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Abstract
This thesis provides a mathematical rigorous derivation of the cubic nonlinear Schrödinger
equation for several many-body systems. In particular, we focus on dynamical systems
where the interaction potential is either partly or purely attractive.

First, we study the dynamics of a Bose-Einstein condensate in two dimensions. We con-
sider the interaction potential to be given either by Wβ(x) = N−1+2βW (Nβx) for any
β > 0, or by VN(x) = e2NV (eNx). Both W and V are spherical symmetric and compactly
supported potentials, W,V ∈ L∞(R2,R) and may have a sufficiently small negative part.
In both cases we prove the convergence of the reduced density matrix corresponding to
the exact time evolution to the projector onto the solution of the corresponding nonlinear
Schrödinger equation in trace norm. For the latter potential VN we show that it is crucial
to take the microscopic structure of the condensate into account in order to obtain the
correct dynamics.

Next, we derive the three dimensional time-dependent Gross-Pitaevskii equation starting
from an interacting N -particle system of bosons. Our work extends a previous result on
nonnegative interaction potentials [60] to more generic interaction potentials which may
have a sufficiently small negative part. To this end we use an operator inequality that was
first proven by Jun Yin in [72] as one key estimate.

Finally, we present a microscopic derivation of the two-dimensional focusing cubic non-
linear Schrödinger equation. The interaction potential we consider is given by Wβ(x) =
N−1+2βW (Nβx) for some spherically symmetric and compactly supported potential W ∈
L∞(R2,R). The class of initial wave functions is chosen such that the variance in en-
ergy is small. Furthermore, we assume that the Hamiltonian HWβ ,t = −

∑N
j=1 ∆j +∑

1≤j<k≤N Wβ(xj−xk)+
∑N

j=1At(xj) fulfills stability of second kind, that is HWβ ,t ≥ −CN .
We then prove the convergence of the reduced density matrix corresponding to the exact
time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger
equation in either Sobolev trace norm, if ‖At‖p <∞ for some p > 2, or in trace norm, for
more general external potentials. For trapping potentials of the form A(x) = C|x|s , C > 0,
the condition HWβ ,t ≥ −CN can be fulfilled for a certain class of interactions Wβ, for all
0 < β < s+1

s+2
, see [47].

The derivations are based on a method developed by Pickl in [Lett. Math. Phys. 97(2),
151–164 (2011)]. This thesis is based on the preprints [25, 26, 27].
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Zusammenfassung

Diese Arbeit befasst sich mit mathematisch rigorosen Herleitungen der kubischen nicht-
linearen Schrödingergleichung für mehrere Vielteilchensysteme. Wir sind insbesondere an
dynamischen Systemen interessiert, deren Wechselwirkungspotential teilweise oder kom-
plett attraktiv gewählt werden kann.

Zunächst untersuchen wir die Dynamik eines Bose-Einstein Kondensates in zwei Dimensio-
nen. Das Wechselwirkungspotential ist hierbei entweder durch Wβ(x) = N−1+2βW (Nβx),
für alle β > 0, oder durch VN(x) = e2NV (eNx) gegeben. Sowohl V , als auch W wer-
den als als sphärisch symmetrisch und mit kompakten Träger angenommen, mit W,V ∈
L∞(R2,R). Weiterhin können W und V einen genügend kleinen negativen Anteil be-
sitzen. In beiden Fällen beweisen wir die Konvergenz der reduzierten Dichtematrix der
exakten Zeitentwicklung gegen den Projektor auf die Lösung der entsprechenden nichtlin-
earen Schrödinger-Gleichung. Die Konvergenz ist hierbei in der Spurnorm zu verstehen.
Für das Potential VN zeigen wir, dass es entscheidend ist, die mikroskopische Struktur des
Kondensats zu berücksichtigen, um die korrekte Dynamik zu erhalten.

Als nächstes leiten wir die dreidimensionale zeitabhängige Gross-Pitaevskii-Gleichung aus-
gehend von einem wechselwirkenden N -Teilchen System von Bosonen her. Unsere Arbeit
erweitert ein früheres Resultat [60] auf Wechselwirkungspotentiale, die nicht nichtnegativ
sein müssen, sondern einen ausreichend kleinen negativen Teil aufweisen können. Eine
Schlüsselabschätzung in unserem Beweis ist eine Operatorungleichung, welche zuerst von
Jun Yin bewiesen wurde, siehe [72].

Zuletzt präsentieren wir eine mikroskopische Herleitung der zweidimensionalen kubischen
nichtlinearen Schrödinger-Gleichung. Das Wechselwirkungspotential, das wir in Betracht
ziehen, ist gegeben durch Wβ(x) = N−1+2βW (Nβx), wobei W ∈ L∞(R2,R) als sphärisch
symmetrisch und mit kompakten Träger angenommen wird. Die Klasse der anfänglichen
Wellenfunktionen wird so gewählt, dass die Varianz in der Energie klein ist. Außerdem
nehmen wir an, dass der Hamilton-Operator HWβ ,t = −

∑N
j=1 ∆j+

∑
1≤j<k≤N Wβ(xj−xk)+∑N

j=1 At(xj) die Stabilität der zweiten Art erfüllt, d.h. es ist HWβ ,t ≥ −CN gegeben. Wir
beweisen die Konvergenz der reduzierten Dichte-Matrix der exakten Zeitentwicklung gegen
den Projektor auf die Lösung der entsprechenden nichtlinearen Schrödinger-Gleichung.
Diese Konvergenz erfolgt im Falle ‖At‖p < ∞, für p > 2, in der Sobolev-Spurnorm, für
allgemeinere externe Potenziale erfolgt diese in der Spurnorm. Für Potentiale der Form
A(x) = C|x|s , C > 0, kann die Bedingung HWβ ,t ≥ −CN für eine bestimmte Klasse von



x Summary

Wechselwirkungen Wβ erfüllt werden, für alle 0 < β < s+1
s+2

, siehe [47].

Die in der Arbeit vorgenommenen Herleitungen basieren auf einer Arbeit von Pickl [Lett.
Math. Phys. 97(2), 151–164 (2011)].

Diese Dissertation basiert auf den Vorveröffentlichungen [25, 26, 27].



Chapter 1

Preface

This work is about the rigorous derivation of effective evolution equations from bosonic
many-body systems. On a fundamental level, the dynamics of N interacting bosons is
described by the time-dependent Schrödinger equation

i∂tΨt = HΨt, (1.1)

where the nonrelativistic Hamiltonian H is given by

H =
N∑
k=1

(−∆k) +
N∑

i<j=1

V (N)(xi − xj) +
N∑
k=1

At(xk). (1.2)

V (N) describes a pair potential which is N -dependent and At is a time-dependent external
potential. The interaction V (N) can be thought as strong and short ranged and we will
argue in detail for appropriate choices for V (N) below. The initial wavefunction is chosen
from the bosonic space Ψ0 ∈ L2

s(RdN ,C), ‖Ψ0‖ = 1, consisting of all Ψ ∈ L2(RdN ,C) which
are symmetric under pairwise permutations of the variables x1, . . . , xN ∈ Rd. In this thesis,
we are considering the spatial dimensions d = 2, 3.

While the dynamics of N interacting bosons is given by the Schrödinger equation above, the
exact solution of Ψt is hard to analyze or even not tractable. For large particle number N
and certain physical systems, one may apply a statistical description of the system, however.
This procedure is common practice within the physical community and yields to evolution
equations which are easier to discuss. Examples of such approximations are numerous and
are in many circumstances in agreement with the observed physical properties of e.g. gases,
fluids, conductors, plasmas and solids. Heuristically, it is often possible to argue whether
an approximation might be applicable. In this thesis, we will justify the validity of several
effective theories by providing a mathematical rigorous analysis. We are in particular
interested in the description of Bose-Einstein condensates.
The dynamics of (1.1) will be analyzed at the level of reduced density matrices. For this,

we define the one particle reduced density matrix γ
(1)
Ψ of Ψ with integral kernel

γ
(1)
Ψ (x, x′) =

∫
RdN−d

Ψ∗(x, x2, . . . , xN)Ψ(x′, x2, . . . , xN)dx2 . . . dxN . (1.3)
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γ
(1)
Ψ corresponds to the marginal distribution of Ψ, describing the distribution of one-

particle observables. To be more precise, let B(L2(Rd,C)) be the set of all bounded oper-
ators on the one particle Hilbert space L2(Rd,C). Then, for A ∈ B(L2(Rd,C))

tr(γ
(1)
Ψ A) = 〈〈Ψ, A⊗ 1L2

s(Rd(N−1),C)Ψ〉〉 (1.4)

holds for all Ψ ∈ L2
s (RdN ,C).

To account for the physical situation of a Bose-Einstein condensate, we assume complete
condensation in the limit of large particle number N . Mathematically, this corresponds to
convergence

lim
N→∞

γ
(1)
Ψ0

= |ϕ0〉〈ϕ0| (1.5)

in trace norm for some ϕ0 ∈ L2(R2,C), ‖ϕ0‖ = 1. ϕ0 is then called the wavefunction of the
condensate. Note that convergence in trace norm at time t = 0 implies

lim
N→∞

tr(γ
(1)
Ψ0
A) = 〈ϕ0, Aϕ0〉, (1.6)

with A ∈ B(L2(Rd,C)), since |tr(AB)| ≤ ‖A‖optr|B| holds for all A,B ∈ B(L2(Rd,C)),
with B being trace class.

The general aim of this thesis is to prove persistence of condensation over time t. More
precisely, we show the existence of a condensate wave function ϕt, such that the convergence
γ

(1)
Ψt
→ |ϕt〉〈ϕt| holds in trace norm. For the systems studied in this thesis, the effective

function ϕt is given by a cubic nonlinear Schrödinger equation. The evolution of Ψt can
therefore be approximated by the evolution of ϕt at the level of reduced density matrices.
We will be concerned with interaction potentials V (N) which may be partly or purely
attractive. In general, the dynamics of systems with attractive self-interaction may be
unstable, resulting in a dynamical collapse. This is reflected by a blow-up of the effective
equation ϕt. To prevent this type of effect, we will impose certain restrictions on the
interaction which impose stability of second kind of the Hamiltonian H. The precise class
of potentials will be discussed in detail in the respective chapters.
In the following, we will present these results:

(a) The derivation of the two dimensional nonlinear Schrödinger and the two dimensional
Gross-Pitaevskii equation.

(b) The derivation of the three dimensional Gross-Pitaevskii equation for a class of non
purely positive potentials.

(c) The derivation of the two dimensional nonlinear Schrödinger equation for purely
attractive interactions.

We will now give an overview on our results.
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(a) In Chapter 3 we study a two dimensional system of N bosons. The potential V (N),
as defined in the Hamiltonian (1.2), will be given as follows:

• We consider the interaction potential to be given by e2NV (eNx), where V ∈
L∞(R2,R) is a compactly supported and spherically symmetric potential. We
choose V from a class of potentials which may have a sufficiently small attractive
part.

• We consider the interaction potential to be given by N−1+2βW (Nβx), for β > 0.
Again, W ∈ L∞(R2,R) is compactly supported, spherically symmetric. We
further assume the operator inequality −(1−ε)∆+ 1

2
W ≥ 0 to hold on L2(R2,C)

for some 0 < ε < 1.

Note that both scalings correspond to a system where strong but rare collisions are
predominant. Under some assumptions on the initial wavefunction Ψ0, we prove that
the time evolved reduced density matrix γ

(1)
Ψt

converges to |ϕt〉〈ϕt| in trace norm as
N →∞ with convergence rate of order N−η for some η > 0. ϕt solves the nonlinear
Schrödinger equation

i∂tϕt = (−∆ + At)ϕt + b|ϕt|2ϕt (1.7)

with initial datum ϕ0. For potentials which scale like N−1+2βW (Nβx), the coupling
constants b is given by b =

∫
R2 d

2xW (x). This can be motivated heuristically using
a law of large number argument, see Chapter 3 for a detailed discussion.

The exponential scaling e2NV (eNx) has to be treated separately. For a potential V
with non-zero scattering length, the coupling constant b is given by b = 4π, regardless
of the shape of the interaction V . This interesting effect only occurs in two spatial
dimensions. We will explain in Chapter 3 why the existence of a short scale correlation
structure present in Ψt accounts for this special behavior.

(b) In Chapter 4 we analyze the dynamics of a three dimensional Bose Einstein conden-
sate in the so-called Gross-Pitaevskii regime. The time-dependent Hamiltonian H
will be defined as

H = −
N∑
j=1

∆j +N2
∑

1≤j<k≤N

V (N(xj − xk)) +
N∑
j=1

At(xj). (1.8)

We will prove persistence of condensation of Ψt for a class of potentials V which are
not assumed to be nonnegative everywhere, but may have an attractive part. The
detailed assumptions on V are listed in Assumption 4.2.3.

The condensate wave function of the system is given by the nonlinear Gross-Pitaevskii
equation

i∂tϕt = (−∆ + At)ϕt + 8πa|ϕt|2ϕt (1.9)
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with initial datum ϕ0. Here, a denotes the scattering length of the potential 1
2
V . We

provide a derivation of the convergence of the reduced density matrix γ
(1)
Ψt

against
the projection onto ϕt in trace norm as N →∞. Note that the class of potentials V
we consider in this thesis is such that the scattering length a of V is nonnegative.

(c) In Chapter 5 we consider a two dimensional system of N bosons with strong, but short
range interaction. The interaction potential of the system is given byN−1+2βW (Nβx).
In contrast to (a), W may be chosen to be purely attractive1. A system of N interact-
ing, mutually attracting particles might be prone to dynamical collapse. This might
be especially the case the bigger β is chosen, since then the interaction gets more
singular. We therefore assume stability of second kind of H, i.e. H ≥ −CN . We will
see in Chapter 5 that this implies

∫
R2 d

2x|W−(x)| < a∗, where W− denotes the neg-
ative part of W and a∗ > 0 denotes the optimal constant of the Gagliardo-Nirenberg
inequality(∫

R2

d2x|∇u(x)|2
)(∫

R2

d2y|u(y)|2
)
≥ a∗

2

(∫
R2

d2x|u(x)|4
)
. (1.10)

Under some additional assumptions on Ψ0, we then prove for 0 < β < 1 convergence
of γ

(1)
Ψt

to |ϕt〉〈ϕt| in trace norm as N →∞, where ϕt fulfills the nonlinear Schrödinger
Equation (1.7) with b =

∫
R2 d

2xW (x). In addition, for external potentials At ∈
Lp(R2,R), with p ∈]2,∞], we are able to show convergence in Sobolev trace norm,
that is,

lim
N→∞

Tr
∣∣∣√1−∆(γ

(1)
Ψt
− |ϕt〉〈ϕt|)

√
1−∆

∣∣∣ = 0. (1.11)

Our proofs rely on a general method that is based on the idea of counting the rate of
particles which leave the condensate over time. If it is possible to show that this rate is
small, it can be inferred that the system can be described in terms of an effective condensate
wave function ϕt. The idea of counting was developed in [61]. We will introduce the
mathematical framework behind this idea in the next chapter.

Style of Writing:
The first person plural will be used throughout the work, as it is common in scientific
writing. Chapters 3, 4 and 5 are written such that they can be read independently for
most parts. Chapter 4 contains certain Lemmata which will be used in Chapter 3.
Note that certain mathematical objects may be defined differently from chapter to chapter.
For example, the letter a denotes the scattering length of the potential 1

2
V in Chapter 3

(see Lemma 3.3.2) and in Chapter 4 (see Eq. (4.30)), whereas a denotes the integral over
W in Chapter 5. The specific changes in notation are minor and will be introduced at the
beginning of each chapter. We also comment on the notation used throughout this work
in 2.0.13.

1 In two dimensions, it is well known that the operator inequality −∆+ 1
2W ≥ 0 implies

∫
R2 W (x)d2x ≥

0, since otherwise the operator −∆ + 1
2W has at least one bound state with negative energy. Therefore,

it is not possible to choose a purely attractive potential in part (a). We refer the reader to [13] for a nice
discussion about this topic.



Chapter 2

Definition of the counting measure

In the following, we define several important concepts which make the idea of counting
particles outside of the condensate precise. These concepts are well known within the
literature and were introduced in [61].

Let h denote a separable Hilbert space. h corresponds to the one-particle sector of our
system. N bosons are subsequently described on the Hilbert space Hs = ⊗Ns h. The
subscript s denotes the symmetric tensor product, see e.g. [68] for a concise definition. We
also define H = ⊗Nh.

Notation 2.0.1 In this thesis, we will work with the Hilbert spaces h = L2(Rd,C); d ∈
{2, 3}, which in turn implies the identification

Hs = L2
s(RdN ,C).

In particular, L2
s(RdN ,C) denotes the set of all Ψ(x1, . . . , xN) ∈ L2(RdN ,C) which are

symmetric w.r.t. the pairwise permutation of the variables x1, . . . , xN ; xi ∈ Rd.

We will denote by ‖ · ‖p, with 1 ≤ p ≤ ∞, the Lp-norm on the appropriate Hilbert space.
Moreover, the notation ‖ · ‖ will be used for the L2-norm. We denote by 〈〈·, ·〉〉 the scalar
product on H and by 〈·, ·〉 the scalar product on the one-particle Hilbert space h.

Definition 2.0.2 Let ϕ ∈ h with ‖ϕ‖ = 1.

(a) Define Pϕ : h→ h as the projection onto ϕ. Let 1 ≤ j ≤ N and define the projectors
pϕj : H → H and qϕj : H → H as

pϕj =1h ⊗ · · · ⊗ 1h︸ ︷︷ ︸
j−1 times

⊗Pϕ ⊗ 1h ⊗ · · · ⊗ 1h︸ ︷︷ ︸
N−j times

,

qϕj =1H − pϕj .

(b) Let 0 ≤ k ≤ N and define the orthogonal projector Pϕ
k : H → H as

Pϕ
k =

(
k∏
j=1

qϕj

N∏
l=k+1

pϕl

)
s

=:
∑

~s∈{0,1}N∑N
i=1

si=k

N∏
j=1

(
pϕj
)1−sj(qϕj )sj .
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For negative k and k > N , we define Pϕ
k = 0.

(c) Let m : N0 → R+
0 and define the operators m̂ϕ : H → H as

m̂ϕ =
N∑
j=0

m(j)Pϕ
j , m̂ϕ

d =
N−d∑
j=−d

m(j + d)Pϕ
j . (2.1)

The function m : N0 → R+
0 will be called a weight function.

Remark 2.0.3 For H = L2(RdN ,C), d ∈ N, we may express

pϕj Ψ = ϕ(xj)

∫
ϕ∗(x̃j)Ψ(x1, . . . , x̃j, . . . , xN)ddx̃j.

We will also use, with a slight abuse of notation, the bra-ket notation pϕj = |ϕ(xj)〉〈ϕ(xj)|.

Remark 2.0.4 The definition of the projector Pϕ
k : H → H corresponds to a decomposition

of a wavefunction Ψ ∈ Hs into different excitation sectors. To be more precise, let hexcitations
be the orthogonal complement of the closed subspace {ϕ} of h, that is hexcitations = {ϕ}⊥.
The wavefunction Pϕ

k Ψ with Ψ ∈ Hs can then be expressed as

Pϕ
k Ψ = ϕ⊗(N−k) ⊗s χk.

with χk ∈ ⊗kshexcitations. In other words, Pϕ
k projects onto the subspace with exactly N − k

particles in the state ϕ. Using

N∑
k=0

Pϕ
k = 1H,

(see below for a proof), it is possible to decompose

Ψ =
N∑
k=0

Pϕ
k Ψ =

N∑
k=0

ϕ⊗(N−k) ⊗s χk.

This decomposition into different excitation sectors was used in a series of papers, see e.g.
[8, 9, 44] and references therein. For certain systems, it is possible to derive a Bogoliubov-
type evolution equation for (χk)0≤k≤N , see e.g. [51, 55] for a detailed discussion.

The operator m̂ϕ will be used to count the number of particles which leave the condensate
over time. To be more precise, for a suitable chosen weight function m, the functional
〈〈Ψ, m̂ϕΨ〉〉 will be a measure on the purity of the condensate. In order to make this idea
precise, we will list certain lemmata which are needed in the next chapters. These lemmata
are well known in the literature and can e.g. be found in [60].
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Lemma 2.0.5 Let ϕ ∈ h with ‖ϕ‖ = 1 and let pk = pϕk , Pk = Pϕ
k and m̂ = m̂ϕ be defined

as in Definition 2.0.2.

(a) For any weights m, r : N0 → R+
0 the commutation relations

m̂r̂ = m̂r = r̂ m̂ m̂pj = pjm̂ m̂qj = qjm̂ m̂Pk = Pkm̂

hold.

(b) (Pk)0≤k≤N is a partition of identity, i.e.

N∑
k=0

Pk = 1H.

(c) Let n : N0 → R+
0 be given by n(k) =

√
k/N . Then,

(n̂)2 =
1

N

N∑
j=1

qj. (2.2)

(d) Let Ak : D(Ak) ⊂ h⊗k → h⊗k be a densely defined operator such that ∀i ∈ {1, . . . , k}∀η ∈
D(Ak) : piη ∈ D(Ak). Define A = Ak ⊗ 1h⊗(N−k). Let (s1, . . . , sk) ∈ {0, 1}k with∑k

j=1 sk = s and let Qs =
∏k

m=1

(
p1−sm
i qsmi

)
. Then, for any weight m : N0 → R+

0 ,
for i, j ∈ {1, . . . , k}

m̂QjAQk = QjAQkm̂j−k,

(e) Let h = L2(Rd,C) for d ∈ N. Let m : N0 → R+
0 and let f ∈ L∞

(
R2d,R

)
. Define

Q0 = p1p2, Q1 ∈ {p1q2, q1p2} and Q2 = q1q2. Then, for j, k in{0, 1, 2},

m̂Qjf(x1, x2)Qk = Qjf(x1, x2)m̂j−kQk.

Furthermore, if ϕ ∈ H1(Rd,C) holds, we then obtain for j, k ∈ {0, 1}

m̂Q̃j∇1Q̃k = Q̃j∇1m̂j−kQ̃k,

where Q̃0 = p1 and Q̃1 = q1.

(f) Let h = L2(Rd,C) for d ∈ N. Let m : N0 → R+
0 and let f ∈ L∞

(
R2d,C

)
. Then,

[f(x1, x2), m̂] = [f(x1, x2), p1p2(m̂− m̂2) + (p1q2 + q1p2)(m̂− m̂1)] .

(g) Let h = L2(Rd,C) for d ∈ N and let f ∈ L1
(
Rd,C

)
, g ∈ L2

(
Rd,C

)
. Then,

‖pjf(xj − xk)pj‖op ≤‖f‖1‖ϕ‖2
∞, (2.3)

‖pjg∗(xj − xk)‖op =‖g(xj − xk)pj‖op ≤ ‖g‖ ‖ϕ‖∞, (2.4)

‖|ϕ(xj)〉〈∇jϕ(xj)|h∗(xj − xk)‖op =‖h(xj − xk)∇jpj‖op ≤ ‖h‖‖∇ϕ‖∞. (2.5)
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Proof:

(a) follows immediately from Definition 2.0.2, using that pj and qj are orthogonal pro-
jectors.

(b) With the definition of Pk, we obtain

N∑
k=0

Pk =
N∑
k=0

∑
~s∈{0,1}N∑N
i=1

si=k

N∏
j=1

(
pj
)1−sj(qj)sj

=
N∏
n=1

(pn + qn) = 1H.

(c) With (qj)
2 = qj and qjpj = 0, it follows

N∑
j=1

qj =
N∑
j=1

qj

N∑
k=0

Pk =
N∑
k=0

N∑
j=1

qjPk =
N∑
k=0

kPk = Nn̂2 = Nn̂2.

(d) First note that for l ∈ {0, . . . , N} and j ∈ {0, . . . , k}, we obtain

QjPl =Qj

∑
~s∈{0,1}N∑N
i=1

si=l

N∏
h=1

(
ph
)1−sh(qh)sh

=Qj

∑
~s∈{0,1}N∑N
i=1

si=l

N∏
h=1

(
ph
)1−sh(qh)shδ∑N

m=k+1 sm,l−j
.

In other words, in the equation above, the number of qh with h ≤ k is j and the
number of qh with h > k is given by l − j. Defining the projector

P̃l−j =
∑

~s∈{0,1}N∑N
i=k+1

si=l−j

N∏
h=k+1

(
ph
)1−sh(qh)sh ,

we obtain

QjPl = Qj ⊗ P̃l−j.

For l,m ∈ {0, . . . , N}, we may therefore write

PlQjAQrPm = (QjAQk)⊗ (P̃l−jP̃m−r) = δl−j,m−r(QjAQk)⊗ P̃l−j.
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As a consequence, the identity

PlQjAQrPm = δl−j,m−rQjAQrPm = δl−j,m−rPlQjAQr

holds. Let us now consider

m̂QjAQk =
N∑
i=0

m(i)PiQjAQk = QjAQk

N∑
i=0

m(i)Pi−j+k

=QjAQk

N−j+k∑
i=−j+k

m(i+ j − k)Pi = QjAqkm̂j−k.

(e) This is a direct consequence from (d).

(f) By virtue of (e), we obtain the following identity

[f(x1, x2), m̂]− [f(x1, x2), p1p2(m̂− m̂2) + p1q2(m̂− m̂1) + q1p2(m̂− m̂1)]

= [f(x1, x2), q1q2m̂] + [f(x1, x2), p1p2m̂2 + p1q2m̂1 + q1p2m̂1] . (2.6)

We multiply the right hand side with p1p2 from the left which yields to

p1p2f(x1, x2)q1q2m̂+ p1p2f(x1, x2)p1p2m̂2 − p1p2m̂2f(x1, x2)

+ p1p2f(x1, x2)p1q2m̂1 + p1p2f(x1, x2)q1p2m̂1

= p1p2m̂2f(x1, x2)q1q2 + p1p2m̂2f(x1, x2)p1p2 − p1p2m̂2f(x1, x2)

+ p1p2m̂2f(x1, x2)p1q2 + p1p2m̂2f(x1, x2)q1p2

= 0.

Multiplying (2.6) with p1q2 from the left one gets

p1q2f(x1, x2)q1q2m̂+ p1q2f(x1, x2)p1p2m̂2 + p1q2f(x1, x2)p1q2m̂1

+ p1q2f(x1, x2)q1p2m̂1 − p1q2m̂1f(x1, x2).

Using (e), the latter is zero. Also multiplying with q1p2 yields zero due to symmetry
in interchanging x1 with x2. Multiplying (2.6) with q1q2 from the left one gets

q1q2f(x1, x2)m̂q1q2 − q1q2m̂f(x1, x2) + q1q2f(x1, x2)p1p2m̂2+

q1q2f(x1, x2)p1q2m̂1 + q1q2f(x1, x2)q1p2m̂1

which is again zero and so is (2.6).

(g) First note that, for bounded operators A,B, ‖AB‖op = ‖B∗A∗‖op holds, where A∗ is
the adjoint operator of A. To show (2.3), note that

pjf(xj − xk)pj = pj(f ? |ϕ|2)(xk). (2.7)
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It follows that
‖pjf(xj − xk)pj‖op ≤ ‖f‖1‖ϕ‖2

∞.

For (2.4) we write

‖g(xj − xk)pj‖2
op = sup

‖Ψ‖=1,Ψ∈H
‖g(xj − xk)pjΨ‖2 =

= sup
‖Ψ‖=1Ψ∈H

〈〈Ψ, pj|g(xj − xk)|2pjΨ〉〉

≤‖pj|g(xj − xk)|2pj‖op.

With (2.3) we get (2.4). For (2.5) we use

‖g(xj − xk)∇jpj‖2
op = sup

‖Ψ‖=1Ψ∈H
〈〈Ψ, pj(|g|2 ∗ |∇ϕ|2)(xk)Ψ〉〉 ≤ ‖|g|2 ∗ |∇ϕ|2‖∞

≤‖g‖2‖∇ϕ‖2
∞.

�

Next, we will consider wavefunctions Ψ ∈ H which are not symmetric w.r.t. to all argu-
ments. As an example, the reader may think of pϕ1 q

ϕ
2 Ψ, with Ψ ∈ Hs.

Definition 2.0.6 Let σ ∈ SN be a permutation of the numbers (1, . . . , N) and define
Pσ : H → H by its action on tensor products

Pσϕ1 ⊗ . . . ϕN = ϕσ1 ⊗ · · · ⊗ ϕσN
with ϕk ∈ h, k ∈ {1, . . . , N}. Let M ⊂ {1, 2, . . . , N} and define SN,M = {σ ∈ SN |σk =
k ∀k ∈M}. Then HM ⊂ H is defined as

HM = {Ψ ∈ H|PσΨ = Ψ ∀σ ∈ SN,M}.

This readily yields to

Lemma 2.0.7 Let f : N0 → R+
0 and let Ma ⊂ {1, 2, . . . , N} with 1 ∈ Ma, as well as

Mb ⊂ {1, 2, . . . , N} with 1, 2 ∈Mb. Then,∥∥∥f̂ q1Ψ
∥∥∥2

≤ N

|Ma|
‖f̂ n̂Ψ‖2 for any Ψ ∈ HMa , (2.8)∥∥∥f̂ q1q2Ψ

∥∥∥2

≤ N2

|Mb|(|Mb| − 1)
‖f̂(n̂)2Ψ‖2 for any Ψ ∈ HMb

. (2.9)

Proof: For Ψ ∈ HMa . (2.8) can be estimated by Lemma 2.0.5 (c) as

‖f̂ n̂Ψ‖2 =〈〈Ψ, (f̂)2(n̂)2Ψ〉〉 = N−1

N∑
k=1

〈〈Ψ, (f̂)2qkΨ〉〉

≥N−1
∑
k∈Ma

〈〈Ψ, (f̂)2qkΨ〉〉 =
|Ma|
N
〈〈Ψ, (f̂)2q1Ψ〉〉

=
|Ma|
N
‖f̂ q1Ψ‖2.
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Similarly, we obtain for Ψ ∈ HMb

‖f̂(n̂)2Ψ‖2 =〈〈Ψ, (f̂)2(n̂)4Ψ〉〉 ≥ N−2
∑

j,k∈Mb

〈〈Ψ, (f̂)2qjqkΨ〉〉

=
|Mb|(|Mb| − 1)

N2
〈〈Ψ, (f̂)2q1q2Ψ〉〉+

|Mb|
N2
〈〈Ψ, (f̂)2q1Ψ〉〉

≥|Mb|(|Mb| − 1)

N2
‖f̂ q1q2Ψ‖2,

which concludes the Lemma.

�

Corollary 2.0.8 Let A : D(A) ⊂ h→ h and define Ai = 1h ⊗ · · · ⊗ 1h︸ ︷︷ ︸
i−1 times

⊗A⊗1h ⊗ · · · ⊗ 1h︸ ︷︷ ︸
N−i times

.

Let Ψ ∈ Hs such that ‖A1q1Ψ‖ < ∞. Then, for any weight m : N0 → R+
0 which is

monotone nondecreasing

‖A1m̂q1Ψ‖ ≤ 2‖m̂‖op‖A1q1Ψ‖, (2.10)

‖A1m̂q1q2Ψ‖ ≤ C‖m̂n̂‖op‖A1q1Ψ‖. (2.11)

Remark 2.0.9 We will mainly be concerned with A = −i∇ during the rest of this thesis.

Proof: Using p1 + q1 = 1H and triangle inequality,

‖A1m̂q1Ψ‖ ≤ ‖p1A1m̂q1Ψ‖+ ‖q1A1m̂q1Ψ‖, (2.12)

‖A1m̂q1q2Ψ‖ ≤ ‖p1A1m̂q1q2Ψ‖+ ‖q1A1m̂q1q2Ψ‖. (2.13)

With Lemma 2.0.5 (c) we get

(2.12) = ‖m̂1p1A1q1Ψ‖+ ‖m̂q1A1q1Ψ‖ ≤ (‖m̂1‖op + ‖m̂‖op)‖A1q1Ψ‖.

Since m(k) is monotone nondecreasing, we obtain ‖m̂1‖op = ‖m̂‖op. Note that p1A1q1Ψ ∈
H{1,...,N}\{1}. By Lemma 2.0.7 we obtain

(2.13) = ‖q2m̂1p1A1q1Ψ‖+ ‖q2m̂q1A1q1Ψ‖

≤ N

N − 1
(‖m̂1n̂‖op + ‖m̂n̂‖op)‖A1q1Ψ‖.

Since
√
k ≤
√
k + 1 for k ≥ 0 it follows that the latter is bounded by

C(‖m̂1n̂1‖op + ‖m̂n̂‖op)‖A2q2Ψ‖.

Note that

m̂1n̂1 = m̂n1 =
N−1∑
j=0

m(j + 1)n(j + 1)Pj,

so that ‖m̂1n̂1‖op = sup1≤k≤N{m(k)n(k)}. Since n(0) = 0, we then obtain ‖m̂1n̂1‖op =
sup0≤k≤N{m(k)n(k)} = ‖m̂n̂‖op and the Corollary follows.
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�

Lemma 2.0.10 Let Ω, χ ∈ HM for some M, let 1 /∈ M and 2, 3 ∈ M. Let Oj,k be an
operator acting on the jth and kth coordinate. Then

|〈〈Ω, O1,2χ〉〉| ≤ ‖Ω‖2 + |〈〈O1,2χ,O1,3χ〉〉|+ (|M|)−1‖O1,2χ‖2.

Proof: Using symmetry and Cauchy Schwarz, we get

|〈〈Ω, O1,2χ〉〉| =|M|−1|〈〈Ω,
∑
j∈M

O1,jχ〉〉| ≤ |M|−1‖Ω‖ ‖
∑
j∈M

O1,jχ‖

≤|Ω‖2 + |M|−2

∥∥∥∥∥∑
j∈M

O1,jχ

∥∥∥∥∥
2

.

The second factor can be rewritten as∥∥∥∥∥∑
j∈M

O1,jχ

∥∥∥∥∥
2

=〈〈
∑
j∈M

O1,jχ,
∑
k∈M

O1,kχ〉〉

≤
∑
j∈M

|〈〈O1,jχ,O1,jχ〉〉|+ |
∑

j 6=k∈M

〈〈O1,jχ,O1,kχ〉〉|

≤|M||〈〈O1,2χ,O1,2χ〉〉|+ |M|(|M| − 1)|〈〈O1,2χ,O1,3χ〉〉|.

�

Finally, we connect the functional 〈〈Ψ, m̂ϕΨ〉〉 to the convergence of the reduced density
matrices. In particular, for a suitable chosen weight function, limN→∞〈〈Ψ, m̂ϕΨ〉〉 = 0

implies limN→∞ γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm.

Lemma 2.0.11 Let Ψ ∈ L2
s(R2N ,C), ‖Ψ‖ = 1 and let ϕ ∈ L2(R2,C), ‖ϕ‖ = 1. Let

m : N0 → R+
0 and define α(Ψ, ϕ) = 〈〈Ψ, m̂ϕΨ〉〉. Assume the operator inequality

m̂ϕ ≤ 1

N

N∑
j=1

qϕj .

Then,

lim
N→∞

α(Ψ, ϕ) = 0 ⇔ lim
N→∞

γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm.

Proof: For symmetric Ψ ∈ L2
s(R2N ,C), the operator inequality m̂ϕ ≤ 1

N

∑N
j=1 q

ϕ
j implies,

together with the assumption on m, 0 ≤ 〈〈Ψ, m̂ϕΨ〉〉 ≤ 〈〈Ψ, qϕ1 Ψ〉〉. The Lemma then follows

from the estimate 〈〈Ψ, qϕ1 Ψ〉〉 ≤ Tr|γ(1)
Ψ − |ϕ〉〈ϕ|| ≤

√
8〈〈Ψ, qϕ1 Ψ〉〉 which was proven in [34].

�
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Remark 2.0.12 The convergence of γ
(1)
Ψt

to |ϕt〉〈ϕt| in trace norm is equivalent to con-
vergence in operator norm and in Hilbert-Schmidt norm, since |ϕt〉〈ϕt| is a rank one
projection [65]. Furthermore, the convergence of the one-particle reduced density matrix

γ
(1)
Ψt
→ |ϕt〉〈ϕt| in trace norm implies convergence of any k-particle reduced density matrix

γ
(k)
Ψt

against |ϕ⊗kt 〉〈ϕ⊗kt | in trace norm as N →∞ and k fixed, see for example [34]. Other
equivalent definitions of asymptotic 100% condensation can be found in [48].

We will comment on the notation we will employ during the rest of this work.

Notation 2.0.13 (a) Throughout this thesis, hats ·̂ will be used in the sense of Defini-
tion 2.0.2 (c). In the context of n̂ϕ, the label n will always be used for the function
n(k) =

√
k/N .

(b) For better readability, we will in general omit the upper index ϕ on pj, qj, Pj and ·̂.

(c) We will bound expressions which are uniformly bounded in N and t by some constant
C. We will not distinguish constants appearing in a sequence of estimates, i.e. in
X ≤ CY ≤ CZ the constants may differ.

(d) We will denote the operator norm defined for any linear operator f : H → H by

‖f‖op = sup
ψ∈H,‖Ψ‖=1

‖fΨ‖.

(e) We will denote for any multiplication operator F : L2(Rd,C)→ L2(Rd,C) the corre-
sponding operator

1
⊗(k−1)

L2(Rd,C)
⊗ F ⊗ 1

⊗(N−k)

L2(Rd,C)
: L2(RdN ,C)→ L2(RdN ,C)

acting on the N-particle Hilbert space by F (xk). In particular, we will use, for any
Ψ,Ω ∈ L2(RdN ,C) the notation

〈〈Ω,1⊗(k−1)

L2(Rd,C)
⊗ F ⊗ 1

⊗(N−k)

L2(Rd,C)
Ψ〉〉 = 〈〈Ω, F (xk)Ψ〉〉.

In analogy, for any two-particle multiplication operator K : L2(Rd,C)⊗2 → L2(Rd,C)⊗2,
we denote the operator acting on any Ψ ∈ L2(RdN ,C) by multiplication in the variable
xi and xj by K(xi, xj). In particular, we denote

〈〈Ω, K(xi, xj)Ψ〉〉 =

∫
R2N

K(xi, xj)Ω
∗(x1, . . . , xN)Ψ(x1, . . . , xN)d2x1 . . . d

2xN .

(f) For any Hilbert space K, we write 1 instead of 1K in the following to denote the
identity on K.

(g) Furthermore, define for any set A ⊂ RdN the operator 1A : L2(RdN ,C)→ L2(RdN ,C)
as the projection onto the set A.
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3.1 Introduction

This chapter deals with the effective dynamics of a two dimensional condensate of N
interacting bosons. Fundamentally, the evolution of the system is described by a time-
dependent wave-function Ψt ∈ L2

s(R2N ,C), ‖Ψt‖ = 1. Assuming that Ψ0 ∈ H2(R2N ,C)
holds, Ψt then solves the N -particle Schrödinger equation

i∂tΨt = HUΨt (3.1)

where the (non-relativistic) Hamiltonian HU : H2(R2N ,C)→ L2(R2N ,C) is given by

HU = −
N∑
j=1

∆j +
∑

1≤j<k≤N

U(xj − xk) +
N∑
j=1

At(xj). (3.2)
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In general, even for small particle numbersN , the evolution Equation (3.1) cannot be solved
neither exactly nor numerically for Ψt. Nevertheless, for a certain class of scaled potentials
U and certain initial conditions Ψ0 it is possible to derive an approximate solution of (3.1)
in the trace class topology of reduced density matrices. The picture we have in mind is the
description of a Bose-Einstein condensate. Initially, one starts with the ground state of a
trapped, dilute gas and then removes or changes the trap subsequently. In this chapter,
we will consider two choices for the interaction potential U .

• Let U(x) = VN(x) = e2NV (eNx) for a compactly supported, spherically symmetric
potential V ∈ L∞c (R2,R). Below, the exponential scaling of VN will be explained
in detail. Note that, in contrast to existing dynamical mean-field results, ‖VN‖1 =
O(1) does not decay like 1/N . The interaction potential V is not assumed to be a
nonnegative function, but may have small attractive part, see 3.2.3 for the detailed
assumptions on V . We like to remark that the conditions imposed on V are due to a
result of Jun Yin, see [72]. We provide a detailed discussion on these assumptions in
Chapter 4. There, we also prove some important inequalities we need for the main
result of this chapter. Note that the focus of this chapter lies on the correlation
structure induced by VN , as explained below. In order for the presentation not to
be cluttered, we decided not to discuss Assumption 3.2.3 in this chapter, but rather
refer the reader to Chapter 4.

• Let, for any fixed β > 0, U(x) = Wβ(x) = N−1+2βW (Nβx) for a compactly sup-
ported, spherically symmetric, potential W ∈ L∞c (R2,R). This scaling of Wβ can be
motivated by formally imposing that that the total potential energy is of the same
order as the total kinetic energy, namely of order N , if Ψ0 is close to the ground state.
We furthermore assume −(1− ε)∆ + 1

2
W ≥ 0 as an operator inequality on L2(R2,C)

for some ε > 0. This condition is equivalent to the condition that the operator
−(1 − ε)∆ + 1

2
W has no bound state. It is well known that the operator inequality

stated above cannot be fulfilled for potentials W which satisfy
∫
R2 W (x)d2x < 0, see

e.g. [13]. Hence, W must have a sufficiently large positive part. We will discuss
potentials W which are nonpositive in Chapter 5.

Both the Assumption 3.2.3 on V , as well the operator inequality −(1 − ε)∆ + 1
2
W ≥ 0

are used in the following to prevent clustering of particles. In particular, these conditions
imply ‖∇1Ψt‖ ≤ C uniformly in N , see Lemma 3.5.1. We will comment on the possible
clustering of particles in more details in Chapter 4 and in Chapter 5.
Recall the definition of the one particle reduced density matrix γ

(1)
Ψ0

of Ψ0 with integral
kernel

γ
(1)
Ψ0

(x, x′) =

∫
R2N−2

Ψ∗0(x, x2, . . . , xN)Ψ0(x′, x2, . . . , xN)d2x2 . . . d
2xN .

To account for the physical situation of a Bose-Einstein condensate, we assume complete
condensation in the limit of large particle number N . This amounts to assume that, for
N → ∞, γ

(1)
Ψ0
→ |ϕ0〉〈ϕ0| in trace norm for some ϕ0 ∈ L2(R2,C), ‖ϕ0‖ = 1. Our main

goal is to show the persistence of condensation over time. This is of particular interest in
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experiments if one switches off the trapping potential At and monitors the expansion of
the condensate. We prove that the time evolved reduced density matrix γ

(1)
Ψt

converges to
|ϕt〉〈ϕt| in trace norm as N →∞ with convergence rate of order N−η for some η > 0. ϕt
then solves the nonlinear Schrödinger equation

i∂tϕt = (−∆ + At)ϕt + bU |ϕt|2ϕt =: hGPbU ϕt (3.3)

with initial datum ϕ0.

Depending on the interaction potential U , we obtain different coupling constants bU . For
U = Wβ, we obtain bWβ

= N
∫
R2 Wβ(x)d2x =

∫
R2 W (x)d2x. This result is already expected

from a heuristic law of large numbers argument, see below. Also note, by the operator
inequality −∆ + 1

2
V ≥ 0, it follows bWβ

≥ 0. Thus, the effective nonlinear Schrödinger
equation is repulsive. This is also reflected by the fact that the inequality −(1−ε)∆+ 1

2
W ≥

0, with ε > 0, implies the operator inequality−ε
∑N

k=1 ∆k ≤ −
∑N

k=1 ∆k+
∑N

i<jWβ(xi−xj),
see Lemma 3.5.1. This inequality is crucial to bound ‖∇1Ψt‖ uniformly in N and to hence
prevents the possibility of a dynamical collapse. We will will discuss this issue in much
more detail both in Chapter 4 and in Chapter 5. In the latter chapter, we also discuss
more general potentials Wβ, 0 < β < 1, which may be chosen to be purely attractive.

In the case U = VN , we distinguish two cases. For a positive scattering length a of the
potential 1

2
V (see Section 3.3 for the definition of a), bVN = 4π holds. If the scattering

length a is zero, we obtain bVN = 0. Then, the evolution of condensate is according to
the one-particle linear Schrödinger equation with external field At. Note that, in contrast
to three-dimensional Bose gases, the scattering length a of the potential 1

2
V is always

nonnegative, see Section 3.3.

In the case that the time evolution of Ψt is generated by HVN it is interesting to note
that the effective evolution equation of ϕt does not depend on the scattering length a,
apart from the fact that one must distinguish the cases a > 0 and a = 0. This contrasts
the three dimensional case, where the correct mean field coupling is given by 8πa3D, a3D

denoting the scattering length of the potential in three dimensions. The universal coupling
4π in the case of a positive scattering length is known within the physical literature,
see e.g. (30) and (A3) in [15] (note that ~ = 1,m = 1

2
in our choice of coordinates).

Actually, our dynamical result complements a more general theory describing the ground
state properties of dilute Bose gases. It was shown in [42] that for such a gas with repulsive
interaction V ≥ 0, the ground state energy per particle is to leading order given by either
the Gross-Pitaevskii energy functional with coupling parameter 8π/| ln(ρa2)| or a Thomas-
Fermi type functional. Here, ρ denotes the mean density of the gas, see Equation (1.6) in
[42] for a precise definition. The authors prove further that only if N/| ln(ρa2)| = O(1)
holds, one obtains the Gross-Pitaevskii regime. This directly implies that scattering length
of the interaction potential needs to have an exponential decrease in N . In our case, the
scattering length of the potential 1

2
VN is given by ae−N , a denoting the scattering length

of 1
2
V . The mean density of the system we consider is of order one, i.e. ρ = O(1). This

yields 8πN/| ln(ρ(e−Na)2)| ≈ 4π which is in agreement with our findings. It should be
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pointed out that there has been some debate about the question whether two dimensional
Bose-Einstein condensation can be observed experimentally. This amounts to the question
whether condensation takes place for temperatures T > 0. For an ideal, noninteracting
gas in box, the standard grand canonical computation for the critical temperature Tc of
a Bose-Einstein condensate shows that there is no condensation for T > 0. For trapped,
noninteracting Bosons in a confining power-law potential, the findings in [3] however show

that in that case Tc > 0 holds. Finally, it was proven in [39] that γ
(1)
Ψ converges to |ϕ〉〈ϕ| in

trace norm if Ψ the ground state of HVN and ϕ is the ground state of the Gross-Pitaevskii
energy functional, see (3.5). The assumptions made in the paper are that and the external
potential A tends to +∞ as |x| → ∞ and the interaction potential V is nonnegative. It
is also remarked that one does not observe 100 % condensation in the ground state of
a interacting homogenous system. The emergence of 100 % Bose-Einstein condensation
as a ground state phenomena thus highly depends on the particular physical system one
considers. Our approach is the following: Initially, we assume the convergence of γ

(1)
Ψ0

to
|ϕ0〉〈ϕ0|. We then show the persistence this condensation for time scales of order one. Our
assumption is thus in agreement with the findings in [39]. We like to remark that the two
dimensional Thomas-Fermi regime could be observed experimentally [23].

