generally low loss of soluble OVA antigen over 12 months, it

can be assumed that the model vaccine powder provided good storage stability at up to

40 °C. In general, slighlty superior stability was found for the model lyophilizates, indicated

by negligible changes in physicochemical quality attributes compared to the cryomilled

powder. Nevertheless, the results show that the vaccine powder provided suitable long-

term stability and was suitable to be stored up to 3 months at 2 − 8 °C in preparation of

the in vivo immunization study.
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3.2.3 Residual moisture analysis

The residual moisture of the 200 µg/mg OVA vaccine lyophilizates and the cryomilled

powder was analyzed by Karl-Fischer titration. At initial testing, the highly concentrated

lyophilizates and cryomilled powder exhibited a moisture content of 0.5 % and 0.7 %,

respectively. At cold storage conditions at 2−8 °C, the residual moisture content remained

stable over 12 months storage for the lyophilizates and increased minimally to 0.8− 0.9 %

for the cryomilled powder. With increasing storage temperature, the moisture content

increased over storage time to up to 0.8 % for the vaccine lyophilizates and up to 1.6 %

for the cryomilled powder, both stored at 40 °C.

The results show that the storage at higher temperature led to increased residual moisture

levels. Thereby, the cryomilled powder showed higher differences to the initial testing as

compared to the vaccine lyophilizates. In general, the residual moisture remained below

1 % for up to 6 months and below 2 % for up to 12 months storage at all conditions. The

generally low moisture content indicate good long-term stability of the model vaccine in

its primary packaging over a storage period of 12 months at up to 40 °C.

Figure II.8: Residual moisture contents of highly concentrated 200 µg/mg OVA vaccine
lyophilizates (A) and cryomilled powder (B) during 12 months storage at 2 − 8 °C, 25 °C,
40 °C.

3.2.4 Characterization of excipient modification

The stability of the mannitol excipient modification in the highly concentrated OVA vaccine

lyophilizates and cryomilled powder was evaluated by XRPD and DSC analysis. The

XRPD patterns of the dry samples prior and after storage for 12 months at 2−8 °C, 25 °C,

and 40 °C reveal a stable δ-mannitol modification over the entire storage time (Fig. II.9).
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Figure II.9: XRPD patterns of the highly concentrated 200 µg/mg OVA vaccine
lyophilizates and cryomilled powder at stability study initiation (T0) and after 12 months
storage at 2 − 8 °C, 25 °C, 40 °C.

The profiles of the lyophilizates and the cryomilled powder did not change over time and

exhibited a peak at 9.7 °2-Theta in all samples. This peak indicates the presence of δ-

mannitol, while the absence of a peak at 17.2 °2-Theta shows that no mannitol hydrate

was present in any sample. A slight increase in peak height could indicate the increase of

crystalline mannitol in the sample, assuming similar sample masses for XRPD analysis.

The amount of crystalline mannitol was studied by DSC. All lyophilizate and cryomilled

powder samples exhibited a similar DSC profile as discussed in section 3.1.5. Overlaid en-

dothermic events were detected in a temperature range between 90 °C and approximately

150 °C (Fig. II.10A). Dependent on the sample type and storage condition the endother-

mic melting shifted towards lower temperatures. The highest melting temperatures were

detected at the initial testing time point with minimally lower temperatures for the cry-

omilled powder. Over storage time and with increasing storage temperatures, the melting

onset shifted towards lower temperatures as indicated in figure II.10).

It can be assumed that the shifting of the melting temperatures was associated with the

increase in residual moisture content. As discussed in section 3.2.3, vaccine lyophilizates

showed inferior changes compared to cryomilled vaccine powders, particularly when stored

at elevated temperatures.

The DSC profiles also reveal minimal changes in the peak enthalpy of the second, single

melting endotherm between around 140 − 150 °C. Compared to initial values, the melting
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Figure II.10: DSC thermograms (A) of the highly concentrated 200 µg/mg OVA vaccine
lyophilizates and cryomilled powder at stability study initiation (T0) and after 12 months
storage at 2−8 °C, 25 °C, 40 °C and respective peak enthalpies (B) of the second mannitol
melting endotherm.

enthalpy increased slightly after 12 months storage of the lyophilizates and the cryomilled

powder. This could indicate a formation of crystalline mannitol over time. Although

recrystallization can affect the OVA antigen stability, no pronounced changes in protein

stability were detected by SE-HPLC and Western blot analysis (Section 3.2.1). The results

show that the storage of highly concentrated vaccine lyophilizates and cryomilled powder

was possible for 12 months at up to 40 °C.

3.3 Characterization of the vaccine-oil-adhesion on hydrophilic

and hydrophobic surfaces

3.3.1 Vaccine-oil adhesion on the device membrane

The needle-free powder injection device used in this study was composed of two main

parts, a pharmaceutical and pyrotechnical part, which were assembled directly before ap-

plication [15]. While the pyrotechnical part provided the trigger to actuate the device,

the pharmaceutical part was in direct product contact. Within the pharmaceutical part, a

defined area of a Ti membrane was coated with oily adjuvant followed by vaccine powder.

Upon actuation of the device, a high energy pulse was transferred from the Ti membrane

to the vaccine power, accelerating the powder particles to up to 500 m/s [15]. The vaccine

powder, which was coated homogeneously onto the membrane, was accelerated as particle

cloud through an orifice of approximately 1 − 2 cm towards the skin surface.
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For the loading of the device with vaccine powder, two main requirements had to be

balanced to optimize the device performance. First, appropriate fixation of the vaccine

powder was required to ensure reproducible loading, adherence of powder in alignment

with the orifice and to provide sufficient transportation stability. On the other hand, the

mixture used for vaccine fixation also needed to exhibit suitable properties to release the

particles upon device actuation. Besides that, the fixation mixture had to be biocompatible

and possibly serve as adjuvant for the simultaneous delivery of vaccine powder together

with the fixation mixture [20].

The adhesion of the vaccine powder on the Ti membrane of the powder injection device was

studied with different OVA loadings and oily mixtures and pure components for fixation.

Approximately 0.1 − 0.5 mg oil was coated onto an area of 20 mm x 10 mm on the Ti

membrane followed by loading of the vaccine powder. Using this technique, approximately

0.8 − 2.5 mg vaccine powder could be attached to the Ti membrane. The relative powder

adhesion was determined as the measured powder loading after drop testing relative to the

initial vaccine powder loading Qm/m0
(%).

After completion of the drop test, the amount of vaccine powder that remained on the Ti

surface was notably reduced (Fig. II.11). Depending on the oily mixture or component

used for fixation, the adhesion of the vaccine powder lowered to varying extents. The oily

mixture F1, based on the relative composition of the oily components of the adjuvant AS03

(Tab. II.1), showed a relatively low reduction of attached powder with 45−65 % remaining

vaccine. Comparably high values around 60 − 70 % were found for the oily mixture F1*,

stabilized with BHA, as well as the pure components α-tocopherol and polysorbate 80.

Interestingly, although insufficient spreading of α-tocopherol on the Ti membrane was ob-

served, the oil provided suitable properties to retain the vaccine powder on the membrane

during drop tests. Oily mixture F2, with half-concentration α-tocopherol and polysor-

bate 80 relative to F1, showed reduced powder adhesion compared to oily mixture F1 with

about 25 − 50 % remaining vaccine after the drop test. Similarly, intermediate adhesion

was found using highly liquid paraffin for vaccine powder fixation. The lowest particle

retention on the Ti membrane was provided using the oily mixture F3 and the pure com-

ponents squalene, and squalane with a particle adhesion below or equal to ∼ 20 %. The

oily mixture F3 was composed of a low content of 0.1 % α-tocopherol and pure squalene,

in absence of additional polysorbate 80.

The OVA concentration of the model vaccine powder did not exhibit a clear effect on

the adhesion properties on the Ti membrane. The powder adhesion differed only slightly
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between the placebo and 25 µg/mg and 200 µg/mg OVA-loaded vaccine powder and no

clear trend could be detected. However, it has to be noted that the amount of vaccine

powder coated onto the membrane largely affected the percentage of remaining vaccine

powder. Generally, higher initial coating increased the relative loss upon drop testing. It

can be assumed that the embedding of particles in the oily liquid was superior with a

lower number of particles. For this reason large standard deviations could be observed in

some samples. Furthermore, it is worth noting that a partial dissolution of vaccine powder

in the components, e.g. polysorbate 80, could have affected the adhesion measurements

due to retention of dissolved vaccine. However, despite the mentioned limitations, clear

differences between the oily liquids could be detected.

The results show that the oily mixture F1 provided suitable properties for the fixation of the

highly concentrated model vaccine powder for the in vivo immunization study. Compared

to other mixtures and components, the drop tests revealed good reproducibility and a

relatively high attachment of the vaccine powder on the Ti device membrane. Using this

oily mixture, the pharmaceutical device part can be loaded and transported safely without

the loss or dislocation of the vaccine powder within the device. Using highly liquid paraffin

as non-adjuvant oil, lower vaccine powder adhesion was detected compared to the oily

mixture F1. This indicates lower stability within the device during transportation and

highlights the need of gentle handling for the in vivo study.

3.3.2 Contact angle and work of adhesion of different oily mixtures

To evaluate the differences between the oily formulations and their ability to ensure particle

adhesion on the Ti membrane, the surface tension and contact angle of the oily liquids was

studied by pendant and sessile drop analysis. Comparable surface tensions were found

for the oily mixtures F1 − F3 with values around 31 − 35 mN/m (Tab. II.4). The main

component of the oily mixtures, squalene, showed a surface tension of 34.1 mN/m, whereas

the saturated equivalent, squalane, provided a slightly lower value of 28.4 mN/m. On the

other hand, α-tocopherol and polysorbate 80 provided slightly higher surface tensions of

36.6 mN/m and 35.2 mN/m, respectively.

Besides the surface tension, the contact angles of the oily mixtures on the Ti device mem-

brane were studied in comparison to hydrophilic glass and hydrophobic PDMS reference

surfaces. Figure II.11 shows that the contact angles of the oily mixtures were relatively

small on the Ti membrane and close to the values detected for the glass surface. Larger

contact angles were detected on the PDMS surface. This indicates that the Ti membrane
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Figure II.11: Relative powder adhesion at different OVA concentrations on the Ti mem-
brane using different adhesion oils and mixtures (A) and the calculated work of adhesion
and measured contact angle of the oily liquids on a hydrophilic glass surface, the Ti mem-
brane, and hydrophobic PDMS (B).
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provided hydrophilic surface properties rather than hydrophobic interactions. Small con-

tact angles indicate high interaction of the oily liquids with the Ti membrane, which could

lead to superior spreading of the liquid and would thus be beneficial for vaccine powder

adhesion.

Whereas relatively low contact angles of the oily liquids on the Ti membrane of 11.5° and

14.7° were detected for mixture F1 and highly liquid paraffin, slightly higher values in the

range of 15°−20° were found for the oily mixtures F1*, F2, F3, squalene, and squalane

(Fig. II.11). α-Tocopherol and polysorbate 80, which already provided the highest surface

tension, also revealed the largest contact angles on the Ti surface.

Based on the surface tension and contact angle of the oily liquids, the work of adhesion Wls

was calculated using the Young-Dupré equation (Eq. II.1), where σl is the surface tension

of the liquid and Θ is the contact angle of a sessile drop on the solid surface [34].

Wls = σl(1 + cosΘ) (II.1)

The work of adhesion Wls represents the work required to separate a drop from a clean,

solid surface and was evaluated based on the surface tension and contact angle of the oily

liquids (Eq. II.1) [35]. Considering this equation, the work of adhesion Wls reaches the

maximum interaction value at a contact angle of 0° and its lowest value at 180°. The work

of adhesion thereby constitutes of polar and disperse interactions of the liquid with the

solid surface.

For the oily liquids tested in this study, the work of adhesion was generally well comparable

for all mixtures and pure components. No clear differences could be detected. The oily

mixture F1 showed the highest work of adhesion with a value of 82 mN/m. The mixture

provided a relatively strong interaction exhibiting an intermediate surface tension and low

contact angle on the Ti membrane. On the other hand, paraffin showed a slightly lower

work of adhesion around 70 mN/m. Calculations of disperse and polar interactions using

the Owen-Wendt-Rabel-Kaelble equation (Eq. II.2) revealed a predominant disperse type

of interaction for all oily liquids tested (data not shown) [36–38].

σl(1 + cosΘ)

2
=
√
σpl ∗ σ

p
s +

√
σdl ∗ σds (II.2)

The comparison of the presented results with the vaccine powder adhesion revealed no

clear trend in relation to the surface tension, contact angle, or work of adhesion of the oily
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Figure II.12: Relative powder adhesion upon drop testing plotted against the viscosity of
different adhesion liquids and mixtures in logarithmic scale.

liquids. For the pure components, minimally superior vaccine adhesion was detected for the

oily liquids with higher surface tension, e.g. α-tocopherol and polysorbate 80. However,

paraffin with the lowest surface tension provided superior particle adhesion compared to

squalene or oily mixture F3.

It has to be noted that the powder adhesion as well as the contact angle measurements

depend on multiple parameters. The investigation of the oily liquids mainly focused on the

interaction with the Ti membrane. However, for powder adhesion, the interaction of the oily

mixtures and the vaccine needs to be considered similarly. Besides that, the contact angle

measurements were strongly influenced by measurement time, lower limit of detection,

surface tension, and the viscosity of the liquid sample. The Pelofsky equation reveals a

correlation of surface tension with molecular mass and viscosity of a liquid (Eq. II.3), where

A′ is equal to σl at infinite viscosity, C is a non-dimensional constant, M the molecular

weight (g/mol), κ the thermal conductivity (cal/s cm2), R the gas constant (1.986 cal/mol

K), and η the dynamic viscosity of the liquid (cPs) [39].

σl = A′ exp

(
C

R

Mκ

η

)
(II.3)

The equation underlines the interconnection of multiple parameters in surface tension

and surface interaction measurements. As byproduct of this study, a correlation between

the powder adhesion and the oily liquid viscosity was found (Fig. II.12). Literature-based

viscosity values were plotted relative to the powder adhesion, revealing the following rela-
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Table II.4: Overview of the relative powder adhesion as average of all measurements per-
formed for each oily liquid and the respective liquid surface tension (σl) measured by
pendant drop analysis and viscosity values as provided by the supplier. The theoretical
viscosity of the oily mixtures F1 − F3 was calculated relative to the composition provided
in Table II.1.

Formulation Adhesion average Surface tension Viscosity

Qm/m0 σl ηLit

[%] [mN/m] [cPs]

F1 54.7 33.9 1900

F1* 68.3 32.1 1900

F2 34.6 35.1 955

F3 12.9 30.6 15

Squalene 22.5 34.1 15

Squalane 14.7 28.4 29

D/L-α-Tocopherol 63.7 36.6 4200

Polysorbate 80 71.3 35.2 425

Paraffin 27.5 26.0 52.5

PEG 400 41.6 36.6 118

PEG 600 54.8 n.d. 277.5

tionship (R2=0.83):

Qm/m0
∼ ln

(
η

η0

)
(II.4)

The viscosity of the oily mixtures was calculated based on the relative composition of

the pure components (Tab. II.4). Besides viscosity, further factors are likely affecting the

vaccine powder adhesion. Within this study, all oily liquids showed comparable surface

tension and contact angles on the Ti surface. However, it can assumed that these parame-

ters would also influence the adhesion strength. Further studies are needed to support the

presented finding.

Considering the in vivo immunization study, the contact angle measurements and the work

of adhesion reveal suitable properties for the loading of the needle-free powder injector us-

ing mixture F1 as oily adhesive. Based on the oily components of the AS03 adjuvant,

the simultaneous delivery of the oily mixture together with the vaccine powder should
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II. Needle-free powder immunization with a highly concentrated model vaccine

potentiate the immune response upon i.d. delivery. Notably, the low amount of oil below

0.5 mg, which can be coated onto the Ti device membrane, will likely limit the adjuvan-

tation. The effect of the adjuvant oil therefore requires close evaluation during the in vivo

immunization study.

3.4 Stability of the oily adjuvants in contact with model vaccine

3.4.1 Calibration curve and recovery test

The main objective of this part of the study was to evaluate the oil stability when stored

in direct contact with the highly concentrated vaccine and to ensure suitable stability for

the in vivo immunization study. For this purpose, the relative composition of the oily

adjuvant components of AS03 was varied according to table II.1 to evaluate the influence

on the oil stability relative to the target composition F1. Higher doses of tocopherol have

been reported to lower the stability of unsaturated triglycerides [40], an effect which could

also be expected with squalene, one unsaturated component of AS03. For this reason, oily

mixtures with lower α-tocopherol contents compared to the target composition F1 were

included in this study (F2, F3).

It has to be mentioned that α-tocopherol in AS03 emulsions is considered as essential

adjuvant for vaccination, with lower α-tocopherol contents being linked to reduced adjuvant

potency [41]. Consequently, composition F1 and to unknown extent F2 could be expected

to act as synergistic adhesion and adjuvant mixture of squalene and α-tocopherol.

The addition of polysorbate 80 was required to ensure a spreading of the oily liquid on

the Ti membrane. Preliminary tests have shown that the addition of α-tocopherol to

squalene, in absence of polysorbate 80, notably reduced the spreading of the liquid on the

Ti device membrane. To ensure a homogeneous loading of the vaccine powder onto the Ti

membrane, the addition of polysorbate 80 was required despite the known oxidation-related

destabilizing effect of polysorbate. No polysorbate 80 was required for the spreading of the

oily mixture F3 with only 0.1 % α-tocopherol as antioxidant additive in the oily mixture.

To assess the effect of antioxidants on the oil stability, one mixture containing 0.02 % BHA

as stabilizing antioxidant (F1*) has been included in this setup. In case high amounts

of tocopherol would accelerate the oil degradation, additional stabilization using alterna-

tive antioxidants such as BHA could improve the overall mixture stability. Furthermore,

squalane was included in this study to represent the saturated alternative to its’ unsatu-

rated chemical equivalent squalene.
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The stability of the oily liquids as provided in table II.1 as well as squalane was studied by

GC-MS analysis. Either the oily liquid alone or coated with vaccine powder was exposed

to UV/Vis light or thermal stress. The recovery of the oily main components squalene,

squalane, and α-tocopherol was determined upon ether extraction by GC-MS relative to

5α-cholestane as internal standard.

Calibration curves of all components tested were prepared within a concentration range

20 % below the lowest and above the highest expected concentration. For all components

calibration curves with good accuracy and precision were obtained (R2 > 0.99).

Furthermore, a recovery study was performed to evaluate the suitability of the method

to assess the oil stability. For this purpose, samples at the target oil content and ±20 %

were prepared, with and without vaccine powder. Ether extraction was performed and the

samples were analyzed by GC-MS. Squalene showed good recovery between 86−100 % for

all oily mixtures. Squalane provided second highest recovery values between 78 − 101 %.

In general, recovery rates between 80−120 % were considered acceptable for the analytical

approach. The recovery evaluation shows that the vaccine powder did not notably affect the

extraction and quantification of squalene or squalane within the utilized sample preparation

conditions.

