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Abbreviations 

 

2D-BN-PAGE 2 dimensional blue native polyacrylamide gel electrophoresis 

ADP adenosine diphosphate 

A. thaliana Arabidopsis thaliana 

ATP adenosine triphosphate 

bp base pairs 

cDNA complementary deoxyribonucleic acid 

CES control by epistasy of synthesis 

cpm counts per minute 

cpPDC pyruvate dehydrogenase complex of the chloroplast 

Da  dalton 

DNA deoxyribonucleic acid 

HMW  high molecular weight 

kb kilobase(s) 

kDa kilo dalton 

knt kilonucleotide(s) 

mRNA messenger RNA 

NAD+(H) nicotinamide adenine dinucleotide (oxidized and reduced form) 

NADP+(H) Nicotinamide adenine dinucleotide phosphate (oxidized and reduced form) 

NEP nuclear encoded (plastidial) RNA-Polymerase 

nt nucleotide(s) 

(d)NTP (Deoxy) nuclesidetriphosphate 

OD optical Density 

OPR octotricopeptide repeat 

ORF open reading frame 

PAGE polyacrylamide gel electrophoresis 

PEP plastid encoded (plastidial) RNA-Polymerase 

Pi phosphate 

PPR pentatricopeptide repeat 

PSI photosystem I 

PSII photosystem II 

PDH Pyruvatdehydrogenase 

PDC pyruvate dehydrogenase complex 
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RBP RNA binding protein 

RNA ribonucleic acid 

RNase ribonuclease 

rrn operon ribosomal RNA operon 

rRNA ribosomal RNA 

sRNA small RNA 

T-DNA transfer DNA 

TPR tetratricopeptide repeat 

tRNA transfer RNA  

UTR untranslated region 

WT  wild type 

μ  Micro 
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Zusammenfassung 

Zahlreiche kernkodierte Proteine regulieren die Synthese und Assemblierung 

plastidärer Proteine und Proteinkomplexe. Hierbei dominieren besonders die Prozesse auf 

post-transkriptioneller Ebene zur Kontrolle der Genexpression. Das Ziel dieser Arbeit war es, 

zwei dieser Faktoren, RAP und DLA2, aus der höheren Pflanze Arabidopsis thaliana 

beziehungsweise der Grünalge Chlamydomonas reinhardtii näher zu analysieren.  

Das Protein RAP gehört zur Superfamilie der helical repeat Proteine, die einen 

Großteil der RNA-bindenden Faktoren in Pflanzenorganellen ausmachen. Interessanterweise 

ist RAP das einzige identifizierte OPR (octotricopeptide repeat) Protein in Arabidopsis, das 

bisher nur im Zusammenhang mit der Abwehr von pflanzlichen Pathogenen beschrieben 

wurde. Mit Hilfe einer T-DNA Insertionslinie wurde aufgedeckt, dass RAP eine Rolle in der 

korrekten und effizienten Prozessierung der 16S rRNA spielt. Während die Menge an reifer 

16S rRNA deutlich reduziert ist, kommt es zu einer Anreicherung von Vorläufern. Dieser 

Defekt führt zu einer verminderten Synthese und Anreicherung von chloroplastenkodierten 

Proteinen, die z.B. für Prozesse wie die Photosynthese wichtig sind.  Zusammenfassend kann 

man sagen, dass das einzige OPR Protein aus Arabidopsis eine wichtige Rolle in einem 

grundlegenden Prozess der Chloroplastenbiogenese spielt.  

Das moonlighting Enzym DLA2 ist zum einen eine aktive Untereinheit des plastidären 

Pyruvatdehydrogenase (PDH) Komplexes und zum anderen ein RNA-bindendes Protein, das 

in die Genexpression des Chloroplasten involviert ist. Diese zweite Funktion tritt nur unter 

mixotrophen Wachstumsbedingungen, das heißt in der Anwesenheit von Licht und Acetat, zu 

Tage. Hierfür wurde gezeigt, dass die PDH Komplex Untereinheiten E1 und E3 nicht Teil des 

DLA2-RNA Komplexes sind. Die Tatsache, dass sich das Verhältnis zwischen den 

Untereinheiten unter verschiedenen Wachstumsbedingungen nicht ändert, unterstützt die 

Vermutung, dass der PDH Komplex unter mixotrophen Wachstumsbedingungen zumindest 

teilweise disassembliert und somit DLA2 für seine zweite Funktion freigibt. 

Bemerkenswerterweise ist die Bindung von E3 und der RNA an DLA2 kompetitiv. Eine 

Analyse des Acetyloms von C. reinhardtii offenbarte, dass die Acetylierung eines Lysines in 

der putativen RNA-Binderegion von DLA2 unter mixotrophen Bedingungen hochreguliert ist. 

Diese Erkenntnisse unterstützen die Hypothese, dass die zwei Funktionen von DLA2 

miteinander konkurrieren und möglicherweise durch eine post-translationale Modifikation 

reguliert werden. Abschließend kann man sagen, dass die Funktion zweier kernkodierter 



 Zusammenfassung  

6 

 

  

Proteine, die an der Synthese von plastidären Proteinen beteiligt sind, genauer untersucht 

wurde und somit dazu beiträgt das komplexe System der Regulation der Genexpression in 

Chloroplasten besser zu verstehen.  
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Summary 

Synthesis and assembly of chloroplast proteins and protein complexes are mainly 

regulated by nucleus-encoded factors which act on various steps of gene expression including 

mRNA processing, splicing, stabilization, and translation initiation. The present study was 

aimed to analyze two such factors, RAP and DLA2, in the higher plant Arabidopsis thaliana 

and the green algae Chlamydomonas reinhardtii, respectively.  

The protein RAP belongs to the superfamily of helical repeat proteins, which account 

for the majority of RNA-binding factors in plant organelles. To be more precise, RAP is the 

only identified OPR (octotricopeptide repeat) protein in A. thaliana, which has previously 

been described to be involved in plant pathogen defense. With the help of a T-DNA 

knockout-line a function of RAP in the correct and efficient processing of the 5’ leader of the 

16S rRNA was uncovered. The level of mature 16S rRNA is severely decreased, while 

precursors accumulate. This defect led in turn to a reduced synthesis and accumulation of 

chloroplast-encoded proteins. In summary, our data suggest an important role of the single 

OPR protein in Arabidopsis in a basic process in chloroplast biogenesis. 

It was previously reported that the moonlighting enzyme DLA2 functions as a subunit 

of the chloroplast pyruvate dehydrogenase complex (PDC) as well as an RNA-binding protein 

involved in chloroplast gene expression. Its second function occurs only under mixotrophic 

growth conditions, i.e. in the presence of light and acetate.  Here, it was shown that the 

cpPDC subunits E1 and E3 are not part of the DLA2-RNA complex. Further results, revealing 

no change in ratio between the subunits under different growth conditions, support the idea 

that under mixotrophic growth conditions the cpPDC is at least partially disassembled, thus 

releasing DLA2 for its second function. Remarkably, the psbA mRNA and the E3 protein bind 

to DLA in a competitive fashion. Moreover, analysis of the lysine acetylome revealed that the 

acetylation of a lysine residue within the proposed RNA-binding is upregulated under 

mixotrophic conditions. These findings support the hypothesis that the two functions of 

DLA2 are carried out in a competitive way regulated possibly by a post-translational 

modification.  

In conclusion, the function of two nuclear-encoded factors involved in plastid protein 

synthesis was uncovered in more detail, helping to understand the complex system of 

regulation of gene expression in the chloroplast.  
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1 Introduction 

1.1 Origin of chloroplasts 

The uptake of a cyanobacteria-like prokaryote by a eukaryotic host cell about 1.5 

billion years ago was the first step towards the development of the chloroplast as plant 

organelle. This event is called primary endosymbiosis. Prior to this, the same host cell had 

already taken up an α-proteobacterium-like prokaryote that led to the development of 

mitochondria. Today it is thought that the three main autotrophic lineages of glaucophytes, 

green algae and read algae emerged from one single endosymbiotic event. The photosynthetic 

cyanobacteria-like endosymbiont is therefore considered to be the common ancestor of all 

plastids (reviewed in Gould et al., 2008; McFadden and van Dooren, 2004). 

Over time this endosymbiont evolved into an organelle. Its functions depend 

completely on the host cell, since it is not self-sufficient any longer. Most of the original 

bacterial genes were transferred to the nucleus of the host cell or even entirely lost, leaving 

the chloroplast genome of higher plants encoding only about 100 genes. The chloroplast 

genome of Arabidopsis thaliana (A. thaliana) for example encodes only 87 potential protein-

encoding genes and 41 genes for structural RNAs (Sato et al., 1999). The situation in the 

green algae Chlamydomonas reinhardtii (C. reinhardtii) with 99 expressed sequences in total 

is very similar (Maul et al., 2002). The chloroplast genome encodes a wide variety of proteins 

involved in photosynthesis, fatty acid synthesis, gene expression and many other pathways. 

Chloroplasts contain their own gene expression machinery, even though most of the proteins 

in this chimeric system are encoded in the nuclear genome of the cell (reviewed in Bock and 

Timmis, 2008; Reyes-Prieto et al., 2007; Sato et al., 1999). More precisely, more than 90% of 

the proteins in the chloroplast are encoded in the nuclear genome, translated in the cytosol and 

thus need to be transported into the chloroplast (reviewed in Jarvis and Soll, 2001). In order to 

achieve this, transport mechanisms as well as the N-terminal transit peptide, a signal sequence 

for plastid targeting of proteins, evolved. The best characterized import system is a multi-

protein translocon complex – the TOC (translocon at the outer membrane of chloroplasts) and 

TIC (TIC—translocon at the inner membrane of chloroplasts) complexes – that facilitates 

transport of proteins across both envelope membranes (reviewed in Li and Chiu, 2010; 

Schwenkert et al., 2011). Summing up, one can see that the uptake of the chloroplast and its 
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evolution into an organelle have brought drastic changes to the host cell, which has found 

numerous ways to deal with this sophisticated set-up as described in the following sections. 

1.2 Functions of the chloroplast 

Essential pathways like synthesis of fatty acids and amino acids, assimilation if 

nitrogen and sulfur and most characteristically photosynthesis take place in the chloroplast. In 

plants, fatty acid synthesis is mostly carried out within in the chloroplast and followed by 

their export to other cell compartments (reviewed in Bresinsky et al., 2008). The conversion 

of acetyl-CoA to malonyl-CoA by the enzyme acetyl-CoA carboxylase is the first committed 

step in fatty acid synthesis, which is followed by numerous sequential reactions carried out by 

the fatty acid synthetase, desaturases, elongases and other enzymes (Gunstone et al., 1994). In 

green leave tissue and microalgae the required acetyl-CoA is mainly provided by the 

chloroplast pyruvate dehydrogenase complex (reviewed in Harwood, 2009). 

1.2.1 Photosynthesis 

As mentioned above photosynthesis is the most commonly known process that takes 

place in chloroplasts. This process, converting sunlight into energy, evolved about 1 billion 

years before the primary endosymbiotic event took place, thereafter changing earth’s 

atmosphere drastically by releasing oxygen and enabling the evolution of life as we know it 

today. During this reaction, light energy, water and carbon dioxide are used to turn inorganic 

substances into organic sugars (Hohmann-Marriott and Blankenship, 2011; Nelson, 2011). 

Oxygenic photosynthesis can be divided into the so called light-dependent and light-

independent reactions. During the light-dependent reaction a photon is channeled by the light-

harvesting complexes towards a chlorophyll molecule, which is attached to the reaction center 

of photosystem II (PSII). The chlorophyll takes up this photon releasing an electron in return. 

This electron is travelling through the photosynthetic electron transport chain that consists of 

several thylakoid membrane embedded pigment protein complexes. In short, the released 

electron is transferred from PSII through the electron transport chain passing the cytochrome 

b6f (Cyt b6f) complex to a chlorophyll molecule embedded in PSI. From there, it finally 

reaches ferredoxin-NADP
+
 reductase, an iron-sulfur protein, and NADP

+
 is reduced to 

NAPDH (Nelson and Yocum, 2006; Xiong and Bauer, 2002). Figure 1 depicts this process as 

well as the connection to the light-independent reactions. 



 Introduction   

10 

 

 

Figure 1: An overview of the photosynthetic reactions in A. thaliana (Allen et al., 2011). Major complexes of 

the light-dependent and light-independent reactions are depicted in this scheme. Plastid-encoded proteins are 

labeled in green, nuclear-encoded subunits in yellow. For further details, see text.  

PSII consists of about 20 subunits, the number differs slightly between organisms, in 

which the proteins D1 and D2 always build the core of the reaction center. Antennae proteins 

like CP43 and CP47 or the proteins PsbO, PsbQ and PsbP, composing the oxygen evolving 

complex, are attached to it. Additionally, many accessory proteins and cofactors are involved 

in the described reactions (Dekker and Boekema, 2005). In order to recover the chlorophyll 

molecule in the reaction center of PSII, a water molecule is immediately split by a Mn4CaO5 

cluster in the oxygen evolving complex in a process called photolysis (Suga et al., 2015). This 

process releases, as the name of the complex already indicates, oxygen as well as protons. 

These protons build, together with protons released during the transport of the electrons along 

the electron transport chain, a proton gradient across the thylakoid membrane. Subsequently, 

this gradient is used by the ATP synthase to convert ADP + Pi to ATP (Xiong and Bauer, 

2002). 

The light-independent reaction is named Calvin–Benson–Bassham cycle after the 

scientists, who discovered it in 1950. Briefly, an enzyme named ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) fixates carbon dioxide from the atmosphere to generate, 

with the aid of several additional enzymes, a three-carbon sugar product, namely glycerate-3-

phosphate. The process can be divided into three steps: the carbon fixation, the reduction 

reactions, and the ribulose-1,5-bisphosphate regeneration. During this process NADPH and 

ATP generated in the light reaction are utilized (Bassham et al., 1950; Buchanan, 2016). In 
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summary, the absorbed light energy is converted to reduction equivalents and ATP used to 

drive the organism’s numerous catabolic reactions. 

1.3 The model organisms Arabidopsis thaliana and Chlamydomonas 

reinhardtii 

The flowering plant Arabidopsis became the leading plant model organism over the 

last 30 years. In comparison to other angiosperms, it shows a short generation time of about 6-

8 weeks and can – due to its small size of about 20 cm – be cultivated easily in restricted 

space such as in green houses and cultivation chambers. It’s relatively small nuclear genome 

of about 157 Mb was completely sequenced in the year 2000 and annotated thoroughly since 

then. Most importantly a large number of T-DNA mutant lines is available, facilitating 

research with Arabidopsis. Such and other advantages have made Arabidopsis a widely used 

model organism for studies of cellular and molecular biology of higher plants (reviewed in 

Koornneef and Meinke, 2010).  

On the other hand, Chlamydomonas reinhardtii, a small unicellular green algae with 

the ability to grow heterotrophically in acetate-containing media, has become an outstanding 

algal model organism (reviewed in Nickelsen and Kück, 2000). It is about 10 µm in size and 

contains a single cup-shaped chloroplast. Moreover, it reacts to light conditions of the 

environment with the help of a photoreceptive eye spot in the chloroplast and two flagella in a 

process called phototaxis (Harris, 1989). In 2007, the complete nuclear genome sequence of 

C. reinhardtii was published (Merchant et al., 2007). Furthermore, all three genomes 

(nucleus, plastid and mitochondrium) can be transformed efficiently. A recently created 

mutant insertion line library makes molecular analysis of many factors in Chlamydomonas 

even easier (Li et al., 2016). Taken together both here described and used organisms are well 

established models in many fields of plant research. 

1.4 Chloroplast gene expression 

1.4.1 Transcription 

In higher plant chloroplasts two kinds of RNA polymerases, the plastid-encoded RNA 

polymerase (PEP) and the nucleus-encoded RNA polymerase (NEP), carry out the first step of 

gene expression: the transcription (Hess et al., 1993). 
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PEP is a multi-enzyme complex consisting in general of 4 subunits (rpoA, rpoB, 

rpoC1 and rpoC2), that derived directly from its cyanobacterial ancestor. Its activity in higher 

plants is regulated by at least six sigma-like transcription factors (SFLs), whereas in genomes 

of green algae only one SFL, namely RPOD, was identified (Allison, 2000; Carter et al., 

2004). Some of the SFLs in A. thaliana are working in general mode, whereas others are at 

least partially gene specific. Their expression depends on light, circadian rhythm, tissue and 

developmental stage (Allison, 2000; Favory et al., 2005; Zghidi et al., 2007). This interesting 

increase of factors in land plants compared to algae is explained by a degeneration and 

diversification of promoters that needs to be compensated for (Allison, 2000; Maier et al., 

2008). Moreover, additional proteins are involved in transcription of certain genes (Jalal et al., 

2015; Pfannschmidt et al., 2009; Sutoh et al., 1999).  

The second type of polymerase in the chloroplast of higher plants, the NEP, is a single 

subunit enzyme homologous to RNA polymerases of T3 and T7 phages. Up to now two 

nucleus-encoded polymerases targeted to the chloroplast were identified in A. thaliana. 

RpoTp is exclusively localized to the chloroplast while RpoTmp can also be found in 

mitochondria (Liere et al., 2011). This type of RNA polymerase could not be identified in 

some green algae including C. reinhardtii, Osteococcus tauria as well as Thalassiosira 

pseudomona, although genome-wide searches were conducted (Armbrust et al., 2004; Derelle 

et al., 2006; Smith  and Purton, 2002). Interestingly, many transcripts in Arabidopsis possess 

promoters for both polymerases. It was proposed that PEP dominates the transcription of 

photosynthetic genes (Börner et al., 2015). 

1.4.2 RNA Processing 

Many genes in the chloroplast, transcribed by the above mentioned RNA polymerases 

PEP and NEP, are organized in gene clusters. This results in polycistronic transcripts, that 

subsequently are further processed into monocistronic transcripts. It is postulated, that 

translation of monocistronic forms is more effective than that of polycistronic transcripts 

(Barkan et al., 1994; Hirose and Sugiura, 1997). 

The RNA maturation processes include endonucleolytic cleavage, maturation of 5’ 

and 3’ ends and splicing, but also other post-transcriptional modifications like editing and 

RNA stability as depicted in figure 2 (reviewed in Barnes and Mayfield, 2003; Bollenbach et 

al., 2004; Gray et al., 2003; Stern et al., 2010). So far RNA editing has only been found in 

vascular plants; with an average of 35 editing sites per chloroplast genome (Shikanai, 2006; 
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Tillich et al., 2006). In this process specific cytidines are replaced by uridines. Interestingly, 

most editing sites are found in coding mRNA regions, leading to an alteration of the amino 

acid sequence and often affecting amino acids that play a role in protein function. Evidence 

indicates that editing is a mechanism to counterbalance deleterious effect of point mutations 

(reviewed in del Campo, 2009).  

Figure 2: Overview of chloroplast post-transcriptional mechanisms involved in the control of chloroplast gene 

expression (del Campo, 2009). Several regulatory proteins, encoded in the nucleus, are involved in post-

transcriptional processes like intron splicing, RNA editing, nucleolytic activity, 5’- and 3’-end maturation, 

stabilization and degradation. For further information, see text. 

Introns can be found in about 17% of angiosperm chloroplast genes, most of which 

resemble cis-acting group II introns (reviewed in Herrin and Nickelsen, 2004; Plant and Gray, 

1988). Although these introns are auto-spliced in vitro, data from several experiments suggest 

that other factors are required for sufficient splicing in vivo (Stern et al., 2010). Several 

nuclear-encoded proteins involved in splicing have been identified in higher plants, among 
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them OTP70, an Arabidopsis pentatricopeptide repeat protein, that is involved in splicing of 

the rpoC1 intron (Chateigner-Boutin et al., 2011). It belongs to a family of helical repeat-

proteins that will be discussed later (see section 1.5).  

Processing of the earlier mentioned polycistronic transcripts requires endo- as well as 

exonucleolytic activities. In Arabidopsis thaliana only 17 of more than 180 annotated 

ribonucleases are predicted to be localized in the chloroplast (Stoppel and Meurer, 2011). 

Several of these have been characterized, e.g. the PPR protein CRR2 is involved in rps7/ndhB 

RNA processing (Hashimoto et al., 2003). Another well-known example is the PNPase 

(polynucleotide phosphorylase), which is involved in 3’ to 5’ processing/degradation of RNA, 

in eubacteria as well as in chloroplasts. Additionally, it plays a role in polyadenylating 3’-

ends of plastid transcripts, which promotes a rapid RNA turnover by exonucleolytic factors 

like the PNPase itself (Walter et al., 2002; Yehudai-Resheff et al., 2001). Its function as an 

exonuclease is required in processing of the rrn (ribosomal RNA) operon, to mention and 

elucidate just one example.  

The transcripts of ribosomal RNAs are organized in one of the biggest operons of the 

Arabidopsis chloroplast genome, which includes genes encoding the four ribosomal RNAs 

present in chloroplasts, rrn16, rrn23, rrn4.5 and rrn5, as well as three tRNA genes, trnI, trnA 

and trnR (Fig. 3). Nomenclature of rrn promoters is used according to Lerbs-Mache (2000).  

Chloroplast ribosomes consist of more than 50 ribosomal proteins and the just mention 

ribosomal RNAs, 16S, 23S, 4.5S and 5S. The resulting 70S ribosomes are composed of 30S 

and 50S subunits, similar to the ribosomes of their prokaryotic ancestors (reviewed in Harris 

et al., 1994). The presence of ribosomal RNAs in the ribosomes is required for translational 

activity as will be discussed in more detail in section 1.4.3 (Nissen et al., 2000). 

Figure 3: Schematic representation of the chloroplast rrn operon in A. thaliana. Positions of a NEP-transcribed 

promoter (PC) and a PEP-transcribed promoter (P2) are indicated by curved arrows. Positions of processing sites 

are indicated by vertical arrows. Introns in tRNA genes are illustrated in grey, exons in black. Genes encoding 

ribosomal RNAs are illustrated in blue. 

After transcription of the operon, either starting from the PEP- or the NEP-transcribed 

promoter, named PC and P2 respectively, the 7.4 kb rRNA polycistronic transcript is cleaved 

by not yet identified endonucleases, resulting in pre-tRNAs for isoleucine and alanine, 16S 
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rRNAs precursors, as well as dicistronic 23S-4.5S and 5S-tRNA
ARG 

transcripts. Analyses of 

several mutants lacking nucleus-encoded factors revealed their role in following processing 

and maturation steps. Processing of the monocistronic and dicistronic transcripts as well as 

the maturation of 5’ and 3’ ends of ribosomal RNAs seems to be dependent on the presence of 

the factors RNR1, DCL, CSP41a/b, DAL, WCO, BPG2, PAC and the already mentioned 

PNPase (Beligni and Mayfield, 2008; Bellaoui et al., 2003; Bisanz et al., 2003; Bollenbach et 

al., 2005; Komatsu et al., 2010; Meurer et al., 2017; Walter et al., 2002; Yamamoto et al., 

2000). To gain a profound understanding of the complex processing of the ribosomal RNA 

operon other factors involved must be identified and the function of all involved proteins must 

be revealed.  

Transcript stability does not only depend on the just mentioned ribonucleases, but 

mostly on the presence of 5’ untranslated regions (UTRs) and 3’ UTRs. Deletion of either of 

these, leads to reduced transcript accumulation and translation (Stern et al., 2010). Many 

transcripts contain short inverted repeats close to their 3’-end that can form stable stem-loops, 

thus preventing 3’ to 5’ exonucleolytic decay. Experimental evidence shows that transcript 

stabilization is also ensured by specific protection through protein binding to 5’- and 3’-ends 

of transcripts (Hammani et al., 2012; Pfalz et al., 2009; Prikryl et al., 2011; Zhelyazkova et 

al., 2011).  

1.4.3 Translation 

Protein translation is the next major step for control of gene expression in the 

chloroplast, which is mainly regulated through initiation of translation although elongation 

steps can also be adjusted. Chloroplast ribosomes arose during the evolution of the former 

free living endosymbiont to an organelle and are clearly different from their eukaryotic 

counterparts. They share certain characteristics with ribosomes of their bacterial ancestor, 

which are obvious seen when comparing the structure of the 70S ribosomes. Nevertheless, 

they acquired additional subunits and domains that might have a function in organelle-specific 

processes (reviewed in Marin-Navarro et al., 2007).  

In contrast to translation in prokaryotes, the ribosome binding site, called Shine-

Dalgarno (SD) sequence, is more dispensable in plastidial translation. It is proposed that its 

lack can be compensated by sequence specific factors guiding the ribosomes to their site of 

action (Hirose and Sugiura, 1996). In C. reinhardtii e.g. the SD sequence is required for 

synthesis of D1, while its removal leads only to slight changes in translation of D2 (Mayfield 
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et al., 1994; Nickelsen et al., 1999). Remarkably, a similar sequence is even a negative 

regulator element for translation of the tobacco rps2 transcript (Plader and Sugiura, 2003).  

Moreover, the localization of mRNAs within the chloroplast can play a role in their 

translation. In C. reinhardtii a specific zone of translation (T-zone) was identified. It is a site 

of protein synthesis for de novo biogenesis of PSII and possibly other complexes and was 

defined by co-localization of the chloroplast ribosome, mRNAs encoding PSII subunits as 

well as the RBP40 translation marker (Schottkowski et al., 2012; Uniacke and Zerges, 2009). 

More recently, Bohne et al. (2013) reported that a nucleus-encoded factor, DLA2, tethers the 

psbA mRNA to the T-zone only under certain growth conditions. Future research will show 

which other factors are involved in spatial organization within the chloroplast.  

Several nuclear-encoded factors influencing chloroplast translation were identified. In 

higher plants for instance, CRP1 from maize, and HCF107 and HCF173 from Arabidopsis are 

required for translation of petA/petD, psbB and psbA mRNAs, respectively (Sane et al., 2005; 

Schmitz-Linneweber et al., 2005; Schult et al., 2007). The most prominent example in C. 

reinhardtii is the regulation of the D1 protein synthesis, in which at least one multi-subunit 

complex is involved. This complex consists of the RB60 protein, a protein disulfide 

isomerase, the RB47 protein, a poly(A)-binding protein with an intrinsic RNA binding 

activity, the RB38 protein, a poly(U)-binding protein that showed interaction with the target 

in vitro and last the RB55 protein, whose molecular characterization remains elusive so far 

(Barnes et al., 2004; Danon and Mayfield, 1991; Kim and Mayfield, 1997; Yohn et al., 1998). 

An independent approach identified the already mentioned RNA-binding protein DLA2, 

binding specifically upstream of the psbA start codon, whose function will be explained in 

more detail in section 1.6.1 (Ossenbühl et al., 2002). An increased level of D1 synthesis in 

light, even though a high level of psbA transcripts is already present in the dark, could be 

explained by regulation and an increased binding activity of the described factors (Danon and 

Mayfield, 1991; Malnöe et al., 1988). There is evidence that RB60 is controlled by 

phosphorylation, while RB47 is inactivated in the dark through oxidation (Danon and 

Mayfield, 1994a, b). The exact working mode of this complex and its regulation is 

controversially discussed and needs to be elucidated in the future.  

In the green algae C. reinhardtii another remarkable level of translational regulation, 

the principle of control by epistasy of synthesis (CES) controlling the synthesis and assembly 

of photosynthetic complexes, was described. Complex assembly starts with the insertion of a 
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dominant subunit, which acts as a scaffold for subsequent assembly steps. For instance, D2 is 

the anchor protein of PSII, PetB of the Cytb6f complex and PsaB of PSI. In the absence or 

reduction of these dominant proteins, translation of the next protein to be inserted into the 

complex is inhibited, which inhibits translation of the next protein and so on, thus leading to a 

cascade of control of protein synthesis (Choquet and Vallon, 2000). Control of translation 

plays an important role in regulation of gene expression. 

