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zusammenfassung

Die vorliegende Arbeit ist eine Untersuchung des Ein�usses von Anzahl und
Länge von Armen auf die Dynamik von symmetrischen und asymmetrischen
Polymersternen. Das Hauptaugenmerk liegt dabei auf der Beweglichkeit des
Verzweigungspunktes der jeweiligen Sterne. Die vorwiegend verwendeten Meth-
oden sind die computergestützte Molekulardynamik Simulation (MD) und die
Neutronen Spin Echo Spektroskopie (NSE). In den Experimenten wurden sym-
metrische 3- und 4-Arm Polymer (Polyethylen) Sterne mit zwei verschiede-
nen Längen verwendet. Des weiteren wurden asymmetrische Sterne unter-
schiedlicher Länge mit einem kurzen unverschlauften (unentangled) Seiten-
arm untersucht. In den Simulationen wurde ein einfaches Kugel - Feder Mod-
ell unter Ausschluss von Kettenüberkreuzung verwendet um 3-, 4- und 5-Arm
symmetrische sowie asymmetrische Sterne mit variabler Länge des kurzen
Seitenarms zu modellieren. Indem die jeweiligen Armenden an Ihrer Position
festgehalten wurden konnten Sterne simuliert werden, die die Eigenschaften
von sehr langen Ketten teilen. Zum Kombination der beiden Methoden und
zur Untersuchung der Dynamik wurden der dynamische Strukturfaktor der
zentral markierten Polymere aus Simulation und Experiment verglichen, dies
wurde getan um die Abhängigkeit der Dynamik von der Anzahl der Sternarme
zu untersuchen. Um diese Abhängigkeit zu bestätigen und um den Beitrag
zur Reibung des kurzen Seitenarms bei asymmetrischen Sternen zu ermit-
teln wurde die jeweilige mittlere quadratische Verschiebung (mean square
displacement MSD) der Verzweigungspunte analysiert. Des weiteren wurden
Rheologie Messungen durchgeführt um die Dynamik in einem größeren Zeit-
fenster zu untersuchen. Der Beitrag der dynamischen Röhrenerweiterung (dy-
namic tube dilation DTD) zur Beweglichkeit des Verzweigungspunktes wurde
erforscht und eine starke Abhängigkeit von der Anzahl der Sternarme fest-
gestellt die durch das aktuelle Modell der DTD nicht vollständig zu erklären ist.
Simulationen und experimentelle Messungen zeigten übereinstimmend dass
mit einer größeren Anzahl an Seitenarmen in den Sternen die Mobilität des
Verzweigungspunktes zunehmend eingeschränkt wird.
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abstract

The present work is an investigation of the in�uence of number of arms and
length on the dynamics in symmetric and asymmetric polymer stars. The main
focus lies on the dynamics of the branch point of each star. The main tech-
niques used are molecular dynamics (MD) simulations and neutron spin echo
spectroscopy (NSE). The experimentally studied stars were 3- and 4-arm poly-
mer (polyethylene) symmetric stars of two di�erent lengths and asymmetric
stars with one short unentangled side arm. The simulations performed used
a simple bead-spring model without chain crossing to model 3- 4- and 5-arm
symmetric and asymmetric stars with variable short side arm lengths. By �x-
ing the arm ends of the symmetric stars in place the equivalent of very large
star was modeled. The dynamic structure factors of the speci�cally center
labeled polymer stars from simulations and experiments were compared to
elucidate the functionality dependence of the dynamics of star polymers. A
mean square displacement analysis was performed to con�rm the supposed
functionality dependence and the side arm friction contribution. Rheological
measurements were conducted to obtain a wide time scale analysis of the poly-
mers. The contribution of dynamic tube dilation (DTD) to the mobility of the
star branch points was investigated and a strong functionality dependence
was determined, which was not explained by the current DTD model. The
branch point mobility showed a strong increase in con�nement for higher
arm counts which was found with good agreement between simulations and
experiments.
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1
I N T R O D U C T I O N

Plastic is one of the most ubiquitous materials that we interact with every
day. It is to varying degree part of almost every item we use, from the chairs
we sit on, to the clothing we wear, to the cars we drive. All these materials
have di�erent characteristics, but one thing they have in common is that they
are composed of polymers. The individual properties of the materials are not
only de�ned by the type of material but also by the geometric structure of
the polymer chains. One of the biggest factors is the length of these chains.
However, changing the structure from a linear to a branched one with addi-
tional arms in e.g. a star-like structure can result in even bigger changes to
the material properties. To understand the dynamics of these materials on a
molecular level depending on their geometries is important not only from the
standpoint of basic research but also because most manufacturing methods of
plastic are performed with the materials in their molten state, where they un-
dergo the di�erent states of rheological behavior, such as Rouse-like behavior
and rubbery and viscous behavior.

Polymer dynamics have been studied for decades [1, 2, 3, 4] and the tube
model has become the standard approach for describing linear chains. These
chains experience topological constraints by the mutual entanglements, as
the chains are physically not able to cross each other. This con�nement can
be described by an e�ective tube for a given chain which makes movement
only possible along the contour length or primitive path of the chain in a one-
dimensional repational movement.

Introducing a change in geometry by adding even a single side-branch
changes their rheological behavior drastically [5, 6, 7] as any branch com-
pletely suppresses reptational movement along the tube. This strongly slows
down the dynamics of the polymer chain. In the case of stars with multiple
arms, this e�ect is even stronger and theories as for linear chains are no longer
applicable. One of the reasons for this is that stars cannot reptate as opposed
to their linear counterparts. Several aspects of these structures have been in-
vestigated in the past [8, 9, 10], like the viscosity increase of stars going to
high numbers of arms [11] or the in�uence on particle size, shape and radius
of gyration of di�erent topologies [12]. These studies bring us closer to under-
standing the behavior of branched systems.

One aspect in the studies of branched polymer systems is to understand and
quantify the behavior of the branch point (BP) itself on a molecular length
scale as it should show the largest reaction to the di�erent geometries, as
the characteristics might not always correlate to changes in the macroscopic
behavior. This use of several complementary techniques to study the same
materials helps to form a better understanding.

This work combines numerical simulations with several experimental tech-
niques. It is possible to perform molecular dynamics simulations of polymers
that would be highly di�cult to synthesize. The simulations also give the op-

1



2 introduction

portunity to create direct visualization of the branch point movement as seen
in Figure 1, which allow the direct observation of changes to the BP mobility.

Figure 1: Green lines are typical mean paths of a 5-arm-star for �xed arm ends. The
cloud of points represent the positions of the branch points at di�erent sim-
ulation times.

Neutron spin echo (NSE) spectroscopy, combined with a labeling technique
unique to neutron scattering, makes it possible to extract the motion of the
polymer branch point experimentally and compare it to the calculations from
the simulation and theoretical model. Rheological measurements add a macro-
scopic overview and a much wider range of timescales. Polyethylene and its
parent polymer polybutadiene are polymers with simple chemical structure
where branching can be introduced and are therefore used in the di�erent
experiments.

To describe the relaxation process and BP movement of branched polymers
several models expanding the standard tube model are used. In branched the
relaxation of the individual arms have to happen hierarchically, meaning that
�rst the outer parts of the polymer have to relaxe before the inner parts have
the possibility to. Other models are the branch point hopping [13, 14, 15]
where short side arms act as additional �rciton for asymmetric systems. To de-
scribe the movement of symmetric polymer star systems the model of Vilgis
and Boué for polymer networks was adopted and modi�ed [16]. This was by
including the in�uenced of constraint-release mechanisms such as dynamic
tube dilution[17, 18] into the model.

The work contains a systematic study for symmetric stars investigating the
in�uence of functionality, meaning the number of arms and the arm length
on the mobility of the branch point as well as the range of the in�uence of
these branch points on individual star arms. Parts of the shown results have
been already published but the author of this work Stefan Holler et al. [19].
Reprinted with permission from:

Stefan Holler, Angel J Moreno, Michaela Zamponi, Petra Bacová, Lutz Willner,
Hermis Iatrou, Peter Falus, and Dieter Richter. The role of the functionality
in the branch point motion in symmetric star polymers: A combined study by
simulations and neutron spin echo. Macromolecules, 51(1):242–253, 2018. URL:
https://doi.org/10.1021/acs.macromol.7b01579,doi:10.
1021/acs.macromol.7b01579. Copyright 2018 American Chemical
Society.

https://doi.org/10.1021/acs.macromol.7b01579
http://dx.doi.org/10.1021/acs.macromol.7b01579
http://dx.doi.org/10.1021/acs.macromol.7b01579
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Furthermore a investigation on the in�uence of very short unentangled side
chains on the dynamics of asymmetric stars has been performed, also inves-
tigating the dependence on backbone length. The methods include neutron
spin echo spectroscopy, small angle neutron scattering, rheology and several
molecular dynamics simulations of the complex systems.

Chapter 2 introduces the established models needed to describe polymers
from their static characteristics to Rouse theory and dynamic tube dilution.
Chapter 3 describes the di�erent experimental methods and the basics of neu-
tron scattering and rheology as well as the polymer synthesis and sample
preparation used in this work. The details of the bead-spring simulation are
described in Chapter 4 including a description of all simulated systems. The
results of NSE and MD simulations for the symmetric stars are discussed in
Chapter 5. Chapter 6 deals with the results of the studies on the asymmetric
stars. All the most important conclusions are summarized in Chapter 7.





2
P O LY M E R T H E O R Y

Polymers are de�ned as chains that are constructed out of a large number
of the same individual part or monomer. They can have many di�erent geo-
metrical forms, from simple linear chains of various lengths to complex stars,
H-polymers, combs or trees, as well as connected networks. These materials
are commonly known as plastics and are usually de�ned by their macroscopic
properties, such as hardness, strength, density and �exibility. Their properties
are dependent on their chemical composition as well as on their static and dy-
namic microscopic behavior. This in�uences their production and how they
can be processed. In the following section the standard theoretical models to
describe the static and dynamic behavior for linear and branched polymers
are introduced.

2.1 static polymer properties

The static characteristics of polymers can be described by using a statistical
approach. The simplest model to describe a linear chain is the "random walk",
where the chain consists of N segments of length l that are positioned at ~Rn
with n = 1, ...,N. In the classical random walk model there is no restriction
on the angle between neighboring segments. The end-to-end distance of a
chain ~RE = ~RN − ~R1 is the distance between the end segments. This is equal
to the sum of all connecting vectors ~rn between the neighboring segments.
The median chain distance of the random walk is 〈~RE〉 =

∑N
n=1~rn = 0. The

mean quadratic chain end-to-end distance is used to describe the chain size

R2E = 〈~R2E〉 =
N∑
i,j=1

〈~ri ·~rj〉 =
N∑
i=1

〈~r2i 〉+
N∑
i 6=j
〈~ri ·~rj〉. (2.1)

Without any correlations between di�erent segments this becomes

R2E = Nl2 (2.2)

for the simplest possible chain model. As for more realistic polymers there
is a dependence on the bond vector between neighboring segments, which is
dependent on the chemical composition of the chain and its monomers. Hence,
the proportionality constant C∞ is introduced, which increases the end-to-
end distance, which is a measure for the sti�ness of a polymer. This factor can
be included in the e�ective temperature dependent bond-length as l2 = C∞l20,
which the chemical bond-length l0 (l0 = 1.54 Å for carbon-carbon bond) and
the chain length becomes R2E = Nl2 withN the number of segments of length
l. Another value that is commonly used to describe the magnitude of polymer
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6 polymer theory

chains is the radius of gyration, Rg. It is the mean square displacement of the
chain segment from the center of mass of the chain.

R2g = 〈~R2g〉 =
1

N

N∑
n=1

〈(~Rn − ~Rcm)2〉, (2.3)

where ~Rcm = 1
N

∑N
n=1

~Rn is the center of mass position. The segment to
segment mean square distance for a random walk is for large N

〈(~Rn − ~Rm)2〉 = |n−m|l2, (2.4)

which results in the following relationship for the radius of gyration

R2g =
1

6
Nl2 =

1

6
R2E. (2.5)

This however does not include assumptions like the exclusion of chain
crossing but still o�ers a very good estimate for chains even without excluded
volume.

A di�erent way to calculate the segment length is by using the relation
between radius of gyration Rg and the mean-square radius of gyration <
R2 >0 /M [20], with <R20>

M =
6R2g
m0·N and R2g = N·l2

6 . For this one needs

the <R
2
0>

M from literature and it has slightly di�erent results for the segment
length. Which one of the two di�erent methods is the better description is still
being debated.

2.1.1 Static structure factor and random phase approximation

The theoretical description of (small angle) neutron scattering (SANS) experi-
ments from polymer melts consisting of labelled chains (co-polymers) can be
achieved using the static structure factor S(q) which is de�ned as

S(~q) =
1

N

N∑
n,m=1

〈ei~q(~Rn−~Rm)〉, (2.6)

with ~q = ~k−~k ′ the scattering vector between the wavevector, before and
after the scattering, it gives information about the structure in the investigated
system. Using the information about the Gaussian chain statistics, the static
structure factor can be calculated as

S(~q) =
1

N

N∑
n,m=1

e〈−
1
2(~q(~Rn−~Rm))

2〉

=
1

N

N∑
n,m=1

e〈−
1
6~q
2(~Rn−~Rm)2〉

=
1

N

N∑
n,m=1

e−
1
6q
2l2|n−m| = S(q).
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The structure factor contains all inter-particle correlations and reveals in-
formation about the structure. Going from this discrete representation to con-
tinuous variables the Debye-function is obtained

S(q) =
1

N

∫N
0

dn

∫N
0

dme−
1
6q
2l2|n−m| = ND(q2R2g). (2.7)

If N is large the Debye function is

D(u) =
2

u2
(e−u − 1+ u) (2.8)

with u = q2R2g and in a good approximation the static structure factor can
be written as

S(q) =
N

q2R2g + 1
. (2.9)

The Random Phase Approximation (RPA) [21, 22] is a way to theoretically
calculate the static structure factor for partly labeled polymer chains and is a
useful tool to interpret the scattering results of polymer networks [23, 24] and
melts [25, 26]. A polymer melt consisting of two di�erent monomer types (A
and B) represents the labeled (protonated) and unlabeled (deuterated) polymer
sections in the NSE and SANS experiments. The correlation functions without
any interactions are given as

SAB0 (q) = ncs
AB
0 (q) =

〈∑
l∈A

∑
l ′∈B

exp (i~q · (~rl −~rl ′))

〉
0

, (2.10)

with nc the total number of chains and sXX0 the structure factor of a single
chain. The total structure factor for a melt consistent of two component chains,
as in the neutron scattering experiments, is given as

Stot(q) =
SAA0 SBB0 − (SAB0 )2

SAA0 + SBB0 + 2SAB0
. (2.11)

The method by Read [27] for arbitrary geometries is used to calculate the
static structure factor for the symmetric and asymmetric stars. The exact form
of the correlators SXX0 in eq. 2.11, as well as the origin of the form of the
equation, are given in more detail in the Appendix A.1.
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2.2 dynamics of linear polymers

The main focus of this work is the dynamics of polymers, which makes it
important to understand some of the basic models that are used to describe
the dynamic behavior of the investigated systems.

2.2.1 Rouse Theory

In the Rouse model [1, 28] a polymer chain is described by using beads that
are connected with springs in a heat bath with a spring constant of k = 3kBT

l2
,

where kB is the Boltzmann constant, T is the temperature and l is the segment
length. The equations of motion of the beads are described by the Langevin
equations for the n-th bead at position ~Rn(t)

ζ0
∂~Rn(t)

∂t
= k

∂2~Rn(t)

∂n2
+ ~gn(t). (2.12)

The boundary conditions on the ends of the chain are ∂~Rn∂n = 0 which rep-
resents a non-existing tension on the chain ends. The three forces are the fric-
tion, with ζ0 the segment friction, the Brownian force ~gn(t) that represents
random collisions in the heat bath and �nally, the spring force in the contin-
uous limit k∂

2~Rn(t)
∂n2

. Equation 2.12 can be solved by Fourier transformation
into normal coordinates (~R(t)→ ~X(p, t)) that results in

ζp
∂

∂t
~X(p, t) = −

2π2p2

N
~X(p, t) + ~g(p, t), (2.13)

where ζp = 2Nζ0 and ~g(p, t) is given by

〈gα(pq, t1)gβ(p2, t2)〉 = 2ζpkbTδp1p2δαβ. (2.14)

The index p represents the mode number. The solutions with the mode
relaxation time τp ≈ 1

p2
· ζN2l2
3π2kBT

are

~X(p, t) =
1

ζp

∫t
−∞ dt exp

(
−
t− t ′

τp

)
~f(p, t ′). (2.15)

The longest mode-relaxation time is τR = τ1, which is called the Rouse
time and is also de�ned as τR = N2

π2W
=

R2E
Wl4π2

with W = 3kBT
ζl2

as the ele-
mental Rouse rate. OftenWl4 is also called the Rouse rate.

For the chain dynamics, the Rouse normal-mode time correlation function
can be calculated as

〈~X(p, t)~X(p, 0)〉 =
R2E
6π2p2

exp
(
−
p2

τR
t

)
. (2.16)
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For p = 0 the center of mass di�usion is obtained

〈~X(p, t)~X(p, 0)〉 = δαβ
2kbT

Nζ
t = δαβ2DRt, (2.17)

with DR the Rouse di�usion constant DR = kBT
Nζ = Wl4

3R2E
. This is valid for

each component z,y, z [1].
Additionally to the static structure factor in equation 2.6, the dynamic struc-

ture factor is also de�ned with the spacial correlation function, with the addi-
tion of the temporal change that is taken into account. The dynamic structure
factor is

S(q, t) =
1

N

∑
m,n

〈exp
[
i~q
(
~Rm(t) − ~Rn(0)

)]
〉, (2.18)

and once again, using the Gaussian chain statistic approximation it can be
written as

S(q, t) =
1

N

∑
m,n

exp
[
−
q2

6
〈
(
~Rm(t) − ~Rn(0)

)
〉
]

. (2.19)

By transforming the normal modes back, one obtains the position vectors

~Rn(t) = ~X0 + 2

∞∑
p=1

~Xp cos
(pπn
N

)
. (2.20)

The dynamic structure factor using this relation for the position vectors
and the correlation for the normal modes (eq. 2.16,2.17) can be written as

S(q, t) =
1

N
· exp(−q2DRt) ·

∑
n,m

exp
(
−
1

6
|n−m|q2l2

)

· exp

[
−
2Nl2q2

3π2

N∑
p=1

1

p2

·
(

cos
(pπn
N

)
cos
(pπm
N

)(
1− exp

(
−
t

τp

)))]
. (2.21)

For a pure center of mass di�usion of the chain the dynamic structure is
given by the �rst term in this equation as

S(q, t) = N exp
(
−DRq

2t
)
. (2.22)

The Rouse model describes the dynamics of short unentangled chains quite
well. As long as the polymers are shorter than the critical molecular weight,
which is called the entanglement weight Me, the model is valid, however it
fails for longer chains [29] [30]. Nevertheless, the model is valid for longer
chains up to the entanglement time τe which will be discussed in the next
section. The main reason it fails in these circumstances is that it neglects the
topological interactions between di�erent chains.
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2.2.2 Entangled Dynamics

For polymers with a molecular weight larger than the entanglement massMe,
the standard Rouse model is not applicable anymore. The reason for that is
that topological interactions with other polymer chains start to dominate the
relaxation behavior of the single chain. These entanglements between chains
have a huge in�uence on the mechanical properties of the material. Entangle-
ments act as temporary "connections" in systems when e.g. strain is applied to
the material. Entangled systems show viscoelastic behavior and are an inter-
mediate state between liquid and solid material. To account for the e�ects of
these entanglements Doi and Edwards [1] created their "tube model" as an ex-
pansion of the reptation model by De Gennes [21]. It is a mean �eld approach
to simplify the many body problem to one of only a single chain. The entan-
glements are replaced by con�ning topological constraints, these con�ne the
polymer chain to a certain region, referred to as the tube, as it is the only path
that the chain can move along. Movement in a perpendicular direction to the
tube is restricted by the entanglements to a length scale that is called the tube
diameter d. It also represents the region in space between entanglements that
consists of Ne segments with d =

√
Ne · l. A polymer consisting of Ne seg-

ments (segments ≡ monomers) has a relaxation time τe, which corresponds
to the Rouse time (τR) of a chain with RE = d, which is refered to as the
entanglement time during which it still follows the standard Rouse dynamics.
It can be calculated using

τe =
τRN

2
e

N2
=

ζl2

3π2kBT
N2e =

d4

π2Wl4
. (2.23)

It is su�cient to introduce one additional length scale to describe the dy-
namic for entangled linear chains. The chain relaxation can be described using
the following four di�erent time regimes.

1. Rouse regime: t < τe

At times below the entanglement time, the chain dynamics can be de-
scribed by the pure Rouse model, as chain monomers do not feel any
restrictions by the surrounding chains.

2. Local reptation (Rouse in tube): τe < t < τR

In the second time regime, starting at times larger than the entangle-
ment time, the chain has explored the lateral expansion of the tube and
can no longer move in those directions. This leads to a one dimensional
restriction of the Rouse motion along the contour of the tube (primitive
path), which is called local reptation.

3. Reptation: τR < t < τd
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For t > τR internal modes have relaxed. The dominate process taking
place at these times is reptation out of the tube. This process can be
described by the tube survival probability ϕ(t) which describes the av-
erage fraction of unrelaxed material or fraction of the original tube as
the chain moves from its original position, which will also be discussed
in Section 5.5.

The reptation or disentanglement time τd can be calculated as

τd =
ζl4N3

π2kBTd2
= 3ZτR =

3R6E
π2Wl4d2

, (2.24)

where Wl4 is again the Rouse rate and RE is the end-to-end chain dis-
tance.

4. Di�usion: t > τd

For times larger than the reptation time τd, the chain has left the orig-
inal tube and can proceed its di�usion unhindered, which leads to the
mechanical properties of a simple �uid at these time scales.

The mean square displacement 〈r2(t)〉 (see eq. 4.4) of a linear chain segment
follows these four scaling regimes [1, 2, 31]

〈r2〉 ∼



t
1
2 for t < τe Rouse

t
1
4 for τe < t < τR Rouse in tube

t
1
2 for τR < t < τd reptation

t for τd < t di�usion

(2.25)

where τe,τR and τd are the entanglement, Rouse and disentanglement (re-
laxation) times, respectively, following the descriptions in [4, 32, 33]. A schematic
representation of the segmental mean square displacement of a linear chain
is shown in Figure 2 with the four di�erent time regimes.