Beside these oils, the recovery of α-tocopherol was highly dependent on the oil composition

and sample preparation. For the oily mixtures F1, F1*, and F2, the α-tocopherol recovery

was between 63− 121 %. Compared to the squalene and squalane recovery the analysis of

α-tocopherol provided lower precision. Moreover, exceptionally poor recovery was obtained

for the oily mixture F3 with only 0.1 % tocopherol content. Whereas 63 − 92 % recovery

was found for oil samples alone, an average of only 0.3 % was achieved for the sample

preparation with vaccine powder. It can be assumed that the low amount of α-tocopherol

adsorbed to the vaccine powder and could not be fully extracted for quantification. The

evaluation of the oil stability was therefore limited to squalene and squalane analysis and

the quantification of α-tocopherol for F1, F1*, and F2 only.

3.4.2 UV/Vis stress test of the oily adjuvant

The UV/Vis stress test was performed to evaluate the stability of different oil compositions

and oil components and to assess the impact of the highly concentrated protein-loaded vac-

cine powder on the oil stability. UV/Vis light exposure significantly reduced the squalene

recovery in F1-F3 compared to the samples shielded from light, which only underwent

minimal thermal stress (Fig. II.13). Notably, no significant differences between light expo-
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II. Needle-free powder immunization with a highly concentrated model vaccine

Figure II.13: Recovery of squalene/squalane (A) and α-tocopherol (B) from different oily
liquids without or in direct contact with protein-loaded vaccine powder after UV/Vis light
exposure or shielded from light (Two sample t-test, α = 0.05, n=6, * p < 0.05, ** p < 0.01,
*** p < 0.001).

sure and shielding was detected for squalane-containing samples. This indicates a superior

stability of squalene over its’ unsaturated chemical equivalent, squalene, even in presence

of an antioxidant.

On the other hand, a trend of decreasing squalene recoveries upon UV/Vis exposure were

associated with lower contents of α-tocopherol. A significantly lower recovery of ∼ 50 %

was detected for the mixture F3 containing only 0.1 % tocopherol. The results suggest

that higher tocopherol contents improved the stability and recovery of squalene under

UV/Vis light. Light exposure led to the degradation of α-tocopherol, as confirmed by very

low recoveries around 10 % remaining tocopherol in the mixtures F1* and F1*. For oily

mixture F2, the α-tocopherol content was below the limit of quantification after UV/Vis

exposure. It can be therefore expected that squalene is stabilized by α-tocopherol under

UV/Vis light and the oil stability improves with increasing α-tocopherol content.

Besides the influence of the oil composition on the oil stability, the results show that the

vaccine powder contact did not influence the oil stability negatively (Fig. II.13). In fact,

upon UV/Vis exposure, the squalene recovery was significantly higher for the formulations

F1* and F3 when in direct contact with the protein-loaded vaccine powder. An expla-

nation for these findings could be a shielding effect that the vaccine powder provided,

consequently influencing the oily liquid stability. The white color of the powder absorbs

distinct wavelengths of the visible light, could thus affecting the light inferference with

the oily components. For the samples shielded from UV/Vis light, no effect of the vac-

cine powder on the squalene, squalane, or tocopherol recovery was detected. Therefore it
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can be concluded that the increased squalene recovery in samples after UV/Vis light was

not attributed to an enhanced extraction efficiency but due to the stabilizing effect of the

protein-loaded vaccine powder itself.

3.4.3 Long-term and thermal stability of the oily adjuvant

The long-term oil stability was evaluated after 3 and 6 months storage at 2 − 8 °C, 25 °C,

and 40 °C. Figure II.14 shows the squalene, squalane, and α-tocopherol recoveries of the

different oily mixtures stored without or in direct contact with the highly concentrated

vaccine. The recovery of squalene and α-tocopherol in all oil mixtures remained relatively

stable for up to six months storage at 2 − 8 °C. With increasing storage temperature, the

squalene recovery decreased notably for all oily mixtures as well as pure squalane. Simi-

lar observations could be made for the recovery values of α-tocopherol under accelerated

storage condition.

Following 3 months storage at 40 °C, about 80 − 90 % squalene/squalane was recovered

from the sample. On the other hand, the tocopherol recovery was dependent on the oil

composition, showing lower recovery values around 55 % after 3 months for mixture F2.

Interestingly, the oily mixture F1* stabilized with 0.02 % BHA showed higher squalene

recoveries after 3 months compared to the original composition F1 for all storage conditions.

After 6 months storage, differences in the squalene and α-tocopherol recovery of the mix-

tures F1-F3 could be noticed. A slight trend of decreasing stability associated with lower

concentrations of α-tocopherol was observed. Generally, a reduction in squalene recovery

was also associated with a loss in α-tocopherol. The most pronounced difference was de-

tected for the oily mixture F3 that provided a notably lower squalene recovery around 40 %

after 6 months storage at 40 °C without vaccine powder. On the other hand, the recovery

was significantly increased when the same oil mixture was stored in direct contact with the

protein-loaded vaccine powder.

Generally, it was noticed that the storage stability of the oily mixtures and components

increased in contact with vaccine powder. Higher squalene, squalane, and α-tocopherol

recoveries were detected for a striking majority of the samples. For several conditions,

statistically significant higher recoveries were found. This indicates that the vaccine powder

most likely exhibits a stabilizing effect on the oily mixtures under UV/Vis exposure as well

as thermal stress.

It can be summarized that higher contents of α-tocopherol and the presence of protein-

loaded vaccine powder improved the stability of the oily adjuvant mixture. The results
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II. Needle-free powder immunization with a highly concentrated model vaccine

Figure II.14: Recovery of squalene/squalane (A) and α-tocopherol (B) from different oily
liquids stored without (light grey) or in direct contact with highly concentrated protein-
loaded vaccine powder (dark grey) for 3 and 6 months at 2 − 8 °C, 25 °C, and 40 °C (Two
sample t-test, α = 0.05, n=6, * p < 0.05, ** p < 0.01, *** p < 0.001).
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also indicate a beneficial effect of BHA as additional antioxidant, however further studies

to fully evaluate a possible effect including other antioxidants remain to be conducted.

Besides that, the loading and storage of the oily adjuvant mixture F1 and the vaccine

powder is feasible. A storage for up to 3 months at 2 − 8 °C can be readily supported

from the oil stability perspective. However, further investigations are needed to assess the

vaccine powder and antigen stability during storage in contact with the oily mixture.

For the in vivo immunization study the oily mixture F1, based on the oily components of

squalene-based AS03, was used as oily adhesive with adjuvant properties. Notably, other

oily components with suitable adhesion properties could be used for the vaccine powder

loading onto the device. Squalane could represent a suitable alternative to its’ unsaturated

equivalent, squalene, providing adjuvant potency and enhanced chemical stability due to

the fully saturated structure.

3.5 In vivo immunization study with a highly concentrated vac-

cine administered by powder injection

3.5.1 Evaluation of vaccine properties for needle-free powder injection

Highly concentrated OVA vaccine was prepared under aseptic conditions using endotoxin-

low excipients. All preparation processes that required open product handling were per-

formed under LAF. One exception was vaccine powder sieving and aliquotation, which was

performed under dry nitrogen atmosphere to avoid moisture uptake by the vaccine powder.

The cryomilled vaccine for in vivo immunization with a concentration of 200 µg/mg OVA

as well as the OVA-AS03 emulsion were prepared using OVA grade VII as model vaccine

with high purity and low endotoxin content.

The highly concentrated OVA model vaccine used for immunizaton was characterized us-

ing selected methods (Tab. II.5). No changes in lyophilizate characteristics were detected

considering the residual moisture, SSA, XRPD profile or DSC curves (data not shown).

A higher monomer content and reduced oligomer contents were detected for the OVA

grade VII vaccine compared to the lower grade OVA (Tab. II.5). Similar to the obser-

vations in section 3.1.2, cryomilling induced the formation of a small amount of HMWS.

Furthermore, slightly increased subvisible particle counts, but comparable turbidities com-

pared to the results discussed in section 3.1.3 were detected.

The endotoxin content of the highly concentrated OVA vaccine powder was analyzed us-

ing a chromogenic LAL assay. Low values of 31.6 EU/mg vaccine, 35.9 EU/mg, and
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II. Needle-free powder immunization with a highly concentrated model vaccine

Table II.5: Results of SE-HPLC, subvisible particles, residual moisture, and SSA analysis of
the placebo and highly concentrated model vaccine used in the in vivo study, prepared with
of target content of 200 µg/mg OVA grade VII. Subvisible particle and turbidity analysis
was restricted to lyophilizates only due to material restrictions. (n.a.= not analyzed, n.d.=
not detected)

Analysis Placebo 200 µg/mg OVA

(Lyo) (Lyo) (Cryo)

SE-HPLC

Monomer [%] - 96.5 ± 0.0 96.3 ± 0.1

Dimer [%] - 3.4 ± 0.0 3.5 ± 0.0

HMWS [%] - n.d. 0.2 ± 0.0

LMWS [%] - n.d. n.d.

Subvisible particles

Particles ≥ 1 µm/mL 1, 448 9, 997 n.a.

Particles ≥ 10 µm/mL 6 10 n.a.

Particles ≥ 25 µm/mL 1 2 n.a.

Turbidity [FNU] 2.9 1.7 n.a.

Residual moisture [%] 0.6 ± 0.0 0.4 ± 0.0 n.a.

SSA [m2/g] 0.41 0.19 n.a.

63.1 EU/mg were found for the liquid 200 µg/mg OVA formulation prior processing and

after lyophilization and cryomilling, respectively. The results suggest a cryomilling-related

increase of endotoxins in the vaccine. However, it remains unclear whether this increase

was induced by sample preparation variability or processing-dependent introduction of en-

dotoxins. Considering an applied dose of 1 mg vaccine powder per needle-free injection, the

endotoxin levels of the highly concentrated vaccine were within Pharmacopoeial require-

ments for influenza vaccine (split virion) allowing a maximum of 100 EU per dose [42, 43].

In comparison, 732 EU endotoxins per mg OVA were detected for the model antigen grade

V. No detectable amounts of endotoxins have been found in the liquid placebo formula-

tion prior lyophilization and cryogenic milling. It can be therefore assumed that the final

endotoxin content of the placebo vaccine powder was within Pharmacopoeial limits.

To sum up, the placebo and the highly concentrated vaccine with a concentration of

200 µg/mg OVA provided suitable properties and quality for intradermal administration
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using the needle-free powder injection device.

3.5.2 Compatibility of the liquid ovalbumin-AS03 emulsion vaccine

Besides the model vaccine for needle-free powder injection, the compatibility of the OVA

liquid vaccine with the AS03 emulsion was tested. The adjuvant AS03 is a liquid emulsion

with a milky-white appearance and was used for i.m. vaccination in 1:1 dilution with

the Pandemrix® influenza vaccine. For the vaccination of an adult, usually 2.5 mL of

subunit vaccine is mixed with 2.5 mL adjuvant emulsion, providing an absolute adjuvant

dose of 10.69 mg squalene, 11.86 mg α-tocopherol, and 4.86 mg polysorbate 80 [21]. This

procedure was adapted to study the compatibility with OVA.

The visual and microscopic inspection of the antigen-adjuvant mixtures gave no signs of

reduced quality of the vaccine emulsion (data not shown). Furthermore, the hydrodynamic

diameter measured by dynamic light scattering (DLS) was comparable for AS03 emulsion

diluted with PBS and 0.8 mg/mL OVA with values of around 164 nm (PDI= 0.09) and

165 nm (PDI=0.09), respectively. Although the analysis of the OVA-AS03 emulsion was

not feasible by SDS-PAGE and Coomassie blue staining due to emulsion-related blurring of

bands, Western blot analysis revealed a profile comparable to OVA standard as discussed

in section 3.2 (data not shown).

The liquid OVA vaccine for i.m. injection with a concentration of 0.8 mg/mL provided

and endotoxin content of 107 EU/mL and 79.1 EU/mL for the immunization on day 0 and

14, respectively. Considering the subsequent 1:1 dilution with presumably endotoxin-free

AS03 adjuvant emulsion and the administration of 0.5 mL, the endotoxin levels were below

the Pharmacopoeial limits [42, 43].

The liquid vaccine for i.m. injection in the positive control group C exhibited suitable

properties and quality for the use in the in vivo study.

3.5.3 Characterization of the powder injection site

The in vivo immunization study evaluating vaccination by needle-free powder injection was

performed in piglets. Due to the device dimensions and the employed approach of particle

administration, this study would not have been feasible with smaller animal species, e.g.

mice. Furthermore, it has been reported that pig skin represents a well suitable model

for human skin [44–46]. Since pig skin reportedly exhibits a thicker SC [44] compared to

humans, piglets with a maximum age of seven weeks at the time of study initiation were

included to maximize similarity to human skin.
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Table II.6: Theoretical penetration depths of model polystyrene (PS) particles and (FITC)-
loaded vaccine powder, calculated by equations II.5-II.7 based on a model used by Kendall
et al. [14]. The particle velocities and in vivo penetration depths, as well as the PS
particle density and diameter were taken from [15]. Experimental penetration depths were
obtained using PS particles and FITC-loaded vaccine powder with particle radii of 21 µm
and 10-40 µm, respectively.

Particle type ρp rp vi vi,ve dp,calc dp,in vivo

[g/cm3] [µm] [m/s] [m/s] [µm] [µm]

PS particles 1.1 10 516 294 23 − 38 n.d.

21 518 395 47 − 81 50 − 120

30 521 433 70 − 121 n.d.

FITC-loaded 1.55 10 526 354 33 − 55 n.d.

powder 25 526 449 82 − 142 20 − 120

40 526 476 131 − 229 n.d.

In a preliminary study, which was actively supported by myself, the particle penetration

into pig skin was assessed in vivo [15]. Histological images of skin sections upon needle-free

powder injection of 40 µm polystyrene (PS) model particles or model vaccine loaded with

fluorescein isothiocyanate (FITC) revealed an intradermal deposition below the SC in the

epidermal and upper dermal layer.

A theoretical evaluation of the penetration depth (dp) by the model used by Kendall et

al. matched well with the experimentally obtained data (Tab. II.6) [10, 14]. Assuming

a successful breaching of the SC, the velocity of the particles at the border to the viable

epidermis (vi,ve) was calculated using eq. II.5. Based on the obtained particle velocity, the

penetration depth into the viable epidermis (dve) and absolute penetration depth (dt) was

calculated (eq. II.6 and eq. II.7).

vi,ve =

√(
v2
i +

6σsc

ρsc

)
e

−3ρsctsc
4ρprp − 6σsc

ρsc

(II.5)

dve =
4ρprp

3ρve

[
ln

(
ρvev

2
i,ve

6σve

+ 1

)]
(II.6)

dt = tsc + dve (II.7)
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The calculations were performed assuming a ballistic yield stress of the SC (σsc) of 170 MPa

as reported at ambient temperatures [14], a density (ρsc) of 1500 kg/m3 [47] and a thickness

(tsc) of 10.9 µm [14, 48]. The properties of the viable epidermis were 2.2 MPa and 10 MPa

as lower and upper limits of the yield stress of the viable epidermis (σve) [14, 49, 50] and

1150 kg/m3 for the tissue density (ρve) [47]. The density (ρp) and radii (rp) of the PS

particles as well as the particle impact velocities (vi) were from [15]. For the model vaccine

powder, the density discussed in section 3.1.4 and the nominal particle size described in

2.2.1 were used for calculations.

The calculations show that the particle penetration depth increases with increasing particle

density, radius, and velocity. Although it has been reported that the particle acceleration

and velocity decrease with increasing density and radius for a different type of needle-

free powder injector [51–53], no similar relationship was observed for the device used in

this study (Tab. II.6) [15]. Nonetheless, the previously used theoretical prediction of the

penetration depth [14], is expected to hold for this study.

During penetration of the SC, the particle velocity decreases. This effect is most pro-

nounced with decreasing particle size and density. If the velocity is sufficiently high, the

particle penetrates into the viable epidermis, which exhibits lower mechanical strength

compared to the SC. For the PS particles, penetration depths between 50 − 120 µm were

observed, which is close to the theoretically predicted value of 47 − 81 µm (Tab. II.6).

The relatively high distribution of penetration depth may potentially originate from high

particle payloads [50].

For the FITC-loaded vaccine powder with particle sizes in the range of 20−80 µm, compara-

ble penetration depths between 20 − 120 µm were observed in vivo (Tab. II.6). Assuming

full integrity upon particle impaction and penetration into the skin tissue, penetration

depths between 33 − 223 µm were predicted. Whereas lower penetration was expected for

smaller particles, a larger diameter of 80 µm could potentially facilitate a penetration as

deep as 223 µm. However, it remains unclear whether the sugar-based vaccine particles

remain intact upon contact with the skin. More likely, the size of the particle decreases by

breakage upon impaction and partial dissolution during tissue penetration, consequently

lowering the effective particle velocity and leading to lower penetration depths.

As discussed in the previous paragraphs, the microscopic penetration of particles into

the SC agrees well with theoretical predictions and is thus reasonably well understood.

Considering potential medical applications, a macroscopic assessment of the administration

side is also of major relevance and will be addressed in the following.
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Figure II.15: Exemplary photographs of the powder injection site of study group A on
day 0 directly after vaccine administration and 5 min, 1 d, and 7 d post administration.
Furthermore, administration site of the booster powder injection on day 14 on the same
study animal. Images used in [15]

Four different groups were studied in the the in vivo immunization study including three

groups using needle-free powder injection for intradermal vaccine delivery (Tab. II.2, p. 54).

For the needle-free powder injection, two main aspects were assessed: The impact of the

adjuvant adhesive and the antigen loading. Placebo vaccine powder and paraffin without

known adjuvant activity, administered by needle-free powder injection, served as negative

control (A). Two verum groups used 200 µg/mg OVA vaccine powder coated onto the device

using paraffin (B) or oily mixture F1 with the relative composition of the oily ingredients

of AS03 (C). The outcome of the powder injection groups was compared to a positive

control (D) using an i.m. injection of a OVA AS03-adjuvanted liquid vaccine.
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Figure II.16: Exemplary photographs of the powder injection site of study group A on
day 0 directly after vaccine administration and 5 min, 1 d, and 7 d post administration.
Furthermore, administration site of the booster powder injection on day 14 on the same
study animal. (Images used in [15])

The macroscopic evaluation of the application sites gave no signs of severe tissue damage

after needle-free powder injection (Figs. II.15, II.16, II.17). The pig skin prior injection

had a pink, healthy appearance. Directly after powder administration, a thin powder layer

was observed on the skin surface, maintaining normal skin appearance. Within 5 min,

the administration site developed diffuse purpura and a dot-shaped central lesion for some

animals. These minor bleedings were mainly observed in the superficial skin below the

skin surface. The intensity of purpura was not related to specific groups but occurred to

variable degree. Notably, powder injection on day 14 affected the skin to a lesser extent.

Histological evaluation showed no signs of severe or permanent tissue damage at the end
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Figure II.17: Exemplary photographs of the powder injection site of study group B on
day 0 directly after vaccine administration and 5 min, 1 d, and 7 d post administration.
Furthermore, administration site of the booster powder injection on day 14 on the same
study animal. (Images used in [15])

of the 28 days study.

