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Para mi familia.





Overview

Is space real?

In his Inaugural Dissertation of 1770
Kant presents his views on the nature
and relation of space and mind: "Space
is not something objective and real, nor a
substance, nor an accident, nor a relation;
instead, it is subjective and ideal, and
originates from the mind’s nature in
accord with a stable law as a scheme, as it
were, for coordinating everything sensed
externally". Kant wonders about the
existence of space, and argues that perhaps
space is only realised in peoples’ minds.
18th century portrait by unidentified
painter from Wikimedia Commons.

The debate about the nature and essence of space has entertained
philosophers since early accounts dating back to ancient Greece. At
the centre of the dispute is the issue of the methods of existence of
space, putting into doubt if space is a proper entity by itself, exists as
a relation among entities, or is just a conceptual framework for the
human experience. For instance, Isaac Newton thought of space as
absolute, existing independent of the rest of the world, while its con-
temporary Gottfried Leibniz viewed space as a set of geometrically
defined relationships between objects, existing only as an idealised
abstract construction. Immanuel Kant contrasted these two view-
points and came to the conclusion that space existed in neither form
but rather was imposed by peoples minds as a conceptual framework
in which to organise the human experience. Early modern mathe-
maticians and physicists (Gauss, Poincaré, Einstein) have formalised
the concept of space and time within a scientific framework, where
experimental observations and not just reasoning have the last word.

The debate is today most relevant in the field of neuroscience.
There is an important distinction to be made between space in the
physical world, as envisioned by modern physics, and peoples’ per-
ception of space, largely shaped by the human experience. That both
perspectives are usually intermingled in philosophical discussions of
the reality of space and time is only indicative of just how recently
neuro-scientific studies on the brain’s representation of space have
weighted in on the discussion. Edward Tolman first hinted at the
existence of a cognitive map of space in the brain, that is a repre-
sentation of where objects are in the physical world and the spatial
relationships among them.

In this thesis we are concerned with the question of how space
is represented in the brain. What are the organisational features the
brain is using to know where we are and where we are going? How
is this organisation different from the conceptual frameworks de-
veloped to understand the physical world? The answers to these
questions are both intuitive and complex, yet the field remains still in
its infancy, with more questions than answers appearing every day.
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In this work, particularly large efforts are dedicated to understand
the patterns of activity of the so-called grid cells in the medial en-
torhinal cortex of mammals. The importance of these cells is two-fold.

Is space in the brain?

In his work, Tolman (1948) makes an
early reference to the development of spatial
maps in the brain: “We believe that in the
course of learning, something like a field
map of the environment gets established in
the rat’s brain... The stimuli ... are usually
worked over ... into a tentative, cognitive-
like map of the environment. And it is this
tentative map, indicating routes and paths
and environmental relationships, which
finally determines what responses, if any,
the animal will finally release.” Portrait
from Wikimedia Commons. Citation
selected by O’Keefe (2014) for his Nobel
lecture.

First, theoretical and experimental arguments suggest they have
a prominent role in path integration, the mechanism underlying an
animals’ ability to self-actualise its location with respect to local cues
by means of self-motion and internal information. In addition, some
involvement of these cells in goal-directed navigation and efficient
coding of contextual associations to space merit a more profound
investigation into the patterns of activity and related coding schemes
implemented by these subnetworks.

A second, more general point, is related to the key position wherein
grid cells are found. The entorhinal cortex, whose importance was al-
ready mentioned by Ramón y Cajal more than a century ago, is the
bridge that connects high-end cortical areas to the hippocampus.
On the one hand, high-end cortices are characterised by their multi-
modal representation of rather abstract encoded information, and
thus the study of how they fulfil their functional role can be chal-
lenging. On the other hand, even though far from the receiving end
of sensory information, the hippocampus is well-known for their
clear-cut spatially modulated cells, with well-defined correlates to a
fundamental attribute of the environment. As an in-between step, the
entorhinal cortex can help us to elucidate some of the fundamental
coding principles and information processing mechanisms employed
by high-end cortices, all the while retaining easy to probe neural
correlates to spatial navigation.

As an introduction to the problem, I’ll review some of the most
important experimental observations about how space is represented
in the brain. For this, I discuss the anatomical organisation of the
hippocampal information, the brain region responsible for hosting
the neural correlates of space. Within this region, most cells involved
in encoding information about spatial navigation can be found, in-
cluding place cells and grid cells. A special review of these two cell
types will help us notice similarities and differences highlighting
what makes grid cells unique. Existing computational models try to
capture the main features of grid cells’ patterns of activity. An intro-
ductory review of these models is accompanied by a comprehensive
discussion at the end of the manuscript, where special focus is given
to the contrast between the explained experimental features against
the unexplained observations.

Several peer-reviewed publications show in detail my contribu-
tions to understanding the representation of space. Of particular
interest is the computational model of grid cell activity resolving
some of the most puzzling observations still unexplained.
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An early drawing of the structure and neural circuitry of the rodent hippocampal formation. By Santiago Ramón
y Cajal. Histologie du Systeme Nerveux de l’Homme et des Vertebretes, Vols. 1 and 2. A. Maloine. Paris.
1911. Ramon y Cajal © Cajal Institute, CSIC. Madrid, Spain.





Where is space in the brain?

Figure 1: Where is space in the brain?
Space is represented by cells in the hip-
pocampal formation (bottom: a rat’s brain
showing the hippocampus and a transver-
sal slice identifying its subfields). Head
direction cells (top first) fire when the ani-
mal’s head points to a particular direction,
and are found in presubiculum and EC
(and many additional areas outside the
HF). Place cells (top second) are active in
localized areas and are prevalent in the
hippocampus, typically in areas CA1 to
CA3. Grid cells are a similar cell type but
fire at multiple fields regularly spaced from
each other, and are mostly found in EC (but
can be found in pre- and parasubiculum).
Another type, the border cell, fires close to
physical boundaries, has been recorded in
subiculum, pre- and parasubiculum and
EC. Modified with permission from Hartley
et al. 2014; Amaral and Witter 1989.

The question is phrased to incite a double meaning. On the one hand
the question makes reference to a particular region of the brain, if
any, completely in charge of making us understand where we are and
where we are going. Fortunately, we’ve know for some time that a
structure within the medial temporal lobe, namely the hippocampal
formation, plays a pivotal role in the encoding of spatial information
and episodic memory. Impairment to this region results in severe
memory loss and reduces performance in spatial navigation tasks.

Having a closer look at what neurons in this region are doing an-
swers an alternative interpretation of our original question. Where do
abstract constructions of space lie in the brain? or in more concrete
terms, where do we find neural correlates of space? The question was
answered by O’Keefe and Dostrovsky (1971) who recorded cells in
the hippocampus that fire whenever an animal walks over a specific
region of its environment. Since then, more cells have been found in
the hippocampal formation with correlates related to spatial naviga-
tion, such as head direction cells (Taube, Muller, and Ranck 1990),
boundary cells (Barry et al. 2006), speed cells (Kropff et al. 2015), and
grid cells (Hafting et al. 2005).

Cells functionally involved in spatial representation are found
scattered all over the hippocampal formation, with subnetworks
preferentially hosting specific functional types. How do all these cells
influence each other? and what does this mean for the representation
of space? A clue is to be found by paying attention to the neural
pathways interconnecting the different subnetworks, which points us
in the right direction if we are to understand the mechanism behind
higher levels of information processing leading to the brain’s ability
of representing space.
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The hippocampal formation

Figure 2: Hippocampal formation.
The diagram indicates major connectivity
pathways among hippocampal subfields
and the parahippocampal region. The hip-
pocampus includes the dentate gyrus (DG)
and subfields CA1-CA3 (sometimes called
hippocampus proper). Contiguously are
defined the areas subiculum, presubiculum
(PrS), parasubiculum (PaS), and the en-
torhinal cortex (EC). The standard view
on connectivity considers a monosynaptic
pathway without reciprocal synapses. The
major projections compose the trisynaptic
loop, it includes the perforant path (EC to
DG), the mossy fibers (DG to CA3), and
the Schaffer collaterals (CA3 to CA1). Area
CA1 and subiculum close the loop by pro-
jecting back to the entorhinal cortex via the
angular bundle. Modified with permission
from Andersen et al. 2006.

The hippocampus and adjacent areas are structures located in the
medial temporal lobe of mammalian brains, although equivalent
structures can be identified in birds and reptiles, perhaps playing a
similar role in spatial navigation and memory. In rodents, the hip-
pocampus occupies a rather large portion of the brain, as an evident
elongated C-shaped structure going rostrally from the septal nuclei to
the ventrocaudal temporal cortex (see Figure 1). The dorsoventral axis
(also called septotemporal or longitudinal axis) follows the elongated
dimension of the hippocampus, with transversal slices usually dis-
playing most subfields depending on the position along the axis (see
Figure 2). The axis has a significantly unequal cortical and subcortical
input/output profile, with spatially modulated cells found in more
dorsocaudal locations.

Different criteria can tell us where to set different brain areas apart.
Anatomical location, cyto- and chemoarchitecture, and connectivity
studies can all help to distinguish relevant subfields with functional
implications for behaviour and information processing. For instance,
the entorhinal cortex plays a key role as the bridge between abstract
high-end cortices and more sub-cortically defined hippocampal fields.
It raises the question of its involvement in the representation of space
from a biological point of view, in terms of what intrinsic unique
properties are responsible for the observed activity in the hippocam-
pal formation.

Figure 3: Anatomical connectivity in
the rodent hippocampal formation.
A closer look reveals a more intricate
connectivity layout. Different anatomical
locations within subfields might target
separate areas or even distinct parts of the
same area. For instance, the back projection
from hippocampus to EC terminates
in deeper layers of the cortical laminar
structure, while superficial layers are
the main origin of the perforant pathway
targeting hippocampus. Modified with
permission from Moser et al. 2014.
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Figure 4: Entorhinal cortex circuitry.
An additional level of complexity can be
found within entorhinal cortex. Principal
cells with varied physiological and mor-
phological properties dominate the different
layers and exhibit unique connectivity
patterns. Deep layer Vb pyramidal cells
receive information from intrahippocampal
fields CA1 and subiculum, and in turn
relay it forward to superficial layers II and
III. Stelate cells (or rather reelin positive
cells) in layer II process this information
and send it back to cells in layer Vb and
hippocampal areas DG and CA3. Modified
from Witter et al. 2017 under open access
license CC BY.

In the context of spatially modulated cells connectivity layouts
are of fundamental importance. Grid cells recorded in the entorhi-
nal cortex beg us to examine its communication pathways with the
hippocampus (see Figure 3 for details). Further understanding can
be gain by examining the complex intrinsic connectivity within EC
itself (see Figure 4). In particular, deeper layers of EC receive strong
projections from spatial cells in CA1 and subiculum, which after
processing are returned back to DG and CA3. An even more compli-
cated picture includes an extra level of organisation in layer II (see
Figure 5). Two types of principal cells organise each in separated
subnetworks, wherein principal cells communicate only via various
kinds of inhibitory interneurons. Subnetworks may in addition in-
teract by means of intermediate excitatory cell types, increasing the
difficulty in understanding the spatial selectivity of grid cells.

Figure 5: Entorhinal cortex Layer II.
Even at the level of a single layer we can
find non-trivial functional networks.
Pyramidal and stellate cells in layer II form
separate interconnected networks through
specialized inhibitory interneurons. Neither
type of principal cell presents direct
excitatory connections between them or the
other type, only communicating through
interneurons. Stellate cells communicate
via fast-spiking parvalbumin positive
interneurons in a many-to-one and back to
one-to-many fashion, while pyramidal cells
talk through 5HT3a/CCK interneurons.
Both subnetworks may interact by way of
physiological and morphological identifiable
intermediate types of stellate and pyramidal
cells. Modified from Witter et al. 2017
under open access license CC BY.
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Place cells

The earliest work directly linking the hippocampus involvement in
encoding an animals environment dates back decades to its first elec-
trophysiological recordings (O’Keefe and Dostrovsky 1971; O’Keefe
1976; O’Keefe and Nadel 1978). The firing activity of principal cells
was found to be restricted to confined areas within the environment,
suggesting that they may underlie the neural substrate for the brains’
cognitive map of space.

Figure 6: Place cell recordings can tell
us how the hippocampus encodes spatial
locations. The animals movements (grey
trace) are tracked via an LED on its head,
registering the locations where the cell
fires a spike (red dots). The activity is
typically visualised with a firing rate map
(histogram), highlighting areas of increased
activity. Modified with permission from
Muller, Kubie, and Ranck 1987; Jeewajee
et al. 2014.

One fundamental requirement of a spatial cognitive map is the
neuronal representation of all locations in an environment. Figure 7

shows an example of how a population of place cells seem to form a
complete representation of a square box environment, where different
cells fire for distinct but overlapping areas of the box. A given loca-
tion then elicits heterogeneous firing from a subset of place cells, and
the highly redundant code ensures robustness of the representation.

Figure 7: Place cells as a cognitive map.
A population of place cells is able to repre-
sent all locations within the environment
using a firing rate code. As the animal
explores its surroundings, a sequence of
active cells conveys information about its
location. Modified from O’Keefe 2014.

A population of cells smoothly changes its firing profile while
sampling locations in the box, suggesting a decoding mechanism
based on the cells’ instantaneous firing rate. The firing rate code must
be stable in a given environment over long periods of time. It has
been shown in fact that place cells can retain their spatial correlates
over a period of at least several months (Thompson and Best 1990).

Another essential qualification for a cognitive map is the ability
to tell apart dissimilar environments from each other. Substantial
alterations to a given environment induce arbitrary changes to the
cells firing maps (e.g. adjusted rates, map relocation, no firing at all),
resulting in a new population code uniquely identifying the novel
contextual situation (e.g colours, shape of the enclosure, salient cues).
The effect that environmental or contextual changes has on firing
maps is studied under the umbrella term ’remapping’ (Muller and
Kubie 1987).

The effect of contextual information is not all equal along the
dorsoventral axis of the rodent hippocampus (Moita et al. 2003;
Jung, Wiener, and McNaughton 1994; Maurer et al. 2005; Kjelstrup et
al. 2008; Royer et al. 2010). Ventral cells are more susceptible to emo-
tional cues (e.g. fear, stress, rewards), have lower spatial information,
stability, and theta modulation. As a consequence, a lower proportion
of ventral cells qualify for representing space, and those remaining
are less accurate than their dorsal counterparts. One important re-
lated finding is the increase in place field size along the dorsoventral
axis, although no agreement has been reached on whether the incre-
ment comes in rather gradual or discrete steps (but some hints come
from the functional organisation of the axis, see Strange et al. 2014).
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Temporal coding

A firing rate code is not the only way to establish a cognitive map
of space. There is ample evidence suggesting an additional informa-
tion layer encoded by means of further temporal modulation of place
cell activity1. O’Keefe and Recce (1993) and Skaggs et al. (1996) first 1 O’Keefe and Recce, Hippocampus,

1993: “Phase relationship between
hippocampal place units and the EEG
theta rhythm”.

brought to attention the tendency of place cells to fire bursts of spik-
ing activity at regular intervals in the theta band. When compared to
the simultaneously recorded local field potential (LFP), it was evident
that the periodicity of place cell firing was just slightly faster, appear-
ing to precess with respect to the LFP signal (see Figure 8). From a
coding perspective, this phase precession phenomenon reproduces
the firing sequence of a set of cells with overlapping place fields, with
the added advantage of broadcasting this relationship within each
theta cycle, a much faster timescale than that offered by a firing rate
code (Dragoi and Buzsáki 2006). Its usefulness is evident in learning.
For instance, temporal encoding of place cell sequences within theta
timescales can explain the swift formation of grid cells firing patterns
in the entorhinal cortex undergoing spike-time dependent plasticity
(Monsalve-Mercado and Leibold 2017).

Figure 8: On phase precession. Place
cells spiking activity is in addition tempo-
rally modulated. Spike bursts (red ticks)
happen always at earlier phases with re-
spect to the local EEG theta rhythm (black
trace). A single cell firing pooled over runs
shows that the phases of theta cycles at
which spikes happen have a linear relation
to position on the track (bottom plot). Mod-
ified with permission from Huxter, Burgess,
and O’Keefe 2003.

Huxter, Burgess, and O’Keefe (2003) discuss evidence in favour of
a dual coding mechanism in the activity of place cells. They argue
that the instantaneous firing rate and the precise temporal firing
may independently encode information for distinct variables such
as location within a field or speed of movement. Typically, enough
freedom appears to be present for the dual code to be involved in the
hippocampus role in spatial and episodic memory.

For the most part, experiments dealing with temporal coding focus
on linear track foraging, leaving open the question up to what extent
are these results true in the open field. Jeewajee et al. (2014) and
Huxter et al. (2008) investigate what behavioural correlates are the
best predictors of the firing activity in open field foraging. They
found strong phase precession to be best correlated with measures of
spatial exploration, such as distance run through the field, trajectory,
and heading, among other proxy measures of space.

Figure 9: Temporal encoding of spatial
information. A cells periodicity of firing
within the field is tuned such that the total
range of phase precession completes roughly
one cycle. As a result, cells with different
place field sizes will fire at corresponding
periodicities in order to carry out a cycle of
phase precession. Modified with permission
from Dragoi and Buzsáki 2006.
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Grid cells

When Brun et al. (2002) removed all input from hippocampal area
CA3 to CA1, they observed that CA1 place cells still displayed robust
place fields. It pointed towards a remaining strong projection from
the entorhinal cortex as the main alternative source of spatial infor-
mation. The first recordings in superficial layers of medial entorhinal
cortex unveiled the existence of cells with multiple spatially receptive
fields, whose hallmark feature, being roughly equally spaced from
each other, justified the label of ’grid cells’ 2 (Fyhn et al. 2004; Hafting2 Hafting et al., Nature, 2005: “Mi-

crostructure of a spatial map in the
entorhinal cortex.”

et al. 2005), see Figure 10 for details.

Figure 10: Grid cells receptive fields.
Electrophysiological recordings of principal
cells in superficial layers of MEC revealed
regularly spaced multiple receptive fields.
The regularity of the pattern strongly
depends on the level of symmetry of the
recording enclosure. Grid cells have been
found in rats, mice, bats, monkeys, and
humans, suggesting it might be widely
conserved through mammalian species.
Modified with permission from Hafting
et al. 2005.

Grid cells’ firing maps have distinct geometrical qualities (see
Figure 11). For maps with enough regularity, quantitative measures
define the grid scale (average spacing between neighbouring fields)
and the grid orientation and phase (location of fields) relative to other
cells’ maps or local landmarks (usually the recording enclosure). An
important observation is that neighbouring cells react consistently to
environmental changes. For instance, relative orientations and phases
within these networks are maintained across different environments
(Fyhn et al. 2007).

These subnetworks have been observed in all anatomical positions
along the dorsoventral axis (Stensola et al. 2012). They constitute a
discrete organization of the representation into independent mod-
ules of coherent cell activity. This coherence property of the grid cell
representation system suggests networks might self-organise, since
they have been found to independently respond to changes in the
environment, individually adjusting their orientation and phases, and
sharing similar pattern irregularities and theta-frequency modulation
within networks. Perhaps their most distinctive attribute is the ten-
dency to exhibit a larger grid spacing towards more ventral locations
along the longitudinal axis, in much the same way as hippocampal
place cells do, although different scales can coexist in overlapping
anatomical locations (see Figure 12).

Grid fields regularity and the MEC’s key position in the hippocam-
pal formation first led to the conjecture that grid cells may have a

Figure 11: Grid cells basic properties.
The cells firing patterns can be char-
acterised in terms of their geometrical
configurations. Assuming a regular enough
triangular arrangement, it is possible to
measure the average spacing between fields
(grid scale), and the relative grid orien-
tation and grid phase (location of fields)
with respect to other cells patterns or local
cues (e.g the enclosure). Modified with
permission from Moser et al. 2014.
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Figure 12: Grid cells cluster in mod-
ules. Recordings along the dorsoventral
axis of MEC reveal that grid cells are
organised in independent modules. Cells
belonging to a local module have firing
maps sharing similar geometrical proper-
ties, such as spacing, orientation, and field
size, but that in general evenly cover the
whole range of possible grid phases. High
density recordings uncover a tendency for
modules to have a larger spacing for more
ventrally located positions (first four panel
are labelled by their distance to the postrhi-
nal border), although modules with various
spacings can be found in anatomically
overlapping locations (see rightmost panel).
Modified with permission from Stensola
et al. 2012.

central role in path integration, since unlike place cells, substantial
contextual changes are only able to shift or rotate the patterns, high-
lighting a prominent influence of self-motion cues on maintaining the
stability of patterns.

Further motivation to study grid cells comes from theoretical con-
siderations. It has been conjectured that provided certain read-out
mechanisms, grid cells unique properties constitute an optimal neural
substrate to represent an animals location and navigate space to the
best degree of accuracy with minimal expenditure (Mathis, Herz, and
Stemmler 2012b; Mathis, Herz, and Stemmler 2012a; Mathis, Stemm-
ler, and Herz 2015; Stemmler, Mathis, and Herz 2015).

A challenge to grid cells primary role as the brains’ metric sys-
tem arises from the patterns irregularities, since some of their coding
principles may strongly rely on a perfectly triangular arrangement.
The patterns, however, are far from ideal. They are only roughly tri-
angular, present strong field to field variability (Dunn et al. 2017),
and are affected by external perceptual inputs such as novelty (Barry
et al. 2007; Barry et al. 2012). In addition, the geometry of the record-
ing enclosure (level of symmetry, smooth deformations), and local
cues can cause noticeable distortions in the pattern and influence
orientation, local spacing, and field size (see Figure 13).

Figure 13: Distortions due to the
arena. Environment-induced distortions
make grid cells less likely to represent the
context-independent metric for navigation.
Reports show that the patterns are biased
to certain orientations to the walls of
polarized enclosures (such as squares, but
not circles, see first column panels from
two independent studies). Furthermore, the
maps appear to be rather localized, creating
irregularities such as orientation gradients,
ellipticity, shearing, bending, and so
forth. Highly polarised environments such
as an acute trapezoid (against a square
recording of the same cell in the figure)
might strongly influence the pattern to the
point of negatively impacting regularity.
Modified with permission from Stensola
et al. 2015; Krupic et al. 2015.





Models of grid cell activity

What drives us to understand grid cells’ firing maps? One of the
motivations behind a large body of work attempting to explain the
appearance of the regularly spaced grid fields is their key role in spa-
tial navigation and episodic memory. But beyond understanding the
brain’s way of representing space, the regular maps of grid cells offer
an attractive example from the perspective of modelling dynamical
systems.

The appearance of this kind of periodic arrangement of activity
is not at all uncommon in nature. A prominent example in biology
is the emergence of spots, stripes, spirals and similar patterns in the
skin (or surface) of a broad range of animals. Turing (1952) first char-
acterised the phenomena as a consequence of the self-organising
activity of competing chemicals in a reaction-diffusion system. Fur-
ther work by Gierer and Meinhardt (1972) made the concept broader
to any biological system exhibiting competition as short-range excita-
tion and long-range inhibition. The concept was first brought to the
realm of neural systems by Amari (1977), who showed how stable
patterns of neural activity of the Turing type could be implemented
by networks of interconnected neurons in the presence of effective
Mexican-hat connectivity.

