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Abstract 

 

Thin film photovoltaics based on organic-inorganic hybrid perovskites has advanced as one of 

the most promising solar cell technologies within the last decade. Record device efficiencies 

exceeding 22% have been recently achieved, making perovskite solar cells (PSCs) a serious 

contender for established silicon-based and other thin film photovoltaic technologies. Long-term 

device stability is crucial for the commercial realization of this emerging solar cell technology. 

Identifying the factors which affect the stability of PSCs and understanding the degradation 

mechanisms in hybrid perovskites are key aspects that need to be addressed for the development 

of environmentally stable solar cells. In particular, elucidating and improving the moisture 

stability of PSCs remains one of the major challenges. 

In this thesis, we first investigate the moisture-induced degradation in the archetypal hybrid 

perovskite: methylammonium lead iodide CH3NH3PbI3. Using in situ X-ray diffraction (XRD) 

techniques, we identify the initial degradation products upon exposure to humid air. We examine 

the reversibility of the hydration reaction in the perovskite material and its implication for solar 

cell performance. Furthermore, we reveal that the precursor stoichiometry strongly affects the 

device efficiency and the moisture stability of the resulting PSCs. 

In addition, state-of-the-art perovskites comprising Cs and Rb cation additives are subjected to 

our investigations. Since these multiple-cation mixed-halide perovskites show better device 

performance and higher moisture stability than CH3NH3PbI3, understanding the role of the 

different cations promise to unlock further improvements regarding efficiency and stability. We 

unravel the effect of Cs and Rb additives on the trap landscape, the recombination kinetics and 

the charge carrier mobility in the resulting PSCs by combining three different characterization 

techniques: time-of-flight (ToF), time-resolved microwave conductivity (TRMC) and thermally 

stimulated current (TSC) measurements. Besides, we study the impact of these inorganic cation 

additives on the moisture stability of multiple-cation mixed-halide perovskite thin films. Our 

results indicate that particularly Rb ions can lead to rapid phase segregation upon exposure to a 

high level of humidity, which is detrimental to device performance. 

Furthermore, we present the concept of dimensionality engineering as an approach to improve the 

moisture stability of hybrid perovskites. The introduction of long-chained, hydrophobic organic 

cations leads to the formation of 2D perovskites, which show increased resilience against 

exposure to humidity compared to classical 3D hybrid perovskite materials such as CH3NH3PbI3. 
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By optimizing the deposition protocols regarding solvent additives and the annealing process, we 

show that the phase purity and crystal orientation in 2D perovskite thin films can be carefully 

controlled. This is important to tune the optoelectronic properties of the 2D perovskite and the 

desired charge transport direction according to the application field. 

Finally, we demonstrate a novel 2D/3D perovskite bilayer architecture in order to increase the 

moisture stability of PSCs without compromising device efficiency. We show that a thin layer of 

2D perovskite can be created on top of a 3D perovskite film via a facile solution-based process. 

The 2D perovskite layer not only acts as a moisture barrier but additionally improves the interface 

between the perovskite and the hole transporting material, which increases the open-circuit 

voltage of the resulting PSC. We believe that the combined dimensionality and interfacial 

engineering can become a universal approach to achieve high-efficiency PSCs with long-term 

stability. 
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1 Introduction 

 

1.1 Photovoltaics 

1.1.1 The need for photovoltaics 

 

 

Figure 1.1  Schematic illustration of the abundance of solar energy compared to non-renewable energy 

sources and the annual global energy consumption in 2014.[1] The size of the spheres corresponds to the 

approximate amount of energy provided by the respective source. 

 

The exit from nuclear and fossil-fuel energy is unavoidable, and the reasons are manifold. First, 

the global population and therewith the demand for energy is rapidly growing, while non-

renewable energy sources, such as uranium, coal, fossil oil and gas are steadily dwindling. 

Second, the combustion of fossil fuels and the associated amount of CO2 emission contribute to 

global climate change, which will have dramatic economic and political and social impacts. In 

order to counteract these scenarios, it is imperative to increase the contribution of renewable 

energy sources (such as wind, water and sun) to the generation of power.  

The energy of the sun can play a key role in this endeavour thanks to its great abundance. Every 

year, the solar energy reaching the surface of the earth is about 23,000 terawatt years (TWy), 

while the global energy consumption is 16 TWy in 2014 (Figure 1.1).[1] In other words, the solar 

power that reaches our globe in six hours would be sufficient to cover the world energy 

consumption for a full year, if we can harvest the energy of the sunlight in an efficient way.  
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Figure 1.2  Share of electricity demand covered by solar power in 28 European countries (EU-28) in 2016.[2] 

 

 

Figure 1.3  Development of power output by different technologies from 2010 to 2016 in the EU-28 

countries.[2] 

 

Photovoltaics (PV) is the technology that directly converts solar energy in the form of light into 

electricity. In PV industry, cost per Watt is the evaluation parameter for the profitability of PV 

technologies and it depends on several factors, e.g. installation costs, module efficiency and solar 

cell lifetime. Although the price for PV systems has been declining by around 75% in less than 

10 years, reaching 2.4 US cents per kilowatt hour (kWh) in 2016, the share of electricity demand 

covered by solar energies reaches only 4% in Europe (Figure 1.2). Currently, the total power 

generation in Europe is still dominated by non-renewable energy sources such as hard coal, lignite 

and nuclear resources (Figure 1.3).[2] The development of more efficient and low-cost PV 
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innovations is necessary to further accelerate the growth of the global solar power capacity, 

targeting the 900 GW mark in the year 2021 (Figure 1.4). 

 

 

Figure 1.4  Development of world total solar PV market scenarios 2017–2021. The grey columns represent 

historical values for the total global installed PV capacity. The yellow columns, the grey solid line and the 

orange columns are anticipated growth of the PV market according to low, medium and high scenarios, 

respectively.[2] 

 

1.1.2 Development of solar cells 

The photovoltaic effect was first discovered by the French physicist Edmond Becquerel in 1839,[3] 

while the first working solar cell based on selenium was invented by Charles Fritts more than 40 

years later, in 1883.[4] However, the rise of coal-fired electric power plants established by Thomas 

Edison in the 1880’s slowed down the development of alternative energy sources, among others, 

also photovoltaic devices. It was not until 1941 when Russell Ohl, an engineer who worked at the 

Bell Laboratories, patented the first silicon p-n junction solar cell that PV started its advancement 

to a realistic contender for large-scale power generation.[5, 6] 

Currently, the photovoltaic market is dominated by silicon-based solar cells. The first-generation 

PV technologies employ crystalline silicon (c-Si) as photoabsorber, not only showing respectable 

device performances with lab record efficiencies around 25% but also longevity. With an average 

degradation rate of 0.5% per year, c-Si solar cells can guarantee functionality for 25 years under 
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working conditions.[7] However, c-Si is a semiconductor with an indirect band gap, meaning that 

a thick c-Si layer of several hundred microns is required to absorb the major part of the incident 

sunlight.[8] The large film thickness does not only mean higher material costs but also limits c-Si 

solar modules to rigid glass substrates, which results in fragility towards mechanical forces. 

Besides, very high purity and low defect concentrations within the photoabsorber are necessary 

for Si-wafer-based solar cells to perform optimally. This leads to time- and energy-intensive 

manufacturing processes, relatively high production costs and a slow return on investment. 

Second-generation PV technologies use thin films of cadmium telluride (CdTe) or copper indium 

gallium diselenide (CIGS) as the light-absorbing layer.[9-11] These inorganic semiconductors have 

a direct band gap and high absorption coefficients. This, in turn, reduces the required film 

thickness of the photoactive material to only a few µm in order to absorb sufficient sunlight 

(Figure 1.5) and to reach efficiencies close to c-Si devices (up to 22.6% for CIGS solar cells).[12] 

Using less raw material for the absorption layer promises to decrease the production costs of thin 

film PV compared to c-Si-based PV.  

However, the disadvantages are the need for rare (Te) or toxic (Cd) metal precursors and their 

production processes under high-vacuum and/or high-temperature conditions. The latter leads to 

high energy costs for the device fabrication as well as a restricted choice of substrates. These 

drawbacks are overcome by another thin film PV technology based on amorphous silicon (a-Si), 

which can be vacuum-processed at low temperatures. Nevertheless, a-Si solar cells tend to yield 

comparably poor efficiencies of about 10% because of high defect concentrations in the silicon 

layer associated with the lack of crystallinity.[13] 

 

 

Figure 1.5  (a) Schematic cross-section of a CIGS thin film solar cell. (b) CIGS solar panel installed on the 

facade of the Center for Solar Energy and Hydrogen Research Baden-Württemberg (Zentrum für 

Sonnenenergie- und Wasserstoffforschung, ZSW) in Stuttgart, Germany. 
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Figure 1.6  Fabrication of flexible organic photovoltaic (OPV) devices using roll-to-roll printing techniques. 

 

More recently, several alternatives such as dye-sensitized solar cells (DSSCs), organic 

photovoltaics (OPV) and quantum dot solar cells (QDSCs) have been developed to meet the 

demand for low-cost solar cells.[14-19] These emerging PV technologies rely on solution-based, 

low-temperature device fabrication and therefore offer compatibility with flexible substrates and 

the potential for large-scale roll-to-roll processing (Figure 1.6). The feasibility of light-weight 

solar installations paired with the enormous variability of the device color and design pattern 

makes architectural integration of these PV technologies attractive for windows and facades 

(Figure 1.7). In terms of device performance, however, DSSCs (11.9% record efficiency), OPV 

(11.5%) and QDSCs (13.4%) still lag far behind conventional c-Si solar cells.[20] Additionally, 

these types of solar cells suffer from rapid degradation and the insufficient device stability 

diminishes their market potential. 

 

 

Figure 1.7  The SwissTech Convention Center at the École Polytechnique Fédérale de Lausanne (EPFL) in 

Switzerland, equipped with a glass facade composed of colorful dye-sensitized solar cells (DSSCs). 
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In the past few years, a new class of thin film PV termed perovskite solar cells (PSCs) have been 

evolving at an unprecedented pace into one of the most promising PV technologies (Figure 1.8). 

PSCs have attracted a large degree of attention in the scientific community because they show the 

unique combination of outstanding performance and facile solution processability. Holding the 

promise for low-cost, light-weight and high-efficiency solar cells, PSCs have the potential to 

revolutionize the PV market. 

 

 

Figure 1.8  Record efficiencies of different photovoltaic technologies published by the National Renewable 

Energy Laboratory (NREL).[20] 

 

 

1.2 Emergence of perovskite solar cells 

1.2.1 Crystal structure of organic-inorganic hybrid perovskites 

The heart of a PSC is its light-absorbing layer, comprising an intriguing semiconducting material 

termed “hybrid perovskite”. In general, perovskites are compounds that crystallize in the same 

crystal structure as calcium titanate CaTiO3, a mineral named after the Russian mineralogist Lev 

Aleksevich Perovski.[21] Figure 1.9 illustrates the typical perovskite crystal structure with the 

composition ABX3, where A represents a cation, B is usually a metal cation and X represents the 



Introduction 

 

 

 
9 

 

anions. From a crystallographic point of view, if we look at an ideal cubic perovskite crystal 

structure, the smaller B cation is located at the corners of a cubic unit cell, octahedrally 

coordinated by 6 X anions, thus forming a three-dimensional network of corner-sharing BX6 

octahedra. The larger A cation resides in the void created by eight octahedra, therefore 

cuboctahedrally coordinated by 12 X anions.  

 

 

Figure 1.9  Schematic representation of the cubic ABX3 perovskite crystal structure. 

 

For photovoltaic applications, the currently most interesting perovskite materials are organic-

inorganic hybrid compounds incorporating small organic A cations such as methylammonium 

(MA) CH3NH3
+, Pb2+ ions as B cations, and halide ions (I-, Br- or Cl-) as X. Methylammonium 

lead iodide, first described by Weber in 1978, can be seen as the archetype of hybrid perovskite 

compounds for photovoltaics.[22] Moreover, mixtures of different ion species occupying the A, B 

or X site are also possible, depending on the ionic radii of the components. 

In order to predict the intrinsic stability of ABX3 perovskite structures, an empirical evaluation 

parameter referred to as the tolerance factor t was introduced by Goldschmidt:[23] 

𝑡 =
𝑅𝐴+𝑅𝐵

√2(𝑅𝐵+𝑅𝑋)
          (1.1) 

where 𝑅𝐴, 𝑅𝐵 and 𝑅𝑋 are the ionic radii for the corresponding ions (A, B and X), respectively. 

Based on an idealized solid-sphere model, the tolerance factor equals 1 for the ideal cubic 

perovskite crystal structure. Most of the stable hybrid lead halide perovskites exhibit a tolerance 

factor of 0.81 < t < 1.11,[24] leading to deviations from the cubic structure at room temperature. 

However, phase transitions from less symmetric to higher symmetric structures are common for 

hybrid perovskites at elevated temperatures. This is in agreement with the fact that 
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methylammonium lead iodide (MAPbI3) with t = 0.83 forms a stable tetragonal structure at room 

temperature, while its cubic phase is stabilized upon heating above 327 K.[24, 25] 

 

1.2.2 Properties of hybrid perovskites 

The immense interest in methylammonium lead iodide perovskite has been triggered by its 

exciting optoelectronic properties which have been under extensive investigations during the last 

decade. This classical hybrid perovskite exhibits various outstanding features, such as high 

absorption coefficient,[26] narrow direct band gap,[27] extraordinarily long charge diffusion 

length[28] and high photoluminescence quantum efficiency.[29] These intriguing properties make 

this class of semiconductors highly promising candidates for photovoltaic applications.  

 

 

Figure 1.10  Photograph of cesium lead halide perovskite nanocrystal dispersions with varying halide 

compositions, yielding a broad range of fluorescence colors under UV-light illumination. 

 

Furthermore, the optoelectronic properties of the perovskite material (e.g. the band gap and 

therewith the fluorescence wavelength) can be easily fine-tuned by tailoring their chemical 

composition (Figure 1.10). In addition to the archetypal MAPbI3 perovskite compound, a broad 

variety of related hybrid perovskite materials has been explored by introducing different inorganic 

or organic ions into the crystal structure, such as formamidinium (FA, CH(NH2)2
+), guanidinium 

(C(NH2)3
+), Cs+, Sn2+, Br- or Cl-.[30-37] The great structural and optical variety of hybrid perovskites 

makes this family of semiconductors attractive for applications beyond PV, for example in light-

emitting diodes (LEDs),[38, 39] lasers,[29, 40] or field effect transistors.[41, 42] 

In the PV research community, impressive achievements regarding PSCs device efficiency within 

an astonishingly short developmental period have been fueling the excitement about hybrid 

perovskites. In particular, the efficiency of PSCs rapidly advanced through the introduction of the 

solid-state hole transporter spiro-OMeTAD which was simultaneously reported by Lee et al. and 
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Kim et al. in 2012.[43, 44] Subsequent research activities have been focused on the improvement of 

the perovskite deposition technique, compositional engineering of the perovskite material and 

optimization of contact layers. Within only eight years, PSC efficiency has soared from 3.81% 

reported by Miyasaka and co-workers,[45] to 22.1% (highest reported certified PCE, 2017),[46] 

leapfrogging other competing PV technologies such as OPV or DSSCs. 

In addition, unlike other high-performance PV materials which require expensive vacuum-

deposition techniques or high processing temperatures, hybrid perovskite thin films can be 

synthesized using solution-based fabrication methods. The mild deposition conditions allow the 

usage of polymer-based substrates with low melting points for PSCs, which makes flexible and 

light-weight PV modules feasible.[47, 48] Simple deposition methods combined with the abundance 

of precursor materials and high device efficiency propel the rise of PSCs as a potential low-cost 

alternative to established PV technologies. 

 

1.2.3 Working principle of perovskite solar cells 

A typical PSC comprises a multi-layer device architecture, where the individual functional layers 

have a thickness of only 10–600 nm. Therefore, PSCs are classified as thin film PV technology. 

Commonly, a transparent substrate such as glass or polymer foil is covered with a patterned 

transparent conductive oxide (TCO) electrode layer. Indium tin oxide (ITO) and fluorine-doped 

tin oxide (FTO) are the most regularly used TCOs as front contacts. Subsequently, a charge 

selective layer with high transmittance is deposited, followed by the hybrid perovskite as the light-

absorbing layer and another charge selective extraction layer. After deposition of the rear contact, 

mostly through evaporation of a metal electrode (e.g. Au, Ag), the solar cell is completed. 

 

  

Figure 1.11  Different device configurations of planar heterojunction perovskite solar cells.  
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Charge selective layers can be either n-type (electron transport layer, ETL) or p-type (hole 

transport layer, HTL) between which the perovskite photoabsorber is sandwiched. Depending on 

the order of the charge selective layers, two different device configurations for PSCs can be 

distinguished (see Figure 1.11). The “conventional” n-i-p architecture is derived from dye-

sensitized solar cells, in which the perovskite was first employed as a photoactive dye in a 

mesoporous TiO2 scaffold.[45] Later, the thickness of the mesoporous TiO2 layer for electron 

extraction was gradually reduced until only a thin compact TiO2 layer served as a transparent 

ETL, followed by the perovskite and HTL (e.g. spiro-OMeTAD) deposition. Consequently, the 

resulting device had a planar n-i-p heterojunction configuration. By comparison, in the “inverted” 

p-i-n architecture, the TCO is covered first with an HTL (e.g. poly(3,4-ethylenedioxythiophene)-

poly(styrenesulfonate), PEDOT:PSS), completed by the perovskite layer and the ETL (e.g. [6,6]-

phenyl-C61-butyric acid methyl ester, PCBM).[49] To optimize device performance and stability 

through variation of the interfaces between perovskite and charge-selective layers, a large variety 

of materials has been explored for ETL and HTL.[50-53] 

 

 

Figure 1.12  Schematic illustration of charge transfer and recombination processes in a perovskite solar 

cell. The thick blue and red arrows indicate the desirable transfer processes for electrons from the perovskite 

to the electron transporting material (ETM) and holes from the perovskite to the hole transporting material 

(HTM), respectively. The dashed arrows indicate undesirable losses associated with recombination 

processes. 

 

A simplified scheme of the working principle of a planar heterojunction perovskite solar cell is 

depicted in Figure 1.12. Sunlight passes through the transparent FTO-glass substrate and electron 
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transport material, before getting absorbed by the thin perovskite layer. Absorbed photons with 

energies larger than the band gap of the perovskite semiconductor are able to excite electrons 

from the valence band (VB) to the conduction band (CB) of the material, leaving a “hole” behind 

in the VB, which can be treated as a positively charged quasi-particle. The created electron-hole 

pair (also referred to as an exciton) dissociates into free charge carriers within picoseconds. Given 

the fact that the exciton binding energy in methylammonium lead iodide is considered to be lower 

than kT (~25 meV), rapid exciton dissociation already at room temperature is likely.  

Owing to the long diffusion length (>1 µm) which is usually larger than the perovskite film 

thickness, photo-generated charge carriers live long enough to travel to the respective interface 

between perovskite and the electron transporting material (ETM) or hole transporting material 

(HTM). The electrons are selectively transported through the ETM, while the holes are blocked 

at this interface. By contrast, only holes are allowed to pass the hole extraction layer. After 

overcoming the selective charge extraction barriers, the carriers are then transported to the 

respective electrodes (e.g. FTO as cathode and Au as the anode), which are connected via an 

electric circuit and a current flow is generated. 

In reality, not 100% of the incident photons are converted into electrons and contribute to the 

power output of a solar cell. An important figure of merit is the charge carrier lifetime, defined as 

the time frame in which free electrons and holes can exist before recombination occurs. During 

the charge transport process, recombination events (indicated by dashed arrows in Figure 1.12) 

lead to decreased carrier density and thus, losses in the photovoltaic device performance. The 

different recombination mechanisms contributing to the decay in charge carrier density n(t) over 

time can be expressed through the following rate equation:[54] 

𝑑𝑛

𝑑𝑡
= −𝑘1𝑛 − 𝑘2𝑛

2 − 𝑘3𝑛
3        (1.2) 

Here, k1 is the rate constant for trap-assisted (monomolecular) recombination, k2 is associated 

with band-to-band (bimolecular) recombination and k3 is the rate constant related to a many-body 

Auger recombination process. Reducing the number of recombination pathways both within the 

bulk materials as well as at the individual interfaces is of vital importance for the maximization 

of solar cell performance. 

For efficient charge extraction at the selective contacts, a good energy level alignment between 

ETM or HTM and the perovskite layer is necessary. Importantly, the conduction bands (CBs) of 

ETM and perovskite need to match to enable “downhill” electron transfer as shown in Figure 

1.12. By contrast, the valence band (VB) of the perovskite needs to be placed above the highest 

occupied molecular orbital (HOMO) level of the HTM to enable “uphill” hole transfer. Balanced 
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charge extraction avoids the accumulation of a charged species at one interface and can have a 

strong influence on solar cell efficiency.[55] Overcoming losses via recombination processes by 

meticulous interfacial engineering is currently dominating the research activities in the field of 

PSCs.[56-61] 

 

1.3 Stability of perovskite solar cells 

Despite the potential for high-efficiency, low-cost photovoltaics that hybrid perovskite materials 

hold, we still face several challenges that impede the commercialization of PSCs. One of the main 

obstacles that PSCs must overcome is their poor environmental stability upon exposure to heat, 

UV-light, oxygen or humidity. Besides PCE, the main factor that determines the cost per kWh is 

the lifetime of PV devices. Market-dominating crystalline silicon solar cells set a high standard 

for long-term stability with an average degradation rate of 0.5% losses per year.[7] This guarantees 

a module lifetime around 25 years under operational conditions. PSCs must target comparable 

levels of stability to become economically feasible and to compete with established technologies 

on the PV market. 

While the pursuit of high device efficiencies has dominated at the initial stage of PSC research, 

the focus of recent research activities has been slowly shifting towards stability-related 

limitations. In the pasts few years, various extrinsic and intrinsic degradation factors that are 

detrimental to device lifetime have been identified.[7] Extrinsic degradation factors arise from the 

multi-layered device architecture, where changes within the charge extraction layers under 

working conditions affect the device efficiency. For instance, crystallization of the hole 

transporter spiro-OMeTAD under thermal stress, as well as migration of dopant salts within the 

HTM or gold atoms from the electrode have been related to an irreversible decrease in solar cell 

performance.[62-64] Besides, it has been reported that mesoporous TiO2 as ETL absorbs UV-light 

which triggers degradation reactions within the PSC.[65] Degradation related to extrinsic factors 

can be addressed by replacing the contact materials and the introduction of appropriate buffer 

layers.[53] 

By contrast, intrinsic degradation factors arise from the nature of the perovskite material and are 

therefore less straightforward to resolve. Understanding the origin of the intrinsic instability of 

hybrid perovskites provides valuable guidance for tailoring the perovskite materials accordingly 

in order to improve their environmental stability. For example, lead halide perovskites show ion 

migration under bias and illumination, which can result in anomalous hysteresis in current-voltage 
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scans.[66-69] Additionally, the light-induced migration of halide ions in mixed-halide perovskites 

can affect device performance due to phase segregation into iodide- and bromide-rich regions.[70-

73] 

In addition to ionic movements in hybrid perovskites that usually lead to reversible losses in PCE, 

the rapid, irreversible decomposition of the photoabsorber remains a major challenge in the field 

of PSCs. In particular, organic-inorganic hybrid perovskites are notorious for their susceptibility 

to moisture, which overshadows the exciting PSC results achieved in laboratories under exclusion 

of humidity. 

The correlation between perovskite degradation and moisture is a highly complex issue and has 

caused some debate in the scientific community. The interaction between hybrid perovskite and 

water molecules depends on several factors, such as perovskite composition, level of humidity 

and time of exposure. While low humidity conditions have been reported to be beneficial for 

perovskite film formation, high humidity levels generally result in degradation of unencapsulated 

devices (Figure 1.13). 

 

 

Figure 1.13  Photograph of an intact PSC (left) and a degraded device after exposure to moisture (right). 

 

The presence of a low degree of humidity (around 30% relative humidity in air) during film 

processing has been shown to improve perovskite crystal morphology and to enhance PSC 

performance.[74-76] The state-of-the-art PSCs are fabricated in a dry box under controlled air 

humidity below 1%. It has been suggested that moisture-assisted perovskite film growth benefits 

from the adsorption of water molecules at grain boundaries, which induces the merging of 

perovskite crystals, thus increasing grain size and reducing the number of pinholes. On the other 

hand, it has been demonstrated that exposure of PSCs to relative humidity levels higher than 50% 

generally leads to degradation of the photoactive layer which has detrimental consequences for 

device performance. A systematic, comprehensive study of the moisture-induced degradation 

mechanisms in PSCs is necessary to counteract these reaction pathways and to prolong device 
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lifetime. Different experimental and theoretical approaches have been developed to rationalize 

the degradation processes occurring in hybrid perovskites. 

Niu et al. proposed the following reaction equations for the irreversible decomposition of 

CH3NH3PbI3 into PbI2, HI and CH3NH2 in the presence of water.[77] According to the authors, the 

hygroscopic nature of MAI allows it to be easily leached out from the perovskite structure by 

water. MAI further decomposes into the volatile components methylamine, CH3NH2 and 

hydroiodic acid, HI which can evaporate from the sample. Furthermore, HI can also be oxidized 

by oxygen in air to form elemental iodine and water. The authors suggested that the driving force 

for this reaction is the shift of the reaction equilibrium to the degradation side by irreversible 

removal of volatile degradation products according to Le Châtelier’s principle. Similarly, Frost et 

al. proposed an acid-base reaction between the CH3NH3
+ cation and H2O as the first degradation 

step, where the deprotonation of MA results in the phase change of both HI and methylamine, 

ultimately leaving behind PbI2 as the only byproduct.[78] 

In contrast, other authors reported that water can also induce the crystallization of hydrate phases 

in hybrid perovskites. The formation of a hydrate structure of CH3NH3PbI3 was first suggested by 

Weber.[22] Later, Vincent et al. investigated the properties of (CH3NH3)4PbI6 · 2 H2O, a crystal 

phase which forms by the addition of aqueous Pb(NO3)2 to an aqueous solution of CH3NH3I.[79] 

The pale yellow dihydrate phase spontaneously transforms into the black CH3NH3PbI3 perovskite 

phase under low humidity conditions, which hints towards the reversibility of this hydration 

reaction. More recently, Christians et al. and Yang et al. reported the formation of an intermediate 

degradation product which is similar but not identical to the previously reported dihydrate 

(CH3NH3)4PbI6 · 2 H2O upon exposure to highly humid air, before decomposition to PbI2 

occurs.[80, 81] This indicates that the initial step for moisture-induced degradation at very high 

humidity levels might be the uptake of water molecules into the perovskite crystal structure under 

the formation of hydrated phases, rather than an acid-base reaction. Furthermore, it was found 

that slow degradation occurs in ambient humidity levels (~50% RH at 20 °C) over the course of 

tens of days, whereas exposure to 80% RH or even higher humidity levels leads to significantly 

more rapid degradation within less than three days. Therefore, we need to take into consideration 

that different decomposition routes are possible depending on the humidity level. 

Understanding the degradation mechanisms upon moisture exposure facilitates the development 

of strategies to increase the moisture resilience of hybrid perovskites. Since the moisture 

sensitivity of CH3NH3PbI3 is closely related to the hydrophilicity of the organic 

methylammonium cation, the replacement of MA with more hydrophobic organic cations is one 

possible approach. The introduction of bulky organic cations incorporating a long alkyl chain 
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and/or an aryl group instead of a short methyl group has been found to result in the formation of 

so-called 2D perovskites, which show remarkable resilience to humid environments. Here, 

extended sheets of the long-chained organic cations separate a defined number of lead halide 

octahedra interlayers (Figure 1.14). Smith et al. reported a layered perovskite with significantly 

enhanced moisture stability by incorporating hydrophobic phenylethylammonium cations into the 

perovskite structure.[82] However, the photovoltaic performance of 2D perovskite solar cells is 

rather low (<5% in steady-state efficiency measurements) compared to conventional devices 

based on CH3NH3PbI3 as photoabsorber. 

 

 

Figure 1.14  Schematic representation of a layered 2D perovskite structure comprising alternating layers of 

PbI6 octahedra interlayers accommodating small methylammonium cations and extended sheets of bulky 

organic cations. In this scheme, the number of corner-sharing lead halide octahedra layers is n = 3. 

 

At the current stage, existing studies reveal interesting facets of the chemical stability and propose 

possible degradation pathways of hybrid perovskites upon exposure to moisture. First approaches 

to increase the hydrophobicity of the perovskite layer have been developed to tackle the moisture 

sensitivity of PSCs. However, in-depth studies employing in situ characterization techniques 

under controlled environmental conditions are lacking. Monitoring the evolution of various 

perovskite materials in real-time upon exposure to humidity promises to shed light on their 

detailed degradation mechanism, which is of paramount importance to design PSCs with high 

efficiency and long-term stability. 

 

1.4 Outline of the thesis 

The work presented here is dedicated to the understanding of moisture-induced degradation 

processes occurring in organic-inorganic hybrid perovskites, the implication of these processes 
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for solar cell performance, and the development of new perovskite structures to overcome the 

present moisture instabilities. 

First, chapter 3 describes our work on identifying and characterizing the fundamental degradation 

pathways in the archetypal hybrid perovskite compound – methylammonium lead iodide – upon 

exposure to an elevated level of humidity. We reveal the (partial) reversibility of the two 

sequential hydration steps producing two different hydrate species in single crystals, thin films 

and solar cells. 

In chapter 4, we study methylammonium lead iodide perovskite films made from precursor 

solutions with a slight PbI2 excess, stoichiometric mixtures or an MAI excess. We investigate 

how the precursor stoichiometry in the perovskite solution influences the initial device 

performance and identify the different humidity-induced degradation pathways via in situ X-ray 

diffraction measurements. 

In chapter 5, we focus on state-of-the-art multiple-cation mixed-halide hybrid perovskites and 

elucidate the role of commonly used cesium and rubidium additives in the enhancement of solar 

cell efficiency. By combining three complementary probing techniques, we confirm the different 

effects of cesium and rubidium cations on the structural and electronic properties of the perovskite 

material, which we correlate to the observed device characteristics. 

Following our work on multiple-cation mixed-halide perovskites, we discuss the impact of cesium 

and rubidium cation additives on the moisture stability of the resulting films and devices in 

chapter 6. By analyzing the chemical composition of different phase segregation products which 

form during film crystallization or upon exposure to humidity, we disclose the instability of 

rubidium-containing perovskites. 

Chapter 7 introduces the concept of 2D perovskites, which represent an attractive class of 

semiconductors not only due to their structural and optoelectronic tunability but also because of 

their robustness against moisture exposure. We elaborate on the identification and control of 

phase purity in oriented 2D perovskite thin films. 

Finally, in chapter 8, we present a novel 2D/3D hybrid perovskite bilayer architecture to ensure 

high device efficiency, while simultaneously improving the moisture stability of perovskite solar 

cells. We establish a facile solution-based method for the dimensionality engineering process and 

characterize the resulting changes in the perovskite crystal structure. Furthermore, we 

demonstrate an increase in photovoltaic performance in the form of enhanced open-circuit voltage 

and enhanced moisture tolerance for the 2D/3D perovskite devices.  
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2 Characterization techniques 

 

2.1 X-ray diffraction (XRD) 

X-ray diffraction (XRD) is the most common technique to study the atomic structure of crystalline 

materials. The wavelength of X-ray radiation is in the range of only a few Angstroms (10-10 m) and 

it is therefore in the same range as the interatomic distances occurring in a crystal lattice. This allows 

us to obtain valuable information about the examined sample, such as composition, crystallinity, size 

of crystal domains or crystal orientation. 

In a conventional XRD setup, X-rays are generated in a high vacuum tube where electrons are 

extracted from an incandescent filament (cathode) and accelerated towards the positively charged 

metal anode by applying a high voltage, typically around 50 kV. These high energetic electrons 

collide with the anode material (e.g. Cu, Mo or Cr) and if an electron is deviated by the 

electromagnetic interaction with the nucleus of a metal atom, it loses a part of its energy and an X-

ray photon is emitted. The energy of the emitted photon can take any value up to a maximum 

corresponding to the acceleration voltage between cathode and anode, creating a continuous 

spectrum (“Bremsstrahlung”). 

The accelerated electron can also remove an inner shell electron of a metal atom and if the vacancy 

is filled by an electron from an outer shell, an X-ray photon is emitted by this relaxation process. The 

energy of the photon corresponds to the well-defined difference in binding energy between the two 

shells and is characteristic of the anode material. By using a monochromator, these characteristic X-

rays with a single wavelength (e.g. Cu Kα line) can be filtered out from the polychromatic radiation 

and utilized for XRD measurements. 

Among the richness of possible interactions of electromagnetic waves with matter, XRD is based on 

the so-called scattering process. When incident X-ray waves are elastically scattered by the electron 

clouds of periodically arranged atoms in a crystalline sample, constructive or destructive interference 

can occur, depending on the path difference between the two scattered waves. Figure 2.1 shows a 

schematic illustration of the optical paths of incident X-ray waves 1 and 2 by the atoms A and B in 

a crystal lattice, respectively.  
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Figure 2.1  Schematic illustration of X-ray diffraction in a crystal lattice. The red and green circles represent 

diffraction centers (atoms), α is the incidence angle,  is the exit angle,  is the Bragg angle, d is the distance 

between reflecting crystal planes and s is the half distance of the path difference between X-ray 1 and 2.[1] 

 

Constructive interference occurs if two scattered X-ray beams are in phase, which means that their 

path difference is an integer multiple of the X-ray wavelength, as given by Bragg’s law of diffraction: 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃          (2.1)  

where n is diffraction order, λ is the X-ray wavelength, d is the distance between the two reciprocal 

lattice planes and θ is the Bragg angle.  

If the Bragg condition is fulfilled, atoms located on the sequence of crystal planes parallel to each 

other with the interplanar spacing d will diffract in phase and a diffraction peak occurs in the 

corresponding XRD pattern. The position and the relative intensities of diffraction peaks correspond 

to the crystal structure and the involved types of atoms, thus revealing the composition of the sample. 

In the most common XRD scanning mode (the so-called Bragg-Brentano or locked couple 

geometry), the incident angle and the detection angle are scanned simultaneously. Thus, only Bragg 

planes which are parallel to the substrate produce diffraction peaks, giving a hint on the crystallite 

orientation within thin film samples (Figure 2.2). 
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Figure 2.2  Schematic illustration of XRD measurements operated in the Bragg-Brentano scanning geometry. 

Only crystallites with Bragg planes oriented parallel to the substrate (where the plane normal is perpendicular 

to the substrate) produce diffraction peaks.[1] 

 

In addition, the broadening of peaks in a diffraction pattern correlates with the average size of the 

crystallites in a powder sample which can be estimated by using the Scherrer equation:[2] 

𝐷 =
𝐾𝜆

𝛽𝑐𝑜𝑠𝜃
           (2.2)  

where D is the mean diameter of the crystalline domain, K is a dimensionless shape factor whose 

value is close to unity, λ is the X-ray wavelength, β is the line broadening at half the maximum 

intensity in radians and θ is the Bragg angle. 

 

 

2.2 2D grazing-incidence wide-angle X-ray scattering 

(GIWAXS) 

Grazing-incidence wide-angle X-ray scattering (GIWAXS) is a widely-used XRD technique for thin 

film characterization. The fixed, low incidence angle with usually α < 1° can lead to an increased 

signal yield compared to a conventional locked-couple scan, since more X-rays are absorbed by the 

sample rather than the substrate (Figure 2.3), therefore reducing measurement time. Another benefit 

over the Bragg-Brentano geometry lies in the possibility to obtain depth profiles of the examined 

film.[1, 3] By carefully varying the incidence angle around the so-called critical angle for total X-ray 

external reflection, the penetration depth of the incident beams can be adjusted, which allows the 

investigation of either the film’s surface or its bulk properties. 
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Figure 2.3  (a) XRD at high incident angle with small spot size and large penetration depth. (b) Using a small, 

grazing-incidence angle, the spot size is larger and the penetration depth is reduced.[1] 

 

Combining GIWAXS with a 2D detector offers the possibility to obtain diffraction patterns which 

contain much more information than one-dimensional detectors, for instance in order to analyze 

crystallite orientation within thin film samples. Perfectly polycrystalline samples with low textures 

produce Debye diffraction rings, whereas highly textured samples with preferential crystallite 

orientations typically show partial rings or dots (Figure 2.4). An integration of a particular diffraction 

ring (i.e. fixed q) results in a pole figure, where the azimuthal angle χ indicates the orientation of 

certain crystal planes with respect to the substrate. This makes it possible to compare the degree of 

texture or crystal disorder between two samples. A radial cut along χ = 0° corresponds to a 1D XRD 

pattern recorded in the Bragg-Brentano geometry, where q is directly related to 2θ, revealing the out-

of-plane features of the thin film. In contrast, a radial cut along χ = 90° provides in-plane information 

about the sample. The area under the 1D diffraction curves can be evaluated for comparing the 

relative degree of crystallinity among different samples.  

 

 

Figure 2.4  Schematic illustration of the measurement geometry of XRD with a 2D detector, and illustration of 

image data from samples with different textures. Polycrystalline films produce diffraction rings where the 

azimuthal angle χ indicates the crystal orientation with respect to the substrate, while single crystals produce 

dots.[1] 
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2.3 Scanning electron microscopy (SEM) 

Scanning Electron Microscopy (SEM) is a routinely used imaging technique to study the micro- and 

nanostructured morphology of materials. In electron microscopy, the imaging process is based on 

interactions of the incoming electron beam with the sample atoms. Compared to optical microscopes, 

a high resolution in the range of only a few nanometers can be achieved in SEM due to the much 

smaller de Broglie wavelength of electrons than photons in the visible range. 

 

 

Figure 2.5  Schematic representation of a Scanning Electron Microscope. 

 

In a typical SEM setup (Figure 2.5) an electron beam is emitted from an electron gun in high vacuum, 

either thermionically by a tungsten filament cathode or by using a field emission gun. The energy of 

the electron beam is proportional to the applied acceleration voltage between the cathode and an 

anode, which is usually 1–40 kV. The electron beam is then focused with the aid of condenser lenses 

and an objective lens to obtain a small beam diameter of a few nanometers. After passing through an 

aperture, the primary beam strikes the surface region of the sample material which results in a 

multitude of different interactions.[4] 

An Everhart-Thornley photomultiplier detector records the low-energetic secondary electrons (10–

50 eV) which are emitted by atoms excited by the primary electron beam in an inelastic scattering 

process. Secondary electrons are those signals which are responsible for the topological contrast in 

common SEM. In contrast, backscattered electrons can reveal the sample’s chemical composition 
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because the detected intensity depends on the atomic number of the sample atoms. High-energetic 

backscattered primary electrons result from elastic scattering at the atom cores and can be detected 

by a semiconductor device. By scanning the surface area in a raster pattern with the help of scanning 

coils, an SEM image can be visualized. 

 

2.4 Energy dispersive X-ray spectroscopy (EDX) 

Energy dispersive X-ray spectroscopy (EDX) in combination with SEM is widely employed for 

elemental mapping within a micron- or nano-sized area.[5] To spatially resolve the elemental 

composition in an SEM micrograph, a focused beam of high-energy electrons is scanned over the 

specimen and interacts with the atoms of the sample surface. This interaction can lead to the 

excitation and ejection of an electron from the inner shell of a certain atom, creating a hole which 

can be filled by an electron from an outer shell at a higher energy level (Figure 2.6).  

 

 

Figure 2.6  Schematic illustration of the X-ray emission process in an atom upon external stimulation.  

 

If the energy difference between the inner and the outer shell is released in the form of an X-ray, its 

energy is characteristic for each type of atom and can be detected by an energy-dispersive 

spectrometer. Si(Li) detectors cooled with liquid nitrogen or silicon drift detectors equipped with 

Peltier cooling systems are most commonly used to convert the X-ray energy into voltage signals. 

The resulting EDX profile indicates the number and energy of the emitted X-rays, which in turn 

reveal the chemical composition of the sample surface. 
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2.5 Atomic force microscopy (AFM) 

Atomic force microscopy (AFM) is a widely used technique to characterize the surface topography 

of solid samples, which can be used to calculate surface properties such as roughness parameters. 

 

Figure 2.7  Schematic representation of the operational principle of an atomic force microscope.[6]  

 

In a standard AFM setup, the specimen surface is moved underneath a sharp probe tip at the end of 

a cantilever by a piezoelectric scanner (Figure 2.7). Attractive or repulsive forces between the tip and 

the sample lead to a deflection of the cantilever which acts as a spring. This displacement is detected 

by a laser beam which is reflected on the top surface of the cantilever and a shift in the reflected 

beam is measured with an array of photodiodes. A topographic image of the sample surface can be 

constructed by combining the information about the position of the tip with respect to the specimen 

and the recorded force. 

One of the most common operational modes in AFM is called “tapping mode”,[7] which means that 

the cantilever is driven to oscillate near its resonance frequency with an amplitude around 100–

200 nm. When the tip comes closer to the surface by attractive interaction forces, the oscillation 

amplitude would decrease. In order to maintain a defined oscillation amplitude, a piezoelectric 

actuator adjusts the height of the cantilever above the sample. Thus, the tapping mode is a frequently 

used contact-less method to avoid damage to the specimen and the AFM tip. 
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2.6 Time-of-flight secondary ion mass spectrometry (ToF-

SIMS) 

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is a powerful, surface-sensitive 

technique to obtain detailed information about the elemental and molecular composition of solids. It 

does not only offer surface analysis, but also depth profiling, essentially enabling a full 3D elemental 

analysis of thin layers.[8] 

 

 

Figure 2.8  Schematic illustration of the operational principle of time-of-flight secondary ion mass 

spectrometry. 