It is clearly evident, that the RNA metabolism of chloroplasts has gained additional 

complexity compared to that of their cyanobacterial progenitors. In plastid gene expression, a 

predominance of post-transcriptional mechanisms exists. Part of this new complexity might 

be due to the reason that chloroplasts propagate asexually and are inherited uniparental. 

Without a meiotic event no recombination takes place; deleterious mutations have to be 

neutralized by other ways. Presumably for this reason as well as for purposes of regulation 

and coordination of nucleus-encoded and plastid-encoded subunits of protein complexes, a 

high number of nuclear factors involved in chloroplast gene expression evolved (Maier et al., 

2008; Tillich et al., 2010).  

1.5 Helical repeat proteins involved in regulation of chloroplast gene 

expression 

In both vascular plants and algae the biogenesis and activity of chloroplasts is 

controlled by an intracellular network of nucleus encoded factors. Several families of helical 

repeat proteins are involved in the processes described in earlier sections. The most prominent 

member of this superfamily is the family of pentatricopeptide repeat (PPR) proteins, 

consisting of RNA-binding proteins that contain up to 30 tandem repeats of loosely conserved 

35 amino acids. They were predicted to build an array of α-helices and therefore belong to the 

α-solenoid superfamily together with tetratricopeptide repeat (TPR) proteins (Small and 

Peeters, 2000). This structure was confirmed for the PPR10 protein from maize by 

crystallization and X-ray scattering (Gully et al., 2015; Yin et al., 2013). 

The first described PPR protein was reported in Saccharomyces cerevisiae (Manthey 

and McEwen, 1995). However, members of this family can be found in all eukaryotes, but not 

in prokaryotic organisms. Interestingly, there is a striking difference in numbers between 

higher plants and algae. While in A. thaliana about 450 PPR proteins are predicted, the green 

alga C. reinhardtii possesses only 11 PPR proteins (Jalal et al., 2015; Schmitz-Linneweber 
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and Small, 2008). Domain swap experiments with CRR21 and CRR4 as well as crystal 

structures of PPR10 binding one of its RNA targets proved the RNA binding function of the 

PPR domain (Gully et al., 2015; Okuda et al., 2007; Yin et al., 2013). In A. thaliana many 

chloroplast localized PPR proteins are well studied and show a function in chloroplast gene 

expression.  

The second well-known family of helical repeat proteins is the tetratricopeptide repeat 

(TPR) protein family. As the name indicates, the number of amino acids in the 3-16 tandem 

repeats is 34 instead of 35 as in PPR proteins (Blatch and Lassle, 1999). The structure of 

several TPR proteins, arrays of anti-parallel α-helices that generate an α-solenoid helical 

structure, was revealed by crystallization (D'Andrea and Regan, 2003). Similar to PPR 

proteins, TPR domains are highly conserved among prokaryotic as well eukaryotic organisms.  

In contrast to RNA-binding PPR proteins, TPR proteins participate in various processes via 

protein-protein-interaction. In A. thaliana chloroplast’s LPA1 is a well characterized example; 

it interacts with the photosystem II reaction center protein D1 and is required for photosystem 

II assembly (Peng et al., 2006). A prominent example in the chloroplast of C. reinhardtii is 

the protein Nac2, whose binding is absolutely necessary for transcript accumulation of psbD 

(Boudreau et al., 2000). Subsequent interaction with the RBP40 protein initiates translation of 

D2 (Ossenbühl and Nickelsen, 2000). 

The last family of helical repeat proteins introduced here is the more recently 

described family of octotricopeptide repeat (OPR) proteins. This protein family is named after 

its 38 - 40 amino acid degenerate motif. Secondary structure predictions have foretold paired 

α-helices that generate an α-solenoid helical structure similar to the proposed PPR and TPR 

protein structure (Eberhard et al., 2011). Interestingly, there are more than 100 OPR proteins 

predicted in C. reinhardtii, compared to only a single one in higher plants (O. Vallon, A. 

Bohne, L. Cerutti, J. D. Rochaix, unpublished data).  

The characterization of a number of C. reinhardtii OPR proteins sheds light on their 

function. The MCD1 protein is involved in petD RNA stability, which encodes a subunit of 

the Cyt b6f complex (Murakami et al., 2005). The factor RAA1 is needed for psaA RNA 

processing, which is a PSI reaction center protein (Merendino et al., 2006; Perron et al., 

2004). TBC2 and TDA1 are both translation factors involved in psbC, which encodes the 

CP43 antennae protein of PSII, and atpA, which codes for the α-subunit of the ATPase, 

translation, respectively (Auchincloss et al., 2002; Eberhard et al., 2011). MGC1 and MBI1 
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are two more recently identified mRNA stabilization factors, which bind to petG, encoding a 

small subunit of the Cyt b6f complex and psbI, encoding a small PSII subunit, respectively 

(Wang et al., 2015). All so far characterized OPR proteins play a role in chloroplast gene 

expression, and are supposedly RNA-binding proteins, which leads to the assumption that this 

family plays a similar role as helical repeat proteins mentioned earlier. 

1.6 Moonlighting proteins 

Unlike helical repeat proteins, which provide supposedly the majority of RNA binding 

proteins in the organelles of plants and algae, the so called moonlighting enzymes do not all 

belong to one family. Rather this group of proteins is linked by their acquisition of an 

additional function next to their first described function, which is often enzymatic (Huberts 

and van der Klei, 2010). Moonlighting proteins need to be distinguished from the use of a 

single gene to generate different proteins by post-translational processing, alternative splicing 

and DNA rearrangement as well as from multifunctional proteins, which harbor multiple 

domains each serving a different function (reviewed in Jeffery, 2018). It was postulated that 

moonlighting proteins started out as uni-functional proteins, whose secondary function 

evolved with time (Jeffery, 2003). 

In 1988, the first such proteins, crystallins in the lenses of eyes, were described 

(Piatigorsky et al., 1988). In ducks, the protein delta-crystallin plays a structural role in 

transparency and cataract in the lens, but additionally shows an argininosuccinate lyase 

activity. Interestingly, later it was found that several lens crystallins are identical to metabolic 

enzymes and stress proteins found in numerous tissues (Piatigorsky, 1998; Wistow and 

Piatigorsky, 1988). Soon after the first description of this kind of gene sharing, many more 

proteins with two independent functions were discovered and the term moonlighting proteins 

was introduced, referring to workers working in two jobs whereas the second additional job 

would often happen at night thereby in moonlight (Huberts and van der Klei, 2010; Jeffery, 

1999). 

There are several ways how moonlighting proteins can evolve, but it is in general 

greatly promoted by the fact that there is unused space in many proteins since the active site 

typically only takes up a small part of the protein. Alterations in this unused space can lead to 

the acquisition of an additional function. Interestingly, this is a mechanism that can sometimes 

explain the resistance to certain antibiotic in bacteria (Sengupta et al., 2008). Moreover, many 
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moonlighting proteins originate from the fusion of two single function genes resulting in one 

protein harboring two functions (Gancedo and Flores, 2008). Even other moonlighting 

proteins feature only one active site that carries out the protein’s two functions. In these cases, 

mutations in the active site led to the evolvement of the second function. It is postulated that 

these bifunctional proteins are evolutionary favorable due to the conservation of amino acids 

and energy otherwise required to build multiple proteins (Jeffery, 1999).  

1.6.1 The moonlighting enzyme DLA2 

One example of a moonlighting protein discovered by chance in C. reinhardtii is the 

RNA-binding protein RBP63 described by Ossenbühl et al. (2002). A screen for RNA-

binding proteins associated with the thylakoid membrane of the chloroplast was performed 

and this protein with a size of 63 kDa was detected. Further experiments revealed a preference 

for the 5’ UTR of the psbA mRNA compared to other chloroplast mRNAs. The PsbA gene 

codes for the D1 subunit in the reaction center of PSII as described earlier (section 1.2.1). The 

psbA mRNA binding activity of RBP63 was not only confirmed with additional methods by 

Bohne et al. (2013), but remarkably it became evident that RBP63 is actually the previously 

described protein DLA2 (dihydrolipoamid acetyltranserase), the E2 subunit of the chloroplast 

pyruvate dehydrogenase complex (cpPDC) (Mooney et al., 1999; Reid et al., 1977).  

The multi-enzyme pyruvate dehydrogenase complex is ubiquitously present among 

organisms converting pyruvate to acetyl-CoA in a process called pyruvate decarboxylation, 

thereby connecting the citric acid cycle and subsequent oxidative phosphorylation to the 

glycolysis, gluconeogenesis and lipid as well as amino acid metabolism pathways. Plant cells 

possess two copies of this complex, one located in mitochondria and in in chloroplasts (Reid 

et al., 1977). It consists in general of many copies of its three subunits that conjointly execute 

the complex’s function (Fig 4). The E1 subunit, the pyruvate dehydrogenase, transfers an 

acetyl group of the pyruvate onto a lipoamide attached to the E2 subunit aided by its cofactor 

a thiamine pyrophosphate. In turn the E2 subunit transfers the acetyl by a transacetylation 

reaction from the swinging arm of lipoyl to coenzyme A generating acetyl-CoA, which is 

released from the enzyme complex at this point. Lastly, the dihydrolipoate, still bound to a 

lysine residue of the E2, migrates to the dihydrolipoyl dehydrogenase (E3) active site where it 

undergoes a flavin-mediated oxidation. Hereby, dihydrolipoate is oxidized by FAD back to its 

lipoate resting state, producing FADH2. Subsequently, a NAD
+
 cofactor oxidizes FADH2 

back to FAD producing NADH (Camp and Randall, 1985; Mooney et al., 2002; Reid et al., 
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1977). It should be noted that the E2 subunit of the cpPDC complex in chloroplasts of C. 

reinhardtii DLA2 contains a single predicted lipoamide attachment site, similar to several 

other photosynthetic organisms as the cyanobacterium Synechocystis sp. PCC 6803 protein or 

the chloroplast E2 subunit from A. thaliana as opposed to up to three sites observed in E.coli 

and other organisms (Bohne et al., 2013; Camp and Randall, 1985; Guest et al., 1985; Tovar-

Méndez et al., 2003). 

Figure 4: Simplified working mode of the pyruvate dehydrogenase complex (Foth et al., 2005). The conversion 

of pyruvate to acetyl-CoA and the subsequent recovery of the subunits are shown. In this case the E2 subunit has 

three lipoamids attached to it, typical for bacterial PDCs. For further explanations, see text.  

Remarkably, DLA2 plays an additional role in the chloroplast of C. reinhardtii as 

mentioned above. When the cells are grown under mixotrophic conditions, i.e. in the presence 

of light and acetate, DLA2 is part of an RNA containing high molecular weight (HMW) 

complex with a size of more than 1 MDa. Interestingly the DLA2-RNA complex was not 

detected in a mutant lacking the psbA mRNA. Furthermore, it was suggested that by binding 

to the psbA mRNA, DLA2 tethers this mRNA to the T-zone in the chloroplast (Bohne et al., 

2013). By localizing the psbA mRNA in this zone DLA2 can thereby promote the translation 

of the D1 protein at the thylakoid membrane (Bohne and Nickelsen, 2017; Bohne et al., 

2013). 

A proposed regulation of psbA gene expression by the presence of acetate in the 

medium is illustrated in figure 5. In the absence of acetate, i.e. under photoautotrophic 

conditions, DLA2 is required as a cpPDC subunit to produce acetyl-CoA in the chloroplast. A 



 Introduction   

22 

 

 

normal level of D1 translation is taking place. In contrast, under mixotrophic growth 

conditions acetate is converted into acetyl-CoA by the acetate synthetase (ACS) and/or by the 

acetyl-kinase/ phosphate acetyltransferase (ACK/PAT) system of C. reinhardtii leading to 

accumulating acetyl-CoA levels (Bohne et al., 2013; Spalding, 2009). This in turn signals 

substrate availability for fatty acid synthesis in the chloroplast and can lead to a product 

inhibition of the cpPDC and putatively the partial disassembly of the cpPDC (Tovar-Méndez 

et al., 2003; Wellen and Thompson, 2012; Xing and Poirier, 2012). 

Figure 5: Acetate-dependent regulation of psbA gene expression in C. reinhardtii by DLA2. Under 

photoautotrophic conditions DLA2 is required as a cpPDC subunit to produce acetyl-CoA (left panel). In 

contrast, under mixotrophic growth conditions (right panel), acetate is converted into acetyl-CoA by ACS and/or 

by the ACK/PAT system of C. reinhardtii, leading to binding of DLA2 to the psbA mRNA (adapted from Bohne 

et al., 2013). For further explanation, see text.  

Free DLA2 subunit might bind increasingly to the psbA mRNA and thus lead to its 

localization to the T-zone favoring D1 synthesis for de novo assembly of PSII. Reciprocally, 

the cpPDC activity is decreased by psbA mRNA binding to DLA2 as shown by Bohne et al. 

(2013). In summary, DLA2 is a multifunctional moonlighting protein connecting carbon 

metabolism and gene expression in the chloroplast of C. reinhardtii. 
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2 Aims of this work 

Plants need to react to changes in environmental conditions, which they often they do 

by adapting their gene expression. In the chloroplast, most regulation of gene expression 

happens on post-transcriptional level. The main aim of this work was to further elucidate the 

role of two such factors, DLA2 and RAP, two nucleus-encoded proteins localized in the 

chloroplasts from C. reinhardtii and A. thaliana, respectively.  

RAP, the single OPR protein in Arabidopsis was reported as a factor in plant defense 

so far, without any molecular characterization of its working mode. The fact that several OPR 

proteins from the green algae C. reinhardtii play a role in gene expression, made it even more 

desirable to elucidate the function of RAP. Therefore, we analyzed the protein with the help 

of a T-DNA insertion line in detail. Phenotypical and molecular characterization helped to 

uncover its function (section 3.1).  

To further understand the regulatory function of DLA2 as a connector of gene 

expression and carbon metabolism, further experiments were required. The mechanism 

behind the regulation of DLA2’s two function was still unknown. We concentrated our 

research on the composition of the RNA-DLA2 complex and the elucidation of the RNA-

binding region of DLA2 (section 3.2).  

Overall, the data in this thesis aims to shed further light on the regulation of protein 

synthesis by nucleus-encoded factors in chloroplasts of higher plants and green algae.  
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3 Results 

The following section includes two studies (section 3.1 and 3.3) that are published in 

international peer-reviewed journals and one manuscript that is still in preparation (section 

3.2). At the beginning of each chapter the main conclusions of the respective study as well as 

the contributions of the author are summarized. 

3.1 RAP, the sole octotricopeptide repeat protein in Arabidopsis, is required 

for chloroplast 16S rRNA maturation 

 

Kleinknecht, L., Wang, F., Stübe, R., Philippar, K., Nickelsen, J., and Bohne, A.-V. 

(2014). Plant Cell 26: 777-787 

 

The focus of this study was the characterization of RAP, the sole OPR protein in A. 

thaliana, which has previously been described to be involved in plant pathogen defense. The 

analyzed knockout mutant line rap-1 showed retarded growth and a defect in photosynthetic 

activity based on measurements of the PS II efficiency. Also, immunoblot analysis and in vivo 

labeling of chloroplast proteins pointed to an impaired chloroplast translation. Furthermore, 

Northern blots were able to reveal a reduction of most analyzed chloroplast transcripts and a 

dramatic reduction of the plastid encoded 16S rRNA. Detailed analysis of the plastid rRNA 

operon showed no changes in levels or pattern of 23S, 4.5S and 5S rRNA. In stark contrast 

16S rRNA precursors accumulated, while the mature transcript was lacking entirely. 

Importantly, in vitro RNA binding experiments revealed that RAP has an intrinsic RNA 

binding capacity. A number of experiments point to the fact that RAP binds to the 5’ leader 

sequence of the 16S precursor rRNA. Northern blots of small RNAs were performed to detect 

previously described footprints - small RNAs that accumulate often as the result of a protein 

binding to a stretch of RNA and thereby protecting the fragment. Interestingly, a footprint in 

the 5’ end of the 16S rRNA precursor detected in wild type and the rfb1-1 control, which 

shows general defects in rRNA accumulation, was not detectable in the rap-1 mutant. 
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In 2016, a correction to the original paper was published in Plant Cell. It is included 

in the presented manuscript and figure denominations in the following sections are 

according to the final paper i.e. after the correction was published. 

 

In fact, when RNA binding curves were plotted from filter binding assays, RAP 

showed a higher affinity to a probe spanning this footprint compared to two other reported 

footprint sequences in the same region. Since the affinity was only slightly higher, we cannot 

exclude that RAP binds to another sequence within the 16S rRNA precursor additionally. 

Nevertheless primer extension analyses and circular RT-PCR revealed a severe defect in 

correct processing of the 16S precursor rRNA, supporting the role of RAP in correct trimming 

of the mature 16S rRNA. Additionally, GFP import assays showed a nucleoid localization of 

RAP, marking the nucleoid as the site of chloroplast rRNA processing. In summary, our data 

suggest an important role of the single OPR protein in Arabidopsis in a basic process in 

chloroplast biogenesis.  

I contributed to this study by conducting all the experiments except for the initial 

western blots, in vivo labeling and the GFP import studies, which were performed by F. Wang 

and R. Stübe, respectively. Bioinformatic protein characterization was conducted by A.-V. 

Bohne. The manuscript was written by A.-V. Bohne, J. Nickelsen, K. Philippar and me and 

revised by all co-authors.  
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The biogenesis and activity of chloroplasts in both vascular plants and algae depends on an intracellular network of nucleus-
encoded, trans-acting factors that control almost all aspects of organellar gene expression. Most of these regulatory factors
belong to the helical repeat protein superfamily, which includes tetratricopeptide repeat, pentatricopeptide repeat, and the
recently identified octotricopeptide repeat (OPR) proteins. Whereas green algae express many different OPR proteins, only
a single orthologous OPR protein is encoded in the genomes of most land plants. Here, we report the characterization of the
only OPR protein in Arabidopsis thaliana, RAP, which has previously been implicated in plant pathogen defense. Loss of RAP
led to a severe defect in processing of chloroplast 16S rRNA resulting in impaired chloroplast translation and photosynthesis.
In vitro RNA binding and RNase protection assays revealed that RAP has an intrinsic and specific RNA binding capacity, and
the RAP binding site was mapped to the 59 region of the 16S rRNA precursor. Nucleoid localization of RAP was shown by
transient green fluorescent protein import assays, implicating the nucleoid as the site of chloroplast rRNA processing. Taken
together, our data indicate that the single OPR protein in Arabidopsis is important for a basic process of chloroplast biogenesis.

INTRODUCTION

Chloroplasts, the photosynthetic organelles of plants and algae,
derive from the integration of a photosynthetic cyanobacterium-
like prokaryote into a eukaryotic host cell (Timmis et al., 2004).
During evolution, the endosymbiotic organism was converted
into an organelle that still possesses a reduced genome and its
own gene expression machinery. The process was accompanied
by the development of a set of nucleus-encoded, trans-acting
factors that must be imported into the chloroplast. These factors
form part of an intracellular network that coordinates organellar
and nuclear gene expression, mainly at the posttranscriptional
level (Del Campo, 2009; Barkan, 2011). Among the processes
affected are the maturation of chloroplast RNAs, such as inter-
genic cleavage of polycistronic transcripts, RNA editing, and the
generation of mature 59 and 39 RNA ends, as well as their reg-
ulated translation on eubacterial-like 70S ribosomes (Bollenbach
et al., 2007; Barkan, 2011). Chloroplast ribosomes are composed
of more than 50 proteins and four rRNAs (16S, 23S, 4.5S, and 5S),
which are encoded in a cotranscribed gene cluster and undergo
complex maturation processes in a ribosome assembly-assisted
manner (Shajani et al., 2011; Stoppel and Meurer, 2012).

The identification of numerous components of the intracellular
communication network between nucleus and chloroplasts has
revealed that theoverwhelmingmajority belong to thehelical repeat

protein superfamily, including tetratricopeptide repeat (TPR) and
pentatricopeptide repeat (PPR) proteins (Stern et al., 2010; Shikanai
and Fujii, 2013). TPR and PPR domains are repetitive units formed
by two antiparallel a-helices with characteristic consensus motifs
and have been reported tomediate protein–protein or RNA–protein
interactions, respectively (Das et al., 1998; Schmitz-Linneweber
and Small, 2008; Ringel et al., 2011). Whereas genomes of higher
plants, likeArabidopsis thaliana, encodemore than 450members of
the PPR protein family, the unicellular green alga Chlamydomonas
reinhardtii possesses only 12 PPR genes (Schmitz-Linneweber and
Small, 2008).
However, recently, a novel class of helical repeat proteins,

named octotricopeptide repeat (OPR) proteins, has been de-
scribed in C. reinhardtii, and its members are characterized by
tandemly repeated, degenerate 38–amino acid units (Eberhard
et al., 2011; Rahire et al., 2012). Based on secondary structure
predictions and in vitro RNA binding experiments, these repeats,
like PPR repeats, are postulated to form a-helical RNA binding
domains (Eberhard et al., 2011; Rahire et al., 2012). This is fur-
ther supported by the functions of characterized OPRs, all of
which act as RNA stabilization/processing and translation fac-
tors (Auchincloss et al., 2002; Perron et al., 2004; Murakami
et al., 2005; Merendino et al., 2006; Eberhard et al., 2011; Rahire
et al., 2012). Interestingly, the OPR gene family seems to have
undergone a marked expansion in green algae, with dozens of
members in C. reinhardtii (Eberhard et al., 2011; Rahire et al.,
2012). However, in stark contrast to the large numbers of
PPR proteins, most land plant genomes contain a single OPR
gene, including those of representative model organisms such
as Arabidopsis, tobacco (Nicotiana tabacum), rice (Oryza sativa),
maize (Zea mays), and Physcomitrella patens (Olivier Vallon, per-
sonal communication).
Here, we report the functional characterization of the sole OPR

protein found in Arabidopsis, RAP, which has previously been
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implicated in the negative regulation of plant disease resistance
(Katiyar-Agarwal et al., 2007). Our data now reveal a role of RAP
in a fundamental process of chloroplast gene expression (i.e.,
rRNA maturation).

RESULTS

Arabidopsis Has Only a Single OPR Protein

A few putative OPR proteins have been reported in Arabidopsis
(Eberhard et al., 2011). However, reevaluation of available ge-
nomic data has revealed only a single OPR protein, RAP (Olivier
Vallon, personal communication). Arabidopsis RAP exhibits a
putative plastid transit peptide of 78 amino acids (Figure 1A;
Supplemental Figure 1A). The mature protein has a molecular
mass of 67 kD. Its C-terminal half comprises four OPR repeats
followed by a RAP (RNA binding domain abundant in apicom-
plexans) domain (Figure 1; Supplemental Figure 1A; Lee and
Hong, 2004), which is probably related to OPR repeats (Eberhard
et al., 2011). Secondary structure analysis with the Jpred algo-
rithm (www.compbio.dundee.ac.uk/www.jpred; Cole et al. 2008)
predicted the presence of two a-helices in each of the OPR re-
peats identified (Figure 1B), as in the case of PPR and TPR repeats
(Das et al., 1998; Ban et al., 2013). This a-helical structure of the
OPR repeats is further supported by the prediction of the 3D
structure of the region representing OPR repeats 1 to 3 (Figure 1C).

Interestingly, similarity searches revealed also only a single
orthologous OPR gene in representative land plant genomes
investigated, including the moss P. patens (Supplemental Figure 1A).
The analysis of these OPR proteins showed clear conservation at
the C terminus, including the OPR repeats and the RAP domain,
indicating a monophyletic origin, whereas the N-terminal region is
more variable (Supplemental Figure 1A). Like RAP, all analyzed
orthologs are predicted to possess an organellar targeting signal
(Supplemental Figure 1B).

Loss of RAP Impairs Translation in Chloroplasts

To characterize the function of RAP, we analyzed the Arabi-
dopsis mutant line rap-1, which carries a T-DNA insertion in the
third exon of the RAP gene (Figure 2A). Homozygous mutants
were obtained from the T3 generation (Supplemental Figure 2B).
The Arabidopsis rap-1 mutant (previously called atrap-1) was
reported by Katiyar-Agarwal et al. (2007) to lack the full-length
RAPmRNA and to exhibit retarded growth and a photobleached
phenotype. We confirmed this phenotype, and we also uncovered
a defect in photosynthetic activity in rap-1 based on our mea-
surements of the maximal efficiency of photosystem II (PSII) pho-
tochemistry (Figure 2B).

The phenotype of rap-1 was complemented by introducing an
RAP cDNA (Figure 2B). Even though 3-week-old complemented
plants displayed slightly variegated and more serrated leaves
than the wild type, their photosynthetic performance (as indicated
by ratios of variable tomaximum chlorophyll fluorescence [Fv/Fm])
was restored (Figure 2B). Except for a slightly retarded growth,
5-week-old plants displayed an almost completely wild-type
phenotype. Because the introduced RAP sequence was expressed
under control of the strong constitutive cauliflowermosaic virus 35S

promoter, the variegated leaf phenotype in younger plants suggests
a dose-dependent function of RAP during early developmental
stages. However, even though unlikely, we cannot formally ex-
clude a second mutation in rap-1 that might be responsible for
the incomplete restoration of the wild-type phenotype in young
complemented plants.
Because photosynthesis was clearly affected in rap-1, we ana-

lyzed the levels of core proteins of photosynthetic complexes in
the rap-1mutant line (Figure 2C). Whereas amounts of the nucleus-
encoded light-harvesting complex II (LHCII) proteins were found to
be unaffected in rap-1, amounts of all chloroplast-encoded pro-
teins tested, including the PSII reaction center protein D1, the
photosystem I reaction center protein PsaA, and the large subunit
of Rubisco (RbcL), were clearly reduced.
We next investigated the de novo synthesis rates of chloro-

plast-encoded proteins by performing in vivo 35S pulse-labeling
experiments. As shown in Figure 2D, the overall protein syn-
thesis rate was markedly lower in rap-1 relative to the wild type.
The analysis of chloroplast transcripts revealed reductions in the
steady state levels of most of the analyzed mRNAs, like rbcL, atpA,
and petA, although the psbA transcript was present in wild-type
amounts (Figure 2E). Most strikingly, inspection of the ethidium
bromide–stained rRNAs used as a loading control uncovered a
dramatic reduction in plastid 16S rRNA in mutant plants, whereas

Figure 1. Structural Features of the Arabidopsis RAP Protein.

(A) RAP protein structure. The plastid transit sequence predicted by
TargetP (Emanuelsson et al., 1999) is shown as a black box. OPR repeats
are depicted as gray boxes and the C-terminal RAP domain as a light-
gray box. Several characteristic amino acids are indicated above the
diagram. aa, amino acids.
(B) Sequence alignment of the four OPR repeats in RAP displayed with
GeneDoc (Nicholas and Nicholas, 1997). Amino acid positions describing
the beginning and end of the respective repeat are indicated in gray. The
two a-helices in each repeat predicted by Jpred (www.compbio.dundee.
ac.uk/www.jpred; Cole et al., 2008) are depicted above the sequences.
(C) 3D protein structure prediction. The structure model for the con-
secutive OPR tract including repeats 1 to 3 (amino acids 333 to 446) was
predicted with the Phyre2 server (http://www.sbg.bio.ic.ac.uk/phyre2/;
Kelley and Sternberg, 2009). The first (E333) and last (F446) amino acids
are indicated. Rainbow coloring is shaded from blue (N-terminal site) to
red (C-terminal site).
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the cytoplasmic 18S rRNA and plastid 23S rRNAs accumulated
normally (Figure 2E, bottom panel). Because 16S rRNA is required
for ribosome assembly, and, therefore, for translation in chloroplasts,
these data are consistent with the observed general decrease in
chloroplast protein synthesis (Figure 2D) and explain the growth-
retarded, chlorotic phenotype of rap-1 mutants (Figure 2B).