Most successful grid cell models developed so far are of the Tur-
ing type. In the following I review the most recent advancements
concerning mechanistic explanations for the emergence of hexagonal
activity patterns, focusing on a perspective that emphasizes the un-
derlying Turing mechanism and the assumptions behind the different
biological implementations used to that end.
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Continuous attractor networks

O’Keefe and Burgess (2005) first proposed the idea of an attractor net-
work in the dMEC as a plausible explanation for grid field formation.
The proposal argues in favour of the grid cell system as the brain’s
path integrator, an idea previously introduced by McNaughton et
al. (1996) and Samsonovich and McNaughton (1997) in the context
of the place cell system in area CA3. The periodicity of grid fields,
however, allows for more optimal path integration throughout the en-
tire environment. It generalises the one-dimensional attractor model
for the head direction system introduced by Zhang (1996), with the
added difficulties inherent to two-dimensional space, such as space
not being a naturally periodic variable.

One of the first attempts at modelling the origin of hexagonality
in the firing patterns of grid cells was done by Fuhs and Touretzky
(2006)3. They build upon a framework originally proposed by Hop-3 Fuhs and Touretzky, The Journal

of neuroscience, 2006: “A spin glass
model of path integration in rat medial
entorhinal cortex.”

field (1982) resembling a spin glass type neural network. In this type
of networks model neurons are symmetrically connected to each
other and interact only locally with its immediate neighbours. Under
this configuration the system can dynamically reach a number of dif-
ferent stable states or attractors depending on the specific neuronal
interactions in the network. In continuous attractor network models
the symmetries of the resulting periodic patterns allow for equally
favourable states to form a continuous manifold.

Figure 14: The attractor network
model.

A neuron has a mexican-hat connectivity
profile with its neighbours (top left).
The network dynamics leads to a stable
hexagonal configuration in the neural sheet
(top right). All neurons are weakly biased
towards one of the cardinal directions
(bottom). Modified with permission from
Burak and Fiete 2009.

A hexagonal pattern of activity can arise as the final steady state
on an abstract two-dimensional sheet of non-linear neurons. The
most important ingredient towards reaching a periodic stable state is
the shape of the local connectivity between neurons. In continuous
attractor models the connectivity profile is assumed to ultimately
induce local short-range excitation and longer-range inhibition, com-
monly referred to as a Mexican-hat profile.

The top left part of figure 14 illustrates this connectivity profile
for a central neuron in a square-lattice neuronal sheet. Such two-
dimensional network configurations lead to the appearance of dy-
namically rich spatio-temporal periodic patterns (Murray 2004). The
selection of the final stable pattern depends strongly on the non-
linearity used to achieve stability. For continuous attractor models the
commonly used threshold-linear rectification ensures the selection
of the hexagonal pattern. The top right panel shows an example of
the final state of activity in the neural sheet, where it is highlighted
how the periodicity of the pattern in the neural sheet depends on the
range of interaction of the Mexican-hat profile.

The model so far described explains the appearance of a static
hexagonal configuration of activity bumps in an abstract neural sheet
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of neurons. How can this be related to the actual firing patterns of
grid cells as seen during exploration of the environment? For the
pattern to appear in real two-dimensional space the activity of a
neuron in the sheet has to follow the movement of the animal in
space. Conklin and Eliasmith (2005) have shown that translating the
activity bumps to track the animal’s position implements correct path
integration on attractor networks.

The models are capable of performing path integration by intro-
ducing a small bias towards a particular preferred direction in the
neural sheet. The bias is included both in the connectivity profile and
directly in the dynamics of the neurons’ firing activity. The former is
illustrated in the bottom part of figure 14, where each cell’s connec-
tivity profile is slightly shifted in one of the four cardinal directions
(the cell’s preferred direction). Additionally, the firing rate dynamics
of each cell is coupled to the animal’s running speed and directional
signals, as it favours an increment in the firing rate of cells whose
preferred direction is close to the current running direction. The over-
all effect forces the entire activity pattern to translate in the current
direction of the animal’s movement, thus achieving path integration
to a certain degree of accuracy.

Figure 15: Path integration on CANs
is achieved with a high degree of accuracy
for both periodic boundary conditions (top)
and aperiodic ones (bottom). The bumps of
activity in the neural sheet are translated
in response to the animal’s speed signal.
Modified with permission from Burak and
Fiete 2009.

The translation of the population activity pattern in the neural
sheet is illustrated in figure 15. From left to right it is depicted the
development in time of the neural sheet (timestamps at the bot-
tom). The top and bottom panels follow networks with periodic and
aperiodic-damped boundary conditions respectively, showing that in
the neural sheet both connectivity schemes are able to translate the
pattern in concert with the animal’s movement.

Computational model

Fuhs and Touretzky considered in their model a set of recurrently
connected dMEC neurons. They model the dynamics of a neuron’s
membrane potential ξi using the voltage-based model developed
by Hopfield (1984) with an additional driving force vi coupling the
velocity signal to the membrane dynamics

τ
dξi

dt
= −ξi + ∑

j
Wi j

√
ξ jΘ(ξ j) + vi + ε , (1)

where τ is the membrane integration time constant, Θ denotes the
Heaviside function and expresses the neuron’s transfer function con-
verting voltage to firing rate, and ε is just some random Gaussian
noise to break the initial symmetry and drive the pattern formation
process.

The connectivity matrix W is composed by symmetric and asym-
metric parts added together. The symmetric weight matrix comes
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from the assumed Mexican-hat profile4 and is responsible for select-4 In the original paper, the actual
connectivity profile resembles a quickly
decaying oscillation. It is learned via
Hebbian plasticity during development
assuming the propagation of randomly
oriented wave packets of activity in
the dMEC (see below). As long as
the profile selects for a particular
wavelength the pattern formation
process will lead to hexagonality.

ing a periodic pattern. The asymmetric part is modelled by offsetting
an inhibitory bump of connectivity from the centre of the cell in the
neural sheet, and it’s partly responsible for helping move the popula-
tion activity along the animal’s physical trajectory.

Finally, the pattern is translated via the action of the velocity cou-
pling vi. It ensures errors in path integration remain small as long as
the membrane potential dynamics can catch up with rapid changes
in speed. The coupling vi grows linearly with the animal’s speed but
it’s tuned to a preferred direction in a quality similar to that of head
direction cells. It is in fact presumed that this tuning is related to
prominent head direction input found in layers III and V of dMEC.

The continuous attractor model relies in a specific neural connectiv-
ity inherent to dMEC to develop spatial patterning. However, direct
measurements of internal connectivity are challenging in nature, and
strong evidence in favour of CANs is still lacking. Another alternative
class of models, termed feedforward networks, achieves hexagonal
pattern formation by the same means as continuous attractors, that
is by implementing a spatio-temporal Turing instability. The man-
ner in which this implementation is done, however, is fundamentally
different. In their original proposal, O’Keefe and Burgess suggest
the origin of the attractor dynamics to be the result of interference
patterns of entorhinal oscillatory activity (ultimately shaping the con-
nectivity in dMEC via plastic changes). This oscillatory interference
model relies on the organisation of spiking activity with respect to
the characteristic hippocampal-entorhinal oscillatory rhythms. The
next two sections offer a concise review of both classes of models.
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Feedforward networks

A second class of models discusses whether the contribution of
strong projections coming from hippocampal areas into deeper layers
of entorhinal cortex might be in turn responsible for the emergence of
the grid pattern. It suggests that hexagonality in grid cells arises as a
self-organization process of its inputs through Hebbian plasticity.

Kropff and Treves (2008)5 propose cell adaptation to be the mech- 5 Kropff and Treves, Hippocampus,
2008: “The emergence of grid cells:
Intelligent design or just adaptation?”

anism behind the self-organization process. In their model, a popu-
lation of grid cells receive input from a population of spatially mod-
ulated cells (e.g. place cells) that cover the entire environment (see
Figure 16). As the animal begins to slowly explore its surroundings,
each cell samples a combination of the input distribution weighted
by each of the inputs synaptic strength into that cell. The cell’s total
input slowly increases or decreases in magnitude, and in response the
cell undergoes adaptation to adjust accordingly its sensitivity to elicit
an action potential.

A key idea throughout the model is the separation of timescales.
The adaptation response answers to fast dynamics that drive the
emergence of hexagonality within behavioural timescales of the order
of seconds. However, adaptation alone can not hold the grid pattern
for longer times and spatial stability is lost as consequence. An ad-
ditional component of the model helps fix the pattern in place. Slow
learning dynamics continuously changes the strength of synaptic
connectivity of the incoming inputs emulating Hebbian plasticity.
Initially, areas in the environment with slightly stronger total input
develop the first bumps of activity, which are then slowly rearranged
by the interplay of adaptation and plasticity within minutes of ex-
ploration. The final pattern tends toward hexagonality as the optimal
arrangement reconciling adaptive pressures and long term stability.

Figure 16: Feed-forward input model.
Each cell receives feed-forward input from a
population of place cells (top). Adaptation
dynamics drive the formation of hexagonal
fields (bottom), a configuration slowly
learned via Hebbian plasticity. Modified
with permission from Kropff and Treves
2008.

In addition, grid cells in the network interact with each other by
imposing constraints on the adaptation dynamics in order to approx-
imately satisfy competition criteria. An unchanging average criterion
prevents the population activity from tending towards increasingly
higher levels, a common outcome in unconstrained Hebbian learning
models. A second criterion, keeping a constant population sparse-
ness, helps to drive the dynamics away from a winner-take-it-all
regime.

The model produces stable hexagonal patterns in a robust manner
against highly variable conditions. At first the input is modelled after
idealised place cell activity, with each place field a small Gaussian
bump of activity, and with the whole population evenly covering
the environment. However, hexagonality is likewise obtained when
each place field is modelled as more widely distributed activity (e.g.
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the sum of 20 widespread Gaussians), and is similarly successful for
a less evenly distributed population input (e.g. a density of input
fields four times higher closer to a particular wall that its opposite).
An additional test of robustness compares learning performance of
constant speed exploration against realistic speed statistics. Even for
such high levels of speed variance, the pattern remains stable among
learning and testing phases on random walk trajectories.

Figure 17: Model robustness. Top: The
density of inputs is higher closer to the
south wall. Example rate maps show av-
erage grid cell activity and hexagonality
remain stable. Similar performance mea-
sures are likewise obtained for widespread
distributed input at the single cell level
(bottom). Modified with permission from
Kropff and Treves 2008.

Computational model

Kropff and Treves (2008) considered a population of NI place cells
with firing rate rt

j at time t projecting to NMEC entorhinal neurons
with synaptic weights Ji j, such that the total activity into neuron i

ht
i =

1
NI

NI

∑
j=1

Ji jrt
j (2)

is a slowly changing spatially modulated combination of the inputs.
To model cell adaptation, the slow input h is filtered through fast
acting fatigue variables

rt+1
inact = rt

inact + b2(ht − rt
inact) (3)

rt+1
act = rt

act + b1(ht − rt
inact − rt

act) (4)

with characteristic time constants 1/b1, 1/b2 determining their in-
terdependent dynamics. In general, b1 > b2 enables correct fatigue
dynamics to develop and ensures the emergence of grid fields. After
intermediate fatigue, the total input (currently h = ract(h)) passes
through a transfer function

ψ(h) = ψsat
2
π

arctan[g(h− θ )]Θ[h− θ ], (5)

which finds the most optimal population threshold θ and gain g for
that time step such that the average activity and sparseness

a =
1

NMEC
∑ ψk, s = NMEC a2 ∑ ψ

2
k (6)

remain as unchanged as possible through the fatigue process. Finally,
changes in activity are slowly written in the connectivity matrix

Jt+1
i j = Jt

i j + ε(ψir j − 〈ψi〉〈r j〉) (7)

via a self-correcting Hebbian learning rule. In addition, weights are
clipped at zero to maintain excitatory inputs only, and further nor-
malized to keep the total input weight to any neuron constant.

Figure 18: Spacing and adaptation. The
grid field spacing increases monotonically
with the temporal constant of the activation
variable. In all simulations the ratio
b2 = b1/3 is kept fixed. Modified with
permission from Kropff and Treves 2008.
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Oscillatory interference model

The models discussed so far employ coding principles that are two
dimensional in nature. Indeed, the appearance of a Turing instabil-
ity able to drive hexagonal pattern formation is only possible in a
two dimensional setting. A wildly different class of models attempts
to address the periodicity of the grid pattern at its core by making
it a superposition of purely periodic signals ( Burgess, Barry, and
O’Keefe 2007

6, Burgess 2008). It was formulated at first as an expla- 6 Burgess, Barry, and O’Keefe, Hip-
pocampus, 2007: “An oscillatory
interference model of grid cell firing”.

nation of the phase precession phenomena observed in hippocampal
places cells, however its periodic nature made it more suitable to
model grid cell firing patterns in entorhinal cortex, which likewise
exhibit spike phase precession.

The main idea of oscillatory interference models is remarkably
simple. Stellate cells in entorhinal cortex receive external oscillatory
inputs modulated by the entorhinal rhythms. One type of input just
reflects the main component found in the local field potential and is
modelled by a single oscillation with a baseline frequency in the theta
band. A different kind of input is additionally modulated by internal
motion signals, making its oscillatory frequency slightly higher than
the baseline frequency. Together, the two types of input create an
interference pattern reflected in a spatially periodic structure.

Figure 19: Oscillatory interference
model. Several membrane potential
oscillators (MPOs) active on the target’s
cell dendrites combine in the soma to
produce and interference pattern. A MPO
is modulated by speed and head direction
signals producing a planewave-like pattern
in space (first column). It is then assumed
two or more MPOs 60° apart are selected
by an unspecified mechanism. Modified
with permission from Burgess, Barry, and
O’Keefe 2007.

The second kind of input has been termed velocity controlled oscil-
lators (VCOs) as an abstraction that models a broad range of possible
biological implementations. It represents an oscillatory drive whose
frequency growths linearly with the animal’s speed and is addition-
ally tuned to a preferred direction of movement. The interference
pattern with the baseline theta oscillation produces a plane-wave of
activity in the preferred direction of the VCO (first column in Fig-
ure 19). It is then argued that hexagonal patterns are the result of
aggregated input from two or more VCOs with preferred directions
that differ by an amount proportional to sixty degrees (see Figure 19).

An interference pattern consists of a fast oscillation modulated by
a slower envelope. The fast component oscillates with the average
frequency coming from the baseline and VCO oscillations, thus it
is just slightly higher that baseline (theta) and naturally reproduces
phase precession of spiking activity. On the other hand, the slow
envelope’s characteristic frequency is proportional to the difference of
the input frequencies, and the resulting long wavelength determines
the periodicity of the hexagonal pattern.

More precisely, the computational model assumes that the cell
receives inputs whose active (time-dependent) frequencies fa(t) differ
from a system-wide reference baseline frequency fb(t) as

fa(t) = fb(t) + β s(t) cos(φ (t)− φd), (8)
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where s, φ are the animal’s speed and direction, φd is the input’s
preferred direction, and β is a positive constant reflecting the gain for
the motion’s path integration. The phase difference between the two
oscillators at any given time ϕab(t) obeys dϕab(t) = fa(t) − fb(t) =

β s(t) cos(φ (t)− φd), thus it integrates the motion of the animal in a
particular preferred direction thereby encoding spatial information
into a phase code (see Figure 20).

Figure 20: Biological implementations
of the oscillatory interference model.
Velocity controlled oscillators (VCOs) can
be implemented as dendritic membrane po-
tential oscillations within the target cell or
as synaptic input from motion-modulated
spiking cells (top figure). Each VCO in-
tegrates motion in a preferred direction
resulting in a spatial pattern formed of par-
allel stripes (bottom figure). Two or more
VCOs with preferred directions 60° apart
combine to form a hexagonal pattern. The
resultant phase encodes spatial location via
path integration. Modified with permission
from Burgess 2008.

One advantage of describing the depolarizing effect of VCOs in
an abstract manner is the simple interpretation of the model pa-
rameters. For instance, the spacing of the grid can be read out from
the model by computing the distance traversed between maxima
of the interference pattern. The distance in any straight direction is
L(φ − φd) = s(t)/| fa(t)− fb(t)| = 1/β | cos(φ − φd)|, which gives the
minimum distance L = 1/β as the spacing between parallel stripes.
The grid spacing is the distance between peaks of the intersection of
several VCO stripe patterns, and would thus be given by G = 2/

√
3β .
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In the following chapters the main results of this doctoral work are
presented in the form of academic research manuscripts. Preceding
each of the manuscripts the reader can find a brief overview sum-
marising the main findings to be discussed in detail in the pages to
come. The purpose of these overviews is to offer the reader in clear
and simple terms what are the motivations behind each of the works.
They will be introduced to a general statement of the problems to
be solved, why are they relevant and of interest to the neuroscience
community, and to what kind of questions the reader is expected to
find some answers hiding within the details.

In the first chapter we face the problem of how best to integrate
information coming from different neural pathways. Diverse types
of information usually have different biological requirements for
encoding. We show how the biological set-up of interacting networks
reflect these needs.

In the second chapter we focus on the problem of representation
of space in the hippocampus. A spatially broad place cell code begs
the question whether any specific location is given a special role. This
question and its possible answer are contrasted with experimental
findings.

The third chapter explores the reasons behind the appearance of
hexagonality in the firing patterns of grid cells. Its origin is traced
back to a special relationship in the spiking activity of place cells. We
show how the principles leading to the formation of these characteris-
tic patterns are commonplace in nature.





On spatial memory

It is not difficult to understand why you might feel overwhelmed
when walking into a new place for the first time. Depending on
the situation you find yourself in, it might be of the most urgent
importance to have in your mind a quick and reliable map of your
surroundings, in some cases a matter of survival.

But knowing what is where is not a simple task for the brain to
accomplish. In particular, there is always a trade-off between a neural
representation that is both quick to build and at he same time reli-
able, in other words encoding the highest amount of relevant infor-
mation in a limited time. The trade-off is evident when the changes
required to build the new representation come at high expenditure
of biological and metabolic resources, as could be the case when the
changes come in the form of synaptic plasticity in the brain.

Fortunately all representations need not be equally expensive.
Every time an object is moved around there is no need to forget its
previous existence and create a new memory of the object and its
new location. The continuity of an object’s identity throughout a set
of experiences suggests that it is best to encode apart its identity and
location. But is the brain making use of such encoding scheme?

Hippocampal area CA1 has been shown to encode both an ob-
ject’s location and identity. They are provided via the convergence of
two main neuronal input streams, area CA3 and the LEC. Area CA3

sparsely encodes information about an object’s location, further trans-
mitted to CA1 through highly plastic projections. By contrast, the
LEC tends to encode objects identities densely, and inducing plastic
changes in its connections to CA1 may require engaging extra energy
expenditure triggered by novelty (new objects).

Is this biological set-up consistent with the idea that for such an
encoding task the most optimal arrangement is also the one requiring
the less energy consumption?. In the following letter we show that
this is indeed the case, and moreover we generalize our results to in-
clude the description of other brain areas receiving multiple incoming
pathways.
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Synaptic change is a costly resource, particularly for brain structures
that have a high demand of synaptic plasticity. For example, building
memories of object positions requires efficient use of plasticity resources
since objects can easily change their location in space and yet we can
memorize object locations. But how should a neural circuit ideally be
set up to integrate two input streams (object location and identity) in
case the overall synaptic changes should be minimized during ongoing
learning? This letter provides a theoretical framework on how the two
input pathways should ideally be specified. Generally the model pre-
dicts that the information-rich pathway should be plastic and encoded
sparsely, whereas the pathway conveying less information should be en-
coded densely and undergo learning only if a neuronal representation
of a novel object has to be established. As an example, we consider hip-
pocampal area CA1, which combines place and object information. The
model thereby provides a normative account of hippocampal rate remap-
ping, that is, modulations of place field activity by changes of local cues.
It may as well be applicable to other brain areas (such as neocortical layer
V) that learn combinatorial codes from multiple input streams.

1 Introduction

With their dendrites, neurons sample from multiple anatomically and func-
tionally distinct input pathways and process this information in spatially
and computationally segregated compartments (Schaefer, Larkum, Sak-
mann, & Roth, 2003; Spruston, 2008; Torben-Nielsen & Stiefel, 2010; Medan
& Preuss, 2014). These distinct dendritic compartments receive inputs from
populations with different firing statistics and also can show different forms
of synaptic plasticity (Letzkus, Kampa, & Stuart, 2006; Johenning et al., 2009;

Neural Computation 28, 1527–1552 (2016) c© 2016 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00854
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Ito & Schuman, 2012). So far it is unclear whether there are generic design
principles underlying the spatial segregation of different forms of synaptic
plasticity and how those might relate to the neuronal code. In this letter,
we propose an analytically tractable mathematical model that predicts an
optimal network design and coding principles for a neuronal population
that combines two input streams. In particular, the model shows that a sep-
aration into a less plastic and a more plastic pathway is beneficial if the
system is to minimize the total cost of synaptic change. This objective is
supposed to be essential if ongoing synaptic plasticity has to reflect mem-
ory formation of ongoing changes of the external world. The model predicts
that the more plastic pathway should be encoded more sparsely than the
less plastic one.

As an illustrative example, we consider hippocampal distal CA1 pyra-
midal cells receiving inputs from layer III of the lateral entorhinal cortex
(LEC), in contrast to proximal CA1 neurons that receive inputs from layer
III of the medial entorhinal cortex (MEC) (Moser et al., 2014). Layer III LEC
inputs arrive at the distal apical dendrites in stratum lacunosum moleculare
(lm) and are believed to convey information on local objects (Neunuebel,
Yoganarasimha, Rao, & Knierim, 2013; Deshmukh & Knierim, 2011). In ad-
dition CA1 pyramidal cells receive a prominent input at the proximal apical
dendrite in stratum radiatum from CA3 via the highly plastic Schaffer col-
lateral (SC) synapses conveying mostly spatial information. The distally
arriving lm inputs are also plastic; however, their synapses change less
readily and may require additional release of neuromodulators, which has
led to the hypothesis that these synapses change only if a novel and im-
portant input pattern arrives via this pathway (Golding, Staff, & Spruston,
2002; Sajikumar & Korte, 2011; Ito & Schuman, 2012). Since particularly
small objects frequently change their position in space, forming memories
of object locations should require the least possible amount of synaptic re-
sources, and thus our theory will address why particularly the spatial (SC)
input pathway is more plastic than the object (lm) pathway.

