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1 Einleitung 

1.1 Das Phenylalaninhydroxylase System 

Die Phenylalaninhydroxylase (PAH, Phenylalanin 4-Monooxygenase, EC 1.14.16.1) ist ein 

zytosolisches Enzym, das überwiegend in der Leber und in geringen Mengen auch in der 

Niere exprimiert wird. Es katalysiert die para-Hydroxylierung der essentiellen Aminosäure L-

Phenylalanin (L-Phe) zu L-Tyrosin (L-Tyr) in Gegenwart ihres natürlichen Kofaktors (6R)-2-

Amino-6-[(1R,2S)-1,2-dihydroxypropyl]-5,6,7,8-tetrahydropteridin-4(1H)-on (Tetrahydrobio-

pterin, BH4) und molekularem Sauerstoff als Ko-Substrat (Abbildung 1). Das 

Hydroxylierungsprodukt L-Tyrosin ist eine wichtige Vorstufe von Dopamin, den 

Katecholaminen Noradrenalin und Adrenalin sowie des Hautpigments Melanin. Die durch die 

PAH katalysierte enzymatische Reaktion ist der geschwindigkeitsbestimmende Schritt im L-

Phenylalaninkatabolismus. Geschätzte 75 % des durch die Nahrung aufgenommenen sowie 

des durch Proteolyse freigesetzten L-Phenylalanins werden unter physiologischen 

Bedingungen durch die PAH verstoffwechselt (Scriver 2001). Während der Umsetzung von 

L-Phenylalanin zu L-Tyrosin wird der natürliche Kofaktor BH4 zur quinoiden Form des 2-

Amino-6-(1,2-dihydroxypropyl)-6,7-dihydro-1H-pteridin-4-on (q-BH2) oxidiert und muss im 

Anschluss an die Reaktion durch das Zusammenspiel von Pterin-4a-Carbinolamin-

Dehydratase (PCD) und Dihydropteridin-Reduktase (DHPR) zu seiner funktionellen 

Tetrahydroform regeneriert werden. Die PCD katalysiert dabei die Wasserabspaltung aus 

4a-Hydroxy-Tetrahydrobiopterin (4-OH-BH4) zur quinoiden Form von BH2, welches 

anschließend durch das NADH/H+-abhängige Enzym DHPR zu BH4 reduziert wird 

(Abbildung 1). Bei unzureichender DHPR-Aktivität erfolgt eine nicht-enzymatische 

Umlagerung von q-BH2 zu 2-Amino-6-(1,2-dihydroxypropyl)-7,8-dihydro-1H-pteridin-4-on 

(Dihydrobiopterin, BH2), das anschließend durch die Dihydrofolat-Reduktase zu BH4 

reduziert wird. 

Die intrazelluläre BH4-Konzentration wird neben der Regeneration aus q-BH2 zusätzlich 

durch die de novo Synthese des Kofaktors aufrechterhalten. Die Biosynthese von BH4 aus 

Guanosintriphosphat (GTP) in Hepatozyten erfolgt in drei Schritten und unterliegt einer 

strengen Regulation durch die intrazellulären L-Phenylalanin- und BH4-Konzentrationen. 

Während nicht gebundenes L-Phenylalanin die de novo Synthese von BH4 stimuliert, wirkt 

sich das Endprodukt BH4 hemmend auf den geschwindigkeitsbestimmenden Schritt der 

durch die GTPCH katalysierten Reaktion aus (Abbildung 1). Der Begriff des 

Phenylalaninhydroxylase-Systems umfasst daher neben der PAH auch die BH4 

regenerierenden beziehungsweise synthetisierenden Enzyme. Genetisch bedingte Defekte 

in einem der enzymatischen Schritte dieses komplexen Systems sind Ursache der 

Hyperphenylalaninämie (HPA), einer heterogenen Gruppe angeborener Erkrankungen des 

Phenylalaninstoffwechsels. Kürzlich wurde eine weitere Ursache einer HPA durch Mutation 

in der Unterklasse C12 der 40-kDa-Hitzeschockproteine beschrieben (Anikster et al. 2017). 

Durch whole exome sequencing konnten in der Studie sechs Patienten identifiziert werden, 
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die biallelische Mutationen auf dem Gen DNAJC12 trugen, welches für das 

Hitzeschockprotein DnaJC12 kodiert. DnaJC12 interagiert sowohl mit der Phenylalanin-, als 

auch mit der Tyrosin- und Tryptophanhydroxylase. Das Vorliegen einer DNAJC12 Mutation 

führte nachweislich zur Reduktion der Enzymaktivität der Phenylalaninhydroxylase. Zukünftig 

sollte daher bei unklarer Ursache einer diagnostizierten HPA auch eine Sequenzierung des 

DNAJC12-Gens in Betracht gezogen werden.    

 

 

Abbildung 1. Das Phenylalaninhydroxylase System  

Die Para-Hydroxylierung von L-Phenylalanin (L-Phe) zu L-Tyrosin (L-Tyr) wird durch die Phenylalaninhydroxylase (PAH) 

katalysiert. Der natürliche Kofaktor der PAH (6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) wird während der Reaktion über 

4a-Hydroxy-Tetrahydrobiopterin (4-OH-BH4) zur quinoiden Form des 6,7-Dihydrobiopterin (q-BH2) oxidiert, katalysiert durch die 

Pterin-4a-Carbinolamin-Dehydratase (PCD). Die Reduktion von q-BH2 zu BH4 erfolgt durch die NADH/H
+
 abhängige 

Dihydropteridin-Reduktase (DHPR). Die de novo Synthese erfolgt aus Guanosintriphosphat (GTP) über 7,8-Dihydroneopterin-

Triphosphat (7,8-DHNP) und 6-Pyruvoyl-5,6,7,8-Tetrahydropterin (6-PTP). Katalysiert werden die Schritte durch die GTP 

Cyclohydrolase I (GTPCH), die 6-Pyruvoyl-5,6,7,8-Tetrahydropterin-Synthase (PTPS) sowie die Sepiapterin Reduktase (SR) 

(Pey 2006).          
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1.2 Strukturanalyse der Phenylalaninhydroxylase 

Die humane PAH liegt im Zytosol der Zelle hauptsächlich als funktionelles Homotetramer, 

einem Dimer zweier Dimere vor (Abbildung 2), die asymmetrisch über das α-helikale 

Tetramerisierungsmotiv durch ein coiled-coil Strukturmotiv miteinander verbunden sind 

(Kaufman 1993). Homotetramere und Homodimere der PAH stehen miteinander im 

Fließgleichgewicht (Kappock et al. 1995), welches durch Zugabe von L-Phenylalanin in 

Richtung Tetramere verschoben wird (Martinez et al. 1995).  

                     

 

Abbildung 2. Struktur des PAH Monomers und des funktionellen Tetramers  

Das PAH Monomer (linke Struktur) setzt sich aus drei Domänen zusammen. Einer N-terminalen regulatorischen Domäne 

(Aminosäuren 1-117, blau) einer katalytischen Domäne (Aminosäuren 118-410, rot) mit den Bindungsstellen für Eisen, L-

Phenylalanin (türkis) und BH4 (hellgrün) sowie einer C-terminalen Oligomerisierungsdomäne (Aminosäuren 411-452, ocker) 

(Arturo et al. 2016). Das funktionelle PAH Tetramer (rechte Struktur) ist aus vier PAH-Monomeren zusammengesetzt und stellt 

sich als Dimer zweier Dimere dar (blau/ocker sowie grün/rot). 

 

Das PAH Monomer ist ein 52 kDa-Protein, das sich strukturell und funktionell in drei 

Domänen einteilen lässt. Eine N-terminale regulatorische Domäne (Aminosäuren 1-117), 

eine mittlere katalytische Domäne (Aminosäuren 118-410) und eine C-terminale 

Oligomerisierungsdomäne (Aminosäuren 411-452) (Arturo et al. 2016) (Abbildung 3). 

Charakteristisch für die regulatorische Domäne ist ein α-β Sandwichmotiv, bestehend aus 

einem viersträngigen, antiparallelen β-Faltblatt, welches auf einer Seite durch zwei kurze α-

Helices und auf der anderen Seite durch die katalytische Domäne flankiert ist. Die 

regulatorische Domäne beinhaltet die intrinsische autoregulatorische Sequenz (IARS, 

Aminosäuren 1-32) sowie eine für viele metabolische Enzyme charakteristische ACT 

Domäne (Aminosäuren 33-117). Zudem wird S16 am N-Terminus der regulatorischen 

Domäne durch cAMP-abhängige Proteinkinasen phosphoryliert. Die katalytische Domäne 

der PAH setzt sich aus 14 α-Helices und acht β-Strängen zusammen und beinhaltet das 

aktive Zentrum mit dem Eisenatom sowie den Bindungsstellen für L-Phenylalanin und BH4. 

Die C-terminale Oligomerisierungsdomäne besteht aus zwei antiparallelen β-Strängen und 
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einer 40 Å langen α-Helix, deren coiled-coil Motiv (Aminosäuren 428-452) für die 

Tetramerisierung unerlässlich ist (Erlandsen and Stevens 1999). Das aktive Zentrum 

beinhaltet das katalytische Eisenatom und besteht aus einer 13 Å tiefen und 10 Å weiten 

Höhle (Erlandsen et al. 1997), die durch einen schmalen Tunnel mit dem umgebenden 

Zytosol verbunden ist. Der Eingang zum aktiven Zentrum ist in der Struktur des PAH 

Apoenzyms durch die autoregulatorische Sequenz verdeckt (Kobe et al. 1999). 

Teilstrukturen der PAH im Komplex mit L-Phenylalanin, Substratanaloga, Inhibitoren und 

Pterinkofaktoren wurden durch Röntgenstrukturanalyse, NMR-Spektroskopie und molecular 

modeling analysiert (Erlandsen et al. 1998, Teigen et al. 1999, Erlandsen et al. 2000, 

Andersen et al. 2002). Diese Strukturanalysen haben entscheidend dazu beigetragen, den 

Mechanismus der durch die PAH katalysierten Reaktion aufzuklären (Bassan et al. 2003, 

Fitzpatrick 2003, Solomon et al. 2003) und den regulatorischen Einfluss von Substrat, 

Kofaktor sowie Phosphorylierung auf die PAH zu verstehen (Miranda et al. 2002, Thorolfsson 

et al. 2002, Teigen and Martinez 2003, Pey et al. 2004b, Stokka et al. 2004). Die 

Strukturmodelle haben zwischen den einzelnen Untereinheiten und Domänen eine Vielzahl 

an Interaktionen aufgezeigt (Erlandsen et al. 1997, Fusetti et al. 1998, Kobe et al. 1999) und 

wurden auch dazu genutzt, den Effekt der Mutationen im PAH-Gen auf die Stabilität des 

Proteins sowie dessen katalytische und regulatorische Eigenschaften besser zu verstehen. 

Nach wie vor werden die strukturellen Aussagen bezüglich der humanen PAH auf der Basis 

eines zusammengesetzten Strukturmodells getroffen, da die Kristallisation des PAH-

Volllänge-Proteins u.a. wegen der flexiblen N-terminalen regulatorischen Domäne trotz 

langjähriger Bemühungen von Forschergruppen weltweit nicht in ausreichender Auflösung 

gelungen war. Kürzlich wurde in einer Arbeitsgruppe in den USA die erste Kristallstruktur der 

nicht aktivierten PAH aus der Ratte in Volllänge mit einer Auflösung von 2,9 Ǻ gelöst (Arturo 

et al. 2016). Es ist jedoch noch nicht gelungen, die Kristallstruktur der aktivierten PAH in 

Volllänge mit gebundenem L-Phenylalanin zu kristallisieren, was notwendig wäre, um die 

Genotyp-Phänotyp-Korrelation der Erkrankung noch besser zu verstehen. 

 

 

Abbildung 3. Schema eines Phenylalaninhydroxylase-Monomers 

Das PAH-Monomer setzt sich aus drei Domänen zusammen. N-terminal ist die regulatorische Domäne (RD, Aminosäuren 1-

117) mit intrinsischer autoregulatorischer Sequenz (IARS) und der ACT-Domäne lokalisiert. Die roten Bereiche begrenzen die 

katalytische Domäne (KD, Aminosäuren 118-409) einschließlich des aktiven Zentrums (AZ). Der ockerfarbene Bereich stellt die 

Oligomerisierungsdomäne (OD, Aminosäuren 410-452) einschließlich Dimerisierungs- (DM) und  Tetramerisierungsmotiv (TM) 

dar. Modifiziert nach Arturo et al. (Arturo et al. 2016).  
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1.3 Die Funktion der PAH - Bindung von Eisen, Substrat und Kofaktor 

Die PAH ist ein eisenabhängiges Enzym, wobei das katalytische Eisenatom nicht an einen 

heterozyklischen Porphyrinring gebunden ist, wie es beispielsweise bei der 

Komplexverbindung Häm im Hämoglobin der Fall ist. Das Metall liegt im aktiven Zentrum der 

humanen PAH sechsfach koordiniert vor und bindet drei Moleküle Wasser sowie die 

Aminosäuren H286, H290 und E330, wobei die Ausrichtung der Liganden in oktaedrischer 

Symmetrie erfolgt (Erlandsen et al. 1997). Die drei das Eisenatom koordinierenden 

Aminosäurereste der PAH bilden ein 2-His-1-carboxyl facial triad Motiv aus (Abbildung 4), 

welches bereits kristallographisch in aktiven Zentren unterschiedlicher Enzymfamilien 

nachgewiesen wurde, in denen ein Nicht-Häm-Eisen (II) Atom zur Katalyse der Reaktion 

unerlässlich ist (Hegg and Que 1997, Costas et al. 2004). Dieses verbreitete Motiv aus drei 

Aminosäureresten arretiert das Eisenatom im aktiven Zentrum der jeweiligen Enzyme und 

ermöglicht es endogenen wie exogenen Liganden, an die zusätzlichen cis-orientierten 

Koordinationsstellen im Metall zu binden. Zudem erlaubt das Motiv durch die Bindung von 

bis zu maximal drei exogenen Liganden wie beispielsweise Sauerstoff, Substrat und Kofaktor 

eine höhere Flexibilität in seiner katalytischen Funktion. Diese Eigenschaft hebt es von Häm-

haltigen Oxygenasen ab, die nur eine koordinative Position zur Bindung und Aktivierung von 

Sauerstoff aufweisen, wodurch das Substrat gezwungen ist, an einem benachbarten 

Aminosäurerest im aktiven Zentrum zu binden (Hegg and Que 1997).  

 

 

Abbildung 4. Schematische Darstellung des 2-His-1-carboxyl facial triad Motivs 

Hierbei handelt es sich um ein gängiges Motiv in aktiven Zentren von Enzymfamilien, in denen ein Nicht-Häm-Eisen (II) Atom 

zur Katalyse der Reaktion unerlässlich ist und das von zwei Histidinresten und einer Carboxyl-Gruppe im aktiven Zentrum 

arretiert wird. Da sich jeweils drei Liganden als Fläche gegenüberstehen, ist eine faciale (von lat. Facies = Gesicht) Anordnung 

der Liganden gegeben. 

 

Im PAH-Apoenzym sind die cis-orientierten Bindungsstellen durch drei Moleküle Wasser 

abgesättigt (Erlandsen et al. 1997) und das Metall reagiert in dieser Konfiguration nicht auf 
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molekularen Sauerstoff (Costas et al. 2004). Bei Vorliegen von Substrat und Kofaktor im 

aktiven Zentrum der PAH werden die drei Wassermoleküle aus der Koordinationssphäre des 

Metalls verdrängt, was die Bindung von molekularem Sauerstoff an das Eisenatom 

ermöglicht und es aktiviert. Das Vorliegen der beiden das Eisenatom koordinieren 

Histidinliganden ist für die Hydroxylierung von L-Phenylalanin unerlässlich und konnte durch 

gezielte Mutagenese experimentell bestätigt werden (Gibbs et al. 1993). 

Das Substrat L-Phenylalanin bindet im Vergleich zu BH4 mit geringerer Affinität von 72-

145 µM an die humane PAH (Thorolfsson et al. 2002, Stokka and Flatmark 2003). Die 

Bindung erfolgt über eine Salzbrücke mit R270, Wasserstoffbrücken mit Y277, T278 und 

S349 sowie Van der Waals-Wechselwirkungen mit W326 und F331 (Teigen et al. 1999, 

Andersen et al. 2002). Neben ihrer substratbindenden Rolle sind R270 und S349 in ein 

Netzwerk aus Wasserstoffbrücken und ionischen Wechselwirkungen mit anderen 

Aminosäureresten der PAH eingebunden, die wichtig für die vollständige Ausbildung des 

Tetramers sind. Wie erwartet zeigten daher Expressionsanalysen der varianten Proteine 

S349P, S349T und R270S eine starke Beeinträchtigung dieses Netzwerks, die zur 

Destabilisierung der Varianten im Vergleich zum Wildtyp führte (Scriver et al. 2003). Der 

Aminosäurerest Y277 ist für die katalytische Funktion der PAH von besonderer Bedeutung, 

denn die PKU-Variante Y277D kann zwar als Tetramer gereinigt werden, zeigt allerdings 

keine Enzymrestaktivität (Pey et al. 2003). W326 ist nicht nur für die L-Phenylalanin-Bindung 

zuständig, sondern spielt auch eine wichtige Rolle bei der Substratspezifität (McKinney et al. 

2001, Daubner et al. 2002). Die Substratbindung induziert globale konformative Änderungen 

in der PAH wie beispielsweise die Neuorientierung der Aminosäurereste des Loops 131-155 

sowie die Umlagerung der Y138-Hydroxylgruppe von der Oberfläche des Enzyms in eine 

partiell im aktiven Zentrum versteckte Position. Innerhalb des Tetramers werden die 

konformativen Änderungen, die zur Aktivierung des Enzyms führen, über hinge-bending 

motions kommuniziert (Andersen et al. 2002, Andersen et al. 2003, Stokka et al. 2004). 

Diese globale konformative Flexibilität ist Voraussetzung für die substratabhängige 

Aktivierung der PAH. 

Die Bindung des natürlichen Kofaktors der PAH wird durch eine Michaelis-Menten-Kinetik 

beschrieben und erfolgt nicht kooperativ, wobei die Affinität von BH4 im Bereich von 8-10 µM 

liegt (Shiman 1985, Kaufman 1993, Knappskog et al. 1996). Unsere Arbeitsgruppe konnte 

zeigen, dass sich der Bindungsmechanismus ändert, sobald das Enzym durch L-

Phenylalanin präaktiviert wird. Die BH4-Bindung wird kooperativ und folgt einer Hill-Kinetik 

(Gersting et al. 2010). Das Vorliegen eines reduzierten Pyrimidopyrazin-Ringsystems des 

Kofaktors ist für die durch die PAH katalysierte Reaktion unerlässlich. Neben BH4 sind auch 

andere Kofoktoranaloga wie z.B. 6-Methyl-5,6,7,8-tetrahydropterin (6-MPH4) und 6,7-

Dimethyl-5,6,7,8-tetrahydropterin (DMPH4) in der Lage, den natürlichen Kofaktor in der 

Hydroxylierungsreaktion zu ersetzen, allerdings binden sie mit geringerer Affinität an die 

PAH (Shiman 1985, Martinez et al. 1995). Auch BH4-Analoga mit 6-

Alkoxymethylsubstituenten (Bigham et al. 1987) sowie Pyrimidinderivate (Bailey and Ayling 

1978) konnten in der durch die PAH katalysierte Hydroxylierungsreaktion als geeignete 

Kofaktoren dienen.  
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1.4 Der katalytische Mechanismus  

Die PAH gehört zur Familie der Hydroxylasen aromatischer Aminosäuren, die neben der 

PAH auch zwei weitere Schlüsselenzyme des Aminosäurestoffwechsels, die 

Tyrosinhydroxylase (TH) und die Tryptophanhydroxylase (TPH), umfasst (Abbildung 5), 

deren Stoffwechselprodukte im weiteren Verlauf zur Biosynthese von Katecholaminen und 

Serotonin von besonderer Bedeutung sind (Kappock and Caradonna 1996, Flatmark and 

Stevens 1999, Fitzpatrick 2000). Alle drei Enzyme sind Monooxygenasen, die den Einbau 

eines Sauerstoffatoms in den aromatischen Ring ihres Substrats katalysieren. Die drei 

humanen Aminosäurehydroxylasen zeigen strukturell und funktionell große Ähnlichkeiten. 

Die Sequenzhomologie ihrer katalytischen Domänen beträgt 80 % und alle drei benötigen 

ein Eisenatom und BH4 als Kofaktor zur Katalyse der Hydroxylierungsreaktion. 

 

 

Abbildung 5. BH4-abhängige Aminosäurehydroxylasen 

De novo Synthese von (6R)-L-erythro-5,6,7,8-Tetrahydrobiopterin (BH4) aus Guanosintriphosphat (GTP) und Regenerierung 

von 4a-Hydroxy-Tetrahydrobiopterin (4a-OH-BH4) über die quinoide Form von 6,7-Dihydrobiopterin (q-BH2) sowie Darstellung 

der durch BH4 katalysierten Reaktionen der drei Hydroxylasen aromatischer Aminosäuren Phenylalaninhydroxylase (PAH), 

Tyrosinhydroxylase (TH) und Tryptophanhydroxylase (TPH) (Blau 2006).  

 

Für die Reaktionen der Aminosäurehydroxylasen wird ein ähnlicher katalytischer 

Mechanismus postuliert, der noch nicht bis ins Detail verstanden ist (Fitzpatrick 2003). Noch 

herrscht beispielsweise Unklarheit darüber, in welcher Reihenfolge L-Phenylalanin, 

molekularer Sauerstoff und BH4 während des katalytischen Zyklus an die PAH binden, um 

den quarternären Komplex (PAH·L-Phe·BH4·O2) auszubilden. Mit CD-Spektroskopie konnte 

gezeigt werden, dass die Bindung von L-Phenylalanin und BH4 notwendig ist, um die 

Koordinationssphäre des Eisenatoms im aktiven Zentrum zu verändern (Kemsley 1999). Die 

Bindung von Substrat und Kofaktor induziert die Freisetzung der drei das Eisenatom 

koordinierenden Wassermoleküle und führt zur Veränderung der elektronischen Struktur des 

Eisens, was die Bindung von molekularem Sauerstoff erlaubt (Costas et al. 2004). Es 

resultiert die Ausbildung des katalytisch aktiven quarternären Komplexes (PAH·L-
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Phe·BH4·O2) (Spezies A in Abbildung 6). Aufbauend auf dieser Erkenntnis wurde ein 

Reaktionsmechanismus für die durch die PAH katalysierte Reaktion postuliert, der auf 

experimentellen Studien sowie quantenmechanischen Berechnungen basiert (Andersen et 

al. 2002, Bassan et al. 2003, Fitzpatrick 2003, Solomon et al. 2003, Costas et al. 2004). Der 

übereinstimmende Mechanismus für den katalytischen Zyklus ist in Abbildung 6 dargestellt. 

Sobald Spezies A ausgebildet wurde, greift molekularer Sauerstoff an der C4a-Position des 

Pterinrings an und bildet ein Eisen-peroxy-Pterin (Intermediat B). Dies führt zum Aufbrechen 

der Sauerstoffbindung und der Ausbildung des Pterin-4a-carbinolamins, welches als 

Zwischenprodukt im katalytischen Zyklus nachgewiesen werden kann. Gleichzeitig entsteht 

vermutlich ein bisher noch nicht nachgewiesener FeIV oxo-Komplex (Intermediat C), der in 

einem nächsten Schritt einen elektrophilen Angriff auf die C4-Position des aromatischen 

Phenyalaninrings ausführt (Intermediat D). Die Freisetzung des Reaktionsprodukts L-Tyrosin 

schließt den katalytischen Zyklus ab.  

 

 

Abbildung 6. Schema für die durch die PAH katalysierte Reaktion 

Vereinfachend lässt sich der Reaktionsmechanismus in zwei Schritte untergliedern 1.) Bindung des molekularen Sauerstoff an 

das Eisenatom unter Ausbildung des hydroxylierenden Intermediats (Fe
IV

=0) und 2.) Übertragung des aktivierten 

Sauerstoffatoms auf L-Phenylalanin (Pey 2006).  
 

Die Oxidation von BH4 ist während der Reaktion mit L-Phenylalanin als Substrat eng an die 

Bildung von L-Tyrosin gekoppelt. Die Verwendung alternativer Substrate oder 

Kofaktoranaloga führt in der Regel zur Entkopplung von Kofaktor-Oxidation und L-Tyrosin-

Synthese, nachgewiesen durch den Verbrauch von Elektronen pro Substrathydroxylierung 

(Kappock and Caradonna 1996). Die partielle Entkopplung der Reaktionen führt sowohl zur 
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Reduktion der spezifischen Enzymaktivität als auch zum vermehrten Auftreten von H2O2, da 

die überschüssigen Elektronen nicht vollständig zur Produktbildung eingesetzt werden 

können (Kappock and Caradonna 1996, Kemsley et al. 2003). 

 

1.5 Regulationsmechanismen   

In Säugetieren ist die Leber das Organ mit der höchsten Aktivität der PAH (der PAH-Anteil 

an den Gesamtproteinen in der Leber beträgt 0,1–0,3 %) und verantwortlich für die L-

Phenylalaninhomöostase (Kappock and Caradonna 1996), wobei die PAH in Hepatozyten zu 

20 % phosphoryliert vorliegt (Doskeland et al. 1992). Auch in der humanen Niere konnte eine 

relativ hohe PAH-Aktivität gemessen werden, die 20 % (Ayling et al. 1975) bis 45 % (Lichter-

Konecki et al. 1999) der PAH-Aktivität in der Leber erreicht. Zusätzlich liegen geringe 

Mengen an PAH mRNA, Protein oder Proteinaktivität im Hirn, im Pankreas und in 

Melanozyten vor (Schallreuter et al. 1994, Kappock and Caradonna 1996, Lichter-Konecki et 

al. 1999). Die PAH-Aktivität in Melanozyten ist wichtig, da die Hydroxylierungsreaktion das 

für die Melaninsynthese notwendige L-Tyrosin zu Verfügung stellt (Lichter-Konecki et al. 

1999). Um die L-Phenylalaninhomöostase in vivo aufrecht zu erhalten, muss die PAH-

Aktivität streng reguliert werden, denn in der Leber liegt ausreichend PAH-Aktivität vor, um 

die Plasmaphenylalaninkonzentration innerhalb von Minuten zu erschöpfen, sobald das 

Enzym über eine bestimmte Zeit aktiv ist (Kappock and Caradonna 1996). Eine besonders 

starke regulatorische Wirkung auf die PAH zeigen Substrat, Kofaktor und Phosphorylierung 

bzw. Dephosphorylierung an S16 (Scriver 2001). Die regulatorischen Effekte, die über das 

gesamte Enzym hinweg kommuniziert werden, können durch Änderungen in der Tertiär- und 

Quartärstrukur der PAH erklärt werden, da sie die Wechselwirkungen zwischen den 

Domänen einer Untereinheit, der beiden Untereinheiten im Dimer sowie der Dimere im 

Tetramer verändern (Kaufman 1993, Kappock and Caradonna 1996, Miranda et al. 2002, 

Teigen and Martinez 2003, Thorolfsson et al. 2003, Stokka et al. 2004). Beispielsweise 

induziert die Bindung von L-Phenylalanin im aktiven Zentrum der PAH die Umlagerung der 

IARS und löst eine Serie konformativer Änderungen aus, die zur weiteren Kommunikation 

des aktivierenden Prozesses zur angrenzenden Untereinheit im Dimer und schließlich durch 

den Kontakt über die Oligomerisierungsdomänen in das zweite Dimer führen (Thorolfsson et 

al. 2003). Die Präinkubation der rekombinant exprimierten und gereinigten humanen PAH mit 

L-Phenylalanin vor der eigentlichen Hydroxylierungsreaktion führt zur 3-5 fachen Erhöhung 

der spezifischen Enzymaktivität (Martinez et al. 1995, Stokka et al. 2004). Zudem konnte 

gezeigt werden, dass die Bindung von L-Phenylalanin kooperativ ist und einer Hill-Kinetik 

folgt (Hill-Koeffizient, h ~ 2). Aktivierung und Kooperativität lassen sich auf konformative 

Änderungen im Enzym zurückführen, die durch Substratbindung ausgelöst werden und 

durch Änderungen der spektroskopischen Eigenschaften der PAH (Knappskog and Haavik 

1995, Kappock and Caradonna 1996, Thorolfsson et al. 2003) sowie eine Zunahme des 

hydrodynamischen Radius (Kappock et al. 1995, Kleppe et al. 1999) nachgewiesen werden 

können.  
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Im Fokus der Diskussion um die Regulation der PAH durch das Substrat L-Phenylalanin lag 

seit Jahren die Anzahl der Substratbindestellen pro Enzymuntereinheit. Ging man bereits 

früh davon aus, dass die Aktivierung der PAH durch kooperative Bindung von L-Phenylalanin 

an einer regulatorischen Bindungsstelle außerhalb des katalytischen Zentrums erfolgt 

(Shiman 1980, Kaufman and Mason 1982, Gjetting et al. 2001), postulierte die 

Forschergruppe um Prof. Martinez das Vorhandensein von nur einer Substratbindestelle pro 

Enzymuntereinheit, die sich im katalytischen Zentrum der PAH befindet (Thorolfsson et al. 

2002). Ist jedoch eine einzelne Bindungsstelle im aktiven Zentrum der PAH in der Lage, die 

beobachteten starken konformativen Umlagerungen auszulösen? Wahrscheinlicher ist das 

Vorliegen einer zweiten regulatorischen Substratbindungsstelle außerhalb des katalytischen 

Zentrums. Tatsächlich gelang es kürzlich, die Kristallstruktur der regulatorischen Domäne 

der humanen Phenylalaninhydroxylase im Komplex mit L-Phenylalanin in einer Auflösung 

von 1.8 Ǻ zu lösen (Patel et al. 2016) und damit eine weitere allosterische Bindestelle für L-

Phenylalanin außerhalb des aktiven Zentrums zu belegen. Gleichzeitig konnte gezeigt 

werden, dass die Bindung von L-Phenylalanin in der allosterischen Bindestelle die 

Dimerisierung zweier regulatorischen Domänen der PAH induziert (Patel et al. 2016), ein 

Vorgang der vermutlich zur weiteren Aktivierung des funktionellen Tetramers notwendig ist. 

Während L-Phenylalanin zur Aktivierung der PAH führt, wirkt BH4 als allosterischer Inhibitor, 

der das Enzym in einem Zustand mit niedriger Aktivität arretiert und die durch 

Substratbindung ausgelösten konformativen Änderungen blockiert (Kaufman 1993). Die BH4-

Bindung überführt das Enzym in eine stabilere Konformation, die es besser gegen 

proteolytische Degradation durch α-Chymotrypsin (Iwaki et al. 1986) sowie vor 

Ubiquitinierung mit darauf folgendem Abbau durch das Proteasom und thermalem Stress 

schützt (Thorolfsson 2000). BH4 induziert diesen ruhenden Zustand mit niedriger 

Enzymaktivität durch spezifische Wechselwirkungen zwischen der 

Dihydroxypropylseitenkette mit Aminosäuren in der regulatorischen und katalytischen 

Domäne der PAH. Die O1’ und O2’ Atome der Seitenkette bilden dabei eine 

Wasserstoffbrückenbindung zum Backbone-Carbonylsauerstoff von S251 und dem 

Hydroxylsauerstoff von S23 und erleichtern somit die konformativen Änderungen, die durch 

BH4-Bindung ausgelöst werden (Teigen and Martinez 2003, Pey et al. 2004b). Auch die hohe 

Bindungsaffinität von BH4 sowie die Inhibierung der Enzymaktivität durch das 6R-Enantiomer 

des Kofaktors (Bailey et al. 1991, Kappock and Caradonna 1996) sind durch diese 

Wechselwirkungen erklärbar. Die konformativen Änderungen in der N-terminalen Domäne 

führen in letzter Konsequenz zum Verschließen des Zugangs zum aktiven Zentrum durch die 

IARS (Teigen and Martinez 2003, Pey et al. 2004b). Obwohl der PAH·BH4-Komplex einen 

ruhenden Zustand (Teigen and Martinez 2003) mit niedriger Enzymaktivität darstellt, kann 

das Enzym bei Anstieg der intra- oder extrazellulären L-Phenylalaninkonzentration schnell 

aktiviert werden (Mitnaul and Shiman 1995). 

Die Phosphorylierung der PAH erfolgt an S16 in der regulatorischen Domäne und wird in 

vitro und in vivo durch cAMP und Ca2+/Calmodulin abhängige Proteinkinasen vermittelt 

(Kaufman 1993). Diese posttranslationale Modifikation führt zum Anstieg der Enzymaktivität 

sowie einer erhöhten Affinität gegenüber dem Substrat (Doskeland et al. 1996, Miranda et al. 
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2002). In vitro wird ein Anstieg der Phosphorylierungsrate in Gegenwart von L-Phenylalanin 

beobachtet, während die Anwesenheit des natürlichen Kofaktors zur Verringerung des 

prozentualen Anteils an phosphoryliertem Enzym führt (Kaufman 1993, Doskeland et al. 

1996). Die Phosphorylierung in vivo wird durch verschiedene Mechanismen moduliert, wozu 

die L-Phenylalaninkonzentration im Plasma, sowie unterschiedliche Hormone wie z. B. 

Glucagon und Insulin gehören (Kaufman 1993, Guerin et al. 1998). Auf molekularer Ebene 

löst die Phosphorylierung an S16 eine Änderung unterschiedlicher elektrostatischer 

Wechselwirkungen in der Enzymstruktur aus, die sich sowohl innerhalb einer Untereinheit als 

auch zwischen den einzelnen Domänen abspielen und zur Reorganisation der 

regulatorischen Domäne führen (Miranda et al. 2002). Diese konformativen Änderungen 

induzieren einen verbesserten Zugang zum aktiven Zentrum der PAH, eine lokale 

Stabilisierung des Enzyms in der Umgebung von S16 und mit hoher Wahrscheinlichkeit 

beeinflussen sie auch die Reaktivität des katalytischen Eisenatoms (Miranda et al. 2002, 

Miranda et al. 2004). 

 

1.6 Die Phenylketonurie  

Der erste Hinweis auf die heute als Phenylketonurie (PKU; OMIM #261600) bekannte 

Stoffwechselerkrankung basierend auf einer Störung im L-Phenylalaninkatabolismus stammt 

aus dem Jahr 1934. Der norwegische Arzt Dr. Asbjørn Følling konnte damals bei 

Geschwistern mit mentaler Entwicklungsretardierung die vermehrte Ausscheidung von 

Phenylbrenztraubensäure (Phenylpyruvat) im Urin mittels Eisen(III)-chlorid nachweisen, 

welches durch das spezifische Ausscheidungsprodukt zu grünlichem Eisen(II) reduziert 

wurde (Folling 1934). Alles deutete bereits damals darauf hin, dass die Erkrankung auf 

einem autosomal rezessiven Erbgang beruht und schon kurze Zeit später erfolgte die 

Einordnung der PKU in das damals neue Feld der angeborenen Stoffwechselerkrankungen. 

Erst 20 Jahre später konnte dann gezeigt werden, dass PKU-Patienten über eine 

unzureichende Aktivität der PAH in Leberzellen verfügen (Jervis 1953). Damit war der 

eigentliche krankheitsauslösende Defekt in der Hydroxylierungsreaktion der essentiellen 

Aminosäure L-Phenylalanin identifiziert. Die Symptome der unbehandelten PKU sind neben 

heller Haut und blondem Haar durch den sekundären Melaninmangel eine progressive 

Entwicklungsverzögerung, epileptische Anfälle, Autoaggression, Stereotypien, Hautekzeme 

und vor allem, ein hochgradiger progredienter Verlust der Intelligenz (Muntau 2000). Der 

nächste wichtige Schritt in der Geschichte der PKU war 1952 die Einführung einer L-

phenylalaninarmen Diät durch den deutschen Kinderarzt Dr. Horst Bickel. Er konnte am 

Beispiel eines 17 Monate alten Mädchens mit PKU überraschenderweise zeigen, dass eine 

Reduktion der diätetischen L-Phenylalaninzufuhr zu einer deutlichen Verbesserung der 

schwerwiegenden neurologischen Symptomatik und der psychomotorischen Entwicklung 

führt (Bickel et al. 1953, Bickel et al. 1954). Hierbei handelte es sich um den ersten 

Nachweis einer erfolgreichen diätetischen Behandlung einer Erbkrankheit mit Beteiligung 

des Zentralnervensystems. Diese Erkenntnis war der entscheidende Anstoß zur Entwicklung 

http://de.wikipedia.org/wiki/Ivar_Asbj%C3%B8rn_F%C3%B8lling
http://de.wikipedia.org/wiki/Phenylpyruvat
http://de.wikipedia.org/wiki/Eisen%28III%29-chlorid
http://de.wikipedia.org/wiki/Eisen
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eines Laborschnelltests für Neugeborene zur frühzeitigen Diagnose der Phenylketonurie, die 

zehn Jahre später durch den amerikanischen Mikrobiologen Dr. Robert Guthrie umgesetzt 

wurde (Guthrie and Susi 1963). Es handelte sich dabei um einen bakteriellen Hemmtest, der 

den Nachweis einer erhöhten L-Phenylalaninkonzentration im Blut der Patienten ermöglicht 

und durch seine einfache Handhabung als Massenscreening-taugliches Verfahren eingesetzt 

werden konnte.  

Die flächendeckende Untersuchung aller Neugeborenen in den ersten Lebenstagen und der 

frühzeitige Therapiebeginn ermöglicht diesen Patienten seit der zweiten Hälfte des 

vergangenen Jahrhunderts eine nahezu altersentsprechende neurologische und 

intellektuelle Entwicklung und somit ein weitgehend normales Leben. In den 1980er Jahren 

wurde schließlich das Gen der humanen PAH identifiziert und die entsprechende cDNA 

kloniert (Woo et al. 1983). Dies ebnete den Weg zu weltweiten Mutationsanalysen des PAH-

Gens und zur Entdeckung komplexer allelischer Heterogenität bei PKU-Patienten, die eine 

Dekade später im Aufbau einer der ersten online Mutations-Datenbanken mündete (Scriver 

et al. 2003). Die Entdeckung einer behandelbaren genetischen Erkrankung am Beispiel der 

PKU führte in den 1960er und 1970er Jahren zum Umdenken in der Medizin. Bisher galten 

genetische Erkrankungen als nicht therapierbar, die Behandlung von PKU-Patienten 

überzeugte jedoch vom Gegenteil und neue Therapieansätze für weitere genetische 

Erkrankungen wurden entwickelt. 

Heute weiß man, dass die genetischen Grundlagen einer HPA bzw. PKU entweder 

Mutationen im PAH-Gen oder in Genen für Enzyme des BH4 de novo pathways bzw. des 

Regenerationspathways aus BH2 sind. Nur bei 2 % der Neugeborenen mit 

Hyperphenylalaninämie liegt ursächlich ein Defekt im BH4-Stoffwechsel zugrunde (atypische 

Phenylketonurie) (Thony et al. 2000, Scriver 2001). Bei 98 % der Patienten ist die L-

Phenylalaninerhöhung eine Folge von Mutationen im PAH-Gen, die eine veränderte Aktivität 

der PAH zur Folge haben. Heute sind über 950 pathogene Mutationen im PAH-Gen bekannt  

(www.pahdb.mcgill.ca) und 80 % davon sind missense Mutationen, also Mutationen mit 

Austausch einer einzelnen Aminosäure oder kleine Deletionen/Insertionen. Zusätzlich 

wurden aber auch größere Deletionen oder Insertionen, Splicing Varianten, Stop-Mutationen 

und Intron-Mutationen identifiziert. Basierend auf der prätherapeutischen L-

Phenylalaninkonzentration im Blut wurden bisher drei klinische Phänotypen der HPA 

unterschieden (Empfehlungen der Arbeitsgemeinschaft für Pädiatrische 

Stoffwechselerkrankungen [APS]). i) die klassische Phenylketonurie (> 1200 µmol/l) ii) die 

milde Phenylketonurie (600-1200 µmol/l) sowie iii) die milde Hyperphenylalaninämie (120-

600 µmol/l). Erweitert wurde die bestehende Klassifizierung dann um die Kategorie des BH4-

responsiven Defekts der PAH. Dieser wurde erstmalig bei vier HPA Patienten ohne BH4-

Mangel beschrieben, die auf die Gabe pharmakologischer Dosen des natürlichen Kofaktors 

BH4 eine Reduktion der L-Phenylalaninkonzentration im Blut zeigten (Kure et al. 1999). Im 

Rahmen einer systematischen klinischen Studie aus unserer Arbeitsgruppe konnte dann 

gezeigt werden, dass die Gabe von BH4 bei mehr als 80 % der Patienten mit milden 

Phänotypen zur Reduktion der L-Phenylalaninkonzentration im Blut, zu einer Normalisierung 

der PAH-Enzymaktivität in vivo und zu einer deutlichen Erhöhung der diätetischen L-

http://de.wikipedia.org/wiki/Robert_Guthrie


 
 1 EINLEITUNG 

 

 
 13 
 

Phenylalanintoleranz der Patienten führt (Muntau et al. 2002). Die entscheidende 

Voraussetzung für das Ansprechen der Patienten auf eine BH4-Therapie ist eine 

enzymatische PAH-Restaktivität (Kure et al. 1999, Spaapen and Rubio-Gozalbo 2003, Blau 

and Erlandsen 2004, Zurfluh et al. 2008, Dobrowolski et al. 2011). Folgerichtig konnte bisher 

bei keinem Patienten mit Nachweis von zwei Nullmutationen eine BH4-Responsivität 

beobachtet werden (Erlandsen 2006). Die bisherige Einteilung in die unterschiedlichen 

Phänotypen einschließlich der anzuwendenden Therapieoptionen war zwar weit verbreitet, 

trotzdem existierten europaweit unterschiedlichste lokale und nationale Leitlinien. Um 

europaweit standardisierte Behandlungsrichtlinien für PKU-Patienten festzulegen, die sich v. 

a. an therapeutischen Kriterien zum Wohl der Patienten orientieren, haben kürzlich 19 

Experten aus verschiedenen europäischen Ländern eine neue Leitlinien für die Diagnose 

und Therapie von PKU-Patienten erarbeitet (van Spronsen et al. 2017). Ab sofort entscheidet 

der Schwellenwert von 360 µmol/L L-Phenylalanin im Blut über das weitere Vorgehen. Liegt 

die L-Phenylalaninkonzentration von unbehandelten Patienten unter 360 µmol/L, ist keine 

Therapie erforderlich. Bei Werten über 360 µmol/L besteht Handlungsbedarf. Basiert der 

Grund für die erhöhten L-Phenylalaninwerte der Patienten auf einem Defekt im BH4-

Stoffwechsel, ist eine Therapie mit Sapropterindihydrochlorid - der synthetischen Form von 

BH4 - möglich. Auch Patienten mit einem BH4-responsiven Defekt der PAH profitieren von 

einer entsprechenden Kofaktortherapie. Patienten mit L-Phenylalaninwerten über 360 µmol/L 

die nicht BH4-responsiv sind, erhalten eine phenylalaninarme Diät.             

Trotz umfassender Mutationsanalysen bei Neugeborenen ist es nach wie vor nicht möglich, 

auf Grundlage des Genotyps zuverlässig den resultierenden Phänotyp eines Patienten 

abzuleiten. Zwar sind missense Mutationen krankheitsverursachend, die phänotypische 

Erscheinungsform ist jedoch sehr vielschichtig. Es existiert beispielsweise keine enge 

Korrelation zwischen IQ und PAH-Genotyp bei unbehandelten PKU-Patienten (Ramus et al. 

1993), denn metabolische Phänotypen und PAH-Genotypen zeigen in einer signifikanten 

Anzahl an Patienten deutlich unterschiedliche Ausprägungen (Kayaalp et al. 1997, Guldberg 

et al. 1998). Ein Parameter, der zudem die phänotypische Ausprägung beeinflusst, ist die 

Transaminierung von L-Phenylalanin. Ein weiterer ist der Transport von L-Phenylalanin über 

die Blut-Hirn Schranke, der den Transport anderer essentieller Aminosäuren in das 

Zentralnervensystem behindert. Die resultierenden PKU-Phänotypen sind somit das 

Ergebnis eines Zusammenspiels mehrerer Faktoren, die die Auswirkungen des Genotyps 

beeinflussen (Scriver and Waters 1999).  

Heute ist die Phenylketonurie als Prototyp einer therapierbaren genetischen Erkrankung 

anzusehen (Muntau and Gersting 2010). Sie ist mit einer Inzidenz von 1:5.062 (Nennstiel-

Ratzel et al. 2010) die häufigste Aminosäure-Stoffwechselstörung in Populationen mit 

europäischen Wurzeln (Zschocke 2003). Im Rahmen erweiterter Neugeborenen-

Screeningprogramme erfolgt die Untersuchung inzwischen vermehrt unter Einsatz der 

Tandem-Massenspektrometrie. Auch für Patienten mit schweren, nicht BH4-responsiven 

Erkrankungsformen werden derzeit alternative Therapiestrategien entwickelt. Hierzu gehört 

beispielsweise die Enzymsubstitution mit PEGylierter Phenylalanin-Ammoniak-Lyase (PAL) 

(MacDonald and D'Cunha 2007, Sarkissian et al. 2008, Sarkissian et al. 2011), die L-
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Phenylalanin unter Freisetzung von Ammoniak zu Zimtsäure verstoffwechselt. In Phase 1 bis 

3 Studien konnte inzwischen gezeigt werden, dass die subkutane Injektion von PEG-PAL die 

L-Phenylalaninkonzentration in PKU-Patienten signifikant reduziert (Longo et al. 2014). 

Weitere Therapieansätze sind gentherapeutische Strategien (Ding et al. 2006, Thony 2010, 

Yagi et al. 2011), auch unter Einsatz der CRISPR/Cas9-Technologie (Pan et al. 2016), sowie 

die Verwendung von großen, neutralen Aminosäuren, die mit L-Phenylalanin um die 

Überwindung der Blut-Hirn Schranke und damit den Transport in das Zentralnervensystem 

konkurrieren (Pietz et al. 1999, Matalon et al. 2007). Hierzu erschien kürzlich eine 

vielversprechende Studie am PKU-Mausmodell (Pah ENU2), die den Einsatz von großen, 

neutralen Aminosäuren als Alternative zu L-phenylalaninarmen Diät postuliert, um die 

neurokognitiven Folgen in PKU-Patienten zu verbessern (van Vliet et al. 2016). Die 

Forschung zur Entwicklung neuer Therapieansätze für PKU-Patienten ist somit nach wie vor 

hoch aktuell.    

 

1.7 Proteinfaltungserkrankungen und neue Therapieansätze   

In den vergangenen zehn Jahren kristallisierte sich immer mehr heraus, dass 

Proteinfehlfaltung auf Basis von missense Mutationen und die darauf folgende Degradation 

des fehlgefalteten Proteins durch das Proteasom oder Lysosom der grundlegende 

molekulare Mechanismus bei einer stetig steigenden Anzahl an angeborenen 

Stoffwechselerkrankungen ist (Ulloa-Aguirre et al. 2004, Gregersen 2006, Gersting et al. 

2008, Mu et al. 2008, Parenti et al. 2013). Die Phenylketonurie gilt hierbei inzwischen als 

Prototyp einer Fehlfaltungserkrankung eines zytosolischen Proteins. Vor allem große 

Proteine mit komplexen Strukturen, wie es auch bei der PAH der Fall ist, sind anfällig für 

Fehlfaltung, denn sie tendieren dazu, während des Faltungsprozesses hydrophobe Gruppen 

an der Proteinoberfläche zu exponieren, die mit anderen hydrophoben Gruppen interagieren 

und daraufhin aggregieren (Kim et al. 2013). Zudem erfolgt die Proteinfaltung nicht in einem 

Schritt, sondern durchschreitet unterschiedlichste konformelle Intermediate innerhalb eines 

folding energy landscapes auf dem Weg zur nativen Konformation (Kim et al. 2013) 

(Abbildung 7), was jede naszierende Polypeptidkette vor eine große Herausforderung stellt, 

auch wenn die Information der richtigen Faltung bereits in der Aminosäuresequenz hinterlegt 

ist (Anfinsen 1973).  

Um Proteinfehlfaltung und Aggregation in der Zelle zu verhindern, existiert daher eine 

Vielzahl unterschiedlicher molekularer Chaperone, die in die Regulierung des 

Faltungsmechanismus involviert sind, die de novo Faltung unterstützen, das Protein in seiner 

nativen Konformation stabilisieren oder die Degradation fehlgefalteter Proteine regulieren. 

Das immer tiefere Verständnis der Proteostase (Balch et al. 2008) sowie der 

Proteinqualitätskontrolle innerhalb der Zelle, der auch die Proteinsynthese unterliegt, erlaubt 

aber inzwischen zunehmend die Entwicklung neuer Therapieansätze basierend auf dem 

Einsatz von small molecular weight (SMW) compounds (<500 Da) die als pharmakologische 

Chaperone in der Zelle tätig werden. Sie sind in der Lage, die Proteinfehlfaltung zu 
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korrigieren und können aufgrund ihrer Wirkungsweisen in die drei unterschiedlichen 

Kategorien von chemischen und pharmakologischen Chaperonen sowie Regulatoren der 

Proteostase eingeteilt werden (Muntau et al. 2014).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 7. Energiediagramm für Proteinfaltung und Fehlfaltung 

Während der Faltung einer naszierenden Polypeptidkette in die richtige native Konformation sind Faltung und Aggregation 

konkurrierende Prozesse. Hierbei sind energetisch begünstigte intramolekulare Wechselwirkungen (grün) assoziiert mit einem 

Anstieg der konformellen Stabilität. Dies führt gleichzeitig zur Absenkung der Gesamtenergie des Systems hin zur nativen 

Konformation. Während dieses Prozesses können Proteine energetisch begünstigte, jedoch nicht native Konformationen 

annehmen, die zu Populationen von kinetisch gefangenen Zuständen führen die in sog. low-energy-wells lokalisiert sind. Zudem 

sind diese Zustände anfällig für die Ausbildung intermolekularer Wechselwirkungen (rot), die zu Proteinaggregation führen 

können. Chaperone helfen dabei, die Grenzen der freien Energie zu überwinden, unterbinden intermolekulare 

Wechselwirkungen und begünstigen dadurch die Faltung des Proteins in die native Konformation (Kim et al. 2013). 

 

Zu chemischen Chaperonen gehören beispielsweise Polyole wie Glycerol, Aminosäuren, 

Methylamine oder auch Dimethylsulfoxid und 4-Phenylbutyrat. Man geht davon aus, dass 

chemische Chaperone die Hydrathülle des Proteins verändern, wodurch die Beweglichkeit 

einzelner Proteindomänen eingeschränkt und das Protein in seiner Gesamtheit stabilisiert 

wird (Leandro and Gomes 2008, Rajan et al. 2011). Chemische Chaperone wirken somit im 

Unterschied zu pharmakologischen Chaperonen unspezifisch auf die Proteinkonformation, 

indem sie die Kompaktheit des Zielproteins erhöhen, ohne dabei direkt an das Target zu 
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binden. Trotzdem ist der Einsatz chemischer Chaperone in der Medizin schwierig, denn die 

Konzentrationen, die für eine Behandlung notwendig wären, sind u. U. toxisch oder zeigen 

schädliche off target Effekte. Weitere Forschung auf diesem Gebiet ist notwendig. 

Pharmakologische Chaperone binden spezifisch und reversibel an fehlgefaltete Proteine und 

verhindern durch konformelle Stabilisierung den Funktionsverlust des entsprechenden 

Enzyms durch Degradation (Bernier et al. 2004) und erhöhen somit den Anteil an 

funktionellem Protein in der Zelle (Leandro and Gomes 2008, Powers et al. 2009, Muntau 

and Gersting 2010). Effektive pharmakologische Chaperone - einschließlich BH4 – sind in der 

Regel Liganden des aktiven Zentrums (Fan 2003, Fan and Ishii 2007, Tropak et al. 2007, 

Shanmuganathan and Britz-McKibbin 2011) und wirken oft auch als milde Inhibitoren der 

Enzyme (Fan et al. 1999), welche sie stabilisieren (Pey et al. 2008, Santos-Sierra et al. 

2012). Daher ist der durch pharmakologische Chaperontherapie korrigierte biochemische 

Phänotyp meist ein Kompromiss aus verbesserter Enzymstabilität und reduzierter Aktivität. 

Die Voraussetzung für die Wirkung pharmakologischer Chaperone ist das Vorliegen von 

Enzymrestaktivität (Fan 2008). Zudem sollten sie eine hohe Affinität zu ihrem Zielprotein 

aufweisen, damit ihre Verwendung in niedrigen Konzentrationen erfolgen kann. Heute sind 

bereits drei pharmakologische Chaperone als Therapeutikum zugelassen; i) Seit 2008 

europaweit Sapropterindihydrochlorid zur Behandlung von Hyperphenylalaninämien ii) Seit 

2011 europaweit Tafamidis zur Therapie von familiärer Amyloid-Polyneuropathie vom 

Transthyretin-Typ (TTR-FAP) iii) seit Mai 2016 europaweit Migalastat zur Therapie der 

lysosomalen Speicherkrankheit Morbus Fabry (Germain et al. 2016).  

Bei der letzten zu erwähnenden Klasse der SMW compounds handelt es sich um 

Regulatoren der Proteostase. Dies sind Substanzen, die die Proteinfaltung unterstützen und 

den Abbau fehlgefalteter Proteinspezies verstärken, indem sie Funktion und Verfügbarkeit 

von molekularen Chaperonen erhöhen und/oder die Proteinqualitätskontrolle aktivieren 

(Balch et al. 2008, Mu et al. 2008).  

 

1.8 BH4 – ein pharmakologisches Chaperon 

Bis vor fünfzehn Jahren wurden alle PKU-Patienten mit einer sehr belastenden, L-

phenylalaninarmen Diät therapiert, die mit unerwünschten Begleiterscheinungen wie 

Fehlernährung und psychosozialen Komplikationen assoziiert ist (Smith and Knowles 2000, 

Enns et al. 2010). Erst die Entdeckung der BH4-Responsivität bei Patienten mit milderen 

Formen der PAH-Defizienz um die Jahrtausendwende (Kure et al. 1999, Muntau et al. 2002) 

führte zum Paradigmenwechsel auf dem Gebiet der behandelbaren, angeborenen 

Stoffwechselstörungen. Plötzlich schien die Behandlung genetischer Erkrankungen im 

Rahmen einer pharmakologischen Kofaktortherapie in greifbare Nähe zu rücken. Nach 

erfolgreichem Abschluss klinischer Studien zur Überprüfung der Wirksamkeit und Sicherheit 

von BH4 (Levy et al. 2007, Lee et al. 2008, Trefz et al. 2009) wurde 

Sapropterindihydrochlorid 2007 in den USA (FDA) und 2008 in Europa (EMEA) als orphan 

drug zugelassen. Zum Zeitpunkt der Zulassung des neuen Medikaments Kuvan® war der 
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Wirkmechanismus jedoch unklar. Eine naheliegende Hypothese war, dass die beim 

Patienten nachgewiesene Wirkung von BH4 auf der Kompensation einer reduzierten 

Bindungsaffinität der varianten Proteine gegenüber dem Kofaktor beruht (Kure et al. 1999). 

Erste experimentelle Ergebnisse verschiedener Arbeitsgruppen wiesen jedoch in eine 

andere Richtung. Es konnte gezeigt werden, dass PAH-Mutationen zu gestörter 

Oligomerisierung des funktionellen Enzyms mit erhöhter Neigung zu Aggregation (Eiken et 

al. 1996, Bjorgo et al. 1998, Waters et al. 1998, Pey et al. 2003), sowie zu vermehrter 

Proteindegradation führten (Waters et al. 1998, Waters et al. 2000, Pey et al. 2004a) und die 

Ausbildung des stabilen PAH-BH4 Komplexes einen gleichzeitigen Schutz vor Degradation 

der PAH durch das Proteasom bot (Doskeland and Flatmark 1996). Daraus entstand die 

Hypothese, dass Mutationen im PAH-Gen zu einer Störung der Proteinfaltung mit 

Funktionsverlust der PAH durch vermehrte Degradation führen und dass BH4 die 

Proteinfehlfaltung korrigiert. Damit wäre BH4 als pharmakologisches Chaperon zu 

klassifizieren.  
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2 Ziele der Arbeit 

Die pharmazeutische Produktentwicklung von Sapropterindihydrochlorid zur Therapie von 

Patienten mit Phenylketonurie durch Funktionsverlust der PAH verlief ungewöhnlich. Zwar 

handelte es sich bei dem im Rahmen klinischer Studien verabreichten Wirkstoff um den 

körpereigenen natürlichen Kofaktor der PAH, dennoch war erstaunlich, dass die molekularen 

Mechanismen, die der BH4-Sensitivität zugrunde liegen, zum Zeitpunkt der Zulassung des 

Präparates Kuvan® durch die FDA und die EMA nicht bekannt waren. Die 

Grundlagenforschung auf diesem Gebiet war daher das zentrale Thema der hier 

vorliegenden Promotionsarbeit.  

