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Zusammenfassung

Ein erheblicher Teil der Herausforderungen der modernen Wissenschaften kann als Problem der
Entscheidungstheorie unter Unsicherheit aufgefasst werden. Dies umfasst insbesondere Param-
eterschätzungen und Hypothesentests in der Statistik, die Modellierung der Präferenzen und
des Wahlverhaltens eines Akteurs in Philosophie und Ökonomie oder die Formalisierung spiel-
theoretischer Fragestellungen. Das Grundmodell der Theorie ist gleichermaßen einfach und aus-
drucksstark: Ein Entscheidungsträger (oder Akteur) kann eine Alternative X aus einer Menge
G verschiedener Optionen wählen. Jedoch hängt die Konsequenz der Wahl von X ∈ G vom
wahren Umweltzustand aus einer Menge S ab: Die Wahlalternativen entsprechen also Zufalls-
elementen X : S → A, wobei A eine Menge von Konsequenzen bezeichnet, für welche üblicher-
weise zusätzliche Ordnungsstruktur verfügbar ist. Für dieses, sehr allgemeine, Modell wurden
viele verschiedene Konzepte zur Bestimmung optimaler Alternativen X∗ aus G vorgeschlagen.
Jedoch stützen sich nahezu alle diese Konzepte auf die folgenden klassischen Annahmen: (I)
Der Akteur kann die Unsicherheit über die Zustände aus S durch ein klassisches Wahrschein-
lichkeitsmaß π charakterisieren und (II) die Präferenzen des Akteurs lassen sich angemessen
durch eine kardinale Nutzenfunktion beschreiben. Durch (III) die Beschränkung des Modells
auf einzelne Akteure wird zudem der Fall ausgeschlossen, dass Entscheidungen durch Gruppen
mit inhomogenen Präferenzen getroffen werden müssen.

Die vorliegende kumulative Dissertation operationalisiert Entscheidungsprobleme unter (poten-
tiell) sehr schwach strukturierter oder unvollständiger Information, in welchen eine oder mehrere
der klassischen Annahmen (I), (II) und (III) verletzt sind. Überdies werden Kriterien zur opti-
malen Entscheidungsfindung vorgeschlagen, welche in solchen Situationen immer noch anwend-
bar sind. Der Hauptfokus der Arbeit liegt dabei auf der Gewinnung theoretischer Erkenntnisse
über Eigenschaften optimaler Entscheidungen sowie der Entwicklung von Algorithmen zur op-
timalen Entscheidungsfindung.

Beitrag 1 behandelt Verletzungen von (I). Wir entwickeln Algorithmen zur Berechnung opti-
maler Entscheidungen bezüglich Kriterien basierend auf unsicheren Wahrscheinlichkeiten sowie
auf Imprecise Probabilities. Zudem werden Bedingungen für die Sinnhaftigkeit randomisierten
Entscheidens gegeben, welche durch ungünstigste a priori Verteilungen charakterisiert sind.

Beitrag 2 widmet sich erneut Verletzungen von (I). Wir schlagen ein Entscheidungskriterium
und einen Algorithmus zu dessen Berechnung vor. Überdies werden Maße zur Quantifizierung
des Ausmaßes an E-Zulässigkeit eingeführt, für deren Berechnung ebenfalls Algorithmen bereit-
gestellt werden. Schließlich werden Konzepte ordinaler Entscheidungstheorie diskutiert.

Beitrag 3 untersucht simultane Verletzungen von (I) und (II). Wir betrachten Alternativen X
mit Werten in Präferenzsystemen und schlagen drei Ansätze zur Konstruktion von Entschei-
dungskriterien vor: i) Verallgemeinerte Erwartungsintervalle, ii) globale Zulässigkeit und iii)
lokale Zulässigkeit. Es werden zudem Algorithmen zur Auswertung der Kriterien entwickelt.

Beitrag 4 behandelt Verletzungen von (III). Wir führen ein Kriterium zur Bewertung von
Präferenzaggregationsverfahren ein, das auch die Homogenität der Gruppe einbezieht. Es wird
gezeigt wie dieses Kriterium approximiert werden kann und wie diese Näherungen aus Daten
geschätzt werden. Gängige Aggregationsregeln werden in einer Simulationsstudie verglichen.

Beitrag 5 entwickelt ein lineares Programm zur Überprüfung stochastischer Dominanz für Zu-
fallsvariablen mit Werten in einer partiell geordneten Menge. Wir studieren das duale Programm
und seine Eigenschaften und behandeln zudem die Frage der Inferenz durch Verwendung von
Resampling-Methoden sowie die Anwendung der Vapnik-Chervonenkis-Theorie.



Summary

A significant amount of the challenges arising in the modern sciences can be reformulated as
some suitable problem belonging to the theory of Decision Under Uncertainty. This includes
parameter estimation and hypothesis testing in Statistics, modeling an agent’s preferences and
choice behavior in Philosophy and Economics or the formalization of game theoretic problems.
The basic model of this theory is equally simple and expressive: A decision maker (or agent)
can choose an alternative (or act) X from a set G of different available options. However, the
consequence that choosing X ∈ G yields depends on which potential state of the world from a set
S turns out to be the true one. Formally, the objects of choice are represented by random elements
X : S → A, where A is a set of consequences for which, usually, some additional order structure
is available. For this very general setup, several concepts for obtaining an optimal alternative X∗
from G have been proposed. However, almost all of these concepts (more or less directly) rely
on the following assumptions: (I) the ability of the agent to characterize her beliefs about the
states of the world from S by some classical probability measure π and (II) the availability of a
cardinal utility function that adequately characterizes the agent’s preferences. Additionally, by
(III) restricting the model to single agents, also the case where decisions have to be formed by
inhomogeneous groups is excluded in the classical framework.

The present cumulative PhD project models decision problems in settings with (potentially) very
weakly structured, or incomplete, information available, i.e. in settings where one or more of the
classical assumptions (I), (II) and (III) are violated. Moreover, we propose criteria for optimal
decision making that are applicable in such weakly structured situations. Here, we lay a special
focus on obtaining new theoretical insights into the properties of these optimal decisions and on
providing algorithms capable of finding optimal decisions in these complex situations.

Contribution 1 deals with decision problems where only assumption (I) is violated. We pro-
pose algorithms for computing optimal acts with respect to criteria based on uncertain classical
probabilities as well as on imprecise probabilities. Further, we give conditions under which ran-
domization in decision making pays out and characterize these in terms of least favorable priors.

Contribution 2 again deals with violations of assumption (I). We introduce a new decision
criterion and provide a simple algorithm for evaluating it. Further, we propose two measures for
quantifying the extent of E-Admissibility and give linear programming algorithms for computing
these. Finally, we discuss some ideas in the context of ordinal decision theory.

Contribution 3 investigates simultaneous violations of (I) and (II). We consider acts taking
values in so-called preference systems and propose three approaches for constructing decision
criteria: i) generalized expectation intervals, ii) global admissibility, and iii) local admissibility.
Whenever suitable, we provide linear programming based algorithms for checking optimality.

Contribution 4 deals with violations of (III). We propose a criterion for evaluating the ade-
quateness of preference aggregation procedures reflecting the group’s homogeneity. We show how
to approximate our criterion if information is only imperfectly given and how to estimate these
approximations from data. Finally, we compare common aggregation rules in a simulation study.

Contribution 5 develops a linear programming method for detecting stochastic dominance for
random variables with values in a partially ordered set. We study the dual program and discuss
its properties. Subsequently, we address the question of inference by utilizing resampling methods
as well as conservative bounds that are given by the application of Vapnik-Chervonenkis theory.
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1 Motivation: Why to bother about
imprecision in decision making?

The present dissertation is concerned with decision making under uncertainty, sometimes
also called choice under uncertainty, for situations in which the available information on
both the decision maker’s preferences and the mechanism generating the states of nature
is (potentially) very weakly structured. Specifically, this has the consequence that many of
the classical approaches to decision making under uncertainty can no longer be applied or
only be applied in a modified form appropriately taking into account the weak structure of
the available information. In this first chapter, we start by introducing some basic concepts
that are required for understanding the broader context of the works contributing to this
thesis. Importantly, note that neither the selection of the presented concepts nor the pre-
sentation of concepts themselves is intended to be exhaustive by any means. Particularly,
if not directly needed, many of the mathematical details are left out in order to preserve
the introductory character of the chapter.1 Accordingly, the chapter can be rather viewed
as a guideline that helps placing the works contributing to this thesis into the field they
are contributing to. Moreover, note that in terms of the assumptions (I), (II), and (III)
mentioned in the summary at the beginning of the present dissertation, Chapter 1.3 recalls
theories that are in accordance with all three assumptions, Chapter 1.4 recalls theories
capable of dealing with violations of (I) and (II), and Chapter 1.5 recalls some few details
on group decision making, i.e. deals with violations of assumption (III).2 Previously, in the
Sections 1.1 and 1.2, we briefly sketch the basic model of decision making under uncertainty
and the formalism for determining optimal acts.

1.1 The basic setting

A significant amount of the challenges arising in the modern sciences can be reformulated as
some suitable problem belonging to the theory of Decision Under Uncertainty. Particularly,
this includes parameter estimation and hypothesis testing in statistics (see, e.g., Augustin
(1998, 2001); Hable (2009); Cattaneo and Wiencierz (2012); Cattaneo (2013); van Ommen

1This includes in particular the concepts recalled in Section 1.3, where we do not bother too much
about whether the probability measures in the different representation results are finitely or countably
additive and about how the integrals with respect to these measures are defined. We refer to references
providing details on these aspects at the corresponding places in the text.

2Note that the assumptions (I), (II), (III) will be replaced by a more refined classification into information
sources (see Section 1.1) throughout the rest of this thesis.
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(2017)), modeling an agent’s preferences and choice behavior in Philosophy and Economics
(see, e.g., Kaplan (1983); Braun and Gautschi (2011)) or the formalization of game theoretic
problems (see, e.g., Milnor (1951); Luce and Raiffa (1957)). The basic model of this well-
established theory, referred to as basic decision model (BDM) in the following, is equally
simple and expressive: A decision maker (or agent) can choose an alternative (or act) X
from a set G of different available options. However, the consequence that choosing X ∈ G
has for the agent is fraught with uncertainty; it depends on which potential state of the
world from a set S turns out to be the true one. Formally spoken, the objects of choice
are represented by random elements X : S → A, where A is some set of consequences (or
consequence space) and, for s ∈ S, we interpret X(s) as the consequence that choosing act
X yields given the state s turns out to correspond to the true description of the world.
Here, we implicitly make the common assumptions that one, and only one, of the states
collected in S is the true state (see, for instance, Fishburn (1965, p. 217)).3

More often than not, some information about the agent’s preferences among the conse-
quences collected in A as well as on the underlying uncertainty about the states collected
in S will be available. Of course, such information can take various forms, for instance
depending on the field of interest and the concrete application in mind. Specifically, we
mainly distinguish between two different sources of information coming along with a BDM,
namely information on the agent’s preferences on A and information about the uncertainty
on S. The following description of these information sources is consciously kept rather gen-
eral at this point of the work and will be made more concrete at several points throughout
this chapter:

IP : Information about the agent’s preferences on A

The information source IP contains all information about the agent’s preferences among
the consequences in A or objects that are somehow related to those consequences. Such
information can, for instance, be given in form of some (not necessarily complete) binary
relation R ⊂ A×A on the consequence space A that models the agent’s ordinal preferences
among the elements of A. If in addition knowledge on preference strength is available, this
can be formalized in different ways. For instance, the information in IP can consist of some
pair (R1, R2) of (not necessarily complete) relations, where R1 models the ordinal and R2

models the cardinal part of the agent’s preferences. This is the approach, for instance,
followed in Krantz et al. (1971, Chapter 4) or French (1986, Section 3.4). Mathematically
closely related, ordinal and cardinal information are sometimes simultaneously modeled by
a so-called quaternary relation on the consequence set A (see, e.g., Pivato (2013)).

Another way of encoding preference strength is by extending the space: The information
in IP is then assumed to consist of a binary relation not only on the consequence space A
itself, but on some extended space somehow related to it (for instance LA, see Section 1.3).

3It should, however, be mentioned that appropriately defining the state space is a highly non-trivial task
which has provoked a number of paradoxes that most commonly relate to the problem of act-state
dependence. The probably most famous one among these paradoxes is the one of Newcomb (see for
instance Nozick (1969) or Bar-Hillel and Margalit (1972)).



1.1 The basic setting 3

Such approaches were pioneered in von Neumann et al. (1944) and generalized for instance
in Aumann (1962), Fishburn (1970, Chapter 10), and Rubin (1987). More applied ap-
proaches, where the information on the ordinal and the cardinal part of the preferences
is directly formulated in terms of different types of statements about utilities of the con-
sequences, have for instance been followed in Danielson and Ekenberg (1998), Danielson
et al. (2003), and Danielson (2005). Of course, also other types of information are imagin-
able to be part of IP (for instance information on the agents attitude towards ambiguity,
see Gilboa and Schmeidler (1989)). Some of these approaches will be recalled in some more
detail in Sections 1.3 and 1.4 of this chapter.4

IU : Information about the uncertainty on S

The information source IU contains all information (subjective, objective, or both) about
the mechanism generating the states of nature or, in other words, about the agent’s uncer-
tainty about the occurrence of the different states s ∈ S. Most commonly, it is assumed
that this information is structured enough to allow for the specification of a classical
probability measure π on the state space. This assumption corresponds, at least when
subjective probabilities are considered, to the classical framework pioneered by de Finetti
(see, e.g., de Finetti (1974)). However, often the information will turn out to be too weakly
structured to allow for specifying a classical probability measure. For instance, IU could
consist only of statements about probabilities of certain events D,D1, D2 ⊆ S, such as
“D is no more probable than 0.6” or “D1 is at least as probable as D2”. In this case,
several related theories for modeling the information have been proposed, all somehow
relating to sets of probability measures as central ingredients. Most prominent examples
for such models include linear partial information5, credal sets6, lower previsions7, and
interval probability8. Some of these approaches will be recalled in some more detail in
Sections 1.3 and 1.4 of this chapter.

Of course, also settings not allowing for a separate treatment of the information sources IP
and Iu, but rather lending themselves for a “simultaneous model” are imaginable. Among
the most prominent examples for such simultaneous models are the frameworks of Savage

4Here, it is important to note that our notion of a basic decision model and in particular the structure
of the information source IP makes an implicit assumption: Since the information contained in IP is
about the agent’s preferences on A, it is assumed that the agent possesses fixed (potentially partial)
preferences on A. Specifically, these preferences are therefore assumed to be independent of what the
true state of nature s ∈ S turn out to be: The knowledge of s does not influence the agent’s preferences
on A. We will refer to this as state-independent preferences or, if preferences are expressed by utility
functions, as state-independent utility. This is an assumption that is made throughout the whole thesis.
For more information on state-dependent utility see, e.g., Karni et al. (1983), Seidenfeld et al. (1995,
Section 4), and Baccelli (2017).

5See Kofler and Menges (1976); Kofler (1989) for textbooks and Kofler et al. (1984) for a more compact
presentation of the theory.

6See Levi (1974) and Levi (1980).
7See Walley (1991) or Troffaes and de Cooman (2014).
8See Weichselberger and Pöhlmann (1990) and Weichselberger (2001) for textbooks or Weichselberger

(2000) for a compact presentation of the basic concepts.
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(see Savage (1954)) and Anscombe and Aumann (see Anscombe and Aumann (1963)) and
their many relaxations and modifications. Also some of these models for the information
sources will be discussed in some more detail in Section 1.3 and 1.4. Before, we briefly
recall an important concept in order to obtain a formal framework for determining optimal
decision, namely the concept of choice functions.

1.2 Formalism for determining optimal decisions

Given some basic decision model G, the goal is to obtain some act X∗ ∈ G or, more
generally, some subset of acts O∗G ⊆ G, that is optimal in the sense that it is derived by
the application of some selection rule that best possibly utilizes the available information
sources IP and IU . Formally, every such selection rule can be viewed as a choice function9

ch : Σ→ Σ , D 7→ ch(D)

with the property that ch(D) ⊆ D for every D ∈ Σ, where Σ := 2G. For D ∈ Σ, we call
ch(D) the choice set of D (with respect to the function ch) and re(D) := D\ch(D) the reject
set of D (with respect to the function ch).10 Here, at least two different interpretations of
choice sets should be distinguished: If the information sources IP and IU provide enough
structure, for instance if they allow for a complete ordering of the available acts in G, one
can directly interpret the choice set ch(D) as the set of acts from D that are a worthy choice
for the agent. Between these acts the agent should be indifferent; they are all equally best
acts, as Bradley (2015) puts it. This view on choice functions is sometimes called the
strong interpretation (see, e.g., Bradley (2015, p. 58)).

If contrarily the information sources do not provide as much structure, for instance if
they allow only for a partial ordering of the available acts in G, one often goes for the
weak interpretation of the choice function: The acts in the choice set ch(D) are then not
interpreted as all equally good, but rather as not comparable given the information sources.
Specifically, the agent is then not necessarily indifferent between the acts in ch(D), however,
is still able to tell that each of them is preferable to each of the acts in the corresponding
reject set re(D). Accordingly, the weak interpretation corresponds to interpreting rather
the reject set re(D) instead of the choice set itself, namely as the set of all acts that are
definitely not a worthy choice.

Due to the generality of the concept, choice functions can be constructed in various ways.
Most easily, if the available information sources IP and IU display enough structure, it may
be possible to define a meaningful real-valued criterion function11 of the form cr : G → R
that assigns a real number to every available act that somehow quantifies its value for the

9See Sen (1971) for an original source and Chambers and Echenique (2016, Chapter 2) for a textbook.
10Note that we also allow for empty choice sets in order to be prepared for the general discussions to come.

Of course, it seems generally desirable to construct choice functions with non-empty choice sets.
11Note that the term criterion function is sometimes used to denote functions that map from G to Rq,

i.e. to vectors of real numbers. We differ from this convention here.
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decision maker on the basis of what she knows from IP and IU . We then obtain a choice
function chcr with respect to the criterion function cr by simply defining chcr : Σ→ Σ with

chcr(D) :=
{
Y ∈ D : cr(Y ) ≥ cr(X) for all X ∈ D

}
(1.1)

for all D ∈ Σ. For choice functions chcr induced by some criterion function cr it will often
be the case that the choice set chcr(D) of optimal acts from D is actually a singleton and,
accordingly, that there exists a uniquely defined optimal act X∗ in D. However, even if
the choice set chcr(D) of optimal acts from D contains more than just one element, the
agent will not have any disadvantage of choosing arbitrarily from chcr(D), since for any
two acts X, Y ∈ chcr(D) the criterion function assigns identical values, i.e. it holds that
cr(X) =cr(Y ). The acts contained in chcr(D) are not incomparable, they are completely
equivalent with respect to the decision maker’s criterion function. Thus, choice sets that
are assigned by choice functions induced by some meaningful criterion function can be
interpreted in the strong sense of the above classification, namely as being sets of equally
best acts from the corresponding set D of available acts.

However, in many real-world decision problems it will be the case that the available infor-
mation sources IP and IU do not provide enough structure in order to define a criterion
function cr: G → R as above in a meaningful and non-arbitrary manner. In these situations
the construction of an appropriate choice function is clearly not as obvious. A common
way to proceed in such situations is to utilize the available information sources in order to
specify a, generally not complete, binary relation �⊆ G × G on the set of available acts
G that models the rank order between such pairs (X, Y ) of acts that can be compared
on the basis of the available information. Specifically, the expression (X, Y ) ∈� then is
interpreted as X being at least as preferable as Y . Every such binary relation � then nat-
urally induces a choice function ch� by assigning to each subset D of acts from G the set
ch�(D) containing exactly the maximal, e.g. non-dominated, elements of D with respect
to �. Formally we arrive at a choice function ch� : Σ→ Σ defined by setting

ch�(D) :=
{
Y ∈ D : @X ∈ D such that (X, Y ) ∈ P�

}
(1.2)

for all D ∈ Σ.12 Note that, by construction, choice functions induced by some possibly
incomplete binary relation only allow for the weak interpretation according to the classi-
fication discussed above: The elements collected in ch�(D) are, in general, incomparable
with respect to the relation � and, therefore, incomparable on the basis of the available in-
formation sources. Contrarily, the corresponding reject set re�(D) = D \ ch�(D) possesses
a strong interpretation. It contains all the acts from D that definitely should not be chosen
by the decision maker, since for each of them there exists an act in the corresponding choice
set ch�(D) that is strictly better with respect to the relation P�.13

12Here, P� denotes the strict part of �, that is (X,Y ) ∈ P� ⇔ (X,Y ) ∈� ∧ (Y,X) /∈�.
13Formally, the set chcr(D) forms a minimal complete class w.r.t. � in D (see, e.g., French and Insua

(2000, Section 5.11) or, in a non-statistical context, e.g., Ferschl (1975, Definition 9.3)).
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Finally, it could be the case that the agent can best possibly utilize the available information
sources neither by specifying a criterion function cr nor by specifying some binary relation
�, but by directly defining a choice function ch: Σ → Σ. This for instance appears
naturally, whenever the agent is able to tell his choice sets for certain subsets of G that,
however, may contain more than just two elements. Note that, in the opposite way as
discussed above, such a choice function then naturally induces a binary relation �ch⊂ G×G
on the set of available acts G by ranking an act X at least as preferable as another act
Y , whenever X is an element of the choice set of {X, Y } with respect to the function ch.
Formally, we arrive at (X, Y ) ∈�ch if and only if X ∈ ch({X, Y }) (see, e.g., Chambers and
Echenique (2016, Section 2.1) for more details on this construction).14

The connection between a choice function and its associated binary relation plays an impor-
tant role in some parts of the works contributing to this thesis, especially in Contribution 3,
since it allows us to classify choice functions into two different classes: global and local ones.
A choice function ch: Σ → Σ will be called local, whenever it is completely characterized
by its associated binary relation �ch according to the following rule

ch(D) = ch�ch
(D) =

⋃
X∈D

⋂
Y ∈D

ch({X, Y }) (1.3)

for all D ∈ Σ. If this is the case, one also says that the choice function ch is generated
by pairwise choices (see, e.g., Kadane et al. (2004)): Knowing the images of the function
for sets containing exactly two elements is equivalent to knowing the complete function.
Contrarily, a choice function will be called global, whenever property (1.3) is not satisfied.
In such cases, as Seidenfeld et al. (2010) puts it, the choice function does not reduce to
pairwise comparisons. See, e.g., van Camp (2018, Section 2.8) for an easy example.

In summary, we have recalled that choice functions are an appropriate concept for for-
malizing the search for optimal acts in basic decision models. Afterwards, we have briefly
looked at three different ways of constructing choice functions: (1) choice functions in-
duced by some criterion function cr : G → R assigning real numbers to every available act,
(2) choice functions induced by some, generally not complete, binary relation �⊂ G × G,
and (3) choice functions that are directly determined by information on the agent’s choice
behavior on certain subsets of G, generally containing more than two elements. However,
note that we kept our considerations about when to use which construction method pur-
posely vague: We solely argued to use that method that best possibly uses the available
information sources IP and IU . In the next section, we get a bit more concrete about how
exactly this can be done and, in the course of this process, recall some classic assumptions
on the structure of the information sources IP and IU and the choice function that result
from these assumptions.

14Two aspects should be briefly mentioned: First, there are further possibilities of generating a binary
relation from a given choice function (see, e.g., Sen (1971, Definitions 5 and 9) for formal definitions).
Second, which properties are satisfied by the relation �ch, of course, heavily depends on the properties
of the underlying choice function ch. Specifically, if no further constraints on the construction of ch are
imposed, in general, the strict part P�ch

of the resulting relation �ch doesn’t even have to be transitive
(take any choice function ch satisfying ch({x, y}) = {x} and ch({y, z}) = {y} and ch({x, z}) = {z} for
a simple example).
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1.3 Classical assumptions about the information sources
and the associated choice functions

In the following, we present a number of classical assumptions and theories that have been
made concerning the information sources in the wide literature on decision making under
uncertainty. There, we mainly distinguish between three types of classical assumptions,
namely assumptions on the information source IP alone, assumptions on the information
source IU alone, and simultaneous assumptions on both information sources.

1.3.1 Classical assumptions on the agent’s preferences

Maybe the most classical assumption on the structure of the information source IP is that
it allows the agent to specify a preference relation R ⊆ A × A on the consequence space
A.15 This means that the agent can compare arbitrary pairs of alternatives by preference,
and that these pairwise comparisons yield a transitive order of the consequences. Under
relatively weak conditions16, a theorem originally proven by Cantor then guarantees the
existence of an ordinal utility function o : A→ R with the property (a, b) ∈ R if and only
if o(a) ≥ o(b), which moreover is unique up to strictly monotone transformations.17 Note
that the latter implies that utility differences with respect to the function o are meaningless
apart from their sign and, therefore, that there is no information on the agent’s strength
of preferences available in this model. In the following, we denote the set of all ordinal
utility functions with respect to R by OR.

The classical assumption on the information source IP that captures also strength of pref-
erences is that it allows the agent to specify a cardinal utility function u : A → R on
A. Such function u is characterized by exactly two properties. (1) For all consequences
a, b ∈ A we know that the agent does strictly prefer a to b whenever u(a) > u(b) and that
the agent is indifferent between a and b whenever u(a) = u(b). And (2): This function
u is unique up to positive linear transformations. Of course, condition (2) implies that
there is some information on the strength of the agent’s preferences. Such information
cannot be captured by assumptions on a binary relation on A alone. There are at least two
different classical theories about the information source IP that guarantee the existence of
a cardinal utility function in the above sense:

von Neumann and Morgenstern’s theory (vNM theory)

The agent is not only required to specify a binary relation on the consequence space
A, but even on the space LA of all simple lotteries on A. Here, a simple lottery is a
mapping ` : A → [0, 1] with the properties |supp(`)| < ∞ and

∑
a∈supp(`) `(a) = 1, where

supp(`) := {a ∈ A : `(a) > 0}. A simple lottery ` is then interpreted as receiving

15A preference relation R ⊆ X×X on a space X is a complete (i.e. (x, y) ∈ R∨ (y, x) ∈ R for all x, y ∈ X)
and transitive (i.e. (x, y) ∈ R ∧ (y, z) ∈ R implies (x, z) ∈ R for all x, y, z ∈ X) binary relation.

16The preference relations needs to be separable (see, e.g., Gilboa (2009, p. 51)).
17See Cantor (1915) or Chambers and Echenique (2016, Theorem 1.1) for a short proof.
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consequence a ∈ A with probability `(a). Denote the agent’s binary relation on LA by
%LA . This relation is then required to satisfy three consistency conditions, namely (i)
being a preference relation, (ii) independence, and (iii) continuity. If all three conditions
are satisfied, the famous theorem of von Neumann and Morgenstern states the following:
There exists a utility function u : A→ R that is unique up to positive linear transformation
such that for all simple lotteries `1, `2 ∈ LA it holds that

(`1, `2) ∈%LA ⇐⇒
∑

a∈supp(`1)

u(a) · `1(a) ≥
∑

a∈supp(`2)

u(a) · `2(a) (1.4)

Thus, if IP allows for a complete, transitive, independent and continuous ordering of the
simple lotteries on the consequence space, the agent can be assigned a cardinal utility
function. See von Neumann et al. (1944) for the original result, Fishburn (1970) for a very
compact proof, and Gilboa (2009) for a less technical discussion of the theorem and its
implications for the theory of decision making under uncertainty. Moreover, see Fishburn
(1970, Chapter 10) or Fishburn (1982, Chapter 3) for an extension of von Neumann and
Morgenstern’s result to probability measures instead of simple lotteries (of course, under
an adaptation of the vNM axioms to this more general setting).

Krantz, Luce, Suppes, and Tversky’s theory

A rather different approach for obtaining a cardinal utility function was followed by the
authors in Krantz et al. (1971, Chapter 4).18 Instead of coding the cardinal part of the
information in the source IP by means of a relation on the space LA, here the authors go a
more direct way: They assume that the agent can specify a pair (R1, R2) of relations, where
R1 ⊆ A×A is a binary relation on the consequence space A and R2 ⊆ (A×A)×(A×A) is a
binary relation on the set A×A. For a, b ∈ A the expression (a, b) ∈ R1 is then interpreted
as a being at least as preferable as b. Moreover, the expression ((a, b), (c, d)) ∈ R2 is
interpreted as exchanging b by a being at least as preferable as exchanging d by c. Thus,
while R1 models the ordinal part of the agent’s preferences in A, the relation R2 explicitly
models a notion of strength of preferences, that is the cardinal part. The authors then
show that if both relations R1 and R2 are complete and transitive and they further satisfy
a list of compatibility axioms, then there exists a function u : A → R that is unique
up to positive linear transformations that satisfies the following two properties: For all
a, b, c, d ∈ A it holds

(a, b) ∈ R1 ⇔ u(a) ≥ u(b) (1.5)

((a, b), (c, d)) ∈ R2 ⇔ u(a)− u(b) ≥ u(c)− u(d) (1.6)

The result and the concrete necessary assumptions can be found in Krantz et al. (1971,
Sections 4.2 to 4.4) or French (1986, Section 3.7). In summary, if the information source IP
18Note that in Krantz et al. (1971), the authors actually deal with measurement theory rather than utility

theory. However, as these theories are closely connected, their results can be interpreted in the light
of utility theory. This is, for instance, done in Suppes and Winet (1955), Fishburn (1970, Chapter 6),
and French (1986, Section 3.7).
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allows to specify of a pair of relations (R1, R2) as just discussed, the agent can be assigned
a cardinal utility.

1.3.2 Classical assumptions on the agent’s beliefs

Let us turn to information source IU now, that is the information about the mechanism
generating the states of nature s ∈ S. Here, the most common assumption is that the infor-
mation in IA is sufficiently structured in order to be able to specify a probability measure
π on the measurable space S (see for instance Luce and Raiffa (1957, Section 2.4), Ferschl
(1975, Part 2), and Rüger (1999, Section 2.4)). Clearly, there are several theories about
the information source IU that give rise to such a probability measure:

Ideal stochasticity

Under ideal stochasticity, we know, for instance by substance matter considerations, that
the states of nature are generated by a perfect random mechanism with known objective
probabilities given by the probability measure π on the state space S. For example, the
states could be generated by some phenomenon that has been repeatedly observed for
a very long time and whose relative frequencies of ending up in a certain state can be
regarded as sufficiently good estimates for the true probabilities. Of course, this assumption
about the information source IU is of particular interest for the field of statistical decision
theory (see Section 2.2 for some more information and hints to relevant literature on this
discipline). Probably one of the first researchers who investigated decision problems under
ideal stochasticity (namely in gambling) was Daniel Bernoulli (see Bernoulli (1954) for an
English translation of the original (Latin) manuscript).

Ideal probabilistic beliefs

The agent’s beliefs about the occurrence of the different states of nature can be character-
ized by a probability measure π on the state space. This sometimes is referred to as (first)
paradigm of Bayesian statistics (see, e.g. Augustin (2003)). Note that this assumption for
instance corresponds to the classical framework of subjective probability as pioneered by
de Finetti (see de Finetti (1974)): The information in IU needs to be well-behaving enough
that the agent can specify a binary relation %F on the set RS of all real-valued functions
f : S → R, where every f ∈ RS is interpreted as a bet winning f(s) units of money if
s ∈ S occurs. If this relation satisfies a number of consistency properties, then the agent
can be shown to make comparisons between the different bets by comparing their expec-
tations with respect to a uniquely defined probability π on the states (see (Gilboa, 2009,
Chapter 9) for details). Alternatively to the betting approach of de Finetti, in Kraft et al.
(1959) the authors prove that if IU allows the decision maker to specify a qualitative prob-
ability19 on the subsets of a finite state space S that satisfies some additional conditions,
then the agent can be ascribed a uniquely defined probability measure. For infinite (more

19A qualitative probability is a binary relation on the subsets on S that satisfies certain properties capturing
the intuition of a plausibility ranking, see Kreps (1988, p. 118) for a definition.
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precisely uncountable) state spaces S, conditions on a qualitative probability that allow
for specifying the agent’s unique probability are, for instance, discussed in Kreps (1988,
Chapter 8).

Note that if S is assumed to be finite and if a probability measure π on the state space
together with a von Neumann-Morgenstern utility function u : A→ R is available, then the
theorem of von Neumann and Morgenstern teaches us that there is only one way of defining
a choice function on G. To see that, first note that, given π, every act X : S → A from G is
uniquely associated with a simple lottery `X from LA by setting `X(a) = π(X−1({a})) for
all a ∈ A. The vNM-theorem then tells us that, for two acts X, Y ∈ G, the agent should
prefer the lottery `X associated with X to the lottery `Y associated with Y if and only if

Eπ(u ◦X) =
∑

a∈supp(`X)

u(a) · `X(a) ≥
∑

a∈supp(`Y )

u(a) · `Y (a) = Eπ(u ◦ Y ) (1.7)

Thus, if one accepts the (hardly deniable) assumption that a decision maker should prefer
act X to act Y whenever she prefers `X to `Y (and vice versa), this implies that the decision
maker necessarily ranks the acts according to the criterion function cru,π : G → R defined
by cru,π(X) = Eπ(u ◦X) for all X ∈ G, which is then well-defined since u is unique up to
positive linear transformations and the expectation operator is a linear functional. Taking
into account our considerations about the construction of choice functions from Section 1.2,
this leads us to the choice function chcru,π : Σ→ Σ defined by

chcru,π(D) :=
{
Y ∈ D : Eπ(u ◦ Y ) ≥ Eπ(u ◦X) for all X ∈ D

}
(1.8)

for all D ∈ Σ. Obviously, the choice function chcru,π selects from every subset D of G exactly
these acts that maximize the expected utility with respect to the decision maker’s uniquely
defined cardinal utility function and the externally given unique probability measure π.20

Note that, if the cardinal utility is obtained from a pair of relations (R1, R2) as discussed
in the second approach above, then applying the choice function chcru,π is no longer a
direct implication from the axioms. However, it still is a very plausible (and well-defined)
selection rule.

Contrarily, if solely an ordinal utility representation o : A→ R induced by some preference
relation R ⊆ A× A is available, applying Equation (1.8) will generally not lead to a well-
defined choice function: It is easy to construct situations in which there exist X, Y ∈ G
and strictly monotone transformations o1, o2 ∈ OR of o such that Eπ(o1 ◦X) > Eπ(o1 ◦ Y )
but Eπ(o2 ◦ X) < Eπ(o2 ◦ Y ). A straightforward fix of this problem is the following:
Label X superior to Y , whenever Eπ(o ◦ X) ≥ Eπ(o ◦ Y ) for all o ∈ OR. This induces

20Note that there exist generalizations of von Neumann and Morgenstern’s framework to non-simple
lotteries, i.e. probability measures (see , e.g., Fishburn (1970, Chapter 10) and Kreps (1988, Chap-
ter 5) or Delbaen et al. (2011)). Using these, the construction of the choice function in (1.8) can be
done in a completely analogous way as just discussed, however, without the assumption of a finite state
space S.
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a binary relation on G which (essentially) coincides with classical first order stochastic
dominance (see, e.g., Lehmann (1955) or Mosler and Scarsini (1991)). The choice function
chSD(π) : Σ→ Σ induced by this relation then has the form

chSD(π)(D) :=
{
Y ∈ D : @X ∈ G such that Eπ(o ◦X) > Eπ(o ◦ Y ) for all o ∈ OR

}
(1.9)

for all D ∈ Σ. Clearly, the choice sets induced by this choice function do not allow for the
strong interpretation. Since the relation between the acts is generally not complete, the
acts contained in the choice set chSD(π)(D) are simply not comparable given the informa-
tion. Again, one should rather go for an interpretation of the rejection sets: An act that
no expectation maximizing agent compatible with the relation R would pick is definitely
not a worthy choice. Moreover, it should be mentioned that, given a precise probability π
along with an ordinal utility o, using the choice function (1.9) is not without alternative:
A competing way of proceeding would be to order the acts from G by statistical preference
(see, e.g., Montes et al. (2014a)) and then define the corresponding version of (1.9) accord-
ingly. However, note that, in general, ordering the available acts by statistical preference
need not produce a transitive relation (see Montes (2014, Remark 2.17)).

1.3.3 Classical simultaneous assumptions on the information sources

Until now, we have only recalled a number of classical approaches that make assumptions
on both information sources separately, that is assumptions on the decision maker’s pref-
erences separate from assumptions about the uncertainty about the mechanism generating
the states of nature. However, in the classical literature on decision theory there also exist
a number of approaches making simultaneous assumptions on both information sources.
Most prominent, or at least most relevant for our purposes, are here the approaches of Sav-
age (see Savage (1954)) and Anscombe and Aumann (see Anscombe and Aumann (1963)).
We now briefly recall the basic idea of both these approaches and briefly comment on the
choice function they naturally induce.

Savage’s theory

In Savage’s theory, the joint information in the sources IP and IU is assumed to provide
enough structure that the decision maker is able to specify a preference relation %S on
the space AS = {X : S → A} of all potential acts (not only the available ones). If this
relation satisfies a list of seven consistency conditions, namely Savage’s famous, yet heavily
discussed, axioms P1 to P7, then Savage shows that there exists a unique (finitely additive)
probability measure π on the state space and a function u : A → R that is unique up to
positive linear transformations such that for all acts X, Y ∈ AS it holds that

(X, Y ) ∈%S ⇐⇒
∫

S

u ◦Xdπ ≥
∫

S

u ◦ Y dπ (1.10)

where the integral in the equation is the integral with respect to finitely additive measures
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as defined in Fishburn (1970).21 Similarly as in the case of a vNM-utility together with
a known precise probability, also here exists only one meaningful way of defining a choice
function on the set of available acts G: According to above, the decision maker necessarily
ranks the act by the criterion function crS : G → R defined by crS(X) =

∫
S
u ◦ Xdπ,

where u is a utility function and π is the unique probability measure obtained by the
decision maker’s preferences on AS. Note that the criterion is well-defined since u is
unique up to positive linear transformations and the integral is linear. According to our
considerations about choice functions in Section 1.2 this criterion function induces a choice
function chcrS : Σ→ Σ by applying the construction principle from Equation (1.1). Note,
however, that Savage’s theory has a severe drawback: His axioms imply the state space to
be uncountable (see, e.g., the discussion in Fishburn (1970, p. 193)).22 Thus, it does not
teach us a lot about decision problems with finite or countable state spaces.

Anscombe and Aumann’s theory

In Anscombe and Aumann’s theory, the main objects are so-called horse lotteries. A
horse lottery brings together the ideas of von Neumann and Morgenstern’s and Savage’s
theories: It is a mapping h from the state space S into the set of the simple lotteries,
formally h : S → LA. We denote the set of all horse lotteries by H(A,S). The information
in the sources IP and IU is then assumed to provide enough structure for the decision
maker to be able to specify a preference relation %AA on the set H(A,S) that satifies four
consistency conditions, namely the axioms of Anscombe and Aumann. If these axioms
are satisfied, Anscombe and Aumann show that there exists a utility function u : A → R
that is unique up to a positive linear transformation as well as a unique (finitely additive)
probability measure on the state space S such that for all h1, h2 ∈ H(A,S) it holds that

(h1, h2) ∈%AA ⇐⇒
∫

S

Eh1(s)(u)dπ(s) ≥
∫

S

Eh2(s)(u)dπ(s) (1.11)

where Eh(s)(u) =
∑

a∈supp(h(s)) u(a) · h(s)(a) for arbitrary horse lotteries h ∈ H(A,S). Note
that this representation result already induces a uniquely defined choice function on the
set G of available acts: Since every act X ∈ G is uniquely associated with a (degenerated)
horse lottery hX ∈ H(A,S) by setting hX(s)(a) = 1{X(s)}(a) for all a ∈ A and s ∈ S, the
theorem of Anscombe and Aumann implies that the agents ranks the acts according the
criterion function crAA : G → R that is defined by setting crAA(X) =

∫
S
EhX(s)(u)dπ(s),

which further simplifies to crAA(X) =
∫
S
u ◦ X(s)dπ(s). The resulting choice function

chcrAA : Σ→ Σ is then again induced by applying the construction principle from Equa-
tion (1.1). Importantly, note that in the theory of Ancsombe and Aumann, contrarily to
Savage’s theory, the state space may be countable or even finite. However, this has the

21This integral coincides with the natural extension of a linear prevision as discussed in Walley (1991) and
is also discussed in Denneberg (1994). See moreover de Cooman et al. (2008) for a work on a unifying
approach to integration theory with respect to finitely additive probability measures.

22See, however, Hens (1992) and Gul (1992) for different modifications of Savage’s original axioms that
allow for finite state spaces.
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price that a decision maker having well-behaving preferences on the set of all horse lotteries
may seem like an even stronger assumption than having the same on the set of all potential
acts (compare also the hypothetical example discussed in Chapter 2.1 of this thesis).

1.4 Selected relaxations of the classical assumptions

Up to now, we have seen a number of classical assumptions that can be made about the
information sources in a decision making problem in order to obtain appropriate choice
functions on the set of available acts. In all cases except for the function chSD(π) from (1.9),
the corresponding choice functions even allowed for the stronger of the two common inter-
pretations: The acts selected by them form a set of equally best acts between which the
decision maker is truly indifferent. However, all of these approaches required pretty strong
consistency conditions about the structure of the information sources, most commonly in
the form of a well-behaving (i.e. compatibility with certain axioms) binary relation on some
set (for instance on LA, on RS, or on H(A,S)) that is somehow connected to the consequence
space A or the state space S or both. Of course, this gives rise to the question: What if
the information sources are not as well-behaving? What if the information contained in
them is simply not enough to be sure that any of the axiom systems mentioned earlier can
clearly assumed to be satisfied? Indeed, there exits much work questioning the classical
assumptions23 and, accordingly, much theory about relaxing the approaches discussed in
Section 1.3.

Let’s start by the relaxation of the assumptions on the source IP alone: In Aumann
(1962), the author generalizes the framework of von Neumann and Morgenstern to the
case where the agent’s preference relation on the set LA of simple lotteries no longer needs
to be complete, i.e. where not all simple lotteries have to be comparable. The remaining
axioms stay the same. Aumann then goes on showing that if this modified set of axioms
is satisfied, then there exists a (generally non-unique) utility function u : A → R such
that the equivalence in (1.4) is still satisfied in the ⇒ direction. Specifically, if there is a
precise probability measure π on the states available, we still can define a choice function
in the style of the one from (1.8). However, the resulting choice sets do not allow for the
strong, but only for the weak interpretation of choice sets: The selected acts are not all
equally best, but only incomparable given the information source IP . We rather interpret
the rejection sets as sets of acts that are not a worthy choice.

Also the classical theories about the information source IU have been heavily questioned.
Here, the first main direction are direct generalizations of de Finetti’s behavioral approach
of preferences over bets by allowing that the agent’s supremum buying prices for bets may

23The criticism ranges from works (see, e.g., Luce (1956), Beja and Gilboa (1992) and Nishimura and
Ok (2016)) questioning the transitivity of the agent’s indifference relation to works (see, e.g., Ellsberg
(1961)) that doubt the empirical validity of Savage’s axioms. Also certain axioms of von Neumann and
Morgenstern theory have been criticized for not being realistic (see the discussions in Luce and Raiffa
(1957, p. 23-31) or the Allais paradox in Allais (1953)).
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differ from her infimum selling prices (in de Finetti’s theory these have to coincide).24 If this
is the case, the agent can no longer be ascribed a precise probability on the state space but,
very roughly, assigns each event E ⊆ S the interval [p

E
, pE] ranging from her supremum

buying price p
E

to her infimum selling price pE for the bet 1E. The second main direction
is to assume that IU allows for the specification of a generalized probability assignment,
a so-called interval probability.25 Specifically, such interval probability is a mapping from
the subsets of S to the set of closed intervals contained in [0, 1] that satisfies a generalized
version of the classical Kolmogorov axioms for probabilities. Importantly, note that interval
probabilities are free from any (behavioral) interpretation: For their definition it does not
matter whether the interval assignments result from subjective preferences over bets or from
some partially known frequentist phenomenon.26 This framework therefore also allows for
modeling information sources IU arising from partially known random phenomena. Finally,
note that both ways of generalizing probability formally (essentially) correspond to models
using suitable sets of probabilities on S.27

Also the horse lottery framework of Anscombe and Aumann (see Anscombe and Aumann
(1963)) and, therefore, simultaneous modeling both information sources, has been gen-
eralized in several directions. In Schmeidler (1989) (building on results from Schmeidler
(1986)), the author weakens Anscombe and Aumann’s independence axiom by demanding
independence only for such horse lotteries that are comonotonic28. He then shows a repre-
sentation result looking very similar as the one given Equation (1.11), with the difference
that, instead of a probability measure π, there now exists a uniquely defined capacity29

v and the integral in the representation result is replaced by the Choquet integral with
respect to this capacity v. A choice function for our basic decision model G can then be
constructed completely similar as in the classical Anscombe and Aumann case, with the
difference that the corresponding criterion function now uses the representation via the
Choquet integral (see Choquet (1954) for the original source).

An even weaker version of Anscombe and Aumann independence axiom, has been proposed
in Gilboa and Schmeidler (1989), where independence was only assumed for mixtures
with constant horse lotteries. Here, in addition to the remaining axioms of Anscombe
and Aumann, a further axiom is required: ambiguity aversion. The authors then go on
showing that if a binary relation %GS on the horse lotteries H(A,S) satisfies this modified
(and extended) set of axioms, then there exists a unique (closed and convex) set M of
probability measures on the states S and a utility function u : A → R that is unique up

24See Williams (1975, 1976, 2007) for pioneering approaches in this direction which have been extended to
a complete mathematical and philosophical theory in Walley (1991). See moreover Walley (2000) for a
survey.

25See Weichselberger and Pöhlmann (1990) and Weichselberger (2001) for textbooks or Weichselberger
(2000) for a compact presentation of the basic concepts. See moreover Augustin and Seising (2017) for
an overview on Weichselberger’s contribution to imprecise probabilities.

26For a frequentist approach to interval valued probability assignments see Walley and Fine (1982).
27For other approaches that use such sets as their model primitive see, e.g., Levi (1974) or Kofler and

Menges (1976). This also is the approach followed in most parts of our Contributions 1 to 4.
28See, e.g., Gilboa (2009, Section 16.4) for a definition.
29See Destercke and Dubois (2014b, Section 4.2) for a definition.
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to positive linear transformations such that

(h1, h2) ∈%GS ⇐⇒ min
π∈M

∫

S

Eh1(s)(u)dπ(s) ≥ min
π∈M

∫

S

Eh2(s)(u)dπ(s) (1.12)

A choice function for our basic decision model G can then be constructed completely similar
as in the classical Anscombe and Aumann case, with the difference that the corresponding
criterion function now uses the representation via the minimum over all integrals with
respect to measures fromM. This choice function will play an important role from a more
applied point of view in our Contribution 1.

Besides the independence axiom, mainly one other of the primitives of Anscombe and
Aumann’s model has been relaxed, namely the completeness of the relation. Here, three
works seem particularly relevant: In Seidenfeld et al. (1995) the authors propose a mod-
ified set of Anscombe and Aumann’s axioms allowing for a strict partial order on the set
H(A,S) of horse lotteries. They then establish a notion of indifference on this space that
allows them to distinguish between incomparable and equivalent horse lotteries. Relying
on this indifference relation, they then show that the original strict partial relation can be
extended to a preference relation (while preserving the remaining axiom) for which there
exists an unique utility function u : H(A,S) → [0, 1] on H(A,S) that respects the original
partial order for constant horse lotteries (i.e. simple lotteries) and “almost” respects it on
all horse lotteries (see (Seidenfeld et al., 1995, Theorem 3)). Since the extension of the
partial order is non-unique, there exists a different uniquely defined utility function for
every extension. The authors show that the set of all such utility functions is convex and
“almost” characterizes the original partial order by applying a Pareto type principle (see
their Theorem 5). Moreover, they show that the set of utilities can be decomposed as a
set of probability and state-dependent utility pairs (see their Corollary 4.1) and give two
additional axioms under which the state-dependent utility can be replaced by a so-called
almost state-independent utility (see their Theorem 6).

In Nau (2006), the author goes a slightly different way. Instead of defining a notion of
indifference, he treats incomparability of horse lotteries completely serious and judges that
“the point of dropping the completeness assumption is precisely to permit the decision
maker to judge some alternatives to be noncomparable” (see Nau (2006, p. 2443)). In
order to obtain his representation result, he therefore proposes an alternative modification
of the Anscombe and Aumann axioms, namely a strengthened version of their independence
requirement. Utilizing this, the author manages to show that a partial order on the horse
lotteries satisfying his axioms is represented by a set of utility functions which is the convex
hull of a set of utility functions that are decomposable by a pair of a probability and a
state-independent utility (see Nau (2006, Theorem 4)). Finally, in Galaabaatar and Karni
(2013), the authors choose another modification of the classical Anscombe and Aumann
axioms. The main conceptual difference to the approach in Nau (2006) is that their axioms
allow for representation results very explicitly separating the sets of probabilities and utility
functions that are involved in the representation of the partial order. For the corresponding
representation results see, in particular, Galaabaatar and Karni (2013, Theorems 3 and 4).
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1.5 Some short comments about group decision making

Up to now, we throughout implicitly assumed that the decision has to be made by one
single agent. Clearly, all the theory discussed trivially extends to groups of decision makers
in which all the members share identical preferences on A and identical beliefs about the
mechanism generating the states s ∈ S. However, if this is not the case, a generalization of
the theory is far from trivial, but presents a whole field of its own: group decision making.
Both preferences and beliefs have to be appropriately aggregated before any decision can
be made by the group.

In this thesis, we deal with the aggregation of preferences rather than the aggregation of
beliefs.30 Specifically, suppose that there is a group Gn of decision makers consisting of
n members. Each of the group’s members has stated a (possibly non-complete) relation
Ri ⊂ A × A on the consequence space A, expressing her personal opinion about how
the consequences should be ranked. The task is then to aggregate the tuple of relations
R = (R1, . . . , Rn) to some consensus order S(R) that each of the group members considers
fair. Once having obtained such a consensus order, the group can make decisions by
simply acting like a single agent with preferences given by S(R). However, finding good
formal criteria for defining the term “fair” in the first place has proven a cumbersome
task, since already seemingly very weak requirements lead to very general impossibility
results (like most prominently the one of Arrow (1950)). In Contribution 4 of this thesis,
we investigate whether information on the considered group’s homogeneity can ease the
choice of an appropriate aggregation rule (see Section 3.4).

Finally, it should be mentioned that (at least formally) there is a close connection between
group decision making and individual decsion making with partial preferences: If we, given
the group member’s relations R1, . . . , Rn, define a new binary relation R̃ ⊂ A × A on A
by setting (a, b) ∈ R̃ if and only if (a, b) ∈ Ri for all i = 1, . . . , n, that is R̃ = ∩iRi, then
instead analyzing the corresponding individual decision problem with IP consisting of R̃
will be in accordance with the preferences of all group members simultaneously. Thus,
analyzing decision problems with partial preferences available also teaches us something
about group decision problems. However, note that in most situations, especially for very
heterogeneous groups (compare also our Contribution 4 ), the relation R̃ will be rather
sparse (in the sense of containing only few pairs) or even empty, such that choice functions
solely based on R̃ will often not yield a satifactory decision.

30For works dealing also with aggregation of beliefs see, e.g., Bacharach (1975) and Seidenfeld et al. (1989).
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2.1 The view on decision making in this thesis

In the previous chapter we recalled a variety of (classical and rather sophisticated) theo-
ries about the structure of the informations sources IP and IU coming along with a basic
decision model. However, almost all of these theories had a very strong axiomatic and,
therefore, normative character in the sense that they all involved statements like “if the
agent has well-behaving preferences over some very large set of fancy mathematical objects,
then there is a straightforward way of defining a choice function suitable for the agent”.
Most commonly, the resulting choice function is then somehow related to an utility func-
tion that adequately represents the agent’s preferences and to a probability measure that
adequately characterizes the agent’s beliefs about the states of nature.

From this point of view, axiomatic theories about the information sources could be argued
to be rather interesting for investigating the behavioral implications of applying certain
choice functions (like, for instance, expected utility maximization), than for constructing
choice functions in the first place. In other words, if an agent decides to make her decisions
by maximizing the expected utility with respect to a pair (u, π) of utility and probability,
Savage’s theorem will tell her what this means for her preferences amongst arbitrary acts.
If she isn’t contented with the behavioral implications that the choice of (u, π) yields,
she should try another pair better suiting her behavior. Hence, axiomatic theories about
information sources play a crucial role when it comes to the falsification of certain choice
functions as adequate descriptions of the agents decision behavior.

Using the representation results in the opposite direction, that is for constructing choice
functions rather than falsifying them, usually turns out to be very hard: In reality it will
almost never be the case that an agent has fully specified preferences over any of these
complicated spaces. This may have several different reasons. First, the spaces the agent
is required to articulate her preferences on (most commonly) contain uncountably many
different objects, like for instance simple lotteries, horse lotteries, bets, or acts. So, even if in
principle the agent of interest was able to order arbitrary pairs of the objects of interest by
preference, such task can never be finished in a reasonable time.1 Often, the best one can do
in such situations is to design experiments in which the agent successively ranks such pairs
of objects that encode “much” information about the agents preferences on the considered

1To make it even more dramatic, note that also if one ignores this “practical” problem, one still has to
face the fact that most of the representation results recalled in the previous chapter are pure existence
results rather than constructive ones. That is, even in a highly idealized case such results don’t teach
us too much about, for instance, constructing appropriate utility functions.
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space. Stopping this procedure at a certain point will, evidently, not give us a unique
probability or utility representation, however, will nevertheless invoke certain constraints
on the sets of possible such representations. These considerations directly give rise to
the question of how to elicit the probability and utility functions of an agent of interest,
that is how to design procedures efficiently restricting the set of possible representations
by asking the agent of interest meaningful questions. A lot of work has been done in
this direction (see, e.g., Savage (1971), Walley (1991, Chapter 4), Gilboa (2010), Smithson
(2014), Troffaes and Sahlin (2017) to only name a few).

Second, it may also be the case that certain pairs of objects are simply incomparable for
the agent, might it be for substance matter or for cognitive reasons (see also the discus-
sion at the beginning of Chapter 1.4 of the present work). Such concerns are surely not
too far-fetched: Suppose the consequence space consists of all the 106 different dishes on
the menu of some Vietnamese restaurant, all the 6523 different books in a German book
store, and all the 27 études by Frédéric Chopin. How do you like the horse lottery giving
you, in case of sunshine, Pho Bo with probability 0.1, Fontane’s Effi Briest with proba-
bility 0.5, and Chopin’s The Horseman with probability 0.4 and, in case of no sunshine,
Ende’s Momo with probability 0.6, Nabokov’s Pnin with probability 0.05, and Chopin’s
Toccata with probability 0.35? Do you prefer it to the horse lottery yielding, in case of
sunshine, Pho Ga with probability 0.1, Nem Cuon Tom with probability 0.1, Kracht’s Im-
perium with probability 0.5, and Chopin’s Chromatique with probability 0.3 and, in case
of no sunshine, Banh Xeo for sure? (If you feel that you can indeed compare these horse
lotteries, just extend the consequence space or the state space or both until you can’t.)
See moreover Trautmann and Wakker (2018) for critical discussion of the Anscombe and
Aumann axioms.

Independent of the concrete reason for the agent not having fully specified preferences and
probabilities on the spaces of interest (partial elicitation or incomparability or both), both
of the shortcomings mentioned above do, in general, not leave us with unique utility or
probability representations of an agent’s preferences and beliefs. Instead, in such situations
we will rather obtain sets U of compatible utility representations2 as well as sets M of
compatible probability measures.3 Consequently, also the construction of adequate choice
functions in such situation will have to be based on the the sets U and M alone. This
is where the representation results recalled in this thesis’ Chapter 1 play an important
role: They are viewed as ideal types to be used if information was perfectly structured.
Specifically, as most of these theories more or less directly result in maximizing the expected
utility of acts for some pair (u, π) of utility and probability, the choice functions based on
the pair of sets (U ,M) should generalize this idea in the sense that they reduce to it

2Such sets are commonly termed multi-utility representations, see, e.g., Dubra et al. (2004) or Evren
and Ok (2011). An agent’s partial preferences are said to be represented by the set U , if he prefers
a consequence to another one, whenever the first one receives a greater or equal real value by every
member of U .

3Such sets are often (see, e.g., Levi (1974, 1980)), and also in the contributions of this thesis, termed
credal sets. These, in particular, arise as central components of all theories summarized under the
umbrella term imprecise probabilities. See also the discussion in Chapter 1.4 of the present thesis.
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whenever U and M turn out to be singletons. Apart from this “minimal requirement”,
there is quite much freedom of definition left, depending among other things on the attitude
of the decision maker towards the complete ignorance between the elements of U and
M, sometimes called ambiguity (see, e.g., Ellsberg (1961) in particular) in this context.
Consequently, many different proposals for defining choice functions in such situations
have been discussed. These range from Levi’s criterion of E-admissibility4 over Walley’s
maximality5 and Bewley’s structural dominance (see Bewley (2002) or Etner et al. (2012, p.
243)), to the Gamma-Maximin and the Imprecise Hurwicz criterion (to only name some).6

Almost as important as defining meaningful criteria for the weakly structured settings just
discussed, is the development of efficient algorithms that are capable to evaluate them. In
many situations, linear programming theory7 turns out to offer an adequate toolbox for
doing so. This is also one of the major interests of the present dissertation: We intend to
obtain decision criteria that are still applicable in situations with very weakly structured
information and to provide evaluation algorithms guaranteeing the practical usefulness of
these criteria. Of course, much work in this direction has already been done. Of particular
interest here seem to be the following works: In Utkin and Augustin (2005) and Kikuti et al.
(2011) the authors propose algorithms for decision making under different decision criteria
with sets of probabilities. In Utkin and Kozine (2001), linear programming approaches
for characterizing natural extensions are discussed, while in Nakharutai et al. (2017) the
authors present efficient linear programs for checking avoiding sure loss. In Hable and
Troffaes (2014), the authors collect algorithms for a number of concepts relevant to the
theory of imprecise probabilities.

2.2 Statistics and Decision Theory

Finally, we now briefly comment on the interrelations of the theory of decision under
uncertainty as presented here and classical problems from the field of statistics. There
are at least two different points of view. The first, more direct, interrelation is to view
statistical methodology as a toolbox that might help to gain insights on the mechanism
generating the states of nature in some decision problem by collecting suitable data. Of
course, this view is limited to decision problems in which this state generating process

4In the presence of a cardinal utility function u, the E-admissibility criterion (see Levi (1980)) labels such
acts optimal that maximize expected u-utility for at least one probability measure π ∈M. Note that,
in general, the choice function induced by it does not satisfy the locality property (1.3).

5If a cardinal utility function u is available, maximality (see Walley (1991)) labels such acts optimal, for
which there does not exist another available act that has strictly greater expected u-utility for every
probability π ∈M. The maximality criterion does indeed satisfy the locality property (1.3).

6The Gamma-Maximin criterion, relying on the idea of maximizing the expected utility under the worst
possible probability fromM, can, under the name Max E Min, already be found in Kofler and Menges
(1976). The first ones to give an axiomatic justification of the criterion were Gilboa and Schmeidler
(1989), compare also the discussion in Chapter 1.4 of this thesis. The imprecise Hurwicz criterion is
for instance discussed in Huntley et al. (2014).

7See, e.g., Vanderbei (2015) for a textbook.
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can be related to some observable experiment that can be repeated for a large number of
runs under constant conditions. If this is the case, statistical methods can help to obtain
reliable estimates for the probabilities of the different states and, therefore, facilitate the
problem of choosing optimal acts.

The second point of view originates from a much deeper relation: Most of the classical
problems in statistics can formally be embedded into the theory of decision under uncer-
tainty. These embeddings are commonly summarized under the term statistical decision
theory (see, e.g., French and Insua (2000)) and, in particular, involve likelihood theory (see,
e.g., Cattaneo (2013)), regression analysis (see. e.g., Utkin and Coolen (2011); Cattaneo
and Wiencierz (2012)), Bayesian statistics (see, e.g., Berger (1980)), hypothesis testing
(see, e.g., Wald (1949); Augustin (1998)), and classification (see, e.g., Utkin et al. (2015)).
The common idea underlying these embeddings is quickly explained: Consider a basic de-
cision model G as defined in Chapter 1.1 of this dissertation together with a cardinal utility
function u : A → R on the underlying consequence space. Moreover, suppose we observe
some random variable Z, our data, for which we know that Z ∼ ξs if s ∈ S is the true
state of nature. That is, the state space S parametrizes our statistical model for the data
Z. Then, instead of the original available acts X ∈ G, we now consider decision functions
d : Z → G, where Z denotes the space the random variable Z maps to. Collect all sensible
such function in a set D.8 We then evaluate the choice of d ∈ D under state s ∈ S by the
expression U(d, s) := Eξs(g(d,s)), where g(d,s) : Z → R is defined by g(d,s)(z) = u(d(z)(s))
for all z ∈ Z. Thus, a decision function d under state s is evaluated by the expectation of
utility that choosing acts with respect to d yields if the data is distributed by ξs.

9

The construction just described demonstrates that, from a purely formal point of view,
basic decision models with additional statistical information, that is data, can again be
represented by (more complex) basic decision models without additional statistical informa-
tion. While on the one hand such construction may seem like an unnecessary complication
of the original problem, on the other hand it has some advantage that is hard to overesti-
mate: Whatever statement holds true for arbitrary basic decision models, does also hold
true for basic decision models with additional statistical information. This should always
be kept in mind when reading the contributions of this thesis.