Next, we want to explain how the different coupling constants bU are obtained in the
dynamical setting. For this, we first recall known results from the three dimensional Bose
gas. There, one considers the interaction potential to be given by Vβ(x) = N−1+3βV (Nβx)
for 0 ≤ β ≤ 1. For 0 < β < 1, one obtains the cubic nonlinear Schrödinger equation with
coupling constant ‖V ‖1. This can be seen as a singular mean-field limit, where the full
interaction is replaced by its corresponding mean value

∫
R3 d

3yN3βV (Nβ(x−y))|ϕt(y)|2 →
‖V ‖1|ϕt(x)|2. For β = 1, however, the system develops correlations between the particles
which cannot be neglected. As already mentioned, the correct mean field coupling is
then given by 8πa3D. This is different for a two dimensional condensate. Let us first
explain, why the short scale correlation structure is negligible if the potential is given by
Wβ(x) = N−1+2βW (Nβx) for any β > 0. Assuming that the energy of Ψt is comparable
to the ground state energy, the wave function will develop short scale correlations between
the particles. One may heuristically think of Ψt of Jastrow-type, i.e. Ψt(x1, . . . , xN) ≈∏

i<j F (xi − xj)
∏N

k=1 ϕt(xk)
1. The function F accounts for the pair correlations between

the particles at short scales of order N−β. It is well known that the correlation function
F should be described by the zero energy scattering state jN,R of the potential Wβ, where
jN,R satisfies {(

−∆x + 1
2
Wβ(x)

)
jN,R(x) = 0,

jN,R(x) = 1 for |x| = R.

Here, the boundary radius R is chosen of order N−β. That is, F (xi−xj) ≈ jN,R(xi−xj) for
|xi − xj| = O(N−β) and F (xi − xj) = 1 for |xi − xj| � O(N−β). Rescaling to coordinates

1 One should however note that Ψt will not be close to a full product
∏N
k=1 ϕt(xk) in norm. For certain

types of interactions, it has been shown rigorously that Ψt can be approximated by a quasifree state
satisfying a Bogoloubov-type dynamics, see [9], [53], [54] and [51] for precise statements.
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y = Nβx, the zero energy scattering state satisfies(
−∆y +

1

2
N−1W (y)

)
jN,NβR(y) = 0. (3.4)

Due to the factor N−1 in front of W , the zero energy scattering equation is almost constant,
that is jN,R(x) ≈ 1, for all |x| ≤ R. As a consequence, the microscopic structure F , induced
by the zero energy scattering state, vanishes for any β > 0 and does not effect the dynamics
of the reduced density matrix γ

(1)
Ψt

. Assuming γ
(1)
Ψ0
≈ |ϕ0〉〈ϕ0|, one may thus apply a law

of large numbers argument and conclude that the interaction on each particle is then
approximately given by its mean value∫

R2

d2yNWβ(x− y)|ϕt|2(y)→
∫
R2

W (x)d2x|ϕt|2(x).

This yields to the correct coupling in the effective equation (3.3) in the case U(x) = Wβ(x).
Let us now consider the case for which the dynamics of Ψt is generated by the Hamilto-
nian HVN . If one would guess the effective coupling of ϕt to be also given by its mean
value w.r.t. the distribution |ϕt|2, one would end up with the N -dependent equation
i∂tϕt = (−∆ + At)ϕt + N

∫
R2 d

2xV (x)|ϕt|2ϕt. Note that the coupling constant of the self
interaction differs from its correct value by a factor of O(N). As in the three dimensional
Gross-Pitaevskii regime β = 1, it is now important to take the correlations explicitly into
account. The scaling of the potential yields to jN,R(x) = j0,eNR(eNx), which implies that
the correlation function will influence the dynamics whenever two particles collide. The
coupling parameter can then be inferred from the relation∫

R2

d2xVN(x)jN,R(x) =

{
4π

ln( R

ae−N )
if a > 0,

0 if a = 0,

where a denotes the scattering length of the potential 1
2
V . As mentioned, the logarithmic

dependence of the integral above on a is special in two dimensions. Since 4π

ln( R

ae−N )
≈ 4π

N

holds for a > 0, the effective equation for ϕt will not depend on a anymore. Consequently,
one obtains as an effective coupling∫

R2

d2yNVN(x− y)jN,R(x− y)|ϕt|2(y)→

{
4π|ϕt|2(x) if a > 0,

0 if a = 0.

We like to remark that it is easy to verify that, for any s > 0, the potential VsN(x) =
e2NsV (eNsx) yields , for a > 0, to an effective coupling 4π/s, resp. 0 in the case a = 0. For
the sake of simplicity, we will not consider this slight generalization, although our proof is
also valid in this case.
The rigorous derivation of effective evolution equations is well known in the literature, see
e.g. [2, 4, 5, 7, 8, 9, 14, 17, 18, 19, 20, 25, 26, 30, 31, 32, 34, 49, 50, 51, 53, 54, 55, 59,
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60, 61, 65] and references therein. For the two-dimensional case we consider, it has been

proven, for 0 < β < 3/4 and W nonnegative, that γ
(1)
Ψt

converges to |ϕt〉〈ϕt| as N →∞ [30].
Recently, the validity of the Bogoloubov approximation for the two-dimensional attractive
bose gas was shown in [55] for 0 < β < 1. We will discuss this result in more detail in
Chapter 5.

Another approach which relates more closely to the experimental setup is to consider a
three-dimensional gas of Bosons which is strongly confined in one spatial dimension. Then,
one obtains an effective two dimensional system in the unconfined directions. We remark
that in this dimensional reduction two limits appear, the length scale in the confined
direction and the scaling of the interaction in the unconfined directions. Results in this
direction can be found in [1] and [32], see also [31]. It is still an open problem to derive
our dynamical result starting from a strongly confined three dimensional system. For
known results regarding the ground state properties of dilute Bose gases, we refer to the
monograph [41], which also summarizes the papers [39], [42] and[43].
Our proof is based on [60], where the emergence of the Gross-Pitaevskii equation was
proven in three dimensions for β = 1. In particular, we adapt some crucial ideas which
allow us to control the microscopic structure of Ψt.
We shall shortly discuss the physical relevance of the different scalings. For the exponential
scaling VN(x) = e2NV (eNx), it is possible to rescale space- and time-coordinates in such a
way that in the new coordinates the interaction is not N dependent. Choosing y = eNx
and τ = e2N t the Schrödinger equation reads

i
d

dτ
Ψe−2N τ =

(
−

N∑
j=1

∆yj +
∑

1≤j<k≤N

V (yj − yk) +
N∑
j=1

Ae−2N τ (e
−Nyj)

)
Ψe−2N τ .

The latter equation thus corresponds to an extremely dilute gas of bosons with density
∼ e−2N . In order to observe a nontrivial dynamics, this condensate is then monitored over
time scales of order τ ∼ e2N . Since the trapping potential is adjusted according to the
density of the gas in the experiment, the N dependence of Ae−2N τ (e

−N ·) is reasonable.

3.2 Main result

We will consider initial wavefunctions Ψ0 which are chosen such that the energy per particle
is close to the effective Gross-Pitaevskii energy.

Definition 3.2.1 Define for U ∈ {Wβ, VN} the energy functional EU : H2(R2N ,C)→ R

EU(Ψ) = N−1〈〈Ψ, HUΨ〉〉.

Furthermore, define the Gross-Pitaevskii energy functional EGPbU : H1(R2,C)→ R

EGPbU (ϕ) =〈∇ϕ,∇ϕ〉+ 〈ϕ, (At +
1

2
bU |ϕ|2)ϕ〉 = 〈ϕ, (hGPbU −

1

2
bU |ϕ|2)ϕ〉. (3.5)
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Note that both EU(Ψ) and EGPbU (ϕ) depend on t, due to the time varying external potential
At. For the sake of readability, we will not indicate this time dependence explicitly.

Next, we will specify the class of potentials V we will consider.

Definition 3.2.2 Let Br(x) = {z ∈ R2||x− z| < r} and divide R2 into rectangles Cn, n ∈
Z of side length b1/

√
2; that is R2 = ∪∞n=−∞Cn. Furthermore, assume that C̊n ∩ C̊m = ∅

for m 6= n. Define

n(b1, b2) = max
x∈R2

#{n : Cn ∩Bb2(x) 6= ∅}.

Thus, n(b1, b2) gives the maximal number of of rectangles with side length b1/
√

2 one needs
to cover a sphere with radius b2.

Assumption 3.2.3 Let V ∈ L∞c (R2,R) spherically symmetric and let V (x) = V +(x) −
V −(x), where V +, V − ∈ L∞c (R2,R) are spherically symmetric, such that V +(x), V −(x) ≥ 0
and the supports of V + and V − are disjoint. Assume that

(a) Let R > r2 > 0 aand assume supp(V +) ∈ Br2(0), as well as supp(V −) ∈ BR(0) \
Br2(0).

(b) There exists λ+ > 0 and r1 > 0, such that V +(x) ≥ λ+ for all x ∈ Br1(0).

(c) Define λ− = ‖V −‖∞, as well as n1 = n(r1, R) and n2 = n(r1, 3R). Define, for
0 < ε < 1,

ER(ϕ) =

∫
BR(0)

(
|∇xϕ(x)|2 +

1

1− ε
n1(2V +(x)− 4V −(x))|ϕ(x)|2

)
d2x. (3.6)

We then assume that for some 0 < ε < 1

inf
ϕ∈C1(R2,C),ϕ(R)=1

(ER(ϕ)) ≥ 0, (3.7)

λ+ > 8n2λ
−. (3.8)

Remark 3.2.4 Assumption 3.2.3 is discussed in detail in Chapter 4. There, we also
provide some estimates necessary to prove the next theorem.

We now state our main Theorem:

Theorem 3.2.5 Let Ψ0 ∈ L2
s(R2N ,C) ∩ H2(R2N ,C) with ‖Ψ0‖ = 1. Let ϕ0 ∈ L2(R2,C)

with ‖ϕ0‖ = 1 and assume limN→∞ γ
(1)
Ψ0

= |ϕ0〉〈ϕ0| in trace norm. Let the external potential
At, which appears in the Hamiltonain (3.2), statisfy At ∈ C1(R, L∞(R2,R)).
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(a) For any β > 0, let Wβ be given by Wβ(x) = N−1+2βW (Nβx), for W ∈ L∞c (R2,R)
and W spherically symmetric. Assume −(1− ε)∆ + 1

2
W ≥ 0 on L2(R2,C) for some

ε > 0. Let Ψt the unique solution to i∂tΨt = HWβ
Ψt with initial datum Ψ0. Let ϕt

the unique solution to i∂tϕt = hGP∫
R2 W (x)d2x

ϕt with initial datum ϕ0 and assume that

ϕt ∈ H3(R2,C). Let limN→∞
(
EWβ

(Ψ0)− EGPbW (ϕ0)
)

= 0. Then, for any β > 0 and
for any t > 0

lim
N→∞

γ
(1)
Ψt

= |ϕt〉〈ϕt| (3.9)

in trace norm.

(b) Let VN be given by VN(x) = e2NV (eNx) and let V satisfy Assumption 3.2.3. Let Ψt

the unique solution to i∂tΨt = HVNΨt with initial datum Ψ0. Let either condition (I)
or condition (II) fulfilled, where

(I) Let the scattering length a of 1
2
V fulfill a > 0. Let ϕt the unique solution

to i∂tϕt = hGP4π ϕt with initial datum ϕ0 assume that ϕt ∈ H3(R2,C). Let
limN→∞

(
EVN (Ψ0)− EGP4π (ϕ0)

)
= 0.

(II) Let the scattering length a of 1
2
V fulfill a = 0. Let ϕt the unique solution to

i∂tϕt = (−∆ + At)ϕt with initial datum ϕ0 ∈ H3(R2,C).

Let limN→∞
(
EVN (Ψ0)− EGP0 (ϕ0)

)
= 0.

Then, for any t > 0

lim
N→∞

γ
(1)
Ψt

= |ϕt〉〈ϕt| (3.10)

in trace norm.

Remark:

(a) We expect that for regular enough external potentials At, the regularity assumption
ϕt ∈ H3(R2,C) to follow from regularity assumptions on the initial datum ϕ0. In
particular, if ϕ0 ∈ Σ3(R2,C) = {f ∈ L2(R2,C)|

∑
α+β≤3 ‖xα∂βxf‖ < ∞} holds,

the bound ‖ϕt‖H3 < ∞ has been proven for external potentials which are at most
quadratic in space, see [11] and Lemma 3.6.1. In particular, for ϕ0 ∈ Σ3(R2,C), the
bound ‖ϕt‖H3 ≤ C holds if the external potential is not present, i.e. At = 0.

(b) For nonnegative potentials V , it has been shown that in the limit N →∞ the energy-
difference EVN (Ψgs)−EGPbVN (ϕgs)→ 0, where Ψgs is the ground state of a trapped Bose

gas and ϕgs the ground state of the respective Gross-Pitaevskii energy functional, see
[43], [42].

(c) It is well known that in the scattering length of a two-dimensional Bose gas is non-
negative (see e.g. Appendix C of [41]). Thus, the scattering length of 1

2
V is either

zero or positive.
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(d) In our proof we will give explicit error estimates in terms of the particle number N .
We shall show that the rate of convergence is of order N−δ for some δ > 0, assuming
that also initially γ

(1)
Ψ0
→ |ϕ0〉〈ϕ0| converges in trace norm with rate of at least N−δ.

(e) One can relax the conditions on the initial condition and only require Ψ0 ∈ L2
s(R2N ,C)

using a standard density argument.

3.2.1 Organization of the proof

Our proof is based on [60], which covers the three-dimensional counterpart of our system.
The proof is organized as follows:

(a) First, we will introduce in Section 3.3 the zero energy scattering state. We explain
how the effective coupling parameter bVN can be inferred from the microscopic struc-
ture.

(b) In Section 3.4.1 we consider the potential Wβ and define some convenient counting
measure which allows us to perform a Grönwall type estimate for all β > 0. We will
explain in detail how one arrives at this Grönwall estimate.

(c) For the most difficult scaling given by the potential VN , it is crucial to take the
interaction-induced correlations between the particles into account. In Section 3.4.2,
we will adapt the counting measure to account for this correlation structure.

(d) In Section 3.5, we provide the necessary estimates for the Grönwall estimates.

(e) In Section 3.6, we will comment on the solution theory of ϕt.

Notation 3.2.6 In the following, we will denote by K(ϕt, At) a generic polynomial with
finite degree in ‖ϕt‖∞, ‖∇ϕt‖∞, ‖∇ϕt‖, ‖∆ϕt‖, ‖At‖∞,

∫ t
0
ds‖Ȧs‖∞ and ‖Ȧt‖∞.

Remark 3.2.7 By the Soboley embedding Theorem, it is possible to bound

‖ϕt‖∞ + ‖∇ϕt‖∞ + ‖∇ϕt‖+ ‖∆ϕt‖ ≤ C‖ϕt‖H3(R2,C),

Under the assumptions of Theorem 3.2.5, it therefore follows that there exists a constant
Ct, depending on time, such that K(ϕt, At) ≤ Ct holds 2. We will comment on the solution
theory of ϕt in Section 3.6.

Also note that for a generic constant C the inequality C ≤ K(ϕt, At) holds. The exact form
of K(ϕt, At) which appears in the final bounds could be reconstructed in principle, collecting
all contributions from the different estimates.

2 Actually, ϕt ∈ H2+ε(R2,C) for some ε > 0 would suffice for our estimates.
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3.3 Microscopic structure in 2 dimensions

3.3.1 The scattering state

In this section, we analyze the microscopic structure which is induced by VN . In particular,
we explain why the dynamical properties of the system are determined by the low energy
scattering regime.

Definition 3.3.1 Let V ∈ L∞c (R2,R), V spherically symmetric and let VN be given by
VN(x) = e2NV (eNx). In the following, let R denote the radius of the support of V . For
any R ≥ e−NR, we define the zero energy scattering state jN,R by{(

−∆x + 1
2
e2NV (eNx)

)
jN,R(x) = 0,

jN,R(x) = 1 for |x| = R.
(3.11)

One may think of R as the mean interparticle distance of the condensate, i.e. R =
O(N−1/2). However, one is quite free in choosing R, since the dependence of jN,R on R is
only logarithmic (see below).

Next, we want to recall some important properties of the scattering state jN,R, see also
Appendix C of [41].

Lemma 3.3.2 Let V ∈ L∞c (R2,C) spherically symmetric and assume V satisfies Assump-
tion 3.2.3. Define IR =

∫
R2 d

2xVN(x)jN,R(x). For the scattering state defined previously
the following relations hold:

(a) There exists a nonnegative number a, called scattering length of the potential 1
2
V ,

such that

IR =
4π

ln
(
eNR
a

)
(in the case a = 0 we have IR = 0). The scattering length a does not depend on R
and fulfills a ≤ R. Furthermore, IR ≥ 0 holds.

(b) jN,R is a nonnegative nondecreasing function which is spherically symmetric in |x|.
For |x| ≥ e−NR, jN,R is given by

jN,R(x) = 1 +
1

ln
(
eNR
a

) ln

(
|x|
R

)
.

Proof:
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(a)+(b) Rescaling x → eNx = y, we obtain, setting R̃ = eNR and sR̃(y) = j0,eNR(y), the
unscaled scattering equation{(

−∆y + 1
2
V (y)

)
sR̃(y) = 0,

sR̃(y) = 1 for |y| = R̃.
(3.12)

Under the Assumption 3.2.3 on V , we have −∆ + 1
2
V ≥ 0. Therefore, one can define

the scattering state sR̃ by a variational principle. Theorem C.1 in [41] then implies
that sR̃ is a nonnegative, spherically symmetric function in |x|. It is then easy to
verify that for R ≤ |x| there exists a number A ∈ R such that

sR̃(x) = 1 +
A

4π
ln

(
|x|
R̃

)
. (3.13)

Next, we show that A =
∫
R2 d

2xV (x)sR̃(x). This can be seen by noting that, for
r > R, ∫

R2

d2xV (x)sR̃(x) =2

∫
Br(0)

d2x∆sR̃(x) = 2

∫
∂Br(0)

∇sR̃(x) · ds

=
A

2π

∫
∂Br(0)

∇ ln(|x|) · ds =
A

2π

∫ 2π

0

1

r
rdϕ

=A.

By Theorem C.1 in [41], there exists a number a ≥ 0, not depending on R̃, such that
for all |x| ≥ R

sR̃(x) =
ln(|x|/a)

ln(R̃/a)
.

Comparing this with (3.13), we obtain∫
R2

V (x)sR̃(x)dx2 =
4π

ln
(
R̃
a

) .
Since sR̃ is nonnegative, it furthermore follows that a ≤ R. This directly implies
A ≥ 0. By scaling, we obtain

IR̃ =

∫
R2

VN(x)jN,R(x)dx2 =

∫
R2

V (x)sR̃(x)dx2 =
4π

ln
(
eNR
a

) .
It is left to show that sR̃ is monotone nondecreasing in |x|. Define for r ∈ R

Ĩr =

∫
Br(0)

V (x)sR̃(x)dx2
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Since V is supported on BR(0), the identity IR = ĨR holds. Let t(|x|) = sR̃(x). By
Gauß-theorem and the scattering equation (3.11), it then follows for r > 0

d

dr
t(r) =

Ĩr
4πr

.

Since t(r) ≥ 0 holds for all r ≥ 0, it follows Ĩr > 0 for all r ∈]0, r2[, with r2 being
defined as in Assumption 3.2.3. If it were now that j is not monotone nondecreasing,
there must exist a r̃ ≥ r2, such that Ĩr̃ < 0. V (x) ≤ 0 and t(r) ≥ 0 for all |x| ∈]r2,R[
then imply Ĩr ≤ Ĩr̃ for all r ≥ r̃. This, however, contradicts IR = ĨR ≥ 0. Thus, it
follows that sR̃ is monotone nondecreasing.

�

Remark 3.3.3 Note that for |x| � e−NR and N large enough, the scattering state jN,R(x) ≈
1 is almost constant, regardless of the specific choice of the normalization radius R. In
other words, the scattering state essentially only varies on length scales which are deter-
mined by the potential VN , i.e. on length scales of order O(e−N).

Assuming that the energy per particle EVN (Ψ) is of order one, the wave function Ψ will have
a microscopic structure near the interactions VN , given by jN,R. For a positive scattering
length a > 0, the interaction among two particles is then determined by 4π

N+ln(Ra )
≈ 4π

N
.

Keeping in mind that each particle interacts with all other N − 1 particles, we obtain the
effective Gross-Pitaevskii equation, for ϕt ∈ H2(R2,C)

i∂tϕt(x) = (−∆ + At + 4π|ϕt(x)|2)ϕt(x)

If a = 0, ϕt obeys the one-particle Schrödinger equation with the external field At. Thus,
choosing VN(x) = e2NV (eNx) leads in our setting to an effective one-particle equation
which is determined by the low energy scattering behavior of the particles. We remark
that, for any s > 0, the potential e2NsV (eNsx) yields to the coupling 4π/s in the case
a > 0, respectively 0 for a = 0.

3.3.2 Properties of the scattering state

Note that the potential VN is strongly peaked within an exponentially small region. In
order to control the short scale structure of Ψt, we define, with a slight abuse of notation,
a potential Mβ with softer scaling behavior in such a way that the potential 1

2
(VN −Mβ)

has scattering length zero. This allows us to “replace” VN by Mβ, which has better scaling
behavior and is easier to control. In particular, ‖Mβ‖ ≤ CN−1+β can be controlled for β
sufficiently small, while ‖VN‖ = O(eN) cannot be bounded by any finite polynomial in N .
The potential Mβ is not of the exact scaling N−1+2βM(Nβx). However, it is in the set Vβ,
which we will define now.
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Definition 3.3.4 For any β > 0, we define the set of potentials Vβ as

Vβ =
{
U ∈ L2(R2,R)|‖U‖1 ≤ CN−1, ‖U‖ ≤ CN−1+β,

‖U‖∞ ≤ CN−1+2β, U(x) = 0 ∀|x| ≥ CN−β, U is spherically symmetric
}
.

Note that N−1+2βW (Nβx) ∈ Vβ holds, if W is spherically symmetric and compactly sup-
ported.

All relevant estimates in this chapter are formulated for Wβ ∈ Vβ.

Definition 3.3.5 Let V ∈ L∞c (R2,C) fulfill Assumption 3.2.3. For any β > 0 and any
Rβ ≥ N−β we define the potential Mβ via

Mβ(x) =

{
4πN−1+2β if N−β < |x| ≤ Rβ,

0 else.
(3.14)

Furthermore, we define the zero energy state fβ of the potential 1
2
(VN(x)−Mβ(x)), that is{(

−∆x + 1
2

(VN(x)−Mβ(x))
)
fβ(x) = 0

fβ(x) = 1 for |x| = Rβ

. (3.15)

Note that Mβ and fβ depend on Rβ. We choose Rβ such that the scattering length of
the potential 1

2
(VN −Mβ(x)) is zero. This is equivalent to the condition

∫
R d

2x(VN(x) −
Mβ(x))fβ(x) = 0.

Lemma 3.3.6 For the scattering state fβ, defined by Equation (3.15), the following rela-
tions hold:

(a) There exists a minimal value Rβ <∞ such that
∫
R2 d

2x(VN(x)−Mβ(x))fβ(x) = 0.

For the rest of the chapter we assume that Rβ is chosen such that (a) holds.

(b) There exists Kβ ∈ R, Kβ > 0 such that Kβfβ(x) = jN,Rβ(x) ∀|x| ≤ N−β.

(c) For N sufficiently large the supports of VN and Mβ do not overlap.

(d) fβ is a nonnegative function in |x| which is monotone nondecreasing for all N−β ≤
|x| < Rβ.

(e)

fβ(x) = 1 for |x| ≥ Rβ. (3.16)



28 3. Derivation of the Two Dimensional Gross-Pitaevskii Equation

(f)

1 ≥ Kβ ≥ 1 +
1

N + ln
(
Rβ
a

) ln

(
N−β

Rβ

)
. (3.17)

(g) Rβ ≤ CN−β.

For any fixed 0 < β, N sufficiently large such that VN and Mβ do not overlap, we obtain

(h) ∣∣∣∣N ∫
R2

d2xVN(x)fβ(x)− bVN

∣∣∣∣ = |N‖Mβfβ‖1 − bVN | ≤ C
ln(N)

N
.

(i) Define

gβ(x) = 1− fβ(x).

Then,

‖gβ‖1 ≤ CN−2β, ‖gβ‖ ≤ CN−β, ‖gβ‖∞ ≤ C.

(j)

|N‖Mβ‖1 − bVN | ≤ C
ln(N)

N
.

(k)

Mβ ∈ Vβ,Mβfβ ∈ Vβ,Mβfβ ≥ 0.

Remark: If the scattering length a of the potential 1
2
V is zero, it is not necessary to

introduce the potential Mβ. For a unified presentation, we have not distinguished the cases
a > 0 and a = 0 in this chapter. In the latter case a = 0, we can choose Rβ = N−β,Mβ = 0,
fβ(x) = jN,R and Kβ = 1. Part (j) and (k) are then trivially true. Furthermore, all other
parts follow from Lemma 3.3.2. We may thus assume a > 0, Rβ > N−β and bVN = 4π in
the following proof.
Proof:

(a) In the following, we will sometimes denote, with a slight abuse of notation, fβ(x) =
fβ(r) and jN,R(x) = jN,R(r) for r = |x| (for this, recall that fβ and jN,R are radially
symmetric). We further denote by f ′β(r) the derivative of fβ with respect to the
radial coordinate r.
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We first show by contradiction that there exists a x0 ∈ R2, |x0| ≤ N−β, such that
fβ(x0) 6= 0. For this, assume that fβ(x) = 0 for all |x| ≤ N−β. Since fβ is continuous,
there exists a maximal value r0 ≥ N−β such that the scattering equation (3.15) is
equivalent to 

(
−∆x − 1

2
Mβ(x)

)
fβ(x) = 0,

fβ(x) = 1 for |x| = Rβ,

fβ(x) = 0 for |x| ≤ r0.

(3.18)

Using (3.15) and Gauss’-theorem, we further obtain

f ′β1,1(r) =
1

4πr

∫
Br(0)

d2x(VN(x)−Mβ(x))fβ(x). (3.19)

(3.18) and (3.19) then imply for r > r0∣∣f ′β(r)
∣∣ =

1

4πr

∣∣∣∣∫
Br(0)

d2xMβ(x)fβ(x)

∣∣∣∣ =
2πN−1+2β

r

∣∣∣∣∫ r

r0

dr′r′fβ(r′)

∣∣∣∣
≤2πN−1+2β

r

∣∣∣∣∫ r

r0

dr′r′(r′ − r0) sup
r0≤s≤r

|f ′β(s)|
∣∣∣∣ .

Taking the supreme over the interval [r0, r], the inequality above then implies that
there exists a constant C(r, r0) 6= 0, lim

r→r0
C(r, r0) = 0 such that sup

r0≤s≤r
|f ′β(s)| ≤

C(r, r0)N−1+3β1 sup
r0≤s≤r

|f ′β(s)|. Thus, for r close enough to r0, the inequality above

can only hold if f ′β(s) = 0 for s ∈ [r0, r], yielding a contradiction to the choice of r0.

Consequently, there exists a x0 ∈ R2, |x0| ≤ N−β, such that fβ(x0) 6= 0. We can thus
define

h(x) = fβ(x)
jN,R(x0)

fβ(x0)

on the compact set Bx0(0). One easily sees that h(x) = jN,R(x) on ∂Bx0(0) and

satisfies the zero energy scattering equation (3.11) for x ∈ BN−β(0). Note that the
scattering equations (3.11) and (3.15) have a unique solution on any compact set.
It then follows that h(x) = jN,R(x) ∀x ∈ BN−β(0). Since jN,R(N−β) 6= 0, we then
obtain fβ(N−β1) 6= 0. Applying Lemma 3.3.2, it then follows that either fβ or −fβ
is a nonnegative, monotone nondecrasing function in |x| for all |x| ≤ N−β.

Recall that Wβ and hence fβ(x) depend on Rβ ∈ [N−β,∞[. For conceptual clarity,

we denote W
(Rβ)

β (x) = Wβ(x) and f
(Rβ)

β (x) = fβ(x) for the rest of the proof of part
(a). For β fixed, consider the function

s : [N−β,∞[→ R, (3.20)

Rβ 7→
∫
BRβ (0)

d2x(VN(x)−W (Rβ)

β (x))f
(Rβ)

β (x). (3.21)
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We show by contradiction that the function s has at least one zero. Assume s 6= 0
were to hold. We can assume w.l.o.g. s > 0. It then follows from Gauss’-theorem

that f
′(Rβ)

β (Rβ) > 0 for all Rβ ≥ N−β. By uniqueness of the solution of the scattering

equation (3.15), for R̃β < Rβ there exists a constant KR̃β ,Rβ
6= 0, such that for all

|x| ≤ R̃β we have f
(R̃β)

β (x) = KR̃β ,Rβ
f

(Rβ)

β (x). Since f
(Rβ)

β and s are continuous, we can

further conclude KR̃β ,Rβ
> 0. From s 6= 0, it then follows that, for all r ∈ [N−β,∞[

and for all Rβ ∈ [N−β,∞[ , f
′(Rβ)

β (r) 6= 0. Thus, for all r ∈ [N−β,∞[ and for all

Rβ ∈ [N−β1 ,∞[, the function f
(Rβ)

β (r) doesn’t change sign. From Lemma 3.3.2, the

assumption s(N−β) > 0 and KR̃β ,Rβ
> 0, we obtain, for all r ∈ [0, N−β] and for all

Rβ ∈ [N−β,∞[, that f
(Rβ)

β (r) ≥ 0 holds. This, however, implies lim
Rβ→∞

s(Rβ) = −∞

yielding to a contradiction. By continuity of s, there exists thus a minimal value
Rβ ≥ N−β such that s(Rβ) = 0.

Remark 3.3.7 As mentioned, we will from now on fix Rβ ∈ [N−β,∞[ as the mini-
mal value such that s(Rβ) = 0. Furthermore, we may assume a > 0 and Rβ > N−β

in the following. For a = 0, we can choose Rβ = N−β, such that fβ(x) = jN,R(x).

(b) Since fβ(N−β) 6= 0, it follows that

Kβ =
jN,Rβ(N−β)

fβ(N−β)
. (3.22)

Next, we show that the constant Kβ is positive. Since jN,Rβ(N−β) is positive, it
follows from Eq. (3.22) that Kβ and fβ(N−β) have equal sign. By (a), the sign of
fβ is constant for |x| ≤ Rβ. Furthermore, from Gauss-theorem and the scattering
equation (3.15) we have

f ′β(r) =
1

4πrKβ

∫
Br(0)

d2xVN(x)jN,Rβ(x) (3.23)

for all r ≤ N−β. By Lemma 3.3.2,
∫
R2 d

2xVN(x)jN,Rβ(x) > 0 holds (note that we
assume a > 0), which implies

sgn
(
f ′β(N−β)

)
= sgn(Kβ). (3.24)

Recall that Rβ is the smallest value such that f ′β(Rβ) = 0. If it were now that

Kβ is negative, we could conclude from (3.22) and (3.24) that f ′β(N−β) < 0 and

fβ(N−β) < 0. Since Rβ is by definition the smallest value where f ′β(Rβ) = 0 holds,
we were able to conclude from the continuity of the derivative that f ′β(r) < 0 for all
r < Rβ and hence f(Rβ) < 0. However, this were in contradiction to the boundary
condition of the zero energy scattering state (see (3.15)) and thus Kβ > 0 follows.



3.3 Microscopic structure in 2 dimensions 31

(c) This directly follows from e−N < CN−β for N sufficiently large.

(d) From the proof of property (b), we see that fβ and its derivative is positive at N−β.
From (3.19), we obtain f ′β(r) = 0 for all r > Rβ. Due to continuity, f ′β(r) > 0 for

all N−β ≤ r < Rβ. Since fβ is continuous, positive at N−β, and its derivative is
a nonnegative function, it follows that fβ is a nonnegative function in |x| which is
monotone nondecreasing for all N−β ≤ |x| < Rβ. .

(e) By definition of Rβ, it follows that Ĩ =
∫
R2 d

2x(VN(x)−Wβ(x))fβ(x) = 0. Therefore,
for all |x| ≥ Rβ, fβ solves −∆fβ(x) = 0, which has the solution

fβ(x) = 1 +
Ĩ

4π
ln

(
|x|
Rβ

)
= 1 .

(f) Since fβ is a positive monotone nondecreasing function in |x|, for |x| ≥ N−β, we
obtain

1 ≥ fβ(N−β) = jN,Rβ(N−β)/Kβ =

1 +
1

N + ln
(
Rβ
a

) ln

(
N−β

Rβ

) /Kβ.

We obtain the lower bound

Kβ ≥ 1 +
1

N + ln
(
Rβ
a

) ln

(
N−β

Rβ

)
.

For the upper bound we first prove that fβ(x) ≥ jN,Rβ(x) holds for all |x| ≤ Rβ.
Define m(x) = jN,Rβ(x) − fβ(x). Using the scatting equations (3.13) and (3.15) we
obtain {

∆xm(x) = 1
2
VN(x)m(x) + 1

2
Wβ(x)fβ(x),

m(Rβ) = 0.

Let D = e−NR, where, as above, R denotes the radius of the support of the potential
V . Since Wβ(x)fβ(x) ≥ 0, we obtain that ∆xm(x) ≥ 0 for D ≤ |x| ≤ Rβ. That is,
m(x) is subharmonic for D < |x| < Rβ. Using the maximum principle, we obtain,
using that m(x) is spherically symmetric

max
D≤|x|≤Rβ

(m(x)) = max
|x|∈{D,Rβ}

(m(x)). (3.25)

If it were now that max|x|∈{D,Rβ}(m(x)) = m(D) ≥ m(Rβ) = 0, we could conclude
that m(x) ≥ 0 for all D ≤ |x| ≤ Rβ. Assume that m(D) > 0 (otherwise we can
conclude jN,Rβ(N−β) = fβ(N−β) which implies Kβ = 1). Note that m(x) then solves{

−∆xm(x) + 1
2
VN(x)m(x) = 0 for |x| ≤ N−β,

m(D) > 0.
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By Theorem C.1 in [41] (note that we assume a > 0), m is strictly increasing for
D ≤ |x| ≤ N−β. This, however, contradicts max|x|∈{D,Rβ}(m(x)) = m(D).

Therefore, we can conclude in (3.25) that max|x|∈{D,Rβ}(m(x)) = m(Rβ) = 0 holds.
Then, it follows that fβ(x) − jN,Rβ(x) ≥ 0 for all D ≤ |x| ≤ Rβ. Using the zero
energy scattering equation −∆(fβ(x) − jN,Rβ(x)) + 1

2
VN(x)(fβ(x) − jN,Rβ(x)) = 0

for |x| ≤ N−β, we can, together with fβ(N−β) − jN,Rβ(N−β) ≥ 0, conclude that
fβ(x)− jN,Rβ(x) ≥ 0 for all |x| ≤ Rβ.

As a consequence, we obtain the desired bound Kβ =
jN,Rβ (N−β)

fβ(N−β)
≤ 1.

(g) Since fβ is a nonnegative, monotone nondecreasing function in |x| with fβ(x) = 1
∀|x| ≥ Rβ, it follows that

Cfβ(N−β) =fβ(N−β)

∫
R2

d2xVN(x) ≥
∫
VN(x)fβ(x)d2x

=

∫
R2

d2xWβ(x)fβ(x) ≥ fβ(N−β)

∫
R2

d2xWβ(x).

Therefore,
∫
R2 d

2xWβ(x) ≤ CN holds, which implies that Rβ ≤ CN1/2−β.

From

1

Kβ

4π

N + ln
(
Rβ
a

) =
1

Kβ

∫
R2

d2xVN(x)jN,Rβ(x) =

∫
R2

d2xVN(x)fβ(x)

=

∫
R2

d2xMβ(x)fβ(x) = 8π2N−1+2β

∫ Rβ

N−β
drrfβ(r)

we conclude that ∫ Rβ

N−β
drrfβ(r) =

N1−2β

2πKβ

(
N + ln

(
Rβ
a

)) .
Since fβ is a nonegative, monotone nondecreasing function in |x|, forN−β ≤ |x| ≤ Rβ,

1

2
(R2

β −N−2β)
jN,Rβ(N−β)

Kβ

=
1

2
(R2

β −N−2β)fβ(N−β) ≤
∫ Rβ

N−β
drrfβ(r),

which implies

R2
βN

2β ≤ N

π
(
N + ln

(
Rβ
a

))
jN,Rβ(N−β)

+ 1.

Using Rβ ≤ CN1/2−β, it then follows

jN,Rβ(N−β) = 1 +
1

N + ln
(
Rβ
a

) ln

(
N−β

Rβ

)
≥ 1− C

N
,

which implies Rβ ≤ CN−β.
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(h) Using

‖Mβfβ‖1 =

∫
R2

d2xVN(x)fβ(x) = K−1
β

∫
R2

d2xVN(x)jN,Rβ(x) = K−1
β

4π

N + ln
(
Rβ
a

) ,
we obtain (note that a > 0 holds)∣∣∣∣N ∫

R2

d2xVN(x)fβ(x)− 4π

∣∣∣∣ =|N‖Mβfβ‖1 − 4π| = 4π

∣∣∣∣∣∣K−1
β

N

N + ln
(
Rβ
a

) − 1

∣∣∣∣∣∣
=

4π

Kβ

∣∣∣∣∣∣
N −NKβ +Kβ ln

(
Rβ
a

)
N + ln

(
Rβ
a

)
∣∣∣∣∣∣ ≤ C

ln(N)

N
.

(i) Since gβ(x) = 0 for |x| > Rβ, we conclude with Rβ ≤ CN−β that

‖gβ‖1 ≤CN−2β,

as well as

‖gβ‖ ≤CN−β.

‖gβ‖∞ ≤ 2 follows from gβ = 1−fβ and the fact that fβ is a monotone nondecreasing
function with ‖fβ‖∞ = 1.

(j) Using (h) and (i), we obtain with ‖Mβ‖1 ≤ CN−1

|N‖Mβ‖1 − 4π| ≤ |N‖Mβfβ‖1 − 4π|+N‖Mβgβ‖1

≤ C

(
ln(N)

N
+ ‖1|·|≥N−βgβ‖∞

)
.

For N−β ≤ |x|, gβ(x) is a nonnegative, monotone nonincreasing function. It then
follows with Kβ ≤ 1

‖1|·|≥N−βgβ‖∞ =gβ(N−β) = 1− fβ(N−β) = 1−
jN,Rβ(N−β)

Kβ

≤1−

1 +
1

N + ln
(
Rβ
a

) ln

(
N−β

Rβ

) .

and (j) follows.

(k) Mβ ∈ Vβ follows directly from Rβ ≤ CN−β. Furthermore, 0 ≤Mβ(x)fβ(x) ≤Mβ(x)
implies Mβfβ ∈ Vβ.

�
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3.4 Proof of the Theorem

3.4.1 Proof for the potential Wβ

Choosing the weight

We define a functional α : L2(R2N ,C)× L2(R2,C)→ R+
0 such that

(a) α(Ψt, ϕt) can be estimated via a Grönwall type estimate.

(b) limN→∞ α(Ψ, ϕ) = 0 implies convergence of the reduced one particle density matrix

γ
(1)
ψ to |ϕ〉〈ϕ| in trace norm.

Remark 3.4.1 In both this subsection and in Subsection 3.4.2, we will use the same defini-
tion of α as in [60]. There, the validity of the three-dimensional Gross-Pitaevskii equation
was shown.

For β > 0 and N large, the interaction is strongly singular and one needs smoothness
properties of Ψt to be able to control the dynamics of the condensate. This can be achieved

by assuming closeness of the respective energies
∣∣∣EWβ

(Ψ0)− EGPbWβ (ϕ0)
∣∣∣. For β < 1/2 and

many different choices of the weight, the following bound can be verified

α(Ψt, ϕt) ≤ α(Ψ0, ϕ0)

+

∫ t

0

ds
(
K(ϕs, As)

(
α(Ψs, ϕs) + O(1) + 〈〈Ψs, n̂

ϕsΨt〉〉+
∣∣∣EWβ

(Ψs)− EGPbWβ (ϕs)
∣∣∣)) ,

where we like to recall the notation bWβ
= N

∫
R2 Wβ(x)d2x. This enables us to perform an

integral type Grönwall estimate, if we choose

α(Ψt, ϕt) = 〈〈Ψt, n̂
ϕtΨt〉〉+

∣∣∣EWβ
(Ψt)− EGPbWβ (ϕt)

∣∣∣ .
For β ≥ 1/2, however, the time derivative of α(Ψt, ϕt), as just defined, cannot be bounded
as stated above3. The reason for this is that the time derivative of 〈〈Ψt, n̂

ϕtΨt〉〉 contains
the contributions n̂ − n̂1 and n̂ − n̂2. In several terms, it is then necessary to apply the
bound ‖n̂− n̂i‖op = O(N−1/2), i = 1, 2, which can be easily verified. To obtain a Grönwall
estimate for β ≥ 1/2, we define a weight function, which will be denoted by m(k), such
that ‖m̂− m̂i‖op yields to improved estimates.

Definition 3.4.2 For 0 < ξ < 1
2

define m : N0 → R+
0 ,

m(k) =

{ √
k/N, for k ≥ N1−2ξ,

1/2(N−1+ξk +N−ξ), else.

and
α<(Ψ, ϕ) = 〈〈Ψ, m̂ϕΨ〉〉+

∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣ .
3 It can be verified that in the case of α(Ψt, ϕt) = 〈〈Ψt, n̂

ϕtΨt〉〉 +
∣∣∣EWβ

(Ψt)− EGPbWβ (ϕt)
∣∣∣ the Estimate

(3.68) given in Lemma 3.5.7, part (b) is not decaying in N .
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With this definition, we obtain N‖m̂− m̂1‖op ≤ CN ξ, see (3.54).

Lemma 3.4.3 Let Ψ ∈ L2
s(R2N ,C) and let ϕ ∈ L2(R2,C). Let α<(Ψ, ϕ) be defined as

above. Then,

lim
N→∞

α<(Ψ, ϕ) = 0 ⇔ lim
N→∞

γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm

and lim
N→∞

(EWβ
(Ψ)− EGPbWβ (ϕ)) = 0.

Proof: We prove limN→∞〈〈Ψ, m̂Ψ〉〉 = 0⇔ limN→∞ γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm. Using the

inequality ‖n̂ − m̂‖op = N−ξ, we then obtain 〈〈Ψ, m̂Ψ〉〉 ≤ 〈〈Ψ, q1Ψ〉〉 + N−ξ. The Lemma
then follows together with Lemma 2.0.11.

�

To obtain the desired Grönwall estimate, we will calculate d
dt
〈〈Ψt, m̂

ϕtΨt〉〉 and d
dt

(EWβ
(Ψt)−

EGPbWβ (ϕt)). For this, define

Definition 3.4.4 Let Wβ ∈ Vβ as in Definition 3.3.4. Define

Zϕ
β (xj, xk) = Wβ(xj − xk)−

N
∫
R2 Wβ(x)d2x

N − 1
|ϕ|2(xj)−

N
∫
R2 Wβ(x)d2x

N − 1
|ϕ|2(xk). (3.26)

Note, for Wβ(x) = N−1+2βW (Nβx), we have N
∫
R2 Wβ(x)d2x =

∫
R2 W (x)d2x. With

ma(k) = m(k)−m(k + 1), mb(k) = m(k)−m(k + 2)

and
r̂ = m̂bp1p2 + m̂a(p1q2 + q1p2),

we define the functionals γ<a,b : L2(R2N ,C)× L2(R2,C)→ R+
0 by

γ<a (Ψ, ϕ) =〈〈Ψ, Ȧt(x1)Ψ〉〉 − 〈ϕ, Ȧtϕ〉 (3.27)

γ<b (Ψ, ϕ) =N(N − 1)=
(
〈〈Ψ, Zϕ

β (x1, x2)r̂Ψ〉〉
)

(3.28)

= −2N(N − 1)=
(
〈〈Ψ, p1q2m̂

a
−1Z

ϕ
β (x1, x2)p1p2Ψ〉〉

)
(3.29)

−N(N − 1)=
(
〈〈Ψ, q1q2m̂

b
−2Wβ(x1 − x2)p1p2Ψ〉〉

)
(3.30)

−2N(N − 1)=
(
〈〈Ψ, q1q2m̂

a
−1Z

ϕ
β (x1, x2)p1q2Ψ〉〉

)
. (3.31)

Lemma 3.4.5 Let Wβ ∈ Vβ as in Definition 3.3.4. Let Ψt the unique solution to i∂tΨt =
HWβ

Ψt with initial datum Ψ0 ∈ L2
s(R2N ,C) ∩ H2(R2N ,C), ‖Ψ0‖ = 1. Let ϕt the unique

solution to i∂tϕt = hGPbWβ
ϕt with initial datum ϕ0 ∈ H2(R2,C), ‖ϕ0‖ = 1. Let α<(Ψt, ϕt) be

defined as in Definition 3.4.2. Then

α<(Ψt, ϕt) ≤ α<(Ψ0, ϕ0) +

∫ t

0

ds (|γ<a (Ψs, ϕs)|+ |γ<b (Ψs, ϕs)|) . (3.32)
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Proof: (see alsos Lemma 6.2. in [60]) The time derivative of ϕt is given by (3.3), i.e.
i∂tϕt(xj) = hGPbWβ ,j

ϕt(xj). Here, hGPbWβ ,j
denotes the operator hGPbWβ

acting on the jth coordi-

nate xj. We then obtain

d

dt
〈〈Ψt, m̂

ϕtΨt〉〉

= i〈〈HWβ
Ψt, m̂

ϕt Ψt〉〉 − i〈〈Ψt, m̂
ϕt HWβ

Ψt〉〉 − i〈〈Ψt, [
N∑
j=1

hGPbWβ ,j
, m̂ϕt ]Ψt〉〉

= i〈〈Ψt, [HWβ
−

N∑
j=1

hGPbWβ ,j
, m̂ϕt ]Ψt〉〉 = i

N(N − 1)

2
〈〈Ψt, [Z

ϕt
β (x1, x2), m̂ϕt ]Ψt〉〉,

where we used symmetry of Ψt in the last step. Using Lemma 2.0.5 (d), it follows that the
latter equals (dropping the explicit dependence on ϕt from now on)

d

dt
〈〈Ψt, m̂

ϕtΨt〉〉 = i
N(N − 1)

2
〈〈Ψt, [Z

ϕt
β (x1, x2), p1p2(m̂− m̂2)]Ψt〉〉

+ i
N(N − 1)

2
〈〈Ψt, [Z

ϕt
β (x1, x2), (p1q2 + q1p2)(m̂− m̂1)]Ψt〉〉.

