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Zusammenfassung (Summary in German)

Die Theorie der Nichtlinearen Dynamik beschreibt Flüsse im Phasenraum kom-
plexer dynamischer Systeme. In dieser Arbeit wird ein Framework aus Konzepten
und Methoden entwickelt um die Struktur von Phasenraumflüssen in musterbilden-
den Reaktions–Diffusions Systemen zu untersuchen. Das Ziel ist die der selbst-
organisierter Musterbildung zugrundeliegenden physikalischen Kernmechanismen
aufzudecken. Zu diesem Zwecke eignen sich auf Proteinwechelwirkungen basierende
biochemische Reaktions–Diffusions Systeme als idealer Ausgangspunkt. Intrazellulä-
re Musterbildung spielt eine zentrale Rolle für die Funktion biologischer Systeme,
und die jüngsten Fortschritte der quantitativen Biologie haben uns Zugang zu einer
Vielzahl quantitativer Informationen über die inneren Arbeitsweisen solcher bio-
logischer Systeme verschafft. Dieser Informationsgewinn erlaubt uns zwar direkt
quantitative Modelle für die Kinetik solcher Systeme abzuleiten; die Methoden um
solche Modelle analysieren und verstehen zu können sind jedoch auf einfache, planare
Systemgeometrie beschränkt. Selbstorganisierte Musterbildung ist aber ein dynami-
scher Prozess der Anpassung an komplexe Zellgeometrie und kann daher im Rahmen
einfacher Systemgeometrie nicht vollständig verstanden werden. Darüberhinaus sind
solche quantitativen Modelle zu komplex um auf vereinfachte, effektive Modelle
abgebildet zu werden. Nichtsdestotrotz beruht unser Wissen über Musterbildung fast
ausschließlich auf der Analyse effektiver Modelle.

In dieser Arbeit werden wir zunähst Methoden der linearen Stabilitätsanalyse auf
komplexe Systemgeometrie erweitern, sodass auch nichtlineare Kopplungen zwischen
der Dynamik am Systemrand (Zellmembran) und der Dynamik im Systemvolumen
(Cytosol) erfasst werden können. Diese Erweiterung wird uns erlauben die Anpassung
selbst-organisierter Musterbildung an Zellgeometrien zu untersuchen.

Um die Dynamik von Musterbildungsprozessen untersuchen zu können, werden
wir von der Tatsache Gebrauch machen, dass Wechselwirkungen zwischen Proteinen
Konformationsänderungen darstellen und somit massenerhaltend sind. Dies erlaubt
es uns jedes beliebige quantitative Modell in lokale, isolierte Kompartimente zu
zerlegen und jeden beliebigen dynamischen Zustand des Systems durch die lokalen
Gleichgewichte dieser Kompartimente zu charakterisieren. Die lokalen Gleichge-
wichte eines jeden Kompartiments sind durch den jeweiligen Wert der lokalen
Gesamtproteindichten festgelegt, wobei diese Dichten global streng erhalten sind.
Ihre Eigenschaften spiegeln die lokale Topologie des Phasenraumflußes wieder. Als
zentrales Ergebnis finden wir, dass die Dynamik jedes Systems im allgemeinen als
eine Änderung der lokalen Phasenraumflüsse verstanden werden kann die durch
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Umverteilung der lokalen Gesamtdichte und die damit einhergehende Verschiebung
und Stabilitätsänderung lokaler Gleichgewichte induziert wird.

Dieses Framework der Massenumverteilung ermöglicht uns die Vorhersage
sowie Erklärung chemischer Turbulenz nahe des Übergangs zur Musterbildung und
der Übergänge von chemischer Turbulenz zu post-chaotischer, langreichweitiger
Ordnung fernab des globalen Gleichgewichts. Darüberhinaus sind wir imstande
bestehende Konzepte der nichtlinearen Dynamik zu vereinheitlichen und zu erweitern,
und allgemeine physikalische Mechanismen selbst-organisierter Musterbildung zu
identifizieren und bestehende Prinzipien, wie die wohlbekannte Turing Instabilität,
zu verallgemeinern.



Summary

Nonlinear Dynamics is a theory about the phase space flow of complex dynamical sys-
tems. In this thesis we will develop a framework of methods and concepts to elucidate
the structure of phase space flow of pattern forming reaction-diffusion systems. Our
goal is to reveal the physical mechanisms underlying self-organized pattern formation.
Biochemical reaction-diffusion systems based on protein interaction are the ideal
basis for such an endeavour. Not only does intracellular pattern formation play a
crucial role for the function of biological systems, but with the recent advances in
quantitative biology we also gained access to a bulk of quantitative information about
the inner workings of these systems. While this information immediately allows us
to formulate quantitative models for the kinetics of such systems, existing methods
to analyse and understand such models are limited to simple planar geometries that
do not conform to the complex shape of biological cells self-organized patterns
adapt to. Furthermore, quantitative models are too complex to be mapped to the
effective models of pattern formation that have been studied in the past. Yet, our
understanding of pattern formation is almost exclusively based on the study of such
effective models.

In this thesis we will first extend (linear stability analysis) methods fromNonlinear
Dynamics to account for complex system geometries and the (nonlinear) coupling of
dynamics on the system boundary (membrane) with the system volume (cytosol).
This extension will allow us to study the adaption of self-organized pattern formation
to cellular geometries.

To understand the dynamics of the pattern forming process, we will exploit the
fact that protein interactions induce (conformational) state changes, and are as such
mass-conserving. This allows us to decompose any quantitative model into isolated
local compartments, and characterize any dynamical state of the system by the local
equilibria of these compartments. The local equilibria of each compartment are
determined by the amount of (globally conserved) total densities contained in the
compartment, and serve as a proxy for the topology of the system’s local phase space
flow. We find that the dynamics of the laterally coupled system can, in general, be
understood as the change of local phase space flows caused by lateral redistribution
of total density that shifts the local equilibria and potentially changes their stability.

Within this mass-redistribution framework we are able to predict and explain the
possibility of to chemical turbulence close to (global) equilibrium, and the emergence
of post-chaotic long-range order far from (global) equilibrium in a paradigmatic
model for biological pattern formation. Furthermore, we will be able to unify and
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extend already existing concepts from Nonlinear Dynamics, such as excitability
and linear instabilities, and identify the general physical mechanism underlying
self-organized pattern formation through lateral instabilities such as the well-known
Turing instability.
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I Scope and overview of this thesis

From cellular structures to organisms and populations, biological systems are
governed by principles of self-organisation. Self-organized protein pattern formation
is essential for spatial organization of many intracellular processes like cell division[1–
4], morphogenesis[5], and flagellum positioning[6].

The goal of this thesis is to elucidate the fundamental physical principles
underlying self-organized pattern formation in biochemical reaction-diffusion systems.
The interacting constituents are proteins - macromolecules that are responsible for
the majority of biological function inside cells. A key feature of proteins is the
ability to reversibly change their three-dimensional structure (conformation). The
conformation of a protein determines its possible interactions with other biomolecules
(lipids, nucleotides, or other proteins). Moreover, the conformation can change
as a consequence of such interactions with other biomolecules. For example, an
intracellular cytosolic protein could be in a conformational state that only enables
interactions with cytosolic nucleotides. An interaction with a nucleotide could induce
a conformational state change that enables the protein interact with lipids, and thereby
bind to the cellular membrane. Upon binding to the membrane the conformation
could change again, now, and only now, enabling interactions with other membrane
bound or cytosolic proteins. These other proteins could, for instance, stimulate the
downstream assembly of some functional machinery responsible for cell division or
cell locomotion. The cellular proteome comprises a vast array of protein species that,
due to their mutual interactions, give rise to the function of the cell as an individual
organism.

The emergence of such function is a remarkable example for self-organization in
real world systems: in the majority of cases any intracellular spatial structure arises
endogenously as a consequence of the interactions between intracellular biomolecules
without the aid of any external cues. Hence, the proper assembly of functional
bio-machinery is not only based on robust protein-protein interactions, it also requires
mechanisms that guide proteins to specific locations within the cell body. For
instance, many (prokaryotic) cells need to divide at midcell to obtain two healthy
daughter cells [1–4], flagella that propel the cell through the extracellular medium
often need to be assembled exclusively in the polar regions of the cell [6], and the
development of multicellular organisms from a single egg cell requires the initial
establishment of directionality [5] (e.g. anterior-posterior axis).



2 Scope and overview of this thesis

In summary, pattern formation is the self-organized transport of proteins to
specific locations within the cell body, coming about through the interplay between
two distinct physical processes: conformational state changes and molecular diffusion.

To find general physical mechanisms and principles of self-organized pattern
formation based on these two processes is the goal of this thesis.

Pattern formation in reaction-diffusion system has been actively studied by the
scientific community over the past six decades [7–9]. A succinct review of this
field would go beyond the scope of this introductory section. For the purpose of
this thesis is important to note that previous efforts to generalize pattern formation
mechanisms were either based on a phenomenological analogy between observed
patterns (e.g. amplitude equations, see [8, 9]), or the effective molecular interactions
(e.g. activator-inhibitor models, see [10–12]). Both approaches account for pattern
forming systems by effective models. These effective models cannot, in general, be
formally derived from the quantitative microscopic models (mass-action law) of the
system under investigation. While these approaches may yield phenomenological
agreement with observed patterns in some cases, the inability to map the effective
model to the microscopic details of the underlying system makes predictions about
the real system ambiguous, if not impossible. That being said, it is crucial to note
that at the time when these effective models were developed and studied almost no
quantitative data about real pattern forming systems was available for comparison.
This situation changed dramatically with the advent quantitative biology in the past
two decades, which shifted the focus from the analytical study of effective models to
the numerical simulation of quantitative models.

While this purely computational approach allows comparisons between the exper-
imental data and the model on a quantitative level, questions about the mechanisms
underlying pattern formation can only be discussed by heuristic interpretation of
simulation data that are specific to the particular model and parameter set.

In conclusion, we are faced with the following situation: On one hand, we have a
large body of effective models that can be studied analytically, but cannot be related
to quantitative models unambiguously. On the other hand, we have a large body of
quantitative models that can be compared to experimental data, but that can only be
studied by means of computational simulations. This summarizes the starting point
of this thesis.

The mathematical foundation of this thesis is the theory of Nonlinear Dynamics,
which, in most general terms, deals with the analysis of equilibria (steady states, fixed
points, attractors) of nonlinear dynamical system [13–15]. The stability of equilibria
is the most fundamental concept of Nonlinear Dynamics. It denotes the response
of a system to a perturbation away from an equilibrium state, and can be obtained
in general by means of a linear stability analysis. If the system’s responses to all
possible perturbations of the equilibrium state are known, it becomes possible to
reconstruct the topology of the flow in phase space around the equilibrium. In turn,
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knowing the topology of phase space around all equilibria one can extrapolate the
global topology in phase space, and from this infer the dynamics from any initial
condition.

While such a graphical approach is feasible in the low dimensional phase spaces
of dynamical systems represented by ordinary differential equations [14, 15], it is, a
priori, less applicable to partial differential equations that account for spatiotemporal
pattern formation where phase spaces are infinite dimensional [8, 9]. For instance, to
calculate the (linear) stability of a spatially uniform state one needs to find a suitable
bases within which any perturbation of the uniform state can be represented. In
planar geometries (lines, surfaces) such a basis is given by Fourier modes. These
growth rates of these modes encode the initial time evolution of any pattern forming
process. However, intracellular reaction-diffusion system are not planar but defined
in the complex geometries of cells. Moreover, intracellular patterns are mainly
membrane-bound patterns that are based on cycling of proteins between membrane-
bound and cytosolic conformations, and the pattern forming process is based on
cytosolic mass redistribution. Hence, not only needs the cell geometry be taken into
account, but also the nonlinear coupling between membrane-bound and cytosolic
states. With the classical approach based on Fourier modes this is not possible.
Another complication lies in the practical impossibility to construct the patterned
(steady) states of quantitative models for biological system in complex cellular
geometries. Hence, questions about the maintenance or general characteristics of the
patterned state are outside the scope of the classical framework of linear stability
analysis.

This thesis is structured in two major parts that seek to address these issues.
In the first Part, “Geometry”, (based on preliminary work in the author’s diploma
thesis [16]) we will systematically extend the linear stability framework to include
complex cellular geometries and nonlinear bulk-boundary coupling (Chapter III). We
will mainly focus on linear stability analysis in elliptical geometry which captures
the symmetry of most cells. The extended framework will be used to study a broad
range of Min protein patterns in E. Coli in diverse cell shapes (Chapter III), question
of pattern selection by cell geometry and multistability of patterns (Chapter IV),
symmetry breaking that leads to the loss of the uniform steady state and the emergence
of a unique, stable base state that adapts to the geometry of the cell (Chapter V),
and questions of axis selection by PAR protein dynamics in the C. Elegans embryo
(Chapter VI).

The key result of this part will be that the local bulk volume to membrane surface
ration is the main feature the pattern forming process adapts to, and that all aspects of
pattern selection and multistability are based on an interplay between linear cytosolic,
nonlinear membrane processes., and cell geometry. This result is quite surprising,
since pattern selection in planar, effective models is typically the consequence of
modulation effects induced by the systems nonlinearities. In context of quantitative
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biological systems we find that the interplay between linear cytosolic processes and
cell geometry play a crucial, non-negligible role.

Where the first part is concerned with the geometry sensitivity of the pattern form-
ation process, the second Part, “Geometrization”, deals with the pattern formation
process per se. Here, we will identify and discuss the fundamental self organization
principles underlying pattern formation that are independent of the molecular details
of a particular model, and stem from the most general physical properties all systems
have in common alone: dynamics that are driven by (conformational) state changes,
and transport that is facilitated by molecular diffusion. In any system driven by
state changes the essential dynamics are mass-conserving, and the total particle
numbers are key control parameters for the spatiotemporal dynamics. If we take, for
instance, a protein that can either be in a membrane-bound or a cytosolic state, the
total amount of this protein will, in general, determine the membrane-bound and
cytosolic densities of this protein in (chemical) equilibrium.

As we will show in Chapter VIII, the spatial distribution of the conserved
quantities (the sums of all state densities that comprise the total density of the
protein species) is, in general, spatially nonuniform in any patterned state (where
pattern refers to the spatial distribution of the individual states, e.g. the density
of membrane-bound protein). By decomposing the spatially extended system into
small, isolated compartments, we can calculate the local (chemical) equilibria in all
compartments from the amount of conserved quantities in each compartment. The
immediate benefit is that the local phase space of these compartmentalized systems
is low dimensional and by calculating the linear stability of all local equilibria we
can extrapolate the topology of flow in each of the local phase spaces. Strikingly, we
find that the pattern of local equilibria (and their stabilities, i.e. the flow in the local
phase spaces) characterizes and scaffolds the pattern of the spatially extended system.
Since local equilibria can only change endogenously by changing the local amounts
of the globally conserved quantities, the key mechanism of pattern formation must lie
in the lateral redistribution of these quantities. Indeed, we will show that the lateral
diffusive coupling of the local compartments gives, under generic conditions (unequal
diffusion coefficients for membrane bound and cytosolic proteins), rise to lateral
instabilities that induce lateral redistribution of the conserved quantity. Hence, local
and lateral stability will be the fundamental and complementary stability concepts
of the proposed framework, with lateral redistribution of (globally conserved) total
densities acting as the key physical process driving pattern formation.

Not only will this mass-redistribution framework allow us (in Chapter IX) to
generalize mechanisms for the onset of pattern formation from the uniform state (such
as the Turing instability), but also to characterize and analyse any dynamical state of
the pattern forming system by means of the spatial distribution of local equilibria
and their stability (Chapter VIII and IX). The time evolution of any pattern will be
characterized by the movement of local equilibria.
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In an application of this framework to in vitro Min protein dynamics [17] in
Chapter VIII we will show that moving local equilibria explain the emergence of
chemical turbulence at onset, and quantitatively predict the transition from chemical
turbulence to long-range order far from onset. Both of these observations are highly
unusual in light our traditional understanding of chemical turbulence, where disorder
inducing instabilities arise due to nonlinear mode coupling far from onset but are
suppressed near onset. As such, the mass-redistribution framework provides a novel
picture of the origin of turbulence and the emergence of order in reaction-diffusion
systems drivenmymass-conserving interactions. The identification of the (conserved)
total densities as the control variables of the self-organized pattern forming process
implies that the number of essential degrees of freedom is limited by the number of
conserved protein species that comprise a functional reaction-diffusion system. This,
in turn, suggests that the core mechanism for pattern formation in any quantitative
reaction-diffusion model is encoded in the dependency of local equilibria and their
stability on the total density (Chapter VIII). Traditionally on would refer to such
a structure as bifurcation diagram, but here it marks the control space where the
dynamics take place. This gives rise to the question how many control variables
(bifurcation parameters) need to vary dynamically for a certain pattern to emerge.

We will address this question in an investigation of in vivoMin protein oscillations
(Chapter IX), which is based on two conserved protein species, MinD and MinE [1, 3,
18]. Pole-to-pole Min oscillations in E. Coli guide the assembly to the cell division
machinery to midcell. Among other biological systems with a similar function
(regulation of cell division through polarization) the oscillatory phenomenology of
the Min system is highly unusual, superficially implying that Min protein pattern
formation is based on a mechanism that is very distinct from mechanisms underlying
cell polarity, which is non-oscillatory. Strikingly, we find by application of the mass-
redistribution framework that the exact opposite is the case: The self-organization
mechanism underlying pattern formation is only based on MinD redistribution
and is intrinsically non-oscillatory. In fact, we will even systematically show that
the mechanism is strictly equivalent to mechanisms underlying cell polarity. The
oscillatory nature of Min protein dynamics arises from the periodic annihilation and
reformation polarized states (pattern attractors) due to the spatial redistribution of the
second conserved species, MinE. This mechanistic separation of the physical roles of
MinD and MinE allows us to systematically reduce the pole-to-pole Min oscillation
of the quantitative reaction-diffusion model to a generic relaxation oscillation in
control space.

In the final project presented in this thesis we will focus on the bio-molecular
details of Min protein dynamics (Chapter X). In particular, we will study how
the interplay between cytosolic and membrane processes in combination with the
system’s geometry affects the sensitivity of the pattern forming process to changes
of the average total densities in a system (i.e. acting as control parameters). In
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collaboration with experimentalists we will test several model extensions with mutant
proteins mimicking the individual model extensions. We will also show that these
experiments confirm the predicted emergence of chemical turbulence at onset. In a
supplementary section (Chapter XI) we will critically analyse and discuss a recent
paper [19] dealing with the geometry sensitivity of the Min system. The results
reported in this paper directly contradict a large part of the findings presented in
this thesis. Through a thorough and systematic analysis of the simulation data we
will show that the reported results are entirely based on undisclosed manipulations
of system parameters and details of the numerical implementation enabling the
exploitation of numerical artifacts to match the experimental observation and suit a
narrative.

While the last part is certainly unpleasant in any respect, it also reinforces an
important lesson I learned during my work on this thesis. In the words of Sherlock
Holmes:

“It is a capital mistake to theorize before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.”
Sir Arthur Conan Doyle, A Scandal in Bohemia

In this thesis we extend the theoretical framework centered around linear stability
analysis to include complex system geometries, nonlinear bulk-boundary coupling,
and mass-conservation. All these are basic physical properties of biochemical
reaction-diffusion system. Our analysis will show that the inclusion of these aspects
into our biophysical framework is essential. It reveals that geometry sensitivity
results from the interplay between cytosolic processes and the coupling to the reactive
membrane. Furthermore, we find that total densities are the essential degrees of
freedom of self-organized pattern formation in reaction-diffusion systems based
on mass-conserving interactions. This reduction in the complexity of quantitative
models for intracellular protein dynamics allows us to identify general mechanisms
for pattern formation based on mass-redistribution.

This thesis is structured in chapters, where each chapter represents a self-contained
manuscript either prepared for a publication or already published in a peer-reviewed
journal. The figures can be found at the end of each manuscript. In the following
chapter we will first shortly summarize the scope and key results of each manuscript,
and highlight how each manuscript fits into the broader picture outlined above.



II Summaries of all manuscripts

II.1 Reaction-diffusion systems in elliptical geometry:
Min protein dynamics in vivo

The first manuscript (Chapter III) deals with the extension of the linear stability
analysis to elliptical geometry and its application to study Min protein pattern
formation in vivo. Here, we introduce the skeleton model for Min protein dynamics.

Journal reference

J. Halatek and E. Frey, A highly canalized MinD transfer and MinE sequestration
explain the origin of robust MinCDE-protein dynamics, Cell Reports 1, 2012

II.1.1 Abstract
Min-protein oscillations in Escherichia coli are characterized by the remarkable
robustnesswithwhich spatial patterns dynamically adapt to variations of cell geometry.
Moreover, adaption, and therefore proper cell division, is independent of temperature.
These observations raise fundamental questions about the mechanisms establishing
robust Min oscillations, and about the role of spatial cues, as they are at odds
with present models. With a conceptually novel and universal approach to cellular
geometries, we introduce a robust model based on experimental data, consistently
explaining the mechanisms underlying pole-to-pole, striped and circular patterns, as
well as the observed temperature-dependence. Contrary to prior conjectures, the
model predicts that MinD and cardiolipin domains are not colocalized. The transient
sequestration of MinE, and highly canalized transfer of MinD between polar zones,
are the key mechanisms underlying oscillations. MinD channeling enhances midcell
localization and facilitates stripe formation, revealing the potential optimization
process from which robust Min-oscillations originally arose.

II.1.2 Key results
• The theoretical part is based on the construction of an orthonormal basis of
eigenfunctions for general reaction-diffusion systems in elliptical geometry.
Formally, this basis accounts for reaction-diffusion systems on the elliptical
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boundary (membrane), for reaction-diffusion systems in the elliptical bulk
volume (cytosol), and reaction diffusion system with bulk-boundary coupling
(membrane-cytosol cycling) through reactive (Robin) boundary conditions.

• Due to the broken (rotational) symmetry (of a circle) in elliptical geometry,
the eigenfunctions spilt into two groups: even and odd modes. Even modes
represent patterns aligned to the long axis of the cell, and odd modes represent
patterns aligned to the short axis.

• The investigation of the model for Min protein dynamics shows that long axis
alignment of patterns is not generic but parameter dependent. Similarly, the
pole-to-pole pattern does not generically gain additional wave nodes as the
system length is increased. Hence, a characteristic length scale (wavelength)
does not exists generically but only for specific parameter combinations.

• The regime where the experimentally observed phenomenology is reproduced
is characterized by an interplay between cytosolic processes and the nonlinear
membrane accumulation (recruitment) that optimizes the efficiency of directed
transport of proteins from one end of the cell to the other through cytosolic
diffusion (which is isotropic on its own, i.e. not directional). This regime has
been named canalized transfer.

II.1.3 Relation to other manuscripts

• The linear stability framework in elliptical geometry is the basis for the study of
multistability of Min protein patterns in mutant E. Coli cells (Chapter IV), and
the study of axis selection by PAR protein pattern formation in the C. Elegans
embryo (Chapter VI).

• The extension of linear stability analysis to include bulk-boundary coupling is
the basis for further extensions to other system geometries (Chapters VIII, X,
and XI).

• The observation of a non-uniform base state will be further explored in a
study of geometry adapted pattern formation without dynamical instability
(Chapter V).

• The constrains on the ratio of MinE and MinD particle numbers for pattern
formation will motivate further model extensions and experimental tests of
model predictions by construction of mutant proteins that mimic these model
extensions (Chapter X).
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II.1.4 Experimental data supporting the results
• An experimental in vivo study of multistability (Chapter IV) will support
the claim that in vivo Min protein dynamics operate in the canalized transfer
regime.

• An experimental in vitro study with mutant proteins mimicking the proposed
model will confirm the predictions on the ratio of MinE and MinD particle
numbers to support pattern formation (Chapter X).
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II.2 Geometry adaption: Multistability and geometry
induced transitions of intracellular patterns

In Chapter IV we present a combined experimental and theoretical approach where we
study the geometry dependence and multistability of Min protein pattern formation
in vivo.

Journal Reference

F. Wu†, J. Halatek†, M. Reiter, E. Kingma, E. Frey, and C. Dekker, Multistability
and dynamic transitions of intracellular Min protein patterns, Molecular Systems
Biology 12, 2016 (on the cover)

Author contribution

† F. Wu and J. Halatek contributed equally to this work.

F. Wu, J. Halatek, E. Frey, and C. Dekker designed the work and wrote the paper.
F. Wu and E. Kingma carried out the experiments and analyzed the experimental
data. J. Halatek performed the analytical and computational analysis of the model.
M. Reiter implemented the automated numerical parameter sweeps. F. Wu wrote the
scripts for the analysis of experimental data.

II.2.1 Abstract
Cells owe their internal organization to self-organized protein patterns, which
originate and adapt to growth and external stimuli via a process that is as complex as
it is little understood. Here, we study the emergence, stability, and state transitions
of multistable Min protein oscillation patterns in live Escherichia coli bacteria
during growth up to defined large dimensions. De novo formation of patterns from
homogenous starting conditions is observed and studied both experimentally and in
simulations. A new theoretical approach is developed for probing pattern stability
under perturbations. Quantitative experiments and simulations show that, once
established, Min oscillations tolerate a large degree of intracellular heterogeneity,
allowing distinctly different patterns to persist in different cells with the same geometry.
Min patterns maintain their axes for hours in experiments, despite imperfections,
expansion, and changes in cell shape during continuous cell growth. Transitions
between multistable Min patterns are found to be rare events induced by strong
intracellular perturbations. The instances of multistability studied here are the
combined outcome of boundary growth and strongly nonlinear kinetics, which are
characteristic of the reaction-diffusion patterns that pervade biology at many scales.
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II.2.2 Key results
• Due to the absence of a uniform steady state, the base state introduces a bias
for modes with an even symmetry (parity). Due to this bias, the basins of
attraction corresponding to multistable patterns cannot be inferred from a
numerical sampling based on different initial conditions. In this manuscript
we introduce an approach based on weak spatial perturbations of linear kinetic
rates to guide the initial dynamics towards patterns with a certain symmetry,
and to study the stability of these patterns towards perturbations with different
symmetries numerically.

• Multistability and adaption to changes of the cell geometry are not generic for
reaction-diffusion processes, but specify to parameter choices that enable an
interplay between cytosolic and membrane kinetics. In particular, the model
supports multistability that is similar to the experimental observation only in
the canalized transfer regime.
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II.3 Geometry adaption: Pattern formation without
instability

In Chapter V we study the possibility of pattern formation by adaption of a stable
base state to the cell geometry by linear processes alone, i.e. without any dynamical
instability.

Journal reference

D. Thalmeier, J. Halatek, and E. Frey, Geometry-induced protein pattern formation,
PNAS 113, 2016

Author contribution

This manuscript is based on the Master thesis by Dominik Thalmeier, supervised by
E. Frey and co-supervised by J. Halatek.

D. Thalmeier, J. Halatek, and E. Frey designed research, performed research,
and wrote the paper.

II.3.1 Abstract
Protein patterns are known to adapt to cell shape and serve as spatial templates
that choreograph downstream processes like cell polarity or cell division. However,
how can pattern-forming proteins sense and respond to the geometry of a cell, and
what mechanistic principles underlie pattern formation? Current models invoke
mechanisms based on dynamic instabilities arising from non- linear interactions
between proteins but neglect the influence of the spatial geometry itself. Here, we
show that patterns can emerge as a direct result of adaptation to cell geometry, in
the absence of dynamical instability. We present a generic reaction module that
allows protein densities robustly to adapt to the symmetry of the spatial geometry.
The key component is an NTPase protein that cycles between nucleotide-dependent
membrane-bound and cytosolic states. For elongated cells, we find that the protein
dynamics generically leads to a bipolar pattern, which vanishes as the geometry
becomes spherically symmetrical. We show that such a reaction module facilitates
universal adaptation to cell geometry by sensing the local ratio of membrane area to
cytosolic volume. This sensing mechanism is controlled by the membrane affinities
of the different states. We apply the theory to explain AtMinD bipolar patterns in
∆EcMinDE Escherichia coli. Due to its generic nature, the mechanism could also
serve as a hitherto-unrecognized spatial template in many other bacterial systems.
Moreover, the robustness of the mechanism enables self-organized optimization of
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protein patterns by evolutionary processes. Finally, the proposed module can be used
to establish geometry-sensitive protein gradients in synthetic biological systems.

II.3.2 Key results
• Cytosolic state change that alter the interactions of cytosolic proteins with the
membrane are the basis for geometry adaption of patterns.

• The base state is generically non-uniform if both cytosolic states have a different
membrane affinity.

• The local membrane to cytosol ratio is the key quantity the dynamics adapt to,
which allows to represent the PDE model by an effective ODE system defined
on a network that mimics the geometry.
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II.4 Geometry adaption: The mechanism for axis
selection

In Chapter VI we study long vs. short axis selection in a model for PAR protein
polarization in C. Elegans.

Journal reference

R. Geßele, J. Halatek, and E. Frey, Cell Polarization in Elliptical Geometry: How
does Caenorhabditis ElegansDetermine its First Axis?, in preparation for publication

Author contribution

This project originated from preliminary work presented in the Master thesis by T.
Fehm, and the Bachelor thesis by T. Meinhardt, both supervised by E. Frey and
co-supervised by J. Halatek.

J. Halatek, R. Geßele, and E. Frey designed the work. R. Geßele and J. Halatek
developed and analyzed the model. R. Geßele performed the numerical simulations
and stability analyses. R. Geßele, J. Halatek, and E. Frey analyzed the data and wrote
the paper.

This manuscript will also be part of the PhD thesis by R. Geßele.

II.4.1 Abstract
In polarized cells, the accumulation of signaling molecules create axes that guide
differentiation, division and proliferation. In the single cell state of theCaenorhabditis
Elegans embryo, cell polarity determines the future front and back of the worm, and
the interface between accumulated signaling proteins defines the division line of the
first cleavage. Recent models have indicated mutual binding inhibition of aPARs and
pPARs as the key mechanism of polarity maintenance by the PAR reaction-diffusion
network. Nevertheless, how polarity stabilizes along the long axis of the elliptical
embryo remains an open question. In addition to mutual inhibition of PAR proteins
(the subject of previous models), we examine polarization in elliptical geometry
while accounting for cytoplasmic dynamics in a mass-conserving reaction-diffusion
model. We find that mutual inhibition of aPARs and pPARs by phosphorylation
with immediate cytoplasmic dephosphorylation favors short axis polarization. This
contradicts polarity maintenance along the long axis in the embryo. This discrepancy,
however, is resolved by amore realistic reactivation cycle - inwhich dephosphorylation
(reactivation for attachment) is delayed in the cytosol, and long-axis polarization is
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restored. Numerical analysis indicates that a phosphorylated phase and fast diffusion
of cytosolic proteins allow for long axis polarization. Furthermore, molecular details
in our model (which group species according to their functional role) enable us
to investigate how relative densities of proteins with specific functions influence
polarization. We show that the relative mutual antagonism, which is determined by
antagonistic detachment rates and relative protein densities, determine the robustness
of polarity along a specific axis. All together, we find that cell polarity along a
specific axis is the result of an interplay of the cell’s geometry, a reactivation cycle
between membrane and cytosol, and the relative mass of signaling proteins.

II.4.2 Key results
• The selection of the polarity axis is not related to the characteristic length
scale set by the fastest growing mode in a planar geometry.

• Instead, intracellular reaction-diffusion systems have a characteristic axis that
depends on (i) the effect cytosolic proteins have on the pattern forming process
when they encounter the membrane, and (ii) the position where active cytosolic
proteins encounter the membrane most often.

• The effect of membrane encounters is entirely determined by the kinetics
of membrane-bound proteins, while the preferred position of membrane
encounters only depends on the geometry of the cell and the cytosolic kinetics.

• At the coarsest level, we can distinguish between two types of membrane-
kinetics, accumulation and separation based cluster formation: Accumulation
is promoted by cooperative attachment. In that case clusters stabilize in the
regions of highest encounter frequency of cytosolic proteins (which are active
for binding). Antagonistic reactions have the opposite effect: In regions where
active proteins reach the membrane most frequently antagonistic interactions
promote the establishment of an interface that separates cluster.

• If the cytosol comprises a large reservoir of active proteins the encounter
frequency is determined by the local membrane area to cytosol volume ratio
alone.

• Otherwise, the position of maximal encounter frequency is regulated by the
local ratio of membrane surface to cytosolic volume and the length scale of
cytosolic diffusion until reactivation.
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II.5 Protein pattern formation on biological
membranes

In this chapter we summarize and review the work so far in a broader context, and
motivate the second part of this thesis where mass-conservation will be discussed.
Beyond that, we review and discuss several key aspects concerning the interpretation
of experimental data obtained from in vitro reconstitution of in vivo reaction-diffusion
systems. In particular, we focus on the comparison of quantitative experimental data
across different experimental setups in relation to quantitative data obtained from
theoretical models. In this context we will discuss the importance of unambiguous
experimental quantification of key control parameters for proper interpretation of
experimental data.

This manuscript is based on a book chapter.

Book reference

E. Frey, J. Halatek, S. Kretschmer, and P. Schwille, Protein Pattern Formation, Physics
of Biological Membranes, edited by P. Bassereau and P. C. A. Sens, Springer-Verlag
GmbH, Heidelberg, 2017, in print

Author contribution

E. Frey, J. Halatek, S. Kretschmer, and P. Schwille wrote the manuscript.
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II.6 Rethinking pattern formation in reaction-diffusion
systems: Moving local equilibria

Chapter VIII presents the key part of this thesis. Here, we introduce the mass-
redistribution framework.

Journal reference

J. Halatek, and E. Frey, Rethinking pattern formation in reaction–diffusion systems,
Nature Physics 14, 507-514, 2018

II.6.1 Abstract
The present theoretical framework for the analysis of pattern formation in complex
systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present
a new theoretical approach to characterize dynamical states arbitrarily far from
(global) equilibrium. We show that reaction-diffusion systems that are driven by
locally mass–conserving interactions can be understood in terms of local equilibria
of diffusively coupled compartments. Diffusive coupling generically induces lateral
redistribution of the globally conserved quantities, and the variable local amounts of
these quantities determine the local equilibria in each compartment. We find that,
even far from global equilibrium, the system is well characterized by its moving
local equilibria. We apply this framework to in-vitro Min protein pattern formation,
a paradigmatic model for biological pattern formation. Within our framework we
can predict and explain transitions between chemical turbulence and order arbitrarily
far from global equilibrium. Our results reveal conceptually new principles of
self-organized pattern-formation that may well govern diverse dynamical systems.

II.6.2 Key results
• Any reaction-diffusion system driven by mass-conserving interactions can be
decomposed into isolated (well-mixed) compartments within which the local
total density (particle number) is conserved.

• In any typical patterned state the spatial distribution of local total density is
non-uniform.

• The local total density determines the local (chemical) equilibria in each of
these compartments.

• The positions and stabilities of local equilibria scaffold and characterize the
pattern of the spatially extended system. This has two immediate consequences:
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– The infinite dimensional phase space of the full PDE system can be
decomposed into the local phase spaces of the compartments. The
local phase space topology of each compartment is low dimensional and
has (typically) a simple structure that is well understood within ODE
(bifurcation) theory.

– The local total densities are the only control variables that can affect the
positions and stabilities of local equilibria dynamically. Hence, local
total densities are the essential degrees of freedom that give rise to
self-organized pattern formation.

• The only process by which local total density can change is lateral diffusive
transport. Lateral diffusive coupling can give rise to lateral instabilities. These
instabilities stimulate the growth of (Fourier) modes, which generic action is
the lateral redistribution of total density on the corresponding length scales.

• As such, local and lateral stability are the complementary, fundamental stability
concepts of self-organized pattern formation:

– The local positions and stabilities of local equilibria characterize and
scaffold the pattern in any dynamical state.

– Lateral redistribution of total density induced by lateral instabilities shifts
the local equilibria and potentially changes their stability. As such, lateral
instabilities drive the dynamics (state change) of the pattern forming
process.

• The application of this framework to in-vitroMin protein dynamics predicts
and explains:

– The observation of chemical turbulence at the onset of the lateral in-
stability due to local destabilization. This comprises a hitherto unknown
route to (chemical) turbulence (spatiotemporal chaos) based on generic,
model independent properties (local destabilization due to lateral mass
redistribution).

– The observation of post-chaotic (standing-wave) order far from (global)
equilibrium due to the concertedmass redistribution bymutually commen-
surable unstable modes. Here, mode coupling facilitates the control of
spatiotemporal chaos. This defeats the classical paradigm spatiotemporal
chaos originates from mode coupling.

– A transition from the (in vivo) regime (locally stable equilibria) to the
in-vitro regime where the system can be understood as an oscillatory
medium. Hence, the reconstituted Min system is mechanistically distinct
from the original in vivo system.
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II.6.3 Relation to other manuscripts
• The mass-redistribution framework will applied in (Chapter IX) to identify
core mechanisms for pattern formation by a systematic reduction of reaction-
diffusion systems to their minimal functional form. In this manuscript we will
also generalize the mechanism underlying Turing instabilities, and unify the
concepts of dynamical instability and excitability within the mass-redistribution
framework.

• In (Chapter X) we will test some predictions about in-vitro Min protein
dynamics experimentally.