8Of course, which functions d are sensible depends heavily on the concrete statistical context. A minimal
requirement is to demand measurability of the induced functions g(d,s) for all s ∈ S (see next line in
the main text) for the expectation to be well-defined. Beyond that, in statistical estimations problems
one often restricts analysis to unbiased decision functions d.

9Note that a similar embedding for a slightly modified decision model is also briefly discussed in the last
paragraph of Section 2.1 of our Contribution 2.



3 About the contributing material:
Relations, summaries and outlooks

In this chapter we take a closer look at the five contributions that form the core of this
cumulative PhD thesis. For each of the contributions, we start by giving a summary of its
contents and main results and, afterwards, add some comments and discuss possible per-
spectives for future research that is related to them. Additionally, we discuss interrelations
between the different contributions whenever this seems suitable. Importantly, note that
from now on parts of the present work are referred to as “Chapters”, whereas parts of the
contributions are referred to as “Sections”.

3.1 Decision theory meets linear optimization

3.1.1 Summary of Contribution 1: “Decision theory meets linear
optimization beyond computation”

In Contribution 1, we discuss linear programming based algorithms for decision making
with uncertain precise probabilities (Section 3 of the contribution) and imprecise probabil-
ities (Section 4 of the contribution). Moreover, we discuss a linear programming problem
for determining least favorable prior distributions from a given credal set and investigate
what can be learned by studying the dual of this linear programming problem.

Throughout Contribution 1, we consider decision making problems with a finite state space
Θ1, a finite set of available acts, and a cardinal utility function adequately representing
the agent’s preferences on the consequence space. In the spirit of the classification from
Chapter 1, we thus assume the information in the source IP to be structured enough
to either satisfy the axioms of von Neumann and Morgenstern or the axioms of Krantz,
Suppes, Luce, and Tversky (see Chapter 1.3.1). With the information in the source IP
structured like that, the decision problem reduces to a much simpler form than the general
decision models considered in Chapter 1 of this dissertation, namely to a triplet

A := (A,Θ, u) (3.1)

consisting of a finite set of available acts A = {a1, . . . , an}, a finite set of states of nature
Θ = {θ1, . . . , θm}, and a cardinal utility function u : A×Θ→ R, where u(a, θ) is interpreted
as the (cardinal) utility of choosing act a ∈ A given θ ∈ Θ is the true state. Then, every

1In this contribution, the state space is denoted by Θ instead of S.
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act a ∈ A is naturally associated with a random variable ua : Θ → R on the state space
that is defined by ua(θ) := u(a, θ) for all θ ∈ Θ.2

In some parts of the paper, the concept of randomization plays an important role (see,
e.g., Fishburn (1965) or Augustin (2003)). The original decision problem is then extended
for randomized acts, which are classical probability measures λ on (A, 2A). Here, choosing
λ is interpreted as implementing act ai with probability λ({ai}). We denote the set of
randomized acts by G(A) and extend the original utility function u on A× Θ to a utility
function G(u) on G(A)×Θ by mapping each pair (λ, θ) onto G(u)(λ, θ) := Eλ

[
uθ
]
, where

uθ : (A, 2A) → R with uθ(a) := u(a, θ). Every pure act a ∈ A, is uniquely identified
with δa ∈ G(A), the Dirac-measure in {a}, and we have u(a, θ) = G(u)(δa, θ) for all pairs
(a, θ) ∈ A × Θ. Again, for every λ ∈ G(A) fixed, the extended utility function G(u) is
associated with a random variable G(u)λ on Θ by setting G(u)λ(θ) := G(u)(λ, θ) for all
θ ∈ Θ. The randomized extension of the triplet (A,Θ, u) is then given by

G(A) :=
(
G(A),Θ, G(u)

)
(3.2)

In the whole paper, the imprecision underlying the decision situation is assumed to solely
arise from the weak structure of information source IU . Specifically, we mainly distinguish
two different scenarios: In Section 3 of the contribution, we consider the case that a
precise probability measure π on the state space is available, however, the decision maker
(for some reason) doubts its full appropriateness, i.e. the case of uncertainty about precise
probabilities.3 For such situations, a decision criterion proposed by Hodges and Lehmann
4 seems to be well-suited: Instead of directly maximizing expected utility with respect to
the probability measure π, one maximizes a convex combination of the worst case utility5

and the π-expected utility. The weight α ∈ [0, 1] that falls on the expectation part of the
criterion is then called the agent’s degree of trust, or trust parameter.

This leads us to the first result of the paper (see Proposition 1 of Contribution 1 ): We
present an algorithm for determining an optimal randomized act with respect to the cri-
terion of Hodges and Lehmann that requires to solve only one single linear programming
problem. Utilizing this, the paper’s second result (see Corollary 1) is obtained by consid-
ering the dual linear programming problem of the one introduced in Proposition 1. We

2A short note on how this framework relates to the more general framework discussed in Chapter 1: Given
a finite basic decision model G = {X1, . . . , Xn} with acts Xi : Θ → A together with a cardinal utility
function ũ : A→ R, one can instead directly consider the finite basic decision model G̃ = {X̃1, . . . , X̃n},
where X̃i := ũ ◦ Xi : Θ → R are now acts that directly map states to utilities. If we now define a
function u : G × Θ → R by setting u(Xi, θ) = X̃i(θ), the triplet (G,Θ, u) gives as a decision problem
just of the structure as the one in Equation (3.1) of the present chapter.

3For instance, suppose you have a pretty good idea about the probabilities that a certain experiment
under fixed conditions ends up in a certain result. Now you slightly change the experimental setup.
The probabilities from the original experiment will still be available, but their appropriateness for the
new experiment will depend on how strong the change in conditions actually influenced the experiment.

4See Hodges and Lehmann (1952) for the original source and Equation (1) in Contribution 1 for the
adaptation of the criterion into our setup.

5Directly maximizing the worst case utility is the idea of Wald’s maximin criterion, see Wald (1949).
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show that an agent’s decisions in terms of the decision criterion by Hodges and Lehmann
can be reinterpreted as expectation maximal decisions with respect to a modified prior
distribution, which is directly obtained as an optimal solution of the dual program.

Subsequently, in Section 4, we assume that IU is compatible with a whole credal set6

of probability measures that are in accordance with our information about the states of
nature, i.e. we consider the case of imprecise probabilities. Specifically, we assume IU to
be characterized by a polyhedrical set M of probability measures on (Θ, 2Θ) of the form

M :=
{
π| bs 6 Eπ(fs) 6 bs ∀s = 1, ..., r

}
(3.3)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R2 such that bs 6 bs and fs : Θ→ R, i.e. to
be describable by lower and upper bounds for the expected values of a finite number of
random variables on the space of states.7 For this case, many different ways of defining
decision criteria exist of which two are of particular interest for the results in the paper:
Walley’s M-maximality and the Gamma-Maximin criterion with respect to M (compare
also the discussions in Chapter 2.1 of this dissertation).

The next result of the paper (see Proposition 2 of Contribution 1 ) is an algorithm for
checking whether a pure act az ∈ A isM-maximal among the available pure acts by solving
one single linear programming problem. Note that Kikuti et al. (2011) also introduce such
an algorithm that, however, requires to solve a series of linear programming problems.
Afterwards, in Proposition 3, we propose a linear programming approach for determining
a least favorable prior distribution from M, i.e. an element π− ∈ M that yields the
minimal maximal expected utility among all elements of the credal set. Utilizing this
linear program, we then show a very close connection between least favorable priors and
the Gamma-Maximin criterion (see Proposition 4 of the contribution). Specifically, we
demonstrate that optimal randomized acts with respect to the Gamma-Maximin criterion
can only assign strictly positive probability mass to such acts from A that are optimal with
respect to every least favorable prior distribution. This immediately has the following, very
interesting, corollary (see Corollary 2 of the contribution): If there exists a least favorable
prior for which there exists a unique optimal act, then randomization is unnecessary if
optimality is defined in terms of the Gamma-Maximin criterion.

3.1.2 Comments and perspectives

As already mentioned, contrarily to the approaches in Kikuti et al. (2011), Proposition 2
of the contribution allows to checkM-maximality of an act az by solving one single linear
programming problem. This provides a very nice opportunity for generalizing the algorithm
given in the proposition: We can easily add linear constraints controlling that the members
of the family of probability measures with respect to which the act az dominates the

6The name credal set is attributed to Isaac Levi (see Levi (1974) and Levi (1980)).
7This essentially is the common framework of decision making under an imprecise probabilistic model as

it is used, for instance, in Fishburn (1965), Kofler et al. (1984), Walley (1991) and surveyed in Troffaes
(2007) or Huntley et al. (2014).
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remaining acts in expectation do not differ from each other too much. Denoting the
maximum acceptable deviation of the involves measures by ε, this directly leads to the idea
of a new decision criterion, Eε-admissibility, allowing for an adjustable trade-off between
M-maximality and E-admissibility with respect to M. This idea is worked out in some
more detail in our Contribution 2 (see Definition 1, Remark 1 and Proposition 2 of the
contribution in particular).

A further interesting aspect is the following: In the contribution, we very briefly discuss
a close mathematical connection between the decision criterion of Hodges and Lehmann
and the Gamma-Maximin criterion (see Footnote 3 of Contribution 1 ). Specifically, if the
credal set of interest is given as an ε-contamination model M(π0,ε) := {(1 − ε)π0 + επ :
π ∈ P(Θ)}, where P(Θ) is the set of all probability measures on (Θ, 2Θ), ε > 0 is a fixed
contamination parameter and π0 ∈ P(Θ) is the central distribution8, then the Hodges and
Lehmann criterion with trust parameter (1 − ε) and prior distribution π0 coincides with
the Gamma-Maximin criterion with respect to M(π0,ε). This is remarkable from several
different perspectives: Firstly, it shows that the algorithm proposed in Proposition 1 of
the contribution can indeed also be used (as a simple method) for determining optimal
randomized Gamma-Maximin acts with respect to ε-contamination models. This seems
of particular interest also in the light of the reformulation of Walley’s Imprecise Dirichlet
Model (IDM) as some suitable ε-contamination model (see Herron et al. (1997)).

Secondly, one can utilize this connection in the opposite direction. If the Hodges and
Lehmann criterion is just a special case of the Gamma-Maximin criterion, then of course
all results obtained for the latter do also hold for the first. Particularly, this implies Corol-
lary 2 of the contribution: If there exists a least favorable prior from M(π0,ε) which yields
an unique expectation-optimal act, then randomization does not pay out if optimality is
defined in terms of the Hodges and Lehmann criterion with respect to the prior distribution
π0 and the trust parameter (1− ε).

3.2 Quantifying degrees of E-admissibility

3.2.1 Summary of Contribution 2:“Quantifying degrees of
E-admissibility in decision making with imprecise probabilities”

Contribution 2 uses an identical formal setup as Contribution 1. Specifically, we again
consider finite decision problems of the form (3.1) with a cardinal utility function available
as well as their randomized extensions as defined in (3.2). Moreover, throughout the
whole paper, the information about the uncertainty about the states of nature is assumed
to be characterized by a credal set M of the form (3.3). After having introduced into
the required concepts, the paper is composed of three main parts: In the first part, we
introduce a new decision criterion, Eε-Admissibility, that can be viewed as a strengthened
version of Walley’s maximality or as a weakened version of Levi’s E-admissibility criterion,

8See Huber (1981, p. 12) for details.
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respectively. For this criterion, we also provide an efficient and simple algorithm that is
based on linear programming theory. In the second part of the paper, we propose two new
measures for quantifying the extent of E-admissibility of a given E-admissible act, i.e. for
quantifying the size of the set of probabilities for which the corresponding act maximizes
expected utility. Also here, for both measures, we give linear programming algorithms
capable to deal with them. In the third part of the paper, we discuss some ideas in the
context of ordinal decision theory.9

Let us start by summarizing the first main part (Section 3.1 of the contribution): Our
first result (see Proposition 1 of Contribution 2 ) is about randomization in the context of
Levi’s E-admissibility criterion. It states that the set G(A)M of randomized acts that are
E-admissible with respect to M can be constructed from the sets Aπ, where π ∈ M, of
pure acts that maximize expected utility with respect to π by taking the union over all of
the convex hulls of the sets {δa : a ∈ Aπ}. In particular, this demonstrates that (generally)
the sets G(A)M and conv(AM) do not coincide, but that the first is a proper subset of
the second. Afterwards, we define a new decision criterion, called Eε-admissibility (see
Definition 1 of Contribution 2 ). The idea is to weaken the concept E-admissibility in the
sense that there no longer needs to exist one single measure with respect to which the act
under consideration simultaneously maximizes expected utility among all available acts,
but, similar as for maximality, the measure may differ for every competing act. However,
contrarily to maximality, the involved measures may not differ too much from each other,
but are restricted to have a maximal distance of ε ≥ 0 with respect to some distance
measure induced by a suitable norm. Accordingly, for ε = 0 the concept coincides with
E-admissibility, whereas for ε sufficiently large we arrive at maximality.10 In Proposition 2
of Contribution 2 we provide an algorithm for checking Eε-admissibility (with respect to
the distance induced by the supremum norm) by solving one single linear programming
problem. In Example 1 we demonstrate how Eε-admissibility could be used as a second
order decision criterion if none of the optimal acts selected by the original criterion is
E-admissible.

In the second part of the paper (Section 3.2 of the contribution), we propose two different
approaches for quantifying the extent of E-admissibility of an E-admissible act of interest.
For this purpose, we introduce two different measures: The maximal extent (see Definition 2
of the contribution) and the uniform extent (see Definition 3 of the contribution). For
a ∈ A, denote by Ma = {π ∈ M : a ∈ Aπ} the subset of measures of the credal set for
which act a maximizes expected utility. Both measures relate to characteristics of this
set. For an E-admissible acts a, the maximal extent extM(a) is defined as the maximal

9Note that the focus on discussing concepts related to E-admissibility in this contribution is by no means
coincidence. The contribution is part of a Festschrift for Teddy Seidenfeld, who advocates the concept
of E-admissibility against other decision criteria (see, e.g., Seidenfeld (2004)). One main reason is that
this criterion not solely relies on pairwise comparisons of acts, but additionally depends on which other
acts are available.

10Importantly, note that the concept of Eε-admissibility makes only sense when considering pure acts, since
for randomized acts the concepts of maximality and E-admissibility (and therefore also the concept of
Eε-admissibility) coincide (see Walley (1991, p. 163)).
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distance that two measures within the setMa can have (with respect to a distance measure
induced by some suitable norm). Contrarily, the uniform extent uxtM(a) measures half
the diameter of largest barycentric cube that can be inscribed intoMa. For an illustration
of the two concepts and how they differ see Figure 1 and Figure 2 in Contribution 2,
respectively. Moreover, we provide algorithms for evaluating both measures: Proposition 3
of the contribution gives an algorithm that allows to compute the maximal extent with
respect to the maximum norm by a series of linear programming problems. In Remark 3 of
the contribution it is briefly discussed how this computation (and also the one with respect
to the 1-norm) could be alternatively done by solving one bi linear problem. Proposition 4
describes an algorithm for evaluating the uniform extent of an act by solving one single
linear programming problem.

In the last main part of the paper (Section 4 of the contribution), we turn to a slightly
different setting: the ordinal case. We suppose that the utility function u is solely an
ordinal representation of the agent’s preferences and, therefore, that utility differences are
meaningless apart from their sign (compare also the discussions in Chapter 1.3.1). For
this setting, we first list a number of decision criteria, classified in global and local as well
as precise and imprecise ones. We then mainly focus on one of these criteria, namely the
imprecise version of joint stochastic dominance.11 Specifically, we describe an algorithm
that allows for evaluating the criterion by solving one single linear programming problem,
given the extreme points of the underlying credal set M are known. In Section 5 of the
paper, we demonstrate the results and algorithms developed in the paper by means of a
stylized application example, which underlines their applicability in real world problems.

3.2.2 Comments and perspectives

In the paper, among other things, we proposed different measures for quantifying the extent
of E-admissibility of E-admissible acts. Clearly, such measures would be of interest also
for other criteria from the theory of decision making with imprecise probabilities. One
such criterion is M-maximality. Suppose a∗ ∈ A is an M-maximal act. Now, what would
a good measure for the extent of a∗’s maximality look like? Therefore, first recall that if
a∗ is M-maximal, then, by definition, for all a ∈ A there exists a measure πa ∈ M such
that Eπa(ua∗) ≥ Eπa(ua). Now, denote the (non-empty) set of all measures from M with
respect to which a∗ expectation dominates a by M(a∗,a), that is

M(a∗,a) =
{
π ∈M : Eπ(ua∗) ≥ Eπ(ua)

}
(3.4)

In order to measure the extent of a∗’s maximality, a very natural idea would be using the
following procedure: In a first step, we somehow “quantify” the size of the sets M(a∗,a)

for every a ∈ A \ {a∗}. Subsequently, in a second step, we use the resulting values for

11Note that a generalized version of this criterion is also discussed in our Contribution 3 under the name
A-admissibility, see Definition 7ii) in Contribution 3. If the relation R1 is chosen to be complete and
the relation R2 is chosen to be empty, the two criteria coincide.
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constructing a sensible measure. For the first step, one can proceed completely analogous
as for measuring the extents of the sets Ma in Contribution 2 (see Definitions 2 and 3 of
the contribution in particular), namely computing the maximal or the uniform extents of
every set M(a∗,a) separately. For instance, suppose we want to go for the uniform extent.
Equation (4) of Defintion (3) of the contribution would then translate to

ûxtM(a∗, a) = max
{
ε : ∃π ∈M(a∗,a) s.t. Bε(π) ⊂M(a∗,a)

}
(3.5)

for every a ∈ A \ {a∗}, where Bε(π) denotes the barycentric ε-cube around π exactly as
defined in Definition 3 of the contribution. This leaves us with a set of n− 1 values.

Concerning the second step of the procedure, taking the minimum over all these values
seems to be the most plausible choice: The performance of the act a∗ should be measured
with respect to its toughest competitor (otherwise, one very bad performing act would
have too strong influence on the whole measure). Applying this, we would arrive at the
following measure for quantifying the extent of a∗’s maximality:

ûxtM(a∗) = min
a∈A\{a∗}

ûxtM(a∗, a) (3.6)

Obviously, for computing the measure ûxtM(a∗), a modified version of the algorithm pro-
vided in Proposition 4 of the contribution can be applied. Instead of solving one linear
programming problem, one now has to solve n − 1 such problems, however, less complex
ones: The program (5) of the contribution now has to be solved for every act a ∈ A sep-
arately, but the constraints given at bullet point five and six reduce to a number of m
instead of nm both times. In summary, we thus have to solve n− 1 linear programs with
1 + 2mr + 2m constraints instead of one linear program with 1 + 2mr + 2mn constraints.

Beyond extending the proposed measures to other criteria, there are also other promising
directions for further research: In the discussion directly following Definition 1 of the
contribution, we argued in favor of the concept of Eε-Admissibility, since it allows to take
into account more than only one expert opinion while simultaneously allowing to control
how far the involved experts may differ in opinion. This idea could easily be extended.
Firstly, one could control the differences of opinion in both directions. Consider a political
decision maker with an advisory body of experts (represented by the credal set). Moreover,
suppose the politician intends to make very well-balanced decisions, in the sense that she
wants to take into account different points of view, however, also wants to make sure to
avoid considering too extreme expert opinions. This would directly lead to a criterion of
E(ε,ε)-admissibility, where ε is the minimal and ε is the maximal deviation that the involved
expert opinions are allowed to have.

Moreover, instead of (solely) controlling how far the involved experts may differ from each
other in terms of opinion, one could also control how far their opinions differ from some
externally given criterion. If we take again our example of some politician with an advisory
body of experts, the external criterion could for instance be the opinion of the politician
herself (formulated in terms of some suitable probability measure), so that she only takes
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those expert opinions into account that do not differ too much from her own one. Of course
other examples for external criteria are imaginable.

Finally, it would be also promising to further investigate some of the criteria that were only
sketched in Section 4 of the contribution. While some of these have already been investi-
gated in both their precise and their imprecise version12, the criterion of joint statistical
preference (see pp. 15-16 of the contribution) has, to the best of our knowledge, not been
considered yet. Currently, a more efficient implementation of the algorithms discussed in
the contribution (among other tasks) is worked out by Florian Baier (LMU Munich) as
part of a Master’s thesis under supervision of our working group.

3.3 Partial ordinal and partial cardinal preferences

3.3.1 Summary of Contribution 3: “Concepts for decision making
under severe uncertainty with partial ordinal and partial
cardinal preferences”

Contribution 3 uses a significantly more general notion of decision problems under un-
certainty as the one used in Contribution 1 and Contribution 2. Exactly as discussed in
the introductory Chapter 1.1 of this dissertation, our basic choice objects are now acts
X : S → A that map states collected in some non-empty state space S to consequences
collected in some non-empty consequence space A. After a short introduction (Section 1 of
the contribution) and a section recalling some fundamental concepts underlying our con-
tribution (Section 2 of the contribution), the paper essentially consists of three main parts:
In its Section 3, we introduce our basic method for modeling the information source IA,
so called preference systems. Its Section 4 introduces three different approaches for deci-
sion making with acts taking values in a preference system by proposing decision criteria
based on generalized expectation intervals (Section 4.2), on global comparisons of acts
(Section 4.3), and on pairwise (or local) comparisons of acts (Section 4.4). Section 5 of the
contribution is devoted to an application of the theory that can be viewed as a prototypical
example for a whole class of similar applications.

We start our summary by briefly surveying the main ideas of Section 3 of the contribu-
tion. There, we first introduce a very natural and convenient way of formalizing information
sources IP that may contain both ordinal and cardinal information on the decision maker’s
preferences on A, however, both possibly partial in nature: preference systems (see Def-
inition 1 of the contribution). Formally, a preference system is a triplet A = [A,R1, R2]
containing, besides the consequence space A, a pre-order13 R1 ⊆ A×A on the consequence

12See in particular our Contribution 3, Montes (2014), Montes et al. (2014a), and Montes et al. (2014b).
13A pre-order R ⊆ A× A on a non-empty set A is a binary relation that is both reflexive (i.e. (a, a) ∈ R

for all a ∈ A) and transitive (i.e. (a, b) ∈ R and (b, c) ∈ R imply (a, c) ∈ R for all a, b, c ∈ A). In the
following, we associate to every pre-order two further binary relations, the indifference part IR ⊆ A×A
defined by (a, b) ∈ IR if (a, b) ∈ R and (b, a) ∈ R for all a, b ∈ A as well as the strict part PR ⊂ A×A
defined by (a, b) ∈ PR if (a, b) ∈ R and (b, a) /∈ R for all a, b ∈ A. While IR is again reflexive and
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space itself and a pre-order R2 ⊆ R1 × R1 on the set of pairs that are in relation with
respect to R1. The relation R1 models the ordinal part of the information in IP and we
interpret (a, b) ∈ R1 as a being at least as desirable as b, (a, b) ∈ IR1 as a being equally
desirable as b, and (a, b) ∈ PR1 as a being strictly more preferable than b. Contrarily, the
relation R2 models the cardinal part of the information in IP , i.e. the information on the
strength of the agent’s preferences. We interpret ((a, b), (c, d)) ∈ R2 as the exchange of b
by a being at last as desirable as the exchange of d by c. The interpretation of IR2 and
PR2 is alike. One natural interpretation of a preference system is to view it as data on
observed choices of the agent. If (a, b) ∈ R1 this then would mean that the agent once
chose a in a situation where she was presented exactly the options a and b. If this behavior
has been observed many times, one may even conclude (a, b) ∈ PR1 , whereas if another
time the agent chose b in the presence of exactly a and b, one may conclude (a, b) ∈ IR1 . In
contrast, R2 is not directly observable, but needs to be gained by hypothetical comparisons
in interviews and polls by asking questions like: “Imagine you have objects b and d. Would
you rather be willing to accept the exchange of b by a or the exchange of d by c?”

Of course, a preference system elicited in the manner just described is not guaranteed to
satisfy any condition of rationality (the observed agent might behave completely irrational).
Therefore, we go on defining a notion of consistency of preference systems (see Definition 2
of the contribution) by demanding the existence of at least one utility function u : A→ [0, 1]
that represents the preference system in the sense of the conditions i) and ii) of Definition 2.
We denote the set of all such representations by UA. This leads us to the first result of
the paper (see Proposition 1 of the contribution): We propose an algorithm for checking
consistency of a preference system, i.e. for checking that UA is non-empty, by solving one
single linear programming problem.

In Section 4 of the contribution, we turn to decision problems involving uncertainty. Specif-
ically, we assume that the source IU containing the information on the mechanism gen-
erating the states of nature is characterized by a credal set M on the measurable space
(S, σ(S)), where σ(S) denotes some suitable σ-algebra. We then define the notion of a
decision system G (see Definition 4 of the contribution) as a subset of the set F(A,M,S) (see
Equation (2) of the contribution) of all acts X : S → A such that u ◦ X is σ(S) − BR-
measurable for all u ∈ UA. For such decision systems we then present three different
approaches for constructing choice rules, that basically follow the classification of the con-
struction of choice functions discussed in the introductory Chapter 1.2 of this dissertation.
In Section 4.2, Definition 5 of the contribution we define a notion of interval expecta-
tion that is suitable for our setup, the generalized interval expectation. Based on this, we
present three different types of criterion functions cr : G → R that can be derived from
this generalized interval expectation, given the agent’s attitude towards the ambiguity is

transitive and, additionally, symmetric (i.e. (a, b) ∈ IR implies (b, a) ∈ R for all a, b ∈ A), the relation
PR is transitive and asymmetric (i.e. (a, b) ∈ PR implies (b, a) /∈ PR for all a, b ∈ A). IR is thus an
equivalence relation, while PR is a strict partial order. Importantly, note that since R is not assumed
to be complete, there might exist elements a, b ∈ A for which it holds that (a, b) /∈ IR and (a, b) /∈ PR

and (b, a) /∈ PR, i.e. elements that are neither ranked equivalent nor can be put in a strict rank order.
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known (see Definition 6 of the contribution). Moreover, in Proposition 3 of the contribu-
tion, we provide an algorithm for computing the generalized interval expectation of an act
by solving a series of linear programs.

In Section 4.3, we introduce a number of concepts of global decision criteria (see Defini-
tion 7 of the contribution).14 All of these concepts rely on the idea that, given perfect
information, maximizing expected utility should be the criterion of choice. However, they
differ in the way they handle the ambiguity underlying the involved sets M and UA, by
demanding expected utility maximization for at least one, for certain, or for all pairs (u, π)
of compatible utility-probability representations. Proposition 4 provides an algorithm that
allows checking an act of interest for optimality with respect to one of these criteria, A-
admissibility, by solving one single linear programming problem. A possible algorithm for
checking A|M-dominance is described at the end of the contribution’s Section 4.4.

In Section 4.4, we set focus on criteria of local admissibility.15 Therefore, we first define a
number of binary relations on the set F(A,M,S) (see Equations (4) to (9) of Contribution 3 )
which are all based on the idea of pairwise expected utility comparisons of acts, however,
differ in whether expected utility has to dominate for at least one, for certain, or for all
pairs (u, π) of compatible utility-probability representations. The locally admissible acts
from G are the defined as the maximal elements from G with respect to the corresponding
relation restricted to G × G (see Definition 8 of Contribution 3 ). Proposition 5 provides
linear programming based algorithms for checking if two acts are in relation with respect
to the relations R∃∃ and R∀∀. Proposition 6 gives an additional condition for improving
the algorithm for R∃∃. Finally, Section 5 discusses a prototypical example applying our
theory where the orders R1 and R2 naturally arise from acts that map into some bivariate
product space with one cardinal and one (potentially partial) ordinal dimension.

3.3.2 Comments and perspectives

Maybe despite the first impression, Contribution 3 has a very strong focus on applications
in mind. Contrarily to the axiomatic and normative approaches to decision theory that were
recalled in the introductory Chapter 1 of this dissertation, we here do not primarily intend
to give an axiomatic explanation of how an agent should behave in oder to guarantee some
form of expected utility characterization of his choices. Instead, we propose a framework
that, on the basis of very weakly structured information, helps the agent to exclude certain
choices if he agrees that expectation maximization is in principle the right criterion of
choice.

14The term “global” is meant in the sense that the choice functions that are induced by the decision
criteria introduced in Section 4.3, generally, do not satisfy the locality property (1.3) from Chapter 1.2
of the present dissertation (for the special case of a cardinal utility this is shown in Schervish et al.
(2003)). An exception is given by the choice function induced by A|M-dominance, which satisfies
property (1.3). This is also discussed in the very last paragraph of Section 4.4 of Contribution 3.

15The term “locality” is meant in the sense that the choice functions induced by the criteria of local
admissibility from Definition 8 in Contribution 3 do indeed satisfy the locality condition (1.3) from
Chapter 1.2 of this dissertation.
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From my point of view, one major issue to be addressed in future research in the context
of Contribution 3 is to make the theory computationally tractable and to apply it to real
world data. Clearly, finding datasets that are suitable for our purposes, i.e. data sets with
partial ordinal and partial cardinal scaled observations, is not an easy task: Data is always
collected in order to be analyzed and so there will be few data sets suitable for trying out
new methods, since at the time such data would have been collected, there wouldn’t have
been any method for analyzing it. It’s a pity... Nevertheless, there do exist some datasets
that could be modified in order to be suitable for our purposes. For instance in Horwitz
et al. (2017), the authors analyze data including (among other para-data variables) also the
time a respondent needed to decide between different options. Generally, such kind of data
could be utilized as a very nice way of eliciting both relations R1 and R2 of a preference
system simultaneously. Specifically, suppose we have a finite set A = {a1, . . . , an} of
consequences. Start with two empty relations R1 = ∅ and R2 = ∅. Next, you ask the agent
successively about her preferences between certain (not necessarily all) pairs of (ai, aj) of
consequences. There are three possibilities:

i) The agent judges ai and aj incomparable. In this case R1 and R2 remain unchanged.

ii) The agent considers ai at least as desirable as aj. In this case we add (ai, aj) to R1

and note down the time tij the decision between the two consequences took him.

iii) The agent considers aj at least as desirable as ai. In this case we add (aj, ai) to R1

and note down the time tji the decision between the two consequences took him.

This procedure leaves us with a (potentially partial) relation R1. Subsequently, we can
utilize the time data that we collected during the above procedure. For that, we first fix a
threshold ξ > 0 below which we do not want to account for time differences. Then, we pick
successively pairs of pairs (ai, aj), (ak, al) ∈ R1 and add ((ai, aj), (ak, al)) to our relation
R2 if and only if tkl − tij ≥ ξ, i.e. if the decision between ak and al took notably longer
than the decision between ai and aj. Finally, this procedure produces an preference system
whose consistency can be checked by means of Proposition 1 of the contribution.

Concerning the computational aspects, some work has already been done: (Essentially)
all linear programming based algorithms introduced in the paper have been implemented
in the statistical software R (and applied to the application example in Section 5 of the
contribution). However, the code at the moment is far from being efficient and could be
improved at several points. For that reason, currently an R package containing (more
efficient versions of) these algorithms and several refinements is designed as part of a
Master’s thesis written by Florian Fendt (LMU Munich) under the supervision of our
working group. As another part of this Master’s thesis, it is planned to implement a
decision aid tool that, for a given (fixed and finite) decision system G, elicits the preference
system step by step by asking pairwise preferences (according to the procedure sketched
above) however, after each step, checks whether one act is clearly preferable among the
other acts. If this is the case, the elicitation procedure can be stopped. Note that decision
aid tools relying on a somewhat similar procedure have already been discussed in Danielson
and Ekenberg (1998), Danielson et al. (2003), and Danielson (2005).
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3.4 Preference aggregation reflecting group homogeneity

3.4.1 Summary of Contribution 4: “A probabilistic evaluation
framework for preference aggregation reflecting group
homogeneity”

In this contribution we propose a new criterion for group specific evaluation of preference
aggregation functions in the presence of partial probabilistic information on the considered
group’s homogeneity. As a preparation, we discuss a minimal axiomatization for quanti-
fying homogeneity and give a concrete proposal for a homogeneity measure. Finally, we
compare a number of preference aggregation functions with respect to our criterion in a
simulation study.

Contribution 4 deals with a rather different topic than the Contributions 1 to 3, namely
the evaluation of methods for preference aggregation. The paper’s main object of study
are so-called preference aggregation function, which are formally mappings

S : Rn → Q (3.7)

where R denotes the set of all asymmetric and negatively transitive relations R ⊂ C×C on
some non-empty and finite set of consequences C and Q denotes the set of all asymmetric
relations Q ⊂ C × C on C.16 Every R = (R1, . . . , Rn) ∈ Rn is called a preference profile
(or short: profile) on C and formalizes one possible way of how the n members of a fixed
group Gn under consideration could form their opinions about ranking the elements of C by
preference. The order S(R) is then called consensus order with respect to the aggregation
function S given the group Gn has constituted the profile R. Of course, the construction
of a meaningful preference aggregation function should not be arbitrary, but needs to be
done in a way which all group members of Gn consider fair or appropriate.

Due to the generality of this task, it hardly surprises that many different rules have been
proposed since the pioneering works by de Borda (1781), de Condorcet (1785), and Hare
(1857) (see Brams and Fishburn (2002) for a survey). Moreover, several rather axiomatic
characterizations of “fair” or “adequate” preference aggregations functions have been pro-
posed, like most prominently the approaches of Black (1948), Arrow (1950), Inada (1964)
and Sen (1966). However, almost all these are non-group-specific and intended to be valid
independently of the concretely considered group. But shouldn’t the adequateness of an
aggregation procedure, beyond compatibility with non-group-specific criteria, also depend
on certain characteristics of the specific group?

We propose a quality criterion for preference aggregation functions that also takes into
account information on the group’s homogeneity. This involves several steps: First, in
Sections 2 of the contribution, we deal with measuring the homogeneity inherent in a
preference profile by so-called homogeneity measures An : Rn → [0, 1]. Therefore, in
Section 2.3, we begin by stating and discussing a set of three relatively weak conditions

16A very similar formal setup is used, e.g., in Ha and Haddawy (2003).
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that every reasonable such measure An should satisfy (see Definition 1 of the contribution).
Subsequently, in Section 2.4, we propose a concrete measure of profile homogeneity, the
maximum consensus homogeneity δn (see Definition 2 of the contribution), show that this
measure satisfies the conditions from Section 2.3 (see Proposition 1), and discuss what
makes this measure a reasonable choice even beyond its compatibility with these conditions.

Next, suppose that the members of Gn constitute the profiles from Rn with respect to
some precise, yet unknown, probability measure PGn . This measure represents perfect in-
formation of the group’s homogeneity structure.17 The idea for our quality measure for
preference aggregation functions is then very simple: We first define a similarity measure
Y u
S : Rn → R that, for each profile R ∈ Rn fixed, measures the similarity of the orders col-

lected in R and the corresponding consensus order S(R) (see Definition 3). To evaluate the
quality of procedure S for group Gn we then simply compute the expected similarity of Y u

S

with respect to PGn , i.e. we define the criterion as mu
Gn

(S) := EPGn (Y u
S ) (see Definition 4).

However, since the measure PGn is unknown, the criterion cannot be directly evaluated
and needs to be approximated best possibly utilizing the available information on Gn’s
homogeneity structure. To do so, we use the ideas of Section 2 of the contribution and
assume that our information can be described as the distribution of some homogeneity
measure An : Rn → [0, 1] taking values k1 < k2 < · · · < kξ ∈ [0, 1], i.e. by a vector α :=
(α1, . . . , αξ) such that PGn(An = kj) = αj for all j = 1 . . . , ξ.18 This assumption naturally
gives rise to a set Mα of probability measures on Rn which are all equally plausible
candidates for approximating the true measure PGn (see Equation (6) of the contribution).
Using this set, we then propose two different approaches for approximating our criterion
mu
Gn

(S): The first one initially obtains the measure P∗α from Mα (see Equation (7) of the
contribution) that yields maximum Shannon-entropy (see Jaynes (1957) for the principle of
maximum entropy) and then approximates the original expectation EPGn (Y u

S ) by EP∗
α
(Y u

S )
(see Equation (8) of the contribution). The second approach uses the set Mα as a whole
and approximates the expectations EPGn (Y u

S ) by the covering interval ranging from the
lowest to the highest expectation of Y u

S that is compatible with a measure from Mα (see
Equation (9) o the contribution). Finally, in Section 3.4, we discuss different approaches
for statistically estimating the probabilities α1, . . . , αξ from data or by expert knowledge or
both. For instance, see Equation (11) of the contribution, this can be done the Dirichlet-
Categorical Model (see Berger (1980) or Gelman et al. (2004)).

In Section 4.1, we briefly recall some common preference aggregation rules from literature,
namely Borda count (see de Borda (1781)), Condorcet’s rule (see de Condorcet (1785)),
Hare’s method (see Hare (1857)), Coombs’ rule (see Coombs and Cohen (1984)), and
Kemeny’s rule (see Kemeny (1959) or Kemeny and Snell (1962)). In Section 4.2, we in
more detail describe the less common commonality sharing rule that was recently proposed

17This is meant in the following sense: Suppose we have fixed some homogeneity measure. Then, if we
know the probabilities for each profile, we also know whether the group tends to constitute homogeneous
or heterogeneous profiles.

18Substantially, this relates to the assumption that, even if the full group-specific measure PGn
is unknown,

we still know the probabilities α that the group Gn constitutes a certain degree of homogeneity.
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in Schollmeyer (2017a). Subsequently, in Section 5, we compare these aggregation rules
with respect to our criterion in a hypothetical study for groups along varying degree of
homogeneity. The results of this study show that the quality of an aggregation function
does indeed depend on the considered groups homogeneity structure (see, in particular,
Figures 1 and 2 and the discussions of the results in Section 5.2).

3.4.2 Comments and perspectives

From my view, there are mainly two generalizations of the paper that should be further
investigated in future research. The first aspect relates to the estimation of the probability
values α1, . . . , αξ that is discussed in Section 3.4 of the paper. There, the proposed ap-
plication of the Dirichlet-categorical model requires the specification of a precise Dirichlet
distribution with hyper parameters γ1, . . . , γξ according to which the vector α is a priori
distributed. If no expert knowledge for specifying the hyper-parameters is available, a
so-called near-vacuous prior model, such as the Imprecise Dirichlet Model (IDM), can be
chosen (see Walley (1996) for the original work or Bernard (2005); Utkin and Augustin
(2007); Augustin et al. (2014) for further interesting properties). In this model, instead of
specifying an arbitrary Dirichlet prior for α, one goes for an imprecise probabilistic model
and assumes that α is distributed by the credal set of all Dirichlet priors (more precisely,
one assumes that all Dirichlet priors are equally plausible candidates to be the prior dis-
tribution of α). Clearly, assuming a whole set of prior distribution also yields a set of
posterior distributions, namely the set of all posterior distributions that are obtained by
updating all the priors with respect to the observed data. Consequently, this also gives
interval-valued posterior expectations for the values of αj: The estimates α̂j from Equa-

tion (11) of the contribution have to replaced by intervals Îj ranging from the lowest to
the highest posterior expectation that αj can have under some Dirichlet prior.

This leaves us with a collection of intervals Î1, . . . , Îξ. To proceed, we need a little detour.
First, it is important to note that, for every probability vector α = (α1, . . . , αξ), the set
Mα as defined in Equation (6) of Contribution 4 very naturally induces a basic probability
assignment bα

19 on the space (Rn, 2R
n
) by setting

bα : 2R
n → [0, 1] , D 7→

{
αj if D = A−1

n (kj) for some j = 1, . . . , ξ

0 else
(3.8)

which is simply a probability mass function on the power set 2R
n

of the set of preference
profiles Rn. Accordingly, the collection of intervals Î1, . . . , Îξ then very naturally induces
a set B of such basic probability assignments by setting

B =
{
bα : αj ∈ Îj,∀j = 1, . . . , ξ ∧

∑ξ

j=1
αj = 1

}
(3.9)

19This is meant in the sense of the concept of basic probability assignments known from the Dempster-
Shafer theory of belief functions (see Shafer (1976)). See also Destercke and Dubois (2014a, Sec-
tion 5.2.1) for a brief introduction.
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Observe that this set B is non-empty and closed and, therefore, defines a so-called gener-
alized basic probability assignment in the sense of Augustin (2005, Definition 3.2). It then
directly follows from Augustin (2005, Theorem 3.3) that if we set

L : 2R
n → [0, 1] , D 7→ min

bα∈B

∑
V⊆D

bα(V ) (3.10)

then the triplet (Rn, 2R
n
, L) defines an F-probability field in the sense of Weichselberger’s

theory.20 Since such an F-probability field can equivalently be represented by a suitable
credal set (its structure), or by a coherent lower probability in the sense of Walley’s theory
(see Walley (1991)), considering the IDM for estimating the probabilities αj of the homo-
geneity classes leads to an usual imprecise probabilistic model. This allows for applying
all the machinery from these very rich theories for the proposed generalization.21

The second main aspect that should be addressed in future research is that of partially or-
dered individual preferences. Throughout Contribution 4, we modeled the individual group
members’ opinions about the consequences collected in C by asymmetric and negatively
transitive binary relations. This is a very common way of modeling fully specified prefer-
ences, since incomparability with respect to such relations can be interpreted as indifference
(the incomparability relation is transitive due to negative transitivity, see Section 2.1 and
Footnote 2 of the contribution for details). However, as has been argued in situations of
individual decision making before, there are good reasons to assume incomparability dif-
ferent from indifference in certain situations. Thus, a natural way to generalize the paper
would be to allow for group members with opinions that correspond to strict partial orders,
i.e. binary relations that are irreflexive and transitive. Essentially, the whole framework
proposed in the paper would straightforwardly extend to such situations and could still
be applied. However, two modifications would be needed. First, the maximum consensus
homogeneity δn (see Definition 2 of the contribution) needs to be modified: The number
eR(a, b) of group members being indifferent between a and b used in its definition, now
corresponds to the number of group members that are either indifferent between a and
b or who cannot compare the two at all. Thus, a high value of eR(a, b) does no longer
(necessarily) indicate a homogeneous opinion about the pair (a, b) in the considered profile
R. A straightforward and simple modification of δn for partial individual orders is to base
it solely on the numbers cR(a, b) of members strictly preferring a to b.

The second modification that would be needed concerns the definition of the preference
aggregation rules in Section 4 of the contribution. Generally, there seems to be no unique
and straightforward way of extending them to partial orders, but such extensions can be
done in many plausible ways. For instance, how to compute and compare the ranks of
consequences in a partially ordered set when generalizing Borda count? A discussion of
generalizing preference aggregation functions to partially ordered individual preferences
can be found, e.g., in Pini et al. (2011). An even more general discussion of preference
aggregation under incomplete information is discussed in Chambers and Hayashi (2014).

20See Weichselberger and Pöhlmann (1990) and Weichselberger (2001) for textbooks or Weichselberger
(2000) for a more compact description of some basic concepts.

21An (essentially) equivalent result has been obtained in Miranda et al. (2005).
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3.5 Detecting stochastic dominance

3.5.1 Summary of Contribution 5: “Detecting stochastic dominance
for poset-valued random variables as an example of linear
programming on closure systems”

Contribution 5 develops a linear programming method for detecting stochastic dominance
for random variables with values in a partially ordered set. We study the corresponding
dual programming problem and discuss its properties. Subsequently, we address the ques-
tion of inference by utilizing resampling methods as well as conservative bounds that are
obtained by the application of Vapnik-Chervonenkis theory.

In this paper we take a more statistical point of view. We deal with (first order) stochastic
dominance for random variables taking values in some partially ordered space (V,≤).22 In
contrast to the characterization of stochastic dominance used in Contribution 3, we here
use a different characterization: For random variables X, Y : Ω → V , we say that Y
stochastically dominates X, denoted by X ≤SD Y , if and only if it holds that P (X ∈ A) ≤
P (Y ∈ A) for every upset A, where a subset A ⊆ V is called upset if and only if x ∈ A
and x ≤ y implies y ∈ A for arbitrary elements x, y ∈ V .

Intuitively, this characterization of stochastic dominance can be interpreted as follows:
Every upset A can be viewed as a possible (meaningful) concept for defining the subset of
large values from V with respect to ≤. Given this view, Y stochastically dominates X if
and only if Y has higher probability of attaining large values than X for no matter what
meaningful concept for defining large values is chosen. However, rather than dealing with
the distributions of the random variables X and Y directly, we deal with their empirical
analogues associated to the concrete samples. Specifically, suppose we have i.i.d. samples
x = (x1, . . . , xnx) and y = (y1, . . . , yny) of X and Y , respectively. Moreover, let P̂nx,x and

P̂ny ,y denote the empirical distributions associated with the samples x and y.23 We are
then interested in whether the sample y stochastically dominates the sample x, denoted
by X ≤ŜD Y , or, in other words, whether it holds that P̂nx,x(X ∈ A) ≤ P̂ny ,y(Y ∈ A) for
arbitrary upsets A ⊆ V .

This leads us to the first main part of the paper: We propose an algorithm for detect-
ing whether a sample y stochastically dominates a sample x by solving one single linear
programming problem. This is discussed in Section 3.2 of the contribution. The con-
struction involves several steps. Since we deal with finite samples, we without loss of
generality can assume that V is finite, say V = {v1, . . . , vk}. Then, one has to notice that
the set of all upsets of V is in one-to-one correspondence with the set of all monotone
increasing indicator functions on V (w.r.t. ≤) and, therefore, to the set M≤ of all vectors

22Specifically, in this contribution we assume the relation ≤⊆ V × V to be reflexive (i.e. (v, v) ∈≤ for all
v ∈ V ), transitive (i.e. (u, v) ∈≤ and (v, w) ∈≤ implies (u,w) ∈≤ for all u, v, w ∈ V ), and antisymmetric
(i.e. (u, v) ∈≤ and (v, u) ∈≤ implies u = v for all u, v ∈ V ).

23Specifically, we have P̂nx,x(X ∈ A) = 1
nx

∑nx

i=1 1A(xi) and P̂ny,y(Y ∈ A) = 1
ny

∑ny

i=1 1A(yi).
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m = (m1, . . . ,mk) ∈ {0, 1}k corresponding to such indicator functions.24 The elements of
M≤ can easily be described via linear constraints (see Equation (3) of the contribution).
This allows to check whether X ≤ŜD Y by solving the optimization problem

〈wx − wy,m〉 −→ max
m∈M≤

(3.11)

where, for z ∈ {x, y}, we have wz = (wz1, . . . , w
z
k) and wzi denotes the share of observations

of vi in the sample z. It then holds that X ≤ŜD Y if and only if the optimal outcome of the
above problem (3.11) is at most 0. Moreover, it even turns out that one can equivalently
replace the constraint m = (m1, . . . ,mk) ∈ {0, 1}k by m = (m1, . . . ,mk) ∈ [0, 1]k (see
Section 4.1 of the contribution for more details), which makes problem (3.11) a classical
linear programming problem.

In Section 3.2.2 of the contribution, we then investigate the dual program of the linear
programming problem obtained in Section 3.1 (see Equation (10) of the contribution in
particular). Here, it turns out that this dual program can be interpreted as a certain
type of (probability) mass transportation problem that has some close connections to the
algorithms discussed in Tarp and Osterdal (2007) and Range and Osterdal (2013). We
illustrate this dual programming problem by means of a concrete toy example and give
visualization of it in the Figures 1 and 2 of the contribution.

In Section 3.4 and 4 of the contribution, we utilize the fact that the set of all upsets of a
partially ordered set V is a particular example from a more general class of set systems,
so-called closure systems.25 We therefore investigate in how far the optimization techniques
developed in Section 3 extend to this more general setting or, more precisely, whether opti-
mizing linear functionals on closure systems still reduces to linear programming problems.
It turns out that if the closure system S is sufficiently easy to characterize26, then this
is still true. However, for more complex closure systems, the integrality constraints for
the vectors representing the indicator function can no longer be equivalently replaced by
interval constraints and, thus, we arrive at linear programming problems with binary linear
constraints. That such problems nevertheless can be feasibly solved for practically relevant
situations is shown in Sections 4.1 and 4.2 of the contribution.

In Section 5, we turn to the question of inference or, more precisely, the question of
how to statistically test stochastic dominance for random variables taking values in a
partially ordered set. After discussing related existing approaches27 and emphasizing why
a reasonable consistent classical statistical test is not reachable at all, we essentially propose

24If i : V → {0, 1} is a monotone increasing indicator function, the corresponding vector is given by
m = (i(v1), . . . , i(vk)).

25A closure system on V is a set system S ⊆ 2V that contains V and is closed under arbitrary intersections.
26Precisely, if S is generated by an implication base consisting solely of formal implications with a singleton

premise (see Sections 2.2 and 3.4 of the contribution). Equivalently, such closure systems can be
characterized as being additionally closed under arbitrary unions.

27See in particular Barrett and Donald (2003) for an univariate test with switched hypothesis or Babbar
(1955), Sengupta et al. (1963), and Prékopa (1966) for results on the asymptotic behavior of random
linear programming problems.



38 3. About the contributing material: Relations, summaries and outlooks

two slightly modified approaches. Therefore, let D+ denote the maximal outcome of the
above problem (3.11) and let D− denote the minimal outcome of (3.11) in minimum form.
In Section 5.1, we propose a permutation-based test with the test statistic D+ for a more
conservative test hypothesis than the one we are actually interested in, namely H0 : PX =
PY instead of H̃0 : supA P (X ∈ A)−P (Y ∈ A) = 0 (where the supremum is taken over all
upsets A). In Section 5.2, we rely on Vapnik-Chervonenkis theory (see, e.g., Vapnik (1982))
for obtaining bounds for the test statistic D+ which can be used as conservative critical
values for tests relying on D+. The obtained bounds for D+ then depend on the complexity
of set of all upsets and are usually very conservative. In Section 5.3, we propose a procedure
for reducing the complexity of the set of all upsets by systematically excluding upsets that
are “too complex”, namely upsets that are generated by maximal anti-chains with respect
to the relation ≥. This procedure can be viewed as a kind of “regularization” procedure for
the test statistic in the sense that the supremum in D+ is now taken over a smaller class
of monotone indicator functions. Section 6 of the paper is devoted to several applications
of the theory, namely multivariate inequality analysis (Section 6.1), item response theory
(Section 6.2), cognitive diagnosis models (Section 6.3), and a geometrical characterization
of the Kolmogorov-Smirnov test (Section 6.4).

3.5.2 Comments and perspectives

Looking closely, there are some tight interrelations between Contribution 3 and Contribu-
tion 5 of this PhD dissertation. Specifically, in Contribution 3 we are concerned with acts
X : S → A, where A is some non-empty set of consequences equipped with a pre-order R1

on A and a pre-order R2 on R1.28 Accordingly, if we choose R2 = ∅ and R1 to be addition-
ally antisymmetric, we are essentially back in the framework of Contribution 5, namely in
the context of random variables taking values in a partially ordered space (A,R1).29 More-
over, assume that the uncertainty about the states from S is described by the classical
probability measure π, that is M = {π} is a singleton. Under mild regularity conditions
for the underlying space A30, it then holds for arbitrary acts X and Y that

π(X ∈ B) ≤ π(Y ∈ B) for all (measurable) upsets B of (A,R1) (3.12)

is (essentially) equivalent to

Eπ(u ◦X) ≤ Eπ(u ◦ Y ) for all utility functions u ∈ UA (3.13)

where UA is the set of utility function u : A→ [0, 1] that has been defined in Chapter 3.3 of
the present work (or in Definition 2 of Contribution 3, respectively). That is, for the special
case of a preference system A = [A,R1, R2] as defined above and a credal set M = {π}
that is a singleton, first order stochastic dominance with respect to π and the relation R∀∀

28See the summary in Chapter 3.3 of this dissertation for further details.
29Of course, this connection exists rather on a formal level, since Contribution 5 is not primarily about

decision under uncertainty.
30See, e.g., Mosler and Scarsini (2012) for details.
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from Definition 8 of Contribution 3 coincide (obviously, in that case also the relations R2
∃∀

and R1
∀∃ coincide, since these fall together with the relation R∀∀ forM being a singleton).

The above equivalence offers a very nice way for generalizing the concept of first order
stochastic dominance in two (not mutually excluding) different directions. Firstly, one
could easily extend stochastic dominance to sets of probability measures. To do so, one
only needs drop the assumption thatM has to be a singleton by demanding that the above
property (3.13) holds, for instance, for all compatible or at least one compatible probability
measure. This is, among other things, essentially done in Section 4.4 of our Contribution 3
(see the relations R2

∃∀, R
1
∀∃, and R∀∀ of the contribution in particular). Compare also the

summary of our Contribution 3 discussed in Chapter 3.3 of the present dissertation.31.

Secondly, one could drop the assumption that the relation R2 belonging to the preference
system has to be empty and, accordingly, demand the above property (3.13) only for such
utility functions u that weakly represent32 the preference system A as a whole. This would
give the opportunity for extending the concept of stochastic dominance from random vari-
ables taking values in (partial) ordinal scaled spaces to random variables that take values in
partial ordinal and partial cardinal scaled spaces, i.e. preference systems. Specifically, such
an extension seems very naturally for the following situation: Suppose we are interested
in comparing random variables taking values in some q-dimensional space A∗ ⊂ Rq, where
q ≥ 2 is some fixed number. That is, A∗ = A1×· · ·×Aq for suitable real subsets A1, . . . , Aq.
Moreover, suppose on each of the sets Ai, where i = 1, . . . , q, we have a cardinal scale in
the sense that comparisons of differences allow for a meaningful interpretation. However,
elements belonging to different sets Ai and Aj do not allow for a comparison at all (neither
ordinal nor cardinal). Then a partially ordinal relation R∗1 ⊂ A∗ × A∗ is very naturally
given by the component-wise order on A∗ defined by (a, b) ∈ R∗1 if and only if ai ≥ bi for all
i = 1, . . . , q. However, simply comparing random variables with values in A∗ by first order
stochastic with respect to R∗1 would ignore the information about the cardinal structure
in the different dimensions. To use this information, one can then proceed and define a
relation R∗2 on R∗1 ×R∗1 by setting ((a, b), (c, d)) ∈ R∗2 if and only if ai − bi ≥ ci − di for all
i = 1, . . . , q, i.e. to weakly prefer the exchange of b by a to the exchange of d by c whenever
the former has an at least as high difference as the latter in every dimension. If we then, for
two random variables X, Y : S → A∗, demand the above property (3.13) only for u ∈ UA∗ ,
where A∗ = [A∗, R∗1, R

∗
2], we arrive at a generalized notion of stochastic dominance addi-

tionally allowing to incorporate partial cardinal information. The example just discussed
can, in some more detail, be found in Schollmeyer (2017b, pp. 28-29) who also discusses
the interrelations to the so-called scaled convex order that is introduced in Koshevoy and
Mosler (2007).

31For more approaches generalizing stochastic dominance to credal sets see Denoeux (2009); Couso and
Dubois (2012); Montes et al. (2014b); Couso and Destercke (2015).

32See Definition 2 of our Contribution 3 for details.





4 General concluding remarks

As the more detailed and paper-specific research perspectives were already discussed under
the headline “comments and perspectives” in the sections directly following the summary
of the corresponding contribution, this seems to be the right place for some more general
concluding remarks. To introduce these, let us also briefly summarize the five papers
building the core of this thesis.

In this work, we proposed, presented, and discussed several theoretical and algorithmic
approaches for extending the classical theory of decision making under uncertainty to
situations in which the available information is very weakly structured. Specifically, we
presented approaches that are capable of dealing with non-complete individual preferences
as well as partially specified probabilities of the different states of nature. In Contribution 1
and Contribution 2, where only the probabilities are assumed to be partially specified, we
presented algorithms for determining optimal acts with respect to certain decision criteria
from the theory of imprecise probabilities, introduced a new decision criterion, and studied
measures for quantifying the “extent of optimality” of optimal acts with respect to the
criterion of E-admissibility. In Contribution 3 we assumed that both the utilities and
the probabilities are only partially specified. Moreover, we introduced a model for partial
ordinal and partial cardinal preferences. In this setup, we proposed three new approaches
for decision making in such weakly structured decision problems, one based on generalized
expectation intervals, the other two based on local and global expectation comparisons of
acts, respectively. Any of these approaches is complemented by algorithms that allow the
evaluation of the decision criteria.

In Contribution 4 we investigated if, when considering the problem of aggregating the
preferences of the members of a fixed group, information on the considered groups ho-
mogeneity structure in form of partial probabilistic knowledge can help to better choose
between different (common as well as recently proposed) preference aggregation functions.
Indeed, it showed that the appropriateness of such aggregation procedures does depend
on the group’s homogeneity. In Contribution 5 we proposed an algorithm for checking
stochastic dominance in samples of partially ordered data relying on linear programming
theory. Further, we investigated in how far such type of algorithm can be extended to the
general task of optimizing linear functions on closure systems. Moreover, we addressed
the question of inference, i.e. what can be learned about stochastic dominance for the
underlying true random variables from the samples.

So, what remains to say? As argued already in Chapter 1, decision theory under uncer-
tainty is a very general theory with applications in many different disciplines. This, in
particular, involves more applied fields where the rather mathematical assumptions justi-
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fying or dismissing certain decision criteria to be suitable are very hard to communicate
and often not questioned at all (for instance, one here could think of medical diagnosis
systems in medicine or software packages automatically calculating the insurance premium
for some customer in an insurance company). In such fields, people rely on the adequacy of
such decision support systems even if a wrong decision may have dramatic consequences.
Taking this into account, the wide use of decision theoretic methods gives rise to (at least)
two different aspects worth thinking about, one optimistic the other rather pessimistic:

• Optimistic view: Further developing the theory of decision making under uncertainty
very naturally provides a field where scientific progress is always much needed and
important. It is hard to think of any other scientific discipline that has intersections
with comparably many (scientific) fields.

• Negative view: Decision theory relying on hardly (or not at all) justifiable assump-
tions about utilities or probabilities or both, i.e. on what we called the information
sources IP and IU , may have dramatic consequences that aren’t solely of academic
interest, but might (negatively) affect the lives of real people.

At first sight, it seems hard to take both of these two extreme points of view into account
simultaneously. But it does not seem impossible. However, every attempt to solve this
problem necessarily has to begin with the researchers working on decision theory. Only
if they develop decision models based on justifiable assumptions, practitioners can indeed
rely on such models without risking (too) wrong decisions. Thus, bringing together the
two different extreme points of view ideally could result in the following compromise:

• Idealistic view: Further developing the theory of decision making under uncertainty
is relevant and important for a variety of disciplines, however, this needs to be done
in a way avoiding hyper-idealized assumptions and instead reflecting the real nature
of the available information sources.

This is exactly where many alternative, non-classical, works on decision theory have been
contributing very valuable progress in the last decades. Some of these works have explicitly
been mentioned in the present dissertation. I truly hope that with the works collected in
the present PhD dissertation we could contribute some small steps (to the many big steps
that already have been taken) to reaching such “idealistic” compromise and, if not, at
least could raise the awareness for the necessity of such compromise. A first step in this
direction would be to actually implement the preference elicitation schemes discussed in
Chapter 3.3.2 of this dissertation.
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Abstract. The paper is concerned with decision making under com-
plex uncertainty. We consider the Hodges and Lehmann-criterion
relying on uncertain classical probabilities and Walley’s maximality
relying on imprecise probabilities. We present linear programming based
approaches for computing optimal acts as well as for determining least
favorable prior distributions in finite decision settings. Further, we apply
results from duality theory of linear programming in order to provide
theoretical insights into certain characteristics of these optimal solutions.
Particularly, we characterize conditions under which randomization pays
out when defining optimality in terms of the Gamma-Maximin criterion
and investigate how these conditions relate to least favorable priors.

Keywords: Linear programming · Decision making · Least favor-
able prior · Duality · Maximality · Imprecise probabilities · Gamma-
maximin · Hodges & Lehmann

1 Introduction

Many problems arising in modern sciences, e.g. estimation and hypothesis testing
in statistics or modeling an agent’s preferences in economics, can be embedded
in the formal framework of decision theory under uncertainty. However, as the
specification of a precise (i.e. classical) probability measure on the space of uncer-
tain states often turns out to be too restrictive from an applicational point of
view, decision theory using imprecise probabilities (for a survey see, e.g., [12])
has become a more and more attractive modeling tool recently. For determining
optimal decisions with respect to the complex decision criteria particularly (but
not exclusively) arising in the context of the theory of imprecise probabilities,
linear programming theory (see, e.g., [15]) often turns out to be well-suited: By
embedding decision problems into this general optimization framework, one can
draw on the whole theoretical toolbox of this well-investigated mathematical
discipline. Particularly, this allows for a computational treatment of complex
decision making problems in standard software (e.g. MATLAB or for statisti-
cians R) and, therefore, helps in order to make the abstract theory applicable for
practitioners. Accordingly, there exists plenty of literature on linear optimization
driven algorithms for facing complex decision problems. Examples include [6,13].
A survey is given in [5].
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However, quite similar to characterizations of imprecise probabilities and
natural extensions in [17, Chap. 4] and [14], the opportunities of using linear
programming in decision theory are by far not exhausted by producing powerful
algorithms (see [18, p. 402]). Instead, applying basic results on duality from lin-
ear programming theory (such as, e.g., the complementary slackness property,
see, e.g., [15, Sect. 5.5]) can often provide theoretical insights on both the con-
nection between different decision criteria and the specific properties shared by
all optimal solutions with respect to a certain criterion.

