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KURZFASSUNG

Diffusion und molekulare Bindungsreaktionen sind elementare Prozesse in biologischen Sys-
temen. Fiir das Verstdandnis solcher Dynamiken und deren Wechselwirkungen ist es letztlich
unabdingbar die beteiligten Parameter exakt zu quantifizieren. Diesem Ziel folgend setzt
sich diese Arbeit mit der Quantifizierung von Diffusions- und Bindungsdynamiken unter

Nutzung der Fluoreszenzkorrelationsspektroskopie (FCS) auseinander.

Um die Assoziations- und Dissoziationsraten von reversiblen Bindungsreaktionen an
Oberflachen zu messen, wurde im Rahmen dieser Arbeit eine neuartige Methode namens
"surface-integrated FCS" (SI-FCS) entwickelt. Mittels dieser Methode kénnen Bindungs-
raten zwischen Rezeptoren und fluoreszierenden Liganden in Zeitbereichen von Millisekun-
den bis liber einer Minute gemessen werden. Die zu untersuchende Oberfliche, an der
die Bindungsreaktionen stattfinden, wird mit einer Weitfeldausleuchtung beschienen und
die daraufhin emittierte Fluoreszenz von den Liganden wird mit einer sehr empfindlichen
Kamera (electron-multiplying charge-coupled device) detektiert. Diese Flachendetektion
verfiigt nicht nur iiber ausreichende Empfindlichkeit um einzelne Molekiile zu detektieren,
sondern ermdéglicht auch die parallele Messung mehrerer Autokorrelationskurven im Sicht-
feld. Zur Validierung dieses neuartigen Ansatzes wird die reversible Hybridisierung von
Desoxyribonukleinsduren (DNS) mit einem im Rahmen dieser Arbeit konstruierten total-
reflexionsbasiertem Fluoreszenzmikroskop (TIRF Mikroskop) quantifiziert. Die Anzahl der
hybridisierenden Basenpaare wird in dieser Studie systematisch variiert und driickt sich in
klaren Anderungen der gemessenen Bindungsraten aus. Damit wird die Sensitivitéit der

Methode unterstrichen.

Dartiiber hinaus bedient sich diese Arbeit der konventionellen konfokalen FCS. Das
Problem von Proben, die einen anderen Brechungsindex als den von Wasser aufweisen,
wird intensiv im Kontext von FCS Messungen beleuchtet. Abschliefend werden Mess-
bedingungen aufgezeigt unter denen systematische Messfehler und Artefakte, die auf den

Brechungsindex zurckzufiihren sind, vermieden werden kénnen.

In einem Teil dieser Arbeit wird die konfokale FCS genutzt um die Polymerisation
von FtsZ Proteinen (Filamenting Temperature-Sensitive Z), sowie deren Zerlegung durch
das Protein MipZ, zu untersuchen. Potentielle Fehlerquellen solcher Messungen werden
beleuchtet und ein neues Modell fiir die Analyse von konfokalen FCS Messungen an Fi-

lamenten wird hergeleitet. Die prasentierten Ergebnisse zeigen nicht nur, dass FCS eine
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geeignete Methode ist um Wachstum und Zerfall von Filamenten im Allgemeinen zu charak-
terisieren, sondern liefern auch deutliche Hinweise, dass FtsZ aus dem Bakterium Caulobac-
ter crescentus auch in Abwesenheit von Guanosintriphosphat (GTP) kurze Oligomere
bildet. Letzteres ist insbesondere interessant, da typischerweise angenommen wird, dass
FtsZ als monomeres Protein vorliegt und erst in Anwesenheit von GTP zu Filamenten
polymerisiert.

Abschliefend quantifiziert diese Arbeit die Diffusion von Biomolekiilen in Lipidmono-
schichten an der Grenzfliche zwischen Luft und Wasser. Unter Verwendung der kon-
fokalen FCS werden Messungen in Miniaturkammern durchgefithrt und validiert. Mithilfe
dieser Methode werden Messungen an Biomolekiilen ermoglicht, die nur in sehr geringen
Mengen aufgereinigt werden kénnen. Die hier prasentierten Diffusionsmessungen stellen
einen wichtigen Schritt hin zur FCS basierten Charakterisierung der Bindungskinetiken

von Biomolekiilen zu Lipidmonoschichten dar.
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ABSTRACT

Diffusion and molecular binding processes are indispensable for biological systems. A vital
step towards the understanding of such dynamics and their interplay is a thorough quantifi-
cation of all parameters involved. This work addresses the characterization of biomolecular
diffusion and binding dynamics using fluorescence correlation spectroscopy (FCS).

To quantify the reversible surface attachment of fluorescently labeled molecules, a novel
method termed surface-integrated FCS (SI-FCS) is developed. Using this technique, the
association and dissociation rates of receptor-ligand pairs can be determined over a wide
range of time scales, ranging from hundreds of milliseconds to tens of seconds. The surface
of interest is exposed to a widefield illumination and a highly sensitive electron-multiplying
charge-coupled device (EMCCD) camera is used for detection, not only providing single-
molecule sensitivity, but also enabling a parallel detection of the signal, which facilitates
multiplexed SI-FCS measurements across the field of view. To validate this approach, we
quantify the reversible hybridization of single-stranded deoxyribonucleic acid (DNA) using
a standard total internal reflection fluorescence (TIRF) microscope. The nucleotide overlap
was systematically varied to demonstrate the sensitivity of SI-FCS.

Furthermore, this work extensively employs FCS in its more conventional form using
a confocal microscope. The effect of refractive index mismatches on single-focus FCS
measurements is thoroughly characterized and a regime in which unbiased experiments are
possible is identified.

Confocal FCS is used to monitor the filament formation of FtsZ proteins (filamenting
temperature-sensitive mutant Z) and their breakage by the protein MipZ in vitro. Potential
artifacts are identified and a novel model to analyze diffusing filaments in FCS experiments
is derived, applied, and validated. These findings not only demonstrate that filament
formation can be efficiently studied using confocal FCS, but also indicate that FtsZ from
Caulobacter crescentus may intrinsically form small oligomers.

Finally, this work characterizes the diffusion of biomolecules in lipid monolayers at the
air-water interface using confocal FCS. A miniaturized fixed area-chamber, which requires
only minute amounts of protein, is presented and validated. Using this design, monolayer
experiments become accessible to studies where biomolecules can only be purified in small
amounts. Moreover, the quantification of diffusion in monolayers using FCS is a major

step towards the routine characterization of binding of biomolecules to lipid monolayers.

iii



Abstract

v



Contents

Kurzfassung i
Abstract iii
List of Abbreviations xvii
I Introduction and outline 1

II Basic concepts 5
I1.1 Diffusion and binding . . . . . . . . . . ... 5
II.1.1 Diffusion models . . . . . . .. ... .. 5
II.1.1.1 Brownian motion . . . . . . . . . . .. ... ... ..... )

I1.1.1.2 Stokes-Einstein-Smoluchowski Equation . . . . . .. . .. 6

I1.1.1.3 Diffusion of membrane inclusions . . . . .. ... .. ... 7

I1.1.1.4  Free area model (FA-model) . . . . .. .. ... ... ... 10

I1.1.2 Simple binding kinetics . . . . . . . . .. .. ... ... ... 11

I1.2 Fluorescence microSCopy . . . . . .« o v v v v v v v i i i 12
I1.2.1 Fluorescence as a tool for life science applications . . . . . . . . .. 12
[1.2.2 Confocal microscopy . . . . . . . . . .. ... ... ... 13
I1.2.3 Total Internal Reflection Fluorescence Microscopy . . . . . . . . .. 13

I1.3 Fluorescence Correlation Spectroscopy . . . . . . . . . .. . .. ... ... 15
I1.3.1 Information content of fluctuations . . . . . .. .. ... ... ... 15
I1.3.2 Principle of FCS . . . . . . . .. .. 16
I1.3.3 Derivation of the autocorrelation function of freely diffusing particles 18
I1.3.3.1 General considerations . . . . . ... .. ... .. ..... 18

I1.3.3.2 Solution for diffusionin3D . .. ... ... ........ 19

I1.3.4 Confocal single-point FCS . . . . . ... ... ... .. ... .... 20



CONTENTS

11.3.4.1 Autocorrelation from 3D diffusion and calibration of the

confocal volume . . . . . . . ... 20

I1.3.4.2 Autocorrelation function for selected processes . . . . . . . 22

I1.3.4.3 Limitations of confocal FCS . . . . . ... ... ... ... 23

I1.3.4.4 Confocal FCS on lipid membranes . . . . . ... ... .. 28

[1.3.4.5 Binding studies by confocal FCS . . . . . ... ... ... 29

IITI Quantification of binding rates by surface-integrated FCS 31
III.1 Introduction . . . . . . . . . . . . . . 31
ITI.1.1 Demands on a method that quantifies surface binding . . . . . . . . 31
IT1.1.2 Review of previous TIR-FCS studies . . . . . ... ... ... ... 33
IM1.1.3 Concept of SI-FCS . . . . . . . . ... .. 36

IT1.2 SI-FCS to characterize binding kinetics . . . . . . . . . .. ... ... ... 38
I11.2.1 Theoretical considerations . . . . . . . .. . ... ... ... .... 38
I11.2.1.1 Derivation of the autocorrelation function . . . . . . . .. 38

I11.2.1.2 Conclusions for the experimental design from the theoreti-

cal autocorrelation function . . . . .. .. ... 42

I11.2.2 Measurement of reversible DNA hybridization . . . . . ... .. .. 43
[11.2.2.1 Temporal resolution of 7 nt, 8 nt, 9 nt and 10 nt hybridizations 43

I11.2.2.2 Parallel discrimination of multiple binding kinetics . . . . 46

I11.2.3 Precise quantification of association and dissociation rates by SI-FCS 48
I11.2.3.1 Titration experiments . . . . . . . . .. ... ... .... 48

I11.2.3.2 Minimal set of SI-FCS experiments to measure kinetic rates 51

II1.3 Quality control . . . . . . . . . . .. . 53
II1.3.1 Time scales accessible to SI-FCS . . . . . . ... .. ... ... .. 53
ITI.3.1.1 Minimal duration of individual SI-FCS measurements . . . 53

I11.3.1.2 Minimal frame rate of individual SI-FCS measurements . . 56

I11.3.1.3 Conclusions for the accessible time scales . . . . . . . . .. o7

IT1.3.2 Effect of photobleaching . . . . . . ... .. ... ... ... .... 59
IT1.3.3 Reproducibility of individual SI-FCS measurements . . . . . . . .. 62
I11.3.4 Robustness of SI-FCS against defocused image acquisitions . . . . . 63

I11.4 Direct characterization of the evanescent field . . . . . ... ... ... .. 64
II1.4.1 Shortcomings of existing methods . . . . . . . ... ... ... ... 65
I11.4.2 Preparation protocol of a novel calibration slide . . . . . ... . .. 66
I11.4.3 Direct measurement of the evanescent field profile . . . . . . . . .. 68

vi



CONTENTS

IT1.5 Discussion of SI-FCS in relation to other methods . . . . . . . . .. .. .. 71
ITI.5.1 Localization of single particles . . . . . . . . . .. .. .. ... ... 72
I11.5.2 BLI, QCM-D and SPR . . . . . . . ... ... .. .. ... ..... 76
I11.5.3 Confocal FCS . . . . . . . . . . . .. . ... ... 7

ITII1.6 Conclusion . . . . . . . . . . . . . e 78

II1.7 Outlook and future directions . . . . . . . ... .. .. ... ... ..... 79

IV Disentangling effects of viscosity and refractive index mismatch in

single-focus FCS 83
IV.1 Introduction . . . . . . . . . . .. 83
IV.2 Results and discussion . . . . . . . . . . ... 85

IV.2.1 Bias of typical FCS measurements in case refractive index mismatch
effects are not taken into account . . . . . . .. ... ... ... .. 85

IV.2.2 Effect of the nominal focus position . . . . . . . .. ... ... ... 88

IV.2.3 Accurate viscosity measurements by single-focus FCS . . . . . . .. 91

1V.2.4 Refractive index mismatch in FCS measurements on 2D diffusion in

GUVs . e 92
IV.3 Conclusion . . . . . . . . . . . . e 94
V  Characterization of FtsZ dynamics from C. crescentus by FCS 97
V.1 Introduction . . . . . . . . . . ... 97
V.2 Results and Discussion . . . . . . . ... ... oo 99
V.2.1 Semiquantitative real-time observation of FtsZ filament formation
and shortening . . . . . ... ..o 99
V.2.1.1 Filament formation . . . . . . . ... ... ... ... ... 99
V.2.1.2 Effect of MipZ on FtsZ filaments . . . . . ... ... ... 103
V.2.2 Quantitative insights into FtsZ dynamics in the absence of GTP . . 105
V.2.2.1 Revisited selection of an appropriate model for the auto-
correlation . . . . . .. ..o 105
V.2.2.2 Hydrodynamic radius of FtsZ in the absence of GTP ex-
ceeds the monomer radius . . . . . . . ... ... ... .. 107
V.2.2.3 Effect of the C-terminal linker of FtsZ on diffusion dynamics110
V.2.2.4 Diffusion of rod-like particles . . . . ... ... ... ... 114
V.2.2.5 Autocorrelation function of linear filaments with a known
length distribution . . . . . .. ... 116

vii



CONTENTS

V.2.2.6 Size distributions of FtsZ in the absence of GTP . . . . . 119
V.2.3 Quantitative insights into FtsZ dynamics in the presence of GTP . 121
V.2.3.1 Estimation of the FtsZ filament length using a single-component

diffusion model . . . . . . ... L 121

V.2.3.2 Average filament size of FtsZ from C. crescentus. . . . . . 123

V.3 Conclusion . . . . . . .. . 124
V.4 Outlook . . . . . e 125
VI FCS study of protein mobilities in lipid monolayers 127
VI.1 Introduction . . . . . . . . . . ... 127
VI.2 Results and Discussion . . . . . . . . .. .. ... .. 131
VI.2.1 Qualification of the miniaturized monolayer chambers . . . . . . . . 131

VI.2.1.1 Interface area in miniaturized microchambers . . . . . . . 132

VI1.2.1.2 Comparison of surface pressures in miniaturized microcham-

bers and Langmuir-Blodgett troughs . . . . .. . ... .. 134
VI.2.1.3 Stabilization of the monolayer position . . . . . . ... .. 136
VI1.2.1.4 FCS study of lipid diffusion in lipid monolayers . . . . . . 138
VI.2.2 Protein aggregation at the lipid monolayer . . . . . . . .. ... .. 142
VI1.2.3 FCS study of differently sized biomolecules in lipid monolayers . . . 146
VI.2.3.1 Pentameric 8 subunit of Cholera Toxin (CtxB) . . .. .. 148
VI.2.3.2 Membrane proximal external region (MPER) . .. .. .. 150
VI1.2.3.3 Rod-like DNA origamis . . . ... ... ... .. ..... 152
VI1.2.3.4 Estimation of the lipid monolayer surface viscosity through
the Hughes-Pailthorpe-White model . . . . . ... .. .. 154
VI.3 Conclusion . . . . . . . . .. . 158
VI.4 Outlook . . . . . . . 159
Bibliography 161
A Appendix to chapter III 219
A.1 Custom-built TIRF microscope for SI-FCS . . . . . ... ... ... .. .. 219
A.1.1 Excitation pathway . . . . . . . . .. ... .. 220
A.1.2 Detection pathway . . . . . . ... ... ... ... ... ... 223
A.1.3 Focus stabilization . . . . . . . ... L oo 224
A.2 Materials and Methods . . . . . . . . . ... 228

viil



Table of contents

A.3 Supporting figures . .

B Appendix to chapter IV
B.1 Materials and Methods
B.2 Supporting figures . .
B.3 Supporting tables . . .

C Appendix to chapter V
C.1 Materials and Methods
C.2 Supporting figures . .