2.2.3 Additional Relaxation Processes

Experimentally measured viscosity of linear chains (scaling with molecular
weight) has shown that there are additional relaxation processes needed to
correctly describe the results, as discussed by Doi and Masao as well as Milner
and McLeish [34, 35]. The two main mechanisms are constraint release (CR)
and contour length �uctuations (CLF). These relaxation processes become im-
portant for star polymers as these cannot reptate.
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Figure 2: Schematic representation of the mean square displacement for linear chain
vs time. Schematic description of the theoretical prediction with the four
time zones of Rouse (t1/2), Rouse in tube (t1/4), reptation (t1/2) and dif-
fustion (t1)

Contour length �uctuation [36] is a correction to the assumption of �xed
position and length of the primitive path. It accounts for the longitudinal �uc-
tuations of the end segments of the chain. They a�ect the chain dynamics
only at the time scales smaller than τR and do not include any center of mass
motions. End segments of polymer chains can �uctuate the same way as all
other segments, additionally they can also withdraw into the tube. The part
of the tube that is now unoccupied by the chain is no longer relevant and the
chain end can move into any other arbitrary direction which means that the
initial length of the tube gets shorter over time. This process is dependent on
the molecular weight of the chain as for shorter chains the relative fraction
of chain ends is higher and therefore the CLF e�ect is stronger provided the
chain is long enough to still be entangled.

Constraint release [31] is a mechanism that describes over time changes
in entangled systems. For a given chain the neighboring chains that repre-
sent the �xed obstacles move over time as well. They are henceforth repre-
sented as appearing and disappearing entanglements. Formerly present ob-
stacles to lateral chain movement can disappear over time. The changes to
these constraints can be caused by �uctuations of the chain ends of neighbor-
ing polymers or by reptations of linear chains which lead to the resolution
of individual constraints. This enables the tube to move in the direction of
an entanglement constraint that disappeared due to the e�ects listed above in
a Rouse like motion of the tube itself. This of course changes the original tube.
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2.3 dynamics of branched polymers

The presence of branch points and additional arms drastically changes the
relaxation processes of polymers compared to linear chains. The commonly
accepted tube model for linear chains is changed in branched polymers. The
introduction of a single branch heavily slows down the overall relaxation pro-
cess and leads to a more complex rheological spectra [5, 6, 7]. The rheologi-
cal measurements of branched polymers show, for example, that stars have a
broader spectrum of relaxation times compared to linear chain systems due
to their hierarchical relaxation, amongst other things. To account for the ad-
ditional complexity of such geometries additional relaxation processes have
to be included in the standard tube model as polymers with sidearms cannot
reptate. These relaxations happen hierarchically, which means that the pro-
cess goes from the outer segments of the polymer towards the inner parts
that are closer to the branch point where the mobility is lower, as the arms
have to retract to the BP before it can move. This process of arm relaxation is
further discussed in the section on tube survival probability (see Section 2.3.6).
Some other processes to describe the branched systems are explained in the
following subsections.

2.3.1 Arm retraction and branch point motion

The segments in highly entangled branched polymers relax hierarchically, in
this process the outer arms ends relax �rst, progressing to the inner parts
close to the branch points. As the BP is connected to several arms there is
no single tube in which it can reptate. The process of arm retraction is expo-
nentially slow which gives a wide range of relaxation times along the arm.
For asymmetric stars the BP can move once the short arm has relaxed. There
the shortest arm in a T-shaped 3-arm star relaxes �rst and acts as a friction
increasing "fat bead". The BP can move along the tube of the remaining two
long arms that form the backbone, but are slowed by the additional friction.
This process is also sometimes called di�usive hopping. One can describe the
branch point motion of such a chain by assuming a random walk

〈r2〉 = |L|d, (2.26)

with 〈r2〉 the mean square displacement (MSD), L the length of the primi-
tive path that is probed by the BP during its movement andd the tube diameter.
With the assumption of a Gaussian distribution for the di�usion length L, one
can write the MSD as

〈r2〉 = d
√
2〈L2〉/π. (2.27)

The di�usivityD can be related to 〈L2〉 because the BP motion is assumed
to be di�usive and therefore 〈L2〉 = 2Dt, with the factor two is due to the
di�usion that only happens in one dimension. With these equations it is pos-
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sible to create a direct way to obtain the di�usivity of the one-dimensional
curviliear motion of the BP using

D =
π

4d2

(
〈r2〉
t1/2

)2
. (2.28)

The factor within the brackets represents the "plateau value". The mean
square displacement of the BP has a time exponent of 1/2 so once the MSD is
divided by t1/2 it becomes �at (slope zero), which is when the polymer expe-
riences reptational motion along the tube. The application of this will be seen
in Section 6.1.2. For symmetric stars this is not applicable because there is no
single arm that can act as friction bead as all arms should relax on the same
time scale.

2.3.2 Dynamic Tube Dilution

In dynamic tube dilution (DTD) [17, 18] the tube diameter d of a polymer sys-
tem changes as a parameter over time. It is a relaxation process, during which
the individual chain segments explore a tube that is expanding progressively.
DTD uses the same picture of entangled systems where the tube or primitive
path of the chain is formed by obstacles in space. These obstacles are the other
chains in the melt that cannot be crossed. As already mentioned, relaxation
happens hierarchically beginning from the outer segments. This disparity in
dynamics has the consequence that the inner segments of the stars are no
longer hindered by the entanglements with the outer parts that have already
relaxed at much earlier times. This leads to constraint release and is the origin
of DTD. At times longer than the relaxation time of the outer arm segments
the inner parts no longer feel the entanglements of the outer segments that
have already relaxed. The relaxed material acts as a quasi-solvent, which leads
to a slow dilution of the e�ectively entangled part of the network that can be
modeled using a time dependent increase ("dilution") of the tube. The fraction
of unrelaxed material in the system determines the dilated tube diameter and
is proportional to the tube survival parameter (see Section 5.5).

2.3.3 Early Tube Dilation

Early tube dilation (ETD) [37] is a �uctuation e�ect that happens after time τe
and is a relaxation process in branched systems that is similar to the dynamic
tube dilation in its result. It is important to note, that it is not the normal widen-
ing of the tube that is mainly caused by constraint release and arm retractions.
It is better described as �uctuations that do not produce direct constraint re-
lease. This e�ect was studied using simulations where the normal constraint
release processes (reptation, arm retraction and DTD) were suppressed by �x-
ing the chain ends in place, making the ETD e�ect much more pronounced in
comparison. The main cause of the ETD is currently assumed to be the equi-
libration of tensions along the constrained chains. This and the ability of the
branch point to perform small immersions into the tubes of the di�erent arms,
which are also called "diving modes" [38] that were seen in simulations. The
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relevancy of this e�ect at higher functionality is not yet known and was part
if this investigation.

2.3.4 Dynamical Models

In order to describe the in the dynamic structure factor observed BP motion
of symmetric star polymers the model of Vilgis and Boué [16] is used. This
theory is a model to characterize the Brownian motion of chain segments
and cross-links in networks. At �rst glance the model seems to be not appli-
cable to describe the relaxation and mobility of polymer melts as the chains
in it are permanently connected, but as it was shown [39] for a highly en-
tangled 3-arm star, it can describe the BP con�nement. As will be shown in
Section 5.6.4, it can be adjusted to include DTD in order to describe stars with
arms of only a few entanglements. The theory is based on the Rouse model
to describe the free ideal polymer chain. Chain cross-links are introduced to
create the network and are described as localized springs with a harmonic
potential. This potential is dependent on the radius of gyration of the mesh
as well as the monomeric friction parameter. In the model the segments stay
localized within that radius of gyration, which leads to a localization plateau
in the dynamic structure factor that was observed in earlier NSE spectroscopy
measurements on entangled polyethylene stars [39].

Another model that describes dynamics in branched systems and accounts
for dependence on functionality, is the model by Warner [40]. It describes
the di�usional dynamics of speci�c positions in polymer chains with a Rouse
approximation. It can be used to describe the movement of free chain ends,
cross-links in rubbers or gels and branch points of star polymers. He starts
from the de Gennes [41] di�usion law

〈(
~R(s, t) − ~R(s, t ′)

)2〉
= D|t− t ′|1/2, (2.29)

that describes the mean square displacement of a speci�c part (~R(s, t)) of
the polymer chain dependent on the monomer di�usion constantD and a time
dependency t1/2 that is the consequence of the connectivity of the chains
(see also Section 2.2.2). In his calculations he found that the time dependence
was kept, but the actual di�usion constant was αD instead of just D. With a
general dependence on the functionality of the cross-link α was found to be

α = 2/f, (2.30)

which means thatα = 2/1 = 2 for open chain ends,α = 2/2 = 1 for linear
chain segments and α = 2/4 = 1/2 for cross-links of four ’arms’. This model
can be used to describe the dependence of the Rouse rate on the functionality
with the same 2/f dependence[39, 42] e.g. in neutron spin echo spectroscopy.
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2.3.5 Dynamic modulus and stress relaxation

The deformation and �ow of polymer liquids can be described by the results
of rheological measurements. The two main properties measured are the stor-
age modulus and the loss modulus of a material described by G(ω), which is
the dynamic modulus. A more detailed description of (experimental) rheology
can be found in Section 3.4.

It is also possible to describe the dynamic modulus and the stress relaxation
process of symmetric and asymmetric polymer stars theoretically. Milner and
McLeish [13] presented their theory for the symmetric star relaxation process
which was extended by Frischknecht et al. [15] to apply for asymmetric 3-arm
stars with a short side-arm that are investigated in this work.

The theory by Milner and McLeish incorporates higher Rouse modes on
arm retraction and "dynamic-dilution" scaling of the entanglement length.
This section will follow the key components of the calculations for the stress
relaxation model that leads to the description of the dynamic modulus G(ω).

To calculate the dynamic modulus the general relaxation time τ(s) is needed
with the relative arm coordinate s where s = 0 at the arm end and 1 at the
branch point. This time has a relatively complicated form, as it has to incor-
porate two di�erent time scales. The �rst time scale is the early regime τearly.
The second time regime for later times is the "activated" retraction time τlate

which is the time an arm takes to retract the distance s in its e�ective potential
Ueff. The combined relaxation time including the crossover from early-time
regime to the activated one is described as

τ(s) =
τearly(s)e

Ueff(s)

1+ τearly(s)eUeff(s)/τlate(s)
. (2.31)

It is dependent on three di�erent parts, the e�ective potential Ueff(s), the
activated retraction time τlate(s) and the early relaxation time τearly(s). Dur-
ing the early time regime the displacement is still very close to the free end, so
that the e�ective potential is still irrelevant to the calculations. The free arm
end moves still without in�uence of any branch point and is mainly de�ned
by the Rouse modes, therefore the early relaxation time is given as

τearly(s) =
225π3

256
τes

4Z4a , (2.32)

which is dependent on the entanglement time τe, the number of entangle-
ments per arm Za. During the later time regime τlate the polymer chain is
a�ected by the e�ective potential Ueff(s). This "activated" time scale poten-
tial is given by

Ueff(s) =
15Za

4

1− (1− s)1+α [1+ (1+α) s]

(1+α) (2+α)
, (2.33)
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with the dilution exponent α (either 1 or 4/3). with this the late relaxation
time τlate is obtained.

τlate(s) ≈ τeZ
3/2
a

(
2π5

15

)1/2
×

× exp [Ueff(s)]

s

[
(1− s)2α +

((
4Za
15

)
(1+α)

)2α/(α+1)
Γ
(
1
α+1

)−2]1/2 , (2.34)

With Γ the Euler function. Finally the dynamic modulusG(ω) for symmet-
ric star polymers can be written in frequency space as

G∗(ω) = G0(1+α)

∫1
0

ds(1− s)α
(

−iωτ(s)

1− iωτ(s)

)
, (2.35)

where G0 is the plateau modulus.

For asymmetric stars one has to consider that after the short arm has re-
laxed the asymmetric star can reptate along the remaining tube of the back-
bone. Following the theory of Frischknecht et al.[15] the complex modulusG∗
was then calculated as the sum of contributions from arm retractions, repta-
tion and early time Rouse modes.

This calculation contains the same parameters as for the symmetric star
with the addition of the length of the short arm and the parameter p which
is the dimensionless constant, that is thought to be of the order of unity [15].
This "hopping" parameter is the fraction of the tube diameter, with values
found between 1/60 and 1, that the branch point of an asymmetric star moves
after a time τ∗s, which is the short arm relaxation time. To calculate the e�ec-
tive reptation time τd, the e�ective di�usion constant Deff is needed with
1/Deff = 1/Db + 1/Dc, where Dc is the Rouse di�usion coe�cient

Dc =
kbT

2Nζ
(2.36)

with kb the Boltzmann constant, N number of monomers in the long arm
and ζ the monomeric friction parameter. The e�ective curvilinear di�usion
coe�cient Db of the BP along the backbone is then

Db =
(pdh)

2

2τ∗s
(2.37)

where dh is either the undiluted or diluted tube diameter and τ∗s the short
arm relaxation time.

2.3.6 Tube survival probability from theory

The tube survival probability is the amount of material that remains unre-
laxed in a polymer, depending on the time. This factor is used in the dynamic
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tube dilution (DTD) and can be obtained from simulation by calculating the
tangent correlation function for individual polymer segments [37, 43, 44] or
using the same theory as Milner et al. [13], described in Section 2.3.5.

Using the relaxation time τ(s), which is dependent on τearly(s) and τlate,
one can calculate the local survival probability δ(t, s) [2] at any position of
the arm by

δ(t, s) ∼ exp
(
−

t

τ(s)

)
. (2.38)

Integrating δ(t, s) over the full arm length the tube survival probability is
calculated as

ϕ(t) =

∫1
0

exp(−t/τ(s))ds. (2.39)

The result for calculated tube survival probability of symmetric stars with
Za = 5 and 13 are shown in Figure 24.
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E X P E R I M E N T S

3.1 neutron scattering

Neutron Scattering is an established technique to investigate materials and
their behavior. Neutrons are used due to their di�erent scattering characteris-
tics compared to electrons or photons. Light photons or x-rays interact with
the electrons of the target material and usually only have a very shallow pen-
etration depth that is dependent on and proportional to the electron density
of said material. Neutrons are electrically neutral, and have a very high pene-
tration depth compared to charged particles like electrons, thus neutrons are
invaluable to investigate bulk material. They scatter on the atomic nucleus and
the scattering cross section of neutrons varies strongly between isotopes of
the same material, which is exploited in the experiments. The kinetic energy of
neutrons of the common experimental wavelengths of 5− 20Å is in the same
energy region as the excitation energy of molecular and atomic movement.
This allows the measurement of structural information using measurements
of angular distribution of the scattered neutrons, as well as the measurement
of dynamics using the energy transfer, which lead to velocity changes. The
velocity~v of a neutron with massmn are used to determine the energy E and
the momentum ~p:

E =
1

2
mnv

2 =
 h2k2

2mn
(3.1)

~p = mn~v =  h~k (3.2)

where k = 2π/λ is the wavenumber with the wavelength of the neutron λ.
The energy and momentum transfer during the scattering process are

∆E =  hω =
 h2

2mn
(k2 − k ′2) (3.3)

∆~p =  h~q =  h(~k−~k ′) (3.4)

where the scattering vector~q = ~k−~k ′ is the di�erence between the wavevec-
tor before and after the scattering process.

The neutron-nucleus interaction can be described by a Fermi pseudo poten-
tial [45]

V(~r) =
2π h2

mn
bδ(~r), (3.5)

with~r as the position of the neutron relative to the nucleus,mn the neutron
mass, b the bound scattering length and δ(~r) the delta-function.

19
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Table 1: Coherent neutron scattering lengths and coherent and incoherent scattering
cross section for Hydrogen, Deuterium and Carbon.

Isotope bcoh(10−15m) σcoh(bn) σinc(bn)

1H −3.74 1.76 80.26
2H 6.67 5.59 2.05
12C 6.65 5.55 0.001

This scattering length varies widely and unsystematically from element to
element and even for di�erent isotopes of the same element. Some examples
are shown in Table 1 [45]. The scattering length between deuterons and pro-
tons is quite di�erent (the minus sign represents a phase shift of 180 degree
for the scattered wave), which makes it possible to have high contrast between
chemically labeled (protonated) and unlabeled (deuterated) material that still
exhibits the same molecular characteristics.

Table 1 lists di�erent scattering lengths, bcoh and the two di�erent scat-
tering cross sections σcoh and σinc as we di�erentiate between coherent and
incoherent scattering. The coherent scattering length is the mean value of the
isotope composition and nucleus-spin orientation. This means that the neu-
trons can be scattered coherently leading to interference and the scattering
cross section σcoh = 4π|b

2
| which is proportional to the mean scattering

length.
The incoherent scattering on the other hand describes a random distribu-

tion of isotope composition and spin orientation with completely uncorrelated
scattering and no interference by other nuclei. The scattering cross section
σinc = 4π

(
|b|2 − |b|2

)
for incoherent scattering is proportional to the mean

square deviation of the scattering length. Instead of writing the scattering
length for singular atoms one can write the general scattering length density
as

ρ =

∑
i bi
V

, (3.6)

with V the averaged molecular unit volume. For the investigation of sys-
tems containing di�erent materials, the scattering contrast is of interest, which
is de�ned as ∆ρ = ρ1 − ρ2. This is the di�erence between the scattering
length densities of the two materials.

The incoming neutron beam can be described as a plane wave that has
the amplitude of exp(i~k~r(t)), where the time dependence E/ ht is contained
within~r(t). Scattering this wave on N atoms that each have the potential Vi
leads to sphere shaped waves of amplitude bi. The waves overlay each other
with a resulting amplitude at the detector of

A(~Q, t) =
∑
i

bi exp(−i~Q~ri(t)). (3.7)

The detector cannot directly measure the amplitude but only the scattering
intensity. The information about the phase of the wave is lost. From the mea-



3.1 neutron scattering 21

sured intensity the doubled di�erential scattering cross section [46] is gath-
ered:

d2σ

dΩdω
=
k ′

k

1

π

∫
dt e−iωt

N∑
m,n

〈bmbn〉
〈
e−i~q~rn(0)e−i~q~rn(t)

〉

=
k ′

k

1

2π

∫
dt e−iωt

{ N∑
m,n=1

bmbn

〈
e−i~q~rn(0)e−i~q~rm(t)

〉

+

N∑
m,n=1

σinc,n

4π

〈
e−i~q~rn(0)e−i~q~rn(t)

〉}

=:
d2σcoh

dΩdω
+
d2σinc

dΩdω

=:
k ′

k

{
Nb2cohScoh(~q,ω) +N

σinc

4π
Sinc(~q,ω)

}
, (3.8)

with k and k ′ as the absolute values of the incoming and scattered vector.

The coherent and incoherent dynamic structure factors are de�ned as
Scoh(~q,ω) = k

k ′
1

Nb
2
d2σcoh
dΩdω and Sinc(~q,ω) = k

k ′
4π
Nσ

d2σinc
dΩdω . The coherent

dynamic structure factor gives the possibility to �nd a particle at time t at
position ~r while any other particle was at position ~r = 0 at time t = 0. The
incoherent structure factor on the other hand is the self correlation function
giving the probability for the same particle that was at position~r = 0 at time
t = 0 to be at place ~r at time t. Calculating the Fourier transformation of
S(~q,ω) gives the intermediate scattering function S(~q, t)

Scoh(~q, t) =
1

N

∑
m,n

〈exp(i~q~rm(t)) · exp(−i~q~rn(0))〉 (3.9)

and

Sinc(~q, t) =
1

N

∑
n

〈exp(i~q~rn(t)) · exp(−i~q~rn(0))〉 , (3.10)

where <> contributes the mean over the ensemble. The coherent dynamic
structure factor is the sum of all position vectors of the sample particles and
their development over time. The incoherent structure factor is the self corre-
lation over time of a single particle.
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3.2 small angle neutron scattering - sans

Small angle neutron scattering (SANS) is a powerful and versatile technique
for the investigation of structures in soft matter materials. The investigation
range of SANS spans sizes of 10Å up to 103 Å. The q-range of SANS ranges
from 1Å−1 to 10−4 Å−1 with a typical wavelength of 5Å. Small angle scatter-
ing is a technique that allows only a structural analysis, without any energy
resolution. In this work the focus lies on the dynamic of polymers but as the
structure and exact labeling of the polymers is very important to interpret the
results, the additional information from the static structure factor

S(q) =

∫∞
∞ S(q,ω)dω, (3.11)

is important too. The scattering intensity Iscat that is measured by SANS is
related to the structure of the sample and is compared to the incident intensity
Iinci at the measured angle θ at detector distance L. The detector area isAdet =

∆ΩL2. With this and the transmission T of the sample, the ratio between the
two intensities is de�ned as the scattering cross section

dσ

dΩ
=

# of particles scattered into solid angleΩ per time
# of incoming particles per time and area , (3.12)

so that

dσ

dΩ
=
Iscat

Iinci

L2

Adet

1

T
(3.13)

with T the transmission. This can be normalized for the sample volume in
the beam V , to get the macroscopic scattering cross section

dΣ

dΩ
=
1

V

dσ

dΩ
, (3.14)

and the coherent scattering function can also be written as

dΣ

dΩ
(q) = ∆ρ2VscatφS(q), (3.15)

with φ the volume fraction of the observed objects and ∆ρ2 the quadratic
scattering contrast between two di�erent materials and the volume of the
scatter-er Vscat, whereas the incoherent structure factor is just a constant in
small angle scattering.

A schematic representation of a SANS experiment is shown in Figure 3. The
experiment consists of a wavelength selector that �lters out all neutrons that
are not of the wavelength λwith a 10− 20% distribution. A collimator system
is positiond between the selector and the sample. By changing the selector-
sample and/or sample-detector distance the investigated scattering angle, the
q-values are changed as q = (4π/λ) sin(θ/2) for quasi-elastic scattering. Not-
scattered neutrons (direct beam) are caught in a beam stop at the center of



3.2 small angle neutron scattering - sans 23

Figure 3: Schematic representation of experimental SANS setup. The neutrons �y into
the wavelength selector, through the collimator (two apertures), scatter at
the sample and hit the detector with the direct beam being blocked by a
beamstop. The distances is varied to measure di�erent q regimes. Picture
taken from [47].

the detector and are used to measure the transmission. The position sensitive
detector counts the scattered neutrons.

SANS measurements need to be corrected for instrument resolution and
background. The �rst correction is the absolute calibration and detector sensi-
tivity correction, which is done by measuring the scattering from a incoherent
scatterer like plexiglass which has no q-dependence. The measured intensity
will then be normalized with the known calibration factor of the reference.
The background signal of an empty sample holder, which was a quartz glass
sandwich cell as used for the samples have to be corrected for. The measure-
ments in this work were done on the custom-made polymer stars using the
parent polybutadiene polymer so the measurements could be carried out at
room temperature as polybutadiene is liquid at 295K.

The experiments were performed at the KWS-2 instrument at Heinz Maier-
Leibnitz Zentrum in Garching, with a wavelength of λ = 5Å and a beam area
of 5× 5 mm2. The samples were measured at detector distances 8m, 4m and
1m to gather data for a q-range from 0.002 up to 0.8Å−1. The sample thick-
ness was between 0.97 and 1.01 mm with roughly 80mg of polymer liquid. A
far more detailed description on the experiment and the used machine can be
found in Ref. [48] about the KWS-2.