The paper is structured as follows: In Sect. 2, we recall the classical model of
finite decision theory as well as the extended version of the model allowing for
randomized acts. In Sect. 3, we give a linear program for determining optimal
randomized acts with respect to a decision criterion of Hodges and Lehmann
which tries to cope with uncertain prior probabilistic information and investigate
the corresponding dual programming problem. In Sect. 4, we consider the case
of decision making under imprecise probabilistic information. Particularly, we
present an algorithm for checking maximality of pure acts in one single linear
program in Sect. 4.1 and use duality theory for deriving connections between
least favorable prior distributions and the Gamma-Maximin criterion in Sect. 4.2.
Finally, Sect. 5 is preserved for concluding remarks.

2 The Basic Model

Throughout the paper, we consider the standard model of finite decision theory:
An agent (or decision maker) has to decide which act ai to pick from a finite set
A = {a1, . . . , an}. However, the utility of the chosen act depends on which state
of nature from a finite set Θ = {θ1, . . . , θm} corresponds to the true description
of reality. Specifically, we assume that the utility of every pair (a, θ) ∈ A×Θ can
be evaluated by a known real-valued cardinal utility function u : A × Θ → R.
For simplicity, we will often use the notation uij := u(ai, θj), where i = 1, . . . , n
and j = 1, . . . ,m. The structure of the basic model and a running example
repeatedly considered throughout the paper are visualized in Table 1. For every
act a ∈ A, the utility function u is naturally associated with a random variable
ua : (Θ, 2Θ) → R defined by ua(θ) := u(a, θ) for all θ ∈ Θ. Similarly, for
every θ ∈ Θ, we can define a random variable uθ : (A, 2A) → R by setting
uθ(a) := u(a, θ) for all a ∈ A.

Depending on the context, we also allow for randomized acts, i.e. classical
probability measures λ on (A, 2A). Choosing λ is then interpreted as leaving
your final decision to a random experiment which yields act ai with probability
λ({ai}). We denote the set of randomized acts on (A, 2A) by G(A).

The utility function u on A×Θ is then extended to a utility function G(u) on
G(A) × Θ by assigning each pair (λ, θ) the expectation of the random variable
uθ under the measure λ, i.e. G(u)(λ, θ) := Eλ

[
uθ

]
, which corresponds to the

expectation of utility that choosing the randomized act λ will lead to, given θ
is the true description of reality. Every pure act a ∈ A then can uniquely be
identified with the Dirac-measure δa ∈ G(A), and we have u(a, θ) = G(u)(δa, θ)
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Table 1. Basic model (left) and running example with acts A = {a1, a2, a3}, states
Θ = {θ1, . . . , θ4} (right) and the credal set M :=

{
π : 0.3 � π({θ2}) + π({θ3}) � 0.7

}

additionally considered in the Sects. 4.1 and 4.2.

u(ai, θj) θ1 · · · θm

a1 u(a1, θ1) · · · u(a1, θm)
...

... · · ·
...

an u(an, θ1) · · · u(an, θm)

u(ai, θj) θ1 θ2 θ3 θ4

a1 20 15 10 5
a2 30 10 10 20
a3 20 40 0 20

for all (a, θ) ∈ A × Θ. Again, for every λ ∈ G(A) fixed, the extended utility
function G(u) is associated with a random variable G(u)λ on (Θ, 2Θ) by setting
G(u)λ(θ) := G(u)(λ, θ) for all θ ∈ Θ. Finally, we refer to the triplet (A, Θ, u)
as the (finite) decision problem and to the triplet (G(A), Θ,G(u)) as the corre-
sponding randomized extension.

Within this framework, our goal is to determine an optimal act (depending
on the context, either randomized or pure). However, any appropriate definition
of optimality depends on (what we assume about) the mechanism generating the
states of nature. Here, traditional decision theory mainly covers two extremes:
The mechanism follows a known probability measure π on (Θ, 2Θ) or it can be
compared to a game against an omniscient enemy. In this cases optimality is
almost unanimously defined by either maximizing expected utility with respect to
π (also known as Bayes-criterion) or applying the Maximin-criterion (i.e. choos-
ing an act that has maximal utility under the worst possible state of nature).

In contrast, defining optimality of acts becomes less obvious if the prior π
is only partially known (case of imprecise probabilities) or there is uncertainty
about the complete appropriateness of it (case of uncertainty about precise prob-
abilities). The following sections are concerned with these two situations.

3 Handling Uncertain Precise Probabilistic Information:
The Hodges and Lehmann-Criterion

Apart from the border cases of maximizing expected utility with respect to
a precise prior π in the presence of perfect probabilistic information and the
Maximin-criterion in complete absence of probabilistic information, classical
decision theory tries to cope with decision making under uncertain probabilistic
information, too: Anticipating ideas of robust statistics, Hodges and Lehmann
proposed applying the Bayes-criterion only to such acts, whose worst possible
utility does not fall below a certain amount of the Minimax utility (see [4]).
Their idea is to utilize probabilistic information from previous experience while
simultaneously distrusting the complete appropriateness of this information and
restricting analysis to acts that are not too bad under the worst state. They
also give the following alternative representation of their approach that has a
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different, intuitively more accessible, interpretation1: The decision maker is
allowed to model his degree of trust in the prior by a parameter α ∈ [0, 1]. Specif-
ically, if π is a probability measure on (Θ, 2Θ), a randomized act λ∗ ∈ G(A) is
said to be Hodges and Lehmann-optimal w.r.t. π and α (short: Φπ,α-optimal), if
Φπ,α(λ∗) � Φπ,α(λ) for all λ ∈ G(A), where

Φπ,α(λ) := (1 − α) · min
θ

G(u)(λ, θ) + α · Eπ

[
G(u)λ

]
(1)

Thus, the parameter α in (1) controls how the linear trade-off between expecta-
tion maximization w.r.t. π and applying the Maximin-criterion is actually made.
The following Proposition 1 describes an algorithm for determining a randomized
Hodges and Lehmann-optimal act for arbitrary pairs (π, α).2

Proposition 1. Consider the linear programming problem

(1 − α) · (w1 − w2) + α ·
n∑

i=1

Eπ(uai
) · λi −→ max

(w1,w2,λ1,...,λn)
(2)

with constraints (w1, w2, λ1, . . . , λn) � 0 and

• ∑n
i=1 λi = 1

• w1 − w2 �
∑n

i=1 uij · λi for all j = 1, . . . ,m.

Then the following holds:

(i) Every optimal solution (w∗
1 , w∗

2 , λ∗
1, . . . , λ

∗
n) to (2) induces a Φπ,α-optimal

randomized act λ∗ ∈ G(A) by setting λ∗({ai}) := λ∗
i .

(ii) There always exists an Φπ,α-optimal randomized act. �

By computing the dual linear program of the linear program given in
Proposition 1, we receive the following Corollary. It can be interpreted as a
method to construct priors that take the agent’s scepticism about the prior
probability π (expressed by the parameter α) into account.

Corollary 1. Let λ∗ ∈ G(A) denote a Φπ,α-optimal randomized act. Then, there
exists a probability measure μπ,α on (Θ, 2Θ) and a pure act a∗ ∈ A such that

Φπ,α(λ∗) = Eμπ,α
[ua∗ ] (3)

Proof. The dual of the optimization problem (2) is given by:

z1 − z2 −→ min
(z1,z2,σ1,...,σm)

(4)

with constraints (z1, z2, σ1, . . . , σm) � 0 and

1 A further mathematical characterization from the viewpoint of Gamma-Maximinity
for certain imprecise probabilities is given in Footnote 3.

2 The proofs of Propositions 1, 2 and 3 are straightforward and therefore left out.
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• ∑m
j=1 σj = 1 − α

• z1 − z2 ≥ ∑m
j=1 uij · σj + α · Eπ(uai

) for all i = 1, . . . , n.

Let (z∗
1 , z∗

2 , σ∗
1 , . . . , σ∗

m) denote an optimal solution to (4). Then the constraints
guarantee that assigning μπ,α({θj}) := α · π({θj}) + σ∗

j for all j = 1, . . . ,m

induces a probability measure on (Θ, 2Θ) and that for all expectation maximal
acts a∗ ∈ A with respect to μπ,α it holds that z∗

1 − z∗
2 = Eμπ,α

[ua∗ ]. Further, by
duality, we know that z∗

1 − z∗
2 coincides with the optimal value of program (2)

and, therefore, with Φπ,α(λ∗) where λ∗ ∈ G(A) denotes an Hodges and Lehmann-
optimal randomized act. Thus, Φπ,α(λ∗) = Eμπ,α

[ua∗ ], as desired. �

Running Example (Table 1): Let π denote the prior on (Θ, 2Θ) induced by
(0.2, 0.7, 0.05, 0.05) and let our trust in π be expressed by α = 0.35. Resolving
the linear programming problem from Proposition 1 gives the optimal solution
(8, 0, 0.8, 0, 0.2). Thus, a Φπ,0.35-optimal randomized act λ∗ ∈ G(A) is induced
by (0.8, 0, 0.2). Next, we can use Corollary 1 to compute μπ,0.35. An optimal
solution of problem (4) is given by the vector (11.78, 0, 0, 0, 0.6385, 0.0115), and
thus the measure μτ,0.35 is induced by the vector (0.070, 0.245, 0.656, 0.029).

4 Handling Imprecise Probabilistic Information:
The Gamma-Maximin View

We now turn to decision criteria taking into account the uncertainty in the prior
information in a more direct way: For modeling prior knowledge, instead of one
classical probability, we consider polyhedral sets of probability measures that
are a common tool in different theories of imprecise probabilities, like e.g. linear
partial information ([7]), credal sets ([8]), lower previsions ([16]) or interval
probability ([17]) as well as in robust statistics, like e.g. ε-contamination models
(see [3, p. 12]). Particularly, we assume probabilistic information is expressed by
a polyhedrical set M of probability measures on (Θ, 2Θ) of the form

M :=
{
π| bs � Eπ(fs) � bs ∀s = 1, ..., r

}
(5)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R2 such that bs � bs and fs :
Θ → R. Specifically, the available information is assumed to be describable by
lower and upper bounds for the expected values of a finite number of random
variables on the space of states. Clearly, if uncertainty is described by a set of
probability measures, defining meaningful criteria for decision making strongly
depend on the agent’s attitude towards ambiguity, i.e. towards the non-stochastic
uncertainty between the measures contained in M. Accordingly, many competing
criteria exist (see [12] for a survey or [2,8,16] for original sources). In the following
sections, we present linear programming based results for a selection of such
criteria, namely Walley’s maximality and the Gamma-Maximin criterion. For
the latter, we also investigate some connections to least favorable priors.
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4.1 Checking Maximality of Pure Acts

The idea behind maximality of an act a∗ ∈ A is quite simple: One repeatedly
compares an act a∗ pairwise to all other acts and checks whether there exists an
element of the set M with respect to which ua∗ dominates the corresponding
other act in expectation. Formally, an act a∗ ∈ A is said to be M-maximal, if

∀ a ∈ A ∃ πa ∈ M : Eπa
(ua∗) � Eπa

(ua) (6)

Naturally, the above definition extends to randomized acts. However, when also
considering randomized acts, the criterion of M-Maximality coincides (see [16,
p. 163]) with another well-investigated criterion known from IP decision theory
contributed to Levi : E-admissibility. For a detailed discussion of connections
between the two criteria see [11]. An algorithm for determining the set of all
randomized E-admissible acts has been introduced in [13]. However, for finite
A, being M-Maximal is a strictly weaker condition and, therefore, needs to be
checked separately from E-admissibility. Other approaches for doing so have
already been proposed in [6]. Proposition 2 describes an algorithm for checking
M-Maximality of a pure act az ∈ A by solving one single linear program.

Proposition 2. Let (A, Θ, u) denote a finite decision problem and let M be of
the form (5). Further, let az ∈ A be any act. Consider the linear program

n∑

i=1

( m∑

j=1

γij

)
−→ max

(γ11,...,γnm)
(7)

with constraints (γ11, . . . , γnm) � 0 and

• ∑m
j=1 γij � 1 for all i = 1, . . . , n

• bs �
∑m

j=1 fs(θj) · γij � bs for all s = 1, ..., r, i = 1, . . . , n

• ∑m
j=1(uij − uzj) · γij � 0 for all i = 1, . . . , n.

Then az ∈ A is M-Maximal iff the optimal outcome of (7) equals n. �

If (γ∗
11, . . . , γ

∗
nm) is an optimal solution to problem (7) yielding an value of n,

we can construct πai
∈ M for which act az dominates act ai in expectation by

setting πai
({θj}) := γij . The problem possesses n(3 + r) constraints and nm

decision variables. Determining the set of all maximal acts requires to solve n
such linear programs. Compared to this, the algorithm based on pairwise com-
parisons of acts proposed in [6] here translates to solving n2 −n linear programs
with m decision variables, however, with only r + 2 constraints.

Running Example (Table 1): Resolving the linear programming problem
from Proposition 2 for every act a1, a2 and a3 separately gives optimal value 3
for each of them. Thus, all available acts are M-Maximal.
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4.2 Gamma-Maximin and Least Favorable Priors

In this section, we first present a linear program for identifying a least favorable
prior distribution from the credal set M under consideration. Afterwards, we
investigate the dual of this linear program and, in this way, provide a connection
between pure acts a ∈ A that maximize expected utility with respect to a least
favorable prior and randomized acts λ ∈ G(A) that are optimal with respect to
the Gamma-Maximin criterion.

Before we proceed, some additional notation is needed: For a credal element
π ∈ M, let B(π) denote the maximal expectation with respect to π that an act
from A can yield (that is B(π) = Eπ(ua∗), where a∗ ∈ A maximizes expected
utility with respect to π). The set of all acts a ∈ A that maximize expected
utility with respect to π is denoted by Aπ. Further, we call a credal element
π− ∈ M a least favorable prior (lfp) from M iff B(π−) � B(π) holds for all
π ∈ M. Specifically, π− is a lfp, if it yields the minimal best possible expected
utility under all concurring elements on the credal set. Proposition 3 describes
a linear program for determining a lfp from M.

Proposition 3. Let (A, Θ, u) denote a decision problem and let M be of the
form (5). Consider the linear program

w1 − w2 −→ min
(w1,w2,π1,...,πm)

(8)

with constraints (w1, w2, π1, . . . , πm) � 0 and

• ∑m
j=1 πj = 1

• bs �
∑m

j=1 fs(θj) · πj � bs for all s = 1, ..., r

• w1 − w2 �
∑m

j=1 uij · πj for all i = 1, . . . n.

Then the following holds:

(i) Every optimal solution (w∗
1 , . . . , π∗

m) to (8) induces a least favorable prior
π− ∈ M by setting π−({θj}) := π∗

j .
(ii) There always exists a least favorable prior. �

A lfp can be understood as a kind of “pignistic” probability, representing the
decision problem under complex uncertainty in a way that is specific to the prob-
lem and the criterion under consideration, but in return gives the exact criterion
value. This contrasts lfps from pignistic probabilities in Smets’ spirit, who argued
that a decision problem under complex uncertainty could be approached by dis-
tinguishing between a credal level, where the uncertain beliefs are to be expressed
with all their ambiguity and scarceness by an imprecise probability (belief func-
tion in Smets’ context), and a decision level, where eventually the imprecise
probability is condensed into a traditional probability on which expected util-
ity theory could be applied (see, e.g., [9,10], as well as, e.g., [1] for geometric
techniques to represent belief functions by a single precise probability).
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We now show some connections between least favorable priors and random-
ized Gamma-Maximin acts w.r.t. M (M-Maximin). Recalling its definition, a
randomized act λ∗ ∈ G(A) is said to be M-Maximin optimal iff for all λ ∈ G(A):

EM
[
G(u)λ∗

]
� EM

[
G(u)λ

]
(9)

where EM(X) := minπ∈M Eπ(X) for random variables X : (Θ, 2Θ) → R.3 It
turns out that the linear program from Proposition 3 is dual to the one for
determining a randomized M-Maximin act described in [13, Sect. 3.2]. Together
with complementary slackness (see, e.g., [15, Sect. 5.5]) from linear optimization
theory, this allows to derive connections between lfps and the Gamma-Maximin.

Proposition 4. Let (A, Θ, u) denote a finite decision problem and let M be of
the form (5). Then the following holds:

(i) If π− is a lfp from M, then for all optimal randomized M-Maximin acts
λ∗ ∈ G(A) we have λ∗({a}) = 0 for all a ∈ A\Aπ− .

(ii) Let π− denote a lfp from M and let λ∗ ∈ G(A) denote a randomized M-
Maximin act. Then for all a ∈ Aπ− we have

Eπ−
[
ua

]
= EM

[
G(u)λ∗

]

Proof. The dual programming problem of problem (8) is given by:

z1 − z2 +

r∑

s=1

(bsxs − bsys) −→ max
(z1,z2,x1,...,xr,y1,...,yr,λ1,...,λn)

(10)

with constraints (z1, z2, x1, . . . , xr, y1, . . . , yr, λ1, . . . , λn) � 0 and

• ∑n
i=1 λi = 1

• z1 − z2 +
∑r

s=1 fs(θj)(xs − ys) ≤ ∑n
i=1 uij · λi for all j = 1, . . . , m.

The resulting linear program (10) is exactly the one for determining a random-
ized act λ∗ ∈ G(A) which is optimal with respect to the M-Maximin criterion
as proposed and proven in [13, Sect. 3.2]. We now can use standard results on
duality and complementary slackness (see, e.g., [15, Chap. 5]) to proof the propo-
sition:

3 For the special case of an ε-contamination model (a.k.a. linear-vacuous model) of
the form M(π0,ε) := {(1 − ε)π0 + επ : π ∈ P(Θ)}, where P(Θ) denotes the set
of all probability measures on (Θ, 2Θ), ε > 0 is a fixed contamination parame-
ter and π0 ∈ P(Θ) is the central distribution, Gamma-Maximin is mathematically
closely related to the Hodges and Lehmann-criterion: For fixed X : (Θ, 2Θ) → R
we have EM(π0,ε)

(X) = minπ∈P(Θ)((1 − ε)Eπ0(X) + εEπ(X)) = (1 − ε)Eπ0(X) +

ε minπ∈P(Θ) Eπ(X) = (1 − ε)Eπ0(X) + ε minθ∈Θ X(θ). Thus, maximizing the lower
expectation w.r.t. the ε-contamination model is equivalent to maximizing the Hodges
and Lehmann-criterion with trust parameter (1 − ε) and prior π0.
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Part (i): Let π− ∈ M denote a lfp and let az ∈ A\Aπ− . Then

(max{B(π−), 0},−min{B(π−), 0}, π−({θ1}), . . . , π−({θm})) (11)

defines an optimal solution to (8) for which it holds that B(π−) > Eπ−(uaz
).

Thus, there exists an optimal solution to (8), for which the constraint w1 −w2 ≥∑m
j=1 uzj · πj holds strictly and, therefore, the corresponding slack variable is

strictly greater 0. Hence, by complementary slackness, the corresponding vari-
able in the dual problem (10), that is λz, equals 0 for every optimal solution
of problem (10). Finally, note that {λ∗

z : λ∗
z appears in optimal solution} =

{λ∗({az}) : λ∗ ∈ G(A) M-Maximin optimal}, since, as (implicitly) shown in
[13, Sect. 3.2], every M-Maximin optimal λ∗ ∈ G(A) induces an optimal solu-
tion to (10), namely

(z∗
1 , z∗

2 , x1, . . . , x
∗
r , y

∗
1 , . . . , y∗

r , λ∗({a1}), . . . , λ∗({an})) (12)

where (z∗
1 , z∗

2 , x1, . . . , x
∗
r , y

∗
1 , . . . , y∗

r ) denotes an optimal solution to a reduced
version of problem (10) with (λ1, . . . , λn) := (λ∗({a1}), . . . , λ∗({an})) fixed.

Part (ii): Let π− ∈ M denote an lfp and λ∗ ∈ G(A) denote an M-Maximin
act. Use (11) and (12) to construct optimal solutions to (8) and (10). As the opti-
mal value of (8) equals B(π−) and the optimal value of (10) equals EM

[
G(u)λ∗

]
,

the result follows by the duality theorem. �

As an immediate consequence of Proposition 4 (i), we can specify a condition
under which randomization cannot improve utility, if optimality is defined in
terms of the Gamma-Maximin criterion. Specifically, we have the following corol-
lary.

Corollary 2. If there exists a lfp π− from M such that Aπ− = {az} for some
z ∈ {1, . . . , n}, then δaz

∈ G(A) is the unique randomized M-Maximin act.
Specifically, considering randomized acts is unnecessary in such situations. �

Running Example (Table 1): Algorithm 8 leads to the optimal solution vector
(13, 0, 0, 0, 0.7, 0.3). Thus, a lfp π− from M is induced by (0, 0.7, 0.3, 0). Simple
computation gives Aπ− = {a2}. Hence, according to Corollary 2, a2 is the unique
M-Maximin act (even compared to randomized acts) with utility 13.

5 Summary and Concluding Remarks

We presented linear programming based approaches for determining optimal
randomized acts and investigated what can be learned by dualizing these. Future
research includes the following issues: If M is non-degenerated, i.e. π({θ}) > 0
for all (π, θ) ∈ M × Θ, the same holds for every lfp π−. Since every π− induces
an optimal solution to (8), complementary slackness implies that all constraints
of problem (10) are binding for every optimal solution. This gives a system
of linear equations that have to be satisfied by every randomized M-Maximin
act. A natural question is: Under which conditions is this system sufficient to
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identify an optimal act without solving an optimization problem at all? A further
interesting point is that algorithm (7) for checking maximality of an act az takes
into account all other acts ai in one linear program simultaneously. This could
be used to modify the algorithm for finding maximal acts that are not too far
from being E-admissible in the sense that the involved probabilities πai

that
establish maximality of az differ not too much w.r.t. the L1-norm which can be
guaranteed by imposing further linear constraints.

Acknowledgement. The authors would like to thank the three anonymous referees
for their helpful comments and their support.
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Abstract

This paper is concerned with decision making using imprecise probabilities. In the first part, we
introduce a new decision criterion that allows for explicitly modeling how far decisions that are
optimal in terms of Walley’s maximality are accepted to deviate from being optimal in the sense of
Levi’s E-admissibility. For this criterion, we also provide an efficient and simple algorithm based
on linear programming theory. In the second part of the paper, we propose two new measures for
quantifying the extent of E-admissibility of an E-admissible act, i.e. the size of the set of measures
for which the corresponding act maximizes expected utility. The first measure is the maximal
diameter of this set, while the second one relates to the maximal barycentric cube that can be
inscribed into it. Also here, for both measures, we give linear programming algorithms capable to
deal with them. Finally, we discuss some ideas in the context of ordinal decision theory. The paper
concludes with a stylized application example illustrating all introduced concepts.

Keywords: Decision Making under Uncertainty; Imprecise Probabilities; E-admissibility;
Maximality; Linear Programming; Ordinal Decision Theory; Stochastic Dominance

1. Introduction

A fair amount of the challenges arising in the modern sciences, e.g. parameter estimation and
hypothesis testing in statistics, modeling an agent’s preferences and choice behavior in philosophy
and economics or the formalization of game theoretic problems, can be embedded into the formal
framework of decision theory under uncertainty. If moreover the uncertainty underlying the decision
situation is describable by some classical probability measure on the space of uncertain states of
nature, we find ourselves within the framework of maximizing expected utility and we can draw
on the whole toolbox of this well-investigated and elegant mathematical theory.

However, it is well known that in practice the necessity to specify a precise (i.e. classical)
probability measure on the space of uncertain states might involve too strong consistency conditions
regarding the beliefs of the decision maker of interest: It for instance might be the case that some
decision maker finds it highly probable, say at least 0.8, that she will have had dinner in some
restaurant by 9 p.m. tonight. However, since she doesn’t know at all what the city she is traveling
to has to offer, she cannot split this belief among different types of restaurants. That is even so if
she made the (rather simplifying) assumption that the above probability exactly equals 0.8, there

∗Corresponding author
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is too less information for inferring, for instance, the probability of the dinner to take place in
a Chinese restaurant. For situations of this kind (and also for less artificial ones), working with
imprecise probabilities (Walley (1991); Weichselberger (2001), see also, e.g., Augustin et al. (2014)
for an introduction) has become more and more attractive recently, since these allow for utilizing
also partial probabilistic knowledge without the necessity of making assumptions that aren’t met.

Much work has been undertaken on decision making with imprecise probabilities, and several
strategies for optimal decision making have been proposed. Surveys of the theory are given in Sei-
denfeld (2004b); Troffaes (2007); Etner et al. (2012); Huntley et al. (2014). For original sources see,
e.g., Kofler and Menges (1976); Levi (1974); Walley (1991); Gilboa and Schmeidler (1989). In the
present paper, we contribute some new insights especially in the context of Levi’s E-admissibility.

The paper is organized as follows: In Section 2, we recall the basic model of finite decision
theory (Section 2.1) and the most commonly applied decision principles from precise and imprecise
decision making (Section 2.2) for reference. Section 3 is divided into two parts: In Section 3.1
we contrast the criteriaM-maximality and E-admissibility and introduce a new decision criterion
that in some sense lies in between the two. In Section 3.2, we propose two measures, one optimistic
and one pessimistic, for quantifying the extent of E-admissibility of some E-admissible acts under
consideration. In Section 4 we discuss decision problems in which the utility function is only
interpretable in terms of an ordinal utility representation, however, utility differences have no
meaning. Again, we recall and discuss criteria for both the precise and the imprecise case. In
Section 5, we analyze a stylized application example and apply the theory developed in the paper.
Section 6 concludes.

2. The Basic Model

We start our discussion by recalling the classical setup of decision making under uncertainty in
Section 2.1 and the most commonly applied decision criteria under different types of uncertainty
in Section 2.2 for reference.

2.1. Framework

Throughout most parts of the paper1, we will consider the common model of finite decision
theory: Some agent (or decision maker) is asked to decide which act ai to choose from a finite set
A = {a1, . . . , an} of available acts. However, the utility of the chosen act is fraught with uncertainty:
it depends on which state of nature from a finite set Θ = {θ1, . . . , θm} of possible states corresponds
to the true description of reality. Specifically, we assume that the utility of every pair (a, θ) ∈ A×Θ
can be evaluated by some real-valued cardinal utility function u : A×Θ→ R that is unique up to
a positive linear transformation.2 We denote by uij := u(ai, θj) the utility of choosing ai given θj
is the true state. For every act a ∈ A, the utility function u is naturally associated with a random
variable ua : (Θ, 2Θ) → R defined by ua(θ) := u(a, θ) for all θ ∈ Θ. Similarly, for every θ ∈ Θ,
we can define a random variable uθ : (A, 2A) → R by setting uθ(a) := u(a, θ) for all a ∈ A. The
structure of the basic model is visualized in Table 1.

Depending on the situation, the standard model will sometimes be extended for randomized
acts, which are classical probability measures λ on (A, 2A). Choosing λ is then interpreted as

1The one exception is the discussion in Section 4, where we do not assume a cardinal utility representation.
2See Schervish et al. (2013) for the situation where multiple utilities through different currencies are available and

exchange rates have to be taken into account.
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Table 1: The basic model of finite decision theory.

u(ai, θj) θ1 · · · θm

a1 u(a1, θ1) · · · u(a1, θm)
...

... · · · ...
an u(an, θ1) · · · u(an, θm)

leaving the final decision to a random experiment which yields act ai with probability λ({ai}). We
denote the set of randomized acts on (A, 2A) by G(A).

If also randomized acts are considered, the original utility function u on A × Θ can straight-
forwardly be extended to a utility function G(u) on G(A) × Θ by assigning each pair (λ, θ) the
expectation of the random variable uθ under the measure λ, i.e. G(u)(λ, θ) := Eλ

[
uθ
]
, i.e. the

expectation of utility that choosing the randomized act λ will lead to, given θ is the true descrip-
tion of reality. Every act a ∈ A, sometimes called pure act when the difference to randomized
acts needs to be emphasized, then can uniquely be identified with the Dirac-measure δa ∈ G(A),
and we have u(a, θ) = G(u)(δa, θ) for all (a, θ) ∈ A × Θ. Again, for every λ ∈ G(A) fixed, the
extended utility function G(u) is associated with a random variable G(u)λ on (Θ, 2Θ) by setting
G(u)λ(θ) := G(u)(λ, θ) for all θ ∈ Θ. We refer to the triplet (A,Θ, u) as the (finite) decision
problem and to the triplet (G(A),Θ, G(u)) as the corresponding randomized extension.

Finally, note that the standard model of decision theory also contains statistical estimation
and hypothesis testing problems as special cases: If we, in addition to the basic problem (A,Θ, u),
observe some random variable X : Ω → X such that X ∼ Pθ if θ ∈ Θ is the true state of nature,
that is we know the distribution of the random experiment if we know the true state, then statistical
procedures can be viewed as decision functions d : X → A that map observed data on acts. The
utility function u of the original problem then very naturally can be extended to a gain function
U : D×Θ→ R for evaluating decision functions by setting U(d, θ) := EPθ [uθ ◦ d]. Here, D denotes
some appropriate set of possible statistical procedures. Formally, the resulting triplet (D,Θ, U)
then again can be viewed as a basic decision problem. Thus, even if we do not explicitly formulate
our results for statistical procedures in the following, they always also can be interpreted in a
statistical context.3

2.2. Criteria for Decision Making

Given a decision model (A,Θ, u) of the form just recalled, the challenge is quickly explained: De-
termine an (in some sense) optimal act a∗ ∈ A (or, depending on the context, optimal randomized
act λ∗ ∈ G(A)). The subtlety rather comes with the definition of the term optimality, since any

3It should, however, be emphasized that in the context of imprecise probabilistic models (like for instance credal
sets or interval probabilities) the relationship between optimal decision functions in terms of prior risk and posteriori
loss optimal acts may be more subtle than in the context of precise probability: the main theorem of Bayesian
decision theory may fail (cf., e.g., Augustin (2003, Section 2.3)). This failure is in essence a variant of the general
phenomenon of potential sequential incoherence in decision making and discrepancy between extensive and normal
forms, as investigated in depth by Seidenfeld (e.g., Seidenfeld (1988, 1994)). Immediate counter-examples arise from
the phenomenon of dilation, which has intensively been studied by Seidenfeld and co-authors (cf., e.g., Seidenfeld
(1994), Seidenfeld and Wassermann (1993), Wassermann and Seidenfeld (1994)), see also, e.g., Liu (2015).
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meaningful definition necessarily has to depend on (what the decision maker assumes about) the
mechanism generating the states of nature. Here, traditional decision theory mainly covers two
extreme poles: (I) The generation of the states follows a known classical probability measure π
on (Θ, 2Θ) or (II) it can be compared to a game against an omniscient enemy. In these cases
optimality is almost unanimously defined by the following two well-known principles:

(I) Maximizing Expected Utility: Label any act a∗ ∈ A optimal that receives maximal expected
utility with respect to π, i.e. for which Eπ[ua∗ ] ≥ Eπ[ua] for all other a ∈ A. We denote by Aπ the
set of all acts from A that maximize expected utility with respect to π.

(II) Wald’s Maximin Principle: Label any act a∗ ∈ A optimal that receives highest possible utility
value under that state that is worst possible for this particular act, i.e. for which minθ∈Θ u(a∗, θ) ≥
minθ∈Θ u(a∗, θ). We denote by AW the set of all maximin acts.

Straightforwardly, principles (I) and (II) generalize to randomized acts, and we will denote the
corresponding sets of optimal randomized acts by G(A)π and G(A)W , respectively. In contrast,
defining optimality of acts becomes less obvious if (A) the probability measure π is only partially
known (case of imprecise probabilities) or (B) there is uncertainty about the complete appropriate-
ness of it (case of uncertainty about precise probabilities). In situation (A), one commonly assumes
that the available probabilistic information is describable by a polyhedral4 set M of probability
measures on (Θ, 2Θ) of the form

M :=
{
π| bs 6 Eπ(fs) 6 bs ∀s = 1, ..., r

}
(1)

where, for all s = 1, ..., r, we have (bs, bs) ∈ R2 such that bs 6 bs
5 and fs : Θ→ R, which is an

example for a imprecise probabilistic model. Specifically, the available information is assumed to
be describable by lower and upper bounds for the expected values of a finite number of random
variables on the space of states. Note that this also includes models in which the uncertainty arises
from a variety of different (possibly precise) expert opinions: If, for instance, each from a bunch
of experts gives precise expected payoff estimates for a number of stocks, we take M to be the
set of probabilities that yield for every stock an expectation that ranges within the lowest and the
highest expert guess. Most simply, this includes also the case where every expert specifies a precise
probability measure on the state space, since a probability measure is always representable by a
family of indicator functions. The picture of M being the opinions of a committee of experts will
be used at different points in the paper (similarly as also done in, e.g., Bradley (2015)).

Under an imprecise probabilistic model of form (1), several optimality criteria for decision
making had been proposed (cf., e.g., Troffaes (2007); Etner et al. (2012); Huntley et al. (2014) for
general surveys and Utkin and Augustin (2005); Kikuti et al. (2011); Hable and Troffaes (2014);
Jansen et al. (2017a) for computational aspects). We now briefly recall the ones among them which
are most important for our purposes:

4See, however, e.g., Wheeler (2012), Majo-Wilson and Wheeler (2016, Section 2), and the references therein, for
arguments to consider also non-convex sets of probabilities.

5For technical convenience we assume, wlog, that 0 ∈ [bs, bs] for all s = 1, ..., r in the following. Note that if M
is described by functions (f1, . . . , fr) and bounds ((b1, b1), . . . , (br, br)) not meeting this assumptions, we can always

equivalently characterize it by functions (f1 − c1, . . . , fr − cr) and bounds ((b1 − c1, b1 − c1), . . . , (br − cr, br − cr)),
where, for all s = 1, . . . , r, we set cs = bs if bs > 0 and cs = −bs if bs < 0 and cs = 0 if 0 ∈ [bs, bs].

4

73



(A1) M-Maximin (M-Maximax ):6 Label any act a∗ ∈ A optimal that maximizes expected utility
with respect to the worst (best) compatible probability measure, i.e. for which minπ∈M Eπ(ua∗) ≥
minπ∈M Eπ(ua) (resp. maxπ∈M Eπ(ua∗) ≥ maxπ∈M Eπ(ua)) for all a ∈ A. We denote by AM
(resp. AM) the set of M-maximin (resp. M-maximax) acts.

Clearly,M-maximin is a rather pessimistic criterion that reflects the attitude of decision mak-
ers that react averse to the ambiguity between the different compatible probabilities from M.
Contrarily, M-maximax reflects the attitude of ambiguity seeking agents. Note also that in the
extreme cases where either the credal setM is the set of all precise probability measures (vacuous-
ness) or it contains only one such measure (ideal stochasticity), the criterion M-maximin reduces
to Wald’s maximin principle or precise expectation maximization, respectively.

(A2)M-Maximality :7 Label any act a∗ ∈ A optimal that dominates every other available act a ∈ A
in expectation with respect to at least one probability measure πa ∈ M, i.e. if for every a ∈ A
there exists πa ∈ M such that Eπa(ua∗) ≥ Eπa(ua). We denote the set of all M-maximal acts by
Amax.

The idea ofM-maximality thus is to exclude every act a0 from the decision problem for which
there exists another act a1 that dominates it with respect to every compatible probability measure.
Note that M-maximality can be viewed as a local decision criterion: The preference between the
acts a0 and a1 is independent of the other available acts in A \ {a0, a1} or, as Schervish et al.
(2003)8 puts it, M-maximality is induced by pairwise comparisons of acts in A only. Note further
that, in the extreme case of M being a singleton, the criterion reduces to classical expectation
maximization.

(A3) E-Admissibility :9 Label an act a∗ ∈ A optimal if it maximizes expected utility among all
other available acts with respect to a least one compatible probability measure, i.e. if there exists
π∗ ∈M such that a∗ ∈ Aπ∗ . We denote by AM the set of all E-admissible acts from A with respect
to the credal set M.

In contrast to M-maximality, the concept of E-admissibility can rather by viewed as a global
decision criterion: In order to be able to build a preference between two acts a0 and a1, utility
information for all the other available acts in A \ {a0, a1} is required. To put it in the words of
Schervish et al. (2003) again: E-admissibility, in general, is not induced by pairwise comparisons of
acts in A only. Again, in the case of ideal stochasticity the criterion reduces to classical expectation
maximization. Contrarily, in the case of vacuousness every act that is not dominated by another
act in every state is E-admissible.10

Again, if randomized acts are of interest, we denote the corresponding optimal sets by G(A)M,

G(A)M, G(A)max and G(A)M. As easy to see, it holds that G(A)π = conv(Ãπ), where we have

Ãπ := {δa : a ∈ Aπ} and conv(S) denotes the convex hull of S. Thus, we can easily construct

6See, for instance, Kofler and Menges (1976) and Gilboa and Schmeidler (1989). Many authors denote M by Γ,
and thus the name Γ-maximin is common as well.

7This criterion is mainly advocated by Walley (1991) and work following him.
8Compare also Seidenfeld et al. (2010) and Vicig and Seidenfeld (2012, Section 3).
9This criterion is introduced by Levi (1974).

10Both criteria just discussed are also of high interest in forecasting with imprecise probabilities. While for imprecise
probabilities there is no real-valued strictly proper scoring rule, it is possible to formulate an appropriate lexicographic
strictly proper scoring rule with respect to M-maximinity and E-admissibility, supplemented by M-maximinity
(Seidenfeld et al., 2012).
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the set of randomized actions that maximize expected utility with respect to π by taking all
convex combinations of pure acts with the same property. This fact is often used to argue that
randomization does not pay out in the context of maximizing expected utility. Moreover, as
shown by Walley (cf., Walley (1991, p. 163)) and emphasized in Schervish et al. (2003), we have
that G(A)max = G(A)M, i.e. in the context of randomized acts the criteria M-maximality and
E-admissibility coincide in the sense of selecting the same optimal acts.

To complete the section, we now recall one criterion of optimality for situation (B), i.e. the
case of an uncertain precise probability π: The criterion of Hodges and Lehmann (cf. Hodges
and Lehmann (1952)). One motivation of this decision principle is to model the decision maker’s
skepticism in the available probability measure more directly. It is defined as follows:

(B1) Hodges and Lehmann Optimality: Label any act a∗ ∈ A optimal that maximizes the term
αEπ(ua∗) + (1 − α) minθ u(a∗, θ) among all other acts a ∈ A, that is which maximizes a weighted
sum of the expected utility and the worst state utility. The value α ∈ [0, 1] expresses the degree of
trust that the agent assigns to the probability measure π.

Note that Hodges and Lehmann optimality can be viewed as a special case of M-maximinity
(cf., for instance, Jansen et al. (2017a)): If the underlying credal set is chosen to arise from an
ε-contamination model (a.k.a. linear-vacuous mixture model) having the form

M(π0,ε) :=
{

(1− ε)π0 + επ : π ∈ P(Θ)
}

where P(Θ) is the set of all probabilities on (Θ, 2Θ), ε > 0 is a fixed contamination parameter and
π0 ∈ P(Θ) is the central distribution, it holds

EM(π0,ε)
(X) = minπ∈P(Θ)((1− ε)Eπ0(X) + εEπ(X))

= (1− ε)Eπ0(X) + εminπ∈P(Θ) Eπ(X)

= (1− ε)Eπ0(X) + εminθ∈ΘX(θ)

for arbitrary random variables X : (Θ, 2Θ)→ R. Thus, maximizing the lower expectation w.r.t. the
ε-contamination model is equivalent to maximizing the Hodges and Lehmann-criterion with trust
parameter (1 − ε) and probability π0. This connection is also of interest for Bayesian statistical
inference with imprecise probabilities: As pointed out by Seidenfeld and Wassermann (1996) in
the discussion of Walley (1996) and made explicit in Herron et al. (1997), the well-investigated
Imprecise Dirichlet Model (IDM) for generalized Bayesian statistical learning is mathematically
equivalent to an ε-contamination model with the relative frequencies as the central distribution π0.
Taking into account the above calculation, this also shows a very close relation between decision
making in the IDM (e.g., Utkin and Augustin (2007)) and the criterion suggsted by Hodges and
Lehmann.

3. E-admissibility, Maximality and a Criterion in between

We start our discussion by setting focus on the criteria M-maximality and E-admissibility
and develop some new ideas in this context. The discussion is divided in two main parts: In
Section 3.1 we briefly compare the two criteria and then propose a new criterion providing an
adjustable trade-off between them, for which we also derive a linear programming based algorithm.
Afterwards, in Section 3.2, we discuss a new measure for quantifying the extent of E-admissibility
of an E-admissible act of interest.
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3.1. Comparing E-admissibility and Maximality

As already seen in the previous section, when considering also randomized acts, the concepts
of M-maximality and E-admissibility with respect to M induce the same optimal acts and there-
fore coincide. However, for a finite (or more general non-convex) set of acts A the criterion of
M-maximality is the strictly weaker condition in the sense that AM ⊂ Amax. Our first result
describes how to construct the set G(A)M of all randomized E-admissible acts (and therefore also
the set G(A)max of randomized M-maximal acts) from the set AM of pure E-admissible acts.

Proposition 1. Let the decision problems (A,Θ, u) and (G(A),Θ, G(u)) and the setsM, Aπ, AM,
G(A)π, G(A)M be defined as before. The following holds:

G(A)M =
⋃

π∈M
conv(Ãπ)

where Ãπ := {δa : a ∈ Aπ} and conv(S) denotes the convex hull of a set S.

Proof. ⊂: Let λ∗ ∈ G(A)M. Choose π∗ ∈ M such that λ∗ ∈ G(A)π∗ . Assume, for contradiction,
there exists a0 ∈ A such that λ∗({a0}) > 0 and a0 /∈ Aπ∗ . Pick then a1 ∈ Aπ∗ and define a
randomized act λ0 ∈ G(A) by setting λ0({a}) := λ∗({a}) for a ∈ A \ {a0, a1}, λ0({a}) := 0 for
a = a0 and λ0({a}) := λ∗({a0, a1}) for a = a1. Then, the following calculation are immediate:

Eπ∗ [G(u)λ0 ] =
∑

a∈A
λ0({a})Eπ∗(ua)

=
∑

a∈A\{a0,a1}
λ∗({a})Eπ∗(ua) + λ∗({a0, a1})Eπ∗(ua1)

>
∑

a∈A
λ∗({a})Eπ∗(ua) = Eπ∗ [G(u)λ∗ ]

This contradicts λ∗ ∈ G(A)π∗ . Therefore, we have λ∗ ∈ conv(Ãπ∗).

⊃: Let conversely λ∗ ∈ ⋃π∈M conv(Ãπ). Then there exists π∗ ∈M such that λ∗ ∈ conv(Ãπ∗) and
we have Eπ∗ [G(u)λ∗ ] = Eπ∗(ua) for all a ∈ Aπ∗ . Choose a0 ∈ Aπ∗ and observe that for arbitrary
λ ∈ G(A) it holds that

Eπ∗ [G(u)λ] =
∑

a∈A
λ({a})Eπ∗(ua) ≤ Eπ∗(ua0) = Eπ∗ [G(u)λ∗ ]

Thus there exists π∗ ∈ M with respect to which λ∗ maximizes expected utility implying that
λ∗ ∈ G(A)M. �
Since Proposition 1 allows us to construct both sets G(A)M and G(A)max once having computed
the set AM of pure E-admissible acts, we restrict analysis to non-randomized acts for the rest of
the section. For this setting, we now propose a new decision criterion that allows for labeling only
such M-maximal acts optimal that are not too far from being E-admissible with respect to M in
the sense that the probabilities for which the corresponding act expectation dominates the other
acts differ not too much from each other. The deviation of an act from E-admissibility can be
explicitly controlled by an additional parameter ε.

Definition 1. Let (A,Θ, u) and M be defined as before and let ε ≥ 0. An act a∗ ∈ A is called
Eε-admissible if there exists a family of probability measures (πa)a∈A fromM such that the following
two conditions are satisfied:

7
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i) Eπa(ua∗) ≥ Eπa(ua) for all a ∈ A and

ii) ‖ πa − πa′ ‖≤ ε for all a, a
′ ∈ A, where ‖ · ‖ denotes a norm on M.

We denote by Aε the set of all Eε-admissible acts from A.

Remark 1. Obviously, the set of E0-admissible acts coincides with the set of E-admissible acts
with respect to M, i.e. A0 = AM. Moreover, for ε∗ chosen sufficiently large, namely ε∗ ≥ b :=
supπ,π′∈M ‖ π − π

′ ‖, the set of Eε∗-admissible acts coincides with the set of M-maximal acts,
i.e. Aε∗ = Amax. For ε ∈ (0, b), it usually will hold that AM ( Aε ( Amax and the set Aε
then exactly contains those M-maximal acts that are not too far (controlled by ε) from being
E-admissible. Moreover, the criterion is monotone in the sense that for ε1 ≥ ε2 we have that
Aε2 ⊂ Aε1. Thus, it allows for ranking M-maximal acts with respect to their deviation from being
E-admissible.

If we again take the point of view thatM arises from different expert opinions, it turns out that
the criterion of Eε-admissibility is based on a quite convincing intuition: Consider for instance a
political decision maker that consults an advisory body of experts when it comes to facing difficult
decisions. In this situation, applying E-admissibility corresponds to only choosing acts which one
fixed expert labels optimal among all other options. Contrarily, in terms of M-maximality an act
is already optimal if for each other act there is at least one expert preferring the former to the
latter, no matter how different the involved experts are in opinion. Here, Eε-admissibility builds
a bridge between these two extremes: While the decision maker can still make use of opinions of
different experts, she nevertheless can explicitly control by an additional parameter ε how strong
the experts contributing to the decision process are allowed to differ in opinion.

We now provide an algorithm for checking whether an act in a given decision problem is
Eε-admissible for a fixed value ε. It turns out that this, provided the L1-norm is used for measuring
the distances between the elements ofM, can be done by solving one single, relatively simple, linear
programming problem. We arrive at the following proposition.

Proposition 2. Let (A,Θ, u) and M be defined as before and let ε ≥ 0. For some act az ∈ A,
consider the following linear programming problem:

n∑

i=1

( m∑

j=1

γij

)
−→ max

(γ11,...,γnm)
(2)

with constraints (γ11, . . . , γnm) > 0 and

• ∑m
j=1 γij 6 1 for all i = 1, . . . , n

• bs 6
∑m

j=1 fs(θj) · γij 6 bs for all s = 1, ..., r, i = 1, . . . , n

• ∑m
j=1(uij − uzj) · γij 6 0 for all i = 1, . . . , n

• ∑m
j=1 |γi1j − γi2j | ≤ ε for all i1 > i2 ∈ {1, . . . , n}

Then az ∈ A is Eε-admissible iff the optimal outcome of (2) equals n.
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Proof. Clearly, if (2) possesses an optimal solution (γ∗11, . . . , γ
∗
nm) yielding an objective value

of n, then the constraints guarantee that setting πai({θj}) := γ∗ij for all i = 1, . . . , n and j =
1, . . . ,m defines a family of probability measures (πai)i=1,...n, from M satisfying the properties
from Definition 1. Thus, az ∈ Aε.
If conversely az ∈ Aε, we can choose a family of probability measures (πai)i=1,...n, fromM satisfying
the properties from Definition 1. One then easily verifies that setting γ∗ij := πai({θj}) for all
i = 1, . . . , n and j = 1, . . . ,m defines an admissible solution (γ∗11, . . . , γ

∗
nm) to (2) that yields an

objective value of n. �
Remark 2. To see the linearity of the constraint

∑m
j=1 |γi1j − γi2j | ≤ ε for all i1 > i2 ∈ {1, . . . , n}

in the above linear programming problem, one can proceed as follows: Add 2m decision variables
l1, . . . , lm and o1, . . . , om and replace the above constraints equivalently by the constraints lj ≤ γij ≤
oj for all i = 1, . . . , n and j = 1, . . . ,m as well as

∑m
j=1(oj − lj) ≤ ε. In sum, the programming

problem (2) thus possesses n+rn+n+nm+1 = n(1+r+m)+1 constraints and nm+m = m(n+1)
decision variables.

We conclude the section by illustrating the results so far by a brief toy example, which in parts
is also discussed in Seidenfeld (2004a, p. 2) in order to demonstrate that M-maximinity does not
imply E-admissibility with respect to M and vice versa. We additionally show how the proposed
concept of Eε-admissibility can help to clarify analysis in such situations. The example reads as
follows:

Example 1. Consider the basic decision problem (A,Θ, u) that is defined by the following utility
table

uij θ1 θ2

a1 1 0
a2 0 1
a3 4/10 4/10
a4 6/10 11/35

Moreover, suppose the uncertainty on the states is modeled by the credal set

M =
{
π : 0.3 ≤ π({θ1}) ≤ 0.8

}

In this case, we have AM = {a1, a2}, Amax = A and AM = {a3, a4}. Thus, we have a situation
with two different M-maximin acts, which are both not E-admissible. In order to make a decision
between the acts a3 and a4, we can apply the Eε-criterion to see which of the two is closer to being
E-admissible. We receive the following results:

outcome of (2) for ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.6

a3 ≈ 0.76 ≈ 1.51 ≈ 2.27 4
a4 2.3 4 4 4

The results show that act a4 is that act among theM-maximin acts that is closer to E-admissibility,
since it is Eε-admissible already for an ε-level of 0.2 whereas act a3 is not. Thus, it could be argued
that it a4 is preferable. Finally, if we additionally consider randomized acts, then Proposition 1
and the discussions in Section 2.2 imply that it holds

G(A)M = G(A)max = G(A)ε = conv({δa1 , δa2})
for arbitrary values of ε ≥ 0.
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3.2. The Extents of E-admissible acts

In the previous section, we considered acts optimal that are not too far from being E-admissible.
We accordingly weakened the concept of E-admissibility towards acts that are in some sense al-
most E-admissible. In this section we take rather the opposed direction and address the following
question: Given an E-admissible act a ∈ AM with respect to some credal set M, how large is
the set of compatible probability measures fromM for which act a maximizes expected utility? If
we again use the picture of M modeling the opinions of some committee of experts, the question
translates as follows: How diverse can these experts be in opinion while still all sharing the view
that act a is optimal?

In order to answer this question, we propose two measures for the extent of E-admissibility
of acts in the following: The maximal extent and the uniform extent. While the first concept
measures the maximal diameter of the set of measures for which the considered act maximizes
expected utility, the latter one searches for a maximal set that can be inscribed into this set.
Together, the two measures will be shown to give a pretty good impression about the extent of
E-admissibility. We start by defining the concept of maximal extent.

Definition 2. Let (A,Θ, u) and M be defined as before and let ‖ · ‖ denote some norm on M.
Moreover, let a ∈ AM be an E-admissible act with respect to M and denote by Ma the set
{π ∈M : a ∈ Aπ}. We define the (maximal) extent extM(a) of act a as the number

extM(a) := supπ,π′∈Ma
‖ π − π′ ‖

i.e. as the maximum distance of probability measures π, π
′ ∈Ma with respect to ‖ · ‖ for which act

a maximizes expected utility.

Why is the measure extM(·) sensible for the question motivating the section? To see that, first
note that intuitively if extM(a) is large, then act a maximizes expected utility with respect to
very different (in the sense of highly distant) probability measures from M. To directly connect
this observation to the size of the set Ma, it is important to mention that Ma is a convex set
and therefore all measure lying on the “line” between the two maximum distance measures again
have to be contained in Ma. Thus, extM(a) indeed can be viewed as a measure of the size of
the set of probabilities for which act a is optimal and therefore is sensible for the above questions.
The following proposition gives an algorithm for computing extM(a) by solving a series of linear
programming problems for the case that ‖ · ‖:=‖ · ‖∞.

Proposition 3. Let (A,Θ, u) and M be defined as before and let az ∈ AM. Consider, for every
j = 1, . . . ,m, the linear programming problem

γ1j − γ2j −→ max
(γ11,...,γ1m,γ21,...,γ2m)

(Pj)

with constraints (γ11, . . . , γ1m, γ21, . . . , γ2m) ≥ 0 and

• ∑m
j=1 γij = 1 for all i = 1, 2

• bs 6
∑m

j=1 fs(θj) · γij 6 bs for all s = 1, ..., r and i = 1, 2

• ∑m
j=1(u`j − uzj) · γij 6 0 for all i = 1, 2 and ` = 1, . . . , n
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Denote by g(j) the optimal objective of problem (Pj). Then the maximal extent of act a with respect
to ‖ · ‖∞ is given by extM(a) = maxj g(j).

Proof. For j ∈ {1, . . . ,m}, let (γj11, . . . , γ
j
1m, γ

j
21, . . . , γ

j
2m) denote an optimal solution to problem

(Pj).
11 Then the constraints guarantee that by setting πj1({θt}) := γj1t and πj2({θt}) := γj2t for all

t = 1, . . . ,m we define two measures πj1, π
j
2 ∈Ma with the property

i) g(j) = |πj1({θj})− πj2({θj})| ≥ |π1({θj})− π2({θj})| for all π1, π2 ∈Ma

Let j∗ ∈ {1, . . . ,m} with g(j∗) = |πj∗1 ({θj∗}) − πj
∗

2 ({θj∗})| = maxj g(j). Due to i), for all j ∈
{1, . . . ,m} arbitrary, it then holds that:

ii) |πj∗1 ({θj∗})− πj
∗

2 ({θj∗})| ≥ |π1({θj})− π2({θj})| for all π1, π2 ∈Ma

This implies that ‖ πj∗1 − πj
∗

2 ‖∞ ≥ ‖ π1 − π2 ‖∞ for all π1, π2 ∈ Ma, which then implies that
extM(az) = g(j∗) = maxj g(j). �

Remark 3. Note that, instead of solving m linear programming problems for computing the value
extM(a) as proposed in Proposition 3, one alternatively could solve one bilinear programming prob-
lem with objective function

m∑

j=1

ξj(γ1j − γ2j) +
m∑

j=1

ξm+j(γ2j − γ1j) −→ max
(γ11,...,γ2m,ξ1,...ξ2m)

(3)

with the same constraints as above and additional constraints ξ1, . . . ξ2m ≥ 0 and
∑2m

j=1 ξj = 1.
This approach has the advantage that the value extM(a) can also be computed with respect to ‖ · ‖1
instead of ‖ · ‖∞. To see that, simply replace the constraint

∑2m
j=1 ξj = 1 by the set of constraints∑2m

j=1 ξj = m and ξj + ξm+j = 1 for all j = 1, . . . ,m. However, note that the resulting bilinear
programming problem then no longer is decomposable into m linear programming problems, since
the solutions of the single problems can no longer be treated independently of each other as in the
case of the ‖ · ‖∞-norm.

Despite its intuitiveness, the extent extM(·) of an E-admissible act has a drawback in certain
situations: It measure the size of set Ma only in one direction, namely the most extreme one.
Therefore, the maximal extent alone might be not capable of distinguishing situations that defi-
nitely are worth to be distinguished in this context. This drawback is most easily explained by the
schematic picture in Figure 1.

In order to react the problem that might arise when only considering the extent extM(a) of an
E-admissible act a ∈ AM for measuring the size of the setMa, we now introduce another concept
for addressing this question, and call it uniform extent. This measure relates to the diameter of
the largest barycentric ε-cube that can be inscribed into Ma.

Definition 3. Let (A,Θ, u) and M be defined as before and let a ∈ AM. We define the uniform
extent uxtM(a) of act a with respect to M as the number

uxtM(a) := max
{
ε : ∃π ∈Ma s.t. Bε(π) ⊂Ma

}
(4)

11Note that, due to standard results from linear programming theory, such an optimal solution always exists since
the constraint set is bounded and there always exists an admissible solution since az ∈ AM.
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Ma1Ma2

extM(a1)extM(a2)

Figure 1: Two sets Ma1 and Ma2 with the same extent, however, quite different size.

where Bε(π) := conv({π1+
ε , π1−

ε , π2+
ε , π2−

ε , . . . , πm+
ε , πm−ε }) with

πj
∗+
ε ({θj}) =

{
π({θj}) + ε if j = j∗

π({θj})− ε
m−1 if j 6= j∗

πj
∗−
ε ({θj}) =

{
π({θj})− ε if j = j∗

π({θj}) + ε
m−1 if j 6= j∗

is the barycentric ε-cube around π. Thus, the uniform extent of act a is half the diameter of the
largest barycentric ε-cube that can be inscribed into Ma.

The uniform extent for the schematic picture discussed earlier is illustrated in Figure 2. We see
that we now can distinguish between the two situations. However, as easy to imagine, also the
uniform extent might sometimes be too pessimistic just as the maximal extent is too optimistic.
Hence, a good approach is to consider both measures ext and uxt simultaneously. Together, they
will give a pretty good impression of the extent of E-admissibility.

We now propose an algorithm for computing the uniform extent of some fixed E-admissible
act with respect to M under consideration. Again, it shows that this can be done by solving one
single, relatively simple, linear programming problem. Here, the main idea is to explicitly model
the distributions π1+

ε , π1−
ε , . . . , πm+

ε , πm−ε from Definition 3 by decision variables and utilizing the
fact that Ma is a convex set. The uniform extent is then computed by maximizing over the value
of ε. Precisely, we arrive at the following proposition.

Proposition 4. Let (A,Θ, u) and M be defined as before and let az ∈ AM. Consider the linear
programming problem

ε −→ max
(γ1,...,γm,ε)

(5)

with constraints (γ1, . . . , γm, ε) ≥ 0 and

• ∑m
j=1 γj = 1

• γj ≥ ε for all j = 1, . . . ,m
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• bs 6
∑m

j=1 fs(θj) · γj + ε · d(j∗, s) 6 bs for all s = 1, ..., r, j∗ = 1, . . . ,m

• bs 6
∑m

j=1 fs(θj) · γj − ε · d(j∗, s) 6 bs for all s = 1, ..., r, j∗ = 1, . . . ,m

• ∑m
j=1(u`j − uzj) · γj + ε · c(j∗, `) 6 0 for ` = 1, . . . , n, j∗ = 1, . . . ,m

• ∑m
j=1(u`j − uzj) · γj − ε · c(j∗, `) 6 0 for ` = 1, . . . , n, j∗ = 1, . . . ,m

where

c(j∗, `) = (u`j∗ − uzj∗)−
1

(m− 1)

∑

j 6=j∗
(u`j − uzj)

and

d(j∗, s) = fs(θj∗)−
1

(m− 1)

∑

j 6=j∗
fs(θj)

Then the uniform extent uxtM(az) of az is given by the optimal value of problem (5).

Proof. First, note that every pair (π, ε) ∈ Maz × R+
0 with Bε(π) ⊂ Maz induces an admissible

solution to (5) with objective value ε by setting γj := π({θj}), since we have
∑m

j=1 fs(θj) · γj + ε · d(j∗, s) = E
πj
∗+
ε

(fs) ∈ (bs, bs)

∑m
j=1 fs(θj) · γj − ε · d(j∗, s) = E

πj
∗−
ε

(fs) ∈ (bs, bs)

for all s = 1, ..., r, j∗ = 1, . . . ,m and it then holds that
∑m

j=1(u`j − uzj) · γj + ε · c(j∗, `) = E
πj
∗+
ε

(u` − uz) 6 0

∑m
j=1(u`j − uzj) · γj − ε · c(j∗, `) = E

πj
∗−
ε

(u` − uz) 6 0

for ` = 1, . . . , n, j∗ = 1, . . . ,m due to the constraints. Since az ∈ AM and, therefore, there exists
π0 ∈ Maz , it is then guaranteed that problem (5) always possesses an admissible solution (just
take the one induced by (π0, 0)). Since the set of admissible solutions is obviously bounded, it also
possesses an optimal solution by standard results on linear programming theory.

Let (γ∗1 , . . . , γ
∗
m, ε

∗) denote such an optimal solution to (5). Utilizing again the above identities
(in the opposite way), we see that setting π∗({θj}) := γ∗j defines a probability measure π∗ ∈ Maz

such that Bε∗(π
∗) ⊂Maz with ε∗ = uxtM(az). �

Remark 4. The linear programming problem (5) possesses m+1 decision variables and 1+2mr+
2mn constraints. It therefore might become computationally expensive for very large problems.

We conclude the section by applying the proposed measures of the extent of E-admissibility to the
toy example that was already introduced at the end of Section 3.1.

Example 2. Consider again the situation of Example 1. We want to compute the extent extM(·)
of both E-admissible acts a1 and a2. Solving the series of linear programming problems from
Proposition 3 for both acts gives extM(a1) = 0.3 and extM(a2) = 0.2 with respect to the ‖ · ‖∞-
norm. Therefore, it could be argued that a1 is the most preferable among the E-admissible acts
with respect to M. Additionally, we are interested in the uniform extent uxtM(·) of the acts
a1 and a2. Solving the linear programming problem introduced in Proposition 4 gives the results
uxtM(a1) = 0.15 and uxtM(a2) = 0.1, even strengthening the argument that act a1 is the most
preferable among the E-admissible acts.
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Ma2
Ma1

uxtM(a1)
uxtM(a2)

Figure 2: The measure uxtM(·) indeed gives different values to the sets Ma1 and Ma2 and therefore resolves the
drawback of the measure extM(·).

4. The Ordinal Case

Up to this point, all decision criteria discussed, with the exception of Wald’s maximin principle,
made explicit use of the cardinality of the utility function u involved in the basic decision problem
(A,Θ, u). However, as widely known, assuming cardinal utility implicitly demands the decision
maker’s preferences to satisfy pretty strong axiomatic assumptions which are often not met in
practice. If the deviation from these axioms is too strong, it often makes sense to work with
decision criteria that can cope with purely ordinal preferences.12 For this reason, in this section
the utility function u in the decision problem (A,Θ, u) is solely interpreted as an ordinal utility
representation. Particularly, utility differences with respect to u have no meaningful interpretation
apart from their sign in what follows.