RAP Is Required for Maturation of 16S rRNA

Chloroplast 16S rRNA is cotranscribed with 23S, 4.5S, and 5S
rRNAs, as well as two tRNAs, yielding a single RNA precursor
that undergoes a complex series of processing events (Figure
3A). To investigate these events in detail, RNA gel blot analyses
were performed on total leaf RNAs from 3-week-old wild-type
and rap-1 plants using rRNA-specific probes (Figure 3B).
We detected equal amounts of the full-length (7.4 kilonucleotides

[knt]) rRNA precursor in rap-1 and the wild type, indicating that
accumulation of the full-length precursor rRNA is not significantly
altered in the mutant (Figure 3B, probes A, C, and D). However, as
suggested by the ethidium bromide–stained gels (Figures 2E and
3B), much less of the mature 16S rRNA of ;1.5 knt is present
in rap-1 (Figure 3B, probe B), whereas probes specific for 16S
rRNAs retaining unprocessed 59 and 39 ends revealed a dramatic
accumulation of such 16S precursors in rap-1 (Figure 3B, probes
A and C). Both 59- and 39-specific probes detected a 16S rRNA
precursor of ;1.9 knt. In addition, the 59 probe detected a less
abundant ;1.7-knt precursor that was not identified with the 39
probe. This indicates that some, albeit incomplete, processing of
the 39 end of the immature 1.9-knt 16S species occurs, leading to
the accumulation of 59 unprocessed but 39 processed 16S rRNAs.
Thus, failure to process the 59 end does not preclude trimming of
the 39 end. In contrast with 16S rRNA maturation, processing and
accumulation of 23S, 4.5S, and 5S rRNAs were not affected in
rap-1 (Figure 3B, probes D to F). Moreover, wild-type levels of
mature 16S rRNAwere restored in rap-1mutants transformed with
RAP cDNA, confirming that the lack of RAP is responsible for the
defect in the maturation of 16S rRNA (Figure 3C).
To identify the 59 ends of the 16S-related transcripts that

accumulate in the rap-1 mutant, a primer extension analysis was
performed (Figures 4A and 4B). In agreement with the RNA gel
blot analysis, the total amount of correctly 59 processed, mature
16S RNA was appreciably reduced in the rap-1 mutant relative
to the wild type (Figure 4B). By contrast, pre-16S rRNA 59 ends
originating from initiation at the P2 promoter at position 2112
(transcribed from the plastid-encoded RNA polymerase PEP), as
well as from processing at position231, were clearly more abundant
in the rap-1 mutant. In addition to these known 16S rRNA 59
ends, we observed some transcript ends downstream of P2 that
are more abundant in rap-1 than in the wild type and are likely to
represent unspecific processing and/or degradation products
(Figure 4B). Taken together, these data indicate that maturation
of 16S rRNA is inefficient in the absence of RAP.

RAP Functions by Binding to the 16S rRNA Precursor

A recent analysis of RNA deep-sequencing data sets identified
50 small RNAs (sRNAs) in the chloroplast of Arabidopsis, which
are hypothesized to represent footprints of RNA binding proteins

Figure 2. Characterization of the rap-1 Mutant.

(A) Schematic depiction of the T-DNA insertion site in rap-1. Exons are
shown as gray boxes, 59 and 39 UTRs as thinner gray boxes, and introns
as black lines. The exact position of the T-DNA insertion site within the
RAP gene in rap-1, identified by sequencing the DNA flanking the in-
sertion site (Supplemental Figure 2A), is indicated (position +1866/1877
with respect to the translation initiation site). Primers used to identify
homozygous mutants are indicated by the arrows above the gene model
(Supplemental Figure 2B). The T-DNA insert is not drawn to scale.
(B)Growth phenotype of rap-1 and its complementation. The wild type, the
rap-1 mutant, and rap-1 complemented with RAP cDNA (35S:RAP) were
grown for 3 and 5 weeks as indicated. Fv/Fm values for 3-week-old plants
are shown in white numbers on the top three photographs. Bars = 1 cm.
(C) Accumulation of chloroplast-encoded proteins in rap-1. Total protein
extracts (30 µg) from 3-week-old wild-type and rap-1 plants were sub-
jected to immunoblot analysis using antibodies against the proteins in-
dicated on the right. b-Actin was used as the loading control. The RbcL
protein was detected with an antiserum raised against the spinach Ru-
bisco holoenzyme on a parallel, identical blot.
(D) In vivo translation assay. 35S-labeled thylakoid proteins from wild-
type and rap-1 plants were separated by SDS-PAGE. The Coomassie
blue–stained gel (CBB) and the autoradiograph (35S) are shown.
(E) Accumulation of chloroplast transcripts in rap-1. Total RNAs from
3-week-old wild-type and rap-1 plants were subjected to RNA gel blot
analysis using the gene-specific probes indicated on the right. rRNAs on the
ethidium bromide–stained gel were used as loading control (bottom panel).
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that protect them from degradation (Ruwe and Schmitz-Linneweber,
2012). Three such putative footprints had been identified within
the 16S precursor (Figure 4A; Supplemental Figure 3; Ruwe and
Schmitz-Linneweber, 2012). RNA probes spanning these pos-
sible RAP footprints were hybridized to total RNAs prepared
from wild-type or rap-1 plants and analyzed in an RNase pro-
tection assay (Figure 4C). With probes 2 and 3, protected fragments
were obtained in both the wild type and rap-1, indicating that
these two sRNAs accumulate independently of RAP (Figure 4C).
However, probe 1, spanning an 18-nucleotide footprint down-
stream of the P2 promoter (FP1), detected two sRNAs of 18 to
20 nucleotides in length that are protected by total RNA from the
wild type but not from rap-1 plants (Figure 4C; Supplemental
Figure 3). Weaker signals in this size range obtained for rap-1
were also detected when yeast tRNA was used as a negative
control, and these were therefore not considered as protected
fragments. Hence, these data strongly suggest that RAP medi-
ates its function by binding ;100 nucleotides upstream of the 59
end of the mature 16S rRNA. As RAP seems not to be involved
in the protection of the other two putative footprints within the

16S precursor rRNA, other RNA binding proteins, like PPRs,
might play a complementary or independent role in the 16S mat-
uration process.

RAP Interacts Directly with RNA in Vitro

To test for an intrinsic RNA binding activity of the recombinant
RAP (rRAP) protein, which would support its direct involvement
in sRNA protection, in vitro RNA binding assays were performed
(Figure 5). As expression of RAP in fusion with a glutathione
S-transferase tag resulted in very low overall expression levels,
the protein was fused to the maltose binding protein (MBP), which
had previously been used to successfully express PPR proteins
(Beick et al., 2008; Barkan et al., 2012). Using this system, rea-
sonably high expression levels and sufficient amounts of soluble
RAP protein were obtained. To exclude an interference of the
MBP tag with the RNA binding capacity of RAP, we proteolytically
removed the tag prior to RNA binding assays (Figure 5A).
An in vitro–transcribed RNA probe spanning the putative

binding site for RAP in the 16S 59 region (position 2117 to 268

Figure 3. Accumulation of 16S rRNA Precursors in rap-1 Plants.

(A) Schematic representation of the chloroplast rrn operon in Arabidopsis. Gray boxes indicate exons and white boxes introns. The P2 promoter is
represented by the bent arrow. Vertical arrows indicate processing sites in the primary transcript of the rrn operon. The locations of the probes used in
(B) are marked by gray lines under the operon (A to F). Positions of internal cleavage sites (hidden breaks) in the 23S rRNA are shown as gray triangles.
Black horizontal arrows below the operon indicate locations and sizes (in knt) of the primary transcript and the various processing products.
(B) RNA gel blot analyses of chloroplast rRNAs from the wild type and rap-1. Mature rRNAs and precursors were detected with probes A to F shown in
(A). Transcript sizes are indicated in knt to the right of each panel. Results for probe F were obtained by reprobing the filter shown for probe D. Ethidium
bromide–stained gels of rRNAs were used as loading controls, and the 16S rRNA is indicated by black arrowheads (bottom panels).
(C) Wild-type levels of mature 16S rRNA are restored in complemented rap-1 mutants. Total RNAs from 3-week-old wild-type, rap-1, and rap-1 plants
complementedwithRAP cDNAunder control of the35Spromoter (35S:RAP) were fractionated on a denaturing agarose gel and stainedwith ethidiumbromide.
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with respect to the start of the mature 16S rRNA), was cross-
linked to rRAP by irradiation with UV light. As positive control,
we used the RNA binding protein RBP40, which had previously
been shown to bind unspecifically to RNA in vitro (Schwarz et al.,
2012; Bohne et al., 2013). Purified MBP served as a negative
control. A single signal in the expected size range for rRAP (67 kD)
was observed, indicating that rRAP directly interacts with RNA and
that the protein preparation contains no substantial contaminating

RNA binding activities from Escherichia coli (Figure 5B). Since UV
cross-linking of RNA and protein leads to their covalent linkage,
this assay is not suitable for detection of RNA binding activities
under noncompetitive conditions.
We therefore employed filter binding assays that leave RAP in

its native state to determine the equilibrium constant (Kd) for the
binding reactions of RAP to different RNAs (Figure 6A). Besides
the putative target RNA (pre-16S 59 region), we included its
complementary sequence (as pre-16S 59 region) as well as se-
quences of the psbD 59 untranslated region (UTR) and the non-
coding trnN 59 region. All probes were similar in length and GC
content and exhibited a similar or lower propensity to form sec-
ondary structures than the specific probe (determined by calcu-
lation of the free energy DG of the thermodynamic ensemble of
RNA structures). Prior to the binding reactions, the integrity and
concentration of RNA probes was verified by gel electrophoresis
(Supplemental Figure 4A).
Whereas the Kd value obtained for the putative target RNA

was ;101 nM, and therefore similar to those measured for other
chloroplast RNA–protein interactions (Ostersetzer et al., 2005;
Hammani et al., 2012; Bohne et al., 2013), Kd values for the
psbD, trnN, and antisense probes were considerably higher and
could not be determined under these conditions. This supports
the specific binding of RAP to the footprint RNA identified in vivo
(Figure 4C) and suggests that RAP itself carries the main de-
terminants required for specific recognition of its binding site
within the 59 region of the precursor of 16S rRNA. However,
a slightly increased affinity of rRAP was observed for the 16S
antisense probe compared with the other nontarget probes.
In order to further substantiate the RNA binding specificity of

RAP, competition experiments using a similar filter binding as-
say were performed. Same amounts of rRAP were incubated
with the radiolabeled RNA probe containing its putative binding
site in the presence of either homologous or heterologous com-
petitor RNAs. The concentration and integrity of RNA probes was
again verified by gel electrophoresis (Supplemental Figure 4B). As
shown in Figure 6B, the competing effect was strongest when the

Figure 4. RAP Is Involved in 59 End Processing of 16S rRNA.

(A) Schematic representation of the 16S rRNA precursor in Arabidopsis.
Positions of the P2 (2112) promoter and the precursor processing site
(Pro, 231) are indicated with respect to the start of the mature transcript
(Lerbs-Mache, 2000). The primer (Pr) used for the primer extension
analysis shown in (B) as well as expected extension products are de-
picted as black or gray vertical arrows, respectively, above the gene
model. Positions of footprints (FP1-3) described by Ruwe and Schmitz-
Linneweber (2012) are shown as gray boxes (for sequences, see
Supplemental Figure 3). Probes used for the RNase protection assay in
(C), which span these footprints, are indicated as black lines below the
model (1 to 3). nt, nucleotides.
(B) Primer extension analysis of 16S rRNA 59 ends. Total RNAs from wild-
type and rap-1 plants were subjected to primer extension analysis using
the primer depicted in (A). Known 59 ends are indicated on the right. Sizes
of bands of single-stranded DNA markers are indicated on the left.
(C) RNase protection assay. Total RNAs from wild-type or rap-1 plants
were hybridized with the respective radiolabeled probe indicated below
the panel (cf. [A]) and treated with single-strand specific RNases A and
T1. Protected fragments were analyzed on a sequencing gel alongside
1/30 of the respective undigested hybridization probe (probe). Probes
incubated with yeast tRNA before RNase digestion (lane “tRNA”) were
used as a control. Black arrows mark fragments that are less abundant in
rap-1 and asterisks major fragments protected in both the wild type and
rap-1. Expected sizes of fragments were estimated from the running
fronts of xylene cyanol (;40 nucleotides) and bromophenol blue (;15
nucleotides) indicated on the right. Figure 5. rRAP Exhibits an Intrinsic RNA Binding Capacity.

(A) Purification of rRAP protein. Coomassie blue–stained SDS-PAGE gel
showing the affinity-purified rRAP protein after removal of the maltose
binding protein tag that was electrophoresed alongside authentic MBP.
Mobilities of size markers are indicated on the left. Note that the two
samples were electrophoresed on the same gel but not in adjacent lanes.
(B) UV cross-linking experiment. Purified rRAP protein, together with two
control proteins (MBP and the RNA binding protein RBP40), was ana-
lyzed after UV cross-linking in the presence of a radiolabeled RNA probe
corresponding to the 16S region spanning FP1 (pre-16S 59 region). Sizes
of marker bands are given in kilodaltons on the left.
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homologous RNA was used, thereby confirming a specific bind-
ing of RAP to the 16S 59 probe. In agreement with data from
the binding curves, the competition experiments revealed an in-
creased competition effect of the antisense probe compared with
the trnN and psbD probes. Interestingly, a comparison of sense
and antisense sequences elucidated a sequence of eight identical
nucleotides corresponding to the 39 end of the identified footprint
(Supplemental Figure 5A). Hence, the antisense probe includes
approximately half of the putative RAP binding site, and this most
likely accounts for the somewhat higher affinity of RAP to this
RNA compared with the other nonspecific RNAs.

RAP Associates with Chloroplast Nucleoids

Little is known about the spatial organization of the process of
rRNA maturation in chloroplasts. So far, evidence derives from
recent proteomic data from maize, which suggest that the nucle-
oid, the site of the chloroplast genome, and a region of DNA-RNA-
protein assembly is the major location of ribosome assembly and
rRNA processing in the chloroplast (Majeran et al., 2012). We
therefore attempted to determine whether RAP is targeted to
chloroplasts and to determine its suborganellar localization. For
this purpose, green fluorescent protein (GFP) was fused to the
C-terminal end of RAP and transiently expressed in tobacco
(Nicotiana benthamiana) protoplasts under the control of a cauli-
flowermosaic virus 35S promoter. As shown in Figure 7, the fusion
protein accumulated in distinct spots overlapping the chlorophyll
autofluorescence of the chloroplasts. Furthermore, the RAP-GFP
signal was colocalized with 49,6-diamidino-2-phenylindole (DAPI)–
stained nucleoid DNA, indicating its association with the nucleoids
and thus supporting the idea that the nucleoid is the site of 16S
rRNA maturation.

DISCUSSION

RAP Is an RNA Binding Protein Assisting in Maturation of
16S rRNA

Because of the importance of OPR proteins in chloroplast RNA
metabolism in algae, the precise molecular role of RAP, a negative

Figure 6. rRAP Binds Preferentially to the 59 Region of the 16S Precursor
Transcript.

(A) Determination of RNA binding curves. Binding reactions containing
6 pM 32P-labeled RNA of each indicated RNA and increasing molarities
of rRAP were filtered through stacked nitrocellulose and nylon membranes

using a dot-blot apparatus (top panel). Signal intensities for nitrocellulose-
bound protein-RNA complexes (bound) as well as nylon membrane–bound
free RNAs (free) were quantified by phosphor imaging. The binding curves
were determined from three experiments performed as triplicates with the
same rRAP preparation (bottom panel). Calculated means are shown with
standard deviations indicated by error bars. The equilibrium binding con-
stant (Kd) of rRAP and the pre-16S 59 region probe was determined to be
101 nM as indicated.
(B) Competition experiments. Binding reactions containing rRAP protein,
32P-labeled RNA of the pre-16S 59 region, and the indicated molar excess
of competitor RNAs representing the homologous RNA, sequences of the
psbD 59 UTR, the trnN 59 noncoding region, or the antisense sequence of
the radiolabeled pre-16S 59 region (as pre-16S 59 region), respectively, were
treated as described in (A). Signal intensities obtained for each reaction
without competitor RNA were set to 1. Three independent experiments
were performed as triplicates for each reaction, and calculated means are
shown with standard deviations indicated by error bars (bottom panel).

782 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.114.122853/DC1


regulator of plant defense and the only OPR in Arabidopsis, is of
particular interest. We investigated the RAP knockout line rap-1
(Katiyar-Agarwal et al., 2007), which exhibits slow growth and
impaired photosynthesis (Figure 2B). We found that protein syn-
thesis in the chloroplast was severely affected as the consequence
of a specific defect in the trimming/processing of the chloroplast
16S rRNA precursor transcript (Figures 2C to 2E, 3B, and 4B).
Similar to E. coli, rRNA maturation and ribosome assembly in the
chloroplast are closely linked processes, as indicated by altered
ribosome biogenesis in rRNA maturation mutants (Bisanz et al.,
2003; Williams and Barkan, 2003; Schmitz-Linneweber et al.,
2006; Bollenbach et al., 2007). Defects in rRNA maturation can
lead to reduced polysomal loading in these mutants and con-
sequently can result in reduced chloroplast translation (Barkan,
1993; Bellaoui et al., 2003; Beligni and Mayfield, 2008; Sharwood
et al., 2011). As suggested by Bisanz et al. (2003) for the Arabi-
dopsis Dal mutant, which similar to rap-1 accumulates 16S rRNA
precursors, we also propose that the accumulation of these
precursors in the rap-1 mutant diminishes translational efficiency
by preventing the formation of active ribosomes. In E. coli, it has
been reported that complete processing of the 16S rRNA requires
the association with the ribosomal 30S subunit, and the final
maturation steps are thought to take place in polysomes (Shajani
et al., 2011). Moreover, in vitro reconstitution assays revealed that
the bacterial 30S subunits containing 16S precursors are inactive,
suggesting that the processing of the 16S rRNA is required for
protein synthesis (Wireman and Sypherd, 1974). However, recent
data reveal that extensions at the 16S 59 end have little effect on
ribosome assembly itself, and it is rather assumed that the 16S
leader sequences preclude appropriate 16S folding required for
translational fidelity of the ribosome (Roy-Chaudhuri et al., 2010;
Gutgsell and Jain, 2012).

Most chloroplast mRNAs investigated in rap-1 were also
less abundant than in the wild type (Figure 2E). Consistently,
lower steady state levels of several chloroplast mRNAs have
previously been found in other mutants defective in rRNA
maturation, suggesting that such transcripts require ribosomal
loading and/or translation for efficient stabilization (Barkan, 1993;
Yamamoto et al., 2000; Bisanz et al., 2003). RAP probably me-
diates its function by directly binding, via its OPR domain, to the
59 end of the 16S rRNA precursor (Figures 4C, 5, and 6). RNA
binding activity of OPR repeats has recently been demonstrated

for the translation initiation factor Tab1 from C. reinhardtii (Rahire
et al., 2012). However, more detailed molecular work will be
required to define the individual contributions of each of the
repeats in RAP to the recognition of its target RNA.
Since plastid RNases that are thought to participate in 16S

rRNA maturation (e.g., RNase J and RNase R) are assumed to
have little or no intrinsic sequence specificity, one may specu-
late that RAP might facilitate 16S maturation by conferring
sequence specificity on these enzymes (Stoppel and Meurer,
2012; Germain et al., 2013). If so, it would functionally resemble
the RHON1 protein from Arabidopsis, which has been suggested
to bind to the 59 end of chloroplast 23S rRNA and confer se-
quence specificity on endonuclease RNase E (Stoppel et al.,
2012). A possible joint function of RNase J and RAP in 16S 59
end maturation is supported by an analysis of RNase J–deficient
Arabidopsis and tobacco plants, which reveal, similar to rap-1
plants, a decreased accumulation of mature 16S rRNA as well
as a series of 59 extensions of 16S rRNA (Sharwood et al., 2011).
Moreover, an interactive role of RNase J and helical repeat
proteins has been recently reported by Luro et al. (2013). Here,
the authors postulated that RNase J trims chloroplast mRNA 59
ends to mature forms defined by bound PPR proteins. However,
if and how RAP and RNase J interact for 16S 59 end maturation
remains elusive.
Alternatively, it is also conceivable that binding of RAP facilitates

the accessibility of sequence-specific RNase(s) and/or accessory
factors by modifying secondary structures in the 16S precursor 59
region (compare with Supplemental Figure 5) or that RAP itself
reveals an intrinsic RNase activity.
Furthermore, our finding that RAP is associated with nucle-

oids provides cytological evidence for a sublocalized 16S rRNA
processing in the chloroplast (Figure 7). This is further sustained
by the identification of the maize ortholog in the nucleoid pro-
teome (Majeran et al., 2012) and strongly supports the idea that
chloroplast transcription and ribosome assembly are tightly coupled
(Majeran et al., 2012; Germain et al., 2013). Interestingly, only
recently, the E. coli pre-16S rRNA 59 leader region has been
shown to associate with the nucleoid, and this association depends
on RNase III, which participates in the maturation of pre-rRNAs

Figure 7. RAP Is Associated with Chloroplast Nucleoids.

Confocal laser scanning microscopy of tobacco protoplasts transiently
expressing RAP fused to GFP (RAP-GFP). The autofluorescence of
chloroplasts is shown in red (Chl). To visualize chloroplast nucleoid DNA,
the protoplasts were stained with DAPI. The merged images reveal
colocalization of the RAP-GFP and DAPI signals in the chloroplasts
(Merged). Bars = 10 µm.

Figure 8. Conservation of the Putative RAP Binding Site.

Alignment of the 16S 59 region corresponding to footprint 1 in Arabi-
dopsis (Supplemental Figure 3) with respective segments of the 16S 59
region of indicated species. Black shading represents 100% conserva-
tion and dark gray and gray 80 and 60%, respectively. For sequence
accession numbers, see Methods.
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(Malagon, 2013). One might therefore also speculate that RAP
plays a role in nucleoid localization of the chloroplast 16S pre-
cursor by binding to its 59 end.

Evolutionary Conservation of RAP Function

The conservation of a single orthologous OPR in most land
plants, the identification of the maize OPR in the nucleoid pro-
teome, and the predicted presence of an organellar transit se-
quence in all OPR orthologs analyzed prompted us to speculate
that, like RAP, they too function in plastid 16S rRNA metabo-
lism. In the dicots so far analyzed, this possibility is supported
by the perfect conservation of the putative RAP footprint in the
corresponding 16S precursors, whereas sequences from mono-
cotyledonous plants reveal an insertion of three nucleotides
(Figure 8). Interestingly, the sequence is least conserved in P. patens
and reveals three nucleotide exchanges compared with the ana-
lyzed dicotyledonous plant sequences (Figure 8). As the P. patens
OPR protein also exhibits the lowest degree of conservation rel-
ative to other plant OPRs examined (Supplemental Figure 1A),
this might reflect coevolution of the OPR proteins with their re-
spective binding sites. However, whether and how these OPRs
are involved in plastid rRNA metabolism in organisms other than
Arabidopsis remains to be elucidated. Nonetheless, based on the
function of RAP in the basic process of rRNA maturation and its
conservation in land plants, it is tempting to speculate that RAP
played an important role during the early evolutionary development
of the chloroplast.

Remarkably, no obvious ortholog of RAP can be identified by
sequence similarity searches of the C. reinhardtii genome. Con-
sistently, there is no obvious conservation of the putative foot-
print of RAP in the sequence upstream of the mature 16S rRNA in
the alga (Figure 8). In this context, it is especially noteworthy that
transcription of the 16S precursor in C. reinhardtii has been re-
ported to initiate downstream of the region in which the footprint
in Arabidopsis is located (Schneider et al., 1985).

A further question that arises is why, in contrast with algae,
Streptophyte genomes generally encode only a single OPR
protein. Given that a certain number of RNA binding proteins is
required to guarantee the specific and precise processing of
diverse organellar transcripts, including tRNA and rRNA pre-
cursors, it appears likely that members of the PPR protein family,
which is highly diverse in Streptophytes, have assumed many of
the roles performed by OPRs in algae.

RAP as a Negative Regulator of Plant Defense

Interestingly, a role of RAP as a negative regulator of plant dis-
ease resistance was previously noted because its expression is
downregulated via a small interfering RNA (Arabidopsis lsiRNA-1)
upon infection with Pseudomonas syringae (Katiyar-Agarwal et al.,
2007). Accordingly the rap-1 mutant, also used in this study, was
found to show higher resistance to this pathogen than the wild
type (Katiyar-Agarwal et al., 2007). However, the molecular func-
tion of RAP was not investigated further. Our analysis of RAP now
suggests a possible explanation: Induced downregulation of RAP
expression by Arabidopsis lsiRNA-1 upon pathogen infection could
contribute to a downregulation of chloroplast protein synthesis and

therefore reduce photosynthetic activity at the infection site. This
would agree with the local decrease in photosynthesis observed in
P. syringae–infected Arabidopsis leaves (Bonfig et al., 2006). How
this downregulation of photosynthesis then triggers further defense
measures against the pathogen remains to be clarified.

METHODS

Plant Material and Growth Conditions

Arabidopsis thaliana Columbia-0 (wild-type) and the rap-1 T-DNA line
(SAIL_1223_C10; Syngenta Arabidopsis Insertion Library T-DNA collection;
Sessions et al., 2002) were grown on soil under controlled greenhouse con-
ditions (70 to 90 mmol m22 s21, 16-h-light/8-h-dark cycles). T-DNA insertion
lines homozygous for rap-1were identified byPCRusing gene-specific (P1m
59-TTAAGGGTCAAGAGATTGCTC-39; P2, 59-AATCAAGCCCTGTACTTA-
TAAGAA-39) and T-DNA–specific (LB1, 59-GCCTTTTCAGAAATGGATAAA-
TAGCCTTGCTTCC-39) primers. For mutant complementation, the RAP
cDNA was cloned into the vector pH2GW7 using Gateway technology
(Invitrogen) to create the construct RAP/pH2GW7 (Karimi et al., 2002).
Homozygous rap-1 plants were transformed with Agrobacterium
tumefaciens strain GV3101 containing the construct RAP/pH2GW7 by
the floral dip method (Holsters et al., 1980; Zhang et al., 2006).

Chlorophyll Fluorescence Measurements

The maximum quantum yield of PSII of single leaves was calculated from
the Fv/Fm measured with a FluorCam 800 MF (Photon Systems Instru-
ments) according to the manufacturer’s instructions.

In Vivo Translation Assay of Thylakoid Proteins

In vivo radioactive 35S labeling of thylakoid proteins was performed as
described by Armbruster et al. (2010) using five Arabidopsis leaves each
from the wild type or the rap-1 mutant, harvested at the 12-leaf rosette
stage (of the wild type).

RNA Preparation and Transcript Analysis

Frozen leaves from 3-week-old plants were ground in liquid nitrogen, and
RNA was extracted using TriReagent (Sigma-Aldrich) according to the
manufacturer’s instructions. RNA gel blot analysis of total RNA from rap-1
and wild-type plants was performed using standard methods. Specific
transcripts were detected with digoxigenin-labeled PCR products.

In Vitro Synthesis of RNA and UV Cross-Linking to rRAP

To express the recombinant Arabidopsis RAP protein (rRAP), a cDNA se-
quence encoding amino acids 79 to 671 was inserted into the plasmid
pMAL-c5x (NewEnglandBiolabs). Expressionwas performed inEscherichia
coli Rosetta cells (Novagen) by induction with 0.5 mM isopropyl b-D-1-
thiogalactopyranoside for 3 h at 30°C. Purification of the recombinant
protein was performed according to the New England Biolabs protocol for
purification of MBP-tagged recombinant proteins, including the removal of
the MBP tag by proteolytic digestion with factor Xa. Recombinant RBP40
was expressed as previously described by Bohne et al. (2013). UV cross-
linking experiments were performed essentially as described by Zerges and
Rochaix (1998). The primers T7 top strand (59-atgtaatacgactcactataggg-39)
and rrn16 59 bottom (59-tacattatgctgagtgatatcccTCGCTTGAGGTACGC-
TTATACTTCGCGTACCTATGTTCAATACTGAAC-39) were annealed to create
a DNA template for in vitro synthesis of 59 pre-16S rRNA. The template
contained the T7 promoter (sequence in lowercase letters). Hybridized
primers were transcribed in vitro using T7 RNA polymerase and digested
with DNase I (Promega) according to themanufacturer’s protocol. Reactions
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were extracted with phenol-chloroform and ethanol precipitated. Binding
reactions were performed at room temperature for 5 min and contained
20 mM HEPES/KOH, pH 7.8, 5 mM MgCl2, 60 mM KCl, 500 ng protein,
and 100 kcpm of 32P-labeled RNA probe. Protein-bound RNA probes were
UV cross-linked (1 J/cm2), and nonbound 32P-RNA probes were digested
with 10 units of RNase One (Promega) for 20 min at 37°C. Samples were
fractionated by SDS-PAGE and analyzed by phosphor imaging.