The observations suggest a successful intradermal delivery of the vaccine powder for all

powder injection groups. However, it has to be mentioned that a distinct, unknown amount

of vaccine was not deposited in the skin but remained on the surface. Notably, confirmatory

studies revealed that only a limited number of particles was found to penetrate into the

tissue whereas the larger amount of ∼ 75 % remained on the excised pig skin surface [15].

To maximize the chances of intradermal uptake of residual vaccine formulation after skin

surface disruption by powder injection, a patch was used to cover the administration sites

for a couple of hours. In literature, alternative options to increase the intradermal de-

livery involve the mechanical weakening of the skin barrier by elevated temperatures and
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humidities [14], or by skin microporation [54].

The intracutaneous bleedings, which were visible one day after powder injection, disap-

peared completely within 7 days. This indicates a fast healing of the tissue damage in-

duced by powder injection. It has been discussed that certain tissue disruption can serve

as physical adjuvant supporting the induction of immune responses [55]. Therefore, the

initial tissue damage was considered preferential for this study.

3.5.4 Immune responses upon immunization

At specific time points upon immunization, the immune response was evaluated by quan-

tification of the OVA-specific IgG antibody titer in pig serum using a direct ELISA. The

evaluation of the antibody titer revealed the lack of immune responses in all powder in-

jection groups (A, B, C) (Fig. II.18). Both powder injection verum groups (B, C) showed

titers comparable to the negative control (A) over the entire study duration. On the other

hand, the positive control (D) exhibited increasing OVA-specific antibody titer during the

study. Slightly higher values were detected for the positive control after day 14. Following

21 and 28 days after the first i.m. injection of OVA-AS03 vaccine, significantly higher

specific antibody titers compared to the powder injection groups were detected.

Besides the antigen-specific antibody titer, the total IgG content of the pig sera was quanti-

fied using a self-developed sandwich-ELISA. No differences were detected between all time

points of testing or the study groups (Fig. II.19). Due to the lack of difference in total IgG

despite the observed changes in OVA-specific titer, this assay was not considered further

for the evaluation of the immune response upon intradermal powder or i.m. immunization.

The results of the OVA-specific antibody titer show that no immune response was elicited

by intradermal, needle-free powder injection using the highly concentrated OVA vaccine.

Despite the high antigen content of 200 µg/mg OVA, it can be assumed that the dose de-

livered into the tissue was not sufficient to initiate an immunologic cascade within 28 days.

Considering a total delivery of 25 % as stated before [15], only 50 µg OVA reached the

dermal tissue. For the relatively weak antigen OVA, this dose was insufficient to generate

a humoral IgG-based immunity.

Besides the actual antigen dose delivered into the skin, the adjuvant dose likely played an

important role to enhance the immune response. Compared to the conventional dose of

AS03 discussed in section 3.5.2, only 0.4 − 1.8 % of this dose was delivered together with

the vaccine considering 0.1 − 0.5 mg adjuvant oil loading and 100 % delivery efficiency.

Most likely, the adjuvant dose applied by powder injection was not sufficient to enhance
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Figure II.18: OVA-specific antibody titer quantified by direct ELISA after 0, 1, 14, 21, and
28 days after immunization. Vaccine was administered on day 0 and day 14 by needle-free
powder injection or i.m. injection for the different study groups as provided in table II.2.
(One-way ANOVA on ranks, Kruskal-Wallis, α = 0.05, n=7, *** p < 0.001).

Figure II.19: Total amount of IgG in porcine serum quantified by Sandwich-ELISA 0, 1, 14,
21, and 28 days after immunization, administered on day 0 and 14 by needle-free powder
injection or i.m. injection (Tab. II.2) (One-way ANOVA, α = 0.05, n=7).
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the immune response, which is supported by the results obtained using an influenza vaccine

in the same study setup [15].

On the other hand, the full dose of both, 200 µg OVA plus AS03 adjuvant, was administered

by i.m. injection and led to a significant immune response. Notably, even higher titers

have been detected using stronger antigens, e.g. influenza [15, 56]. Retrospectively, with

the current knowledge, an additional control group covering the i.m. injection of the full

or 25 % of the dose OVA antigen in absence of adjuvant would have been beneficial to

assess the potency of the cutaneous vaccination approach by needle-free powder injection.

Moreover, a third vaccination by powder injection and the analysis of antibody titers at

additional timepoints after 28 days should be considered in future studies.

4 Conclusion

This study shows that the combination of collapse lyophilization and cryogenic grinding

allows for the manufacturing of a highly concentrated 200 µg/mg OVA-loaded, vaccine

powder suitable for needle-free powder injection. The vaccine powder obtained by this

approach provides an antigen dose per mg vaccine up to 13 times higher than a conventional

dose of 15 µg antigen used for influenza vaccination [57–59]. Compared to the pandemic

vaccine Pandemrix® the dose is even 53 times higher [21].

Despite the lack of antigen-specific immune responses upon intradermal delivery of the

highly concentrated OVA vaccine, protective immune responses can be expected upon in-

tradermal powder injection using antigens with higher potency. Considering a cutaneous

delivery efficiency of 25 %, an influenza vaccine powder with a loading of 60 µg/mg would

be required to achieve an intradermal deposition of a conventional influenza antigen dose.

Furthermore, a loading of only 15 µg/mg would be required when the vaccine is adminis-

tered in combination with a potent adjuvant system.

With the current device design, the AS03 adjuvant dose delivered was too low to potentiate

the immune response. The particle fixation through the adjuvant is an attractive approach,

however the common dose of 27.41 mg oily AS03 components [21] exceeds the existing

device capacity by far. The use of alternative adjuvants suitable for cutaneous vaccination

as discussed in section 2.3, incorporated into the vaccine powder, could be beneficial for

the approach of intradermal needle-free powder immunization.

The highly concentrated vaccine provided good stability without loss of antigenicity or

pronounced changes in vaccine quality within 12 months of storage at up to 40 °C. However,
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other studies using influenza antigens have shown reduced stability of low-dose vaccine at

elevated storage temperatures [15]. Therefore, the stability of the vaccine powder needs

separate assessment for each type and concentration of vaccine antigen used.

The loading of the vaccine powder onto the device membrane is feasible using a mixture

of the oily components of the AS03 adjuvant system. The oily mixture provides suitable

spreading on the Ti membrane, good powder adhesion for storage and transportation,

and also allowed for a full release of the vaccine powder upon device actuation. Notably,

other oils and oily mixtures can be used for vaccine powder fixation. Liquids with good

spreading behavior and high viscosity are expected to optimize the particle adhesion while

maintaining a good release from the device. Notably, the liquids used for this purpose

are required to maintain the sugar-based vaccine integrity, rendering hydrophobic oils and

liquids the preferred choice for particle adhesion.

The vaccine powder-oil compatibility is a critical factor for the loading and storage of the

device before use. In this study, the stability of the oil was investigated and revealed a

tendency of increased oil stability when stored in direct contact with the vaccine powder.

The vaccine stability in direct oil contact was not focus of this study and should be address

ed in a different work.

All in all, the results of this study show that the immunization using needle-free powder

injection is feasible, but requires precise optimizations. The manufacturing process allows

for the preparation of vaccines at variable concentrations up to 200 µg/mg and the load-

ing, storage, and transport of the device with oil-fixed vaccine powder provides notable

stability. Cutaneous vaccination by needle-free powder injection is an attractive approach

since it allows for an easy, quick, and pain-free administration of vaccine. The deposition

of antigen in the skin tissue, rich of APCs, has been shown to successfully elicit protective

immunity [60–62]. Compared to conventional i.m. injection, cutaneous vaccination can

facilitate a dose reduction of up to 60 % [62]. The high flexibility of needle-free powder in-

jection with regard to the loaded vaccine is a major advantage. The applied powder may be

readily loaded with other potent vaccine and antigens, e.g. DNA or RNA, virus-like parti-

cles, inactivated or attenuated vaccine candidates. After solving the main disadvantages of

high production costs and overcoming safety-related licensing hurdles, the powder injection

device has a promising potential to become an alternative to conventional vaccination.
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III

COMPARING INTRADERMAL MICRO- AND

NANOPARTICLE DELIVERY BY DIFFERENT

MICRONEEDLE TREATMENTS

1 Introduction

Since the mid 1990s MNs have been extensively studied for their potential to enhance

the transdermal delivery of small molecules and macromolecular drugs [1, 2]. The elegant

concept of breaching the SC, the main barrier of the skin, using small needles that are

minimally invasive, pain-free, and easy to produce, made them a popular tool in trans-

dermal delivery research [1]. The transport of a variety of different molecules into and

through the skin could be improved by microneedling. Particularly macromolecules, e.g.

proteins or oligonucleotides, but also certain particulate formulations benefit from the skin

barrier disruption, which is a prerequisite to facilitate transdermal drug delivery for these

molecules [3–5]. Although proven successful in principle, the use of conventional MN arrays

is still mainly restricted to research due to low dosing or insufficient delivery efficiency [6, 7].

For this reason, the focus of MN research has shifted in recent years from a systemic de-

livery towards the delivery of highly potent, low dose molecules with local targets in the

skin tissue, particularly vaccines [8].

Nowadays, the skin is recognized as highly immunologic organ with a high density of

LCs and dDCs residing in the viable skin tissue [9]. When a critical amount of antigen

reaches the tissue, the skin-resident APCs initiate an immunologic cascade that can result

in protective immunity. Furthermore, skin keratinocytes have a key function in innate

immunological processing and can promote antigen-specific immunity [10]. Targeting of the

epidermal and dermal layer for cutaneous vaccination has been proven successful in many

studies and is particularly interesting for potential dose reductions and development of new

treatment options [11]. Besides other passive and active techniques targeting the skin for

vaccine delivery, skin microporation and particularly MNs have proven their potential to

challenge the state-of-the-art administration of vaccines by s.c. or i.m. injection [12, 13].

Various types of MNs have been used for the i.d. delivery of antigens into the skin,

including solid, coated, hollow, and degradable MNs [6, 14]. While solid MNs are mainly
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used to breach the mechanical barrier of the skin and provide access to the viable tissue,

other types of MNs, namely coated, hollow, or biodegradable MNs, can facilitate a direct,

one-step delivery of antigens in the skin. Each MN type provides certain advantages

and disadvantages over others and has been tested to varying extent in clinical trials [6,

14–16]. Hollow MN devices with needle lengths of up to 1500 µm provide a high and

reproducible dosing, however still require the use of liquid vaccine formulations with limited

storage stability [6, 7, 14, 16]. Polymeric MNs are conveniently applied as dissolving,

swelling, or biodegradable MN patch and exhibit good delivery efficiency but are commonly

manufactured by micromolding based on centrifugation, which is difficult to scale-up [14,

17]. Moreover, reduced mechanical stability represents a major challenge for a broader

application of polymeric MN arrays [1]. Coated MNs based on silica or metal exhibit

good mechanical stability but the amount of drug or antigen that can be coated onto and

released from the MN tips is limited [1, 8]. Solid MNs provide the advantage of an easy and

cost-effective manufacturing, good mechanical stability, easy handling and compatibility

with different semi-automated MN insertion devices [6]. The two-step ’poke with patch’

approach, using microneedles to breach the skin barrier followed by the application of a

drug-loaded solution or patch, allows to study the i.d. delivery of a variety of different

molecules, vehicles, and formulations [18]. This flexibility makes them a convenient tool

for the initial testing of new i.d. vaccines and adjuvants, e.g. particulate formulations.

Different materials, tip geometries, and application modes have been developed to breach

the skin barrier with solid MNs followed by administration of the molecule or vehicle of

interest [18]. Most common materials for the manufacturing of solid MNs include silicon,

metals (e.g. stainless steel, titanium), ceramics, silica glass, and non-degradable polymers

(e.g. photolithographic epoxy, polycarbonate, poly(methyl methacrylate) (PMMA)) [1, 6].

Silicon MNs prepared by etching allow to produce high-precision, specifically tailored MNs

with various shapes [6]. On the other hand, MN arrays from metals can be produced by

different techniques including etching and laser-cutting, each leading to a different type of

MN. The manufacturing of ceramic and polymeric MNs usually involves the micromolding

technique [1, 19]. Today, different types of solid MNs, mainly from stainless-steel, are com-

mercially available and widely applied for cosmetic treatments. Particularly handheld roller

or stamp devices can be easily purchased from various suppliers, e.g. the Dermaroller®,

Dermapen�, 3Ms solid microneedle system (sMTS), and others [20]. Only recently, a draft

guidance has been published by the FDA to regulate the increasing number of requests

for the licensing of microneedling devices. However, specific quality standards related to
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Good Manufacturing Practice (GMP) remain to be defined [20, 21].

Cutaneous vaccination using particulate vaccine formulations has attracted increasing at-

tention in recent years due to the growing knowledge about skin immunology and the

adjuvant potential of particles [5]. Particle delivery to intact skin via the transfollicular

route has been studied and characterized in several studies. The phase of hair follicle

growth and the structure of the infundibulum have been identified to influence the depo-

sition of particles in the skin. It has been found that drugs and particles are exclusively

delivered to open (active) follicles [22, 23]. About 74 % of all follicles are open under

normal conditions, while the orifice of inactive follicles is closed by sebum and shed cor-

neocytes [24]. By peeling and hair plucking, follicles can be opened and made accessible

for drug delivery [24]. Different types of particles with sizes between 3.5 nm and up to

6 µm have been successfully delivered to intact skin via hair follices [25–30]. Thereby, the

deposition of particles was found to be superior compared to free dye and could be signif-

icantly improved if massage was applied to mimick hair follicle movement [25, 26, 28, 31].

Particles with a size of approximately 650 nm reached maximum penetration depths upon

massage into the skin [27].

Although particles can be delivered into deeper parts of the skin targeting the follicular

infundibulum, the penetration past the follicle into the epidermal and dermal layer re-

mains limited. Based on previous studies, it is generally assumed that particles larger

than ∼10 nm do not pass superficial skin layers [32], which also surround the follicular

infundibulum. This consequently limits the uptake and processing by skin-resident APCs

required for vaccination. Furthermore, the area of the skin, which is accessible via hair

follicles, is highly restricted with densities between 0.09 % on the volar forearm and up

to 1.28 % on the forehead [23]. Both factors, particle size and follicular density, limit

the delivery of active drugs and vehicles and highlight the need for active administration

techniques that increase the efficiency and reproducibility of delivery.

One technique to circumvent the limited access to the viable skin tissue via hair follicles

is the i.d. delivery of film fragments by punching using MNs. The aim of this approach,

tested in the course of this thesis, is to deliver micron-sized fragments from 50 − 500 µm

thin polymer films into the epidermal and dermal layer of the skin using MN rollers with

needle lengths of 500 µm and 1000 µm. These films can be loaded with vaccine antigens,

adjuvants, micro-, or nanoparticles. In a preliminary proof-of-principle study, thin polymer

films with varying excipient compositions were prepared using pure film forming polymers

or blends of polyvinyl alcohol (PVA), chitosan, methacrylic acid derivatives, or cellulose
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derivatives of varying type and size, e.g. carboxymethyl cellulose (CMC), hydroxyethyl

cellulose (HEC), methyl hydroxyethyl cellulose (MHEC), hydroxypropyl methyl cellulose

(HPMC) [33]. These films were prepared using an automated film casting technique and

different post-drying treatments, e.g. cross-linking or freeze-thaw curing, and characterized

covering a range of mechanical strengths, flexibility, and brittleness [33]. Although the

piercing of the polymer films was successfully proven, further studies are needed to assess

the feasibility of i.d. delivery of particle-like film fragments using MNs with defined shapes

and geometries.

The study presented in this chapter aims to characterize the delivery of particles into MN-

treated skin by massage comparable to transfollicular delivery. The penetration behavior

of particles was studied dependent on the particle size and the MN type. Two commer-

cially available MN devices with different MN tip geometries and application modes were

compared for their efficiency to assist the delivery of particulate formulations into the skin.

A conventional MN array with out-of-plane, flat stain-less steel MNs and a MN roller with

cone-shaped MNs were used to deliver particles in the micro- and nanometer range into

the viable skin tissue. The MN array was pressed flat onto the skin, whereas the MN

roller was applied by rolling a handheld device with MNs on a rotating drum over the skin

surface (Fig. III.1). Both application modes were used as a pretreatment to breach the SC

and access the viable skin tissue. In addition, model particles were delivered to the skin

by reversing the application sequence using the MN roller as massage tool in the second

application step.

Due to skin elasticity, certain closure of pores after MN treatment can be expected, leaving

narrow channels for the delivery of particles [34]. Therefore, model particles were applied

by massage in order to maximize the deposition in the skin. Fluorescent silica particles were

used to determine the maximum penetration depth into the skin by fluorescence microscopy

depending on the particle size and MN treatment. Additionally, the i.d. deposition of

fluorescent poly(lactic-co-glycolic acid) (PLGA) particles was quantified upon extraction

from the skin. The i.d. deposition was evaluated in relation to the particle size as well as

the MN shape and application mode. The findings of this study will broaden the knowledge

about the administration of particles within a size range of 0.1−7 µm into MN-treated skin

and help interpreting existing research on the i.d. delivery of micro- and nanoparticles after

MN treatment. Moreover, this study demonstrates the need to select optimum conditions

for future studies using MN and particles for i.d. drug or vaccine delivery.
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2 Materials and Methods

2.1 Chemicals

Silica particles with diameters of 7.0 µm, 1.3 µm, 0.6 µm, and 0.1 µm were purchased from

Microparticles GmbH (Berlin, Germany). Green fluorescent PLGA particles with diame-

ters of 1.2 µm, 0.5 µm, and 0.1 µm were obtained from Phosphorex (Degradex®, Hopkinton,

Massachusetts, USA). Poly(allylamine) hydrochloride (PAH) (15 kDa), FITC (isomer I),

and polystyrene sulfonate (PSS) (70 kDa) were purchased from Sigma Aldrich (Steinheim,

Germany). Sodium chloride was obtained from Bernd Kraft (Duisburg, Germany). Dimethyl

sulfoxide (DMSO) was from Fisher Scientific (Leicestershire, United Kingdom) and dichloro-

methane was from Merck (Darmstadt Germany).

2.2 Fluorescent coating of silica particles

The preparation of fluorescently labeled PAH was adapted from Schneider et al. [35]. In

precise, 1 g PAH was dissolved in 20 mL 100 mM carbonate-bicarbonate buffer at a pH

of 9.4. Under vigorous stirring and exclusion from light, 1.5 mL of ∼8 mg/mL solution of

FITC in DMSO was added dropwise in 5 µL aliquots to the PAH solution over a period of

eight hours. The solution was stirred overnight under exclusion of light and dialyzed for 48 h

against highly purified water using a CelluSep T1 dialysis tubing (MWCO 3, 500, Orange

Scientific, Braine-l’Alleud, Belgium) to remove unbound FITC. After dialysis, the fluores-

cein isothiocyanate- labeled poly(allylamine) hydrochloride (FITC-PAH) was lyophilized

and stored at 4 °C or directly utilized for layer-by-layer coating.