We again start by briefly summarizing some criteria that still make sense in the presence of
purely ordinal preferences. If, additional to the ordinal utility information, a precise probability
measure π on the state space is available, again several different criteria appear natural:

(C1) Pairwise Stochastic Dominance: Label any act a0 ∈ A optimal for which there does not exist
another act a1 ∈ A \ {a0} such that Eπ(t ◦ ua1) ≥ Eπ(t ◦ ua0) for every non-decreasing function
t : R → R. If, contrarily, it is the case that Eπ(t ◦ ua1) ≥ Eπ(t ◦ ua0) for every non-decreasing
function t : R→ R, we say that a1 stochastically dominates a0 (cf., e.g., Lehmann (1955); Mosler
and Scarsini (1991)).

Clearly, pairwise stochastic dominance can rather be viewed as a local decision criterion, since
the preference between two acts a0, a1 ∈ A does not depend on which other acts from A \ {a0, a1}
are also available to the decision maker. Moreover, it also possesses a very natural interpretation:
Act a1 is preferred to act a0 if every expectation maximizing decision maker with the same ordinal
utility function would have the same preference between the two acts. Note that often acts will be
incomparable with respect to stochastic dominance, since it will hold Eπ(t1 ◦ ua1) > Eπ(t1 ◦ ua0)

12Another, very prominent, way for proceeding in such situations is working with partially cardinal preference
relations as done in Seidenfeld et al. (1995).
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for one function t1 and Eπ(t2 ◦ ua1) < Eπ(t2 ◦ ua0) for another function t2.

(C2) Joint Stochastic Dominance: Label every act a0 ∈ A optimal for which there exists a strictly
increasing function t∗ : R→ R such that Eπ(t∗ ◦ ua0) ≥ Eπ(t∗ ◦ ua) for all a ∈ A, i.e. if there exists
one expectation maximizing agent with the same ordinal utility function for which a0 maximizes
expected utility among all other available acts (cf. Jansen et al. (2017b)).

Obviously, this is an example for a global criterion: If there exists a function t∗ with the
desired properties for all a ∈ A, this does not necessarily imply the existence of such a function
for A∗ := A ∪ {a∗} (simply choose a∗ to have higher utility that every act in A in every state of
nature).

(C3) Pairwise Statistical Preference: Label every act a0 ∈ A optimal for which there exists no
other act a1 ∈ A \ {a0} such that

π({θ : ua1(θ) ≥ ua0(θ)}) > π({θ : ua0(θ) ≥ ua1(θ)})

i.e. if there is no other act a1 which has higher probability of yielding a higher utility value than a0.
If contrarily there exists such an act a1, we say that a1 statistically dominates a0 (cf., e.g., Montes
(2014, Section 2.2.1)).

Clearly, statistical preference can rather be viewed as a local decision criterion, since the pref-
erence between two acts a0 and a1 does not depend on acts from A \ {a0, a1}.

(C4) Joint Statistical Preference: Label every act a0 ∈ A optimal for which it holds that Dπ(a0) ≥
Dπ(a) for all a ∈ A, where

Dπ(a) := π({θ : u(a, θ) ≥ u(a
′
, θ) for all a

′ ∈ A})

that is if a0 has the highest probability to be utility dominant among all other available acts.

This criterion is clearly global: Enlarging the set of acts A to a new set of acts A∗ := A ∪ {a∗}
might completely change the preference between two acts acts a0, a1 ∈ A in the sense that DA

π (a0) >
DA
π (a1) but DA∗

π (a0) < DA∗
π (a1).13

If no precise probability measure π is available and the uncertainty on the state space is again
characterized by a credal set M of the form defined in (1), then there are several possibilities
to generalize the decision criteria (C1), (C2). (C3) and (C4). A detailed study of these different
possibilities as well as algorithmic approaches that are capable to deal with the resulting criteria
is given in Montes (2014, Sections 4.1.1 and 4.1.2) and Jansen et al. (2017b). An algorithm
for detecting stochastic dominance for the case that the different decision consequences are only
partially ordered is introduced in Schollmeyer et al. (2017). Here, we only give a small selection of

13For a simple example consider the decision problems (A,Θ, u) and (A ∪ {a∗},Θ, ũ) given by

θ3 θ2 θ3
a1 2 2 5
a2 3 3 3

θ3 θ2 θ3
a1 2 2 5
a2 3 3 3
a∗ 1 2 6

and the prior π on Θ induced by (π({θ1}), π({θ2}), π({θ3})) = (0.2, 0.2, 0.6). Here we have that DA
π(a1) = 0.6 >

0.4 = DA
π(a2) but DA∗

π (a2) = 0.4 > 0 = DA∗
π (a1).
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the criteria:

(D1) Joint Statistical Preference (Imprecise Version): Label any act a0 ∈ A optimal for which it
holds that minπ∈MDπ(a0) ≥ minπ∈MDπ(a) for all other a ∈ A, i.e. which maximizes the lower
probability of the act to be dominant to all other available acts.

(D2) Joint Stochastic Dominance (Imprecise Version): Label act a0 ∈ A optimal if there exists a
strictly increasing function t∗ : R → R such that Eπ(t∗ ◦ ua0) ≥ Eπ(t∗ ◦ ua) for all a ∈ A and all
π ∈M.

All the ordinal decision criteria just discussed can be handled either by hand or by utilizing
linear programming techniques similar as seen in detail for the criteria discussed in Section 3
(see Jansen et al. (2017b) for details). Here, we only give an impression of how this could be done
for the example of the imprecise version of joint stochastic dominance: To check whether an act
az ∈ A is optimal in the sense of joint stochastic dominance in the imprecise version, we explicitly
model the transformation function t∗ by decision variables. Additionally, we require the extreme
points π(1), . . . , π(T ) of the underlying credal set M. We then consider the linear programming
problem with the objective function

ε −→ max
(ε,t11,...,tnm)

(6)

and constraints (ε, t11, . . . , tnm) ≥ 0 and

• t11, . . . , tnm ≤ 1

• ∑m
j=1(uzjtzj − uijtij) · π(t)({θj}) ≥ 0 for all t = 1, . . . , T, i = 1, . . . , n

• For i, i
′ ∈ {1, . . . , n}, j, j′ ∈ {1, . . . ,m}: uij = ui′j′ ⇒ tij = ti′j′

• For i, i
′ ∈ {1, . . . , n}, j, j′ ∈ {1, . . . ,m}: uij < ui′j′ ⇒ tij + ε ≤ ti′j′

One then can show that act az is optimal in the sense of joint stochastic dominance in the imprecise
version if and only if the optimal objective of the above program is strictly greater than 0. The
idea here is that if there exists an optimal solution (ε∗, t∗11, . . . , t

∗
nm) with ε∗ > 0, then the solution

t∗ij describes the necessary strictly increasing transformation of u, and we receive a desired function
by choosing any increasing function t∗ : R→ R satisfying that t∗(uij) = t∗ij · uij for all i = 1, . . . n
and j = 1, . . . ,m.

Of course solving this linear program might become computationally very expensive and cum-
bersome as the number of extreme points of the setM might become as large as m! (cf., Derks and
Kuipers (2002); Wallner (2007)). However, convenient classes of credal sets exist where furthermore
efficient enumeration procedures are available (such special cases include ordinal probabilities (cf.,
Kofler (1989, p. 26)), comparative probabilities (cf., Miranda and Destercke (2015)), necessity mea-
sures (cf., Schollmeyer (2015)), p-boxes (cf., Montes and Destercke (2017)), probability intervals
(cf., Weichselberger and Pöhlmann (1990, Chapter 2) or de Campos et al. (1994)) or pari-mutual
models (cf., Montes et al. (2017))).

Another easy to handle case appears if the credal set M under consideration directly arises as
the convex hull of a finite number of precise probability estimates πE1 , . . . , πEK of a committee of
experts E1, . . . , EK . In such cases the extreme points of the credal set M are always among the
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experts guesses πE1 , . . . , πEK for the probabilities, and the algorithm described above can directly
be applied without the need for any previous computation of the extreme points. We conclude the
section by a small example that continues Examples 1 and 2.

Example 3. Consider again the situation of Examples 1 and 2. Here, the unique optimal act
with respect to joint statistical preference in the imprecise version is a1 with a value of 0.3. If we
consider joint stochastic dominance in the imprecise version, we first need to compute the extreme
points of M, which are here given by the measures π(1), π(2) induced by π(1)({θ1}) = 0.3 and
π(2)({θ1}) = 0.8. Solving the above linear programming problem (6) for all acts gives that acts a3

and a4 are optimal in terms of joint stochastic dominance in the imprecise version whereas acts a1

and a2 are not.

5. A Stylized Application Example

In this section, we discuss a more realistic, yet stylized, application example in some more detail:
Consider the situation where the decision maker wants to invest money in stocks of some company.
The acts then correspond to the stocks of the different companies. Say the agent compares ten
different stocks collected in A = {a1 . . . , a10}. Moreover, the states of nature then correspond to
different economic scenarios which might or might not occur and which, each differently, would
influence the payoffs of the stocks of the different companies. Say the agent incorporates the
scenarios collected in Θ = {θ1, . . . , θ5} in her market analysis. She summarizes the payoffs of the
different stocks under the different scenarios in the following utility table:

u(ai, θj) θ1 θ2 θ3 θ4 θ5
a1 37 25 23 73 91
a2 50 67 2 44 94
a3 60 4 96 1 83
a4 16 24 31 26 100
a5 3 86 76 85 11
a6 12 49 66 56 14
a7 39 10 92 88 57
a8 62 52 80 71 42
a9 90 8 74 70 38

a10 63 68 36 69 9

Moreover, suppose the decision maker has observed the market development for quite a while,
so that she can specify bounds for the probabilities of the different economic scenarios to occur
(alternatively, the bounds for the scenario probabilities could also come from opinions of different
expert the agent has consulted). Precisely, she specifies the uncertainty underlying the situation
by the credal set

M =
{
π : bs ≤ Eπ[fs] ≤ bs for s = 1, . . . , 5

}

where

• fs : Θ→ R is given by fs(θ) := 1{θs}(θ) for s = 1, . . . , 5 and
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•




b1 b1
b2 b2
b3 b3
b4 b4
b5 b5




=




0.1 0.3
0.05 0.1
0.1 0.2
0.2 0.4
0.15 0.2




Applying the different decision criteria and the other concepts discussed in the paper, the decision
maker arrives at the following results:

• Stock a8 is the unique non-randomized M-maximin act, i.e. AM = {a8}. Thus, for a very
pessimistic and ambiguity averse agent, act a8 is the appropriate investment.

• Solving the programming problem from Proposition 2 for ε set to 0 for each act, we find the set
of E-admissible acts with respect toM is given by AM = {a7, a9} (since the optimal value of
the program is 10 for both acts). Hence, theM-maximin act is not E-admissible with respect
to M. In order to further compare the E-admissible acts a7 and a9, we first compute the
extent extM(·) from Definition 2 for both of them. Solving the series of linear programming
problems described in Proposition 3 gives the results extM(a7) ≈ 0.152 and extM(a9) = 0.2,
for which reason it could be argued that a9 is the most preferable among the E-admissible
acts. To see how informative the extent of the acts is, we are additionally interested in their
uniform extents uxtM(·) in the sense of Definition 3. Solving the linear programming problem
introduced in Proposition 4 gives uxtM(a7) = 0.025 as well as uxtM(a9) = 0.025. Thus, if
we consider the uniform extent in order to measure the amount of E-admissibility of acts, it
could be argued that the decision maker should be indifferent between the E-admissible acts
a7 and a9.

• Solving the programming problem from Proposition 2 for ε set to 100 for each act, we find the
set of M-maximal acts is given by Amax = {a7, a8, a9}. In order to make a decision between
the M-maximin act a8 and the E-admissible acts a7 and a9, it is of interest how far a8 is
from being E-admissible. Solving the linear program from Proposition 2 for varying value of
ε gives that a8 is Eε-admissible in the sense of Definition 1 already for a value of ε = 0.01.
Hence, a8 is very close to being E-admissible and, therefore, could be argued to be preferable
to a7 and a9.

• The unique optimal act with respect to joint statistical preference in the imprecise version
is a7 with a value of 0.2. In order to see which of the acts are optimal in the sense of joint
stochastic dominance in the imprecise version as discussed in the previous section, we first
need to compute the extreme points of M. There are 15 such extreme points.14 They are
given in the Table 2:

Having obtained the extreme points, we can use algorithm (6) from Section 4 for every act
in A = {a1, . . . a10}. We find that the acts a6 and a10 are not optimal in the sense of joint
stochastic dominance in the imprecise version, whereas the acts in A \ {a6, a10} are.

14The calculation was performed with the rcdd package (see Geyer and Meeden (2017)), which provides an
interface for using Fukuda (2017)’s cdd library in the R statistical computing environment (see R Core Team
(2017)).
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{θ1} {θ2} {θ3} {θ4} {θ5}
π(1)(·) 0.30 0.10 0.20 0.20 0.20

π(2)(·) 0.30 0.05 0.20 0.25 0.20

π(3)(·) 0.30 0.10 0.20 0.25 0.15

π(4)(·) 0.30 0.05 0.20 0.30 0.15

π(5)(·) 0.30 0.10 0.10 0.30 0.20

π(6)(·) 0.30 0.05 0.10 0.35 0.20

π(7)(·) 0.30 0.10 0.10 0.35 0.15

π(8)(·) 0.15 0.05 0.20 0.40 0.20

π(9)(·) 0.15 0.10 0.20 0.40 0.15

π(10)(·) 0.20 0.05 0.20 0.40 0.15

π(11)(·) 0.20 0.10 0.10 0.40 0.20

π(12)(·) 0.25 0.05 0.10 0.40 0.20

π(13)(·) 0.25 0.10 0.10 0.40 0.15

π(14)(·) 0.10 0.10 0.20 0.40 0.20

π(15)(·) 0.30 0.05 0.10 0.40 0.15

Table 2: Extreme points in the application example.

6. Summary and Concluding Remarks

In this paper we introduced and discussed some ideas in the context of decision theory using
imprecise probabilistic model. Here, we first introduced a new decision criterion, Eε-admissibility,
that selects acts that are not too far from E-admissibility, where the accepted deviation from
E-admissibility can be explicitly controlled by an additional parameter ε. Subsequently, we inves-
tigated how to measure the extent of E-admissibility of an E-admissible act of interest. Precisely,
we introduced two different measures for this purpose: the maximal extent extM(a) and the uni-
form extent uxtM(a) of an E-admissible act a. While the former corresponds to the maximal
diameter of the set Ma, the latter is related to the side length of the maximal barycentric ε-cube
that can be inscribed into Ma. For all concepts discussed we proposed (bi-)linear programming
driven algorithms for computation. In the second part of the paper we recalled some concepts for
decision making if a cardinal utility function is no longer available and there is (potentially) only
imprecise probabilistic information. For the concept of imprecise joint stochastic dominance, we
also discussed some details about computation.

There are several interesting directions that could be followed in future research of which we
only want to briefly mention one: Consider again the viewpoint that the credal set M arises from
the opinions of a committee of experts. In the discussion directly following Definition 1, we argued
in favor of the concept of Eε-admissibility, since it allows to take into account more than only one
expert opinion while simultaneously allowing to control how far the involved experts may differ
in opinion. This idea could easily be extended: Instead of only controlling how far the involved
experts may differ from each other in terms of opinion, one could also control how far their opinions
differ from some externally given criterion. If we take again our example of some politician with an
advisory body of experts, the external criterion could for instance be the opinion of the politician
herself, so that she only takes expert opinions into account that do not differ too much from her
own one. Of course other examples for external criteria are imaginable.
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We introduce three different approaches for decision making under uncertainty if (I) there 
is only partial (both cardinally and ordinally scaled) information on an agent’s preferences 
and (II) the uncertainty about the states of nature is described by a credal set (or some 
other imprecise probabilistic model). Particularly, situation (I) is modeled by a pair of 
binary relations, one specifying the partial rank order of the alternatives and the other 
modeling partial information on the strength of preference. Our first approach relies on 
decision criteria constructing complete rankings of the available acts that are based on 
generalized expectation intervals. Subsequently, we introduce different concepts of global 
admissibility that construct partial orders between the available acts by comparing them all 
simultaneously. Finally, we define criteria induced by suitable binary relations on the set of 
acts and, therefore, can be understood as concepts of local admissibility. For certain criteria, 
we provide linear programming based algorithms for checking optimality/admissibility of 
acts. Additionally, the paper includes a discussion of a prototypical situation by means of a 
toy example.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

One of the constantly recurring topics discussed in the community of researchers working with imprecise probabilities 
(and on ISIPTA conferences in particular) is defining meaningful criteria for decision making under complex uncertainty, 
finding persuading axiomatic justifications for these criteria and providing efficient algorithms capable to deal with them. 
Examples for such works are ranging from rather early IJAR and ISIPTA contributions by, e.g., [23,1,48,53] to more recent 
ones by, e.g., [55,58,24,36,4].

However, in the vast majority of works in this field, the complexity underlying the decision situation is assumed to solely 
arise from the fact that the decision maker’s beliefs on the mechanism generating the states of nature are expressed by an 
imprecise probabilistic model. In contrast, the cardinal utility function adequately describing the decision maker’s preference 
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structure is often unquestioned and assumed to be precisely given in advance.1 Unfortunately, also this can be problematic. 
Wrongfully pretending to have perfect information on the level of utilities might lead to bad decision making just as doing 
the same on the level of beliefs: What’s worth a decision that is derived on the basis of an inadequate utility function?

For this reason, our paper generalizes both the classical setting of decision making under risk as well as the generalized 
setting of decision making under ambiguity to situations in which the assumption of a known cardinal utility structure is 
no longer justified. Particularly, we consider the case that the (information on the) decision maker’s preference structure is 
both of partially ordinal and of partially cardinal scale and, therefore, no longer can be characterized by (a set of positive 
linear transformations of) one cardinal utility function. Instead, we model the decision maker’s utility by the set of all utility 
representations that are compatible with both the ordinal and the cardinal information concerning her preferences.

The paper is structured as follows: In Section 2, we give a brief overview on the background of our work and show how 
our approach naturally fits into this picture. Moreover, we discuss related literature and the connections to our work. In 
Section 3, we introduce the crucial concept of a preference system over a set of alternatives that allows for modeling partially 
ordinal and partially cardinal preference structures. Section 4 introduces three different approaches for decision making 
with acts taking values in a preference system by proposing decision criteria based on generalized expectation intervals 
(Section 4.2), on global comparisons of acts (Section 4.3) and on pairwise comparisons of acts (Section 4.4). For certain 
criteria, we give linear programming driven algorithms for checking feasibility of acts in finite decision settings. Section 5
is devoted to an application of the theory. There, we illustrate all the concepts developed in the paper in an example and 
thereby also show a class of situations in which our approach seems natural: The case where the consequences that acts 
can attain belong to some product space with both ordinal and cardinal dimensions. Section 6 concludes the paper.

2. Fundamentals underlying our approach and related literature

In classical subjective expected utility theory (SEUT), the decision maker (synonymously called agent in the following) 
is assumed to be able to specify (I) a real-valued cardinal utility function u (unique up to a positive linear transformation) 
representing her preferences on a set A of alternatives and (II) a unique and precise subjective probability measure π on 
the space S of states of nature adequately specifying her beliefs on the occurrence of the different states s ∈ S . Once these 
two ingredients are specified, according to SEUT, the decision maker should choose any act X : S → A that maximizes the 
expected utility Eπ (u ◦ X) with respect to her utility function u and her subjective probability measure π among all other 
available acts.

However, as is well known, in practice both assumptions (I) and (II) often turn out to be systematically too restrictive. 
In particular, (I) demands the decision maker to act in accordance with the axioms of von Neumann and Morgenstern, 
i.e. to be able to specify a complete preference ranking of all simple lotteries on the set A that is both independent and 
continuous (see, e.g., [17, Ch. 8] for details), whereas (II) requires that the decision maker can completely order the resulting 
utility-valued acts by preference in accordance with the axioms of de Finetti, i.e. continuous, additive and monotone (see, 
e.g., [19, Ch. 9] for details).

Consequently, there exists plenty of literature relaxing these assumptions. If only (II) is violated in the sense that there is 
only partial probabilistic information on the occurrence of the states of nature together with a perfectly cardinal preference 
structure (represented by a cardinal utility function u), the common relaxation is to allow for imprecise probabilistic models 
for representing the probabilistic information (for instance one could use the credal set M of all probability measures that 
are compatible with the given probability constraints). In this case, one can define optimality of acts, for instance depending 
on the attitude of the decision maker towards the ambiguity underlying the situation, in terms of some imprecise decision 
criterion such as:

• �-maximin (�-maximax): Choose any arbitrary act X yielding maximal expected utility with respect to the worst (best) 
compatible probability measure, i.e. that maximizes the value infπ∈M Eπ (u ◦ X) (the value supπ∈M Eπ (u ◦ X)) among 
all available acts.

• Maximality: Dismiss each act X for which there is available another act Y that dominates it in expectation with respect 
to all compatible probability measures, i.e. for which it holds that Eπ (u ◦ X) < Eπ (u ◦ Y ) for all π ∈ M.

• E-admissibility: Dismiss each act X that does not maximize expected utility Eπ (u ◦ X) among the available acts with 
respect to at least one compatible probability measure π ∈ M, i.e. where for all π ∈ M there exists an act Yπ with 
Eπ (u ◦ X) < Eπ (u ◦ Yπ ).

The original sources of the criteria just discussed are given in [30,34,35,20,60]. Further criteria for the case of cardinal utility 
and imprecise probabilities, each in its own way taking into account the whole set M of compatible probability measures, 
are reviewed in, e.g., [22]. Additionally, there exists a variety of efficient and powerful algorithms to deal with this kind 
of violation of the classical assumptions (see, e.g., [57,28,21,25]). However, note that the assumption of a cardinal utility 

1 Exceptions include Montes [39, Section 4.2.1], who uses set-valued utility functions, Landes [32] who axiomatically characterizes preferences over 
utility intervals and Troffaes and Sahlin [56], who propose elicitation procedures for partially specified utility functions. These references, among others, are 
discussed in some more detail at the end of Section 2.
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Fig. 1. Schematic illustration of the approaches recalled in Section 2: The points on the black dotted arrows indicate situations in which classical criteria 
exist, whereas the points in the filled gray-shaded prism indicate situations that are captured by our approach.

function u is essential for all these criteria in order to be applicable. The situations where these imprecise decision criteria 
are appropriate are illustrated as one of the horizontal edges in the schematic cube given in Fig. 1.

If it is the case that (I) is violated in the sense that the decision maker has complete ordinal preferences but no cardinal 
information (for instance in form of a complete and transitive binary relation R on A) and (II) is violated in the sense that 
there is no probabilistic information at all, it is nearly unanimously favored to define optimality of acts based on Wald’s 
classical maximin criterion (see [59] for details), which reads here as

• Maximin criterion: Choose any act X receiving highest possible rank under the worst possible state of nature, i.e. with 
(infs∈S X(s), infs∈S Y (s)) ∈ R for every other available act Y .

However, note that the completeness of the involved ordinal ranking is essential, since, otherwise, the worst consequences 
of two distinct acts might be incomparable and, therefore, an optimal act with respect to the maximin criterion simply 
does not exist. Even more severe, also the vacuousness assumption concerning the information on probabilities is crucial: 
Applying the maximin criterion in the presence of (partial) probabilistic information means willingly ignoring information. 
This seems not reasonable at all (cf. also Example 1 for an illustration). Situations in which Wald’s maximin criterion appears 
to be appropriate are illustrated as one of the vertical edges in the schematic cube given in Fig. 1.

Finally, if only (I) is violated in the sense that there is no cardinal information at all and the available ordinal information 
is possibly incomplete (meaning that the relation R from above might not be complete), however, (II) holds true in the sense 
that beliefs about the states can be described by a precise probability measure π , one common criterion to be applied is 
the concept of

• (First oder) Stochastic dominance: An act Y is said to weakly stochastically dominate another act X , if it holds that 
Eπ (u ◦ Y ) ≥ Eπ (u ◦ X) for every measurable utility function u that is monotone with respect to R (meaning (a, b) ∈ R
implies u(a) ≥ u(b) for arbitrary a, b ∈ A). We denote the stochastic dominance relation by ≥S D . This induces the 
following choice rule: Dismiss an act X if it is strictly stochastically dominated by another available act, i.e. if there 
exists an act Y such that Eπ (u ◦ Y ) ≥ Eπ (u ◦ X) for every measurable utility function u that is monotone with respect 
to R and such that Eπ (u0 ◦ Y ) > Eπ (u0 ◦ X) for at least one such function u0.

Also for this case there exist well-established theory as well as efficient algorithms for computation (see, e.g. [33,27,44,54,
47,50]). Situations for which first order stochastic dominance should be the decision criterion of choice are indicated as one 
of the horizontal edges in the schematic cube drawn in Fig. 1.

Further, note that there exists a fair amount of work on generalizing the notion of first order stochastic dominance to 
situations where the underlying uncertainty is characterized by a credal set of probability measures or situations where 
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the utility function is only partially specified in terms of a multi-valued mapping: In [42, Section 5] the authors introduce 
and study a generalization where an act X is said to dominate another act Y whenever it stochastically dominates it 
with respect to every distribution from the underlying credal set. Moreover, in [42, Sections 3 and 4] the authors study 
different possibilities to extend the notion of stochastic dominance (with respect to a precise probability measure) to suitable 
binary relations on sets of random variables. These approaches can be viewed as generalizations of stochastic dominance to 
imprecise utilities. In [43] this framework is further investigated and applied to a real world example. The interrelations of 
these works and the present one are discussed in some more detail at the end of Section 4.4 when the required concepts 
are formulated.

Beyond the connections to the literature already mentioned, other related work exists: In [13] the author also studies 
generalizations of stochastic dominance to imprecise probabilistic models, however, for the special case of belief functions 
on the real line. More precisely, the paper studies how different orderings between intervals on the real line induce different 
orderings between belief functions and the mass function associated with them. Afterwards, the paper studies how these 
orderings relate to the notion of stochastic dominance. Some more details on the connection between [13] and the present 
work are provided in the discussion directly following the proof of Proposition 6 in Section 4.4.

Of course, there is also related work on non-fully specified utilities: In [32] the author considers the situation of decision 
making under complete uncertainty (i.e. with a credal set M containing all possible probability distributions on the state 
space) with acts taking values in some linearly ordered space. To each such act it is then associated an utility interval. 
Afterwards, the author axiomatically characterizes desirable properties of binary relation on such utility intervals and shows 
that these axioms uniquely determine a particular binary relation, the so-called Min–Max Relation (see [32, Corollary 3] in 
particular).

In [56] the authors consider the case of decision making with acts taking values in some multi-attribute space. For 
such problems they propose a two-step elicitation procedure for utility functions, where the first step consists in precisely 
eliciting the marginal utility functions on the different attributes and the second step consists in imprecisely eliciting the 
weights with respect to which these marginal utilities are extended to an utility function on the whole multi-attribute 
space.

Finally, in [9] and [10] and [8] the authors study decision making problems where both the utility values assigned to 
the consequences and the probability values assigned to the states are allowed to be only imprecisely known. In particular, 
they investigate situations where the statements about probability and utility values can be formed by one of three types of 
sentences, so-called vague sentences, interval sentences and comparative sentences. The set of available acts together with 
the sets of probability and utility sentences then forms the so-called information frame. For such decision problems they 
then propose a decision criterion, the so-called t-admissibility, which relies on the idea to prefer an act X to another act 
Y whenever it holds that Eπ (u ◦ X) − Eπ (u ◦ Y ) ≥ t for all pairs (π, u) that are compatible with both the set of utility 
sentences and the set of probability sentences, that is with the information frame (see [9, Section 2.2]). For evaluating this 
criterion the authors then propose bilinear as well as linear optimization approaches and apply their theory to a real world 
problem.

Furthermore, in [8] the framework developed in [9] is generalized to the case where the pairwise comparison between 
the acts X and Y is no longer made by considering solely the differences of the expected values, but where it can be made 
by arbitrary functionals f depending besides of the acts under consideration also on π and u as well as additional param-
eters (see [8, Section 3]). Their work is also implemented in the decision user interface DecideIt, which is introduced and 
described in [10]. Note that our relation R∀∀ that is introduced in Equation (9) and our concept of local R∀∀-admissibility 
from Definition 8 that is based on it are closely related to the concept of t-admissibility from the works by Danielson et al.. 
This is discussed in some more detail at the end of Section 4.4.

In the following sections of the paper, we introduce and discuss different concepts for decision making in situations 
in which simultaneously both assumptions (I) and (II) are violated (i.e. situations corresponding to inner points of the 
gray-shaded prism from Fig. 1) and thus none of the concepts just recalled can be applied. Therefore, the contribution of 
the present paper consists in filling up the gray-shaded prism in the schematic cube drawn in Fig. 1.

3. Preference systems

In this section we start by defining the concept of a preference system, which is essential for what follows throughout 
the rest of the paper. The intuition behind this concept is very simple: In many practically relevant decision problems, 
the (available information on the) agent’s preferences are (is) incomplete. More precisely, it often will be the case that 
certain pairs of possible decision outcomes are incomparable for the agent, whereas others can be ordered by preference. 
Additionally, for some pairs there might even be an idea of the strength of the preference, that is an idea of how much the 
one outcome is preferred to the other.

There are several circumstances that could give rise to this type of incomplete preferences. For example, if a company 
wants to analyze the choice behavior of their (potential) customers, the information on the customer’s preferences will 
often be given in form of observed binary choices and/or survey data. Obviously, usually such data won’t be sufficient to 
specify the full preference structure of the customer, since this require too many observations. In this case, incompleteness 
is a missing data problem and originates in lacking information about the choice behavior.
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However, also the agent herself might have incomplete preferences. Suppose she knows (e.g. from earlier choice experi-
ence) certain potential decision outcomes better than others. Then for pairs involving better known outcomes, she might be 
able to specify a preference ranking and even some intuition for the strength of the preference, whereas for pairs involving 
unfamiliar outcomes, she might be able to specify only a ranking or even can’t make a comparison at all. The following 
definition captures the intuition just described.

Definition 1. Let A be a non-empty set and let R1 ⊆ A × A denote a pre-order (i.e. reflexive and transitive) on A. Moreover, 
let R2 ⊆ R1 × R1 denote a pre-order on R1. Then the triplet A = [A, R1, R2] is called a preference system on A.

The interpretation of the relations R1 and R2 contained in a preference system A in the sense of Definition 1 is in 
perfect accordance with the intuition that should be captured by it: If some pair (a, b) ∈ R1, we interpret that as a is at 
least as desirable as b, that is a and b can be ordered by preference. If both (a, b) /∈ R1 and (b, a) /∈ R1, then a and b are 
incomparable. Moreover, if a pair of pairs ((a, b), (c, d)) ∈ R2, we interpret this as exchanging alternative b by alternative a is at 
least as desirable as exchanging alternative d by alternative c, that is a is more strongly preferred over b than c is over d. Again, 
if both ((a, b), (c, d)) /∈ R2 and ((c, d), (a, b)) /∈ R2, then the exchange of b by a is incomparable with the exchange of d by c.

Except from transitivity, Definition 1 makes no rationality and/or compatibility assumption regarding the relations R1
and R2. Accordingly, a preference system in the sense of the above Definition 1 needs by no means to be reasonable or 
rational. In [31, Chapter 4], an axiomatic approach for characterizing consistent preference systems is provided for the case 
that the involved relations are complete. The corresponding axioms then imply the existence of a real valued function 
representing both relations simultaneously that is unique up to a positive linear transformation. Another axiomatization 
that uses quaternary relations instead of pairs of relations is established in [46], where it is shown that under some quite 
strong conditions (like, e.g., solvability) there exists a multi-utility characterization of the corresponding quaternary relation.

A weaker consistency condition that still applies to settings in which conditions like solvability no longer can be expected 
is given in the following definition, for which we need some further notation: If R is a pre-order on A, we denote by I R

and P R its indifference and its strict part, respectively. More precisely, for (a, b) ∈ A × A, we have (a, b) ∈ I R ⇔ ((a, b) ∈
R ∧ (b, a) ∈ R) and (a, b) ∈ P R ⇔ ((a, b) ∈ R ∧ (b, a) /∈ R).

Definition 2. Let A = [A, R1, R2] be a preference system. Then A is said to be consistent if there exists a function u : A →
[0, 1] such that for all a, b, c, d ∈ A the following two properties hold:

i) If (a, b) ∈ R1, then u(a) ≥ u(b) with equality iff (a, b) ∈ I R1 .
ii) If ((a, b), (c, d)) ∈ R2, then u(a) − u(b) ≥ u(c) − u(d) with equality iff ((a, b), (c, d)) ∈ I R2 .

Every such function u is then said to (weakly2) represent the preference system A. The set of all (weak) representations u
of A is denoted by UA . The set of all u ∈ UA satisfying infa∈A u(a) = 0 and supa∈A u(a) = 1 is denoted by NA .

We will call a preference system non-trivial if there exists a pair (a, b) ∈ P R1 , that is if there is at least one alternative 
that is strictly preferred to another one. In the rest of the paper we will throughout consider non-trivial preference systems 
and, therefore, drop the prefix non-trivial from now on. Note that trivial preference systems are represented by arbitrary 
maps c : A → [0, 1].

The idea behind the set NA of normalized representations in the above definition is the following: For the special 
case that the preference system A is in accordance with the axioms in [31, Chapter 4], the representation is unique up 
to a positive linear transformation. Hence, the conditions infa u(a) = 0 and supa u(a) = 1 guarantee a unique representation 
for that special case. For the general case of a consistent preference system A with non complete relations R1 and R2, 
restricting analysis to the set NA ensures that comparison will not be made with respect to equivalent representations 
which only measure utility on a different scale. Specifically, if u ∈ UA , we have also λ · u ∈ UA for arbitrary λ ∈ (0, 1). This 
means that both functions u and λ · u represent the preference system A, however, they measure utility on different scales, 
namely [mina∈A u(a), maxa∈A u(a)] and [mina∈A λ · u(a), maxa∈A λ · u(a)]. By restricting analysis to the set NA we therefore 
ensure that all considered representations measure utility on a [0, 1]-scale. The restriction on NA , together with the concept 
of granularity from Definition 3, will prove crucial when comparing acts by means of the numerical representation in 
Section 4.2.

Further, note that for finite A, the boundedness condition on the utility function in Definition 2 implies the existence of 
alternatives in A that attain a greatest and a lowest utility value, but not necessarily of worst and best alternatives in A with 
respect to the relation R1: An element of A attaining the highest utility value for a certain representation u : A → [0, 1]
might indeed be incomparable to all other elements of A.

Obviously, for a preference system A = [A, R1, R2] to be consistent, certain compatibility criteria between the relations 
R1 and R2 have to be satisfied. For example it cannot be the case that, for some elements a, b, c ∈ A, it simultaneously holds 

2 Here, the term weakly refers to the fact that the representation is meant in the if and not in the if and only if (short: iff) sense.
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that (c, a) ∈ P R1 and ((a, b), (c, b)) ∈ R2, since any element u ∈ UA would have to satisfy u(c) > u(a) and u(a) − u(b) ≥
u(c) − u(b). We now provide an algorithm for checking the consistency of a finite preference system.

Proposition 1. Let A = [A, R1, R2] be a preference system, where A = {a1, . . . , an} is a finite and non-empty set. Consider the linear 
optimization problem

ε = 〈(0, . . . ,0,1)′, (u1, . . . , un, ε)′〉 −→ max
(u1,...,un,ε)∈Rn+1

(1)

with constraints 0 ≤ (u1, . . . , un, ε) ≤ 1 and

i) up = uq for all (ap, aq) ∈ I R1 \ {(a, a) : a ∈ A}
ii) uq + ε ≤ up for all (ap, aq) ∈ P R1

iii) up − uq = ur − us for all ((ap, aq), (ar, as)) ∈ I R2 \ {((a, b), (a, b)) : (a, b) ∈ R1}
iv) ur − us + ε ≤ up − uq for all ((ap, aq), (ar, as)) ∈ P R2

Then A is consistent if and only if the optimal outcome of (1) is strictly positive.

Proof. First, note that (0, . . . , 0) ∈ Rn+1 defines an admissible solution of (1). Thus, the set of admissible solutions of (1) is 
non-empty. Since it is also bounded due to 0 ≤ (u1, . . . , un, ε) ≤ 1, we can deduce the existence of an optimal solution of (1)
by utilizing that linear programming problems with a bounded and non-empty set of admissible solutions always possess 
an optimal solution. Let (u∗

1, . . . , u
∗
n, ε∗) denote such an optimal solution.

If: Assume ε∗ > 0. Define u : A → [0, 1] by setting u(ai) := u∗
i for all i ∈ n := {1, . . . , n}. One then straightforwardly 

verifies that conditions i) to iv) imply that u ∈ UA . Hence, A is consistent.
Only if: Assume ε∗ = 0 and, for contradiction, that there exists v ∈ UA . Define the values vi := v(ai) for all i ∈ n and 

δ := min{m1, m2}, where m1 := min{vi − v j : ai P R1a j} and m2 := min{(vi − v j) − (vk − vl) : (ai, a j)P R2 (ak, al)}. Then, since 
v ∈ UA and it therefore holds that m1 > 0 due to Definition 2 i) and that m2 > 0 due to Definition 2 ii), we have δ > 0. One 
then straightforwardly verifies that (v1, . . . , vn, δ) is an admissible solution to (1) with δ > ε∗ , contradicting the optimality 
of (u∗

1, . . . , u
∗
n, ε∗). �

The linear programming problem (1) possesses |R2| + n + 2 constraints. Thus, the number of constraints increases with 
the preciseness of the available information on the agent’s preferences. In applications, typically the relation R2 will be 
rather sparse (i.e. contain few comparable pairs of pairs), whereas the relation R1 will be rather dense (i.e. contain many 
comparable pairs). This is intuitive: While R1 is directly observable in the choice behavior of the agent, edges in R2 need to 
be gained by hypothetical comparisons in interviews and polls by asking questions like: “Imagine you have objects a and b. 
Would you rather be willing to accept the exchange of a by c or the exchange of b by d?”

In order to reduce the number of constraints of the problem, note that (weak) representability of a preference system 
A = [A, R1, R2] automatically implies transitivity of the represented relations. Therefore, in the constraints of the above 
optimization problem (1) it actually suffices to quantify only over (the corresponding indifference parts I R∗

1
, I R∗

2
and strict 

parts P R∗
1
, P R∗

2
of) some transitive reductions R∗

1, R∗
2 of the relations R1 and R2. However, note that this makes necessary 

to compute the corresponding transitive reductions which, again, raises the complexity of the problem to some extent.
Before turning to decision theory with preference system valued acts, we need one further concept, which will be of 

particular relevance in Section 4.2.

Definition 3. Let A = [A, R1, R2] be a consistent preference system. Moreover, for δ ∈ (0, 1), let N δ
A denote the set of all 

u ∈ NA satisfying u(a) − u(b) ≥ δ for all (a, b) ∈ P R1 and u(a) − u(b) − u(c) + u(d) ≥ δ for all ((a, b), (c, d)) ∈ P R2 . Then, N δ
A

is called the (weak) representation set of granularity (at least) δ. Moreover, the decision system A is called δ-consistent if 
N δ

A �= ∅.

On the one hand, the granularity δ from Definition 3 can be given a similar interpretation as the just noticeable difference 
in the context of psychophysics (see [37] for details): It is the minimal difference in utility that the specific decision maker 
under consideration is able to notice given that utility is measured on a [0, 1]-scale. On the other hand, the granularity can 
also be given a more constructive interpretation, namely as a controlling device for the specific decision maker: Choosing a 
granularity parameter δ > 0 ensures that an act will not be labeled superior to another based solely on some utility function 
that involves utility differences that are practically not noticeable at all and, accordingly, should not influence the decision 
to be made.

The restriction of the analysis to utility functions that reflect the fact that utility differences below some threshold 
are not distinguishable empirically will play a crucial role when it comes to defining generalized expectations (and the 
decision criteria based on these) in Section 4.2. For now, it is sufficient to note that the algorithm given in Proposition 1
straightforwardly extends to checking whether a preference system A = [A, R1, R2] is δ-consistent. This is the statement of 
the following proposition.
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Proposition 2. Let A = [A, R1, R2] be a preference system, where A = {a1, . . . , an} is a finite and non-empty set and let δ ∈ (0, 1). 
Then A is δ-consistent if and only if the optimal outcome of (1) is at least δ.

Proof. Let (u∗
1, . . . , u

∗
n, ε∗) denote an optimal solution to problem (1) and define u : A → [0, 1] by setting u(ai) := u∗

i for all 
i ∈ n. First, note there have to exist elements a+, a− ∈ A such that u(a−) = 0 and u(a+) = 1, since otherwise normalizing 
u to [0, 1] would induce a solution to (1) with objective value strictly greater than ε∗ . Thus, u ∈ NA . If ε∗ ≥ δ, then the 
constraints of (1) guarantee that u(a) − u(b) ≥ δ for all (a, b) ∈ P R1 and u(a) − u(b) − u(c) + u(d) ≥ δ for all ((a, b), (c, d)) ∈
P R2 . Hence, u ∈ N δ

A and A is δ-consistent. If conversely A is δ-consistent, we can choose u+ ∈ N δ
A and we know from the 

proof of Proposition 1 that (u+
1 , . . . , u+

n , δ) with u+
i := u+(ai) for i ∈ n defines an admissible solution to (1). Since ε∗ is the 

optimal outcome of (1), we know that ε∗ ≥ δ. �
4. Decision theory with ps-valued acts

Differently from axiomatic approaches followed in, e.g., [51,45,18], where (multi-)utility and (imprecise) probability rep-
resentations are obtained by different axiomatic characterizations of preferences over acts, the aim of the present paper is 
to go the opposite direction and to obtain preferences on acts given a preference system and some additional, commonly 
partial, probabilistic information about the occurrence of the states of nature.

As already discussed in more detail in Section 2, most existing criteria for decision making under uncertainty are not ap-
plicable in such situations, since they require either a perfectly cardinal preference structure (like, e.g., maximizing expected 
utility or �-maximin) or, complementary, a precise probability measure representing the beliefs on the states of nature (like, 
e.g., first order stochastic dominance3). Therefore, we now propose and discuss three different approaches for decision mak-
ing under uncertainty when the considered acts take values in some arbitrary preference system (abbreviated by ps-valued
acts in the following) and when there is partial probabilistic information on the occurrence of the states available.

4.1. Basic setting

We start by defining the central concepts of the theory for the most general case. Let S denote some non-empty set 
equipped with some suitable σ -algebra σ(S). The elements of S are interpreted as all possible states of nature about 
whose occurrence the decision maker under consideration is uncertain. Moreover, let M denote some credal set on the 
measurable space (S, σ(S)), which is interpreted as the set of all probability measures on (S, σ(S)) that are compatible 
with the available (partial) probabilistic information and thus describing the uncertainty about the occurrence of the states. 
For a given consistent preference system A, a state space S and a credal set M, a ps-valued act is a mapping X : S → A
assigning states of nature to elements of the preference system.

Given this, define the set F(A,M,S) ⊆ A S := {X |X : S → A} by setting

F(A,M,S) :=
{

X ∈ A S : u ◦ X is σ(S)-BR-measurable for all u ∈ UA
}

(2)

where BR denotes the Borel sigma field on R. By construction, the space F(A,M,S) consists of exactly those acts X :
S → A whose expectation exists with respect to all pairs (u, π) ∈ UA × M of compatible probability measure and utility 
representation (since bounded and measurable random variables have finite expectation). We can now define our main 
object of study:

Definition 4. In the situation above, call every subset G ⊆ F(A,M,S) a decision system (with information base (A, M)). 
Moreover, call a decision system G finite, if both |G| < ∞ and |S| < ∞, that is if both the set of states and the set of 
available acts are finite.

The elements of a decision system G are interpreted as those elements of the space F(A,M,S) that are available in the 
specific choice situation under consideration. Given a decision system G , we are interested in the following question: How 
can we utilize the information base (A, M) best possibly in order to define meaningful and reasonable choice criteria on 
the set G? In the following sections, we propose three different approaches that address exactly this question.

4.2. Criteria based on generalized expectation intervals

We start by introducing and studying decision criteria that are based on the analysis of generalized expectation intervals 
of the available acts. Depending on the attitude of the agent of interest towards the ambiguity underlying the situation 
(for instance she could be ambiguity seeking or ambiguity averse or something inbetween), such intervals can give rise to a 
variety of different optimality criteria for decision making. Specifically, for a ps-valued act X and a decision maker with a 
granularity parameter δ > 0, the corresponding interval will range from the lowest to the highest possible expected value 

3 For approaches directly generalizing stochastic dominance to credal sets, see [13,7,43,6].
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that choosing the act X can lead to under some pair (u, π) ∈ N δ
A × M that is compatible with the preference system A

and the probabilistic information M. This leads to the definition of the basic concept of this section.

Definition 5. Let X ∈ F(A,M,S) and δ ∈ (0, 1). With Dδ := N δ
A × M, we call

EDδ (X) :=
[
EDδ

(X),EDδ (X)
]
:=

[
inf

(u,π)∈Dδ

Eπ (u ◦ X), sup
(u,π)∈Dδ

Eπ (u ◦ X)
]

(3)

the generalized interval expectation of X with respect to A, M and granularity δ.

Examples for how the generalized interval expectation is computed in concrete decision situations are given in the 
second part of Example 1 in Section 4.3 and in the application example in Section 5.2. Note that, in the spirit of the theory 
of imprecise probabilities, the set EDδ

(X) can be given an epistemic or an ontologic interpretation (see [61] or [2, p. 143]): If 
the imprecision/ambiguity in the sets arises from lack of information in the sense of e.g. partially observed choice behavior 
and/or partially known precise probabilities, the set EDδ

(X) is the set of all expectations arising in at least one situation 
that is compatible with the data. In contrast, if both sets N δ

A and M have an ontologic interpretation, i.e. are interpreted 
as holistic entities of their own, the same holds true for the set of expectations EDδ

(X).
Of course, all decision theory that is based on comparisons of the set EDδ

(Xi) of different acts Xi should reflect the 
underlying interpretation. The following definition gives three criteria rather relying on an ontologic interpretation of the 
set Dδ . Note that all of them are straightforward generalizations of the (complete order inducing) decision criteria commonly 
used in the theory of imprecise probabilities and reviewed, e.g., in [22].

Definition 6. Let G ⊆ F(A,M,S) be a decision system and δ ∈ (0, 1). An act X ∈ G is called

i) Dδ-maximin iff ∀Y ∈ G : EDδ
(X) ≥ EDδ

(Y )

ii) Dδ-maximax iff ∀Y ∈ G : EDδ
(X) ≥ EDδ

(Y )

iii) Dα
δ -maximix iff

∀Y ∈ G : αEDδ
(X) + (1 − α)EDδ (X) ≥ αEDδ

(Y ) + (1 − α)EDδ (Y )

where α ∈ [0, 1] is some fixed parameter.

We denote by G
δ
, Gδ and Gα

δ the sets of Dδ-maximin, Dδ-maximax and Dα
δ -maximix acts in G .

Independent of its interpretation, we need ways for computing the set EDδ
(X) in concrete situations. The following 

proposition gives a linear programming based algorithm for doing so in finite decision systems. However, note that applying 
the proposition requires the extreme points of the underlying credal set M and, therefore, is ideal for situations where 
the number of extreme points is moderate and where closed formulas for computing the extreme points are available. For 
credal sets induced by 2-monotone lower/ 2-alternating upper probabilities such formulas exist (cf., [52, Theorem 3, p. 19]). 
While generally the number of extreme points could be very high (maximally |S|! for lower probabilities, cf. [15] and [62]), 
convenient cases exist where furthermore efficient enumeration procedures are available (such special cases include ordinal 
probabilities (cf., [29, p. 26]), comparative probabilities (cf., [38]), necessity measures (cf., [49]), p-boxes (cf., [40]), probability 
intervals (cf., [63, Chapter 2] or [11]) or pari-mutuel models (cf., [41])).

Proposition 3. Let A = [A, R1, R2] be a consistent preference system, where A = {a1, . . . , an} such that (a1, b), (b, an) ∈ R1 for all 
b ∈ A and let ε∗ denote the optimal outcome of problem (1). Moreover, let S = {s1, . . . , sm} be finite, M be some polyhedral credal set 
on (S, 2S) with extreme points E(M) := {π(1), . . . , π(T )} and let X ∈ G . For ε∗ ≥ δ > 0, consider the collection of linear programs 
LPδ

1, . . . , LPδ
T given by:

n∑
i=1

ui · π(t)(X−1({ai})) −→ min
(u1,...,un)∈Rn

/ max
(u1,...,un)∈Rn

(LPδ
t )

with constraints 0 ≤ (u1, . . . , un) ≤ 1, u1 = 1, un = 0 and i) to iv) as given in Proposition 1 (with ε := δ fixed). Let v(t, δ) and v(t, δ)
denote the optimal outcomes of problem LPδ

t in minimum and maximum form. Then, we have EDδ
(X) = [mint v(t, δ), maxt v(t, δ)].

Proof. Let X ∈ G and ε∗ ≥ δ > 0. Then, the set N δ
A is non-empty and we can define the function f : Dδ → R, (u, π) �→

Eπ (u ◦ X). For any representation u ∈ N δ
A fixed, the function π �→ f (u, π) is linear in π and, therefore, both convex 

and concave. By utilizing the facts that the pointwise infimum of any family of concave functions is a concave function 
and that the pointwise supremum of any family of convex functions is a convex function, we know that the functions 
π �→ infu f (u, π) and π �→ supu f (u, π) have to be concave and convex, respectively. But concave functions on polyhedral 
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set attain their minimum and convex functions on polyhedral set attain their maximum on the set of extreme points. Hence, 
in order to find global maximum and minimum of the function f , it suffices to check for it on the set N δ

A × E(M).
Now, let (u∗

1, . . . , u
∗
n) denote an optimal solution to problem LPδ

t in maximum form for fixed t ∈ {1, . . . , T }. One then 
easily verifies that the constraints imply u∗ ∈ N δ

A , where u∗ : A → [0, 1], u∗(ai) := u∗
i and v(t, δ) = Eπ(t) (u∗ ◦ X) =

sup
{
Eπ(t) (u ◦ X) : u ∈ N δ

A
}

. Analogous reasoning for the problem in minimum form yields v(t, δ) = infu∈N δ
A

Eπ(t) (u ◦ X). 
Thus, applying our considerations from before yields EDδ

(X) = [mint v(t, δ), maxt v(t, δ)]. �
Another way to compute the bounds in (3) in the case of 2-alternating upper probabilities (2-monotone lower proba-

bilities) on a finite space A is to use the Choquet representation of the upper (lower) expectation (cf., e.g., [12, Proposition 
10.3, p. 126]): For a fixed utility u and a 2-alternating upper probability ν with associated credal set Mν the corresponding 
expected upper utility can be written as E{u}×Mν (X) = ∑n

i=1

(
u(i) − u(i−1)

) · ν({s ∈ S | u(X(s)) ≥ u(i)}), where u(i) denotes 
the i-th value of the increasingly ordered involved utility values u1, . . . , un .

If R1 is complete then the expectation is a linear form in the utility u and the maximization maxu∈N δ
A

E{u}×Mν (X)

translates to a simple linear program. If the relation R1 is not complete then the ordering of the utility values ui can change 
as u ranges in N δ

A and one has to compute the expectation separately for every possible ordering of the utility values 
and then take the maximum. If there are totally comparable values ui meaning that for every u j either ui ≤ u j or ui > u j , 
independently from the concrete u ∈ N δ

A then one can split the sum in a part containing all utility values below ui and a 
part containing all utility values above ui and then analyze every sub-sum independently which would help in reducing the 
combinatorial complexity.

The criteria from Definition 6 allow for comparing acts given the granularity δ of the specific decision maker of interest. 
However, note that knowing the granularity might be a strong assumption if R1 and R2 are partial orderings, since exper-
imental settings in which this additional parameter could precisely be elicited are not as straightforward as in the case of 
complete orderings. A natural way for addressing this issue in practical problems is to compute the generalized interval 
expectation along varying values of δ. Clearly, it holds that EDδ1

(X) ⊆ EDδ2
(X) whenever δ1 ≥ δ2, since it holds Dδ1 ⊆ Dδ2

and, thus, the inf and the sup in (3) are taken for a smaller set for δ1 than for δ2. That is, the generalized interval expecta-
tion of an act X becomes narrower (or more precisely, not gets wider) as the value of δ increases. Utilizing this fact, in order 
to decide between two competing acts X and Y , one could proceed as follows: Once having decided for one of the criteria 
from Definition 6, one can compute the general interval expectation for increasing values of δ until the chosen criterion 
can discriminate between the acts X and Y for the first time, for instance in favor of X (say this happens for the value 
δ∗). Afterwards, the decision maker is asked whether it is acceptable for her that utility differences below δ∗ are not taken 
into account by the decision procedure. If the answer is yes, the decision maker should rank act X before Y , otherwise no 
decision can be made.

Further possibilities to deal with these issues are treated in the next two sections, where we propose two approaches 
completely overcoming the choice of a granularity parameter.

4.3. Criteria based on global comparisons

The decision criteria defined in Section 4.2 all construct complete rankings on the set G by comparing numerical repre-
sentations of parts of the decision system and by somehow ignoring the inherent utility and probability structure. Therefore, 
when defining optimality of acts in terms of one of the criteria from Definition 6, it makes no difference if the ranking is 
constructed by pairwise or global comparisons. In the next sections, we turn to two approaches that explicitly take into 
account a global and local viewpoint for defining optimality of acts, respectively.4

We start with defining criteria taking the global perspective: For an act X in order to be labeled optimal, it is necessary 
that there exists (depending on the concrete approach at least) one fixed pair (u, π) ∈ UA ×M for which this act maximizes 
the expected utility among all other available acts Y ∈ G . In particular, the pair (u, π) for which X dominates the other 
acts in expectation must not depend on the concrete competing act under consideration, but has to be constant for all 
acts from G . Optimality criteria for which the pair (u, π) may depend on the concrete competing act are considered in 
Definition 8 in Section 4.4.

Moreover, note that the concepts from the following definition take a global point of view also from another perspective: 
The utility component in the required pair(s) (u, π) should not depend on its probability component and also its probability 
component should no depend on the utility component. This is reflected in the fact that in the admissibility concepts of 
Definition 7 a ∀ quantifier can follow an ∃ quantifier but not vice versa.

Definition 7. Let G ⊆ F(A,M,S) denote a decision system. We call an act X ∈ G

i) A|M-admissible iff ∃u ∈ UA ∃π ∈ M ∀Y ∈ G : Eπ (u ◦ X) ≥ Eπ (u ◦ Y )

ii) A-admissible iff ∃u ∈ UA ∀π ∈ M ∀Y ∈ G : Eπ (u ◦ X) ≥ Eπ (u ◦ Y )

4 Note that in the context of IP decision theory, fundamental differences between global criteria and criteria based on pairwise comparisons have already 
been discussed in [48].
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iii) M-admissible iff ∃π ∈ M ∀u ∈ UA ∀Y ∈ G : Eπ (u ◦ X) ≥ Eπ (u ◦ Y )

iv) A|M-dominant iff ∀u ∈ UA ∀π ∈ M ∀Y ∈ G : Eπ (u ◦ X) ≥ Eπ (u ◦ Y )

Denote by GA|M , GA , GM and Gd
A|M the sets of such acts, respectively.

Fig. 2. The black part shows the Hasse graph of the relation R1, the gray dashed lines show the edges ♥ = (a3, a1) and ♦ = (a2, a4) with ♦ being preferred 
to ♥. The solid gray lines show which elements of A are attained by the acts X1 and X2 under the different states of nature.

All four act properties just defined rely on the idea that, if there was perfect information on both the state probabilities 
(i.e. M = {π} is a singleton) and the utility values (i.e. the utility representation u is unique up to a positive linear transfor-
mation), then an act X should be labeled optimal iff X has greater or equal expected utility than every other act Y ∈ G with 
respect to (u, π). However, they differ in the way they handle the ambiguity underlying the involved sets M and UA: While 
A|M-admissibility only demands the existence of at least one compatible combination (u, π) with respect to which X max-
imizes expected utility, A|M-dominance requires this for all compatible combinations. M- and A-admissibility relax the 
∀-assumption on probability and utility level, respectively. Clearly, it holds that GA, GM, Gd

A|M ⊆ GA|M and Gd
A|M ⊆ GA

and Gd
A|M ⊆ GM , but in general neither GA ⊆ GM nor GM ⊆ GA .

Note that [8, Section 4] also proposes a decision rule that rather could be viewed from a global perspective. Precisely, 
in that paper an act X is labeled simultaneously superior to the remaining acts from G \ {X}, whenever the expectation 
Eπ (u ◦ X) of X is greater or equal as the mean of the expectations 1

|G|−1

∑
Y ∈G\{X} Eπ (u ◦ Y ) of the remaining acts for every 

compatible pair (u, π) of utility and probability representation. The author then proves that this criterion induces the same 
ranking of the acts than a similar criterion applied solely for pairwise comparisons of acts. This is an important difference to 
the concepts introduced in the present paper: Here, in general, the global admissibility concepts introduced in Definition 7
do indeed induce different orderings of the acts than the concepts of local admissibility introduced in Definition 8 from 
Section 4.4.

Note also that, if the involved set of utility representations UA is a class of positive linear transformations, i.e. belongs 
to a perfectly cardinal preference structure, then both A|M-admissibility and M-admissibility reduce to E-admissibility as 
recalled in Section 2. The following example demonstrates that ignoring the available information base and applying the 
maximin criterion instead leads to counter-intuitive decisions even in very simple situations.

Example 1. Let A = {a1, a2, a3, a4}, the (complete) relation R1 induced by a2 P R1a3 P R1a4 P R1 a1 and P R2 = {((a2, a4), (a3, a1))}
consists of one single edge. Consider the decision system G = {X1, X2}, where the acts X1, X2 : {s1, s2} → A are defined by 
(X1(s1), X1(s2)) = (a1, a2) and (X2(s1), X2(s2)) = (a3, a4). An illustration of the decision system is given in Fig. 2.

Moreover, suppose there is additional probabilistic information available which is given by the credal set M := {π :
π({s1}) ≤ 0.5}. In this case, act X1 is A|M-dominant, since it maximizes expected utility with respect to every pair 
(u, π) ∈ UA × M. In contrast, X2 is not even A|M-admissible, although it is the unique optimal act with respect to 
Wald’s maximin criterion (since it holds that infs∈S X2(s) = a4 P R1 a1 = infs∈S X1(s)). Moreover, we can go on computing the 
generalized interval expectations of the acts X1 and X2 (in the sense of Definition 5) for varying degrees of granularity, say 
δ = 0, 0.1, 0.15, 0.25. The resulting expectation intervals for the acts are visualized in Fig. 3.

To complete the section, we give a proposition containing a linear programming based approach for checking whether 
an act X is A-admissible in finite decision settings.

Proposition 4. Let A = [A, R1, R2] be a consistent preference system, where A = {a1, . . . , an}. Moreover, let S = {s1, . . . , sm} be finite, 
M be some polyhedral credal set on (S, 2S) with extreme points E(M) := {π(1), . . . , π(T )} and let G := {X1, . . . , Xk} ⊆ F(A,M,S)

denote a finite decision system with Xz ∈ G . Consider again the linear optimization problem (1) with additional constraints

n∑
i=1

ui · π(t)(X−1
z ({ai})) ≥

n∑
i=1

ui · π(t)(X−1
l ({ai})) for all l = 1, . . . ,k (Ct)
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for every t = 1, . . . , T . Then Xz is A-admissible if and only if the optimal outcome of this optimization problem is strictly greater 
than 0.

Fig. 3. Development of the generalized interval expectations of the acts X1 and X2 along increasing granularity. For the case δ = 0 the lower expectation of 
act X1 and the upper expectation of act X2 coincide with a value of 0.5.

Proof. A similar argument as in the proof of Proposition 1 guarantees the existence of an optimal solution (u∗
1, . . . , u

∗
n, ε∗)

to the optimization problem. If ε∗ = 0, then there exists no vector (u1, . . . , un, ε) with ε > 0 satisfying the constraints of 
the optimization problem. Since every function u ∈ UA with Eπ(t) (u ◦ Xz) ≥ Eπ(t) (u ◦ Xl) for all l = 1, . . . , k and t = 1, . . . , T
induces such a vector, we conclude that such u cannot exist. Since E(M) ⊆ M, we conclude that Xz is not A-admissible.

If ε∗ > 0, constraints i) to iv) guarantee that u : A → R, u(ai) := u∗
i for all i ∈ n (weakly) represents the preference 

system A. Now, let π ∈ M be arbitrary. Choose α ∈ 
T −1 such that π(·) = ∑T
t=1 αt ·π(t)(·). Then, condition (Ct ) additionally 

guarantees that for all l = 1, . . . , k it holds

Eπ (u ◦ Xz) =
n∑

i=1

u∗
i · π(X−1

z ({ai}))

=
n∑

i=1

u∗
i ·

( T∑
t=1

αt · π(t)(X−1
z ({ai}))

)

=
T∑

t=1

αt

( n∑
i=1

u∗
i · π(t)(X−1

z ({ai}))
)

≥
T∑

t=1

αt

( n∑
i=1

u∗
i · π(t)(X−1

l ({ai}))
)

=
n∑

i=1

u∗
i ·

( T∑
t=1

αt · π(t)(X−1
l ({ai}))

)

= Eπ (u ◦ Xl)

Hence, Xz maximizes expected utility with respect to (u, π). Since π ∈ M was chosen arbitrarily, this implies that Xz is 
A-admissible. �

Note that a similar algorithm as given in Proposition 4 could be used for checking M-admissibility of acts. However, this 
would require the set E(UA) of extreme points of the representation set to be known, which is way less straightforward 
than assuming E(M) to be known.