• The differences between Min protein pattern formation in vivo and in-vitro
were discussed in (Chapter VII).

II.6.4 Experimental data supporting the results
• In Chapter X we will confirm the prediction of chemical turbulence at onset in
a experimental setup with MinE mutants that mimic the minimal function of
MinE assumed in the model.

• The work by Caspri and Dekker [20] strongly supports our results that Min
protein pattern formation in-vitro is mechanistically distinct from Min protein
pattern formation in vivo.
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II.7 Geometrization of pattern formation: From
quantitative models to the identification of
self-organization mechanisms

In Chapter IX we use the mass-redistribution framework to systematically reduce in
vivo Min protein dynamics to minimal system and identify the underlying pattern
forming mechanism. Furthermore we use the framework to reveal the general physical
mechanism underlying Turing instabilities and excitability in mass-conserving
reaction diffusion systems.

Journal reference

F. Brauns†, J. Halatek†, and E. Frey, From quantitative models to a mechanistic
understanding of protein pattern formation, 2017, in preparation for publication

Author contribution

† F. Brauns and J. Halatek contributed equally to this work.

F. Brauns, J. Halatek, and E. Frey designed the research. F. Brauns and J. Halatek
performed the research. F. Brauns, J. Halatek, and E. Frey analyzed the data and
wrote the manuscript.

This manuscript will also be part of the PhD thesis by F. Brauns.

II.7.1 Abstract
The dynamics of any physical system are encoded in the (flow) structure of the
system’s phase space. All essential dynamics of a particular system are qualitatively
contained in the phase portrait. Unfortunately, phase portraits can, in general, only
be derived for low dimensional ODE systems. This strongly limits the applicability
of the powerful geometric concepts with which the dynamics of a system can
be inferred from the structure phase portraits. Here, we present a systematic
theoretical framework to derive the phase portraits of quantitative reaction-diffusion
models with mass-conserving interactions. This framework is based on the spatial
decomposition of any system into local compartments. The phase space flows
of isolated compartments are determined by the positions and stabilities of local
equilibria. In turn, local equilibria are uniquely determined by the local amounts of
the (globally conserved) total densities n of all protein species in these compartments.
The essential effect of diffusive coupling between individual compartments is the
lateral exchange of (globally conserved) total densities which changes the structure
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of the local phase spaces. Our key results is that the entire pattern forming process
can be understood in terms of moving local equilibria, i.e. the dynamically changing
structure of local phase spaces caused by lateral diffusive transport. As such, the
phase portrait of the pattern forming system is obtained form the local phase spaces
and the (linear) effect of diffusive coupling.

The geometrization lets us systematically extend a broad range of concepts from
ODE theory (excitability, bifurcations, basins of attraction, nullclines) to pattern
formation in mass-conserving reaction-diffusion systems. This, in turn, leads to
a natural unification of existing pattern forming mechanisms, such as linear (e.g.
Turing) instabilities and excitability. Furthermore, this geometrization approach
reveals that the shape of the line of local equilibria (kinetic nullcline) is the central
geometric object that universally classifies reaction-diffusion models on a mechanistic
level. This classification is based on the topological equivalence classes of kinetic
nullclines, which is well-established for dynamical systems theory of ODEs.

To demonstrate the utility of our framework, we apply it to a quantitative model
for Min protein patterns in vivo. The Min system regulates cell division in E. Coli
through pole-to-pole oscillations. This lets the Min system appear mechanistically
unique among biological systems with similar function (cell polarity), that are
typically non-oscillatory. The systematic reduction of Min protein dynamics within
our framework reveals that the underlying pattern forming process is intrinsically
non-oscillatory and strictly equivalent to mechanisms underlying non-oscillatory
polarity patterns in other biological system. MinD generates polarity through phase
separation, whereas MinE takes the role of a control variable regulating the existence
of polarized MinD patterns. Oscillations are facilitated by MinE redistribution
and can be understood mechanistically as relaxation oscillations of the polarization
direction.

II.7.2 Key results

• The main physical processes underlying self-organized pattern formation in
systems driven by mass-conserving interactions are local reactive flow and
diffusive flux–balance.

– At every point in space, the reactive flows act in the local phase spaces of
the system. The local phase spaces are subspaces of the (global) phase
space, and are parametrized by the local total densities. The local reactive
flow can be extrapolated from the properties of local equilibria, which
are also determined by the local total densities.

– The diffusive processes redistribute local total density and thereby move
the system between local phase spaces (shifting local equilibria).
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– A stationary state is reached once diffusive fluxes balance the reactive
turnover (accumulated reactive flow).

– The interplay between reactive and diffusive processes gives rise to the
geometrization of phase space. Pattern forming processes can be inferred
from three central geometric objects: (i) the line of local equilibria,
(ii) the family of local (reactive) phase spaces, and (iii) the (diffusive)
flux–balance subspace.

• The geometrization approach provides a fine grained classification of patterns
and mechanisms: For stationary polarity patterns it reveals three distinct
sub-classes based on regional properties (peaks, plateaus). This classification
is based on a regional decomposition of the pattern and a generalization of
lateral stability (regional lateral stability).

• Moreover, this approach reveals that the Turing instability and lateral excitability
are two manifestations of the same (mass-redistribution) instability.

• The basic requirement for a mass-redistribution instability is an interaction
network in which the (chemical) equilibrium density of the faster diffusing
component decreases if the total density increases. This leads to a mass-
redistribution cascade though cytosolic transport and a continual shifting of
local equilibria that scaffold the pattern of the slowly diffusing component.

• Our analysis of Min protein dynamics with the geometrization approach reveals
that oscillatory Min protein patterns are based on the same core mechanisms
(mass-redistribution instability) as non-oscillatory models for cell polarity.
The core pattern forming mechanisms is based on MinD redistribution alone
and leads to non-oscillatory polarity patterns. Oscillations are merely a
consequence of the purely diffusive redistribution of the MinE total density,
which passively follows the pattern forming process of MinD.

• This suggests that pattern formation in complex biochemical interactions
networks can be understood by a decomposition into core mechanisms and
control mechanisms. For pole-to-pole Min oscillations the core mechanism
(MinD polarity by mass-redistribution instability) is controlled by diffusive
MinE redistribution: the MinE total density profile controls the properties
(shape, existence) of MinD polarity attractors.
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II.8 Geometry and mass-conservation: The switching
paradigm and pattern robustness

In Chapter X we study theoretically and experimentally how cytosolic processes
affect pattern robustness with respect to variations of the globally conserved total
density of protein species.

Journal reference

J. Denk† , S. Kretschmer† , J. Halatek† , C. Hartl, P. Schwille, and E. Frey, MinE
conformational switching confers robustness on self-organized Min protein patterns,
PNAS, 201719801, 2018

Author contribution

† J. Denk, S. Kretschmer, and J. Halatek contributed equally to this work.

This project originated from preliminary work presented in the Master thesis by C.
Hartl, supervised by E. Frey and co-supervised by J. Halatek.

J. Halatek, J. Denk, S. Kretschmer, P. Schwille, and E. Frey designed the re-
search. J. Denk, J. Halatek, C. Hartl, and E. Frey performed the mathematical
analyses. S. Kretschmer and P. Schwille designed and carried out the experiments. J.
Denk, S. Kretschmer, J. Halatek, P. Schwille, and E. Frey discussed and interpreted
the results, and wrote the manuscript.

This manuscript will also be part of the PhD theses by J. Denk and S. Kretschmer.

II.8.1 Abstract
Robust protein patterning is vital for many fundamental cellular processes. An
established motif of intracellular pattern-forming networks is the self-organization
of nucleoside triphosphatases (NTPases), which upon interaction with a cognate
NTPase activating protein switch between an NTP-bound and nucleoside diphosphate
(NDP)-bound form. In the Min system, a prototypical example for pattern formation
during bacterial cell division, the adenosine triphosphatase (ATPase) MinD in turn
triggers a conformational switch in its activating protein MinE from a latent to a
reactive state, although the role of such mutual switching is unclear. By combining
nonlinear dynamics analyses and in vitro reconstitution of mutant proteins, we show
here that the MinD-dependent switch of MinE is essential for pattern formation in a
broad and physiological range of protein concentrations. Our combined theoretical
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and experimental approach demonstrates that though simpler reaction networks may
suffice to reproduce patterns, interlinking protein switches confers pattern robustness
— a fundamental prerequisite for the evolvability of organisms.

II.8.2 Key results
• Fast cytosolic conformational state changes of MinE (from conformations
with strong affinity for MinD to conformations with weak affinity for MinD)
significantly increase the range of MinE to MinD total density ratios where
pattern formation is supported.

• MinE membrane binding has a negligible impact on Min protein pattern
formation.

II.8.3 Relation to other manuscripts
• A functionally minimal MinE protein that mimics the MinE action assumed in
the skeleton Model confirms the model predictions discussed in (Chapter III).

• At the onset of lateral instability (lowMinE/MinD ratio) chemical turbulence is
found experimentally, confirming previous model predictions (Chapter VIII).

• The experiments with MinE mutants that are unable to bind to the membrane
disprove the claim in the literature, that MinE membrane interactions are
essential for pattern formation. This claim is challenged in (Chapter XI) on
grounds of the model assumptions and numerical implementation.
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II.9 Geometry and mass-conservation: Why a
rigorous account for the system geometry and
total protein numbers is important

In this chapter we analyze the model by Kruse et. al [19], which has been used to
claim that cytosolic dynamics are negligible and that MinE membrane interactions
are the primary cause for Min protein pattern formation and geometry sensing.

Journal reference

J. Halatek, and E. Frey, Effective two-dimensional model does not account for geo-
metry sensing by self-organized proteins patterns, PNAS 111, 2014 (Supplementary
Material in arxiv:1403.5934)

II.9.1 Abstract

Here we provide a thorough discussion of the model for Min protein dynamics
proposed by Schweizer et al. [19]. Our analysis is based on the original COMSOL
simulation files that were used for the publication. We show that all computational data
in Schweizer et al. rely on exploitation of simulation artifacts and various unmentioned
modifications of model parameters that strikingly contradict the experimental setup
and experimental data. We find that the model neither accounts for MinE membrane
interactions nor for any observed MinDE protein patterns. All conclusions drawn
from the computational model are void. There is no evidence at all that persistent
MinE membrane binding has any role in geometry sensing.

II.9.2 Key results

• The reported simulation data matching the experiments can only be reproduced
by adjusting the system parameters (total densities ofMinE andMinD, geometry
of the gold layer) for each data-point individually.

• The reported alignment of the pattern to the patch geometry is produced by using
a vanishingly small gold layer surrounding the patch (in stark contradiction to
the experiment) and periodic boundary conditions. The entire geometric effect
(alignment to the aspect ratio) is based on the coupling of the pattern with itself
via the periodic boundary. The alignment angle depends on minute details of
the implementation (gold layer vs patch geometry, gold layer thickness, i.e.
distance from the patch to the periodic boundary) that effects the self-coupling
via the periodic boundary.
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• For (large) gold layer sizes as used in the experiment no patterns are observed
at all.

• For total densities as used in the experiment (and reported in the paper as
system parameter) no patterns are observed at all.

• None of the reported simulation data can be reproduced with the parameters
and numerical setups as described in the paper.

• The pattern forming mechanism strictly requires MinE membrane binding, in
contradiction with several experiments.

• Themodel assumptions on themolecular interactions deviate from experimental
data (residence times) by orders of magnitude.

II.9.3 Experimental data supporting the results
• Our analysis regarding the role of MinE has been confirmed in (Chapter X),
disproving the the entire theoretical rational of the commended paper.

II.9.4 Remark about the reply to our comment
We note that the reply by Kruse et al. (arXiv:1406.1347) to our comment has not been
published by PNAS, or any other peer reviewed journal. We further note that in this
reply, the authors misquote our statements by altering our references to experimental
studies that contradict the model assumptions. In their response, the authors blatantly
state that the references to not contain the data we were referring to, which, of course,
is only due to the fact that the authors altered the references in the first place. As
such, the reply is as scientifically sound as the paper it intends to defend. It does not
clarify any issues raised by our comment.
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Abstract

Min-protein oscillations in Escherichia coli are characterized by the remarkable

robustness with which spatial patterns dynamically adapt to variations of cell ge-

ometry. Moreover, adaption, and therefore proper cell division, is independent of

temperature. These observations raise fundamental questions about the mechanisms

establishing robust Min oscillations, and about the role of spatial cues, as they are

at odds with present models. With a conceptually novel and universal approach to

cellular geometries, we introduce a robust model based on experimental data, con-

sistently explaining the mechanisms underlying pole-to-pole, striped and circular

patterns, as well as the observed temperature-dependence. Contrary to prior con-

jectures, the model predicts that MinD and cardiolipin domains are not colocalized.

The transient sequestration of MinE, and highly canalized transfer of MinD between

polar zones, are the key mechanisms underlying oscillations. MinD channeling en-

hances midcell localization and facilitates stripe formation, revealing the potential

optimization process from which robust Min-oscillations originally arose.
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HIGHLIGHTS

• A conceptually novel formalism predicts protein patterns in realistic cell

geometries

• Patterns emerge due to transient MinE sequestration and canalized

MinD transfer

• Robust and efficient oscillations originate from optimized MinD-MinD/E

interactions

• MinD patterns are not colocalized with cardiolipin domains in the oscil-

latory regime

INTRODUCTION

Robust spatial patterning was crucial just from the beginning of cellular evolu-

tion, and is key to the development of multicellular organisms. The oscillatory

pole-to-pole dynamics of MinCDE proteins prevent improper cell divisions

apart from midcell [24, 31]. Due to it’s critical role for the cell cycle, a robust

regulation of Min oscillations is of fundamental importance. As origin of ro-

bustness, an efficient mechanism, only depending on a few central molecular

processes seems most likely. Indeed, experimental evidence supports a mecha-

nism based on nonlinear reaction-diffusion dynamics. The Min-proteins diffuse

through the cytoplasm and the ATPase MinD attaches in its ATP-bound form

to the cell membrane, where it recruits MinE, MinC and MinD-ATP from the

cytosol [13]. MinC inhibits cell division, but plays no role in establishing os-

cillations [24, 31]. MinE, which is present as a dimer [9, 21, 30, 34], hydrolyses

MinD on the membrane and thereby initiates detachment. As consequence,

pole-to-pole oscillations arise in wild type cells, and striped oscillations in fil-

amentous cells [31], revealing the presence of an intrinsic spatial wavelength.

Experiments indicate that the temporal and spatial properties of patterns are

established independently of each other, as temperature variations strongly af-

fect the oscillation frequency, while leaving the spatial wavelength unchanged

[38]. Thereby, proper cell division is ensured in a wide temperature range.

In nearly spherical mutant cells one observes predominantly pole-to-pole os-

cillations along the major or an irregularly wandering axis, as well as circular

waves on the membrane [36].

Numerous computational models have been proposed to elucidate Min-protein

patterns [19, 23]. Most models are either based on recruitment of cytosolic
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proteins to the membrane [1, 7, 14, 22], differing mainly in their assumptions

about the involved recruitment processes, or employ phenomenological nonlin-

earities [2, 11, 25] to reproduce the observed dynamics. The sheer number of

conceptually different models accounting for specific observations underlines

the generic nature of oscillatory dynamics in nonlinear systems, but leaves

the actual underlying mechanisms ambiguous. The only known model which

reproduces oscillatory patterns in cells with different shapes is based on re-

cruitment [7]. It was initially formulated in cylindrical geometry by Huang

et al. [14], and solely assumes experimentally verified or suggested reactions.

However, in this model, striped oscillations only emerge for a nucleotide ex-

change rate below the experimentally determined lower bound [26], and even

then only for specific initial conditions that cannot account for the dynamic

transition out of pole-to-pole oscillations [38]. Furthermore, the model could

not provide the necessary robustness against parameter variations to account

for temperature variations [5, 38], therefore failing to explain proper cell divi-

sions above room temperature. Finally, in contrast to pole-to-pole oscillations,

patterns in spherical cells could only be explained by stochastic effects [7] or

additionally included saturation terms [16].

The models’ sensitivity to initial conditions and parameter variations raised

doubts about the validity and completeness of recruitment-based models in

general [38]. Moreover, striped patterns rather seem to arise in a small param-

eter set as a special case of the models possible dynamics, without being of any

obvious biological relevance for the wild type division cycle itself. One may

therefore wonder why striped patterns arise at all. For the extension of present

models, nucleation of MinD polymers at periodically distributed domains en-

riched with anionic phospholipids was suggested [38]. This would introduce a

predetermined spatial template, which might stabilize Min-protein patterns by

separating spatial organisation from temporal dynamics. Indeed, some models

assert Min oscillations to be induced by the nucleation of MinD filaments at

the cell poles [3, 6]. This line of thought is based on the preference of MinD

to bind in regions enriched with cardiolipin [27, 28], an anionic phospholipid

that clusters in domains of high negative membrane curvature [15, 29, 33], like

the cell poles. However, no colocalisation of MinD stripes with cardiolipin do-

mains has been reported so far, leaving the actual role of cardiolipin domains

as spatial cue elusive.

As it is ubiquitous in many intracellular biochemical systems, the interactions

between Min-proteins are restricted to the lipid membrane, raising interesting

questions about the role of cell geometry and spatial organization in spatio-

temporal pattern formation. However, so far, a theoretical investigation of

3
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a model’s dynamics is restricted to numerical simulations of a few single pa-

rameter configurations, leaving the overall parameter and geometry dependent

pattern forming abilities largely elusive.

Here, we present a robust minimal model based on recruitment [14] that re-

spects cellular geometry and allows broad parameter studies by linear stability

analyses along with the incorporation of membrane diffusion. Employing a

nonlinear reactive bulk-boundary coupling and distinct diffusion processes for

the cytosol and the membrane, we reformulated the reaction-diffusion sys-

tem in elliptical coordinates. The use of elliptical geometry was crucial, as

it accounts for the various aspect ratios, and captures axial and circular pat-

terns simultaneously, while still being amenable to linear stability analyses. In

contrast to one-dimensional reductions [22], this ansatz allows the important

distinction between circular waves and pole-to-pole oscillations.

The model reproduces all transitions between oscillatory patterns in wild type,

filamentous and nearly spherical cells, as well as the temperature dependence

of the temporal period. We find that the pattern forming process neither

adapts to spatial templates given by inhomogeneous MinD attachment, nor

does it depend on variations of the hydrolysis rate or on initial conditions. In

contrast, transitions between patterns are mediated by variations of the cell

geometry alone. From the linear stability analysis and extensive numerical

simulations, we find that the molecular key mechanisms behind Min oscillations

are the transient sequestration of MinE proteins at the cell membrane, and a

highly canalized transfer of MinD from old to new polar zones. We argue that

robust formation and stabilization of patterns is completely defined by the

system’s nonlinear bulk-boundary couplings and geometric parameters, and

suggest that localized nucleation of MinD polymers is the secondary process

guided by the spontaneous oscillations.

RESULTS

Bulk-boundary couplings in cellular geometry

To correctly account for membrane-cytosol exchange dynamics in cellular ge-

ometry, we attribute pattern formation to a reactive coupling of distinct species

diffusing trough the spatially extended cytosol and the cellular membrane.

Previous comparable analytical approaches were restricted to circular geome-

tries and linear bulk-boundary couplings, with spatial patterning relying on

bulk degradation [20]. Here, we advance these methods to elliptical geome-
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tries and nonlinear reactive boundary conditions, which generally account

for possible multimolecular reactions between cytosolic and membrane-bound

species. Moreover, we adapted the system parameters to meet recent exper-

iments [21, 26], and disregarded cooperative recruitment of cytosolic MinD

[14] or MinE [22] by MinDE complexes, as both processes lack experimental

verification [21]. The resulting reaction scheme is based on four molecular

processes: attachment, detachment, recruitment and nucleotide exchange. It

is described in Fig. 1A. Total particle numbers are conserved, as synthesis

and degradation of proteins does not affect the oscillation in vivo [31]. We

chose orthogonal elliptical coordinates, given by the normal µ and tangential

ν components at the boundary, see supplementary Fig. S1. The ensuing set

of reaction-diffusion equations reads:

∂tuDT = DD∇2uDT + λuDD (1a)

∂tuDD = DD∇2uDD − λuDD (1b)

∂tuE = DE∇2uE (1c)

∂tud = Dd∇2
νud + uDT (kD + kdDud)− kdEuEud (1d)

∂tude = Dde∇2
νude + kdEuEud − kdeude , (1e)

with nonlinear reactive boundary conditions stating that the reactions equal

the flux onto (−) and off (+) the membrane

DD∇µuDT |µ=µ0 = −uDT (kD + kdDud) (2a)

DD∇µuDD|µ=µ0 = kdeude (2b)

DE∇µuE|µ=µ0 = kdeude − kdEuEud . (2c)

Here, uDT , uDD and uE denote the bulk concentrations of MinD-ATP, MinD-

ADP and MinE, respectively, and ud, ude the membrane concentrations of

MinD and MinDE complexes. The limit of instantaneous nucleotide exchange

is obtained by replacing both cytosolic MinD species with uD = uDT + uDD.

We will also study the implication of this limiting case, as it was assumed

in some previous models [19, 22]. In elliptical geometry, patterns along the

major or minor axis are expressed by even and odd modes, respectively, see

Fig. 1B. The first even mode corresponds to pole-to-pole oscillations. Which

modes grow or oscillate can be determined by linear stability analysis, see

supplementary document for the technical details.
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Conditions on the system parameters for spatial pattern formation

The model parameters are as far as they are available fixed by experimen-

tal data: We use the diffusion constants [21, 26] DD = 16µm2/s, DE =

10µm2/s, Dd = Dde = 0.013µm2/s, and a nucleotide exchange rate λ = 6s−1

to meet the lower bound [26] of 3s−1. Regarding particle numbers, we assume

a linear scaling with cell size that corresponds to a total number of ND = 2000

MinD monomers and NE = 700 MinE dimers in a wild type elliptical cell

of 5µm length and 1µm width [34, 39] which yields a MinD/MinE ratio of

2.86. We note that all discussed observations can be reproduced equally well

for MinD/MinE ratios of 1.43, where MinD and MinE are both considered as

dimers, see supplementary discussion and Fig. S2.

Lacking further in vivo measurements, the remaining parameters were ad-

justed to reproduce all experimentally observed oscillatory patterns [31, 36, 38].

Based on our analytical approach in elliptical geometry, we were able to iden-

tify pattern forming instabilities through linear stability analysis already on

timescales below 0.1s. This is by order of magnitudes faster than what can be

achieved by full simulation runs, which usually take tens of minutes for single

parameter configurations. This technical progress allows us to investigate large

parameter spaces and thereby make general assessment about a model’s valid-

ity. By sampling parameter space for pole-to-pole oscillations at cell lengths

about 2µm, we were able to determine that, for spatial patterns to emerge in

general, MinE needs to be recruited faster to the membrane than MinD (Fig.

1C), while being lower in total particle number:

kdD < kdE , (3)

NE < ND . (4)

While the specific ratio of recruitment rates and particle numbers up to which

oscillations persist depends on all system parameters, the above conditions

were always fulfilled. The implications on the specific mechanism of pat-

tern formation will be discussed in the next section. The model parameters

were further refined by accounting for temperature variations, and testing the

model for striped and circular patterns with numerical simulations. Regarding

the temperature-dependence, we assume an Arrhenius law for the hydroly-

sis rate kde, with an activation energy EA = 16.7kcal/mol and normalization

kde(20◦C) = 0.4s−1. The remaining parameters are

kD = 0.1µms−1, kdD = 0.108µm2s−1, kdE = 0.435µm2s−1. (5)
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These values will serve as reference in further discussions of the model’s pa-

rameter dependencies.

Min oscillations are caused by transient sequestration of MinE

How do patterns emerge in the minimal model defined by the above reaction-

diffusion equations (1a)-(2c)? The conservation of particle numbers ascribes

formation and growth of any spatial pattern to a global redistribution of

membrane-bound proteins through cytosolic diffusion. MinD is driven off

the membrane upon binding MinE through stimulation of ATPase activity.

Thereby MinE counteracts the accumulation of MinD at the membrane and

drives the displacement of MinD. Polar zones can grow if the local MinE density

is sufficiently low, and MinD particles are gradually transferred from MinDE

domains to the polar zone. Figure 2 illustrates how the formation and sepa-

ration of MinD and MinDE domains follows from the conditions on particle

numbers and recruitment rates, Eq.(3) and (4), stated above. The higher par-

ticle number of MinD (Eq. (4)) enables complete sequestration of MinE in

membrane-bound MinDE complexes, still leaving a fraction of MinD available

to initiate a new polar zone. Given a sufficiently high MinD membrane concen-

tration and MinE recruitment rate kdE, detaching MinE rebinds immediately,

forming the prominent MinE ring [4, 24, 32], see Fig. 2A,C and supplementary

movie 1. Continuous MinE cycling locally depletes the membrane from MinD,

leading to a slow movement of the MinE ring along the gradient of membrane

bound MinD, whereupon a fraction of detaching MinD initiates a weak polar

zone in the opposite cell half, see Fig. 2A. The new polar zone grows due to

steady redistribution of MinD, while most MinE remains sequestrated in the

old polar zone (Fig. 2B) until the remaining MinD are converted into MinDE

complexes (Fig. 2B/C). Once this state is reached, the Min proteins rapidly

detach, diffuse through the cytosol and rapidly reattach at the new polar zone

(cf. supplemental movie 1), leaving behind a region of high MinDE/MinD

ratio, where immediate reformation of polar zones is inhibited, cf. Fig. 2C.

Due to the faster recruitment of MinE (Eq. (3)) the MinE ring reassembles at

the rim of the new polar zone, which provides the crucial separation of MinD

and MinDE maxima. Otherwise, MinE would diffuse into the polar zone and

accumulate at the MinD maximum, deplete it, and suppress further formation

of MinD domains. Moreover, we observed that the MinE recruitment rate kdE
regulates the width of the MinE ring and the timescale of polar zone recovery

after disintegration. For higher MinE recruitment rates MinE rings narrow
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and the recovery timescale increases as MinD reaccumulation is stronger sup-

pressed by sequestrated MinE. The sequestration of MinE is transient, and the

system oscillatory, if detaching MinD gradually leaks from polar zones. But

how is MinD leakage established and regulated?

Cytosolic MinD transfer is regulated by MinD recruitment

It was argued that oscillations are sustained by the delayed MinD-ATP recov-

ery [14], while the exchange rate λ itself has small impact on the oscillatory

dynamics [38]. Indeed, our analysis confirms that the oscillation period de-

pends rather weakly on the exchange rate λ (Fig. 3A). However, while the

system stays oscillatory at high MinD recruitment rates kdD even for unreal-

istically fast but finite exchange rates, it becomes stationary polarized in the

limiting case of an instantaneous exchange, if the MinD recruitment rate ex-

ceeds a certain low threshold, cf. Fig. 3A. This threshold increases with the

MinD attachment rate kD and decreases with cell length. These results can be

understood by considering the spatio-temporal regulation of MinD reattach-

ment by MinD recruitment and recovery.

The MinD recruitment rate kdD defines the ”stickiness” of polar zones for

cytosolic MinD-ATP. In contrast, a finite nucleotide exchange rate λ uncages

MinD from polar zones as MinD only binds to the membrane in its active ATP-

form. The faster the nucleotide exchange, and the stronger the recruitment,

the less particles leak from polar zones. This is evident from the slowing down

of the oscillation with increasing nucleotide exchange and MinD recruitment

rates, depicted in Fig. 3A, and agrees with previous findings [14, 38]. With

fast nucleotide exchange, MinD does not reaccumulate at the bare membrane

before the old pole is depleted, whereas the MinD recruitment rate mainly reg-

ulates the reaccumulation position (Fig. 3B). On the other hand, for nucleotide

exchange rates close to the experimentally determined lower bound of 3s−1,

reaccumulation always starts in the opposite cell half, and the recruitment of

MinD regulates how fast new polar zone grows towards the old one (Fig. 3C).

Now, the period peaks at a low MinD recruitment rate kdD = 0.015µm2/s

and decreases with MinD recruitment from 41.2s to 35.6s at the global mini-

mum around kdD = 0.1µm2/s, cf. Fig. 3A. This minimum marks parameter

configurations where the redistribution of MinD from old to new polar zone

is highly canalized, i.e. the total MinD flux is directed towards the opposite

cell half immediately after the polar zones starts to shrink (Fig. 3C). Thereby,

growth and depletion of polar zones become synchronized. This leads to the
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characteristic triangular shape observed in MinD kymographs [23], where new

polar zones start growing towards midcell while old polar zones shrink towards

the cell pole, cf. Fig. 3C. As rebinding of MinD to the old polar zone is inhib-

ited by delayed ATP recovery, and the growth of new polar zones is promoted

by strong MinD recruitment, the oscillation period decreases as a function

of the MinD recruitment rate due to a faster redistribution of MinD. Recall

that the recovery of polar zones is suppressed by MinE recruitment, which

highlights the interdependence of both recruitment processes. Although the

system’s dynamics is diffusive, which, per se, is an undirected process, the cou-

pling of bulk diffusion and nucleotide exchange with nonlinear recruitment to

the membrane enables regulation of the pole-to-pole particle transfer. While

the uncaging effect of nucleotide exchange has been noticed previously [14],

the role of MinD recruitment has been unknown, so far. Neglecting explicit

nucleotide exchange as in earlier models [22] restricts the parameter space to

low MinD recruitment rates. In this case, new polar zones do not grow until

old polar zones are disassembled, cf. Fig. 3B/C. The following sections will

reveal that canalizing MinD transfer enhances the biological function of Min

oscillations and enables robust stripe formation in the first place.

Canalized MinD transfer improves the system’s efficiency and midcell

localization accuracy

The functional purpose of Min oscillations is the inhibition of Z-ring assem-

bly apart from midcell by ongoing consumption of ATP. In this regard it is

favourable to establish a high and permanent MinD membrane occupancy at

the cell poles, ideally with the smallest number of attachment events during

each oscillation cycle. For the localization of Z-ring assembly to be most pre-

cise, the mean MinD density should show a pronounced minimum at midcell

with a high contrast to the cell poles. As shown in Figure 4A, the mean MinD

density is always minimal at midcell, but it’s particular shape strongly depends

on the MinD recruitment rate kdD. Since the typical environment of E. coli is

the lower intestine of warm-blooded organisms, oscillations are considered at

body temperature. The cell length is set to 5µm.

To measure the optimality of Min oscillations we introduce two quantities.

First, and most important, we ask for the accuracy of midcell localization.

This depends on the accentuation of midcell in the MinD density profile. We

distinguish between the width and the depth of the mean MinD density min-

imum at midcell, cf. Fig. 4B. If the ratio between width and depth of the
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minimum is smallest, midcell is most distinctly accentuated. We find a well-

defined and unique optimal value for the MinD recruitment rate kdD (Fig. 4C),

which, in addition, is very close to the fitted value (cf. Eq. (5)). The optimum

coincides with the value where the MinD transfer is highly canalized. Increas-

ing the MinD recruitment rate accelerates the growth of polar zones towards

midcell, such that the mean density decreases at the cell tips, and increases at

midcell, cf. Fig. 4A. If the MinD recruitment rate is too low, i.e. much lower

than the MinE recruitment rate, recovery of polar zones is suppressed by the

predominant rebinding of cytosolic MinE, such that polar zones form at late

stages of the oscillation cycle and therefore are constrained to the cell tips, cf.

Fig. 3C.

In a previous approach, the precision of midcell localization, depending on the

MinD/MinE density ratio, has been investigated for the model by Huang et

al. [18]. An acceptable precision could only be obtained at unrealistically high

MinD/MinE ratios. Comparing the deterministic data with our results, we

find that precision is substantially increased in the present model, even at the

protein density ratios determined by experiments.

The second measure describes the efficiency with which MinD occupies the

membrane, hence relates the mean membrane occupancy with the ATP con-

sumption per oscillation cycle. While reducing ATP consumption alone might

be rather subordinate, a higher MinD membrane density directly affects the

probability of recruiting the division inhibitor MinC to the membrane. Again,

we find a optimal value for the MinD recruitment rate kdD that corresponds

to highly canalized MinD transfer (Fig. 4D). Lower kdD values reduce the

mean MinD membrane density, while higher kdD values increase the number

of (re-)attachment events during polar zone disassembly but do not increase

the mean MinD membrane density much more due to saturation effects.

From the evolutionary perspective, adjusting the pole-to-pole transfer of par-

ticles is beneficial and distinguishes favorable configurations out of the large

parameter space. A refinement of MinD recruitment increases the accuracy

of midcell localization and optimizes the system’s ability to occupy the mem-

brane with MinD. Since Min oscillations are highly robust against variations

of the recruitment rates (cf. Fig. 1C), it seems plausible that the system was

optimized through gradual refinement of the recruitment process.

10

Reaction-diffusion systems in elliptical geometry:
Min protein dynamics in vivo 41



MinE sequestration explains the persistent binding of MinE observed in

vitro

Recent experiments revealed a persistent binding of MinE at the rear of MinD

domains in vitro [21], even without direct MinE membrane interactions. With

the transient sequestration of MinE, our model provides an explanation for

this observation: The lower particle number of MinE enables sequestration,

while fast MinE recruitment confines sequestration spatially, thereby inducing

growth of MinD domains. Subsequently, continual leakage of MinD from the

polar zones renders sequestration transient, hence the system oscillatory. In

particular, the sharp decrease in protein densities at the end of the oscillation

cycle is the result of spontaneously suspended sequestration (Fig. 2C). Albeit

an extension by explicit MinE membrane interactions was suggested [1, 12, 30],

additional sequestration of MinE by transient membrane bonds would merely

amplify the argued mechanism, whilst introducing additional experimentally

undetermined parameters. However, by implementing the recently proposed

”tarzan of the jungle”-mechanism [30] in our model, we found that delayed

MinE detachment from the membrane can weaken the condition on the particle

numbers, Eq.(4), while additional cycling of MinE on the membrane by rapid

recombination with MinD cannot replace the condition on the recruitment

rates, Eq.(3). As a consequence, cytosolic cycling remains the key process,

showing that the minimal model dynamics comprise a suitable skeleton model

where future extensions can be build upon. In this respect it would be highly

beneficial to obtain the exact ratio of MinD and MinE densities in vivo up to

which regular Min oscillations persist, as well as the quantitative aspects of

MinE interactions on and with the membrane.

Striped patterns dynamically emerge out of pole-to-pole oscillations

Next we demonstrate that the set of four molecular processes (Fig. 1A) suf-

fices to reproduce all oscillatory patterns, see Fig. 5 and the supplementary

material for the corresponding movies. First, we consider the transition of pole-

to-pole to striped oscillations. As observed in vivo [31, 32], if the cell length

exceeds a certain threshold an additional polar zone with an accompanying

MinE ring emerges out of pole-to-pole oscillations such that MinD oscillates

between both cell poles and midcell. The transition from pole-to-pole to stripe

oscillations occurs dynamically as the cell grows, cf. [23]. Hence, for the emer-

gence of stable stripe states, one important precondition is that pole-to-pole
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oscillations become unstable first. Otherwise, either no transition would occur

at all, or one could expect stochastic switching between both patterns. How-

ever, the transition to stripes is very robust and even independent of system

temperature [38]. These observations are at odds with previous theoretical

studies which found that the formation of stripes depends on initial condi-

tions [38], or that stochastic fluctuations lead to switching between travelling

waves and striped oscillations [37]. Therefore, we chose a pole-to-pole wave

solution peaking in one cell half as initial condition, and determined the rate

constants (Eq. (5)) which yield transitions into stable stripes. This choice

of initial conditions was crucial, as the choices made in previous studies [7]

proved insufficient for parameter refinement, see supplementary material. We

confirm that stable stripes are absent in a reduced one-dimensional geometry

with reflecting boundaries [14]. However, we did find stable striped oscillations

in the analogous two-dimensional rectangular geometry with reflecting polar

caps, indicating that the spatial separation of bulk and membrane is essential

for stripe formation. In terms of the scheme in Fig. 2A/B, increasing the

cell length promotes the simultaneous formation and depletion of two MinD

domains through continuous redistribution of MinD and MinE, leading to col-

liding unidirectional travelling waves and ultimately the striped pattern, see

Fig. 5C and supplementary movie 3. We found that stable stripes emerge out

of pole-to-pole waves, only if weak polar zones are enhanced early on by suf-

ficiently strong MinD recruitment, kdD >∼ 0.1µm2/s. Hence, stripe formation

and the optimization of the wild type oscillation cycle are based on the same

mechanism. Since striped patterns are irrelevant for the wild type division cy-

cle per se, and are only supported in a small subset of the oscillatory parameter

regime (cf. Fig. 1C), they seem to result from an evolutionary optimization

of wild type oscillations.