Im Rahmen der Dissertation sollte nach erfolgreicher rekombinanter Expression und 

Reinigung des PAH-Wildtyps aus E. coli zunächst die biophysikalische Charakterisierung 

des Enzyms erfolgen. Hierfür war die Etablierung der entsprechenden Assays zur Analyse 

des Circulardichroismus, der thermischen Stabilität (Differential Scanning Fluorimetry (DSF)-

Assay) und Hydrophobizität, der dynamischen Lichtstreuung (DLS) und der intrinsischen 

Tryptophanfluoreszenz erforderlich. Darüber hinaus sollten Erkenntnisse zur 

Aktivierungsenergie sowie über thermodynamische Parameter der Proteindenaturierung des 

PAH-Wildtyps gewonnen werden, wofür die Etablierung von Entfaltungskinetiken erforderlich 

war. In einem nächsten Schritt sollte das Verhalten des PAH-Wildtyps im Komplex mit BH4 

und den drei Kofaktoranaloga BH2, Sepiapterin und 6-MPH4 analysiert werden, die sich 

spezifisch entweder am Ring oder in der Seitenkette von BH4 unterscheiden. Ziel war es, die 

Struktur-Funktionsbeziehung von BH4 zu untersuchen und eine Aussage darüber zu treffen, 

welches strukturelle Element des BH4-Moleküls – das kondensierte Pyrimidopyrazin-

Ringsystem oder die 1,2-Dihydroxypropylseitenkette – den mit einer Inhibierung 

einhergehenden stabilisierenden Einfluss auf die PAH ausübt. Die zusätzliche 

Charakterisierung der Bindungseigenschaften der vier Liganden erforderte die Etablierung 

eines auf der Mikroskalierten Thermophorese (MST) basierenden Bindungsassays. Zur im 

nächsten Schritt erfolgenden Untersuchung der molekularen Auswirkungen von Mutationen 

im PAH-Gen auf Struktur und Funktion des rekombinanten PAH-Proteins war geplant, die 

drei PAH-Varianten R68S, R261Q und Y417H aus E. coli zu reinigen und mit den bereits 

etablierten Assays ohne und mit Zugabe von BH4 und den drei Derivaten vergleichend zum 

PAH-Wildtyp zu charakterisieren. Darüber hinaus sollte der Effekt des pharmakologischen 

Chaperons BH4 mit vier in der Literatur beschriebenen potentiellen Wirkstoffkandidaten 

sowie 4,5-Diaminopyrimidin – einer von unserer Arbeitsgruppe vorgeschlagenen Substanz – 

auf den PAH-Wildtyp verglichen werden. Hierfür und auch für die weiteren noch geplanten 

Versuche zur Identifikation von Liganden mit einem stabilisierenden Effekt auf die PAH sollte 

die Etablierung des DSF-Assays an einem Gerät für Real-Time-quantitative PCR erfolgen. 

Nach umfassender in vitro Analyse des Einflusses von insgesamt neun Liganden auf den 

PAH-Wildtyp sowie drei ausgewählten Varianten sollte in einem nächsten Schritt die 

Etablierung der Proteinexpression des PAH-Wildtyps und der PAH-Variante I65T in vivo im 

Expressionssystem von COS-7 Zellen erfolgen. Geplant war hierbei, den Einfluss der neun 

Liganden auf die Restproteinmenge sowie die Enzymrestaktivität von Wildtyp und I65T zu 
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analysieren. Abschließend sollten unabhängig von den bisherigen Ergebnissen in einem 

breit angelegten in vitro und in vivo Hochdurchsatz-Screen neue, vielversprechende 

Wirkstoffkandidaten für die PAH identifiziert und validiert werden.  

Alle Teilergebnisse der Promotionsarbeit sollten in ihrer Gesamtheit dazu beitragen, die 

molekularen Auswirkungen von Mutationen im PAH-Gen auf Struktur und Funktion des 

rekombinanten PAH-Proteins besser zu verstehen und zur Aufklärung des 

Wirkmechanismus von BH4 beizutragen, um das zu Grunde liegende biologische Prinzip 

langfristig auch auf andere Proteinfaltungserkrankungen zu übertragen. 
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3 Material und Methoden 

Bis auf die MST-Messungen zur Bestimmung von Bindungseigenschaften zwischen 

einzelnen Molekülen - die in Kooperation mit der Firma NanoTemper Technologies GmbH 

durchgeführt wurden - erfolgten alle experimentellen Arbeiten der Dissertation im Kubus-

Forschungszentrum des Dr. von Haunerschen Kinderspitals der Ludwig-Maximilians-

Universität in München. 

 

3.1 Eingesetzte Materialien 

3.1.1 Chemikalien  

Name Herkunft 

3-Amino-2-benzyl-7-nitro-4-(2-quinolyl)- 
1,2-dihydroisoquinolin-1-on 
 
dihydroisoquinolin-1-on 

MolPort, (LVA) 

4,5-Diaminopyrimidin Sigma-Aldrich Co. LLC. (D) 

5-Benzylhydantoin Sigma-Aldrich Co. LLC. (D) 

5,6-Dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-
2,3-dihydrothieno[2,3-d]- pyrimidin-4(1H)-on 

MolPort, (LVA) 

6-Aminocapronsäure Sigma-Aldrich Co. LLC. (D) 

6-Amino-5-benzylaminouracil Iris-Biotech (D) 

6-Methyltetrahydropterin (6-MPH4) Schircks Laboratories (CH) 

8-Anilino-1-naphtalensulfonsäure (ANS) Sigma-Aldrich Co. LLC. (D) 

Aqua ad iniectabilia B. Braun Melsungen (D) 

Complete Protease Inhibitor Cocktail Tablets Roche (D) 

Coomassie Brilliant Blue SERVA Electrophoresis GmbH (D) 

Dihydrobiopterin (BH2) Schircks Laboratories (CH) 

Dithiothreitol (DTT) Fluka, Sigma-Aldrich Co. LLC. (D) 

Eisenammoniumsulfat Sigma-Aldrich Co. LLC. (D) 

Ethanol in aqua dest. Apotheke der Universität München (D) 

Ethidiumbromid Carl Roth GmbH (D) 

Flüssiger Stickstoff Linde AG (D) 

Gel Loading Solution Sigma-Aldrich Co. LLC. (D) 

Glycerin ROTIPURAN® ≥99,5 %, p.a., Carl Roth GmbH (D) 

Yeast extract SERVABACTER 24540 SERVA Electrophoresis GmbH (D) 

Isopropanol Apotheke der Universität München (D) 

Isopropyl-β-D-thiogalactopyranosid (IPTG) Thermo Scientific Inc. (USA) 

Kaliumchlorid Merck (D) 

L-Phenylalanin Sigma-Aldrich Co. LLC. (D) 

L-Tyrosin Sigma-Aldrich Co. LLC. (D) 

LE Agarose Biozym Scientific GmbH (D) 

Magnesiumchlorid Merck (D) 

Magnesiumsulfat Merck (D) 
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Milchpulver Blotting-Grade Carl Roth GmbH (D) 

NativePAGE™ Cathode Buffer Additive (20X) ThermoFisher Scientific (D) 

NativePAGE™ Running Buffer (20X) ThermoFisher Scientific (D) 

Natriumchlorid Merck (D) 

NT™-647 NHS Fluoreszenzmarker NanoTemper Technologies GmbH (D) 

NuPAGE® LDS Sample Buffer (4X) ThermoFisher Scientific (D) 
 NuPAGE® MOPS SDS Running Buffer (20X) ThermoFisher Scientific (D) 

Pierce™ ECL Western Blotting Substrate 
 

ThermoFisher Scientific (D) 

Ponceau S Sigma-Aldrich Co. LLC. (D) 

Salzsäure Merck (D) 

Sepiapterin Schircks Laboratories (CH) 

SuperSignal™ West Femto Maximum Sensitivity 
Substrate 

ThermoFisher Scientific (D) 

SYPRO® Orange Sigma-Aldrich Co. LLC. (D) 

TBE Puffer (10x) Serva (D) 

TE Puffer  Life Technologies GmbH Invitrogen (D) 

Tetrahydrobiopterin (BH4) Schircks Laboratories (CH) 

Trypton LP0042 Oxoid, ThermoFisher Scientific (D) 

TWEEN® 20 Sigma-Aldrich Co. LLC. (D) 

Tabelle 1. Verwendete Chemikalien 

 

3.1.2 Organismen, Plasmide und Enzyme 

Organismen 

Bakterienstämme Genotyp Herkunft 

E. coli DH5α 
F-Φ80lacZΔM15 Δ(lacZYA-argF) U169 
recA1 endA1 hsdR17(rk

-, mk
+) phoA 

supE44 thi-1 gyrA96 relA1 λ- 

ThermoFisher 
Scientific (D) 

E. coli BL21 (DE3) B F– dcm ompT hsdS(rB–mB–) galλ(DE3) 
Agilent Technologies 
(USA) 

E. coli XL1-blue 
recA1 endA1 gyrA96 thi-1 hsdR17 
supE44 relA1 lac [F ṕroAB lacIq 
Z∆M15Tn10(Tetr)] 

Agilent Technologies 
(USA) 

E. coli One Shot® ccdB 
Survival™ 2 T1R 

F-mcrA Δ(mrr-hsdRMS-mcrBC) 
Φ80lacZΔM15 ΔlacX74 recA1 araΔ139 
Δ(ara-leu)7697 galU galK rpsL (StrR) 
endA1 nupG fhuA:IS2 

ThermoFisher 
Scientific (D) 

Tabelle 2. Verwendete E. coli Bakterienstämme 
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Plasmide  

Vektor Merkmal Herkunft 

Gateway® 
pDONRTM221 

attP-Sites, ccdB-Kassette ThermoFisher Scientific (D) 

pMAL-c2X DEST 1) attR-Sites, ccdB-Kassette, MBP-Tag Ursprünglich NEB (D) 

Gateway® pEF-
DEST51 

attR-Sites, ccdB-Kassette, His Tag(6x),  
V5- Epitop  

ThermoFisher Scientific (D) 

Tabelle 3. Verwendete Vektoren 

1) 
Der Zielvektor pMAL-c2X DEST basiert auf dem ursprünglichen NEB-Vektor pMAL-c2X der durch meine Kollegin Marta 

Danecka gatewaykompatibel verändert wurde, indem anschließend an das MBP-Gen und die Faktor Xa Schnittstelle die von 

den attR-Seiten flankierte ccdB-Kassette kloniert wurde. 

 

Enzyme  

Enzym Anwendung Herkunft 

BP Clonase™ II BP-Reaktion 
Life Technologies GmbH 
Invitrogen (D) 

Faktor Xa Ile-(Glu/Asp)-Gly-Arg↓ Merck Millipore (D) 

FastDigest            
Restriktionsendonucleasen 

Klonierung 
ThermoFisher Scientific (D)         
(ehem. Fermentas) 

Glucose-Oxidase MST-Messung Sigma-Aldrich Co. LLC. (D) 

Katalase Aktivitätsassay Sigma-Aldrich Co. LLC. (D) 

LR Clonase™ II LR-Reaktion 
Life Technologies GmbH 
Invitrogen (D) 

Pfu Polymerase Gateway-PCR ThermoFisher Scientific (D) 

Proteinase K 
Inaktivierung der Gateway-
Enzyme 

Sigma-Aldrich Co. LLC. (D) 

TEV Protease 
Glu-Asn-Leu-Tyr-Phe-
Gln\Ser↓ 

Labor AG Muntau 

Tabelle 4. Verwendete Enzyme 

 

3.1.3 Zellkulturmaterialien 

Name Herkunft 

Antibiotic-Antimycotic Solution PAA (AUT) 

Fötales Kalbsserum (FKS) Lonza (Bel) 

Neubauer-Zählkammer Carl Roth GmbH (D) 

PBS-Puffer (10x) PAA (AUT) 

RPMI 1640 Kulturmedium mit L-Glutamin PAA (AUT) 

Trypsin EDTA (10x) PAA (AUT) 

Tabelle 5. Verwendete Zellkulturmaterialien 
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3.1.4 Größenstandards und Kits 

Name Verwendungszweck Herkunft 

1 kb DNA ladder Agarosegelelektrophorese ThermoFisher Scientific (D) 

Quick Start™ Bradford 
Protein Assay 

Konzentrationsbestimmung Bio-RAD (D) 

Gel Filtration HMW 
Calibration Kit 

Gelfiltrationschromatographie 
GE Healthcare Life Sciences 
(D) 

NativeMark™ Unstained 
Protein Standard 

Native Gelelektrophorese ThermoFisher Scientific (D) 

PageRuler™ Prestained 
Protein Ladder 

SDS-Gelelektrophorese ThermoFisher Scientific (D) 

PureYield™ Plasmid 
Maxiprep System 

Plasmid-Maxi-Präparation Promega (D) 

QIAprep Spin Miniprep Kit Plasmid-Mini-Präparation Qiagen, Hilden (D) 

QuikChange site-directed 
mutagenesis Kit 

Ortsspezifische Mutagenese Agilent Technologies (USA) 

Tabelle 6. Verwendete Kits und Größenstandards 

 

3.1.5 Antikörper 

Antikörper Herkunft 

Monoklonaler IgG-Antikörper gegen PAH (Maus) Merck Millipore (D) 

Monoklonaler IgG-Antikörper gegen GAPDH (Maus) 
Meridian Life Sciences, Inc. 
(USA) 

Ziege-α-Maus-IgG gekoppelt an Meerrettichperoxidase 
(HRP) 

St. Cruz Biotechnology, Inc. 
(USA) 

Tabelle 7. Verwendete Antikörper 

 

3.1.6 Nährmedien und Antibiotika 

Alle Medien wurden mit entionisiertem und gefiltertem Wasser angesetzt (Millipore) und 

direkt nach Herstellung autoklaviert. Die längerfristige Lagerung erfolgte im Kühlraum (4 °C). 

 

Nährmedien 

Nährmedium  Zusammensetzung 

LB-Medium  10 g Bacto Trypton 
5 g Hefeextrakt 
5 g NaCl 
ad 1 L H2O 
mit NaOH auf pH 7,4 einstellen 

LB Agar-Platten  LB-Medium mit 2 % Agar versetzen 

Selektive LB Agar-Platten  LB-Medium mit 2 % Agar versetzen. Nach Abkühlen unter 
50 °C erfolgt Zugabe des entsprechenden Antibiotikums  
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Antibiotika 

Antibiotikum Arbeitskonzentration Herkunft 

Ampicillin     100 µg/ml SERVA Electrophoresis GmbH (D) 

Kanamycin   35 µg/ml Carl Roth GmbH (D) 

Chloramphenicol   25 µg/ml Sigma-Aldrich Co. LLC. (D) 

Tabelle 8. Eingesetzte Antibiotika 

 

 

3.1.7 Verwendete Puffer 

Alle Puffer wurden mit entionisiertem und gefiltertem Wasser angesetzt (Millipore) und direkt 

nach ihrer Herstellung filtriert und entgast. Die längerfristige Lagerung erfolgte im Kühlraum 

bei 4 °C. 

 

Lösungen für molekularbiologische Methoden  

Puffer-TFB1  

Menge 1 M-Lösungen für 500 ml Puffer 

       100 mM RbCl  50 ml   

 50 mM MnCl
2  25 ml 

 
30 mM K-Acetat  15 ml     

 10 mM CaCl
2  5 ml 

 15 % Glycerin  88 ml von 85 % Glyzerin 

 dH2O  auf 500 ml auffüllen (pH 5,8)   

                

Puffer-TFB2    

Menge 1 M-Lösung für 500 ml Puffer 

 10 mM MOPS 5 ml   

 10 mM RbCl 5 ml 

 75 mM CaCl
2
 37,5 ml 

 15 % Glycerin 88 ml von 85 % Glycerin 

 dH2O auf 500 ml auffüllen (pH 6,8) 

 

 

Lösungen für proteinbiochemische Methoden 

Säulenpuffer 

 1 M Tris-HCl pH 7,4 40 ml   

 NaCl 23,4 g 

 0,5 M EDTA 4 ml 

 DTT 308 mg 

 dH2O auf 2000 ml auffüllen (pH 6,8) 
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Maltosepuffer 

 Maltose 1,71 g 

 Säulenpuffer auf 500 ml auffüllen  

 

Hepespuffer 

 NaHEPES 10,4 g 

 NaCl 23,37 g  

 dH2O auf 2000 ml auffüllen (pH 7,0) 

 

Entfärberlösung 

 Methanol 300 ml 

 Eisessig 75 ml 

 dH2O auf 1000 ml auffüllen  

 

Kathodenpuffer 

 1 M Tris-HCl pH 10,4 25 ml 

 6-Aminocapronsäure 5,24 g  

 Methanol 200 ml 

 dH2O auf 1000 ml auffüllen (pH 9,4) 

 

Anodenpuffer I 

 1 M Tris-HCl pH 10,4 25 ml 

 Methanol 200 ml  

 dH2O auf 1000 ml auffüllen (pH 10,4) 

 

Anodenpuffer II 

 1 M Tris-HCl pH 10,4 300 ml 

 Methanol 200 ml  

 dH2O auf 1000 ml auffüllen (pH 10,4) 

 

10x TBS-Puffer 

 500 mM TrisHCl 

 1,5 M NaCl 

 dH2O auf 1000 ml auffüllen (pH 7,5) 

 

HPLC-Puffer 

 Ammoniak 15,7 ml 

 Essigsäure 20 ml 

 dH2O auf 1000 ml auffüllen (pH 4,6) 
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CD-Puffer 

 0,2 M KH2PO4 19,5 ml 

 0,2 M K2HPO4 30,5 ml 

  auf 100 ml auffüllen (pH 7,0) 

   Verdünnung auf 20 mM für die Messung 

 

 

3.1.8 Sonstige Materialien 

Name Herkunft 

Amersham™Hybond™PVDF Membran  GE Healthcare Life Sciences (D) 

Amicon® Ultra 15 mL Centrifugal Filters Merck Millipore (D) 

Filtropur S 0,2 µm und 0,45 µm Sarstedt (D) 

Fluoreszenz-Küvetten (16.100-F/Q/10/Z20 6) Starna (D) 

Glow Writer  Diversified Biotech (USA) 

Küvettenreiniger Hellmanex-II Hellma Analytics (D) 

NativePAGE™ 4-16 % Bis-Tris Protein Gel ThermoFisher Scientific (D) 

Nunc® CryoTubes® Sigma-Aldrich Co. LLC. (D) 

NuPAGE™ 10 % Bis-Tris Midi Protein Gel ThermoFisher Scientific (D) 

NuPAGE™ 4-12 % Bis-Tris Midi Protein Gel ThermoFisher Scientific (D) 

96-well Platten (RT7900)  Applied Biosystems 

Petrischalen 92x16 mm Sarstedt (D) 

Pipettenspitzen  Eppendorf (D) und Sarstedt (D) 

Pipettierhilfe Eppendorf research Eppendorf (D) 

6-Well Flachboden-Kulturplatten Greiner Bio-one (D) 

Whatman® cellulose chromatography papers 3 mm GE Healthcare Life Sciences (D) 

1,5 ml und 2 ml Reaktionsgefäße  Sarstedt (D) 

15 ml Zentrifugenröhrchen  Sarstedt (D) 

50 ml Zentrifugenröhrchen Corning (USA) 

Tabelle 9. Verwendete Materialien 

 

 

3.1.9 Laborgeräte und Chromatographiesäulen 

Name Herkunft 

7900HT Fast Real-Time PCR System ThermoFisher Scientific (D) 

ÄKTApurifier Chromatographiesystem GE Healthcare Life Sciences (D) 

ÄKTAxpress Chromatographiesystem GE Healthcare Life Sciences (D) 

Amaxa® Nucleofector® Lonza (Bel) 

Branson Digital Cell Disruptor 
Branson, Emerson Industrial 
Automation (USA) 

CARY Eclipse Fluoreszenz-Spektrophotometer Varian, Agilent Technologies 
(USA) Circular Dichroism Spectrometer J-1000 JASCO Germany GmbH (D) 
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DIANA III imaging system Raytest (D) 

DynaPro NanoStar 
Wyatt Technology Europe GmbH 
(D) 

FLUOStar Optima Fluoreszenz-Mikroplatten-Lesegerät BMG Labtech GmbH (D) 

HiLoad 16/600 Superdex 75 prep grade GE Healthcare Life Sciences (D) 

HiLoad 26/600 Superdex 200 prep grade GE Healthcare Life Sciences (D) 

Spherisorb ODS2 Säule, 10 µm, 4.6 mm X 150 mm Waters (USA) 

Küvettenschleuder ITS (D) 

Mastercycler personal Eppendorf (D) 

MBPTrap HP, 1 x 5 ml GE Healthcare Life Sciences (D) 

Monolith NT.115 
NanoTemper Technologies 
GmbH (D) 

Nano Drop ND 1000 Thermo Scientific (USA) 

Peltier-Thermostatted Multicell Holder 
Varian, Agilent Technologies 
(USA) 

pH-Meter VWR International (USA) 

Sartorius Extend Präzisionswaage Sartorius (D) 

Schüttelinkubator New Brunswick Scientific (USA) 

Tischzentrifuge Galaxy Mini VWR International (USA) 

UltiMate 3000 HPLC ThermoFisher Scientific (D) 

Ultrospec 1000 UV/ Visible Spectrophotometer Pharmacia Biotech (USA) 

Variomag Monotherm Magnetrührer ThermoFisher Scientific (D) 

Vortex-Genie Bender & Hobein AG (CH) 

XCell SureLock® Mini und Midi-Cell ThermoFisher Scientific (D) 

XCell Sure Lock™ Mini-Cell Blot Module ThermoFisher Scientific (D) 

Zentrifuge Rotana 460 R Hettich (D) 

Zentrifuge Avanti Beckman Coulter (D) 

Tabelle 10. Verwendete Geräte 

 

 

3.1.10 Software 

Name Anwendung  Herkunft 

ABI 7900 Fast System  
SDS 2.3 

Software für RT7900 ThermoFisher Scientific (D) 

AIDA Image Analyzer 
Densitometrische 
Auswertung der Western 
Blot Banden 

Raytest (D) 

Dionex™ Chromeleon™ 6.8 Software für HPLC ThermoFisher Scientific (D) 

Dynamics 7.1.9. Software für DLS 
Wyatt Technology Europe GmbH 
(D) 

EndNote™ Literaturverwaltung Clarivate Analytics (USA) 

GOLD version 5.1 Molecular Modeling 
Cambridge Crystallographic Data 
Centre (UK) 
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Microsoft Office 2010 
Textbearbeitung und 
Tabellenkalkulation 

Microsoft Deutschland GmbH (D) 

NTAnalysis V1.5.49 Software für MST 
NanoTemper Technologies 
GmbH (D) 

Optima Software, V 2.20  Software für FLUOStar 
Optima 

BMG Labtech GmbH (D) 

GraphPad Prism, V 5.0 Datenverarbeitung GraphPad Software, Inc. (USA) 

Serial Cloner, V 2.5 
Molekularbiologische 
Software 

http://www.serialbasics.com 

Sequence Navigator™ 
Auswertung der 
Sequenzierungen 

Thermo Scientific Inc. (USA) 

Spectra Manager™II Software für CD-Gerät JASCO Germany GmbH (D) 

UNICORN Control Software 
Software für 
ÄKTApurifier und 
ÄKTAxpress  

GE Healthcare Life Sciences (D) 

Tabelle 11. Verwendete Software 

 

 

3.2 Molekularbiologische Methoden 

Die Gefäße und Lösungen die zur Anzucht von Mikroorganismen sowie für 

molekularbiologische Arbeiten eingesetzten wurden, sind vor Gebrauch autoklaviert worden 

und waren somit steril. 

 

3.2.1 Methoden der Gateway®-Technologie 

Die Gateway®-Technologie ist eine innovative Klonierungstechnologie basierend auf dem 

sequenzspezifischen Rekombinationssystem des Bakteriophagen Lambda (Landy 1989). 

Vorteil der Gateway-Klonierung gegenüber dem konventionellen Klonieren unter Einsatz von 

Restriktionsendonukleasen ist das schnelle und effiziente Klonieren einer kodierenden DNA-

Sequenz in multiple Expressionsvektoren, die in unterschiedlichen Expressionssystemen 

eingesetzt werden können. Die Generierung eines Expressionsvektors gelingt in drei 

Schritten (Abbildung 8). Zunächst erfolgt die Modifikation der entsprechenden cDNA durch 

Addition der gatewayspezifischen attB-Sites im Rahmen einer Polymerasekettenreaktion 

(PCR). Im zweiten Schritt wird das attB-PCR-Produkt durch eine BP-Rekombinationsreaktion 

in den entsprechenden pDONR-Vektor kloniert, wodurch ein Entry-Clone generiert wird. Im 

letzten Schritt werden durch eine LR-Rekombinationsreaktion zwischen Entry-Clone und 

DEST-Vektor die gewünschten Expressionskonstrukte erhalten.   

 

 

 



 
 3 MATERIAL UND METHODEN 

 

 
 29 
 

 

Abbildung 8. Schematische Darstellung der Gateway
®
-Klonierung 

Der erste Schritt der Gateway
®
-Klonierung ist eine Polymerasekettenreaktion (PCR), um das für die Phenylalaninhydroxylase 

(PAH) kodierende PAH Gen (open reading frame, ORF PAH) mit spezifischen Primern, die neben der PAH-Gensequenz auch 

die gatewayspezifischen attB-Sites enthalten, zu amplifizieren. Das attB-PCR-Produkt, welches die durch die attB-Sites 

flankierte PAH-Sequenz enthält, wurde als Edukt für die BP-Reaktion eingesetzt, die eine Rekombination des attB-PCR-

Produkts mit dem Donor-Vektor pDONR™221 ist. Das im Donor-Vektor enthaltenen ccdB-Gen wurde gegen das attB-PCR-

Produkt ausgetauscht und ein Wildtyp PAH Entry Clone generiert. Die abschließende LR-Reaktion ist eine Rekombination des 

durch die BP-Reaktion generierten Wildtyp PAH Entry Clones mit einem geeigneten Zielvektor (DEST Vektor), wodurch das im 

Zielvektor enthaltenen ccdB-Gen gegen das PAH-Gen ausgetauscht und ein Expressionsplasmid des Wildtyps generiert wird. 

Je nach verwendetem Zielvektor kann das generierte Expressionsplasmid im pro- oder eukaryoten System zur Expression der 

kodierenden Proteine eingesetzt werden. 

 

 

3.2.1.1 Polymerase-Kettenreaktion zur Generierung des attB-PCR Produkts 

Die PCR dient der Amplifizierung von DNA-Fragmenten in vitro (Mullis and Faloona 1987). 

Neben der entsprechenden cDNA werden eine thermostabile DNA-Polymerase mit 3’-5’-

Exonucleaseaktivität (proofreading), ein passender Puffer, Desoxynucleotidtriphosphate 

(dNTPs) und entsprechende Oligonucleotidprimer benötigt. Tabelle 12 zeigt die beiden 

Primer, die während der Gateway-PCR zur Generierung der attB-Sites für den PAH-Wildtyp 

verwendet wurden. Sie setzen sich aus den für das Annealing erforderlichen PAH 

Genabschnitten des Wildtyps und den von Herstellerseite vorgegebenen attB-

Rekombinationsstellen zusammen. Diese bestehen aus 25 Nucleotiden (fett gedruckt), die 

von den an der Rekombination beteiligten Enzymen erkannt werden.  

 

Name Merkmal Sequenz 5’- 3’ 

PAH 

forward 

attB1-Site GGGGACAAGTTTGTACAAAAAAGCAGGCTACACCATGGCT 

PAH 

reverse 

attB2-Site GGGGACCACTTTGTACAAGAAAGCTGGGTCTTACTTTATT 

Tabelle 12. Oligonucleotide zur Erzeugung eines attB-Gateway-PCR-Produkts 
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Ein Standard-Gateway-PCR-Ansatz hatte ein Volumen von 50 µl und setzte sich aus den 

folgenden Komponenten zusammen (Tabelle 13). 

 

Komponente Konzentration bzw. Volumen 

DNA-Matrize 50 ng 

10x Puffer 1x 

PAH forward Primer 10 µM 

PAH reverse Primer 10 µM 

dNTP Mix 1,5 µl 

Pfu-Polymerase 1 µl 

H2O bidest. Auf 50 µl auffüllen 

Tabelle 13. PCR-Pipettierschema zur Erzeugung einer attB-Site flankierten cDNA 

 

Alle Komponenten für die Gateway-PCR wurden in ein 200 µl Reaktionsgefäß pipettiert und 

vermischt. Anschließend erfolgt in einem Thermocycler umgehend die Vervielfältigung der 

cDNA unter Auswahl eines spezifischen PCR-Programms (Tabelle 14) bestehend aus einem 

Denaturierungsschritt, einem Hybridisierungsschritt und einem Elongationsschritt. Nach 

Durchführung der PCR wurde die richtige Länge des finalen attB-PCR-Produkts des PAH-

Wildtyps über ein Agarosegel verifiziert. 

 

Schritte Temperatur Prozess Dauer 

1 95 °C Initiale Denaturierung 5 Minuten 

2 95 °C Denaturierung 20 Sekunden 

3 Tm Hybridisierung 60 Sekunden 

4 72 °C Amplifikation 2 Minuten 

Wiederholung der Schritte 2 - 4, 18x 

5 72 °C Vervollständigung aller Stränge 10 Minuten 

6 4 °C Lagerung unendlich 

Tabelle 14. Thermocycler-Protokoll zur Generierung des attB-PCR-Produkts 

 

3.2.1.2 BP Rekombinationsreaktion zur Generierung des PAH Entry Clones 

Die BP-Rekombinationsreaktion diente der Erzeugung des PAH-Wildtyp Entry-Clones durch 

Rekombination zwischen dem attB-Sites flankierten PAH-Wildtyp PCR-Produkt und dem 

attP-Sites enthaltenden Donor-Vektor pDONR™221, wodurch das im Donor-Vektor 

enthaltene ccdB-Gen gegen das attB-PCR-Produkt ausgetauscht wurde. Als Nebenprodukt 

entsteht ein das Selbstmordgen ccdB tragendes Plasmid, welches im weiteren Verlauf dazu 

führt, dass die mit dem ccdB Plasmid transformierten Zellen zu Grunde gehen und nur die 

Transformanten die das gewünschte Expressionsplasmid tragen anwachsen.  

Tabelle 15 zeigt den Reaktionsansatz für die BP-Reaktion. Die Komponenten wurden in ein 

200 µl Reaktionsgefäß pipettiert, gemischt und in einem Thermocycler bei 25 °C inkubiert. 
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Nach 17 h erfolgte die Zugabe von 1 µl Proteinase K zum proteolytischen Verdau der BP 

Clonase (10 min, 37 °C).  

 

Komponente Konzentration bzw. Volumen 

attB-PCR-Produkt 50 ng 

pDONR™221 150 ng 

BP Clonase™II 1 µl 

TE Puffer ad 5 µl 

Tabelle 15. Pipettierschema für die BP-Rekombinationsreaktion 

 

1 µl des BP-Reaktionsansatzes wurde für die Transformation von chemisch kompetenten 

E. coli DH5α-Zellen verwendet (Kapitel 3.2.9). Die Selektion der positiven Klone erfolgte auf 

kanamycinhaltigen Agarplatten. Da gleichzeitig das Genprodukt des ccdB-Gens auf 

konventionell im Labor verwendete Bakterienstämme toxisch wirkt, erhöhte diese zusätzliche 

Selektion die Wahrscheinlichkeit für positive Klone deutlich. Aus den gewachsenen Kolonien 

auf der Platte wurden vier in einer Übernachtkultur angezogen und die Plasmid-DNA daraus 

isoliert. Ein analytischer Restriktionsenzymverdau (Kapitel 3.2.4) einschließlich Agarose-

Gelelektrophorese (Kapitel 3.2.7) diente dazu, eine erfolgreiche BP-Reaktion zu bestätigen. 

Die abschließende Sequenzierung (Kapitel 3.2.3) eines positiven Entry Clones konnte die 

richtige Sequenz des PAH-Wildtyps bestätigen. Dieser Entry Clone wurde für alle folgenden 

LR-Reaktionen eingesetzt und diente zudem als PCR-Matrize, um gezielt Punktmutationen 

im PAH-Gen mittels ortsspezifischer Mutagenese (Kapitel 3.2.2) zu generieren.  

 

3.2.1.3 LR-Rekombinationsreaktion zur Generierung der PAH-Expressionskonstrukte 

Die gatewayspezifische LR-Reaktion bezeichnet die Reaktion zwischen Entry Clone und 

Zielvektor zur Generierung der Expressionskonstrukte. Während der LR-Reaktion erfolgt der 

Austausch der attL-Sites flankierten cDNA des PAH-Wildtyp aus dem Entry Clone gegen das 

attR-Sites flankierte ccdB-Gen aus den entsprechenden DEST-Vektoren pMAL-c2X DEST 

und pEF DEST51. Auch während der LR-Reaktion entsteht ein das Selbstmordgen ccdB 

tragendes Plasmid als Nebenprodukt der Reaktion, welches die damit transformierten Zellen 

tötet und so die Chance auf positive Klone erhöht. Zur weiteren Selektion tragen die 

Expressionsvektoren eine andere Antibiotika-Resistenz als die Entry Clones.  

Tabelle 16 zeigt den Reaktionsansatz für die LR-Reaktion. Die Komponenten wurden in ein 

Reaktionsgefäß pipettiert, gemischt und in einem Thermocycler bei 25 °C inkubiert. Nach 

17 h erfolgte die Zugabe von 1 µl Proteinase K zum proteolytischen Verdau der LR Clonase 

(10 min, 37 °C). 1 µl des LR-Reaktionsansatzes wurde umgehend für die Transformation von 

chemisch kompetenten E. coli DH5α-Zellen verwendet. Die Selektion positiver Klone erfolgte 

auf Agarplatten mit Ampicillinresistenz. Von den gewachsenen Kolonien auf den Platten des 

PAH-Wildtyps und der Varianten wurden jeweils vier Klone in einer Übernachtkultur 

angezogen und die Plasmid-DNA daraus isoliert. Eine erfolgreiche LR-Reaktion konnte 
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durch einen analytischen Restriktionsenzymverdau (Kapitel 3.2.4) und anschließende 

Agarosegelelektrophorese (Kapitel 3.2.7) bestätigt werden. Eine weitere Sequenzierung war 

aufgrund der durchgeführten Rekombinationsreaktion nicht notwendig. Für die 

Proteinexpression erfolgte die Transformation von BL21(DE3)-Zellen mit den positiven 

Expressionskonstrukten. Zur langfristigen Lagerung wurde jeder positive Klon auch als 

Glycerinkultur angelegt.    

 

Komponente Konzentration bzw. Volumen 

PAH Entry Clone 50 ng 

DEST-Vektor 150 ng 

LR Clonase™II 2 µl 

TE Puffer ad 8 µl 

Tabelle 16. Pipettierschema für die LR-Rekombinationsreaktion 

 

3.2.2 Ortsspezifische Mutagenese – site directed mutagenesis (SDM) 

Mittels ortsspezifischer Mutagenese konnten gezielt Punktmutationen in die cDNA des PAH- 

Wildtyps eingebaut werden. Bei der PCR-basierten Vorgehensweise diente der in Kapitel 

3.2.1.2 generierte PAH Entry Clone als Matrize, woraus unter Verwendung der 

entsprechenden mutagenisierenden Primer ( Tabelle 19), die jeweiligen Entry Clones für die 

PAH-Varianten I65T, R68S, R261Q, Y414C und Y417H generiert werden konnten. Die 

Tabelle 17 zeigt den Reaktionsansatz für die mutagenisierende PCR. 

 

Komponente Konzentration bzw. Volumen 

DNA-Matrize 60 ng 

5x GC-Puffer 1x 

SDM forward Primer 10 µM 

SDM reverse Primer 10 µM 

dNTP Mix 150 µM 

Kapa Hifi Hot Start-Polymerase 1 µl 

H2O bidest. Auf 50 µl auffüllen 

Tabelle 17. Pipettierschema für die SDM zur Erzeugung varianter PAH Entry Clones 

 

Alle PCR-Komponenten wurden in ein 200 µl Reaktionsgefäß pipettiert, gemischt und der 

Entry Clone als Matrize in einem Thermocycler unter Auswahl eines spezifischen PCR-

Programms vervielfältigt (Tabelle 18). Die richtige Länge der amplifizierten, noch linearen 

PCR-Produkte der PAH-Varianten, wurde umgehend über ein Agarosegel verifiziert. Durch 

Inkubation des PCR-Ansatzes mit der Restriktionsendonuklease Dpn I (10 U/µl, 37 °C, 

30 min) konnte die methylierte Matrizen-DNA verdaut werden. Dpn I wurde im Anschluss 

hitzeinaktiviert (80 °C, 5 min) und ein Aliquot des Ansatzes umgehend für die Transformation 

von XL1-blue Zellen verwendet, die durch ihre Ligaseaktivität die offenen Enden der SDM-
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Produkte zirkularisierten. Die Selektion der positiven Klone erfolgte auf kanamycinhaltigen 

Agarplatten. Aus den gewachsenen Kolonien wurden jeweils vier Stück in einer 

Übernachtkultur angezogen und die Plasmid-DNA daraus isoliert. Ein analytischer 

Restriktionsenzymverdau (Kapitel 3.2.4) einschließlich Agarose-Gelelektrophorese (Kapitel 

3.2.7) diente dazu einen positiven Klon der Entry Clones von I65T, R68S, R261Q, Y414C 

und Y417H zu identifizieren, der durch Sequenzierung (Kapitel 3.2.3) bestätigt wurde. 

 

Schritte Temperatur Prozess Dauer 

1 95 °C Initiale Denaturierung 5 Minuten 

2 98 °C Denaturierung 20 Sekunden 

3 60-78 °C Hybridisierung 60 Sekunden 

4 72 °C Amplifikation 4 Minuten (ca. 1min/kb) 

Wiederholung der Schritte 2 - 4, 18x 

5 72 °C Vervollständigung aller Stränge 5 Minuten 

6 4 °C Lagerung unendlich 

Tabelle 18. Thermocycler-Protokoll zur Durchführung der ortsspezifischen Mutagenese 

 

 Tabelle 19 listet die mutagenisierenden Oligonukleotide auf, die während der 

ortsspezifischen Mutagenese zur Generierung der entsprechenden PAH-Varianten 

eingesetzt wurden. Die in den mutagenisierenden Primern ausgetauschten Nukleotide sind 

fett gedruckt. Die Annealingtemperatur für alle SDM-Primer betrug 78 °C. Die Ableitung der 

mutagenisierenden Primer erfolgte durch ein entsprechendes Tool auf der Homepage der 

Firma Agilent Technologies. 

(http://www.genomics.agilent.com/primerDesignProgram.jsp?toggle=uploadNow&mutate=tru

e&_requestid=424022) 

 

Name Merkmal Sequenz 5’- 3’ 

I65T for T_194_C 5'-ATGATGTAAACCTGACCCACACTGAATCTAGACCTTCTC-3' 

I65T rev T_194_C 5'-GAGAAGGTCTAGATTCAGTGTGGGTCAGGTTTACATCAT-3' 

R68S for A_204_C 5'-CTGACCCACATTGAATCTAGCCCTTCTCGTTTAAAGAAAGA-3' 

R68S rev A_204_C 5'-TCTTTCTTTAAACGAGAAGGGCTAGATTCAATGTGGGTCA-3' 

R261Q for G_782_A 5'-GGCCTGGCCTTCCAAGTCTTCCACTGC-3' 

R261Q rev G_782_A 5'-GCAGTGGAAGACTTGGAAGGCCAGGCC-3' 

Y414C for A_1241_

G 

5'-GTATGGGTCGCAGCGAACTGAGAAGGGCC-3' 

Y414C rev A_1241_

G 

5'-GGCCCTTCTCAGTTCGCTGCGACCCATAC-3' 

Y417H for T_1249_

C 

5'-CTCAGTTCGCTACGACCCACACACCCAAAGG-3' 

Y417H rev T_1249_

C 

5'-CCTTTGGGTGTGTGGGTCGTAGCGAACTGAG-3' 

 Tabelle 19. Oligonukleotide für die ortsspezifische Mutagenese 

 

http://www.genomics.agilent.com/primerDesignProgram.jsp?toggle=uploadNow&mutate=true&_requestid=424022
http://www.genomics.agilent.com/primerDesignProgram.jsp?toggle=uploadNow&mutate=true&_requestid=424022
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3.2.3 Sequenzierung 

Die richtige Basenabfolge aller neu klonierten Entry Clones von PAH-Wildtyp und Varianten 

wurde durch Sequenzierung der entsprechenden Plasmide (Eurofins Genomics, Ebersberg) 

verifiziert. Alle Proben wurden gemäß den Anforderungen der Firma vorbereitet (30 µl 

Plasmid-DNA, Konzentration 50-100 ng/µl). Der Abgleich der Sequenzierungsergebnisse mit 

der tatsächlichen Basenabfolge erfolgte mit dem Programm Sequence Navigator™.          

 

3.2.4 Analytischer Restriktionsenzymverdau von Plasmid-DNA 

Restriktionsendonukleasen erkennen je nach Spezifität vier bis acht palindrome Basenpaare 

in einem DNA-Doppelstrang und schneiden die zirkulären Plasmide exakt in dieser 

Zielsequenz, wodurch neu klonierte Plasmide überprüft werden können. Nach Inkubation 

(15 min, 37 °C) mit den entsprechenden Enzymen (Fast Digest Restriktionsendonukleasen, 

ehem. Fermentas) konnte die Größe der entstandenen linearen DNA-Fragmente in einem 

Agarosegel aufgetrennt und mittels UV-Licht visualisiert werden (Kapitel 3.2.7). Die erwartete 

Länge der Fragmente wurde zuvor mit dem Programm Serial Cloner berechnet. Alle 

Restriktionsansätze (Tabelle 20) wurden in den vom Hersteller empfohlenen Puffern 

durchgeführt. Bei einem Doppelverdau mit zwei Restriktionsenzymen wurde der Puffer 

gewählt, der eine ausreichende Aktivität für beide Enzyme garantierte. 

 

Komponente Konzentration bzw. Volumen 

Plasmid-DNA 1 µg 

Restriktionsenzym 2-10 U 

5x Restriktionspuffer 2 µl 

H2O bidest. ad 10 µl 

Tabelle 20. Pipettierschema für einen Restriktionsansatz 

 

3.2.5 Kultivierung von E. coli 

E. coli-Flüssigkulturen wurden bei 37 °C in LB-Medium angezogen. Die Vorkulturen wurden 

dabei entweder aus einer Einzelkolonie der jeweiligen Masterplatte, oder aus einer 

Glycerinkultur angeimpft. In Abhängigkeit des transformierten Plasmids wurde das 

entsprechende Antibiotikum zugegeben. Die Anzucht der Vorkulturen erfolgte über Nacht in 

einem Umluftinkubator mit Schüttelfunktion (200 UpM). Nach 16 h wurden die Zellen 

entweder geerntet um das entsprechende Plasmid zu isolieren, oder es erfolgte das 

Überimpfen der Vorkultur in eine entsprechende Hauptkultur zur anschließenden 

Proteinexpression. Das Wachstum der Bakterien konnte dabei photometrisch bei 595 nm 

(OD595=1=ca. 8x108 Zellen/ml) beobachtet werden (Sambrook et al. 1989) 
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3.2.6 Konservierung von E. coli 

LB-Agar-Platten wurden für maximal vier Wochen im Kühlschrank bei 4 °C aufbewahrt. Die 

längerfristige Lagerung der Plasmide erfolgte als Glycerinkultur der jeweiligen Einzelkolonie 

bei -80 °C. Hierzu wurde eine entsprechende Vorkultur angezogen, diese nach 16 h 

Inkubation bei 37 °C abzentrifugiert, das Zellpellet umgehend in 1 ml einer sterilen Lösung 

aus 50 % (v/v) Glycerin und LB-Medium resuspendiert und anschließend eingelagert. 

 

3.2.7 Agarose-Gelelektrophorese  

Die analytische Auftrennung von DNA erfolgte in 0,9 %igen, horizontalen Agarose-Gelen 

(0,3-10 kb) in 1 x TBE-Puffer bei einer konstanten Stromstärke von 120 mA. Vor jedem 

Auftrag wurden die Proben mit 1/5 Volumen an Probenpuffer versetzt, um die Dichte der 

DNA-Lösung gegenüber der des Puffers zu erhöhen. Zur Visualisierung der aufgetragenen 

DNA enthielt jedes Gel 0,4 μg/ml Ethidiumbromid, dessen Interkalation durch UV-Licht 

nachgewiesen und dokumentiert werden konnte. Die Größe der DNA-Fragmente ließ sich 

anhand eines Längenstandards abschätzen, der bei jeder Gelelektrophorese mitgeführt 

wurde. 

 

3.2.8 Herstellung calciumkompetenter E. coli Zellen 

Zur Herstellung calciumkompetenter Zellen wurden 100 ml LB-Medium ohne Antibiotikum mit 

1 ml Übernachtkultur des entsprechenden Stammes angeimpft. Die Kultur wurde bei 37 °C 

bis zu einer OD595 von 0,5 im Schüttelinkubator angezogen und anschließend umgehend für 

5 min auf Eis gekühlt. Nach einem Zentrifugationsschritt (4.000 g, 10 min, 4 °C) wurde das 

Zellpellet in 30 ml eiskaltem TFB1-Puffer resuspendiert und für 90 min auf Eis inkubiert. 

Nach einem weiteren Zentrifugationsschritt unter gleichen Bedingungen wurde das Zellpellet 

in 4 ml eiskaltem TFB2-Puffer resuspendiert und in Aliquots von 100 µl schockgefroren. Die 

längerfristige Lagerung der Zellen erfolgte bei -80 °C.   

 

3.2.9 Transformation calciumkompetenter E. coli Zellen 

Für die Transformation calciumkompetenter Zellen (DH5α, BL21(DE3) und XL1-blue) mit 

Plasmid-DNA wurden ca. 200 ng DNA auf 50 μl Zellen gegeben und die Mischung für 30 min 

auf Eis inkubiert. Anschließend erfolgte ein Hitzeschock bei 42 °C für 90 Sekunden und ein 

sofortiges Kühlen der Zellen auf Eis für weitere 90 Sekunden. Der Transformationsansatz 

wurde umgehend in 800 µl LB Medium ohne Antibiotikum aufgenommen, für weitere 45 min 

bei 37 °C auf dem Schüttelinkubator angezogen und abschließend auf LB-Platten mit 

entsprechender Antibiotikaselektion ausgestrichen. Die Anzucht der resistenten Klone 

erfolgte über 16 h in einem Brutschrank bei 37 °C. One Shot ccdB Survival T1 Phage-

Resistant Zellen sind gegenüber dem toxischen Effekt des ccdB-Gens resistent und wurden 

daher für die Transformation der Gateway®-Leervektoren (pMal-c2X, pEF DEST51) 
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verwendet. Die Transformation erfolgte nach obigem Protokoll mit der Ausnahme, dass die 

Inkubation bei 42 °C nur für 30 Sekunden erfolgte. Die positiven Klone wurden auf LB-

Agarplatten mit Doppelresistenz (Ampicillin und Chloramphenicol) angezogen. 

 

3.2.10 Isolierung von Plasmid-DNA aus E. coli  

Analytische Plasmidpräparationen (Mini-Prep) aus E. coli Kulturen wurden nach 

Herstellerangaben (Qiagen) unter Verwendung des QIAprepSpin Miniprep Kits durchgeführt. 

Die maximale Ausbeute an DNA aus einer 5 ml Bakterienkultur waren 20 µg.  

Alle für die Zellkultur geplanten Transfektionen erforderten eine größere Menge an DNA, die 

zudem Endotoxinfrei sein sollte. Die entsprechende Plasmidgewinnung erfolgte aus einer 

250 ml Bakterienkultur (Maxi-Prep) ebenfalls nach Herstellerangaben (Promega) mit 

Ausbeuten von bis zu 1 mg DNA.    

 

3.2.11 Photometrische Messung der DNA-Konzentration  

Nach jeder Plasmidpräparation erfolgte die photometrische Bestimmung der DNA-

Konzentration am NanoDrop-Spektrophotometer durch Absorptionsmessung der Probe bei 

einer Wellenlänge von 260 nm gegen H2OMillipore als Leerwert. Eine Absorption von 1,0 

entspricht 50 μg/ml DNA. Die Reinheit der Probe wurde durch das Verhältnis der 

Absorptionen bei E260 nm zu E280 nm ermittelt. Reine DNA weist einen E260/280 nm Wert von 1,8 

auf. Ein höherer Quotient weißt auf RNA-Kontaminationen hin, ein niedrigeres Verhältnis auf 

Proteinverunreinigung.  

 

 

3.3 Proteinbiochemische Methoden 

3.3.1 Proteinexpression in E. coli und Zellaufschluss 

Zur Expression des PAH-Wildtyps und der Varianten als MBP-Fusionsproteine in E. coli 

wurde die cDNA in den pMAL-c2X DEST Vektor kloniert (Kapitel 3.2.1) und die Plasmide 

umgehend in BL21 (DE3) Zellen transformiert. Die Anzucht der entsprechenden E. coli-

Flüssigkulturen erfolgte in LB-Medium über Nacht in einem Umluftinkubator mit 

Schüttelfunktion (200 UpM). Nach 16 h wurde die Vorkultur in eine Hauptkultur mit einem 

Volumen von 2 Litern unter erneuter Zugabe des entsprechenden Antibiotikums und 20 ml 

einer 20 %igen Glucoselösung überimpft und bei 37 °C bis zu einer OD595=0,5 kultiviert. 

Dann erfolgte die Induktion der Proteinexpression mit 0,3 mM IPTG (Gersting et al. 2008) 

und 0,2 mM Eisenammoniumsulfat (Martinez et al. 1995). Die Expression des PAH-Wildtyps 

und der PAH-Varianten gelang bei einer Postinduktionstemperatur von 28 °C über 20 h. Die 

Zellernte erfolgte durch Zentrifugation (5.000 UpM, 20 min, 4 °C). Nach einem Waschschritt 

mit 50 ml einer physiologischen Kochsalzlösung (0,9 % NaCl) wurden die Zellen nochmals 

wie beschrieben pelletiert und das Pellet anschließend in 50 ml Säulenpuffer unter Zugabe 

von Proteaseinhibitoren (Complete Mini) resuspendiert. Das Aufschließen der Zellen erfolgte 
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mittels Ultraschall (45 Sekunden, 10 % Amplitude, 0,8 Sekunden Puls, 0,2 Sekunden Pause) 

in fünf Zyklen unter Kühlung der Zellsuspension in einem Ethanol-Eisbad. Unlösliche 

Proteine und Zellmembranbestandteile konnten bei 15.000 UpM (20 Minuten, 4 °C) von den 

löslichen, überexprimierten Proteinen abgetrennt werden. Der lösliche Überstand wurde 

durch eine 0,45 µm Micropormembran filtriert und umgehend zur Proteinreinigung 

eingesetzt.    

 

3.3.2 Reinigung der Enzyme aus E. coli  

Die in den folgenden Kapiteln beschriebenen chromatographischen Methoden dienten zur 

Aufreinigung des PAH-Wildtyps und der Varianten I65T, R68S, R261Q, Y414C und Y417H. 

Nach den einzelnen Reinigungsschritten wurden Gelproben eingefroren, die abschließend 

durch Sodiumdodecylsulfat(SDS)-Polyacrylamid-Gelelektrophorese (PAGE) (Kapitel 3.3.4) 

die erfolgreiche Reinigung bestätigen konnten (Kapitel 4.2.1 und 4.4.1). 

 

3.3.2.1 Affinitätschromatographie 

Das Prinzip der Affinitätschromatographie beruht auf der spezifischen und reversiblen 

Adsorption eines Moleküls an einen individuellen, kovalent an eine Matrix gebundenen, 

immobilisierten Bindungspartner, dessen biospezifische Wechselwirkung genutzt wird um 

einen Liganden selektiv aus einer komplexen Mischung heraus zu adsorbieren. Die Elution 

des Zielmoleküls erfolgt dann entweder durch kompetitive Verdrängung aus der Bindung, 

oder durch einen Konformationswechsel aufgrund einer Änderung von pH-Wert oder 

Ionenstärke. Bei der Affinitätschromatographie handelt es sich um die Trennmethode mit der 

größten Spezifität und Selektivität für die Isolierung und Reinigung von Biomolekülen 

(Lottspeich and Zorbas 1998). 

Zur Isolierung der MBP-PAH Fusionsproteine wurde der lösliche Überstand (Kapitel 3.3.1) 

auf eine Amylose-Affinitätssäule (MBPTrap HP, 5 ml Säulenvolumen) aufgetragen, um die 

oligomeren Fusionsproteine vom bakteriellen Zellüberstand abzutrennen. Die Säule enthielt 

an Harz gekoppelte Amylosemoleküle als immobilisierten Bindungspartner, an welchen die 

MBP-Zielmoleküle mit hoher Affinität binden konnten, während alle anderen Bestandteile des 

Zellüberstandes durch Waschen der Säule mit fünffachen Säulenvolumen abgetrennt 

werden konnten. Die Elution der MBP-PAH Fusionsproteine erfolgte durch einen Puffer mit 

einem Anteil von 10 mM Maltose, welche mit höherer Affinität an die Amylosemoleküle 

bindet und die MBP-Fusionsproteine von der Säule verdrängt. Die Affinitätschromatographie 

wurde am automatisierten ÄKTAxpress Chromatographiesystem durchgeführt, wodurch die 

eluierten Proteine direkt in einen am System angeschlossenen Loop geleitet wurden, aus 

welchem der unmittelbare Auftrag der Fusionsproteine auf die ebenfalls am gleichen System 

angeschlossene Gelfiltrationssäule erfolgte (Kapitel 3.3.2.2).    
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3.3.2.2 Größenausschlusschromatographie 

Bei der Größenausschlusschromatographie handelt es sich um eine Methode zur 

Auftrennung von Proteinen unterschiedlicher Größe aufgrund ihres hydrodynamischen 

Radius, durch unterschiedliche Verteilung der Proteine zwischen einem Trägermaterial und 

dem umgebenden Medium. Die Matrix der im Rahmen der Dissertation eingesetzten 

Gelfiltrationssäulen besteht aus einem dreidimensionalen Netzwerk aus quervernetzter 

Agarose und Dextran mit definierter Porengröße. Die Porengröße ist für die Auftrennung 

entscheidend, denn nur die Proteine, deren hydrodynamischer Radius kleiner ist als die 

Porengröße, können in das Trägermaterial eindringen. Je kleiner das Protein ist, umso 

später wird es von der Säule eluiert. Proteine mit einem Molekulargewicht außerhalb der 

Ausschlussgrenze können nicht in die Gelporen eindringen und werden daher gemeinsam 

mit der Lösemittelfront eluiert (Lottspeich and Zorbas 1998). Als Laufpuffer sollten Puffer mit 

mittlerer Ionenstärke verwendet werden, um ionische Interaktionen zwischen den 

aufzutrennenden Proteinen und dem Trägermaterial zu verhindern und hydrophobe 

Wechselwirkungen zu minimieren. 

Nach der Affinitätschromatographie (Kapitel 3.3.2.1) konnte die Oligomerisierung der MBP-

PAH Fusionsproteine durch Größenausschlusschromatographie analysiert werden. Hierzu 

wurde die im Loop des ÄKTAxpress Chromatographiesystem gesammelte Fraktion der MBP-

PAH Fusionsproteine auf eine Gelfiltrationssäule aufgetragen (HiLoad 26/60 Superdex 

200pg), welche zuvor mit dem entsprechenden Laufpuffer equilibriert wurde (20 mM HEPES, 

200 mM NaCl, pH 7,0). Die MBP-PAH Tetramere wurden bei einer Flussgeschwindigkeit von 

1 ml/min nach 146 ml eluiert. Die Fraktionen der entsprechenden Peaks wurden gesammelt, 

in einem Amicon® Ultra 15 ml Zentrifugationsfilter vereinigt und durch Zentrifigation 

(2000 UpM, 4 °C, 45 min) eingeengt. Die Messung der Proteinkonzentration erfolgte 

spektrophotometrisch (Kapitel 3.3.3). Anschließend wurden die Fusionsproteine entweder 

aliquotiert und in flüssigem Stickstoff schockgefroren, oder umgehend mit Faktor Xa oder der 

Protease des Tobacco Etch Virus (TEV) inkubiert, um den MBP-Fusionspartner abzuspalten 

(Kapitel 3.3.2.3).  

 

3.3.2.3 Abspaltung des MBP-Fusionspartners durch Faktor Xa oder TEV Protease 

Die Abspaltung des MBP-Fusionspartners erfolgte durch Inkubation der gereinigten MBP-

PAH Tetramere (Kapitel 3.3.2.2) mit Faktor Xa (1 mg MBP-PAH/50 U Faktor Xa) oder TEV 

(MBP-PAH:TEV = 100:1) bei 4 °C über 16 h. Faktor Xa gehört zur Familie der 

Serinproteasen und erkennt ein lineares Epitop der allgemeinen Form Ile-Glu-Gly-Arg und 

spaltet das Protein nach dem Arginin. Die TEV-Protease erkennt das lineare Epitop Glu-Asn-

Leu-Tyr-Phe-Gln\Ser↓ und spaltet das Protein nach Glutamin oder Serin. 

 

3.3.2.4 Rechromatographie zur Isolierung der funktionellen PAH-Tetramere 

Nach Abspaltung des MBP-Fusionspartners durch Faktor Xa oder TEV, war ein weiterer 

Gelfiltrationsschritt notwendig um die funktionellen PAH Tetramere (208 kDa) und das MBP 
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(43 kDa) zu separieren. Hierfür kam eine kleinere Gelfiltrationssäule am ÄKTApurifier 

Chromatographiesystem zum Einsatz (HiLoad 16/60 Superdex 200 pg). Als Laufpuffer diente 

erneut der in Kapitel 3.3.2.2 verwendete Puffer, mit welchem die Säule vor ihrer Verwendung 

bereits equilibriert wurde. Die Auftrennung erfolgte mit einer Flussgeschwindigkeit von 

0,4 ml/min. Die Elution der PAH-Tetramere konnte nach 71 ml nachgewiesen werden. Die 

Fraktionen des entsprechenden Peaks wurden gesammelt, in einem Amicon® Ultra 15 ml 

Zentrifugationsfilter vereinigt und durch Zentrifigation (2000 UpM, 4 °C, 45 min) eingeengt. 

Die Messung der Proteinkonzentration erfolgte spektrophotometrisch (Kapitel 3.3.3), bevor 

die PAH-Tetramere aliquotiert und in flüssigem Stickstoff schockgefroren wurden. 