Fluorescent silica particles were prepared according to the layer-by-layer (LbL) principle as

described before [36, 37]. Silica particle suspensions with particle sizes of 7.0 µm, 1.3 µm,

0.6 µm, and 0.1 µm were diluted to 2 % (w/v) using 0.5 M sodium chloride solution

at pH 6.5. For the coating process, FITC-PAH and PSS (MW 70,000) were adsorbed

to silica particles in four consecutive layers, starting with positively charged FITC-PAH

followed by negatively charged PSS. The layers were obtained by mixing equal volumes of

the particle suspension and 5 mg/mL polymer solution in 0.5 M sodium chloride, followed

by incubation for 3 h under stirring and exclusion from light. Subsequently, the particles

were washed three times by centrifugation at 13, 000 rpm for 10 min and resuspension

with 0.5 M sodium chloride solution to a concentration of 2 % (w/w). Sonication was

used to improve resuspension. Four polymer layers were adsorbed to the silica particles
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starting with positively charged FITC-PAH and ending with negatively charged PSS. After

LbL-coating, the particle suspensions were stored at 4 °C until further utilization.

2.3 Scanning electron microscopy

Scanning electron microscopy of the silica particles prior and after coating was performed

using a Joel JSM-6500F electron microscope (Ebersberg, Germany). The samples were

prepared by air drying of each particle suspension on self-adhesive carbon tape (Bal-tec

GmbH, Witten, Germany) and subsequent carbon sputtering under vacuum using a MED

020 coating system (Bal-tec GmbH, Witten, Germany). Images were taken at a magnifi-

cation of 5,000 for the 7.0 µm and 1.3 µmicroparticles and at 25,000 for the 0.6 µm and

0.1 µm nanoparticles, respectively.

2.4 Zeta-potential measurements

The surface charge of the particles was assessed using a Malvern Zetasizer Nano ZS

(Malvern Instruments, Worcestershire, United Kingdom). A volume of 500 µL of plain

and coated silica particle suspensions with sizes of 1.3 µm, 0.6 µm, and 0.1 µm at a con-

centration of 2 % (w/v) was pipetted into a folded capillary zeta-cell (Malvern Instruments,

Worcestershire, United Kingdom). Subsequently, highly purified water was carefully pipet-

ted on top of the sample until the cell was completely filled. After resting for 1 h to ensure

a stable equilibrium, the zeta-potential was analyzed at 25 °C. Silica microparticles with

a diameter of 7.0 µm were prepared similarly using 50 µL at a concentration of 5 % (w/v)

to achieve comparable measurement quality.

The mean zeta-potential was calculated from four different measurements at 25 °C, each

composed of three serial runs with 20 subruns. Malvern software 6.12 (Malvern Instru-

ments, Worcestershire, United Kingdom) was used for data acquisition and analysis.

2.5 Static light scattering measurements

The particle size and distribution of plain and coated silica particles were characterized by

laser diffractometry using a Partica-LA 950 (Horiba, Kyoto, Japan). Optimum laser trans-

mission intensities were obtained by spiking approximately 10− 20 µL particle suspension

into 0.5 M sodium chloride solution at pH 6.5. Moreover, 0.2 M sodium hydroxide and

0.1 M hydrochloric acid were spiked as needed to evaluate changes in the size distribution

pattern. Refractive indices of 1.42 for silica and 1.33 for water was used for evaluation by
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Table III.1: Overview of microneedle treatments and particle sizes for the evaluation of
particle penetration depths into excised pig skin.

Group Microneedle treatment Particle sizes Particle sizes

Silica PLGA

[µm] [µm]

A MN array 7.0 -

250 µm length 1.3 1.2

Before particle admininstration 0.6 0.5

0.1 0.1

B MN roller 7.0 -

200 µm length 1.3 1.2

Before particle administration 0.6 0.5

0.1 0.1

C MN roller 7.0 -

200 µm length 1.3 1.2

After particle administration 0.6 0.5

0.1 0.1

the system software. The particle size was provided as median size within one fraction of

the static light scattering (SLS) size distribution analysis.

2.6 Particle suspensions for intradermal administration

LbL-coated silica particles as described above were used for microscopic evaluation of the

i.d. penetration behavior upon MN treatment. For this purpose, particle suspensions

with a concentration of 2 % (w/v) in 0.5 M sodium chloride solution at a pH of 6.5 were

prepared. The quantitative i.d. particle deposition was analyzed using green fluorescent

PLGA particles (Degradex®, Phosphorex, Hopkinton, Massachusetts, USA). The PLGA

particles with diameters of 1.2 µm, 0.5 µm, and 0.1 µm were reconstituted as received with

half volume to obtain 2 % (w/v) suspensions.
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2.7 Microneedle treatment and particle administration

The particle administration was studied using excised pig skin from the ventrolateral region

of 5−7 week old piglets, provided by the Clinic for Swine (Faculty of Veterinary Medicine,

LMU Munich, Oberschleißheim, Germany). Full thickness pig skin samples were prepared

using a scalpel and stored at −80 °C for a maximum of three months. For particle ad-

ministration, skin samples of at least 3x3 cm2 were prepared and hydrated for 5 min in

0.9 % sodium chloride solution. After removing excess moisture from the surface, the skin

samples were placed on a polystyrene foam support in order to avoid breakage or bend-

ing of the MNs. Three different MN application modes were used to study the particle

penetration behavior (Tab. III.1).

For the treatment groups A and B, a MN pretreatment of the skin samples was performed.

The pretreatment procedure of group A involved a MN array (AdminPatch® 300, Ad-

minMed, Sunnyvale, USA) with 752 flat, hollow 250 µm MNs, which was applied to the

skin surface using a 2 kg weight for 3 min (Fig. III.1). Subsequently, the MN array was

turned 90 degrees and the application procedure was repeated, resulting in a microporated

area of 0.8 cm2. For group B, a MN roller (Dermaroller� HC902, Dermaroller GmbH,

Wolfenbüttel, Germany) with 162 cone-shaped 200 µm MNs was used. The microneedling

procedure was performed as per manufacturers description by rolling ’back and forth’ four

times, each time turning at an angle of 45 degrees (Tab. III.1). Subsequently, partially

microporated skin in the corners was covered with Leukoflex tape (BSN Medical, Ham-

burg, Germany), leaving a 2x2 cm2 area for subsequent particle administration. After skin

pretreatment in group A and B, the liquid particle suspension was topically applied and

manually massaged into the skin for 3 min in a circular movement.

The particle administration in treatment group C was performed by reversing the appli-

cation sequence. After placing the skin samples on the polystyrene foam support, an area

of 2x2 cm2 was prepared by covering the residual tissue with Leukoflex tape. Within the

free skin area, the particle suspension was topically applied and followed by performing the

microneedling procedure as described above using the MN roller. The MN roller procedure

was repeated ten times to mimic the massage effect as compared to the other treatment

groups. For all groups, a suspension volume equivalent to 2 mg/cm2 was applied. After

administration, excess formulation was gently removed using a cotton wipe and tap water,

avoiding further pressure on the skin surface. Subsequent analysis was peformed using a

1x1 cm2 sample of the central region of the treated skin sample. Each test was performed

in triplicates.
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Figure III.1: Photographs and microscopic images of the commercially available MN array
(A) and MN roller (B) used in this study. The MN array with 752 flat, 250 µm long, out-
of-plane MN was applied twice in two different directions (C). The MN roller was applied
by rolling a drum comprising 18 rows of nine 200 µm long MN over the skin surface at four
different directions (D). For the MN roller, a central region of 2x2 cm2 was used to study
the particle penetration.

2.8 Laser scanning microscopy

Processed skin samples were embedded into tissue freezing medium (FSC 22® Clear, Le-

ica Biosystems, Wetzlar, Germany) and stored overnight at −80 °C. Skin cross-sections of

10−20 µm were prepared at −18 °C using a Microm HM560 microtome (ThermoScientific�,

Massachusetts, USA). The artifical introduction of particles into deeper skin layers was

avoided by orienting the microtome blade parallel to the normal of the skin surface. Skin

cross-sections from equally distributed locations of the entire skin sample area were pre-

pared and collected for imaging. The cross-sections were mounted onto microscope slides
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(SuperFrost® Plus, VWR, Leuven, Belgium) and analyzed without further staining.

The skin sections were mounted upside down on a Zeiss 510 LSM confocal laser scanning

microscope (Carl-Zeiss AG, Oberkochen, Germany) and were imaged with identical set-

tings for all groups using a EC Plan-Neofluar10x/0.3 air objective. At least 29 positions

per particle size and MN treatment group were analyzed for the penetration depth. A

position was defined as region of particle deposition and accumulation in the skin that was

generated by one MN penetration. The penetration depth was measured as the maximum

distance between the lowest visible particle deposition and the microporated skin surface

using Fiji image analysis software [38]. The penetration depths were evaluated using one-

way ANOVA statistical analysis by SigmaPlot 12.5 (Systat Software, San Jose, California,

USA).

2.9 Extraction of PLGA particles from skin

The i.d. particle deposition was determined upon extraction from horizontal skin sections.

The sections were prepared by placing the skin samples on a pre-cooled stainless steel

plate with the SC facing the plate surface. After embedding into tissue freezing medium

and overnight freezing at −80 °C, horizontal skin sections of 30 µm were prepared using a

Microm HM560 microtome (ThermoScientific�, Massachusetts, USA). In total 25 sections

were collected in 1.5 mL tubes reaching a maximum skin depth of 750 µm. Up to four skin

sections were collected per sample tube. Green fluorescent PLGA particles were extracted

by adding 200 µL dichloromethane into each sample tube followed by 20 min incubation at

60 °C during which PLGA and fluorescent dye was dissolved. The samples were centrifuged

for 2 min at 13, 000 rpm to remove skin residuals and the supernatant was transferred into

black sample tubes. The content of green fluorescent PLGA particles was quantified by

fluorescence spectroscopy.

2.10 Quantification of PLGA particles by fluorescence spectroscopy

The concentration of green fluorescent PLGA particles in the skin extract was quantified

using a Cary Eclipse fluorescence spectrophotometer (Agilent, Santa Clara, CA, USA) at

excitation and emission wavelengths of 460 nm and 500 nm, respectively. A standard

curve was generated for each separate particle size by drying 100 µL of 2 % (m/v) par-

ticle suspension under vacuum and exclusion from light. Upon reconstitution in 200 µL

dichloromethane, diluted standard solutions were analyzed by fluorescence spectroscopy
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and correlated to the equivalent particle concentration. The experiment was performed in

triplicates for each particle size. The curves showed linear ranges of 25 − 500 ng/mL for

1.2 µm particles, 25 − 750 ng/mL for 0.5 µm particles, and 100 − 3000 ng/mL for 0.1 µm

PLGA particles with regression factors of above 0.99 for each analysis.

3 Results and Discussion

3.1 Characterization of LbL-coated particles

The LbL technique is a well-known method for the preparation of coated particles or

capsules and has been exploited for numerous applications in research [35, 37, 39–43].

The approach benefits from a high universality and the compatibility with various parti-

cle materials, e.g. melamine-formaldehyde, polystyrene, silica, as well as different coating

polymers, e.g. PSS, PAH, or poly acrylic acid (PAA). Initially performed by charge-derived

adsorption, the LbL technique has been further developed exploiting other molecular in-

teractions [39].

In this study, charge-based LbL-assembly of silica micro- and nanoparticles was performed

to successively coat four layers of positively charged FITC-PAH and negatively charged

PSS, facilitating the imaging by fluorescence laser scanning microscopy (LSM). To en-

sure a good stability of the particles after LbL-coating, the microscopic appearance, zeta-

potential, and static light scattering of the particles prior and after coating was studied.

Figure III.2 shows scanning electron microscopy (SEM) images of plain and LbL-coated

silica micro- and nanoparticles with a diameter of 7.0 µm, 1.3 µm, 0.6 µm, and 0.1 µm.

Generally, the surface morphology of the particles was smooth and homogeneous for all par-

ticle sizes before and after LbL-coating. At higher magnification, an uneven surface became

visible on 0.6 µm nanoparticles before and after coating. Plain silica particles arranged

in hexagonal superstructure, which has been reported for mesoporous silica structures be-

fore and appeared to be most pronounced for nanoparticles (Fig. III.2 C.1, D.1). After

LbL-coating, the ordered superstructure disappeared (Fig. III.2 C.2, D.2), indicating a

change of surface charge and particle interaction due to FITC-PAH and PSS coating. The

comparison of surface morphology and particle appearance by SEM showed not signs of

irreversible particle aggregation due to the coating process.

The particle size and size distribution of the silica particles prior and after LbL-coating

was studied by SLS. Plain and LbL-coated microparticles of 7.0 µm and 1.3 µm showed
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Figure III.2: Scanning electron microscopy images of silica particles prior (left column,
index 1) and after (right column, index 2) coating with positively charged FITC-PAH and
negatively charged PSS. Silica particle with sizes of 7.0 µm (A), 1.3 µm (B), 0.6 µm (C),
and 0.1 µm (D) were used in this study. Scale bar 1 µm, Magnification 5,000x (A, B) and
25,000x (C, D).
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Figure III.3: Particle size distribution determined by static light scattering prior (solid line)
and after LbL-coating (dashed line). LbL-coated silica nanoparticles showed reversible
aggregation, which was improved at pH ∼11 (*, dotted line).

monomodal size distributions (Fig. III.3 A, B). Equivalent sizes before and after LbL-

coating were measured, indicating that the LbL-coating did not affect the mean size of

the microparticles (Tab. III.2). Plain silica nanoparticles with a diameter of 0.6 µm

exhibited a single peak, which broadened and shifted towards larger sizes after LbL-

coating (Fig. III.3 C). At higher pH around 11, by addition of sodium hydroxide, the

shifting could be reversed towards smaller particle sizes. Plain and LbL-coated 0.1 µm

nanoparticles exhibited a bimodal distribution during SLS analysis. The two particle size

fractions detected for plain silica particles showed a mean diameter around 0.1 µm, in-

dicative for single particles, and 22 µm, suggesting aggregate formation, respectively. In

the same dispersion medium, the LbL-coated 0.1 µm nanoparticles exhibited a bimodal

distribution with fractions around 0.2 µm and 3.1 µm. The increase of the pH to ∼11

induced a shifting of the larger size fraction of LbL-coated nanoparticles towards the peak
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Table III.2: Particle size determined by static light scattering (SLS) and zeta-potential of
plain and LbL-coated silica particles with nominal sizes of 7.0 µm, 1.3 µm, 0.6 µm, and
0.1 µm. The nanoparticle size with nominal diameters of 0.6 µm and 0.1 µm was derived
from the particle fraction detected by SLS with lowest particle size (*). The size of the
LbL-coated nanoparticles was derived from measurements at pH ∼11 (Fig. III.3).

Mean particle size Zeta- potential

Nominal Plain silica LbL-coated Size ratio Plain silica LbL-coated

[µm] [µm] (LbL/Plain) [mV] [mV]

7.0 µm 6.17 ± 0.003 5.93 ± 0.011 0.96 −27.3 ± 2.3 3.2 ± 0.4

1.3 µm 1.51 ± 0.020 1.59 ± 0.008 1.06 −64.6 ± 0.5 −30.5 ± 0.3

0.6 µm 0.36 ± 0.004 0.47 ± 0.009 * 1.29 −29.0 ± 0.5 −26.3 ± 0.3

0.1 µm 0.12 ± 0.000 * 0.22 ± 0.001 * 1.79 −18.7 ± 0.6 −22.6 ± 0.3

at 0.2 µm diameter (Fig. III.3 D). The pH-induced shifting of larger size fractions towards

smaller particle sizes indicates a reversible association of the LbL-coated nanoparticles of

0.6 µm and 0.1 µm. Notably, a comparable pH-dependent shifting of size fractions was

also observed for plain silica nanoparticles of 0.1 µm (data not shown).

Measurements of the single nanoparticle diameter by SLS deviated slightly from the nom-

inal diameter provided by the manufacturer (Tab. III.2). Moreover, after LbL-coating

the diameter increased by approximately 0.1 µm. Notably, particle size measurements

of plain silica nanoparticles by dynamic light scattering (DLS) provided results in agree-

ment with the nominal value of 0.6 µm and 0.1 µm (data not shown). However, poor

measurement quality was observed for larger particle sizes as well as LbL-coated nanopar-

ticles. It can be assumed that SLS-related limitations in measuring particle sizes below

0.5 µm caused a deviation of SLS-measurement results from the actual particle diameter.

Moreover, LbL-coating could induce a change of refractive indices of the particles, thus

affecting SLS-measurement accuracy. On the other hand, the larger particle size fraction

of the LbL-coated 0.1 µm nanoparticles showed a diameter almost ten times smaller than

the larger size fraction of the plain silica particles. With a diameter around 3.1 µm, the

LbL-coated particle aggregates might have interfered with size measurements by DLS.

Therefore, despite its analytical limitations in submicron size measurements, SLS was se-

lected as main technique to assess the particle size and the reversibility of particle aggregate

formation.
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The zeta-potential prior and after coating was measured to further characterize the parti-

cle interaction in suspension. Plain silica particles exhibited a size-independent negative

zeta-potential between −20 mV for 1.3 µm particles and −65 mV for 0.1 µm nanoparticles

(Fig. III.2). After LbL-coating, the zeta-potential leveled around −25 mV for all particles

except the 7.0 µm microparticles. The largest silica particles exhibited a neutral to slightly

positive zeta-potential. Although the neutral surface charge could be indicative for aggre-

gation, this was not observed by SEM or SLS analysis. It can be speculated that the low

surface to volume ratio of the larger microparticles prevented notable particle aggregation.

Generally, a comparable zeta-potential was achieved by LbL-coating of particles within a

size range of 1.3 µm to 0.1 µm. A good peak homogeneity was observed during measure-

ments of the coated particles, indicating a homogeneous charge distribution generated by

LbL-coating, which was superior to plain silica particles.

The LbL-coating procedure allowed for a preparation of fluorescent particles of 7.0 µm,

1.3 µm, 0.6 µm, and 0.1 µm with suitable properties to study the i.d. delivery upon

MN treatment. The particles were easily detectable by fluorescence LSM using imaging

parameters with low background fluorescence of the skin tissue. Analysis by SEM and

SLS showed no signs of aggregation of microparticles ≥ 1.3 µm. Moreover, aggregation of

LbL-coated nanoparticles ≤ 0.6 µm was shown to be reversible. It can be assumed that the

application by massage provides sufficient energy to disrupt reversibly associated particles.

Size measurements showed an increase in particle diameter, which was most pronounced at

lower particle sizes (Tab. III.2). However, as the SLS measurements come with analytical

limitations, it can be assumed that the single particle diameter prior and after LbL-coating

was comparable for all particle sizes as seen by SEM imaging. We conclude that the particle

size increase by LbL-coating was negligible and a direct comparison of the i.d. deposition

can be done using the nominal particle diameter between 7.0 µm and 0.1 µm. Moreover, a

similar approach has been used before to study the selective i.d. transfollicular delivery [27].

3.2 Particle penetration depths

The penetration depths of green fluorescent LbL-coated silica particles into excised MN-

treated pig skin were determined by LSM. The particles were administered into the skin

using different types of MNs and application modes. A conventional array of flat MNs

(group A) or a handheld roller with cone-shaped MNs (group B) was applied as skin pre-

treatment followed by i.d. particle administration by massage for 3 min. Alternatively, the

MN roller was used in reverse order after topical particle application (group C). Typically,
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MNs have been used to disrupt the skin barrier, creating microchannels and facilitating the

subsequent delivery of particulate formulations to the viable skin tissue [44, 45]. However,

here, a reverse order of application was additionally studied to assess the possibility to

reach deeper skin layers and to evaluate the delivery efficiency compared to conventional

skin pretreatment.