4.4. Criteria based on pairwise comparisons

While the criteria defined in Section 4.3 rather relied on global comparisons of acts in the sense that an act, in order 
to be labeled admissible, has to dominate all other available acts from G in expectation for (at least one) fixed pair (π, u)

simultaneously, we now turn to criteria induced by pairwise expectation comparisons of acts (i.e. binary relations on the set 
of acts). There, roughly spoken, the idea is to first compare the expectation of a fixed act X of interest to the expectation 
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of every other available act Y ∈ G separately and, afterwards, to label this act admissible if and only if none of the other 
available acts from G dominates it. In particular, the pair (uY , πY ) for which the expectation of act X is compared to the 
expectation of act Y might now depend on Y , for which reason the following criteria could rather be viewed from a local 
perspective.

Similarly as already seen in the global case, there are several different ways to define such relations each of which 
reflecting a different attitude towards the underlying ambiguity between the different compatible probability measures 
and/or the indeterminacy on the utility level. In particular, we define six binary relations R∃∃, R1∃∀, R2∃∀, R1∀∃ , R2∀∃ and R∀∀
on F(A,M,S) by setting for all X, Y ∈ F(A,M,S):

(X, Y ) ∈ R∃∃ iff ∃u ∈ UA ∃π ∈ M : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (4)

(X, Y ) ∈ R1∃∀ iff ∃u ∈ UA ∀π ∈ M : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (5)

(X, Y ) ∈ R2∃∀ iff ∃π ∈ M ∀u ∈ UA : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (6)

(X, Y ) ∈ R1∀∃ iff ∀u ∈ UA ∃π ∈ M : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (7)

(X, Y ) ∈ R2∀∃ iff ∀π ∈ M ∃u ∈ UA : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (8)

(X, Y ) ∈ R∀∀ iff ∀π ∈ M ∀u ∈ UA : Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) (9)

Obviously, it holds that R∀∀ is subset of all other relation, whereas R∃∃ is a superset of them. For the remaining relations, 
in general, no sub- or superset relation has to be satisfied. Furthermore, transitivity is only guaranteed for R∀∀ in general. 
Similarly as already discussed in the global case, each of the desirability relations just defined relies on the idea that, given 
perfect information on utilities and probabilities, maximizing expected utility should be the criterion of choice. Again, the 
relations differ only in the way they handle the ambiguity on the involved sets UA and M. Naturally, each of the relations 
defined above induces a different criterion of (local) admissibility. These criteria are summarized in the following definition.

Definition 8. Let R ∈ {R∃∃, R1∃∀, R2∃∀, R1∀∃ , R2∀∃, R∀∀} =: Rp . We call an act X ∈ G locally admissible with respect to R , if it is 
an element of the set

maxR(G) := {Y ∈ G : �Z ∈ G s.t. (Z , Y ) ∈ P R}
that is if it is a maximal element in G with respect to the relation R ∩ (G × G).

So, which of the relations in Rp defined above are most important in our context? To address this question, it certainly 
makes sense to start by discussing some special cases of them: If the credal set M is a singleton M = {π}, that is a precise 
probability available, and if the set of compatible utility representations UA = {a · u0 + b | a > 0, b ∈ R} is unique up to a 
positive linear transformation of one utility function u0, that is a perfectly cardinal utility, then all relations R ∈ Rp coincide 
with the classical expected utility criterion, i.e. with choosing an act that maximizes the expectation with respect to π and 
one arbitrary chosen utility representation from UA .

If M still is a singleton, however, UA is the class of all non-decreasing functions with respect to R1 (this essentially 
corresponds to the case where the relation R2 of the underlying preference system is empty), then the relations R2∃∀ , 
R1∀∃ and R∀∀ essentially coincide with the classical concept of first order stochastic dominance (cf., e.g., [33,27,44]), while 
second order stochastic dominance is obtained if UA is the set of all continuous concave non-decreasing utility functions 
that are related to the concept of decreasing returns to scale. An intermediate case would arise if one has information about 
decreasing returns to scale only for parts of the preference system.

Finally, if the involved credal set M is no longer a singleton and utility is given perfectly cardinal again, then the 
relations R∃∃ , R2∃∀ and R1∀∃ all coincide and are exactly the ones corresponding to the criterion of maximality as recalled in 
Section 2. More precisely, the acts that are locally admissible with respect to one of the relations R∃∃ , R2∃∀ and R1∀∃ in that 
special case, are exactly the acts that are not dismissed when applying maximality. Additionally, the relations R1∃∀ , R2∀∃ and 
R∀∀ for that case reduce to Bewley’s structural dominance (see, e.g., [3] or [16, p. 243]).

To check whether an act X dominates another acts Y with respect to one of the relations R∃∃ and R∀∀ in the general 
(yet finite) case, one can apply a similar technique as described in Proposition 3 by noting that Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) is 
equivalent to Eπ (u ◦ X − u ◦ Y ) ≥ 0. Utilizing this fact leads us to the following proposition.

Proposition 5. Let A = [A, R1, R2] be a consistent preference system, where A = {a1, . . . , an}. Moreover, let S = {s1, . . . , sm} be 
finite, M be some polyhedral credal set on (S, 2S) with extreme points E(M) := {π(1), . . . , π(T )} and let X, Y ∈ F(A,M,S) . Consider 
the collection of linear programs LO1, . . . , LOT given by:

n∑
i=1

ui · [π(t)(X−1({ai})) − π(t)(Y −1({ai}))] −→ min
(u1,...,un)∈Rn

/ max
(u1,...,un)∈Rn

(LOt)

104 Attached contributions



124 C. Jansen et al. / International Journal of Approximate Reasoning 98 (2018) 112–131

with constraint i)–iv) from Proposition 1 where ε is set to 0. For t = 1, . . . , T , denote by v(t) and v(t) the optimal value of problem 
LOt in minimum and maximum form, respectively. Then, the following holds:

i) (X, Y ) ∈ R∀∀ if and only if mint v(t) ≥ 0
ii) (X, Y ) ∈ R∃∃ if maxt v(t) > 0

Proof. Define the function g : ŨA × M → R by setting g(u, π) = Eπ (u ◦ X − u ◦ Y ), where ŨA denotes the set of all 
functions u : A → [0, 1] which are monotone (but not necessarily strictly monotone) with respect to the relations R1 and 
R2. Note that UA ⊆ ŨA . A similar argument as performed in the proof of Proposition 3 shows that mint v(t) = min{g(u, π) :
(u, π) ∈ ŨA × M} and maxt v(t) = max{g(u, π) : (u, π) ∈ ŨA × M}.

Part i): If mint v(t) ≥ 0 (note that this actually means mint v(t) = 0 since the vector (0, . . . , 0) is an admissible solution 
of LOt for all t = 1, . . . , T ), then, according to the above identity, it holds that Eπ (u ◦ X − u ◦ Y ) ≥ 0 for all (u, π) ∈ ŨA ×M. 
Since UA ⊆ ŨA , this implies Eπ (u ◦ X) ≥ Eπ (u ◦ Y ) for all (u, π) ∈ UA × M. If contrarily mint v(t) < 0, let (u∗

1, . . . , u
∗
n)

denote a solution yielding mint v(t) and define u∗ ∈ ŨA by setting u∗(ai) := u∗
i . If u∗ ∈ UA we are done. If u∗ ∈ ŨA \ UA , 

choose u0 ∈ UA �= ∅ (this is possible since A is assumed to be consistent) such that Eπ (u0 ◦ X − u0 ◦ Y ) < | mint v(t)| for 
all π ∈ M (this is possible since, with any u ∈ UA , we have also λ · u ∈ UA for arbitrary λ ∈ (0, 1)). One then easily verifies 
that u+ := u∗+u0

2 ∈ UA . One also easily verifies that, if π+ ∈ M is chosen to be a credal element yielding outcome mint v(t)
in combination with u∗ , then it holds Eπ+ (u+ ◦ X) < Eπ+ (u+ ◦ Y ). This completes the proof of i).

Part ii): If maxt v(t) > 0, then, due to maxt v(t) = max{g(u, π) : (u, π) ∈ ŨA ×M}, there exists a pair (u∗, π+) ∈ ŨA ×M
such that Eπ+ (u∗ ◦ X) ≥ Eπ+(u∗ ◦ Y ). If u∗ ∈ UA we are done. If u∗ ∈ ŨA \ UA , choose u0 ∈ UA �= ∅ (again utilizing the 
consistency of the preference system A) such that Eπ (u0 ◦ X − u0 ◦ Y ) > − maxt v(t) (again utilizing the fact that, with 
any u ∈ UA , we have also λ · u ∈ UA for arbitrary λ ∈ (0, 1)). Analogously as in part i), we have that u+ := u∗+u0

2 ∈ UA . 
Moreover, one easily verifies that it holds that Eπ+(u+ ◦ X) > Eπ+ (u+ ◦ Y ). Thus, there exists a pair (u+, π+) ∈ UA × M
with the desired property and, therefore, it holds that (X, Y ) ∈ R∃∃ . This completes the proof of part ii). �

Note that the converse implication in part ii) of Proposition 5 is not necessarily true (for a trivial example consider 
the pair (X, X) ∈ R∃∃). A non-trivial situation where the opposite direction fails to hold is illustrated by the following toy 
example:

Example 2. Let A = {a1, a2, a3, a4}, the (complete) relation R1 induced by a1 I R1a4 P R1a2 I R1a3 and the relation R2 = ∅. Con-
sider the decision system G = {X1, X2} consisting of two acts X1, X2 : {s1, s2} → A defined by (X1(s1), X1(s2)) = (a1, a2)

and (X2(s1), X2(s2)) = (a3, a4). Suppose the uncertainty about the states is characterized by the credal set M = {π :
π({s1}) ≤ 0.5}. Then we have (X, Y ) ∈ R∃∃ , since for π the uniform distribution and u defined by u(a1) = u(a4) = 0.75
and u(a2) = u(a3) = 0.25 we have Eπ (u ◦ X1) = Eπ (u ◦ X2). However, it holds that

max
t

v(t) = sup
(u,π)∈ ŨA×M

Eπ (u ◦ X1 − u ◦ X2)

= sup
(u,π)∈ ŨA×M

u(a1)(π({s1}) − π({s2})) + u(a2)(π({s2}) − π({s1}))

= sup
(u,π)∈ ŨA×M

(u(a1) − u(a2))(π({s1}) − π({s2}))

= 0

where the last equality holds since u(a1) − u(a2) ≥ 0 due to a1 P R1a2 and, therefore, the product is maximal when π({s1})
is, which is the case for π({s1}) = 0.5. Hence, we have constructed a situation where (X, Y ) ∈ R∃∃ but not maxt v(t) > 0.

In the following proposition, we formulate an additional assumption under which also the opposite implication of Propo-
sition 5 ii) is valid.

Proposition 6. Consider again the situation of Proposition 5. Additionally, assume that both R1 and R2 are antisymmetric relations 
and that there exists an element a0 ∈ A such that

π(t)(X−1({a0})) − π(t)(Y −1({a0})) > 0

for all t = 1, . . . , T . Then, we have that (X, Y ) ∈ R∃∃ if and only if maxt v(t) > 0.

Proof. It follows from Proposition 5 ii) that maxt v(t) > 0 implies (X, Y ) ∈ R∃∃ . For the converse implication assume that 
(X, Y ) ∈ R∃∃ . We then can choose u∗ ∈ UA such that Eπ+ (u∗ ◦ X) ≥ Eπ+ (u∗ ◦ Y ) for some π+ ∈ M. If the inequality holds 
strictly we are done, since then setting u∗

i := u∗(ai) for all i ∈ n induces a solution with an objective value strictly greater 
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than 0. Thus, assume Eπ+ (u∗ ◦ X) = Eπ+(u∗ ◦ Y ). Choose α ∈ 
T −1 such that π+(·) = ∑T
t=1 αt · π(t)(·) and let δ > 0 be 

defined as in the proof of Proposition 1, i.e. as the minimal difference with respect to u over all elements of P R1 and P R2 . 
Define the function u+ : A → [0, 1] by u+(a) := u∗(a) for a �= a0 and u+(a0) := u∗(a0) + δ

4 . Then one can show that u+ ∈ UA
(utilizing that both relations R1 and R2 are antisymmetric).5 Set z(a, t) := π(t)(X−1({a})) − π(t)(Y −1({a})) for t = 1, . . . T
and a ∈ A. Then, we can compute

max
t

v(t) ≥ Eπ+(u+ ◦ X − u+ ◦ Y )

=
T∑

t=1

αt · Eπ(t) (u+ ◦ X − u+ ◦ Y )

=
T∑

t=1

αt ·
(∑

a∈A

u+(a) · z(a, t)
)

=
T∑

t=1

αt ·
(( ∑

a∈A\{a0}
u+(a) · z(a, t)

)
+u+(a0) · z(a0, t)

)

=
T∑

t=1

αt ·
(( ∑

a∈A\{a0}
u∗(a) · z(a, t)

)
+(u∗(a0) + δ

4 ) · z(a0, t)
)

=
T∑

t=1

αt ·
((∑

a∈A

u∗(a) · z(a, t)
)
+ δ

4 · z(a0, t)
)

=
T∑

t=1

αt ·
∑
a∈A

u∗(a) · z(a, t) + δ
4 ·

T∑
t=1

αt · z(a0, t)

=
T∑

t=1

αt · Eπ(t) (u∗ ◦ X − u∗ ◦ Y ) + δ
4 ·

T∑
t=1

αt · z(a0, t)

= Eπ+(u∗ ◦ X − u∗ ◦ Y ) + δ
4 ·

T∑
t=1

αt · z(a0, t)

= 0 + δ
4 ·

T∑
t=1

αt · (π(t)(X−1({a0})) − π(t)(Y −1({a0})))

> 0

where the first inequality sign is valid since, as seen in the proof of Proposition 5, we have that maxt v(t) = max{g(u, π) :
(u, π) ∈ ŨA × M} and where the last strict inequality holds since we have π(t)(X−1({a0})) − π(t)(Y −1({a0})) > 0 for all 
t = 1, . . . T by assumption. This gives maxt v(t) > 0 and completes the proof of the proposition. �

Note that the other relations R ∈ Rp \ {R∀∀, R∃∃} do not appear to be manageable in such a straightforward manner. 
However, in the special case that M is the core of a belief function, all π ∈ M can be understood as obtained from a 
mass transfer of probability mass to singleton sets of S (cf., e.g., [5, Corollary 3, p. 273] or [14, Theorem 2, p. 29] in the 
context of game theory). Since classical first order stochastic dominance can be alternatively checked via the solution of a 
suitable mass transportation problem (cf., [44, p. 269]), the computation of R2∃∀ can be done by solving a composite mass 
transportation problem.

On the other hand, if R1 is totally ordered and R2 is empty, then first order stochastic dominance can be characterized 
for a precise probability π as Y ≥S D X ⇐⇒ ∀c ∈ A : π(Y ≥ c) ≥ π(X ≥ c). This can be generalized to imprecise probabilities 

5 Antisymmetry is required since otherwise changing u∗ only on the element a0 would mean that u+ cannot represent the relations I R1 and I R2 on pairs 
of the form (a0, a1) ∈ I R1 with a0 �= a1 and pairs of the form ((a0, a1), (a2, a3)) ∈ I R2 with a1, a2, a3 ∈ A \ {a0}.

Given antisymmetry, proving that u+ ∈ UA is then straightforward, however, involves some tedious arithmetic exercises. One has to show that u+
represents both relations R1 and R2. Therefore, one first has to note that by definition of δ it holds that u∗(a) − u∗(b) > δ

2 for all (a, b) ∈ P R1 and that 
u∗(a) − u∗(b) − (u∗(c) − u∗(d)) > δ

2 for all ((a, b), (c, d)) ∈ P R2 . It is then immediate that u+ represents R1 and R2 for pairs not containing a0, since 
for such pairs u+ equals u∗ and u∗ ∈ UA . Thus, we need only care about pairs containing a0. There are several cases to distinguish. We only show the 
most complicated one. Assume for a1, a2 ∈ A \ {a0} it holds that ((a1, a0), (a0, a2)) ∈ P R2 . Then, due to the second of the above identities, it holds that 
u∗(a1) − u∗(a0) − δ

2 > u∗(a0) − u∗(a2). This implies u∗(a1) − (u∗(a0) + δ
4 ) > u∗(a0) + δ

4 − u∗(a2), which implies u+(a1) − u+(a0) > u+(a0) − u+(a2). Thus, 
u+ represents R2 on pairs of this form. The remaining cases are similar.
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by replacing the probability of the events X ≥ c and Y ≥ c, respectively by the lower or the upper probabilities associated 
with the credal set M. This would lead to four other generalizations of stochastic dominance for imprecise probabilities 
and was studied in detail in [13] for the case of belief functions. In the special case of some notion of “independence” of 
X and Y the relation Y ≥ X ⇐⇒ ∀c ∈ A : P (Y ≥ c) ≥ P (X ≥ c) would be equivalent to our relation R∀∀ . Here, we used the 
notations P (B) = infπ∈M π(B) and P (B) = supπ∈M π(B) for B ⊆ A and the term “independence” means that there always 
exists some π ∈ M that attains at the same time π(X ≥ c) = P (X ≥ c) and π(Y ≥ c) = P (Y ≥ c).

Note that the characterization of stochastic dominance via the probability of the events of the form X ≥ c (and Y ≥ c) 
becomes far more complicated when dealing with a relation R1 that is only partial. In this case one has to consider the 
probabilities of all events of the form X ∈ U (and Y ∈ U ), where U is an arbitrary upset,6 and the number of upsets can 
become extremely large such that explicitly checking all upsets becomes intractable. (But note that for the case of a precise 
probability, checking all upsets can be done by using linear programming techniques described in [50].)

It should be further mentioned that in [42, Section 3] and in [43, Section 3] the authors introduce six binary relations 
�1, . . . , �6 relying on a quite similar idea as the relations in Rp , however, in a slightly different context. Here, the authors 
explore six ways of extending a binary relation � between random variables to binary relations �1, . . . , �6 between sets of 
random variables that are based on the same construction principle as the ones collected in the set Rp (i.e. considering all 
variants of placing the ∃ and the ∀ quantifier). The authors then propose to apply these relations for decision making with 
acts attaining uncertain rewards: By considering more general acts � : S → 2A \ {∅} yielding set-valued outcomes (i.e. acts 
that are random sets), and their associated sets of random variables S(�) = {X : S → A : X(s) ∈ �(s)}, they propose to prefer 
act �1 before �2 whenever S(�1) �i0 S(�2), where �i0∈ {�1, . . . , �6} is the extension of choice. The main difference to the 
relations proposed in the present paper is that we do not consider acts with uncertain reward, but certain rewards with 
uncertain utility assignment. More precisely, we do exactly know which consequence from A is attained by which act under 
which state of nature, however, we do not know which is the concrete utility assignment. Consequently, we find ourselves in 
a more structured setting than the authors in [42,43] and we would ignore information by solely considering the relations 
�1, . . . , �6.

Furthermore, in [42, Section 5] the authors propose two binary relation �M
s and �M

w between acts if the uncertainty 
on the states is characterized by a credal set M. Here, they first assume a family (�π )π∈M of relations on the states each 
representing the ordering of the acts given π was the true distribution and, afterwards, define act X to be preferable to 
act Y , that is (X, Y ) ∈�M

s or (X, Y ) ∈�M
w , if it holds that (X, Y ) ∈�π for all π ∈ M or it holds that (X, Y ) ∈�π for some 

π ∈ M, respectively. Here, there are some close connections to the relations from the set Rp : If we assume a preference 
system A = [A, R1, R2] with a complete ordinal relation R1 and an empty cardinal relation R2 and we additionally choose 
�π to be defined as first order stochastic dominance with respect to π for every π ∈ M, then it holds that (X, Y ) ∈ R∀∀ if 
and only if (X, Y ) ∈�M

s as well as (X, Y ) ∈ R2∃∀ if and only if (X, Y ) ∈�M
w .

Finally, note that the relation R∀∀ is also discussed in [9, Section 2]: If one considers the concept of t-admissibility 
proposed in that paper for the special case that t = 0 and one additionally assumes the sets V and P from [9] to consist of 
exactly those utility and probability sentences that characterize the sets UA and M respectively, then the set of t-admissible 
acts coincides with the set of acts that are locally admissible with respect to R∀∀ in the sense of Definition 8. However, 
in general, it will not always be possible to describe the utility constraints induced by the relation R2 and the probability 
constraints induced by the credal set M by one of the three types of utility and probability sentences that are considered 
in that paper. Of course, these constraints could straightforwardly incorporated in the framework developed in the paper by 
allowing for larger classes of such sentences, since they are still linear in the corresponding values.

Clearly, the set of locally R∀∀-admissible acts coincides with the set of A|M-dominant acts. Thus, part i) of Proposition 5
can also be used for checking whether an act X is A|M-dominant by solving the problems (LOt)t=1,...,T for every pair 
((X, Y ))Y ∈G , where G ⊆ F(A,M,S) once again denotes a finite set of available concurring acts. This is a unique feature 
offered by R∀∀: In general, the other global concepts of admissibility from Definition 4.3 cannot be expressed as induced by 
one of the local criteria from Definition 4.4 (for the special case of a cardinal u this is discussed and shown in [48]).

5. A real world toy example

In this section, we apply certain aspects of the proposed framework for decision making under uncertainty by computing 
selected decision criteria for a prototypical toy example. Particularly, we thereby demonstrate, firstly, that our framework 
is computationally feasible and, secondly, show a class of situations in which ps-valued acts naturally appear in practical 
applications, namely situations where the orderings R1 and R2 arise from the fact that the acts map into some bivariate 
product space with one cardinal and one (potentially partial) ordinal dimension.

5.1. Setup of the example

The example reads as follows: Suppose the agent under consideration is currently looking for a new job. As she has 
very high qualification in her field, she immediately receives three different job offers, say J1, J2 and J3, each of which 

6 A set U ⊆ A is called an upset if ∀x, y ∈ A : x ∈ U & y ≥ x =⇒ y ∈ U .
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appears to be of high interest for her at first sight. In order to come to a decision between the different job offers, she 
decides to address the situation systematically by comparing the jobs with respect to the offered monthly salary after tax 
and the offered additional benefits. She specifies the additional benefits collected in X = {b1, . . . , b5} to be important for 
her, where

b1 b2 b3 b4 b5

overtime premium child care advanced training promotion prospects flexible hours

Under the assumption that the different additional benefits are incomparable for our agent, the situation just described very 
naturally induces the following preference system A′ = [A′, R ′

1, R
′
2], where A′ = R+ × 2X is the set of possible decision out-

comes (each of which consists of a potential salary offer and a set of additional benefits), the relation R ′
1 ⊆ A′ × A′ is the 

component-wise ordering given by

R ′
1 = {((y1, B1), (y2, B2)) : y1 ≥ y2 ∧ B1 ⊇ B2} (10)

and the relation R ′
2 ⊆ R ′

1 × R ′
1 partially specifying the strength of preferences is given by

R ′
2 =

{
(((y1, B1), (y2, B2)), ((y3, B3), (y4, B4))) : y1 − y2 ≥ y3 − y4 ∧ B1 ⊇ B3 ⊇ B4 ⊇ B2

}
(11)

The relation R ′
1 is interpretable in a pretty straightforward manner: An element (y1, B1) of A′ is preferred to another 

element (y2, B2), whenever it is preferable in terms of salary, i.e. y1 ≥ y2 and offers a super-set of additional benefits, 
i.e. B1 ⊇ B2. Otherwise, the elements are incomparable with respect to R ′

1. Moreover, also the relation R ′
2 possesses a 

very natural interpretation: Whenever, for elements ((y1, B1), (y2, B2)), ((y3, B3), (y4, B4)) ∈ R ′
1, it is clear that exchanging 

B2 by B1 is preferable to exchanging B4 by B3 since it holds that B1 ⊇ B3 ⊇ B4 ⊇ B2, one can compare the exchanges 
of elements from A by simply checking whether the difference y1 − y2 is greater than the difference y3 − y4 in the 
salaries.

Finally, the agent specifies a set S = {s1, . . . , s4} of four different economic scenarios which might affect the offers of the 
companies in different ways (for example, here, {s4} might be some event having very negative influence on the stock price 
of the company offering job J1, whereas {s1} might be an event causing the opposite). Particularly, the agent can specify 
the following decision system describing her situation:

s1 s2 s3 s4

J1 (5000,X )︸ ︷︷ ︸
=:a1

(2700, {b1,b2})︸ ︷︷ ︸
=:a2

(2300, {b1,b2,b3})︸ ︷︷ ︸
=:a3

(1000,∅)︸ ︷︷ ︸
=:a4

J2 (3500, {b1,b5})︸ ︷︷ ︸
=:a5

(2400, {b1,b2})︸ ︷︷ ︸
=:a6

(1700, {b1,b2})︸ ︷︷ ︸
=:a7

(2500, {b1})︸ ︷︷ ︸
=:a8

J3 (3000, {b1,b2,b3})︸ ︷︷ ︸
=:a9

(1000, {b1})︸ ︷︷ ︸
=:a10

(2000, {b1})︸ ︷︷ ︸
=:a11

(3000, {b1,b4,b5})︸ ︷︷ ︸
=:a12

Once having set up the decision system, the agent can also determine the relevant preference system A = [A, R1, R2] by 
setting A := {a1, . . . , a12}, R1 := R ′

1 ∩ (A × A) and R2 := R ′
2 ∩ (R1 × R1), i.e. by restricting all sets contained in the triplet 

A′ to the relevant ones. The Hasse graph of the order R1 (which is clearly anti-symmetric here, since all elements of 
A are distinct) then can be visualized as in Fig. 4. Note that R2 is not anti-symmetric, since for instance it holds that 
((a3, a7), (a9, a6)) ∈ I R2 while (a3, a7) �= (a9, a6) and therefore distinct equivalent elements with respect to R2 exist.

5.2. Checking consistency and applying the decision criteria

First, we want to check whether the preference system A = [A, R1, R2] of the considered agent is consistent in the sense 
of Definition 2. Therefore, we apply the algorithm described in Proposition 1, whose objective function translates as

ε = 〈(0, . . . ,0,1)′, (u1, . . . , u12, ε)′〉 −→ max
(u1,...,u12,ε)∈R13

(12)

and whose constraints are determined by the relations R1 and R2 from the preference system under considera-
tion as described in Proposition 1. For example, since (a9, a2) ∈ P R1 , we add the constraint u2 + ε ≤ u9 and, since 
((a7, a10), (a8, a11)) ∈ P R2 (the edges (a7, a10) and (a8, a11) are indicated with ♠ and ♣ in the figure), we add the con-
straint u8 − u11 + ε ≤ u7 − u10. Solving the resulting linear programming problem (12) gives an optimal objective of 
0.037. Hence, according to Proposition 1, the preference system A is consistent. An optimal solution to the problem is 
given by (u∗

1, . . . , u
∗
12, ε

∗) ≈ (1, 0.4, 0.370, 0, 0.629, 0.370, 0.2, 0.370, 0.518, 0.037, 0.259, 0.5, 0.037), which induces an ele-
ment u∗ ∈ UA by setting u∗(ai) := u∗

i for i = 1, . . . , 12.
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Fig. 4. Hasse graph of the relation R1 of the example. The symbols ♠ and ♣ mark examples of elements of R1 × R1 that are comparable with respect to 
the strict relation P R2 .

Now, suppose our agent collects some more information that allows her to order the different economic scenarios 
s1, . . . , s4 by their probability to occur, i.e. by an ordinal probability specified by the credal set M = {π : π({s1}) ≥ π({s2}) ≥
π({s3}) ≥ π({s4})}. In this situation, the set of extreme point of M possesses exactly four elements and is given by 
E(M) = {π(1), . . . , π(4)}, where we have π(t)({s j}) = 1{1,...,t}( j) · 1

t for j, t ∈ {1, 2, 3, 4} (cf., [29, p. 26] or [38, Proposition 5 
and Algorithm 1]).

Then, we want to check which of the jobs J1, J2, J3 are A-admissible in the sense of Definition 7, part ii). The linear 
optimization problem described in Proposition 4, for instance applied for job J1, then possesses the same objective function 
as the program for checking consistency, namely (12). Moreover, it also includes all the constraints of problem (12), however, 
additionally involves the constraints (as described in Proposition 4)

(C1) u1 ≥ u5

u1 ≥ u9

(C2)
1
2 (u1 + u2) ≥ 1

2 (u5 + u6)

1
2 (u1 + u2) ≥ 1

2 (u9 + u10)

(C3)
1
3 (u1 + u2 + u3) ≥ 1

3 (u5 + u6 + u7)

1
3 (u1 + u2 + u3) ≥ 1

3 (u9 + u10 + u11)

(C4)
1
4 (u1 + u2 + u3 + u4) ≥ 1

4 (u5 + u6 + u7 + u8)

1
4 (u1 + u2 + u3 + u4) ≥ 1

4 (u9 + u10 + u11 + u12)

that are due to the information about the uncertainty that is given by the credal set M (where Ci , for i = 1, . . . , 4, here 
describes the constraint induced by the ith extreme point). Again, solving the resulting linear programming problem gives 
an optimal objective of 0.037 and, again, an optimal solution to the problem is given by (u∗

1, . . . , u
∗
12, ε

∗) from above. 
However, the interpretation of the optimal solution is quite different: If we define u∗ ∈ UA as above, then job J1 maximizes 
expected utility with respect to (u∗, π) for every π ∈ M compatible with the agent’s probabilistic information. In contrast, 
solving the same linear programming problem from Proposition 4 for the jobs J2 and J3 gives an optimal objective of 0
each time indicating that both jobs are not A-admissible. According to A-admissibility, therefore, our agent should decide 
for job J1.
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Fig. 5. Generalized expectation intervals of the different jobs along increasing value of granularity.

Next, we want to compute the generalized interval expectations from Definition 5 of choosing one of the three jobs under 
consideration along varying granularity value δ = 0, 0.01, 0.02, 0.03.7 According to Proposition 3, for job Jk (k = 1, 2, 3) and 
fixed value of the granularity parameter δ, this makes necessary solving the optimization problems

12∑
i=1

ui · π(t)( J−1
k ({ai})) −→ min

(u1,...,u12)∈R12
/ max

(u1,...,u12)∈R12
(13)

for t = 1, . . . , 4, with constraints as described in Proposition 1, with the difference that ε here is not one of the variables, 
but is set to δ. Thus, eight linear programs have to be solved for each choice of job Jk and δ and the generalized expectation 
interval can be computed as described in the proposition (i.e. by taking for each job the minimum of the minima as lower 
bound and the maximum of the maxima as upper bound). Solving the corresponding optimization problems gives the 
following results:

δ = 0 δ = 0.01 δ = 0.02 δ = 0.03
EDδ

( J1) [0.25, 1] [0.305, 1] [0.36, 1] [0.415, 1]

EDδ
( J2) [0, 1] [0.1075, 0.9] [0.215, 0.8] [0.3225, 0.7]

EDδ
( J3) [0, 1] [0.073̄, 0.9] [0.146̄, 0.8] [0.22, 0.7]

Since both lower and upper bound of the interval of J1 are greater than the respective bounds of the intervals of J2 and 
J3 (independent of which granularity value is chosen), job J1 is also optimal with respect to all criteria introduced in 
Definition 6. The generalized expectation intervals of the different jobs along increasing value of granularity are visualized 
in Fig. 5.

Finally, we apply Proposition 5 in order to investigate how the different job offers J1, J2 and J3 relate to each other 
with respect to the relations R∃∃ and R∀∀ . The results are summarized in the following table:

( J1, J2) ( J1, J3) ( J2, J1) ( J2, J3) ( J3, J1) ( J3, J2)

R∃∃ ∈ ∈ ∈ ∈ ∈ ∈
R∀∀ /∈ /∈ /∈ /∈ /∈ /∈

As discussed in the second paragraph after the proof of Proposition 5, from the fact that ( J1, J2) /∈ R∀∀ one can also conclude 
that job J1 is not A|M-dominant in the sense of Definition 7.

Concluding the example, we have seen that the agent under consideration should most likely decide for job J1, since it 
is the only offer which is A-admissible in the sense of Definition 7. Moreover, J1 is the unique optimal offer with respect to 
the criteria based on generalized expectation intervals as introduced in Definition 6. In contrast, when preferring pairwise 
comparison of the different job offers with respect to the binary relations R∃∃ and R∀∀ , no clear decision can be made: 
While every job offer J i dominates any other job offer J j , where i, j ∈ {1, 2, 3}, with respect to R∃∃ , none of the job offers 
are comparable with respect to R∀∀ .

7 Note that, since the optimal objective value of program (12) equals 0.037, it makes no sense to consider values of δ any greater than that.
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6. Summary and outlook

In this paper, we proposed three approaches for decision making under severe uncertainty if the acts under consid-
eration take values in some preference system, i.e. can be understood as partial cardinal and partial ordinal valued. Our 
first approach is based on comparing granularity-dependent expectation intervals. Specifically, we proposed three decision 
criteria based on these intervals that are direct generalizations of the decision criteria known from the theory of imprecise 
probabilities. The other two approaches for decision making discussed in the paper rely on local and global comparisons of 
specific compatible expectations of the considered acts, respectively: For the former approach one searches for compatible 
pairs (u, π) of utility and probability representations with respect to which the act X of interest simultaneously dominates 
all the other available acts Y ∈ G in expectation. For the latter approach, it suffices if for each other available act Y ∈ G
there exists a pair (uY , πY ) such that X dominates Y with respect to this specific pair. At several points, we discussed 
how special cases of our criteria relate to concepts from the classical theory like for instance stochastic dominance or the 
criteria from decision theory using imprecise probabilities. For certain decision criteria proposed in the paper, we moreover 
provided linear programming algorithms to evaluate them. Finally, we illustrated a class of situations where our framework 
appears natural by means of a prototypical toy examples.

There are, of course, several challenges that could be addressed in future research. Clearly, further algorithms for evaluat-
ing the remaining criteria that were proposed in the paper need to be explored in order to make the theory computationally 
more tractable and, therefore, applicable in practice (compare, in particular, the discussion directly following the proof of 
Proposition 6 of Section 4.4). Further, it is certainly worth investigating in more detail how the criteria from the different 
approaches relate to each other and what can be learned about them by considering special cases of imprecise probabilistic 
models. Finally, designing experimental settings for eliciting the parameter δ could help to receive a more canonical inter-
pretation of granularity (compare, in particular, the discussions directly following Definition 3 of Section 3 as well as the 
discussions at the end of Section 4.2).
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Reflecting Group Homogeneity
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Abstract

Groups differ in the homogeneity of their members’ preferences. Reflecting this, we propose a
probabilistic criterion for evaluating and comparing the adequateness of preference aggregation
procedures that takes into account information on the considered group’s homogeneity structure.
Further, we discuss two approaches for approximating our criterion if information is only imper-
fectly given and show how to estimate these approximations from data. As a preparation, we
elaborate some general minimal requirements for measuring homogeneity and discuss a specific
proposal for a homogeneity measure. Finally, we investigate our framework by comparing aggre-
gation rules in a simulation study.

Keywords: Aggregation procedure, preference profile, voting theory, imprecise probabilities,
maximum entropy, homogeneity measure, group decision making. JEL classification: C1, C6

1. Introduction

One of the fundamental tasks in social choice theory is to define adequately justified rules for
aggregating the preferences of a group of individuals into one global consensus order. Due to the
generality of this problem, it is hardly surprising that many different rules have been proposed
since the pioneering works by de Borda (1781); de Condorcet (1785); Hare (1857) (see Brams and
Fishburn (2002) for a survey). More generally, the question of aggregating collections of binary
relations in a meaningful way does not exclusively concern social choice theory, but also appears
in classification problems in statistics (see, e.g., Maniqueta and Mongin (2016)), benchmarking of
algorithms in the computer sciences (see, e.g., Mersmann et al. (2015)) or problems of judgment
aggregation in philosophy (see, e.g., Hartmann and Sprenger (2012)) to name only a few examples.

Given the diversity of aggregation rules, criteria for evaluating and comparing their quality need
to be established. Many different criteria have been proposed, and comparisons of aggregation rules
with respect to them have been studied intensively (see, e.g., Grofman and Feld (2004)). However,
almost all these criteria are non-group-specific: They are intended to be valid independently of the
group whose members’ preferences are to be aggregated. But what is a perfectly adequate aggre-
gation procedure for one group may not be as appropriate for another one. The adequateness of
an aggregation procedure may, beyond compatibility with non-group-specific criteria, additionally
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depend on certain characteristics of the specific group under consideration. One such characteris-
tic is the homogeneity of the group members (see Section 2.2 for a discussion of the literature on
homogeneity). In this paper we propose a group-specific quality criterion for aggregation rules that
takes into account information on the homogeneity of group members’ preference structure. More-
over, we show different ways to approximate our criterion under partial probabilistic information
and discuss how to estimate these approximations in the presence of data or expert knowledge.

More precisely, the paper is structured as follows: In Section 2, we discuss measures for quan-
tifying the homogeneity of a group that is represented by a fixed profile (R1, . . . , Rn) of strict
weak orders. Specifically, in Section 2.3, we elaborate a list of three minimal requirements that
every reasonable measure should satisfy. In Section 2.4, we then propose a concrete measure, the
maximum consensus homogeneity, and discuss why it is reasonable beyond its mere compatibility
with these minimal requirements. Section 3, after reviewing some basics on Bayesian theory in
Section 3.1, introduces a framework for evaluating and comparing aggregation procedures in the
presence of probabilistic information on the considered group. This involves three steps: In Sec-
tion 3.2, we introduce an optimality criterion that requires perfect knowledge of the probabilities
with respect to which the group constitutes different profiles (R1, . . . , Rn). Section 3.3 discusses
approaches for approximating this criterion if the probabilistic information on the group is partial
in the sense that only the probability distribution of some homogeneity measure is given. Finally,
Section 3.4 discusses several statistical approaches for estimating this distribution in the presence
of data, expert knowledge, or both. Section 4 starts by briefly reviewing some common aggre-
gation procedures relevant to our context (Section 4.1). Afterwards, Section 4.2 summarizes an
aggregation procedure recently proposed in Schollmeyer (2017).1 In Section 5, we investigate the
aggregation procedures reviewed, in respect to our criterion in a simulation study. Section 6 is
reserved for concluding remarks as well as an outlook on future research questions.

2. Measuring Homogeneity of Preference Profiles

We begin the section by introducing our notation and terminology (Section 2.1) and surveying
some related work on the topic (Section 2.2). Subsequently, we establish and discuss a weak set of
conditions (Section 2.3) as well as a concrete proposal (Section 2.4) for measuring the homogeneity
of a fixed collection (R1, . . . , Rn) of strict weak orders each of which representing the opinion of a
member of a group of size n.

2.1. Notation and Terminology

Throughout the paper, C denotes a finite set of at least two consequences. The elements of
C have to be ranked by the members of a specific group Gn of fixed size n ≥ 2, where certain
requirements of rationality regarding the individual orders involved are imposed. Specifically, we
work with the following spaces of binary relations on C:

R := {R ⊂ C2 : R asymmetric, negatively transitive} (1)

Q := {Q ⊂ C2 : Q asymmetric} (2)

In the sequel, every R ∈ R is termed a strict weak order on C. For every R ∈ R, define the usual
equivalence relation ∼R on C by setting a ∼R b if and only if (a, b) /∈ R ∧ (b, a) /∈ R. Given this,

1For an explanation of the procedure and a discussion see Section 4.2.
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interpret (a, b) ∈ R as a is strictly preferred to b and (a, b) ∈∼R as indifference between a and b.
The elements of R are associated with the individual orders of the group members. Hence, the
group members are assumed to have asymmetric and negatively transitive preferences. Importantly,
note that our model of the individual preferences excludes incomparability of consequences: For
alternatives a, b ∈ C chosen arbitrarily, every group member is thus assumed to be able to decide if
she strictly prefers a to b, or b to a, or if she ranks them equally desirable. Thus, we explicitly assume
that incomparability with respect to R ∈ R is interpreted as indifference (see, e.g., Kreps (1988,
Chapter 2) for a discussion of this convention).2 For n ≥ 2, an element R := (R1, . . . , Rn) ∈ Rn is
called a preference profile on C and each component of R is interpreted as the opinion of a member
of Gn about how the consequences in C should be ranked.

Contrarily, every element Q ∈ Q is called a consensus order (or group preference). Except for
asymmetry, we do not impose any further restrictions on the consensus order. This allows for also
investigating aggregation procedures for which the group preference is not always as well-behaved
as the individual orders (this includes, e.g., Condorcet’s method, see Section 4.1, which might yield
intransitive consensus orders). In this context, every mapping S : Rn → Q is called a preference
aggregation function. Particularly, for every preference profile R ∈ Rn, the image S(R) ∈ Q is the
consensus order of the group represented by R with respect to the aggregation procedure described
by S.

2.2. Preference Homogeneity in Related Work

In literature on social choice theory at least two different lines of how to establish a notion
of homogeneity of groups can be identified. One line (see, e.g., Niemi (1969); Jamison and Luce
(1972); Berg (1985); Gehrlein and Lepelley (2010); Lepelley and Valognes (2003)), which could
be called “model-based”, builds up stochastic models that govern the constitution of profiles and
have specific parameters implicitly regulating the group’s homogeneity. One prominent exam-
ple is the multivariate Pólya-Eggenberger urn model (see, e.g., Johnson and Kotz (1977)), which
has been used for instance in Berg (1985); Gehrlein and Lepelley (2010); Lepelley and Valognes
(2003) in order to analyze the relationship between group homogeneity and the probability of the
voting paradox or the manipulability of different aggregation functions. The Pólya-Eggenberger
model contains two other well-established models as special cases: impartial culture and impartial
anonymous culture, which are also often presumed in studies of the voting paradox and the manip-
ulability of aggregation procedures (see, e.g., Aleskerov et al. (2012); Diss et al. (2012); Pritchard
and Slinko (2006)). Other model-based approaches, in which the orders in the profile are assumed
to be randomly drawn with replacement, measure the homogeneity of the generating process by
the probabilities pi (i = 1, . . . , |C|!) with respect to which the order Ri is drawn: Natural measures
of homogeneity are then the variance of the pis used for instance in Abrams (1976) or the Herfind-

ahl index
∑|C|!

i=1 p
2
i used, for instance, in Gehrlein (1981). Measures that only rely on the values

of the pi’s and not on the concrete associated orders Ri are called non-profile specific measures
(see Gehrlein (1981)). Since they are related to the probabilities pi, they are also called population
specific homogeneity measures in Gehrlein and Lepelley (2010, p. 191).

2An alternative approach would be to directly model the individual preferences by weak orders, i.e. complete and
transitive binary relations P ⊂ C2. To every such relation we then can associate its strict part RP ⊂ C2 by setting
(a, b) ∈ RP if and only if (a, b) ∈ P ∧ (b, a) /∈ P for all a, b ∈ C. The relation RP is then asymmetric and negatively
transitive. Our model thus explicitly assumes that the individual orders R ∈ R arise as strict parts of a weak order.
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A second line of establishing a notion of homogeneity, which can be called “data-based”, relates
homogeneity not to a probabilistic model but to the actually observed data in a profile. For
example, in the above approaches, one can replace the probability pi of observing the order Ri
in a profile with the relative frequency of the associated order in the actually observed profile.
Then one arrives at a notion of homogeneity that is no related to a generating process, but instead
related to the observed profile. Such measures are called situation specific homogeneity measures
in Gehrlein and Lepelley (2010, p. 192). A further type of such data-based measures are distance-
based measures, which additionally utilize the information in the orders of the profile. These
measures, arising not only in social choice theory but also in statistics and computer sciences (see,
e.g., Fligner and Verducci (1986); Dwork et al. (2001)), rather rely on a geometric understanding
and first introduce a distance between pairs of orders. Based on this distance, one defines a measure
of heterogeneity by computing the average distance of all pairs of orders in the profile. Homogeneity
of the profile is then measured by comparing the maximal distance to this average distance. This
type of measures is local in the sense that not the whole group is examined simultaneously, as only
pairs are considered. Another data-based measure of homogeneity, especially used in social choice
theory (see, e.g., Fishburn (1973)), is the W coefficient introduced in Kendall and Smith (1939).
This measure intends to analyze the whole population simultaneously by looking at the variance of
the vector of the summarized ranks of each consequence. However, note that also this measure, as
shown by Kendall and Smith (1939), could be alternatively represented as the average Spearman
correlation coefficient of pairs of rank-vectors and is thus also local in the above sense.

Beyond concrete proposals for data-based homogeneity measures, axiomatic approaches have
also been studied (see, e.g., Bosch (2006); Alcalde-Unzu and Vorsatz (2013)). Here, the terms con-
sensus and cohesiveness are used instead of homogeneity. For the concept of polarization, a concept
very similar, but not identical to the concept of heterogeneity,3 an axiomatic characterization of a
measure of polarization of profiles is given in Can et al. (2015).

2.3. Minimal Requirements for Measuring Homogeneity

Before introducing a concrete non-local and profile-specific homogeneity measure in the next
section, we first set out to agree on some minimal requirements that, in our eyes, every reasonable
candidate for such a measure should necessarily satisfy. We list these requirements in the following
definition. Afterwards, a discussion of each is given.

Definition 1. A preference homogeneity measure (for a group of size n) is a map An : Rn → [0, 1]
satisfying the following three properties:

(S1) Consensus sensitivity: An(R) = 1 if and only if R = (R∗, . . . , R∗) for some R∗ ∈ R.

(S2) Anonymity: Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map. Then An(R1, . . . , Rn) =
An(Rφ(1), . . . , Rφ(n)) for all (R1, . . . , Rn) ∈ Rn.

(S3) Majority strengthening: Let R ∈ Rn. Define k(j) := {i : Ri = Rj}. If there exists
j0 ∈ {1, . . . , n} such that n > |k(j0)| ≥ bn2 c, choose j1 ∈ {1, . . . , n} \ k(j0) and define

3While the notion of heterogeneity refers here to the diversity of the orders in the profile, polarization means that
the orders in the profile are clustered in two or more “opposite” subgroups. A clear cut rigorous disambiguation
between polarization and heterogeneity for the case of preference profiles is, as far as the authors are aware, not yet
established. For a more elaborate disambiguation between polarization and heterogeneity/inequality in the context
of, for instance, poverty measurement, see, e.g., Esteban and Ray (1994); Duclos et al. (2004).
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φ : {1, . . . , n} → {1, . . . , n} by φ(j) = j0, if j ∈ k(j0)∪ {j1} and φ(j) = j else. Then we have
An(R1, . . . , Rn) ≤ An(Rφ(1), . . . , Rφ(n)).

So, why is it reasonable to require (S1), (S2), and (S3) as a minimal basis for measuring homo-
geneity of preference profiles? Consensus sensitivity states that every measure should be capable
of identifying perfect consensus by attaining its maximal value 1 if and only if all group members
share identical preferences. This is certainly reasonable since it reflects the fact that we know
exactly that the identical profiles are ideal and superior to the non-identical ones with respect to
homogeneity. This knowledge should not get lost by the construction of the measure. Anonymity
ensures that the homogeneity value of a profile does not depend on the order in which the individ-
uals state their preferences, as no individual has greater influence. Finally, majority strengthening
can be interpreted as a weak demand for monotonicity: If a subgroup consisting of at least bn2 c
group members shares identical preferences and one member from outside this subgroup changes
her mind towards this subgroup, then the homogeneity value of the modified profile should not
decrease.

Clearly, all three conditions rely solely on the categorical and not the ordinal scale of mea-
surement of the orders in the profile, i.e. one conceptually only distinguishes between equal and
non-equal orders and does not make use of for example a notion of how similar different orders
are by e.g. counting edges that two different orders have in common. Of course, one could also
establish a notion of (S3) that uses the ordinal structure by stating for instance that if one order
R in the profile is changed towards another order R′ that is more similar to the order of the ma-
jority, then the homogeneity should not decrease. However, this would require a notion of what
the terms “majority” and “more similar order” then exactly mean. Note further that adequately
axiomatizing more subtle aspects like the difference between heterogeneity and polarization seems
to be not possible if one only relies on the categorical scale of measurement of the orders in the
profile. In this sense, the conditions (S1), (S2), and (S3) should indeed be understood as minimal
requirements for a notion of homogeneity that leaves much space for content matter considerations
in the final choice of the measure.4

2.4. The Maximum Consensus Homogeneity

We now introduce a specific homogeneity measure, the so-called maximum consensus homogene-
ity, show that this measure satisfies the minimal requirements given in Definition 1, and discuss
why it is a reasonable choice for our purposes beyond its mere compatibility with the minimal
requirements. The basic idea of the measure is to compare, for each pair (a, b) separately, the max-
imal number of coinciding opinions about that pair in the profile to the maximal possible number
n.5

Some additional notation is needed: Let n ≥ 2 and let R0 ∈ R with ∼R0= {(c, c) : c ∈ C} be
fixed, such that R0 always contains exactly one of the pairs (a, b) or (b, a) for all distinct a, b,∈ C.
For a fixed preference profile R ∈ Rn and a fixed pair of distinct consequences (a, b) ∈ C2, we define
the expressions cR(a, b) := |{i : (a, b) ∈ Ri}| and eR(a, b) := |{i : (a, b) ∈∼Ri}| to be, respectively,
the number of individuals in R that prefer a to b and the number of individuals that are indifferent
between these options.

4An (in parts) similar axiomatization, however stronger, is given in Alcalde-Unzu and Vorsatz (2013) in the
context of measuring cohesiveness of preferences profiles.

5A similar measure is introduced in Can et al. (2015): There, the authors first list a set of axioms for measures
of polarization that uniquely characterize a measure that is closely related to the one used in this work.
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Definition 2. The mapping δn : Rn → [0, 1] defined by

δn(R) :=

∑
(a,b)∈R0

max
{
cR(a, b), cR(b, a), eR(a, b)

}

n ·
(|C|

2

) (3)

for all R ∈ Rn is called maximum consensus homogeneity.

Importantly, note that the definition of δn does not depend on the choice of R0 ∈ R with the desired
properties (see Appendix A1). As a first step in our discussion of the proposed maximum consensus
measure δn, we show that it does indeed satisfy the conditions (S1), (S2), and (S3). Therefore,
we consider it compatible with the minimal requirements a measure of homogeneity should satisfy.
This is the assertion made in the following proposition. The proof consists in straightforwardly
verifying (S1), (S2), and (S3) from Definition 1 and is given in Appendix A1.

Proposition 1. The maximum consensus homogeneity δn satisfies (S1), (S2), and (S3).

So, why is the maximum consensus measure δn a reasonable candidate for measuring homogeneity
and what makes it preferable to the measures discussed in Section 2.2 for our purposes? First,
δn utilizes the information encoded in the orders collected in the inserted profiles and does not
solely rely on the shares pi of identical orders. Accordingly, δn is profile-specific (in contrast to,
e.g., Herfidahl’s index). This certainly is a desirable property, since any measure of homogeneity
should be capable of distinguishing between profiles of very similar yet not identical orders and
profiles of completely opposed orders. Second, δn is not a local measure in the sense of being
only based on pairwise comparisons of individual orders (see the discussion in Section 2.2): For
computing the value δn(R) the whole profile needs to be examined simultaneously. This is a
very desirable property conceptually, since group homogeneity should depend on the group as a
whole rather than on comparisons of pairs of individuals only. Note that, in addition to this
argument, distance-based homogeneity measures also satisfy the minimal conditions (S1) to (S3)
from Definition 1.6 Finally, note that the classical measure W of Kendall and Smith mentioned in
Section 2.2 does not satisfy majority strengthening: For a counterexample, take C = {a, b, c, d, e}
and consider the profiles R = (R1, R1, R1, R2, R3) and R′ = (R1, R1, R1, R1, R3) where relation R1

ranks a b c d e, relation R2 ranks a b c e d and relation R3 ranks e b c a d. Clearly, the majority
strengthening condition (S3) requires assigning higher homogeneity to the profile R

′
, but simple

calculations yield W (R′) = 0.584 < 0.592 = W (R).

3. A Probabilistic Evaluation Framework for Preference Aggregation Functions

Section 3.1 recalls required concepts from Bayesian statistics (see, e.g., Berger (1980); Gelman
et al. (2004) for monographs). Subsequently, based on the concept of preference homogeneity mea-
sures from the previous section, we propose a probabilistic criterion for evaluating the adequateness
of a preference aggregation function S for a fixed group Gn of size n. Specifically, this will involve
three steps: Firstly, in Section 3.2, we introduce a theoretical criterion mu

Gn
(S) that measures the

expected similarity that S yields given the true probability measure PGn with respect to which
the group constitutes different profiles R ∈ Rn. Secondly, reflecting the fact that in reality the

6A formal justification of the non-locality and a discussion of distance-based homogeneity measures in the light
of Definition 1 are given in Appendix 3.
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measure PGn will typically be unknown, Section 3.3 shows how to construct approximations for it
if only the distribution of some homogeneity measure is available instead. Finally, in Section 3.4,
we discuss different methods for estimating the distribution of a homogeneity measure.

3.1. Required Concepts of Bayesian Statistics

Roughly stated, Bayesian theory addresses two fundamental questions: (Q1) How to model an
agent’s beliefs in the light of uncertainty and (Q2) How to update the model once new information
is gained. In classical Bayesian theory as pioneered by de Finetti’s concept of subjective probability
(see, in particular, de Finetti (1974)), Question (Q1) is addressed by the assumption that an agent’s
beliefs/information about any uncertain phenomenon (independent of whether that phenomenon
is random or not) can be perfectly characterized by a unique subjective probability measure π on
the space of potential outcomes of the phenomenon. All reasoning should then be based on this
unique probability measure π.

However, apart from classic Bayesian theory, this uniqueness is often strongly doubted for being
too demanding in regard to the consistency of the agent’s beliefs. Instead, beliefs are assumed
to be only partial in that they specify a whole set M of probability measures compatible with
them. Then, two main approaches are followed: The first one establishes criteria for choosing
one particular distribution from the set M and, subsequently, bases all further analyses on the
chosen representative. The most common choice for such a criterion is Jayne’s maximum entropy
principle (see Jaynes (1957)): Among all measures compatible with the beliefs, choose the one
that is least informative and thus best captures the complete ignorance among the compatible
measures (see Rosenkrantz (1977, Section 3.5)). Particularly, the informativeness of a distribution
used in the definition of the principle is measured by means of Shannon’s entropy (see Shannon
(1949)). For a more recent justification of the maximum entropy principle see, e.g., Landes and
Williamson (2013). The second approach treats the set M of all compatible distributions, also
called credal set7 in this context, as an entity of its own: The agent’s beliefs are represented by
all members of M, not just by one single representative. Clearly, an argument supporting this
approach is that it avoids any selection: Even a well-justified criterion might select a rather bad
representative in certain situations and therefore could yield misleading reasoning. Contrarily,
reasoning based solely on the credal set obviously produces less informative results. For a detailed
discussion of the advantages and disadvantages of the two directions and a decision-theoretical
justification of maximum entropy see Walley (1991, Section 5.12). From a practical point of view,
it often makes sense to consider both approaches simultaneously: Use a well-established selection
criterion (such as maximum entropy) and analyze the credibility and robustness of the derived
inferences by additionally considering the set of inferences drawn by the credal set.

Let us turn now to Question (Q2): Suppose (new) information x about the uncertain phe-
nomenon is gained (e.g. in the form of data). The agent then updates the unique8 measure π
describing her beliefs, also called prior distribution in this context, to a posterior measure π|x
according to Bayes’ rule. This posterior measure π|x is then assumed to appropriately express
the updated beliefs about the uncertain phenomenon given the data x. In the specific context

7The name credal set is attributed to Isaac Levi (see Levi (1980)). For the general framework of imprecise
probabilities, working with sets of probabilities or interval-valued assignments, see Walley (1991) and Weichselberger
(2001), or, for a recent introduction, see Augustin et al. (2014).

8For Question (Q2), for the sake of brevity, we restrict presentation to classic Bayesian theory. For discussions
on how to adequately update credal sets in light of new information see, e.g., the discussions in Walley (1991).
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of Bayesian statistics as used here, this translates as follows: Suppose some random variable
X : Ω → X , mapping from a probability space (Ω,A,P) to a measurable space (X , σ(X )), for
which we can specify its distribution up to a parameter θ from a parameter space Θ, i.e. we know
X ∼ Pθ given θ ∈ Θ is the true parameter. Following the ideas of Bayesian theory described above,
we can then describe the uncertainty about the true parameter θ by a random variable V : Ω→ Θ
taking values in the measurable space (Θ, σ(Θ)) with prior distribution π, i.e. V ∼ π, and we know
that Pθ(A) = P(X ∈ A|V = θ) for all θ ∈ Θ and A ∈ σ(X ). After having observed a sample x of
X, one then computes the posterior distribution π|x by setting π|x(B) := P(V ∈ B|X = x) for all
B ∈ σ(Θ) and utilizing Bayes’ rule.

If an estimate for the parameter rather than the posterior measure itself is of interest, popular
choices are to use the expectation, the median or the mode of the posterior distribution. For sake
of computational convenience, so-called conjugate families of distributions are often used: A family
of distributions D1(Ξ) with parameter space Ξ is called conjugate to another family D2(Θ) with
parameter space Θ if, whenever π ∈ D1(Ξ) and X ∼ Pθ ∈ D2(Θ), it holds that π|x ∈ D1(Ξ),
where x is an observation of X. Hence, such models guarantee that the posterior belongs to the
same distribution family as the prior and, therefore, that the posterior as well as its moments can
basically be computed by updating only the parameter of the prior distribution. An example for
such a conjugate model is the Dirichlet-categorical model, which will be used in Section 3.4.

3.2. A Probabilistic Criterion for Evaluating Preference Aggregation Functions

We now turn to the first step of the construction of our criterion. Therefore, for the mo-
ment, we assume the probabilities according to which the members of the group Gn constitute the
different profiles contained in Rn are known. More formally, we consider the measurable space
(Rn, 2Rn) together with a known group-specific probability measure PGn , and we interpret the
value PGn({R}) as the probability that the members of Gn constitute the preference profile R. In
order to utilize the probabilistic information (given by PGn) in the construction of our criterion,
we want to compute the similarity of the individual orders collected in R and the consensus order
S(R) that an aggregation rule S yields in expectation. However, before such a criterion can be
defined, we need to be more precise about what we mean by the similarity of a consensus relation
to a profile of relations. Specifically, we will consider similarity measures of the following kind:

Definition 3. Let u : R+ → R+ be a monotone increasing function and let S : Rn → Q be a
preference aggregation function. The mapping

Y u
S : Rn → R , R 7→

n∑

i=1

u(|Ri ∩ S(R)|) (4)

is called the similarity measure for S with respect to u.

The basic idea underlying a similarity measure in the above sense is to quantify similarity of
pairs of relations R1 and R2 by computing the cardinality of their intersection |R1 ∩ R2| or, in
other words, by counting the edges shared by both relations. An axiomatic justification is given
in Kemeny and Snell (1962), were the authors show that the distance measure d(R1, R2) := |R14
R2| = |(R1 ∪ R2) \ (R1 ∩ R2)| = |R1| + |R2| − 2|R1 ∩ R2| is unique in satisfying four desirable
conditions (including the properties of a metric). Together with the assumption that similarity
of R1 and R2 should be high whenever their uniquely determined distance d(R1, R2) is low and
vice versa, using |R1 ∩R2| = 1

2(|R1|+ |R2| − d(R1, R2)) = 1
2(|C|(|C|+ 1)− d(R1, R2)) is a natural

8
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choice. For a fixed profile R = (R1, . . . , Rn), the idea of a similarity measure Y u
S is then to compute

the pairwise similarity |Ri ∩ S(R)| between every individual order Ri and the group order S(R)
separately and, afterwards, sum up monotone transformations u(|Ri ∩ S(R)|) of these values. The
role of u is to control the influence of high similarity values |Ri0 ∩ S(R)| for certain orders Ri0 on
the global similarity Y u

S (R): If u is chosen to be a convex function, high pairwise similarity values
will have a strong influence on the global similarity, whereas if u is concave, then increasing the
similarity of an inadequately represented group member contributes more to global similarity than
doing the same for a group member that is already appropriately represented.

Once having decided which specific similarity measure Y u
S to use, one can go on to construct a

quality criterion for the aggregation function S: We evaluate S by computing the expectation of
the chosen similarity function with respect to the group specific probability PGn .

Definition 4. Let Gn be a group consisting of n members and let PGn denote its group specific
probability measure on (Rn, 2Rn). For a preference aggregation function S and a monotone in-
creasing function u : R+ → R+ with associated similarity measure Y u

S , we define the value

mu
Gn(S) := EPGn (Y u

S ) =
∑

R∈Rn
Y u
S (R) · PGn({R}) (5)

Then mu
Gn

(S) is called the expected similarity of the aggregation function S with respect to Y u
S .

The criterion mu
Gn

(·) is intended to be applied as follows: Given two aggregation functions S1 and
S2 and a group Gn that agrees to measure similarity by Y u

s , the group should prefer aggregation
rule S1 whenever mu

Gn
(S1) ≥ mu

Gn
(S2), i.e. if S1 yields higher expected similarity than S2.