By a straightforward calculation, we obtain

d

dt
〈〈Ψt, m̂

ϕtΨt〉〉 = −N(N − 1)

=
(
〈〈Ψt, (p1p2 + p1q2 + q1p2 + q1q2)Zϕt

β (x1, x2)(m̂bp1p2 + m̂a(p1q2 + q1p2))Ψt〉〉
)
.

Note that in view of Lemma 2.0.5 (c) r̂QjZ
ϕt
β (x1, x2)Qj = QjZ

ϕt
β (x1, x2)Qj r̂ for any j ∈

{0, 1, 2} and any weight r. Therefore,

=
(
〈〈Ψt, p1p2Z

ϕt
β (x1, x2)m̂bp1p2Ψt〉〉

)
= 0

=
(
〈〈Ψt, (p1q2 + q1p2)Zϕt

β (x1, x2)m̂a(p1q2 + q1p2)Ψt〉〉
)

= 0.

Using Symmetry and Lemma 2.0.5 (c), we obtain the first line (3.28). Furthermore,

d

dt
〈〈Ψt, m̂

ϕtΨt〉〉 =− 2N(N − 1)=
(
〈〈Ψt, m̂

b
−1p1q2Z

ϕt
β (x1, x2)p1p2Ψt〉〉

)
−N(N − 1)=

(
〈〈Ψt, m̂

b
−2q1q2Z

ϕt
β (x1, x2)p1p2Ψt〉〉

)
−2N(N − 1)=

(
〈〈Ψt, p1p2Z

ϕt
β (x1, x2)m̂ap1q2Ψt〉〉

)
−2N(N − 1)=

(
〈〈Ψt, m̂

a
−1q1q2Z

ϕt
β (x1, x2)p1q2Ψt〉〉

)
.

Since p1p2|ϕ2
t |(x1)q1q2 = p1p2q2|ϕ2

t |(x1)q1 = 0 = p1p2|ϕ2
t |(x2)q1q2, we can replace Zϕt

β (x1, x2)
in the second line by Wβ(x1 − x2). The third line equals

2N(N − 1)=
(
〈〈Ψ, m̂ap1q2Z

ϕt
β (x1, x2)p1p2Ψ〉〉

)
.
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Since
m(k − 1)−m(k + 1)− (m(k)−m(k + 1)) = m(k − 1)−m(k)

it follows that m̂b
−1 − m̂a = m̂a

−1 and we get

d

dt
〈〈Ψt, m̂

ϕtΨt〉〉 =− 2N(N − 1)=
(
〈〈Ψ, p1q2m̂

a
−1Z

ϕt
β (x1, x2)p1p2Ψ〉〉

)
−N(N − 1)=

(
〈〈Ψ, q1q2m̂

b
−2Wβ(x1 − x2)p1p2Ψ〉〉

)
−2N(N − 1)=

(
〈〈Ψ, q1q2m̂

a
−1Z

ϕt
β (x1, x2)p1q2Ψ〉〉

)
.

Furthermore,

d

dt

(
EWβ

(Ψt)− EGPbWβ (ϕt)
)

= 〈〈Ψt, Ȧt(x1)Ψt〉〉 − 〈ϕt, Ȧtϕt〉,

i

〈
ϕt,

[
hGPbWβ

,

(
hGPbWβ

−
bWβ

2
|ϕt|2

)]
ϕt

〉
+

〈
ϕt,

bWβ

2

(
d

dt
|ϕt|2

)
ϕt

〉
= 〈〈Ψt, Ȧt(x1)Ψt〉〉 − 〈ϕt, Ȧtϕt〉+ i

〈
ϕt,

[
hGPbWβ

,
bWβ

2
|ϕt|2

]
ϕt

〉
− i
〈
ϕt,

[
hGPbWβ

,
bWβ

2
|ϕt|2

]
ϕt

〉
= γ<a (Ψt, ϕt).

The Lemma then follows using that |f(x)| ≤ |f(0)| +
∫ x

0
dy|f ′(y)| holds for any f ∈

C1(R,C).

�

Establishing the Grönwall estimate

Lemma 3.4.6 Let Wβ ∈ Vβ as in Definition 3.3.4 and assume the operator inequality
−(1− ε)∆ + 1

2
W ≥ 0 on L2(R2,C) for some ε > 0. Let Ψt the unique solution to i∂tΨt =

HWβ
Ψt with initial datum Ψ0 ∈ L2

s(R2N ,C) ∩ H2(R2N ,C), ‖Ψ0‖ = 1. Let ϕt the unique
solution to i∂tϕt = hGPbWβ

ϕt with initial datum ϕ0 ∈ H3(R2,C). Let EWβ
(Ψ0) ≤ C. Let

γ<a (Ψt, ϕt) and γ<b (Ψt, ϕt) be defined as in Definition (3.4.4). Then, there exists an η > 0
such that

γ<a (Ψt, ϕt) ≤C‖Ȧt‖∞(〈〈Ψt, n̂
ϕtΨt〉〉+N−

1
2 ), (3.33)

γ<b (Ψt, ϕt) ≤K(ϕt, At)
(
〈〈Ψt, n̂

ϕtΨt〉〉+N−η +
∣∣∣EWβ

(Ψt)− EGPbWβ (ϕt)
∣∣∣) . (3.34)

The proof of this Lemma can be found in Section 3.5.4. Once we have proven Lemma
3.4.6, we obtain with Lemma 3.4.5, Grönwall’s Lemma and the estimate above that

α<(Ψt, ϕt) ≤ e
∫ t
0 dsK(ϕs,As)

(
α<(Ψ0, ϕ0)

+

∫ t

0

dsK(ϕs, As)e
−
∫ s
0 dτK(ϕτ ,Aτ )N−η

)
.
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Note that under the assumptions ϕt ∈ H3(R2,C) and At ∈ C1(R, L∞(R2,R)) there exists
a constant Ct <∞, depending on t, ϕ0 and At, such that

∫ t
0
dsK(ϕs, As) ≤ Ct, see Lemma

3.6.1. This proves, using Lemma 3.4.3, part (a) of Theorem 3.2.5. If the potential is
switched off, one expects that Ct is of order t since in this case ‖ϕt‖∞ and ‖∇ϕt‖∞ are
expected to decay like t−1.
We want to explain on a heuristic level why γ<b (Ψt, ϕt) is small. The principle argument
follows the ideas and estimates of [60]. The first line in (3.29) is only small if the correct
coupling parameter bWβ

is used in the mean-field equation (3.3). Then,

Np1Wβ(x1 − x2)p1 = Np1Wβ ? |ϕ|2(x2)p1 → bWβ
p1|ϕ|2(x2)

converges against the mean-field potential, and hence the first expression of (3.29) can
be estimated sufficiently well. In order to bound the second and third line of (3.29), one
tries to bound N2〈〈Ψ, q1q2m̂

b
−2Wβ(x1 − x2)p1p2Ψ〉〉 and N2〈〈Ψ, q1q2m̂

a
−1Wβ(x1 − x2)p1q2Ψ〉〉

in terms of 〈〈Ψ, n̂Ψ〉〉 + O(N−η) for some η > 0. For large β, one needs to use additional

smoothness properties of Ψ. This explains the appearance on
∣∣∣EWβ

(Ψ0)− EGPbWβ (ϕ0)
∣∣∣ on the

right hand side of (3.34). The concise estimates are quite involved and can be found in
Section 3.5.4.

3.4.2 Proof for the exponential scaling VN

Adapting the weight

To control the dynamics generated by HVN , it is necessary to modify the counting functional
α<(Ψ, ϕ) in order to obtain the desired Grönwall estimate. γ<b (Ψ, ϕ), which was defined
in (3.29), will not be small if we were to replace Wβ by VN . In particular, ‖VN‖ =
O(eN), which would appear in the respective estimates, cannot be bounded by any finite
polynomial in 1/N . In order to control the dynamics of the condensate, one needs to
account for the microscopic structure which is induced by VN , as explained in Section
3.3. The idea we will employ is the following: For the moment, we will consider the most
simple counting functional 〈〈Ψt, q

ϕt
1 Ψt〉〉 = 1 − 〈〈Ψt, p

ϕt
1 Ψt〉〉. This functional counts the

relative number of particles which are not in the state ϕt. Instead of projecting onto ϕt,
we now consider the functional

1− 〈〈Ψt,
N∏
j=2

fβ(x1 − xj)pϕt1

N∏
j=2

fβ(x1 − xj)Ψt〉〉,

which takes the short scale correlation structure into account. Neglecting all but two-
particle interactions, this can be approximated by

1− 〈〈Ψt,

(
1−

N∑
j=2

gβ(x1 − xj)

)
pϕt1

(
1−

N∑
l=2

gβ(x1 − xl)

)
Ψt〉〉

≈ 〈〈Ψt, q
ϕt
1 Ψt〉〉+ 2(N − 1)< (〈〈Ψt, gβ(x1 − x2)pϕt1 Ψt〉〉) .
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The time derivative of this functional yields to the replacement of VN byMβ and one obtains
a similar contribution as in Definition 3.4.4. In addition, one obtains several other terms,
which need to be estimated. The strategy we are going to employ is thus to estimate the
time derivative of the modified functional and to show that we obtain a Grönwall estimate.
Note, that, using Lemma 2.0.5 (e) with Lemma 3.3.6 (i)

2(N − 1) |< (〈〈Ψt, gβ(x1 − x2)pϕt1 Ψt〉〉)| ≤ CN‖ϕt‖∞‖gβ‖ ≤ C‖ϕt‖∞N1−β

holds. Hence, we obtain the a priori estimate

〈〈Ψt, q
ϕt
1 Ψt〉〉 ≤ 〈〈Ψt, q

ϕt
1 Ψt〉〉+ 2(N − 1)< (〈〈Ψt, gβ(x1 − x2)pϕt1 Ψt〉〉) + C‖ϕt‖∞N1−β,

which explains why, for β > 1, the new defined functional implies convergence of the
reduced density matrix γ

(1)
Ψt

to |ϕt〉〈ϕt| in trace norm.
We now adapt the strategy explained above to modify the counting functional α<(Ψ, ϕ).

Definition 3.4.7 Let r̂ = m̂bp1p2 + m̂a(p1q2 + q1p2). Let β > 6 and let the functional
α : L2(R2N ,C)× L2(R2,C)→ R+

0 be defined by

α(Ψ, ϕ) =〈〈Ψ, m̂Ψ〉〉+
∣∣∣EVN (Ψ)− EGPbVN (ϕ)

∣∣∣−N(N − 1)< (〈〈Ψ, gβ(x1 − x2)r̂Ψ〉〉) (3.35)

and the functional γ : L2(R2N ,C)× L2(R2,C)→ R be defined by

γ(Ψ, ϕ) = |γa(Ψ, ϕ)|+ |γb(Ψ, ϕ)|+ |γc(Ψ, ϕ)|+ |γd(Ψ, ϕ)|+ |γe(Ψ, ϕ)|+ |γf (Ψ, ϕ)|,
(3.36)

where the different summands are:

(a) The change in the energy-difference

γa(Ψ, ϕ) = 〈〈Ψ, Ȧt(x1)Ψ〉〉 − 〈ϕ, Ȧtϕ〉.

(b) The new interaction term

γb(Ψ, ϕ) =−N(N − 1)=
(
〈〈Ψ, Z̃ϕ

β (x1, x2)r̂Ψ〉〉
)

−N(N − 1)= (〈〈Ψ, gβ(x1 − x2)r̂Zϕ(x1, x2)Ψ〉〉) ,

where, using Mβ from Definition 3.3.5,

Z̃ϕ
β (x1, x2) =

(
Mβ(x1 − x2)− bVN

|ϕ|2(x1) + |ϕ|2(x2)

N − 1

)
fβ(x1 − x2) (3.37)

Zϕ(x1, x2) = VN(x1 − x2)− bVN
N − 1

|ϕ|2(x1)− bVN
N − 1

|ϕ|2(x2).

(c) The mixed derivative term

γc(Ψ, ϕ) =− 4N(N − 1)〈〈Ψ, (∇1gβ(x1 − x2))∇1r̂Ψ〉〉.
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(d) Three particle interactions

γd(Ψ, ϕ) =2N(N − 1)(N − 2)= (〈〈Ψ, gβ(x1 − x2) [VN(x1 − x3), r̂] Ψ〉〉)
+N(N − 1)(N − 2)=

(
〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x3), r̂

]
Ψ〉〉
)
.

(e) Interaction terms of the correction

γe(Ψ, ϕ) =
1

2
N(N − 1)(N − 2)(N − 3)= (〈〈Ψ, gβ(x1 − x2) [VN(x3 − x4), r̂] Ψ〉〉) .

(f) Correction terms of the mean field

γf (Ψ, ϕ) = 2N(N − 1)
N − 2

N − 1
=
(
〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x1), r̂

]
Ψ〉〉
)
.

Remark 3.4.8 (a) Recall that bVN is 4π in the case a > 0 and 0 in the case a = 0. In
the latter case Mβ = 0, fβ = jN,R holds.

(b) The condition β > 6 implies the bound

|γc(Ψ, ϕ)|+ |γd(Ψ, ϕ)|+ |γe(Ψ, ϕ)|+ |γf (Ψ, ϕ)| ≤ K(ϕ,A·)N
−δ, δ > 0,

see (3.103).

(c) The functionals α(Ψ, ϕ) and γ(Ψ, ϕ) defined above also appear in the derivation of
the three dimensional Gross-Pitaevskii equation, see [60].

Lemma 3.4.9 Let Ψt the unique solution to i∂tΨt = HVNΨt with initial datum Ψ0 ∈
L2
s(R2N ,C) ∩ H2(R2N ,C), ‖Ψ0‖ = 1. Let ϕt the unique solution to i∂tϕt = hGPbVN

ϕt with

initial datum ϕ0 ∈ H2(R2,C), ‖ϕ0‖ = 1. Let α(Ψt, ϕt) and γ(Ψt, ϕt) be defined as in (3.35)
and (3.36). Then

α(Ψt, ϕt) ≤ α(Ψ0, ϕ0) +

∫ t

0

dsγ(Ψs, ϕs).

Proof: (see also Lemma 6.3. in [60]) We first calculate

d

dt
(〈〈Ψ, m̂Ψ〉〉 −N(N − 1)< (〈〈Ψ, gβ(x1 − x2)r̂Ψ〉〉))

=−N(N − 1)= (〈〈Ψt,Zϕt(x1, x2)r̂Ψt〉〉)

−N(N − 1)<

(
i〈〈Ψt, gβ(x1 − x2)

[
HVN −

N∑
i=1

hGPbVN ,i
, r̂

]
Ψt〉〉

)
−N(N − 1)< (i〈〈Ψt, [HVN , gβ(x1 − x2)] r̂Ψt〉〉) .
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Using symmetry, we obtain

d

dt
(〈〈Ψ, m̂Ψ〉〉 −N(N − 1)< (〈〈Ψ, gβ(x1 − x2)r̂Ψ〉〉))

=−N(N − 1)= (〈〈Ψt,Zϕt(x1, x2)r̂Ψt〉〉)
+N(N − 1)= (〈〈Ψt, gβ(x1 − x2) [Zϕt(x1, x2), r̂] Ψt〉〉)
+ 2N(N − 1)(N − 2)= (〈〈Ψt, gβ(x1 − x2) [VN(x1 − x3), r̂] Ψt〉〉)
+N(N − 1)(N − 2)=

(
〈〈Ψt, gβ(x1 − x2)

[
bVN |ϕt|2(x3), r̂

]
Ψt〉〉

)
+

1

2
N(N − 1)(N − 2)(N − 3)= (〈〈Ψt, gβ(x1 − x2) [VN(x3 − x4), r̂] Ψt〉〉)

+N(N − 1)= (〈〈Ψt, [HVN , gβ(x1 − x2)] r̂Ψt〉〉) .

+ 2N(N − 1)
N − 2

N − 1
=
(
〈〈Ψt, gβ(x1 − x2)

[
bVN |ϕt|2(x1), r̂

]
Ψt〉〉

)
.

The second and third lines equal γd (recall that Ψ is symmetric), the fourth line equals

γe and the sixth line equals γf . Using that (1 − gβ(x1 − x2))Zϕ(x1, x2) = Z̃ϕ
β (x1, x2) +

(VN(x1 − x2)−Mβ(x1 − x2))fβ(x1 − x2) we get

d

dt
(〈〈Ψ, m̂Ψ〉〉 −N(N − 1)< (〈〈Ψ, gβ(x1 − x2)r̂Ψ〉〉))

≤γd(Ψt, ϕt) + γe(Ψt, ϕt) + γf (Ψt, ϕt)

−N(N − 1)=
(
〈〈Ψt, Z̃

ϕt
β (x1, x2)r̂Ψt〉〉

)
(3.38)

−N(N − 1)= (〈〈Ψt, (VN(x1 − x2)−Mβ1(x1 − x2))fβ(x1 − x2)r̂Ψt〉〉)
−N(N − 1)= (〈〈Ψt, gβ(x1 − x2)r̂Zϕt(x1, x2)Ψt〉〉)
+N(N − 1)= (〈〈Ψt, [HVN , gβ(x1 − x2)] r̂Ψt〉〉) .

The first, second and the fourth line yield to the contribution γb + γd + γe + γf . Using
(3.3.5) the commutator in the fifth line equals

[HVN , gβ(x1 − x2)] =− [HVN , fβ(x1 − x2)]

=[∆1 + ∆2, fβ(x1 − x2)]

=(∆1 + ∆2)fβ(x1 − x2)

+(2∇1fβ(x1 − x2))∇1 + (2∇2fβ(x1 − x2))∇2

=(VN(x1 − x2)−Mβ(x1 − x2))fβ(x1 − x2)

−(2∇1gβ(x1 − x2))∇1 − (2∇2gβ(x1 − x2))∇2.

The third and fifth line in (3.38) then yield to

−4N(N − 1)〈〈Ψt, (∇1gβ(x1 − x2))∇1r̂Ψt〉〉 = γc(Ψt, ϕt).

Using
d

dt

(
EVN (Ψt)− EGPbVN (ϕt)

)
= γa(Ψt, ϕt),

we obtain the desired result.
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�

Establishing the Grönwall estimate

Again, we will bound the time derivative of α(Ψt, ϕt) such that we can employ a Grönwall
estimate.

Lemma 3.4.10 Let Ψt the unique solution to i∂tΨt = HVNΨt with initial datum Ψ0 ∈
L2
s(R2N ,C) ∩ H2(R2N ,C), ‖Ψ0‖ = 1. Let ϕt the unique solution to i∂tϕt = hGPbVN

ϕt with

initial datum ϕ0 ∈ H3(R2,C). Let EVN (Ψ0) ≤ C. Let γ(Ψt, ϕt) be defined as in (3.36).

(a) There exists an η > 0 such that

γ(Ψt, ϕt) ≤K(ϕt, At)
(
〈〈Ψt, n̂Ψt〉〉+N−η +

∣∣∣EVN (Ψ0) − EGPbVN (ϕ0)
∣∣∣) . (3.39)

(b) Let γ(Ψt, ϕt) fulfill the Bound (3.39) given above. Let ϕt ∈ H3(R2,C) and let At ∈
C1(R, L∞(R2,R)). Then,

lim
N→∞

∥∥∥γ(1)
Ψt
− |ϕt〉〈ϕt|

∥∥∥
tr

= 0 (3.40)

holds.

Proof:

(a) The proof of part (a) can be found in Section 3.5.5. We will shortly comment on the
strategy to prove the bound given by Eq. (3.39). The most important estimate is
γb, which can be estimated in the same way as γ<b . All other estimates are based on
the smallness of the Lp-norms of gβ, see Lemma 3.3.6.

(b) We show that Lemma 3.4.10, part (a) implies convergence of the reduced density

matrix γ
(1)
Ψt

to |ϕt〉〈ϕt| in trace norm. Using ‖m̂a‖op + ‖m̂b‖op ≤ CN−1+ξ, see (3.54),
together with Equation (2.4) and Lemma 3.3.6 (i), we obtain

‖gβ(x1 − x2)r̂‖op ≤ ‖gβ(x1 − x2)p1(m̂bp2 + m̂aq2)‖op + ‖gβ(x1 − x2)p2q1m̂
a‖op

≤K(ϕ,A·)‖gβ‖(‖m̂a‖op + ‖m̂b‖op) ≤ K(ϕ,A·)N
ξ−1−β.

Therefore, we bound

N(N − 1) |< (〈〈Ψ, gβ(x1 − x2)r̂Ψ〉〉)| ≤ K(ϕ,A·)N
1−β+ξ. (3.41)

For β large enough, (3.39) implies together with (3.41) that

γ(Ψt, ϕt) ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−η

)
,



3.5 Rigorous estimates 43

for some η > 0. We get with Lemma 3.4.5 and Grönwall’s Lemma, using (3.41) again,
that part (a) implies

α<(Ψt, ϕt) ≤ e
∫ t
0 dsK(ϕs,As)

(
α<(Ψ0, ϕ0)

+

∫ t

0

dsK(ϕs, As)e
−
∫ s
0 dτK(ϕτ ,Aτ )N−η

)
.

By Lemma 3.4.3, we then obtain convergence in trace norm of the respective density
matrices.

�

With Lemma 3.4.10, we then obtain part (b) of Theorem 3.2.5. In the remaining part of
this chapter, we will present the necessary proofs to conclude the main Theorem 3.2.5.

3.5 Rigorous estimates

3.5.1 Control on the kinetic energy of Ψt

We will prove that ‖∇1Ψt‖ is uniformly bounded in N , if initially the energy per par-

ticle EU(Ψ0) is of order one. Under the assumption limN→∞

(
EWβ

(Ψ0)− EGPbWβ (ϕ0)
)

= 0

(see Theorem 3.2.5), it immediately follows that EWβ
(Ψ0) ≤ C. Similarly, the condition

limN→∞

(
EVN (Ψ0)− EGPbVN (ϕ0)

)
= 0 implies EVN (Ψ0) ≤ C. Furthermore, the operator in-

equality −(1− ε)∆ + 1
2
W ≥ 0, as well the Assumption 3.2.3 on V will be applied to show

stability of second kind of the Hamiltonian HU , U ∈ {Wβ, VN}. Note that it is sufficient to
consider potentials Wβ which scale like Wβ(x) = N−1+2βW (Nβx) to prove Theorem 3.2.5,
part (a).

Lemma 3.5.1 Let Ψ0 ∈ L2
s(R2N ,C) ∩H2(R2N ,C) with ‖Ψ0‖ = 1.

(a) Let β > 0, Wβ(x) = N−1+2βW (Nβx) for W ∈ L∞c (R2,R), W spherically symmetric.
Assume −(1− ε)∆ + 1

2
W ≥ 0 for some ε > 0. Let Ψt the unique solution to i∂tΨt =

HWβ
Ψt with initial datum Ψ0 and let EWβ

(Ψ0) ≤ C. Then

‖∇1Ψt‖ ≤ K(ϕt, At).

(b) Let V satisfy Assumption 3.2.3. Let Ψt the unique solution to i∂tΨt = HVNΨt with
initial datum Ψ0 and let let EVN (Ψ0) ≤ C. Then

‖∇1Ψt‖ ≤ K(ϕt, At).

Proof:
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(a) Using d
dt
EWβ

(Ψt) ≤ ‖Ȧt‖∞, we obtain EWβ
(Ψt) ≤ K(ϕt, At). By rescaling, the in-

equality −(1− ε)∆ + 1
2
W ≥ 0, implies

−ε∆x ≤ −∆x +
1

2
(N − 1)Wβ(x− s),

with s ∈ R2 arbitrary.

We continue with

ε
N∑
k=1

(−∆k) =
1

N − 1

N∑
i=1

N∑
j=1,j 6=i

(−ε∆i)

≤ 1

N − 1

N∑
i=1

N∑
j=1,j 6=i

(
−∆i +

1

2
(N − 1)Wβ(xi − xj)

)

=
N∑
k=1

(−∆k) +
N∑
i<j

Wβ(xi − xj). (3.42)

We then obtain together with the assumption At ∈ L∞(R2,R) that

ε〈〈Ψt,−∆1Ψt〉〉 ≤
1

N
〈〈Ψt, HWβ

Ψt〉〉+ C‖At‖∞ ≤ K(ϕt, At).

This yields the desired bound.

(b) is proven in Lemma 4.3.19.

�

3.5.2 Smoothing of the potential Wβ

In Section 3.3 we have defined the potential Mβ to control the strongly peaked potential
VN . We will employ a similar strategy to estimate the potential Wβ sufficiently well when
β is large. For this, we define, for β1 < β, a potential Uβ1,β ∈ Vβ1 such that

∫
R2 Wβ(x)d2x =

‖Uβ1,β‖1. Furthermore, define hβ1,β by ∆hβ1,β = Wβ − Uβ1,β. The function hβ1,β can be
thought as an electrostatic potential which is caused by the charge Wβ−Uβ1,β. It is possible
to rewrite

〈〈χ,Wβ(x1 − x2)Ω〉〉 = 〈〈χ, Uβ1,β(x1 − x2)Ω〉〉
−〈〈∇1χ, (∇1hβ1,β)(x1 − x2)Ω〉〉 − 〈〈χ, (∇1hβ1,β)(x1 − x2)∇1Ω〉〉,

for χ, ω ∈ L2
s(R2N ,C). We will verify that the Lp-norms of hβ1,β and ∇hβ1,β are better to

control than the respective Lp-norm of Wβ. With additional control of ∇1Ω and ∇1χ, it
is therefore possible to obtain a sufficient bound for 〈〈χ,Wβ(x1 − x2)Ω〉〉 for large β.
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Definition 3.5.2 For any 0 ≤ β1 ≤ β and any Wβ ∈ Vβ, as in Definition 3.3.4, we define

Uβ1,β(x) =

{
1
π

∫
R2 d

2xWβ(x)N2β1 for |x| < N−β1,
0 else.

and

hβ1,β(x) = − 1

2π

∫
R2

ln |x− y|(Wβ(y)− Uβ1,β(y))d2y. (3.43)

Lemma 3.5.3 For any 0 ≤ β1 ≤ β and any Wβ ∈ Vβ, we obtain with the above definition

(a)

Uβ1,β ∈ Vβ1 ,
∆hβ1,β = Wβ − Uβ1,β.

(b) Pointwise estimates

|hβ1,β(x)| ≤CN−1 ln(N), hβ1,β(x) = 0 for |x| ≥ N−β1 , (3.44)

|∇hβ1,β(x)| ≤CN−1
(
|x|2 +N−2β

)− 1
2 . (3.45)

(c) Norm estimates

‖hβ1,β‖∞ ≤ CN−1 ln(N),

‖hβ1,β‖λ ≤ CN−1− 2
λ
β1 ln(N) for 1 ≤ λ ≤ ∞,

‖∇hβ1,β‖λ ≤ CN−1+β− 2
λ
β1 for 1 ≤ λ ≤ ∞.

Furthermore, for λ = 2, we obtain the improved bounds

‖h0,β‖ ≤CN−1 for β > 0, (3.46)

‖∇hβ1,β‖ ≤CN−1(ln(N))1/2. (3.47)

Proof:

(a) Uβ1,β ∈ Vβ1 follows directly from the definition of Uβ1,β.
The second statement is a well known result of standard electrostatics (therefore
recall that the radially symmetric Greens function of the Laplace operator in two
dimensions is given by − 1

2π
ln |x − y|). Wβ can be understood as a given charge

density. −Uβ1,β then corresponds to a smeared out charge density of opposite sign
such that the “total charge” is zero. Hence, the “potential” hβ,β1 can be chosen to
be zero outside the support of the total charge density.4

4To see this, recall that the solution of ∆h(r) = ρ(r) for radially symmetric and regular enough charge
density ρ is given by

h(r) = ln(r)

∫ r

0

r′ρ(r′)dr′ +

∫ ∞
r

ln(r′)ρ(r′)r′dr′ + C,

where C ∈ R. The r.h.s. is zero for r 6∈ supp(ρ) when the total charge vanishes
∫∞
0
rρ(r)dr = 0 and C is

chosen equal to zero.
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(b) We estimate the two terms on the r.h.s. of

hβ1,β(x) = − 1

2π

∫
R2

ln |x− y|(Wβ(y)− Uβ1,β(y))d2y

separately. |hβ1,β(x)| = 0 as well as Wβ(x) − Uβ1,β(x) = 0 for |x| ≥ N−β1 implies
that, whenever |hβ1,β(x)| is nonzero, |x − y| ≤ 1 and therefore − ln |x − y| ≥ 0 in
(3.43). Let 2RN−β ≤ |x|. Since − ln |x − y| > 0 in the support of Uβ together with
the support properties of Wβ, one finds that for RN−β < |x|

1

2π

∫
|ln |x− y|| |Wβ(y)| d2y ≤ C‖Wβ‖1| ln(|x| −RN−β)|,

which in turn implies

|hβ1,β(x)| ≤ C (‖Wβ‖1 + ‖Uβ1,β‖1) lnN ≤ CN−1 ln (N)

for all 2RN−β ≤ |x|.

Let next |x| ≤ 2RN−β. Here, one finds

1

2π

∫
|ln |x− y|| |Wβ(y)| d2y ≤ C‖Wβ‖∞

∫
B
RN−β(0)

− ln(|x− y|)d2y

≤ CN−1+2β

∫
B
RN−β(x)

− ln |y|d2y ≤ CN−1+2β

∫
B

4RN−β(0)

− ln |y|d2y

= CN−1+2β
[
− |y|2(2 ln |y| − 1)

]4RN−β

0
≤ CN−1 ln

(
Nβ
)
,

which implies for |x| ≤ 2RN−β

|hβ1,β(x)| ≤ N−1 ln (N) .

This proves the first statement.
For the gradient, we again estimate the two terms on the r.h.s. of

|∇hβ1,β(x)| ≤ 1

2π

∫
1

|x− y|
|Wβ(y)| d2y +

1

2π

∫
1

|x− y|
Uβ,β1(y)d2y

separately. Let first 2RN−β ≤ |x|. Similarly as in the previous argument, one finds∫
1

|x− y|
|Wβ(y)| d2y ≤

∫
B
RN−β (0)

1

|x− y|
|Wβ(y)| d2y ≤ ‖Wβ‖1

|x| −RN−β

for RN−β ≤ |x|, which implies that∫
1

|x− y|
|Wβ(y)| d2y ≤ C‖Wβ‖1

(|x|2 +N−2β)
1
2

≤ CN−1

(|x|2 +N−2β)
1
2
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for all 2RN−β ≤ |x|. For |x| ≤ 2RN−β, we make use of

Nβ ≤ C

(|x|2 +N−2β)1/2

and estimate ∫
1

|x− y|
|Wβ(y)| d2y ≤ ‖Wβ‖∞

∫
B
RN−β(0)

1

|x− y|
d2y

≤ CN2β−1

∫ RN−β

0

dr = CN−1+β ≤ CN−1

(|x|2 +N−2β)1/2
.

Equivalently, we obtain∫
1

|x− y|
Uβ1,β(y)d2y ≤ ‖Uβ1,β‖∞

∫
B
N−β1 (0)

1

|x− y|
d2y

= CN−1+β1 ≤ CN−1

(|x|2 +N−2β1)1/2
≤ CN−1

(|x|2 +N−2β)
1
2

,

for |x| ≤ N−β1 . Since ∇hβ1,β(x) = 0 for |x| ≥ N−β1 , the second statement of (b)
follows.

(c) The first part of (c) follows from (b) and the fact that the support of hβ1,β and ∇hβ1,β
has radius ≤ CN−β1 . The bounds on the L2-norm can be improved by

‖∇hβ1,β‖2 ≤C
∫ CN−β1

0

drr|∇hβ1,β(r)|2 ≤ C

N2

∫ CN−β1

0

dr
r

r2 +N−2β

=
C

N2
ln

(
N−2β1 +N−2β

N−2β

)
≤ C

N2
ln(N).

Using, for |x| ≥ 2RN−β, the inequality

|h0,β(x)| ≤ CN−1| ln(|x| −RN−β)|,

we obtain

‖h0,β‖2
2 =

∫
R2

d2x1B
2RN−β(0)

(x)|h0,β(x)|2 +

∫
R2

d2x1Bc
2RN−β(0)

(x)|h0,β(x)|2

≤‖h0β‖2
∞|B2RN−β(0)|+ CN−2

∫ 1

2RN−β
drr| ln(r −RN−β)|2

≤C
(
N−2−2β(ln(N))2 +N−2

∫ 1

RN−β
dr(r +RN−β)(ln(r))2

)
.
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Using ∫ 1

RN−β
dr(r +RN−β)(ln(r))2

=

(
1

4
r2(2(ln(r))2 − 2 ln(r) + 1) +RN−βr((ln(r))2 − 2 ln(r) + 2)

) ∣∣∣1
RN−β

≤ C
(
1 +N−β +N−2β(ln(N))2

)
,

we obtain, for any β > 0,

‖h0,β‖2
2 ≤ CN−2

(
1 +N−β +N−2β(ln(N))2

)
≤ CN−2.

�

3.5.3 Estimates on the cutoff

In the previous Lemma we defined an auxiliary potential Uβ1,β and sketched the idea how
one can employ this potential to obtain sufficient bounds. We will use this strategy to
estimate the Contributions (3.30) and (3.31). One would therefore like to control the
quantity ‖∇1q1Ψt‖ sufficiently well to show convergence of the reduced density matrices.
While it is indeed possible to obtain a sufficient bound of ‖∇1q1Ψt‖ in the case where the
dynamics is generated by the Hamiltonian HWβ

, this term will in fact not be small for the
dynamic generated by HVN . Due to the presence of the short-scale correlation structure,
we then rather expect ‖∇1q1Ψt‖ = O(1) to hold. This presumption has been shown in
[15] and [39] in the static case. In particular, the results of these papers show that the
interaction energy is purely kinetic in the Gross-Pitaevskii regime, which implies that a
relevant part of the kinetic energy is concentrated around the scattering centers. We must
thus separate the part which is used to form the microscopic structure. For this, we define

the set A(d)

j which includes all configurations where the distance between particle xi and
particle xj, j 6= i is smaller than N−d. It is then possible to prove that the kinetic energy

concentrated on the complement of A(d)

j , i.e. ‖1A(d)
1
∇1q1Ψ‖, can be controlled sufficiently

well, see Lemma 3.5.10. Next, we provide several bounds which will be used to incorporate
this idea in a rigorous manner.

Definition 3.5.4 For any j, k = 1, . . . , N and d > 0 let

a
(d)
j,k = {(x1, x2, . . . , xN) ∈ R2N : |xj − xk| < N−d} ⊆ R2N , (3.48)

A(d)

j =
⋃
k 6=j

a
(d)
j,k A(d)

j = R2N\A(d)

j B(d)

j =
⋃
k 6=l 6=j

a
(d)
k,l B(d)

j = R2N\B(d)

j .

Lemma 3.5.5 Let Ψ ∈ L2
s(R2N ,C) ∩ H1(R2N ,C) ‖Ψ‖ = 1 and let ‖∇1Ψ‖ be uniformly

bounded in N . Then, for all j 6= k with 1 ≤ j, k ≤ N ,
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(a)

‖1A(d)
j
pj‖op ≤ C‖ϕ‖∞N1/2−d,

‖1A(d)
j
∇jpj‖op ≤ C‖∇ϕ‖∞N1/2−d,

‖1
a
(d)
j,k
pj‖op ≤ C‖ϕ‖∞N−d.

(b) For any ε > 0, there exists a constant Cε, such that

‖1A(d)
j

Ψ‖ ≤ CεN
1
2
−d+ε. (3.49)

(c) For any ε > 0, there exists a constant Cε > 0, such that

‖1B(d)j Ψ‖ ≤CεN1−d+ε (3.50)

holds.

(d) For any k 6= j

‖[1A(d)
j
, pk]‖op = ‖[1

a
(d)
j,k
, pk]‖op = ‖[1A(d)

j
, pk]‖op ≤ C‖ϕ‖∞N−d.

Proof:

(a) First note that the volume of the sets a
(d)
j,k introduced in Definition 3.5.4 are |a(d)

j,k | =
πN−2d.

‖1A(d)
j
pj‖op =‖1A(d)

1
p1‖op = ‖p11A(d)

1
p1‖

1
2
op ≤

(
‖ϕ‖2

∞‖1A(d)
1
‖1,∞

)1/2

where we defined

‖f‖p,∞ = sup
x2,...,xN∈R2

(∫
dx1|f(x1, . . . , xN)|p

) 1
p

.

Using 1A(d)
1
≤
∑N

k=2 1a(d)1,k
as well as

(
1A(d)

1

)p
= 1A(d)

1
, we obtain

‖1A(d)
1
‖p,∞ ≤ sup

x2,...,xN∈R2

(∫
dx1

N∑
k=2

1
a
(d)
1,k

) 1
p

≤ (N |a1,k|)
1
p ≤ CN (1−2d) 1

p .

This implies

‖1A(d)
j
pj‖op ≤C‖ϕ‖∞N

1
2
−d.

The second statement of (a) can be proven similarly. Analogously, we obtain

‖1
a
(d)
j,k
pj‖op ≤‖ϕ‖∞|a(d)

j,k |
1/2 ≤ C‖ϕ‖∞N−d
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(b) Without loss of generality, we can set j = 1. Recall the two-dimensional Sobolev
inequality (also called Gagliardo-Nirenberg interpolation inequality): For any % ∈
H1(R2,C) and for any 2 < m < ∞, there exists a constant Cm, depending only on

m, such that ‖%‖m ≤ Cm‖∇%‖
m−2
m ‖%‖ 2

m holds. Using Hölder and Sobolev for the
x1-integration, we get, for p > 1

‖1A(d)
1

Ψ‖2 = 〈〈Ψ,1A(d)
1

Ψ〉〉 =

∫
d2x2 . . . d

2xN

∫
d2x1|Ψ(x1, . . . , xN)|21A(d)

1
(x1, . . . , xN)

≤‖1A(d)
1
‖ p
p−1

,∞

∫
d2x2 . . . d

2xN

(∫
d2x1|Ψ(x1, . . . , xN)|2p

)1/p

≤CpN (1−2d) p−1
p

∫
d2x2 . . . d

2xN

(∫
d2x1|∇1Ψ(x1, . . . , xN)|2

) p−1
p
(∫

d2x̃1|Ψ(x̃1, . . . , xN)|2
) 1

p

.

Using Hölder for the x2, . . . xN -integration with the conjugate pair r = p
p−1

and s = p,
we obtain

‖1A(d)
1

Ψ‖2 ≤CpN (1−2d) p−1
p ‖∇1Ψ‖2 p−1

p ‖Ψ‖
2
p .

Using ‖∇1Ψ‖ < C, (b) follows.

(c) We use that B(d)

j ⊂
⋃
k=1A

(d)

k . Hence one can find pairwise disjoint sets Ck ⊂ A
(d)

k ,

k = 1, . . . , N such that B(d)

j ⊂
⋃
k=1 Ck. Since the sets Ck are pairwise disjoint, the

wavefunctions 1CkΨ are pairwise orthogonal and we get

‖1B(d)j Ψ‖2 ≤
N∑
k=1

‖1CkΨ‖2 ≤
N∑
k=1

‖1A(d)
k

Ψ‖2.

(d)

‖[1A(d)
1
, p2]‖op ≤‖[1a1,2 , p2]‖op ≤ ‖1a1,2p2‖op + ‖p21a1,2‖op

≤2‖ϕ‖∞|a1,2|
1
2 ≤ C‖ϕ‖∞N−d.

�

3.5.4 Estimates for the functionals γa, γ
<
a and γ<b

Control of γa and γ<a The next well-known Lemma, which can e.g. be found on p.30
in [60], can be applied readily to estimate γa, γ

<
a .

Lemma 3.5.6 For any multiplication operator B : L2(R2,C) → L2(R2,C) and any ϕ ∈
L2(R2,C) and any Ψ ∈ L2

s(R2N ,C) we have

|〈〈Ψ, B(x1)Ψ〉〉 − 〈ϕ,Bϕ〉| ≤ C‖B‖∞(〈〈Ψ, n̂ϕΨ〉〉+N−
1
2 ).
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Proof: Using 1 = p1 + q1,

〈〈Ψ, B(x1)Ψ〉〉 − 〈ϕ,Bϕ〉
= 〈〈Ψ, p1B(x1)p1Ψ〉〉+ 2<〈〈Ψ, q1B(x1)p1Ψ〉〉+ 〈〈Ψ, q1B(x1)q1Ψ〉〉 − 〈ϕ,Bϕ〉
≤ 〈ϕ,Bϕ〉(‖p1Ψ‖2 − 1) + 2<〈〈Ψ, n̂−1/2q1B(x1)p1n̂

1/2
1 Ψ〉〉

+ 〈〈Ψ, q1B(x1)q1Ψ〉〉

where we used Lemma 2.0.5 (c). Since ‖p1Ψ‖2 − 1 = ‖q1Ψ‖2 it follows that

|〈〈Ψ, B(x1)Ψ〉〉 − 〈ϕ,Bϕ〉| ≤ C‖B‖∞
(
〈〈Ψ, n̂2Ψ〉〉+ 〈〈Ψ, n̂1Ψ〉〉+ 〈〈Ψ, n̂Ψ〉〉

)
≤ C‖B‖∞(〈〈Ψ, n̂Ψ〉〉+N−

1
2 ). (3.51)

�

Using Lemma 3.5.6, setting B = Ȧt, we get

γ<a (Ψt, ϕt) = γa(Ψt, ϕt) ≤ C‖Ȧt‖∞(〈〈Ψt, n̂
ϕtΨt〉〉+N−

1
2 ),

which yields the first Bound (3.33) in Lemma 3.4.6.

Control of γ<b To control γ<b , we first derive some bounds on the operator norms asso-
ciated with the counting measures m̂a and m̂b, which were defined in Definition 3.4.2. The
difference m(k)−m(k + 1) and m(k)−m(k + 2) is approximately given by the derivative
of m(k) w.r.t. k, which equals

m(k)′ =

{
1/(2
√
kN), for k ≥ N1−2ξ;

1/2(N−1+ξ), else.
(3.52)

It is then easy to verify that, for any j ∈ Z, there exists a Cj <∞ such that

m̂x
j ≤ CjN

−1n̂−1 for x ∈ {a, b} (3.53)

‖m̂x
j ‖op ≤ CjN

−1+ξ for x ∈ {a, b} (3.54)

‖n̂m̂x
j ‖op ≤ CjN

−1 for x ∈ {a, b} (3.55)

‖r̂‖op ≤ ‖m̂a‖op + ‖m̂b‖op ≤ CN−1+ξ. (3.56)

The different terms we have to estimate for γ<b can be found in Eq. (3.29). In order to
facilitate the notation, let ŵ ∈ {Nm̂a

−1, Nm̂
b
−2}. Then w(k) < n(k)−1 and ‖ŵ‖op ≤ CN ξ

follows.

Lemma 3.5.7 Let β > 0 and Wβ ∈ Vβ as in Definition 3.3.4. Let Ψ ∈ L2
s(R2N ,C) ∩

H2(R2N ,C) , ‖Ψ‖ = 1 and let ‖∇1Ψ‖ ≤ K(ϕ,A·). Let w(k) < n(k)−1 and ‖ŵ‖op ≤ CN ξ

for some ξ ≥ 0. Then,

(a)
N
∣∣〈〈Ψp1p2Z

ϕ
β (x1, x2)q1p2ŵΨ〉〉

∣∣ ≤ K(ϕ,A·)
(
N−1 +N−2β ln(N)

)
.



52 3. Derivation of the Two Dimensional Gross-Pitaevskii Equation

(b)

N |〈〈Ψ, p1p2Wβ(x1 − x2)ŵq1q2Ψ〉〉|

≤ K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+ inf

η>0
inf
β1>0

(
Nη−2β1 ln(N)2 + ‖ŵ‖opN−1+2β1 + ‖ŵ‖2

opN
−η)) .

(c)

N |〈〈Ψp1q2Z
ϕ
β (x1, x2)ŵq1q2Ψ〉〉| ≤ K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

+ inf
{∣∣∣EVN (Ψ)− EGPbVN (ϕ)

∣∣∣ , ∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣+N−2β ln(N)
})

.

Proof:

(a) In view of Lemma 2.0.7, we obtain

N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1p2ŵΨ〉〉

∣∣ ≤N‖p1p2Z
ϕ
β (x1, x2)q1p2‖op‖n̂ŵΨ‖

≤CN‖p1p2Z
ϕ
β (x1, x2)q1p2‖op.

‖p1p2Z
ϕ
β (x1, x2)q1p2‖op can be estimated using p1q1 = 0 and (2.7):

N

∥∥∥∥p1p2

(
Wβ(x1 − x2)−

bWβ

N − 1
|ϕ(x1)|2 −

bWβ

N − 1
|ϕ(x2)|2

)
q1p2

∥∥∥∥
op

≤ ‖p1p2(NWβ(x1 − x2)− bWβ
d2x|ϕ(x1)|2)p2‖op + C‖ϕ‖2

∞N
−1

≤ ‖ϕ‖∞‖N(Wβ ? |ϕ|2)−N
∫
R2

Wβ(x)d2x|ϕ|2‖+ C‖ϕ‖2
∞N

−1.

Let h be given by

h(x) = − 1

2π

∫
R2

d2y ln |x− y|NWβ(y) +
1

2π
bWβ

ln |x|,

which implies
∆h(x) = NWβ(x)− bWβ

δ(x).

As above (see Lemma 3.5.3), we obtain h(x) = 0 for x /∈ BRN−β(0), where RN−β is
the radius of the support of Wβ.

Thus,

‖h‖1 ≤
1

2π

∫
R2

d2x

∫
R2

d2y| ln |x− y||1B
RN−β (0)(x)NWβ(y) (3.57)

− 1

2π
bWβ

∫
R2

d2x ln(|x|)1B
RN−β (0)(x) ≤ CN−2β ln(N). (3.58)
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We integrate by parts twice and use Young’s inequality to obtain

‖N(Wβ ? |ϕ|2)− bWβ
|ϕ|2‖ = ‖(∆h) ? |ϕ|2‖

≤‖h‖1‖∆|ϕ|2‖2 ≤ K(ϕ,A·)N
−2β ln(N).

Thus, we obtain the bound

N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1p2ŵΨ〉〉

∣∣ ≤ K(ϕ,A·)
(
N−1 +N−2β ln(N)

)
, (3.59)

which then proves part (a).