 

3.3.2.5 Kalibrierung der Gelfiltrationssäulen 

Zur Aufreinigung der MBP-PAH Fusionsproteine kam während der Promotionsarbeit eine 

HiLoad 26/60 Superdex 200 pg zum Einsatz, während für die Rechromatographie der 

geschnittenen Tetramere eine kleinere Säule verwendet wurde (HiLoad 16/60 Superdex 

200 pg). Beide Säulen mussten vor der ersten Aufreinigung mit Proteinen bekannter Größe 

(Thyroglobulin, 669 kDa; Ferritin, 440 kDa; Aldolase, 158 kDa; Ovalbumin, 43 kDa, Gel 

Filtration HMW Calibration Kit GE Healthcare) kalibriert werden. Durch Auftragen des 

Laufzeitvolumens gegen die Molekülmasse der Standardproteine, kann aus der 

resultierenden Eichgeraden der Stokes-Radius des zu analysierenden Proteins berechnet 

werden und eine Aussage über die Oligomerisierung gemacht werden. Zur Ermittlung des 

Ausschlussvolumens wurde jeweils Blue Dextran (>2.000 kDa) verwendet. 

 

3.3.3 Konzentrationsbestimmung der gereinigten Proteine durch UV-Absorption 

Aufgrund der Absorptionseigenschaften der aromatischen Aminosäuren Tryptophan, Tyrosin 

und in geringerem Ausmaß auch Phenylalanin, können Proteine ultraviolettes Licht in einem 

Wellenlängenbereich zwischen 250 und 290 nm absorbieren. Daher nutzt man zur 

spektrophotometrischen Konzentrationsbestimmung von gereinigten Proteinen maßgeblich 

die Absorption von Tryptophan, mit einem Absorptionsmaximum bei 279 nm. Durch das 

Lambert Beer’sche Gesetz kann aus dem gemessenen A279-Wert bei bekannten 

Extinktionskoeffizienten die Proteinkonzentration (Gleichung 3.1) berechnet werden. 

 

                                                                  A = ε·c·d   (3.1) 

A Absorption bei 279 nm  

ε Extinktionskoeffizient (cm2mol-1)  

c Proteinkonzentration (M)  

d Schichtdicke der Küvette (cm)  
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Mittels UV-Absorption wurde die Konzentration der PAH-Fusionsproteine (ε280nm(1mg/ml)=1,63) 

und der geschnittenen PAH-Proteine (ε280nm(1mg/ml)=1,0) gemessen, indem die Proteine im 

Laufpuffer verdünnt und als Triplikate gegen Laufpuffer als Referenz gemessen wurden. 

 

3.3.4 SDS-PAGE 

Die SDS-PAGE wurde während der Promotionsarbeit eingesetzt, um den Verlauf der 

Proteinaufreinigungen zu dokumentieren oder die Menge der Proteinexpression in Zellkultur 

zu überprüfen. Während der SDS-PAGE besitzen die zu analysierenden Proteine eine 

negative Überschussladung, da das im Probenpuffer enthaltene, negativ geladene SDS im 

Verhältnis von 1:1,4 pro Aminosäurerest an das Protein bindet. Daher ist der Anteil an 

negativer Überschussladung proportional zur Größe des Proteins, wodurch die Proteine 

unter denaturierenden Bedingungen nach ihrer Masse aufgetrennt werden, sobald sie im 

angelegten elektrischen Feld in Richtung Anode wandern. Da das Laufverhalten der Proteine 

während der Elektrophorese ausschließlich von ihrer Größe abhängig ist, erfolgt die 

Auftrennung der Proteine proportional zum Logarithmus ihres Molekulargewichtes, wobei 

kleinere Proteine die Polyacrylamidmatrix schneller durchlaufen können als die Größeren. 

Um die Proteine in der Probe vollständig aufzulösen, mögliche Proteasen zu inaktivieren und 

Tertiärstrukturen zu unterbinden, wurden die Proben vor dem Auftragen auf das Gel fünf 

Minuten mit der gleichen Menge 2 × Lithiumdodecylsulfat (LDS)-Probenpuffer auf 95 °C 

erhitzt. Die Auftrennung der Proteine erfolgte bei einer konstanten Spannung von 200 V für 

1,5 Stunden. Anhand eines zusätzlich aufgetragenen Proteinstandards (prestained page 

ruler, Fermentas) erfolgte die Größenzuordnung der gereinigten Proteine. Die für die SDS-

PAGE verwendeten vertikalen Gele waren precast NuPAGE Bis-Tris Gele (ThermoFisher 

Scientific), die mit dem empfohlenen 3-(N-Morpholino)propansulfonsäure (MOPS)-Puffer 

verwendet wurden. Je nach Fragestellung wurden Gradientengele mit ansteigender 

Polyacrylamidkonzentration (4-12 %) verwendet, oder 10 %-ige Gele ohne Konzentrations-

gradienten. Es kamen sowohl Mini (8 cm x 8 cm)- als auch Midi (8 cm x 13 cm)-Gele zum 

Einsatz, die eine gute Auftrennung von Proteinen in der Größenordnung von 1,5 bis 300 kDa 

ermöglichten. Die Visualisierung der Proteinbanden erfolgte entweder durch Coomassie-

Färbung (Kapitel 3.3.5) oder durch Blotten der Gele auf eine Polyvinylidendifluorid (PVDF)-

Membran mit anschließender Immundetektion (Kapitel 3.3.6 und 3.3.7).    

 

3.3.5 Coomassie-Färbung der Gele nach SDS-PAGE 

Die Färbung der SDS-Gele mit Coomassie G-250 Brilliant Blue gelingt bei Proteinmengen 

über 1 μg/Bande. Sie ist im Vergleich zur Silberfärbung weniger empfindlich und das 

Ergebnis liegt deutlich schneller vor. Zum Anfärben der Proteine wurden die Gele in 

Coomassie-Färbelösung (SERVA Electrophoresis) leicht erhitzt und anschließend 10-15 min 

inkubiert. Im Anschluss erfolgte eine mehrfache Behandlung mit Entfärberlösung (Kapitel 

3.1.7), bis sich die blauen Banden deutlich vor einem klaren Hintergrund abhoben.   
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3.3.6 Native PAGE 

Im Gegensatz zur SDS-PAGE wird die native PAGE dazu verwendet, um native 

Proteinkomplexe im elektrischen Feld aufzutrennen und dadurch höhere Oligomere oder 

auch Komplexe nachzuweisen. Bei der im Rahmen der Dissertation eingesetzten blau-

nativen (BN)-PAGE wird der Farbstoff Coomassie® G-250 als Lade-Verschiebungsmolekül 

verwendet. Er bindet an Proteine und verleiht ihnen eine negative Überschussladung, jedoch 

ohne sie gleichzeitig zu denaturieren. Sie verbleiben in ihrem nativen Zustand. Nach Anlegen 

eines elektrischen Feldes wandern die negativ geladenen Komplexe in Richtung Anode und 

werden entsprechend ihrer Größe bei 4 °C zunächst bei einer konstanten Spannung von 

150 V (60 Minuten) und anschließend bei 250 V (60 Minuten) aufgetrennt.  

Die für die BN-PAGE verwendeten vertikalen Mini (8 cm x 8 cm)-Gele waren precast 

NativePAGE™ Novex® Bis-Tris-Gele (ThermoFisher Scientific), die mit dem entsprechenden 

Puffersystem aus Kathodenpuffer und Laufpuffer verwendet wurden. Es handelte sich um 

Gradientengele (4-16 %), die eine Auftrennung von Proteinen in der Größenordnung von 30 

bis 10.000 kDa ermöglichten. Anhand eines zusätzlich aufgetragenen Proteinstandards 

(NativeMark™ Unstained, ThermoFisher Scientific) war die Größenzuordnung der Proteine 

möglich. Die Visualisierung der Proteinbanden erfolgte durch Coomassie-Färbung (Kapitel 

3.3.5), wobei die nativen Gele vor der eigentlichen Färbung 15 Minuten in einer 

Fixiererlösung (40 % Methanol, 10 % Eisessig) inkubiert werden mussten.     

 

3.3.7 Western Blot 

Die Methode des Western Blots dient dazu Proteine, die zuvor bereits in nativen oder 

denaturierenden Polyacrylamid-Gelen aufgetrennt wurden, auf eine Trägermembran zu 

übertragen (blotten) und im Anschluss durch Immundetektion (Kapitel 3.3.7) zu visualisieren. 

Die Übertragung erfolgt durch Anlegen eines elektrischen Feldes senkrecht zum Gel, 

wodurch die negativ geladenen Proteine in Richtung Anode wandern und an der Oberfläche 

der PVDF-Membran (Porengröße 0,45 µm) durch hydrophobe Wechselwirkungen haften 

bleiben. Vor dem Blotten muss die PVDF-Membran kurz in Methanol aktiviert werden, um die 

Hydrophobie der Membran zu reduzieren. Der Elektrotransfer erfolgte während der 

Promotionsarbeit als Semidry-Blot-Verfahren, indem die PVDF-Membran anodenseitig auf 

das Gel gelegt und beidseitig mit Filterpapieren bedeckt wurde, die zuvor in Transferpuffern 

(Kathodenpuffer, Anodenpuffer I und II) inkubiert worden waren.    

 

Anode 
3 Whatman-Papiere getränkt mit Anodenpuffer I 

3 Whatman-Papiere getränkt mit Anodenpuffer II 

PVDF-Membran, äqulibriert mit Anodenpuffer II 

Polyacrylamidgel 

3 Whatman-Papiere getränkt mit Kathodenpuffer 

Kathode 
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Der Elektrotransfer erfolgte durch Anlegen einer konstanten elektrischen Stromstärke von 

273 mA (2,5 mA/cm2) über 75 Minuten. Die erfolgreiche Übertragung der Proteine aus dem 

Gel auf die Membran ohne Veränderung des Musters der elektrophoretischen Auftrennung, 

konnte im Anschluss an den Blot durch Anfärben der Proteine mit einer Ponceau S-Lösung 

(0,2 %(w/v) Ponceau S, 3 %(v/v) Essigsäure) überprüft werden. Die Färbung ist reversibel 

(Auswaschen erfolgte mit H2OMillipore), mit einer Immundetektion kompatibel und empfindlicher 

als eine Coomassie-Färbung (Untergrenze ca. 50 ng/ Bande). Die Trichloressigsäure in der 

Färbelösung fixierte zudem gleichzeitig die Proteine auf der Membran.  

 

 

3.3.8 Immundetektion 

Nach dem Western Blot erfolgte die Immundetektion der auf der Membran gebundenen 

Proteine. Dafür wurde die Membran zunächst gewaschen und anschließend die freien 

Proteinbindungsstellen über Nacht maskiert, um die Hintergrundfärbung des Blots während 

der Immundetektion zu reduzieren. Nach drei Waschschritten erfolgte die Inkubation der 

Membran mit den primären Antikörpern (Monoklonale IgG-Antikörper gegen PAH und 

GAPDH), gefolgt von drei weiteren Waschschritten. Nach Inkubation mit dem sekundären 

Antikörper (Ziege-α-Maus-IgG gekoppelt an HRP) und erneutem Waschen wurde der Blot 

entwickelt. Hierbei katalysiert der peroxidasemarkierte, sekundäre Antikörper die Oxidation 

von Luminol und löst damit eine Chemilumineszenzreaktion aus. Das freigesetzte Licht wird 

gemessen (DIANA III imaging system) und quantifiziert. Je nach erwarteter Signalstärke kam 

entweder das Pierce™ ECL Western Blotting Substrate SuperSignal™ oder das sensitivere 

SuperSignal™ West Femto Maximum Sensitivity Substrat nach Angabe des Herstellers zum 

Einsatz. Die Größenzuordnung der Proteine erfolgte anhand eines Größenstandards, der vor 

der Detektion mit einem Lumineszenzstift eingefärbt wurde. Die densitometrische 

Auswertung der Blots wurde mit dem Programm AIDA Image Analyzer durchgeführt. 

Die nachfolgende Tabelle fasst die einzelnen Schritte der Immundetektion zusammen und 

zeigt die eingesetzte Verdünnung der jeweiligen Antikörper.  

 

Schritte Verdünnung Lösung Durchgänge   Dauer 

Waschen  1x TBS 1x 5 Minuten 

Blocken  5 % Milchpulver in TBS-T 1x 16 Stunden 

Waschen  1x TBS-T 3x Je 10 Minuten 

Anti-PAH 1:10.000 5 % Milchpulver in TBS-T 1x 90 Minuten 

Anti-GAPDH 1:40.000 5 % Milchpulver in TBS-T 1x 90 Minuten 

Waschen  1x TBS-T 3x Je 10 Minuten 

Anti-HRP 1:10.000 10 % Milchpulver in TBS-T 
 

1x 60 Minuten 

Waschen  1x TBS-T 3x Je 10 Minuten 

Tabelle 21. Ablauf der Immundetektion 
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3.3.9 Konzentrationsbestimmung der gereinigten Proteine nach Bradford 

Die Proteinbestimmung nach Bradford (Bradford 1976) dient der Messung von 

Proteinkonzentrationen in Lösung. Dabei wird die Verschiebung des Absorptionsmaximums 

des Farbstoffs Coomassie brilliant blue G-250 von E465 nm (rot-violettt) ohne Protein, nach 

E595 nm (blau) bei der Bindung an basische und aromatische Aminosäuren ausgenutzt. Über 

die Zunahme der Absorption bei E595 nm kann die Proteinkonzentration in der Lösung 

berechnet werden.  

Für die praktische Umsetzung wurden 500 μl Bradford Reagenz mit 490 μl Wasser und 10 μl 

Proteinlösung gemischt und für 5 min bei Raumtemperatur inkubiert. Anschließend konnte 

die Absorption bei E595 nm mit einem Spektralphotometer gemessen und aus einer 

Eichgeraden mit Rinderserumalbumin (BSA) die Proteinkonzentration berechnet werden. 

Dabei wurde vorausgesetzt, dass der Farbstoff mit beiden Proteinen in gleicher Effizienz 

wechselwirkt (BSA: A280 nm, 0,1 % = 0,667).  

 

3.4 Zellkultur 

3.4.1 Transiente Expression in COS-7 Zellen 

Die für die eukaryote Expression in Zellkultur eingesetzten Plasmide waren die in Kapitel 

3.2.1.3 generierten Konstrukte des PAH-Wildtyps und der PAH-Variante I65T in 

pEF DEST51. Die quantitative Plasmidpräparation erfolgte endotoxinfrei als Maxi-Prep aus 

einer 250 ml Bakterienkultur nach Herstellerangaben (Promega). Für die eukaryote 

Expression des Wildtyps und der Variante I65T wurden jeweils 2x106 COS-7 Zellen mit 2 µg 

DNA transient transfiziert (Amaxa® Nucleofector®), in 6-well Flachboden-Kulturplatten 

ausgesät und für 48 h in RPMI-Medium mit L-Glutamin und 10 % FKS sowie 1 % 

Antibiotikum kultiviert – wobei nach 24 h ein Mediumwechsel erfolgte. Die Zellkultur der 

transfizierten COS-7 Zellen erfolgte unter sterilen Bedingungen und die Inkubation im 

Brutschrank (37 °C, 5 % CO2). Zur Untersuchung des Effektes verschiedener Liganden auf 

das Expressionslevel von Wildtyp und Variante wurden die Liganden in einer finalen 

Konzentration von 43 µM dem Medium zugegeben und ebenfalls über 48 h inkubiert.  

 

3.4.2 Zellernte und Lyse der transfizierten Zellen 

Nach 48 h wurden die transfizierten Zellen zunächst mikroskopiert, um die Morphologie zu 

analysieren. Anschließend wurden sie mit PBS gewaschen und durch Zugabe von Trypsin 

(1:4 Verdünnung), sowie anschließender Inaktivierung des Trypsins durch RPMI-Medium, 

geerntet. Durch einen 10 minütigen Zentrifugationsschritt (4 °C, 2.500 UpM) wurden die 

transfizierten Zellen pelletiert und der Überstand verworfen. Die Zelllyse erfolgte durch 

wiederholtes Einfrieren und Auftauen (3x) des Zellpellets im entsprechenden Lysepuffer 

(20 mM NaHEPES, pH 7.0, 200 mM NaCl, 1% Triton und Complete-Proteinaseinhibitormix). 

Durch einen weiteren Zentrifugationsschritt (4 °C, 14.000 UpM, 20 Minuten) konnte die 

Zelldebris pelletiert und der Zellüberstand zur weiteren Analyse abgetrennt werden. Die 
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Bestimmung der Proteinkonzentration des Zelllysats erfolgte mittels Bradford-Assay (Kapitel 

3.3.8). Zur Analyse der Expressionslevels von Wildtyp und Variante I65T wurden jeweils 

10 µg des Lysats in einem denaturierenden SDS-Gel aufgetrennt und die überexprimierte 

PAH durch Immundetektion (Kapitel 3.3.7) mit einem primären Antikörper gegen PAH 

nachgewiesen. Die Messung der Zellkulturaktivitäten erfolgte nach einem Protokoll 

modifiziert nach Martinez et al. (Kapitel 3.5.1). Für die Varianzanalyse nach Auswertung von 

Western Blot und PAH-Aktivität wurden alle Werte mit einem Dunnett’s multiple-comparison 

test (GraphPad Prism, V 5.0) verglichen, indem die im Komplex mit einem Liganden 

erhobenen Daten auf das jeweilige Enzym (Wildtyp oder I65T) ohne Ligand bezogen 

wurden.  

 

 

3.5 Aktivität und Inhibierung  

3.5.1 Aktivitätsassay 

3.5.1.1 Aktivitätsassay nach prokaryoter Expression 

Der Standardaktivitätsassay zur Messung der PAH-Aktivität der in E. coli exprimierten PAH-

Proteine erfolgte nach einem Protokoll modifiziert nach Martinez (Martinez et al. 1995). 

Hierzu wurden 0,01 mg/ml der funktionellen MBP-PAH Tetramere für 5 min in einem Puffer 

(15 mM NaHEPES pH 7,3, 1 mg/ml Katalase, 10 µM Eisenammoniumsulfat) mit 1 mM L-

Phenylalanin bei 25 °C präaktiviert. Dann erfolgte der Start der Hydroxylierungsreaktion 

durch Zugabe von 75 µM BH4 in einem Assayvolumen von 100 µl. Nach 1 Minute wurde die 

Reaktion durch Zugabe von Essigsäure gestoppt und die Enzyme durch Inkubation bei 95 °C 

für 10 Minuten hitzeinaktiviert. Nach Ablauf des Assays konnten Substrat und Produkt mittels 

High Performance Liquid Chromatographie (HPLC) getrennt und die Menge an gebildetem L-

Tyrosin (Anregung 275 nm, Emission 305 nm) nachgewiesen werden. Generell handelt es 

sich bei der HPLC um ein Verfahren, bei welchem eine flüssige, mobile Phase unter hohem 

Druck (bis zu 250 bar) über eine Säule gepumpt wird, um ein Stoffgemisch in seine 

einzelnen Komponenten aufzutrennen. Die Trennschärfe ist dabei abhängig von der 

Laufgeschwindigkeit. Die Auftrennung von L-Phe und L-Tyr erfolgte über eine reverse Phase 

Spherisorb ODS2 Säule (10 µm Porengröße, 4,6 mm X 150 mm) im entsprechenden 

Laufmittel (Kapitel 3.1.7). Die Quantifizierung der gebildeten Menge an L-Tyr erfolgte durch 

Berechnung der Peakfläche mit dem Programm Dionex™ Chromeleon™ 6.8. Durch einen 

Abgleich der errechneten Peakfläche mit einer L-Tyr Standardkurve, die vor Beginn der 

flüssigchromatographischen Auftrennung der Assayproben aufgenommen wurde, konnte die 

Menge an gebildetem L-Tyr berechnet werden.     
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3.5.1.2 Aktivitätsassay nach eukaryoter Expression 

Der Standardaktivitätsassay zur Messung der PAH-Aktivität der in Zellkultur exprimierten 

PAH-Proteine erfolgte analog dem Protokoll für prokaryot exprimierte Proteine mit dem 

einzigen Unterschied, dass 20 µl Zelllysat (Kapitel 3.4.2) im Assay eingesetzt wurden und die 

Hydroxylierungsreaktion über 60 Minuten ablaufen konnte. Die Menge an gebildetem L-Tyr 

wurde fluoreszenzspektrophotometrisch nachgewiesen und durch Berechnung der 

Peakfläche quantifiziert. 

 

3.5.2 Activity Landscape 

Der Multiwell Aktivitätsassay des präaktivierten MBP-PAH-Wildtyps (0,01 mg/ml) und die 

Auswertung der Daten erfolgte analog der entsprechenden Publikationen (Gersting et al. 

2010, Staudigl et al. 2011), mit einer Substratkonzentration im Bereich von 0–4.000 µM und 

einer BH4- bzw. 6-MPH4-Konzentration von 0-500 bzw. 0-1.500 µM. Am 

Fluoreszenzspektrophotometer (FLUOstar OPTIMA) gemessen wurde der direkte Anstieg 

der Fluoreszenzintensität durch Bildung von L-Tyr bei 25 °C (Anregung 274 nm, Emission 

304 nm). Da BH4 bzw. 6-MPH4 das Fluoreszenzsignal im gemessenen Wellenlängenbereich 

quenchen, wurden die gemessenen Rohdaten durch Anwendung eines Korrekturfaktors, der 

für jede eingesetzte Ligandenkonzentration neu bestimmt werden musste, angepasst. Die 

gemessene PAH Aktivität konnte basierend auf zuvor gemessene L-Tyr Standards (0-

200 µM) quantifiziert und die Fluoreszenzintensität somit in Enzymaktivitätseinheiten (nmol 

L-Tyr/min x mg Protein) umgerechnet werden. Die Aktivitätsdaten wurden durch Anwendung 

einer Michaelis-Menten Kinetik oder basierend auf einem Hill-Kinetikmodell analysiert 

(GraphPad Prism V5.0). Die bioinformatische Berechnung der activity landscapes erfolgte 

durch Export der Datenmatrix in die freie Programmiersprache R (www.r-project.org), die für 

statistische Berechnungen und Grafiken verwendet wird. Zur Glättung der landscape 

Oberflächen wurden die Funktionen interp.loess 

(http://cran.rproject.org/web/packages/tgp/index.html) des tgp package sowie image.plot des 

fields package verwendet (http://cran.r-project.org/web/packages/fields/index.html). Die 

bioinformatischen Auswertungen erfolgten durch den Bioinformatiker Mathias Woidy. 

 

3.5.3 Inhibierungsassay 

Der Assay zur Analyse des inhibierenden Potentials aller im Rahmen der Dissertation 

verwendeten Liganden basiert auf dem bereits beschriebenen Standardaktivitätsassay 

(Martinez et al. 1995) zur Messung der PAH-Aktivität der in E. coli exprimierten PAH-

Proteine (Kapitel 3.5.1). Hierzu wurden 0,01 mg/ml der funktionellen MBP-PAH Tetramere 

für 5 min in einem Puffer (15 mM NaHEPES pH 7,3, 1 mg/ml Katalase, 10 µM 

Eisenammoniumsulfat) mit 1 mM L-Phe bei 25 °C präaktiviert. Gleichzeitig erfolgte die 

Zugabe der zu analysierenden Liganden in zehn ansteigenden Konzentrationen im Bereich 

von 25-500 mM. Dann wurde die Hydroxylierungsreaktion durch Zugabe von 75 µM BH4 in 

http://www.r-project.org/
http://cran.rproject.org/web/packages/tgp/index.html
http://cran.r-project.org/web/packages/fields/index.html
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einem Assayvolumen von insgesamt 100 µl gestartet. Nach 1 Minute Laufzeit bei 25 °C 

wurde die Reaktion durch Zugabe von Essigsäure gestoppt und die Enzyme durch 

Inkubation bei 95 °C für 10 Minuten hitzeinaktiviert. Nach flüssigchromatographischer 

Trennung von Substrat und Produkt mittels HPLC konnte die Menge an gebildetem L-Tyr 

(Martinez et al. 1995) nachgewiesen werden (Anregung 275 nm, Emission 305 nm). Die 

Ausbeuten variierten dabei stark in Abhängigkeit von der Inhibitorkonzentration. Durch 

Auftragen der Messpunkte gegen den Logarithmus der Ligandkonzentration und einen 

exponentiellen Fit der Daten, konnte die mittlere inhibitorische Konzentration (IC50) bestimmt 

werden, bei der eine halbmaximale Inhibierung vorlag. Die Berechnung der Werte für die 

inhibitorische Konstante Ki (Gleichung 3.2) erfolgte aus den IC50-Werten unter Anwendung 

der Cheng-Prusoff Gleichung (Cheng and Prusoff 1973). 
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Ki  inhibitorische Konstante 

IC50  inhibitorische Konzentration 

[S]  Substratkonzentration 

KM  Michaelis-Menten Konstante 

 

3.6 Spektroskopie 

Bei allen im Folgenden beschriebenen spektroskopischen Methoden wurden die 

gemessenen Spektren gegen die entsprechenden Pufferspektren als Referenz korrigiert. Die 

Referenzlösungen enthielten jeweils alle Komponenten des Assaypuffers bis auf das Protein. 

Für jeden Assay wurde jeweils ein frisches Enzymaliquot aus dem Stickstofftank aufgetaut 

und vor der Verwendung zentrifugiert (14.000 UpM, 15 min, 4 °C), um mögliche Aggregate 

abzutrennen. Sofern nicht anders angegeben erfolgten alle Messungen bei 25 °C und es 

wurden stets funktionelle Tetramere der PAH-Enzyme ohne MBP-Fusionspartner 

(Abspaltung durch Faktor Xa oder TEV-Protease) verwendet.  

 

3.6.1 Intrinsische Fluoreszenz 

Elektronen können durch die Absorption eines Lichtquants von ihrem Grundzustand mit 

niedriger Energie in höher angeregte Zustände angehoben werden. Um wieder in den 

energetischen Grundzustand zu gelangen, kann das photochemisch angeregte Molekül 

entweder strahlungslos relaxieren – wobei die Energiedifferenz als Schwingungsenergie 

(Wärme) abgegeben wird. Alternativ kann ein Lichtquant emittiert werden. Die dabei 

freiwerdende Energie wird als elektromagnetische Strahlung freigesetzt und kann als 

Fluoreszenzenergie gemessen werden (Lottspeich and Zorbas 1998). Die durch das 
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Elektron absorbierte Energie ist dabei stets größer als die emittierte Energie, da es durch 

strahlungslose Übergänge innerhalb des Systems zum Energieverlust kommt (siehe 

Jablonski-Termschema). Daher ist die gemessene Fluoreszenzenergie gegenüber der 

Absorptionsenergie immer in den längerwelligen Bereich des elektromagnetischen 

Spektrums verschoben (Rotverschiebung).  

Bei Messungen der intrinsischen Fluoreszenz von Biomolekülen werden die 

Fluoreszenzeigenschaften von direkt am Molekül vorhandenen Gruppen genutzt. Bei 

Proteinen handelt es sich um die drei Aminosäuren Tryptophan (Trp), Tyrosin und 

Phenylalanin, die aufgrund ihres delokalisierten π-Elektronensystems Lichtquanten 

absorbieren und emittieren können, wobei die Aminosäure Tryptophan das 

Fluoreszenzverhalten der Proteine bestimmt, denn sie absorbiert die Lichtquanten am 

stärksten. Zudem kann durch Energietransfer eine Anregung des Tryptophans durch 

emittierte Lichtquanten von Tyrosin und Phenylalanin erfolgen, da die Tyrosin- und 

Phenylalanin-Emissionsspektren mit dem Tryptophan-Anregungsspektrum überlappen 

(Cantor and Schimmel 1980b). Dadurch ergibt sich eine relative Empfindlichkeit für die 

Fluoreszenz von Trp:Tyr:Phe von 1100:200:8. 

Die Absorptionsbande der Tryptophane liegt bei ca. 280 nm. Die Trp-Fluoreszenz kann dann 

bei Wellenlängen von oberhalb 300 bis 350 nm gemessen werden, wobei das Trp-

Emissionsmaximum durch die molekulare Umgebung im Protein beeinflusst wird und eine 

Abhängigkeit von der Polarität des umgebenden Lösemittels aufzeigt. In polarer Umgebung 

ist die Trp-Fluoreszenz rotverschoben. Aufgrund dieser Empfindlichkeit gegenüber lokalen 

Veränderungen wurden Messungen der intrinsischen Trp-Fluoreszenz auch im Rahmen der 

Dissertation eingesetzt, um Änderungen in der Proteinkonformation – beispielsweise durch 

Bindung von Liganden – nachzuweisen. Im nativen Protein wird das Emissionsmaximum der 

Trp-Seitenketten bei einer Wellenlänge von 333 nm gemessen, was der Wellenlänge von 

freiem Tryptophan in hydrophober Umgebung entspricht. Wird das Protein denaturiert, 

kommt es zur Exposition der Tryptophanreste und das Emissionsmaximum in wässriger 

Umgebung kann bei einer längeren Wellenlänge von 353 nm gemessen werden. Zudem 

nimmt die Fluoreszenzintensität ab, da im denaturierten Zustand aufgrund der Distanz kein 

Energietransfer von Tyrosinen auf Tryptophane mehr stattfinden kann.  

Die Aufnahme der intrinsischen Trp-Emissionsspektren erfolgte an einem Cary Eclipse 

Fluoreszenzspektrophotometer mit Quarzküvetten in einem Wellenlängenbereich zwischen 

300-400 nm (Excitation 295 nm; Spaltbreiten 2,5/5,0 nm), modifiziert nach einem Protokoll 

von Knappskog et al. (Knappskog et al. 1996). Die PAH Enzyme wurden im Assay-Puffer 

(20 mM NaHEPES pH 7.0, 200 mM NaCl, 10 µM Eisenammoniumsulfat und 2 mM DTT) auf 

eine Konzentration von 0,6 mg/ml eingestellt und alle Liganden bis auf L-Phe (1 mM) in einer 

finalen Konzentration von 43 µM zugegeben. Das Gesamtvolumen jeder Probe waren 120 µl. 

Vor Beginn der eigentlichen Messung wurde die Probe über 2 Minuten bei 25 °C äquilibriert. 

Die Emissionsmaxima der Spektren wurden durch Annäherung der Kurven an eine 

Gaussfunktion (Gleichung 3.3) (Rooney and Lee 1986)  
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A  Peakhöhe bei Wellenlänge λ 

A0  Peakmaximum 

λm  Wellenlänge am Peakmaximum  

ωλ  Peakbreite bei halber Höhe 

 

bzw. eine schiefe Normalverteilung (Gleichung 3.4) (Rooney and Lee 1986) berechnet. 
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A  Peakhöhe bei Wellenlänge λ 

A0  Peakmaximum 

b  „skew“ parameter, hier 0,41 

λm  Wellenlänge am Peakmaximum  

ωλ  Peakbreite bei halber Höhe 

 

3.6.2 DSF-Assay 

Extrinsische Fluoreszenz wird im Gegensatz zur intrinsischen Fluoreszenz dann gemessen, 

wenn zusätzliche Moleküle als Fluorophore eingesetzt werden. Im Rahmen der Dissertation 

kamen die beiden Fluoreszenzfarbstoffe 8-anilinonaphthalin-1-sulfonsäure (ANS) (Malnasi-

Csizmadia et al. 1999) und SYPRO® Orange (Niesen et al. 2007) als Fluoreszenzsonden 

zum Einsatz. Beide binden an hydrophobe Bereiche in Proteinen, die bei einem nativ 

gefalteten Protein normalerweise im hydrophoben Kern des Proteins vom polaren Lösemittel 

abgeschirmt sind. Nur die hydrophilen Aminosäureseitenketten sind lösemittelexponiert. Im 

nativen Zustand können somit kaum Farbstoffmoleküle binden und die gemessene 

Fluoreszenzintensität ist dementsprechend niedrig. Wird das Protein einem ansteigenden 

Temperaturgradienten ausgesetzt, beginnt es sich zu entfalten und es werden zunehmend 

hydrophobe Gruppen an der Oberfläche des Proteins exponiert, was eine vermehrte Bindung 

der Fluoreszenzsonden zur Folge hat und zum Anstieg der messbaren Fluoreszenzintensität 

und Hydrophobizität führt. Sobald das Protein vollständig entfaltet vorliegt, ist das 

Fluoreszenzmaximum erreicht und die Intensität nimmt aufgrund einsetzender 

Aggregationsprozesse wieder ab. Der Umschlagpunkt der gemessenen Fluoreszenzkurve 

kann als Schmelzpunkt berechnet werden. Aus der Literatur war bereits bekannt 

(Thorolfsson et al. 2002), dass die durch Hitzestress induzierte Entfaltung der PAH in zwei 

Schritten erfolgt. Zunächst entfalten die vier regulatorischen Domänen bei einer Temperatur 
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die als erster Umschlagspunkt TM1 gemessen werden kann. Bei höheren Temperaturen setzt 

die Entfaltung zweier katalytischer Domänen ein, zu messen als zweiter Umschlagspunkt 

TM2, bevor das Protein bei noch höheren Temperaturen vollständig denaturiert. Die Zugabe 

eines Liganden kann zur Verschiebung der Entfaltungskurve zu höheren Temperaturen und 

somit zur Stabilisierung des Proteins führen, was in einem Anstieg eines oder beider 

Schmelzpunkte gemessen werden kann. Hat die Bindung eines Liganden einen 

destabilisierenden Effekt, nimmt die Temperatur der messbaren Umschlagpunkte ab. Dieser 

stabilisierende bzw. destabilisierende Einfluss von Liganden auf die Schmelztemperatur von 

Proteinen wird im DSF-Assay bzw. thermal shift assay (Pantoliano et al. 2001) gemessen.  

Die Etablierung des DSF-Assays im Rahmen der Dissertation erfolgte sowohl an einem 

Fluoreszenzspektrophotometer (CARY Eclipse), sowie im Hochdurchsatz an einem Gerät für 

Real-Time-quantitative PCR (Lo et al. 2004, Niesen et al. 2007), welches zur Identifikation 

von Liganden (Hits) mit einem stabilisierenden Effekt auf den PAH-Wildtyp und ausgewählte 

Varianten eingesetzt wurde.  

 

 

DSF-Assay am CARY Eclipse Fluoreszenzspektrophotometer 

Die Durchführung des DSF-Assays erfolgte mit PAH-Wildtyp und Varianten, die im 

Assaypuffer (20 mM NaHEPES pH 7,0, 200 mM NaCl, 10 µM Eisenammoniumsulfat, 2 mM 

DTT) auf eine Konzentration von 6 µM Untereinheit eingestellt wurden. Die zu 

analysierenden Liganden wurden in einer finalen Konzentration von 43 µM zugegeben. Das 

Probenvolumen in jeder Quarzküvette waren 120 µl. Gemessen wurde die thermische 

Denaturierung der Enzyme unter Verwendung von ANS (100 µM) als Fluoreszenzmarker 

(Excitation 395 nm; Emission 500 nm; Spaltbreiten 5,0/10,0 nm), in einem 

Temperaturintervall von 25-60 °C, wobei das Erhitzen der Probe in Schritten von 1,2 °C/Min 

erfolgte. Die Fluoreszenzdaten der thermischen Entfaltung wurden normalisiert und die 

Berechnung der unfolded fraction (Gleichung 3.5) erfolgte nach einer Publikation von Pey et 

al. (Pey et al. 2008) im Programm Microsoft Excel. 
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χu  unfolded fraction 

F  Fluoreszenzwerte zwischen 25-60 °C  

T  Temperatur (°C)  

FN  Fluoreszenzwert des nativen Zustandes  

FU  Fluoreszenzwert des entfalteten Zustandes  

mN  Geradensteigung zu Beginn der Entfaltung 

mU  Geradensteigung am Ende der Entfaltung 
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Alle Schmelzpunkte des PAH-Wildtyps und der Varianten R68S, R261Q und Y417H mit den 

Liganden BH4, BH2, Sepiapterin, 6-MPH4, 5-benzylhydantoin, 6-amino-5-(benzylamino)-

uracil, 5,6-dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-

on, 3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-on und 4,5-

Diaminopyrimidin, wurden durch Annäherung der berechneten unfolded fraction an eine im 

Programm der Statistiksoftware GraphPad Prism 5.0 hinterlegte sigmoidale Boltzmannkurve 

(Gleichung 3.6) berechnet.     
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              (3.6) 

Wobei sich Gleichung 3.6 mit den Randbedingungen Bottom=0 und Top=1 vereinfachte zu 
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                             (3.7) 

T50  Temperatur bei welcher das Protein zur Hälfte entfaltet vorliegt  

  m  Steigung der Fluoreszenzkurve 

 

Anwendung von Gleichung 3.7 berechnete aus den Fluoreszenzkurven die Umschlagpunkte 

der Enzyme mit und ohne Liganden, da diese mit den T50-Werten gleichzusetzen sind. 

 

Auswertung der Hydrophobizitätsdaten 

Die Bindung des Fluoreszenzmarkers ANS an die im DSF-Assay analysierten Proteine, 

erlaubte neben der Berechnung der Schmelztemperaturen gleichzeitig auch eine Aussage 

über die Hydrophobizität und damit die Qualität der Faltung im nativen Zustand. Die 

Berechnung der Hydrophobizität des PAH-Wildtyps und der Varianten ohne und mit 

Liganden erfolgte durch Berechnung des Mittelwerts aller bei 25 °C gemessenen ANS-

Fluoreszenzwerte. Für die Varianzanalyse wurden alle Hydrophobizitätsdaten mit einem 

Dunnett’s multiple-comparison test (GraphPad Prism, V5.0) verglichen, indem alle im 

Komplex mit einem Liganden erhobenen Werte auf das jeweilige Enzym ohne Ligand 

bezogen wurden.  

 

DSF-Screen an einem Gerät für Real-Time-quantitative-PCR  

Die Durchführung des DSF-Assays am 7900HT Fast Real-Time PCR System erfolgte mit 

PAH-Wildtyp und den drei Varianten I65T, R261Q und Y414C in einer Konzentration von 

0,18 mg/ml als Hochdurchsatzscreen im Standard-Assaypuffer (20 mM NaHEPES pH 7,0, 

200 mM NaCl, 10 µM Eisenammoniumsulfat, 2 mM DTT). Die zu analysierenden 234 

Kandidatensubstanzen wurden in einer finalen Konzentration von 30 µM zugegeben. Das 
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Probenvolumen waren 50 µl pro Well und gemessen wurde die thermische Denaturierung 

der Enzyme in einem 96-well Blockmodul unter Verwendung von SYPRO® Orange (1:1000 

Verdünnung) als Fluoreszenzmarker (Excitation 492 nm; Emission 610 nm) (Niesen et al. 

2007) im Temperaturintervall von 20-75 °C. Das Erhitzen der Probe erfolgte in Schritten von 

1,0 °C/Min. Die Fluoreszenzdaten der thermischen Entfaltung wurden normalisiert und die 

Berechnung der beiden Umschlagpunkte TM1 und TM2 für alle 234 Kandidatensubstanzen 

erfolgte durch die Statistiksoftware GraphPad Prism 5.0 durch Annäherung der Messwerte 

an eine im Programm hinterlegte biphasische Funktion (Gleichung 3.8). 

 

  
 
  50 _1 1 50 _ 2 2

1

1 10 1 10
T T m T T m

T B FracT B Frac
Y B

   

  
  

 

                         (3.8) 

 

B  Kurvenabschnitt zu Beginn der Messung ohne Steigung (bei YMin)  

T  Kurvenabschnitt am Ende der Messung ohne Steigung (bei YMax) 

T50_1  Temperatur bei welcher regulatorische Domänen zur Hälfte entfaltet vorliegen (TM1) 

T50_2    Temperatur bei welcher katalytische Domänen zur Hälfte entfaltet vorliegen (TM2) 

T  gemessene Temperatur (°C)  

m1  Steigung des ersten Kurvenabschnitts 

m2  Steigung des zweiten Kurvenabschnitts 

Frac  ein vom Programm errechneter Wert zwischen 0-1 je nach Kurvenverlauf 

 

Die knapp 2.000 berechneten TM1 und TM2-Werte für den PAH-Wildtyp und die Varianten mit 

allen 234 Kandidatensubstanzen wurden in Microsoft Excel gelistet und ihr Effekt (ΔTM) nach 

einem Farbcode markiert. Grün hinterlegte Werte stehen für eine Stabilisierung der Enzyme 

durch den Liganden, rote Bereiche zeigen den gegenteiligen Effekt und verursachten eine 

Destabilisierung. Je heller die Grün- bzw. Rotfärbung dabei ist, umso stärker ist die 

stabilisierende bzw. destabilisierende Wirkung. 

 

Bioinformatische Auswertung des DSF-Screens  

Neben der Berechnung der TM-Werte erfolgte auch eine bioinformatische Analyse des 

Screendatensatzes durch den Bioinformatiker Mathias Woidy. Dazu wurde für jeden 

Liganden anhand der ΔTM-Werte berechnet wie stark er sich von den anderen Liganden 

unterscheidet und das Ergebnis in einer Distanzmatrix niedergeschrieben. Anhand dieser 

Distanzmatrix wurden die Liganden in Cluster zusammengefasst, indem ähnliche Liganden 

in den gleichen Zweig sortiert wurden. Das wird so lange wiederholt, bis für jeden Liganden 

die optimale Position in den Zweigen gefunden worden ist. Dabei gilt, je tiefer die 

Verzweigungen sind, desto größer die Distanz der Liganden in der vorher berechneten 

Distanzmatrix. Die Gruppierung der Liganden wurde willkürlich auf 6 Gruppen festgelegt. Um 

zu verdeutlichen, in was sich die 6 Gruppen unterscheiden, wurden Boxplots in Abhängigkeit 
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der ΔTM-Werte für den PAH-Wildtyp und die Varianten angelegt (Kapitel 4.9.4.3). Zudem 

wurden Struktur- und Effekt-Analysen für alle 234 Liganden durchgeführt, indem die 

Liganden hinsichtlich ihres Grundgerüstes in verschiedene Gruppen eingeteilt und deren 

Wirkung auf die Enzyme analysiert wurde. 

 

3.6.3 ANS-Fluoreszenz-Kinetiken 

Neben der thermischen Denaturierung der PAH unter Verwendung von ANS als 

Fluoreszenzmarker, wurden im Rahmen der Dissertation auch zeitabhängige ANS-

Fluoreszenzkurven bei konstanter Temperatur gemessen. Aus den Daten konnten kinetische 

und thermodynamische Parameter des Entfaltungsprozesses berechnet werden. Für die 

Messungen der Entfaltungskinetiken des PAH-Wildtyps und der Varianten R68S, R261Q und 

Y417H wurden unterschiedliche Temperaturen ausgewählt, von welchen aus den 

vorangegangenen thermischen Entfaltungsexperimenten (Kapitel 4.2.4) bekannt war, dass 

sie deutlich unterhalb der Temperatur liegen, bei der die PAH im hitzedenaturierten Zustand 

irreversibel aggregiert. Denn das würde eine anschließende thermodynamische Auswertung 

der Entfaltungskinetiken unmöglich machen. Die Messungen der zeitabhängigen 

Denaturierungen bei konstanten Temperaturen (41,5; 43,0; 44,5; 46,0 und 47,5 °C für den 

PAH-Wildtyp und R68S; 38,0; 40,0; 42,0; 44,0 und 46,0 °C für R261Q und Y417H) erfolgten 

am CARY Eclipse Spektrophotometer unter Verwendung des Fluoreszenzmarkers ANS in 

einer finalen Konzentration von 100 µM (Anregung 395 nm, Emission 500 nm, Spaltbreiten 

5,0/10,0 nm). Hierzu wurden die zu untersuchenden Enzyme im Assaypuffer (20 mM HEPES 

pH 7.0, 200 mM NaCl, 10 µM Eisenammoniumsulfat, 2 mM DTT) auf eine Konzentration von 

0,6 mg/ml verdünnt und die entsprechenden Liganden in einer finalen Konzentration von 

43 µM zugegeben. Die Berechnung der Geschwindigkeitskonstante k für jede 

Messtemperatur (GraphPad Prism 5.0), erfolgte durch Annäherung der gemessenen 

Kinetiken an eine Exponentialfunktion erster Ordnung (Gleichung 3.9). 
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Y  gemessene Fluoreszenzintensität 

Y0   Y-Ausgangswert zu Beginn der Messung (x=0) 

x   Zeitabhängigkeit 

k   Geschwindigkeitskonstante 

Plateau Phase mit gleichbleibender Fluoreszenzintensität (ΔY=0)  

 

Durch Auftragen des natürlichen Logarithmus der berechneten Geschwindigkeitskonstanten 

(lnk) gegen den reziproken Wert der absoluten Temperatur in Kelvin (1/K), konnten die 

exponentiell vom Kehrwert der Temperatur abhängigen Werte in einem Arrhenius-Plot auf 

einer Geraden abgebildet werden. Durch Anwendung der Arrhenius-Gleichung (Gleichung 

3.10) 
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k  Geschwindigkeitskonstante 

A  präexponentieller Faktor (Arrheniusfaktor) 

EA  Aktivierungsenergie 

R  universelle Gaskonstante (8,314 J/(molK)  

T  Temperatur in Kelvin 

 

konnte aus der Steigung der Arrhenius-Geraden m multipliziert mit der universellen 

Gaskonstante R, die Aktivierungsenergie EA für den Übergang der Enzyme aus dem nativen 

in den entfalteten Zustand berechnet werden (Gleichung 3.11).  

 

AE m R                                           (3.11) 

 

Die Berechnung der drei thermodynamischen Größen von Gibbs-Energie ΔG#, 

Reaktionsenthalpie ΔH# und Reaktionsentropie ΔS# konnte nur unter der Annahme erfolgen, 

dass die Entfaltung der PAH in kleinsten Schritten erfolgt, die als solche reversibel sind und 

die beobachtbaren Prozesse während der Entfaltung miteinander im Gleichgewicht stehen. 

Die Berechnung erfolgte nach der Eyring Theorie des Übergangszustandes aus der 

statistischen Thermodynamik und unter Anwendung der Gibbs-Helmholtz-Gleichung. 
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R  universelle Gaskonstante (8,314 J/(molK)    

T  Temperatur in Kelvin 

kB  Boltzmann-Konstante (1,38*10-23 J/K) 

h  Planck’sche Konstante (6,62*10-34 Js) 

k  Geschwindigkeitskonstante 
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3.6.4 CD-Spektroskopie  

Alle Proteine besitzen einen bestimmten Anteil an optisch aktiven Aminosäuren bzw. 

asymmetrischen Kohlenstoffatomen und enthalten zudem Sekundärstrukturelemente, die 

zirkular polarisiertes Licht gleicher Wellenlänge unterschiedlich stark absorbieren können. 

Somit zählen auch Proteine zur Gruppe optisch aktiver Moleküle, die mittels CD-

Spektroskopie analysiert werden können, da sie eine links- und rechts-zirkular polarisierte 

Lichtwelle unterschiedlich stark absorbieren. Je nach analysiertem Wellenlängenbereich 

unterscheidet man in der CD-Spektroskopie zwei Regionen; der Spektralbereich zwischen 

250 nm und 350 nm beschreibt die Nah-UV-Region, in welchem asymmetrisch angeordnete 

aromatische Aminosäuren (Phe, Trp und Tyr) für das CD-Signal verantwortlich sind - wobei 

die asymmetrische Umgebung der Aminosäuren von der Tertiärstruktur des Proteins 

abhängig ist. Der Spektralbereich zwischen 170 und 250 nm wird als Fern-UV Region 

bezeichnet, in welchem die Konformation der Polypeptidkette (Amidregion) ein 

charakteristisches CD-Signal erzeugt. α-helikale Sekundärstrukturelemente sind im CD-

Spektrum der Fern-UV Region für zwei benachbarte Minima bei 208 nm und 222 nm 

verantwortlich. β-Faltblattstrukturen zeigen dagegen ein weniger deutlich ausgeprägtes CD-

Signal mit einem einzigen Minimum bei 218 nm. Im Rahmen der Dissertation wurde die 

Fern-UV-CD-Spektroskopie dazu genutzt die vorherrschenden Proteinsekundärstruktur-

elemente des PAH-Wildtyps zu analysieren. Als quantitatives Maß für die Ausprägung an 

Struktur wurde die Elliptizität θ in Abhängigkeit von der Wellenlänge λ im CD-Spektrum 

aufgezeichnet, indem die Differenz der unterschiedlichen Absorption von links- und rechts- 

zirkular polarisiertem Licht gemessen wurde (Lottspeich and Zorbas 1998). Im Rahmen der 

Promotionsarbeit wurde die molare Elliptizität [Θ222] berechnet, also die Elliptizität bezogen 

auf das durchschnittliche Molekulargewicht von Aminosäuren (Gleichung 3.15).   
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[Θ222]  Molare Elliptizität 

Θ222  Gemessener Wert für die Elliptizität bei einer Wellenlänge von 222 nm 

c  Konzentration des Proteins in wässriger Lösung (Mol/L)  

d  Schichtdicke der Küvette (cm) 

 

Um die molare Elliptizität pro Aminosäurerest [Θmittlere] zu berechnen (Gleichung 3.16), wird 

die molare Elliptizität [Θ222] durch die Anzahl der Aminosäuren geteilt. 
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Die Berechnung der molaren Elliptizität pro Aminosäurerest [Θmittlere] war die Voraussetzung 

um den α-helikalen Anteil (FHelix) für den PAH-Wildtyp in Prozent zu berechnen (Gleichung 

3.17). 
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N  Anzahl der Aminosäuren pro PAH Untereinheit (452) 

T  Assaytemperatur in °C  

 

Die Fern-UV-CD-Messungen des PAH-Wildtyps wurden in 20 mM Kaliumphosphatpuffer mit 

einer Proteinkonzentration von 0,26 mg/ml bei einer konstanten Temperatur von 25 °C und 

einem Intervall von 0,1 nm durchgeführt.   

 

3.6.5 DLS-Messungen 

Grundlage der DLS-Messung ist die Streuung von kohärentem und monochromatischem 

Licht eines Lasers an Partikeln in Lösung. Während kleine Moleküle das Licht in alle 

Richtungen gleichmäßig streuen, erzeugen Teilchen, deren Größe der Wellenlänge des 

einfallenden Lichtes entspricht, ein charakteristisches Interferenzmuster. In Abhängigkeit der 

eingesetzten Wellenlänge des Lasers und der Teilchengröße zeigt das Muster helle Bereiche 

konstruktiver Interferenz und dunkle Bereiche negativer Interferenz auf. Die dynamische 

Lichtstreuung misst die zeitabhängige Intensitätsschwankung des gestreuten Lichtes, denn 

das Streumuster ändert sich zeitabhängig je nachdem welche Positionen die einzelnen 

Teilchen gemäß ihrer Brown’schen Molekularbewegung gerade einnehmen. In Abhängigkeit 

von der Viskosität des Lösemittels führen kleinere Teilchen dabei zu stärkeren Fluktuationen 

als größere Partikel. Die zeitabhängige Intensität des gestreuten Lichtes wird für die 

Berechnung der zeitabhängigen Intensitäts-Autokorrelationsfunktion verwendet, woraus 

wiederum ein translationaler Diffusionskoeffizient DT der Nanopartikel berechnet werden 

kann. Dieser steht über die Stokes-Einstein-Beziehung (Gleichung 3.20) mit dem 

hydrodynamischen Radius RH im Zusammenhang.  
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https://de.wikipedia.org/wiki/Koh%C3%A4renz_%28Physik%29
https://de.wikipedia.org/wiki/Monochromatisch
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kB  Boltzmann-Konstante 

T  absolute Temperatur in Kelvin  

η  Viskosität des Lösemittels 

 

Neben dem hydrodynamischen Radius kann aus dem translationalen Diffusionskoeffizienten 

auch die Größenverteilung (Polydisperität) unterschiedlicher Teilchen in der Lösung 

berechnet werden. Die Grenze der Auflösung ist dann erreicht, wenn sich zwei Teilchen in 

weniger als zwei hydrodynamischen Radien unterscheiden. Dann werden die Teilchen nicht 

mehr als zwei getrennte Peaks abgebildet, sondern erscheinen als einzelner Peak, der 

zwischen den beiden zu erwartenden Peaks positioniert ist. Das Molekulargewicht MW des 

Proteins kann basierend auf dem globulären Standard-Auswertemodus ausgehend vom 

hydrodynamischen Radius berechnet werden. Bei dieser Methode wurde aus einer größeren 

Anzahl an gut charakterisierten, globulären Proteinen ein empirischer Zusammenhang 

zwischen dem Molekulargewicht und dem hydrodynamischen Radius hergestellt. 

Alle DLS Experimente wurden am DynaPro NanoStar bei 25 °C in Polyäthylen-Copolymer 

Einwegküvetten (Wyatt) mit einem Gesamtvolumen von 4 µl durchgeführt. Die Proteine 

wurden dazu im entsprechenden Assaypuffer (20 mM HEPES pH 7.0; 200 mM NaCl) auf 

eine Konzentration von 1 mg/ml eingestellt und die Liganden in einer finalen Konzentration 

von 43 µM zugegeben. Die DLS-Messung von 3-amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-

dihydroisoquinolin-1-on war nicht möglich, da die orange Färbung der Lösung selbst in 

niedrigsten Konzentrationen die Messung störte. Die Analyse der Daten erfolgte durch 

Berechnung von hydrodynamischem Radius und Polydispersität mit dem Softwareprogramm 

Dynamics 7.1.9. Für die Varianzanalyse wurden alle DLS-Daten mit einem Dunnett’s 

multiple-comparison test (GraphPad Prism, V 5.0) verglichen, indem alle im Komplex mit 

einem Liganden erhobenen Werte auf das jeweilige Enzym ohne Ligand bezogen wurden.  

 

3.7 MST-Messungen 

Die Mikroskalierte Thermophorese ist eine Methode um Wechselwirkungen zwischen 

Molekülen in Lösung zu analysieren (Duhr and Braun 2006, Seidel et al. 2012). Sie basiert 

auf dem physikalischen Prinzip der Thermophorese, welche die gerichtete Bewegung von 

Molekülen entlang eines Temperaturgradienten (Thermophorese) untersucht. Die Bewegung 

der Teilchen ist dabei abhängig von ihrer molekularen Größe, ihrer Hydrationshülle und ihrer 

Ladung. Die Komplexbildung zwischen beispielsweise Enzym und Ligand führt zur Änderung 

von mindestens einem der genannten Parameter, wodurch sich die Thermophorese des 

Komplexes von der Thermophorese der Einzelmoleküle unterscheidet. Während der MST-

Messung wird das veränderte Thermophorese-Verhalten des Zielkomplexes durch Titration 

des unmarkierten Bindungspartners aufgezeichnet und aus den resultierenden 

Thermophoresekurven kann die quantitative Bestimmung der Bindungsparameter der 

Interaktion berechnet werden. Der erforderliche lokale Temperaturgradient wird dabei durch 

einen Infrarotlaser erzeugt. Die Bewegung der Teilchen kann durch kovalent gebundene 
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Farbstoffe, fluoreszierende Bindungspartner oder intrinsische Tryptophanfluoreszenz (label-

free) detektiert und quantifiziert werden. Vorteile der Methode sind die geringen Mengen an 

gereinigtem Protein, die trotzdem eine hohe Sensitivität gewährleisten und die Tatsache, 

dass eine Analyse der Bindungsparameter auch ohne Kopplung der Moleküle auf eine 

Oberfläche möglich ist.  

Durchgeführt wurden die MST-Messungen an einem Monolith™ NT.115 in den Laboren der 

Firma NanoTemper Technologies GmbH in München. Der PAH-Wildtyp wurde für die MST-

Messung mit einem Fluoreszenzfarbstoff nach Herstellerangabe markiert (NT™-647-NHS), 

der als NHS-Ester an Aminogruppen im Protein bindet (z.B. über Lysinseitenketten). Ein 

erfolgreiches Labeling wurde umgehend durch Messung der Labelingeffizienz bestätigt. Alle 

zu testenden Liganden wurden anschließend in 16 unterschiedlichen Verdünnungen (20 mM 

HEPES pH 7.0, 200 mM NaCl, 0,05  Tween, 5 mM DTT) in einem Konzentrationsbereich 

von 0,0153 µM bis 500 µM zum Wildtypenzym pipettiert und in premium coated Kapillaren 

aufgezogen. Nach einer fünf minütigen Inkubation der gefüllten Kapillaren bei 25 °C unter 

Zugabe von Glucose-Oxidase als Oxidationsschutz, wurde die MST-Messung gestartet 

(LED-Power 20 %; MST Laser-Power 40 %; Anregung 625 nm; Emission 680 nm) und die 

Thermophoresekurve bestehend aus einer Grundlinienmessung im Ruhezustand 

(5 Sekunden), einer Erhitzungsphase (30 Sekunden) und einer abschließenden 

Relaxationsphase (5 Sekunden), aufgezeichnet. Durch plotten der Messdaten gegen den 

Logarithmus der Einzelkonzentrationen resultierte eine sigmoidale Bindungskurve, aus 

welcher die Dissoziationskonstante KD mittels NanoTemper Analysis Software v.1.5.49 

berechnet werden konnte (Baaske et al. 2010, Wienken et al. 2010).  

 

3.8 Molecular Modeling 

Um die Wechselwirkungen von BH4, BH2, Sepiapterin, 6-MPH4, 4,5-Diaminopyrimidin und 

der Liganden 1-4 (Kapitel 4.6) mit dem aktiven Zentrum der PAH zu vergleichen, wurden 

entsprechende Bindungsstudien der Liganden an beschriebenen Kristallstrukturen der 

katalytischen Domäne der PAH im Komplex mit BH4 (PBD Code 1j8u (Andersen et al. 2001)) 

sowie der oxidierten Form des Kofaktors BH2 (PBD Code1dmw (Erlandsen et al. 2000) unter 

Verwendung der Software GOLD Version 5.1 (Jones and Willett 1995, Jones et al. 1997) 

durchgeführt.   
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4 Ergebnisse 

4.1 Klonierung von PAH-Wildtyp und ausgewählten PAH-Varianten 

Das erste Ziel der Dissertation war die Klonierung des für die funktionelle PAH kodierenden 

Genabschnitts des Wildtyps und ausgewählter PAH-Mutationen in geeignete Vektoren, die 

eine Expression sowohl im prokaryoten sowie eukaryoten System erlauben. Die neben dem 

Wildtyp für eine Charakterisierung ausgewählten Mutationen waren I65T und R68S aus der 

regulatorischen Domäne, R261Q aus der katalytischen Domäne und Y414C sowie Y417H 

aus der Oligomerisierungsdomäne. Alle Varianten sind BH4 responsiv, verteilen sich über 

alle drei Domänen des Enzyms und sind aus klinischer Sicht relevant.  