A further puzzling problem concerning the CA1 principal neurons arose
with the accounts of spatial activity patterns in the MEC (Fyhn, Molden,
Witter, Moser, & Moser, 2004). Particularly MEC grid cells provide a most
efficient neuronal space representation (Mathis, Herz, & Stemmler, 2012)
and therefore the reason for having the much sparser hippocampal place
code in addition to the efficient grid code became unclear (Kammerer &
Leibold, 2014). One hypothesis to resolve this apparent duplicity was that
grid cells provide a genuine space representation, whereas hippocampal
place cells connect space and object information (Hartley, Lever, Burgess, &
O’Keefe, 2014; Neunuebel et al., 2013). In short, this idea can be paraphrased
as “CA1 encodes what is where.” Although this is somewhat simplified
(Knierim, Neunuebel, & Deshmukh, 2014), we use this paraphrase as a
framework for a thought experiment to understand how a neural network
should most efficiently combine two distinct sources of input that reflect
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a highly dynamic outside world with objects continuously changing their
position in time. We show that hippocampal distal CA1 pyramidal cells are
in a parameter regime in which synaptic weight changes are minimized
and, as a result, accounts for the observed sparseness of the CA1 place
representation.

2 Results

The letter is organized as follows. First, we provide an example simulation
of hippocampal rate remapping. In section 2.2, we use rate remapping to
illustrate the ideas underlying a mathematical theory by which we assess
the integration of two input pathways on the single neuron level. The
model we use adheres to mathematical approaches to memory retrieval
(Cover, 1965; Hopfield, 1982; Fusi, Drew, & Abbott, 2005; Päpper, Kempter,
& Leibold, 2011; van Rossum, Shippi, & Barrett, 2012), in which the strength
of the input signal that drives the recall of a memory is evaluated against
the noise background arising from the interference between the memory
patterns.

In section 2.3, the average weight change derived previously will be
minimized under the constraint of a finite number of input synapses, and
the ensuing optimal solution will be discussed regarding its neurobiological
implications. Specifically, the theory predicts that asymmetric sparseness is
a result of a minimization of the synaptic weight changes that are required
to update the memory of object locations.

2.1 Example: Hippocampal Rate Remapping. Objects frequently
change their position in space, yet we are able to form memories of where
objects were located at different points in time. Neurons in the hippocampal
CA1 region represent both object position by their place field firing and ob-
ject identity by means of rate modulations of the place cell population (rate
remapping). So far, it is unclear why one of the features (space) is encoded
very sparsely while the other one (object identity) is encoded densely (e.g.,
Yoganarasimha, Rao, & Knierim, 2011).

In area CA1, a place cell has one to four place fields in a typical box of
1m2 (Fyhn et al., 2004) which amounts to a sparseness of about f1 = 10−1

(estimated for CA3 in Kammerer & Leibold, 2014), indicating that at each
spatial position, the fraction 0.1 of all CA1 neurons is active. Place fields
most likely reflect the excitatory input at the proximal apical dendrite of the
CA1 pyramidal cell (stratum radiatum). The distal apical input (stratum la-
cunosum moleculare) is generally assumed to trigger a phenomenon called
rate remapping (Leutgeb, Leutgeb, Treves, Moser, & Moser, 2004) in which
place fields remain stable but change their firing rate under local changes
of the environment. Typically such a local change is induced by altering
the color of (parts of) the box in which the experiment takes place while
repeating the experiment in the same laboratory room. More substantial
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Figure 1: Hippocampal remapping. (A) Place cells (six examples) provide spa-
tial input. (B) Object encoding cells (six examples) are only little spatially mod-
ulated. (C) CA1 cells (seven examples) in a first environment 1 (left), in the same
environment with one object exchanged by another object (middle), and in a
different second environment. (D) Rate remapping: Maximal firing rates of all
CA1 cells in environment 1 versus environment 1 with one object exchanged.
(E) Global remapping maximal firing rates of all CA1 cells in environment 1
versus environment 2.

changes of the environment (such as repeating the experiment in a different
room) lead to changes in the place field positions (relative to the box), a
phenomenon termed global remapping (Leutgeb et al., 2004).

The sparsely encoded spatial inputs arrive via the plastic Schaffer col-
lateral synapses, whereas the dense object-encoding inputs arrive via the
less plastic temporoammonic synapse. So far it is unclear what the func-
tional purpose of the distinct codes and plasticity properties is. We propose
that the network architecture observed in hippocampal CA1 that underlies
rate remapping results from an optimality principle outlined in the next
sections.

The simulations from Figure 1 are performed according to appendix B.
Examples of space- and object-encoding firing fields in the input popu-
lations are shown in Figures 1A and 1B, respectively. These two inputs
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generate putative CA1 place fields (see Figure 1C) that undergo rate remap-
ping (see Figure 1D) if only one of five objects is exchanged in a known
environment. Since every object drives a large fraction (in this case 1/2) of
the neurons, the other four unchanged objects account for largely stable
response profiles, whereas the exchange of one object can be observed only
via rate modulations. Conversely, if a completely different environment is
simulated (different objects and different place code), the code undergoes
global remapping (see Figure 1E).

From the example of the hippocampal object and place code, we derive
several important conclusions and constraints for our model:

• Object identity and position are independent variables. Objects may
appear, disappear, and be dislocated in space. A learning rule for
object position should capture these three situations.

• For building a new memory of an object position, neither the object
nor the spatial environment has to be novel; it is sufficient to move a
known object in a known environment. We thus have to distinguish
this task from learning that occurs when a novel object or a novel
spatial enclosure is first encountered.

• Since objects may change their position in space frequently, we as-
sume that the amount of synaptic resources invested in learning such
changes should be as small as possible, such that most plasticity re-
sources can be used for learning novel items and places, which occurs
only once per such an event.

• The problem can be mapped to a combinatorial code. If there exist
neuronal representations (patterns) for P1 positions and P2 objects, the
input space to be considered consists of the product of P1 P2 possible
object locations. The numbers Pi should thus serve as parameters that
define the complexity of the task.

• The sparseness fi of the input pathways quantifies the fraction of
patterns a neuron is excited by; that is, Qi = fi Pi defines the number
of such patterns. In the case of spatial position, Q and f are small
(sparse code); for object identity, Q and f are large (dense code). From
binomial statistics, the expected number of active inputs per pathway
then equals fi Ni, and thus fi also describes the average fraction of
active neurons in the population.

• The neuronal representation of object locations must occur at the level
of the population of neurons that combines the two input streams (in
the example of the hippocampus CA1). A particular identified activity
pattern in this readout population encodes for a learned combination
of object place and identity. If an object does not occur at the stored
location, no such identified pattern will be active.

2.2 Model Design. If a CA1 pyramidal cell encodes for a combination
of place and objects, it should be active only if both stimuli, the position
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stimulus and the right object, are present, whereas it should remain silent
if only the place stimulus is correct or only the object is correct. From the
perspective of the spike generator, this means that both inputs individ-
ually should remain subthreshold, whereas the sum of the two inputs is
suprathreshold. Mathematically the depolarization v of the CA1 neuron is
modeled as a linear superposition of both input streams,

v = �w1 · �x1 + �w2 · �x2, (2.1)

where the Ni-dimensional vector �xi denotes the firing rates of the Ni input
neurons from population i, and �wi denotes the respective synaptic weights.
Which of the two input pathways corresponds to space and which one
to objects is not further specified in the model design. As a result of the
optimization process described in the following sections, it will turn out
that pathway 1 describes the synapses conveying spatial information, and
pathway 2 labels the synapses conveying object information.

The pathway-specific synaptic weights are chosen according to a Heb-
bian rule as

�w1 =
Q1∑

n=1

�x (n)

1 , �w2 =
Q2∑

m=1

�x (m)

2 . (2.2)

The weight vectors from equation 2.2 are derived from the two sets of pat-
terns {�x (1)

1 , . . . , �x
(Q1 )

1 } and {�x (1)

2 , . . . , �x
(Q2 )

2 }, to which a neuron should elicit
a depolarizing response of its membrane potential. These Qi ON patterns
are only a fraction fi = Qi/Pi of the total number Pi of patterns transmitted
by the individual pathways. The remaining (1 − fi) Pi OFF patterns that the
neuron should not respond to are supposed to be ON patterns for other
neurons. Thus, a large population of output neurons that randomly sample
ON and OFF patterns is able to convey the information about which of
the P1 P2 combinations is present in the input—for the CA1 example, the
locations of the available objects.

The fractions fi = Qi/Pi of ON patterns are called pathway-specific
sparseness values, since low fi will translate to an output population with
only a few neurons active.

The difference between the depolarization resulting from two correct
inputs and the depolarization resulting from only one correct input can be
considered to be the signal that drives the neuron to fire. Assuming a fixed
probability of an erroneous response requires a constant signal-to-noise
ratio

√
K (see Figure 2), that is, the noise has to be proportional to the signal

according to

Signal =
√

K Noise. (2.3)
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Figure 2: Anatomical separation of input pathways. The long apical dendrite
of a hippocampal pyramidal cell allows for a spatial separation of inputs from
different areas. For distal (close to subiculum) CA1 neurons, the inputs in
stratum radiatum (sr) convey spatial information from ipsilateral CA3 (con-
tralateral CA3 projects to basal dendrites via the commisure). The inputs at
the distal apical dendrite in stratum lacunosum moleculare (lm) arise from
layer III of the lateral entorhinal cortex and convey object information. Proxi-
mal sr synapses are highly plastic, whereas plasticity at lm synapses requires
conjunctive modulatory action. The postsynaptic voltage response V results
from both input pathways. We assume that the neuron is most depolarized if
both pathways are appropriately activated (red voltage distribution). Activa-
tion of only one (brown distribution) or no (blue distribution) pathway leads
to lower depolarization. The firing threshold (dashed line) is thus assumed to
optimally segregate the voltage distributions for one and two active inputs. The
error probabilities of the suprathreshold response are determined by the (noise
normalized) separation

√
K of the two distributions, as indicated by the ROC

curves.

For large K, the depolarization difference between one and two correct in-
puts is large and the number of erroneous responses will be small, and vice
versa. For large numbers of input synapses, the membrane depolarizations
will approximately follow a gaussian distribution according to the cen-
tral limit theorem. Then the probabilities that the output neuron responds
wrongly can be computed from standard signal detection theory (Peterson,
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Birdsall, & Fox, 1954). Given a firing threshold � and the signal-to-noise
ratio

√
K, the probability of a missed spike (false negative) equals

pmiss = 1
2

[
1 + erf

(
� − √

K√
2

)]
, (2.4)

whereas the probability for a wrong spike (false positive) equals

perr = 1
2

[
1 − erf

(
�√

2

)]
. (2.5)

By varying the firing threshold �, the two equations yield the usual ROC
curves (see Figure 2, top), which have a steeper increase for larger signal-
to-noise ratio

√
K.

2.2.1 Signal. Without loss of generality, we use equation 2.1 to compute
the depolarization v(1,1) resulting from two ON input patterns as the re-
sponse to the first two input patterns the neurons has learned to respond
to, that is, �x1 = �x (1)

1 , �x2 = �x (1)

2 ,

v(1,1) = |�x (1)

1 |2 +
Q1∑

n=2

�x (n)

1 · �x (1)

1 + |�x (1)

2 |2 +
Q2∑

m=2

�x (m)

2 · �x (1)

2 . (2.6)

The average suprathreshold response (expected value with respect to the
probability distributions pi(xi) of input rates xi in pathway i) therefore
amounts to

〈v(1,1)〉 = N1 var(x1) + Q1 N1 〈x1〉2 + N2 var(x2) + Q2 N2 〈x2〉2. (2.7)

Note that for reasons of simple notation, var(x1) denotes the variance with
respect to the distribution p1(x1) of firing rates in pathway 1. Similarly,
computing the average depolarization v(0,0) to a combination of patterns
�x (0)

1 and �x (0)

2 that are not contributing to either synaptic weight vector can
be obtained as

〈v(0,0)〉 = Q1 N1 〈x1〉2 + Q2 N2 〈x2〉2. (2.8)

Hence, the difference between the suprathreshold response and this sub-
threshold response,

〈v(1,1) − v(0,0)〉 = N1 var(x1) + N2 var(x2), (2.9)
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is a sum of two signals,

Signali := Ni var(xi), i = 1, 2,

each of which relates to one of the input pathways. Analogously, the depo-
larizations v(1,0) and v(0,1) resulting from an ON input in one pathway and
an OFF input in the other pathway are

〈v(1,0)〉 = 〈v(0,0)〉 + Signal1, 〈v(0,1)〉 = 〈v(0,0)〉 + Signal2. (2.10)

Since space is continuous, the spatial input patterns will not always
perfectly be present; rather, they gradually decline as the animal moves
away from an ON position. If we parameterize this gradual decline by η

(where η = 0 denotes the perfect pattern and η = 1 indicates a decorrelated
pattern), analogous mathematical steps reveal that the signal rescales like
Signal → Signal (1 − η). Under the same assumptions that lead to equa-
tions 2.4 and 2.5, the probability that a neuron fails to fire thus increases
with η like

pmiss(η) = 1
2

[
1 + erf

(
� − (1 − η)

√
K√

2

)]
. (2.11)

Since the error function in equation 2.11 is continuous in η, the response
rate of a place cell will thus smoothly decline as the animal moves away
from the place field center. In what follows, we therefore consider space to
be represented by uncorrelated input patterns encoding discrete positions.

2.2.2 Noise. The variance (noise) of the depolarization,

〈(v(0,0) − 〈v(0,0)〉)2〉 = N1 Q1 var(x1)[var(x1) + 〈x1〉2(Q1 + 1)]

+ N2 Q2 var(x2)[var(x2) + 〈x2〉2(Q2 + 1)], (2.12)

is minimal for zero-mean distributions pi(xi): 〈x1〉 = 〈x2〉 = 0. Further on,
it is assumed that these two expected values vanish by a pathway-specific
balance between excitation and inhibition (Monier, Fournier, & Fregnac,
2008). Moreover, the total Noise is assumed to be composed of the minimal
variance from equation 2.12 and an internal voltage jitter of variance σ 2:

Noise =
√

N1 Q1 var(x1)
2 + N2 Q2 var(x2)

2 + σ 2. (2.13)

2.2.3 Minimal Signal. The decision of the neuron to fire an action poten-
tial or not is a decision between one or two ON patterns as inputs. Assuming
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that the two Signals in the two pathways are of different size and that the
signal-to-noise ratio

√
K should be fixed, the Noise from equation 2.13 must

be low enough to fit the signal-to-noise condition for the pathway with the
smaller Signal. If without loss of generality Signal1 ≤ Signal2, the condition
from equation 2.3,

Signal1 =
√

K Noise, (2.14)

then means that the minimal “Signal” (Signal1) on which a neuron has to
decide whether to respond corresponds to detecting whether pathway 1 is
correctly activated in the case that pathway 2 is correctly activated.

Introducing the abbreviation qi = Qi/Ni, equations 2.13 and 2.14 read

(Signal1)
2 = K (q1 (Signal1)

2 + q2 (Signal2)
2 + σ 2) (2.15)

or

Signal1 =
√

K q2 (Signal2)
2 + K σ 2

1 − K q1
. (2.16)

The term under the square root must not be negative and thus

q1 < 1/K.

Since (Signal1)
2 ≤ (Signal2)

2, we obtain

(Signal2)
2 ≥ K σ 2

1 − K (q1 + q2)
(2.17)

and the further constraints

q1 + q2 < 1/K ⇒ q2 < 1/K − q1 ⇒ q2 < 1/K.

From equations 2.16 and 2.17 it follows that (Signal1)
2 reaches its infimum

K σ 2

1−K (q1+q2 )
if both signals, Signal1 and Signal2, are equal. The minimal Signal

is thus given by

Signal = N1 var(x1) = N2 var(x2) =
√

Kσ 2

1 − K (Q1/N1 + Q2/N2)
. (2.18)

In what follows, we will use equation 2.18 to compute the variance of
the inputs var(xi), and thus the neuron operates in a regime in which the
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decision of firing is based on a minimal signal. The minimum of the average
synaptic weight change, which we assume is the primary objective of the
learning rule, will be shown to occur for this minimal Signal.

A direct conclusion from equation 2.18 is that Q1/N1 + Q2/N2 = 1/K
defines a capacity supremum for the numbers Q1 and Q2 of ON patterns. At
Q1/N1 + Q2/N2 = 1/K interference induces such large Noise that the Signal
needs to become infinite to still be able to account for the finite error rate
imposed by K. Moreover, the numbers Q1,2 of patterns the neuron responds
to scale with the respective number of input dimensions N1,2 (i.e., a linear
increase in N1,2) is sufficient to achieve larger values Q1,2 while keeping the
Signal the same.

2.2.4 What Are the Independent Parameters?. To discuss further implica-
tions of equation 2.18, we need to identify which parameters are free (in-
dependent) and which ones can be obtained by optimality principles. We
consider the numbers N1,2 of input synapses, the parameters Pi describing
the respective input pathways, and the parameters constraining the code
of the output population:

• Number of synapses. While in most models, the network size is a con-
stant parameter that sometimes is fitted to the assumed biological
reality, the framework presented here starts with no a priori assump-
tion about the number of input neurons. This is particularly impor-
tant since the numbers N1 and N2 of input neurons are expected to
be strongly constrained by the requirements of the input codes and
the learning rule. Both N1 and N2, will be obtained by concurrently
minimizing the total input dimension N = N1 + N2 and the amount
of synaptic change.

• Input code. In this letter the information content of the input pathways
is quantified by the numbers P1 and P2 of distinct input patterns �x1
and �x2 these pathways can provide. The product P1 P2 thus amounts to
the total number of combinations the neuron can be confronted with.
In the “what is where” example, P1 P2 is the number of possibilities
to distribute a set of P2 known objects in a familiar space or, more
precisely, a discrete set of P1 known spatial positions. The numbers P1
and P2 are two free parameters of the model describing the behavioral
demands implicated by the world the hippocampus encodes.

• Output code. The signal-to-noise ratio
√

K has already been intro-
duced to parameterize the code in the output (CA1) population. It
determines the fraction of wrong decisions (fire or not fire). The com-
binatorial code, however, also requires specifying how often a neuron
should receive a depolarizing signal, that is, the fractions f1,2 of the
P1,2 stimuli the synapses have been trained to listen to. Assuming that
the synaptic changes in the two pathways are statistically indepen-
dent, the overall sparseness of the CA1 code equals
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f = f1 f2. (2.19)

The readout also imposes a third parameter, which is the upper bound
on sparseness ϕ ≥ fi, since the overall information content of the
population code drops to zero if fi converges to 1 or 0. Since f1,2 are
related via f = f1 f2, the upper bound ϕ also induces a lower bound
f/ϕ ≤ fi. Since no further assumptions will be made on the readout of
the output population, the three parameters K, f, and ϕ of the output
code cannot be derived and will remain as free parameters of the
model to be discussed quantitatively in what follows.

2.2.5 Assessing the Amount of Weight Change. If we assume that minimiz-
ing the synaptic weight change per memory is an important objective for
strongly memory-related brain areas, we have to find an analytical expres-
sion for the expected weight change during learning a new memory.

In our framework, learning means that a neuron may either no longer
be depolarized by a pattern (the pattern gets deleted from the set of ON
patterns), be depolarized by a pattern that was previously an OFF pattern
(insertion of an ON pattern), or a previous ON pattern might be exchanged
by a new ON pattern (replacement). In the example of memorizing object
location, it would mean that when an object gets relocated (and a memory of
the new object position has to be formed), the input pattern corresponding
to the old position has to be deleted from the weight vector of the neurons
that encode object identity and the old position. Similarly, the input pattern
corresponding to the new position has to be inserted to the weight vector
of the neurons that encode object identity and the new position. Finally, the
input pattern of the old position has to be replaced by the input pattern of
the new position for neurons that encode object identity and both positions.

Assuming that each neuron is randomly assigned Qi ON patterns from
the fixed set of Pi patterns, the probability that a neuron responds to a
specific input pattern is fi = Qi/Pi. Thus, deletion (D), insertion (I), or re-
placement (X) of an ON pattern occurs at a single neuron with probability
fi (1 − fi) for deletion and insertion (1 − fi is the probability that one pat-
tern, new or old, was an OFF pattern, and fi is the probability that the other
pattern is an ON pattern) and with probability ( fi)

2 for replacement (both
patterns, new and old, are ON patterns).

If, during learning, an input pattern �xi is exchanged (X) by another
pattern �x ′

i , the overall synaptic change equals,

�Xwi = |�xi − �x ′
i | ⇒ 〈(�Xwi)

2〉 = 2 Ni var(xi),

where 〈·〉 and var denote the expected value and variance over the distri-
bution pi(xi) of input rates (vector elements of �xi) in pathway i. Exchanging
an input pattern is assumed to occur with probability ( fi)

2.
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If a new input pattern is introduced (I) or an existing input pattern is
deleted (D), the corresponding change in the weight vector equals

�I,Dwi = |�xi| ⇒ 〈(�I,Dwi)
2〉 = Ni (var(xi) + 〈xi〉2).

Considering all three types of weight change (D,I,X) and their respective
probabilities, we obtain the average weight change as

〈�wi〉 = fi (1 − fi) 〈�Iwi〉 + fi (1 − fi) 〈�Dwi〉 + ( fi)
2 〈�Xwi〉. (2.20)

Owing to Jensen’s inequality, (〈
√

a2〉 ≤
√

〈a2〉), the average synaptic change
is bounded by

〈�wi〉 ≤ 2 fi (1 − fi)

√
(〈�I,Dwi)

2〉 + ( fi)
2
√

(〈�Xwi)
2〉

= 2 fi

√
Nivar(xi)

[
(1 − fi)

√
1 + 〈xi〉2

var(xi)
+ fi/

√
2

]
. (2.21)

Since the number of input synapses will be large, the relative variance of
�( j)wi will be small and thus the upper bound will be a good approximation
to 〈�wi〉.

From equation 2.21 and the assumption of balanced inputs 〈xi〉 = 0, we
find that the average synaptic change in pathway i equals

〈�wi〉 = 2
√

Signali fi (1 − fi(1 − 1/
√

2)) = 2
√

Signali fi (1 − γ fi),

where γ ≈ 0.3. If fi is small, we may further on neglect the last factor and
use

〈�wi〉4 ≈ 16 (Signali)
2 ( fi)

4 = 16 K σ 2 ( fi)
4

1 − κ1 f1 − κ2 f2
(2.22)

as the objective function to minimize synaptic change, with κi = K Pi/Ni. For
reasons of analytical tractability, we will consider the fourth power of 〈�wi〉,
since applying a monotonous function does not change the location of the
minimum and, in case of constraints, only rescales Lagrange multipliers.

2.2.6 Result 1: Sparse Pathway Is More Plastic. Equation 2.22 can be intu-
itively understood since, first, only the fraction fi of neurons that receive
an ON input need to be affected by synaptic learning. If the neurons in
the output population randomly sample their ON input patterns, the mean
fraction of neurons receiving an ON input will match the fraction fi = Qi/Pi
of ON patterns due to binomial statistics. Second, the synaptic change in
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the learning rule from equation 2.2 equals the input rate vector that also
constitutes the strength of the Signal.

Minimizing weight change thus means both Signal and sparseness fi
have to be minimized. Minimizing the Signal yields a pathway-independent
value (see equation 2.18). Thus, under this condition, the distinction of the
amounts of synaptic change required in each individual pathway is made
only by the pathway-specific sparseness fi. Since only one pathway has to
be plastic to be able to learn all of the P1 P2 combinations of patterns, equa-
tion 2.18 has the important implication that the minimization of synaptic
changes predicts that plasticity must occur at the pathway with the low-
est sparseness fi. Without loss of generality, we further on assume f1 < f2,
and hence define pathway 1 as being plastic and pathway 2 as being the
nonplastic one.