(b) We will first consider β < 1/2.
With Lemma 2.0.5 (c) and Lemma 2.0.10 with

O1,2 =q2Wβ(x1 − x2)p2, Ω = N−1/2(ŵ)1/2q1Ψ

χ =N1/2p1(ŵ2)1/2Ψ,

we obtain the bound

|〈〈Ψ, p1p2Wβ(x1 − x2)q1q2ŵΨ〉〉|
= |〈〈Ψ, (ŵ)1/2q1q2Wβ(x1 − x2)p1p2(ŵ2)1/2Ψ〉〉|

≤ N−1
∥∥(ŵ)1/2q1Ψ

∥∥2
+N

∣∣〈〈q2(ŵ2)1/2 Ψ, p1

√
|Wβ(x1 − x2)|p3

√
|Wβ(x1 − x3)|√

|Wβ(x1 − x2)|p2

√
|Wβ(x1 − x3)|p1q3(ŵ2)1/2 Ψ〉〉

∣∣
+N(N − 1)−1‖q2Wβ(x1 − x2)p2p1(ŵ2)1/2Ψ‖2

≤ N−1
∥∥(ŵ)1/2q1Ψ

∥∥2
+N‖

√
|Wβ(x1 − x2)|p1‖4

op ‖q2(ŵ2)1/2 Ψ‖2

+ 2N(N − 1)−1‖p1q2(ŵ1)1/2Wβ(x1 − x2)p2p1Ψ‖2

+ 2N(N − 1)−1‖q1q2(ŵ)1/2Wβ(x1 − x2)p2p1Ψ‖2.

Lemma 2.0.5 (e) then yields

|〈〈Ψ, p1p2Wβ(x1 − x2)q1q2ŵΨ〉〉| ≤N−1‖(ŵ)1/2n̂Ψ‖2 +N‖ϕ‖4
∞‖Wβ‖2

1 ‖n̂(ŵ2)1/2 Ψ‖2

+2N(N − 1)−1‖Wβ‖2‖ϕ‖2
∞ (‖ŵ1‖op + ‖ŵ‖op) .

Note, that ‖Wβ‖1 ≤ CN−1, ‖Wβ‖2 ≤ CN−2+2β. Furthermore, using n̂ < n̂2, we have
under the conditions on ŵ

‖(ŵ)1/2n̂2Ψ‖ ≤ ‖(ŵ2)1/2n̂2Ψ‖ ≤ ‖(n̂2)1/2Ψ‖ ≤
√
〈Ψ, n̂Ψ〉+ 2N−

1
2 . (3.60)

In total, we obtain

N |〈〈Ψ, p1p2Wβ(x1 − x2)q1q2ŵΨ〉〉| ≤ K(ϕ,A·)
(
〈〈Ψ, n̂Ψ〉〉+ ‖ŵ‖opN

−1+2β
)

and we get (b) for the case β < 1/2.



54 3. Derivation of the Two Dimensional Gross-Pitaevskii Equation

(b) for 1/2 ≤ β: We use Uβ1,β from Definition 3.5.2 for some 0 < β1 < 1/2. We then
obtain

N〈〈Ψ, p1p2Wβ(x1 − x2)ŵq1q2Ψ〉〉
=N〈〈Ψ, p1p2Uβ1,β(x1 − x2)ŵq1q2Ψ〉〉 (3.61)

+N〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) ŵq1q2Ψ〉〉. (3.62)

Term (3.61) has been controlled above. So we are left to control (3.62).

Let ∆hβ1,β = Wβ − Uβ1,β. Integrating by parts and using that
∇1hβ1,β(x1 − x2) = −∇2hβ1,β(x1 − x2) gives

N |〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) ŵq1q2Ψ〉〉|
≤ N |〈〈∇1p1Ψ, p2∇2hβ1,β(x1 − x2)ŵq1q2Ψ〉〉| (3.63)

+N |〈〈Ψ, p1p2∇2hβ1,β(x1 − x2)∇1ŵq1q2Ψ〉〉| . (3.64)

Let t1 ∈ {p1,∇1p1} and let Γ ∈ {ŵq1Ψ,∇1ŵq1Ψ}.
For both (3.63) and (3.64), we use Lemma 2.0.10 with

O1,2 =N1+η/2q2∇2hβ1,β(x1 − x2)p2, χ = t1Ψ, Ω = N−η/2Γ.

This yields

(3.63) + (3.64) ≤ 2 sup
t1∈{p1,∇1p1},Γ∈{ŵq1Ψ,∇1ŵq1Ψ}

(
N−η‖Γ‖2 (3.65)

+
N2+η

N − 1
‖q2∇2hβ1,β(x1 − x2)t1p2Ψ‖2 (3.66)

+N2+η |〈〈Ψ, t1p2q3∇2hβ1,β(x1 − x2)∇3hβ1,β(x1 − x3)t1q2p3Ψ〉〉|
)
. (3.67)

The first term can be bounded using Corrolary 2.0.8 by

N−η‖∇1ŵq1Ψ‖2 ≤N−η‖ŵ‖2
op‖∇1q1Ψ‖2

N−η‖ŵq1Ψ‖2 ≤CN−η.

Thus (3.65) ≤ K(ϕ,A·)N
−η‖ŵ‖2

op using that ‖∇1q1Ψ‖ ≤ K(ϕ,A·). By ‖t1Ψ‖2 ≤
K(ϕ,A·), we obtain

(3.66) ≤K(ϕ,A·)
N2+η

N − 1
‖∇2hβ1,β(x1 − x2)p2‖2

op ≤ K(ϕ,A·)
N2+η

N − 1
‖ϕ‖2

∞‖∇hβ1,β‖2

≤K(ϕ,A·)N
η−1 ln(N),

where we used Lemma 3.5.3 in the last step.
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Next, we estimate

(3.67) ≤N2+η‖p2∇2hβ1,β(x1 − x2)t1q2Ψ‖2

≤2N2+η‖p2hβ1,β(x1 − x2)t1∇2q2Ψ‖2

+2N2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)t1q2Ψ‖2

≤2N2+η‖p2hβ1,β(x1 − x2)‖2
op‖t1∇2q2Ψ‖2

+2N2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)‖2
op‖t1q2Ψ‖2

≤K(ϕ,A·)N
2+η‖hβ1,β‖2

≤K(ϕ,A·)N
η−2β1 ln(N)2.

Thus, for all η ∈ R

N〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) ŵq1q2Ψ〉〉
≤K(ϕ,A·)

(
‖ŵ‖2

opN
−η +Nη−1 ln(N) +Nη−2β1 ln(N)2

)
.

Combining both estimates for β < 1/2 and β ≥ 1/2, we obtain, using Nη−1 ln(N) <
Nη−2β1 ln(N),

N〈〈Ψ, p1p2Wβ(x1 − x2)ŵq1q2Ψ〉〉 (3.68)

≤ K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+ inf

η>0
inf
β1>0

(
Nη−2β1 ln(N)2 +N−1+2β1 + ‖ŵ‖2

opN
−η)) .

and we get (b) in full generality.

(c) We first estimate, noting that q1p2|ϕ|2(x1)q1q2 = 0,

N

∣∣∣∣〈〈Ψ, q1p2

bWβ

N − 1
|ϕ|2(x2)ŵq1q2Ψ〉〉

∣∣∣∣ ≤ C‖ϕ‖2
∞‖ŵq1q2Ψ‖‖q1Ψ‖

≤ C‖ϕ‖2
∞‖ŵn̂2Ψ‖‖q1Ψ‖ ≤ K(ϕ,A·)〈〈Ψ, n̂Ψ〉〉.

It is left to estimate N |〈〈Ψ, q1p2Wβ(x1 − x2)ŵq1q2Ψ〉〉|. Let U0,β be given as in Defi-
nition 3.5.2.
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Using Lemma 2.0.5 (c) and integrating by parts we get

N |〈〈Ψ, q1p2Wβ(x1 − x2)ŵq1q2Ψ〉〉|
≤N |〈〈Ψ, q1p2U0,β(x1 − x2)q1q2ŵΨ〉〉|+N |〈〈Ψ, q1p2(∆1h0,β(x1 − x2))q1q2ŵΨ〉〉|
≤‖U0,β‖∞N‖q1Ψ‖ ‖ŵq1q2Ψ‖
+N |〈〈∇1q1p2Ψ, (∇1h0,β(x1 − x2))ŵq1q2Ψ〉〉|
+N |〈〈Ψ, ŵ1q1p2(∇1h0,β(x1 − x2))∇1q1q2Ψ〉〉|
≤N‖U0,β‖∞‖q1Ψ‖ ‖ŵq1q2Ψ‖ (3.69)

+N
∣∣∣〈〈1A(d)

1
∇1q1Ψ, p2(∇1h0,β(x1 − x2))ŵq1q2Ψ〉〉

∣∣∣ (3.70)

+N
∣∣∣〈〈∇1q1Ψ,1A(d)

1
p2(∇1h0,β(x1 − x2))q1q2ŵΨ〉〉

∣∣∣ (3.71)

+N
∣∣∣〈〈Ψ, ŵ1q1p2(∇1h0,β(x1 − x2))q21A(d)

1
∇1q1Ψ〉〉

∣∣∣ (3.72)

+N
∣∣∣〈〈Ψ, ŵ1q1p2(∇1h0,β(x1 − x2))q21A(d)

1
∇1q1Ψ〉〉

∣∣∣ . (3.73)

Lemma 2.0.7 and Lemma 3.5.3 (a) yields the bound

(3.69) ≤ C〈〈Ψ, n̂Ψ〉〉.
For (3.71) and (3.73) we use Cauchy Schwarz and then Sobolev inequality as in
Lemma 3.5.5 to get, for any p > 1,

(3.71) + (3.73) ≤ N ‖∇1q1Ψ‖
∥∥∥1A(d)

1
p2(∇1h0,β(x1 − x2))q1q2ŵΨ

∥∥∥
+N ‖∇1q1Ψ‖

∥∥∥1A(d)
1
q2(∇1h0,β(x1 − x2))q1p2ŵ1Ψ

∥∥∥
≤ CpN‖∇1q1Ψ‖ N

1−2d
2

p−1
p ‖∇1p2(∇1h0,β(x1 − x2))q1q2ŵΨ‖

p−1
p

× ‖p2(∇1h0,β(x1 − x2))q1q2ŵΨ‖1/p

+ CpN‖∇1q1Ψ‖ N
1−2d

2
p−1
p ‖∇1q2(∇1h0,β(x1 − x2))q1p2ŵ1Ψ‖

p−1
p

× ‖q2(∇1h0,β(x1 − x2))q1p2ŵ1Ψ‖1/p.

Using Lemma 2.0.5, Lemma 2.0.7, Corollary 2.0.8 and Lemma 3.5.3, we obtain

‖∇1p2(∇1h0,β(x1 − x2))q1q2ŵΨ‖ ≤ ‖p2(∆1h0,β(x1 − x2))q1q2ŵΨ‖
+ ‖p2(∇1h0,β(x1 − x2))∇1q1q2ŵΨ‖
≤ C (‖p2(Wβ − U0,β)(x1 − x2)‖op + ‖p2∇1h0,β(x1 − x2))‖op)

≤ C‖ϕ‖∞
(
N−1+β +N−1(ln(N))1/2

)
,

and similarly

‖∇1q2(∇1h0,β(x1 − x2))q1p2ŵ1Ψ‖ ≤ ‖q2(∆1h0,β(x1 − x2))q1p2ŵ1Ψ‖
+ ‖q2(∇1h0,β(x1 − x2))∇1q1p2ŵ1Ψ‖
≤ C (‖p2(Wβ − U0,β)(x1 − x2)‖op + ‖ŵ1‖op‖p2∇1h0,β(x1 − x2))‖op)

≤ C‖ϕ‖∞
(
N−1+β + ‖ŵ‖opN

−1(ln(N))1/2
)
.
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Moreover, we estimate

‖p2(∇1h0,β(x1 − x2))q1q2ŵΨ‖ ≤ C‖ϕ‖∞‖∇1h0,β‖2 ≤ C‖ϕ‖∞N−1(ln(N))1/2

‖q2(∇1h0,β(x1 − x2))q1p2ŵΨ‖ ≤ C‖ϕ‖∞‖∇1h0,β‖2 ≤ C‖ϕ‖∞N−1(ln(N))1/2.

Hence, we obtain, for any p > 1,

(3.71) + (3.73) ≤Cp‖ϕ‖∞N1+ 1−2d
2

p−1
p
(
N−1+β + ‖ŵ‖opN

−1(ln(N))1/2
) p−1

p

×
(
N−1(ln(N))1/2

)1/p
.

For d large enough, the right hand side can be bounded by N−1, that is

(3.71) + (3.73) ≤ C‖ϕ‖∞N−1.

For (3.70) we use that ∇2h0,β(x1 − x2) = −∇1h0,β(x1 − x2), Cauchy Schwarz and
ab ≤ a2 + b2 and get

(3.70) ≤ ‖1A(d)
1
∇1q1Ψ‖2 +N2‖p2(∇2h0,β(x1 − x2))ŵq1q2Ψ‖2. (3.74)

‖1A(d)
1
∇1q1Ψ‖2 can be bounded using Lemma 3.5.10.

Integration by parts and Lemma 2.0.5 (c) as well as (a+ b)2 ≤ 2a2 + 2b2 gives for the
second summand

N2‖p1(∇1h0,β(x1 − x2))q1q2ŵΨ‖2 ≤ 2N2‖p1h0,β(x1 − x2)∇1q1q2ŵΨ‖2

+ 2N2‖|ϕ(x1)〉〈∇1ϕ(x1)|h0,β(x1 − x2)q1q2ŵΨ‖2

≤ 2N2‖p1h0,β(x1 − x2)q2(p1ŵ1 + q1ŵ)1A(d)
1
∇1q1Ψ‖2 (3.75)

+ 2N2‖p1h0,β(x1 − x2)q2p1ŵ11A(d)
1
∇1q1Ψ‖2 (3.76)

+ 2N2‖p1h0,β(x1 − x2)q2q1ŵ1A(d)
1
∇1q1Ψ‖2 (3.77)

+ 2N2‖|ϕ(x1)〉〈∇1ϕ(x1)|h0,β(x1 − x2)q1q2ŵΨ‖2. (3.78)

For (3.75) we use Lemma 2.0.7, Lemma 2.0.5 (e) with Lemma 3.5.3 (c) and then
Lemma 3.5.10.

(3.75) ≤ CN2‖p1h0,β(x1 − x2)‖2
op‖1A(d)

1
∇1q1Ψ‖2

≤ K(ϕ,A·)
(
〈〈Ψ, n̂ϕΨ〉〉+N−1/6 ln(N)

+ inf
{∣∣∣EVN (Ψ)− EGPbVN (ϕ)

∣∣∣ , ∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣+N−2β ln(N)
})

.
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Let s1 ∈ {p1, q1} and let d̂ ∈ {ŵ, ŵ1}. Note that ‖d̂‖op = ‖ŵ‖op. Then, (3.76) and
(3.77) can be estimated as

(3.76), (3.77) ≤ 2N2‖∇1q1Ψ‖2‖1A(d)
1
d̂s1q2h0,β(x1 − x2)p1h0,β(x1 − x2)q2s1d̂1A(d)

1
∇1q1Ψ‖2

≤ CpN
2+2 1−2d

2
p−1
p ‖∇1q1Ψ‖2‖∇1d̂s1q2h0,β(x1 − x2)p1h0,β(x1 − x2)q2s1d̂1A(d)

1
∇1q1Ψ‖2 p−1

p

× ‖d̂s1q2h0,β(x1 − x2)p1h0,β(x1 − x2)q2s1d̂1A(d)
1
∇1q1Ψ‖

2
p

≤ CpN
2+2 1−2d

2
p−1
p ‖∇1q1Ψ‖2‖ŵ‖2

op‖p1h0,β(x1 − x2)‖2
op‖1A(d)

1
∇1q1Ψ‖2

× ‖∇1d̂s1q2h0,β(x1 − x2)p1‖
2 p−1

p
op ‖d̂s1q2h0,β(x1 − x2)p1‖

2
p
op

≤ K(ϕ,A·)N
2 1−2d

2
p−1
p ‖ŵ‖4

op‖∇1s1h0,β(x1 − x2)p1‖
2 p−1

p
op ‖h0,β(x1 − x2)p1‖

2
p
op

≤ K(ϕ,A·)N
2 1−2d

2
p−1
p ‖ŵ‖4

op (‖∇ϕ‖‖∇1h0,β‖+ ‖h0,β‖)2 p−1
p ‖h0,β‖

2
p

≤ K(ϕ,A·)‖ŵ‖4
op(‖∇ϕ‖2 + ln(N))

p−1
p N2 1−2d

2
p−1
p
−2.

Here, we used, for s1 ∈ {p1, 1− p1},

‖∇1s1h0,β(x1 − x2)p1‖op ≤ ‖∇1p1h0,β(x1 − x2)p1‖op + ‖∇1h0,β(x1 − x2)p1‖op

≤ ‖ϕ‖∞ (‖∇ϕ‖‖h0,β‖+ ‖∇h0,β‖)

and then applied Lemma 2.0.5 (e).

For d large enough, we obtain

(3.76) + (3.77) ≤ K(ϕ,A·)N
−2.

Line (3.78) can be bounded by

(3.78) ≤N2‖h0,β(x1 − x2)∇1p1‖2
op ‖q1q2ŵΨ‖2 ≤ N2‖h0,β‖2‖∇ϕ‖2

∞‖q1ŵ‖2
op‖q1Ψ‖2

≤C‖∇ϕ‖2
∞〈〈Ψn̂Ψ〉〉.

For (3.72) we use Lemma 2.0.10 with Ω = 1A(d)
1
∇1q1Ψ,

O1,2 = Nq2(∇2h0,β(x1 − x2))p2 and χ = ŵq1Ψ.

(3.72) ≤ ‖1A(d)
1
∇1q1Ψ‖2 (3.79)

+ 2N‖q2(∇2h0,β(x1 − x2))ŵq1p2Ψ‖2 (3.80)

+N2
∣∣〈〈Ψ, q1q3ŵ(∇2h0,β(x1 − x2))p2p3(∇3h0,β(x1 − x3))ŵq1q2Ψ〉〉

∣∣. (3.81)

Line (3.80) is bounded by

(3.80) ≤C‖ϕ‖2
∞N‖(∇2h0,β(x1 − x2))p2‖2

op‖ŵq1‖2
op

≤C‖ϕ‖2
∞N‖∇2h0,β(x1 − x2)‖2 ≤ C‖ϕ‖2

∞N
−1 ln(N).
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(3.79)+(3.81) is bounded by

‖1A(d)
1
∇1q1Ψ‖2 +N2‖p2(∇2h0,β(x1 − x2))ŵq1q2Ψ‖2.

Both terms have been controlled above (see (3.74)). In total, we obtain

N |〈〈Ψp1q2Z
ϕ
β (x1, x2)ŵq1q2Ψ〉〉| ≤ K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

+ inf
{∣∣∣EVN (Ψ)− EGPbVN (ϕ)

∣∣∣ , ∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣+N−2β ln(N)
})

.

�

Using this Lemma, it follows that there exists an η > 0 such that

γ<b (Ψt, ϕt) ≤ K(ϕt, At)
(
〈〈Ψt, n̂

ϕtΨt〉〉+N−η +
∣∣∣EWβ

(Ψ0)− EGPbWβ (ϕ0)
∣∣∣) .

This proves Lemma 3.4.6.

3.5.5 Estimates for the functional γ

Lemma 3.5.8 Let Ψ ∈ L2
s(R2N ,C), ‖Ψ‖ = 1 and let ‖∇1Ψ‖ uniformly bounded in N . Let

V ∈ L∞(R2,R). Then,

‖p11supp(VN )(x1 − x2)‖op ≤C‖ϕ‖∞e−N , (3.82)

‖VN(x1 − x2)Ψ‖ ≤K(ϕ,A·)e
N
√
N, (3.83)

‖p1VN(x1 − x2)Ψ‖ ≤K(ϕ,A·)
√
N. (3.84)

Proof: We have

‖p11supp(VN )(x1 − x2)‖2
op ≤ ‖ϕ‖2

∞‖1supp(VN )‖1 ≤ C‖ϕ‖2
∞e
−2N .

For the second line, we first estimate

‖VN(x1 − x2)Ψ‖ ≤Ce2N‖1supp(VN )(x1 − x2)Ψ‖.

We like to recall the two dimensional Sobolev inequality (see [38], Theorem 8.5)

‖ρ‖2
p ≤ Cp

(
‖ρ‖2 + ‖∇ρ‖2

)
(3.85)

which holds for any ρ ∈ H1(R2,C) and any 2 ≤ p <∞. The constant Cp can be estimated
as (see [38], Theorem 8.5)

Cp ≤
[
p1−2/p(p− 1)−1+ 1

p ((p− 2)/8π)1/2−1/p
]2

. (3.86)
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We will set p = N . By the inequality above, we obtain CN ≤ CN . We use this inequality
in the x1 variable and obtain together with Hölder’s inequality, as in the proof of Lemma
3.5.5,

‖1supp(VN )(x1 − x2)Ψ‖2

≤ ‖1supp(VN )‖ N
N−1

∫
d2x2 . . . d

2xN

(∫
d2x1|Ψ(x1, . . . , xN)|2N

)1/N

≤ CNe−2N N−1
N

∫
d2x2 . . . d

2xN

(∫
d2x1|∇1Ψ(x1, . . . , xN)|2 +

∫
d2x1|Ψ(x1, . . . , xN)|2

)
.

≤ CNe−2N
(
‖∇1Ψ‖2 + ‖Ψ‖2

)
.

For the last inequality, we estimate

‖p1VN(x1 − x2)Ψ‖ = ‖p11supp(VN )(x1 − x2)VN(x1 − x2)Ψ‖
≤ Ce2N‖p11supp(VN )(x1 − x2)‖op‖1supp(VN )(x1 − x2)Ψ‖.

Combining all estimates then yields the Lemma.

�

Remark 3.5.9 For V nonnegative, we were able to derive the improved bound
‖p1VN(x1 − x2)Ψ‖ ≤ K(ϕ,A·)N

−1/2, see Lemma 7.8. in [25].

Control of γb Recall that

γb(Ψ, ϕ) = −N(N − 1)=
(
〈〈Ψ, Z̃ϕ

β (x1, x2)r̂Ψ〉〉
)

−N(N − 1)= (〈〈Ψ, gβ(x1 − x2)r̂Zϕ(x1, x2)Ψ〉〉) .

Estimate (3.82) yields to the bound ‖p1Zϕ(x1, x2)Ψ‖ ≤ K(ϕ,A·)N
1/2. Therefore, the

second line of γb is controlled by

N2‖gβ(x1 − x2)p1‖op‖r̂‖op‖p1Zϕ(x1, x2)Ψ‖
≤ K(ϕ,A·)N

5/2‖gβ‖‖r̂‖op ≤ K(ϕ,A·)N
3/2+ξ−β.

The first line of γb can be bounded with (3.37) and fβ = 1− gβ by

N(N − 1)|=
(
〈〈Ψ, Z̃ϕ

β (x1, x2)r̂Ψ〉〉
)
|

≤ N2

∣∣∣∣=(〈〈Ψ,(Mβ(x1 − x2)fβ(x1 − x2)− N

N − 1

(
‖Mβfβ‖1|ϕ(x1)|2 + ‖Mβfβ‖1|ϕ(x2)|2

))
r̂Ψ〉〉

)∣∣∣∣
(3.87)

+
N2

N − 1
|〈〈Ψ, (‖NMβfβ‖1 − bVN )

(
|ϕ(x1)|2 + |ϕ(x2)|2

)
r̂Ψ〉〉| (3.88)

+
N2

N − 1
|〈〈Ψ,

(
bVN |ϕ(x1)|2 + bVN |ϕ(x2)|2

)
gβ(x1 − x2)r̂Ψ〉〉|. (3.89)
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Since Mβfβ ∈ Vβ, (3.87) is of the same form as γ<b (Ψ, ϕ). Using Lemma 3.3.6 (h), the
second term is controlled by

(3.88) ≤ C‖ϕ‖2
∞N (N‖Mβfβ‖1 − bVN ) ‖r̂‖op ≤ C‖ϕ‖2

∞N
−1+ξ ln(N).

The last term is controlled by

(3.89) ≤ CN‖ϕ‖2
∞‖gβ(x1 − x2)p1‖op‖r̂‖op ≤ C‖ϕ‖3

∞N
ξ−β.

Choosing β sufficiently big, we obtain

|γb(Ψ, ϕ)| ≤ K(ϕ,A·)
(
〈〈Ψ, m̂Ψ〉〉+ |EVN (Ψ)− EGPbVN (ϕ)|+N−η

)
for some η > 0.

Control of γc Recall that

γc(Ψ, ϕ) =− 4N(N − 1)〈〈Ψ, (∇1gβ(x1 − x2))∇1r̂Ψ〉〉.

Using r̂ = (p2 + q2)r̂ = p2r̂ + p1q2m̂
a and ∇1gβ(x1 − x2) = −∇2gβ(x1 − x2), integration by

parts yields to

|γc(Ψ, ϕ)| ≤ 4N2|〈〈Ψ, gβ(x1 − x2)∇1∇2(p2r̂ + p1q2m̂
a)Ψ〉〉| (3.90)

+ 4N2|〈〈∇2Ψ, gβ(x1 − x2)∇1p2r̂Ψ〉〉| (3.91)

+ 4N2|〈〈∇2Ψ, gβ(x1 − x2)∇1p1q2m̂
aΨ〉〉|. (3.92)

We begin with

(3.90) ≤CN2‖gβ‖‖∇ϕ‖∞ (‖∇1r̂ψ‖+ ‖∇2q2m̂
aΨ‖)

≤CN2−β‖∇ϕ‖∞ (‖∇1r̂ψ‖+ ‖∇2q2m̂
aΨ‖) .

Let s1, t1 ∈ {p1, q1}, s2, t2 ∈ {p2, q2}. Inserting the identity 1 = (p1 + q1)(p2 + q2), we
obtain, for a ∈ {−2,−1, 0, 1, 2},

‖∇1r̂Ψ‖ ≤C sup
s1,s2,t1,t2,a

‖r̂as1s2∇1t1t2Ψ‖ ≤ C sup
t1,a
‖r̂a‖op‖∇1t1Ψ‖

≤CN−1+ξ.

In analogy ‖∇2q2m̂
aΨ‖ ≤ C‖m̂a‖op ≤ CN−1+ξ. This yields the bound

(3.90) ≤ K(ϕ,A·)N
1−β+ξ.

Furthermore, (3.91) is bounded by

(3.91) ≤4N2‖∇2Ψ‖ ‖gβ‖ ‖∇ϕ‖∞‖∇1r̂Ψ‖ ≤ C‖∇ϕ‖∞ N1+ξ−β. (3.93)

Similarly, we obtain

(3.92) ≤4N2‖∇2Ψ‖ ‖gβ‖ ‖∇ϕ‖∞‖q2m̂
aΨ‖ ≤ C‖∇ϕ‖∞ N1+ξ−β.

It follows that |γc(Ψ, ϕ)| ≤ K(ϕ,A·)N
1+ξ−β.
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Control of γd To control γd and γe we will use the notation

mc(k) = ma(k)−ma(k + 1) md(k) = ma(k)−ma(k + 2)
me(k) = mb(k)−mb(k + 1) mf (k) = mb(k)−mb(k + 2).

(3.94)

Since the second k-derivative of m is given by (see (3.52) for the first derivative)

m(k)′′ =

{
−1/(4

√
k3N), for k ≥ N1−2ξ;

0, else.

It is easy to verify that

‖m̂x
j ‖op ≤ CN−2+3ξ for x ∈ {c, d, e, f}. (3.95)

Recall that

γd(Ψ, ϕ) =2N(N − 1)(N − 2)= (〈〈Ψ, gβ(x1 − x2) [VN(x1 − x3), r̂] Ψ〉〉)
+N(N − 1)(N − 2)=

(
〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x3), r̂

]
Ψ〉〉
)
.

Since pj + qj = 1, we can rewrite r̂ as

r̂ = m̂bp1p2 + m̂a(p1q2 + q1p2) = (m̂b − 2m̂a)p1p2 + m̂a(p1 + p2).

Thus,

|γd(Ψ, ϕ)| ≤ CN3
∣∣〈〈Ψ, gβ(x1 − x2)

[
VN(x1 − x3), (m̂b − 2m̂a)p1p2 + m̂a(p1 + p2)

]
Ψ〉〉
∣∣

+ CN3
∣∣〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x3), r̂

]
Ψ〉〉
∣∣

≤ CN3 |〈〈Ψ, gβ(x1 − x2)p2 [VN(x1 − x3), m̂a] Ψ〉〉| (3.96)

+ CN3
∣∣〈〈Ψ, gβ(x1 − x2)VN(x1 − x3)(m̂b − 2m̂a)p1p2Ψ〉〉

∣∣ (3.97)

+ CN3
∣∣〈〈Ψ, gβ(x1 − x2)(m̂b − 2m̂a)p1p2VN(x1 − x3)Ψ〉〉

∣∣ (3.98)

+ CN3 |〈〈Ψ, gβ(x1 − x2)m̂ap1VN(x1 − x3)Ψ〉〉| (3.99)

+ CN3 |〈〈Ψ, gβ(x1 − x2)VN(x1 − x3)m̂ap1Ψ〉〉| (3.100)

+ CN3
∣∣〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x3), r̂

]
Ψ〉〉
∣∣ . (3.101)

Using Lemma 2.0.5 (d), we obtain the following estimate:

(3.96) =CN3
∣∣〈〈Ψ, gβ(x1 − x2)p2

[
VN(x1 − x3), p1p3m̂

d + p1q3m̂
c + q1p3m̂

c
]

Ψ〉〉
∣∣

≤CN3
∣∣〈〈Ψ, VN(x1 − x3)gβ(x1 − x2)p21supp(VN )(x1 − x3)

×
(
p1p3m̂

d + p1q3m̂
c + q1p3m̂

c
)

Ψ〉〉
∣∣

+CN3
∣∣〈〈Ψ, gβ(x1 − x2)p2

(
p1p3m̂

d + p1q3m̂
c + q1p3m̂

c
)
VN(x1 − x3)Ψ〉〉

∣∣ .
Both lines are bounded by

CN3‖VN(x1 − x3)Ψ‖ ‖gβ(x1 − x2)p2‖op(
2‖1supp(VN )(x1 − x3)p1‖op + ‖1supp(VN )(x1 − x3)p3‖op

) (
‖m̂d‖op + ‖m̂c‖op

)
.
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In view of Lemma 2.0.5 (e) with Lemma 3.3.6 (i), ‖gβ(x1 − x2)p2‖op ≤ ‖ϕ‖∞‖gβ‖ ≤
C‖ϕ‖∞N−β. Using (3.95), together with

‖1supp(VN )(x1 − x3)p1‖op‖VN(x1 − x3)Ψ‖ ≤ N1/2K(ϕ,A·),

we obtain
(3.96) ≤ K(ϕ,A·)N

3/2+3ξ−β.

We continue with

(3.97) + (3.98) + (3.99)

≤ CN3‖VN(x1 − x3)Ψ‖‖gβ(x1 − x2)p2‖op‖1supp(VN )(x1 − x3)p1‖op‖(m̂b − 2m̂a)‖op

+ CN3‖gβ(x1 − x2)p2‖op‖m̂b − 2m̂a‖op‖p1VN(x1 − x3)Ψ‖
+ CN3‖gβ(x1 − x2)p1‖op‖m̂a‖op‖p1VN(x1 − x3)Ψ‖
≤ K(ϕ,A·)N

5/2+ξ−β.

Next, we estimate (3.100). The support of the function gβ(x1−x2)VN(x1−x3) is such that
|x1 − x2| ≤ CN−β, as well as |x1 − x3| ≤ Ce−N . Therefore, gβ(x1 − x2)VN(x1 − x3) 6= 0
implies |x2 − x3| ≤ CN−β. We estimate

(3.100) =CN3
∣∣∣〈〈Ψ, gβ(x1 − x2)VN(x1 − x3)p11B

CN−β (0)(x2 − x3)m̂aΨ〉〉
∣∣∣

≤CN3‖p1VN(x1 − x3)gβ(x1 − x2)Ψ‖‖1B
CN−β (0)(x2 − x3)m̂aΨ‖

≤CN3‖p11supp(VN )(x1 − x3)‖op‖gβ(x1 − x2)VN(x1 − x3)Ψ‖‖1B
CN−β (0)(x2 − x3)m̂aΨ‖

≤CN7/2‖gβ‖∞‖1B
CN−β (0)‖

1
2
p
p−1
‖∇1m̂

aΨ‖
p−1
p ‖m̂aΨ‖

1
p

≤CpN7/2‖gβ‖∞N−β/2‖∇1m̂
aΨ‖1/2‖m̂aΨ‖1/2

≤K(ϕ,A·)N
5/2+ξ−β/2.

In the fourth line, we applied Sobolev inequality as in the proof of Lemma 3.5.5, then
setting p = 2. Furthermore, we used ‖∇1m̂

aΨ‖1/2‖m̂aΨ‖1/2 ≤ K(ϕ,A·)N
−1+ξ, as well as

‖gβ‖∞ ≤ C, see Lemma 3.3.6.
Using Lemma 2.0.5 (d), (3.101) can be bounded by

CN3
∣∣〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x3), p1p2(r̂ − r̂2) + (p1q2 + q1p2)(r̂ − r̂1)

]
Ψ〉〉
∣∣

≤ CN3‖ϕ‖2
∞ (‖r̂ − r̂2‖op + ‖r̂ − r̂1‖op) ‖gβ(x1 − x2)p2‖op.

Note that ‖r̂ − r̂2‖op + ‖r̂ − r̂1‖op ≤
∑

j∈{c,d,e,f} ‖m̂j‖op ≤ CN−2+3ξ holds. With ‖gβ(x1 −
x2)p2‖op ≤ CN−β, it then follows that

|(3.101)| ≤ C‖ϕ‖2
∞N

1+3ξ−β.

In total, we obtain, using ξ < 1/2,

|γd(Ψ, ϕ)| ≤ K(ϕ,A·)N
3−β/2.
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Control of γe Recall that

γe(Ψ, ϕ) = −1

2
N(N − 1)(N − 2)(N − 3)

= (〈〈Ψ, gβ(x1 − x2) [VN(x3 − x4), r̂] Ψ〉〉) .

Using symmetry, Lemma 2.0.5 (d) and Notation (3.94), γe is bounded by

γe(Ψ, ϕ) ≤N4
∣∣〈〈Ψ, gβ(x1 − x2)

[
VN(x3 − x4), m̂cp1p2p3p4 + 2m̂dp1p2p3q4

+2m̂ep1q2p3p4 + 4m̂fp1q2p3q4

]
Ψ〉〉
∣∣

≤4N4‖VN(x3 − x4)Ψ‖‖1supp(VN )(x3 − x4)p3‖op‖gβ(x1 − x2)p1‖op

×(‖m̂c‖op + ‖m̂d‖op + ‖m̂e‖op + ‖m̂f‖op).

We get with (3.95), Lemma 3.3.6 and Lemma 2.0.5 that

|γe(Ψ, ϕ)| ≤ K(ϕ,A·)N
5/2+3ξ−β.

Control of γf Recall that

γf (Ψ, ϕ) = 2N(N − 1)
N − 2

N − 1
=
(
〈〈Ψ, gβ(x1 − x2)

[
bVN |ϕ|2(x1), r̂

]
Ψ〉〉
)
.

We obtain the estimate

|γf (Ψ, ϕ)| ≤ K(ϕ,A·)N
2‖gβ‖‖r̂‖op ≤ K(ϕ,A·)N

1+ξ−β. (3.102)

Summary of the estimates Collecting all estimates, we get with ξ < 1/2

|γc(Ψ, ϕ)|+ |γd(Ψ, ϕ)|+ |γe(Ψ, ϕ)|+ |γf (Ψ, ϕ)| ≤ K(ϕ,A·)
(
N4−β +N3−β

2

)
. (3.103)

Choosing β sufficiently large, we obtain the desired decay and hence Lemma 3.4.10.

3.5.6 Energy estimates

Lemma 3.5.10 Let Ψ ∈ L2
s(R2N ,C)∩H1(R2N ,C), ‖Ψ‖ = 1 with ‖∇1Ψ‖ ≤ K(ϕ,A·). Let

ϕ ∈ H3(R2,C), ‖ϕ‖ = 1. Let Wβ ∈ Vβ as in Definition 3.3.4 and let V satisfy Assumption

3.2.3. Assume −(1 − ε)∆ + 1
2
W ≥ 0 on L2(R2,C) for some ε > 0. Let the sets A(d)

1 ,B(d)

1

be defined as in Definition 3.5.4. Then, for d large enough,

‖1A(d)
1
∇1q1Ψ‖2 ≤ K(ϕ,A·)

(
〈〈Ψ, n̂ϕΨ〉〉+N−1/6 ln(N)

+ inf
{∣∣∣EVN (Ψ)− EGPbVN (ϕ)

∣∣∣ , ∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣+N−2β ln(N)
})

.
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Proof: We expanding EWβ
(Ψ)− EGPbWβ (ϕ). This yields

EWβ
(Ψ)− EGPbWβ (ϕ) = ‖∇1Ψ‖2 +

N − 1

2
〈〈Ψ,Wβ(x1 − x2)Ψ〉〉

− ‖∇ϕ‖2 − 1

2
bWβ
‖ϕ2‖2 + 〈〈Ψ, At(x1)Ψ〉〉 − 〈ϕ,Atϕ〉

= ε‖1A(d)
1
∇1q1Ψ‖2 + ε‖1A(d)

1
∇1Ψ‖2 +M(Ψ, ϕ) +Qβ(Ψ, ϕ),

where we have defined

M(Ψ, ϕ) =2<
(
〈〈∇1q1Ψ,1A(d)

1
∇1p1Ψ〉〉

)
(3.104)

+‖1A(d)
1
∇1p1Ψ‖2 − ‖∇ϕ‖2 (3.105)

+〈〈Ψ, At(x1)Ψ〉〉 − 〈ϕ,Atϕ〉, (3.106)

Qβ(Ψ, ϕ) =(1− ε)‖1A(d)
1
∇1Ψ‖2 + (1− ε)‖1A(d)

1
∇1q1Ψ‖2 (3.107)

+
N − 1

2
〈〈Ψ, (1− p1p2)Wβ(x1 − x2)(1− p1p2)Ψ〉〉 (3.108)

+
N − 1

2
〈〈Ψ, p1p2Wβ(x1 − x2)p1p2Ψ〉〉 − 1

2
N

∫
R2

Wβ(x)d2x‖ϕ2‖2

+(N − 1)<〈〈Ψ, (1− p1p2)Wβ(x1 − x2)p1p2Ψ〉〉.

We first consider the first two contributions (3.107) + (3.108). Note that (1− p1p2)∆1(1−
p1p2) = p1∆1p1q2 + p1∆1q1q2 + q1q2∆1p1 + q1∆q1. We hence obtain

(3.107) =− (1− ε)〈〈Ψ, q1∆1q1Ψ〉〉+ ‖1A(d)
1
∇1p1Ψ‖2 + 2<

(
〈〈∇1p1Ψ,1A(d)

1
∇1q1Ψ〉〉

)
=− (1− ε)〈〈Ψ, (1− p1p2)∆1(1− p1p2)Ψ〉〉
+(1− ε) (〈〈Ψ, p1∆1p1q2Ψ〉〉+ 2< (〈〈Ψ, q1q2∆1p1Ψ〉〉))

+‖1A(d)
1
∇1p1Ψ‖2 + 2<

(
〈〈∇1p1Ψ,1A(d)

1
∇1q1Ψ〉〉

)
Rearranging terms, we obtain

(3.107) + (3.108) = 〈〈Ψ, (1− p1p2)

(
−(1− ε)∆1 +

N − 1

2
Wβ(x1 − x2)

)
(1− p1p2)Ψ〉〉

(3.109)

+ (1− ε) (〈〈Ψ, p1∆1p1q2Ψ〉〉+ 〈〈Ψ, p1∆1q1q2Ψ〉〉+ 〈〈Ψ, q1q2∆1p1Ψ〉〉) (3.110)

+ ‖1A(d)
1
∇1p1Ψ‖2 + 2<

(
〈〈∇1p1Ψ,1A(d)

1
∇1q1Ψ〉〉

)
. (3.111)

Note that the operator inequality −(1− ε)∆ + 1
2
W ≥ 0 implies by rescaling that (3.109) is

nonnegative. Furthermore, it follows

|(3.110)| ≤ K(ϕ,A·)〈〈Ψ, q1Ψ〉〉,
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and, applying Lemma 3.5.5, part (a),

|(3.111)| ≤ K(ϕ,A·)(‖∇1q1Ψ‖+ 1)N1/2−d.

Define

Sβ(Ψ, ϕ) =(N − 1)|〈〈Ψ, (1− p1p2)Wβ(x1 − x2)p1p2Ψ〉〉| (3.112)

+

∣∣∣∣N − 1

2
〈〈Ψ, p1p2Wβ(x1 − x2)p1p2Ψ〉〉 − 1

2
bWβ
‖ϕ2‖2

∣∣∣∣ . (3.113)

Applying the estimates above, together with the assumptions ‖∇1Ψ‖ ≤ C, ‖∇ϕ‖ ≤ C, we
can then conclude the bound

ε‖1A(d)
1
∇1q1Ψ‖2 ≤|M(Ψ, ϕ)|+ |Sβ(Ψ, ϕ)|+

∣∣∣EWβ
(Ψ)− EGPbWβ (ϕ)

∣∣∣
+K(ϕ,A·)

(
〈〈Ψ, q1Ψ〉〉+N1/2−d) .

Next, we split up the energy difference EVN (Ψ)− EGPbVN (ϕ),

EVN (Ψ)− EGPbVN (ϕ) = ‖∇1Ψ‖2 +
N − 1

2
〈〈Ψ, VN(x1 − x2)Ψ〉〉 − ‖∇ϕ‖2

− bVN
2
‖ϕ2‖2 + 〈〈Ψ, A·(x1)Ψ〉〉 − 〈ϕ,A·ϕ〉.

In order to better estimate the terms corresponding to the two-particle interactions, we
introduce, for µ > d, the potential Mµ(x), defined in Definition 3.3.5, and continue with

EVN (Ψ)− EGPbVN (ϕ) = ‖1A(d)
1
∇1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

+
N − 1

2
〈〈Ψ,1B(d)1

VN(x1 − x2)Ψ〉〉

+
1

2
〈〈Ψ,

N∑
j=2

1B(d)1
(VN −Mµ) (x1 − xj)Ψ〉〉

+
1

2
〈〈Ψ,

N∑
j=2

1B(d)1
Mµ(x1 − xj)Ψ〉〉 − ‖∇ϕ‖2 − bVN

2
‖ϕ2‖2

+ 〈〈Ψ, A·(x1)Ψ〉〉 − 〈ϕ,A·ϕ〉.
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Using that q1 = 1− p1 and symmetry, we obtain for 0 < ε < 1,

EVN (Ψ)− EGPbVN (ϕ)

= ε
(
‖1A(d)

1
∇1q1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+ (1− ε)

(
‖1A(d)

1
∇1q1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+
N − 1

2
〈〈Ψ,1B(d)1

VN(x1 − x2)Ψ〉〉

+
N − 1

2
〈〈Ψ,1B(d)1

(1− p1p2)Mµ(x1 − x2)(1− p1p2)1B(d)1
Ψ〉〉

+ ‖1B(d)1
1A(d)

1
∇1Ψ‖2 +

1

2
〈〈Ψ,

N∑
j=2

1B(d)1
(VN −Mµ) (x1 − xj)Ψ〉〉

+
N − 1

2
〈〈Ψ,1B(d)1

p1p2Mµ(x1 − x2)p1p21B(d)1
Ψ〉〉 − bVN

2
‖ϕ2‖2

+ 2<
(
〈〈∇1q1Ψ,1A(d)

1
∇1p1Ψ〉〉

)
+ (N − 1)<〈〈Ψ,1B(d)1

(1− p1p2)Mµ(x1 − x2)p1p21B(d)1
Ψ〉〉

+ ‖1A(d)
1
∇1p1Ψ‖2 − ‖∇ϕ‖2

+ 〈〈Ψ, A·(x1)Ψ〉〉 − 〈ϕ,A·ϕ〉

= ε
(
‖1A(d)

1
∇1q1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+M(Ψ, ϕ) + Q̃µ(Ψ, ϕ).

with

Q̃µ(Ψ, ϕ) =
N − 1

2
〈〈Ψ,1B(d)1

(1− p1p2)Mµ(x1 − x2)(1− p1p2)1B(d)1
Ψ〉〉

+ (1− ε)
(
‖1A(d)

1
∇1q1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+
N − 1

2
〈〈Ψ,1B(d)1

VN(x1 − x2)Ψ〉〉
(3.114)

+ ‖1B(d)1
1A(d)

1
∇1Ψ‖2 +

1

2
〈〈Ψ,

N∑
j=2

1B(d)1
(VN −Mµ) (x1 − xj)Ψ〉〉 (3.115)

+ (N − 1)<〈〈Ψ,1B(d)1
(1− p1p2)Mµ(x1 − x2)p1p21B(d)1

Ψ〉〉

+
N − 1

2
〈〈Ψ,1B(d)1

p1p2Mµ(x1 − x2)p1p21B(d)1
Ψ〉〉 − bVN

2
‖ϕ2‖2.

The first term in Q̃µ(Ψ, ϕ) is nonnegative. For µ > d Lemma 3.5.11 below shows that
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(3.115) is also nonnegative. Furthermore, we are able to bound, for 0 < ε < 1,

(3.114) =(1− ε)
(
‖1A(d)

1
1B(d)1
∇1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+
N − 1

2
〈〈Ψ,1B(d)1

VN(x1 − x2)Ψ〉〉

−(1− ε)2<
(
〈〈∇1Ψ,1A(d)

1
1B(d)1
∇1p1Ψ〉〉

)
+(1− ε)

(
‖1A(d)

1
1B(d)1
∇1q1Ψ‖2 + ‖1A(d)

1
1B(d)1
∇1p1Ψ‖2

)
The third line is positive. In analogy to the proof of Lemma 3.5.5, we obtain

‖1A(d)
1
1B(d)1
∇1p1Ψ‖ ≤ ‖1B(d)1

∇1p1Ψ‖ ≤ K(ϕ,A·)N
1−d+δ

for any δ > 0. This implies

2<
(
〈〈∇1Ψ,1B(d)1

1A(d)
1
∇1p1Ψ〉〉

)
≤ K(ϕ,A·)N

1−d+δ.