Die Klonierung aller Konstrukte erfolgte unter Einsatz des Gateway®-Systems, denn die 

Rekombinations-Klonierungstechnologie verspricht eine deutlich höhere Effizienz im 

Vergleich zum traditionellen Klonieren auf Basis von Restriktionsendonukleasen. Zudem 

ermöglichen die zunächst erzeugten Entry Clones bei Bedarf stets einen einfachen Wechsel 

des Expressionssystems. Nach Ableitung von für das Gateway®-System geeigneten PCR-

Primern für den PAH-Wildtyp, erfolgte die Durchführung der Gateway-PCR zur Generierung 

der attB-Sites flankierten cDNA des Wildtyps (Kapitel 3.2.1.1). Die Klonierung des PAH-

Wildtyp Entry Clones erfolgte durch Rekombination des attB-PCR-Produkts mit dem Donor-

Vektor pDONRTM221 (Kapitel 3.2.1.2). Ein nach analytischem Restriktionsverdau positiver 

Entry Clone des Wildtyps wurde abschließend durch eine Sequenzierung überprüft und 

diente im Weiteren als Matrize für die mutagenisierende PCR zur Generierung der fünf PAH-

Varianten I65T, R68S, R261Q, Y414C und Y417H. Alle fünf PAH-Varianten konnte nach 

Ableitung der entsprechenden mutagenisierenden Primer, in welchen jeweils ein Nucleotid 

gezielt verändert wurde um für die entsprechend ausgetauschte Aminosäure zu kodieren, 

durch gezielte Punktmutation im PAH-Wildtyp-Gen mittels ortsspezifischer Mutagenese 

generiert werden (Kapitel 3.2.2). Die Klonierung der finalen Expressionskonstrukte erfolgte 

durch eine LR-Rekombinationsreaktion (Kapitel 3.2.1.3).  

 

Tabelle 22. Klonierte Konstrukte während der Promotionsarbeit 

 

 

 

 

PAH cDNA Vektor Tag          Expressionssystem 

Wildtyp pDONRTM221 - prokaryot 

Wildtyp pMAL-c2X DEST MBP prokaryot 

Wildtyp pEF-DEST51 His (6x), V5 eukaryot 

I65T pMAL-c2X DEST MBP prokaryot 

I65T pEF-DEST51 His (6x), V5 eukaryot 

R68S  pMAL-c2X DEST MBP prokaryot 

R261Q pMAL-c2X DEST MBP prokaryot 

Y414C pMAL-c2X DEST MBP prokaryot 

Y417H pMAL-c2X DEST MBP prokaryot 
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Als Zielvektoren dienten der für die prokaryote Expression einsetzbare pMAL-c2X DEST 

Vektor, der für ein N-terminales MBP kodiert, sowie der konventionell zu erwerbende 

Gateway® pEF-DEST51 Vektor, der C-terminal über einen His-Tag und ein V5-Epitop verfügt 

und zudem eine Expression in Zellkultur ermöglicht. Die PAH Varianten I65T, R68S, R261Q, 

Y414C und Y417H wurden durch LR-Reaktion als pMAL-c2X Expressionskonstrukte für die 

Expression in E. coli generiert, während die Variante I65T gleichzeitig in den pEF-DEST51 

Vektor kloniert wurde, um eine Expression in Zellkultur zu ermöglichen. Der PAH-Wildtyp 

wurde als Kontrolle in beide Expressionsvektoren kloniert. Tabelle 22 stellt die generierten 

Konstrukte in einer Übersicht dar. 

 

 

4.2 Biophysikalische Charakterisierung des PAH-Wildtyps 

4.2.1 Der PAH-Wildtyp lässt sich als stabiles Tetramer aufreinigen 

Vor der quantitativen Aufreinigung (2 L Kultur) des MBP-PAH Wildtyps aus BL21(DE3)-

Zellen wurde ein Expressionstest im kleinen Maßstab (25 ml Kultur) durchgeführt, um die 

Löslichkeit des Fusionsproteins zu überprüfen. Nach 20 stündiger Inkubationszeit bei 28 °C 

wurden die Zellen durch Ultraschall aufgeschlossen und der Zellüberstand über ein mit 

Coomassie gefärbtes SDS-Gel analysiert. Die überexprimierte Bande des Wildtyp-

Fusionsproteins konnte bei ca. 96 kDa gut nachgewiesen werden, was zeigte, dass die 

Expressionsbedingungen bei 28 °C über Nacht gut gewählt waren, um eine ausreichende 

Menge an Fusionsprotein in der löslichen Fraktion anzureichern. 

Daher erfolgte die Anzucht der Hauptkultur für eine quantitative Reinigung der PAH unter 

den gleichen Bedingungen. Die 2 L Kultur wurde über 20 h inkubiert und das MBP-PAH 

Fusionsprotein mittels Affinitätschromatographie über eine Amylosesäule angereichert. Die 

Analyse der Oligomerisierung erfolgte durch eine anschließende (Abbildung 9A) 

Gelfiltrationschromatographie. Eine vorausgegangene Kalibrierung der Gelfiltrationssäule 

erlaubte eine näherungsweise Bestimmung der Größe des MBP-PAH Tetramers. Das 

Peakmaximum bei einem Elutionsvolumen von 146 ml entsprach einer Proteingröße von ca. 

550 kDa. Dieser Wert war größer als der erwartete Wert von ca. 400 kDa. Mit Hilfe eines 

anschließenden nativen Gels einschließlich Aktivitätsassay konnte bestätigt werden, dass es 

sich bei dem Hauptpeak der Gelfiltration um funktionelle Tetramere der PAH handelte. Die 

Fraktionen der MBP-PAH Tetramere des Wildtyps wurden nach der ersten 

Gelfiltrationschromatographie für 16 h mit Faktor Xa inkubiert, um den MBP-Fusionspartner 

abzuspalten. Der Nachweis der erfolgreichen Spaltung sowie die Abtrennung des MBP 

erfolgte über eine zweite Gelfiltration (Abbildung 9B). Die geschnittenen PAH-Tetramere 

wurden nach 71 ml eluiert. Aufgrund der vorangegangenen Kalibrierung der Säule konnte 

dieses Elutionsvolumen einer Größe von 290 kDa zugeordnet werden. Dieser Wert lag über 

dem berechneten Wert von 210 kDa. Durch ein natives Gel sowie einen anschließenden 

PAH-Enzymaktivitätsassay konnte gezeigt werden, dass es sich bei dem Eluat um 

funktionelle Tetramere der PAH handelte. Das Eluat der geschnittenen PAH-Tetramere 
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wurde gepoolt, aufkonzentriert und die Konzentration der Probe spektrophotometrisch 

bestimmt. Das Konzentrat wurde nach der Reinigung umgehend aliquotiert und die einzelnen 

Aliquots bis zu ihrer Verwendung in Flüssigstickstoff gelagert. Alle Schritte der Aufreinigung 

wurden abschließend in einem SDS-Gel dokumentiert (Abbildung 9C). 

    

 

Abbildung 9. Oligomerisierungsprofile des PAH-Wildtyps und SDS-PAGE 

(A) Gelfiltrationschromatographie des Wildtyp MBP-PAH Fusionsproteins. Die kleine eingefügte Abbildung zeigt die Kalibrierung 

der Gelfiltrationssäule (HiLoad 26/60 Superdex 200 pg) mit den Proteinen Thyroglobulin, Ferritin, Aldolase und Ovalbumin 

einschließlich der Kalibrierungsgeraden (rote Linie). (B) Größenchromatografische Auftrennung der PAH-Tetramere und des 

abgespaltenen MBP-Fusionspartners. Die kleine eingefügte Abbildung zeigt die Kalibrierung der Gelfiltrationssäule (HiLoad 

16/60 Superdex 200 pg) mit den vier Proteinen Thyroglobulin, Ferritin, Aldolase und Ovalbumin einschließlich der 

Kalibrierungsgeraden (rote Linie). (C) Das SDS-Gel dokumentiert die einzelnen Schritte der Aufreinigung des PAH Wildtyps. In 

der ersten Spalte des Gels wurde der nach Aufschluss der Zellen und Zentrifugation erhaltene Rohextrakt (RE) aufgetragen. 

Die zweite Spalte zeigt das nach der ersten Gelfiltrationssäule isolierte Tetramer des Fusionsproteins (FP), das im SDS-Gel als 

Monomer bei einer Größe von ca. 95 Kilodalton (kDa) detektierbar ist. In der dritten Spalte wurde der Schneideansatz nach 16 

stündiger Inkubationszeit mit Faktor Xa aufgetragen (Xa). Die obere Bande entspricht dem PAH Monomer bei ca. 52 kDa, die 

untere Bande dem abgespaltenen MBP-Fusionspartner bei 43 kDa. In der vierten Spalte wurde ein Aliquot aus dem 

Tetramerpool nach der zweiten Gelfiltrationssäule aufgetragen (PAH).    

 

4.2.2 Die Enzymaktivität wird von Substrat- und Kofaktorkonzentration bestimmt 

Nach erfolgreicher Reinigung des PAH-Wildtyps wurde die Enzymaktivität des funktionellen 

Tetramers bestimmt. Stand der Wissenschaft war zu Beginn der Promotionsarbeit die 

Bestimmung der Aktivität rekombinanter PAH durch ein diskontinuierliches Messverfahren. 

Dabei wurde die Enzymaktivität entweder bei verschiedenen Phenylalaninkonzentrationen 

und einer Standard-BH4-Konzentration (75 µM) oder variierenden BH4-Konzentrationen bei 

einer Standard-Phenylalaninkonzentration (1 mM) gemessen. Nach Ablauf des Assays 

mussten Substrat und Produkt flüssigchromatographisch getrennt und die Menge an L-

Tyrosin fluoreszenzspektrophotometrisch bestimmt werden (Kapitel 3.5.1.1). Nachteile dieser 

Methode waren der eingeschränkte Bereich an einsetzbaren Substrat- und 

Kofaktorkonzentrationen, sowie ein hoher methodischer und zeitlicher Aufwand. In den 

Jahren 2010 und 2011 gelang es unserer Arbeitsgruppe einen neuen Test zur Bestimmung 

der Enzymaktivität der PAH zu entwickeln (Gersting et al. 2010, Staudigl et al. 2011), der 

inzwischen weitverbreitet im Einsatz ist. Es handelt sich um einen fluoreszenzbasierten 

Hochdurchsatzassay, der die direkte und kontinuierliche Messung der Enzymaktivität der 
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PAH ermöglicht und zudem den Konzentrationsbereich an gleichzeitig einsetzbaren und 

variierbaren Substrat- und Kofaktorkonzentrationen um ein 4-faches erweitert, um so den 

optimalen Arbeitsbereich des Enzyms zu bestimmen. Die Enzymaktivität kann als 

dreidimensionaler PAH activity landscape dargestellt werden, was eine Anwendung der im 

Labor generierten Daten im klinischen Umfeld erleichtert. Anhand der landscapes lässt sich 

gut ablesen, bei welcher L-Phenylalanin- bzw. BH4-Konzentration die optimale 

Enzymaktivität einer spezifischen Mutante erreicht werden kann und in welcher Dosierung 

das Pharmakon dementsprechend eingesetzt werden muss.              

Die Enzymaktivität des unter 4.2.1 gereinigten PAH-Wildtyps wurde durch den neu 

entwickelten fluoreszenzbasierten Hochdurchsatzassay in Abhängigkeit von zunehmenden 

Konzentrationen an Substrat und Kofaktor gemessen und als dreidimensionaler PAH activity 

landscape dargestellt (Abbildung 10). Phenylalanin wurde dabei in einem 

Konzentrationsbereich von 0 - 4.000 µM eingesetzt, bei BH4 lagen die verwendeten 

Konzentrationen aufgrund der höheren Affinität deutlich niedriger (0 - 500 µM). Die 

Durchführung des Assays einschließlich Datenanalyse erfolgte analog der 2011 publizierten 

Methode (Staudigl et al. 2011). Die höchste Aktivität (9.106 nmol L-Tyr/min x mg Protein), 

erreichte die PAH bei einer Phenylalaninkonzentration von 662 µM und einer BH4-

Konzentration von 132 µM. Wie bereits aus der Literatur bekannt, zeigten auch die Daten 

des PAH activity landscapes die Inhibierung des Enzyms durch hohe Konzentrationen an 

Substrat (Pey and Martinez 2005) und Kofaktor (Staudigl et al. 2011). 

  

 

Abbildung 10. Activity landscape des PAH-Wildtyps mit BH4 und L-Phe 

Die Daten für die Aktivität des PAH-Wildtyps wurden bei unterschiedlichen L-Phenylalanin- und BH4-Konzentrationen 

gemessen, interpoliert und die Aktivität farbkodiert als activity landscape dargestellt. Die gepunktete Linie symbolisiert Ki für die 

Kofaktorinhibierung bei variierenden Substratkonzentrationen. Die durch Strichpunkte dargestellte Linie zeigt K i für die 

Substratinhibierung bei ansteigenden BH4-Konzentrationen. Die durchgezogene Linie macht deutlich, dass mit zunehmenden 

Phenylalaninkonzentrationen mehr BH4 notwendig ist, um die gleiche Enzymaktivität aufrecht zu erhalten.     
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4.2.3 Das CD-Spektrum des Wildtyps weist auf α-helikale Sekundärstrukturelemente hin 

Im Rahmen der Dissertation wurde die UV-CD-Spektroskopie dazu genutzt, die 

vorherrschenden Proteinsekundärstrukturelemente des PAH-Wildtyps zu analysieren. Dazu 

wurde der Spektralbereich von 190 bis 260 nm aufgezeichnet (Abbildung 11), in dem die 

n→π*- und π→π*-Übergänge der Peptidbindung liegen, deren Absorption im CD-Spektrum 

charakteristisch ist.   

 

Abbildung 11. UV-CD-Spektrum des PAH-Wildtyps 

Aufgetragen wurde die Elliptizität θ gegen den Wellenlängenbereich von 190 bis 260 nm. Das CD-Spektrum zeigt mit zwei 

negativen und einer positiven CD-Bande die drei charakteristischen Übergänge eines α-helikalen Peptids.   

 

Das CD-Spektrum des PAH-Wildtyps zeigt die charakteristischen Merkmale eines α-

helikalen Peptids mit eine negative CD-Bande bei λ=222 nm, die einem n→π* Übergang 

entspricht, sowie eine zweite negative CD-Bande bei λ=207 nm und eine positive Bande bei 

λ=192 nm, die beide dem Carbonyl-π→π*-Übergang zuzuordnen sind, der in zwei 

Komponenten aufgespalten ist. Die Berechnung des α-helikalen Anteils (Kapitel 3.6.4) 

erfolgte aus dem gemessenen Wert der Elliptizität bei einer Wellenlänge von 222 nm 

(Scholtz et al. 1991). Demnach konnte für den PAH-Wildtyp ein dominierender α-helikaler 

Anteil von 24,4 % berechnet werden. 

 

4.2.4 Etablierung eines DSF-Assays zur Analyse der thermischen Stabilität  

Ein weiterer Schritt zur biochemischen Charakterisierung des PAH-Wildtyps war die 

Etablierung eines fluoreszenzbasierten DSF-Entfaltungsassays zur Untersuchung der 

thermischen Stabilität des funktionellen Enzyms unter Verwendung von ANS als 

extrinsischem Fluorophor. Wie bereits aus der Literatur bekannt war (Thorolfsson et al. 

2002), erfolgt die durch Hitzestress induzierte Entfaltung der PAH in zwei Schritten, wobei 

zunächst die vier regulatorischen Domänen bei einer Temperatur, die als erster 

Umschlagspunkt TM1 bestimmt wird, entfalten. Bei höheren Temperaturen setzt die 

Entfaltung zweier katalytischer Domänen ein, zu messen als zweiter Umschlagspunkt TM2, 

bevor das Protein bei noch höheren Temperaturen vollständig denaturiert.  
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Zunächst wurde im Rahmen der Dissertation der DSF-Assays im eigenen Labor etabliert 

(Gersting et al. 2008). Die Auswertung der Daten erfolgte durch Berechnung der beiden 

Umschlagpunkte (Kapitel 3.6.2) aus der unfolded fraction (Pey et al. 2008) und durch 

gleichzeitige Analyse der Hydrophobizität des Wildtyps im nativen Zustand. Die berechneten 

Temperaturen für die beiden Umschlagpunkte waren 47,74 °C für den ersten und 54,99 °C 

für den zweiten Übergang (Abbildung 12) und stimmten sehr gut mit der Literatur überein 

(Thorolfsson et al. 2002).  

Da die Bindung von ANS zu Beginn des Experiments auch gleichzeitig eine Aussage über 

die Hydrophobizität im nativen Zustand erlaubt, konnte durch Berechnung des Mittelwerts 

der ANS-Fluoreszenz bei 25 °C die Qualität der Faltung analysiert werden. Die 

Hydrophobizität des Wildtyps entsprach 72,45 Absorptionseinheiten. Generell ist die 

Bestimmung von Übergangstemperaturen und Hydrophobizität des PAH-Wildtyps von 

Bedeutung, da sie eine wichtige Grundlage für die Analyse des Unterschiedes zwischen 

PAH-Wildtyp und Varianten darstellt. Darüber hinaus handelt es sich hierbei um wichtige 

experimentelle Endpunkte bei der Untersuchung des Einflusses verschiedener Substanzen 

auf das Enzym.  

 

 

Abbildung 12. Thermische Denaturierung des PAH-Wildtyps 

(A) Die ansteigende ANS-Fluoreszenzkurve zeigt die temperaturabhängige Entfaltung des PAH-Wildtyps und ist gemittelt aus 

den Rohdaten von elf Einzelmessungen. Die Standardabweichung zwischen den einzelnen Messungen wird durch die grauen 

Fehlerbalken angezeigt. Die Linien verdeutlichen den ersten (schwarz) und zweiten (rot) Übergang der Entfaltung. Das kleine 

eingefügte Balkendiagramm zeigt die Hydrophobizität des Wildtyps im nativen Zustand bei 25 °C. Auch hierbei diente ANS als 

Fluoreszenzmarker, der eine Aussage über hydrophobe Bereiche an der Proteinoberfläche erlaubt. Das Balkendiagramm ist ein 

Mittelwert aus 60 Einzelwerten und die Standardabweichung zwischen den Messungen wird durch den grauen Fehlerbalken 

dargestellt. (B) Die Berechnung der unfolded fraction (Pey et al. 2008) in Abhängigkeit von der Temperatur erfolgte separat für 

den ersten und zweiten Umschlagpunkt (blau gepunktete Kurven). Durch Boltzman fit der Messwerte konnten die Temperaturen 

am Umschlagpunkt für den ersten (schwarz) und zweiten (rot) Übergang berechnet werden.  
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4.2.5 Durch DLS lässt sich der hydrodynamische Radius des Wildtyps analysieren  

Die Methode der dynamischen Lichtstreuung wurde angewendet, um den hydrodynamischen 

Radius des PAH-Wildtyps in Lösung zu berechnen. Aus 16 Einzelmessungen – wobei jede 

der 16 Messungen ein Mittelwert aus zehn Korrelationsfuktionen ist – konnte der Mittelwert 

des hydrodynamischen Radius des PAH-Wildtyps aus der entsprechenden Größenverteilung 

(Abbildung 13A) mit 6,18 nm berechnet werden (Abbildung 13B). Die Berechnung des 

Molekulargewichts aus den DLS-Daten ergab einen Wert von 248 kDa, der mit der 

theoretischen Größe von 207,48 kDa gut übereinstimmte. 
 

 

Abbildung 13. Ergebnisse der dynamischen Lichtstreuung des PAH-Wildtyps 

(A) Die Größenverteilung zeigt exemplarisch eine von insgesamt 16 DLS-Messungen des PAH-Wildtyps bei 25 °C. Der einzige 

Peak bei einer Größe von 6,22 nm konnte zu 100 % dem hydrodynamischen Radius RH des Wildtyp-Tetramers zugeordnet 

werden. (B) Im Boxplot aufgetragen ist der berechneten Mittelwert von 6,18 nm des hydrodynamischen Radius des PAH-

Wildtyps, basierend auf 16 DLS-Einzelmessungen. Die Standardabweichung ist als grauer Balken eingezeichnet.  

 

4.2.6 Tryptophanfluoreszenzspektren zeigen lokale Änderungen am N-Terminus der PAH   

Die Aufnahmen intrinsischer Tryptophanfluoreszenzspektren eignen sich zur Analyse lokaler 

Effekte auf eine Wildtyp-Untereinheit, wie sie beispielsweise durch die Bindung von Substrat 

und Kofaktor oder auch Mutationen ausgelöst werden können. Der humane PAH-Wildtyp 

enthält in jeder Untereinheit drei konservierte Tryptophanreste an den Aminosäurepositionen 

120 (regulatorische Domäne), 187 und 326 (beide katalytische Domäne). Aus der Literatur 

war bereits bekannt, dass W120 in der regulatorischen Domäne für 61 % des 

Tryptophanfluoreszenzsignals verantwortlich ist (Knappskog and Haavik 1995). Daher 

können Veränderungen in der Fluoreszenzintensität, welchen Ursprungs auch immer, 

Hinweise auf lokale Verschiebungen in der hinge region R111-T117 sein (Thorolfsson et al. 

2003). Die Spektren des PAH-Wildtyps wurden in einem Wellenlängenbereich von 300 bis 

400 nm aufgenommen und zeigten ein Fluoreszenzmaximum bei 332,9 nm (Abbildung 14). 

Im Vergleich zum Fluoreszenzmaximum von freiem Tryptophan in Lösung konnte so eine 

hypsochrome Verschiebung zu kürzeren Wellenlängen (Blauverschiebung) gemessen 

werden. Interessant werden die Analysen der intrinsischen Tryptophanspektren vor allem in 
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den folgenden Kapiteln, wenn es um das Vorliegen von Mutationen oder die Bindung von 

Substanzen geht.  

 

Abbildung 14. Intrinsisches Tryptophanfluoreszenzemissionsspektrum des PAH-Wildtyps 

Das Emissionsspektrum im Wellenlängenbereich zwischen 300 und 400 nm (Anregung 295 nm) ist das Ergebnis aus drei 

unabhängigen Messungen bei 25 °C. Die Position des Emissionsmaximums (332,9 nm) wird durch die rot gestrichelte Linie 

dargestellt und wurde durch eine schiefe Normalverteilung (Rooney and Lee 1986) (schwarzer Fit) berechnet. Die 

Standardabweichung ist für jeden Punkt als grauer Balken eingezeichnet. 

 

4.2.7 Kinetische und thermodynamische Analysen erlauben die Quantifizierung des 

Entfaltungsprozesses  

In einem abschließenden Schritt zur Charakterisierung des PAH-Wildtyps erfolgten 

kinetische und thermodynamische Untersuchungen des Entfaltungsprozesses durch 

Berechnung der Aktivierungsenergie, sowie der thermodynamischen Parameter der Gibbs-

Energie ΔG#, der Reaktionsenthalpie ΔH# und der Reaktionsentropie ΔS# (Kapitel 3.6.3). Die 

Berechnung der thermodynamischen Größen konnte nur unter der Annahme erfolgen, dass 

die Entfaltung der PAH in kleinsten Schritten erfolgt, die als solche reversibel sind und die 

beobachtbaren Prozesse während der Entfaltung miteinander im Gleichgewicht stehen. Für 

die Messungen der Entfaltungskinetiken wurden fünf Temperaturen zwischen 40 und 50 °C 

ausgewählt, von denen aus den vorangegangenen thermischen Entfaltungsexperimenten 

(Kapitel 4.2.4) bekannt war, dass sie deutlich unterhalb der Temperatur liegen, bei der die 

PAH im hitzedenaturierten Zustand irreversibel aggregiert, was eine thermodynamische 

Auswertung der Entfaltung unmöglich machen würde.  

Abbildung 15A zeigt die zeitabhängige Denaturierung des PAH-Wildtyps bei fünf 

verschiedenen Temperaturen unter Verwendung des ANS-Fluoreszenzmarkers, der 

während der Entfaltung an die zunehmend exponierten hydrophoben Bereiche im Protein 

bindet und dadurch einen Anstieg des Fluoreszenzsignals induziert. Je stärker die Probe 

erhitzt wurde, umso schneller war die Entfaltung des Enzyms mit Erreichen eines Plateaus 

mit gleichbleibender Fluoreszenzintensität abgeschlossen. Dauerte die Entfaltung des PAH-

Wildtyps bei 41,5 °C beispielsweise noch 35 min, war der Prozess bei 47,5 °C bereits nach 

12 min abgeschlossen. Um die Geschwindigkeitskonstante k für jede einzelne Temperatur 

zu berechnen, wurden alle fünf gemessenen Entfaltungskinetiken jeweils an eine 
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Exponentialfunktion erster Ordnung angenähert. Durch Auftragen des natürlichen 

Logarithmus der Geschwindigkeitskonstanten gegen den reziproken Wert der absoluten 

Temperatur, konnten die exponentiell vom Kehrwert der Temperatur abhängigen Werte in 

einem Arrhenius-Plot auf einer Geraden abgebildet werden (Abbildung 15B). Durch 

Anwendung der Arrhenius-Gleichung wurde aus der Steigung der Geraden die 

Aktivierungsenergie EA für den Übergang des Wildtyps aus dem nativen in den entfalteten 

Zustand mit 204,7 kJ/mol berechnet (Kapitel 3.6.3).  

 

 

Abbildung 15. Entfaltungskinetiken des PAH-Wildtyps und Arrhenius-Plot 

(A) Die ansteigenden ANS-Fluoreszenzkurven zeigen die zeitabhängige Entfaltung des PAH-Wildtyps bei fünf verschiedenen 

Temperaturen. Die Kurven wurden gemittelt aus den Rohdaten von drei Einzelmessungen und die Standardabweichung 

zwischen den einzelnen Messungen wird durch die grauen Fehlerbalken angezeigt. Alle fünf Kurven wurden jeweils an eine 

Exponentialfunktion erster Ordnung angenähert (schwarze durchgezogene Linien), um daraus den Wert der 

Geschwindigkeitskonstanten k der zeitabhängigen Entfaltung zu ermitteln. (B) Im Arrhenius-Plot aufgetragen wurden die aus 

den Kinetikmessungen berechneten Geschwindigkeitskonstanten k gegen den reziproken Wert der absoluten Temperatur in 

Kelvin. Die Messpunkte konnten durch eine lineare Regression angenähert werden. Aus der Steigung der Geraden multipliziert 

mit der universellen Gaskonstante erfolgte die Berechnung der Aktivierungsenergie EA für die Entfaltung des PAH-Wildtyps. 

 

Die Berechnung der thermodynamischen Parameter ∆G#, ΔH# und ∆S# der zeitabhängigen 

Entfaltung erfolgte nach der Eyring Theorie des Übergangszustandes aus der statistischen 

Thermodynamik und Anwendung der Gibbs-Helmholtz-Gleichung (Kapitel 3.6.3). Tabelle 23 

zeigt, dass mit zunehmender Temperatur im Rahmen des Entfaltungsprozesses eine 

Abnahme der Gibbs-Energie und der Reaktionsenthalpie sowie ein Anstieg der 

Reaktionsentropie erfolgt.  

 

 

Tabelle 23. Kinetische und thermodynamische Parameter für die Entfaltung des Wildtyps 
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4.3 Biophysikalische Charakterisierung des PAH-Wildtyps im Komplex mit BH4 und 

den BH4-Derivaten BH2, Sepiapterin und 6-MPH4 

4.3.1 BH4 und die BH4-Derivate unterscheiden sich in wichtigen strukturellen Details 

Zu Beginn der Promotionsarbeit war die Erkenntnis, dass pharmakologische Dosen des 

natürlichen Kofaktors der PAH bei einem hohen Prozentsatz der Patienten mit 

Phenylketonurie zu einer Korrektur der biochemischen Auffälligkeiten führen, noch ziemlich 

neu (Muntau et al. 2002). Die klinische Relevanz dieser Beobachtung bestand darin, dass für 

viele Patienten dadurch die Hoffnung entstand, die bisher notwendige lebenslange 

belastende diätetische Therapie langfristig durch eine medikamentöse Therapie ersetzen zu 

können. Völlig ungeklärt waren zu diesem Zeitpunkt die molekularen Mechanismen, die dem 

Phänomen der BH4-Sensitivität zugrunde lagen. Auch nach Zulassung der synthetischen 

Form von BH4, Sapropterindihydrochlorid, als orphan drug 2007 in den USA und 2008 in 

Europa, war der Wirkmechanismus noch nicht geklärt. Ein Schwerpunkt der Dissertation war 

daher nach erfolgreicher Reinigung und Charakterisierung des PAH-Wildtyps, die 

Untersuchung der Struktur-Funktionsbeziehung zwischen BH4 und der PAH. 

 

 

Abbildung 16. Strukturformel von 5,6,7,8-Tetrahydrobiopterin 

5,6,7,8-Tetrahydrobiopterin setzt sich aus einem Pyrimidopyrazin-Ringsystem und einer 1,2-Dihydroxypropylseitenkette 

zusammen. Die drei chiralen Zentren des Moleküls sind an den Kohlenstoffatomen C6, C1’ und C2’ lokalisiert. 

 

Um die Einflüsse der spezifischen strukturellen Elemente des Kofaktors – des kondensierten 

Pyrimidopyrazin-Ringsystem und der (1R,2S)-1,2-Dihydroxypropylseitenkette am C6-

Kohlenstoff des Grundgerüstes (Abbildung 16) – auf die PAH zu analysieren, wurden neben 

BH4 zusätzlich drei BH4-Derivate mit in das Arbeitsprogramm aufgenommen, die sich 

entweder am Ring oder in der Seitenkette von BH4 unterscheiden. Es handelte sich dabei um 

die oxidierte Form des Kofaktors 7,8-dihydro-L-biopterin (BH2) und Sepiapterin, eine Vorstufe 

von BH2 im de novo Pathway, sowie um das synthetische Kofaktoranalogon 6-MPH4 

(Abbildung 17).  

 

 

 

 

 

 

Abbildung 17. Strukturformeln von BH4 und BH4-Derivaten  

Vergleichende Strukturformeln von 5,6,7,8-Tetrahydrobiopterin (1), 7,8-Dihydrobiopterin (2), Sepiapterin (3) und 6-

Methyltetrahydropterin (4).  
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BH2 und Sepiapterin unterscheiden sich von BH4 durch ein oxidiertes Pyrazin-Grundgerüst 

und Sepiapterin verfügt zudem über eine Carbonylfunktion in der Seitenkette, die die 

bisherige Hydroxylgruppe im BH4-Molekül ersetzt. Das Pyrimidopyrazin-Ringsystem von BH4 

und 6-MPH4 ist dagegen identisch. Der Unterschied zwischen beiden Substanzen liegt in 

einer verkürzten Seitenkette am C6-Kohlenstoffatom, denn die 1,2-

Dihydroxypropylseitenkette ist im 6-MPH4-Molekül durch einen kurzen Methylrest ersetzt.   

 
 

4.3.2 Bindungsstudien zeigen unterschiedliche Wechselwirkungen der Liganden 

Der erste Schritt zur Charakterisierung der Struktur-Funktionsbeziehung zwischen der PAH 

und den Liganden BH4 (Abbildung 18A und B), BH2, Sepiapterin und 6-MPH4 waren 

Bindungsstudien zur Untersuchung der Wechselwirkungen der Substanzen mit dem aktiven 

Zentrum der PAH, basierend auf den Kristallstrukturen der katalytischen Domäne im 

Komplex mit BH4 (PBD Code 1j8u (Andersen et al. 2001)) und BH2 (PBD Code 1dmw 

(Erlandsen et al. 2000)). Zwischen dem C4 Carbonyl-Sauerstoff im Pyrimidinring und den 

drei konservierten Wassermolekülen, die das Eisenatom komplexieren, bilden sich 

Wasserstoffbrücken aus. Der N3-Stickstoff der Liganden im Pyrimidinring interagiert über 

das Wassermolekül 1142 mit der Carboxygruppe von E286 in der katalytischen Domäne. Die 

benachbarte Aminogruppe an C2 vervollständigt das Wasserstoffbrückennetzwerk durch die 

Interaktion mit der Carbonylgruppe von G247, welches am Boden der Bindungstasche 

lokalisiert ist. Die beiden Stickstoffe N1 und N8 der Liganden interagieren jeweils mit L249 in 

der katalytischen Domäne, wobei N1 als Akzeptor für den Backbone-Stickstoff von L249 

dient und N8 als Donor Wechselwirkungen mit der Carbonylgruppe von L249 eingeht. Der 

Pyrazinring der Liganden bildet zudem eine π-π-Wechselwirkung mit der Phenylgruppe von 

F254 in der katalytischen Domäne aus, wodurch der Kofaktor zusätzlich im aktiven Zentrum 

arretiert wird. Zudem interagiert BH4 in Abwesenheit des Substrats indirekt über eingelagerte 

Wassermoleküle sowie das katalytische Eisen mit den Aminosäuren H264, H285, H290, 

A322, Y325 und E330 (Teigen et al. 2004, Santos-Sierra et al. 2012). Die 

Aminosäureanionen Glutamat und Aspartat spielen bei der Bindung von Pterinen im 

Allgemeinen eine wichtige Rolle. Sie bilden beispielsweise in den Proteinen, die an der de 

novo Synthese von BH4 beteiligt sind und keine Sequenzhomologie untereinander 

aufweisen, ein Wasserstoffbrückennetzwerk zum Pyrimidinring aus. Zu nennen ist in diesem 

Zusammenhang der Aminosäurerest E286 im aktiven Zentrum der PAH, der für die Bindung 

der Guanidinogruppe des Pyrimidinrings im ternären Komplex unerlässlich ist. Ein 

Mutageneseexperiment mit anschließender kinetischer Analyse des varianten Proteins 

konnte die wichtige Funktion dieser BH4-bindenden Aminosäure bestätigen, denn die 

Variante E286A zeigte einen 50-70 fachen Anstieg des Km-Wertes für BH4 und eine Aktivität 

von <1 % im Vergleich zum PAH-Wildtyp (Dickson et al. 1994, Erlandsen et al. 2000). Die 

1,2-Dihydroxypropylseitenkette des Kofaktors zeigt in Richtung der durch die 

Aminosäurereste Y325, A322, L255 und F254 geformte Untertasche. Der lipophile Teil der 

Seitenkette bildet dabei hydrophobe Wechselwirkungen mit diesem Bereich aus. Die beiden 
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Hydroxylgruppen der Seitenkette sind verstärkt dem Lösemittel ausgesetzt. Die erste 

Hydroxylgruppe OH1‘ ist daher auch von Wassermolekülen umgeben, während die zweite 

OH2‘ eine Wasserstoffbrücke mit Ser251 ausbildet. Der Aminosäurerest Y325 ist ebenfalls 

wichtig für die Bindung des Pterinrings, denn er interagiert durch seinen Phenylring mit der 

hydrophoben Methylgruppe der Dihydroxypropylseitenkette (Erlandsen et al. 2000, Andersen 

et al. 2001). Zudem bildet er in der PAH ohne gebundenen Liganden über seine 

Hydroxylgruppe eine Wasserstoffbrückenbindung zu einem Wassermolekül in der 

Koordinationssphäre des Eisens aus (Erlandsen et al. 1997). Die Varianten Y325L und 

Y325A zeigen beispielsweise eine stark reduzierte spezifische Enzymaktivität von 8 % bzw. 

0.5 % im Vergleich zur Aktivität des Wildtyps (Jennings et al. 2000). Diese 

Wechselwirkungen gelten sowohl für die Interaktion von BH4 mit der PAH als auch für die 

von BH2 mit der PAH, denn der Unterschied zwischen den beiden Substanzen sind lediglich 

zwei zusätzliche Wasserstoffatome an den Positionen 7 und 8 im Pyrazinring von BH2.  

 

 

Abbildung 18. Bindungsnetzwerk von BH4 im aktiven Zentrum des PAH-Wildtyps 

(A) Das Netzwerk der PAH-BH4 Interaktion ist als 2D-Modell dargestellt. Von Donorzentren für eine Wasserstoffbrückenbindung 

zeigen grüne Pfeile auf den Bindungspartner, während rote Pfeile auf Akzeptorzentren einer Wasserstoffbrückenbindung 

gerichtet sind. Der gelbe Bereich zeigt die Region hydrophober Kontakte an und der blaue Kreis symbolisiert die π-π-

Wechselwirkung zwischen aromatischem Pyrazinring des Liganden und dem Phenylring von F254 in der katalytischen Domäne. 

(B) Das 3D-Modell zeigt die unterschiedlichen Wechselwirkungen von BH4 in der Bindungstasche der PAH. Sauerstoffatome 

sind dabei rot markiert, Stickstoffatome blau, Kohlenstoffatome grau und Eisen (III) ist als gelbe Kugel dargestellt. Die kleinen 

roten Kugeln symbolisieren die eingelagerten Wassermoleküle. Der transluzierende gelbe Bereich zeigt die Umgebung mit 

hydrophoben Kontakten an. Grüne und rote Pfeile markieren Wasserstoffbrückendonoren und -akzeptoren.   

 

Sepiapterin unterscheidet sich von BH4 durch zwei strukturelle Eigenschaften. Das 

Ringgrundgerüst ist identisch mit dem von BH2, ist also gegenüber dem Grundgerüst von 

BH4 oxidiert und zusätzlich ist die Hydroxylgruppe OH1‘ in der Sepiapterinseitenkette durch 

eine Carbonyl-Funktion ersetzt und wirkt als starker Wasserstoffbrückenakzeptor auf die 

umgebenden Wassermoleküle. Alle weiteren oben bereits beschriebenen Wechselwirkungen 

von BH4 bzw. BH2 mit der katalytischen Domäne der PAH gelten aufgrund der sehr ähnlichen 

chemischen Strukturen auch für Sepiapterin (Abbildung 19A und B). 
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Das Ringgrundgerüst von 6-MPH4 ist identisch mit dem des natürlichen Kofaktors der PAH, 

allerdings ist die 1,2-Dihydroxypropylseitenkette durch einen kurzen Methylrest ersetzt. 

Daher fehlen bei der Bindung von 6-MPH4 die Wechselwirkungen der Hydroxylgruppen OH1‘ 

und OH2‘ mit den umgebenden Wassermolekülen, die Interaktion mit S251 sowie die 

hydrophoben Wechselwirkungen mit L255, A322 und Y325 (Abbildung 19C und D). Alle 

Interaktionen des kondensierten Pyrimidopyrazin-Ringsystems sind jedoch mit den für BH4 

beschriebenen Wechselwirkungen identisch. Die Bindungsstudien zeigen insgesamt die sehr 

ähnlichen Wechselwirkungen der Liganden im aktiven Zentrum der PAH. Nur 6-MPH4 verfügt 

aufgrund der verkürzten Seitenkette über eine reduzierte Anzahl an Interaktionen.   

 

 

Abbildung 19. Bindungsnetzwerk von Sepiapterin und 6-MPH4  

(A) Das Netzwerk der PAH-Sepiapterin Interaktion ist als 2D-Modell dargestellt. Von Donorzentren für eine 

Wasserstoffbrückenbindung zeigen grüne Pfeile auf den Bindungspartner, rote Pfeile sind auf Akzeptorzentren einer 

Wasserstoffbrückenbindung gerichtet. Der gelbe Bereich beschreibt die Region hydrophober Kontakte und der blaue Kreis 

symbolisiert die π-π-Wechselwirkung zwischen aromatischem Pyrazinring des Liganden und Phenylring von F254 in der 

katalytischen Domäne der PAH. (B) Das 3D-Modell zeigt die unterschiedlichen Wechselwirkungen von Sepiapterin in der 

Bindungstasche der PAH. Sauerstoffatome sind dabei rot markiert, Stickstoffatome blau, Kohlenstoffatome grau und Eisen (III) 

ist als gelbe Kugel dargestellt. Die kleinen roten Kugeln symbolisieren die eingelagerten Wassermoleküle. Der transluzierende 

gelbe Bereich zeigt die Umgebung mit hydrophoben Kontakten an. Grüne und rote Pfeile markieren 

Wasserstoffbrückendonoren und -akzeptoren. (C) 2D- und 3D-Modell (D) der Interaktion von 6-MPH4 mit dem aktiven Zentrum 

der PAH.  
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4.3.3 Messung der Bindungskonstanten der PAH-Liganden mittels MST 

Im vorhergehenden Kapitel wurden die möglichen Wechselwirkungen zwischen den in der 

Bindungstasche von BH4 gebundenen Liganden und dem Enzym beschrieben. Die 

tatsächliche Bindung von BH4, BH2, Sepiapterin und 6-MPH4 im aktiven Zentrum der PAH 

wurde mittels MST-Messungen untersucht. Vor der Thermophorese-Messung erfolgte die 

kovalente Kopplung eines Fluoreszenzmarkers an die Lysinreste des PAH-Wildtyps (Kapitel 

3.7). Das Labeln erfolgte zu Beginn jedes Messtages, denn Vorversuche ergaben, dass es 

nicht möglich ist gelabelten PAH-Wildtyp einzufrieren und für die nächste Messung zu 

verwenden. Das erfolgreiche Labeling wurde umgehend durch Bestimmung der 

Labelingeffizienz verifiziert.  

 

 

Abbildung 20. MST-Messungen des Wildtyps im Komplex mit BH4 und BH4-Derivaten 

Die Messergebnisse aus 16 seriellen Verdünnungen der vier Liganden wurden jeweils gegen das gemessene und normalisierte 

Fluoreszenzsignal aufgetragen und aus dem Fit der Daten durch Anwendung des Massenwirkungsgesetzes die 

Dissoziationskonstante KD berechnet. Die Amplitude (Amp) zeigt den Unterschied zwischen gebundenem und ungebundenem 

Zustand. Die Daten wurden mindestens als Duplikate gemessen und die Standardabweichung ist als blauer Balken angegeben. 

 

Zunächst erfolgte die Aufzeichnung der Bindungskurve aus 16 seriellen Verdünnungen für 

BH4, BH2, Sepiapterin und 6-MPH4 im Komplex mit dem PAH-Wildtyp (Abbildung 20) in 

einem Konzentrationsbereich von 0,0153-500 µM. Durch Plotten der Messdaten gegen den 

Logarithmus der Einzelkonzentrationen resultierte eine sigmoidale Bindungskurve, aus der 

die Dissoziationskonstante KD berechnet werden konnte (Wienken et al. 2010). Wichtig für 

die Qualität der Messdaten war die Amplitude der jeweiligen Bindungskurve, die stets größer 

als acht sein sollte, damit der darin gezeigte Unterschied zwischen gebundenem und 

ungebundenem Zustand für den Fit und damit die Berechnung der KD ausreichend groß ist. 

Für BH4, BH2 und Sepiapterin im Komplex mit dem PAH-Wildtyp konnten sehr starke Enzym-
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Ligand-Interaktionen mit Dissoziationskonstanten von 0,18 µM, 1,96 µM und 3,9 µM 

gemessen werden. Die Bindungsstärke des synthetischen Kofaktoranalogons 6-MPH4 war 

mit einer KD von 25,86 µM deutlich weniger stark ausgeprägt als für BH4. Das kann auf die 

fehlenden Interaktionen der Dihydroxypropylseitenkette zurückgeführt werden (Kapitel 4.3.2), 

denn die beiden Derivate BH2 und Sepiapterin zeigten eine vergleichbare Affinität mit BH4 

und weisen keine bzw. nur eine kleine Änderung in der Seitenkettenstruktur auf.    
 

 

4.3.4 Die Enzymaktivität des Wildtyps mit 6-MPH4 zeigt einen breiten Aktivitätsbereich  

Die vorausgegangenen MST-Experimente bestätigten die Bindung von BH4, BH2, Sepiapterin 

und 6-MPH4 im aktiven Zentrum der PAH mit unterschiedlicher Affinität. Im nächsten Schritt 

sollte die Kofaktoraktivität der drei Derivate mit der von BH4 verglichen werden. Da BH2 und 

Sepiapterin aufgrund der Substitution an N5 und C6 im Pyrazinring nicht das korrekte 

Redoxpotential für die katalytische Kofaktorfunktion besitzen (Almas et al. 2000), sind sie als 

Kofaktor für die PAH nicht geeignet. 6-MPH4 ist bereits aus der Literatur als Kofaktor bekannt 

(Martinez et al. 1995). Daher konnte ein activity landscape des PAH-Wildtyps mit 6-MPH4 als 

Kofaktor gemessen und berechnet werden (Kapitel 4.2.2), der zum ersten Mal den Einfluss 

von 6-MPH4 über einen weiten Konzentrationsbereich von L-Phe (0-4.000 µM) und 6-MPH4 

(0-1.500 µM) beschreibt (Abbildung 21). Die höchste Enzymaktivität der PAH (7.206 nmol L-

Tyr/min x mg Protein) konnte bei einem Wert von 2.346 µM L-Phe und 505 µM 6-MPH4 

gemessen werden. Damit lag die Enzymaktivität mit 6-MPH4 als Kofaktor um fast 2.000 nmol 

L-Tyr/min x mg Protein unter der mit BH4 gemessenen Enzymaktivität (9.106 nmol L-Tyr/min 

x mg Protein). Zudem wurde deutlich, dass die PAH eine geringere Affinität gegenüber 6-

MPH4 zeigte, denn es waren höhere 6-MPH4-Konzentrationen notwendig, um die maximale 

Enzymaktivität zu erreichen (505 µM 6-MPH4 gegenüber 132 µM BH4). Damit stimmten die 

Ergebnisse des PAH activity landscapes von 6-MPH4 mit den MST-Daten aus Kapitel 4.3.3 

überein, denn auch hier konnte für den Komplex des PAH-Wildtyps mit 6-MPH4 eine deutlich 

niedrigere KD gemessen werden, die für eine niedrigere Affinität der PAH gegenüber 6-MPH4 

spricht. Da der strukturelle Unterschied zwischen BH4 und 6-MPH4 ausschließlich die 

Seitenkette am C6-Kohlenstoffatom des Ringsystems ist, unterstreichen die Ergebnisse 

erneut, dass die durch die 1,2-Dihydroxypropylseitenkette ausgebildeten Wechselwirkungen 

im aktiven Zentrum für eine starke Bindung des Liganden sehr wichtig sind. Der Methylrest 

an C6 im 6-MPH4 ist dazu nicht in der Lage. Steigende 6-MPH4-Konzentrationen hatten 

zudem eine Abnahme der PAH-Affinität gegenüber dem Substrat L-Phe zur Folge. Auch der 

activity landscape mit 6-MPH4 zeigte eine Inhibierung des Enzyms bei hohen L-

Phenylalaninkonzentrationen (Pey and Martinez 2005), aber mit 6-MPH4 als Kofaktor war 

dieses Inhibierung zu noch höheren Konzentrationen verschoben. Die mit BH4 beobachtete 

Inhibierung der Enzymaktivität (Abbildung 10) (Staudigl et al. 2011) trat mit 6-MPH4 nicht auf.     
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Abbildung 21. Activity landscape des PAH-Wildtyps mit 6-MPH4 und L-Phe 

Die Daten für die Aktivität des PAH-Wildtyps wurden bei unterschiedlichen L-Phenylalanin- und 6-MPH4-Konzentrationen 

gemessen, interpoliert und die Aktivität farbkodiert als activity landscape dargestellt. Die durch Strichpunkte symbolisierte Linie 

zeigt Ki für die Substratinhibierung bei ansteigenden 6-MPH4-Konzentrationen. Die durchgezogene Linie macht deutlich, dass 

mit ansteigenden L-Phenylalaninkonzentrationen mehr 6-MPH4 notwendig war, um die Enzymaktivität aufrecht zu erhalten.     

 

4.3.5 BH2 und Sepiapterin inhibieren die Enzymaktivität des PAH-Wildtyps  

Chaperone sind eine heterogene Klasse an Proteinen, die neu translatierte 

Aminosäureketten unter hohem ATP-Verbrauch dabei unterstützen, sich in die physiologisch 

korrekte, native Konformation zu falten (Fan et al. 1999, Buchner 2002, Wegele et al. 2004). 

Pharmakologische Chaperone sind eine Unterklasse von Chaperonen mit spezifischer 

Wirkung. Es sind small molecules, meist chemische Verbindungen, die durch ihre 

nichtkovalente, reversible Bindung an das Protein dessen korrekte Faltung unterstützen, 

indem sie sich positiv auf die Faltungsdynamik auswirken (Fan et al. 1999, Fan 2008). 

Dadurch kann das Protein stabilisiert und ein vorherrschender Funktionsverlust des Enzyms 

kompensiert werden. Die Voraussetzung für ihre Wirkung ist das Vorliegen von 

Enzymrestaktivität (Fan 2008) in Kombination mit unzureichender Stabilität des Enzyms. 

Pharmakologische Chaperone führen phänotypisch zu einem großen Unterschied, wenn es 

ihnen gelingt eine ausreichende Proteinrestmenge zur Verfügung zu stellen, die für ein 

Funktionieren des betroffenen Stoffwechselweges ausreichend ist. Oftmals ist allerdings 

dieser korrigierte biochemische Phänotyp ein Kompromiss, denn die verbesserte 

Enzymstabilität durch Einschränkung der Flexibilität kann mit einer Verringerung der 

Enzymaktivität einhergehen (DePristo et al. 2005, Muntau and Gersting 2010) und neben 

dem stabilisierenden Effekt auch zur moderaten Inhibierung der Enzymfunktion führen (Fan 

et al. 1999).  
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Im Rahmen der Promotionsarbeit sollten die inhibitorischen Eigenschaften der Liganden 

analysiert werden, um die Struktur-Aktivitätsbeziehung zwischen Ligand und Enzym weiter 

zu untersuchen. Da die Daten des activity landscapes des PAH-Wildtyps im Komplex mit 

BH4 bereits die inhibitorischen Eigenschaften des natürlichen Kofaktors zeigten (Kapitel 

4.2.2), ging es im Folgenden darum zu analysieren, ob auch die BH4-Derivate BH2, 

Sepiapterin und 6-MPH4 einen inhibitorischen Effekt auf die PAH haben. Hierzu wurde der 

Standardaktivitätsassay (Kapitel 3.5.1.1) pipettiert (Martinez et al. 1995), die BH4-Derivate 

jeweils als kompetitive Inhibitoren in ansteigender Konzentration (0-500 µM) zugegeben und 

die Menge an gebildetem L-Tyrosin anschließend spektrophotometrisch gemessen. Ein 

exponentieller Fit der Daten zeigte eine Abnahme der PAH-Aktivität mit zunehmenden 

Konzentrationen an BH2 und Sepiapterin (Abbildung 22).  
 

 

Abbildung 22. Inhibierung des PAH-Wildtyps durch BH2 und Sepiapterin (SP) 

Die Messpunkte aus elf seriellen Verdünnungen der Liganden BH2, Sepiapterin und 6-Methyltetrahydropterin (6-

MPH4) im Konzentrationsbereich von 0-500 µM wurden jeweils gegen die PAH-Aktivität - gemessen als Bildung 

von nmol L-Tyr/min*mg Protein - aufgetragen und durch Anwendung einer einphasigen Exponentialfunktion 

gefittet. Die Daten zeigten eine Inhibierung der PAH-Enzymaktivität durch Bindung von BH2 und Sepiapterin aber 

nicht durch 6-MPH4. Alle Messpunkte wurden als Triplikate gemessen und die Standardabweichung als grauer 

Fehlerbalken für jeden Messwert angegeben.  

 

Durch das Auftragen der Messpunkte gegen den Logarithmus der Ligandenkonzentration 

und einen exponentiellen Fit der Daten, konnte die mittlere inhibitorische Konzentration (IC50) 

berechnet werden bei der eine halbmaximale Inhibierung vorlag. Die Berechnung der Werte 

für die inhibitorische Konstante Ki erfolgte aus den IC50-Werten unter Anwendung der Cheng-

Prusoff Gleichung (Kapitel 3.5.3). Für die inhibitorische Konstante von BH2 konnte ein Wert 

von 2,2 µM berechnet werden, der mit dem Wert von BH4 (1,2 µM) sehr gut übereinstimmte. 

Die Inhibierung durch Sepiapterin (6,37 µM) war etwas schwächer, während 6-MPH4 im 

eingesetzten Konzentrationsbereich keine Inhibierung der Enzymaktivität zeigte 

(Abbildung 22). Dies stimmte gut mit den Daten aus dem activity landscape (Kapitel 4.3.4) 

und der Literatur überein, da die Inhibierung durch BH4 durch die Interaktion der 

Dihydroxypropylseitenkette mit S23 in der IARS hervorgerufen wird (Teigen and Martinez 

2003), die bei 6-MPH4 aufgrund der verkürzten Seitenkette nicht erfolgen kann. 
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4.3.6 BH4 stabilisiert den PAH-Wildtyp gegenüber Hitzestress  

Um zu analysieren ob BH4, BH2, Sepiapterin und 6-MPH4 dazu in der Lage sind den PAH-

Wildtyp gegenüber Hitzestress zu stabilisieren, wurden thermische Entfaltungskurven unter 

Verwendung des ANS-Fluoreszenzmarkers aufgenommen, wie sie bereits für den Wildtyp 

ohne Ligand im Kapitel 4.2.4 beschrieben sind. Aus den Rohdaten des DSF-Assays erfolgte 

die Analyse der Hydrophobizität des Wildtyps im Komplex mit jeweils einem der vier 

Liganden im nativen Zustand, sowie die Berechnung der unfolded fraction (Pey et al. 2008), 

woraus die Temperaturen der beiden Umschlagpunkte TM1 und TM2 (Abbildung 23A) für die 

Entfaltung der regulatorischen und katalytischen Domänen der PAH mit gebundenem 

Liganden berechnet werden konnten. Die Zugabe von BH4 führte zum Anstieg der beiden 

Umschlagpunkte um 1,5 °C. BH2 und 6-MPH4 zeigten einen stärkeren Effekt auf den zweiten 

Umschlagpunkt, während die Bindung von Sepiapterin zu keiner nennenswerten Änderung 

der TM-Werte führte.   

Die Auswertung der Hydrophobizität zeigte deutliche konformative Änderungen des nativen 

Zustandes durch Bindung der Liganden (Abbildung 23B). Während die Hydrophobizität des 

PAH-Wildtyps durch Bindung von Sepiapterin gegenüber dem Zustand ohne Ligand um 

43 % abnahm und damit eine Überführung des Enzyms in eine kompaktere Form andeutet, 

hatte die Bindung von BH2 und 6-MPH4 den gegenteiligen Effekt und zeigte einen 

signifikanten Anstieg der ANS-Fluoreszenz an, was auf mehr oberflächenexponierte 

hydrophobe Gruppen hindeutet. Die Bindung von BH4 führte wie Sepiapterin zu einer 

leichten Abnahme der Hydrophobizität.   

 

 

Abbildung 23. Umschlagspunkte und Hydrophobizität des PAH-Wildtyps 

Die berechneten Umschlagpunkte und Hydrophobizitätsdaten des Wildtyps wurden jeweils ohne (Kontrolle K) und im Komplex 

mit 43 µM BH4, BH2, Sepiapterin (SP) oder 200 µM 6-MPH4 gemessen. (A) Die Tabelle zeigt die berechneten Temperaturen der 

Umschlagpunkte TM1 und TM2 nach thermischer Denaturierung des PAH-Wildtyps unter Verwendung des Fluoreszenzmarkers 

ANS. Die Werte basieren auf Triplikaten und wurden durch Boltzman fit der berechneten unfolded fraction (Pey et al. 2008) 

ermittelt. Der durch Bindung des Liganden induzierte Temperaturunterschied zwischen dem Wildtypenzym ohne und mit Ligand 

wurde für den ersten Δ TM1 und zweiten Δ TM2 Übergang in einer separaten Spalte ermittelt. (B) Die Abbildung zeigt die 

Hydrophobizität des Wildtyps ohne und mit gebundenem Liganden im nativen Zustand bei 25 °C. Auch hierbei diente ANS als 

Fluoreszenzmarker, der eine Aussage über hydrophobe Bereiche an der Proteinoberfläche erlaubt. Die Messwerte basieren auf 

mindestens neun Einzelwerten und wurden einer Varianzanalyse unterzogen (Dunnett’s test), bei der alle Messdaten des 

Wildtyps mit gebundenem Liganden mit der Kontrolle ohne Ligand verglichen wurden (*, p<0,05; ***, p<0,001). Die grauen 

Fehlerbalken zeigen die Standardabweichung zwischen den Einzelwerten.  
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4.3.7 Bindung der Liganden reduziert den hydrodynamischen Radius des PAH-Wildtyps   

Die Analyse des hydrodynamischen Radius des PAH-Wildtyps im Komplex mit BH4, BH2, 

Sepiapterin oder 6-MPH4 erfolgte durch Messung der dynamischen Lichtstreuung der 

einzelnen Partikel in Lösung. Für den hydrodynamischen Radius des Wildtyps ohne Ligand 

konnte bereits ein Wert von 6,18 nm berechnet werden (Kapitel 4.2.5). Die Zugabe der vier 

Liganden führte jeweils zu einer signifikanten Größenabnahme auf 5,9 nm mit BH4 und 

5,7 nm mit den drei Derivaten (Abbildung 24), was darauf hindeutet, dass die Bindung der 

Liganden das Enzym in eine kompaktere, t-state-ähnliche Konformation überführt, wie es im 

Symmetriemodell nach Monod-Wyman-Changeux (MWC) für allosterische Enzyme 

beschrieben wurde (Monod et al. 1965, Koshland et al. 1966). Diese kompaktere 

Konformation bietet einen gleichzeitigen Schutz vor Degradation durch das Proteasom 

(Doskeland and Flatmark 1996) und konnte im Rahmen der Dissertation für die PAH in 

dieser Form erstmals experimentell bestätigt werden.    