An Arrhenius law for the hydrolysis rate accounts for temperature vari-

ations

The reproducibility of temperature dependencies poses a further critical test on

the model’s robustness. Figure 5A shows the period of pole-to-pole and striped

oscillations as a function of temperature, implemented through the hydrolysis

rate kde ∝ exp(−EA/RT ), with the activation energy EA = 16.7kcal/mol, the

gas constant R, and the absolute temperature T . In agreement with experi-

ments [38], the period-temperature relation is given by an Arrhenius law. Over

the complete temperature range, and for all initial conditions, the final pat-
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terns stayed qualitatively unchanged, see Fig. 5B. This result highlights the

importance of a systematic parameter refinement, as even recent expositions

report a loss of oscillations with varying hydrolysis rate [5]. In contrast, our

model reveals a strong robustness over a large range of hydrolysis rates. In-

creasing the temperature leads to faster local cycling of Min-proteins between

membrane and cytosol. With each cycle, a fraction of MinD leaks from the

polar zone. As a consequence, the temporal period decreases due to a faster

redistribution of particles, but the spatial wavelength remains unaffected, as it

does not depend on the detachment process. However, oscillations can be lost

with increasing hydrolysis rate kde if either attachment or recruitment of MinD

is chosen too low. In these cases, an accumulation of MinD at the membrane

is impeded by rapid detachment. This provides a possible explanation for the

parameter sensitivity observed in previous accounts [5, 38]. Note that the polar

zones and MinE rings narrow with increasing temperature (cf. Fig. 5B). This

can be explained by the decreased residence time of membrane-bound proteins,

which reduces the distance proteins diffuse on the membrane before detach-

ment. Accordingly, we find that the narrowing effect vanishes if membrane

diffusion is either turned off, or increased sufficiently along with temperature.

Since all diffusion constants depend on temperature, the narrowing of polar

zones and MinE rings might be too weak to notice experimentally, or even

completely compensated by faster diffusion. Regarding possible temperature

dependencies of the remaining parameters the system remains robust: To ac-

count for temperature increase (kde = 2.5s−1), all other system parameters,

i.e. diffusion constants and kinetic rates, can be increased jointly up to a fac-

tor of about eight without changing the spatial wavelength. If the upscaling

of the diffusion constants is limited to a factor two, the kinetic rates can be

increased jointly up to threefold. Due to this robustness we did not include

explicit temperature dependencies for the remaining parameters.

Striped patterns do not adapt to cardiolipin domains

The results above demonstrate that spatial cues are not necessary to ensure

robust patterns. However, as MinD preferentially binds to anionic phospho-

lipids like cardiolipin found at the cell poles [27, 28], we asked if oscillatory

patterns adapt to spatial templates. We considered two different templates in

the regime where striped oscillations emerged by restricting MinD attachment

to predefined parts of the membrane, see Fig 6C. First, a template for the

pole-to-pole oscillation, where direct MinD attachment is restricted to both
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cell poles, and second, a periodic template corresponding to the next stripe

state given by four separate attachment domains. In both cases, and for var-

ious initial conditions, the patterns finally evolved into the original striped

oscillation, i.e. no adaption could be observed, see Fig 6C. We find that slow

diffusion of membrane-bound MinD, which is is followed by fast recruitment,

suffices to promote the formation of robust MinD domains even without fore-

going MinD attachment, cf. Fig. 6A,B. This observation demonstrates that

the initial position of MinD attachment does not categorically determine the

final position of MinD stripes. In contrast to recruitment, the MinD attach-

ment process does not amplify membrane bound patterns, but merely increases

the MinD membrane density throughout the cell. Accordingly, we find for the

model with spatially homogeneous MinD attachment, that varying the attach-

ment rate kD rather leads to the loss of instability than to a qualitative change

of the spatial pattern.

So, which processes do regulate the characteristic wavelength? From the dis-

cussion of the channelling mechanism, we know that the interplay between

MinD recruitment and finite nucleotide exchange affects the growth rate of

new MinD domains towards the old ones. On the other hand, the MinE re-

cruitment rate kdE defines a minimal distance between MinD stripes, as it

determines the width of the MinE ring, and thereby the zone where the ac-

cumulation of MinD is suppressed, cf. Fig. 2A,B. Of course, the distance

between detachment and re-recruitment also depends on the bulk diffusion co-

efficients. In contrast, being pronounced membrane-bound structures, MinE

rings and MinD stripes widen independently of the recruitment rates with in-

creasing membrane diffusion. In summary, it is the interplay of all processes,

and not a specific one, which defines the characteristic wavelength: From the

kinetic rates it are the recruitment processes, that affect the pattern’s spatial

properties most, but, in general, varying these rates alone does not suffice to

drive the system into a regular higher order striped state without increasing

cell length.

Geometry selects patterns in nearly spherical cells

Patterns in nearly spherical cells result from the additional destabilisation of

odd modes, see Fig. 1B. For instance, in cells of 2.4µm length and 2.2µm

width we observed predominant pole-to-pole oscillations along the major axis

over a period of about 535s that fade to circular waves and oscillations along

a rotating axis for about 175s, until pole-to-pole oscillations are reestablished
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again, see Fig. 5D and supplementary movie 4. Additionally, as a random

switching of the travelling direction was observed for circular waves in vivo

[36], it occurs between consecutive phases of circular waves in silico. After

the division of nearly spherical cells, one observes a shift of the oscillation

axis by 90◦ towards the cell’s new long axis [36]. We employed a deformed

mesh technique to increase the cell’s width dynamically beyond its length, and

likewise observed a shift towards the major axis, see supplementary movie 5.

Taken together, our findings indicate that this variety of patterns is primarily

caused by weak aberrations from spherical symmetry, and not by stochastic

effects or unstable higher order modes, as presumed previously [7, 16].

DISCUSSION

Our analysis identifies transient MinE sequestration to be the key mechanism

behind Min oscillations. Sequestration of MinE is based on a lower particle

number of MinE or, alternatively, on direct interactions between MinE and

the lipid membrane. We find that the faster recruitment of MinE confines

sequestration to the rim of polar zones and continual leakage of MinD from

old to new polar zones renders sequestration transient. The cellular geometry

imposes a nonlinear bulk-boundary coupling, which is key for the selection and

stabilisation of spatial patterns.

How do MinD filaments, cardiolipin domains, and irregular patterns fit in this

picture? Several models accounting for Min-protein filaments assert the nucle-

ation of MinD polymers to be mediated, and thereby localized, by cardiolipin

domains at the cell poles [3, 6]. Consequently, all patterns in filamentous

cells ought to be determined by a dynamic periodic template of cardiolipin

domains with an intrinsic spatial wavelength. However, neither a presence of

periodic templates, nor a colocalization of MinD and cardiolipin domains has

been reported in filamentous cells so far. Moreover, as cardiolipin adapts to

membrane curvature, so should MinD, but, based on the limited available data,

bending filamentous cells does not seem to affect the spatial MinD patterns,

cf. e.g. [31, 38]. The mechanism presented in this paper is independent of,

and, in fact, robust against spatial cues. This suggests a different origin for

MinD nucleation: MinD filaments have been reported in two different setups.

In vivo, helical MinD filaments only appear along with Min oscillations [35].

In particular, MinD settles in a homogeneous membrane-bound state without

any additional ordered structure, if the cell is lacking MinE, and therefore os-

cillations. This observation immediately follows from our model, as membrane
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diffusion removes any potential inhomogeneities caused by spatially restricted

MinD attachment. Helical MinD filaments were also observed at high MinD

concentrations in vitro [13]. In presence of ATP and phospholipid vesicles,

MinD assembles in helical structures. Taking both observations together, nu-

cleation of MinD filaments could be promoted at high local MinD densities in

vivo. In this case, the nonlinear dynamics described by our model provide the

primary mechanism, necessary to induce MinD nucleation at the polar zones,

suggesting that MinD polymerisation is the consequence and not the origin of

spontaneous pattern formation. This scenario resembles the directed assembly

of actin cables guided by polar caps of the GTPase Cdc42 in yeast [40].

Irregular patterns, like stochastic pole-to-pole switching in short cells [8], or

aberrant oscillations in cells mutant for MinE [12], imply the loss of robust-

ness. In our model, robustness and oscillatory patterns share the same origin.

Formation and growth of polar zones and MinE rings is impelled by strong

recruitment of MinD and MinE and only constrained by the finite number of

available particles. The character of Min oscillations is highly nonlinear, with

the cell length acting as natural parameter driving the system from dynamical

equilibrium towards highly stable limit cycles corresponding to the individual

patterns. Therefore, irregular patterns can only arise in regimes where the sys-

tem dynamics are moved close to primal bifurcation points. In these regimes

close to threshold the system is highly susceptible to fluctuations, such that

stochastic dynamics, spatial irregularities, and additional molecular processes

that were irrelevant for the regular pattern forming process might play a cru-

cial role. For instance, stochastic pole-to-pole switching were only observed in

short cells with lengths below 2.7µm [8], which is close to the onset of dynam-

ical instability in our model. An investigation of these phenomena, however,

is only possible in a stochastic model.

Another example for irregularities is given by the appearance of aberrant os-

cillations in cell mutant for MinE (MinE C1) [12]. As these mutant MinE lack

the ability to bind to the lipid membrane, direct MinE membrane interactions

were suggested as an important process for robust Min oscillations. However,

the C1 mutant also shows a reduced interaction strength with MinD. Reducing

the MinE recruitment rate in our model drives the system towards dynami-

cal equilibrium, suggesting that the reduced MinE-MinD interaction and not

the loss of MinE-membrane interactions might have disturbed the oscillatory

dynamics in the first place. This example emphasizes that conclusions drawn

from irregular dynamics do not necessarily hold for regular Min oscillations, as

critical regimes might be dominated by mechanisms not included in the mini-

mal model due to their weak influence on the regular dynamics. Accordingly,
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further experiments should be performed in close contact with theoretical mod-

elling. In particular, experiments with the MinE-C1 mutant could validate the

sequestration mechanism, as the model predicts that patterns vanish when the

MinE concentration approaches the MinD concentration.

Beyond that, a multitude of predictions immediately follows from our results

on MinD channelling. For instance, striped patterns should vanish, and ac-

curate cell divisions be compromised, if the MinD recruitment rate could be

significantly reduced. Moreover, patterns should vanish, if the MinE recruit-

ment process is weakened severalfold.

The model also predicts an Arrhenius law for the hydrolysis rate with an acti-

vation energy about 16.7kcal/mol. Quantitative knowledge about the temper-

ature dependencies of the various reactions involved in Min-protein dynamics

would improve further theoretical investigations substantially.

Reaching for a complete and coherent account to the Min system as a whole,

the next step is to apply the model to in vitro dynamics [21, 22] and to ver-

ify the sequestration mechanism experimentally. As a preliminary result we

note that the current model sustains bands of synchronous travelling waves as

observed in vitro [21, 22], even without extending the reaction scheme (Fig.

1A) by the suggested nonlinear detachment [21] of Min-proteins or cooperative

MinE recruitment [22].

On a broader perspective, the presented theoretical formalism enables the in-

vestigation of protein dynamics in vivo and in vitro with explicit account for

the underlying system geometries and nonlinear bulk-boundary couplings. Ex-

amples are intracellular polarization mechanisms driven by reaction-diffusion

processes, e.g. in C. elegans [10] or S. cerevisiae [17].

METHODS

Numerical simulations and initial conditions.

All time dependent computations were performed with finite element methods

on a triangular mesh using Comsol Multiphysics 3.5a. As initial condi-

tions, linear profiles along the cell’s long axis with varying slopes and small

random fluctuations at each mesh site were chosen. In these cases all particles

were initially located in the bulk. The travelling wave initial condition used

in simulations with filamentous cells was obtained by choosing a low MinD

recruitment rate about kdD = 0.03µm2/s and picking the travelling wave so-

lution at a time step where the total MinD concentration was maximal in one
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cell half.
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FIGURES

Figure 1

λ → ∞
MinD-ATPMinEMinD-ADP

recruitmentdetachmentattachment

nucleotide exchange

MinE
cycling

A

B
1. even mode 1. odd mode

3. even mode2. even mode

kdE > kdD

λ

kde
kD

C
uDTuEuDD

ud ude

kdE < kdD

kdE > kdD

FIG. 1. Minimal model dynamics and dynamical instabilities.

A, Cytosolic MinD-ATP attaches to the membrane with a rate kD, where it

recruits further MinD-ATP and MinE from the cytosol with rates kdD and

kdE, respectively. Recruitment of MinE leads to the formation of MinDE

complexes, which disintegrate to cytosolic MinD-ADP and MinE with the

temperature dependent hydrolysis rate kde ∝ exp(−EA/RT ). Finally, MinD-

ADP exchanges nucleotides with rate λ. The scheme highlights the possibility

of local MinE cycling, given a sufficiently high density of membrane bound

MinD. B, Schematic illustration of even and odd modes in elliptical geometry.

C, Phase portrait for both recruitment processes illustrates the condition on

the recruitment rates ((3)) for dynamical instabilities kde = 0.65s−1. In the

grey domain the system is stable below cell lengths of 2µm. The colored

region shows where only even modes (blue) or even and odd modes (red) are

unstable at cell lengths below 2.8µm. Numerical simulations determined that

only pole-to-pole oscillations are selected in the red domain.
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Figure 2
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FIG. 2. Key mechanisms underlying Min oscillations.

A, Locally sequestrated MinE constitutes the MinE ring, which moves towards

the left pole through local cycling. Detaching MinD rebinds predominately at

the left pole and initiates a weak polar zone at the right end. The delayed

reattachment due to nucleotide exchange is indicated by dashed lines. The

numerical data below corresponds to the timestep t = 12s in Fig. 2C (densities

are scaled by a factor 2.5× 10−3µm−1, fluxes by a factor 1.8× 10−2µm−1s−1).

The accentuation shows regions of dominant MinD attachment (light) or MinE

attachment (dark). These adjoin to regions (grey) where MinD accumulation is

suppressed due to dominant MinE detachment. B, MinE depletes the old polar

zone of MinD, until only MinDE complexes are left, then reassembles at the

rim of the new polar zone, formed by redistributed MinD. The numerical data

corresponds to the timestep t = 22s in Fig. 2C (densities are scaled by a factor

2.6×10−3µm−1, fluxes by a factor 2.2×10−2µm−1s−1). C, Top: Kymographs at

T = 22.5◦C: Membrane densities of MinD+MinDE (turquoise), MinDE (red)

and the fraction MinDE/MinD in logarithmic color scale. Bottom: Fractions

of total cytosolic particles, MinD (blue) and MinE (red). Accentuated regimes

correspond to transient sequestration (light) and rapid relocalization (dark) of

MinE. Cf. supplementary movie 1.
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Figure 3
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FIG. 3. Canalized MinD transfer and regulation of spatial MinD reattachment by

MinD recruitment.

A, Temporal period as function of MinD recruitment kdD and nucleotide ex-

change λ in cells of 4µm length at T = 25◦C. With instantaneous nucleotide

exchange, oscillations only exist at low MinD recruitment rates (grey). Be-

yond this threshold the nucleotide exchange and recruitment rates become

control parameters for the spatial distribution of MinD reattachment. At high

but finite nucleotide exchange rates the oscillation period increases with the
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MinD recruitment rate as MinD reassembles in front of the polar zone, cf.

Fig. 3B below. At low nucleotide exchange rates the oscillation period de-

creases with MinD recruitment as the pole-to-pole particle transfer becomes

canalized between both cell halves, cf. Fig 3C below. B, Kymographs for

λ = 50s−1 showing the total MinD membrane density ud + ude and MinD flux

DD∇µ(uDT + uDD)|µ=µ0 on (blue) and off (red) the membrane for stepwise

increasing MinD recruitment rates. At higher MinD recruitment rates MinD

is not depleted but reflected at the cell poles. In this case MinD reattaches in

front of a moving MinD wave. C, Analogous kymographs for λ = 5s−1. Here,

MinD reaccumulates at the opposite cell pole. Increasing MinD recruitment

accelerates the growth of new polar zones towards midcell and synchronizes

depletion and formation of polar zones at opposite cell ends by canalizing the

MinD flux from old to new polar zones.
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Figure 4
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FIG. 4. Optimization of pole-to-pole oscillations by canalized MinD transfer at

T = 37.5◦C.

A, Mean MinD membrane density during one oscillation cycle as function of

the MinD recruitment rate kdD. With increasing MinD recruitment, polar

zones grow dynamically towards midcell, reflected in a decreased distance be-

tween the maxima in the density profile. B, Characterisation of the mean

MinD membrane density by the width w and depth h of the MinD density

minimum at midcell. The axial coordinate x is rescaled by the cell length L.

The density is rescaled by its value at x = 0. C, Optimal midcell localiza-

tion, defined as the minimum of w/h as a function of the MinD recruitment

rate. Optimum at kdD = 0.103µm2/s. The solid line shows the interpolation

of the numerical data (triangles). D, Efficiency of pole-to-pole oscillations,

defined as the ratio of ATP consumption per cycle and the mean MinD mem-

brane occupancy as a function of the MinD recruitment rate. Optimum at

kdD = 0.106µm2/s. The solid line shows the interpolation of the numerical

data (triangles).
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Figure 5

Time  [s]

-1.2

 1.2
0

-1.2

 1.2
0

9000 1800
Time  [s]

-6.0

 6.0
0

-6.0

 6.0
0

5000 1000

M
aj

or
 a

xi
s [

µm
]

C D

M
aj

or
 a

xi
s [

µm
]

Time  [s] Time  [s]

-2.5

 2.5
0

-2.5

 2.5
0

-6.0

 6.0
0

-2.5

 2.5
0

-2.5

 2.5
0

1750 350 250 50

T = 20°C T = 40°C

-6.0

 6.0
0

-6.0

 6.0
0

-6.0

 6.0
0

B

�

�
�
�
� � �

�

�

�

�
�
�
� � � �

�
�
�� �

�
�
� �
� � � � �

�
�
�

�

� �
� �����

20 25 30 35 40

20

40

60

80

Temperature �°C�

Pe
rio

d
�s
�

20 25 30 35 40
0.5
1.0
1.5
2.0
2.5

Temperature �°C�

k d
e
�1
�s
�

A

FIG. 5. The temperature dependence and the dynamic adaptation of spatial patterns

to cell geometry.

A, Temperature dependent periods of pole-to-pole (open rectangles) and

striped (open triangles) oscillations with their according Arrhenius fits (EA =

18kcal/mol), see supplementary material for discussion. Cell lengths are 5µm

and 12µm, respectively. Filled rectangles and triangles show experimental

data 38 for cells of 4µm − 5µm and tens of µm length, respectively. Inset

shows temperature dependent hydrolysis rate. B, Kymographs of membrane

densities MinD+MinDE (turquoise) and MinDE (red) for pole-to-pole (top)

and striped oscillations (bottom). Cf. supplementary movies 2a-2d.C, Exam-

ple of stripe formation out of travelling waves. Cf. supplementary movie 3.

D, Kymographs of membrane densities in the upper cell half for nearly spher-

ical cells (2.4µm length, 2.2µm width) show switching between predominant

pole-to-pole oscillations (dark) and circular waves (light). Cf. supplementary

movie 4.
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Figure 6
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FIG. 6. Effect of spatial cues on spatio-temporal pattern formation.

A, MinD attachment is restricted to the cell poles. Following polar MinD

attachment, MinD diffuses towards midcell. B, Even without direct MinD

attachment, a MinD zone forms at midcell due to slow membrane diffusion and

fast MinD recruitment from the cytosol. C, Kymographs of Min oscillations

in filamentous cells with spatially restricted MinD attachment, MinD (blue),

MinE (red/green). Left: Restricting MinD attachment to the cell poles does

not jeopardize stripe formation. Right: Adding further attachment domains

corresponding to the next striped pattern does not promote additional stripe

formation.
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LEGENDS FOR SUPPLEMENTARY MOVIES

In all movies, the line height corresponds to the MinD+MinDE concentration

at the membrane, line color (left bar) to the MinDE concentration at the

membrane, and bulk color (right bar) to the concentration of cytosolic MinE.

Parameters are as stated in the article.

movie 1: Illustration of rapid rebinding and transient sequestration of

MinE.

Movie shows pole-to-pole oscillations at T = 22.5◦C (kde = 0.51s−1), in a

cell of 5µm length. In addition to the above quantities, the movie shows the

diffusive flux field of cytosolic MinE as a streamline plot. Note the constriction

of streamlines in each transient polarized phase, and the burst in cytosolic

MinE density in between. The initial condition was taken as a homogeneous

state with small fluctuations at each mesh site. Movie corresponds to the

kymographs in Fig. 2C, provided in the article.

movie 2a: Pole-to-pole oscillations at T = 20◦C.

Cell length is 5µm and the hydrolysis rate is kde = 0.4s−1. The initial condition

was taken as a homogeneous state with small fluctuations at each mesh site.

All particles were initially located in the cytosol. Movie corresponds to the

kymographs in Fig. 5B, provided in the article.

movie 2b: Pole-to-pole oscillations at T = 40◦C.

Cell length is 5µm and the hydrolysis rate is kde = 2.5s−1. The initial condition

was taken as a homogeneous state with small fluctuations at each mesh site.

All particles were initially located in the cytosol. Movie corresponds to the

kymographs in Fig. 5B, provided in the article.
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movie 2c: Striped oscillations at T = 20◦C.

Cell length is 12µm and the hydrolysis rate is kde = 0.4s−1. The initial con-

dition was taken as a travelling wave peaking in one cell half. See movie 3 for

details about stripe formation. Movie corresponds to the kymographs in Fig.

5B, provided in the article.

movie 2d: Striped oscillations at T = 40◦C.

Cell length is 12µm and the hydrolysis rate is kde = 2.5s−1. The initial con-

dition was taken as a travelling wave peaking in one cell half. See movie 3 for

details about stripe formation. The observed asymmetry is an imprint of the

initial condition. Movie corresponds to the kymographs in Fig. 5B, provided

in the article.

movie 3: Stripe formation out of a travelling wave peaking in one cell

half.

Cell length is 12µm and the hydrolysis rate is kde = 0.65s−1. The initial

condition was generated by choosing a MinD recruitment value about kdD =

0.03µm2/s and picking the timestep where MinD+MinDE are maximal at the

membrane in one cell half, and minimal in the other. This solution was chosen

as initial condition for all simulations in filamentous cells. Movie corresponds

to the first 800s of the kymographs in Fig. 5C, provided in the article.

movie 4: Switching between axial oscillations and circular waves in nearly

spherical cells.

Cell length is 2.4µm, cell width is 2.2µm, and the hydrolysis rate is kde =

0.65s−1. Initial condition was a homogeneous state with small fluctuations at

each mesh site. All particles were initially located in the cytosol. Note the

switching of travelling direction between consecutive phases of circular waves.

Movie corresponds to the first 1500s of the kymographs in Fig. 5D, provided

in the article.
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movie 5: Oscillation aligns to the major axis in nearly spherical cells after

cell division.

We used a deformed mesh technique (ALE), provided with Comsol Multi-

physics 3.5a, to increase the cell width dynamically from 2.2µm to 2.55µm.

The cell length is set to 2.4µm. In agreement with experiments, the oscilla-

tions axis shifts towards the cell’s long axis. The initial condition was taken

as a pole-to-pole oscillation from the simulation in movie 4.
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REACTION-DIFFUSION SYSTEMS IN ELLIPTICAL GEOMETRY

Orthogonal elliptical coordinates

For an ellipse with major semi-axis ra, minor semi-axis rb, and linear eccen-

tricity d =
√
r2
a − r2

b , we choose orthogonal elliptical coordinates given by

x = d cosh(µ) cos(ν)

y = d sinh(µ) sin(ν),

with µ > 0 and 0 ≤ ν < 2π. Accordingly, the above ellipse is parametrised at

constant µ = µ0, given by µ0 = arctanh (rb/ra), see supplementary Fig. S1.

Differential operators follow in the usual way from the scale factors hµ and hν ,

given by hµ = hν = d
√

sinh2 µ+ sin2 ν.

Construction of orthogonal functions for bulk and membrane diffusion

We solved the linearised system, obtained from the reaction-diffusion equations

(1a)-(2c) given in the article, through construction of a mutual orthogonal

basis for bulk and membrane diffusion. To simplify matters, we consider in

the following only two species u, v, where u accounts for cytosolic particles,

and v for membrane particles:

∂tu = Dc∇2u− λu, (1)

∂tv = Dm∇2
νv + g(u, v), (2)

with boundary conditions:

Dc∂µu|µ=µ0 = f(u, v). (3)

The degradation term λu in (1) accounts for nucleotide exchange, and can be

set to zero in order to obtain the bulk solutions for the different species, e.g.

the time evolution of cytosolic MinD uD = uDT +uDD is governed by diffusion

alone as the reaction terms cancel. Then the time evolution of MinD-ATP is

obtained from uDT = uD − uDD. The first task is finding an orthogonal set of

functions to solve the linearised system. As we aim for a fast computational

method to obtain the parameter dependencies of a nonlinear system, our ap-

proach is based on approximations and favours computational efficiency and a
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satisfactory predictive power over mathematical rigour and highest precision.

With the categorically limited predictive power of linear stability analysis in

mind, we found this to be the pragmatic choice.

Bulk diffusion

By separation of variables, i.e. u = exp(σt)ũ(µ, ν), equation (1) can be ex-

pressed as an eigenvalue problem in elliptical geometry:

σũ(µ, ν) = Dc
1

d2(sinh2 µ+ sin2 ν)
(∂2
µ + ∂2

ν)ũ(µ, ν)− λũ(µ, ν). (4)

With ũ(µ, ν) = R(µ)Ψ(ν) we obtain the well known Mathieu equations:

0 = Ψ′′ + (c− 2q cos 2ν)Ψ (5)

0 = R′′ − (c− 2q cosh 2µ)R, (6)

where c denotes the constant of separation or spatial eigenvalue, and the di-

mensionless parameter q = qσ + qλ is given by:

qσ = −σ d2

4Dc

, qλ = −λ d2

4Dc

. (7)

Setting the argument in the angular equation (5) complex, i.e. ν = iµ, yields

the radial equation (6). Accordingly, the solutions of the radial equations can

be obtained from the solutions of the angular equation. Following the classical

procedure, we express the angular Mathieu functions as Fourier series (cf. [3]),

and classify the solutions in even Ψe and odd Ψo modes according to the parity

wrt. ν = 0:

even : Ψen(ν; q) =
∞∑

k=0

An2k+p(q) cos(2k + p)ν, n = 0, 1, . . . , p = 0, 1 : (an(q))

(8)

odd : Ψon(ν; q) =
∞∑

k=1

Bn
2k+p(q) sin(2k + p)ν, n = 1, 2, . . . , p = 0, 1 : (bn(q))

(9)

Here, an and bn denote the corresponding spatial eigenvalues, and

p =





0 for n even,

1 for n odd.
(10)
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Upon inserting this ansatz into the angular Mathieu equation (5) one obtains

recursion equations for the Fourier coefficients, c.f. [3] and [1]:

(−m2 + an)Anm = q(Anm+2 + (1 + δm,2)Anm−2 + δm,1A
n
m) (11)

(−m2 + bn)Bn
m = q(Bn

m+2 +Bn
m−2 − δm,1Bn

m). (12)

As a peculiarity of Mathieu functions, the Fourier coefficients Anm, B
n
m and

spatial eigenvalues an, bn depend on the dimensionless parameter q = qσ + qλ,

and thereby, on the growth rates σ we seek. Since this dependence cannot be

expressed in a closed form, but the parameter q can be assumed as sufficiently

small, we expand the Fourier coefficients and spatial eigenvalues in power series

[2]:

Anm =
∞∑

r=0

αnm,rq
r an =

∞∑

j=0

lnj q
j, (13)

Bn
m =

∞∑

r=0

βnm,rq
r bn =

∞∑

j=0

knj q
j. (14)

In contrast to previous work [2], we normalize the angular Mathieu functions

wrt. the scalar product 〈f, g〉ν = 1
π

∫ 2π

0
dνfg, i.e.

〈Ψen(ν; q),Ψem(ν; q)〉ν = 〈Ψon(ν; q),Ψom(ν; q)〉ν = δn,m, (15)

and express the radial parts as series of hyperbolic functions instead of Bessel

functions.

even : Ren(ν; q) =
∞∑

k=0

An2k+p(q) cosh(2k + p)ν, n = 0, 1, . . . , p = 0, 1 : (an(q))

(16)

odd : Ron(ν; q) =
∞∑

k=1

Bn
2k+p(q) sinh(2k + p)ν, n = 1, 2, . . . , p = 0, 1 : (bn(q))

(17)

Thereby, one obtains approximations in finite order O(qK) for the radial

Ren,K ,Ron,K and angular Ψen,K ,Ψon,K Mathieu functions, respectively, where

8
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the expansion coefficients in (13) and (14) are obtained recursively from

αnm,K =





1
m2−n2

[
K−1∑
s=1

lnsα
n
m,K−s − αnm+2,K−1 − (1 + δm,2)αnm−2,K−1 − δm,1αnm,K−1

]
, n 6= m

− 1
2

(
1√
2
δn,0 + 1− δn,0

) n+2K∑
k=n−2K≥0

(1 + δk,0)
K−1∑
s=1

αnk,sα
n
k,K−s, n = m

αnm,0 =
1√
2
δn,mδn,0 + (1− δn,0) δn,m,

lnK =
(√

2δn,0 + 1− δn,0
)[

αnn+2,K−1 + (1− δn,2)αnn−2,K−1 + δn,1α
n
n,K−1 −

K−1∑

s=1

lnsα
n
n,K−s

]

ln0 = n2, (18)

for the even modes, and from

βnm,K =





1
n2−m2

(
βnm+2,K−1 + βnm−2,K−1 − δm,1βnm,K−1 −

K−1∑
s=1

kns β
n
m,K−s

)
, n 6= m

− 1
2

n+2K∑
k=n−2K≥1

K−1∑
s=1

βnk,sβ
n
k,K−s, n = m

βnm,0 = δn,m,

knK = βnn+2,K−1 + βnn−2,K−1 − δn,1βnn,K−1 −
K−1∑

s=1

kns β
n
m,K−s,

kn0 = n2, (19)

for the odd modes.

Note that angular Mathieu functions are only orthogonal for the same q, and

hence only for equal temporal eigenvalues σn = σm. As explained in the

following, this problem can be resolved by matching the bulk solutions with

the orthogonal eigenfunctions for the diffusion process on the membrane.

Membrane diffusion

As∇2
µ0,ν
6= ∇2

ν , the angular Mathieu functions are not solutions of the diffusion

process on the membrane. However, obtaining an orthogonal basis for the one

dimensional diffusion process on the membrane is straightforward in arclength

parametrisation s(ν). With

s(ν) = rbE

(
ν, 1− r2

a

r2
b

)
=

∫ ν

0

dν ′
√
r2
b + (r2

a − r2
b ) sin2 ν ′, (20)

9
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where E(φ, k) denotes the incomplete elliptic integral of second kind, and

∇2
ν =

(
1

hµ0,νdν

)2

= ∂2
s , (21)

the eigenfunction of membrane diffusion read

Ψemem
n (µ0, s) = cos

(
2πn

L
s

)
, n = 0, 1, 2, . . . , (22)

Ψomem
n (µ0, s) = sin

(
2πn

L
s

)
, n = 1, 2, 3, . . . , (23)

where L = s(2π) denotes the circumference of the ellipse. It is then possible

to expand the membrane modes in series of approximated Mathieu functions:

Ψemem
n (µ0, s(ν)) =

∞∑

m=0

γenm,K Ψem,K(ν; qn), (24)

Ψomem
n (µ0, s(ν)) =

∞∑

m=1

γonm,K Ψom,K(ν; qn). (25)

With the abbreviations

κenm =
1

π

∫ 2π

0

dν cos(mν) cos


 2πn

E
(

2π, 1− r2a
r2b

)E
(
ν, 1− r2

a

r2
b

)
 , (26)

κonm =
1

π

∫ 2π

0

dν sin(mν) sin


 2πn

E
(

2π, 1− r2a
r2b

)E
(
ν, 1− r2

a

r2
b

)
 , (27)

the Fourier coefficients γenm,K , γo
n
m,K are given by

γenm,K =
1

π

∫ 2π

0

dν Ψem,K(ν; qn) Ψemem
n (µ0, s(ν)) =

m+2K∑

k=m−2K≥0

κenk

K∑

r=0

αmk,rq
r
n,

(28)

γonm,K =
1

π

∫ 2π

0

dν Ψom,K(ν; qn) Ψomem
n (µ0, s(ν)) =

m+2K∑

k=m−2K≥1

κonk

K∑

r=0

βmk,rq
r
n.

(29)
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Thereby, one obtains a mutual basis in terms of bulk-membrane modes for

both diffusion processes:

Ψemem
n,K (µ, ν; qe

n) =
∞∑

m=0

γenm,K
Rem,K(µ; qe

n)

Rem,K(µ0; qe
n)

Ψem,K(ν; qe
n), (30)

Ψomem
n,K (µ, ν; qo

n) =
∞∑

m=1

γonm,K
Rom,K(µ; qo

n)

Rom,K(µ0; qo
n)

Ψom,K(ν; qo
n). (31)

These modes are orthogonal at the boundary by construction, but not eigen-

functions of the normal flux operator at the boundary, as

∇µ Ψemem
n,K (µ, ν; qe

n)|µ=µ0 = h−1
µ0,ν

∞∑

m=0

γenm,K
Re′m,K(µ0; qn)

Rem,K(µ0; qn)
Ψem,K(ν; qn). (32)

However, we find that neglecting the coupling of modes induced by bound-

ary flux already yields very good quantitative results, and simplifies further

computations substantially. To this end, we approximate the bulk-boundary

coupling by

∇µ Ψemem
n,K (µ, ν; qen)|µ=µ0

≈
〈
∇µ Ψemem

n,K (µ, ν; qen)|µ=µ0
,Ψemem

n (µ0, s(ν))
〉
s

Ψemem
n (µ0, s(ν)),

(33)

where

〈f, g〉s =
2

L

∫ L

0

dsfg =
2π

L

(
1

π

∫ 2π

0

dνhµ0,νfg

)
=

2π

L
〈hµ0,νf, g〉ν (34)

denotes the canonical scalar product in arclength parametrisation s(ν). As

both coordinates scale equally, i.e. hµ = hν = hµ,ν , the projections (33) can

be expressed in terms of the known coefficients:

〈
∇µ Ψemem

n,K (µ, ν; qe
n)|µ=µ0 ,Ψemem

n (µ0, s(ν))
〉
s

=
2π

L

∞∑

m=0

Re′m,K(µ0; qe
n)

Rem,K(µ0; qe
n)

(γenm,K)2.

(35)

The summation can be truncated at a finite value of M such that the approx-

imated bulk-boundary coupling is characterised by the two finite expansions

parameters M and K. Having said this, we define the following abbreviations
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for the projections on even and odd modes, respectively:

ΓeM,K
n =

2π

L

M∑

m=0

Re′m,K(µ0; qe
n)

Rem,K(µ0; qe
n)

(γenm,K)2, n = 0, 1, 2, . . . , (36)

ΓoM,K
n =

2π

L

M∑

m=1

Ro′m,K(µ0; qo
n)

Rom,K(µ0; qo
n)

(γonm,K)2, n = 1, 2, 3, . . . . (37)

Now, we can proceed with the linear stability analysis, but first, we need to

compute a stationary solution.

Approximating the stationary solution

Since the total number of Min proteins is conserved, the following conservation

laws apply

ND
rarb
RaRb

=

∫

Ω

uDD + uDT +

∫

∂Ω

ud + ude, (38)

NE
rarb
RaRb

=

∫

Ω

uE +

∫

∂Ω

ude, (39)

where ND and NE are the numbers of MinD monomers and MinE dimers in an

elliptical cell with major semi-axis Ra and minor semi-axis Rb. The integra-

tion is taken over the full domain Ω for bulk species, and over the boundary

∂Ω for membrane species. A homogeneous stationary solution only exists in

the limit of instantaneous nucleotide exchange, i.e. when there are no degra-

dation terms in the bulk equation (1). In this limit constant fields solve the

stationary bulk equations 0 = Dc∇2
µ,νu. However, this is not the case if nu-

cleotide exchange is taken into account. Here, we compute an approximation

of the mean stationary densities at the membrane, which we use as station-

ary solution in the linearisation. The stationary solutions are of the form

ū(µ) ∝ ū(µ0) Ψemem
0,K (µ, ν; qλ) + h.o.t., where h.o.t. denotes higher order modes

with even parity wrt. ν = 0 and ν = π/2. We neglect these higher order con-

tributions, and approximate the bulk-boundary coupling as described above.

Thereby, one retains the stationary gradients across the membrane induced by

nucleotide exchange, and constant concentration fields along the membrane.

The stationary state (ū(µ), v̄(µ0)) is then obtained numerically from:

0 = f(ū, v̄)−DcūΓeM,K
0 (qλ), (40)

0 = g(ū, v̄), (41)
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where the expansion parameters M,K can be adjusted to obtain results of

higher precision.

Linear stability analysis in elliptical geometry

To perform the linear stability analysis, we linearise the reaction-diffusion

equations on the membrane (2) and the boundary conditions (3) at the sta-

tionary state (ū(µ), v̄(µ0)):

Dch
−1
µ0,ν

∂µu(µ, ν, t)|µ=µ0 = f(ū, v̄) + fuδu+ fvδv with fi = ∂if |(ū,v̄),

(42)

∂tv(µ0, ν, t) = Dc∇2
νv(µ0, ν, t) + g(ū, v̄) + guδu+ gvδv with gi = ∂ig|(ū,v̄),

(43)

and ask for the time evolution of small perturbations δu(µ, ν, t), δv(µ0, ν, t):

u(µ, ν, t) = ū(µ) + δu(µ, ν, t),

v(µ0, ν, t) = v̄(µ0) + δv(µ0, ν, t).