Focusing on the first term, we obtain with Corollary 4.3.15

(1− ε)
(
‖1A(d)

1
1B(d)1
∇1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
+
N − 1

2
〈〈Ψ,1B(d)1

VN(x1 − x2)Ψ〉〉

(3.116)

=
1

N
〈〈Ψ,

(
−(1− ε)

N∑
k=1

∆k1B(d)k
+

N∑
i 6=j

1B(d)j

1

2
VN(xi − xj)

)
Ψ〉〉 ≥ 0. (3.117)

Thus, for µ > d, we obtain the bound

S̃µ(Ψ, ϕ) =(N − 1)
∣∣∣〈〈Ψ,1B(d)1

(1− p1p2)Mµ(x1 − x2)p1p21B(d)1
Ψ〉〉
∣∣∣ (3.118)

+

∣∣∣∣N − 1

2
〈〈Ψ,1B(d)1

p1p2Mµ(x1 − x2)p1p21B(d)1
Ψ〉〉 − bVN

2
‖ϕ2‖2

∣∣∣∣ (3.119)

+K(ϕ,A·)N
1−d+δ

≥− Q̃µ(Ψ, ϕ).

In total, we obtain

ε
(
|1A(d)

1
∇1q1Ψ‖2 + ‖1B(d)1

1A(d)
1
∇1Ψ‖2

)
≤ |M(Ψ, ϕ)|+ |S̃µ(Ψ, ϕ)|+

∣∣∣EVN (Ψ)− EGPbVN (ϕ)
∣∣∣ .

Next, we will estimate M(Ψ, ϕ), Sβ(Ψ, ϕ) and S̃µ(Ψ, ϕ).

• Estimate of Sβ(Ψ, ϕ) and S̃µ(Ψ, ϕ).
We first estimate (3.119), using the same estimate as in (3.57). Note that

〈〈Ψ,1B(d)1
p1p2Mµ(x1 − x2)p1p21B(d)1

Ψ〉〉 = 〈ϕ,Mµ ? |ϕ|2ϕ〉〈〈Ψ,1B(d)1
p1p21B(d)1

Ψ〉〉.
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Using ‖1B(d)1
Ψ‖ ≤ CεN

1−d+ε, for any ε > 0, (see Lemma 3.3.6 (j)) we obtain, together

with ‖p1p2Ψ‖2 = 1− 2‖p1q2Ψ‖2 − ‖q1q2Ψ‖2

|(3.119)| ≤3‖q1Ψ‖2 + Cε
(
N1−d+ε +N2−2d+2ε

)
+

1

2
|N〈ϕ,Mµ ? |ϕ|2ϕ〉 −N‖Mµ‖1‖ϕ2‖2|

+
1

2
|bVN −N‖Mµ‖1|‖ϕ2‖2 +

1

2
〈ϕ,Mµ ? |ϕ|2ϕ〉.

Note that, using Young’s inequality and (3.57),

|〈ϕ,NMµ ? |ϕ|2ϕ〉 −N‖Mµ‖1‖ϕ2‖2|

=

∣∣∣∣∫
R2

d2x|ϕ(x)|2
(
N(Mµ ? |ϕ|2)(x)−N‖Mµ‖1|ϕ(x)|2

)∣∣∣∣
≤ ‖ϕ‖2

∞‖N(Mµ ? |ϕ|2)− ‖NMµ‖1|ϕ|2‖1 ≤ C‖ϕ‖2
∞‖∆|ϕ|2‖1N

−2µ ln(N)

≤ K(ϕ,A·)N
−2µ ln(N).

Since |N‖Mµ‖1 − bVN | ≤ C ln(N)
N

(see Lemma 3.5.5) and

〈ϕ,Mµ ? |ϕ|2ϕ〉 ≤ ‖ϕ‖4
∞‖Mµ‖1 ≤ C‖ϕ‖4

∞N
−1,

it follows that

|(3.119)| ≤K(ϕ,A·)
(
〈〈Ψ, n̂ϕΨ〉〉+ Cε(N

1−d+ε +N2−2d+2ε) +N−2µ ln(N) +N−1 ln(N)
)

≤K(ϕ,A·)
(
〈〈Ψ, n̂ϕΨ〉〉+N−1 ln(N)

)
, (3.120)

where the last inequality holds for d large enough (recall that we chose µ > d).
Using the same estimates, we obtain

(3.113) ≤ K(ϕ,A·)
(
〈〈Ψ, n̂ϕΨ〉〉+N−2β ln(N) +N−1 ln(N)

)
.

Line (3.118) and line (3.112) are controlled by Lemma 3.5.12, which is stated below.

(3.112), (3.118) ≤ K(ϕ,A·)(〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)).

In total, we obtain, for any µ > d ≥ 1, the bound

Sβ(Ψ, ϕ) ≤K(ϕ,A·)
(
〈〈Ψ, n̂Ψ〉〉+N−2β ln(N) +N−1/6 ln(N)

)
S̃µ(Ψ, ϕ) ≤K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

)
.

• Estimate of M(Ψ, ϕ).
First, we estimate (3.104).

|(3.104)| ≤2|〈〈∇1q1Ψ,1A(d)
1
∇1p1Ψ〉〉|+ 2|〈〈∇1q1Ψ,∇1p1Ψ〉〉|

≤2‖∇1q1Ψ‖ ‖1A(d)
1
∇1p1‖op + 2|〈〈n̂−1/2q1Ψ,∆1p1n̂

1/2
1 Ψ〉〉|.
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By Lemma 3.5.4, we obtain ‖1A(d)
1
∇1p1‖op ≤ C‖∇ϕ‖∞N1/2−d. Furthermore, we use

‖∇1q1Ψ‖ ≤ ‖∇1Ψ‖+ ‖∇1p1Ψ‖ ≤ K(ϕ,A·) (see also Lemma 3.5.1) and

|〈〈n̂−1/2q1Ψ,∆1p1n̂
1/2
1 Ψ〉〉| ≤ K(ϕ,A·)‖n̂1/2

1 Ψ‖‖n̂1/2Ψ‖ ≤ K(ϕ,A·)(〈〈Ψ, n̂Ψ〉〉+N−1).

Hence, for d large enough,

|(3.104)| ≤ K(ϕ,A·)(〈〈Ψ, n̂Ψ〉〉+N
1
2
−d +N−1) ≤ K(ϕ,A·)(〈〈Ψ, n̂Ψ〉〉+N−1).

Line (3.105) is estimated for d large enough, noting that ‖∇1p1Ψ‖2 = ‖∇ϕ‖2‖p1Ψ‖2,
by

(3.105) =‖1A(d)
1
∇1p1Ψ‖2 − ‖∇ϕ‖2

≤|‖∇1p1Ψ‖2 − ‖∇ϕ‖2|+ ‖1A(d)
1
∇1p1Ψ‖2

≤C
(
‖∇ϕ‖2〈〈Ψ, q1Ψ〉〉+ ‖∇ϕ‖2

∞N
1−2d

)
≤K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N1−2d

)
.

For line (3.106), we use Lemma 3.5.6 to obtain

(3.106) ≤ C‖A·‖∞
(
〈〈Ψ, n̂Ψ〉〉+N−1/2

)
.

In total, we obtain

M(Ψ, ϕ) ≤ K(ϕ,A·)
(
〈〈Ψ, n̂Ψ〉〉+N−1/2

)
.

�

Lemma 3.5.11

(a) Let Rβ and Mβ be defined as in Lemma 3.3.5. Let V satisfy Assumption 3.2.3. Then,
for any Ψ ∈ H1(R2N ,C)

‖1|x1−x2|≤Rβ∇1Ψ‖2 +
1

2
〈〈Ψ, (VN −Mβ)(x1 − x2)Ψ〉〉 ≥ 0.

(b) Let Mβ be defined as in Lemma 3.3.5. Let Ψ ∈ L2
s(R2N ,C) ∩H1(R2N ,C). Then, for

sufficiently large N and for β > d,

‖1B(d)1
1A(d)

1
∇1Ψ‖2 +

1

2
〈〈Ψ,

N∑
j=2

1B(d)1
(VN −Mβ) (x1 − xj)Ψ〉〉 ≥ 0.

Proof:
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(a) We first show nonnegativity of the one-particle operatorHZn : H2(R2,C)→ L2(R2,C)
given by

HZn = −∆ +
1

2

∑
zk∈Zn

(VN(· − zk)−Mβ(· − zk))

for any n ∈ N and any n-elemental subset Zn ⊂ R2 which is such that the supports
of the potentials Mβ(· − zk) are pairwise disjoint for any two zk ∈ Zn.

Since fβ(·−zk) is the zero energy scattering state of the potential VN(·−zk)−Wβ(·−
zk), it follows that

FZn
β =

∏
zk∈Zn

fβ(· − zk)

fulfills HZnFZn
β = 0 for any such Zn. By construction, fβ is a nonnegative function,

so is FZn
β . Since 1

2

∑
zk∈Zn(VN(· − zk)−Mβ(· − zk)) ∈ L∞(R2,C), this potential is a

infinitesimal perturbation of −∆, thus σess(H
Zn) = [0,∞). Assume now that HZn is

not nonnegative. Then, there exists a ground state ΨG ∈ H2(R2,C) of HZn of nega-
tive energy E < 0. The phase of the ground state can be chosen such that the ground
state is real and positive (see e.g. Theorem 10.12. in [70]). Since such a ground state
of negative energy decays exponentially, that is ΨG(x) ≤ C1e

−C2|x|, C1, C2 > 0 , the
following scalar product is well defined (although FZn

β /∈ L2(R2,C)).

〈FZn
β , HZnΨG〉 = 〈FZn

β , EΨG〉 < 0. (3.121)

On the other hand we have since FXn
β1,β

is the zero energy scattering state

〈FZn
β , HZnΨG〉 = 〈HZnFZn

β ,ΨG〉 = 0.

This contradicts (3.121) and the nonnegativity of HZn follows.

Now, assume that there exists a ψ ∈ H2(R2,C) such that the quadratic form

Q(ψ) = ‖1|·|≤Rβ∇ψ‖
2 +

1

2
〈ψ, (VN(·)−Mβ(·))ψ〉 < 0.

Since VN and Mβ are spherically symmetric, we can assume that ψ is spherically
symmetric. Subsituting ψ → aψ, a ∈ R , we can furthermore assume that, for all
|x| = Rβ, ψ(x) = 1− ε for ε > 0.

Define ψ̃ such that ψ̃(x) = ψ(x) for |x| ≤ Rβ and ψ̃(x) = 1 for |x| > Rβ + ε and
ε > 0. Furthermore, ψ̃ can be constructed such that ‖1|x|≥Rβ∇ψ̃‖2 ≤ C(ε+ ε2).

Then Q(ψ̃) = Q(ψ) < 0 holds, because the operator associated with the quadratic
form is supported inside the ball B0(Rβ).

Using ψ̃, we can construct a set of points Zn and a χ ∈ H2(R2,C) such that
〈χ,HZnχ〉 < 0, contradicting to nonnegativity of HZn .
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For R > 1 let

ξR(x) =

{
R2/x2, for x > R;
1, else.

Let now Zn be a subset Zn ⊂ R2 with |Zn| = n which is such that the supports of
the potentials Wβ(· − zk) lie within the sphere around zero with radius R and are
pairwise disjoint for any two zk ∈ Zn. Since we are in two dimensions we can choose
a n which is of order R2.

Let now χR(x) = ξR(x)
∏

zk∈Zn ψ̃(x− zk). By construction, there exists a D = O(1)

such that χR(x) = ψ̃(x− zk) for |x− zk| ≤ D. From this, we obtain

〈χR, HZnχR〉 =‖∇χR‖2 + n
1

2
〈ψ, (VN(·)−Mβ(·))ψ〉

=nQ(ψ) +
∑
zk∈Zn

‖1|x−zk|≥Rβ∇χR‖
2

≤nQ(ψ) + Cn(ε+ ε2) + ‖∇ξR‖2

=nQ(ψ) + Cn(ε+ ε2) + C.

Choosing R and hence n large enough and ε small, we can find a Zn such that
〈χR, HZnχR〉 is negative, contradicting nonnegativity of HZn .
Now, we can prove that

‖1|x1−x2|≤Rβ1∇1Ψ‖2 +
1

2
〈〈Ψ, (VN −Mβ)(x1 − x2)Ψ〉〉 ≥ 0. (3.122)

holds for any Ψ ∈ H2(R2N ,C). Using the coordinate transformation x̃1 = x1 −
x2 , x̃i = xi ∀i ≥ 2, we have∇x1 = ∇x̃1 . Thus (3.122) is equivalent to ‖1|x1|≤Rβ1∇1Ψ‖2+
1
2
〈〈Ψ, (VN −Mβ)(x1)Ψ〉〉 ≥ 0 ∀Ψ ∈ H2(R2N ,C) which follows directly from Q(ψ) ≥ 0

for all ψ ∈ H2(R2,C). By a standard density argument, we can conclude that
Q(Ψ) ≥ 0 ∀Ψ ∈ H1(R2N ,C).

(b) Define ck = {(x1, . . . , xN) ∈ R2N ||x1−xk| ≤ Rβ} and C1 = ∪Nk=2ck. For (x1, . . . , xN) ∈
B(d)

1 it holds that |xi − xj| ≥ N−d for 2 ≤ i, j ≤ N . Let β > d. Assume that
N−d > 2Rβ, which hold for N sufficiently large, since Rβ ≤ CN−β. Then, it follows

that, for 2 ≤ i, j ≤ N and i 6= j,
(
ci ∩ B(d)

1

)
∩
(
cj ∩ B(d)

1

)
= ∅. Under the same

conditions, we also have 1A(d)
1
≥ 1C1 . Therefore,

1A(d)
1
1B(d)1

≥ 1C11B(d)1
= 1C1∩B(d)1

= 1∪Nk=2

(
ck∩B

(d)
1

) =
N∑
k=2

1
ck∩B

(d)
1

= 1B(d)1

N∑
k=2

1ck .

Note that 1B(d)1
depends only on x2, . . . , xN . By this

‖1A(d)
1
1B(d)1
∇1Ψ‖2 ≥

N∑
k=2

‖1ck∇11B(d)1
Ψ‖2 = (N − 1)‖1|x1−x2|≤Rβ∇11B(d)1

Ψ‖2.
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This yields

(3.115) ≥ (N − 1)

(
‖1|x1−x2|≤Rβ∇11B(d)1

Ψ‖2 +
1

2
〈〈1B(d)1

Ψ, (VN −Mβ)(x1 − x2)1B(d)1
Ψ〉〉
)
≥ 0.

where the last inequality follows from (a)

�

Lemma 3.5.12 Let Wβ ∈ Vβ as in Definition 3.3.4. Let Ψ ∈ L2
s(R2N ,C) ∩ H1(R2N ,C)

and ‖∇1Ψ‖ be bounded uniformly in N . Let d in Definition 3.5.4 of 1B(d)1
sufficiently large.

Let Γ ∈ {Ψ,1B(d)1
Ψ}. Then, for all β > 0,

(a)

N |〈〈Γ, q1p2Wβ(x1 − x2)p1p2Γ〉〉| ≤ C‖ϕ‖2
∞〈〈Ψ, n̂Ψ〉〉.

(b)

N |〈〈Γ, p1p2Wβ(x1 − x2)q1q2Γ〉〉| ≤ K(ϕ,A·)
(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

)
.

(c)

N |〈〈Γ, (1− p1p2)Wβ(x1 − x2)p1p2Γ〉〉| ≤ K(ϕ,A·)
(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

)
.

Proof:

(a) Let first Γ = 1B(d)1
Ψ. Then,

N
∣∣∣〈〈1B(d)1

Ψ, q1p2Wβ(x1 − x2)p1p21B(d)1
Ψ〉〉
∣∣∣

≤N
∣∣∣〈〈1B(d)1

Ψ, q1p2Wβ(x1 − x2)p1p21B(d)1
Ψ〉〉
∣∣∣ (3.123)

+N
∣∣∣〈〈Ψ, q1p2Wβ(x1 − x2)p1p21B(d)1

Ψ〉〉
∣∣∣ . (3.124)

Using Lemma 3.5.5 together with ‖p2Wβ(x1 − x2)p2‖op ≤ ‖ϕ‖2
∞‖Wβ‖1, the first line

can be bounded, for any ε > 0, by

(3.123) ≤ K(ϕ,A·)N‖1B(d)1
Ψ‖‖Wβ‖1 ≤ K(ϕ,A·)N

1−d+ε. (3.125)

The second term is bounded by
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(3.124) =N

∣∣∣∣〈〈√|Wβ(x1 − x2)|q1p2(n̂)−
1
2 Ψ,

√
|Wβ(x1 − x2)|p1p2n̂

1
2
1 1B(d)1Ψ〉〉

∣∣∣∣
≤CN‖

√
|Wβ(x1 − x2)|p2‖2

op

(
‖q1(n̂)−

1
2 Ψ‖2 + ‖n̂

1
2
1 1B(d)1Ψ‖

2
)

≤CN‖
√
|Wβ(x1 − x2)|p2‖2

op

(
〈〈Ψ, n̂Ψ〉〉+ ‖n̂

1
2
1 Ψ‖2 + ‖n̂

1
2
1 1B(d)1

Ψ‖2
)

≤CN‖Wβ‖1‖ϕ‖2
∞

(
〈〈Ψ, n̂Ψ〉〉+ ‖1B(d)1

Ψ‖2
)

≤C‖ϕ‖2
∞
(
〈〈Ψ, n̂Ψ〉〉+N1−d+ε

)
.

Choosing d large enough, N1−d+ε is smaller than 〈〈Ψ, n̂Ψ〉〉. This yields (a) in the
case Γ = 1B(d)1

Ψ. The inequality (a) can be proven analogously for Γ = Ψ.

(b) Let Γ = 1B(d)1
Ψ. We first consider (b) for potentials with β < 1/4. We have to

estimate

N |〈〈1B(d)1
Ψ, p1p2Wβ(x1 − x2)q1q21B(d)1

Ψ〉〉| ≤ N |〈〈Ψ, p1p2Wβ(x1 − x2)q1q2Ψ〉〉|

+N |〈〈1B(d)1
Ψ, p1p2Wβ(x1 − x2)q1q2Ψ〉〉|+N |〈〈Ψ, p1p2Wβ(x1 − x2)q1q21B(d)1

Ψ〉〉|

+N |〈〈1B(d)1
Ψ, p1p2Wβ(x1 − x2)q1q21B(d)1

Ψ〉〉|

≤N |〈〈Ψ, p1p2Wβ(x1 − x2)q1q2Ψ〉〉| (3.126)

+CN‖1B(d)1
Ψ‖‖Wβ‖∞. (3.127)

The last term is bounded, for any ε > 0, by

(3.127) ≤ CεNN
1−d+εN−1+2β ≤ N−2 ,

where the last inequality holds choosing d large enough.

Using Lemma 2.0.5 (c) and Lemma 2.0.10 withO1,2 = q2Wβ(x1−x2)p2, Ω = N−1/2q1Ψ
and χ = N1/2p1Ψ we get

(3.126) ≤ ‖q1Ψ‖2 +N2
∣∣〈〈q2 Ψ, p1‖

√
|Wβ(x1 − x2)|p3‖

√
|Wβ(x1 − x3)|

× ‖
√
|Wβ(x1 − x2)|p2‖

√
|Wβ(x1 − x3)|p1q3 Ψ〉〉

∣∣
+N2(N − 1)−1‖q2Wβ(x1 − x2)p2p1Ψ‖2

≤ ‖q1Ψ‖2 +N2‖‖
√
|Wβ(x1 − x2)|p1‖4

op ‖q2 Ψ‖2

+ CN‖Wβ(x1 − x2)p2‖2
op.

With Lemma 2.0.5 (e) we get the bound

(3.126) ≤‖q1Ψ‖2 +N2‖ϕ‖4
∞‖Wβ‖2

1 ‖q1Ψ‖2 + CN‖Wβ‖2‖ϕ‖2
∞.
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Note, that ‖Wβ‖1 ≤ CN−1, ‖Wβ‖2 ≤ CN−2+2β Hence

(3.126) ≤ C
(
〈〈Ψ, q1Ψ〉〉+K(ϕ)N−1+2β

)
.

Note that, for β < 1/4, N−1+2β ≤ N−1/6 ln(N). Using the same bounds for Γ = Ψ,
we obtain (b) for the case β < 1/4.

b) for 1/4 ≤ β:
We use Uβ1,β from Definition 3.5.2 for some 0 < β1 < 1/4.

Zϕ
β (x1, x2)−Wβ +Uβ1,β has the form of Zϕ

β1
(x1, x2) which has been controlled above.

It is left to control

N
∣∣∣〈〈1B(d)1

Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) q1q21B(d)1
Ψ〉〉
∣∣∣ .

Let ∆hβ1,β = Wβ − Uβ1,β. Integrating by parts and using that
∇1hβ1,β(x1 − x2) = −∇2hβ1,β(x1 − x2) gives

N
∣∣∣〈〈1B(d)1

Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) q1q21B(d)1
Ψ〉〉
∣∣∣

= N
∣∣∣〈〈∇1p11B(d)1

Ψ, p2∇2hβ1,β(x1 − x2)q1q21B(d)1
Ψ〉〉
∣∣∣ (3.128)

+N
∣∣∣〈〈1B(d)1

Ψ, p1p2∇2hβ1,β(x1 − x2)∇1q1q21B(d)1
Ψ〉〉
∣∣∣ . (3.129)

Let (a1, b1) = (q1,∇p1) or (a1, b1) = (∇q1, p1). Then, both terms can be estimated
as follows:
We use Lemma 2.0.10 with Ω = N−η/2a11B(d)1

Ψ, O1,2 = N1+η/2q2∇2hβ1,β(x1 − x2)p2

and χ = b11B(d)1
Ψ. We choose η < 2β1.

N
∣∣∣〈〈1B(d)1

Ψ, a1p2∇2hβ1,β(x1 − x2)b1q21B(d)1
Ψ〉〉
∣∣∣

≤ N−η‖a11B(d)1
Ψ‖2 (3.130)

+
N2+η

N − 1
‖q2∇2hβ1,β(x1 − x2)b1p21B(d)1

Ψ‖2 (3.131)

+N2+η
∣∣∣〈〈1B(d)1

Ψ, b1p2q3∇2hβ1,β(x1 − x2)∇3hβ1,β(x1 − x3)b1q2p31B(d)1
Ψ〉〉
∣∣∣1/2 .

(3.132)

We obtain (note that 1B(d)1
does not depend on x1)

(3.130) ≤ N−η‖a11B(d)1
Ψ‖2 = N−η‖1B(d)1

a1Ψ‖2 ≤ K(ϕ,A·)N
−η.
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since both ‖∇q1Ψ‖ and ‖q1Ψ‖ are bounded uniformly in N . Since q2 is a projector
it follows that

(3.131) ≤ N2+η

N − 1
‖∇2hβ1,β(x1 − x2)p2‖2

op‖b11B(d)1
Ψ‖2

≤C N2+η

N − 1
‖ϕ‖2

∞‖∇hβ1,β‖2‖b11B(d)1
Ψ‖2

≤K(ϕ,A·)N
η−1 ln(N)‖ϕ‖2

∞,

where we used Lemma 3.5.3 in the last step.

Next, we estimate

(3.132) ≤N2+η‖p2∇2hβ1,β(x1 − x2)b1q21B(d)1
Ψ‖2

≤2N2+η‖p2∇2hβ1,β(x1 − x2)b1q21B(d)1
Ψ‖2 (3.133)

+2N2+η‖p2∇2hβ1,β(x1 − x2)b1q2Ψ‖2. (3.134)

The first term can be estimated as

(3.133) ≤CN2+η‖∇2hβ1,β(x1 − x2)b1‖2
op‖1B(d)1

Ψ‖2

≤CN2+η‖∇2hβ1,β‖2(‖ϕ‖2
∞ + ‖∇ϕ‖2

∞)‖1B(d)1
Ψ‖2

≤K(ϕ,A·)N
2+ηN−2 ln(N)N2−2d+2ε = K(ϕ,A·)N

2−2d+2ε+η ln(N),

for any ε > 0. For d large enough, this term is subleading. The last term can be
estimated as

(3.134) ≤2N2+η‖p2hβ1,β(x1 − x2)b1∇2q2Ψ‖2

+2N2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)b1q2Ψ‖2

≤CN2+η‖p2hβ1,β(x1 − x2)‖2
op‖b1∇2q2Ψ‖2

+CN2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)‖2
op‖b1q2Ψ‖2

≤CN2+η
(
‖∇ϕ‖2

∞ + ‖ϕ‖2
∞
)
‖hβ1,β‖2(1 + ‖∇ϕ‖2)

≤K(ϕ,A·)N
η−2β1 ln(N)2.

Combining both estimates we obtain, for any β > 1,

N
∣∣∣〈〈1B(d)1

Ψ, p1p2Wβ(x1 − x2)q1q21B(d)1Ψ〉〉
∣∣∣

≤ inf
η>0

inf
0<µ<1/4

(
K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N−1+2µ +N−η +Nη−1 ln(N) +Nη−2µ ln(N)

))
≤ K(ϕ,A·)

(
〈〈Ψ, n̂Ψ〉〉+N−1/6 ln(N)

)
.

where the last inequality comes from choosing η = 1/3 and µ = 1/4. For Γ = Ψ, (b)
can be estimated the same way, yielding the same bound.

(c) This follows from (a) and (b), using that 1− p1p2 = q1q2 + p1q2 + q1p2.

�
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3.6 Regularity of the solution ϕt

In our estimates, we need the regularity conditions

‖∇ϕt‖∞ <∞, ‖ϕt‖∞ <∞, ‖∇ϕt‖ <∞, ‖∆ϕt‖ <∞.

That is, we need ϕt ∈ H2(R2,C) ∩ W 1,∞(R2,C). Then, ‖∆|ϕt|2‖, ‖∆|ϕt|2‖1 and ‖ϕ2
t‖,

which also appear in our estimates, can be bounded by

∆|ϕt|2 =ϕ∗t∆ϕt + ϕt∆ϕ
∗
t + 2(∇ϕ∗t ) · (∇ϕt)

‖∆|ϕt|2‖ ≤2‖∆ϕt‖‖ϕt‖∞ + 2‖∇ϕt‖‖∇ϕt‖∞
‖∆|ϕt|2‖1 ≤4‖∆ϕt‖

‖ϕ2
t‖ ≤‖ϕt‖∞‖ϕt‖.

Recall the Sobolev embedding Theorem, which implies in particular
Hk(R2,C) = W k,2(R2,C) ⊂ Ck−2(R2,C). If ϕ ∈ C1(R2,C) ∩ H1(R2,C), then ϕ ∈
W 1,∞(R2,C) follows since both ϕ and ∇ϕ have to decay at infinity. Thus, ϕt ∈ H3(R2,C)
implies ϕt ∈ H2(R2,C) ∩W 1,∞(R2,C), which suffices for our estimates. Since ϕt obeys a
defocusing nonlinear Schrödinger equation, we expect the regularity of the solution ϕt to
follow from the regularity of the initial datum ϕ0. For a certain class of external potentials
At this has been proven in [11]:

Lemma 3.6.1 Let ϕ0 ∈ Σk(R2,C) = {f ∈ L2(R2,C)|
∑

α+β≤k ‖xα∂βxf‖ < ∞}, for k ≥ 2.
Let, for b > 0, ϕt the unique solution to

i∂tϕt = (−∆ + At + b|ϕt|2)ϕt.

Let A· ∈ L∞loc(Rt × R2
x,C) real valued and smooth with respect to the space variable: for

(almost) all t ∈ R, the map x 7→ At(x) is C∞. Moreover, At is at most quadratic in space,
uniformly w.r.t. time t:

∀α ∈ N2, |α| ≥ 2, ∂αxA· ∈ L∞(Rt × Rd
x,C).

In addition, t 7→ sup|x|≤1 |At(x)| belongs to L∞(R,C). Then

(a) ϕt ∈ Σk(R2,C), which implies ϕt ∈ Hk(R2,C).

(b) ‖ϕt‖ = ‖ϕ0‖.

(c) Let ϕ0 ∈ Σ3(R2,C). Assume in addition that ‖At‖∞ < ∞ and ‖Ȧt‖∞ < ∞. Then,
for any fixed t ≥ 0, K(ϕt, At) <∞ follows.

Proof: Part (a) is Corollary 1.4. in [11]. We like to remark that ‖ϕt‖Hk ≤ C holds,
if At = 0, see Section 1.2. in [11]. The conditions on At are for example satisfied if
At ∈ C∞c (R2,R) for all t ∈ R, At(x) = 0, for all |t| ≥ T . Part (b) can be verified directly,
using the existence of global in time solutions. Part (c) follows from (a) and the embedding
H3(R2,C) ⊂ H2(R2,C) ∩W 1,∞(R2,C).

�
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Chapter 4

Derivation of the Gross-Pitaevskii
Equation for a Class of Non Purely
Positive Potentials
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We are grateful to Dr. Nikolai Leopold and Prof. Dr. Robert Seiringer for pointing out
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4.1 Introduction

In this chapter, we will analyze the dynamics of a Bose-Einstein condensate in the Gross-
Pitaevskii regime for interactions V which need not to be nonnegative, but may have an
attractive part. The theorem we are going to present generalizes the derivation of the
Gross-Pitaevskii equation in three dimensions as conducted in [60].

Let us first define the N -body quantum problem we want to study. The evolution of N in-
teracting bosons is described by a time-dependent wave-function Ψt ∈ L2

s(R3N ,C), ‖Ψt‖ =
1. Assuming in addition Ψ0 ∈ H2(R3N ,C), the evolution of Ψt is then described by the
N -particle Schrödinger equation

i∂tΨt = HΨt. (4.1)
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The time-dependent Hamiltonian H we will study is defined by

H = −
N∑
j=1

∆j +N2
∑

1≤j<k≤N

V (N(xj − xk)) +
N∑
j=1

At(xj). (4.2)

In the following, we assume At ∈ L∞(R3,R) and V ∈ L∞c (R3,R), V spherically symmetric.
We will also use the common notation V1(x) = N2V (Nx). More generally, one can study
the properties of Bose gases for a larger class of scaling parameters 0 ≤ β ≤ 1, setting
Vβ(x) = N−1+3βV (Nβx). For 0 < β ≤ 1 and large particle number N , the potential gets
δ-like, which indicates that the mathematical description may become more involved the
bigger β is chosen. The so-called Gross-Pitaevskii regime β = 1 is special, since then the
two-particle correlations play a crucial role for the dynamics, see Section 4.3.1 and also
Chapter 3 for the discussion of the two-dimensional Gross-Pitaevskii equation.
We will derive an approximate solution of (4.1) in the trace class topology of reduced

density matrices. Recall the definition of the one particle reduced density matrix γ
(1)
Ψ0

given by the integral kernel

γ
(1)
Ψ0

(x, x′) =

∫
R3N−3

Ψ∗0(x, x2, . . . , xN)Ψ0(x′, x2, . . . , xN)d3x2 . . . d
3xN . (4.3)

To account for the physical situation of a Bose-Einstein condensate, we assume complete
condensation in the limit of large particle number N . This amounts to assume that, for
N →∞, γ

(1)
Ψ0
→ |ϕ0〉〈ϕ0| in trace norm for some ϕ0 ∈ L2(R3,C), ‖ϕ0‖ = 1. Our main goal

is to show the persistence of condensation over time. Let a denote the scattering length
of the potential 1

2
V (see Section 4.3.1 for the precise definition of a) and let ϕt solve the

nonlinear Gross-Pitaevskii equation

i∂tϕt = (−∆ + At)ϕt + 8πa|ϕt|2ϕt =: hGPϕt (4.4)

with initial datum ϕ0 (we assume ϕt ∈ H2(R3,C), see below). We then prove that the

time evolved reduced density matrix γ
(1)
Ψt

converges to |ϕt〉〈ϕt| in trace norm as N → ∞
with convergence rate of order N−η for some η > 0.
The rigorous derivation of effective evolution equations has a long history, see e.g. [2, 4,
5, 7, 8, 9, 14, 17, 18, 19, 20, 25, 26, 30, 31, 32, 34, 49, 50, 51, 53, 54, 55, 59, 60, 61, 65]
and references therein. The derivation of the three dimensional time-dependent Gross-
Pitaevskii equation for nonnegative potentials was first conducted in [19]. Afterward, this
result has been improved by [4, 5, 49, 60]. The ground state properties of dilute Bose gases
were treated in [6, 45, 46, 47, 43, 42, 57, 64, 72], see also the monograph [41] and references
therein.
As mentioned previously, we will generalize the result presented in [60] to a specific class
of interactions V which are not assumed to be nonnegative everywhere. Let us stress that
persistence of condensation is not expected for arbitrary V . For strongly attractive poten-
tials, even a small fraction of particles which leave the condensate over time may cluster,
subsequently causing the condensate to collapse in finite time. The dynamical collapse of a
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Bose gas under such circumstances is well known within the physical community and was
mathematically treated in [50]. The breakdown of condensation has also been observed in
experiments [21]. Consequently, the result we are going to prove can only be valid under
certain restrictions on V . The class of potentials we consider is chosen such that V has a
repulsive core, i.e. there exists a r1 > 0, such that V (x) ≥ λ+, for some λ+ > 0 and for all
|x| ≤ r1. This condition prevents clustering of particles. If furthermore the negative part
of V fulfills some restrictions (see Assumption 4.2.3), a result by Jun Yin [72] then implies
that the Hamiltonian we consider in this note is stable of second kind. The author proves
in particular that for such potentials the ground state energy per particle of a dilute, ho-
mogeneous Bose gas is at first order given by the well-known formula 4πaρN . Among the
steps of the proof in [72], it is shown that the Hamiltonian (4.2) -without external potential
At- restricted to configurations where at least three particles are close to each other is a
nonnegative operator. We will adapt this non-trivial operator inequality in our proof to
control the kinetic energy of those particles which leave the condensate, see Lemma 4.3.21.
We like to remark that the Assumptions 4.2.3 on V stated below imply that the scattering
length a of the potential 1

2
V is nonnegative. Consequently, the effective Gross-Pitaevskii

dynamics (4.4) is repulsive, which reflects the fact that the condensate is stable.
The result presented in [72] implies further that there exists an ε > 0, such that

−ε
N∑
k=1

∆k ≤ −
N∑
k=1

∆k +
∑
i<j

V1(xi − xj), (4.5)

ε
∑
i<j

|V1(xi − xj)| ≤ −
N∑
k=1

∆k +
∑
i<j

V1(xi − xj). (4.6)

The first operator inequality bounds ‖∇1Ψt‖ uniformly in N , if initially the energy per
particle is of order 1. If the kinetic energy were not uniformly bounded, one cannot expect
condensation, see e.g. [50] for a nice discussion. Under the same assumption, the second
inequality (4.6) implies ‖V1(x1−x2)Ψt‖ ≤ N1/2, see Lemma 4.3.17. These two inequalities
are crucial in our proof to control the rate of particles which leave the condensate over
time and thus to extend the result presented in [60].

4.2 Main Result

Notation 4.2.1 During the rest of this chapter, a will always denote the scattering length
of the potential 1

2
V , as defined in Section 4.3.1.

Define the energy functional E : H2(R3N ,C)→ R

E(Ψ) = N−1〈〈Ψ, HΨ〉〉, (4.7)

as well as the Gross-Pitaevskii energy functional EGP : H2(R3,C)→ R

EGP (ϕ) :=〈∇ϕ,∇ϕ〉+ 〈ϕ, (At + 4πa|ϕ|2)ϕ〉 = 〈ϕ, (hGP − 4πa|ϕ|2)ϕ〉. (4.8)
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Next, we will define the class of interaction potentials V we will consider. This class is
essentially the one considered in [72], Theorem 2; see also Corollary 1 and Corollary 2
in [72] for a different characterization of the class of potentials V . Here, we require in
addition that the potential changes its sign only once. This facilitates the discussion of the
scattering state, see Section 4.3.1. In principle, one could ease this additional assumption
by generalizing the proofs given in Section 4.3.1. We will state several lemmata and
definitions below for both two and three dimensions. The two dimensional lemmata are
used in Chapter 3 to prove the validity of the two dimensional Gross-Pitaevskii equation
for potentials which may have an attractive part.

Definition 4.2.2 Let d ∈ {2, 3} and let Br(x) = {z ∈ Rd||x − z| < r} and divide Rd

into cubes (or rectangles, for d = 2, respectively) Cn, n ∈ Z of side length b1/
√
d; that is

Rd = ∪∞n=−∞Cn. Furthermore, assume that C̊n ∩ C̊m = ∅ for m 6= n. Define

n(b1, b2) = max
x∈Rd

#{n : Cn ∩Bb2(x) 6= ∅}.

Thus, n(b1, b2) gives the maximal number of of cubes (or rectangles) with side length b1/
√
d

one needs to cover a sphere with radius b2.

Assumption 4.2.3 Let d ∈ {2, 3} and let V ∈ L∞c (Rd,R) spherically symmetric and let
V (x) = V +(x) − V −(x), where V +, V − ∈ L∞c (Rd,R) are spherically symmetric, such that
V +(x), V −(x) ≥ 0 and the supports of V + and V − are disjoint. Assume that

(a) Let R > r2 > 0 and assume supp(V +) ∈ Br2(0), as well as supp(V −) ∈ BR(0)\Br2(0).

(b) There exists λ+ > 0 and r1 > 0, such that V +(x) ≥ λ+ for all x ∈ Br1(0).

(c) Define λ− = ‖V −‖∞, as well as n1 = n(r1, R) and n2 = n(r1, 3R). Define, for
0 < ε < 1,

ER(ϕ) =

∫
BR(0)

(
|∇xϕ(x)|2 +

1

1− ε
n1(2V +(x)− 4V −(x))|ϕ(x)|2

)
ddx. (4.9)

We then assume that for some 0 < ε < 1

inf
ϕ∈C1(Rd,C),ϕ(R)=1

(ER(ϕ)) ≥ 0, (4.10)

λ+ > 8n2λ
−. (4.11)

Notation 4.2.4 We will use the constants r1, r2, R, λ+, λ−, as well as n1, n2 throughout
this chapter as defined above.
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Remark 4.2.5 Condition (4.10) implies a ≥ 0, see Theorem C.1.,(C.8.) in [41]. As-
sumption 4.2.3 implies that there exists ε > 0, µ > 0 such that

−
N∑
k=1

∆k +
N∑

i<j=1

(V +
1 (xi − xj)− (1 + ε)V −1 (xi − xj)) ≥ 0, (4.12)

− (1− µ)
N∑
k=1

∆k +
N∑

i<j=1

V1(xi − xj) ≥ 0, (4.13)

see Lemma 4.3.10 and Corollary 4.3.15. The Inequality (4.12) can only hold for a ≥ 0, see
[67] and is thus in accordance with Condition (4.10). Thus, although the potential V may
have an attractive part V −, the effective Gross-Pitaevskii Equation (4.4) is repulsive.
It also follows from Assumption 4.2.3 (c)

−∆ +
1

2
V ≥ 0. (4.14)

We now state the main Theorem:

Theorem 4.2.6 Let Ψ0 ∈ L2
s(R3N ,C) ∩H2(R3N ,C) with ‖Ψ0‖ = 1. Let ϕ0 ∈ H2(R3,C)

with ‖ϕ0‖ = 1. Let lim
N→∞

Tr|γ(1)
Ψ0
− |ϕ0〉〈ϕ0|| = 0, as well as lim

N→∞
E(Ψ0) = EGP (ϕ0). Let

Ψt the unique solution to i∂tΨt = HΨt with initial datum Ψ0 and assume that V fulfills
Assumption 4.2.3. Let ϕt the unique solution to i∂tϕt = hGPϕt with initial datum ϕ0

and assume ϕt ∈ H2(R3,C). Let the external potential At fulfill At ∈ C1(R3, L∞(R3,R)).
Then,

(a) for any t > 0

lim
N→∞

µΨt
1 = |ϕt〉〈ϕt| (4.15)

in operator norm.

(b) if
∫∞

0
(‖ϕs‖∞ + ‖∇ϕs‖6,loc + ‖Ȧs‖∞)ds < ∞ where ‖ · ‖6,loc : L2(R2,C) → R+ is the

“local L6-norm” given by

‖ϕ‖6,loc := sup
x∈R3

‖1|·−x|≤1ϕ‖6 ,

then the convergence (4.15) is uniform in t > 0.

Remark 4.2.7 (a) For potentials V which satisfy Assumption 4.2.3, convergence of the
ground state energies E(Ψgs) − EGP (ϕgs) → 0 was shown in [72] for homogeneous
gases. Here, Ψgs and ϕgs denote the (approximate) minimizers of the respective
functionals. In case of a repulsive potential V ≥ 0, the respective convergence was
shown in [42]. In [43] it is shown that µΨgs → |ϕgs〉〈ϕgs|.
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(b) Part (b) is a direct consequence of the estimate given in [60]. We restate a remark
given in [60] about the uniform convergence in t:

By Sobolev’s inequality, it follows that ‖∇ϕs‖6,loc ≤ ‖∇ϕs‖6 ≤ ‖∆ϕ‖. Thus ‖∇ϕs‖6,loc

can be bounded controlling 〈ϕs,
(
hGP

)2
ϕs〉 sufficiently well.

On the other hand, ‖∇ϕs‖6,loc ≤ ‖∇ϕs‖∞. Since we are in the defocussing regime
one expects, after the potential is turned off, that ‖ϕ‖∞ and ‖∇ϕ‖∞ decay like t−3/2.
Whenever this is the case

∫∞
0
‖ϕs‖∞ + ‖∇ϕs‖6,loc + ‖Ȧs‖∞ds < ∞ and we get con-

vergence uniformly in t.

(c) The condition ϕt ∈ H2(R3,C) can be proven for a large class of external potentials,
assuming sufficient regularity of the initial datum ϕ0, see e.g. [12].

(d) The proof of Theorem 4.2.6 implies that the rate of convergence is of order N−δ for

some δ > 0, assuming that |γ(1)
Ψ0
− |ϕ0〉〈ϕ0|| ≤ CN−2δ, as well as assuming that the

convergence rate of lim
N→∞

E(Ψ0) = EGP (ϕ0) to be least of order N−2δ.

4.3 Proof of Theorem 4.2.6

Notation 4.3.1 In the following, we will denote by K(ϕt, At) a constant, depending on
‖ϕt‖H2(R3,C) and on ‖At‖∞,

∫ t
0
ds‖Ȧs‖∞. Under the assumptions of Theorem 4.2.6, there

exists a constant Ct, depending on t, such that K(ϕt, At) ≤ Ct.

In this chapter we will focus on the modifications one needs to perform in order to generalize
the result of [60] to more general interactions V . Many Lemmata which were proven in
[60] are valid for generic interaction potentials V and need not to be modified. We will
therefore often omit parts of existing proofs and refer the reader to [60] for the detailed
steps and motivations; see also Chapter 3 for the proof of the two dimensional case.

First, we will recall some important definitions we will need during the proof.

Definition 4.3.2 For any 1 ≤ j 6= k ≤ N , let

aj,k := {(x1, x2, . . . , xN) ∈ R3N : |xj − xk| < N−26/27}, (4.16)

Aj :=
⋃
k 6=j

aj,k Aj := R3N\Aj Bj :=
⋃
k,l 6=j

ak,l Bj := R3N\Bj. (4.17)

In the following , we will state a general criteria under which assumptions on Ψt Theorem
4.2.6 is valid (see (b),(c) and (d) below). Subsequently, we prove that these assumptions
are valid if the potential V fulfills Assumption 4.2.3.
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Lemma 4.3.3 Let Ψ0 ∈ L2
s(R3N ,C)∩H2(R3N ,C) with ‖Ψ0‖ = 1. Let ϕ0 ∈ H2(R3,C) with

‖ϕ0‖ = 1. Let lim
N→∞

γ
(1)
Ψ0

= |ϕ0〉〈ϕ0| in trace norm as well as lim
N→∞

E(Ψ0) = EGP (ϕ0). Let

Ψt the unique solution to i∂tΨt = HΨt with initial datum Ψ0 and assume V ∈ L∞c (R3,R)
spherically symmetric. Let ϕt the unique solution to i∂tϕt = hGPϕt with initial datum ϕ0.
Assume At, Ȧt ∈ L∞(R3,R). If,

(a)

ϕt ∈ H2(R3,C). (4.18)

(b)

‖V1(x1 − x2)Ψt‖ ≤ CN1/2. (4.19)

(c)

‖∇1Ψt‖ ≤ C. (4.20)

(d) for some η > 0, the following inequality holds:

‖1A1∇1q
ϕt
1 Ψt‖2 + ‖1B1∇1Ψt‖2 ≤ C

(
〈〈Ψt, n̂

ϕtΨt〉〉+N−η
)

+
∣∣E(Ψt)− EGP (ϕt)

∣∣ .
(4.21)

(e)

V is chosen such that Lemma 4.3.8 is fulfilled. (4.22)

Then, for any t > 0
lim
N→∞

γ
(1)
Ψt

= |ϕt〉〈ϕt| (4.23)

in trace norm.

Remark 4.3.4 It has been shown in [60] that the Conditions (4.19), (4.20), (4.21) and
(4.22) are fulfilled for nonnegative potentials V ∈ L∞c (R3,R). Conditions (4.19)-(4.21)
are essentially those conditions which are non-trivial to prove and also lead to the class of
potentials 4.2.3 we consider in this chapter.

Proof: We like to recall the scheme of the proof of the equivalent of Theorem 4.2.6 for
nonnegative potentials. As in Chapter 3, Definition 3.4.7, the functionals γx(Ψt, ϕt), with
x ∈ {a, b, c, d, e, f} were used in [60] to obtain a Grönwall estimate 1. The exact definition
of the functionals used for the three dimensional case can be found in Definition 6.2.

1The functional called γf (Ψt, ϕt) is actually missing in [60]. The definition of this functional can be
found in in equation (6.10) [49]. There, it is furthermore shown that the respective bound |γf (Ψt, ϕt)| ≤
K(ϕt, At)N

−δ, δ > 0 holds, assuming V ∈ L∞c (R3,R) to be nonnegative.
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and Definition 6.3. in [60]. It is then proven in Lemma A.1. in [60] that the bound
|γx(Ψt, ϕt)| ≤ K(ϕt, At)(α(Ψt, ϕt) + N−δ), x ∈ {a, b, c, d, e}, δ > 0 is valid for nonnegative
potentials V ∈ L∞c (R3,C).

In the following, we will show that the estimates given in [60] remain valid under the
Conditions (4.18)-(4.22). Note that we will not restate the estimates given in [60], but
only focus on the modifications one needs to perform.

The bound of γa(Ψt, ϕt) is the same as given in Lemma 3.5.6 and follows from Ȧt ∈
L∞(R3,R). The required bound for γb(Ψt, ϕt) is derived in Lemma A.4., pp.31-37 in [60].
Following the estimates given in [60], it can be verified line-by-line that the given bounds
are valid, if Conditions (4.18)-(4.22) and At ∈ L∞(R3,R) hold. Furthermore, it can be
verified that the functionals γc and γe can be controlled using Conditions (4.18)-(4.22), see
Lemma A.1. and pp.38-42 in [60]. The estimate for γf is valid under Conditions (4.18)
and (4.22) and can be found in p. 34 in [49].