D Appendix to chapter VI
D.1 Materials and Methods

Publications

Acknowledgments

239
239
246
249

251
251
256

261
261

267

269

ix



Table of contents




List

I1.1

I1.2
I1.3
I1.4
I1.5

ITI.1
I11.2
I11.3
I11.4
ITL.5

1.6
I11.7
ITI1.8

IT1.9

ITI1.10
IT1.11
I11.12
IT1.13

I11.14
IT1.15

V.1
IV.2

of Figures

Reduced mobilities of membrane inclusions according to Saffmann-Delbriick-

model and Hughes-Pailthorpe-White model. . . . . . . . ... ... ... 8
Concept of total internal reflection. . . . . . . . ... ... .. ... ... 14
Principle of confocal FCS. . . . . . . .. .. ..o 21
Effect of afterpulsing in confocal FCS. . . . . .. .. ... ... ... ... 24
Confocal FCS depends only weakly on the structure parameter. . . . . . 28
Concept of SI-FCS. . . . . o 0 o0 37
Resolution of reversible DNA hybridizations by SI-FCS. . . . . . .. ... 43
Resolution of multiple binding species by SI-FCS. . . . . .. ... . ... 47
Quantification of association and dissociation rates by SI-FCS. . . . . . . 49

Quantification of association and dissociation rates from a minimal set of

SI-FCS measurements. . . . . . . . . .. 52
Required measurement duration for SI-FCS experiments. . . . . . . . .. 54
Effect of the frame rate on SI-FCS measurements. . . . . . . . . . . . .. 56

Simulated autocorrelation curve for SI-FCS with 3D diffusion and re-

versible binding. . . . . . ... oo 58
Identification of a photobleaching-free regime. . . . . . . . . . ... ... 60
Reproducibility of individual SI-FCS measurements. . . . . . . . ... .. 62
Robustness of SI-FCS to defocused image acquisitions. . . . . . .. . .. 64

Multistep calibration slide for the direct calibration of the evanescent field. 67

Direct characterization of the evanescent field with the newly developed

calibration slide. . . . . . . . .. ... 69
Simulation of SI-FCS experiments at different surface receptor densities. . 73
SI-FCS experiments at different surface receptor densities. . . . . . . .. 74

Normalized autocorrelation curves of Atto655 in aqueous solutions of sucrose. 86

Bias of the viscosity measured by FCS 100 pm above the coverslide. . . . 87

X1



LIST OF FIGURES

xii

IV.3

V4
IV.5

V.1
V.2
V.3
V4
V.5
V.6
V.7

VI.1
VI.2

VL3
V14
VL5
VI.6
VL7
VL8
VL9
VI.10

Al
A2
A3
A4
A5

B.1
B.2
B.3

FCS diffusion time depends on the NFP in media with a refractive index

mismatch. . . . . 89

Lack of bias of the viscosity measured by FCS 15 pnm above the coverslide. 91

FCS on GUVs filled with aqueous solutions of sucrose. . . . . . . . . . .. 93
FtsZ crystal structure. . . . . . .. ... oo 98
FtsZ filament formation and break down by MipZ. . . . . . . . . ... .. 100
FtsZ autocorrelation curves appear to be well described by several models. 106
Functionality of FtsZ without C-terminal linker domain. . . . . . . . .. 111
cpp of WT FtsZ and a Ctl deficient mutant in the absence of GTP. . . . 113
C-terminal linker in FtsZ appears to introduce protein interaction. . . . . 120
Average filament size of FtsZ from C. crescentus. . . . . . . . . . ... .. 123
Determination of the air-water interface area.. . . . . . . . . . . ... .. 133

Surface pressure measurements in miniaturized monolayer chambers re-

produce conventional Langmuir-Blodgett isotherms. . . . . . . . . .. .. 135
Temperature control stabilizes monolayer interface. . . . . . . . ... .. 136
FCS study of lipid diffusion in DMPC monolayers. . . . . . .. ... ... 139

Air-water interfaces may be passivated against protein aggregation by lipids. 145
Monolayer passivation by BSA. . . . . ... ..o 146
Diffusion coefficient of monolayer-bound CtxB depends on the lipid packing.147
Diffusion coefficient of monolayer-bound MPER depends on the lipid packing.151

Diffusion of several biomolecules in DMPC monolayers. . . . . ... ... 155
Viscosity of the DMPC lipid monolayer determined by FCS. . . . . . .. 156
Custom-built TIRF microscope. . . . . . . . . . . ... ... ... .... 219
Working principle of the focus stabilization . . . . . . .. ... ... ... 226
Rectangular DNA origami exposing 20 single-stranded DNA handles. . . 229
Confocal FCS measurements on imager strands diffusing in 3D . . . . . . 236

Fluorescence signal scales with the DNA origami concentration during in-
cubation . . . . ..o 237

Measurement of the diffusion coefficient of Atto488 relative to Alexad88.. 242
FCS power series of fluorophores diffusing in 3D and 2D. . . . . .. . .. 243

Reproducibility of individual confocal FCS measurements in water. . . . . 246



LIST OF FIGURES

B4

B.5

C.1
C.2
C.3
C4
C.5
C.6
C.7

D.1
D.2

Relation between viscosity and refractive index for a range of aqueous
solutions. . . . . . . . L 247

Structure parameter depends on the NFP in media with a refractive index

mismatch. . . . ..o 248
FCS power serieson WT FtsZ.. . . . . . ... ... ... ... ..... 254
Sequence alignment of FtsZ proteins from different organisms. . . . . . . 257
Time-resolved filament formation of FtsZ. . . . . . . . . .. .. ... ... 258
WT FtsZ does not form filaments with non-hydrolysable GTP. . . . . . . 258
Diffusion coefficients of several FtsZ mixtures. . . . . . . ... ... ... 259
Effect of EDTA on WT FtsZ. . . . . . . . ... ... ... .. ..... 260
Brightness-induced bias of the estimated filament length. . . . . . . . .. 260
Schematic of the rod-like DNA origami. . . . . . . ... ... . ... ... 262
Monolayer deposition in miniaturized chambers. . . . . . . .. .. .. .. 263

xiii



LIST OF FIGURES

Xiv



List of Tables

I1.1 Diffusion coefficients of fluorophores used for FCS calibrations. . . . . . . . 22

I1.2  Analytical autocorrelation functions for confocal FCS . . . . . . . . .. .. 23

ITI.1 Estimation of the kinetic rates for 7-10 nt hybridizations based on a single

SI-FCS experiments. . . . . . . ..o 45
IIT1.2 Association and dissociation rates for reversible 9 nt and 10 nt hybridizations
measured by SI-FCS. . . . . .00 50

V.1 Diffusion coefficients and hydrodynamic radii of FtsZ in the absence of GTP. 109

V.2 Sizes of FtsZ oligomers in the absence of GTP. . . . . . .. ... ... ... 121
VI.1 Free area model fit of D at different MMAs. . . . . . .. .. .. ... ... 141
V1.2 Critical area of DMPC monolayers with small fractions of Gy, . . . . . . 142
VI.3 Compatibility of a range of biomolecules with lipid monolayers at the air-
water interface. . . . . . . ... 144
V1.4 Relation of the diffusion coefficients of CtxB and MPER to the diffusion
coefficient of lipids. . . . . . . . . . ... 152
B.1 Refractive indices and viscosities of analyzed aqueous solutions. . . . . . . 249

XV



LIST OF TABLES

xvi



List of Abbreviations

aa
AFM
AOTF
APD
ATP

bfp
BLI
BLM
BSA

CMOS
Cpp
Ctl
CtxB

(Y

DiO
DLS

DMPC

DNA
DOGS-NTA(Ni)

DOPC
DOPE

amino acid

atomic force microscopy
acousto optical tunable filter
avalanche photodiode

adenosine triphosphate

back-focal plane
bio-layer interferometry
black lipid membrane

bovine serum albumin

complementary metal-oxide-semiconductor
counts per particle

C-terminal linker

pentameric  subunit of cholera toxin

continuous wave

3,3’-Dilinoleyloxacarbocyanine Perchlorate
dynamic light scattering
1,2-dimyristoyl-sn-glycero-3-phosphocholine
deoxyribonucleic acid
1,2-dioleoyl-sn-glycero-3-[(N-(5-amino-1-
carboxypentyl)iminodiacetic-acid)succinyl]
(nickel salt)
1,2-dioleoyl-sn-glycero-3-phosphocholine
1,2-dioleoyl-sn-glycero-3-phosphoethanol-

amine

xXVvii



List of Abbreviations

DPSS

EDTA
eGFP
EMCCD

FA-model
FCCS
FCS

FOV
FRAP
FRET
FtsZ

G
GC
GFP
GTP
GUV

HEPES
HPW-model
ICS

IgG

ITC

ITO

LSM
LUV

xviil

diode-pumped solid state

ethylenediaminetetraacetic acid

enhanced green fluorescent protein

electron-multiplying charge-coupled device

free area model

fluorescence cross-correlation spectroscopy

fluorescence correlation spectroscopy

field of view

fluorescence recovery after photobleaching

Forster resonance energy transfer

filamenting temperature-sensitive mutant Z

ovine brain ganglioside
gas chromatography
green fluorescent protein
guanosine triphosphate

giant unilamellar vesicle

4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid
Hughes-Pailthorpe-White-model

image correlation spectroscopy
immunoglobulin G
isothermal titration calorimetry

indium tin oxide

laser scanning microscope

large unilamellar vesicle



List of Abbreviations

MMA
MPER
MSD
MST

mts

NA
NFP

nt

PAINT

PMT
PSF
PTFE

QCM
QCM-D
QPD

RICS
RNA
ROI

SAF
SD-model
SI-FCS
SLB
SPAD
SPR

mean molecular area

membrane proximal external region
mean squared displacement
microscale thermophoresis

membrane targeting sequence

numerical aperture
nominal focus position

nucleotide

points accumulation for imaging in nanoscale
topography

photomultiplier tube

point spread function

polytetrafluoroethylene

quartz crystal microbalance
quartz crystal microbalance with dissipation

quadrant photodiode

raster image correlation spectroscopy
ribonucleic acid

region of interest

supercritical angle fluorescence
Saffmann-Delbriick-model
surface-integrated FCS
supported lipid bilayer
single-photon avalanche diode

surface plasmon resonance

Xix



List of Abbreviations

SPT
ssDNA
STED
SUV

TCSPC
TEM
TICS
TIR
TIR-FCS

TIRF
Tris
TTL

Uv

XX

single particle tracking
single-stranded DNA
stimulated emission depletion

small unilamellar vesicle

time correlated single photon counting
transmission electron microscopy

temporal image correlation spectroscopy
total internal reflection

total internal reflection fluorescence correla-
tion spectroscopy

total internal reflection fluorescence
tris(hydroxymethyl)aminomethane

transistor transistor logic

ultraviolet



INTRODUCTION AND OUTLINE

Life is constantly governed by a plethora of interconnected dynamic processes. The na-
ture of these dynamics can be very different, ranging from conformational transitions of
biomolecules to large scale collective motions. The versatility and the finely tuned in-
terplay of these processes has attracted the attention of researchers for many decades.
Despite the immense research conducted on biologically relevant questions, the knowledge
about underlying general laws and principles is still limited. Although many insights have
been gained, the precise quantification of processes and the formulation of all-embracing
descriptions, at least of partial aspects of life, require further attention.

Many biological functions involve multiple components which are not only interacting,
but also constitute a nonlinear system; meaning that even small changes in the system
may alter its functionality or cause its collapse [May, 1976]. Thus, an all-embracing under-
standing of such nonlinear systems requires the precise knowledge of all parameters and
quantities that govern the process. Ultimately, such insights may lead not only to the
full description of the system, but potentially pave the way towards directed man-made
modifications, purposeful utilization, and synthetic replicas. In particular, depending on
the system under investigation, this includes the development of new drugs and synthetic
biology applications.

When it comes to life on the cellular level, the plasma membrane is one of the key
players [Alberts, 2002]. In the simplest picture, it is a bilayer of amphiphilic molecules
separating the inside from the outside of the cell [Mouritsen and Bagatolli, 2015], which in
itself is a tremendously important feature, e.g. for establishing and maintaining concentra-
tion gradients. In reality, the plasma membrane is made up of a manifold of components
and has a highly complex structure. Moreover, it is an integral constituent in a multitude
of processes, including transport, signaling and cell division. The mechanisms by which
all these purposes are met by the membrane rely on very different physical phenomena.
This can be illustrated by considering three examples. First, the membrane is practically
impermeable to ions due to its hydrophobic core. This allows for the existence of a proton
(H™) gradient that drives the generation of adenosine triphosphate (ATP) [Alberts, 2002].
Second, the binding of proteins to membranes significantly reduces their mobility compared

to free diffusion. The resulting differences in diffusion coefficients, coupled with a finely
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tuned interplay of molecular interactions, can result in symmetry breaking pattern forma-
tion [Gierer and Meinhardt, 1972], which itself is key for the survival of organisms [Li et al.,
2010]. Finally, in comparison to a 3D volume, the membrane has a reduced dimensionality.
One of the key results is that membrane binding of a biomolecular species corresponds to
a massive up-concentration of these molecules, which can in turn shift chemical equilibria

and increase the rates of reactions [Vauquelin and Packeu, 2009].

The co-existence of these various functions highlights the complexity of biological sys-
tems. Consequently, when looking at a particular dynamic within a living organism, an
overwhelming amount of processes, which are vital for the organism, are happening in
parallel. Moreover, in many cases there may be a crosstalk between these processes, ham-
pering the unbiased study of a specific molecular process. To circumvent these problems,
and to have a clear, unobstructed view at the process of interest, in vitro approaches were
established [Liu and Fletcher, 2009, Lagny and Bassereau, 2015]. This way, observations
are made on fully controllable reconstituted systems that comprise only essential compo-
nents. This approach was also pursued in this work, either by studying purified proteins

in aqueous buffers, or by the use of model membrane systems.

In a typical approach to quantify dynamic processes in a thermodynamic ensemble,
this system is perturbed and its relaxation back into equilibrium is followed. Alternatively,
if the system is sufficiently small, the dynamic process of interest may cause fluctuations
of an appropriate read-out signal. Following this idea, in this work the fluctuations of
fluorescence signals are analyzed by means of autocorrelation functions [Magde et al.,
1972], an approach commonly referred to as fluorescence correlation spectroscopy (FCS).
Conceptually, FCS is accessible for many sizes and shapes of the detection volume from
which the fluorescence is collected. Thus, the microscopy schemes can be optimized for
the system under investigation [Eigen and Rigler, 1994, Singh and Wohland, 2014, Li et al.,
2017).

This thesis contributes to the goal of precise quantifications of biological systems by
establishing novel methods for the study of dynamic processes. In particular, chapter III
presents a new technique to measure surface association and dissociation rates based on
FCS together with a camera-based detection scheme. This approach combines the advan-
tages of highly specific fluorescence imaging with multiplexed camera detection in many
pixels at a time to measure binding rates in quasi-equilibrium without the need to ex-
cite the system. While chapter III demonstrates a new method, the following chapters

focus on the use of an established technique, confocal FCS, to quantify binding processes.



Chapter IV identifies a confocal FCS measurement regime, which avoids refractive index
mismatches that conventionally lead to artifacts and biased results. These findings also
serve as a quality control for the subsequently presented experiments. More precisely, the
polymerization of the tubulin-analogue FtsZ (filamenting temperature-sensitive mutant Z)
and its interaction with the protein MipZ from Caulobacter crescentus are addressed by
an FCS study in chapter V. Finally, chapter VI demonstrates a novel approach to mea-
sure diffusion kinetics of biomolecules in lipid monolayers at the air-water interface using
confocal FCS, which is a major step towards the quantification of binding kinetics to lipid

monolayers.
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BASIC CONCEPTS

I1.1 Diffusion and binding

I1.1.1 Diffusion models

I1.1.1.1 Brownian motion

The thermally induced random motion of microscopic particles immersed in a solvent is
called Brownian motion and was first described by Robert Brown [Brown, 1828]. The
solvent molecules are constantly moving at a temperature 7' > 0, resulting in frequent
collisions with the immersed particles. The corresponding momentum transfers result in the
motion of these particles. Moreover, on sufficiently long time scales, this motion is random
and memoryless. An all-embracing discussion of all facets of Brownian motion clearly
exceeds the scope of this introduction. A comprehensive compendium was published by
Mazo [Mazo, 2002]. Brownian motion is ubiquitously found in almost all aspects of cellular
and molecular biology [Codling et al., 2008, Sackmann and Merkel, 2010, Hoppe et al.,
2012,Hanggi and Marchesoni, 2005] and hence plays an important role in the interpretation
of many observations.