The particle penetration depth was determined based on LSM images of skin cross-sections

from different locations distributed over a total area of 1x1 cm2 after i.d. particle adminis-

tration. Figure III.4 shows four representative images of skin cross-sections prepared from

treatment group C. MN-generated micropores and the deposition of particles with sizes

of 7.0 µm, 1.3 µm, 0.6 µm, and 0.1 µm were visible upon topical administration of the

particle suspension on intact skin followed by MN roller treatment. For the determination

of penetration depths, each position of particle deposition was marked and the penetration

depth was evaluated as maximum distance between skin surface and the deepest visible

particle per MN-generated micropore. At least 29 positions of different microchannels in

the skin were measured for each particle and MN treatment group.

Figure III.5 provides an overview of measured deposition depths in relation to the applied

particle size and MN treatment. The mean particle penetration depth as well as depth

distributions were comparable for all particle sizes when MNs were applied as skin pre-

treatment (group A+B). Compared to the MN pretreatment, broader depth distributions

were obtained for the i.d. particle delivery by microneedling (group C). The reverse order

application resulted in comparable mean deposition depths for particles of 7.0 µm, 1.3 µm,

and 0.6 µm. However, significantly deeper penetration and wider depth distribution in

the skin tissue was achieved for the smallest particle size of 0.1 µm. In general, maximum

penetration depths per microchannel ranged from about 50 µm to 450 µm for all particle

sizes and treatment groups.

The statistical evaluation of the particle penetration depth in relation to the applied MN

treatment revealed a tendency of superior deposition depths for the MN roller compared to

the MN array (Fig. III.5). No difference was detected between the application of the MN

roller prior or after particle administration. The MN roller reached an average penetration

depth of 166 µm compared to 131 µm for the MN array. The maximum depths that could

be reached were up to 450 µm and 300 µm using the MN roller and array, respectively.

Considering the skin structure, the results suggest that all treatment conditions can pro-

vide a deposition of particles in the epidermal layer and upper dermis (Fig. III.6). Thus, a

particle delivery in the viable tissue, in close vicinity to skin-resident APC for immunologi-
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Figure III.4: Laser scanning images of vertical skin sections of treatment group C. Four dif-
ferent particle sizes (green) were used: 7.0 µm (A), 1.3 µm (B), 0.6 µm (C), and 0.1 µm (D).
The images are representative for other treatment groups. Scale bar 200 µm, Magnification
10x.

cal processing could be achieved. While the median penetration depth was around 120 µm

for the MN array pretreatment (group A), both application modes using the MN roller

resulted in higher median values around 150 µm (group B+C).

Considering the differences in particle penetration by different MN treatments, the mea-

sured depths did not correlate with the needle length, which was 200 µm for the MN roller

compared to a needle length of 250 µm for the array. This indicates that the tip geometry

had a stronger influence on the penetration of particles into the skin than the needle length

itself. Furthermore, the application modes of the MN array and roller differ significantly.

The MN array is pressed onto the skin surface, whereas the MN insertion and retraction
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Figure III.5: Penetration depths of LbL-coated silica particles into excised pig skin after
different microneedle treatments. Lbl-coated silica micro- and nanoparticles with a diame-
ter of 7.0 µm, 1.3 µm, 0.6 µm, and 0.1 µm were massaged for 3 min into the skin upon MN
array (group A) or MN roller (group B) pretreatment or reverse order of application using
the MN roller (group C). Box plots represent the 25th and 75th quartiles, median and
standard deviation (whiskers) derived from penetration depth measurements of separate
microchannels (symbols). First statistical analysis was performed comparing the pene-
tration depths of different particle sizes within one treatment group. Second statistical
analysis was performed upon pooling the penetration depths within each treatment group
using a one-way ANOVA (Tukey multiple comparisons, α = 0.05, *** p < 0.001), revealing
significant differences in the penetration depth between skin treatment using the MN array
(group A) and the MN roller (group B+C).
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Figure III.6: Histogram of measured particle penetration depths upon MN skin pretreat-
ment using a MN array (group A) or roller (group B), or in reverse order of application
using the MN roller (group C). The median (dotted line) and mean (dashed line) penetra-
tion depth of particles is shown for each respective treatment group. All measured particle
penetration depths were considered for this graph, independent of the particle size applied.

using the MN roller occurs at different angles. Due to the rolling process and cone-type

shape of the MNs, the MN roller likely induced a more efficient disruption of the skin

barrier compared to the small, well-defined microchannels created by the MN array. The

results suggest that for such small differences in needle length, the needle tip geometry and

the application mode govern the performance of the microneedling process and the related

particle penetration.

3.3 Quantitative intradermal particle delivery

The quantitative deposition of PLGA micro- and nanoparticles with sizes of 1.2 µm, 0.5 µm,

and 0.1 µm in the skin tissue was determined by extraction and quantification by fluores-
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cence spectroscopy. Horizontal skin sections were prepared and collected after particle

administration on intact skin (control) or after application by MN treatment as described

above (group A, B, C). Green fluorescent PLGA particles, that penetrated into the skin

tissue, were dissolved and the total particle content was determined in the extract.

Figure III.7 provides the total and relative amount of PLGA particles deposited per cm2

skin tissue. In all treatment groups, a superior deposition of nanoparticles with a size

of 0.5 µm was observed compared to the smaller nano- and larger microparticles. Up

to 14 µg/cm2 of 0.5 µm nanoparticles were delivered into the skin, whereas a maximum

deposition of 5 µg/cm2 and 3.5 µg/cm2 was achieved applying 0.1 µm and 1.2 µm particles,

respectively.

This finding is in agreement with previous studies that identified a particle diameter of

∼650 nm as optimum particle size to penetrate into intact skin via the transfollicular

route [27, 46]. However, compared to the delivery to intact skin via hair follicles, in the

present study, breaching of the skin barrier by microneedling improved the absolute i.d.

deposition by factor ten. Although no clear effect of the particle size on the penetra-

tion depth was detected (Section 3.2), the deposited amount of particles revealed a clear

dependency of the applied particle size on the quantitative i.d. deposition.

Interestingly, a slightly higher deposition of 0.1 µm nanoparticles was detected using the

MN roller in reverse order compared to the MN array pretreatment. On the other hand,

the particle deposition was marginally increased for 1.2 µm microparticles in combination

with the MN array pretreatment in comparison to reverse order microneedling. Although

the observed effect is minor, it could indicate that manual massage affects the i.d. delivery

of larger particles to higher extent compared to nanoparticles around 0.1 µm. On the

other hand, increasing particle sizes ≥ 1.2 µm appeared to hinder the simultaneous barrier

disruption and particle transport into the skin by reverse order microneedling as performed

in treatment group C. The reverse application of the MN roller might be particularly

beneficial for suspensions of nanoparticles smaller than 0.1 µm and for solutions. However,

it has to be noted that nanocarriers have been previously found to provide superior delivery

compared to free molecules [31, 44, 47]. This suggests the existence of an optimum size for

the efficient delivery of particles and macromolecules into the skin tissue.

A compromise between efficient i.d. delivery and uptake by skin-resident APCs has to be

established to successfully facilitate cutaneous vaccination. Mechanical stimuli allow for

the delivery of particles of up to 6 µm into deeper parts of follicles [25–30], however, no

particle uptake from the follicles into deeper skin tissue has been detected [48]. Moreover,
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3 Results and Discussion

Figure III.7: Total intradermal delivery of PLGA particles with diameters of 1.2 µm (light
gray), 0.5 µm (white), and 0.1 µm (dark gray). The particles were administered by
massage on intact skin or after pretreatment using a MN array (group A) or MN roller
(group B). Furthermore, particles were delivered by reversed sequence of application using
the MN roller to massage particles into the skin (group C). (Data of 1.2 µm and 0.5 µm
(groups A-C) were acquired by Lisa M. Völk during her Bachelor’s thesis [50].)

after reaching the viable tissue, particles in the submicron range are preferably taken up

by DCs, inducing a size-dependent type of immunity [49].

The comparison of the different treatment groups revealed that the lowest deposition of

PLGA particles was detected in intact skin. The highest i.d. delivery for all particle sizes

was achieved applying the MN roller pretreatment followed by particle administration by

massage (group B). Skin pretreatment using the MN roller facilitated a deposition up to

three times higher compared to the MN array pretreatment (group A) and reverse order

application of the roller (group C). The MN array and the reverse order application of

the MN roller provided particle deposition in comparable range for each respective particle

size (Fig. III.7).

Similar to the penetration depth (discussed in section 3.2), the quantitative i.d. particle

deposition was largely influenced by the MN tip geometry, application mode, and treatment

sequence. Besides the efficient barrier disruption using the MN roller in treatment groups

B+C, the particle administration was mainly dependent on the massage effect, whereas
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the number of pores only played an inferior role. Previous studies have shown that about

125 micropores are generated by ten passes of a MN roller with 192 needles [51]. Notably,

the MN roller used in this study provided only 162 MNs and was applied in eight passes for

the MN pretreatment, likely resulting in less than 125 micropores. Neither ten repetitions

of this microneedling sequence as performed in group C, nor the 752 MNs of the MN array

resulted in a particle deposition comparable to the roller pretreatment. Interestingly, the

reverse order treatment using the MN roller induced a particle deposition comparable to

the MN array pretreatment (group A). This suggests that the relatively low skin barrier

disruption induced by the flat MN array was compensated by efficient manual massage

compared to the high disruption using the repeated application of the MN roller with an

inferior massage effect.

Results suggest that the MN type is the key factor influencing the skin tissue disruption,

whereas massage and the applied particle size additionally determine the associated i.d.

particle delivery. Furthermore, a strong interplay between the application of MNs and the

skin has been observed. When comparing the efficiency of different MN types to breach

the skin surface, the mechanical properties of the skin tissue have to be considered. Several

studies have reported the contraction of MN-generated micropores after their formation

due to skin elasticity [14, 34, 51]. Besides micropore orifices, which turned out to be

significantly smaller than the applied MN width [51, 52], studies have also concluded that

only 10− 30 % of the nominal needle length enters the tissue [53]. It can be assumed that

the efficiency of MN insertion strongly depends on the applied MN length, usually being

more efficient with decreasing needle lengths. These observations are further supported

by research that successfully applied densely packed MN arrays with even smaller needle

lengths of 65 − 110 µm for cutaneous vaccination [54].

Furthermore, the MN device itself as well as the skin treatment site determine the extent

of MN penetration into the tissue [52, 55]. Dependent on the skin condition, application

force and time, MN density, and repetitions, the skin tissue disruption occurs to vari-

able extent [53]. Reportedly, higher insertion forces are required with increasing needle

lengths [53]. The needle length of the MN array and the roller used in this study were in

comparable range, therefore comparable insertion forces could be expected for both MN

types. The force applied for insertion of the MN array was about 20 N. Similar forces are

reportedly achieved by manual pressing by human volunteers [56]. Additionally, forces of

∼20 N were found to be sufficient for the insertion of MN arrays with needle lengths of

up to 900 µm [56]. The relatively long application time of the MN array for 3 min in this
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4 Conclusion

study allowed for a full penetration of the MN array into the skin tissue. Although no

application force was measured during the microneedling using the MN roller, successful

breaching of the skin barrier was proven by i.d. particle delivery. The results suggest that

full insertion of the MN types used in this study were achieved and major differences in

i.d. particle delivery were derived from variations in tip geometry, application mode and

sequence.

The study shows that a notable i.d. delivery of particles between 1.2 µm and 0.1 µm can

be achieved by only 3 min massage. The particles reached into the epidermal and dermal

layer of MN-treated skin, increasing the delivery efficiency compared to (transfollicular)

delivery to intact skin by factor ten. Moreover, this is the first time showing the possibility

to deliver a formulation into the skin by applying simultaneous skin barrier disruption

and particle delivery using a conventional solid MN roller. Compared to previous studies,

the time required for i.d. particle delivery could be reduced by active massage compared

to up to 48 h incubation [45, 57]. However, notably higher delivery efficiencies can be

achieved by longer incubation. Considering the effects of particle size, MN tip geometry,

length, and application mode, the development of MN devices requires the consideration

of treatment site-specific conditions to achieve an optimum i.d. delivery to specific layers

of the skin. The combination of repeated microneedling using a MN roller and manual

massage at optimum duration represents an option to further maximize the i.d. particle

delivery in future studies.

4 Conclusion

Cutaneous vaccine delivery is a promising alternative to conventional i.m. or s.c. injection

for vaccination. Cutaneous vaccination provides the option for dose reduction and may

potentially offer new treatments against cancer, Alzheimer’s disease, or infectious diseases

that are not yet preventable, e.g. malaria, ebola, or HIV. Although today i.d. liquid injec-

tions are the most widely used approach for cutaneous vaccination and studied in several

clinical trials, the requirement of a stable cold-chain represents a major challenge. There-

fore, the development of vaccine formulations with increased storage stability, suitable for

i.d. delivery needs to be further intensified.

This study provides insights into the qualitative and quantitative deposition of micro-

and nanoparticles in the context of different commercially available types of MNs. It was

shown that the penetration depth of particles with diameters below 7 µm is independent
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of the particle size. However, the quantitative amount deposited in the tissue was highly

dependent on the particle diameter with an optimum around 0.5 µm.

Besides the particle size, the MN tip geometry and application mode strongly influenced

the penetration behavior of the particles as well as the quantitative i.d. delivery. No

clear impact of the MN length and the number of micropores was identified. Cone-shaped

MNs applied using a roller device were superior in providing a high penetration depth

and also induced the highest particle deposition compared to a dense array of flat MNs.

Independent of the MN tip geometry, needle lengths between 200 − 250 µm were suitable

to facilitate a deposition of particles in the epidermal and dermal skin layer, which is

the preferred delivery depth for cutaneous vaccination. The deposition of nanoparticles

in close vicinity to epidermal and dermal APCs allows for the uptake and processing of

antigen-loaded particles. Nanoparticles delivered intradermally by this approach can serve

as suitable adjuvants for cutaneous vaccination. Microparticles, on the other hand, could

serve as antigen-releasing depot in the skin tissue.

To date, an easy to develop and cost-effective approach for cutaneous vaccination that

can truly compete with conventional vaccination is still missing. MNs are a promising

tool to fill this gap. This study provides valuable insights regarding the key factors that

affect the i.d. particle delivery upon microneedling, namely MN tip geometry, application

mode, particle size, and massage. These findings help interpreting existing research and

serve as starting point to select optimum MN treatment conditions. Although model

particle suspensions have been used in this study, other drug and vaccine delivery systems

can be easily combined with efficient MN treatment, e.g. virus-like-particle vaccines or

dry powder patches. Additionally, microneedling is an attractive tool to enhance active

delivery approaches, such as gene gun delivery [58].

The commercial availability of solid MNs makes them a useful and cost-efficient tool in re-

search, especially for early screens of new vaccines and formulations. Particularly particles

are a promising component in cutaneous vaccination due to their high potential to serve

as sustained release depot or vaccine adjuvant. This study contributes to the thorough

characterization of the mechanistics of particle application and MN treatment, which is of

key relevance for the design of future studies.
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IV

APPLICATION OF WATER-SOLUBLE

POLYVINYL ALCOHOL-BASED FILM PATCHES

ON LASER MICROPORATED SKIN FACILITATES

INTRADERMAL MACROMOLECULE AND

NANOPARTICLE DELIVERY

This chapter has been published as L. Engelke, G. Winter, and J. Engert, Application

of water-soluble polyvinyl alcohol-based film patches on laser microporated skin facilitates

intradermal macromolecule and nanoparticle delivery, Eur J Pharm Biopharm 128 (2018)

119-130. I designed and conducted this study and wrote the manuscript by myself.

1 Introduction

During the past decades, the research and knowledge regarding the intradermal delivery of

biologics and particularly vaccines has significantly increased [1, 2]. Proteins, peptides, and

nucleic acids have been topically applied, including antigens for active vaccination, allergens

for the treatment of type I allergies, and antibodies for local or systemic delivery [3–

5]. However, the transdermal delivery of proteins into intact skin is known to be highly

restricted due to their size, instability, and mostly hydrophilic properties [6]. The efficient

and reproducible delivery of rather high-priced macromolecules into the skin therefore

represents a major challenge with regards to their broad application in topical delivery.

To investigate and exploit the benefits of topically applied proteins, today, various tech-

niques can be used which actively deliver drug formulations into the skin [7]. Fractional

ablative laser microporation is a particularly attractive approach for the active intra-

dermal delivery of molecules and provides the possibility to access specific layers of the

skin [8]. Pulsed infrared lasers are used to induce a thermal ablation of tissue in micron

sized columns with a diameter of 30 − 200 µm [9], mainly referred to as microthermal

zones (MTZs) [10] or microscopic ablation zones (MAZs) [11]. Carbon dioxide (CO2) and

Er:YAG lasers operating at wavelengths of 10.60 µm and 2.94 µm, respectively, are the two

most common types of lasers used for ablative skin laser treatment [12]. At these wave-
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lengths, water molecules show strong light absorption that induces vibrational excitation

and heating in very short time, leading to vaporization and the ablation of surrounding

tissue [13–15]. The thermal impact on the remaining tissue thereby depends on the sys-

tem and parameters applied, e.g. laser fluence, local beam power density, pulse duration,

and pore density [16]. Due to a higher absorption coefficient at ambient temperatures,

Er:YAG devices are associated with a more precise microablation and reduced residual

thermal damage (RTD), showing coagulation zones of 10− 40 µm compared to a thickness

of 100−150 µm for CO2 lasers [12, 16]. Severe side effects, including erythema, edema, and

postinflammatory hyperpigmentation, as well as overall healing times could be significantly

reduced using fractional lasers and particularly Er:YAG devices emitting very short pulses

of laser light [17]. ’Cold ablation’ is characterized by minimal RTD on the tissue and pro-

vides a micropore closure within two days, driven by natural re-epithelialization [8, 18, 19].

The reduced thermal damage goes along with inferior skin contraction, collagen shrinkage,

and tissue remodelling [20, 21], which are beneficial effects for the treatment of rhytides,

photodamaged skin, scars, and other skin conditions [22].

Today, fractional laser microporation is an inherent part in the portfolio of skin resurfacing

treatments and by that is well established as a safe dermatological method. Besides this,

recent studies have reported on the delivery of drug substances into laser microporated

skin, including small molecules [23–29], peptides [30, 31], macromolecules [32–36], nucleic

acids [37, 38], particles [39, 40], and cells [41]. Of special interest is the precise targeting

of specific skin layers for the intradermal delivery of immunogenic molecules. The skin has

long been recognized as an immunologic organ comprising a high density of APCs, namely

LCs in the epidermal and different subsets of dDCs in the dermal layer [42–44]. Moreover,

epidermal keratinocytes are involved in early inflammation processes and play a key role

in promoting adaptive immune responses when targeted by cutaneous vaccination [45, 46].