The functional γd can be bounded, using the following estimate: Let ma(k) = m(k) −
m(k + 1), where, for some ξ > 0,

m(k) =

{√
k/N, for k ≥ N1−2ξ,

1/2(N−1+ξk +N−ξ), else.

We control

N3
∣∣∣〈〈Ψt,1B1gβ1,1(x1 − x3)V1(x1 − x2)m̂a

ϕt
pϕt1 1B3Ψt〉〉

∣∣∣ , (4.24)

where gβ1,1 is defined in Lemma 4.3.8. This term, which appears in (A.49) in [60] is the
only term in γx(Ψt, ϕt), x ∈ {a, b, c, d, e, f} where the estimates given in [60] needs to be
modified, using only the assumptions given in the Lemma above. Using Lemma (2.0.10)
with

Ω = N−1/21B3V1(x1 − x2)Ψt, O1,2 = N7/2+εgβ1,1(x1 − x3)1B1m̂
a
ϕt
pϕt1 1B3 , χ = Ψt

and ε > 0 arbitrary, it then follows

(4.24) ≤N−1−ε‖1B1V1(x1 − x2)Ψt‖2 (4.25)

+CN6+ε‖gβ1,1(x1 − x3)1V1(x1 − x2)m̂a
ϕt
pϕt1 1B3Ψt‖2 (4.26)

+CN7+ε
∣∣〈〈Ψt,1B3p

ϕt
1 m̂

a
ϕt
gβ1,1(x1 − x3)

×1V1(x1 − x2)gβ1,1(x1 − x4)m̂a
ϕt
pϕt1 1B4Ψt〉〉

∣∣. (4.27)

For nonegative V and ε = 0, it was possible to control (4.25) using a specific energy
estimate, see Lemma 5.2.(3) in [60]. We do not expect this estimate to hold for potentials
V which are not nonnegative. For an interaction potential V , fulfilling Condition (4.19),
we can however bound

(4.25) ≤ CN−ε.
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The estimate (4.26) ≤ K(ϕt, At)N
−1+2ξ+ε given in (A.51) [60] is valid under conditions

(4.18)-(4.22). Note that Condition (4.22) implies ‖gβ1,1(x1 − x2)Ω‖ ≤ CN−1‖∇1Ω‖ for
Ω ∈ L2(R3N ,C), see Lemma 4.3.8. This is one key estimate in order to bound (4.26).
Under the same conditions, it has been shown (c.f. (A.52) in [60]) that

(4.27) ≤K(ϕt, At)N
− 26

9
+3ξ+ε.

Therefore, it follows for some η > 0 that

(4.24) ≤ K(ϕt, At)N
−η (4.28)

holds by choosing ξ > 0 and ε > 0 small enough2.

�

Proof of Theorem 4.2.6: In the following, we will prove the Inequalities (4.19), (4.20) and
(4.21) for interaction potentials which fulfill Assumption 4.2.3. Theorem 4.2.6, part (a)
then follows from Lemma 4.3.3, together with the estimates given in Section 4.3.1. Part
(b) of Theorem 4.2.6 follows from part (a) and the estimates given in [60].

�

4.3.1 The scattering state

In this section we analyze the microscopic structure which is induced by V1. While the
principle estimates are the same as in [60], we need to modify the proofs given there which
relied on the nonnegativity of V . The presentation is analogous to Chapter 3, Section 3.3,
which is concerned with the scattering state in two dimensions.

Definition 4.3.5 Let V ∈ L∞c (R3,R) fulfill Assumption 4.2.3. Define the zero energy
scattering state j by 

(
−∆x + 1

2
V (x)

)
j(x) = 0,

lim
|x|→∞

j(x) = 1.
(4.29)

Furthermore define the scattering length a by

a = scat

(
1

2
V

)
=

1

4π

∫
1

2
V (x)j(x)d3x. (4.30)

We want to recall some important properties of the scattering state j, see also Appendix
C of [41].

2 Note that the factors N2ξ and N3ξ are due to the definition of m(k). A factor of the form Nsξ,
s ∈ {1, 2, 3} also appears in the other functionals γx(Ψt, ϕt), x ∈ {b, c, e, f}. It therefore follows that the
the respective bounds |γx(Ψt, ϕt)| ≤ CN−η, η > 0 given in [60] are valid choosing ξ > 0 small enough. We
like to remark that one cannot choose ξ = 0, since the convergence of the reduced density matrices stated
in Lemma 4.3.3 does only follow for 0 < ξ < 1/2, see [60] for the precise argument.
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Lemma 4.3.6 For the scattering state defined previously the following relations hold:

(a) j is a nonnegative, monotone nondecreasing function which is spherically symmetric
in |x|. For |x| ≥ R, j is given by

j(x) = 1− a

|x|
.

(b) The scattering length a fulfills a ≥ 0.

Proof:

(a)+(b) Since we assume −∆ + 1
2
V ≥ 0, one can define the scattering state j by a variational

principle. Theorem C.1 in [41] then implies that j is a nonnegative, spherically
symmetric function in |x| such that j(x) = 1 − a

|x| holds for |x| ≥ R with a ∈ R
defined as in Eq. (4.30). By Condition (4.10) it follows a ≥ 0, see Theorem C.1.,
(C.8.) in [41]. It is only left to show that j is monotone nondecreasing in |x|. Let
t(|x|) = j(x) and define

ar =
1

4π

∫ r

0

1

2
V (r′er′)t(r

′)(r′)2dr′,

where er′ denotes the radial unit vector. Note that a = limr→∞ ar = aR. By Gauß-
theorem and the scattering equation (4.29), it then follows for r > 0

d

dr
t(r) =

ar
r2
.

Since t(r) ≥ 0 holds for all r ≥ 0, it follows ar > 0 for all r ∈]0, r2[. If it were now
that j is not monotone nondecreasing, there must exist a r̃ ≥ r2, such that ar̃ < 0.
V (x) ≤ 0 and t(r) ≥ 0 for all |x| ∈]r2, R[ then imply ar ≤ ar̃ for all r ≥ r̃. This,
however, contradicts a = aR ≥ 0. Thus, it follows that j is monotone nondecreasing.

�

As in Chapter 3, Section 3.3, we will define a potential Wβ1 with 0 < β1 < 1, such that
1
2
(V1 −Wβ1) has scattering length zero. This allows us to “replace” V1 by Wβ1 , which has

better scaling behavior and is easier to control.

Definition 4.3.7 Let V ∈ L∞c (R3,R) satisfy Assumption 4.2.3. For any 0 < β1 < 1 and
any Rβ1 ≥ N−β1 we define the potential Wβ1 via

Wβ1(x) =

{
aN3β1−1 if N−β1 < |x| ≤ Rβ1 ,

0 else.
(4.31)

Furthermore, we define the zero energy scattering state fβ1,1 of the potential 1
2
(V1 −Wβ1),

that is {(
−∆x + 1

2
(V1(x)−Wβ1(x))

)
fβ1,1(x) = 0,

fβ1,1(x) = 1 for |x| = Rβ1 .
(4.32)
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In the following Lemma we show that there exists a minimal value Rβ1 such that the
scattering length of the potential 1

2
(V1 −Wβ1) is zero.

Lemma 4.3.8 For the scattering state fβ1,1, defined by (4.32), the following relations hold:

(a) There exists a minimal value Rβ1 ∈ R such that
∫

(V1(x)−Wβ1(x))fβ1,1(x)d3x = 0.

For the rest of this chapter we assume that Rβ1 is chosen such that (a) holds.

(b) There exists Kβ1 ∈ R, Kβ1 > 0 such that Kβ1fβ1,1(x) = j(Nx) ∀|x| ≤ N−β1.

(c) fβ1,1 is a nonnegative, monotone nondecreasing function in |x|. Furthermore,

fβ1,1(x) = 1 for |x| ≥ Rβ1 . (4.33)

(d)

1 ≥ Kβ1 ≥ 1− a

N1−β1
. (4.34)

(e) Rβ1 ≤ CN−β1.

For any fixed 0 < β1, N sufficiently large such that V1 and Wβ1 do not overlap, we obtain

(f)

|N‖V1fβ1,1‖1 − 8πa| = |N‖Wβ1fβ1,1‖1 − 8πa| ≤ CN−1−β1 .

(g) Define

gβ1,1(x) = 1− fβ1,1(x).

Then,

‖gβ1,1‖1 ≤ CN−1−2β1 , ‖gβ1,1‖3/2 ≤ CN−1−β1 , ‖gβ1,1‖ ≤ CN−1−β1/2 , ‖gβ1,1‖∞ ≤ 1.

(h)

|N‖Wβ1‖1 − 8πa| ≤ CN−1+β1 .

(i) For any Ω ∈ H1(R3N ,C), we have

‖gβ1,1(x1 − x2)Ω‖ ≤ CN−1‖∇1Ω‖.

Proof:
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(a) In the following, we will sometimes denote, with a slight abuse of notation, fβ1,1(x) =
fβ1,1(r) and j(x) = j(r) for r = |x| (for this, recall that fβ1,1 and j are radially
symmetric). We further denote by f ′β1,1(r) the derivative of fβ1,1 with respect to the

radial coordinate r. We first show by contradiction that fβ1,1(N−β1) 6= 0. For this,
assume that fβ1,1(x) = 0 for all |x| ≤ N−β1 . Since fβ1,1 is continuous, there exists a
maximal value r0 ≥ N−β1 such that the scattering equation (4.32) is equivalent to

(
−∆x − 1

2
Wβ1(x)

)
fβ1,1(x) = 0,

fβ1,1(x) = 1 for |x| = Rβ1 ,

fβ1,1(x) = 0 for |x| ≤ r0.

(4.35)

Using (4.32) and Gauss’-theorem, we further obtain

f ′β1,1(r) =
1

8πr2

∫
Br(0)

d3x(V1(x)−Wβ1(x))fβ1,1(x). (4.36)

(4.35) and (4.36) then imply for r > r0

∣∣f ′β1,1(r)
∣∣ =

1

8πr2

∣∣∣∣∫
Br(0)

d3xWβ1(x)fβ1,1(x)

∣∣∣∣ =
aN−1+3β1

2r2

∣∣∣∣∫ r

r0

dr′r′2fβ1,1(r′)

∣∣∣∣
≤aN

−1+3β1

2r2

∣∣∣∣∫ r

r0

dr′r′2(r′ − r0) sup
r0≤s≤r

|f ′β1,1(s)|
∣∣∣∣ .

Taking the supreme over the interval [r0, r], the inequality above then implies that
there exists a constant C(r, r0) 6= 0, lim

r→r0
C(r, r0) = 0 such that sup

r0≤s≤r
|f ′β1,1(s)| ≤

C(r, r0)N−1+3β1 sup
r0≤s≤r

|f ′β1,1(s)|. Thus, for r close enough to r0, the inequality above

can only hold if f ′β1,1(s) = 0 for s ∈ [r0, r], yielding a contradiction to the choice of
r0.
Consequently, there exists a x0 ∈ R3, |x0| ≤ N−β1 , such that fβ1,1(x0) 6= 0. We can
thus define

h(x) = fβ1,1(x)
j(Nx0)

fβ1,1(x0)

on the compact set Bx0(0). One easily sees that h(x) = j(Nx) on ∂Bx0(0) and
satisfies the zero energy scattering equation (4.29) for x ∈ BN−β1 (0). Note that the
scattering equations (4.29) and (4.32) have a unique solution on any compact set. It
then follows that h(x) = j(Nx) ∀x ∈ BN−β1 (0). Since j(NN−β1) 6= 0, we then obtain
fβ1,1(N−β1) 6= 0.

Thus, fβ1,1(x) = j(Nx)
fβ1,1(x0)

j(Nx0)
holds for all |x| ≤ N−β1 and for all x0 ∈]0, N−β1 ].

Lemma 4.3.6 further implies that either fβ1,1 or −fβ1,1 is a nonnegative, spherically
symmetric and monotone nondecreasing function in |x| for all |x| ≤ N−β1 .
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Recall that Wβ1 and hence fβ1,1(x) depend on Rβ1 ∈ [N−β1 ,∞[. For conceptual

clarity, we denote W
(Rβ1 )

β1
(x) = Wβ1(x) and f

(Rβ1 )

β1,1
(x) = fβ1,1(x) for the rest of the

proof of part (a). For β1 fixed, consider the function

s : [N−β1 ,∞[→ R (4.37)

Rβ1 7→
∫
BRβ1

(0)

d3x(V1(x)−W (Rβ1 )

β1
(x))f

(Rβ1 )

β1,1
(x). (4.38)

We show by contradiction that the function s has at least one zero. Assume s 6= 0
were to hold. We can assume w.l.o.g. s > 0. It then follows from Gauss’-theorem that

f
′(Rβ1 )

β1,1
(Rβ1) > 0 for all Rβ ≥ N−β1 . By uniqueness of the solution of the scattering

equation (4.32), for R̃β1 < Rβ1 there exists a constant KR̃β1 ,Rβ1
6= 0, such that for all

|x| ≤ R̃β1 we have f
(R̃β1 )

β1,1
(x) = KR̃β1 ,Rβ1

f
(Rβ1 )

β1,1
(x). If KR̃β1 ,Rβ1

< 0 were to hold, we

could conclude from

0 <s(R̃β1) = 8π(R̃β1)
2f
′(R̃β1 )

β1,1
(R̃β1) = 8π(R̃β1)

2KR̃β1 ,Rβ1
f
′(Rβ1 )

β1,1
(R̃β1)

that f
′(Rβ1 )

β1,1
(R̃β1) < 0. By continuity of f

′(Rβ1 )

β1,1
and f

′(Rβ1 )

β1,1
(Rβ1) > 0, there exists

r ∈]R̃β1 , Rβ1 [, such that 0 = f
′(Rβ1 )

β1,1
(r) = KRβ1 ,r

f
′(r)
β1,1

(r) , yielding to a contradiction
to s > 0.
We can therefore conclude KR̃β1 ,Rβ1

> 0. From Lemma 4.3.6, the assumption

s(N−β1) > 0 and KR̃β1 ,Rβ1
> 0, we obtain, for all r ∈ [0, N−β1 ] and for all Rβ1 ∈

[N−β1 ,∞[, that f
(Rβ1 )

β1,1
(r) ≥ 0 holds. From s 6= 0, it then follows that, for all

r ∈ [N−β1 ,∞[ and for all Rβ1 ∈ [N−β1 ,∞[ , f
′(Rβ1 )

β1,1
(r) 6= 0. Thus, for all r ∈ [N−β1 ,∞[

and for all Rβ1 ∈ [N−β1 ,∞[, the function f
(Rβ1 )

β1,1
(r) doesn’t change sign. This, how-

ever, implies lim
Rβ1→∞

s(Rβ1) = −∞ yielding to a contradiction. By continuity of s,

there exists thus a minimal value Rβ1 ≥ N−β1 such that s(Rβ1) = 0.

Remark 4.3.9 As mentioned, we will from now on fix Rβ1 ∈ [N−β1 ,∞[ as the
minimal value such that s(Rβ1) = 0. Furthermore, we may assume a > 0 and
Rβ1 > N−β1 in the following. For a = 0, we can choose Rβ1 = N−β1, such that
fβ1,1(x) = j(Nx)/j(NN−β1). It is then easy to verify that the Lemma stated is valid.

(b) From j(Nx) = fβ1,1(x) j(NN−β1 )

fβ1,1(N−β1 )
, for all |x| ≤ N−β1 , we can conclude that

Kβ1 =
j(NN−β1)

fβ1,1(N−β1)
. (4.39)

Next, we show that the constant Kβ1 is positive. Since j(NN−β1) is positive, it
follows from Eq. (4.39) that Kβ1 and fβ1,1(N−β1) have equal sign. By (a), the sign of
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fβ1,1 is constant for |x| ≤ Rβ1 . Furthermore, from Gauss’-theorem and the scattering
equation (4.32) we have

f ′β1,1(r) =
1

8πr2Kβ1

∫
Br(0)

V1(x)j(Nx)d3x (4.40)

for all 0 < r ≤ N−β1 . Since
∫
Br(0)

V1(x)j(Nx)d3x is nonnegative for all 0 < r ≤ N−β1

(see the proof of Lemma 4.3.6), we then conclude

sgn
(
f ′β1,1(N−β1)

)
= sgn(Kβ1). (4.41)

Recall that f ′β1,1(Rβ) = 0. If it were now that Kβ1 is negative, we could conclude

from (4.39) and (4.41) that f ′β1,1(N−β1) < 0 and fβ1,1(N−β1) < 0. Since Rβ1 is by
definition the smallest value where f ′β1,1 vanishes, we were able to conclude from the
continuity of the derivative that f ′β1,1(r) < 0 for all r < Rβ1 and hence f(Rβ1) < 0.
However, this were in contradiction to the boundary condition of the zero energy
scattering state (see (4.32)) and thus Kβ1 > 0 follows.

(c) From the proof of property (b), we see that fβ1,1 and its derivative is positive at
N−β1 . From (4.36), we obtain f ′β1,1(r) = 0 for all r > Rβ1 . Thus fβ1,1(x) = 1 for all
|x| ≥ Rβ1 . Due to continuity f ′β1,1(r) > 0 for all r < Rβ1 . Since fβ1,1 is continuous,

positive at N−β1 , and its derivative is a nonnegative function, it follows that fβ1,1 is
a nonnegative, monotone nondecreasing function in |x|.

(d) Since fβ1,1 is a positive monotone nondecreasing function in |x|, we obtain

1 ≥ fβ1,1(N−β1) = j(NN−β1)/Kβ1 =
(

1− a

N1−β1

)
/Kβ1 .

We obtain the lower bound

Kβ1 ≥ 1− a

N1−β1
.

For the upper bound, we first prove that fβ(x) ≥ j(Nx)/j(NRβ1) holds for all
|x| ≤ N−β1 . Define m(x) = j(Nx)/j(NRβ1)− fβ1,1(x). Using the scatting equations
(4.29) and (4.32), we obtain{

∆xm(x) = 1
2
V1(x)m(x) + 1

2
Wβ1(x)fβ1,1(x),

m(Rβ1) = 0.
(4.42)

Since Wβ1(x)fβ1,1(x) ≥ 0, we obtain that ∆xm(x) ≥ 0 for N−1R ≤ |x| ≤ Rβ1 . That
is, m(x) is subharmonic for N−1R < |x| < Rβ1 . Using the maximum principle, we
obtain, using that m(x) is spherically symmetric

max
N−1R≤|x|≤Rβ1

(m(x)) = max
|x|∈{N−1R,Rβ1}

(m(x)). (4.43)
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If it were now that max|x|∈{N−1R,Rβ1}(m(x)) = m(N−1R) ≥ m(Rβ) = 0, we could

assume m(x) > 0 for all N−1R ≤ |x| ≤ N−β1 (otherwise we would have m(N−β1) = 0,
which implies Kβ1 = j(NRβ1) = 1− a

NRβ1
≤ 1). Note that m(x) then solves{

−∆xm(x) + 1
2
V1(x)m(x) = 0 for |x| ≤ N−β1 ,

m(N−1R) > 0.

By Theorem C.1 in [41] (note that we can assume a > 0), m is strictly increasing
for N−1R ≤ |x| ≤ N−β1 . This, however, contradicts max|x|∈{N−1R,Rβ1}(m(x)) =

m(N−1R).

Therefore, we can conclude in (4.43) that max|x|∈{N−1R,Rβ1}(m(x)) = m(Rβ1) = 0

holds. Then, it follows that fβ(x)− j(Nx)/j(NRβ1) ≥ 0 for all N−1R ≤ |x| ≤ N−β1 .
Using the zero energy scattering equation

−∆(fβ1,1(x)− j(Nx)/j(NRβ1)) +
1

2
V1(x)(fβ1,1(x)− j(Nx)/j(NRβ1)) = 0

for |x| ≤ N−β1 , we can, together with fβ1,1(N−β1)−j(NN−β1)/j(NRβ1) ≥ 0, conclude
that fβ1,1(x)− j(Nx)/j(NRβ1) ≥ 0 for all |x| ≤ Rβ1 .

As a consequence, we obtain the desired bound Kβ = j(NN−β1 )

fβ1,1(N−β1 )
≤ j(NRβ1) ≤ 1.

(e) Since fβ1,1 is a nonnegative, monotone nondecreasing function in |x|, it follows that

N−1fβ1,1(N−β1)

∫
V (x)d3x =fβ1,1(N−β1)

∫
V1(x)d3x ≥

∫
V1(x)fβ1,1(x)d3x

=

∫
Wβ1(x)fβ1,1(x)d3x ≥ fβ1,1(N−β1)

∫
Wβ1(x)d3x.

Therefore,
∫
Wβ1(x)d3x ≤ CN−1 holds, which implies that Rβ1 ≤ CN−β1 .

(f) Using

‖Wβ1fβ1,1‖1 =‖V1fβ1,1‖1 = K−1
β1
‖V1j(N ·)‖1 = K−1

β1
8π

a

N
,

we obtain

|N‖V1fβ1,1‖1 − 8πa| =|N‖Wβ1fβ1,1‖1 − 8πa| = 8π
∣∣K−1

β1
− 1
∣∣ ≤ CN−1+β1 .

(g) Using for |x| ≤ Rβ1 the inequality 1 ≥ fβ1,1(x) ≥ j(Nx)/j(NRβ1), it follows for
|x| ≤ Rβ1

0 ≤gβ1,1(x) = 1− fβ1,1(x) ≤ 1− j(Nx)/j(NRβ1).
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Let j̃ solve {(
−∆x + 1

2
V (x)1|x|≤r2

)
j̃(x) = 0,

j̃(2R) = j(2R).

It then follows that ã = scat
(

1
2
V (x)1|x|≤r2

)
> 0. Furthermore, it follows from

Theorem C.1 and Lemma C.2 in [41] that

j̃(x) ≥
1− ã

|x|

1− ã
2R

j(2R) =

(
1− ã

|x|

)
1− a

2R

1− ã
2R

holds for all x ∈ R3. Consider n(x) = j̃(x)− j(x). n then solves{
∆xn(x) = 1

2
V (x)n(x) + 1

2
V (x)1|x|≤r2 j̃(x),

n(2R) = 0.

As before (see (4.42)), we can conclude n(x) ≤ 0 for all |x| ≤ 2R, which implies
j(x) ≥ j̃(x), for |x| ≤ 2R. Therefore,

j(Nx) ≥


(

1− ã
N |x|

)
1− a

2NR

1− ã
2NR

for N |x| ≤ R,

1− a
N |x| else.

This implies, using part (d),

gβ1,1(x) ≤1−


(

1− ã
N |x|

)
1− a

2NR

(1− ã
2NR

)(1− a
NRβ1

)
for N |x| ≤ R,

1− a
N|x|

(1− a
NRβ1

)
else.

≤

{
ã

N |x| + CN−1 for N |x| ≤ R,
a

N |x| + CN−1+β1 else.
(4.44)

Since gβ1,1(x) = 0 for |x| > Rβ, we conclude with Rβ1 ≤ CN−β1 that

‖gβ1,1‖1 ≤N−1−2β1 ,

as well as

‖gβ1,1‖3/2 ≤ CN−1−β1 , ‖gβ1,1‖ ≤ CN−1−β1/2.

Furthermore, ‖gβ1,1‖∞ = ‖1 − fβ1,1‖∞ ≤ 1, since fβ1,1 is a nonnegative, monotone
nondecreasing function with fβ1,1(x) ≤ 1.
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(h) Using (f) and (g), we obtain with ‖Wβ1‖1 ≤ CN−1

|N‖Wβ1‖1 − 8πa| ≤ |N‖Wβ1fβ1,1‖1 − 8πa|+N‖Wβ1gβ1,1‖1

≤ C
(
N−1+β1 + ‖1|·|≥N−β1gβ1,1‖∞

)
.

Since gβ1,1(x) is a nonnegative, monotone nonincreasing function, it follows with
Kβ1 ≤ 1

‖1|·|≥N−β1gβ1,1‖∞ = gβ1,1(N−β1) = 1− fβ1,1(N−β1) = 1− j(NN−β1)

Kβ1

≤ aN−1+β1 .

and (h) follows.

(i) Using the pointwise estimate (4.44), we obtain for any Ω ∈ H1(R3N ,C)

‖gβ1,1(x1 − x2)Ω‖ ≤ C(N−1+β1‖1B
CN−β1 (0)(x1 − x2)Ω‖+N−1‖|x1 − x2|−1Ω‖).

Since ‖|x1−x2|−1Ω‖ ≤ 2‖∇1Ω‖ as well as ‖1B
CN−β1 (0)(x1−x2)Ω‖ ≤ CN−3β1/2‖∇1Ω‖

holds, we obtain part (i).

�

4.3.2 Nonnegativity of the Hamiltonian

Next, we prove several important operator inequalities related to the Hamiltonian H, see
Corollary 4.3.15. These inequalities will be used in order to show the Inequalities (4.19),
(4.20) and (4.21).

Lemma 4.3.10 Let d ∈ {2, 3} and let U ∈ L∞c (Rd,R) fulfill Assumption 4.2.3 and define

HU = −
N∑
k=1

∆k +
N∑

i<j=1

U(xi − xj).

Then

HU ≥ 0.

In order to prove this Lemma, we first define

Definition 4.3.11 Let d ∈ {2, 3}. For R̃ ≥ 2R, where R is defined as in Assumption
4.2.3, let for any j, k = 1, . . . , N with j 6= k

bj,k := {(x1, x2, . . . , xN) ∈ RdN : |xj − xk| ≤ R̃}, (4.45)

Cl :=
⋃
j,k 6=l

bj,k, Cl := RdN\Cl.
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Proof: Let

HC =
N∑
k=1

−∆k1Ck +
∑
i 6=j

1Cj
1

2
U(xi − xj),

HC =
N∑
k=1

−∆k1Ck +
∑
i 6=j

1Cj
1

2
U(xi − xj).

Note that

HC =
N∑
k=1

−∆k1Ck +
1

4

∑
i 6=j

(1Cj + 1Ci)
1

2
U(xi − xj)

is a symmetric operator w.r.t. to exchange of coordinates x1, . . . , xN . Therefore, it suffices
to prove 〈〈Ψ, HCΨ〉〉 ≥ 0 for Ψ ∈ L2

s(RdN ,C), since we can apply Theorem 3.3 and Corollary
3.1 in [40] to conclude

inf
Ψ∈L2(RdN ,C),‖Ψ‖=1

〈〈Ψ, HCΨ〉〉 = inf
Ψ∈L2

s(RdN ,C),‖Ψ‖=1
〈〈Ψ, HCΨ〉〉.

In order to prove HC ≥ 0, we show K1 = −∆11C1 + 1
2

∑N
j=2 1C1

1
2
U(x1 − xj) ≥ 0 on

L2
s(RdN ,C). Since

inf
Ψ∈L2

s(RdN ,C),‖Ψ‖=1
〈〈Ψ, HCΨ〉〉 = inf

Ψ∈L2
s(RdN ,C),‖Ψ‖=1

N∑
i=1

〈〈Ψ, KiΨ〉〉

=N inf
Ψ∈L2

s(RdN ,C),‖Ψ‖=1
〈〈Ψ, K1Ψ〉〉

holds, it then follows HC ≥ 0.
The next Lemmata prove that K1 ≥ 0 and HC ≥ 0. Since HU =

∑N
i=1Ki + HC, it then

follows HU ≥ 0.

�

Remark 4.3.12 The reason to split the Hamiltonian as done above is the following: The
interaction 1Cj

1
2
U(xi − xj) is only nonzero, if, for fixed configurations (x1, . . . , xN), xi is

closer than R to xj, but no other particles are closer than R to neither xi nor xj. Therefore,
the set C excludes those configurations, where three-particle interactions occur. The strategy
to separate the configurations of possible three-particle interactions is well known within the
literature, see e.g. [41, 72] and references therein.

Lemma 4.3.13 Let K1 and HC be defined as above. Under the assumptions of Lemma
4.3.10, we have
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(a)

K1 ≥ 0 on L2
s(RdN ,C).

(b)

HC ≥ 0 on L2(RdN ,C).

Proof:

(a) The proof of Lemma 3.5.11, part (b) can be applied to prove part (a) in the case
d = 2. Note for the proof to be valid, it is important that 1Ck(x1, . . . , xN) excludes
those configurations where the distance of two distinct particles xi and xj, i, j 6= k
to xk is smaller than R, which is the radius of the support of U . For d = 3, it is easy
to verify that the analogous proof of Lemma 3.5.11, as stated in Lemma 5.1. (3) in
[60], can be applied.

(b) Remark 4.3.14 The proof of part (b) originates from Lemma 10. in [72]. The
author, however, does not introduce the set Ck, but uses a different technique to
exclude three particle interactions. For conceptual clarity, we adapt the proof of
Lemma 10. in [72] to our definition of HC. Since the proof given by Jun Yin is very
elegant in our opinion, parts of the following proof are taken verbatim from [72].

Recall that

HC =
N∑
k=1

−∆k1Ck +
∑
i 6=j

1Cj
1

2
U(xi − xj).

Assume first that N is even, i.e., N = 2N1 with N1 ∈ N. Let P = (π1, π2) be a
partition of 1, ..., N into two disjoint sets with N1 integers in π1 and π2, respectively.
Let

U1,1 = U2,2 = U+ ≥ 0, U1,2 = 2U+
1 − 4U−, (4.46)

with U−1,2 = −4U−, U+
1,2 = 2U+. It then follows

1

4

(
U1,1, + U2,1 + U2,2

)
= U.

For each P , we define (for shorter notation, we will assume i 6= j in the following)

HP = H(π1,π2) ≡
∑
j∈π1

−2∆j1Cj +
∑
i,j∈π1

1Cj
1

2
U1,1(xi − xj)

+
∑

i∈π2,j∈π1

1Cj
1

2
U1,2(xi − xj) +

∑
i,j∈π2

1Cj
1

2
U2,2(xi − xj).
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Consequently, Uα,β denotes the interaction potential between particles in πα and πβ.
Note that

−
∑
P

∑
j∈π1

∆j1Cj = −
N∑
j=1

∆j1Cj
1

2

∑
P

,∑
P

∑
i,j∈π1

1CjU1,1(xi − xj) =
∑
P

∑
i,j∈π2

1CjU2,2(xi − xj)

=
N∑

i 6=j=1

1CjU
+(xi − xj)

1

4

∑
P

,∑
P

∑
i∈π1,j∈π2

1CjU1,2(xi − xj)

=
N∑

i 6=j=1

1Cj(2U
+(xi − xj)− 4U−(xi − xj))

1

4

∑
P

.

Therefore,

HC =
∑
P

HP/
∑
P

1. (4.47)

Hence, for N even, to obtain HC ≥ 0, it is sufficient to prove that for ∀P , HP ≥ 0.

If N is odd, we divide P = (π2, π2), with N1 = (N−1)/2 integers in π1 and (N+1)/2
integers in π2.
Let Aj be a one-particle operator and define, for any partition P = (π1, π2), δj∈π1
such that δj∈π1 = 1 if j ∈ π1, otherwise 0. Then

∑
P

∑
j∈π1 Aj =

∑N
j=1Aj

∑
P δj∈π1 .

Note that

∑
P

δj∈π1 =

∑
P δj∈π1∑

P

∑
P

=

(
N−1
N−3

2

)(
N
N−1

2

)∑
P

=
1− 1

N

2

∑
P

.

Furthermore, for any two-particle operator Ai,j, we obtain, for a, b ∈ {1, 2},

∑
P

∑
i∈πa,j∈πb,i 6=j

Ai,j =
N∑

i 6=j=1

Ai,j
∑
P

δi∈πaδj∈πb .

Let i 6= j. With

1∑
p

∑
P

δi∈π1δj∈π1 =

(
N−2
N−5

2

)(
N
N−1

2

) =
1

4

(
1− 3

N

)
,

1∑
p

∑
P

δi∈π1δj∈π2 =

(
N−2
N−3

2

)(
N
N−1

2

) =
1

4

(
1 +

1

N

)
,

1∑
p

∑
P

δi∈π2δj∈π1 =

(
N−2
N−3

2

)(
N
N−1

2

) =
1

4

(
1 +

1

N

)
,

1∑
p

∑
P

δi∈π2δj∈π2 =

(
N−2
N−1

2

)(
N
N−1

2

) =
1

4

(
1 +

1

N

)
,
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it follows that

−
∑
P

∑
j∈π1

∆j1Cj = −
1− 1

N

2

N∑
j=1

∆j1Cj

∑
P

,

∑
P

∑
i,j∈π1

1CjU1,1(xi − xj) =
1

4

(
1− 3

N

) N∑
i 6=j=1

1CjU
+(xi − xj)

∑
P

,

∑
P

∑
i,j∈π2

1CjU2,2(xi − xj) =
1

4

(
1 +

1

N

) N∑
i 6=j=1

1CjU
+(xi − xj)

∑
P

,

∑
P

∑
i∈π1,j∈π2

1CjU1,2(xi − xj) =
1

4

(
1 +

1

N

) N∑
i 6=j=1

1CjU1,2(xi − xj)
∑
P

.

For N odd and N large enough, the bound of HP ≥ 0, ∀P then implies, together
with the Assumption 4.2.3 on U , that HC ≥ 0.

We will now prove HP ≥ 0, ∀P . The advantage to consider HP instead of HC is
that we can analyze HP ≥ 0 for fixed configurations of xi’s with i ∈ π2. This
pointwise estimate is sufficient, since there is no kinetic energy of the π2-particles.
Since permutation of the labels in π1 and π2 is irrelevant, we can further assume that
π1 = {1, · · · , N1}, π2 = {N1 + 1, · · · , N}.

Following the idea of [72], for any fixed configuration (xN1+1, . . . , xN), we consider
two cases:

• If there are more than m1 π2-particles in a sphere of radius R with m1 ≥ 2n1,
the positive interaction U2,2, together with U1,1 cancels the negative part of
U1,2. Recall that n1 is the number of cubes (or rectangles, respectively) of side

length r1/
√
d which are needed to cover a sphere of radius R. Therefore, if m2

π2-particles are located in such a sphere, it is possible to derive that at least
O(m2

2/n1) π2-particles are closer than r1 to each other. Therefore, if m1 π1-
particles and m2 π2-particles are close to each other, the potential energy is of
order O(m2

1) +O(m2
2)−O(m1m2). This energy is positive, if the negative part

of U is small enough.

• If there are less than 2n1 π2-particles in a sphere of radius R, it is possible to
use Assumption 4.2.3, (4.9), that is

−1|x|≤R∆x + n1(2U+(x)− 4U−(x)) ≥ 0.

As in Definition 4.2.2, we divide Rd into cubes Cn (n ∈ N) of side length 1√
d
r1, such

that the distance between to points xi, xj ∈ Cn is not greater than r1. Therefore, for
xi, xj ∈ Cn we have by assumption U(xi − xj) ≥ λ+. Next, for fixed xi, i ∈ π2, for
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any x ∈ Rd, we define G(x) as the set of i’s which satisfy i ∈ π2 and |xi − x| ≤ R,
i.e.,

G(x) ≡ {i ∈ π2 : |xi − x| ≤ R}. (4.48)

We denote |G(x)| as the number of the elements of G(x). Note that for i, j ∈ G(x),
it follows that |xi − xj| ≤ 2R.

We denote d(x,Cn) as the distance between the cube Cn ⊂ Rd and x ∈ Rd. Since
|G(y)| is uniformly bounded (|G(y)| ≤ N1), there must exist a point X(Cn) ∈ Rd

satisfying d(X(Cn), Cn) ≤ 2R and

|G(X(Cn))| = max{|G(y)| : d(y, Cn) ≤ 2R}. (4.49)

We define G(Cn) ≡ G(X(Cn)). Let 1Cn(xj) denote the projection onto Cn in the
coordinate xj. Furthermore, let Θ denote the usual Heaviside step function. We
prove

H1 =
∑
i,j∈π2

1CjU2,2(xi − xj) +
∑
i,j∈π1

1CjU1,1(xi − xj)

−
∑
n∈N

Θ(|G(Cn)| − 2n1)
∑

j∈π1,i∈π2

1Cn(xj)1CjU
−
1,2(xi − xj) ≥ 0

H2,j =− 2∆j1Cj +
∑
i∈π2

1Cj
1

2
U+

1,2(xi − xj)

−
∑
n∈N

Θ(2n1 − |G(Cn)|)
∑
i∈π2

1Cn(xj)1Cj
1

2
U−1,2(xi − xj) ≥ 0.

Note that this implies Hp ≥ 0, since Hp = 1
2
H1 +

∑
j∈π1H2,j.

Proof of H1 ≥ 0:
First, we derive the lower bound on the total energy of U2,2. With the definition of
G(Cn) = G(X(Cn)), we know that the set {xk : k ∈ G(Cn)} can be covered by a
sphere of radius R. So the number of the cubes which one need to cover this set is
less than n1. We denote these cubes as Cn1 · · ·Cnm (m ≤ n1) and assume the number
of i’s satisfying i ∈ G(Cn) and xi ∈ Cnk is ank . Because the side length of Cnk is
equal to r1/

√
d, the distance between the two particles in the same cube is no more

than r1. Hence, we obtain, for i 6= j,∑
i,j∈G(Cn)

θr1(xi − xj) ≥
m∑
k=1

∑
i,j∈Cnk

=
m∑
k=1

[
(ank)

2 − (ank)
]

and
m∑
k=1

ank = |G(Cn)|.

Using Jensen’s inequality, together with m ≤ n1,∑
i,j∈G(Cn)

θr1(xi − xj) ≥
1

2n1

|G(Cn)|2.
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Note that for fixed i ∈ π2, the number of cubes Cn, which satisfy i ∈ G(Cn) is less
than n2. Since U2,2 is nonnegative, we then obtain∑

i,j∈π2

1CjU2,2(xi − xj) =
∑
n∈N

∑
i,j∈π2

1Cn(xi)1CjU2,2(xi − xj)

≥ 1

n2

∑
n∈N

∑
i,j∈π2,i∈G(Cn)

1CjU2,2(xi − xj)

≥ 1

n2

∑
n∈N

Θ(|G(Cn)| − 2n1)
∑

i,j∈G(Cn)

1CjU2,2(xi − xj).

Since r1 < R, it also follows that n1 ≥ 2. We then obtain 1CjU2,2(xi−xj) = U2,2(xi−
xj), whenever i, j ∈ G(Cn) with |G(Cn)| ≥ 2n1. Using U2,2(x) ≥ λ+Θr1(xi − xj), we
have with the estimates above∑

i,j∈π2

1CjU2,2(xi − xj) ≥
∑
n∈N

Θ(|G(Cn)| − 2n1)
λ+

2n1n2

|G(Cn)|2.

Next, we derive the lower bound on the interaction potential between particles in π1.
Let Π1(Cn) be defined as the set of i’s such that i ∈ π1 and xi ∈ Cn. Let |Π1(Cn)|
denote the number of the elements of Π1(Cn). If xi ∈ Cn and |G(Cn)| ≥ 1, there
must be a k ∈ π2 satisfying |xi − xk| ≤ 2R. Thus, for any Cn we have that∑

i,j∈π1

1CjU1,1(xi − xj) =
∑
n∈N

∑
i,j∈π1

1Cn(xi)1CjU1,1(xi − xj)

≥
∑
n∈N

Θ(|G(Cn)| − 2n1)
∑

i,j∈Π1(Cn)

U1,1(xi − xj).

For i, j ∈ Π1(Cn), i 6= j, the distance between xi and xj is not more than r1. Hence,

∑
i,j∈Π1(Cn)

U1,1(xi − xj) ≥ λ+

(
|Π1(Cn)|2 − |Π1(Cn)|

)
. (4.50)

At last, we derive the lower bound on U−1,2.

By the definitions of |G(Cn)| and U1,2, we have that ∀x ∈ Cn,

−
∑
i∈π2

U−1,2(x− xi) ≥ −4λ−|G(Cn)|.

This yields to

−
∑

j∈Π1(Cn), i∈π2

1CjU
−
2,1(xi − xj) ≥ −4λ−|Π1(Cn)||G(Cn)|. (4.51)
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We now consider ∑
i,j∈Π1(Cn)

U1,1(xi − xj)−
∑

j∈Π1(Cn), i∈π2

1CjU
−
1,2(xi − xj) (4.52)

≥ λ+

(
|Π1(Cn)|2 − |Π1(Cn)|

)
− 4λ−|Π1(Cn)||G(Cn)|.

Using λ− ≤ 1
8n2
λ+, we then obtain for |G(Cn)| ≥ n1

(4.52) ≥ λ+

(
|Π1(Cn)|2 − |Π1(Cn)| − 1

2n2

|Π1(Cn)||G(Cn)|
)
.

If |Π1(Cn)| = 1, we obtain for |G(Cn)| ≥ 2n1

(4.52) ≥ −λ+ |G(Cn)|2

4n1n2

.

For |Π1(Cn)| ≥ 2, we have |Π1(Cn)|2 − |Π1(Cn)| ≥ 1
2
|Π1(Cn)|2 and therefore, for

|G(Cn)| ≥ 2n1

(4.52) ≥ λ+

2

(
|Π1(Cn)|2 − 2|Π1(Cn)| 1

2n2

|G(Cn)|
)
≥ −λ

+

2

1

4(n2)2
|G(Cn)|2.

Since n2 ≥ n1 holds, we then obtain for |G(Cn)| ≥ 2n1 and for all |Π1(Cn)| ∈ N

(4.52) ≥ −λ+ |G(Cn)|2

4n1n2

.

Therefore, we obtain

H1 ≥
∑
n∈N

Θ(|G(Cn)| − 2n1)

(
λ+

2n1n2

|G(Cn)|2 − λ+

4n1n2

|G(Cn)|2
)
≥ 0.

Proof of H2,j ≥ 0:

Since there is no kinetic energy for the π2 particles, we prove H2,j ≥ 0 for fixed xi,
i ∈ π2. Define

H̃2,j = −2∆j +
∑
i∈π2

1

2
U+

1,2(xi − xj)−
∑
n∈N

Θ(2n1 − |G(Cn)|)
∑
i∈π2

1Cn(xj)
1

2
U−1,2(xi − xj)

(4.53)

Note that

H2,j = 1CjH̃2,j
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and 1Cj commutes with −∆j. Hence, it suffices to prove H̃2,j ≥ 0. Let

π′2 = {i ∈ π2 : ∃Cn, D(xi, Cn) ≤ R, |G(Cn)| ≤ 2n1}.

For fixed xi an d xj, if

Θ(2n1 − |G(Cn)|)1Cn(xj)
1

2
U−1,2(xi − xj) 6= 0,

it then follows i ∈ π′2. Therefore,∑
n∈N

Θ(2n1 − |G(Cn)|)
∑
i∈π2

1

2
1Cn(xj)U

−
1,2(xi − xj) ≤

∑
i∈π′2

1

2
U−1,2(xi − xj).

Since π′2 ⊂ π2, it follows that

(4.53) ≥ −2∆j +
∑
i∈π′2

1

2

(
U+

1,2(xi − xj)− U−1,2(xi − xj)
)
.

By the definition of π′2, it follows that for any x ∈ Rd∑
i∈π′2

1|xi−x|≤R ≤ 2n1.

Under the assumptions on U , we obtain

(4.53) ≥ 1

n1

∑
i∈π′2

(
−1|xi−xj |≤R∆j +

n1

2
U1,2(xi − xj)

)
≥ 0.

�

Corollary 4.3.15 Let V fulfill Assumption 4.2.3. Then, there exists a constant 0 < ε < 1
such that

(a) For d = 3,

−
N∑
k=1

∆k +
N∑

i<j=1

(V +
1 (xi − xj)− (1 + ε)V −1 (xi − xj)) ≥ 0, (4.54)

(1− ε)
N∑
k=1

−∆k1Bk +
∑
i 6=j

1Bj
1

2
V1(xi − xj) ≥ 0. (4.55)

(b) For d = 2, with VN(x) = e2NV (eNx) and B(d)

j defined as in Definition 3.5.4,

−
N∑
k=1

∆k +
N∑

i<j=1

(V +
N (xi − xj)− (1 + ε)V −N (xi − xj)) ≥ 0, (4.56)

(1− ε)
N∑
k=1

−∆k1B(d)k
+
∑
i 6=j

1B(d)j

1

2
VN(xi − xj) ≥ 0. (4.57)
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Remark 4.3.16 These operator inequalities are crucial in order to prove Conditions (4.19),
(4.20) and (4.21), see below. We do not except the persistence of condensation if (4.54)
and (4.55) were not true. In that case, one would rather expect the condensate to collapse
in the limit N →∞ in finite time.

Proof: By rescaling Nx → x, the first inequality (4.54) is equivalent to −
∑N

k=1 ∆k +∑N
i<j=1(V +(xi − xj)− (1 + ε)V −(xi − xj)) ≥ 0. Setting U(x) = V +(x)− (1 + ε)V −(x), U

then fulfills the conditions of Lemma 4.3.10 which implies the inequality above.

Setting Dj :=
⋃
k,l 6=j{(x1, x2, . . . , xN) ∈ R3N : |xl−xk| < NN−26/27}, the second inequality

is equivalent to

(1− ε)
N∑
k=1

−∆k1Dk +
∑
i 6=j

1Dj
1

2
V (xi − xj) ≥ 0.

Note that the set Dj defined above fulfills R̃ = N1/27 > 2R. Hence, Lemma 4.3.13, part
(b) implies the second inequality (4.55), setting U = 1

1−εV . In the same manner, we obtain

part (b) of the Lemma, rescaling eNx→ x. For this, note that the rescaled set

eNB(d)

j =
⋃
k 6=l 6=j

a
(d)
k,l =

⋃
k,l 6=j

{(x1, x2, . . . , xN) ∈ R2N : |xk − xl| < eNN−d} (4.58)

is such that eNN−d > 2R for all d ∈ N for N large enough. Hence, Lemma 4.3.13, part (b)
can be applied.

�

4.3.3 Proof of Conditions (4.19) and (4.20)

Lemma 4.3.17 Let d = 3, let V fulfill Assumption 4.2.3 and let At ∈ L∞(R3,R). Then,
for all Ψ ∈ L2

s(R3N ,C) ∩H2(R3N ,C)

(a)

‖V1(x1 − x2)Ψ‖2 ≤C〈〈Ψ, HΨ〉〉+ CN. (4.59)

(b)

‖∇1Ψ‖2 ≤C
N

(〈〈Ψ, HΨ〉〉+ 1). (4.60)

Proof:

(a) Let, for 0 < ε < 1,

H(ε) = −
N∑
k=1

∆k +
∑
i<j

(V +
1 (xi − xj)− (1 + ε)V −1 (xi − xj)) +

N∑
k=1

A·(xk).
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Since V fulfills Assumption 4.2.3, Corollary 4.3.15 implies together withA· ∈ L∞(R3,R),
H(ε) ≥ −CN . We then obtain

ε

N∑
i<j=1

V −1 (xi − xj) ≤ H + CN.