The research described in this thesis entirely encounters translational diffusion. Conse-
quently, this paragraph will focus on this aspect of Brownian motion. The mathematical
description goes back to work by Fick, Sutherland, Einstein and von Smoluchowski [Fick,
1855, Sutherland, 1905, Einstein, 1905, von Smoluchowski, 1906] and is centered around the

diffusion equation:

Here, D is the diffusion coefficient, which in this work is assumed to be constant, i.e.
has no spatiotemporal dependence within individual measurements. Equation II.1 has no
restrictions on the dimensionality d of the system, although this thesis encounters only 2D
and 3D cases. The solution p(r,t) is found using the initial condition p(7,0) = (7" — 7¢)

and the boundary condition p(i — oo, t) = 0. The solution p(7,t) can be interpreted as the
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probability to find a diffusing particle at time t at the location 7, provided it was located
at 7y at to = 0. Taking into account a corresponding normalization [ p(7,t) d*>7 = 1, the

solution to the diffusion equation in an infinite space reads:

L2

p(7,t) = (4nDt)"% e~ im0 (I1.2)

For convenience, the coordinate system was chosen such that 7o = 0. Although this
Gaussian distribution widens with time, its center stays at 7 = 75 = 0 for all times.
Consequently, the mean displacement is () = 0. On the other hand, the mean squared
displacement (MSD) reads:

MSD = () = / 72p(F, 1) 43 = 2dDt (IL3)

Sutherland, Einstein and von Smoluchowski came to the conclusion that the diffusion
coefficient D depends on the temperature T" and the friction constant ¢ of the considered
particles [Einstein, 1905, von Smoluchowski, 1906, Sutherland, 1905].

_ kpT
¢

The discussed expressions to describe diffusion mathematically have direct practical im-

D (IL.4)

plications. First, in the diffusion equation II.1, the spatial dimensions separate, which
means that each dimension can be treated independently. Second, the probability function
p(7,t) is a Gaussian with standard deviation v/2dDt. Consequently, the probability that
a particle leaves an observation volume within a time interval At is larger, the larger the
diffusion coefficient. The FCS-based quantification of diffusion processes makes use of the
temporal widening of p(7,¢). Third, the linear relation between MSD and time implies
that the measurement of a displacement of particles at different time points gives access

to the diffusion coefficients. This is commonly exploited in single particle tracking (SPT).

11.1.1.2 Stokes-Einstein-Smoluchowski Equation

For simplicity, objects under study are often approximated as spherical objects. Ideally,
for a spherical particle of hydrodynamic radius Rj immersed in a medium of much smaller

solvent molecules and bulk viscosity 7, the friction constant can be described by the Stokes
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relation ( = 6mnR),. Combining with equation I1.4 yields:

kT
"~ 6mnRy,

(11.5)

This expression is typically termed Stokes-Einstein-Smoluchowski or Stokes-Einstein rela-
tion. It is frequently used to relate measurements of the diffusion coefficient to the physical
size of the observed particle. In practice, however, the objects under study, e.g. proteins,
are not spherical, and thus the hydrodynamic radius is only an indicator for the size of

this particle.

I1.1.1.3 Diffusion of membrane inclusions

In the context of this thesis, the Stokes-Einstein-Smoluchowski is used to describe the dif-
fusion of biomolecules in 3D. The surrounding medium is considered to be homogeneous.
This assumption is not met when considering the diffusion of a membrane inclusion. Dif-
fusion in lipid membranes is of key relevance to many biological processes, ranging from
transmembrane protein diffusion to diffusion-limited reactions and the regulation of protein
distributions. The most commonly used model to describe the diffusion of proteins in mem-
branes was developed by Saffmann and Delbriick [Saffman and Delbriick, 1975, Saffman,
1976]. They considered a cylindrical membrane inclusion with radius a, which diffuses in
a membrane of thickness h and surface viscosity 7, as shown in figure II.1A. For a uni-
form slab of a viscous fluid with viscosity n and thickness h, the surface viscosity can be

expressed as 1, = nh.

On both sides, the membrane is surrounded by media with the bulk viscosities 7; and
7. Although the SD-model describes 2D diffusion in a membrane, it is a 3D model in which
the impact of the motion of a membrane inclusion is propagated to the surrounding media
[Saffman and Delbriick, 1975, Saffman, 1976]. Moreover, similar to many other diffusion
models, the SD-model assumes that the membrane inclusion itself is much larger than the
lateral extension of the lipids. Based on these assumptions, Saffmann and Delbriick derived

an expression for the diffusion coefficient D of the membrane inclusion:

B kT
N 4mn,

D A (11.6)

Here, kg is the Boltzmann constant, 7" is the temperature, and A is referred to as the
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Figure I1.1: Reduced mobilities of membrane inclusions according to Saffmann-
Delbriick-model (SD-model) and Hughes-Pailthorpe-White-model (HPW-
model). A) Conceptual basis: a cylindrical membrane inclusion with radius a diffuses
freely in a 2D membrane of height h and surface viscosity ns. The membrane is sur-
rounded by two media of viscosity 17, and ne. B) For SD-model and HPW-model, the
diffusion coefficient can be expressed as D = %A [Saffman and Delbriick, 1975, Hughes
et al., 1981, Petrov and Schwille, 2008b]. The reduced mobility A is identical for both mod-
els for inclusion sizes a much smaller than the Saffmann-Delbriick length lsp. For a > lsp
only the HPW-model holds true. The curve for the HPW-model is calculated according
to [Petrov and Schwille, 2008b)].

reduced mobility, which for the SD-model reads:

21
Asp = In (SD> — (IL.7)
a
v is the Euler constant and the Saffmann-Delbriick length Isp = —2— is the character-

n1+mn2
istic length scale of the system. KEquation II.7 still meets the dependence predicted by

Sutherland, Einstein and Smoluchowski (equation I1.4). The SD-model was developed for
membrane inclusions much smaller than Isp, and appears to hold for many proteins, as
shown by several experimental and simulation studies [Peters and Cherry, 1982, Ramadurai
et al., 2009, Weif3 et al., 2013, Guigas and Weiss, 2006]. Moreover, Guigas and Weiss showed
that hydrophobic mismatches between the transmembrane part and the membrane itself
induce only small deviations from the SD-model [Guigas and Weiss, 2008]. Interestingly,
in the appropriate regime a < lsp the diffusion coefficient shows only a weak dependence
on the inclusion size.

The applicability of the SD-model needs to be evaluated for each membrane inclusion,

because the model assumes at all times that on the one hand the lipids are much smaller
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than the inclusion and on the other hand a < Igp. On the lower limit, contradicting results
were reported. Weif et al. and Ramadurai et al. presented experimental evidence that the
SD-model holds for membrane inclusions as small as a < 0.5nm in black lipid membranes
(BLMSs) [Weif et al., 2013] and giant unilamellar vesicles (GUVs) [Ramadurai et al., 2009].
In contrast, Kriegsmann et al. and Gambin et al. published evidence for a relation D o
a™!, in line with the Stokes-Einstein-Smoluchowski relation (equation I1.5) [Kriegsmann
et al., 2009, Gambin et al., 2006]. At the other extreme, when a < Igp is violated, the SD-
model fails (figure I1.1B), as reported for the diffusion of large membrane domains [Cicuta
et al., 2007, Petrov et al., 2012]. For such cases, Hughes, Pailthorpe, and White derived
a general description [Hughes et al., 1981]. The HPW-model covers arbitrary inclusion
sizes, as long as the lipids are much smaller. Unfortunately, the publication by Hughes,
Pailthorpe, and White does not provide a closed-form expression for D, but an analytical
solution featuring infinite series with sign-varying terms, rendering numerical calculations
very challenging. Therefore, Petrov and Schwille derived an empirical expression for the
reduced mobility Agpw, which describes the numerical results of the HPW-model with
small errors and matches the asymptotic expressions from the analytical theory [Petrov

and Schwille, 2008b]. For practical reasons, their analytical expression is used in this work:

2 4 2 2
Aupw — (In 2lsp\ vt a a2 In lsp
a mlsp 2l a

ab1
3 9] C177
x|1- =~ ( SD) +— b (IL.8)
T3 a 1+ 2%

The empirical parameters ¢; = 0.73761, by = 2.74819, a; = 0.52119, and by, = 0.51465 were
found to describe the HPW-model best. The dependence of Agpw on a/lsp is shown in
figure I1.1B. In the limiting case a/lsp < 1, the HPW-model reproduces the SD-model
and thus Agpw has only a weak logarithmic dependence on the inclusion size. For very
large membrane inclusions, the reduced mobility shows a much stronger, inversely propor-
tional relation to the ratio a/lsp and the diffusion coefficient becomes independent of the

membrane viscosity [Hughes et al., 1981].

To put these models into perspective, it is worth estimating the lsp for typical scenarios.
In this thesis, free-standing lipid membranes in the shape of GUVs and lipid monolayers
are the predominantly used model membrane systems. The Saffmann-Delbriick length for

a lipid bilayer with 1, = 7, &~ 1mPas and 1, ~ 5- 107" mPasm [Peters and Cherry, 1982,
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Waugh, 1982,Herold et al., 2010] is 250 nm. For the lipid monolayer, the surrounding media
are water (17, &~ 1 mPas) and air (7 ~ 0). For the surface viscosity of lipid monolayers
values around 77, &~ 1 - 107" mPasm have been reported [Wilke et al., 2010, Sickert and
Rondelez, 2003]. Consequently, the Saffmann-Delbriick length for a lipid monolayer is on
the order of 100 nm.

I1.1.1.4 Free area model (FA-model)

While the diffusion models presented so far, describe the diffusion of particles that are
much larger than the surrounding solvent molecules, the free area model (FA-model) has
been used previously to describe the diffusion of lipids within a membrane [Galla et al.,
1979, Peters and Beck, 1983]. The FA-model in its first form was introduced by Cohen
and Turnbull and assumes a three-dimensional liquid of hard spheres in which empty
spaces statistically open up and allow for diffusional displacements [Cohen and Turnbull,
1959]. The statistically generated free volume is filled by a sphere, which itself leaves
a void at its previous position. This description gave an explanation for the empirical
exponential relation between viscosity and free volume Vy: 7 oc e'/Vs  which was previously
described [Doolittle, 1951]. Macedo and Litovitz enriched the model by an activation term,
which accounts for temperature dependencies [Macedo and Litovitz, 1965], and Galla and
colleagues adapted the FA-model for two-dimensional systems [Galla et al., 1979, yielding

the following relation:

A
D=D — C) I1.9

gexp< VMMA—AO (1L.9)
Here, Dy is a prefactor, which is approximately the product of the molecular diameter,
the gas kinetic velocity and a geometric factor. Moreover, Ay is the van der Waals area of
an individual lipid, mean molecular area (MMA) is the area that is on average available
per individual molecule, A. is a critical free area a blank space needs to have such that

displacements become possible, and ~ is a factor accounting for the overlap of free areas
(0.5 <y <1).
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I1.1.2 Simple binding kinetics

Generally, in this study binding reactions of the type

kq
A+B = C (IL.10)

d
are considered. Two reaction partners A and B transiently form the product C with
association rate k, (unit [1/M/s]) and dissociation rate k4 (unit [1/s]). In equilibrium, the
respective mean concentrations A, B, and C' do not change, which does not mean that
no reactions happen any longer, but that the rate of production and decay of C become

equivalent:

d
0= kAB — k,C =0 (IL.11)

The corresponding dissociation constant Kp can be expressed either via the kinetic rates,
or the equilibrium concentrations, using the law of mass action.
AB kg
Kp=—=— I1.12
PTC Tk, (IL.12)
One approach to determine Kp is a titration experiment, in which the total concentra-
tion (bound and unbound form) of A (or B) is kept constant A + C' = const, and the

concentration of C is measured depending on the concentration of B.

(AC OnStC’) B

+

C=-——"""— I1.13

Kp+B ( )
Alternatively, Kp can be determined by measuring k, and k4. The latter approach provides
more insights about the system, as it describes kinetic rates, which also apply out of

equilibrium.

Here, the binding kinetics of a simple reaction, e.g. transient receptor-ligand inter-
action, were described mathematically. These considerations can be generalized to also
describe cooperative binding (Hill equation) or multivalent receptors. This study, how-

ever, studies only systems with one-to-one kinetics.
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II.2 Fluorescence microscopy

The research fields of fluorescence microscopy and fluorescence itself, have attracted sig-
nificant attention over the past 100 years. As such, the acquired knowledge is massive.
Therefore, this section focuses exclusively on the aspects that are relevant to this work.
More comprehensive textbooks on fluorescence (e.g. [Lakowicz, 2006, Valeur and Berberan-
Santos, 2012, Haken and Wolf, 2013, Demtroder, 2013]) and light microscopy (e.g. [Ku-
bitscheck, 2017, Pawley, 2006, Price and Jerome, 2011, Verveer, 2015, Hof et al., 2004, Di-
aspro, 2010, Kapusta et al., 2015, Mondal and Diaspro, 2013, Tinnefeld et al., 2015, Engel-

borghs and Visser, 2014]) do review the common knowledge in more detail.

I1.2.1 Fluorescence as a tool for life science applications

A process, in which a physical many-body system emits a photon upon a preceding collec-
tive excitation is termed luminescence. Here, the focus is on the fluorescence of molecules.
In this process, a molecule is excited from its ground state Sy by a photon, and subsequently
relaxes back to its ground state by the emission of a fluorescence photon. A detailed de-
scription of all underlying dynamics involved in this many-body problem, clearly exceed
the scope of this introduction. Here, important properties of fluorescence that make it a
suitable tool for life science applications, shall be mentioned.

First, the emitted fluorescence is red-shifted with respect to the excitation, a property
commonly referred to as Stokes shift. Thus, excitation and emission light can be spatially
separated by appropriate dichroic mirrors. Moreover, fluorescence excitation and emission
can be performed in the visible wavelength range, at photon energies low enough to have
little to moderate destructive impact on biological structures, depending on the flux rates,
yet at sufficiently short wavelengths to avoid the absorption by water molecules. The visible
range is also compatible with high-performance optical components, making fluorescence
accessible with sensitive light microscopy, which is minimally invasive and provides the
option to image in native environments, e.g. in vivo. Moreover, fluorophores can be chosen
such that their excitation and emission spectra are separated from the autofluorescence that
is omnipresent in biological systems. Finally, fluorophores can be selectively attached to
target molecules. This is realized either by chemical coupling or partitioning of synthetic
fluorophores, or by genetically encoded fluorescent proteins that are fused to a target
protein.

The process of excitation of a fluorophore typically takes femtoseconds, whereas the flu-
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orescence lifetime is on the order of nanoseconds. Thus, in an ideal case with high excitation
rates, a single fluorophore can theoretically emit photons at 1 GHz, providing sufficiently
high signals for detection. In fact, together with sensitive detectors, fluorescence-based
single-molecule detection can be performed routinely.

On the other hand, the use of fluorescent labels has a few disadvantages. First, the in-
troduction of a non-native tag is an alteration to the system under study. Careful controls
need to be performed to ensure that observed effects do not originate from the fluorescent
label (compare e.g. [Swulius and Jensen, 2012, Margolin, 2012]). Second, the use of excita-
tion light and fluorophores may cause photo-induced damages that are potentially caused
by energy deposition in the system, and the generation of reactive singlet oxygen, which is
linked to the triplet state of fluorophores [Davidson, 1979, Wilkinson et al., 1994, Eggeling
et al., 1999].

I1.2.2 Confocal microscopy

In chapters IV, V, and VI a confocal microscope [Minsky, 1957] is used. While the basic
concept of this microscope is reasonably simple, the developments around it, the theoretical
description, the multi-facetted applications, and the limitations can fill entire books, e.g.
[Pawley, 2006, Paddock, 2014]. For this thesis, confocal imaging is merely an auxillary tool,
but another key aspect of the confocal microscope is exploited, namely the small open
detection volume, which is beneficial for FCS applications (compare section I1.3) [Rigler
et al., 1993, Eigen and Rigler, 1994]. A schematic of a confocal setup is shown in section
I1.3. The small observation volume is generated by coinciding, narrowly focused excitation
and detection profiles. Out-of-focus light is efficiently rejected using a pinhole in the
image plane of the detection pathway. When operating at the diffraction limit and using
a high-numerical aperture (NA) objective (typically NA ~ 1.2), the effective observation
volumes are typically on the order of femtoliters. Consequently, for a fluorescent tracer
concentration of 10nM, on average only six particles are in the observation volume at a

time.