The high abundance of immunocompetent cells in the epidermis and dermis makes the

skin a particularly attractive site for vaccine delivery. By directly addressing LCs and

dDCs, it is possible to regulate the differentiation of CD4+ T helper cells (Ths) and

CD8+ cytotoxic T lymphocytes (CTLs) [43]. Moreover, such specific targeting has a direct

impact on the Th cell polarization [47, 48]. Without further adjuvantation, T cells tend

to differentiate along the Th2 pathway upon intradermal delivery of antigens. However,

a re-modelling towards Th1/Th2-balanced immune responses is possible using suitable

adjuvants [8, 49, 50]. The advantage of a precise targeting of different skin layers and

immune cells by fractional laser microporation has been exploited for cutaneous vaccination
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Table IV.1: Drug formulations and molecule types that have been tested for skin delivery in
connection with ablative fractional laser poration using CO2 (λ = 10.60 µm), Er:YAG (λ =
2.94 µm), or erbium:yttrium scandium gallium garnet (Er:YSGG) lasers (λ = 2.80 µm).

Type of molecule Reference

Solution

CO2 lasers Small molecules 5-Fluorouracil [23]; Vitamin C, magnesium ascorbyl phosphate [24];

Hydroquinone, Imiquimod, FITC [35]; Sulphorhodamine B,

methylene blue [64]

Macromolecules FITC-dextranes 4, 20, 40 kDa [35]; Texas red-OVA [64]

Er:YAG lasers Small molecules Methotrexate [11]; 5-Fluorouracil [23]; Vitamin C, magnesium

ascorbyl phosphate [24]; 5-Aminolevulinic acid [25,27];

Lidocaine [26]; Prednisone [28]; Diclofenac [29]; Imiquimod [31];

FITC [33]; Sulphorhodamine B [37]; Indomethacin, Nalbumphine [72]

Peptides Peptides (716 Da, 1429 Da, 2190 Da, 2354 Da) [30,31]

Macromolecules Lyzozyme [30]; FITC-dextranes 4, 20, 40, 70, 150 kDa [31]

FITC-dextranes 4, 19, 38, 77 kDa, FITC-insuline hexamer [33];

ATG (Thymoglobulin®), Basiliximab (Simulect®) [34];

hGH [36, 55]; Phl p 5 [49, 51]; OVA [51]; OVA, XCL1-OVA

Vaccibody [53]; HBsAg, conjugate vaccines (Menveo®, ActHIB®) [54];

Cyt c, FSH, FITC-BSA [55]; FITC-dextranes 4, 10, 20 kDa [71]

Nucleic acids Fluorescein-labeled oligonucleotides (15-mer, 25 mer),

plasmid DNA [37]; siRNA [38]

Er:YSGG lasers Small molecules Hydrocortisone [32]

Macromolecules γ-IFN [32]

Suspension

CO2 lasers Small molecules Triamcinolon acetonide [56]

Particles Quantum dots [35]

Er:YAG lasers Particles Ti2O nanoparticles, Al2O3 microparticles [39];

CaCO3 microcontainers containing Fe3O4 nanoparticles [40];

Triamcinolone acetonide-, nile red-, fluorescein-loaded microparticles [57]

Cells Adipose-derived stem cells (ADSC) [41]

Liposomes

CO2 lasers Small molecules Carboxyfluorescein [58]

Macromolecules FITC-OVA [58]

Semi-solid preparation

CO2 lasers Small molecules Diclofenac [29]; Methylaminolevulinic acid [59];

5-Fluorouracil [60]

Er:YAG lasers Small molecules Diclofenac [29]; Lidocaine [61]

Dry powder patch

CO2 lasers Small molecules Sulphorhodamine B [62,65]

Macromolecules OVA [62]; OVA, insuline, antibody [65]

Nucleic acids Vaccinia virus encoding OVA cDNA [62]

Cells BCG vaccine [62]

Er:YAG lasers Macromolecules OVA [52]
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and transcutaneous/epicutaneous allergen-specific immunotherapy (TCIT/EPIT) [51–54].

Table IV.1 highlights that a wide range of different molecules have been successfully deliv-

ered into laser-generated micropores using liquid formulations, e.g. solutions [23, 55], sus-

pensions [56, 57], or liposomes [58]. However, only few studies have been using formulations

easier to apply under real-life conditions, e.g. semi-solid or dry patch formulations [59–62].

Many proteins and especially vaccines have limited stability in the solubilized state, which

requires a cold chain and limits the shelf-life at ambient temperatures. On the other hand,

superior micropore filling has been observed for liquid formulations compared to semi-solid

preparations [63]. For these reasons, novel drug delivery systems should provide improved

storage stability and liquid-like micropore filling properties. Based on these demands,

powder-loaded patches, which are based on an array of laser-generated and drug powder-

loaded microchannels, have been developed and tested for immunotherapy [52, 64, 65]. The

present study introduces an alternative formulation strategy exploiting water-soluble dry

film patches as a drug delivery system. We aimed to solubilize hydrophilic polymer films

directly on laser microporated skin, taking advantage of an enhanced water transport from

the tissue through the porated skin into the film under occlusion. Occlusive backings, used

for fixation on the skin, prevent water loss and accelerated a dissolution of the polymer

films. The drug is then released upon dissolution of the film matrix, which allows the

molecule to diffuse through the micropores into the viable skin tissue.

Different polymer film formulations based on water-soluble PVA or blends of PVA with

carboxmethyl cellulose (CMC) or cross-linked carbomer as gelling agents were prepared

using the film casting technique. This easily scalable fabrication approach resulted in thin,

fast-releasing polymer films that could be loaded with a broad variety of molecules and

concentrations. To validate the feasibility of our approach, the release from the film patches

and the delivery of FITC, rhodamine B-labeled dextrane 70 kDa (RD70), and PS-particles

into laser microporated pig skin was tested using the P.L.E.A.S.E.® fractional laser po-

ration technology (Pantec Biosolutions, Ruggell, Liechtenstein). The P.L.E.A.S.E.® laser

system enables a safe and pain-free ablation of superficial skin layers and has been success-

fully tested for immunotherapy in research [49, 51–54].

This study presents a novel drug delivery platform based on PVA polymer films suitable for

the intradermal administration of macromolecules and nanoparticles upon fractional skin

laser microporation. The water-soluble polymer films provide the potential to enhance the

drug storage stability while preserving liquid-like diffusion properties upon administration.

Furthermore, the polymer film patch reduces the risk of infection by covering the impaired
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skin barrier during micropore closure.

2 Materials and Methods

2.1 Chemicals

FITC, OVA, polysorbate 20, polyvinyl alcohol (PVA, Mowiol® 4-88, MW ∼31 kDa),

rhodamine B-labeled dextrane 70 kDa (RD70, MW 70 kDa), sucrose, and trichloroacetic

acid (TCA) were purchased from Sigma-Aldrich (Taufkirchen, Germany). Red-fluorescent

PS-particles (ex 530 nm/em 607 nm) were purchased from microparticles GmbH (Berlin,

Germany). CMC (Tylopur® C30 G1) was obtained from Clariant (Wiesbaden, Germany).

Cross-linked carbomer (Carbopol® 974P) was obtained from BF Goodrich Chemical (Brus-

sels, Belgium). Trehalose and sodium dihydrogen phosphate were purchased from VWR

International (Leuven, Netherlands). Potassium carbonate and Tris were obtained from

Merck (Darmstadt, Germany). Propylene glycol was from BASF (Ludwigshafen, Ger-

many). Di-sodium hydrogen phosphate was purchased from Applichem (Darmstadt, Ger-

many). Sodium chloride was obtained from Bernd Kraft (Duisburg, Germany).

2.2 Liquid polymer film formulations

PVA was dissolved alone or together with CMC in 10 mM PBS (pH 7.0, 50 mM ionic

strength) at 80 °C in a water bath. Propylene glycol and polysorbate 20 were added to

the polymer solutions and mixed thoroughly. The PVA-carbomer blend formulation was

prepared as described above using water for dissolution and Tris for subsequent pH ad-

justment. After cooling down to RT, solutions of different model substances were added

to the polymer mixtures, using OVA, FITC, RD70, or red-fluorescent 5 µm or 0.5 µm

PS-particles as model substances and vehicles. The model substance was dissolved in

10 mM PBS or water containing sucrose and trehalose as protein stabilizers in a molar

ratio of 1/500 for each stabilizer. Different OVA loadings were obtained by adjusting the

amount of model substance and PVA (Tab. IV.2). Film formulations containing FITC

or RD70 were prepared similarly, providing molar concentrations equal to sim25 µg/mg

and sim100 µg/mg OVA-loaded films, respectively. Particle-loaded films were obtained

by adding an appropriate volume of 2.5% (w/v) particle suspension (as provided by the

manufacturer) to the polymer mixture with a target concentration of 100 µg particles/mg

dry film.
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Table IV.2: Composition of ovalbumin (OVA)-loaded polymer film formulations with target
concentrations from 25 µg to 100 µg OVA per mg dry film.

Polymer film formulation

Component [% (w/w)] PVA PVA-CMC PVA-Carbomer

Ovalbumin (OVA) 0.6 - 2.4 0.3 - 1.2 0.3 - 1.2

Trehalose/Sucrose (1:1) 3.4 - 13.4 2.4 - 9.7 2.3 - 9.2

Propylene glycol 5.0 8.7 8.7

Polysorbate 20 0.07 0.04 0.04

Carboxymethyl cellulose (CMC) - 4.4 -

Cross-linked carbomer - - 4.4

Polyvinyl alcohol (PVA) ad 100 ad 100 ad 100

Solid content 15.1 % (w/v) 23.6 % (w/v) 23.6 % (w/v)

Knife height 1000 µm 500 µm 500 µm

Casting speed 1.0 mm/s 1.0 mm/s 0.5 mm/s

2.3 Casting of the polymer films

The liquid film formulations were cast onto polytetrafluoroethylene (PTFE)-coated cards

(mtv messtechnik, Erftstadt, Germany) using an Erichsen Coatmaster 510 (Erichsen GmbH,

Hemer, Germany). The automated film applicator operated at a working speed of 1mm/s

for the PVA and PVA-CMC blend films or at 0.5 mm/s for the PVA-carbomer blend films.

PVA films were prepared using a 1000 µm casting knife whereas a 500 µm casting knife

was used for the PVA-CMC and PVA-carbomer blend films. The polymer films were dried

overnight at RT and cut into 15x15 mm2 samples. The film sample dimensions and weight

were determined prior to each experiment. The OVA loading was quantified upon recon-

stitution of the dry polymer films using a bicinchoninic acid (BCA) assay (Micro BCA�

Protein Assay Kit, Thermo Scientific, Waltham, MA, USA). The FITC and RD70 con-

tents were determined by fluorescence spectroscopy upon dissolution in 100 mM Tris buffer

(pH 9.0, 150 mM ionic strength).
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Figure IV.1: Schematic illustration of the customized flow-through diffusion chamber to
assess the release from polymer films.

2.4 Fluorescence spectroscopy

The model substances FITC and RD70 were quantified using a Cary Eclipse fluorescence

spectrophotometer (Agilent, Santa Clara, CA, USA) at excitation and emission wave-

lengths of 492 nm/ 518 nm and 555 nm/ 576 nm, respectively. Calibration resulted in

linear detection ranges between 1-400 ng/mL for FITC and 50-3,000 ng/mL for RD70 so-

lutions (both R2 = 0.999). The limit of detection was 1 ng/mL for FITC and 50 ng/mL

for RD70, respectively. Each value was determined as the average out of 5 consecutive

measurements. The fluorescence intensity of each sample was analyzed in triplicates.

2.5 Release from polymer films

The release of FITC as model substance from dry polymer films was tested in a customized

flow-through diffusion chamber (Fig. IV.1). In precise, the dry film patches were mounted

in the donor compartment with the polymer film facing the circular opening of a low-

volume receptor chamber. The receptor chamber provided a medium in- and outlet on

opposite sides, generating a laminar flow of the receptor medium. Nucleopore� membrane

filters with a pore size of 12 µm (25 mm diameter, Whatman�, GE Healthcare, Freiburg,

Germany) were used to separate donor and receptor compartments and Leukoflex® occlu-

sive tape (BSN Medical, Hamburg, Germany) was used for fixation of the polymer films.

At a flow-rate of 400 µL/h, Tris buffer (100 mM, pH 9.0, 150 mM ionic strength) was

pumped through the receptor chamber using a LA-160 syringe pump (Landgraf Laborsys-

teme, Langenhagen, Germany). At the chamber outlet, receptor medium was collected in

fractions after 30 min, every hour until 8 h, and after 10 h. The amount of FITC in each

fraction was quantified and compared to the total FITC content of each film sample. The

total FITC content was calculated from the theoretical loading determined by dissolution

of film samples in a defined volume. All experiments were performed in triplicates.
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2.6 Laser microporation treatment

Excised skin from both sides of the ventrolateral region between mammary ridge and the

lateral side of the body of 5 − 7 week old piglets was supplied by the Clinic for Swine

(Faculty of Veterinary Medicine, LMU Munich, Oberschleißheim, Germany). Skin samples

were cleaned with water and bristles were removed using a hair clipper. Full thickness

pig skin was prepared by removing excess subcutaneous tissue with a scalpel. The skin

samples were stored at −80 °C for no longer than one month. Before use, the pig skin

was thawed and approximately 3x3 cm2 skin samples were prepared. After equilibration in

0.9 % saline for 10 min, the skin surface was dried using a cotton wipe and positioned on

a flat surface. For laser microporation using the P.L.E.A.S.E.® fractional laser poration

system (Pantec Biosolutions, Ruggell, Liechtenstein), two pulses of 125 µs per pore with

a fluence of 17.8 J/cm2 were applied, creating a nominal pore depth of 71 µm on a total

treatment area of 14x14 mm2 and a pore density of 15 %. For cosmetic applications

typically 100 µm pore depth and 5 % pore density are targeted. The pore density in pores

per cm2 was determined by counting and the pore diameter was assessed by histological

imaging.

2.7 Transepidermal water loss measurement

The transepidermal water loss (TEWL) before and after laser microporation was quanti-

fied using a Tewameter® TM 300 (Courage + Khazaka electronic, Cologne, Germany).

The TEWL was determined in triplicates, each value being calculated as the mean of 5

consecutive stable measurements within equilibration for ∼5 min. Freshly excised pig skin

and pig skin stored at −80 °C for 1, 14, or 28 days were compared in this experiment. The

skin samples were hydrated for 10 min in 0.9 % saline and subsequently adjusted onto a

flat surface. Skin surface moisture was removed using a cotton wipe and the TEWL was

measured after 10 min resting at ambient conditions. Laser microporation was performed

as described above. After mounting onto Franz diffusion cells and equilibration for 30 min,

the TEWL of intact and laser microporated skin was measured as described above.

2.8 Skin penetration and permeation

RD70 or PS-particle loaded polymer film samples were attached to laser microporated or

intact skin using Leukoflex occlusive tape (BSN Medical, Hamburg, Germany). Subse-

quently, the skin samples were mounted in jacketed Franz diffusion cells with an orifice

138



2 Materials and Methods

diameter of 15 mm (A = 1.77 cm2). The conjunction of donor and receptor compartment

was covered with parafilm to avoid leakage and fixated with a clamp. The receptor com-

partment (12 mL) was filled with 100 mM Tris buffer (pH 9.0, 150 mM ionic strength)

and the samples were incubated for 24 h at 32 °C. After 2, 4, 6, 12, and 24 h, 1 mL of the

receptor volume was withdrawn and replaced by fresh medium. The amount of RD70 in

the receptor medium was quantified by fluorescence spectroscopy. After 24 h incubation,

Franz cells were dismantled, excess formulation was removed from the skin surface and an

area of 1x1 cm of the treatment region was prepared for further analysis. All experiments

were performed in triplicates.

2.9 Histological analysis

Incubated skin samples were embedded in tissue freezing medium (Leica Biosystems, Wet-

zlar, Germany) and shock frozen in liquid nitrogen. Vertical skin sections with a thickness

of 10 µm were prepared using a Microm HM560 cryostat (Thermo Scientific, Waltham, MA,

USA). Histological samples were prepared using 4’,6-diamidino-2-phenylindole (DAPI)

mounting medium (Fluoroshield�, Sigma-Aldrich, Taufkirchen, Germany). The skin cross-

sections were imaged upside down using a LSM 510 laser scanning microscope equipped

with a LD-Achroplan 40x/0.6 corr objective (both from Carl-Zeiss, Jena, Germany). The

settings were kept constant for each image. Image analysis was performed using Fiji image

analysis software [66].

2.10 Quantification of RD70 in skin

The amount of RD70 that penetrated into the skin was quantified upon extraction from

horizontal skin sections. In precise, incubated skin samples were fixed with the surface

down onto a pre-cooled plate, embedded in tissue freezing medium (Leica Biosystems,

Wetzlar, Germany), and frozen at −80 °C. Horizontal skin sections with a thickness of

20 µm were prepared by cryosectioning. Five slices were collected in a tube, adding up in a

total thickness of 100 µm for each extracted skin layer. RD70 was extracted from the skin

sections by incubation in 200 µL of 100 mM Tris buffer (pH 9.0, 150 mM ionic strength)

for 20 min at 60 °C. After cooling down to RT, proteins were removed from the extract

using TCA. For deproteinization, the extracted samples were centrifuged at 13,000 rpm for

2 min and 180 µL supernatant was transferred to a fresh tube. Subsequently, 30 µL of ice

cold 100 % TCA was added to the solution and the mixture was incubated for 5 min on ice.
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After centrifugation at 13,000 rpm for 2 min, 200 µL supernatant was quickly transferred

to a fresh tube and mixed with 30 µL ice cold 5 M potassium carbonate solution. The basic

pH of the extract was checked using pH paper. The RD70 content of the deproteinized

extract was analyzed by fluorescence spectroscopy. The experimental flux was calculated

based on the amount of RD70 detected in the skin tissue below 300 µm per cm2 and the

amount detected in the receptor compartment after 24 h.

3 Results

3.1 Film properties and release behavior

Transparent, water-soluble polymer films with an average thickness of 36 ± 14 µm for

pure PVA, 71 ± 12 µm for PVA-CMC, and 58 ± 13 µm for the PVA-carbomer blend were

prepared using the film casting technique followed by overnight drying at ambient tempera-

tures. Different hydrophilic model substances could be incorporated into the polymer films

by direct loading. The addition of varying amounts of model substance to the polymer

solution while adapting the PVA content allowed to adjust the target concentration per

area unit as preferred (Tab. IV.3).

Stable, homogeneous films were obtained with up to 389.4 ng/2 FITC or 268.6 µg/2 RD70

incorporated as model substances into the polymer films. Although polysaccharides can

increase the brittleness of dry polymer films [67], films loaded with RD70 provided suit-

able properties for the patch application. RD70 is a branched polysaccharide composed

of 1,6-alpha and 1,3-glycosidic linkages between glucose units, which is labeled with rho-

damine B fluorescent dye molecules via thioester links to free glucose hydroxyl groups.

The macromolecular model substance exhibited a molecular weight of 70 kDa and hy-

drophilic properties to simulate the behavior of protein antigens and other hydrophilic

macromolecules.

Besides small and macromolecular model substances, films with suitable properties were

obtained when PS-particles with a size of 5 µm or 0.5 µm were loaded as model vaccine

vehicles into the formulations. The content of model substance or vehicle could be adjusted

by varying film thickness and polymer content of the film formulation.

All films showed a high solubility and dissolved in large amounts of water within seconds.