Furthermore

N∑
i<j=1

V +
1 (xi − xj) ≤ H +

N∑
i<j=1

V −1 (xi − xj) +N‖A·‖∞ ≤
(

1 +
1

ε

)
H + CN.

Thus,

‖V1(x1 − x2)Ψ‖2 ≤‖V1‖∞(〈〈Ψ, V +
1 (x1 − x2)Ψ〉〉+ 〈〈Ψ, V −1 (x1 − x2)Ψ〉〉)

≤C

(
〈〈Ψ,

N∑
i<j=1

V +
1 (xi − xj)Ψ〉〉+ 〈〈Ψ,

N∑
i<j=1

V −1 (xi − xj)Ψ〉〉

)
≤C〈〈Ψ, HΨ〉〉+ CN.

(b) We use

−CN ≤ H(ε) ≤ (1 + ε)

(
−1

1 + ε

N∑
k=1

∆k +
∑
i<j

V1(xi − xj) +
N∑
k=1

1

1 + ε
At(xk)

)
.

Let µ = 1− 1
1+ε

> 0. Using A· ∈ L∞(Rd,R), we then obtain

−µ
N∑
k=1

∆k ≤ H + CN.

�

Remark 4.3.18 Lemma 4.3.17, part (a) can also be derived from part (b), using Sobolev’s
inequality ∣∣〈〈Ψ, V 2

1 (x1 − x2)Ψ〉〉
∣∣

≤ ‖V1‖2
∞‖1BN−1R(0)‖ 3

2

∫
dx2· · ·

∫
dxN

(∫
dx1|Ψ(x1, . . . , xN)|6

)1/3

≤ CN4N−2‖∇1Ψ‖2 ≤ C(〈〈Ψt, HΨt〉〉+N).

Using Lemma 4.3.17 together with 〈〈Ψt,HΨt〉〉
N

≤ C, we then prove Conditions (4.19) and
(4.20).
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Corollary 4.3.19 Let d = 2 and let V fulfill Assumption 4.2.3. Let VN(x) = e2NV (eNx)
and let HVN be defined as in (3.2) with At ∈ L∞(R2,R). Then, for all Ψ ∈ L2

s(R2N ,C) ∩
H2(R2N ,C)

‖∇1Ψ‖2 ≤C
N

(〈〈Ψ, HVNΨ〉〉+ 1). (4.61)

Proof: The proof of Lemma 4.3.17, part (b) can be straightforwardly be applied in the two
dimensional case.

�

4.3.4 Proof of Condition (4.21)

We will first restate a Lemma which we will need in the following.

Proposition 4.3.20 Let Ω ∈ H1(R3N ,C). Then, for all j 6= k

‖1BjΩ‖ ≤ CN−7/54‖∇jΩ‖.

Proof: The proof of this Lemma, which is a direct consequene of Sobolev’s inequality, can
be found in [60], Proposition A.1.

�

Lemma 4.3.21 Assume V fulfills Assumption 4.2.3. Then, for any Ψ ∈ L2
s(R3N ,C) ∩

H2(R3N ,C) and any ϕ ∈ H2(R3,C) there exists a η > 0 such that

(a)

‖1A1∇1q1Ψ‖2 ≤ C
(
〈〈Ψ, n̂Ψ〉〉+N−η

)
+
∣∣E(Ψ)− EGP (ϕ)

∣∣ .
(b)

‖1B1∇1Ψ‖2 ≤ C
(
〈〈Ψ, n̂Ψ〉〉+N−η

)
+
∣∣E(Ψ)− EGP (ϕ)

∣∣ .
Remark 4.3.22 For nonnegative potentials, the proof of Lemma 4.3.21 was given in
Lemma 5.2. in [60]. For potentials which fulfill Assumption 4.2.3 we use Corollary 4.3.15
in order to obtain the same bound.

Proof: Let us first split up the energy difference. Since Ψ ∈ L2
s(R3N ,C) is symmetric,

E(Ψ)− EGP (ϕ) = ‖∇1Ψ‖2 + (N − 1)〈〈Ψ, V1(x1 − x2)Ψ〉〉
− ‖∇ϕ‖2 − 2a‖ϕ2‖2 + 〈〈Ψ, A·Ψ〉〉 − 〈ϕ,A·ϕ〉〉.
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Let Wβ1 be defined as in Lemma 4.3.7 for some β1. Then,

E(Ψ)− EGP (ϕ) = ‖1A1∇1Ψ‖2 + ‖1B11A1
∇1Ψ‖2 + ‖1B11A1

∇1Ψ‖2

+ (N − 1)〈〈Ψ,1B1V1(x1 − x2)Ψ〉〉

+ 〈〈Ψ,
∑
j 6=1

1B1 (V1 −Wβ1) (x1 − xj)Ψ〉〉

+ 〈〈Ψ,
∑
j 6=1

1B1Wβ1(x1 − xj)Ψ〉〉 − ‖∇ϕ‖2 − 2a‖ϕ2‖2

+ 〈〈ΨA·Ψ〉〉 − 〈ϕA·ϕ〉.

Using that q1 = 1− p1, we obtain for 0 < ε < 1,

E(Ψ)− EGP (ϕ) = ε
(
‖1A1∇1q1Ψ‖2 + ‖1B11A1

∇1Ψ‖2
)

(4.62)

+ 2< (〈〈∇1q1Ψ,1A1∇1p1Ψ〉〉) (4.63)

+ ‖1B11A1
∇1Ψ‖2 +

1

2
〈〈Ψ,

N∑
j=2

1B1 (V1 −Wβ1) (x1 − xj)Ψ〉〉 (4.64)

+
N − 1

2
〈〈Ψ,1B1p1p2Wβ1(x1 − x2)p1p21B1Ψ〉〉 −

a

2
‖ϕ2‖2 (4.65)

+ (N − 1)<〈〈Ψ,1B1(1− p1p2)Wβ1(x1 − x2)p1p21B1Ψ〉〉 (4.66)

+
N − 1

2
〈〈Ψ,1B1(1− p1p2)Wβ1(x1 − x2)(1− p1p2)1B1Ψ〉〉 (4.67)

+ ‖1A1∇1p1Ψ‖2 − ‖∇ϕ‖2 (4.68)

+ 〈〈Ψ, A·(x1)Ψ〉〉 − 〈ϕ,A·ϕ〉 (4.69)

+ (1− ε)
(
‖1A1∇1q1Ψ‖2 + ‖1B11A1

∇1Ψ‖2
)

(4.70)

+
N − 1

2
〈〈Ψ,1B1V1(x1 − x2)Ψ〉〉. (4.71)

It has been shown in [60] that for some suitable chosen 0 < β1 < 1 there exists an η > 0
such that

|(4.62)|+ |(4.63)|+ |(4.65)|+ |(4.68)|+ |(4.69)| ≤ C
(
〈〈Ψ, n̂Ψ〉〉+N−η

)
+
∣∣E(Ψ)− EGP (ϕ)

∣∣ .
Since (4.64) ≥ 0, (4.66) ≥ 0, we are left to control (4.70) and (4.71) in order to show

ε
(
‖1A1∇1q1Ψ‖2 + ‖1B11A1

∇1Ψ‖2
)
≤ C

(
〈〈Ψ, n̂Ψ〉〉+N−η

)
+
∣∣E(Ψ)− EGP (ϕ)

∣∣ .
For nonnegative potentials, the trivial bound (4.70) + (4.71) ≥ 0 is sufficient in order to
prove Lemma 4.3.21. For potentials fulfilling Assumption 4.2.3, we use

(4.70) + (4.71) =(1− ε)
(
‖1A11B1∇1Ψ‖2 + ‖1B11A1

∇1Ψ‖2
)

+
N − 1

2
〈〈Ψ,1B1V1(x1 − x2)Ψ〉〉

−(1− ε)2<
(
〈〈∇1Ψ,1A11B1∇1p1Ψ〉〉

)
+(1− ε)

(
‖1A11B1∇1q1Ψ‖2 + ‖1A11B1∇1p1Ψ‖2

)
.
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We will estimate each line separately. The third line is positive. Using Proposition 4.3.20,
we obtain

‖1A11B1∇1p1Ψ‖ ≤ ‖1B1∇1p1Ψ‖ ≤ CN−7/54‖∆1p1Ψ‖.

This implies for the second line

|2<
(
〈〈∇1Ψ,1B11A1∇1p1Ψ〉〉

)
| ≤ CN−7/54.

Focusing on the first term, we obtain with Corollary 4.3.15

(1− ε)
(
‖1A11B1∇1Ψ‖2 + ‖1B11A1

∇1Ψ‖2
)

+
N − 1

2
〈〈Ψ,1B1V1(x1 − x2)Ψ〉〉

=
1

N
〈〈Ψ,

(
(1− ε)

N∑
k=1

−∆k1Bk +
∑
i 6=j

1Bj
1

2
V1(xi − xj)Ψ〉〉

)
≥ 0.

We have therefore shown

‖1A1∇1q1Ψ‖2 + ‖1B11A1
∇1Ψ‖2 ≤ C

(
〈〈Ψ, n̂Ψ〉〉+N−η +

∣∣E(Ψ)− EGP (ϕ)
∣∣) .

Note that

‖1B1∇1q1Ψ‖2 =‖1A1
1B1∇1q1Ψ‖2 + ‖1A11B1∇1q1Ψ‖2

≤‖1A1
1B1∇1(1− p1)Ψ‖2 + ‖1A1∇1q1Ψ‖2

≤2‖1A1
1B1∇1Ψ‖2 + 2‖1A1

1B1∇1p1Ψ‖2 + ‖1A1∇1q1Ψ‖2.

Using ‖1B11A1
∇1p1Ψ‖ ≤ ‖1B1∇1p1Ψ‖ ≤ CN−7/54‖∆1p1Ψ‖, we then obtain the Lemma.

�
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5.1 Introduction

During the last decades, the experimental realization and the theoretical investigation of
Bose-Einstein condensation (BEC) regained a considerable amount of attention. Mathe-
matically, there is a steady effort to describe both the dynamical as well as the statical
properties of such condensates. While the principal mechanism of BEC is similar for many
different systems, the specific effective description of such a system depends strongly on
the model one studies. In this chapter we will focus on a dilute, two dimensional system
of bosons with attractive interaction.
Let us first define the N -body quantum problem we have in mind. The evolution of N inter-
acting bosons is described by a time-dependent wave-function Ψt ∈ L2

s(R2N ,C), ‖Ψt‖ = 1.
Ψt solves the N -particle Schrödinger equation

i∂tΨt = HWβ ,tΨt, (5.1)
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where the time-dependent Hamiltonian HWβ ,t is given by

HWβ ,t = −
N∑
j=1

∆j +
∑

1≤j<k≤N

Wβ(xj − xk) +
N∑
j=1

At(xj). (5.2)

The scaled potential Wβ(x) = N−1+2βW (Nβx), W ∈ L∞c (R2,R) describes a strong, but
short range potential acting on the length scale of orderN−β (we assumeW to be compactly
supported). The external potential At ∈ Lp(R2,R) for some p > 1 is used as an external
trapping potential. Below, we will comment on different choices for At in more detail. In
general, even for small particle numbers N , the evolution equation (5.1) cannot be solved
directly nor numerically for Ψt. Nevertheless, for a certain class of initial conditions Ψ0

and certain interactions W , which we will make precise in a moment, it is possible to derive
an approximate solution of (5.1) in the trace class topology of reduced density matrices.

Recall the definition of the one particle reduced density matrix γ
(1)
Ψ0

of Ψ0 with integral
kernel

γ
(1)
Ψ0

(x, x′) =

∫
R2N−2

Ψ∗0(x, x2, . . . , xN)Ψ0(x′, x2, . . . , xN)d2x2 . . . d
2xN .

To account for the physical situation of a Bose-Einstein condensate, we assume complete
condensation in the limit of large particle number N . This amounts to assume that, for
N → ∞, γ

(1)
Ψ0
→ |ϕ0〉〈ϕ0| in trace norm for some ϕ0 ∈ L2(R2,C), ‖ϕ0‖ = 1. Define

a =
∫
R2 d

2xW (x) (throughout this chapter, a will always denote the integral over W ). Let
ϕt solve the nonlinear Schrödinger equation

i∂tϕt = (−∆ + At)ϕt + a|ϕt|2ϕt =: hNLS
a,t ϕt (5.3)

with initial datum ϕ0. Our main goal is to show the persistence of condensation over time.
In particular, we prove that the time evolved reduced density matrix γ

(1)
Ψt

converges to
|ϕt〉〈ϕt| in trace norm as N → ∞ with convergence rate of order N−η for some explicitly
computable η > 0, see Lemma 5.3.7. Assuming W ∈ L∞c (R2,R), such that W is spherically

symmetric and −(1− ε)∆ + 1
2
W ≥ 0 holds for some ε > 0, the convergence γ

(1)
Ψt
→ |ϕt〉〈ϕt|

in trace norm for all β > 0 was shown in Chapter 3, see also [30] for a prior result. Recall
that the operator inequality just stated implies a > 0, see e.g. [13]. The problem becomes
more delicate for interactions which are more general, especially if (5.3) is focusing, which
means a < 0. For strong, attractive potentials, it is known that the condensate collapses
in the limit of large particle number. To prevent this behavior, our proof needs stability of
second kind for the Hamiltonian HWβ ,t, that is, we assume HWβ ,t ≥ −CN . If Wβ is partly
or purely nonpositive, this assumption gets highly nontrivial for higher β. For β ≤ 1/2,
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the inequality

inf
Ψ∈L2(R2N ,C),‖Ψ‖=1

〈〈Ψ, HWβ ,tΨ〉〉
N

≥ inf
ϕ∈L2(R2,C),‖ϕ‖=1

(∫
R2

d2x

(
|∇ϕ(x)|2 + At(x)|ϕ(x)|2 +

1

2

∫
R2

d2x|ϕ(x)|2(NWβ ∗ |ϕ|2)(x)

))
(5.4)

− O(1)− CN2β−1,

which was proven in [45], shows HWβ ,t ≥ −CN , if (5.4), which is the ground state energy
of the nonlinear Hartree functional, is bounded from below uniformly in N . Assuming
At ≥ −C, this is the case if

inf
ϕ∈H1(R2,C)

(∫
R2 d

2x|ϕ(x)|2(|ϕ|2 ∗W )(x)

‖ϕ‖2‖∇ϕ‖2

)
> −1 (5.5)

holds [47]. Assuming Condition (5.5) together with At ∈ L1
loc(R2,R), At(x) ≥ C|x|s, s > 0,

stability of second kind was subsequently proven for all 0 < β < s+1
s+2

[47]. In particular,
it was shown that the ground state energy per particle of HWβ ,t is then given (in the limit
N →∞) by the corresponding nonlinear Schrödinger functional; see also [46] for an earlier
result which also treats the one- and three-dimensional cases.
Condition (5.5) thus restricts the set of interactions W . Indeed, stability of the second
kind fails if

inf
ϕ∈H1(R2,C)

(∫
R2 d

2x|ϕ(x)|2(|ϕ|2 ∗W )(x)

‖ϕ‖2‖∇ϕ‖2

)
< −1, (5.6)

see [46, 47] for a nice discussion. Let W− denote the negative part of W and let a∗ > 0
denote the optimal constant of the Gagliardo-Nirenberg inequality(∫

R2

d2x|∇u(x)|2
)(∫

R2

d2y|u(y)|2
)
≥ a∗

2

(∫
R2

d2x|u(x)|4
)
.

It is then easy to prove that
∫
R2 d

2x|W−(x)| < a∗ implies Condition (5.5). On the
other hand, (5.5) implies a > −a∗. While (5.5) is in general a weaker condition than∫
R2 d

2x|W−(x)| < a∗, for W ≤ 0, they are equivalent. Consequently, for nonpositive W
and for a < −a∗, the nonlinear Hartree functional is not bounded from below in the limit
N → ∞, which in particular implies that HWβ ,t is not stable of the second kind. It is
also known that a∗ is the critical threshold for blow-up solutions, that is, for a ≤ −a∗ the
solution of (5.3) may blow up in finite time [10, 11, 12, 29, 69, 71].
The condition HWβ ,t ≥ −CN is needed in our proof to control the kinetic energy of those
particles which leave the condensate, see Lemma 5.3.8. In prior works, it was necessary to
control the quantity ‖∇1q1Ψt‖ sufficiently well in order to show convergence of the reduced
density matrices, using the method of counting as introduced in [61]. While it is possible to
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obtain an a priori estimate of ‖∇1q1Ψt‖ for repulsive interactions, it is not obvious how one
could generalize this estimate for nonpositive W . Our strategy to overcome this difficulty
is to control the quantity ‖q2∇1Ψt‖ instead. Under some natural assumptions (see (A2),
(A4) and (A5) below), it is possible to obtain a sufficient bound of ‖q2∇1Ψt‖, if initially
the variance of the energy

VarHWβ,0(Ψ0) =
1

N2
〈〈Ψ0,

(
HWβ ,0 − 〈〈Ψ0, HWβ ,0Ψ0〉〉

)2
Ψ0〉〉 (5.7)

is small and HWβ ,t is stable of second kind. For product states Ψ0 = ϕ⊗k, with ϕ regular
enough, a straightforward calculation yields VarHWβ,0(Ψ0) ≤ C(1 + N−1+β + N−2+2β), see

Lemma 5.3.8. Therefore, for β < 1, there exist initial states Ψ0, for which the variance
is small. The strategy to control ‖q2∇1Ψt‖ instead of ‖∇1q1Ψt‖ by means of the energy
variance was already used in [37] where the derivation of the Maxwell-Schrödinger equations
from the Pauli-Fierz Hamiltonian was shown. Adopting this method, we are able to prove
convergence of γ

(1)
Ψt

to |ϕt〉〈ϕt| in trace norm as N → ∞ for 0 < β < 1 with convergence
rate of order N−η, η > 0, if the Assumptions (A1)-(A5) (see below) are fulfilled.
A stronger statement than convergence in trace norm is convergence in Sobolev trace norm.
For external potentials At ∈ Lp(R2,R), with p ∈]2,∞], we are able to show

lim
N→∞

Tr
∣∣∣√1−∆(γ

(1)
Ψt
− |ϕt〉〈ϕt|)

√
1−∆

∣∣∣ = 0, (5.8)

if initially the energy per particle N−1〈〈Ψ0, HWβ ,0Ψ0〉〉 is close to the NLS energy

〈ϕ0,
(
−∆ + a

2
|ϕ0|2 + A0

)
ϕ0〉. To obtain this type of convergence, we adapt some recent

results of [2, 51], where a similar statement was proven.
The rigorous derivation of effective evolution equations has a long history, see e.g. [2, 4,
5, 7, 8, 9, 14, 17, 18, 19, 20, 25, 26, 30, 31, 32, 34, 49, 50, 51, 53, 54, 55, 59, 60, 61, 65]
and references therein. In particular, for the two-dimensional case we consider, it has been
proven, for 0 < β < 3/4 and W nonnegative, that γ

(1)
Ψt

converges to |ϕt〉〈ϕt| as N → ∞
[30]. We extend this result to all β > 0 in Chapter 3. For A(x) = |x|2 and W ≤ 0
sufficiently small such that HWβ ,t ≥ −CN , the respective convergence has been proven in
[14] for 0 < β < 1/6. One key estimate of the proof was to show the stability condition
HWβ ,t ≥ −CN . The authors note that their proof actually works for all 0 < β < 3/4,
if HWβ ,t ≥ −CN holds. As mentioned, this was subsequently proven by [47] in a more
general setting.
Recently, the validity of the Bogoloubov approximation for the two-dimensional attractive
bose gas was shown in [55] for 0 < β < 1. In contrast to our result, the authors were actu-
ally able to achieve norm convergence and did not need to impose the stability condition
HWβ ,t ≥ −CN , but only required the bound

∫
R2 d

2x|W−(x)| < a∗. They then use some
refined localization method on the number of particles in different excitation sectors. This
strategy enables them to analyze the dynamics without any external field. We want to
emphasize that norm convergence is a stronger statement than convergence in the topology
of reduced densities. However, convergence in Sobolev trace norm as defined in (5.8) does
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in general not follow from norm convergence.
For 0 < β < 1/4, it can be verified that the methods presented in [59], where the attractive
three dimensional case is treated, can be applied, assuming some regularity conditions on
ϕt (the corresponding conditions for the three dimensional system were proven in [16]).
Interestingly, this proof does not restrict the strength of the nonpositive potential nor does
it require stability of second kind, but rather assumes a sufficiently fast convergence of
γ

(1)
Ψ0

to |ϕ0〉〈ϕ0|. Therefore, one can prove BEC in two dimensions for β < 1/4 and arbi-
trary strong attractive interactions for times for which the solution ϕt exists and is regular
enough, that is, before some possible blow-up.

5.2 Main result

We will require the following assumptions:

(A1) For β > 0, let Wβ be given by Wβ(x) = N−1+2βW (Nβx), for W ∈ L∞c (R2,R), W
spherically symmetric. We assume that there exist constants 0 < ε, µ < 1 such that

H
(ε,µ)
Wβ ,t

= (1− ε)
N∑
k=1

(−∆k) +
∑
i<j

Wβ(xi − xj) + (1− µ)
N∑
k=1

At(xk) ≥ −CN.

(A2) For any real-valued function f , decompose f(x) = f+(x)−f−(x) with f+(x), f−(x) ≥
0, such that the supports of f+ and f− are disjoint. We assume that A−t ∈ L∞(R2,R).
Furthermore, we assume that At is differentiable with respect to t and fulfills

Ȧt ∈ C(R, L∞(R2,R)),∇Ȧt ∈ C(R, L∞(R2,R)),∆Ȧt ∈ C(R, L∞(R2,R)).

(A3) For any s ∈ R, we denote for k ∈ N the domain of the self-adjoint operator (HWβ ,s)
k

by D((HWβ ,s)
k). Define the energy variance VarHWβ,s : D((HWβ ,s)

2)→ R+ as

VarHWβ,s(Ψ) =
1

N2
〈〈Ψ,

(
HWβ ,s − 〈〈Ψ, HWβ ,sΨ〉〉

)2
Ψ〉〉.

We then require VarHWβ,0(Ψ0) ≤ CN−δ for some δ > 0.

(A4) Let ϕt the solution to i∂tϕt = hNLS
a,t ϕt, ‖ϕ0‖ = 1. We assume that ϕt ∈ H4(R2,C).

(A5) Assume that the energy per particle

N−1|〈〈Ψ0, HWβ ,0Ψ0〉〉| ≤ C

and the NLS energy ∣∣∣〈ϕ0,
(
−∆ +

a

2
|ϕ0|2 + A0

)
ϕ0〉
∣∣∣ ≤ C

are bounded uniformly in N initially.
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(A5)’ Assume that there exists a δ > 0, such that∣∣∣N−1〈〈Ψ0, HWβ ,0Ψ0〉〉 − 〈ϕ0,
(
−∆ +

a

2
|ϕ0|2 + A0

)
ϕ0〉
∣∣∣ ≤ CN−δ.

Remark 5.2.1 (a) Note that (A1) together with (A2) directly implies H
(ε,0)
Wβ ,t
≥ −CN ,

H
(0,µ)
Wβ ,t
≥ −CN and HWβ ,t = H

(0,0)
Wβ ,t
≥ −CN . As mentioned in the introduction, (A1)

and (A2) are fulfilled for A(x) ≥ C|x|s, s > 0 for any 0 < β < s+1
s+2

, assuming (5.5).
[47].

(b) Assuming Ψ0 = ϕ⊗N0 with ϕ0 ∈ W 2,∞(R2,C) ∩ H1(R2,C), ‖ϕ0‖ = 1 such that
〈ϕ0, A0ϕ0〉 + 〈ϕ0, A

2
0ϕ0〉 ≤ C, it follows that VarHWβ,0(Ψ0) ≤ C(N−1+β + N−2+2β),

see Lemma 5.5.1; and hence (A3) is then valid for all 0 < β < 1.

(c) For At ∈ {0, |x|2}, (A4) follows from the persistence of regularity of solutions, assum-
ing ϕ0 ∈ H4(R2,C), ‖A2

0ϕ0‖ <∞, see Appendix 5.5.2. However, for regular enough
external potentials, a > −a∗ and regular enough ϕ0 we believe (A4) to be valid, too.

(d) It is interesting to note that both (A1) and (A3) can be fulfilled for 0 < β < 1, while
it is unclear if they hold for β ≥ 1.

We now state our main Theorem:

Theorem 5.2.2 Let Ψ0 ∈ L2
s(R2N ,C) ∩ D((HWβ ,0)2) with ‖Ψ0‖ = 1. Let ϕ0 ∈ L2(R2,C)

with ‖ϕ0‖ = 1 and assume lim
N→∞

(
N δTr|γ(1)

Ψ0
− |ϕ0〉〈ϕ0||

)
= 0 for some δ > 0. Let Ψt the

unique solution to i∂tΨt = HWβ ,tΨt with initial datum Ψ0. Let ϕt the unique solution to
i∂tϕt = hNLS

a,t ϕt with initial datum ϕ0.

(a) (Convergence in trace norm) Assume (A1)-(A5). Then, for any t > 0

lim
N→∞

γ
(1)
Ψt

= |ϕt〉〈ϕt| (5.9)

in trace norm.

(b) (Convergence in Sobolev trace norm) Assume (A1)-(A5) and (A5)’. Furthermore,
assume that At ∈ Lp(R2,R) holds for some p ∈]2,∞] and for all t ∈ R. Then, for
any t > 0

lim
N→∞

Tr
∣∣∣√1−∆(γ

(1)
Ψt
− |ϕt〉〈ϕt|)

√
1−∆

∣∣∣ = 0. (5.10)

Remark 5.2.3 (a) In our proof we will give explicit error estimates in terms of the
particle number N . We shall show that the rate of convergence is of order N−δ for
some δ > 0. See (5.21) for the precise error estimate.
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(b) Under assumption (A2), the domains D(HWβ ,t) and D((HWβ ,t)
2) of the time-dependent

Hamiltonian HWβ ,t are time-invariant, see Appendix 5.5.3. Therefore, the condition
Ψ0 ∈ D((HWβ ,0)2) is sufficient to define and to differentiate the variance of the energy
VarHWβ,t(Ψt).

(c) For At(x) = |x|2, 0 < β < 3/4 and under condition (5.5), the assumptions (A1)-(A5)
can be fulfilled by choosing Ψ0 = ϕ⊗N0 with ϕ0 regular enough. We are therefore able
to reproduce the result presented in [14] under slightly different assumptions, using
the result of [47] which implies (A1).

(d) For external potentials At which are bounded from below, assumption (A1) has been
proven for all 0 < β ≤ 1/2, under the condition (5.5) [45]. We are therefore able

to control the convergence of γ
(1)
Ψt

to |ϕt〉〈ϕt| in Sobolev trace norm as N → ∞ for
0 < β ≤ 1/2.

(e) In our estimates, we need the regularity conditions

‖∆ϕt‖∞ <∞, ‖∇ϕt‖∞ <∞, ‖ϕt‖∞ <∞, ‖∇ϕt‖ <∞, ‖∆ϕt‖ <∞.

That is, we need ϕt ∈ H2(R2,C) ∩W 2,∞(R2,C). Then, ‖∆|ϕt|2‖ which also appears
in our estimates, can be bounded by

∆|ϕt|2 =ϕ∗t∆ϕt + ϕt∆ϕ
∗
t + 2(∇ϕ∗t ) · (∇ϕt)

‖∆|ϕt|2‖ ≤2‖∆ϕt‖‖ϕt‖∞ + 2‖∇ϕt‖‖∇ϕt‖∞

Recall the Sobolev embedding Theorem, which implies in particular Hk(R2,C) =
W k,2(R2,C) ⊂ Ck−2(R2,C). If ϕ ∈ C2(R2,C) ∩ H2(R2,C), then ϕ ∈ W 2,∞(R2,C)
follows since both ϕ and ∇ϕ have to decay at infinity. Thus, ϕt ∈ H4(R2,C) implies
ϕt ∈ H2(R2,C) ∩W 2,∞(R2,C), which suffices for our estimates 1.

5.3 Proof of Theorem 5.2.2 (a)

Notation 5.3.1 We will denote by K(ϕt, At) a constant depending on time, via ‖Ȧt‖∞,
‖A−t ‖∞,

∫ t
0
ds‖Ȧs‖∞ and ‖ϕt‖H4. As mentioned above, we make use of the embedding

H2(R2,C) ∩W 2,∞(R2,C) ⊆ H4(R2,C).

Next, we will define a convenient functional for proving the Theorem 5.2.2.

Definition 5.3.2 Let Ψ ∈ L2(R2N ,C) ∩ D((HWβ ,·)
2) and let ϕ ∈ L2(R2,C), ‖ϕ‖ = 1.

Define

α : L2(R2N ,C)× L2(R2,C)→ R+,

α(Ψ, ϕ) = 〈〈Ψ, qϕ1 Ψ〉〉 + VarHWβ,·(Ψ). (5.11)

1 Actually, ϕt ∈ H3+ε(R2,C) for some ε > 0 would suffice for our estimates. Note that it is reasonable
to expect persistence of regularity of ϕt assuming ϕt ∈ L∞(R2,C), see also Appendix 5.5.2.
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Using a general strategy, we will estimate the time derivative d
dt
α(Ψt, ϕt). In particular,

we show that

d

dt
α(Ψt, ϕt) ≤ K(ϕt, At)

(
α(Ψt, ϕt) +N−δ

)
holds for some δ > 0. By a Grönwall estimate, which precise form can be found below, we
then obtain αt(Ψt, ϕt)→ 0 as N →∞, if α(Ψ0, ϕ0) converges to zero.

Lemma 5.3.3 Let Ψ ∈ L2
s(R2N ,C)∩D((HWβ ,·)

2), ‖Ψ‖ = 1 and let ϕ ∈ L2(R2,C), ‖ϕ‖ =
1. Let α(Ψ, ϕ) be defined as above. Then,

lim
N→∞

α(Ψ, ϕ) = 0 ⇔ lim
N→∞

γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm

and lim
N→∞

VarHWβ,·(Ψ) = 0. (5.12)

Proof: limN→∞〈〈Ψ, qϕ1 Ψ〉〉 = 0⇔ limN→∞ γ
(1)
Ψ = |ϕ〉〈ϕ| in trace norm follows from Lemma

2.0.11.

�

Definition 5.3.4 Let

Zϕ
β (xj, xk) = Wβ(xj − xk)−

a

N − 1
|ϕ|2(xj)−

a

N − 1
|ϕ|2(xk). (5.13)

Define the functional γ : L2(R2N ,C)× L2(R2,C)→ R+
0 by

γ(Ψ, ϕ) =2N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1p2Ψ〉〉

∣∣ (5.14)

+2N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1q2Ψ〉〉

∣∣ (5.15)

+2N
∣∣〈〈Ψ, q1p2Z

ϕ
β (x1, x2)q1q2Ψ〉〉

∣∣ . (5.16)

Lemma 5.3.5 Let Ψt the unique solution to i∂tΨt = HWβ ,tΨt with initial datum Ψ0 ∈
L2
s(R2N ,C) ∩ D((HWβ ,0)2), ‖Ψ0‖ = 1. Let ϕt the unique solution to i∂tϕt = hNLS

a,t ϕt with
initial datum ϕ0 ∈ H2(R2,C), ‖ϕ0‖ = 1. Let α(Ψt, ϕt) be defined as in Definition 5.3.2.
Then

d

dt
α(Ψt, ϕt) ≤ γ(Ψt, ϕt) +

∣∣∣∣ ddtVarHWβ,t(Ψt)

∣∣∣∣ . (5.17)

Remark 5.3.6 The three different contributions of γ(Ψ, ϕ) can be identified with three
distinct transitions of particles out of the condensate described by ϕ. The first line can
be identified as the interaction of two particles in the state ϕ, causing one particle to
leave the condensate. The second line estimates the evaporation of two particles. The last
contribution describes the interaction of one particle in the condensate with one particle
outside the condensate, causing the particle in the state ϕ to leave the condensate.
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Proof: For the proof of the Lemma we restore the upper index ϕt in order to pay respect
to the time dependence of pϕt1 and qϕt1 . The proof is a straightforward calculation of

d

dt
〈〈Ψt, q

ϕt
1 Ψt〉〉

= i〈〈HWβ ,tΨt, q
ϕt
1 Ψt〉〉 − i〈〈Ψt, q

ϕt
1 HWβ ,tΨt〉〉 − i〈〈Ψt, [−∆1 + a|ϕt|2(x1) + At(x1), qϕt1 ]Ψt〉〉

= i(N − 1)〈〈Ψt, [Z
ϕt
β (x1, x2), qϕt1 ]Ψt〉〉 = −2(N − 1)Im

(
〈〈Ψt, Z

ϕt
β (x1, x2)qϕt1 Ψt〉〉

)
.

Using the identity 1 = pϕt1 + qϕt1 , we obtain

d

dt
〈〈Ψt, q

ϕt
1 Ψt〉〉 = −2(N − 1)Im

(
〈〈Ψt, p

ϕt
1 Z

ϕt
β (x1, x2)qϕt1 Ψt〉〉

)
= −2(N − 1)Im

(
〈〈Ψt, p

ϕt
1 p

ϕt
2 Z

ϕt
β (x1, x2)qϕt1 p

ϕt
2 Ψt〉〉

)
−2(N − 1)Im

(
〈〈Ψt, p

ϕt
1 p

ϕt
2 Z

ϕt
β (x1, x2)qϕt1 q

ϕt
2 Ψt〉〉

)
−2(N − 1)Im

(
〈〈Ψt, p

ϕt
1 q

ϕt
2 Z

ϕt
β (x1, x2)qϕt1 p

ϕt
2 Ψt〉〉

)
−2(N − 1)Im

(
〈〈Ψt, p

ϕt
1 q

ϕt
2 Z

ϕt
β (x1, x2)qϕt1 q

ϕt
2 Ψt〉〉

)
.

Note that Im
(
〈〈Ψt, p

ϕt
1 q

ϕt
2 Z

ϕt
β (x1, x2)qϕt1 p

ϕt
2 Ψt〉〉

)
= 0, which concludes the proof.

�

Lemma 5.3.7 Let Ψt the unique solution to i∂tΨt = HWβ ,tΨt with initial datum Ψ0 ∈
L2
s(R2N ,C)∩D(H2

Wβ ,0
), ‖Ψ0‖ = 1. Let ϕt the unique solution to i∂tϕt = hNLS

a,t ϕt with initial

datum ϕ0 ∈ L2(R2,C), ‖ϕ0‖ = 1. Assume (A1)-(A5). Then,

γ(Ψt, ϕt) ≤ K(ϕt, At) ln(N)1/2
(
α(Ψt, ϕt) +N−2β ln(N)1/2 +N−1/3 ln(N)3/2

)
, (5.18)∣∣∣∣ ddtVarHWβ,t(Ψt)

∣∣∣∣ ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−1

)
. (5.19)

The proof of this Lemma can be found in Section 5.3.2.

Proof of Theorem 5.2.2 (a): Once we have proven Lemma 5.3.7, we obtain with Grönwall’s
Lemma that

α(Ψt, ϕt) ≤ N

∫ t
0 dsK(ϕs,As)

ln(N)1/2 α(Ψ0, ϕ0)

+

∫ t

0

dsK(ϕs, As)N

∫ t
s dτK(ϕτ ,Aτ )

ln(N)1/2
(
N−2β ln(N) +N−1/3 ln(N)2

)
. (5.20)

Note that under the assumptions (A2) and (A4) there exists a time-dependent constant
Ct <∞, such that

∫ t
0
dsK(ϕs, As) ≤ Ct. Furthermore, the assumption

lim
N→∞

(
N δTr|γ(1)

Ψ0
− |ϕ0〉〈ϕ0||

)
= 0
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for some δ > 0 then implies together with (A3)

lim
N→∞

(
N

∫ t
0 dsK(ϕs,As)

ln(N)1/2 α(Ψ0, ϕ0)

)
= 0,

since 〈〈Ψ, qϕ1 Ψ〉〉 ≤ Tr|γ(1)
Ψ − |ϕ〉〈ϕ|| ≤

√
8〈〈Ψ, qϕ1 Ψ〉〉, see [34]. Therefore,

Tr|γ(1)
Ψt
− |ϕt〉〈ϕt|| ≤CN

Ct

2 ln(N)1/2
−δ/2

+

√
CtN

sups∈[0,t] |Ct−Cs|

ln(N)1/2 (N−2β ln(N) +N−1/3 ln(N)2). (5.21)

This proves Theorem 5.2.2 (a).

�

5.3.1 Energy estimates

Lemma 5.3.8 Let Ψ0 ∈ L2
s(R2N ,C) ∩ D((HWβ ,0)2) with ‖Ψ0‖ = 1. Let Ψt the unique

solution to i∂tΨt = HWβ ,0Ψt with initial datum Ψ0, ‖Ψ0‖ = 1. Let ϕt the unique solution
to i∂tϕt = hNLS

a,t ϕt with initial datum ϕ0 ∈ L2(R2,C), ‖ϕ0‖ = 1. Assume (A1),(A2), (A4)
and (A5). Then,

(a)

‖∇1Ψt‖ ≤ K(ϕt, At). (5.22)

(b)

‖qϕt2 ∇1Ψt‖2 ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−1/2

)
. (5.23)

(c) For any p ∈ N, there exists a constant Cp, depending on p, such that∥∥∥∥√|NWβ(x1 − x2)|qϕt1 q
ϕt
2 Ψt

∥∥∥∥2

≤ K(ϕt, At)CpN
β/p
(
α(Ψt, ϕt) +N−1/2

)
. (5.24)

Proof:

(a) Using Assumption (A1) together with (A2), we directly obtain the operator inequality

−
N∑
k=1

ε∆k ≤HWβ ,t + CN.

Using d
dt
N−1〈〈Ψt, HWβ ,tΨt〉〉 ≤ ‖Ȧt‖∞ together with (A5), the energy per particle

N−1〈〈Ψt, HWβ ,tΨt〉〉 ≤ K(ϕt, At) is uniformly bounded in N . Since Ψt is symmetric,
we obtain

Nε〈〈Ψt,−∆1Ψt〉〉 =〈〈Ψt,

(
−

N∑
k=1

ε∆k

)
Ψt〉〉 ≤ K(ϕt, At)N.
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(b) (see also [37] for a similar estimate.) We estimate

ε‖q2∇1Ψt‖2 =
1

N − 1
〈〈Ψt, q2ε

N∑
k=1

(−∆k)q2Ψt〉〉 −
ε

N − 1
〈〈Ψt, q2(−∆2)q2Ψt〉〉

≤ 1

N − 1
〈〈Ψt, q2HWβ ,tq2Ψt〉〉+ C〈〈Ψt, q1Ψt〉〉

=
N

N − 1
〈〈Ψt, q2

(
HWβ ,t

N
−N−1〈〈Ψt, HWβ ,tΨt〉〉

)
Ψt〉〉+

1

N − 1
〈〈Ψt, HWβ ,tΨt〉〉〈〈Ψt, q2Ψt〉〉

− 1

N − 1
〈〈Ψt, q2HWβ ,tp2Ψt〉〉+ C〈〈Ψt, q1Ψt〉〉

≤ CVarHWβ,t(Ψt) +
1

N − 1
|〈〈Ψt, q2HWβ ,tp2Ψt〉〉|+K(ϕt, At)‖q1Ψt‖2.

It remains to estimate

1

N − 1
|〈〈Ψt, q2HWβ ,tp2Ψt〉〉|

≤ 1

N − 1
|〈〈Ψt, q2(−∆2)p2Ψt〉〉|+ |〈〈Ψt, q2Wβ(x1 − x2)p2Ψt〉〉|+

1

N − 1
|〈〈Ψt, q2At(x1)p2Ψt〉〉|

≤ 1

N − 1

(
‖∇1Ψt‖‖∇ϕt‖+ ‖∇ϕt‖2

)
+ ‖Wβ‖‖ϕt‖∞‖1B

CN−β (0)(x1 − x2)Ψt‖+ ‖ϕt‖2
∞‖Wβ‖1

+
1

N − 1
(‖A−t ‖∞ + ‖

√
A+
t Ψt‖‖

√
A+
t ϕt‖+ 〈ϕt, Atϕt〉),

where we used q2 = 1 − p2 for all three contributions in the last inequality. Recall
the two-dimensional Sobolev’s inequality, which was introduced in Lemma 3.5.5 and
[38], Theorem 8.5. For any ρ ∈ H1(R2,C) and for any 2 ≤ p < ∞, there exists a
constant Cp, depending on p, such that

‖ρ‖2
p ≤ Cp

(
‖ρ‖2 + ‖∇ρ‖2

)
(5.25)

holds. The constant Cp fulfills Cp ≤ Cp. We use this inequality in the x1 variable
and obtain together with Hölder’s inequality, to obtain

‖1B
CN−β (0)(x1 − x2)Ψt‖2

≤ ‖1B
CN−β (0)‖ N

N−1

∫
d2x2 . . . d

2xN

(∫
d2x1|Ψt(x1, . . . , xN)|2N

)1/N

≤ CN1−2β

∫
d2x2 . . . d

2xN

(∫
d2x1|∇1Ψt(x1, . . . , xN)|2 +

∫
d2x1|Ψt(x1, . . . , xN)|2

)
.

≤ CN1−2β
(
‖∇1Ψt‖2 + ‖Ψt‖2

)
.

With ‖Wβ‖ = CN−1+β, we obtain together with (a)

‖Wβ‖‖1B
CN−β (0)(x1 − x2)Ψt‖ ≤ K(ϕt, At)N

−1/2. (5.26)
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Next, we show that ‖
√
A+
t Ψt‖ and ‖

√
A+
t ϕt‖ are uniformly bounded in N . Using

the operator inequality (A1) together with (A2) and (A5) directly implies

ε〈〈Ψt

N∑
k=1

A+
t (xk)Ψt〉〉 ≤ 〈〈Ψt, HWβ ,tΨt〉〉+K(ϕt, At)N ≤ K(ϕt, At)N.

To control 〈ϕt, A+
t ϕt〉, let Ωt = ϕ⊗Nt . Then

ε〈ϕt, A+
t ϕt〉 ≤ N−1〈〈Ωt, HWβ ,tΩt〉〉+K(ϕt, At)

= 〈ϕt,
(
−∆ +

a

2
|ϕt|2 + At

)
ϕt〉+K(ϕt, At)

+ 〈ϕt,
(

1

2
(N − 1)Wβ ∗ |ϕt|2 −

a

2
|ϕt|2

)
ϕt〉.

Note that ∣∣∣∣ ddt〈ϕt,(−∆ +
a

2
|ϕt|2 + At

)
ϕt〉
∣∣∣∣ ≤ ‖Ȧt‖∞.

which implies together with (A5)

〈ϕt,
(
−∆ +

a

2
|ϕt|2 + At

)
ϕt〉 ≤ K(ϕt, At).

Furthermore, we obtain as in (5.38)∣∣〈ϕt, ((N − 1)Wβ ∗ |ϕt|2 − a|ϕt|2
)
ϕt〉
∣∣

≤ ‖ϕt‖2
∞
(∥∥NWβ ∗ |ϕt|2 − a|ϕ|2

∥∥+ ‖Wβ‖1‖ϕt‖2
∞
)

≤ K(ϕt, At)(N
−2β ln(N) +N−1).

This concludes the proof of (b).

(c) For 1 < p <∞, we estimate, using Hölder’s- and Sobolev’s inequality∥∥∥∥√|NWβ(x1 − x2)|q1q2Ψt

∥∥∥∥2

≤ ‖NWβ‖∞
∥∥∥1B

CN−β (0)(x1 − x2)q1q2Ψt

∥∥∥2

≤ CN2β

∫
R2N−2

d2x2 . . . d
2xN

∫
R2

d2x1|(q1q2Ψt)(x1, . . . , xN)|21B
CN−β (0)(x1 − x2)

≤ CpN
2β‖1B

CN−β (0)‖ p
p−1

∫
R2N−2

d2x2 . . . d
2xN

(∫
R2

d2x1|(q1q2Ψt)(x1, . . . , xN)|2p
)1/p

≤ CpN
2β(1− p−1

p )
∫
R2N−2

d2x2 . . . d
2xN

(∫
R2

d2x1|(∇1q1q2Ψt)(x1, . . . , xN)|2
) p−1

p

×
(∫

R2

d2x̃1|(q1q2Ψt)(x̃1, . . . , xN)|2
)1/p

(5.27)
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We use Hölder’s inequality with respect to the x2, . . . xN -integration with the conju-
gate pair r = p

p−1
and s = p to obtain

(5.27) ≤ CpN
2β
p ‖∇1q1q2Ψt‖2 p−1

p ‖q1q2Ψt‖
2
p .

Note that

‖∇1q1q2Ψt‖2 ≤ 2‖∇1p1q2Ψt‖2 + 2‖∇1q2Ψt‖2 ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−1/2

)
.

Renaming p, we thus obtain with part (b), that there exists a constant depending on
p such that∥∥∥∥√|NWβ(x1 − x2)|q1q2Ψt

∥∥∥∥2

≤ CpK(ϕt, At)N
β/p
(
α(Ψt, ϕt) +N−1/2

)
.

�

5.3.2 Proof of Lemma 5.3.7

For the convenience of the reader, we will restate Lemma 3.5.3 in the following.

Definition 5.3.9 For any 0 ≤ β1 ≤ β, we define

Uβ1(x) =

{
a
π
N−1+2β1 for |x| < N−β1,

0 else.
(5.28)

and

hβ1,β(x) =
1

2π

∫
R2

ln |x− y|(Wβ(y)− Uβ1(y))d2y . (5.29)

Lemma 5.3.10 For any 0 ≤ β1 ≤ β, we obtain with the above definition

(a)

∆hβ1,β = Wβ − Uβ1 . (5.30)

(b)

‖hβ1,β‖ ≤CN−1−β1 ln(N) for β1 > 0, (5.31)

‖h0,β‖ ≤CN−1 for β > 0, (5.32)

‖∇hβ1,β‖ ≤CN−1(ln(N))1/2. (5.33)

Proof: See the proof of Lemma 3.5.3.

�
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We now prove Lemma 5.3.7.

Lemma 5.3.11 Let Ψ ∈ L2
s(R2N ,C)∩D(HWβ ,·), ‖Ψ‖ = 1 and let ϕ ∈ L2(R2,C), ‖ϕ‖ = 1.

