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1 Summary

Classical chemotherapy is often accompanied by severe adverse effects and new combination

therapy options to circumvent this problem are still needed. Actin binding substances have

shown promising results in different experimental setups but have not made it into the clinics

yet. The proposed role of actin in DNA damage repair, however, makes actin binders potential

combination partners with DNA damage inducing chemotherapeutics like doxorubicin. In this

study, actin binding substances, such as the actin polymerizer jasplakinolide and the depoly-

merizer latrunculin B (LB), were applied to investigate the mechanisms of the proposed role of

actin in nuclear DNA double strand break (DSB) repair pathways and to assess whether the

application of actin binders is feasible for combination cancer therapy.

DSB induction by doxorubicin treatment led to a reduction of a mobile nuclear actin fraction

and to an increase in polymerized actin in the nucleus, suggesting that the polymerization state

of nuclear actin plays a crucial role in DNA damage signalling. DSB repair strongly depended

on the maintenance of the actin equilibrium and actin manipulation inhibited DSB repair by

influencing specific signalling cascades in distinctive DSB repair pathways. During homology

directed repair (HDR) and single strand annealing (SSA), actin binders affected the recruitment

of replication protein A (RPA) to the site of DNA damage, a process that is essential for the

induction of both pathways. RPA was bound to nuclear actin under control conditions and

released after damage induction, indicating that actin is directly involved in the recruitment

of this repair factor. Furthermore, during non-homologous end joining (NHEJ), actin binders

reduced activating phosphorylation of DNA-PK. Functionally, synergistic effects of low dose

combination therapy of Doxo and LB on proliferation in different cancer cell lines could be

demonstrated in vitro, and these effects could be linked to an increased DNA damage level in

tumor cells in vivo.

In summary, these findings imply a direct involvement of actin in nuclear DNA damage repair

mechanisms and propose a possible application of actin binding substances for combination

therapy with DNA damage inducing agents.
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2 Introduction

2.1 The role of DNA damage induction and repair in cancer therapy

2.1.1 Cancer incidence and general treatment strategies

Cancer is a multifactorial malignant disease and is one of the leading causes for death worldwide

with lung, liver, colorectal and breast cancer among the most frequent cancer types [1–3]. The

generation of malignant tumors happens during a multistep process in which healthy cells acquire

distinctive capabilities that help them become tumorigenic. These capabilities that are required

for tumorigenesis were termed hallmarks of cancer. They include, among others, the increase in

cell proliferation due to the enabling of replicative immortality and the escape from cell death in-

duction and growth suppression, as well as the activation of angiogenesis, invasion and metastasis

[4, 5]. Targeting the above mentioned hallmarks is considered a promising strategy for tumor

therapy. Classical chemotherapeutics, like the DNA damage inducing agent doxorubicin or the

cytoskeleton targeting paclitaxel, mainly address the first two mentioned characteristics, namely

increased cell proliferation and evasion of cell death. Doxorubicin causes cell cycle arrest and

cell death by inducing high levels of DNA damage, whereas paclitaxel attacks the microtubule

system. As highly proliferative cells, such as cancer cells, strongly depend on functional DNA

replication and cytoskeleton functions, both agents can successfully be used for cancer therapy

[6, 7]. However, high proliferation rates are not exclusive to cancer cells and neither the DNA

nor the cytoskeleton represent tumor tissue specific targets. Treatment with these chemothera-

peutics leads therefore to severe side effects [7, 8]. To reduce unwanted side effects during cancer

therapy, more selective agents were designed. To give one example, the development of kinase

inhibitors was based on the idea to inhibit signalling pathways that are hyperactivated in can-

cer due to tumor specific mutations [9]. Veramufenib for instance specifically inhibits mutated

BRAF in melanoma and showed very promising results in clinical trials. However, resistance de-

veloped after only a few months, probably because of the very high specificity of this approach

[10]. In general, initially efficient monotherapies often fail after a prolonged time period due to

the development of resistances [11]. In order to evolve towards a malignant status, cancer cells

have to acquire modifications in more than one of the above mentioned processes [5]. Targeting

not only one but several of those hallmarks by combination therapy represents a strategy to on

the one hand increase the efficacy of the administered drugs and thereby reduce side effects and

on the other hand prevent rapid development of treatment resistances.

As the number of cancer patients is still expected to grow [3] and the above mentioned

problems that arise during cancer therapy are often still not solved, the need to develop new

strategies remains. The formulation of new combination therapies offers a promising approach.

10



2 Introduction

2.1.2 Induction of DNA damage by the chemotherapeutic doxorubicin

Doxorubicin (Doxo), also called adriamycin, belongs to the class of anthracyclines and was first

isolated as a metabolite of Streptamyces peucetius var. caesiues [12] (see Fig. 1).

Figure 1: Chemical structure of doxorubicin [13].

Doxo binds to DNA and topoisomerase 2 (top2) isoenzymes. The formation of top2-doxo

complexes at the DNA induces DNA double strand breaks (DSBs) and thereby inhibits DNA

replication and promotes cell cycle arrest and apoptosis [6, 14–16]. Additionally, Doxo is involved

in the generation of reactive oxygen species (ROS) and thus increases oxidative stress in cells [8].

It is nowadays widely used in the clinics for chemotherapeutic cancer treatment, such as breast,

lung and ovary carcinomas [17]. However, due to its short half-life in the blood circulation and its

extensive non-selective tissue distribution, treatment with Doxo is accompanied with severe side

effects. Even though Doxo proved to be highly efficient in cancer therapy, it leads to both acute

and delayed cardiotoxicity as cardiomyocytes are especially sensitive to Doxo induced oxidative

stress. As a consequence, cancer patients that underwent anthracycline chemotherapy carry the

risk for early cardiovascular morbidity [18–20].

Although Doxo shows dose-limitations due to its organ toxicity, it is still considered to be

one of the most potent chemotherapeutics. It is therefore a promising candidate for combination

therapy to make use of its anti-tumoral potential and even further increase its efficacy while

reducing unwanted secondary effects. A rather new idea is to exploit dysregulated DNA damage

repair signalling for cancer therapy. The FDA approval of the first DNA repair inhibitor olaparib

[21] showed that DNA repair inhibition is indeed feasible for cancer therapy. The addition of

DNA repair factor inhibitors to DNA damage inducing chemotherapeutics, however, represents

a so far uninvestigated approach. Further extensive research is therefore needed to evaluate in

detail if the inhibition of a potential tumor suppressive process such as DNA damage repair can

be used for cancer therapy in combination with DNA damage inducing agents.
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2 Introduction

2.1.3 DNA double strand break repair pathways

The DNA damage response (DDR) describes the collectivity of all processes that are directly

involved in the repair of damaged DNA and also includes all associated pathways that are ac-

tivated. After sensing of damages DNA, cell cycle arrest ensures that the cell gets enough time

to repair the damage, whereas cell death is induced if the extent of DNA damage is too high to

be repaired in time. Depending on the type of damage, different repair pathways are triggered

[22, 23]. In this work, mainly the double strand break of the DNA and its associated repair path-

ways will be explained in detail, since it is inflicted by treatment of cells with chemotherapeutics

such as doxorubicin and represents the most deleterious type of damage.

Double strand breaks are sensed by MRN complex, which is composed of the three members

Mre11, Rad50 and Nbs1. MRN is involved in early DNA repair processes by its recruitment to

the site of damage followed by the phosphorylation and activation of its numerous substrates

(see Fig. 2). The activation of MRN not only starts signalling pathways directly necessary for

DNA repair but also regulates associated processes such as cell cycle checkpoint activation.

MRN is therefore considered to be one of the key players of DSB repair in the cell (reviewed

in [24, 25]). One important substrate of the MRN complex is ATM which is activated upon

DSB induction and plays a fundamental role in DSB repair [24, 26]. The ATM-Chk2 pathway

is not only involved in Rad51-dependent DNA repair, but also in Cdc25-dependent cell cycle

arrest and p53-mediated apoptosis induction (see Fig. 2). ATM furthermore phosphorylates the

histone H2AX at Ser139 [27], which leads to the recruitment of the nuclear protein MDC1, a

multidomain scaffolding protein that is important for many functions of phosphorylated H2AX

(yH2AX) during DSB repair [28, 29]. MDC1 amplifies the DSB response as it recruits MRN and

retains ATM associated to MRN, resulting in its prolonged activation [30, 31]. Phosphorylation

of H2AX is thus involved in early DSB signalling. Detection of yH2AX foci is often used as a

biomarker for damaged DNA as phosphorylation of H2AX represents a very sensitive indicator

of the presence of DSBs [32, 33].

Double strand breaks can be repaired by four different repair pathways and the choice depends

primarily on the cell cycle state of the cell (see Fig. 3). Non-homologous end joining (NHEJ)

describes the annealing of blunt DNA ends which occurs throughout the cell cycle, but domi-

nantly in GO/G1 and G2, and functions independently of sequence homology. On the contrary,

the other three pathways, homology-directed repair (HDR), single strand annealing (SSA) and

alternative end joining (alt-EJ), are homology-based repair pathways and depend to different

extents on DNA end resection, i.e. the processing of DNA adjacent to the DSB to generate

ssDNA (reviewed in [34, 35]).
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2 Introduction

Figure 2: The MRN-ATM-yH2AX pathway in double strand break (DSB) repair (simplified). The

MRN complex is formed upon DSB induction and is responsible for the activation of signalling path-

ways involved in DNA repair and induction of apoptosis and cell cycle arrest. MRN phosphorylates

ATM which leads to the activation of its kinase activity. ATM phosphorylates e.g. Chk2, H2AX and

p53.

During NHEJ, the Ku70/80 heterodimer (Ku) is the first protein complex that is recruited

to free DNA ends that appear upon DSB induction. The resulting Ku-DNA complex forms the

basis for the recruitment of nucleases, polymerase and ligases that are required for the joining of

both adjacent DNA ends of the DSB [36, 37]. Binding of Ku to DNA presumably leads to con-

formational changes that allow additional binding of DNA-PKcs (catalytical subunit) [38, 39].

The DNA dependent protein kinase (DNA-PK) is thus formed by the binding of its catalytical

subunit to DNA-bound Ku, resulting in its activation. Activated DNA-PK extensively phos-

phorylates itself but also many other targets involved in NHEJ [40, 41]. One important target

of DNA-PK is the endonuclease Artemis. If two DNA ends are unsuitable for direct ligation,

for example due to incompatible 3’ or 5’ overhangs, Artemis can be recruited in complex with

DNA-PKcs and upon autophosphorylation of DNA-PK is activated by it and gains its endonu-

clease activity [42]. Endo- and exonuclease activities are needed for limited DNA end resection

(<5 nucleotides) to ensure that the two DNA ends are compatible and Artemis seems to be the

primary nuclease for that [43]. For example, Artemis removes the incompatible 3’ and 5’ DNA

overhangs in order to create DNA ends that can be ligated later by the XRCC4-DNA ligase

IV complex [37]. Ku catalyzes DNA ligation, i.e. the bridging between two DNA ends, as it

promotes the binding of XRCC4-DNA ligase to the DNA ends [44–46]. Ku also interacts with

polymerases µ and λ which promote ligation of DNA ends [37, 47]. The two subunits of the

DNA-PK - Ku and DNA-PKcs - are thus key players in NHEJ signalling, since they regulate

many involved factors.

As mentioned above, the other DSB repair pathways depend on DNA end resection, i.e. the

nucleolytic degradation of DNA ends. End resection results in ssDNA sections which are required

for recruitment of specific repair proteins involved in homology based repair pathways [48, 49].

13



2 Introduction

Figure 3: Distinct pathways for DNA double strand break repair. Dependent on the cell cycle state,

DNA double strand breaks (DSB) will be repaired by non-homologous end joining (NHEJ), alternative

end joining (Alt-EJ), homology derived repair (HDR) or single strand annealing (SSA).
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2 Introduction

The above mentioned MRN complex plays a crucial role in the induction of end resection, for

example due to the exo- and endonuclease activities of Mre11 [50, 51]. Together with its interac-

tion partner CtIP (C-terminal binding protein 1 (CtBP1) interacting protein) the MRN complex

mediates the first step of end resection to generate short ssDNA sections [52]. The limited end

resection by MRN and CtIP is sufficient for the activation of alt-EJ, which utilizes PARP-1 me-

diated annealing at short homologous DNA sequences (<10bp = microhomologies). Nucleases,

polymerases as well as the DNA ligase III complex can be involved in alt-EJ, depending on how

it is orchestrated [34].

In the second step of end resection, termed ’extensive resection’, EXO1 (exonuclease 1) and

DNA2 endonuclease/-BLM helicase are recruited to generate longer ssDNA tails [52] that are

required for the binding of replication protein A (RPA). RPA is a heterotrimer composed of the

RPA70 (=RPA-1), RPA32 (=RPA-2) and RPA14 (=RPA-3) subunits [53] and its binding to

ssDNA is crucial for the initiation of both HDR and SSA. During HDR, which can only occur if

a template, i.e. the sister chromatid, is available, BRCA2 mediates RPA replacement by Rad51

[54]. Coating of the ssDNA with Rad51 is required for strand invasion of the intact homologous

region on the sister chromatid which serves as the template for accurate repair [55, 56]. The

DNA strand is then extended by a DNA polymerase which leads to the creation of a D-loop.

After D-loop creation, the error is repaired either by the formation of a Holliday junction or

is completed via noncrossover products without Holliday junction formation (termed synthesis-

dependent strand annealing pathway) [57].

The second RPA dependent pathways is SSA which is not based on sister chromatid exchange

but uses homologous repeat sequences that flank the DSB. Rad52 binds to the ssDNA-RPA

complex and together they facilitate both the alignment and the annealing of homologies around

the break [55, 58, 59]. ERCC1 forms a complex with XPF that cleaves 3’ssDNA tails upon

annealing, gaps are filled by DNA polymerases and the activation of DNA ligase completes SSA

[60].
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2.2 The actin cytoskeleton - a potential target?

2.2.1 Actin structure and function in cytoplasm and nucleus

The cytoskeleton of the cell is a dynamic polymer network which is comprised of three main

components (reviewed in [61]): the microtubule system [62], intermediate filaments [63] and mi-

crofilaments (also known as the actin cytoskeleton) [64].

Actin, a 42 kDa structural protein, is highly conserved through all species and belongs to

the most abundant proteins - almost all eukaryotic cells harbour genes for actin. Actin can be

found in both muscle and non-muscle cells [65, 66] and in mammals in six different isoforms,

αcardiac-, αskeletal-, αskeletal-, βcyto-, γcyto- and γsmooth-actin (reviewed in [67]). In general the

actin cytoskeleton is essential for the mechanical structure and motility of a cell and thus plays

a role in many physiological functions [68]. The actin cytoskeleton is involved in the forma-

tion of cellular structures like lamellipodia, stress fibers and focal adhesions which are needed

for cell movement and migration [69]. Additionally, actin is crucial for cell division and pro-

liferation as the functional separation of two daughter cells during cytokinesis of mammalian

cells depends on the contractile ring of actin filaments. Furthermore, eukaryotic cells transport

organelles along the actin cytoskeleton making it also an important transport system in cells [68].

Actin exists in two states in the cell, monomeric G-actin and polymerized, filamental F-actin.

F-actin is formed in a three steps process which includes a nucleation, an elongation and a

steady state phase (Fig. 4). During the first phase, three to four G-actin monomers aggregate

into unstable oligomers (nuclei). The addition of further actin monomers leads in the next phase

to the rapid elongation of the nucleus into a filament. The F-actin filament will grow until a

steady state is obtained in which an exchange of actin monomers is still observed, but with-

out any change in the total mass of F-actin filaments (described in [70]). Actin filaments are

asymetric, also termed polar, with a pointed (-) end where actin monomers can be dissociated

(depolymerization of the actin filament), preferably when bound to ADP, and a barbed (+)

end at which ATP-bound actin monomers can be added (polymerization of actin) [71]. Both

poly- and depolymerization processes of actin are tightly controlled by on the one hand proteins

that bind to monomeric G-actin and on the other hand proteins that bind to the barbed end of

F-actin filaments (reviewed in [71, 72]). Up to now more than 100 actin binding proteins (ABPs)

are known to be directly involved in the regulation of the dynamic process of actin polymeriza-

tion [68]. To name only a few, gelsolin and ADF/cofilin are involved in the actin turnover by

promoting actin filament disassembly [73, 74], whereas profilin and the Arp2/3 complex play a

central role in filament assembly (reviewed in [71, 75, 76]). Arp2/3 complex e.g. is activated by

WASP family proteins and catalyses nucleation of F-actin filaments with free barbed ends [71].