The measured structure factors were compared with the theoretical calcu-
lations for the static structure factor using the De Gennes’ "Random Phase
Approximation" (RPA)[21, 22] (see Section 2.1.1).
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3.3 neutron spin echo spectroscopy - nse

The basic principle of a neutron spin echo spectrometer (NSE) is the measure-
ment of the energy di�erence of a neutron before and after a scattering event.
By utilizing the neutron spin as a kind of stopwatch to analyze the di�erence
in time that the neutron takes to cover a certain distance before and after it
was scattered. Neutrons are not electrically charged, but they have a magnetic
moment which leads to a precession of the neutron spin when the neutron is
moving in a magnetic �eld.

Figure 4: Schematic setup of a neutron spin echo spectrometer. Picture taken from
[49].

The basic setup of a NSE spectrometer is shown in Figure 4. More details
can be found in the literature e.g. the lecture notes of Mezei [50]. The neu-
trons are created in a neutron source, usually a nuclear �ssion reactor with
broad wavelength (velocity) distribution. Using a velocity selector the distri-
bution is limited to a speci�c wavelength band with a dispersion of usually
10− 15%. A polariser (e.g. magnetic multilayer mirror) is used to �lter only
the neutrons that have a spin in the direction of �ight. To change the spin
direction to a perpendicular orientation to the magnetic �eld (�rst coil) a π/2
�ipper is used. After the spin �ip the neutrons enter the magnetic �eld of the
precession coil and start their Larmor precession. Depending on the speed of
the neutrons they spend varying amounts of time in the magnetic �eld and
end up with di�erent spin orientations. The precession angle is φ = γ/v · J
with γ the gyromagnetic ratio of the neutrons, v the speed, and J =

∫
s |
~B|ds

the �eld integral along the �ight path of the neutrons. With a π �ipper the
spin is turned by 180 degrees before they hit the sample. If they are scattered
in-elastically, their velocity and energy change. Both energy and momentum
are unchanged in the case of elastic scattering events. A second precession coil
is positioned behind the sample position and the neutrons travel through it.
The magnetic �eld is identical to the �rst one. The neutrons would be turned
back to their initial polarization before they entered the �rst coil but as they
inelastically interacted with the sample and changed their velocity they are
not exactly in the same orientation. A second π/2 �ipper is used as a mean
to project the spin onto the x-z plane. The analyzer transmits the scattered
neutron with a probability that is proportional to the cosine of the e�ective
precision angle ∆φ. In the case of elastic scattering all spins are polarized
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back in translational direction and the signal at the detector is maximized. In
the case of inelastic scattering with the sample, the velocity of the neutron is
changed and φbefore 6= φafter. This means that the second π/2 �ipper does
not turn the spin back in the movement direction and the signal at the detec-
tor is not maximized anymore. The transmission function of the analyzer is
given by cos(∆φ) with ∆φ = φafter −φbefore. The probability that a neutron
is scattered with the energy transfer ω and momentum transfer q is propor-
tional to the scattering function S(q,ω). The measured signal from the NSE
is the "intermediate-scattering-function"

S(q, t) =
∫
S(q,ω) cos

γ m2n
2πh2

Jλ3︸ ︷︷ ︸
t

ω

dω. (3.16)

The product of "neutron-constant" γ m2
n

2πh2
, neutron wavelength cubed and

the �eld-integral, gives the Fourier time. By changing the magnetic �eld in the
main coil and/or the incoming wavelength it is possible to measure S(q, t) at
di�erent times. To determine the form of the echo (�nal polarization is iden-
tical to initial), an additional coil is needed. It changes the magnetic �eld pro-
vided by one of the main coil slightly. The resulting oscillation of the neutron
beam polarization is the spin echo group.

A perfect NSE experiment would be able to directly measure the ratio S(q,t)
S(q)

from the echo amplitude I(q, t) and the average intensity I(q, 0). Unfortu-
nately, in real experiments there is always a loss of polarization and therefore
the maximum polarization of Iup − Idown is determined by measuring the max.
intensity Iup when all �ippers are turned o� and the min. signal Idown when
only the π-�ipper is active. With this information it is possible to correct the
gathered signal as follows

S(q, t)
S(q)

=
I(q, t)

(Iup − Idown)/2
. (3.17)

In the last step, the signal is corrected for the resolution of the instrument
by measuring the purely elastic scattering on grafoil (hexagonal crystalline
carbon) for which S(q, t)/S(q) is ideally supposed to be 1. The actual mea-
sured function is the resolution function of the instrument. The correction for
it is a simple division

S(q, t)
S(q)corrected

=
(S(q, t)/S(q))sample

(S(q, t)/S(q))elast
, (3.18)

where "elast" refers to the fully elastic scattering grafoil. One also has to
correct for the background scattering of the sample cuvette and the unlabeled
material. The background correction follows the formula

S(q, t)
S(q)

=
2 · (I(q, t)sample − TratioI(q, t)bg)

(Iup − Idown)sample − Tratio(Iup − Idown)bg
, (3.19)
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with Tratio = Tsample/Tbg as the transmission ratio of sample and back-
ground. For the measurements of labeled polymers the volume fraction of ac-
tual protonated label has to be corrected for. The protonated volume fraction
varies between the lowest 4% for the large 4-arm star and 14% for the Asym
S-1.0 star and the background was measured with a fully deuterated sample
and has to be corrected for. It is possible to measure movement on a very
small spatial scale and a time scale of 0.1− 500 ns for these types of polymer
samples, and with special labeling schemes it is even possible to analyze the
movement of only speci�c parts of complex polymer structures.

The neutron scattering length of deuterons and protons is very di�erent,
which leads to a contrast between the labeled part and the deuterated matrix.
Speci�cally labeled stars with a small amount (compared to the deuterated
matrix) of label at the branch point were used, thus, the coherent dynamic
structure factor was measured. It shows the internal segment-segment pair
correlations of the labeled section. The measurements were performed at the
IN15 at the Institut Laue-Langevin, at a temperature of 509K and wavelengths
of 10Å and 14Å. With these settings, times up to 500 ns for four di�erent
q values in the range from 0.05 to 0.115Å−1 were measured. The data was
corrected for the instrumental resolution and the background which was mea-
sured with the fully deuterated, linear polyethylene chains.
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3.4 rheology

Rheology is the science of deformation and �ow and involves the measure-
ment of controlled (viscometric) �ow. This section follows partially the Chap-
ter on Rheology by Sunthar [51] in rheology of Complex Fluids. In rheological
experiments a force is applied to a material and the resulting velocity or shear
rate is measured (or the force is measured as a result of shear rate). It also mea-
sures the e�ects of deformation of the material and its properties. One of these
properties is the viscosity η, which is a material’s �uidity, that is dependent
on the material’s relaxation process. Environmental parameters like temper-
ature, pressure and shear rate, as well as the time for how long the shearing
force is applied, all have in�uence on the viscosity of a �uid. Shear stress σ is
generated by a force that is applied to a material with σ = F/A. F is the force
and A is the cross sectional area of the material parallel to the applied force
vector. The e�ective shear viscosity η is de�ned as

η =
σ

γ̇
(3.20)

where γ̇ is the shear rate. The viscosity is measured in Pa s (Pascal second).
Other than viscosity the elasticity of materials is a major focus of rheology as
complex �uids exhibit elastic behavior. The elasticity of a material is de�ned
similar to Hook’s law and the modulus of elasticity is given as

G =
σ

γ
(3.21)

where γ is the angle of shearing deformation or the strain. G is measured
in Pa and is known as the shear modulus for fully elastic materials. The value
for G in solids is usually very high (> 1010Pa) compared to polymer melts
that are in the range of 10− 106 Pa.

In viscous materials the storage and loss modulus are measured instead as
they relate to the energy that is stored/lost during deformation that can be
recovered. A typical measurement for polymer melts is the response to an
oscillatory force and the results for a linear and star polymer melt are shown
in Figure 5. The two di�erent pro�les are the G ′ for the storage modulus
and G ′′ for the loss modulus of the complex modulus G∗, which are the real
and imaginary component respectively. G ′ represents the elastic modulus of
a polymer and G ′′ measures the viscous response. The �gure can be divided
into four di�erent, distinctive zones. For low frequenciesω the polymers are
in the viscous regime where they show Maxwell behavior G ′ ≈ Gλ2ω2 and
G ′′ ≈ ηω. Here λ is the characteristic relaxation time. The second zone is the
transition into �ow as G ′ and G ′′ cross over, with

λ =
G ′

G ′′ω
(3.22)

as the characteristic relaxation time. Changes in molecular mass of the in-
vestigated polymer mainly change the response in the �rst two zones, with
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an increase in mass (and therefore chain length) stretching the curve to lower
frequencies and bringing the curve higher and with a longer �at part. The
third zone is the plateau area. The value of G ′ in this plateau is called the
plateau modulus G0N. This plateau region is only present in entangled (rel-
atively long) polymer melts. At higher frequencies the polymers reach the
Rouse regime that is universal for all types of polymers of the same material.
The slope is only di�erent for di�erent materials.

The big di�erence between stars and linear chains is easily visible in Fig-
ure 5 with the stars showing a much wider plateau region with a "double"
plateau. They also typically have their crossover to viscous behavior at much
lower frequencies than similar sized linear chains as the exponential scaling
of the relaxation process widens the frequency regimes.

Figure 5: ComparisonG ′ andG ′′ modulus of a polymer liquid of monodispers lienar
and star polyisoprene melts. Figure from [2].

Rheology gives the possibility to observe the molecular polymer dynam-
ics on a wide dynamic range. It greatly extends the accessible time region of
the other experiments like NSE that can only really observe the time region
around the Rouse and entangled regime. Therefore, in order to observe the
full relative spectrum, the dynamic modulus G was measured to obtain the
storage modulusG ′ and loss modulusG ′′. This is achieved by applying a con-
stant strain γ to a polymer liquid and changing the plate oscillation frequency
ω while measuring the dynamic response. The experiments were performed
on an ARES rheometer, using 8 mm diameter circular plates with a sample
thickness of 1 mm. The strain was kept at a constant γ = 1% and the fre-
quency swept between ω = 0.1 and 100 rad

s . The same measurement was
performed at several di�erent temperatures between −85◦C and +25◦C in
∆T steps of 10◦C. The dynamic responses at di�erent temperatures is com-
bined by the method of time-temperature superposition to generate a single
master-curve (TA Orchestrator software). This curve can go to much higher
and lower frequencies than experimentally possible. The principle is that dif-
ferent temperature responses can be shifted to one reference temperature TR
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by changing their frequency position. The shift factor is generated using the
Williams-Landel-Ferry [52] (WLF) model

log10 aT =
−C1 · (T − TR)
C2 + (T − TR)

, (3.23)

where aT is the shift factor and C1 and C2 are positive constants depend-
ing on the material and TR. With this method it is even possible to shift the
curves to temperatures that were not directly measured or are impossible to
measure in this speci�c setup e.g. short chain polybutadiene (PB) at room tem-
perature as these are too �uid.

As polyethylene (PE) is semi-crystalline at room temperature its parent
polymer polybutadiene was chosen for the rheological measurements.
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3.5 polymer synthesis and sample preparation

To perform the di�erent experiments four di�erent center-labeled star poly-
mers were prepared. For easier visualization they are schematically repre-
sented in Figure 6. One asymmetric and three symmetric polyethylene (PE)
stars were investigated by NSE spectroscopy. The parent polybutadiene (PB)
polymers were used for SANS and rheological measurements. Additionally
there were four polymers reused for this thesis from previous published [39]
and unpublished works. These older samples are the large 3-arm star and three
asymmetric stars with long backbone and short side arm. These stars were pre-
pared in a similar fashion to those synthesized in this work.

The star arms are mostly diblock copolymers, that consist of a long deuter-
ated and a short protonated PE part. They are covalently connected to a cen-
ter branch point via the protonated part such that the branch point is labeled.
The label size per chain was about 1 kg/mol, corresponding to about 1/2 of
the entanglement mass of roughly 2 kg/mol of PE and kept the same as in pre-
vious works by Zamponi et al. [39] for consistency. The label was only put on
three arms of the 4-arm stars to keep the same label size in all systems, which
means that the fourth arm was fully deuterated. Both the 3- and the 4-arm
stars were synthesized to have a "small" and a "large" version. The arm length
of the small stars were produced with a overall molecular weight of 9 kg/mol
corresponding to ∼ 5 entanglements. This size was chosen to be the exact
match for the MD simulation polymers with 125 beads per arm. The larger
stars have an arm length of approximately 26 kg/mol which corresponds to
13 entanglements.

There are four di�erent asymmetric stars. They can be considered as a back-
bone formed by the two large arms with a third short side arm. The small
asymmetric star (Asym S-1.0) has a backbone of 18 kg/mol with a side arm of
2 kg/mol which corresponds to 1 entanglement mass and is half protonated
and half deuterated. One of the longer asymmetric stars has the same short
side arm con�guration, only the backbone is much longer at about 56 kg/mol.
The two other asymmetric stars (Asym L-(0.5) and Asym L-(0.3)) have even
shorter side arms with 0.9 and 0.66 kg/mol and backbones of 44 and 46 kg/-
mol, respectively. In the case of these two stars the complete short sidearm
is protonated and they were synthesized by Deanna Pickel, ORNL. The exact
size of each star can be found in Table 2.

For all stars the center protonated label is comparatively small as the major-
ity of the material is deuterated PE (or PB) which creates the invisible matrix
for the NSE experiments. This speci�c labeling scheme makes it possible to di-
rectly access the motion of the branch point. All new samples and some of the
reused stars were synthesized by Dr. Lutz Willner from Forschungszentrum
Jülich GmbH and Hermis Iatrou from Department of Chemistry, University of
Athens.

The synthesis process consists of three major steps. In the �rst step the
single arms were created by living anionic polymerization of 1, 3-butadiene.
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Figure 6: Schematic representation of newly synthesized polymers. The dueterated
outer arms are blue and the protonated label is red. A: 4-arm large, B: Asym
S-1.0, C: 3-arm small, C: 4-arm small.

In the second step these living arms were linked to methyltrichlorosilane
(CH3SiCl3) and tetrachlorosilane (SiCl4), respectively, serving as the centers
for the 3- and 4-arm PB stars. The third step is the saturation of the polybutadi-
ene with deuterium using a palladium catalyst which leads to the �nal PE star.
The �nal product is well-de�ned and temperature stable. The polymerization
of the parent PB-arm and the reaction of the linking process were performed
in high vacuum using custom-made glass reactors. Details of the techniques
(e.g. puri�cation steps, used solvents and initiator preparation) and the used
equipment can be found in reference [53]. The following is only a short de-
scription of the synthesis process.

The labeled PB-d6-PB-h6 arms (long and short) were synthesized using se-
quential addition of 1, 3-butadiene-d6 and 1, 3 butadiene-h6 respectively. The
PB-d6-PB-h6 arms with 9 (8− 1) kg/mol were prepared in a larger volume as
they are used for both small symmetric stars and the small asymmetric star. As
the large 3-arm star was synthesized for a previous experiment [39] the long
arm with 26 (25− 1)kg/mol was separately prepared. For the small symmetric
4-arm star a single 9 kg/mol fully deuterated arm was prepared, whereas for
the large 4-arm star the same 25 kg/mol deuterated block as in the diblocks
was used. The used initiator was t-butyllithium in all cases and benzene was
utilized as a solvent. This leads to a polybutadiene with 93% 1, 4- and 7% 1, 2
addition (random). The characterization of the arms was performed before the
linking reaction.

The living arms were reacted in methyltrichlorosilane with excess arms
and kept for one month to complete the funtionalization of the 3-arm stars.
Methanol was used to terminate the residual arms and removed in a fraction-
ation process.

As the 4-arm stars and asymmetric 3-arm stars each consist of two di�erent
types of arms the process was slightly more complicated. For the 4-arm star,
the unlabeled arm (fully deuterated) was attached to tetrachlorosilane �rst. A
large excess of SiCl4 was used in this process to avoid multiple substitution
and the excess tetrachlorosilane was removed by distillation. The d-PB-SiCl3,
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Table 2: Molecular Weight Characteristics of 3-, 4-arm symmetric and asymmetric
polybutadiene star polymers and linear polybutadiene chains.

sym stars M
a)
w Mw Mw Mw

Mw

Mn

star PB-d6 PB-d6-PB-h6 single PB-d6 star
[kg/mol] [kg/mol] [kg/mol] [kg/mol]

3-arm small 27.3 8.2 9.2 - 1.02

4-arm small 35.7 8.2 9.2 8.8 1.02

3-arm large* 74.3 25.8 26.85 - 1.04

4-arm large 105 24.8 25.8 24.8 1.04

asym star short d6+h6
Asym S-1.0 20.6 8.2 9.2 0.95+ 1.2 1.02

Asym L-1.0* 55.7 27.6 28.6 1.0+ 1.0 1.03

Asym L-0.5* 44.9 20.0 22.0 h0.9 -
Asym L-0.3* 46.2 21.8 23.1 h0.66 -
linear chains
Lin 6.3 12.0 12.0 - - -
Lin 21 40.0 40.0 - - -
Lin 27.4 52.0 52.0 - - -
a) Weight average molecular weight determined by multi detector size

exclusion chromatography (SEC).
* samples from previous experiments

which was the product of this step, was dissolved in dry benzene and reacted
with the PB-d6-PB-h6 labeled living arms, again with an excess of arms. They
were also kept for one month and the surplus arms were removed by fraction-
ation after termination. The asymmetric 3-arm star was constructed similarly.

The last step of the synthesis was the saturation of the polybutadiene stars
with deuterium. This was performed using palladium on barium sulfate as a
catalyst. The saturation was performed in cyclohexane at 90◦C and 45 bars
pressure while stirring. The catalyst was �ltered out after the reaction and the
�nal PE stars were obtained by precipitation in a acetone-methanol mixture.

The characterization by size exclusion chromatography (SEC) was perfomed
on the PB stars, arms and blocks. A combined multi angle laser light scatter-
ing detector with an refractive index detector was used for absolute molecu-
lar weight determination. The chromatograms of the individual arms indicate
almost monodisperse molecular weight distribution, as they show single nar-
row peaks. SEC data indicate that the stars are essentially free of single arms.
The 4-arm stars contain small amounts of higher molecular weight impurities:
large 4-arm star at 3− 4% amount and the small 4-arm star at 1− 2% amount.
An example for the SEC is shown in Figure 7 for the small 4-arm star. Proton
nuclear magnetic resonance spectroscopy (H-NMR) was used to determine
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the molecular weight of the protonated polymer blocks.

PB-d6-9k single

PB-d6-9k 

PB-1k 

PB-d6-9k-b-PB-1k
4-miktoarm star small

PB-d6-9k single
PB-d6-9k 

Figure 7: Size exclusion chromatography (SEC) for 4-arm small symmetric star. Green:
PB-d6-9k single arm, Black: PB-d6-9k block, Red: PB-d6-9k-b-PB-1k arm,
Blue: �nal 4-arm star small after fractionation.

For neutron spin echo spectroscopy, the PE stars were put into Niobium con-
tainers with 4 mm sample thickness. To ensure the container was completely
�lled with the crystalline PE, it was �lled and melted several times in a vac-
uum oven at 100◦C. The sample holder was sealed in an argon glove box with
a te�on seal. To remove any air bubbles the containers were kept upright in a
vacuum oven at 400 K for several hours. For the rheological and small-angle
neutron scattering experiments, the parent polybutadiene polymers were used
as they are more or less liquid at room temperature (depending on the polymer
geometry). PB is therefore much better suited for these types of experiments
compared to PE which is semi-crystalline at these temperatures and would
need a high temperature sample environment.





4
S I M U L AT I O N S

Computer simulations are a great tool to investigate dynamics of complex
polymer systems. They can be used to bridge the gap between theoretical
models and experiments. Like every method, they have their own set of ad-
vantages and disadvantages depending on the system examined. In this work
the molecular dynamics (MD) simulations can reach much longer timescales,
up to a factor of 20 longer than the experimental method of neutron spin
echo spectroscopy. Another advantage is that real space con�nement analy-
sis, which is the accurate tracking of individual polymer beads at any time of
the simulation, is possible. Complex geometries (e.g. 5-arm stars), that would
be more di�cult to synthesize for experiments, can be simulated with basi-
cally the same e�ort as linear chains. As several approximations have to be
made for the coarse grained simulations they can never be completely accu-
rate, but should give a reasonable description for real polymers.

Coarse grained MD simulations, in contrast to fully atomistic systems, are
several orders of magnitude less time consuming and therefore give the op-
portunity to simulate much larger sample sizes to much longer times, which
increases the statistical accuracy. They do however, neglect the chemical de-
tails of the investigated polymers. That is, however, not the focus of this work
as the studied polymer melt dynamic is independent of the detailed chemical
composition. By simplifying the polymer chains with beads that are connected
by springs and only applying simple potentials, it is almost possible to reach
the regime of di�usion.

4.1 simulation details and model

The classic bead-spring model is used as the base for the MD simulations and
follows Kremer and Grest [4]. Beads ("monomers") connected by springs rep-
resent the linear polymers and the individual arms of the stars. The additional
central bead in each star is where all arms are connected. This central bead
of the star polymer or the linear chain is also called the branch point (BP).
All beads have the same mass m0 and diameter σ. By introducing a repul-
sive Lennard-Jones (LJ) potential between the beads an excluded volume was
implemented,

ULJ(r) =

4ε
[(
σ
r

)12
−
(
σ
r

)6
+ 1
4

]
for r 6 rc

0 for r > rc,
(4.1)

35
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with the cuto� distance of the potential rc = 21/6 σ ≈ 1.1225 σ. The
springs connecting the beads are represented by a �nite extensible nonlinear
elastic (FENE) potential

UF = −
1

2
KFR

2
F ln

[
1−

(
r

RF

)2]
, (4.2)

with a maximum bond length RF = 1.5 σ and a spring constant KF =

30ε/σ2. The LJ diameter σ is the unit length of these simulations. The com-
bined e�ective potential is shown in Figure 8. A bending potential is addition-
ally introduced between every three consecutive beads in order to implement
local sti�ness. The bending potential was given by:

Ubend(θ) = a2θ
2 + a4θ

4, (4.3)

where the angle between consecutive bond vectors is θ. The values a2/ε =

0.92504230 and a4/ε = −0.054183683 were used, which produces a poten-
tial that is almost indistinguishable from the cosine potential used by Bačová
et al. in ref. [37]. The potential only di�ers for large angles which are never
found in the simulation due to the repelling LJ interaction between connected
beads, hence make the di�erence between the two potentials negligible. The
used sti�ness potential provides a slightly less �exible character to the chains
(characteristic ratio for semi �exible chain [37, 54]C∞ ≈ 3.6 vs.C∞ ≈ 1.8 for
the �exible case a2 = a4 = 0), and decreases the entanglement length. Thus,
an analysis of the primitive path for this semi�exible model at the same sim-
ulated density gives an entanglement length ofNe ≈ 25 monomers, whereas
the same analysis givesNe ≈ 65 for the �exible case. This allows for the sim-
ulation of much ’longer’ chains in terms of number of entanglements, com-
pared to the �exible counterpart, hence these systems are much better entan-
gled. This also results in a slightly increased time exponent in the mean square
displacement (see Figure 14) for all simulated polymers compared to the the-
oretical model. The exponent in the Rouse regime for the linear chain is 0.6
in the simulation compared to 0.5 in the theory. As this increase is the same
for all systems, it does not change the results that were gathered from the
simulations signi�cantly.