 

 

 

Abbildung 24. DLS Ergebnisse des PAH-Wildtyps 

Die Daten zeigen den PAH-Wildtyp ohne (Kontrolle K) und im Komplex mit 43 µM BH4, BH2, Sepiapterin (SP) oder 200 µM 6-

MPH4. (A) Die DLS-Größenverteilungen stellen exemplarisch nur ein Beispiel aus den jeweils vier Einzelmessungen des PAH-

Wildtyps im Komplex mit den Liganden bei 25 °C dar. Der Hauptpeak in den vier Abbildungen ist auf die Lichtstreuung des 

PAH-Tetramers zurückzuführen und gibt den hydrodynamischen Radius des Enzyms in Nanometer an. (B) Die Tabelle fasst die 

Ergebnisse der DLS-Messungen zusammen. Hydrodynamischer Radius RH in Nanometer, prozentuale Peakfläche und 

Molekulargewicht in Kilodalton (kDa) konnten durch Messung der zeitabhängigen Intensität des gestreuten Lichtes und der 

zugehörigen zeitabhängigen Intensitäts-Autokorrelationsfunktion berechnet werden (Kapitel 4.2.5). (C) Im Boxplot aufgetragen 

sind die berechneten Mittelwerte aus mindestens vier Einzelmessungen der hydrodynamischen Radien RH. Für die 

Varianzanalyse (Dunnett’s test) wurden alle Messdaten des Wildtyps mit gebundenem Liganden mit der Kontrolle ohne Ligand 

verglichen (**, p<0,01; ***, p<0,001). Die Standardabweichung ist jeweils als grauer Fehlerbalken angegeben.  
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4.3.8 Tryptophanfluoreszenzsspektren zeigen konformative Änderungen nach Bindung der 

Liganden auf  

Um lokale strukturelle Änderungen nach Bindung von BH4, BH2, Sepiapterin und 6-MPH4 zu 

analysieren, wurden intrinsische Tryptophanfluoreszenzspektren aufgenommen. Die Bindung 

von BH2 oder Sepiapterin im aktiven Zentrum führte zum Quenching des Fluoreszenzsignals 

um 50 % (Abbildung 25). Noch deutlicher war die Löschung des Fluoreszenzsignals durch 

BH4 und 6-MPH4, beides Substanzen mit reduziertem Pyrimidopyrazinringsystem. Zudem 

induzierten BH4 und 6-MPH4 eine bathochrome Verschiebung des Fluoreszenzmaximums 

um 4,1 nm bzw. 14,4 nm in den längerwelligen Bereich des elektromagnetischen Spektrums, 

während Sepiapterin das Fluoreszenzmaximum des Wildtyps von ursprünglich 332,9 nm um 

2,2 nm auf 330,7 nm zu kürzeren Wellenlängen (hypsochrome Verschiebung) verschob. Die 

Bindung von BH2 zeigte keine Auswirkung auf die Position des Fluoreszenzmaximums. Die 

Ergebnisse deuteten darauf hin, dass die Bindung der beiden Liganden mit reduziertem 

Pyrimidopyrazinringsystem zu einem stärker lösemittelexponierten N-Terminus der PAH 

führte, denn das Peakmaximum der PAH im Komplex mit 6-MPH4 lag bei 347,3 nm, was 

beinahe dem Wert von freiem Tryptophan in Lösung entspricht. Bei der Bindung von 

Sepiapterin dagegen war die Lösemittelzugänglichkeit von W120 gegenüber dem Wildtyp 

ohne Ligand nochmal reduziert, was auf eine kompaktere Struktur des Enzyms im N-

terminalen Bereich hindeutete. Ein reduziertes Pyrimidopyrazinringsystem und ein oxidiertes 

Pyrimidopyrazinringsystem mit höher oxidierter Seitenkette, wie im Fall von Sepiapterin, 

zeigten somit entgegengesetzte Effekte auf den N-Terminus der PAH.      

 

Abbildung 25. Intrinsische Tryptophanfluoreszenzemissionsspektren des PAH-Wildtyps 

Die Spektren zeigen den Wildtyp ohne gebundenen Liganden (Kontrolle K) und im Komplex mit 43 µM BH4, BH2, Sepiapterin 

oder 200 µM 6-MPH4. Das Emissionsmaximum (Anregung 295 nm) des PAH-Wildtyps liegt bei 332,9 nm (grau gestrichelte 

Linie) und wurde wie die anderen Emissionsmaxima durch Annäherung der Spektren an eine schiefe Normalverteilung (Rooney 

and Lee 1986) berechnet. Alle Emissionsspektren basieren jeweils auf drei unabhängigen Messungen bei 25 °C. Die 

Standardabweichung ist für jeden Punkt als grauer Balken angegeben. 
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4.3.9 BH4, BH2 und Sepiapterin erhöhen die Aktivierungsenergie des PAH-Wildtyps  

Im Kapitel 4.2.7 erfolgte die kinetische und thermodynamische Analyse der Entfaltung des 

PAH-Wildtyps. Nun sollte der Effekt der Liganden BH4, BH2, Sepiapterin und 6-MPH4 auf die 

Aktivierungsenergie sowie thermodynamische Parameter des Wildtyps analysiert werden.  

Abbildung 26 zeigt die zeitabhängige Entfaltung des PAH-Wildtyps im Komplex mit jeweils 

einem der vier Liganden bei fünf verschiedenen Temperaturen die so gewählt waren, dass 

sie deutlich unterhalb der Temperatur liegen, bei der eine irreversible Aggregation der Probe 

erfolgen kann. Den Endpunkt der Einzelmessungen markierte jeweils ein fehlender Anstieg 

der ANS-Fluoreszenzintensität über die Zeit, da aufgrund der vollständigen Entfaltung des 

Wildtyps alle hydrophoben Bereiche des Enzyms mit ANS abgesättigt waren. 

Die Rohdaten der vier Diagramme aus Abbildung 26 zeigen die unterschiedliche Wirkung der 

Liganden auf die Entfaltungskinetiken des Wildtyps; während durch Bindung von BH4 im 

aktiven Zentrum die Entfaltung des Enzyms bei den beiden niedrigsten Temperaturen über 

90 min aufgezeichnet werden konnte, war der Prozess der Entfaltung bei Bindung von 6-

MPH4 auch bei den beiden niedrigsten Temperaturen bereits nach 25 min abgeschlossen. 

Die Entfaltungskinetiken von BH2 und Sepiapterin waren in ihrer Zeitabhängigkeit 

vergleichbar, aber auch sie konnten das Enzym nicht in dem Ausmaß stabilisieren, wie es 

mit BH4 als Ligand der Fall war.  

 

 

 

Abbildung 26. Entfaltungskinetiken des PAH-Wildtyps 

Die ansteigenden ANS-Fluoreszenzkurven, zeigen die zeitabhängige Entfaltung des PAH-Wildtyps im Komplex mit 43 µM BH4, 

BH2, Sepiapterin oder 200 µM 6-MPH4 bei fünf unterschiedlichen Temperaturen. Die Kurven wurden gemittelt aus den 

Rohdaten von drei Einzelmessungen und die Standardabweichung zwischen den einzelnen Messungen wird durch die grauen 

Fehlerbalken angezeigt. Alle fünf Kurven wurden jeweils an eine Exponentialfunktion erster Ordnung angenähert (schwarze 

durchgezogene Linien), um daraus den Wert der Geschwindigkeitskonstanten k der zeitabhängigen Entfaltung zu berechnen.  
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Um die Geschwindigkeitskonstante k für jede einzelne Temperatur zu berechnen, wurden 

alle gemessenen Entfaltungskinetiken aus Abbildung 26 an eine Exponentialfunktion erster 

Ordnung angenähert. Durch Auftragen des natürlichen Logarithmus der 

Geschwindigkeitskonstanten gegen den reziproken Wert der absoluten Temperatur, konnten 

die Geschwindigkeitskonstanten in einem Arrhenius-Plot auf einer Geraden abgebildet 

werden (Abbildung 27A). Durch Anwendung der Arrhenius-Gleichung (Kapitel 3.6.3) konnte 

die Aktivierungsenergie EA für den Übergang des Wildtyps im Komplex mit einem der vier 

Liganden aus dem nativen in den entfalteten Zustand berechnet werden. Abbildung 27B 

zeigt, dass die Bindung von BH4 im aktiven Zentrum der PAH zu einem Anstieg der 

Aktivierungsenergie um Faktor 1,5 im Vergleich zum Wildtyp ohne Liganden führte. Die 

Bindung von BH2 und Sepiapterin induzierte nur einen leichten Anstieg der 

Aktivierungsenergie, während die Bindung von 6-MPH4 eine Abnahme um 35 % gegenüber 

der Kontrolle zur Folge hatte. Auch dieses Experiment unterstrich die Bedeutung der 

Dihydroxypropylseitenkette bezüglich der Fähigkeit der vier Liganden einen stabilisierenden 

Einfluss auf den Wildtyp auszuüben. Denn während BH4, BH2 und Sepiapterin die 

zeitabhängige Entfaltung des Wildtyps in unterschiedlichem Ausmaß verzögern konnten, war 

6-MPH4 aufgrund der verkürzten Seitenkette nicht dazu in der Lage den nativen 

Grundzustand des Enzyms zu stabilisieren und damit die Kinetik der Entfaltung zu 

beeinflussen. 

 

Abbildung 27. Arrhenius-Plot und Aktivierungsenergien des PAH-Wildtyps 

(A) Im Arrhenius-Plot aufgetragen wurden jeweils die aus den Kinetikmessungen berechneten Geschwindigkeitskonstanten k 

gegen den reziproken Wert der absoluten Temperatur in Kelvin für den PAH-Wildtyp (Kontrolle K) sowie das Wildtypenzym im 

Komplex mit BH4, BH2, Sepiapterin oder 6-MPH4. Die Messpunkte konnten jeweils durch eine lineare Regression angenähert 

werden. (B) Aus der Steigung der Geraden im Arrhenius-Plot multipliziert mit der universellen Gaskonstante, konnten die 

Aktivierungsenergien für die Entfaltung des Wildtyps ohne und mit Ligand berechnet werden.  

 

Die Werte der zugehörigen thermodynamischen Parameter ∆G#, ΔH# und ∆S# der 

zeitabhängigen Entfaltung des Wildtyps im Komplex mit den vier Liganden sind in Tabelle 24 

zusammengefasst und zeigen eine leichte Abnahme der Gibbs-Energie und  

Reaktionsenthalpie, sowie kaum Veränderungen der Reaktionsentropie mit zunehmender 

Temperatur für den Prozess der Entfaltung an. 
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Tabelle 24. Berechnete Geschwindigkeitskonstanten und thermodynamische Parameter  

Die Geschwindigkeitskonstanten k für die Entfaltung des PAH-Wildtyps im Komplex mit jeweils 43 µM BH4, BH2, Sepiapterin 

(SP) oder 200 µM 6-MPH4 wurden aus dem Fit jeder Kinetik (Abbildung 276) mit einer Exponentialfunktion erster Ordnung 

berechnet. Die thermodynamischen Parameter der Gibbs-Energie ΔG
#
, der Reaktionsenthalpie ΔH

#
 und der Reaktionsentropie 

ΔS
#
 konnten unter Anwendung der Eyring Theorie des Übergangszustandes aus der statistischen Thermodynamik und der 

Gibbs-Helmholtz-Gleichung berechnet werden.    

 

Zusammenfassend lässt sich sagen, dass die vier Liganden unterschiedliche Effekte auf den 

PAH-Wildtyp ausübten. Thermische Entfaltungsassays zeigten einen stabilisierenden Effekt 

durch den natürlichen Kofaktor der PAH – BH4 – und das oxidierte Analogon BH2. Dies 

stimmte auch gut mit den DLS-Ergebnissen überein, die sogar daraufhin deuteten, dass 

durch die Bindung aller Liganden im aktiven Zentrum des Enzyms globale, konformative 

Änderungen induziert werden, die das Enzym in einen stabileren, da kompakteren t-state 

ähnlichen Zustand überführen. Diese durch Bindung der Liganden induzierten globalen 

konformativen Änderungen hatten auch Auswirkungen auf die regulatorische Domäne der 

PAH und zeigten sich in lokalen Änderungen der intrinsischen Tryptophanfluoreszenz von 

W120. Liganden mit einem reduzierten Pterinringsystem wie BH4 und 6-MPH4 induzierten 

eine bathochrome Verschiebung des Fluoreszenzmaximums in den längerwelligen Bereich 

des elektromagnetischen Spektrums, die mit einem starken Quenching der 

Tryptophanfluoreszenz einherging.    
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4.4 Biophysikalische Charakterisierung der PAH-Varianten R68S, R261Q und Y417H 

Zu Beginn der Doktorarbeit war die experimentelle Datenlage zu den biochemischen und 

molekularen Konsequenzen von Mutationen im PAH-Gen noch wenig überzeugend, obwohl 

es sich bei der Phenylketonurie um den Prototyp einer behandelbaren Aminoazidopathie 

handelt. Daher sollten neben der Charakterisierung des PAH-Wildtyps und der Untersuchung 

des BH4-Effektes auch drei PAH-Varianten analysiert werden, die Aminosäureaustausche 

jeweils in einer der drei funktionellen Domänen des Enzyms aufweisen und BH4-responsiv 

sind. Dafür ausgewählt wurden die PAH-Mutationen R68S, R261Q und Y417H. Der 

Aminosäurerest R68 liegt in der regulatorischen Domäne der PAH und ist über eine 

Wasserstoffbrückenbindung zu C237 (Abbildung 28A) in der katalytischen Domäne 

(Thorolfsson et al. 2003) in aktivierende konformative Änderungen involviert, die nach 

Bindung des Substrats L-Phe eintreten. Die beiden anderen Mutationen beeinflussen ein 

Netzwerk von Seitenketteninteraktionen, die die katalytische Domäne (R261) mit dem 

Dimerisierungsmotiv der angrenzenden Untereinheit (Y417) verbinden (Abbildung 28B) 

(Gersting et al. 2008). Die ausgewählten Mutationen sind somit an zentralen Positionen im 

Enzym lokalisiert, die einzelne Untereinheiten miteinander verbinden. Im Folgenden geht es 

darum, inwieweit die einzelnen Mutationen Konformation und Stabilität der PAH 

beeinflussen. 

 

Abbildung 28. Aminosäureinteraktionen im PAH-Wildtyp 

Visualisierung ausgewählter Bereiche des PAH-Backbones als Bändermodell, wobei einzelne Aminosäurereste im Stab-Modell 

hervorgehoben werden. Kohlenstoffatome sind weiß, Sauerstoffatome rot und Stickstoffatome blau markiert. 

Wasserstoffbrückenbindungen sind als gestrichelte Linien eingezeichnet. (A) Der Aminosäurerest R68 ist Teil des Loops der 

durch die Aminosäurereste 68-75 in der regulatorischen Domäne der PAH-Untereinheit A (blaues Bändermodell) ausgebildet 

wird. Nach Aktivierung des Enzyms durch das Substrat, bildet R68 eine Wasserstoffbrücke zu C237 in der katalytischen 

Domäne der angrenzenden Untereinheit D aus (rotes Bändermodell). (B) Der Aminosäurerest Y417 ist in einem Loop lokalisiert, 

der zwei antiparallele β-Faltblätter miteinander verbindet und das Dimerisierungsmotif ausbildet. Y417 ist zudem in einem 

Netzwerk mit den Aminosäureresten Q304, R261 und T238 integriert, welches das Dimerisierungsmotiv einer Untereinheit mit 

der katalytischen Domäne der angrenzenden Untereinheit verbindet. Die Hydroxylgruppe von Y417 bildet eine 

Wasserstoffbrücke zu Q304 aus und der aromatische Ring von Y417 interagiert mit der positiv geladenen Guanidiniumgruppe 

von R261. Q304 und T238 sind durch Wasserstoffbrücken mit R261 verknüpft (Gersting et al. 2008).     
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4.4.1 Die drei PAH-Varianten lassen sich als stabile Tetramere aufreinigen 

Nach erfolgreicher Reinigung des PAH-Wildtyps (Kapitel 4.2.1), wurde auch für die drei 

Varianten R68S, R261Q und Y417H zunächst ein Expressionstest unter den gleichen 

Bedingungen wie für den Wildtyp durchgeführt, um die Löslichkeit der jeweiligen MBP-

Fusionsproteine nach rekombinanter Expression in kleinem Volumen zu überprüfen. Für alle 

drei Varianten konnte bei einer Expressionstemperatur von 28 °C und einer Inkubationszeit 

von 20 h ausreichend Protein in der löslichen Phase angereichert werden, so dass jeweils 

2 L Hauptkultur zur Reinigung angezogen wurden. Wie bereits für den Wildtyp beschrieben, 

erfolgte nach dem Zellaufschluss die Affinitätschromatographie zur Isolierung und 

Anreicherung der MBP-Fusionsproteine. In einem zweiten Schritt wurden die 

Fusionsproteine entsprechend ihrer Größe über eine Gelfiltrationssäule chromatografisch 

aufgetrennt (Abbildung 29A). Die Elution der varianten PAH-Tetramere erfolgte bei einem 

Elutionsvolumen von ca. 146 ml, allerdings war die Ausbeute der Fusionsproteine im 

Vergleich zum Wildtyp deutlich reduziert.  

 

 

Abbildung 29. Oligomerisierungsprofile der Enzyme ohne und mit Fusionspartner 

(A) Das Chromatogramm der Größenausschlusschromatographie zeigt die Absorption der MBP-PAH Fusionsproteine von 

Wildtyp und Varianten bei einer Wellenlänge von 280 nm. (B) Die Abbildung stellt die größenchromatografische Auftrennung der 

PAH-Tetramere und ihres Fusionspartners MBP nach Inkubation mit Faktor Xa bei einer Wellenlänge von 280 nm dar. 

 

Die Fraktionen der Tetramere wurden gepoolt, aufkonzentriert und nach Messung der 

Proteinkonzentration zur Abspaltung des MBP-Fusionspartners über Nacht mit Faktor Xa 

inkubiert (Kapitel 3.3.2.3). Zur chromatografischen Isolierung der PAH-Tetramere wurde der 

Schneideansatz anschließend erneut auf eine Gelfiltrationssäule aufgetragen 

(Abbildung 29B). Die Fraktionen der geschnittenen Tetramere wurden gepoolt, 

aufkonzentriert, die Konzentration spektrophotometrisch bestimmt und die varianten Proteine 

bis zu ihrer Verwendung als Aliquots in Flüssigstickstoff gelagert. Während der Reinigung 

jeder Variante wurde nach den einzelnen Schritten eine Gelprobe abgenommen, in SDS 

aufgekocht und anschließend in einem diskontinuierlichen Gel (Kapitel 3.3.4) 

elektrophoretisch aufgetrennt (Abbildung 30).           
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Abbildung 30. SDS-Gel zur Dokumentation einzelner Reinigungsschritte 

Das Gel wurde für den PAH-Wildtyp (WT) und die Varianten in vier Bereiche eingeteilt. Aufgetragen wurden jeweils Proben des 

Rohextraktes (RE) nach dem Aufschluss der Zellen und einem Zentrifugationsschritt. Zudem Proben des nach der ersten 

Gelfiltrationssäule isolierten MBP-PAH Tetramers (FP), das im SDS-Gel als Monomer bei einer Größe von ca. 95 Kilodalton 

(kDa) detektierbar ist. Die Xa-Probe zeigt den Schneideansatz des Fusionsproteins mit FaktorXa nach 16 stündiger 

Inkubationszeit, wobei die obere Bande dem PAH-Monomer bei ca. 52 kDa entspricht und die untere Bande dem 

abgespaltenen MBP-Fusionspartner bei ca. 43 kDa. Eine Spalte in jedem Bereich stellt die jeweiligen isolierten funktionellen 

PAH-Tetramere (PAH) ohne MBP dar. Bei der Reinigung von R261Q und Y417H wurde zudem noch eine Probe des 

abgespaltenen MBPs in der letzten Spalte mit aufgetragen.  

 

 

4.4.2 PAH-Varianten sind empfindlich gegenüber Hitzestress  

Nach erfolgreicher Reinigung der varianten Enzyme R68S, R261Q und Y417H sollte ihr 

Verhalten gegenüber Hitzestress untersucht werden. Die Daten des DSF-Assays zeigten 

eine reduzierte Stabilität der PAH-Varianten im Vergleich zum Wildtyp. Dies war bereits an 

einer Linksverschiebung der Entfaltungskurven aller Varianten gegenüber dem Wildtyp 

erkennbar (Abbildung 31A). Die anschließende Berechnung der Umschlagpunkte TM1 und 

TM2 ergab, dass besonders TM1 für alle drei Varianten gegenüber dem Wildtyp deutlich 

reduziert war (Abbildung 31B). Vor allem die Variante Y417H zeigte mit einem um 12 °C 

niedrigeren TM1-Wert eine starke Anfälligkeit der regulatorischen Domänen gegenüber 

Hitzestress.  

Die aus den DSF-Daten bei 25 °C abgeleiteten Werte für die Hydrophobizität im nativen 

Grundzustand zeigten, dass sich die Fluoreszenz der beiden Varianten R261Q und Y417H 

kaum von der des Wildtyps unterschied (Abbildung 31C), während R68S eine signifikante 

Erhöhung der Fluoreszenz im Grundzustand um Faktor 2 gegenüber dem Wildtyp zeigte, 

woraus eine veränderte Oberflächenhydrophobizität für R68S abgeleitet werden kann. 
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Abbildung 31. Thermische Denaturierung von PAH-Wildtyp und Varianten 

(A) Die ansteigenden ANS-Fluoreszenzkurven zeigen die temperaturabhängige Entfaltung des PAH-Wildtyps (WT) und der drei 

PAH-Varianten. Die Kurve des Wildtyps ist gemittelt aus den Rohdaten von elf Einzelmessungen, die Entfaltungskurven der 

Varianten basieren auf vier unabhängigen Einzelmessungen. Der Standardfehler zwischen den einzelnen Messungen wird 

durch die grauen Fehlerbalken angezeigt. (B) Die Tabelle stellt die berechneten Temperaturen der Umschlagpunkte TM1 und 

TM2 zusammen. Die Werte wurden durch Boltzman fit der berechneten unfolded fraction (Pey et al. 2008) ermittelt. Der 

Temperaturunterschied zwischen Wildtyp und Varianten wurde für den ersten (ΔTM1) und zweiten (ΔTM2) Umschlagpunkt in 

einer separaten Spalte berechnet. (C) Die Abbildung zeigt die Hydrophobizität des Wildtyps und der Varianten im nativen 

Zustand bei 25 °C. Auch hierbei diente ANS als Fluoreszenzmarker, der eine Aussage über hydrophobe Bereiche an der 

Proteinoberfläche erlaubte. Die Messwerte basieren auf mindestens zwanzig Einzelwerten und die Standardabweichung 

zwischen den Einzelwerten wird durch die grauen Fehlerbalken symbolisiert. Die Messwerte wurden einer Varianzanalyse 

unterzogen (Dunnett’s test) bei der alle Messdaten der Varianten mit dem Wildtyp verglichen wurden (***, p<0,001).    

 

 

4.4.3 Der hydrodynamische Radius von R261Q ist im Vergleich zum Wildtyp kleiner 

Bei der Analyse der hydrodynamischen Radien der PAH-Varianten mittels dynamischer 

Lichtstreuung in Lösung (Kapitel 4.2.5) ging es um die Frage, ob die jeweils vorliegende 

Mutation globale, konformative Änderungen innerhalb des Tetramers induziert, die sich über 

eine Änderung der Größe nachweisen lassen (Abbildung 32A). Während sich die Varianten 

R68S und Y417H in ihrer Größe und ihrem Molekulargewicht (Abbildung 32B) nicht vom 

PAH-Wildtyp unterschieden, war der hydrodynamische Radius von R261Q gegenüber der 

Kontrolle um 9,6 % signifikant reduziert (Abbildung 32C). Interessanterweise entsprach der 

Radius von R261Q dem hydrodynamischen Radius des PAH-Wildtyps im Komplex mit BH4, 

was darauf hindeutet, dass die Variante bereits in Abwesenheit des natürlichen Kofaktors 

eine durch die Mutation induzierte, kompaktere Konformation aufweist als der Wildtyp. Dafür 

spricht auch das geringere Molekulargewicht von R261Q mit einem gegenüber dem Wildtyp 

um 22 % verringerten Wert.     



 
 4 ERGEBNISSE 

 

 
 85 
 

 

Abbildung 32. Hydrodynamischer Radius von PAH-Wildtyp und Varianten 

(A) Die DLS-Größenverteilungen zeigen exemplarisch nur ein Beispiel aus den jeweiligen Einzelmessungen der drei Varianten 

bei 25 °C. Der Hauptpeak in den drei Abbildungen ist auf die Lichtstreuung des PAH-Tetramers zurückzuführen und gibt den 

hydrodynamischen Radius des Enzyms in Nanometer an. (B) Die Tabelle fasst die Ergebnisse der DLS-Messungen zusammen. 

Hydrodynamischer Radius RH in Nanometer, prozentuale Peakfläche und Molekulargewicht in Kilodalton (kDa) des PAH-

Wildtyps (WT) und der drei Varianten konnte durch Messung der zeitabhängige Intensität des gestreuten Lichtes und der 

zugehörigen zeitabhängigen Intensitäts-Autokorrelationsfunktion berechnet werden. (C) Im Boxplot aufgetragen sind die 

berechneten Mittelwerte aus mindestens drei unabhängigen Einzelmessungen des hydrodynamischen Radius des Wildtyps und 

der drei Varianten. Für die Varianzanalyse (Dunnett’s test) wurden alle Messdaten des Wildtyps mit den Mittelwerten der 

Varianten verglichen (***, p<0,001). Die Standardabweichung ist jeweils als grauer Balken eingezeichnet.  

 

4.4.4 Mutationsbedingte konformative Änderungen führen zu Präaktivierung von R68S  

Neben dem PAH-Wildtyp (Kapitel 4.2.6) wurden für die Varianten R68S, R261Q und Y417H 

Untersuchungen zur intrinsischen Tryptophanfluoreszenz durchgeführt um zu analysieren, 

ob das Vorliegen von Mutationen zu lokalen Veränderungen in der Proteinstruktur führen 

kann (Abbildung 33A). Während das Emissionsspektrum von Y417H mit dem Wildtyp 

vergleichbar war und die intrinsische Tryptophanfluoreszenz von R261Q nur eine moderate 

Löschung des Signals im Vergleich zum Wildtyp zeigte, war das Emissionsmaximum des 

Spektrums von R68S deutlich in den längerwelligen Bereich des elektromagnetischen 

Spektrums verschoben. Das Peakmaximum zeigte eine bathochrome Verschiebung von 

11,4 nm im Vergleich zum Emissionspeak des Wildtyps und gleichzeitig war das 

Fluoreszenzsignal stark gequencht. Die Verschiebung des Fluoreszenzmaximums im 

Spektrum von R68S erinnerte an das intrinsische Tryptophanfluoreszenzspektrum des PAH-

Wildtyps nach Zugabe von L-Phe, dessen Bindung nachweislich konformative Änderungen in 



 
 4 ERGEBNISSE 

 

 
 86 
 

der PAH induziert (Kappock et al. 1995, Knappskog et al. 1996, Davis et al. 1997, Chehin et 

al. 1998, Teigen et al. 1999, Thorolfsson et al. 2002, Stokka et al. 2004), die das Enzym von 

einem t-state mit niedriger Energie in einen aktiven r-state überführen (Monod et al. 1965, 

Koshland et al. 1966). Diese globalen konformativen Änderungen die zur Aktivierung des 

Enzyms führen, können durch lokale Änderungen in der regulatorischen Domäne 

nachgewiesen werden, da sie die Tryptophanfluoreszenz von W120 beeinflussen. Sie führen 

beispielsweise im PAH-Wildtyp mit gebundenem L-Phe zur bathochromen Verschiebung des 

Emissionsmaximums und zum Anstieg des Fluoreszenzsignals (Abbildung 33B). Das 

Emissionsspektrum von R68S ist daher mit dem Spektrum des aktivierten PAH-Wildtyps 

vergleichbar. Zwar zeigte das Fluoreszenzsignal von R68S gegenüber dem Wildtyp eine 

Abnahme der Intensität, aber die starke Verschiebung in den längerwelligen Bereich des 

elektromagnetischen Spektrums ist identisch. Bei R68S handelt es sich daher um eine 

Variante, bei der allein durch den Austausch von Arginin durch Serin an Position 68 in der 

regulatorischen Domäne konformative Änderungen induziert werden, die mit den durch L-

Phe induzierten konformativen Änderungen vergleichbar sind und zur Präaktivierung der 

Variante auch in Abwesenheit von L-Phe führen. Dieser Zusammenhang konnte durch 

unsere Arbeitsgruppe bereits publiziert werden (Gersting et al. 2010). 

 

 

Abbildung 33. Intrinsische Tryptophanfluoreszenzemissionsspektren der Enzyme 

(A) Alle an eine schiefe Normalverteilung (Rooney and Lee 1986) angenäherten Spektren wurden im Wellenlängenbereich 

zwischen 300 und 400 nm aufgezeichnet (Anregung 295 nm) und sind das Ergebnis aus drei unabhängigen Messungen bei 

25 °C. Die Position des Emissionsmaximums des Wildtyps von 332,9 nm wird durch die schwarze, gestrichelte Linie dargestellt. 

(B) Emissionsspektren des PAH-Wildtyps und R68S ohne und mit 1 mM L-Phenylalanin (L-Phe), aufgenommen bei 25 °C.  

 

4.4.5 Die Aktivierungsenergien von Wildtyp und Varianten unterscheiden sich deutlich  

Zum Abschluss der Charakterisierung der drei PAH-Varianten wurde die zeitabhängige 

Entfaltung der Enzyme untersucht. Abbildung 34A zeigt die jeweiligen Kinetiken bei fünf 

verschiedenen Temperaturen zwischen 38 °C und 48 °C, welche deutlich unterhalb der 

Temperatur liegen, bei der die Proteine irreversibel aggregieren. Endpunkt der 

Einzelmessungen war auch hier das Erreichen einer Phase mit gleichbleibender 

Fluoreszenzintensität über die Zeit (Kapitel 4.2.7).  
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Die Rohdaten der drei Diagramme aus Abbildung 34A zeigen bereits Unterschiede in den 

Kinetiken der Varianten. Die zeitabhängige Entfaltung von R68S war bei der niedrigsten 

Temperatur bereits nach 30 min abgeschlossen, während die Kinetik von Y417H bei der 

niedrigsten Temperatur über 40 min aufgezeichnet werden konnte. Überraschende 

Ergebnisse zeigten die Kinetiken der Variante R261Q, denn alle fünf zeitabhängigen 

Entfaltungskurven konnten über einen längeren Zeitraum gemessen werden als es für den 

PAH-Wildtyp der Fall war (vgl. Abbildung 15). Ausgewertet wurden alle Kinetiken durch 

Annäherung der Kurven an eine Exponentialfunktion erster Ordnung, woraus die jeweiligen 

Geschwindigkeitskonstanten k für jede einzelne Temperatur und Variante berechnet werden 

konnten. Durch Auftragen des natürlichen Logarithmus der Geschwindigkeitskonstanten 

gegen den reziproken Wert der absoluten Temperatur konnten die Werte in einem Arrhenius-

Plot auf einer Geraden abgebildet (Abbildung 34B) und die Aktivierungsenergie für den 

Übergang von Wildtyp und Varianten aus dem nativen in den entfalteten Zustand berechnet 

werden (Abbildung 34C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 34. Entfaltungskinetiken, Arrhenius-Plot und Aktivierungsenergien   

(A) Die ANS-Fluoreszenzkurven sind gemittelt aus den Rohdaten von drei Einzelmessungen und zeigen die zeitabhängige 

Entfaltung der drei PAH-Varianten bei fünf unterschiedlichen Temperaturen. Durch Annäherung an eine Exponentialfunktion 

erster Ordnung (schwarze durchgezogene Linien) konnten die Geschwindigkeitskonstanten k der zeitabhängigen Entfaltung 

berechnet werden. (B) Im Arrhenius-Plot aufgetragen wurden die aus den Kinetiken berechneten Geschwindigkeitskonstanten k 

gegen den reziproken Wert der absoluten Temperatur für den PAH-Wildtyp (Kontrolle K) und alle drei PAH-Varianten. Die 

Messpunkte konnten durch eine lineare Regression angenähert werden. (C) Aus der Steigung der Geraden im Arrhenius-Plot 

konnten die Aktivierungsenergien für die Entfaltung des PAH-Wildtyps (Kontrolle K) und der Varianten berechnet werden.  

 

Die Aktivierungsenergie von R68S (79,94 kJ/mol) war gegenüber dem Wildtyp (204,7 kJ/mol) 

um 60 % reduziert. Auch die Aktivierungsenergie von Y417H (153,82 kJ/mol) war niedriger 

als die des Wildtyps. Dagegen zeigten die Rohwerte der Kinetiken und die Steigung der 

Arrhenius-Geraden von R261Q bereits, dass die Aktivierungsenergie der Variante vermutlich 

höher als die des Wildtyps sein würde. Der Wert von 260,66 kJ/mol konnte dies auch 
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rechnerisch bestätigen und lag knapp 30 % über dem des Wildtyps. Dieses Ergebnis 

stimmte sehr gut mit den DLS-Daten überein (Kapitel 4.4.3), denn diese zeigten einen im 

Vergleich zum Wildtyp geringeren hydrodynamischen Radius für R261Q, was auf eine 

kompaktere Struktur der Variante bereits in Abwesenheit eines Liganden schließen lässt. 

Diese trägt vermutlich dazu bei, dass der Übergang vom nativen, gefalteten Zustand in den 

entfalteten Zustand gegenüber dem Wildtyp etwas zeitversetzt erfolgt und sich in einer 

höheren Aktivierungsenergie manifestiert.  

Zusammenfassend lässt sich sagen, dass einzelne missense Mutationen charakteristische 

Effekte auf die lokale und globale Proteinkonformation der PAH zeigten. R68S wies im 

nativen Zustand deutlich mehr exponierte hydrophobe Gruppen an der Proteinoberfläche auf 

als der Wildtyp und das Spektrum der intrinsischen Tryptophanfluoreszenz deutete durch die 

bathochrome Verschiebung darauf hin, dass die Konformation der Variante im Grundzustand 

bereits starke Ähnlichkeit mit der Konformation des präaktivierten r-state des Wildtyps mit 

gebundenem L-Phe hat. R261Q hingegen zeigte einen gegenüber dem Wildtyp deutlich 

kleineren hydrodynamischen Radius, der in seiner Größe mit dem des Wildtyp-BH4-

Komplexes vergleichbar war. Dies deutet darauf hin, dass R261Q bereits ohne Kofaktor eine 

t-state ähnliche Konformation aufweist, die auch erklären würde, warum die 

Aktivierungsenergie für den Übergang vom nativen Grundzustand in den entfalteten Zustand 

gegenüber dem Wildtyp erhöht war. Allen Varianten gemeinsam war eine deutliche 

Instabilität gegenüber Hitzestress, was sich in den reduzierten Umschlagpunkten des DSF-

Assays zeigte. Hierbei war die regulatorische Domäne von Y417H besonders anfällig.       

 

 

4.5 Biophysikalische Charakterisierung der Varianten im Komplex mit BH4 und den 

BH4-Derivaten BH2, Sepiapterin und 6-MPH4 

Im vorhergehenden Kapitel zeigte sich, dass PAH missense Mutationen wie R68S, R261Q 

und Y417H zu konformativen Veränderungen in der Enzymstruktur führen können, die mit 

physiologischen r-state und t-state Konformationen vergleichbar sind, wie sie bei allosterisch 

regulierten Enzymen nach Bindung von Substrat oder Kofaktor auftreten. Folge dieser 

strukturellen Veränderungen war ein vom Wildtyp abweichendes Verhalten in allen zur 

Charakterisierung der Varianten eingesetzten Assays. Besonders im DSF-Assay zeigte sich, 

dass missense Mutationen zur deutlichen Destabilisierung der globalen PAH-Konformation 

führen. Dieser Zusammenhang konnte bereits durch unsere Arbeitsgruppe publiziert werden 

(Gersting et al. 2008). Im Folgenden ging es daher um die Frage, ob die Bindung des 

natürlichen Kofaktors der PAH einen stabilisierenden Einfluss auf die Varianten ausüben 

kann. Darüber hinaus sollte durch den vergleichenden Einsatz der BH4-Derivate BH2, 

Sepiapterin und 6-MPH4 analysiert werden, welche Rolle dabei die beiden charakteristischen 

Strukturelemente des Kofaktors – das Pyrimidopyrazin-Grundgerüst und die Seitenkette – 

spielen.       
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4.5.1 Die Bindung von BH4 stabilisiert alle Varianten gegenüber Hitzestress 

Die Auswertung des DSF-Assays der PAH-Varianten (Kapitel 4.4.2) zeigte, dass sie 

sensitiver auf Hitzestress reagieren als der Wildtyp, denn die Entfaltung der einzelnen 

Domänen setzte bei allen Varianten bei deutlich niedrigeren Temperaturen ein. Nun sollte 

analysiert werden, wie sich die Bindung der Liganden auf die thermische Entfaltung der 

Varianten auswirkt und wie sich die Hydrophobizität der Komplexe verändert.       

Die Bindung von BH4 im aktiven Zentrum von R68S stabilisierte die Entfaltung (Tabelle 25) 

der regulatorischen (2,2 °C) und katalytischen Domänen (5,3 °C) und führte zur signifikanten 

Abnahme der an der Oberfläche exponierten hydrophoben Gruppen, so dass die 

Hydrophobizität des R68S-BH4-Komplexes mit der des Wildtyps vergleichbar war 

(Abbildung 35). BH2 konnte zwar die Temperatur des zweiten Umschlagpunktes um 2 °C 

erhöhen, führte allerdings zur signifikanten Zunahme der Hydrophobizität von R68S. 

Sepiapterin zeigte nach BH4 die stärkste Stabilisierung der katalytischen Domänen gegen 

angelegten Hitzestress (4,2 °C) und konnte auch die Hydrophobizität der Variante leicht 

absenken, allerdings längst nicht auf das durch BH4-Bindung erreichte Niveau. Die Bindung 

von 6-MPH4 im aktiven Zentrum hatte keinen nennenswerten Einfluss auf die thermische 

Denaturierung von R68S bzw. die an der Oberfläche exponierten hydrophoben Gruppen.   

      

 

Tabelle 25. Berechnete Umschlagpunkte nach thermischer Denaturierung der Varianten  

Die Tabelle zeigt die berechneten Temperaturen der Umschlagpunkte TM1 und TM2 nach thermischer Denaturierung der 

Varianten R68S, R261Q und Y417H ohne (Kontrolle) und mit gebundenen Liganden. Die Werte sind Mittelwerte aus drei 

unabhängigen Messungen und wurden durch Boltzman fit der berechneten unfolded fraction (Pey et al. 2008) ermittelt. Der 

Temperaturunterschied zwischen den Enzymen ohne gebundenen Liganden und mit Ligand wurde für den ersten (ΔTM1) und 

zweiten (ΔTM2) Übergang in einer separaten Spalte berechnet. Die Liganden BH4, BH2 und Sepiapterin sind in einer finalen 

Konzentration von 43 µM eingesetzt worden, für 6-MPH4 kamen aufgrund der niedrigeren Affinität (Martinez et al. 1995) 200 µM 

zum Einsatz.  

 

Auch die Auswertung der DSF-Assays der Varianten R261Q und Y417H im Komplex mit 6-

MPH4 zeigte keinen bzw. nur einen leichten stabilisierenden Effekt für den ersten 

Umschlagpunkt von Y417H. Zudem induzierte die 6-MPH4-Bindung einen signifikanten 

Anstieg der hydrophoben Gruppen an der Proteinoberfläche beider Varianten, was auf eine 

Destabilisierung der globalen Konformation beider Enzyme hindeutete. Wie bereits bei 

R68S, so zeigte BH4 auch für die Varianten R261Q und Y417H im thermischen 
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Entfaltungsassay den größten Effekt mit einer Erhöhung beider Übergangstemperaturen um 

mindestens 6 °C und einer Abnahme der Hydrophobizität beider Varianten im Komplex mit 

BH4. Die beiden oxidierten Kofaktoranaloga BH2 und Sepiapterin zeigten einen ähnlichen 

Effekt auf die thermische Entfaltung von R261Q und Y417H und stabilisierten vor allem die 

regulatorischen Domänen beider Varianten um mindestens 2 °C. Auf die Hydrophobizität von 

R261Q und Y417H hatte die BH2-Bindung dagegen keinen Einfluss, während Sepiapterin als 

einziger der vier Liganden zur signifikanten Abnahme der Hydrophobizität von R261Q führte. 

 

 

Abbildung 35. Hydrophobizität von PAH-Wildtyp und Varianten 

Hydrophobizitätsdaten des PAH-Wildtyps (WT) ohne Ligand und der drei Varianten R68S, R261Q und Y417H ohne gebundene 

Liganden (Kontrolle K) und mit Liganden bei 25 °C. Als Fluoreszenzmarker für die Analyse der Hydrophobizität im 

Grundzustand diente ANS. Die Messwerte stellen jeweils den Mittelwert aus mindestens neun Einzelwerten dar und die grauen 

Fehlerbalken markieren die Standardabweichung zwischen den Einzelwerten. Die Messwerte wurden einer Varianzanalyse 

unterzogen (Dunnett’s test) bei der alle Mittelwerte der Varianten mit gebundenem Liganden mit der jeweiligen Variante ohne 

gebundenem Ligand verglichen wurde (*, p<0,05; ***, p<0,001).    

 

Zusammenfassend zeigen die DSF-Ergebnisse, dass unter den getesteten Substanzen BH4 

als natürlicher Kofaktor der PAH den stärksten stabilisierenden Effekt gegenüber Hitzestress 

aufweist. Auch BH2 und Sepiapterin konnten entweder die regulatorischen oder die 

katalytischen Domänen aller drei Varianten im DSF-Assay stabilisieren, allerdings war der 

Effekt weit weniger stark ausgeprägt als im Komplex mit BH4. Das synthetische 

Kofaktoranalogon 6-MPH4 mit verkürzter Seitenkette am C6-Ringkohlenstoffatom konnte 

dagegen keine der drei Varianten stabilisieren und zeigte auf R261Q und Y417H sogar den 

gegenteiligen Effekt, da die Bindung des Liganden globale konformative Änderungen 

induzierte, die vermehrt hydrophobe Gruppen an der Enzymoberfläche exponierten und 

somit zur signifikanten Erhöhung der Hydrophobizität führte, was mit einer Destabilisierung 

der Enzymkonformation gegenüber Hitzestress einherging. Die Bindung von BH4 und 

Sepiapterin im aktiven Zentrum führte bei allen drei Varianten zur Abnahme der 

Oberflächenhydrophobizität mit globaler Stabilisierung der Proteine. 
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4.5.2 Die Liganden haben unterschiedliche Einflüsse auf den hydrodynamischen Radius  

Die Auswertung der DLS-Daten der Varianten ohne gebundene Liganden (Kapitel 4.4.3) 

zeigte, dass der hydrodynamische Radius von R68S und Y417H mit dem des PAH-Wildtyps 

vergleichbar war, während R261Q bereits in Abwesenheit eines Liganden eine signifikante 

Größenabnahme um fast 10 % gegenüber dem Wildtyp aufwies.  

 

 

 

Abbildung 36. Hydrodynamische Radien von PAH-Wildtyp und Varianten  

DLS-Ergebnisse der PAH-Varianten R68S, R261Q und Y417H im Komplex mit 43 µM BH4, BH2, Sepiapterin (SP) oder 200 µM 

6-MPH4. (A) Die DLS-Größenverteilungen zeigen exemplarisch nur ein Beispiel aus den jeweils drei Einzelmessungen der 

Varianten bei 25 °C. Der Hauptpeak ist auf die Lichtstreuung des Tetramers zurückzuführen und gibt den hydrodynamischen 

Radius des Enzyms in Nanometer an. (B) Im Boxplot aufgetragen sind die berechneten Mittelwerte des hydrodynamischen 

Radius in Nanometer des PAH-Wildtyps (WT) ohne Ligand und der Varianten ohne (Kontrolle K) und mit Liganden. Für die 

Varianzanalyse (Dunnett’s test) wurden alle Messdaten der jeweiligen Variante mit gebundenem Liganden mit der Kontrolle 

ohne Ligand verglichen (*, p<0,05; **, p<0,01). Die Standardabweichung ist als grauer Balken angegeben. (C) Die Tabelle fasst 

die Ergebnisse aller DLS-Messungen zusammen. Hydrodynamischer Radius RH, prozentuale Peakfläche und Molekulargewicht 

(MW) in Kilodalton (kDA) der PAH-Varianten ohne Ligand (grau) und mit Liganden (farbkodiert, siehe Abb. B) konnten durch 

Messung der zeitabhängige Intensität des gestreuten Lichtes und der zugehörigen zeitabhängigen Intensitäts-

Autokorrelationsfunktion berechnet werden. 
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Für den PAH-Wildtyp konnte bereits gezeigt werden (Kapitel 4.3.7), dass eine Zugabe von 

BH4, BH2, Sepiapterin oder 6-MPH4 zur signifikanten Abnahme des hydrodynamischen 

Radius führte. Daher ging es im Folgenden darum, den Einfluss der Liganden auf die globale 

Konformation der Varianten zu analysieren. Die Zugabe von BH4, BH2 und Sepiapterin führte 

bei den jeweiligen R68S-Komplexen zur signifikanten Abnahme der hydrodynamischen 

Radien (Abbildung 36A und B). Dazu passten auch die um ca. 20 kDa niedrigeren Werte für 

das hypothetische Molekulargewicht der Komplexe, die aus den jeweiligen zeitabhängigen 

Intensitäts-Autokorrelationsfunktionen berechnet werden konnten (Abbildung 36C). Der 

R68S-6-MPH4-Komplex zeigte dagegen eine leichte Zunahme des hydrodynamischen 

Radius von 6,0 nm auf 6,2 nm und konnte aufgrund der fehlenden Seitenkette als einziger 

Ligand das Enzym nicht in eine stabilere, t-state ähnliche Konformation überführen. Auch die 

Analyse der Varianten R261Q und Y417H zeigte, dass die Bindung von 6-MPH4 keinen 

globalen stabilisierenden Effekt ausüben konnte, denn die Werte für die hydrodynamischen 

Radien und das abgeleitete Molekulargewicht waren gegenüber den Varianten ohne 

Liganden deutlich erhöht. Dieses Ergebnis stimmte gut mit den Hydrophobizitätsdaten der 

jeweiligen Varianten überein, denn auch hier führte die Bindung von 6-MPH4 an R261Q und 

Y417H zum Anstieg der hydrophoben Gruppen an der Proteinoberfläche und somit zu einer 

insgesamt weniger stabilen globalen Proteinkonformation. Interessant waren die DLS-

Ergebnisse für R261Q. Diese Variante zeigte bereits in Abwesenheit eines Liganden eine 

durch die Mutation verursachte, kompaktere Konformation als der Wildtyp (Kapitel 4.4.3) und 

keiner der vier Liganden konnte den t-state ähnlichen Zustand noch weiter verbessern. Die 

Bindung von BH4 und BH2 im aktiven Zentrum von Y417H induzierte eine leichte Abnahme 

des hydrodynamischen Radius, während Sepiapterin keinen nennenswerten Effekt im DLS-

Assay zeigte. 

 

4.5.3 Intrinsische Tryptophanfluoreszenzspektren zeigen lokale Effekte der Liganden  

Die bisherigen Ergebnisse zeigen, dass die Bindung der Liganden BH4, BH2, Sepiapterin und 

6-MPH4 globale, konformative Änderungen in den PAH-Varianten induzieren. Um lokale 

Veränderungen in der regulatorischen Domäne nach Ligandenbindung zu erkennen, eignet 

sich die Untersuchung der intrinsischen Tryptophanfluoreszenz. Für den PAH-Wildtyp konnte 

bereits gezeigt werden (Kapitel 4.3.8), dass die Bindung von BH4 und 6-MPH4 eine 

bathochrome Verschiebung des Fluoreszenzmaximums einschließlich Löschung des 

Fluoreszenzsignals verursacht. Sepiapterin und BH2 induzierten dagegen nur ein moderates 

Quenching und im Fall von Sepiapterin auch eine leichte hypsochrome Verschiebung des 

Fluoreszenzmaximums. Die Fluoreszenzspektren der Varianten R261Q und Y417H waren 

mit dem des Wildtyps vergleichbar (Kapitel 4.4.4), während R68S aufgrund der 

Präaktivierung der Variante, bereits in Abwesenheit eines Liganden eine starke bathochrome 

Verschiebung des Fluoreszenzmaximums aufzeigte. Daher ging es im nächsten Schritt um 

die Auswirkung der Ligandenbindung auf die Varianten.  

BH4 und BH2 zeigten eine moderate Löschung des Tryptophanfluoreszenzsignals von R68S 

sowie eine leichte hypsochrome Verschiebung des Maximums um 5,1 nm nach BH4-Bindung 
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(Abbildung 37). Eine stärkere Löschung des Fluoreszenzsignals trat durch Bindung von 

Sepiapterin und 6-MPH4 auf. Sepiapterin zeigte zudem eine hypsochrome Verschiebung des 

Peaks um 9,7 nm. Für die Bindung der Liganden an R261Q und Y417H konnte ein ähnliches 

solvatochromisches Verhalten von W120 beobachtet werden. Die Fluoreszenzmaxima 

zeigten eine bathochrome Verschiebung von 4,4 nm (R261Q) bzw. 3,7 nm (Y417H) nach 

BH4-Bindung, während BH2 zwar ein Quenching der Signale verursachte, allerdings ohne die 

Position der Fluoreszenzmaxima zu verändern. Sepiapterin führte zur hypsochromen 

Verschiebung von 2,6 nm für R261Q und 2,1 nm für Y417H und zeigte in beiden Fällen nur 

eine moderate Löschung der Fluoreszenzintensität. Die 6-MPH4-Bindung hatte in beiden 

Varianten den stärksten Effekt auf die lokale Umgebung von W120. Die sehr starke 

Reduktion der Quantenausbeute ging mit einer bathochromen Verschiebung des 

Fluoreszenzmaximums um 14,0 nm für R261Q und 13,6 nm für Y417H einher. Damit 

konnten die beiden Peakmaxima bei einer Emissionswellenlänge von 352,5 nm (R261Q) und 

352,8 nm (Y417H) gemessen werden und entsprachen der Wellenlänge, die normalerweise 

für freies Tryptophan in wässriger Lösung gemessen werden kann. Das deutete darauf hin, 

dass W120 durch 6-MPH4-Bindung vermehrt wässriger Umgebung ausgesetzt wurde, was 

durch partielle Entfaltung der regulatorischen Domänen von R261Q und Y417H erklärt 

werden kann. Dieser Effekt trat im Fall von R68S nicht so offensichtlich in Erscheinung, da 

bei dieser Variante bereits ohne Ligand davon ausgegangen werden muss, dass der N-

Terminus partiell entfaltet vorliegt und die Bindung von 6-MPH4 in diesem Zusammenhang 

keinen Unterschied macht.   

 

 

 

 

 

 

 

 

 

 

 

Abbildung 37. Intrinsische Tryptophanfluoreszenzemissionsspektren der Enzyme  

Die Spektren zeigen die PAH-Varianten R68S, R261Q und Y417H ohne Liganden (Kontrolle K, grau) und im Komplex mit 

43 µM BH4, BH2, Sepiapterin oder 200 µM 6-MPH4. Alle Spektren der Varianten wurden zur Berechnung des Peakmaximums 

an eine Gauss-Funktion angenähert, das des Wildtyps (WT, schwarzer Fit) an eine schiefe Normalverteilung (Rooney and Lee 

1986). Für das Spektrum des Wildtyps ohne gebundenen Liganden konnte ein Emissionsmaximum von 332,9 nm berechnet 

werden (gestrichelte Linie). Alle Emissionsspektren basieren jeweils auf drei unabhängigen Messungen bei 25 °C und die 

Standardabweichung ist für jeden Punkt als grauer Balken eingezeichnet.  

 

Zusammenfassend lässt sich sagen, dass für die beiden nicht präaktivierten Varianten 

R261Q und Y417H nur eine moderate Verschiebung der Fluoreszenzmaximums in den 

längerwelligen Bereich des elektromagnetischen Spektrums nach BH4-Bindung gemessen 
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werden konnte. Diese Verschiebung war nach Bindung von 6-MPH4 deutlich stärker 

ausgeprägt. Interessanterweise induzierte nicht nur Sepiapterin, sondern auch BH4 im Fall 

der strukturell präaktivierten Variante R68S eine hypsochrome Verschiebung des 

Fluoreszenzmaximums und mit Sepiapterin war diese Verschiebung in den kürzerwelligen 

Bereich des elektromagnetischen Spektrums für R68S sogar doppelt so stark wie für die 

beiden anderen nicht präaktivierten Varianten. Für die BH2-Komplexe konnten keine 

solvatochromischen Eigenschaften aufgezeichnet werden.  

 

4.5.4 Die Bindung von BH4 stabilisiert den nativen Grundzustand aller Varianten 

Abschließend sollte der Effekt aller Liganden auf Aktivierungsenergie und thermodynamische 

Parameter für den Übergang vom nativen, gefalteten Zustand in den entfalteten Zustand 

untersucht werden, um so die durch die Bindung induzierten lokalen und globalen 

Änderungen zu quantifizieren. Im Kapitel 4.4.5 wurde gezeigt, dass die Aktivierungsenergie 

von R261Q unter vergleichbaren Bedingungen höher war als die des Wildtyps, während die 

Werte der beiden anderen Varianten deutlich reduziert waren. Vor allem die Zugabe des 

natürlichen Kofaktors BH4 führte im Falle des Wildtyps zum Anstieg der Aktivierungsenergie 

(Kapitel 4.3.9). Daher sollte auch für die Varianten der Einfluss von BH4 und seinem 

oxidierten Analogon BH2 auf die Kinetik der Entfaltung analysiert werden. Erneut diente ANS 

als Fluoreszenzmarker für die zeitabhängige Entfaltung der drei Varianten bei fünf 

unterschiedlichen Temperaturen. Jede Entfaltungskurve konnte an eine Exponentialfunktion 

erster Ordnung angenähert und die Geschwindigkeitskonstante k für jede Temperatur daraus 

berechnet werden. Die Werte konnten abschließend in einem Arrhenius-Plot auf einer 

Geraden abgebildet und mit dem Wildtyp und der jeweiligen Variante ohne Ligand als 

Kontrolle verglichen werden (Abbildung 38).        

      

 

Abbildung 38. Arrhenius-Plots von PAH-Wildtyp und Varianten 

Die Abbildungen zeigen die Arrhenius-Plots des PAH-Wildtyps (WT, schwarz) und der Varianten R68S, R261Q und Y417H 

ohne Liganden (Kontrolle K, grau) und im Komplex mit 43 µM BH4 oder BH2. Aufgetragen wurden die aus den jeweiligen 

Kinetikmessungen berechneten Geschwindigkeitskonstanten k gegen den reziproken Wert der absoluten Temperatur in Kelvin 

für alle Enzyme. Die Messpunkte konnten jeweils durch eine lineare Regression angenähert werden.  

 

Durch Anwendung der Arrhenius-Gleichung (Kapitel 3.6.3) konnte aus der Steigung der 

jeweiligen Geraden die Aktivierungsenergie für den Übergang von Wildtyp und Varianten 

ohne Ligand und im Komplex mit BH4 oder BH2 aus dem nativen in den entfalteten Zustand 

berechnet werden (Abbildung 39).  
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Abbildung 39. Aktivierungsenergien von PAH-Wildtyp und Varianten 

Die Abbildung zeigt die Aktivierungsenergien für den Übergang des PAH-Wildtyps (WT, schwarz) und der Varianten R68S, 

R261Q und Y417H ohne Liganden (Kontrolle K, grau) und im Komplex mit 43 µM BH4 oder BH2 aus dem nativen in den 

entfalteten Zustand. 

 

Der natürliche Kofaktor BH4 stabilisierte die native Konformation des Wildtyps und der drei 

Varianten, indem er die Aktivierungsenergie für den Übergang vom nativen in den entfalteten 

Zustand erhöhte.  
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Tabelle 26. Berechnete Geschwindigkeitskonstanten und thermodynamische Parameter 

Die Geschwindigkeitskonstanten k für die Entfaltung der drei PAH-Varianten R68S, R261Q und Y417H ohne Ligand und im 

Komplex mit 43 µM BH4 oder BH2 wurden aus dem Fit jeder Kinetik mit einer Exponentialfunktion erster Ordnung berechnet. Die 

thermodynamischen Parameter der Gibbs-Energie ΔG#, der Reaktionsenthalpie ΔH# und der Reaktionsentropie ΔS# konnten 

unter Anwendung der Eyring Theorie des Übergangszustandes und der Gibbs-Helmholtz-Gleichung berechnet werden.    

 

Das oxidierte Kofaktoranalogon BH2 zeigte dagegen nur eine stabilisierende Wirkung auf den 

Wildtyp und auf R68S. Im Fall von R261Q und Y417H führte die BH2-Bindung sogar zur 

Abnahme der Aktivierungsenergie um ca. 20 %. Die Berechnung der thermodynamischen 

Parameter ∆G#, ΔH# und ∆S# zur Quantifizierung der zeitabhängigen Entfaltung der PAH-

Varianten im Komplex mit BH4 oder BH2 erfolgte nach der Eyring-Theorie des 

Übergangszustandes aus der statistischen Thermodynamik und durch Anwendung der 

Gibbs-Helmholtz-Gleichung (Kapitel 3.6.3). Tabelle 26 zeigt für die Varianten im Komplex mit 

einem Liganden eine Abnahme der Gibbs-Energie und der Reaktionsenthalpie, sowie einen 

Anstieg der Reaktionsentropie bei zunehmenden Temperaturen, wie es bereits für den 

Wildtyp beschrieben wurde. Die Analyse aller Daten konnte eine kinetische und 

thermodynamische Stabilisierung des PAH-Wildtyps und aller Varianten im Komplex mit BH4 

belegen, was erneut beweist, dass zur Stabilisierung der Proteine ein reduziertes 

Pyrimidopyrazin-Ringsystem in Kombination mit der 1,2-Dihydroxypropylseitenkette von 

Vorteil ist. 