Polymerization of actin is therefore a very dynamic process depending on the needs of the cell.

For a long time actin function has mostly been associated with the cytoplasm, but since its

discovery in the nucleus in 1969 [77], an increasing number of studies suggests important nuclear

functions of actin. In contrast to cytoplasmic actin, nuclear actin is believed to exist mainly as

monomers or oligomers under physiological conditions [78], but polymerization of nuclear actin

16



2 Introduction

Figure 4: States of actin in the cell. Three actin monomers (G-actin) form a nucleus which is the basis for

the formation of filamental F-actin during the elongation process until a tightly regulated steady state

is obtained. In the cell F-actin is mainly polymerized at the barbed end (+) and depolymerized at the

pointed end (-).

seems to occur as a stress response e.g upon heat shock or DNA damage induction [79, 80].

Polymerized actin in the nucleus was first described by McDonald et al. [81] and actin nucle-

ators were found later on in the nucleus as well (reviewed in [82]), strengthening the assumption

that actin filament assembly also happens in the nucleus. Moreover, different mechanisms of

active actin transport from and to the nucleus have been described. In general, nucleocytoplas-

mic traffic of proteins occurs via nuclear pores, either by passive diffusion (<40kDa) or active

transport receptors (>40kDa) [83]. Actin does not harbor a NLS sequence and cannot pass the

nuclear pores by passive diffusion and is thereby considered to be dependent on one or more

transport systems. ABPs, such as cofilin, harbor NLS motifs and might therefore play a role in

the transport of actin from or to the nucleus. Cofilin and importin-9 were shown to be important

for the import of actin to the nucleus [80, 84, 85], whereas exportin-6 was found to be responsible

for the export of profilin-bound actin [86]. In addition, actin harbors two NES (nuclear export

sequence) sequences which are necessary for the actin export via exportin-1 [87]. Actin is con-

sidered to be involved in different nuclear mechanisms. Actin is for example not only responsible

for the mechanical integrity of the cytoplasm but also of the nucleus, as the nuclear matrix was

found to mainly consist of actin [88]. Additionally, actin was proposed to function in chromatin

remodeling and modifying mechanisms, as it is part of chromatin remodeling complexes during

transcriptional activation and in histone acetyl transferase complexes (chromatin modifiers) (re-

viewed in [89, 90]). Along these lines, actin seems to be important for the regulation of RNA

polymerase II-mediated transcription [91]. Several studies have been published that propose an

involvement of nuclear actin in DNA damage repair signalling as well (see 2.2.4).

2.2.2 Targeting actin with actin binding substances

The state of actin can be manipulated by two distinct classes of actin binding substances (Fig.

5 and 6). Polymerizers, such as jasplakinolide, chondramides and miuraenamides promote poly-

merization (or aggregation) of actin and therefore increase the F-actin pool in the cell. On the

contrary, depolymerizers, such as latrunculin B and chivosazole reduce the appearance of fila-

mental actin and increase the G-actin pool.

Among the actin polymerizers, jasplakinolide (Jaspla) was first described in 1988 as an anti-

fungal agent isolated from the soft-bodied sponge Jaspis species (Astrophorida, Jaspidae) [92].

Jaspla is a potent inducer of actin polymerization and binds with phalloidin competitively to
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Figure 5: Targeting of actin by actin binding substances. The state of actin can be manipulated by two

distinct classes of actin binding substances. Polymerizers promote actin polymerization and thereby

increase the F-actin pool in the cell. Among the polymerizers, jasplakinolide binds to F-actin and

impairs depolymerization of actin at the (-) end. Depolymerizers, on the contrary, decrease the F-

actin pool by preventing polymerization of actin. For example, Latrunculin B binds to G-actin and

impairs addition of actin monomers to an existing actin filament.

F-actin, resulting in stabilized filamental actin that is resistent to depolymerization in vitro [93].

Chondramides, first isolated from the myxobacterial strain Chondromyces crocatus, are struc-

turally very close to Jaspla and act in a similar way as they also bind to the actin binding site

of phalloidin [94, 95]. Like Jaspla, chondramides stabilize existing actin filaments and reduce

the number of physiological actin stress fibers in the cell by unphysiological actin aggregation

[95, 96]. Miuraenamides were first isolated from the myxobacterial strain SMH-27-4 as potential

antibiotic agents [97] and miuraenamide A (Miu) was later identified as another actin binding

and polymerizing substance [98]. Miu can now be obtained by full synthesis [99, 100].

As mentioned above, actin can also be manipulated in the opposite way, by preventing actin

polymerization and thereby increasing the G-actin pool. Both toxins latrunculin A and B, pu-

rified from two Latrunculia magnifica species (marine sponges), were one of the first identified

actin depolymerizers. Effects of latrunculins on microfilament organization were found to be pro-

nounced, but reversable, and specific to actin (and not microtubules) [101]. Four years later it

could be shown that the effect of latrunculin on the actin organization is caused by a direct bind-

ing of latrunculin to actin monomers which leads to an impairment of actin polymerization [102].

Total synthesis of latrunculin B (LB) has been possible for over 20 years [103] and it is still used

for research as a classical actin depolymerizer. Chivosazoles are less known and characterized

actin binding substances, isolated from the culture broth of the secondary metabolite-producing

myxobacteria strain So ce56 (S. cellulosum) [104]. Chivosazole A and F show strong effects

on the actin cytoskeleton of cells, comparable to latrunculins. In vitro it could be shown that

chivosazoles not only inhibit actin polymerization but also cause depolymerization of already

existing actin filaments [105]. Chivosazoles are not as widely used yet, but provide new tools for

actin manipulation and investigation.
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Figure 6: Structures of actin binding substances. A Polymerizers. Jasplakinolide [95], Chondramides

[95], Miuraenamides [97]. B Depolymerizers. Latrunculin B [106], Chivosazole A [104].

2.2.3 The cytoskeleton as a chemotherapeutic target - potential application of

actin binding substances

Actin is required for cellular functions like proliferation and migration, processes that are abso-

lutely necessary for the development of malignant and metastatic cancers [5]. Actin represents

thus a promising target for cancer therapy, a strategy which is not applied in the clinics yet,

mainly due to feared severe side effects.

Nevertheless, targeting of actin has been suggested as a potential approach for cancer treat-

ment by different groups, as actin manipulation exhibits anti-proliferative and anti-metastatic

characteristics on tumor cells. Anti-tumor activities of Jaspla could be shown in vitro in three

prostate carcinoma cell lines and in vivo in Lewis lung carcinoma and prostate carcinoma

xenografts. Moreover, application of Jaspla showed additive effects when combined with ra-

diotherapy in different experimental approaches [107, 108]. In our group, chondramide showed

anti-metastatic potential in migration and invasion assays in vitro and inhibited metastasis to

the lungs in a breast cancer model in vivo, which was linked to the inhibition of the cellular con-

tractility [109]. Furthermore, chondramide induced caspase dependent apoptosis in breast cancer

cell lines, whereas non-tumor breast epithelial cells were found to be less sensitive to chondramide

treatment [110]. Although latrunculins and chivosazoles act the opposite way, they nevertheless

have been reported to exhibit chemotherapeutic potential. In human gastric adenocarcinoma

cells (MKN45, NUGC-4), latrunculin A treatment induced caspase dependent apoptosis in vitro

and led to improved survival rates of mice bearing MKN45 or NUGC-4 tumors [111]. Addition-

ally, latrunculin A was reported to enhance radiosensitivity in cancer cells in colony formation
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assays and to impair yH2AX-formation upon radiation [112]. Furthermore, chivosazoles A and

F both showed high anti-proliferative activity in human cancer cell lines [105].

Although actin binding substances showed anti-cancer characteristics in different experimental

setups, until now, the application of actin binding substances as a potential cancer therapy

approach has not been studied in detail and is still far from clinical use. The above mentioned

actin binding substances are nevertheless promising candidates for further investigations and

preclinical development.

2.2.4 Impact of actin reorganization on nuclear DNA damage signalling pathways

The presence of damaged DNA induces a great diversity of signalling pathways in the cell and

actin dynamics seem to influence the response to DNA damage on multiple levels. Polymeriza-

tion of actin has been reported to be induced by DNA strand breaks and to be required for DSB

repair.

It has been suggested by several groups that nuclear actin may play a direct role in DNA

damage (repair) signalling. One study showed that a reduction of the nuclear actin pool by

knockdown of the nuclear actin import factor IPO9 led to an increase in the number of DSBs

after treatment with methyl methanesulfonate (MMS). Knockdown of the export factor XPO6,

and the consequent increase of the nuclear actin pool, did not show any significant effects on

DBSs after treatment [79]. Thus, the availability of actin in the nucleus seems to be important for

DNA damage repair processes. Furthermore, nuclear actin filament formation could be detected

upon DNA damage induction by application of specific fluorescent probes that enable visualiza-

tion of actin in the nucleus [79]. To conclude, not only the existence of sufficient nuclear actin

but its polymerization was proposed to be required for efficient DSB repair [79, 113]. Actin bind-

ing substances have been applied by several groups in order to investigate the role of different

actin states in DNA damage repair processes. Latrunculin treatment of cells prior to irradiation

impaired DNA damage repair. The disruption of actin polymerization by latrunculin has been

shown to interfere with the chromatin association of different DSB repair proteins (Ku80, Mre11,

Nbs1, ATM, Chk2) upon DNA strand break in subcellular fractions [113]. Polymeric actin was

found to be bound to Ku in a F-actin pulldown assay and polymerization of actin was therefore

considered to be essential for DSB repair [113]. In pulldown assays of HeLa nuclear extracts,

in addition to Ku, other DNA damage repair factors, like RPA-3 and DNA-PKcs, have been

suggested as potential actin binding proteins. However, the proposed interactions have not been

experimentally validated in this study [114]. If disruption of polymerized actin has an effect

on the phosphorylation of the most commonly used DNA damage marker H2AX is not clear,

as different groups published opposing results [112, 113]. Moreover, nuclear F-actin seems to

participate in the binding of p53 to the nuclear matrix and p53 binding to F-actin was increased

upon DNA damage induction [115].

In addition to direct functions of nuclear actin on DNA damage repair, indirect effects of actin

on nuclear processes have been published. F-actin can directly bind to p53 [116] and inhibits its

nuclear import by retaining it in the cytoplasm [117], which allows the cell to repair the damage
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before cell cycle arrest or apoptosis are started. On the other hand, the G-actin binding protein

JMY is released upon actin polymerization following DNA damage induction and can now enter

the nucleus to enhance transcriptional activity by directly binding to p53 [118, 119].

The above mentioned examples show that the regulation of DNA damage induced mechanisms

by reorganization of actin, both in the cytoplasm and in the nucleus, is very complex and has

to be tightly regulated and is still far from being completely understood.
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2.3 Aim of the study

Classical chemotherapeutics are potent agents against cancer, but due to their insufficient speci-

ficity, treatment is often accompanied by severe side effects. Combination therapy is a promising

concept to make use of the anti-tumor characteristics of chemotherapy, while reducing substance

concentrations and unwanted secondary effects. One approach is to combine DNA damage induc-

ing agents with additional DNA repair inhibitors. Hovewer, most of the substances investigated

for this purpose have not (yet) surpassed preclinical trials and novel combination therapy formu-

lations are still needed. Actin binding compounds are still not used in the clinics, but represent

a promising tool as malignant cells are often especially dependent on cytoskeletal functions. In

addition, an involvement of actin in nuclear DNA damage processes has been suggested, but is

not yet well understood. Nevertheless, a potential requirement of functional actin in DNA repair

makes it a possible candidate for combination therapy with DNA damaging agents.

The aim of this study was on the one hand to uncover the underlying mechanisms behind

the proposed involvement of actin in nuclear processes during DNA double strand repair and

on the other hand evaluate the application of actin binding substances in combination with the

chemotherapeutic doxorubicin as a novel strategy for cancer therapy.
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3 Materials and Methods

3.1 Materials

3.1.1 Technical equipment

Table 1

Product Supplier

BIO-RAD PowerPac Basic Electrophoresis Power

Supply

Bio-Rad Laboratories, Munich, Germany

ChemiDocTMTouch Imaging System Bio-Rad Laboratories, Munich, Germany

FACSCantoTMII BD Biosciences, Heidelberg, Germany

FACSCaliburTM BD Biosciences, Heidelberg, Germany

Heated Plate for 1 Chamber in Multi-Well Format Ibidi, Martinsread

Heated Plate universal fit Ibidi, Martinsread

HeracellTM150, CO2 incubator Thermo Fisher Scientific, Germering, Germany

HerasafeTMKS, biological safety cabinet Thermo Fisher Scientific, Germering, Germany

HLC HBT 130, thermo block Biometra, Goettingen, Germany

Leica TCS SP8 SMD Leica Microsystem, Wetzlar, Germany

Mikro 22R, centrifuge Hettich, Tuttlingen, Germany

NanoDrop 1000 Spectrophotometer Peqlab, Wilmington, USA

Stage top chamber Bold Line Okolab, Pozzuoli, Italy

SunriseTMMicroplate Absorbance Reader Tecan, Maennedorf, Austria

Vi-CellTMRX Cell Viability Analyzer Beckman Coulter, Fullerton, USA

VXR Vibrax R©, shaker IKA R©-Werke, Staufen, Germany

3.1.2 Consumables

Table 2

Product Supplier

Cell culture flasks, plates Sarstedt, Nuembrecht, Germany

Eppendorf Sace Lock Tubes Eppendorf, Hamburg, Germany

FACS tubes Sarstedt, Nuembrecht, Germany

Falcons TPP, Trasadingen, Switzerland

Haake W19, water bath Thermo Haake, Karlsruhe, Germany

IbidiTMµ-Slide 8 Well Ibidi, Munich, Germany

IbidiTMµ-Slide 12 Well, removable chamber Ibidi, Munich, Germany

Microscope glas slides and coverslips Fisher Scientific GmbH, Schwerte, Germany

Nitrocellulose membran, Hybond-ECLTM Amersham Bioscience, Freiburg, Germany
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3.1.3 Substances

Chondramide B and Chivosazole were kindly provided by Prof. Dr. Rolf Müller, Helmholtz

Centre for Infection Research, Saarland University, Saarbrücken, Germany. Jasplakinolide was

purchased from R&D Systems, Bio-Techne GmbH, Wiesbaden, Germany. Latrunculin B was

purchased from Sigma Aldrich, Taufkirchen, Germany. Miuraenamide A was kindly provided

by Prof. Dr. Uli Kazmaier, Institute for Organic Chemistry, Saarland University, Saarbrücken,

Germany. All actin binding substances were dissolved in DMSO and stored at -20◦C. Doxorubicin

hydrochloride was purchased from Sigma Aldrich, Taufkirchen, Germany, diluted in H2O and

stored at 4◦C.

3.1.4 Chemicals and reagents

All chemicals not listed in this section were purchased from Sigma Aldrich, Taufkirchen, Ger-

many.