Time and length in the simulations are given in units of τ0 = (m0σ
2/ε)1/2

and σ, respectively. The temperature T = ε/kB of the simulation (with kB the
Boltzmann constant) and density ρ = 0.85 σ−3 of the monomers correspond
qualitatively to a polymer melt density [4].

The procedure of Refs. [37, 55] was followed in the generation and equili-
bration of the simulated system. In the �rst step the stars and the linear chains
were constructed with the correct statistics for the intramolecular distances.
The goal is to create simple gaussian chains in a short time by simulating
weakly entangled chains [37]. These quickly reach the gaussian equilibration
regime. As a second step the complex architectures are created by connecting
the weakly entangled parts. The polymer structures are put at random posi-
tions in a simulation box and the prepacking method by Auhl et al. [55] is
followed, which constitutes of a Monte Carlo simulation. The polymers are
treated as rigid objects that are shifted in large scale motions (translations,
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Figure 8: Lennard-Jones and FENE potential are combined to form one attractive and
repulsive potential as the force �eld between simulated beads.

rotations, re�ections, etc). The local density �uctuations of the system are
calculated after each step. When they are reduced due to a position change,
making the system density more uniform, the movement is accepted and used
as a new starting point. This leads to a signi�cant reduction of inhomogeni-
ties in the system with relative low computational cost. In the last step of
the equilibration the standard MD simulation is run but with a capped force
of the LJ potential. This is done because it is still possible for beads to have
overlapping positions. This radius cap is reduced over time and at some point
the �nal LJ potential is used. The production simulation is only run once the
polymers have recovered their correct statistical properties. More details on
the equilibration method are found in Ref. [37].

For all simulations with symmetric and asymmetric stars as well as the lin-
ear chains, periodic boundary conditions are used. The longest runs reached
up to 4× 108 time steps for the �nal production simulation. The MD simu-
lations were performed with GROMACS [56]. Langevin dynamics was used
with a friction Γ = 0.5m0/τ0 and a time step ∆t = 0.005 τ0.
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4.2 simulated systems

4.2.1 Symmetric Stars

Symmetric stars with di�erent numbers of arms (functionality) f = 3, 4 and 5
were simulated. Linear chains with two "arms" are also included in the setup.
Each simulation consists of only a single type of polymer. The polymers also
all have the same number of monomers in each armNa, to have monodisper-
sity. All symmetric stars can be seen in a schematic representation in Figure 9,
with Na = 125 corresponding to Za = Na/Ne ≈ 5 entanglements per arm.
For the linear chain the backbone consists of 251 beads and Z ≈ 10 as the
number of entanglements. In the �gure, N is the number of beads per star
and the number of polymers in the simulated box is given by Nc. This num-
ber varies depending on the system from 200 for the linear chain (50200 total
monomers) to 159 for the 5-arm stars (99534 total monomers).

Figure 9: Schematic representation of the simulated symmetric systems. NC is the
number of polymers in the simulated box. N is the number of beads per
polymer. Each arm is 125 beads long (corresponding to Za ≈ 5 entangle-
ments). For the most part the same color scheme is used to represent the
corresponding data sets of each system in other �gures, where it was appli-
cable.

4.2.2 Asymmetric Stars

For asymmetric stars, four systems were simulated with the same backbone
length but di�erent lengths for the center positioned side branch. The geome-
try can be seen in Figure 10. The backbone consists of a linear chain of either
251 or 401 beads, with the center bead again being the branch point. The side
arm has a length of up to 25 beads or one entanglement and systems with
Z = 1/4, 1/2, 3/4 and 1were simulated. The data for the star with long back-
bone and one whole entanglement side branch was reused from a previous
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work of Bačová et al.[37]. These systems were simulated to systematically an-
alyze the behavior of asymmetric stars with one unentangled short side chain,
up to and including the time they reach the "reptation" regime.

Figure 10: Schematic representation of the simulated asymmetric systems. NB is the
length of each short side branch in number of entanglements Z and num-
ber of beads b. Each system was simulated with 200 chains. The simula-
tions were perfomed with short and long backbone stars. ’Short’ equals
251 beads (Z = 10) and ’long’ equals 401 beads (Z = 16).

4.2.3 Fixed End Simulations

The computational cost increases drastically with the length of the polymers.
This can be circumvented by decreasing the number of polymers in each sim-
ulation, where the downside of this method is the reduced statistic for the
data analysis. Also with the implementation of periodic boundary conditions
the possibility of the chains in�uencing themselves increases once a certain
polymer length is reached. A di�erent way to circumvent this problem is to
perform the simulations with the end monomers of each star arm �xed in
place during the complete simulation run and only allowing the rest of the
polymer to move. This allows a complete repression of arm retraction and
other constraint release mechanisms. As a result, these systems can be seen
as simulations of much longer star polymers, as in very long chains retractions
and dynamic tube dilution e�ects play only a very small roll. This method is
used in some of the real space dynamics analysis and to analyze the function-
ality dependence of the mean square displacement in Section 5.4 as well as a
comparison to the NSE data for very long stars.

4.3 analysis

The simulations are set up to create full coordinate snapshots of each system
at certain time intervals. This allows for the calculation of several parameters
of the simulated polymer system. The most important ones, that are featured
as results in this work, are the mean square displacement (MSD), the coherent
dynamic structure factor, the tube survival probability and the individual bead
movement analysis. Some of these calculations are performed only on a spe-
ci�c part of each molecule, the label. This allows to directly compare some of
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the simulation results with results from neutron scattering experiments where
polymers are also labeled. As every bead of every molecule in the simulation
box can be followed and identi�ed it is possible to chose the exact label size
and form.

For the calculation of the MSD the central bead of each star (and linear) poly-
mer three beads on each connected arm were used to follow the movement of
the branch point. This provides a better statistical analysis compared to the
MSD of a single bead. For the calculation of the dynamic scattering functions
the label was chosen to represent the corresponding label of the NSE experi-
ments, which is 1/2 entanglement on three arms around the branch point. As
one entanglement is equal to about 25 beads, the label was chosen to consist
of 13 beads on three arms plus the center BP bead (40 in total).

The MSD at a time t can directly be calculated for the labeled part

〈∆r2(t)〉 = 1

NL
·
NL∑
n=1

(
~Rn(t) − ~Rn(0)

)2
, (4.4)

with the number of particles in the label NL.
For the molecular movement analysis in Section 5.4, the average position of

the stars was calculated using a sum over all positions during the calculation
divided by the number of time steps. This makes it possible to compare the
position of single molecules at di�erent times to the mean path of the star or
linear chain. By calculating the distances between these mean positions and
the coordinate of the tracked particle, it is possible to create distance distribu-
tions for any bead.

The calculation of the tube survival probability with the use of the end-to-
end correlation function is described in Section 5.5 and Refs [1, 57, 37]. Each
arm is divided into short segments and the individual relaxation time of said
segment is calculated. Combining these relaxation times creates the complete
arm relaxation function that can be translated to the tube survival probability
of the stars.

To directly compare the MD simulations and the NSE spectroscopy exper-
iments, the coherent dynamic structure factor for the labeled branch point
segment is calculated from the simulation data with

S(q, t) =
NL∑
n=1

NL∑
m=1

sin
(
q ·
(
~Rn(t) − ~Rm(0)

))
q ·
(
~Rn(t) − ~Rm(0)

) . (4.5)

The results have to be scaled to the correct time and length scales of the
experiment as they are still in τ0 and σ units.



5
S Y M M E T R I C S TA R S - R E S U L T S A N D D I S C U S S I O N

This chapter deals with the results of the simulations and experiments on
the symmetric polymer stars. The simulations of 3-, 4- and 5-arm stars with
�xed and open arm ends are analyzed to determine the dynamics of individ-
ual simulation-bead movements, tube survival probability and dynamic struc-
ture factor. In the experiments small (Za = 5) and large (Za = 13) 3- and
4-arm stars are investigated using small angle neutron scattering, rheology
and neutron spin echo spectroscopy. SANS and Rheology results also include
the newly synthesized Asym S-1.0 star. The results of simulations and experi-
ments are compared where possible. The main interest of this investigation is
the e�ect of a di�erent functionality and di�erent arm length on the dynamics
of the polymer, speci�cally on the dynamics of the branch point. How these
dynamic changes will also show the in�uence of dynamic tube dilution that
is stronger for polymers with shorter arms.

5.1 small angle neutron scattering

SANS is used as a means to characterize the structure of the polymer stars. It
measures the static structure factor (see Section 3.2) that is compared with the
theoretical �t from RPA calculation. The theoretical �t from the synthesized
geometries is compared with the SANS data, to verify the synthesis process
and the sizes of the labeled branch point and the individual arm lengths. Fig-
ure 11 shows the measured static structure factor for the three newly synthe-
sized symmetric polymer stars compared to the �tted theory. The results for
the Asym S-1.0 star are shown as well.

The results show the behavior of partially labeled polymers with an ex-
pected scattering peak (RPA) at roughly q = 0.04− 0.06Å−1 depending on
the polymer and a strong decay to a low incoherent background at large q
(q > 0.6Å−1

). Additional forward scattering at very small q (q < 0.02Å−1
)

is also observed in the experiment. The measured polymers are the parent
polybutadiene (PB) stars of the PE samples. The experiment was performed
at room temperature of roughly 295 K and the data was corrected for back-
ground by measuring and subtracting an empty sample cell and performing
standard SANS corrections. The scattering data is normalized to a theoretical
thickness of 1 mm with a factor I = I0 · 1mm/d. The experiments were per-
formed at KWS-2 at MLZ in Garching.

The expected star composition can be found in Table 2 and the values from
the �tted functions can be seen in Table 3. The �t algorithm was initially de-
signed by Staropoli et al.[58]. It was adjusted to not only work for symmetric
stars with a number of identical arms with a labeled center and a non-labeled
outer part, but also for asymmetric stars by adding the last arm with inter-
changeable label and non-labeled length, so that the asymmetrical 3-arm stars

41
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with very short labeled third arms and the 4-arm stars with non-labeled fourth
arm can be calculated. It calculates the random phase approximation (see Sec-
tion 2.1.1) and adjusts for background and forward scattering. The theoretical
static structure factor is described as

I =
∆ρ2

NA
·RPA + bgr + pref · q−s, (5.1)

where I is the intensity dependent on q,∆ρ2 is the contrast-factor between
protonated and deuterated material divided by the Avogadro constant NA,
RPA is the random phase approximation, "bgr" is a constant background and
"pref" is a prefactor for the forward-scattering with exponent s.

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.4
q in Å-1

0.1

0.2

0.5

1

2

5

10

dΣ
/d

Ω
  i

n 
 c

m
-1

Asym S-1.0
3-arm small
4-arm small
4-arm large

Figure 11: Static structure factor of the center labeled symmetric 3- and 4-arm and
asymmetric 3-arm polybutadiene stars with �tted theoretical structure fac-
tor that includes RPA. Black circles and lines are the asymmetric 3-arm star
Asym S-1.0, red circles are the small 3-arm star, green circles are the small
4-arm star and blue circles are the large 4-arm star. The measurements
range from q between 0.002 and 0.4Å−1 at detector settings between 1
and 8 m.

The RPA contributes to the peak height and position of the static structure
factor, which is mainly depending on the geometry of the star (as described
in Section 2.1.1 and in the Appendix A.1). To apply it to the experimental
results adjustments to the theoretical RPA are needed. The contrast factor
∆ρ2 between deuterated and protonated material factors into the calculation
as a intensity factor for the RPA.

The incoherent scattering background is constant for each sample and is
proportional to the amount of protonated material in each sample. Theoreti-
cally at a scattering vector of q ' 0 there should be no scattering intensity.
This is only valid when all polymers have the exact same composition [59].
The results show however parasitic forward-scattering for very small q val-
ues, which are in the �t accounted for by pref · q−s. The forward scatter-
ing might be caused by di�erent e�ects. It can be caused by small air bub-
bles (voids) in the sample and scattering on di�erent polymer artifacts sin-
gle arms, interconnects or even (fractal-) clusters and variable label sizes on
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the polymers [59]. Pure void scattering would lead to a exponent s of 4, but
the �tted exponent is closer to a factor between 2.2 and 2.9, so a mixture
is far more plausible. Two additional values that are needed in the RPA cal-
culation, are the segment length and the monomer volume. The monomer
volume of PB is of course constant for all di�erent stars and 60 cm3/mol, cal-
culated from the monomer density M0 = 54 g/mol divided by the density
ρD = 0.9 g/cm3. The segment length is calculated from <R20>

M =
6R2g
m0·N and

R2g =
Nchain·l2chain

6 [20, 60] with <R20>

M = 0.876 Å2 at room temperature and
Ne = Me/M0 =

1900g/mol
54g/mol = 35 the number of segments per entangle-

ment. The segment length is therefore 6.88Å, which makes the protonated
label of roughly 1kg/mol on each arm correspond to about 17.5 segments.
The center labeled stars all behave like in the RPA predicted with a scattering
peak. The peak position and height is given by the size of the label compared
to the rest of the arm and the number of arms.

The �ts were made by starting with the theoretical segment lengths of the
non-labeled outer part and protonated inner part of the stars (they are shown
in brackets in Table 3). The �tted values were ∆ρ2, the background, the "ex-
ponent" and the prefactor within expected sizes. The size of the polymer com-
ponents were adjusted slightly afterwards to receive a better match. The two
di�erent 4-arm stars do not have any protonated component in their fourth
arm which would result in a segment length of 0. In the numerical calculation
of the RPA however needs a non zero value. The inc. "bgr" factor follows the
dependence on the amount of protonated material. The amount for each star
is shown in brackets in the Table 3.

The �tted values that are shown in Table 3 for all four stars are relatively
close to the values of the expected chemical composition. The theoretical
length of each arm segment are shown in brackets next to their �tted val-
ues. They are overall a good veri�cation of the geometric structure and label
accuracy of the synthesis as they are generally within 10% of the theoretical
value.
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Table 3: Values for the static structure factor that describes the polybutadiene stars
used for plots in Figure 11. The four di�erent star arm parts are given in
number of segments, with one entanglement corresponding to 35 segments.
Theoretical values are shown in brackets. ∗The calculations would not allow
values of 0 for the asym protonated part. The number in brackets for the
background is the amount of protonated material in the stars.

3-arm small 4-arm small 4-arm large Asym S-1.0
functionality 3 4 4 3

thickness d / mm 0.968 0.989 1.016 1.009

∆ρ2/NA / cm-4· mol 0.745 · 10-2 0.607 · 10-2 0.627 · 10-2 0.65 · 10-2

# segm. D 154 (144) 160 (144) 480 (434) 150 (144)

# segm. H 16 (17.5) 17.5 (17.5) 23 (17.5) 19 (17.5)

# segm. asym D - 170 (161) 480 (434) 15 (17)

# segm. asym H - 2∗ (0) 4∗ (0) 22 (21)

prefactor 13.4 · 10-7 56.8 · 10-7 22.1 · 10-7 39.7 · 10-7

bgr / cm-1 0.11 (11%) 0.05 (8%) 0.04 (4%) 0.15 (14%)
exponent 2.46 2.31 2.60 2.85

5.2 rheology

To observe how the �ow behavior of the polymers is dependent on their molec-
ular structure, rheological measurements were performed on three di�erent
symmetric parent polybutadiene (PB) stars that correspond to the PE stars that
were used in the NSE experiments. The data for the large 3-arm star were
taken from the published results of Zamponi et al.[39]. All experimental re-
sults were shifted to 25◦C (room temperature) to have comparability with the
previously acquired experimental data.

The theoretical model by Milner et al. [13] (see Section 2.3.5) was used in a
numerical MAPLE calculation and compared with the experimental data for
the symmetric stars with only two �tted values τe andG0 as listed in Table 4.
The entanglement time τe is the characteristic value dependent on monomer
friction and tube diameter and is responsible for the position on the frequency
ω axis of the data. The plateau modulus G0 alternates the plateau height and
the �tted values are close to the literature value of 1.15 MPa [61]. The model
also needs the entanglement mass that is 1900 g/mol and the dilution expo-
nent α set to 4/3 as well as the arm length Za of the stars. The model does
not include a functionality dependence.

The model is a good description for all four di�erent stars, as can be seen in
Figure 12. Two sets of stars are shown in each �gure with the short and long
stars shown together respectively. All stars show the expected star like rheo-
logical behavior with double plateau or plateau plus shoulder. The pair of large
stars have a signi�cantly wider shoulder region between ω = 5 and 1000
rad/s that is typical for highly entangled star polymers. Linear chains would
only have one "low" region in theirG ′′. In shorter polymers these features are
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generally not this strongly pronounced. This can be seen in the right graph
with the Za = 5 stars that do not display the shoulder at lower frequencies.
They still have a more pronounced plateau region than linear counterparts.
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Figure 12: G ′′ Loss- andG ′ storage-modulus measured (symbols) for large symmetric
3- and 4-arm stars (left) and small symmetric 3- and 4-arm stars (right) with
theoretical model (lines) shifted to 25◦C

The short (arm length Za = 4.85) stars are almost identical in both G ′ and
G ′′. This is expected as they have the same arm length and storage and loss
modulus are not expected to change with functionality. Only for the viscosity
some deviation was found for the 3-arm star (see below). Small di�erences
could also be attributed to measurement errors or di�erences in the measure-
ments. The large 3-arm star data was obtained several years prior to the 4-arm
counterpart and the temperature range for the measurement was di�erent (3-
arm star measured up to room temperature and 4-arm star only up to −5◦C).
Small di�erences in sample thickness can also not be excluded. It is addition-
ally noticeable that the 3-arm stars do not show a cross over between G ′ and
G ′′ in the Rouse regime. The large stars show a slightly di�erent behavior as
both G ′ and G ′′ is lower for the four arm star except for the Rouse and the
viscous regime where the data are basically identical. The viscous part is ex-
pected to di�er in the same way as the two small stars but the arm length of
the 3-arm star is about one entanglement longer than the 4-arm star, shifting
it to a lower frequency. Testing the theoretical model for the 4-arm star with
identicalZa to the 3-arm stars resulted in a match of the two viscosity regimes.
Other than the already mentioned errors in the measurement process the rea-
son for the di�erence in plateau height might be due to e�ects of potential
diving modes that are overshadowed by the faster relaxation in shorter stars
and therefore only show in the large systems.

The theoretical model by Milner et al. [13] is generally a good description
for all four di�erent symmetric star systems. It only has di�culties describing
the plateau region of the large 4-arm star and the viscous region of both 4-arm
stars. This could be explained by the lack of functionality dependence in the
model.

The Newtonian viscosity of stars increases exponentially with arm molecu-
lar weight with no functionality dependence [11], with the exception of 3-arm
stars, where it was found to be about 20% lower than same length 4-arm coun-
terparts [11]. To test this for the stars measured in this work, the viscosity of
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Table 4: Rheology parameters for symmetric polybutadiene stars. All stars have the
same α = 4/3 andMe = 1900 g/mol.

sample: Z arm τe in s G0 in Pa
3-arm small 4.85 0.18× 10−6 1.0× 10−6

4-arm small 4.85 0.22× 10−6 1.0× 10−6

3-arm large 15.0 0.16× 10−6 1.1× 10−6

4-arm large 14.2 0.2× 10−6 0.9× 10−6

the symmetric 3- and 4-arm stars is calculated from the rheological measure-
ments. It can be obtained by using

lim
ω→0

G ′′

ω
= η0. (5.2)

This can be plotted and the viscosity is obtained from the low frequency
part where the graph is �at (seen in Figure 13) where the mean value over
roughly one decade of each plateau was calculated. The viscosity results are
shown in Table 5.
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Figure 13: G ′′/ω for the symmetric stars. The viscosity can be read o� the plateau
part at low frequencies.

To determine the arm length dependence of the viscosity the same way
Fetters et al. [11] did it in his work, the viscosity was plotted as ln (η/Z

3/2
a )

againstZa. The literature value for the resulting linear slope is 0.47. The result
from here measured stars was a slope of ν = 0.44which is in good agreement
with the literature value considering only two pairs of each functionality were
measured.

The viscosity of the 4-arm star is also slightly higher than the 3-arm star for
identical arm lengths (both Za = 5), the measured stars in this work showing
a di�erence of ≈ 26%. This was also expected from literature, where 4-arm
stars generally have a ≈ 20% higher viscosity than their 3-arm counterparts.
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Table 5: Viscosity for the symmetric stars, calculated from the measured loss modulus
G ′′ at 25◦C.

System Viscosity arm length
in Pa s in kg/mol

3-arm small 110± 10 9.2

4-arm small 150± 10 9.2

3-arm large 33000± 1000 26.85

4-arm large 32000± 1000 25.8

The measured viscosity of the large symmetric stars is basically the same, this
can be explained by the di�erence in Za of about one entanglement, making
the 4-arm star less viscous as it is shorter.
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5.3 mean sqare displacement

From the MD simulations, the mean square displacement (MSD) of the BP for
the di�erent star systems and linear chains is calculated according to eq.4.4.
To increase the statistics of the analysis not only the singular branch point
but also the closest three beads connecting to it are accounted for in the MSD
calculations.
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Figure 14: Simulation results for the MSD of the molecular center (branch point and
three nearest beads in each arm). Data are shown both for the simulations
with free and �xed ends (the latter displaying the long-time plateau). Blue,
black, red and green curves correspond to the systems with functionality
f = 2 (linear chains) and f = 3, 4 and 5, respectively. The solid lines indicate,
from short to long times, the di�erent power-law regimes 〈∆r2〉 ∼ t0.6

(Rouse), t0.3 (Rouse in tube) and t0.5 (reptation) in the linear chains. These
di�er slightly from the theoretical values (see text). The vertical dashed
line indicates the time scale equivalent to the limit of the NSE window,
tNSE = 400 ns (see below).