Primer Extension and RNase Protection Assays

Aliquots (2 mg) of total leaf RNA were used for primer extension reactions
according to standard protocols (Sambrook and Russell, 2001). The
oligonucleotide (PE rrn16 coding 59-GGGCAGGTTCTTACGCGT-39) and
the marker (GeneRuler Low Range DNA Ladder; Thermo Scientific) were
end-labeled with [g-32P]ATP (Hartmann Analytic) using T4 polynucleotide
kinase (New England Biolabs). Unincorporated nucleotides were removed
with the QIAquick nucleotide removal kit (Qiagen) according to the man-
ufacturer’s instructions. Primer extensions were performed at 55°C with
Superscript III reverse transcriptase (Invitrogen), and the products were
fractionated on 6% polyacrylamide sequencing gels and analyzed by
phosphor imaging.

For RNase protection assays, probes were transcribed and radiolabeled
in vitro as described above using the following annealed primer pairs: probe 1
sRNA 16rrn59-1neu forward 59-taatacgactcactatagggTCATTCCAAGTC-
GTGGCTTGTATCCATGCGCTTCATATTC-39/sRNA 16rrn59-1neu reverse
59-attatgctgagtgatatcccAGTAAGGTTCAGTATTGAACATAGGTACGCGA-
AGTATAAG-39; probe 2 sRNA 16rrn59-2 forward 59-taatacgactcacta-
tagggCAGATGCTTCTTCCTTCGATATTCATTACGTTGATACTTA-39/sRNA
16rrn59-2 reverse 59-attatgctgagtgatatcccGTCTACGAAGAAGGAAG-
CTATAAGTAATGCAACTATGAAT-39; probe 3 sRNA 16rrn39 forward
59-taatacgactcactatagggGAAAAGTCCCTCTCGATTACGAAGAACCCATA-
AATCCAAA-39/sRNA 16rrn39 reverse 59-attatgctgagtgatatcccCTTTTC-
AGGGAGAGCTAATGCTTCTTGGGTATTTAGGTTT-39. The T7 promoter
sequence is given in lowercase letters. Probeswere gel purified and amounts
equivalent to 1 to 53 104 cpmwere hybridized to 2-µg aliquots of total RNA
in hybridization buffer (1.5 M KCl, 0.1 M Tris, pH 8.3, and 10 mM EDTA) at
42°C. RNase A and RNase T1 were added to the hybridization reactions to
final concentrations of 200 µg/mL or 5000 units/mL, respectively, and in-
cubated for 45 min at 37°C. Nucleic acids were ethanol precipitated, elec-
trophoresed on 12% sequencing gels, and analyzed by phosphor imaging.

Determination of RNA Binding Curves and Competition Experiments

The RNA binding curves and the Kd value for the specific RNA were
determined as described by Bohne et al. (2013). Binding reactions were
performed at room temperature for 15 min and contained 20 mM HEPES/
KOH, pH 7.8, 5 mMMgCl2, 60 mMKCl, 0.5 mg/mL heparin, and 6 pM of the
indicated 32P-labeled RNA probe. To generate templates for in vitro tran-
scription of RNAs the primer T7 top strand (59-atgtaatacgactcactataggg-39)
was annealed with rrn16 59 bottom (59-tacattatgctgagtgatatcccTCGCTT-
GAGGTACGCTTATACTTCGCGTACCTATGTTCAATACTGAAC-39), rrn16
59 antisense (59-tacattatgctgagtgatatcccAGCGAACTCCATGCGAATATGA-
AGCGCATGGATACAAGTATGACTTG-39), psbD (59-tacattatgctgagtgatatc-
ccTTGTAATTCCACAAGCCTTTACCAACTTCATCTACTTATCCTCCTAGC-39),
or trnN (59-tacattatgctgagtgatatcccGTACCCAACTCTTGCCCTTAACTTGA-
GATACTCTAGATTAGAGGGCAA-39). RNA was in vitro transcribed as de-
scribed above and probes were gel purified according to Ostersetzer et al.
(2005). Molarities of RNA probes were calculated based on the quantitation
of incorporated 32P-labeled UTP using a Mini Monitor G-M tube (Mini In-
struments). Further steps of the filter binding assays were performed as
described for the Kd value determination by Bohne et al. (2013). Results
were quantified using ImageQuantTL (GE Healthcare). For competition
experiments, reactions containing rRAP (600nM) and a 32P-labeled fragment
of the pre-16S 59 region (6 pM) premixed with increasing amounts of cold

competitor RNA were incubated in binding buffer (20 mM HEPES/KOH, pH
7.8, 5 mM MgCl2, and 60 mM KCl) at room temperature for 15 min. RNA in
vitro transcription (competitor RNAs with 1/1000 of [32P]UTP compared with
the labeled RNA probe), purification, quantification, and subsequent steps
were performed as described for the binding curves and above.

Agrobacterium-Mediated Transient Expression in Tobacco
(Nicotiana benthamiana)

The Arabidopsis RAP cDNA was cloned into the vector pK7FWG2 (Karimi
et al., 2002) using theGateway technology (Invitrogen). Transient expression
of the corresponding RAP-GFP construct was achieved by Agrobacterium-
mediated infiltration of 4-week-old tobacco leaves. To this end, 30 mL of
cultures of AGL-1 agrobacteria, previously transformed with the RAP-GFP
construct, were harvested by centrifugation and resuspended in induction
medium (10 mM MES/KOH, pH 6, 10 mM MgCl2, and 200 µM acetosyr-
ingone). Following incubation at 28°C for 2 h at 75 rpm, cells were re-
suspended in 5% Suc containing 200 mM acetosyringone, and tobacco
leaves were infiltrated with the cell suspension at OD600 = 0.7. Afterwards,
plants were kept in the greenhouse for 3 d, and protoplasts were isolated
according to Koop et al. (1996). GFP fluorescence was detected at 672 to
750 nm and chlorophyll autofluorescence monitored at 503 to 542 nm by
laser scanning microscopy (Leica TCS SP5/DM 6000B, argon laser, exci-
tation wavelength of 488 nm). For DNA staining, protoplasts were incubated
for 10minwith 1mg/mLDAPI anddirectly examinedwith aUV laser (excitation
wavelength 405 nm/ detection at 423 to 490 nm). All images were processed
with Leica SAF Lite software (Leica).

Accession Numbers

The Arabidopsis Genome Initiative locus identifier for RAP is At2g31890.
DNA sequence data from alignment in Figure 8 can be found in the GenBank
data library under the following accession numbers:Arabidopsis (AP000423.1),
Physcomitrella patens (AP005672), Oryza sativa (JN861110), Populus tri-
chocarpa (AC208093), Zea mays (AY928077), Spinacia oleracea (AJ400848),
Hordeum vulgare (EF115541), Brachypodium distachyon (EU325680), Vitis
vinifera (DQ424856), and Chlamydomonas reinhardtii (BK000554.2). Protein
sequence data from alignment in Supplemental Figure 1 can be found in the
GenBank data library under the following accession numbers: Arabidopsis
(AEC08600.1), P. trichocarpa (XP_002331644), Z. mays (DAA52984.1), and
O. sativa (NP_001050400.1). The P. patens sequence was obtained from the
cosmoss genome browser (Pp1s157_38G2, www.cosmoss.org).

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure 1. Sequence Alignment and Targeting Predic-
tions for RAP and Its Orthologs in Higher Plants and Moss.

Supplemental Figure 2. PCR Analysis of rap-1 Mutants.

Supplemental Figure 3. Distribution of Footprints within the 16S
rRNA Precursor.

Supplemental Figure 4. Integrity of Probes Used for RNA Binding
Assays in Figure 6.

Supplemental Figure 5. Formation of a Potential Stem Loop Structure
at the 16S rRNA Precursor 59 End.

Supplemental References.
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CORRECTIONOPEN

Kleinknecht, L., Wang, F., Stübe, R., Philippar, K., Nickelsen, J., and Bohne, A.-V. (2014). RAP, the sole octotricopeptide repeat

protein in Arabidopsis, is required for chloroplast 16S rRNA maturation. Plant Cell 26: 777–787.

In the course of on-goingwork, the authors realized that thereweremistakes in thedesign of primers used to generate templates for in

vitro transcription of RNA probes by the T7 RNA polymerase. Templates were generated by annealing primers with incorrectly

positioned T7 promoter sequence elements in reverse primers. Therefore, no RNA synthesis should have occurred. However, as

observed in native agarose gels as well as in the analysis of synthesized RNAs by RNase T1 digestion, misdesigned primers had

a strong self-annealing capacity leading to undefined RNAs of expected sizes. As even correctly designed primers showed self-

annealing, new experiments were performed either with PCR products used as templates for in vitro transcription or synthetic RNA

oligos.

While thegeneral conclusionon the functionofRAP in16S rRNAmaturation isnotaffectedby theseerrors, their consequence is that

the determination of the RAP binding site within the 16S precursor RNA (Figure 4C) as well as in vitro RAP binding affinities to RNAs

(Figure 6) were not correctly resolved, for which the authors apologize. The corrected experiments do not support binding of RAP to

FP1 as stated before. Instead, rRAP showed a higher affinity to the FP2 probe compared with the two other reported footprint

sequences. However, the affinity of rRAP for FP2 seems to be only moderately increased compared with FP1 and FP3, for which no

distinct footprint was detected (corrected Figures 4C and 6). Therefore, it is also possible that RAP binds to another sequencewithin

the 16S rRNA precursor or that additional determinants like overall rRNA structure or other trans-acting factors enhance selective

bindingofRAP to FP2 in vivo.Nonetheless, additional data provided in Figure 9 support a role ofRAP inprecise trimmingof themature

16S 5# end.

A brief description of the problems associated with each figure and corrections made is provided here, followed by side-by-side

presentation of the original and corrected figures and the new methods (and associated references) used to prepare the corrected

figures.

Figure 4B. The previously shown primer extension analysis in Figure 4B is correct and only replaced because an additional control

mutant defective in 16S rRNA processing, rbf1-1 (Fristedt et al., 2014), is included in the analysis. Note the apparent extension of the

“mature” 16S transcript in rap-1 compared with the wild-type and rbf1-1.

Figure 4C. Due to the high self-annealing capacity of primers, an annealing strategy of in vitro transcription templateswas considered

unsuitable for the generation of specific RNA probes. Consequently, the RNase protection experiment has been replaced by a RNA

gel blot analysis of respective footprints. These new data suggest that FP2 instead of the formerly described FP1 region represents the

RAP-dependent RNA footprint.

Figure 5. The experiment was repeated using a PCR product as template for the generation of in vitro transcribed RNA. The results

obtained are identical to those in the original figure and reveal an unspecific intrinsic RNA binding by rRAP.

Figure 6. The experiment was repeated using synthetic FP1-FP3-specific RNA oligos. rRAP showed a slightly higher affinity to FP2

compared with the other tested RNA oligos.

Figure 8. This figure is correct but represents an alignment of footprint 1 (FP1) sequences. As it is now possible that FP2 is the RAP

binding site, a new alignment of FP2 related sequences is provided.

Figure9.Toconfirmthe5#extensionof “mature”16S transcripts in rap-1observed inFigure4C,weadditionallymappedprecise5#and
3# ends of 16S-related transcripts by circular RT-PCR (cRT-PCR). In contrast to rbf1-1 and the wild type, we could not detect any

transcript in rap-1withacorrectmature5#end.All transcriptsstartedeitheratP2,Pro-29,orhada1-nucleotideextension (startingat21).

In addition,we foundmany transcripts in rap-1with truncated5#and3#ends.While16Sprecursors startingat2112 (P2) or229 (Pro) and

with longer 3# extensions/truncations were occasionally observed also in thewild type or rbf1-1, we never detected any 5# 1-nucleotide
extensions in these plants.

OPENArticles can be viewed without a subscription.
www.plantcell.org/cgi/doi/10.1105/tpc.16.00094
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Figure 4B. Original: Primer Extension Analysis of 16S rRNA 5# Ends.

Total RNAs from wild-type and rap-1 plants were subjected to primer

extension analysis using the primer depicted in (A). Known 5# ends are

indicated on the right. Sizes of bands of single-stranded DNA markers

are indicated on the left.

Figure 4C. Original: RNase Protection Assay.

Total RNAs from wild-type or rap-1 plants were hybridized with the

respective radiolabeled probe indicated below thepanel (cf. [A]) and treated

with single-strand specific RNases A and T1. Protected fragments were

analyzed on a sequencing gel alongside 1/30 of the respective undigested

hybridization probe (probe). Probes incubated with yeast tRNA before

RNase digestion (lane “tRNA”) were used as a control. Black arrows mark

fragments that are less abundant in rap-1 and asterisks major fragments

protected in both the wild type and rap-1. Expected sizes of fragments were

estimated from the running fronts of xylene cyanol (;40 nucleotides) and

bromophenol blue (;15 nucleotides) indicated on the right.

Figure 4B. Corrected: Primer Extension Analysis of 16S rRNA 5# Ends.

Total RNAs from wild-type, rbf1-1, and rap-1 plants were subjected to

primer extension analysis using the primer depicted in (A). Known 5#
ends are indicated on the right. Sizes of bands of single-stranded DNA

markers are indicated on the left.

Figure 4C. Corrected: Analysis of Small RNAs in rap-1.

RNA gel blot analyses of small RNAs from the wild type, rap-1, and

an additional control RNA from the Arabidopsis rbf1-1 mutant, described to

also reveal a defect in 16S rRNA processing (Fristedt et al., 2014). Thirty

micrograms of total leaf RNA was fractionated in denaturing polyacrylamide

gels and transferred to a charged nylon membrane. DNA oligonucleotides

that mimic each sRNA (FP1-FP3) were run in adjacent lanes. DNA probes

used, which are complementary to the respective small RNA, are indicated

on the left. Note that single-strandedDNAmigrates slightly faster than single-

stranded RNA. As a positive control, we used microRNA miR163 (Ha et al.,

2009). Two small RNAs specific to FP2 that were only detected in the wild

type and rbf-1, but not in the rap-1mutant, are indicated by black arrows. A

representative ethidium bromide-stained gel is shown to demonstrate equal

loading.
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Figure 5. Original: rRAP Exhibits an Intrinsic RNA Binding Capacity.

(A) Purification of rRAP protein. Coomassie blue–stained SDS-PAGE gel

showing the affinity-purified rRAP protein after removal of the maltose

binding protein tag that was electrophoresed alongside authentic MBP.

Mobilities of size markers are indicated on the left. Note that the two

samples were electrophoresed on the same gel but not in adjacent lanes.

(B) UV cross-linking experiment. Purified rRAP protein, together with two

control proteins (MBP and the RNA binding protein RBP40), was

analyzed after UV cross-linking in the presence of a radiolabeled RNA

probe corresponding to the 16S region spanning FP1 (pre-16S 5# region).
Sizes of marker bands are given in kilodaltons on the left.

Figure 5. Corrected: rRAP Exhibits an Intrinsic RNA Binding Capacity.

(A) Purification of rRAP protein. Coomassie blue–stained SDS-PAGE gel

showing the affinity-purified rRAP protein after removal of the maltose

binding protein tag that was electrophoresed alongside authentic MBP.

Mobilities of size markers are indicated on the left.

(B) UV cross-linking experiment. Purified rRAP protein, together with two

control proteins (MBP and the RNA binding protein RBP40), was analyzed

after UV cross-linking in the presence of a radiolabeled RNA probe

corresponding to the 5# pre-16S region. Sizes of marker bands are given in

kilodaltons on the left.

The PCRproduct used asDNA template for in vitro synthesis of the 5# pre-16S
rRNA regionwas amplified using the following set of primers: 16S 5# (2139) T7

forward (5#-taatacgactcactatagggGGTAGGGGTAGCTATATTTCTG-3#) and

16S 5# (157) reverse (5#-ATGTGTTAAGCATGCCGC-3#).
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Figure 6. Original: rRAP Binds Preferentially to the 5# Region of the 16S

Precursor Transcript.

(A) Determination of RNA binding curves. Binding reactions contain-

ing 6 pM 32P-labeled RNA of each indicated RNA and increasing

molarities of rRAP were filtered through stacked nitrocellulose and

nylon membranes using a dot-blot apparatus (top panel). Signal

intensities for nitrocellulose bound protein-RNA complexes (bound) as

well as nylon membrane–bound free RNAs (free) were quantified by

phosphor imaging. The binding curves were determined from three

experiments performed as triplicates with the same rRAP preparation

(bottom panel). Calculated means are shown with standard deviations

indicated by error bars. The equilibrium binding constant (Kd) of rRAP

and the pre-16S 5# region probe was determined to be 101 nM as

indicated.

(B) Competition experiments. Binding reactions containing rRAP protein,
32P-labeled RNA of the pre-16S 5# region, and the indicated molar

excess of competitor RNAs representing the homologous RNA,

sequences of the psbD 5# UTR, the trnN 5# noncoding region, or the

antisense sequence of the radiolabeled pre-16S 5# region (as pre-16S 5#
region), respectively, were treated as described in (A). Signal intensities

obtained for each reaction without competitor RNA were set to 1. Three

independent experiments were performed as triplicates for each

reaction, and calculated means are shown with standard deviations

indicated by error bars (bottom panel).

Figure 6. Corrected: RNA Binding Specificity of rRAP to Footprint

Regions within the 16S Precursor Transcript.

(A) Determination of RNA binding curves. Binding reactions containing

6 pM 32P-labeled RNA of each indicated RNA and increasing molarities

of rRAP were filtered through stacked nitrocellulose and nylon membranes

using a dot-blot apparatus (top panel). Signal intensities for nitrocellulose-

bound protein-RNA complexes (bound) as well as nylonmembrane–bound

free RNAs (free) were quantified by phosphor imaging. The binding curves

were determined from three experiments performed as triplicates (bottom

panel). Calculated means are shown with standard deviations indicated by

error bars. The equilibrium binding constant (Kd) of rRAP and the FP2

probe was determined to be ;100 nM as indicated.

(B) Competition experiments. Binding reactions containing rRAP protein,
32P-labeled FP2 RNA, and the indicated molar excess of competitor

RNAs representing unlabeled FP1, FP2, and FP3 RNA oligos, respectively,

were treated as described in (A). Signal intensities obtained for each

reaction without competitor RNA were set to 1. Three independent

experiments were performed as triplicates for each reaction, and

calculated means are shown with standard deviations indicated by error

bars (bottom panel).
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Figure 8. Original: Conservation of the Putative RAP Binding Site.

Alignment of the 16S 5# region corresponding to footprint 1 in

Arabidopsis (Supplemental Figure 3) with respective segments of the

16S 5# region of indicated species. Black shading represents 100%

conservation and dark gray and gray 80 and 60%, respectively. For

sequence accession numbers, see Methods.

Figure 8. Corrected: Conservation of the Potential RAP Binding Site.

Alignment of the 16S 5# region corresponding to footprint 2 in

Arabidopsis (Supplemental Figure 3) with respective segments of the

16S 5# region of indicated species. Black shading represents 100%

conservation and dark gray and gray 80 and 60%, respectively. For

sequence accession numbers, see Methods.

Figure 9. cRT-PCR.

16S rRNA ends were deduced from cRT-PCR clones (n ¼ 20). Each bar represents a single clone. A schematic representation of a part of the

chloroplast rrn operon is shown above the diagram. Dark-gray boxes indicate exons, white boxes introns, and light-gray boxes predicted footprints. The

P2 promoter is represented by a bent arrow. The vertical arrow indicates the mapped processing site at229 with respect to the start of the mature 16S

rRNA (previously annotated as “Pro-31” in Bisanz et al., 2003). Black horizontal arrows indicate the positions and directions of the cRT-PCR primer pair.
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METHODS

RNA Preparation and Transcript Analysis

Frozen leaves from 3-week-old plants were ground in liquid nitrogen, and RNA was extracted using TRI Reagent (Sigma-Aldrich) according to the

manufacturer’s instructions. RNA gel blot analysis of total RNA from rap-1 and wild-type plants was performed using standard methods. Specific

transcripts were detected with digoxigenin-labeled PCR products.

RNA gel blots for detection of small RNAswere basically performed as described by Zhelyazkova et al. (2012). Before hybridization, RNAswere cross-

linked to themembrane using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride according to Pall andHamilton (2008). The oligonucleotides

used as probes (FP1, 5#-TCCATGCGCTTCATATTC-3#; FP2, 5#-GCATTACTTATAGCTTCCTT-3#; FP3, 5#-ATACCCAAGAAGCATTAGCTCTCC-3#;
miR163, 5#- ATCGAAGTTCCAAGTCCTCTTCAA-3#) were end-labeledwith [g-32P]ATP (Hartmann Analytic) using T4 polynucleotide kinase (NewEngland

Biolabs).Unincorporatednucleotideswere removedwith theQIAquicknucleotide removal kit (Qiagen) according to themanufacturer’s instructions. Three

DNA oligonucleotides (FP1, 5#-GAATATGAAGCGCATGGA-3#; FP2, 5#-AAGGAAGCTATAAGTAATGC-3#; FP3, 5#-GGAGAGCTAATGCTTCTTGGGTAT-3#)
that mimic each sRNA were run on the gel as controls.

Determination ofRNABindingCurves andCompetitionExperiments

TheRNAbinding curves and theKd value for the specificRNAwere determined as described byBohne et al. (2013). Synthetic RNAoligos (IntegratedDNA

Technologies; FP1, 5#-CGAAUAUGAAGCGCAUGGAUACAA-3#; FP2, 5#-GAAGGAAGCUAUAAGUAAUGCAAC-3#; and FP3, 5#-GGAGAGCUAAUG-

CUUCUUGGGUAU-3#) were 5#-labeled as described above, and probes were gel purified according to Ostersetzer et al. (2005). Binding reactions were

performedat roomtemperature for15minandcontained20mMHEPES/KOH,pH7.8, 5mMMgCl2, 60mMKCl, and6pMof the indicated 32P-labeledRNA

probe. Further steps of the filter binding assayswereperformed asdescribed for theKd value determinationbyBohne et al. (2013). Resultswere visualized

on a Storm phosphor imager and quantified using ImageQuantTL (GE Healthcare).

For competition experiments, reactions containing rRAP (600 nM) and the 32P-labeled synthetic RNA oligo for FP2 (6 pM) premixed with increasing

amounts of cold competitorRNAwere incubated in binding buffer (20mMHEPES/KOH,pH7.8, 5mMMgCl2, 60mMKCl, and 0.5mg/mLheparin) at room

temperature for 15 min. Subsequent steps were performed as described for the binding curves.

cRT-PCR

The cRT-PCRmethodwasbasically performed asdescribed previously (Zimmer et al., 2012;Hotto et al., 2015). Twoand ahalfmicrograms of circularized

wild-type, rap-1, and rbf1-1 RNAs were reverse transcribed using SuperScript III with a gene-specific oligo (16S 5# cRT-PCR F1, 5#-CACCCGTCCGC-

CACTGGAAACACCA-3#). Twenty percent of the RT reaction was used for amplification with the same oligo as before and an oligo binding close to the 3#
endof the16S rRNA (16S3# cRT-PCRR1, 5#-CTTAACCGCAAGGAGGGGGGTGCCGAA-3#) usingaTaqpolymerase. PurifiedPCRproducts (NucleoSpin

Gel and PCR clean-up; Macherey-Nagel) were cloned with the CloneJET PCR cloning kit (Thermo Fisher Scientific) and sequencedwith custom primers.

REFERENCES

Bisanz, C., Bégot, L., Carol, P., Perez, P., Bligny, M., Pesey, H., Gallois, J.-L., Lerbs-Mache, S., and Mache, R. (2003). The Arabidopsis nuclear

DAL gene encodes a chloroplast protein which is required for the maturation of the plastid ribosomal RNAs and is essential for chloroplast

differentiation. Plant Mol. Biol. 51: 651–663.

Bohne, A.-V., Schwarz, C., Schottkowski, M., Lidschreiber, M., Piotrowski, M., Zerges, W., and Nickelsen, J. (2013). Reciprocal regulation of

protein synthesis and carbon metabolism for thylakoid membrane biogenesis. PLoS Biol. 11: e1001482.

Fristedt, R., Scharff, L.B., Clarke, C.A., Wang, Q., Lin, C., Merchant, S.S., and Bock, R. (2014). RBF1, a plant homolog of the bacterial ribosome-

binding factor RbfA, acts in processing of the chloroplast 16S ribosomal RNA. Plant Physiol. 164: 201–215.

Ha, M., Lu, J., Tian, L., Ramachandran, V., Kasschau, K.D., Chapman, E.J., Carrington, J.C., Chen, X., Wang, X.-J., and Chen, Z.J. (2009). Small

RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc. Natl. Acad. Sci. USA 106:

17835–17840.

Hotto, A.M., Castandet, B., Gilet, L., Higdon, A., Condon, C., and Stern, D.B. (2015). Arabidopsis chloroplast mini-ribonuclease III participates in

rRNA maturation and intron recycling. Plant Cell 27: 724–740.

Ostersetzer, O., Cooke, A.M., Watkins, K.P., and Barkan, A. (2005). CRS1, a chloroplast group II intron splicing factor, promotes intron folding

through specific interactions with two intron domains. Plant Cell 17: 241–255.

Pall, G.S., and Hamilton, A.J. (2008). Improved northern blot method for enhanced detection of small RNA. Nat. Protoc. 3: 1077–1084.
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Supplemental Figure 2. PCR Analysis of rap-1 Mutants.  

(A) Determination of T-DNA insertion site in rap-1. PCR analysis was performed with primers LB1/P1 

(left panel) and LB1/ P2 (right panel) which amplify a sequence from both sites of the T-DNA insertion 

allele in RAP and the genomic flanking sequence. PCR products obtained were separated on an 

agarose gel alongside a size marker (marker lane not displayed) and subjected to sequence analysis 

to determine the exact site of T-DNA insertion. The positions of the gene- and T-DNA-specific primers 

used are depicted in Figure 2A. 

(B) Identification of mutants homozygous for the insertion in RAP. PCR analysis was performed with 

primers P1 and P2 which bind to the RAP gene up- and downstream of the T-DNA insertion site in 

rap-1. PCR products were separated on an agarose gel alongside a size marker (marker lane not 

displayed). For positions of primers see Figure 2A. 
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Supplemental Figure 3. Distribution of Footprints within the 16S rRNA Precursor. 

Positions of the PEP promoter (P2, -112) and the precursor processing site (Pro, -31) are indicated 

with respect to the 5’ end of the mature transcript. Footprints identified by Ruwe and Schmitz-

Linneweber (2012) are depicted as light grey boxes with given length and nucleotide sequences. 
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Supplemental Figure 4. Integrity of Probes used for RNA Binding Assays in Figure 6.  

(A) Integrity of probes used for binding curves (Figure 6A). 3 fmol of labeled RNA were loaded on a 

denaturing 10% polyacrylamide gel. The dye migration of xylene cyanol (~55 nt) and bromophenol 

blue (~18 nt) is indicated on the right. Slight differences in signal intensities of the competitor RNAs 

correlate with numbers of radiolabeled U-residues in each transcript.  