2.3 Optimal Networks

2.3.1 Minimizing Weight Changes. Combining equations 2.18, 2.22, and
f2 = f/ f1 yields (see appendix A) an explicit expression for the average
change of synaptic weights,

〈�w〉 = W( f1, N1, N2; f, K, P1, P2), (2.23)

as a function of the four parameters f, K, P1, P2 describing output and in-
put constraints and the three parameters f1, N1, N2 that shall be found by
minimization of the expected weight change 〈�w〉. Interestingly, all pattern
numbers Pi in equation 2.23 are scaled with K/Ni. This scaling allows the
introduction of auxiliary variables κi = K Pi/Ni that can be interpreted as
the information per synapse in pathway i. The (fourth power of the) weight
change therefore depends on only one free parameter f,

〈�w〉4 = W( f1, κ1, κ2; f ) = 16 K σ 2 ( f1)
4

1 − κ1 f1 − κ2 f/ f1
, (2.24)

where the unknown input dimensions N1,2 are obtained from the optimal
values of κ1,2.

Equation 2.24 takes a trivial minimum at κ1 = κ2 = 0, which, for finite
P1,2, corresponds to N1,2 → ∞. To also enforce a limited total number N1 +
N2 = K (P1/κ1 + P2/κ2) of input synapses, we introduce a weight parameter
λ that balances the cost of an input synapse with the cost of synaptic change
by minimizing the Lagrange function,

L( f1, κ1, κ2; f, P1, P2, K, λ) = W( f1, κ1, κ2; f ) + λ K (P1/κ1 + P2/κ2).

(2.25)
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The Lagrange parameter λ can thus be seen as a measure for the cost of a
synapse (in units of the fourth power of synaptic change).

As discussed previously, the minimization of L additionally requires
meeting constraints imposed by the readout, that is, the pathway-specific
sparseness values have to be bounded by

f/ϕ ≤ f1 ≤
√

f ≤ f2 ≤ ϕ. (2.26)

The constrained optimization problem can be solved analytically for κ1 and
κ2 and numerically or approximately analytically for f1 and thereby yields
expressions for the optimal synapse numbers N1 and N2, and the optimal
sparseness f1 (see below).

2.3.2 Optimal Sparseness and Input Dimensions. Minimization of the ob-
jective functions (see appendix A, equation A.1) reveals that the optimal
synapse numbers are given by

Ni = K

[
Qi +

√
Q1 Q2 +

√
16 σ 2 ( f1)

4

λ

√
Qi

]
. (2.27)

The optimal pathway-specific sparseness f1 (see Figure 3A), as well as the
input numbers N1 and N2, are increasing functions of P2 (see Figure 3B).
Moreover, the optimal configuration ( f1)

opt, N1, and N2 hardly depends on
the cost parameter λ (see Figure 3C).

The optimal solutions can be subdivided into three regimes defined by
the upper and lower bounds on the pathway-specific sparseness f/ϕ ≤
( f1)

opt ≤ √
f :

• Sparse regime. The regime of minimal ( f1)
opt = f/ϕ is of particular

biological interest. From equation A.7 (see Appendix A), it follows
that the sparse regime is obtained for√

f P2

P1
< f/ϕ ⇔ P2

P1
<

f
ϕ2 ⇔ Q2 < Q1.

Since by definition
√

f < ϕ, the sparse regime is generally optimal if
the number of patterns in the second pathway is substantially lower
than in the plastic first pathway.

• Dense regime. Similar to the previous paragraph, equation A.7 (see
appendix A) reveals that the dense regime ( f1)

opt = ( f2)
opt = √

f is
optimal whenever

P2

P1
> 1 ⇔ P2 > P1.
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Figure 3: Optimal pathway-specific sparseness. (A) The loss function (color
coded) increases with the number P2 of inputs in the second pathway, and its
minimum (( f1)

opt black line) with respect to f1 is located at low values of f1 for
low P2 and at high values of f1 for large P2. (B) Optimal synapse numbers N1,2
in the two pathways as a function of P2. Both functions are nearly identical in
the intermediate regime at which ( f1)

opt is not at the lower or upper bound;
see equation 2.29. (C) Optimal pathway-specific sparseness as a function of P2
for different synapse costs λ (in units of (16 σ 2), colors) and the approximation
from equation 2.28, thick black line. Parameters were P1 = 105, ϕ = 0.5, f = 0.01,
K = 2, and λ = 0.1/(16σ 2) unless otherwise mentioned.

Thus, the dense regime is optimal if the number of patterns in the
nonplastic pathway is larger than that in the plastic pathway.

• Intermediate regime. Within the bounds f/ϕ ≤ ( f1)
opt ≤ √

f , the opti-
mal pathway-specific sparseness (see equation A.7) can be approxi-
mated by

( f1)
opt =

√
f P2

P1
. (2.28)

The optimal input numbers N1 and N2 are almost identical in this
regime with inactive boundary conditions (see Figure 3B) and can be
analytically approximated (see equations 2.27 and 2.28) as

N1 ≈ N2 ≈ 2 K
√

P1P2 f . (2.29)
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Figure 4: Effect of pattern numbers. Color encodes the ratio between optimal
cost for a given P1 and P2 and the “transposed” cost obtained with P1 and P2
interchanged. The total pattern number P1 + P2 is constant along the dashed
lines. The solid black line indicates identity P1 = P2 (bisecting line). The cost
ratio is always smaller than 1 (logarithm smaller than 0) above the bisect-
ing line (bluish colors). Parameters were ϕ = 0.5, f = 0.01, K = 2, λ/(16σ 2) =
0.1.

Thus, differences in P1 and P2 have no effect on Ni as long as their
product remains constant.

2.3.3 Result 2: Learning the More Informative Pathway. So far the two in-
put pathways are distinguished only by f1 < f2, and as a result of that,
pathway 1 was concluded to be plastic and pathway 2 was defined as non-
plastic (or less plastic). It is yet unclear how this plasticity property should
ideally relate to the pattern numbers P1 and P2. The minimal cost L (see
Figure 3A) decreases with decreasing P2, which already indicates that the
plastic pathway 1 may optimally be chosen as the one that encodes more
patterns. Since, however, in Figure 3A, P1 is kept constant, the decrease in
cost may simply reflect a reduction in the overall number of inputs P1 + P2.
We therefore computed the cost for all combinations of P1 and P2 (see Fig-
ure 4) and found that, indeed, the cost is consistently higher for P2 > P1
even if P1 + P2 is kept constant (dashed lines). This numerical observation
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Figure 5: Sparseness helps. Minimal cost L as a function of the output sparseness
f for different numbers P2 of input patterns in the nonplastic pathway. The slopes
of the curves (exponents of the power law) decrease with increasing P2. Thus,
low f is particularly cost efficient for low P2. Parameters were P1 = 105, ϕ = 0.5,
K = 2, λ = 0.1/(16σ 2).

also matches the analytical considerations from equation A.5 that show that
in leading order, the cost function scales like

L ∝
(√

f1 P1 +
√

f2 P2

)2

,

and hence the sparser pathway ( f1 < f2) introduces a lower cost per pattern.
As a direct consequence, the dense regime (P2 > P1) can never be optimal,

since swapping the pathways P1 ↔ P2 would reduce the loss. Thus, the
pathway with lower Pi should always be plastic and the pathway with
larger Pi should always be nonplastic.

The finding that the plastic (sparse) pathway should have the larger
number of patterns to represent is somewhat counterintuitive since, naively,
one would expect that plasticity occurring at the less informative pathway
would require less effort. However, the information in pathway 2 is en-
coded more densely (with larger fi) and therefore would involve a larger
proportion of synapses to be changed (see equation 2.22).

2.3.4 Result 3: Sparseness Helps. So far the sparseness parameter f that
has been assumed to be imposed by the readout structure was held fixed.
However, the analytical results (see equation 2.27 and following) indicate
that optimal networks strongly and nontrivially depend on the sparseness
f. We therefore analyzed the optimal networks for varying f between 10−4

and 10−1.
Figure 5 reveals that independent of P2, the cost L increases with f

and, particularly for strongly asymmetric conditions, P2 � P1, lowering f
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(increasing sparseness) most strongly decreases the cost. Thus, the sparser
the code, the fewer synapses are necessary. From the opposite perspective,
the above result can also be interpreted in this way: If an observed neural
code is very sparse, then the number P1 of patterns in the plastic pathway
is probably very large (and much larger than P2).

3 Discussion

The essence of neural computation is to combine inputs from different
sources to transform them into a new code that displays particular impor-
tant features of the combined input space. The neuronal activity of brain
areas like the hippocampus that integrate over various anatomically and
functionally segregated input streams therefore must provide multimodal
representations of all these input dimensions. In experimental recordings,
however, only those input dimensions appear as most salient (such as space
in the hippocampus) for which the neuronal output is sparse, since there,
input selectivity can be easily assessed, as neurons fire for only a few stimuli
and are silent otherwise. Conversely, densely represented input pathways
are much harder to identify since neurons fire for a large fraction of stimuli
and thus may seem to be nonselective.

In this letter, we showed by means of an analytically tractable theoretical
model that if the cost of synaptic change during learning is to be mini-
mized, a combination of a sparse and a dense input stream is most efficient
for neurons combining two major input pathways. The sparser pathway
thereby must be more plastic than the denser pathway. Our model suggests
that only the numbers of distinct inputs determine which pathway should
be plastic and predict that this should be the pathway transmitting a larger
number Pi of different patterns.

We argue that distal CA1 neurons that combine space and object infor-
mation are likely candidates for our model to apply. The sparse place code
is conveyed via the highly plastic synapses contacting the neurons at their
proximal apical dendrite. The dense object code arrives distally through
less plastic synapses. The rate modulations observed during rate remap-
ping are predicted to be a direct consequence of the dense object code since
any particular neuron will be driven by a large fraction of objects and the
difference between them results only in a rate modulation. If, however, a
neuron is trained only to respond to a single object in a given environment,
removal or replacement of this object would lead to a complete change of
the place field, which is occasionally observed in experiments (Cressant,
Muller, & Poucet, 1997; Leutgeb et al., 2004).

Rate remapping in the hippocampal CA1 area is much more salient
than in CA3 (Lee, Yoganarasimha, Rao, & Knierim, 2004; Vazdarjanova
& Guzowski, 2004; Leutgeb et al., 2004), which is generally explained by
the different anatomical connection schemes in the two areas. In CA3,
strong recurrent connectivity may generate salient fixed point states that
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are only slightly affected by modulatory inputs but already provide a
context(object)-dependent space code manner (Roudi & Treves, 2008; Sol-
stad, Yousif, & Sejnowski, 2014). In contrast, the predominantly feedfor-
ward topology of CA1 may be more prone to rate modulations induced by
the synaptic inputs at the distal dendrites and yield less stable firing fields
(Mankin et al., 2012). Particularly LEC inputs to the distal CA1 region (close
to the subiculum) are thought to play an important role in rate remapping
(Henriksen et al., 2010), because changes of proximal cues (objects) are the
standard paradigm to induce rate remapping and object-selective cells are
a hallmark of LEC (Yoganarasimha et al., 2011; Deshmukh & Knierim, 2011;
Lu et al., 2013).

In contrast to the distal CA1 area, the proximal CA1 area (close to CA2)
receives distal inputs from the medial entorhinal cortex (MEC) (Henriksen
et al., 2010), which is generally thought to convey almost exclusively spatial
information (Hartley et al., 2014). In the framework of our theory, proximal
CA1 neurons’ functional role may thus be interpreted as combining spatial
context (from CA3) with spatial content (via MEC), which may account
for the sharper place fields in proximal CA1 (Henriksen et al., 2010). The
functional segregation of two spatial inputs is, however, unclear, and we
can only speculate that proximal CA1 could be the location to combine
context-associated space from CA3 and path-integration-based space from
MEC.

A prediction of our model is that distinct principles of information pro-
cessing are tightly connected with distinct synaptic plasticity mechanisms:
The pathway conveying more information in a sparser code should be more
plastic than the one conveying less information in a denser code. However,
linking this prediction to specific findings in synaptic physiology is diffi-
cult. An obvious mechanism enabling distinct forms of plasticity arises from
the purely spatial separation into the distinct dendritic compartments with
distinct electrotonic properties (Spruston, 2008). For example, the spatially
limited backpropagation of dendritic spikes (Golding et al., 2002; Johenning
et al., 2009) would allow only proximal synapses to undergo Hebbian-type
plasticity. A further way to diversify synaptic plasticity at a single cell is
by selective action of neuromodulators. Such effects on LTP and LTD have
been reported in both distal and proximal apical synapses connected to sev-
eral neuromodulatory systems (Otmakhova & Lisman, 1996; Navakkode,
Sajikumar, Sacktor, & Frey, 2010; Edelmann & Lessmann, 2011; Nguyen
et al., 2014). Most important for this letter, plasticity of LEC inputs can be
selectively targeted by dopamine and noradrenaline (Ito & Schuman, 2012).

A hypothesis of particular interest for this letter is that novelty gen-
erally enhances synaptic plasticity via the dopaminergic system (Lisman
& Otmakhova, 2001; Lisman & Grace, 2005; Ito & Schuman, 2012; McNa-
mara, Tejero-Cantero, Trouche, Campo-Urriza, & Dupret, 2014), which, in
our model, would account for synaptic weight changes induced by popula-
tion patterns �xi that are experienced for the first time and require building
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a new neural representation in the respective pathway. Importantly, these
solitary synaptic changes are not assumed to be minimized in our theory,
since they happen only once at the first exposure and require additional
energetic effort such as neuromodulatory action.

The sparse hippocampal space code provides a well-investigated test
case for our theory; however, it also may be applicable to all other brain
regions that are confronted with the need to constantly change associations
between (multiple) different input streams. Neocortical layer 5 pyramidal
cells, for example, combine bottom-up sensory input stream arriving at
proximal dendrites, with top-down feedback at distal dendritic synapses
(Larkum, 2013). Our model predicts that the feedback signals that reflect the
internal expectations should be encoded densely and relatively nonplastic,
whereas the sensory drive should be encoded sparsely (Olshausen & Field,
2004) via plastic synapses.

The mathematics of our model can be generalized from two to multiple
(k) input pathways in a straightforward manner. However, in this case, only
one pathway (the sparsest one) can remain static, since otherwise a neuron
is not able to learn to respond to any of the possible P1, . . . , Pk combinations
of inputs. Our framework thus potentially applies to many brain areas that
require ongoing plastic changes to memorize configurations in a constantly
changing world.

Appendix A: Minimizing the Objective Function

Concurrent minimization of weight change and neuron numbers leads to
the Lagrange function,

L(κ1, κ2, f1; P1, P2, f, K, λ) = 〈�w1〉4 + λ (N1 + N2)

= 16 K σ 2 ( f1)
4

1 − κ1 f1 − κ2 f/ f1
+ K λ

(
P1

κ1
+ P2

κ2

)
,

(A.1)

where λ is a Lagrange multiplier that measures the inverse cost of synaptic
change. To simplify notation, we introduce

c =
√

16 σ 2( f1)
4

λ

and obtain the minimum of L for vanishing gradient in κ1,2:

0 = ∂κ1
L⇒ P1 (1 − κ1 f1 − κ2 f2)

2 = c2 f1 κ2
1 ,

0 = ∂κ2
L⇒ P2 (1 − κ1 f1 − κ2 f2)

2 = c2 f2 κ2
2 .
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The two resulting equations are solved by

κ2 f2 =
[

1 +
√

Q1

Q2
+ c√

Q2

]−1

=
√

Q2√
Q1 + √

Q2 + c
(A.2)

and

κ1 f1 = κ2 f2

√
Q1

Q2
=

√
Q1√

Q1 + √
Q2 + c

. (A.3)

Both equations A.2 and A.3 give rise to expressions for the optimal amounts
of synapses,

Ni = K
[
Qi +

√
Q1 Q2 + c

√
Qi

]
, (A.4)

and, consequently, the minimal cost equals

L = λ K
(√

Q1 +
√

Q2 + c
)2

(A.5)

A.1 Optimal Sparseness. Inserting equation 2.19 into equation A.5
yields a 1D minimization problem, defined by the reduced-cost function

L( f1)/(Kλ) = ( f1)
4 16 σ 2

λ
+ 2

√
16 σ 2

λ

(√
P1 ( f1)

5/2 +
√

P2 f ( f1)
3/2

)

+ P1 f1 + P2 f/ f1 + 2
√

P1P2 f . (A.6)

The polynomial order of
√

f1 in equation A.6 prohibits a direct analytical
solution. Numerical optimization, however, is straightforward.

An approximate solution can be obtained under the precondition that f
and f1 are small. Then only the terms

L( f1)/(K λ) ≈ P1 f1 + 2
√

P1P2 f + (P2 f ) ( f1)
−1

are of leading order, and the optimal sparseness at which L is minimized
equals

( f1)
opt =

√
f P2

P1
. (A.7)
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Because of the sparseness constraints, equation A.7 applies only if f/ϕ ≤
( f1)

opt ≤ √
f ; otherwise, ( f1)

opt assumes the upper or lower bound, respec-
tively.

Appendix B: Hippocampus Simulations

For the simulations in Figure 1, we fixed the output sparseness at the ap-
proximately observed value of f = 0.1 and assume that the sparseness of the
object pathway 2 assumes the (information optimal) upper bound f2 = 1/2.
The number P1 = 750 of places is a product of the number of environments
(30) and the number of places per environment (25). The number P2 of ob-
jects is fixed at 50. According to equation 2.27, these choices yield neuron
numbers of N1 = 438 and N2 = 179.

The two input pathways are modeled as follows. The neuronal activity in
the place-encoding pathway 1 transmits its information via gaussian place
fields; that is, at position �r, the activity of neuron i is modeled as

(x1)i(�r) = ζi exp
(

− (�r − �ci)
2

2 σ 2

)
,

with width σ = 1/5 of the box size and centers �ci that uniformly cover
the whole 1-by-1 meter box. The random population vector �ζ ∈ {0, 1}N1 is
chosen such that the number of “1s” is the same for each environment: each
environment is encoded by the same number of neurons.

The neuronal activity of neuron j in the object-encoding pathway is
modeled as

(x2) j(�r, �n) =
P2∑

m=1

ξm
j nm d(�r,�rm),

where nm ∈ {0, 1} indicates the presence of object m in the present environ-
ment at position �rm and

d(�a,�b) = exp

(
− (ax − bx)

2

2 σ 2
x

−
(ay − by)

2

2 σ 2
y

)

introduces a distance-dependent weight with variable-length scales σx, σy
that are uniformly distributed between 1.5 and 2.5 times the box length. The
vector �ξm denotes the population pattern in pathway 2 that corresponds to
object m. In our simulations, the population patterns were modeled as ξm

j =
qm

j ηm
j , where q ∈ {0, 1} is a binary random variable that determines the pop-

ulation sparseness of p = prob(q = 1) = 0.25 and η ∈ [0, 1] is a uniformly
distributed random variable. Each environment contains five random
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objects at random positions. Since pathway 2 conveys five inputs, Signal2
is five times as strong as Signal1, and thus the firing threshold has been set
to five times the noise.

The neuronal activity patterns are generated by simulating a random
trajectory with constant speed.
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On the representation of space

One of the most important functions of the brain is the development
of neural representations of concepts and contexts. Once a particular
representation is built, however, it is equally important to be able to
convey this information to other brain areas for further processing
or a behavioural response. Two main paradigms are used to explain
how neuronal activity encodes information: A firing rate code and a
spike-time code.

In a firing rate code, average neural activity correlates with the
particular features of the world being represented. For instance, the
spiking activity of place cells correlates on average with a certain
region of space (its place field). But are place cells coding for a partic-
ular location within their fields?. Experimental evidence suggests this
may be the case. Indeed, it has been proven possible to reconstruct
an animal’s trajectory from a sequence of activation of a population
of place cells, implying they might be specifying individual locations.
But how can the brain unambiguously select a desired location from
a place field, it being a broad distribution of activity in space?. It
turns out a spike-time code might help us finding an answer.

In a spike-time code, information about the represented features
is encoded in the precise timing of the spiking activity. Not surpris-
ingly, spike-times are most useful when compared within a popu-
lation of neurons, where computations at the network level lead to
interesting outcomes from the encoded information. A natural ref-
erence point are the underlying network rhythms, with the so called
Theta rhythm being experimentally linked to place cell spiking activ-
ity. With respect to Theta we can frame the spike distributions, which
in turn include information about space.

Several questions come now to our minds: How does the shape of
the spike distributions affect the selection of the encoded locations?.
What are the implications for encoding at the population level?. Are
these concerns also shared by the actual biological networks in the
Hippocampus?.

In the following paper we develop a framework where the previ-
ous questions can be addressed.
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Traveling Theta Waves and the 
Hippocampal Phase Code
Christian Leibold1,2 & Mauro M. Monsalve-Mercado1,2

Hippocampal place fields form a neuronal map of the spatial environment. In addition, the distance 
between two place field centers is proportional to the firing phase difference of two place cells 
with respect to the local theta rhythm. This consistency between spatial distance and theta phase 
is generally assumed to result from hippocampal phase precession: The firing phase of a place cell 
decreases with distance traveled in the place field. The rate of phase precession depends on place field 
width such that the phase range covered in a traversal of a place field is independent of field width. 
Width-dependent precession rates, however, generally disrupt the consistency between distance and 
phase differences. In this paper we provide a mathematical theory suggesting that this consistency can 
only be secured for different place field widths if phase precession starts at a width-dependent phase 
offset. These offsets are in accordance with the experimentally observed theta wave traveling from the 
dorsal to the ventral pole of the hippocampus. Furthermore the theory predicts that sequences of place 
cells with different widths should be ordered according to the end of the place field. The results also hold 
for considerably nonlinear phase precession profiles.

Hippocampal place cells fire action potentials (spikes) in only few locations of an environment forming a neu-
ronal map of space1. The spike times of place cells are coordinated with the extracellular field potential oscillations 
in the theta range (4–12 Hz). In experiments with rodents, it was shown that place cells spike late in the theta 
cycle when the animal enters a place field, and subsequently precess to early theta phases during traversal of the 
place field2–5. As a result of this phase precession, the spike times of a population of place cells arrange as theta 
sequences that encode trajectories in space2–4, 6–11: Within each theta cycle cells fire first (at early phases) whose 
place fields are almost completely traversed, whereas cells fire latest whose place fields have just been entered, 
and, thus, theta sequences are generally considered as time-compressed representations of the spatial trajectories 
during behavior. Moreover, theta sequences imply causal pairwise correlations on the theta time scale that can 
trigger spike-timing-dependent plasticity rules12–15 and thereby imprint the memories of spatial trajectories into 
the synaptic matrix of the hippocampal network4, 7, 16.