 

ToF-SIMS relies on the combination of two analytical methods: secondary ion mass spectrometry 

(SIMS) and time-of-flight mass analysis (ToF). First, a pulsed particle gun operated at a few keV 

bombards the solid sample with primary ions (typically Cs, Ga or Bi) to remove atoms and molecules 

from the uppermost one or two monolayers of the sample. The liberated fragment species 

(“secondary ions”) are subsequently accelerated into a circular or linear flight-tube towards a detector 

(Figure 2.8). Since heavier particles require a longer “time-of-flight” along their drift path than lighter 

particles before they reach the detector, which can be measured on the nanosecond scale. 

Consequently, the mass of secondary ion fragments can be determined with extremely high precision.  

Raster scanning the specimen surface with a focused primary ion beam produces a map for different 

elements and molecules with a good lateral resolution (<60 nm). For local depth profiling, the ToF-

SIMS setup is usually operated in a dual beam mode.[9] A low energy ion gun (e.g., producing oxygen 

ion clusters) is continuously forming a sputter crater over a larger area, while the bottom of the crater 

is progressively analyzed with a pulsed primary ion beam from a liquid metal ion source. The sputter 

time then correlates with the sampling depth. 
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2.7 Ultraviolet-visible (UV-Vis) absorption spectroscopy 

Ultraviolet-visible (UV-Vis) absorption spectroscopy is a technique to characterize the light 

absorption properties of liquid or solid samples. The photon energy which is needed for the excitation 

of an electron from its electronic ground state to an excited state corresponds to the energy difference 

between the two states. Therefore, qualitative and quantitative information about the photoinduced 

transitions can be gained according to the characteristic absorption spectrum of a material. The 

absorbance A of a material at a certain wavelength λ depends on the concentration of the absorbing 

species and the sample thickness. This relation is given by the Lambert-Beer law: 

𝐴 = −𝑙𝑜𝑔 (
𝐼

𝐼0
) = 𝜀𝑐𝑑         (2.3)  

where I is the measured intensity of transmitted light, I0 is the intensity of incident light, ε is the 

extinction coefficient of the sample, c is the concentration of the absorbing species and d is the path 

length of light travelling through the sample. 

However, the Lambert-Beer law is not unrestrictedly valid for the characterization of samples 

consisting of several different layers. Each interface between two media reflects a certain fraction of 

the incident light and must be taken into account. Measurements with an integrating sphere and a 

suitable reference substrate are necessary to obtain reliable values for the absorbance of the 

photoactive layer. The reference should have the same architecture as the sample substrate, except 

for the active layer. Figure 2.9 shows the typical setup of a UV-Vis spectrophotometer equipped with 

an integrating sphere. 

 

 

Figure 2.9  Schematic setup of a UV-Vis spectrophotometer equipped with an integrating sphere.[10] 
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A standard UV-Vis spectrometer combines a xenon lamp to produce light in the visible wavelength 

region and a deuterium lamp for the ultraviolet region in order to generate a continuous spectrum. A 

monochromator can select a certain wavelength and by scanning over the whole spectral range, an 

analytical spectrum can be obtained.  

First, the instrument baseline needs to be measured without any samples in the transmission port 

(100%T) and a Spectralon white standard in the reflectance port (100%R). Then, the transmittance 

(%T) of both the sample and the reference at the transmission port is measured, followed by 

reflectance (%R) measurements where the specimen is positioned outside the integrating sphere. 

Assuming that all incident light is either transmitted, reflected or absorbed, the percentage of 

absorbed light %A (absorptance) can be calculated as: 

%𝐴 = 1 −%𝑇 −%𝑅         (2.4)  

The absorbance is then given by: 

𝐴 = −𝑙𝑜𝑔(1 −%𝐴)         (2.5)  

Finally, the actual absorbance of a film is: 

𝐴𝑓𝑖𝑙𝑚 = 𝐴𝑠𝑎𝑚𝑝𝑙𝑒 − 𝐴𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒        (2.6)  

 

2.8 Photoluminescence spectroscopy (PL) 

Photoluminescence (PL) spectroscopy is a common technique for the characterization of electronic 

states in molecules or semiconductors. PL measurements are based on fluorescence which is 

generally defined as the property of a material to emit light with a particular wavelength upon the 

transition from an excited electronic state to the electronic ground state after light absorption.  

In the case of semiconductors, if light with sufficient energy is absorbed, an electron can be excited 

from the valence band to the conduction band, accompanied by the generation of a hole in the valence 

band. The excited electron can quickly relax to a state corresponding to the conduction band 

minimum (e.g. via vibrational relaxation). If radiative charge recombination takes place, the 

photoexcited electron falls back into its electronic ground state and recombines with a hole under the 

emission of a photon (Figure 2.10). The wavelength of the fluorescence photon detected in a PL 

experiment is related to the band gap of the material, which is the difference between the energy 

levels of the valence and the conduction band. The steady-state PL spectrum provides information 
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about the wavelength and the amount of the emitted photons, thus giving insight into the electronic 

landscape of semiconductors, but also the effectiveness of charge transfer processes. 

 

 

Figure 2.10  Schematic energy level diagram illustrating the photo-excitation and radiative relaxation pathway 

of an electron as the foundation for PL measurements. 

 

Besides steady-state PL measurements, time-resolved PL techniques such as time-correlated single 

photon counting (TCSPC) are frequently used to investigate the recombination kinetics of photo-

excited charge carriers. The fluorescence lifetime determines how long a photo-excited species 

remains in the excited state before returning to its ground state via emission of a fluorescence photon. 

In a typical TCSPC experiment, the specimen is exposed to a pulsed laser beam and the time between 

a laser pulse and the detection of a fluorescence photon is recorded with a very high temporal 

resolution on the picosecond timescale. By pulsing the laser with a repetition rate of 100 kHz – 50 

MHz, a multitude of excitation-recombination events can be generated and the results can be depicted 

in a histogram where the single photon counts are plotted against the detection time (Figure 2.11).[11] 

The plot usually follows an exponential decay and by fitting the decay curve from the TCSPC method 

with an appropriate function, fluorescence lifetimes can be calculated. 

 

 

Figure 2.11  Working principle of TCSPC. (a) Measurement of start-stop-times between pulsed laser excitation 

and photon detection. (b) Histogram of binned start-stop-times.[11] 
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2.9 Ellipsometry 

Ellipsometry is a contact-less, very sensitive technique for thin film characterization that allows the 

determination of film thickness, roughness, composition and crystallinity by measuring the dielectric 

properties of the sample. The principle of ellipsometry is based on the change in the polarisation state 

of an incident light beam after being reflected by the sample due to light-matter interactions 

depending on the optical constants (index of refraction and absorption coefficient) of the sample 

material.[12] 

 

 

Figure 2.12  Schematic illustration of an ellipsometry setup, where Φ is the specular incident angle of the light 

beam. 

 

As a probe beam, light is linearly polarized by a polarizer and reaches the sample under a fixed 

incident angle Φ. After specular reflection at the sample surface, the reflected beam is generally 

elliptically polarized. The elliptical polarization state can be determined by rotating a second 

polarizer (analyzer) between the reflected beam and the detector and measuring the complex 

reflectance ratio (Figure 2.12). The latter can be parametrized by the phase difference Δ and the 

amplitude value Ψ, which give insights into the dielectric function of the sample material. Since the 

direct translation of Ψ and Δ to the optical constants is only possible for homogeneous bulk materials 

with perfectly flat interfaces, the data analysis generally requires fitting of the experimental 

ellipsometry data to a model of the dielectric function. For each component in the sample, an initial 

model of the optical transitions is designed from which the dielectric function is calculated and the 

values of Ψ and Δ simulated. A regression algorithm finally fits the simulated graph to the 

experimental curve by varying the free parameters, such as the film thickness.[13] 
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2.10 Time-resolved microwave conductivity (TRMC) 

Time-resolved microwave conductivity (TRMC) is a versatile, contact-less technique to study the 

light-induced generation of charge carriers and their recombination dynamics in both bulk materials 

and at interfaces. This method measures the perturbation of the initial microwave absorbance of the 

sample upon the generation and decay of free charge carriers after pulsed laser excitation at a certain 

wavelength.[14, 15] The obtained TRMC traces reflect an impressive set of properties, such as charge 

carrier lifetimes, mobilities, trap densities and interfacial charge transfer rates, which can be 

determined by fitting the decay curves according to an appropriate kinetic model (Figure 2.13).[16] 

 

 

 

Figure 2.13  Experimental TRMC traces of a perovskite film (left) and fitted TRMC curves according to a 

kinetic model (right) for various intensities of the incident light pulse.[16] 

 

In a typical TRMC experiment, thin solid films on quartz substrates are placed in a microwave cell. 

A slow repetition rate of the excitation laser (~10 Hz) ensures full relaxation of all photo-induced 

charges to the ground state before the next laser pulse hits the sample. Neutral density filters are used 

to vary the intensity of the incident light, typically ranging over several orders of magnitude, from 

109 to 1013 photons/cm2 (10−4 to 1 μJ/cm2 per pulse). The time-resolved change in conductance ΔG(t) 

can be obtained from the photo-excitation-induced change in microwave power ΔP(t), which are 

related by a sensitivity factor K: 

Δ𝑃(𝑡)

𝑃
= −𝐾Δ𝐺(𝑡)         (2.7)  
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Figure 2.14  Kinetic model of processes occurring on photo-excitation of perovskite films. Here, GC represents 

the time-dependent photo-excitation of electrons from the valence band (VB) to the conduction band (CB), k2 

the rate constant for second order recombination, kT the rate constant for electron trapping and kD the rate 

constant for recombination between a trapped electron and a free hole. The trap density is given by NT. 

 

A kinetic model is used to obtain quantitative information from the intensity-dependent TRMC traces 

(Figure 2.14). This model is based on a homogeneous generation of charges, which can be 

experimentally realized by using an excitation wavelength close to the absorption onset. The initial 

number of photo-excitations n depends on the light intensity of the laser I0 (number of photons/cm2) 

and the optical absorption at the excitation wavelength (FA): 

𝑛 =  
𝐼0×𝐹𝐴

𝐿
           (2.8)  

where L is the film thickness. Upon absorption of light, electrons (ne) are excited to the conduction 

band (CB), leaving holes (nh) in the valence band (VB). The laser pulse (GC) initially generates equal 

concentrations of excess electrons (ΔnCB = Δne) and holes (-ΔnVB = Δnh). Assuming that every 

absorbed photon yields a single free electron and hole, then the electrons can recombine with holes 

via second order recombination (k2) or traps (kT and kD). The time-dependent change in the electron 

concentrations in the CB, VB and trap states (NT) are described by the coupled differential Equations 

2.9 to 2.11, respectively.  

𝑑𝑛𝐶𝐵

𝑑𝑡
=
𝑑𝑛𝑒

𝑑𝑡
= 𝐺𝑐 − 𝑘2𝑛𝑒𝑛ℎ − 𝑘𝑇𝑛𝑒(𝑁𝑇 − 𝑛𝑇)     (2.9)  

𝑑𝑛𝑉𝐵

𝑑𝑡
= − 

𝑑𝑛ℎ

𝑑𝑡
= − 𝐺𝑐 + 𝑘2𝑛𝑒𝑛ℎ + 𝑘𝐷𝑛𝑡𝑛ℎ      (2.10)  

𝑑𝑛𝑡

𝑑𝑡
= 𝑘𝑇𝑛𝑒(𝑁𝑇 − 𝑛𝑇) − 𝑘𝐷𝑛𝑡𝑛ℎ        (2.11)  

The charge generation in the GC is determined by the temporal profile and the intensity of the laser 

pulse in combination with the optical absorption of the sample at the wavelength used. Solving the 

equations using numerical methods yields the time-dependent concentrations of ne, nh, and nt. The 
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change in photoconductance as a function of time is calculated from the product of charge carrier 

concentrations and mobilities according to: 

∆𝐺(𝑡) = 𝑒(𝑛𝑒(𝑡)µ𝑒 + 𝑛ℎ(𝑡)µℎ)𝛽𝐿        (2.12)  

In which L is the film thickness, μe and μh are the electron and hole mobilities, respectively, and β is 

the ratio of the inner dimensions of the microwave cell. The trapped charge carriers, nt are assumed 

to be immobile and do not contribute to ΔG.  

 

 

2.11 Current-voltage (J-V) measurements 

The performance of solar cells is generally rated by their power conversion efficiency (PCE) under 

standardized conditions. The PCE of a photovoltaic device can be characterized by measuring its 

current-voltage (J-V) properties with a solar simulator under illumination using the standard air-mass 

1.5 global (AM 1.5G) spectrum at a total irradiance of 100 mW cm-2.[17] By scanning the applied 

external voltage in a certain range and recording the corresponding current density of the photovoltaic 

device, a J-V curve (Figure 2.15) is obtained. Several characteristic photovoltaic parameters can be 

extracted from the J-V curve as figures of merit to evaluate the quality of solar cells. 

 

 

Figure 2.15  Typical J-V curve (blue) of a solar cell and its characteristic photovoltaic parameters. 

 

The open-circuit voltage Voc is defined as the voltage at which the net current flow through the solar 

cell is zero. In general, Voc increases with increasing band gap of the material, but it also depends on 

the recombination processes, and therefore on the charge carrier lifetime. The short-circuit current 
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density Jsc is the maximum current that crosses the solar cell per active area unit at zero external bias. 

Jsc depends on the charge generation rate (which is mainly connected to the light intensity, the 

absorption/reflection properties and the band gap of the material), as well as the charge collection 

efficiency. The maximum power point (MPP) on the J-V curve defines the maximum power PMPP 

that a solar cell generates, which is given by the product between VMPP and JMPP, forming the largest 

rectangular area between the J-V curve and the coordinate axes. The fill factor (FF) is defined as the 

ratio between the obtained maximum power of the solar cell (represented by the orange area in Figure 

2.15) and the product of Jsc and Voc (yellow square). This relation is reflected in the equation: 

FF =
𝑃𝑀𝑃𝑃

𝑉𝑜𝑐𝐽𝑠𝑐
=
𝑉𝑀𝑃𝑃𝐽𝑀𝑃𝑃

𝑉𝑜𝑐𝐽𝑠𝑐
        (2.13)  

The fill factor is also a key parameter to evaluate the device performance and it is strongly affected 

by internal losses such as series resistance and shunt resistance within the solar cell.  

Finally, the PCE which describes how efficiently the power of incident light (Pin) can be converted 

into electric power is given by the relation: 

PCE =
𝑃𝑀𝑃𝑃

𝑃𝑖𝑛
=
𝐽𝑠𝑐𝑉𝑜𝑐FF

𝑃𝑖𝑛
        (2.14)  

It is important to note that PSCs often show anomalous J-V hysteresis, meaning that different J-V 

curves are obtained from the same device, depending on the direction of the voltage scan (Figure 

2.16). Due to the inconsistency between forward and reverse scans of J-V curves for hysteretic solar 

cells, monitoring the evolution of the maximum power point under operational conditions has been 

considered a more reliable assessment of device efficiency. To determine the stabilized power output, 

a constant voltage VMPP is applied and the resulting JMPP is tracked over time under illumination. 

 

 

Figure 2.16  (a) Typical J-V hysteresis in a perovskite solar cell showing different curves for forward and 

reverse voltage scans. (b) Maximum power point tracking to determine the steady-state power output of the 

solar cell. 
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2.12 Time-of-flight (ToF) measurements 

Time-of-flight (ToF) is a useful method to probe the charge transport properties within 

semiconductor thin films. For a typical ToF experiment, laterally contacted thin film samples with 

inter-electrode distances ideally in the range of a few microns (depending on the diffusion length of 

the sample material) are fabricated. Charge carriers in the specimen layer are generated by 

illumination using pulsed laser excitation close to one of the gold electrodes. By simultaneously 

applying a constant external electric field, the photo-generated charge carriers move across the film 

within the gap towards the opposite Au electrode. Depending on the polarity of the applied electric 

field, either holes or electrons can be probed as the mobile species since charges are locally generated 

near one electrode. The transit time ttr that is required for charge carriers to travel laterally from the 

excitation spot to the opposite Au contact increases with increasing electrode distances. To extract ttr 

from the measured photocurrent transient, linear fit functions were employed to fit the initial plateau 

and the decay of the curve. The transit time is then determined by the intersection of the two linear 

fits.[18] The average charge carrier mobility µ in the thin film sample can be approximated by the 

equation: 

𝜇 =
𝑑

𝐸∙𝑡𝑡𝑟
          (2.15)  

where d is the inter-electrode distance, E is the applied electric field and ttr the ToF transit time. By 

plotting ttr against d, the slope of the linear regression is a direct measure for the mobility.  

 

 

Figure 2.17  Schematic illustration of a time-of-flight experimental setup.[19] 
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2.13 Thermally stimulated current (TSC) measurements 

Thermally stimulated current (TSC) measurements are used to investigate electronic trap states in 

semiconducting materials or complete photovoltaic devices. Typically, the contacted thin film or 

device is first cooled to a very low temperature (~30 K) well below the activation energy of the 

investigated trap states, while being kept in the dark. Subsequently, charge carriers are generated by 

illumination with a cold LED array and the sample is held at a constant (low) temperature to allow 

the charge carriers to relax inside of the density of states and occupy possible trap states. Afterwards, 

the sample is slowly heated up at a constant rate, and the charge carriers are gradually released from 

their trap levels, which induces a current flow in the device sample (Figure 2.18).[20]  

 

 

Figure 2.18  Thermally stimulated current (TSC) signals for different PSCs.[20] 

 

The TSC signal in relation to the temperature offers insights into the depth, the density and the 

activation energy of the trap states. Shallow traps are released already at low temperatures, whereas 

charge carriers in deep states require higher thermal energy for release. Assuming that the initial rise 

of the TSC peak corresponds to the start of trap release due to thermal activation following an 

Arrhenius process, fitting the initial rise of the TSC peak can be used to estimate the activation energy 

of the trap states according to the following equation:  

𝐼𝑇𝑆𝐶 ∝ 𝑒𝑥𝑝 (−
𝐸𝐴

𝑘𝐵𝑇
)         (2.16)  

where EA is the activation energy, kB is the Boltzmann constant and T the temperature, at which the 

TSC signal ITSC starts to rise. 
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3 Humidity-induced degradation of 

CH3NH3PbI3 

 

 

This chapter is based on the following publication:  
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Schilfgaarde, M. T. Weller, T. Bein, J. Nelson, P. Docampo and P. R. F. Barnes, Reversible 

Hydration of CH3NH3PbI3 in Films, Single Crystals, and Solar Cells. Chem. Mater. 2015, 27 (9), 

3397–3407. (DOI: 10.1021/acs.chemmater.5b00660) 

† These authors contributed equally to this work. 
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3.1 Abstract 

Solar cells comprising methylammonium lead iodide perovskite (MAPI) are notorious for their 

sensitivity to moisture. We show that hydrated crystal phases are formed when MAPI is exposed to 

water vapor at room temperature and that these phase changes are fully reversed when the material 

is subsequently dried. The reversible formation of CH3NH3PbI3 · H2O followed by (CH3NH3)4PbI6 · 

2 H2O (upon long exposure times) was observed using time-resolved XRD and ellipsometry of thin 

films prepared using ‘solvent engineering’, single crystals, and state-of-the-art solar cells. In contrast 

to water vapor, the presence of liquid water results in the irreversible decomposition of MAPI to 

form PbI2. MAPI changes from dark brown to transparent on hydration; the precise optical constants 

of CH3NH3PbI3 · H2O formed on single crystals were determined, with a band gap at 3.1 eV. Using 

the single crystal optical constants and thin film ellipsometry measurements, the time dependent 

changes to MAPI films exposed to moisture were modelled. The results suggest that the monohydrate 

phase forms independently of the depth in the film suggesting rapid transport of water molecules 

along grain boundaries. Vapor phase hydration of an unencapsulated perovskite solar cell (initially 

Jsc ≈ 19 mA cm-2 and Voc ≈ 1.05 V at 1 sun) resulted in more than a 90% drop in short circuit 

photocurrent and around 200 mV loss in open circuit potential, but these losses were fully reversed 

after the device was exposed to dry nitrogen for 6 h. Hysteresis in the current-voltage characteristics 

was significantly increased after this dehydration, which may be related to changes in the defect 

density and morphology of MAPI following recrystallization from the hydrate. Based on our 

observations we suggest that irreversible decomposition of MAPI in the presence of water vapor only 

occurs significantly once a grain has been fully converted to the monohydrate phase. 

 

3.2 Introduction 

Methylammonium lead iodide (which for simplicity we will refer to as MAPI) perovskite is 

generating frenzied interest in the field of alternative photovoltaics as a promising material for 

achieving the optimum paradigm of the technology: simplicity of processing combined with 

outstanding optoelectronic properties. The rapid progression of the claimed power conversion 

efficiencies of MAPI devices – exceeding 20%[2] within five years of the first publication[3] – raises 

the hope that the technology will lead to the manufacture of highly efficient photovoltaic modules 

with a short energy payback time relative to established technologies.[4] 
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Ensuring the stability of MAPI photovoltaics under operational conditions is one of the biggest 

barriers to commercializing the technology. At present, little is understood about the failure 

mechanisms of devices. To develop effective strategies to improve stability and achieve market 

standards, the degradation pathways under different environmental conditions must be elucidated. 

Unmistakably, MAPI is sensitive to moisture, which may have both detrimental and beneficial effects 

depending on the context. The presence of humidity during film processing has been shown to 

significantly influence thin film morphology[5] and was claimed to lead to an improvement of the 

performance of solar cells.[6, 7] But the presence of water has also been suggested, e.g. by Frost et al., 

to catalyze the irreversible decomposition of MAPI into aqueous HI, solid PbI2 and CH3NH2 either 

released as gas or dissolved in water.[8] Experimental evidence has been published to confirm 

degradation of MAPI into PbI2 [9] while, in parallel, water was suggested to provoke the 

crystallization of a perovskite species incorporating isolated [PbI6]4- octahedra.[10] It has been shown 

that the exposure of MAPI solar cells to relative humidity greater than around 50% has rapid 

detrimental consequences on device performance.[11] Thus efforts to prevent moisture ingress[12] or 

careful device encapsulation are required to achieve significant stability under operation.[13] 

This paper concerns the interaction of MAPI with water. The formation of colorless mono-hydrated 

methyl ammonium lead iodide (CH3NH3PbI3 · H2O) from MAPI crystals in aqueous solution at 

temperatures below 40 °C was described in 1987 by Poglitsch and Weber.[14] The structure of this 

monohydrate was later determined by Hao et al.[15] The compound (CH3NH3)4PbI6 · 2 H2O, which 

we will occasionally refer to as di-hydrated methylammonium lead iodide can also be formed by a 

similar method, as described by Vincent et al.[16] Pale yellow dihydrate crystals result when MAPI is 

cooled to below 40 °C in a mother liquor of aqueous Pb(NO3)2 and methylammonium iodide solution. 

Christians and co-workers recently investigated the interaction of MAPI and water vapor by exposing 

both MAPI films cast on mesoporous Al2O3 and full solar cells to controlled humidity,[17] while, 

concurrently, Yang et al. have investigated the influence of different hole transport materials on 

devices exposed to moisture.[18] Both identified the degradation product as (CH3NH3)4PbI6 · 2 H2O; 

we note here that their diffraction patterns suggest a significant contribution from the monohydrate 

species. Additionally, Christians et al. observed a decrease in performance of solar cells that were 

stored in moist air depending on the level of humidity. Zhao et al.[19] reported instant optical 

bleaching of MAPI thin films upon exposure to ammonia vapor that was fully reversible. Their 

observation was characterized by the appearance of a new Bragg (Cu-Kα) reflection around 2θ = 

11.6° in the XRD pattern of the bleached MAPI species. Although not yet widely appreciated, MAPI 

clearly shows a propensity to form new solvated crystal structures at room temperature by 

incorporating small polar molecules. The full reversibility of the stepwise hydration of MAPI has – 

to the best of our knowledge – not yet been demonstrated. 
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Here, we combine time-resolved ellipsometry with X-ray diffraction measurements to identify the 

degradation products and monitor the dynamics of the decomposition reactions on thin films, single 

crystals and full devices in the presence of moisture. Beside the precise derivation of the optical 

constants of both MAPI single crystals and the hydrate species, our results elucidate the hydration 

mechanisms and differentiate between reversible hydration and the irreversible formation of lead 

iodide, thus constituting a crucial step towards engineering long-term stability in perovskite solar 

cells. Finally, we show that devices that have been exposed to moisture exhibit a dramatic loss of 

performance which may be recovered by a simple drying step at room temperature so long as water 

condensation on the perovskite surface did not occur. 

 

3.3 Results and discussion 

3.3.1 Single crystals 

The hydration mechanism was first investigated optically by varying angle spectroscopic 

ellipsometry on single crystals of MAPI. The single crystals were prepared via the method of 

Poglitsch and Weber[14] recapitulated in the Methods section. Figure 3.1 shows the optical 

characterization and reversibility upon hydration of what was initially a single crystal of MAPI. 

When exposed to 70% relative humidity (RH) at room temperature, the band gap of the crystal 

underwent a change from about 1.6 to 3.1 eV in ca. 60 h. The final product is a hydrate constituting 

a new phase which does not show any of the features of the pristine material. It will be shown below 

that this hydrate, observed to form at the early stages of the hydration of MAPI crystal is the 

monohydrate phase. When subsequently exposed to dry atmosphere, the hydrate instantly starts to 

convert back to the initial MAPI perovskite structure, the process ending in the full recovery of the 

material (see Figure 3.2a) in about 4 h. The layer thickness probed by ellipsometry can be estimated 

crudely from the optical penetration depth 𝛿𝑃 (where 𝛿𝑃 = 𝜆0/4𝜋𝜅 with 𝜆0 the incident wavelength 

and 𝜅 the extinction coefficient). The probed depth thus varies between approximately 300 nm for 

1.6 eV photons to only about 30 nm at 3.1 eV. Since the hydrate spectrum presents no feature around 

1.6 eV, we conclude that full conversion from MAPI to the hydrate occurred to at least the penetration 

depth within the crystal such that only one species was being examined in each measurement. 
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Figure 3.1  (a) Optical constants of MAPI (solid red line) and the hydration product (solid black line) modelled 

from single crystal ellipsometry. The dotted part of the spectra corresponds to the sub-band gap region. The 

vertical dotted blue lines help to visualize the shift of the band gap energy upon hydration and drying. (b) 

Fraction of CH3NH3PbI3 · H2O that has not been converted back to MAPI as a function of drying time. The 

measurement was performed on a single crystal of MAPI that had previously been hydrated by exposure to 

moisture (70% RH, room temperature) for 60 h until no MAPI was detectable by ellipsometry.  

 

 

Figure 3.2  (a) Fit of the ellipsometry spectra for the back-conversion from hydrate to MAPI. The spectra were 

acquired at fixed angle of incidence of 67.5° every 5 s during the first 10 min and at 2 min intervals after that. 

The spectra were modelled by a Bruggeman approximation using an effective medium (EMA) consisting of 
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the two compounds shown in Figure 3.1, and voids (accounting for morphological changes due to re-

crystallization). The fit parameters were the thickness of the roughness layer on top of the EMA bulk crystal 

and the relative ratio of MAPI and its hydrate in the mixture, determined in a similar way as for the films. (b) 

Fit of the ellipsometry parameters for a hydrated MAPI single crystal. The experimental spectra (dotted black 

lines) were acquired at three different angles of incidence 67.5°, 70° and 75° (the range of measurable angles 

is limited by the shape of the slits of the hydration chamber). The fitted critical point model (solid red lines) 

was obtained with the critical point model presented in Table 3.1. 

 

The dielectric functions of both MAPI and the monohydrate phase were modelled by fitting an 

ensemble of critical points (CPs) of the joint density of states to the measured ellipsometry 

parameters according to the approach described in the Methods section. The fits of the ellipsometry 

parameters of the hydrate are given in Figure 3.2b; we believe this is the first optical characterization 

of this material. The precise derivation of the optical properties of MAPI single crystals will be 

published separately and are consistent with the recent optical characterization of MAPI thin films 

in literature.[20-22] We note that literature values of the MAPI band gap range from 1.5 to 1.6 eV. The 

spread in this quantity appear to be due to differences in the measurement techniques and definition 

of the band gap[20-24] and recent observations suggests aging effects may also increase the band gap.[25] 

For the purposes of this study we will use the energy of the first critical point required to fit the 

ellipsometry data which is also consistent with the energy of the photoluminescence peak. We note 

that this quantity is not identical to the band gap determined from a Tauc plot of powder reflectance 

which requires a more accurate determination of the absorption tail, a feature that is not well 

characterized by ellipsometry. Excitonic critical points (0D, n = -1 in Equation 3.1) were suitable for 

describing the optical transitions. In particular, the band gap transition was found to be strongly 

excitonic (see Figure 3.3 and Table 3.1) of symmetric Lorentzian line shape due to a high degree of 

localization of the exciton on the octahedra, as explained below. 
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Figure 3.3  Fit of the second derivative of the dielectric constant of hydrated MAPI obtained by spectroscopic 

ellipsometry. On the axis label, ‘Re’ and ‘Im’ stand for real part and imaginary part, respectively. The 

experimental derivatives were numerically built using 5th grade smoothing polynomials with appropriate 

numbers of correlated points to obtain the best smoothing without inducing too much distortion to the 

experimental line shape.[26] The critical point model obtained for the best fits is given in Table 3.2. It shows 

that the hydrate can be described by 0D critical points with phase parameters close to 0, which indicates the 

localized excitonic nature of these transitions.  

 

Table 3.1  Critical point model of hydrated MAPI obtained when fitting the second derivative of the dielectric 

constant. The CP i is described by the amplitude Ai, energy Eci, linewidth Γi, and the exciton phase angle Φi 

was set to 0. The numbers given in parenthesis give the errors in the last significant digits of the fitted values. 

CP A Eci (eV) Γ Φ (deg) n 

1 0.51(3) 3.083(2) 0.106(2) 0 -1 

2 1.27(2) 3.655(1) 0.356(10) 0 -1 

3 0.96(7) 4.250(23) 0.393(30) 0 -1 

4 0.27(9) 4.618(23) 0.217(30) 0 -1 

5 0.5(1) 5.24(26) 0.40(5) 0 -1 

 

Table 3.2  Critical point model of hydrated MAPI. The CP i is described by the amplitude Ai, energy Eci, 

linewidth Γi, and an exciton phase angle Φi. UVterm = -2.1693 in this model. 

CP A Eci (eV) Γ Φ (deg) n 

1 0.3980 3.1045 0.06380 -22.70 -1 

2 1.7226 3.6298 0.3136 -77.23 -1 

3 0.5949 4.1516 0.2679 -114.91 -1 

4 0.5101 4.7024 0.1584 65.38 -1 

5 69.35 10.8992 7.9632 -23.30 -1 
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Surface roughness was modelled by an effective medium approximation layer, as explained in the 

Methods section. The best fits gave values of the surface irregularity around 20 nm for MAPI single 

crystals and 15 nm in its hydrated form (note that these values should be considered as fitting 

parameters accounting for the imperfection of the crystal surface rather than representing the absolute 

rms roughness). Some uncertainty remains regarding the optical constants in the sub-band gap region 

(red and black dotted lines in Figure 3.1a), as the calculated values can be influenced by the tail of 

the critical points. 

A comparison between the position of the CPs of MAPI and its hydrated counterpart is given in Table 

3.3. The position of the fifth CP of the hydrate is ambiguous as it is located outside the probed spectral 

region. It accounts for transitions occurring at higher energies which could not be accurately 

characterized with the apparatus employed in this study.  

 

Table 3.3  Critical point energies obtained for the best fit of MAPI and its hydrate. 

CP CP position in MAPI (eV) CP position in the hydrate (eV) 

1 1.6 3.1 

2 2.6 3.6 

3 3.1 4.2 

4 3.6 4.7 

5 4.8 10.9 

 

 

We now analyze the structure of hydrated MAPI. X-ray diffraction (XRD) patterns were collected 

from MAPI single crystals that were exposed to water vapor (80% RH during 60 h). The XRD pattern 

in Figure 3.5a indicates that the MAPI single crystal has converted to a monohydrate, CH3NH3PbI3 

· H2O. The simulated XRD patterns for each phase[16, 27] (also shown in Figure 3.5a) enable clear 

identification of the strong reflections at 2θ = 8.47° and 2θ = 10.54° as MAPI monohydrate.  

The monohydrate, CH3NH3PbI3 · H2O, was reported to form metastable, thin, pale yellow needles 

(see Figure 3.4) which dehydrate spontaneously in air, forming polycrystalline MAPI.[27] Figure 3.5c 

shows the refined crystal structure of this intercalation compound.[27] It incorporates one-dimensional 

(1D), isolated [PbI3]- double-chains, in which each [PbI6]4- octahedron is connected to two 

neighboring octahedra by a common corner forming a two-octahedra wide ‘ribbon’ (extending out 

of the page, along the b-axis in Figure 3.5c. These negatively charged [PbI3]- chains are charge 

balanced by the intercalated CH3NH3
+ cations. Additionally, the H2O molecules which are inserted 

between the [PbI3]- chains provide further stability to the structure via symmetrically bifurcated 
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hydrogen bonds between the H-atoms of the water molecules and the N-atom of methylammonium 

cations (d(O-N) = 2.829 Å).[27] The calculated XRD pattern of CH3NH3PbI3 · H2O exhibits intense 

Bragg peaks at the 2θ positions 8.10°, 8.66° and 10.66°, corresponding to the (001), (100) and (1̅01) 

reflections of a monoclinic P 21/m crystal structure. In the XRD pattern of the MAPI film exposed 

to moisture in Figure 3.5a, the presence of monohydrate can be recognized by reflections around 8.6° 

and 10.5°. 

 

 

Figure 3.4  Photograph of synthesized crystals of (CH3NH3)4PbI6 · 2 H2O in the mother liquor. 

 

The monohydrate, CH3NH3PbI3 · H2O, should not be confused with the related dihydrate crystal 

structure, (CH3NH3)4PbI6 · 2 H2O. Dihydrate crystals are obtained –together with the monohydrate 

species– in directly synthesized hydrated MAPI needle shaped crystals prepared from solution 

(Methods section, photographs in Figure 3.4, characteristic reflection at 2θ = 11.39° in the XRD 

pattern in Figure 3.5a). The dihydrate, (CH3NH3)4PbI6 · 2 H2O, can be considered as a zero-

dimensional network of isolated [PbI6]4- octahedra, neutralized by surrounding CH3NH3
+ cations. 

The crystal structure can be related to a distorted NaCl-type lattice consisting of [PbI6]4- octahedra 

and (CH3NH3···H2O···CH3NH3)2
4+ dimers (see Figure 3.5d).[16] The simulated XRD pattern in Figure 

3.5a shows that this compound has a diffraction peak around 11.4°. Papavassiliou et al. reported the 

value of 3.87 eV for the position of the band gap of (CH3NH3)4PbI6 · 2 H2O by optical absorption 

spectroscopy.[28] The absence of any feature in the absorption spectrum obtained from the 

ellipsometry results in Figure 3.1 combined with the clear assignment of the XRD peaks to 

CH3NH3PbI3 · H2O in Figure 3.5a rules out the presence of any significant amount of dihydrate in 

the hydrated MAPI single crystals. 
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Figure 3.5  (a) Identification of the composition of the hydrate species grown on MAPI single crystals (at long 

exposure to water vapors) and of MAPI hydrate crystals (polycrystalline, obtained from solution) by X-ray 

diffraction (patterns in black and grey). The five patterns below these show species the hydrate is likely to 

contain. Symbols are used to tag the main features according to the color of their respective spectra. (b) Shows 

the structure of MAPI in its cubic phase, while (c) shows the structure of the monohydrate phase, CH3NH3PbI3 

· H2O and (d) displays the structure of the dihydrate, (CH3NH3)4PbI6 · 2 H2O. The position of the hydrogens 

on the CH3NH3
+ ions and the water is not assigned in (b) and (d). 

 



Humidity-induced degradation of CH3NH3PbI3 

 

 
53 

 

3.3.2 Thin films and polycrystals 

The study was next extended to thin films. MAPI films were prepared on glass using the ‘solvent 

engineering’ approach and then exposed to air with a relative humidity of ~80% for 2 h. The XRD 

patterns displayed in Figure 3.6a show that the exposure to moist air resulted in the conversion of 

MAPI to both the mono- and dihydrate species. 

 

 

Figure 3.6  Time-resolved XRD patterns of polycrystalline MAPI: (a) hydration of a MAPI thin film and (b) 

dehydration of directly synthesized hydrate needle-like crystals. 

 

Although both hydrate species coexist in the MAPI film after prolonged exposure to moisture, their 

formation is not simultaneous. Time-resolved XRD experiments were performed to monitor the 

dynamics of the hydration and dehydration processes in MAPI and to identify the composition of the 

samples at different transformation stages. The MAPI films were exposed to an airflow containing 

(80  5)% RH. For exposure times of 30 min and 60 min, the XRD patterns exhibit a very strong 

diffraction peak at 8.72° in addition to the characteristic reflections of pristine MAPI, indicating the 

formation of CH3NH3PbI3 · H2O (see Figure 3.6a). After 120 min, an additional reflection at 11.64° 

was detected, indicating the formation of crystalline (CH3NH3)4PbI6 · 2 H2O in the perovskite film. 

We conclude that the hydration reaction of MAPI is a two-step process, in which the crystal structure 
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of MAPI is first progressively saturated with one water molecule per formula unit, followed by the 

formation of a new structure with two water molecules per formula unit upon longer exposure to 

humidity. The intercalation of water molecules into the crystal structure of MAPI induces a 

rearrangement resulting in the separation of the [PbI6]4- octahedra, corresponding to the transition 

from a 3D network of octahedra in pristine MAPI, to 1D double-chains in the monohydrated MAPI 

species, and finally resulting in a 0D framework of isolated octahedra in the MAPI dihydrate. This 

crystallographic observation substantiates the idea of a high degree of localization of the exciton in 

the MAPI hydrate which is suggested by our ellipsometry measurements.[29] 

The composition of the hydrate species and their sequential formation suggests the following 

stoichiometric equation: 

4 (CH3NH3)PbI3 + 4 H2O ⇌ 4 [CH3NH3PbI3 · H2O] ⇌ (CH3NH3)4PbI6 · 2 H2O + 3 PbI2 + 2 H2O 

The monohydrate is an intermediate product that can be easily converted back to MAPI.[27] When the 

reaction is driven further to the right by prolonged exposure to water vapor, the formation of the 

dihydrate is initiated, accompanied by the formation of lead iodide and the release of two water 

molecules. Only traces of PbI2 were detected in the XRD patterns. The reason may be that the PbI2 

formed is initially in an amorphous or nanocrystalline phase, presumably pushed out of the hydrate 

crystals to grain boundaries. The release of water as the reaction goes from the monohydrate to the 

dihydrate suggests partial self-sustainability of the conversion process as the water molecules 

released can be reused to convert remaining MAPI into the monohydrate. It seems likely that the 

reversibility of mono- to dihydrate conversion may be limited by phase separation of the reaction 

products. Eventually, when the whole film is converted, an excess of water may result in the 

dissolution of CH3NH3
+, irreversibly degrading the structure: 

(CH3NH3)4PbI6 · 2 H2O (s) 
𝐻2𝑂(𝑙)
→     4 CH3NH3I (aq) + PbI2 (s) + 2 H2O (l) 

The exposure of (CH3NH3)4PbI6 · 2 H2O to light may also result in its irreversible decomposition 

without the requirement for excess water.[12, 30] 

The reverse dehydration reactions were observed to spontaneously occur when hydrated MAPI 

crystals were exposed to air with low humidity (35% RH at 21°C). In order to track the dehydration 

reactions, XRD patterns were recorded in 5 minute intervals, shown in Figure 3.6b. During the 

exposure to ‘dry’ air the crystals changed color from yellow to dark grey, indicating the formation 

of polycrystalline MAPI as water molecules were lost.  

Figure 3.6b shows that after only a few minutes of drying, characteristic XRD reflections of pristine 

MAPI appeared in the diffraction patterns. Longer drying led to the disappearance of the reflection 
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at 11.39° corresponding to complete transformation of crystalline MAPI dihydrate to other phases. 

The reduction of this reflection intensity is accompanied by a decrease of the reflection intensities 

associated with MAPI monohydrates and a concomitant increase in the intensity of the crystalline 

MAPI reflections. This gradual transformation of hydrated MAPI into MAPI perovskite crystals ends 

in the formation of MAPI within ca. 15 min, as demonstrated by the XRD patterns showing only the 

reflections of tetragonal MAPI. We observed that for crystallites of similar sizes, dehydration appears 

to be a faster process that hydration at room temperature.  

Although crystallites of hydrated MAPI were previously reported to have a pale yellow color,[16, 27] 

our optical characterization, which we assign to the monohydrate phase, indicated that the material 

is almost colorless. This observation is corroborated by reflectometry measurements performed by 

Hirasawa et al. in the 1990’s.[31] The pale yellow color of macroscopic MAPI hydrate needles 

reported previously may originate from defects, disorder or impurities, for example traces of 

elemental iodine which can evolve in the mother liquor from oxidation of concentrated HI solutions, 

or from the formation of lead iodide when CH3NH3PbI3 · H2O converts to (CH3NH3)4PbI6 · 2 H2O.  

We reiterate that the MAPI film hydration process did not initially lead to the formation of a 

substantial amount of crystalline lead iodide. We speculate that the mechanism of irreversible 

decomposition of MAPI into HI, PbI2 and CH3NH2 can only happen in the presence of excess or 

liquid water which can dissolve the methylammonium ions. We substantiated this hypothesis by 

exposing a thin film of MAPI to warm water vapors (see Figure 3.7). Water condensation resulted 

due to the temperature difference between sample and humid air. Lead iodide was formed with no 

detectable trace of the hydrate crystals. This reaction was not reversible. 