In practice, this criterion will often not be directly applicable, since PGn cannot be fully speci-
fied. However, in many applications there will be at least some information about the homogeneity
structure of the preferences of the group under investigation. In the following Section 3.3, we
demonstrate how to construct approximations for the true group-specific measure PGn if this infor-
mation is given in the form of the probability distribution of some homogeneity measure An and
how these approximations can be utilized for estimating expected similarity.

3.3. Constructing Approximations for Expected Similarity

This leads us to the second step of our construction: Let An : Rn → [0, 1] denote a fixed
preference homogeneity measure attaining exactly the values k1 < k2 < · · · < kξ ∈ [0, 1]. We
assume that the available information on the homogeneity of Gn can be specified as the probability
distribution of this homogeneity measure An. More formally, we (for the moment) assume to

know α := (α1, . . . , αξ) ∈ ∆ξ−1 := {x ∈ [0, 1]ξ :
∑ξ

i=1 xi = 1} such that PGn(An = kj) = αj for
all j = 1 . . . , ξ. Substantially, this relates to the assumption that, even if the full group-specific
measure PGn is unknown, we still know the probabilities α that the group Gn constitutes a certain
degree of homogeneity, which is characterized by the chosen preference homogeneity measure An.
Given this, our goal is to approximate the true underlying group-specific probability measure PGn
such that the available knowledge on the distribution of An is utilized in the best possible way.

To reach this goal, first note that our assumption naturally characterizes a set of probability
measures on (Rn, 2Rn), namely the credal set Mα of all probability measures that are compatible
with the available information on the distribution of An. Formally, we have

Mα :=
{
π ∈ P(Rn) : π(A−1

n (kj)) = αj for all j = 1, . . . , ξ
}

(6)
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where P(Rn) denotes the set of all probability measures on the space of profiles (Rn, 2Rn). Con-
sequently, any element of Mα is a candidate for the true group specific measure and, therefore,
a plausible candidate for approximating it. As discussed in Section 3.1, (at least) two different
approaches exist for dealing with the ambiguity between the compatible measures in Mα in such
situations: Applying the maximum entropy principle to Mα in order to specify the least infor-
mative measure or directly working with the set Mα as an entity of its own. We contrast both
approaches and the approximations for expected similarity obtained by them in the sequel:

Maximum entropy approach: Given the distribution of An, we know that the probability of the
homogeneity class A−1

n (kj) := {R ∈ Rn : An(R) = kj} equals αj . Contrarily, there is complete
ignorance between all measures fixing the probabilities of these classes. Applying the maximum
entropy principle, we choose the representative among the compatible measures in Mα that max-
imizes Shannon’s entropy and that therefore can be viewed as the least informative one. The
measure satisfying the desired property is induced by the assignment

P∗α({R}) :=
αφ(An(R))

|A−1
n (An(R))|

(7)

for all R ∈ Rn, where φ(kj) := j for j = 1, . . . , ξ. Among all measures fixing the probability values
of the homogeneity classes A−1

n (kj) to αj , the resulting probability P∗α is exactly the one giving
equal probability mass to all profiles belonging to the same class. Therefore, beyond maximizing
entropy, the measure P∗α is also intuitively appealing: Why should two profiles with coinciding
homogeneity value be assumed to have different probability?

Credal set approach: Directly approximating PGn with the credal set Mα protects against
possibly misleading inferences based on an unlucky selection of a representative. Obviously, the
set Mα contains exactly these probability measures that are compatible with the probabilities αj
of the homogeneity classes A−1

n (kj). By construction, we therefore have PGn ∈Mα and P∗α ∈Mα,
i.e. the true measure and the maximum entropy measure are contained in the credal set.

By using the two approaches just described, the expectation in (5) can now straightforwardly
be approximated by replacing the true measure PGn in the expression with the corresponding
approximation P∗α or Mα. Note that for the credal set approach this will lead to a set-valued ap-
proximation, each element of the set representing the expected similarity with respect to a different
distribution from Mα. Formally, this leads to the following two approaches for approximation.

Maximum entropy approximation: Compute the expected similarity with respect to the maxi-
mum entropy measure P∗α. We then arrive at the following real-valued approximation:

mu∗
Gn(S) := EP∗α(Y u

S ) =
∑

R∈Rn
Y u
S (R) · P∗α({R}) (8)

The maximum entropy is represented by a single real number and, therefore, allows for easy compar-
isons of different aggregation functions S1 and S2. However, the maximum entropy approximation
P∗α might differ from the true underlying measure PGn in a way yielding mu∗

Gn
(S1) > mu∗

Gn
(S2) but

mu
Gn

(S2) > mu
Gn

(S1) and, thus, might produce misleading comparisons.

Credal approximation: Compute the expectation with respect to the set Mα, i.e. the interval
ranging from the lowest to the highest expected similarity value compatible with a measure from
Mα. We arrive at the following interval-valued approximation:

Mu
Gn(S) := [Mu

Gn(S),M
u
Gn(S)] :=

[
inf

π∈Mα

Eπ(Y u
S ), sup

π∈Mα

Eπ(Y u
S )
]

(9)
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Again, by construction, it holds that mu
Gn

(S) ∈Mu
Gn

(S) and mu∗
Gn

(S) ∈Mu
Gn

(S) and thus both the
true expected similarity value and its maximum entropy approximation are contained in the interval
given by the credal approximation. The smaller the width of the credal interval, the less ambiguity
underlies the situation. Consequently, analyses based on the maximum entropy approximation are
then more reliable.

For the computation of the approximations (8) and (9), we give a proposition showing that,
once the preimages of the homogeneity values are computed, one only has to compute the scalar
products of the weight vector α with corresponding fixed vectors associated to the previously
computed preimages. This will prove very valuable also to our study in Section 5. Checking the
validity of the proposition is straightforward and therefore omitted.

Proposition 2. For the maximum entropy approximation and the credal approximation defined in
(8) and (9), the following equations hold, respectively:

i) mu∗
Gn

(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|

∑
R∈A−1

n (kj)
Y u
S (R)

)

ii) Mu
Gn(S) =

∑ξ
j=1

(
αj ·minR∈A−1

n (kj)
Y u
S (R)

)

iii) M
u
Gn(S) =

∑ξ
j=1

(
αj ·maxR∈A−1

n (kj)
Y u
S (R)

)

3.4. Estimation of Homogeneity Class Probabilities

Finally, we turn to the last step of the construction described at the beginning of Section 3: In
real-world applications, not only the group-specific probability PGn , but also the precise homogene-
ity class probabilities αj will typically be unknown. Accordingly, an estimate α̂ := (α̂1, . . . , α̂ξ) for
these probabilities has to be obtained. In principle, different ways of addressing this estimation task
are conceivable. Firstly, one can draw on expert knowledge, i.e. ask experts from the investigated
field for their probability estimates of the homogeneity classes. If more than one expert is involved,
an estimate could be received by using either an weighted average of the experts’ estimates or by
directly working with the credal set containing all of them.

Secondly, one can collect data. For this purpose, a questionnaire can be designed consisting
of d items (covering a relevant topic), each of which demanding the participant to order q := |C|
alternatives by preference. Each of the n group members participates in the survey such that,
after combining the questionnaires, each item produces a preference profile of the relevant group
and, therefore, a collection of d preference profiles R1, . . . , Rd is received. For each of these profiles
we compute the homogeneity measure and receive data x := (x1, . . . , xd), where xs := An(Rs) for
s = 1, . . . , d. We then estimate αj by computing relative frequencies

α̂j :=
1

d
·
∑d

s=1
1{kj}(xs) (10)

Finally, expert knowledge and available data can be combined by following a Bayesian approach:
A preference homogeneity measure An : Rn → [0, 1] defines a categorically distributed random
variable9 taking values in {k1, . . . , kξ}. Specifically, since αj = P(An = kj), we have An ∼ Cat(α).

9A random variable X with possible values {x1, . . . , xk} is called categorically distributed with parameter vector
λ = (λ1, . . . , λk) ∈ ∆k−1, formally X ∼ Cat(λ), if the probability that X attains value xi equals λi for all i = 1, . . . , k.
The categorical distribution is that special case of the multinomial distribution (see, e.g., Berger (1980, p. 562))
where the sample size n = 1.
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If we, as described in Section 3.1, interpret the parameter α = (α1, . . . , αξ) as a random quantity

with a Dirichlet distribution with (hyper-)parameter γ := (γ1, . . . , γξ) ∈ Rξ+ as a prior10, we
can use the data (x1, . . . , xd) from above and compute the posterior distribution of α given x.
For specifying the parameter γ of the prior distribution drawing on expert knowledge seems to
be reasonable. As the family of Dirichlet distributions is conjugate to the family of categorical
distributions (see Section 3.1), the posterior is again a Dirichlet distribution with updated posterior-
parameter γ|x := (γ1|x, . . . , γξ|x), where γj |x := γj +

∑q
s=1 1{kj}(xs) for j = 1, . . . , ξ.11 The

common choice for estimating α is then the posterior expectation given by

α̂j :=
γj |x∑ξ
l=1 γl|x

(11)

Which approach to follow also depends on the situation: If q is large and the homogeneity measure
can attain many different values, taking the relative frequencies will often fail, since doing so
requires too many data points to be stable. Particularly, in such cases the Bayesian approach has
certain advantages. However, this approach needs to specify a hyper-parameter γ.12 Note that,
when it comes to eliciting experts, the advantages of the proposed framework become perfectly
clear: Instead of directly asking experts for their probability estimates on the space of profiles
Rn, which contains (q!)n different elements, one could let them specify a distribution α on the
much smaller space {k1, . . . , kξ}. Due to its very intuitive interpretation as a relatively small
homogeneity scale, the distribution α is much easier to enquire about: How homogeneous do you
think the considered group is in probability?

4. Aggregation Rules investigated in the Study

In Section 4.1, we briefly survey some common preference aggregation procedures and demon-
strate how they straightforwardly extend to our definition of preference aggregation functions.
Importantly, it should be noted that all preference aggregation procedures listed in the following
section 4.1 are adaptations of the classic rules from literature to the framework that is used in the
present paper. In Section 4.2, we shortly describe a new aggregation method, recently proposed
in Schollmeyer (2017), which is based on a generalized concept of quantiles on complete lattices.

4.1. Adaptations of some common Aggregation Procedures

Mean rank (Borda count): For R ∈ R and a ∈ C, let rankR(a) denote the rank of alternative
a with respect to R.13 The mean rank aggregation function MR : Rn → Q is defined by (a, b) ∈

10The Dirichlet distribution with parameter vector µ = (µ1, . . . µk) ∈ Rk+ is a probability distribution on the unit
simplex ∆k−1. It can therefore be used as a prior distribution for the parameter of a categorical distribution with k
categories. For details, see, e.g., Berger (1980, p. 561).

11For further details concerning the Dirichlet-Categorical Model see, e.g., Gelman et al. (2004).
12If no expert knowledge for specifying the hyper-parameter is available, a so-called near-vacuous prior model, such

as the imprecise Dirichlet model (IDM), can be chosen (see Walley (1996) for the original work or Bernard (2005)
for further interesting properties).

13Formally, we have rankR(a) := |{b ∈ C : (a, b) ∈ R}| + 1
2
|{b ∈ C : (a, b) ∈∼R ∧a 6= b}| + 1. Note that this

definition of the rank, as common in statistics, assigns the mean value of all possible ranks to the members of the
equivalence classes of ∼R (see for instance, Yule and Kendall (1924)). Other, less common, choices are to assign to
these consequences the minimum or the maximum rank.
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MR(R) if and only if
∑n

i=1

(
rankRi(a) − rankRi(b)

)
> 0, where R ∈ Rn. Specifically, the group

assigns each alternative its average rank and prefers alternative a to alternative b iff the latter
achieves a strictly lower average rank. a and b are equivalent with respect to ∼MR(R) if and only
if they have equal average rank in the profile R.

Condorcet’s method: The Condorcet aggregation function CO : Rn → Q is defined by (a, b) ∈
CO(R) if and only if (cR(a, b) > cR(b, a) ∧ cR(a, b) > eR(a, b)), where R ∈ Rn. Hence, for each
pair (a, b) we decide if the majority of the group prefers a to b or vice versa or if the majority
of the group is indifferent between a and b. The consequences a and b are considered equivalent
with respect to ∼CO(R) if and only if either at least half of the group is indifferent between them
or an equal number of persons prefer a to b and vice versa. Importantly, note that this is one
adaptation of Condorcet’s method to our framework: In principle there may be other plausible
ways of defining the group’s indifference relation.

Instant runoff (Hare’s method): Instant runoff is a sequential aggregation procedure: In the first
step, all alternatives with the fewest number of first-place votes are excluded from C. These form
the alternatives that are least preferred by the group, and between them the group is indifferent.
Afterwards, we exclude the alternatives with the fewest first-place votes in the profile on the
reduced space of alternatives and receive a set of alternatives that the group prefers second least.
Again, between these alternatives the group is indifferent, but each of them is preferred to every
alternative excluded in the first step. Successively repeating this procedure, we end up with a set of
optimal options with the same number of first-place votes. This describes a preference aggregation
function IR : Rn → Q defined by (a, b) ∈ IR(R) if and only if a is excluded at a later stage than
b, where R ∈ Rn. The consequences a and b are equivalent with respect to ∼IR(R) if and only if
they are excluded at the same stage of the procedure.

Coombs’ rule:14 The basic idea of Coombs’ rule is very similar to that of instant runoff voting,
as it is also based on sequential exclusion of alternatives. However, in contrast to instant runoff
voting, we exclude the alternatives with the maximal number of last-place votes in every step. The
corresponding aggregation function CM : Rn → Q is defined by (a, b) ∈ CM(R) if and only if a is
excluded at a later stage than b, where R ∈ Rn. Moreover, a and b are equivalent with respect to
∼CM(R) if and only if they are excluded at the same stage.

Kemeny’s rule:15 Given a profile R := (R1, . . . , Rn) ∈ Rn, the idea of Kemeny’s rule is to choose
that consensus order Q ∈ R that minimizes the sum of the distances d(Ri, Q) to the individual
orders (see Section 3.2). Formally, we say Q∗ is a Kemeny consensus ranking for R whenever it
holds that Q∗ ∈ argminQ∈R

∑n
i=1 d(Ri, Q) =: KE(R). Since such Q∗ will generally not be unique,

in order to define an aggregation function from this rule, we need to choose a choice function
f : 2R \ {∅} → R satisfying f(C) ∈ C for all C ∈ 2R \ {∅}. The Kemeny aggregation function
KEf : Rn → R with respect to f is then given by KEf (R) := f(KE(R)) for all R ∈ Rn.16 In

14Cf. Coombs and Cohen (1984) for a discussion or Grofman and Feld (2004) for comparisons with Hare’s method.
15Originally proposed in Kemeny (1959); some nice properties of the method are shown in Young and Levenglick

(1978). Generally, note that determining a Kemeny consensus ranking for R is NP-hard (see Bartholdi et al. (1989).
Also, compare Ali and Meila (2012) for a comparison of algorithms alleviating the NP-hardness.

16Note that, since
∑n
i=1 d(Ri, Q) is minimal iff

∑n
i=1 |Ri ∩Q| is maximal (see Section 3.2), this implies Y idKEf

(R) ≥
Y idS (R) for all R ∈ Rn for every other preference aggregation function S, where id(x) := x for all x ∈ R. Consequently,
this implies EP(Y idKEf

) ≥ EP(Y idS ) for any probability measure P and, thus, Kemeny’s rule is superior to every other
method if similarity is measured based on the function u = id.
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the study in Section 5, we enumerated the orders and defined f(C) = Rj0 , where j0 is the smallest
index of an order belonging to C.

Dictatorship: For i0 ∈ {1, . . . , n}, the dictatorship aggregation function DIi0 : Rn → Q is
defined by (a, b) ∈ DIi0(R) iff (a, b) ∈ Ri0 , where R ∈ Rn. Hence, the group prefers a to b whenever
individual i0 does. Even if this does not seem like the fairest way of aggregating preferences, it
might be worth investigating how the dictatorship function performs in comparison to the others.

4.2. An aggregation rule based on quantiles on complete lattices: commonality sharing

We now briefly sketch the idea of the commonality sharing aggregation rule that was recently
proposed in Schollmeyer (2017) and that initially arose in a different context, namely through
attempts to generalize concepts of centrality and outlyingness of observations to partially ordered
data. Opposed to the other methods investigated here, this aggregation procedure does not locally
look at different alternatives or pairs of alternatives, but takes into account the full order of all
individuals and embeds these orders into the complete lattice of binary relations on C equipped with
the set intersection and set union as meets and joins, respectively. Then, a notion of outlyingness
in this space, described in Schollmeyer (2017), is used to select one or more orders of individuals
who are most centered in the population. Concretely, the following procedure can be applied:

For a given minimum size k, one looks at every possible sub-population M i
k consisting of at

least k individuals. Then, one considers the set Qk of all individuals qjk who share with every sub-
population M i

k all commonalities of this sub-population (i.e., all edges (a, b) that the population M i
k

has in common should also be edges of every order qjk in Qk). The set Qk of individuals who share
with every sub-population of size ≥ k its commonalities is to some extent representative for every
such sub-population. If k is too small, then Qk is empty. In contrast, for k = n the set Qk is the
whole population. Now, for a given order q, the smaller the smallest k such that Qk still contains
q, the more central is the order q, since then q is a representative for a bigger collection of sub-
populations including smaller sub-populations with bigger and thus more specific commonalities.
Finally, to select a consensus order, choose k as small as possible under the restriction that Qk 6= ∅
and choose the arising Qk as the set of candidates for the consensus order. If Qk has more than one
element then for a unique consensus order choose arbitrarily from the set Qk or apply some further
aggregation rule to the orders in Qk. In the study of Section 5 we apply the first approach and,
like in the procedure for Kemeny’s rule, choose that most central order with the smallest index.

Note that the commonality sharing consensus rule is in fact a non-local rule in the sense that
if for example two individuals in a profile both prefer all alternatives in the set {a, b, c} over the
alternatives in the set {d, e, f}, but with different orders within these sets, then the consensus order
could possibly change if the individuals swap their orders within the set {a, b, c} with each other
while maintaining their orders within the set {d, e, f}. Thus, the orders do in fact play a role as a
whole. This is the main difference from the aggregation rules of Section 4.1 (except dictatorship):
There, for example, it does not matter which individual an alternative gets its score from in the
mean rank aggregation or where edges for pairs of alternatives in Condorcet’s method are counted
without differentiating between edges belonging to the same individual and edges belonging to
different individuals. Note that commonality sharing can be computed in O(n · |C|2) time, much
simpler than one would expect from the conceptual description.
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5. A Simulation Study for the Case n = 8 and |C| = 4

In this section, we apply the evaluation framework developed in Sections 2 and 3 to the aggre-
gation functions discussed in Section 4. Specifically, we design a study allowing for the comparison
of the appropriateness of these aggregation functions for groups of varying degrees of homogeneity
in Section 5.1 and then discuss the results in Section 5.2.

5.1. Setup of the Study

Throughout this study, we consider groups G8 consisting of n = 8 group members, each of
which has ranked |C| = 4 consequences. We further assume that within the individual preferences
there is no indifference, i.e., we restrict analysis to the set H of all strict weak orders R ∈ R
satisfying ∼R= {(c, c) : c ∈ C}. In order to analyze the appropriateness of different aggregation
functions S for groups of varying degrees of homogeneity, we compute and compare the maximum
entropy approximation from (8) and the credal set approximation from (9) for different choices of
the homogeneity class probabilities α. Therefore, we need to specify three things: A preference
homogeneity measure An in the sense of Definition 1, a similarity measure Y u

S in the sense of
Definition 3, and a sequence of probability vectors α[i], each determining a distribution of An while
representing a different degree of group homogeneity.

Firstly, for An, we choose the maximum consensus homogeneity δn from Definition 2 restricted
to the domain H8, which in this case reduces to δ8(R) = 1

48

∑
(a,b)∈R0

max
{
cR(a, b), cR(b, a)

}
for all

R ∈ H8. Secondly, for measuring similarity between a profile and its consensus order with respect
to an aggregation function S, we consider three different choices for the function u in the similarity
measure Y u

S , taking into account the discussion after Definition 3: The linear function u1(x) = x
giving equal influence to all group members, the convex function u2(x) = x2 giving higher influence
to appropriately represented group members, and the concave function u3(x) = 36 − (6 − x)2

strengthening the influence of inadequately represented members. Note that u1 and u3 were also
proposed in Kemeny (1959).

Finally, in order to model varying degrees of group homogeneity of the considered groups G8,
first note that δ8 attains the values k1 = 24

48 < k2 = 25
48 < · · · < k25 = 48

48 , where 1
2 indicates minimal

homogeneity and 1 indicates perfect homogeneity of the inserted profile. Accordingly, assuming
δ8 to be categorically distributed with parameter vector αmin = (1, 0, . . . , 0) obviously represents
a group G8 with a lower degree of homogeneity than assuming the same for parameter vector
αmax = (0, . . . , 0, 1). Generalizing from this idea, we can construct a sequence α[0], . . . , α[50] ∈ ∆24

of parameter vectors representing groups G8 of increasing degrees of homogeneity by setting

α
[i]
j := Bin

(
24, i

50

)
({j}) =

(
24
j

)
· ( i

50)j · (1− i
50)24−j (12)

with i = 0, . . . , 50 and j = 0, . . . , 24, where α
[i]
j denotes the jth component of the ith parameter vec-

tor and Bin(n, p) denotes the binomial distribution with parameters n and p. Using the constructed
sequence then allows for analyzing the performance of different aggregation function for varying
degrees α[i] of homogeneity. Note that, due to Proposition 2, computation of the approximations
is possible without computing the whole assessment for every single α[i].

5.2. Discussion of the Results

The results of the study described in Section 5.1 for the similarity measure Y u2
S are visualized

in Figures 1 and 2, while the results for the similarity measures Y u1
S and Y u3

S can be found in
Figures 3 and 4 in Appendix A4. We will refer to these in our discussion at several points.
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Figure 1 shows the credal approximation Mu2
Gn

(S) (gray shaded region) and the maximum
entropy approximation mu2∗

Gn
(S) (black line) for different choices of the aggregation function S

along an increasing degree of group homogeneity α[i], where i ∈ {1, . . . , 50}. Specifically, an
abscissa value of i indicates that the information on the group G8 is given by δ8 ∼ Cat(α[i]). The
ordinate ranges from 0 to 288, where 0 is the minimal and 288 is the maximal attainable expected
similarity value.

Clearly, for all investigated aggregation functions the width of the intervals Mu2
Gn

(S) does de-
pend on the homogeneity of the group, where very homogeneous and very inhomogeneous groups
tend to produce more narrow intervals than groups of medium homogeneity. Moreover, for all
functions except instant-runoff, both the upper expected similarity M

u
Gn(S) and the maximum en-

tropy approximation mu2∗
Gn

(S) strictly increase along increasing homogeneity. Contrarily, the lower
expected similarity Mu

Gn(S) does not strictly increase along homogeneity for mean rank, dictator-
ship, Kemeny’s rule, and commonality sharing, while it does for the other functions (the same is
true if analysis is based on Y u1

S or Y u3
S ). Finally, the results show that Kemeny’s rule, common-

ality sharing, and Condorcet’s method produce rather narrow credal approximations compared to
the other functions, whereas dictatorship, Coombs’ rule, and instant-runoff lead to rather wide
intervals. Note that the comparison of the width of the credal intervals provides highly relevant
information as it indicates how sensitively the evaluation of an aggregation procedure reacts to
choosing one (possibly wrong) approximating measure from the credal set: If we mistakenly evalu-
ate an aggregation function by using maximum entropy, the average error we make will be higher
for aggregation functions whose evaluation reacts very sensitively to the choice of a representative.

Figure 2 consists of two different graphs: The upper graph compares the lower expected simi-
larity Mu2

Gn
(S) along an increasing degree of homogeneity α[i] for all aggregation procedures. With

the exception of very inhomogeneous groups (i ≤ 2) where dictatorship exceeds Kemeny’s rule, it
shows that Kemeny’s rule and commonality sharing outperform all other methods independent of
the underlying α[i]. Comparing commonality sharing with Kemeny’s rule, we see that the latter
exceeds the former for groups with i ≥ 6, while the opposite is the case for inhomogeneous groups
with i ≤ 5. Further, it turns out that for rather inhomogeneous groups (i ≤ 18), choosing a
dictatorship performs better than all other methods except commonality sharing and Kemeny’s
rule. For medium to perfect homogeneity (i > 18), however, Condorcet’s rule shows the third best
performance, for high homogeneity (i ≥ 35), very closely followed by mean rank and Coombs’ rule.
Moreover, it is interesting to note that instant-runoff is outperformed by all other aggregation func-
tions independent of the underlying α[i]. For Y u1

S and Y u3
S (see Appendix A4), the main difference

is that the lower expected similarity values Mu1
Gn

(S) and Mu3
Gn

(S) of Kemeny’s rule exceed those

of the other functions, independent of α[i].
Comparing the maximum entropy approximations mu∗

Gn
(S) in the lower graph gives a similar

picture. Again, commonality sharing and Kemeny’s rule, whose (numerically) coinciding approx-
imations cannot be distinguished, are superior to all the other aggregation methods. However,
mean rank aggregation now outperforms Condorcet’s method independent of homogeneity and is
already superior to a dictatorship for groups with a rather low homogeneity value (i ≥ 10). For
homogeneous groups (i ≥ 30), all methods except dictatorship and instant-runoff show a very
similar performance. Again, instant-runoff is outperformed by all other functions.
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Figure 1: The figures shows the credal approximation Mu2
Gn

(S) (gray shaded region) and the maximum entropy
approximation mu2∗

Gn
(S) (black line) for different choices of the aggregation function S along an increasing degree of

group homogeneity α[i], where i ∈ {1, . . . , 50} and u2(x) = x2.

6. Summary, concluding remarks, and discussion

In this paper, we introduced the expected similarity mu
Gn

(S) as a theoretical criterion for
evaluating and comparing the performance of different preference aggregation functions S if per-
fect probabilistic information on the homogeneity structure of the group members’ preferences is
available. Approaches for approximating the true value of mu

Gn
(S) under imperfect probabilistic

information are fundamentally based on the concept of preference homogeneity measures, for which
we gave both a set of minimal requirements and a concrete proposal. Specifically, we studied two
different ways to approximate mu

Gn
(S): the maximum entropy approximation and the credal set

approximation. Finally, by comparing these approximations, we investigated the performance of
six common aggregation procedures as well as the recently proposed commonality sharing rule by
means of a simulation study for groups along varying degrees of homogeneity. Specifically, we were
able to show that the adequateness of a preference aggregation function for a fixed group indeed
depends on the group’s homogeneity structure.

In future research this framework needs to be applied to real-world data. Particularly, we plan
to apply the proposed estimation procedures and evaluation framework to survey data on political
opinions and investigate whether groups of significantly differing degrees of homogeneity can be
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Figure 2: The upper graph shows the lower expected similarity Mu2
Gn

(S) for different choices of the aggregation

function S along increasing degrees of group homogeneity α[i], where i ∈ {1, . . . , 50} and u2(x) = x2. The lower
graph shows the same for the maximum entropy approximation mu2∗

Gn
(S).

identified in empirical studies. Beyond this, three further extensions seem particularly promising:
Partial individual preferences: The preferences of the group members are modeled by asymmet-

ric and negatively transitive relations R ∈ R. This explicitly excludes the case of group members
judging certain consequences in C incomparable (since incomparability with respect to R is treated
as indifference, see Section 2.1 and Footnote 2 in particular). Allowing also for incomparability of
consequences could lead to a more realistic model in certain situations. Of course, this requires
appropriate adaptations of the aggregation rules from Section 4.

Axiomatic foundations: The conditions that have been listed in Definition 1 are to be under-
stood as minimal requirements for measures of preference homogeneity. However, they are rather
weak, as they only look at the profile on a categorical scale. Going beyond the categorical scale in
the spirit of Bosch (2006) and Alcalde-Unzu and Vorsatz (2013) could give a more detailed picture
of what is actually meant by homogeneity on an axiomatic level.

Efficient algorithms for simulation: In Section 5, we presented a study for a group of n = 8 mem-
bers ranking |C| = 4 alternatives. For this setting, the approximations for expected similarity were
able to be computed analytically. However, for larger settings this becomes computer-intensive,
and computation using simulations has to be applied instead. A proposal for simulation designs
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is given in Appendix A2. More efficient designs, comparable to the MCMC-driven approaches
already used in the statistical analysis of networks (see, e.g., Hunter et al. (2012)), are planned to
be investigated in future research.
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Appendix

A1: Proof of Proposition 1

First, note that the definition of δn does not depend on the choice of R0 ∈ R with ∼R0= diag(C2),
since every such relation contains exactly one of the pairs (a, b) and (b, a) for all a, b ∈ C with
a 6= b and summation is commutative. Moreover, one easily verifies that Im(δn) ⊂ [0, 1]. Hence,
δn is well-defined.

(S1): We have to show that 1 is attained iff the profile consists of identical orders. Obviously,
δn equals 1 for identical profiles by construction. In contrast, if R := (R1, . . . , Rn) ∈ Rn is a
non-identical profile, a pair (a, b) ∈ R0 exists such that max

{
cR(a, b), cR(b, a), eR(a, b)

}
< n. This

gives δn(R) < 1.

(S2): Let φ : {1, . . . , n} → {1, . . . , n} be a bijective map and R := (R1, . . . , Rn) ∈ Rn. By
definition, we have c(R1,...,Rn)(a, b) = c(Rφ(1),...,Rφ(n))(a, b) and e(R1,...,Rn)(a, b) = e(Rφ(1),...,Rφ(n))(a, b).

This implies δn(R1, . . . , Rn) = δn(Rφ(1), . . . , Rφ(n)).

(S3): Let R := (R1, . . . , Rn) ∈ Rn be a preference profile such that exactly k ∈ {bn2 c, . . . , n−1}
group members share identical preferences. Without loss of generality, we assume it holds that
R1 = · · · = Rk =: R∗ (otherwise we can rearrange the profile in this way due to (S2)). For
all distinct pairs (a, b) ∈ C2 it then holds that fR(a, b) := max

{
cR(a, b), cR(b, a), eR(a, b)

}
≥ k,

since each pair (a, b) is identically ranked within the orders R1, . . . , Rk. Choose an arbitrary index
j0 ∈ {k+1, . . . , n} and define Q := (Q1, . . . , Qn) to be the profile that arises from R by exchanging
order Rj0 with order R∗. We show that δn(R) ≤ δn(Q). Therefore, let a0, b0 ∈ C, a0 6= b0 be
arbitrary but fixed. We distinguish two cases:

Case 1: fR(a0, b0) = k. Clearly, this implies fQ(a0, b0) = k + 1 > k = fR(a0, b0), since (a0, b0)
is then identically ranked by exactly Q1, . . . , Qk and Qj0 .

Case 2: fR(a0, b0) > k. For arbitrary but fixed R ∈ R and a, b ∈ C, a 6= b, define the expression
R{a,b} := {(x, y) : x, y ∈ {a, b} ∧ (x, y) ∈ R}. We then distinguish two sub-cases:

Sub-case 1: ∀ j ∈ {k + 1, . . . , n} : R∗{a0,b0} 6= (Rj){a0,b0}.
This implies that (Rj1){a0,b0} = (Rj2){a0,b0} for all j1, j2 ∈ {k + 1, . . . , n} (and that k = bn2 c and
n is odd), since otherwise fR(a0, b0) > k would not be possible. Hence, the pair (a0, b0) is ranked
identically by bn2 c+1 members and, therefore, we have fR(a0, b0) = bn2 c+1. However, it also holds
that fQ(a0, b0) = bn2 c+ 1, since (a0, b0) is identically ranked by exactly Q1, . . . , Qk and Qj0 .

Sub-case 2: ∃ j ∈ {k + 1, . . . , n} : R∗{a0,b0} = (Rj){a0,b0}.
Then, if R∗{a0,b0} = (Rj0){a0,b0} we have fR(a0, b0) = fQ(a0, b0), and if R∗{a0,b0} 6= (Rj0){a0,b0} we

have fR(a0, b0) < fQ(a0, b0). In either case, we have fR(a0, b0) ≤ fQ(a0, b0).

Thus, we have shown that, in every case, it holds that fR(a0, b0) ≤ fQ(a0, b0). Since the pair
(a0, b0) was chosen arbitrarily, this implies δn(R) ≤ δn(Q), completing the proof. �

A2: A possible simulation design for larger settings

The simulation can be done in the following way: Draw N random samples R1, . . . , RN from the
space of profiles Rn. For all j = 1, . . . , ξ, define the set Nj := {Ri : An(Ri) = kj} of all samples
mapped to homogeneity class kj . For given weights α := (α1, . . . , αξ) and aggregation function S,
we use the characterization of the assessments given in Proposition 2 and receive
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mu∗
Gn

(S) =
∑ξ

j=1

(
αj · 1

|A−1
n (kj)|

∑
R∈A−1

n (kj)
Y u
S (R)

)
≈ ∑ξ

j=1

(
αj · 1

|Nj |
∑

R∈Nj Y
u
S (R)

)

Mu
Gn(S) =

∑ξ
j=1

(
αj ·minR∈A−1

n (kj)
Y u
S (R)

)
≈ ∑ξ

j=1

(
αj ·minR∈Nj Y

u
S (R)

)

M
u
Gn(S) =

∑ξ
j=1

(
αj ·maxR∈A−1

n (kj)
Y u
S (R)

)
≈ ∑ξ

j=1

(
αj ·maxR∈Nj Y

u
S (R)

)

However, note that this simulation design requires a sample satisfying the condition Nj 6= ∅ for all
j = 1, . . . , ξ, i.e., the sample needs to be rich enough that every homogeneity class has been met at
least once. Consequently, such a design becomes computationally intensive as n and |C| increase.

A simulation design producing fewer computational costs can be realized by taking advantage of
the fact that the maps An and YS are invariant under permutations of the inserted profile. Let Φ
denote the set of all bijective maps φ : {1, . . . , n} → {1, . . . , n}. For R := (R1, . . . , Rn) ∈ Rn and
φ ∈ Φ, we set Rφ := (Rφ(1), . . . , Rφ(n)) and define an equivalence relation ∼Φ on Rn by setting

R ∼Φ Q :⇔ ∃φ ∈ Φ : R = Q
φ

Moreover, let Rn∼Φ
denote the quotient space produced by ∼Φ and let f : Rn∼Φ

→ Rn be any choice
function satisfying f(C) ∈ C for all C ∈ Rn∼Φ

. Further, for every possible homogeneity value kj ,
where j = 1, . . . , ξ, we define the set Lj := {C ∈ Rn∼Φ

: An(f(C)) = kj} of all equivalence classes
with members that are mapped to kj . Due to Proposition 2 and the fact that both An and Y u

S are
constant on every C ∈ Rn∼Φ

(as they are invariant under permutations of the inserted profile), one
easily verifies the following identities:

mu∗
Gn(S) =

ξ∑

j=1

(
αj ·

∑
C∈Lj Y

u
S (f(C)) · |C|

∑
C∈Lj |C|

)

Mu
Gn(S) =

ξ∑

j=1

(
αj · min

C∈Lj
Y u
S (f(C))

)

M
u
Gn(S) =

ξ∑

j=1

(
αj ·max

C∈Lj
Y u
S (f(C))

)

Using the above identities allows the application of a similar simulation design as proposed above,
however, instead of drawing samples from the space Rn, we can now sample from the smaller space
Rn∼Φ

. In our context, this means we can sample from the space of all n-combinations of R instead
of sampling from the space of n-permutations of R.

A3: Non-locality of the maximum consensus homogeneity δn

The measure δn is not local as it cannot be represented as an average similarity of pairs of
orders: For a counterexample, consider the profile R = (R1, R1, R1, R2, R2) on C = {a, b, c}, where
R1 ranks a b c and R2 ranks c b a. An arbitrary homogeneity measure hn based on average pairwise
similarities would satisfy h5(R) = 1

10 [3 · h2(R1, R1) + 6 · h2(R1, R2) + h2(R2, R2)]. However, the
maximum homogeneity measure δn does not satisfy this identity, since we have δ5(R) = 0.6, but
at the same time 1

10 [3 · δ2(R1, R1) + 6 · δ2(R1, R2) + δ2(R2, R2)] = 0.7.

22

136 Attached contributions



Note that, despite their locality, homogeneity measures based on pairwise distances of relations
satisfy the minimal requirements listed in Definition 1. Conditions (S1) and (S2) are trivially true.
For (S3), the triangle inequality can be used: If an order R changes from a non-majority order to the
majority order R∗ then the distances d(R,R∗) change to d(R∗, R∗) = 0 and the distances d(R,Rj)
from R to non-majority orders Rj change to d(R∗, Rj). With d(R∗, Rj) ≤ d(R∗, R) + d(R,Rj) we
get d(R,R∗) ≥ d(R∗, Rj)−d(R,Rj). Since in addition to the order R that changes to R∗ there are
as least as many majority orders as non-majority orders, we can match every increase in distance
associated with a pair (R,Rj) to a decrease associated to d(R,R∗) that is greater or equal, so the
overall change in the sum of all distances can only be a decrease or zero.

A4: Results for the linear function u1(x) = x and the concave function u3(x) = 36− (6− x)2
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Figure 3: The graphs show the credal approximation Mu
Gn

(S) (gray shaded region) and the maximum entropy
approximation mu∗

Gn
(S) (black line) for different choices of the aggregation function S along an increasing degree of

group homogeneity α[i], where i ∈ {1, . . . , 50}. For the same S, the left graph corresponds to the choice u(x) =
u1(x) = x, whereas the right graph corresponds to the choice u(x) = u3(x) = 36− (6− x)2.
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Figure 4: Graphs 1 and 3 show the lower expected similarity Mu
Gn

(S) for different choices of the aggregation function

S along an increasing degree of group homogeneity α[i], where i ∈ {1, . . . , 50} for the choices u(x) = u1(x) = x and
u(x) = u3(x) = 36− (6− x)2. Graphs 2 and 4 show the same for the maximum entropy approximation mu∗

Gn
(S).
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Detecting stochastic dominance for poset-valued
random variables as an example of linear programming

on closure systems

Georg Schollmeyer Christoph Jansen Thomas Augustin

Abstract

In this paper we develop a linear programming method for detecting stochastic
dominance for random variables with values in a partially ordered set (poset)
based on the upset-characterization of stochastic dominance. The proposed
detection-procedure is based on a descriptively interpretable statistic, namely the
maximal probability-difference of an upset. We show how our method is related
to the general task of maximizing a linear function on a closure system. Since
closure systems are describable via their valid formal implications, we can use here
ingredients of formal concept analysis. We also address the question of inference
via resampling and via conservative bounds given by the application of Vapnik-
Chervonenkis theory, which also allows for an adequate pruning of the envisaged
closure system that allows for the regularization of the test statistic (by paying a
price of less conceptual rigor). We illustrate the developed methods by applying
them to a variety of data examples, concretely to multivariate inequality analysis,
item impact and differential item functioning in item response theory and to the
analysis of distributional differences in spatial statistics. The power of regulari-
zation is illustrated with a data example in the context of cognitive diagnosis models.

Keywords: stochastic dominance, multivariate stochastic order, linear pro-
gramming, closure system, formal concept analysis, formal implication, Vapnik-
Chervonenkis theory, regularization.

1 Introduction

Stochastic (first order) dominance plays an important role in a huge variety of disciplines
like for example welfare economics (cf., e.g., [Arndt et al., 2012, 2015]), decision theory
(cf., e.g., [Levy, 2015]), portfolio analysis (cf., e.g., [Kuosmanen, 2004]), nonparametric
item response theory (IRT, cf., e.g., [Scheiblechner, 2007]), medicine (cf., e.g., [Leshno and
Levy, 2004]), toxicology (cf., e.g., [Davidov and Peddada, 2013]) or psychology (cf., e.g.,
[Levy and Levy, 2002]) to cite just a few. Most treatments of stochastic dominance are
devoted to the univariate case with emphasis also on higher order stochastic dominance
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or to the classical multivariate case where one has Rd-valued random variables with the
natural ordering ≤= {(x, y) ∈ Rd × Rd | ∀i ∈ {1, . . . , d} : xi ≤ yi}. In this paper we treat
the general case of random variables that have values in a partially ordered set1 (poset)
V = (V,≤).

Detecting stochastic dominance in this general case is especially interesting in the
context of multivariate inequality or poverty analysis (cf., [Alkire et al., 2015]) in the
situation where one has more dimensions of inequality that are additionally possibly only
of a partial ordinal scale of measurement. One thinkable dimension with an only partially
ordered scale of measurement is the dimension education, because different highest
educational achievements may be incomparable due to different specifics of different
courses of education. In this paper, the example of multivariate inequality analysis will
serve as a prototypic example of multivariate stochastic dominance analysis.

In contrast to the simple univariate case, for random variables with values in a parti-
ally ordered set the notion of stochastic dominance cannot be simply described with the
distribution function, anymore2. For two random variables X : Ω −→ V and Y : Ω −→ V
with values in a partially ordered set (V,≤), one says that X is (weakly) stochastically
smaller than Y , denoted by X ≤SD Y , if there exist random variables X ′ and Y ′ on a

further probability space (Ω′,F ′, P ′) with X
d
= X ′, Y

d
= Y ′ and P ′(X ′ ≤ Y ′) = 1. The

property of stochastic dominance can be characterized by three essentially equivalent, more
constructive statements: The random variable X is stochastically smaller than the random
variables Y if one of the three following conditions is satisfied3:

i) P (X ∈ A) ≤ P (Y ∈ A) for every (measurable) upset A ⊆ V

ii) E(u ◦ X) ≤ E(u ◦ Y ) for every bounded non-decreasing Borel-measurable4 function
u : V −→ R

iii) It is possible to obtain the density5 fX from the density fY by transporting probability
mass from values v to smaller values v′ ≤ v .

In this paper we will deal with the problem of detecting stochastic dominance between
two random variables X and Y for which one has observed an i.i.d. sample (x1, . . . , xnx)

1This includes especially the multivariate case of Rd where the natural order x ≤ y ⇐⇒ ∀i ∈
{1, . . . , d} : xi ≤ yi is used. Note also that every finite poset (V,≤) can mathematically be represented
as a multivariate case where the dimension equals the order dimension of (V,≤), cf. [Dushnik and Miller,
1941, Trotter, 2001].

2If one would rely on the distribution function in the multivariate case, then one would get another
order, the so-called lower orthant or upper orthant order, cf., e.g., [Müller and Stoyan, 2002].

3The equivalence between (ii) and (i) was shown by Lehmann [1955] and independently proved by Le-
vhari et al. [1975]. The equivalence between (iii) and (i) is a consequence of Strassen’s Theorem ([Strassen,
1965]), see Kamae et al. [1977].

4Here, we have to assume that (V,≤) can be equipped with an appropriate topology that makes it a
partially ordered polish space.

5This statement is of course only equivalent if the densities fX and fY actually exist.
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of the unknown random variable X and an i.i.d. sample (y1, . . . , yny) of the unknown
random variable Y . Actually, one would be interested in detecting X ≤SD Y , but one
does not exactly know the true law of X and Y . So, here we will deal with detecting
empirical stochastic dominance between X and Y , denoted by X ≤ŜD Y , where the
true laws of X and Y are replaced by the corresponding empirical laws. The problem of
statistical inference that is concerned with the question of how stochastic dominance w.r.t.
the empirical laws can be translated to stochastic dominance w.r.t. the true laws will
also be discussed in this paper. The typical situation in this paper will be the analysis of
differences between two subpopulations of some population. The typical subpopulations
analyzed in this paper will be subpopulations of male and female persons. Here, we think
of the random variable X as the outcome of a random sample from the subpopulation of
the male, and Y as a random sample from the subpopulation of the female persons. Note
that in the formal definition of stochastic dominance one compares random variables on
the same probability space (Ω,F , P ). In our case of comparing subpopulations we can
ensure that X and Y are random variables on the same underlying probability space by
thinking of jointly sampling from the male and the female subpopulation. Note that the
notion of stochastic dominance does not rely on the possible dependencies between X
and Y , because all terms involved in the characterizing properties i) − iii) of stochastic
dominance only rely on the marginal distribution of X and Y . Note further that the
definition of stochastic dominance could thus be simply extended to random variables
living on different probability spaces. Thus, also for the replacement of the true laws
by empirical laws, different sample sizes for the male and the female samples would not
introduce any problem, here.

For detecting stochastic dominance in the above sense, we will make substantial use
of the upset-characterization i). The characterization via a mass transfer can also be
used to check for stochastic dominance, see, e.g., Mosler and Scarsini [1991] (for empirical
applications see, e.g., [Arndt et al., 2012, 2013]), while an alternative approach would
be to make use of a network flow formulation of the problem, as outlined in Preston
[1974] or Hansel and Troallic [1978] and then check for dominance via computation of
the maximum flow. The main reason for putting emphasis on the upset approach is that
with this approach we could not only check for stochastic dominance, but we will also
get additionally some well-interpretable statistic for free, upon which we can also base an
attempt to do inference. Beyond this, the family of all upsets of a given poset is a well
understood closure system6 and a natural question is then, how the linear programming
approach outlined here, can be generalized to the case of arbitrary closure systems.

The paper is structured as follows: In Section 2 we briefly introduce basic mathematical
concepts of partially ordered sets, complete lattices and formal concept analysis needed in
the paper. Section 3 develops and analyses a linear program for detecting first order sto-

6A closure system S is a family of subsets of a space Ω that contains Ω and is closed under arbitrary
intersections.
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chastic dominance for random variables with values in a poset. In Section 4 we generalize
the linear programming approach to optimization on closure systems. Statistical inference
for the developed methods, especially the application of Vapnik-Chervonenkis theory, pos-
sible regularization and characterizations of the Vapnik-Chervonenkis dimension of selected
closure systems (as well as concretely computing the Vapnik-Chervonenkis dimension) are
treated in Section 5. Examples of application, ranging from inequality analysis based on
stochastic dominance to a geometrical generalization of the Kolmogorov-Smirnov test for
spatial statistics are given in Section 6, while Section 7 concludes.

2 Mathematical preliminaries

In this section, we very briefly introduce elementary basics of partially ordered sets and
of formal concept analysis. A far more detailed introduction to partially ordered sets can
be found in Davey and Priestley [2002], which also gives a short introduction to formal
concept analysis. An introduction into formal concept analysis can be found in Ganter
and Wille [2012]. The concepts of formal concept analysis are actually only needed for the
optimization problems on general closure systems indicated in Section 4, the reader only
interested in the problem of detecting first order stochastic dominance can skip Section 2.2.

2.1 Ordered sets and lattices

Definition 1 (posets and lattices). A partially ordered set (poset) V = (V,≤) is a
pair of a set V and a binary relation ≤ on V that is reflexive transitive and antisymmetric.
A poset (V,≤) is called linearly ordered, if every two elements x, y of V are comparable
(meaning that x ≤ y or y ≤ x). For two different elements x, y of a poset V we say that y
is an upper neighbor of x (or that x is a lower neighbor of y), and denote this by xl y, if
x ≤ y and if there is no further element z ∈ V (different from x and y) with x ≤ z ≤ y.

A lattice L = (L,≤) is a poset such that every set {x, y} of two elements x, y ∈ L
has a least upper bound and a greatest lower bound. A lattice is called complete, if every
arbitrary set M has a least upper bound and a greatest lower bound. The least upper bound
of a set M is called supremum or join of M and it is denoted with

∨
M . The greatest

lower bound of a set M is called infimum or meet of M and it is denoted with
∧
M . An

element x of a complete lattice (L,≤) is called join-irreducible if for arbitrary subsets
B ⊆ L from x =

∨
B it follows x = b for some b ∈ B. The set of all join-irreducible

elements of a poset V is denoted with J (V).

Definition 2 (upset and downset, principal ideal and principal filter). Let (V,≤) be a
poset. A set V ⊆ M is called an upset (or filter) if we have ∀x, y ∈ V : x ≤ y & x ∈
M =⇒ y ∈ M . A subset M ⊆ V is called downset (or ideal) if ∀x, y ∈ V : x ≤ y & y ∈
M =⇒ x ∈ M . The set of all upsets of a poset (V,≤) is denoted with U((V,≤)) and the
set of all downsets is denoted with D((V,≤)). An upset of the form ↑ x := {y ∈ V | y ≥ x}
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with x ∈ V is called a principal filter. A downset of the form ↓ x := {y ∈ V | y ≤ x}
with x ∈ V is called a principal ideal.

Remark 1. The complement of an upset is a downset and the complement of a downset
is an upset.

Definition 3 (chain, antichain and width). Let (V,≤) be a poset. A set M ⊆ V is called
a chain if every two arbitrary elements x and y of M are comparable (meaning that x ≤ y
or y ≤ x). A subset M of a poset (V,≤) is called an antichain if every two arbitrary
different elements x and y of M are incomparable (meaning that neither x ≤ y nor y ≤ x).
The width of a finite poset (V,≤) is the maximal cardinality of an antichain of (V,≤).

Remark 2. For every upset M the set minM of all minimal elements of M is an antichain.
Furthermore, every finite upset M can be characterized by its minimal elements as M =↑
minM := {x ∈ V | ∃y ∈ minM : y ≤ x}. Analogous statements are valid for downsets.

Definition 4 (order dimension). The order dimension of a poset (V,≤) is the smallest
number k such that there exist k linearly ordered sets (V, L1), . . . , (V, Lk) that represent

(V,≤) via ≤=
k⋂
i=1

Li.

2.2 Formal concept analysis

Formal concept analysis (FCA) is an applied mathematical theory rooted in an attempt
to mathematically formalize the notion of a concept. In its origins initially motivated by
some philosophical attempt to restructure lattice theory (cf., [Wille, 1982]) it nowadays
also has very broad applications in computer science, for example in data mining, text
mining, machine learning or knowledge management, to name just a few.

Concretely, in formal concept analysis one starts with a so-called formal context
K = (G,M, I) where G is a set of objects, M is a set of attributes and I ⊆ G ×M is a
binary relation between the objects and the attributes with the interpretation (g,m) ∈ I
iff object g has attribute m. If (g,m) ∈ I we also use infix notation and write gIm. In
the context of statistical data analysis, the objects are often the data points, for example
the persons that participated in a survey.The attributes are the observed values of the
interesting variables, for example the answer yes or no to the posed questions and gIm
means that person g answered the question m with yes. (If the answers to the questions
in a survey are not binary, then one can transform them into binary attributes with the
method of conceptual scaling, see below.) A formal concept of the context K is a pair
(A,B) of a set A ⊆ G of objects, called extent, and a set B ⊆ M of attributes, called
intent, with the following properties:

1. Every object g ∈ A has every attribute m ∈ B (i.e.: ∀g ∈ A∀m ∈ B : gIm).

2. There is no further object g ∈ G\A that has also all attributes of B (i.e.: ∀g ∈ G :
(∀m ∈ B : gIm) =⇒ g ∈ A).
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3. There is no further attribute m ∈M\A that is also shared by all objects g ∈ A (i.e.
∀m ∈M : (∀g ∈ A : gIm) =⇒ m ∈ B).

Conceptually, the concept extent describes, which objects belong to the formal concept
and the intent describes, which attributes characterize the concept. The property of being
a formal concept can be characterized with the following operators

Φ : 2M −→ 2G : B 7→ {g ∈ G | ∀m ∈ B : gIm}
Ψ : 2G −→ 2M : A 7→ {m ∈M | ∀g ∈ A : gIm}

as
(A,B) is a formal concept ⇐⇒ Ψ(A) = B & Φ(B) = A.

This can be verbalized as: “The pair (A,B) is a formal concept iff B is exactly the set of
all common attributes of the objects of A and A is exactly the set of all objects having all
attributes of B.” In the sequel, we will abbreviate both Ψ and Φ with ′. (Which of the
two operators is meant will be always clear from the context.) Furthermore, for singleton
sets {g} ⊆ G or {m} ⊆M we abbreviate {g}′ by g′ and {m}′ by m′.

On the set of all formal concepts we can define a subconcept relation as

(A,B) ≤ (C,D) ⇐⇒ A ⊆ C & B ⊇ D.

(Actually, for formal concepts the equivalence A ⊆ C ⇐⇒ B ⊇ D holds.) If the concept
(A,B) is a subconcept of (C,D) then it is a more specific concept containing less objects
that have more attributes in common. The set of all formal concepts of a context K
together with the subconcept relation is called the concept lattice of K and it is denoted
with B(K). The concept lattice is in fact a complete lattice. The set of the concept
extents of all formal concepts of B(K) is denoted with B1(K) and the set of all concept
intents is denoted with B2(K). The family of sets B1(K) is a closure system on G and
the family B2(K) is a closures system on M : A (set-theoretic) closure system S on a
space Ω is a family S ⊆ 2Ω of subsets of Ω that contains the space Ω and is closed under
arbitrary intersections. If a family F of subsets of a space Ω is not a closure system, one
can compute its closure cl(F) :=

⋂{S | S ⊇ F & S is a closure system on Ω} that is
the smallest closure system containing all sets of F .

Every closure system S on Ω can be described by all valid formal implications of S: A
formal implication is a pair (Y, Z) of subsets of Ω, also denoted by Y −→ Z. We say
that an implication Y −→ Z is valid in a family S of subsets of Ω (which needs not to be
a closure system) if every set of S that contains all elements of Y also contains all elements
of Z. In this case we also say that the family S respects the implication Y −→ Z.
Similarly, we say that a subset of Ω respects an implication Y −→ Z if it either is not
a superset of Y or if it is a superset of Z. The first component of a formal implication
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is also called the premise or the antecedent and the second component is also called
conclusion or the consequent of the formal implication. A formal implication is called
simple if its premise is a singleton.

A closure system S can be characterized by formal implications as follows: Define for
S the set I(S) of all formal implications that are valid in S. Then, given the set I(S), the
closure system S can be rediscovered from I(S) as the set of all subsets of Ω that respect
all formal implications of I(S). The set I(S) of all valid implications of a closure system
S is usually very large. To efficiently describe a closure system, it suffices to look at a
so-called implication base of I(S): Given an arbitrary set I of formal implications, we say
that a further set J of implications is a base of I, if we have

∀M ⊆ Ω : M respects all implications of I ⇐⇒ M respects all implications of J (1)

and if furthermore J is minimal w.r.t. this property, i.e. for every other subset J′ ( J
the equivalence (1) is not valid anymore. In the sequel, we will mainly deal with formal
implications of the closure system of the concept intents of a given formal context K.
Such implications are sometimes also called attribute-implications to indicate that one
is speaking about implications between attributes and not between objects of a context.
Here, we will always use the short term implications and will also say that an implication
is valid in a context K instead of saying that an implication is valid in the closure system
of all concept intents of K.

In the context of statistical data analysis one often has data that are not binary but
for example categorical with more than two possible values. To analyze such data with
methods of formal concept analysis one can use the technique of conceptual scaling
(cf. [Ganter and Wille, 2012, p.36-45]) to fit the categorical data into a binary setting:
For a categorical variable with the possible values in {1, . . . , K} one can introduce the K
attributes “= 1”, . . . ,“= K” and say that an object g has attribute “= i” if the value of K
equals i. In a similar way, for an ordinal variable with possible values {1 < 2 < . . . < K}
we can introduce the attributes “≤ 1”,“≤ 2”,. . ., “≤ K” and say that object g has attribute
“≤ i” if the value of object g is lower than or equal to i. One can also additionally introduce
the attributes “≥ 1”, . . ., “≥ K”. This concrete way of conceptually scaling an ordinal
variable is called interordinal scaling and will be used in one example of application
given in Section 6.2.

3 Detecting stochastic dominance

We now turn to the development of a technique for detecting stochastic dominance for
poset-valued random variables based on linear programming and the upset-characterization
of stochastic dominance.
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3.1 Characterizing stochastic dominance via linear programming

Let (V,≤) = ({v1, . . . , vk},≤) be a finite poset7, let x = (x1, . . . , xnx) be an i.i.d. sample
of a random variable X and let y = (y1, . . . , yny) be an i.i.d. sample of Y . Let wx =
(wx1 , . . . , w

x
k) where wxi denotes the number of observed samples of X with value vi, divided

by nx. Analogously, let wy = (wy1 , . . . , w
y
k) where wyi denotes the number of samples

of Y with value vi, divided by ny. With U((V,≤)) we denote the set of all upsets of
(V,≤). We identify an upset M ∈ (V,≤) with its characteristic vector m ∈ {0, 1}k via
mi = 1 ⇐⇒ vi ∈ M . Additionally, we also identify the relation ≤ with the relation
{(i, j) | i, j ∈ {1, . . . , k}, vi ≤ vj}, the same for the covering relation l. To the samples x

and y we associate the empirical analogue P̂ of the true law P via P̂ (X = vi) = wxi and
P̂ (Y = vi) = wyi . To check if X ≤ŜD Y we have to check

∀M ∈ U((V,≤)) :P̂ (X ∈M) ≤ P̂ (Y ∈M). (2)

Obviously, P̂ (X ∈ M) = 〈wx,m〉 and P̂ (X ∈ M) = 〈wx,m〉, so (2) is equivalently
characterizable as

∀M ∈ U((V,≤)) : P̂ (X ∈M) ≤ P̂ (Y ∈M)

⇐⇒ ∀M ∈ U((V,≤)) : 〈wx,m〉 ≤ 〈wy,m〉
⇐⇒ ∀M ∈ U((V,≤)) : 〈wx,m〉 − 〈wy,m〉 ≤ 0

⇐⇒ ∀M ∈ U((V,≤)) : 〈wx − wy,m〉 ≤ 0

⇐⇒ sup
M∈U((V,≤))

〈wx − wy,m〉 ≤ 0.

This means that the problem is characterizable as a linear program over the family
S := U((V,≤)) of subsets of V . To solve this program we can look at the concrete structure
of the family S. The family S consists of all upsets of (V,≤), i.e., of all sets M satisfying

∀i, j ∈ {1, . . . , k} : vi ∈M & vi ≤ vj =⇒ vj ∈M
which is equivalent to

∀i, j ∈ {1, . . . , k} : vi ≤ vj =⇒ mj ≥ mi

and this set of inequalities can be easily implemented in a linear program:
We have X ≤ŜD Y if and only if the linear binary program

〈wx − wy,m〉 −→ max (3)

w.r.t.

m ∈ {0, 1}k
∀(i, j) ∈≤: mj ≥ mi

7This is actually no restriction because we are in the first place interested in detecting stochastic
dominance for samples that are always finite.
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has a maximal value of zero. (Note that the maximal value of (3) is always at least 0,
because for M = ∅ we have 〈wx − wy, (0, . . . , 0)〉 = 0.) If one analyzes this above binary
program further (see the last paragraph of Section 4.1 at page 21), one sees that it is not
necessary to take the mi as binary variables, one can relax the integrality conditions and
solve instead the far more simple classical linear program

〈wx − wy,m〉 −→ max (4)

w.r.t.

m ∈ [0, 1]k

∀(i, j) ∈≤: mj ≥ mi

which could be further simplified to

〈wx − wy,m〉 −→ max (5)

w.r.t.

m ∈ [0, 1]k

∀(i, j) ∈ l : mj ≥ mi.

In the sequel we will denote the maximal value of (5) with D+ and the optimal value
one would get if one would replace maximization by minimization in (5) with D−.

3.2 Some analysis of the linear programming approach for de-
tecting stochastic dominance

The obtained linear program for checking dominance involves k decision variables and
|l|+k inequalities, where |l| can be shown to be bounded by bk

2
c·dk

2
e, which indicates that

the linear program is practically manageable for real data sets. One interesting question in
this context is how the feasible set of the linear program looks like in special situations and
what for example the simplex-algorithm would actually do. In applied situations, the poset
(V,≤) is often of the form V = Rd or {0, . . . , K}d and x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xi ≤ yi.
For checking stochastic dominance only the actually observed x ∈ V are of interest.This
helps in reducing the effective size of the poset V but at the same times makes the structure
of V only implicitly given. Thus, a general analysis seems to be difficult and we therefore
restrict the analysis in Section 3.2.1 to some simple examples.

3.2.1 Some examples

In this section we exemplarily discuss some examples for posets (V,≤) of the form V =
{0, . . . , K}d and x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xi ≤ yi. We start with the simplest example
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where d = 1 which corresponds to a linearly ordered set V = {0 < 1 < . . . < K}. Then
the linear program (5) would translate to

〈wx − wy,m〉 −→ max

w.r.t.

m ∈ [0, 1]k


1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

...
0 0 0 . . . 1 −1




︸ ︷︷ ︸
=:A




m1

m2
...
mk


 ≤




0
0
...
0




In this case the extreme points of the feasible set are simply the vectors of the form
ml = (0, . . . , 0︸︷︷︸

l-th entry

, 1, 1, . . .), where l ∈ {0, . . . , k}. For l, l′ ∈ {1, . . . , k − 1} it is easy to

see that every two different extreme points ml and ml′ are adjacent because A has full
rank and for ml the inequality constraint associated to the l − th row of A is strict where
the other inequalities are actually equalities and to “switch” from ml to ml′ one simply has
to switch the l′− th variable from basis to non-basis and the l− th variable form non-basic
to basic. A similar argumentation shows that also for arbitrary l, l′ ∈ {0, . . . , k} every two
different extreme points are adjacent which means that applying the simplex algorithm
would in this case exactly mean that one scans every extreme point, i.e. every upset, so
the simplex algorithm is not better than a naive inspection of every upset. However in
the case of a linearly ordered set the number of upsets is |V | and thus no problem from a
computational point of view.