An implicit assumption underlying most of the ideas about decoding theta sequences and their implications 
for learning is that the rate of phase precession is equal in all neurons and thus accounts for the consistency 
between contiguous space and the circular theta phase (Fig. 1A); i.e. the phase difference of two neurons is 
directly proportional to the spatial distance between the positions encoded by the two neurons. However, place 
cells show different rates of phase precession depending on their place field width3, 8: Cells with broad place fields 
precess slower than those with narrow place fields such that the phase range is constant independent of place field 
width. Owing to the different phase precession rates, spike timing relations between pairs of cells disorganize and 
cell pairs may swap their order of firing during the course of place field traversal (Fig. 1B).

A further challenge to the assumption that spatial displacements of place fields are consistently encoded as 
phase differences (called the consistency assumption in what follows) is that the theta oscillation does not consti-
tute a globally synchronized hippocampus-wide oscillation but rather exhibits traveling-wave-like behavior along 
the dorso-ventral axis17–20 resulting in a systematic phase shift of the local theta oscillations across the hippocam-
pus. Thus the spikes of more ventral cells, which have larger place fields21–25 (and precess slowly), generally occur 
later in time than the spikes of dorsal cells, which have smaller place fields (and precess fast) despite their local 
theta phases might be identical.

Owing to the field-width dependent phase precession rate and the traveling theta wave it is unclear whether 
the consistency assumption holds across the whole hippocampus, or whether it is confined to only a limited 
region on the dorso-ventral axis. Since, however, the recurrent connectivity of the hippocampal CA3 network 
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extends across at least 2/3 of the dorso-ventral axis26, it is conceivable that the consistency assumption must hold 
across the whole hippocampus, if the temporal contingency of place field spiking was a fundamental organiza-
tional principle of the hippocampal code. So far there is some evidence that parts of the trajectories can indeed 
be decoded from theta sequences across large parts of the dorso-ventral extent of the hippocampus20, however, a 
consistent theoretical framework is missing.

In this paper we provide a theoretical analysis of the consistency assumption taking into account variable 
place-field-width-dependent rates of phase precession. Our analysis shows that the consistency assumption can 
indeed be secured in a traveling wave framework if cells with broader place fields phase precess with respect to a 
local theta rhythm that is delayed compared to the local theta rhythm for cells with smaller place fields (Fig. 1C). 
From an optimality argument, we will derive that the maximal phase shift between the hippocampal theta oscilla-
tions in the dorsal and the ventral hippocampus should be about 180° as was found experimentally18, 19.

Methods
Numerical Simulations.  For Fig. 1 we simulated place field activity as inhomogeneous Poisson processes 
with density

λ
σ

ω∝




−

− 



 + −t vt x t x v( ) exp ( )

2
[1 cos( ( / ))]

(1)
c

0
2

2 0
4

Figure 1.  Phase precession and pairwise correlations in simulated place field activity. (A1) Spike phases 
and positions of three cells (colors) with same width and different centers. Top panel depicts firing rates as a 
function of position. Bottom depicts phase of spikes as a function of position. Solid lines are obtained from 
circular linear fits to the dots34. (A2) Close up of phase plot from A1 at the place field center illustrating that in 
each theta cycle (grey and white columns) the temporal sequence of spikes (vertically increasing phase patterns) 
corresponds to ordered place fields: 1 before 2 before 3. (A3) Crosscorrelation functions exhibit systematic 
peak shifts on the theta time scale encoding the difference of the place field centers. The negative peak lags 
correspond to cell 1 firing before cell 2 and cell 2 firing before cell 3 as indicated by the labels (1 → 2, 2 → 3). 
(B1–3) Same as in A for three place cells with different widths and same center. Cells 2 and 3 fire at the same 
time on average. (C 1–3) Data from B with a cell specific phase shift: The larger the field the more the phases are 
shifted upwards. Dashed lines are the linear fits from B1. Thick solid vertical lines indicate the theta phase offsets 
relative to the local theta oscillation of the blue cell: Theta oscillation is increasingly delayed for the green and 
the red cell. For details on the numerics see Methods.
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were v denotes running speed, t is time, x0 the place field center, σ specifies place field width, and ωc = 2π/Tc is the 
oscillation frequency of the individual neurons. In all simulations we assumed a linear path with constant speed 
v = 40 cm/s. The oscillation period of a cell was width dependent to ensure a width independent phase range, 

= − .θ
σ
σ( )T T 1 0 06c

0 , with σ0 = 20 cm and the theta period Tθ = 1/8 s.

Results
Model.  We assume that within a place field the theta phase ψ of the spikes decreases linearly by a constant 
amount a per cycle (see Fig. 2A for illustration). If the animal enters the place field of cell i at theta cycle n i

0
( ), the 

phase ψn
i( ) of neuron i at cycle n is thus described by

ψ φ= − − ≥ .a v w n n n n( , )( ), (2)n
i i i i i( )

0
( ) ( )

0
( )

0
( )

The phase offset φ i
0
( ) denotes the starting phase at the entrance of the field. Most importantly, this offset is cell 

specific (indicated by i) and thus the local theta rhythm is not introducing a hippocampus-wide temporal refer-
ence. Later on, we will relate φ i

0
( ) to the hippocampus-wide temporal reference frame introduced by the travelling 

theta wave. The slope parameter a > 0 in equation (2) depends on both the running speed v of the animal and the 
width w(i) of the place field, defined as the spatial distance between the occurrence of the first and the last theta 
cycle. The slope is such that the phase range Φ that is covered while fully crossing a place field during N(i) theta 
cycles is independent of speed27, 28 and width8, 27, 29, and identical for all cells, i.e.,

ψ ψ− = Φ ⇒ − = Φ.
+

a v w N( , ) (3)n N
i

n
i i i( ) ( ) ( ) ( )

i i i
0
( ) ( )

0
( )

Experimental reports restrict the phase range to values below 2π5, 30, 31, and therefore we can treat the phases 
ψ as linear variables without the risk of potential ambiguities.

The place field width w(i) can be expressed in terms of the speed-dependent theta period Θv and the running 
speed v according to

= Θw v N (4)i
v

i( ) ( )

and thus the slope parameter equals

=
−Φ Θ

.a v w v
w

( , )
(5)

i v
i

( )
( )

Figure 2.  Nomenclature. (A) Spike phases ψ (black circles) decrease by a in each theta cycle (alternating 
grey and white patches). A field starts at theta cycle n0 and ends at cycle n0 + N (here N = 9). The start phase 
is denoted φ0, the total phase range is denoted by Φ < 0. The width w of the field is a result of the number N of 
theta cycles needed to cover the phase range. The spatial distance an animal covers in one theta cycle equals 
vΘv, in which v denotes running speed and Θv denotes the period length of a theta cycle in time. (B) To define 
a ordered sequence of overlapping place fields of different widths, we introduce the parameter f (fraction in 
the field), which identifies the field’s location in the sequence. For f = 0 (beginning of the field) the proposed 
sequential ordering of the two fields is 1 → 2, for f = 1 (end of the field) the ordering is 2 → 1.
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Coding Assumptions.  Place field activity encodes a spatial position, however, it is not a priori clear what 
exact position this should be since place fields are extended in space. For the rate code, the place field is generally 
interpreted in a probabilistic way in that the firing rate is seen as a correlate for the probability of being at a certain 
position. This argument, however, does not pertain to a timing code. We thus have to make additional assump-
tions about the encoding of space by the theta phase. In particular, thinking about sequences of place cells we have 
to deal with the problem of which of the two place fields comes earlier in the sequence. Since place fields have 
different widths, this sequence will be generally different depending on whether we order the fields according to 
their beginning, their center, or their end. In the following we assume that the timing of a place cell spike encodes 
the distance to the sequence position

= + Θ =x n n v n fN: ( ) , , (6)i i
x

i
v x

i i( )
0
( ) ( ) ( ) ( )

i.e., the distance to the position that corresponds to the fraction f of the run through the place field. Choosing f = 0 
would mean that a spike encodes the distance from the beginning of the place field, f = 1/2 would mean that a 
spike encodes the distance to middle of the field and f = 1 indicates the distance to the end of the field (see Fig. 2B 
for illustration).

Phase Difference.  Equations (4) and (6) let us relate the starting cycle n i
0
( ) to the reference position x(i) via

=
−
Θ

n x fw
v

,
(7)

i
i i

v
0
( )

( ) ( )

and thus, combining eqs (2), (5) and (7), we can express the phase difference between two cells i and j as

ψ ψ ψ φ

φ

φ
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where in general we denote differences by

− = ∆a a a:i j ij( ) ( ) ( )

and expanded − = − + −n n n n n ni j j i
0
( )

0
( )

0
( )

0
( ) for ≥n nj i

0
( )

0
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0
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0
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0
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Special case w(i) = w(j) = w.  Most coding ideas regarding phase precession implicitly assume place fields of 
equal width. In such a case equation (8) simplifies to

ψ φ∆ = ∆ −
Φ∆

.
x

w (9)
ij

n
ij

ij
( ) ( )

0

( )

A consistent phase code requires that Δ(ij)ψn = 0 for Δ(ij)x = 0, and thus the difference in phase offsets must 
vanish,

φ∆ = 0, (10)ij( )
0

i.e., all neurons should start the place field firing at the same phase φ0. Therefore, when the two cells encode dif-
ferent positions, we have

ψ∆ = −
Φ

∆ .
w

x (11)
ij ij( ) ( )

The phase shift is therefore proportional to the place field difference consistent with the experimentally 
reported phase code for distance8, 9, 32 and illustrated in Fig. 1A.

General case w(i) ≠ w(j).  The most obvious difference to the special case of equal widths is that, for une-
qual place field widths w(i) ≠ w(j), where the phase difference depends on the cycle number n, the phase relation 
changes with time; see equation (8) and Fig. 1B. Consistency between the phase and the place code thus cannot 
be achieved on a cycle by cycle basis, however, the consistency argument can be generalized if one assumes that 
for cells with Δ(ij)x = 0, the phase difference has to be zero averaged over N + 1 spike pairs in N theta cycles. 
Averaging is a biologically plausible computation, since spike-timing dependent synaptic learning rules15 that 
encode sequence memories are able to average over multiple repetitions of spike pairs, which in the present case 
would be averaging over all theta cycles in a place field traversal4, 7, 16.

To compute the average phase difference 〈Δ(ij)ψ〉 = (N(j) + 1)−1∑nΔ(ij)ψn, we assume without loss of generality 
that w(i) > w(j), and ≥n nj i

0
( )

0
( ), and consequently + ≤ +n N n Nj j i i

0
( ) ( )

0
( ) ( ), because if the narrower field (j) would 
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start before or end after the wider (i) field, the two cells would necessarily not encode for the same position. Under 
these conditions we obtain

∑ ψ φ
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Consequently, the offset difference Δ(ij)φ0 for which the average phase difference from equation (12) vanishes 
is given by

φ∆ = −
Φ∆

− .
w

w
f

2
(2 1)

(13)
ij

ij

i
( )

0

( )

( )

Comparison of the average phase difference at the theoretically optimal phase offset Δ(ij)φ0 from equation 
(13) agrees with those from a simulated pair of phase precessing cells (Fig. 3A). A biological interpretation of the 
fundamental equation (13) will be found in the next section.

Biological Constraints.  Phase Range.  At first, we were asking how the theoretical phase offset Δ(ij)φ0 from 
equation (13) fits to the observed theta wave traveling from the dorsal to the ventral pole17–19. In the framework 
of our theory a traveling wave would account for different phase offset φ0 at different dorso-ventral positions. The 
difference in phase offset Δ(ij)φ0 can thus potentially be interpreted as a wave traveling from place cells of width 
w(i) to place cells with width w(j). We therefore computed Δ(ji)φ0 = −Δ(ij)φ0 for a pair of place fields as a function 
of the width wmin of the smaller place field for changing fractions f that determine the reference position that the 
spike phase is supposed to encode the distance from (Fig. 3B–D). For f = 0 (spike timing encodes distance from 
the beginning of the field) the optimal phase offset Δ(ji)φ0 for small fields is positive (delayed) corresponding 
to a wave traveling from large place fields to small place fields. For f = 1/2 (spike timing encodes distance from 
the center of the field) the optimal phase offset is mostly close to zero (synchronous) corresponding to a global 
oscillation. Finally, for f = 1 (spike timing encodes the distance to the end of the field) the optimal phase offset for 
small fields is negative (advanced) corresponding to a wave traveling from small place fields to large place fields 
as it would be consistent with the observed traveling direction of the theta wave. The maximum phase offset (for 
the smallest place fields) is the 180° (Fig. 3E) found in experiments18, 19.

Figure 3.  Optimal phase offsets. (A) To validate the theoretical results (red line) from equation (12), we derived 
empirical mean phase differences from simulations (see Fig. 1) of a pair of phase precessing place cells with the 
same center. Black line depicts the median of 50 repetitions (dashed lines are the 10- and 90-percentiles). The 
only free parameter was the phase range which we estimated as Φ = −360° from the simulations. In the example 
we used f = 1/2 and v = 0.2 m/s. (B–D) Optimal phase offset from equation (13) as a function of the width of the 
smaller place field, when the larger place field width was taken to be 5 m. (E) Optimal phase offset as a function 
of the larger field width while fixing the smaller field width to 30 cm.
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Our work thus suggests that the theta phase offset between dorsal and ventral pole is in fact bringing the place 
cell spikes together in time such that neighboring cells can be encoded by downstream coincidence detector neu-
rons irrespective of place cell width. The fundamental open question is “What are neighbors?”. This question is 
essentially reflected by the parameter f, which says that cells are neighbors if their reference positions x = x0 + fw 
are neighboring. Our results show that the traveling wave from dorsal to ventral pole can bring neighboring cells 
only into temporal coincidence for f = 1.

Traveling Waves.  Mathematically the phase ϕ(xw, t) of a wave can be written as

ϕ ω α= − +x t v k x t( , , ) (14)w x v w v v,w

where kx v,w
 is the wave vector (2π divided by wavelength), xw is the position along the dorso-ventral axis, 

ωv = (2π)/Θv is the speed-dependent theta oscillation frequency, and αv is some (arbitrary) constant phase. 
Equaling the wave phase equation (14) with the optimal phase offset Δ(ij)φ0 at the ventral most pole (wmax = max-
iwi) from equation (13) with w = w(j), and f = 1 yields

α φ φ+ = − = −
Φ

+
Φk x w
w2 2

,
(15)v x v w

i j
, 0

( )
0
( )

max
w

where without loss of generality we set the reference phase at the ventral pole, i.e., ϕ(wmax, t, v) = −tωv. Since field 
width increases along the dorso-ventral axis, we can assume xw ∝ w/wmax and thus obtain the optimal wave vector 
to be constant,

= .k k (16)x v,w

The remaining term in eq. (15) can be identified with a constant phase αv = −Φ/2. The wave propagation 
speed c(v) is the time derivative of a position xϕ(t) of constant phase ϕ. Since

ϕ ω α= − +ϕkx t t( ) , (17)v

taking the time derivative yields

ω
≡ =φc v

t
x

k
( ) d

d
, (18)

v

which is a function of speed (v), because theta frequency (ωv) changes with speed. To obtain an explicit expression 
we assume that space x and place field width w are related by

=x X w
w

,
(19)w

max

where X quantifies the total spatial extent of the dorso-ventral axis of about 1 cm in rats19. Combining equations 
(15), (18) and (19), we obtain

π
=

|Φ|
Θ

.c v X( ) 4 /
(20)v

For a phase range of |Φ|  = 2π, equation (20) yields a velocity estimate of

=
Θ

.c v X( ) 2
(21)v

For approximate values of X = 1 cm and 1/Θv ≈ 8 Hz this amounts to a propagation velocity of c ≈ 16 cm/s 
consistent with experiments19.

Nonlinear phase precession.  The specific shape of phase precession may deviate from the linear model assump-
tion4, 30. We therefore asked how much non-linear precession would affect the conclusions from the linear model. 
To parameterize the non-linearity we replace the linear term φ + Φ −n n

N0

i

i
0
( )

( )
 from eq. (2) by 
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 with some positive exponent 0 < μ < 1. The smaller μ the more non-linear the phase 

dependence becomes. Following a similar derivation as described for the linear case we end up at an optimal 
phase offset of
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The optimal phase offset from eq. (22) can be numerically evaluated as shown in Fig. 4.
If the exponent μ is below the value of 1, we observe two main effects. First, the optimal phase offset becomes 

dependent on running speed v, however, only for large differences in place field width. Second, the optimal phase 
offsets stay below 180°. If the largest field width is fixed (the reference for theta phase), both speed dependence 
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and phases below 180° can be observed for small place field widths below about 0.25 m; smaller than 180° phase 
offsets are found for high velocities. If, in contrast, the small field width (dorsal pole) is taken as a reference, 
the velocity dependence extends over a larger range of place field sizes. Also the curves are generally not linear 
indicating a width-dependent conduction speed of the optimal wave that is faster towards the dorsal end (corre-
sponding to the steeper slopes).

If the non-linearity is moderate µ ⪆( 1/2) the optimal phase offsets can nevertheless still be reconciled with the 
observed traveling wave, particularly considering that the consistency assumption is mostly violated for high 
running speeds and low place field widths, where only few theta cycles contribute to potential synaptic weight 
changes. However, for strong non-linearities µ ⪅( 1/4), the reduced phase range questions the validity of the con-
sistency assumption. We thus conclude that the consistency assumption is quite robust for moderately non-linear 
phase precession and larger place field width.

Discussion
The precise timing of hippocampal place cell firing relative to the local theta oscillation contains information 
about the position of an animal. Particularly it has been proposed that spatial distances are encoded by hip-
pocampal theta phase differences. In this paper, we theoretically evaluated under which conditions this hypoth-
esis holds. We found that despite the variable place field sizes (and hence variable precession rates), consistency 
between phase code and spatial distance of place fields is (approximately) possible because the hippocampal theta 
oscillation is associated with a traveling wave that moves from the dorsal to the ventral pole. The traveling wave 
thereby imposes a location-specific phase offset, which delays the spikes of the more ventral neurons in time and, 
in so doing, accounts for the consistency between space and phase differences on average. Our model predicts 
that the maximal theta phase offset between dorsal and ventral pole should be about 180 degrees as found in 
experiments18, 19.

A direct consequence of our theory is that it predicts that the reference positions to which distances are 
encoded by the theta phase of spikes must be the ends of the place fields, otherwise the consistency assumption 
could not be reconciled with the direction of the traveling wave. As a result action potentials would encode posi-
tions the animal would reach in the future and thus, this prediction is consistent with the previously proposed 
hypothesis that theta sequences predict future behaviors6, 8, 10. Rate-based theories of the hippocampal place code 
generally assume that place cell activity is linked to the current position of the animal. While this is a perfect 
assumption to optimally reconstruct animal trajectories from neural activity, our results, however, argue for the 

Figure 4.  Nonlinear phase precession. (Left column) Non-linear models of phase precession with increasing 
curvature from top to bottom. (Middle) Optimal phase range for fixed maximal width and f = 1 (as in Fig. 2D). 
The different colors indicate different running speeds from 0.1 m/s (dark) to 1.2 m/s (bright). (Right) Optimal 
phase range for fixed minimal field width (as in Fig. 2E).



www.nature.com/scientificreports/

8SCIeNtIfIC REPOrTS | 7: 7678  | DOI:10.1038/s41598-017-08053-3

development of predictive strategies for decoding hippocampal place cell activity that optimize estimates of the 
future trajectory of the animal.

Although place field widths generally increase along the dorso-ventral axis, there is considerable variability at 
each location21–25, which may pose a problem to the presented theory. However, some hippocampal regions show 
more variability than others. For example the correlation between size and location seems the strongest in area 
CA322, which would make this region the most likely candidate area to look at. Also the field potential oscillation 
is an average over the synaptic inputs of many cells and thus it cannot be excluded that individual cells at simi-
lar dorso-ventral positions show distinct intracellular theta phases. Our theory therefore predicts that for place 
fields with different widths but at similar dorso-ventral position (seeing the same local theta phase), the offset of 
the theta phase precession should be correlated with field width. Broader place fields (with shallower precession 
slopes) should start firing at later theta phases to ensure consistency between phase and place field distance.

Theta phase precession and spike correlations (theta sequences) have been argued to be to some degree dis-
tinct phenomena of spike time coordination33, i.e., theta sequences can be altered without observable changes in 
phase precession. This dissociation shows that the coordination of phase offsets across cells plays an important 
role in shaping the hippocampal ensemble code, and that the two key features, phase slope and offset, may rely on 
two distinct mechanisms. Particularly CA3 seems to be fundamental in coordinating the offsets, since inactiva-
tion of CA3 removes theta sequences while leaving phase precession intact on the single cell level33. Conversely, 
the phase precession slopes seem to depend at least partly on the medial entorhinal cortex (MEC) since animals 
with lesioned MEC displayed very little single cell phase precession32.
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On grid cell firing patterns

The discovery of grid cells more than two decades after knowing
about the existence of place cells marked a turning point for the
understanding of how space is represented in the brain. Since then,
much focus have been devoted to explaining the reasons behind the
appearance of the characteristic hexagonal firing patterns.

Hexagonal patterns are found abundantly in nature. Their re-
peated occurrence in nature is due to the fundamental fact that the
hexagonal lattice is the most optimal arrangement to densely fill
two-dimensional space. Examples of natural systems making use of
this fact range from many simple structures such as stable molecules
and materials like graphene to more complex physical and biological
systems. The organisation of soap bubbles, the cells of a bee honey-
comb, the patterns in Rayleigh-Bénard convection, the wavefunction
of Bose-Einstein condensates, and some chemical reaction-diffusion
systems are all examples of the emergence of hexagonal patterns in
nature. But could a complex biological system, as illustrated by the
spiking activity of grid cells, be the result of following such simple
principles?.

In the following letter we explore the biological mechanisms by
which the hexagonal firing patterns of grid cells emerge. We high-
light the interaction between the entorhinal cortex and hippocam-
pus proper as the driving force behind the formation of the peculiar
hexagonal patterns. In particular, the place cell input coming from
areas CA1 and subiculum provides the entorhinal cortex with infor-
mation about space in a special way, such that its processing leads to
the implementation of the simple principles of dense filling.