We express the small perturbations in terms of the earlier derived membrane-

bulk modes Ψemem
n and Ψomem

n , which yields the linear system:

An

(
δũn
δṽn

)
= 0, An =


fu −DcΓ

M,K
n (σn) fv

gu gv − σn −Dm

(
2πn
L

)2


 . (44)

Depending on the mode of interest, ΓM,K
n denotes either ΓeM,K

n or ΓoM,K
n .

The growth rates σn are then obtained by solving the characteristic equation

detAn = 0 numerically for each set of parameters. The initial refinement of

parameter space was performed by scanning parameter space at cell lengths

below 2µm for oscillatory instabilities (i.e. Hopf bifburcations) of the first even

mode Ψemem
1 with critical frequency that corresponds to the typical period of

Min oscillations about 40s at room temperature.

NOTES ON INITIAL CONDITIONS AND STRIPE FORMATION

As Fange and Elf (Fange and Elf, 2006), we also applied initial conditions,

where all particles were located in the cytosol, and distributed unequally be-

tween both cell halves. In these cases, we used linear initial profiles along

13
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the major axis in simulations with filamentous cells. For some choices of pa-

rameters that differ from the ones reported in the article, we found that the

final patterns depend on initial slopes: While stripes emerged for slopes below

some certain threshold, travelling pole-to-pole waves were selected for larger

slopes. Moreover, even if stripes evolved out of all possible initial slopes, other

initial inhomogeneities, such as the travelling wave initial condition (see arti-

cle), could fail to evolve into stable stripes for the same choice of parameters.

These results emphasize that particular attention needs to be paid to initial

conditions in models that display dynamical transitions between patterns, as

the formation of striped patterns in vivo differs substantially from a computa-

tional scenario, where initial conditions permit the formation of multiple polar

zones and MinE rings from the beginning, e.g. homogeneous or purely cytoso-

lic initial condition. In particular, the connection between stripe formation

and MinD canalization only became clear, if pole-to-pole waves were chosen

as initial condition.

NOTES ON EXPERIMENTAL DATA AND PARAMETER FITTING

Several difficulties arise in fitting computational models for the Min system

to experimental observations. One problem concerns the large variability of

oscillation periods observed in wild type cells. For instance, Meacci and Kruse

(Meacci and Kruse, 2005) report pole-to-pole oscillations with periods between

30 and 120 seconds at constant room temperature (22◦C), Unai et al. (Unai

et al., 2009) determined a mean pole-to-pole period about 54.6±8.6s at 25◦C,

and Hsieh et al. (Hsieh et al., 2010) used a wild type period of 194 seconds as

reference for the in vivo experiments with MinE mutants. Accordingly, these

variations are particularly reflected in the data we used to fit the model to a

large temperature range. This makes the identification of the proper parameter

set ambiguous. Since previous experiments revealed that the oscillation period

depends on the ratio of MinD and MinE densities (Raskin and de Boer, 1999),

deviations are mostly ascribed to differences in protein concentrations and

ratios. However, it is still unknown how protein numbers change with cell

size and age, and there is no quantitative data relating particle numbers and

oscillation periods. Nevertheless, as Huang et al. (Huang et al., 2003), we

could reproduce the MinD/MinE density dependence of the oscillation period

qualitatively.

14
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The choice of particle numbers

The model assumes a wild-type ratio of MinD/MinE particles about 2.86. In

this scenario the number of MinE particle is halved as MinE is considered as

homodimer. However, MinD-ATP shows enhanced dimerization in presence

of phospholipid vesicles, see (Lutkenhaus, 2007) for a review. Therefore, we

considered additionally the limiting case where all MinD particles are dimers.

This yields a MinD/MinE ratio of 1.43. All results, i.e. pole-to-pole oscil-

lations, striped patterns, circular waves, the temperature dependence, and

independence of initial conditions and predefined MinD attachment templates

as considered in the main text could be reproduced equally well, see supple-

mentary Fig. S2. The parameters for this case are

kD = 0.18µms−1, kdD = 0.515µm2s−1, kdE = 0.8µm2s−1, (45)

and the hydrolysis rate obeys an Arrhenius law with the same activation en-

ergy (EA = 16.7 kcal/mol) and adjusted normalization kde(20◦C) = 0.145 s−1.

This demonstrates that the model remains valid for both limiting cases.

The choice of membrane diffusion coefficients

Another ambiguity regards the mobility of Min proteins on the lipid membrane.

Using fluorescence correlation spectroscopy (FCS) Meacci et al. (Meacci et al.,

2006) determined a mean MinD mobility about 0.17µm2/s in vivo, however,

the larger fraction of observed particles (F=0.77) was cytosolic during mea-

surements. It was argued that a large fraction of membrane bound particles

might be incorporated in helical filaments and be therefore inaccessible to FCS

measurements. Additionally, the experiments could not distinguish between

rapid rebinding and membrane diffusion explicitly. The mobility of MinD was

further investigated in recent in vitro experiments, giving a mean membrane

diffusion about 0.013µm2/s at high MinD concentrations (1.1µM) in the non-

oscillatory regime (Loose et al., 2011a). Since our simulations revealed low

fractions of cytosolic proteins (see Fig. 2C in the article), and rapid rebinding

due to strong recruitment as key mechanism, we used the in vitro diffusion

constant as model parameter.
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SUPPLEMENTARY FIGURES

Figure S1: Orthogonal elliptical coordinates.

ν = 0

rb

d

µ = constant

ν = constant

ra

ν = π

FIG. 1. We use elliptical coordinates given by the normal µ and tangential ν com-

ponents at the boundary. Ellipses are obtained at constant µ = µ0.
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Figure S2: Robust pattern formation at low MinD/MinE=1.43 ratio.
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FIG. 2. A, Corresponds to data in Fig. 5B in the manuscript. MinD (turquoise) and

MinE (red) kymographs for pole-to-pole and striped oscillations at low (20◦C) and

high (40◦C) temperatures. Inhomogeneous initial condition have been used, cf. Fig.

S2C. B, Corresponds to data in Fig. 6C in the manuscript. Kymographs of Min

oscillations in filamentous cells with spatially restricted MinD attachment, MinD

(blue), MinE (red/green). Left: Restricting MinD attachment to the cell poles does

not jeopardize stripe formation. Right: Adding further attachment domains corre-

sponding to the next striped pattern does not promote additional stripe formation.

C, Corresponds to data in Fig. 5C in the manuscript. Kymographs showing stripe

formation out of pole-to-pole travelling waves. Hydrolysis rate: kde = 0.235s−1. D,

Corresponds to data in Fig. 5D in the manuscript. Kymographs showing circular

waves in nearly spherical cells (2.4µm length, 2.2µm width). Pole-to-pole oscillations

are recovered at higher excentricity (not shown). Hydrolysis rate: kde = 0.235s−1.
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Abstract 
 
Cells owe their internal organization to self-organized protein patterns, which 
originate and adapt to growth and external stimuli via a process that is as complex 
as it is little understood. Here, we study the emergence, stability, and state 
transitions of multistable Min protein oscillation patterns in live Escherichia coli 
bacteria during growth up to defined large dimensions. De novo formation of 
patterns from homogenous starting conditions is observed and studied both 
experimentally and in simulations. A new theoretical approach is developed for 
probing pattern stability under perturbations. Quantitative experiments and 
simulations show that, once established, Min oscillations tolerate a large degree of 
intracellular heterogeneity, allowing distinctly different patterns to persist in 
different cells with the same geometry. Min patterns maintain their axes for hours 
in experiments, despite imperfections, expansion, and changes in cell shape 
during continuous cell growth. Transitions between multistable Min patterns are 
found to be rare events induced by strong intracellular perturbations. The 
instances of multistability studied here are the combined outcome of boundary 
growth and strongly nonlinear kinetics, which are characteristic of the reaction-
diffusion patterns that pervade biology at many scales.  
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Introduction 
 
Many cells have characteristic forms. To guide proper assembly of their 
subcellular structures, cells employ machineries that garner and transmit 
information of cell shape (Kholodenko & Kolch, 2008; Minc & Piel, 2012; 
Moseley & Nurse, 2010; Shapiro et al, 2009). But cells are not static objects: they 
grow, divide, and react to stimuli, and these processes are often accompanied by a 
change of cell shape. Hence, the means by which a cell gathers spatial information 
need to be adaptive. One versatile mechanism that is capable of such spatial 
adaptation is self-organized pattern formation (Cross & Hohenberg, 1993; Epstein 
& Pojman, 1998; Murray, 2003).  
 
Spontaneous emergence of spatial structures from initially homogeneous 
conditions is a major paradigm in biology, and Alan Turing’s reaction-diffusion 
theory was the first to show how local chemical interactions could be coupled 
through diffusion to yield sustained, non-uniform patterns (Turing, 1952). In this 
way, the symmetry of the starting system can be broken. Reaction-diffusion 
mechanisms have been shown to account for the generation of many biological 
patterns (Kondo & Miura, 2010). However, how patterns change in response to 
noise and perturbations, be they chemical or geometrical, is poorly understood. 
Resolution of such issues is critical for an understanding of the role of reaction-
diffusion systems in the context of the spatial confines and physiology of a cell 
(or an organism). To include the effects of geometry, the mathematical framework 
for reaction-diffusion theory has been extended to circular (Levine & Rappel, 
2005), spherical (Klünder et al, 2013), and elliptical geometries (Halatek & Frey, 
2012). However, focusing on pattern formation from homogeneity is not enough, 
as was noted by Turing himself at the end of his seminal article in 1952 (Turing, 
1952): ‘Most of an organism, most of the time, is developing from one pattern into 
another, rather than from homogeneity into a pattern.’  
 
Min proteins form dynamic spatial patterns that regulate the placement of division 
sites in prokaryotic cells and eukaryotic plastids (Colletti et al, 2000; de Boer et al, 
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1989; Hu & Lutkenhaus, 1999; Leger et al, 2015; Leisch et al, 2012; 
Makroczyová et al, 2016; Maple et al, 2002; Ramirez-Arcos et al, 2002; Raskin & 
de Boer, 1999; Szeto et al, 2002). In rod-shaped Escherichia coli cells, MinD and 
MinE form a reaction-diffusion network that drives pole-to-pole oscillations in 
their local concentrations (Hu & Lutkenhaus, 1999; Huang et al, 2003; Raskin & 
de Boer, 1999). Membrane-bound MinD binds MinC, which inhibits FtsZ 
polymerization (Dajkovic et al, 2008). The dynamic Min oscillation patterns thus 
result in maximal inhibition of FtsZ accumulation at the cell poles and minimal 
inhibition at the cell center which, together with a nucleoid occlusion mechanism, 
restricts formation of the division apparatus to mid-cell (Adams & Errington, 
2009). Because it exhibits a multitude of complex phenomena which can be 
explored by experimental and theoretical means, the Min oscillator provides an 
informative reference system for the quantitative study of geometry-responsive 
pattern formation. 
The dynamic Min oscillations have been explained by reaction-diffusion models 
based on a minimal set of interactions between MinD, MinE, ATP, and the cell 
membrane (Fange & Elf, 2006; Halatek & Frey, 2012; Howard et al, 2001; Huang 
et al, 2003; Kruse, 2002; Loose et al, 2008; Meinhardt & de Boer, 2001; Touhami 
et al, 2006). MinD, in its ATP-bound form, cooperatively binds to the cytoplasmic 
membrane (Hu et al, 2002; Mileykovskaya et al, 2003). MinE interacts with 
membrane-bound MinD, triggering the hydrolysis of its bound ATP and releasing 
MinD from the membrane (Hsieh et al, 2010; Hu et al, 2002; Loose et al, 2011; 
Park et al, 2011; Shih et al, 2002). MinD then undergoes a nucleotide exchange 
cycle in the cytosol, which was initially incorporated into the modeling 
framework by Huang et al (Huang et al, 2003). Further theoretical analysis of the 
minimal reaction scheme suggested that the interplay between the rate of cytosolic 
nucleotide exchange and strong preference for membrane recruitment of MinD 
relative to MinE facilitates transitions from pole-to-pole oscillations in cells of 
normal size to multi-node oscillations (striped mode) in filamentous cells (Halatek 
& Frey, 2012). Such transitions occur if proteins that have detached from one 
polar zone have a greater tendency to re-attach to the membrane in the other half 
of the cell rather than to the old polar zone – a process which has been termed 
canalized transfer. This leads to synchronized growth and depletion of MinD 
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from spatially separated polar zones, enabling the simultaneous maintenance of 
multiple polar zones. Numerical simulations of a reaction-diffusion model based 
on this canalized transfer of Min proteins successfully explain a plethora of 
experimentally observed Min oscillations in various geometries (Halatek & Frey, 
2012). 
Essential for the robust function of Min proteins in ensuring symmetric cell 
division is their ability to respond to, and thus encode, information relating to cell 
shape. Upon cell-shape manipulation, Min proteins have been found to exhibit a 
range of phenotypes under different boundary conditions (Corbin et al, 2002; 
Männik et al, 2012; Touhami et al, 2006; Varma et al, 2008; Wu et al, 2015b). 
Recent development of a cell-sculpting technique allows accurate control of cell 
shape over a size range from 2x1x1 µm3 to 11x6x1 µm3, in which Min proteins 
show diverse oscillation patterns, including longitudinal, diagonal, rotational, 
striped, and even transverse modes (Wu et al, 2015b). These patterns were found 
to autonomously sense the symmetry and size of shaped cells. The longitudinal 
pole-to-pole mode was most stable in cells with widths of less than 3 µm, and 
lengths of 3-6 µm. In cells of this  size range, Min proteins form concentration 
gradients that scale with cell length, leading to central minima and polar maxima 
of the average Min concentration. Increasing cell length to 7 µm and above led to 
the emergence of striped oscillations. In cells wider than 3.5 µm, Min oscillations 
can align with the short axis of the lateral rectangular shape, yielding a transverse 
mode (Wu et al, 2015b). The existence of various oscillation modes has also been 
reconstituted in vitro with MinD, MinE, ATP, and lipid bilayers confined to 
microchambers (Zieske & Schwille, 2014). Numerical simulations based on an 
established reaction-diffusion model (Halatek & Frey, 2012) successfully 
recaptured the various oscillation modes in the experimentally sampled cell 
dimensions (Wu et al, 2015b). This further emphasizes the role of the two above-
mentioned factors generic to reaction-diffusion processes in cells: cytosolic 
nucleotide exchange and membrane recruitment (Halatek & Frey, 2012; Huang et 
al, 2003). These data provided the first evidence that sensing of geometry is 
enabled by establishing an adaptive length scale through self-organized pattern 
formation.  
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Given that Min proteins in all cells initially adopt the same regime of pole-to-pole 
oscillations, it is as yet unclear how diverse oscillation modes emerge during cell 
growth to large dimensions, and whether transitions occur between these patterns. 
Furthermore, more than one mode of oscillation was often observed in different 
cells with the same shape, presenting an intriguing example of the multistability 
of different complex patterns (Wu et al, 2015b). These unexplained phenomena 
provide us with the rare opportunity to quantitatively explore the basic principles 
of the dynamics of pattern formation in the context of geometric perturbations and 
cellular heterogeneities. 
In this study, we combine experiments and theory to systematically examine the 
emergence and dynamic switching of the distinct oscillatory Min protein patterns 
(longitudinal, transverse, and striped oscillations, cf. Fig. 1A) observed in E. coli 
bacteria that are physically constrained to adopt defined cell shapes. Our primary 
aim was to investigate the origin of multistability (coexistence of stable patterns), 
and to further understand its relevance in the context of cell growth (i.e. changing 
cell shape). Furthermore, we hoped to identify the kinetic regimes and 
mechanisms that promote transitions between patterns and to probe their 
robustness against spatial variations in kinetic parameters. One striking discovery 
is the high degree of robustness of individual modes of oscillation even in the face 
of significant changes in geometry.  
 
 
To present our results, we first show experimentally that different patterns can 
emerge out of near-homogeneous initial states in living cells with different 
dimensions, thus providing further support for an underlying Turing instability. 
We then use computational approaches to capture the dependence of pattern 
selection on geometry. Using stability analysis, we establish kinetic and geometric 
parameter regimes that allow both longitudinal and transverse patterns to coexist. 
Furthermore, we evaluate the emergence and stability of these patterns in 
computer simulations and compare the results with experimental data. 
Remarkably, we find that the experimentally observed multistability is reproduced 
by the theoretical model in its original parameter regime characterized by 
canalized transfer. In experiments, we trace pattern development during the cell-
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shape changes that accompany cell growth, and we quantitatively assess the 
persistence and transition of patterns in relation to cell shape. These analyses 
reveal that Min patterns are remarkably robust against shape imperfections, size 
expansion, and even changes in cell axes induced by cell growth. Transitions 
between multistable patterns occur (albeit infrequently), driving the system from 
one stable oscillatory pattern to another. Altogether, this study provides a 
comprehensive framework for understanding pattern formation in the context of 
spatial perturbations induced by intracellular fluctuations and cellular growth. 
 
Results 
 
1. Symmetry breaking of Min patterns from homogeneity in live E. coli 
cells 
 
One of the most striking examples of the accessibility of multiple stable states 
observed in shaped E. coli cells is the emergence of different - transverse and 
longitudinal - Min oscillation modes in rectangular cells with identical dimensions 
(Wu et al, 2015b). The existence of a transverse mode has also been noted in 
reconstituted in vitro systems (Zieske & Schwille, 2014). In live cells, this 
phenomenon is most prominent in cells with widths of about 5 µm and lengths of 
between 7 and 11 µm (Wu et al, 2015b). To probe the emergence and stability of 
these different stable states, we began this study by monitoring the temporal 
evolution of Min protein patterns in deformable cells growing in rectangular 
microchambers. Improving upon our previous shaping and imaging method (see 
Materials and Methods), we recorded cytosolic eqFP670 (a near-infrared 
fluorescent protein) and sfGFP-MinD fluorescence signals over the entire course 
of cell growth (~ 6 to 8 h). Owing to the superior brightness and photostability of 
these two fluorescent probes (Wu et al, 2015a), we were able to image the cells at 
2-min intervals without affecting cell growth. Given that an oscillation cycle (or 
period) takes 68±13 sec (mean ± s.d.) at our experimental temperature (26°C), 
shorter intervals were subsequently used to capture the detailed dynamics within 
one oscillation cycle (see below).  
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We first grew cells with the above-mentioned lateral dimensions (7-11x5x1 µm3) 
in microchambers of the appropriate form. Of the 126 cells examined, almost all 
(n=121) showed clear MinD polar zones in all times prior to cell death or growth 
beyond the confines of the chambers, demonstrating the striking persistence of the 
oscillation cycles. In some cells, transition states between different patterns were 
also captured, which are described below (see Sections 5 and 6). Interestingly, 
imaging of the remaining 5 cells captured 1-2 frames in which the sfGFP-MinD 
fluorescence was distributed homogeneously (Fig. EV1, Movie EV1). Such a 
homogeneous state phenomenologically resembles the initial conditions chosen in 
the majority of chemical and theoretical studies on pattern formation. However, in 
the present case, Min proteins re-established oscillations exclusively in the 
transverse mode, irrespective of their preceding oscillation mode (Fig. EV1). Why 
the system should ”revert” to such a homogeneous state in the first place is 
unknown, although the rapid recovery of patterns leads us to speculate that it most 
probably results from a transient effect, such as a change in membrane potential 
or a rearrangement of chromosomes, rather than from a drastic depletion of ATP. 
Nonetheless, such an intermittent state provides a unique opportunity to study the 
emergence of patterns from a spatially uniform background.  
 
We therefore explored symmetry breaking by Min proteins over a larger range of 
cell sizes, and found that different cell dimensions gave rise to different patterns 
from an intermittent homogeneous state. Because homogeneous distributions of 
MinD are observed at low frequency, we manually searched for cells in such a 
state. Once targeted, such cells were subsequently imaged at short time intervals 
of between 5 and 20 seconds until an oscillation pattern stabilized. As shown in 
Fig. 1B-D, the uniform distribution of sfGFP-MinD seen in cells of different sizes 
and shapes became inhomogeneous, and always re-established stable oscillations 
within a few minutes. In the 6.5x2x1 µm3 cell shown in Fig. 1B, the homogeneous 
sfGFP-MinD signal first became concentrated at the periphery of the cell, 
indicating a transition from the cytosolic state to the membrane-bound form. At 
t=20 sec, a minor degree of asymmetry was observed. Within the next 30 sec, a 
clear sfGFP-MinD binding zone developed on the left-hand side of the top cell 
half. This zone persisted for 40 sec, until a new binding zone was established at 
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the top cell pole, which then recruited the majority of the sfGFP-MinD molecules. 
This pattern rapidly evolved into longitudinal pole-to-pole oscillations which 
lasted for the rest of the time course of our time-lapse imaging (10 min). In an 
8.8x2x1 µm3 cell (Fig. 1C), the initial membrane binding of sfGFP-MinD was 
accompanied by formation of several local patches of enhanced density (see e.g. 
t=30 sec), which went on to form one large patch that was asymmetrically 
positioned in relation to the cell axes (t = 110 sec). This MinD binding zone 
further evolved into a few cycles of asymmetric oscillations before converging 
into striped oscillations, with sfGFP-MinD oscillating between two polar caps and 
a central stripe. In the 8.8x5.2x1 µm3 cell (Fig. 1D) persistent transverse 
oscillations emerged within ~2.5 min after clusters of sfGFP-MinD had begun to 
emerge as randomly localized, membrane-bound patches from the preceding 
homogeneous state.  
 
To further examine the stability of the transverse mode, we tracked transverse 
oscillations in 5-µm wide cells with a time resolution of 20 sec. We found that 
these indeed persisted, with a very robust oscillation frequency, for at least 17 
cycles (i.e. the maximum duration of our experiment) under our imaging 
conditions (Fig. 1E and 1F, Movie EV2). This indicates that, once established, the 
transverse mode in these large cells is just as robust as the longitudinal pole-to-
pole mode in a regular rod-shaped E. coli cell. 
 
In order to probe the effect of MinE in the process of symmetry breaking, we 
engineered a strain that co-expresses sfGFP-MinD and MinE-mKate2 from the 
endogenous minDE genomic locus (see Materials and Methods). In shaped 
bacteria, MinE-mKate2 proteins oscillate in concert with MinD (Movie EV3). 
After the loss of oscillatory activities of both sfGFP-MinD and MinE-mKate2, no 
heterogeneous MinE pattern was observed prior to the emergence of MinD 
patches that dictate the axis of symmetry breaking (Movie EV2). This is in 
agreement with the previous finding that MinE relies on MinD for its recruitment 
to the membrane (Hu et al, 2002). 
 

Geometry adaption:
Multistability and geometry induced transitions of intracellular patterns 89



9 
 

The observed emergence of Min protein patterns from homogeneous states shows 
several striking features. First of all, after the early stage of MinD membrane 
binding, which appears to be rather uniform across the cell, the first patch with 
enhanced MinD density that forms is neither aligned with the symmetry axes nor 
does it show a preference for the highly curved polar regions. Secondly, Min 
patterns converge into a stable pattern within a few oscillation cycles. Emerging 
patterns align with symmetry axes, and exhibit a preference for the characteristic 
length range discovered previously (Wu et al, 2015b), confirming that the 
geometry-sensing ability of Min proteins is intrinsic and self-organized. The fast 
emergence and stabilization of Min protein patterns indicates an intrinsic 
robustness of Min oscillations and an ability to adjust oscillatory patterns 
dynamically to changes in cell geometry. 
 
 
2. Analytical and computational approach to probe the             
geometry-dependent symmetry breaking and pattern selection  
 
The experimental observations described above showed that symmetry breaking 
in spatially almost-homogeneous states can result in stable oscillation patterns of 
Min proteins. These spatiotemporal configurations are longitudinal and transverse 
oscillation patterns whose detailed features are dependent on the geometry of the 
system, in accordance with our previous study (Wu et al, 2015b). We therefore set 
out to gain a deeper understanding of the mechanisms underlying the phenomenon 
of multistability and the role of cell geometry in determining, regulating, and 
guiding the pattern formation process and the ensuing stable spatiotemporal 
patterns. To this end, we performed a theoretical analysis, building on previous 
investigations of symmetry breaking induced by the oscillatory Turing instability 
in bounded geometries (Halatek & Frey, 2012).  
 
The results presented in this Section are based on the observation that the 
selection of the initial pattern (which does not necessarily coincide with the final 
pattern) depends on both the Turing instability and the system’s geometry. While 
we focus on the latter aspect in the main text, we review in Box 1 how, more 
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generally, a Turing instability facilitates symmetry breaking in a planar geometry, 
which may help the reader to understand why the interconnection between 
geometry and the classical Turing mechanism is crucial. 
 
 
BOX 1: Symmetry breaking by the Turing instability in cellular geometries.  
 
The initial phase of a “symmetry-breaking” process in a nonlinear, spatially 
extended system is determined by a mode-selection mechanism. Consider an 
initial steady state of the corresponding well-mixed system that is weakly 
perturbed spatially, by some spatially white noise, for instance. For the planar 
geometry considered in textbooks and review articles, the initial state is typically 
a spatially uniform state (Cross & Hohenberg, 1993; Epstein & Pojman, 1998; 
Murray, 2003). The spectral decomposition of this state gives equal weight to all 
Fourier modes and, therefore, sets no bias for a particular mode. A system is 
referred to as being “Turing unstable” if any spatially non-uniform perturbation of 
a uniform equilibrium fails to decay (as expected due to diffusion) but instead 
grows into a patterned state. The collection of growth rates plotted as a function of 
the wavenumber of the corresponding Fourier modes is called the dispersion 
relation, and can be computed by a linear stability analysis. The mode with the 
fastest growth rate is called the critical mode. It sets the length scale of the initial 
pattern if there is no other bias for a different mode. Such a bias could, for 
instance, be provided by a specific initial condition that is non-uniform. 
 
It has been shown recently that, in the context of realistic biological systems, a 
well mixed state is generically non-uniform for reaction-diffusion systems based 
on membrane-cytosol cycling and an NTPase activity (Thalmeier et al, 2016). 
Hence, in this generic case, the symmetry of the stationary state is already broken 
– in the sense that it is adapted to the geometry of the cell. Consequently, any 
downstream instabilities – such as the Turing instability – will inherit the 
symmetry of this spatially non-uniform steady state. In this paper, we discuss how 
the analysis of the instability of such a non-uniform steady state differs from that 
of the traditional Turing instabilities of uniform states.   
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The non-uniformity of the well-mixed state in cell geometries (as noted in Box 1) 
is not the only salient difference relative to the classical case of a planar geometry. 
To perform linear stability analysis on a particular system, a set of Fourier modes 
must be derived that is specific for the boundary geometry of the system. Hence, 
both the well mixed state and the spectrum of Fourier modes are generically 
geometry-dependent. Only a few geometries are amenable to an analytical 
treatment. A recent advance was the derivation of eigenfunctions for reaction-
diffusion systems with reactive boundaries (the cell membrane) and diffusive 
bulks (the cytosol) in an elliptical geometry (Halatek & Frey, 2012). This 
geometry, being analytically accessible, permits broad, systematic parameter 
studies. At the same time, it shares the symmetries of interest with rod-shaped, 
circular, and rectangular cells. The eigenfunctions or modes of the ellipse are 
classified into even and odd functions by their symmetry with respect to 
reflections through a plane along the long axis; the lowest-order modes are shown 
in Fig. 2A. Even functions are symmetric, and odd functions are anti-symmetric 
with respect to long-axis reflection. As such, even functions correspond to 
longitudinal modes, and odd functions to transverse modes. More subtle than the 
separation into two symmetry classes, but no less significant, is the strict absence 
of any homogeneous steady states in elliptical systems undergoing cytosolic 
nucleotide exchange (Thalmeier et al, 2016). This can be understood intuitively 
from a source-degradation picture: Proteins detach from the membrane and 
undergo cytosolic ADP-ATP exchange. The concentration of ADP-bound MinD 
drops with increasing distance from the membrane as the diphosphate is replaced 
by ATP. This yields cytosolic concentration gradients at the membrane that 
determine the densities of membrane-bound proteins. In an equilibrium state 
confined to an elliptical geometry, the cytosolic gradients at the membrane cannot 
be constant, but will vary along the cell’s circumference. Hence, a uniform 
density at the membrane cannot be a steady state of the system, and instead the 
new basal state of the system is defined by the elliptical eigenfunction of the 
lowest order (Fig. 2A). This new steady state takes maximal and minimal values 
at the cell poles and at midcell, respectively. Note that the spatial variation of the 
density can be very small and may be very difficult to detect experimentally.   
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So what is the relevance of such a spatially non-uniform basal state? The answer 
lies in the nonlinear nature of the system. Nonlinearities are known to amplify 
weak signals. As discussed in Box 1, the selective amplification of parts of a noise 
spectrum is at the origin of symmetry breaking. The non-uniformity of the well-
mixed basal state implies that a spatially uniform initial condition set in a 
simulation will first adapt to the symmetry of this basal state, even in the absence 
of any spatial instability. Only after the basal state has been reached can the 
growth of (linearly) unstable modes begin. In the present case, the geometry of an 
ellipse imposes a preferred symmetry on the well-mixed state that resembles the 
symmetry of a striped oscillation (compare the 0th and 2nd even mode in Fig. 2A).  
Therefore, the initial symmetry adaptation process creates a bias in favor of the 
2nd even mode corresponding to striped oscillations, which thus dominates the 
initial growth of patterns. As shown in Fig. 2B, striped oscillations dominate the 
early phase of pattern formation in a wide variety of cell shapes. In a 6.5x2x1.1 
µm3 cell, the oscillatory stripe mode persists for about 3 oscillation cycles before 
the dynamics switch to pole-to-pole oscillations. By contrast, the oscillatory stripe 
mode persists indefinitely in cells with sizes of 9x2x1.1 µm3 and also 9x5x1 µm3. 
This latter observation differs from our corresponding experimental results in the 
same geometry, which had revealed the consistent emergence of a transverse 
mode after the system had passed through a homogeneous phase (Fig. 1D and Fig. 
EV1) (though striped oscillations were also observed in cells of this size (Wu et al, 
2015b)). Clearly, letting the computational system evolve from a uniform 
configuration introduces a bias towards even modes, which should disfavor the 
selection of transverse patterns. This difference led us to conclude that we needed 
to characterize in detail the physiological relevance of the bias imposed by the 
non-uniformity of the well mixed basal state, i.e. its robustness against other types 
of intracellular heterogeneities. This issue is addressed in the following.  
 
Realistic cellular systems contain many different factors that induce asymmetries 
and heterogeneities: the cytosol and the membrane are crowded, cell shape is 
never perfectly symmetrical, and the lipid distribution (and hence the membrane’s 
affinity for MinD) is sensitive to membrane curvature. All these intrinsic 
perturbations of the system’s symmetry can have an effect on the process of 
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pattern selection if multiple stable patterns are possible. Previous studies (Halatek 
& Frey, 2012) have suggested that stable Min patterns are not destabilized by 
spatial heterogeneities in the rate of attachment of MinD to the membrane, as the 
dynamics are dominated by the recruitment process. Here, faced with a 
multistable system, we asked whether heterogeneities in MinD membrane 
attachment might to some extent affect the initial selection process. To this end, 
we spatially perturbed the MinD attachment rate by superimposing a linear 
gradient. We systematically altered the slope and direction of this gradient, and 
investigated the effects on initial MinD dynamics. After a few oscillation cycles, 
we turned the perturbation off again and continued the simulation without any 
induced bias (i.e. with spatially uniform MinD attachment rates). This procedure 
provided us with a versatile means of generating a weak spatial perturbation that 
can break symmetry and is applicable to all cell geometries. In particular, it 
enabled us to quantify the effects of these intrinsic perturbations on pattern 
selection and compare them to the impact of the geometric bias discussed above.  
 
Indeed, our simulations showed that an initial MinD attachment gradient with a 
spatial peak-to-peak amplitude of the spatial variation of as little as 20% indeed 
compensates for the aforementioned geometric bias for striped oscillations (Fig. 
2C). To put this 20% variation in perspective, we note that the affinity of MinD 
for different lipids can vary by up to one order of magnitude (Mileykovskaya et al, 
2003; Renner & Weibel, 2012). Figure 2C shows the onset of pattern formation 
obtained from computer simulations based on the same geometry as that in Fig. 
1B. In contrast to the simulations in Fig. 2B, the MinD attachment gradient is now 
initially aligned diagonally. Two observations stand out: Firstly, we find that the 
asymmetric template does not impede the formation of stripes. Hence the template 
does not dictate the symmetry of possible patterns. Secondly, in the 5 µm wide 
cells with the weak initial gradient, the transverse mode wins the competition 
against stripe oscillations, which contrasts with the outcome shown in Fig. 2B. 
We accordingly conclude that the geometric bias for striped oscillations is rather 
weak and is presumably of little physiological relevance. However, in the absence 
of any intrinsic heterogeneity, pattern selection obtained from computer 
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simulations in cellular geometries will inevitably overemphasize the effect of the 
geometric bias.  
 
We therefore sought a solution, discussed in the following sections, which 
explicitly incorporates spatial heterogeneities that compensate for the intrinsic 
bias, thus effectively restoring unbiased pattern selection based on the Turing 
instability alone. 
 
3. Computing pattern stability in multistable regimes  
 
Now that we have learned how the initial pattern selection process can be affected 
by spatial perturbations, we will address how and to what extent the existence and 
stability of different patterns is affected by the system’s geometry, and which 
molecular processes in the Min reaction circuit control how the system adapts to 
cell geometry.  
 
Geometry sensing requires the existence of a characteristic length scale. Previous 
theoretical analysis of Min oscillations has shown that such a length scale is 
accompanied by synchronization of the depletion and initiation of old and new 
polar zones, respectively (Halatek & Frey, 2012). A key insight was that a 
relatively high rate of MinD recruitment (relative to MinE recruitment) is 
essential for initiation and amplification of the collective redistribution of MinD 
that leads to such synchronization (Halatek & Frey, 2012). For a broad range of 
MinD recruitment rates, we found that oscillatory pole-to-pole and striped 
oscillations could coexist in cells whose length exceeds a certain limit (Halatek & 
Frey, 2012; Wu et al, 2015b). These earlier studies suggested that the ratio of 
MinD to MinE recruitment rates is the parameter that allows for geometry-
dependent multistability in rectangular cells in which longitudinal and 
transverse patterns can coexist. The experimental observation of a transverse 
mode (Wu et al, 2015b) supports the previous theoretical suggestion that circular 
and aberrant patterns in nearly spherical cells (Corbin et al, 2002) are caused by 
the additional destabilization and persistence of odd (transverse) modes in an 
elliptical geometry with increased cell width (Halatek & Frey, 2012). This implies 
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that the circular and aberrant patterns found experimentally in cells with low 
aspect ratios, such as nearly spherically shaped cells (Corbin et al, 2002), and the 
observation of transverse patterns in rectangular shapes (Wu et al, 2015b), are 
attributable to the same mechanism, namely the additional destabilization of odd 
modes. The key difference between the nearly spherical and rectangular cases is 
that, in the former, the choice of modes is reversible (i.e. neither mode is 
definitively selected), such that the axis of oscillation switches aberrantly, 
whereas in rectangular cells the high aspect ratio of the geometry leads to the 
mutually exclusive selection of either longitudinal (purely even) or transverse 
(purely odd) patterns, but both symmetries of the pattern are initially accessible 
(i.e. the system exhibits multistability). 
 
To gain further insight into pattern selection, we first computed and compared the 
growth rates of even and odd modes in a simplified 2D elliptical geometry, and 
then proceeded to test the results of this linear stability analysis by computer 
simulations that take the full 3D cell geometry into account. In these computer 
simulations the pattern stability was then probed by the application of spatial 
heterogeneities in the MinD attachment rate. 
 