 

 

Figure 3.7  XRD patterns of a MAPI thin film before (black line) and after 10 min exposure to humid air (85% 

RH) upon slight heating at 35 °C (red line) showing irreversible degradation. Formation of PbI2 (*) can be 

observed. 
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We now propose a mechanism to describe how hydration occurs in thin films based on the 

interpretation of the ellipsometry observations. Ellipsometry spectra were recorded every 10 or 20 

min during the conversion of a crystalline MAPI film to CH3NH3PbI3 · H2O by exposure to air with 

RH 80% over a period of 100 min. 

Figure 3.8a shows a diagram of the conversion model that yielded the most accurate description of 

the transient ellipsometry data. It describes the hydration process as isotropic and homogenous, 

which corresponds mathematically to a Bruggeman-type mixture of both pristine MAPI and its 

hydrated counterparts (see the Methods section for details on the Bruggeman approximation). The 

optical constants of both MAPI and the hydrate phase were determined from a MAPI single crystal 

and a MAPI single crystal hydrated by exposure to a moist airflow (80% RH) for 60 h (see Figure 

3.1). The three fit parameters in this model are: the thickness of the solid thin film, the thickness of 

the roughness layer on top of the film, and the relative ratio of MAPI and its hydrate in the mixture 

forming the film and roughness layer. The thickness of the roughness layer was a free parameter 

during the whole fitting procedure. The thickness of the film and the ratio of its constituents were 

iteratively defined as fit parameters to avoid the issues arising from the high correlation between 

these two variables. 

Figure 3.8b shows representative fits to the measured elliposmetry parameters using the isotropic 

Bruggeman hydration model described in the previous paragraph. In addition to the qualitative 

agreement, the model is confirmed by a figure of merit, the mean squared error calculated for the 

simultaneous fit of the 9 curves (MSE = 5.9) indicating a close match between modelled and 

experimental data. An alternative model was also tested which describes the anisotropic formation 

of the hydrate as a layer on top of a MAPI film, with progressive conversion of MAPI to hydrate 

from top to bottom. However, this model could not account for the collected ellipsometry data. Other 

more sophisticated models such as graded compositions did not improve significantly the fits either. 

Thus we conclude the conversion is isotropic on macroscopic scales (i.e. the average film 

composition is independent of depth), although the phases are likely to separate on a microscopic 

scale. This suggests a high degree of penetration of water molecules into MAPI thin films that might 

arise from diffusion of water molecules along grain boundaries. 
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Figure 3.8  (a) The Bruggeman-type degradation mechanism used to model the ellipsometry parameters. (b) 

Representative fits of the ellipsometry parameters obtained using the Bruggeman model at different exposure 

times. (c) Hydrate proportion in the thin film as a function of exposure time to humid air (80% RH). (d) 

Cumulative plot of the thickness increase due to conversion from MAPI to hydrate species. The blue area 

shows the solid layer thickness inferred from the relative ratio of phases determined from fit of ellipsometry 

models. The hatched grey area is the surface roughness inferred from the fit of the ellipsometry model assuming 

50% of voids and 50% of solid layer (blue) in the rough region. The orange dotted line gives the total equivalent 

layer thickness defined by the blue area plus half of the grey. It can be compared with the black dots showing 

the total equivalent layer thickness obtained from the fit of the ellipsometry model assuming solid layer (blue) 

and half of grey. The hatched green area gives the root mean square roughness Rrms measured by AFM. 

 

Our isotropic model cannot describe the complete degradation process of thin films at exposure times 

longer than 100 min for two reasons. Firstly because the optical constants obtained in the single 

crystal study are those of the monohydrate. The formation of the dihydrate at longer exposure times 

modifies the optical constants of the compound, which would require a different, three component 

Bruggeman model. Secondly, a significant increase of the top layer roughness is observed at long 
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exposure times, which causes a dramatic increase of the proportion of scattered light (atomic force 

micrographs of the film surface for different moisture exposure times are shown in Figure 3.9, and 

the change in surface roughness with time is given in Table 3.4). Significant roughness (above a 

value of ~/10, wavelength of the probe beam) has to be analyzed with models that are more 

complex than a single EMA layer with voids. We note that the probe spot of the ellipsometer (~1 mm) 

has a large diameter compared to the characteristic grain size (~50 to 400 nm), which reconciles our 

homogenous and isotropic macroscopic conversion model with the microscopic model. 

 

Table 3.4  Measured root mean square roughness of MAPI films exposed to moisture. 

Exposure time, t [min] 0 30 60 90 120 

Roughness, Rrms [nm] 10.2 21.8 25.2 28.1 165.1 

 

 

Figure 3.8c shows the evolution of the modelled hydrate content against moist air exposure time 

obtained from the ellipsometry fit. It can be correlated with the results from time-resolved X-ray 

diffraction presented in Figure 3.6a. Conversely, Figure 3.8b shows the disappearance of 

CH3NH3PbI3 · H2O upon drying of a hydrated single crystal of MAPI. Conversion of MAPI 

perovskite to CH3NH3PbI3 · H2O causes a lattice expansion of 6%, based on the relative lattice 

parameters of the two phases (247 Å3 per formula unit for MAPI, and 263 Å3 for CH3NH3PbI3 · 

H2O).[16, 27] Using the fitted hydrate content as a function of exposure time (Figure 3.6), values of the 

increase of the solid layer thickness due to its expansion on partial hydration can be estimated. Since 

the roughness of the top layer is also increased by exposure to moisture, the expansion of the total 

equivalent thickness is obtained by adding the increase of the measured top layer roughness to the 

dilatation of the lattice inferred from the relative ratio of phases. Figure 3.8d shows that the thickness 

predicted from the volume fraction and values directly inferred from the ellipsometry fit follow a 

very similar trend, as would be expected if our model is internally self-consistent. At early exposure 

times (<60 min), however, the measured total thickness is increasing slowly compared with the 

amount of hydrate present in the film. This could indicate that the hydrate is filling voids within the 

granular films. 

The increase of roughness appearing together with the discoloration of MAPI thin films due to 

hydration is shown in Figure 3.9 as a function of exposure time. A dramatic increase in roughness is 

observed at exposure times longer than 90 min, caused by the crystallization of needle shaped 

structures on the surface of the films. This corresponds to the appearance of dihydrate XRD 
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reflections in Figure 3.6a. It is therefore likely that these new structures are dihydrate crystals (cf. 

photograph of directly synthesized needle like hydrate crystals in Figure 3.4). Note that volume of 

the dihydrate phase and PbI2 released on conversion from CH3NH3PbI3 · H2O is 28% greater than 

the original volume of MAPI. 

 

 

Figure 3.9  Photographs of thin films of MAPI deposited on glass at different hydration times (left) showing 

discoloration and AFM measurements in 3D (middle) and 2D representations (right).  

 

3.3.3 State-of-the-art solar cells 

Finally, we now extend our investigations to state-of-the-art solar cells to demonstrate the 

reversibility of the hydration process in functional devices. The solar cells were fabricated according 

to the protocol detailed in the Methods section. Figure 3.10a shows the forward to reverse bias 

photocurrent-voltage scans measured at different times during exposure of the device to moist air 

(77% RH) for 3 h followed by exposure to a dry nitrogen stream for approximately 5 h. Figure 3.10b 
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shows the corresponding photocurrent-voltage (J-V) curves measured with reverse to forward bias 

scans. It is apparent for both scan directions that there is almost an order of magnitude drop in the 

photocurrent and around a 200 mV loss in photovoltage after the device was exposed to moisture for 

3 h. Strikingly, following exposure of the device to dry nitrogen for 5 h the J-V curve recovered to 

very close to its original state in the case of the forward to reverse bias scan. For the reverse to 

forward bias scan this recovery was much less complete and we see that the magnitude of the 

hysteresis[32] in the device’s J-V curves has increased following the hydration-dehydration cycle.  

Figure 3.10c demonstrates the concomitant appearance of the characteristic XRD peaks of the 

monohydrate with the loss in photovoltaic performance seen in Figure 3.10a–b. The XRD 

measurement was performed on the complete solar cell exposed to moisture and demonstrates the 

formation of MAPI monohydrate in devices. 

The combination of time-resolved XRD and J-V measurements suggests that partial hydration is 

already sufficient to cause a dramatic drop in PCE. Our ellipsometry modelling implied that the 

hydration process was isotropic on a macroscopic scale. This observation, combined with the 

granular nature of the thin film (see Figure 3.10c) suggests efficient penetration of moisture within 

the MAPI film along grain boundaries or micro-/mesopores. These arguments lead us to propose the 

microscopic degradation mechanism displayed in Figure 3.10e. Here, the significant loss of PCE 

after partial conversion to MAPI hydrate may be due to the isolation of the grains from each other 

which would rapidly impede charge carrier transport resulting in increased recombination at grain 

interfaces.  

It is interesting that the exposure of devices comprising MAPI to moist air at 77% RH and 21 °C did 

not lead to the irreversible decomposition of MAPI into lead iodide and HI, as would be the case in 

the presence of liquid water. In fact, the effect of moisture exposure could be reversed by exposure 

to a dry gas flow for several hours. However, it is likely that the underlying film underwent micro-

structural reorganization during this process, which may account for the significantly increased 

hysteresis observed following the hydration-dehydration cycle.[33] 

This same process can however be beneficial during film processing. Since the presence of water 

vapor appears to catalyse dynamic recrystallization within the film between the hydrated and pure 

crystalline phases, this may lead to higher quality films under the optimized processing conditions 

as long as water is subsequently completely removed by thermal annealing. We note that the humidity 

in these studies[6, 7] is lower than ~50%. 60% appears to be a threshold where films are no longer 

good quality. 
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Figure 3.10  (a) and (b) Current-voltage characteristics showing full recovery of a planar heterojunction MAPI 

solar cell upon exposure to moisture; scanned from reverse to forward bias and from forward to reverse, 

respectively. The corresponding performances of the devices are given in Table 3.5. Note that the steady state 

performance of cells prepared in a similar way indicated lower steady state photocurrents at the maximum 

power point (see Figure 3.11). (c) XRD patterns of a device before and after hydration showing the emergence 

of the hydrate species. Dots are used to tag the main features according to the color of their respective spectra. 

(d) Cross-sectional SEM image of MAPI deposited on a FTO-coated glass slide. (e) Presumed microscopic 

degradation model of MAPI thin films under partial hydration. 
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Table 3.5  Current-voltage characteristics of a typical perovskite solar cell undergoing a hydration/ dehydration 

cycle. The values are for the reverse scans. PCE refers to the nominal efficiency that would be inferred from 

the reverse J-V scan. 

Sample Jsc (mA cm-2) Voc (V) FF PCE (%) 

MAPI 0h 77% RH 18.16 1.05 0.68 12.90 

MAPI 3h 77% RH 2.46 0.85 1.01 2.10 

MAPI 3h 77% RH 3h N2 11.42 0.95 0.77 8.39 

MAPI 3h 77% RH 4h N2 16.63 1.00 0.70 11.70 

MAPI 3h 77% RH 5h N2 19.34 1.05 0.66 13.41 

MAPI 3h 77% RH 6h N2 19.30 1.05 0.66 13.28 

 

 

 

Figure 3.11  Example of photocurrent at maximum power point (MPP) against time, for a fresh, hydrated and 

dehydrated cell. The devices were held in light at forward bias (2.5 V) before switching to the MPP voltage. 

 

3.4 Conclusions 

In conclusion, in addition to the precise optical characterization of MAPI and CH3NH3PbI3 · H2O, 

we have shown that the moisture in air induces a reversible hydration process of methylammonium 

lead iodide perovskite (MAPI). The key difference separating reversible and irreversible degradation 

seems to be the presence of condensed water. In its absence, no crystalline lead iodide was produced 

and the reaction can be reversed by blowing dry air over the samples. We demonstrated that the 

conversion happens isotropically within the granular thin films. The rapid drop of PCE of the devices 
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upon partial hydration led us to propose that the formation of a hydrated layer on the grains has an 

insulating effect resulting in recombination of photo-generated charge carriers prior to collection. 

 

3.5 Methods 

Sample preparation 

MAPI single crystals: Methylammonium lead iodide single crystals were grown according to the 

method of Poglitsch and Weber.[14] 2.5 g of lead acetate trihydrate (Pb(CH3CO2)2 · 3 H2O, Sigma) 

was dissolved in 10 mL hydroiodic acid (HIaq, 57 wt%, Sigma) in a 50 mL round bottom flask and 

heated to 100 °C in an oil bath. Separately, 0.597 g of CH3NH2 (aq, 40%, Sigma) was added dropwise 

to a further 2 mL of HIaq kept at 0 °C in an ice bath under stirring. The methylammonium iodide 

solution was then added to the lead acetate solution and the mixture was cooled over five days to a 

temperature of 46 °C, resulting in the formation of black crystals with largest face length around 

8 nm. The content of the flasks was subsequently filtered and dried for 12 h at 100 °C.  

MAPI hydrate single crystals: The formation of a hydrated form of MAPI perovskite single crystals 

below 40 °C was first mentioned by Weber.[34] In a 250 mL round-bottom flask, 12 mL CH3NH2 

(40 wt% in H2O, Sigma) was neutralized by an aqueous solution of concentrated HI solution (57 wt% 

in H2O) until the indicator paper showed pH = 7, and the mixture was heated up to 100 °C. 

Subsequently, 3.86 g of Pb(NO3)2 dissolved in 18 mL H2O was added dropwise to the hot MAI 

solution under vigorous stirring and black MAPI crystallites started to precipitate. Cooling the 

solution slowly down to room temperature (over 4 h) led to the transformation of the black crystallites 

into thin, pale yellow needles. After exposing the crystals to the mother liquor overnight in a 

refrigerator, the pale yellow needles were filtrated, washed with 50 mL dichloromethane and dried 

under vacuum (50 mbar) for 1 h. The product obtained was metastable and turned into greyish 

polycrystalline MAPI by spontaneous loss of its crystalline water under ambient conditions. The 

sample was stored in a jar at 77% RH in order to prevent dehydration in air (~35% RH). 

 

MAI crystals: CH3NH3I (MAI) single crystals were synthesized by reacting 24 mL CH3NH2 (33 wt% 

in absolute ethanol, Sigma) diluted in 100 mL absolute ethanol and 10 mL HI (57 wt% in H2O, 

Sigma) at 0 °C in a 250 mL round-bottom flask for 2 h under stirring at room temperature, 

respectively. After removal of the solvent with a rotary evaporator at 50 °C the white precipitate was 

recrystallized from absolute ethanol, washed with diethyl ether and dried in vacuum for 12 h. 
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Thin film preparation: Perovskite thin film preparation was conducted in a glove box under dry 

nitrogen atmosphere. Thin films of MAPI were fabricated following a ‘solvent engineering’ 

procedure reported by Xiao et al..[35] First, glass substrates with dimensions 2.5 × 2.5 cm were 

cleaned with deionized water, absolute ethanol, dried under air flow and then treated in a plasma-

cleaner with oxygen plasma for 5 min. For an equimolar 1.25 M MAPI perovskite precursor solution, 

0.4 g MAI and 1.156 g PbI2 (99%, Aldrich) were dissolved in 2 mL DMF (anhydrous, 99.8%, 

Aldrich) under stirring at 100 °C. Subsequently, 50 µL of the solution was dynamically spin-coated 

on a clean glass substrate at 6000 rpm. After a delay of 4 s, 150 µL chlorobenzene (anhydrous, 99.8%, 

Aldrich) was quickly added to the spinning substrate. After 30 s total spinning time, the substrate 

was immediately annealed at 100 °C for 10 min to evaporate residual solvents and to further promote 

crystallization. Dark brown, lustrous films of MAPI were obtained with a thickness of approximately 

270 nm, as determined with a Veeco Dektak profilometer. 

Solar cell fabrication: FTO-coated glass substrates (Pilkington, 7 Ω/sq) were cut into pieces of 3 × 

3 cm and patterned by etching with Zn metal powder and 3 M HCl diluted in deionized water. The 

substrates were then cleaned with an aqueous 2% Hellmanex detergent solution, rinsed with 

deionized water, acetone and ethanol, and finally dried under air flow. The patterned substrates were 

cleaned with oxygen plasma for 5 min. A TiO2 compact layer was deposited on top of the substrates 

by a sol-gel process. For this purpose, a solution containing 35 µL of 2 M HCl and 2.5 mL dry 2-

propanol (IPA) was added dropwise to a solution of 369 µL titanium isopropoxide (≥97%, Sigma) 

in 2.5 mL dry IPA under strong stirring. The substrates were coated with the TiOx sol-gel solution 

by spin-coating dynamically at 2000 rpm for 45 s and then quickly placed on a hotplate at 150 °C for 

10 min. To complete the transformation of TiOx into the anatase phase, the coated substrates were 

gradually heated to 500 °C (ramp 8 °C/min) and sintered for 45 min in air. A 280 nm MAPI 

perovskite thin film was deposited on top of the TiO2 compact layer by following the same ‘solvent 

engineering’ process as employed for thin films, but with a slightly slower spinning rate during spin-

coating (5000 rpm). 

In order to add the hole transporter to the devices, a solution of 2,2’,7,7’-tetrakis-(N,N-di-p-

methoxyphenylamine)-9,9’-spirobifluorene (spiro-OMeTAD, 99.56%, Borun Chemicals) in 

anhydrous chlorobenzene (100 mg/mL) was filtered with a 0.45 µm syringe filter and mixed with 

10 µL of 4-tert-butylpyridine (tBP, Aldrich, 96%) and 30 µL of a 170 mg/mL solution of lithium 

bistrifluoromethanesulfonimidate (Li-TFSI, 99.95%, Aldrich) in acetonitrile (anhydrous, 99.8%, 

Aldrich) per 1 mL spiro-OMeTAD solution. The hole transporter solution was coated onto the device 

substrate by a consecutive two-step spin-coating process at 1500 rpm and 2000 rpm for 40 s and 5 s, 

respectively. Afterwards, the substrates were removed from the glove box and stored overnight in a 

desiccator at ~35% RH. Finally, a 40 nm thick gold layer was deposited by thermal evaporation 
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through a patterned shadow mask under high vacuum conditions (4 × 10-6 mbar) to form the counter 

electrode. The active area under the mask was 0.083 cm2. 

 

Ellipsometry measurement 

Spectrometric ellipsometry data on thin films were gathered using an ellipsometer ESM-300 from J. 

A. Woollam Co., Inc. Measurements on single crystals were performed with a SOPRALAB GES5E 

rotating polarizer ellipsometer mounted in a vertical configuration which is better suited for single 

crystals. Optical spectra on single crystals were recorded from ca. 1.2 eV to 5.5 eV, at three incidence 

angles for each sample (67.5°, 70° and 75°). In situ measurements during hydration and dehydration 

were performed at fixed incidence (67.5° for single crystals and 75° for thin films). For the single 

crystal measurements, the ellipsometer was equipped with a chamber fitted with two small slits to 

offer the possibility to measure the samples at different angles of incidence. In the case of thin films, 

the measurement was taken through quartz windows, the gas flow being introduced through a side 

opening. The acquisition time of a spectrum was sufficiently short (5 s) compared to the timescale 

of the measurement to be considered as instantaneous in the analysis. 

Hydration setup for ellipsometry measurements: For single crystal ellipsometry, the relative 

humidity was fixed at (70  5)% by controlling the ratio of a mixture of dry nitrogen to humid 

nitrogen that travelled through a bubbler at room temperature (21 °C). The gas mixture was used to 

fill the measurement chamber, which had a positive pressure difference relative to the lab 

atmosphere. A similar setup was employed for the analysis of in situ hydration of thin films and full 

solar cell devices, but compressed filtered air as carrier gas with relative humidity of (80  5) % was 

used in place of nitrogen. The relative humidity was controlled with a calibrated hygrometer. 

 

Ellipsometry fitting 

Spectrometric data acquired by means of varying angle spectroscopic ellipsometry was analyzed 

using the WVASE 32 software from J. A. Woollam Co., Inc. for thin films and Winelli2 from 

SOPRALAB for single crystals. To fit the experimental data, an initial model of the optical 

transitions was built for each layer constituting the sample. The dielectric constant was described as 

sum critical points (CPs) of the joint density of states: 

𝜀(𝐸) = 𝑈𝑉term −∑ [𝐴𝑖𝑒
𝑗𝜙𝑖(𝐸 − 𝐸𝑐𝑖 + 𝑗Γ𝑖)

𝑛]𝑁
𝑖=1      (3.1) 
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where N is the number of CPs in the model, E is the incident photon energy, j is the imaginary unit 

and UVterm is a constant accounting for high energy transitions. The ith CP is described by the 

amplitude Ai, energy Eci, linewidth Γi, exciton phase angle Φi and dimensionality ni.[36] The dielectric 

function is then calculated from the model, which enables the software to simulate spectrometric 

values of the ellipsometry parameters, ψ and Δ, at the angles of incidence used for the acquisition via 

transfer matrix calculations. The ellipsometry parameters relate to the Fresnel coefficients Rp and Rs 

for p- and s- polarized light: 

𝑅p

𝑅s
= tan(𝜓) 𝑒𝑖Δ         (3.2) 

Finally, a regression algorithm was used to fit the modelled curve to the experimental ψ and Δ data 

by varying the free parameters (for example: the layer thickness and the amplitude or energy center 

of an oscillator). The figure of merit describing quantitatively the quality of the fits is the mean square 

error (MSE), given by: 

𝑀𝑆𝐸 = √
1

2𝑁′−𝑀
∑ [(

𝜓𝑖
mod−𝜓

𝑖
exp

𝜎𝜓,𝑖
exp )

2

+ (
Δ𝑖
mod−Δ

𝑖
exp

𝜎Δ,𝑖
exp )

2

]𝑁′
𝑖=1      (3.3) 

where N’ is the number of (ψ, Δ) pairs, M the number of variable parameters in the model (‘mod’) 

and σ describes the standard deviations on the experimental (‘exp’) data points. 

 

The Bruggeman approximation: The Bruggeman approximation is an analytical averaging method 

commonly used to study the macroscopic properties of composite materials. In the case of 

ellipsometry modelling, the approximation is used to estimate the optical constants of two (or more) 

intimately mixed phases. It assumes a homogenous dispersion of one phase into another resulting 

into an effective medium (EMA). The effective dielectric function 𝜀̃ of a material composed of two 

constituents A and B (with respective volume fractions 𝑓𝐴 and 𝑓𝐵) can thus be written: 

𝑓𝐴
𝜀̃𝐴−𝜀̃

𝜀̃𝐴−2𝜀̃
= −𝑓𝐵

𝜀̃𝐵−𝜀̃

𝜀̃𝐵−2𝜀̃
         (3.4) 

This complex equation, also referred to as coherent potential approximation, is solved numerically 

for 𝜀̃. Surface roughness between two layers is also commonly described by an EMA layer consisting 

of a composite of top and bottom material in equal proportion. In the particular case of top layer 

roughness, an EMA is used with identical volume proportion of both the top layer and voids.[37] 
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X-ray diffraction measurements 

XRD measurements on both thin films and powder samples were carried out with a Bruker D8 

Discover X-ray diffractometer operating at 40 kV and 30 mA, employing Ni-filtered Cu-Kα-radiation 

(λ = 1.5406 Å) and a position-sensitive detector (LynxEye). During the XRD measurements, the 

samples were exposed to ambient conditions (21 °C, 35–40% RH). In order to minimize the influence 

of the environmental factors on the samples during the measurements, the XRD patterns were 

acquired by recording at a standard 2θ step size of 0.05 deg and a scan speed of 0.1 s per step. 

 

Measurements on solar cells 

The J-V characteristics of planar perovskite solar cell devices were measured using a Newport 

OrielSol 2A solar simulator with a Keithley 2401 source meter. The devices were illuminated through 

a shadow mask, yielding an active area of 0.083 cm2. The J-V curves were recorded under standard 

AM 1.5G illumination, calibrated to a light intensity of 100 mW cm-2 with a silicon cell (Fraunhofer 

ISE certified). The input bias voltage was scanned from reverse (-2 V) to forward (0 V) (referred to 

as backward scan) in 0.05 V steps with a rate of 0.5 V s-1 and then from forward to reverse bias (0 to 

-2 V, forward scan) at the same rate.  
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4 Influence of precursor stoichiometry on the 

moisture stability of CH3NH3PbI3 

 

This chapter is based on the following publication: 

M. L. Petrus,† Y. Hu,† D. Moia, P. Calado, A. M. A. Leguy, P. R. F. Barnes, P. Docampo, The 

Influence of Water Vapor on the Stability and Processing of Hybrid Perovskite Solar Cells Made 

from Non-Stoichiometric Precursor Mixtures. ChemSusChem 2016, 9 (18), 2699-2707. (DOI: 

10.1002/cssc.201600999) 

† These authors contributed equally to this work. 

 

 

 

Adapted with permission.[1] Copyright 2016, John Wiley and Sons, Ltd. 
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4.1 Abstract 

We investigated the influence of moisture on CH3NH3PbI3 perovskite films and solar cells derived 

from non-stoichiometric precursor mixtures. We followed both the structural changes under 

controlled air humidity via in situ X-ray diffraction, and the electronic behavior of devices prepared 

from these films. A small PbI2 excess in the films improved the stability of the perovskite compared 

to stoichiometric samples. We assign this to excess PbI2 layers at the perovskite grain boundaries or 

to the termination of the perovskite crystals with lead and iodine. In contrast, the MAI-excess films 

composed of smaller perovskite crystals showed increased electronic disorder and reduced device 

performance due to poor charge collection. Upon exposure to moisture followed by dehydration 

(“solvent annealing”), these films recrystallized to form larger, highly oriented crystals with fewer 

electronic defects and a remarkable improvement in photocurrent and photovoltaic efficiency. 

 

4.2 Introduction 

In the past few years hybrid lead halide perovskites have emerged as a promising material for 

photovoltaic applications due to their outstanding optoelectronic properties.[2-4] The abundance of the 

precursor materials and the possibility of solution processing raises the hope of low-cost, highly 

efficient solar cells with a short energy payback time compared to currently established 

technologies.[5-9] 

The Achilles heel of hybrid perovskite photovoltaic devices is their poor stability, especially under 

operating conditions, creating a considerable barrier to commercialization of the technology.[10] 

Beside environmental factors such as thermal stress and UV-light irradiation in air,[10-12] humidity-

induced changes to the perovskite structure have been identified as one of the major degradation 

pathways which strongly affects device lifetime.[13, 14] Degradation upon exposure to moisture has so 

far only been suppressed by physical encapsulation or through the introduction of organic or 

inorganic passivation layers[15-17] which may place constraints on device performance. Fully 

understanding the effect of water on perovskite processing and degradation is thus important to 

formulate new solutions to this challenge. 

The influence of humid air on hybrid perovskite films has been investigated by several groups. We 

have recently reported the formation of intermediate hydrate crystals as first degradation products of 

the perovskite, followed by their irreversible decomposition into PbI2.[18] In general, the hygroscopic 

and volatile nature of the organic compound, methylammonium iodide (MAI), is understood as the 
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weak spot of the perovskite crystal, leading to water ingress and film degradation.[19-21] To date, most 

of the stability studies have been performed on perovskite films fabricated from stoichiometric 

precursor solutions (PbI2:MAI in 1:1 molar ratio) or with an excess of MAI.[18, 22-24] However, 

recently reported champion perovskite solar cells showing power conversion efficiencies (PCE) 

exceeding 20% contain a 5–10% molar excess of PbI2.[25-29] The remnant PbI2 excess within the final 

absorber layer is believed to improve perovskite crystallization and to reduce non-radiative 

recombination rates by passivation of crystal grain boundaries, which could explain the additional 

boost in PCE.[25, 30-33] 

While the community agrees on the beneficial effect of a small PbI2 excess in the perovskite layer 

on device performance, little is known about the moisture-stability of these non-stoichiometric 

perovskite films. Previously, Liu et al.[32] and Zhang et al.[34] prepared methylammonium lead iodide 

films via a two-step sequential deposition method to study the stability of these samples. In both 

cases, the incomplete conversion of PbI2 into the perovskite phase leads to a residual PbI2 interlayer 

between TiO2 and perovskite, which is reported to accelerate the film degradation upon exposure to 

humidity. However, state-of-the-art devices are mostly derived from a one-step deposition method, 

where the perovskite precursor mixture is spin-coated on the substrate, followed by an “anti-solvent 

dripping” step to initialize crystal nucleation. Clearly, different fabrication protocols may result in 

different locations and morphologies of the PbI2 excess within the device. This is likely to have a 

substantial effect on the degradation kinetics occurring within the perovskite film. Therefore, 

elucidating the link between PbI2 passivation, moisture-induced processing and degradation effects 

is important to maximize both device efficiency and stability. 

In this work, we studied the effect of moisture on methylammonium lead iodide (MAPbI3) films 

derived from non-stoichiometric perovskite precursor mixtures, i.e. perovskite films containing a 

small excess of PbI2 or MAI. We inferred the location of the initial PbI2 excess within the perovskite 

film through X-ray diffraction (XRD) experiments. In order to improve the understanding of the 

degradation mechanism, we performed in situ XRD measurements under controlled humidity levels 

in air (see Figure 4.17). In contrast to previous reports, our results indicate that a small PbI2 excess 

decelerates the decomposition of the perovskite film upon exposure to moisture compared to a 

stoichiometric perovskite film. Additionally, we found that devices containing an MAI excess first 

show very low PCEs due to small perovskite crystals sizes. These are likely to be surrounded by 

MAI-rich regions with a high concentration of electronic defects which impede charge collection. 

However, the performance of devices made from MAI-excess solutions is significantly improved 

after a short exposure of the films to humidity at room temperature. This results in recrystallization, 

grain reorientation and the removal of electronic disorder from the perovskite layer – a process which 

we can regard as a form solvent annealing with water vapor. Our findings are, in principle, also 
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applicable to mixed cation/halide systems as these films are also deposited from non-stoichiometric 

mixtures.[35] In this case we expect a similar effect upon exposure to moisture as the typical cations 

used, formamidinium and cesium, are also hygroscopic and will likely undergo a similar enhanced 

mobility in the presence of water. 

 

4.3 Results and discussion 

4.3.1 Effect of the hydration on the perovskite structure 

In order to study the effect of the precursor stoichiometry on the stability of the perovskite structure, 

we prepared perovskite thin films which incorporated a 5% molar excess of MAI in the precursor 

solution, a stoichiometric mixture, and one incorporating a 5% molar excess of PbI2; these samples 

are termed “MAI-excess”, “stoichiometric” and “PbI2-excess” in the following. The 1.25 M 

stoichiometric precursor solution was obtained by dissolving PbI2 and MAI in a 1:1 molar ratio in a 

solvent mixture of N,N-dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The 

corresponding amount of solid MAI or PbI2 was then added to the stoichiometric perovskite solution 

to yield the MAI-excess and PbI2-excess solutions, respectively. By employing an anti-solvent 

assisted one-step deposition method similar to the previously reported protocol for state-of-the-art 

devices,[25, 27, 36] a comparable distribution of the precursor excess within the perovskite layer can be 

expected. In short, the perovskite solution is spin-coated onto a substrate, followed by chlorobenzene 

dripping to induce crystal nucleation. After annealing on a hotplate, the crystallization is complete 

and uniform, shiny perovskite films were obtained. 
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Figure 4.1  XRD patterns of the fresh perovskite films with different precursor ratios on glass. No significant 

difference in intensity of the perovskite reflections is observed. 
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Figure 4.1 shows the XRD patterns of the three different freshly prepared perovskite films. No 

significant differences in the intensity of the typical diffraction peaks originating from the tetragonal 

MAPbI3 phase were observed. The expected (001) PbI2 reflection at the 2 value of 12.6° is obvious 

for the PbI2-excess film, whereas it is not present in the other two samples. Previous studies report 

that the excess PbI2 is located near the substrate,[31] however, its distribution strongly depends on the 

fabrication route. To infer the location of the PbI2 excess within our absorber layer, we performed 

grazing-incidence XRD measurements at different incidence angles in the range of 0.3°–2.5°, as 

presented in Figure 4.2. At incidence angles of 0.6° and lower, the X-ray scattering depth is smaller 

than the total film thickness of 320 nm, thereby providing information about the distribution of the 

PbI2 excess within the perovskite layer.[37] Our results show that at an incidence angle of 0.3°, the 

(001) peak of PbI2 is still present in the diffractogram, indicating that the excess PbI2 is not solely 

accumulated at the perovskite/TiO2 interface but distributed throughout the entire perovskite film. 

 

 

Figure 4.2  Grazing-incident XRD measurements on a PbI2-excess MAPbI3 sample. The (110) perovskite 

reflection is indicated with the blue dotted line. The PbI2 peak (indicated with the red dotted line) is present for 

all incidence angles. For incidence angles of 0.5° and lower, the penetration depth is smaller than the film 

thickness indicating that the PbI2 excess is distributed throughout the entire perovskite film.  

 

Furthermore, monitoring the crystallization process of the non-stoichiometric perovskite layer can 

provide an insight into the formation and distribution of the excess PbI2.[38] We performed in situ 

XRD measurements during the annealing process of a freshly deposited perovskite film prepared 

from a PbI2-excess solution (Figure 4.3). Initially, we only observe the diffraction peaks assigned to 

the previously reported intermediate MAI-PbI2-DMSO complex.[39, 40] During the first annealing step 
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at 40 °C the reflections of this MAI-PbI2-DMSO complex become more narrow, indicating the 

growth of the intermediate phase crystals. At the same time, characteristic reflections of the MAPbI3 

phase (e.g. at 2 = 14.1° and 28.3°) appear. Upon further annealing, the perovskite peaks increase in 

intensity while the intensity of the MAI-PbI2-DMSO reflections simultaneously decrease, suggesting 

the formation of MAPbI3 crystals from the intermediate phase as DMSO is released. During the 

second annealing step at 100 °C, the last remaining solvent was removed from the film, after which 

the excess PbI2 crystallized. Since the small amount of excess PbI2 crystallizes only at the very end 

of the annealing procedure, we propose that PbI2 is present at the grain surface of the previously 

formed perovskite crystals. This finding is in agreement with the incidence angle-dependent XRD 

measurements in Figure 4.2. Additionally, since the PbI2 excess stays solvated until the final stage 

of the crystallization process, it is likely that this has an influence on the MAPbI3 crystal termination. 

 

 

Figure 4.3  In situ XRD measurement during the annealing of a freshly spin-coated MAPbI3 film prepared from 

a perovskite solution with 5 mol% PbI2 excess. In the first step, the film was annealed for 40 min at 40 °C 

followed by a second step at 100 °C. The right panel shows a schematic representation of the crystal formation 

inferred from the XRD measurements. Initially, the MAI-PbI2-DMSO complex (red stars in the XRD pattern) 

is formed, followed by the MAPbI3 crystals (green dots) and at the end, after complete removal of the solvents, 

crystalline PbI2 can be observed (yellow square). Reflections assigned to the FTO-glass substrate are marked 

with blue triangles. 
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Using XRD techniques to determine the location of a small MAI excess within the corresponding 

perovskite films is difficult as the diffraction intensity for MAI is relatively low. Since the same 

fabrication method is used for all samples, we expect the excess MAI to be also distributed 

homogeneously between the preformed MAPbI3 crystals, presumably at the grain boundaries as 

reported by Son et al. [36]  

Previous studies report the detrimental effect of residual PbI2 material at the perovskite/TiO2 interface 

on the film stability towards humidity.[32] Here, we investigate the influence of moisture on 

perovskite films with a more homogeneous distribution of the precursor material excess which is 

more comparable to the absorber layers used in state-of-the-art devices showing high efficiencies. In 

order to compare the moisture stability of the three MAPbI3 films with different precursor 

stoichiometry, we exposed the samples to air with a constant relative humidity (RH) of 90% in a 

closed chamber at room temperature. We followed the changes in the composition of the films with 

in situ XRD measurements at regular intervals, as presented in Figure 4.4. Our results show that the 

stoichiometry of the precursor mixture critically affects the timescale of structural changes as well 

as the nature of the degradation products. 

 

 

Figure 4.4  In situ XRD measurements of the hydration of perovskite films prepared from solutions with 

different precursor ratios. The films were exposed to 90% RH in air for 0–180 min. The positions of the XRD 

peak for MAPbI3 (green circles), PbI2 (yellow squares) and CH3NH3PbI3 · H2O (purple diamonds) are marked 

in the graphs.  
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and 10.5° appear. Interestingly, the formation of additional PbI2 as a result of degradation in the PbI2-

excess sample is significantly slower in comparison to the stoichiometric perovskite film. Similarly, 

10 20 30 40 50 60

  

2 Theta (deg)

 

180 min

120 min

60 min

0 min

10 20 30 40 50 60

  

2 Theta (deg)

180 min

120 min

60 min

0 min

10 20 30 40 50 60

180 min

120 min

60 min

 

In
te

n
s
it
y
 (

a
.u

.)

2 Theta (deg)

0 min

MAI excess Stoichiometric PbI2 excess

●

● ●●
●

● ● ● ●

●

● ●●
●

● ● ● ●

●

● ●●
●

● ● ● ●

▪

▪
▪

▪

▪
▪

▪

▪
▪







 






 


  ●
●

● ▪▪▪



Influence of precursor stoichiometry on the moisture stability of CH3NH3PbI3 

 

 
77 

 

we observed the crystalline monohydrate phase after 90 min in the stoichiometric samples, while for 

the PbI2-excess sample, the characteristic reflections of the monohydrate only appeared after 180 

min. We compared the difference in the degradation rate between the stoichiometric and the PbI2-

excess samples by plotting the ratio between the (001) peak of PbI2 at 2 = 12.6° and the (110) peak 

of the perovskite at 2 = 14.1° (Figure 4.5). Since we observe that perovskite crystal reorientation is 

similar and relatively minor for both samples, the graph indicates that the formation of PbI2 in the 

stoichiometric sample is significantly faster than in the PbI2-excess sample. We found that for both 

films, the monohydrate forms at a PbI2:MAPbI3 peak intensity ratio of around 3:4.  
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Figure 4.5  Relative XRD peak intensity of the (001) PbI2 at 2 = 12.6° over the (110) peak of MAPbI3 at 

2 = 14.1° showing the difference in degradation speed.  

 

In contrast, the MAI-excess sample does not show the formation of PbI2 within the timescales 

studied. Surprisingly, during the first 60 min of exposure time, the XRD pattern does not exhibit any 

degradation products at all. Instead, the remarkable increase in the (110) and (220) reflections of 

MAPbI3 indicate an improvement in crystallinity for the perovskite phase. After more than 60 min, 

the reflections of the monohydrate CH3NH3PbI3 · H2O appear in the diffraction pattern, which is in 

accordance with previously reported results by Leguy et al. where a 0.4% MAI molar excess was 

used to form the MAPbI3 film.[18] Recent calculations suggest that the monohydrate phase should 

thermodynamically be stable at high relative humidities at room temperature.[21] These calculations 

also show that a dihydrate structure of the perovskite, (CH3NH3)4PbI6 · 2H2O, can form at lower 

relative humidities. However, this phase appears to be thermodynamically unstable relative to PbI2 

and MAI which may explain why it did not appear in the present study, since it is likely that it will 

only be observed under kinetically favorable conditions. 
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Scanning electron microscopy (SEM) cross-section images of the different perovskite films reveal 

the effect of hydration on the crystal morphology (Figure 4.6). For both stoichiometric and PbI2-

excess samples, we observe small protrusions over the crystals after exposure to humidity, which 

might originate from partial degradation of the perovskite crystals. In the case of MAI-excess we 

find no such protrusions, indicating a different process during the exposure to humidity. Initially, the 

film is composed of relatively small and irregularly shaped crystals. However, after a short hydration 

process at 90% RH, the previously small crystallites have since recrystallized to form large crystals. 

This observation is consistent with the increased intensities of the (110) and (220) perovskite 

diffraction peaks (Figure 4.4), suggesting higher crystallinity and a more preferential crystal 

orientation.  

   

Figure 4.6  SEM cross-section of photovoltaic devices with a MAPbI3 perovskite layer prepared with different 

precursor ratios. Top figures show SEM cross-sections of freshly prepared devices and figures below show the 

samples after exposure to 90% RH for 45 min before applying spiro-OMeTAD. The bottom images depict a 

schematic representation of the morphology of the perovskite film before hydration with an inset showing the 

hypothesized crystal surface termination for the perovskite grains at an atomic level. We note that water will 

be removed from these films by the SEM evacuation process. 
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These results strongly indicate that the precursor ratio during the perovskite film formation affects 

how water penetrates the perovskite crystals/films. We will discuss each case separately: 

First, MAPbI3 films fabricated with a PbI2 excess exhibit markedly slower degradation dynamics and 

no immediate formation of hydrated perovskite species. We consider two possible mechanisms by 

which the initial excess of PbI2 protects the perovskite against moisture: (I) a PbI2 layer at the grain 

boundaries functions as a barrier against water infiltration, and/or (II) the excess of PbI2 facilitates 

the termination of the perovskite crystals with lead and iodine atoms, preventing water ingress into 

the crystals. The first argument considers that, unlike MA+ ions in MAPbI3,[20] PbI2 lacks strong 

hydrogen-bonding interactions with water molecules and therefore can be considered as a passivation 

layer. The second option is in agreement with computational studies performed by Mosconi et al.,[41] 

where the authors predict that PbI2-terminated perovskite crystals are more robust against moisture-

induced degradation than MAI-terminated surfaces. They also show that defects in the PbI2-

terminated slab are the initiation point for degradation of the perovskite, from which cavities can 

grow by gradual ingress of water molecules, allowing further decomposition of the perovskite. For 

clarification we illustrated these hypotheses schematically in Figure 4.6. 