 

 

4.6 Der Einfluss von vier neuen pharmakologischen Chaperonen auf den Wildtyp 

Die Untersuchung des Effektes von BH4, BH2, Sepiapterin und 6-MPH4 auf den PAH-Wildtyp 

und die drei PAH-Varianten in den voran gegangenen Kapiteln zeigte, dass stets der 

natürliche Kofaktor der PAH den größten stabilisierenden Effekt auf das PAH-Protein ausübt 

und BH4 inzwischen zu Recht als pharmakologisches Chaperon klassifiziert werden kann, 

das den durch Proteinfehlfaltung induzierten biochemischen Phänotyp korrigiert. Da die 

chemische Synthese von Sapropterindihydrochlorid, der synthetischen Form von BH4, noch 

sehr kostspielig ist und BH4 auch nicht bei allen PKU-Genotypen eine therapeutische 

Wirkung entfaltet, ging die Suche nach alternativen pharmakologischen Chaperonen zur 

Therapie der Hyperphenylalaninämie in den vergangenen Jahren weiter. Im Rahmen von 

zwei Forschungsprojekten zu diesem Thema wurden insgesamt vier vielversprechende 

Kandidaten identifiziert (Abbildung 40). Die Ansätze beider Forschergruppen waren dabei 

gegensätzlich. Die Arbeitsgruppe aus Norwegen testete zunächst in einem DSF-

Hochdurchsatz-Screen eine Bibliothek aus über 1.000 Liganden und identifizierte dabei zwei 

Kandidaten, die die temperaturabhängige Entfaltung des PAH-Wildtyps in vitro verzögerten 

und sich stabilisierend auf das Enzym auswirkten (Pey et al. 2008). Auch der Einsatz der 

beiden Substanzen in Zellkultur und im Mausmodell, lieferte vielversprechende Ergebnisse. 

Bei den beiden Substanzen handelt es sich um die chemischen Verbindungen 5,6-Dimethyl-

3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-on (Substanz 1)  

und um 3-Amino-2-benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-on (Substanz 2). 
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Substanz 1 setzt sich aus einem Thiophen-Grundgerüst mit zwei funktionellen 

Methylgruppen zusammen, wobei der Thiophenring mit einem Pyrimidinring anelliert ist, der 

einen methylierten Pyridinring als Seitenkette trägt. Substanz 2 basiert auf einem Isochinolin, 

einer bekannten Grundstruktur für unterschiedliche, natürlich vorkommende Isochinolin-

Alkaloide.  

Die Arbeitsgruppe aus Innsbruck (Santos-Sierra et al. 2012) wählte einen stärker 

strukturbezogenen Ansatz für ihre Suche nach potentiellen neuen pharmakologischen 

Chaperonen. In diesem Fall wurde die chemische Bibliothek des National Cancer Institute in 

den USA nach Liganden durchsucht, die aufgrund ihrer strukturellen Merkmale Ähnlichkeit 

mit BH4 aufzeigten und im besten Fall sogar ein ähnliches Interaktionsnetzwerk im aktiven 

Zentrum der PAH ausbilden würden. Dieser strukturbasierte virtuelle Screen einer 

Datenbank mit über 115.000 Substanzen lieferte insgesamt 84 Treffer, deren reversibles 

Bindungsverhalten an den murinen PAH-Wildtyp zunächst mittels 

Oberflächenplasmonenresonanzspektroskopie untersucht wurde. Daraus konnten sechs 

vielversprechende Kandidaten als hits identifiziert werden, die weiteren in vitro und in vivo 

Studien in Zellkultur und im Mausmodell unterzogen wurden. Schlussendlich zeigten die 

beiden Substanzen 5-Benzylhydantoin (Substanz 3) und 6-Amino-5-(benzylamino)-uracil 

(Substanz 4) die besten Effekte auf den murinen PAH-Wildtyp. 5-Benzylhydantoin basiert auf 

einem Hydantoin-Grundgerüst, das über einen kurzen CH2-Linker an einen Phenylrest 

gebunden ist. Die Grundstruktur von 6-Amino-5-(benzylamino)-uracil ist die Nukleinbase 

Uracil, die über eine sekundäre Aminogruppe mit einem Benzylrest verbunden ist.  

 

 

Abbildung 40. Strukturformeln von neuen pharmakologischen Chaperonen für die PAH 

(1) 5,6-Dimethyl-3-(4-methyl-2-pyridinyl)-2-thioxo-2,3-dihydrothieno[2,3-d]pyrimidin-4(1H)-on (Substanz 1) und (2) 3-Amino-2-

benzyl-7-nitro-4-(2-quinolyl)-1,2-dihydroisoquinolin-1-on (Substanz 2) waren positive Hits aus einem DSF-Screen am humanen 

PAH-Wildtyp (Pey et al. 2008). (3) 5-Benzylhydantoin (Substanz 3) und (4) 6-Amino-5-(benzylamino)-uracil (Substanz 4) sind 

potentielle pharmakologische Chaperone, die durch einen in silico Screen identifiziert wurden (Santos-Sierra et al. 2012). 

 

Der Effekt dieser vier neuen, vielversprechenden Substanzen sollte im Rahmen der 

Dissertation mit der Wirkung von BH4 auf den humanen Wildtyp verglichen werden, denn die 

Arbeitsgruppe aus Norwegen zeigte in ihrer Studie zwar die sehr guten Effekte der beiden 

Substanzen 1 und 2 auf die PAH, allerdings wurde im Rahmen der Publikation kein Vergleich 

mit BH4 durchgeführt. Dieser war in der Publikation aus Innsbruck zwar erfolgt, allerdings 

basierten alle Ergebnisse auf Daten, die am murinen PAH-Wildtyp bzw. an der murinen 

Variante V106A oder im Mausmodell erhoben wurden.  
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4.6.1 Drei der vier Liganden binden im aktiven Zentrum der PAH 

Vor Beginn der eigentlichen Experimente wurden die vier Substanzen virtuell in die 

Bindungstasche von BH4 gefittet, um deren Wechselwirkungen im aktiven Zentrum zu 

analysieren und mit denen von BH4 zu vergleichen. Das molekulare Modeling von 

Substanz 1 (Abbildung 41A und B) zeigte, dass die Orientierung des zentralen Thieno[2,3-

d]pyrimidin-Fragments im aktiven Zentrum der PAH mit der Ausrichtung des 

Pyrimidopyrazin-Grundgerüstes von BH4 identisch ist. Das aromatische Ringsystem des 

Liganden ist wie bei BH4 parallel zu F254 in der katalytischen Domäne angeordnet, wird 

durch die entsprechende π-π Wechselwirkung stabilisiert und somit an der richtigen Position 

fixiert. Die Thiocarbonylgruppe im Pyrimidinring bildet als Donorzentrum eine 

Wasserstoffbrückenbindung zur Backbone Carbonylgruppe von L249 aus, wie es bereits für 

das Stickstoffatom N8 im BH4-Grundgerüst beschrieben wurde (siehe Abbildung 41B). Die 

lipophile Untertasche in der PAH, die durch die Aminosäurereste Y325, W326, A322, L255 

und F254 definiert ist und im Fall von BH4 durch die Dihydroxypropylseitenkette belegt wird, 

ist bei Substanz 1 vollständig durch den Methylpyridinrest des Liganden ausgefüllt. Die für 

BH4 beschriebene Wechselwirkung des N3-Stickstoffs des Grundgerüstes mit der 

Carboxygruppe von E286 in der katalytischen Domäne über das eingelagerte 

Wassermolekül 1142, kann im Fall von Substanz 1 nicht ausgebildet werden, da die beiden 

hydrophoben Methylgruppen am Thiophengrundgerüst diese Wechselwirkung sterisch 

unterbinden. Daher wird das Wassermolekül 1142 durch Bindung von Substanz 1 im aktiven 

Zentrum mit hoher Wahrscheinlichkeit verdrängt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 41. Interaktionsstudien von Substanz 1  

(A) Netzwerk der PAH-Ligand Interaktion mit der katalytischen Domäne des Wildtyps als 2D-Modell. Vom Donorzentrum für eine 

Wasserstoffbrückenbindung zeigt ein grüner Pfeil auf den Bindungspartner L249, während rote Pfeile auf Akzeptorzentren 

gerichtet sind. Die gelben Bereiche beschreiben Regionen hydrophober Kontakte, während blaue Kreise jeweils die π-π-

Wechselwirkung zwischen den aromatischen Ringsystemen des Liganden und aromatischen Seitenketten in der katalytischen 

Domäne der PAH symbolisieren. (B) Die Abbildung zeigt die unterschiedlichen Wechselwirkungen von Substanz 1 in der 

Bindungstasche der PAH als 3D-Modell. Sauerstoffatome sind rot markiert, Stickstoffatome blau, Kohlenstoffatome grau und 

Schwefelatome gelb. Das eingelagerte Eisen (III) ist als gelbe Kugel dargestellt. Die kleinen roten Kugeln symbolisieren die 

eingelagerten Wassermoleküle. Die transluzierenden gelben Bereiche beschreiben die Umgebung mit hydrophoben Kontakten. 

Grüne und rote Pfeile markieren Wasserstoffbrückendonoren und -akzeptoren.  
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Dafür konnten hydrophobe Kontakte zwischen den beiden Methylgruppen des Liganden und 

den Aminosäureseitenketten von F254, Y266 und V254 in der katalytischen Domäne 

identifiziert werden. Eine weitere neue Wechselwirkung tritt zwischen der 

Thiocarbonylgruppe des Liganden und der Hydroxylgruppe von Ser251 auf. Die optimale 

Komplexierung des eingelagerten Eisenatoms durch drei Wassermoleküle, wie es durch 

Bindung von BH4 zu beobachten ist, kann allerdings nicht erfolgen. Grund dafür ist der 

sterische Platzanspruch der beiden lipophilen Methylgruppen am Boden der 

Bindungstasche, so dass die Carbonylgruppe an Position vier im Pyrimidinring sich nicht 

optimal unterhalb der eingelagerten Wassermoleküle anordnen kann. Daher können nur zwei 

von ursprünglich drei das Eisenatom komplexierenden Wassermolekülen durch die 

Carbonylgruppe des Liganden stabilisiert werden.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 42. Interaktionsstudien der Substanzen 3 und 4  

(A) Das Netzwerk der Interaktion von Substanz 3 mit der katalytischen Domäne des Wildtyps ist als 2D-Modell dargestellt. Vom 

Donorzentrum für eine Wasserstoffbrückenbindung zeigt ein grüner Pfeil auf den Bindungspartner, während rote Pfeile auf 

Akzeptorzentren gerichtet sind. Der gelbe Bereich beschreibt die Region hydrophober Kontakte. (B) Die Abbildung zeigt die 

unterschiedlichen Wechselwirkungen von Substanz 3 in der Bindungstasche der PAH als 3D-Modell. Sauerstoffatome sind rot 

markiert, Stickstoffatome blau, Kohlenstoffatome grau und Eisen (III) ist als gelbe Kugel dargestellt. Die kleinen roten Kugeln 

symbolisieren die eingelagerten Wassermoleküle. Der transluzierende gelbe Bereich zeigt die Umgebung mit hydrophoben 

Kontakten an. Grüne und rote Pfeile markieren Wasserstoffbrückendonoren und -akzeptoren. (C) 2D- und 3D-Modell (D) der 

Interaktion von Substanz 4 mit dem aktiven Zentrum der PAH. Der zusätzliche blaue Kreis symbolisiert die π-π-Wechselwirkung 

zwischen dem aromatischen Ringsystem des Liganden und dem Phenylring von F254.  
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Von Substanz 2 wurde ursprünglich angenommen, dass sie aufgrund des BH4-ähnlichen 

Grundgerüstes auch ein ähnliches Interaktionsnetzwerk im aktiven Zentrum der PAH 

ausbilden würde. Allerdings zeigte sich während des virtuellen Modellings, dass Substanz 2 

zu voluminös ist, um in der BH4-Bindungstasche zu binden.   

Die Substanzen 3 und 4 bilden ein ähnliches Interaktionsnetzwerk im aktiven Zentrum der 

PAH aus. Die Carbonylgruppe sowohl im Hydantoin-Ring (Abbildung 42 A und B) als auch 

im Uracil-Grundgerüst (Abbildung 42 C und D) dient wie bereits für BH4 beschrieben, als 

Wasserstoffbrückenakzeptor für die drei das Eisen komplexierenden Wassermoleküle. Diese 

Konformation erlaubt dem im Hydantoinring gegenüber liegenden Carbonylrest von 

Substanz 3, als Wasserstoffbrückenakzeptor für das sekundäre Backbone Amin von L249 zu 

dienen. Ähnlich wirkt die primäre Aminogruppe im Uracilgrundgerüst von Substanz 4 als 

Wasserstoffbrückendonor für den Backbone Carbonylrest von L249. Das sekundäre Amin 

zwischen den beiden Carbonylgruppen der Ringe von Substanzen 3 und 4 bindet über das 

eingelagerte Wassermolekül 1142 an E286, wie es auch bei BH4 möglich ist. Wie bei 

Substanz 1 bindet auch der Benzylrest der Substanzen 3 und 4 in der lipophilen 

Untertasche, die durch die Aminosäurerest Y325, W326, A322, L255 und F254 definiert wird. 

Zudem ist das Uracilgrundgerüst von Substanz 4 so angeordnet, dass es parallel zu F254 in 

der katalytischen Domäne liegt und durch die π-π Wechselwirkung in der BH4-

Bindungstasche arretiert wird.   

 

4.6.2 Bindungs- und Inhibierungskonstanten für drei der vier Liganden 

Die Interaktionsstudien (Kapitel 4.6.1) zeigten, dass von den vier in der Literatur 

beschriebenen Substanzen, nur drei tatsächlich in der BH4-Bindungstasche binden können, 

denn Substanz 2 ist zu voluminös, um ins aktive Zentrum der PAH gefittet zu werden. Die 

drei verbleibenden Liganden 1, 3 und 4 sind aber tatsächlich dazu in der Lage, ein ähnliches 

Bindungsnetzwerk ausbilden wie es bereits für BH4 beschrieben wurde. Die qualitative 

Bindung der vier Substanzen wurde mittels MST analysiert (Kapitel 4.3.3). Nach erfolgreicher 

Kopplung eines Fluoreszenzmarkers an die Lysinreste des PAH-Wildtyps, erfolgte die 

Aufzeichnung der Bindungskurve aus 16 seriellen Verdünnungen für die vier Liganden im 

Konzentrationsbereich von 0,0153-500 µM (Abbildung 43). Durch Plotten der Messdaten 

gegen den Logarithmus der Einzelkonzentrationen resultierte eine sigmoidale 

Bindungskurve, aus welcher die Dissoziationskonstante KD jeder Interaktion berechnet 

werden konnte (Wienken et al. 2010). Für Ligand 2 konnte mittels MST keine Bindung 

nachgewiesen werden und die Werte der  KDs der drei Liganden 1, 3 und 4 lagen alle 

deutlich über den Dissoziationskonstanten, die für BH4, BH2 und Sepiapterin gemessen 

wurden (Kapitel 4.3.3). Ligand 3 zeigte mit einer KD von 28,4 µM einen mit der 

Dissoziationskonstante von 6-MPH4 (25,86 µM) vergleichbaren Wert, während die KDs der 

Liganden 1 (99,4 µM) und 4 (83,5 µM) auf eine schwache Enzym-Ligand Interaktion 

hinwiesen. Alle bis jetzt mit MST gemessenen Liganden lassen sich in insgesamt drei 

Gruppen einteilen, die sich jeweils in ihrer Bindungsaffinität gegenüber dem PAH-Wildtyp 
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unterscheiden. Die erste Gruppe an Liganden mit hoher Bindungsaffinität gegenüber dem 

PAH-Wildtyp setzt sich aus BH4, BH2 und Sepiapterin zusammen. Eine mittlere 

Bindungsaffinität (Gruppe 2) zeigten die Liganden 6-MPH4 und Substanz 3, während die 

dritte Gruppe mit Substanz 1 und 4 eine sehr schwache Enzym-Ligand-Interaktion aufwies. 

 

 

 

Abbildung 43. MST-Daten des PAH Wildtyps im Komplex mit Substanzen 1-4 

Die Messpunkte aus sechzehn seriellen Verdünnungen der vier Liganden wurden jeweils gegen das gemessene und 

normalisierte Fluoreszenzsignal aufgetragen. Aus dem Fit der Daten konnte durch Anwendung des Massenwirkungsgesetzes 

die Dissoziationskonstante KD berechnet werden. Die Amplitude (Amp) zeigt den Unterschied der Messwerte zwischen 

gebundenem und ungebundenem Zustand an und sollte idealerweise stets größer als acht sein. Die Daten wurden als 

Duplikate gemessen und die Standardabweichung ist als blauer Balken angegeben. 

 

Wie es für BH4 bereits gezeigt wurde (Kapitel 4.2.2), geht der stabilisierende Effekt von 

pharmakologischen Chaperonen häufig mit einer Inhibition der Enzymaktivität einher. Daher 

sollten auch die inhibitorischen Eigenschaften der Liganden untersucht werden. Der 

Standard-Enzymaktivitätsassay (Kapitel 3.5.1.1) wurde pipettiert, die drei Liganden 1, 3 und 

4 jeweils als kompetitive Inhibitoren in ansteigender Konzentration von 0 bis 500 µM 

zugegeben und die Menge an gebildetem Tyrosin mittels HPLC bestimmt. Der Fit der Daten 

mit einer Exponentialfunktion erster Ordnung zeigte bereits eine Abnahme der PAH-Aktivität 

mit zunehmenden Konzentrationen der drei Liganden (Abbildung 44). Durch Auftragen der 

Messpunkte gegen den Logarithmus der Ligandkonzentration und einen exponentiellen Fit 

der Daten konnten die IC50-Werte berechnet werden (Kapitel 3.5.3), woraus wiederum die 

Berechnung der Werte für die inhibitorische Konstante Ki erfolgen konnte. Ligand 1 zeigte mit 

einem Ki-Wert von 4,23 µM den stärksten inhibierenden Einfluss auf den PAH-Wildtyp und 

das Ausmaß der Inhibierung war mit dem Effekt von Sepiapterin (6,37 µM) vergleichbar. 

Allerdings war die Inhibition durch Ligand 1 nur halb so stark wie der inhibierende Effekt, der 
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durch BH4-Bindung hervorgerufen wurde. Die Liganden 3 und 4 zeigten ein ähnliches 

Bindungsmuster im aktiven Zentrum der PAH (Kapitel 4.6.1). Dazu passten die sehr 

ähnlichen gemessenen Werte für die inhibitorischen Konstanten im zweistelligen 

micromolaren Bereich von 22,9 µM für Ligand 3 und 19,6 µM für Ligand 4. Von den acht 

bisher untersuchten Liganden zeigte nur 6-MPH4 keinen inhibierenden Effekt auf den PAH-

Wildtyp (Kapitel 4.3.4 und 4.3.5). 6-MPH4 ist der einzige Ligand ohne die für BH4 

beschriebenen Seitenketteninteraktionen, denn auch die drei neuen Liganden 1, 3 und 4 

verfügen jeweils über einen hydrophoben Rest, der in der durch die Aminosäurereste Y325, 

W326, A322, L255 und F254 definierten lipophile Untertasche im aktiven Zentrum der PAH 

binden kann. Diese Wechselwirkungen scheinen somit eine wichtige Voraussetzung für die 

Entfaltung der inhibitorischen Wirkung zu sein.   

 

 

Abbildung 44. Inhibierung der Enzymaktivität des Wildtyps durch Substanzen 1, 3 und 4 

Die Messpunkte aus elf seriellen Verdünnungen der drei Liganden im Konzentrationsbereich von 0-500 µM wurden jeweils 

gegen die PAH-Aktivität - gemessen als Bildung von nmol L-Tyr/min*mg Protein - aufgetragen und durch Anwendung einer 

einphasigen Exponentialfunktion gefittet. Alle Messpunkte wurden als Triplikate gemessen. Die Standardabweichung ist als 

grauer Fehlerbalken für jeden Messwert angegeben.  

 

4.6.3 Etablierung eines neuen Hochdurchsatz-DSF-Assays  

Der bereits beschriebene DSF-Assay (Kapitel 4.2.4) sollte angewendet werden, um die 

thermische Stabilität der vier neuen Substanzen zu untersuchen und sie mit der Wirkung von 

BH4 zu vergleichen. Aus der Literatur war bereits bekannt, dass die Liganden 1 und 2 die 

Umschlagspunkte um 7,2 °C bzw. 13,6 °C (Pey et al. 2008) erhöhen. Zu Substanzen 3 und 4 

existieren diesbezüglich keine Literaturdaten. Nach Auswertung der gemessenen DSF-Daten 

erfolgte die Berechnung der TM1- und TM2-Werte für die Entfaltung der regulatorischen und 

katalytischen Domänen der PAH. Tabelle 27 zeigt, dass Ligand 1 die regulatorischen 

Domänen im gleichen Ausmaß stabilisiert wie BH4, während der stabilisierende Effekt auf die 

katalytischen Domänen der PAH geringer ausfällt. Die Liganden 2, 3 und 4 zeigten keinen 

stabilisierenden Effekt auf den PAH-Wildtyp. Das Ergebnis des DSF-Assays war 

überraschend, da die Literaturdaten eine deutliche thermische Stabilisierung der PAH durch 

Bindung der Liganden 1 und 2 versprachen. 
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Tabelle 27. Berechnete Umschlagpunkte des Wildtyps im Komplex mit den Liganden 1-4 

Die Werte basieren auf drei unabhängigen Messungen der thermischen Denaturierung des Wildtyps unter Verwendung des 

Fluoreszenzmarkers ANS und wurden durch Boltzman fit der berechneten unfolded fraction (Pey et al. 2008) ermittelt. Der 

durch Bindung der jeweiligen Liganden induzierte Temperaturunterschied zwischen dem Wildtyp ohne und mit Ligand wurde für 

den ersten (ΔTM1) und zweiten (ΔTM1) Übergang ermittelt und in einer separaten Spalte dargestellt.  

 

Um die im Rahmen der Dissertation gemessenen Daten zu verifizieren, wurde daher ein 

zweiter unabhängiger DSF-Entfaltungsassay nach entsprechenden Literaturangaben 

(Niesen et al. 2007) an einem Gerät für real-Time-quantitative-PCR etabliert (Kapitel 3.6.2). 

Auch hier wird der temperaturabhängige Anstieg der Fluoreszenz aufgrund zunehmender 

Entfaltung des PAH-Wildtyps gemessen. Als Fluoreszenzmarker diente der Farbstoff 

SYPRO® Orange, der ein sehr gutes Signal-Rausch-Verhältnis aufweist und durch die hohe 

Anregungswellenlänge von 492 nm die Wahrscheinlichkeit verringert, dass die zu testende 

Liganden mit den optischen Eigenschaften des Farbstoffes interferieren, indem sie 

beispielsweise das Signal löschen. Der Vorteil an der Durchführung des DSF-Assays an 

einem Gerät für Real-Time-quantitative-PCR ist zudem, dass die Menge an einzusetzendem 

Protein vergleichsweise gering ist und die Methode auch als Screening nach neuen, 

stabilisierenden Liganden für die PAH im 96- oder 384-well-Format eingesetzt werden kann.  

 

 

 

 

 

 

 

 

 

Abbildung 45. DSF-Assay des PAH-Wildtyps im Komplex mit den Liganden 1-4 

Die ansteigenden Fluoreszenzkurven unter Verwendung des Fluoreszenzmarkers SYPRO
®
 Orange (Niesen et al. 2007), zeigen 

die temperaturabhängige Entfaltung des PAH-Wildtyps ohne (schwarze Kurve) und im Komplex mit den vier Liganden. Die 

Kurven wurden für die Auswertung in zwei Abschnitte eingeteilt; den Bereich unterhalb von 50 °C (Entfaltung der 

regulatorischen Domänen) und den Bereich zwischen 50 und 65 °C (Entfaltung der katalytischen Domänen). Alle Messdaten 

aus den jeweiligen Bereichen wurden normalisiert und durch Anwendung der Boltzmann-Funktion konnten die Umschlagpunkte 

der einzelnen sigmoidalen Kurven berechnet werden. Die Differenz der Umschlagpunkte für die Entfaltung der regulatorischen 

(ΔTM1) und katalytischen Domänen (ΔTM2) bezieht sich auf den Wildtyp ohne und mit gebundenem Liganden. Für Ligand 4 

konnte ΔTM1 nicht berechnet (n.b.) werden. Die gemittelten Werte basieren auf mindestens drei unabhängigen Messungen. Die 

Standardabweichung zwischen den einzelnen Messungen wird durch die grauen Fehlerbalken angezeigt. 
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Abbildung 45 zeigt das Ergebnis des DSF-Assays für den PAH-Wildtyp im Komplex mit den 

vier Liganden. Auch im neuen Assay ist die sequentielle Abfolge der Entfaltung von 

regulatorischen und katalytischen Domänen der PAH gut zu unterscheiden und die 

jeweiligen Umschlagpunkte können als TM1 und TM2 berechnet werden. Auch die mit dem 

neu etablierten Assay gemessenen Werte zeigten keinen stabilisierenden Effekt der 

Liganden 1 und 2 wie ursprünglich in der Literatur angegeben. Dafür stimmen die Ergebnisse 

gut mit den Daten aus Tabelle 27 überein, die mit einem anderen Fluoreszenzmarker (ANS) 

und an einem anderen Gerät erhoben wurden.  

 

4.6.4 Biophysikalische Charakterisierung der vier Liganden 

Die Rohdaten der thermischen Denaturierung mit ANS (Kapitel 4.6.3) waren die Grundlage 

für die Analyse der Hydrophobizität des Wildtyps im Komplex mit jeweils einem der vier 

Liganden. Interessanterweise führte die Bindung von Ligand 2 zur signifikanten Abnahme 

der Hydrophobizität (Abbildung 46A). Da die Analyse im Kapitel 4.6.1 ergab, dass die 

Bindung von Ligand 2 aufgrund der Größe nicht in der BH4-Bindungstasche erfolgen kann, 

muss die Bindung dieses Liganden an einer anderen Stelle im Enzym möglich sein. Die 

Bindung von Ligand 3 zeigte den gegenteiligen Effekt und induzierte eine signifikante 

Zunahme der Hydrophobizität um 25 %. Das deutet darauf hin, dass durch Bindung von 

Ligand 3 konformative Änderungen ausgelöst werden, die eine vermehrte Exposition 

hydrophober Gruppen an der Enzymoberfläche nach sich ziehen. Die Hydrophobizität des 

PAH-Wildtyps im Komplex mit Ligand 1 oder 4 zeigte keinen Unterschied zum Wildtyp ohne 

Ligand. Die Berechnung des durch dynamische Lichtstreuung ermittelten hydrodynamischen 

Radius des Wildtyps im Komplex mit den Liganden 1, 3 und 4 zeigte einen mit BH4 

vergleichbaren Effekt der Liganden 1 und 3 (Abbildung 46B). Auch sie überführen das 

Enzym durch ihre Bindung in eine kompaktere, t-state ähnliche Konformation. Ligand 4 hatte 

einen gegenteiligen Effekt auf den hydrodynamischen Radius und Ligand 2 konnte mit dieser 

Methode nicht analysiert werden, da die orange Farbe der Substanz die Messung 

beeinträchtigte.    

Um mögliche lokale strukturelle Änderungen in der regulatorischen Domäne der PAH zu 

erkennen, die durch Bindung der Liganden induziert werden, wurden Emissionsspektren der 

intrinsischen Tryptophanfluoreszenz aufgenommen (Abbildung 46C) und mit dem Effekt von 

BH4 verglichen. Ligand 1 zeigte ein ähnlich starkes Quenching der intrinsischen Fluoreszenz 

wie BH4, allerdings mit zwei Peakmaxima im analysierten Wellenlängenbereich zwischen 

300 und 400 nm. Bei den Liganden 2, 3 und 4 war die Löschung des Fluoreszenzsignals 

weniger stark ausgeprägt und keiner der drei Liganden zeigte eine auffällige Verschiebung 

des Peakmaximums in den länger- oder kürzerwelligen Bereich des elektromagnetischen 

Spektrums, was auf einen stärker lösemittelexponierten N-Terminus der PAH bzw. eine 

kompaktere Konformation hindeuten würde. Die Bindung der vier Liganden im aktiven 

Zentrum der PAH hatte somit keine direkte Auswirkung auf die Konformation der 

regulatorischen Domäne. Hierin unterscheiden sich die vier potentiellen pharmakologischen 

Chaperone von BH4 und den BH4-Derivaten BH2, Sepiapterin und 6-MPH4, die durch ihre 
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Bindung in der BH4-Bindungstasche zu deutlichen konformativen Veränderungen führten, die 

sich bis in die regulatorische Domäne hinein auswirkten (Kapitel 4.3.8).   

 

 

Abbildung 46. Biophysikalische Charakterisierung des Wildtyps mit Liganden 1-4 

Die Abbildungen zeigen die Messdaten des PAH-Wildtyps (WT) im Komplex mit je 43 µM der vier Liganden und BH4. Die 

Standardabweichung zwischen den Einzelwerten wird jeweils durch graue Fehlerbalken angezeigt. (A) Für die Messung der 

Hydrophobizität des Wildtyps ohne und mit gebundenen Liganden im nativen Zustand bei 25 °C diente ANS als 

Fluoreszenzmarker. Die Messwerte basieren auf mindestens neun Einzelwerten. Durch Varianzanalyse (Dunnett’s test) 

verglichen wurden alle Messdaten des Wildtyps ohne und mit gebundenem Liganden (***, p<0,001). (B) Im Boxplot aufgetragen 

sind die berechneten Mittelwerte für den hydrodynamischen Radius RH in Nanometer des PAH-Wildtyps ohne und mit Ligand. 

Die Daten basieren auf Duplikaten. (C) Die Emissionsspektren der intrinsischen Tryptophanfluoreszenz des PAH-Wildtyps ohne 

und mit Liganden sind jeweils farbkodiert abgebildet. Die Spektren des Wildtyps im Komplex mit den Liganden 2, 3 und 4 

wurden zur Berechnung des Peakmaximums durch eine schiefe Normalverteilung (Rooney and Lee 1986) angenähert. Das 

Peakmaximum des Wildtyps ohne gebundenen Liganden (332,9 nm) wird durch die grau gestrichelte Linie dargestellt. Alle 

Emissionsspektren basieren auf drei unabhängigen Messungen bei 25 °C.  

 

Zusammenfassend zeigen die Daten einen deutlich schwächeren Effekt der vier Liganden 

auf den PAH-Wildtyp als erwartet. Die besten Ergebnisse resultierten für Ligand 1. Er konnte 

die temperaturinduzierte Entfaltung des Wildtyps trotz geringerer Bindungsaffinität in 

ähnlichem Ausmaß stabilisieren wie BH4 und zeigte die stärksten inhibitorischen 

Eigenschaften. Auch der Einfluss auf Hydrophobizität, hydrodynamischen Radius und 

Tryptophanfluoreszenz war mit BH4 vergleichbar. Ligand 2 kann aufgrund seiner Größe nicht 

in der BH4-Bindungstasche binden und die in der Literatur beschriebene stabilisierende 

Wirkung gegenüber Hitzestress konnte trotz zweier unabhängiger Assays nicht bestätigen 

werden. Die Liganden 3 und 4 bilden ein sehr ähnliches Interaktionsnetzwerk im aktiven 

Zentrum der PAH aus und waren auch hinsichtlich ihrer inhibierenden Eigenschaften 

vergleichbar. Ihre Bindung induzierte jedoch keine Stabilisierung des Wildtyps gegenüber 

Hitzestress und auch der Einfluss auf Hydrophobizität und hydrodynamischen Radius war 

nicht mit dem von BH4 vergleichbar. Die Daten belegen einmal mehr, dass BH4 weiterhin das 

effizienteste stabilisierende Molekül für die Therapie der Hyperphenylalaninämien bleibt.    
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4.7 Einfluss von 4,5-Diaminopyrimidin auf den PAH-Wildtyp  

Basierend auf den bisherigen Ergebnissen wurde auch im Rahmen der Promotionsarbeit 

nach einer chemischen Verbindung gesucht, die als Ausgangssubstanz für weitere 

synthetische Modifikationen dienen könnte, um gezielt ein neues pharmakologisches 

Chaperon für die PAH zu designen. Die Anforderungen an dieses Molekül waren, dass es im 

aktiven Zentrum der PAH ein ähnliches Interaktionsnetzwerk ausbilden kann wie BH4, um 

eine vergleichbare stabilisierende Wirkung auszuüben. Zudem sollte es eine inhibierende 

Wirkung auf die Enzymaktivität zeigen, kostengünstig zu erwerben und über einen längeren 

Zeitraum in wässriger Lösung stabil sein. Bei 4,5-Diaminopyrimidin handelt es sich um ein 

Biomolekül, das diesen Anforderungen gerecht werden könnte. Derivate von 

Diaminopyrimidinen werden schon heute als pharmakologische Wirkstoffe eingesetzt, 

wodurch auch ihre biologische Verträglichkeit bereits umfassend belegt ist. Dies sind gute 

Voraussetzungen um sie auch für die Behandlung der Phenylketonurie in Betracht zu ziehen. 

Das Grundgerüst des Moleküls ist ein sechsgliedriger, heterocyclischer, aromatischer 

Pyrimidinring mit zwei Stickstoffatomen. Der virtuelle Fit von 4,5-Diaminopyrimidin in das 

aktive Zentrum der PAH zeigte, dass das Molekül dazu in der Lage ist die grundlegenden für 

BH4 beschriebenen Wechselwirkungen auszubilden (Abbildung 47A und B). Zwar konnte 

keine Komplexierung der drei eingelagerten Wassermoleküle in der Region des Eisens 

nachgewiesen werden, dafür erfolgte die Ausbildung eines Wasserstoffbrückennetzwerkes in 

der Umgebung des Wassers 1142. Das aromatische Ringsystem von 4,5-Diaminopyrimidin 

war wie bei BH4 parallel zu F254 in der katalytischen Domäne angeordnet, wurde durch die 

entsprechende π-π Wechselwirkung stabilisiert und somit an der richtigen Position in der 

BH4-Bindungstasche fixiert. Auch die Wechselwirkung mit den Aminosäureresten E286, L249 

und G247 in der katalytischen Domäne war mit 4,5-Diaminopyrimidin als Ligand möglich.  

 

 

Abbildung 47. Interaktionsstudien von 4,5-Diaminopyrimidin  

(A) Das Netzwerk der PAH-Ligand Interaktion ist als 2D-Modell dargestellt. Von Donorzentren für Wasserstoffbrückenbindungen 

zeigen grüne Pfeile auf die Bindungspartner G247 und das eingelagerte Wassermolekül 1142, während ein roter Pfeil auf das 

Akzeptorzentrum einer Wasserstoffbrückenbindung gerichtet ist. Der blaue Kreis symbolisiert die π-π-Wechselwirkung 

zwischen dem aromatischen Ringsystem des Liganden und F254 in der katalytischen Domäne der PAH. (B) Das 3D-Modell 

zeigt die unterschiedlichen Wechselwirkungen von 4,5-Diaminopyrimidin in der Bindungstasche der PAH. Stickstoffatome sind 

blau markiert und Kohlenstoffatome grau. Das eingelagerte Eisen (III) ist als gelbe Kugel dargestellt. Die kleinen roten Kugeln 

symbolisieren die eingelagerten Wassermoleküle. Grüne und rote Pfeile markieren Wasserstoffbrückendonoren und -

akzeptoren.  

https://de.wikipedia.org/wiki/Heterocyclen
https://de.wikipedia.org/wiki/Aromaten
https://de.wikipedia.org/wiki/Stickstoff
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4.7.1 Für 4,5-Diaminopyrimidin können Bindungs- und Inhibierungskonstanten gemessen 

werden 

Die Bindung von 4,5-Diaminopyrimidin im aktiven Zentrum der PAH konnte mittels MST-

Messungen bestätigt werden (Kapitel 4.3.3). Nach erfolgreichem Labeling der Lysinreste des 

PAH-Wildtyps durch kovalente Kopplung eines Fluoreszenzmarkers, erfolgte die 

Aufzeichnung der Bindungskurve aus 16 seriellen Verdünnungen von 4,5-Diaminopyrimidin 

im Komplex mit dem Wildtyp (Abbildung 48A) in einem Konzentrationsbereich von 0,0153-

500 µM. Die gemessene Amplitude der Bindungskurve zwischen gebundenem und 

ungebundenem Zustand war mit einem Wert von 10,3 ausreichend hoch, sodass die 

Berechnung der Dissoziationskonstante durch Plotten der Messdaten gegen den 

Logarithmus der Einzelkonzentration aus der resultierenden sigmoidalen Bindungskurve 

erfolgen konnte (Wienken et al. 2010). Die berechnete KD von 87,2 µM zeigte eine moderate 

Bindungsaffinität von 4,5-Diaminopyrimidin, die mit den Affinitäten von Ligand 1 (99,4 µM) 

und 4 (83,5 µM) vergleichbar war (Kapitel 4.6.2).   

 

 

Abbildung 48. MST-Daten und Inhibierungsassay des Wildtyps mit 4,5-Diaminopyrimidin 

(A) Die Abbildung zeigt die sigmoidale Bindungskurve der MST-Messung aus sechzehn seriellen Verdünnungen des Liganden, 

aufgetragen gegen das gemessene und normalisierte Fluoreszenzsignal. Aus dem Fit der Daten konnte durch Anwendung des 

Massenwirkungsgesetzes die Dissoziationskonstante KD berechnet werden. Die Daten basieren auf drei unabhängigen 

Messungen und die Standardabweichung ist als blauer Fehlerbalken für jeden Messwert angegeben. (B) Die Abbildung zeigt 

die Inhibierung des PAH-Wildtyps durch ansteigende Konzentrationen an 4,5-Diaminopyrimidin. Die Messpunkte aus elf 

seriellen Verdünnungen des Liganden im Konzentrationsbereich von 0-500 µM wurden jeweils gegen die PAH-Aktivität - 

gemessen als Bildung von nmol L-Tyr/min*mg Protein – aufgetragen. Die Berechnung des IC50-Wertes erfolgte durch Auftragen 

der Messpunkte gegen den Logarithmus der Ligandkonzentration und einen exponentiellen Fit der Daten, woraus unter 

Anwendung der Cheng-Prusoff Gleichung (Kapitel 3.5.3) die inhibitorische Konstante Ki berechnet werden konnte. Alle 

Messpunkte wurden als Triplikate gemessen. Die Standardabweichung ist als grauer Fehlerbalken für jeden Messwert 

abgebildet.  

 

Ein Vergleich der Struktur von 4,5-Diaminopyrimidin mit BH4 zeigt, dass die Anordnung der 

vier Stickstoffatome mit der Position der vier Stickstoffatome im Pyrimidopyrazingrundgerüst 

von BH4 vergleichbar ist. Das ermöglicht die Ausbildung eines ähnlichen 

Interaktionsnetzwerkes im aktiven Zentrum der PAH. Aufgrund der fehlenden Seitenkette 

von 4,5-Diaminopyrimidin ist allerdings keine Wechselwirkung mit der lipophilen Untertasche 

möglich, die durch die Aminosäurereste Y325, W326, A322, und L255 gebildet wird. Diese 

fehlen auch im synthetischen Kofaktoranalogon 6-MPH4. Interessanterweise übt 4,5-
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Diaminopyrimidin trotz fehlender Seitenketteninteraktionen einen inhibierenden Effekt auf 

den PAH-Wildtyp aus (Abbildung 48B) und die berechnete Ki liegt mit 26,93 µM sogar im 

Bereich der inhibitorischen Konzentrationen der Liganden 3 und 4. 

 

4.7.2 Biophysikalische Charakterisierung von 4,5-Diaminopyrimidin 

Die temperaturabhängige Entfaltung des PAH-Wildtyps ohne und mit 4,5-Diaminopyrimidin 

zeigte weder einen signifikanten Unterschied im Kurvenverlauf (Abbildung 49A) noch in den 

Umschlagstemperaturen ΔTM1 (-0,45 °C) und ΔTM2 (-0,55 °C) im Vergleich zum Wildtyp. Aus 

den Rohdaten der thermischen Denaturierung bei 25 °C erfolgte die Analyse der 

Hydrophobizität des Wildtyps ohne Ligand und im Komplex mit 4,5-Diaminopyrimidin 

(Abbildung 49B), wobei sich die Werte kaum unterschieden und auch mit dem Wert nach 

BH4-Bindung vergleichbar waren. Einen starken Einfluss hatte die Bindung von 4,5-

Diaminopyrimidin dagegen auf den hydrodynamischen Radius. Dieser war deutlich kleiner 

als der des Wildtyps ohne Ligand (Abbildung 49C) was darauf hindeutet, dass die Bindung 

des Liganden den Wildtyp in eine kompaktere t-state-ähnliche Konformation überführt. Der 

Effekt von 4,5-Diaminopyrimidin war dabei sogar stärker ausgeprägt als nach BH4-Bindung. 

Die Untersuchung der intrinsischen Tryptophanfluoreszenz erfolgte, um lokale Änderungen 

in der regulatorischen Domäne nach Bindung des Liganden zu identifizieren. Das 

Fluoreszenzemissionsspektrum (Abbildung 49D) zeigte jedoch kaum Unterschiede zum 

Spektrum des Wildtyps ohne Liganden auf, was darauf hindeutet, dass die Bindung von 4,5-

Diaminopyrimidin kaum Einfluss auf den N-terminalen Bereich des PAH-Wildtyp-Enzyms hat.    

 

Abbildung 49. Biophysikalische Charakterisierung des Wildtyps mit 4,5-Diaminopyrimidin 

(A) Die ansteigenden ANS-Fluoreszenzkurven zeigen die temperaturabhängige Entfaltung des PAH-Wildtyps ohne Ligand und 

im Komplex mit 43 µM 4,5-Diaminopyrimidin (D). Die Kurve des Wildtyps ist gemittelt aus den Rohdaten von elf 

Einzelmessungen und die Entfaltungskurve im Komplex mit dem Liganden basiert auf vier unabhängigen Einzelmessungen. Die 

Standardabweichung zwischen den einzelnen Messungen wird in den Abbildungen A-D jeweils durch die grauen Fehlerbalken 

angezeigt. (B) Die Abbildung zeigt die Hydrophobizität des Wildtyps ohne und mit gebundenen Liganden bei 25 °C mit ANS als 

Fluoreszenzmarker. Die Messwerte basieren auf mindestens neun Einzelwerten. (C) Im Boxplot aufgetragen sind die 

berechneten Mittelwerte für den hydrodynamischen Radius RH in Nanometer des PAH-Wildtyps ohne und mit Liganden. Die 

Daten basieren auf Duplikaten. (D) Die Emissionsspektren der intrinsischen Tryptophanfluoreszenz des PAH-Wildtyps ohne und 

mit Liganden sind jeweils farbkodiert abgebildet. Die Spektren des Wildtyps ohne Ligand und im Komplex mit BH4 wurden zur 

Berechnung des Peakmaximums durch eine schiefe Normalverteilung (Rooney and Lee 1986) angenähert, während das 

Peakmaximum des Wildtyps im Komplex mit 4,5-Diaminopyrimidin durch Fit einer Gaußfunktion berechnet wurde. Das 

Peakmaximum des PAH-Wildtyps ohne gebundenen Liganden lag bei 332,9 (gestrichelte Linie). Alle Emissionsspektren 

basieren auf drei unabhängigen Messungen bei 25 °C.  
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Zusammenfassend lässt sich sagen, dass die Bindung von 4,5-Diaminopyrimidin in der BH4-

Bindungstasche wichtige Wechselwirkungen mit den Aminosäureresten im aktiven Zentrum 

der PAH eingeht, die auch für BH4 beschrieben wurden. 4,5-Diaminopyrimidin zeigte eine 

moderate Bindungsaffinität, die im Bereich der beiden in der Literatur bereits als 

pharmakologische Chaperone vorgeschlagenen Liganden 1 und 4 liegt. Trotz fehlender 

Seitenkette war das Molekül dazu in der Lage einen inhibierenden Effekt auf den Wildtyp 

auszuüben. Der stabilisierende Einfluss von 4,5-Diaminopyrimidin auf die thermische 

Denaturierung des Wildtyps oder die Konformation der regulatorischen Domäne der PAH 

war im Vergleich zu BH4 gering, jedoch induzierte die Bindung des Liganden globale, 

konformative Änderungen die den hydrodynamischen Radius des Wildtyps deutlich 

verkleinerten und das Enzym dadurch in eine kompaktere Konformation überführten. 4,5-

Diaminopyrimidin zeigte somit vielversprechende Ansätze, die durchaus dafür sprechen 

würden das Molekül als Ausgangsstruktur für weitere synthetische Modifikationen zu 

verwenden, um daraus neue pharmakologische Chaperone für die PAH abzuleiten.        

 

 

4.8 Analyse des Effekts aller neun Liganden auf Expression und Aktivität des PAH-

Wildtyps und der Variante I65T in Zellkultur  

Die bereits diskutierten Daten bezogen sich auf Ergebnisse die an rekombinant gereinigten 

Enzymen erhoben wurden. In einem weiteren Schritt sollte der Einfluss aller neun bisher 

beschriebenen Liganden auf Proteinrestmenge und Enzymaktivität des PAH-Wildtyps in 

Zellkultur analysiert und mit dem Effekt von BH4, beziehungsweise der BH4-Vorstufe 

Sepiapterin, verglichen werden. Der Vergleich mit Sepiapterin ist im eukaryoten System 

besonders wichtig, denn BH4 wird, sobald es von anderen Zellen als Hepatozyten 

aufgenommen wird, umgehend zu BH2 oxidiert, während Sepiapterin zu BH4 reduziert wird 

(Sawabe et al. 2004). Neben dem PAH-Wildtyp sollte auch der Einfluss der Liganden auf die 

PAH-Variante I65T untersucht werden, die einen Aminosäureaustausch in der 

regulatorischen Domäne der PAH aufweist. I65T zeigte in vorangegangenen Experimenten 

eine besonders niedrige Restaktivität und eine deutlich reduzierte Proteinstabilität und ist 

daher ein guter Kandidat um zu analysieren, welche Liganden einen positiven Effekt auf 

beide Parameter zeigen.  

Wildtyp und Variante I65T wurden transient in COS-7 Zellen exprimiert (Kapitel 3.4) und mit 

BH4, BH2, Sepiapterin, 6-MPH4, 4,5-Diaminopyrimidin sowie den Liganden 1-4 über 48 h 

inkubiert. Nach Zellernte und Zellaufschluss erfolgte die Vorbereitung der Aliquots für die 

Gelanalyse zur Bestimmung der Proteinrestmenge und für den Aktivitätsassay. Die 

Expression des Wildtyps mit den neun Liganden in Zellkultur zeigte nach Quantifizierung der 

Daten keinen großen Unterschied bezüglich der Proteinrestmenge (Abbildung 50). Für die 

PAH-Variante I65T zeigte sich ein völlig anderes Bild mit deutlichen Intensitätsunterschieden 

der Expressionsbanden für die einzelnen Proben. Während Sepiapterin den stärksten 

Einfluss aller Liganden in Zellkultur ausübte und zur signifikanten Zunahme der 
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Proteinrestmenge führte, war die Wirkung von BH4, BH2 und 6-MPH4 im Vergleich zu 

Sepiapterin etwas schwächer, dennoch konnte eine Zunahme der I65T-Proteinrestmenge 

nachgewiesen werden. Auch die drei neuen Liganden 1, 3, 4 und sogar 4,5-

Diaminopyrimidin konnten die Variante I65T durch ihre Bindung stabilisieren und die Menge 

an nachweisbarem Protein sogar signifikant erhöhen. Die geringste PAH-Proteinrestmenge 

zeigten die Proben ohne Ligand und im Komplex mit Ligand 2.  

 

Abbildung 50. Analyse der Restproteinmenge nach Expression in COS-7 Zellen 

Die mit Wildtyp (WT) oder I65T transient transfizierten COS-7 Zellen wurden mit jeweils 43 µM der Liganden BH4, BH2, 

Sepiapterin (SP), 6-MPH4, Liganden 1-4 oder 4,5-Diaminopyrimidin (D) für 48 h inkubiert und anschließend lysiert. 25 µg Lysat 

wurden pro Geltasche aufgetragen und die transient exprimierten PAH durch Verwendung eines entsprechenden monoklonalen 

Antikörpers gegen PAH detektiert. Der gleichzeitige Nachweis von GAPDH diente als Ladungskontrolle. Das linke 

Balkendiagramm zeigt die Immunoquantifizierung des exprimierten PAH-Wildtyps, das rechte Balkendiagramm die Variante 

I65T. Die Daten wurden einer Varianzanalyse unterzogen (Dunnett’s test), bei der alle Werte des Wildtyps bzw. der Variante mit 

gebundenem Liganden mit der jeweiligen Kontrolle ohne Ligand verglichen wurden (*, p<0,05; **, p<0,01; ***, p<0,001). Die 

Standardabweichung ist für jede Bedingung als grauer Balken angegeben.  

 

Die Zellkulturlysate die zur Immunoquantifizierung eingesetzt wurden (Abbildung 50), dienten 

auch als Proben für den Enzymaktivitätsassay. Die Auswertung der Daten zeigte, dass die 

Bindung von Sepiapterin einen Anstieg der Enzymaktivität des Wildtyps induzierte, während 

die Bindung von Ligand 2 zur signifikanten Abnahme der Aktivität führte (Abbildung 51A). 

Alle anderen Liganden zeigten, passend zur vorhergehenden Blotanalyse, kaum Einfluss auf 

die Aktivität des Wildtyps. Die Aktivität der Variante I65T ohne Ligand war mit 8 % des 

Wildtyps deutlich reduziert (Abbildung 51B). Die Bindung von Sepiapterin führte zum 

signifikanten Anstieg der Enzymaktivität der Variante, sogar über den wichtigen 

Schwellenwert von 15 % hinaus. Auch die Liganden BH2, 1, 3, 4 und 4,5-Diaminopyrimidin 

zeigten einen positiven Effekt auf die Restaktivität der Variante, während 6-MPH4 und 

Ligand 2 keinen Einfluss auf die Enzymaktivität hatten. 

Die Zellkulturdaten machten deutlich, dass die metabolische BH4-Vorstufe Sepiapterin stets 

als interner Standard mitgeführt werden sollte wenn es darum geht, neue potentielle 

pharmakologische Chaperone auf ihre stabilisierende Wirkung in Zellkultur zu testen. Drei 



 
 4 ERGEBNISSE 

 

 
 111 
 

der vier in der Literatur als potentielle pharmakologische Chaperone für die PAH 

vorgeschlagenen Liganden (1,3 und 4) zeigten einen stabilisierenden Effekt auf die Variante 

I65T und konnten gleichzeitig deren Enzymrestaktivität erhöhen. Allerdings blieb ihre 

Wirkung weit hinter der von Sepiapterin zurück, vor allem in Bezug auf die Enzymfunktion. 

Erfreulich war, dass auch das im Rahmen der Promotionsarbeit als Ausgangssubstanz für 

weitere synthetische Modifikationen vorgeschlagene 4,5-Diaminopyrimidin sowohl die 

Proteinrestmenge als auch die Aktivität erhöhen konnte.       

 

 

Abbildung 51. Analyse der PAH-Enzymrestaktivität nach Expression in COS-7 Zellen 

Die mit Wildtyp (WT) oder I65T transient transfizierten COS-7 Zellen wurden mit jeweils 43 µM der Liganden BH4, Sepiapterin 

(SP), BH2, 6-MPH4, Liganden 1-4 oder 4,5-Diaminopyrimidin (D) für 48 h inkubiert und anschließend lysiert. 20 µl Lysat wurden 

vor Durchführung des Aktivitätsassays mit 1 mM L-Phenylalanin für fünf Minuten pre-inkubiert und der Assay durch Zugabe von 

75 µM BH4 gestartet. Nach 60 Minuten Laufzeit wurde die gebildete Menge an L-Tyrosin umgehend analysiert und das Ergebnis 

als Balkendiagramme für den PAH-Wildtyp (A) und die Variante I65T (B) dargestellt. Die Daten wurden einer Varianzanalyse 

unterzogen (Dunnett’s test), bei der alle Werte des Wildtyps bzw. der Variante mit gebundenem Liganden mit der jeweiligen 

Kontrolle ohne Ligand verglichen wurden (*, p<0,05; ***, p<0,001). Die Standardabweichung ist für jede Bedingung als grauer 

Balken eingezeichnet. 

 

 

4.9 Hochdurchsatz-Screen zur Identifikation neuer pharmakologischer Chaperone  

Seit 2014 bearbeitet unsere Arbeitsgruppe ein durch die Bayerische Forschungsstiftung 

finanziertes Projekt zur Identifikation neuer pharmakologischer Chaperone zur Therapie der 

Proteinfaltungserkrankungen Phenylketonurie und Medium-Chain Acyl-CoA Dehydrogenase-

Mangel (MCADM). Auch der MCADM wird wie die PKU im Rahmen des erweiterten 

Neugeborenenscreenings erfasst, das bei allen Neugeborenen am 3. Lebenstag 

durchgeführt wird. Am konkreten Beispiel der beiden Zielproteine PAH und MCAD sollen im 

Rahmen des Antrags spezifische, medikamentöse Behandlungsstrategien zur Korrektur der 

Proteinfehlfaltung mittels pharmakologischer Chaperone entwickelt werden, wobei die 

molekulare Grundlage der Erkrankung auf Proteinebene gezielt adressiert wird.  

Das Thema des Antrags fügte sich ideal in die bisherige Fragestellung der Promotionsarbeit 

ein und daher sollte die Promotion durch Bearbeitung einzelner Arbeitspakete des Antrags 

vervollständigt werden. Die bisher beschriebenen Daten zeigten vielversprechende Ansätze 
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für die als pharmakologische Chaperone für die PAH in der Literatur vorgeschlagenen 

Liganden. Es zeigte sich jedoch auch, dass keiner der bisher untersuchten Liganden das 

Wirksamkeitsniveau von BH4 erreichte und damit der zugelassene Wirkstoff 

Sapropterindihydrochlorid weiterhin den stärksten therapeutischen Effekt im Sinne eines 

pharmakologischen Chaperones für die PKU aufweist. Es besteht also nach wie vor 

Forschungsbedarf auf dem Gebiet der PKU, vor allem, da Patienten mit homozygotem 

Genotyp für die PAH-Mutationen R408W bzw. IVS10-11G>A allein mehr als 25 % der PKU-

Patienten im Bereich Europa und Mittlerer Osten abdecken (Danecka et al. 2015) und die 

betroffenen Patienten nicht von einer pharmakologischen Therapie mit BH4 profitieren. Für 

dieses große Patientenkollektiv steht also noch kein pharmakologischer Therapieansatz zur 

Verfügung. Eine im Rahmen dieses Projektes identifizierte Wirksubstanz würde daher nicht 

in Konkurrenz zum bereits zugelassenen Medikament stehen, denn Träger dieser 

Mutationen werden derzeit ausschließlich diätetisch behandelt. Im Falle der Identifikation 

einer wirksamen Substanz für diese bisher schwer beeinflussbaren Genotypen, wäre der von 

den Zulassungsbehörden geforderte Nachweis des Nutzens für den Patienten 

erfolgversprechend, da die neue Substanz keine Vorteile gegenüber dem in diesen Fällen 

nichtwirksamen BH4, sondern nur im Vergleich zur Diät aufweisen müsste. Wegen der hohen 

Risiken einer lebenslangen streng phenylalaninarmen Diät, der hohen damit einhergehenden 

Belastungen und der daraus folgenden mangelhaften Adhärenz mit Auftreten neurologischer 

Symptome, wären die Erfolgsaussichten für die Zulassung daher sehr gut.  

Aus diesem Grund hat sich unsere Arbeitsgruppe dazu entschlossen, einen weiteren breit 

angelegten Screen zur Identifikation neuer Leitsubstanzen für die PKU aufzusetzen, der 

durch die Bayerische Forschungsstiftung gefördert wurde. Das Vorhaben stellt gegenüber 

den bisherigen Ansätzen eine deutliche technologische und methodische Fortentwicklung 

dar, indem das Studiendesign auf einem methodisch breiten Ansatz mit Analyse vieler 

Parameter, der Durchführung des primären Screens sowohl am gereinigten Protein als auch 

in kultivierten Zellen, sowie der Testung an varianten PAH-Proteinen aufbaut. Die 

Kombination aller hier genannten Punkte führt zu einer hohe Validität der identifizierten hit 

compounds. Darüber hinaus wird mit der Analyse von bis zu sechs verschiedenen 

Zielproteinen das Spektrum der potentiell von der Therapie profitierenden Patienten in Bezug 

auf den zu Grunde liegenden Genotyp sehr breit gesteckt. 

Zu Beginn sollte eine Datenbank mit über 8,8 Millionen Substanzen virtuell nach Liganden 

durchsucht werden, die aufgrund ihrer strukturellen Voraussetzungen an das PAH-Protein 

binden. Der Einfluss der daraus resultierenden Kandidatensubstanzen auf die thermische 

Stabilität von Wildtyp- und varianten PAH-Proteinen sollte im Rahmen der Dissertation 

analysiert werden und die Quantifizierung des Effektes durch Berechnung der 

Umschlagspunkte erfolgen, die eine Aussage zur thermischen Stabilität des Proteins in 

Abwesenheit und Anwesenheit der Liganden erlaubt. Nach Abschluss dieses primären 

Screens sollten hit compounds für die weiteren Arbeitsschritte ausgewählt werden, die eine 

Stabilisierung eines der Zielproteine um mindesten 2 °C erreichen konnten. Die 

Bindungsaffinität der identifizierten hit compounds sollte in einem anschließenden Schritt 

mittels MST bestimmt werden. In Kombination mit den parallel durch meine Kollegin Anna 
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Waldhuber durchgeführten Experimenten in Zellkultur (Zell-Screen) sollte es gelingen final 

einzelne, erfolgversprechende Kandidaten als Leitsubstanzen für die PAH zu identifizieren.  

 

4.9.1 Auswahl von geeigneten PAH-Mutationen für den Screen  

Zur Auswahl der Zielproteine standen Daten zur Verfügung, die bereits in unserer 

Arbeitsgruppe erhoben worden waren. Auf dieser Basis konnten die PAH-Varianten I65T, 

R261Q, R408W und Y414C als geeignete Zielproteine identifiziert werden. Die Mutation I65T 

zeigt die dritthäufigste Allelfrequenz und ist die häufigste BH4-responsive Mutation weltweit. 