The results can be seen in Figure 14 which shows both the results for the
�xed and free ends simulations. Tube theory for linear chains predicts the
power laws that are described earlier in this work [1, 4, 32, 33] (see eq. 2.25 in
Section 2.2.1). One can see that the linear chain with free ends follows the the-
oretical expectation (Rouse, Rouse in tube, reptation) well with minor di�er-
ences in certain time regimes. At early times (t < τe ≈ 1800 τ0 [37]) the MSD
has an exponent of 0.6 instead of the 0.5 that is predicted by the Rouse model.
The Rouse-in-tube time window is also slightly di�erent with a 0.3 exponent
instead of the 0.25 [1] (times between τe and τR = τeZ

2 ≈ 1.8× 105 τ0).
As mentioned earlier, the small di�erence is most likely caused by the intro-
duction of the small bending potential that leads to semi-�exible chains. This
potential is responsible for short-range non-Gaussian interactions that are not
accounted for in the classical Rouse model for linear chains. The simulations
show the expected reptation behavior after the Rouse time with 〈r2〉 ∼ t1/2.
The di�usive time regime for linear chains start after the disentanglement
time (τd = 3τeZ

3 ≈ 5.4× 106 τ0) but this is outside the simulation timescale.
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The di�erences between the star polymers and the linear chains are very
obvious looking at Figure 14. The branch point of the stars exhibits a much
slower relaxation after the initial Rouse regime in which all polymers still be-
have almost identical. The slowing down increases with the number of side
arms and show a functionality dependence for both the simulations with free
and with �xed ends with a very large di�erence between the linear chain and
the 3-arm star and consecutive smaller steps with higher functionality. For a
quantitative analysis of the decrease in mobility the plateau height of the MSD
for the simulations with �xed ends are determined. In these system the e�ects
of dynamic tube dilution and other arm relaxation processes do not in�uence
the mean square displacement as the �xed end beads suppress all types arm
retractions and related constraint-release mechanisms. Even so, the branch
point seems not to be fully localized, as one can still observe a very small in-
crease of the MSD in the plateau region for all functionalities. These small
relaxations lead to the assumption that there are still constraint release mech-
anisms at work like e.g. end-looping events [32] where a chain loop moves
around the end of a arm to disentangle. This and other possible mechanics
still have in�uence on the systems.

Table 6: Plateau height of the MSD in the simulations with �xed ends.

System Plateau height (σ2)
linear chain 75.3± 3
3-arm star 20.1± 0.5
4-arm star 14.3± 0.3
5-arm star 12.4± 0.3

The plateau height was calculated as the mean value of the MSD for times
t > 4× 105 τ0. The results can be found in Table 6. A functionality depen-
dence of branch point motion was described by the work of Warner [40].
He calculated a generally valid description for the di�usion of cross linked
polymers that is dependent on the number of links, resulting in a 2/f depen-
dence of the mean square displacement with f the functionality. This can be
directly compared to the plateau height pf in MD simulations of symmetric
stars with �xed ends. Table 7 shows the calculated theoretical and simulated
ratios (pf/p ′f) of the functionality and the plateau heights for 3 6 f 6 5. The
di�erent ratios are in rather good agreement with the theoretical prediction.
The case of f = 2 for the linear chain deviates from the theoretical prediction
by a factor of roughly 2.5 when the Warner theory is applied. As the theory
is designed explicitly for cross linked points this is not really surprising.

The di�erences of the branch point mean square displacement are not only
caused by the di�erent functionality dependent localization strength. Other
in�uences besides the already mentioned end-looping are possible, like for ex-
ample the "diving modes" in the early tube dilution (ETD) processes. In these
modes the branch point is probing the tube of the individual arms, which could
lead to a broadenig of the bare tube[37]. That in turn can have in�uence on
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Table 7: Simulation (from Table 6) and theoretical values of the ratios of the MSD
plateau heights in the systems with �xed ends. The plateau height is denoted
as pf for the system with functionality f.

p4/p5 p3/p5 p3/p4

theory 1.25 1.66 1.33

simulation 1.15± 0.05 1.62± 0.08 1.40± 0.07

the MSD and the diving modes are also potentially functionality dependent.
However these e�ects should stop at long times and a plateau with no further
increase is expected at long enough times. The ETD e�ect is described by the
function g(t) that will be used in later parts of this work (see Section 5.6.2).
A detailed description of ETD-e�ects and g(t) can be found in the work of
Bačová et al.[37].

Taking a closer look at the MSD for the simulations with free ends gives
more insight into functionality dependent relaxations. The MSD behavior of
the free end simulations can be best compared by adjusting for the contribu-
tions of early tube dilution and matching with the plateau heights obtained
from the �xed end simulations. The MSD of the 4- and 5-arm stars were shifted
to have the same plateau height as the 3-arm stars. Furthermore the times were
also scaled to adjust for di�erences in branch point friction so that the Rouse
regime of all stars overlap again after the vertical shift. The so determined
shifting factors for time and space were also applied for the stars simulated
with open ends. The result of this rescaling can be seen in Figure 15. This
graph should be independent of all functionality in�uences. One can easily
see that for the �xed end simulations the MSD plateaus overlap for the whole
time range.. The free end simulations on the other hand show signi�cant dif-
ferences in the slope of the MSD. The relaxation is obviously still functionality
dependent. An analysis of the graphs at times 4× 105 τ0 < t < 2× 106 τ0
shows that the exponent describing the slope tx varies between x ≈ 0.26 for
f = 3 to x ≈ 0.19 for f = 5.

In dynamic tube dilution the renormalization of the tube parameter is only
depending on the tube survival probability (see Section 5.5). If this theory is
correct, DTD, within the valid time scale t < t∗, with t∗ = 3300 ns (see. Sec-
tion 5.5) should be independent of the functionality of the star and a�ect them
all equally as shown in Figure 24. Even though further renormalization out-
side of pure DTD are necessary to include the non-constraint release "early
tube dilution" (discussed in Ref. [37]), the data in Figure 15 are already cor-
rected for the ETD, localization strength and friction di�erences.

This means that the di�erences in slope exponents are not explained by
the current DTD model which is independent of functionality. The e�ects are
more likely caused by other processes, suggesting that the DTD model is in
need of a revision to explicitly account for the number of arms connected to
the branch point.
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Figure 15: Rescaled MSD of the centers of the star polymers with free (three top
curves) and �xed ends (three bottom curves). See the main text for de-
tails of the rescaling procedure. The black and green solid lines indicate
e�ective power-law behavior

〈
∆r2

〉
∼ t0.26 and t0.19, respectively. The

vertical dashed and dotted lines indicate the time scales equivalent to the
limit of the NSE window (tNSE = 400 ns) and the limit of validity of DTD
(t∗ = 3300 ns, see Section 5.5), respectively.

5.3.1 MSD of di�erent arm segments

In addition, the mean square displacement of di�erent segments along the
star arms was calculated to see how the mobility of larger segments depend
on their positions along the arm length and if it is dependent on the function-
ality for both �xed and open end simulations. The MSD was calculated for a
segment length of 13 beads or 1/2 entanglement at positions of 1.1 (27 beads),
2.0 (51 beads) and 3.3 (82 beads) entanglements from the branch point. To im-
prove the statistics of the results the calculation was performed on two arms
per star and averaged.

Figure 16 shows the MSD for three di�erent segments for all three symmet-
ric stars in the simulation with open arm ends. On the �rst glance it is obvious
that all three stars show the exact same behavior independent of the number
of arms as expected. Only for the "inner segment" the 3-arm star (black) shows
a slightly higher MSD. Compared to the MSD for the BP in Figure 14 one can
see that the mobility is less restricted going outward on the arm and already
at a distance of about 1 entanglement length the MSD is about twice that of
the branch point. This mobility for the segments increases the further one is
from the branch point but again does not depend on the functionality. For the
outermost segment a strong increase in mobility seems to occur already much
earlier than for the two segments that are closer to the BP, since it is closest
to the free arm end.

Taking a look at the MSD for the same segment positions for the simulations
with �xed ends, again no dependence on functionality is found. In Figure 16
the MSD for the di�erent segments of the 3-arm star are shown as example. In
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Figure 16: Mean square displacement of selected segments along the arms of the sym-
metric stars in the open end simulations. For each star the di�erent seg-
ments have the same length at the same relative position from the branch
point of the arm. The segments are positioned at the inner third, the middle
and the outer third of the star arm.

this case, the MSE of all three segments level o� into a plateau. The plateau at
the end time of the simulations still has a small slope that was also observed for
the branch point meaning no complete suppression of all relaxation processes.
The three di�erent segments reach their respective plateaus at di�erent times.
The innermost segments at about one entanglement distance from the BP goes
into the lowest plateau, the middle and outer third segment go into a about
20% higher plateau with the outer segment taking signi�cantly longer to reach
it. The middle segment is obviously furthest from both the BP and the �xed
arm end and therefore is the least in�uenced by restrictions caused by the
�xed end point or the branch point with its multiple arms, which makes it the
most mobile.

At early times the inner and outer segments show very similar behavior,
only at a certain time when the inner most segment reaches its plateau the
outer segment still increases until it reaches the same plateau as the middle
segment. An explanation for this might be the additional "pull" of the moving
branch point that the outer most segment does not experience. Additionally
the outer segment is roughly 20% further from the �xed point than the inner
segment is from the branch point. All three segments still have a MSD that is
2 to 2.5 times larger than the branch point MSD of the three arm �xed end
star.
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Figure 17: Mean square displacement of segments along the arms of one symmetric
3-arm star in the �xed end simulations. Each segment is the same length
at a di�erent position from the branch point of the star arm. The segments
are positioned at the inner third, the middle and the outer third of the star
arm.

5.4 real space analysis

One of the biggest advantages of computer simulations is that the exact posi-
tion of each molecule and bead is known at every time step of the simulation.
This gives unique possibilities to take a look at spatial con�nement and to
analyze the movement and positions of the polymers. For this purpose the
positions of di�erent monomers along the polymer have been saved at time
intervals of tsave = τe/4. This makes a comparison between stars of di�erent
functionality possible as well as observing the di�erence between systems
with �xed and open arm ends.

5.4.1 Branch point �uctuations around mean path position

Figure 18 displays the positions for the BP over the simulation time window
for the linear chain and all di�erent symmetric stars with �xed ends. The
green line is the calculated mean path of a single polymer, and the white dots
that form a cloud around it, are the position of the branch point at the di�erent
times of the simulation. The maximum time for all systems is the same and
set to tmax = 5× 105 τ0 as this corresponds to the maximum simulation time
of the 5-arm star with �xed ends. With increasing functionality the size of
the cloud gets smaller and therefore the con�nement of the BP gets stronger.
Even though the ends are �xed for the linear chains, one can see the expected
longitudinal exploration the center bead performs along the tube.

This e�ect of the time evolution of this motion is shown in Figure 19. For
this purpose the "clouds" have been plotted for di�erent times during the sim-
ulation for the linear chain with �xed ends. The �gure shows the same chain
at 50 τe, 125 τe and 500 τe from top to bottom. The chain appears to be mov-
ing back and forth along its tube during the time of the simulations, which is
expected as it cannot reptate with �xed arm ends.
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Figure 18: Green lines: typical mean paths of a linear chain, a 3-arm-star, a 4-arm-star
and a 5-arm-star. The clouds of points represent the positions of the branch
points at every time multiple of τe/4. The �gures have been created from
the simulations with �xed arm ends.

Figure 19: Time evolution of center point position in simulation of linear chain with
�xed arm ends, after 50 τe (top), 125 τe (middle), 500 τe (bottom).

For the branched systems one can see the much stronger con�nement of
the BP around its mean position. In the case of the 3-arm star one can still see
the branch point "diving" into the directions of the arms [37, 38]. These explo-
rations cannot be seen in the stars with higher number of arms (f = 4 and 5).
These deep movements along single tubes need some in-phase �uctuations of
all arms around the branch point. They become highly unlikely as a result of
increased drag on the branch point and are not noticed within the time frame
of the simulations.

Figure 20 shows the same type of visualization of the mean path and branch
point position as in Figure 18, but for the case of free arm ends. This of course
leads to a greater distance distribution for the observed points in the represen-
tation. Nevertheless, one can see that even with free arm ends the con�nement
of the branch point increases with higher number of arms as the density of
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points in the center increases. This is easily visible going from the linear chain
to the 3-arm star. Comparing the �gure for the open end simulations with the
�xed end simulations the magnitude of arm relaxation becomes clear, as the
size of the cloud in Figure 18 is signi�cantly smaller than in Figure 20.

Figure 20: Green lines: typical mean paths of a linear chain, a 3-arm-star, a 4-arm-star
and a 5-arm-star. The clouds of points represent the positions of the branch
points at every time multiple of τe/4. The �gures have been created from
the simulations with open arm ends.

5.4.2 Monomer �uctuations along arms

For a more quantitative analysis of the �uctuations, the normalized distribu-
tion of distances multiplied by the phase factorG(r) · 4πr2 is calculated.G(r)
is the distribution of distances r of the branch point at the di�erent points in
time during the simulation to the calculated mean position for the �xed arm
end systems. The results are plotted in Figure 21 and show the expected behav-
ior of stronger con�nement for increased functionality. A three dimensional
Gaussian function is used to �t the data.G(r) = (3/2πσ2r)

3/2 exp[−3r2/2σ2r ]
with σr the variance provides a good description of the data with the excep-
tion of the part with the largest distance to the BP. These "tails" are more pro-
nounced for lower f and could be explained by the motions along the tubes as
they are most relevant for the linear chain and the 3-arm star.

To see how strong the in�uence of the branching on the mobility of other
beads along the arms of the polymer star is, the distribution of distances of
selected monomers compared to their respective mean position are calculated
and shown in Figure 22 for the 3-arm star. One can see that with increasing
distance to the branch point, the distribution becomes wider, shifts to longer
distances, and therefore the corresponding bead has a higher mobility. The
bead for which the distribution is plotted is given in number of entanglements
Z from the 3-arm star branch point up to a maximum of Z = 2.8, which is
slightly more than half the distance between the BP and the �xed arm end. At
the distanceZ > 2 the distributions become almost identical and similar to the
center bead in a corresponding linear chain, which means that the in�uence
of the BP has almost stopped. To test how the functionality of the polymer
stars in�uences this behavior, the same calculations have been performed for
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Figure 21: Distribution of distances between the branch point and its respective posi-
tion in the mean path (symbols) with �ts to a 3d-Gaussian function (lines).
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Figure 22: Distributions of distances between selected monomers of the 3-arm star

and their respective positions at the mean path. Each distribution is labeled
(see legend) by the chain contour distance (number of monomers) between
the selected monomer and the branch point (in units of the entanglement
length Ne = 25).

the two other star systems and the average �uctuation 〈r2〉1/2 is plotted in
Figure 23. The plots show the data normalized to the �uctuation of the corre-
sponding linear chain with 〈r2〉 =

∫∞
0 4πr

2G(r)dr. The x-axis of the plot is
given as the contour length as a function of Narm/Ne with 0 as the branch
point position and 5 as the �xed arm end. Once normalized the di�erence in
con�nement with respect to the functionality can be observed especially close
to the branch point where the split between the three systems is quite obvious.
The di�erence gets much smaller at around two entanglements from the BP,
but even at distance of 3Z the �uctuations of the monomer in the branched
systems are still about 10% reduced compared to the linear chain.
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Figure 23: Average �uctuation of selected monomers around their positions in the
mean path, normalized by the corresponding value for the linear chains.
The horizontal dashed line indicates the reference of the linear chain,〈
r2
〉

=
〈
r2lin
〉
. The data are represented vs the normalized contour

distance, Narm/Ne, to the branch point (so that Narm/Ne = 0 and
Narm/Ne = 5 correspond to the branch point and the �xed arm end, re-
spectively).

5.5 tube survival probability

The hierarchical relaxation processes have to be followed before the branch
point of the investigated stars can move outside of its initial "tube" area. The
dominating relaxation process for these fairly entangled (arm length Z = 5)
stars is the dynamic tube dilution process. The DTD is proportional to the
amount of unrelaxed material in the system, which corresponds to the tube
survival probability. The tube survival probability (TSP) ϕl(t) can be written
in terms of the tangent correlation function following Doi and Edwards [1].
In the free end simulations the equation

ϕl(t) =

〈
~ui,l(0) ·

~Re
i(t) −

1

f− 1

f∑
i 6=j

~Re
j(t)

〉 (5.3)

gives the tangent correlation function. A detailed description of the calcu-
lations is given in Ref. [37]. ~ui,l(t) is the tangent vector of the l-th segment
of the i-th arm at time t. The end-to-end vector of the i-th arm is ~Re

i(t). As
in the symmetric stars all arms are identical we calculate the average over f
number of arms. The sum includes all non self referencing arms and carries
the cross-correlation factor 1/(f− 1). For the calculations each arm is divided
into segments of 10 beads in length (12 segments in total) that are numbered
from the branch point to the outermost segment going l = 1, 2, ..., ns with
the outermost segment ns = 12. The tangent vector ~ui,l(0) is the end-to-end
vector of such a segment. As a tube coordinate sl = l/ns is chosen that as one
goes from sl = 1/ns to sl = 1 the position changes from the branch point
(where Sl = 0) to the end of the arm. A Kohlrausch-William-Watts (KWW)
function, which is a basic stretched exponential φl(t) = exp(−(t/τK)

β) is
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used to �t the data. Plotting the relative tube coordinate sl against the KWW
relaxation times τK of the according segments in Figure 24 (symbols) for the
symmetric stars and in Figure 25 (symbols) for the di�erent arms (short and
long) of the asymmetric star shows the decay over the time of the simulation.
The total tube survival probability for the stars, which corresponds to the total
fraction of unrelaxed material is

Φ(t) =

∑
i=1...f Zi ·ϕi,l∑
i=1...f Zi

, (5.4)

where Zi is the number of entanglements per arm and the sum goes over
the number of arms f in the star. For the symmetric stars the total tube survival
probability is the same as for a single arm, since they are all identical and hence
s(t)=̂Φ(t). In the case of the asymmetric stars the di�erent arm lengths have
to be considered. The resulting overall tube survival probability decays just
slightly faster than the single long arm (see Figure 25 blue line), as most of the
star material is contained in the two long arms.

The results for all three di�erent symmetric stars (3-, 4- and 5-arm see Fig-
ure 24) show within their error margins the same non-exponential behavior
and can again be �tted by a KWW function. The �tted stretched exponential
with β = 0.44 and τK = 2.9× 106 τ0 can be used to describe the tube sur-
vival probability of the di�erent symmetric stars.
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Figure 24: Unrelaxed path coordinate sl of di�erent segments (symbols) of arms for
3- (black), 4- (red) and 5-arm (green) star as well as linear chain (blue). The
black solid curve is a KWW �t for the stars and the blue solid line for the
linear chain. The dashed lines are the theoretical tube survival probabili-
ties Φ for Za = 5 (red) and Za = 13 (green) calculated with Milner and
McLeish theory with α = 1. Vertical dashed line is the time scale equiva-
lent to the limit of the NSE window, tNSE = 400 ns. Vertical dotted line is
the validity time window of the DTD for Za = 5 at t∗ = 3300 ns.
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Figure 25: Unrelaxed path coordinate sl of di�erent segments (symbols) of short
sidearm (red) and long arms (black) for the asymmetric star. Red and black
lines are the corresponding KWW �ts. The blue line is the combined tube
survival probability for the complete asymmetric star.

The DTD is only valid for a certain timescale [2]. This means, that DTD is
only valid at times, where the rate of tube broadening is slower than the rate
for self-di�usion of the monomers on the segments relaxing at the same time
(the tube would otherwise not in�uence the chain relaxation).

The equation

(1− s)s2 >
2

3Za
, (5.5)

with the tube coordinate s, gives this limit [2]. For Za = 5 this means that
DTD is only valid for s > 0.55 which translates to the tube survival probabil-
ity up to times t < t∗ = 106 τ0. With the simulations much larger times can
be reached, but the functionality dependent divergence that was observed in
the rescaled MSD curves already happens well within the DTD time window
as can be seen in Figure 15.

To compare the star tube survival probability for the stars to that of a linear
chain the same relaxation times for the "arms" of a linear chain were calculated.
In the case of aZ = 10 linear chain it consists of two arms ofZa = 5 for which
the relaxations from the outer to the innermost segments are shown in Fig-
ure 24 compared to the three di�erent stars. Within their error bars, the linear
chain shows the same behavior as the stars up to a time of about 106 τ0, after
which it decays faster than all three stars. This is also the same time scale up
to which the DTD is still valid. The TSP for the linear chain can also be approx-
imated by a stretched exponential function with β = 0.6 and τK = 2.1× 106.
It is nevertheless very interesting that within the validity time regime of DTD
the linear chain relaxes basically identical to the stars and the expected faster
relaxation only emerge at very large times. This shows that the relaxation of
the outer segments of a star arm of the length Z = 5 is not in�uenced by the
branch point at early times.

The TSP can also be calculated with the theory introduced by Milner and
McLeish and compared to the results from the simulation. Further details and
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the exact analytical expressions can be found in Section 2.3.5, Section 2.3.6 and
e.g., Refs. [13, 62]. The theoretical tube survival probabilities for stars with arm
lengths Za = 5 and 13 are plotted in Figure 24 (red and green dashed lines).
The theory provides a decent description of the simulation results at times
longer than the Rouse time of the arm τR = τeZ

2
a ≈ 5× 104 τ0. However

they generally predict a lower (about 10%) TSP than the siumulation results.
As simulation results for long arm systems are not available it is the only way
to obtain TSP predictions for these systems.
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5.6 dynamic structure factor of symmetric stars

5.6.1 NSE - Functionality and Size

One of the key experiments to analyze the dynamics of branch point motion
is the neutron spin echo spectroscopy. It gives the possibility to directly mea-
sure the dynamic structure factor for the BP of the polymer stars. This is pos-
sible due to the small protonated label (3 times 1/2 entanglement) that is only
placed around the BP making it the only "visible" part of the polymer in NSE
sectroscopy. The measurements were performed on large (Za = 13) stars with
3 and 4 arms as well as their smaller (Za = 5) counterparts. The large 3-arm
star sample was made for and already used in the work of Zamponi et al. [39]
and the measurements were repeated in this work to achieve longer times in
the NSE experiments. This makes it possible to directly compare stars of di�er-
ent size and functionality. Measurements were made for times up to roughly
400ns and at di�erent q values between q = 0.05Å−1 and 0.115Å−1. The
size of the protonated label was kept the same for all four investigated systems
and the only changing factor was the deuterated part of each star. The exact
chemical composition and synthesis can be seen in Table 2 and Section 3.5 re-
spectively. The experiments were performed at a temperature of 509 K, where
the polyethylene stars are in the melt state. The normalized dynamic struc-
ture factors, S(q, t)/S(q), with S(q) = S(q, 0), are shown. How the data is
obtained is described in detail in Section 3.3.
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Figure 26: Measured dynamic structure factor of large Za = 13 (blue) and small Za =

5 (red) 3-arm stars. Symbols are NSE data, lines are �ts to the theory (see
text). The q values are 0.05Å−1, 0.077Å−1, 0.096Å−1 and 0.115Å−1

from top to bottom.