Assume (A1), (A2) and (A5). Then,

(a)

N
∣∣〈〈Ψp1p2Z

ϕ
β (x1, x2)q1p2Ψ〉〉

∣∣ ≤ K(ϕ,A·)
(
N−1 +N−2β ln(N)

)
. (5.34)

(b)

N |〈〈Ψ, p1p2Z
ϕ
β (x1, x2)q1q2Ψ〉〉| ≤ K(ϕ,A·)

(
〈〈Ψ, q1Ψ〉〉+N−1/3 ln(N)2

)
. (5.35)

(c)

N
∣∣〈〈Ψ, q1p2Z

ϕ
β (x1, x2)q1q2Ψ〉〉

∣∣ ≤ K(ϕ,A·) ln(N)1/2
(
α(Ψ, ϕ) +N−1/2

)
. (5.36)

(d) Let ϕt the solution to i∂tϕt = hNLS
a,t ϕt, ‖ϕ0‖ = 1. Let Ψt the solution to i∂Ψt =

HWβ ,tΨt with Ψ0 ∈ L2
s(R2N ,C) ∩ D((HWβ ,0)2), ‖Ψ0‖ = 1 Then,∣∣∣∣ ddtVarHWβ,t(Ψt)

∣∣∣∣ ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−1

)
. (5.37)

Remark 5.3.12 (a) and (b) have essentially been proven in Chapter 3 for a slightly dif-
ferent definition of α(Ψ, ϕ). It is (c) where the estimates given in Chapter 3 fails. Recall,
that we relied on the energy estimates presented in Section 3.5.6 in order to bound the
analogous contribution of (c) as presented in Lemma 3.5.7. To prove the energy estimates,
it was crucial in Equation (3.109) that −(1− ε)∆1 + 1

2
W (x1−x2) ≥ 0 holds as an operator

inequality for some ε > 0. This forces
∫
R2 W (x)d2x to be nonnegative. In this chapter,

we make use of a strategy which was developed in [37] to derive the Maxwell-Schrödinger
equations from the Pauli-Fierz Hamiltonian. Instead of estimating ‖∇1q1Ψ‖, we control
‖∇1q2Ψ‖ instead, see Lemma 5.3.8.

Proof:

(a) We estimate

N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1p2Ψ〉〉

∣∣ ≤ N‖p1p2Z
ϕ
β (x1, x2)q1p2‖op.

‖p1p2Z
ϕ
β (x1, x2)q1p2‖op can be estimated using p1q1 = 0 and (2.7).

N

∥∥∥∥p1p2

(
Wβ(x1 − x2)− a

N − 1
|ϕ(x1)|2 − a

N − 1
|ϕ(x2)|2

)
q1p2

∥∥∥∥
op

≤ ‖p1p2(NWβ(x1 − x2)− a|ϕ(x1)|2)p2‖op + C‖ϕ‖2
∞N

−1

≤ ‖ϕ‖∞ ‖N(Wβ ? |ϕ|2)− a|ϕ|2‖+ C‖ϕ‖2
∞N

−1.
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Let h be given by

h(x) =
1

2π

∫
R2

d2y ln |x− y|NWβ(y)− a

2π
ln |x|.

It then follows
∆h(x) = NWβ(x)− aδ(x)

in the sense of distributions. Since a =
∫
R2 d

2xW (x), this implies (see Lemma 5.3.10),
h(x) = 0 for x /∈ BRN−β(0), where RN−β is the radius of the support of Wβ. Thus,

‖h‖1 ≤
1

2π

∫
R2

d2x

∫
R2

d2y| ln |x− y||1B
RN−β (0)(x)NWβ(y)

+
|a|
2π

∫
R2

d2x ln(|x|)1B
RN−β (0)(x)

≤CN−2β ln(N).

Integration by parts and Young’s inequality then imply

‖N(Wβ ? |ϕ|2)− a|ϕ|2‖ = ‖(∆h) ? |ϕ|2‖ (5.38)

≤‖h‖1‖∆|ϕ|2‖ ≤ K(ϕ,A·)N
−2β ln(N).

Thus, we obtain the bound

N
∣∣〈〈Ψ, p1p2Z

ϕ
β (x1, x2)q1p2ŵΨ〉〉

∣∣ ≤ K(ϕ,A·)
(
N−1 +N−2β ln(N)

)
, (5.39)

which then proves (a).

(b) We will first consider the case 0 < β ≤ 1/3. Note that p1p2Z
ϕ
β (x1, x2)q1q2 =

p1p2Wβ(x1 − x2)q1q2. We estimate

N |〈〈Ψ, q1q2Wβ(x1 − x2)p1p2Ψ〉〉| = N

N − 1
|〈〈q1Ψ,

N∑
k=2

qkWβ(x1 − xk)p1pkΨ〉〉|

≤ N

N − 1
‖q1Ψ‖

∥∥∥∥∥
N∑
k=2

qkWβ(x1 − xk)p1pkΨ

∥∥∥∥∥
≤〈〈Ψ, q1Ψ〉〉+

∥∥∥∥∥
N∑
k=2

qkWβ(x1 − xk)p1pkΨ

∥∥∥∥∥
2

=〈〈Ψ, q1Ψ〉〉+ (N − 1) ‖q2Wβ(x1 − x2)p1p2Ψ‖2

+(N − 1)(N − 2)〈〈Ψ, p1p2Wβ(x1 − x2)q2q3Wβ(x1 − x3)p1p3Ψ〉〉
≤〈〈Ψ, q1Ψ〉〉+N‖Wβ‖2‖ϕ‖2

∞

+N2‖p2Wβ(x1 − x2)p1‖2
op‖q1Ψ‖2

≤K(ϕ,A·)
(
〈〈Ψ, q1Ψ〉〉+N−1+2β

)
.
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In the last estimate, we used Lemma 5.3.10 together with Lemma 2.0.5 to estimate
‖p1Wβ(x1 − x2)p2‖op ≤ ‖p1

√
|Wβ|‖2

op ≤ ‖ϕ‖2
∞‖
√
|Wβ|‖2 ≤ K(ϕ,A·)N

−1.

This proves (b) for the case β ≤ 1/3.

(b) for 1/3 < β: We use Uβ1 from Definition 3.5.2 for some 0 < β1 ≤ 1/3. We then
obtain

N〈〈Ψ, p1p2Wβ(x1 − x2)q1q2Ψ〉〉
=N〈〈Ψ, p1p2Uβ1(x1 − x2)q1q2Ψ〉〉 (5.40)

+N〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1(x1 − x2)) q1q2Ψ〉〉. (5.41)

Term (5.40) has been controlled above. So we are left to control (5.41).

Let ∆hβ1,β = Wβ − Uβ1 , as in Lemma 5.3.10. Integrating by parts and using
∇1hβ1,β(x1 − x2) = −∇2hβ1,β(x1 − x2) gives

N |〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) q1q2Ψ〉〉|
≤ N |〈〈∇1p1Ψ, p2∇2hβ1,β(x1 − x2)q1q2Ψ〉〉| (5.42)

+N |〈〈Ψ, p1p2∇2hβ1,β(x1 − x2)∇1q1q2Ψ〉〉| . (5.43)

Let t1 ∈ {p1,∇1p1} and let Γ ∈ {q1Ψ,∇1q1Ψ}.

For both (5.42) and (5.43), we use Lemma 2.0.10 with O1,2 = N1+η/2q2∇2hβ1,β(x1 −
x2)p2, χ = t1Ψ and Ω = N−η/2Γ. This yields

(5.42) + (5.43) ≤ 2 sup
t1∈{p1,∇1p1},Γ∈{q1Ψ,∇1q1Ψ}

(
N−η‖Γ‖2 (5.44)

+
N2+η

N − 1
‖q2∇2hβ1,β(x1 − x2)t1p2Ψ‖2 (5.45)

+N2+η |〈〈Ψ, t1p2q3∇2hβ1,β(x1 − x2)∇3hβ1,β(x1 − x3)t1q2p3Ψ〉〉|
)
. (5.46)

The first term can be bounded using ‖∇1q1Ψ‖ ≤ K(ϕ,A·).

Using ‖t1Ψ‖2 ≤ K(ϕ,A·), we obtain

(5.45) ≤K(ϕ,A·)
N2+η

N − 1
‖∇2hβ1,β(x1 − x2)p2‖2

op ≤ K(ϕ,A·)
N2+η

N − 1
‖ϕ‖2

∞‖∇hβ1,β‖2

≤K(ϕ,A·)N
η−1 ln(N),

where we used Lemma 5.3.10 in the last step.
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Next, we estimate

(5.46) ≤N2+η‖p2∇2hβ1,β(x1 − x2)t1q2Ψ‖2

≤2N2+η‖p2hβ1,β(x1 − x2)t1∇2q2Ψ‖2

+2N2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)t1q2Ψ‖2

≤2N2+η‖p2hβ1,β(x1 − x2)‖2
op‖t1∇2q2Ψ‖2

+2N2+η‖|ϕ(x2)〉〈∇ϕ(x2)|hβ1,β(x1 − x2)‖2
op‖t1q2Ψ‖2

≤K(ϕ,A·)N
2+η‖hβ1,β‖2 ≤ K(ϕ,A·)N

η−2β1 ln(N)2.

Thus, for all η ∈ R

N〈〈Ψ, p1p2 (Wβ(x1 − x2)− Uβ1,β(x1 − x2)) q1q2Ψ〉〉
≤ K(ϕ,A·)

(
N−η +Nη−1 ln(N) +Nη−2β1 ln(N)2

)
.

Hence, we obtain, using Nη−1 ln(N) < Nη−2β1 ln(N),

N〈〈Ψ, p1p2Wβ(x1 − x2)q1q2Ψ〉〉

≤ K(ϕ,A·)

(
〈〈Ψ, q1Ψ〉〉+ inf

η>0
inf

1
3
≥β1>0

(
Nη−2β1 ln(N)2 +N−1+2β1 +N−η

))
.

and we get (b) in full generality by choosing η = β1 = 1/3.

(c) First note that

N

∣∣∣∣〈〈Ψ, q1p2
a

N − 1
|ϕ(x1)|2q1q2Ψ〉〉

∣∣∣∣ ≤ C‖ϕ‖2
∞〈〈Ψ, q1Ψ〉〉.

Let U0 be given as in Lemma 5.3.10. Using Lemma 2.0.5 and integrating by parts
we get

N |〈〈Ψ, q1p2Wβ(x1 − x2)q1q2Ψ〉〉|
≤N |〈〈Ψ, q1p2U0(x1 − x2)q1q2Ψ〉〉|+N |〈〈Ψ, q1p2(∆1h0,β(x1 − x2))q1q2Ψ〉〉|
≤N‖q1Ψ‖ ‖U0‖∞‖q1q2Ψ‖ (5.47)

+N |〈〈∇2p2q1Ψ, (∇2h0,β(x1 − x2))q1q2Ψ〉〉| (5.48)

+N |〈〈Ψ, q1p2(∇2h0,β(x1 − x2))∇2q1q2Ψ〉〉| . (5.49)

The first contribution is bounded by

(5.47) ≤ C〈〈Ψ, q1Ψ〉〉.

The second term (5.48) can be estimated as

(5.48) =N |〈〈∆2p2q1Ψ, h0,β(x1 − x2)q1q2Ψ〉〉| (5.50)

+N |〈〈∇2p2q1Ψ, h0,β(x1 − x2)q1∇2Ψ〉〉| (5.51)

+N |〈〈∇2p2q1Ψ, h0,β(x1 − x2)q1∇2p2Ψ〉〉| . (5.52)
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The last contribution (5.49) can be rewritten as

(5.49) ≤N |〈〈Ψ, q1p2(∇2h0,β(x1 − x2))∇2q1Ψ〉〉| (5.53)

+N |〈〈Ψ, q1p2(∇2h0,β(x1 − x2))∇2p2q1Ψ〉〉| . (5.54)

We estimate each contribution separately, using Lemma 5.3.10 together with Lemma
2.0.5. We obtain

(5.50) ≤N‖q1Ψ‖‖h0,β(x1 − x2)∆2p2‖op‖q1q2Ψ‖
≤C‖∆ϕ‖∞〈〈Ψ, q1Ψ〉〉.

Analogously,

(5.52) ≤N‖q1Ψ‖‖h0,β(x1 − x2)∇2p2‖op‖∇ϕ‖∞‖q1Ψ‖
≤C‖∇ϕ‖2

∞〈〈Ψ, q1Ψ〉〉.

Next, we control

(5.54) ≤N‖q1Ψ‖‖p2∇2h0,β(x1 − x2)∇2p2‖op‖q1Ψ‖
≤C‖∇ϕ‖∞‖ϕ‖∞N‖∇h0,β‖1‖q1Ψ‖2

≤C‖∇ϕ‖∞‖ϕ‖∞〈〈Ψ, q1Ψ〉〉.

To control (5.51) and (5.53), we estimate for t2 ∈ {p2, |ϕ(x2)〉〈(∇ϕ)(x2)|} and s ∈
{h0,β,∇2h0,β}

N |〈〈q1Ψ, t2s(x1 − x2)∇2q1Ψ〉〉|
≤ ln(N)1/2‖q1Ψ‖2 + ln(N)−1/2N2‖t2s(x1 − x2)‖2

op‖∇2q1Ψ‖2

≤K(ϕ,A·) ln(N)1/2
(

VarHWβ,·(Ψ) +N−1/2 + 〈〈Ψ, q1Ψ〉〉
)
.
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(d) We estimate∣∣∣∣ ddtVarHWβ,t(Ψt)

∣∣∣∣ = N−2

∣∣∣∣ ddt〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

)2
Ψt〉〉

∣∣∣∣
≤ 2N−1

∣∣∣〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

) (
Ȧt(x1)− 〈〈Ψt, Ȧt(x1)Ψt〉〉

)
Ψt〉〉

∣∣∣
≤ 2N−1

∣∣∣〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

) (
p1Ȧt(x1)p1 − 〈〈Ψt, p1Ȧt(x1)p1Ψt〉〉

)
Ψt〉〉

∣∣∣
+ 2N−1

∣∣∣〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

) (
p1Ȧt(x1)q1 − 〈〈Ψt, p1Ȧt(x1)q1Ψt〉〉

)
Ψt〉〉

∣∣∣
+ 2N−1

∣∣∣∣∣〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

)(
N−1

N∑
k=1

qkȦt(xk)pk − 〈〈Ψt, q1Ȧt(x1)p1Ψt〉〉

)
Ψt〉〉

∣∣∣∣∣
+ 2N−1

∣∣∣〈〈Ψt,
(
HWβ ,t − 〈〈Ψt, HWβ ,tΨt〉〉

) (
q1Ȧt(xk)q1 − 〈〈Ψt, q1Ȧt(xk)q1Ψt〉〉

)
Ψt〉〉

∣∣∣
≤ 4VarHWβ,t(Ψt) +

∥∥∥(p1Ȧt(x1)p1 − 〈〈Ψt, p1Ȧt(x1)p1Ψt〉〉
)

Ψt

∥∥∥2

+
∥∥∥(p1Ȧt(x1)q1 − 〈〈Ψt, p1Ȧt(x1)q1Ψt〉〉

)
Ψt

∥∥∥2

+

∥∥∥∥∥
(
N−1

N∑
k=1

qkȦt(xk)pk − 〈〈Ψt, q1Ȧt(x1)p1Ψt〉〉

)
Ψt

∥∥∥∥∥
2

+
∥∥∥(q1Ȧt(x1)q1 − 〈〈Ψt, q1Ȧt(x1)q1Ψt〉〉

)
Ψt

∥∥∥2

.

Note that ∥∥∥(p1Ȧt(x1)p1 − 〈〈Ψt, p1Ȧt(x1)p1Ψt〉〉
)

Ψt

∥∥∥2

=

(∫
R2

d2xȦt(x)|ϕt(x)|2
)2

〈〈Ψt, p1Ψt〉〉 (1− 〈〈Ψt, p1Ψt〉〉)

≤ K(ϕt, At)〈〈Ψt, q1Ψt〉〉.

Furthermore∥∥∥∥∥
(
N−1

N∑
k=1

qkȦt(xk)pk − 〈〈Ψt, q1Ȧt(x1)p1Ψt〉〉

)
Ψt

∥∥∥∥∥
2

= N−2

N∑
k,l=1

〈〈Ψt, plȦt(xl)qlqkȦt(xk)pkΨt〉〉 −
∣∣∣〈〈Ψt, q1Ȧt(x1)p1Ψt〉〉

∣∣∣2
≤ 〈〈Ψt, p1Ȧt(x1)q1q2Ȧt(x2)p2Ψt〉〉+

1

N
〈〈Ψt, p1Ȧt(x1)q1Ȧt(x1)p1Ψt〉〉+ ‖Ȧt‖∞〈〈Ψt, q1Ψt〉〉

≤ K(ϕt, At)

(
〈〈Ψt, q1Ψt〉〉+

1

N

)
.
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To control the two remaining terms, let s1 ∈ {p1, q1}. Then, we need to estimate∥∥∥(s1Ȧt(x1)q1 − 〈〈Ψt, s1Ȧt(x1)q1Ψt〉〉
)

Ψt

∥∥∥2

= 〈〈Ψt, q1Ȧt(x1)s1Ȧt(x1)q1Ψt〉〉 −
∣∣∣〈〈Ψt, s1Ȧt(x1)q1Ψt〉〉

∣∣∣2
≤ 2‖Ȧt‖2

∞〈〈Ψt, q1Ψt〉〉.

In total, we obtain∣∣∣∣ ddtVarHWβ,t(Ψt)

∣∣∣∣ ≤ K(ϕt, At)
(
α(Ψt, ϕt) +N−1

)
.

Combining the estimates (a)-(d), Lemma 5.3.7 is then proven.

�

5.4 Proof of Theorem 5.2.2 (b)

Proof: We make use of the inequality

Tr
∣∣∣√1−∆(γ

(1)
Ψt
− |ϕt〉〈ϕt|)

√
1−∆

∣∣∣ ≤ C(1 + ‖∇1ϕt‖)2

× (‖q1Ψt‖+ ‖q1Ψt‖2 + ‖∇1q1Ψt‖+ ‖∇1q1Ψt‖2),

which was proven in [51], see also [2]. Using Theorem 5.2.2 (a), we are left to show
lim
N→∞

‖∇1q1Ψt‖ = 0. In general, this does not follow from lim
N→∞

‖∇1q2Ψt‖ = 0. To see this,

consider the symmetrized wave-function

Γ(x1, . . . , xN) =
1√
N

N∑
k=1

ϕ(x1) . . . η(xk) . . . ϕ(xN)

for η, ϕ ∈ L2(R2,C), ‖η‖ = ‖ϕ‖ = 1, 〈η, ϕ〉 = 0. Then

‖qϕ1 Γ‖2 = N−1, ‖∇1q
ϕ
2 Γ‖2 = N−1‖∇ϕ‖2, ‖∇1q

ϕ
1 Γ‖2 = N−1‖∇η‖2.

Note that ‖∇η‖ can be chosen arbitrarily. However, for At ∈ Lp(R2,R), with p > 2, it
is possible to control ‖∇1q1Ψt‖ in terms of ‖q1Ψt‖, ‖∇1q2Ψt‖ and the energy difference∣∣N−1〈〈Ψ0, HWβ ,0Ψ0〉〉 − 〈ϕ0,

(
−∆ + a

2
|ϕ0|2 + A0

)
ϕ0〉
∣∣, assuming Conditions (A2) and (A4).

Together with Assumptions (A1), (A3), (A5) and (A5)’ and Theorem 5.2.2, part (a), it is
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then possible to bound ‖∇1q1Ψt‖ sufficiently well. First, we consider

|‖∇1Ψt‖2 − ‖∇ϕt‖2| ≤
∣∣∣∣ 1

N
〈〈Ψ0, HWβ ,0Ψ0〉〉 − 〈ϕ0,

(
−∆ +

a

2
|ϕ0|2 + A0

)
ϕ0〉
∣∣∣∣ (5.55)

+

∫ t

0

ds
∣∣∣〈〈Ψs, Ȧs(x1)Ψs〉〉 − 〈ϕs, Ȧsϕs〉

∣∣∣ (5.56)

+
1

2

∣∣〈〈Ψt, p1p2(N − 1)Wβ(x1 − x2)p1p2Ψt〉〉 − a〈ϕt, |ϕt|2ϕt〉
∣∣ (5.57)

+N |〈〈Ψt, p1p2Wβ(x1 − x2)(1− p1p2)Ψt〉〉| (5.58)

+N |〈〈Ψt, (1− p1p2)Wβ(x1 − x2)(1− p1p2)Ψt〉〉| (5.59)

+ |〈〈Ψt, At(x1)Ψt〉〉 − 〈ϕt, Atϕt〉| . (5.60)

We estimate each line separately. From Condition (A5)’, it follows that (5.55) ≤ CN−δ.
Using Ȧt ∈ L∞(R2,R), we estimate

(5.56) ≤t sup
s∈[0,t]

(
|〈ϕs, Ȧsϕs〉|〈〈Ψs, q

ϕs
1 Ψs〉〉+ 2

∣∣∣〈〈Ψs, p
ϕs
1 Ȧs(x1)qϕs1 Ψs〉〉

∣∣∣+
∣∣∣〈〈Ψs, q

ϕs
1 Ȧs(x1)qϕs1 Ψs〉〉

∣∣∣)
≤t sup

s∈[0,t]

(
‖Ȧs‖∞(‖qϕs1 Ψs‖+ ‖qϕs1 Ψs‖2)

)
.

Next,

(5.57) ≤
∣∣〈ϕt, (N − 1)Wβ ? |ϕt|2ϕt〉〈〈Ψt, p1p2Ψt〉〉 − a〈ϕt, |ϕt|2ϕt〉

∣∣
≤K(ϕt, At)‖NWβ‖1‖q1Ψt‖2 +

∣∣〈ϕt, ((N − 1)Wβ ? |ϕt|2 − a|ϕt|2)ϕt〉
∣∣

≤K(ϕt, At)
(
〈〈Ψt, q1Ψt〉〉+N−2β ln(N) +N−1

)
.

Note that

(5.58) + (5.59) ≤ C

∥∥∥∥√N |Wβ(x1 − x2)|p1p2Ψt

∥∥∥∥
×
(∥∥∥∥√N |Wβ(x1 − x2)|q1q2Ψt

∥∥∥∥+

∥∥∥∥√N |Wβ(x1 − x2)|q1p2Ψt

∥∥∥∥)
+ C

∥∥∥∥√N |Wβ(x1 − x2)|p1q2Ψt

∥∥∥∥2

+ C

∥∥∥∥√N |Wβ(x1 − x2)|q1q2Ψt

∥∥∥∥2

.

Using Lemma 5.3.8, we obtain∥∥∥∥√|NWβ(x1 − x2)|q1q2Ψt

∥∥∥∥2

≤ K(ϕt, At)CpN
β/p
(
α(Ψt, ϕt) +N−1/2

)
.

Furthermore, ∥∥∥∥√N |Wβ(x1 − x2)|p1

∥∥∥∥
op

≤ K(ϕt, At).
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Note that it was shown in part (a) that α(Ψt, ϕt) ≤ K(ϕt, At)N
−δ for some δ > 0. Choosing

p large enough, we then obtain (5.58) + (5.59) ≤ K(ϕt, At)N
−γ, for some γ > 0. We

estimate, using |〈〈Ψt, q1At(x1)q1Ψt〉〉| ≤ ‖q1Ψt‖(‖Atϕt‖+ ‖At(x1)Ψt‖),
|(5.60)| ≤|〈ϕt, Atϕt〉|〈〈Ψt, q1Ψt〉〉+ 2 |〈〈Ψt, p1At(x1)q1Ψt〉〉|+ |〈〈Ψt, q1At(x1)q1Ψt〉〉|

≤|〈ϕt, Atϕt〉|〈〈Ψt, q1Ψt〉〉+ ‖q1Ψt‖(‖Atϕt‖+ ‖At(x1)Ψt‖).
If At ∈ L∞(R2,R) holds, we obtain

|(5.60)| ≤ K(ϕt, At)(‖q1Ψt‖+ ‖q1Ψt‖2).

On the other hand, using Sobolev and Hölder inequality (see the proof of Lemma 5.3.8),
together with |〈ϕt, Atϕt〉|+ ‖∇1Ψt‖+ ‖∇ϕt‖ ≤ K(ϕt, At), we obtain, for any 1 < p <∞

|(5.60)| ≤ K(ϕt, At)
(

1 + ‖At‖ 2p
p−1

)
(‖q1Ψt‖+ ‖q1Ψt‖2).

Therefore, if At ∈ Lp(R2,C) holds for some p ∈]2,∞] and for all t ∈ R, we obtain

|‖∇1Ψt‖2 − ‖∇ϕt‖2| ≤ t sup
s∈[0,t]

(
K(ϕs, As)

(
α(Ψs, ϕs) +

√
α(Ψs, ϕs) +N−δ +N−1

))
.

Since

‖∇1q1Ψt‖2 ≤ |‖∇1Ψt‖2 − ‖∇ϕt‖2|+ ‖∇ϕt‖2〈〈Ψt, q1Ψt〉〉+ 2‖∇ϕt‖‖q1Ψt‖‖Ψt‖
holds, we obtain with part (a) of Theorem 5.2.2, part (b) of Theorem 5.2.2.

�

5.5 Appendix to Chapter 5

5.5.1 Energy variance of a product state

Lemma 5.5.1 Let Ψ = ϕ⊗N and assume that ‖ϕ‖∞ + ‖ − ∆ϕ‖∞ + ‖ − ∆ϕ‖ + ‖∇ϕ‖ +
〈ϕ,Asϕ〉+ 〈ϕ,A2

sϕ〉 ≤ C. Then,

VarHWβ,s(Ψ) ≤ C(N−1 +N−1+β +N−2+2β). (5.61)

Proof: The proof is a direct calculation using the product structure of Ψ = ϕ⊗N . We first
calculate, denoting T =

∑N
k=1(−∆k), W =

∑N
i<jWβ(xi − xj) and A =

∑N
k=1 As(xk),

1

N2
〈〈Ψ, HWβ ,sΨ〉〉2 =

1

N2
〈〈Ψ, (T +W +A) Ψ〉〉2

=
1

N2
(N〈ϕ,−∆ϕ〉+

N(N − 1)

2
〈ϕ,Wβ ∗ |ϕ|2ϕ〉+N〈ϕ,Asϕ〉)2

=〈ϕ,−∆ϕ〉2 +
(N − 1)2

4
〈ϕ,Wβ ∗ |ϕ|2ϕ〉2 + 〈ϕ,Asϕ〉2

+(N − 1)〈ϕ,−∆ϕ〉〈ϕ,Wβ ∗ |ϕ|2ϕ〉+ 2〈ϕ,−∆ϕ〉〈ϕ,Asϕ〉
+(N − 1)〈ϕ,Asϕ〉〈ϕ,Wβ ∗ |ϕ|2ϕ〉.
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It then follows that

VarHWβ,s(Ψ) =〈〈Ψ,
H2
Wβ ,s

N2
Ψ〉〉 − 1

N2
〈〈Ψ, HWβ ,sΨ〉〉2

=
1

N2
〈〈Ψ, T 2Ψ〉〉 − 〈ϕ,−∆ϕ〉2 (5.62)

+
1

N2
2Re(〈〈TΨ,WΨ〉〉)− (N − 1)〈ϕ,−∆ϕ〉〈ϕ,Wβ ∗ |ϕ|2ϕ〉 (5.63)

+
1

N2
〈〈Ψ,W2Ψ〉〉 − (N − 1)2

4
〈ϕ,Wβ ∗ |ϕ|2ϕ〉2 (5.64)

+
1

N2
〈〈Ψ,A2Ψ〉〉 − 〈ϕ,Asϕ〉2 (5.65)

+
1

N2
2Re(〈〈AΨ, TΨ〉〉)− 2〈ϕ,−∆ϕ〉〈ϕ,Asϕ〉 (5.66)

+
1

N2
2Re(〈〈AΨ,WΨ〉〉)− (N − 1)〈ϕ,Wβ ∗ |ϕ|2ϕ〉〈ϕ,Asϕ〉. (5.67)

We estimate each line separately.

|(5.62)| =
∣∣∣∣ 1

N
〈〈Ψ, (−∆1)2Ψ〉〉+

N − 1

N
〈〈Ψ, (−∆1)(−∆2)Ψ〉〉 − 〈ϕ,−∆ϕ〉2

∣∣∣∣
≤‖ −∆ϕ‖2 + ‖∇ϕ‖4

N
.

Note that

1

N2
2Re(〈〈TΨ,WΨ〉〉) =

1

N2

N∑
k=1

N∑
i 6=j=1

Re(〈〈(−∆k)Ψ,Wβ(xi − xj)Ψ〉〉)

=
2(N − 1)

N
Re(〈〈(−∆1)Ψ,Wβ(x1 − x2)Ψ〉〉)

+
(N − 1)(N − 2)

N
Re(〈〈(−∆1)Ψ,Wβ(x2 − x3)Ψ〉〉)

≤2(N − 1)

N
‖∆ϕ‖∞‖Wβ(x1 − x2)‖1‖ϕ‖∞

+
(N − 1)(N − 2)

N
‖∇ϕ‖2〈ϕ,Wβ ∗ |ϕ|2ϕ〉

≤CN−1‖∆ϕ‖∞‖ϕ‖∞ +
(N − 1)(N − 2)

N
〈ϕ,−∆ϕ〉〈ϕ,Wβ ∗ |ϕ|2ϕ〉,

which immediately implies

|(5.63)| ≤ C
‖∇ϕ‖∞‖ϕ‖∞ + ‖∇ϕ‖2‖ϕ‖4

∞
N

.
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Next, we calculate

1

N2
〈〈Ψ,W2Ψ〉〉 =

1

4N2

N∑
i 6=j=1

N∑
k 6=l=1

〈〈Ψ,Wβ(xi − xj)Wβ(xk − xl)Ψ〉〉

=
N − 1

2N
〈〈Ψ,Wβ(x1 − x2)2Ψ〉〉

+
(N − 1)(N − 2)

N
〈〈Ψ,Wβ(x1 − x2)Wβ(x2 − x3)Ψ〉〉

+
(N − 1)(N − 2)(N − 3)

4N
〈〈Ψ,Wβ(x1 − x2)Wβ(x3 − x4)Ψ〉〉.

The first term is bounded by

N − 1

2N
〈〈Ψ,Wβ(x1 − x2)2Ψ〉〉 ≤ ‖ϕ‖2

∞‖Wβ‖2 ≤ CN−2+2β‖ϕ‖2
∞.

The second term can be bounded using

f(x2) =N−1+2β

∣∣∣∣∫
R2

dx1|ϕ(x1)|2W (Nβ(x1 − x2))

∣∣∣∣
≤N−1

∫
R2

dx1|ϕ(N−βx1)|2|W (x1 −Nβx2)| ≤ N−1‖W‖1‖ϕ‖2
∞

by

(N − 1)(N − 2)

N
〈〈Ψ,Wβ(x1 − x2)Wβ(x2 − x3)Ψ〉〉

=
(N − 1)(N − 2)

N

∫
R2

dx2|ϕ(x2)|2f(x2)2 ≤ 1

N
‖W‖2

1‖ϕ‖4
∞.

It therefore follows that

|(5.64)| ≤ CN−2+2β‖ϕ‖2
∞ + CN−1(‖ϕ‖2

∞ + ‖ϕ‖4
∞).

(5.65) is estimated by

|(5.65)| =
∣∣∣∣ 1

N
〈〈Ψ, As(x1)2Ψ〉〉+

N − 1

N
〈〈Ψ, As(x1)As(x2)Ψ〉〉 − 〈ϕ,Asϕ〉2

∣∣∣∣
≤〈ϕ,A

2
sϕ〉+ 〈ϕ,Asϕ〉2

N
.

Furthermore,

|(5.66)| ≤
∣∣∣∣ 2

N
|〈〈Ψ, As(x1)(−∆1)Ψ〉〉|+ 2

N − 1

N
〈〈Ψ, As(x1)(−∆2)Ψ〉〉 − 2〈ϕ,−∆ϕ〉〈ϕ,Asϕ〉

∣∣∣∣
≤C ‖ −∆ϕ‖‖Asϕ‖+ ‖∇ϕ‖2〈ϕ,Asϕ〉

N
.
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Finally,

|(5.67)| ≤C (|〈〈As(x1)Ψ,Wβ(x1 − x2)Ψ〉〉|+ |〈〈Ψ, As(x1)Wβ(x2 − x3)Ψ〉〉|)
≤C(‖Asϕ‖‖Wβ‖‖ϕ‖∞ + 〈ϕ,Asϕ〉‖Wβ‖1‖ϕ‖2

∞)

≤C(N−1+β‖Asϕ‖‖ϕ‖∞ +N−1〈ϕ,Asϕ〉‖ϕ‖2
∞).

�

5.5.2 Persistence of regularity of ϕt

We study the nonlinear Schrödinger equation in two spatial dimensions (5.3) with a har-
monic potential

i∂tϕt = (−∆ + a|ϕt|2 + |x|2)ϕt (5.68)

under the conditions a > −a∗ and ‖ϕ0‖ = 1. The solution theory of (5.3) is well studied
in absence of external fields. There, the global existence and persistence of regularity of
ϕt ∈ Hk(R2,C) was established, assuming ϕ0 regular enough [12]. The condition a > −a∗
is known to be optimal, that is, for a < −a∗, there exist blow-up solutions. It is interesting
to note that global existence of solutions in L∞(R2,C) directly implies persistence of higher
regularity of solutions in Hk(R2,C), see [12] and below.

Lemma 5.5.2 Let ϕ0 ∈ H1(R2,C), ‖ϕ0‖ = 1 such that ‖∇ϕ0‖2+‖|x|ϕ0‖2+a
2
〈ϕ0, |ϕ0|2ϕ0〉 ≤

C. Let a > −a∗.

(a) The nonlinear Schrödinger equation

i∂tϕt = (−∆ + a|ϕt|2 + |x|2)ϕt

admits a solution ϕt ∈ H1(R2,C) globally in time.

(b) Define the norm ‖u‖Σ,m =
√∑m

k=0(‖∇ku‖2 + ‖|x|ku‖2). Then

‖ϕt‖Σ,4 ≤ ‖ϕ0‖Σ,4e
C
∫ t
0 ds‖ϕs‖

2
∞ .

(c) Assume ‖ϕ0‖Σ,4 <∞. Then, there exist a time-dependent constant Ct, also depending
on ‖ϕ0‖Σ,4, such that ‖ϕt‖Σ,4 ≤ Ct.

Remark 5.5.3 Part (c) directly implies that ϕt ∈ H4(R2,C). Our proof relies on the
works of [10, 11, 12, 29, 69, 71], see also the references therein. It also might be possible
to show a polynomial growth in t of the constant Ct, using the refined estimates presented
in [10, 11].

Proof:
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(a) The global existence in H1(R2,C) is well known, see Remark 3.6.4 in [12]. We sketch
the proof for completeness. Let Ut denote the generator of the time evolution of
the linear Schrödinger equation i∂tut = (−∆ + |x|2)ut. For any ϕ0 ∈ L2(R2,C), we
consider the Duhamel formula

ϕt = Utϕ0 − ia
∫ t

0

dsUt−s|ϕs|2ϕs. (5.69)

Note that is is known that there exists a nonempty open interval I, 0 ∈ I such that
(5.69) has a unique solution ϕt, provided the initial datum ϕ0 fulfills ‖ϕ0‖Σ,1 ≤ C
(see Proposition 1.5. in [11]). Furthermore, for any t ∈ I, ‖ϕt‖ = ‖ϕ0‖ = 1. We
may assume that I is the maximal interval on which a solution of (5.69) exists.
Assume now that ϕt blows up in finite time, i.e. I is bounded. It is then known that∫ sup I

0
dt‖ϕt‖4

4 =∞ [29].

Assume t ∈ I and consider the NLS energy

ENLS(ϕt) = ‖∇ϕt‖2 +
a

2
〈ϕt, |ϕt|2ϕt〉+ ‖|x|ϕt‖2.

Under the conditions a > −a∗, ‖ϕ0‖ = 1, the two dimensional Gagliardo-Nirenberg
inequality a∗

2
‖u‖4

4 ≤ ‖∇u‖2‖u‖2, u ∈ H1(R2,C) implies that ENLS(ϕt) > 0. Further-
more d

dt
ENLS(ϕt) = 0, see Proposition 1.6. in [11]. This directly implies that there

exists an ε > 0 such that

ε‖∇ϕt‖2 ≤ C.

The two dimensional Gagliardo-Nirenberg inequality implies, together with ‖ϕt‖ =
‖ϕ0‖ , ∀t ∈ I, ∫ sup I

0

dt‖ϕt‖4
4 ≤ C

∫ sup I

0

dt‖∇ϕt‖2 ≤ C sup I <∞.

Therefore, the solution ϕt of (5.69) exists globally in time and fulfills
ϕt ∈ H1(R2,C), ‖|x|ϕt‖ <∞.

(b) Let A(x) = |x|2 and define, for any u ∈ L2(R2,C), the norm

‖u‖k,A =

√√√√ k∑
m=0

‖(−∆ + A)mu‖2.

Note that ‖ · ‖k,A is invariant under Ut, that is ‖Utu‖k,A = ‖u‖k,A. We will first show
that ‖u‖2,A and ‖u‖Σ,4 are equivalent norms. Let u ∈ H4(R2,C). Note that

‖u‖2
2,A =‖u‖2 + ‖(−∆ + A)u‖2 + ‖(−∆ + A)2u‖2

≤‖u‖2 + 2‖ −∆u‖2 + 2‖Au‖2

+‖
(
(−∆)2 + A2 + (−∆A) + 2A(−∆)− 2(∇A) · ∇

)
u‖2

≤C
(
‖u‖2 + ‖ −∆u‖2 + ‖Au‖2 + ‖(−∆)2u‖2 + ‖A2u‖2

+‖A(−∆)u‖2 + ‖(∇A) · ∇u‖2
)
.
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Since ∇A2 = 4|x|2x, ∆A2 = 12A, we obtain,

‖A(−∆)u‖2 =〈u, (−∆)A2(−∆)u〉
=〈u, (−∆A2)(−∆)u〉+ 2〈u, (−∇A2) · ∇(−∆)u〉+ 〈u,A2(−∆)2u〉
≤C(‖Au‖‖ −∆u‖+ ‖|x|3u‖‖∇∆u‖+ ‖A2u‖‖(−∆)2u‖)
≤C(‖Au‖2 + ‖ −∆u‖2 + ‖(−∆)2u‖2 + ‖A2u‖2).

For the last inequality, we used ‖|x|3u‖2 = 〈|x|2u, |x|4u〉 ≤ ‖Au‖2 + ‖A2u‖2, as
well as ‖∇∆u‖ ≤ ‖ − ∆u‖2 + ‖(−∆)2u‖2. We use polar coordinates (r, ϕ). Then,
(∇A) · ∇ = 2r∂r. Hence,

‖(∇A) · ∇u‖2 =− 4〈u, ∂r(r2∂ru)〉 = −4〈u,
(
2r∂r + r2∂2

r

)
u〉

=− 4〈u, r2
(
r−1∂r + ∂2

r

)
u〉 − 4〈u, r∂ru〉

≤4〈r2u,−
(
r−1∂r + ∂2

r +
1

r2
∂2
ϕ

)
u〉 − 4

〈
|x| x
|x|
u,∇u

〉
≤C(‖Au‖2 + ‖ −∆u‖2 + ‖|x|u‖2 + ‖∇u‖2) .

Therefore, ‖u‖2,A ≤ C‖u‖Σ,4 holds. To show the converse, first note that ‖u‖2
Σ,4 ≤

C(‖u‖2 + ‖Au‖2 + ‖ − ∆u‖2 + ‖A2u‖2 + ‖∆2u‖2). Since −∆ ≤ −∆ + |x|2 and
|x|2 ≤ −∆+|x|2 holds as an operator inequality, we directly obtain ‖u‖Σ,4 ≤ C‖u‖2,A.

By ‖uv‖Hk ≤ ‖u‖∞‖v‖Hk + ‖u‖Hk‖v‖∞ , ‖ · ‖2,A fulfills the generalized Leibniz rule

‖uv‖2,A ≤C‖uv‖Σ,4 ≤ C(‖u‖∞‖v‖Σ,4 + ‖u‖Σ,4‖v‖∞)

≤C(‖u‖2,A‖v‖∞ + ‖u‖∞‖v‖2,A).

From (5.69), we obtain

‖ϕt‖2,A ≤‖Utϕ0‖2,A + |a|
∫ t

0

ds‖Ut−s|ϕs|2ϕs‖2,A

=‖ϕ0‖2,A + |a|
∫ t

0

ds‖|ϕs|2ϕs‖2,A

≤‖ϕ0‖2,A + C

∫ t

0

ds‖ϕs‖2
∞‖ϕs‖2,A.

By a Grönwall inequality, we obtain (b).

(c) We show that ϕt ∈ H2(R2,C) globally in time. Recall the existence of global in time
solutions of

i∂tut = (−∆ + a|ut|2)ut. (5.70)
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in H2(R2,C), provided that a > −a∗ and u0 ∈ H2(R2,C), ‖u0‖ = 1 holds. Using the
lens transform [10, 69], for |t| < π/2

ϕt(x) =
1

cos(t)
utan(t)

(
x

cos(t)

)
e−i

|x|2
2

tan(t),

ϕt then solves i∂tϕt = (−∆ + a|ϕt|2 + |x|2)ϕt with initial datum ϕ0 = u0. We there-
fore see that the existence of a global-in-time solution of (5.70) in H2(R2,C) implies
existence of a solution ϕt in H2(R2,C) locally in t ∈]− π/2, π/2[. By translation in-
variance of time, the solution ϕt then exists globally in H2(R2,C). By the embedding
L∞(R2,C) ⊂ H2(R2,C), we obtain, together with (b), (c).

�

5.5.3 Self-Adjointness

Lemma 5.5.4 Let

HWβ ,t =
N∑
k=1

(−∆k) +
N∑

i<j=1

Wβ(xi − xj) +
N∑
k=1

At(xk)

and assume (A1) and (A2). Then, for all t ∈ R,

(a) HWβ ,t is selfadjoint with domain D(HWβ ,t) = D
(∑N

k=1(−∆k + A0(xk))
)

.

(b) (HWβ ,t)
2 is selfadjoint with domain D((HWβ ,t)

2) = D((HWβ ,0)2). If, in addition,

W ∈ C2(R2,R), then D((HWβ ,t)
2) = D

(
(
∑N

k=1(−∆k + A0(xk))
2
)

holds.

Proof:

(a) First note that D(HWβ ,0) = D
(∑N

k=1(−∆k + A0(xk))
)

, since Wβ ∈ L∞c (R2,R). We

write

HWβ ,t = HWβ ,0 +
N∑
k=1

∫ t

0

dsȦs(xk).

Abbreviate At =
∑N

k=1

∫ t
0
dsȦs(xk). Since ‖AtΨ‖ ≤ N

∫ t
0
ds‖Ȧs‖∞‖Ψ‖ holds for all

Ψ ∈ L2(R2,C), At is infinitesimal HWβ ,0 bounded, which implies by Kato-Rellich
that D(HWβ ,0) = D(HWβ ,t).

(b) Note that (HWβ ,0)2 is self-adjoint on D((HWβ ,0)2). Consider

(HWβ ,t)
2 =(HWβ ,0)2 +HWβ ,0At +AtHWβ ,0 +A2

t .
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Under Assumption (A2), HWβ ,0At+AtHWβ ,0+A2
t is a symmetric operator onD((HWβ ,0)2).

We estimate, for Ψ ∈ D((HWβ ,0)2),Ψ 6= 0,∥∥(HWβ ,0At +AtHWβ ,0 + (At)2)Ψ
∥∥

≤ 2N

∫ t

0

ds‖Ȧs‖∞‖HWβ ,0Ψ‖+N2

(∫ t

0

ds‖Ȧs‖∞
)2

‖Ψ‖

+N

∫ t

0

ds‖∆Ȧs‖∞‖Ψ‖+ 2

∥∥∥∥∥
N∑
k=1

∫ t

0

ds∇kȦs(xk)∇kΨ

∥∥∥∥∥
Note that

2N

∫ t

0

ds‖Ȧs‖∞‖HWβ ,0Ψ‖ = 2N

∫ t

0

ds‖Ȧs‖∞
√
〈〈Ψ,

(
HWβ ,0

)2
Ψ〉〉

≤

√
2N2

(∫ t

0

ds‖Ȧs‖∞
)2

‖Ψ‖2 +
1

2

∥∥∥(HWβ ,0

)2
Ψ
∥∥∥2

≤
√

2N

∫ t

0

ds‖Ȧs‖∞‖Ψ‖+
1√
2

∥∥∥(HWβ ,0

)2
Ψ
∥∥∥ .

Furthermore, for ε > 0

2

∥∥∥∥∥
N∑
k=1

∫ t

0

ds∇kȦs(xk)∇kΨ

∥∥∥∥∥ ≤ 2
N∑
k=1

∫ t

0

ds‖∇Ȧs‖∞‖∇kΨ‖

≤2N

ε

(∫ t

0

ds‖∇Ȧs‖∞
)2

‖Ψ‖+
ε

2‖Ψ‖

N∑
k=1

‖∇kΨ‖2

≤2N

ε

(∫ t

0

ds‖∇Ȧs‖∞
)2

‖Ψ‖+
1

2‖Ψ‖
〈Ψ, HWβ ,0Ψ〉+ CN‖Ψ‖.

Since

‖Ψ‖−1〈〈Ψ, HWβ ,0Ψ〉〉 ≤ 1

2
‖Ψ‖+

1

2‖Ψ‖
‖HWβ ,0Ψ‖2 ≤ ‖Ψ‖+

1

2
‖(HWβ ,0)2Ψ‖,

we obtain ∥∥(HWβ ,0At +AtHWβ ,0 + (At)2)Ψ
∥∥ ≤ ( 1√

2
+

1

4

)
‖(HWβ ,0)2Ψ‖

+

(
√

2N

∫ t

0

ds‖∇Ȧs‖∞ +
2N

ε

(∫ t

0

ds‖∇Ȧs‖∞
)2

+ CN

)
‖Ψ‖

+N

∫ t

0

ds‖∆Ȧs‖∞‖Ψ‖.
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Thus, HWβ ,0At+AtHWβ ,0 +(At)2 is relatively (HWβ ,0)2 bounded with bound 1√
2
+ 1

4
<

1. By Kato-Rellich, (HWβ ,t)
2 is self-adjoint with domain D((HWβ ,t)

2) = D((HWβ ,0)2),
for all t ∈ R. By a similar estimate, we also obtain

D((HWβ ,0)2) = D

(
(
N∑
k=1

(−∆k + A0(xk))
2

)
,

if W ∈ C2(R2,C).

�
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für die nun mehr als 10-jährige Freundschaft bedanken, angefangen von dem ersten Tag des
Studiums. Ebenfalls treue Studienbegleiter, Mitdoktoranden und Freunde sind mir Mar-
tin Oelker und Paula Reichert geworden. Vera Hartenstein und Johannes Nissen-Meyer
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