I1.2.3 Total Internal Reflection Fluorescence Microscopy

Widefield and confocal microscopy are valuable tools for the life sciences. However, their ax-
ial resolution is limited, because the optical point spread function (PSF) has a typical axial

extent on the order of 1 pm. Total internal reflection fluorescence (TIRF) microscopy pro-
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Figure II.2: Concept of total internal reflection. A) Refraction at a interface of
two media with different refractive index. If ny < ny, TIR occurs for incident angles 6;
larger than the critical angle 6. = arcsin (ny/n;). B) Theoretical penetration depth deya, in
units of the vacuum wavelength \g, according to equation I1.17, assuming n; = 1.52 and

vides an alternative with an excitation that in theory decays exponentially within around

100 nm above a surface.

Total internal reflection (TIR) arises as a consequence of Snell’s law, which describes

the angle of refraction 6, for a light beam encountering a refractive interface.
ny sin @y = ng sin O, (I1.14)

Here, 6, is the incident angle, and n; and ns are the refractive indices of the two media,
respectively (nomenclature as illustrated in figure I11.2A). Above a critical incident angle
0. = arcsin (ny/nq), Snell’s law yields sinfy > 1, provided ny < n;. In this regime, TIR

occurs. On the other hand, Maxwell’s equations require continuity of the fields across the

k

interface. Considering plane waves e**” with a wave vector k, the transmitted wave vector

k; has a component k;, normal to the interface (defined as z-direction), which becomes

imaginary for TIR:

ki . = ki cosfy = ki\/1 — sin? 0, B0 ik /sin2 0y — 1 (IT.15)

Applying the imaginary k; , for a plane wave results not in a propagating, but an evanescent,
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exponentially decaying wave. The corresponding axial intensity profile reads:

I(2) = Iyexp <— d;) (IL.16)

Ao
47y /n2 sin? 0 — n3

In TIRF microscopy, this effect is exploited: An excitation laser beam is directed towards

Jeva = (IL.17)

a coverslide-sample interface, where the sample typically has a refractive index similar to
that of water. Consequently, TIRF microscopy selectively excites fluorophores close to the
surface, as the evanescent wave decays exponentially away from the interface. Typically,
devs is on the order of 100 nm. Thus, TIRF microscopy features a more confined observation
volume in axial direction than confocal microscopy.

In practice, TIRF microscopy is typically performed using a prism-based [Axelrod, 1981]
or an objective-based [Stout and Axelrod, 1989] approach. Applications of both have been
reviewed elsewhere [Axelrod, 2001b,Fish, 2001, Toomre and Manstein, 2001]. For objective-
type TIRF microscopy, the NA of the objective needs to be sufficiently large to achieve
large incident angles 6. The theoretical minimum is NA > n; sin 6, = ny. However, in this
extreme case, the incident beam may be partially clipped inside the objective. In practice,
high-NA objectives with NA > 1.45 are typically used.

In TIRF microscopy, fluorescence is collected from dipole emitters close to a dielectric
interface, e.g. a glass-water interface. Interestingly, the emission is distorted in such
situations, resulting in a preferential emission towards the medium of higher refractive
index. The angular emission profile also depends on the relative orientation of the dipole
to the interface [Hellen and Axelrod, 1987, Enderlein et al., 1999, Enderlein, 2003, Enderlein
and Ruckstuhl, 2005].

In this thesis, a custom-built TIRF microscope is presented (compare appendix A) and
used in chapter III. This chapter also discusses further aspects of objective-based TIRF

microscopy.

II.3 Fluorescence Correlation Spectroscopy

11.3.1 Information content of fluctuations

The study of complex systems by the observation of the response to an external perturba-

tion is a common approach in the natural sciences. Prominent examples are pump-probe
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spectroscopy and concentration, pressure and temperature jump experiments. Typically, a
system is driven out of equilibrium and its relaxation is observed by means of an appropriate
read-out signal. An alternative approach, which does not require external perturbations,
is the observation of fluctuations of a relevant quantity. Both approaches provide access to
the same quantities and are related via the fluctuation-dissipation theorem [Kubo, 1966].
A famous example are the force dissipation by friction, and the random particle velocity
due to Brownian motion. While the former is an effect observed in response to a non-
equilibrium situation, the latter corresponds to fluctuations in equilibrium [Kubo, 1966].
Both are linked via the Einstein-relation [Einstein, 1905] and describe similar properties
of the system.

To analyze the fluctuations of a system, two requirements have to be met. First, the
fluctuation typically tend to zero for an infinitely large system. To make fluctuations
observable, the system needs to be reasonably small. Moreover, an appropriate read-out
signal is required. In FCS, both requirements are met by recording the fluorescence signal
from a small detection volume using low concentrations of emitters.

The majority of dynamics described in this work correspond to equilibrium fluctuations,
except for triplet dynamics, which are the result of the external light-induced excitation

to higher energy levels [Petrasek and Schwille, 2009].

I1.3.2 Principle of FCS

FCS is an optical method in which a fluorescence signal is collected from an observation
volume and computationally analyzed with respect to its fluctuations. The typical duration
of an individual fluctuation, for example a burst in signal, is of particular interest and is
assessed by computing an autocorrelation of the fluorescence signal trace. An analysis of
the correlation function can potentially provide insights into the dynamics that govern the
signal fluctuations.

In the 1970s, Magde, Elson and Webb conducted the pioneering research to estab-
lish FCS [Magde et al., 1972, Elson and Magde, 1974, Magde et al., 1974]. The major
breakthrough of FCS happened 20 years later, when more sensitive hardware had become
available, but more importantly, FCS was demonstrated in combination with confocal mi-
croscopy [Rigler et al., 1993, Eigen and Rigler, 1994]. The resulting single-molecule sensitiv-
ity made FCS an important method for research in the life sciences, photophysics, polymer
physics and many other areas. The historical development and applications of FCS have
been discussed in a plethora of reviews, e.g. [Thompson, 1999, Webb, 2001, Schwille, 2001,

16



I1.3 Fluorescence Correlation Spectroscopy

Hess et al., 2002, Widengren and Mets, 2002, Thompson et al., 2002, Bacia and Schwille,
2003, Vukojevié¢ et al., 2005, Gosch and Rigler, 2005, Bacia et al., 2006, Kahya and Schwille,
2006, Kim et al., 2007, Bacia and Schwille, 2007, Petrov and Schwille, 2008a, Petrasek
and Schwille, 2009, Miitze et al., 2010a, Miitze et al., 2010b, Elson, 2011, Nguyen et al.,
2012, Rigler and Elson, 2012, Ries and Schwille, 2012, Melo et al., 2011, Weidemann et al.,
2014,Machéan and Wohland, 2014, Woll, 2014, Papadakis et al., 2014, Rigler and Widengren,
2017].

Typically, signal fluctuations arise either from brightness fluctuations of the fluorescent
particles, or from fluorescent particles leaving and entering the detection volume [Petrov
and Schwille, 2008a]. In both cases, the timescale of these fluctuations is related to the
underlying process. For example, once a fast diffusing fluorescent particle statistically en-
ters the confocal volume, it will cause an increase in signal, and on average will need a
certain amount of time to leave the detection volume again. Considering the same scenario
for a slowly diffusing particle, the mean dwell time in the detection volume will be larger.
Consequently, analyzing the time scale of the fluctuations is a means to infer properties
of the sample. To extract quantitative data from FCS measurements, the acquired auto-
correlation curves are typically fitted by an appropriate closed-form model function. The
reconstruction of entire distributions of decay times from the experimental autocorrela-
tion curve (e.g. [Livesey and Brochon, 1987, Nyeo and Chu, 1989, Langowski and Bryan,
1991, Sengupta et al., 2003]) is less common, as it is an ill-posed inverse problem [Petrov
and Schwille, 2008a].

In principle, every dynamic that reflects in fluctuations of the fluorescence signal can
be investigated by FCS, provided the system under investigation is in quasi-equilibrium.
This includes for example diffusion [Elson and Magde, 1974, Magde et al., 1974] and active
transport [Magde et al., 1978] through the detection volume, reversible binding to immobile
structures [Michelman-Ribeiro et al., 2009], but also blinking dynamics of the fluorophore.
The latter may be caused by a multitude of processes, such as triplet transitions [Widengren
et al., 1995], photo-isomerizations [Widengren and Schwille, 2000], reversible protonations
[Haupts et al., 1998, Widengren et al., 1999], and transient Forster resonance energy transfer

(FRET) [Torres and Levitus, 2007].
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I1.3.3 Derivation of the autocorrelation function of freely diffus-

ing particles

In this section, the autocorrelation function for free diffusion is derived. The derivations
for other dynamic systems follow the same strategy, but other differential equations need
to be solved accordingly (compare e.g. chapter IIT). A more detailed description has been
presented by [Krichevsky and Bonnet, 2002]. In the next section, the result derived here
will be used to obtain the corresponding autocorrelation function for confocal detection

volumes.

I1.3.3.1 General considerations

FCS is based on the analysis of a fluorescence signal trace F(t) and the fluctuation 0 F(t)

around its temporal mean (F'):
F(t)=(F) + 0F(t) (I1.18)

Signal fluctuations and their relaxation times can be assessed using the autocorrelation of
the signal. This approach is also used in dynamic light scattering (DLS), in which the scat-
tering signal is autocorrelated [Pecora, 2013]. Throughout this work, the autocorrelation

function is defined as:

(OF)6F(t+ 7))
G(r) = F? (IL.19)
The fluorescence signal is typically expressed as:
F(t)=Q / SR I(F)e(F, 1) (I1.20)
SF(t) = Q / BFI(F)Se(F, 1) (I1.21)

Here, @) is the product of excitation crosssection, detection efficiency of the microscope
and the fluorescence quantum yield. In other words, () is a measure for the photon col-
lection and is thus termed the brightness. Moreover, the detection volume [(7) and the
concentration of fluorescent particles ¢(7,t) were introduced. For a static detection vol-
ume, the concentration is the only quantity that changes over time. Moreover, equation
I1.20 assumes a linear relation between the excitation and the corresponding fluorescence

response. Deviations from this relation are typically referred to as saturation effects and
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will be discussed later. In addition, this derivation restricts itself to quasi-ergodic equi-
librium systems for which the time average is equivalent to an ensemble average over all

micro states. Consequently, equation I1.19 can be expressed through an ensemble average.

G(r) =

1 3= 32/ 7( = — —/ —
T BRI /d T’/d 7 I(7) (de(7, t)de(r t + 7)) I(7) (I1.22)

¢(F7F/7T)

(e)* (

This autocorrelation function is expressed as a function of the temporal correlation of
concentrations ®(7, 7, 7). Depending on the underlying dynamics, an appropriate differen-
tial equation needs to be solved, e.g. for pure diffusion in d dimensions, the diffusion

equation II.1.

I11.3.3.2 Solution for diffusion in 3D

As for the fluorescence, the concentration at every point in time can be expressed as the
sum of its mean and a fluctuation term ¢(7,t) = (c) + dc(7, t). Thus, the diffusion equation

in three dimensions reads:

;50(77, t) = DV?6c(7, t) (I1.23)

This differential equation is conveniently turned into a differential equation of first order

in time
;55(@, t) = —Dq*5¢é(q,t) (I1.24)
using the Fourier transforms:
Se(F, 1) = (2m) 32 / BFe 5, 1) (I1.25)
5(.1) = (2m) 32 / 37T Sc(7, 1) (I1.26)

—Da*t  with a prefactor that is ob-

The solution is a single exponential §¢(q,t) = d¢(q,0)e
tained from a suitable initial condition. For 7 = 0, only particles that are in identical
positions can be correlated, which is accounted for by a Dirac delta function 6(7" — 7).
In addition, diffusion is a Poisson process, and hence variance and mean are identical
var(c) = ((d¢(7,0))?) = (c). Thus, the initial condition ®(7,7’,0) = (c) §(F — 7’) needs

to be met. Consequently, the 3D concentration correlation function in an infinite volume
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reads:

B(7, 7, 7) = (¢) (4 Dr) "2 ¢ a5 (I1.27)

For 1D and 2D diffusion, the concentration correlation function are similar. In general, all
spatial dimensions separate, and the solution in d-dimensional space reads:

— *d/Q d — (Ijiz;‘)2
O(r, 7", 7) = (c) (4n D7) [[e ™ (I1.28)

j=1

I1.3.4 Confocal single-point FCS

I1.3.4.1 Autocorrelation from 3D diffusion and calibration of the confocal vol-

ume

To be sensitive to fluctuations of the fluorescence signal, the number of particles that con-
tribute should be low. Typically, not more than 1000 particles are observed at a time. Such
low numbers of particles are achieved by two strategies: The concentration of fluorescent
particles should be low, and at the same time, the signal is collected from only a small
detection volume. In the majority of FCS applications, the latter is achieved by using a
confocal microscope, in which the effective detection volume is typically on the order of
1fL [Rigler et al., 1993, Eigen and Rigler, 1994).

For confocal FCS, the detection volume is commonly approximated by a 3D Gaussian
with the lateral 1/e*-width w,,, and its axial counterpart w, = Sw,,. Both are linked by
the structure parameter S, which is a measure for the elongation of the detection volume.

2.2
_ oz ty 22
2 —225

I(z,y,2) =Ipe ~ “iv e 2 (I1.29)

The description of the detection volume by Gaussian functions simplifies equation 11.22,

which together with the equation I1.27 turns into:

G(r) = (<C> Wg/sziy)fl (1 1 T) ! (1 n SQTTD)_I/Q

D
-1 ~1/2
— N! (1 T) (1 T ) 11.30
+ D + 827'D ( )

This is the well-known autocorrelation function for 3D diffusion in confocal FCS measure-
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Figure I1.3: Principle of confocal FCS. A) In confocal FCS, a collimated laser beam
(green) is focused into a sample by an objective. Parts of the red-shifted fluorescence (red)
emitted in response are collected by the same objective, spectrally separated from the exci-
tation light and focused on an avalanche photodiode (APD). A 50:50 beam splitter enables
pseudo-crosscorrelation. B) Schematic view of the confocal volume, which is typically de-
scribed by a three-dimensional Gaussian with characteristic lateral (w,,) and axial (w,)
widths. Fluorescent particles that are outside the confocal volume do not contribute to
the detected signal. C) To compute the autocorrelation function, the acquired signals are
first shifted by a lag time 7 to each other. Subsequently, the time average of their product
is calculated. This procedure is repeated for a set of lag times. D) The corresponding
autocorrelation curve G(7) is typically shown on a semilogarithmic scale and is, aside from
some exceptions, a monotonically decaying function.

ments. Here, G(7) is governed by three parameters: 7p, N, and S, although in practice
the dependence on the latter is only weak. These parameters may be obtained by fitting

equation I1.30 to an experimental autocorrelation curve.

The diffusion time 7p is a key parameter of confocal FCS and is a measure for the mean

dwell time of a fluorescent emitter in the detection volume.

w2

=2 I1.31
TD 1D ( 3)

If the confocal volume increases, or the diffusion coefficient decreases, the diffusion time
increases accordingly. In practice, w,, is determined by a confocal FCS calibration mea-

surement. In detail, the diffusion time of freely diffusing fluorophores of known diffusion
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Table 11.1: Diffusion coefficients of fluorophores used for FCS calibrations. Ref-
erence diffusion coefficients in water at 25°C. The diffusion coefficients at the experiment’s
temperature were calculated based on the Stokes-Einstein-Smoluchowski relation (equation
I1.4). The viscosities of water at the respective temperature were calculated based on an
empirical equation by Kestin et al. [Kestin et al., 1978]. The diffusion coefficient for Alexa
Fluor 546 was initially reported at 22.5°C and was adjusted for 25°C for this table.

fluorophore D [nm?/s] at 25°C  reference

Alexa Fluor 488 414 + 10 [Petrov et al., 2006]
ATTOA488 carboxylic acid 405 this work, compare figure B.1
Alexa Fluor 546 364 [Petrdsek and Schwille, 2008]
ATTOG655 carboxylic acid 426 £ 8 [Dertinger et al., 2007]

coefficient is determined. The diffusion coefficients of the calibration fluorophores used in
this study are shown in table II.1. These calibration measurements should be performed
on a daily basis to be less sensitive to setup instabilities [Sherman et al., 2008]. Conse-
quently, if w,, is known, the diffusion times obtained from subsequent FCS experiments
can be translated into the corresponding diffusion coefficients of the fluorescently labeled
biomolecules of interest.

For small lag times 7 — 0, the autocorrelation function converges to the inverse mean
number of particles N~ in the effective volume Veg = 7%2Sw3, [Krichevsky and Bonnet,
2002, Riittinger et al., 2007]. The amplitude of the autocorrelation function, i.e. N1,
is typically a free fit parameter. Simultaneously, if w,, and S are known, e.g. from a

calibration measurement, N can be translated into the respective concentration (c).