Table 3

Product Supplier

2,2,2-trichloroethanol Sigma Aldrich, Taufkirchen, Germany

2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic

acid)

Sigma Aldrich, Taufkirchen, Germany

7-AAD (7-Aminoactinomycin D) Fisher Scientific GmbH, Schwerte, Germany

Agarose, low gelling temperature Sigma Aldrich, Taufkirchen, Germany

Universal-Agarose, peqGOLD VWR Chemicals, Darmstadt, Germany

Amersham Hybond ECL nitrocellulose mem-

brane

GE Healthcare Europe, Freiburg, Germany

Amersham HybondP 0.45 PVDF membrane GE Healthcare Europe, Freiburg, Germany

Blotto (non-fat dry milk powder) Carl Roth, Karlsruhe, Germany

Bovine Serum Albumin Sigma Aldrich, Taufkirchen, Germany

Bradford reagent Roti R©-Quant Carl Roth, Karlsruhe, Germany

CellTiter-Blue R© Promega, Mannheim, Germany

CompleteTM (protease inhibitor) Roche diagnostics, Penzberg, Germany

Crystal violet Carl Roth, Karlsruhe, Germany

Dulbecco’s mofidifed Eagle’s medium PAN Biotech, Aidenbach, Germany

Dimethylsulfoxide Sigma Aldrich, Taufkirchen, Germany

Ethylenediaminetetraacetic acid Carl Roth, Karlsruhe, Germany

Fetal Calf Serum PAA Laboratories, Pasching, Austria

FluorsaveTM Reagent Millipore, Darmstadt, Germany

FuGENE R© HD Transfection Reagent Promega, Mannheim, Germany

GelRedTM Nucleic Acid Stain Biotium, Fermont, USA

Glutamine Sigma Aldrich, Taufkirchen, Germany

HiMarkTM Pre-Stained Standard Fisher Scientific GmbH, Schwerte, Germany

Hoechst 33342 Sigma Aldrich, Taufkirchen, Germany

Luminol AppliChem, Darmstadt, Germany

McCoy’s medium PAA Laboratories, Pasching, Austria

Na3VO4 Sigma Aldrich, Taufkirchen, Germany

Page Ruler Prestained Protein Ladder Germentas, St. Leon-Rot, Germany
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Table 3: continued from previous page

Product Supplier

Paraformaldehyde Polysciences, Pennsylvania, USA

Penicillin/Streptomycin 100x PAA Laboratories, Pasching, Austria

Phosphatase inhibitor Roche diagnostics, Penzberg, Germany

Protein A/G PLUS-Agarose (sc-2003) Santa Cruz Biotechnology, Inc., Heidelberg, Ger-

many

Puromycin hydrochloride Fisher Scientific GmbH, Schwerte, Germany

Pyronin Y AppliChem, Darmstadt, Germany

Pyruvate PAA Laboratories, Pasching, Austria

Rhodamine-phalloidin Life technologies, Darmstadt, Germany

Rotiphorese R© Gel 30 (37,5:1) Carl Roth, Karlsruhe, Germany

RPMI 1640 medium PAN Biotech, Aidenbach, Germany

Sodium dodecyl sulfate Carl Roth, Karlsruhe, Germany

Tris hydrochloride Sigma Aldrich, Taufkirchen, Germany

Triton X-100 Millipore, Darmstadt, Germany

Trypsin PAN Biotech, Aidenbach, Germany

Tween 20 VWR, Darmstadt, Germany

Yo-Pro R©-1 Iodide Fisher Scientific GmbH, Schwerte, Germany

3.1.5 Mixtures and kits

Table 4

Product Supplier

Duolink R© PLA Protein Detection Technology Sigma Aldrich, Taufkirchen, Germany
Liver Dissociation Kit, mouse (130-105-807) Miltenyi Biotec GmbH, Bergisch Gladbach, Ger-

many

3.1.6 General buffers and solutions

Buffers and solutions not mentioned here are specified in the respective method section.

PBS pH7.4 123.3mM NaCL, 10.4mM Na2HPO4, 3.2mM KH2PO4, H2O.

PBS+Ca2+/Mg2+ 136.9mM NaCl, 8.1mM Na2HPO4, 1.5mM KH2PO4, 2.7mM KCl, 0.5mM

MgCl2, 0.7mM CaCl2, H2O.

PBS-B 1mg/ml BSA, 0.01% sodium azide, PBS.

Trypsin/EDTA 0.05% Trypsin, 0.02% EDTA, PBS.
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3.1.7 Software

Table 5

Product Application Supplier

Adobe Reader PDF software Adobe Systems Software
Bibtex References Open source
FlowJo FACS analysis Tree Star Inc.
GraphPad Prism Data visualization, statistics GraphPad Software, Inc.
ImageJ Image analysis Open source
Inkscape Image editing Open source
JabRef References Open source
MagellanTM Protein concentration Tecan
Microsoft Office Package Data analysis, text editing Microsoft
Latex Text editing program Open-source

3.2 Methods

3.2.1 Cell culture

3.2.1.1 Cell lines

All cell lines used for this thesis are listed in (Tab. 6).

Table 6: Cell lines

Cell line Cell type Source

HeLa cervival cancer (human) DSMZ (Leibniz Institute, Braunschweig,
Germany)

T24 urinary bladder carcinoma (human) DSMZ (Leibniz Institute, Braunschweig,
Germany)

4T1-luc breast cancer (mouse) Perkin Elmer (Rodgau, Germany)
U2OS (I-SceI) bone osteosarcoma (human) [120]

HeLa and T24 cells were cultured in DMEM, 4T1 cells in RPMI. U2OS I-SceI reporter cell

lines were cultivated in McCoy’s medium + 1µg/ml puromycin.

3.2.1.2 Standard cell culture conditions

Cells were cultured under standard conditions (37◦C, 5% CO2, 95% humidity) in medium +

10% FCS + 1% Pen/Strep (complete medium, CM), depending on the cell line. All used cell

lines were cultured as adherent growing cells and had to be detached from the cell culture flask

by incubation with TE. Prior to any experiment, both cell density and viability were determined

with the ViCELL cell viability analyzer.

If not stated otherwise in all experiments for combination treatment of Doxo with any actin

substance, cells were pre-treated with each respective actin substance for 90mins before the

addition of Doxo. Maximum percentage of DMSO never exceeded 0.1%.
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3.2.1.3 Thawing and cryopreservation of cells

For cryoconservation, cell pellets (5min, 1500rpm) were suspended in 1ml FCS + 10% DMSO

and stored in liquid nitrogen. Cryopreserved cells were thawed at 37◦C for a few minutes and

then transferred to a tube with CM. After centrifugation (5min, 1500rpm), cell pellets were

resuspendend in fresh CM and transferred to a cell culture flask.

3.2.1.4 Transient transfection of cells

For transient protein overexpression, cells were plated 24h prior to the transfection. FuGENE R©

HD transfection reagent (Promega) was applied according to the manufacturer’s suggestion.

Follow-up experiments were conducted 24h after addition of FuGENE R© HD transfection reagent.

In case cells were treated with any substance, medium was changed to CM to exclude any possible

interference by the combination of reagents.

3.2.2 Cell viability and proliferation

3.2.2.1 Metabolic activity

Metabolic activity of HeLa and T24 cells was determined with the CellTiter-Blue assay (Promega)

adjusted from the manufacturer’s protocol. 5000 cells were seeded in 96-well plates in 100µl

medium and incubated for 24h, followed by treatment with Doxo [25nM] alone or in combi-

nation with actin substances LB [500nM] or Jaspla [50nM], respectively. After 72h, 20µl of

CellTiter-Blue reagent were added to each sample, incubated for 2-4h at 37◦C and fluorescence

signal measured at 530 nm with a microplate reader (SpectraFluor Plus, Tecan).

3.2.2.2 Colony formation assay

Clonogenic survival, after treatment with Doxo [250nM] and actin substances LB [1µM], Jas-

pla [100nM], was determined by colony formation assay. HeLa cells (1x105 cells/ well) or T24

(0.75x105 cells/ well) were seeded in 12-well plates and treated with Doxo alone or in combina-

tion with the respective actin substances for 2h. Cells were then washed with PBS, trypsinized,

counted and 1500 cells seeded in one well (6-well plate) in 3ml medium (performed in dupli-

cates). After 6 days, cells were washed with PBS, fixed in methanol (15 min) and cells stained

with crystal violet solution (30 min). Excess crystal violet was afterwards removed by washing

with H2O. Images of the individual wells were taken and total growth area was determined using

the ImageJ plugin ColonyArea.

Crystal violet solution 0.5% crystal violet, 20% methanol, H2O.

3.2.3 Flow cytometry

Cells used in this work usually emitted fluorescence after they had been infected with plasmids

that contained cassettes for GFP, or after staining with fluorophor-coupled secondary antibod-

ies. All experiments were either conducted with BD FACSCanto IITM (BD Biosciences) or

FACScalibur (BD Biosciences).
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As free Doxo shows fluorescence properties with an emission comparable to propidium iodide

(emission maximum at 560-590nm), alternatives had to be applied for flow cytometry analysis

of cell viability and cell cycle status of the cells (see 3.2.3.1 and 3.2.3.2. Doxorubicin fluorescence

is quenched, however after binding to DNA and thereby did not cause any problems for the

analysis of chromatin bound proteins (see 3.2.3.4).

3.2.3.1 YoPro exclusion assay

YoPro exclusion assay was performed to identify the proportion of apoptotic cells after treatment

with Doxo alone or in combination with actin substances. Cells were treated for 48h, harvested

in cold PBS-B and DNA stained with YoPro (YO-PROTM-1 Iodide (491/509), Thermo Fisher)

with a final YoPro concentration of 1µM and flow cytometry analysis was performed immediately

afterwards. In comparison to propidium iodide, not only dead but also apoptotic cells become

permeant to the dye.

3.2.3.2 Cell cycle analyses

To analyze the impact of combination therapy on cell cycle arrest, 7-AAD (ThermoFisher) was

applied, a fluorescent molecule and intercalating agent which binds like propidium iodide to

double stranded nucleic acids and can therefore be used to quantitatively assess DNA content

in cells by flow cytometry.

Cells were plated in 12 well plates ((1x105 cells/ well) and cultured in CM for 24h followed

by treatment with Doxo and the respective actin substances. After 48h cells were harvested,

spinned down (5min, 1500rpm), cell pellets washed with PBS and afterwards fixed with 250µM

methanol at 4◦C. Fixed cells were washed once more with PBS, resuspended in 250µl of PBS-B +

10µl/sample/7-AAD + 0.1mg/ ml RNAse A and incubated for 1h at 37◦C. First in a FSC/SSC

plot cell debris was excluded, then cell aggregates of two or more cells were removed and cell

cycle phases were analyzed in histograms with cell count erected over fluorescence intensity. The

percentage of cell death was calculated with a subG1 gate.

3.2.3.3 I-SceI-based reporter systems

Principle of the I-SceI-based reporter system. I-SceI-based reporter cell lines were used

to study DNA damage repair capacity after actin substance treatment (principle presented in

[120]). These reporter cell lines express GFP-expression cassettes that are interrupted by one or

more recognition sites for the endonuclease I-SceI. Transient overexpression of I-SceI (pCBAS-

ceI, addgene plasmid nr.26477, [121]) leads to one or more cuts in the GFP cassette, and upon

repair via the respective DNA repair pathway, the cell restores the correct GFP sequence, which

can be measured by flow cytometry (percentage of GFP+ cells). In this work, four reporter cell

lines were used (see Tab. 7 and Fig. 7). In the DR-GFP cell line, the GFP cassette harbors one

I-SceI recognition site and a 5’ and 3’ truncated iGFP that serves as a repair template which

is required for homology directed repair (HDR). The construct used for the SA-GFP cell line

harbors two GFP fragments (a 5’ and a 3’ truncated fragment), which share 266nt homology

and are separated by 2.7kb. Here, the I-SceI recognition site is localized in the 3’ fragment and
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successful single strand annealing will lead to a GFP+ product. The GFP expression cassette of

the EJ2 cell line is separated from the promoter by the I-SceI recognition site which is followed

by a sequence of several stop codons. The I-SceI site and the stop codon sequence are surrounded

up- and downstream by an 8nt microhomology. Alternative end joining (alt-EJ) will lead to a

deletion of the stop codons (35nt) and the restoration of a functional GFP. The cell line EJ5-

GFP contains a GFP cassette that harbors two I-SceI recognition sites and is separated from the

promotor by a puromycin resistance marker. Distal non-homologous end joining (NHEJ) leads

to a deletion of the puromycin sequence and thereby restores the expression of a functional GFP.

Table 7: U2OS I-sceI-based reporter cell lines

Cell line DNA DSB repair pathway

DR-GFP Homology directed repair (HDR)
SA-GFP Single strand annealing (SSA)
EJ2-GFP Alternative end joining (alt-EJ)
EJ5-GFP Non-homologous end joining (NHEJ)

Figure 7: Principle of the I-SceI-based reporter system. A DR-GFP. The GFP cassette is interrupted

by an I-SceI recognition site and 5’ and 3’ truncated iGFP can serve as a template during HDR. B SA-

GFP. The construct harbors two GFP fragments (a 5’ and a 3’ truncated fragment) that are oriented

in the same direction, share 266nt homology and are separated by 2.7kb. The 3’ fragment harbors

the I-SceI recognition site. C EJ2-GFP. The GFP is connected upstream to a tag and separated

from it by the I-SceI recognition site and a sequence of several stop codons. Both are surrounded by

an 8nt microhomology. Alt-EJ will lead to a deletion of the stop codons (35nt) and a GFP-positive

product. D EJ5-GFP. The GFP cassette harbors two I-SceI recognition sites and is separated from

the promotor by a puromycin resistance marker (puro). Distal NHEJ will delete the puro sequence

and restore the expression of GFP.

Experimental setup. U2OS-I-SceI reporter cells were seeded (1x105cells/ well) and trans-

fected on the fowolling day in duplicates with the above mentioned pCBASceI plasmid to tran-

siently overexpress the I-SceI endonuclease. After 6h of incubation, medium was changed to

normal CM and actin substances added, LB [500nM], Jaspla [50nM], ChB [75nM]. In case of

the EJ5 cell line, medium without puromycin had to be applied, as successful repair deletes the
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puromycin resistance. After 72h, cells were harvested in PBS-B and flow cytometry performed

with viable cells. Cell debris and dead cells were excluded with a linear SSC-A/ FSC-A gate,

cell doublets eliminated with a linear FCS-W/ FSC-A gate and the percentage of GFP+ cells

measured.

3.2.3.4 Chromatin association of DNA damage repair proteins

Recruitment of DNA damage repair factors to the site of damage can be measured by flow

cytometry if the respective protein is directly or indirectly bound to chromatin after induction

of DNA damage. This allows the analysis of larger cell populations compared to the standard

foci formation immunocytochemistry protocol. The functionality of this approach was published

in [122] and the assay performed accordingly. HeLa cells were seeded in 12 well plates ((1x105

cells/ well) 24h prior to the experiment. The next day, cells were treated with Doxo [250nm]

for 2h alone or in combination with the respective actin substance and afterwards harvested in

cold PBS. In the next crucial step, cells were resuspended in extraction buffer and incubated on

ice for 5-10mins to extract unbound protein. Cells were then washed in PBS-B and fixed with

4% PFA in PBS for 15mins at room temperature and washed with cell washing buffer once.

Primary antibodies (Tab. 8) were diluted in cell washing buffer and cells incubated for 1h at

room temperature or at 4◦C over night, washed once with cell washing buffer and incubated for

30mins at room temperature with the respective secondary antibody (Tab. 9), washed again and

resuspended in PBS-B for FACS analysis. Prior to the actual FACS analysis, compensation was

performed as 2 colors were measured with one laser (RPA-2: PE, yH2AX: 488). Compensation

beads for unstained, PE and FITC channels were used (antibodies see Tab. 9) and compensation

performed according to the manufacturer’s (BD Biosciences) protocol. Cell debris was excluded

with a linear SSC-A/ FSC-A gate, single cells isolated using a linear FCS-W/ FSC-A gate and

positive cells defined by a third gate in a log 488/ PE histogram. In this work, chromatin asso-

ciation of RPA-2 and yH2AX upon DNA damage induction was analyzed.

Extraction buffer 0.2% Triton X-100, PBS.

PBS-B 1mg/ml BSA, PBS.

Washing buffer 1% FCS, 0.1% sodium acide, 0.1% saponine, PBS.

Table 8: Primary antibodies for chromatin association assay

Protein Provider Species Dilution

Histone H2A.X phospho-Ser-130 (yH2AX) Cell Signaling (2577) Rabbit 1:200
RPA-2 Abcam (ab2175) Mouse 1:500

Table 9: Secondary antibodies for chromatin association assay

Fluorophore Provider Species Dilution

Alexa Fluor 488 Thermo Fisher (A11034) Goat anti-rabbit 1:1000
PE BD Biosciences (550083) Rat Anti-mouse IgG1 1:1000
FITC isotype control BD Biosciences (557721) Mouse 20µl/sample
PE k isotype control BD Biosciences (556029) Mouse 20µl/sample
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3.2.4 Microscopy

3.2.4.1 Alkaline comet assay

Cells were seeded 24h prior to the experiment in 12-well plates. After treatment of cells with

Doxo [250nM] and the indicated actin substances for 2 hours, Doxo was removed and medium

replaced with or without the respective actin substances for 4 hours (repair time). Doxo treat-

ment without any repair time served as positive control. Approximately 1x104 cells were then

seeded in agarose (0.7% in PBS, low gelling) at 37◦C on pre-coated glas slides (0.8% in PBS,

pre-coating performed twice), incubated on ice for 10mins and lysed at 4◦C over night in comet

lysis buffer. After lysis, electrophoresis was performed at 4◦C at 35 V for 15 min with a current

flow of approximately 250mA. After electrophoresis, glass slides were incubated in neutraliza-

tion buffer for 10min, and then stained with 1x GelRedTM (Thermo Fisher Scientific) in H2O

for 15min, followed by three washing steps in H2O and fixation in 70% ethanol. Glass slides

were sealed with FluorSaveTM (EMD Millipore) and images taken with a 20x or 40x objective.