As a first step we performed a linear stability analysis in the elliptical geometry. 
To characterize the difference between growth rates of even (longitudinal) and 
odd (transverse) modes, we introduce a quantity which we term the non-
degeneracy. This is defined as the Euclidian distance between the growth rates of 
the first three even and the first three odd modes (cf. Materials and Methods 
section; note that the notion ‘growth rates of modes’ is not to be associated with 
the physiological growth rates of cells). Figure 3A shows how the non-
degeneracy depends on cell geometry and on the MinD recruitment rate. In 
agreement with our previous analysis, nearly spherical cells are almost degenerate 
with respect to even and odd modes (Halatek & Frey, 2012).  The effect of a 
larger MinD recruitment rate is to extend this region of near degeneracy towards 
larger aspect ratios. Hence, when rates of MinD recruitment are high, we can 
expect that longitudinal and transverse modes have similar growth rates even in 
rectangular cells. These results were then tested in 3D computer simulations. 
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For simulations of realistic 3D cellular geometries, we employ a spatially varying 
MinD attachment rate, similar to the approach described in Section 2. This allows 
us to probe the stability of patterns against spatial perturbations, and thereby to 
test the (nonlinear) stability of the oscillatory pattern. The simulation strategy is 
schematically shown in Fig. 3B. First, we align the gradient of the MinD 
attachment profile with one symmetry axis and initialize the simulation. After a 
few oscillation cycles, we turn the MinD attachment gradient off and allow the 
simulation to proceed for another ~40 oscillation cycles. If the pattern was stable 
(i.e. a local attractor of the reaction-diffusion dynamics), it remained aligned with 
the initially selected axis. In these cases, we used the final state as the initial 
configuration and ran the simulation for another ~40 oscillation cycles, now with 
reactivated perturbation of the MinD attachment rate and with the gradient 
inclined at an angle to the initial oscillation axis. This final step was intended to 
probe the stability of the pattern against spatial heterogeneities that could 
potentially switch pattern symmetry from longitudinal to transverse or vice versa. 
We repeated this simulation to cover all possible alignments (i.e. angles from 0 to 
90 degrees) and slopes of the MinD attachment perturbation (i.e. spatial variations 
from 0 to 100% of the average MinD attachment rate). Together, these 
simulations enabled us to quantify the stability of each initialized pattern based on 
the degree of perturbation that it can sustain without losing its alignment to the 
initial axis. We performed this stability analysis for a broad range of 
experimentally probed geometries as well as recruitment rates. Note that we only 
distinguished transverse oscillations from longitudinal oscillations, but not 
between pole-to-pole and stripe modes within the longitudinal oscillations. In all 
probed configurations (cell geometries, spatial heterogeneities), we observed that 
longitudinal patterns are stable, independently of the MinD recruitment rate (Fig. 
3C). In contrast, the number of cell geometries that support stable transverse 
patterns turned out to be strongly dependent on the relative rate of MinD 
recruitment (Fig. 3D). In agreement with the above linear stability analysis in the 
2D elliptical geometry, we found that an increasing MinD recruitment rate 
extends the domain of stable transverse patterns towards cell geometries with 
larger aspect ratios. Furthermore, our simulations show that the degree of pattern 
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stability is surprisingly high. Almost all configurations were able to withstand 
more than 90% of all applied perturbations (slopes and angles) to the MinD 
attachment profile (Fig. 3C and D).  
 
These findings lead to several important conclusions. First, the simulation data 
show that stability analysis in the two-dimensional elliptical geometry is able to 
account well for the patterns of behavior observed in realistic three-dimensional 
geometries. Second, our findings indicate that a gradient in the MinD attachment 
rate affects the initial selection of the axis of oscillation by guiding the dynamics 
into the basin of attraction of the corresponding pattern. Moreover, spatial 
gradients of MinD attachment rate typically cannot drive a system from one 
pattern into the orthogonal alternative once the system has settled down into a 
stable oscillation. This suggests that the spatiotemporal patterns are in general 
very robust against spatial heterogeneities in the MinD attachment rate. The above 
analysis provides a way to probe the basins of attraction of different oscillatory 
patterns systematically, which will be introduced and discussed in the following. 
 
4. Basins of patterns are controlled by geometry and recruitment 
strength 
 
In the preceding Section, we demonstrated that highly stable longitudinal and 
transverse patterns can be initialized in a broad range of geometric configurations. 
Knowing that these patterns exist, we turned to the question of which patterns can 
be plausibly reached by the system dynamics, i.e. without having to tune the 
initial conditions in any particular fashion. To approach this issue, we began our 
simulations with a homogeneous initial configuration. As discussed in Section 2, 
adaptation to the non-uniform well-mixed state (adaptation to geometry) 
introduces a preference for striped oscillations, and hence a bias for even patterns. 
To include other potential effects that weakly break the system’s symmetry (but 
not the symmetry of the stable patterns, cf. Section 3) and neutralize the weak bias 
for stripe selection, we imposed a fixed, weak spatial gradient on the rate of MinD 
attachment. The relative magnitude of the variation was again set to 20%, which, 
as mentioned above, is well below the typical range of variation in MinD’s 
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affinity for different lipids in the E. coli membrane. We examined all alignments 
of the MinD attachment gradient interpolating between purely longitudinal and 
purely transversal states. After ~100 oscillation cycles, we recorded the final 
pattern, distinguishing between transverse pole-to-pole, longitudinal pole-to-pole, 
and longitudinal striped oscillations. Following this procedure, we separately 
studied the effects of varying geometry and MinD recruitment rates on 
multistability and pattern selection. 
 
To study the effect of system geometry, we fixed the value of the MinD 
recruitment rate to a high value (kdD=0.1) such that the number of coexisting 
stable longitudinal and transverse patterns is largest. Sampling over all alignments 
of the gradient led to the distributions of the final patterns shown in the 
histograms in Fig. 4A. Cell length was varied from 7 µm to 10 µm, cell width 
from 3 µm to 5 µm. We observed a critical cell length of between 9 and 10 µm for 
the selection of striped oscillations. This coincides with the length scale for which 
the model parameters were initially adjusted in the 2D elliptical geometry 
(Halatek & Frey, 2012). Surprisingly, this length scale translates directly to 
realistic 3D cell shapes. We found that the fraction of oscillatory striped patterns 
decreased in favor of transverse patterns as the cell width was increased. Overall, 
these results show that cell width, and not cell length, is the main determinant for 
the onset of transverse modes. All these observations are remarkably consistent 
with previous experimental data based on random sampling of live E. coli cells 
after they have reached a defined shape (Wu et al, 2015b). Given this level of 
agreement, we expected to gain further insight into the molecular origin of the 
observed pattern distribution by studying its dependence on the kinetic parameters 
in the theoretical model.  
 
To investigate the effect of MinD recruitment rate, we focused on data from the 
cell sizes that show the greatest number of coexisting patterns, as determined by 
the previous numerical stability analysis. The corresponding histograms are 
shown in Fig. 4B. The cell lengths for which the data was collected were 9 and 10 
µm, and the cell width varied from 1.1 to 5 µm. In narrow cells we recovered our 
previous results on the onset of striped oscillations: The fraction of stripes 
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increased with the MinD recruitment rate (Halatek & Frey, 2012). Remarkably, 
this was no longer the case when cells reached a width of 5 µm: Here, the fraction 
of stripes was zero below some threshold MinD recruitment rate, and took on a 
constant value above this threshold. On the other hand, the fraction of transverse 
patterns did increase with MinD recruitment rate in these 5 µm wide cells, as does 
that of the stripe fraction in narrower cells. Hence, we conclude that multistability 
is indeed promoted by high rates of MinD recruitment. We attribute this feature to 
the ability of the reaction-diffusion system to operate in the regime in which a 
characteristic length scale is established through synchronized growth and 
depletion of spatially separated polar zones (“canalized transfer”) (Halatek & Frey, 
2012). Notably, the same mechanism that enables striped oscillations in 
filamentous cells also facilitates transverse oscillations in wide cells. 
 
In all examples discussed so far, the height of the cell was fixed at 1.1 µm, well 
below the minimal span required to establish a Min oscillation (Halatek & Frey, 
2012). Therefore, no oscillations occur along the z-axis.  While the present study 
focuses on competition between longitudinal and transverse patterns, we also used 
our computational model to explore patterns along the z-direction. In a 
representative simulation with a 3.1 µm high chamber (cell dimensions 5x4x3.1 
µm3) we found oscillations aligned with the z-axis in addition to oscillations 
aligned with the x- and y-axes. This shows that increased headroom in the third 
dimension extends the number of accessible stable patterns even further. 
 
5. Persistent directionality traps Min oscillations in a stable state 
during cell growth 
 
Experiments (Fig. 1B-F) and simulations have shown that both longitudinal and 
transverse modes are stable over a range of rectangular shapes once they have 
been established. However, it is still unclear how patterns evolve during cell 
growth, which can involve an increase in volume of over 10-fold. Particularly 
intriguing is the fact that different patterns emerge during the growth of cells that 
reach the same final shape. This prompted us to study the development of patterns 
throughout the growth history of a cell. We captured around 200 successive MinD 
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binding patterns per cell at intervals of 2 min during the geometrical changes that 
accompanied cell growth. Here, we focused on the cells that reach a final width of 
between 5 and 5.5 µm and a final length of 8-10 µm, taking advantage of their 
very long growth history of 6-8 h and the previously detected co-existence of two 
longitudinal modes and a transverse mode in such cells. The final data set 
comprised 97 cells. 
 
Spatially constrained by microchambers, the cells adopted growth patterns that 
can be categorized into several types, based on the difference in alignment of the 
cell axes with the axes of the chambers (Fig. 5A, D, and G). Under the combined 
effects of exposure to A22 and cephalexin, cells are initially elliptical in shape 
(Fig. 5A and 5D). When cell widths were small, Min oscillations almost 
exclusively aligned along the longest elliptical axis of the cell, with a certain 
degree of lateral-axis fluctuation (Fig. 5B and E). As a result, with respect to the 
rectangular chamber axes, the initial Min patterns were aligned in accordance with 
the orientations of the cells. Fig. 5A and D, for example, show two cells whose 
long axes are initially aligned with the long axis and short axis of the chambers, 
respectively. In Fig. 5B, Min oscillations remained aligned close to the vertical 
(long) axis for the entire 7.8 h of cell growth, from an initial size of 2.1x1.5x1 
µm3 (at t = 0) to a final size of 9x5x1 µm3 (Fig. 5A; for other examples see Movie 
EV4). In contrast, Min oscillations in Fig. 5E aligned close to the horizontal (short) 
axis of the chamber over the whole 8 h taken to reach the same dimensions (Fig. 
5D; for more examples see Movie EV4). Note that in the latter scenario, the long 
and short axes exchanged identity at t=5.8 h, but this did not affect the persistence 
of horizontal Min oscillations (Fig. 5D and E). These observations suggest that 
Min oscillations have a strong tendency to remain faithful to their existing 
orientation for as long as the length scale allows. In addition, some pattern 
transitions were observed during instances of drastic switching of cell axes that 
are associated with a low aspect ratio of the cell shapes (Fig. 5G, Movie EV5), 
similar to examples shown previously (Corbin et al, 2002; Männik et al, 2012). 
This phenomenon was explained previously by invoking theoretical predictions 
that low aspect ratios should lead to a transient coupling between longitudinal and 
transverse modes (Halatek & Frey, 2012) and Min patterns in these shapes are 
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more sensitive to stochastic perturbations (Fange & Elf, 2006; Schulte et al, 2015). 
The above scenarios show that pattern multistability can emerge through 
adaptation of persistent Min oscillations during different modes of cell growth. 
 
To quantitatively characterize the evolution of Min patterns during cell growth, 
we wrote a data analysis program that automatically quantifies cell shape and Min 
patterns (see Materials and Methods, Fig. EV2). We used Feret’s statistical 
diameters to parameterize cell shape. Feret’s diameter measures the perpendicular 
distance between two parallel tangents touching the opposite sides of the shape 
(Walton, 1948). This can be measured along all angles, and the maximum and 
minimum values are used here to define the smallest and largest cell dimensions. 
In general, the minimum Feret diameter aligns with the short (symmetry) axis of 
the cell; the maximum Feret diameter aligns with the long axis of a near-elliptical 
shape and the diagonal of a near-rectangular shape. We defined the angle of 
oscillations by connecting the center of the MinD patch to the cell center. Note 
that all angles were calculated relative to the horizontal plane. With these 
measurements, we can now compare the length scale that Min oscillations adopt 
with the lengths of the cell’s dimensions (top panels in Fig. 5C, F and H). We can 
also correlate the angle of the Min oscillations with the planes along which these 
cell dimensions are measured (bottom panels in Fig. 5C and 5F). Indeed, Fig. 5C 
and Fig. 5F show that Min patterns aligned with either the long (symmetry) axis 
or the short (symmetry) axis of the cell shapes, albeit with some degree of 
fluctuation. In addition, the frequent switching of Min oscillation angles in cells 
with low aspect ratios is well captured by the automated analysis (Fig. 5H). 
 
For statistical analyses of the robustness of Min oscillations against cell-axis 
switching, we evaluated Min patterns 20 min before and 20 min after the time 
point at which cell width reaches the limit of 5 µm imposed by the width of the 
chamber (marked by the black arrows in all plots in Fig. 5C and F). At the 
beginning of this period, all Min patterns were in longitudinal pole-to-pole mode. 
Over the following 40 min, 41 of the 97 cells analyzed showed no large-scale axis 
shift, with the long axes remaining above 75° and the short axes below 15°. In all 
these cells, Min oscillations were sustained along the vertical (long) axes, as 
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shown in Fig. 5A-C. Maintenance of the oscillations along the long axis was also 
observed in 18 cells in which the long axis did not undergo a drastic switch but 
the short axis did. In total, 60% of the cells exhibited continuous alignment with 
the long axis during adaptation of the cell to the width of the chamber. The other 
40% of the cells showed a switch in the mode of oscillations, including 28 cells 
that followed a similar pattern of growth to those shown in Fig. 5D-F and 10 cells 
that grew as in Fig. 5G-H.  
 
These observations reveal several features. First of all, a robust long-axis 
alignment of Min patterns in narrow cells determines the initial oscillation 
direction. Second, the directions of established oscillations are sustained for as 
long as the corresponding cell dimension along this direction falls within the 
characteristic symmetry and scale preferred by the oscillation mode (e.g., a 5-µm 
horizontal dimension in Fig. 5D). Third, Min oscillations show a notable degree 
of tolerance to asymmetries in cell shape during growth. These properties largely 
agree with our previous conclusion that the propensity to adopt a given pattern is 
set by the length scale and the symmetry of the cell shape (Wu et al, 2015b). 
Hence, in a cell shape that allows for multistability, the selection of Min pattern 
mode depends largely on (and thus is deducible from) the growth history of the 
cell. 
 
 
6. Experimental observations of pattern transitions between multi-
stable states 
 
In large cells, 5 µm in width, we observed transitions from longitudinal pole-to-
pole modes to transverse modes and vice versa (Fig. 6A and B, Movie EV6). 
These transitions occurred after the long and short axes of the cell had aligned 
with the respective axes of the chambers due to confinement, and were 
characteristically different from the transitions caused by low aspect ratio and 
shape asymmetry shown in Fig. 5G. For instance, Fig. 6A shows a transition from 
the longitudinal to the transverse mode. This transition initiated with a large and 
unexpected displacement of the MinD polar zone from the longitudinal axis of the 
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cell (9x5x1 µm3) after several hours of persistent longitudinal oscillations. This 
perturbation gradually shifted the axis of oscillation towards the short axis of the 
cell over the course of 10 oscillation cycles. An example of the inverse transition 
is shown in Fig. 6B for a 6x5x1 µm3 cell. We note here that this type of 
spontaneous rearrangement of the oscillation mode occurred rather infrequently, 
considering the 6- to 8-h lifetime of a bacterium on the chip. To distinguish this 
type of transition from the previously discussed transitions induced by small 
aspect ratio or apparent asymmetry (cf. Fig. 4H), we restricted the further 
statistical analysis to data from the growth phase after the point at which the 
maximum cell width of 5 µm had been attained. This phase spanned the last 2-3 h 
of cell growth, i.e. encompassed 120-180 Min oscillation cycles. We found that 
the majority of cells that eventually came to occupy a volume of 9x5x1 µm3 (n=47, 
excluding the few cells that went through a transient homogeneous state such as 
that shown in Fig. 1B) only exhibited one transition in their Min patterns (Fig. 
6C). Transitions rarely occurred more than once in any given cell. On average, 0.3 
transitions occurred per cell per hour during growth from a size of 6x5x1 µm3 to a 
size of 9x5x1 µm3, and this observation holds true for cells grown in both 
nutrient-rich and nutrient-poor media (see Materials and Methods). The average 
number of transitions per cell did however increase in nutrient-poor medium (see 
Fig. 6C, inset), which correlates well with the fact that it took them longer to fill 
out the custom-designed shapes. Altogether, the rarity of such transitions again 
confirms that different pattern modes are robust against intracellular fluctuations.  
 
Automatic angle tracking of the sfGFP-MinD clusters reveals that most of the 
transitions between longitudinal and transverse modes involve an intermediate 
state in which the axis of oscillation deviates from the symmetry axes of the cell 
shape (Fig. 6D). This suggests that the transitions are due to a strong perturbation 
of a stable oscillation that pushes the system into the domain of attraction of 
another stable oscillatory mode. Most of these gradual transitions took place on 
time scales of 4-8 min in both nutrient-rich and nutrient-poor growth medium (Fig. 
6E and inset).  
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The types of transitions occurring in these cells are length dependent (Fig. 6F).  In 
our data set, transitions from transverse to longitudinal mode were only found in 
cells with lengths around 6 and 7 µm, whereas the inverse transition was only 
observed at cell lengths of around 8 to 9 µm. In such cells, the longitudinal striped 
oscillation mode was observed to evolve from either longitudinal or transverse 
pole-to-pole oscillations at lower frequencies. 
 
To explore the effect of cell width on pattern stability, we carried out long-term 
time-lapse imaging of cells shaped into rectangles with lengths of 9 to 10 µm and 
widths of 3 to 6 µm (Fig. 6G). Unlike previous experiments, in which we had 
randomly sampled cells that had already attained the desired shape and imaged 
them at 2-min intervals (Wu et al, 2015b), here we were able to determine the 
final pattern before cell death or before cells grew out of the chamber. In 
agreement with the trend seen in previous experiments, increase in cell width 
resulted in a reduction of the fraction of cells displaying oscillations in the 
longitudinal pole-to-pole mode and a corresponding increase in the proportion of 
the transverse mode. Strikingly, we find that the incidence of oscillatory stripe 
patterns decreases dramatically as cell width increases from 4 to 5 µm. This 
feature was also well captured by the simulation data in Fig. 4A. Hence, while the 
precise pattern mode in a cell depends on various factors including growth history 
and large intracellular perturbations, the statistical trend in pattern composition 
with respect to cell size is compatible with the basins of attractions probed 
through small spatial perturbations in our simulations (Fig. 4A).  
 
When cell widths reached more than 5 µm, more complex oscillation modes were 
observed, including diagonally striped, zig-zag and other asymmetric patterns. 
These modes often appeared to represent transient, intermediate states between 
two symmetric modes (Fig. 6H, Movie EV6), but could occasionally persist for 
several cycles before cell death or overgrowth, as presented in the statistics in Fig. 
6G. Thus increasing cell width expands the number of intermediary metastable 
states available for transitions between stable oscillation modes (Fig. 6H). In 
addition, a transverse-stripe mode has also been observed (albeit infrequently) in 

Geometry adaption:
Multistability and geometry induced transitions of intracellular patterns 105



25 
 

cells with widths of slightly over 6 µm (Movie EV6), further demonstrating that 
the 3- to 6-µm adaptive range dictates mode selection in Min pattern formation. 
 
Discussion 
 
Combining experiments and theory to study the time evolution of Min oscillations 
in shaped bacteria, this work sheds new light on the origin of multistability in 
biological Turing patterns and on transitions between different patterned states. 
The experiments described here show how a stable pattern can emerge from a 
homogeneous state via direct symmetry breaking. Moreover, these patterns 
exhibit persistent adaptation during cell growth, as well as dynamic transitions 
induced by strong spatial perturbations. Systematic stability analyses of 
multistable states in silico revealed that the underlying Min pattern dynamics is 
set by (i) the sensitivity of initial pattern selection to cellular heterogeneity and (ii) 
the robustness of the established oscillations in the face of perturbations. Overall, 
this study establishes a framework for understanding Turing reaction-diffusion 
patterns in the context of fluctuating cellular environments and boundary growth. 
Any study on the emergence of patterns within a cellular boundary must take 
cellular heterogeneity into account. Homogeneous initial states have been broadly 
used to probe the emergence of spatial patterns in computational simulations. 
While such an approach has been shown to capture the symmetry breaking of 
unbounded reaction-diffusion systems, we demonstrate that computing pattern 
selection in bounded systems from such a homogeneous initial state can lead to an 
intrinsic (but physiologically irrelevant) bias. For example, in this study, a bias 
towards striped modes impedes computer simulations that employ a homogeneous 
initial state from reaching a transverse pattern, even if the stability of such a 
transverse pattern is comparable to that of a longitudinal pattern. The new 
theoretical methods outlined in this study provide a framework for realistically 
predicting symmetry breaking in biological systems through linear stability 
analysis in an elliptical geometry, and probing the basins of attraction of different 
stable patterns by numerical simulations. Our examples demonstrate the 
importance of taking spatial heterogeneity into account when studying symmetry 
breaking within biological boundaries. 
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Multistability in Min patterns is not determined by either kinetic parameters or 
cell geometry alone, but originates from the interdependence between the 
geometric properties of the cell’s form and the kinetic regimes of the pattern-
forming system. Some limited examples of multistability in reaction-diffusion 
systems have previously been analyzed in very large systems (Ouyang et al, 1992), 
where the system size exceeded the length scale of the pattern by two orders of 
magnitude and the system geometry was rotationally symmetrical. Here, the 
various stable states of Min patterns are defined with reference to the axes of cell 
shape, and boundary confinement is thus required by definition, without being a 
sufficient condition (see below), for the emergence of the class of multistability 
phenomenon characterized in this study. For instance, an increase of cell width 
beyond 3 µm is required to enable the transverse mode to be sustained in addition 
to a longitudinal pole-to-pole oscillation. Most interestingly, our theoretical 
analysis of the underlying model shows that increasing the size of a Turing-
unstable system alone does not in itself facilitate the existence of multiple stable 
patterns that can be reached from a broad range of initial conditions. In our 
previous theoretical work we had found that the emergence of a pole-to-pole 
oscillation in a short cell does not generically imply the existence of a stable 
striped oscillation with a characteristic wavelength in a long filamentous cell 
(Halatek & Frey, 2012). Instead, the emergence of a characteristic length scale 
(which becomes manifest in striped oscillations) is restricted to a specific regime 
of kinetic parameters, where growth and depletion of spatially separated polar 
zones become synchronized such that multiple, spatially separated polar zones can 
be maintained simultaneously. A key element among the prerequisites that permit 
this regime to be reached is that the nonlinear kinetics of the system (MinD 
cooperativity) must be particularly strong. Here we find the same restriction on 
the parameters for the emergence and selection of stable transverse patterns in 
addition to longitudinal pole-to-pole and striped oscillations. For example, weak 
nonlinear (cooperative) kinetics can readily give rise to longitudinal Min 
oscillations in 2-µm-long cells, but cannot sustain a transverse mode of oscillation 
in cells as wide as 4 µm. These findings hint at an exciting connection between 
multistability, the ability of patterns to sense and adapt to changes in system 
geometry, and the existence of an intrinsic length scale in the underlying reaction-
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diffusion dynamics. Remarkably – and contrary to the treatments in the classical 
literature – the existence of an intrinsic length scale is not generic for a Turing 
instability per se. One example is the aforementioned selection of pole-to-pole 
patterns in arbitrarily long cells where MinD recruitment is weak. In this case, 
irrespective of the critical wavenumber of the Turing instability, the final pattern 
is always a single wave traveling from pole to pole. The selection of a single polar 
zone is also characteristic in the context of cell polarity (Klünder et al, 2013; 
Otsuji et al, 2007), where it has been ascribed to the finite protein reservoir and a 
winner-takes-all mechanism. It will be an interesting task for further research to 
elucidate the general requirements for the emergence of an intrinsic length scale in 
mass-conserved reaction-diffusion systems. Here we have defined the 
requirements for geometry sensing and multistabilty in the underling model for 
Min protein dynamics. 
The dynamic relationship between multistable states is determined by the 
robustness of individual stable states when exposed to large-scale intracellular 
fluctuations. Our computer simulations suggest that the Min system can tolerate 
various degrees of spatial perturbations imposed by a heterogeneous profile of 
MinD’s binding affinity for the membrane. This is consistent with our 
experimental observation that a Min oscillation mode can persist in a living cell 
for tens of oscillation cycles, even within cell shapes where other stable states 
exist. Such persistence was also found to tolerate a large degree of asymmetry in 
cell shape, except for cases with low aspect ratios. Multistable states in the Min 
system are in essence independent stable states that do not toggle back and forth 
except under the influence of large spatial perturbations. This is experimentally 
verified by our observation that instances of switching between multistable states 
are extremely rare in large rectangular cells. These properties show that biological 
patterns driven by a reaction-diffusion mechanism can exhibit behaviors similar to 
classical bistable systems, in which two states switch from one to the other upon 
surmounting an activation energy barrier.  
Pattern selection among multistable states can be dependent on cell growth. 
Turing patterns have rarely been analyzed in the context of growth, either 
experimentally or computationally, largely due to technical challenges. A recent 
example is the study of digit formation during embryonic development 
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(Raspopovic et al, 2014), where a 3-node Turing network was simulated in a 2D 
growing mesh to verify experimental findings. In the present paper, our study of 
the Min oscillations throughout the growth history of the cells revealed a 
remarkable persistence in in the face of boundary changes induced by cell growth. 
This phenomenon could not be deduced from previous studies on the Min system, 
which showed various degrees of fluctuations in cells with certain degrees of 
asymmetry and enlargement (Corbin et al, 2002; Fange & Elf, 2006; Hoffmann & 
Schwarz, 2014; Männik et al, 2012; Schulte et al, 2015; Varma et al, 2008). 
Indeed, although Min oscillations do fluctuate in our experimental settings, they 
rarely undergo drastic switches even during periods of growth that increase the 
cell volume by up to 20 fold. One essential finding of this study is the persistent 
directionality of the oscillations in the case where the long axis and short axis of a 
cell have switched during adaptation to the chamber boundaries. This provides 
strong evidence that the Min patterns do not respond to boundary changes per se, 
but are dictated by the history and the scale of the cell dimensions. With such a 
strong tolerance for physiological and geometrical fluctuations, the patterns are 
thus found to be largely predictable when the growth history of the cell is known, 
even without explicit computer simulations involving stochastic effects and 
boundary growth.  
Nonlinear kinetics and boundary confinement are general to Turing patterns in 
cells and organisms (Goryachev & Pokhilko, 2008; Klünder et al, 2013; Kondo & 
Miura, 2010; Raspopovic et al, 2014; Vicker, 2002), implying that the 
multistability phenomenon can be probed in other reaction-diffusion systems as 
well. Using the framework employed in this study to understand the effect of 
fluctuations and growth in these other systems may facilitate the discovery of 
general rules governing the spatial adaptation of patterns in biology. 
 
 
Materials and Methods 
 
Bacterial strains 
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In this study, all MinD and MinE proteins or their fluorescent fusions were 
expressed from the endogenous genomic minDE locus. Bacterial strain BN1590 
(W3110 [ΔleuB :: eqFP670 :: frt aph frt, ΔminDE :: sfGFP-minD minE :: frt]), 
constructed and characterized previously (Wu et al, 2015a; Wu et al, 2015b), was 
used for all the experiments in this study, with the exception of the co-imaging of 
MinD and MinE.  
 
The double-labeled minDE strain used in this study, FW1919 (W3110 [ΔminDE :: 
exobrs-sfGFP-minD minE-mKate2 :: frt]), was constructed using the λ RED 
recombination method (Datsenko & Wanner, 2000) after we had observed that 
plasmid-borne MinDE fusions are prone to overexpression in long-term 
experiments, and that imaging of CFP rather easily leads to photobleaching and 
photodamage to the cells. To obtain this strain, strain FW1554 (W3110 
[ΔminDE :: exobrs-sfGFP-minD minE :: frt]) (Wu et al, 2015a) was transformed 
with pKD46, and made electro-competent. A linear fragment containing the 
chloramphenicol gene amplified from pKD3 was transformed into the resulting 
strain to replace the frt scar, thus yielding strain FW1626 (W3110 [ΔminDE :: 
exobrs-sfGFP-minD minE:: cat]). FW1626 was then transformed with pKD46, 
made competent, and transformed with a linear fragment containing a 
mKate2::aph frt sequence amplified from plasmid pFWB019 to produce strain 
FW1639 (W3110 [ΔminDE :: exobrs-sfGFP-minD minE-mKate2:: aph frt]). 
FW1639 was then cured of kanamycin resistance using a pCP20 plasmid as 
described previously (Datsenko & Wanner, 2000) to yield the final strain FW1919. 
This strain grows in rod shape in both M9 minimal medium and LB rich medium, 
and produces no minicells, indicating that MinE-mKate2 is fully functional. 
However, both its fluorescence intensity and photostability in the cells are much 
lower than those of sfGFP-MinD, and thus less suitable for long-term imaging 
than the latter. 
 
Growth conditions 
 
The M9 rich medium used previously (Wu et al, 2015b) and in the majority of the 
experiments in this study (unless specified) contained M9 salts, 0.4% glucose, and 
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0.25% protein hydrolysate amidase. The M9 poor medium contained M9 salts, 0.4% 
glucose, and 0.01% leucine. At 30°C, the doubling time of BN1590 cells during 
exponential growth was 104±9 minutes in M9 poor liquid medium, and 69±3 
minutes in M9 rich liquid medium. 
 
For cell shaping, cells were first inoculated into M9 liquid medium supplemented 
with 4 µg/ml A22 and incubated at 30 °C for 3.5 h (rich medium) or 6 h (poor 
medium). The agarose pad used to seal the microchambers contained M9 medium 
supplemented with 4 µg/ml A22 and 25 µg/ml cephalexin as described previously. 
All cell-shaping experiments were carried out at 26 °C. 
 
Cell shaping 
 
The cell sculpting method was used as described previously (Wu & Dekker, 2015; 
Wu et al, 2015b), with the following modifications. Prior to inoculation of the 
cells, the cover glass with the PDMS structures was treated with O2 plasma for 10 
sec to make the surface hydrophilic, which facilitates wetting of the surface and 
allows for more homogeneous inoculation of the cells into the microchambers. 
After the cells had settled into the microchambers, these were sealed with a small 
piece of agarose pad, as described previously (Wu et al, 2015b). We then poured 1 
ml of warm agarose onto the existing agarose, which prevented the agarose from 
drying out during the long time course of the imaging. These two modifications in 
the cell-sculpting process increased the throughput of the shaping method, as well 
as minimizing the movement of the cells in the chambers due to drag of the drying 
agarose.  
 
Fluorescence microscopy 
 
Fluorescence imaging was carried out with the same set-up as previously 
described (Wu et al, 2015b), but the following modifications were introduced to 
facilitate long-term tracking. We used an upgraded perfect focus system (PFS3) 
on the Nikon Ti microscope, which has a larger z-range than the PFS2 system. 
While PFS3 was optimized for detecting the glass-water interface, we find that it 
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can be used to locate the interface between glass and PDMS, which was then used 
to correct for the drift in z over time and keep the cells in focus. The PDMS layer 
with a thickness of 5-10 µm is within the sampling range for the PFS3, such that 
we can define the position of the cell with reference to to the glass-PDMS 
interface. To track sfGFP-MinD during the whole course of cell growth, we used 
a time interval of 2 min. To monitor in detail the symmetry-breaking process that 
permits sfGFP-MinD patterns to emerge from homogeneity, we took fluorescence 
images sfGFP-MinD at intervals of 5 - 20 sec, and only imaged the cytosol before 
and after this acquisition period. To examine the stability of the transverse 
oscillations, we used a 20-sec time interval. To sample the effect of cell width on 
the final oscillation patterns in cells, we imaged every 5 min to obtain a larger 
dataset per experiment. Despite the fact that sfGFP is relatively resistant to 
photobleaching, it is critical to use low-intensity light for excitation in order to 
avoid photodamage to the cells, which reduces oscillation frequencies and 
eventually causes cell lysis.  
 
Image analysis 
 
The cytosolic fluorescence images of the cells were processed in Matlab as 
described previously for boundary determination (Wu et al, 2015b). The binary 
image was used to define the lengths of the Feret diameters along the full 360° 
angular coordinates. From these data, the maximum and minimum Feret 
diameters were determined. The center of the MinD cluster was determined as 
described previously using a Matlab script, and its angle was determined from its 
location relative to the cell center. The Feret diameter along this angle was used to 
compare the oscillation distance with the Feret diameters. Note that we use the 
Feret diameter along the oscillation angle as a measure of how well oscillations 
align with long or short axes, but this does imply that it represents a fair estimate 
of the distance traversed by each MinD protein. All the angle values extracted 
above are folded to between 0° and 90° due to the multifold symmetry of 
rectangles. Note that this MinD tracking method is restricted to the analysis of 
two-node oscillations and is not suitable for striped oscillations. The analyses of 
the final patterns in cells with various widths were carried out manually. After 
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publication of the manuscript, the Matlab script used in this study will be made 
available on the webpage [http://ceesdekkerlab.tudelft.nl/downloads/].  
 
Analytical and numerical methods 
 
All simulations were performed using the FEM method as implemented in the 
software Comsol Multiphysics 4.4. The linear stability analysis was performed 
with Wolfram Mathematica 10 in elliptical geometry as introduced in (Halatek & 
Frey, 2012). We define the non-degeneracy of even and odd modes as: 

𝑑 = 𝑅𝑒 𝜎&' − 𝑅𝑒 𝜎&)
*+

&,-
 

where 𝑅𝑒 𝜎&' 	and 𝑅𝑒 𝜎&)  denote the growth rate of the i-th even and odd mode 
respectively. 
 
The model is based on bulk-boundary coupling through a reactive boundary 
condition as introduced in (Halatek & Frey, 2012). For the cytosol, model 
equations read: 
 

𝜕0𝑢22 = 𝐷2𝛻*𝑢22 − 𝜆𝑢22	
𝜕0𝑢26 = 𝐷2𝛻*𝑢26 + 𝜆𝑢22	
𝜕0𝑢8 = 𝐷8𝛻*𝑢8 

 
Here 𝑢22 denotes the density of cytosolic MinD-ADP, 𝑢26 cytosolic MinD-ATP, 
and 𝑢8 cytosolic MinE; 𝛻 the Nabla/Del operator in the cytosol (coordinate-free); 
𝐷2 the diffusion coefficient for cytosolic MinD, 𝐷8 the diffusion coefficient for 
cytosolic MinE, and 𝜆 the cytosolic nucleotide exchange rate.  
At the membrane we have 
 

𝜕0𝑢9 = 𝐷:𝛻:*𝑢9 + 𝑘2 + 𝑘92𝑢9 𝑢26 − 𝑘98𝑢9𝑢8	
𝜕0𝑢9' = 𝐷:𝛻*𝑢9' + 𝑘98𝑢9𝑢8 − 𝑘9'𝑢9' 
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Here 𝑢9  denotes the density of membrane-bound MinD, and 𝑢9'  membrane-
bound MinDE complexes; 𝛻:  the Nabla/Del operator on the membrane 
(coordinate-free); 𝐷:  the diffusion coefficient for the membrane, 𝑘2  the MinD 
attachment rate constant, 𝑘9'  the MinDE detachment rate, 𝑘92  the MinD 
recruitment rate constant, 𝑘98 the MinE recruitment rate constant. Membrane and 
cytosolic dynamics are coupled by a system of reactive boundary conditions: 
 

𝐷2𝛻<𝑢22 = 𝑘9'𝑢9' 
𝐷2𝛻<𝑢26 = − 𝑘2 + 𝑘92𝑢9 𝑢26 
𝐷8𝛻<𝑢8 = −𝑘98𝑢9𝑢8 + 𝑘9'𝑢9' 

 
Here 𝛻<  denotes the (outer) normal derivative at the boundary of the cytosol 
(membrane). Unless noted otherwise, all system parameters are taken from 
(Halatek & Frey, 2012), cf. listing in the Appendix. 
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Figures 

 
Figure 1. Symmetry breaking of Min protein patterns in vivo.  
 
A. Schematic showing Min protein patterns in a defined geometry originating 
from 1) a dynamic instability arising from an equilibrium state, or 2) dynamic 
transitions from a pre-existing pattern associated with cell growth. Green and red 
particles represent MinD and MinE proteins, respectively. The green gradient 
depicts the MinD concentration gradient.  
B-D. Examples of Min protein patterns emerging from nearly homogeneous initial 
conditions in E. coli cells of different sizes. Lateral dimensions (in µm) from top 
to bottom: 2x6.5, 2x8.8, and 5.2x8.8 respectively. The gray-scale images show 
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cytosolic near-infrared fluorescence emitted by the protein eqFP670 at the first 
(left) and last (right) time points. The color montages show the sfGFP-MinD 
intensity (indicated by the color scale at the bottom right) over time. The scale bar 
in panel B corresponds to 5 µm. Red arrows show the oscillation mode at the 
respective time point.  
E. Two early and two late frames depicting sfGFP-MinD patterns in a cell 
exhibiting stable transverse oscillations. The images share the scale bar in B. 
F. Difference in sfGFP-MinD intensity between the top half and bottom half of 
the cell plotted against time.  
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Figure 2 Pattern emergence upon spatial perturbation.  
 
A. Even and odd Mathieu functions in an elliptical geometry. The 0.even mode 
shows the symmetry of the basal state of the system. Here no homogeneous 
steady state exists. Note the similarity between the 0th and the 2nd even mode.  
B. Simulations of Min pattern formation from an initially homogeneous state. 
Dimensions of the cells shown are 6.5x2x1 µm3, 9x2x1 µm3, and 9x5x1 µm3. All 
cells show an initial striped pattern, which persists in both cells of 9 µm length 
throughout the simulation period.  
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C. Simulations analogous to the experiments shown in Fig. 1B, with the same cell 
dimensions as in Fig. 2B. The left-hand column depicts the spatially perturbed 
MinD attachment profile, showing gradients along the diagonal lines of the 
rectangles. With these attachment profiles, the Min distributions in the three cells 
quickly evolve into longitudinal, striped, and transverse patterns, respectively.  
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Figure 3. Computing stability in multistability regimes.  