11.3.4.2 Autocorrelation function for selected processes

In many confocal FCS measurements, the autocorrelation curve is not, or not exclusively
governed by diffusion processes. A detailed derivation of the corresponding autocorrela-
tion functions exceeds the scope of this introduction, but the derivations follow the same
strategy as presented here for 3D diffusion [Krichevsky and Bonnet, 2002]. A summary of
selected functions is provided in table II.2.

The single-focus, single-photon excitation approach discussed here is the predominant
form of FCS, supposedly because several vendors provide commercial equipment for such
experiments. It should be noted that over the past 20 years, many improvements and
alterations to the standard confocal FCS approach have been proposed. This includes

the introduction of fluorescence cross-correlation spectroscopy (FCCS), by which the in-
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Table I1.2: Analytical autocorrelation functions for confocal FCS. Examples of
autocorrelation model functions that are frequently used in confocal FCS. The table covers
free diffusion in 2D and 3D (models 2D, 3D) with and without a blinking dynamic of an
individual fluorophore, e.g. triplet blinking (2D+T, 3D+T), the independent diffusion of
C different species (3DC), and the diffusion with additional binding in a reaction-dominant
system (7p < kg,!, 3D+binding). The model 3D+3D corresponds to the diffusion of two
components of identical brightness (@1 = @)2), and is thus a special case of the more general
model 3DC. For details, compare e.g. [Krichevsky and Bonnet, 2002, Michelman-Ribeiro

et al., 2009].

model autocorrelation function
2D Gop(r) = N1+ )7 (11.32)
2D+T Gopir(T) = [1 + 15 exp (—%)} Gap(7) (I1.33)
3D Gsp(1) = N7'(1+ )M (1 + 5=)71/? (11.34)
3D+T Gspyr(r) = [1+ T exp (-2 )] Gan(7) (11.35)
2
3D+3D Gsp4sp(T) = (N7 + N2)72 ‘21 [Nj(l + #)_1(1 + ﬁ)—yz} (I1.36)
j= \J \J
c 2 ¢
3DC GSDC(T) = (kzl Qka> '21 Q?NJZGgDJ' (7’) (1137)
= j:
3D+bindin B
o het Gopsbmang(7) = T Gap (1) + N7 s exp (<hogr)  (I138)

teraction of spectrally distinct species can be studied [Ricka and Binkert, 1989, Schwille
et al., 1997]. Other important developments were the introduction of two-photon FCS
and FCCS [Berland et al., 1995, Heinze et al., 2000], scanning FCS [Berland et al., 1996,
Ries and Schwille, 2006, Petrasek and Schwille, 2008], two-focus FCS [Brinkmeier et al.,
1999, Dertinger et al., 2007], pulsed-interleaved excitation FCCS [Miiller et al., 2005], and
stimulated emission depletion (STED)-FCS [Kastrup et al., 2005, Eggeling et al., 2008].

11.3.4.3 Limitations of confocal FCS

FCS is a powerful method within its limitations. To obtain reliable results from confocal
FCS, a range of factors, which will be briefly mentioned in the following, should be taken
into account. Many of the effects described here, were also extensively discussed by En-
derlein et al. [Enderlein et al., 2004, Enderlein et al., 2005, Gregor et al., 2005], and Petrov
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Figure 11.4: Effect of afterpulsing in confocal FCS. Normalized experimental au-
tocorrelation curve of ATTO488 carboxylic acid computed from single detectors (purple)
and the cross-correlation of both (red). The measurements were taken in a low excitation
irradiance (Ip/2 = 0.05kW /cm? at 488 nm) regime where the triplet contribution can be
neglected. For lag times above ~3 p1s both correlation curves become indistinguishable. At
shorter time scales, however, afterpulsing adds a contribution to the autocorrelation curve.

and Schwille [Petrov and Schwille, 2008a]. Refractive index mismatches are not addressed

in this section, but are subject to a detailed study in chapter IV.

Detector artifacts FCS experiments are commonly performed using APDs as detectors.
Upon detection of a photon, these detectors feature a short dead time, on the order of
100 ns, during which no further photons can be detected. Consequently, at high photon
count rates, typically above 1 MHz, the response of the APD becomes nonlinear. In essence,
a doubling of the incoming photons does not result in a doubling of the detected events.
The dead time limits not only the detector’s time resolution, but also result in distortions
of the autocorrelation curve [Schitzel, 1986], especially on the time scales of the dead time.

The more dramatic effect of APDs on the autocorrelation function is caused by after-
pulsing, which in itself is correlated and thus shows as a contribution to the autocorrelation
curve. This contribution typically decays on the sub-ps to ps time scale. Consequently, ex-
periments on systems that show dynamics on this time scale, e.g. triplet dynamics [Widen-
gren et al., 1995], or diffusion of small organic fluorophores through diffraction limited
detection volumes, are effected by detector afterpulsing (figure I1.4). The magnitude and
decay time of the afterpusling contribution depend on the count rate and the detector

characteristics.
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In this work, the contribution of APD afterpulsing in confocal FCS is circumvented by a
pseudo-crosscorrelation approach (figure I1.3) [Burstyn and Sengers, 1983]. In brief, the flu-
orescence signal is split by a 50:50 beamsplitter and directed onto two independent APDs.
The crosscorrelation of the signal from both detectors eliminates the contribution from
afterpulsing, as the afterpulsing events from both detectors are not correlated. It should
be noted, however, that the afterpulsing events still add as an uncorrelated background
to the signal, which affects the amplitude of the autocorrelation curve. Atlernatively, the
afterpulsing may be characterized by measuring the autocorrelation from a stable, uncor-
related light source at different count rates [Zhao et al., 2003]. Typically, a bi-exponential

describes such experimental data sets well.

Measurement duration The computed autocorrelation curve is a biased estimator of
the true autocorrelation [Oliver, 1979, Schétzel, 1987]. This bias becomes irrelevant for
sufficiently long measurements. Too short measurements, on the other hand, result in a
systematic underestimation of the diffusion time. For 3D diffusion in confocal FCS exper-
iments, the measurement time should be around 103-10* times longer than 7 [Tcherniak
et al., 2009], depending on the required accuracy. It should be noted that this effect also
depends on the shape of the autocorrelation curve. An example is discussed in detail in
chapter III (figure I11.6).

Gaussian shape of the detection volume The description of the detection volume by
a 3D Gaussian is the predominant approach in confocal FCS. Although it is only a rough
approximation, the effect on the outcome of confocal FCS measurements on probes diffus-
ing in 3D is, compared to using the full model, typically negligible [Petrov and Schwille,
2008a]. The deviations of the autocorrelation curve depending on the precise shape of
the confocal volume have been addressed before [Hess et al., 2002, Enderlein et al., 2005].
Alternatively proposed model functions for the shape of the detection volume typically
include a Lorentzian [Dertinger et al., 2007]. In addition, several other effects may cause
distortions of the detection volume. This includes e.g. astigmatism and refractive index
mismatches [Enderlein et al., 2005].

Coverslide thickness The quality of the coverslide is a key parameter for accurate FCS
measurements. Both, the diffusion time and the particle number are biased towards larger
values with increasing coverslide thickness deviations. Importantly, deviations of around
10 pm may already have a considerable effect [Enderlein et al., 2005, Miitze et al., 2010b].
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Consequently, the coverslides used for confocal FCS should have identical thicknesses across
one batch, such that the detection volume does not change between several samples. More-
over, the coverslide thickness should not change across individual coverslides. This ensures

that measurements are independent of the lateral position of the detection volume.

Optical saturation and photobleaching The derivation of the autocorrelation func-
tion assumes a linear dependence between the excitation and the emitted fluorescence. In
case of optical saturation, this assumption is violated. Upon excitation, the fluorophores
are not available for another excitation until they return to the ground state. Thus, at
sufficiently high irradiances, a doubling of the excitation rate does not result in a dou-
bling of the emitted photons anymore. This effect can already be observed in a simple
two-state system (Sp, S1) [Paddock, 2014], but occurs already at lower irradiances when a
long-lived dark state, e.g. the triplet state, is involved [Widengren et al., 1994, Enderlein
et al., 2005]. As a result, the detection profile effectively widens, resulting in overestimated
diffusion times and particle numbers (compare figure B.2 in appendix B.2) [Widengren
et al., 1994, Enderlein et al., 2005, Gregor et al., 2005, Petrov and Schwille, 2008a].

Photobleaching, on the other hand, has an opposite effect. When fluorophores bleach
before leaving the detection volume, their diffusion time is underestimated [Widengren
and Rigler, 1996]. Moreover, if the bleaching rate is larger than the rate by which fluo-
rophores are replenished, the effectively measured particle number becomes smaller. As
photobleaching and optical saturation have opposite effects on the outcome of confocal
FCS experiments, their contributions can typically not be disentangled. Ideally, a power
series should be performed for every system to identify the optimum regime of maximum
photon count rate without the effect of photo-induced artifacts (compare figure B.2 in
appendix B.2) [Petrov and Schwille, 2008a].

Uncorrelated background A collected fluorescence signal F' always has a background
contribution B, e.g. detector dark counts or afterpulsing-related counts. As long as B is
uncorrelated, the decay of the autocorrelation curve is not affected. However, B decreases
the correlation amplitude, leading to an overestimation of the particle number and thus
the concentration. This effect becomes more dramatic, the larger the contribution of
background to the total signal. However, a simple analysis yields that the autocorrelation

curve of interest G(7) can be recovered from the measured autocorrelation curve Gpeas(7)
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if (B) is known, e.g. from a reference measurement [Thompson, 1999].

(5F(7) + 6B(r)) (5F(t +7) + 0B(t 4 7)))
(F(t)+ B(1)))’

G(T> = Gmeas (T) <F—>

G(meas (7_) =

(I1.39)

[\

(I1.40)

Correlated background Following the same reasoning as for uncorrelated background,
a correction to the autocorrelation curve may be applied for correlated background. This

step is, however, more severe and correlated background should be avoided by all means.
(IL.41)

For this correction, the autocorrelation curve G'g of the background needs to be determined

under identical conditions as the measurement of G eqs-

Estimation of concentrations As highlighted in equation I1.30, a confocal FCS mea-
surement on particles freely diffusing in 3D can provide access to the concentration of these
particles via the amplitude of the correlation function G(7 — 0) = N~! = ( (c) w3/ 28w§y> o
While this is theoretically possible, it should be noted that the autocorrelation function
depends only very weakly on the structure parameter S, as illustrated in figure I1.5. Con-
sequently, the determination of S from the autocorrelation curve requires very low noise
levels and a sufficiently small S. For values S 2 10, the correlation curve becomes virtu-
ally insensitive to S. Under these conditions, the detection volume approaches a Gaussian
cylinder, and lateral diffusion becomes the only route for particle entry and exit. Conse-
quently, precise determinations of S are challenging, which directly reflects on the relative
error of the estimated concentration. Similarly, w,, is determined with limited accuracy,
but contributes to (c) to the third power. The determination of w,, with a relative error
of 5% and S with a relative error of 10% is under ideal conditions typically possible, but
requires long and accurate measurement. Assuming these relative errors, they propagate
to an error of 25% on (c). In practice, the situation may be even worse, because N also
contributes to the error, and the aforementioned artifacts caused by e.g. refractive index

mismatch and astigmatism may add an additional bias.
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Figure 11.5: Confocal FCS depends only weakly on the structure parameter.
Theoretical normalized autocorrelation functions for 3D diffusion (equation I1.34). The
lag time is normalized to the common value of 7. The autocorrelation curves show only

a weak dependence on the structure parameter S, and become virtually independent for
S 2 10.

11.3.4.4 Confocal FCS on lipid membranes

For the study of diffusion in lipid membranes by FCS [Schwille et al., 1999], measurements
are typically performed on planar (cell membranes, supported lipid bilayers (SLBs), lipid
monolayers) or quasi-planar (GUVs) membranes, which are oriented normal to the optical
axis (for reviews see [Kahya and Schwille, 2006, Machédn and Hof, 2010]). The confocal
volume is positioned on the membrane, such that maximum counts per particle (cpp) is
achieved.

Importantly, the diffusion in the membrane is restricted to two dimensions. Conse-
quently, the autocorrelation (equation 11.32) decays slower than for 3D diffusion, as the
lower dimensionality results in the loss of an exit direction. Moreover, membranes are
typically considerably more viscous than aqueous media, resulting in considerably larger
diffusion times.

As a follow-up to the limitations of FCS discussed above, the effect of defocused mem-
branes on the outcome of FCS measurements needs to be briefly mentioned, as it is also
for relevance for the measurements shown in chapter VI. When measuring confocal FCS
on planar membranes, which are oriented perpendicular to the optical axis, the confocal
volume needs to be positioned accurately. For a laser focus below or above the membrane,
the cross-section of excitation and membrane increases, resulting in larger diffusion times

and particles numbers, and lower cpp. To avoid this potential error source, z-scan FCS
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was introduced [Benda et al., 2003]. On the other hand, if the confocal volume is always
precisely positioned on the membrane, conventional confocal FCS and z-scan FCS yield

identical results, as expected [Heinemann et al., 2012].

11.3.4.5 Binding studies by confocal FCS

The key to binding studies by confocal single-color FCS is that under ideal conditions,
two populations can be distinguished by their diffusion times and their stoichiometry can
be determined, as indicated by equations I1.36 (3D+3D model) and I1.37 (3DC model).
In fact, this approach performs best if a small, fluorescently labeled molecule binds to
a much larger partner, such that the diffusion times of both states are clearly separated
and the bound fraction can be inferred from the relative amplitudes of both components
in the autocorrelation curve. Ideally, all diffusion times are determined individually, and
the relative brightnesses of both species should be known [Meseth et al., 1999]. Moreover,
the kinetics of binding and unbinding need to be slow compared to the diffusion time.
Based on the stoichiometry accessible by FCS, many binding studies have been conducted,
including hybridization of deoxyribonucleic acid (DNA) with DNA [Kinjo and Rigler, 1995]
and ribonucleic acid (RNA) [Schwille et al., 1996], and the binding to lipid vesicles [Dorn
et al., 1998].

This single-color approach requires considerable changes in diffusion coefficient upon
binding. FCCS elegantly circumvents this limitation by labeling both reaction partners
with spectrally distinct fluorophores and recording their respective fluorescence time traces
[Schwille et al., 1997]. Interacting particles contribute to the cross-correlation amplitude,
computed from both individual time traces.

The described studies provide access to the Kp via stoichiometric FCS or FCCS mea-
surements. This is the predominant approach to binding studies by FCS. However, for
the case of diffusion and binding to an immobile structure, recent studies also extracted
kinetic rates from confocal FCS measurements [Michelman-Ribeiro et al., 2009, Bierbaum
and Bastiaens, 2013].
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QUANTIFICATION OF BINDING RATES BY
SURFACE-INTEGRATED FLUORESCENCE
CORRELATION SPECTROSCOPY

The results presented in this chapter are the outcomes of an equal-contribution collabora-

tion with Philipp Blumhardt and have been previously published as:

Miicksch, J.*, Blumhardt, P.*, Strauss, M. T., Petrov., E. P., Jungmann, R., Schuwille,
P. (2018), Quantifying reversible surface binding via surface-integrated FCS. Nano Lett.,
18(5): 8185-3192, doi: 10.1021/acs.nanolett.8b00875. *indicates equal contributions. A

reprint permission has been granted by the publisher.

Section 111.4 is based on Christian Niederauer’s Master’s thesis, which was jointly su-

pervised by Philipp Blumhardt and myself.

II1.1 Introduction

The binding and partitioning of proteins to biologically relevant surfaces, especially to
membranes, is of key importance for the function and control of cellular processes. An
all-embracing understanding of such processes requires precise and accurate quantitative
values of the association and dissociation rates. Thus, an accurate determination of surface
binding rates and affinities is of great interest for basic research on cells and organisms, but
also for biotechnological applications, often targeted towards creating and characterizing

new efficient receptor ligands.