Images were analyzed with OpenComet (ImageJ) and tail moments calculated and normalized

on Doxo repair samples or untreated controls.

Comet lysis buffer 0.1M EDTA-Na2, 2.5M NaCl, 10mM Tris HCl, 1% Triton-X 100, NaOH

(ad. pH=10), H2O.

Comet electrophoresis buffer 1.5M NaCl, 5mM EDTA-Na2, 0.5M NaOH, H2O.

Comet neutralization buffer 0.4M Tris HCl, NaOH (ad. pH=7), H2O.

3.2.4.2 General immunocytochemistry protocol

Between 1x and 2x104 cells per well were seeded and cultivated for at least 24h before starting

any treatment. Cells were then washed with cold PBS, and fixed with 4% PFA for 15mins at

room temperature, permeabilized with 0.2% Triton-X 100 for 10mins, blocked with 5% BSA in

PBS for at least 30mins at room temperature and stained with the primary antibody over night

at 4◦C. The next day, cells were washed once with PBS, then incubated for at least 30mins

in the secondary antibody, washed again and co-stained for actin and nuclei with rhodamine

phalloidin (Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scientific), respectively. Cells

were then mounted with one drop of FluorSaveTM (EMD Millipore). Images were taken with a

Leica SP8 microscope featuring a 63x objective and analyzed with ImageJ.

Table 10: Antibodies and dyes for immunocytochemistry

Type Target Provider Species Dilution

Primary yH2AX Cell Signaling (2577) Rabbit 1:500
Primary RPA-2 Abcam (ab2075) Mouse 1:250
Primary DNA-PK (T2609) Abcam (ab18356) Mouse 1:150
Secondary anti-mouse Invitrogen (A11001) Goat 1:500
Secondary anti-rabbit Invitrogen (A11008) Goat 1:500
Rhodamine/phalloidin actin Thermo Fisher Scientific - 1:400
Hoechst 33342 DNA Thermo Fisher Scientific - 1:50
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3.2.4.3 Chromatin texture

Cells were seeded in ibidi 8 well µ-slides and treated wih the respective substances. Cells were

then fixed in 4% PFA for 10min, permeabilized in 0.05% Trion X-100 for 5min, washed twice with

PBS and stained with Hoechst (2µg/ml) for 15min and mounted with FluorsaveTM. Images were

taken with a Leica TCS SP8 with a resolution of 4096x4096, image acquisition speed at 400hz

and 6 line averages. Hypotonic treatment (media 35:65 water) and hypertonic treatment (320

mM sucrose in media) were applied for 10min before fixing of the cells as controls for chromatin

relaxation or condensation respectively. Images were analyzed with the GLCM Texture plugin

(ImageJ).

3.2.4.4 Chromatin relaxation assay

U2OS pa-GFP H2B expressing cells were plated the day before the experiment. Prior to imaging,

cells were pre-treated for 90 minutes with the indicated actin substances, followed by Hoechst

treatment for 1h alone or in combination with the respective actin substance. DMSO treated

cells served as control. Specific nuclear areas were photoactivated by the 405 nm laser to induce

local DNA damage and followed up over time (36 cells each sample). For decondensation as-

say, chromatin relaxation was measured every 4 seconds for 120s. To evaluate recondensation,

chromatin relaxation was measured for 990s after induction of DNA damage (mean value of 36

cells).

3.2.4.5 Nuclear run-on assay

Cells were treated with the indicated substances and 5mM 5-Fluorouracil (5-FU) (Sigma Aldrich)

was added for the last 70min. Fixation and staining was performed as described in 3.2.4.2.

Cells were stained with anti-BrdU antibody (B8434, Sigma Aldrich) as primary antibody and

Alexa Fluor 488 (A11001, Invitrogen) as secondary antibody. Percentages of positive cells were

calculated. Treatment with actinomycin D (7.5µg/ml, Sigma Aldrich) served as positive control

for transcriptional inhibition.

3.2.4.6 Foci formation assay

1.5x104 cells per well were seeded in 8-well slides (Ibidi) and treated with Doxo [250nM] for 2h,

with or without repair time, and in combination with different actin substances as indicated.

Fixation and staining was performed as described in 3.2.4.2. The number of foci was either

counted manually or with the FindFociGUI (ImageJ) plugin.

3.2.4.7 Duolink assay

To show a possible binding of actin to nuclear DNA damage repair factors on a single cell basis,

a proximity ligation assay - Duolink R© assay - was performed according to the providers’ sugges-

tions (Sigma Aldrich). Briefly, cells were seeded in 12-well (removable) microscopy slides (Ibidi)

and treated the next day with Doxo [250nM] for 1h in combination with the actin substances

or transfected with actin plasmids YFP NLS Beta-Actin (control plasmid, addgene plasmid

60613), YFP NLS Beta-Actin G13R (depolymerization mutant, addgene plasmid 60615), YFP
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NLS Beta-Actin S14C (polymerization mutant, addgene plasmid 60614) 24h prior to the exper-

iment. Cells were then fixed with 4% PFA for 15mins at room temperature, permeabilized with

0.2% Triton X-100 for 5min and blocked with 1% BSA in PBS for 20mins. Primary antibodies

were added to the cells (see Tab. 11) and incubated for 1h at room temperature and, after one

washing step, Duolink R© assay was performed. For Doxo treated samples, Duolink R© In Situ De-

tection Reagents Green were used, while for YFP transfected cells Duolink R© In Situ Detection

Reagents Red. Images were taken with the Leica SP8 microscope and analyzed with ImageJ.

Numbers of positive events in nuclei were counted manually.

Table 11: Duolink R© antibodies

Target Provider Species Dilution

RPA-2 Abcam (ab2075) Mouse 1:250
DNA-PKcs Cell Signaling (12311) Mouse 1:50
Actin Sigma Aldrich (A2066) Rabbit 1:100
Ku70 Abcam (ab92450) Rabbit 1:200
Actin Sigma Aldrich (AMAB91241) Mouse 1:200

3.2.4.8 Life cell imaging

For life cell imaging of transfected cells a stage top cell chamber (Bold Line, Okolab) was installed

on a Leica SP8 microscope to maintain the required culturing conditions (37◦C, 5% CO2, 95%

humidity). To visualize actin in living cells, different plasmids were used (see Tab. 12).

Table 12: Actin plasmids for life cell imaging

Plasmid Source

Actin-GFP addgene (plasmid 21948)
Actin-mCherry addgene (plasmid 54966)
Actin-Chromobody R© (GFP) ChromoTek GmbH, Planegg-Martinsried,

Germany

3.2.4.9 Fluorescence correlation spectroscopy

FCS measurements were performed on a Leica TCS SP8 SMD microscope together with the

Picoquant LSM Upgrade Kit. Cells were seeded in ibidi 8 well µ-slides with glass bottoms and

transfected with Actin-GFP (addgene plasmid 21948) 24h prior to the FCS measurement. The

effective volume (Veff) and structure parameter (κ) were measured prior to each independent

experiment (see equation below) using 1nM ATTO488 dye solution (ATTO-TEC GmbH, Siegen,

Germany). In every selected nucleus (five nuclei each round), three different points were mea-

sured for 45s per point at 4 different time points (0, 10, 30, 60min). Doxorubicin [250nM] was

added after the zero-time point measurement. Control measurements without the addition of

any compound were performed accordingly to verify that photobleaching does not influence the

analysis. FCS curves were analyzed with the Picoquant SymPhoTime V 5.2.4.0 software and

fitted with a single diffusing species and a triplet state.
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3.2.5 Protein Biochemistry

3.2.5.1 Lysis of cells

Cells were harvested and washed with cold PBS and lysed with cell lysis buffer (dependent on

the experiment) + protease inhibitor (1:25) + phosphatase inhibitor (1:10). Cell lysates were

cleared by centrifugation (10min, 10000rpm, 4◦C) and protein lysates stored at -20◦C.

For determination of protein concentrations, the BCATM Protein Assay Kit (Thermo Sci-

entific) was used and the absorption of each sample measured with an ELISA reader (Tecan,

Magellan).

3.2.5.2 Western blot

For standard western blot assay, cells were lysed with Milanese buffer. For separation of proteins

SDS polyacrylamide electrophoresis was performed using polyacrylamide gels (8-12%; 10-well

and 15-well) and sodium dodecyle sulfat (SDS) buffers. For denaturation 5x sample buffer was

added to the protein sample to a final concentration of 1x and boiled for 5min at 95◦C. Samples

were then loaded unto polyacrylamide gels and electrophoresis was performed (20min at 200V

followed by 45min at 100V). After electrophoresis proteins were transferred to nitrocellulosis

or PVDF membranes by tank blotting at 100V for 100min or at 30V overnight depending on

the size of the protein of interest at 4◦C. Non-specific binding was blocked by incubation in

blocking solution for 1h at room temperature and was then washed with TBS-T three times

for 10min. The membrane was afterwards incubated in the primary antibody (in blocking so-

lution) at 4◦C overnight. The next day the membrane was washed with TBS-T three times for

10min and then incubated with a suitable secondary HRP-conjugated antibody for 1h at room

temperature. The membranes were incubated with HRP Homemade ECL solution and analyzed

by ChemiDoc Touch Imaging System (Bio-Rad). The band intensities of detected proteins were

calculated by ImageLab (Bio-Rad) and normalized to the total protein amount (stainfree gel)

or actin or tubulin as loading control.
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Table 13: Antibodies for western blot

Target Provider Species Dilution

RPA-2 Abcam (ab2075) Mouse 1:1000
DNA-PK Cell Signaling (12311) Mouse 1:1000
Actin Sigma Aldrich (A2066) Rabbit 1:1000
Actin MAB1501 (Millipore) Mouse 1:1000
Ku70 Abcam (ab92450) Rabbit 1:1000
yH2AX Ser139 Cell Signaling (2577S) Rabbit 1:1000
p-Chk2 Thr68 Cell Signaling (2661) Rabbit 1:1000
p-ATM Ser1918 Cell Signaling (5883) Rabbit 1:1000
anti-mouse (HRP) abcam (ab97240) Goat 1:10000
anti-rabbit (HRP) Dianova (111-035-144) Goat 1:10000

Milanese lysis buffer 50mM Tris, HCl (pH8), 150mM NaCl, 1% NP40 0.5% sodium deoxy-

cholate, 0.1% SDS, 300µM Na2VO3, 1mM NaF, 3mM ß-glyerophosphate, 10mM pyrophosphate,

H2O. Freshly added prior to experiment: 20mM H2O2, 200mM PMSF, protease inhibitor cocktail

(Roche), phosphatase inhibitor cocktail (Roche).

5x sample buffer 3.13M Tris HCl (pH 6.8), 10% Glycerol , 20% SDS , 16% DTT, 5% Pyronin

Y, H2O. 1x SDS sample buffer diluted 1:5 in H2O.

Separating gel 5ml 30% Rotiphorese R©, 3.75ml 1.5M Tris HCl (pH8.8), 150µl SDS 10%, 6.1ml

H2O, 0.5% 2,2,2-trichloroethanol, 15µl TEMED, 75µl 10% APS.

Stacking gel 1.275ml 30% Rotiphorese R©, 750µl 1.25M Tris HCl (pH6.8), 75µl 10% SDS, 5.25ml

H2O, 15µl TEMED, 75µl 10% APS.

5x Electrophoresis buffer 24.8mM Tris-base, 191.8mM Glycine, 3.5mM SDS, H2O. For 1x

buffer diluted in H2O.

5x Tank buffer 25mM Tris-base, 192mM Glycine, H2O. For 1x buffer diluted in H2O + 20%

methanol.

TBS-T (pH8.0) 24.8mM Tris HCl, 190mM NaCl, 0.2% Tween 20, H2O.

Blocking solution PBS + 0.02% Tween20 + 5% non-fat dry milk/BSA.

HRP Homemade ECL 1.25mM Luminol, 0.2mM Cumaric acid, 0.1M Tris-base HCl (pH8.5),

0.009% H2O2, H2O.

3.2.5.3 Co-immunoprecipitation

Cells were lysed with hypotonic buffer, cell suspension passed thrice through a syringe (25G

needle) and nuclei isolated by centrifugation (10000rpm, 10min, 4◦C). Nuclei were lysed with

nuclei lysis buffer, suspension passed twice through a 30G needle, two sonification pulses were

applied and suspension spinned down (10000rpm, 10min, 4◦C). Cell residues were discarded.

20µl of the resulting protein sample were used for immunoblotting as an input control. The

rest was incubated with 10µl of the respective pulldown antibody for 2h at 4◦C (see Tab. 14).

Protein samples of untreated cells incubated only with beads, or with beads + the respective

IgG Control were used as negative controls. Agarose beads (Protein A/G PLUS-Agarose, Santa

Cruz) were then added for one more hour followed by washing of beads twice with nuclei lysis

buffer and twice with PBS + 150mM KCl + 2mM MgCl2. Immunoprecipitates were collected by

centrifugation at 2500rpm for 5min at 4◦C. After the last washing step, beads were resuspended

in 40µl 1x sample buffer and boiled at 95◦C for 5min and immunoblotting performed for both
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pulldown protein and the respective potential binding partner (as described in 3.2.5.2).

Hypotonic buffer 10mM HEPES (pH7.9), 1.5mM MgCl2, 10mM KCL, 0.5mM DTT, 0.1%

NP-40 (v/v), ad. H2O.

Nuclei lysis buffer 20mM HEPES (pH7.9), 20% glycerol, 2mM MgCl2, 150mM KCL, 0.2mM

EDTA, 0.5mM PMFS, 0.5mM DTT, ad. H2O.

Table 14: Antibodies for Co-immunoprecipitation

Target Provider Species

RPA-2 Abcam (ab2075) Mouse
Actin Sigma Aldrich (A2066) Rabbit
Ku70 Abcam (ab92450) Rabbit
Normal rabbit IgG (Control) Cell Signaling (2729) Rabbit
Normal mouse IgG (Control) Santa Cruz (sc2025) Mouse

3.2.6 In vivo tumor mouse model

BALB/cOlaHsd female mice were obtained from Envigo (Netherlands) at an age of 6 weeks and

experiments started at the age of 8 weeks. All performed animal experiments were approved by

the District Government of Upper Bavaria in accordance with the German Animal Welfare and

Institutional guidelines.

A tumor mouse experiment was performed to show DNA damage repair inhibition in vivo

(Fig. 8). 1x106 4T1-luc cells per mouse were diluted in 100µl PBS and injected subcutaneously.

Tumors were grown for 7 to 10 days before the start of treatment. Mice were treated with 3mg/kg

Doxorubicin i.v. (diluted in PBS) alone or in combination with 0.1mg/kg Latrunculin B, i.p.

(5% DMSO + 10% solutol in PBS) for 24h. Mice were then sacrificed and tumors harvested,

mechanically disrupted and incubated in enzyme mix (Miltenyi Biotech) for 45min at 37◦C.

Digested tissue was then filtered through cell strainers with a size of 40µm to obtain single cell

suspensions. Cells were counted and seeded accordingly for alkaline comet assay (performed as

described in 3.2.4.1).

Figure 8: Setup of xenograft mouse model.
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3.2.7 Statistics

Unless stated otherwise, all experiments were performed three times in independent experiments.

Dependent on the assay, one-way ANOVA test with relevant post tests (Dunnetts Multiple Com-

parisons or Sidaks multiple comparisons test) or t-test (paired or unpaired) were used to assess

the significance of difference between treatment groups as indicated in each respective experi-

ment. P-values <0.05 were considered significant.

Potential synergism of combination treatment was assessed by calculation of Bliss value with

normalized values (NV). All bliss values >1 were considered synergistic.