(B) Integrity of probes used for competition experiments (Figure 6B). 3 fmol of labeled RNA or 30 fmol 

of respective competitor RNAs (labeled with 1/1000 of 32P UTP) were loaded on the same denaturing 

10% polyacrylamide gel. As indicated by a grey line, the left part of the gel showing the competitor 

RNAs was exposed ten times longer than the right part and the contrast was adjusted to visualize the 

signals. The dye migration of xylene cyanol (~55 nt) and bromophenol blue (~18 nt) is indicated on 

the right. Slight differences in signal intensities of the competitor RNAs correlate with numbers of 

radiolabeled U-residues in each transcript.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Supplemental Data. Kleinknecht et al. (2014). Plant Cell 10.1105/tpc.114.122853

5



 

 

Supplemental Figure 5. Formation of a Potential Stem Loop Structure at the 16S rRNA 
Precursor 5’ End. 

(A) Sequence alignment of the 16S precursor sense and antisense probes and the putative RAP 

binding site (FP1) displayed with Genedoc (Nicholas et al. 1997). The two inverted sequences which 

have the potential to form the stem loop structure shown in (B) are indicated by arrows above the 

sequences. 

(B) Potential stem loop structure formed overlapping the RAP binding site. The binding site (FP1) is 

highlighted in grey and written in bold letters.   
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3.2 Analysis of the plastid RNase-sensitive DLA2 containing complex in 

Chlamydomonas reinhardtii 

 

Kleinknecht, L., König, AC., Bohne, A.-V., and Nickelsen, J. 

 

This study focuses on the moonlighting enzyme DLA2. While its primary function as 

a subunit of the cpPDC has been well described, an additional function as a RNA-binding 

protein involved in chloroplast gene expression under mixotrophic conditions has only been 

uncovered more recently.  

Size exclusion chromatography and 2D-BN-PAGE disclosed that the PDC subunits E1 

and E3 are not part of the RNase-sensitive DLA2 complex leading to the conclusion that the 

RNase-sensitive complex is indeed distinct from the cpPDC. To gain further insights, 

quantification of the cpPDC subunit protein levels in wild type grown under mixotrophic, 

photoautotrophic and heterotrophic conditions were performed, revealing that protein levels 

do not change under these different conditions and therefore the ratio between the subunits 

stays the same. Thus it can be concluded that no additional DLA2 is provided for its 

additional RNA binding function, but rather that the same pool of protein needs to be used 

alternatively.  Importantly, it was shown that the E3 binding domain in DLA2 is indeed also 

the site of RNA binding. Remarkably, the psbA mRNA and the E3 protein bind to DLA in a 

competitive fashion. In addition, it became evident that auto-acetylation of DLA2, induced by 

incubation with high concentrations of acetyl-CoA, can influence its RNA binding activity. 

These finding supports the hypothesis that post-translational modifications might regulate the 

two functions of the DLA2 protein.  

All the experiments in this study were performed by me, with the exception of the 

acetylation assay, which was carried out by AC. König and me conjointly. The manuscript 

was written by me. A.-V. Bohne and J. Nickelsen designed the research and supervised the 

project. 
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Manuscript: Analysis of the plastid RNA-sensitive DLA2 containing complex in 

Chlamydomonas reinhardtii 

 

Laura Kleinknecht, Ann-Christine König, Alexandra-Viola Bohne, Jörg Nickelsen 

 

Introduction 

 

It is becoming more and more evident that proteins especially enzymes can have an 

alternative function additional to the one which was primary described. It is believed that 

while these were uni-functional proteins to begin with, throughout time an additional function 

was acquired in different ways (Jeffery, 2003). In 1988 the first such proteins, crystallins in 

the human eyes, were described (Piatigorsky et al., 1988). Soon after that first publication 

even more proteins with two independent functions were discovered and the term 

moonlighting proteins was introduced, referring to workers working in two jobs whereas the 

second additional job would often happen at night thereby in moonlight (Jeffery, 1999; 

Huberts and van der Klei, 2010). 

In 2002 the RNA-binding protein RBP63 was described by Ossenbühl et al. (2002). 

This protein, with an apparent size of 63 kDa, was discovered in a screen for RNA-binding 

proteins associated with the thylakoid membrane of the unicellular green algae 

Chlamydomonas reinhardtii. RBP63 preferably binds to the 5’UTR of psbA mRNA, that 

encodes the D1 subunit of photosystem II (Ossenbühl et al., 2002). In a following study by 

Bohne et al. (2013), it became evident that RBP63 is actually the previously described protein 

DLA2 (Dihydrolipoamidacetyltranserase), the E2 subunit of the chloroplast pyruvate 

dehydrogenase complex (cpPDC) (Reid et al., 1977; Mooney et al., 1999). This multi-enzyme 

complex catalyzes the oxidative decarboxylation of pyruvate in the chloroplast stroma thereby 

providing acetyl-CoA for fatty acid synthesis (Mooney et al., 2002; Lin and Oliver, 2008).  

Strikingly DLA2 plays an additional role in the chloroplast of C. reinhardtii when they 

cells are grown in the presence of light and acetate. It was shown by gel filtration analysis that 

it is part of an RNase-sensitive complex with a size of more than 1 MDa. Further experiments 

suggest that by binding to the psbA mRNA, DLA2 actually tethers this mRNA the so called 

translational active zones (T-zones) thereby promoting translation of the D1 protein in the 

thylakoid membrane (Bohne et al., 2013; Bohne and Nickelsen, 2017). This study gives 

further insight into the RNA binding mode of DLA2, the role of the cpPDC E1 and E3 
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subunits in the RNase-sensitive complex and suggests how the two functions of DLA2 might 

be regulated by lysine acetylation.  

 

Results and discussion 

 

E1 and E3 are not part of the DLA2-RNA-complex 

To elucidate the role of the other subunits of the cpPDC in the additional function of 

DLA2 the size exclusion chromatography (SEC) analyses performed previously by Bohne et 

al (2013) were repeated using a Sephacryl S500 HR column, that is providing a better 

resolution in the high molecular weight range (Fig 1a). Chloroplasts from a cell-wall deficient 

strain were isolated and solubilized thylakoids, either treated with RNase or not, before SEC 

followed by immunoblots using antibodies against all cpPDC subunits was conducted. Once 

again a clear shift of DLA2 from fraction 5 to 8 to fraction 8 and 9 can be seen. The E1 and 

E3 subunits accumulate most prominent in fraction 8 to 10 and no change can be seen after 

the addition of RNase.  

To further investigate this we additionally performed a similar experiment using a 2D-

BN-PAGE to separate the complexes after solubilizing the thylakoids and RNase treatment 

(Fig 1b). Once again a similar pattern was observed. E1 and E3 accumulate at around 500 

kDa whereas DLA2 shows a different pattern accumulating in a complex of a much higher 

molecular weight. After addition of RNase there is no change for E1 and E3 whereas a shift 

can be observed for DLA2. The DLA2 blots were divided into five fractions (Fig 1b) and 

signals in these fractions were quantified (Fig 1c). The amounts of DLA2 in fraction 1 and 2 

were reduced by about 50 % after the addition of RNase.  

Taken together these results clearly indicate that the subunits E1 and E3 are not part of 

the RNA-containing DLA2 complex associated with the thylakoids in the Chlamydomonas 

chloroplast. In the high molecular weight fractions we could not find the active cpPDC, as it 

should be localized mainly in the stroma. The previously measured PDC activity in these 

fractions was probably caused by small amounts of assembled cpPDC in the thylakoid SEC 

fractions that were not detectable by immunoblot (Bohne et al., 2013). To confirm this 

hypothesis SEC with stroma will be performed in the future. The composition of the DLA2-

RNA-complex still remains elusive. Even though multiple copies of DLA2 attached to the 

RNA might be able to form a big complex it seems more likely that additional proteins are 
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part of this complex. Up to now different strategies including Co-IP and pull-downs followed 

by mass spectrometry have not identified clear candidates. 

 

Accumulation and ratio of cpPDC subunits 

The accumulation of the PDC subunits was examined in the available PDC subunit 

mutants to analyze the dependency on one another (Fig 2). We were able to obtain mutants for 

the E1β (pdh2) and the E3 (dld2) subunit, whereas the previously analyzed RNAi line was 

used for DLA2 (Bohne et al., 2013). Immunoblots were performed using these strains as well 

as respective wild types (Fig 2a). These blots were quantified by calculating the ratio of PDC 

subunits over RbcL (Fig 2b). 

It can be clearly seen, that the subunits are indeed influenced by the accumulation of 

their partners. The highest effect on the other subunits can be seen in the pdh2 mutant. As 

expected the two isoforms of E1, E1β and E1α are absent in this mutant. Strikingly DLA2 is 

reduced to about 20 %, whereas there is about 40% of DLD2 accumulating. The DLA2 

mutant is not a knock-out mutant but an RNAi-induced knockout line. Therefore the DLA2 

protein is not absent but still accumulating to about 15% of wild-type level (Bohne et al., 

2013). Both E1 isoforms are reduced to roughly 30-40% whereas E3 still accumulates to 

about 65%. In consistency with this E1 and E2 are less influenced in the dld2 mutant 

compared to their reduction in the other mutants. They accumulate to 60 and 80 %, 

respectively, even though E3 is completely absent. 

This leads to the conclusion that the accumulation of each subunit is depending on the 

accumulation of the other subunits. Moreover it is interesting that the absence of DLD2 has 

less effect on the other subunits than the absence of PDH2 or DLA2. Accordingly, DLD2 is 

less affected by the absence of the other subunits. One can assume that its accumulation is not 

as dependent on DLA2 and PDH2 as their accumulation is on each other. We can only 

hypothesize why that is the case. An easy explanation would be to assume a higher stability of 

the unassembled protein compared to the other subunits. Another hypothesis would be to 

assume an additional function of the protein, therefore requiring an accumulation of DLD2 

independent of the other subunits.  

During our work on this topic the closely related question arose whether the ratio of 

the subunits changes under different conditions. It might be possible that additional DLA2 is 

produced under mixotrophic conditions thereby providing more DLA2 available for its RNA-

binding function. Proteins from cells grown under photo-, mixo- and heterotroph conditions 
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as well as recombinant proteins as a reference for protein amounts were subjected to 

immunoblot analyses and quantified (Fig 3). The ratio of E1α:E1β:E2:E3 is roughly 

1:2.5:1.8:2.2. No difference in protein accumulation under different conditions and therefore 

no difference in the ratio was observed. Strikingly, E1α and E1β do not accumulate to the 

same level as we expected beforehand (Johnston et al., 2000). The observed ratio is different 

from previously reported ratios of the subunits in PDC complexes, which can be explained by 

differences between organisms or even more likely by the fact that we observed the ratio of 

the total protein amounts in the cell whereas other studies identified the ratio within the 

assembled complex (Johnston et al., 2000). This result clearly indicates that the DLA2 pool is 

not increasing under mixotrophic conditions and therefore the cpPDC might at least partially 

disassemble to free DLA2 for its additional function as RNA-binding protein.  

 

The RNA binding site of DLA2 

To elucidate which part of the protein is responsible for RNA-binding different 

recombinant DLA2 deletion mutants were generated. Interestingly, in silico analysis has 

predicted the RNA-binding site in the same location as the E3 binding site (Fig 4a, Bohne et 

al., 2013). It contains a number of positively charged amino acids as well as a predicted 

Rossmann fold, which is typically a NAD+/FAD
+
 binding site (Rao and Rossmann, 1973). 

This motif was reported to be involved in the binding of RNA molecules by enzymes (Nagy 

and Rigby, 1995; Nagy et al., 2000; Benning, 2009). 

Due to the highly repetitive and GC-rich sequence of the DLA2 gene it was impossible 

to delete only this exact part of the gene. Instead two different deletion mutants were created 

and cloned both with a His-tag as well was a MBP-tag, to exclude an influence of the tag on 

the binding activity (Fig 4a). It was shown that the recombinant MBP-tagged protein 

possessed the same affinity for RNA as the previously published His-tagged version of DLA2 

(Bohne et al., 2013, data not shown). For the following experiments the MBP-tagged versions 

were expressed, but the tag was removed prior to binding studies.  

The radiogram of an UV-cross-link experiment in figure 4b shows that both deletion 

mutants have lost their binding activity of 5’ UTR psbA mRNA. There is no visible signal in 

either mutant at the expected size. To gain further insight filter binding assays were performed 

and quantified to generate RNA binding curves (Fig 4c). Both versions of the deletion protein 

show a residual RNA binding activity when high molarities of the proteins were present. 

Nevertheless, the activity it is strongly reduced when compared to native DLA2. 
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We therefore presume that the RNA binding site of DLA2 indeed overlaps with its E3 

binding site. That leads directly to the hypothesis that the E3 subunit and the RNA might bind 

to DLA2 in a competitive mode. To test this hypothesis UV cross-linking competition 

experiments were performed (Fig 5). First rDLA2 and the radiolabeled psbA mRNA were 

incubated before rising amounts of rDLD2 were added and the UV-cross-link assay was 

performed. Increasing amounts of rDLD2 in the sample clearly lead to decrease in RNA 

binding activity of rDLA2. As a control purified GST was used, which did not affect the RNA 

binding activity of rDLA2 (Fig S1). In conclusion it seems very likely that the E3 binding site 

of DLA2 is not only overlapping with the RNA binding site, but moreover that there is a 

competitive binding of either RNA or DLD2. 

 

Acetylation of DLA2 influences its binding activity 

Several studies have shown that besides regulation on RNA level a high number of 

protein functions is regulated by post-translational modifications (PTMs). PTMs, that occur 

either at the protein’s N- or C-termini or on the amino acid side chains, include most 

prominently phosphorylation as well as glycosylation, carbonylation and acetylation (Khoury 

et al., 2011). They are often used as fast molecular switches to change activity or function of 

proteins (Jing et al., 2013; Castano-Cerezo et al., 2014).  

In the case of DLA2 a regulation mechanism through acetylation seemed very likely. 

Lysine acetylation was described in various organisms including bacteria, yeast, plant and 

animal cells and requires acetyl-CoA as a substrate (Choudhary et al., 2009; Finkemeier et al., 

2011; Weinert et al., 2011; Henriksen et al., 2012; Lundby et al., 2012; Melo-Braga et al., 

2012; Choudhary et al., 2014; Mo et al., 2015). The RNA binding activity of DLA2 occurs 

under only mixotrophic conditions in the presence of light and acetate, which can be 

converted to acetyl-CoA by two mechanisms (Spalding, 2009). Furthermore, DLA2 carries 

three lysine acetylation sites including one that lies within the proposed RNA binding site. 

Interestingly, the acetylation of this specific lysine residue is significantly upregulated under 

mixo- and heterotrophic conditions when compared to photoautotrophic conditions (König et 

al., in preparation).   

In order to test whether acetylation plays a role in the regulation of DLA2 we 

performed an in vitro auto-acetylation assay with recombinant DLA2 protein. The protein was 

used untreated, treated with a deacetylase (YHDZ) or incubated in the presence of acetyl-CoA 

before an immunoblot was performed (Fig 6a). In the sample that was incubated with acetyl-
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CoA a clear shift in size can be seen in the ponceau stain when compared to the two other 

samples (Fig 6a, upper panel).  Accordingly this band was also detected using an anti-Ac 

Lysin antibody for the immunoblot (Fig 6a, lower panel).  

The acetylated and deacetylated rDLA2 was also used to perform an UV-cross-linking 

assay as described before (Fig 6b). The deacetylated protein showed a similar RNA binding 

activity compared to the untreated rDLA2. Strikingly the RNA binding activity of the 

acetylated rDLA2 was completely eradicated. This result indicates that the RNA binding 

activity of DLA2 can be influenced by the acetylation status of DLA2 and that this 

mechanism could therefore play a role in the regulation of its dual function (Sterner and 

Berger, 2000). Since the protein was randomly auto-acetylated, it is likely that all available 

lysine sites were acetylated. In future one has to mutagenize the individual lysine sites and 

repeat the RNA binding experiment to reveal the role of lysine acetylation in the regulation of 

DLA2.  

Summing up we found that DLA2 is truly part of two different distinct complexes 

whereas one of these is the active cpPDC including the E1 and the E3 subunits while the other 

does not contain them but presumably the psbA mRNA and additional still unknown factors. 

Since there is competitive binding of RNA and DLD2 to rDLA2 it seems likely that DLA2 is 

regulated by a PTM more probable than not by acetylation. 

 

Material and Methods 

 

Algal Strains and Culture Conditions 

To allow easy chloroplast isolation we used CC-406, which has a defective cell wall, 

as the wild-type C. reinhardtii strain. The DLA2 RNAi line (iDLA2-1) and the respective 

control that was transformed with an empty vector (WT-Ne) were generated by Bohne et al. 

(2013). The other cpPDC mutant lines (pdh2 and dld2) were crossed with a cw15 strain to 

allow for better comparison with the wild type (Dent et al., 2005; Li et al., 2016). Strains were 

maintained on tris-acetate-phosphate (TAP) plates (containing 0,8% agar) at 23°C and under 

30 µE/m
−2

/s
−1

 continuous light (Gorman and Levine, 1965). Liquid cultures were grown at 23 

°C in TAP medium containing 1% sorbitol for mixotrophic and heterotrophic conditions and 

in high-salt minimal (HSM) medium for photoautotrophic growth (Harris, 1989). Light 

conditions were 30 µE/m
−2

/s
−1

 for mixotrophic growth, 200 µE/m
−2

/s
−1

for phototrophic 

growth and darkness for heterotrophic growth. 
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Chloroplast Preparation, SEC and 2D-BN-PAGE 

Chloroplast preparation and RNase treatment was performed as described before 

(Bohne et al., 2013). Gel filtration samples were loaded through an online filter onto a 

Sephacryl S500 HR column (GE Healthcare), and elution was performed at 4°C with a buffer 

containing 50 mM KCl, 2.5 mM EDTA, 5 mM ε-aminocaproic acid, 0.1% Triton X-100, and 

20 mM tricine-KOH, pH 7.8, at a flow of 0.3 mL/min using an ÄKTApurifier 10 system (GE 

Healthcare). Aliquots of each elution fraction were subjected to immunoblotting. 

2D-BN-PAGE samples were mixed with an equal amount of loading buffer before a 2-

BN-PAGE was performed as described previously (Schottkowski et al., 2009). Second 

dimensions were subjected to immunoblotting.  

 

Expression of recombinant proteins 

Recombinant DLA2 with His-tag was expressed as previously described by Bohne et 

al. (2013). The same sequence was inserted into the plasmid pMAL-c5x 

(NewEnglandBiolabs). The DLA2 deletion mutants were cloned into the plasmid pMAL-c5x 

as well (rDLA2ΔE3-1: Δaa136-aa241; rDLA2ΔE3-2: Δaa208-aa261).  

Expression was performed in Escherichia coli Rosetta cells (Novagen) by induction 

with 1 mM isopropyl b-D-1-thiogalactopyranoside (IPTG) for 3 h at 30°C. Purification of the 

recombinant protein was performed according to the New England Biolabs protocol for 

purification of MBP-tagged recombinant proteins, including the removal of the MBP tag by 

proteolytic digestion with factor Xa.  

The other cpPDC subunits were all cloned into the pGEX-4T-1 plasmid (Amersham 

Pharmacia Biotech) and purified according to the manufacturers protocol. For PDC2 amino 

acids 35 to 397 were inserted and overexpression took place at 18°C over night after 

induction with 1 mM IPTG. For PDH2 amino acids 33 to 370 were inserted and 

overexpression took place at 27°C over night after induction with 1 mM IPTG. For DLD2 

amino acids 241 to 585 were inserted and overexpression took place at 18°C over night after 

induction with 0.5 mM IPTG.  

 

In Vitro Synthesis of RNA and UV Cross-Linking 

In vitro synthesis of RNA and UV cross-linking experiments were basically performed 

as described by Zerges and Rochaix (1998) and Bohne et al. (2013). The DNA template for 

the in vitro synthesis of the psbA 5’ UTR RNA probe was generated by PCR using the 
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following primers: T7psbA5 (5′-gtaatacgactcactatagggTACCATGCTTTTAATAGAAG-3′) and 

2054-psbA (5′-GATCCATGG TCATATGTTAATTTTTTTAAAG-3′).  

Binding reactions (20 µl) were performed at RT for 10 min and contained 20 mM 

HEPES/KOH, pH 7.8, 5 mM MgCl2, 60 mM KCl, and 100 ng of protein unless indicated 

otherwise. Each reaction contained 100 kcpm of 
32

P-RNA probe. For competition experiments 

indicated amounts of competitor protein were added to the reaction. Radiolabeled RNA and 

DLA2 were mixed prior to the addition of competing proteins. 

The KD was determined as described by Ostersetzer et al. (2005). Increasing amounts 

of recombinant DLA2 protein and the two rDLA deletion versions were incubated for 15 min 

at RT with in vitro transcribed 
32

P-labeled psbA mRNA (6.7 pM) in 20 µl reactions in the 

same binding buffer used for UV cross-linking assays. Subsequently, the reactions were 

filtered through stacked nitrocellulose (Reprobe nitrocellulose plus, 0.45 µm; Applichem) and 

nylon membranes (Nylon plus, 0.45 µm; C. Roth) using a dot blot apparatus (Minifold 

SRC96, Schleicher & Schuell). The membranes were washed once with 100 µl of binding 

buffer, dried, and subjected to phosphorimaging and quantitation with AlphaEase software 

(Alpha Innotech Corporation). 

Acetylation Assay  

Recombinant His-DLA2 was left untreated or incubated with either 100 ng 

Deacetylase (YHDZ) or 10 mM Acetyl-CoA at room temperature for two hours. Hereafter a 

ponceau S staining (Sigma) followed by immunoblotting with an anti-acetyl-lysine antibody 

or an UV-cross-link assay was performed as described above. 
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FIGURE 1 

Figure 1: RNase-sensitive complex.  
A) Gel filtration analysis. Thylakoids from the wild-type strain CC-406 were solubilized and either treated with RNase 
or loaded directly on the column without prior RNase treatment. Fractions were collected and 1/10th of each 
fraction was loaded on SDS-gels. Subsequently immunoblots were performed using antibodies against all PDC 
subunits. Molecular masses shown at the top were estimated by parallel analysis of high molecular mass calibration 
markers. 
B) 2D-BN-PAGE. Thylakoids from the wild-type strain CC-406 were solubilized and either treated with RNase or 
incubated on ice for the same time without the addition of RNase before 2D-BN-PAGE was performed. Second 
dimensions were subjected to immunoblot analysis. 
C) Quantification of DLA2. The DLA2 blots from the 2D-BN-PAGE were divided into different fractions (B) and 
quantified using the program ImageQuantTL. The sum of the signal in all fractions was set to 100%.  
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Figure 2: Quantification of PDC subunits in mutant backgrounds.  
A) Protein samples of wild type, the different PDC mutant strains and WT-NE strain as a control for the iDLA2-2 strain 
were separated by SDS-PAGE and subjected to immunoblot analysis.  
B) Quantification of immunoblot signals of three independent experiments. Quantification was performed by 
calculating the ratio of PDC subunits over RbcL. Values obtained for respective wild type were set to 100%.  
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 A) Protein fractions (15 µg) of wild-type grown under heterotrophic, mixotrophic or photoautotrophic conditions 
were separated by SDS-PAGE and subjected to immunoblot analysis. Specific amounts (50, 25, 15, 10 ng) of the 
respective recombinant proteins were loaded on the gels for means of quantification. 
B) Quantification of immunoblot signals of three independent experiments. Quantification was performed by 
comparing the amounts in moles of protein with the respective defined amount of recombinant proteins. The 
value obtained for E1α under heterotrophic growth conditions was set to 100%.  
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Figure 4: RNA-binding domain of DLA2.  
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binding site/predicted RNA binding site, CD = catalytic domain). The predicted Rossmann fold in the E3 binding site is symbolized by 
red stripes. Deleted parts in DLA2∆E3-1 and DLA2∆E3-2 are marked by brackets.  
B) UV-cross-link experiment with different versions of DLA2 containing deletions of the putative RNA binding domain and the psbA 
5’ UTR mRNA. Deleted parts are depicted in (A). 100 ng of each protein and 100 kcpm of radiolabeled psbA 5’ UTR mRNA were 
used.  
C) Filter binding assays with different versions of DLA2 containing deletions of the putative RNA binding domain were performed to 
determine RNA binding curves. Binding reactions containing 6.7 pM 32P-labeled psbA 5’ UTR RNA and indicated molarities of the 
different DLA2 versions were filtered through stacked nitrocellulose and nylon membranes (left panel) using a dot blot apparatus 
according to Ostersetzer et al. (2005). Signal intensities of nitrocellulose-bound protein–RNA complexes (bound) as well as nylon 
membrane-bound free RNAs (free) were measured for quantification. The amount of bound RNA in the 800 nM DLA2 probe was set 
to 100 %.   
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Figure 5: Competitive binding of psbA mRNA and rE3 to rDLA2. 
We incubated 100 ng of DLA2 with 100 kcpm of radiolabeled psbA 5’ UTR 
mRNA and rising amounts of E3 (1x, 5x and 10x molar excess over DLA2) 
before a standard UV-cross-link experiment was performed.  

- 



Untreated Deactetylase Acetyl-CoA 

- 

67 

45 

kD 

DLA2 

α-AcK 67 

kD 

67 

kD 

Ponceau 

A B 

FIGURE 6 

Figure 6: Acetylation influences RNA binding capacity of rDLA2. 
A) Untreated, deacetylated and acetylated rDLA2 was run on a SDS-PAGE followed by an immunoblot. Prior to incubation with the 
anti-acetyl-lysine antibody (α-AcK) the membrane was stained with ponceau (lower panel).  
B) UV-cross-link experiment with decreasing amounts of untreated, deacetylated and acetylated rDLA2 protein (1000 ng, 100 ng, 10 
ng and 1 ng) and 100 kcpm of 32-P labeled psbA 5’ UTR mRNA.  
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Supplemental Figure 1: Control UV-Crosslink experiment 
We incubated 100 ng of DLA2 with 100 kcpm of radiolabeled psbA 5’ UTR 
mRNA and rising amounts of GST (5x and 10x molar excess over DLA2) 
before a standard UV-cross-link experiment was performed.  
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3.3 Unanticipated T7 RNA polymerase activity using annealed 

oligonucleotides as transcription template 

 

Kleinknecht, L., Nickelsen, J., and Bohne, A.-V. (2017). Endocytobiosis and Cell 

Research 28, 33-37. 

 

The bacteriophage T7 RNA polymerase (RNAP) is regularly used in molecular 

biology to efficiently synthesize specific RNA sequences. For RNA synthesis a DNA 

template, including a specific double stranded short promotor element, is required. During 

ongoing work we noticed an artificial activity in the absence of a correct promoter element. 

Non-complementary primers showed a self-annealing capacity that led to the synthesis of 

RNA in the absence of a perfectly double-stranded promotor element. Moreover, even some 

perfectly self-complementary primers showed a high tendency to self-anneal. RNase T1 

digestion of the generated transcripts was performed, showing indeed that transcription took 

place using only one of the self-annealed primers instead of the correct template. In 

conclusion, we uncovered an unanticipated T7 RNAP activity and feel that experiments 

involving this method should be conducted with caution. Ideally, a possible self-annealing 

potential of primers should be tested, before using this method. 

 

All experiments in this study were performed by me. The manuscript was written by 

A.-V. Bohne and me and revised by J. Nickelsen.  
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4 Discussion 

4.1 RAP, the sole OPR protein in Arabidopsis, plays an important role in 

chloroplast biogenesis 

Helical repeat proteins play a major role as RNA binding proteins in chloroplast gene 

expression. The A. thaliana protein RAP belongs to the family of OPR proteins, of which 

several described proteins in algae are actually involved in gene expression (Auchincloss et 

al., 2002; Balczun et al., 2005; Boulouis et al., 2015; Eberhard et al., 2011; Merendino et al., 

2006; Murakami et al., 2005; Perron et al., 2004; Rahire et al., 2012; Wang et al., 2015). It 

was therefore assumed that RAP, the only OPR protein in Arabidopsis, might fulfill a similar 

role. 