Sie führt zur Ausprägung eines milden klinischen Phänotyps. R261Q zeigt die vierthäufigste 

Allelfrequenz weltweit und ist je nach Mutation in trans nicht konsistent mit BH4-Responsivität 

assoziiert. Daher variieren die Phänotypen abhängig von der Allelkombination stark 

zwischen milden Formen und schwerer Ausprägung. Die häufigste Mutation weltweit ist 

R408W, die homozygot ausschließlich zur Ausprägung schwerer Phänotypen führt und nicht 

mit einer BH4-Responsivität assoziiert ist. Die Variante R408W zeigt im Gegensatz zu I65T 

und R261Q eine starke Aggregationstendenz, wobei neueste experimentelle Daten unserer 

Arbeitsgruppe bei Expression in Zellkultur eine minimal erhaltene Ausbildung von 

funktionellen Tetrameren zeigten, sodass diese Variante als Vertreter der zu 

Proteinaggregation führenden, bisher nicht durch BH4 therapierbaren Mutationen untersucht 

werden soll – allerdings nur in Zellkultur, da eine rekombinante Expression in E. coli bisher 

nicht erfolgreich war (Gersting et al. 2008). Für die Charakterisierung in Zellkultur wurde 

auch die sehr weit verbreitete Mutation IVS10-11G>A ins Arbeitsprogramm aufgenommen. 

Alle ausgewählten Varianten zeigen Proteinfehlfaltung in unterschiedlicher Ausprägung und 

Charakteristik und durch die Auswahl einer Mutation aus jeder funktionellen Domäne der 

PAH wird eine möglichst breite Abdeckung struktureller Defekte der Zielproteine abgebildet, 

sodass bei einer weiteren Entwicklung zum Medikament eine möglichst große 

Patientengruppe von der Therapie profitieren kann. 

 

4.9.2 Expression von Wildtyp und Varianten im Expressionsvektor pMAL-c2X DEST_TEV 

Die Klonierung des PAH-Wildtyps und der drei Varianten I65T, R261Q und Y414C in einen 

Expressionsvektor mit N-terminaler Schnittstelle für die TEV-Protease, erfolgte durch Lars 

Mitschke aus unserer Arbeitsgruppe unter Anwendung der Invitrogen™Gateway®-

Klonierungstechnologie (Kapitel 3.2.1).  

Im Rahmen der Promotionsarbeit erfolgte die Anzucht der MBP-PAH-Fusionsproteine von 

Wildtyp und Varianten in E. coli, sowie die Aufreinigung der Enzyme über Affinitäts- und 

Größenausschlusschromatographie (Kapitel 3.3). Nach proteolytischer Abspaltung des MBP-

Fusionspartners durch die TEV-Protease, konnten in einem sich direkt anschließenden 

zweiten Gelfiltrationsschritt PAH und MBP-Fusionspartner erfolgreich separiert und bis zu 

20 mg des geschnittenen Enzyms isoliert werden (Abbildung 52). Der Einsatz der TEV-

Protease ermöglichte im Vergleich zu den zuvor verwendeten Faktor Xa Konstrukten die 
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Aufreinigung der Zielproteine in großen Mengen unter geringem Kostenaufwand, da die 

Protease im eigenen Labor gereinigt werden konnte.  

 

 

Abbildung 52. Oligomerisierungsprofile der Enzyme mit und ohne MBP-Fusionspartner  

(A) Die Größenausschlusschromatographie zeigt die Absorption der MBP-PAH Fusionsproteine bzw. (B) PAH-Tetramere und 

ihres Fusionspartners MBP nach Inkubation der Fusionsproteine mit der TEV-Protease (Absorptionswellenlänge 280 nm).  

 

 

4.9.3 Virtueller Screen zur Identifikation niedermolekularer Substanzen 

In Zusammenarbeit mit der Biotechfirma 4SC Discovery GmbH in München, wurden virtuelle 

Screens an den vorhandenen 3D-Kristallstrukturen der PAH durchgeführt um 

niedermolekulare Substanzen zu identifizieren, die an zuvor definierte Bereiche der PAH 

binden. Hierbei wurden als Zielstrukturen nicht nur die bekannten Bindestellen im Zentrum 

des Proteins für Substrat bzw. Kofaktor ausgewählt, sondern mit Hilfe eines von der Firma 

entwickelten Algorithmus auch potentielle neue Bindetaschen identifiziert, gegen die dann 

eine Bibliothek von über 8,8 Millionen kommerziell erhältliche chemische Verbindungen 

getestet wurde. Dieser Ansatz erhöht einerseits die Wahrscheinlichkeit bindende Moleküle 

zu identifizieren, andererseits wird gleichzeitig das Spektrum der möglichen 

bindungsinduzierten strukturellen Effekte vergrößert, da die Bindung von Molekülen an 

verschiedene Zielstrukturen im Protein mit hoher Wahrscheinlichkeit auch unterschiedliche 

konformative Umlagerungen induziert. 

Auf Basis dieses virtuellen Screens konnten mehr als 1.000 potentiell bindende Substanzen 

für die PAH identifiziert werden. Sie wurden zunächst von erfahrenen Medizinalchemikern 

selektiert, um reaktive, problematische oder bereits patentierte Verbindungen 

auszuschließen und gleichzeitig den verfügbaren chemischen Raum möglichst breit 

abzudecken. Final wurden insgesamt 300 Substanzen ausgewählt und bei Zulieferern als 

Reinsubstanzen bestellt. Tatsächlich konnten 234 Substanzen geliefert werden, so dass eine 

umfangreiche chemische Substanzbibliothek für die PAH zur Verfügung stand. Ziel war es, 

alle 234 Kandidatensubstanzen auf ihr Potenzial als Wirkstoffkandidat an Hand der Korrektur 

der molekularen Pathophysiologie und auf Grundlage ihrer pharmakologischen 
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Charakterisierung experimentell in vitro und in vivo zu testen. Auf diese Weise sollten 

robuste Leitsubstanzen identifiziert werden, die dem weiteren Entwicklungsprozess durch 

industrielle Partner zugeführt werden können. 

 

4.9.4 DSF-Screen  

4.9.4.1 Planung des DSF-Screens 

Der Einfluss der 234 zu testenden Kandidatensubstanzen auf die thermische Stabilität von 

PAH-Wildtyp und Varianten sollte zunächst in einem Hochdurchsatz-DSF-Screen analysiert 

werden. Die Etablierung des DSF-Entfaltungsassays an einem Gerät für Real-Time-

quantitative-PCR mit einem 96-well Blockmodul erfolgte bereits zu einem früheren Zeitpunkt 

(Kapitel 4.6.3). Trotzdem wurde vor Beginn des großen Screens die thermische Entfaltung 

des neuen, durch die TEV-Protease geschnittenen Wildtyps, in einem Konzentrationsbereich 

von 0,1 bis 1 mg/ml analysiert, um für den Screen die optimale Proteinkonzentration 

festlegen zu können. SYPRO® Orange diente dabei als Fluoreszenzmarker, denn die hohe 

Anregungswellenlänge des Farbstoffes von 492 nm verringert die Wahrscheinlichkeit, dass 

eine große Anzahl an Kandidatensubstanzen mit den optischen Eigenschaften des 

Farbstoffes interferiert. Nach Auswertung der entsprechenden Thermogramme zeigte die 

Konzentration von 0,18 mg/ml Protein die besten Ergebnisse und wurde daher als 

Standardkonzentration für den Screen festgelegt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Abbildung 53. Beispielbelegung einer 96-well Platte im DSF-Screen 

Pro 96-well Platte können 30 Kandidatensubstanzen als Duplikate analysiert werden (gelbe wells, 1-30). Für jeden Liganden 

wird eine Kontrollprobe ohne Protein zur Baselinekorrektur mitgeführt (NPC, no protein control; blaue wells). Als Laufkontrolle 

für jede Platte dient das jeweilige zu analysierende Protein ohne Ligand (NCC, no compound control; grüne wells). „Blank“-

Proben zur Basislinienkorrektur der NCC-Probe enthalten ausschließlich Assaypuffer mit SYPRO
®
 Orange (orange wells).  
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Im nächsten Schritt ging es darum die richtige Belegung der 96-well Platten für den Screen 

zu definieren (Abbildung 53). Jeder Ligand sollte als Duplikat in einer finalen Konzentration 

von 30 µM getestet werden. Zudem musste jede 96-well Platte zwei Kontrollen beinhalten; 

bei der ersten Kontrolle handelte es sich jeweils um das Enzym ohne gebundenen Liganden 

(NCC, no compound control). Sie diente bei der finalen Auswertung als Referenz für die 

Berechnung der thermischen Verschiebung. Die zweite Kontrolle war der jeweilige Ligand 

ohne zugegebenes Enzym (NPC, no protein control). Diese Kontrolle erlaubte eine Aussage 

über die Eigenfluoreszenz des Liganden im Assay. Zusätzlich wurde auf jeder Platte der 

Assaypuffer als Blank pipettiert. Mit diesem Setup konnten pro 96-well Platte 30 Liganden 

getestet werden, sodass für den Wildtyp zur Testung aller 234 Kandidatensubstanzen acht 

96-well Platten vermessen wurden. Für den Screen der drei PAH-Varianten waren weitere 

24 96-well Platten erforderlich, so dass im Rahmen des gesamten Screens 32 96-well 

Platten gemessen und ausgewertet wurden.  

 

 

4.9.4.2 Durchführung des DSF-Assays und Berechnung der Umschlagpunkte 

Die Schmelzkurven des PAH-Wildtyps zeigten auch mit SYPRO® Orange als 

Fluoreszenzmarker den typischen Verlauf (Abbildung 54A) der bisherigen Schmelzkurven 

aus niedriger Anfangsfluoreszenz zu Beginn der Messung, einem Maximum bei vollständiger 

Entfaltung sowie die Abnahme des Fluoreszenzsignals aufgrund von Aggregationsprozessen 

in der Probe. Ziel des primären DSF-Screens war es, den Effekt aller 234 

Kandidatensubstanzen auf die thermische Stabilität und das Entfaltungsmuster von PAH-

Wildtyp und varianten PAH Proteinen in Abwesenheit und Anwesenheit der Liganden zu 

analysieren und hit compounds zu finden, die eine Stabilisierung der Umschlagpunkte um 

mindestens 2 °C erzielen können.  

 

 

 

 

 

 

 

 

 

 

Abbildung 54. DSF-Assay mit SYPRO
®
 Orange 

(A) Die Abbildung zeigt die einzelnen Phasen einer schematischen Bindung und Dissoziation des Fluoreszenzmarkers SYPRO
®
 

Orange an ein Protein in Abhängigkeit von der Temperatur (Quelle: www.bio.anl.gov). (B) Das Diagramm zeigt die Rohdaten 

einer Beispielmessung für die Entfaltung der PAH im Komplex mit einer der Kandidatensubstanzen (C100002782). Die pinke 

und orange Kurve zeigen die beiden Replikate der Messung. Die NPC-Kontrolle ist in grün dargestellt. (C) Die Auswertung der 

Daten erfolgte durch Subtraktion der NPC-Kontrolle von den beiden Replikaten sowie Normalisierung der korrigierten 

Messwerte (blaue und orange gepunktete Kurve) und einem biphasischen Fit der Kurven (blaue und orange durchgezogenen 

Linien) zur Berechnung der Umschlagpunkte. Die graue Kurve zeigt die NCC-Kontrolle ohne zugegebenen Liganden. 

http://www.bio.anl.gov/
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Bei der Analyse der Rohdaten (Abbildung 54B) lag der Hauptaugenmerk auf der NPC-Probe, 

deren Eigenfluoreszenz das Messsignal nicht zu stark beeinträchtigen durfte, um mögliche 

Fehlinterpretationen nach Normalisierung der Schmelzkurven zu vermeiden. Von den 234 

Kandidatensubstanzen wurden 26 Substanzen identifiziert, die das Fluoreszenz-Signal zu 

stark beeinflussten und daher nicht weiter charakterisiert wurden. Die Berechnung der zwei 

Umschlagpunkte TM1 und TM2 (Kapitel 4.2.4) für die verbleibenden Substanzen erfolgte nach 

Normalisierung der Daten durch Annäherung an eine biphasische Funktion (Abbildung 54C). 

Ein Vergleich der beiden Umschlagpunkte der jeweiligen Proteine im Komplex mit einem 

Liganden mit der zugehörigen NCC-Kontrolle erlaubte final eine Aussage über die 

thermische Stabilität des Proteins (Gleichung 4.1). 

 

ΔTM = TM (Ligand) – TM (NCC)       (4.1) 
 

Die Ergebnisse des DSF-Screens nach Berechnung aller Umschlagpunkte für den PAH-

Wildtyp und die drei Varianten sind in Abbildung 55A zusammengefasst. Die vier 

benachbarten Spalten sind nach Wildtyp und Varianten sortiert und die jeweiligen 

Differenzen der Umschlagpunkte 1 und 2 sind einander gegenüber gestellt. Liganden mit 

ΔTM>0 zeigten einen stabilisierenden Effekt auf mindestens eines der vier Enzyme durch 

Verschiebung der Schmelzkurve zu höheren Temperaturen (grüne Bereiche). Bei einer 

destabilisierenden Wirkung war der ΔTM-Wert negativ (rote Bereiche). Zeigte ein Ligand 

keinen Effekt auf die thermische Stabilität, war ΔTM = 0 (schwarze Bereiche). Die 

Farbintensität korreliert dabei mit der Stärke der Effekte. Hellgrüne Bereiche symbolisieren 

beispielsweise eine Erhöhung der Schmelztemperatur um mindestens 5 °C. 

Abbildung 55B fasst die berechneten ΔTM1- und ΔTM2-Werte für den PAH-Wildtyp und die 

Varianten in einem kartesischen Koordinatensystem zusammen, wobei Liganden die keinen 

oder nur einem geringen Effekt zeigten sich in der Mitte häufen. Die im ersten Quadranten 

liegenden Punkte sind den Liganden zuzuordnen, die im DSF-Screen sowohl TM1 als auch 

TM2 stabilisierten (Abbildung 55B und C). Liganden die beide Umschlagstemperaturen 

herabsetzten liegen im dritten Quadranten. Die in den Quadranten zwei und vier 

eingruppierten Liganden führten entweder zur Erhöhung von TM1 oder TM2, wobei der jeweils 

andere Umschlagpunkt destabilisiert wurde. Die Ergebnisse aus Abbildung 55 fassen die 

Vielschichtigkeit der Effekte auf Wildtyp und Varianten gut zusammen. 

 

4.9.4.3 Bioinformatische Analyse der DSF-Daten 

Neben der Einteilung der Liganden in stabilisierende und destabilisierende Gruppen 

(Abbildung 55), erfolgte zusätzlich die bioinformatische Auswertung des DSF-Datensatzes 

durch den Bioinformatiker unserer Arbeitsgruppe, Mathias Woidy. Die Auswertung sollte 

neben den berechneten TM-Werten auch die strukturellen Eigenschaften aller Liganden 

berücksichtigen und sie basierend auf ihren unterschiedlichen Effekten bzw. Kombinationen 

der Effekte auf Wildtyp und Varianten in verschiedene Cluster einteilen. Für die 

Clusteranalyse in Abbildung 56A und D wurde anhand der ΔTM-Werte berechnet, wie stark  
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Abbildung 55. Ergebnisse des DSF-Screens 

(A) Die Abbildung zeigt die berechneten ΔTM1- (linke Spalten) und ΔTM2-Werte (rechte Spalten) für den PAH-Wildtyp (WT) und 

die drei Varianten I65T, R261Q und Y414C. Der Farbcode markiert den Effekt des jeweiligen Liganden. Grüne Bereiche 

beschreiben eine durch den Liganden induzierte Stabilisierung, rote Bereiche symbolisieren den gegenteiligen Effekt und bei 

schwarzen Bereichen war ΔTM=0. (B) Zusammenfassung aller ΔTM-Werte in einem kartesischen Koordinatensystem, das sich 

in vier Quadranten (I, II, III und IV) einteilen lässt. Grüne Punkte symbolisieren Liganden, die einen Effekt auf den Wildtyp 

zeigten. Rote Punkte stehen für den Einfluss auf I65T, blaue Punkte für den Effekt auf R261Q und gelbe Punkte repräsentieren 

die Wirkung auf Y414C. Im ersten Quadranten sind Liganden eingruppiert, die beide Umschlagpunkte stabilisieren. Im dritten 

Quadranten liegen die Liganden, die beide Umschlagpunkte erniedrigen. Quadrant zwei und vier zeigt die Liganden, die 

entweder TM1 oder TM2 stabilisieren. (C) Die Abbildung ist eine vergrößerte Darstellung des ersten Quadranten aus Abbildung B 

und zeigt ausschließlich Liganden mit stabilisierendem Einfluss auf beide TM-Werte. Die gestrichelten Linien symbolisieren den 

Cut-off bei Δ2 °C, der Temperaturdifferenz die mindestens erforderlich war um einen Liganden als „stabilisierend“ einzustufen.   
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Abbildung 56. Bioinformatische Auswertung des DSF-Screens 

(A) Die Abbildung zeigt die berechneten ΔTM1- (linke Spalten) und ΔTM2-Werte (rechte Spalten) für den PAH-Wildtyp (WT) und 

die drei Varianten I65T, R261Q und Y414C in Abhängigkeit von in Clustern (1-6 und 2A-2F) gruppierten Liganden. Der Effekt 

des jeweiligen Liganden ist nach dem Farbverlauf der Legende dargestellt, wobei grün eine durch den Liganden induzierte 

Stabilisierung beschreibt und rote Bereiche den gegenteiligen Effekt symbolisieren. (B) Die Struktur-Analyse teilt die 234 

Liganden anhand ihres strukturellen Grundgerüstes in unterschiedliche Gruppen ein, deren Anteil sich prozentual unterscheidet. 

(C) Durch die Effekt-Analyse wurden Liganden identifiziert, die sich auf unterschiedlichste Enzymgruppierungen positiv 

auswirkten. (D) Die Cluster-Analyse zeigt im prozentualen Überblick den Anteil der jeweiligen Liganden im entsprechenden 

Cluster aus der Clusteranalyse der 234 Liganden an.   
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sich ein Ligand von einem anderen unterscheidet und das Ergebnis in einer Distanzmatrix 

niedergeschrieben, in welcher ähnliche Liganden in gleiche Zweige sortiert wurden. Die 

Clusteranalyse zeigte vielversprechende Liganden in den Clustern 4, 6, 2C, 2E und 2F 

(Abbildung 56A). Für die Strukturanalyse (Abbildung 56B) wurden die 234 Liganden 

hinsichtlich ihres Grundgerüstes in verschiedene Gruppen, wie beispielsweise BH4-Derivate, 

Oxazole, Thiazole etc., eingeteilt. Dann konnte analysiert werden welches Grundgerüst 

einen positiven Effekt im DSF-Screen zeigte und vermehrt stabilisierend wirkte. Die 

Strukturanalyse belegte, dass dies für die Liganden mit Antrachinon-Gruppe und die Gruppe 

der BH4-Homologen besonders zutreffend war. Durch die Effekt-Analyse (Abbildung 56C) 

wurden Liganden identifiziert, die einen positiven Effekt auf den PAH-Wildtyp einschließlich 

aller Varianten (Effekt-Cluster 1), oder auf alle Varianten (Effekt-Cluster 9) bzw. auf den 

Wildtyp in Kombination mit I65T und Y414C (Effekt-Cluster 3) zeigten.  

 

 

Abbildung 57. Ergebnis des DSF-Screens 

Die Spalten repräsentieren die berechneten ΔTM1- (linke Spalten) und ΔTM2- (rechte Spalten) Werte des PAH-Wildtyps (WT) 

und der Varianten I65T, R261Q und Y414C. Das Ausmaß des Effektes des jeweiligen Liganden ist nach dem Farbverlauf der 

Legende dargestellt. 
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Durch den umfassenden DSF-Screen und die anschließende bioinformatische Auswertung 

der Daten wurden aus den insgesamt 234 getesteten Kandidatensubstanzen 51 Liganden 

identifiziert, die einen positiven Effekt auf die thermische Stabilität der gereinigten Proteine 

des PAH-Wildtyps und/oder der Varianten zeigten. Zusätzlich zu diesen 51 Liganden wurden 

weitere fünf Liganden als Kontrollen für die weitere Charakterisierung ausgewählt, die keinen 

Effekt im DSF-Screen zeigten. Somit war das Ergebnis des DSF-Screens eine finale Liste 

mit insgesamt 56 Liganden, die in Abbildung 57 dargestellt ist.  
 

4.9.5 Messung der Bindungskonstanten von 74 Kandidatensubstanzen  

Die Etablierung der MST-Messung am PAH-Wildtyp erfolgte bereits im Zusammenhang mit 

der Charakterisierung der Bindungseigenschaften von BH4 (Kapitel 4.3.3). Dabei wurden 

Protein-Labeling, Pufferbedingungen, Laserintensität und die Auswahl geeigneter Kapillaren 

getestet und erfolgreich optimiert, um jetzt die Bindungskonstanten der 56 hits aus dem 

DSF-Screen zu messen. Aus dem parallel durch meine Kollegin Anna Waldhuber 

durchgeführten Zell-Screen resultierten 18 weitere Kandidatensubstanzen, die sich in vivo 

stabilisierend auf PAH-Wildtyp und/oder Varianten auswirkten, so dass insgesamt die 

Bindungseigenschaften von 74 Liganden mittels MST analysiert wurden. Für acht Liganden 

konnte die Bindung an den PAH-Wildtyp nachgewiesen und quantifiziert werden. Darüber 

hinaus ergaben sich drei weitere potenzielle Binder. 49 Liganden zeigten keine Bindung im 

MST-Screen. Für 14 Liganden war eine abschließende Quantifizierung nicht möglich (keine 

Sättigung, Fluoreszenzeffekte, niedrige Messsignale). Für die elf verbleibenden Liganden 

sind die Bindungskonstanten in nachfolgender Tabelle 28 gelistet. 

 

Ligand MST KD [µM] 

C1 0000 0141 3,26  

C1 0000 1641 11,9 

C1 0000 1295 22,5 

C1 0000 1854 24,1 

C1 0000 1615 29,6 

C1 0000 1607 30,7 

C1 0005 1746 120,2 

C1 0000 1158 130,7 

C1 0000 1890 143,8 

C1 0000 1432 149 

C1 0000 1412 276,3 

Tabelle 28. Mit MST gemessene Bindungskonstanten KD 
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Durch Kombination der Ergebnisse aus DSF-, Zell- und MST-Screen kann die Anzahl der 

Kandidantensubstanzen von bisher 74, auf inzwischen elf eingegrenzt werden. Die Daten 

aus den drei Screen-Verfahren sind nachfolgend in Abbildung 58 zusammengestellt. 

 

 
Abbildung 58. Ergebnisse aus DSF-, Zell- und MST-Screen  

Die Spalten im DSF-Screen repräsentieren jeweils die berechneten ΔTM1- (linke Spalten) und ΔTM2- (rechte Spalten) Werte des 

PAH-Wildtyps (WT) und der drei PAH-Varianten I65T, R261Q und Y414C. Die Spalten aus dem zellulären Screen (Erhebung 

der Daten durch Anna Waldhuber) zeigen, sortiert nach Aktivität und Proteinrestmenge, jeweils die Daten des PAH-Wildtyps 

und der fünf PAH-Varianten I65T, R261Q, R408W, Y414C und IVS10 (von links nach rechts). Der Effekt des jeweiligen 

Liganden ist nach dem Farbverlauf der Legende dargestellt, wobei grün eine Stabilisierung im DSF-Screen bzw. eine durch den 

Liganden induzierte Erhöhung der Aktivität oder der Proteinrestmenge darstellt. Rote Bereiche beschreiben die gegenteiligen 

Effekte auf die gemessenen Parameter. Die Bindungseigenschaften der Liganden wurden im MST-Screen bestimmt, wobei 

hellgrün hinterlegte Liganden eine niedrige KD und somit eine hohe Bindungsaffinität aufwiesen.   

 

4.9.6 Ergebnis des Screens nach neuen pharmakologischen Chaperonen  

Basierend auf dem virtuellen Screen einer Datenbank von über 8,8 Millionen kommerziell 

erhältlicher Substanzen wurden 234 Liganden identifiziert, die an das PAH-Protein binden 

können. Um eine kombinierte Analyse der Wirkeffekte aller 234 Liganden auf 

biophysikalische Parameter und therapeutische Endpunkte auf zellulärer Ebene auf PAH-

Wildtyp und Varianten durchführen zu können, wurden drei unterschiedliche Screens im 

Labor etabliert. Nach Analyse aller Liganden im DSF-, Zell- und MST-Screen (Abbildung 59) 

konnten aus den ursprünglichen 234 Substanzen drei Liganden identifiziert werden (gelbe 

Schnittmenge), die sowohl bei Anlegen von Hitzestress einen stabilisierenden Einfluss auf 

die gereinigten Zielproteine hatten (DSF-Screen), als auch auf zellulärer Ebene Wirkeffekte 

zeigten (Zell-Screen) und deren Bindung an das PAH-Protein experimentell bestätigt werden 

konnte (MST-Screen). Bei diesen drei identifizierten Liganden könnte es sich um 

erfolgversprechende Leitsubstanzen für die zukünftige Behandlung der PKU handeln, die 

durch externe Partner weiter charakterisiert und einem pharmakologischen 

Entwicklungsprozess zugeführt werden sollen. 
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Abbildung 59. Ergebnis der drei unabhängigen Screens  

Der virtuelle Screen selektierte 234 Substanzen aus einer Datenbank, die an die PAH binden (linke Abbildung). Die Anzahl der 

Liganden mit positivem Effekt innerhalb des jeweiligen Screen-Verfahrens ist in der rechten Abbildung dargestellt. Liganden, die 

in unterschiedlichen Screen-Verfahren positive Ergebnisse zeigten, sind in den Schnittmengen positioniert und mit dunkler 

Farbe hervorgehoben. Die gelbe Schnittmenge aus drei Liganden entspricht einem positiven hit im Rahmen aller drei Screens. 
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5 Diskussion 

Stand der Forschung zu Beginn der Dissertation 

Die PKU gehört zur großen Gruppe der monogenetischen Erkrankungen, die derzeit mehr 

als 6.000 bekannte Krankheiten umfasst, die sich in ihrer Häufigkeit stark unterscheiden. 

Teilweise existieren nur wenige beschriebene Fälle weltweit, bei anderen Erkrankungen ist 

dagegen mehr als 1 von 10.000 Menschen betroffen, so dass insgesamt 1 von 500 

Neugeborenen an einer monogenetischen Erkrankung leidet. Für viele dieser Krankheiten 

sind derzeit keine oder nur belastende und risikoreiche Therapien verfügbar. Es besteht also 

dringender Handlungsbedarf in Bezug auf neue Behandlungsoptionen. In den vergangenen 

Jahren konnte bei einer überraschend großen Zahl monogenetischer Erkrankungen 

mutationsbedingte Fehlfaltung mit Funktionsverlust der betroffenen Proteine als 

gemeinsames molekulares Prinzip der Krankheitsentstehung identifiziert werden. Es handelt 

sich um eine genetisch determinierte Veränderung der Raumstruktur der Proteine, die zu 

Destabilisierung, Aggregation, beschleunigtem Abbau und letztlich zu einer Reduktion der 

intrazellulär verfügbaren Menge an funktionellem Protein führt. Diese Erkrankungen werden 

Proteinfaltungserkrankungen mit loss-of-function genannt. Sie unterscheiden sich 

pathophysiologisch von den klassischen neurodegenerativen Krankheitsbildern (M. 

Alzheimer, M. Parkinson, Chorea Huntington), die als Gruppe der gain-of-toxic-function-

Erkrankungen klassifiziert werden, bei denen die Proteinfehlfaltung zur Bildung toxischer 

Aggregate und dadurch zum neuronalen Zelltod führt. Unsere Arbeitsgruppe konnte neben 

anderen Gruppen weltweit zeigen, dass es sich auch bei der PKU um eine 

Proteinfaltungserkrankung mit loss of function handelt (Waters 2003, Pey et al. 2004a, 

Gersting et al. 2008). Nachdem die molekularen Mechanismen der Krankheitsentstehung für 

die PKU damit umfassend aufgeklärt worden waren, sollte ein neuer therapeutischer Ansatz 

entwickelt werden, der eine gute Alternative zur bisher eingesetzten strengen 

phenyalaninarmen Diät darstellt. Der angestrebte Lösungsansatz sah vor, die 

mutationsbedingte Proteinfehlfaltung der PAH durch spezifische Bindung niedermolekularer 

Verbindungen über eine Stabilisierung des betroffenen Enzyms zu korrigieren. Das sollte 

u.a. im Rahmen der Dissertation am Beispiel des natürlichen Kofaktors der PAH, 

Tetrahydrobiopterin (BH4), analysiert werden. Ausgangspunkt für diesen Lösungsansatz war 

die klinische Zufallsbeobachtung, dass HPA-Patienten ohne BH4-Defizienz auf die Gabe 

pharmakologischer Dosen von BH4 eine Reduktion der Phenylalaninkonzentration im Blut 

zeigten (Kure et al. 1999). Eine erste systematische klinische Studie unsere Arbeitsgruppe 

konnte nachweisen, dass 80 % aller Patienten mit milden PKU-Phänotypen von einer 

pharmakologischen Therapie mit BH4 profitieren (Muntau et al. 2002). Die BH4-Gabe führte 

sowohl zur Reduktion der Phenylalaninkonzentration im Blut, als auch zur Normalisierung 

der PAH-Enzymaktivität in vivo, was wiederum eine deutliche Erhöhung der diätetischen 

Phenylalanintoleranz zur Folge hatte. 2007 wurde Sapropterindihydrochlorid, die 

synthetische Form von BH4, als erstes pharmakologisches Chaperon zur Therapie der HPA 

in den USA zugelassen. Ein Jahr später erfolgte auch die Zulassung als orphan drug in 

Europa. Ab dem Zeitpunkt der Zulassung des Medikaments wurde therapeutisch in den 

https://de.wikipedia.org/wiki/Chorea_Huntington
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Phenylalaninstoffwechsel eingegriffen, ohne den genauen Mechanismus der 

Wechselwirkung von Sapropterindihydrochlorid mit dem Phenylalaninhydroxylase-System zu 

kennen. Dennoch war es dadurch zum ersten Mal möglich, den biochemischen und 

molekularen Phänotyp von Patienten mit BH4-responsiver PKU medikamentös zu 

therapieren, was einen Paradigmenwechsel in Bezug auf die Therapie genetischer 

Erkrankungen mit Proteinfehlfaltung darstellte.  

Diese für die Stoffwechselmedizin wichtige Erkenntnis, dass pharmakologische Dosen des 

natürlichen Kofaktors im Patienten zur deutlichen Absenkung der pathologischen 

Phenylalaninkonzentration führen, war für unsere Arbeitsgruppe der Ausgangspunkt für ein 

umfangreiches Forschungsprojekt, in das die hier vorgelegte Dissertation eingebunden war. 

Die Schwerpunkte der Dissertation waren (i) die Untersuchung der Struktur-

Funktionsbeziehung zwischen der PAH und ihrem natürlichen Kofaktor BH4, um die Einflüsse 

der beiden strukturellen Elemente des Kofaktors, Pyrimidopyrazin-Ringsystem und 

Dihydroxypropylseitenkette, auf das Enzym zu analysieren. Hierzu wurde neben BH4 auch 

der Einfluss der BH4-Derivate BH2, Sepiapterin und 6-MPH4 sowie bereits publizierter 

Kandidatensubstanzen auf den PAH-Wildtyp und drei PAH-Varianten untersucht. (ii) die 

Durchführung eines breit angelegten Screening-Ansatzes zur Identifikation weiterer 

pharmakologischer Chaperone für die PAH. 

 

 

Sapropterindihydrochlorid, das erste pharmakologische Chaperon auf dem Markt 

BH4 spielt als natürlicher Kofaktor eine Schlüsselrolle in der Regulation der PAH-

Enzymfunktion und setzt sich aus den beiden strukturell unterschiedlichen Elementen des 

Pyrimidopyrazin-Grundgerüstes und der Dihydroxypropylseitenkette zusammen. Einerseits 

katalysiert BH4 als Kofaktor die Hydroxylierungsreaktion von Phenylalanin zu Tyrosin, 

andererseits hemmt es in hohen Konzentrationen die Enzymaktivität der PAH. Im Rahmen 

der Dissertation konnte durch den vergleichenden Einsatz der in Grundgerüst oder 

Seitenkette abweichenden BH4-Derivate (BH2, Sepiapterin, 6-MPH4) gezeigt werden, dass 

für die Ausübung dieser beiden gegensätzlichen Effekte das Vorliegen der zwei strukturell 

unterschiedlichen Elemente des Kofaktors wichtig ist. 

Das Pyrimidopyrazin Ringsystem ist dabei für die Ausübung der Kofaktoraktivität 

verantwortlich, die in einem breiten Konzentrationsbereich für BH4 und 6-MPH4 mit Hilfe von 

PAH activity landscapes dargestellt werden konnte. BH2 und Sepiapterin waren dagegen 

aufgrund ihres höher oxidierten Grundgerüstes nicht dazu in der Lage, die 

Hydroxylierungsreaktion von Phenylalanin zu katalysieren. Die Dihydroxypropylseitenkette 

an C6 ist dagegen für die Ausübung der Inhibierung unerlässlich, da diese eine Folge der 

Interaktion der Dihydroxypropylseitenkette mit S23 in der IARS ist (Teigen and Martinez 

2003). Dies konnte durch die entsprechenden Inhibierungsassays mit BH4, BH2 und 

Sepiapterin belegt werden. 6-MPH4 mit deutlich verkürzter Seitenkette zeigte hingegen selbst 

in hohen Konzentrationen keinen inhibierenden Effekt auf die PAH. Zu diesen Ergebnissen 

passten auch die durchgeführten molecular modeling Studien. Sie machten deutlich, dass 
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das im aktiven Zentrum der PAH ausgebildete Interaktionsnetzwerk von BH4 und den drei 

Derivaten sehr ähnlich ist und nur im Fall von 6-MPH4 die Hauptinteraktionen der Seitenkette 

fehlten. Diese Erkenntnisse konnten experimentell durch Messung der 

Dissoziationskonstanten bestätigt werden, denn BH4, BH2 und Sepiapterin zeigten ähnliche 

und sehr starke Enzym-Ligand Interaktionen mit Bindungskonstanten im einstelligen 

micromolaren Bereich, während die Bindungsstärke von 6-MPH4 deutlich schwächer war.  

Die Auswertung der Daten zu Hydrophobizität und intrinsischer Tryptophanfluoreszenz ergab 

Hinweise sowohl auf globale, intramolekulare Verschiebungen als auch auf lokale 

Änderungen in der regulatorischen Domäne der PAH durch Bindung der Liganden. Hierbei 

konnte, wie bereits bei Auswertung der Aktivitätsdaten, erneut eine gegensätzliche Wirkung 

von Pyrimidopyrazin-Ringsystem und Dihydroxypropylseitenkette auf das Enzym belegt 

werden, die sich besonders in der gegensätzlichen Wirkung von Sepiapterin und 6-MPH4 

manifestierte. Die Bindung von Sepiapterin führte zu einer signifikanten Abnahme der an der 

Proteinoberfläche exponierten hydrophoben Gruppen des PAH-Wildtyps, während 6-MPH4 

den gegenteiligen Effekt zeigte. Aus der Literatur war bereits bekannt, dass ein Anstieg der 

Hydrophobizität durch Bindung des Substrats L-Phenylalanin ausgelöst werden kann, denn 

durch die L-Phe Bindung werden konformative Änderungen in den hinge-bending Regionen 

111-117 und 218-226 induziert, die eine Verschiebung der flexiblen, regulatorischen sowie 

äußerst starren katalytischen Domänen innerhalb des Enzyms verursachen (Stokka et al. 

2004). Diese konformativen Änderungen sind letztendlich ausschlaggebend für die 

Aktivierung der PAH und arretieren das Enzym in einer r-state ähnlichen, flexiblen 

Konformation. Die Ergebnisse der Dissertation legen die Vermutung nahe, dass diese 

intramolekularen Verschiebungen, die mit einer Erhöhung der Hydrophobizität einhergehen, 

durch das Vorliegen der 2-Hydroxy-1-oxopropyl Seitenkette von Sepiapterin erschwert 

werden. Die Bindung von 6-MPH4 dagegen ermöglicht dem Enzym, auch in Abwesenheit des 

Substrats eine r-state ähnliche Konformation einzunehmen, was durch Zunahme der 

Hydrophobizität nach 6-MPH4-Bindung belegt wird. Diese Ergebnisse stimmen auch gut mit 

den Ergebnissen der intrinsischen Tryptophanfluoreszenzspektren überein, die über 

solvatochrome Veränderungen des W120-Restes in der regulatorischen Domäne der PAH 

Auskunft geben. Auch hier zeigte sich ein gegenläufiger Effekt von Sepiapterin und 6-MPH4. 

Während die Bindung von Sepiapterin zur hypsochromen Verschiebung des 

Fluoreszenzmaximums von W120 führte, bewirkte 6-MPH4 eine bathochrome Verschiebung 

des Peaks in den längerwelligen Bereich des elektromagnetischen Spektrums. Die 6-MPH4 

Bindung im aktiven Zentrum der PAH induzierte somit konformative, intramolekularen 

Veränderungen im Enzym, die sich bis in die regulatorische Domäne der PAH auswirkten 

und zu einer besseren Lösemittelzugänglichkeit des W120-Restes, einschließlich eines 

weniger kompakten N-Terminus, führten. Diese konformativen Änderungen sind vermutlich 

auch vergleichbar mit den Verschiebungen, die durch die Bindung von L-Phe im aktiven 

Zentrum der PAH ausgelöst werden. 

Wie bereits aus der Literatur bekannt war (Knappskog and Haavik 1995), konnte auch im 

Rahmen der Dissertation gezeigt werden, dass die Bindung von L-Phe einen Anstieg der 

messbaren Fluoreszenzintensität induzierte, während die Bindung von BH4 (Dobrowolski et 
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al. 2009) und 6-MPH4 mit einer Löschung des Fluoreszenzsignals einherging. Des Weiteren 

war bekannt (Teigen and Martinez 2003), dass die Dihydroxypropylseitenkette des Kofaktors 

für die Wechselwirkung mit der IARS am N-Terminus der PAH verantwortlich ist, wodurch 

der N-Terminus teilweise in das aktive Zentrum der PAH gezogen wird und hierdurch die L-

Phe-Bindestelle blockiert. Hierbei wurde immer davon ausgegangen, dass es dadurch zu 

einer Abnahme des hydrodynamischen Radius der PAH kommen muss. Im Rahmen der hier 

vorliegenden Dissertation konnte erstmals mit Hilfe von DLS-Experimenten belegt werden, 

dass durch die Bindung von BH4 im aktiven Zentrum der PAH globale, konformative 

Änderungen innerhalb des Enzyms ausgelöst werden, die den Wildtyp in eine kompaktere, t-

state ähnliche Konformation überführen und eine Abnahme des hydrodynamische Radius 

nach sich ziehen. Die Bindung von Sepiapterin mit einer höher oxidierten 2-Hydroxy-1-

oxopropyl Seitenkette im aktiven Zentrum der PAH könnte die Wechselwirkung mit S23 noch 

verstärken, was die Abnahme der Hydrophobizität einschließlich reduzierter 

Lösemittelzugänglichkeit von W120 im Sepiapterin-PAH Komplex sowie eine deutlichen 

Abnahme des Stokes-Radius erklären könnte. Auch BH4 führte zur Abnahme des 

hydrodynamischen Radius, allerdings waren die erzielten Auswirkungen auf die 

Hydrophobizität und die W120-Fluoreszenz nicht so stark wie im Fall von Sepiapterin. Die 

Bindung von BH4 und Sepiapterin überführte das Enzym somit nachweislich in eine stabilere 

(weniger aktive) Konformation, was sich auch am Anstieg der messbaren 

Aktivierungsenergie des PAH-BH4 und PAH-Sepiapterin Komplexes zeigte.  

Den besten Schutz gegen angelegten Hitzestress bot der natürliche Kofaktor der PAH und 

nicht dessen Derivate. Dies wurde mittels thermischer DSF-Assays belegt, die eine 

Quantifizierung des Einflusses von Liganden auf die Stabilität der PAH ermöglichen. Die 

durch Bindung der Liganden induzierten konformativen Änderungen können sich direkt auf 

die Entfaltung des Enzyms auswirken und zur Erhöhung oder Erniedrigung der 

entsprechenden Schmelztemperatur führen. Das Ausmaß des Effektes ist dabei nicht nur auf 

den direkten Kontakt zwischen Enzym und Ligand beschränkt, sondern auch auf 

weitreichende intramolekulare Veränderungen, die die Flexibilität der PAH verändern, indem 

die Bindung der Liganden die Translations- und Rotationsfreiheitsgrade des Systems 

herabsetzen. In diesem Zusammenhang war es möglich, den Einfluss niedermolekularer 

Verbindungen auf unterschiedliche Domänen des Proteins zu analysieren, denn die 

Entfaltung der PAH erfolgt sequentiell in zwei Schritten. Zunächst entfalten die 

regulatorischen Domänen der PAH und bei höheren Temperaturen die katalytischen 

Domänen, bevor das Enzym bei noch höheren Temperaturen irreversibel aggregiert. Der 

Einfluss der Liganden auf die entsprechenden Bereiche konnte daher gut quantifiziert 

werden.  

Im Rahmen der Dissertation konnte durch die unterschiedlichen biophysikalischen 

Experimente gezeigt werden, dass der pharmakologische Chaperon-Effekt von BH4 auf den 

durch den Kofaktor ausgelösten intramolekularen Verschiebungen der regulatorischen und 

katalytischen Domänen basiert. Es ist sehr wahrscheinlich, dass die BH4-Bindung ein 

Netzwerk verschiedenster Aminosäuren der PAH adressiert, das die Bindung des Kofaktors 

kommuniziert und die teilweise gegensätzlichen strukturellen Veränderungen innerhalb des 
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Enzyms induziert, die schlussendlich dazu führen, dass die PAH eine stabile, t-state ähnliche 

Konformation einnimmt. Die beiden strukturellen Elemente des Kofaktors (Seitenkette und 

Ring) sind dabei eine zwingende Voraussetzung für die Induktion der konformativen 

Umlagerungen. Wir konnten zeigen, dass die strukturellen Elemente jeweils eine definierte 

physiologische Rolle bei der Ausübung der Kofaktorfunktion oder bei der Inhibition der 

Enzymaktivität spielen. Anhand der vergleichenden Analyse der BH4-Derivate zeigte sich, 

dass nur BH4 die beiden gegensätzlichen Eigenschaften aus Katalyse und Inhibierung die für 

die Regulierung der PAH-Aktivität erforderlich sind, perfekt in einem Molekül vereint. 

Weitere molecular modeling Studien sind notwendig, um das BH4-Aminosäurenetzwerk zu 

identifizieren, das für die intramolekulare Kommunikation der BH4-Bindung zuständig ist und 

dieses dann über Klonierung und Charakterisierung der entsprechenden PAH-Varianten zu 

bestätigen.  

 

 

Charakterisierung von PAH-Varianten  

Um den Effekt von BH4 nicht nur auf den PAH-Wildtyp zu testen, wurden drei PAH-Varianten 

zur Charakterisierung ausgewählt, die jeweils eine der drei funktionellen Domänen der PAH 

repräsentieren. Im Rahmen der biophysikalischen Charakterisierung der Varianten im 

nativen Zustand, also ohne gebundene Liganden, zeigte jede der Varianten mindestens ein 

charakteristisches Merkmal. Bei der strukturell präaktivierten Variante R68S aus der 

regulatorischen Domäne war die Hydrophobizität im Grundzustand stark erhöht und das 

Peakmaximum der Tryptophanfluoreszenz bereits ohne Ligand zu längeren Wellenlängen 

verschoben (Gersting et al. 2010). Die Variante R261Q zeigt einen Aminosäureaustausch in 

der katalytischen Domäne und nahm ohne Ligandenbindung eine t-state ähnliche 

Konformation mit einem geringeren hydrodynamischen Radius als der PAH-Wildtyp ein. 

Charakteristisch für die Variante Y417H aus der Oligomerisierungsdomäne war ein stark 

destabilisierter N-Terminus nach Anlegen von Hitzestress. Alle drei Varianten wiesen somit 

unterschiedliche strukturelle Veränderungen auf Proteinebene auf, die erneut belegten, dass 

es sich bei der PKU um eine Proteinfaltungserkrankung mit Funktionsverlust der betroffenen 

Proteine handelt. Zudem war die Enzymrestaktivität der Varianten gegenüber dem Wildtyp 

reduziert (Gersting et al. 2010, Staudigl et al. 2011) was dazu führte, dass die betroffenen 

Patienten im Neugeborenen-Screening auffielen. 

Die Ergebnisse der Untersuchung der PAH-Varianten im Komplex mit BH4 und den BH4-

Derivaten zeigten, dass der durch Proteinfehlfaltung induzierte Phänotyp am 

eindrucksvollsten durch BH4 korrigiert werden konnte, da die Bindung des natürlichen 

Kofaktors die Proteine stabilisierte. Gerade durch die Analyse der Varianten im Komplex mit 

6-MPH4 wurde deutlich, wie wichtig die Seitenkette an C6 für die Stabilisierung der PAH ist. 

Während die 6-MPH4-Bindung im Fall des PAH-Wildtyps zu einer weiteren Abnahme des 

hydrodynamischen Radius führte, konnte dieser Effekt bei den Varianten nicht beobachtet 

werden. Die 6-MPH4 Bindung führte sogar teilweise zur Destabilisierung der regulatorischen 

oder katalytischen Domänen während der thermischen Entfaltung der Varianten und bei 
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allen drei Varianten zum Anstieg der Hydrophobizität, induziert durch konformative 

Änderungen, die durch Bindung des Liganden ausgelöst werden. Wie bereits für den Wildtyp 

beschrieben, zeigte sich auch im Fall der Varianten, dass das Pyrimidopyrazin-Grundgerüst 

und die Seitenkette kumulative oder gegensätzliche Effekte auf die unterschiedlichen 

Regionen der PAH ausübten. Das Ausmaß der Effekte war dabei abhängig von der durch die 

Mutation hervorgerufene Schwere des Phänotyps. 

Im Hinblick auf die angestrebte personalisierte Medizin auf dem Gebiet der 

Stoffwechselerkrankungen zeigten die Ergebnisse zu den PAH-Varianten, dass die zukünftig 

zur Therapie der PKU eingesetzten stabilisierenden, niedermolekularen Verbindungen je 

nach vorliegender Mutation, Modifikationen im Grundgerüst oder der Seitenkette enthalten 

sollten, die den gewünschten Effekt auf die Variante noch verstärken. Eine gezielte 

Stabilisierung der regulatorischen Domäne kann beispielsweise den molekularen Phänotyp 

verbessern, der durch Mutationen im entsprechenden Genabschnitt hervorgerufen wird. Im 

besten Fall wird sich die Stabilisierung nicht nur auf die regulatorische Domäne auswirken, 

sondern auch auf andere Regionen des Proteins, die durch Seitenketteninteraktionen mit der 

regulatorischen Domäne in Kontakt stehen.        

 

 

Neue potentielle pharmakologische Chaperone  

In den letzten Jahren wurden neue Substanzen publiziert (Pey et al. 2008, Santos-Sierra et 

al. 2012), die als potentielle pharmakologische Chaperone zur Behandlung der PKU 

gehandelt wurden. Ein im Rahmen der Dissertation durchgeführter Vergleich der vier 

vielversprechendsten Kandidaten mit BH4 – bzw. der metabolische BH4-Vorstufe Sepiapterin 

- in vitro und in vivo zeigte jedoch, dass alle vorgeschlagenen Kandidatensubstanzen 

schwächer wirksam als BH4 waren und dass das Therapeutikum Sapropterindihydrochlorid 

daher nach wie vor der Standard zur pharmakologischen Therapie der 

Hyperphenylalaninämien bleibt.  

Das im Rahmen der Dissertation vorgeschlagene 4,5-Diaminopyrimidin zeigte 

vielversprechende Effekte im Vergleich zu BH4 und könnte als Ausgangsstruktur dienen, um 

anhand weiterer hypothesengesteuerter Modifikationen neue Leitsubstanzen zur Behandlung 

der PKU zu designen. Denn anhand der bereits diskutieren Einflüsse von Pyrimidopyrazin-

Grundgerüst und Dihydroxypropylseitenkette könnte eine optimierte Leitsubstanz aus einem 

reduzierten Grundgerüst sowie an den beiden Kohlenstoffatomen der Seitenkette C1‘ und 

C2‘ modifizierten funktionellen Gruppen bestehen, die dazu dienen, die jeweils gewünschten 

Effekte weiter zu verstärken. Das tiefgreifende mechanistische Verständnis der Struktur-

Funktionsbeziehung von BH4 als pharmakologisches Chaperon ist die Voraussetzung, um im 

Rahmen der personalisierten Ansätze bei der Behandlung der PKU eine verbesserte 

Wirkung von BH4 oder weiterer, neuer Leitsubstanzen zu erzielen.         

Nachdem es im ersten Teil der Dissertation darum ging, die Struktur-Funktionsbeziehung 

von BH4 zu analysieren, widmete sich der zweite Teil der Arbeit der Suche und Validierung 

neuer Kandidatensubstanzen, die den molekularen Phänotyp der Proteinfehlfaltung gezielt 
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adressieren und korrigieren. Neben dem bereits zugelassenen Medikament 

Sapropterindihydrochlorid soll damit langfristig ein Präparat entwickelt werden, das über 

günstigere pharmakokinetische Eigenschaften verfügt um somit den Anteil an Patienten, die 

im NBS identifiziert werden weiter zu erhöhen, die mit einer pharmakologischen statt mit 

einer belastenden diätetischen Therapie behandelt werden können. Im Rahmen dieses 

großangelegten Screens, wurden der PAH-Wildtyp und zusätzliche Varianten des durch die 

Erkrankung betroffenen Proteins mit unterschiedlich schwerem molekularen und klinischen 

Phänotyp als individuelle Zielproteine ausgewählt. Durch die Auswahl der zu Grunde 

liegenden Mutationen konnte ein breites Spektrum des klinischen Phänotyps, von mild bis 

schwer, als auch ein breites Spektrum der molekularen und strukturellen Veränderungen, 

von leichter bis schwerer Destabilisierung bis hin zur Aggregation, abgedeckt werden. Auf 

diese Weise konnte die Wirksamkeit von Kandidatensubstanzen in Bezug auf die 

Wiederherstellung verschiedener molekularer Störungen gleichzeitig getestet werden. 

Zudem wurde so ermittelt, ob unterschiedliche molekulare Phänotypen durch die 

spezifischen Effekte unterschiedlicher Substanzen adressiert werden müssen. Ausgehend 

von einem virtuellen Screen, der basierend auf Molekül-Simulationen aus einer Datenbank 

von über 8,8 Millionen kommerziell erhältlicher Substanzen 234 Liganden identifizierte, die 

potenziell an das PAH-Protein binden können, konnten durch drei unabhängige Screening-

Ansätze (DSF-, Zell- und MST-Screen) drei vielversprechende Kandidatensubstanzen 

identifiziert werden, die an das Zielprotein binden, einen positiven Effekt auf die 

Enzymfunktion haben und den Wirkmechanismus der bindungsinduzierten Stabilisierung 

zeigen. Diese gleichzeitige Analyse von Bindung und Wirkung eines pharmazeutischen 

Wirkstoffs war bisher einmalig und erhöht dadurch die Chancen, dass die drei finalen hit 

compounds tatsächlich auch ein therapeutisches Potential besitzen. 

 

 

Ausblick 

Neben den bereits bestehenden Therapieoptionen der Enzymsubstitution mit PEG-PAL 

(MacDonald and D'Cunha 2007, Sarkissian et al. 2008, Sarkissian et al. 2011), dem Einsatz 

von großen neutralen Aminosäuren (Pietz et al. 1999, Matalon et al. 2007, van Vliet et al. 

2016) sowie gentherapeutischen Ansätzen (Ding et al. 2006, Thony 2010, Yagi et al. 2011), 

muss die Forschung auf diesem Gebiet weiter gehen, um auch für Patienten mit schweren, 

nicht BH4-responsiven Erkrankungsformen alternative Therapiestrategien zu entwickelt. 

Richtungsweisend in diesem Zusammenhang war kürzlich die Entwicklung einer neuen 

biochemischen Methode, die es ermöglicht, DNA an spezifischen Stellen zu schneiden und 

zu verändern (Gasiunas et al. 2012, Jinek et al. 2012). Mit dem CRISPR/Cas9-System 

können u.a. einzelne Nukleotide innerhalb eines Gens gezielt verändert werden, was diese 

Methode besonders für den Einsatz zur Therapie monogenetischer Erkrankungen wie der 

PKU qualifiziert. Der Arbeitsgruppe um Nenad Blau ist es im vergangenen Jahr gelungen 

das CRISPR/Cas9-System auch im Bereich der PKU anzuwenden, indem sie die häufigste 

(Allelfrequenz 21,4 %), mit einem schweren Phänotyp assoziierte PAH-Mutation R408W 
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therapierte (Pan et al. 2016). Die in COS-7 Zellen durchgeführten Experimente belegten den 

Anstieg der Enzymrestaktivität für die unter normalen Bedingungen nur schwer zu 

exprimierende PAH-Variante R408W. Das Ergebnis ist für alle Arbeitsgruppen, die sich mit 

der PKU beschäftigen richtungsweisend, denn es eröffnet zum ersten Mal die Möglichkeit 

auch Patienten mit schweren, nicht BH4-responsiven Erkrankungsformen zu therapieren und 

ihnen langfristig ein Leben ohne belastende Diät zu ermöglichen. Generell ist der Einsatz 

des CRISPR/Cas9-Systems ein weiterer großer Schritt in Richtung personalisierter Medizin 

und wird hoffentlich in Zukunft auf dem Gebiet der angeborenen Stoffwechselstörungen mit 

Erfolg für den Patienten zum Einsatz kommen.       
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6 Zusammenfassung 

Sapropterindihydrochlorid, die synthetische Form des natürlichen Kofaktors der PAH, wird 

seit 2007 als Wirkstoff zur Behandlung bei BH4-responsiven Patienten mit milderen Formen 

der Phenylketonurie durch PAH-Defizienz eingesetzt und wirkt stabilisierend auf das 

fehlgefaltete Enzym. Das Medikament entfaltet seine Wirkung durch pharmakologische 

Korrektur des auf Proteinfehlfaltung basierenden loss of function Phänotyps und führt zur 

Verbesserung der Enzymfunktion. Mittlerweile profitiert ein signifikanter Anteil an Patienten 

von der Therapie mit dem ersten pharmakologischen Chaperon. Da Patienten mit schwerem 

Phänotyp nicht auf die BH4-Therapie ansprechen und Sapropterindihydrochlorid zudem über 

unvorteilhafte pharmakokinetische Eigenschaften verfügt, ist die Entwicklung alternativer 

pharmazeutischer Produkte auch weiterhin erforderlich. Die gezielte medizinalchemische 

Entwicklung neuer Wirkstoffe für PKU-Patienten ist aber erst dann möglich, wenn die 

Wirkung von BH4 auf struktureller Ebene im Detail verstanden ist.  

Im Rahmen der vorliegenden Promotionsarbeit ging es daher zunächst um die Untersuchung 

der Struktur-Funktionsbeziehung von BH4, um zu analysieren, welche der beiden 

strukturellen Elemente des BH4-Moleküls – das kondensierte Pyrimidopyrazingrundgerüst 

oder die 1,2-Dihydroxypropylseitenkette – für die spezifischen Aspekte des Chaperon-

Effektes verantwortlich sind. Zu diesem Zweck wurden die strukturellen Einflüsse von BH4 

und den sich spezifisch von BH4 unterscheidenden Derivaten BH2, Sepiapterin und 6-MPH4 

auf den PAH-Wildtyp und die drei BH4-responsive PAH-Varianten R68S, R261Q und Y417H 

analysiert. Die Aminosäuresubstitutionen der PAH-Varianten sind in den drei 

unterschiedlichen Domänen des Enzyms lokalisiert und liegen jeweils im Interface zwischen 

je zwei angrenzenden Untereinheiten des Tetramers, wodurch sie in ein Netzwerk aus 

Seitenketteninteraktionen eingebettet sind, die konformative Änderungen nach Bindung von 

Substrat und oder Kofaktor über das gesamte Protein hinweg kommunizieren. Die 

vorliegenden Daten zeigen, dass die Bindung der untersuchten Substanzen im aktiven 

Zentrum der PAH zwei unterschiedliche molekulare Bewegungen im Protein induzieren, 

wobei das Pyrimidopyrazingrundgerüst die Induktion einer kompakten, dem MWG-Model 

(Monod et al. 1965) folgenden, t-state ähnlichen Konformation vermittelt, während die 

Seitenkette die Lösemittelzugänglichkeit hydrophober Gruppen reduziert. Zudem konnte 

gezeigt werden, dass das Ausmaß dieser molekularen Bewegungen vom Redoxzustand des 

Grundgerüsts und der Seitenkette abhängig ist. Die Analyse der PAH-Varianten ergab, dass 

die native Konformation der jeweiligen Apoenzyme im Vergleich zum Wildtyp aufgrund der 

Mutationen im PAH-Gen bereits verändert war und sich in den varianten Enzymen durch 

gezielte medizinalchemische Verstärkung der Einflüsse von Kofaktorgrundgerüst sowie -

seitenkette unterschiedliche therapeutische Effekte auslösen lassen. Zusammenfassend 

konnte innerhalb des ersten Teilprojekts der Promotionsarbeit gezeigt werden, dass einzelne 

strukturelle Teilbereiche des BH4-Moleküls für spezifische Aspekte des Chaperon-Effektes 

verantwortlich sind und diese genotypspezifisch entfalten. Die Ergebnisse machen deutlich, 

dass die beiden strukturell unterschiedlichen Elemente des Kofaktors für das zukünftige 

Wirkstoffdesign auf dem Gebiet der PKU eine wichtige Rolle spielen werden und die aus der 
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Analyse der Struktur-Funktionsbeziehung von BH4 gewonnenen Erkenntnisse in Zukunft 

dazu dienen könnten, in einem medizinalchemischen Ansatz die gezielte Entwicklung neuer, 

pharmakologischer Wirkstoffe für unterschiedliche Patientengruppen der Phenylketonurie zu 

forcieren. Die Aufklärung des Struktur-Funktionsmechanismus von BH4 am Beispiel der PAH 

ließe sich in Zukunft möglicherweise auch für andere BH4-abhängige Enzyme nutzen, um die 

damit einhergehenden Erkrankungen besser zu verstehen und zu therapieren. Unabhängig 

davon sollten sich die am Beispiel der Phenylketonurie gewonnen Erkenntnisse auch auf 

weitere angeborene Stoffwechselerkrankungen ausweiten lassen, denen ein 

Funktionsverlust der betroffenen, krankheitsverursachenden Enzyme zu Grunde liegt.  