Second, stoichiometric MAPbI3 films show relatively fast formation of PbI2 and CH3NH3PbI3 · H2O 

upon exposure to a high level of humidity. SEM cross-section images (Figure 4.6) do not display any 

significant difference in crystal size between the stoichiometric and PbI2-excess films, which is in 

agreement with literature.[26] This indicates that the faster degradation of the stoichiometric films is 

not merely the result of an increase in total grain surface which is exposed to humidity. It is 

noteworthy that the PbI2 obtained as a result of degradation does not seem to protect the perovskite 

against humidity-induced degradation in the same way as the PbI2 excess which was added to the 

precursor solution.  

Third, the XRD patterns of the MAI-excess films exhibit a remarkable increase in the (110) and (220) 

reflections of the perovskite phase without any signs of degradation during the first 60 min (Figure 

4.7a). Yang et al.[24] report the same increase in the respective XRD signals by annealing an MAI-

excess MAPbI3 film in air under ambient conditions. The authors assign the reformation of the 

MAPbI3 crystals to the diffusion of MA+ and I- from MAI reservoirs into the thermally created 

vacancies. The dynamic perovskite-formation process allows the growth of large grains with high 

crystallinity and strong orientation along the (110) direction. We expect a comparable self-healing 

process to occur in our films during exposure to humid air. The infiltrated water degrades the 

perovskite under the evolution of methylamine and HI which are volatile and can escape the film. 

The MA+ and I- vacancies which are created as a result of the hydration can be refilled by the excess 

MAI. According to computational studies by Tong et al. and Mosconi et al., MAI-terminated 
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perovskite surfaces are prone to the infiltration of water molecules which can strongly affect the 

perovskite structure.[41, 42] With this in mind, we suggest that water molecules penetrating the 

perovskite structure could increase the precursor mobility and allow the perovskite to recrystallize 

and reorient during the first 60 min (Figure 4.7c). This is supported by the SEM images, verifying 

the significant change in crystal morphology.  

Figure 4.7b depicts the evolution of the (110) peak intensity relative to the (121) or (022) reflections 

with increasing hydration time. The highest relative intensity for the (110) diffraction peak can be 

found after 50 min, followed by a steady decrease upon longer exposure times. The employed 

fabrication route of the perovskite films already leads to a preferential orientation along the (110) 

planes. During the moisture-assisted recrystallization, this dominating orientation seems to dictate 

the direction in which the large crystals will emerge. Our observations indicate that, once the 

reservoir of excess MAI has been consumed, no further reorganization of the perovskite film due to 

the self-healing process takes place and degradation is initialized by the formation of the hydrated 

perovskite species.  

 

 

Figure 4.7  In situ XRD measurements monitoring the hydration of a perovskite film prepared with a 5 mol% 

excess of MAI. (a) XRD patterns of the perovskite film during the first hour of exposure to 90% RH. The 

MAPbI3 peaks are labelled with green circles and the monohydrate peaks with purple diamonds. (b) Relative 

intensities of the (110) perovskite peak (2 = 14.1°) over the (121) and (022) orientations (2 = 23.5 and 24.5°) 

as a function of time showing that the perovskite crystals become more oriented in the first hour of exposure 

to 90% RH. The grey lines are drawn as a guide to the eye. (c) Schematic representation of the change in 

morphology of the MAPbI3 crystals after the hydration/dehydration treatment. 
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4.3.2 Effect of hydration on perovskite solar cells 

In order to investigate the effect of precursor stoichiometry on the photovoltaic performance before 

and after exposure of the MAPbI3 perovskite layer to moisture, we fabricated perovskite solar cells 

with the following planar device architecture: fluorine-doped tin oxide (FTO)/compact 

TiO2/MAPbI3/spiro-OMeTAD/Au. We prepared different perovskite layers employing non-

stoichiometric mixtures and the same method as for the thin films. Consistent with reports by several 

other groups,[25, 26] we found that a small excess of PbI2 (2–10 mol%) in the perovskite precursor 

solution increases the photovoltaic performance of the as-prepared devices (Figure 4.8). 
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Figure 4.8  Photovoltaic performance of perovskite solar cells related to the precursor ratio. 
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Figure 4.9  Photovoltaic performance of devices with different precursor ratios before and after hydration at 

75% RH for different exposure times. The evaluation is based on the reverse J-V scans for a total of at least 18 

individual devices for each type of perovskite film. 

 

An optimized recipe using 5 mol% PbI2 excess results in devices with an average PCE = 13.5% 

(Figure 4.9) compared to stoichiometric MAPbI3 samples (average PCE = 11.4%). In contrast, we 

found that an excess of MAI is detrimental for the device performance, resulting in power conversion 

efficiencies of only 4.7% on average, mainly due to a loss in short-circuit current density (Jsc). UV-

Vis absorption and spectroscopic ellipsometry measurements show that the lower Jsc does not 

originate from a reduced absorption of the film, which was found to be comparable for the different 

samples (Figure 4.10). We estimated the reported device characteristics from the measured J-V 

curves obtained from the reverse scan (from Voc to Jsc). All as-prepared devices exhibit a comparable 

degree of hysteresis between the forward and reverse scans (Figure 4.11). 
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Figure 4.10  (a) UV-Vis absorption spectra of MAPbI3 films prepared with different precursor solutions on 

glass. The absorption profiles were obtained before and after storing the films at 75% RH for 1 h. (b) Optical 

constants (extinction coefficient, top; index of refraction, bottom) modelled from spectroscopic ellipsometry 

data collected on thin films of MAPbI3 deposited on glass with different precursor ratios. The data collected 

on a single crystal of MAPbI3 is given for comparison (dashed green line).[43] The difference in absolute value 

between thin films and single crystal is attributed to the differences in surface roughness, microscopic structure 

and orientation, and possible differences in the material’s density. There may also be differences in scattering 

induced depolarization which cannot be analyzed with our setup as we are not measuring the full Mueller 

Matrix. The reduced sharpness of the optical features in MAPbI3 thin films prepared with 5% excess MAI is 

in agreement with the observation of smaller crystallites and rougher film surface. We note a slightly excitonic 

nature of the band gap in the 5% PbI2-excess samples which might indicate large grains in the film.  
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Figure 4.11  (a–c) J-V curves of photovoltaic devices before hydration exhibiting hysteresis. (d–g) J-V curves 

showing the hysteresis of photovoltaic devices with an MAI excess after different hydration times. Recorded 

under simulated AM 1.5G illumination, reverse and forward bias measured at a scan rate of 0.2 V s-1. 

Stoichiometric PbI2 excess

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-5

0

5

10

15

20

25

 

 

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.2 1.08 0.72 15.6

Forwards 20.0 1.04 0.47 9.7

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.2 1.07 0.74 15.9

Forwards 20.0 1.00 0.47 9.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

 

MAI excess - Fresh MAI excess - 1h

MAI excess - 6h

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u
rr

e
n
t 

d
e
n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-5

0

5

10

15

20

25

 

 

C
u
rr

e
n
t 

d
e
n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 18.8 1.07 0.62 12.4

Forwards 18.3 0.92 0.31 5.1

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 14.7 0.97 0.53 7.4

Forwards 13.6 0.74 0.20 2.0

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.7 1.10 0.72 16.4

Forwards 20.7 0.97 0.43 8.57

MAI excess - 12h

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.5 1.09 0.73 16.3

Forwards 20.5 0.98 0.58 11.6

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

 

MAI excess - 48h

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.3 1.10 0.71 15.6

Forwards 20.2 1.02 0.50 10.4

Stoichiometric PbI2 excess

0.0 0.2 0.4 0.6 0.8 1.0 1.2
-10

-5

0

5

10

15

20

25

 

 

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

-10

-5

0

5

10

15

20

25

 

 

C
u

rr
e

n
t 

d
e

n
s
it
y
 (

m
A

 c
m

-2
)

Voltage (V)

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.2 1.08 0.72 15.6

Forwards 20.0 1.04 0.47 9.7

Jsc (mA/cm) Voc (V) FF PCE (%)

Backwards 20.2 1.07 0.74 15.9

Forwards 20.0 1.00 0.47 9.2

a) b)

c) d)

e) f)

g)



Influence of precursor stoichiometry on the moisture stability of CH3NH3PbI3 

 

 
85 

 

To examine the effects of moisture on the films before they were fabricated into solar cells the 

perovskite films were stored in air with a controlled humidity of 75% RH in a closed chamber at 

room temperature. We note that the substrate underneath the perovskite film can influence the time-

scale of hydration effects.[32, 44, 45] For this reason, the time-scale of degradation in perovskite films 

prepared on glass/FTO/TiO2 substrates is not directly comparable to samples on glass substrates. 

After the hydration procedure, we transferred the samples to a nitrogen-filled glovebox and deposited 

spiro-OMeTAD as hole transporting layer, followed by thermally evaporating 40 nm thick gold 

electrodes under high vacuum. Our previous studies suggest that any monohydrate crystals which 

may have formed are likely to undergo dehydration and reconvert into the perovskite phase during 

these low humidity processing steps (note that this dehydration process will also have occurred for 

the films examined in the SEM in Figure 4.6).[18]  

 

 

Figure 4.12  XRD patterns of perovskite solar cells prepared without hydration and after 1 h hydration at 

75% RH. The XRD patterns show that the exposure to moisture results in an additional ~5 mol% PbI2 in the 

film for the stoichiometric and PbI2-excess film, while the (110) and (220) peak intensity of the MAI-excess 

sample increases by a factor of two. The PbI2 formed as a degradation product does not improve the device 

performance as was observed by adding 5 mol% PbI2 in the precursor solution, while the recrystallization and 

orientation in the MAI-excess film results in an improvement of device performance. 

 

The photovoltaic performance of devices comprising stoichiometric and PbI2-excess films is slightly 

lower after exposure at 75% RH for 1 h (Figure 4.9) relative to devices made from films that have 

not been exposed to moisture. During this relatively short exposure, an additional ~5 mol% PbI2 was 

built up in the films as a degradation product (Figure 4.12). We consider this to be the reason for the 

loss in performance. Curiously, the PbI2 which originates from degradation does not seem to improve 

the photovoltaic performance as we observed for the devices made by using a PbI2 excess in the film 

preparation. This suggests that the PbI2 formed upon hydration has a different (and detrimental) 
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spatial distribution or orientation relative to the PbI2 excess which is added during the film 

preparation. It is known that PbI2 exhibits an anisotropic electrical conductivity, which could function 

as a barrier for charge carriers, depending on the crystal orientation.[46, 47] Upon longer exposure of 

the films to humidity (12 h), a further decrease in the performance of the resulting devices for both 

types of samples indicates further degradation. Despite the slower decomposition of the PbI2-excess 

sample in the in situ XRD measurements, we do not observe a large difference in the loss in 

performance between the stoichiometric and the PbI2-excess devices. 

 

 

Figure 4.13  (a) PCE and photocurrent over time for fresh stoichiometric and PbI2-excess devices and for the 

hydrated MAI-excess (12 h at 75% RH) devices. Especially the MAI-excess devices shows a very stable power 

output at the maximum power point. (b) External quantum efficiency (EQE; black circles) of a representative 

MAI-excess device after hydration. The integrated photocurrent density (red squares) of 20.4 mA cm-2 is in 

good agreement with the Jsc value obtained from the J-V curves. 

 

Remarkably, many of the devices comprising a perovskite layer prepared with an MAI excess exhibit 

increased PCE values after hydration followed by dehydration. After only 1 h exposure to 75% RH, 

we found a clear improvement of PCEs (Figure 4.9). This positive trend holds for even longer 

exposure times up to 12 h, eventually resulting in hero(ine) cell efficiencies comparable to the best 

performing devices derived from fresh stoichiometric or PbI2-excess perovskite films, with an 

excellent stabilized power output (Figure 4.13). The increased performance mainly originates from 

an improvement in Jsc. Our XRD and SEM results provide evidence that this improvement in device 

performance can be correlated to the increase in crystallinity and reorientation of the perovskite 

crystals upon humidity exposure (Figure 4.14).[48] Yang et al. also report high efficiency devices with 

excess MAI in the perovskite layer after an air-annealing step to induce grain-coarsening and 

formation of large crystals.[24] Since the annealing step was performed under exposure to air, it is 
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possible that this reported process is also moisture-assisted, which might be initiated already at room 

temperature. When the MAI-excess films are exposed for longer times and/or at higher levels of 

humidity (e.g. 48 h at 75% RH), the monohydrated species of MAPbI3 is formed, which appears as 

transparent flower-like crystals on the film. The drastic change in crystal morphology and structure 

is expected to result in pinholes and thus shunts, as well as in a loss in optical absorption and 

conductivity in the monohydrate regions.[21] This could explain the decrease in Voc and in the overall 

photovoltaic performance of the degraded MAI-excess devices prepared in this study. 

 

 

Figure 4.14  SEM cross-section of a photovoltaic device with an MAI excess after hydration for 12 h at 75% 

RH. The perovskite crystals have a size between 500–1000 nm after “solvent-annealing” in humid air. 

 

Despite the high PCEs that can be obtained by exposing MAI-excess films to humidified air, we note 

that these solar cells suffer from a significantly broader distribution in PCE compared to the PbI2-

excess devices. Further optimization of the moisture-induced recrystallization (“solvent annealing”) 

process may allow higher reproducibility and device efficiencies. 

To further investigate the causes of the observed differences in solar cell performance for the 

different precursor formulations, we analyzed the charge carrier lifetime and differential capacitance 

of the devices. For the PbI2-excess and MAI-excess cases we also explored the influence of the 

hydration step. The experimental protocol for these measurements is reported by O’Regan et al. and 

is also presented in the Methods section for completeness.[49] In our analysis, the differential 

capacitance (dQ/dVoc where Q is charge generated per unit area) is calculated from the solar cells’ 

electrical response upon pulsed LED illumination. It is determined from the ratio between the Jsc 

during the pulse, dQ/dt (without background light bias), and the initial positive slope of the open-

circuit photovoltage transient, dVoc/dt, at each background light intensity measured after stabilization 

(Figure 4.15). This approach yields capacitance values which account only for the movement of 

electronic charge, but we expect the quasi steady-state distribution of ionic charge in the device to 

be different for each background light intensity. For solar cells where the charge collection efficiency 
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is less than 100%, this approach is prone to errors since the photocurrent during a pulse will not 

represent the full charge generation rate. We present the details of this limitation in the Methods 

section, where we also show that the conclusions drawn from the comparison of different devices in 

the following paragraphs is still representative and meaningful. 

 

 

Figure 4.15  Optoelectronic transient measurements at different light intensities for a stoichiometric solar cell. 

(a) Photovoltage transient (after baseline subtraction) at different background light intensities. (b) Photocurrent 

measurement upon 40 μs red LED pulse. 

 

Figure 4.16a shows the differential capacitance versus Voc for all devices. In Figure 4.16b and Figure 

4.16c we present the effect of hydration on carrier lifetime for MAI-excess and PbI2-excess samples 

respectively (data points for the stoichiometric devices are also included). The key observation from 

Figure 4.16a is that the MAI-excess devices show a significantly higher differential capacitance as a 

function of Voc relative to the stoichiometric and the PbI2-excess devices. This difference can be 

interpreted as a variation in the density of electronic states (chemical capacitance) of cells prepared 

from different precursor solutions as a function of the Fermi level splitting in the device. The results 

can be interpreted in two possible ways: (1) the active layers fabricated with an MAI excess result in 

films with a higher density of traps states for a given Voc or (2) the shift in the capacitance versus Voc 

is related to a change in the interfacial energetics. In case 2, a variation in the active layer composition 

could give rise to dipole formation at the perovskite/TiO2 and perovskite/spiro-OMeTAD interfaces, 

resulting in a lower effective built-in potential (Vbi) and reduced Voc for a given light intensity. While 

a horizontal shift to lower Voc values would be expected in this case, a reduced Vbi cannot account 

for the difference in slope of capacitance versus Voc for the MAI-excess devices. Therefore, 

explanation 2 is unlikely to be dominant. A higher density of trap states corresponding to explanation 

1 is consistent with the smaller crystal sizes observed in these films. 
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Figure 4.16  Optoelectronic transient measurements at different light intensities for stoichiometric, PbI2-excess, 

MAI-excess, hydrated PbI2-excess and hydrated MAI-excess devices. (a) Differential capacitance versus Voc. 

(b–c) Lifetime extracted from photovoltage transients at open-circuit versus differential capacitance for (b) 

MAI-excess and (c) PbI2-excess solar cells. Different symbols with the same color correspond to devices 

prepared with the same precursor ratio. 

 

Strikingly, hydrating (or moisture annealing) the MAI-excess films before completing the devices 

resulted in capacitance versus Voc relations that closely match the stoichiometric and PbI2-excess 

cases. This reduction in capacitance is consistent with the structural analysis and device performance 

trend described in the previous sections. Figure 4.16a also shows that hydration of the PbI2-excess 



Influence of precursor stoichiometry on the moisture stability of CH3NH3PbI3 

 
  

 

 
90 

 

perovskite films does not lead to a significant change in capacitance versus Voc and that both these 

devices approximately resemble the behavior observed for the stoichiometric case. 

Figure 4.16b displays transient photovoltage lifetimes as a function of differential capacitance for 

the MAI-excess devices with or without the hydration step. Photovoltage lifetimes are often used to 

assess the relative recombination rate constants in devices,[50] however care must be taken 

interpreting the values if the energetic distribution of electronic states varies between devices,[21] as 

is the case here. Once again, the MAI-excess devices exhibit distinctly different behavior from the 

stoichiometric control. Analogous to the data displayed in Figure 6a, the hydration step results in 

solar cells with remarkably similar photovoltage decay times as a function of capacitance to the 

stoichiometric case. We note that changes in interfacial energetics at the electrodes’ interface and Vbi 

between solar cells fabricated with different precursor ratios would not significantly affect the 

lifetime versus capacitance characteristics, further evidence that explanation 2 is unlikely. On the 

other hand, a difference in the degree of energetic disorder within the film (explanation 1) could 

explain this observation. A higher density of trap states and associated chemical capacitance could 

increase the observed photovoltage relaxation time constant without significantly accelerating the 

charge recombination processes. This picture involves trap states which do not act as fast 

recombination centers (similar to dye-sensitized solar cells).[51] We hypothesize that these traps may 

be present in MAI-rich regions surrounding the perovskite grains. These would inhibit electronic 

charge transport in MAI-excess devices, resulting in decreased collection efficiency and explaining 

the lower Jsc measured for these devices. 

Finally, Figure 4.16c displays the trend of lifetimes observed for PbI2-excess samples. These devices 

show longer lifetimes compared to the stoichiometric solar cells, consistent with the fractionally 

higher Voc values. However, this difference is within statistical uncertainty. In a similar way to the 

hydrated MAI-excess samples, hydration of PbI2-excess devices yields a trend in lifetime versus 

differential capacitance that closely matches the stoichiometric control. 

 

4.4 Conclusion 

In conclusion, we performed both in situ XRD and optoelectronic measurements to reveal the effects 

of moisture on MAPbI3 perovskite films and solar cells derived from non-stoichiometric precursor 

solutions. Our findings indicate that the moisture stability of the perovskite film can be slightly 

improved by adding an excess of PbI2 to the precursor solution. We assign the decelerated 

degradation process either to a PbI2 layer formed at the grain boundaries during film crystallization 
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or to the termination of the perovskite crystal with lead and iodine atoms, both of which would 

function as a barrier towards moisture ingress. In contrast, perovskite films containing an initial MAI 

excess first recrystallize upon exposure to humidified air at room temperature, resulting in large 

crystals with a preferential (110) orientation, before degradation occurs. Solar cells comprising an 

MAI-excess film initially show poor photovoltaic performance which we attribute to a high density 

of trapping states and energetic disorder in MAI-rich regions at perovskite grain boundaries, inferred 

from differential capacitance measurements. These states are likely to impede charge collection, 

explaining the lower Jsc in the fresh MAI-excess devices as well as longer photovoltage decay times 

than the other devices. However, when these films are exposed to moisture prior to applying the top 

electrodes, we observe an impressive improvement in PCE. We attribute this to the recrystallization 

of the perovskite and a concomitant reduction in electronic disorder to the level observed in the 

stoichiometric or PbI2-excess devices. Our results shed light on the role of moisture in the processing 

and degradation of non-stoichiometric perovskite films, and indicate a procedure in which water 

vapor can be used to improve the device performance by solvent annealing. 

 

4.5 Methods 

Film preparation for hydration studies 

Glass substrates were subsequently cleaned with a 2% Hellmanex solution and rinsed with de-ionized 

water, ethanol and acetone. Directly before spin-coating the perovskite film, the substrates were 

plasma cleaned for 5 min. A 1.25 M precursor solution containing stoichiometric amounts of PbI2 

(TCI, >98%) and methylammonium iodide (Dyesol) in a 4:1 (v/v) mixture of N,N-dimethylformaid 

(DMF) and dimethyl sulfoxide (DMSO) was prepared. To obtain the solutions with a defined 

precursor excess, the required amount of MAI or PbI2 was added to the stoichiometric solution, 

respectively. The solutions were spin-coated dynamically (first at 1000 rpm for 10 s, followed by a 

second step at 5000 rpm for 30 s) onto the substrate. After 25 s, chlorobenzene was added on top of 

the spinning substrate and afterwards the substrate was annealed on a hotplate (first at 40 °C for 

40 min, followed by a second step at 100 °C for 10 min).  

 

Solar cell preparation 

Fluorine-doped tin oxide (FTO) coated glass sheets (7 Ω/sq, Pilkington, USA) were patterned by 

etching with zinc powder and 3 M HCl. The substrates were subsequently cleaned with a 2% 
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Hellmanex solution and rinsed successively with de-ionized water, ethanol and acetone. Directly 

before applying the hole blocking layer, last organic residues were removed by an oxygen plasma 

treatment for 5 min. A compact TiO2 layer was prepared from a sol-gel precursor solution by spin-

coating onto the substrates and calcination at 500 °C for 30 min in air. For the sol-gel solution a 

27.2 mM solution of HCl in IPA was added dropwise to a vigorously stirred 0.43 mM solution of 

titanium isopropoxide (99.999%, Sigma-Aldrich) in dry IPA. After cooling down, the substrate was 

transferred to a nitrogen-filled glovebox. The perovskite films were prepared as described above and 

hydrated as mentioned in the text. The hole transporting material spiro-OMeTAD (Borun Chemicals, 

99.5% purity) was applied on the perovskite film in a glovebox using a 75 mg/mL solution in 

chlorobenzene to which 10 µL tBP and 30 µL of a 170 mg/mL Li-TFSI solution in acetonitrile were 

added. This solution was spin-coated dynamically at 1500 rpm for 45 s. The devices were stored 

overnight under air at room temperature and <30% RH to allow the spiro-OMeTAD to oxidize. The 

top electrode with a thickness of 40 nm was deposited by thermal evaporation of gold under vacuum 

(at ~10-6 mbar). 

 

Characterization 

X-ray diffraction (XRD) analysis of perovskite films were carried out in reflection mode using a 

Bruker D8 Discover diffractometer with Ni-filtered Cu Kα1 radiation (λ = 1.5406 Å) and a position-

sensitive semiconductor detector (LynxEye). For the in situ XRD measurements during the hydration 

process, a custom-made hydration chamber made of X-ray transparent polymers with a total volume 

around 250 mL was utilized. The air humidity within the hydration chamber was measured using a 

hygrometer and was held constant around 90% RH or 75% RH by employing vials filled with pure 

water or saturated sodium chloride solutions. All experiments were performed at room temperature 

(22  1 °C) without illumination. 

 

 

Figure 4.17  Schematic representation of the hydration chamber for in situ XRD measurements. 
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In situ XRD experiments during thermal annealing of the perovskite film were performed using a hot 

stage controlled by the diffractometer under ambient conditions. We note that the result might differ 

from experiments that are performed in the glovebox. 

Extreme high resolution (XHR) SEM images were obtained using a FEI Helios Nanolab G3 UC 

DualBeam Scanning Electron Microscope. The cross-section samples were freshly cut shortly before 

the measurements to avoid film degradation after sample preparation. 

Ultraviolet-visible (UV-Vis) absorption spectra were recorded using a Perkin Elmer Lambda 1050 

spectrophotometer equipped with a 150 mm integrating sphere. 

Spectrometric ellipsometry measurements were performed using a VASE-ellipsometer from J. A. 

Woollam Co., Inc. equipped with AutoretarderTM. Optical spectra on thin films were recorded from 

ca. 0.9 eV to 3.1 eV, at five incidence angles for each sample (55°, 60°, 65°, 70°, 75°). The collected 

spectra were analyzed using the WVASE 32 software from J. A. Woollam Co., Inc. A model of four 

critical points of the joint density of states was introduced following the modelling and fitting 

methodology as previously published.[1] The spectrometric ellipsometry measurement were 

performed at room temperature and low humidity (<30% RH).  

J-V curves were recorded under ambient conditions with a Keithley 2400 source meter under 

simulated AM 1.5G sunlight, with an incident power of approximately 100 mW cm-², which was 

corrected for the exact light intensity using a Fraunhofer ISE certified silicon cell. The active area of 

the solar cells was defined with a square metal aperture mask of 0.0831 cm2. The reported device 

characteristics were estimated from the measured J-V curves obtained from the reverse scan (from 

Voc to Jsc) which was recorded at a scan rate of 0.2 V s-1 after pre-biasing at 1.5 V for 5 s under 

illumination. All as-prepared devices show a comparable degree of hysteresis between the forward 

and reverse scan. The stabilized power output was measured by tracking the current at the maximum 

power point. The devices were not pre-biased for this measurement. 

External quantum efficiency measurements were performed at short-circuit and referenced to a Si 

photodiode (Hamamatsu). The device was illuminated using a white bias light (Solar light Co. Inc. 

Model S16, 150W xenon lamp ~100 W m-2) and light from a 150 W Xe short arc lamp (LOT Oriel) 

was used as probe light and modulated with a mechanical chopper (12 Hz) and passed through a 

monochromator (Horiba MicroHR) to select the wavelength. The response was recorded using a 

lock-in amplifier (Ametek Signal Recovery SR 7230 DSP) with a low-noise pre-amplifier (Femto 

DLPCA-200). 
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Optoelectronic transient measurements 

Optoelectronic transients were performed on perovskite solar cell devices using the TRACER system 

described in previous reports.[51] 

Charge carrier lifetime measurements: transient photovoltage measurements were conducted by 

applying a 10 μs red LED pulse on top of a background white LED bias light set to different 

intensities. A monoexponential function was fitted to the tail of the voltage decay upon voltage 

baseline subtraction to extract the charge lifetimes, τ (see Figure 4.15). All photovoltage decays were 

performed after leaving the solar cell under the set light conditions for 100 s to allow stabilization of 

the Voc and slow moving/ionic charge to reach a quasi-equilibrium distribution. 

Determination of differential capacitance: the differential capacitance at different bias light 

intensities was calculated by considering the ratio between dQ/dt and dV/dt related to a red LED light 

pulse. dV/dt was evaluated at the different light intensities by fitting a straight line to the initial rise 

of the photovoltage transient. dQ/dt was evaluated by measuring the photocurrent resulting from 

illuminating the cell with the red LED (driven under the same condition as the transient photovoltage) 

for 40 μs. The average value of Jsc between 20 μs and 35 μs after switching on the LED was taken 

for this estimate (see Figure 4.15b). In order to maximize the collection efficiency of the devices, 

this measurement was performed after pre-biasing the device at 1 V for 100 s. 

Error associated to differential capacitance determination: as discussed in the Results and discussion 

section, the analysis of the differential capacitance described above results in accurate estimates of 

the differential capacitance only under specific circumstances. In the case that all charges generated 

by the LED pulse contribute to the change in Voc during the photovoltage transient measurements 

and can be extracted when performing a transient photocurrent measurement in the dark, then the 

method adopted in the analysis displayed in Figure 4.16 would yield reliable estimates. Given that 

collection efficiency in these devices is expected to be less than 100%, especially for the MAI-excess 

samples, we proceed to discuss the validity of this method. An alternative approach to the analysis 

of these data is presented in Figure 4.18. The figure is an analogous of Figure 4.16 in the Results and 

discussion section. However, here the value of dQ/dt used to calculate the differential capacitance 

has been set to be constant and equal to the maximum photocurrent resulting from red LED 

illumination measured among all devices considered in our studies. Assuming now that this were the 

value of charge excited in each of the device upon red light illumination contributing to the observed 

transient photovoltage dynamics, the data points presented in Figure 4.18 would be a closer estimate 

of the differential capacitance of the devices. It is clear from Figure 4.18 that the trends discussed in 

the Results and discussion section regarding Figure 4.16 are still valid in this case. We note that if 

the different values of photocurrent measured for different devices upon red LED illumination were 



Influence of precursor stoichiometry on the moisture stability of CH3NH3PbI3 

 

 
95 

 

due to a difference in charge generation (due for example to differences in absorption) or to 

recombination processes which prevent the photo-generated charges from contributing to measurable 

changes in Voc during transient photovoltage measurements, then the analysis presented in the Results 

and discussion section would be a more accurate description of the differential capacitance during 

photovoltaic operation. 

 

 

Figure 4.18  Optoelectronic transient measurements at different light intensities for stoichiometric, PbI2-excess, 

MAI-excess, PbI2-excess after hydration step and MAI-excess after hydration step devices. The maximum 

transient photocurrent among all devices was used to measure dQ/dt and hence calculate the differential 

capacitance (a) Differential capacitance versus open-circuit voltage; (b-c) Lifetime extracted from 

photovoltage transients at open-circuit versus differential capacitance for (b) MAI-excess and (c) PbI2-excess 

solar cells.  
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5.1 Abstract 

Adding cesium (Cs) and rubidium (Rb) cations to FA0.83MA0.17Pb(I0.83Br0.17)3 hybrid lead halide 

perovskites results in a remarkable improvement in solar cell performance, but the origin of the 

enhancement has not been fully understood yet. In this work, time-of-flight (ToF), time-resolved 

microwave conductivity (TRMC), and thermally stimulated current (TSC) measurements were 

performed to elucidate the impact of the inorganic cation additives on the trap landscape and charge 

transport properties within perovskite solar cells. These complementary techniques allow for the 

assessment of both local features within the perovskite crystals and macroscopic properties of films 

and full devices. Strikingly, Cs-incorporation was shown to reduce the trap density and charge 

recombination rates in the perovskite layer. This is consistent with the significant improvements in 

the open-circuit voltage and fill factor of Cs-containing devices. By comparison, Rb-addition results 

in an increased charge carrier mobility, which is accompanied by a minor increase in device 

efficiency and reduced current-voltage hysteresis. By mixing Cs and Rb in quadruple cation (Cs–

Rb–FA–MA) perovskites, the advantages of both inorganic cations can be combined. Our study 

provides valuable insights into the role of these additives in multiple-cation perovskite solar cells, 

which are essential for the design of high-performance devices. 

 

5.2 Introduction 

In the past few years, hybrid lead halide perovskites established themselves as outstanding materials 

for photovoltaic (PV) applications. Recently, inorganic cations such as rubidium (Rb) and cesium 

(Cs) have been added to the perovskite, resulting in a boost in the power conversion efficiency (PCE) 

up to 21.6%.[2] The state-of-the-art perovskite solar cells comprise a multi-cation mixed-halide hybrid 

perovskite and show impressive stabilized power output under working conditions.[2, 3] The inorganic 

cation additives have been shown to improve the phase stability of the photoactive formamidinium 

lead iodide (FAPbI3) perovskite layer by suppressing the phase transition into the yellow non-

perovskite structure at room temperature.[4-8] However, the stabilization of the black perovskite phase 

is based on fine-tuning the Goldschmidt tolerance factor, which can also be achieved by 

incorporation of smaller methylammonium (MA) cations into the formamidinium (FA)-dominated 

perovskite structure, without the need for the even smaller Cs or Rb cations.[9, 10] It is likely that the 

inorganic cation additives do not only stabilize the crystal structure, but also have a strong impact on 

the optoelectronic properties of the perovskite, leading to the observed enhancement in solar cell 

performance. 
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In order to reach record efficiencies and high stability, extensive device optimization work with a 

strong focus on the processing of the perovskite layer has been performed. Various combinations and 

ratios between the monovalent cations (FA, MA, Cs and Rb) and the halides (I and Br) have been 

explored and optimized along with different perovskite fabrication processes.[4-7, 10-16] However, the 

origin of the increased device performance that has been demonstrated for Rb- and Cs-containing 

perovskite solar cells remains rather unclear. In order to engineer perovskite solar cells with the 

highest possible device performance and stability, it is essential to understand the impact of the 

inorganic cation additives on the perovskite’s optoelectronic properties.  

In this work, we investigate the effect of Cs- and Rb-addition on the electronic landscape and the 

charge transport properties of the multiple-cation mixed-halide hybrid perovskite 

FA0.83MA0.17Pb(I0.83Br0.17)3 in state-of-the-art perovskite solar cells. We combine three 

complementary probing techniques: time-of-flight (ToF), time-resolved microwave conductivity 

(TRMC), and thermally stimulated current (TSC) measurements. Our results indicate that Cs 

markedly reduces the trap density, as well as the second order recombination rate of free mobile 

charges in the perovskite bulk material. Furthermore, the trap states in Cs-containing perovskites 

appear to be shallower than in non-modified perovskite devices. These improvements are in good 

agreement with a notable enhancement of device performance employing Cs-containing perovskites. 

By comparison, our results show that Rb-addition increases the charge carrier mobility, but that it 

has only a minor impact on the trap landscape within the perovskite solar cell and results in marginal 

improvements in device performance. Nevertheless, Rb reduces current–voltage hysteresis and leads 

to a more stabilized power output. After clarifying the individual role of each inorganic cation 

additive, the benefits of both Cs and Rb-addition can be found in quadruple cation (Cs–Rb–FA–MA) 

perovskites. 
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5.3 Results 

5.3.1 Solar cell performance 

 

Figure 5.1  (a) Schematic representation of the device architecture of the perovskite solar cells. (b) Maximum 

power point tracking for encapsulated perovskite solar cells under constant AM 1.5G illumination measured in 

air. (c–f) Box chart representation of photovoltaic parameters of perovskite solar cells under simulated AM 

1.5G sunlight. The current-voltage (J–V) curve of at least 17 cells for each type of perovskite layer were 

recorded at a scan rate of 0.1 V s-1. 

 

We investigated the influence of Rb and Cs cations as additives on the PV performance of planar 

perovskite solar cells with the following device architecture: glass/FTO/compact 

TiO2/perovskite/spiro-OMeTAD/Au. According to a protocol reported by Saliba et al.[2], we 

synthesized the multi-cation mixed-halide perovskite (FA0.83MA0.17)Pb(I0.83Br0.17)3 (FAMA), and 

added approximately 5 mol% of RbI, CsI or a combination of both to the FAMA precursor solution. 

The resulting samples are denoted in the following as Rb5, Cs5 and Rb5Cs5, i.e. Rb5 means that 
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5 mol% of Rb cations were added. Our previous XRD results show that the Cs is fully incorporated 

into the perovskite lattice, while the same amount of Rb preferentially forms a RbPb(I1-xBrx)3 side 

phase.[17] The current–voltage (J–V) characteristics of at least 17 cells were evaluated for each type 

of perovskite layer under one sun illumination according to air mass 1.5 global (AM 1.5G) radiation. 

Figure 5.1 shows the schematic representation of the layered device architecture, the stabilized output 

under maximum power conditions at AM 1.5G sun illumination, as well as the distribution of the PV 

device parameters for FAMA, Rb5, Cs5 and Rb5Cs5 solar cells. Representative J–V curves of 

champion cells are shown in Figure 5.2. Scanning Electron Microscopy (SEM) cross-section images 

of the full devices are depicted in Figure 5.3. 

 

 

Figure 5.2  J–V curves of perovskite solar cells on compact TiO2 as electron transport layer. Recorded under 

AM 1.5G illumination and with a scan rate of 0.1 V s-1. 
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Figure 5.3  SEM cross-section images of the different perovskite solar cells with the device architecture 

glass/FTO/TiO2/perovskite/spiro-OMeTAD/Au. 

 

In accordance with previous reports, we find that the PV performance is substantially enhanced for 

Cs5 devices compared to plain FAMA-based devices.[3] The enhancement in power conversion 

efficiency upon CsI addition can be ascribed to a significant improvement in all solar cell parameters 

(Figure 5.1c–f), i.e. short-circuit current (Jsc), open-circuit voltage (Voc) and fill factor (FF). The 

addition of RbI only leads to minor improvements in Jsc, Voc and FF in the corresponding Rb5 device. 

When both Rb and Cs cations were used as additives, the resulting Rb5Cs5 devices show a 

comparable PV performance to that of the Cs5 devices. However, the presence of Rb results in a 

more narrow distribution of the Rb5Cs5 device performance parameters, indicating higher 

reproducibility. Moreover, the presence of Rb in the Rb5Cs5 perovskite film leads to the highest 

stabilized power output under constant illumination over 300 s (Figure 5.1b) which is superior to that 

of Cs5 and is in agreement with literature reports.[2, 3] Similar trends regarding Jsc, Voc and stabilized 

power output were also observed for devices prepared on compact SnOx films instead of TiO2 serving 

as electron transport layers (Figure 5.4). 
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Figure 5.4  (a–d) Photovoltaic parameters of perovskite solar cells with the following device architecture: 

glass/FTO/SnOx/perovskite/Spiro-OMeTAD/Au. 24 cells were measured for each type of perovskite layer and 

the J–V curve showing the higher PCE value was evaluated (scan speed: 0.2 V s-1). (e) Maximum power point 

tracking for perovskite solar cells with SnOx electron transport layer under constant AM 1.5G illumination. 

The encapsulated devices were measured in air under ~50% relative humidity. 

 

The increase in Jsc upon addition of the inorganic cations is most likely related to the formation of a 

larger volume percentage of photoactive material through the reaction between the CsI or RbI 

additive and the excess of PbI2 which is present in the non-stoichiometric FAMA solution. The excess 

PbI2 was intentionally added to the perovskite precursor solution due to its potential passivation effect 

in perovskite solar cells, which is a standard procedure for the highest performing solar cells 

described in the literature.[2, 3, 18-20] By reacting the PbI2 excess with the CsI or RbI additive, the 

absorptance of the resulting perovskite film increases (Figure 5.5a). Furthermore, external quantum 

efficiency (EQE) measurements were conducted and the measured integrated current densities are in 

close agreement with the Jsc values obtained from the J–V curves (Figure 5.5b). The EQE data 
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demonstrate an increase of ~4% in current density when 5% of Rb or Cs are added and overall, 

Rb5Cs5 leads to the highest current densities.  

 

 

Figure 5.5  (a) UV-VIS absorption spectra of the different perovskite films measured with a spectrophotometer 

equipped with an integrating sphere. (b) Representative EQE spectra for FAMA, Cs5, Rb5 and Rb5Cs5 devices 

processed on top of SnOX. The inset table shows the short-circuit current density of all devices as calculated 

from the integration of each devices’ EQE and the solar irradiance spectrum at AM 1.5G. 

 

We point out that the reduction of excess PbI2 in the perovskite layer upon inorganic cation addition 

is not the origin of the observed PCE improvements. This is supported by comparing FAMA devices 

with 0%, 5% and 10% PbI2 excess which show very similar photovoltaic performance (Figure 5.6). 

In order to elucidate the origin of the Voc and FF improvement in perovskite solar cells upon Cs- 

and/or Rb-addition, we thoroughly investigated the change in charge carrier mobility, charge 

recombination rates and trap densities of the perovskite thin films. 

 

 

Figure 5.6  Distribution of PCE values for FAMA-based solar cells on compact TiO2 with varying amount of 

PbI2 in the perovskite precursor solution (0%, 5% and 10% excess). The backward J–V scan was evaluated for 

at least 19 cells each, showing that the amount of PbI2 excess does not have a significant influence on the 

device performance. 
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5.3.2 Charge carrier transport 

Macroscopic charge carrier transport (time-of-flight measurements) 

To probe the impact of the Cs and Rb addition on charge carrier transport in the perovskite absorber, 

we performed time-of-flight (ToF) measurements on laterally contacted perovskite layers.[21] We 

generate charge carriers in the perovskite layer by illumination using pulsed laser excitation ( = 510 

nm) close to one of the gold electrodes. By simultaneously applying a constant external electric field 

of 5 kV cm-1 (for only a few hundreds of milliseconds to mitigate the effect of ionic migration), the 

photo-generated charge carriers (either electrons or holes) move across the film within the gap 

towards the opposite Au electrode. The resulting photocurrent transients show that the transit time ttr 

that is required for charge carriers to travel laterally from the excitation spot to the opposite Au 

contact increases with increasing electrode distances (Figure 5.7).  
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Figure 5.7  Representative photocurrent transients obtained for a FAMA sample after pulsed excitation and the 

simultaneously applied DC field for different inter-electrode distances in a ToF experiment. An increased 

electrode distance d results in longer ToF transit times ttr. 

 

A previously reported procedure[21] was employed to extract the transit time from the measured 

photocurrent transient. The average charge carrier mobility µ in the perovskite films can be 

approximated by the ToF equation:  

𝜇 =
𝑑

𝐸∙𝑡𝑡𝑟
          (5.1)  

with d as the inter-electrode distance, E = Ubias/d the applied electric field and ttr the ToF transit time. 

By plotting ttr against d, the slope of the linear regression in Figure 5.8 is a direct measure for the 

mobility since the applied electric field was identical for all perovskite films. Depending on the 
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polarity of the applied electric field, holes or electrons can be probed as the mobile species since 

charges are locally generated near one electrode. Therefore, the mobility of holes (μh) or electrons 

(μe) can be differentiated using the ToF technique. 

 

 

Figure 5.8  Determination of charge carrier mobilities in perovskite thin films using the ToF technique. 

Extracted transit times (ttr) as a function of electrode distance d under (a) positive bias to extract hole mobility 

µh and (b) negative bias to extract electron mobility µe. The value for charge carrier mobility can be derived 

from the slope of the linear fits and are listed in Table 5.1. 

 

Table 5.1  Charge carrier mobility of perovskite thin films determined by ToF measurements. 