To see the e�ect of arm length on the mobility of the BP we compare the
structure factor of stars with the same number of arms. A direct comparison
of the 3-arm small (moderately entangled) and long (strongly entangled) star
is shown in Figure 26 and in Figure 27 the results for the corresponding 4-arm
stars are plotted. These plots also include the �t with the model function which
will be described in detail later in this chapter. Comparing the di�erent star
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Figure 27: Measured dynamic structure factor of large Za = 13 (blue) and small Za =

5 (red) 4-arm stars. Symbols are NSE data, lines are �ts to the theory (see
text). The q values are 0.05Å−1, 0.077Å−1, 0.096Å−1 and 0.115Å−1
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sizes, one can easily see that S(q, t)/S(q) shows a faster decay for the smaller
stars, this represents a higher mobility of the labeled branch point. During the
early times both stars show very similar behavior up to around 30 ns. At inter-
mediate times between 30 ns and about 80 ns the slope �attens out and at later
times larger than 100 ns the stars show additional decay which means further
relaxation. This additional decay is much stronger for the small stars than for
the larger counterparts that only show a very small decay at these long times.
As the full arm relaxation times are far beyond the experimentally observable
time scale this relaxation can probably be attributed to a broadening of the
tube by DTD. As this e�ect is obviously stronger for the small stars this is in
accordance with the expectations from DTD theory. The same behavior as ob-
served in the 3-arm stars is re�ected in the 4-arm systems. Both systems show
that longer star arms lead to a much stronger con�nement of the branch point.

The e�ect of functionality on the dynamic structure factor can be seen in
Figure 28, where the small 3- and 4-arm stars are plotted against each other
and in Figure 29 for the large stars. The graph also includes the results of the
MD simulations which will be further discussed later on. Starting with the
small stars, one can see that they show very similar behavior for early times
but start do deviate from each other at around 80 ns. The 3-arm star shows
clearly a faster decay which follows the expectation of a stronger con�nement
(slower decay) for higher number of arms. This e�ect is visible in all four dif-
ferent q values. Taking a look at the large stars the picture looks similar but
with a much less pronounced di�erence between the 3- and 4-arm stars. They
still show the general trend, but the data overlaps within the error bars. This
is consistent with the �ndings from the mean square displacement and real
space analysis of the MD simulations (see Sections 5.3 and 5.4) if the stars with
�xed ends are used as a substitute.
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5.6.2 NSE compared to scaled MD Simulations

To make a direct comparison between the results of the MD simulations and
the NSE spectroscopy measurements as shown in the Figures 28 and 29, the
coherent dynamic structure factor of the simulated systems has been calcu-
lated using equation 3.9. For this calculation only the parts of the stars that
correspond to the protonated label are included. This equals to 13 beads (1/2
of the entanglement length of 25 beads) on three arms of the star plus the
branch point itself. This is also kept for the 4- and 5-arm stars. As the simula-
tions are in Lennard-Johns units the results have to be scaled to make a direct
comparison in experimental times (ns) and wave vector (Å−1) possible. This
was achieved by scaling the times with the corresponding ratio of entangle-
ment times and the q values with the tube diameters ratios.

The scaling factor for the simulation time comes to γt = 7/2100 ns, with
2100 τ0 and 7 ns as the approximate values of the simulation [63] and exper-
imental [39] entanglement time respectively. A slight adjustment of ≈ 17%
compared to the theoretical value of 1800 τ0 to the entanglement time has
been performed to create a better match. To rescale the q values from the
simulation to their experimental counterparts the factor γq = 49/8.75, Å/σ
was applied. 49Å corresponds to the experimental tube diameter of linear
polyethylene chain [36] and 8.75 σ is the value from bead-spring simulated
chains [64]. These rescaling parameters gives a good agreement between the
dynamic structure factor for the comparison of molecular dynamics simula-
tions and neutron spin echo spectroscopy experiments for the small stars as
can be seen in Figure 28. In all NSE measurements for both large and small
stars a systematic discrepancy between theory and experiment can be found
at q = 0.05Å−1. This same inconsistency is found between the simulation
results and the experiment. The experimental data showed a stronger drop in
S(q, t)/S(q) as both the simulations and the theory. The reason for this dif-
ference that was solely seen at the lowest measured q value is not clear at this
moment. As will be shown later, the theoretical description is in good agree-
ment with the simulations (see Figure 30) (within experimental time scale)
and it is only the experimental results that show this drop. This gives reason
to believe that it might be just an artifact from the experimental setup. An
explanation could be the close proximity of the detector to the primary beam
at the small angles that are needed for the lowest q values, but the true nature
of this e�ect is not known yet.

As already mentioned the simulations of the small 3- and 4-arm stars show
very similar behavior to the results from NSE spectroscopy experiments. This
means that they again support the notion that higher functionality increases
the con�nement of the branch point in the symmetric stars. The simulations
show a more pronounced di�erence between the stars already at much earlier
times as seen in Figure 28 and 29. The simulated larger stars were as stated in
Section 4.2 not simulated with corresponding arm length but for small stars
with �xed arm ends, as simulations of such long chains have very high compu-
tational cost. Even though the simulations with �xed ends suppress almost all
relaxations, it is nevertheless interesting to compare the data with the experi-
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Figure 28: Dynamic structure factor from NSE (symbols) and MD simulations with
rescaled units (lines), for small 3-arm (black) and small 4-arm (red) stars.
The q values are (in Å−1): 0.05 (circles), 0.077 (squares), 0.096 (triangles)
and 0.115 (diamonds), from top to bottom.
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Figure 29: Dynamic structure factor from NSE (symbols) and MD simulations with
rescaled units (lines) for large 3-arm (blue) and large 4-arm (green) stars.
The q values are (in Å−1): 0.05 (circles), 0.077 (squares), 0.096 (triangles)
and 0.115 (diamonds), from top to bottom.

ment. The simulations (see Figure 29) go into a pronounced plateau as already
expected from earlier results in the mean square displacement. They also show
a distinct di�erence for the di�erent functionality, that is more pronounced
than in the experiment, especially at longer times. At early times up to ≈ 20
ns the NSE and MD data agree, at longer times the experimental data show a
clear decay from the intermediate plateau which is re�ecting the progressive
loss of con�nement through dynamic tube dilution that is not present in the
�xed ends simulations.
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5.6.3 Theoretical Description using a modi�ed Vilgis and Boué model

The existing theoretical descriptions for polymer dynamics are often only ap-
plicable for linear chains or �xed networks and are not applicable for more
complex architectures like symmetric stars. In order to �nd a theory to de-
scribe the motion of the BP in simulated and measured star systems the model
of Vilgis and Boué [16] was used as a starting point. This model describes the
dynamics of con�ned chain segments in cross linked polymer networks by a
harmonic potential.

This model allows to describe the BP con�nement in large star polymers[39],
because relaxation processes, such as DTD are negligible in the accessible NSE
time window for these large stars. Going to shorter arm length as the here in-
vestigated stars these processes become more important. For these reasons the
Vilgis and Boué model was modi�ed to include arm length dependent DTD.

Within the Vilgis and Boué model, the relative mean square displacement
of two monomersm and n is calculated as[16, 39]

〈
(~r(m, t) −~r(n, 0))2

〉
= 3R2mesh
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(5.6)

with Wl4 the Rouse rate, l the segment length, Rmesh the well parameter
which corresponds to the radius of gyration of the single mesh and erf() the
error function. With this MSD the dynamic structure factor can then easily be
calculated according to eq. 2.19.

The Vilgis-Boué model only accounts for �uctuations of the branch point
and does not include relaxation. Therefore, the dynamic structure factor ob-
tained from equations 5.6 and 2.19 goes into a plateau. This plateau signi�es
the con�nement of the branch point. As DTD will introduce a loss of con�ne-
ment over time, the mesh size has to change over time, following the DTD
renormalizations. The mesh size is related to the tube diameter with the fol-
lowing relation: d =

√
6 · R2mesh. In order to account for the a�ect of DTD the

following renormalization for eq.5.6 are done[2, 13, 14].

d∗(t) = dϕ−α/2(t), (5.7)

whereϕ(t) is the tube survival probability and α = 1 or 4/3 is the dilution
scaling exponent. The �ts shown used α = 1 as the scaling exponent but
changing it to α = 4/3 had basically negligible impact.

Knowing d ∼ Rmesh a renormalization of the mesh parameter

R∗2m = R2m/ϕ
α(t) (5.8)
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is performed and the monomer distance

|n−m|∗ = |n−m| · g(t) ·ϕ(t) (5.9)

changes again with ϕ(t) and additioally with g(t). The function g(t) is an
additional slowly varying early tube dilation (ETD) function determined from
simulations in the work of Hawke [65] and Bačová [37], starting out as 1 at
time 0, it approaches 0.75 for times larger than 500 ns. It is needed to describe
the diving modes in 3-arm symmetric stars as it slightly increases the mobility
of the branch point and it was equally applied in the renormalization for the
stars with higher functionality. The segment distance renormalization e�ect
in eq. 5.9 is very small compared to the renormalization of the mesh size in
eq. 5.8, it does only change the form of the graph at intermediate times (15 to
100 ns) and has no signi�cant in�uence on the resulting mesh size in these
systems.

For the tube survival probability the simulation results for the small stars
are used which are �tted with a KWW function described in Section 5.5 with
τK = 9.66× 104 τ0 and β = 0.44. As there are no large star simulations the
theoretical tube survival probability equation forZa = 13 (see Section 5.5 and
Figure 24) were �tted by a KWW with τK = 1.23× 106 τ0 andβ = 0.265. For
the calculation of the dynamic structure factor for branch point labeled stars, a
few more approximations have to be made. S(q, t)/S(q) is calculated only for
the protonated label of the "backbone" as if they are linear chains. Including
the third and forth arm in the calculations would need the inclustion of inter-
arm correlations that are not known for every system. The value of the Rouse
rate for linear chains is Wl4 = 7× 104 Å4ns−1 [66], it is adjusted for stars
with 3, 4 and 5 arms with the corresponding factor 2/f [39, 40].

Now S(q, t)/S(q) can be calculated with the mean square displacement
that is dependent on the tube survival probability and also takes early tube di-
lution into account. This results in a dynamic structure factor that no longer
goes into a full plateau but at longer times decreases. The NSE time scale
is in both cases (small and large stars) well within the validity window of
DTD. For Za = 5 this time is t∗ = 106 τ0, which corresponds to 3300 ns
and for Za = 13 the dynamic tube dilution should theoretical be valid up to
t∗ = 109 τ0 or 3.3× 106 ns.

This theory with the bare, undilated tube parameter d as the sole �t param-
eter is now used to obtain theoretical curves to compare to the experimental
S(q, t)/S(q). The results can be seen in Figure 26 and 27.

A good description of the data (except the lowest q) is determined by only
�tting the tube diameter d. All other parameter are �xed and the scaling of
the Rouse rate with 2/f seems to be valid. Fitting the friction parameter addi-
tionally has no signi�cant impact on the resulting �t and tube diameter. The
observed decays in S(q, t)/S(q) can be attributed to the dilation of the tube
explored by the branch point.

Table 8 shows the obtained values for the tube diameter d. With around
35± 1Å for the undilated con�nement size in all measured stars the value is



5.6 dynamic structure factor of symmetric stars 67

Table 8: E�ective initial tube diameter from NSE experiments and MD simulations.

sample: NSE MD
3-arm small 35.4± 0.2Å 35.7± 0.2Å
4-arm small 34.9± 0.2Å 34.4± 0.2Å
5-arm small 33.2± 0.2Å
3-arm large 35.9± 0.2Å
4-arm large 36.2± 0.2Å

much smaller than the tube diameter for the linear polyethylene chain that lies
at d = 49Å [36]. Note, that both values have been obtained using two di�er-
ent theories with the modi�ed Vilgis-Boué model for the PE stars and a stan-
dard tube model [1] for the linear PE. They are using di�erent assumptions
and an equivalence of the obtained tube diameters should not be expected.

Even though the di�erences between the individual stars is not very large,
for the small stars a obvious tendency in both the simulations and the exper-
iments results can be seen, which is that the bare tube diameter decreases
with increasing functionality. This cannot be observed for the large stars as
they were not directly simulated and the NSE results of the large 3- and 4-arm
stars do not di�er much from each other and a large di�erence in the resulting
con�nement d cannot be expected. With the new approach considering the
e�ect of DTD we have obtained the undilated con�nement size which is the
initial or starting tube diameter before any relaxation e�ects. The value for
the large 3-arm stars are also smaller than the e�ective con�nement of 38Å
from previous measurements [39], with the same exact star polymer using the
original Vilgis-Boué theory for �tting. The original model does not account
for DTD which probably results in the higher e�ective tube diameter. Also
the measurements now are extended to longer times (400 ns instead of 200
ns) where the the deviation from the plateau becomes more prominent.

5.6.4 Theory applied to Simulations

The modi�ed Vilgis-Boué model can also be applied to the results from MD
simulations. As the MD data has been rescaled to the experimental q values
even a direct comparison of the �tted tube diameter is possible. The compari-
son of theory and simulations for all three stars with f = 3, 4 and 5 is shown
in Figure 30 and the numerical values for the undilated tube d are listed in
Table 8.

Thed values provided by the �ts are within the error bars of the correspond-
ing NSE results as both are d ≈ 35Å. The results are obtained by �tting the
theory in the time window of to NSE the experiments of up to 400 ns. For times
larger than that the values were calculated from these obtained �ts. One can
see that within the NSE window all three di�erent stars can be described very
well. At longer times it becomes obvious that the theory does not match to
higher functionality as nicely as it does for lower f. For 3-arm stars the match
is pretty good up to around t∗ = 106 τ0 which is the validity regime of DTD
[2] (see Section 5.5). After that the theoretical �t declines much faster than
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Figure 30: Dynamic structure factor of small 3-arm (red), 4-arm (blue) and 5-arm
(green) stars. Symbols are the MD data. Lines are �ts to the theory (Vilgis-
Boué model with DTD), with qσ = 0.28 (circles), 0.43 (squares) and 0.54
(triangles), from top to bottom. These wave vectors correspond to the NSE
values (in Å−1) q = 0.05, 0.077 and 0.115, respectively. The vertical
dashed and dotted lines indicate the time equivalent to the limit of the
NSE window (tNSE = 400 ns) and the limit of validity of DTD (t∗ = 3300
ns), respectively.

the simulations. For f = 4 and 5 the theory starts to deviate already at earlier
times t > 3× 105 τ0 and 105 τ0 respectively. This overestimation of the tube
widening is beyond the time window of the NSE (400 ns), but still within the
validity window of DTD. The time frame of the experiments and the valid-
ity of the DTD is shown in Figure 30 with two dashed lines. The results are
consistent with the observations from the MSD analysis in Section 5.3. Even
though the tube survival probability was found to be independent of func-
tionality, di�erent behavior of the MSD and the S(q, t)/S(q) functions are
observed. The higher functionality stars (f = 4 and 5) relax slower than pre-
dicted and it shows that using solely DTD (even within its validity time frame
t < t∗ = 106 τ0) to predict the behavior of star polymers is not su�cient or
that DTD might have to be adjusted to account for functionality of stars.



6
A S Y M M E T R I C S TA R S - R E S U L T S A N D D I S C U S S I O N

The strong in�uence of entangled side chains on the dynamic of polymers is a
known phenomenon and has been studied, often in the case of comb polymers
with many "teeth" or with symmetric system with many arms. Asymmetric
stars with short entangled side arm have been studied intensively [15]. Even
a single side chain with just one entanglement length [57, 39] can have a large
in�uence on the relaxation process. This chapter will focus on the transition
to even shorter, non entangled side chains with arm lengths between 0.25 and
1 entanglement length and compare them to corresponding linear chains and
symmetric stars. Asymmetric 3-arm stars with di�erent backbone and side
arm lengths have been simulated, for detailed geometries see Section 4.2.2.
For some of the same geometries experiments were performed in the form of
rheology and neutron spin echo spectroscopy.

In this chapter di�erent aspects have been investigated to further understand
the dynamics of asymmetric stars with unentangled side arm. The �rst part
explores the MSD of the BP for di�erent side arm lengths and di�erent back-
bones from the simulations.

This data allows to determine the e�ective friction added by the short side
arm and its relaxation times. Also the hopping fraction can be estimated.

This is followed by the results from the rheology experiments comparing
the asymmetric stars to linear and symmetric counterparts. The in�uence of
the hopping parameter on the theoretical description of the dynamic response
as well as a viscosity analysis is shown. The last part is the evaluation of the
dynamic structure factor for simulation and experimental data. Even though
the simulations and experiments show good agreement with each other, no
theoretical description for the behavior of the asymmetric stars could be found
that fully describes the data. Di�erent approaches for the theoretical descrip-
tion are discussed in the last part of this chapter.

6.1 simulation results

6.1.1 Mean square displacement

A �rst step in analyzing the results of the simulations for asymmetric stars is
to calculate the mean square displacement. Figure 31 shows the MSD

〈
r2(t)

〉
of a linear label on the asymmetric stars with a backbone length of Zb = 10

entanglements and the linear chain of the same length. The label is placed
on the backbone and the length of 13 simulation beads centered at the BP
or center point. Its length is equal to roughly 1/2 an entanglement length to
create good enough statistics for the evaluation. The length of the short un-
entangled sidearm varies from Za = 0.25 to 1 in steps of 1/4 entanglement
and in the resulting MSD one can easily see the di�erences between the �ve
di�erent polymers. At early times they start out identical with < r2 >∼ t0.6
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Figure 31: Mean square displacement of linear chain and asymmetric stars with back-
bones of Z = 10 entanglements.

and the linear chain follows the same behavior as already described in Fig-
ure 14. At times of about 2000 τ0 which is close to the entanglement time of
τe = 1800 τ0, the MSD of the four asymmetric stars start to split up and one
can see that the slowdown in the MSD is stronger the longer the side arms,
as expected. They need di�erent amounts of time to reach the reptation along
the tube regime, where they have again the same time exponent of t0.5 and
run parallel to each other with the stars with longer side arm being below the
ones with shorter or no arm. The same behavior was observed for the asym-
metric stars with longer backbone of Zb = 16 with slightly lower values for
the t0.5 region where they run parallel as they generally are slower than their
shorter counterparts.

6.1.2 Reptation Plateau

The reptation plateau is obtained when the mean square displacement divided
by t0.5 is plotted and reaches a plateau. This is needed to calculate the di�u-
sivity (see Section 2.3.1)

D =
π

4d2

(
〈r2〉
t1/2

)2
(6.1)

directly from the motion of the branch point [57] with the part inside the
brackets 〈r

2〉
t1/2

= G that is called the plateau height. At times roughly t >
4 · 105 τ0 the stars reach their plateau region. The plateau value is calculated
by averaging over the time region, where the curves are �at between 4 ·105 τ0
and 106 τ0, depending on the individual star. The error is calculated by ob-
taining the standard deviation of the plateau values. The reptation plateaus
are shown for the example of the asymmetric stars with backbone length of
Zb = 10 entanglements in Figure 32. The values for the plateau heights for
these and the stars with backbone length of Zb = 16 can be found in Table 9.
The reptation plateau is used to calculate the side arm friction that should
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be independent of the backbone. It is also needed for the calculation of the
"hopping parameter" p2 in Section 6.1.5.
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Figure 32: Region of the reptation along the tube for the Mean Square Displacement
divided by t1/2 for the asymmetric 3-arm stars with 10 entanglement back-
bone length and side arm lengths between 0.25 and 1 entanglements as
well as the linear chain.

6.1.3 Side Arm Friction

To evaluate the additional friction Farm that a short unentangled side arm adds
to the backbone friction of a linear polymer the following procedure is used
to normalize to the linear chain. This is a alternative way to represent the data
with several approximations and does not have strong physical signi�cance.

Dstar

Dlin
=
G2star · d2lin
G2lin · d

2
star

, (6.2)

using eq. 6.1,D the di�usivity along the tube,G as the plateau height value
and d the tube diameter of the di�erent polymers. In a �rst approximation we
set the tube diameters to the same values as we do not have the diameters for
the individual stars. Knowing that the di�usivityD is inverse proportional to
the polymer friction [67] asD ∝ 1

F , the relationship between the friction and
the plateau values becomes

Fstar

Flin
∝
G2lin
G2star

. (6.3)

The goal of these approximations is to �nd the friction that is added to the
linear chain by the short side arm, so with Fstar = Fbackbone + Farm the �nal
relationship between arm friction and the measured plateau height becomes

Heff = 1+
Farm

Flin
∝
G2lin
G2star

. (6.4)
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Heff is the e�ective friction normalized to the linear chain. A linear chain
with no side arm has Heff = 1 and the values increases proportional to the
friction provided by the short side arm. The resulting values for plateau height
G and Heff for the two di�erent backbone lengths are listed in Table 9 with
the values for the plateau height of the stars with side arm longer than one
entanglement on the backbone Zb = 16 used from the publication of Bačová
et al.[57].

Table 9: Plateau heights from the MSD divided by t1/2 for the asymmetric stars with
short side arms (G). Proportional e�ective friction added by the side arm for
the same stars (Heff). Values with * have been taken from Bačová et al.[57]
to expand the data with values for longer sidearms.

Zarm plateau height G plateau height G Heff Heff

Zb = 10 ZB = 16 Zb = 10 Zb = 16

0 0.157± 0.005 0.136± 0.007 1 1

0.25 0.142± 0.004 0.124± 0.004 1.22± 0.11 1.2± 0.16
0.5 0.119± 0.002 0.116± 0.003 1.74± 0.14 1.37± 0.18
0.75 0.096± 0.002 0.084± 0.003 2.67± 0.22 2.68± 0.38
1 0.084± 0.003 0.066∗ ± 0.003 3.49± 0.35 4.12± 0.78
2 - 0.031∗ ± 0.001 - 19.2± 2.7
3 - 0.023∗ ± 0.001 - 34.9± 5.3

To check the dependence of the e�ective friciton on the side arm length, it
is plotted for the two di�erent backbone lengths against the respective length
of the arm in Figure 33 and �tted with a quadratic function Heff = x ·Z2a + 1
with x ≈ 3. This matches the data for side arm lengths smaller and equal
to 1 entanglement but fails for the longer ones (Za = 2 and 3) as the friction
increases much faster with the length of the side arm than a quadratic function.
This is to be expected as the side arm friction should behave similar to the arm
relaxation time in its dependence on arm length (see Section 6.1.4). For short
unentangled chains the arm relaxation time τrelax is quadratic in its length
dependence. The friction seems independent on the length of the backbone
chain once normalized by the friction of the backbone linear chain in the two
simulated examples. Both types of polymers seem long enough to follow the
hierarchical relaxation behavior described in Section 2.3.1 were the short side
arm relaxes into a "friction bead" and the backbone can reptate along the tube.