 
A. Two plots that show the non-degeneracy of even and odd modes in an 
elliptical geometry for varying cell geometry and MinD recruitment rate. 
The degeneracy (light blue area) increases with the MinD recruitment rate.  
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B. Schematic representation of the simulation process used to probe the 
stability of longitudinal and transverse patterns. The system is initialized 
with a homogeneous configuration and the gradient of the MinD 
attachment rate is aligned with the major or minor axis to direct pattern 
selection. After initialization the MinD attachment rate is equalized to 
allow the system to relax into the initialized state. If the initialized pattern 
persists in the absence of a stabilizing gradient, the gradient is reapplied to 
deflect the pattern from its preset alignment and study its stability vis-a-vis 
spatial inhomogeneities that break its symmetry. The stability towards all 
possible deflections with linear MinD attachment profiles is probed and 
the persistence of the initialized pattern is checked.   
C-D. Stability diagrams of the simulation procedure outlined in (B) for 
longitudinal (C) and transverse (D) patterns. White areas represent 
configurations where the respective mode was not initialized. The grey 
values show the fraction of all simulations (with different attachment 
templates) in which the respective pattern mode is sustained.  
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Figure 4. Basins of attraction predicted from systematic perturbations of patterns 
with shallow attachment gradients.  
 
A. Relative distribution of the final patterns (indicated on the right) observed after 
sampling all alignment angles of the MinD attachment template from 0 to 90 
degrees. The MinD recruitment rate was set to a constant value kdD = 0.1. The data 
shows the increase in the incidence of multistability as the cell size is increased 
beyond minimal values for cell length and cell width. 
  
B. Fractions of the final patterns in cells of 9- and 10-µm length after sampling all 
alignment angles of the MinD attachment template from 0 to 90 degrees. The data 
shows that increasing the MinD recruitment rate facilitates multistability.  
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Figure 5. The effect of cell-shape change during growth on the stability of Min 
protein patterns.   
 
A. Cytosolic fluorescence during growth of a cell from a small elliptical form into 
a large rectangular shape. Numbers in red indicate time in hours. Illustrations 
show the positions and orientations of the cell in the first and last time frames. 
Green and blue lines indicate the maximum and minimum Feret diameters, 
respectively.  
B. sfGFP-MinD patterns during the growth of the cell shown in A. Illustrations 
indicate the cell boundaries and oscillation angles observed in the first and last 
frames (not to scale).  
C. Quantitative data obtained from the cell shown in A and B. The maximum and 
minimum Feret diameters (green and blue), and the measured MinD oscillations 
(red) were expressed in terms of length (top) and angle (bottom) and plotted 
against time. The number of cells that fit this category was 41/97. Arrows indicate 
the time when cell width reached the chamber width of 5 µm.  
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D-F. Data are presented as in A-C for another cell that showed persistent 
oscillations along the horizontal axis throughout growth. The number of cells that 
fit this category was 28/97. 
G. Time-lapse images of sfGFP-MinD that reveal stochastic switching of patterns 
in a cell with an asymmetric shape and a low aspect ratio. White arrows indicate 
the oscillation axes.  
H. The angles of the maximum and minimum Feret diameters (green and blue), 
and the measured MinD clusters (red) for the cell shown in panel G plotted 
against time. The number of cells that fit this category was 10/97. All scale bars 
correspond to 5 µm. 
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Figure 6. Transitions between various modes of Min protein patterns.  
 
A. Time-lapse images showing the transition from a longitudinal pole-to-pole 
mode to the transverse mode. Scale bar, 5 µm.  
B. Time-lapse images showing the transition from a transverse mode to a 
longitudinal pole-to-pole mode.  
C. Bar plot showing the distribution of the number of transitions. Inset: Data from 
experiments carried out under nutrient-poor conditions in which growth rates are 
reduced. 
D. Representative time-course of a change in the mode of sfGFP-MinD oscillation. 
The black line is a sigmoidal fit. The dashed black lines indicate 15° and 75° and 
the dashed red line indicates 45°.  
E. Bar plot showing the time scale of the switch in the oscillations. Inset: Data 
from experiments carried out in nutrient-poor conditions. 
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F. Bar plots showing the relative numbers of the indicated transitions that occur at 
different cell lengths. All cells have a width of 5 µm.  
G. Distribution of final patterns in cells of the indicated widths as indicates, and 
lengths of 9-10 µm.  
H. Time-lapse images of various modes of transitions between patterns. Cell sizes 
from top to bottom are respectively 10x2x1, 10x6x1, 9x5x1, 10x4x1 µm3. Note 
that the cells are scaled differently. On the right is an illustration showing Min 
pattern transitions through intermediate states. 
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Extended View Figures and Movies 

 

 
Fig. EV1. Disruption and re-emergence of Min patterns in cells of 5 µm in 
width. Scale bar = 5 µm. The red boxes show the near homogeneous state. The 
color scale indicates MinD concentration.  
 
 

0’      2’       4’       6’       8’      10’     12’     14’     16’    18’     20’

min

max

Geometry adaption:
Multistability and geometry induced transitions of intracellular patterns 133



53 
 

Fig. EV2. Illustrations of maximum/minimum Feret diameters.  
A. From left to right showing the minimum Feret diameter and its angle, the 

maximum Feret diameter and its angle, the angle of the MinD polar zone, 
and the Feret diameter corresponding to this angle. 

B. Two examples of Feret diameters and angles in the cell shown in Fig. 2D-
F 

 
Movie EV1. Disruption and re-emergence of Min patterns in cells of 5 µm in 
width imaged at 2-min intervals.  
 
Movie EV2. Robust transversal oscillations imaged at 20-sec intervals. 
 
Movie EV3. Co-imaging of sfGFP-MinD and MinE-mKate2 during a symmetry-
breaking process.  
 
Movie EV4. Time evolution of patterns in cells that adopt different pattern modes 
due to different constraints on their growth, imaged at 2-min intervals. 
 
Movie EV5. An example of stochastically switching Min patterns in cells with 
low aspect ratios. 
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Movie EV6. Various examples of pattern transitions in cells with different 
dimensions. 
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NUMERICAL STABILITY ANALYSIS OF MIN OSCILLATION PAT-

TERNS

This section describes how the stability of Min oscillation patterns in rectangular-

shaped 3D cell geometries is determined numerically.

We analyse the stability with respect to spatial variations in the MinD at-

tachment rate. For the sake of simplicity such variations will be restricted to

linear profiles of the attachment rate kD,

kD(x, y, z) = k̄D

(
1 + 2s

x cos a+ y sin a

|lx cos a+ ly sin a|

)
. (1)

Here lx and ly denote cell length and width (|x| < lx/2, |y| < ly/2), k̄D the

mean attachment rate, s characterizes the slope of the profile (0 ≤ s ≤ 1) and a

denotes the direction of rate variation with respect to the x-axis (0 ≤ a ≤ π/2).

In order to investigate how the stability of oscillation patterns depends on

cell size, geometry and the MinD recruitment rate kdD, we define 18 different

rectangular-shaped cell bodies with varying length and width, but identical

height 2r. The cell lengths were increased from 4µm to 10µm, the cell width

from 3µm to 5µm, both in steps of 1µm. For each of these geometries, we

perform the following procedure independently for all MinD recruitment rates

kdD ∈ {0.03, 0.035, . . . 0.1µm3/s}:

1. The system is prepared in a transversal oscillation pattern in y-direction

by solving the nonlinear equations (c.f. Materials and Methods) numer-

ically for 200s with an attachment rate variation in y-direction using

parameters s = 1, a = π/2 in Equ. (1).

2. Subsequently the spatial variation of kD is removed by setting s = 0

and the pattern is observed for a simulation time of 2000s with spatially

homogeneous attachment rate.

We then determine if the pattern remains stable during this period by

comparing the evolution of the concentration uDD at two points p1 and

p2 in the cell interior which are located axisymmetrically with respect

to the y-axis. We here choose p1 = [0.95(−lx/2 + r), 0, r/2] and p2 =

[0.95(lx/2− r), 0, r/2].

If the pattern is stable, uDD(p1, t) and uDD(p2, t) will, apart from small

numerical errors, not deviate from each other. However, if the pattern

exists only transiently and switches into a longitudinal oscillation, the

concentration in p1 and p2 will loose its symmetry and the signals will

2
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deviate.

We therefore apply the following criterion for stability:

max
t∈{0,100s,...,2000s},i∈{1,2}

{ |uDD(p1, t)− uDD(p2, t)|
uDD(pi, t)

}




≥ α⇒ pattern not stable

< α⇒ pattern stable

(2)

Eq. 2 states that a pattern is only considered stable if the maximum

relative deviation of the concentration uDD between p1 and p2 over the

solution interval does not exceed a threshold α. By inspection we find

that α = 0.05 is a reasonable choice.

An example for the application of Eq. (2) is shown in Fig. 1.

3. In the case that a stable pattern is found in the previous step, we use

its final system state as initial configuration for independent simulations

in which the stability is tested against perturbations given by spatial

attachment rate variations with different slopes s and directions a (cf.

Eq. (1)).

Specifically, for each combination

(s, a) ∈ {0.2, 0.4, . . . 1.0} × {0, pi/18, . . . , pi/2− pi/18}

we compute the solution for an interval of 2000s and determine the type

of the final pattern. We here distinguish between three different pattern

types: transversal pole-to-pole oscillation, longitudinal pole-to-pole os-

cillation and longitudinal stripe-shaped oscillations. The following recipe

describes how this evaluation is automated:

• The three pattern types are distinguishable by their different spa-

tial symmetries. We therefore measure and compare the values of

all concentrations u ∈ {uDD, uDT , uE} on 6 different straight lines

3

138 Geometry adaption:
Multistability and geometry induced transitions of intracellular patterns



located in the cell interior (cf. Fig. 2) :

γ1 = {(x, y, r/2) : x = −0.95(lx/2− r) ∧|y| ≤ 0.95(ly/2− r)},

γ2 = {(x, y, r/2) : x = 0 ∧|y| ≤ 0.95(ly/2− r)},

γ3 = {(x, y, r/2) : x = 0.95(lx/2− r) ∧|y| ≤ 0.95(ly/2− r)},

η1 = {(x, y, r/2) : |x| ≤ 0.95(lx/2− r) ∧y = −0.95(ly/2− r)},

η2 = {(x, y, r/2) : |x| ≤ 0.95(lx/2− r) ∧y = 0.95(ly/2− r)}.
(3)

• Using the notation 〈u〉γ ≡ |γ|−1
∫
γ
uds, we define the following

three measures for the symmetry of the pattern, again for all u ∈
{uDD, uDT , uE}:

pL(u) =
|〈u〉γ1 − 〈u〉γ3|
〈u〉γ1uγ3

.

pT (u) =
|〈u〉η1 − 〈u〉η2|
〈u〉η1uη2

,

pS(u) =
|〈u〉γ1uγ3 − 〈u〉γ2|
〈u〉γ1uγ2uγ3

.

(4)

The line integrals in 〈u〉γ are here approximated by the value of u

at three points, the two endpoints and the midpoint of the line γ.

The concentrations are evaluated at the last time step, t = 2000s.

In case of a longitudinal pole-to-pole oscillation, the signals at γ1
and γ3 oscillate in opposition, resulting in a large pL. Similarly,

transversal pole-to-pole oscillations yield large values of pT . Fi-

nally, in case of a longitudinal stripe pattern (with two nodes of

oscillation) the concentrations at γ1 and γ3 are in phase with each

other and in opposition with the signal at γ2. Therefore large values

of pS characterize longitudinal stripe oscillations.

• Taken these considerations together, we conclude that the type of

the oscillation pattern can be determined reliably by the following

4
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rule:

if p(u) = max{pL(u), pT (u), pS(u)} =




pL(u) ⇒ long. pole-to-pole

pT (u) ⇒ trans. pole-to-pole

pS(u) ⇒ long. stripe.

(5)

To obtain a single, final result for the pattern type we take the vote

over the independent evaluations for u ∈ {uDD, uDT , uE}. The un-

specified case that the three concentrations yield all three different

pattern types did not occur.

For fixed cell geometry, this procedure firstly provides us with a threshold for

the MinD recruitment rate k∗dD above which the initiated transversal oscillation

persists in step 2. Secondly, for each kdD > k∗dD one obtains thresholds in

direction and slope of the perturbation above which the pattern switches.

Interchanging the role of cell length and cell width enables us analyse the

stability of longitudinal oscillations analogously to steps 1 to 3. Since all non-

perturbed longitudinal oscillations are found stable in step 2 for the considered

range of kdD, no critical recruitments rates are determined in this case.

The numerical solution of the model equations (c.f. Materials and Methods)

was computed using Comsol Multiphysics 4.4. To reduce the number of neces-

sary simulations for the parametric sweep in step 3, we utilised the observation

that the stability of a pattern decreases with the slope of the perturbation and

(partly) skipped parameter sets where the stability or de-stability could be

inferred from previous runs.

CHARACTERIZATION OF MIN OSCILLATION PATTERNS

The goal of this study is to investigate how the occurrence of specific types

of oscillation patterns depends on cell geometry and MinD recruitment rate

kdD. As opposed to the previous section, the Min system is not prepared in

a specific solution. Instead, the initial condition is a spatially homogeneous

configuration.

We again impose a linear variation of the attachment rate kD with different

slopes and directions according to Eq. (1). The solution is calculated for

0 ≤ t ≤ 4000s. We subsequently determine the final pattern that the Min

5
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FIG. 1: Example for a transversal oscillation pattern that is found unstable

using Eq. (2). The concentrations uDD(p1, t) and uDD(p2, t) deviate

considerably at t ≈ 1600s, since the pattern changes into a longitudinal

oscillation (a). The relative deviation therefore exceeds the threshold α and

the pattern is found unstable (b). Parameters:

lx = 8, ly = 3, kdD = 0.07µm3/s

system settles into with the procedure explained in step 3 of section , in which

we evaluate the concentrations at the last time step t = 4000s.

This analysis is performed independently for the cell geometries and MinD

recruitment rates reporded in Fig. 4 of the main text, and for parameters

a ∈ {0, π/10, . . . , π/2} and s = 0.2 in the attachment rate profile.
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order to determine the type of the final oscillation pattern. The contour

indicated in black is the shape of a cell with parameters lx = 7 and ly = 4 in

topview. The straight lines γi and ηi for pattern determination are indicated

in red and green, respectively. The position of the lines in z-direction is z = r/2.
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Parameter Value Description

DD 16µm2s−1 Cytosolic Diffusion coefficient MinD

DE 10µm2s−1 Cytosolic Diffusion coefficient MinE

Dm 0.013µm2s−1 Membrane Diffusion coefficient MinDE

λ 6s−1 Cytosolic nucleotide exchange rate

kde 0.5s−1 MinDE Detachment rate

kD 0.1µms−1 MinD attachment rate constant

kdD 0.1µm3s−1 MinD recruitment rate constant

kdE 0.435µm3s−1 MinE recruitment rate constant

CD 602/µm3 total MinD density

CE 301/µm3 total MinE density

TABLE I: Parameter values used in numerical simulations

8
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V Geometry adaption: Pattern formation
without instability

This chapter is based on the following publication:

Geometry induced protein pattern formation
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Abstract

Protein patterns are known to adapt to cell shape and serve as spatial templates

that choreograph downstream processes like cell polarity or cell division. But how

can pattern-forming proteins sense and respond to the geometry of a cell, and what

mechanistic principles underlie pattern formation? Current models invoke mech-

anisms based on dynamic instabilities arising from nonlinear interactions between

proteins but neglect the influence of the spatial geometry itself. Here we show

that patterns can emerge as a direct result of adaptation to cell geometry, in the

absence of dynamical instability. We present a generic reaction module that al-

lows protein densities robustly to adapt to the symmetry of the spatial geometry.

The key component is an NTPase protein that cycles between nucleotide-dependent

membrane-bound and cytosolic states. For elongated cells we find that the protein

dynamics generically leads to a bipolar pattern, which vanishes as the geometry

becomes spherically symmetrical. We show that such a reaction module facilitates

universal adaptation to cell geometry by sensing the local ratio of membrane area to

cytosolic volume. This sensing mechanism is controlled by the membrane affinities

of the different states. We apply the theory to explain AtMinD bipolar patterns in

∆EcMinDE E. coli. Due to its generic nature, the mechanism could also serve as a

hitherto unrecognized spatial template in many other bacterial systems. Moreover,

the robustness of the mechanism enables self-organized optimization of protein pat-

terns by evolutionary processes. Finally, the proposed module can be utilized to

establish geometry-sensitive protein gradients in synthetic biological systems.
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INTRODUCTION

Protein patterns serve to initiate and guide important cellular processes. A

classic example is the early patterning of the Drosophila embryo along its

anterior-posterior axis [1]. Here maternal morphogen gradients initiate a com-

plex patterning process which subsequently directs cell differentiation. How-

ever, protein patterns play a regulatory role even at the single cell level. For

example, they determine cell polarity and the position of the division plane.

In the yeast Saccharomyces cerevisiae, the GTPase Cdc42 regulates cell polar-

ization which in turn determines the position of a new growth zone or bud site.

This pattern-forming process is driven by the interaction between a set of differ-

ent proteins that cycle between the plasma membrane and the cytoplasm [2, 3].

In the rod-shaped bacterium Escherichia coli, Min proteins accumulate at the

ends of the cell to inhibit the binding of the division proteins [4, 5]. Here, the

main player in the pattern-forming process is the ATPase MinD. It attaches to

the membrane in its ATP-bound state and recruits MinE and further MinD-

ATP from the cytosol [6]. Cycling of proteins between membrane and cytosol

is mediated by the action of MinE, which stimulates the intrinsic ATPase ac-

tivity of MinD and thereby initiates its detachment. The ensuing oscillatory

pattern directs the division machinery to mid-cell, enabling proper cell division

in two viable daughter cells.

In all of these processes, regulatory proteins establish chemical gradients or pat-

terns that reflects aspects of cell shape. But how is it achieved in the absence

of an external template? Many possible mechanisms have been proposed and

they are by no means fully classified yet [7, 8]. Establishing a pattern involves

definition of preferred accumulation points and requires that the symmetry of

the homogeneous state is broken. In Bacillus subtilis, there is good evidence

suggesting that DivIVA recognizes negative membrane curvature directly by

a mechanism which is intrinsic to this cell division protein [7, 9]. In contrast,

enrichment of MinD at the cell poles in E. coli is an emergent property of

the collective dynamics of several proteins. As shown in Refs. [10–16], the

non-linear dynamics of the Min system leads to a polar pattern, which oscil-

lates along the long axis and is clearly constrained by cell geometry. A clear

disadvantage of such self-organized symmetry-breaking through a dynamical

instability is that the kinetic parameters must be fine-tuned in order to allow

the establishment of a stable polar pattern.

Here we show that cell geometry itself can enforce a broken symmetry under

generic conditions without any need for fine-tuning. We introduce a class of

geometry-sensing protein systems whose only stable state is a spatial pattern
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that is maintained by energy consumption through an ATPase or GTPase

(NTPase). The proposed mechanism is based on a generic property of diffu-

sion: The probability that a protein diffusing through the cytosol will strike

(and attach) to the membrane scales with the area of membrane accessible

to it. Thus, close to the poles of a rod-shaped cell most of the trajectories

available lead to the membrane. Close to mid-cell, where the membrane is al-

most flat, about half of the the possible paths lead away from the membrane.

However, on its own, this mechanism only produces transient patterns on the

membrane, as the system approaches a stable, uniform equilibrium in finite

time [17]. Moreover, patterns only emerge from specific initial conditions. In

this paper we ask: How can this generic property of diffusion be complemented

by a minimal set of biomolecular processes to robustly maintain patterns? We

show that the NTPase activity of a single protein that cycles between mem-

brane and cytosol is sufficient to achieve this goal. Our analysis shows that an

inhomogeneous density profile is established on the membrane in the generic

case where the affinities of NTP-and NDP-bound forms differ. Moreover, these

membrane-bound patterns are amplified if the proteins are able to bind cooper-

atively to the membrane (e.g. due to dimerization). This mechanism is highly

robust because the stable, uniform equilibrium is simply replaced by a unique,

stable patterned state. In particular, the mechanism involves no dynamical

instability and requires no fine-tuning of parameters.

Experimental support for the proposed mechanism comes from E. coli mutants

in which both EcMinD and EcMinE were replaced by chloroplastic AtMinD

(MinD homologue from Arabidopsis) [18]. With this single ATPase [20] the

system establishes a bipolar pattern along the long axis, rescuing the ∆MinDE

mutant from cell division pathologies. Mutation studies of the Walker-A bind-

ing module show that AtMinD (unlike EcMinD) can form dimers on the mem-

brane even in its ADP-bound form [19–21], suggesting that both forms can

cooperatively bind to the membrane. Our study shows that such coopera-

tivity leads to a bipolar pattern along the long axis of the cell, as observed.

Furthermore, we suggest that due to its generic nature, the binding module

might also play an essential role in other bacterial pattern-forming systems.

A GENERIC REACTION MODULE FOR SENSING OF CELL GEOM-

ETRY

We consider a reaction module comprised of a single type of NTPase which cy-

cles between an NDP-bound (PNDP) and a NTP-bound (PNTP) state (Fig.1A).
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Both forms are allowed to freely diffuse in the cytosol and the membrane with

diffusion constants Dc and Dm, respectively. For the biochemical reaction ki-

netics we assume that (i) cytosolic PNDP undergoes nucleotide exchange with

a rate λ; (ii) both protein species can bind to the membrane with respective

attachment rates ω+
D and ω+

T ; (iii) in addition to direct membrane attachment,

each protein species can also bind cooperatively to the membrane, forming

homodimers, with corresponding recruitment rates kdD for PNDP and ktT for

PNTP; (iv) hydrolysis of PNTP triggers detachment with rate ω−
t which is thus

converted into cytosolic PNDP; (v) membrane-bound PNDP is released to the

cytosol with detachment rate ω−
d . For a mathematical formulation in terms of

reaction-diffusion equations please refer to Eqs.(1-6) in the SI Appendix.

This reaction module serves as a model for the bipolar pattern of AtMinD

in E. coli cells [18]: AtMinD is an ATPase [20] which has been reported to

dimerize [20, 21]. This process thus provides for cooperative membrane bind-

ing. Unlike EcMinD [19], AtMinD dimerizes even when its Walker-A binding

module is inactivated [20], locking the protein in its ADP-bound state. This

strongly suggests that also the ADP-bound form of AtMinD exhibits coopera-

tive membrane binding, as we have assumed in the above reaction scheme by

introducing a recruitment rate kdD for PNDP. Overall, there is strong evidence

that AtMinD shows the same interactions with the membrane as EcMinD but

with additional cooperative membrane binding in its ADP-bound state.

If not mentioned otherwise, we use the following model parameters, which

are set to experimental values acquired for E. coli if available. The diffusion

constants in the cytosol and on the membrane are set to Dc=16µm2/s and

Dm=0.013µm2/s, respectively [22, 23]. The nucleotide exchange rate is set to

λ=6s−1 [15] to meet the lower bound of 3s−1 [22]. The kinetic parameters,

are chosen to be of the order of 1µm/s for attachment, 1s−1 for detachment

and 0.1µm2/s for recruitment [15]; for the specific values see Table I in the

SI Appendix. In the numerical studies, the cell shape is modeled as a two-

dimensional ellipse. (Remark: For the sake of clarity we will still use the

terms of cytosolic volume and membrane area instead of areas and lines.). This

reduced geometry has the same basic symmetries as the real geometry of an E.

coli cell. Importantly, in contrast to a one-dimensional model, it fully accounts

for the different dimensionalities of cytosol and membrane. This will turn out

to be essential for the ability of the system to generate protein patterns that

reflect cell geometry. The overall protein density is set to a physiologically

typical value of the order of 1µM [24]. For a cell which is 5µm long and has a

width of 1µm this gives a fixed protein number of about 2000 MinD molecules.

Specifically, in our numerical studies we set the protein density in the bulk
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to be ρ=500µm−2 if all proteins are in the cytosol. To accommodate changes

in cell size, we keep this mean density constant and change the number of

proteins as appropriate.

RESULTS

The impact of cell geometry on protein gradients in elongated cells

We performed a numerical analysis of this reaction module, paying partic-

ular attention to the effect of varying the cell geometry and the degree of

cooperativity in membrane binding (Fig.1B). Our simulations show that in

elongated cells the protein density on the membrane is always inhomogeneous

and reflects the local cell geometry. Indeed, one can show analytically that the

homogeneous steady state ceases to exist as one passes from circular to ellip-

tical geometry (c.f. SI Appendix). We observe two distinct types of pattern:

membrane-bound proteins either accumulate at mid-cell or form a bipolar pat-

tern with high densities at both cell poles. The polarity of these patterns is

quantified by the ratio of the density of membrane-bound proteins located at

the cell poles (upole) to that at mid-cell (umid-cell): P=upole/umid-cell. First, we

investigated the impact of preferetial recruitment of either PNTP or PNDP to the

membrane, defined as R=(kdD−ktT )/(kdD+ktT ), on cell polarity. We find that

proteins accumulate at the cell poles (P>1) if there is a preference for cooper-

ative binding of PNDP (R>0). Moreover, the polarity P of this bipolar pattern

becomes more pronounced with increasing R. This scenario corresponds to the

strongly bipolar pattern of AtMinD observed in mutant E. coli cells lacking

EcMinD and EcMinE [18]. In contrast, when cooperative binding favors PNTP

(R<0), proteins accumulate at mid-cell (P<1). Thus, the sign of the recruit-

ment preference R for a protein in a particular nucleotide state controls the

type, while its magnitude determines the amplitude of the pattern. Next, we

investigated how cell geometry affects the pattern, while keeping R fixed. Upon

varying the length of the long axis, L, while keeping the length of the short axis

fixed at `=1µm, we find that the aspect ratio L/` controls the amplitude of

the pattern, but leaves the type of pattern unchanged. With increasing eccen-

tricity of the ellipse, the respective pattern becomes more sharply defined; for

a spherical geometry the pattern vanishes. In summary, cell geometry controls

the definition of the pattern, and the preference for membrane recruitment of

a certain nucleotide state determines the location on the cell membrane where

the proteins accumulate and how pronounced this accumulation becomes.
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Why geometry influences patterning

Our finding that recruitment is a major determinant of cell polarity suggests

that there is some underlying intrinsic affinity of the two protein species for

either the cell poles or the mid-zone. This affinity can not be encoded in the

attachment or recruitment rates alone, since these are position-independent.

Instead, it must emerge from the interplay between these reactions, cell geom-

etry, and diffusion. To uncover the underlying mechanism we first performed a

numerical study from which all cooperative membrane binding processes were

omitted, such that the dynamics became linear. Interestingly, we observed that

although the overall protein density is homogeneous in the cytosol (see SI Ap-

pendix), PNDP and PNTP are nevertheless spatially segregated, accumulating in

the vicinity of the cell poles and close to mid-cell, respectively (Fig.2A). This

observation, the origin of which will be discussed later, explains how patterns

of membrane-bound proteins arise: These inhomogeneities in protein densities

in the cytosol serve as seeds for the polarization of the protein pattern on the

membrane and their respective impact is regulated by the attachment rates ω+
D

and ω+
T . The pattern of the protein species with the higher membrane affinity

determines the type of the pattern (Fig.2C). If PNDP has the larger mem-

brane affinity, a bipolar pattern emerges, whereas one observes enrichment of

membrane-bound proteins at mid-cell if attachment of PNTP dominates. Note

that the detachment rates have the inverse effect (c.f. SI Appendix).

Next, to analyze the additional nonlinear effects of membrane recruitment we

considered a situation, illustrated in Fig.2D, where both nucleotide states have

the same membrane affinity. As a result the steady-state membrane density

becomes uniform (see SI Appendix). Since cooperative membrane binding ef-

fectively increases the affinity of a protein species just like an increase in the

respective attachment rate, we expected that membrane patterns could be

restored by switching the recruitment processes back on. Indeed, we found

a strong increase in polarity upon raising the recruitment rate kdD for fixed

ktT=0 (Fig.2E). Moreover, for large recruitment rates, not only does the rela-

tive level of the two species on the membrane change, but the pattern of PNDP

becomes highly polar (Fig.2F). The reason is the positive feedback facilitated

by cooperative membrane binding: In membrane regions facing a cytosolic re-

gion with an enhanced PNDP concentration, binding leads to a locally increased

concentration which in turn increases the net attachment rate. Recruitment

strongly amplifies the slight dominance of PNDP already existing at the cell

poles in the absence of cooperative membrane binding, and thereby leads to

the observed strongly bipolar PNDP membrane pattern.
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In summary, the above analysis shows that the mechanism underlying the

pattern-forming process is intrinsic to the protein dynamics: An inhomoge-

neous protein density in the cytosol together with unequal membrane affinities

of the two forms leads to a spatially nonuniform accumulation of membrane-

bound proteins. Nonlinear dynamics in the form of cooperative membrane

binding (recruitment) serves to amplify these weakly nonuniform profiles into

pronounced membrane patterns.

Cytosolic reaction volume determines the pattern

After investigating the phenomenology of geometry dependent pattern forma-

tion we were left with the key question: What is the origin of the observed

spatial segregation of PNTP and PNDP in the cytosol? Since these patterns form

without cooperative membrane binding, the mechanism must be based on the

combined effect of membrane attachment and detachment, diffusion, and nu-

cleotide exchange. Moreover, as all chemical processes are spatially uniform,

the key to understanding the impact of cell geometry must lie in the diffusive

coupling of these biochemical processes.

Consider the situation where the attachment rates for PNDP and PNTP are

equal, such that the total protein density on the membrane becomes spatially

homogeneous (see Fig.2D). Only PNDP is released from the membrane. Hence,

the latter acts as a source of cytosolic PNDP. Because, in addition, cytosolic

PNDP is transformed into cytosolic PNTP by nucleotide exchange, we have all

the elements of a source-degradation process. The ensuing density profile for

PNDP in the cytosol is exponential with the decay length set by lλ=
√
Dc/λ.

Due to membrane curvature these reaction volumes overlap close to the cell

poles (Fig.2B bottom), which implies an accumulation of PNDP at the cell poles.

The effect becomes stronger with increasing membrane curvature. Moreover,

there is an optimal value for the penetration depth lλ, roughly equal to a third

of the length l of the short cell axis, that maximizes accumulation of PNDP at

the cell poles (Fig.2B top). As lλ becomes larger than l, the effect weakens,

because the reaction volumes from opposite membrane sites also overlap at

mid-cell. In the limit where lλ is much smaller than the membrane curvature

at the poles, the overlap vanishes and with it the accumulation of PNDP at the

poles.

Expressed differently, these heuristic arguments imply that the local ratio of

the reaction volume for nucleotide exchange to the available membrane surface

is the factor that explains the dependence of the protein distribution on cell
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geometry. To put this hypothesis to the test we performed numerical simu-

lations that are in the spirit of a minimal system approach taken by in-vitro

experiments [23, 25]. In our numerical setup we considered a cytosolic volume

adjacent to a flat membrane, as illustrated in Fig.3. We were interested in

how alterations in the volume of cytosol available for protein diffusion and/or

nucleotide exchange would affect the density profile on the membrane.

In accordance with our hypothesis, we find that excluding volume for diffusion

in the vicinity of a flat membrane reduces the available reaction volume locally

and leads to accumulation of proteins at the membrane (Figs.3A,C, and D).

The larger the volume excluded, the more proteins accumulated at the mem-

brane. To focus on reaction volume explicitly we considered a situation where

nucleotide exchange was disabled in a given region of the cytosolic area but

proteins could still diffuse in and out of it. Again, we found protein accumu-

lation at the nearby membrane but with reduced amplitude (Fig.3B). Hence,

these numerical studies strongly support our heuristic arguments and lead us

to conclude that it is indeed exclusion of the reaction volume for nucleotide

exchange that provides for the adaptation of the pattern to the geometry of

the setup. Likewise, the membrane patterning in a cell could be effected by

the nucleoid if the DNA material acts as a diffusion barrier, though at present

this is debated [26]. In the SI Appendix we study how different sizes of effec-

tive excluded volume changes the membrane pattern. While bipolarity is still

obtained for a broad parameter range, the complex geometry gives rise to a

richer spectrum of possible patterns: For large sizes of excluded volume, accu-

mulation at the poles occurs for R<0 (preferential recruitment for PNTP) while

for R>0 the proteins accumulate at mid-cell. For intermediate sizes, there are

parameter ranges where patterns with several maxima, not necessarily at the

poles or mid-cell, are observed.

Pattern formation does not require a dynamical instability

The above analysis shows that the difference in local reaction volume for cy-

tosolic nucleotide exchange is the key element of the mechanism underlying

geometry sensing. To put this result in perspective with pattern formation

mechanisms based on dynamical instabilities we consolidated the key proper-

ties of the spatially extended model in a spatially discretized version amenable

to rigorous analytical treatment (Fig.4A):

Diffusion in the cytosol and on the membrane is treated in terms of exchange

processes between a network of nodes. A minimal set comprises four nodes
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on the membrane, two at the poles and two at mid-cell, and a distribution

of nodes in the cytosol which ensures that the ratio of membrane area to

bulk volume at the cell poles is higher than at mid-cell. Since all observed

stationary patterns are symmetrical with respect to both symmetry axes, we

can further reduce the network to one quadrant of the ellipse (see Fig.4B).

We are now left with a network of one membrane node at a pole and one at

mid-cell, two nodes serving as the interface between membrane and cytosol,

and three cytosolic nodes whose distribution reflects the asymmetry in the

cytosolic reaction volume between the cell poles and mid-cell.

We have analyzed the ensuing mathematical model, a system of coupled or-

dinary differential equations, in the context of dynamic systems theory; for

mathematical details and the model parameters used please refer to the SI

Appendix. Confirming our previous reasoning, we found that the reduced

network model indeed leads to polarization between cell pole and mid-cell

(Fig.4B). Moreover, from a bifurcation analysis we learn that generically the

dynamic system does not exhibit a bifurcation: There is only one physically

possible solution with positive protein density on the membrane and this den-

sity increases with recruitment rate (Fig.4C). Only in the special (non-generic)

case where the attachment rate of PNDP vanishes, ω̂+
D=0, do we find a trans-

critical bifurcation. Then, there is a critical recruitment rate k̂∗dD below which

the membrane is depleted of PNDP. In other words, generically the system

shows an imperfect transcritical bifurcation, which implies robustness of the

mechanism linking protein distribution to cell geometry.

DISCUSSION

How does protein patterning adapt to cell geometry? Dynamic models for

pattern formation often reduce the cytosolic volume to the same dimension

as the membrane and focus on the role of non-linear protein interactions; see

e.g. Ref. [11, 27]. At first sight this appears to make sense, since diffusion

coefficients are generically much higher in the cytosol than on the membrane.

Indeed, if only attachment and detachment processes are involved, any tran-

sient geometry-dependent pattern is rapidly washed out [17].

Here we have shown that the assumption of a well-mixed cytosolic protein

reservoir becomes invalid as soon as cytosolic processes like nucleotide ex-

change, which alter protein states become involved. We have introduced a

minimal reaction module with a single NTPase that cycles between membrane

and cytosol. The fact that cytosolic nucleotide exchange may take place on
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a diffusive length scale far below cell size has been noted previously [13], and

it has been show that this can be critical for robust, intracellular pattern

formation [15]. Our analysis reveals that nucleotide exchange leads to an in-

homogeneous protein distribution in the cytosol, which is stably maintained

and depends strongly on the geometry of the cytosolic space. As a conse-

quence, proteins accumulate on certain membrane regions, depending on the

local ratio of membrane area to cytosolic volume. In an elongated cell this

serves as a robust mechanism for proper cell division by facilitating protein

accumulation at the poles. The proposed reaction module operates through

implicit curvature sensing and does not require that the relevant protein them-

selves respond to membrane curvature [7, 9] or lipids [28]. The degree and the

axis of polarization depend on the level of cooperativity in membrane binding,

which can be regulated by enzymes.

Our theoretical analysis suggests that evolutionary tuning of this simple reac-

tion module is feasible: Because there is no threshold involved, polarity can

be improved stepwise starting from any parameter configuration. This lack of

a threshold can at the same time also be a disadvantage: without a trigger

pattern formation is difficult to induce as response to an upstream event. An-

other distinctive element of the mechanism is the lack of a characteristic length

scale (e.g. as striped Min-patterns in E. coli), instead the pattern scales with

the size of the cell. Depending on the functional role this might be desired or

disadvantageous.

The reaction module gives a possible explanation for the bipolar patterns of

AtMinD observed in mutant E. coli cells [18]. Several experimental tests could

be performed to validate the proposed reaction module: One route would be to

study spherical E. coli cells. For this geometry, we predict that the polarization

of AtMinD should vanish, since the membrane curvature is uniform. This,

however, would also be the case if the kinetics of AtMinD binding is directly

dependent on membrane curvature, as in the case of DivIVa [7, 9]. To rule out

this scenario an in-vitro experiment could be conducted, as described in Fig.3.

In-vitro experiments might also serve as a proof of concept for the use of the

suggested reaction module in nano-scale self-organization. By enzymatically

regulating the kinetic rates of the process one could induce protein patterns on

a membrane which then serve as templates for the localization of nano-scale

structures, e.g. similar to the formation of actin cables close to Cdc42 protein

caps in yeast. Localization could either be self-organized or target specific

curvatures or be externally controlled by volume exclusion in the cytosolic

space. If, in addition, such nano-structures exert forces on the membrane this

self-organization principle could be used to regulate the shape of membranes.
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Thus the proposed minimal module might serve as a core network for the

design of other geometry sensing protein networks.