Now we come to the more difficult cases of d > 1. In these situations the feasible set
of the linear program appears to be not so easily describable, there seems to be no simple
rule that says which extreme points are adjacent. Table 1 gives lower and upper bounds8

for the size u of the closure system of all upsets of {0, . . . , K}d for different values of K and
d. One can see that for high enough K or d the closure system is very big and explicitly
checking all upsets is clearly not applicable. Compared to this, in Table 2 one can see the

8The upper bounds were computed with the help of the Sauer-Shelah lemma ([Sauer, 1972,
Shelah, 1972]). The Sauer-Shelah lemma is also closely related to Vapnik-Chervonenkis theory
which we use in Section 5.2, see also Bottou [2013] or http://leon.bottou.org/_media/papers/

vapnik-symposium-2011.pdf for the curious history of the Sauer-Shelah lemma. The lower bounds were

obtained by noting that for every l ∈ {1, . . . ,K} the set Al := {x ∈ {0, 1, . . . ,K}d |
d∑

i=1

xi = l} of all

K-bounded multisets of rank l is an antichain and thus for every non-empty set B ⊆ Al we get a different

upset ↑ B. Thus, u ≥
K∑
l=1

(2|Al| − 1) + 2, where the last +2 comes from noting that also the empty set and

the whole set V are upsets, and the cardinality |Al| can be computed recursively.
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number of iterations a dual simplex algorithm did take to get a solution. (For the objective
function we simply took a standard normally distributed sample.) This indicates that with
the linear programming approach the problem is still solvable for larger values of K and d.

d
1 2 3 4 5 6 7 8

K=1
lower bound 2 5 16 95 2110 1.1e+06 6.9e+10 1.2e+21
upper bound 2 10 9.2e+01 1.5e+04 1.1e+08 3.4e+16 5.1e+31 1.5e+64

K=2
lower bound 3 15 2.7e+02 6.6e+05 2.3e+15 2.8e+42 2.0e+118
upper bound 3 129 1.3+06 2.1e+18 1.4e+53 1.5e+154

K=3
lower bound 4 37 1.0e+04 2.0e+13 9.1e+46 4.0e+174
upper bound 4 2516 4.2e+12 8.6e+49 4.6e+187

K=4
lower bound 5 83 1.1e+06 4.1e+25 4.9e+114
upper bound 5 68405 1.6e+22 4.7e+106

K=5
lower bound 6 177 3.4e+08 9.2e+43 1.3e+235
upper bound 6 2391495 2.1e+34 5.5e+196

K=6
lower bound 7 367 2.9e+11 3.5e+69
upper bound 7 102022809 7.0e+49

K=7
lower bound 8 749 7.1e+14 3.6e+103
upper bound 8 5130659560 1.0e+68

K=8
lower bound 9 1515 4.9e+18 1.6e+147
upper bound 9 296881218693 6.9e+89

Table 1: Upper and lower bounds for the size u of the closure system of all upsets of
{1, . . . , K}d for different values of K and d.

d

K 1 2 3 4 5 6 7
1 0 0 7 18 18 92 239
2 4 3 19 156 796 3861 23002
3 3 78 208 1901 4456 24628 27271
4 17 86 626 3518 23002 24173 24923
5 12 200 2380 10987
6 29 353 2023 23002
7 60 396 4959
8 87 572 7698

Table 2: Number of iterations for solving the linear program via dual simplex for detecting
stochastic dominance for V = {0, . . . , K}d for different values of K and d. The objective
function was a standard normally distributed random sample.

3.2.2 Duality

In this section, we analyze the dual linear program of program (4) for detecting first order
stochastic dominance. The most interesting inside will be that this dual program can be
interpreted as a special kind of mass transportation problem. In order to determine the
dual program of program (4), first note that the second class of constraints of problem (4)
can equivalently be rewritten as

∀i, j ∈ {1, . . . , k} : mi ≥ Iij ·mj (6)
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where Iij := 1<((vj, vi)) and < denotes the strict part of the partial order ≤. By defining
for each i ∈ {1, . . . , k}, the matrix M (i) ∈ Rk×k via

M (i)
pq =





Iip if p = q

−1 if q = i ∧ q 6= p

0 else

(7)

one then can reformulate the linear programming problem (4) by the equivalent linear
programming problem

〈wx − wy,m〉 −→ max (8)

w.r.t.

m1, . . . ,mk ≥ 0


Ek
M (1)

...
M (k)


 ·m ≤ (1, . . . , 1︸ ︷︷ ︸

k−times

, 0, . . . , 0︸ ︷︷ ︸
k2−times

)T =: b

where Ek denotes the k-dimensional unit matrix. Define wxy := wx − wy and z :=
(x1, . . . , xk, z11, . . . , z1k, . . . , zk1, . . . , zkk) and let b be defined as in the constraints of the
above linear program (8). Then the dual linear program of (8) is given by:

k∑

l=1

xl = 〈b, z〉 −→ min (9)

w.r.t.

z ∈ Rk+k2

≥0

(
Ek M (1)T . . . M (k)T

)
· z ≥



wxy1

...
wxyk
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In order to investigate what duality theory can teach us about our original problem, we
rewrite the program (9) as:

k∑

l=1

xl −→ min (10)

w.r.t.

z ∈ R+
k+k2

∀i ∈ {1, . . . , k} : xi −
∑

s∈{1,...,k}\{i}
zis +

∑

s∈{1,...,k}\{i}
Isi · zsi ≥ wxyi

For variables zis with Iis = 0, for finding an optimal solution one can always set zis to zero,
because such zis are not present in the objective function and do occur separated only in
the i− th inequality constraint with a negative sign. Thus, the program can be simplified
to

∀i ∈ {1, . . . , k} : xi −
∑

s∈{1,...,k}\{i}
Iis · zis +

∑

s∈{1,...,k}\{i}
Isi · zsi ≥ wxyi ,

which again can be simplified to

∀i ∈ {1, . . . , k} : xi −
∑

{s:vs<vi}
zis +

∑

{s:vi<vs}
zsi ≥ wxyi . (11)

Note that the resulting program (10) with the rewritten version (11) of the constraints
is very similar, yet not identical to the mass transport algorithm for detecting stochastic
dominance discussed in [Range and Østerdal, 2013, p. 5]: In case the optimal objective
of the program equals 0, the values z∗ij can be interpreted as the probability masses that
need to be transported from strictly greater elements to strictly smaller elements w.r.t.
≤ in order to obtain the distribution of X from the distribution of Y (which exactly
corresponds to characterization iii) of first order stochastic dominance that was recalled
in the introduction). The main difference of our program (10) and the problem discussed
in [Range and Østerdal, 2013, p. 5] is that, while there the authors have two classes
of constraints, one class for the masses transported into each node and one class for the
masses transported out of each node, our set of constraints considers the masses that are
transported inside in- and out of each node simultaneously.

Note that there are also attempts to interpret the value of the sum
∑

ij z
∗
ij of the optimal

z∗ij values, or a weighted version of it in cardinal settings (see [Tarp and Østerdal, 2007,
p.19-20]), as a measure for the extent of stochastic dominance that is given in the situation
under consideration. However, as discussed in further detail in Section 3.3, in this paper
we argue that in order to detect the extent of stochastic dominance using the optimal value
of (10) might be a more sensible indicator for the extent of stochastic dominance since it
avoids certain counter-intuitive characteristics.
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In order to get a better impression of the structure of the above dual programming
problem, we consider the following example: Suppose the poset V consists of seven ele-
ments, namely V = {v1, . . . , v7}. Moreover, suppose the partial order ≤ is specified by the
following incidence matrix M :

M =

v1 v2 v3 v4 v5 v6 v7

v1 1 1 1 1 1 1 1
v2 0 1 0 0 1 1 1
v3 0 0 1 0 1 1 1
v4 0 0 0 1 1 1 1
v5 0 0 0 0 1 0 1
v6 0 0 0 0 0 1 1
v7 0 0 0 0 0 0 1

where we have that Mij = 1 if and only if vi ≤ vj. Finally, suppose we have observed sam-
ples of X and Y and computed the vectors wx and wy. Then, the dual linear programming
problem from (10) takes the following form:

7∑

l=1

xl −→ min

w.r.t.

(x1, . . . , x7, z11, z12, . . . , z76, z77) ∈ R+
56

x1 + (z21 + z31 + z41 + z51 + z61 + z71) ≥ wxy1

x2 − (z21) + (z52 + z62 + z72) ≥ wxy2

x3 − (z31) + (z53 + z63 + z73) ≥ wxy3

x4 − (z41) + (z54 + z64 + z74) ≥ wxy4

x5 − (z51 + z52 + z53 + z54) + (z75) ≥ wxy5

x6 − (z61 + z62 + z63 + z64) + (z76) ≥ wxy6

x7 − (z71 + z72 + z73 + z74 + z75 + z76) ≥ wxy7

First, consider the observed samples lead to vectors wx = (1
7
, 1

7
, 1

7
, 1

7
, 1

7
, 1

7
) and wy =

(1
7
, 0, 0, 0, 2

7
, 2

7
, 2

7
). For that case, the optimal objective of the above programming problem

is 0 (which, due to duality and Proposition 3.1, also indicates that Y first-order stochastic
dominatesX). A corresponding optimal solution vector is given by (x∗1, . . . , x

∗
7, z
∗
11, . . . , z

∗
77),

where every component equals 0 except of z∗54 = z∗63 = z∗72 = 1
7
. As discussed before, the z∗ij

variables exactly describe how the distribution of X can be obtained from the distribution
of Y by a finite number of probability mass transfers to strictly smaller elements with
respect to the partial order ≤. In our example, the distribution of X can be obtained from
that of Y by transferring mass 1

7
from node v5 to v4, mass 1

7
from node v6 to v3 and mass

1
7

from node v7 to v2. This is illustrated in Figure 1.
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v1

v2 v3 v4

v5 v6

v7

1

7

1

7

1

7

Figure 1: Mass transfer problem for wx = (1
7
, 1

7
, 1

7
, 1

7
, 1

7
, 1

7
) and wy = (1

7
, 0, 0, 0, 2

7
, 2

7
, 2

7
).

A natural question is the following: Do optimal solutions of the programming problem
(10) still possess a meaningful interpretation for the case that Y does not stochastically
dominate X? To address this question, suppose we, instead of the previous situation,
observed the vectors wx = 1

28
· (4, 5, 6, 2, 1, 3, 7) and wy = 1

28
· (4, 2, 5, 7, 6, 1, 3). In that case,

the optimal objective of our example is 6
28

(which indicates that Y does not stochastically
dominate X by the same argument as given above) and an optimal solution vector is given
by (x∗1, . . . , x

∗
7, z
∗
11, . . . , z

∗
77), where all components equal 0 except x∗6 = 2

28
, x∗7 = 4

28
, z∗52 = 3

28

and z∗53 = 1
28

. Indeed, also in the case of a non-dominant Y we receive a straightforward
interpretation: Compared to the case of stochastic dominance, where the whole probability
mass can be transported from higher values to lower values to obtain X from Y , in the case
of non-dominance, not all mass can be transported and the optimal value of (10) could be
understood as the amount of probability mass that cannot be transported and thus has to
be externally introduced to supply X with enough probability mass. Again, the optimal
solution is illustrated in Figure 2.

3.3 The minimal value as a measure of the extent and the argmin
as an insight into the actual manifestation of dominance

With the linear program (5) we can detect stochastic dominance. However, as already
betoken, generally one is not only interested in the presence or absence of stochastic
dominance, one would also like to get some rough idea about the “extent” of dominance.
In our very general setting of random variables/data with only a partially ordered
scale of measurement, a reasonable definition of the term extent of dominance is not
straight forward. Therefore, we will firstly go one step back and reconstruct, how the
upset characterization of stochastic dominance, that was introduced only in purely
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v1

v2 v3 v4

v5 v6

v7

w
xy

1
= 0

w
xy

2
≈ 0.11

w
xy

3
≈ 0.36 w

xy

4
≈ −0.18

w
xy

5
≈ −0.18

w
xy

6
≈ 0.07

w
xy

7
≈ 0.14

z
∗

52 ≈ 0.11 z
∗

53 ≈ 0.04
+x

∗

6 ≈ 0.07

+x
∗

7 ≈ 0.14

Figure 2: Mass transfer problem for wx = 1
28
·(4, 5, 6, 2, 1, 3, 7) and wy = 1

28
·(4, 2, 5, 7, 6, 1, 3).

mathematical terms until now, can be concretely interpreted in conceptual terms. We
will do this by relying on one prototypic example of poverty/inequality analysis9. To
make it simple, we will start with the notion of income poverty as a simple example
of univariate poverty/inequality analysis. Consider for example that one is interested
in the differences of income-poverty in two countries. One simple approach is here to
firstly define a so-called poverty line c and to say that every person with income below
the poverty line c can be termed poor whereas all persons with an income above the
poverty line c can be termed non-poor. (The terms poor and non-poor are meant here in
a purely descriptive sense free from value judgment). If the poverty line could be defined
in a reasonable manner from a substance matter point of view, then for “measuring”
the extent of inequality, one can compare the proportions of the poor persons in the two
countries (also called head count ratio), for example by looking at the differences of the
proportions in the wo countries. If it is difficult to specify the poverty line c, then one can
get rid of the need for the specification of the poverty line by simultaneously looking at
every reasonable poverty line c. If, independently from the choice of the poverty line c,
the proportion of the poor is always greater for one country than for the other country,
one can reasonably say that the income-poverty in one country is clearly greater than
the income-poverty in the other country, which is exactly saying that one country is
dominated by the other w.r.t. classical univariate first order dominance. In the situation
of a given, fixed poverty line c, one can measure the extent of poverty for example with
the income gap ratio, which is the relative difference between the income of the poor and
the poverty line. The difference of the income gap ratios can then be used to measure

9Of course, in other concrete situations, the conceptual reconstruction done here could be less convin-
cing.
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the difference in the extent of poverty between the two countries. Compared to this,
in the situation of multivariate inequality analysis, the involved dimensions of poverty
like e.g. health or education are often only of ordinal scale of measurement. Of course,
other dimensions like income have a higher scale of measurement, but this does not help
in assessing, which amount of increase of income can compensate for which decrease in
health or education. Of course, one can standardize every dimension in a reasonable way,
but this would lead to a relative notion of inequality. Here, we go another way and use
a notion of “extent” of dominance that is not related to units of the different dimensi-
ons but that is only based on the proportion of persons that are termed non-poor (or poor).

To do so, let us firstly think about the translation of the notion of a poverty line to
the multivariate case: In the univariate case of income inequality we said that persons
with income below the poverty line c could be termed poor, and the persons with income
above the poverty line could be termed non-poor. In the multivariate setting, the way
to term persons as poor or non-poor is only restricted by the underlying partial order
≤. If one terms one person i as poor, then one should also declare a person j as poor if
the attributes xj of person j are all lower than or equal to the attributes xj of person
xj (i.e. xi ≤ xj). This is exactly the concept of a downset of a partially ordered set:
Every downset M of a poset (V,≤) is a reasonable concretion of the term poor in the
sense that all x ∈ M can be called poor and all x /∈ M could be called non-poor. The
notion of a downset is the natural generalization of the notion of a poverty line to the
multivariate case. In the sequel, we will deal with upsets instead of downsets. Dually to
the notion of downstes, the notion of upsets10 models the reasonable concretions of the
term non-poor instead of the term poor. We can now interpret the maximal value D+

and the minimal value D− of the linear program (5) for detecting stochastic dominance:
For the prototypic example of inequality analysis, if the maximal value D+ is zero, then
we know that X is stochastically dominated by Y , meaning that the proportion of the
non-poor persons in subpopulation Y is greater than or equal to the proportion of the
non-poor persons in subpopulation X, independently from the concretion of the term
non-poor. Furthermore, in this case the minimal value D− can be interpreted as some
measure of the extent of stochastic dominance. The value D−is exactly the difference
between the proportions of non-poor persons of the two countries for that concretion
of the term non-poor that is the most conservative in the sense that it maximizes the
absolute value of the difference in proportions between the two countries. The extent
of stochastic dominance can thus be measured to some extent with the minimal value
of (5) with the following clear interpretation: The absolute value of D− is exactly the
proportion of poor persons in the poorer country that would have to be made non-poor to
make the proportions of the poor (and thus also he proportions of the non-poor) in both
countries the same, where the notion of poor is the most conservative, i.e., for every other
reasonable notion of poor one would only have to make a smaller proportion of poor people
of the poor country non-poor to make the proportions of the poor the same in each country.

10Note that the complements of downsets are upsets and that the complements of upsets are downsets.
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As already mentioned, in [Tarp and Østerdal, 2007, p.19-20], a similar quantity for me-
asuring the extent of dominance was proposed. There, the authors use the characterizing
property (iii) of stochastic dominance and they measure the extent of dominance by the
(weighted) amount of probability mass that is needed to obtain the density fX from fY .
However, the used measure seems to be not very sensitive in the following specific sense:
Assume for simplicity real-valued random variables X and Y . Assume further that X is a
simple transformation of Y , concretely X := Y − ε with positive but very small ε. Then,
one would have to transport the whole probability mass to obtain fX from fY no matter
how small the value ε is. This seems to be a very undesirable property of this measure of
the extent of dominance. In such a situation, the measure D− of extent proposed here
behaves differently. For example if X and Y are normally distributed, then the maximal
value D− of (5) would be strictly increasing in ε and would furthermore converge to zero
if ε converges to zero. For constant random variables X and Y the measure D− would be
either zero (if ε is zero) or one (if ε is grater than zero). This seems counter-intuitive at
first glance, the measure is insensitive to the distance between X and Y . Actually this
behavior is adequate, because one presumes only an ordinal scale of measurement for X
and Y here, and thus one cannot reasonably measure the distance between X and Y . The
fact that one could actually be sensitive to the distance between X and Y in the normally
distributed case is due to the fact, that with our measure, we do not directly measure
(non-existing) distances in the space of the values of X and Y , instead we measure
indirectly the “distance” between X and Y by the amount of probability mass that has
to be transported to compensate inequality for the most conservative choice of a poverty
line.

While the value of D− gives a quantitative insight in the extent of dominance, the
upset U , where D− is attained additionally gives a further more qualitative insight into
how the worst possible concretion of the term poor, for which the maximal inequality in
poverty is attained, looks like. This could be interesting for example if one is interested
in the question, if the purely mathematical formalization of poor and non-poor via upsets
is maybe too rigorous and if an extreme value of the test statistic is only due to an
upset representing a very “skewed” concretion of the term non-poor, that could maybe
be excluded as a reasonable concretion of the term poor because of substance matter
considerations. In such a situation on may use the regularization techniques developed in
Section 5.3.

3.4 Checking stochastic dominance as a linear program on a clo-
sure system

One important point to note is that the way we incorporated the property of being an
upset was by introducing simple inequalities of the form mj ≥ mi for all pairs (i, j) ∈ l.
In the language of formal implications this means that we demanded that an upset should
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contain with every vi also every vjmvi, which is exactly saying that the formal implication
{vi} −→ {vj} should be valid in the closure system of upsets. In fact, for the closure system
S of upsets, the essential implications are the implications of the form {vi} −→ {vj} with
vi l vj, because all these implications are respected by S and they already describe S
in the sense that they are a base of all valid implications. (Obviously there are further
redundant implications like e.g. {vi} −→ {vi} or {vi, vk} −→ {vj} with vi ≤ vj and
vk arbitrary.) For the case of upsets we were especially lucky, because all such essential
implications had a simple premise (meaning that the premise A in A −→ B is a singleton)
and thus we could implement this implications via simple inequalities mi ≤ mj and could
furthermore drop the integrality constraints. There are other situations that are such
simple, too: Due to Birkhoffs theorem ([Birkhoff, 1937]), every (finite) closure system
that is additionally closed under union11 is describable via simple formal implications, and
examples of such kinds of closure systems arise for example in the context of quasi-ordinal
knowledge space theory (see, e.g., [Doignon and Falmagne, 2012, p.38-40], note also that
there are neat connections between knowledge space theory and formal concept analysis,
cf., [Rusch and Wille, 1996]). A natural question is now: Can we still solve the problem
of maximizing/minimizing a linear function on an arbitrary closure system that is not
describable via simple implications and could this have some application? The answer is
simply yes: The next sections will give two examples of closure systems that are either
explicitly given by an implication base or that are implicitly given as the concept extents
of a given formal context.

4 Linear programming on general closure systems

4.1 The case of closure systems efficiently described by formal
implications

In some situations, a closure system that is very big can still be efficiently described by
an implication base of all valid implications. One example is the closure system C(R2) of
all convex sets in R2 that could be of interest in the context of spatial statistics. The set
of all valid implications of C(R2) is given by I = {A −→ co(A) | A ⊆ R2} where co is the
operator that maps a set to its convex hull. Because of Carathéodory’s theorem for convex
hulls12 the system L = {A −→ co(A) | A ⊆ R2, |A| ≤ 3, co(A) ) A} is an implication
base of I. In statistical applications in the context of spatial data analysis, for example
in ecology, one is interested in differences in the spatial distribution of different species,
for example male and female Pacific cods in the eastern Bering Sea analyzed in Syrjala
[1996]. To describe differences in the spatial distributions of the two subpopulations, one

11The closure system of upsets is such a system.
12Carathéodory’s theorem states that if a point x ∈ Rd lies in the convex hull of a set P of points, then

there exists a subset Q ⊆ P of at most d+ 1 points such that x lies also in the convex hull of Q.
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can use common test statistics13: Here, test statistics of many different statistical tests are
available, for example generalizations of the Kolmogorv-Smirnov test or generalizations
of the Cramér von Mises test (see [Syrjala, 1996]) could be used. For the Kolmogorov-
Smirnov type generalization one determines for every rectangular area the difference in the
proportion of male and female cods. Then one computes the maximal difference over all
rectangular areas. This method needs a specification of a rectangular coordinate system
and the results are dependent on the concrete choice of this coordinate system. Opposed
to this, one could also simply look not only at all rectangular, but instead at all convex
areas and then compute the maximal difference. This would be exactly an optimization
of a linear function on a closure system. The result of the optimization on all convex sets
instead of all rectangular areas would then be independent of the choice of a coordinate
system, because for the definition of convexity, no specification of a coordinate system is
needed at all. If one did observe cods at altogether k spatial points (v1, . . . , vk) then one
actually does not need to look at the whole closure system C(R2), it suffices to look only at
the projected closure system C({v1, . . . , vk}) := {A∩{v1, . . . , vk} | A ∈ C(R2)}. To compute
the test statistic one can solve a binary program, where all implications are implemented
as inequality constraints. This method is generally applicable for arbitrary closure systems
with a given implication base: For a given implication base L of an arbitrary finite closure
system, one can compute the statistic

sup
A∈⊆V, A respects L

〈wx − wy,1A〉

by solving the following binary program:

〈wx − wy,m〉 −→ max

w.r.t.

m ∈ {0, 1}k

∀(Y, Z) ∈ L :
∑

i:vi∈Y
mi −

1

|Z|
∑

i:vi∈Z
mi ≤ |Y | − 1.

Here, for any given implication Y −→ Z of L, the corresponding inequality constraint
of the binary program is automatically satisfied if the premise of Y −→ Z is not fulfilled,
because then the left hand side is lower than |Y | − 1. If the premise Y is fulfilled, then the
corresponding inequality translates to − 1

Z

∑
i:vi∈Z

mi ≤ −1 or equivalently to 1
Z

∑
i:vi∈Z

mi ≥ 1,

thus demanding that all mi with i ∈ Z should be one, meaning that if the set described
by the indicator function (m1, . . . ,mk) contains all elements of Y , then it should also
contain all elements of Z. In our concrete situation of convex sets we would have to solve a
binary program with n decision variables and O(n3) inequality constraints. Unfortunately,

13Here, in the first place we are mainly interested in the test statistic as a descriptive tool, the problem
of inference will be discussed in a general setting in Section 5.
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generally, the integrality constraints cannot be dropped, here. Thus, the program becomes
very difficult to solve if n is large.

An important case where one can actually drop the integrality constraints is the case
where one has only simple implications: In this case one can implement every simple
implication {vi} −→ {vj} as the inequality mi ≤ mj. To see that one can drop the
integrality constraints in this case, observe that any feasible vector (m1, . . . ,mk) of the
relaxed program with some ml /∈ {0, 1} is not an extreme point of the feasible set of the
relaxed program, since for ε > 0 chosen small enough (for example ε = 1/2 min{|mi−ml| |
i ∈ {1, . . . , n},mi 6= ml}) it can be represented as the convex combination of the two

feasible vectors m+ xε and m− xε where xε ∈ Rk is defined as xεi =

{
ε if mi = ml

0 else
.

4.2 The case of closure systems efficiently described by a gene-
rating formal context

Closure systems also naturally arise in the theory of formal concept analysis: the family
of all formal concept extents (as well as the family of all concept intents) of a concept
lattice is a closure system. Furthermore, every arbitrary closure system can be represented
as a closure system of extents (or intents) of an appropriately chosen formal context14.
In statistical applications, it appears natural to take as objects the observed data points,
for example persons in a social survey. As attributes one can take the values of different
variables of interest, for example the answers of the persons to different questions. (If
the questions are yes-no questions, then they can be incorporated directly, otherwise one
can apply the method conceptual scaling to get binary data, cf. Section 2.2.) The formal
concept lattice then gives valuable qualitative information about different subgroups of
persons that supplied response patterns that belong to the same formal concept and thus
share specific attributes. If one is interested in differences between different subgroups
(e.g., male and female participants) w.r.t. the answers to the questions, one could look at
every formal concept and analyze the differences between the subpopulations that belong
to the given concept. Often, the concept lattice is very large and it becomes difficult to
look at every formal concept. Then, one can look for example only on that concepts,
for which the difference between the proportions of persons belonging to this concept in
each subgroup is maximal or minimal. This is exactly the problem of maximizing a linear
function on the closure system of concept extents. If the whole concept lattice can be
computed explicitly, then one can simply explicitly compute for every extent the difference
in proportions between both subpopulations. However, in many situations the concept
lattice is so big that it is very hard to compute all extents/intents explicitly to perform
the optimization. (In the worst case, a formal context can have min(2|G|, 2|M |) associated

14For a closure system S ⊆ 2V take the formal context K := (V,S,∈), then the formal extents are
exactly the sets of S. Analogously, for the dual context K := (S, V,3), the formal intents are exactly the
sets of S.
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formal concepts.) In this situation one can use the fact that a pair (A,B) with A ⊆ G and
B ⊆M is a formal concept iff

A = B′ & B = A′

or equivalently iff

∀g ∈ G,m ∈M : 1A(g) = min
m∈B

1m′(g) & 1B(m) = min
g∈A

1g′(m). (12)

Characterization (12) can be used to describe the property of being a formal concept with
the help of the following characterizing inequalities:

∀g ∈ G,m ∈ B : 1A(g) ≤ 1m′(g) (13)

∀g ∈ A,m ∈M : 1B(m) ≤ 1g′(m) (14)

∀g ∈ A,m ∈ B : 1A(g) ≥
∑

m∈B
1m′(g)− |B|+ 1 & (15)

1B(m) ≥
∑

g∈A
1g′(m)− |A|+ 1. (16)

Equations (13) and (21) capture the fact that 1A(g) ≤ min
m∈B

1m′(g) and 1B(m) ≤
min
g∈A

1g′(m), respectively. Equations (15) and (16) say that 1A(g) ≥ min
m∈B

1m′(g) and

1B(m) ≥ min
g∈G

1g′(m), respectively, which is equivalent to the condition that if an ob-

ject g has all attributes of B then it has to be in the extent A and that if an attribute m
is shared by all objects of A, then it should be in the intent B. The characterization via
inequality constraints can be used to optimize a linear function of the indicator function
of the extents (or the intents, or both) with a binary program: Let G = {g1, . . . , gm} be
the set of objects, M = {m1, . . . ,mn} the set of attributes and let A ∈ {0, 1}m×n be a
matrix describing the incidence I with the interpretation Aij = 1 ⇐⇒ object number
i has attribute number j. A formal concept can then be described by a binary vector
z = (z1, . . . , zm, zm+1, . . . , zm+n) ∈ {0, 1}m+n, where the first m entries describe the extent
via zi = 1 iff object i belongs to the extent and the last n entries describe the intent as
zj+m = 1 iff attribute j belongs to the intent. The characterizing constraints (13) - (16)
would then translate to the conditions

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m & zj+m ≤ 1− zi (17)

∀i ∈ {1, . . . ,m} : zi ≥
∑

k:Aik=1

zk+m −
∑

k=1,...,n

zk+m + 1 (18)

∀j ∈ {1, . . . , n} : zj+m ≥
∑

k:Akj=1

zk −
∑

k=1,...,m

zk + 1. (19)

(20)

have to be satisfied. This could be simplified to the condition
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∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m (21)

∀i ∈ {1, . . . ,m} :
∑

k:Aik=0

zk+m ≥ 1− zi (22)

∀j ∈ {1, . . . , n} :
∑

k:Akj=0

zk ≥ 1− zj+m, (23)

which has the following intuitive interpretation:

For every 0-entry in the i-th row and the j-th column of the matrix A we have:

1. if Aij = 0 and if object gi belongs to the extent, then necessarily attribute mj cannot
belong to the intent and vice versa.

2. If object gi does not belong to the extent, then there exists at least one attribute mk

of the intent, that the object gi does not have.

3. Dualy, if attribute mj does not belong to the intent, then there exists at least one
object gk of the extent, that has not attribute mj.

Thus, we can compute the maximum

max
(A,B)∈B(K)

〈wext,1A〉+ 〈wint,1B〉

of an arbitrary linear objective function (wext1 , . . . , wextn , wint1 , . . . , wintn ) of both the extents
and the intents by solving the binary program

〈(wext1 , . . . , wextm , wint1 , . . . , wintn ), (z1, . . . , zm, zm+1, . . . , zm+n)〉 −→ max (24)

w.r.t.

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m
∀i ∈ {1, . . . ,m} :

∑

k:Aik=0

zk+m ≥ 1− zi

∀j ∈ {1, . . . , n} :
∑

k:Akj=0

zk ≥ 1− zj+m

All in all, we would thus have to solve a binary program with m + n variables and
|{(i, j | Aij = 0)}|+m+n constraints. This problem can become cumbersome if the formal
context is big enough, especially because one cannot simply drop the integrality-constraints.
However, in practical applications, often only the number of objects is large and the number
of items is medium-sized. If one further analyzes the binary program, then one observes
that the inequalities concerning the objects and the constraints concerning the attributes
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are separated in the sense that if one relaxes only the integrality constraints of the variables
z1, . . . , zm describing the extent, then the optimum of the associated relaxed mixed binary
program is still (also) attained at a binary solution and thus one can relax the integrality
constraints of the extent. The reason is that for fixed and binary (zm+1, . . . , zm+n) the
inequalities (21) and (22) are either redundant or reduce to equality constraints of the
form zi = 0 or zi = 1 and inequality (23) is either redundant or demands that a sum of zk’s
associated with the extent is greater or equal to 1. If one of the zk’s is not binary, than
at least one other zk′ has to be greater than zero. This means that for an appropriately
chosen15 ε > 0 the vectors (z1, . . . , zk+ε, . . . , zk′−ε, . . . , zm+n) and (z1, . . . , zk−ε, . . . , zk′ +
ε, . . . , zm+n) are still feasible with respect to the relaxed feasible set and this shows that non-
integer points are no extreme-points of the restricted polytope where the binary variables
describing the intent are fixed. Thus, the optimal value for the relaxed program is always
also attained at a binary solution.

5 Statistical inference

We now treat the question of inference. Coming back to the example of detecting stochastic
dominance, we were able to detect stochastic dominance in a sample. The natural question
of inference is now: What can we reasonably infer about stochastic dominance in the
population we sampled from? From a substance matter perspective, one would supposedly
be interested for example in the hypotheses

H0 : X is not stochastically dominated by Y vs

H1 : X is stochastically dominated by Y.

However, a reasonable consistent classical statistical test of this pair of hypotheses is not
reachable since already in the univariate case where the distribution function characterizes
stochastic dominance, we have the problem that for every X ≤SD Y , in every arbitrarily
small neighborhood16 of Y we can find some Ỹ with X �SD Ỹ . To circumvent this
problem, one can modify the hypotheses, for example by switching the roles of H0 and H1

(for consistent statistical tests of this kind in the univariate case, see, e.g., [Barrett and
Donald, 2003]). Here, we go a slightly different way. Since the value of D+ characterizes
X ≤SD Y via X ≤SD Y iff D+ = 0 and D− characterizes Y ≤SD X via Y ≤SD X iff
D− = 0 and furthermore X �SD Y (where X �SD Y means X �SD Y & Y �SD X) iff
D+ > 0 & D− < 0) we can simply test, if D+ and D− are significantly different from zero.
(In the case of for example D+ is significantly positive and D− is not significantly negative,

15The choice of ε depends on all inequalities that involve zk and zk′ but since there are only finite many
constraints, ε can in fact be chosen small enough and still greater than zero.

16This is meant w.r.t. e.g., the Kolmogorov-Smirnov distance. Note also, that in our situation, we have
not much freedom of choice of other distances that induce other neighborhood concepts, since we can only
make use of the partially ordered scale of measurement of X and Y .
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we cannot directly conclude X ≤SD Y but at least Y �SD X and the possibility X �SD Y
is only possible due to upsets A with P (X ∈ A) ≥ P (Y ∈ A) where the difference P (X ∈
A)−P (Y ∈ A) is only slightly positive.) In the sequel we will put focus on D+ and also do
not explicitly correct for multiple testing if considering both D+ and D− simultaneously.
Actually, conceptually, here we do not take the inference problem as the primitive and
do not rigorously test a beforehand exactly stated hypothesis by doing a statistical test
that provides us with a descriptively interpretable test statistic as a by-product. Instead,
we see it a little bit the other way around: In the first place, we would like to get a
good, conceptually rigorous descriptive insight into the data by not relying on traditional
approaches based on somehow “arbitrarily chosen” location measures17 summarizing the
data by one number and then comparing the obtained numbers. Instead, by relying on
stochastic dominance, we in a sense somehow look simultaneously at all reasonable location
measures and if we know X ≤SD Y , then we also know that every reasonable location
measure18 would give a lower (or equal) number to X than to Y . This is a conceptually
much more reliable statement than simply comparing numbers (of course with the drawback
of being less decisive). Only in a second step we think in statistical terms about to which
extent the conceptually rigorous statement of stochastic dominance can be translated from
the sample to the population.

5.1 Permutation-based tests

Now, let us come to the purely statistical aspects of inference for detecting stochastic
dominance. (All considerations are similarly valid for linear optimization on general closure
systems.) In the simple univariate case of real-valued, continuously distributed random
variables X, Y , for the two-sample case under H0 : FX = FY , the distribution of the
test statistic D+ (and also D− and D := max{D+,−D−}) is independent of the true
law FX , has known asymptotics and can be furthermore computed exactly for identical
sample sizes (see, e.g., [Pratt and Gibbons, 2012, Chapter 7]). Opposed to this, in the
general multivariate situation, the statistic D+ is not distribution free, anymore: Firstly,
the distribution of D+ depends on the concrete structure of the poset (V,≤): If the relation
≤ is very sparse, then the set of all upsets is very large and one would generally expect
that D+ would typically have higher values than for the case of a very dense relation ≤.
Secondly, also the interplay between the structure of (V,≤) and the unknown true law is
also of relevance: For example in a very large poset (V,≤) with a very sparse relation ≤ it
could be still the case that the most probability mass is living on a much smaller subset
W ⊆ V on which the restricted relation ≤ ∩ W ×W is actually very dense. This suggests
that a rigorous analytic treatment of the distribution of D+ seems to be only partially

17Note the non-classical scale of measurement we are dealing with, here.
18One of the few location measures that does not respect first order stochastic dominance is the mode.

But note that the mode appears most naturally if we have a categorical or an interval scale of measurement,
the mode seems to give no valuable information if we want to analyze inequality which is a genuinely ordinal
concept.
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possible19. Thus, a natural alternative is to apply a two sample observation-randomization
test (permutation test, see, e.g., [Pratt and Gibbons, 2012, Chaper 6]), here. The procedure
for evaluating the distribution of D+ under H0 : PX = PY , which is the least favorable case
of H̃0 : D+

true := sup
A∈U((V,≤))

PX(A)− PY (A) = 0 (⇐⇒ X ≤SD Y )) is straightforward:

1. Let a sample x = (x1, . . . , xnx) of size nx for subpopulation X and a sample y =
(y1, . . . , yny) of size y of subpopulation Y be given.

2. Compute the statistic D+ for the actually observed data.

3. Take the pooled sample z = (x1, . . . , xnx , y1, . . . , yny).

4. Take all index sets I ⊆ {1, . . . , nx + ny} of size nx and compute the test statistic
D+
I that would be obtained for a virtual sample x̃ = (zi)i∈I for population X and

ỹ = (zi)i∈{1,...,nx+ny}\I for subpopulation Y .

5. Order all D+
I in increasing order

6. Reject H0 if the test statistic D+ for the actually observed data is greater than the
dγ · |I|e-th value of the increasingly ordered values D+

I , where γ is the envisaged
confidence level.

In step 4 one has to compute the test statistic for a very huge number of resamples,
thus one usually does not compute the test statistic for all resamples but only for a smaller
number of randomly chosen resamples. In the context of linear programming on closure
systems, the computation of the test statistic for one resample could be already computati-
onal demanding for very complex data sets, so the application of observation-randomization
tests has some limitations, here.

5.2 Conservative bounds via Vapnik-Chervonenkis theory

Beyond applying resampling schemes for inference there is the further possibility to apply
Vapnik-Chervonenkis theory (see, e.g., [Vapnik and Kotz, 1982]) to obtain conservative
bounds for the test statistic: In Vapnik-Chervonenkis theory, among other things, one
analyzes the distribution of

sup
A∈S
|Pn(A)− P (A)|

or
sup
A∈S
|Pn(A)− P ′n(A)|,

19Actually, there exists some literature on the asymptotic distribution of the optimal value of a random
linear program (e.g., [Babbar, 1955, Sengupta et al., 1963, Prèkopa, 1966]). However, this literature seems
to be not applicable in our situation, because in our case, under the null hypothesis, the random objective
function is symmetrically distributed around the zero vector, such that the assumption of a unique optimal
basis for the asymptotic linear program (cf. [Prèkopa, 1966, Theorem 5]) is not satisfied.
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where P is an unknown probability law and Pn is the empirical law associated with an
i.i.d.-sample of size n (and P ′n is the empirical law associated to a further independently
drawn sample of the same size n). Here, the family S can be any arbitrary family of
subsets of a given space Ω. In our situation, the family S is the underlying closure system
of interest. The Vapnik-Chervonenkis inequalities (cf., [Vapnik and Kotz, 1982, p.170-172])
then state that

P

(
sup
A∈S
|Pn(A)− P (A)| > ε

)
≤ 6 mS(2n) e−nε

2/4 and (25)

P

(
sup
A∈S
|Pn(A)− P ′n(A)| > ε

)
≤ 3 mS(2n) e−nε

2

. (26)

These inequalities20 can be used to get conservative critical values for a one sample and
a two sample test. (In the sequel, we will put focus on the two sample situation.) The
crucial quantity involved in the right hand sides of these inequalities is the so-called growth
function

mS(k) := max
A⊆Ω,|A|=k

∆S(A), where

∆S(A) :=|{S ∩ A | S ∈ S}|
describes the cardinality of the projection of the family S on the set A. Obviously, if S

is finite, then the growth function mS(k) is always lower than or equal to the cardinality
of S and thus |S| can be used to get a bound for the left hand sides of (25) and (26).
Actually, in our setting, we will use as the underlying space always the subset Vess of all
actually observed values of the basic set V and an associated closure system S ⊆ 2Vess on
the restricted space Ω := Vess. (Note that the projection of a closure system S ′ ⊆ 2Ω′

on
Ω′ onto a subset Ω ⊆ Ω′ via S ′|Ω = {S ∩ Ω | S ∈ S ′} is again a closure system on Ω.)
Thus, with A = Vess we have ∆S(A) = |S| and mS(2n) = |S|, such that the bound |S| is a
sharp bound for mS(2n). If the family S is explicitly given, we could thus work with the
computable bound |S|. The far more interesting situation appears if the family S is very
large and only implicitly given. Then there is another important bound (see [Vapnik and
Kotz, 1982, p.167]) on the growth function that is related to the Vapnik-Chervonenkis
dimension (V.C.-dimension) of the family21 S:

mS(k) ≤ 1.5
kV C−1

(V C − 1)!
,

20There is a bunch of similar Vapnik-Chervonenkis type inequalities that could be of help here, see, e.g.,
the summary given in Table 1 of [Vayatis and Azencott, 1999, p.4].

21Originally, Vapnik-Chervonenkis theory was mainly developed to be able to deal with infinite families
S. Here, we have finite families S, and if we would know |S| then, in our setting, we would better bound
mS(k) by |S| instead of using the Vapnik-Chervonenkis dimension since in our setting of S ⊆ 2Vess , this
dimension essentially only provides an upper bound for the cardinality of |S|. If the family S is very
large and is only implicitly given, then the V.C.-dimension can still provide a good computable bound for
mS(k). Note further that sometimes also other bounds for mS(2n) can be useful, for example for finite Ω
wa have mS(2n) ≤ 2|Ω|.
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where V C is the Vapnik-Chervonenkis dimension of the family S, that is defined as
the cardinality of the largest possible subset A that can be shattered by S: One says that
a set A can be shattered by S (or alternatively that A is shatterable w.r.t. S) if the
projection of S on A contains all subsets of A, i.e. 2A = {S ∩ A | S ∈ S} or equivalently
∆S(A) = 2|A|. In many cases, the V.C.-dimension cannot be computed explicitly.
However, in our context it shows up that we can compute the V.C.-dimension either with
the help of binary programs or with a sharp characterization of the V.C.-dimension. Of
course, the Vapnik-Chervonenkis inequalities provide only very conservative bounds for
inference. (Note that the right hand sights of (25) and (26) do not depend on the true
law P .) If one is able to perform an observation randomization test, then one should do it
instead of dealing with the conservative Vapnik-Chervonenkis inequalities. However, the
Vapnik-Chervonenkis inequalities give us some guidance for dealing with situations where
the closure system is so big that one would expect that the distribution of the test statistic
is behaving too ugly to allow for a sensible statistical test with enough power. In such
a situation, we can use Vapnik-Chervonenkis theory to appropriately reduce the closure
system to hope for making the tail distribution of the test statistic more well-behaved22.
If one appropriately reduces the cardinality of the closure system, then one could hope
for a test statistic that has a better power for the detection of a “systematic” deviation23

from H0. This possibly increased power would then come along with a smaller and thus
less fine-grained closure system S that is then not so sensitive to very specific alternatives.
Note that the V.C.-inequality is essentially based on the effective size of S. Thus, if S
is explicitly given, one can simply drop some sets of S to make S smaller. However, in
our situation, we often have a closure system that is implicitly given and only nicely
describable because it is a closure system. A simple removal of some sets of S is thus not
possible because sets of S are not explicitly given and an arbitrary removal of some sets
could lead to a family S ′, that is not a closure system, and thus not easily describable,
anymore. The beauty of V.C.-theory in this situation lies in the fact that if we can
compute the V.C.-dimension by supplying a shatterable set A of maximal cardinality, then
we also have a straightforward possibility to tame S: Since big shatterable sets A make S
very big, we can drop some or all elements of such sets A to tame S efficiently. Actually,
one would not completely remove A (or a subset of A) for the whole data analysis, but
only for the construction of the closure system under which the final data analysis takes
place. Before explaining how this is exactly meant in different situations and how we
ensure that the tamed system is still a closure system (cf. Section 5.3), we will now firstly
characterize shatterable sets and the V.C.-dimension for different closure systems in the
next section.

22Of course, V.C.-theory gives us only bounds on the tail behavior of the test statistic and no direct
insight into the actual behavior of the tails, so a sharpening of the bound does not necessarily mean that
the actual tail behavior will be getting better if we reduce the V.C.-dimension of the closure system.

23Of course, one cannot hope for a more powerful statistic w.r.t. every thinkable deviation from H0 but
only for a better power for detecting deviations that are not “too complex” w.r.t. V.C.-dimension.
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5.2.1 The Vapnik-Chervonenkis dimension of several special closure systems

This section is actually very technical and not really necessary to understand the basic ideas
in the following sections. The reader more interested in the basic concepts can thus skip this
section and Section 5.2.2. For the reader interested in Vapnik-Chervonenkis theory and the
reader interested in a detailed understanding, we would like to recommend the following
sections, because, though looking a bit technical, there are no deep or cumbersome ideas
involved in the following theorems. Contrarily, the relation between Vapnik-Chervonenkis
theory and formal concept analysis seems to be very natural. Maybe somehow surprising,
there seems to be not too much research that directly connects formal concept analysis
and Vapnik-Chervonenkis theory, the only works in this direction, the authors are aware
of, are the papers Anthony et al. [1990a,b], Albano and Chornomaz [2017], Chornomaz
[2015], Albano [2017a,b], Makhalova and Kuznetsov [2017].

Definition & Proposition 1. Let S ⊆ 2Ω be a closure system on Ω. Let furthermore I(S)
be the set of all formal implications the closure system S respects. A set M ⊆ Ω is called
implication-free if there is no formal implication (A,B) ∈ I where A and B are disjoint
non-empty subsets of M . A set M is shatterable w.r.t. S if and only if it is implication-
free and thus the Vapnik-Chervonenkis dimension of S is the maximal cardinality of an
implication-free set M ⊆ Ω.

Definition 5 (Vapnik-Chervonenkis principal dimension (VCPI/VCPF)). Let (V,≤) be a
partially ordered sett. The Vapnik-Chervonenkis principal ideal dimension (VCPI)
is the Vapnik-Chervonenkis dimension of the family

pi((V,≤)) := {↓ x | x ∈ V } = {{y | y ≤ x} | x ∈ V }}

of all principal ideals of (V,≤). If (V,≤) is a complete lattice, then pi((V,≤)) is a closure
system. In this case we also say that a set M ⊆ V is join-shatterable if it is shatterable
w.r.t. the family pi((V,≤)). Analogously, the Vapnik-Chervonenkis principal filter
dimension (VCPF) is the Vapnik-Chervonenkis dimension of the family

pf((V,≤)) := {↑ x | x ∈ V } = {{y | y ≥ x} | x ∈ V }}

of all principal filters of (V,≤). If (V,≤) is a complete lattice, then pf((V,≤)) is a closure
system. In this case we also say that a set M ⊆ V is meet-shatterable if it is shatterable
w.r.t. the family pf((V,≤)).

Theorem 1 (Motivating the notions join-shatterable and meet-shatterable). A subset M
of a complete lattice (V,≤) is join-shatterable if and and only if we have for every x ∈M :

x �
∨

M\{x}. (27)

Analogously, a subset M of a complete lattice (V,≤) is meet-shatterable if and and only
if we have for every x ∈M :

x �
∧

M\{x}. (28)

29

169



Proof. We only proof the first statement, the second statement can be proofed analogously.
if: Let B ⊆ M . Take A :=↓ ∨B ∈ pi((V,≤)). Then A ∩M ⊇ B since ∀b ∈ B : b ≤ ∨B.
Additionally, for every x ∈ M\B we have B ⊆ M\{x} and thus x /∈ A, since if x ∈ A,
because of A ⊆↓ ∨M\{x} we would get x ≤ ∨M\{x} which would be a contradiction
to (27). Thus A ∩M = B and because B was an arbitrary subset of M , we can conclude
that M is shatterable.
only if: Let x ≤ ∨M\{x} for some x ∈M . Then the set M\{x} is not shatterable w.r.t.
pi((V,≤)), because every a ∈ V with ∀y ∈ M\{x} : y ≤ a is an upper bound of M\{x}
and thus a ≥ ∨M\{x} ≥ x. But this means, that every set A =↓ a ∈ pi((V,≤)) that
contains all elements of M\{x} necessarily also contains x which shows that in fact M\{x}
is not shatterable.

Theorem 2. For every finite join-shatterable set M of a finite24 complete lattice (V,≤)
there exists another join-shatterable set JM of join-irreducible elements of (V,≤) that has
the same cardinality as M . This means that for determining the Vapnik-Chervonenkis
principal ideal dimension it is enough to look at join-shatterable sets of join-irreducible
elements.

Proof. Let M ⊆ V be a finite shatterable set. If all elements of M are join-irreducible
then we are done. If there exists an x ∈ M that is not join-irreducible we can find a
join-irreducible element z such that the set M̃ := M\{x} ∪ {z} is still join shatterable.
Since M is assumed to be finite, we can replace step by step every join-reducible element
of M by a join-irreducible element and thus obtain a shatterable set of join-irreducible
elements with the same cardinality: So let x ∈ M\J (V ). Then x =

∨
B for some set

B ⊆ J (V ). Furthermore, we have z �
∨
M\{x} for at least one z ∈ B, because otherwise

we would have
∨
M\{x} ≥ ∨B = x which is in contradiction with the assumption that

the set M is join-shatterable. Now, take M̃ := M\{x}∪ {z}. Then, M̃ is join-shatterable.
To see this, observe that M and M̃ only differ in the elements x and z and z ≤ x. Thus
z �

∨
M\{x} =

∨
M̃\{z} and for every other y ∈ M̃ we have y �

∨
M̃\{y} because

otherwise we would have y ≤ ∨ M̃\{y} ≤ ∨M\{y} which is in contradiction with M
being join-shatterable.

Theorem 3. The Vapnik-Chervonenkis principal ideal dimension VCPI (and also the
Vapnik-Chervonenkis principal filter dimension VCPF) of a poset (V,≤) is bounded by
its order dimension25 odim((V,≤)).

Proof. Let d := odim((V,≤)) and let L1, . . . , Ld be d linear orders representing ≤ via
x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xLiy. We show that every set M of more than d elements

24The finiteness assumption can be dropped if one only assumes that every element x ∈ V can be
written as a supremum of join-irreducible elements of V . This is for example the case if there are no
infinite descending chains in V .

25Remember that the order dimension of a poset (V,≤) is the smallest number d of linear orders
L1, . . . , Ld ⊆ V × V such that the relation ≤ can be represented as the intersection of these linear orders
via x ≤ y ⇐⇒ ∀i ∈ {1, . . . , d} : xLiy.
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of V is not join-shatterable: Take M with |M | > d and take for every i ∈ {1, . . . , d} that
element xi ∈ M that is the greatest element of M w.r.t. the linear order Li. Then every
principal ideal ↓ a that contains all the xi necessarily also contains every further element
y ∈M\{x1, . . . , xd} 6= ∅ because for every i ∈ {1, . . . , d} we have yLixiLia.

Theorem 4. Let V = (V,≤) be a finite complete lattice. If V is distributive26, which can
be characterized by saying that the condition

∀B ⊆ J (V)∀x ∈ J (V) : x ≤
∨

B =⇒ x ≤ z for some z ∈ B (29)

is fulfilled, then the Vapnik-Chervonenkis principal dimension of V is exactly the width of
J (V) and because of Birkhoffs theorem we have V ∼= (D(J (V)) and the width of (J (V))
is exactly the order dimension of V, so in this case we have V CPI(V) = odim(V).

Proof. Because of Theorem 2 we only have to look at the set J (V) of the join-irreducible
elements of V. Let d denote the width of J (V). It is clear that a join-shatterable set
M ⊆ (J (V)) necessarily is an antichain. Thus VCPI is lower than or equal to d. To see
that V CPI = d take an antichain A of size d. Then this antichain is obviously shatterable
because for all x ∈ A we have x �

∨
A\{x} since if x ≤ ∨A\{x} because of (29) we

would have x ≤ z for some z in A\{x}, but this would be in contradiction with A being
an antichain.

Definition & Proposition 2 (Vapnik-Chervonenkis upset dimension: Simply the width).
Let V = (V,≤) be a poset and U(V) be the set of all upsets of V. Then the Vapnik-
Chervonenkis dimension of U(V) is called the Vapnik-Chervonenkis upset dimension.
The Vapnik-Chervonenkis upset dimension is identical to the width of V, because the shat-
terable sets are exactly the implication-free sets, which are in this case the antichains of V.
Analogously, the Vapnik-Chervonenkis dimension of all downsets is also equal to the width.

Definition 6 (Vapnik-Chervonenkis formal context dimension (VCC)). Let K :=
(G,M, I) be a formal context. Let

S := B1((G,M, I)) = {A ⊆ G | (A,B) ∈ B((G,M, I)) for some B ⊆M}

be the closure system of all concept extents. The Vapnik-Chervonenkis formal concept
dimension (VCC) is defined as the Vapnik-Chervonenkis dimension of S.

Theorem 5 (cf. also [Albano and Chornomaz, 2017, Albano, 2017a,b]). Let K := (G,M, I)
be a formal context and let S := B1((G,M, I)). Then a set {g1, . . . , gl} ⊆ G of objects is
shatterable w.r.t. S if and only if there exists a set {m1, . . . ,ml} ⊆ M of attributes such
that

∀i, j ∈ {1, . . . , l} : (gi,mj) ∈ I ⇐⇒ i 6= j. (30)

26A lattice L is called distributive if we have x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for arbitrary x, y, z ∈ L.
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Proof. if: Let A ⊆ {g1, . . . , gl}. Take the formal concept (A′′, A′). Then A′′ contains
all gi ∈ A and for all j with gj /∈ A because of mj ∈ A′ we have gj /∈ A′′ and thus
A′′ ∩ {g1, . . . , gl} = A which shows that {g1, . . . , gl} is shatterable w.r.t. S.
only if: If {g1, . . . , gl} is shatterable then for every gi there exists a formal concept (Ai, Bi)
such that gi /∈ Ai and ∀j ∈ {1, . . . , l}\{i} : gi ∈ Ai. But this means that for every
i ∈ {1, . . . , l} there exists an attribute mi such that (gi,mi) /∈ I and ∀j ∈ {1, . . . , l}\{i} :
(gi,mj) ∈ I.

Corollary 1. The Vapnik-Chervonenkis formal context dimension of a context (G,M, I) is
equal to the Vapnik-Chervonenkis formal context dimension of the dual context (M,G, I∂),
where I∂ = {(m, g) | g ∈ G,m ∈M, gIm}.

5.2.2 Computation of the Vapnik-Chervonenkis dimension

In this section we shortly propose some methods to actually compute the Vapnik-
Chervonenkis dimension for different closure systems.

Computing the Vapnik-Chervonenkis dimension if the closure system is given
via formal implications

If the closure system S is given by all valid formal implications, then computing the V.C.-
dimension can be done by searching for an implication-free set A of maximal cardinality.
To do this, one can solve the following binary program:

k∑

i=1

mi −→ max (31)

w.r.t. (32)

∀(Y, Z) ∈ I(S) :
∑

i:vi∈Y
mi +

1

|Z|
∑

i:vi∈Z
mi ≤ |Y | (33)

m = (m1, . . . ,mk) ∈ {0, 1}k (34)

Here, condition (33) codifies the demand that for a valid implication Y −→ Z a shatterable
(implication-free) set A necessarily cannot contain any element of Z if it contains all
elements of Y . Instead of the whole set of implications in (33) one can also use only that
valid implications Y −→ Z where Y is minimal (in the sense that Ỹ −→ Z is not valid
anymore for every Ỹ ( Y ) and Z is maximal (in th sense that Y −→ Z̃ is not valid anymore
for every Z̃ ) Z). This set of implications is referred to as the generic base in formal
concept analysis (cf., e.g., [Bastide et al., 2000], where also an algorithm for extracting the
generic base is given). Note that in (33) one cannot use an arbitrary implication base: For
example the implication base

I := {{v1} −→ {v2}, {v2, v3} −→ {v4}}
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induces the further implication {v1, v3} −→ {v4} and thus the set A = {v1, v3, v4} is not
shatterable, but the “anti-implications”

I := {{v1} −→ {¬v2}, {v2, v3} −→ {¬v4}}

obtained by demanding (33) only for the implication base I would not exclude the set A
although it is not shatterable.

If one wants to compute for example the Vapnik-Chervonenkis principal ideal dimension
VCPI of an explicitly given complete lattice L = (L,≤), one can firstly construct the formal
context K := (V, V,≥). Then, the closure system of all intents of this context is exactly the
set of all principal ideals of (L,≤) and one can compute the generic base of all implications
that are valid in this closure system. Finally, one can build and solve the binary program
(31). Actually, due to Theorem 2 it suffices to look only at the reduced context where
join-irreducible elements of L are removed.27

Computing the Vapnik-Chervonenkis upset dimension: Computing the width

If one wants to compute the Vapnik-Chervonenkis upset dimension, in principle one can
use the binary program (31), but since the Vapnik-Chervonenkis upset dimension is simply
the width, one can also use other more efficient algorithms to compute the width. One
possibility is to reformulate the problem of computing the width of a poset as a matching
problem in a bipartite graph: Define the bipartite graph G = (V ×{1}, V ×{2}, E) where
the set of vertices is the disjoint union of V and V and the two parts of G are essentially
two copies of the poset V and an edge e = ((v, 1), (w, 2)) is in E iff v < w. Now one
can compute a maximal matching in G. The maximum matching then corresponds to a
minimum size chain partitioning of V where two elements v and w with v < w are in
the same partition iff the edge ((v, 1), (w, 2)) is in the maximal matching. The number
of partitions is then |V | − m where m is the size of the maximal matching. This means
that we have found a minimal chain partitioning of V with size |V | − n which is due to
Dilworth’s theorem identical to the maximal cardinality of an antichain, i.e., the width.
To actually compute the maximum matching one can use e.g. the algorithm of Hopcroft
and Karp (Hopcroft and Karp [1971]), which would have time complexity O(|V | 52 ) in our
situation.

Computing the Vapnik-Chervonenkis formal context dimension VCC

27Note that for an explicitly given poset (V,≤) that is not a complete lattice, the family pi((V,≤))
of all principal ideals is generally not a closure system, but one can look at the closure system that is
generated by all principal ideals of (V,≤) (of course, without the need of explicitly computing it). Then,
to make the computation more efficient, one can similarly remove all reducible attributes (and also all
reducible objects) from the context K = (V, V,≥), where an attribute a is called reducible if the formal
concept ({a}′, {a}′′) is meet-reducible and an object o is called reducible if the formal concept ({o}′′, {o}′)
is join-reducible.
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To compute the Vapnik-Chervonenkis formal context dimension VCC one can simply make
use of Theorem 5. One can equivalently express condition (30) of Theorem 5 by saying
that A set A = {g1, . . . , gl} of objects is shatterable w.r.t. B1(K) if and only if there exists
a set B = {m1, . . . ,ml} such that for every object g ∈ A there exists exactly one attribute
m ∈ B with (g,m) /∈ I and if furthermore, for every attribute m ∈ B there exists also
exactly one object g ∈ A with (g,m) /∈ I. These two conditions can also be incorporated
via inequality constraints. Thus, we can compute the Vapnik-Chervonenkis formal context
dimension of a context K by jointly analyzing pairs (A,B) of an object set A and a an
intent set B satisfying (30). With the notation of Section 4.2 we have to solve the binary
program

z1 + . . .+ zm −→max

w.r.t.

∀i ∈ {1, . . . ,m} : (n− 1) · zi +
∑

j:Aij=0

zj+m ≤ n (35)

−zi +
∑

j:Aij=0

zj+m ≥ 0 (36)

∀j ∈ {1, . . . , n} : (m− 1) · zj+m +
∑

i:Aij=0

zi ≤ m (37)

−zj+m +
∑

i:Aij=0

zi ≥ 0. (38)

Here, the constraints (35) and (36) are redundant if zi is zero, e.g., if object gi does
not belong to the envisaged shatterable set A. If object gi is in the envisaged shatterable
set A, then (35) demands exactly that there is maximal one attribute mj in the associated
attribute set B with (gi,mj) /∈ I and constraint (36) further demands that there is also
at least one such attribute. The constraints (37) and (38) analogously codify the dual
statement where the roles of objects and attributes are exchanged. Here, unfortunately
one generally cannot drop any integrality constraint, so the computation of the V.C. formal
context dimension is generally very hard.

5.3 Taming the monster: pruning closure systems via Vapnik-
Chervonenkis theory

The last section showed how to compute the V.C.-dimension for several closure systems
and how to identify shatterable sets of maximal cardinality. The ability to identify such
big shatterable sets supplies us with a simple possibility of effectively taming the closure
system by removing such big shatterable sets to get a test statistic that is less crude in
the sense that one gets better bounds in (25) and (26) due to a lower V.C.-dimension.

34

174 Attached contributions



Concretely, for e.g. the closure system U((V,≤)) of upsets, every upset M ∈ U((V,≤))
can be characterized by the set min(M) of all minimal elements of M via M =↑ min(M).
To tame U((V,≤)) one can compute an antichain28 A of maximal cardinality and then
remove this antichain A (or a subsetÃ of A) from U((V,≤)) by considering not all upsets
U((V,≤)) = {↑ B | B ⊆ V } but only the family S ′ = {↑ B | B ⊆ V \A} of all upsets that
are generated by V \A (or V \Ã ). This family is generally not a closure system, anymore,
but one can simply take not the family S but the closure system29 S̃ that is generated by
S ′ via S̃ := cl(S ′) =

⋂{F | F closure system on V \A, F ⊇ S ′}.