III.1.1 Demands on a method that quantifies surface binding

Many techniques have been released for the specific task of measuring surface affinities such
as bio-layer interferometry (BLI) [Wallner et al., 2013, Frenzel and Willbold, 2014,Shah and
Duncan, 2014], confocal FCS and FCCS [Magde et al., 1972, Eigen and Rigler, 1994, Schwille
et al., 1997], imaging single-molecule binding events [Zhuang, 2005, Ditzler et al., 2007, Wal-
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ter et al., 2008, Elenko et al., 2010], isothermal titration calorimetry (ITC) [Velazquez-
Campoy and Freire, 2006, Freyer and Lewis, 2008, Ghai et al., 2012, Swamy and Sankhala,
2013, Velazquez-Campoy et al., 2015, microscale thermophoresis (MST) [Wienken et al.,
2010, Jerabek-Willemsen et al., 2011, Jerabek-Willemsen et al., 2014], quartz crystal mi-
crobalance (QCM) [Dixon, 2008, Speight and Cooper, 2012, Nielsen and Otzen, 2013, Cho
et al., 2010], potentially also with dissipation analysis, surface plasmon resonance (SPR)
[Besenicar et al., 2006, Kooyman et al., 2008, Hodnik and Anderluh, 2013, Nguyen et al.,
2015, Singh, 2016], switchSENSE® [Rant, 2012], and quantitative spectrophotometry and
spectrofluorometry [Loura et al., 2003, Valeur and Berberan-Santos, 2012, Matos et al.,
2010]. This list is far from exhaustive, and illustrates the unabated need for new methods
to quantify binding dynamics.

For the study of membrane binding kinetics, the method of choice in principle strongly
depends on the studied system and the parameters of interest. In the ideal case, the

following conditions are met:
(i) minute sample volumes

(ii) applicability to surface binding processes

(iii) measurements in unperturbed equilibrium systems

(iv) specificity to perform in complex bio-fluids or live cells

(v) option to validate the membrane integrity

vi) accessibility of not only binding affinities, but also binding rates

y y g g

(vii) resolution of a wide range of kinetic rates, ideally from 1ps™" to 1h~?

It should be mentioned that from a practical point of view, even more factors, such as
measurement duration, passivation against unspecific binding, ease of use, unambiguous
data analysis, costs of individual measurements, and the cost of acquiring the instrument
play an important role. Despite the manifold of available techniques, all of them fall short
of at least one of the aforementioned requirements. As an example, SPR and QCM, both
frequently used tools to quantify surface binding rates, perform for perturbed systems re-
laxing into equilibrium. Especially SPR has become one of the most popular methods to
quantify binding kinetics. Typically, in these experiments ligand is flushed into the sam-

ple chamber, upon which the number of bound ligands increases over time and eventually
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saturates. Similarly, upon constant buffer low without any new ligands coming in, the
bound ligand detaches and the read-out signal ideally goes back to its initial level. The
characteristic times to reach these final levels are a measure for the association and dissoci-
ation rates, k, and kg, respectively. Clearly, such measurements are the response to a jump
in ligand concentration, and are not performed in quasi-steady state, when the numbers
of forward and backward reactions are more or less equilibrated and most binding sites
feature a constant turnover of binders. On the other hand, this situation is physiologically
most relevant, as it is frequently found in cellular environments. In other words, direct
access to the rates of reversible surface binding in unperturbed, native systems has so far
hardly been possible. From a historical point of view, the step to measure in equilibrated
instead of perturbed systems is similar to the roots of FCS. Back then, the introduction
of FCS provided an alternative to the observation of relaxations upon external pumping
of a system, which was for instance done by temperature jump experiments [De Maeyer,

1960, Strehlow, 1972, Rigler and Widengren, 2017].

I11.1.2 Review of previous TIR-FCS studies

For the desired method that meets the aforementioned conditions, total internal reflec-
tion fluorescence correlation spectroscopy (TIR-FCS) [Thompson et al., 1981, Thompson
and Axelrod, 1983] is a propitious approach [Schwille, 2003]. On the one hand, FCS is
an equilibrium method, which extracts a characteristic correlation time for quasi-ergodic
fluctuating systems. Moreover, its maximum temporal resolution is only limited by the
detector and the photon count rate. On the other hand, the use of TIRF microscopy
provides improved surface selectivity compared to confocal FCS, as the evanescent field
exponentially decays on the length scale of 100 nm away from the surface. Moreover, as a
byproduct, a fluorescent tag provides a high specificity for the labeled ligand in potentially
complex and diverse bio-fluids, and the quality of the surface, e.g. the membrane, can be
validated by complementary imaging in a spectrally distinct channel.

The combination of FCS with TIR excitation has been first proposed by Thompson
and colleagues in 1981 [Thompson et al., 1981]. During the following almost 25 years,
TIR-FCS was rarely exploited and exclusively used on prism-type TIRF system in com-
bination with photomultipliers for detection. A very limited number of studies addressed
unspecific binding of immunoglobulin G (IgG) and insulin to serum albumin-coated sur-
faces [Thompson and Axelrod, 1983], fluorophores to C-18 modified silica surfaces [Hansen

and Harris, 1998a, Hansen and Harris, 1998b], and several polyamidoamine dendrimers to
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silica surfaces [McCain et al., 2004a]. In addition, the diffusion of IgG above SLBs [Starr
and Thompson, 2002], rhodamine 6G in sol-gel films [McCain and Harris, 2003], polyami-
doamine dendrimers of variable sizes in sol-gel films and aqueous buffer [McCain and Harris,
2003, McCain et al., 2004b], polystyrene beads in water [Kyoung and Sheets, 2006], and
vesicles above an SLB [Kyoung and Sheets, 2008] were measured by TIR-FCS. Many of
these studies relied on the assumption of a single exponential shape of the axial excitation
profile with a penetration depth d.,, that was estimated based on a rough measurement of
the angle under which the excitation beam left the objective. Turning this argumentation
around, Harlepp et al. measured the autocorrelation function of a fluorophore of known

diffusion coefficient and extracted d.y, [Harlepp et al., 2004].

The concept of TIR-FCS was not only proposed by Nancy Thompson [Thompson et al.,
1981], but considerable theoretical work was invested by her group towards TIR-FCS
and the study of reversible binding [Thompson et al., 1981, Lagerholm and Thompson,
1998, Lagerholm and Thompson, 2000, Starr and Thompson, 2001]. In 2003, Lieto and
colleagues build up on this work and reported for the first time dissociation rates for re-
versible receptor-ligand interactions measured by TIR-FCS [Lieto et al., 2003]. In detail,
the reversible binding of a fluorescently-labeled monoclonal IgG with surface-bound mouse

FeyRII receptor was studied.

The major breakthrough towards the availability of TIR-FCS to a broader community
was achieved by switching from prism-type to objective-type TIRF microscopes [Stout and
Axelrod, 1989, Axelrod, 2001a], an option that became available with the advent of high-NA
objectives. Typically, objectives with NA > 1.4 are used. The combination of objective-
type TIRF and FCS with photon-counting point detectors is in theory compatible with
commercial setups [Yordanov et al., 2011], or only requires the placement of a multimode
fiber for detection on one of the microscopes camera ports. Moreover, it features full
sample accessibility on an inverted microscope, and was first demonstrated in a range of
studies by the group of Theo Lasser [Anhut et al., 2005, Hassler et al., 2005a, Hassler et al.,
2005b], including a proof-of-principle study of TIR-FCCS [Leutenegger et al., 2006]. In a
range of other communications, objective-type TIR-FCS with point-detectors was applied
to study lateral diffusion in membranes in vivo [Ohsugi et al., 2006, triplet blinking close
to dielectric interfaces [Blom et al., 2009], flow above a surface [Schmitz et al., 2011],
and the effect of surfactant on the unspecific binding of bovine serum albumin (BSA)
and lipase (Thermomyces lanuginosus) to C18-modified silica surfaces [Sonesson et al.,

2008]. Moreover, modifications of regular objective-type TIR-FCS with point-detection,
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ranging from pulsed excitation with a time correlated single photon counting (TCSPC)
unit [Weger and Hoffmann-Jacobsen, 2017], to interfering evanescent waves [Otosu and
Yamaguchi, 2017], and an advanced combination of STED with TIR-FCS [Leutenegger
et al., 2012], were reported. Despite the increased interest on TIR-FCS upon introduction
of objective-type TIRF microscopes, to the best of our knowledge only one published study
investigated kinetic rates. Namely, Hassler and colleagues addressed the enzyme kinetics

of surface-immobilized horseradish peroxidase [Hassler et al., 2007].

Very shortly after the introduction of objective-type TIR-FCS, the group of Thorsten
Wohland introduced electron-multiplying charge-coupled device (EMCCD) camera detec-
tion instead of point detectors [Kannan et al., 2007]. The massive parallel detection boosts
the multiplexing by exploiting the widefield excitation in TIRF microscopy, but comes
at the cost of lower time resolution, and to date still lower quantum yield of the detec-
tor, compared to point-detectors. In detail, the integrated signals from a set of region of
interests (ROIs) are autocorrelated to sample the local dynamics. Thus, this approach
has the potential to resolve maps of dynamics. Moreover, as the ROIs are defined dur-
ing post-processing, their size can be systematically varied, based on which Bag et al.
elegantly circumvented the need for calibration measurements before 2D diffusion mea-
surements in SLBs [Bag et al., 2012]. To date, the potential of camera-based TIR-FCS
was demonstrated in several studies [Guo et al., 2008, Sankaran et al., 2009, Bag et al.,
2012, Lim et al., 2013, Bag et al., 2014, Huang et al., 2015]. It should be noted that in our
view camera-based TIR-FCS is conceptually identical to the differently termed methods
binned imaging FCS (bimFCS) [Lim et al., 2013, Huang et al., 2015], and temporal image
correlation spectroscopy (TICS) using TIRF microscopy [Wiseman, 2013, Wiseman, 2015].
Camera-based TIR-FCS has developed into an powerful tool to measure lateral membrane
diffusion, but except for the reported k4 for doublecortin from surface immobilized micro-

tubules [Brandao et al., 2014] has not been employed to study binding kinetics.

The mathematical description of a ligand-receptor system is highly complex, and to
our knowledge no analytical solution to the coupled diffusion-reactions equations has been
found. In many cases, the measured autocorrelation curve may be governed by 3D ligand
diffusion, 2D receptor diffusion, reversible binding, and potentially photophysics [Thomp-
son et al., 1981]. The situation becomes even more complicated when all optical effects,
i.e. supercritical angle fluorescence (SAF), correct shape of the lateral and axial detec-
tion profile are fully taken into account [Ries et al., 2008a]. Thompson et al. compiled a

guide for successful TIR-FCS to navigate through the manifold of parameters that influ-
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ence TIR-FCS measurements [Thompson et al., 2011]. Taken together, more than 30 years
after the first demonstration of TIR-FCS, the method has developed into a useful tool to
characterize lateral membrane diffusion, but has been hardly used to measure reversible

binding rates.

I11.1.3 Concept of SI-FCS

As discussed, the analysis of TIR-FCS, especially with binding and diffusion contributions,
is highly complex. On the other hand, the major difficulty comes from the contributions
of lateral and axial ligand diffusion, which are not of particular interest when the focus
is on the determination of binding rates. Based on this realization, this work introduces
surface-integrated FCS (SI-FCS) in which a spatially integrated signal recorded from a
surface is subject to an autocorrelation analysis. To validate this approach, the reversible
hybridization of short single-stranded DNA (ssDNA) to the surface-immobilized comple-
mentary strands is characterized (figure II1.1A).

Considering a fluorescently labeled ligand diffusing above a surface to which it binds
occasionally, information about the binding kinetics can be only extracted if there are
means to distinguish the signals of bound and unbound states. In the easiest case, the
unbound state does not contribute to the fluctuating signal, which can be for instance
achieved by FRET between receptor and ligand [Auer et al., 2017]. Alternatively, the
change of second harmonic signal [Sly et al., 2013, Sly and Conboy, 2014] or fluorescence
lifetime upon binding may be analyzed. However, the latter two options are typically
incompatible with widefield illumination and massive parallel detection on a camera and
can thus not sample many locations in parallel. In this work, bound and unbound state are
distinguished by the timescale on which the correlation is lost. We study binding kinetics
that are much slower than the 3D diffusion through the detection volume, i.e. occur on
time scales on which diffusion is equilibrated. Hence, as long as no diffusion occurs on the
surface, diffusion is not relevant to this chapter, which means that SI-FCS is calibration
free and the area of the surface over which the integration is performed only depends on
signal-to-noise considerations.

In this work, FCS and TIRF excitation are combined with fluorescence detection with
a highly sensitive camera to study reversible binding. TIRF microscopy is a useful tool to
reduce the signal contribution of freely diffusing ligand compared to confocal or widefield
imaging. Nonetheless, the concept of SI-FCS is not limited to TIR excitation. Any time-

resolved imaging scheme rendering reversible binding as fluctuating signal separable from
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Figure III.1: Concept of SI-FCS. A) The system under study comprises surface-
immobilized rectangular DNA origami structures, which exhibit ssDNA docking strands
on their surface. The complementary imager strand is fluorescently labeled, diffuses in
solution and occasionally hybridizes with the docking strand. Thus, this system mimics
a reversible receptor ligand interaction, which is highly tunable by the nucleotide overlap.
The entire system is imaged by TIRF microscopy. B) For SI-FCS, a stack of images is
acquired and subdivided into several ROIs in which the signals are integrated. For every
ROI a signal trace is extracted and autocorrelated. The characteristic decay time of the
autocorrelation curve reflects on the underlying binding kinetics and is independent of the
receptor density. For the system in A), the imaging can also be performed at low DNA
origami and imager concentrations, such that individual binding events can be localized
to render a super-resolved DNA-points accumulation for imaging in nanoscale topography
(PAINT) image [Jungmann et al., 2010] or to potentially count the binding sites on one
DNA origami [Jungmann et al., 2016].

diffusion, is compatible with this approach. Potential examples include FRET to surface-
attached acceptors [Auer et al., 2017] and SAF microscopy [Ruckstuhl and Verdes, 2004,
Barroca et al., 2012, Brunstein et al., 2017].

The basic principle of SI-FCS is shown in figure III.1. The fluorescence signal from
a surface binding system, here reversible DNA hybridization, is imaged using TIRF mi-
croscopy. A set of such images with equidistant temporal spacing is acquired. The images
are tiled with ROIs. Each of them serves as a surface over which the acquired pixel values
are integrated. The obtained signal trace is autocorrelated and the characteristic decay
time of the autocorrelation curve should reflect on the reversible binding kinetics. SI-FCS
performs in low and high density regimes of receptors. This study uses rectangular DNA
origamis [Rothemund, 2006, Schnitzbauer et al., 2017] that expose ssDNA for hybridiza-
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tion on the surface. At very low densities of binding events, not only SI-FCS analysis can
be performed, but also a super-resolved image of the binding sites can be acquired using
DNA-PAINT [Jungmann et al., 2010].

For this work, a TIRF microscope was built with the sole purpose to perform high-
quality SI-FCS. As a byproduct, this microscope is also compatible with single-molecule
and regular TIRF imaging. A detailed description, including a novel method for a focus
stabilization, can be found in appendix A.1. The theoretical basis of SI-FCS is derived
and followed by a series of measurements on reversible hybridization kinetics of DNA. The
association and dissociation rates are extracted from ligand titration experiments. Finally,
as SI-FCS is a new technique, an entire section is attributed to thorough quality controls,

comprising experiments and simulations.

II1.2 SI-FCS to characterize binding kinetics

II1.2.1 Theoretical considerations

I11.2.1.1 Derivation of the autocorrelation function

Considerable effort has been previously put into the derivation or approximation of an all-
embracing correlation function which covers lateral 2D diffusion, 3D diffusion and reversible
binding [Ries et al., 2008a, Thompson et al., 1981, Starr and Thompson, 2001]. Despite
the previous work, to date no closed analytical autocorrelation function, which covers all
these dynamics, has been found. Thompson and colleagues derived an expression, which
requires a numerical inverse Laplace transform, which is however a classically ill-posed
problem. Moreover, the full autocorrelation depends on at least four time parameters
(axial and lateral 3D diffusion time, lateral 2D diffusion time, inverse association rate,
inverse dissociation rate), which are intrinsically difficult to obtain simultaneously from
one correlation curve.

This work focuses on the quantification of binding rates. Therefore, a simplified ap-
proach is followed here. Throughout this work, surface-immobilized binding sites are con-
sidered. SI-FCS studies describing lateral diffusion and reversible binding will be subject
to a future study. Thus, we consider a bimolecular reactions of the type A+B=C, where
A is the ligand, freely diffusing above a surface, B is the unbound receptor, which is im-
mobilized at a surface, and C is the bound receptor-ligand pair (compare figure I11.1A).

Moreover, we assume that the detected fluorescence signal F'(t) from a detection volume
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can be expressed by its mean (F') and the temporal fluctuations § F'(¢) around it.