The key biological mechanism underlying this process is a gener-
alisation of Hebbian plasticity, which takes into account the precise
timing of the input spiking activity to transform the encoded infor-
mation about space into the distinct grid cell firing patterns. Next, we
introduce how these plastic changes are motivated and develop an
analytical framework where the relation to self-organising patterns
becomes evident.
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Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in
their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to
spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of
synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism
gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop
as they have been found in medial entorhinal cortex.
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The spatial position of an animal can be reliably decoded
from the neuronal activity of several cell populations in the
hippocampal formation [1–3]. For example, place cells in
the hippocampus fire at only a few locations in a spatial
environment [4,5], and the position of the animal can be
readily read out from single active neurons. Grid cells of the
medial entorhinal cortex (MEC) fire at multiple distinct
places that are arranged on a hexagonal lattice [6,7].
Although hexagonal patterns are abundant in nature and
there existwell-studied physical theories for their emergence,
the mechanistic origin of this neuronal grid pattern is still
unclear. Initially, it was suggested that they result from
continuous attractor dynamics [8,9] or the superposition of
plane wave inputs [10] and, based on circuit anatomy, place
cells would then result from a superposition of many grid
cells [11,12]. More recent experiments, however, reported
place cell activity without intact grid cells such that grid cells
are not the unique determinants of place field firing [13–17].
Conversely, it would thus be possible that grid fields may
arise from place field input as suggested in [18–20]. The
biological mechanisms proposed by these latter theories,
however, remain hypothetical. In the present Letter, we
propose a learning rule for grid cells, based on the individual
spike timings of place cells using spike-timing-dependent
synaptic plasticity (STDP) [21–23]. The theory thereby
predicts that the observed temporal hippocampal firing
patterns (phase precession and theta-scale correlations, see
below) [24–26] translate the temporal proximity of sequen-
tial place field spikes into spatial neighborhood relations,
observed in grid-field activity. For our model to work, we
only have to assume that the synaptic plasticity rule averages
over a sufficiently long time interval.
Model.—We use the classical formulation of pairwise

additive STDP [22,27], where the update of a synaptic
weight Jn, n ¼ 1;…; N at time t is computed as [22]

d
dt

Jn ¼
Z

∞

−∞
dsWðsÞCnðsÞ þ FðJnÞ: ð1Þ

CnðsÞ denotes the time-averaged correlation function
between the spike train of the presynaptic neuron n and
the postsynaptic neuron, the learning window WðsÞ
describes the update of the synaptic weight as a function
of the time difference s between a pair of pre- and
postsynaptic action potentials, and the function F imple-
ments soft bounds for the weight increase. The dynamics is
further constrained such that weights cannot become
negative.
To be able to treat Eq. (1) analytically, we use a linear

Poisson neuron model; i.e., the mean firing rate of the
postsynaptic neuronEðtÞ ¼ J ·HðtÞ results from aweighted
sum of hippocampal firing rates H ¼ (H1ðtÞ;…; HNðtÞ)T .
Under these assumptions, CnðsÞ can be approximated for
large N [22] as CnðsÞ ¼

P
n0Jn0Cnn0 ðsÞ, with

Cnn0 ðsÞ ≔
Z

∞

−∞
dtHnðtÞHn0 ðt − sÞ: ð2Þ

Inserting the correlation functions from Eq. (2) into the
weight dynamics from Eq. (1) yields

d
dt

Jn ¼
X
n0
Jn0Gnn0 þ FðJnÞ; Gnn0 ≔

Z
∞

−∞
dsWðsÞCnn0 ðsÞ:

ð3Þ
Following [28,29], we introduce the quadratic stabilization
term FðJÞ ¼ F0JðK − JÞ, F0 > 0 that implements a soft
upper bound.
As an input to the postsynaptic neuron, we consider a

population of N hippocampal place cells. The firing of
these neurons is characterized by a bell-shaped envelope,
modulating the spatial path xPðtÞ and oscillations in time t
[Fig. 1(a)]

Hnðt;PÞ ¼ ae
−½xP ðtÞ−xn �2

2σ2 ½cosðωtþ ϕnÞ þ 1�=2: ð4Þ
The oscillation frequency ω of a neuron is slightly higher
than the frequency ωθ=ð2πÞ of the theta oscillation (∼8 Hz)
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in the local field potential, giving rise to a phenomenon
called theta phase precession [Fig. 1(b)]: spikes early in the
field come at later phases than spikes late in the field [24].
During the traversal of a place field, phase precession spans
a whole theta cycle [30]. Thus, the two frequencies have to
relate to each other like ω ¼ ωθ þ ðπ=RÞv, with R denoting
the distance from the place field center, at which, the firing
rate has decreased to 10% [i.e., R ¼ σ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð10Þp

], and v
denoting the running speed, which we fix at 25 cm=s. At
each individual entry into the place field, the phase of the
cellular oscillation is reset to phase zero with respect to the
theta oscillation phase ϕθ by fixing ϕn ¼ ðϕθ − 2πÞω=ωθ.
To obtain a closed expression for the correlation function

Cnn0 ðsÞ [Fig. 1(c)], the time average in Eq. (2) is performed
over all straight paths P crossing the center of the field
overlap. For place fields with identical width R, firing rates
a, and at small lags s, we obtain

Cnn0 ðsÞ ¼
Z
P

Z
∞

−∞
dtHnðt;PÞHn0 ðt − s;PÞ

¼ a
ffiffiffi
π

p
e−ðr2þv2s2=4σ2Þ

4v=ðaσÞ
�
1þ 1

2
J0

�
πr
R

�
cosðωsÞ

þ vsr
4σ2

J1

�
πr
R

�
sinðωsÞ

�
; ð5Þ

with place field distance r ¼ jxn − xn0 j and J0;1 denoting
Bessel functions of the first kind (see Supplemental
Material [31]).
In contrast to 1D fields, where the distance of place

fields is reflected by the lag of the correlation peak (theta
compression) [25], correlation functions in 2D are symmet-
ric because of the symmetry of the path; however, the
distance of the place field centers is encoded in the amplitude
of the correlation peak at lag 0 [Figs. 1(d) and 1(e)].
Weight Dynamics.—Assuming that the putative grid

cells receive inputs from a large number N ≫ 1 of place
cells that sufficiently cover the encoded area, we replace
the presynaptic index n by the position of the place field
center x; i.e., Gnn0 → Γðjxn − xn0 jÞ, and thereby translates
the learning Eq. (3) to continuous coordinates

d
dt

JðxÞ ¼ ðΓ∘JÞðxÞ þ F0JðxÞðK − JÞ: ð6Þ

Examples of the convolution kernel ΓðjxjÞ for different
learning window functionsW are depicted in Figs. 1(f) and
1(g). The development of the weights follows the pattern
formation principles of a lateral inhibition system [32].
Indeed, the integro-differential equation (IDE) (6) involves
nonlocal interactions effectively implemented through the
convolution kernel, inducing a strong close-range poten-
tiation and a weaker long-range depression of neighboring
synapses, as observed in the typical shape presented in
Fig. 1(g). A general window-dependent kernel can be
obtained for the correlation function from Eq. (5) as

ΓðrÞ ¼ c
ffiffiffi
π

p
e−ðr2=4σ2Þ

4v=ðaσÞ
�
1þ αJ0

�
πr
R

�
þ βr

σ
J1

�
πr
R

��
ð7Þ

c½W� ≔ a
Z

∞

−∞
exp

�
−
v2s2

4σ2

�
WðsÞds

α½W� ≔ a
2c

Z
∞

−∞
exp

�
−
v2s2

4σ2

�
cosðωsÞWðsÞds

β½W� ≔ av
4σc

Z
∞

−∞
exp

�
−
v2s2

4σ2

�
s sinðωsÞWðsÞds; ð8Þ

which can take a Mexican-hat-type shape for qualitatively
different learning window functionsW due to the symmetry
of the correlation function [Figs. 1(f) and 1(g)]. To see
this, we can regard Hebbian-like windows to be modeled
as the product of a Gaussian and a polynomial of some
orderm,WðsÞ ¼ exp½−s2=ð2ρ2μ2Þ�Pmðs=ρÞ. The function-
als defined in Eq. (8) then inherit the symmetries from the
cross-correlation since all of the odd terms in the poly-
nomial cancel out during integration. Thus, in subsequent
numerical investigations, we focus on windows up to
second polynomial order

WðsÞ ¼ W0ð2πμ2ρ2Þ−1
2½1 − ðs=ρÞ2�e−ðs2=2ρ2μ2Þ; ð9Þ
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FIG. 1. (a) Poisson model of place field firing for two place
cells (red, blue) and slower theta oscillation (black). (b) Phase
precession resulting from the path used in (a). (c) Correlation of
spike trains for the cells in (a), averaged over 2D trajectories
(random walk) (black) and from Eq. (5) (green). Inset magnifies
lag 0. (d) Correlation functions for different place field distances
(red: autocorrelation, blue: 60 cm). (e) Correlation amplitude as a
function of place field distance. (f) Examples of STDP learning
windows, see Eq. (9) and below. (g) Γ kernels for correlation
function from (c)–(e) and learning windows from (f).
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whose free parameters ρ and μ determine its zeroes s0 ¼ �ρ
and negativity

R
W ¼ W0ð1 − μ2Þ. In Figs. 1(f) and 1(g), we

used ρ ¼ 23 ms, μ ¼ 1.025 and added a linear term s=ρ to
the polynomial to get the asymmetric window (grey lines).
TheW-dependent functions c, α, and β defining the kernel Γ
are given in the Supplemental Material [31].
A numerical evaluation of the learning IDE (6) with

periodic boundary conditions reveals that the spatially
isotropic kernel Γ can result in hexagonal packing struc-
tures [Figs. 2(a) and 2(b)]. Simulations of spiking Poisson
neurons confirm these predictions of the meanfield theory
[Fig. 2(a)]. As indicated by the kernel function in Eq. (7),
the grid spacing only depends on the spatial scale σ of the
place fields in the input [Fig. 2(c)].
An experimentally accessible quantity to compare our

model results to is the ratio of grid field radius Rg to grid
spacing l as indicated in Fig. 2(a). In experiments, the ratio
Rg=l forgrid cells has beendetermined to be about0.3 [7], and
for a perfectly hexagonal grid,Rg=l relates to the fraction ν of
field size per area as ν ¼ πR2

g=½ð
ffiffiffi
3

p
=2Þl2�. The field fraction

ν can be readily accessed from our numerics as the fraction of

nonzero synaptic weights and for the used learning window,
fits the experimentally obtained Rg=l [Fig. 2(d)] for all
choices of σ. Finally, learning converges faster for large
spacing (large σ), consistent with a larger amplitude of Γ
[Eq. (7) and Figs. 2(b) and 2(e)].
Linear theory at early times.—Some analytical under-

standing of the weight dynamics from Eq. (6) can be gained
from a neural field theory approach [32–36]. In this
framework, we can neglect the effect of the nonlinearities
at early times and focus only on the convolution term Γ � J.
The emerging dynamics can be readily understood by
looking at the evolution of the weights in Fourier space
∂tĴðkÞ ¼ Γ̂ðkÞĴðkÞ, which makes evident that the wave
number km maximizing the kernel Fourier transform Γ̂
(see Supplemental Material [31]) will exponentially over-
grow all other modes [if Γ̂ðkmÞ > 0], thus setting the initial
periodicity of the pattern.
In a finite region of the parameter space ðμ; ρÞ of the

learning window, the bimodal (Mexican hat) shape of Γ
ensures the existence of a Turing instability, i.e., a transition
to a single maximum of Γ̂ [with Γ̂ðkmÞ > 0] at a nonzero
km > 0 [Figs. 3(a) and 3(c)]. Similar to previous work on
pattern formation in lateral inhibition systems (e.g., [37]),
the permitted parameter region (km exists and is positive)
gives rise to stripelike and hexagonal patterns [Fig. 3(d)].
In the Supplemental Material [31], we also provide a
complementary description of the pattern formation proc-
ess, based on an approximation of Eq. (6) by a partial
differential equation (Swift-Hohenberg equation [38]),
which corroborates the results from the linear theory.
To connect the resulting patterns to other feed-forward

models of grid field formation, we parameterize Γ by the
shape factor r0=rm [Fig. 3(c)], which is the fraction
between the zero and the minimum of Γ. The shape factor
r0=rm reduces the two-parameter learning window to a
single qualitatively descriptive parameter, which can be
used to describe the bimodal kernel Γ independently of the
hypothesized biological mechanism. If r0=rm is large
(∼0.8), Γ shows only little negativity, and the emerging
pattern is stripelike [Figs. 3(c) and 3(d)]; if r0=rm is small, Γ
exhibits strong negativity, the firing fields become dis-
persed, and the pattern looses hexagonality. Hexagonal
patterns arise for r0=rm roughly between 0.65 and 0.75
[Fig. 3(d)]. In this region, the shape factor virtually
completely determines the geometrical properties of the
steady state [Figs. 3(e) and 3(f)]. Values of r0=rm that give
rise to hexagonal grids can also be identified via the ratio of
field width per grid spacing Rg=l. According to our theory,
the experimentally observed value 0.3 [7] is achieved with a
shape factor of about r0=rm ¼ 0.7 [Fig. 3(f)]. For higher
values of r0=rm, Rg=l increases to a point where a periodic
pattern cannot further dissociate into disjoint fields, and the
stable pattern becomes stripelike. For lower r0=rm, Rg=l
decreases, and, at some point, the small fields no longer
repel each other strongly enough to produce a symmetrical
arrangement.

(a)

(b) (c)

(e1) (e2) (e3)

(d)

FIG. 2. Weight patterns and input scale. (a) Asymptotically
stable weight functions JðxÞ for place field widths σ, as indicated
in (b), together with the respective Γ kernels (μ ¼ 1.025,
ρ ¼ 23 ms, σ indicated by grey level). Firing rates of spiking
simulations are colored in red (for numerical details, see
Supplemental Material [31]). (c) Grid spacing l [see (a)] scales
linearly with place field scale σ. Dots correspond to weight
patterns from numerical solutions. Dashed and solid lines
indicate theoretical estimates 2π=km and 2π=~km, see linear theory
at early times and positivity constraint. (d) Estimated ratio of field
radius Rg [see (a)] to grid spacing l; Rg=l ¼ ½ ffiffiffi

3
p

ν=ð2πÞ�1=2 is
independent of σ. (e1) Temporal evolution of randomly sampled
weights. (e2) Distribution of weight convergence times Tc for
different input scales σ as indicated and the respective means (e3).
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Positivity constraint.—The grid spacing l predicted by
the linear theory, however, consistently underestimates the
spacing derived from the numerical solution of the mean
field dynamics [Fig. 2(c)]. The reason for this error is that,
after the initial growth phase, the synaptic weights are
influenced by the nonlinearities, most importantly the
constraint that they cannot become negative.
The impact of this positivity constraint can be intuitively

understood if we interpret the convolution Γ∘J as an
operation that detects the best overlap of an oscillatory
pattern J ∝ cosðkxÞ with a given kernel Γ. However,
after the lowest weights reach zero, they stop contributing
to the convolution, and a slightly lower wave number ~km
maximizing

~ΓðkÞ ≔
Z
Ω
dxΓðxÞ cosðkxÞΘ½cosðkxÞ − cosðjkjRgÞ� ð10Þ

will be favored as the fastest growing mode (Θ denoting the
Heaviside function). Similarly, a particular field size Rg

maximizing ~Γ will be selected. In the experimentally
relevant case jkjRg ¼ 2πRg=l ¼ 2π × 0.3, numerical maxi-

mization of Eq. (10) yielded the predicted wave number ~km
[solid line in Fig. 2(c)], which excellently agrees with the
numerical solutions of the meanfield dynamics.
Conclusion.—For a large variety of STDP windows, the

spike-timing correlations of 2D place cells can account for
a feed-forward learning of hexagonal grid patterns.
Synaptic plasticity thereby averages over running trajecto-
ries of tens of minutes, hence, translating the temporal
correlations into a dense code for space. Our model thus
predicts that grid cells are generated in the output structures
of the hippocampus, e.g., the deep layers of the medial
entorhinal cortex [39] or the parasubiculum [40]. While our
linear theory provides a good prediction of grid spacing, as
well as for conditions that permit structure formation,
determining the boundary between hexagonal and stripe-
like patterns is less straightforward and has to take into
account the nonlinearities. The standard approach, non-
linear bifurcation analysis [37,41,42], is difficult because of
the strong nonlinearity introduced via the positivity con-
straint, which strongly influences the selection of the final
pattern. Despite this drawback, our model provides a
universal framework in that it encompasses current models
of grid field formation that can be mapped to convolutions
with Mexican-hat-type kernels that give rise to a Turing
instability.
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Supplementary Material: Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields
by Mauro M Monsalve-Mercado, Christian Leibold

Notes on the derivation of the Correlation function

The activity of a homogeneous population of place fields, sharing equal spatial scale, cellular oscillation
frequency, and peak firing rates is modeled according to eq. (4) of the main text as

Hn(t;P) = a exp

(−(xP(t)− xn)2

2σ2

) [
cos(ω t+ φn) + 1

2

]
, (1)

where the cellular oscillation phase φn is locked to the phase φθ of the theta oscillation of the field potential by
setting the entrance phase of the place field φn = (φθ − 2π)ωn/ωθ. The frequency of the place cells ωn is faster
than the frequency ωθ of the field potential resulting in the phenomenon of phase precession.

We then proceed to derive an analytical expression for the correlation function

Cnn′(s) =

∫

P
Cnn′(s,P) =

∫

P

∫ ∞

−∞
dtHn(t;P)Hn′(t− s;P) (2)

that would remain valid for a noisy two dimensional random walk with sufficient covering of the place fields’
overlap region.

To this end, we start by computing the correlation on a straight path traversing the place fields, xP(t) :=
x0 +v n t, where v is the speed, x0 a reference point, and n a two dimensional unit vector specifying the running
direction. Considering typical values for all physiological parameters involved, we can approximate the result
as

Cnn′(s,P) =

√
π

4

σa2

v
exp

{
−c

2
P
σ2
− v2s2

4σ2
− r2

4σ2
− vsr cos(γP)

2σ2

}{
1 +

1

2
cos(ωτ + δφ(φθ, cP , γP))

}
, (3)

where r := |xn− xn′ | is the distance between the place fields’ centers, cP is the perpendicular distance between
the center of the overlap 1

2 (xn + xn′) and the straight path, and γP is the angle made between the line joining
the place fields’ centers and the path (see Supplementary Figure 1). The phase difference δφ := φn − φn′ is
computed from that phases at which path enters each of the place fields. As specified above, these entrance
phases are obtained from the instantaneous theta phase at the moment the animals enters the specific field.

Figure 1: Geometry of two place fields (red,blue). Parameters are explained in the text.

The approximated 2-d correlation function finally results from the aggregated contribution of all possible
straight paths crossing the overlapping area of the place fields. The approximation is valid for a sufficiently
long run, such that a representative sample of orientations and starting points of the paths, as well as the onset
theta phases is taken into account. As it turns out, we can restrict ourselves to paths crossing the center of the
overlap (cP = 0) in all directions, since the contribution coming from different path displacements is negligible.
After performing an integration over theta phases and orientations (γP), we can further reduce the result for
small time lags s, since we are only interested in the interaction with learning windows with limited range. The
final expression

Cnn′(s) = a

√
π e−

r2+v2 s2

4σ2

4v/(aσ)

(
1 +

1

2
J0

(πr
R

)
cos(ωs) +

vsr

4σ2
J1

(πr
R

)
sin(ωs)

)
(4)

uses the relation R = πv/(ω − ωθ) for the radius of the field. J0,1 denote Bessel functions of the first kind.
The previous mean field approximation can be seen in comparison with a spiking simulation in Fig. 1C.

There, a long 20 min random walk is simulated on which spikes are drawn from two place fields using an
inhomogeneous Poisson process.



Numerical Methods

Meanfield simulations
To numerically evaluate the dynamical evolution of the weights according to the learning equation (6), we
simulated a discrete analogue. For this, we arranged the place field centers in a equally spaced two-dimensional
square grid covering the box. The discrete convolution was performed by direct matrix multiplication with
a matrix whose entries evaluate the kernel for the euclidean distances between all pairs of place field centers
with periodic boundary conditions. Temporal integration was done using the Euler-forward method with time
discretized in bins of 10 ms.

Fig. 2A shows six examples out of fifty simulated weight patterns exhibiting stable hexagonality. The
scale σ of place field inputs changes in a range from 5 to 30 cm in 0.5 cm steps. The learning window was
kept constant. Spacings of hexagonal grids were estimated from the autocorrelograms by computing the radial
power and selecting the maximum at the smallest non-zero wave number (dots in Fig. 2C).

To explore the effect of the learning window, we computed the effective kernel for all combinations in a range
of ρ between 1 and 80 ms, and µ between 0.95 and 1.20, for 100 values each. We identified regions of bimodality
and computed all Fourier transforms and corresponding maxima (Fig. 3A,B,E).

Default values for all meanfield simulations were as follows.

Parameter Value
Box size 2× 2 m
Number of place cells 100× 100
Simulation time 30 min
Speed 25 cm/s
Peak firing rate a 30 Hz
Theta frequency ωθ 2π × 8 Hz
K 0
F0 0.0011 Hz
Window scaling W0 0.0011 Hz
Window negativity µ 1.025
Window zero ρ 23 ms
Place field size σ 10 cm

Spiking simulations
We simulated place field activity as 2500 independent inhomogeneous Poisson processes with densities

λn(t) ∝ exp

[
− (vt− cn)2

2σ2

]
[1 + cos (ωc (t− cn/v))]

4
,

were v denotes running speed, t is time, cn the place field center, σ specifies place field width, and ωc = 2π/Tc
is the oscillation frequency of the individual neurons. Place field centers were equally spaced across the 2×2 m
square arena. In all simulations we assumed a constant speed v = 25 cm/s. The oscillation period Tc of a cell
was width dependent to ensure a width independent phase range, 1/Tc = 1/Tθ + v

2R , with a theta period of

Tθ = 1/8 s and the field radius R = σ
√

2 ln(10).
The neuronal spiking and the running trajectory of the rat in a 2×2 m square arena was simulated with a

time resolution of 5 ms. In each time step the running direction was changed by random angle drawn from a
Gaussian distribution with standard deviation of 10◦. Angles that led to wall collision were not permitted.

The entorhinal activity was simulated by a Poisson process derived from a rate density E =
∑2500
n=1 JnHn,

where Hn was 0 or 1, depending on whether hippocampal cell n was spiking in the respective time bin or not.
The synaptic weights were initialized at time 0 from a Gaussian distribution with mean 0.025 and a standard

deviation 0.001. Pairwise STDP according to Eq. (1) was averaged over 2.5 s before the weight was updated.
As an STDP learning rate we used W0 = 0.0008 per spike pair. The non-linear saturation was parametrized by
K = 0 and F0 = 0.01 Hz. Negative weights were generally always clipped to zero.



Approximate equivalence to the Swift-Hohenberg partial differential equation

The integro-differential equation (6), which determines the structure formation process of the synaptic weight
vectors does not make explicit the non-negativity constraint on the weights, J(x) ≥ 0. Mathematically this
constraint can be dealt with by introducing an exponential recasting J(x) = exp[ψ(x)], and the resulting IDE
for ψ then reads

ψ̇ = J−1 J̇ =

∫
dξ Γ(ξ) [eψ(ξ+x) − eψ(x)] .

If we expand ψ up to fourth order in ξ = (ξ(1), ξ(2))T (assuming limited spatial extent of Γ) and the exponential
function up to linear order in ψ (assuming small amplitudes), we obtain

ψ̇(x) =

∫
dξ Γ(ξ) +

1

2!

∫
dξ Γ(ξ)

∑

i,j

ξ(i) ξ(j)∂ijψ(x)

+
1

4!

∫
dξ Γ(ξ)

∑

i,j,k,l

ξ(i) ξ(j) ξ(k) ξ(l)∂ijklψ(x)

because odd powers in ξ vanish owing to the radial symmetry of Γ.
Defining the kernel moments

Γmn :=
1

m!n!