Sample µh[cm2 V-1s-1] µe [cm2 V-1s-1] µsum,ToF [cm2 V-1s-1] 

FAMA 10 10 20 

Cs5 11 12 23 

Rb5 13 14 27 

Rb5Cs5 15 16 31 

 

Table 5.1 shows the charge carrier mobilities for the different perovskite films calculated from the 

regression slopes in Figure 5.8. In addition to the individual charge carrier mobility values, the sum 

of both electron and hole mobility µsum, ToF is also provided. Strikingly, all samples exhibit very 

similar mobility values for holes and electrons, indicating highly balanced charge transport over 

distances of at least 80 µm (maximum size of the in-plane electrode spacings). In comparison to the 

sum of mobility for FAMA (µsum,ToF = 20 cm2 V-1s-1), Cs5 shows slightly increased mobilities (µsum,ToF 

= 23 cm2 V-1s-1), while a stronger increase was found for Rb5 (µsum,ToF = 27 cm2 V-1s-1.). In particular, 

the combination of Rb and Cs as additives leads to a perovskite layer with mobility values reaching 

31 cm2 V-1s-1, which corresponds to a ~50% improvement compared to FAMA. 
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Figure 5.9  SEM top-view images of the different perovskite films fabricated on FTO/TiO2 substrates. 

 

In our ToF experiments, charge carriers need to travel laterally across various grain boundaries to 

the opposite electrode to generate a measureable photocurrent. Grain boundaries have been reported 

to include a high density of defect sites, leading to charge recombination and reduced photocurrent.[21, 

22] SEM top-view images of the perovskite films show comparable crystal morphologies and grain 

sizes of 200–500 nm for FAMA, Cs5, Rb5 and Rb5Cs5 (Figure 5.9). Therefore, the observed increase 

in mobility through the addition of Rb and Cs to the perovskite precursor mixture cannot be soley 

ascribed to a lower density of grain boundaries within the probed distances. Nevertheless, it is 

possible that the inorganic cation additives (especially Rb) influence the barrier properties of the 

grain boundaries inside the perovskite layer, thereby improving inter-grain charge transport, which 

may result in higher mobility values. Regarding device efficiency, the lower mobility of Cs5 

compared to Rb5 does not explain why Cs shows a larger PCE enhancement than Rb alone. Hence, 

it is necessary to investigate the change in trap density and recombination rates within the perovskite 

layer upon addition of the inorganic cations. 

 

Microscopic charge carrier transport (time-resolved microwave conductivity measurements) 

Further insight into the relationship between the addition of Cs and/or Rb to the FAMA perovskite 

and the associated mobilities and lifetimes of free charges can be gained through time-resolved 

microwave conductivity (TRMC) measurements. TRMC traces were measured at different light 

intensities and fitted according to a kinetic model to extract the trap densities and rate constants for 

second order recombination.[23, 24] In Figure 5.10, the intensity-normalized photoconductance 
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transients are plotted for the various bare perovskite samples on quartz substrates as a function of 

time after excitation at 650 nm. Typically, on pulsed excitation the photoconductance sharply rises 

as a result of the photo-generation of mobile charge carriers, which is followed by a decay due to 

charge recombination and/or immobilization of charge carriers in trap states. For all perovskite 

materials studied, we observe a gradual reduction in the charge carrier lifetime when increasing the 

laser intensity, which is characteristic for higher order recombination.[23] 

Analogous to our previous work,[23, 25] we used a kinetic model to obtain quantitative information 

from the intensity-dependent TRMC traces. This kinetic model takes into account the generation of 

electrons and holes and their recombination via second order band–to–band recombination (k2) or 

trap-assisted recombination, which will dominate when the charge carrier density is lower than the 

trap density NT. Details on the fitting procedure can be found in Chapter 2.10. As shown in Figure 

5.10 by the dotted black lines, excellent agreement is obtained between the modelled and the 

experimental TRMC traces. The rate constants for trap filling (kT) and trap emptying (kD) are 

modelled to be 1.0 × 10-9 cm-3 s-1 and 9.0 × 10-10 cm-3 s-1, respectively, for all perovskite samples. The 

extracted values for trap densities, second order recombination rates and effective mobilities are 

summarized in Table 5.2. 

 

 

Figure 5.10  Time-resolved microwave conductivity (TRMC) traces recorded for different perovskites on 

quartz substrates at different excitation laser intensities. (a) FAMA, (b) Cs5, (c) Rb5 and (d) Rb5Cs5. The 

dotted black lines indicate the corresponding fits to the TRMC traces according to our kinetic model. 
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Table 5.2  Kinetic parameters for the recombination process, trapping and effective mobilities assessed by 

TRMC. 

Sample Second order 

recombination rate 

constant (k2) [cm3s-1] 

Trap density 

(NT,TRMC) 

[cm-3] 

Effective mobility (µTRMC) 

[cm2 V-1s-1] 

FAMA 6.0 × 10-10 2.5 × 1015 42 

Cs5 4.2 × 10-10 8.0 × 1014 40 

Rb5 3.5 × 10-10 1.0 × 1015 50 

Rb5Cs5 3.0 × 10-10 8.0 × 1014 62 

 

The FAMA and Cs5 perovskite films show relatively high local charge carrier mobilities (µTRMC) 

exceeding 40 cm2 V-1s-1. More importantly, a further improvement in charge carrier mobility can be 

found in Rb5 and, especially in Rb5Cs5 (µTRMC > 60 cm2 V-1s-1). Here we note that for TRMC 

measurements, the sum of both the electron and hole mobility is obtained from the signal.[23] Thus, 

the mobility values extracted from TRMC need to be compared with the sum of electron and hole 

mobility values µsum,ToF obtained from ToF (see Table 5.1). It is truly remarkable that the charge 

carrier mobilities as determined from TRMC and from ToF follow almost exactly the same trend. 

From this resemblance we can conclude that the Rb introduction leads to a definite increase of the 

charge carrier mobility.  

 

 

Figure 5.11  Time-resolved photoluminescence (PL) spectra of the different perovskite films. The excitation 

wavelength of the laser was fixed at 510 nm and the PL maximum around 780 nm was monitored using time-

correlated single photon counting (TCSPC). 
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Furthermore, it is noteworthy that the second order recombination rate, k2, is also reduced by the 

presence of the inorganic cation additives, Rb and Cs. Similarly to the improvement of charge carrier 

mobility, the reduction of the second order recombination rate constant is most pronounced in 

Rb5Cs5 and thus significantly extends the charge carrier lifetimes throughout the full range of 

excitation densities shown in Figure 5.10. An increase in charge carrier lifetime is also confirmed by 

time-resolved photoluminescence (PL) measurements, indicated by the prolonged PL lifetime in Cs5, 

Rb5 and Rb5Cs5 compared to FAMA (Figure 5.11). These observations show that the addition of 

Cs and Rb favorably slows down the effective second order band-to-band (electron-hole) 

recombination within the perovskite bulk material, which could explain the increased Voc of the 

corresponding devices. 

Both the change in k2 and in µTRMC might be linked to alterations in the band structure of the 

perovskite compound, induced by the presence of the inorganic cations. Additionally, we note that 

the effective second order recombination rate in metal halide perovskite comprises both radiative and 

non-radiative processes.[26, 27] For instance, increasing radiative recombination could significantly 

enhance the charge carrier lifetime via reabsorption events.[28] Alternatively, since changing the 

cations (locally) affects the distances between the lead halide octahedra and their tilting angles, the 

retarded second order recombination in the presence of Rb and/or Cs could also be due to changes in 

the band structure. 

The performance of perovskite solar cells is also related to the presence of trap states, which can act 

as recombination pathways for photo-generated charge carriers. Our TRMC results indicate a trap 

density of approximately NT,TRMC = 2.5 × 1015 cm-3 in the FAMA perovskite sample. Interestingly, 

the introduction of Cs substantially reduces the trap density (NT,TRMC = 8.0 × 1014 cm-3), i.e. by a 

factor of three compared to the FAMA perovskite film, in line with the observed enhancement in the 

device performance for Cs5. When only Rb is added to the perovskite precursor solution, the 

resulting Rb5 film also reveals a lower trap density (NT,TRMC = 1.0 × 1015 cm-3) as compared to 

FAMA. However, the effect is smaller than for Cs-incorporation. When both Cs and Rb are 

introduced, as in Rb5Cs5, the trap density is comparable to the Cs5 sample, showing the same trend 

observed for the PCE values. 

Our TRMC results thus suggest that the notable improvement of device performance in Cs5 and 

Rb5Cs5 cannot be simply assigned to an increase in mobility, but rather to a decrease of effective 

second order recombination rate as well as a lower trap density compared to FAMA. In order to 

obtain further insights into the amount and the energetic levels of these suggested trap states, we 

conducted thermally stimulated current (TSC) experiments on complete solar cells. 
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5.3.3 Defect spectroscopy 

As an electrically sensitive technique, TSC allows for the investigation of whole devices, thus linking 

changes in the trap states to the respective device performance. The TSC measurements were 

conducted on complete solar cells differing only in the photoactive layer, which was one of the four 

perovskite types: FAMA, Cs5, Rb5 or Rb5Cs5. To obtain the TSC spectra, the devices were cooled 

to a temperature well below the activation energy of the investigated trap states (here: 30 K) in the 

dark. Subsequently, the trap states were optically filled via illumination with a cold LED array. In 

order to release the previously trapped charge carriers within the devices, the solar cells were 

gradually heated up to 300 K at a constant rate of 3 K min-1. Further details regarding the TSC 

technique have been reported earlier by Baumann et al.[29] The respective TSC spectra for each solar 

cell are shown in Figure 5.12a. 

 

 

Figure 5.12  (a) TSC spectra of full solar cells employing FAMA, Cs5, Rb5 or Rb5Cs5 as the active perovskite 

layer. The hatched areas indicate the difference in the amount of traps in the respective perovskite solar cell 

compared to the FAMA-based device. (b) Arrhenius plots of the TSC spectra in the relevant temperature 

regions to estimate the activation energy of the trap states. The bars labeled T1, T2 and T3 mark the data range 

used for fitting according to the initial rise method. 
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For the pure FAMA based device, a very wide TSC signal can be identified, indicating a broad 

distribution of trap state energies within the device. Our results show that the exclusive addition of 

Rb to the FAMA precursor solution (Rb5) has only a negligible impact on the overall TSC signal 

intensity and shape. However, the introduction of Cs into the perovskite film (Cs5, Rb5Cs5) 

considerably reduces the TSC signal, indicating an overall reduction of the trap density. Instead of a 

broad TSC peak, a more distinct peak is visible at around 230–240 K for both Cs-containing systems. 

We can assess the depth of these trap states by estimating the activation energy of the trap states. 

Herein, the so-called initial rise method is used according to the equation:[30, 31] 

𝐼𝑇𝑆𝐶 ∝ 𝑒𝑥𝑝 (−
𝐸𝐴

𝑘𝐵𝑇
)          (5.2)  

where kB is the Boltzmann constant and T the temperature, at which the TSC signal ITSC starts to rise. 

The data range used to fit the initial rise is denoted in the corresponding Arrhenius plot of the TSC 

spectra in Figure 5.12b as T1, T2 and T3. Table 5.3 shows a summary of the activation energies of 

trap states for the devices with different perovskite absorber layers. 

 

Table 5.3  Activation energies of trap states and trap densities in perovskite solar cells determined by TSC 

measurements. 

Device EA,T1 [meV] EA,T2 [meV] EA,T3 [meV] NT,TSC [cm-3] 

FAMA 248 - - 7.3 × 1016 

Rb5 283 - - 7.2 × 1016 

Cs5 - 195 105 2.2 × 1016 

Rb5Cs5 - 205 70 1.6 × 1016 

 

For the FAMA based device, trap states with an activation energy of EA,T1,FAMA = 248 meV are found 

(T1). With a slightly higher activation energy of EA,T1,Rb5 = 283 meV, the trap states appear to shift 

even deeper into the band gap with the small amount of Rb added to the perovskite layer (Rb5). In 

contrast, the opposite behavior is found for the introduction of Cs, where the energetic depth of the 

deepest trap states in the system is reduced to EA,T2,Cs5 = 195 meV as well as EA,T2,Rb5Cs5 = 205 meV 

(T2). Furthermore, an additional but small contribution of energetically shallow trap states with a 

depth of EA,T3,Cs5 = 105 meV and EA,T3,Rb5Cs5 = 70 meV appears in both Cs-containing films (T3). 

From the TSC measurements, it is not possible to deduce if the trap states found in Cs5 or Rb5Cs5 

are also present in the broad background of deeper trap states in the FAMA or Rb5 samples. Neither 

can their polarity be determined. However, we note that Cs either leads to the removal of detrimental 
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deep traps or a shift of these traps closer to the conduction or valence band in the FAMA perovskite. 

Contrarily, Rb has almost no influence on either the density or the energetic distribution of those trap 

states. Our TRMC results support the possibility of a reduced number of traps within the perovksite 

layer upon Cs-addition. We judge the lower number of deeper traps to be beneficial for solar cell 

performance, as the recombination mediated by these states is reduced, which is in agreement with 

the improved Voc of the Cs5 and Rb5Cs5 devices.  

Finally, not only the energetic depth of the trap states is changed by the inorganic cation additive, 

but also the overall signal height, which is associated with the trap density. We note here that the trap 

density values deduced from TSC measurements constitute a lower limit, as charge carriers may also 

recombine after being released from the trap state during the measurement. Only those charge carriers 

released from the trap state and subsequently extracted at external contacts are detected by the TSC 

method. In order to estimate the lower limit of trap densities NT,TSC in the different perovskite solar 

cells, the TSC signal can be integrated over the elapsed time according to the equation:[32] 

∫ 𝐼𝑇𝑆𝐶𝑑𝑡 ≤ 𝑒𝑁𝑇,𝑇𝑆𝐶𝑉𝑜𝑙𝑠𝑖𝑔𝑛𝑎𝑙
        (5.3)  

where e is the elementary charge and Vol is the volume of the perovskite layer. The estimated lower 

limits of trap densities are presented in Table 5.3, where the integral was calculated for the timespan 

of the temperature rise from 170–270 K.  

Our results show that the addition of Cs removes a considerable amount of trap states from the system 

(NT,TSC = 2.2 × 1016 cm-3) as compared with FAMA devices (7.3 × 1016 cm-3), which is not the case if 

only Rb is introduced (7.2 × 1016 cm-3). With a trap density of NT,TSC = 1.6 × 1016 cm-3, the 

combination of both Rb and Cs shows the lowest value of all devices, corresponding to an almost 

80% lower number of trap states in the Rb5Cs5 system compared to pure FAMA.  

We point out that the TSC method does not directly indicate whether the detected traps are located 

in the bulk, at grain boundaries or at an interface with the transport layers. However, our TRMC 

measurements show the same trend as TSC in trap density reduction, while solely probing the local 

properties of the perovskite absorber layer. Combining these experimental results allows us to deduce 

that Cs significantly reduces the trap density in the bulk or in the grain boundaries of the perovskite 

material. We tentatively assign the discrepancy between the overall absolute values for the trap 

densities extracted from these two techniques to the presence of the charge transport layers and 

associated interfacial effects being additionally measured in TSC, which is under further 

investigation. However, since all solar cells probed by the TSC technique were fabricated with the 

same contact materials, it is reasonable to assume that the extracted trends from TSC can indeed be 

assigned to the different perovskite materials employed. 
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5.4 Discussion 

The addition of Cs and/or Rb salts to the perovskite precursor solution has a strong impact on the 

film’s crystallization behavior, confirming previous reports in literature.[2-4] One possible explanation 

for the change in the perovskite crystallization process is the lower solubility of rubidium and 

particularly cesium halides in DMF, compared to the perovskite precursors FAI and MABr.[11, 33-35] 

This may lead to the rapid formation of crystal nuclei already during the spin-coating procedure. In 

the presence of the inorganic cation additives, the formation of potentially defect-prone intermediate 

crystal phases such as mixed-dimensional hexagonal polytypes or DMSO-complexes is 

circumvented.[3, 36] In particular, Cs initiates the prompt formation of the quasi-cubic perovskite 

crystal phase, evident in the corresponding XRD peaks and the dark-brown color of non-annealed 

Cs5 and Rb5Cs5 films (Figure 5.13a–d). As a result, higher XRD peak intensities for the perovskite 

phase are found in Rb5, Cs5 and Rb5Cs5 films after annealing (Figure 5.13e) which indicates higher 

crystalline order than in pure FAMA. Besides improving the perovskite crystallization mechanism, 

the actual incorporation of the inorganic cations into the perovskite lattice probably plays a critical 

role in affecting the charge transport and trap landscape of the metal halide perovskite. 



High-efficiency multiple-cation mixed-halide perovskite solar cells 

 
  

 

 
118 

 

 

Figure 5.13  (a–d) XRD patterns of unannealed (red) and annealed (black) perovskite thin films on 

FTO/compact TiO2 using different precursor solutions. (a) FAMA, (b) Cs5, (c) Rb5 and (d) Rb5Cs5. The insets 

show photographs of the respective unannealed film. (e) XRD patterns of multiple-cation perovskite films 

prepared on FTO/TiO2 substrates after annealing. 

 

Our complementary probing techniques reveal that the addition of Cs barely affects the charge carrier 

mobility, but considerably reduces the trap density and the effective second order recombination rate 

in the metal halide perovskite, which likely leads to the higher Voc and therefore higher performance 

found in Cs containing devices. Interestingly, the local, contactless TRMC technique on bare 

perovskite films showed the same trends for the trap density as the TSC measurements obtained with 
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complete devices. Due to the excellent consistency between the TRMC and the TSC results, we 

assign the observed changes induced by Cs-addition rather to the bulk or boundaries of the perovskite 

crystals than solely to effects at the perovskite/transport layer interfaces. 

By contrast, the Rb-addition leads to increased charge carrier mobilities in Rb5 compared to FAMA, 

which may be related to improved charge transport across the perovskite grain boundaries. However, 

with the high and balanced mobilities found in FAMA films, efficient charge collection and injection 

should be enabled, and mobility is unlikely to be the limiting factor for charge diffusion. Our results 

show that Rb has only a marginal effect on the trap landscape of the entire perovskite device. Since 

we only found a minor improvement in Rb5 device performance compared to FAMA, we suggest 

that in our samples it is the amount and nature of trap states inside the perovskite that mainly limits 

efficiency.  

Despite the minimal impact of Rb on the PCE values obtained from J–V curves, we nonetheless 

observed improved power output stability and reduced J–V hysteresis in Rb containing devices (see 

Figure 5.1 and Figure 5.2). In the literature, the reduction of hysteresis in quadruple cation mixtures 

has been assigned to a lower defect density and thus a lower trap density within the perovskite 

crystals compared to triple cation mixtures without Rb.[13] Contrary to this, we see a reduced 

hysteresis in the case of Rb5Cs5 devices compared to Cs5 devices, where our TSC and TRMC results 

indicate rather similar trap densities. Therefore, it is unlikely that hysteresis is suppressed simply 

because of a reduction of traps in the bulk perovskite material. Alternatively, it has been suggested 

that the Rb-induced formation of larger perovskite crystals with fewer grain boundaries reduces ionic 

migration along grain boundaries, hence diminishing hysteresis.[13, 37] However, our SEM images 

reveal comparable grain sizes for the Cs5 and Rb5Cs5 samples examined here (Figure 5.9), ruling 

out the density of perovskite grain boundaries being the main reason for the reduced J–V hysteresis. 

Instead, our study tallies with several recent publications and the combined results point to the 

following explanation: We recently found that 5–10% Cs cations can be incorporated into the FAMA 

perovskite structure, while the same amount of Rb cations does not form part of the perovskite lattice 

due to its unsuitably small ionic radius. As a result, the addition of 5–10% Rb mainly leads to the 

formation of non-perovskite side-phases such as RbPb(I1-xBrx)3.[17] These findings are in excellent 

agreement with the most recent solid state NMR results on multiple-cation perovskites reported by 

Kubicki et al.[38] The fundamentally different effects of Cs and Rb cations on the FAMA perovskite 

crystal lattice (Figure 5.14) may explain their different impact on the perovskite’s trap landscape, 

charge transport properties, device performance and hysteresis. 
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Figure 5.14  Schematic illustration of the hypothesized distribution of the inorganic cation additives within the 

perovskite crystal and the effect of Cs/Rb addition on the reduction of trap density and enhancement of charge 

carrier mobility within the perovskite layer. 

 

Furthermore, charge accumulation and surface recombination at the interfaces between the 

perovskite and the selective charge transport layers have been shown to strongly affect J–V 

hysteresis.[39] We hypothesize that Rb could have an influence on these interfaces, as it is not fully 

incorporated into the perovskite crystal structure itself. To obtain information about the distribution 

of the cation additives within the perovskite layer, we performed time-of-flight secondary ion mass 

spectrometry (ToF-SIMS) measurements on the different perovskite films deposited on FTO/TiO2 

substrates (Figure 5.15). Indeed, the depth profile for the Rb5 sample shows a clear accumulation of 

Rb+ species at the TiO2 interface, while Cs+ is very homogeneously distributed within the Cs5 film. 

In Rb5Cs5, the presence of Cs+ leads to a more even distribution of Rb+ which is in accordance with 

work by Philippe et al., and only a slight Rb-enrichment still occurs between the perovskite layer 

and the substrate.[40]  
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Figure 5.15  ToF-SIMS depth profiles for different perovskite films on FTO/TiO2 substrates. (a) FAMA (b) 

Cs5 (c) Rb5 and (d) Rb5Cs5. The dotted line and the description on top of the graph ("Perovskite / Substrate") 

is a rough orientation for the respective interface. 

 

Our ToF-SIMS results are in excellent agreement with recent work by Albadri et al., who reported 

that surface passivation effects of Rb give rise to reduced recombination at the TiO2/perovskite 

interface compared to triple cation systems without Rb.[41] We believe that the enrichment of Rb 

cations at the electron transport layer interface is possibly related to a reduction of surface 

recombination in the vicinity of the electron transporting layer, which in turn affects device hysteresis 

and power output stability. Furthermore, Guo et al. predicted by first-principle calculations that an 

accumulation of the Rb-additives at the surface of perovskite crystals is energetically favored over 

their incorporation into the inner atomic layers, possibly giving rise to altered properties of the grain 

boundaries between the crystals.[42] Consequently, this might not only explain the difference in 

charge carrier mobilities we identified in our ToF and TRMC experiments, but also offers an 

additional explanantion for the change in J–V hysteresis. We are currently carrying out investigations 

to further elucidate this matter. 
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5.5 Conclusions 

By combining three complementary characterization techniques – ToF, TRMC and TSC 

measurements – we could establish the influence of Cs- and Rb-addition on the charge carrier 

mobilities, recombination rates and trap states of state-of-the-art multiple-cation perovskites. We 

found that Rb-addition leads to increased charge carrier mobilities in Rb5 compared to FAMA, but 

has only a marginal effect on the trap landscape of the perovskite layer. This results in a minor 

improvement in device performance of Rb5 compared to the FAMA control device. By contrast, Cs-

incorporation significantly reduces the number and the depth of trap states in the perovskite crystals. 

However, Cs has barely any effect on the charge carrier mobility. The observed reduction in trap 

density is in excellent agreement with the boost in Voc and FF for Cs-containing devices compared 

to FAMA. By combining Cs and Rb in quadruple cation (Rb–Cs–FA–MA) perovskite mixtures, we 

observe the highest mobility and the lowest trap density, resulting in solar cells with the highest 

stabilized power output. We conclude that in the examined multiple-cation perovskite solar cells, the 

bottleneck for device efficiency is mainly the amount and the nature of the traps rather than 

insufficient charge carrier mobility in the perovskite. 

 

5.6 Methods 

Perovskite precursor solutions 

FAI and MABr were purchased from Dyesol. PbI2 and PbBr2 (99%) were purchased from TCI. CsI 

(99.9%) and all anhydrous solvents (DMSO, DMF, chlorobenzene) were purchased from Sigma-

Aldrich and RbI from abcr GmbH. All chemicals were used without further purification. Perovskite 

precursor solutions for FAMA, Cs5, Rb5 and Rb5Cs5 were fabricated according to a previous 

report.[2, 17] 

FAMA: Following the protocol reported by Saliba et al., a multiple cation mixed-halide perovskite 

solution was prepared by dissolving PbI2 (508 mg, 1.1 mmol), PbBr2 (80.7 mg, 0.22 mmol), FAI 

(171.97 mg, 1 mmol) and MABr (22.4 mg, 0.2 mmol) in 1 mL of a 4:1 (v/v) mixture of anhydrous 

DMF and DMSO. This non-stoichiometric precursor solution for (FA0.83MA0.17)Pb(I0.83Br0.17)3 

contains a 10 mol% excess of PbI2 and PbBr2, respectively, which was introduced to enhance device 

performance. The FAMA solution was filtrated through a 0.45 µm syringe filter before use. We note 

that volume changes upon dissolving the salts are expected. 
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Cs5: CsI (389.7 mg, 1.5 mmol) was dissolved in 1 mL DMSO and filtrated through a 0.45 µm syringe 

filter. To obtain the desired triple cation perovskite composition of ~5% Cs, 42 µL of the ~1.5 M CsI 

stock solution was added to 1 mL FAMA solution, yielding a nominal composition of 

Cs0.05[(FA0.83MA0.17)]0.95Pb(I0.83Br0.17)3. The change in the I:Br ratio was neglected and we note that 

volume changes upon dissolving CsI in DMSO were not taken into consideration. 

Rb5: RbI (318.5 mg, 1.5 mmol) was dissolved in 1 mL of a 4:1 (v/v) DMF:DMSO mixture and 

filtrated through a 0.45 µm syringe filter. To obtain the desired triple cation perovskite composition 

of ~5% Rb, 42 µL of the ~1.5 M RbI stock solution was added to 1 mL FAMA solution, yielding a 

nominal composition of Rb0.05[(FA0.83MA0.17)]0.95Pb(I0.83Br0.17)3. However, it is likely that the Rb is 

effectively not (fully) incorporated into the perovskite structure. The change in the I:Br ratio was 

neglected and we note that volume changes upon dissolving RbI in the DMF:DMSO mixture were 

not taken into consideration. 

Rb5Cs5: To obtain the quadruple cation perovskite composition of ~5% Rb and ~5% Cs, 42 µL of 

the RbI solution and 42 µL of the CsI solution were added to 1 mL FAMA solution, yielding a 

nominal composition of Rb0.05Cs0.05[(FA0.83MA0.17)]0.9Pb(I0.83Br0.17)3. The change in the I:Br ratio was 

neglected and we note that volume changes upon dissolving the Cs and Rb salts were not taken into 

consideration to calculate the additive concentration. 

 

Perovskite film fabrication 

75 µL of the perovskite precursor solution was spin-coated inside a nitrogen-filled glovebox at 

1000 rpm and 4000 rpm for 10 s and 30 s, respectively. Approximately 20 s before the end of 

spinning, 500 µL of chlorobenzene was added to the film. The perovskite film formation was 

completed by annealing at 100 °C for 60 min on a hotplate. 

 

Device fabrication 

FTO coated glass substrates (7 Ω/sq) were patterned by etching with zinc powder and 3 M HCl 

solution and successively cleaned with deionized water, a 2% Hellmanex detergent solution, ethanol 

and finally treated with oxygen plasma for 5 min. A compact TiO2 layer was deposited as a hole 

blocking layer on the substrate via a sol-gel approach. A mixture of 2 M HCl (35 µL) and anhydrous 

isopropanol (2.53 mL) was added dropwise to a solution of 370 µL titanium(IV) isopropoxide 

(Sigma-Aldrich) in isopropanol (2.53 mL) under vigorous stirring. The TiOx solution was spin-

coated dynamically onto the FTO substrates at 2000 rpm for 45 s, followed by annealing in air at 
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150 °C for 10 min and subsequently at 500 °C for 45 min. Alternatively, 10–15 nm compact SnOx 

electron transport layers were prepared by atomic layer deposition (ALD) on FTO-coated glass 

substrates which were patterned and cleaned as in the TiO2 preparation. 

Tetrakis(dimethylamino)tin(IV) (TDMSn, Strem, 99.99%) was used as a tin precursor. The 

deposition was conducted at 118 oC with a base pressure of 5 mbar in a Picosun R-200 Advanced 

ALD reactor. The tin precursor was held at 75 oC during depositions. Ozone gas was produced by an 

ozone generator (INUSA AC2025). Nitrogen (99.999%, Air Liquide) was used as the carrier and 

purge gas with a flow rate of 50 sccm per precursor line. The growth rate was determined via 

spectroscopic ellipsometry on Si(100) witness substrates. A Cauchy model was used for the tin oxide 

layer and the growth rate was 0.69 Å per cycle. After the deposition of the electron transporting layer 

and the perovskite layer, a spiro-OMeTAD hole transporter layer was applied. 1 mL of a solution of 

spiro-OMeTAD (Borun Chemicals, 99.8%) in anhydrous chlorobenzene (75 mg mL-1) was doped 

with 10 µL tBP (Sigma-Aldrich, 96%) and 30 µL of a Li-TFSI (Sigma-Aldrich, 99.95%) solution in 

acetonitrile (170 mg mL-1, Sigma-Aldrich, anhydrous) and deposited by spin-coating at 1500 rpm for 

40 s and then 2000 rpm for 5 s. After storing the samples overnight in air at 25% relative humidity, 

40 nm Au was deposited through a patterned shadow mask by thermal evaporation at 8 × 10-7 mbar 

to form the back electrode. 

 

Thin film characterization 

X-ray diffraction (XRD) measurements of thin films were performed with a Bruker D8 Discover X-

ray diffractometer operating at 40 kV and 30 mA, employing Ni-filtered Cu Kα1 radiation 

( = 1.5406 Å) and a position-sensitive LynxEye detector. SEM images were recorded with a FEI 

Helios Nanolab G3 UC DualBeam scanning electron microscope. UV-VIS absorption spectra were 

recorded with a Perkin-Elmer Lambda 1050 spectrophotometer equipped with an integrated sphere. 

The thin films were placed under an angle of 10° inside the sphere to detect the total fraction of 

reflected and transmitted photons, from which the fraction of absorbed photons was determined as a 

function of wavelength. Time-resolved PL spectroscopy was performed with a Picoquant Fluotime 

300 spectrofluorometer, using an excitation wavelength at 510 nm and by monitoring the PL 

emission maximum around 780 nm. The depth profiles of perovskite films on TiO2/FTO-glass 

substrates were measured with a ToF-SIMS 5 setup from ION-TOF GmbH. Pulsed primary ions 

from a 30 keV Bi+ liquid-metal ion gun were used as an analytical source, and a 10 keV O2-cluster 

source was used as a sputtering ion source. The ToF-SIMS analysis was done on a 100 × 100 µm 

area inside the 300 × 300 µm sputtering crater. 
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Current-voltage characterization 

J-V curves were recorded under ambient conditions using a Newport OrielSol 2A solar simulator 

with a Keithley 2400 source meter under simulated AM 1.5G sunlight, with an incident power of 100 

mW cm-², calibrated with a Fraunhofer ISE certified silicon cell (KG5-filtered). The active area of 

the solar cells was defined with a square metal aperture mask of 0.0831 cm2. After pre-biasing the 

device at 1.5 V for 5 s under illumination, J-V curves were recorded by scanning the input bias from 

1.5 to 0 V (reverse scan) and then from 0 to 1.5 V (forward scan) at a scan rate of 0.1–0.2 V s-1. For 

statistical evaluation, the photovoltaic parameters were extracted from the J–V curve showing the 

higher PCE value. The stabilized power output was measured by tracking the photocurrent at the 

maximum power point without pre-biasing the device. 

 

Time-of-flight measurements 

We deposited laterally spaced gold (Au) electrodes through a custom-made evaporation mask on top 

of clean glass substrates, resulting in inter-electrode distances ranging from 22 to 80 µm. 

Subsequently, the different perovskite layers were deposited on top of the glass/Au substrates via 

spin-coating and top-coated with a thin layer of Poly(methyl methacrylate) (PMMA) to prevent film 

degradation during the measurement. Generation of charge carriers within the perovskite absorber 

was induced by pulsed laser excitation at a wavelength of 510 nm. The laser system itself consists of 

an optical parametric oscillator (OPO), pumped by a Nd:YAG laser with a repetition rate of 20 Hz 

and a pulse length of 7 ns. Laterally contacted perovskite films were shortly illuminated from the 

semi-transparent glass/gold side and close to one contact by focusing the laser through an extra-long 

working distance microscope objective (spot size approximately 2 µm). An external DC field was 

applied through the gold electrodes only for the short measurement interval of a few hundred 

milliseconds to avoid effects due to ion migration. The constant electric field created a current flow 

which led to the respective ToF photocurrent transient. The generated J–t profiles were amplified 

and converted before being recorded with a fast oscilloscope. 

 

Time-resolved microwave conductivity measurements 

TRMC experiments were performed on perovskite films on quartz substrates according to a 

previously reported procedure.[25] The change in microwave power (probe frequency: 8.5 GHz) was 

monitored after pulsed excitation of the sample at 650 nm. The slow repetition rate of the laser of 

10 Hz ensures full relaxation of all photo-induced charges to the ground state before the next laser 
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pulse hits the sample. Neutral density filters were used to vary the intensity of the incident light. The 

illuminated sample area was ~2.5 cm2. The charge generation in the GC is determined by the temporal 

profile (3.5 ns FWHM) and intensity of the laser pulse in combination with the optical absorption of 

the perovskite at the wavelength used. Before and during the photoconductance measurements, the 

samples were not exposed to moisture and air to prevent degradation. 

 

Thermally stimulated current measurements 

TSC measurements were conducted in a closed cycle He cryostat, with Helium as a contact gas for 

thermal coupling. To avoid any atmospheric exposure, solar cell samples were transferred via an 

integrated sample lock system from a glove box to the cryostat. Trap filling was achieved via 

illumination with an LED array for 10 min. After a dwell time of 10 min in the darkness, the sample 

was heated up to 300 K at a constant rate of 3 K min-1. The TSC signal of the sample was detected 

by a Sub-Femtoamp Remote Source Meter (Keithley 6430) without the application of a bias voltage. 

 

  



High-efficiency multiple-cation mixed-halide perovskite solar cells 

 

 
127 

 

5.7 References 

[1] Y. Hu, E. M. Hutter, P. Rieder, I. Grill, J. Hanisch, M. F. Aygüler, A. G. Hufnagel, M. 

Handloser, T. Bein, A. Hartschuh, K. Tvingstedt, V. Dyakonov, A. Baumann, T. J. Savenije, 

M. L. Petrus, P. Docampo, Adv. Energy Mater. 2018, 8, 1703057. 

[2] M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. 

Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 2016, 354, 206. 

[3] M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. 

M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Energy. Environ. Sci. 2016, 

9, 1989. 

[4] J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho, N.-G. Park, Adv. Energy Mater. 

2015, 5, 1501310. 

[5] Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry, K. Zhu, Chem. Mater. 2016, 28, 284. 

[6] T. Duong, H. K. Mulmudi, H. Shen, Y. Wu, C. Barugkin, Y. O. Mayon, H. T. Nguyen, D. 

Macdonald, J. Peng, M. Lockrey, W. Li, Y.-B. Cheng, T. P. White, K. Weber, K. Catchpole, 

Nano Energy 2016, 30, 330. 

[7] C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Gratzel, S. M. Zakeeruddin, U. 

Rothlisberger, M. Gratzel, Energy. Environ. Sci. 2016, 9, 656. 

[8] T. Liu, Y. Zong, Y. Zhou, M. Yang, Z. Li, O. S. Game, K. Zhu, R. Zhu, Q. Gong, N. P. 

Padture, Chem. Mater. 2017, 29, 3246. 

[9] A. Binek, F. C. Hanusch, P. Docampo, T. Bein, J. Phys. Chem. Lett. 2015, 6, 1249. 

[10] L.-Q. Xie, L. Chen, Z.-A. Nan, H.-X. Lin, T. Wang, D.-P. Zhan, J.-W. Yan, B.-W. Mao, Z.-

Q. Tian, J. Am. Chem. Soc. 2017, 139, 3320. 

[11] D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. 

Haghighirad, N. Sakai, L. Korte, B. Rech, M. B. Johnston, L. M. Herz, H. J. Snaith, Science 

2016, 351, 151. 

[12] Y. Chang, L. Wang, J. Zhang, Z. Zhou, C. Li, B. Chen, L. Etgar, G. Cui, S. Pang, J. Mater. 

Chem. A 2017, 5, 4803. 

[13] T. Duong, Y. Wu, H. Shen, J. Peng, X. Fu, D. Jacobs, E.-C. Wang, T. C. Kho, K. C. Fong, 

M. Stocks, E. Franklin, A. Blakers, N. Zin, K. McIntosh, W. Li, Y.-B. Cheng, T. P. White, 

K. Weber, K. Catchpole, Adv. Energy Mater. 2017, 7, 1700228. 

[14] D. P. McMeekin, Z. Wang, W. Rehman, F. Pulvirenti, J. B. Patel, N. K. Noel, M. B. 

Johnston, S. R. Marder, L. M. Herz, H. J. Snaith, Adv. Mater. 2017, 1607039. 

[15] Y. H. Park, I. Jeong, S. Bae, H. J. Son, P. Lee, J. Lee, C.-H. Lee, M. J. Ko, Adv. Funct. 

Mater. 2017, 1605988. 



High-efficiency multiple-cation mixed-halide perovskite solar cells 

 
  

 

 
128 

 

[16] M. Zhang, J. S. Yun, Q. Ma, J. Zheng, C. F. J. Lau, X. Deng, J. Kim, D. Kim, J. Seidel, M. 

A. Green, S. Huang, A. W. Y. Ho-Baillie, ACS Energy Lett. 2017, 438. 

[17] Y. Hu, M. F. Aygüler, M. L. Petrus, T. Bein, P. Docampo, ACS Energy Lett. 2017, 2212. 

[18] M. L. Petrus, Y. Hu, D. Moia, P. Calado, A. M. A. Leguy, P. R. F. Barnes, P. Docampo, 

ChemSusChem 2016, 9, 2699. 

[19] Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu, Y. Yang, Nano 

Lett. 2014, 14, 4158. 

[20] C. Roldan-Carmona, P. Gratia, I. Zimmermann, G. Grancini, P. Gao, M. Graetzel, M. K. 

Nazeeruddin, Energy. Environ. Sci. 2015, 8, 3550. 

[21] I. Grill, K. Handloser, F. C. Hanusch, N. Giesbrecht, T. Bein, P. Docampo, M. Handloser, 

A. Hartschuh, Sol. Energy Mater. Sol. Cells 2017, 166, 269. 

[22] H. D. Kim, H. Ohkita, H. Benten, S. Ito, Adv. Mater. 2016, 28, 917. 

[23] E. M. Hutter, G. E. Eperon, S. D. Stranks, T. J. Savenije, J. Phys. Chem. Lett. 2015, 6, 3082. 

[24] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, Phys. Rev. 

Appl. 2014, 2, 034007. 

[25] E. M. Hutter, J.-J. Hofman, M. L. Petrus, M. Moes, R. D. Abellón, P. Docampo, T. J. 

Savenije, Adv. Energy Mater. 2017, 7, 1602349. 

[26] J. M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J. P. H. Rivett, L. M. Pazos-

Outón, K. C. Gödel, M. Price, F. Deschler, R. H. Friend,  2016, 7, 13941. 

[27] E. M. Hutter, M. C. Gelvez-Rueda, A. Osherov, V. Bulovic, F. C. Grozema, S. D. Stranks, 

T. J. Savenije, Nat Mater 2017, 16, 115. 

[28] L. M. Pazos-Outón, M. Szumilo, R. Lamboll, J. M. Richter, M. Crespo-Quesada, M. Abdi-

Jalebi, H. J. Beeson, M. Vrućinić, M. Alsari, H. J. Snaith, B. Ehrler, R. H. Friend, F. 

Deschler, Science 2016, 351, 1430. 

[29] A. Baumann, S. Väth, P. Rieder, M. C. Heiber, K. Tvingstedt, V. Dyakonov, J. Phys. Chem. 

Lett. 2015, 6, 2350. 

[30] G. F. J. Garlick, A. F. Gibson, Proceedings of the Physical Society 1948, 60, 574. 

[31] W. Graupner, G. Leditzky, G. Leising, U. Scherf, Phys. Rev. B 1996, 54, 7610. 

[32] A. Kadashchuk, R. Schmechel, H. v. Seggern, U. Scherf, A. Vakhnin, J. Appl. Phys. 2005, 

98, 024101. 

[33] R. Alexander, E. C. F. Ko, Y. C. Mac, A. J. Parker, J. Am. Chem. Soc. 1967, 89, 3703. 

[34] R. Hamaguchi, M. Yoshizawa-Fujita, T. Miyasaka, H. Kunugita, K. Ema, Y. Takeoka, M. 

Rikukawa, Chem. Commun. 2017, 53, 4366. 

[35] R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. 

Burkhard, E. T. Hoke, M. D. McGehee, J. Phys. Chem. Lett. 2016, 7, 746. 



High-efficiency multiple-cation mixed-halide perovskite solar cells 

 

 
129 

 

[36] P. Gratia, I. Zimmermann, P. Schouwink, J.-H. Yum, J.-N. Audinot, K. Sivula, T. Wirtz, M. 

K. Nazeeruddin, ACS Energy Lett. 2017, 2686. 

[37] H.-S. Kim, N.-G. Park, J. Phys. Chem. Lett. 2014, 5, 2927. 

[38] D. J. Kubicki, D. Prochowicz, A. Hofstetter, S. M. Zakeeruddin, M. Grätzel, L. Emsley, J. 

Am. Chem. Soc. 2017, 139, 14173. 

[39] P. Calado, A. M. Telford, D. Bryant, X. Li, J. Nelson, B. C. O’Regan, P. R. F. Barnes, Nat. 

Commun. 2016, 7, 13831. 