4.1.1  RAP is involved in the maturation of the 16S rRNA 

The protein is named after the RAP domain (RNA-binding domain abundant in 

Apicomplexans) located at its C-terminus, which is a putative RNA-binding domain found in 

various eukaryotic proteins, especially abundant in apicomplexans (Lee and Hong, 2004). The 

knockout mutant rap-1 exhibits a retarded growth phenotype, a defect in photosynthetic 

activity as well as an impaired protein translation in the chloroplast (Fig 2B-D, Kleinknecht et 

al., 2014). Most remarkably, a severe reduction of the plastid encoded 16S rRNA was 

uncovered. Detailed analysis of the plastid rRNA operon showed no changes in levels or 

pattern of 23S, 4.5S and 5S rRNA. In strong contrast, 16S rRNA precursor transcripts 

accumulated, while the mature transcript was missing entirely (Fig 3, Kleinknecht et al., 

2014). 

As described in detail in section 1.4.2, the rrn operon is transcribed from both a NEP 

and a PEP promotor, named PC and P2 respectively, of which P2 is predominantly used in 

green tissue of A. thaliana (Sriraman et al., 1998; Swiatecka-Hagenbruch et al., 2007). 

Furthermore, a mapped precursor processing site (PRO) is located at nucleotide -31 in respect 

to the start of the mature transcript (Lerbs-Mache, 2000). In wild-type leaves, mature 16S 

rRNA as wells as transcripts originating from the transcription initiation site P2, the precursor 

processing site PRO and the mature 5’ end can be observed (Bisanz et al., 2003). Even though 

all three 16S 5’ ends appear to be present in the rap-1 mutant, the mature RNA is severely 

reduced while the amount of the P2 and PRO precursors as well as many processed/degraded 

transcripts downstream of the P2 promotor are enriched  (Fig 4B, Kleinknecht et al., 2014). 
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This was confirmed by circular RT-PCR, which additionally disclosed that no correctly 

processed mature 16S rRNA accumulated in rap-1, but that all seemingly mature transcripts 

were processed at -1 instead of the +1 nucleotide (Fig 9, Kleinknecht et al., 2014). Most of the 

chloroplast RNAs analyzed in rap-1 were also less abundant than the respective transcripts in 

the wild type (Fig 2E, Kleinknecht et al., 2014). This phenotype was observed in several 

rRNA mutants and it was previously documented that some transcripts require ribosomal 

loading and/or translation for their stability (Barkan, 1993; Bisanz et al., 2003; Yamamoto et 

al., 2000). These findings can be summed up in so far that rap-1 exhibits significant defects in 

processing of the 16S rRNA, which in turn lead to its observed phenotype. 

RNA deep-sequencing data sets were analyzed extensively in a study to identify short 

RNAs in the chloroplast genome (Ruwe and Schmitz-Linneweber, 2011).  50 abundant small 

chloroplast RNAs (sRNA) were identified, most of which are located in non-coding regions, 

often shortly upstream of start codons. These sRNAs are proposed to be binding sites of PPR 

proteins, PPR-like proteins and more general RNA-binding proteins. It was shown so far for 

maize PPR10 and CRP1 as well as for Arabidopsis HCF152 and HCF107 proteins, that 

identified sRNAs resemble their RNA binding sites (Hammani et al., 2012; Ruwe and 

Schmitz-Linneweber, 2011; Zhelyazkova et al., 2011). Short stretches of RNA are protected 

against nucleolytic cleavage by these proteins binding to them; sRNAs thus called footprints 

(FPs) accumulate. The accumulation of three footprints, located in close proximity to the 

mature 16S rRNA, in dependence of RAP was analyzed (Fig 4A and C, Kleinknecht et al., 

2014). Interestingly, footprint 2 accumulates in the wild-type RNA but not in rap-1, 

suggesting this region as a possible binding site of RAP or RAP-dependent binding of another 

protein at this site. 

These observations are in agreement not only data obtained for E. coli, but also with 

the phenotypes of several plant rRNA maturation mutants. As rRNA maturation and ribosome 

assembly are closely linked processes, mutants with defective rRNA processing often have 

defects in the translation of proteins (Bisanz et al., 2003; Bollenbach et al., 2007; Schmitz-

Linneweber et al., 2006; Williams and Barkan, 2003). This can be explained by the fact that 

defects in rRNA maturation might lead to reduced polysomal loading, which in turn will lead 

to the observed decreased translation rate (Barkan, 1993; Beligni and Mayfield, 2008; 

Bellaoui et al., 2003; Sharwood et al., 2011). We propose that the accumulation of precursors 

in rap-1 leads to an impeded translational activity by preventing the formation of active 

ribosomes as previously suggested by Bisanz et al. (2003) for the dal mutant, which exhibits a 
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similar accumulation of 16S rRNA precursors. Moreover, it is documented that in E. coli 

complete processing of the 16S rRNA requires at first an interaction with the 30S ribosome 

subunit and hereafter even the assembly of complete polysomes (Shajani et al., 2011). In 

addition, in vitro reconstitution assays uncovered that the bacterial 30S subunit loaded with 

premature 16S rRNA are inactive, thereby suggesting that correct processing of the 16S rRNA 

is required for protein translation (Wireman and Sypherd, 1974). Nevertheless, more recent 

data revealed that extensions at the 16S rRNA 5’ end might have an influence rather on 

translational fidelity due to misfolding of the rRNA than on the actual assembly of the 

ribosome (Gutgsell and Jain, 2012; Roy-Chaudhuri et al., 2010). 

Taken together the data discussed above strongly suggest that RAP mediates its 

function by binding just downstream of the precursor processing site upstream of the 5′ end of 

the mature 16S rRNA. In agreement with this hypothesis in vitro RNA binding experiments 

revealed that RAP has an intrinsic RNA binding capacity (Fig 5, Kleinknecht et al., 2014). It 

needs to be determined whether the RNA binding capacity of RAP is effectuated by its OPR 

domain, its RAP domain, or both of them as all three scenarios seem plausible. It was 

demonstrated by Rahire et al. (2012) that the translation initiation factor Tab1 displays its 

RNA binding activity solely through its OPR domain. On the other hand it was proposed by 

Lee and Hong (2004), that the RNA-binding protein Raa3, which is involved in splicing of the 

psaA Operon in C. reinhardtii, binds to its target mediated by its RAP domain.  

With this information in mind, we can speculate how exactly RAP influences the 

maturation process of the 16S rRNA. RAP itself could resemble an endonuclease that directly 

binds to its target and processes the 5’ leader region of the 16S rRNA. This hypothesis seems 

unlikely for two reasons: (I) Processing in the rap-1 mutant is very ineffective but still takes 

place. (II) An in vitro assay performed in order to uncover an intrinsic RNase activity of RAP, 

did not reveal any nucleolytic activity (data not shown). A far more likely option, is that RAP 

interacts with one or more endonucleases guiding them to the correct processing site, since it 

is assumed that plastid RNases (e.g. RNase J or RNase R) possess little to no sequence 

specificity of their own (Germain et al., 2013; Stoppel and Meurer, 2011). Interestingly, a 

possible concerted function of RAP and RNase J in processing of the 16S rRNA is supported 

by the phenotype of RNase J-deficient tobacco and Arabidopsis plants, which display a 

decreased accumulation of mature 16S rRNA as well as an over-accumulation of 5’ extended 

precursor 16S rRNAs  (Sharwood et al., 2011). Additionally, Luro et al. (2013) observed an 

interactive role of RNase J and  helical repeat proteins in tobacco, as they postulate that the 
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enzyme does trim chloroplast 5’ mRNA ends to their mature form defined by bound PPR 

proteins. If RAP indeed interacts with RNase J - which still needs to be determined - it would 

resemble the protein RHON1, which is described to interact with RNase E and confer 

sequence specificity to it in order to correctly trim the 5’ end of the 23S rRNA in Arabidopsis 

chloroplasts (Stoppel et al., 2012). Last but not least, a third possible working model that 

needs to be taken into account is that RAP could change the secondary structure of the 16S 

rRNA precursor by binding to it and thereby facilitating the accessibility of sequence-specific 

RNases and/or other involved factors. 

Moreover, it has been suggested that chloroplast transcription and ribosome assembly 

are closely linked (Germain et al., 2013; Majeran et al., 2012). Recent findings, like the 

nucleoid localization of the protein PAC, which is involved in 23S rRNA processing, support 

the hypothesis that nucleoids are the site of rRNA processing within the chloroplast (reviewed 

in Bohne, 2014; Jeon et al., 2014; Meurer et al., 2017). Consistently, the maize ortholog of 

RAP has been identified in the nucleoid proteome (Majeran et al., 2012), and this localization 

was confirmed cytologically (Fig 7, Kleinknecht et al., 2014).  

4.1.2 RAP as negative regulator of plant defense 

In a study conducted by Katiyar-Agarwal et al. (2007), a different effect in the rap-1 

mutant was observed. The mutant is less sensitive to infection with the parasitic microbe 

Pseudomonas syringae. In wild-type plants AtlsiRNA-1, a short RNA that belongs to a novel 

class of short interfering RNAs, is expressed upon infiltration with P. syringae and 

specifically leads to degradation of RAP mRNA. Therefore, RAP was proposed to act as a 

negative regulator in disease resistance (Katiyar-Agarwal et al., 2007; Katiyar-Agarwal and 

Jin, 2010). Its role in 16S rRNA processing might be either an additional function or explain 

the effects observed in their study. By down-regulating processing of the 16S rRNA and 

therefore diminishing translation of chloroplast proteins in infected cells, spread of the 

bacteria might be embanked by limiting their access to nutrients and lead to faster death of the 

infected cells. Further analyses - like Northern blots to analyze the processing of 16S rRNA in 

wild-type plants after P. syringae infection – will be necessary to elucidate RAP’s molecular 

function in plant defense.  
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4.1.3 How conserved is the function of the single OPR protein in higher 

plants? 

Interestingly, only a single OPR protein was identified in Streptophyta, like A. 

thaliana, whereas more than 100 OPR proteins were identified in the Chlorophyta C. 

reinhardtii (O. Vallon, A. Bohne, L. Cerutti, J. D. Rochaix, unpublished data). The number of 

another family of helical repeat proteins, the PPR proteins, is reversed. The family of PPRs 

consists of more than 450 members in A. thaliana, but only of 11 proteins in C. reinhardtii 

(Schmitz-Linneweber and Small, 2008). Presuming that a certain number of RNA binding 

proteins is required to ensure correct and specific processing of many organellar transcripts, 

this leads to the assumption that PPR proteins in higher plants take over the function of OPR 

proteins in algae. Whether OPR proteins were present in a high number before the transition 

to land plants occurred and subsequently substituted by PPR proteins is unknown so far. It is 

also possible, that the high number of OPR proteins is due to an expansion of the family in 

Chlorophytes that took place after the separation of Viridaeplantae in Streptophyta and 

Chlorophyta (O. Vallon, A. Bohne, L. Cerutti, J. D. Rochaix, unpublished data). Further 

analyses in future will hopefully show, which of the above mentioned theories holds true.  

A multiple sequence alignment of the OPR proteins from several Streptophyta showed 

a high sequence conservation indicating the same evolutionary origin, whereas in the 

Chlorophyta C. reinhardtii no direct ortholog could be found (Fig S1, Kleinknecht et al., 

2014). Most interestingly, Zhang et al. (2016) recently analyzed a rice mutant al1 (albino 

leaf1), which is orthologous to the Arabidopsis RAP gene. The mutant exhibited an albino 

phenotype in leaves and resulted in seedling lethality. A complementation of the rap-1 mutant 

with the Al1 gene led to a wild-type like phenotype indicating that AL1 is a functional 

ortholog of RAP. Mature 16S rRNA accumulated to a lesser degree in the al1 mutant than in 

wild-type plants whereas the accumulation of precursors was unfortunately not determined. In 

agreement with the situation in rap-1, the accumulation of several chloroplast proteins and 

transcripts is reduced. Furthermore, they do suggest an additional function of AL1 in 

homeostasis of ribosomal proteins.   

These findings clearly support the hypothesis that the OPR proteins in Streptophyta 

are highly conserved not only in sequence but also in function. It needs to be determined in 

future studies whether they do not only play a similar function in 16S rRNA processing as 

RAP, but also whether and when in evolution additional functions were acquired.  
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4.2 The multifunctional moonlighting enzyme DLA2  

Even though helical repeat proteins constitute supposedly the majority of RNA 

binding proteins in the organelles of plants and algae, proteins that do not belong to this 

superfamily are frequently identified to play important roles as well. Some of these belong to 

the interesting group of moonlighting proteins, which acquired an additional function next to 

their - often enzymatic - main function (see section 1.5 and Huberts and van der Klei, 2010). 

The protein DLA2, the E2 subunit of the chloroplast pyruvate dehydrogenase complex in C. 

reinhardtii, belongs to this group of dual-functioning proteins (Bohne et al., 2013; Ossenbühl 

et al., 2002). As described in section 1.5.1 in detail, the cpPDC catalyzes the oxidative 

decarboxylation of pyruvate in the chloroplast stroma thereby providing acetyl-CoA for fatty 

acid synthesis in the chloroplast (Lin and Oliver, 2008; Mooney et al., 2002). Bohne et al. 

(2013) were able to show that under mixotrophic conditions DLA2 additionally forms part of 

an RNP complex with the psbA mRNA. Furthermore, they are proposing based on their 

results that it plays a role in localizing this mRNA to the T-zone for its translation and the 

synthesis of the PSII protein D1. 

4.2.1 Competition between the two functions of DLA2 

The conducted SEC and 2D-BN-PAGE disclosed that the other two cpPDC subunits, 

E1 and E3, are not part of the RNase-sensitive DLA2 complex leading to the conclusion that 

the RNP complex is completely distinct from the cpPDC (Fig 1, Kleinknecht et al., in 

preparation). The composition of the DLA2-RNA-complex remains elusive so far. Even 

though multiple copies of DLA2 attached to the RNA might be able to form a high molecular 

weight complex, it seems more likely that additional proteins are part of this complex. 

Therefore, the question, whether the cpPDC is continuously assembled and disassembled to 

free DLA2 for its secondary function or whether additional DLA2 accumulates during 

mixotrophic conditions, arose. The analysis of mutants of all three cpPDC subunits under 

mixotrophic conditions revealed that the accumulation of the subunits is dependent on the 

presence and/or amount of the other subunit, whereas E3 was not influencing the other two 

subunits as much as they influence each other and vice versa. This of course leads directly to 

speculation why the accumulation of E3 is more independent. The easiest explanation is to 

postulate a higher stability of the unassembled protein compared to the other subunits. A more 

complex and daring hypothesis is to assume an additional function of the protein, therefore 

requiring an accumulation of E3 independent from the other subunits. Up to now, there is no 
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additional proof to support this hypothesis and future studies will hopefully answer this 

question.  

To gain further insights, quantification of the cpPDC subunit protein levels in wild 

type grown under mixotrophic, photoautotrophic and heterotrophic conditions was performed, 

revealing that protein levels do not change under these different conditions and therefore the 

ratio between the subunits stays the same. Interestingly, the two E1 isoforms, E1α and E1β, 

do not accumulate to the expected 1:1 ratio but rather in a 1:2.5 ratio (Fig 3, Kleinknecht et 

al., in preparation). This observed ratio differs from previously reported ratios, which might 

be due to the fact that the ratio is different between organisms or even more likely that here 

the ratio of the total protein amounts in the cell was observed, whereas other studies identified 

the ratio within the assembled complex (Johnston et al., 2000). Nevertheless, the interesting 

conclusion was drawn, that there is no change in subunit ratio under different growth 

conditions. This further confirms the idea that no additional DLA2 is accumulating under 

mixotrophic conditions, but rather that the cpPDC might at least partially disassemble to free 

DLA2 for its additional function as RNA-binding protein. In agreement with this, it was 

postulated before that the cpPDC is less defined as compared to mitochondrial PDC 

complexes and might disassemble slightly easier (Camp and Randall, 1985; Zhou et al., 2001) 

In conformity with these findings, Bohne et al. (2013) postulated that the RNA 

binding site of DLA2 overlaps with its E3 binding domain. In silico analyses have shown that 

it contains a number of positively charged amino acids suitable for RNA binding as well as a 

predicted Rossmann fold, which is typically a dinucleotide binding site (Rao and Rossmann, 

1973). Interestingly, it was reported that this short motif is involved in the RNA binding 

activity of several enzymes, e.g. the glyceraldehyde-3-phosphate dehydrogenase (Benning, 

2009; Nagy et al., 2000; Nagy and Rigby, 1995). This hypothesis of an overlapping E3 and 

RNA binding site in DLA2 was not only confirmed, but in addition a competitive binding 

mode of the psbA mRNA and E3 to this site was revealed in vitro (Fig 4 and 5, Kleinknecht et 

al., in preparation). In summary, the described results reveal that E1 and E3 are not part of the 

DLA2-RNA complex and even more importantly that there is there is a competitive binding 

mode of RNA and E3 to DLA2, raising the question in which way these two functions of 

DLA2 are regulated. 

4.2.2 Metabolic control of psbA gene expression 

Changes in gene expression are often an adaptation to environmental conditions and 

the metabolic status of the cell. There is profound evidence that bacterial as well as eukaryotic 



 Discussion   

81 

 

gene expression is modulated by carbon metabolism (Barańska et al., 2013; Wellen and 

Thompson, 2012). One specific example are mammalian glycolytic enzymes involved in the 

carbon metabolism in the cytoplasm, that are regulators of transcription, translation or can 

affect mRNA stability (reviewed in Kim and Dang, 2005). Many of those are rate limiting 

enzymes and therefore particularly suitable to play a role in coordination of gene expression 

as an adaptation to a changing metabolic status.  

The first such enzyme described in plants is a sulfite reductase that – next to its 

enzymatic function – possesses a DNA-binding capacity and is known to regulate 

transcription by condensing the chloroplast nucleoids (Sekine et al., 2007; Sekine et al., 

2002). The second one is the large subunit of the well-known ribulose-1,5-bisphosphate 

carboxylase/oxygenase (Rubisco) which catalyzes the carboxylation of ribulose-1,5-

bisphosphate – the first major step in carbon fixation via the Calvin cycle (see section 1.2.1). 

Cohen et al. (2006) were able to show that it acquires an RNA-binding activity under 

oxidizing conditions and might therefore be involved in an autoregulatory feedback 

translational repression. Moreover, it is involved in the formation of stress granules in the 

chloroplast, most likely in order to degrade oxidized RNAs (Uniacke and Zerges, 2008; Zhan 

et al., 2015). The third and final one is the here described DLA2 protein.  

It was described above that the gene expression is adjusted in accordance with the 

demands of the cell. Metabolites can serve as low molecular weight signaling molecules or as 

substrates for post-translational modifications (PTMs). Several studies have shown that 

besides regulation on RNA level a high number of protein functions are regulated by PTMs, 

that occur either at the protein’s N- or C-terminus or on the amino acid side chains. They 

include most prominently phosphorylation as well as other modifications like glycosylation, 

carbonylation and acetylation (Khoury et al., 2011). These alterations can unmask the 

additional function of metabolic enzymes (Jeffery, 2003). Interestingly, Bohne et al (2013) 

demonstrated that the formation of the DLA2-RNA-complex relies on mixotrophic growth 

conditions.  In this conditions, the present acetate can be converted to acetyl-CoA by the 

acetate synthetase (ACS) and/or by the acetyl-kinase/phosphate acetyltransferase (ACK/PAT) 

system (Spalding, 2009). This in turn can be used for fatty acid synthesis in the chloroplast 

and can lead to a product inhibition of the cpPDC and/or the acetylation of its subunits 

(Tovar-Méndez et al., 2003; Wellen and Thompson, 2012; Xing and Poirier, 2012). 

Therefore, a regulation mechanism of DLA2 through acetylation seems very likely. Lysine 

acetylation is a ubiquitous PTM and was described in various organisms including bacteria, 
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yeast, plant and animal cells (Choudhary et al., 2009; Choudhary et al., 2014; Finkemeier et 

al., 2011; Henriksen et al., 2012; Lundby et al., 2012; Melo-Braga et al., 2012; Mo et al., 

2015; Weinert et al., 2011).  

In fact, DLA2 carries three lysine acetylation sites including one that is significantly 

upregulated under mixo- and heterotrophic conditions when compared to photoautotrophic 

conditions (Section 6.1, König et al., in preparation). Most remarkably, this regulated residue 

K197 lies within the E3 and proposed RNA binding domain of DLA2. Moreover, it was shown 

that the RNA binding activity of DLA2 can be influenced by the acetylation status of DLA2, 

further supporting the idea of regulation through acetylation (Section 3.1, Fig 6, Kleinknecht 

et al., in preparation).  In future, one has to mutagenize the individual lysine sites and repeat 

the RNA binding experiment to reveal the role of lysine acetylation in the regulation of 

DLA2. An additional supporting this hypothesis is that the translation of D1 is induced by the 

addition of actetate to the growth medium (Michaels and Herrin, 1990). In conclusion, 

metabolic control of the psbA gene expression through the acetylation of DLA2 seems a likely 

possibility.  

4.2.3 Is the multifunctionality of DLA2 evolutionary conserved? 

Bohne et al. (2013) suggested that DLA2’s role in gene expression might be a very 

ancient feature of the dihydrolipoamide acetyltransferases, which likely occurred first before 

the separation of mitochondrial and chloroplastic homologues. It was demonstrated that 

recombinant proteins from C. reinhardtii, human, yeast and the cyanobacterium Synechocystis 

sp. PCC 6803 all have an intrinsic RNA binding activity in vitro. Obviously, in vitro 

experiments do not prove a role of these E2 proteins in gene expression, but there are several 

other hints that support this hypothesis.  

The analysis of high molecular weight complexes from A. thaliana by SEC revealed 

that LTA2, the cpPDC E2 subunit, occurred not only in a fraction of about 1-2 MDa in size 

together with the other cpPDC subunits, but in a second high molecular weight complex of a 

size of more than 5 MDa (Olinares et al., 2010). Interestingly, several ribosomal subunits and 

RNA-binding proteins were found in the same fraction. One of these RNA-binding proteins, 

CSP41 was analyzed by several groups in more detail. It interacts with a number of mRNAs 

of photosynthetic proteins as well as with the 16S and 23S rRNAs and is postulated to 

stabilize and/or process these RNAs (Beligni and Mayfield, 2008; Bollenbach et al., 2009; 

Chevalier et al., 2015; Qi et al., 2012). Remarkably, LTA2 was found to be an interacting 

partner of CSP41 in a co-immunoprecipitation experiment conducted by Qi et al. (2012), 
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further supporting the existence of a second LTA2-containing complex. Furthermore, an 

additional function is indicated by the phenotypes of T-DNA insertion lines of LTA2 and the 

E3 subunit. Strikingly, the LTA2 line is lethal, while the E3 mutant line is viable (Chen et al., 

2010; Lin et al., 2003). This implies that Arabidopsis plants are viable without the cpPDC 

complex, and raises the question which additional function of LTA2 leads to the lethality of 

its knockout mutant. 

Moreover, recent data obtained by 2D-BN-PAGE analyses of Synechocystis 

thylakoids, strongly support the assumption of an evolutionary conservation of DLA2’s role 

in gene expression. It was shown that the E2 subunit (SynE2) does form an RNP complex in 

vivo under the same conditions as DLA2 in Chlamydomonas (Fig S1, Appendix). It will be 

most interesting to analyze SynE2’s role in more detail and to elucidate its target RNA as well 

as its regulatory function. In its entirety, a conserved role of the PDC E2 subunit in gene 

expression seems very likely and in future the characterization SynE2 as well as that of other 

E2 subunits promises further insight into the development of DLA2’s moonlighting function. 

Taken together, the results of this thesis enhanced the understanding of several aspects 

that fulfill important functions in the post-transcriptional regulation of chloroplast gene 

expression in A. thaliana and C. reinhardtii.  
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6 Appendix 

 

The following section contains a manuscript in preparation and a supplemental figure 

supporting findings of Section 3.2.  

 

6.1 Dynamic regulation of the proteome and lysine acetylome in 

Chlamydomonas reinhardtii responding to light and acetate 

 

König, AC., Füßl, M,. Hartl, M., Kleinknecht, L., Bohne, A.-V., Harzen, A., Kramer, 

K., Nickelsen, J. and Finkemeier, I.
 

 

The research in this study focuses on proteome and acetylome dynamics in the green 

algae C. reinhardtii. One major way of controlling protein functions and metabolism is by the 

use of post-translational modifications. They can act as fast and often reversible molecular 

switches. Here a mass spectrometry based analysis was performed to study the lysine 

acetylation and proteome dynamics in Chlamydomonas under different growth conditions. 

Liquid cultures were grown under mixotrophic (light and acetate), photoautotrophic (light 

only) or heterotrophic (dark and acetate) conditions before the MS analyses were carried out. 

Overall, 4.065 protein groups were identified, which carried a total of 254 acetylation sites. 

The integration of acetate seems to be mainly performed by the acetyl-CoA synthase 3 that is 

localized to the peroxisomes. Remarkably, lysine acetylation of nearly all the enzymes 

involved in the glyoxylate cycle were dynamically regulated within the different growth 

conditions. Additionally, it was shown that lysine acetylation has a functional relevance for 

the citrate synthase activity, which upon deacetylation after a treatment with a recombinant 

deactelyase from E. coli, revealed decreased activity. Overall, this study proves that lysine 

acetylation in C. reinhardtii is a dynamic process that is able to regulate the activity of 

metabolic enzymes. 

 

My contribution to this study was to perform immunoblot analyses in collaboration 

with AC. König. Moreover, I revised the manuscript together with other co-authors. 
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Running title: Proteome and acetylome dynamics in Chlamydomonas 

Abbreviations: 

AAA-metalloprotease (FTSH1) 

Acetyl-CoA acyltransferase 1 (ATO1) 

Acetyl-CoA synthetase 2 (ACS2) 

Adenosylhomocysteinase (SAH1) 

Alcohol/aldehyde dehydrogenase 1 (ADH1) 

Aldehyde dehydrogenase 2 (ALDH2) 

Apocytochrome f (PetA) 

Aspartate aminotransferase (AST1) 

ATP-synthase subunit alpha (AtpA) 

ATP-synthase subunit b’ (AtpX) 

ATP-synthase subunit beta (AtpB) 

ATP-synthase subunit delta (AtpD) 

ATP-synthase subunit epsilon (AtpE) 

Basic extraction buffer (BEB) 

Basic extraction buffer containing deacetylase inhibitors (DI) 

Calcium/calmodulin dependent protein kinase kinase 1 (CDPKK1) 

Calcium/Calmodulin-dependent protein kinase kinase 1 (CDPKK1, A8IBS4) 

Carbon dioxide (CO2) 

Chlamydomonas reinhardtii (C. reinhardtii) 

Chloroplastic pyruvate dehydrogenase complex (cpPDC) 

Citrate synthase 2 (CIS2) 

Dihydrolipoamide acetyltransferase (DLA2)  

Fatty acid (FA) 

Filter-aided sample preparation (FASP) 

Glyceraldehyde 3-phosphate dehydrogenase dominant|minor splicing variant 

(GAP1a|GAP1b) 

Glyceraldehyde-3-phosphate dehydrogenase (GAP3) 

Glyoxylate cycle (GC) 

Heat shock protein 70B (HSP70) 

High-salt minimal medium (HSM) 

Histone H3 (HTR14) 
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Hydroxymethylpyrimidine phosphate synthase (THICb/THICa) 

Isocitrate lyase 1 (ICL1) 

Label-free quantification (LFQ) 

Light-harvesting protein of photosystem I (LHCA1) 

Malate dehydrogenase 2 (MDH2) 

Malate synthase 1 (MS1) 

Mass spectrometry (MS) 

Mg protoporphyrin IX S-adenosyl methionine O-methyl transferase (CHLM) 

NAD-dependent protein deacetylase (YHDZ) 

Oxygen-evolving enhancer protein 1 of photosystem II (PSBO) 

Pentose phosphate pathway (OPPP) 

Phosphoenolpyruvate (PEP) 

Phosphoenolpyruvate carboxykinase (PCK1a/PCK1b) 

Photosystem I P700 chlorophyll a apoprotein A2 (PsaB) 

Photosystem I reaction center subunit II (PsaD) 

Post-translational modifications (PTMs) 

Pyruvate (PYR)  

Pyruvate carboxykinase (PCK1a/PCK1b) 

Pyruvate phosphate dikinase (PPD1) 

Pyruvate: ferredoxin oxidoreductase (PFR1)  

Ribosomal protein S11 (Rps11) 

Ribosomal protein S4 (Rsp4) 

Ribulose-1,5- bisphosphate carboxylase large chain (RBCL) 

Solute carrier family 25 (SLC25) 

Transketolase (TRK1) 

Tricarboxylic acid cycle (TCA) 

Tris/acetate/phosphate (TAP) 

Tris/acetate/phosphate medium containing 1% sorbitol (TAPS) 

UDP-Glucose:protein transglucosylase (EZY11) 
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Summary  

  

The soil-dwelling green algae Chlamydomonas reinhardtii is one of the most studied 

microorganisms concerning the production of renewable alternative energy. To understand its 

metabolic regulation upon variable environmental conditions is a major task in research of 

this century. Post-translational modifications have a key role in acting as molecular switches 

for the control of protein functions and metabolism. However, the post-translational control of 

enzyme functions in Chlamydomonas, except for phosphorylation, is largely unexplored. 