∫

Ω

Γ

(√
(ξ(1))2 + (ξ(2))2

)
(ξ(1))n (ξ(2))m ,

the learning equation reduces to

ψ̇ = Γ00 + Γ20∆ψ + Γ40(∂4
1 + ∂4

2)ψ + Γ22∂
2
1∂

2
2ψ

since due to the radial symmetry, Γ20 = Γ02, Γ40 = Γ04. Radial symmetry of Γ also yields Γ22 = 2 Γ40 and thus
we end up at the linear dynamics

ψ̇ = Γ00 + Γ20∆ψ + Γ40∆2ψ

= Γ00 − Γ40

[
Γ2

20

4Γ40
−
(

∆ +
Γ20

2Γ40

)2
]
ψ .

Introducing the abbreviations ε = Γ2
02/(4Γ2

04) and k2
c = Γ02/(2Γ04), we rewrite the previous equation as

−1

Γ40
ψ̇ =

−Γ00

Γ40
+ [ε− (k2

c + ∆)2]ψ ,

which is known from the Swift-Hohenberg theory of pattern formation used to model Rayleigh-Bénard convec-
tion [37]. This theory also includes stripe and hexagonal pattern formation with the necessary conditions that
both ε and −1/Γ04 be positive. The resulting regions of structure formation correspond well to that of the
linear theory depicted in Figure 3, in particular the white solid line separating the homogeneous mode from the
regime of structure formation matches ε = 0. The wave number kc sets the grid spacing and also approximates
well the simulated spacings from Figure 2C (see Supplementary Figure 2).

For our model used in this Letter, we find the following explicit expression for the kernel moments,

Γmn =
aπ3/2cσm+n+3

v (n/2)!(m/2)!
(1 + αAmn + β Bmn) ,

with constants Amn := e−ζ
2

1F1

(
−m+n

2 , 1, ζ2
)
, Bmn := (m+ n+ 2) ζ e−ζ

2

1F1

(
−m+n

2 , 2, ζ2
)
, and ζ = πσ/R =

π/
√

2 ln(10) ≈ 1.46. The confluent hypergeometric functions of the first kind 1F1 reduce to polynomials of
order m+ n on ζ.

The constants c, α, β depend mostly on the learning window (see Section Mathematical Details below).

Mathematical Details

The convolution kernel Γ from eq. (7) involves three functionals from eqs. (8), which, for the particular
choice of learning window from eq. (9), read

c[W ] =
√

2σaW0
2σ2(1− µ2) + v2ρ2µ2

(2σ2 + v2ρ2µ2)3/2
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Figure 2: Grid spacing l as a function of σ. Grey dots as well as the red and green lines are copied from Figure 2C
of the main text. The orange line estimates the grid spacings using kc from the Swift-Hohenberg-type partial
differential equation given in the supplementary material above.

α[W ] = Q

(
1 +

4σ4ω2ρ2µ4

(2σ2(1− µ2) + v2ρ2µ2)(2σ2 + v2ρ2µ2)

)

β[W ] =
Qvσρ2ωµ2

(2σ2 + v2ρ2µ2)2

(
2σ2(1− 3µ2) + v2ρ2µ2 +

4σ4µ4(ω2ρ2 − 2)

2σ2(1− µ2) + v2ρ2µ2

)

with Q = 1
2 exp

(
− ω2σ2ρ2µ2

2σ2+v2ρ2µ2

)
.

The above quantities determine the Fourier transform of the kernel (below O(k))

Γ̂(k) = c

√
πσ2e−σ

2k2

2v/(aσ)

(
1 + α e−(σπR )2 I0

(
2π
σ2k

R

))

with I0 denoting the modified Bessel function of the first kind.
Since σ/R = 1/

√
2 ln(10) is a constant, the maximum of Γ̂(k), and hence structure formation, will be mostly

determined by α. Furthermore, since for physiological parameters and µ > 1, α almost entirely depends on
properties of the learning window W , the formation of hexagonal patterns crucially depends on W and only
little on the input correlations. This explains, why not all structures receiving place field activity may develop
grid cells, but only those that have the fitting STDP rule.
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A reality check

How well can CANs path-integrate?

Path integration is regarded as a landmark success of continuous at-
tractor models. However, how do these models fare when exploring
an environment? Burak and Fiete (2006) put to the test the original
Fuhs and Touretzky (2006) attractor model to evaluate the perfor-
mance of its path integration mechanism. They characterised the
deviations of the activity on a real open field trajectory with respect
to changes in the neural sheet. They found the tracking in the neural
sheet of the animal’s movement to accumulate errors quickly, destroy-
ing the hexagonal pattern in space for typically recorded running
times and lengths.

Figure 21: Path integration on CANs
is shown to be more accurate with periodic
boundary conditions (left) when compared
to aperiodic ones modulated by a decay
close to the edges (right). Modified with
permission from Burak and Fiete 2009.

In further work, Burak and Fiete (2009) modified slightly the orig-
inal model to show that it is possible to obtain accurate path inte-
gration for typical behavioural open field recordings. Their most
important modification is to consider an activity-based (or firing rate)
model instead of the original voltage-based model used by Fuhs and
Touretzky (2006). The inclusion of the velocity coupling inside the
rectifying non-linearity greatly improves the accuracy of path inte-
gration. This improvement is due to the intrinsic difference on how
inputs are integrated in the dynamics (Ermentrout and Terman 2010).
In the original model a slow time constant dominates the dynamics,
meaning that rapid changes in the input are not properly captured
and greatly contribute to integration errors. In comparison, the firing
rate model 7 actually integrates over a low-pass-filtered version of 7 The output of this model might be

better interpreted as a low-pass-filtered
version of the actual firing rate of the
cell.

the velocity coupling input, removing in this way the rapid changes
causing error accumulation, and otherwise has been shown to be
mathematically equivalent to the voltage-based alternative (Miller
and Fumarola 2012).

In addition, their connectivity profile is modelled after a difference
of Gaussians (a standard Mexican-hat profile) with an offset from
the cell’s centre. How well the attractor networks perform path inte-
gration is illustrated in Figure 21 for periodic and aperiodic-damped
boundary conditions.
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One evident shortcoming of the models are the strong constraints
imposed on the actual or effective connectivity among stellate cells
in dMEC. The mechanisms by which such a specific connectivity
profile is achieved must agree with the known anatomical and phys-
iological characteristics of the entorhinal-hippocampal loop. Fuhs
and Touretzky (2006) suggested that, similar to the visual system,
randomly oriented wave packets of activity would lead to such a
configuration via plastic changes. As in neocortex and the retina,
waves of activity have been reported in postnatal slices of EC, and
moreover topographically organized synchronous activity appears
for a transient period of time prior to eye opening in rodent pups
(Dawitz et al. 2017; Egorov and Draguhn 2013). These findings also
lend some support to the proposal by McNaughton et al. (2006) that
the effective connectivity in MEC has a toroidal topology. Illustrated
in Figure 22, such a configuration would be learned through Heb-
bian plasticity between topographically organized modules of cells
receiving direct instruction from a teaching layer. The idea borrows
from other neural systems exhibiting transient patterns of connec-
tivity or reallocation of cell populations during early development.
A specific population forming the teaching layer would presumably
display a hard-wired hexagonal pattern of activity, and exploration
of all phases by noise-induced drift would teach the desired toroidal
topology to the downstream population.

Figure 22: Learning a toroidal topology.
A transient population of hard-wired grid
cells act as a teaching layer for topograph-
ically organised modules of downstream
neurons. A toroidal connectivity config-
uration subsequently arises via Hebbian
learning. Modified with permission from
McNaughton et al. 2006.

Another way to exploit a periodic connectivity is to consider a
single bump of activity that repeats itself when traversing the envi-
ronment. Guanella, Kiper, and Verschure (2007) described a model
where the connectivity resembles a twisted torus to account for
hexagonality. Even though the arrangement has appealing properties
(for example requires few neurons for spatial encoding), the pattern
of activity would necessarily be perfectly regular, in contrast to actual
recorded data. In general, periodic connectivity assumptions can not
account for irregularities and defects in the observed patterns, such
as penta/hepta pairs and lattice distortions. As mentioned before,
it is possible to obtain attractor states without periodic connectivity
at the cost of less accurate path integration, and more importantly,
over-excitation close to the boundaries predicts a large population of
cells steadily firing all over the environment.

A second caveat concerns more realistic assumptions of MEC cell
populations. The effective Mexican-hat connectivity can be better
interpreted as an approximation of the interaction of excitatory and
inhibitory populations, reflecting a more realistic view of neurons in
MEC. Indeed, layer II stellate cells are excitatory and exhibit no direct
connections among them, but rather interact strongly only through
inhibitory interneurons, with several stellate cells projecting to one
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interneuron which in turn projects to many stellate cells (Couey et
al. 2013; Pastoll et al. 2013). In a more realistic model, Widloski and
Fiete (2014) investigate the sudden appearance of attractor states in
an excitatory-inhibitory (E-I) network. The connectivity between E-
I and I-I populations is learned through spatial exploration of the
environment using information from cells tuned to spatial and self-
motion cues. The learning is gradually implemented with asymmetric
spike-timing dependent plasticity rules acting on stochastic spiking
activity to reflect more sensible learning times and dynamics. The
quality of path integration for a mature network is shown in Figure
23.

Figure 23: Integration on a E-I model.
Population weights are learned via STDP
through teaching from existing spatially
modulated cells. The pattern is later
maintained by the MEC population alone.
Modified with permission from Widloski
and Fiete 2014.

Grid cells also exhibit a marked temporal structure of spiking
activity, including strong theta modulation and phase precession
(or locking) phenomena. To reconcile these observations with the
attractor idea, Navratilova et al. (2012) considered a two-network
model with realistic current dynamics. One network, the conjunctive
cell layer, receives strong theta input and self-motion information
(head-direction and speed signals), and it is tasked with translating
the pattern of activity for path integration. The conjunctive layer is
coupled to a grid cell layer implementing simple after-spike dynam-
ics. Both networks follow leaky-integrate-and-fire dynamics with a
variety of physiological properties of MEC stellate cells including
after-depolarisation and medium after-hyperpolarisation. In addition,
conductance changes were taken into account for AMPA and NMDA
synapses whose time constants control not only temporal phenomena
but also predict the increasing grid spacing in the dorso-ventral axis.
However, the requirement that stellate cells communicate through
excitatory synapses is not supported experimentally. To tackle this,
Pastoll et al. (2013) modelled a twisted torus attractor network with
excitatory and inhibitory populations and AMPA and NMDA con-
ductances to show that the model is still compatible with theta modu-
lation and additional theta-nested gamma oscillations. In their model,
feedback inhibition is key for the coexistence of temporal and spatial
structures.

What else can we learn from OIMs?

The temporal structure of grid cell firing can be more suitably ad-
dressed in the framework of oscillatory interference models. Strong
theta modulation and phase precession are key components on top
of which the model is built upon. By construction the model excels
in simplicity and interpretability of its parameters, while at the same
time addressing the most relevant temporal and spatial properties of
grid cell activity. However, the model has met with some criticism
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regarding feasible biological implementations of its rather abstract
description.

One early critique concerns difficulties with different dendritic
membrane potential oscillators coexisting together for meaningful
lapses of time (Remme, Lengyel, and Gutkin 2009). Remme, Lengyel,
and Gutkin (2010) showed that independent dendritic and somatic
oscillators in a realistic biophysical model tend to synchronize (phase-
lock) in time-scales below the second. The grid pattern would then
disappear unless a phase resetting mechanism (sensory cues) is in
place to correct path integration in the order of hundreds of millisec-
onds. The other VCO implementation, namely external spiking input,
would predict cells with stripe-like firing patterns, which have not
been (convincingly) recorded anywhere in the hippocampal forma-
tion (but see Krupic, Burgess, and O’Keefe 2012).

Figure 24: Coupled VCO model. Top:
Several oscillator networks transform
velocity input into a phase code in a
preferred direction (periodic bands of
activity). One of the networks is not
modulated by velocity and sets the baseline
frequency. All networks are internally
coupled but are otherwise independent from
each other. Bottom: Spiking activity from
three different networks (black, blue, and
green) going in and out of phase. When
they are close to coincidence the summed
activity drives the grid cell to fire (red dots
in bottom trace). Modified with permission
from Giocomo, Moser, and Moser 2011.

The second main critique is concerned with noise. In contrast to
perfect sinusoidal oscillations, in vitro slice recordings of entorhinal
cells show that subthreshold membrane potential oscillations have a
substantial degree of noise and a relatively wide frequency spectrum
(in the theta band). Welinder, Burak, and Fiete (2008) pointed out
that the phase of theta tends to be very irregular, with its temporal
cross-correlation decaying after only a few cycles. Together with
the additional effect of neuronal noise, both deviations from perfect
oscillators drift the activity from its expected location in just a few
seconds, shifting the pattern to the detriment of hexagonality (Zilli
et al. 2009).

Zilli and Hasselmo (2010) suggest the previous critiques can be
dealt with by moving away from single neuron models. They demon-
strate how several independent networks are able to implement ro-
bust VCOs under realistic levels of noise (see Figure 24). All Neurons
in a given network are connected to each other (total coupling), thus
they tend to synchronize their activity in response to common in-
put while maintaining stable firing even for high levels of noise. All
networks, however, act independently and do not interact among
themselves. One of the networks does not receive sensory input and
plays the role of the baseline oscillator network. All other networks
receive velocity input and thus implement different VCOs with par-
ticular preferred directions. As before, networks differing by sixty
degrees add up in the target cell making the hexagonal pattern.

Other modelling attempts have a different take on the oscillatory
interference mechanism. Hasselmo (2008) showed that the model
can be implemented by a population of neurons exhibiting persisting
firing. Some Pyramidal cells in layers III and V of entorhinal cor-
tex respond to a stimulus by a continuous spiking activity after the
stimulus is turned off (Egorov et al. 2002). Appropriate modulation
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by head direction cells and phase resetting mechanisms enable the
population to combine into a phase encoding system of spatial in-
formation. However, given the variability in spiking frequency, the
model suffers the same sensitivity to noise that affects earlier formu-
lations of the model. Another interesting approach proposes grid
fields of larger spacing to be the result of Moirè interference patterns.
Blair, Welday, and Zhang (2007) argue in favour of the existence of a
fundamental grid cell of very small spacing (coined "Theta cell") of
an undetermined origin (suggested to integrate strong theta inputs
from medial septum). Even if undetectable, a combination of two
Theta cells differing only by a rotation or scaling of one of the pat-
terns gives rise to the observed grid cell firing rate maps of arbitrary
size and spacing via emerging Moirè interference patterns.

Figure 25: Hybrid OI/CAN model.
Left: model set-up. VCOs connect via
inhibitory projections to a population
of grid cells recurrently connected via
interneurons. VCOs are arranged in
independent ring attractors, with neurons
in each ring sharing the same preferred
direction but differing by a particular
phase (warmer colour indicates higher
activity). Grid cells inhibit each other
with a strength profile that periodically
follows grid field separation (simulated
with a twisted torus topology). Right:
spiking activity and firing rate maps of
an example grid cell (top) and an example
interneuron (bottom). Similar to CANs,
interneurons are predicted to exhibit
hexagonal periodicity. Modified with
permission from Bush and Burgess 2014.

What are experiments saying?

Continuous attractor and oscillatory interference models offer com-
plementary descriptions of different aspects of grid cell activity. On
the one hand CANs are able to answer questions regarding common
properties found in a population of grid cells. On the other hand
OIMs naturally give rise to the rhythmic temporal structure observed
at the single cell level. While oscillatory activity can coexist within
a CAN framework (see discussion above and Pastoll et al. 2013;
Navratilova et al. 2012), the converse alternative has been only par-
tially explored. Bush and Burgess (2014) examine the limitations of
an OIM with additional CAN-like inhibitory connectivity (see Fig-
ure 25 for details on the model). Their investigations are focused on
the effect of the additional connectivity on the quality of subthreshold
membrane potential oscillations. In particular, they found the popu-
lation entrainment offers spatial stability, robustness to noise, reduces
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previously strong theta activity, and gives rise to ramp-like depo-
larization profiles, better matching intracellular in vivo recordings
(Schmidt-Hieber and Häusser 2013).

The main difference with a pure CAN model is that path integra-
tion is still performed through a phase code, and band-like VCO
inputs must still interfere with a sixty degree separation among
them. Can this mechanism coexist with a Turing-instability pattern
formation process characteristic of CANs?, and does replacing the
translation of the bump of activity in the neural sheet in favour of a
phase code mechanism of path integration still retain the common
population properties that are the signature of CANs?. These ques-
tions remain unanswered. In fact, on the absence of VCO inputs,
the remaining inhibitory connectivity can support grid cell activity
provided the network receives a tonic excitatory input. However,
sustained hexagonal activity is accomplished by means of an in-
trinsic connectivity that is endowed with a twisted torus topology.
This casts some doubt on the coexistence question, since sustaining
a single bump of activity is in nature different than the emergence of
hexagonality via Turing patterning (unless the twisted torus topology
assumption is not a conceptual place-holder but an actual prediction
of the physical connectivity of the network). Similarly, removing the
concerted translation of activity in the neural sheet results in a lack
of coherent activity at the population level, a feature supported by
evidence of low dimensional attractors in experimental recordings
(Yoon et al. 2013).

Figure 26: Turing defects in grid cells.
Examples of firing rates (left column, peak
rate on top) and cropped autocorrelograms
(right column, gridscore on top) for
two cells in dMEC (rows) showing the
appearance of lattice defects. Top row shows
the splitting of the centre filed giving rise
to a hepta/penta defect, while bottom row
shows a penta defect. These defects are the
signature of a Turing pattern formation
process. Modified with permission from
Krupic, Burgess, and O’Keefe 2012;
selected examples from supplementary
figure 2.

Robust variants of the oscillatory interference model require the
existence of cells with periodic band-like fields. Krupic, Burgess, and
O’Keefe (2012) recorded 351 cells from layers II and III of MEC and
adjacent PaS, finding about a quarter of cells passed the standard
arbitrary cut-off for grid cells. However, an additional half exhibited
spatially stable multi-peaked fields, with strong biased preferences
found in their two-dimensional Fourier components. The larger class
of spatially periodic cells (SPCs) suggest it is improbable that grid
cells’ spatial maps are the result of precise combinations of band-like
inputs, which would only produce perfect lattice arrangements 8.8 A combination of a large number of

band cells can in principle reproduce
any given spatial map since they can
serve as fundamental components of a
Fourier-like decomposition. It would
however require a large number of
(unobserved) band cells spanning a
wide spectrum of periodicities and
orientations.

On the contrary, the observed variety of multi-peaked maps
lends its support to a two-dimensional pattern formation process.
A good candidate is field self-organisation via Turing instabilities.
The mechanism is currently exploited by continuous attractors and
feed-forward models, albeit in very different ways. Independently of
the model used, a hint that the outcome results from a Turing process
are the typical pattern formation defects observed in the firing rate
maps since the discovery of grid cells. Figure 26 shows the signature
defects of Turing instabilities, namely splitting fields, penta/hepta
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pairings, and a general proclivity of fields to appear close to the
boundaries. A further clue is the influence on the patterns by partic-
ular shapes of the exploration boundary. In general, hexagonal fields
tend to align in certain directions with respect to walls and local cues
depending on the level of symmetry (or polarization) of the environ-
ment enclosure (Krupic et al. 2015; Stensola et al. 2015). Deformations
of the pattern, including local changes of spacing, anisotropic sheer-
ing, and major distortions due to field dislocations all point towards
boundary-induced defects of the Turing type. Defects arise in general
from finite-size networks, noise in the centre-surround mechanism,
the manner in which activity in the network is stabilised, and bound-
ary effects.

Even though continuous attractor models implement the instabil-
ity, they do so assuming an approximate Mexican-hat connectivity.
An important consequence is that pattern formation happens on an
abstract neural sheet, whose enclosure 9 would have a real impact on

9 The actual geometry of the enclosure
depends on the exact neuronal con-
nectivity and can in principle have any
arbitrary shape. However, for local
networks with large number of neurons
the defects are more strongly visible
near the boundary.

deformations of the pattern. More significant is the fact that CANs by
themselves can not account for distortions of the hexagonal pattern
due to physical environmental boundaries, a result that comes out
naturally in feed-forward models.

An alternative: Why feed-forward models?

The entire class of feed-forward models rely on developing a Tur-
ing instability via a lateral inhibition mechanism (e.g. Mexican-hat
dynamics). The early work by Kropff and Treves (2008) achieves a
Mexican-hat temporal filtering of spatially modulated input by means
of intermediate fatigue dynamics 10, which would implicitly describe

10 In the Kropff and Treves model, the
update rules 3 and 4 for the fatigue
variables can be rewritten as first-order
differential equations

(1/b2) ṙinact = h(t)− rinact

(1/b1) ṙact = h(t)− rinact − ract ,

with simple solutions given by

rinact = b2e−b2t Θ(t) ∗ h(t)

ract =
b1

b1 − b2

(
b1e−b1t − b2e−b2t

)
Θ(t) ∗ h,

with the assumption that the input is
turned on at time zero (h(t<0)=0). In
their investigations, the ratio between
the time constants b2 = b1/3 is kept
constant, such that the temporal filter

ract =
3
2

b1e−b1t
(

1− 1
3

e
2
3 b1 t

)
Θ(t) ∗ h,

depends only on a single free param-
eter. The previous equation has the
form ract = K ∗ h, where the kernel

Time (a.u.)

Kernel 

0

has a Mexican-hat shape as depicted
for different values of b1 (normalised
amplitude). Since the inputs are tempo-
rally uncorrelated, the filter translates
the dynamics into the learning of
synaptic weights J = Γ ∗ J, with Γ a
Mexican-hat function in space.

cell adaptation. D’Albis and Kempter (2017) take this temporal filter-
ing as their starting assumption to develop a mathematical analysis of
the model, which was lacking in its original description.

The adaptation model requires the temporal filter kernel to have
a Mexican-hat shape, otherwise pattern formation will not occur. It
is therefore essential that actual firing rate adaptation, as recorded in
experiments, can be modelled with a centre-surround filter. In exper-
iments in vitro, when a constant input of a certain magnitude h = h0

is suddenly turned on, the receiving cell almost instantaneously in-
creases its firing rate from a previous steady baseline firing rate r0

by a finite amount and undergoes firing rate adaptation immediately
after, a process by which cell activity slowly decays and in some cases
settle into a steady firing frequency in general larger than r0. In con-
trast, the model describes a different picture. After the input onset,
the cell increases its firing rate following the integral of the kernel
h0
∫ t

0 K, which steadily grows until it reaches its zero and thereafter
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decreases until it relaxes back to the starting value r0. Typical mea-
surements for the spacing of the hexagonal map and the natural
exploratory speed of the animal put the decay time constant 1/b1 at
around 100 ms and thus the zero crossing at about 150 ms (the actual
values used in the models). In vitro recordings of EC layers II and
III fit logarithmic and exponential adaptation time constants in that
approximate range in response to strong step current inputs (Alonso
and Klink 1993; Yoshida, Jochems, and Hasselmo 2013). However,
firing frequency invariable and monotonically decreases in time as a
result of the adaptation process. In particular, no increase is observed
in time spans larger than the adaptation constants (e.g. 150 ms), with
the initial rapid growth limited to undetectable ranges less than an
order of magnitude below 11.