[40] B. Philippe, M. Saliba, J.-P. Correa-Baena, U. B. Cappel, S.-H. Turren-Cruz, M. Grätzel, A. 

Hagfeldt, H. Rensmo, Chem. Mater. 2017, 29, 3589. 

[41] A. Albadri, P. Yadav, M. Alotaibi, N. Arora, A. Alyamani, H. Albrithen, M. I. Dar, S. M. 

Zakeeruddin, M. Grätzel, J. Phys. Chem. C 2017, 121, 24903. 

[42] Y. Guo, C. Li, X. Li, Y. Niu, S. Hou, F. Wang, J. Phys. Chem. C 2017, 121, 12711. 

 



Moisture stability of multiple-cation mixed-halide perovskites 

 
  

 

 
130 

 

6 Moisture stability of multiple-cation mixed-

halide perovskites 

 

This chapter is based on the following publication: 

Y. Hu, M. F. Aygüler, M. L. Petrus, T. Bein, P. Docampo, Impact of Rubidium and Cesium Cations 

on the Moisture Stability of Multiple-Cation Mixed-Halide Perovskites. ACS Energy Lett. 2017, 2, 

2212-2218. (DOI: 10.1021/acsenergylett.7b00731) 

 

 

 

Adapted with permission.[1] Copyright 2017, American Chemical Society. 
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6.1 Abstract 

Rubidium and cesium cations have been recently identified as enhancers for perovskite solar cell 

performance. However, the impact of these inorganic cations on the stability of the 

(FA0.83MA0.17)Pb(I0.83Br0.17)3 perovskite crystal lattice has not been fully understood yet. Here, we 

show via in situ XRD and EDX measurements that the unsuitably small ionic radius of Rb+ can lead 

to several non-photoactive side-products. During the perovskite film synthesis, RbPb(I1-xBrx)3 is 

formed, while exposure to humid air leads to the rapid formation of another hitherto unreported side 

phase (RbPb2I4Br). The formation of the Rb-rich side phases does not only result in a loss of light 

absorption, but also extracts bromide ions from the photoactive perovskite phase, thereby reducing 

its band gap. In comparison, the moisture-assisted formation of a CsPb2I4Br phase upon Cs-addition 

occurs on a significantly longer timescale than its Rb analog. While the incorporation of Cs+ remains 

attractive for high-performance solar cells, the severe moisture-sensitivity of Rb-containing mixed-

halide perovskites may create additional engineering challenges. 

 

6.2 Introduction 

Recently, inorganic cations such as rubidium and cesium have been reported as performance 

enhancers in the burgeoning field of perovskite solar cells, both in terms of power conversion 

efficiency (PCE) and device stability.[2-10] An impressive improvement in open-circuit voltage (Voc) 

was achieved through the addition of RbI and CsI to the multiple-cation mixed-halide 

(FA0.83MA0.17)Pb(I0.83Br0.17)3 perovskite, reaching stabilized efficiencies of up to 21.6%.[5, 7] Mixing 

organic cations such as formamidinium (FA) or methylammonium (MA) with small amounts of Rb+ 

or Cs+ cations can lead to a more favorable tolerance factor which facilitates the stabilization of the 

photoactive perovskite phase in a broad temperature range,[4] resulting in devices stable at 85 °C for 

500 h under continuous illumination and maximum power tracking.[7] Yet, the complexity of the 

interplay between the different cations and halides increases significantly with every additional 

component that takes part in the perovskite formation. Therefore, the role of Rb+ and Cs+ cations 

within the perovskite’s structure and their impact on the stability and optoelectronic properties are 

still under debate. 

A simple, empirical measure for the stability of ABX3 perovskite structures is Goldschmidt’s 

tolerance factor:[11] 

𝑡 =
𝑟𝐴+𝑟𝑋

√2 (𝑟𝐵+𝑟𝑋)
          (6.1) 
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with r being the ionic radius of each respective ion. Ionic compounds with a tolerance factor within 

the range between 0.8 and 1.0 are considered to be stable in a classical perovskite structure. For 

CsPbI3 (t = 0.81), the tolerance factor suggests that Cs+ can stabilize a classical perovskite structure 

consisting of corner-sharing lead-iodide octahedra.[4, 12, 13] Indeed, CsPbI3 is known to undergo a 

phase transition from a room-temperature yellow phase into a black perovskite-type phase at 

360 °C.[13-15] Upon Cs-insertion into (FA0.83MA0.17)Pb(I0.83Br0.17)3, a contraction of the perovskite 

crystal lattice can be expected due to the significantly smaller ionic radius of Cs+ (167 pm) compared 

to FA+ (~253 pm) and MA+ (~217 pm) cations.[16] In contrast, RbPbI3 achieves a lower tolerance 

factor of t = 0.77 which indicates that Rb+ (152 pm) is too small to stabilize this perovskite lattice, 

but instead leads to the formation of non-perovskite structures.[6, 7] Furthermore, unlike its Cs-based 

counterpart, RbPbI3 does not undergo a phase transition to a black perovskite structure at elevated 

temperatures.[3, 17] Hence, the interaction of Cs+ and Rb+ with the iodide-dominated perovskite 

structure is potentially very different. 

Understanding the effect of inorganic cations on the perovskite crystal lattice is not only crucial to 

boost solar cell performance, but also to eliminate potential degradation pathways. In this work, we 

elucidated the influence of Rb+ and Cs+ on the crystal structure of the state-of-the-art 

(FA0.83MA0.17)Pb(I0.83Br0.17)3 hybrid perovskite compound. Furthermore, we investigated the impact 

of the inorganic cation additives on the perovskite’s moisture stability and the resulting effects on 

solar cell performance. In particular, we show that the addition of Rb+ to an iodide-bromide mixed-

halide perovskite strongly affects the robustness of the perovskite phase toward humidity. 

 

6.3 Results and discussion 

We synthesized the perovskite composition employed in state-of-the-art photovoltaic devices 

(FA0.83MA0.17)Pb(I0.83Br0.17)3 (FAMA), and added a defined amount of RbI or/and CsI according to a 

protocol reported by Saliba et al.[7] We denote the samples as Rbx, Csx and CsxRbx, with x being 

the percentage of Cs+ or Rb+ among the monovalent cations. 
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Figure 6.1  XRD patterns of multiple-cation mixed-halide perovskite films on glass/FTO/compact TiO2 

substrates upon addition of different amounts of RbI and CsI to the perovskite precursor solution. FAMA 

represents (FA0.83MA0.17)Pb(I0.83Br0.17)3 and Csx (Rbx) refers to samples with the approximate molar 

percentage x of Cs+ (Rb+). 

 

When it comes to the influence of the inorganic cations on the crystallization of the perovskite, one 

important question arises: Are Cs+ and Rb+ cations incorporated into the perovskite structure? 

Modifications of the perovskite lattice dimensions upon addition of inorganic cations can be deduced 

from a shift in the X-ray diffraction (XRD) peaks of the perovskite phase.[4, 7] To reveal this effect, 

we determined the exact XRD peak position of the (220) reflection for the FAMA perovskite film 

and compared it to samples with different amounts of added RbI and CsI (Figure 6.1). By using the 

(110) reflection of the FTO-glass substrate at 2 = 26.53° as a reference peak, we can exclude a 

misalignment of the experimental stage height as an origin for any XRD peak shift. Upon Cs-addition 

to FAMA, we observe that the reflection of the pristine FAMA perovskite phase at 2 = 28.41° shifts 

to larger diffraction angles for Cs5 (28.45°) and even further for Cs10 (28.47°). This finding is in 

agreement with previous reports[4, 5, 18] and can be interpreted as evidence for the inclusion of Cs+ 

into the perovskite structure, therefore leading to a shrinkage of the perovskite lattice. As expected, 

the higher the Cs+ concentration is in the perovskite precursor solution, the more pronounced is the 

shift to higher angles in the XRD pattern, and the larger is the contraction of the perovskite lattice. 

However, even more remarkable is the peak shift to lower angles observed for Rb5 (2 = 28.40°) 

and Rb10 (2 = 28.38°), which indicates an expansion of the perovskite lattice compared to FAMA. 

The same trend is also visible in a shift of the main perovskite peak around 14.1°, which is shown in 

Figure 6.2. Considering that Rb+ has an even smaller ionic radius compared to Cs+, we would expect 

an even stronger lattice contraction. Therefore, one can conclude that Rb+ is not fully incorporated 

into the perovskite structure in contrast to Cs+, although this does not explain the observed expansion 

of the crystal lattice. 
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Figure 6.2  Magnified XRD patterns of perovskite films on FTO-glass substrates showing the peak shift for the 

main perovskite peak upon CsI and RbI addition. The dotted black line indicates the position of the peak 

maximum for FAMA. Cs-induced peak shift towards larger diffraction angles indicates lattice contraction, 

while Rb-induced peak shift towards smaller angles indicates lattice expansion. 

 

In order to understand the shift to a lower angle of the perovskite lattice upon addition of Rb+, we 

must look into the formation of the Rb-rich side phases. The XRD patterns of Rb5 and Rb10 exhibit 

an additional double peak at 2 = 10.16° and 10.29°, which is more prominent for Rb10. This is 

typically assigned to the yellow orthorhombic, non-perovskite RbPbI3 phase.[2, 3, 17, 19] However, we 

found that the characteristic (110) and (020) reflections of a freshly synthesized RbPbI3 film are 

located at 10.03° and 10.20°, respectively (Figure 6.3). Hence, the XRD reflections originating from 

the side phases in the Rb5 and Rb10 samples belong to a smaller lattice than the pure iodide 

compound RbPbI3. Since the casting solution contains a mixture of I- and Br-, it is reasonable to 

propose that the Rb-rich side phase is a mixed-halide structure of the form RbPb(I1-xBrx)3. An 

estimated Br-content of x ≈ 0.16 was found for the Rb-rich side phase in Rb10 and Rb5 by analyzing 

the XRD peak shift in spin-coated films from RbPb(I1-xBrx)3 solutions with varying x (Figure 6.3). 

We note that this value corresponds to the approximate initial Br:I ratio in the perovskite precursor 

solution. 
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Figure 6.3  Magnified view on the XRD patterns of Rb5 and Rb10 compared to RbPb(I1-xBrx)3 films on FTO-

glass substrates. The dotted black lines indicate the positions of the peak maxima found in Rb5 and Rb10. The 

peak positions for the side phase formed in Rb5 and Rb10 upon perovskite formation are in well agreement 

with the RbPb(I0.84Br0.16)3 compound. 

 

Compared to I- ions (220 pm), the smaller Br- ions (196 pm) have a higher compatibility of ionic 

radius in combination with Rb+, resulting in a slightly higher tolerance factor (t = 0.78) and the 

existence of a high-temperature RbPbBr3 perovskite phase.[20] This affinity between Rb+ and Br- can 

have an enormous impact on the composition and the stability of multiple-cation mixed-halide 

perovskite compounds. When the Rb-concentration is as high as 10% in Rb10, the formation of the 

RbPb(I0.84Br0.16)3 phase has leached a sufficiently large amount of bromide away from the perovskite 

lattice, such that an effective expansion of the (now I-rich) perovskite structure occurs, explaining 

the shift of its XRD main peak to a lower angle. Figure 6.4 represents a schematic illustration of the 

effect of CsI and RbI addition on the lattice dimensions of the FAMA perovskite phase. Our 

hypothesis is perfectly consistent with previous observations by Duong et al.[6] The latter authors 

also report a systematic red shift of both the photoluminescence peak and the absorption onset of the 

mixed-halide perovskite upon increased Rb-concentration, which can be related to a reduction of the 

Br-content within the perovskite through RbPb(I0.84Br0.16)3 formation. In contrast, due to the more 

suitable size of the Cs+ ion to be incorporated into the perovskite lattice, neither Cs5 nor Cs10 exhibit 

a comparable side phase resulting from phase segregation. 
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Figure 6.4  Schematic illustration of the effect of RbI and CsI addition on the multiple-cation mixed-halide 

perovskite structure. Lattice contraction by incorporation of Cs+ cations into the perovskite structure versus 

lattice expansion due to Br-extraction from the perovskite structure and formation of an Rb- and Br-rich non-

perovskite side phase RbPb(I1-xBrx)3. 

 

The instability of the perovskite lattice upon Rb-inclusion is further highlighted by exposing the 

perovskite films to humid air. Here, we performed in situ XRD measurements on FAMA, Cs5, Rb5 

and Rb5Cs5 films upon exposure to air at 75% relative humidity (RH) to determine the degradation 

products. In order to exclude the influence of ambient light on the degradation process,[21] the 

humidity studies were conducted in the dark. Figure 6.5a–d depict the evolution of the XRD patterns 

for each sample prepared on glass substrates over a period of 60 min. Both FAMA and Cs5 show 

minor signs of degradation after 60 min, visible in a slightly increased PbI2 peak at 2 = 12.7°. In 

contrast, a strong reflection at 11.4° emerges for the Rb5 and the Rb5Cs5 film after only 15 min, and 

additional reflections at 22.9°, 34.7° and 46.8° appear upon longer exposure times. 
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Figure 6.5  XRD patterns of (a) FAMA, (b) Cs5, (c) Rb5 and (d) Rb5Cs5 perovskite films on glass under in 

situ exposure to air at 75% RH over a course of 60 min. The most intense diffraction peak assigned to the 

moisture-induced degradation product for the Rb-containing samples is marked with a red asterisk. (e) SEM 

top-view images of perovskite films on glass/FTO/TiO2 after exposure to humid air with 90% RH for 20 h. 

 

These additional diffraction peaks can also be found at lower or higher humidity levels (Figure 6.6a) 

and are accompanied by the formation of transparent spots on the dark brown perovskite films that 

can be seen with the bare eye. Top-view SEM images of Rb5 and Rb5Cs5 films on FTO/TiO2 

substrates reveal the presence of irregularly shaped, bright areas (~100 µm in diameter) after 

exposing the samples to 90% RH for 20 h (Figure 6.5e). In comparison, FAMA and Cs5 do not show 

such inhomogeneity under the same conditions. Only after longer exposure times of 5 days, the Cs5 

film exhibited some transparent imperfections and the corresponding XRD pattern showed a set of 

additional reflections at 2θ = 11.2°, 33.9° and 45.7° (Figure 6.6b), similar to the degradation product 

found on the Rb-containing samples. 
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Figure 6.6  (a) XRD patterns of Rb5 films on glass upon exposure to different humidity levels in air. The 

diffraction peaks assigned to the RbPb2I4Br side phase appear after different exposure times. (b) Cs5 perovskite 

film on FTO/TiO2 before and after exposure to 90% RH for 5 days. 

 

To understand the mechanism that induces the phase segregation within the perovskite films upon 

exposure to moisture, it is crucial to determine the chemical composition of the degradation products. 

Energy dispersive X-ray (EDX) spectroscopy is a powerful tool to assess the chemical composition 

of thin films with a µm-range spatial resolution. We determined the elemental composition of intact 

areas and, if present, phase separated (“degraded”) areas for each perovskite sample by EDX 

measurements to identify the moisture-induced degradation products (Table 6.1). SEM images of the 

evaluated sample areas and EDX spectra are provided in Figure 6.7 and Figure 6.8. 

 

 

Figure 6.7  SEM top-view images of FAMA, Cs5, Rb5 and RbCs5 perovskite films and the evaluated areas for 

EDX elemental analysis of the intact (yellow) and degraded (red) areas. 
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Figure 6.8  EDX spectra of the intact and degraded areas for (a) FAMA, (b) Cs5, (c) Rb5 and (d) Rb5Cs5 films 

after exposure to 90% RH.  

 

Table 6.1  SEM-EDX elemental analysis of intact and phase separated areas of FAMA, Cs5, Rb5 and Rb5Cs5 

perovskite films on FTO/TiO2. The films were exposed to 90% RH in air at room temperature in the dark. The 

elemental composition is given in atomic percentage (at%). 

Sample Cs [at%] Rb [at%] Pb [at%] I [at%] Br [at%] 

FAMA intact - - 26 61 13 

FAMA degraded - - 26 61 13 

Cs5 intact 2 - 25 60 13 

Cs5 degraded 10 - 25 50 14 

Rb5 intact - 0 25 63 12 

Rb5 degraded - 14 24 50 12 

Rb5Cs5 intact 2 0 24 61 13 

Rb5Cs5 degraded 3 12 24 48 13 

 

 

Table 6.1 shows that all samples exhibit a comparable Pb:I:Br ratio in their intact areas, 

corresponding to the precursor stoichiometry used in the perovskite solution. After exposure to 90% 

RH for 2 days, FAMA does not change its elemental stoichiometry and no apparent phase segregation 

is observed. However, we found significant differences between the elemental composition of the 

intact and the degraded areas of Rb5 and Rb5Cs5 after the moisture-induced phase segregation after 
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20 h. Compared to the intact areas, the degraded areas of Rb-containing samples show to be Rb- and 

Br-rich. More specifically, the Rb-content is increased from ~0% to 12–14% and the I-content is 

decreased from ~60% to ~50% in the degraded areas of Rb5 and Rb5Cs5, while the Br-content was 

constant (~13%). After a significantly longer exposure time of 5 days, the degraded areas in the Cs5 

sample showed a Cs- and Br-rich phase segregation product with a comparable chemical composition 

as the one found in the Rb-containing perovskites. We note that, similar to RbPb(I1-xBrx)3, the 

moisture-mediated formation of the Br-rich phase with either CsI or RbI replaces a significant 

amount of bromide the perovskite lattice with iodide, leading to a noticeable shift of the XRD peak 

to lower angles (Figure 6.9). Another indication for the loss of bromide within the perovskite 

structure after hydration of Rb5 and Rb5Cs5 is a decreased band gap of the perovskite phase, as 

revealed by the corresponding Tauc plots (Figure 6.10). 

 

 

Figure 6.9  XRD patterns of fresh Cs5 and Rb5 samples compared to degraded samples after exposure to 90% 

RH. The magnified view (left) shows the peak shift towards smaller diffraction angles for the perovskite main 

peak in both samples upon moisture-induced phase segregation. The dotted black line indicates the position of 

the peak maximum for a fresh Cs5 sample. 

 

 

Figure 6.10  Tauc plots for (a) Rb5 and (b) Rb5Cs5 films on glass before and after exposure to 90% RH for 

1 h. 
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Using the atomic composition determined for the degraded areas in Rb5, Rb5Cs5 and Cs5 from our 

EDX measurements (Table 6.1), we propose the chemical formula “RbPb2I4Br” and “CsPb2I4Br” for 

the phase segregation products. We suggest that these hitherto unreported crystal phases can be 

derived from the known compounds RbPb2Br5 and CsPb2Br5 by partially substituting bromide for 

iodide. The tetragonal crystal phase of RbPb2Br5 and CsPb2Br5 were first synthesized and 

characterized by Wells, obtained from the reaction of RbBr or CsBr with 2 equivalents of PbBr2.[22-

24] The reported transparency and water-stability of RbPb2Br5 and CsPb2Br5 crystals are in accordance 

with the properties we found for the moisture-induced phase segregation products in Rb5, Rb5Cs5 

and Cs5.  

 

 

Figure 6.11  (a) XRD patterns of a degraded Rb5 film showing moisture-induced phase segregation compared 

to a film obtained from a precursor solution with RbI:PbI2:PbBr2 in a molar stoichiometry of 1:1.5:0.5. (b) 

XRD patterns of a degraded Cs5 film compared to a film obtained from a solution with CsI:PbI2:PbBr2 = 

1:1.5:0.5. The dotted black lines indicates the peak positions of RbPb2I4Br in (a) and CsPb2I4Br in (b), 

respectively. 

 

In order to verify the proposed formula RbPb2I4Br (and CsPb2I4Br) derived from our EDX data, we 

spin-coated films derived from precursor solutions with the corresponding stoichiometry of RbI 

(CsI):PbI2:PbBr2 = 1:1.5:0.5. Strikingly, the XRD patterns of the resulting films exhibit exactly the 

same reflection at 2 = 11.45° (11.20°) that is found for hydrated Rb5 (Cs5) samples, as shown in 

Figure 6.11. Thus, our proposed chemical formula for RbPb2I4Br and CsPb2I4Br are confirmed. As 

shown in previous moisture-stability studies, the presence of water molecules can significantly 

facilitate a reorganization and recrystallization of the perovskite grains.[25] Therefore, moisture can 

promote rapid phase segregation within the perovskite film under the formation of 

thermodynamically more favorable products. The spontaneous crystallization of RbPb2I4Br simply 
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from a stoichiometric precursor solution even without the aid of water indicates a strong driving force 

towards the formation of this compound. A schematic illustration of our proposed degradation route 

for Rb-containing FAMA perovskite films is depicted in Figure 6.12. 

 

 

Figure 6.12  Schematic illustration of the moisture-induced degradation of Rb-containing multi-cation mixed-

halide perovskite films. 

 

It is important to note that the segregation of the CsPb2I4Br phase takes place during a significantly 

longer timescale than RbPb2I4Br. Moreover, the CsPb2I4Br phase was not observed in Rb5Cs5 

samples after 20 h at 90% RH despite of the Rb:Cs ratio of 1:1, indicating that it is Rb+ that induces 

rapid phase segregation first when water can act as a mediator. In the absence of bromide, degradation 

only took place with the emergence of RbPbI3, PbI2 and the yellow -phase of formamidinium lead 

iodide (Figure 6.13).[26] This observation provides further evidence for the strong affinity of Rb+ to 

Br- as discussed above regarding the RbPb(I1-xBrx)3 formation. 
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Figure 6.13  XRD patterns of iodide-only Rb5 perovskite films without bromide in the precursor solution before 

and after exposure to 90% RH. The dotted black line indicates the peak position of the RbPb2I4Br phase. No 

RbPb2I4Br is formed in the absence of bromide in the Rb5 precursor solution. 
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To investigate the effect of moisture-induced RbPb2I4Br formation on the photovoltaic performance 

of perovskite solar cells, we fabricated devices with the architecture 

glass/FTO/TiO2/perovskite/spiro-OMeTAD/Au. A full experimental description of the device 

fabrication and current-voltage (J-V) characterization are given in the Methods section. The as-

prepared solar cells all show high performance with power conversion efficiency (PCE) values up to 

17.75%. The corresponding J-V curves and the stabilized power output are displayed in Figure 6.14. 

We stored the unencapsulated devices (24 cells for each type of perovskite) in a humidity chamber 

with controlled 75% RH at room temperature and monitored the average PCE and short-circuit 

current density (Jsc) of the solar cells over 10 days. 

 

 

Figure 6.14  J-V curves for (a) FAMA, (b) Cs5, (c) Rb5 and (d) Rb5Cs5 champion devices under AM 1.5G 

illumination, recorded at a scan rate of 0.1 V s-1. (e) Maximum power point tracking for the champion 

perovskite solar cells with the device architecture glass/FTO/compact TiO2/perovskite/spiro-OMeTAD/Au 

under AM 1.5G illumination in air. 
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Figure 6.15  Moisture stability test on unencapsulated perovskite solar cells at 75% RH in air at room 

temperature in the dark. (a) Photographs of the devices after one day. (b) Evolution of the normalized power 

conversion efficiency and (c) short-circuit current density upon humidity exposure over a course of 10 days. 

24 cell of each type of perovskite were tested and the efficiency values of each cell were obtained from J-V 

scans in the reverse direction with a scan rate of 0.2 V s-1. The arithmetic means of the PCE and Jsc values were 

determined after a certain exposure time. 

 

 

Figure 6.16  XRD patterns of unencapsulated perovskite solar cells after 1 day exposure to 75% RH at room 

temperature in the dark. 

 

Figure 6.15a shows the appearance of transparent spots in the Rb5 and Rb5Cs5 samples after only 

one day, indicating advanced segregation of RbPb2I4Br (as evidenced by XRD, see Figure 6.16). The 

partial transformation of the black perovskite phase into the RbPb2I4Br phase leads to an irreversible 

loss of photoactive material. This is accompanied by a notable decrease in PCE already after one day 
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exposure to 75% RH for the Rb5 and Rb5Cs5 devices that can be linked to a loss of Jsc (Figure 6.15b–

c). After 10 days, the Rb5 and Rb5Cs5 devices exhibit only ~18% and ~6% of their original average 

PCE values, respectively, compared to ~45% for FAMA and ~37% for Cs5. The further decreased 

performance of Rb5Cs5 compared to the Rb-only devices can be explained by the presence of Cs+ in 

Rb5Cs5 films which enables additional degradation pathways through the formation of CsPb2I4Br. 

For the same reason, the Cs5 devices show a slightly larger decrease in photovoltaic performance 

than FAMA after more than 4 days at 75% RH. We observed the severe initial drop in PCE for Rb-

containing solar cells also after one day at 58% RH (Figure 6.17a), indicating that device degradation 

through RbPb2I4Br formation already takes place at a lower humidity level. 

 

 

Figure 6.17  Monitoring the efficiency of unencapsulated perovskite solar cells (a) upon exposure to 58% RH 

at room temperature in the dark and (b) stored in a nitrogen-filled glovebox under exclusion of moisture at 

room temperature for 5 months. The reverse J-V scans of 20 cells under AM 1.5G illumination were evaluated 

for each type of perovskite and the arithmetic mean of the PCE values was determined over a course of 10 days. 

Scan rate: 0.2 V s-1. 

 

Our results demonstrate that moisture-induced phase segregation within the perovskite material can 

strongly affect the photovoltaic performance of perovskite solar cells, even before chemical 

decomposition of the perovskite (e.g. loss of the organic cations FA and MA) commences. We note 

that water plays a critical role as a mediator in the phase segregation process, since all devices stored 

under nitrogen at room temperature retain 95% of their initial performance even after 5 months 

(Figure 6.17b). Previous stability tests on Cs- and Rb-containing perovskite solar cells reported by 

Saliba et al. were conducted in the absence of water in a dry nitrogen atmosphere. Considering the 

different testing conditions, our results do not contradict the previously observed improvement in 

device stability through Cs- and Rb-addition. 
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6.4 Conclusion 

In conclusion, the present study suggests that Cs+ cations are incorporated into the multiple-cation 

mixed-halide (FA0.83MA0.17)Pb(I0.83Br0.17)3 perovskite structure, leading to lattice contraction and 

stabilization of the photoactive perovskite phase. In contrast, RbI-addition induces the formation of 

non-photoactive, non-perovskite side phases such as RbPb(I0.84Br0.16)3 during film crystallization and 

RbPb2I4Br upon moisture exposure. We assign the origin of the facile phase segregation could be the 

affinity between Rb and Br due to their more compatible ionic radii, which leads to 

thermodynamically more stable compounds than an iodide-based perovskite structure incorporating 

Rb. We demonstrate that the instability of Rb-containing mixed-halide perovskites opens up new 

degradation pathways through rapid phase segregation which can affect device performance before 

notable chemical decomposition of the perovskite takes place. Although device degradation upon 

exposure to humidity can be limited by encapsulation, low-cost deposition methods are generally 

performed under ambient conditions where the rapid phase segregation of the Rb-containing 

component, as described in this work, may already occur immediately after film deposition. 

Therefore, the severe moisture sensitivity of Rb-incorporating perovskites may create additional 

engineering challenges regarding the fabrication process for low-cost perovskite solar cells. 

Furthermore, our results indicate that Rb+ can cause a Br-deficiency in the mixed-halide perovskite 

structure via formation of the Br-rich side phases. Viewed from a more general perspective, our 

results have significant implications for photovoltaic applications using mixed-halide perovskite 

such as in tandem solar cells, where the desired band gap of the perovskite material is tailored by a 

defined halide ratio.[10] Therefore, we need to consider the choice of cations while taking into account 

the interplay between the different components for the perovskite formation. Directing the focus on 

both short-term and long-term device stability will be important for moving perovskite-based 

photovoltaics closer toward commercial applications. 

 

6.5 Methods 

Perovskite precursor solutions 

The organic cation salts formamidinium iodide (FAI) and methylammonium bromide (MABr) were 

purchased from Dyesol, the lead halide compounds from TCI, CsI (99.9%) from Sigma-Aldrich and 

RbI from abcr GmbH. All chemicals were used without further purification. 
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FAMA: PbI2 (508 mg, 1.1 mmol), PbBr2 (80.7 mg, 0.22 mmol), FAI (171.97 mg, 1 mmol) and MABr 

(22.4 mg, 0.2 mmol) were dissolved in 800 µL of anhydrous DMF and 200 µL DMSO by heating 

the solution up to 100 °C. This non-stoichiometric (FA0.83MA0.17)Pb(I0.83Br0.17)3 precursor solution 

contains a 10 mol% excess of PbI2 and PbBr2, respectively, which was introduced to enhance device 

performance. The FAMA solution was filtered through a 0.45 µm syringe filter before usage. 

Cs5 and Cs10: CsI (389.7 mg, 1.5 mmol) was dissolved in 1 mL DMSO and filtrated through a 

0.45 µm syringe filter, yielding an approximately 1.5 M CsI stock solution. To obtain the desired 

triple cation perovskite composition of approximately 5 mol% Cs, 42 µL of the CsI stock solution 

was added to 1 mL of the FAMA solution, yielding a nominal composition of 

Cs0.05[(FA0.83MA0.17)]0.95Pb(I0.83Br0.17)3 for Cs5. The precursor solution for Cs10 was obtained by 

adding 84 µL of the CsI solution to 1 mL FAMA solution. 

Rb5 and Rb10: RbI (318.5 mg, 1.5 mmol) was dissolved in 1 mL of a 4:1 (v/v) DMF:DMSO mixture 

and filtered through a 0.45 µm syringe filter. To obtain the nominal composition of 

Rb0.05[(FA0.83MA0.17)]0.95Pb(I0.83Br0.17)3 with 5% Rb, 42 µL of the 1.5 M RbI stock solution was added 

to 1 mL of the FAMA solution. The precursor solution for Rb10 was obtained by adding 84 µL of 

the RbI solution to 1 mL of FAMA solution. 

Rb5Cs5: To obtain the quadruple cation perovskite composition of 5% Rb and 5% Cs, 42 µL of the 

RbI stock solution and 42 µL of the CsI stock solution were added to 1 mL of FAMA solution, 

yielding a nominal composition of Rb0.05Cs0.05[(FA0.83MA0.17)]0.9Pb(I0.83Br0.17)3. 

 

Film Synthesis 

The deposition of the FAMA, Cs5, Rb5 and Rb5Cs5 perovskite layer was processed in a nitrogen-

filled glovebox at 20–23 °C according to a similar protocol reported by Saliba et al.[7] The perovskite 

solution was deposited in a consecutive two-step spin-coating process at 1000 rpm and 4000 rpm for 

10 s and 30 s, respectively. Approximately 20 s before the end of spinning, 500 µL of chlorobenzene 

(anhydrous, Sigma-Aldrich, 99.8%) was added to the film. The perovskite film formation was 

completed after annealing at 100 °C for 60 min on a hotplate. 

To fabricate RbPb(I1-xBrx)3 films, 1 M RbPb(I1-xBrx)3 solutions with different Br-contents were 

prepared by dissolving RbI, PbBr2 and PbI2 in a 4:1 (v/v) DMF:DMSO mixture with the 

corresponding stoichiometry. For 1 mL solution, the amount of RbI (212.4 mg, 1 mmol) was held 

constant, while the PbBr2:PbI2 ratio was varied to obtain final Br-contents of approximately x = 0.16 

(88.1 mg:350.4 mg), x = 0.20 (110.1 mg:322.7 mg) and x = 0.25 (137.6 mg:288.1 mg), respectively. 
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After dissolving the components at 100 °C, the same spin-coating procedure as for the perovskite 

films was conducted and the films were annealed at 100 °C for 60 min. Pale yellow films were 

obtained. 

To reproduce the crystal phases RbPb2I4Br found as products of moisture-induced phase separation 

in Rb5 and Rb5Cs5 samples, a stoichiometric solution of RbI:PbI2:PbBr2 = 1:1.5:0.5 was prepared. 

Therefore, RbI (106.18 mg, 0.5 mmol), PbI2 (345.7 mg, 0.75 mmol) and PbBr2 (91.75 mg, 

0.25 mmol) were dissolved in 0.5 mL of a 4:1 (v/v) DMF:DMSO mixture. Then the same spin-

coating procedure as for the perovskite films was conducted (without the chlorobenzene drip) and 

the samples were annealed at 100 °C for 10 min, yielding pale yellow films. For the reproduction of 

the CsPb2I4Br phase, RbI was replaced by CsI (129.9 mg, 0.5 mmol). 

 

Solar Cell Fabrication 

FTO coated glass substrates (7 Ω/sq) were patterned by etching with zinc powder and 3 M HCl 

solution and successively cleaned with deionized water, a 2% Hellmanex detergent solution, ethanol 

and finally treated with oxygen plasma for 5 min. A compact TiO2 layer was deposited as a hole 

blocking layer on the substrate via a sol-gel approach. Therefore, a mixture of 2 M HCl (35 µL) and 

anhydrous isopropanol (2.53 mL) was added dropwise to a solution of 370 µL titanium(IV) 

isopropoxide (Sigma-Aldrich) in isopropanol (2.53 mL) under vigorous stirring. The filtrated TiOx 

solution was spin-coated dynamically onto the FTO substrates at 2000 rpm for 45 s, followed by 

annealing in air at 150 °C for 10 min and subsequently at 500 °C for 45 min. The deposition of the 

perovskite layer was conducted as described above for the thin film fabrication. For the hole 

transporter layer, 1 mL solution of spiro-OMeTAD (Borun Chemicals, 99.8%) in anhydrous 

chlorobenzene (75 mg/mL) was doped with 10 µL tBP (Sigma-Aldrich, 96%) and 30 µL of a 

170 mg/mL Li-TFSI (Sigma-Aldrich, 99.95%) solution in acetonitrile (Sigma-Aldrich, anhydrous) 

and deposited by spin-coating at 1500 rpm for 40 s and then 2000 rpm for 5 s. After storing the 

samples overnight in air at 25% relative humidity, 40 nm Au was deposited through a patterned 

shadow mask by thermal evaporation at 8 · 10-7 mbar to form the back electrode. 

 

Characterization 

X-ray diffraction: XRD measurements of thin films were performed with a Bruker D8 Discover X-

ray diffractometer operating at 40 kV and 30 mA, employing Ni-filtered Cu Kα1 radiation 

( = 1.5406 Å) and a position-sensitive LynxEye detector. A step size of Δ2 = 0.0026° was 
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employed to resolve the change in peak position of the perovskite’s diffraction peak. For the in situ 

XRD measurements during the hydration process, a custom-made hydration chamber made of X-ray 

transparent polymers with a total volume around 250 mL was utilized. The air humidity within the 

hydration chamber was held constant employing vials filled with saturated salt solutions and 

measured using a hygrometer. The salts Na2CO3, NaCl, NaBr and K2CO3 were used for controlling 

the humidity level to 92%, 75%, 58% and 45% RH, respectively. All experiments were performed 

at room temperature (21 °C) without illumination. 

Scanning electron microscopy: SEM images were recorded with an FEI Helios Nanolab G3 UC 

DualBeam scanning electron microscope, operated at an acceleration voltage of 5 kV. EDX spectra 

were recorded and evaluated with an Oxford Instruments AZTEC EDX-system. For EDX 

investigations, the samples were tilted to an angle of 52° with respect to the electron beam and an 

acceleration voltage of 20 kV was employed.  

UV-Vis spectroscopy: UV-Vis absorption spectra were recorded using a Perkin Elmer Lambda 1050 

spectrophotometer equipped with a 150 mm integrating sphere. 

Current-voltage characteristics: J-V curves were recorded under ambient conditions using a 

Newport OrielSol 2A solar simulator with a Keithley 2400 source meter under simulated AM 1.5G 

sunlight, with an incident power of 100 mW cm-², calibrated with a Fraunhofer ISE certified silicon 

cell (KG5-filtered). The active area of the solar cells was defined with a square metal aperture mask 

of 0.0831 cm2. After pre-biasing the device at 1.3 V for 5 s under illumination, J-V curves were 

recorded by scanning the input bias from 1.3 to 0 V (reverse scan) and then from 0 to 1.3 V (forward 

scan) at a scan rate of 0.1 V s-1. All as-prepared devices show a comparable degree of hysteresis 

between the forward and reverse scan. The stabilized power output was measured by tracking the 

current at the maximum power point under AM 1.5G illumination without pre-biasing the device. 

 

Moisture stability tests 

Humidity studies on the perovskite solar cells were conducted in a glass container at a constant 

humidity level of 75% RH in air that was maintained by a saturated aqueous NaCl solution at the 

bottom of the jar. Humidity stability tests at 58% RH were performed in the same way using a NaBr 

solution. In order to exclude the influence of light exposure on the degradation process, the container 

was kept in the dark. The unencapsulated solar cells were placed onto a stage inside the sealed 

container being exposed to the moist air and without having direct contact with the solution. After a 

certain exposure time, the J-V curves of the devices were measured under ambient conditions and 1 

sun illumination at a scan rate of 0.2 V s-1. 24 cells were evaluated for each type of perovskite solar 
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cell for 75% RH and 20 cells for 58% RH. The arithmetic means of the PCE and Jsc values extracted 

from the reverse J-V scans were monitored over a course of 10 days. The stability of devices under 

the exclusion of water was determined by measuring the PCE of 20 cells for each type of perovskites 

after storage in a nitrogen-filled glovebox for 5 months. 
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7 Phase purity and crystal orientation in 2D 

perovskite thin films 

 

This chapter is based on the following manuscript: 

Y. Hu, L. M. Spies, D. Alonso-Álvarez, P. Mocherla, H. Jones, J. Hanisch, T. Bein, P. R. F. Barnes, 

P. Docampo, Identifying and controlling phase purity in 2D hybrid perovskite thin films. (submitted) 
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7.1 Abstract 

Two-dimensional (2D) hybrid perovskites have attracted considerable attention due to their 

enormous structural and electronical variability, making this class of semiconductors interesting for 

photovoltaics, light-emitting diodes and lasers. 2D perovskites consist of sheets of bulky organic 

cations and a certain number of lead halide octahedra layers, arranged in an alternating way. Since 

the properties of these materials strongly depend on the octahedra layer thickness n, controlling the 

phase purity regarding n is important for any 2D perovskite thin film applications. Here, we show 

that using rationally chosen lead-complexing solvent additives offers a facile way to control the 

crystallization process in order to form 2D perovskite films with significantly reduced variation in n 

from the target value than films obtained by conventional fast-crystallization methods without 

solvent additives. The improved phase purity in the optimized n = 2 and n = 3 films is verified by X-

ray diffraction, UV-Vis absorption and photoluminescence measurements. In addition, 2D 

perovskites films arising from additive-assisted growth exhibit an unusual crystal orientation with 

the perovskite interlayers predominantly aligned parallel to the substrate. We propose a simple film 

formation mechanism as an empirical explanation for the change in crystal disorder and orientation 

by using lead-complexing solvent additives. Improved control over the phase purity translates into a 

better control of the optoelectronic properties of 2D perovskite films and the horizontal crystal 

orientation makes this family of tunable organic-inorganic perovskites promising for applications 

where lateral charge transport is desired. 

 

 

7.2 Introduction 

Two-dimensional (2D) hybrid perovskites, also often referred to as Ruddlesden-Popper 

perovskites,[1, 2] have recently attracted considerable interest for various potential semiconductor 

applications, such as solar cells, light-emitting diodes (LEDs) or lasers.[3-9] This class of organic-

inorganic lead halide perovskite materials consists of alternating sheets of vertex-sharing lead halide 

octahedra, which can accommodate small organic cations such as methylammonium (MA), and 

interlayers of bulky ammonium-terminated organic cations. The long-chained organic cations 

(LOCs) usually feature alkyl chains or phenyl-groups, which can form bilayers via van-der-Waals or 

π–π interactions, thus giving the 2D perovskite its periodic, layered crystal structure.[10-12] In the field 

of photovoltaics, the replacement of 3D hybrid perovskites by their 2D analogues as photo-absorbers 

has led to substantially enhanced moisture stability of the resulting perovskite solar cells, a feature 

that has been attributed to the hydrophobic side chains of the incorporated LOCs.[5, 13-18]  
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Although improving the moisture resistance of perovskite solar cells is important, the potential of 2D 

perovskites lies in their enormous structural tunability, which gives access to a large playground for 

tailoring their optoelectronic properties according to the application field.[3-6, 19] In particular, n, 

which is the number of octahedra sheets sandwiched between two organic interlayers, strongly 

determines the major features of the resulting 2D perovskite, such as band gap, exciton binding 

energy or photoluminescence.[13, 14, 19-23] A homologous series of Ruddlesden-Popper perovskite 

phases with the generic formula (LOC)2(MA)n-1PbnI3n+1 where n = 1, 2, 3, 4 and 5 has been 

successfully synthesized by Kanatzidis and co-workers, using butylammonium cations as the organic 

spacer.[14, 24] The fabrication of 2D perovskite single crystals with defined octahedra layer thickness 

n was achieved by adjusting the ratio between the lead source, methylammonium iodide (MAI) and 

butylamine in the precursor solutions. The authors have shown that the band gap of the 2D 

perovskites can be tuned from 2.4 eV to 1.7 eV by increasing the octahedra layer thickness from n = 

1 to n = 5 respectively.  

To obtain thin films of 2D perovskites with the desired n-value, conventionally the corresponding 

perovskite single crystals or a stoichiometric mixture of the precursor components is dissolved in 

DMF, followed by a spin-coating and annealing process.[1, 2, 13, 14, 25] However, it has been largely 

overlooked that stoichiometry is not everything when it comes to the formation of 2D perovskite thin 

films on substrates. The crystallization dynamics for thin film growth are likely to be very different 

from single crystal growth and the nature of the substrate may influence the film formation as well. 

Therefore, we need to take into account that thin films resulting from spin-coating of a stoichiometric 

2D perovskite precursor solution are not necessarily composed of the targeted n-phase if careful 

control of the crystallization process is neglected. Yet, controlling the phase purity regarding the 

octahedra layer thickness n is imperative to obtain the desired optoelectronic properties of the 2D 

perovskite thin film.  