The statistical analysis was conducted with GraphPad Prism 7.
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4.1 Actin and its role in nuclear DNA damage repair processes

Actin reorganization has been suggested to be induced during DNA damage response (DDR),

although its direct role in nuclear DNA damage repair signalling processes has not been inves-

tigated yet to a greater extent. Nuclear actin has been described to be polymerized upon DNA

damage induction and is therefore assumed to be required for the functioning of DNA repair

[79]. However, only very few studies have been published so far that show a direct link of actin

to DNA damage repair factors. There is hence still the need for further investigations to obtain

a better understanding of nuclear actin regulation during DNA damage repair signalling and to

answer the question whether nuclear actin is indeed involved in DNA DSB repair and if yes, how.

To study DNA damage response, DNA DSBs were introduced by doxorubicin treatment. Actin

manipulation was achieved by either overexpression of actin mutant plasmids or treatment with

actin binding compounds. Low doses of actin binders were applied to analyze specific effects of

actin manipulation on DNA damage responses and to avoid unwanted cytotoxic effects. Mostly,

classical actin binding substances, namely latrunculin B (actin depolymerizer) and jasplakinolide

(actin polymerizer) were applied.

4.1.1 Actin binders influence cytoplasmic and nuclear actin.

Effects of low dose treatment with actin binders on actin morphology, both in the cytoplasm

and in the nucleus, were examined.

In the cytoplasm, low dose treatment with the actin depolymerizer LB resulted in a fast

disruption of the actin cytoskeleton structure after only 30 minutes, which led to shrinkage of

cells and loss of cell-cell contacts. Those strong morphological changes were found to remain

stable for at least three hours. Cytoplasmic actin filaments started to form again six hours after

application of LB and after 24 hours, the structure of the actin cytoskeleton in the cytoplasm

was completely recovered (Fig. 9).

Treatment with the polymerizer Jaspla caused formation of actin aggregates in the cytoplasm

that started to be visible 90 minutes after substance application and were stable for up to 24

hours. Cell-cell contacts were not completely lost by Jaspla treatment (Fig. 9).

HeLa cells transfected with an actin-GFP plasmid revealed differential changes in nuclear actin

levels upon application of actin binders. LB treatment resulted in elevated nuclear fluorescence

signals, i.e. in a rather fast accumulation of actin in the nucleus (Fig. 10A). On the contrary,
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Figure 9: Effects of actin binders on cytoplasmic actin. HeLa cells were treated with latrunculin B [500nm]

or jasplakinolide [100nM]. Cells were fixed at the indicated time points, permeabilized and stained

for F-actin (rhodamine-phalloidin, red) and DNA (Hoechst, blue). White arrows mark jasplakinolide

induced actin aggregates.

Jaspla slightly diminished nuclear actin levels (Fig. 10A). Independent of the character of actin

manipulation, an increased polymerization of nuclear actin was triggered upon overexpression of

the nuclear actin-Chromobody R© plasmid (ChromoTek) in combination with either LB or Jaspla

treatment (Fig. 10B).

Thus, in addition to the obvious effects of actin binders on cytoskeletal actin, influences on

nuclear actin were detected as well. Interestingly, changes in protein levels of nuclear actin were

found to be dependent on the class of the actin binding compound, whereas alterations in the

polymerization state of nuclear actin were not.
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Figure 10: Effects of actin binders on nuclear actin. A Nuclear actin levels. HeLa cells were transfected

with actin-GFP and life cell imaging was performed. Fluorescence intensities in the nucleus were

measured at the indicated time points after addition of the actin binding substances. Mean values

of two ROIs each of at least 15 cells (three independent rounds) are depicted. B Nuclear actin

polymerization. HeLa cells were transfected with nuclear actin-ChromobodyR© plasmid, treated

with the indicated actin substances for 2h, then fixed, permeabilized and stained with rhodamine-

phalloidin and Hoechst. The number of cells positive for nuclear actin aggregates was counted.

Exemplary nuclear actin filaments are highlighted by white arrows. Mean values of at least three

independent experiments (+/- SEM) with at least 20 cells per experiment are shown.
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4.1.2 Manipulation of the actin equilibrium inhibits DNA double strand break

repair.

Single cell electrophoresis (comet assay) was performed in order to analyze whether actin is

involved in the repair of Doxo induced DSBs. Actin was manipulated either by treatment of

cells with actin binders (Fig. 11A) or by overexpression of mutant actin plasmids (Fig. 11B).

The repair of double strand breaks induced by Doxo treatment was inhibited independently of

the type of actin manipulation (Fig. 11). Both a decrease of polymerized actin due to actin de-

polymerizers (LB or chivosazole A) or transfection with G13R-NLS-YFP (actin polymerization

mutant) and the increase of polymerized actin by treatment with actin polymerizers (Jaspla,

ChB or miuraenamide A) or over expression of S14C-NLS-YFP (actin depolymerization mu-

tant) led to impaired DNA damage repair. Pre-treatment with actin binding substances prior to

addition of Doxo achieved stronger effects on the repair capacity. On the contrary, no increased

DNA damage was detected with actin manipulation alone. Elevated levels of DSBs are therefore

unlikely to derive from accumulation of DNA damage, but are rather caused by defects in DNA

damage repair due to additional actin manipulation.

Thus, a tight control of the actin equilibrium in the cytoplasm and/or the nucleus seems to

be required for functional repair of Doxo induced DNA DSBs.
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Figure 11: Actin manipulation inhibits DNA damage repair. A Actin binding compounds. HeLa

cells were treated with 250nM Doxo for 2h with or without addition of the indicated actin sub-

stances (pre = pretreatment with actin substance for 90mins). Doxo was then removed and cells

incubated in DMEM (Doxo Repair) or DMEM + the respective actin substance. Doxo treatment

alone without repair time served as positive control. Images were analyzed with OpenComet (ImageJ,

output examples shown on the left) and tail moments calculated. Relative tail moments are shown

(normalized on Doxo repair samples). Comet assays with chivosazol A and miurenamide A performed

by Anja Arner. B Actin mutants. Cells were transfected with G13R-NLS-YFP or S14C-NLS-YFP,

24h prior to the induction of DNA damage with Doxo and comet assay performed as described in A.

Untransfected cells were used as a negative control.

Mean values (+/- SEM) of at least three independent experiments are shown (one-way ANOVA,

*p<0.05, **p<0.01, ***p<0.005,****p<0.0001, ns not significant).
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4.1.3 Doxorubicin induced DNA damage affects nuclear actin states.

The formation of nuclear actin filaments upon DNA damage induction has been suggested to be

required for DNA damage repair [79, 113]. Nevertheless, the influence of DNA DSB signalling

on nuclear actin organization and vice versa is still not well understood.

Actin polymerization upon DNA damage induction in HeLa cells transfected with the nuclear

actin probe nuclear actin-Chromobody R© could be confirmed. The number of cells with nuclear

GFP-positive actin aggregates was strongly increased upon Doxo treatment (Fig. 12A). Addi-

tional co-transfection experiments were performed to exclude the possibility that the observed

effect is only caused by a shift of actin to the nucleus due to the overexpression of an actin bind-

ing antibody that is fused to a NLS (i.e. the nuclear actin-Chromobody R©). Co-transfection of

mCherry-actin (without a NLS) and the nuclear actin-Chromobody R© did not lead to increased

mCherry-actin levels in the nucleus (Fig. 12B). In order to analyze if DNA damage leads to nu-

clear import or export of actin, cells were transfected with actin-GFP, and fluorescence intensity

ratios of nucleus to cytoplasm measured before and 1h after addition of Doxo. No significant

changes in the ratio of actin levels could be observed (Fig. 12C), which implies that actin reor-

ganization in the nucleus is not caused by import from or export to the cytoplasm. With this

experimental setup, no nuclear actin aggregates could be observed. Although chromobody over-

expression did not significantly alter nuclear actin levels, it cannot be excluded that it artificially

stabilizes established actin structures, leading to disproportionate effects (reviewed in [123]). To

circumvent this problem and strengthen the finding that actin is reorganized in the nucleus upon

DSB induction, FCS measurements were performed (Fig. 12D). Upon DNA damage induction

by Doxo treatment, concentrations of free nuclear actin (actin-GFP) were significantly decreased

in a time dependent manner (Fig. 12D2), whereas diffusion coefficients remained at a similar

value (Fig. 12D3). A decrease of free actin in the nucleus could be explained by an export of

actin to the cytoplasm (which was not observed in (Fig. 12C)) or by an increase in the immobile

(not measurable) actin fraction due to actin polymerization or recruitment.

Hence, induction of DSBs indeed seems to alter the state of actin in the nucleus shifting the

equilibrium to a more polymerized/immobile actin fraction. This observation rises the ques-

tion which role the recruitment and/or polymerization of actin plays in DNA damage induced

signalling.
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Figure 12: Influences of Doxo induced DNA damage on nuclear actin. A Nuclear actin polymeriza-

tion. After transfection with ChromobodyR©, HeLa cells were treated with Doxo and cells positive for

nuclear actin aggregation counted. Mean values (+/- SEM) are shown (unpaired t test, two-tailed,

***p<0.005). B Influence of nuclear actin-Chromobody R© on nuclear actin level. Cells were

transfected with mCherry-actin alone or in combination with ChromobodyR© and fluorescence inten-

sity of nuclear mCherry expression was measured. Single values of three independent experiments

are depicted (unpaired t test, two-tailed, ns not significant). C Nuclear actin level. Cells over-

expressing actin-GFP were treated with Doxo, and fluorescence intensities measured before and 1h

after addition of Doxo (mean values of two ROI per cell). Graph shows ratio of measured intensities

of nucleus to cytoplasm. Up to 20 cells in three independent rounds were analyzed. D FCS. Cells

overexpressing actin-GFP were treated with Doxo and single points FCS measurement of nuclear

actin was performed at the indicated time points. D1. Example pictures of one round are shown and

corresponding fitting curves of one cell (indicated by purple rectangle) depicted. Nuclear concentra-

tions of actin D2 and diffusion coefficients D3 were determined in three independent experiments

(at least 30 cells). Untreated cells served as control (10 cells). Graphs show mean values +/- SEM.

**** p<0.0001, paired t test, two-tailed. Analysis of FCS measurement performed by Themistoklis

Zisis.
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4.1.4 Actin binding substances do not affect chromatin structure and overall

transcriptional activity at low concentrations.

Chromatin reorganization plays a role in DSB repair, it is e.g. important for repair factor re-

cruitment. The nuclear matrix is mainly composed of actin [88]. The local reorganization of

the chromatin structure might therefore depend on the state of actin. As a consequence, actin

manipulation could alter DSB induced chromatin changes, resulting in impeded DNA damage

repair.

Doxorubicin has been described to induce chromatin compaction (measured in isolated chro-

matin) [124], although the role of this process has not been specified yet. Global condensation

and relaxation can be measured by analysis of chromatin texture upon staining of DNA with

Hoechst in fixed cells. An increase in contrast and a decrease of correlation compared to the

control indicates chromatin compaction (e.g. after hypertonic treatment), whereas the decrease

in contrast and increase of correlation indicates relaxation (hypotonic treatment). Single treat-

ment with LB and Jaspla did not lead to changes in global chromatin texture (Fig. 13). The

minor global chromatin compaction upon Doxo treatment was not impaired in combination with

Jaspla and only slightly altered in combination with LB (Fig. 13).

Figure 13: Low dose treatment with actin binders does not change global chromatin texture. After

treatment, cells were fixed and permeabilized and stained for Hoechst. Hypotonic treatment (media

35:65 water) and hypertonic treatment (320mM sucrose in media) were applied as positive controls

for chromatin relaxation or condensation, respectively. Images were taken with a Leica TCS SP8

with a resolution of 4096x4096 and analyzed with the GLCM Texture plugin (ImageJ).

Local chromatin relaxation occurs upon DSB formation and is required for efficient DNA re-

pair as only relaxed chromatin allows recruitment of specific DNA damage repair proteins to the

site of damage [125, 126]. To analyze whether changes in chromatin structure by administration

of actin binding substances impairs local DNA damage mediated chromatin decondensation,
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chromatin relaxation was measured with or without precedent actin binder treatment in U2OS

pa-GFP H2B expressing cells (Fig. 14). None of the applied actin binders impeded chromatin

decondensation during the first 120 seconds after local UV-induced DNA damage (Fig. 14A).

Following the DSB induced relaxation, chromatin structures are usually quickly re-established

[126]. Chromatin recondensation was still functioning in the presence of Jaspla and was not

delayed (Fig. 14B).

Figure 14: Chromatin relaxation upon DNA damage induction. U2OS pa-GFP H2B expressing cells

were plated the day before. Prior to imaging, cells were pre-treated for 90 minutes with the indicated

actin substances, followed by Hoechst treatment for 1h alone or in combination with the respective

actin substance. Specific nuclear areas were photoactivated by the 405 nm laser to induce local DNA

damage and followed up over time. A Decondensation. Cells were treated with the indicated

actin substances (LB [1M], Chivo [7nM], Jaspla [100nM], ChB [75nM], Miu [25nM]) and chromatin

decondensation was measured every 4 seconds for 120s (36 cells each sample, n=2-3). DMSO treated

cells served as control (one exemplary image of control cells 0min and 2min after induction of damage

is shown on the left). B Recondensation. Chromatin relaxation of Jaspla treated cells was measured

for 990s after induction of DNA damage (mean value of 36 cells). DMSO treated cells served as

control.

Chromatin relaxation assays performed by Rebecca Smith at the department of Physiological Chem-

istry, LMU, Munich.

Global chromatin compaction by Doxo treatment and local chromatin relaxation upon UV-

induced damage was not impeded by the addition of actin binders at low concentrations. In-

hibition of DNA damage repair is thus most likely not caused by general obstruction of repair

factor recruitment due to decreased chromatin relaxation at the site of damage.

Inhibition of transcription and the resulting reduction of repair factor protein levels could

be another general mechanism responsible for repair inhibition by actin binding compunds. To

measure overall transcriptional activity, nuclear run-on assay was performed. With this assay,

incorporation of 5-FU, which happens when transcription is ongoing, can be visualized by im-

munocytochemistry. Short term low dose treatment with both actin binders LB and Jaspla did

not decrease transcriptional activity (Fig. 15). It is therefore unlikely that DNA damage repair

is inhibited due to general inhibition of transcription of proteins involved in DDR upon low dose

treatment with actin binding substances.
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Figure 15: Low dose treatment with actin binders does not inhibit overall transcriptional activity.

HeLa cells were treated with LB or Jaspla for 2h. Treatment with actinomycin (7.5µg/ml) served

as positive, DMSO treatment as negative control. 5-FU was added, cells fixed, permeabilized and

stained for incorporated nucleotid analogons (anti-BrdU antibody). Percentages of positive cells

were calculated (mean values +/- SEM). At least 150 cells were analyzed for each condition in three

independent experiments.

4.1.5 Actin manipulation does not inhibit activation of the ATM-Chk2 pathway

and phosphorylation of histone H2AX.

The detection of DNA DSB by MRN leads to activation of numerous signalling cascades. MRN

phosphorylates and thereby activates for instance ATM which subsequently activates Chk2. The

ATM-Chk2 pathway is involved in many DNA damage induced processes, such as DNA repair,

cell cycle arrest or apoptosis induction [24, 26]. The activation of the ATM-Chk2 pathway can be

evaluated through phosphorylation levels of both members at Ser1981 and Thr68, respectively,

as these represent activating phosphorylation sites. To test if the inhibition of DNA damage

repair by different actin binders is caused by a reduced activation of the ATM-Chk2 pathway,

initiation of phosphorylation at both activating sites upon DNA damage induction was mea-

sured by western blot (Fig. 16). However, no reduction in phosphorylation by addition of LB,

Jaspla or ChB could be observed. Phosphorylation of ATM was even significantly increased when

treated with LB or Jaspla. Actin binders alone did not induce phosphorylation of ATM or Chk2.

MRN also phosphorylates histone H2AX adjacent to the break which functions as a scaffold

for many proteins involved in DNA damage repair [28, 29]. Foci formation by phosphorylation

of surrounding H2AX can be visualized by immunocytochemistry. After DNA damage induction

with Doxo, a strong increase in cells positive for yH2AX could be detected, which was not sig-

nificantly impeded by additional application of the actin binding substances LB or Jaspla (Fig.