6.1.4 Relaxation of Short Arm

To calculate the relaxation times τrelax of the short side arms of the asymmetric
stars the end-to-end correlation function [57] is used. It is de�ned as

C(t) =

〈
~R(t) · ~R(t0)

〉
R2(t)

, (6.5)
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Figure 33: E�ective friction Heff created by the side arm of the asymmetric star for
the two di�erent simulated backbone length, normalized to corresponding
linear chain. Zb = 10 (black) and Zb = 16 (red) with a quadratic �t
F = 3.0 ·Z2a + 1 (green).

with ~R(t) and ~R(t0) the end-to-end vectors of the side arm at the times t
and t0. When the correlation function in Figure 34 is zero it means that the
short side arm is fully relaxed. There are two commonly used de�nitions when
a polymer is said to have relaxed, one is when the correlation function is 0.1
which is called the "longest" relaxation time and the second one is when the
function is 1/e with e as Euler’s number.
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Figure 34: Relaxation of short side arms for the asymmetric stars with backbone
length of Zb = 10 (solid lines) and Zb = 16 (dashed lines) with short
arm length between Za = 0.25 and 1 in steps of 0.25. The horizontal lines
mark values of 0.1 and 1/e.

The calculated values for both can be found in Table 10. They are obtained
by �tting the relaxation with a KWW function and calculating the values for
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C(t) = 0.1 and 1/e. The theoretical prediction for the Rouse time is also
found in the table. For unentangled (Za < 1) polymers that are �xed on one
chain end the Rouse time is in the �rst approximation four times the Rouse
rate of the free linear chain

τrelax = 4 · τe ·Z2a, (6.6)

with the entanglement time τe = 1800 τ0 and Za the length of the short
arm. The fact that the chain is basically �xed in place at the branch point,
where it is connected to the backbone polymer contributes the factor 4 to the
standard Rouse time approximation. The comparison of both calculated and
theoretical values can be found in Figure 35. The 1/e relaxation times are in
decent agreement with the Rouse time expectation.

Table 10: Short arm relaxation times for the simulated asymmetric stars with back-
bone length of Zb = 10 and Zb = 16 for relaxation to 1/e and 0.1 and the
prediction by the Rouse theory.

Za side arm τrelax(0.1) in τ0 τrelax(1/e) in τ0 Rouse prediction in τ0
Star with Zb = 10 backbone

0.25 1600± 200 400± 70 450

0.5 6000± 500 1400± 200 1800

0.75 21500± 3000 4300± 200 4050

1 37000± 5000 7400± 200 7200

Star with Zb = 16 backbone
0.25 1400± 200 350± 80 450

0.5 6000± 500 1400± 200 1800

0.75 20500± 3000 4300± 400 4050

Zb = 16 longer side arm from literature [57]
1 37000± 9000 - -
2 439000± 65000 - -
3 2133000± 507000 - -

This validates the quadratic dependence of the Rouse relaxation time on
the arm length for short unentangled chains. This quadratic behavior does not
apply for chains longer than one entanglement and the arm takes much longer
to relax. This can be seen by comparing the data of the star with backbone of
Zb = 16 with data from literature [57] for stars with longer side arm with
Za = 1, 2, 3 (see Table 10). The increase in relaxation time is obviously not
quadratic anymore for Za > 1 and slows down rapidly for more entangled
chains.

6.1.5 Hopping parameter calculation

The dimensionless hopping parameter p2 gives the mean distance the branch
point is assumed to move as a fraction of the tube diameter (pd) after the
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Figure 35: 1/e relaxation times of short side arms for the asymmetric stars with back-
bone length of Zb = 10 (black) and Zb = 16 (red). Theoretical relaxation
time �tted (blue).

relaxation time of the short arm τrelax. p is supposed to be one, but in rheology
was found to be much smaller for short (but still entangled) arms. Here p shall
be determined by the following calculation from Ref. [57] for the results of the
simulations on asymmetric stars with very short unentangled side arms.

Starting with the equation for the di�usivity as introduced and explained
in Section 6.1.2

D =
π

4d2

(
〈r2〉
t1/2

)2
, (6.7)

and combining it with the expression for it from Ref. [7] which includes the
time dependent diluted tube diameter dh. For a diluted tube the branch point
needs to cover a smaller distance along the primitive tube path but the actual
distance covered is set by the time scale of the short side arm retraction τrelax.
This expression is given by

D =
p2d4h
2τrelaxd2

(6.8)

where dh can be either the undiluted tube diameter dh = d or the diluted
one d2h = d2/ϕα with ϕ the tube survival probability and τrelax is the short
arm relaxation time. This leads to an expression for the hopping parameter:

p2 =
πτrelax

2d4h

(
〈r2〉
t1/2

)2
. (6.9)
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This equation however does not take the friction of the backbone into ac-
count. The more general expression that includes the backbone friction is
given by

p2 =
2d4πτrelax

d4h


(
〈r2〉
t1/2

)2
4d4 − 3π3τeZb

(
〈r2〉
t1/2

)2
 . (6.10)

Here Zb is the backbone length. The results for the p2 calculations from
the MSD data of the MD simulations are shown in Figure 36. The calcula-
tions were made with the 0.1 relaxation time for the short side arm to keep
consistent with the literature results. Using the 1/e value for the relaxation
time decreases the p values for the unentangled side arm signi�cantly, mak-
ing them between three and �ve times smaller. Using this relaxation time does
not omit the failure of the description once backbone friction is included. The
tube survival probability was approximated with

ϕapprox =
Zstar − 3Za
Zstar

(6.11)

with Zstar the amount of material of the complete star in number of entan-
glements. This approximation assumes that the star relaxes at the same speed
from each open end.
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Figure 36: Hopping parameter plotted as 1/p2 for asymmetric stars with backbone
length of Zb = 10 and Zb = 16 with short side arms between Za = 0.25
and Za = 3. α = 4/3 for the dilated tube and 1 otherwise. The results for
the stars with short arm larger than 1 are taken from Bačová et al.[37].

Without backbone friction, (green and red symbols) the results would show
that for very short side arms the factor p2 becomes very small in the orders of
1/40 to 1/200 and for longer side arms (Za > 1) the �t (dashed line) comes
close to the expectation of a value of unity for very long arms. The calcula-
tion however fails completely for Za < 0.75 if backbone friction is taken
into account (blue and pink symbols) and the results are no longer valid. This
makes the theory not universal for all lengths of short side arms even if it
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gives a rather good description for entangled ones [15, 57]. In the rheological
experiments on the asymmetric stars (see Section 6.2) it is also found that the
p2 value loses most of its relevance for very short (Za < 1) side arms. This
makes the failure of theoretical description of the parameter for these cases
less important.

The analysis of the simulation results showed that the e�ective friction that
is a added by the short unentangled side arm is even for these very short side
chains signi�cant and increases quadratic with the arm length. The short arm
relaxation times follow as expected in �rst approximation the Rouse relax-
ation times behavior for chains that only have one free end. These relaxation
times are also observed as independent of backbone length. The approach for
obtain the hopping parameter from the calculated MSD data only obtains func-
tional results as long as backbone friction is not taken into account. As a result
this approach is not fully applicable for unentangled side arms.

6.2 rheology

Rheological measurements have been performed on the di�erent asymmetric
PB star polymers and linear chains to study the in�uence of short unentangled
side chains on the dynamic response to the strain γ. The theory to describe
the asymmetrical star data is the model by Frischknecht et al. [15] and is de-
scribed in Section 3.4.

In addition to the already shown symmetric polymer stars in Section 5.2 the
storage and loss modulus of the Asym S-1.0 star and three linear PB chains
of di�erent lengths have been measured. The measurements are in part com-
pared to data from already published stars [39] and two unpublished data sets
for large asymmetric stars with short side chains with Za = 0.3 and 0.5 also
provided by Zamponi et al. (see Table 2). The experimental data is shifted to
25◦C room temperature. The theoretical models have been calculated using a
Maple script with the following input variables.

The backbone arm length and the short side arm length, were taken from
the synthesis and the plateau modulus G0 and the entanglement time τe
were �tted. The dilution exponent α was set to 4/3, the entanglement mass
Me = 1900 g/mol as in the model for the symmetric stars. The �nal �t results
can be found in Table 11. Note that the Asym L-0.5 have values that deviate
strongly from the others probably due to problems during the measurement
or the temperature matching. As the curves are basically only shifted, they
can still be used to analyze the form of the dynamic response and the �t of
the hopping parameter p2.

Comparing the storage and loss modulus of symmetric and asymmetric
stars shows if and how pronounced the polymers demonstrate the typical
characteristic spectrum of branched systems. Therefore Figure 37 shows the
measurements on the new short 3-arm small and Asym S-1.0 polymers.

The symmetric star has 3 arms of Z = 5 which is equal to the two long
arms of the asymmetric star. The short arm of the asymmetric star is Za = 1.
The Asym S-1.0 had to be adjusted inω-direction to exactly match the Rouse
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Figure 37: G ′′ loss- and G ′ storage-modulus measured for symmetric and asymmet-
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Table 11: Rheology parameters for asymmetric polybutadiene stars. All stars have the
same α = 4/3, p2 = 1/60 andMe = 1900 g/mol.

sample: τe in s G0 in Pa
Asym L-0.3 0.20× 10−6 0.95× 10−6

Asym L-0.5 0.90× 10−6 0.75× 10−6

Asym L-1.0 0.20× 10−6 1.0× 10−6

Asym S-1.0 0.30× 10−6 1.1× 10−6

region of the symmetric counterpart. The di�erence between the symmetric
and asymmetric star is not as pronounced as for the much larger stars found
by Zamponi et al. [39] but still easily observable. The asymmetric star shows
a much weaker or less pronounced plateau region that is also over a smaller
time regime than the plateau of the symmetric counterpart. The theoretical �t
using the theory of Frischknecht et al. matches the data very well at all parts
of the frequency spectrum, much better as for the larger stars in the already
mentioned literature. The values for τe and G0 are also comparable with the
results from symmetric stars once adjusted for the shift to match the Rouse
regime. The value of G0 is close to the literature values for polybutadiene of
1.15× 10−6 Pa [61].

Figure 38 shows the comparison of a linear polybutadiene chain with Z =

6.3 with the Asym S-1.0 star. The linear chain is signi�cantly shorter than
the backbone but nevertheless one can compare the form of the storage and
loss modulus. The typical plateau or shoulder of branched polymers is barely
visible in the asymmetric star and it looks quite similar to the linear chain.

The rheology of asymmetric stars was investigated by Frischknecht et al.
[15] and it can be described dependent on the hopping parameter p2 in their
theory. For stars with a short side arm of only a few entanglements they found
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Figure 38: G ′′ loss- and G ′ storage-modulus measured for asymmetric stars (black
symbols) and linear chain (blue symbols) (Z = 6.3) at reference tempera-
ture 25◦C.

p2 to be very low. Here now in rheological measurements of asymmetric
stars with Za < 1 it shows a interesting behavior. Two di�erent asymmet-
ric stars with very small Za are shown in Figure 39. The theoretical model
(Frischknecht) matching them is shown with di�erent p2 values between 1
and 1/60. The �gures only show the data for the low ω region to highlight
the di�erences between the di�erent p2 plots.

The di�erence between the two stars and the p2 dependence of the match-
ing theory is quite obvious. Changing this parameter in the theoretical model
for the long asymmetric star Asym L-0.3 with very short unentangled side
arm of only 0.3 Me, it has almost no in�uence on the form of the plot. While
a small value of p2 = 1/60 achieves the best �t for the measured data, even
going as far as changing it to 1 still generates adequate graphs that describe
the data reasonably well. The plots for the di�erent p2 values are so similar
that even with the zoomed Figure 39 they are barely distinguishable.

This is in strong contrast to the plots for the smaller star Asym S-1.0with a
still unentangled side arm of length Za = 1 or about 2 kg/mol. There again a
small value of p2 = 1/40 creates the best description, but once going higher
than 1/10, the shift from the small p2 graph becomes too large and the data
for low frequencies are not described by the theory anymore. A very similar
behavior to changes in p2 could be observed for a large asymmetric star Asym
L-1.0 (backbone length 54 kg/mol) with the same side arm of length 2 kg/mol.
The theoretical model showed a strong dependence on p2 very similar to the
one shown in Figure 39 bottom graph. This leads to the assumption that p2 is
only strongly dependent on the length of the short side arm without a direct
dependence on backbone length.

Testing the dependence on p2 with di�erent side arm length showed that
for very short arms Za < 1, the hopping parameter becomes less important
and can be chosen at any value smaller or equal to one with no changes to the
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Figure 39: G ′′ Loss- and G ′ storage-modulus measured (symbols) for asymmetric
star L-0.3 (top) and S-1.0 (bottom) with theoretical model (lines) shifted
to 25◦C. Theory plotted for di�erent values of p2 between 1 and 1/60

Rouse regime and only minor changes in the transition to �ow and the viscous
frequency regime. However, if the short side arm is of length Za = 1, the pa-
rameter p2 still has to be set to a small values of less than 1/10 for the theory
to describe the data. Comparing this to the p2 values from the simulations it
is interesting to note that for Za < 1 the description either produced very
small values between 1/10 and 1/100 or failed to give applicable results once
the backbone friction was included into the calculations. For Za = 1 the theo-
retical description was still valid and resulted in values of p2 between 1/6 for
the undiluted tube including backbone friction and 1/35 for the dilated tube
without backbone friction included. These two values are within the validity
window in Frischknecht theory for the asymmetric stars looking at Figure 39
as they give a reasonable description for the data.

As seen in Section 5.2, rheology also allows the measurement of the viscos-
ity of polymers and this was also done for the asymmetric polymer stars and
the three di�erent linear PB chains. The results are shown in Table 12 and
taken from Figure 41.



6.2 rheology 81

1 10 100 1000 10000 1e+05 1e+06

ω in rad/s

1

10

100

1000

10000

G
''/

ω
  i

n 
 P

a 
s

Asym S-1.0
Asym L-1.0
Asym L-0.5
Asym L-0.3
lin 6.3
lin 21
lin 27.4

Figure 40: G ′′/ω for the asymmetric stars and linear chains. The viscosity can be
read o� the plateau part at low frequencies.

It is known from theory [30] that the melt viscosity η of linear polymers
scales with the molecular weight and is described by the power law η0 ∝
M3.4 and the measured linear chains con�rm this as well which can be seen
in Figure 41 where the red symbols represent the linear chains that roughly
match the Z3.4.

For the asymmetric stars there is no known scaling for the viscosity rela-
tion to either backbone length or side arm length. It is nevertheless not too
surprising that they roughly follow a similar scaling as the linear chains. Their
typical �ow behavior is more similar to a linear chain of similar length as their
backbone than a symmetric star (see again Figure 41 black symbols). A scal-
ing factor cannot be obtained from the measured samples. The small side arm
have obvious in�uence on the viscosity behavior but because the lengths of
the arms are not consistent for all stars it is not possible to �nd a direct de-
pendence. There is only a single star pair with the same exact side arm length
that can directly be compared to each other, but this is not enough data to give
a meaningful result for viscosity scaling of asymmetric stars. As the viscosity
measurement is basically a measurement of the position of the low frequency
part of G ′′/ω of the rheological data it has the same dependence on the ac-
curacy of the data shift as the other results which explains the inaccuracy for
the Asym L-0.5 star that should have a lower viscosity and the Asym L-0.3
that should have a higher one, to be more similar to each other, see earlier
discussion.

The rheological experiments compared the short (Z = 5) asymmetric star
with their symmetric counterpart and linear chain. The results show that un-
like the experiments on much larger (Z = 13) [39] they behave much closer
to linear chains than to stars. The viscosity scaling with backbone length is
similar and the storage and loss modulus also are closer to those of linear
chains in their general appearance. It was also observed that for very short
(Za = 0.5) side arms the hopping parameter p2 becomes quasi irrelevant for
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Figure 41: Viscosity of the linear chains and the asymmetric stars dependent on the
backbone length inZ. Red symbols are the linear chains, black symbols are
the di�erent asymmetric stars and the green line is the theoretical scaling
with length ∝ Z3.4[30].

Table 12: Viscosity for the di�erent asymmetric PB stars and linear chains.

System Viscosity η backbone length
in Pa s in kg/mol

Asym L-0.3 1800± 100 46.2

Asym L-0.5 3500± 200 44.9

Asym L-1.0 5600± 300 55.7

Asym S-1.0 91± 5 20.6

lin 6.3 23± 2 12

lin 21 1100± 100 40

lin 27.4 4400± 250 52

the theoretical description of the experimental data even though the theory is
still sensitive to the parameter for Za = 1.

6.3 dynamic structure factor

Neutron spin echo spectroscopy was performed to measure the dynamic struc-
ture factor, in this case for the asymmetric 3-arm polymer star with linear
backbone of Zb = 10 and a short side arm of Za = 1 with a protonated la-
bel of the same size as the symmetric 3- and 4-arm stars of 1 kg/mol on three
arms stemming from the branch point. The measurements were made to times
up to around 400 ns and at q values between q = 0.05Å−1 and 0.115Å−1.
The experiments were also performed at the same temperature at 509 K to
compare the stars in their melt condition.

Figure 42 shows the normalized dynamic structure factor S(q, t)/S(q) of
the Asym S-1.0 star with its corresponding MD simulation data. The solid lines
represent the structure factor gained from the MD simulations that has again
been scaled to the experimental time and tube diameter (see Section 5.6.2).
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Figure 42: Dynamic structure factor measured with NSE spectroscopy (symbols) and
calculated from MD simulations (solid lines) for the Asym S-1.0 star with
backbone length Zb = 10 and short side arm of Za = 1. The q values are
0.05Å−1, 0.077Å−1, 0.096Å−1 and 0.115Å−1 from top to bottom.

For the time scaling the same factor (γt = 7/2100 ns) has been used. In order
to obtain better agreement for the larger q vales, the γq scaling factor was
slightly adjusted to γq = 47/8.75Å/σ = 5.4Å/σ instead of 5.6Å/σ (for
the symmetric stars). This mapping gives good agreement of simulations and
experiment for all q except the lowest one that, as already discussed in Sec-
tion 5.6.2 shows a stronger decay in the experiments than the simulations (and
theoretical descriptions) for all measured stars independent of their individual
geometry.
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Figure 43: Dynamic structure factor comparison between 3-arm Sym small (red) and
Asym S-1.0 (black) stars. Lines: MD simulation results, Symbols: NSE re-
sults. The q values are 0.077Å−1 and 0.115Å−1 from top to bottom.

In Figure 43 the direct comparison of the asymmetric star with the corre-
sponding symmetric star is shown and for better visibility only two q values,
0.077Å−1 and 0.115Å−1 are plotted.
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Comparing the two di�erent systems of symmetric and asymmetric stars
one can see that up to times of 20 to 40 ns both stars show almost identical
decay. After that, the dynamic structure factor of the symmetric star levels
o�, whereas the one of the asymmetric star shows a stronger decay. This time
window, where they start to diverge from each other is in agreement with the
short arm relaxation time of 7400 τ0 =̂ 25 ns that was obtained from the simu-
lations in Section 6.1.4. This would be in agreement with the notion that once
the short side arm of an asymmetric star has fully relaxed the BP can move
along the tube of the backbone chain, whereas the BP in the symmetric case
is more localized.

The S(q/t)/S(q) to which the systems decay di�er signi�cantly by the
time they reach the 500 ns which is the longest the NSE spectroscopy can
reach. The symmetric star (both NSE and MD) at q = 0.077Å−1 decay to
roughly 0.6, whereas the asymmetric star with the same q decays to 0.45.
Similar patterns can be observed for the other q values. This means that the
branch point of the asymmetric star has a signi�cant higher mobility than the
one of the symmetric star of same "backbone length". This is a quite interesting
result compared to previous measurements with symmetric and asymmetric 3-
arm stars [39]. These measurements with much longer arms (Za = 13 which
equals a backbone length ofZb = 26 for the asymmetric star with a short side
arm of one entanglement length) showed only a minor di�erence in the mo-
bility of the two systems and the dynamic structure factor for both large stars
were going into a plateau. An explanation for this would be that the in�uence
of the tube survival probability is signi�cantly stronger for smaller stars than
for their larger counterparts. Further discussion can be found in Section 6.3.2

In order to describe the stronger decay and higher mobility of the asym-
metric star several contributing factors are considered. The faster decay of
the tube survival probability (see Section 5.5) and center of mass di�usion for
the on-setting di�usion along the backbone tube that is not possible for the
symmetric systems.

6.3.1 Center of Mass Di�usion

The increased mobility of the short asymmetric star might be partially ex-
plained by the contribution of the center of mass di�usion (CMD) that is hap-
pening at a much higher rate for small and especially asymmetric stars than
it does for symmetric and larger asymmetric ones. To show the in�uence of
CMD it was calculated from the simulation data and plotted together with the
branch point mean square displacement in Figure 44 to compare the magni-
tude and importance of both. One can easily see in the plot, that for the largest
part of the NSE time window the CMD is orders of magnitude lower than the
MSD and has therefore a very little in�uence on the mobility of the system.
At about 400 ns, which is roughly the extent of the experimental NSE time
window, it is in all four cases still only about 1/3 of the MSD value. The nu-
merical CMD values of the Asym S-1.0 star are roughly 50% higher than the
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corresponding 3-arm symmetric star of same arm length. The CMD generally
shows an expected sub-di�usive behavior of

〈
r2(t)

〉
CMD = 6Dtκ (6.12)

at relevant NSE experimental times t < 400 ns, with D the di�usion coef-
�cient and κ an exponent that is < 1 for sub-di�usion for the di�erent simu-
lated stars in the NSE time window, κ varies between 0.55 and 0.59.
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Figure 44: BP Mean Square Displacement and Center of Mass Di�usion of the simu-
lated symmetric stars and the asymmetric S-1.0 star. 3-arm in black, 4-arm
in red, 5-arm in green and Asym S-1.0 in magenta. The MSD of the BP is
plotted as solid lines and the CMD is plotted as dashed lines. The NSE time
window of 400 ns is marked with a vertical black dashed line.

At later times larger than 400 ns the di�usive behavior of the polymer
changes, where for the NSE time window the exponent is more or less con-
stant (see Figure 44), it increases at longer times which can be seen in Figure 45,
where the linear chain and the corresponding 3-arm symmetric and asymmet-
ric stars are shown with their CMD. The �ts were done for times larger than
3500 ns. At these long times the CMD of the linear chain is basically no longer
sub-di�usive as the exponent κ is almost equal to 1, paired with a very small
di�usion coe�cient relative to the values of sub-di�usive D. The 3-arm star
only reaches an exponent κ of 0.50 for similar times. The �t for the CMD of
the Asym S-1.0 results in values of 0.256t0.64 which are still far below the
di�usive regime. This shows that a branched system will take signi�cantly
longer to reach normal di�usive behavior. This cannot be simulated within a
reasonable time frame with the used methods.