11 There might however be an adap-
tation mechanism in vivo absent in
in vitro recordings. No hints of such
adaptation are apparent in the few in
vivo experiments, but further system-
atic investigations are needed.

Figure 27: Spatial Mexican-hats in feed-
forward models. Hebbian plasticity must
in the end implement a spatially tuned
centre-surround learning rule. This can
be accomplished by an activity-dependent
transition from LTD to LTP (top), or alter-
natively by intermediate subpopulations
of inhibitory and excitatory neurons, ei-
ther in combination with novelty-induced
activity modulation (middle-top) or by
assuming broader tuning curves for the
inhibitory interneurons (middle-bottom).
As a straightforward way to analyse these
models one can set the inputs from the
start to have centre-surround spatial tun-
ing (bottom). Modified with permission
from Stepanyuk 2015; Castro and Aguiar
2014; Weber and Sprekeler 2018; Dordek
et al. 2016.

Other feed-forward models take a different approach to come up
with centre-surround dynamics (see Figure 27). Stepanyuk (2015)
starts from the assumption that there exists a consistent transition
from LTD at low pre- and postsynaptic firing rates to LTP at higher
rates in projections from hippocampus to EC (see Figure 27 top).
Since place cells code space via their firing rates, this transition in-
duces positive plastic changes close to the centre of the place field,
and negatives changes otherwise (for fixed postsynaptic activity).
Standard associative Hebbian plasticity thus translates the changes
into a spatial Mexican-hat learning rule for the incoming weights.
The model must be contrasted with realistic hippocampal data, where
high firing rate variability at the population level and place field
heterogeneity is commonplace. To preserve similar spatial regions
undergoing different plastic changes, the presumed transition in plas-
ticity needs to be established from cell to cell and depending in the
overall cell activity (under an unspecified mechanism).

Castro and Aguiar (2014) take a step further and introduce a sub-
population of intermediate inhibitory neurons, such that place cells
now communicate via excitatory and inhibitory pathways. An ad-
ditional gain modulation mechanism is introduced, which emulates
the observed expansion of place field size during exploration of novel
environments. Together, the network architecture and activity mod-
ulation, transform a Hebbian mechanism into a spatially dependent
centre-surround learning rule, with a centred disk of potentiation,
followed by a ring of depression and a further ring of potentiation
(equivalent to the action of a Mexican-hat in a pattern formation
context; see Figure 27 middle-top). The learning rule suffers from
the same downsides as the model above, although at least the sug-
gested network architecture has been shown to exist between deep
and superficial layers of EC. The prediction, however, that there exists
interneurons with ring-like spatial firing (no firing in the centre) has
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not been confirmed.
Weber and Sprekeler (2018) propose a similar solution with a sim-

pler assumption. In their model, cells in the hippocampal formation
receive input from subpopulations of spatially tuned excitatory and
inhibitory cells. The major assumption is to consider the inhibitory
population to have a broader spatial tuning compared to the exci-
tatory cells. The combined effect turns simple Hebbian plasticity
into the desired centre-surround learning kernel. The assumption
requires however inputs to be spatially stable during the learning
process. Even though interneurons in superficial layers of EC tend to
be broadly tuned, they are highly interconnected to the grid cell pop-
ulation. As a result, it is unlikely they remain stable during periods
of learning, given the dynamical interactions with the still developing
grid cell patterns 12. 12 The possibility that stronger stabiliz-

ing inputs dominate interneuron firing
is a real one. Strong projections from
deeper layers of EC as well as subcor-
tical inputs such as septoentorhinal
projections have been shown to target
interneurons directly.

As a final example in the class, Dordek et al. (2016) examine the
model from the perspective of principal component analysis. To up-
date the weights, they use a simple self-normalizing Hebbian learn-
ing rule (Oja). In the absence of any additional constraints they find
that the inputs themselves must be of the centre-surround type for
the network to result in non-trivial spatial patterns. Regular, positive-
only Gaussian-like firing rate inputs results in unremarkable spread
activity. Furthermore, they are the first to explicitly remark on the
effect of an essential constraint all models have used implicitly or just
mentioned. A non-negativity constraint on the weights is indispens-
able for hexagonal patterns to be selected. The otherwise selected
eigenmode reflects the symmetry given by the specific geometry of
the enclosure, in their case they obtain a square lattice in a square
enclosure. Even though a rather abstract description 13, the analy- 13 An alternative to negative firing rates

is also proposed. Before feeding the
inputs to the downstream cell, the
activity is dynamically normalized by
subtracting the (temporal) mean activ-
ity of each input cell. Biologically, this
could be accomplished by some form
of activity-dependent cell adaptation.

sis makes explicit the need for centre-surround effective inputs and
keeping the dynamics bounded from below.

Evidence for feed-forward models

Despite these models’ drawbacks, the appearance of typical Turing
defects in grid cell spatial maps and additional experimental find-
ings weight nonetheless in favour of feed-forward models. Bonnevie
et al. (2013) showed that hippocampal back-projections are essen-
tial for stable grid cell firing. Muscimol inactivation of hippocampus
completely silences spatial place cell activity 20 minutes after infu-
sion. Entorhinal grid cells lost hexagonality soon after while retaining
strong theta rhythms 14 (power dropped along with overall firing 14 A finding that poses additional

constraints on oscillatory interference
models.

rates).
Wills et al. (2010) and Langston et al. (2010) characterize the de-

velopmental timeline of spatial representation in the hippocampal
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formation. Already in their first exploration of the environment after
leaving the nest (around post-natal day 14), pups exhibit adultlike
head-direction cells in pre- and parasubiculum, while place cells in
area CA1 have close to adult levels of spatial information content,
and high degrees of theta modulation and phase precession, however
the number of place cells and the spatial stability of fields continue
to increase until it reaches adult levels after around P30. In contrast,
grid cells spatial maps show the slowest developmental times. Al-
ready from the outset MEC cells present rudimentary multipeak dis-
tributed activity, however only after around weaning age (P21) do the
patterns improve in periodicity and spatial stability accompanied by
and increasing number of theta modulated neurons and synchrony
within the network. A more sudden change at around P28-30 brings
the population of MEC cells close to adult levels. Importantly, devel-
opmental changes are correlated with age and not amount of spatial
exploration, suggesting a degree of instructive hardwiring in the net-
work that sets up the spatial representation system. Nonetheless, a
baseline amount of exploration is unavoidable given the nature of the
measurements, which could in fact be necessary for the development
of functional properties in the system.

Figure 28: Development of the grid
cell pattern. Each row tracks a single
cell over the span of one day until the first
appearance of the hexagonal pattern. The
first two cells were recorded on P19(20),
cells 3 and 4 on P21(22), and cells 5 and
6 on P22(23) and P23(24) respectively.
On each day two consecutive trials were
recorded. Modified with permission from
Wills, Barry, and Cacucci 2012.

Wills, Barry, and Cacucci (2012) expand on these findings to show
that the appearance of the hexagonal pattern is rather abrupt and
is accompanied by adult-like spatial stability and to some extent
greater spatial information. What is more, they identify six grid cells
recorded over a day before robust hexagonality was first present. Fig-
ure 28 demonstrates once again the typical developmental line of a
Turing pattern formation process. These recorded examples show
how the initial spread of activity cluster into fields, and the subse-
quent rearrangement into a hexagonal lattice. Spatial exploration
seems to be a necessary requisite to increase hexagonality, and times
of the order of the duration of typical trials are in general enough to
correct the pattern.

Even though individual grid cells develop hexagonal maps at dif-
ferent times, a significant fraction starts showing a more symmetrical
arrangement around weaning age (post-natal day 21). Muessig et
al. (2015) report that the sudden appearance of hexagonal patterns
in MEC coincides with a change in place cell accuracy in area CA1.
More precisely, CA1 spatial maps increase in stability and spatial
information, while there is an overall shift in population encoding,
from a biased distribution over-representing the boundaries to a more
evenly spread representation of the enclosure. They hypothesize that
recently developed hexagonal activity stabilizes CA1 spatial maps at
the centre of the enclosure via intermediate projections to DG and
CA3. While there is certainly a visible effect of MEC in hippocam-
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pal areas, it is also worthwhile to consider the role of contributions
during development in the reverse direction.

Donato et al. (2017) characterize the maturation timeline of cells
in the hippocampal formation of mice. Maturation levels are associ-
ated with a measure of dendritic growth and stabilization of synaptic
connectivity into a local network. Figure 29 shows the maturation
timelines of principal neurons, interneurons, and synaptic density
in different regions of the entorhinal-hippocampal network. In all
cases the MEC-L2 subnetwork shows the first signs of adult levels of
development. Stellate cells of MEC-L2 reach maturity as early as P14

(initial exploration age), and are shown to drive maturation of the
whole circuit in an order resembling the flow of information among
subnetworks. Notwithstanding, grid cells spatial maps are the latest
to robustly appear in adult levels around P30. How can we recon-
cile the developmental timecourse of the network with theoretical
descriptions of the emergence of hexagonality in grid cells?

Figure 29: Maturation timecourse of
the entorhino-hippocampal circuit. The
figure shows different fractional measures
of maturity normalized to adult levels
across all subnetworks during post-natal
development. Left: overall fraction of
mature cells (not expressing doublecortin).
Middle: fraction of mature fast-spiking
inhibitory cells (expressing parvalbumin).
Right: density of synaptic punta in each
local neuropil volume. Modified with
permission from Donato et al. 2017.

Inhibitory subpopulations in MEC-L2 and CA3 are close to adult-
hood around weaning age, presumably responsible for the first traces
of periodicity and synchronization in grid cells, and the shift to a
more evenly distributed population coverage of spatial representation
in area CA1. Despite an almost mature MEC-L2 network, the most
visible improvement of hexagonality at the population level coincides
with an abrupt increase on synaptic density in MEC-L5, which to-
gether with higher fractions close to adulthood of MEC-L5 neurons,
convey rich spatial information coming from now mature cells in
CA1 and SUB into pyramidal and stellate cell populations in MEC-L2.

Altogether, the experimental evidence suggests a prominent role of
feedback hippocampal pathways in setting robust hexagonal patterns.
Yet, the incoming rich spatially modulated input does not tell a com-
plete story. The underlying modulation by oscillatory rhythms (e.g.
Theta) turns out to play an equally prominent role.
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What our model brings to the table

Our model belongs to the general class of feed-forward models
(Monsalve-Mercado and Leibold 2017). However, it stands out from
all other models in that precise spike-timing relationships modulated
by local rhythms bring about the Turing pattern formation process. In
our model, a large ensemble of phase precessing spatially modulated
inputs projects to a single entorhinal cell, whose synaptic connectivity
is then set through spike-timing dependent plasticity. The learning
window serves as a band-pass filter of the correlations among the
input, with its shape being largely irrelevant for the emergence of
hexagonality.

Figure 30: Lidocaine inactivation of
septal input. Hexagonality is severely
affected shortly after inactivation of medial
septum input (top). Other spatially rich
cells are largely unaltered by the inactiva-
tion, even though rhythmic organization
is disrupted (middle; spectrum of auto-
correlation with blue:before, red:during,
green:after). In general, a network-wide
drop in theta power is observed all through
the hippocampal formation (bottom).
Modified with permission from Koenig
et al. 2011.

An ideal test of the model, which would in addition set it apart
from other feed-forward models, would be to disrupt hippocampal
spike-timing relationships, as orchestrated by the network oscillatory
rhythms, while at the same time keeping their rich spatial infor-
mation intact. Brandon et al. (2011) and Koenig et al. (2011) phar-
macologically inactivated medial septum input to the hippocampal
formation (see Figure 30). As a result, temporal organization within
subnetworks is disrupted as evidenced by a drop in theta power in
the local field potential and spike-train correlations, as well as a de-
crease in the quality of phase precession within MEC. Behavioural
recordings show that during inactivation of MS most spatially mod-
ulated cells are functionally spared, with similar levels of spatial
information before and after inactivation took place, including head
direction, border, and spatially rich non-grid cells in MEC, and place
cells in CA1 and CA3. Surprisingly, only grid cells’ hexagonal pat-
terns are affected by the loss of temporal coordination in population
spiking activity, momentary losing hexagonality while still retaining
strong spatial modulation. The experiments are far from being the
ideal test for the model, on the one hand substantial theta power and
phase precession remain after inactivation, although the observed
significant drop could account for the lost of hexagonality. On the
other hand, a strong excitatory input to the MEC and hippocampus
has been suppressed (its major inhibitory projection targets mostly
inhibitory interneurons in MEC), as evident by the overall decay in
activity. In any case, the results highlight the importance of oscilla-
tory activity in maintaining grid cells’ hexagonality, in addition to a
wealth of experimental reports linking the cells’ temporal and spatial
responses.

The main assumption of our model relies on the existence of a
particular relationship between place cells’ temporal and spatial ac-
tivity on the population level. In a nutshell, cells whose place fields
are close together are positively correlated in the theta band, while
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the contrary is true for cells whose fields are further apart. It is nei-
ther a trivial statement nor has it been reported in the literature so
far (but see Figure 32). We have mathematically derived this relation-
ship taking the well-established phase precession phenomenon as our
starting point. Our work points towards two important conjectures.
First, in an open field exploratory task, and contrary to a linear track
set-up, the spike-time cross-correlations of any two cells should be
approximately symmetric for time lags within theta timescales. As
a consequence, the oscillatory component of the cross-correlation
(a band-pass filter around theta) should have a phase close to 0 or
180 degrees, thus respectively making the cells correlated or anti-
correlated in the theta band. Second, pair cells belonging to the first
category (positively correlated) are predicted to have place fields
with a high degree of overlap (close together), while pairs in the
second category (negatively correlated) would have lower -but still
substantial- overlap between fields.

Regardless of the underlying mechanism responsible for establish-
ing the relationship, it is possible to confirm directly from recorded
hippocampal data whether our predictions have any degree of valid-
ity.

We examined a small set of simultaneously recorded hippocam-
pal CA1 place cells (see Figure 31 for details). With a simple analy-
sis, we found a propensity for correlation phases to be distributed
around 0 and 180 degrees, supporting the claim that pair cells cross-
correlations are prone to high extents of symmetry. A proxy measure
for the overlap between place fields furthermore reveals a trend link-
ing the quality of the correlation to the fields’ overlap: The higher the
overlap, the strongest the tendency for pairs of cells to be positively
correlated in the theta band.

These results distinctly hint towards our model assumptions be-
ing plausible. However, the available data is insufficient to make a
stronger definitive statement. For once, given that it is control data,
the experiment was not optimally designed to confirm our predic-

Figure 31: Phase correlations in the
theta band. Place cell recordings in a 1m
diameter circular arena (control data from
Schlesiger et al. 2015, left: spikes from two
different cells) confirm that in the open
field case the phases of pair-wise cross-
correlations are clustered around 0 and 180
degrees (centre: phase histogram). Further
analysis reveals a tendency for cells with
higher overlap to have higher correlation in
the theta band (right). The data includes
18 simultaneously recorded CA1 place
cells. Recording sessions comprise six
consecutive 15-20 minutes trials (with
breaks in between) in a free foraging task.
We then computed the cross-correlation
of spike trains, filtered the signal for a
range within 7-9 Hz, and obtained the
phase of the oscillation from the Hilbert
transform. A measure for the overlap was
obtained from the logarithm of the interior
product of place fields. Here, a place field
was taken as the 2D histogram of the
spike distribution with a 4 cm binning
(no additional smoothing nor occupancy
correction was performed).
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Figure 32: Phase correlations in the
theta band: the 1D case. During an
open-field foraging task in a circular arena,
133 place cells were recorded from dorsal
CA1 in six rats. The running path was
then split into short traces to separate
the data into runs going from one cell
to another and in the reverse direction.
For every cell pair, the spike-time cross-
correlogram results from averaging over
all traces, repeated for both categories or
direction (from cell A to B and from cell
B to A). Motivated by well-documented
results in linear track experiments, the
authors explore the relationship between the
shift in the peak of the cross-correlogram
and the amount of overlap of the two
cells place fields. They observe that as the
overlap diminishes the co-firing probability
decreases and the peak moves away from
zero. The direction of the shift follows
the cell who fired last, the outcome being
an approximate mirror quality when the
categories are compared to each other.
Modified with permission from Huxter
et al. 2008.

tions. For instance, many cells present poor inter-trial stability, one of
the major contributors to the variance of the distribution in the form
of extreme outliers. Restricting the analysis to a trial by trial examina-
tion increases the noise dramatically. In addition, low firing rates and
almost vanishing overlap of many pairs are other major downsides
of any dataset from which we would like to check our predictions.
In general, a higher number of simultaneously recorded place cells
in longer runs or more stable inter-trial performance would be nec-
essary for a more definitive statement about the soundness of the
assumptions.

Even though our predictions have not been explicitly investigated
in the literature, a suggestive indication can be found in the work of
Huxter et al. (2008) summarized in Figure 32. The path of the rats
in an open field foraging task is subdivided into traces belonging to
two categories. Traces that approximately cross the centres of two
place fields in one direction form the first category, with the reverse
orientation making up the second. The procedure is repeated for
every pair of place fields. Averaging the spike-time cross-correlations
over traces, trials, and rats, the position of the cross-correlogram peak
(CCGP) is then contrasted to a measure of the place fields’ overlap.
Their findings reproduce what is known for linear track experiments,
namely a shift on the cross-correlogram peak correlates with the
amount of overlap.

However, an additional inference can be made from their results.
Averaging (qualitatively by eye) the cross-correlograms correspond-
ing to one direction with its reverse, it is possible to realise a distinct
change in its phase for a critical amount of overlap. This is made
more evident in Figure 32 rightmost plot. Averaging the two lin-
ear behaviours for the peaks’ position results in an almost constant
(around 0 ms) dependence with amount of overlap. Naturally, a 0
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ms peak position is blind to the orientation of upward or downward
phases, which is resolved by considering that the oscillations’ period
is around 120 ms, meaning that the linear average between ± 60 to ±
30 ms will correspond to a 180 degree phase, while the range ± 30 to
0 ms adds up to a 0 degree phase. The transition can be read off from
the figure to happen at about 70% of their measure for the overlap.

Overall, the previous experimental reports strongly support the
main assumption of our model. An open question of the model re-
lates to the physiological mechanisms translating the input relation-
ship into a form useful for the emergence of the pattern. Even though
we raise the possibility that an appropriate learning window is able
to fulfil this function, other mechanisms could be responsible as well,
such as the resonant properties of stellate cells in EC layer II. In any
case, additional experiments are required to test the essential role of
input rhythms on the development of the firing patterns of grid cells.





Outlook

We propose an explanation for the emergence of grid cells firing
patterns. In contrast to current models, the key element responsible
for the emergence of hexagonality is already encoded in the firing
dynamics of the input, a population of place cells upstream in the
hippocampus. Just as other models, the basic physical process guid-
ing the pattern formation is of the Turing type. The relevance of what
particular mechanism induces the self-organisation of field maps is
evident when we look at what specific predictions are possible to be
confirmed via experiments. The idea is to find the simplest explana-
tion possible that agrees the most with the already abundant wealth
of experimental observations. Turing patterns are behind some of the
most successful models by that measure, from continuous attractor
networks to feed-forward models.

Recent experimental reports have brought forward attention to the
effect that the environment has on the pattern. One of the strongest
effects is the distortion of the pattern due to the degree of symmetry
of the recording enclosure. These sets apart models based on con-
tinuous attractors from feed-forward ones, since in the former an
abstract neural sheet receives the natural deformations caused by the
Turing pattern formation process. In contrast, feed-forward models
develop field regularity in physical space, in the sense that the self-
organisation process feels the influence of geometrical boundaries
and produces irregularities in the lattice such as penta/hepta defects,
ellipticity, and shearing, which are also observed in recordings.

Further work might help corroborate some of the models predic-
tions. An ideal test for the model involves perturbing the rhythmic
modulation of place cells in order to lower the level of synchronisa-
tion at the population level, all the while retaining their spatial selec-
tivity. It would be possible that such an experimental design might
affect grid cells only during early post-natal development, perhaps
with permanent impairment to the cells activity patterns. An alterna-
tive possibility suggests that also in adult animals a lower rhythmic
modulation of activity might distort the pattern depending on the
timescales of the learning mechanisms involved in their sustenance
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that could induce smooth transitions out of hexagonality.
Recent reports moreover emphasize on the role that inhibition

plays in shaping grid cell activity. Preliminary work considers a
model where grid cells are coupled via a randomly distributed in-
hibitory network. We show that inhibition has a strong effect on the
population patterns, implementing a self-correcting mechanism at
the network level. Within this framework, it is now possible to ex-
plore the influence that the boundaries of the enclosure have on the
geometrical properties of the hexagonal patterns. The self-correcting
Turing formation process develops in a way that decreases defects in
the patterns and increases hexagonality, a property that makes the
process much more robust against several varieties of noise in the
process. In addition, distortions due to the boundaries are natural
to the system, reproducing the observed alignment of the lattice ori-
entation to walls and local cues, and to some degree the ellipticity,
shearing, and dependence of the grid spacing close to the boundaries
(responsible for the reported barrel effect). Further analysis on the
role of inhibition could address most findings concerning population
properties of grid cell activity. Dynamical correlation, common geo-
metrical properties within modules, and in general most properties
related to population coherence, a hallmark of attractor networks,
might be explained by the MEC recurrent collaterals. Moreover, the
organisation of grid cells into discrete modules along the dorsoventral
axis could come as a result of developmental hardwiring into clus-
ters of inhibitory subnetworks or alternatively as a self-organisation
process in which an extended network of grid cells would break into
independent modules as a response to the gradient in size of the
hippocampal inputs along the axis (or most likely a combination of
both).

In our model, the shape of the learning window plays only a
minor role and thus such framework might not be at all required.
Plain activity-based Hebbian learning could be supplemented by
an additional biological mechanism. A good candidate is the well-
documented resonant sub-threshold dynamics of stellate cells in layer
II (or other resonant types found as well in deeper layers). Their res-
onant frequency, coming from particular channel dynamics, agrees
with the theta rhythms modulating the input activity of place cells,
and is furthermore consistent all the way along the dorsoventral
axis. Sub-threshold resonance might then take on the function of the
learning window, acting as a filter on the theta range that extracts
the Mexican-hat relation from the input correlations into the weight
update rule.

The biological mechanisms behind the emergence of hexagonality
are still under debate and awaiting experimental confirmation. How-
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ever, it is likely that the fundamental process underlying grid fields
regularity, largely supported by all recorded data so far, stands to be
a Turing instability. Besides the emergence of grid fields, our model
serves as a framework to study the dynamical spiking properties
of grid cells, which have been neglected for the most part in Turing
models.

Our work serves as a bridge between the temporal activity and
spatial receptive fields of cells in the hippocampal formation. It takes
one step forward towards the understanding of general coding prin-
ciples and information processing mechanisms used by higher brain
areas that deal with humans landmark ability to construct and work
with abstract concepts and thoughts.
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