17A). Combination treatment with LB only led to a small decrease in cells positive for yH2AX

foci formation. Flow cytometry analysis was performed to measure chromatin association of

yH2AX (Fig. 17 B) and western blot to determine phosphorylation of H2AX (Fig. 17C). The
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Figure 16: Phosphorylation of ATM and Chk2 upon Doxo induced DNA damage. HeLa cells were

treated with Doxo alone or in combination with the indicated substances for 1h. Cells were harvested

and lysed and immunoblotting performed. Tubulin served as loading control. Values were calculated

with ImageLab, normalized on untreated control (n=3, values +/- SEM). One blot out of three

independent experiments is depicted as an example. A ATM. Phosphorylation at Ser1981. One-

way ANOVA, Dunetts multiple comparisons test * p<0.05, ** p<0.01. B Chk2. Phosphorylation

at Thr68.

slight reduction of yH2AX foci numbers upon LB combination treatment (as shown in Fig. 17A)

could not be confirmed with these methods.

In summary, actin binders did not impair phosphorylation of ATM, Chk2 and histone H2AX.

An inhibition of early phosphorylation events was therefore not considered to be the cause of

decreased DNA DSB repair by actin manipulation.
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Figure 17: Actin binders do not decrease phosphorylation of histone H2AX upon Doxo induced

DNA damage. A yH2AX foci formation. Cells were treated with Doxo alone or in combination

with the depicted actin substances for 2h, cells fixed and stained for yH2AX, nuclei (Hoechst) and

the cytoskeleton (rhodamine). Examples are shown on the left. Cells with more than 5 foci were

defined as positive and the percentage of positive cells calculated. Graph on the right shows mean

values (+/- SEM) of three independent experiments (unpaired t test, ns not significant). B yH2AX

chromatin association. HeLa cells were treated with the indicated substances for 2h. Unbound

protein was excluded by washing with extraction buffer, cells fixed with 4% PFA and stained for

yH2AX and flow cytometry performed (n=3). C yH2AX protein level. HeLa cells were treated

with Doxo and the indicated actin binders for 1h. Cells were harvested, lysed and immunoblotting

performed. Tubulin served as loading control. Values were calculated with ImageLab, normalized on

control (untreated). One exemplary blot out of three experiments is shown.
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4.1.6 Actin binders inhibit distinctive DSB repair pathways.

Distinctive repair pathways are activated upon DSB induction. The choice between non-homologous

end joining (NHEJ), alternative end joining (alt-EJ), homology directed repair (HDR) and sin-

gle strand annealing (SSA), primarily depends on the cell cycle state of the cell. To study DNA

damage repair capacity in detail, I-SceI-based reporter cell lines that can distinguish between

all four DSB repair pathways have been developed (published in [120] and described in detail

in 3.2.3.3). Transient overexpression of the endonuclease I-SceI leads to cuts in specific GFP

cassettes that are interrupted by one or more I-SceI recognition site(s). The repair of I-SceI

induced breaks results in a rescue of GFP expression. GFP-positive cells can then be measured

by flow cytometry.

Treatment with actin binders after induction of DSB by transient I-SceI expression led to dif-

ferential responses (Fig. 18). Both actin polymerizers Jaspla and ChB inhibited NHEJ, whereas

LB did not reduce NHEJ capacity (Fig. 18A). Alternative end joining was not influenced by any

of the applied actin binding substances (Fig. 18B). On the contrary, the impairment of both

pathways HDR (Fig. 18C) and SSA (Fig. 18D) did not depend on the type of actin manipulation

and was significant for both LB and Jaspla.

Figure 18: Effects of actin manipulation on distinctive DSB repair pathways. U2OS cells expressing one

of each respective reporter system were transfected with pcBASE (overexpression of I-SceI) and then

cultivated with or without the indicated actin substances (LB [500nM], Jaspla [50nM], ChB [75nM])

for 72h. Percentages of GFP-positive cells were measured by flow cytometry. Experiment performed

in duplicates. Mean values of three independent experiments are shown (+/- SEM), unpaired t test,

one-tailed, * p<0.05, ** p<0.01, *** p<0.005. A NHEJ. Non-homologous end joining. B Alt-EJ.

Alternative end joining. C HDR. Homology directed repair. D SSA. Single strand annealing.

In summary, actin binding substances inhibit specific pathways that play a role in the repair

of Doxo induced DSBs.
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4.1.7 Ku70 binds to nuclear actin and actin binders decrease activation of

DNA-PK.

DSB repair by non-homologous end joining was inhibited by increased actin polymerization

due to Jaspla and ChB treatment (as shown in Fig. 18A). One of the key events for NHEJ

initiation is the activation of DNA-PK, which is induced by the recruitment of DNA-PKcs (cat-

alytical subunit) to DNA-bound Ku70/80. Its kinase activity is further elevated by numerous

auto-phosphorylation events [40, 41]. Activation of DNA-PK can therefore be correlated with

increased phosphorylation of specific sites.

Doxo induced autophosphorylation of DNA-PK (pDNA-PK) at T2609 was decreased after

treatment with Jaspla or ChB, as displayed by a reduction of pDNA-PK foci in the nucleus.

Inhibition of DNA-PK autophosphorylation by ChB was significant after a short term treatment

of two hours (Fig. 19A). The slight effects of Jaspla on phosphorylation after two hours were

further increased after four additional hours of repair time (Fig. 19A+B). LB treatment showed

only weak effects on DNA-PK autophosphorylation (Fig. 19A).

Figure 19: Autophosphorylation of DNA-PK (T2609). HeLa cells were treated with Doxorubicin with or

without additional actin substance treatment for 2h. For measurements without repair time, cells

were then fixed, permeablized and immunocytochemistry performed. For measurements with repair

time, Doxorubicin was removed after 2h and cells incubated in DMEM +/- Jaspla (4h repair time)

followed by fixation and permeabilization. Foci were visualized by antibody staining against pDNA-

PK (T2609). Foci were counted with FiJi Plugin FindFOCI GUI. Cells with at least 70 foci per

nucleus were determined as strong positive cells and percentages calculated. At least 100 nuclei were

analyzed for each sample (n=3, unpaired t test, one-tailed, * p<0.05). A No repair time. B 4h

of repair time. Graph on the left shows single values of foci numbers per nucleus for all conducted

experiments, graph on the right depicts mean values of percentages of strong positive cells.
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The observed reduction of phosphorylation events at T2609 was not caused by decreased pro-

tein levels of total DNA-PKcs (Fig. 20A) or Ku70 (Fig. 20B).

Figure 20: DNA-PK protein levels. A DNA-PKcs. HeLa cells were treated with Doxo [1µM] and/or

the indicated actin binders (LB [1µM], Jaspla [100nM], ChB [100nM]) for 1h. Cells were harvested

and lysed followed by immunoblotting. Tubulin served as loading control. One blot out of three

independent experiments is depicted. B Ku70. HeLa cells were treated with the indicated substances

(Doxo [250nM], LB [500nM], Jaspla [100nM]) and immunoblotting performed for detection of Ku70

and actin. One exemplary blot is shown.

Furthermore, DNA-PKcs was not bound to nuclear actin before or after DNA damage in-

duction, indicated by the lack of positive events in a proximity ligation assay (Duolink R©) (Fig.

21B). Functionality of the applied DNA-PKcs antibody was confirmed with control immunocy-

tochemistry (Fig. 21A). Thus, obstructed binding of nuclear actin to DNA-PKcs was considered

not to be the cause of reduced DNA-PKcs autophosphorylation at T2609. Autophosphoryla-

tion of DNA-PKcs is induced upon binding to DNA-bound Ku [40, 41]. The observed decrease

of phosphorylation could therefore also be caused by altered recruitment of Ku to the DNA.

Duolink assay revealed that indeed Ku70 seems to be bound to nuclear actin under control

conditions (Fig. 21C). This binding was slightly reduced after induction of DNA damage (Fig.

21C1). Hyperpolymerization of actin by overexpression of the actin mutant S14C led to a de-

creased binding of Ku70 to nuclear actin, whereas depolymerization upon G13R overexpression

did not show any effects (Fig. 21C2).
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Figure 21: Interaction of nuclear actin and DNA-PK. A Control staining. HeLa cells were fixed,

permeabilized and stained for DNA-PKcs or Ku70 and Hoechst to ensure functionality of the applied

antibodies. B Binding of nuclear actin to DNA-PKcs. HeLa cells were treated with Doxo

[250nM] for 2h and Duolink assay (Duolink reagents GREEN) performed. Antibodies against actin

and DNA-PKcs were used (nuclear area is shown and nuclear outlines highlighted in white). C

Binding of nuclear actin to Ku70. Antibodies against actin and Ku70 were applied. C1 HeLa

cells were treated with Doxo [250nM] for 2h and Duolink assay (Duolink reagents GREEN) performed.

Nuclear events were counted manually. Outlines of nuclei are shown in white. Mean values of four

experiments are shown, *p>0.01, unpaired t test, one-tailed. C2 HeLa cells were transfected with the

indicated plasmids and Duolink assay (Duolink reagents RED) performed. Nuclei were stained with

Hoechst (blue). Nuclear events were counted manually. Mean values of three independent experiments

are shown, values normalized on control.
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4.1.8 Nuclear actin is bound to RPA and is involved in its recruitment to the site

of damage.

Interestingly, HDR and SSA were affected by actin manipulation, whereas alt-EJ was not. There-

fore, key mediators of HDR and/or SSA that specifically play a role in one or both of these

pathways but not in alt-EJ can be the cause for differential responses to treatment with actin

binders. One key player in HDR and SSA is RPA (Replication Protein A). RPA binds to ssDNA

and protects DNA ends from degradation preventing spontaneous annealing between microho-

mologies (inhibits alt-EJ). Successful recruitment of RPA to the site of damage and its chromatin

association is required for both HDR and SSA [127].

Recruitment of RPA-2 to DSBs was diminished upon combination treatment with LB and

Jaspla, indicated by a significant decrease in the number of RPA-2 foci in the nuclei (Fig. 22A)

and a reduced chromatin association of RPA-2 upon DNA damage induction (Fig. 22B). LB was

found to be more efficient than Jaspla in the short term inhibition of RPA-2 recruitment with

the tested substance concentrations (Fig. 22B).

To assess whether actin regulates recruitment by direct (or indirect) interaction with RPA-

2, proximity ligation assay was performed (Duolink R©). Indeed, actin was found to be bound

to RPA-2 in the nucleus under control conditions. The number of positive events (i.e. actin

molecules that are bound to RPA-2) decreased significantly upon Doxo treatment, suggesting

a release of RPA-2 from actin when DNA damage was induced (Fig. 23A). Reduced events

were also observed after short term treatment of cells with either LB or Jaspla (Fig. 23A). The

suggested interaction of RPA-2 and nuclear actin could be verified by co-immunoprecipitation.

Under control conditions, actin was bound to precipitated RPA-2 and the interaction was de-

creased upon damage induction and actin manipulation by LB (Fig. 23B). Hyperpolymerization

of actin by overexpression of mutant actin (S14C) decreased binding of actin to RPA, whereas

reduced polymerization of actin (G13R) slightly increased the number of positive events (Fig.

23C). Binding of RPA-2 to nuclear actin might thus depend on the state of actin, and an increase

in G-actin monomers might favor the interaction of actin and RPA-2.

Treatment with actin binders and/or Doxo did not alter protein levels of RPA-2 (Fig. 24).

The above observed reduction in the detected interaction of actin and RPA-2 was therefore not

caused by decreased protein quantities.
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Figure 22: Recruitment of RPA-2 to the site of DSB. A RPA foci formation. HeLa cells were treated

with Doxo with or without additional actin substance treatment for 2h. Doxo was then removed

and cells incubated in DMEM (repair time 4h) +/- actin substances. RPA-2 foci were visualized

by antibody staining. Nuclear RPA-2 foci of positive cells were counted with FiJi Plugin FindFOCI

GUI. Numbers of foci were normalized on nuclear area to exclude variances due to changing nuclear

sizes. At least 25 nuclei were analyzed for each sample and experiment (mean values +/- SD, n=3,

unpaired t test, two-tailed, **** p<0.0001). B Chromatin association of RPA-2. After treatment

with Doxo alone or in combination with the indicated actin substances for 2h, cells were harvested.

Free RPA was extracted by washing with extraction buffer, cells fixed, stained for RPA-2 and flow

cytometry performed. Mean values of three experiments are shown (+/- SEM), unpaired t test one-

tailed, ** p<0.01.
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Figure 23: Binding of RPA-2 to nuclear actin is decreased upon DNA damage induction and actin

manipulation. A Duolink R© assay. HeLa cells were treated with Doxo +/- the indicated actin

substances and Duolink assay (GREEN) performed with antibodies recognizing RPA-2 and actin,

respectively (upper line). To ensure specificity of the applied antibodies, control stainings with only

one antibody were performed (lower line). Positive events were normalized on numbers of control

cells (mean values +/- SEM). At least 250 cells were analyzed for each treatment condition. Outlines

of nuclei are shown in white. One-way ANOVA, Sidaks multiple comparisons test, * p<0.05, **

p<0.01, ns not significant. B Co-immunoprecipitation. HeLa cells were treated with the indicated

substances. Protein samples of nuclear extracts were immunoprecipitated with RPA-2 antibody and

immunoblotted for actin and RPA-2. 4% of each nuclear lysate was used for preparation of input

samples. One exemplary blot is depicted. Band densities were quantified and calculated as a ratio

of actin intensity to RPA-2. Graph shows mean values normalized on control. C Duolink R© assay.

HeLa cells were transfected with the indicated actin plasmids and Duolink assay (RED) performed.

Positive events were counted in three independent experiments (mean values +/- SEM) with at least

150 cells for each transfection condition.
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Figure 24: RPA-2 protein levels. HeLa cells were treated with Doxo and/or the indicated actin binders for

1h. Cells were harvested and lysed followed by immunoblotting. Stain-Free gel served as loading

control. One blot out of three independent experiments is depicted.

Diminished chromatin association of RPA-2 upon DNA damage induction is therefore likely

caused by obstructed recruitment resulting from actin manipulation. The finding that RPA-2 is

bound to nuclear actin and released upon damage induction indicates a direct involvement of

actin in the recruitment process of RPA-2.
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4.2 Actin as a potential target for combination chemotherapy

Despite its severe side effects, application of Doxo for chemotherapy is nevertheless still widely

used in the clinics as one of the most potent chemotherapeutics [17, 19]. The formulation of

combination therapy concepts is considered a promising approach to diminish unwanted side

effects during therapy with Doxo while still exploiting its anti-tumoral activities. So far, actin

binders have mainly been described as potential substances for single chemotherapy in different

experimental setups, both in vitro and in vivo (as described in 2.2.3). However, since actin

manipulation was found to impair nuclear DNA damage repair processes, the combination of

actin binders with a DNA damage inducing chemotherapeutic such as Doxo represents a new

possibility for combination cancer therapy.

4.2.1 Latrunculin B inhibits cancer cell proliferation in combination with

doxorubicin.

The potential application of actin binders for combination treatment with Doxo was tested in

two different cancer cell lines. Both metabolic activity (Fig. 25A) and colony formation abil-

ity (Fig. 25B) were decreased when Doxo treatment was combined with LB in HeLa and T24

cells, whereas Jaspla treatment could not further inhibit proliferation. Single treatment with

actin binders only slightly affected proliferation. The reduction of proliferation by additional

application of LB was in both assays synergistic in HeLa cells (Bliss value 1.305 and 1.789 for

metabolic activity and colony formation, respectively). This observed blockage of proliferation

could be partially attributed to an induction of cell death in HeLa cells (Fig. 25C). In T24 cells

a synergistic increase in apoptotic cells was detected (Bliss value 1.746) (Fig. 25D).

In summary, combination treatment of Doxo with LB led to decreased proliferation and in-

creased apoptosis induction in both tested cancer cell lines compared to single Doxo treatment.

Low dose Jaspla treatment could not further diminish proliferation when combined with Doxo.
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Figure 25: Effects of combination treatment on cell viability and cell death induction. HeLa and

T24 cells were treated with the indicated actin substances in combination with Doxo. Graphs show

mean values (+/- SEM) of three experiments, unpaired t test, one-tailed, * p<0.05, ** p<0.01, ns

not significant. A Metabolic activity. Cell titer blue assay was performed after 72h of treatment.

B Colony formation. HeLa and T24 cells were treated for 2h and then seeded in 6-well plates in

new DMEM medium, without any substances. After 6 days of growth, total area was determined

using the ImageJ plugin ColonyArea and normalized on control values. C Cell death induction.