F(t)=(F)+0F(t) = (Fo) + 6Fc(t) + (B,) +6B,(t) (I11.1)
bound ligands uncorrelated background

F(t) is made up by signal contributions from bound molecules F¢(t) and an uncorrelated

background B, (t), which results in a measured autocorrelation curve Geas(T).

(6Fc(0)0Fc(T))

Gl T) = (Fe) + (B2

(111.2)

In the context of the SI-FCS measurements presented here, the uncorrelated background
can be not only background noise or stray light, but also the signal contribution from
freely diffusing ligand. The latter can be considered as uncorrelated background if the 3D
diffusion of labeled ligand through the detection volume is occurring on a much shorter
timescale than the considered binding dynamics. This assumption significantly simplifies
the theoretical autocorrelation function, but needs to be verified for each system under
study. A more detailed discussion and an estimation of accessible time scales are discussed

in section III.3.1.

In addition to the temporal component that correlated background adds to the auto-
correlation curve, background in general lowers the autocorrelation amplitude, as it con-
tributes to the normalization of Gies. It is rather relevant to measure the correlation
curve Goe (1) based on dF(t) and normalize to the mean of Fo(7). Provided that the
background can be measured in a separate blank control sample, Goe(7) can be calculated
easily [Thompson, 1999:

Geo(T) = Gmeas(T) (I11.3)

It is worth noting that the temporal decay of the autocorrelation curve is not altered by

uncorrelated background.

To obtain an expression for Goe(T), the common scheme of derivations for confocal
FCS is followed [Krichevsky and Bonnet, 2002]. Time and ensemble average are equal

for quasi-ergodic system and the collected fluorescence is proportional to the number of
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fluorophores in the detection volume. Thus, Goe(T) reads:

[ &F [ @F oo (T)8(F — )
(©)* (d*F)

Gcc(T> = (IH4)

The integrals cover the entire detection volume. Gee(7) was expressed in terms of the
concentration correlation function ®cc = (§C(0)0C(7)), which is calculated once an ex-

pression for 6C'(7) is known.

Under the assumption that all diffusion dynamics through a considered region of interest
are equilibrated, the change of the concentration of conjugates C' is governed by a source

and a sink term.

dC
— =k,AB — I1I.
dt kja kdf ( 5)

Here, the association rate k,, and the dissociation rate k; were introduced. Both parameters
are directly linked to the mean dwell and association times, 74 = k;* and 7, = k; ' (A) ™,
which describe the average duration of a single binding event and the average time between
two consecutive binding events, respectively. The ratio of these rates is the well-known

dissociation constant:

Kp— 24 _ (I11.6)

As the total number of surface binding sites is constant S = (B) + (C) = const, it is
evident that a decrease of receptor-ligand pairs will results in an increase of free receptor
by the same magnitude: 6B = —d0C. Therefore, the differential equation I11.5 for C' is

easily transformed into a differential equation for ®¢¢:

d(I)CC (7')

o = (kA ka) @oc(T). (ILIL.7)

Differential equations of this kind are very well known and have the simple solution
Doo(t) = Bye ™™ (I11.8)

The obtained exponential function decays with the characteristic time constant 7., which
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can be expressed in terms of the association and dissociation rates.
-1 -1, -1\t
Te = (ko {A) + ko)™ = (7 +707) (I11.9)

An expression for @ is obtained from the initial condition ®cc(r = 0) = &y = (5C?).
This quantity is known as the variance. To find the underlying distribution, it is worth
realizing that for every given point in time, each surface receptor occupies one out of two
states: bound to a ligand or unbound. Provided that all receptors are independent, this
corresponds to a binomial distribution, which has the variance &y = S3(1— ) [Thompson
et al., 1981]. Here we introduced the fraction of bound receptors f, which can be inter-
preted as the success probability of the binomial distribution. Accordingly, the fraction of

unoccupied receptors is (1 — f3).

__©) (i, k)
=meo = am) < o)
_ B k() _ e
(1—6)—<B>+<C>—<1+ o ) = (IT1.11)
Therefore, the variance of the binomial distribution reads
@0 =(C) £ =(C)(1- ), (IIL.12)

and finally, inserting equations II1.8 and III.12 into equation III.4 yields

17, 11—
Goeo(T) = Teg=r/me = —756_7/76

—_— I11.13
Nc 1q Ng p ( )

In accordance with the nomenclature C' and S for the surface concentrations of bound
receptors and the total receptor concentration, N, and Ng are the corresponding abso-
lute numbers in the detection volume. Alternatively, equation III.13 can be obtained as
a limiting case of the advanced derivation of the full autocorrelation by Thompson and
colleagues [Thompson et al., 1981]. Interestingly, the amplitude Gy = 71_11)1%) Goe(T) of the
correlation is not only proportional to the absolute number of occupied binding sites, but
also depends on the kinetic rates. However, if 7, > 74, i.e. in the case of low concentra-
tion of labeled ligand (A) < Kp, the number of occupied binding sites can be obtained
directly as the inverse of the correlation amplitude. It is important to realize that for

any extraction of information from the correlation amplitude, the mean background signal
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(By) has to be carefully measured. This work focuses exclusively on the temporal decay of
the autocorrelation curves. Therefore, it is noted that the correlation amplitude of SI-FCS

carries valuable information, but the exploitation is left for future studies.

I11.2.1.2 Conclusions for the experimental design from the theoretical auto-

correlation function

The obtained exponential for the autocorrelation function is not surprising, as the consid-
ered blinking upon binding is a random telegraph process, which is known to be described
by an exponential, provided many transitions between both states were sampled [Binge-
mann, 2006]. Similar observations have been made for the blinking of surface-immobilized
red fluorescent proteins [Schenk et al., 2004]. In the case of SI-FCS, provided the receptors
do not diffuse laterally, the situation is very similar: blinking molecules are conceptually
switching between two states (bright and dark), and the transitions are governed by the

characteristic rate k, (A) and k.

The characteristic decay time 7, of the exponential (equation I11.9) can be obtained by
fitting the model function to experimental autocorrelation curves. Interestingly, in the limit
of very low ligand concentrations, i.e. (A) < Kp = k4/ka, 7. equals the inverse dissociation
rate ky. Therefore, SI-FCS measurement in a regime of low imager concentrations can give

direct access to the dissociation rate.

Moreover, if the experiments can be supported by predictions of the binding free energy
AG, the association constant k, can be estimated via:
kq ac
k, = —eRT I11.14
e (1L.14)
Here, the gas constant R and a reference constant Ky = 1M were introduced. Equation
I11.14 follows directly from the well-known equation AG = —RT In % Consequently, in
an ideal scenario, both rates, k4 and k,, may be obtained from a single experiment, if

predictions of AG are accessible.

Another important feature of 7. is its dependence on the ligand concentration (A).
Consequently, a set of SI-FCS measurements at different ligand concentrations yields dif-
ferent 7.. This dependence can be fitted by equation I11.9, providing direct access to the

rates kg and k,.
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I11.2.2 Measurement of reversible DNA hybridization

I11.2.2.1 Temporal resolution of 7 nt, 8 nt, 9 nt and 10 nt hybridizations
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Figure IT1.2: Resolution of reversible DN A hybridizations by SI-FCS. A) Repre-
sentative autocorrelation curves of four individual SI-FCS measurements of the hybridiza-
tion of 7, 8, 9 and 10 nucleotide (nt) base pair overlaps. FEach curve shows the mean
(circles) and standard deviations (dashed lines) of 49 autocorrelation curves, which were
measured in parallel in different ROIs. All autocorrelation curves were fitted by a single
exponential (solid lines), which described the experimental data with residual well below
4% of the maximum autocorrelation amplitude. B) Corresponding histograms of charac-
teristic decay times 7.. The results from 6 measurements per duplex overlap are shown,
each of them comprising the autocorrelation curves from 49 ROIs.

To experimentally explore the kinetics accessible to SI-FCS, four different DNA origamis,
which together with fluorescently labeled ssDNA (imager strand) formed a 7 nt, 8 nt, 9 nt
and 10 nt overlap respectively, were designed (compare Materials and Methods section in
appendix A.2). To keep these initial experiments as simple as possible, the concentrations
of imager strand were chosen very low, such that (A) < Kp. To obtain an estimate of
Kp, the binding free energies (table II1.1) were estimated using the NUPACK tool [Zadeh
et al., 2011]. Based on theses theoretical predictions, imager concentrations of 10nM for
7nt, 8 nt, and 9 nt, and 1 nM for 10 nt hybridizations respectively, were chosen. Con-
sequently, the experiments were expected to be in a regime where the decay time of the
autocorrelations curve is governed by the imager dwell time 7, = k; ' at the surface.

Figure II1.2A shows corresponding representative autocorrelation curves. Evidently,
the different hybridization kinetics result in clearly resolvable different timescales on which

the autocorrelation curves decay. The autocorrelation curve for 7 nt hybridizations decays
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fastest. With increasing nt overlap, the correlation decays at larger lag times. This is
in line with the expected increasing binding time for an increasing nt overlap. Having
demonstrated the capability of SI-FCS to resolve differences in the number of nucleotide
overlaps, one can immediately conclude that single base pair mismatches are also resolvable.
According to calculations (data not shown), the free energy of DNA hybridization decreases
to a larger extent by the introduction of a single base pair mismatch than by the removal

of a terminal base pair [Zadeh et al., 2011].

In the approach presented here, the acquired images were tiled with 7x7 square ROIs,
each of them covering 31x31 pixels. Accordingly, each measurement yielded 49 auto-
correlation curves, which sampled the hybridization kinetics across the entire image. All
measurements were taken at sufficiently low illumination, such that photobleaching was
negligible (compare section II1.3). Figure III.2A shows the means (circles) and standard
deviations (dashed lines) of the autocorrelations from these 49 ROIs for 7 nt, 8 nt, 9 nt
and 10 nt hybridizations. Remarkably, the standard deviations are small, indicating that
all ROIs yield identical results. This was to be expected, as the hybridization kinetics
are independent of the lateral sample positions, but highlights that SI-FCS can precisely

measure binding kinetics of a freely diffusing ligand to a surface-immobilized receptor.

The acquired autocorrelation curves were fitted using a single exponential fit model, as
derived above (equation II1.13). Strikingly, this model function describes the experimental
data well with overall residuals below 3% of the amplitude. Interestingly, the residuals
show only very minor systematic residuals, which are only visible, because no noise, i.e.
random residuals, are visible in the residuals. These low random deviations originate from
the large number of binding events that is sampled by this SI-FCS approach. Overall, the
residuals are smallest for 8 nt and 9 nt hybridizations. For 7 nt, the fit is slightly below the
experimental curve at short lag times below 100 ms. This deviation can be attributed to the
correlation from 3D diffusion of imager strand in solution, which is known to have a long
tail [Thompson et al., 1981, Ries et al., 2008a]. The autocorrelation of 7 nt is most affected
by solution diffusion, as this kinetic is fastest of all measured hybridizations, and thus the
characteristic decay time is closest to the diffusion time. At the other end of the spectrum,
the 10 nt hybridization shows almost no residuals at lag times below the characteristic
decay time. In this case, the whole dynamics take place at large lag times where the
correlation from solution diffusion is lost. On the other hand, the 10 nt autocorrelation
shows larger residuals and larger standard deviations at lag times above 100s. Here, the

deviations originate from two effects: First, at large lag times, the statistics are worse, as
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less binding events with long dwell times can be sampled within the measurement duration.
Secondly, the computed autocorrelation curve is a biased estimator, which only approaches
the real case for infinitely long measurements. This effect is discussed in more detail in
section II1.3, which deals with the quality control of SI-FCS measurements. Although the
discussed systematic residuals show minor deviations between the exponential fit model
and the experimental data, it is worth noting, that these residuals supposedly affect the
outcome of the analysis to a minor degree, and are only visible because of the outstanding

signal-to-noise ratios of the presented measurements.

Table III.1: Estimation of the kinetic rates for 7-10 nt hybridizations based
on single SI-FCS experiments. SI-FCS measurements (compare figure I11.2) were
performed in a low ligand concentration regime, such that (A) < Kp and thus 7. &~ k4. For
each hybridization sequence, the binding free energy AG was predicted using the NUPACK
software tool [Zadeh et al., 2011] with the following settings: 7' = 296.15 K, concentration
of Nat 50mM, concentration of Mg?" 9mM. Using this hybrid approach of measuring 7.
and predicting AG, estimates of k, and k; were obtained from single shot experiments.
The experiments were performed at 23°C, the sequences exposed on the DNA origamis
were 5-TTATACATC-3' (7 nt), 5-TTATACATCT-3' (8 nt), 5’-TTATACATCTA-3
(9 nt), and 5-TTATACATCTAG-3' (10 nt), with the hybridized sequences in bold.

ligand predicted estimated
. measured measured 6
sample concentration AG 7 I kg 5] ke - 10

(A) [nM] in [kJmol™] ¢ d M~ 1s71]
7 nt 10 36.03 0.44 £0.01 2.27£0.05 5.15£0.12
8 nt 10 37.83 2.39£0.06 0418+0.009 1.97+£0.04
9 nt 10 41.98 486 +£0.05 0.206 £0.002  5.23 £0.05
10 nt 1 48.98 90+£7 0.0111 £ 0.0009 4.84 £0.39

The characteristic decay times 7, obtained from the fits of the autocorrelation function
range from less than 440ms for 7 nt to 90s for 10 nt hybridizations, thus covering more
than two orders of magnitude (figure I11.2B). The corresponding values of 7. are presented
in table III.1. As the imager concentration was low compared to Kp, 7. equals the inverse
dissociation rate k‘;l. The values of k; obtained from these experiments are comparable to
previously reported rates [Peterson et al., 2016b, Dupuis et al., 2000, Jungmann et al., 2010].
Small differences can likely be attributed to the effect of different sequences and ion con-
centrations in the buffer, which are known to affect the formation of secondary structures
(for reviews see [Woodson, 2005, SantaLucia and Hicks, 2004]). The obtained characteristic

decay times reflect on the number and type of the base pairing, as an increased nt overlap
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results in larger 7.. Moreover, the relative increase of 7. from 9 nt to 10 nt is by far the
largest, which can be attributed to the addition of a stronger binding GC-pair from 9 nt
to 10 nt, whereas in the other cases a weaker binding AT-pair was added. The results are
highly reproducible, with standard deviations of less than 3% of the mean characteristic
decay times for 7 nt, 8 nt and 9 nt samples. The 10 nt hybridizations show a slightly larger
relative standard deviation below 7%, supposedly because of the slightly larger scatter in
the autocorrelation curves. Nonetheless, the results presented here, show that SI-FCS can
precisely measure dissociation rates over more than two orders of magnitude with high
statistical accuracy.

DNA hybridization has been subject to many theoretical studies, which have been
reviewed elsewhere [Santalucia and Hicks, 2004, Zuker, 2000, Mathews, 2006, Lorenz et al.,
2016]. The thermodynamic modeling enabled the development of software tools to estimate
hybridization parameters, such as the free binding energy AG [Zadeh et al., 2011]. Here,
the SI-FCS measurements of k; were supplemented by theoretical predictions of AG to
estimate the association rates k, (table III.1). The calculations were performed based
on the parameters provided by Santalucia [SantaLucia, 1998], which did not perfectly
match our buffer conditions, and had to be adjusted. To describe our conditions best, we
used the minimum concentration of Na™ compatible with ref. [SantaLucia, 1998], which
compensated partially for the Tris in our buffer. The remaining Na™ could be accounted
for by lowering the Mg?™ concentration, although the relevant equivalent amount of Mg?*+
is be small [Owczarzy et al., 2008, von Ahsen et al., 2001, Mitsuhashi, 1996]. Following this
approach, the obtained estimates of k, are in line with previously reported values [Peterson
et al., 2016b,Lang and Schwarz, 2007,Jungmann et al., 2010,Dupuis et al., 2000, Jungmann
et al., 2016]. Moreover, all estimated association rates appear to be similar, regardless of
the base pair overlap. The same observation was recently reported for 9 nt and 10 nt
hybridization by Jungmann and colleagues [Jungmann et al., 2010].

Here, single SI-FCS experiments were supported by theoretical predictions to obtain
k, and k4. Alternatively, these parameters are accessible by titration of the imager strand
concentration (A). This approach does not rely on estimates, but is independent of external

estimates. The corresponding experiments are presented in section I11.2.3.