To simulate the restricted access of the films to tissue fluids through laser-generated mi-

cropores, FITC-loaded films were attached to a customized diffusion chamber, separated
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Table IV.3: Film properties and maximum concentrations per mass or area unit that were
achieved by direct loading of the model substances fluorescein isothiocyanate (FITC) and
rhodamine B-labeled dextrane 70 kDa (RD70). (* used for skin penetration and permeation
experiments)

Film formulation Film Weight per FITC RD70

thickness 15x15 mm2 * content content

[µm] [mg] [ng/cm2] [µg/cm2]

PVA 36 ± 14 6.0 ± 0.5 242.5 ± 36.5 92.4 ± 18.6

PVA-CMC 71 ± 12 20.2 ± 0.2 389.4 ± 51.1 268.6 ± 79.6

PVA-Carbomer 58 ± 13 17.2 ± 0.2 203.5 ± 16.8 207.5 ± 7.7

from the receptor medium by a filter with a nominal pore size of 12 µm. Upon contact with

the receptor medium, which was passing below the filter at a low flow-rate, the hydrophilic

film polymer dissolved and led to a fast release of the model substance. The occlusive

tape that was used for fixation of the polymer films served as a tight, water-resistant seal

within the diffusion chamber entrapping the solubilized film formulation. Within six hours,

75− 100 % of the incorporated FITC was released from the films regardless of the investi-

gated polymer film formulation(Fig. IV.2). The comparison of low and high FITC loading

in pure PVA, PVA-CMC, and PVA-carbomer films revealed a tendency of inferior release

after 12 h for the high FITC content with a total release around 80 %. The incorporation

of lower amounts of FITC into the films resulted in an improved release behavior close

to 100 % total release. Considering the release kinetics of different film compositions, no

obvious differences between PVA, PVA-CMC, and PVA-carbomer films with comparable

FITC content were detected.

3.2 Transepidermal water transport and film dissolution

To evaluate the suitability of the utilized experimental setup to provide a good transferabil-

ity to in vivo skin conditions, different aspects of the Franz diffusion cell experiment were

examined. The pore formation process as well as the micropore dimensions are affected not

only by laser parameters but also by skin condition and the level of hydration [68]. Further-

more, the extent of skin barrier disruption and the storage-induced damage of excised skin

samples might affect the water transport through the tissue. To ensure a pore formation

comparable to in vivo conditions, the release of water from freshly excised and stored pig
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Figure IV.2: Cumulative release of the hydrophilic model substance FITC from PVA and
PVA-CMC/ PVA-carbomer blend films loaded with 50-100 ng (low) and 200-400 ng (high)
FITC per cm2 film. All film formulations provide a fast drug release within 6 h with
restricted water contact through 12 µm filter pores.

skin at the time of microporation was examined by TEWL measurements. Similarly, the

water transport through intact and laser microporated pig skin was characterized in the

Franz cell setup.

After hydration, the skin samples were prepared for laser treatment, which was performed

∼ 10 min after removal from saline solution. At this point in time, all skin samples

showed TEWL values between 4−15 g/m2/h regardless of the storage duration (Fig. IV.3).

Furthermore, comparable results were obtained for each sample when the untreated pig

skin was assembled in the Franz diffusion cell setup. Fresh pig skin and skin samples that

were stored for one day provided slightly higher TEWL values compared to skin samples

with a storage duration of 14 or 28 days at −80 °C. The lowest values were detected using

pig skin that was stored for 14 days. Fractional laser microporation using the previously

specified parameters led to a 4- to 5-fold increase in the water transport trough the skin.

The dissolution of the polymer films was studied macroscopically over an incubation period

of 24 h using untreated and laser microporated pig skin. It was observed that all polymer

film formulations dissolved within less than 6 h when attached on top of laser-generated

micropores. However, no or incomplete disintegration was detected when untreated skin

was used in the Franz cell setup. Figure IV.4 gives a representative overview of the film
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Figure IV.3: Water loss of excised pig skin after different treatments.

dissolution behavior in the Franz diffusion cell setup, showing PVA-CMC blend films di-

rectly after fixation to laser microporated skin and after 6 h incubation. The dissolution

of the films was macroscopically visible. Upon solubilization, air bubbles were formed due

to a small residual interspace between film patch and skin surface at the time of patch

application. The occlusive tape used for film fixation, facilitated the generation of a liquid

depot between skin surface and tape. After disintegration of the polymer matrix, the model

substance or particles were free to diffuse into the underlying tissue. Using untreated skin,

first signs of a beginning dissolution were detectable only after 24 h incubation. Upon

dismantling, shape and surface of these polymer films was predominantly intact but sticky

due to incomplete hydration.

3.3 Intradermal delivery of RD70 and PS-particles

The intradermal delivery of RD70 and PS-particles was evaluated qualitatively by laser

scanning fluorescence microscopy. After 24 h, excess solubilized film was removed from

the skin surface and vertical sections were prepared. Cell nuclei of the viable tissue were

stained with DAPI to enable the distinction between epidermal and dermal skin layer.

Microscopic imaging revealed an increasing deposition of RD70 in the epidermis and upper

dermis of micropores over 6, 12 and 24 hours (images not shown). After 24 h incubation, the

penetration of RD70 into the micropores was comparable for each polymer film formulation
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Figure IV.4: Dissolution behavior of representative polymer films observed during incuba-
tion in Franz diffusion cells using red-fluorescent RD70 as model substance. The images dis-
play an array of laser-generated micropores on excised pig skin (a), a single laser-generated
micropore (b), as well as RD70-loaded PVA-CMC blend films directly after mounting onto
Franz diffusion cells (c) and after 6 h incubation on laser microporated pig skin (d). Fur-
thermore, polymer films are shown after incubation for 24 h (e) and after disassembly from
Franz cells using untreated pig skin (f). (Magnification 200x, scale bar=100 µm)

144



3 Results

(Fig. IV.5a − c). The delivery of the PS-particles however, was dependent on the particle

size and the used polymer formulation. The application of nanoparticle-loaded films with

a size of 0.5 µm led to a deposition over the entire micropore surface (Fig. IV.5d − f),

whereas no particle delivery was observed for microparticles with a diameter of 5 µm

(Fig. IV.5g − i). Moreover, the nanoparticle delivery using PVA polymer films was found

superior over the deposition using PVA blend formulations. No substantial deposition of

RD70 or PS-particles was detected on intact skin.

The penetration of RD70 was quantified by fluorescence spectroscopy after extraction from

100 µm horizontal skin sections and sample deproteinization. The incubation of laser mi-

croporated skin with RD70-loaded polymer films facilitated a penetration of the macro-

molecule into the epidermal and dermal layer of the skin. For all tested film formulations,

an amount of 150−300 ng RD70 per cm2 was extracted per 100 µm horizontal skin section

up to a depth of 500 µm (Fig. IV.6). Furthermore, it was shown that RD70 permeated

through the skin during incubation on laser microporated skin. Although the amount

of RD70 in the Franz cell receptor compartment remained below the limit of detection

within 12 h incubation, the macromolecule was quantifiable in the receptor medium after

24 h incubation. PVA films provided a slightly higher RD70 delivery into and through ex-

cised pig skin compared to the PVA-CMC and PVA-carbomer blend formulations, which

both showed comparable RD70 penetration and permeation behavior. The calculated to-

tal amount of RD70 that was delivered into and through the skin over a microporated

area of 14x14 mm2 was highest for the pure PVA polymer film formulation with a total

amount of 4.8 µg (Tab. IV.4). In comparison, 3.4 µg and 3.0 µg were delivered into the skin

applying RD70 loaded PVA-CMC and PVA-carbomer films. Approximately 75 % of the

total amount was detected in deeper skin layers or permeated into the Franz cell receptor

compartment with values of 2.8 µg, 1.8 µg, and 1.7 µg for the pure PVA, PVA-CMC, and

PVA-carbomer film patches.

The experimentally determined flux upon 24 h provided relatively low values between

0.07−0.12 µg/cm2/h (Tab. IV.4). A slightly superior flux was detected for pure PVA films

compared to the PVA blend formulations, which provided comparable values. Based on

theoretical considerations the predicted flux was calculated based on the intuitive model

(Jint) and the proposed model (Jmodel) by Rzhevskiy et al. (Tab. IV.4) [69]. A pore

density of 273 pores/cm2 determined by counting and a pore diameter of 200 µm was used

for flux prediction. The molecular weight of 70 kDa of RD70 was used as provided by

the manufacturer. Furthermore, the RD70 concentration was determined based on the
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IV. Laser microporation-assisted delivery from water-soluble polymer films

Figure IV.5: Fluorescence microscopy images of excised pig skin cross-sections after laser
microporation and incubation with PVA, PVA-CMC or PVA-carbomer blend films for
24 h on Franz cells. Intradermal deposition of RD70 (a-c), 0.5 µm PS-nanoparticles (d-f),
or 5 µm (g-i) PS-microparticles was shown by red fluoresce surrounding the micropore
tissue. Dashed lines frame the skin surface (upper, determined in transmission mode)
and the border between epidermal and dermal layer (lower). (Magnification 40x, scale
bar= 100 µm)
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Figure IV.6: Quantitative amount of RD70 per square centimeter extracted from 100 µm
horizontal skin sections and recovery of RD70 from the receptor compartment after 24 h
incubation of polymer films on laser microporated pig skin.

RD70 content per cm2 of each sample and the mean TEWL of 58.1 g/m2/h upon laser

microporation per cm2 within 24 h.

For the flux prediction using the intuitive model, a thickness of 1500 µm of the skin tissue

below the SC hs was used to represent full thickness skin. Moreover, a thickness equivalent

to the average film sample thickness (Tab. IV.3) was used as height hv above the SC. The

theoretical model by Rzhevskiy et al. predicted 4- to 10-times higher flux values compared

to the experimental flux. Higher deviations were observed for the CMC and carbomer

blend formulations. On the other hand, the intuitive model provided good estimates for

PVA-CMC and PVA-carbomer films but estimated a lower value for the pure PVA film.

The incubation of untreated pig skin with RD70-loaded PVA films did not result in a

substantial delivery into the skin. A total amount of 0.08 µg was recovered from intact

skin after 24 h incubation. This represents a delivery of approximately 0.08 % of the

total RD70 applied in a PVA film patch on intact skin. The model substance was mainly

detected in the first 100 µm horizontal layer of the skin, providing a deposition below

50 ng/cm2 (Fig. IV.6). Moreover, no RD70 could be quantified in the Franz cell receptor

compartment after 24 h incubation with a level below the limit of detection.
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Table IV.4: Total amount of RD70 delivered into the skin after 24 h, calculated as the sum
of substance that penetrated into and permeated through the skin and the experimental
and theoretically predicted RD70 flux per cm2 and hour. The predicted flux was calculated
based on the intuitive model (Jint) and the proposed model by Rzhevskiy et al. (Jmodel)
[69].

Film formulation Total RD70 delivery Jexp Jint Jmodel

[µg/cm2] [µg] [%] [µg/cm2/h] [µg/cm2/h] [µg/cm2/h]

PVA 3.6 ± 1.5 4.8 ± 1.7 2.3 ± 1.0 0.12 0.03 0.47

PVA-CMC 2.5 ± 0.4 3.4 ± 0.4 0.7 ± 0.1 0.08 0.08 1.06

PVA-Carbomer 2.2 ± 0.2 3.0 ± 0.4 0.7 ± 0.1 0.07 0.07 0.92

4 Discussion

4.1 Transepidermal water loss and film dissolution behavior

The TEWL of excised pig skin was determined under varying conditions to evaluate its

comparability to in vivo human skin. Furthermore, the influence of a short-term storage of

skin samples was assessed using freshly excised pig skin and skin samples that were stored

at −80 °C for up to 28 days.

Intact skin samples showed a water release between 4 − 15 g/m2/h, which lies within the

range of TEWL values observed on humans. Besides skin hydration and environmental

conditions, the water release measured on human skin was shown to be mainly dependent

on the site of the body and the circadian rhythm [70, 71]. Lower values between 3 −
14 g/m2/h have been measured on the forearm, whereas palms, soles, or the forehead

release higher amounts of water with TEWL values of up to 48 g/m2/h [70, 71]. The

TEWL of excised, intact pig skin samples was comparable to the TEWL measured on

human forearms, indicating that a comparable micropore formation with similar depths

and RTD should be possible at this site of the body. Moreover, intact skin samples, freshly

excised or stored, showed consistent TEWL values at the time of laser microporation and

in the Franz cell setup, indicating that optimum conditions were reached for the laser

microporation treatment. Certain variations of the TEWL between fresh and stored skin

samples were recognized but could not be linked to the storage duration. The differences

detected were in the range of variation observed on human skin with TEWL fluctuations
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of up to 14 g/m2/h [70, 71]. Based on these results, we assume that a storage of pig

skin samples for up to 28 days at −80 °C is suitable to maintain a water release behavior

comparable to in vivo human skin. To ensure comparability in the following delivery

studies, only pig skin from the dorsal region of 5 − 7 week old pigs was used.

Laser microporation using the P.L.E.A.S.E.® laser device induced a 4- to 5-fold increase

of the TEWL in vitro. A comparable impact by laser microporation has been reported

on human skin with an increase of the TEWL by factor 4.5 to 6.3 [29]. The enhanced

TEWL through the skin facilitated a fast dissolution of the polymer films for all tested

compositions. All film formulations disintegrated within a similar time period, thereby

providing at least 18 h during which the model substance could diffuse into the micropore

tissue before the pores would close. On the other hand, the low water transport through

intact skin was insufficient to dissolve the polymer films within a total incubation time

of 24 h. We therefore conclude that a fast dissolution of the polymer films is ensured

with a TEWL above 40 g/m2/h and should further improve with elevating TEWL values.

Besides that, it should be considered that an efficient film dissolution requires the use of

occlusive backings that entrap the transpired water and maximize the water contact with

the polymer films.

4.2 Influence of the polymer film formulation on the RD70 de-

livery

Histological images and the quantification of RD70 in horizontal skin sections revealed

that macromolecules were successfully delivered into laser microporated skin. Although

most significant deposition of RD70 was visible in the epidermis, extracts from deeper

skin sections showed that RD70 also penetrated into the dermal skin layer. Due to the

high density of LCs and dDCs in the epidermis and dermis, an antigen-specific immune

response is supposedly enhanced when the antigen deposition in these layers is maximized.

It has been reported that both, the vehicle formulation and the molecular structure of the

applied substance, influence the drug delivery and hence also the APC targeting [63, 72].

The amount of RD70 delivered into the skin was comparable to results of previous in vitro

studies using macromolecules [34]. In vivo a delivery efficiency of up to 80 % has been

reported for OVA-loaded dry patches [62].

We have shown that RD70 did not penetrate into intact skin, but was exclusively delivered

into laser microporated skin. The intradermal deposition of RD70 was slightly higher

using PVA polymer films compared to PVA-CMC and PVA-carbomer blends. Although
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this trend was not supported by microscopic imaging, the absolute quantification of RD70

by fluorescence spectroscopy suggested superior delivery properties using pure PVA films.

This effect could be attributed to the increased film thicknesses of the PVA blend for-

mulations, which led to slightly slower dissolution during incubation. Although a smaller

casting knife was used for the manufacturing of the PVA blend films, the final film thick-

ness of PVA-CMC and PVA-carbomer films was up to two times higher compared to the

pure PVA formulation. The addition of the gelling agents CMC and carbomer improved

the film casting properties of the polymer solutions by increasing the viscosity but reduced

the diffusion of RD70 into the skin.

The in vitro release study could simulate the restricted liquid contact through the micro-

pores. The drug release in the diffusion chamber was comparable for all film formulations

due to a simultaneous solubilization and release of model substance and film forming poly-

mer. Slightly inferior release was observed for polymer films with a higher content of model

drug. However, these differences were negligible with a generally high total release after

12 h incubation despite limited contact to the release medium. Generally, no differences

in the dissolution and release behavior were detected for pure PVA, PVA-CMC, and PVA-

carbomer films. Also, no difference in complete film dissolution in different aqueous media

with direct liquid contact at pH 6−9 was observed in preliminary studies (data nor shown).

The pore diameter of 12 µm used in the experimental setup was suitable to simulate the

limited access to the tissue fluid. Although this pore size is smaller compared to the diam-

eter of laser-generated micropores of 100− 200 µm, both diameters are significantly larger

than the molecules that pass through the pores into the release medium or skin tissue upon

dissolution.

The diffusion into the skin tissue was assessed using the Franz cell setup and showed a

formulation-dependent penetration and permeation behavior. Although a non-physiological

pH of 9 was used as Franz cell receptor medium, the short exposure ≤ 24 h of the skin

tissue to the elevated pH was not expected to induce major changes to the tissue during

incubation time. Moreover, dextrane molecules are expected to exhibit a neutral surface

charge. The low pKa of the attached rhodamine dye of ∼3 would induce a deprotonation of

carboxylic functional groups at slightly elevated as well as physiological pH. We therefore

expect comparable diffusion behavior of the model substance RD70 in the present study

setup using aqueous receptor media at pH 9 as well as physiological pH.

The total RD70 delivery results suggest that the film composition and film thickness were

the main factors to influence the RD70 penetration and permeation. Upon hydration
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and dissolution of the films on the skin surface, the model substance could diffuse into

the accessible micropore tissue. Compared to pure PVA films, the addition of CMC and

carbomer increased the formulation viscosity upon dissolution on the skin. The viscous gel

matrix could not diffuse into the micropores but remained on the skin surface, lowering the

diffusivity of the model substance. Lower values for the total delivery of RD70 into and

through the skin for PVA-CMC and PVA-carbomer films indicate that the release from the

gel matrix upon dissolution was reduced due to increased viscosity. Moreover, the higher

polymer content for PVA blend films further reduced the diffusion of RD70 into the tissue.

Besides film thickness, the relative composition of pure PVA and PVA blend formulations

could influence the RD70 penetration behavior. In comparison to the blend formulations,

pure PVA films provided a higher relative sucrose and trehalose content, enhancing the

initial film dissolution due to osmotic effects. With respect to the total amount of sucrose

and trehalose, PVA-CMC and PVA-carbomer films had higher contents per cm2 related to

loading of the model substance. Upon film dissolution, the resulting osmotic gel could have

induced a draining of water from the tissue, thereby reducing the penetration of RD70 into

the skin in opposite direction. Furthermore, the addition of plasticizers, e.g. propylene

glycol, can affect the release behavior from films. Higher contents of propylene glycol

were used for PVA blend formulations in order to reduce the film brittleness, which was

increased by CMC and carbomer polymers. Due to its hygroscopic properties, propylene

glycol can improve the wetting and dissolution behavior of the polymer films. Although the

relative propylene glycol content was higher in the PVA blend formulations, the dissolution

behavior of PVA-CMC and PVA-carbomer films was comparable to pure PVA films with

lower amounts of the plasticizer. Our findings indicate that the major rate limiting step in

this study was the diffusion of model substance into the skin. The film dissolution played

a minor role and was comparably fast for all tested formulations. The experimentally

determined flux indicated a relatively slow diffusion of the macromolecule through the

tissue which was further decreased by addition of the gelling agents CMC and carbomer to

the film composition (Tab. IV.4). The intuitive model resulted in well-matching fluxes for

the PVA-CMC and PVA-carbomer films whereas the proposed new model [69] generally

overestimated the flux for all formulations. It has to be noted that generally higher fluxes

were predicted for the CMC and carbomer blend formulation, although experimental data

revealed a reduced diffusion for these formulations. This observation, likely due to increased

viscosity compared to the pure PVA films, highlights the need to include the formulation

viscosity into predictive models of flux predictions. Furthermore, we conclude that the
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formulation viscosity and the polymer content per cm2 are important parameters affecting

dissolution time and, more importantly, the RD70 penetration into the skin. Moreover,

films with increasing thickness with even slower dissolution may potentially provide limited

capability to deliver macromolecules and other drug substances into laser microporated

skin.