The di�usion constant D = 1/6 · 0.034 σ2/ ns of the linear chain was
calculated by �tting at long times and converted to Å2/ns by multiplying
it by the squared scaling factor for the tube diameter 5.62. This results in
D = 0.178Å2/ns= 1.78× 10−8 cm2/s which is consistent with results from
Pearson et al. [68] for linear Polyethylene chains. As normal di�usion is not
reached for the star systems, it is not possible to compare the simulations
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with di�erently obtained di�usion coe�cients for star systems from litera-
ture. The inclusion of the CMD in the description of the dynamic structure
factor of the asymmetric star is shown in Section 6.3.2. When the di�usion is
implemented as obtained from the CMD �ts (even without inclusion of DTD),
it overestimates the dynamics at longer times (outside of NSE window), there-
fore the di�usion coe�cient was �tted where it was applied to the dynamic
structure factor. For the symmetric stars the di�usion contribution should also
be smaller as there is no reptation possible and including it in the Vilgis-Boué
model that already includes DTD would not be reasonable as it is probably
already contains part of the di�usion e�ect in the dilution theory.
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Figure 45: BP Mean Square Displacement and Center of Mass Di�usion of the sim-
ulated symmetric 3-arm star and the linear Z = 10 chain and the Asym
S-1.0 star. 3-arm in black, Asym in magenta and the linear chain (Z = 10)
in blue. The MSD of the BP is plotted as solid lines and the CMD is plotted
as dashed lines. The �tted valus of the exponetns and 6 ·D for di�erent
systems are indicated with a small shift below the data to increase visibil-
ity.
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6.3.2 Theoretical description for dynamic structure factor

The Vilgis and Boué theory that was modi�ed to include the tube survival
probability was used as a starting point to describe the behavior of the asym-
metric polyethylene stars. For this the theory was adjusted to include the tube
survival probability of the asymmetric star that was calculated in Section 5.5. It
is the combination of the individual survival probabilities of the two long and
the short arms weighted by their arm lengths and can be seen in Figure 24. To
use the calculated tube dilution it was once again �tted with a KWW function
with the resulting parameters τK = 5.9× 103 and β = 0.385 which decays
faster than the symmetric star. At the time scale of the NSE spectroscopy ex-
periments (400 ns) the relaxation function of the symmetric 3-arm star has
reached a value of 0.78, whereas the Asym S-1.0 star already decayed to 0.70.

The description of the asymmetric star with the modi�ed Vilgis and Boué
theory is shown in Figure 46. With the solid blue lines, using the same Rouse
rate and tube diameter as the small symmetric 3-arm stars and the dashed
blue line �tting these two values. The overall trend up to 100 or 200 ns more
or less matches the experimental values but it fails at longer times, where
the theory does not decay fast enough to describe the measured data. Fitting
the two values does not signi�cantly change or improve the results. The tube
diameter d has to be lowered by 0.6Å to adjust for the changed TSP. The
change in Rouse rate, which is mainly responsible for the steepness of the
decay at early times has to be increased (from Wl4 = 4.6× 104 Å4ns−1 to
5.6× 104 Å4ns−1) from the 3-arm symmetric star to better match the data.
This brings the value closer to the one for the linear chain as it is no longer
reasonable to describe the added friction from the very short side arm with
the 2/f relation as the constraint is less strict as for systems with longer arms.
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Figure 46: Dynamic structure factor of Asym S-1.0 star (black symbols). Solid blue
line: Theory with Rouse rateWl4 = 4.6× 104 Å4ns−1 and tube diameter
d = 35.4Å of 3-arm symmetric. Dashed blue line: Theory with �tted Rouse
rateWl4 = 5.6× 104 Å4ns−1 and d = 34.8Å. The q values are 0.05Å−1,
0.077Å−1, 0.096Å−1 and 0.115Å−1 from top to bottom.
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To better describe the data the e�ects of the center of mass di�usion of
the polymers were integrated into the modi�ed Vilgis and Boué theory. This
sub-di�usive process is described in detail in Section 6.3.1. The CMD for the
simulated system was calculated and �tted with

〈
r2(t)

〉
= 6Dtκ to obtain

the di�usion exponent κ for the inclusion of the sub-di�usion in the dynamic
structure factor

S(q, t) = exp
(
−q2Dtκ

)
· Smodified V+B(q, t). (6.13)

The di�usion exponent for the Asym S-1.0 star was found to be 0.578 for
times up to 400 ns. The di�usion coe�cientD from �tting the simulated CMD
was about a factor of four larger than the one obtained by �tting to the exper-
imental S(q, t)/S(q). The values obtained from �tting to the experimental
results should nevertheless be su�cient to describe the additional decay of
the asymmetric stars.

The e�ect of simply including the CMD without changing any other pa-
rameter is shown in Figure 47. The di�erence between the blue and the green
theoretical curve is as expected signi�cant enough to create a much better
description of the strong decay at later times. The matching of theory and
experiments worsens for times between 30 and 100 ns, where the theory lies
below the data.
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Figure 47: Dynamic structure factor of Asym S-1.0 star (black symbols). Solid green
line: Theory (with Rouse rateWl4 = 4.6× 104 Å4ns−1 and tube diameter
d = 35.4Å) including sub di�usion with a �tted di�usion coe�cient of
D = 0.5Å2ns−1. Solid blue line: Theory as before without di�usion.

To obtain a better description of the data with the theory the Rouse rate
Wl4 and the tube diameter dwere �tted. This again lets the Rouse rate that is
now at 6.0× 104 Å4ns−1 get closer the the one of the linear chain. The tube
diameter also reduces slightly by around 1.1Å. The di�erence between �tted
values and using the values for the symmetric star can be seen in Figure 48,
where both are plotted. The match for the �tted theoretical description (solid
red line) is signi�cantly better and describes the data with the exception of the
lowest q value well. At intermediate times, the theory is slightly lower than
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the NSE data.
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Figure 48: Dynamic structure factor of Asym S-1.0 star (black symbols). Solid green
line: Theory with ("old") Rouse rate Wl4 = 4.6× 104 Å4ns−1 and d =

35.4Å and a di�usion coe�cient of 0.5Å2ns−1. Solid red line: Theory
with �ttedWl4 = 6.0× 104 Å4ns−1 and �tted d = 34.3Å and a di�usion
coe�cient of 0.5Å2ns−1.

As the MD simulations give the possibility to reach much larger times than
standard dynamic structure factor measurements with NSE, it is interesting
to see if the same theoretical descriptions also work for the simulation results.
The Figure 49 shows the NSE data compared to the simulations S(q, t)/S(q)
and the modi�ed Vilgis and Boué theory without di�usion (blue dashed line)
and with CMD (solid red line) respectively. The observed time window is now
between 2 and 2000 ns. The �t with the same variables as the 3-arm symmet-
ric star starts to fail to describe the MD data for times as short as 200 ns.

Now using the theory that incorporates CMD and a �t of the Rouse rate
Wl4 and the tube diameter d, one can see in Figure 49 that at least for times
matching the NSE window up to 400 ns the match is still good. Only at longer
times the simulation decay quite a bit faster than the theory. The di�usion
coe�cient was �tted and resulted in 0.5Å2ns−1 as the factor gained from
the simulations was a factor of four too large as explained in the earlier sec-
tion. The real CMD is not constant over time but changes both the di�usion
constantD and the di�usion exponent κ over time as has been shown in Sec-
tion 6.3.1. But this change happens only at later times (≈ 1000 ns for the
asymmetric star) than where the theory starts to deviate from the simulation
dynamic structure factor.

With the modi�ed Vilgis and Boué theory model with the inclusion of cen-
ter of mass di�usion it is possible to obtain a theoretical description of the
dynamic structure factor for the measured center labeled asymmetric poly-
mer star for the NSE time window. It generally underestimates the mobility
of the stars at longer times that are accessible with MD simulations and other
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Figure 49: Dynamic structure factor from NSE and MD simulation of Asym S-1.0 star
(black symbols and black solid lines). Dashed blue line: Theory with Rouse
rate Wl4 = 4.6× 104 Å4ns−1 and tube diameter d = 35.4Å of 3-arm
symmetric without CMD. Solid red line: Theory with �tted Rouse rate
Wl4 = 6.0× 104 Å4ns−1 and tube diameter d = 34.3Å and a di�usion
coe�cient of 0.5Å2ns−1.

alternatives should be considered to describe these type of systems.

One possibility to describe the system would be to split the dynamic pro-
cess into two time regimes, where the time until the short side arm is fully
relaxed can be described by the model of Vilgis and Boué and the later times
by the motion of a linear chain. The motion for a linear chain is described by
DeGennes [41] or Likhtman et al. [36] (which includes contour length �uctu-
ations). This method has the disadvantage that is it designed for fully labeled
chains and not for center labeled ones that are the topic of this work. There-
fore the the model of Fatkullin and Kimmich will be used in Section 6.3.3 to
try to describe the dynamic structure factor of the asymmetric stars.

6.3.3 Alternative description of scattering data

A di�erent approach to describe the dynamic structure factor of the asymmet-
ric star would be to divide the process into two di�erent time sections. The
�rst would be for times t < τrelax, where the short side arm is still not fully
relaxed and the polymer more closely resembles its symmetric counterpart
in its mobility. During this time frame the same model as for the symmetric
system (modi�ed Vilgis and Boué model) with just the replaced function for
the tube survival probability would be used. After the relaxation time τrelax

of the short side arm the star acts more similar to a linear chain within a tube
con�nement that allows the movement in the tube direction explaining the
increase in mobility after that time window.

A possible way to describe this would be to adapt the theory of Fatkullin and
Kimmich [69] that describes the self correlation of segments moving within
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a tube. So far the observed dynamics was described by using the coherent
dynamic structure factor eq. 3.9, but for small label and small enough q this
is here not completely true anymore, as one does observe the non-correlated
scattering of labeled parts, which is the self-correlation of the label or the
incoherent scattering function eq. 3.10.

Fatkullin and Kimmich have calculated the dynamic structure factor for the
self-motion along the tube under consideration of non-gaussianity e�ects. The
resulting self-correlation term is therefore

SFK(q, t > τrelax) = exp
(
q4d2

216
· 〈r2(t)〉

)
erfc

(
q2d

6
√
2

√
〈r2(t)〉
3

)
, (6.14)

where "erfc" is the error function and the mean square segment di�usion is

〈r2(t)〉 = 2
√
1

π
Wl4t. (6.15)

This is only valid for times longer than the entanglement time τe (no tube
restriction before) but as it is not used up to the relaxation time of the short
arm which is much longer, this does not pose a problem. Combining the mod-
i�ed Vilgis and Boué model with the theory of Fatkullin and Kimmich one
gets

Scombined(q, t) =

 Smodified V+B(q, t) for t < τrelax

SFK(q, t) for t > τrelax

. (6.16)

To obtain a smooth transition from the modi�ed Vilgis and Boué model
to the description of Fatkullin and Kimmich, the self correlation function at
times larger then τrelax is renormalized to the value of Smodified V+B at τrelax.
This modi�cation lifts the values for later times. This method was already ap-
plied for the example of center labeled linear chains in Ref. [39]. Applying this
theory to the Asym S-1.0 star with the parameters for the symmetric 3-arm
star and with the �tted values is shown in the Figures 50.

Once the tube diameter and the Rouse rate are �tted, the match for the NSE
results is good. The smallest q shows the already expected mismatch for later
times where the experimental data are lower than the theoretical description.
In the case of the highest q = 0.115Å−1 the theory matches quite well up to
a time of around 200 ns, only at longer times the data shows a stronger decay.

Comparing the simulation to the same theory, the �ndings are similar (see
Figure: 51) The match for q = 0.077Å−1 is up to the NSE time window still
quite good but the lowest theoretical q is too low over the complete time
window. For the higher q and times larger than 200 ns the theory does not
describe the faster relaxation in the simulation results. An explanation for this
mismatch could be the fact that in order to have a continuous transition be-
tween the two theories the SFK(q, t) had to be brought up to higher values to
match the Smodified V+B(q, t) at the time τrelax. This means that at later times
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the Fatkullin and Kimmich theory would actually be already much closer to
zero and �atten out for that reason. This makes this combination of theories
not a very good candidate to describe very long times for the simulation data.
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Figure 50: Dynamic structure factor from NSE measurements of Asym S-1.0 star
(black symbols). Dashed blue line: Theory with ("old") Rouse rate Wl4 =

4.6 × 104 Å4ns−1 and d = 35.4Å. Solid red line: Theory with �tted
Wl4 = 6.0× 104 Å4ns−1 and �tted d = 34.3Å

Figure 51 also shows the dynamic structure factor including center of mass
di�usion

Scombined+CMD(q, t) = Scombined(q, t) · exp
(
−q2Dtκ

)
(6.17)

with the same di�usion coe�cient and exponent as used in the earlier cal-
culations (green lines). The resulting theoretical description creates a better
match for the large q values at long times but completely fails to describe the
intermediate time scales and the low q values.

The analysis of the dynamic structure factor and its comparison with MD
simulations and theoretical description was more complicated than the one
for symmetric star. The matching of simulations and experiments are of good
quality and con�rm the results from other sections, that the asymmetric stars
have a much higher BP mobility than their symmetric counterparts. Many
di�erent mechanics such as the center of mass di�usion of the polymers, and
di�usion along the tube can play a roll in the dynamics of the branch point.
This was tested in this chapter by combining them with the modi�ed Vilgis
and Boué model and the theory of Fatkullin and Kimmich. A good description
of the NSE time window was achieved using modi�ed V + B together with
di�usion but for the longer simulated times further testing has to be done to
�nd a satisfactory theory.
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Figure 51: Dynamic structure factor from MD simulations of Asym S-1.0 star (black
lines). Solid red line: Theory with �tted Wl4 = 6.0 × 104 Å4ns−1 and
�tted d = 34.3Å. Dashed green line: same theory as red but including
CMD for asymmetric star.





7
C O N C L U S I O N A N D S U M M A R Y

This work is a systematic study on the in�uence of arm length, number of
arms and asymmetry on the mobility of the branch point in star polymers. To
investigate the complex dynamic processes on a molecular length-scale, NSE
spectroscopy measurements have been performed. They have been combined
with MD simulations, which extend the observable time frame and allow to
analyze additional polymer structures. Additional macroscopic characteriza-
tion by rheology has also been performed. All systems examined showed good
agreement between simulations and experimental results. Key insights have
been found for some of the following highlighted points.

Branch point con�nement and early tube dilution
From the simulated systems the �uctuations of the branch point around its
mean position was determined. The early tube dilution, and with it the so-
called "diving modes", where the BP can explore the tube of individual arms
were found for the 3-arm stars as expected from previous works. This e�ect
was however strongly hindered for stars with number of arms four and larger.
The space in which the BP moves is strongly restricted for these functionali-
ties and a much stronger con�nement is observed. It was also found, analyzing
simulations results for the dynamics of segments along the arms, that the in-
�uence of the branch point on the mobility of di�erent segments along the
arms has quite a long reach, with an e�ect still visible for segments up to
three entanglements from the BP, however severely reduced and no longer
distinguishable by functionality at these distances.

Functionality dependence
The in�uence of functionality f (3,4 and 5), the number of arms, on the BP
dynamics of symmetric stars was studied in simulations and experiments for
the �rst time. The mean square displacement (MSD), the dynamic structure
factor and the directly observed mobility (using MD) of the branch point was
examined. The main results are, that the increase in functionality creates a
signifcantly stronger con�nement for the BP. The slow-down of the dynam-
ics follows the theoretical dependence of 2/f [40] for the MSD of large stars.
As expected, the rheological results showed very small in�uence of the func-
tionality as they are mainly dependent on the chain and arm lengths of the
investigated polymers. The analysis of the MSD from simulations showed that,
once early tube dilution and branch point friction are accounted for, there is
still a dependence on the functionality. This is revealed in the di�erent time
exponents describing the movement of the BP.

Dynamic tube dilution (DTD)
The e�ect of dynamic tube dilution is shown to be much stronger for smaller,
still entangled stars, than for their larger counterparts with similar geome-
try, both symmetric and asymmetric. This could directly be observed by the
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experiments on the polymer �ow (rheology) and NSE spectroscopy on BP dy-
namic as well as MD simulations support this �nding. By modifying the model
of Vilgis and Boué [16] for cross-linked networks to include DTD and tube
parameter renormalization a good description for the dynamic structure fac-
tor (from NSE) of the symmetric star polymers was found. The theoretical
description only falls short at very long times that far exceed the NSE time
window as seen in the MD simulations. One of the driving factors of DTD is
the amount of unrelaxed material relating to the tube survival probability, in
a polymer system where the DTD is proportional to it. Simulations revealed,
that they do show a signi�cant functionality dependence in their MSD but not
in their tube survival probability. The failure of the DTD model to describe the
branch point relaxation at longer times for higher functionality suggest that
the model might need to be adjusted to include a functionality dependence.

In�uence of unentangled short side arms
Experiments and simulations on 3-arm asymmetric polymer stars (with unen-
tangled short side arm (Za 6 1) and long entangled backbone) were analyzed
concerning the e�ect of di�erent short arm lengths and backbone lengths. The
following results were found: Short unentangled side arms increase the e�ec-
tive friction of the star scaling quadratically with their arm length. This is
consistent with the Rouse theory for tethered arms. The short side arms have
to fully relax to allow reptation along the tube. Therefore longer, entangled
side arms increase the friction even more. Calculating the hopping parameter
p2 using the current theoretical models fails for unentangled short side arms.
Rheological experiments showed, that the actual in�uence of this parameter
is signi�cantly reduced for systems with these type of short side chains. NSE
measurements revealed that once the short arm has relaxed, the BP can move
along the tube of the longer mildly entangled arm (similar like linear chains)
in agreement with Rheology. Finding a theoretical description for the dynamic
structure factor of asymmetric star from NSE and simulations showed to be
quite challenging. The di�erent theoretical approaches incorporate the sub-
di�usive center of mass motion for the asymmetric stars, resulted in a good
description for the NSE time window. But they all fail to describe the dynam-
ics the long time scales beyond the NSE window that are accessible with MD
simulations.

This investigations has found some new and partially unexpected character-
istics for the dynamic of branched polymer systems and their branch point.
Further research should be done on the following topics to �nd the needed
adjustments for the theoretical models.

• Functionality dependence even when corrected for ETD and friction
that is not explained by DTD

• DTD theory most likely needs to incorporate functionality dependence

• Theoretical explanation for hopping parameter p2 quasi irrelevancy for
unentangled side arms of polymers

• No satisfactory model for the dynamic structure factor for asymmetric
star polymers at long times yet
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The combination of experimental methods and computer simulations has shown
to be a great path to investigate these complex polymer systems. Branched
polymers show very unique dynamic behavior and are a interesting �eld of
study with various parts that still have to be explored further.





A
A P P E N D I X A

a.1 random phase approximation

Calculating the static structure factor for polymer melts consisting of two
polymer types (A andB) which is the equivalent to the experimentally labeled
and unlabeled. For these polymers the local density �elds ρA(~r), ρB(~r) and
their Fourier transformations are needed. These are given by

ρA~q =
∑
ω,l∈A

exp(i~q ·~rωl ), ρB~q =
∑
ω,l∈B

exp(i~q ·~rωl ). (A.1)

The sums are over they individual polymer sorts A and B with l the vector
of a segment on the chain ω. If individual chains contain both species (A
and B) the two density variables become correlated. If not, they are just sums
over large numbers of independent variables and are therefore Gaussian. The
density variables ρA~q and ρB~q are distributed as

Φ0(ρ
A
~q , ρB~q) ∼ exp

−1
2

∑
~q

(
ρA−~qρ

B
−~q

)
M−1

~q

(
ρA~q

ρB~q

) . (A.2)

This represents the concentration �uctuations of the density �elds and it
is related to the entropy of the system. M~q is the matrix for the correlation
functions in absence of interactions

M~q =

(
SAA0 (q) SAB0 (q)

SBA0 (q) SBB0 (q)

)
. (A.3)

With each matrix element given as (example of AB)

SAB0 (q) =
〈
ρA~q ρ

B
~−q

〉
0
= ncs

AB
0 (q) =

〈∑
l∈A

∑
l ′∈B

exp (i~q · (~rl −~rl ′))

〉
0

.

(A.4)

nc giving the total number of chains in the system and the sXX0 the single
chain structure factor. Taking constant monomer denisty into account and the
static structure factor for a two component chain blend with SXX0 as the cor-
relations functions becomes eq.2.11.

All correlation terms for the f-arm star are listed in Table 13. It also shows
the correlation terms for a asymmetric 3-arm star, where two arms are the
same length and composed of the protonated partHα and the deuterated part
Dα. The third arm can be of di�erent length with Hβ andDβ the lengths of
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Table 13: S0 for HH, DD and HD single chain correlation functions.

Correlator f-arm symmetric star 3-arm asymmetric star
SHH0 = nc · f · JH + f(f− 1) ·H2H 2 · JHα + JHβ + 4 ·HHαHHβ

+ 2 ·H2Hα
SDD0 = nc · f · JD + f(f− 1) ·G2HH2H 2 · JDα + JDβ + 2 ·G2HαH2Dα

+ 4 ·GHαGHβHDαHDβ
SHD0 = nc · f ·HHHD(1+ (f− 1) ·GH) 2 ·HDαHDα + 2 ·HHαHDαGHα

+ 2 ·HDαHDβGDα +HDβHHβ

+ 2 ·HDβHHαGHβ

Figure 52: Schematic representation of asymmetric polymer with deuterated parts
Dα and Dβ in black and protonated parts Hα and Hβ in green.

the segments. For better visual presentation the example of the asymmetrical
3-arm star is shown in Figure 52.

To generate these correlators one has to count the number of possible inter-
actions between the di�erent segments. As an example for the 3-arm asymmet-
ric star: There are two "self-terms" for Dα as there are two outer deuterated
segments in the star (2 · J). There are two "coterm" plus "propagator" factors
that are needed for the connection between the twoDα segments (2 ·G2H2).
There is only one "self-term" for theDβ segments of the asymmetric arm (1 · J).
There are four possibilities for "coterm" plus "propagator" between the asym-
metric outer segment Dβ and the regular outer segments Dα (4 · GGHH).
This has to be repeated for the corresponding inner segments interactions
and the cross term interactions between the labeled inner segments and the
non-labeled outer segments. These correlators are put into equation 2.11 to
calculate the incompressable static structure factor.

For the calculations the following three expressions [27] are needed

G = exp(−F2α) (A.5a)

H = Nα
1

F2α

(
1− exp(−F2α)

]
(A.5b)

J = N2αjD(F
2
α). (A.5c)
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They are called the propagators (G), coterms (H) and self-terms (J) with
F2α = q2b2Nα/6 as the normalized wave vector and jD(F2α) the Debey struc-
ture factor jD(x) = 2

x2
(exp(−x) − 1+ x). Depending on the part of the poly-

mer, α will be H or D for protonated and deuterated polymers. Each of the
three terms in eq. A.5 stands for a interaction in a copolymer depending on
what part is looked at. As an example a 3-arm symmetric star is used that
is labeled with a protonated part around the branch point. The interactions
between protonated parts do not need any "connecting" parts so for these cor-
relations only the "propagator" and the "self-term" are needed. For the inter-
actions between the deuterated parts the "self-term" and additionally also the
connecting "coterm" is used. For the correlations between the deuterated and
protonated elements both the "propagator" (in this case two di�erent ones)
and the "coterm" are used without any self-correlations.
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