On a more speculative note, geometry sensing protein networks like the one

discussed here would enable a cell to gradually optimize its biological function,

since the underlying mechanism does not involve a bifurcation threshold. For

example, one could envision a biochemical network containing a protein which

is able to trigger hydrolysis-driven detachment. Such a catalytic process could

act selectively on the PNTP or the PNDP species. This would create an imbal-

ance between the effective membrane affinities of PNTP and PNDP, and thus

regulate polarity. Moreover, the copy number of such a catalyst would become

an evolutionary tunable modulator of the effective imbalance. MinE in E. Coli

which stimulates the hydrolysis of membrane bound MinD-ATP is a possible

instance of such a factor.

Finally, due to its generic nature the proposed mechanism might be involved

in many bacterial pattern-forming systems. For instance, the sensitivity to cy-

tosolic reaction volume provides a way to sense large cytosolic structures. This

could, for instance, be part of the mechanism that guides PomZ to mid-cell in

M. xanthus [29]. One could also imagine direct feedback mechanisms between

force-exerting proteins that regulate cell shape (e.g. FtsZ ring contraction) and

proteins that adapt to local cell shape by sensing the local reaction volume,

and which guide the downstream accumulation of further force-exerting pro-

teins. In this scenario cell shape could be controlled (even in a self-organized

fashion) by balancing these two processes.

MATERIALS

Computational methods and initial conditions

The model is mathematically described as a set of reaction diffusion equations

(see SI Appendix). All simulations were performed with finite-element methods

on a triangular mesh using Comsol Multiphysics 4.3. As initial condition all

proteins where in the NDP state and located in the bulk of the ellipse. In

Fig.3, the particles are initially located on the membrane in the NDP state.

For Figs.1 and 2 the simulation time was 1000s, and for Fig.3 it was 2000s. A

steady state is reached after approximetely 100s.

This research was supported by the German Excellence Initiative via the pro-

gram ‘NanoSystems Initiative Munich’, and the Deutsche Forschungsgemein-

schaft (DFG) via project B02 within the SFB 1032 “Nanoagents for Spatio-
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FIGURES
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FIG. 1. Minimal reaction module for geometry-induced cell polarity.

(A) Illustration of the reaction module: Cytosolic PNDP can exchange its nu-

cleotide, PNDP→PNTP, with rate λ. PNTP attaches to the membrane with rate

ω+
T where it recruits further PNTP with rate ktT . At the membrane, hydrolysis

triggers detachment with rate ω−
t such that membrane-bound PNTP is con-

verted to cytosolic PNDP. Cytosolic PNDP attaches to the membrane with rate

ω+
D where it recruits further PNDP with rate kdD or detaches with rate ω−

d . (B)

Membrane-bound proteins accumulate either at mid-cell (left) or form a bipo-

lar pattern with high protein densities at the cell poles (right). The left and

right plot show the normalized concentration of the membrane density (blue

curve) and the corresponding geometry of the cell (grey ellipse). The mem-

brane density of the protein is divided by its minimum concentration (left:

113µm−1, right: 100µm−1) such that the minimum of the normalized density

is 1. The polarity P (color bar in plot is logarithmically spaced) of the pat-

tern strongly depends on cell geometry and preference R for the recruitment

of a certain nucleotide state (middle); the length of the short axis is fixed at

l=1µm, and we have used kdD+ktT=0.1µm/s. While for large R (preferential

recruitment of PNDP) the proteins form a bipolar pattern on the membrane,

the membrane-bound proteins accumulate at mid-cell for small R (preferen-

tial recruitment of PNTP) If the recruitment processes are balanced (R=0) the

pattern is flat and polarity vanishes. The cell geometry determines how pro-

nounced a pattern becomes: The more elongated the ellipse, the more sharply

defined the pattern, while it vanishes completely when the ellipse becomes a

circle.
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Figure 2
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FIG. 2. Membrane affinity controls, and recruitment amplifies geometry

adaption.

The cells used for the numerical studies have a length of L=5µm and a width of

l=1µm. (A) Even when recruitment is turned off, PNTP and PNDP form inho-

mogeneous density profiles in the cytosol. PNDP accumulates close to the poles

and is depleted at mid-cell. In contrast, PNTP exhibits high concentration at

mid-cell and a low concentration at the poles. The attachment and detachment

rates are set to 1µm/s and 1s−1, respectively, which gives a penetration depth

lλ≈1.6µm. (B) Illustration of the source-degradation mechanism for the spa-

tial segregation of cytosolic PNDP and PNTP. All proteins that detach from the

membrane are in an NDP-bound state and can undergo nucleotide exchange,

the range of PNDP in the cytosol is limited to a penetration depth lλ (dashed

lines); here lλ=0.35µm. At the poles this reaction volumes receives input from

opposing faces of the membrane resulting in an accumulation of cytosolic PNDP

(dark red). The magnitude of this accumulation depends on the penetration

depth. The polarity PNDP=upoled /umid-cell
d of membrane-bound PNDP plotted as

a function of lλ shows a maximum at lλ≈0.35µm and vanishes in the limits of

large as well as small penetration depths. (C) Polarity P of membrane -bound

proteins as a function of the attachment rates, ω+
D and ω+

T , with cooperative

binding (recruitment) turned off. While for ω+
D > ω+

T membrane-bound pro-

teins form a bipolar pattern (P>1), they accumulate at mid-cell (P<1) for

ω+
D<ω

+
T . (D) Density profiles of membrane-bound proteins in the limit where

the attachment rates of the two species are equal, ω+
D=ω+

T = 1µm/s, and re-
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cruitment is switched off. The membrane profile of the total protein density

(green) is flat, while membrane-bound PNTP (blue) accumulates at mid-cell

and PNDP (red) forms a bipolar pattern. (E) Polarity P of the membrane-

bound proteins as a function of kdD for ω+
D=ω+

T . Increasing the recruitment

rate restores polarity. (F) Density profiles of membrane-bound proteins for

kdD=0.1µm2/s. The density of PNDP (red) as well as the overall protein den-

sity (green) exhibit strongly bipolar patterns, which are much more pronounced

than the corresponding patterns in the absence of cooperative membrane bind-

ing. The density of PNTP (blue) is comparatively flat, and there are much less

membrane-bound proteins in this nucleotide state than in the PNDP state. The

overall protein pattern is strongly dominated by PNDP.
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FIG. 3.

Two-dimensional planar geometry with cytosolic volume (blue) above a mem-

brane at y=0. The left, right and top boundaries of the cytosolic regime are

reflecting boundaries. Diffusion and nucleotide exchange rates are set to their

standard values, the total number of proteins is set to N=50. Black boxes

indicate areas which are not accessible to the proteins and thereby generate

excluded reaction volumes; the boundaries of the boxes are assumed to be

reflecting. Solid curves show the normalized density of PNDP bound to the

membrane: ũd=ud/u
max
d . Generally, PNDP accumulates at membrane regions

in the vicinity of the cytosolic areas with excluded reaction volumes with the

effect being stronger with larger excluded reaction volumes and closer to the

membrane (A,C,D). In (B) the white box indicates that within its volume all

proteins are allowed to diffuse but they do not undergo nucleotide exchange.

This has a similar but weaker effect to that observed in the other panels: The

proteins accumulate at the membrane near the excluded reaction volume. The

parameters used in these numerical experiments are summarized in Table I of

the SI Appendix.
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Figure 4
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FIG. 4. Reduced network model and bifurcation analysis.

(A) The full spatio-temporal dynamics in an ellipse is reduced to the nonlin-

ear dynamics of a network of coupled nodes. We take the minimal possible

number of nodes reflecting the asymmetry in the ratio of membrane area to

bulk volume at the cell poles and mid-cell. Diffusion in the cytosol is modeled

as particle exchange processes between the nodes. The network equations are

derived from a discrete time jump process. Since the symmetry of the pattern

reflects the symmetry of the ellipse there is no flux of particles through either

midplanes (red dashed lines). Therefore, the network can be further reduced

to a single quadrant (black) with the other quadrants (gray) simply mirroring

its behaviour. (B) The reduced model comprises two membrane nodes at the

pole and at mid-cell, two border nodes connecting membrane and cytosol, as
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well as three cytosolic nodes. Node 1a captures the increased ratio of mem-

brane area to bulk volume at mid-cell. As illustrated by the colored nodes,

this minimal network model polarizes: the density of PNDP at the pole node

is higher than on the membrane node. (C) Density of PNDP at the pole node

as a function of the recruitment rate k̂dD. The density is given relative to

the total number of particles located at the membrane node of the pole. For

vanishing attachment rate of PNDP, ω̂+
D=0, there is a transcritical bifurcation

at a critical rate k̂∗dD≈8.7s−1 where a polarized state exchanges stability with

an unpolarized state (black lines). In contrast, for the generic case of finite

membrane attachment, ω̂+
D>0, there is only one positive fixed point solution

which is always stable (blue lines).
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MODEL EQUATIONS

Using orthogonal elliptical coordinates (for mathematical details please refer

to the following section), given by the normal µ and tangential ν components

at the boundary as in Ref.[1], the reaction module is mathematically described

by the following set of reaction-diffusion equations:

∂tuT = Dc ∆uT + λuD , (1)

∂tuD = Dc ∆uD − λuD , (2)

∂tut = ktT utuT +
(
ω+
T uT − ω−t ut

)
+Dm ∆νut , (3)

∂tud = kdD uduD +
(
ω+
D uD − ω−d ud

)
+Dm ∆νud . (4)

Here uD and uT denote for the bulk concentrations of PNDP and PNTP, re-

spectively, and ud and ut the membrane concentrations of PNDP and PNTP,

respectively. The equations account for particle conservation. The exchange

of particles between the cytosol and the membrane is determined by a reactive

boundary condition [1, 4] stating that the reactions equal the flux onto and off

the membrane

Dc∇µuT = −ktT utuT − ω+
T uT , (5)

Dc∇µuD = −kdD uduD − ω+
D uD + ω−d ud + ω−t ut . (6)

For Fig.3 we use orthogonal cartesian coordinates with (µ, ν) replaced by (y, x).

ORTHOGONAL ELLIPTICAL COORDINATES AND DIFFEREN-

TIAL OPERATORS

The model equations of the diffusion-reaction system (Eqs.1-4) with reactive

boundary conditions is formulated in elliptical coordinates µ and ν (Fig. S1).

In the following we introduce this coordinate system and give the differential

operators used in the model equations (see also [1]).

For an ellipse with major semi-axis ra, minor semi-axis rb, and linear eccen-

tricity d=
√
r2a − r2b , we choose orthogonal elliptical coordinates given by

x = d coshµ cos ν , (7)

y = d sinhµ sin ν , (8)
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with µ > 0 and 0 ≤ ν ≤ 2π.

To obtain the differential operators in a curved orthogonal coordinate system

one needs the lengths of the basis vectors, hµ and hν , also called scale factors;

see e.g. [2]. In elliptical coordinates they are given by

hµ = hν = d

√
sinh2 µ+ sin2 ν . (9)

Then the gradient operator in µ-direction reads

∇µ =
1

hµ
eµ ∂µ

=
1

d
√

sinh2 µ+ sin2 ν
eµ ∂µ. (10)

with eµ being the basis vector for the µ direction. The corresponding diffusion

operator (see [2] page 137) in the cytosol is given by

∆ =
1

hµhν
(∂2µ + ∂2ν)

=
1

d2(sinh2 µ+ sin2 ν)
(∂2µ + ∂2ν). (11)

Diffusion on the cell membrane is constrained to a fixed value of µ: µ0=arctanh(rb/ra).

We formulate the diffusion operator on the membrane ∆ν in arclength parametriza-

tion s(ν):

s(ν) =

∫ ν

0

dν̃
√
r2b + (r2a − r2b ) sin2 ν̃ . (12)

The Laplacian then simply becomes

∆ν = ∂2s . (13)

For Fig.3 in the main text we used cartesian coordinates such that the diffusion

operators are given by ∆=∂2x+∂
2
y for the cytosol, and ∆=∂2x for the membrane.

SUPPLEMENTARY DETAILS FOR THE FIGURES

The parameters for Figs.1-3 can be found in Table I.
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Fig. ω+
D kdD ktT ω−

d ω+
T ω−

t Dc Dm λ ρ

1 1 µm/s - µm2/s - 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

2A 1 µm/s 0 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

2B 1 µm/s 0 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s - s−1 500 µm−2

2C - µm/s 0 µm2/s 0 1 s−1 - µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

2D 1 µm/s 0 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

2E 1 µm/s - µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

2F 1 µm/s 0.1 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s 6 s−1 500 µm−2

3 1 µm/s 0.7 µm2/s 0 0.65 s−1 2.2 µm/s 3s−1 16 µm2/s 0.013 µm2/s 6 s−1 10 µm−1

S4B 1 µm/s 0.5 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s - s−1 see text

S4C 1 µm/s 0.5 µm2/s 0 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s - s−1 see text

S4D 1 µm/s 0 0.5 µm2/s 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s - s−1 see text

S4E 1 µm/s 0 0.5 µm2/s 1 s−1 1 µm/s 1s−1 16 µm2/s 0.013 µm2/s - s−1 see text

TABLE I. Parameters used to create the simulations used in Figs.1-3. Cells marked

with a ”-” denote that this parameter was varied in the corresponding figure, details

are found in the corresponding Supplementary details section.

Supplementary details for Figure 1

For Fig.1, the recruitment rate kdD was sampled in the range 0−0.1µm2/s with

50 uniformly spaced parameter values. ktT was chosen as ktT=0.1µm2/s−kdD
such that kdD + ktT=0.1µm2/s. The major semi-axis of the ellipse was varied

in the range from 0.5µm to 2.5µm with 50 equally spaced parameter values.

The minor semi-axis was kept constant at 0.5µm.

Supplementary details for Figure 2

For Fig.2 we used an elliptic geometry for the cell with a length of 5µm and a

width of 1µm. For Fig.2B, the penetration depth lλ was varied between 10−3

and 107; the values are equally spaced on a logarithmic scale. For Fig.2C, the

parameters ω+
D and ω+

T were varied between 0.11/s and 11/s with 50 uniformly

spaced parameter values.

Supplementary details for Figure 3

The quadratic boxes in Fig.3 have side length 0.5µm. In panel A and B, the

position of the lower left point of the square is at x=1.75µm and y=0.05µm. In
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panel C the position of the left box is also x=1.75µm and y=0.05µm, while the

position of the right box is x=4µm and y=0.15µm. In panel D, the position

of the left box is also x=1.75µm and y=0.05µm; the right box has side lengths

0.5µm and 0.1µm, its lower left point is at x=4µm and y=0.05µm.

Supplementary details for Figure 4

The parameters for the bifurcation plot Fig.4D can be found in Table .

Figure N λ ω̂+
D ω̂−d k̂dD ω̂−t ω̂+

T ε

4B 1 1 s−1 1 s−1 10 s−1 100s−1 1s−1 1s−1 1s−1

4C 1 1 s−1 0 s−1 and 0.05 s−1 1 s−1 - 1s−1 1s−1 1s−1

TABLE II. Parameters used in Fig.4. Cells marked with a ”-” denote that this

parameter was varied in the corresponding figure, details are found in the corre-

sponding Supplementary details of section.

EQUATIONS OF THE MINIMAL SYSTEM

To frame the coarse-grained model we use the following nomenclature: The

quantities uXA denote the number of the proteins in state A, which may be

cytosolic PNDP (A=D), cytosolic PNTP (A=T ), membrane bound PNDP (A=d)

or membrane bound PNTP (A=t). The superscript X signifies the spatial

position in the coarse-grained network. Here, membrane nodes are denoted

with m for mid-cell and p for pole, respectively. The neighboring cytosolic

nodes of these membrane nodes are also denoted by m and p. The remaining

nodes in the bulk of the cytosol are denoted by 1, 1a and 2 (see Fig.4B).

The dynamic processes for the membrane nodes in the coarse-grained model

comprise, as in the spatially extended model, attachment and detachment as

well as recruitment processes. The ensuing nonlinear equations read

∂tu
m
d = k̂dDu

m
d u

m
D + ω̂+

Du
m
D − ω̂−d umd , (14)

∂tu
p
d = k̂dDu

p
du

p
D + ω̂+

Du
p
D − ω̂−d upd , (15)

∂tu
p
t = −ω̂−t upt + ω̂+

T u
p
T , (16)

∂tu
m
t = −ω̂−t umt + ω̂+

T u
m
T , (17)
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where a hat on the rates indicates that the rates are for the discrete model. For

the sake of simplicity we omit in the minimal model the cooperative membrane

binding of the PNTP species, since this process is not necessary to obtain a

bipolar pattern. In section we will perform a continuum limit and show how

these rates are related to the corresponding rates of the continuum model. For

the bulk cytosolic nodes we have

∂tu
1
D = −ε(3u1D − umD − u1aD − u2D)− λu1D , (18)

∂tu
1
T = −ε(3u1T − umT − u1aT − u2T ) + λu1D , (19)

∂tu
1a
D = −ε(u1aD − u1D)− λu1aD , (20)

∂tu
1a
T = −ε(u1aT − u1T ) + λu1aD , (21)

∂tu
2
D = −ε(2u2D − u1D − upD)− λu2D , (22)

∂tu
2
T = −ε(2u2T − u1T − upT ) + λu2D , (23)

where ε is the hopping rate between nodes, and λ the nucleotide exchange rate

in the cytosol. Finally, the dynamics for the cytosolic nodes neighboring the

membrane nodes are given by

∂tu
p
D = −ε(upD − u2D) + ω̂−t u

p
t

−(k̂dDu
p
du

p
D + ω̂+

Du
p
D − ω̂−d upd) , (24)

∂tu
m
D = −ε(umD − u1D) + ω̂−t u

m
t

−(k̂dDu
m
d u

m
D + ω̂+

Du
m
D − ω̂−d umd ) , (25)

∂tu
p
T = −ε(upT − u2T )− ω̂+

T u
p
T , (26)

∂tu
m
T = −ε(umT − u1T )− ω̂+

T u
m
T . (27)

In addition, since the total number of particles is conserved, we have the

constraint

N = umd + upd + upt + umt + u1D + u1T + u1aD + u1aT

+u2D + u2T + upD + upT + umD + umT . (28)

To analyze the fixed point structure of this minimal system (see Fig.4C) we set

all time derivatives in Eqs.(14-27) to zero and solved the corresponding system

of equations for the particle occupation numbers uXA . To solve the systems of

equations we used Mathematica 10.0. Next we performed a linear stability

analysis of those fixed points for the two cases ω̂+
D=0 and ω̂+

D>0.

6
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In both cases the system has three fixed points. The main observation is

that for ω̂+
D=0 there is a transcritical bifurcation from a homogeneous PNDP

distribution on the membrane to a polarized PNDP distribution when varying

k̂dD; while for ω̂+
D>0 the stability of the fixed points does not change and the

polarized state is always stable (see Fig.4B main text).

Interestingly in the case of ω̂+
D>0 the polarized state is the only fixed point with

only positive particle occupation numbers uXA . Thus the other two fixed points

cannot be reached when starting with an initial condition with only positive

particle occupation numbers uYX which leaves the polarized fixed point as the

only physically possible steady state solution of the system.

BALANCE OF MEMBRANE AFFINITIES

In this section we show how equal membrane affinities of the PNDP and PNTP

species lead to the reestablishment of a spatially uniform steady state. To

this end we consider the dynamics of the linear diffusion-reaction equations

where the recruitment rates are set to zero, kdD=ktT=0. We will specify the

conditions leading to spatially uniform protein densities in the cytosol and on

the membrane.

The diffusion-reaction equations in the cytosol read

∂tuT = Dc ∆uT + λuD , (29)

∂tuD = Dc ∆uD − λuD , (30)

Because of the nucleotide exchange term, the density distribution of a protein

in a given nucleotide state can not be spatially homogeneous, quite independent

from the boundary conditions at the membrane. In contrast, since the equation

for the total protein density, uc=uT+uD, reads

∂tuc = Dc ∆uc , (31)

a spatially uniform density uc in the cytosol is possible. To see what conditions

need to be satisfied for that to be the case, consider the boundary conditions

specifying the coupling between the membrane and the cytosol

Dc∇µuT = −ω+
T uT (32)

Dc∇µuD = −ω+
D uD + ω−d ud + ω−t ut . (33)

Note that these boundary conditions are constant along the membrane only

if the normal derivatives are. In general, this is not the case (We will discuss

7
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the case of broken circular geometry in the next section). However, reactive

boundary conditions do admit stationary solutions that are uniform along the

membrane if the normal fluxes vanish altogether, i.e. if the cytosolic density

in steady state is constant.

Upon adding both boundary conditions (32) and (33) one obtains

Dc∇µuc = −ω+
T uT − ω+

D uD + ω−d ud + ω−t ut . (34)

Hence, there is a reflective boundary condition, ∇µuc=0, and thereby a homo-

geneous cytosolic total protein density uc, if the following balance equation is

satisfied

ω+
T uT + ω+

D uD = ω−d ud + ω−t ut . (35)

Inversely, this condition is satisfied if the cytosolic total protein uc density

is homogeneous. Hence, the question whether a spatially uniform cytosolic

protein density is a steady state of the nonlinear dynamics reduces to the

question whether the balance equation, Eq.35, is consistent with the stationary

solutions of the diffusion-reaction equations on the membrane:

∂tut = Dm ∆ut + ω+
T uT − ω−t ut , (36)

∂tud = Dm ∆ud + ω+
D uD − ω−d ud . (37)

First, let us neglect membrane diffusion. If the membrane diffusion constant

would be zero, Dm=0, the steady state conditions read

0 = ω+
T uT − ω−t ut , (38)

0 = ω+
D uD − ω−d ud , (39)

and hence the balance equation is satisfied. This implies that the overall

protein density in the cytosol is spatially uniform. However, this does not

imply that the membrane density is homogeneous as well. To the contrary,

upon inserting uc=uD+uT into Eqs.38 and 39 one obtains

ut =
ω+
T

ω−t
uT , (40)

ud =
ω+
D

ω−d
(uc − uT ) . (41)

and hence for the overall protein density on the membrane

um =
ω+
D

ω−d
uc +

(
ω+
T

ω−t
− ω+

D

ω−d

)
uT . (42)
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Since uT is always spatially heterogeneous (for λ 6= 0 and a non-spherical cell

geometry), the protein density on the membrane can become uniform only if

the membrane affinities for the two different nucleotide states balance each

other[? ]

ω+
T

ω−t
=
ω+
D

ω−d
. (43)

If the diffusion constant on the membrane is finite, Dm>0, spatially uniform

membrane densities in the cytosol and on the membrane are possible for the

special case where ω+
T =ω+

D=ω+ and ω−t =ω−d =ω−. Then one also obtains a

diffusion-reaction equations for overall protein density on the membrane

∂tum = Dm ∆um + ω+ uc − ω− um . (44)

with the boundary condition for the membrane-cytosol coupling

Dc∇µuc = ω+ uc − ω− um , (45)

For the steady state, the overall protein density on the membrane as well as

in the cytosol become uniform if

ω+ uc = ω− um , (46)

i.e. there is detailed balance between the overall membrane and cytosolic pro-

tein densities. This corresponds to the situation shown in Fig.2C of the main

text, where we observe that P = 1 if the attachment rates and detachment

rates of the two nucleotide states balance each other precisely (ω+
T =ω+

D=ω+

and ω−t =ω−d =ω−).

If however recruitment is switched on one typically does not get a spatially

homogeneous solution (see main text Fig.2E for the membrane and Fig. S2 for

the cytosol).

Remark: Since the diffusion dynamics on the membrane is in general very slow

as compared to attachment and detachment processes, we expect that the

diffusion-reaction dynamics on the membrane is dominated by the reaction

terms. Therefore, already Eq.43 should be a good criterion for a spatially

uniform overall protein density on the membrane.
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BREAKING THE HOMOGENOUS STEADY STATE IN THE CIRCU-

LAR LIMIT

In this section we take a closer look at the cytosolic steady state in the circular

limit. In coordinate free notation, the stationary cytosolic equations read

0 = Dc ∆uT + λuD , (47)

0 = Dc ∆uD − λuD . (48)

As mentioned earlier uc=uD+uT decouples both equations as the combined

species uc satisfies the Laplace equation

0 = Dc ∆u (49)

which always admits a constant (i.e. spatially homogenous) solution for no flux

boundary conditions irrespective of the specific boundary geometry. Hence,

whether the system admits a homogenous solution depends on the stationary

diffusion-degradation equation (48) which we will now consider in elliptical

coordinates uD=uD(µ, ν) as outlined in section . With an ansatz employing

separation of variables uD(µ, ν)=R(µ)Ψ(ν) one obtains the well known Math-

ieu equations:

0 = Ψ′′ + (c− 2q cos 2ν)Ψ (50)

0 = R′′ − (c− 2q cosh 2µ)R, (51)

where c is a constant of separation and q a dimensionless parameter given by

q = −λ d2

4Dc

. (52)

Note that q vanishes in the circular limit d→0, or if the cytosolic degradation

length scale
√
Dc/λ becomes infinite. The solutions of the Mathieu equations

are the Mathieu functions which form an orthonormal basis for the diffusion-

degradation problem in elliptical geometry, c.f. the supplementary material in

Ref.[1] and references therein. Note that only in the limit q→0 the angular

Mathieu equation (50) admits a constant solution Ψ0(ν)=Ψ0=const. For small

q, i.e. in the nearly circular case, one can express the Mathieu functions

perturbatively in powers of q [1]. For the expansion of the homogenous solution

one obtains

Ψ0(ν) ≈ 1− q

2
cos(2ν) +O(q2), (53)
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which has the characteristic symmetry of the bipolar patterns we observe. The

amplitude of this new base state scales with q in the circular limit. Of course,

since the Mathieu functions form an orthonormal basis we can construct a

solution that is constant at the boundary. However, one finds that the normal

derivative of this solution is not constant in angular direction (see supplemen-

tary material of [1] for the detailed derivation) and as such it is incompatible

with the boundary conditions (33) that assume spatially uniform densities at

the membrane. Hence, a spatially uniform solution at the membrane is lost as

steady state as soon as circular geometry is broken.

CONTINUUM LIMIT OF THE BOUNDARY CONDITIONS OF THE

MINIMAL SYSTEM

In this section we show how the reactive boundary conditions, as given by

Eqs.(1-5) in the main text, can be obtained as a continuum limit from the

boundary conditions used in the coarse-grained network model in Eqs.(24-27).

For simplicity, we will illustrate the calculation for a one-dimensional model

with only one protein species (Fig.S3), and refer the reader for a more elaborate

description of the continuum limit to [3]

The proteins are performing a symmetric random walk on this one-dimensional

grid with hopping rate ε. Hence, the dynamics for the occupation number uxc
of each node x in the bulk is given by

∂tu
x
c = ε(ux+ac + ux−ac − 2uxc ) , (54)

where a is the distance between the nodes. Furthermore, we assume that the

bulk is reactively coupled (by attachment and detachment processes) with the

membrane node via the boundary node at position x=0:

∂tum = ω̂+u0c − ω̂−um , (55)

∂tu
0
c = ε(uac − u0c)− ω̂+u0c + ω̂−um . (56)

Here um is the occupation number of the membrane node, and ω̂− and ω̂+

signify the detachment and attachment rate, respectively.

In the continuum limit a→0, the number of grid nodes increases, and concomi-

tantly its occupation number uxc decreases such that the particle (line) density

uc(x):=uxc/a remains finite. Then, the bulk dynamics, Eq.(54), becomes a

diffusion equation

∂tuc(x) = Dc∂
2
x uc(x) (57)
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with the macroscopic diffusion constant Dc and the hopping rate ε related

by Dc=εa
2. Note that in the continuum limit, the occupation number of

the membrane node, um, remains a zero-dimensional quantity. It constitutes

a reservoir of particles. Therefore, in the continuum limit, Eq.(55) simply

becomes

∂tum = ω+ uc(0)− ω− um , (58)

where we have defined the macroscopic attachment rate as ω+=ω̂+a, and the

macroscopic detachment rate as ω−=ω̂−. Finally, the equation for the bound-

ary node, Eq.(56), in the continuum limit reduces to

−Dc∂xuc(0) = −ω+uc(0) + ω−um . (59)

where we have used that lima→0 ∂tuc(0) a=0; since the time scale on the bound-

ary scales with a the node right next to the membrane is in equilibrium with

the membrane. The reactive boundary condition, Eq.(59), states that the dif-

fusive flux on and off the membrane−Dc∂xuc(0) is balanced by attachment and

detachment processes −ω+uc(0)+ω−u0m. Note that in the boundary equations

5 and 6 in the main text the gradient ∇µ is the normal derivative pointing to-

wards the membrane. Here the corresponding normal derivative is −∂x, which

also point towards the membrane.

Remark: For the elliptic geometry mapping of microscopic to macroscopic rates

becomes position dependent since the volumina represented by the different

grid nodes are not uniform. The minimal model in Fig. 4 main text is not

meant to exactly map back to the elliptic geometry in a continuum limit,

rather to illustrate and analyze the effect of an inhomogeneous geometry on

the reaction diffusion dynamics in a minimal model.

THE EFFECT OF VOLUME EXCLUSION BY THE NUCLEOID

In this section we analyze the effect of volume exclusion which might poten-

tially be caused by a nucleoid if the DNA material acts as a diffusion barrier.

Although it has been reported that the nucleoid does not necessarily influence

protein diffusion [5] it might still be possible that the diffusion of AtMinD is

effected by interaction with the DNA material. For simplicity and as a refer-

ence for later studies, we here assume that the effect of this DNA material can

be modeled as an effective excluded volume of different sizes.

We consider an elliptic diffusion barrier with the same proportions as the cell

(see Fig. S4 A). This volume resides in the middle of the cell and is modeled

as an obstacle with reflecting boundary conditions. We studied the impact of
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such an effective excluded volume for two different scenarios: when the PNDP

species shows finite recruitment (Fig. S4 B,C) and when the PNTP species

shows finite recruitment (Fig. S4 D,E). In both scenarios we changed the size

of the elliptic volume as well as the nucleotide exchange rate which defines the

typical length-scale of the pattern. We observe that as the excluded volume is

increased the necessary minimal diffusion length lλ to obtain a finite polarity

shrinks. The reason becomes evident when we look at the local reaction vol-

ume defined by the diffusion length lλ at mid cell vs. the equivalent reaction

volume at the poles: If there is a diffusion barrier at a distance smaller than

lλ away from the membrane at mid-cell, the local reaction volume becomes

smaller. If this reaction volume at midcell is smaller then the reaction volume

at the poles the PNDP particles start accumulating at mid-cell while the PNTP

species avoids mid-cell. However, if we decrease the diffusion length below the

distance of the excluded volume from the membrane this reaction volume is

not longer influenced by the volume exclusion effect and only dependent on

the local curvature of the membrane. Thus, PNDP is avoiding mid-cell while

PNTP is accumulating there. Depending on which pattern is amplified by the

recruitment rates kdD or ktT the overall pattern resembles the pattern of the

PNDP respectively PNTP species.

Taken together, for a small effective excluded volume (a geometry factor

smaller than 40%) kdD should be high in order to obtain accumulation of

proteins on the poles, while for a large excluded volume (a geometry factor

larger than 85%) ktT should be higher. For intermediately sized proteins the

diffusion length scale needs to be adapted such that the necessary local re-

action volume ratios are obtained. This is possible by an adjustment of the

nucleotide exchange rate λ or by changing the diffusion coefficient.

Here we considered the nucleoid as an effective static excluded volume with

reflecting boundary conditions in two dimensions. The actual nucleoid is,

however, a dynamic density distribution of DNA material in three dimensions

[6]. How the diffusion of AtMinD is effected by this is yet unknown to the

best of our knowledge. Here we studied the possible case that it is acting as

an effective diffusion barrier. However, we want to stress that the size of this

diffusion barrier is most likely not the same as the extension of the nucleoid

since for low densities of DNA material the interaction might be negligible. It

might even very well be that AtMinD is small enough such that its diffusion

is not influenced by the nucleoid at all. Hence, it is currently not possible to

make quantitative predictions about the effect of the nucleoid on the proposed

pattern forming mechanism. Yet we can say that bipolarity can be obtained

for a broad spectrum of possibilities.
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Once more data about the interaction of the nucleoid with AtMinD becomes

available a full study taking into account those parameters can be performed.

Then it would be possible to make quantitative predictions about the influence

of the nucleoid. In that case one needs to conduct the theoretical analysis in

three dimensions since the ratio of membrane area to cytosolic volume changes

in the full dimensional case. A nucleoid of the same dimensions as in a two

dimensional study would take less volume and thus we would expect that its

impact on the final pattern is smaller then in a two dimensional study.

The parameters can be found in table I. The initial conditions where different

than in the previous cases: we started with a homogeneous protein density

of 500 ∗ 4/10.5µm−1 on the membrane which is approximately equivalent to a

homogeneous protein density of 500µm−2 in the cytosol in the absence of an

excluding volume. The reasoning behind this choice is to keep the amount of

particles constant in the cell when its inner volume becomes reduced due to

the volume exclusion. The simulation time was set to 150ks to ensure that it

reaches equilibrium.
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SUPPLEMENTARY FIGURES

Figure 1

ν = 0

rb

d

µ = constant

ν = constant

ra

ν = π

FIG. S1. Orthogonal elliptical coordinates.

We use elliptical coordinates given by the normal µ and tangential ν compo-

nents at the boundary. Ellipses are obtained at constant µ=µ0.
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Figure 2
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FIG. S2. Overall protein density in the cytosol.

(A) Overall cytosolic protein density, uc=uD+uT , for the same parameters

as in Fig.2F where recruitment is switched on. The protein density is en-

hanced at mid-cell and depleted at the poles. (B) Overall cytosolic protein

density, uc=uD+uT , for the same parameters as in Fig.2C, where recruitment

is switched off but the attachment rates are unbalanced with PNTP having the

higher membrane affinity: ω+
D=0.1µm/s and ω+

T =1µm/s. The protein density

exhibits maxima at both cell poles and a minimum at mid-cell. The profile is

inhomogeneous but much less pronounced than in panel A. (C) Overall cytoso-

lic protein density, uc=uD+uT , for the same parameters as in Fig.2C, where

recruitment is switched off but the attachment rates are unbalanced with PNDP

having the higher membrane affinity: ω+
D=1µm/s and ω+

T =0.1µm/s. The pro-

tein density exhibits maxima at mid-cell and minima at both cell-poles. The

profile is inhomogeneous but much less pronounced than in panel A.

16

Geometry adaption:
Pattern formation without instability 183



Figure 3

a

a

x x+ax-aa0

membrane

membrane

continuum limit

FIG. S3. A hopping process on a one-dimensional grid with bulk nodes x at a

distance a (open circles), and with a membrane node on the left (square). In the

continuum limit a → 0, one obtains diffusion in the bulk which is coupled to the

membrane by a reactive boundary conditions which balances diffusive flux on and

off the membrane with the attachment and detachment processes.
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Figure 4
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FIG. S4. Volume exclusion by the nucleoid.

(A) We model effective volume exclusion by the nucleoid by placing an ellipse

with reflecting boundary conditions in the middle of the cell. This inner ellipse

has the same proportions as the cell: the axes of the inner axis are obtained by

multiplying the axis of the cell by a geometry factor. We show here three ex-

amples where this geometry factor is 0.3, 0.6, and 0.95, respectively. (B) Three

examples for the pattern of the total protein density (green), the density of

PNDP (red) and of PNTP (blue) for different sizes of the excluded volume and

different values of the diffusion length scale (values marked by grey crosses in

C)). The recruitment rate of PNDP is kdD=0.5µm/s2 while the recruitment of

PNTP is switched off. The polarity here is significantly smaller than one. The

upper plot corresponds to a large excluded volume (geometry factor=0.95)

and a small diffusion length scale (lλ=
√

(16µm2/s)/213s−1 ≈ 0.27µm)). In

this plot the proteins accumulate at mid-cell. The middle plot shows the re-

sults for an intermediate excluded volume (geometry factor=0.6) and a small

diffusion length scale (lλ=
√

(16µm2/s)/213s−1 ≈ 0.27µm)). In this plot the

protein density peaks at the poles as well as at mid-cell. Thus the effec-

tive polarity is close to one. The lower plot shows the results for a small

excluded volume (geometry factor=0.3) and a larger diffusion length scale

(lλ =
√

(16µm2/s)/48s−1≈0.58µm)). In this plot the protein density peaks

strongly at the cell poles. Thus the polarity is significantly larger than one.