For taming the Vapnik-Chervonenkis formal context dimension of a given formal
context K one can similarly look for objects involved in a shatterable set of maximal
cardinality and then take the closure system of the concept extents of the formal concept
lattice generated by the modified context where the objects involved in a shatterable set
of maximal cardinality are removed. Generally, two issues arise here:

Firstly, for a closure system S of V.C.-dimension V C one usually has more than
one shatterable set of size V C. To effectively tame the closure system one therefore
has to remove the first found shatterable set of size V C and then one has to look at
further shatterable sets of size V C and remove them, too. In this situation, it could be
the case that the result of the taming procedure depends upon which shatterable set
of maximal cardinality was removed first. To avoid this problem, one can alternatively
look jointly at all shatterable sets of maximal cardinality and remove them all. However,
this could have the effect that in one step a huge number of sets is removed such that
the V.C.-dimension becomes too small already in one step. Furthermore, if one decides
for removing only subsets of shatterable sets, then it is not straightforward, which
subsets exactly to remove and also here, the choice of the removed subsets could possibly
have an impact on which set would be a shatterable set of maximal cardinality in the
next step. Since the ability of removing not only whole shatterable sets but also sub-
sets would be very helpful for taming in a very flexible way, this could be seen as a problem.

Secondly, the taming of the closure system is only a statistical “regularization proce-
dure” that only cares for the purely statistical aspects. Thus, it is desirable to analyze the
taming also with respect to its “conceptual behavior” in the sense that one should care for
how flexible the tamed closure system is w.r.t. which sets are in the closure system and
how fine-grained the tamed closure system thus is w.r.t a purely descriptive/conceptual
point of view. This is clearly a matter of the concrete application. For the closure systems
of upsets and the closure system of concept extents we will now give concrete proposals
for taming that are in our view also acceptable from a conceptual point of view in the
situations of the application examples given later in Sections 6.1 and 6.3.

28As shown in Section 5.2.1, for the closure system of all upsets of a poset (V,≤), the shatterable sets
are exactly the antichains of (V,≤).

29For the computation of the test statistic on the tamed closure system S̃ one does not need to compute
S̃ explicitly, see Section 5.3.3.
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5.3.1 Taming upsets in the context of inequality analysis

The closure system of upsets played a crucial role in the context of stochastic dominance.
One field of application of stochastic dominance is multivariate poverty or inequality
analysis. In this context one does not start with a poset V , instead one has some
(often totally ordered) “dimensions” of poverty/inequality. In our example of application
given in Section 6.1., we have basically the 3 dimensions Income, Education and Health.
The poset (V,≤) is then given by the three dimensional attributes of all persons in
the survey equipped with the coordinate wise order (i.e. person x is poorer than or
as equally poor as person y iff she is poorer than or as equally poor as y w.r.t. every
dimension). Then, the concept of an upset codifies a “multivariate poverty line” in
the sense that an upset M would be a reasonable concretion of the term non-poor by
saying that every person in the set M could be termed non-poor and every person in
the complement of M could be termed poor. The statement of stochastic dominance
X ≤SD Y where X describes one subpopulation and Y another subpopulation would then
mean ∀M ∈ U((V,≤)); P (X ∈ M) ≤ P (Y ∈ M) which can be simply translated to the
statement: “However the term poor is actually reasonably concretized, in every case the
proportion of the non-poor persons in subpopulation corresponding to X is always lower
than or equal to the proportion in the subpopulation related to Y .” Now, how can we
reasonable tame the closure system of upsets in this context? Since the closure system
of upsets is getting very big already for small posets V , a taming by explicitly removing
upsets seems hopeless, but one can use the fact that every upset M is generated by its
minimal elements via M =↑ min(M) and look at antichains instead of upsets. One way to
tame the closure system of all upsets, i.e., the closure system of all reasonable concretions
of the term non-poor in a conceptually reasonable way could be to exclude some very
“skew” concretions of the term poor : One can try to remove upsets generated by antichains
consisting of very unbalanced elements, i.e. attributes that are very low in one dimension
and at the same time very high in another dimension. To do so, one has to concretize
here, what low and high means. One possibility would be to firstly standardize30 every
dimension to be U [0, 1] distributed. Concretely, if X ∈ Rn×p is the matrix containing the
n attributes of dimension p, define for j = 1, . . . , p the univariate empirical distribution31

function F j according to the distribution of the j-th dimension in the sample and define
Z ∈ Rn×p via Zij = F j(Xij). Then Z is a transformation of X where every dimension
Z•j has values ranging from 1

n
to 1 allowing for some kind of relative comparability of the

transformed attributes with the simple interpretation that if Zij = l
n

the person i is the

30If one has any external substance matter insight into how some decrease in one dimension can be
reasonably be compensated for by an increase in another dimension, one should try to reflect this substance
matter insight into the taming procedure. Of course, the herein proposed taming procedure has to be
understood as a general purpose procedure that could be substantially improved by modifications based
on substance matter considerations.

31One can use here the complementary distribution function F j(x) =
|{i|Xij≥x}|

n or the usual distribution

function F j(x) =
|{i|Xij≤x}|

n , which would lead to identical results. We use here the complementary
distribution function because it fits more to the notion of upsets.
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n− l+1-th poorest person in the sample w.r.t. dimension i. To concretize the notion of an
“imbalanced” multivariate poverty line one can firstly define a transformed multivariate
attribute Zi· = (Zi1, . . . , Zip) as balanced if max{Zi1, . . . , Zip} −min{Zi1, . . . , Zip} ≤ δ for
a fixed threshold δ. Then, one can define a poverty line as balanced if it is generated by
an antichain that consists only of balanced attributes. If one sets the threshold δ globally
to one fixed value, then w.r.t. V.C.-dimension it can happen that the V.C.-dimension
can vary drastically from region to region in the sense that e.g. for regions of medium
transformed Z values there are big sets of balanced elements building an antichain whereas
for extreme Z values there are only small sized antichains of balanced elements. For the
statistical side of the taming procedure this could lead to a very brute taming of regions of
extreme Z values without globally reducing the V.C.-dimension very much. Of course, in
the proof of the Vapnik-Chervonenkis inequality one essentially deals with the cardinality
of the closure system and this is actually sized down by the procedure, so the statistical
taming would actually still be achieved, but only if one is taming very strongly which
means that one would reduce far more sets in regions of extreme Z-values/low width
than in regions of medium Z-values/high width where the density of upsets is already
very high. (Note that every antichain of size k induces 2k upsets). One can avoid this
seemingly bad effect with the following localization method32:

First, fix some envisaged V.C.-dimension h0. For given α ∈ [0, 1] and
for arbitrary ε > 0 define an ε-stratum around the center α as the set
Mε(α) = {vi | ∀j ∈ {1, . . . , p} : |Zij − α| ≤ ε}. Then, for fixed α choose ε(α)
such that the V.C.-dimension of Mε(α)(α) is lower than or equal to h0 and such that ε(α)
is maximal w.r.t. this property. Then collect in a set T (h0) :=

⋃{Mε(α)(α) | α ∈ [0, 1]}
all strata Mε(α)(α). The closure system Sh0 = cl(Fh0) generated by the family of sets
Fh0 = {↑ B | B ⊆ T (h0)} can then serve as a tamed subsystem of S. Note that the
V.C.-dimension of Sh0 needs not to be h0, it can be higher, because elements of different
strata can build an antichain of size bigger than h0. A further important point is that
with this taming procedure we have introduced some asymmetry: In the case of the full
closure system S of upsets it played no role that we looked at upsets and not at downsets:
If we would have dealt with downsets to model the poor persons instead of modeling the
non-poor persons via upsets, we would still have got the same results. The reason for this
is simply that the complements of upsets are downsets and vice versa. In contrast to this,
the complement of special selected upsets generated by antichains of some subset T (h0) of
V are not necessarily downsets generated by the antichains of T (h0). Thus, for practical
applications, one should analyze the results of both the tamed upset and the downset
approach, which we will do in the example of application given in Section 6.1.

32If a taming with a global threshold δ appears more reasonable from a conceptual point of view in
a concrete situation of application then a global taming may still be a better choice. However, in the
example of application given in Section 6.1 we see no direct conceptual advantages of a global taming.
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5.3.2 Taming formal contexts in the context of cognitive diagnosis models and
knowledge space theory

For taming the closure system of all concept extents of a given formal contextK = (G,M, I)
with V.C.-dimension V C, in principal one can search for all shatterable objects sets of
size V C (either step by step or in one whole step, see the remarks above) and exclude the
objects of these sets from the context K to obtain a reduced context K̃ = (G̃,M, I∩G̃×M)
which then has a V.C.-dimension lower than V C (If this reduced V.C.-dimension is still
too high, one can repeat the taming process until the resulting V.C.-dimension is low
enough). For the actual data analysis one can then firstly take the closure system B2(K̃)
of the intents of the reduced context K̃ and secondly define the reduced closure system
S̃ := {{g ∈ G | ∀m ∈ B : gIm} | B ∈ B2(K̃)} generated by all intents of the reduced
context K̃ but w.r.t. the objects of the full original context K. In Section 5.3.3 we will
show how to do this in computational terms. Another possibility would be to not remove
objects but attributes. In practical applications, often objects represent data points and
the attributes represent the “multidimensional” values of the data points, so in classical
situations one usually has much more objects than attributes. In these situations it
appears more natural to remove objects, because if one would remove attributes, then
one would remove these attributes for the whole big set of all objects. Compared to
this, if one removes objects, then one removes only the specific concept intents generated
by these objects (and also intents that are jointly generated by removed objects and
non-removed objects). If one removes objects in the above described way, then one
reduces the V.C.-dimension of the closure system under which the final analysis will be
done. However, from a conceptual/descriptive/substance matter point of view, one does
not know if one had removed sets that are actually interesting/important or that one did
not remove uninteresting/unimportant sets. In some situations one can tame a context in
a more guided manner:

One interesting example where one has some kind of substance matter guidance for
taming is the case of cognitive diagnosis models (CDM), which are some kind of non-
parametric item response models. Note that cognitive diagnosis models are very closely
related to the theory of knowledge spaces ([Doignon and Falmagne, 2012], see [Heller
et al., 2015]) which is itself closely related to formal concept analysis (see [Rusch and
Wille, 1996]). In cognitive diagnosis models one has a set G of persons which respond to
a set M = {1, . . . , |M |} of cognitive tasks, for example math tasks like fraction addition
or fraction subtraction (for one well known fraction-subtraction data set see [Tatsuoka,
1984]). In contrast to more classical item response theory (IRT), in cognitive diagnosis
modeling one is not mainly interested in measuring the abilities of persons and the dif-
ficulties of items, instead one is interested in the cognitive processes that generated the
observed response patterns. Here, one demand is to give persons not only one or more
numbers that measure their ability but to give a more qualitative feedback about which
concrete skills the persons possess and which skills they do not possess. To do so, one
develops (either theory driven or data driven or, in the best case, driven by a theory that
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was rigorously empirically tested and persisted the tests) a so called Q matrix that specifies
for every item, what kind of skills are in principle necessary to solve this item. Concretely,
for a set of K relevant skills, a Q-matrix is a |M | × K matrix of zeros and ones where
an entry Qij = 1 means that the skill j is needed to solve item i. In the simplest case
one assumes that a person is expected to solve item i if she possesses all skills that are
needed to solve item i, so a lack of one skill cannot be compensated by other skills. (This
is the DINA model, cf. [Haertel, 1989, Junker and Sijtsma, 2001], but there are also other
compensatory variants like the DINO model, cf. [Junker and Sijtsma, 2001].) Further-
more, one assumes the possibility of slipping an item one is principally prepared to solve
and of luckily guessing the right answer of an item one is not prepared to solve. If for
the moment we ignore the possibility of slipping and guessing, then the Q- matrix induces
some structure of the idealized item response patterns that are possible if the probabilities
of guessing and slipping are zero. For example if for solving one item i one needs all skills
that one also needs for solving item i′ plus some more, then response patterns of the form

(. . . 1︸︷︷︸
i-th entry

. . . 0︸︷︷︸
i’-th entry

. . .)

are only possible due to a lucky guess of item i or a slipping of item i′. This fact can be
expressed by saying that the formal implication {i} −→ {i′} is valid in the closure system33

SQ := B2({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) of all possible idealized response patterns.
To see that the closure system B2({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) of the intents of
the context KQ := ({1, . . . , K}, {1, . . . , |M |}, 1 − QT ) is exactly the space of all possible
idealized response patterns, note that the intents are generated as {A′ | A ⊆ {1, . . . , K}}
where a set A can be understood as the set of skills an imaginary person does not posses.
Then A′ is the set of all items i with ∀j ∈ A : (1 − QT )ij = 1, i.e. the set of all items i
where all skills the person does not possess are actually not needed to solve the item i.
Thus, the intent A′ is in fact the set of all items a person not possessing exactly all skills
of A would actually be able to solve and all intents are exactly all observable idealized
response patterns. A valid formal implication Y −→ Z of KQ could be interpreted in
this situation as “All skills that are not necessary for solving any item from Y are also
not necessary for solving items from Z” or alternatively as “every imaginary person who
possess all skills for solving all items from Y also possesses all necessary skills for solving
all items from Z”.

Now, one can incorporate some or all valid implications of the idealized response
pattern space SQ to reduce the original closure system by looking only at concept
intents of the original context K = (G,M, I) (where gIm ⇐⇒ person g has sol-
ved item m) that respect all or some of the valid implications of the formal context
KQ = ({1, . . . , K}, {1, . . . , |M |}, 1−QT ) representing the idealized response pattern space.
If one enforces that all valid implications of the idealized response pattern space should
also valid in the tamed closure system for the final analysis, then the V.C.-dimension would

33By abuse of notation, we identify the matrix 1−QT with the relation {(i, j) | (1−QT )i,j = 1}.
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decrease, but maybe unnecessarily too much. To enforce only a subset of implications
one has to reasonably decide, which implications to include and which implications to
not include. This can be made based on theoretical substance matter considerations
about which implications are expected to be more clearly valid from a cognition theoretic
perspective and which implications are maybe more questionable because they are due
to a less rigorous but a more schematic specification of involved skills. To do so, one
can substantially make use of the technique of attribute exploration (see [Ganter and
Wille, 2012, p.85]) known from formal concept analysis: Given the formal context KQ

an algorithm like the next closure algorithm (see [Ganter and Wille, 2012, p.66-68]) can
compute all formal concepts and also the so called stem base (see [Ganter and Wille,
2012, p.83]) of all valid implications of this context. In attribute exploration, at every
step of the computation of a new implication, the user is asked in an interactive way,
if the currently computed implication is actually true. Then the user can say that the
implication is actually true or provide the algorithm with an object with specific attributes
that are actually contradicting the formal implication. Then the algorithm would include
this counterexample into the context and proceed, but not by computing all implications
from the modified context anew, but by knowing that all implications computed before
the counterexample was given are still valid in the modified context.

Another possibility of selecting implications to include for taming is to do it data driven.
One can look for example at all valid implications Y −→ Z of SQ that are respected by
at least a certain proportion C of objects from the original context K in the sense that
at least a proportion C of persons, who solved all items of Y did also solve all items
from Z. Formally, this can be described as enforcing all rules Y −→ Z that have a so
called confidence34 conf(Y −→ Z) of at least C, where conf(Y −→ Z) :=

supp(Y ∪Z)

supp(Y )
and

supp(A) := |A′| and the operator ′ is meant w.r.t. the original context K. Here, the issue
arises that if for example the rules Y −→ Z1 and Y −→ Z2 have a confidence above the
threshold C then they would be included and furthermore the rule Y −→ Z1 ∪ Z2 would
implicitly be also valid in the tamed closure system, but this rule does not necessarily have
a confidence of C. One can deal with this issue in different ways. One way of taming
would be to enforce a set I of implications that is deductively closed (this means that if
an implication follows from some implications from I then it should be already in the set
I ) and that only consists of implications with confidence above C and that is furthermore
maximal w.r.t. these properties. Such maximal sets are generally not unique. Furthermore,
if one has the idea that response patterns that violate implications of the idealized response
pattern space are due to a random guessing or slipping, then if the slipping/guessing for
different items is independent, for valid idealized implications Y −→ Z1 and Y −→ Z2 with
confidence C1 and C2 one would expect a confidence of the implication Y −→ Z1∪Z2 that
is generally lower than min{C1, C2}. Thus, choosing the same threshold for implications
with differently sized consequents seems to be not natural. Another way to proceed is to

34This term is used in the field of association rule mining, cf., e.g., [Agrawal et al., 1993, Piatetsky-
Shapiro, 1991] which is also related to formal concept analysis, cf., e.g., [Lakhal and Stumme, 2005].
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simply take the set of all implications with support above a threshold C and accept that
with this set also implications from its deductive closure that may have a confidence smaller
than C are also implicitly included for taming the closure system. If one takes this route,
one is faced with computing all implications with confidence above C. For an implication
Y −→ {z1, z2} with confidence above C it is necessary that also the implications Y −→ {z1}
and Y −→ {z2} have confidence above C, so it suffices to look only at implications with a
singleton consequence. (The implication Y −→ {z1, z2} is included for taming if and only
if both Y −→ {z1} and Y −→ {z2} have confidence above C because this is necessary and
if both Y −→ {z1} and Y −→ {z2} have confidence above C they are both included and
thus also Y −→ {z1, z2} has to be included since it follows from the included implications
Y −→ {z1} and Y −→ {z2}.) Instead of computing all implications with a singleton
consequence one can also compute in a first step only that implications that have a minimal
antecedent. Then one could exclude such implications Y −→ {z} with confidence lower
than C and recompute the generic base. To do so, one can directly work with the formal
context KQ := ({1, . . . , K}, {1, . . . , |M |}, 1−QT ). One can compute the generic basis and
split every implication Y −→ {z1, . . . , zl} into implications Y −→ {z1}, . . . , Y −→ {zl}
with singleton consequents. Then, for every such implication Y −→ {z} with confidence
lower than C one can exclude it by adding a the counterexample Y ′′\{z} as a further item
pattern to the context KQ. (Here the operation ′′ is meant w.r.t. the context KQ.) Then
one can compute again and again the generic base of the enlarged context until no rule has
confidence lower than C anymore. A computationally more elegant way would be to not
to recompute the whole rule base of the enlarged context anew. In the spirit of attribute
exploration (see [Ganter and Wille, 2012, p.85]), one can smartly exclude implications with
confidence lower than C directly during the generation of the rules. However, since one
does not work with the generic base, but with the stem base, the result would then be
different and would furthermore dependent one the concrete order in which the computed
implications were presented to the user.

5.3.3 How to compute the test statistics for the tamed closures systems

In this section we shortly indicate, how one can compute the test statistic for a tamed
closure system. We start with the example of the closure system of upsets. In Section 5.3.1
we came up with the tamed family of sets Fh0 = {↑ B | B ⊆ T (h0)} that generates the
closure system Sh0 = cl(Fh0). Of course, it would be intractable to explicitly compute
the closure system Sh0 generated by Fh0 because it is simply too big. Fortunately,
the explicit computation of Sh0 is not needed: The closure system Sh0 simply consists
of all possible intersections of sets of the generating family of sets Fh0 . For ease of
presentation, assume that (V,≤) itself is already a complete lattice (otherwise, simply
take its Dedekind-MacNeille completion, cf., e.g., [Ganter and Wille, 2012, p.48]). The
closure system Sh0 is simply the set of all possible intersections of sets of the family Fh0 .
For a finite35 family (↑ Ai)i∈{1,...,n} of upsets from Fh0 , the intersection ↑ A1 ∩ . . .∩ ↑ An

35The finiteness is actually not needed, it only makes the presentation more simple, here.
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can be written as ↑ A1 ∩ . . .∩ ↑ An =
⋃{↑ a1 ∩ . . .∩ ↑ an | ∀i ∈ {1, . . . , n} : ai ∈

Ai} =
⋃{↑ ∨{a1, . . . an} | ∀i ∈ {1, . . . , n} : ai ∈ Ai}. Thus, Sh0 can be written as

Sh0 = {↑ B | B ⊆ T̄ (h0)} where T̄ (h0) = {∨A | A ⊆ T (h0)}. Since
⋃
i∈I
↑ Bi =↑ ∨

i∈I
Bi for

arbitrary families (Bi)i∈I , the closure system Sh0 is closed under arbitrary unions and thus,
because of Birkhoffs theorem, the valid implications of Sh0 are simple implications. Thus,
we can firstly calculate all simple implications or a basis thereof and implement them in
a linear program: For example one can compute for every x ∈ V the set ↓ x ∩ T (h0) of
all elements of T (h0) that are below x. Then, one can take from the set M of all upper
bounds of ↓ x ∩ T (h0) the minimal elements minM . Finally, for every y ∈ minM one
simply has to implement the associated implication {x} −→ {y} as an inequality constrain
in the linear program.

For the case of non-guided taming of a closure system that is given by a generating
formal context, remember that the taming was simply done by removing objects from the
context (but only for the generation of the closure system of the intents, and not for the
whole analysis). Let I denote the set of indices of the objects that were excluded for the
generation of the closure system. To compute the statistic for the tamed context, one only
has to modify the program (24) to the following program:

〈(wext1 , . . . , wextm , wint1 , . . . , wintn ), (z1, . . . , zm, zm+1, . . . , zm+n)〉 −→ max (39)

w.r.t.

∀(i, j) s.t. Aij = 0 : zi ≤ 1− zj+m
∀i ∈ {1, . . . ,m} :

∑

k:Aik=0

zk+m ≥ 1− zi

∀j ∈ {1, . . . , n} :
∑

k/∈I:Akj=0

zk ≥ 1− zj+m

Here, the only difference is that in the last set of inequalities, one does not sum over every
object index k but only over that indices, that were not excluded for the generation of
the closure system. To see the validity of this modification, simply note that the three
verbalizations directly above the linear program (24) are still exactly characterizing the
situation with the only modification of point 3, which has to be modified to

“Dually, if attribute mj does not belong to the intent, then there exists at least one
object gk that was not excluded for the generation of the closure system of intents, and
that belongs to the extent, but does not have attribute mj.”

For the guided taming the computation of the test statistic is straightforward. Since the
formal implications one additionally imposes are computed explicitly, one can modify the
binary program described in Section 4.2 by additionally implementing the further imposed
implications as inequality constraints like described in Section 4.1.
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6 Examples of application

In this section we apply the developed methods to different data sets. The applications
should on the one hand be not taken at face value as serious substance matter applications.
On the other hand, they should also be not misunderstood as pure toy examples. The aim
of the following examples of application is to show that the developed methods are in fact
applicable to “real-world” data sets and that these methods are in principle very flexible
and can also deal with different kinds of data deficiency. The big part that is missing to
make the examples serious substance matter studies is the fact that at much stages of the
analysis, some substance matter considerations have to be made or could maybe be made
to make the analysis more decisive. However, since the authors are clearly no experts
in the substance matter fields the applications are related to, they would like to refrain
from making such substance matter decisions, if possible, or to make the actually needed
substance matter decisions only for purposes of illustration. In the following examples,
especially in our main example of Section 6.1, we analyze the data sets by a more generic
way of proceeding and, if appropriate, shortly indicate, at which steps and in which way
one could make a more refined data analysis, that of course would be dependent on some
substance matter decisions.

6.1 Upsets: Relational inequality analysis

We start with our main example of multivariate inequality analysis using data from the
German General Social Survey (ALLBUS) of the year 2014 (GESIS - Leibniz - Institut
fur Sozialwissenschaften [2015]). In this survey, altogether 3471 persons participated.
Here, we analyze systematic multivariate differences between the group of male and
female participants w.r.t. the variables Income, Education and Health. The question
about Health was asked in a split ballot design to test for a possible impact of different
response scales on the result. The participants were asked both in split A and split
B about how they would describe their health status in general. The participants of
split A got the 5 different answer categories “Sehr gut” (very good), “Gut” (good),
“Zufriedenstellend” (satisfactory) , “Weniger gut” (suboptimal) and “Schlecht” (bad)
whereas the participants of split B got the additional category “Ausgezeichnet” (excel-
lent). (The english categories in brackets are our own english translation.) For reasons
of simplicity, we used here only the participants of split B and did a complete case analysis.

Of course, one could also use both splits for the analysis: If one has some reason to
assume that both response scales adequately operationalize the same construct, one can
do a joint analysis of both splits by matching the two scales to each other based on their
respective empirical distribution functions. This is actually possible because the splitting
was random and thus the measured construct has the same distribution in every split.36

36Note that due to measurement error, which can be different within the two splits, the actual measu-
rements can differ in their distribution. But if the measurement errors are independent of the measured
construct and from each other, this will only produce some “smearing” of the measurements, which can
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For the joint analysis of the three variables Income, Education and Health, the
complete case analysis consisted of altogether 1515 participants (706 female and 809 male)
corresponding to a non-response rate of 12.2%. The variable Income contributed most to
the non-response-rate (the non-response rate for Income was 11.8%.) Here, income was
asked for in a two step procedure: First with an open question and then, for participants
who refused to answer the open question, a categorized question with 23 answer-categories
ranging from “no income” to “more than 7500 Euro” was added. This two-step procedure
was done to reduce the non-response rate. Here, for simplicity we use the combined
answers to the open and the list query, where for participants who answered only the
list query simply the mid-points of the interval representing the categorized answer were
used as a surrogate for the true income37. Note that for our analysis we only need the
ordinal structure of the variable Income and furthermore we can actually deal also with
a partially ordered structure of the dimension income. Thus, here one can also use more
cautious approaches where one says for example that an income that is actually only
categorically observed as [a, b) is only lower than or equal to another observed income
(no matter if precisely observed as [c, c] or imprecisely observed as [c, d)) of [c, d) iff
b ≤ c. Another possibility would be to say that categorically observed incomes [a, b) are
comparable to itself (i.e. [a, b) ≤ [a, b)), but not to a precisely observed value c ∈ [a, b)).
The stochastic dominance approach is thus very flexible to deal with certain kinds of
non-response/interval-valued observations. Here, we do simply work with the combined
values where interval-valued observed incomes are replaced by the corresponding interval
mid-points.

The variable Education is the classification of the level of education according to the
International Standard Classification of Education (ISCED) 2011 (see [UNESCO Institute
for Statistics (UIS), 2012]) implemented for Germany. On the highest stage, this classifi-
cation differentiates between 9 different main levels of education:

Level 0: Less than primary education Level 5: Short-cycle tertiary education
Level 1: Primary education Level 6: Bachelor’s or equivalent level
Level 2: Lower secondary education Level 7: Master’s or equivalent level
Level 3: Upper secondary education Level 8: Doctoral or equivalent level
Level 4: Post-secondary non-tertiary education

We treat here the variable Education as of totally ordered scale of measurement. In
the sample, only the levels from 1 to 8 were observed. Note that also for this dimension
the methodology of stochastic dominance would be able to deal with an only partially
ordered scale: The ISCED 2011 could also be implementation in a more cautious way:
For example, instead of only comparing the highest educational achievements, one could

lead to cases where stochastic dominance w.r.t. the underlying construct is actually present, but it is not
present anymore for the measurements. A transition of non-stochastic dominance w.r.t. the construct into
stochastic dominance w.r.t. the measurements cannot happen.

37For the answer category “below 200 Euro” a value of 150 Euro and for the category “more than 7500
Euro ” a value of 8750 Euro was assigned.
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alternatively look at the whole educational paths and and say that a person A is more
“poor” than another person B w.r.t. the dimension Education only if both persons
followed the same educational path but person A stopped earlier with a lower highest
educational achievement than person B. This partial ordering of the dimension Education
would lead to a less decisive analysis, but it has the potential to reveal, how much a
more classical analysis would dependent on the choice of a totally ordered scale for the
dimensioneducation.

We begin with a marginal analysis of all 3 variables. Figure 3 shows the lower
cumulative distribution function for every variable for both the male and the female
group. One can see that the female group is almost dominated by the male group for the
variables Income, Education and Health. With regard to Income, the extent of dominance
is the highest: 66.4% of the women earn not more than 1300 Euro, but only 31.9% of the
men earn not more than 1300 Euro, which is a difference of 34.5 percentage points. Only
for the very high income of 12000 Euro there is a small deviation from dominance in the
sense that 99.9% of the men earn not more than 12000 Euro, where this is the case for
only 99.8% of the women. For the variable Health there is only deviation from dominance
w.r.t. the percentage of women reporting a health-status bad : Only 2.2% of the women
report a health status bad, which is about 0.7 percentage points lower than the amount of
2.9% for the men. The variable Education shows strict dominance.

Now, let us come to the joint analysis. For the statistics

D+ = max
M∈U((V,≤))

〈wx − wy,m〉

D− = min
M∈U((V,≤))

〈wx − wy,m〉,

where X describes the subpopulation of male, and Y describes the subpopulation of female
persons, we obtain

D+ ≈ 36.48%

D− ≈ −1.21%,

which indicates an almost strict dominance for the joint distribution of the variables In-
come, Education and Health, where the small deviation from dominance is with D− ≈
−1.21% not much higher than the largest deviation of −0.7% for the variable Health in the
marginal analysis. The maximal value of 36.48% is about 2 percentage points higher than
for the largest maximal value of 34.5% for the variable Income in the marginal analysis.
Beyond the purely quantitative analysis one can also look, at which upsets the maximum
and the minimum of the test statistic is attained. The maximum of the statistic is attained
at an upset U generated by the antichain A (via U =↑ A) containing 9 elements depicted
in Table 3.

The minimal test statistic is attained at an upset generated by an antichain of size 4
described in Table 4. Based on a resampling scheme with 10000 replications, the test sta-
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Figure 3: Empirical cumulative distribution function for all 3 considered variables for the
male group (black) and the female group (grey).

tistic D+ appears as highly significantly above 0 whereas D− is really only non-significantly
different from zero: The maximal observed value of D+ in the resample is 17.48% and the
minimal value of D− observed in the resample is −1.63%, which is very close to −1.21%
for the actually analyzed data set, actually, the value of −1.21% is closer to zero for the
actual data set than the closest value of the resample. The poset generated by the actu-
ally observed data and the coordinate-wise ordering has a Vapnik-Chervonenkis-dimension
(width) of 33. For such a V.C.-dimension and an n around38 700, the V.C.-inequality

38The data set included 706 female and 809 male participants. Note that actually the sampling weights
for east and west have to be also taken into account, here, however, we only want to get a rough idea
about how sharp the V.C.-inequality is in our situation.
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Income (Euro) Education (ISCED 2011) Health (self-reported) difference above
1 400 (0.93) Upper secondary education (0.9) excellent (0.08) 0.02 0.06
2 650 (0.84) Lower secondary education (0.99) excellent (0.08) 0.02 0.06
3 1080 (0.64) Master’s or equivalent level (0.22) very good (0.32) 0.02 0.07
4 1100 (0.64) Master’s or equivalent level (0.22) good (0.68) 0.06 0.14
5 1260 (0.55) Master’s or equivalent level (0.22) satisfactory (0.89) 0.08 0.17
6 1300 (0.55) Upper secondary education (0.9) satisfactory (0.89) 0.3 0.49
7 1400 (0.51) Primary education (1) good (0.68) 0.25 0.37
8 1400 (0.51) Upper secondary education (0.9) bad (1) 0.33 0.49
9 1450 (0.48) Lower secondary education (0.99) satisfactory (0.89) 0.32 0.45

Table 3: The antichain A = {A1, . . . , A9} that generates that upset U =↑ A where the
maximum of the test statistic is attained. In brackets the marginal upper quantiles that
correspond to the values are given, e.g. the 0.93 behind the 400 in the first row of the first
column means that ca. 93% of the persons in the population earn at least 400 Euro. The
column difference displays for every row i the difference between the proportion of male
and the proportion of female persons that are above element Ai. The column above shows
the proportion of all persons that are above Ai.

Income (Euro) Education (ISCED 2011) Health (self-reported) difference above
1 100 (1) Master’s or equivalent level (0.22) excellent (0.08) -0.0019 0.02
2 130 (0.99) Upper secondary education (0.9) suboptimal (0.97) 0.0359 0.87
3 600 (0.86) Lower secondary education (0.99) very good (0.32) 0.0759 0.27
4 2900 (0.12) Master’s or equivalent level (0.22) bad (1) 0.0797 0.07

Table 4: The antichain A = {A1, . . . , A4} that generates that upset U =↑ A where the
minimum of the test statistic is attained. In brackets the marginal upper quantiles that
correspond to the values are given, e.g. the 1 behind the 100 in the first row of the first
column means that ca. 100% of the persons in the population earn at least 100 Euro. The
column difference displays for every row i the difference between the proportion of male
and the proportion of female persons that are above element Ai. The column above shows
the proportion of all persons that are above Ai.

(26) is too loose. For a value of the test statistic of about 36% one would have to have
chosen a V.C.-dimension of about 8 to make the conservative V.C.-inequality leading to a
significant result. Since we were able to compute a large enough resample, we actually do
not need to rely on the V.C.-inequality. However, for the purpose of illustration, we can
tame the closure system of upsets to get an insight into how this affects the behavior of
the test statistic for the actually observed data and the distribution of the test statistic
under H0. Figure 4 shows a the value of the test statistic D+ for the actually observed
data, as well as the distribution39 of D+ under H0 for different V.C.-dimensions ranging
from 4 to 39. Note that the original V.C.-dimension was 33, which is maybe surprising, but
the V.C.-dimension of 39 for the biggest tamed closure system is due to the fact that by

39Here, we computed a resample of size 1000 to get a rough insight into the distribution of D+ under
H0.
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taming the closure system one gets in a first step only a family of sets that is generally no
closure system and one has to enlarge this family in a second step to be a closure system to
make the analysis computationally feasible. One can see that, as expected, with increasing
V.C.-dimension, both the value of the test statistic for the actually observed data, as well
as the expectation of the test statistic under H0 increases. The standard deviation of the
test statistic has also an increasing trend for increasing V.C.-dimensions. If one standar-
dizes the test statistic D+ by subtracting its mean and dividing the result by its standard
deviation, one sees that the shape of the distribution of D+ is approximately independent
of the V.C.-dimension. The fact that the shape of the test statistic is approximately inde-
pendent of the V.C.-dimension could possibly be used to get rules of thumb for situations
where the computation of large resamples is computationally intractable. However, the
approximate independence of the shape of the distribution of D+ from the V.C.-dimension
may be only present in our special situation and thus may be misleading for getting a rule
of thumb for the general case.
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Figure 4: The value of the test statistic D+ for the actually observed data, as
well as the distributions of the test statistic D+ and the standardized test statistic
D+−D+

sd(D+)
under H0 for different V.C.-dimensions. One can see that the shape of the

distribution D+ is nearly independent of the V.C-dimension.
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Figure 5: The expectation and the standard deviation of D+ under H0 for different V.C.-
dimensions.

Now, we would like to illustrate a little bit, how the taming behaves w.r.t. conceptual
terms. Therefore, we analyze for a tamed closure system of V.C.-dimension 7 the tamed
upsets and downsets, where the maximum D+ and the minimum D− is attained. For
the upset-approach, the maximal statistic for the tamed closure system is attained at an
antichain of size 7 summarized in Table 5.

Income (Euro) Education (ISCED 2011) Health (self-reported) difference above
1 1020 (0.65) Short-cycle tertiary education (0.37) excellent (0.08) 0.01 0.02
2 1050 (0.65) Short-cycle tertiary education (0.37) very good (0.32) 0.04 0.12
3 1050 (0.65) Master’s or equivalent level (0.22) good (0.68) 0.06 0.14
4 1063 (0.65) Short-cycle tertiary education (0.37) good (0.68) 0.11 0.23
5 1200 (0.6) Upper secondary education (0.9) good (0.68) 0.23 0.42
6 1248 (0.56) Upper secondary education (0.9) satisfactory (0.89) 0.3 0.5
7 1300 (0.55) Upper secondary education (0.9) suboptimal (0.97) 0.32 0.52

Table 5: The antichain A = {A1, ..., A7} that generates that upset U =↑ A where the max-
imum of the test statistic is attained for the tamed closure system with a V.C. dimension
of 7.

One can see that the maximal difference between the transformed Z-values in brackets
is 0.65 − 0.08 = 0.57 attained for the first element A1, where the Z-value of 0.65 for an
income of 1020 Euro is the largest, and a Z-value of 0.08 for a health status excellent is
the smallest value. Compared to this, in the non-tamed case, the skewest element of the
antichain generating the upset where the maximal value of the test statistic is attained is
the element A2 with a maximal Z-value of 0.99 for an education status Lower secondary
education and a minimal Z-value of 0.08 for a health status excellent. The difference
0.99− 0.08 = 0.91 is clearly greater than for the tamed situation showing that we actually
managed to reduce the skewness of elements generating the closure system for the tamed
analysis.
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The value of the tamed test statistic is with 32.90% not much smaller than the initial
value of 36.48%, still significantly different from zero. The minimal value is −0.045%
attained at the antichain consisting of only one element depicted in Table 6

Income (Euro) Education (ISCED 2011) Health (self-reported) difference above
1 3500 (0.08) Master’s or equivalent level (0.22) excellent (0.08) -5e-04 0.003

Table 6: The antichain A = {A1} that generates that upset U =↑ A where the minimum
of the test statistic is attained for the tamed closure system with a V.C. dimension of 7.

The minimal value is not significantly different from zero. Table 7 and Table 8 finally
show the results one would obtain if one would do the tamed analysis by looking at
downsets instead of upsets:

Obviously, the role of the maximal and the minimal value of the test statistic will
interchange: The maximal value of the test statistic of 0.15% means that the difference
between the proportion of the poor male and the poor female persons is maximally 0.15%
attained if one concretizes the term poor with the downset D =↓ A generated by the
antichain given in Table 7. The minimal value of the test statistic is −28.82% attained
for the downset generated by the antichain given in Table 8. Note that for the downset-
analysis we used for the construction of the Z-values not the complementary distribution
function, but the usual distribution function, because this fits better to the notion of a
downset. This only has an impact on the interpretation of the numbers given in brackets.
For example the 0.06 beyond the income value of 360 Euro in Table 7 means now, that
6% of the population have income below 360 Euro. Additionally, the last column, denoted
below, now gives the proportion of persons below the corresponding element of the antichain
and the column difference gives the difference of the proportions below the corresponding
element.

Income (Euro) Education (ISCED 2011) Health (self-reported) difference below
1 360 (0.06) Primary education (0.01) bad (0.03) 0.0015 0.0008

Table 7: The antichain A = {A1} that generates that downset D =↓ A where the maximum
0.0015 of the test statistic is attained for the tamed closure system with a V.C. dimension
of 7.

6.2 Concept extents: Gender differences and differential item
functioning in an item response dataset

In this section, we shortly analyze an IRT-dataset w.r.t. gender differences and Differen-
tial item functioning (DIF, [Osterlind and Everson, 2009]). The data set is a subsample
from the general knowledge quiz Studentenpisa conducted online by the German weekly
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Income (Euro) Education (ISCED 2011) Health (self-reported) difference below
1 1400 (0.51) Bachelor’s or equivalent level (0.78) good (0.68) -0.21 0.33
2 1450 (0.52) Short-cycle tertiary education (0.75) very good (0.92) -0.28 0.41
3 1460 (0.52) Post secondary non-tertiary education (0.63) good (0.68) -0.20 0.3
4 1474 (0.53) Upper secondary education (0.55) good (0.68) -0.16 0.28

Table 8: The antichain A = {A1, ..., A4} that generates that downset D =↓ A where the
minimum −0.288 of the test statistic is attained for the tamed closure system with a V.C.
dimension of 7.

news magazine SPIEGEL ([SPIEGEL Online, 2009], see also Trepte and Verbeet [2010] for
a broad analysis and discussion of the original data set.) The data contain the answers of
1075 university students from Bavaria to 45 multiple choice items concerning the 5 different
topics politics, history, economy, culture and natural sciences. For every topic, 9 questions
were posed, for example question 1 of the politics topic was: “Who determines the rules
of action in German politics according to the constitution?”. The data set was analyzed
in a number of papers, for example in Strobl et al. [2015], Tutz and Schauberger [2015],
Tutz and Berger [2016], mostly from an IRT point of view. All mentioned papers identified
systematic differences between the subgroups of male and female students in the sense of
the presence of differential item functioning. Differential item functioning is present if the
distribution of the item response patterns in two subgroups with identical latent abilities
are different. Here, one cannot assume that the subgroups of male and female students that
actually participated in the online quiz have the same latent abilities, because for example
self selection processes can be present. To analyze the presence of differential item functio-
ning one has to firstly somehow match persons of the two subgroups with similar abilities.
One classical non-parametric procedure is the test of Mantel Haenszel (see [Holland et al.,
1988].), where one takes the item scores (i.e., the number of solved items) as a matching
criterion40. One stratifies the populations into parts with the same item score and then
compares the subpopulations in every stratum. The final test statistic is then a χ2-type
statistic cumulating over all strata. The Mantel Haenszel procedure is an item-wise test,
one tests for every item separately, if DIF is present for this item. For the construction of
the matching score one usually does not take the whole set of items, instead one ignores
items that showed DIF in a first preliminary analysis that was based on the whole set of
items41. This process is called purification and there are different variants of purification,
see, e.g., [Osterlind and Everson, 2009, p.16]. We can use the linear programming approach
on formal contexts to develop a joint DIF test based on the item scores as a matching cri-
terion. Firstly, we have to care for the different distributions of the abilities in the different
subgroups. Here, we do not make a conditional analysis since conditioning would make all
classes with the same item score relatively small such that a 45-dimensional multivariate

40Note that this will only work if the score values are a sufficient statistic for the abilities, which is for
example the case for the Rasch model. For a discussion of deviations from this assumption in the context
of the classical Mantel Haenszel procedure, see, e.g., [Zwick, 1990]

41The actually tested item should always be included for matching to make the Mantel Haenszel proce-
dure valid under the null hypothesis of no differential item functioning, see [Holland et al., 1988, p.16].
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analysis in every stratum would expectedly have very low power. Instead, we re-weight
both subgroups such that the ability distributions in the male and the female group are
approximately the same and then we analyze the joint distribution of item patterns and
abilities (measured via the item scores). Concretely, we do the following:

1. Let K0 = (G,M, I) be the formal context where G = {g1, . . . , g1075} is the set of
persons, M = {m1, . . . ,m45} is the set of items and gIm iff person g solved item m.

2. Separately for the male and the female group we estimate the density of the distribu-
tion of the item scores s, denoted with f̂male and f̂female, respectively. The estimation
is done here with a kernel density estimator.

3. Then we inversely re-weight the sample by giving a weight

Wi :=

{
f̂male(si) if the ith person is female

f̂female(si) if the ith person is male.

After this, the re-weighted distribution of the scores in the male and female group
are approximately the same.

4. Then we analyze the joint distribution of response patterns and the score values in
both subgroups. To do this, we use the flexibility of formal context analysis and
simply conceptually scale the score values with an interordinal scale. Concretely,
for every score value s we add an attribute “≤ s” and an attribute “≥ s” to the
original context K0 with the interpretation person g has attribute “≤ s” if g has a
score value lower than or equal to s and person g has attribute “≥ s” if g has a score
value greater than or equal to s. Afterwards, we analyze the enlarged context K1 by
looking at the closure system B1(K1) and computing

max/minM∈B1(K1)〈(wx − wy) ·W,1M〉,

where wx are the original weights for the male and wy are the weights for the female
persons. Concretely, in the sample there were 658 male and 417 female persons, thus

wxi =

{
1

658
if the ith person is male

0 if the ith person is female

and

wyi =

{
0 if the ith person is male

1
417

if the ith person is female
.

5. In a last step we apply a purification procedure by basing the item scores for matching
only on items that are not in the concept intents for which the maximal and minimal
test statistic was obtained in a first run. We repeat the purification procedure until
not further items are excluded.
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Before showing the actual results, we firstly compute the test statistics D+ and D−

for the context K0 without re-weighting the data. The context has a V.C.-dimension of
22 and has about 8.900.000.000 formal concepts (this is an estimate based on random
sampling of arbitrary item sets and checking if they are a concept intent) and is thus very
hardly describable explicitly and we will use the binary program described in Section 4.2
to compute the test statistics 42. The maximal value of the test statistic is 0.335 attained
at a formal concept containing the questions

F6: “Who is this? - (Picture of Horst Seehofer.)”

F26: “Which internet company took over the media group Time Warner? - AOL.”

This means that the difference in the proportions of male and female persons who ans-
wered at least questions F6 and F26 correctly is the greatest observed difference between
proportions of male and female persons that answered at least all items of some set of
items correctly. Concretely, 53.6% of the male and 20.1% of the female persons answered
these both questions rightly. The minimal value of the test statistic is −0.169 attained at
a formal concept containing the questions

F40: “What is also termed Trisomy 21? - Down syndrome.”

F43: “Which kind of bird is this? - Blackbird.”

Here, 59.6% of the male and 76.5% of the female persons got both questions right. Both
differences are significant, for a resample of size 1000 the value max{D+,−D−} had a
range from 0.05 to 0.14 and a standard deviation of 0.014.). Figure 6 gives a rough idea
about how a (non-guided) taming of the closure system by removing big shatterable sets
of objects from the context affects the distribution of the test statistic D+ under H0.
(Note, that this is only a very small simulation where we resampled only 100 times for
every value of the V.C.-dimension.) The initial context has a V.C.-dimension of 22. One
can see, that by reducing the V.C.-dimension, the mean and the standard deviation of the
test statistic does not change very much for small reductions of the V.C.-dimension. Only
a very strong taming to a V.C.-dimension below 8 seems to have an effect in reducing the
mean of D+ under H0.

Now we come to the actual DIF-analysis: Figure 7 shows the distribution of the item
scores for the male and female persons. The distributions are very different and thus we
have to correct for this difference by re-weighting the data. However, generally, every
attempt to account for such a kind of difference should be taken with some grain of salt,
because initially we would like to account for differences in the abilities, but the abilities are
only latent traits that cannot be observed and thus have to be estimated, in our situation

42To get a rough idea of computational complexity: The MIP solver Gurobi (see [Gu et al., 2012])
needed ca. 100 seconds to compute the statistic using one core on a 2.60 Ghz CPU (Intel(R) Xenon(R)
CPU E5-2650 v2 @2.60 Ghz, 64GB RAM).
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Figure 6: Distribution of the tamed statistic D+ for different V.C.-dimensions.

from the item scores. In the unlucky case, an attempt for accounting for differences in
abilities can make the analysis still more misleading if the items that suffer from DIF cannot
be detected accurately enough and thus the item scores are invalidated as a surrogate for
the abilities. The joint analysis of the re-weighted sample leads in the first step to a
maximal value of the statistic of 0.234 attained at the intent of persons who answered
the question F26: “Which internet company took over the media group Time Warner?
- AOL.” correctly and had a score value between 17 and 37. The minimum of the test
statistic in the first step was −0.333 attained at an intent containing the 5 questions

F12: “Which form of government is associated with the French King Louis XIV? - Abso-
lutism.”
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Figure 7: Empirical distribution of the item scores for the female and the male group in
the subsample of the general knowledge quiz “Studentenpisa” ([SPIEGEL Online, 2009]).

F33: “What is the name of the bestselling novel by Daniel Kehlmann? - Die Vermessung
der Welt (Measuring The World).”

F35: “In which city is this building located? - Paris.”

F40: “What is also termed Trisomy 21? - Down syndrome.”

F43: “Which kind of bird is this? - Blackbird.”

and score values between 16 and 35. After excluding questions F26, F12, F33 F35, F40
and F43 for matching, in a second step, additionally the two questions

F34: “Which city is the setting for the novel ’Buddenbrooks’? - Lübeck.” and

F36: “Which one of the following operas is not by Mozart? - Aida.”

were excluded for matching. In the third step, the procedure stopped with a maximal
final statistic D+ of 0.241 attained for the intent containing F26 and (modified) score
values between 16 and 29. The minimal value D− was −0.290 attained for the intent
containing questions F12, F33, F35, F40 and F43 and (modified) score values between
12 and 30. Thus, altogether, questions F12, F26 , F33, F34, F35, F36, F40 and F43
showed DIF. (The result was statistically significant in the sense that a bootstrap sample
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of 10 samples yielded a distribution of the absolute value of the test statistic with mean
0.21 and standard deviation 0.01.)

6.3 Guided taming of concept extents in cognitive diagnosis mo-
dels

In this section, we would like to illustrate a little bit, how one can tame a formal context
in a more guided way in the context of cognitive diagnosis models. For illustration, we use
a subsample of the Trends in International Mathematics and Science Study (TIMSS) of
the year 2007. This study is an international assessment of the mathematics and science
knowledge of students, that was firstly conducted in 1995 and has been administered every
four years thereafter by the International Association for the Evaluation of Educational
Achievement (IEA). It analyses math- and science knowledge of 4th and 8th grade students.
We use here a subsample provided in the R-package CDM43, consisting of 698 Austrian
students (4th grade) answering a set of 25 math questions (dataset data.timss07.G4.lee).
Since not all students answered all 25 questions, we restrict here the analysis to that 344
students that answered all questions. The 25 questions were the same as that used in Lee
et al. [2011]. The package also provides the Q-matrix and the description of the skills
used in Lee et al. [2011]. We will use this small subsample to illustrate the guided taming
procedure by comparing it to the non-guided taming procedure described in section 5.3.2.
The formal context K0 = ({g1, . . . , g344}, {m1, . . . ,m25}, I) has a Vapnik-Chervonenkis
dimension of 14 and consists of 255712 formal concepts. Because of the small cardinality
of the concept lattice, we can explicitly compute the closure system B1(K0) of all extents
and thus we will analyze the taming process not w.r.t. the V.C.-dimension, but w.r.t. the
cardinalities of the tamed closure systems B1(K̃). The data set contains also information
about gender, so we will analyze differences w.r.t. gender. Figure 8 shows the value of the
test statistic for the actually observed data in dependence on the cardinality of the tamed
closure system for both the guided taming and the non-guided taming. One can see that,
as expected, the statistic increases with increasing cardinality of the closure system. The
general pictures for the non-guided and the guided taming are very similar. For the guided
taming, the smallest closure system that is obtained by enforcing all valid implications
of the idealized response pattern space, has a size of 127, which is much higher than the
smallest possible closure system of size 2, obtainable by the strongest possible non-guided
taming. Figure 9 shows the p-value one would obtain if one would do a statistical test.
(Here, we did resampling with 1000 resamples to compute the p-values.) One can see,
that for comparable sizes of the closure system, the guided taming procedure generally
has lower p-values. One could speculate here, that the guided taming tends to exclude
mainly sets that are statistically not so important in the sense that they play no crucial
role w.r.t. differences between male and female participants. If one assumes that in the
actually observed data set there are clear differences between male and female participants,

43See Robitzsch et al. [2016] for an introduction to the package CDM.
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then it seemingly appears here, that the guided taming leads to a smart reduction of the
size of the closure system that actually reduces the variability of the statistic under H0

without reducing the test statistic under H1, too much.
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Figure 8: Value of the tamed test statistic for different cardinalities of the tamed closure
system, both for the non-guided and the guided taming.
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Figure 9: Obtained p-values of the test statistic for the actually observed data for different
sizes of the tamed closure system, both for the non-guided and the guided procedure.
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6.4 Convex sets: A geometrical generalization of the
Kolmogorov-Smirnov test

Finally, we want to illustrate that for small data sizes the generalization of the Kolmogorov-
Smirnov test for analyzing spatial differences between subpopulations in spatial statistics
as indicated in Section 4 is also practically applicable. We use here the data set quercusvm
which is a subsample of a larger data set analyzed in Laskurain [2008] and available in
the R Package ecespa ([de la Cruz Rot, 2008]). This data set consists of 100 data points
representing the locations of alive and dead oak trees (Quercus robur) in a secondary
wood in Urkiola Natural Park (Basque country, north of Spain). The data are depicted in
Figure 10. We can now compute that convex sets where the maximal and the minimal

Figure 10: Locations of altogether 100 alive and dead oak tress (Quercus robur) in a
secondary wood in Urkiola Natural Park (Basque country, north of Spain).

differences in proportion of alive and dead oak trees is attained. Figure 11 shows the
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results. The blue convex set is the set, where the difference is maximal (37%): In the

Figure 11: Difference in proportions of alive and dead oak trees. Blue: maximal difference
of 39% (more alive than dead trees). Red: minimal difference of −37% (more dead than
alive trees).

blue convex area we have a proportion of 61% alive, but only a proportion of 24% dead
trees. The red convex set is the set, where the difference is minimal (−39%): In the red
convex area there are 15% alive and 54% dead trees. Based on 1000 resamples, one gets
an approximate p-value of 0.83, so the differences or not statistically significant. Note
that also the Cramér von Mises type test proposed by Syrjala [1996] and also a classical
generalization of the Kolmogorov-Smirnov test, where one only looks at rectangular areas
are both non-significant. (The p-values of the tests, computed with the function syrjala

from the R Package ecespa are approximately 0.84 and 0.67, respectively.) Compared to
Syrjalas test, the test based on convex sets has the advantage that it is somehow better
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interpretable because one can actually see, in which areas the differences in proportion
are maximal or minimal.

A further modification of the test is also possible: Since the convex sets are described by
formal implications and one explicitly models these implications by imposing corresponding
inequality constraints in the binary program, one has the flexibility to impose not all, but
only some implications. One natural way to select implications to include would be to
include only implications where the data points of the premise and the conclusion are not
too far away from each other. This would lead to some kind of a localization method and the
associated closure system would get larger, which means more flexibility in detecting non-
convex distributional features but a generally higher V.C.-dimension. We shortly illustrate
this modification by imposing only implications where the distances between the points of
the premises and the conclusions is not greater than 40m. Figure 12 shows the non-convex
sets where the maximal (blue) and the minimal (red) differences in the proportions of alive
and dead oak trees is attained.

Figure 12: Non-convex sets where the maximal (blue) and the minimal (red) difference in
proportions between alive and dead oak trees is attained for the modified method where
only implications, where the distance between the points of the premises and the conclu-
sions in not greater than 40m, are used. The dashed circles around the highlighted blue
and red points have a radius of 40m to get an impression about which implications were
actually included.

For the modified version we got a maximal value of 58% and a minimal value of 50%
for the difference of the proportions with an approximate p-value of 0.17.

61

201



While the computations for this data set could be done quickly enough, for larger data
sets, the method quickly becomes intractable. The data set analyzed in Syrjala [1996]
containing 327 spatial measuring points was already very hard to analyze, to compute the
test statistic, the mixed integer solver Gurobi (Gu, Rothberg, and Bixby [2012]) took a
few days to solve the binary program. Similarly to the analysis in Syrjala [1996], the result
w.r.t. differences between male and female cods was not statistically significant. To assess
the statistical significance of our test statistic, we did not need to do resampling, which
would actually be very time demanding. Instead we could rely on the fact that for a value
of 0.06 that we observed for our test statistic, still the more classical Kolmogorov-Smirnov
type test statistic that only looks at rectangular areas would not be statistically significant.

However, for dealing with the computational issue, one can use the technique of
attribute exploration for formal contexts: One can firstly look at the formal context
K := (G,M, I) where G is the set of all rectangular areas, M is the set of all spatial
measuring points and gIm iff measuring point m lies in the rectangular area g. The re-
sulting closure system of all concept intents is then the set of all sets of measuring points
lying in some rectangular area, which is a smaller closure system than the system of all
convex sets of measuring points and in which thus more formal implications are valid. Note
that despite this, a base of all implications of this smaller closure system can be given as

{{p, q} 7→ [p, q] | p, q ∈M, [p, q] ) {p, q}},
where [p, q] := {r ∈M | r1 ∈ [min{p1, q1},max{p1, q1}] & r2 ∈ [min{p2, q2},max{p2, q2}]}.
Compared to the base for general convex sets, this base has only O(n2) implications and
is thus far more easy to handle.

Now, during the computation of all valid implications of K, in the spirit of attribute
exploration, one can check for every currently generated implication, if it is also approx-
imately true with some confidence c in the context K̃ = (G̃,M, Ĩ), where G̃ is the set of
all half-spaces generated by two points of M and gĨm means that measuring point m lies
in the half-space g. The intents of this context are exactly all convex areas of measuring
points. If the currently generated implication is also true in the larger closure system of
all convex areas, then one would treat it as valid, otherwise one would provide a convex
half-space g ∈ G̃ as a counterexample.

With this procedure one would generate a closure system that is larger than the
system of all rectangular areas and smaller than the closure system of all convex areas
and the confidence level c regulates the size of the resulting closure system and the size of
the implication base.

Thus, with this modification, we have some “scalable” method for spatial statistics. (Of
course, with the drawback that now the result of the method is dependent on the choice
of the coordinate system.)
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7 Conclusion

In this paper we analyzed the problem of detecting stochastic dominance as a prototypical
example of optimizing a linear function on a closure system. Compared to the general case,
for stochastic dominance, the integrality constraints of the underlying binary program
could be dropped which helped in making the problem more tractable. For general closure
systems the binary programs are more difficult to solve, but we managed to solve them in
our concrete cases of application. Note that we did not explicitly incorporate knowledge
about the underlying closure system into the mixed integer solver we used. It seems that
one can make the computations far more efficient by using for example knowledge about
valid formal implications of the underlying closure system. If one knows that certain
formal implications are valid, then one can possibly use this knowledge to explicitly prune
the search space in the branch and cut algorithm of the mixed integer solver.

The solved binary programs and the associated test statistics treated in this paper
could be understood as some Kolmogorov-Smirnov type generalizations. This motivates the
question if also other generalizations like weighted Kolmogorov-Smirnov type or Anderson-
Darling type tests are computational tractable. Actually, it seems to be not too difficult to
compute such variants of a test statistic: Firstly, one can impose one additional constraint
into the underlying program that demands that the sets one is optimizing over contain at
least (or at most, or exactly) an amount c of overall probability mass. Secondly, one can
do the constrained optimization for every possible amount c and can then aggregate the
optimal values for different c for example to

sup
c

sup
m:

〈wx+wy ,m〉≥c
〈wx − wy,m〉·ψ(c),

where ψ is some appropriately chosen weighting function.
All in all, it seems that the optimization of linear functions on closure systems has a

broad range of possible applications and thus deserves further research.
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R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of items
in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’93, pages 207–216. ACM, 1993.

A. Albano. The implication logic of (n,k)-extremal lattices. In K. Bertet, D. Borch-
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A. Prèkopa. On the probability distribution of the optimum of a random linear program.
SIAM Journal on Control, 4(1):211–222, 1966.

C. Preston. A generalization of the FKG inequalities. Communications in Mathematical
Physics, 36(3):233–241, 1974.

T. M. Range and L. P. Østerdal. Checking bivariate first order dominance. Technical
report, Discussion Papers on Business and Economics, 2013.

A. Robitzsch, T. Kiefer, A. C. George, and A. Uenlue. CDM: Cognitive Diagnosis Modeling,
2016. URL http://CRAN.R-project.org/package=CDM. R package version 4.8-0.

A. Rusch and R. Wille. Knowledge spaces and formal concept analysis. In H.-H. Bock
and W. Polasek, editors, Data Analysis and Information Systems: Statistical and Con-
ceptual Approaches Proceedings of the 19th Annual Conference of the Gesellschaft für
Klassifikation e.V. University of Basel, pages 427–436. Springer, 1996.

N. Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

H. Scheiblechner. A unified nonparametric IRT model for d-dimensional psychological test
data (d-ISOP). Psychometrika, 72(1):43, 2007.

J. K. Sengupta, G. Tintner, and B. Morrison. Stochastic linear programming with appli-
cations to economic models. Economica, 30(119):262–276, 1963.

S. Shelah. A combinatorial problem; stability and order for models and theories in infinitary
languages. Pacific Journal of Mathematics, 41(1):247–261, 1972.

SPIEGEL Online. Studentenpisa - Alle fragen, alle Antworten, 2009. URL http://

www.spiegel.de/unispiegel/studium/0,1518,620101,00.html. In German. acces-
sed 18.08.2017.

V. Strassen. The existence of probability measures with given marginals. The Annals of
Mathematical Statistics, 36(2):423–439, 1965.

C. Strobl, J. Kopf, and A. Zeileis. Rasch trees: A new method for detecting differential
item functioning in the rasch model. Psychometrika, 80(2):289–316, 2015.

67

207



S. E. Syrjala. A statistical test for a difference between the spatial distributions of two
populations. Ecology, 77(1):75–80, 1996.

F. Tarp and L. P. Østerdal. Multivariate discrete first order stochastic dominance. Dis-
cussion Papers 07-23, University of Copenhagen. Department of Economics, 2007. URL
http://EconPapers.repec.org/RePEc:kud:kuiedp:0723.

K. K. Tatsuoka. Analysis of errors in fraction addition and subtraction problems. National
Institute of Education, Washington, D.C., 1984.

S. Trepte and M. Verbeet. Allgemeinbildung in Deutschland: Erkenntnisse aus dem
SPIEGEL-Studentenpisa-Test. VS Verlag für Sozialwissenschaften, 2010.

W. T. Trotter. Combinatorics and Partially Ordered Sets: Dimension Theory, volume 6.
JHU Press, 2001.

G. Tutz and M. Berger. Item-focussed trees for the identification of items in differential
item functioning. Psychometrika, 81(3):727–750, 2016.

G. Tutz and G. Schauberger. A penalty approach to differential item functioning in Rasch
models. Psychometrika, 80(1):21–43, 2015.

UNESCO Institute for Statistics (UIS). International Standard Classification of Education:
ISCED 2011. UIS, Montreal, Quebec, 2012.

V. N. Vapnik and S. Kotz. Estimation of Dependences Based on Empirical Data. Springer,
1982.

N. Vayatis and R. Azencott. Distribution-dependent vapnik-chervonenkis bounds. In
P. Fischer and H. U. Simon, editors, European Conference on Computational Learning
Theory, pages 230–240. Springer, 1999.

R. Wille. Restructuring lattice theory: an approach based on hierarchies of concepts. In
Ordered Sets, pages 445–470. Springer, 1982.

R. Zwick. When do item response function and Mantel-Haenszel definitions of differential
item functioning coincide? Journal of Educational Statistics, 15(3):185–197, 1990.

68

208 Attached contributions



Eidesstattliche Versicherung

(Siehe Promotionsordnung vom 12.07.11, § 8, Abs. 2 Pkt. 5.)
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