In this work, we establish a simple fabrication method to obtain n  2 perovskite films with 

significantly less variation in n from the target value than in films prepared using conventional fast 

crystallization methods. By using appropriate lead-complexing additives in the solvent and careful 

control of the annealing procedure, a narrow distribution of n can be achieved in the resulting 2D 

perovskite film. By contrast, nominally n = 2 and n = 3 perovskite thin films spin-coated from DMF-

solutions consist of a broad mixture of domains with different n-values when crystallized from 

conventional, fast-crystallization procedures. This disorder is verified by photoluminescence (PL) 

measurements. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) measurements confirm 

a gradient in n within nominally n = 3 perovskite films, with decreasing n-value from top to bottom. 

In addition to minimized variation in n, our controlled crystallization procedure results in n = 2 and 

n = 3 films with perovskite and organic interlayers that are oriented exclusively parallel to the 
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substrate. This unusual crystal orientation makes the family of 2D perovskites interesting for device 

applications where lateral charge transport is required. 

 

7.3 Results and discussion 

We investigated the homologous (PentA)2(MA)n-1PbnI3n+1 series as a model system for 2D 

perovskites using pentylammonium (PentA) as the bulky organic cation. Figure 7.1 shows a 

schematic illustration of the layered perovskite structure composed of the following building blocks: 

bulky PentA cations, small MA cations and corner-sharing [PbI6]4- octahedra, where n is the number 

of octahedra layers sandwiched between two PentA layers. For the case of n =  (which occurs in 

the absence of PentA), the resulting crystal structure corresponds to the 3D perovskite 

methylammonium lead iodide (MAPbI3). First, to fabricate thin films of the 2D perovskites, 

pentylammonium iodide (PentAI), methylammonium iodide (MAI) and PbI2 were mixed in the 

corresponding stoichiometry targeting a certain n-value and dissolved in DMF. Subsequently, the 

perovskite precursor solution was spin-coated on glass substrates in a one-step process following 

similar procedures as reported in literature.[13, 20, 24] The MAPbI3 film was fabricated via an anti-

solvent drip method according to a previously established protocol.[26] 

 

 

Figure 7.1  Schematic crystal structures of the homologous series of (PentA)2(MA)n-1PbnI3n+1 perovskites with 

the n = 1 compound (PentA)2PbI4, intermediate MA−PentA mixed-cation 2D perovskites incorporating the 

PbI6 octahedra layers with thickness n = 2 and n = 3, and MAPbI3 as the n = ∞ case. 
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To characterize the crystal structure and the preferential orientation of the perovskite thin films, X-

ray diffraction (XRD) measurements were performed. Figure 7.2a shows the XRD patterns of non-

optimized n = 1, 2, 3 PentAMAPI films spin-coated from DMF-solutions and a MAPbI3 film. 

 

 

Figure 7.2  XRD patterns of (PentA)2(MA)n-1PbnI3n+1 perovskites: (a) non-optimized n = 1, 2, 3 PentAMAPI 

films on glass substrates and a MAPbI3 film for comparison. (b) Solvent additives used for controlled 2D 

perovskite film growth and (c) the resulting optimized n = 2 and n = 3 PentAMAPI films. 

 

The presence or absence of certain diffraction peaks in XRD patterns of thin films recorded in the 

Bragg-Brentano scanning mode can give first indications for potentially preferred crystal orientation 

within the samples. Furthermore, the 2θ position of the diffraction peaks corresponding to the 

stacking direction of the perovskite interlayers reveals the dimensions of the unit cell and therefore 

the number of octahedra layers n. In our samples, the n = 1 film exhibits pronounced peaks at the 

diffraction angle 2θ = 6.1°, 12.1°, 18.2°, 24.3° and 30.5°, which can be indexed as the (002), (004), 

(006), (008) and (0010) reflections of the (PentA)2PbI4 phase. The high intensity of the diffraction 

peaks indicates very high crystallinity and the lack of other reflections can be assigned to a 

preferential orientation of the crystals along the (00l) direction. This trend of growing layers which 

are oriented exclusively parallel to the substrate surface has been shown for the vast majority of n = 

1 Ruddlesden-Popper phase perovskites incorporating different ammonium-based cations.[25, 27-29] 

The XRD pattern of the n = 2 film shows a similar set of diffraction peaks at 4.3°, 8.6°, 12.9° and 
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17.3°, where the peak shift to smaller 2θ values corresponds to an increase in unit cell dimension 

from 14.5 Å to 20.5 Å. As expected, this incremental increase in interplanar distance is roughly the 

same as the layer thickness of a sheet of vertex-sharing PbI6 octahedra. In addition, reflections at 

14.1° and 28.4° can be ascribed to the (111) and (202) plane respectively. These two diffraction peaks 

occur when the alternating PentA and PbI6 interlayers are oriented perpendicular to the substrate. 

The co-existence of the (111) and (202) diffraction peaks and the low angle (0k0) peaks indicates 

that both horizontally and vertically oriented regions are present in the n = 2 perovskite film, which 

agrees with previous reports.[2, 14]  

In contrast, the non-optimized, nominally n = 3 film exclusively shows the (111) and the (202) 

reflection, which corresponds to the typical vertical orientation for high-n members of the 2D 

perovskite phase. This vertical orientation of the interlayers has been reported for different 2D 

perovskite systems with a precursor stoichiometry of n > 2.[1, 13, 17, 24, 30] The resulting XRD patterns 

resemble the one of the 3D analogue MAPbI3, due to the same interplanar distance of ~6.3 Å which 

corresponds to the size of a PbI6 octahedron. However, the strong preferential crystal orientation 

where the perovskite interlayers are aligned perpendicular to the substrate does not allow an 

unambiguous determination of the n-value from the XRD pattern recorded in the conventional Bragg-

Brentano mode, since information about the periodicity in the lateral direction (in-plane) is not 

revealed. 

To complement our XRD results, which only provide us with out-of-plane reflections of these highly 

textured perovskite films, we used grazing-incidence wide-angle X-ray scattering (GIWAXS) 

techniques to examine all possible crystal orientations within the thin films. The GIWAXS pattern 

of the non-optimized n = 3 film shows the (111) reflection at an azimuthal angle of χ = 0°, verifying 

the exclusive vertical alignment of the perovskite interlayers with respect to the substrate (Figure 

7.3a). Assuming that the n = 3 periodicity of the 2D perovskite is present in the lateral direction, the 

corresponding diffraction peaks around the azimuthal angle χ =  90° at low qxy-values are expected 

to be present. However, the absence of this feature suggests crystal disorder in the lateral direction 

of the non-optimized, nominally n = 3 film. Similar GIWAXS patterns have been shown for nominal 

n = 3, 4 or 5 films, which were identified as a mixture of multiple 2D perovskite phases with different 

n-values.[24, 31, 32] 
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Figure 7.3  2D GIWAXS patterns of (a) non-optimized and (b) optimized n = 3 PentAMAPI films spin-coated 

on glass confirm the high degree of crystal orientation either perpendicular or parallel to the substrate. 

 

Due to the close relationship between the n-value and the properties of the corresponding 2D 

perovskite, controlling its phase purity in thin film is vital for any optoelectronic applications using 

this class of material. We demonstrate that the phase purity regarding the n-value can be significantly 

improved for n = 2, 3 PentAMAPI films by carefully controlling the crystallization process of the 

2D perovskite film. This can be achieved by suitable solvent additives such as DMSO or 

tetrahydrothiophene-1-oxide (THTO) in the precursor solution (see Figure 7.2b), combined with a 

slow annealing process during the perovskite film formation. Figure 7.2c shows the XRD patterns of 

the n = 2 and n = 3 PentAMAPI films prepared according to our optimized protocol using THTO 

and/or DMSO as solvent additives. Details about the optimized procedures are described in the 

Methods section (Table 7.1). We optimized the fabrication protocol regarding spin-coating speed, 

additive concentration and annealing temperature to obtain 2D perovskite films showing a narrow 

distribution of n-values which is close to the one targeted by the precursor stoichiometry. XRD was 

employed to monitor the optimization process for n = 2 (Figure 7.4) and n = 3 PentAMAPI (Figure 

7.5) on glass substrates. 
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Figure 7.4  XRD patterns of films on glass substrates spin-coated from n = 2 PentAMAPI solutions with (a) 

different amounts of THTO as solvent additive, (b) 15% THTO or DMSO as additive, (c) different amounts of 

THTO and DMSO additives combined and (d) using different spinning speeds for the optimized precursor 

solution. 
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Figure 7.5  XRD patterns of films on glass substrates spin-coated from n = 3 PentAMAPI solutions with (a) 

20% THTO or DMSO as solvent additive, (b) different amounts of DMSO additive, (c) varying annealing 

processes and (d) using different spinning speeds for the optimized precursor solution containing ~0.5 M PbI2. 

 

Compared to the non-optimized n = 2 and n = 3 films, the optimized 2D perovskite films exhibit 

strong (0k0) peaks for both samples. The presence of THTO in the n = 2 precursor solution leads to 

a significant increase in overall diffraction peak intensities (Figure 7.4a), verifying higher 

crystallinity of the n = 2 film grown with the additive-assisted approach. In particular, the diffraction 

peaks at 3.3°, 6.6°, 9.9° and 13.2° for the optimized n = 3 film show that, in addition to the high 

crystallinity, the perovskite interlayers exhibit an unusual orientation which is parallel to the substrate 

(Figure 7.2c). The “horizontal” orientation of the perovskite layers for n = 3 is verified by the 

corresponding GIWAXS pattern (Figure 7.3b), where the (0k0) signals do not form diffraction rings, 

but are exclusively found at an azimuthal angle χ = 0°. In contrast to the vertically oriented, non-

optimized (nominally) n = 3 perovskite film, this allows us to unambiguously confirm the octahedra 

layer thickness to be n = 3 from the 2 position of the (020) reflection in the conventional XRD 

pattern. The absence of the (111) and (202) reflections in the XRD pattern indicates that vertical 
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growth is largely suppressed in both optimized n = 2 and n = 3 films. To the best of our knowledge, 

this is the first demonstration of predominantly horizontally oriented 2D perovskite thin films with 

n > 1. The recipe for the n = 1 samples and our optimized protocols for n = 2 and n = 3 films were 

tested on different substrates, including FTO, FTO/ TiO2, ITO and silicon. The XRD patterns shown 

in Figure 7.6 demonstrate that the 2D perovskite phase purity and crystal orientation is comparable 

for all tested substrates. 

 

 

Figure 7.6  XRD patterns of 2D perovskite films spin-coated on different substrates using (a) n = 1, (b) 

optimized n = 2 and (c) optimized n = 3 precursor solutions with ~1 M PbI2 concentration and optimized 

annealing conditions. 

 

We note that a slow annealing procedure at a lower starting temperature is vital to obtain 2D 

perovskite films with satisfying phase purity. The best results were achieved by following a three-

step drying sequence, with a stepwise increase of the annealing temperature from 40 °C to 75 °C to 

100 °C (Table 7.1). When the n = 3 film, which included DMSO as an additive, was subjected directly 

to heating on a 100 ºC hotplate after spin-coating, the corresponding XRD pattern of the resulting 

film shows diffraction peaks of a mixture between horizontally oriented n = 1, 2 and 3 phases, 

indicating poor phase purity (Figure 7.5c).  
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Figure 7.7  SEM top view images of the (a) non-optimized and (b) optimized n = 3 perovskite film with solvent 

additives prepared on FTO/TiO2 substrates. The insets show SEM images at higher magnification. AFM images 

show the surface roughness of the (c) non-optimized and (d) optimized n = 3 perovskite film. 

 

Scanning electron microscopy (SEM) top view images of the non-optimized and optimized n = 3 

film reveal similar crystal morphologies with a grain size around 50 nm (Figure 7.7a–b). 

Encouragingly, the optimized n = 3 film exhibits significantly less cracks on the sample surface and 

the corresponding atomic force microscopy (AFM) images indicate significantly reduced root mean 

square film roughness (rrms = 14 nm) compared to the non-optimized sample without solvent 

additives (rrms = 25 nm), as shown in Figure 7.7c–d. The good film quality of the optimized 2D 

perovskite thin films is promising for various device applications, which require uniform layers to 

support sufficient charge transport. SEM images for the n = 1 and 2 samples are depicted in Figure 

7.8. 
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Figure 7.8  SEM top-view images of 2D perovskite films on FTO/TiO2 substrates with (a–b) n = 1, (c–d) non-

optimized n = 2, and (e–f) optimized n = 2. 

 

Since the optoelectronic properties of 2D perovskites strongly depend on n, our structural analysis 

employing XRD techniques was complemented by optical characterization to obtain further insights 

into the phase purity of 2D perovskite thin films. Figure 7.9a shows the normalized UV-Vis 

absorption profiles of non-optimized n = 1, 2 and 3 perovskites films spin-coated from DMF 

solutions and a MAPbI3 film for comparison. In agreement with previous reports, the absorption 

onsets of the 2D perovskites are substantially shifted to larger wavelength numbers with increasing 

n, which is visible in a change of the film’s color (see inset Figure 7.9a).[2, 21] The n = 1 (yellow), 

n = 2 (red) and n = 3 (brown) films show distinct excitonic features at 488 nm, 563 nm and 605 nm, 

respectively.[14] The non-optimized n = 3 film also shows the signature of the n = 2 phase and vice 
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versa, hinting at a mixture of phases in both samples. In addition, the non-optimized nominally n = 3 

sample exhibits an absorption tail up to 740 nm, which can be interpreted as an indication for the 

presence of n > 3 crystal regions with a narrower band gap than the nominal n = 3 phase, similar to 

the MAPbI3 film (n = ∞) with a band gap of 1.6 eV and an absorption onset around 770 nm. By 

comparison, the optimized n = 3 film shows a less pronounced absorption tail (Figure 7.9c) and a 

reduced n = 2 absorption peak, giving evidence for a more narrow variation in n. The estimated band 

gaps for the optimized n = 1, 2 and 3 films are 2.3, 2.2 and 2.0 eV respectively, which is in agreement 

with the band gap values reported for the corresponding 2D perovskite single crystals.[2] 

 

 

Figure 7.9  Normalized UV-Vis absorption spectra and PL spectra of (a–b) non-optimized and (c–d) optimized 

2D perovskite films with n = 2 and n = 3 on glass compared to n = 1 and MAPbI3 films. The insets in a) show 

photographs of the non-optimized n = 1 (yellow), n = 2 (red) and n = 3 (brown) films and the insets in c) show 

the optimized n = 2 and 3 PentAMAPI films, respectively. 

 

Furthermore, we conducted photoluminescence (PL) measurements to evaluate the distribution of n 

within the 2D perovskite and potential charge transfer between these crystal domains. In Figure 7.9b, 

the room temperature steady-state PL spectra of a MAPbI3 film and the non-optimized n = 1, 2 and 

3 perovskites films are displayed. In agreement with literature values, the extreme cases n = 1 and 

MAPbI3 (n = ∞) both show a single PL peak around 524 nm and 776 nm respectively, confirming 
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the phase purity of the perovskite films.[2, 33] The non-optimized n = 2 film shows the expected PL 

peak at 570 nm, accompanied by two additional peaks at 625 nm and 675 nm, which can be assigned 

to the n = 3 and n = 5 phase.[2, 24] Interestingly, the non-optimized n = 3 film exhibits only a minor 

peak at 625 nm, which coincides with the PL signature of n = 3 single crystals,[2] while the main PL 

feature consist of a broad peak with a maximum around 720 nm. This is consistent with all previous 

reports about n ≥ 3 perovskite films, independent of the nature of the bulky organic cation or the film 

fabrication method.[1, 13, 14, 20, 24]  

The discrepancy between the PL spectra of 2D perovskite singles crystals and the corresponding thin 

films fabricated from DMF solutions without solvent additives indicates a large variety of n within 

these perovskite films evolving from fast crystallization. Moreover, photoemission in these non-

optimized 2D perovskite films seems to be dominated by recombination events from layers where n 

>> 3. To understand the origin of the observed emission from the large-n domains, we performed 

temperature-dependent PL measurements on non-optimized n = 3 perovskite films (Figure 7.10). 

Interestingly, after cooling down the sample to 30 K, several distinct PL peaks emerge, which can be 

ascribed to the presence of n = 2, 3, 4, 5 regions. As the temperature is gradually raised to 298 K, the 

distinct PL features of the low-n regions diminish, while the emission from the bulk-like large-n 

areas around 720 nm steadily increases. Assuming that structural changes such as phase 

transformation between the different regions do not occur, our results suggest that the observed PL 

peak of non-optimized n = 3 films can be rationalized by transport and relaxation of charge carriers 

from crystal regions of wide band gap (n ≤ 3) to regions where the band gap approaches the bulk 

perovskite material (n >> 3). This is in accordance with recent reports by Liu et al.,[32] confirming 

rapid exciton transport from low-n regions to large-n regions on the picosecond scale at room 

temperature. 
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Figure 7.10  Normalized PL spectra of a non-optimized n = 3 PentAMAPI film on glass recorded at the 

temperature range from 33–281 K. The characteristic PL peaks of the n = 3, 4 and 5 perovskite phases are 

indicated. 

 

In comparison, the PL spectra of the optimized n = 2 and n = 3 films using THTO and/or DMSO as 

solvent additives show predominantly one peak at 570 nm and 625 nm respectively (Figure 7.9d). 

These PL peaks match well with the PL profile of the corresponding n = 2 and n = 3 single crystals, 

as reported by Stompous et al.[2] In particular, the PL signal of the optimized n = 3 film exhibits only 

a small additional peak at 650 nm (n = 4) and a shoulder around 725 nm (n >> 3). Therefore, we 

conclude that the addition of DMSO or THTO and careful control of the annealing process result in 

2D perovskite films with significantly less variation in n from the target value than films prepared 

without the solvent additives, which is in agreement with our XRD results. 

Despite the improved phase purity of the additive-assisted formation of n = 3 PentAMAPI perovskite 

thin films regarding n, our PL analysis indicates that some large-n regions remain within the 

optimized films. In order to assess the spatial distribution of the different n-regions, time-of-flight 

secondary ion mass spectrometry (ToF-SIMS) measurements were performed. Since the n-value is 

determined by the ratio between MA and PentA cations, a comparison of the depth profiles of the 

MA+ and PentA+ species allows us to estimate the vertical distribution of the large-n regions.  
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Figure 7.11  Positive ToF-SIMS depth profiles of (a) non-optimized and (b) optimized n = 3 perovskite film 

on FTO/TiO2 substrates. The dotted line is a guide to the eye for the estimated interface between perovskite 

and TiO2. Proposed vertical distribution of crystal regions with different n-values for (c) non-optimized and 

(d) optimized n = 3 films. 

 

Figure 7.11a–b shows the positive ToF-SIMS depth profiles of the non-optimized and the optimized 

n = 3 films prepared on FTO/TiO2 substrates. Similar trends are observed for both samples: the 

vertical distribution of PentA+ cations is rather constant throughout the perovskite film, whereas a 

notable enrichment of MA+ species is detected at the beginning of the sputtering process, i.e. at the 

film’s surface. We interpret this observation as an indication for the formation of large-n regions on 

the very top of the perovskite film for both non-optimized and optimized n = 3 samples, with a 

gradient of decreasing n towards the bottom (Figure 7.11c–d). This finding is in excellent agreement 

with recent studies by Liu et al. and Shang et al.[31, 32] We note that the MA+ depth profile for the 

optimized sample varies less after the initial rise than for the non-optimized sample. As evidenced 

by XRD and PL experiments, we observe a significantly improved phase purity for optimized n = 3 

films. We therefore propose that the main phase is n = 3, as desired, with a small fraction of n > 3 

phases at the sample surface. 

Having identified several factors which affect the disparity in crystal disorder and orientation in 2D 

perovskite thin films, such as the precursor stoichiometry, the solvent and the annealing temperature, 

we need to understand how these factors relate to each other. Such knowledge may enable us to 

control the formation process of 2D perovskite films. Herein, we attempt to rationalize the large 

variation in n and the changes in crystal orientation, from horizontal to vertical, in 2D perovskite thin 
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films, caused by changes in precursor stoichiometry without adjusting the solvent. Moreover, we 

propose a simple film formation mechanism that offers a possible explanation for the role of the 

solvent additives and the annealing temperature in achieving an improved phase purity of 2D 

perovskite layers. 

 

 

Figure 7.12  Schematic illustration of the hypothesized formation mechanism for (a) non-optimized n = 3 films 

via fast vertical growth and (b) optimized n = 3 films via solvent additive-assisted slow lateral growth.  

 

Figure 7.12a shows a schematic illustration of the proposed crystallization mechanism for the non-

optimized DMF-based n = 3 film. First, we assume that heterogeneous nucleation commences with 

the formation of PbI6 octahedra clusters at the liquid–substrate interface. Since both MA and PentA 

cations possess a positively charged ammonium group to bind to the exposed A-site on top of the 

octahedra, a competition between these two species occurs. Despite the 1:1 ratio of MA and PentA, 

it is likely that MA outcompetes the PentA cations and successfully binds to the favorable A-site due 

to its smaller ionic radius and stronger dipole moment. The small MA cations can then be quickly 

“locked-in” by free PbIx clusters, which are abundant in the DMF precursor solution. At the same 

time the facile evaporation of the DMF solvent induces fast vertical growth of perovskite layers, 

whereas the PentA cations are pushed to the edge of the growing perovskite “wall”, stabilizing 

themselves via van-der-Waals forces between the alkyl chains and thus forming the organic bilayer. 

For n > 2, this rapid vertical growth seems to dominate, which could explain the broad distribution 

of octahedra layer thicknesses. 



Phase purity and crystal orientation in 2D perovskite thin films 

 
  

 

 
170 

 

When DSMO or THTO is added to the precursor solution, the kinetics of the film growth change 

dramatically. It has been shown by Foley et al. that the sulfoxide group of DMSO and particularly 

THTO strongly interact with Pb2+ ions in the solution, forming stable complexes.[34, 35] The authors 

demonstrated that THTO slows down the crystallization process of MAPbI3, which leads to an 

unusual (100) crystal orientation in the resulting 3D perovskite film. In the case of 2D perovskites, 

this interaction between solvent additive and Pb2+, in combination with a slow annealing process at 

low temperatures, presumably has two major effects on the growth dynamics of the 2D perovskite 

film, as schematically illustrated in Figure 7.12b:  

(i) Pb2+ is withheld in the liquid phase in the form of sulfoxide-complexes, thus reducing the amount 

of available PbIx clusters, meaning that the MA cations cannot be immediately “locked-in” after 

occupying the A-sites. This might allow the large PentA cations to compete with the smaller MA 

cations for the preferred top A-site, thereby forming organic PentA bilayers parallel to the substrate.  

(ii) The slow, controlled horizontal growth at low initial annealing temperatures enables the 

stoichiometry between MA and PentA to define the final layer thickness of the perovskite sheet. Our 

results show that this leads to 2D perovskite films which show substantially less variation in n from 

the target value than films grown from a fast crystallization process through immediate annealing at 

high temperatures.  

Minimizing the variation in n within 2D perovskite films is not only important from a theoretical 

point of view, but it can also have a profound impact on device performance. The potential migration 

of mobile charge carriers in the mixed-phase 2D perovskite layer to low-n regions might result in a 

lower open-circuit voltage in perovskite solar cells than expected from a high band gap 2D perovskite 

material. In perovskite-based light emitting diodes (LEDs), this charge transfer in mixed-phase 2D 

perovskite layer might result in the requirement for a greater driving overpotential relative to the 

energy of emitted photons. Hence, approaches to control the disorder within 2D perovskites will have 

significant technological importance. 

Another important aspect arising from the structural anisotropy of 2D perovskites is their crystal 

orientation when fabricated as thin films. To date, conventional preparation methods for thin films 

of 2D perovskite phases formed from n > 2 solutions result in layers oriented perpendicular to the 

substrate. For photovoltaic applications, this is considered to be an advantage since the standard solar 

cell architectures require transport of charge carriers perpendicular to the substrate. Charge transport 

is likely to be confined within the perovskite component of the layers, since the addition of organic 

interlayers oriented perpendicularly to the charge transport direction leads to a notable drop in 

current.[36] However, there are many potential applications of 2D perovskites where lateral charge 

transport would be beneficial, for example in a back-contact solar cell or a field effect transistor 
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architecture.[37-40] In this case, conducting perovskite layers which are oriented parallel to the 

substrate might also have a potential advantage of inhibiting the migration of ionic defects to or from 

the gate electrode, which might reduce screening of the gate voltage by ionic rather than electronic 

charge. By establishing a facile additive-assisted fabrication method to control the orientation of the 

perovskite layers, our work considerably enlarges the potential thin film-based application fields for 

2D perovskites.  

 

7.4 Conclusion 

In conclusion, we established a simple one-step fabrication method for 2D perovskite films using 

lead-complexing solvent additives and a carefully controlled annealing process to substantially 

reduce the variation in the octahedra layer thickness n from the target value. Furthermore, we 

demonstrate that for the specific n = 3 case, our optimized films show similar PL features as reported 

for n = 3 perovskite single crystals, whereas the PL signal of films resulting from fast crystallization 

from DMF-solutions without solvent additives is largely dominated by photoemission from 

perovskite interlayers with n >> 3. In addition, our solvent engineering approach leads to 

predominantly horizontal crystal orientation in the n = 2 and n = 3 films, which opens the doorway 

for a wide range of potential applications of 2D perovskites which require lateral charge transport. 

 

7.5 Methods 

Synthesis of cation salts 

PentAI crystals were synthesized by adding dropwise 15 mL HI (57 wt% in water, in-house supplier) 

to a mixture of 13.5 mL 1-pentylamine (99%, Sigma-Aldrich) and 100 mL ethanol (absolute, in-

house supplier) under ice-cooling and vigorous stirring. The solution was stirred for 30 min at room 

temperature. After removal of the solvent by rotary evaporation at 50 °C, the white precipitate was 

redissolved several times in ethanol and recrystallized from dry isopropanol (in-house supplier). The 

obtained colorless crystals were filtered, washed with diethyl ether (anhydrous, Sigma-Aldrich) and 

dried in vacuum for 4 h. 
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Precursor Solutions 

All steps of the preparation of the perovskite precursor solutions and the thin films were conducted 

in a glove box under dry nitrogen atmosphere. Using the generic chemical formula for the 2D hybrid 

lead halide perovskites (PentA)2(MA)n-1PbnI3n+1, the stoichiometry of the precursors PentAI, MAI 

(Dyesol) and PbI2 (99.99%, TCI) was determined for octahedra interlayer thicknesses of n = 1, 2 or 

3. The PentAI:MAI:PbI2 ratios were 2:0:1 mmol, 1:0.5:1 mmol, 0.4:0.4:0.6 mmol and 

0.333:0.333:0.5 mmol for n = 1, 2, non-optimized n = 3 and optimized n = 3 respectively, in 1 mL 

of DMF (anhydrous, Sigma-Aldrich). An overview is given in Table 7.1. The precursors were 

dissolved at 100 °C, the bright yellow solution was cooled to room temperature and filtered through 

a 0.45 μm syringe filter. As solvent additives, 100 µL of THTO (97%, Sigma-Aldrich) and 100 µL 

DMSO (anhydrous, Sigma-Aldrich) were added to 1 mL of the DMF-based n = 2 precursor solution. 

Similarly, 350 µL DMSO was added to 1 mL of the n = 3 precursor solution for the optimized recipe. 

The stoichiometric MAPbI3 solution contained 1.25 mmol of PbI2 and MAI respectively, dissolved 

in a mixture of 800 µL DMF and 200 µL DMSO. 

 

Thin Film Fabrication 

For n = 1, 2 and non-optimized n = 3 films, 50 μL of the respective precursor solution was 

dynamically spin-coated on a plasma-cleaned glass substrate (2.5 × 2.5 cm) at 3000 rpm for 40 s. 

The optimized n = 3 films were spin-coated at 4000 rpm. Afterwards, the substrate was annealed on 

a hotplate to evaporate residual solvents and to further promote crystallization. The n = 1 and the 

non-optimized n = 2 and 3 films were annealed at 100 °C for 5 min. The optimized n = 2, 3 films 

were annealed first at 40 °C for 30 min, then at 75 °C for 5 min and finally at 100 °C for 2 min. 

MAPbI3 was spin-coated in a two-step program at 1000 rpm and 5000 rpm for 10 s and 30 s 

respectively. 500 µL chlorobenzene (anhydrous, Sigma-Aldrich) were added as an anti-solvent to the 

spinning film at 15 s before the end. The MAPbI3 sample was annealed at 40 °C for 40 min and 

finally at 100 °C for 10 min. 
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Table 7.1  Composition of precursor solutions and fabrication parameters for (non)-optimized n = 1, 2 and 3 

PentA(MA)PI perovskite films. 

  

n = 1  

non-

optimized 

n = 2  

non-

optimized 

n = 3  

non-

optimized 

n = 2 

optimized 

n = 3 

optimized 

precursor 

solution 

PbI2 

[mg] 
461.01 461.01 276.6 461.01 230.5 

MAI 

[mg] 
0 79.48 63.6 79.48 53.0 

PentAI 

[mg] 
430.34 215.17 86.1 215.17 71.7 

DMF 

[µL] 
1000 1000 1000 1000 1000 

DMSO 

[µL] 
0 0 0 100 350 

THTO 

[µL]  
0 0 0 100 0 

spin-

coating  

speed 

[rpm] 
3000 3000 3000 3000 4000 

annealing 

protocol 
 

100 °C,  

5 min 

100 °C,  

5 min 

100 °C,  

5 min 

40 °C, 30 min; 

75 °C, 5 min; 

100 °C, 2 min 

40 °C, 30 min; 

75 °C, 5 min; 

100 °C, 2 min 

 

 

Characterization 

XRD measurements were carried out with a Bruker D8 Discover X-ray diffractometer operating at 

40 kV and 30 mA, employing Ni-filtered Cu Kα1 radiation ( = 1.5406 Å) and a position-sensitive 

LynxEye detector. A step size of Δ2 = 0.05° and a scan speed of 0.1 s per step were employed.  

2D grazing-incident wide angle X-ray scattering (GIWAXS) data were collected using an Anton-

Paar Saxspace system equipped with a Cu Kα1 microfocus source operated at 50 kV and 1 mA and 

an Eiger Dectris R 1M 2D detector. SEM images were recorded with an FEI Helios Nanolab G3 UC 

DualBeam scanning electron microscope, operated at an acceleration voltage of 4 kV.  

AFM measurements were carried out with a NANOINK atomic force microscope in tapping mode 

with a scan rate of 0.3 Hz, a proportional gain of 30 and an integral gain of 15.  

UV-Vis absorption spectra were recorded using a Perkin Elmer Lambda 1050 spectrophotometer 

equipped with a 150 mm integrating sphere.  
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Room temperature steady-state PL spectroscopy was performed with a Fluotime 300 

spectrofluorometer (Picoquant). The samples were excited using a 405 nm (for n = 1 or 2) laser or a 

510 nm laser (for n = 3 or MAPbI3) operated at 20 MHz repetition rate and excited from the 

perovskite-coated side. To perform PL measurements as a function of temperature, the samples were 

placed in a closed cycle helium cryostat. The excitation source was a 485 nm pulsed laser 

(PicoQuant) with a repetition rate of 2 MHz and an average power of 0.6 µW. A mechanical chopper 

was used to measure the quasi-PL signal. The emitted PL was dispersed by a spectrometer (Acton 

SP2500i, Princeton Instruments) and measured by a GaAs photomultiplier tube (Photonic Solutions). 

The quasi-PL signal was recorded by a lock-in amplifier (SR830, Stanford Research).  

Depth profiles of perovskite films on glass/FTO/TiO2 substrates were measured with a ToF-SIMS 5 

setup from IONTOF GmbH. Sputtering was performed using Ar+-clusters with 2.5 keV ion energy 

on a 300 × 300 µm² raster size. Inside this sputter region an area of about 100 × 100 µm² was analyzed 

using Bi3
+ ions with 30 keV ion energy. 
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8 Design of 2D/3D perovskite bilayers for 

stable solar cells 

 

This chapter is based on the following publication: 

Y. Hu, J. Schlipf, M. Wussler, M. L. Petrus, W. Jaegermann, T. Bein, P. Müller-Buschbaum, P. 

Docampo, Hybrid Perovskite/Perovskite Heterojunction Solar Cells. ACS Nano 2016, 10 (6), 5999-

6007. (DOI: 10.1021/acsnano.6b01535) 

 

 

 

Adapted with permission.[1] Copyright 2017, American Chemical Society. 
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8.1 Abstract 

Recently developed organic-inorganic hybrid perovskite solar cells combine low-cost fabrication and 

high power conversion efficiency. Advances in perovskite film optimization have led to an 

outstanding power conversion efficiency of more than 20%. Looking forward, shifting the focus 

toward new device architectures holds great potential to induce the next leap in device performance. 

Here, we report the demonstration of a perovskite/perovskite heterojunction solar cell. We developed 

a facile solution-based cation infiltration process to deposit layered perovskite (LPK) structures onto 

methylammonium lead iodide (MAPI) films. Grazing-incidence wide-angle X-ray scattering 

experiments were performed to gain insights into the crystallite orientation and the formation process 

of the perovskite bilayer. Our results show that the self-assembly of the LPK layer on top of an intact 

MAPI layer is accompanied by a reorganization of the perovskite interface. This leads to an 

enhancement of the open-circuit voltage and power conversion efficiency due to reduced 

recombination losses, as well as improved moisture stability in the resulting photovoltaic devices. 

 

8.2 Introduction 

Recently, a serious contender for the established photovoltaic technologies has emerged at an 

unprecedented pace: organic-inorganic hybrid perovskite solar cells (PSCs). Hybrid perovskites 

combine low material costs, solution processability and impressive device performance.[2-8] The 

state-of-the-art power conversion efficiency (PCE) has already exceeded 20% in less than five years 

of development.[9] This rapid progress has been fueled by a better understanding and control of the 

perovskite crystallization processes and thus improvements to the resulting film quality.[10-15] 

However, there is still room for improvement to reach the theoretical maximum of 31% efficiency.[16] 

Looking forward, shifting the focus toward new device architectures holds the potential to induce the 

next leap in device performance. 

Interfacial engineering has been proven to be a versatile tool to boost the performance of mature 

photovoltaic technologies, such as crystalline Si.[17] Great efforts have been made to explore new 

interfacial materials for PSCs.[18-22] The common device architecture is based on an n-i-p 

heterojunction: the perovskite film is sandwiched between an electron transporter such as TiO2
[18] or 

PCBM[21, 22] and a hole transporting layer such as spiro-OMeTAD,[23] Poly(triarylamine) (PTAA),[24] 

or PEDOT:PSS[25]. Nevertheless, an all-perovskite junction with similar hybrid perovskites serving 

as charge extraction layers may overcome current limitations due to high conductivity and a reduction 
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of lattice mismatch between the crystal structures. The large variety of hybrid perovskites and the 

ability to tune their optical and electronic properties make a perovskite/perovskite heterojunction 

device a likely candidate to enhance device efficiency. 

An example of a highly tunable perovskite system is the re-emerging family of layered perovskites 

(LPKs), which has attracted considerable attention due to unique crystal structures and optoelectronic 

properties.[26-31] By partially substituting small methylammonium cations for bulkier ones, the 

resulting compound resembles a multiquantum well structure with alternating layers of corner-

sharing lead halide octahedra and sheets of long-chained hydrophobic cations. Tailoring the bulkier 

cation leads to a modulation of the density of states of the material, thereby giving access to a large 

variety of new optoelectronic materials. To date, however, LPKs generally show poor photovoltaic 

performance (PCE < 5%).[32, 33]  

Here, we have developed a facile solution process to fabricate a MAPI/LPK heterojunction that 

unifies the benefits of both materials: a bottom MAPI layer ensures efficient light absorption and 

charge generation, whereas an LPK top layer serves as selective charge extraction layer and moisture 

barrier. The crystal structure of the self-organized LPK incorporating methylammonium (MA+ = 

CH3NH3
+) and long-chained phenylethylammonium (PEA+ = C6H5C2H4NH3

+) or n-butylammonium 

(BA+ = C4H9NH3
+) cations was determined by X-ray diffraction (XRD). Grazing-incidence wide 

angle X-ray scattering (GIWAXS) experiments were performed to gain insights into the crystallite 

orientation and the formation process of the perovskite bilayer. This paper presents the demonstration 

of perovskite/perovskite heterojunction solar cells with device performances up to PCE = 16.84% 

due to enhanced open-circuit voltage and fill factor, complemented by enhanced moisture stability. 

 

8.3 Results and discussion 

8.3.1 Film fabrication and characterization 

A schematic illustration of the perovskite/perovskite heterojunction is depicted in Figure 8.1a. To 

convert the top layer of the MAPI perovskite into an LPK, an isopropyl alcohol (IPA) solution 

containing methylammonium iodide (MAI) and phenylethylammonium iodide (PEAI) or n-

butylammonium iodide (BAI) is spin-coated onto the MAPI film. 
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Figure 8.1  Structural analysis of the perovskite/perovskite heterojunction. (a) Schematic illustration of the 

crystal structures of methylammonium lead iodide (MAPI) and a layered perovskite (LPK), forming the 

junction. (b) XRD pattern of a MAPI film (black) compared to a MAPI/BAMAPI film (blue) and a 

MAPI/PEAMAPI film (red) recorded with grazing-incidence geometry. Both the MAPI bottom layer and the 

LPK top layer are probed with the X-rays at the incident angle of 0.5°. The insets show schematic 

representations of the corresponding LPK structure and the indexed peaks refer to expected (00l) reflections, 

respectively. 

 

Figure 8.1b shows the X-ray diffraction (XRD) patterns of a MAPI film before and after treatment 

with a PEAI:MAI or BAI:MAI solution, respectively. Besides typical diffraction peaks of the 

tetragonal MAPI phase, the XRD pattern of the BAI:MAI modified perovskite film exhibits several 

additional reflections in the 2 range at 2.73°, 5.56°, 8.43°, and 11.17°. The newly emerging peaks 

correspond to (00l) lattice planes (with l = 2n) of the previously reported layered perovskite 

(BA)2(MA)3(Pb4I13) (in the following referred to as BAMAPI).[32] In addition, a minor reflection 

appears at 2 = 6.81° (marked with an asterisk) which can be ascribed to the (004) planes of a related 

LPK: (BA)2(MA)2(Pb3I10). We note that the formation of BAMAPI is highly sensitive to the 

stoichiometry of the casting solution, meaning that an excess of one of the cations can lead to the 

crystallization of an LPK exhibiting a different thickness of the [PbI6] octahedra layers. In contrast, 

the XRD pattern of the PEAI:MAI treated MAPI film shows the signature of only one layered 

compound, with diffraction peaks at 2 = 2.16°, 4.37°, and 6.53°, in addition to the MAPI reflections. 

Assuming a similar LPK structure, we can ascribe these features to the (00l) lattice planes of 

(PEA)2(MA)4(Pb5I16) (referred to as PEAMAPI) with an estimated interplanar spacing d002 = 40.8 Å 
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(Table 8.1). Details on the estimation of the peak positions for different potential LPK structures 

incorporating PEA+ and MA+ are given in the Methods section. 

 

Table 8.1  Estimated 2θ positions of (00l) reflections for the series of layered perovskites (PEA)2(MA)m-

1(PbmI3m+1) with m as the thickness of [PbI6] octahedra layer, utilizing Cu Kα1 radiation, λ = 1.5406 Å. 

  d002 [Å] 2θ [°] 2θ [°] 2θ [°] 

Diffraction peaks    (002)  (004)  (006) 

Experimental    2.16 4.37 6.53 

Estimated 

m = 4 34.7 2.54 5.09 7.63 

m = 5 40.8 2.16 4.32 6.48 

m = 6 46.9 1.88 3.77 5.65 

m = 7 53.0 1.67 3.33 5.00 

m = 8 59.1 1.49 2.99 4.48 

 

 

 

Figure 8.2  XRD patterns of (a) MAPI/PEAMAPI and (b) MAPI/BAMAPI bilayer films fabricated with 

different concentrations of the casting solution. The diffraction peaks of PEAMAPI and BAMAPI are marked 

with asterisks, respectively. 

 

We fabricated MAPI/LPK bilayer films with different concentrations of the spin-coated cation 

mixture solution, and the corresponding XRD patterns are shown in Figure 8.2. An increase of the 

overall concentration leads to higher intensities of the PEAMAPI and BAMAPI reflections with 

narrower peak widths, indicating the formation of a thicker LPK top layer. We performed Scherrer 

analysis of the most intense (00l) reflection of the LPK phase to determine the crystallite size, which 

correlates with the thickness of the LPK top layer. The estimated crystallite sizes for the PEAMAPI 

and BAMAPI phases are summarized in Table 8.2. The increase in crystallite size with increasing 
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concentration confirms that the thickness of the self-assembled LPK layer can be tuned by the 

concentration of the casting solution. Besides, our results suggest that the addition of MAI to the 

spin-coated solution is necessary to form a pure LPK phase on top of an intact MAPI film. The 

absence of MAI in the solution leads to the crystallization of undesirable side phases such as PEAI 

(Figure 8.3). 

 

Table 8.2  Estimated crystallite size of the layered perovskite (BA)2(MA)m-1(PbmI3m+1) and (PEA)2(MA)m-

1(PbmI3m+1) fabricated with different concentrations of the respective casting solution. 