111.2.2.2 Parallel discrimination of multiple binding kinetics

In the previous section, it has been demonstrated that SI-FCS can resolve the dissociation

rates of reversible DNA hybridizations. Based on these findings, the question arises whether
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SI-FCS can resolve the presence of several binding species in one sample. From an analysis
point of view, this corresponds to the question whether and under which conditions the
superposition of two exponential decays can be resolved. Conceptually, the same question
is of relevance to fluorescence lifetime measurement with two decay times. A clear criterion
based on which it can be judged whether two exponentials can be separated is not known,
because the separation depends on too many parameters: the signal-to-noise ratio, the
nature of the noise, the ratio of both characteristic decay parameters, and the ratio of the

amplitudes of the exponentials.
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Figure II1.3: Resolution of multiple binding species by SI-FCS. Representative
experimental autocorrelation curves of samples with single hybridization kinetics (7, 8, 9
nt) and two hybridization kinetics present (748 nt, 749 nt). Each curve shows the mean
(circles) and standard deviations (dashed lines) of 49 autocorrelation curves, which were
measured in parallel in different ROIs. The samples with two hybridization kinetics were
appropriately described by a bi-exponential fit (solid lines), whereas the samples with only
one hybridization kinetic are adequately described by single exponential fits (solid lines).
B) Characteristic decay times for samples with only one kinetic and with mixed kinetics.
Error bars correspond to the means and standard deviations of the results from 49 ROIs.
For mixed samples, two distinct decay times were found and the anticipated decay times
(dashed lines) were reproduced with minor biases.

To address this question experimentally in the relevant context of SI-FCS measure-
ments, we prepared samples with mixed populations of DNA origamis. The imager strand
can hybridize with strands exposed on both kinds of DNA origamis, albeit with different
kinetic rates. In detail, surfaces were prepared, such that 7 nt and 8 nt complementary
strands to the imager strands were exposed on different surface-immobilized DNA origamis.

Similarly, for another set of measurements, DNA origamis for 7 nt and 9 nt hybridizations
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were in parallel immobilized. The expected values of 7, for the mixed binding kinetics differ
by less than an order of magnitude (compare figure I11.2B), which makes them intrinsically
difficult to distinguish. The corresponding experimental autocorrelation curves are shown
together with single species measurements (7, 8, 9 nt) in figure I11.3A. Clearly, the mixed
samples show a much broader decay than the single species measurements, corresponding
to the sum of two exponentials that decay on different time scales. Consequently, these
curves were fitted with bi-exponentials, which yielded low residuals and were therefore ade-
quately describing the experimental data sets. The obtained characteristic decay times are
presented in figure II1.3B and show that the decay times from single component binding
experiments were reproduced with deviations of less than 20%. These results demonstrate
that SI-FCS can distinguish the presence of multiple binding species in one sample. Their
characteristic decay times may differ by only a factor of 5, and can still be separated. The
distinction solely relies on the differences in binding kinetics, and does not require any

spectral discrimination.

I11.2.3 Precise quantification of association and dissociation rates
by SI-FCS

II1.2.3.1 Titration experiments

To demonstrate that SI-FCS has indeed the capability to determine association and disso-
ciation rates of reversible binding kinetics, as proposed in the theoretical preconsiderations
(section I11.2.1), titration experiments were performed for 9 nt and 10 nt DNA hybridiza-
tions.

For this purpose, the sample chambers were prepared as usual, but solutions with differ-
ent concentrations of ligand (imager strand) were loaded. To verify that the target concen-
tration of ligand was reached in solution, confocal FCS measurements were performed in
solution above the surface. Indeed, the measured concentrations are identical to the target
concentrations, as shown in figure A.4 in appendix A.3. Only at sub-nanomolar concen-
trations of ligand, a relative deviation of the concentration is discernible, which may be
attributed to afterpulsing photons, as discussed in the context of figure A.4. Consequently,
it is not clear, whether and to which extent these deviations are real. Sub-nanomolar
concentration regimes are difficult to characterize, especially in this case, were an in situ
measurement of the concentrations was desired. Following the famous Hagen-Poiseuille

law, flow chambers have a flow profile (measured e.g. in reference [Gosch et al., 2000]).
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Figure IT1.4: Quantification of association and dissociation rates by SI-FCS. A)
Autocorrelation curves of reversible 9 nt hybridizations at different concentrations of ligand
(imager strand). With increasing ligand concentrations, the autocorrelation curves shift to
shorter decay times. For clarity, only the experimental autocorrelation curves are shown.
Below a ligand concentration of 100 nM, the autocorrelation curves were fitted by a single
exponential, above 100 nM by a bi-exponential. The quality of the fits is illustrated by the
residuals. B) Characteristic decay times obtained from the autocorrelation curves in A) de-
crease with increasing ligand concentration. The dependence was fitted using equation I11.9
(black line with 95% confidence interval in gray). C) Autocorrelation curves of reversible
10 nt hybridizations at different concentrations of ligand. As in A), the autocorrelation
curves decay at shorter lag times with increasing ligand concentrations, although overall
the kinetics occur on longer time scales than the 9 nt hybridizations. For clarity, only the
experimental autocorrelation curves are shown. The residuals indicate a good fit quality.
Autocorrelations above ligand concentrations of 10 nM were fitted by a bi-exponential. D)
Titration curve showing the characteristic decay times for 10 nt hybridizations. The de-
pendence was fitted using equation I11.9 (black line with 95% confidence interval in gray).
The association and dissociation rates obtained by the fits in B) and D) are presented in
table III.2.
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Thus, it is not granted that the liquid is exchanged efficiently throughout the sample. The
confocal FCS measurements performed here demonstrate however that the target concen-
tration was reached over more than two orders of magnitude. Moreover, the deviations for
sub-nanomolar concentrations only affect the determination of k, and k£, if the dissociation

constant Kp is also in this regime.

Table III.2: Association and dissociation rates for reversible 9 nt and 10 nt
hybridizations measured by SI-FCS. The kinetic rates were obtained from titration
experiments and subsequent fitting of the dependence of 7. on the ligand concentration
(figure I11.4B,D). The errors correspond to the 95% confidence bounds of the fits. K and
AG were directly calculated from k, and k;. The experiments were conducted at 23 °C.

sample kg [s71] ko -10° [M~'s™'] Kp [nM] AG [kJmol™!]

9nt  0.180 £ 0.012 25=x0.5 72+ 16 40.5 £0.6
10 nt  0.009 £ 0.002 21+04 42+18 475+ 1.1

Strikingly, the autocorrelation curves of 9 nt and 10 nt DNA hybridizations shift to
shorter lag times with increasing ligand concentration, as demonstrated by the experimen-
tal data sets shown in figure I11.4A,C. This is in good agreement with the theoretical model
(equation II1.9). For ligand concentrations higher than 100 nM for 9 nt and 10nM for 10
nt, respectively, a second component appeared at large lag times in the autocorrelation and
was accounted for by a second exponential decay in the fitting model. The origin of this
contribution is currently unclear, but one may speculate that this second component origi-
nates from unspecific binding, which becomes more pronounced with an increasing number
of binders, i.e. the ligands. Regardless of the nature of this second component, the faster
of the two decays, which corresponds to the kinetics of interest, was insensitive to changes
in the fitting of the slower component. Moreover, the residuals of the autocorrelation fits
are reasonably small, across all measured ligand concentrations.

In accordance with the shifts of the autocorrelation curves to shorter lag times with
increasing ligand concentration, the characteristic decay time 7. decreases (figure I11.4B,D).
The dependence of 7. on the ligand concentration (A) was fitted by equation I11.9 with k,
and kg, as free parameters. The values obtained for theses rates are presented in table I11.2.
Remarkably, the dissociation rates are in good agreement with the rates estimated from
measurements with low ligand concentrations (table II1.1), showing that for the previous
measurements the assumption (A) < Kp was justified. This is further supported by
the Kp calculated from the titration experiments (table I11.2). As expected, the Kp for
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10 nt DNA hybridizations is considerably lower than for 9 nt. The association rates are
within the error identical for both hybridization kinetics, an observation already made by
others [Jungmann et al., 2010], and in the previous section I11.2.2. Finally, the binding
free energy was directly calculated from Kp (table II1.2) and reproduced the theoretical
predictions from table III.1 within 10%. Thus, SI-FCS titration experiments have been
shown to reproduce previous results and theoretical predictions, demonstrating that this

method can adequately measure the kinetic rates of reversible binding.

111.2.3.2 Minimal set of SI-FCS experiments to measure kinetic rates

The previous section demonstrated that SI-FCS can accurately and precisely measure the
kinetic rates of binding to a surface. These measurements come however at the cost of
considerable experimental effort. In detail, each point in figure I11.5B,D corresponds to a
separate sample preparation and an independent measurement that lasts 5h. To increase
the throughput of SI-FCS measurements, several strategies were followed. A reduction of
the measurement duration is discussed in chapter I11.3, the parallelization of experiments
is currently work in progress, and the reduction of the number of experiments is addressed
in this chapter.

The determination of k, and k, relies on the measurement of 7., which depends on top of
these two rates, also on the ligand concentration (A) (equation II11.9). As (A) is controlled
by the operator, the measurement of 7. at two different ligand concentrations is in principle
sufficient to determine the two parameters k, and k4. Compared to a full titration series,
this approach would save precious samples and measurement time, but comes at the cost of
lower precision. Intuitively, the most accurate results should be obtained for pairs of ligand
concentrations ((A1), (Az)) that fulfill (4;) < Kp and (As) 2 Kp. In this case, 7. would
be in one experiment dominated by the dwell time 7, = k' and in the other experiment the
association time 7, = k! (A)~! would significantly contribute to 7.. On the other hand,
(As) should not be too large for several reasons: when 7, is close to zero, its relative error
becomes large; fluctuations become more difficult to observe; and the contribution of 3D
ligand diffusion to the autocorrelation curve may become non-negligible. Following the idea
to extract binding rates from only two SI-FCS measurements, the individual experiments
from figure I11.4 were reanalyzed in pairs of different concentrations. The kinetic rates
k, and kg4 obtained from this approach were related to the results from the full titration
/ k‘a/d,titration- The
corresponding results for 9 nt and 10 nt DNA hybridizations are shown in figure IIL5.

experiments by calculating the relative differences |kq/q — ka/d titration
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Figure II1.5: Quantification of association and dissociation rates from a mini-
mal set of SI-FCS measurements. Based on equation II1.9, the measurement of 7.
at two different ligand concentrations ((A;), (As)) is in theory sufficient to determine
k, and k4. The relative difference to the results from the titration Ky g titration (figure
II1.4) |kaja — Kajdtitration| /Ka/d titration is color coded for the individual points. If the two
concentration covered the regimes (A4;) < Kp and (As) > Kp (or vice versa), the rates
from the titration experiments were recovered with an error below 20% (squares). Pairs
of concentrations which were differing by less than a factor of two were excluded from the
analysis and marked as crosses. Concentration pairs leading to a relative error of more
than 100% saturated the chosen color scale and were marked as diamonds. The graphs are
symmetric with respect to the diagonal and therefore only the lower half is shown.

Evidently, the experiments with only two ligand concentrations reproduce the k; from the
full titration series best, when one of the ligand concentrations is small compared to Kp,
in line with the previous discussions (section III.2.1). The association rate is reproduced
best in the bottom right of the respective panels, i.e. for (4;) < Kp and (Ay) 2 Kp, as
expected. Although finding good choices for (A;) and (As) may be challenging if Kp is
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completely unknown, The results presented in figure II1.5 clearly show, that two SI-FCS

experiments can be sufficient to accurately measure the kinetic reaction rates k, and k,.

I1I.3 Quality control

The previous sections demonstrated the potential of SI-FCS to quantify association and
dissociation rates. The hybridization kinetics measured here accurately reproduced theo-
retical predictions and were in line with the experimental results of other studies [Peterson
et al., 2016b,Lang and Schwarz, 2007,Jungmann et al., 2010,Dupuis et al., 2000, Jungmann
et al., 2016]. As SI-FCS is a novel method, measurement conditions which do not intro-
duce artifacts and are realizable in routine experiments had to be established. This section
presents strategies and solutions for finding the optimal experimental settings for SI-FCS

measurements, which is of major importance for the accurate application of SI-FCS.

I11.3.1 Time scales accessible to SI-FCS

I11.3.1.1 Minimal duration of individual SI-FCS measurements

Each of the previously presented autocorrelation curves was computed from almost 5h
long measurements. This long measurement duration was initially taken to ensure that
the overall duration is much longer than the characteristic decay time of the autocorrelation
curve. Monte Carlo simulations of autocorrelation curves for lateral diffusion showed that
measurements should be at least 10® to 10? times longer than the diffusion time (data not
shown) [Ries, 2008]. This necessity arises partially from the fact that to describe an average
of kinetics, the slow contributions also need to be sample adequately and must not be cut
off by too short measurements. More importantly, the computed autocorrelation curve is
a biased estimator, which only converges to the real ensemble averaged autocorrelation
in the limit of sufficiently long measurements [Oliver, 1979, Schatzel et al., 1988, Schatzel,
1987, Saffarian and Elson, 2003]. This effect has also been described for confocal FCS
measurements on freely diffusing particles [Saffarian and Elson, 2003, Tcherniak et al.,
2009].

In real experiments, short measurements are desirables, as samples may slowly degrade
over time, and long acquisitions limit the throughput and require valuable time on the
microscope. Thus, an optimal measurement duration, which introduces only an acceptable

bias and is as short as possible, had to be found. To this end, Monte Carlo simulations were
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Figure II1.6: Required measurement duration for SI-FCS experiments. A) The
relative error of the obtained characteristic decay time depends on the duration of the
SI-FCS experiment. The shaded areas represent means and standard deviations of ten
independent simulations (for more details see main text) for different numbers of binding
sites. The convergence does not depend on the number of sampled binding events. As a
reference, similar simulations were performed for 2D diffusion through a confocal volume.
Compared to binding measurements by SI-FCS, 2D diffusion requires much longer mea-
surement durations to achieve similarly small biases on the characteristic decay time (7p
in the case of diffusion). B) The slower convergence originates from the longer tail of the
2D diffusion autocorrelation curve compared to a single exponential for reversible bind-
ing (theoretical curves are shown). C) Individual SI-FCS measurements from figure I11.2
were cut into shorter traces, reanalyzed and superimposed with the mean from simulations
(solid line). The experiments show a slightly higher bias on the obtained 7. compared
to simulations, but follow the same trend. For measurement durations at least 300 times
longer than 7., the simulated decay time 7., is recovered with a bias below 10% (region
shaded in gray). D) Representation of panel C) without normalization to the simulated
decay time allows for the direct visual judgment whether a particular measurement has a
bias below the required accuracy. The gray area corresponds to measurements that are at
least 300 times longer than the characteristic decay time fpeas > 300 - T meas. Points in the
gray area have a bias below 10%.
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performed for 1, 10, 100, and 1000 binding sites in a detection volume. Each simulation
was repeated ten times. The total duration t,c.s of the simulated measurements was
10° times longer than the simulated characteristic decay time Tesim;, Which is expected to
set the relevant time scale when assessing the required measurement duration [Schétzel
et al., 1988, Saffarian and Elson, 2003]. To evaluate the effect of the measurement duration
on the measured T meas, €ach simulation was split into shorter acquisitions which were
independently autocorrelated and fitted by a single exponential. Finally, all obtained 7, yeas
for one measurement duration were averaged. By this approach, 7. meas Was determined for
a range of ratios tumeas/7esim, yet all results corresponded to the same amounts of binding
events sampled. As an example, consider N events were sampled in a full simulation with
tmeas/ Tesim = 10°. To determine 7, eas for a measurement duration #peas/7Tesim = 101, the
original trace was cut into 10* independent traces, which were all analyzed to obtain mean
and standard deviation of 7. from 10* measurements. Consequently, the total number of

sampled binding events is maintained.

The obtained decay times normalized to the simulated value 7. meas/Tesim are shown in
figure II1.6A. As expected, for sufficiently long measurements, the simulated decay time
is recovered . lim . Temeas /Tesim = 1. Interestingly, the convergence does not depend
on the numb"é?si)?sgliné?ng sites, which directly corresponds to the number of sampled
binding events. Thus, the bias in the obtained decay times is not an effect of sampling
statistics, but solely originates from the computed biased estimator of the autocorrelation
curve. Remarkably, the situation for reversible binding is more convenient than for 2D
diffusion, which requires much longer measurement durations to describe the dif