HeLa cells were treated for 48h, then fixed with methanol and stained with 7-AAD. Dead cells were

determined by the subG1 gate. D Apoptosis induction. T24 cells were treated for 72h hours,

followed by YoPro staining without prior fixation and percentage of apoptotic cells was evaluated.
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4.2.2 Latrunculin B impairs DNA damage repair in vivo.

As described above, LB was found to inhibit proliferation synergistically in vitro when combined

with Doxo. To prove if DNA repair inhibition by additional treatment with actin binders can also

be achieved in vivo, a xenograft tumor model with 4T1 cells (murine breast cancer) was designed.

First in vitro tests showed that DNA DSB repair was inhibited after actin manipulation, com-

parable to the effect observed in HeLa cells (Fig. 26A). Under low dose treatment conditions,

the extent of inhibition was higher in LB treated cells compared to Jaspla. Furthermore, LB

was tolerated well in mice if injected i.p. and could be combined with i.v. Doxo treatment (Fig.

26B). To assess the effect of LB on DNA damage repair in vivo, 4T1-tumors bearing mice were

injected i.v. with Doxo alone or in combination with LB (i.p.) for 24h followed by tumor cell

isolation. Comet assay was performed to evaluate the extent of damaged DNA in isolated tumor

cells. In established tumors, additional application of LB led to a significant increase in damaged

DNA compared to single Doxo treatment, whereas LB alone did not induce DNA damage (Fig.

26C).

LB can thus inhibit DNA damage repair in established tumors in vivo at tolerable substance

concentrations leading to an increase of chemotherapy induced DNA damage.
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Figure 26: Effects of latrunculin B on DNA damage repair in vivo. A In vitro alkaline comet assay.

4T1 cells were treated with 250nM Doxo for 2h with or without addition of the respective actin

substance. Cells were then incubated in DMEM or DMEM + actin substance. Doxo treatment alone

without repair time served as positive control. Images were analyzed with OpenComet (ImageJ) and

tail moments calculated. Relative tail moment is shown (tail moments normalized on doxo repair

samples). Mean values (+/- SEM) of at least three independent experiments are depicted (one-way

ANOVA, *p<0.05). B Toxicity test in vivo. Mice were treated with the indicated substance

concentrations and mouse weight observed for up to 48h (n=2). Performed by Carina Atzberger and

Kerstin Loske. C In vivo alkaline comet assay. Mice were injected with 1x106 4T1-luc cells and

tumors grown for 7-9 days. Mice were then treated with 3mg/kg doxo (i.v.) with or without additional

LB treatment (0.1mg/kg, i.p.) for 24h. Mice treated i.v. with PBS and i.p. with PBS + 5%DMSO

+ 10%solutol served as negative control. Tumors were harvested, digested enzymatically and single

cell suspensions used for alkaline comet assay (C1). Tail moments were analyzed with OpenComet.

One exemplary picture for each condition is shown on the left. Graph shows relative tail moments

(normalized on control samples) and mean values of 11 mice per sample ((one-way ANOVA, *p<0.05)

(C2). Tumor cell injection and treatment of mice carried out by Carina Atzberger and Kerstin Loske.
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5.1 The role of nuclear actin in DNA double strand break repair

In this work, the role of actin in nuclear DNA repair signalling and the influence of actin

manipulation on DSB repair pathways were elucidated. Treatment with actin binders led to

inhibition of specific processes during different pathways, resulting in inhibition of HDR, SSA

and NHEJ, while alt-EJ was not influenced. These results provide new proof that actin is directly

involved in nuclear processes during DNA damage repair signalling.

5.1.1 Can actin be polymerized in the nucleus?

In 2006, McDonald et al. provided the first experimental evidence that actin polymers exist in

the nucleus [81], and that nuclear functions of actin might thus indeed be controlled by poly-

merization and depolymerization. Polymerization of nuclear actin has been described to occur

upon DNA damage induction and to be required for functioning of DNA repair upon radiation

[79, 113]. Visualization of filamental actin, especially in the nucleus, is technically challenging.

It is thus difficult to determine the exact state of nuclear actin. All nowadays applied tech-

niques hold pitfalls. Although classical F-actin marker phalloidin shows a very high specificity

to filamental actin, it only binds to filaments of at least 7 monomers and specific APBs, such

as Cofilin, can compete with phalloidin binding. Phalloidin is therefore not able to visualize all

kinds of actin filaments and cannot be used to detect actin oligomers. It can also be applied only

in fixed samples. For life cell imaging, fluorophore-tagged actin can be overexpressed to analyze

actin dynamics in living cells. But tags, such as GFP, might perturb actin functions due to steric

hindrances and changes in physiological actin levels. Nuclear actin can be visualized by overex-

pression of the nuclear actin-Chromobody (ChromoTek), a nanobody that is directed against

actin and harbors a GFP-tag and a NLS sequence. However, overexpression of an actin binding

antibody with a NLS might alter nuclear actin levels and stabilize actin structures (reviewed

in [123]). Actin binders have been reported in general to induce polymerization in specific cell

compartments, especially in the nucleus [128]. This was also true for treatment with the sub-

stances applied in this thesis and could, at least partly, be due to induced stress responses upon

sensing of changes in overall actin states.

Nevertheless, the observation of actin filaments/agreggates upon damage induction when chro-

mobody was overexpressed (as described in this thesis and in [79]) indicates that reorganization

of actin in the nucleus is important for the activation or maintenance of signalling pathways

involved in DNA repair. The decrease of free actin measured by FCS and the lack of actin-GFP

export from the nucleus strengthen the hypothesis that actin polymerization occurs upon DNA

damage induction. Visible actin aggregates could only be detected when damage induction was
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performed after transfection of cells with the nuclear actin chromobody, indicating that the over-

expression of the NLS-tagged antibody really stabilizes actin structures and thereby exaggerates

the observed effect. Most likely, polymerization of actin due to DNA damage induction rather

leads to oligomers instead of long filaments or larger aggregates and thus cannot be visualized

by standard fluorescence microscopy.

Actin binders have shown different effects on nuclear actin organization. Although LB in-

creased and Jaspla decreased nuclear actin levels, both led to formation of nuclear actin agreg-

gates/filaments. Cofilin-dependent translocation of actin into the nucleus upon LB treatment

has been described in rat peritoneal mast cells [84] and might be a general response to actin

depolymerization, also in cancer cells. Cofilin is an important nuclear import factor of actin and

the formation of nuclear cofilin-actin rods upon stress signals has been described [80, 84, 85].

The observed decrease in nuclear actin levels by Jaspla could arise due to a direct induction

of actin export but also through an inhibition of the actin import to the nucleus. Differential

changes in the nuclear actin levels upon actin binder treatment could therefore be explained by

opposing effects on the active cofilin-dependent import of actin. This explanation seems more

likely than effects on the profilin-dependent export [86], as LB did not impede profilin binding

(unpublished data) and Jaspla binds to filamental actin and is thus not expected to directly

obstruct the binding of a G-actin binding partner. Aggregation of actin in the nucleus due to

LB treatment could be explained by spontaneous polymerization due to increased actin pro-

tein levels if the level of physiological depolymerizers cannot be adjusted fast enough. Again,

nuclear actin filament formation was only observed when actin binder treatment was combined

with Chromobody overexpression, and might therefore be, at least partially, an experimental

artefact. In any case, if nuclear actin is important for DNA repair, deregulation of actin states

by treatment with actin binding substances will likely influence actin-dependent DNA damage

signalling.

It is still not understood how the polymerization of actin functions in the nucleus and how it

is triggered upon stress signals. Actin nucleators from different classes have been found in the

nucleus but there is no direct proof so far that they are also able to induce actin nucleation

and subsequent formation of nuclear actin filaments (reviewed in [82]). Belonging to the class

1 NPFs (nucleation-promoting factor), N-WASP and its activator NCK1 can for example be

localized in the nucleus. Upon UV-induced DNA damage, NCK1 translocates to the nucleus

in association with SOCS7 (suppressor of cytokine signalling 7) and G-actin [129]. Another

example is JMY, an actin nucleator which activates the Arp2/3 complex and also nucleates

actin filaments independently of Arp2/3. DNA damage mediated polymerization of cytoplasmic

actin leads to import of JMY to the nucleus, where it is for instance involved in p53 activation

[130]. Translocation of actin nucleators to the nucleus upon DNA damage induction might

therefore be responsible for actin oligomerization or even polymerization, although this is still

only a hypothesis. In addition, the existence of actin binding proteins like profilin, cofilin and

gelsolin in the nucleus imply a tight regulation of the state of nuclear actin [131].
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5.1.2 Actin manipulation inhibits specific DNA damage repair pathways

The observation that actin manipulation leads to impairment of DSB repair raised the question

in which DDR associated processes actin is involved.

Phosphorylation of ATM is an important step in DNA repair as it triggers the activation of

many different substrates, such as Chk2 and H2AX, that are involved in DNA repair, cell cycle

arrest and apoptosis induction. The activation of the ATM-Chk2 pathway was not impeded by

actin manipulation and phosphorylation levels of both members were even slightly increased.

Phosphorylation of H2AX is involved in early DSB signalling. However, loss of H2AX only leads

to mild phenotypes in mice regarding DNA damage repair capacity [132]. Nevertheless, it is

often used as a biomarker for damaged DNA [32, 33]. Latrunculin A has been reported by Leu

et. al to inhibit yH2AX foci formation upon irradiation [112], an effect not observed by LB in

this work. This might be explained by the high doses that were applied in the study of Leu

et. al, which could have induced unspecific inhibition of signalling pathways due to cell death.

Although different DSB repair pathways were inhibited by actin binder treatment, yH2AX foci

formation was completely unaffected, indicating that yH2AX levels do not necessarily correlate

with the functioning of DSB repair pathways. Local relaxation of heterochromatin depends on

ATM-mediated phosphorylation of KAP-1 and is required for the recruitment of many repair fac-

tors to the DNA break [133]. The local decondensation of chromatin upon UV-induced damage

was not impeded by actin manipulation and the global chromatin structure was not significantly

changed. Low dose treatment with actin binding substances did not influence overall transcrip-

tional activity. General events, essential for induction of DNA damage repair, were therefore not

altered by application of actin binders. The inhibition of DSB repair by actin binding substances

seems thus more specific than one might expect.

Actin manipulation inhibited specific nuclear processes involved in DSB repair signalling. The

inhibition of HDR and SSA could be attributed to an impaired recruitment of RPA to the site

of damage. This also explains why alt-EJ was not influenced, as RPA works against this third

pathway. RPA can only be recruited to long stretches of ssDNA which are produced by extensive

DNA end resection. The available experimental protocols for the measurement of ssDNA in cells

were unfortunately not suitable for the quantification of short term induction of ssDNA upon low

dose Doxo treatment. A potential additional involvement of nuclear actin in processes important

for the formation of long ssDNA could therefore neither be validated nor negated. Nevertheless,

a direct connection between actin and RPA recruitment could be provided. Nuclear actin was

bound to RPA-2 under control conditions and released upon induction of DSBs, and the binding

was found to be favoured by an increased G-actin pool. Serebryannyy et al. suggested RPA-3

as a potential nuclear actin binding partner, displayed in mass spectrometry analyses following

a pulldown assay with purified non-muscle actin of nuclear HeLa extracts [114]. The proposed

interaction, however, has not been confirmed by the group. This study provides now the first

experimental proof that RPA (in this case subunit RPA-2) can bind to actin in the nucleus.

Actin hyperpolymerization by application of Jaspla or ChB led to inhibition of NHEJ which

could be connected to a significantly decreased activation of DNA-PK. LB treatment also led to

a slight reduction of DNA-PK phosphorylation. The missing effect of LB on the repair of I-SceI

64



5 Discussion

induced damage in the respective reporter cell line could be due to the experimental setup.

The repair efficacy was measured after 72h and LB can only affect the actin cytoskeleton for a

couple of hours (as shown in this thesis and in [106]). It can therefore not be concluded that

actin depolymerization has no effect on NHEJ signalling. Recruitment of Ku to the DNA is

critical for the formation and activation of DNA-PK. Ku70 was demonstrated to bind to actin

in a proximity ligation assay. These findings go in line with the published study of Andrin et

al., which showed that Ku binds to F-actin and that actin depolymerization leads to perturbed

retention of Ku80 at the DNA break [113]. Nuclear actin seems thus to be directly involved in

Ku recruitment to damaged DNA. The in this work observed reduction of positive events upon

DNA damage induction in the proximity ligation assay might be caused by an association of

protein complexes involving Ku and/or actin with chromatin. For a better understanding of the

exact mechanism further investigations are necessary.

5.1.3 How do actin binding substances influence repair factor recruitment?

An obstructed binding of nuclear actin to repair factors could on the one hand be explained

by a dependence on the state of actin, i.e. G-actin or F-actin, or on the other hand by a direct

replacement of actin binding partners by actin binding compounds.

Overexpression of mutant actin inducing nuclear actin hyperpolymerization decreased the

binding of RPA to actin, implying that the state of actin does play a role. RPA could be trapped

by monomeric actin in the nucleoplasm under physiological conditions and actin oligomeriza-

tion or polymerization might be necessary to release RPA, followed by recruitment to ssDNA

surrounding the break (as depicted in Fig. 27). Such a principle was described in the cytoplasm

for the actin binder JMY. In this case, JMY is bound to G-actin under control conditions and

released upon actin polymerization followed by a transport to the nucleus, where it enhances

the transcriptional activity of p53 [118, 119]. This type of process might thus not only happen in

the cytoplasm, but also in the nucleus. The potential actin hyperpolymerization in the nucleus

due to treatment with actin binding substances might lead to the release of RPA-2 from actin,

and thereby delivers RPA-2 at the wrong time point.

Figure 27: Model for actin dependent RPA recruitment to ssDNA. RPA recruitment to the site of DNA

damage might depend on the regulation of actin states in the nucleus. Under normal conditions RPA is

bound to G-actin in the nucleus. The occurence of DNA damage induces nuclear actin polymerization

and thereby releases RPA. Free RPA can then be recruited to ssDNA.

G-actin consists of a smaller and a larger domain which are further divided into subdomains

1 and 2 (smaller domain) and subdomains 3 and 4 (larger domain). The nucleotide binding

cleft (NBC) is located between subdomains 1 and 4 where a nucleotide - either ADP or ATP -

bound to a divalent cation can be positioned. The NBC is separated from the hydrophobic cleft,
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which represents the primary binding site for many ABPs [134]. Binding of ABPs can be favored

by different nucleotide states. Cofilin, for example, binds to ADP-bound actin, whereas profilin

prefers ATP-bound actin. Nucleotide-dependent conformational changes can occur and different

nucleotide-sensitive regions have been described, namely the DNAse binding loop (D-loop), the

WH2 binding loop (W-loop) and both the N- and C-terminal end of actin [134]. Binding of the

D-loop of one actin subunit to the hydrophobic cleft of a neighboring subunit can be regulated

by nucleotide hydrolysis and is thus predicted to be involved in contacts of actin-monomers

along the F-actin helix [135]. The W-loop is the prime interaction site for WH2 domain proteins

[134] and plays an important role in the binding of e.g. profilin [136] and cofilin [137].

LB binds in the nucleotide binding cleft of actin [138]. As nucleotide sensitive regions, im-

portant for the binding of specific ABPs, have been described, NBC obstruction could therefore

hinder binding of actin binding partners. LB might thus lead to allosteric inhibition of the bind-

ing of specific ABPs. Such an effect might in general rather depend on the exact binding site

than on the class of the actin binding compound. In this respect, LB for example does not impair

profilin binding to actin whereas Chivosazole A does (unpublished data).

Both phalloidin and Jaspla bind in the gap between two F-actin strands, or in other words

to the actin-actin contact sites at the interface of three actin subunits [139, 140]. Phalloidin

competes for example with nebulin [141] and gelsolin [142], suggesting that also Jaspla might

directly or indirectly displace ABPs or prevent them from being added.

Actin binding substances might therefore directly replace DNA repair factors from actin in

the nucleus, resulting in a blockage of recruitment to the DNA break. In the case of RPA, LB

might directly replace RPA-2 from G-actin (Fig. 28A). On the contrary, the reduction of G-

actin abundance by Jaspla treatment might indirectly decrease the interaction of RPA-2 and

actin (Fig. 28B). To unravel which DNA repair factors bind to actin and which ABPs could be

displaced by actin binding compunds, further extensive research is still needed.