Layered 

Perovskite 
Casting solution 

[PbI6] 

layer 

thickness 

Reflection 

(hkl) 
Btotal [°] 2 [°] D [nm] 

BAMAPI 

10 mM BAI:MAI 
m = 4 (002) 0.498 2.69 16 

m = 3 (002) 0.873 3.13 9 

20 mM BAI:MAI 
m = 4 (002) 0.683 3.13 12 

m = 3 (002) 0.241 3.36 34 

40 mM BAI:MAI 
m = 4 (002) 0.427 2.87 19 

m = 3 (002) 0.178 3.39 48 

PEAMAPI 

10 mM PEAI:MAI m = 5 (006) 0.361 6.50 22 

20 mM PEAI:MAI m = 5 (006) 0.277 6.50 29 

40 mM PEAI:MAI m = 5 (006) 0.188 6.52 45 

 

 

 

Figure 8.3  XRD pattern of a MAPI film treated with a 20 mM PEAI solution in isopropanol and powder XRD 

pattern of PEAI crystals. The absence of MAI in the casting solution leads to the crystallization of PEAI. 

 

As the MAPI/PEAMAPI system offers better control over phase purity than MAPI/BAMAPI, we 

chose it as a model system to study the distribution of the LPK within the mixed-perovskite film. X-



Design of 2D/3D perovskite bilayers for stable solar cells 

 
  

 

 
184 

 

ray photoelectron spectroscopy (XPS) is a powerful tool to probe the surface properties of thin films. 

The MAPI/PEAMAPI film and the MAPI film both exhibit a peak at 286.6 eV in the XPS spectrum 

(Figure 8.4), which can be ascribed to the C 1s signal of the carbon atom neighboring the NH3
+-group 

in MA+. The C 1s signal arising from MA+ is also present in the MAPI/PEAMAPI film, since 

methylammonium is also incorporated in the layered PEAMAPI perovskite structure. However, the 

MAPI/PEAMAPI sample shows an additional peak at 285.4 eV, which is likely to originate from the 

C 1s signature of carbon atoms within the aromatic ring of the PEA+ cations. As XPS is only surface-

sensitive, this result confirms the formation of PEAMAPI on top of MAPI. 

 

 

Figure 8.4  XPS spectra indicating the C 1s peaks of MAPI and MAPI/PEAMAPI films on glass, respectively. 

 

Furthermore, grazing incidence wide-angle X-ray scattering (GIWAXS) has been proven to be a 

versatile technique to elucidate the crystallization mechanism of perovskite thin films as well as its 

effect on solar cell performance.[34-36] Here, we employed GIWAXS measurements to study the 

formation process of the MAPI/PEAMAPI heterojunction and to gain deeper insights into the 

crystallization process. Figure 8.5a–b depict the GIWAXS data obtained from a MAPI film and a 

MAPI/PEAMAPI perovskite bilayer film, with the in-plane component qr and the vertical component 

qz of the total momentum transfer q. 
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Figure 8.5  GIWAXS analysis for the perovskite/perovskite heterojunction. (a) 2D GIWAXS pattern of a MAPI 

film and (b) a MAPI/PEAMAPI bilayer film with highlighted (002) and (222) diffraction rings. (c). Azimuthal 

integration around q = 1 Å-1 (002) and q = 2.2 Å-1 (222) for quantitative evaluation of the conversion mechanism 

(dashed lines indicate the 2σ range). (d) Schematic interpretation of the surface reorganization of MAPI films 

upon PEAMAPI formation. 

 

Both diffraction patterns exhibit the key features of the tetragonal MAPI perovskite structure, 

represented by the broad Debye-Scherrer rings at specific q values (e.g. q = 1 Å-1 corresponding to 

the (002) or (110) lattice planes). However, the GIWAXS pattern of the MAPI/PEAMAPI bilayer 

shows two features which differ from the MAPI film: the first one appears at low q values and does 

not form a complete ring pattern but is centered at qr = 0 Å-1. This indicates that the planes 

corresponding to this crystal structure are strongly oriented parallel to the substrate. We performed 

integration over all q values (Figure 8.6) and two distinct peaks at q ≈ 0.18 Å-1 and 0.41 Å-1 are in 

agreement with the PEAMAPI peaks found in the XRD and thus corroborate the formation of a 

highly oriented PEAMAPI phase. The second feature is visible in the change of orientation 

distribution along the diffraction rings from the (002) and (004) planes of the tetragonal perovskite 

phase. The corresponding diffraction rings of the pure MAPI film (e.g. at q = 1 Å-1) show a relatively 

homogeneous azimuthal intensity distribution, indicating an isotropic orientation distribution of the 

crystallites. In contrast, the MAPI/PEAMAPI film exhibits a higher diffraction intensity around qr = 

0 Å-1, which suggests partial reorientation of crystallites upon formation of the PEAMAPI layer. 
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Considering the high orientation of the first feature at low q values we conclude that this increase in 

crystal orientation can be linked to the amount of PEAMAPI formed. 

 

 

Figure 8.6  GIWAXS data for a MAPI film and a MAPI/PEAMAPI bilayer film, integrated over the complete 

q range. The two distinct peaks at q ≈ 0.18 Å-1 and 0.41 Å-1 for the MAPI/PEAMAPI sample corroborate the 

formation of an oriented PEAMAPI perovskite layer. 

 

Provided that the increased fraction of preferentially oriented crystallites arises only from the LPK, 

azimuthal integration around q = 1 Å-1 allows for quantitative evaluation of the conversion 

mechanism (Figure 8.5c): By fitting a Gaussian peak around the azimuthal angle  = 0° and 

comparing differences of the areas within the 2σ range (95%) to the area outside this range, the 

amount of MAPI converted to PEAMAPI is determined as 7%. The use of a Gaussian peak shape to 

amend the data in the inaccessible range around  = 0° is justified by comparison with an integration 

of the (222) peak. The beam footprint covers the entire sample at the incident angle of 0.4° and thus 

probes the same sample volume in both measurements. Consequently, the calculated difference 

directly translates to 7% of the film thickness or about 20 nm of PEAMAPI, equivalent to 4-5 layers 

of the LPK compound. This result is in very good agreement with the determined film thickness of 

PEAMAPI estimated from the Scherrer analysis of the (006) diffraction peak (see Table 8.2). 

The above analysis assumes a more or less perfect orientation of the LPK layer parallel to the 

substrate. This assumption is justified by the following considerations: Spin-coating a PEAI:MAI 

solution from IPA presumably leads to a reorganization of the MAPI top layer, accompanied by fast 

deintercalation of MAI and intercalation of PEAI into the perovskite structure. PEA+ cations form 

extended organic sheets due to steric effects, π-stacking of the phenyl-rings, and hydrogen-bonding 

interactions between the NH3
+-group with the neighboring [PbI6] octahedra layer, respectively.[27, 28, 

37] It has been shown that long-chained organic cations can act as a template for the extremely 
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anisotropic growth of LPK crystals, resulting in films with a strong preferential crystal orientation.[32, 

38, 39] In this case, the inorganic [PbI6] octahedra layer sandwiched between two organic layers is thus 

confined parallel to the substrate (as illustrated in Figure 8.5d). This reorganization of the perovskite 

structure gives rise to the intensity increase around  = 0° in the GIWAXS pattern of the 

MAPI/PEAMAPI film.  

The integrity of the MAPI bottom layer is essential to justify our concept of a perovskite/perovskite 

heterojunction. Because of the size of PEA+ and BA+, these organic molecules are too large to be 

incorporated into the perovskite structure replacing MA+, and can only form layered compounds. 

Moreover, any distortion in the MAPI lattice by percolated PEA+ or BA+ cations would be visible in 

the XRD patterns. As both standard wide-angle XRD and GIWAXS measurements indicate the 

existence of only two crystal phases – pristine MAPI and the layered perovskite – we do not expect 

compositional changes within the MAPI bottom layer. 

 

8.3.2 Device performance 

We fabricated planar heterojunction perovskite solar cells comprising a MAPI/PEAMAPI or 

MAPI/BAMAPI perovskite heterojunction. The final device configuration is glass/FTO/compact 

TiO2/perovskite/spiro-OMeTAD/Au. A cross-sectional SEM image of a MAPI/PEAMAPI 

perovskite solar cell is depicted in Figure 8.7a. 

 

 

Figure 8.7  (a) SEM cross-section of a MAPI/PEAMAPI planar heterojunction solar cell. (b) J-V curves and 

characteristics of the best-performing devices comprising different perovskite layer configurations. Both 

MAPI/LPK heterojunction devices incorporate a 20–25 nm thick LPK top layer. Recorded under one sun AM 

1.5G illumination at reverse bias sweep with a scan rate of 0.5 V s-1. The inset table indicates the determined 

performance parameters for each type of device. 
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Figure 8.7b presents the current-voltage (J-V) curves of a MAPI/BAMAPI, MAPI/PEAMAPI, and a 

MAPI-based solar cells recorded under simulated AM 1.5G solar illumination by scanning the 

voltage from 2 V to 0 V. Both perovskite bilayer devices give significantly higher open-circuit 

voltages (Voc) of 1.08 V than the device composed of pristine MAPI (Voc = 0.99 V). The short-circuit 

current density (Jsc) of the MAPI/PEAMAPI-based device is slightly lower (Jsc = 18.63 mA/cm2) 

compared to the reference cell (Jsc = 19.82 mA/cm2), whereas the MAPI/BAMAPI cell suffers a more 

pronounced drop in photocurrent density (Jsc = 16.56 mA/cm2). Ultimately, the resulting power 

conversion efficiency of the MAPI/PEAMAPI device (PCE = 14.94%) is improved compared to the 

nontreated MAPI cell (PCE = 13.61%), while the MAPI/BAMAPI device yields 11.49%. By utilizing 

a further optimized perovskite deposition protocol, a 16.84% MAPI/PEAMAPI cell with Voc = 1.11 V 

was obtained. The corresponding J-V curves and the stabilized power output are given in Figure 8.8. 

 

 

Figure 8.8  (a) J-V curves of a MAPI/PEAMAPI heterojunction champion cell fabricated via an optimized 

MAPI deposition method. Recorded under simulated AM 1.5G illumination with 100 mW cm-2 (scan rate: 0.1 

V s-1). (b) PCE as a function of time for a MAPI cell and a MAPI/PEAMAPI cell held to the maximum power 

voltage (~0.91 V reverse bias) under illumination. 

 

The formation of an optimized LPK top layer affects the photovoltaic performance in two ways: a 

slight decrease in short-circuit current density and an increase in open-circuit voltage. The loss in Jsc 

can be attributed to two factors: first, charge transport is inhibited by the organic interlayers within 

the LPK film that in our samples are perpendicularly oriented to the direction of charge transport. 

With increasing thickness of the LPK layer, photogenerated charge carriers need to overcome a larger 

number of electronically insulating sheets formed by the bulky organic cations. This is evidenced by 

the dramatic loss in Jsc for devices prepared with higher concentrations of the PEAI:MAI casting 

solution (Figure 8.9a).  
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Figure 8.9  (a) J-V curves of a MAPI control cell and MAPI/PEAMAPI devices prepared with different 

concentrations of the PEAI:MAI casting solution. Recorded under simulated AM 1.5G sun light and reverse 

bias sweep (scan rate 0.5 V s-1). (b) UV-Vis absorption spectra of a MAPI film and a MAPI/PEAMAPI film 

on glass, prepared with a 10 mM PEAI:MAI (1:1) solution. 

 

Moreover, the MAPI/BAMAPI-based solar cell is composed of a larger number of organic 

interlayers than the MAPI/PEAMAPI device with a similar total LPK film thickness, thus leading to 

a larger drop in Jsc (Figure 8.7b). Second, the light absorption spectrum of a MAPI/PEAMAPI film 

reveals a slight decrease in absorbance compared to a pristine MAPI film (Figure 8.9b), as partial 

conversion into the LPK occurs. The loss in light absorption also contributes to the decrease in Jsc. 

Further studies were conducted on the MAPI/PEAMAPI system, which incorporates only a single 

phase LPK and demonstrates a higher photovoltaic performance than MAPI/BAMAPI-based 

devices. 

The second effect of the PEAMAPI layer is an enhancement of Voc and FF. It has been previously 

reported that an increase in Voc and FF can be linked to a reduction of charge recombination rates 

through optimizing charge-selective contact materials.[40, 41] To investigate if this occurs in our 

perovskite/perovskite heterojunction, we examined the energy level alignment between MAPI and 

PEAMAPI with XPS measurements. The thickness of the optimized PEAMAPI top layer is around 

20–22 nm, as estimated via GIWAXS experiments and Scherrer analysis. The recorded XPS results 

of a MAPI/PEAMAPI sample can therefore be attributed to the PEAMAPI material. 
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Figure 8.10  XPS spectra obtained for pure MAPI and a MAPI/PEAMAPI bilayer film. The left graph describes 

the energetic position of the valence band maximum (VBM) relative to the Fermi level EF. The graph on the 

right shows the energy difference between the secondary electron edge and the He I radiation, which 

corresponds to the work function . 

 

Figure 8.10 shows that the valence band onsets for MAPI and PEAMAPI are well aligned and both 

samples exhibit comparable work functions. Band gap estimations for the PEAMAPI compound are 

difficult, as the absorption profile of MAPI dominates the absorption spectrum of the 

MAPI/PEAMAPI sample (Figure 8.9b). However, Cao et al.[32] showed that the introduction of long-

chained cations into the MAPI structure increases the band gap of the perovskite material. 

Accordingly, we expect PEAMAPI to exhibit a wider band gap than MAPI. Electronically speaking, 

this means that the valence bands of PEAMAPI and MAPI are well aligned and that the conduction 

band onset for PEAMAPI will be energetically higher. Electron transfer from MAPI to PEAMAPI 

would thus be uphill in energy and is inhibited (Figure 8.11). Charge recombination at the interface 

is further reduced with the LPK layer acting as a selective hole extraction layer between MAPI and 

spiro-OMeTAD, explaining our observed change in Voc and FF. 
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Figure 8.11  Schematic energy level diagram of a MAPI/PEAMAPI heterojunction solar cell. 

 

Further evidence supporting this hypothesis is given by time-resolved photoluminescence (PL) 

spectroscopy. This technique provides insights into the recombination dynamics of photo-generated 

electron-hole pairs by monitoring the PL decay as a function of time. We evaluated the PL lifetime 

of MAPI and MAPI/PEAMAPI films with time-correlated single photon counting (TCSPC). The 

decrease in PL lifetime of the MAPI/PEAMAPI sample suggests PL quenching by the LPK layer, 

which supports the notion of hole transfer from MAPI into PEAMAPI (Figure 8.12). With this 

information in hand, we assign the increase in Voc and FF observed for devices incorporating a 

MAPI/PEAMAPI heterojunction to a reduction in charge recombination rates. Moreover, the 

reorganization of the MAPI film surface upon PEA+ insertion evidenced by the GIWAXS data is 

likely to reduce surface recombination, possibly also contributing to the observed increase in Voc and 

FF. 

 

 

Figure 8.12  Time-resolved PL decay for a MAPI and a MAPI/PEAMAPI film on glass analyzed by TCSPC. 
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To verify the reproducibility of the J-V curve results, we evaluated the performance of 156 

MAPI/PEAMAPI solar cells and 156 MAPI reference cells fabricated from different batches on 

different days. Figure 8.13 shows the statistical distribution of Voc, Jsc, FF and PCE values for both 

types of devices. The findings are in good agreement with our observations from the champion cells. 

 

 

Figure 8.13  Statistical evaluation of the J-V data (reverse bias scans from 2 to 0 V) obtained for 156 

MAPI/PEAMAPI devices and 156 MAPI devices. Comparison of (a) Vsc, (b) Jsc, (c) PCE and (d) FF. 

 

Planar perovskite solar cells are notorious for their anomalous hysteresis in J-V measurements, that 

is, the J-V curve obtained from the forward bias scan (from 0 to 2 V) differs from the one obtained 

from the reverse bias scan (from 2 to 0 V). This phenomenon is usually assigned to ion migration 

within the perovskite layer.[42-45] We observed typical hysteretic behavior for MAPI and MAPI/LPK 

devices to approximately the same degree (Figure 8.14). By partially substituting MA+ for the bulkier 

organic cations, fewer mobile ionic species are present in the perovskite lattice, which could induce 

less hysteresis in the perovskite/perovskite heterojunction devices. However, in our optimized 

devices, only 7% of the original MAPI film is converted into the layered perovskite, while a thick 

MAPI bottom layer (~250 nm) is maintained. Therefore, we do not observe a significant reduction 

of the usual hysteresis caused by ion migration. 
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Figure 8.14  J-V hysteresis of photovoltaic devices comprising a MAPI/PEAMAPI, MAPI/BAMAPI or MAPI 

absorber layers. Recorded under simulated AM 1.5G sun light, reverse and forward bias scan (scan rate: 0.5 V 

s-1). 

 

In addition to the pursuit of better performing devices, ensuring the long-term stability of PSCs 

remains a major challenge. In particular, hybrid perovskites are known to be chemically unstable in 

the presence of moisture. Recently, it has been shown that LPKs incorporating hydrophobic long-

chained organic cations are more resistant toward humidity-induced degradation.[33] Here, we studied 

the moisture stability of MAPI/PEAMAPI perovskite solar cells by exposing devices without any 

encapsulation to air at constant 75% relative humidity (RH) in a sealed container at room 

temperature. 

 

 

Figure 8.15  Device stability test at 75% RH in air at room temperature for 19 days. (a) Efficiency distribution 

for 20 MAPI/PEAMAPI and 20 MAPI devices before and after exposure to humidity. The insets show the 

corresponding photograph of a MAPI/PEAMAPI cell (left) compared to a MAPI control cell (right). (b) XRD 

patterns of an intact MAPI cell, a MAPI/PEAMAPI cell and a MAPI cell upon exposure to moisture. 
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Figure 8.15a presents the PCE of 20 MAPI cells and 20 MAPI/PEAMAPI cells before and after 

exposure to humid air at 75% RH. After 19 days, MAPI/PEAMAPI devices exhibit a significantly 

higher average efficiency (PCE = 11.4%) than the MAPI reference cells (6.1%). Strong 

decolorization of the MAPI solar cell indicates advanced degradation of the perovskite film, whereas 

the MAPI/PEAMAPI bilayer cell maintained the dark brown color of an intact perovskite absorber 

layer. Additional reflections in the XRD pattern of the degraded MAPI-based device originate from 

a MAPI hydrate (CH3NH3PbI3 · H2O)[46, 47] and PbI2 (Figure 8.15b), indicating the decomposition of 

the perovskite layer. In contrast, no degradation products can be identified in the XRD pattern of the 

MAPI/PEAMAPI device. In order to monitor the diffraction peaks of PEAMAPI before and after 

hydration, we prepared MAPI/PEAMAPI and pure MAPI samples on glass which were analyzed in 

grazing-incidence geometry at an incident angle of 0.5°. The corresponding XRD patterns (Figure 

8.16) reveal that the MAPI sample shows degradation upon hydration at 75% RH for 2 h, whereas 

the MAPI/PEAMAPI sample does not show structural changes or degradation products. Our results 

verify the effect of the LPK top layer as a moisture barrier, which correlates with an improvement in 

device stability toward exposure to a high level of humidity. 

 

 

Figure 8.16  XRD patterns of a MAPI and a MAPI/PEAMAPI film before and after exposure to 75% RH for 

2 h in air at room temperature. 

 

8.4 Conclusion 

To conclude, this paper shows that a perovskite/perovskite heterojunction architecture comprising 

MAPI and a layered perovskite compound can be fabricated via a solution-based cation infiltration 

process. The successful realization of two MAPI/LPK heterojunction systems incorporating 
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phenylethylammonium or n-butylammonium cations proves the versatility of the deposition method 

developed here. GIWAXS experiments reveal the preferential growth of the layered PEAMAPI 

perovskite, which is accompanied by a reorganization and reorientation of the MAPI top layer. We 

demonstrate that photovoltaic devices based on a MAPI/PEAMAPI heterojunction reach power 

conversion efficiencies of up to 16.84% due to an increase in open-circuit voltage and fill factor. Our 

results indicate that the LPK top layer may act as a selective charge extraction layer for MAPI 

perovskite, leading to reduced recombination losses within the device. With an optimized LPK layer 

thickness, the detrimental effects of the organic barriers on the charge transport and light absorption 

are compensated by the enhanced Voc and FF. In addition, the enhancement in device stability towards 

exposure to moisture implies prolonged device lifetime, which is a crucial aspect for the 

implementation of perovskite-based photovoltaics in outdoor applications. The immense variety of 

organic cations that can be incorporated into the perovskite structure offers numerous possibilities to 

fine-tune and control the interface; from energy level alignment for graded band gap structures to the 

chemical stability of the system.[27, 33, 37, 48, 49]. We believe that designing perovskite/perovskite 

heterojunctions holds great potential to improve both device stability and photovoltaic performance 

of perovskite solar cells. 

 

8.5 Methods 

Synthesis of organic cation salts 

PEAI crystals were synthesized by dropwise adding a solution of HI (Sigma-Aldrich, 57 wt% in 

water, 27 mL, 204 mmol) to a cold (0 °C) mixture of 2-phenylethylamine (Sigma-Aldrich, 25 mL, 

198 mmol) and absolute ethanol (25 mL) under stirring. The colorless precipitate was collected by 

suction filtration and washed several times with diethyl ether. After recrystallization from 

isopropanol and drying under reduced pressure, colorless PEAI crystals were obtained. To synthesize 

BAI crystals, n-butylamine (Acros, 99.5%) was reacted with HI in the same way as described above 

for the PEAI synthesis. MAI crystals were obtained by adding an aqueous HI solution (10 mL, 

76 mmol) dropwise to 24 mL (193 mmol) methylamine solution (Sigma-Aldrich, 33 wt% in absolute 

ethanol) diluted in 100 mL absolute ethanol at 0 °C under stirring. After further stirring for 2 h at 

room temperature, the solvent was removed at 45 °C by using a rotary evaporator and the colorless 

precipitate was recrystallized from absolute ethanol. Finally, the colorless MAI crystals were 

filtrated, washed with diethyl ether and dried overnight under vacuum. 
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Thin Film Preparation 

Thin films of methylammonium lead iodide (MAPI) were prepared in a glovebox under dry nitrogen 

atmosphere, by following a protocol reported by Xiao et al.[50] First, clean glass substrates 

(2.5 × 2.5 cm2) were treated in a plasma-cleaner with oxygen plasma for 5 min. MAI (0.4 g, 

2.5 mmol) and PbI2 (Sigma-Aldrich, 99%, 1.156 g, 2.5 mmol) were dissolved in 2 mL of DMF 

(Sigma-Aldrich, anhydrous) under stirring at 100 °C. The yellow solution was cooled and filtrated 

through a 0.45 µm syringe filter, affording a 1.25 M precursor solution of MAPI. Then 75 µL 

perovskite solution was dynamically spin-coated on a clean glass substrate at 5000 rpm for 30 s. 

With a delay time of 4-5 s, 200 µL of chlorobenzene (Sigma-Aldrich, anhydrous) was quickly 

introduced to the spinning film in order to promote MAPI crystallization. The sample was annealed 

on a hot plate at 100 °C for 10 min to remove residual solvents. Finally, homogeneous, dark-brown 

MAPI films were obtained. The conversion of the top layer of a MAPI thin film into the layered 

PEAMAPI perovskite structure was achieved by spin-coating an equimolar mixture of 

phenylethylammonium iodide (PEAI) and methylammonium iodide (MAI) in IPA (Sigma, 

anhydrous). PEAI and MAI were dissolved in IPA with different concentrations varying from 5 mM 

to 40 mM (the molarity refers to both PEAI and MAI). Subsequently, 75 µL PEAI:MAI solution was 

spin-coated on a MAPI film at 4000 rpm for 45 s and the films were annealed at 70 °C for 5 min to 

remove residual solvents. The preparation of MAPI/BAMAPI films followed the same protocol, 

using an equimolar solution of BAI and MAI dissolved in IPA. 

 

Solar cell fabrication 

For the device fabrication, FTO coated glass slides (Pilkington, 7 Ω/sq) were employed as substrates. 

The substrates were patterned by etching with zinc powder and 3 M HCl solution and successively 

cleaned with deionized water, 2% Hellmanex detergent solution, acetone, ethanol, and finally treated 

with oxygen plasma for 5 min. A TiO2 compact layer was deposited as hole blocking layer on the 

substrate via a sol-gel approach. For this purpose, a mixture of 2 M HCl (35 µL) and anhydrous IPA 

(2.53 mL) was added dropwise to a solution of 370 µL of titanium(IV) isopropoxide (Sigma-Aldrich) 

in IPA (2.53 mL) under vigorous stirring. The clear TiOx solution was spin-coated dynamically on 

the clean FTO substrates at 2000 rpm for 45 s, followed by annealing at 150 °C for 10 min on a hot 

plate. The TiO2 compact layer was completed by sintering at 500 °C in air for 45 min, and the final 

substrates were cut into pieces of 3 × 3 cm2. The deposition of the MAPI absorber layer and its partial 

conversion into PEAMAPI or BAMAPI was processed in a nitrogen-filled glovebox as described 

above for the thin film preparation. 
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For the fabrication of the best performing devices, a further optimized procedure for the MAPI film 

deposition was used. Here, a 1.2 M solution of PbI2 (TCI, 98%) and MAI in a 4:1 (v/v) mixture of 

DMF and DMSO was deposited in a consecutive two-step spin-coating process at 1000 and 5000 rpm 

for 10 and 30 s, respectively. Approximately 15 s before the end of spinning, 500 µL of 

chlorobenzene was added to the film. After annealing the substrates at 100 °C for 10 min on a 

hotplate, MAPI films were formed. The generation of the PEAMAPI top layer by spin-coating a 

10 mM PEAI:MAI (1:1) solution followed the same protocol as described above. 

For the deposition of the hole transporter layer, a solution of spiro-OMeTAD in anhydrous 

chlorobenzene (75 mg/mL) was filtered through a 0.45 µm syringe filter. Then 10 µL of tBP (Sigma-

Aldrich, 96%) and 30 µL of a 170 mg/mL Li-TFSI (Sigma-Aldrich, 99.95%) solution in acetonitrile 

(Sigma-Aldrich, anhydrous) were added to 1 mL of spiro-OMeTAD solution. The HTM was 

deposited on the device substrate by spin-coating at 2000 rpm for 45 s. The samples were stored 

overnight in a desiccator under air atmosphere with ~21% relative humidity. Finally, a 40 nm Au 

layer was deposited through a patterned shadow mask by thermal evaporation at 4 · 10-6 mbar and a 

deposition rate of 0.1 nm/s in order to form the back electrode. 

 

Film characterization 

XRD measurements of thin films were performed with a Bruker D8 Discover X-ray diffractometer 

operating at 40 kV and 30 mA, employing Ni-filtered Cu Kα1 radiation ( = 1.5406 Å) and a position-

sensitive LynxEye detector. The Bragg-Brentano scanning geometry or an alternative grazing-

incidence geometry with an incident angle of 0.5° was applied to record the data. Powder X-ray 

diffraction (PXRD) patterns were recorded on a STOE powder diffractometer equipped with a 

position-sensitive Mythen-1K detector in transmission geometry. 

Estimation of 2θ positions of (00l) reflections for the series of layered hybrid perovskite 

(PEA)2(MA)m-1(PbmI3m+1): the previously reported layered perovskite compounds (PEA)2(MA)m-

1(PbmI3m+1) with m = 1, 2, 3 exhibit (00l) reflections, where the position of the peaks shifts to lower 

angles with increasing m (m = number of [PbI6] octahedra sheets). The interplanar distance for the 

(002) crystallographic planes in the LPK structures is increased by approximately 6.1 Å for each 

additional octahedra layer, which coincides with the distance of two axial iodine atoms along the c-

axis.[51] Following this trend and by employing the Bragg equation: 

2d sin θ = n λ          (8.1)  
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with d as the interplanar distance, θ as the diffraction angle, n as the order of diffraction and λ as the 

wavelength of the X-rays, we estimated the 2θ positions of (00l) peaks for the layered perovskite 

series with m = 4, 5, 6, 7, 8 in order to identify the low-angle reflections in the experimental XRD 

pattern of the treated MAPI film (see Table 8.1). 

Estimation of the crystallite size of the layered perovskite phase: the crystallite size of the layered 

perovskite BAMAPI or PEAMAPI formed on top of a MAPI film can be estimated by analyzing the 

peak breadth of the corresponding X-ray diffraction peaks according the Scherrer equation:[52]  

𝐷 =
𝐾

𝐵 cos
          (8.2)  

where D is the average crystallite size, K being the Scherrer shape factor,  the wavelength of the 

used X-ray, B the full-width-half-maximum (FWHM) value of the peak in radians and  the Bragg 

angle of the (hkl) reflection. We fit the most intense (00l) reflection of PEAMAPI with a Gaussian 

function to extract the FWHM of the peak. Since the (002) peak of BAMAPI is a superposition of 

two phases with the [PbI6] octahedra layer thickness being m = 3 and m = 4, two Gaussians were 

fitted and a crystal size value for each phase was estimated. The instrument broadening of the peak 

was taken into account by fitting a Gaussian function to the (001) reflection of a highly crystalline 

methylammonium lead bromide sample. The measured peak broadening was considered as a 

convolution of two Gaussian functions correlating to the instrument contribution and the layered 

perovskite sample, respectively. The corrected FWHM Bsample can be calculated as following:[53]  

𝐵𝑠𝑎𝑚𝑝𝑙𝑒 = √𝐵𝑡𝑜𝑡𝑎𝑙
2 − 𝐵𝑖𝑛𝑠𝑡𝑟𝑢𝑚𝑒𝑛𝑡

2       (8.3)  

where Binstrument was found to be 0.067°. A commonly used shape factor of K = 0.9 was employed and 

the determined crystallite sizes for different concentrations of the casting solution is summarized in 

Table 8.2. 

 

GIWAXS measurements were conducted under vacuum using a Ganesha 300XL SAXS-WAXS 

system with a Cu Kα source. The samples were carefully aligned with a diode before each 

measurement and the scattering signal was recorded with a Pilatus 300k detector (Dectris). The 

incident angle was I = 0.4° and the sample–detector distance (SDD) was around 110 mm. The SDD 

was calibrated for each measurement individually using XRD data. The software GIXSGUI was used 

for data treatment and evaluation using the various corrections offered by the software. 
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Details on the calculation of the PEAMAPI layer thickness via GIWAXS analysis: the azimuthal 

integration was performed around q = 1 Å-1 and around q = 2.2 Å-1 which correspond to the Debye-

Scherrer rings arising from the (002)/(110) and (213)/(114)/(310)/(222) lattice plane reflections of 

the MAPI crystals. For simplicity they are denoted as (002) and (222), respectively (cf. Figure 2c). 

In order to quantify the amount of oriented crystals for the (002) peak, the data were fit with a 

Gaussian function. The 2σ range of the Gaussian was defined as the oriented part as it accounts for 

95% of the area underneath the peak. The 2σ range is marked in Figure 2c by dashed lines which 

divide the graph into three areas. The intensities of these individual areas were integrated and 

normalized by the total intensity, thus determining the ratio of randomly and preferentially oriented 

crystallites for the MAPI and the MAPI/PEAMAPI samples, respectively. We find that around 33% 

of the crystals in the MAPI sample have a (002) orientation (c-axis perpendicular to the substrate), 

whereas about 40% of the crystallites are oriented in the MAPI/PEAMAPI sample. Integration over 

the (222) peak showed the typical profile of a Gaussian function, thus justifying the use of this 

function for amending the inaccessible area around the azimuthal angle χ = 0°. The ratios of the 

integrated intensities agree very well for the (002) and (222) peaks with only slight deviations, which 

serve as an estimate for the uncertainty of the presented analysis. Assuming that the increase of 

oriented crystals is due to the formation of highly oriented PEAMAPI, (7.00  0.47)% of the initial 

MAPI film is estimated to be converted into the LPK. 

X-ray photoelectron spectroscopy (XPS) data were collected at a PHI Versaprobe II system at a 

pressure of 10-9 mbar. Monochromatic Al Kα radiation (1486.6 eV) and a hemispherical analyzer 

with a pass energy of 11.75 eV for C 1s and 23.5 eV for the valence region were used. The binding 

energies were calibrated at the Fermi-edge (0 eV) and Ag 3d5/2 (368.26 eV) on a sputtered silver 

reference. All spectra show photoemission in normal direction. The samples were exposed to ambient 

illumination during the measurement. The work function was determined by analyzing the secondary 

electron edge under He I (21.22 eV) illumination and an applied bias voltage of 3 V. A pass energy 

of 5.85 eV was used for the detector. 

Scanning electron microscopy (SEM) images were recorded with a JEOL JSM-6500F scanning 

electron microscope, operated at an acceleration voltage of 5 keV. 

UV-Vis absorption spectra were recorded using a Perkin Elmer Lambda 1050 spectrophotometer 

equipped with a 150 mm integrating sphere. Air (100% transmittance) and a Spectralon white 

standard (100% reflectance) were used for the instrument baseline. 

Time-resolved photoluminescence (PL) spectroscopy was performed with a Fluotime 300 

spectrofluorometer (Picoquant). The excitation wavelength was fixed at 510 nm and TCSPC data 

were collected by monitoring the PL emission maximum around 770 nm. 
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Device Characterization 

Current-Voltage (J-V) characteristics of the perovskite solar cells were measured in air at ambient 

conditions using a Newport OrielSol 2A solar simulator with a Keithley 2401 source meter. The 

devices were illuminated through a shadow mask, yielding an active area of 0.083 cm2. The J-V 

curves were recorded under standard AM 1.5G solar illumination from a 450 W xenon lamp, 

calibrated to a light intensity of 100 mW cm-2 with a Fraunhofer ISE certified silicon diode (KG5-

filtered). A spectral mismatch factor of 1.002 was estimated following a previously established 

protocol.[54] Prior to each measurement, the cell was pre-biased at 2 V for 10 s under illumination. 

The input bias voltage was scanned from 2 to 0 V (referred to as reverse scan) in 0.05 V steps with 

a scan rate of 0.5 V s-1 and then from 0 to 2 V (forward scan) at the same scan rate. Devices fabricated 

according to the optimized protocol for the MAPI film deposition were pre-biased at 1.5 V for 10 s 

under illumination and the voltage was scanned in reverse (1.5 to 0 V) and forward direction (0 to 

1.5 V) in 0.01 V steps with a scan rate of 0.1 V s-1. For the maximum power aging measurements, 

the voltage was held constant at the maximum power voltage and the PCE was monitored over a 

period of 20 s. 

 

Stability Test 

Humidity studies on the perovskite solar cells were conducted in a shaded glass container at a 

constant relative humidity level of 75% that was maintained by a saturated aqueous sodium chloride 

solution at the bottom of the jar. The solar cell samples were placed onto a stage inside the sealed 

container being exposed to the moist air and without having direct contact with the solution. The 

humidity chamber was only opened when the samples were taken out for XRD and J-V analysis. As 

MAPI undergoes a reversible hydration process upon exposure to a highly humid environment,[46] 

the hydrated cells were stored under ambient conditions at ~25% RH for 4 h to let the perovskite 

material stabilize in air at lower humidity prior to the J-V measurements.  
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9 Conclusion and outlook 

 

9.1 Conclusion 

In conclusion, this thesis has been dedicated to the elucidation of the moisture stability of hybrid 

perovskite solar cells: from understanding the factors which influence the degradation pathways, to 

developing novel 2D/3D perovskite structures which improve the device lifetime upon exposure to 

humidity. 

We began our journey by exploring the moisture stability of the most common hybrid perovskite: 

methylammonium lead iodide. In situ measurements reveal that two structures of perovskite hydrates 

are formed as degradation products upon exposure to high humidity levels – first a monohydrate 

CH3NH3PbI3 · H2O, followed by a dihydrate (CH3NH3)4PbI6 · 2 H2O. Our results indicate that the 

initial decrease in photovoltaic performance upon exposure to humid air is related to the formation 

of the monohydrate around the perovskite grains, which inhibits charge transport across the 

photoabsorber layer. However, since we found that this reaction is reversible, the perovskite crystal 

structure and even the device performance can be recovered upon drying under low humidity 

conditions. This reversible hydration phenomenon needs to be considered when designing the testing 

conditions for moisture stability studies to ensure the collection of meaningful, representative data. 

Furthermore, we revealed the influence of precursor stoichiometry on the degradation pathways that 

occur in methylammonium lead iodide under humid conditions. In situ XRD measurements confirm 

that a slight PbI2 excess increases the moisture resistance of the perovskite film compared to 

stoichiometric precursor solutions, which we assigned to either a more favorable crystal termination 

or a protective PbI2 layer around the perovskite grains. Surprisingly, an MAI excess first triggers a 

humidity-mediated recrystallization process within the perovskite film which improves the crystal 

quality and consequently the device efficiency, before deterioration commences. Our results 

highlight the importance of perovskite precursor stoichiometry not only regarding initial solar cell 

performance but also the moisture-induced degradation process. 

We proceeded our studies with the state-of-the-art multiple-cation mixed-halide perovskites, which 

are expected to be more moisture stable than methylammonium lead iodide. First, we investigated 

the different roles of cesium and rubidium additives in the enhancement of device performance. By 

combining three complementary techniques – ToF, TRMC and TSC – we demonstrated that Cs 

improves overall PCE by reducing the density of deep trap states. Moreover, our results indicated 
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that Rb slightly increases charge carrier mobility and reduces J-V hysteresis, likely through surface 

passivation. Quadruple cation perovskites with the nominal composition 

Rb0.05Cs0.05[(FA0.83MA0.17)]0.9Pb(I0.83Br0.17)3 benefit from the effect of both cation additives and show 

the highest stabilized power output. Clarifying the different effects of Cs and Rb on the perovskite’s 

crystal structure and electronic properties offers valuable guidance for the choice of perovskite 

composition in high-performance solar cells. 

In addition, we discovered that the Rb-additive has a strong impact on the moisture stability of the 

multiple-cation mixed halide perovskite. Due to its small ionic radius, Rb+ cations are not (fully) 

incorporated into the perovskite structure. Instead, the Rb-additive leads to the formation of side 

phases, such as RbPb(I1-xBrx)3 during film crystallization under inert conditions. Upon exposure to 

humid air, Rb-containing perovskites show rapid phase segregation under the formation of 

transparent, bromide-rich RbPb2I4Br crystallites, as verified by EDX analysis. A similar, but much 

slower process is observed for Cs-containing films, indicating that Cs is more suitable to stabilize 

the perovskite structure. Showing that the phase segregation in Rb-containing devices is 

accompanied by a decrease in device efficiency underlines the need for careful humidity control 

during the fabrication and operation of Rb-based perovskite solar cells. 

To improve the resistance of hybrid perovskites against humidity, 2D perovskites incorporating 

bulky, hydrophobic organic cations have been explored. The optoelectronic properties of 2D 

perovskites strongly depend on the layer thickness of the lead halide interlayers, and the highly 

anisotropic crystal structure directs the charge transport within the material. Consequently, 

controlling both phase purity and crystallite orientation in 2D perovskite thin films is key for any 

potential device applications. We established a new protocol employing rationally chosen solvent 

additives and appropriate annealing protocols to obtain 2D perovskite films with improved phase 

purity and exclusively horizontal crystal orientation. This opens the doorway for the implementation 

of 2D perovskites into devices where lateral charge transport is desired. 

However, in terms of photovoltaic performance, solar cells employing pure 2D perovskite thin films 

still lag behind their traditional 3D perovskite counterparts. In order to profit from the efficient charge 

separation and transport properties of the 3D perovskite, as well as from the enhanced moisture 

robustness of the 2D perovskite, we introduced the concept of a 2D/3D hybrid perovskite bilayer 

structure for the first time. A thin 2D perovskite top layer was sufficient to act as an effective moisture 

barrier and improved the interface between the perovskite and the hole transporting layer in solar 

cells, resulting in higher Voc. The versatility of our 2D/3D hybrid perovskite concept is reflected in 

the numerous following reports using similar approaches to simultaneously guarantee high device 

performance and long-term stability.[1-7]  
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9.2 Outlook 

Based on our successful establishment of a 2D/3D hybrid perovskite structure employing the 

traditional methylammonium lead iodide as the 3D perovskite material, it would be a logical next 

step to transfer this concept of dimensionality/interface engineering to multiple-cation mixed-halide 

perovskites to increase device efficiency. However, with regard to potential phase segregation in Rb-

containing perovskites upon exposure to humidity, the choice of cation additives in the 3D perovskite 

layer needs to be revised carefully. Moreover, the degradation mechanisms in these multi-component 

2D/3D structures require in-depth investigations and the large number of possible interactions 

between the different ions may create challenges for the data interpretation. 

Since the moisture sensitivity of organic-inorganic perovskites mainly originates from the nature of 

the small organic cation methylammonium, fully inorganic perovskites such as CsPbI3 have been 

explored as photoabsorbers.[8-10] Besides, inorganic compounds crystallizing in a so-called double 

perovskite structure such as Cs2AgBiBr6 have recently emerged as lead-free, environmentally stable 

alternatives to the traditional hybrid perovskite materials.[11-14] Although the device efficiency of 

these families of semiconductors is still far below the performance of their organic-inorganic 

analogues, a great potential of fully inorganic photoabsorbers has been predicted.[15-18] In particular, 

the interest for double perovskites is steadily growing, since two major factors impeding the 

ecological and commercial viability of perovskite-based photovoltaics are addressed: the toxicity of 

lead and the environmental stability of the perovskite layer. 

In addition to improvement of the intrinsic stability of the perovskite material, the development of 

cost-effective encapsulation techniques for perovskite solar cells is vital to increase their long-term 

durability. The device lifetime needs to be significantly prolonged before perovskite-based 

photovoltaics can become industrially relevant and competitive to well-established technologies. 

Encouragingly, different sealing processes for both rigid and flexible substrates have already been 

reported in the past few years, extending the device lifetime up to several months.[19-23] Further 

progress of the encapsulation process in combination with achievements in the fundamental 

perovskite material design promise improvements in the long-term stability of perovskite solar cells 

under operational conditions. More extensive outdoor field testing, i.e. under simultaneous exposure 

to light, heat, air and moisture are imperative to assess the economic viability of this new photovoltaic 

technology. 
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