Acetylation of the ɛ-amino acid of a lysine residue is a dynamic and major modification 

coupled to the energy metabolism of a cell as it is dependent on acetyl-CoA levels. Therefore, 

we performed a mass spectrometry based analysis to study lysine acetylation and proteome 

dynamics in C. reinhardtii under varying growth conditions. Liquid cultures of 

Chlamydomonas were transferred from mixotrophic (light and acetate as carbon source) to 

heterotrophic (dark and acetate), or photoautotrophic (light only) growth conditions for 30 h 

before harvest. In total, 4,065 protein groups were identified with a protein FDR <1 %, which 

carried 254 lysine acetylation sites. The proteome and acetylome changes between the 

different growth conditions were quantified using dimethyl-labelling. The presence of lysine 

acetylation on nearly all enzymes involved in the glyoxylate cycle being dynamically 

regulated within the different growth conditions was one of the major results of this study. 

Acetate seems to be predominantly integrated by the acetyl-coA synthase 3 which is localized 

to the peroxisomes. A functional relevance of lysine acetylation could be shown for the citrate 

synthase activity which exhibits less activity after treatment with a recombinant deacetylase 

from Escherichia coli. Our results show that lysine acetylation is a dynamic process with the 

potential of genetic engineering possibilities for future alternative energy supply. 

 

Introduction 

 

One of the main challenges of this century is the rising demand of energy in 

combination with the need to prevent damages to the environment. Therefore, 

environmentally sustainable fuels and energy have a huge potential as alternatives to the 

available fossil fuels. Especially algae possess abilities in generating energy products, such as 

bio-oil, methane, methanol, and hydrogen (Jones and Mayfield, 2012; Velasquez-Orta et al., 

2009); hence they have been the target of genetic manipulation over the last 70 years. The 
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soil-dwelling green algae Chlamydomonas reinhardtii (C. reinhardtii) is the most studied 

microorganism in the production of renewable alternative energy (Leite et al., 2013; Merchant 

et al., 2012). Using chloroplastic and nuclear engineering as well as homologous 

recombination and high-throughput screening, an improvement of characteristics for biofuel 

production has been achieved over the last years (Scranton et al., 2015). Still there is a huge 

gap of knowledge in the basic research of underlying biochemistry, cell biology, and genetics 

of C. reinhardtii. Hence, to improve the idea of using C. reinhardtii as an alternative energy 

source for biofuels the main task is to understand these basic principles of metabolic functions 

and pathways.  

C. reinhardtii is able to grow photoautotrophically with just light as an energy source, 

as well as heterotrophically with acetate as carbon source. In addition, C. reinhardtii is often 

grown in a mixture between both conditions (acetate and light), which is named mixotrophic 

growth (Hoober, 1989).  Due to different metabolic pathways that have to be activated in 

dependence on the growth conditions, such as photosynthesis in the light, several metabolic 

adaptations have to occur in C. reinhardtii to prevent any futile cycling in metabolism. Such 

acclimation to growth conditions can occur at several levels which include transcriptional and 

translational control of mRNA as well as protein stability and product inhibition or allosteric 

effects on enzyme activities (Erickson et al., 2015; Hoober, 1989; Ledford et al., 2007). 

Another layer of regulation of protein functions is mediated by post-translational 

modifications (PTMs). PTMs are often reversible and can act as fast molecular switches 

which enable proteins to change their activities, functions or even localizations in the cell 

(Castano-Cerezo et al., 2014; Jing et al., 2013). Recent advances in mass spectrometry (MS)-

based proteomics allowed the identification of thousands of different PTMs (Choudhary and 

Mann, 2010; Jensen, 2006; Macek et al., 2009). Within these PTMs the lysine residue is the 

most modified amino acid with more than 200 different types of modifications (Hershko and 

Ciechanover, 1998; Martin and Zhang, 2005; Weinert et al., 2013; Zhang et al., 2009). One of 

these more prominent lysine modifications is lysine acetylation which occurs on the ε-amino 

group of lysine residues. Lysine acetylation has been studied in much detail on histone 

proteins where it is linked to transcriptional regulation by changing the interaction of 

transcription factors with chromatin (Sterner and Berger, 2000). The first non-nuclear lysine 

acetylation protein discovered was the alpha-tubulin of Chlamydomonas axonemal 

microtubules more than 20 years ago (L'Hernault and Rosenbaum, 1983, 1985). From then 

on, the discovery of lysine acetylation on non-histone proteins gradually increased with 



 Appendix  

 

104 

 

improvements in the enrichment techniques as well as with the sensitivity and scanning-speed 

and resolution of mass spectrometers. Lysine acetylation is nowadays known to occur in 

various organisms and subcellular localizations in bacteria, yeast, plant and animal cells 

(Choudhary et al., 2009; Finkemeier et al., 2011; Henriksen et al., 2012; Lundby et al., 2012; 

Melo-Braga et al., 2012; Mo et al., 2015; Weinert et al., 2011). Beside the total number of 

lysine acetylation within different organism the differential analysis of lysine acetylation 

between different genotypes, mutants as well as growth conditions is of upcoming interest in 

particular to learn more about the functional relevance of lysine acetylation (Yan and Chen, 

2005).  In this work, a stable isotope dimethyl labeling technique was used to compare the 

dynamics of lysine acetylation and the proteome between the different growth conditions of 

C. reinhardtii (Boersema et al., 2009). Since lysine acetylation is dependent on the presence 

of acetyl-CoA, the regulation of the proteome by lysine acetylation represents a tight 

connection between the metabolic state and the resulting metabolic pathway regulation 

(Choudhary et al., 2014; Galdieri et al., 2014; Glasser et al., 2014). Hence, this study gives a 

novel insight into the functional relevance of lysine acetylation for C. reinhardtii transferred 

for 30h from mixotrophic growth conditions to light, light and acetate and only acetate as a 

carbon source, respectively.  

 

Materials and Methods 

 

Algal Strain and Culture Conditions  

For C. reinhardtii, we used the cell wall deficient mt- strain CC-3491 

(Chlamydomonas Resource Center) which showed a reduced abundance of acetylated tubulin 

due to a high proportion of non-flagellated cells. The strain was maintained on 0.8% agar-

solidified Tris/acetate/phosphate (TAP) medium (Harris et al. 1989) at 25°C under constant 

light (30 µmol/m
2
/s). Liquid cultures were incubated under agitation at 25°C. For analysis, a 

pre-culture was grown in 2 L of TAP medium containing 1% sorbitol (TAPS) to a density of 

~5·10
6
 cells/mL. Cells were harvested by centrifugation (5 min, RT, 1000 x g), washed once 

with 200 mL high-salt minimal medium (HSM) ((Hoober, 1989)) and resuspended in 120 mL 

HSM (~8 x 10
7 

cells/mL). This suspension was used to inoculate the following cultures: For 

heterotrophic growth, 3 x 10 mL resuspended culture was used to inoculate 3 x 300 mL 

TAPS, for mixotrophic growth, 3 x 8 mL was used to inoculate 3 x 300 mL TAPS, and for 

growth under photoautotrophic conditions, 3 x 15 mL were used to inoculate 3 x 500 mL 
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HSM. For mixotrophic and photoautotrophic growth cells were then incubated in the light 

(100 µE/m
2
/s) or kept in complete darkness for heterotrophic growth. 

 

Immunoenrichment and Western blot analysis  

For native protein isolation, cells were grown under indicated light and time 

conditions as described above. Cells were harvested by centrifugation and lysed under 

pipetting in 2ml basic extraction buffer (BEB) containing 50 mM Tris pH 7.5, 150 mM NaCl, 

10% glycerol, 2mM EDTA, 0.5% Triton X-100, as well as 5 mM dithiothreitol and protease 

inhibitor cocktail (cOmplete Tablets, Roche). Additionally, to avoid deacetylation of proteins, 

2µg mL
-1

 apicidin and 1mM nicotinamide were added to the BEB(DI). For lysine acetylation 

immunoenrichment, 200µg protein extract was incubated with 20µl acetyl lysine antibody 

immobilized to agarose beads (ImmuneChem Pharmaceuticals) for 3h at 4°C. 

Immunoprecipitates were washed three times with extraction buffer and eluted by boiling in 

gel loading buffer for 5 min. For Western-blot analysis, proteins were separated by SDS-

PAGE, transferred to a nitrocellulose membrane, and probed using acetyl lysine antibody in a 

1:1,000 dilution (ImmuneChem Pharmaceuticals). Secondary anti-horseradish peroxidase 

antibody was used in a 1:10,000 dilution. 

 

Protein extraction, Filter-aided sample preparation (FASP) and trypsin digestion 

Protein pellets from C. reinhardtii were extracted in 10ml heated SDT-lysis buffer 

containing 4% (w/v) SDS, 100 mM Tris/HCl pH 7.6 and 100 mM DTT for 10min at 95°C 

with occasional mixing followed by 15min of sonication. Protein extracts were cleared by 

centrifugation and the protein amount was determined using the 660 nm Pierce protein assay 

with compatibility reagent (Thermo Scientific) as described before in detail (Hartl et al., 

2015). 

To remove excess SDS and to prepare the sample for tryptic digestion, a FASP was 

used as explained in (Wisniewski et al., 2009). Briefly, 10mg of the protein extract were 

diluted with 8 M urea in 100 mM Tris/HCl (pH 8) until a SDS concentration of <0.5 % was 

reached, loaded on a filter (Amicon Ultra-15 centrifugal filter units, Millipore) and washed 

three times until SDS was completely removed. The extract was alkylated using 50 mM 

iodoacetamide for 30min in the dark and excess reagent was washed through the filter and 

replaced by 50 mM NH4HCO3. The reduced and alkylated proteins were digested using 
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trypsin in an enzyme to protein ratio of 1:100. Peptides obtained by FASP were quantified at 

280 nm. 

 

Enrichment of lysine acetylated peptides 

Fractionated peptides were pooled together to obtain a total number of six fractions. 

Dried peptides were dissolved in 1 ml TBS buffer (50 mM Tris/HCl pH 7.6, 150 mM NaCl) 

and the peptide concentrations were determined. From each fraction a sample for the analysis 

of the total proteome was taken. 50 µl acetyl lysine antibody beads (ImmuneChem 

Pharmaceuticals) were used per mg peptide. Eluted peptides were desalted as described in 

König (2014).  

 

MS data acquisition 

Dried peptides were redissolved in 2% ACN, 0.1% TFA for analysis. Total proteome 

samples were adjusted to a final concentration of 0.2 µg/µl. Samples were analyzed using an 

EASY-nLC 1000 (Thermo Fisher) coupled to a Q Exactive Plus mass spectrometer (Thermo 

Fisher). Peptides were separated on 16 cm frit-less silica emitters (New Objective, 0.75 µm 

inner diameter), packed in-house with reversed-phase ReproSil-Pur C18 AQ 3 µm resin (Dr. 

Maisch). Peptides (1 µg for total proteome samples, half of the eluate for acetylated peptides) 

were loaded on the column and eluted for 120 min using a segmented linear gradient of 0% to 

95% solvent B (solvent A 5% ACN, 0.5% FA; solvent B 100% ACN, 0.5% FA) at a flow-rate 

of 250 nL/min. Mass spectra were acquired in data-dependent acquisition mode with a Top15 

method. MS spectra were acquired in the Orbitrap analyzer with a mass range of 300–1750 

m/z at a resolution of 70,000 FWHM and a target value of 3x10
6
 ions. Precursors were 

selected with an isolation window of 1.3 m/z. HCD fragmentation was performed at a 

normalized collision energy of 25. MS/MS spectra were acquired with a target value of 10
5
 

ions and an intensity threshold of 7.3x10
5
 (acetylated peptides) or 1.1x10

5
 (total proteome 

samples) at a resolution of 17,500 FWHM and a fixed first mass of m/z 100. Peptides with a 

charge of +1, greater than 6, or with unassigned charge state were excluded from 

fragmentation for MS2, dynamic exclusion for 30 s prevented repeated selection of 

precursors. 
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MS data analysis 

Raw data were processed using MaxQuant software (version 1.5.2.8, 

http://www.maxquant.org/) (Cox and Mann, 2008)with label-free quantification (LFQ) and 

iBAQ enabled (Cox et al., 2014). MS/MS spectra were searched by the Andromeda search 

engine (integrated in MaxQuant 1.5.2.8) against the UniProt Chamydomonas reference 

proteome (www.uniprot.org; database retrieved Aug 2012; 14,337 entries). Sequences of 248 

common contaminant proteins and decoy sequences were automatically added during the 

search. Data of total proteome and acetylated lysine-enriched samples were separated into two 

parameter groups to permit combined analysis. The match between runs option was enabled, 

but fractions of total proteome samples were defined as 1 to 7 and those of enriched samples 

as 11 to 17 to prevent transferal of identifications between both sample groups. Dimethylation 

of lysines and peptide N-termini were set as light (H4C2), medium (D4C2), and heavy (-H2 

+D6
13

C2) labels; the re-quantify option was enabled. Trypsin specificity was required and a 

maximum of two or four missed cleavages allowed for total proteome and enriched samples, 

respectively. Minimal peptide length was set to seven amino acids. Carbamidomethylation of 

cysteine residues was set as fixed, oxidation of methionine and protein N-terminal acetylation 

as variable modifications. Acetylation of lysines was added as a variable modification for the 

anibody-enriched samples. Allowed mass deviation was 4.5 ppm for peptides and 20 ppm for 

fragments. The minimum score and delta score for modified peptides were filtered for a score 

higher than 35 and 6, respectively. Peptide-spectrum-matches and proteins were retained if 

they were below a false discovery rate of 1%. Subsequent quantitative statistical analyses 

were performed in Perseus (version 1.5.2.6, http://www.maxquant.org/; Cox and Mann 2012). 

 

Citrate synthase activity  

Protein extraction was carried out in BWB followed by desalting with PD-10 columns 

(GE Healthcare). The protein extract was split and either treated with DI or with a 

recombinant NAD-dependent protein deacetylase (YHDZ) for 2h at room temperature (Seidel 

et al., 2016). Subsequently the samples were alkylated with 20 mM iodoacetamide for 30min 

in the dark. The citrate synthase activity was measured spectrophotometrically as described 

previously (Anoop et al., 2003; Schmidtmann et al., 2014). The assay was based on the 

absorbance of DTNB after reaction with CoA at 412nm. 100µg of the prepared protein extract 

were incubated with 0.5 mM acetyl-CoA (AppliChem) in 1 mM DTNB (in 100 mM Tris–HCl 

pH 8.0) and the reaction was started after addition of 10 mM oxaloacetate. 

http://www.uniprot.org/
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Results 

 

Lysine acetylation in Chlamydomonas reinhardtii in dependence on light and acetate 

In order to analyze the impact of the growth condition on the lysine acetylation status 

of C. reinhardtii, a pre-culture of CC-3491 cells was first grown under mixotrophic conditions 

and a medium light intensity (30 µmol/m
2
/s). The cells were then washed with acetate-free 

media and used to inoculate the main cultures which were grown either under hetero-, 

photoauto- or mixotrophic conditions for 30 h (Fig. 1A). The light intensity of the 

photoautotrophic and mixotrophic growth conditions was increased to 100 µmol/m
2
/s to 

support photosynthesis. After 30 h of growth under the respective condition, the pelleted cells 

were harvested frozen and stored for further analysis. We selected the 30 h time point, since 

there was a maximum difference in the acetylation status of a putative histone protein (below 

29 kDa) visible on the Western-blot using anti-lysine acetylation between the light and dark 

grown cultures (Fig. 1B). To detect whether Chlamydomonas possesses more lysine 

acetylated proteins, an enrichment of soluble lysine acetylated proteins was performed before 

Western blot analysis by using anti-lysine acetylation agarose beads (Fig. 1C). After this 

enrichment step, many more lysine acetylated proteins were detected on the Western-blot, 

such as a prominent protein band between 45 kDa and 66 kDa, which most likely refers to the 

ribulose-1,5- bisphosphate carboxylase large chain (RBCL). It was previously shown that the 

RBCL is highly acetylated in Arabidopsis (Finkemeier et al., 2011). No histone proteins could 

be detected by this approach, probably because the immunoprecipitation buffer did not 

solubilize the nuclear envelope during protein extraction.  

 

Mass spectrometry-based profiling of the Chlamydomonas proteome and acetylome 

The variety of lysine acetylated proteins detected on the Western blot prompted us to 

profile the lysine acetylome of C. reinhardtii in more detail, and to quantify total proteome 

and acetylome changes under the different growth conditions in a large-scale MS-based shot-

gun proteomic approach combined with a stable isoptopic dimethyl-labelling strategy. An 

overview of the mass-spectrometry-based work flow is shown in Fig. 2 A. Samples from the 

three different growth conditions were analysed in three biological replicates. Total proteins 

from each replicate were extracted, digested with trypsin, and free-amino groups of peptides 

were labeled with light, medium, and heavy stable isotope dimethyl-forms, respectively 

(Boersema et al., 2009; Konig et al., 2014). To prevent any labeling bias, a label-swap of the 
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light, medium, and heavy dimethyl-forms was performed on the third replicate. Equal 

amounts of the labeled peptides from the three growth conditions were combined and 

subjected to ZIC-HILIC fractionation to reduce the sample complexity. After fractionation the 

samples were enriched for lysine acetylated peptides by immunoaffinity purification. All 

fractions were analysed on a Q-Exactive Plus (Thermo Scientific) mass spectrometer and the 

resulting raw files were processed using MaxQuant. Protein and lysine acetylation peptide 

ratios for every peptide detected in at least two biological replicates were subjected to a 

LIMMA statistical analysis using R (Ritchie et al., 2015; Smyth et al., 2005).  

First, the proteome changes between the different growth conditions were compared 

(Fig. 2B-D; Suppl. table 1-3). In total, 4065 protein groups were identified in at least one 

replicate with a protein FDR of <1%. Overall, the different growth conditions affected only a 

subset of proteins, which have specific physiological functions important under the respective 

condition. Under heterotrophic growth conditions there were two enzymes, the pyruvate: 

ferredoxin oxidoreductase (PFR1) and the phosphoenolpyruvate carboxykinase 

(PCK1a/PCK1b), which were both highly increased in abundance (2.5 to 16-fold) compared 

to mixotrophic and photoautotrophic growth conditions. PFR1 is part of the fermentative 

pathways involved in dark anaerobic hydrogen (H2) production (Noth et al., 2013), while the 

pyruvate carboxykinase (PCK1a/PCK1b) is part of the gluconeogenesis pathway 

(Subramanian et al., 2014). Under mixotrophic conditions, there was only one enzyme, the 

hydroxymethylpyrimidine phosphate synthase (THICb/THICa), which was particularly more 

abundant than compared to heterotrophic (8-fold) and photoautotrophic (3-fold) growth 

conditions, respectively. THIC is involved in thiamine synthesis, which is a cofactor of 

several central metabolic enzymes (Moulin et al., 2013). As expected, under 

photoautothrophic and mixotrophic conditions, mainly proteins related to carbon dioxide 

(CO2) fixation and important for a proper function of the Calvin-Benson cycle were increased 

in abundance compared to heterotrophic growth conditions (Winck et al., 2013). This 

included several low CO2-inducible proteins as well as RuBisCO activase and light harvesting 

proteins, for example. In addition to the light-regulated proteins, we were able to identify 

acetate-dependent proteins, since both mixotrophic and heterotrophic conditions contained 

acetate in the growth medium. One example for an acetate-regulated protein is the SLC25-like 

protein that belongs to the peroxisomal solute carrier family. This carrier is supposedly 

responsible for the transport of nucleotides into the peroxisome like CoA, FAD, and NAD
+
, 

which are required for the assimilation of acetate (Agrimi et al., 2012). 
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Identification of lysine acetylation sites and Functional Annotation of Acetylated Proteins 

in C. reinhardtii 

In total, 254 lysine acetylation sites (FDR < 1 %, score > 30, delta score > 6) were 

detected on 149 protein groups of Chlamydomonas. To gain some insight into the biological 

functions of the lysine-acetylated proteins, a functional annotation classification using the 

UniProtKB database (http://www.uniprot.org/) was performed (Fig. 3A). Interestingly, 20 % 

of the 149 protein groups are involved in protein biosynthesis and most of the proteins belong 

to cytosolic as well as chloroplastic ribosomes (Suppl Tab. 3). Proteins that play a role in 

photosynthesis including the Calvin cycle reaction represent 17 % of the lysine acetylated 

proteins. Five of these proteins belong to the chloroplastic ATP-synthase including the ATP-

synthase subunit b’ (AtpX), the ATP-synthase subunit alpha and beta (AtpA and AtpB), as 

well as the epsilon and delta subunit (AtpE and AtpD). Interestingly, the same subunits were 

also discovered as lysine acetylated in Synechocystis sp. PC 6803 (Mo et al., 2015). In several 

other organisms, the mitochondrial homolog of the ATP-synthase in the respiratory chain was 

discovered to possess several lysine acetylated proteins (Henriksen et al., 2012; Konig et al., 

2014; Lundby et al., 2012; Rardin et al., 2013; Weinert et al., 2011). Hence, a functional 

relevance of this modification for the ATP Synthase protein therefore seems to be likely 

(Hosp et al., 2017). For example, Liko and co-workers recently discovered that the highly 

conserved acetylation sites within the cytochrome c oxidase protein interact with membrane 

lipids and therefore could be responsible for the fine tuning of protein-lipid interactions (Liko 

et al. 2016). About 9 % of the lysine acetylated proteins of Chlamydomonas belong to the 

functional category of carbon metabolism which includes glycolysis, tricarboxylic acid cycle 

(TCA) cycle, starch synthesis, pentose phosphate pathway (OPPP), and the glyoxylate cycle 

(GC). Interestingly, almost every enzyme of the GC (acetyl-CoA synthetase 2 (ACS2), 

isocitrate lyase 1 (ICL1), malate dehydrogenase 2 (MDH2), malate synthase 1 (MS1), and 

citrate synthase 2 (CIS2)) contains acetylated lysine residues (Suppl Tab. 3). Only the 

aconitase was not detected as lysine acetylated, but also no unmodified peptides were detected 

for this protein in our study. Interestingly almost all enzymes of the GC pathway were found 

to be differentially lysine acetylated under the different growth conditions, which will be 

discussed in the following section. Another 7 % of the lysine acetylated proteins belong to the 

category of histones and DNA metabolism, among those were the four histone proteins H2A, 

H2B, H3 and H4, as well as DNA-directed RNA-polymerase and subunit 1 of the DNA-

replication factor C complex. Interestingly, 5 % of the lysine acetylated proteins fall into the 
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category of proteins involved in fatty acid (FA) and acetyl-CoA metabolism. These enzymes 

are in direct contact with acetyl-CoA, which is used as substrate for lysine acetylation. Five 

different lysine acetylation sites (K35, K205, K210, K218, K663) were identified on the 

Chlamydomonas acetyl-CoA synthetase 3 (ACS3, A8JFR9). K609 of the acetyl-CoA 

synthetase in Salmonella enterica was previously shown to be actively regulated by lysine 

acetylation which inhibits the activity of this enzyme (Starai et al., 2002). However, K609 of 

Salmonella which is conserved in ACS3 of Chlamydomonas was not identified as lysine 

acetylated in our study. The functional group of kinases comprised 5 % of the lysine 

acetylated proteins. This group consists of diverse group of kinases involved in several 

metabolic processes and signalling, such as the ATM/ATR-like kinase as part of the histone 

acetyltransferase complex (A8I8Y6) and a Calcium/Calmodulin-dependent protein kinase 

kinase 1 (CDPKK1, A8IBS4). Furthermore, 13 % of the lysine acetylated proteins comprise a 

group of predicted proteins, and 23 % of the proteins are grouped in a category miscellaneous, 

which contains several interesting regulatory proteins and enzymes such as a superoxide 

dismutase, heat shock proteins and several proteases for example (Suppl Tab. 3).  To 

investigate whether specific sequence motifs can be found around the lysine acetylation sites,  

the IceLogo tool was used to generate a sequence logo using the 10 amino acids on each site 

of the lysine residue (Colaert et al., 2009). Whereas no specific pattern could be detected, an 

accumulation of glycine and lysine residues was observed for all three growth conditions.  

 

Differential lysine acetylation between the different growth conditions. 

To investigate the changes of lysine acetylation between heterotrophic, 

photoautotrophic and mixotrophic conditions we used the fact that peptides of each growth 

condition were labelled with a different dimethyl label (Fig. 2A). Therefore lysine acetylation 

of heterotrophic/photoautotrophic, heterotrophic/mixotrophic and 

mixotrophic/photoautotrophic was compared and visualized by volcano plots (Fig.4A-C). 

lysine acetylated peptides which have a –log10 p-value more or equal to 1.3 and a log2FC by 

more or equal to 1, were considered to be significant regulated between the different growth 

conditions. Positive log2FC numbers indicate an increased acetylation for (A) heterotrophic 

compared to photoautotrophic; (B) Hetero compared to mixotrophic and (C) mixotrophic 

compared to photoautotrophic conditions, whereas negative log2FC show lower levels of 

acetylation for the mentioned conditions.  
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By having a closer look at the lysine acetylated sites which were upregulated under 

heterotrophic conditions compared to photoautotrophic conditions, 32 lysine acetylated sites 

were identified which belong to 19 unique proteins. Several of these lysine acetylated sites 

belong to proteins which are localized to the peroxisome and are part of the GC pathway as 

mentioned before. The ACS3 provides one entry to the GC pathways by producing acetyl-

CoA by converting acetate and was recently localized to the peroxisome (Lauersen et al., 

2016). ACS3 has two lysine acetylation sites which were increased under heterotrophic 

conditions compared to photoautotrophic, ACS3K205 (4.04log2FC) and ACS3K218 (3.67 

log2FC) (Fig. 2A). Acetyl-CoA is then converted to citrate by the CIS2 that carries three up-

regulated lysine acetylation sites which are CIS2K100 (3.85log2FC); CIS2K341 (4.36 log2FC) 

and CIS2K447 (3.76log2FC). The next enzyme in the GC, the ACO which produces isocitrate 

out of citrate, was not detected in our experiment. Isocitrate is then converted to succinate by 

the ICL1 which has one lysine acetylation, ICL1K195 upregulated by 2.0 log2FC. 