Figure 28: Model for the displacement of RPA-2 from actin by actin binding compounds. A LB.

Binding of LB to G-actin directly inhibits the interaction of RPA-2 and nuclear actin. B Jaspla.

Jaspla stabilizes F-actin and thereby indirectly prevents the potential interaction of RPA-2 and

G-actin.
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5.2 Targeting actin for combination chemotherapy - should we bring

actin binding substances back into focus?

DNA damage inducing therapy is successfully used for cancer treatment, as extensive and per-

sistent DNA damage induces cell cycle arrest or cell death [143]. However, several problems

arise with this kind of tumor treatment. First, all rapidly proliferating cells will be targeted,

thus it is not a tumor tissue specific treatment. Secondly, in addition to killing the wrong cells,

it can lead to therapy-induced malignancies, as error-prone DNA repair pathways like NHEJ

will result in DNA mutations [22, 144]. As a consequence, classical chemotherapy often causes

severe side effects. The decrease of required substance concentrations by improvement of drug

delivery represents one approach to prevent unwanted secondary effects. To name one exam-

ple, pegulated liposomal doxorubicin (PLD) has been the first approved nanomedicine and is

nowadays used in breast cancer treatment. Its special formulation was designed to increase both

the stability of doxorubicin in the blood circulation and its selective release to the tumor tissue

(reviewed in [145]). However, PLD has not replaced free Doxo as a therapeutic option for all

indications, as several studies pointed out that PLD could not show higher anti-tumor activities

compared to each respective competitor (reviewed in [146]). The above mentioned problems are

therefore not (completely) solved yet. Another approach is the administration of combination

therapy. Inhibitors of specific factors important for DNA repair signalling have been developed

and are currently being tested for their potential application in cancer therapy. The evaluation

of combining DNA repair inhibitors with classical chemotherapy, however, represents an under-

investigated approach.

NHEJ is considered to be the main pathway responsible for rapid DSB repair after chemother-

apy [147] and represents thus one promising target for combination therapy. As one of the core

factors for functional NHEJ, DNA-PKcs can be targeted by different inhibitors that have been

developed recently. DNA-PKcs inhibition has been shown to sensitize for radiotherapy or top2

inhibitor treatment in vitro and in xenografts [148, 149]. The dual mTOR DNA-PKcs inhibitor

CC-115 has even been used for several preclinical phase I trials [23] (and clinicaltrials.gov). CC-

122, another DNA-PK inhibitor, has been tested for solid tumors, non-Hodgkin lymphoma and

multiple myeloma in a phase I clinical trial (NCT01421524) [150]. The most famous substance

is probably olaparib, the first FDA approved DNA repair inhibitor, which is currently being

tested in different contexts for combination therapy [21, 151]. Even though HDR is limited to

the S and G2 phase of the cell cycle, it is essential for the maintenance of genomic stability as

it not only repairs DSBs, but is also involved in the repair of both stalled and collapsed repli-

cation forks and interstrand crosslinks. Tumors with defects in HDR functions are described to

be highly sensitive to DSB inducing therapies and targeting HDR factors therefore seems to be

another attractive option for cancer therapy [23]. Different strategies to inhibit HDR have been

suggested, such as inhibition of Rad51 [152] or the interference with the ATM-Chk1/2 pathways

(reviewed in [23]). Although beneficial effects have been suggested in vitro and in preclinical

studies, the simultaneous combination of DNA damaging agents with DNA repair inhibitors is

not an established treatment option in the clinics yet.
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The inhibition of nuclear DSB repair pathways by application of actin binding substances

demonstrated in this work, proposes a new strategy for combination chemotherapy. Manipula-

tion of actin by different actin binding substances revealed inhibition, not only of one specific

repair factor, but of distinctive and separate DSB repair pathways. While designing treatment

strategies for cancer therapy, the following dilemma has to be faced: broad range therapeutics

(i.e. classical chemotherapy like Doxo) are very potent but generally not tumor-specific enough

and thus induce strong side effects, whereas highly specific therapeutics often lead to resistances.

On a long term basis, only a small subpopulation of cancer patients benefits from such a treat-

ment, due to the very heterogeneous nature of cancer [153]. Actin binding substances that inhibit

different DNA repair pathways simultaneously might thus represent a promising tool for cancer

therapy, as they specifically inhibit the repair of chemotherapy induced DNA damage targeting

several pathways that could otherwise fill in for each other. The effects of actin manipulation on

the functioning of DSB repair might, as a result, reduce the required concentration of Doxo. Syn-

ergistic effects of LB and Doxo in vitro and the increase in DNA damage when Doxo treatment

was combined with i.p. application of LB in vivo, as observed in this thesis, strongly support

this hypothesis. The reduction of Doxo concentrations would as a consequence be considered to

decrease the expected cardiotoxic side effects.

In general, the disruption of the cytoskeleton of malignant cells represents an ideal approach

for chemotherapeutic treatment, since malignant cells often exhibit a perturbed cytoskeleton

and are especially dependent on cytoskeletal functions due to their high proliferation rates [154].

However, all clinically approved cytoskeletal-directed substances inhibit the microtubule system,

whereas microfilaments or intermediate filaments are not targeted in the clinics (yet) (reviewed

in [155]). The functioning of the actin cytoskeleton is crucial for both proliferation and metasta-

sis formation, processes involved in the development of malignancies. However, severe side effects

are feared and actin binding substances have not been introduced to clinical investigations.

Not much has been published about actin binders in preclinical studies so far. Jasplakinolide

was soon dropped from consideration for clinical trials as it showed a very narrow therapeutic

index in rats and dogs when applied i.v. and lethality was accompanied by edema, hemorrhage

and congestion [156]. On the other hand, in mice bearing Lewis lung carcinoma, Jaspla has been

successfully applied i.p. and s.c. and led to tumor growth delay and sensitization to radiation

therapy [107]. The width of the therapeutic window might thus depend on how the substance

is administered. Cytotoxic effects of Jaspla have been described in human induced pluripotent

stem cell-derived cardiomyocytes in vitro, leading to a dose dependent decrease in viable cell

numbers and mitochondrial membrane potential and increase in membrane permeability [157].

The possibility of an even more pronounced cardiotoxicity would therefore have to be excluded

experimentally in vivo, although decreased substance concentrations in the combination ther-

apy might still lead to beneficial effects. In different in vitro proliferation assays performed for

this thesis, addition of Jaspla to Doxo treatment only led to slight effects on tumor cell pro-

liferation and colony formation ability. Further experiments are needed to determine the right

concentrations for both substances and the correct time points for pretreatment schedules for

the best results possible. Nevertheless, it can also be concluded that Jaspla is not a promising
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actin binding compound for further preclinical research.

Successful application of chondramide in vivo has been reported for i.v. and i.p. injection,

showing that chondramide treatment can be tolerated by mice [109, 158]. Additionally, in a

4T1-Luc BALB/c mouse model, premedication with chondramide led to reduced metastasis of

tumor cells to the lungs [109]. However, probably due to the negative report regarding Jaspla

treatment of rats and dogs, not many publications can be found about in vivo investigations

with the actin polymerizer chondramide. One important finding has to be mentioned, in which

chondramide induced caspase dependent apoptosis in breast cancer cell lines, whereas non-tumor

breast epithelial cells were found to be less sensitive to an apoptosis induction by chondramide

treatment. This suggests a tumor cell specificity of chondramide induced effects, even though a

universal protein such as actin was targeted [110].

Reports about the application of latrunculins are also rare. In this work it could be shown

that application of 0.1mg/kg LB i.p. is well tolerated in mice and increases the extent of Doxo

induced DNA damage. The additionally observed positive effects in combination with Doxo for

inhibition of tumor cell growth in vitro in two different cancer cell lines highlight the potential

of LB in combination therapy with DNA damaging agents.

In addition to a reduction of the required Doxo concentration, DNA repair inhibition through

application of actin binding substances can be achieved by concentrations lower than the ones

required for anti-cancer effects by actin binder monotherapy. The above described issue of the

narrow therapeutic window of actin binders in vivo might then not be a major problem anymore.

The improvement of drug delivery to the site of interest could further decrease feared side effects.

One possibility could be the application of nanotechnology based carrier systems, which would

allow the directed transport of actin binding substances to the tumor (e.g. [159]). Moreover,

photoresponsive conjugates of actin binders would allow local activation of the substance only

in the tumor (the feasibility of this approach has been published in [160]). Hence, there is still a

lot of room for future research to further enhance the efficacy of actin binder treatment in order

to reduce or even prevent possible remaining side effects.

The extent of potential positive effects of actin binder treatment in addition to Doxo likely

depends as well on the cancer type and its specific characteristics. The increased phosphoryla-

tion of both ATM and Chk2 after combination treatment with Doxo and actin binders indicates

an increased activation of the ATM-Chk2 pathway which is involved in p53-mediated induction

of apoptosis. In this work, HeLa cells were used for most of the experiments, a HPV infected

cell line which harbors inactivated p53 [161]. P53 dependent induction of cell death can thus

not occur. This suggests a testing of combination treatment with p53 wild type cancer cells, as

the synergism might strongly increase. This hypothesis is further supported by the finding that

F-actin negatively regulates translocation of p53 to the nucleus upon damage induction [117]. A

decrease of polymerized actin in the cytoplasm by treatment with actin depolymerizers like LB

might further enhance the synergistic effect of actin manipulation and Doxo treatment. On the

other hand, latrunculin A has been reported to reduce JMY-mediated p53 activation upon DNA
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damage induced cytoplasmatic actin polymerization [162]. It is therefore difficult to predict the

outcome of such a treatment in different cancer cell lines and further experiments would be

needed. Hyperactivation of ATM as a feedback to DNA-PKcs inhibition has been published and

amplified the p53 response to damage, thereby sensitizing the cells to damage induced senescence

[163]. In this work, ATM-Chk2 phosphorylation was shown to be induced which could therefore

(at least partially) be due to the decreased autophosphorylation (i.e. inactivation) of DNA-PK

upon actin manipulation. This underlines again that p53 wildtype cancer cells might be even

more susceptible for Doxo + actin binder combination treatment. Furthermore, highly motile

cancers with a high metastatic potential might be more susceptible to an additional targeting of

actin, since they strongly depend on cytoskeletal functions. In that case, even low dose treatment

with actin binders will still inhibit the actin cytoskeleton to a certain degree.

In summary, the inhibition of DSB repair by application of actin binding substances, such as

Jaspla and LB, proposes a new approach for combination chemotherapy. Especially the actin

depolymerizer LB showed promising results as it was well tolerated in mice, while increasing

DNA damage levels in combination with Doxo in vivo and decreaing proliferation when combined

with Doxo in vitro. Actin binding substances should thus definitely be brought back into focus,

as they show a high potential in the development of new cancer treatment strategies.
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5.3 Summary and conclusion

In this work, specific roles of nuclear actin in the repair of chemotherapy induced DNA DSBs

could be demonstrated (summarized in Fig. 29). Application of the actin binding substances

Jaspla and LB inhibited both HDR and SSA by impairing the recruitment of RPA to the site

of DNA damage. RPA-2 was demonstrated to be bound to nuclear actin and the impaired RPA

recruitment was hypothesized to be caused by an altered interaction of RPA-2 and nuclear actin.

Additionally, actin hyperpolymerization led to reduced activation of DNA-PK, resulting in an

inhibition of NHEJ. A fourth DSB repair pathway, alt-EJ, was not influenced by actin manipu-

lation. Due to the observed inhibition of DNA repair, actin binding substances were evaluated

as potential candidates for combination therapy with the DNA damaging agent Doxo. Addition

of LB to Doxo treatment synergistically inhibited proliferation in two different cancer cell lines

in vitro and increased DNA damage levels in tumor cells in vivo.

In conclusion, the successful utilization of actin binding substances in combination therapy

could be linked to the inhibition of Doxo induced DSB repair, thus presenting a novel treatment

approach for cancer therapy.

Figure 29: Effects of actin binders on DSB repair. During DSB repair, actin manipulation obstructs RPA

loading to ssDNA and thereby inhibits HDR and SSA, and decreases auto-phosphorylation of DNA-

PK for NHEJ, whereas alt-EJ is not influenced.
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7 Appendix

7.1 Abbreviations and units

Table 15

Abbreviation Meaning

ad. Fill up to

A Ampere

ABP Actin-binding protein

Alt-EJ Alternative end joining

ANOVA Analysis of variance between groups

ATM Ataxia-telangiectasia mutated

ATP/ADP Adenosine triphosphate/diphosphate

ATR ATM- and RAD3-related

bp base pair

BSA Bovine serum albumine
◦C Degree Celsius

ChB Chondramide B

Chivo Chivosazole A

Chk2 Checkpoint kinase 2

CM Complete media

Co-IP Co-immunoprecipitation

cs Catalytical subunit

CtIP C-terminal binding protein 1 (CtBP1) interacting protein

Da Dalton

DDR DNA damage response

DMEM Dulbeccos Modified Eagle Medium

DMSO Dimethyl sulfoxide

DNA Deoxyribonucleic acid

DNA-PK DNA-dependent protein kinase

Doxo Doxorubicin

ds Double stranded

DSB DNA double strand break

ECL Enhanced chemical luminescence

EDTA Ethylenediaminetetraacetic acid

e.g. For example

EXO1 Exonuclease 1
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Table 15: continued from previous page

Abbreviation Meaning

et al. And others

F-actin Filamental actin

FACS Fluorescence-activated cell sorting

FCS Fetal calf serum

FCS Fluorescence correlation spectroscopy

Fig. Figure

FSC Forward scatter

g Gram

G-actin Globular actin

GFP Green fluorescent protein

G-phase Gap phase

h Hour

HDR Homology derived repair

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

HRP Horseradish peroxidase

i.e. Id est (that is)

i.p. Intraperitoneal

i.v. Intravenous

Jaspla Jasplakinolide

k 1000 (number)

kg Kilogram

Ku Ku70/80 heterodimer

l Liter(s)

LB Latrunculin B

m Milli / meter

M Molar

min Minute(s)

Miu Miuraenamide A

n Nano

NBC Nucleotide binding cleft

NHEJ Non-homologous end joining

p Phosphorylated

PBS Phosphate buffered saline

PARP Poly (ADP-ribose) polymerase

Pen/Strep Penicillin-Streptomycin

PMSF Phenylmethanesulfonylfluoride

PVDF Polyvinylidene difluoride

RNA Ribonucleic acid

ROS Reactive oxygen species

rpm Revolutions per minute
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Table 15: continued from previous page

Abbreviation Meaning

RPMI Roswell Park Memorial Institute

RT Room temperature

s Second(s)

s.c. Subcutaneous

Ser Serine

ss Single stranded

SSA Single strand annealing

S-phase Synthesis phase

SD Standard deviation

SDS Sodium dodecylsulfate

SEM Standard error of the mean

SSC Sideward scatter

T Threonine

Tab. Table

TBS-T Tris-buffered saline and Tween 20

TE Trypsin-EDTA

top2 Topoisomerase 2

Tris Tris(hydroxymethyl)aminomethane

UV Ultraviolet

V Volt

w/v Weight per volume

yH2AX Phospho-histone H2AX

µ Micro
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7.2.1 Original publications

Cyclin-dependent kinase 5 stabilizes hypoxia-inducible factor-1α: a novel approach

for inhibiting angiogenesis in hepatocellular carcinoma

Herzog J, Ehrlich SM, Pfitzer L, Liebl J, Fröhlich T, Arnold GJ, Mikulits W, Haider C,

Vollmar AM, Zahler S.

Oncotarget. 2016, May 10.

Targeting actin inhibits repair of chemotherapy induced DNA damage: a novel

therapeutic approach for combination therapy

Pfitzer L, Moser C, Foerster F, Atzberger C, Zisis T, Kubisch-Dohmen R, Busse J, Smith R,

Timinszky G, Kalinina O, Wagner E, Vollmar AM, Zahler S

In preparation.

7.2.2 Poster presentations

Effects of actin manipulation on the recruitment of nuclear DNA damage repair

factors

Lisa Pfitzer, Rebecca Smith, Gyula Timinszky, Angelika M. Vollmar, Stefan Zahler

EACR conference series - Radiation Break-through: from DNA damage responses to precision

cancer therapy, 12-14th March, 2018, Oxford, UK.
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