Considering the micropore filling in vitro, we expected a filling behavior of the solubilized

polymer films comparable to liquid solutions or gels, for which good filling properties

have been demonstrated before [63]. Under in vivo conditions, topically applied liquid

is absorbed by laser microporated skin tissue within approximately 10 min [51, 53, 54].

These findings suggest similar behavior for the present patch delivery system when tested

under in vivo conditions. Upon dissolution on laser microporated skin, the solubilized film

formulation could be absorbed by the viable tissue, thereby delivering the drug substance as

well as film forming polymers with lower molecular weight. Although the ratio of delivered

to applied RD70 remained relatively low in the present Franz diffusion cell study, we assume

that the delivery efficiency might be improved under in vivo conditions. Particularly the

application of unblended PVA polymer film patches on laser microporated skin provides

the chance of low viscosity PVA formulation to be absorbed by the viable tissue.

4.3 RD70 delivery using soft laser microporation parameters

The efficient delivery into laser microporated skin depends not only on the vehicle for-

mulation, but also on drug substance properties like molecular weight, hydrophilicity and

lipophilicity, and their interplay with micropore characteristics. It has been shown that

small hydrophilic molecules diffuse easier through the tissue upon laser microporation com-

pared to larger molecules [31, 72]. Furthermore, the drug transport of small, hydrophilic

molecules can be enhanced by increasing not only the number of pores per cm2 (pore

density) but also the micropore depth [11, 31, 55, 72, 73]. Notably, increasing laser pulse

durations from 50 µs (super short pulse) up to 1000 µs (very long pulse) do not substantially

increase the micropore dimensions but mainly influence the extent of RTD, which com-

promises the molecule permeation at the tissue interface [72]. The transdermal delivery of

small molecules could be significantly increased by optimizing the laser microporation treat-

ment, in some cases leading to systemic side effects [74, 75]. Considering other molecule

types, the influence of laser settings on the delivery efficiency is less pronounced. Small,

lipophilic substances mainly penetrate into the skin via passive diffusion, whereas the dif-

fusion capabilities of macromolecules are highly dependent on their molecular structure
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and charge [31].

In the present study, we used RD70 as a stable, hydrophilic model macromolecule that

cannot diffuse through intact skin [31]. Our results prove that a substantial amount of

the macromolecule with a size of 70 kDa was delivered into laser microporated skin using

’cold ablation’ laser parameters. The P.L.E.A.S.E.® fractional laser poration device was

used to create shallow micropores that reached the epidermal and superficial dermal layer,

employing two pulses per pore with a low laser fluence of 17.8 J/cm2 and a pore density

of 15 %. In previous studies, laser fluences of up to 13.59 J/cm2 and about 22.65 J/cm2

have resulted in micropores with a diameter between 150− 200 µm, reaching depths of up

to 30 µm and 100 µm, respectively [26]. With the parameters used in this study, we were

able to generate micropores with equal diameter and a pore depth well comparable to the

expected nominal value provided by the laser poration device (Fig. IV.4). The application

of two pulses with a laser fluence of 17.8 J/cm2 facilitated the creation of micropores with

relatively small diameter but reaching deeper into the tissue compared to a one pulse

application. We assume that similar depths could be achieved at higher laser fluences,

however this would likely result in larger pore diameters and increased RTD, which would

affect penetration negatively. The laser poration treatment in the presented study resulted

in a distinct coagulation zone (RTD), which was observed around the micropore and most

likely attributed to a medium short pulse duration of 125 µs. Considering previous studies,

we expect that the delivery efficiency of RD70 could be further improved by optimizing the

micropore dimensions (laser fluence, number of pulses per pore), increasing the number of

pores per cm2 (pore density), and reducing the RTD-related tissue barrier (laser fluence,

pulse duration) [55, 72].

4.4 Nanoparticle delivery facilitated by fractional laser microp-

oration

To evaluate the intradermal delivery of particles as model vaccine vehicles, PS-nano- and

microparticles with a diameter of 0.5 µm and 5 µm were incorporated into the polymer films.

Fluorescence microscopy revealed that a substantial deposition of PS-nanoparticles over

the entire micropore surface was achieved. On the other hand, PS-microparticles did not

attach to the micropore surface or penetrate into the tissue. Unlike the PS-microparticles,

the smaller nanoparticles of 0.5 µm exhibited suitable properties to diffuse into the skin

upon tissue ablation. The differences in the deposition behavior can be attributed to a

smaller diffusivity for larger particles. We assume that an intermediate deposition of PS-
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microparticles was most likely mediated by sedimentation in the solubilized polymer films.

In contrast to PS-nanoparticles, larger microparticles could not enter the skin tissue and

were easily removed together with residual film in a post application cleaning treatment.

Just as described for RD70, the polymer formulation influenced the particle delivery sig-

nificantly. Histological images show that PVA films provided a superior deposition of

PS-nanoparticles compared to PVA films blended with CMC or cross-linked carbomer.

This effect was even more pronounced for the PS-nanoparticles which suggests a partic-

ularly strong sustaining effect on the particulate vehicles induced by the gelling agents.

Moreover, the gelling polymers might have interacted with the PS-nanoparticle surface as

observed with other polymers [76], thereby increasing the hydrodynamic radius and com-

promising the diffusion into the tissue. Therefore, a minimized content of film forming

polymer that maintains sufficient mechanical stability might be beneficial for the delivery

of nanoparticles from film patches into laser microporated skin.

Due to their immunostimulatory properties, nanoparticles are considered as a particularly

attractive adjuvant for vaccination [77]. Regarding the intradermal delivery of nanoparti-

cles, recent advances have shed more light on the delivery characteristics via the transfol-

licular route [78, 79]. Although a diameter between 0.4− 0.7 µm has been identified as the

optimum particle size [80], transfollicular delivery fails to provide an efficient deposition of

substantial particle amounts in close vicinity to cutaneous APCs. Moreover, a penetration

of nanoparticles larger than 10 nm into the viable skin is unlikely without further disrup-

tion of the skin barrier [81]. Furthermore, it has been reported that the particle uptake by

dendritic cells increases with decreasing particle diameters below 0.5µm [82].

5 Conclusion

We successfully demonstrated that PVA-based polymer films are easily water-soluble and

facilitate the delivery of macromolecules and nanoparticles into laser microporated skin.

The utilized film casting technique is easily scalable and would allow for a cost-effective

mass production of the film patches. Moreover, the good mechanical stability after direct

loading of different hydrophilic model substances into the formulations at varying concen-

trations suggests a good formulation compatibility with a wide range of molecules and

vehicles, e.g. vaccine antigens, allergens, nanoparticles, and adjuvants. However, the influ-

ence of different molecule types on the mechanical properties and storage stability of the

polymer films still requires an all-embracing investigation and shall be subject to future
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studies.

The patch delivery system, which is composed of a water-soluble polymer film and occlusive

backing, facilitates effective skin hydration, thereby promoting the antigen processing by

skin-resident APCs. Although immune responses have been observed upon prolonged anti-

gen contact with intact skin [83–85], the active delivery of vaccines into the viable tissue is

necessary to substantially boost the delivery efficiency and thus the immune response [4].

Reduced film thicknesses combined with higher loadings or the manufacturing of drug-

loaded droplet arrays are two further approaches to improve the delivery efficiency. Besides

that, the patch system allows to cover the impaired skin barrier during re-epithelialization,

thus rendering the application of plasters after microporation unnecessary.

In connection with fractional laser microporation, the presented PVA-based polymer film

patches offer a safe, minimally invasive route for cutaneous immunization and reduce sharp

waste and biohazard disposal, which are major disadvantages of intramuscular (i.m.) or

subcutaneous (s.c.) injections. The utilized P.L.E.A.S.E.® fractional laser poration system

provides the possibility to ablate the skin tissue with minimal RTD, offers a favorable side

effect profile, and provides the opportunity to safely and reproducibly increase the TEWL

through the skin. The development of a hand-held device might further increase the patient

compliance and particularly the commercial appeal.

The presented concept combines the advantages of both systems providing a minimally-

invasive access to viable layers of the skin and exploiting dry polymer films as vaccine

delivery formulations. The combination of the physical stimulus with the potency of

nanoparticle carriers as vaccines is consequently another appealing idea to maximize im-

mune responses upon cutaneous immunization. Good functionality, easy applicability, and

the readily available manufacturing technology makes the microporation-patch combina-

tion an attractive concept which is worth further investigation.
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V

SUMMARY OF THIS THESIS

1 Summary

The aim of this thesis was to evaluate the i.d. delivery of model vaccines using selected

needle-free, minimally invasive delivery techniques and to assess their potential application

for cutaneous vaccination.

Chapter II is focused on the i.d. delivery of vaccine microparticles using a hand-held pow-

der injector. A highly concentrated sugar-based vaccine using ovalbumin (OVA) as model

antigen was manufactured using a two-step process combining collapse lyophilization and

cryogenic milling. The resulting vaccine with a loading of 200 µg/mg OVA showed good

stability for up to 12 months at ambient conditions. The vaccine powder, which was loaded

into the powder injector using an oily mixture of the components of the adjuvant system 03

(AS03), namely squalene, D/L-α-tocopherol, and polysorbate 80, exhibited good adhesion

on the device membrane. The powder adhesion increased with the viscosity for a range

of different oily liquids tested. The stability of the oily adhesive composed of AS03 adju-

vant components was shown to provide a superior persistence against UV/Vis light and

improved long-term stability when stored in direct contact with the highly concentrated

OVA vaccine powder. Qualitatively, the successful i.d. delivery of vaccine microparti-

cles into the epidermal and upper dermal skin layers by needle-free powder injection was

demonstrated. However, the in vivo immunization study in piglets showed no detectable

immune response within 28 days upon two applications of the highly concentrated OVA

vaccine by powder injection on day 0 and 14.

In chapter III, micro- and nanoparticles were delivered into the skin using different types of

solid microneedles (MN). In this study the maximum penetration depths and quantitative

i.d. deposition depending on the particle size ranging from 0.1 − 7.0 µm and the type of

MN was evaluated, comparing a flat MN array and a MN roller. It was shown that the

MN tip geometry and application mode influence the maximum penetration depth as well

as the quantitative deposition. On the other hand, the particle size affects the quantitative

deposition only. Moreover, manual massage can improve the i.d. delivery significantly. In

summary, MN roller pretreatment and a particle size of 0.5 µm were identified to provide

maximum delivery depth and i.d. particle deposition.
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Another concept for the delivery of macromolecules and nanoparticles using water-soluble

polyvinyl alcohol (PVA)-based polymer films was presented in chapter IV. Pure PVA films

and blends with carboxymethyl cellulose (CMC) or cross-linked carbomer were prepared

using an easily scalable film casting technique. Fluorescein isothiocyanate (FITC) and

rhodamine B-labeled dextrane 70 kDa (RD70), used as small and macromolecular model

substances, or nano- and microparticles with diameters of 0.5 µm and 5 µm were directly

incorporated into the polymer formulations at varying concentrations. Fractional laser

microporation using a pulsed Er:YAG laser (λ = 2.94 µm) was applied to provide access

to the viable skin inducing a 4- to 5-fold increase of water transport (TEWL) through the

porated skin compared to intact skin. Within 6 h, the polymer films dissolved on laser

microporated skin only and facilitated a considerable intradermal delivery of RD70 and

nanoparticles over 24 h. The quantitative RD70 deposition was superior for pure PVA

films compared to PVA-CMC or PVA-carbomer blend formulations.

2 Conclusion and outlook

Cutaneous vaccination is a promising alternative to conventional i.m. immunization and

has been extensively studied during the past decade. The potential for dose sparing due

to the high abundance of professional antigen presenting cells (APCs) in the skin tissue

and the effective initiation of adaptive and innate immune responses have put i.d. vaccine

delivery into the focus of research. Despite the advantages of i.d. vaccination, its practical

realization still poses many challenges, some of which are addressed in this thesis. Although

several studies have shown increased cost-efficiency of fractional dose vaccination by i.d.

injection [1–4], many needle-free i.d. delivery techniques are lacking sufficient delivery

efficiency and reproducibility of delivery. The inefficient use of the vaccine by many needle-

free approaches attenuates the key benefit of i.d. vaccine delivery and thus increases the

overall costs per vaccination. Nevertheless, to date, an impressive variety of different i.d.

delivery approaches have been developed and tested in preclinical and clinical trails aiming

to tackle poor vaccine delivery and to challenge conventional i.m. immunization.

In this thesis, three different active i.d. delivery techniques were presented: Needle-free

powder injection, microneedling using solid MNs, and fractional laser microporation. Con-

sidering the key attributes of these techniques, each approach provides different advantages

and disadvantages. Figure V.1 highlights the characteristics of the delivery techniques pre-

sented in this thesis and allows for a direct comparison. Each technique was subjectively
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rated (0=poor, 4=good) with respect to a set of key attributes previously discussed else-

where [5], and additional aspects related to efficiency and reproducibility of delivery and

vaccine stability.

Needle-free powder injection using a single-use, hand-held injector is a highly attractive

approach for cutaneous vaccination. It facilitates the administration of a vaccine in one

step, is pain-free and minimally invasive, avoids sharps and is expected to yield a high

patient acceptability. The device design potentially allows for self-administration and the

dry formulation provides a superior storage stability over liquid vaccines. However, an-

other study and the results presented in this thesis show that the reproducibility of i.d.

delivery by powder injection depends on the skin condition [6]. The limited reproducibility

of delivery is a major concern for the efficacy of vaccination. Furthermore, needle-free

powder injection requires advanced technological devices, which further increases the costs

per vaccination. In the context of this work, the pyrotechnical accelerator requires elab-

orated engineering to ensure effectiveness and safety, in particular, to receive regulatory

approval. Different approaches can be taken to further improve the performance of powder

immunization in future studies. Regarding the powder injector, further optimization can

include the design of a customized nozzle, which could create a directional particle flow at

high speed towards the skin surface compared to the relatively large area of particle admin-

istration in the presented design. Considering the vaccine formulation, vaccine powders

with increased density, achieved for example by incorporation of crystalline nanoparticles,

can be used to enhance the i.d. particle deposition. Moreover, the potency of the vaccine

can be improved using chemical adjuvants, which are either directly incorporated into the

vaccine formulation or obtained by mixing of vaccine and adjuvant powder. Further results

associated to chapter II indicate that potent vaccines, e.g. influenza antigens, can increase

the immune response upon powder immunization [7].

Compared to the powder injector, solid MNs are an established tool for intra- and trans-

dermal drug delivery for cosmetic or research applications. Various designs of MNs are

commercially available and cost-efficient to produce in large scale. In this thesis, solid

MNs were used for the i.d. delivery of micro- and nanoparticles. Considering this approach

for cutaneous vaccination, the complex particle administration procedure represents a sig-

nificant drawback. Although microneedling is pain-free, widely accepted, and generally

improves the i.d. delivery compared to intact skin, the efficiency and reproducibility of

particle delivery by manual massage requires further improvement. Nevertheless, the high

flexibility of MN skin pretreatment makes it an attractive technique for the screening of
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Figure V.1: Key attributes considering the development and commercial use of the intra-
dermal delivery techniques discussed in this thesis. Approach was inspired by [5]. (0=poor,
4=good)

new types of antigens, adjuvants, and vaccine formulations. Considering this flexibility,

solid MNs are an ideal tool for a thorough screening of potential chemical and particulate

adjuvants to evaluate their potency and safety for cutaneous vaccination. Moreover, differ-

ent types of particles providing immediate or extended release of antigens and adjuvants

should be subject to future studies. A device facilitating reproducible MN insertion and

application of the formulation in one step would further increase the attractivity of this

rather easy i.d. delivery approach.

On the other hand, the combination of skin laser microporation with a model vaccine-

loaded film patch provides a more convenient approach for i.d. vaccine delivery. This work

demonstrates that fractional laser microporation reproducibly breaches the skin barrier.

Although the subsequent application of a vaccine-loaded water-soluble film patch for 24 h

provided insufficient delivery efficiency ex vivo, higher deposition can be expected under

in vivo conditions as discussed in chapter IV. The development of a hand-held device for

skin laser treatment would further enhance the commercial potential of this cutaneous

vaccination approach. Interestingly, tesa Labtec and Pantec Biosolutions are pursuing the

combination of laser poration and vaccine patches [8]. Future studies should focus on the
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in vivo testing using commercially available i.d. vaccines, e.g. influenza, and new types of

vaccines. Additionally, the optimization of the vaccine patch manufacturing, e.g. by 3D-

printing, and the up-scaling of conventional casting techniques should be subject to further

development. In addition to the potential compatibility of vaccine films with protein

antigens, attenuated or inactivated vaccines are further promising loads for cutaneous

vaccination. Similarly, different types of nanoparticles can be loaded into the films serving

as adjuvant or vaccine stabilizer and reservoir.

Despite the key attributes discussed, to date the most critical factor limiting the success

of most i.d. delivery techniques are the associated costs. Recent prices per vaccine dose

in low-income countries have been estimated below US$ 1 [9, 10]. On the other hand,

vaccine costs in a range of US$ 53− 271 (1.0BC ≈ US$ 1.2) per pathogen are expected for a

Western European citizen [11]. This dramatic difference in costs per vaccination underlines

the current ambivalence in the development of cutaneous vaccination approaches. The

administration of fractional doses of existing vaccines by i.d. injection by N&S allows

for a clear cost reduction with only minimal change in administration routine compared

to conventional i.m. injection. On the other hand, alternative needle-free i.d. delivery

techniques, e.g. jet injection, increase the costs per vaccination significantly [4]. In many

cases, this renders needle-free techniques unsuitable for low- to middle-income countries.

However, the high costs associated with new i.d. delivery techniques also makes them rather

unattractive for Western economies. In a recent example, the development a different hand-

held powder injector, acquired by Novartis and Pfizer in 2006, was discontinued supposedly

because of high development costs. Provided the cost of needle-free powder injectors can be

further reduced, e.g. by large-scale production, powder injection is a promising alternative

to conventional vaccination by N&S.

The success of low-dose i.d. vaccination and the fast progress in the design of large scale

manufacturing processes for certain delivery techniques, such as i.d. injectors, dissolving

MNs, and vaccine patches, provide a promising view on the implementation of cutaneous

vaccination in future. The greatest potential is the exploitation of cutaneous vaccination for

new therapeutic areas, e.g. cancer immunotherapy, prevention against infectious diseases,

which are not yet preventable, or neurodegenerative diseases. The use of fractional vaccine

doses by i.d. injection is most likely only the starting point for the growing success and

establishment of cutaneous vaccination in healthcare.
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