Subsequently, succinate is converted to malate by the MS1 which has one lysine acetylation 

MS1K422 increased by 4.07 log2FC. The MDH metabolises malate to oxaloacetate and 

carries two lysine acetylation sites at position MDHK176 and MDHK342 that were not 

significantly regulated between heterotrophic and photoautotrophic conditions. Beside the 

known enzymes of the GC pathway several predicted proteins with lysine acetylation sites 

were identified with a potential function in ß-oxidation as well as peroxisomal in FA 

synthesis. A8JBL6 (Pp1) has a predicted 3-hydroxyacyl-CoA dehydrogenase activity and is 

supposed to be involved fatty acid metabolic process (Pp1K305, 4.96log2FC; Pp1K553, 

3.44log2FC; Pp1K565, 3.87log2FC). Additionally two more peroxisome related proteins with 

lysine acetylated sites were discovered. A8IYU9 (Pp3) a peroxisome fission related protein 

(Pp2K55, 3.83log2FC; Pp2K116, 4.62log2FC) and A8IMQ3 (Pp2) a peroxisomal 

multifunctional enzyme type 2 protein (Pp3K142, 4.77 log2FC). Interestingly the acetyl-CoA 

acyltransferase 1 (ATO1) is as well related to peroxisomes as it carries an incomplete 

peroxisomal targeting sequence and it was related to ß-oxidation (Atteia et al., 2009; 

Goodenough et al., 2014). ATO1 has three highly increased lysine acetylation sites under 

heterotrophic conditions, ATO1K230, 3.05log2FC; ATO1K232, 3.79log2FC; ATO1K274, 

3.08log2FC and ATO1K457, 4.25log2FC. Therefore out of the 19 unique proteins with a 

significant increase in lysine acetylation under heterotrophic conditions 8 are related to 

different peroxisomal functions. The other proteins belong to diverse localizations and 

categorical functions like the RbcL which is chloroplast localized and carries a lysine 
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acetylation site at K175 2.54log2FC. As mentioned before the influence of lysine acetylation 

on the RUBISCO was already known and the increase in lysine acetylation during 

heterotrophic conditions is in concert with the reported decrease in activity (Finkemeier et al., 

2011; Gao et al., 2016). Also one of the already mentioned ATP-synthase subunit, AtpB 

showed increased lysine acetylation under heterotrophic conditions at K215 with a log2FC of 

1.25. The dihydrolipoamide acetyltransferase (DLA2) is a subunit of the chloroplastic 

pyruvate dehydrogenase complex (cpPDC) and is involved in the conversion from pyruvate to 

acetyl-coA as well as in the translation of the psbA mRNA from photosystem II (Bohne et al., 

2013). DLA2 carries in total three lysine acetylation sites including one that is significantly 

upregulated under heterotrophic conditions (DLA2K161, 1.56 log2FC). Interestingly, parts of 

the glycolytic pathway of C.reinhardtii take place in the chloroplast (Johnson and Alric, 

2013). The Glyceraldehyde-3-phosphate dehydrogenase is part of the glycolysis and one 

lysine is upregulated under heterotrophic conditions (GAP3K162, 1.42log2FC). The last 

chloroplast protein with an increased lysine acetylation under heterotrophic conditions was 

the alcohol/aldehyde dehydrogenase 1 (ADH1) which converts acetyl-coA to ethanol 

(ADH1K206, 2.31log2FC) and is involved in the fermentative pathways (Catalanotti et al., 

2013; Terashima et al., 2010). Within the cytosol one different lysine acetylated protein was 

identified with elevated lysine acetylation sites the Ribosomal protein L7 (RPL7K57, 

1.24log2FC). Likewise in mitochondria one protein showed changed acetylation, the aspartate 

aminotransferase (AST1K66, 3.99log2FC) which is responsible for the conversion of aspartate 

and α-ketogluterate to glutamate and oxaloacetate (Goodenough et al., 2014).  The remaining 

proteins could not be mapped to any localization. )The glyceraldehyde 3-phosphate 

dehydrogenase has two different splicing variants (GAP1a|GAP1b) that cannot be 

distinguished by MS. Therefore the dominant splicing variant GAP1a has a lysine acetylation 

at position K257 which correlates with the lysine acetylation of minor splicing variant GAP1b 

at position K204 which is the same peptide and therefore these two lysine acetylation sites 

have the same log2FC which is 2.18. Identical behaves GAP1aK199 and GAP1bK146 with a 

log2FC of 1.98. The malonyl-CoA:acyl-carrier-protein transacylase (2*) and Pp4 have each 

one increased lysine acetylation site, 2*K313 1.23log2FC and Pp4 1.47K304 log2FC. Beside 

changes in lysine acetylation also the changes in protein levels between heterotrophic and 

photoautotrophic conditions were distinct and visualized in Fig. 4D in which the log2FC of 

the heterotrophic/photoautotrophic protein ration is plotted against the log2FC of lysine 

acetylation heterotrophic/photoautotrophic ratio. Interestingly mainly proteins which are 
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related to peroxisomes were upregulated on protein level under heterotrophic conditions 

including the ACS3 (2.94log2FC), CIS2 (2.5log2FC), Pp2 (2.23log2FC), MS1 (2.17log2FC), 

ICL1 (2.14log2FC), Pp1 (1.48log2FC) and ATO1 (1.42log2FC).  This could be due to the fact 

that the GC is necessary during darkness because during longer periods of darkness plants 

start to degrade their endomembrane system and depend on fatty acid β-oxidation (Kunze et 

al., 2006). Additionally it is known that the number of peroxisomes increases with acetate in 

the media (Hayashi et al., 2015). Another three proteins were significant more upregulated 

which were so far not related to peroxisomes, the AST1 (2.11log2FC), ADH1 (2.08log2FC) 

and GAP1a|GAP1b (1.95log2FC). By having a look at the lysine acetylation sites which were 

down regulated under heterotrophic conditions and therefore upregulated under 

photoautotrophic conditions, seven unique proteins were discovered. Five of these seven 

where associated with chloroplast function, Apocytochrome f (PetAK219, -2.58log2FC), a 3-

oxoacyl-ACP like protein (1*K280,-1.88log2FC), Mg protoporphyrin IX S-adenosyl 

methionine O-methyl transferase (CHLMK271, -1.81log2FC), Photosystem I reaction center 

subunit II (PsaDK114, -1.67log2FC) and Photosystem I P700 chlorophyll a apoprotein A2 

(PsaBK8, -1.63log2FC; PsaBK4 -1.19log2FC). Furthermore a Calcium/calmodulin dependent 

protein kinase kinase 1 (CDPKK1-1.24log2FC) with unknown localization was identified. 

Interestingly GAP3 which also carries an upregulated lysine acetylation site also exhibits a 

lysine acetylation site on position K205 which is -1.3log2FC downregulated. On total protein 

level just three proteins have a significant decrease, PsaD (-1.51log2FC), PsaB (-1.5log2FC) 

and CHLM (-1.1log2FC) (Fig. 2D). 

In the next step heterotrophic versus mixotrophic conditions were compared on lysine 

acetylation level (Fig. 4B). In this case it was interesting that lysine acetylation changes were 

in general not as distinct between the two conditions when compared with heterotrophic 

against photoautotrophic. This could be a hint that the major lysine acetylation changes are 

provoked by acetate. The acetate dependent changes cannot be seen between heterotrophic 

and mixotrophic since both growth conditions contain acetate in the media therefore the 

visible lysine acetylation changes depend solely on dark versus light conditions. This can 

explain that the -log10p-values were not as defined, as well. Under heterotrophic conditions in 

total 22 lysine acetylation sites were significantly upregulated compared to mixotrophic which 

belong to 16 unique protein groups. Also in this comparison 8 out of 16 proteins belong to 

proteins involved in peroxisomal metabolism. Again several enzymes of the GC were lysine 

acetylated, the ACS3 (ACS3K205, 1.34 log2FC and K218, 1.31log2FC), CIS2 (CIS2K100, 



 Appendix  

 

115 

 

1.7log2FC; K341, 3.69log2FC, CISK447, 1.43log2FC) ICL1 (ICL1K195, 1.93log2FC) and 

MS1 (MS1K422, 2.82log2FC). The FA related protein Pp1 showed likewise an upregulation 

of lysine acetylation sites but clearly less increased when compared with heterotrophic versus 

photoautotrophic conditions (Pp1K305, 2.31log2FC; Pp1K553, 1.68log2FC; Pp1K565, 

1.24log2FC). The same is true for Pp3 which had just one lysine acetylation site which was 

significantly regulated (Pp3K116, 1.37log2FC), ATO1 (ATO1K232, 1.21log2FC) as well as 

for Pp2 (Pp2K142, 3.29 log2FC). Concerning proteins localized to the chloroplast just three 

proteins showed increased lysine acetylation. These were again the RbcL K175 2.54log2FC, 

as well as a nucleoside diphosphate kinase (3*K49, 1.19log2FC) and GAP3 (GAP3K162, 

1.1log2FC). The mitochondrial AST1 showed as well an upregulation in lysine acetylation 

(AST1K66, 1.88log2FC). The last three proteins could not be assigned to any localization, 

UDP-Glucose:protein transglucosylase (EZY11K312, 1.92og2FC), Pp5 (Pp5K32, 1.81og2FC) 

and again the GAP1a/GAP1b splicing variants (GAP1aK257|GAP1bK204, 1.2log2FC). On 

total proteome level (Fig. 4E) similar aspects were seen for heterotrophic/mixotrophic 

conditions as for heterotrophic/photoautotrophic conditions (Fig. 4D) but not as strongly 

pronounced. Again especially proteins of the peroxisomal metabolism show an upregulation 

on protein level, ACS3 (1.52log2FC), CIS2 (1.46log2FC), Pp3 (1.08log2FC), MS1 

(1.5log2FC), ICL1 (1.78log2FC) and ATO1 (1.58log2FC). Additionally AST1 (1.73log2FC) 

and GAP1a|GAP1b (1.87log2FC) were significantly increased. Whereas the lysine acetylation 

sites of the upregulated proteins between heterotrophic and mixotrophic conditions were quite 

similar to the once in comparison between heterotrophic and photoautotrophic conditions, just 

three identical lysine acetylation sites were found for the downregulated ones which were 

CHLM (K271, -2.3log2FC) and CDKK1 (K271, -1.73log2FC) and PsaD (K114, -1.2log2FC). 

Further chloroplast localized lysine acetylation sites were detected, the Light-harvesting 

protein of photosystem I (LHCA1K114, -1.2log2FC), AtpE (AtpEK111, -1.0log2FC), AtpB 

(AtpBK215, -1.95log2FC), Transketolase (TRK1K72, -1.18log2FC) and two sites of the 

Oxygen-evolving enhancer protein 1 of photosystem II (PSBOK121, -1.14log2FC; 

PSBOK231, -1.2log2FC). One lysine acetylation site of an mitochondrial localized 

adenosylhomocysteinase (SAH1K236, , -1.29log2FC) was identified to be downregulated 

under heterotrophic conditions (Atteia et al., 2009). On protein level LHCA1 (-1.57log2FC), 

CHLM (-1.21log2FC) and PsaD (-1.167log2FC) were significant downregulated as well (Fig. 

4E). 
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The last two growth conditions which were compared were mixotrophic against 

photoautotrophic. Under mixotrophic conditions 29 lysine acetylation sites were upregulated 

compared to photoautotrophic conditions which belong to 23 unique proteins. Starting again 

with the proteins that were involved in peroxisomal metabolism eight out 23 proteins belong 

to this subcellular localization. As before the ACS3 (ACS3K205, 2.56 log2FC and K218, 

2.56log2FC), CIS2 (CIS2K100, 2.1log2FC; CISK447, 2.36log2FC) and MS1 (MS1K422, 

1.77log2FC) were discovered and upregulated under mixotrophic conditions. Interestingly the 

ICL1 did not show any changes in lysine acetylation between these conditions (ICL1K195, -

0.084log2FC). Pp1 showed again three lysine acetylation sites being upregulated (Pp1K305, 

2.56log2FC; Pp1K553, 1.73log2FC; Pp1K565, 2.86log2FC) as well as Pp3 showed one 

upregulated lysine acetylation site (Pp3K116, 2.47log2FC). ATO1 carried two increased 

lysine acetylation sites (ATO1K232, 2.65log2FC; ATO1K274, 1.97log2FC) as well as the 

fatty acid regulated protein Pp2 (Pp2K142, 2.02 log2FC). Three proteins with increased lysine 

acetylation site under mixotrophic conditions are localized to the chloroplast, the RbcL 

(RbcLK175, 1.02log2FC), AtpB (AtpBK215, 2.91log2FC), a membrane AAA-metalloprotease 

(FTSH1K, 1.39 log2FC), DLA2 (DLA2K161, 1.91log2FC) and a ribosomal protein S11 

(Rps11K43, 1.15 log2FC). Furthermore five proteins were found to be localized in the cytosol, 

a heat shock protein 70B (HSP70K278, 2.33log2FC), RPL7 (RPL7K57, 1.24log2FC), 

GAP1a|GAP1b (GAP1aK257|GAP1bK204, 1.12log2FC; GAP1aK199|GAP1bK146, 

1.07log2FC), ADH1 (ADH1K206, 1.45log2FC). Two mitochondrial localized proteins, the 

AST1 (AST1K66, 2.24log2FC) and an Adenosylhomocysteinase (SAH1K236, 2.53 log2FC) 

were upregulated under mixotrophic conditions compared to photoautotrophic. Likewise three 

proteins with unknown localization showed increased acetylation, 2* (2*K313, 1.09log2FC), a 

Ring3 protein (4*K230, 1.76log2FC) and a predicted protein, A8I4R4 (Pp8) with an N-

acyltransferases activity (Pp8K143, 1.07log2FC). By comparing mixotrophic to 

photoautotrophic on total proteome level just the ACS3 is upregulated significantly under 

heterotrophic conditions (1.47log2FC). Significant downregulated lysine acetylation sites for 

mixotrophic conditions compared to photoautotrophic were found on three chloroplastic 

proteins, a CR051 protein (1*K280, -2.6log2FC), a ribosomal protein S4 (Rsp4K252, -

1.24log2FC) and 3* (3*K49, -1.12log2FC). One histone protein was discovered, Histone H3 

(HTR14) which was significantly down regulated under mixotrophic conditions (HTR14K24, 

-1.32 log2FC). All other proteins with decreased lysine acetylation sites were of unknown 

localization, an ATM/ATR-like kinase (6*K3333, -1.73log2FC), A8JBL8 (Pp6K320, -
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1.21log2FC and A8HMW6 (Pp7K780, -1.19log2FC). No significant changes on total 

proteome level were observed (Fig. 4F). 

 

Activity changes of citrate synthase after deacetylase treatment 

To validate our data for functional relevance, the peroxisomal CIS2 was picked in 

order to perform activity assays.  CIS2 was discovered to be dynamically regulated within the 

different growth conditions on several lysine acetylation sites (Fig. 4A-C). So far nothing was 

known about the influence of lysine acetylation on CS activity. Until now, a dimer dependent 

redox regulation of the mitochondrial CS has been shown in Arabidopsis thaliana 

(Schmidtmann et al., 2014). lysine acetylation  As the CIS2 represents a key enzyme of the 

GC and is directly involved in the conversion from acetyl-coA it is of great interest to disclose 

the regulatory mechanisms of this enzyme. In a first approach the total activity of CS was 

measured by using total protein extract from heterotrophic, mixotrophic and photoautotrophic 

grown cells.  It cannot be ruled out that the activity is partially caused by the mitochondrial 

CS but as no changes on either total protein level nor on lysine acetylation could be observed 

it can be assumed that the changes in activity were mainly caused by the peroxisomal CIS2. 

The changes in activity were in concert with the changes on total protein level.  Hence under 

heterotrophic conditions the CIS2 activity was 2.2 times higher compared to photoautotrophic 

grown cells (heterotrophic/photoautotrophic, 2.5log2FC), 1.65 times higher by comparing 

Hetero  with mixotrophic (heterotrophic/ mixotrophic o, 1.46log2FC) and 1.33 times higher by 

comparing CS activity of mixotrophic versus photoautotrophic grown cells 

(mixotrophic/photoautotrophic, 0.9log2FC). Thus the main activity changes were provoked by 

total protein changes. To analyze the effect of lysine acetylation on the CIS2 activity, the 

protein extracts were treated either with DI to avoid deacetylation or with the recombinant 

YHDZ from E.coli. The activity of the DI sample was set to 100% as it represents the present 

lysine acetylation state of the protein extract in comparison to the YHDZ treated samples 

which showed a decrease in lysine acetylation (supplementary). In general a decrease in CS 

activity was observed after deacetylation, especially the photoautotrophic grown cells exhibit 

a significant difference (Fig. 5B).  
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Discussion 

 

In recent years, several global acetylome characterizations have been reported both in 

prokaryotes and eukaryotes. This study presents the first C. reinhardtii acetylome in 

combination with stable dimethyl labelling including a comparison between heterotrophic, 

photoautotrophic and mixotrophic growth conditions. It is known that mixotrophic conditions 

promote the optimal lipid formation which is important for large-scale generation of algal-

based biofuels (Sager and Granick, 1953; Work et al., 2010). To further improve the biofuel 

production it is of great interest to understand the basic principles of metabolic pathway 

regulation in C. reinhardtii. The acetylome data which we present here provide new possible 

regulatory mechanisms based on PTM. The use of three biological replicates and accurate 

similar growth parameters for the different growth conditions gave the base for a significant 

and meaningful acetylome study.  Additionally they provide the first total proteome analysis 

between heterotrophic, mixotrophic and photoautotrophic conditions.  By using this 

straightforward method we identified an overall number of 3422 proteins with 311 lysine 

acetylation sites which belong to 165 unique protein groups (Tab.1). Our data show that 

diverse metabolic pathways as well as functional categories possess lysine acetylated proteins 

which is in concert with several other organisms (Cobbold et al., 2016; Fang et al., 2015; 

Finkemeier et al., 2011; Henriksen et al., 2012; Liu et al., 2014; Liu et al., 2016). This 

widespread distribution represent the vital biological processes of this PTM which include 

metabolic enzymes involved in protein biosynthesis, photosynthesis as well as several 

important carbon utilization pathways including glycolysis, TCA and GC pathway. 

Exceptional for our study is the comparison of differential lysine acetylation within three 

growth conditions, heterotrophic, mixotrophic and photoautotrophic growth by dimethyl 

labeling. These three conditions imply the parameter acetate, light and dark. Hence it was 

possible to investigate which parameter influences lysine acetylation the most as well as to 

uncover the possible regulatory function. Our data suggest that acetate has the main influence 

on lysine acetylation which can be explained by the enormous changes in lysine acetylation 

by comparing either heterotrophic versus photoautotrophic as well as mixotrophic versus 

photoautotrophic whereas heterotrophic versus mixotrophic just show minor changes in lysine 

acetylation (Fig. 4). As acetate can be converted to acetyl-coA which is the donor of the 

acetyl group in lysine acetylation it can be speculated that lysine acetylation plays a major 

role in directing metabolic enzymes via activity changes in the acetate converting direction. 
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The link between acetate metabolism and lysine acetylation is well studied and is mainly 

established because of the known activity regulation of ACS by lysine acetylation in several 

organisms (Crosby et al., 2010; Gardner et al., 2006; Starai et al., 2002). However as well in 

our data the ACS2, which provides the entrance of acetate into the GC cycle, was acetylated 

on several K residues and additionally upregulated in lysine acetylation in acetate containing 

growth media (Fig. 4). Additional to the ACS2 all enzymes of the GC beside the ACH1 were 

lysine acetylation (Fig. 6). The presence as well as the control of ICL activity by lysine 

acetylation was shown in Escherichia coli cells and the pathogen Mycobacterium tuberculosis 

(Castano-Cerezo et al., 2014; Xie et al., 2015). Nothing was known so far about the regulation 

of CS by lysine acetylation. Therefore a spectrometric CS assay was performed which gave 

insight into activity changes triggered by lysine acetylation. Total protein extract was treated 

with and without an external added deacetylase, the YHDZ. The most striking CS activity 

changes were based on total protein amount (Fig. 5A) but nevertheless also significant 

differences after the deacetylation reaction through the YHDZ could be observed (Fig. 5B). 

For future experiments it would be interesting to perform site directed mutagenesis of the 

different lysine acetylation sites to achieve a better insight into the regulatory function of CS 

by lysine acetylation. Beside the lysine acetylation of all GC enzymes as well a strong 

increase on total proteome level for all GC enzymes supports the hypothesis that acetate 

enters via the GC pathway in peroxisomes which is the preferred carbon utilization pathway 

especially for heterotrophic grown cells (Fig. 6). By further analyzing the changes on 

proteome level it became obvious that heterotrophic grown cells depend on fermentative 

pathways like the PRF1 which process H2 as end product (Mus et al., 2007; Noth et al., 2013). 

A possible imaginable pathway is that OAA from the GC is exported out of the peroxisome 

into the cytosol where it is converted to Phosphoenolpyruvate (PEP) by the PCK and further 

metabolized to pyruvate (PYR) by the Pyruvate phosphate dikinase (PPD1). PYR can then 

enter the chloroplast and is used to produce acetyl-coA by the PFR1 and is finally used by the 

ADH1 to produce ethanol. The ADH1 is not just upregulated on total proteome but as well 

shows increased acetylation. This fermentative pathway is an important renewable energy 

supply as hydrogen is, beside the divergent possibilities of producing energy, one of the 

cleanest and therefore most attractive products as it has no carbon emission (Hemschemeier et 

al., 2009). Therefore it is of great interest that for the mitochondrial aldehyde dehydrogenase 

2 (ALDH2) a functional relevance of lysine acetylation was already observed (Xue et al., 

2012). Photoautotrophic grown cells produce their energy by the fixation of inorganic CO2 
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fixation via the RUBISCO. The RBCL has three lysine acetylation sites and one which shows 

a down regulation under photoautotrophic conditions compared to heterotrophic and 

mixotrophic. This downregulation is probably in concert with an increase in activity as 

reported for Arabidopsis thaliana (Gao et al., 2016). In general, photoautotrophic grown cells 

mainly had PS related proteins which were differentially lysine acetylation (PsaB, PsaD, 

PdbR, AtpB, petA and CHLM) (Fig. 4; Fig. 6). Additionally several CO2 accumulating 

enzymes are upregulated on protein level (Fig. 2B, D) which provide adequate CO2 supply 

(Tirumani et al., 2014; Ynalvez et al., 2008). The same proteins were upregulated in lysine 

acetylation for mixotrophic conditions compared to heterotrophic which shows that 

mixotrophic grown cells not just receive energy by the conversion of acetate but that 

simultaneously the PS is active (Fig. 4B; Fig. 6). As C. reinhardtii is an important organism 

for alternative biofuels it is of great interest to further improve its growth potential. Therefore 

the metabolic key points have to be discovered and itemized. Genetic manipulations could 

now offer an efficient tool to modulate and regulate metabolic flow. One possibility to alter 

lysine acetylation is site directed mutagenesis by exchanging the responsible lysine residue by 

a glutamate or an arginine which either simulates the acetylated or the non-acetylated state 

respectively.   Functional relevance of lysine acetylation of photosynthetic proteins beside the 

RBCL could not be shown so far. Improvement of PS is as well a common topic and therefore 

analysis of the different lysine acetylation sites within the PS apparatus would be of great 

relevance. 
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Figure 1. Overview of Chlamydomonas culture conditions and Western blot 
analysis of lysine‐acetylated proteins. (A) Cells were grown in 2 L TAPS media 
to a density of ~ 5 x 106 cells/mL, washed in HSM to remove external acetate 
and resuspended in 120 mL HSM. To compensate for different growth rates 
under the applied conditions and to reach approximately the same cell 
densities after 30 h of growth, three cultures for each condition 
(heterotrophic, Hetero; Mixotrophic, Mixo; photoautotrophic, Photo) were 
inoculated with the indicated volumes of the resuspended pre‐culture. (B) 
Western‐blot analysis of total proteins and (C) immunoprecipitated lysine‐
acetylated proteins (acetyllysine IP) from cells grown under heterotrophic 
(Hetero), mixotrophic (Mixo), and phototrophic (Photo) conditions using the 
anti‐acetyllysine antibody (anti‐KAc). Left columns next to the blots show the 
Ponceau S staining as loading control. 

FIGURE 1



Figure 2. Experimental set‐up for proteome‐wide identification of lysine‐
acetylated peptides in Chlamydomonas. (A). Proteins were extracted and 
subjected to a tryptic digestion. Peptides from different growth conditions 
were pooled after triplex dimethyl‐labeling and fractionated by ZIC‐HILIC 
chromatography. The fractions were enriched for lysine‐acetylated peptides 
using an anti‐acetyllysine agarose, and eluted and desalted peptides were 
analysed by mass spectrometry. (B‐D) Scatter plots of proteome changes 
observed between the different growth conditions (B. Hetero versus Photo; C. 
Hetero versus Mixo; D. Mixo versus Photo). The LIMMA log10 p‐values were 
plotted against log2 LFQ intensities (threshold for significance: –log10 p‐value ≥ 
1.3; log2FC ≥ 1).

FIGURE 2



Figure 3. Overview of lysine‐acetylated proteins identified in 
Chlamydomonas. (A) The graph shows the total number of lysine acetylation 
sites identified in all three experiments as well as the number of KAc sites 
identified in each of the three experiments. Rep, replicate. (B) Pie chart of 
functional categories of all identified lysine‐acetylated proteins. (C) Sequence 
probability logos of significantly enriched acetylation site motifs for ±10 amino 
acids around the lysine acetylation sites. The sequence logo was generated 
using the IceLogo tool (http://http://iomics.ugent.be/icelogoserver/).

FIGURE 3



FIG. 4.  Differential KAc between the different growth conditions. A‐C. 
Scatter plot of KAc differences between different growth conditions.  –log10 p‐
value was plotted against the KAc log2FC between the different conditions. D‐
E. Scatter plot KAc differences including total proteome changes of proteins. 
The log2FC of proteome changes is plotted against the log2FC of KAc. (A, D. 
Hetero versus Photo; B, E. Hetero versus Mixo; C, F. Mixo versus Photo).  Red 
dots symbolize significant KAc upregulation and blue dots represent significant 
KAc downregulation (threshold for significance: –log10 p‐value ≥ 1.3; log2FC ≥ 
1).

FIGURE 4



FIG. 5. Citrate synthase activity influenced by KAc. A. Citrate synthase activity 
of total protein extract of Hetero, Mixo and Photo conditions. B. Enzyme 
activity of citrate synthase of each growth condition after treatment with or 
without deacetylase. Extract which was treated with DI was set to 100% 
activity. Asterisks indicate significant differences (** P < 0.01; *** P < 0.001, t
test). YHDZ, NAD‐dependent protein deacetylase; DI, deacetylase inhibitor.

FIGURE 5



FIG. 6. KAc within different metabolic pathways in Chlamydomonas reinhardtii. 
Central carbon metabolism of Chlamydomonas reinhardtii. Blue lines represent preferred carbon 
utilization under Hetero conditions, red lines under Mixo conditions and green lines under Photo 
conditions. Red enzymes represents KAc enzymes which were significantly regulated within the 
different growth conditions. KAc up or down regulation is depicted in the three boxes next to the 
KAc enzymes (left box; Hetero versus Photo, middle box; Hetero versus Mixo, right box; Mixo
versus Photo, red arrow; KAc upregulated, blue arrow; KAc down regulated, minus; not 
significantly regulated between corresponding conditions). Acetate assimilation mainly takes 
place in the glyoxysomes and can feed either into the mitochondrial TCA cycle or into 
fermentative pathways localized in the chloroplast. Carbon dioxide fixation takes place in the 
chloroplast and energy is achieved by photosynthesis .  

FIGURE 6
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6.2 Supplemental figure 

 

 

 

 

 

 

 

 

 

 

Supplemental Figure 1: RNase-sensitive complex in Synechocystis. Thylakoids from the wild-type strain 

Synechocystis sp. PCC 6803 were solubilized and either treated with RNase or incubated on ice for the same 

time without the addition of RNase before 2D-BN-PAGE was performed. Second dimensions were subjected to 

immunoblots. 
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