Neben der Untersuchung des Chaperon-Effekts von BH4 wurde der Effekt von vier neuen, in 

der Literatur als potentielle pharmakologische Chaperon-Alternativen zu BH4 gehandelten 

Substanzen sowie dem im Rahmen der Promotionsarbeit neu vorgeschlagenen 4,5-

Diaminopyrimidin mit der Wirkung von BH4 auf den PAH-Wildtyp verglichen. Es wurde 

deutlich, dass keine der fünf Substanzen in vitro und in vivo die stabilisierende Wirkung von 

BH4 erreicht und der natürliche Kofaktor der PAH somit vorerst das einzige 

pharmakologische Chaperon zur Therapie der BH4-responsiven Form der PKU bleibt. Daher 

ging es im zweiten großen Teilprojekt der Promotionsarbeit darum, im eigenen Labor neue 

stabilisierende Leitsubstanzen für die PAH zu identifizieren und zu validieren, die langfristig 

als alternative pharmakologische Chaperone neben BH4 als Therapeutikum eingesetzt 

werden können. Zunächst wurde durch externe Partner eine Datenbank von über 8,8 

Millionen kommerziell erhältlicher Substanzen durch ein virtuelles Screening analysiert, 

indem die Substanzen auf Grundlage der 3D-Struktur des PAH-Wildtyps in die Bindestellen 

für Substrat und Kofaktor gefittet wurden. Hierdurch konnten 234 vielversprechende 

Liganden identifiziert werden, deren Einfluss auf den PAH-Wildtyp und ausgewählte PAH-

Varianten in vitro und in vivo durch drei unabhängige Screening-Ansätze in unserem Labor 

untersucht wurde. Final konnten wir drei der 234 Substanzen als zukünftige 

erfolgversprechende Leitsubstanzen identifizieren, die nun in einen pharmakologischen 

Entwicklungsprozess in Kooperation mit externen Partnern überführt werden.      

Zusammenfassend hat die hier vorliegende Promotionsarbeit entscheidend dazu 

beigetragen, den Struktur-Funktionsmechanismus von BH4 aufzuklären und weitere 

pharmakologische Chaperone für die Therapie von Patienten mit Phenylketonurie – Kinder 

und Erwachsene – zu identifizieren. 
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7 Abkürzungen 

6-MPH4 6-Methyltetrahydropterin 

 

A280 Absorption bei 280 nm 

ANS 8-anilinonaphthalin-1-sulfonsäure 

 

BH2 7,8-dihydro-L-biopterin 

BH4 5,6,7,8-Tetrahydrobiopterin 

BSA Rinderserumalbumin 

 

CD Circulardichroismus 

cDNA komplementäre DNA 

CRISPR Clustered Regularly Interspaced Short Palindromic Repeats 

 

Da Dalton 

DLS Dynamische Lichtstreuung 

DMSO Dimethylsulfoxid 

DNA Desoxyribonukleinsäure 

DSF Differential Scanning Fluorimetry 

DTT 1,4-Dithiothreitol 

DT Translationaler Diffusionskoeffizient 

 

EA Aktivierungsenergie 

E. coli Escherichia coli 

EDTA Ethylendiamintetraessigsäure 

 

FKS Fötales Kälberserum 

 

ΔG Änderung der Gibbs-Energie 

GAPDH Glycerinaldehyd-3-phosphat-Dehydrogenase 

 

h Plancksches Wirkungsquantum 

ΔH Änderung der Reaktionsenthalpie 

Hepes N-(2-Hydroxyethyl)-piperazin-N’-2-ethansulfonsäure 

HPLC High Performance Liquid Chromatography 
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HRP Horseradish (Meerrettich) Peroxidase 

 

IARS intrinsische autoregulatorische Sequenz 

IC50 mittlere inhibitorische Konzentration  

IgG Immunglobulin G 

IPTG Isopropyl-β-D-thiogalactopyranosid 

 

J Joule 

 

k Geschwindigkeitskonstante 

K Kelvin 

kB Boltzmann-Konstante 

KD Dissoziationskonstante 

kDa Kilodalton 

Ki Inhibitorische Konstante 

 

λ Wellenlänge 

LB Luria-Broth 

LDS Lithiumdodecylsulfat 

 

MBP Maltose-Bindeprotein 

MCAD Medium-Chain Acyl-CoA Dehydrogenase 

MCADM Medium-Chain Acyl-CoA Dehydrogenase-Mangel 

MOPS 3-(N-Morpholino)propansulfonsäure 

6-MPH4 6-Methyltetrahydropterin 

MST MicroScale Thermophorese  

MW Molekulargewicht 

MWC Monod-Wyman-Changeux  

 

NBS Neugeborenen-Screening 

NHS N-Hydroxysuccinimid 

 

OD Optische Dichte 

 

PAGE Polyacrylamid-Gelelektrophorese 
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PAH Phenylalaninhydroxylase 

PAL Phenylalanin-Ammoniak-Lyase 

L-Phe L-Phenylalanin 

PCR Polymerasekettenreaktion 

PVDF Polyvinylidendifluorid 

 

R Universelle Gaskonstante 

RH Hydrodynamischer Radius 

 

ΔS Änderung der Reaktionsentropie 

SDS Sodiumdodecylsulfat 

SMW small molecular weight 

SP Sepiapterin 

 

T absolute Temperatur in Kelvin 

TBS Tris-buffered saline 

TEV Tobacco Etch Virus 

TH Tyrosinhydroxylase 

TPH Trypthophanhydroxylase 

Tris Tris-(hydroxymethyl)-aminomethan 

L-Tyr L-Tyrosin 

 

UpM Umdrehungen pro Minute 

 

 

 

  



 
 8 ABBILDUNGSVERZEICHNIS 

 

 
 137 
 

8 Abbildungsverzeichnis  

Abbildung 1. Das Phenylalaninhydroxylase System .............................................................. 2 

Abbildung 2. Struktur des PAH Monomers und des funktionellen Tetramers ......................... 3 

Abbildung 3. Schema eines Phenylalaninhydroxylase-Monomers ......................................... 4 

Abbildung 4. Schematische Darstellung des 2-His-1-carboxyl facial triad Motivs ................... 5 

Abbildung 5. BH4-abhängige Aminosäurehydroxylasen ......................................................... 7 

Abbildung 6. Schema für die durch die PAH katalysierte Reaktion ........................................ 8 

Abbildung 7. Energiediagramm für Proteinfaltung und Fehlfaltung .......................................15 

Abbildung 8. Schematische Darstellung der Gateway®-Klonierung .......................................29 

Abbildung 9. Oligomerisierungsprofile des PAH-Wildtyps und SDS-PAGE ...........................60 

Abbildung 10. Activity landscape des PAH-Wildtyps mit BH4 und L-Phe ...............................61 

Abbildung 11. UV-CD-Spektrum des PAH-Wildtyps .............................................................62 

Abbildung 12. Thermische Denaturierung des PAH-Wildtyps ...............................................63 

Abbildung 13. Ergebnisse der dynamischen Lichtstreuung des PAH-Wildtyps .....................64 

Abbildung 14. Intrinsisches Tryptophanfluoreszenzemissionsspektrum des PAH-Wildtyps ..65 

Abbildung 15. Entfaltungskinetiken des PAH-Wildtyps und Arrhenius-Plot ...........................66 

Abbildung 16. Strukturformel von 5,6,7,8-Tetrahydrobiopterin ..............................................67 

Abbildung 17. Strukturformeln von BH4 und BH4-Derivaten ..................................................67 

Abbildung 18. Bindungsnetzwerk von BH4 im aktiven Zentrum des PAH-Wildtyps ...............69 

Abbildung 19. Bindungsnetzwerk von Sepiapterin und 6-MPH4 ............................................70 

Abbildung 20. MST-Messungen des Wildtyps im Komplex mit BH4 und BH4-Derivaten ........71 

Abbildung 21. Activity landscape des PAH-Wildtyps mit 6-MPH4 und L-Phe .........................73 

Abbildung 22. Inhibierung des PAH-Wildtyps durch BH2 und Sepiapterin (SP) .....................74 

Abbildung 23. Umschlagspunkte und Hydrophobizität des PAH-Wildtyps.............................75 

Abbildung 24. DLS Ergebnisse des PAH-Wildtyps ...............................................................76 

Abbildung 25. Intrinsische Tryptophanfluoreszenzemissionsspektren des PAH-Wildtyps .....77 

Abbildung 26. Entfaltungskinetiken des PAH-Wildtyps .........................................................78 

Abbildung 27. Arrhenius-Plot und Aktivierungsenergien des PAH-Wildtyps ..........................79 

Abbildung 28. Aminosäureinteraktionen im PAH-Wildtyp ......................................................81 

Abbildung 29. Oligomerisierungsprofile der Enzyme ohne und mit Fusionspartner ...............82 

Abbildung 30. SDS-Gel zur Dokumentation einzelner Reinigungsschritte.............................83 

Abbildung 31. Thermische Denaturierung von PAH-Wildtyp und Varianten ..........................84 

Abbildung 32. Hydrodynamischer Radius von PAH-Wildtyp und Varianten ..........................85 

Abbildung 33. Intrinsische Tryptophanfluoreszenzemissionsspektren der Enzyme ...............86 

Abbildung 34. Entfaltungskinetiken, Arrhenius-Plot und Aktivierungsenergien ......................87 



 
 8 ABBILDUNGSVERZEICHNIS 

 

 
 138 
 

Abbildung 35. Hydrophobizität von PAH-Wildtyp und Varianten ...........................................90 

Abbildung 36. Hydrodynamische Radien von PAH-Wildtyp und Varianten ...........................91 

Abbildung 37. Intrinsische Tryptophanfluoreszenzemissionsspektren der Enzyme ...............93 

Abbildung 38. Arrhenius-Plots von PAH-Wildtyp und Varianten ............................................94 

Abbildung 39. Aktivierungsenergien von PAH-Wildtyp und Varianten ...................................95 

Abbildung 40. Strukturformeln von neuen pharmakologischen Chaperonen für die PAH ......97 

Abbildung 41. Interaktionsstudien von Substanz 1 ...............................................................98 

Abbildung 42. Interaktionsstudien der Substanzen 3 und 4 ..................................................99 

Abbildung 43. MST-Daten des PAH Wildtyps im Komplex mit Substanzen 1-4 .................. 101 

Abbildung 44. Inhibierung der Enzymaktivität des Wildtyps durch Substanzen 1, 3 und 4 .. 102 

Abbildung 45. DSF-Assay des PAH-Wildtyps im Komplex mit den Liganden 1-4 ................ 103 

Abbildung 46. Biophysikalische Charakterisierung des Wildtyps mit Liganden 1-4 ............. 105 

Abbildung 47. Interaktionsstudien von 4,5-Diaminopyrimidin .............................................. 106 

Abbildung 48. MST-Daten und Inhibierungsassay des Wildtyps mit 4,5-Diaminopyrimidin . 107 

Abbildung 49. Biophysikalische Charakterisierung des Wildtyps mit 4,5-Diaminopyrimidin . 108 

Abbildung 50. Analyse der Restproteinmenge nach Expression in COS-7 Zellen ............... 110 

Abbildung 51. Analyse der PAH-Enzymrestaktivität nach Expression in COS-7 Zellen ....... 111 

Abbildung 52. Oligomerisierungsprofile der Enzyme mit und ohne MBP-Fusionspartner .... 114 

Abbildung 53. Beispielbelegung einer 96-well Platte im DSF-Screen ................................. 115 

Abbildung 54. DSF-Assay mit SYPRO® Orange ................................................................. 116 

Abbildung 55. Ergebnisse des DSF-Screens ...................................................................... 118 

Abbildung 56. Bioinformatische Auswertung des DSF-Screens .......................................... 119 

Abbildung 57. Ergebnis des DSF-Screens .......................................................................... 120 

Abbildung 58. Ergebnisse aus DSF-, Zell- und MST-Screen .............................................. 122 

Abbildung 59. Ergebnis der drei unabhängigen Screens .................................................... 123 

 



 
 9 TABELLENVERZEICHNIS 

 

 
 139 
 

9 Tabellenverzeichnis  

Tabelle 1. Verwendete Chemikalien .....................................................................................21 

Tabelle 2. Verwendete E. coli Bakterienstämme ...................................................................21 

Tabelle 3. Verwendete Vektoren ..........................................................................................22 

Tabelle 4. Verwendete Enzyme ............................................................................................22 

Tabelle 5. Verwendete Zellkulturmaterialien .........................................................................22 

Tabelle 6. Verwendete Kits und Größenstandards ...............................................................23 

Tabelle 7. Verwendete Antikörper ........................................................................................23 

Tabelle 8. Eingesetzte Antibiotika .........................................................................................24 

Tabelle 9. Verwendete Materialien .......................................................................................26 

Tabelle 10. Verwendete Geräte ............................................................................................27 

Tabelle 11. Verwendete Software .........................................................................................28 

Tabelle 12. Oligonucleotide zur Erzeugung eines attB-Gateway-PCR-Produkts ...................29 

Tabelle 13. PCR-Pipettierschema zur Erzeugung einer attB-Site flankierten cDNA ..............30 

Tabelle 14. Thermocycler-Protokoll zur Generierung des attB-PCR-Produkts ......................30 

Tabelle 15. Pipettierschema für die BP-Rekombinationsreaktion ..........................................31 

Tabelle 16. Pipettierschema für die LR-Rekombinationsreaktion ..........................................32 

Tabelle 17. Pipettierschema für die SDM zur Erzeugung varianter PAH Entry Clones..........32 

Tabelle 18. Thermocycler-Protokoll zur Durchführung der ortsspezifischen Mutagenese .....33 

Tabelle 19. Oligonukleotide für die ortsspezifische Mutagenese ...........................................33 

Tabelle 20. Pipettierschema für einen Restriktionsansatz .....................................................34 

Tabelle 21. Ablauf der Immundetektion ................................................................................42 

Tabelle 22. Klonierte Konstrukte während der Promotionsarbeit ..........................................58 

Tabelle 23. Kinetische und thermodynamische Parameter für die Entfaltung des Wildtyps ..66 

Tabelle 24. Berechnete Geschwindigkeitskonstanten und thermodynamische Parameter ....80 

Tabelle 25. Berechnete Umschlagpunkte nach thermischer Denaturierung der Varianten ....89 

Tabelle 26. Berechnete Geschwindigkeitskonstanten und thermodynamische Parameter ....96 

Tabelle 27. Berechnete Umschlagpunkte des Wildtyps im Komplex mit den Liganden 1-4 . 103 

Tabelle 28. Mit MST gemessene Bindungskonstanten KD .................................................. 121 

 

  



 
 10 LITERATURVERZEICHNIS 

 

 
 140 
 

10 Literaturverzeichnis 

1. Almas B, Toska K, Teigen K, et al. A kinetic and conformational study on the interaction of 
tetrahydropteridines with tyrosine hydroxylase. Biochemistry 2000;39:13676-86. 
2. Andersen OA, Flatmark T, Hough E. High resolution crystal structures of the catalytic domain of 
human phenylalanine hydroxylase in its catalytically active Fe(II) form and binary complex with 
tetrahydrobiopterin. J Mol Biol 2001;314:279-91. 
3. Andersen OA, Flatmark T, Hough E. Crystal structure of the ternary complex of the catalytic domain 
of human phenylalanine hydroxylase with tetrahydrobiopterin and 3-(2-thienyl)-L-alanine, and its 
implications for the mechanism of catalysis and substrate activation. J Mol Biol 2002;320:1095-108. 
4. Andersen OA, Stokka AJ, Flatmark T, Hough E. 2.0A resolution crystal structures of the ternary 
complexes of human phenylalanine hydroxylase catalytic domain with tetrahydrobiopterin and 3-(2-
thienyl)-L-alanine or L-norleucine: substrate specificity and molecular motions related to substrate 
binding. J Mol Biol 2003;333:747-57. 
5. Anfinsen CB. Principles that govern the folding of protein chains. Science 1973;181:223-30. 
6. Anikster Y, Haack TB, Vilboux T, et al. Biallelic Mutations in DNAJC12 Cause 
Hyperphenylalaninemia, Dystonia, and Intellectual Disability. Am J Hum Genet 2017;100:257-266. 
7. Arturo EC, Gupta K, Heroux A, et al. First structure of full-length mammalian phenylalanine 
hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 
2016;113:2394-9. 
8. Ayling JE, Helfand GD, Pirson WD. Phenylalanine hydroxylase from human kidney. Enzyme 
1975;20:6-19. 
9. Baaske P, Wienken CJ, Reineck P, Duhr S, Braun D. Optical thermophoresis for quantifying the 
buffer dependence of aptamer binding. Angew Chem Int Ed Engl 2010;49:2238-41. 
10. Bailey SW, Ayling JE. Pyrimidines as cofactors for phenylalanine hydroxylase. Biochem Biophys 
Res Commun 1978;85:1614-21. 
11. Bailey SW, Dillard SB, Ayling JE. Role of C6 chirality of tetrahydropterin cofactor in catalysis and 
regulation of tyrosine and phenylalanine hydroxylases. Biochemistry 1991;30:10226-35. 
12. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 
2008;319:916-9. 
13. Bassan A, Blomberg MR, Siegbahn PE. Mechanism of aromatic hydroxylation by an activated 
FeIV=O core in tetrahydrobiopterin-dependent hydroxylases. Chemistry 2003;9:4055-67. 
14. Bernier V, Lagace M, Bichet DG, Bouvier M. Pharmacological chaperones: potential treatment for 
conformational diseases. Trends in endocrinology and metabolism: TEM 2004;15:222-8. 
15. Bickel H, Gerrard J, Hickmans EM. Influence of phenylalanine intake on phenylketonuria. Lancet 
1953;265:812-3. 
16. Bickel H, Gerrard J, Hickmans EM. The influence of phenylalanine intake on the chemistry and 
behaviour of a phenyl-ketonuric child. Acta Paediatr 1954;43:64-77. 
17. Bigham EC, Smith GK, Reinhard JF, Jr., Mallory WR, Nichol CA, Morrison RW, Jr. Synthetic 
analogues of tetrahydrobiopterin with cofactor activity for aromatic amino acid hydroxylases. J Med 
Chem 1987;30:40-5. 
18. Bjorgo E, Knappskog PM, Martinez A, Stevens RC, Flatmark T. Partial characterization and three-
dimensional-structural localization of eight mutations in exon 7 of the human phenylalanine 
hydroxylase gene associated with phenylketonuria. Eur J Biochem 1998;257:1-10. 
19. Blau N. Differenzialdiagnose der Hyperphenylalaninämien – Screening auf angeborene 
Stoffwechselkrankheiten. In: Zeitschrift Kinder- und Jugendmedizin Schattauer GmbH, 2006:225 – 
232. 
20. Blau N, Erlandsen H. The metabolic and molecular bases of tetrahydrobiopterin-responsive 
phenylalanine hydroxylase deficiency. Mol Genet Metab 2004;82:101-11. 
21. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein 
utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. 
22. Buchner J. Introduction: the cellular protein folding machinery. Cellular and molecular life sciences 
: CMLS 2002;59:1587-8. 
23. Cantor CR, Schimmel PR. Biophysical Chemistry Vol II., San Francisco, 1980b. 
24. Chehin R, Thorolfsson M, Knappskog PM, et al. Domain structure and stability of human 
phenylalanine hydroxylase inferred from infrared spectroscopy. FEBS Lett 1998;422:225-30. 



 
 10 LITERATURVERZEICHNIS 

 

 
 141 
 

25. Cheng Y, Prusoff WH. Relationship between the inhibition constant (K1) and the concentration of 
inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochemical pharmacology 
1973;22:3099-108. 
26. Costas M, Mehn MP, Jensen MP, Que L, Jr. Dioxygen activation at mononuclear nonheme iron 
active sites: enzymes, models, and intermediates. Chem Rev 2004;104:939-86. 
27. Danecka MK, Woidy M, Zschocke J, Feillet F, Muntau AC, Gersting SW. Mapping the functional 
landscape of frequent phenylalanine hydroxylase (PAH) genotypes promotes personalised medicine in 
phenylketonuria. J Med Genet 2015;52:175-85. 
28. Daubner SC, Moran GR, Fitzpatrick PF. Role of tryptophan hydroxylase phe313 in determining 
substrate specificity. Biochem Biophys Res Commun 2002;292:639-41. 
29. Davis MD, Parniak MA, Kaufman S, Kempner E. The role of phenylalanine in structure-function 
relationships of phenylalanine hydroxylase revealed by radiation target analysis. Proc Natl Acad Sci U 
S A 1997;94:491-5. 
30. DePristo MA, Weinreich DM, Hartl DL. Missense meanderings in sequence space: a biophysical 
view of protein evolution. Nat Rev Genet 2005;6:678-87. 
31. Dickson PW, Jennings IG, Cotton RG. Delineation of the catalytic core of phenylalanine 
hydroxylase and identification of glutamate 286 as a critical residue for pterin function. J Biol Chem 
1994;269:20369-75. 
32. Ding Z, Georgiev P, Thony B. Administration-route and gender-independent long-term therapeutic 
correction of phenylketonuria (PKU) in a mouse model by recombinant adeno-associated virus 8 
pseudotyped vector-mediated gene transfer. Gene Ther 2006;13:587-93. 
33. Dobrowolski SF, Heintz C, Miller T, et al. Molecular genetics and impact of residual in vitro 
phenylalanine hydroxylase activity on tetrahydrobiopterin responsiveness in Turkish PKU population. 
Mol Genet Metab 2011;102:116-21. 
34. Dobrowolski SF, Pey AL, Koch R, et al. Biochemical characterization of mutant phenylalanine 
hydroxylase enzymes and correlation with clinical presentation in hyperphenylalaninaemic patients. J 
Inherit Metab Dis 2009;32:10-21. 
35. Doskeland AP, Flatmark T. Recombinant human phenylalanine hydroxylase is a substrate for the 
ubiquitin-conjugating enzyme system. Biochem J 1996;319 ( Pt 3):941-5. 
36. Doskeland AP, Martinez A, Knappskog PM, Flatmark T. Phosphorylation of recombinant human 
phenylalanine hydroxylase: effect on catalytic activity, substrate activation and protection against non-
specific cleavage of the fusion protein by restriction protease. Biochem J 1996;313 ( Pt 2):409-14. 
37. Doskeland AP, Vintermyr OK, Flatmark T, Cotton RG, Doskeland SO. Phenylalanine positively 
modulates the cAMP-dependent phosphorylation and negatively modulates the vasopressin-induced 
and okadaic-acid-induced phosphorylation of phenylalanine 4-monooxygenase in intact rat 
hepatocytes. Eur J Biochem 1992;206:161-70. 
38. Duhr S, Braun D. Why molecules move along a temperature gradient. Proc Natl Acad Sci U S A 
2006;103:19678-82. 
39. Eiken HG, Knappskog PM, Apold J, Flatmark T. PKU mutation G46S is associated with increased 
aggregation and degradation of the phenylalanine hydroxylase enzyme. Hum Mutat 1996;7:228-38. 
40. Enns GM, Koch R, Brumm V, Blakely E, Suter R, Jurecki E. Suboptimal outcomes in patients with 
PKU treated early with diet alone: revisiting the evidence. Mol Genet Metab 2010;101:99-109. 
41. Erlandsen H. Molecular mechanism of tetrahydrobiopterin-responsiveness. Heilbronn: SPS 
Verlagsgesellschaft, 2006. 
42. Erlandsen H, Bjorgo E, Flatmark T, Stevens RC. Crystal structure and site-specific mutagenesis of 
pterin-bound human phenylalanine hydroxylase. Biochemistry 2000;39:2208-17. 
43. Erlandsen H, Flatmark T, Stevens RC, Hough E. Crystallographic analysis of the human 
phenylalanine hydroxylase catalytic domain with bound catechol inhibitors at 2.0 A resolution. 
Biochemistry 1998;37:15638-46. 
44. Erlandsen H, Fusetti F, Martinez A, Hough E, Flatmark T, Stevens RC. Crystal structure of the 
catalytic domain of human phenylalanine hydroxylase reveals the structural basis for phenylketonuria. 
Nat Struct Biol 1997;4:995-1000. 
45. Erlandsen H, Stevens RC. The structural basis of phenylketonuria. Mol Genet Metab 1999;68:103-
25. 
46. Fan JQ. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant 
enzyme activity. Trends Pharmacol Sci 2003;24:355-60. 
47. Fan JQ. A counterintuitive approach to treat enzyme deficiencies: use of enzyme inhibitors for 
restoring mutant enzyme activity. Biol Chem 2008;389:1-11. 



 
 10 LITERATURVERZEICHNIS 

 

 
 142 
 

48. Fan JQ, Ishii S. Active-site-specific chaperone therapy for Fabry disease. Yin and Yang of enzyme 
inhibitors. FEBS J 2007;274:4962-71. 
49. Fan JQ, Ishii S, Asano N, Suzuki Y. Accelerated transport and maturation of lysosomal alpha-
galactosidase A in Fabry lymphoblasts by an enzyme inhibitor. Nature medicine 1999;5:112-5. 
50. Fitzpatrick PF. The aromatic amino acid hydroxylases. Adv Enzymol Relat Areas Mol Biol 
2000;74:235-94. 
51. Fitzpatrick PF. Mechanism of aromatic amino acid hydroxylation. Biochemistry 2003;42:14083-91. 
52. Flatmark T, Stevens RC. Structural Insight into the Aromatic Amino Acid Hydroxylases and Their 
Disease-Related Mutant Forms. Chem Rev 1999;99:2137-2160. 
53. Folling A. Ueber Ausscheidung von Phenylbrenztraubensaeure in den Harn als 
Stoffwechselanomalie in Verbindung mit Imbezillitaet. In: Ztschr Physiol Chem. 1934:169–176. 
54. Fusetti F, Erlandsen H, Flatmark T, Stevens RC. Structure of tetrameric human phenylalanine 
hydroxylase and its implications for phenylketonuria. J Biol Chem 1998;273:16962-7. 
55. Gasiunas G, Barrangou R, Horvath P, Siksnys V. Cas9-crRNA ribonucleoprotein complex 
mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 
2012;109:E2579-86. 
56. Germain DP, Hughes DA, Nicholls K, et al. Treatment of Fabry's Disease with the Pharmacologic 
Chaperone Migalastat. The New England journal of medicine 2016;375:545-55. 
57. Gersting SW, Kemter KF, Staudigl M, et al. Loss of function in phenylketonuria is caused by 
impaired molecular motions and conformational instability. Am J Hum Genet 2008;83:5-17. 
58. Gersting SW, Staudigl M, Truger MS, et al. Activation of phenylalanine hydroxylase induces 
positive cooperativity toward the natural cofactor. J Biol Chem 2010;285:30686-97. 
59. Gibbs BS, Wojchowski D, Benkovic SJ. Expression of rat liver phenylalanine hydroxylase in insect 
cells and site-directed mutagenesis of putative non-heme iron-binding sites. J Biol Chem 
1993;268:8046-52. 
60. Gjetting T, Petersen M, Guldberg P, Guttler F. Missense mutations in the N-terminal domain of 
human phenylalanine hydroxylase interfere with binding of regulatory phenylalanine. Am J Hum Genet 
2001;68:1353-60. 
61. Gregersen N. Protein misfolding disorders: pathogenesis and intervention. J Inherit Metab Dis 
2006;29:456-70. 
62. Guerin T, Walsh GA, Donlon J, Kaufman S. Correlation of rat hepatic phenylalanine hydroxylase, 
with tetrahydrobiopterin and GTP concentrations. Int J Biochem Cell Biol 1998;30:1047-54. 
63. Guldberg P, Rey F, Zschocke J, et al. A European multicenter study of phenylalanine hydroxylase 
deficiency: classification of 105 mutations and a general system for genotype-based prediction of 
metabolic phenotype. Am J Hum Genet 1998;63:71-9. 
64. Guthrie R, Susi A. A Simple Phenylalanine Method for Detecting Phenylketonuria in Large 
Populations of Newborn Infants. Pediatrics 1963;32:338-43. 
65. Hegg EL, Que L, Jr. The 2-His-1-carboxylate facial triad--an emerging structural motif in 
mononuclear non-heme iron(II) enzymes. Eur J Biochem 1997;250:625-9. 
66. Iwaki M, Phillips RS, Kaufman S. Proteolytic modification of the amino-terminal and carboxyl-
terminal regions of rat hepatic phenylalanine hydroxylase. J Biol Chem 1986;261:2051-6. 
67. Jennings IG, Cotton RG, Kobe B. Functional analysis, using in vitro mutagenesis, of amino acids 
located in the phenylalanine hydroxylase active site. Arch Biochem Biophys 2000;384:238-44. 
68. Jervis GA. Phenylpyruvic oligophrenia deficiency of phenylalanine-oxidizing system. Proc Soc Exp 
Biol Med 1953;82:514-5. 
69. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-
guided DNA endonuclease in adaptive bacterial immunity. Science 2012;337:816-21. 
70. Jones G, Willett P. Docking small-molecule ligands into active sites. Current opinion in 
biotechnology 1995;6:652-6. 
71. Jones G, Willett P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic 
algorithm for flexible docking. J Mol Biol 1997;267:727-48. 
72. Kappock TJ, Caradonna JP. Pterin-Dependent Amino Acid Hydroxylases. Chem Rev 
1996;96:2659-2756. 
73. Kappock TJ, Harkins PC, Friedenberg S, Caradonna JP. Spectroscopic and kinetic properties of 
unphosphorylated rat hepatic phenylalanine hydroxylase expressed in Escherichia coli. Comparison of 
resting and activated states. J Biol Chem 1995;270:30532-44. 
74. Kaufman S. The phenylalanine hydroxylating system. Adv Enzymol Relat Areas Mol Biol 
1993;67:77-264. 



 
 10 LITERATURVERZEICHNIS 

 

 
 143 
 

75. Kaufman S, Mason K. Specificity of amino acids as activators and substrates for phenylalanine 
hydroxylase. J Biol Chem 1982;257:14667-78. 
76. Kayaalp E, Treacy E, Waters PJ, Byck S, Nowacki P, Scriver CR. Human phenylalanine 
hydroxylase mutations and hyperphenylalaninemia phenotypes: a metanalysis of genotype-phenotype 
correlations. Am J Hum Genet 1997;61:1309-17. 
77. Kemsley JN, Mitic, N., Zaleski, K.L., Caradonna, J.P., Solomon E.I. Circular Dichroism and 
Magnetic Circular Dichroism Spectroscopy of the Catalytically Competent Ferrous Active Site of 
Phenylalanine Hydroxylase and Its Interaction with Pterin Cofactor. J Am Chem Soc 1999;121 
(7):1528–1536. 
78. Kemsley JN, Wasinger EC, Datta S, et al. Spectroscopic and kinetic studies of PKU-inducing 
mutants of phenylalanine hydroxylase: Arg158Gln and Glu280Lys. J Am Chem Soc 2003;125:5677-
86. 
79. Kim YE, Hipp MS, Bracher A, Hayer-Hartl M, Hartl FU. Molecular chaperone functions in protein 
folding and proteostasis. Annual review of biochemistry 2013;82:323-55. 
80. Kleppe R, Uhlemann K, Knappskog PM, Haavik J. Urea-induced denaturation of human 
phenylalanine hydroxylase. J Biol Chem 1999;274:33251-8. 
81. Knappskog PM, Flatmark T, Aarden JM, Haavik J, Martinez A. Structure/function relationships in 
human phenylalanine hydroxylase. Effect of terminal deletions on the oligomerization, activation and 
cooperativity of substrate binding to the enzyme. Eur J Biochem 1996;242:813-21. 
82. Knappskog PM, Haavik J. Tryptophan fluorescence of human phenylalanine hydroxylase 
produced in Escherichia coli. Biochemistry 1995;34:11790-9. 
83. Kobe B, Jennings IG, House CM, et al. Structural basis of autoregulation of phenylalanine 
hydroxylase. Nat Struct Biol 1999;6:442-8. 
84. Koshland DE, Jr., Nemethy G, Filmer D. Comparison of experimental binding data and theoretical 
models in proteins containing subunits. Biochemistry 1966;5:365-85. 
85. Kure S, Hou DC, Ohura T, et al. Tetrahydrobiopterin-responsive phenylalanine hydroxylase 
deficiency. J Pediatr 1999;135:375-8. 
86. Landy A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. 
Annual review of biochemistry 1989;58:913-49. 
87. Leandro P, Gomes CM. Protein misfolding in conformational disorders: rescue of folding defects 
and chemical chaperoning. Mini reviews in medicinal chemistry 2008;8:901-11. 
88. Lee P, Treacy EP, Crombez E, et al. Safety and efficacy of 22 weeks of treatment with sapropterin 
dihydrochloride in patients with phenylketonuria. Am J Med Genet A 2008;146A:2851-9. 
89. Levy HL, Milanowski A, Chakrapani A, et al. Efficacy of sapropterin dihydrochloride 
(tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with 
phenylketonuria: a phase III randomised placebo-controlled study. Lancet 2007;370:504-10. 
90. Lichter-Konecki U, Hipke CM, Konecki DS. Human phenylalanine hydroxylase gene expression in 
kidney and other nonhepatic tissues. Mol Genet Metab 1999;67:308-16. 
91. Lo MC, Aulabaugh A, Jin G, et al. Evaluation of fluorescence-based thermal shift assays for hit 
identification in drug discovery. Anal Biochem 2004;332:153-9. 
92. Longo N, Harding CO, Burton BK, et al. Single-dose, subcutaneous recombinant phenylalanine 
ammonia lyase conjugated with polyethylene glycol in adult patients with phenylketonuria: an open-
label, multicentre, phase 1 dose-escalation trial. Lancet 2014;384:37-44. 
93. Lottspeich F, Zorbas H. Bioanalytik. Spektrum Akademischer Verlag, Heidelberg, 1998. 
94. MacDonald MJ, D'Cunha GB. A modern view of phenylalanine ammonia lyase. Biochem Cell Biol 
2007;85:273-82. 
95. Malnasi-Csizmadia A, Hegyi G, Tolgyesi F, Szent-Gyorgyi AG, Nyitray L. Fluorescence 
measurements detect changes in scallop myosin regulatory domain. Eur J Biochem 1999;261:452-8. 
96. Martinez A, Knappskog PM, Olafsdottir S, et al. Expression of recombinant human phenylalanine 
hydroxylase as fusion protein in Escherichia coli circumvents proteolytic degradation by host cell 
proteases. Isolation and characterization of the wild-type enzyme. Biochem J 1995;306 ( Pt 2):589-97. 
97. Matalon R, Michals-Matalon K, Bhatia G, et al. Double blind placebo control trial of large neutral 
amino acids in treatment of PKU: effect on blood phenylalanine. J Inherit Metab Dis 2007;30:153-8. 
98. McKinney J, Teigen K, Froystein NA, et al. Conformation of the substrate and pterin cofactor 
bound to human tryptophan hydroxylase. Important role of Phe313 in substrate specificity. 
Biochemistry 2001;40:15591-601. 
99. Miranda FF, Teigen K, Thorolfsson M, et al. Phosphorylation and mutations of Ser(16) in human 
phenylalanine hydroxylase. Kinetic and structural effects. J Biol Chem 2002;277:40937-43. 



 
 10 LITERATURVERZEICHNIS 

 

 
 144 
 

100. Miranda FF, Thorolfsson M, Teigen K, Sanchez-Ruiz JM, Martinez A. Structural and stability 
effects of phosphorylation: Localized structural changes in phenylalanine hydroxylase. Protein Sci 
2004;13:1219-26. 
101. Mitnaul LJ, Shiman R. Coordinate regulation of tetrahydrobiopterin turnover and phenylalanine 
hydroxylase activity in rat liver cells. Proc Natl Acad Sci U S A 1995;92:885-9. 
102. Monod J, Wyman J, Changeux JP. On the Nature of Allosteric Transitions: A Plausible Model. J 
Mol Biol 1965;12:88-118. 
103. Mu TW, Ong DS, Wang YJ, et al. Chemical and biological approaches synergize to ameliorate 
protein-folding diseases. Cell 2008;134:769-81. 
104. Mullis KB, Faloona FA. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain 
reaction. Methods in enzymology 1987;155:335-50. 
105. Muntau AC, Beblo, S., Koletzko, B. Phenylketonurie und Hyperphenylalaninämie. In: 
Monatsschrift Kinderheilkunde. Springer-Verlag 2000, 2000:179-193. 
106. Muntau AC, Gersting SW. Phenylketonuria as a model for protein misfolding diseases and for the 
development of next generation orphan drugs for patients with inborn errors of metabolism. J Inherit 
Metab Dis 2010;33:649-58. 
107. Muntau AC, Leandro J, Staudigl M, Mayer F, Gersting SW. Innovative strategies to treat protein 
misfolding in inborn errors of metabolism: pharmacological chaperones and proteostasis regulators. J 
Inherit Metab Dis 2014;37:505-23. 
108. Muntau AC, Roschinger W, Habich M, et al. Tetrahydrobiopterin as an alternative treatment for 
mild phenylketonuria. The New England journal of medicine 2002;347:2122-32. 
109. Nennstiel-Ratzel U, Holscher G, Ehrensperger-Reeh P, von Kries R, Wildner M. Prevention of 
Sudden Infant Death Syndrome (SIDS) in Bavaria - evaluation of a prevention campaign. Klin Padiatr 
2010;222:45-50. 
110. Niesen FH, Berglund H, Vedadi M. The use of differential scanning fluorimetry to detect ligand 
interactions that promote protein stability. Nature protocols 2007;2:2212-21. 
111. Pan Y, Shen N, Jung-Klawitter S, et al. CRISPR RNA-guided FokI nucleases repair a PAH 
variant in a phenylketonuria model. Scientific reports 2016;6:35794. 
112. Pantoliano MW, Petrella EC, Kwasnoski JD, et al. High-density miniaturized thermal shift assays 
as a general strategy for drug discovery. Journal of biomolecular screening 2001;6:429-40. 
113. Parenti G, Pignata C, Vajro P, Salerno M. New strategies for the treatment of lysosomal storage 
diseases (review). International journal of molecular medicine 2013;31:11-20. 
114. Patel D, Kopec J, Fitzpatrick F, McCorvie TJ, Yue WW. Structural basis for ligand-dependent 
dimerization of phenylalanine hydroxylase regulatory domain. Scientific reports 2016;6:23748. 
115. Pey AL, Desviat LR, Gamez A, Ugarte M, Perez B. Phenylketonuria: genotype-phenotype 
correlations based on expression analysis of structural and functional mutations in PAH. Hum Mutat 
2003;21:370-8. 
116. Pey AL, Martinez A. The activity of wild-type and mutant phenylalanine hydroxylase and its 
regulation by phenylalanine and tetrahydrobiopterin at physiological and pathological concentrations: 
an isothermal titration calorimetry study. Mol Genet Metab 2005;86 Suppl 1:S43-53. 
117. Pey AL, Perez B, Desviat LR, et al. Mechanisms underlying responsiveness to 
tetrahydrobiopterin in mild phenylketonuria mutations. Hum Mutat 2004a;24:388-99. 
118. Pey AL, Thorolfsson M, Teigen K, Ugarte M, Martinez A. Thermodynamic characterization of the 
binding of tetrahydropterins to phenylalanine hydroxylase. J Am Chem Soc 2004b;126:13670-8. 
119. Pey AL, Ying M, Cremades N, et al. Identification of pharmacological chaperones as potential 
therapeutic agents to treat phenylketonuria. J Clin Invest 2008;118:2858-67. 
120. Pey ALaM, A. The Phenylalanine Hydroxylase System. Heilbronn: SPS Verlagsgesellschaft 
2006. 
121. Pietz J, Kreis R, Rupp A, et al. Large neutral amino acids block phenylalanine transport into brain 
tissue in patients with phenylketonuria. J Clin Invest 1999;103:1169-78. 
122. Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to 
diseases of proteostasis deficiency. Annual review of biochemistry 2009;78:959-91. 
123. Rajan RS, Tsumoto K, Tokunaga M, Tokunaga H, Kita Y, Arakawa T. Chemical and 
pharmacological chaperones: application for recombinant protein production and protein folding 
diseases. Current medicinal chemistry 2011;18:1-15. 
124. Ramus SJ, Forrest SM, Pitt DB, Saleeba JA, Cotton RG. Comparison of genotype and intellectual 
phenotype in untreated PKU patients. J Med Genet 1993;30:401-5. 



 
 10 LITERATURVERZEICHNIS 

 

 
 145 
 

125. Rooney EK, Lee AG. Fitting fluorescence emission spectra of probes bound to biological 
membranes. J Biochem Biophys Methods 1986;12:175-89. 
126. Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning. Cold Spring Harbor 
Press, New York, 1989. 
127. Santos-Sierra S, Kirchmair J, Perna AM, et al. Novel pharmacological chaperones that correct 
phenylketonuria in mice. Hum Mol Genet 2012. 
128. Sarkissian CN, Gamez A, Wang L, et al. Preclinical evaluation of multiple species of PEGylated 
recombinant phenylalanine ammonia lyase for the treatment of phenylketonuria. Proc Natl Acad Sci U 
S A 2008;105:20894-9. 
129. Sarkissian CN, Kang TS, Gamez A, Scriver CR, Stevens RC. Evaluation of orally administered 
PEGylated phenylalanine ammonia lyase in mice for the treatment of Phenylketonuria. Mol Genet 
Metab 2011;104:249-54. 
130. Sawabe K, Wakasugi KO, Hasegawa H. Tetrahydrobiopterin uptake in supplemental 
administration: elevation of tissue tetrahydrobiopterin in mice following uptake of the exogenously 
oxidized product 7,8-dihydrobiopterin and subsequent reduction by an anti-folate-sensitive process. 
Journal of pharmacological sciences 2004;96:124-33. 
131. Schallreuter KU, Wood JM, Pittelkow MR, et al. Regulation of melanin biosynthesis in the human 
epidermis by tetrahydrobiopterin. Science 1994;263:1444-6. 
132. Scholtz JM, Qian H, York EJ, Stewart JM, Baldwin RL. Parameters of helix-coil transition theory 
for alanine-based peptides of varying chain lengths in water. Biopolymers 1991;31:1463-70. 
133. Scriver CR, Hurtubise M, Konecki D, et al. PAHdb 2003: what a locus-specific knowledgebase 
can do. Hum Mutat 2003;21:333-44. 
134. Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends 
Genet 1999;15:267-72. 
135. Scriver CRK, S. Hyperphenylalaninemia: Phenylalanine Hydroxylase Deficiency in the Metabolic 
& Molecular Bases of Inhertited Disease. New York: McGraw-Hill, 2001. 
136. Seidel SA, Wienken CJ, Geissler S, et al. Label-free microscale thermophoresis discriminates 
sites and affinity of protein-ligand binding. Angew Chem Int Ed Engl 2012;51:10656-9. 
137. Shanmuganathan M, Britz-McKibbin P. Inhibitor screening of pharmacological chaperones for 
lysosomal beta-glucocerebrosidase by capillary electrophoresis. Anal Bioanal Chem 2011;399:2843-
53. 
138. Shiman R. Relationship between the substrate activation site and catalytic site of phenylalanine 
hydroxylase. J Biol Chem 1980;255:10029-32. 
139. Shiman R. Phenylalanine hydroxylase and dihydropterin reductase. New York: Wiley and Sons, 
1985. 
140. Smith I, Knowles J. Behaviour in early treated phenylketonuria: a systematic review. Eur J Pediatr 
2000;159 Suppl 2:S89-93. 
141. Solomon EI, Decker A, Lehnert N. Non-heme iron enzymes: contrasts to heme catalysis. Proc 
Natl Acad Sci U S A 2003;100:3589-94. 
142. Spaapen LJ, Rubio-Gozalbo ME. Tetrahydrobiopterin-responsive phenylalanine hydroxylase 
deficiency, state of the art. Mol Genet Metab 2003;78:93-9. 
143. Staudigl M, Gersting SW, Danecka MK, et al. The interplay between genotype, metabolic state 
and cofactor treatment governs phenylalanine hydroxylase function and drug response. Hum Mol 
Genet 2011;20:2628-41. 
144. Stokka AJ, Carvalho RN, Barroso JF, Flatmark T. Probing the role of crystallographically 
defined/predicted hinge-bending regions in the substrate-induced global conformational transition and 
catalytic activation of human phenylalanine hydroxylase by single-site mutagenesis. J Biol Chem 
2004;279:26571-80. 
145. Stokka AJ, Flatmark T. Substrate-induced conformational transition in human phenylalanine 
hydroxylase as studied by surface plasmon resonance analyses: the effect of terminal deletions, 
substrate analogues and phosphorylation. Biochem J 2003;369:509-18. 
146. Teigen K, Dao KK, McKinney JA, et al. Tetrahydrobiopterin binding to aromatic amino acid 
hydroxylases. Ligand recognition and specificity. J Med Chem 2004;47:5962-71. 
147. Teigen K, Froystein NA, Martinez A. The structural basis of the recognition of phenylalanine and 
pterin cofactors by phenylalanine hydroxylase: implications for the catalytic mechanism. J Mol Biol 
1999;294:807-23. 
148. Teigen K, Martinez A. Probing cofactor specificity in phenylalanine hydroxylase by molecular 
dynamics simulations. J Biomol Struct Dyn 2003;20:733-40. 



 
 10 LITERATURVERZEICHNIS 

 

 
 146 
 

149. Thony B. Long-term correction of murine phenylketonuria by viral gene transfer: liver versus 
muscle. J Inherit Metab Dis 2010;33:677-80. 
150. Thony B, Auerbach G, Blau N. Tetrahydrobiopterin biosynthesis, regeneration and functions. 
Biochem J 2000;347 Pt 1:1-16. 
151. Thorolfsson M, Fojan, P., Petersen, S.B. and Martinez, A. The effect of tetrahydrobiopterin on the 
thermostability of human phenylalanine hydroxylase as studied by circular dichroism spectroscopy. 
Pteridines 2000;11:29-31. 
152. Thorolfsson M, Ibarra-Molero B, Fojan P, Petersen SB, Sanchez-Ruiz JM, Martinez A. L-
phenylalanine binding and domain organization in human phenylalanine hydroxylase: a differential 
scanning calorimetry study. Biochemistry 2002;41:7573-85. 
153. Thorolfsson M, Teigen K, Martinez A. Activation of phenylalanine hydroxylase: effect of 
substitutions at Arg68 and Cys237. Biochemistry 2003;42:3419-28. 
154. Trefz FK, Burton BK, Longo N, et al. Efficacy of sapropterin dihydrochloride in increasing 
phenylalanine tolerance in children with phenylketonuria: a phase III, randomized, double-blind, 
placebo-controlled study. J Pediatr 2009;154:700-7. 
155. Tropak MB, Blanchard JE, Withers SG, Brown ED, Mahuran D. High-throughput screening for 
human lysosomal beta-N-Acetyl hexosaminidase inhibitors acting as pharmacological chaperones. 
Chem Biol 2007;14:153-64. 
156. Ulloa-Aguirre A, Janovick JA, Brothers SP, Conn PM. Pharmacologic rescue of conformationally-
defective proteins: implications for the treatment of human disease. Traffic 2004;5:821-37. 
157. van Spronsen FJ, van Wegberg AMJ, Ahring K, et al. Issues with European guidelines for 
phenylketonuria - Authors' reply. The lancet Diabetes & endocrinology 2017;5:683-684. 
158. van Vliet D, Bruinenberg VM, Mazzola PN, et al. Therapeutic brain modulation with targeted large 
neutral amino acid supplements in the Pah-enu2 phenylketonuria mouse model. The American journal 
of clinical nutrition 2016;104:1292-1300. 
159. Waters PJ. How PAH gene mutations cause hyper-phenylalaninemia and why mechanism 
matters: insights from in vitro expression. Hum Mutat 2003;21:357-69. 
160. Waters PJ, Parniak MA, Akerman BR, Scriver CR. Characterization of phenylketonuria missense 
substitutions, distant from the phenylalanine hydroxylase active site, illustrates a paradigm for 
mechanism and potential modulation of phenotype. Mol Genet Metab 2000;69:101-10. 
161. Waters PJ, Parniak MA, Hewson AS, Scriver CR. Alterations in protein aggregation and 
degradation due to mild and severe missense mutations (A104D, R157N) in the human phenylalanine 
hydroxylase gene (PAH). Hum Mutat 1998;12:344-54. 
162. Wegele H, Muller L, Buchner J. Hsp70 and Hsp90--a relay team for protein folding. Reviews of 
physiology, biochemistry and pharmacology 2004;151:1-44. 
163. Wienken CJ, Baaske P, Rothbauer U, Braun D, Duhr S. Protein-binding assays in biological 
liquids using microscale thermophoresis. Nature communications 2010;1:100. 
164. Woo SL, Lidsky AS, Guttler F, Chandra T, Robson KJ. Cloned human phenylalanine hydroxylase 
gene allows prenatal diagnosis and carrier detection of classical phenylketonuria. Nature 
1983;306:151-5. 
165. Yagi H, Ogura T, Mizukami H, et al. Complete restoration of phenylalanine oxidation in 
phenylketonuria mouse by a self-complementary adeno-associated virus vector. J Gene Med 
2011;13:114-22. 
166. Zschocke J. Phenylketonuria mutations in Europe. Hum Mutat 2003;21:345-56. 
167. Zurfluh MR, Zschocke J, Lindner M, et al. Molecular genetics of tetrahydrobiopterin-responsive 
phenylalanine hydroxylase deficiency. Hum Mutat 2008;29:167-75. 
 

 

 

 

 

 

 

 



 
 11 VERÖFFENTLICHUNGEN 

 

 
 147 
 

11 Veröffentlichungen 

Publikationen  

Gersting, S. W., Kemter, K. F., Staudigl, M., Messing, D. D., Danecka, 

M. K., Lagler, F. B., Sommerhoff, C. P., Roscher, A. A., Muntau, A. C. 

(2008) Loss of function in phenylketonuria is caused by impaired 

molecular motions and conformational instability. American Journal of 

Human Genetics 83(1):5-17 

 

Maier, E. M., Gersting, S. W., Kemter, K. F., Jank, J. M., Reindl, M., 

Messing, D. D., Truger, M. S., Sommerhoff, C. P., Muntau, A. C. 

(2009) Protein misfolding is the molecular mechanism underlying 

MCADD identified in newborn screening. Human Molecular Genetics 

18(9):1612-23 

 

Gersting, S. W., Lagler, F. B., Eichinger, A., Kemter, K. F., Danecka, 

M. K., Messing, D. D., Staudigl, M., Domdey, K. A., Zsifkovits, C., 

Fingerhut, R., Glossmann, H., Roscher, A. A., Muntau, A. C. (2010) 

Pahenu1 is a mouse model for tetrahydrobiopterin-responsive 

phenylalanine hydroxylase deficiency and promotes analysis of the 

pharmacological chaperone mechanism in vivo. Human Molecular 

Genetics 19(10):2039-49 

 

Gersting, S. W., Staudigl, M., Truger, M. S., Messing, D. D., Danecka, 

M. K., Sommerhoff, C. P., Kemter, K. F., Muntau, A. C. (2010) 

Activation of phenylalanine hydroxylase induces positive cooperativity 

toward the natural cofactor. Journal of Biological Chemistry 

285(40):30686-97 

 

Staudigl, M., Gersting, S. W., Danecka, M. K., Messing, D. D., Woidy, 

M., Pinkas, D., Kemter, K. F., Blau, N., Muntau, A. C. (2011) The 

interplay between genotype, metabolic state and cofactor treatment 

governs phenylalanine hydroxylase function and drug response. 

Human Molecular Genetics 20(13):2628-41 

 

Santos-Sierra, S., Kirchmair, J., Perna, A. M., Reiß, D. D., Kemter, K. 

F., Röschinger, W., Glossmann, H., Gersting, S. W., Muntau, A. C., 

Wolber, G., Lagler, F. B. (2012) Novel pharmacological chaperones 

that correct phenylketonuria in mice. Human Molecular Genetics 

21(8):1877-87 

 



 
 11 VERÖFFENTLICHUNGEN 

 

 
 148 
 

Jank JM, Maier EM, Reiβ D.D., Haslbeck M, Kemter KF, Truger MS, 

Sommerhoff CP, Ferdinandusse S, Wanders RJ, Gersting SW, Muntau 

AC (2014) The Domain-Specific and Temperature-Dependent Protein 

Misfolding Phenotype of Variant Medium-Chain acyl-CoA 

Dehydrogenase. PLoS One, 2014 Apr 9;9(4):e93852 
 

Vorträge 

 

Reiß, DD. Biophysical methods for characterization of protein 

misfolding. Forschungskolleg am Dr. von Haunerschen Kinderspital in 

München, Deutschland, 2007 

 

Reiß, DD. Structure-function relationship of BH4 and its derivatives 

reveals distinct and genotype specific pharmacological chaperone 

effects. SSIEM Symposium in Genf, Schweiz, 2011 

 

Reiß, DD. Pharmacological chaperone therapy in MCAD deficiency: 

rationale for mutant specific target sites. 44th EMG Meeting in 

München, Deutschland, 2012  

 

  

http://www.ncbi.nlm.nih.gov/pubmed/24718418
http://www.ncbi.nlm.nih.gov/pubmed/24718418
http://www.ncbi.nlm.nih.gov/pubmed/24718418


 
 12 DANKSAGUNG 

 

 
 149 
 

12 Danksagung 

Zum Abschluss meiner Dissertation möchte ich mich gerne bei den Menschen 

bedanken, die mir in den letzten Jahren alle beratend zur Seite gestanden sind und 

auf unterschiedliche Weise zum Gelingen dieser Promotion beigetragen haben. 

 

An erster Stelle möchte ich mich bei Frau Professor Dr. med. Ania C. Muntau 

bedanken, die mir die Möglichkeit gegeben hat, mich als Naturwissenschaftlerin in 

das spannende und abwechslungsreiche Gebiet der Stoffwechselmedizin 

einzuarbeiten und mir aufgrund der breitgefächerten Thematik unseres Labors 

ermöglichte, mich in unterschiedliche Fragestellungen zu vertiefen. Des Weiteren 

möchte ich mich bei meinem direkten Betreuer PD Dr. med. Søren W. Gersting für 

die hilfreichen Diskussionen, die Förderung und Forderung sowie die schöne und 

lehrreiche Zeit im Labor bedanken. 

 

Vielen Dank an meinen externen Fachvertreter Herrn Professor Dr. Horst Domdey für 

die stets hilfsbereite und unterstützende Begleitung während der Promotion.   

 

Ein großes Dankeschön geht an unsere TAs Heike und Heidi für die Unterstützung 

während der vielen Schritte rund um die Proteinreinigung, für die Routinezellkultur, 

die Übernahme der Bestellungen und vor allem für die Ordnung im Labor!    

 

Vielen Dank an Mathias Woidy für die bioinformatische Auswertung der activity 

landscapes und des Screens. Danke an Dr. Dennis Breitsprecher und die Firma 

NanoTemper Technologies für die Möglichkeit die MST-Daten in den Laboren vor Ort 

zu messen. Vielen Dank an Dr. Jeremie Mortier für die Molecular Modeling-Studien 

und die Erklärungen dazu.  

 

Ich werde die Zeit meiner Promotion als manchmal anstrengende, aber meist sehr 

schöne Zeit meines Lebens in Erinnerung behalten und das liegt an meinen sehr 

netten Kollegen, die ich inzwischen ausnahmslos zu meinen guten Freunden zählen 

kann! Liebe Alexandra, Amelie, Anca, Anna W., Esther, Francesca, Johanna, Julia, 

Kathi und Sonja, lieber Andy, Daniel und Marcus: vielen Dank für die schönen 

gemeinsamen Stunden im Kubus tagsüber bei der Arbeit und abends beim 

gemütlichen Zusammensitzen, Reden und Feiern.  

 

Anna und Marta, wir haben unsere Promotion in der Molekularen Pädiatrie 

gemeinsam begonnen und jetzt fast gemeinsam zu Ende gebracht. Vielen Dank 

Euch beiden für die immer motivierenden Worte, die Hilfe bei Fragestellungen im 

Labor, die gemütlichen Kaffeepausen, die Mädelsabende und die alles in allem 

wunderschöne Zeit in München. Ich werde es vermissen, Euch nicht mehr so oft zu 

sehen! 



 
 12 DANKSAGUNG 

 

 
 150 
 

Ein riesengroßes Dankeschön gilt meinen Eltern Ančica und Wilhelm, meinem 

Bruder Roman und meinen Schwiegereltern Ingrid und Herbert. Vielen Dank für Eure 

Unterstützung und dass ihr nie aufgehört habt an mich zu glauben! 

 

An letzter aber wichtigster Stelle möchte ich mich bei meiner kleinen Familie 

bedanken: lieber Fabian, Du hast in den letzten Jahren immer hinter mir gestanden 

und warst trotz einiger Nachtschichten im Labor immer verständnisvoll. Vielen Dank 

für Deine Geduld, Deine Hilfe, Deine Nachsicht und die immer wieder motivierenden 

Worte wenn ich sie so nötig gebraucht habe. Vielen Dank für Deine Kraft und Deine 

Stärke und den Glauben daran, die Promotion zu einem guten Ende zu bringen. 

Vielen Dank für all die vielen schönen gemeinsamen Erlebnisse und unsere beiden 

wunderbaren Söhne Julius und Lukas. Die Promotion ist die Vergangenheit und uns 

Vieren gehört die Zukunft und ich freue mich schon sehr darauf! 

 