18

Geometry adaption:
Pattern formation without instability 185



(C) For PNDP being the species with the higher recruitment dominance, small

excluded volume leads to the accumulation of the proteins at the poles (polar-

ity larger than 1) while large excluded volume leads to accumulation at mid-cell

(polarity smaller than 1). For intermediate excluded volumes both phases are

possible depending on the magnitude of the diffusion length lλ. Small length

scales lead to a polarity larger than one while larger length scales lead to a

polarity smaller than one. For lλ large enough, the polarity becomes equal to

1. The recruitment rate of PNDP is kdD=0.5µm/s2 while the recruitment of

PNTP is switched off. For visualization purposes the color bar for the polarity

is clipped at a value of 1.5 from above and at a value of 0.5 from below (same

holds for D)). The grey crosses show the parameter values for the three exam-

ples in B). The sweep was performed for 50 logarithmically spaced values of the

geometry factor between 0.2953 and 0.9502, and for 46 logarithmically spaced

values of λ between 2.7s−1 and 671.9s−1 (same holds for D)). (D) If PNTP is

the species with the higher recruitment dominance the behavior for different

sizes of excluded volume is inverted with respect to (C). Here accumulation at

the poles is obtained for large excluded volumes while small excluded volumes

lead to accumulation at mid-cell. For intermediate value the polarity is close

to one thus neither the poles nor mid-cell is preferred. As for the case with

kdD>0 large values of lλ lead to a polarity close to one. The recruitment rate

of PNTP is ktT=0.5µm/s2 while the recruitment of PNDP is switched off. The

grey crosses show the parameter values for the three examples in E). (E) Sim-

ilar to B) three examples of the protein pattern are shown but now for kdD=0

and ktT=0.5µm/s2. The parameter values of λ and the geometry factor corre-

spond to the plots in B): The upper plot shows that the proteins accumulate at

the poles for a large excluded volume. The pattern originates from the spatial

PNTP distribution, whereas the PNDP species shows no significant pattern. The

polarity in this case is larger than one. The center plot shows a depletion of

the proteins at mid-cell and the poles for an intermediate excluded volume.

The polarity is close to one. The lower plot shows strong depletion of proteins

at the poles (but not at mid-cell) and thus a polarity smaller than one.
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VI Geometry adaption: The mechanism for
axis selection
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Abstract

In polarized cells, the accumulation of signaling molecules create axes that guide

differentiation, division and proliferation. In the single cell state of the Caenorhabdi-

tis Elegans embryo, cell polarity determines the future front and back of the worm,

and the interface between accumulated signaling proteins defines the division line

of the first cleavage. Recent models have indicated mutual binding inhibition of

aPARs and pPARs as the key mechanism of polarity maintenance by the PAR

reaction-diffusion network. Nevertheless, how polarity stabilizes along the long axis

of the elliptical embryo remains an open question. In addition to mutual inhibition

of PAR proteins (the subject of previous models), we examine polarization in el-

liptical geometry while accounting for cytoplasmic dynamics in a mass-conserving

reaction-diffusion model. We find that mutual inhibition of aPARs and pPARs by

phosphorylation with immediate cytoplasmic dephosphorylation favors short axis

polarization. This contradicts polarity maintenance along the long axis in the em-

bryo. This discrepency, however, is resolved by a more realistic reactivation cycle -

in which dephosphorylation (reactivation for attachment) is delayed in the cytosol,

and long-axis polarization is restored. Numerical analysis indicates that a phospho-

rylated phase and fast diffusion of cytosolic proteins allow for long axis polarization.

Furthermore, molecular details in our model (which group species according to their

functional role) enable us to investigate how relative densities of proteins with spe-

cific functions influence polarization. We show that the relative mutual antagonism,

which is determined by antagonistic detachment rates and relative protein densities,

determine the robustness of polarity along a specific axis. All together, we find that

cell polarity along a specific axis is the result of an interplay of the cell’s geometry, a

reactivation cycle between membrane and cytosol, and the relative mass of signaling

proteins.
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INTRODUCTION

Signaling molecules are a crucial determinant of cell development; perhaps

most prominently, they detect the shape of cells themselves. Here, the self-

organized formation of polarized patterns of protein concentrations can pro-

mote the formation of intrinsic axes, and symmetry-breaking. In turn, cell

polarization establishes a template for proliferation, migration and further dif-

ferentiation -for example, the localization of bud sites in yeast, apico-basal

asymmetry in mammalian epithelial cells and the first cell division in the

Caenorhabditis Elegans (C. Elegans) embryo [2, 3].

In the nematode worm C. Elegans, the anterior-posterior axis (APA) is de-

termined in the single cell state of the embryo. In this state, the embryo has

the approximate shape of a prolate spheroid with long axis a = 27µm and

short axis b = 15µm [4]. Before the first cell division, a polarized distribution

of membrane bound signaling proteins establishes and characterizes the future

front and back of the worm until the first cleavage. For this reason, the relevant

signaling molecules are called aPARs to denote anterior partitioning defective

proteins and pPARs for the posterior partitioning defective protein group. Be-

fore fertilization, the aPAR proteins cover the cell cortex while pPARs remain

evenly distributed in the cytoplasm [5]. Upon fertilization, the cell cortex

contracts towards the anterior, and consequently aPARs detach from the pos-

terior part of the cortex where pPARs start to accumulate (see also Fig. 1A

top). The two accumulations of PAR proteins establish a polarized distribu-

tion along the long axis of the ellipsoidal cell. This determines the anterior

and posterior parts of the cell which later on divides into two daughter cells of

different size. Once the opposing protein clusters are formed (during the ‘es-

tablishment phase)’, they persist for several minutes through the ‘maintenance’

phase until cell division (see also Fig. 1A bottom) [3, 5]. Several independent

in vivo experiments on C. Elegans have demonstrated that maintaining the

PAR protein polarity is independent from an intact actomyosin network [5–

8]. Rather, it appears that the contractions of the cortical actomyosin serve as

a temporary trigger for the establishment of the PAR protein pattern [4, 9].

This, of course, raises the questions ‘how is the pattern robustly formed and

how is it maintained on the long term’? Given the evidence that aPARs and

pPARs mutually inhibit each others binding to the membrane by phosphory-

lation [10, 11], as well as the fact that mutually inhibiting reactions promote

distinct cluster formation [12–14], previous studies have outlined the means by

which self-organization of PAR proteins maintain polarization until cell divi-

sion [8, 9, 11]. These previous studies established minimal reaction-diffusion
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models for the reactions of the PAR proteins [4, 8, 15]. These models have

shown that polarization is obtained through PAR protein complex formation

and mutual inhibition of membrane-bound aPARs and pPARs [4, 8]. How-

ever, the cytosolic proteins were assumed to be homogeneously distributed,

omitting the influence of cell geometry. Thus, the question remains how the

long axis for polarization is maintained by reaction and diffusion of the PAR

proteins in the single cell state of the C. Elegans embryo. Which mechanism

stabilizes cell polarity along the long instead of the short axis?

Studies of other protein systems have revealed that even rapid cytosolic dif-

fusion does not enforce homogeneous protein concentrations in the cytosol

[16, 17]. For any finite cytosolic diffusion, patterns are sensitive to the geom-

etry of the cell. However, patterns need not align to the long axis of the cell.

Recently, it has been shown that patterns can align to the short axis of the

cell as well; which pattern arises is determined by the reaction kinetics of the

underlying reaction-diffusion system [18]. Furthermore, it has been shown

that delayed reattachment to the cell membrane (due to cytosolic nucleotide

exchange) is key to geometry sensing [17, 18].

These results strongly suggest that the protein dynamics in the cytoplasm

of the C. Elegans embryo may also influence sensing long versus short axis

for axis alignement during polarity maintenance. Are complex formation and

mutual binding inhibition the only PAR reactions needed to maintain polarity

along the long axis in the C. Elegans embryo? In order to investigate axis

alignment, we developed a model of the single cell state of the embryo that

takes its elliptical (prolate spheroidal) shape into account.

Central to our model is mutual binding inhibition by phosphorylation on the

membrane. Mutual inhibition is based on mass-action law kinetics. The re-

quirement for heuristic nonlinearities has been eliminated by taking complex

formation and cytosolic dephosphorylation into account. Strikingly, our ex-

tended model in elliptical geometry reveals that the cytosolic dephosphoryla-

tion is crucial to long-axis polarization. Without it, polarity stabilizes only

along the short axis. Furthermore, we identified the roles mutual inhibition

and overall protein numbers play for stable long-axis polarization: While the

inhibition rates determine how well one axis is selected over the other, relative

protein numbers primarily affect the robustness of pattern formation to fluc-

tuations in the length scale of cytosolic dephosphorylation. Most importantly,

our analysis indicates that these findings are not system- or model-specific, but

rather, are based on the generic dependence of pattern forming processes on

the local ratio of cytosolic volume to membrane area. This ratio determines

the frequency with which cytosolic proteins reach the membrane, while the
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kinetics determine the affect this arrival frequency has on pattern formation.

A model including dephosphorylation in elliptical geometry

The aPAR family of proteins can be subdivided into 3 types: PAR-3, PAR-6

and PKC-3. Only complexes containing PKC-3 (an atypical protein kinase

C) can phosphorylate pPARs, disabling membrane binding of pPARs. How

exactly complexes of PAR-3, PAR-6 and PKC-3 form is not fully understood,

however, there is evidence that PAR-6 acts as a linker between PKC-3 and

PAR-3, the latter of which binds directly to the membrane. Without PAR-

6, PKC-3 remains diffuse in the cytosol [8, 19–21]. Hence, in the reaction

network our model is based around we simplify the formation of trimeric com-

plexes to a complex formation of two mass-conserved species of aPARs : A1

and A2. A1 attaches directly to the membrane, while A2 can then bind to it,

forming the hetero-dimer A12, see aPARs in the network in Fig. 1C on the

left. In our model, only the dimer A12 can phosphorylate, i.e. drive pPARs

off of the membrane, with rate kPa · A12. The choice of hetero-dimerization

among A1 and A2 captures the separation of labor, among different aPARs. A1

models the binding and linking function of PAR-3, PAR-6 complexes whereas

A2 phosphorylates PKC-3 when included in a hetero-dimer on the membrane.

Thus, we can investigate the effect of scaffold proteins and proteins which

inactivate other species.

As with aPARs, there are different species of pPARs, although less is known

about pPAR complex formation. While PAR-2 binds directly to the mem-

brane, and PAR-1 phosphorylates PAR-3, it remains unclear if PAR-2 also

helps maintain anterior-posterior polarity by excluding the aPAR complex

from the membrane [5, 11, 12, 22]. In light of this uncertainty, we treat the

pPARs simply as a single species P that antagonizes aPARs. The pPAR model

is illustrated on the right in Fig. 1C. Similar to the aPARs, P unbinds A1 and

A12 with rate kAp · P .

While previous models emphasize the role of mutual inhibition and relied on

higher-order nonlinearities to produce polarity, we consider the geometry of the

embryo and account for reaction kinetics and diffusion along its membrane, as

well as throughout its cytosol. The shape of the real single cell embryo is

approximately a prolate spheroid with long axis a; it is along this axis that

polarization aligns in the healthy embryo. In order to understand how the

long axis is robustly selected we investigate the appearance and direction of

cell polarization in C. Elegans, assuming two-dimensional elliptical geometry

5
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with long axis a and short axis b. The boundary and interior of the ellipse rep-

resent the membrane and cytosolic region respectively. In addition to cytosolic

diffusion, our model also introduces a protein dephosphorylation reaction in

the cytosol. This creates a cytosolic reactivation cycle, as proteins that were

phosphorylated on the membrane are then reactivated for membrane-binding

(Fig. 1B,C). We introduce the reactivation rate λ for both cytosolic, de-

activated pPARs (P ) and aPARs (only A1). Protein densities also play an

important role in mass-conserving reaction-diffusion systems. Thus we also

perform simulations to investigate the dependence of axis selection on relative

protein densities ρA1 , ρA2 and ρP .

RESULTS

Cytosolic dephosphorylation is important for axis determination

Given the above assumptions, a number of heuristic arguments can be made

for how proteins distribute themselves on the membrane and in the cytosol. In

the PAR system, cluster formation is driven by mutual antagonism between

membrane-bound aPARs and pPARs. As each PAR species dominates the mu-

tual phosphorylation competition in a given region, it evicts the other species

from the membrane locally, and an interface arises between clusters of the two

species along the membrane.

Clusters -and the interfaces between them- maintain their location and shape

through a balance of mutual phosphorylation. This entails detachment from

the membrane, spontaneous detachment and attachment of both species be-

tween cytosol and membrane. Dynamic equilibrium is eventually established

between protein concentrations in the cytosol and on the membrane (Fig. 1B),

however this does not establish where the interface between aPAR and pPAR

clusters should localize in an elliptical embryo -nor what role the embryo’s ge-

ometry might play. We argue that the availability of nearby membrane surface

plays a major role in determining cluster localization -and, thereby, axis align-

ment in cell polarization. Due to the curvature of an elliptical cell, the ratio

of available surface area to cytosolic volume is highest at the cell poles, and

lowest at midcell (Fig. 2A). Thus, for finite diffusion and a dephosphorylation

that requires time, this geometric constraint can influence the distribution of

actively binding proteins. Moreover, the effect of the geometric constraints de-

pends on the dephosphorylation time; a longer reactivation time implies that

a protein that detached from the membrane diffuses further away from the

6
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membrane before it can reattach. We refer to this length scale as the reactiva-

tion length and it is approximately defined by the cytosolic diffusion constant

Dcyt and the dephosphorylation rate λ:

` =

√
Dcyt

λ
.

To illustrate the effect of this length scale on protein dynamics, consider a

short inactive phase (i.e. ` < cell size). In this scenario, proteins are able

to rebind to the membrane quickly after detachment by phosphorylation and

the inactive layer is vanishingly small (Fig. 2A ). Furthermore the elliptical

shape of the embryo affects the likelihood of the proteins to reencounter the

membrane nearby immediately following their detachment. Near the cell poles,

the large ratio of membrane surface to cytosolic bulk facilitates reencountering

here of recently detached proteins, increasing the likelihood of polar reattach-

ment (Fig. 2A left pole). Conversely, proteins detached from the membrane

at midcell have more cytosol in their vicinity than those detached at the poles

and, thus, tend to diffuse longer and further away before encountering are

less likely to encounter the the membrane again (Fig. 2A midcell). The in-

creased reencountering frequency of proteins detached at the poles (relative to

those detached at midcell) translates into high local rebinding rates of actively

binding proteins, hence a stronger caging effect. For antagonistic protein in-

teractions such as in the PAR system, protein clusters are separated by an

interface where the mutual detachment dominates. For an interface (and the

clusters it separates) to be maintained, the amount of proteins that detached

needs to be resupplied to the interface, otherwise the antagonism would de-

plete the membrane. Unless there is a large cytosolic reservoir of proteins that

can take the place of the detached proteins, the mass-conserving nature of the

protein interactions requires that detached proteins quickly rebind. In that

case, an interface can be best maintained in a region where rebinding after de-

tachment is most likely. This heuristic picture suggests that cluster interfaces

preferentially form at the cell poles, and, that polarity is established along the

short axis (Fig. 2A bottom left).

Alternatively, if dephosphorylation requires more time, the mean distance a

protein diffuses away from the membrane upon reactivation ` increases (Fig.

2B ). Thus, the effect of the geometry (membrane surface to cytosolic volume

ratio) becomes weaker, leading to increasing uncaging of detaching proteins

from their detachment position as the reactivation length approaches the di-

mension of the cell (` <∼ cell size). Ultimately, if the reactivation length exceeds

the dimension of the cell (` <∼ cell size, cf. Fig. 2C ) the protein becomes com-
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pletely delocalized (its position uniformly distributed) throughout the cell due

to the diluting effect of cytosolic diffusion. Due to the elliptical geometry,

the accumulated density of homogeneously distributed proteins along the long

axis reaches its maximum at midcell, see Fig. 2C . Thus, a completely delocal-

ized but activated protein will reach the membrane most likely in the midcell

area. This translates into most disturbance of antagonistic protein clusters in

interfaces at midcell, and eventually leads to long axis polarization.

Altogether, while fast reactivation biases reattachment in favor of the region

near the point of detachment, longer delays promote a redistribution through-

out the cell before reactivation. Thus, a delay in binding reactivation moves

the preferred reattachment position of proteins from the poles to midcell mem-

brane, creating greater instability to cluster growth there, and thus promoting

interface formation. Consequently, we expect cell polarization induced by an-

tagonism along the long axis, only if the delay induced by dephosphorylation

is long enough.

Numerical analysis

It was discovered by Turing [23] that with different diffusion constants in a

reaction-diffusion system, homogeneous protein concentrations can become

unstable, leading to spontaneous patterns such as stripes or polarized con-

centrations. To see this mathematically, firstly spatially-homogeneous steady

state solutions of the reaction-diffusion equations are computed. From these

homogeneous solutions, one can then linearize the time-dependent reaction-

diffusion equations to determine the growth rates σ of a set of eigenfunctions

(typically called ’modes’) corresponding to different patterns. The mode with

the largest positive growth rate from an unstable homogeneous solution de-

scribes the pattern that will arise from small perturbations initially. Here we

use a recently extended method based on linear stability analysis to bounded

geometries ( [16, 18]) in order to test for lateral (Turing) instabilities along

the long (even) and short (odd) axis. The first and second mode aligning to

each axis are depicted in Fig. 3A. The first even and first odd mode resemble

a polarized protein distribution on the membrane along short and long axis

respectively. For system with cytosolic reactivation, no perfectly homogeneous

steady state exists, (cf. [16–18]). Thus, an approximation of the near homoge-

nous base state was used (see. SI), which, for simplicity, is referred to as the

‘homogeneous’ solution in the following and thus we can compute σ for these

modes: if <(σ) > 0 for one or more modes, then the homogeneous solution
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is unstable; the pattern corresponding to the mode with largest growth rate

will emerge. Otherwise, if the growth rates of all modes are negative, small

perturbations of the homogeneous protein distribution will dissipate and the

homogeneous solution will remain stable. For the natural cell size and typi-

cal cytosolic diffusion constants (O(1− 10)µm2/s) we observe only negligibly

small growth rates for the second or higher modes. In some parameter regimes,

however, the growth rates of the first even and odd modes are positive and

similar. To quantify the growth competition among modes, we define the

gap term ∆ := σe−σo√
σ2
e+σ

2
o

, and probe the dependence of this difference on cy-

tosolic diffusion and dephosphorylation rates, to see how these effect influence

polarity-axis selection (for illustration of ∆ see Fig. 3B). Stability analysis is a

good method to detect parameter regimes where patterns form and it predicts

which patterns arise firstly from homogeneous starting points. Which pattern

eventually forms the steady state cannot securely be predicted. Thus, we also

run simulations of the full nonlinear system according to finite-element method

(FEM) to test and verify results from stability analysis.

The cytosolic reactivation length selects the polarization axis

We computed ∆ as a function of λ and Dcyt (see Fig. 3C) and found it to be

negative for small Dcyt/λ (blue in Fig. 3C), and positive otherwise (red in Fig.

3C). This is consistent with our hypothesis that reactivation must be slow and

Dcyt fast to obtain polarity along the long axis. Furthermore, we ran FEM

sweeps of λ and Dcyt and found the boundary dividing steady state long and

short axis polarization in the Dcyt-λ diagramme. This divison can be expressed

as a straight line `2 = Dcyt/λ = (11.18µm)2. Taken together, the results from

stability analysis and FEM indicate that diffusion (parameterized by Dcyt) and

reactivation (λ) in the cytosol have inverse effects on the selection of the axis

of polarity; the net effect of these cytosolic processes can be expressed using

the reactivation length `.

The relative antagonistic rates facilitate fast establishment of the stFig.able

polarity axis

So far, our results have shown that the length scale of cytosolic reactivation

determines the axis along which polarity is maintained, as it influences where

actively-binding A1 and P proteins tend to reach the membrane. If ` is suf-
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ficiently long, active A1 and P encounter the membrane more often at mid-

cell, leading to greater competition there. An interface separating aPAR- and

pPAR-dominant regions on the membrane - if existent - then stabilizes at

midcell. The persistent coexistence of clusters of both protein groups on the

membrane rather than uniform domination of one group over the other, de-

pends on the antagonistic rates kAp and kPa, as well as the relative numbers

of each protein type which are defined by the ratios of ρA1 , ρA2 and ρP . In the

following we refer to such a persistent coexistence as ’balance of mutual antago-

nism’. To determine the necessary conditions for balanced mutual antagonism

we performed a stability analysis, using kAp and kPa as control parameters for

various reactivation rates λ. For any λ that satisfies ` ≤ 2a (where 2a = 54µm

is the full cell length) we observe polarity only within a fixed range of ratios

kPa/kAp; outside of this range, no patterns emerge (Fig. 4A,B top). For large

kPa/kAp, λ determines which of the first even or odd modes dominates pattern

formation from a homogeneous base state, and thereby determines the axis

of polarization. For low kPa/kAp, however, ∆ approaches zero, implying no

preference between either orientation. FEM simulations, however, show that

also for low kPa/kAp and −0.1 < ∆ < 0.1 one specific polarity axis depend-

ing on λ is obtained in steady state. We performed FEM simulations that

were initialized with their homogeneous base state and randomly perturbed

by ±0.1%. Here, λ = 1/s and λ = 0.05/s leads to polarization along the

short and long axes respectively for all ratios kPa/kAp that satisfy balance of

mutual antagonism. Further simulations show that even if an initial concentra-

tion gradient is established perpendicular to the preferred direction, polarity

is eventually re-established as described above. Only the time required for po-

larity to change axes depends on the ratio kPa/kAp (see kymographs for each

λ in Fig. 4A,B on the bottom). However, a slight correlation between the

steady state polarity axis and the ratio kPa/kAp does exist. FEM simulation

sweeps of λ show that the transition from a steady state polarity along long

or short axis lies in the range 0.07/s < λ < 0.25/s depending on kPa/kAp.

Still, while λ mainly determines the polarization axis in steady state, the ratio

kPa/kAp sets the timescale with which steady state is reached. More generally,

this suggests that cytosolic processes can control axis alignment of patterns

while the nonlinear membrane kinetics determines the robustness of a single

pattern against others.
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Relative protein numbers vary the range of ratios allowing for polarity

Since the balance of mutual antagonism depends not only on the phosphory-

lation rates but also on the relative global densities of each protein type, we

computed ∆ as a function of kPa/kAp and ` for varying average protein densi-

ties of each species, ρA1 , ρA2 , and ρP . Among aPARs A1 represents a scaffold

protein, while A2, plays an antagonistic role against P . Changing the relative

densities of these two protein types, several observations and interpretations

can be made. Lowering ρA2/ρA1 by increasing ρA1 , i.e. relative numbers of

aPARs versus pPARs are increased only by ρA1 , widens the range of ratios

kPa/kAp that admit a polarized aPAR-pPAR protein distribution on the mem-

brane (note range in Fig. 5A versus B,C,D). We explain this as follows: With

an overabundance of A1 but not A2, the maximum number of hetero-dimers is

limited by A2. Since A2 is responsible for antagonism, P is still able to com-

pete. Thus, high kPa/kAp (the phosphorylation rate of P by A12 is comparably

high) still admit polarity (see Fig. 5A with ρA1 > ρP > ρA2). However, for

low kPa/kAp A1 acts as a buffer for re-dimerization. When a hetero-dimer de-

taches from the membrane in a cell with abundant A1, another A1 can quickly

catalyze the re-dimerization of A2 on the membrane. Consequently, even with

lower kPa/kAp, mutual antagonism can still balance with sufficient A1.

With increasing ρA2/ρA1 (see Fig. 5B,C,D), polarity is observed within a nar-

rower range of kPa/kAp. We rationalize this with the argument that there is

comparably less active A1 left in the cytosol, not only because their global rel-

ative amounts are shortened but also, more of them are locked in dimers with

A2 on the membrane. When the relative number of aPAR proteins is signifi-

cantly larger than that of pPAR, the minimal kPa/kAp range approaches unity

from above (Fig. 5 A,D, (ρA1 + ρA2)/ρP > 2). Thus, overabundance of all

aPARs compensates for the additional step of dimerization that is necessary

for phosphorylation of pPAR.

In summary, we conclude that an abundance of the scaffold protein (A1) widens

the range of antagonistic rates that allow for polarization, while high numbers

of all aPARs lowers the minimal range of ratios kPa/kAp towards unity.

Relative protein numbers change the sensitivity to `

The results above show that the maintenance of polarity depends on not only

the relative global densities of aPARs and pPARs in the cell, but also the

relative densities within each functional group. We now consider the signifi-
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cance of relative global densities of proteins with different functions - namely,

scaffolding and antagonistic phosphorylation.

The ∆ values obtained for various kPa/kAp and ` show that increasing the

abundance of A1 desensitizes the dynamics to elongation of ` (Fig. 5A). For

ρA1 > ρP > ρA2 only short axis polarization is observed for ` ≤ 2a. It seems

that the transient inactivity of A1 can be compensated for by simple over-

abundance, making cell polarization less sensitive to `. Furthermore, A2 can

immediately re-dimerize with A1 when reencountering the membrane since

the former is not dephosphorylated. As argued in section this leads to stable

cluster interfaces at the poles, and thus, short-axis polarity (cf. SI movies of

simulations).

For high ρA2 we find the opposite effect, i.e. short ` stabilizes polarity along

the long axis (see Fig. 5C,D relative global densities of A2 increase from left

to right):

As described above, with sufficient A2 in the cell, many active A1 proteins are

locked as hetero-dimers on the membrane, leaving fewer active A1 available in

the cytosol. Thus, the inactive A1 and P comprise a large fraction of cytosolic

proteins and many proteins in the cell have an inactive diffusion environment `

after their detachment. Therefore, the cell is more sensitive to already small `.

For equal amounts of all species (ρA1 = ρP = ρA2) ` ≈ 1/6·(2·a), i.e. an inactive

layer of one fifth of the cell length, leads to stable long axis polarization.

Conclusively, the relative global densities of each functional protein type (e.g.

scaffold, dimerizing or inactive) plays a role in axis selection.

DISCUSSION

Cell polarization has been studied in many organisms. However most models

neglect the geometric effects, such that the orientation of polarization cannot

be predicted. For models where polarization emerges due to an instability of

the uniform state (e.g. Turing instability) in a planar system geometry (e.g. a

line) each length scale is associated with the growth rate of the Fourier mode

with the corresponding wave length. A major property of Turing instabili-

ties is the notion of a characteristic length scale given by the fastest growing

Fourier mode. This length scale supposedly dominates any (Turing) pattern.

Based on this notion, one may have expected that patterns align with the axis

that is closer to the (characteristic) length scale of the fastest growing mode.

Strikingly, our results show that this is not the case: An intracellular pattern

forming system is not only characterized by the (traditional) wavelength of
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the pattern, but also by a preferential axis. The selection of this character-

istic axis is not related to the characteristic length scale, but depends on the

effect cytosolic proteins have on the pattern forming process when they en-

counter the membrane. At the coarsest level, we can distinguish between two

types of processes: accumulation and separation of membrane-bound protein

clusters. Accumulation is promoted by cooperative attachment, i.e. when the

local attachment rate is increased by similar proteins. An example would be

Min protein dynamics. In that case clusters stabilize in the regions of high-

est encounter frequency of cytosolic proteins (which are active for binding).

Antagonistic reactions, as displayed, for instance, by PAR proteins, have the

opposite effect: In regions where active proteins reach the membrane most

frequently antagonistic interactions promote the establishment of an interface

that separates cluster.

In any mass-conserving reaction-diffusion system dynamics comprise an on-

going cycling between membrane-bound and cytosolic states. Therefore, axis

selection mainly depends on the position where cytosolic proteins re-encounter

the membrane most often after detachment once they have been reactive for

binding. As we have shown, this position is regulated by the local ratio of

membrane surface to cytosolic volume and the length scale ` of cytosolic dif-

fusion until reactivation. The only other case is when the cytosol comprises a

large reservoir of active proteins. In that case the reactivation length scale `

has a negligible effect such that the encounter frequency is determined by the

local membrane to cytosol ratio alone.

These findings suggest several experiments to test pattern dependencies on

the cytosolic volume to membrane area ratios. An in vitro setup could be

comprised of a flat membrane, buffer (cytosol) including the PAR proteins

(PAR-3, PAR-6, PKC-3 and PAR-1,2 ) and an exclusive volume, such as a

stamp. Here, our analysis predicts stable interfaces of PAR clusters depending

on several experimental parameters:

• the viscosity of the buffer, which determines the speed of cytosolic diffu-

sion

• the cytosolic phosphatase concentration, which determines the rate of

dephosphorylation in the cytosol

• and the ratios of PAR proteins in the system.

A minimal in vitro cell would also offer a suitable, if more elaborate, setup.

It would be comprised of an ellipsoidal or rectangular membrane, buffer and

the PAR proteins. The same parameters as in the flat environment could be
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varied. An artificial slowing of cytosolic diffusion (obtained by increasing the

buffer viscosity) should lead to a switch of the polarity axis.

For the PAR system, in vivo investigations have been established for decades

now. Thus, we suggest the following experiments in a living one-cell state of the

C. Elegans embryo: Our model predicts that an increased number of PAR-3

and PAR-6 (such as A1 in the model) destabilize long axis polarization in favor

of short axis polarization. However, in order to only investigate the ability of

the PAR system to maintain polarity, a deactivation of the actomyosin network

might be necessary.
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FIGURES

Figure 1

A

C
aPARs pPARs

PAR3
PAR6
PKC3

actomyosin
contraction

anterior posterior

PAR1
PAR2

Establishment

Maintenance

P

P

inactiveA1

A1A1

A1

A2

A2

P

inactive

B

Delay

aPARs
pPARs

FIG. 1.

(A) Cell polarization in the C. Elegans embryo during establishment phase

(top) and maintenance phase (bottom). Sketch adopted from [3]. (B) Sketch

of the flux between cytosol and membrane: As proteins detach from the mem-

brane they are phosphorylated and can therefore not immediately rebind to

the membrane. There is an intrinsic time delay before rebinding due to a

phosphorylated phase. (C) The reaction model: aPARs are treated as two

species, A1 and A2 (red oval and orange sharp cut cylindrical shape), pPARs

with one species P (green oval). A1 and P can attach to and detach from the

membrane with constant on and off rates. Complex formation of aPARs is

accounted for by introducing hetero-dimerization of A1 and A2 with rate kd:

A1 can directly attach to the membrane whereas A2 can only attach to the

membrane indirectly when recruited from A1 building the hetero-dimer A12.

The model further includes mutual phosphorylation as detaching and inacti-

vating process of A12 hetero-dimers and A1 by P with rate kAp ·P and of P by

the hetero-dimer A12 with rate kPa ·A12. Inactive A1 and P are signed with a

light boundary. Dephosphorylation, i.e. reactivation for binding, is integrated

for A1 and P with rate λ. The corresponding reaction-diffusion equations are

provided in the supplement (eq. [1-16]).
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Figure 2
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FIG. 2.

(A) If the reactivation length ` is small compared to the cell size, the local

membrane area to cytosolic volume ratio strongly affects the position where

detaching proteins reattach. A protein detaching from a cell pole is more likely

to reattach to the cell pole than a protein detaching from midcell is to reattach

at midcell. In that case dynamics that are based on membrane-cytosol cycling

(such as antagonistic reactions that maintain an interface) are enhanced at

the cell poles. (B) As the reactivation length ` approaches the dimension of

the cell size, this geometry effect becomes weaker, and the detaching proteins

become increasingly uncaged from the position of membrane detachment. (C)

This geometric effect is completely lost if the reactivation length ` exceeds the

dimension of the cell size. In that case the position of a detaching protein

becomes uniformly distributed throughout the cell before it is reactivated.

In that case it will reencounter the membrane most likely near midcell after

reactivation, since a delocalized protein (uniformly distributed position) will

most likely be found in the midcell area.
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Figure 3
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FIG. 3.

Mode selection and the polarity axis. (A) Illustration of the first and

second modes (even on the left, odd on the right). These modes represent so-

lutions to the diffusion equation in elliptical geometry. Homogeneous protein

concentrations that solve the steady state equations of the model (cf. SI) are

disrupted by these spatial modes. Each mode has a corresponding growth rate

σ
1/2/...
even/odd away from (positive) or towards (negative) the steady state solution.

The largest positive growth rate corresponds to the pattern which forms out of

the homogeneous concentration after perturbation. Here we define the normal-

ized difference between the largest growing even and odd mode as the growth

rate gap: ∆. (B) Illustration of the gap ∆ of the growth rates. (C) ∆ is shown

in red to blue scale for a sweep of Dcyt versus λ. For small λ and large Dcyt ∆

is clearly above zero (red), which predicts long axis polarization, whereas for

large λ and small Dcyt ∆ is clearly below zero (blue). These findings are vali-

dated using FEM simulations. Since for parameter sets which lead to ∆ close

to zero the steady state of the system is unclear, we perform a FEM simulation

with an initial concentration gradient along the long axis. In the regime where

Dcyt and λ define ` < 11, 2µm an initial long axis polarization switches to the

short axis and the steady state exhibits short axis polarization. Whereas for

` > 11, 2µm the long axis polarity arising from the initial gradient stabilizes

forever. This confirms that the reactivation length ` =
√
Dcyt/λ, which is the

square root of the slope of a line in this diagram, is a key parameter for axis

selection.
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Figure 4

A B

FIG. 4.

λ determines the polarity axis, while the phosphorylation rates fa-

cilitate the establishment of the steady state axis polarity. A cone of

polarization can be seen in the kAp − kPa diagram (left and right top). Each

cone was found sweeping kAp and kPa for one value of λ using stability anal-

ysis. Inside of each cone the aPAR-dominant fixed point is unstable against

the first even and odd modes. For each λ also sample kymographs from FEM

simulations at the upper bound (upper kymos) and lower bound (lower ky-

mos) of the kAp − kPa cone are shown. (A) For λ = 1/s, polarization always

occurs along the short axis. This is confirmed numerically (FEM) by kymo-

graphs of the membrane concentration of P . Here, simulations are initiated

with a perpendicular concentration gradient of A1, A2 and P along the long

axis. In the left kymograph the values kAp = 6. and kPa = 2.4 are chosen

along the region ∆ ≈ 0 - here, stability analysis indicates no preference with

regard to polarization. Although the initial long axis polarization persists for

some time, short axis polarization is ultimately established and maintained in
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steady state. In the right kymograph kAp = 6./s and kPa = 2./s are chosen

from the regime where ∆ is clearly below zero and thus predicts short axis po-

larization. The kymograph shows that an initial long axis polarization turns

into short axis polarization faster than for kAp = 6. and kPa = 2.4. (B): kAp
versus kPa for λ = 0.05/s. Stability analysis predicts long axis polarization

for high kPa/kAp. This is also confirmed by FEM simulations in the region of

∆ ≈ 0 (low kPa/kAp). As in to (A) kymographs reveal that phosphorylation

rates only influence the time taken for polarization to change alignment.
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Figure 5

 

DCBA

FIG. 5.

Relative protein numbers regulate the robustness of polarity. From

left to right the relative densities are varied: (A)
ρA1

ρA2
= 6.,

ρA1
+ρA2

ρP
= 2.1875;

Long axis polarization vanishes with excess A1. (B)
ρA1

ρA2
= 3.2,

ρA1
+ρA2

ρP
=

1.3125; With increasing ρA2 , we observe a minimum ` to allow polarization

along the long axis.(C)
ρA1

ρA2
= 2.28571;

ρA1
+ρA2

ρP
= 1.4375; An excess of A2

allows for even lower `. (D)
ρA1

ρA2
= 0.761905,

ρA1
+ρA2

ρP
= 2.3125.
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GEOMETRY

The natural shape of the C. Elegans embryo resembles a prolate spheroid

with approximate axis lengths a and b. a is the distance from centre to pole

along the symmetry axis and thus the major axis, while b is the semi-major

axis, which is the equatorial radius of the spheroid. Since we are interested

in distinguishing between long and short axis polarization, here the geometry

is simplified to a two dimensional ellipse with major axis a and minor axis

b. In the following we abbreviate the area of the ellipse with Ω := π · a · b
which contains the cytosolic bulk in the model and ∂Ω for its perimeter, which

resembles the membrane.

MODEL EQUATIONS

The model is mathematically described as a set of reaction-diffusion equations

for the cytosolic bulk and for the membrane species (see below ).

Cytosolic equations

The dynamics of the bulk species according to the model depicted in Fig.1 of

the main text is given by the following reaction- diffusion equations restricted

to Ω:

∂tcA1 = λcA∗
1

+Dcyt∇2cA1 (1)

∂tcA∗
1

= −λcA∗
1

+Dcyt∇2cA∗
1

(2)

∂tcA2 = Dcyt∇2cA2 (3)

∂tcP = λcP ∗ +Dcyt∇2cP (4)

∂tcP ∗ = −λcP ∗ +Dcyt∇2cP ∗ . (5)

Membrane equations

Membrane species react and diffuse on the perimeter ∂Ω. The ensuing set of

equations is:

2
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∂tmA1 = kaoncA1 − kaoffmA1 − kApmPmA1 (6)

− kdmA1cA2 +Dam∇2
TmA1

∂tmA12 = kdmA1cA2 − kaoffmA12 − kApmPmA1

+Dam∇2
TmA1 (7)

∂tmP = kponcP − kpoffmP − kPamA12mP +Dpm∇2
TmP (8)

Reactive boundary conditions

∂Ω is connected to Ω via reactive boundary conditions. These describe the

particle flux between membrane and cytosolic bulk. The boundary equations

are:

Dcyt∇NcA1 = −kaoncA1 + kaoffmA1 (9)

Dcyt∇NcA2 = kApmPmA12 − kdcA2mA1 (10)

Dcyt∇NcP = −kponcP + kpoffmP (11)

Dcyt∇NcA∗
1

= kApmP (mA1 +mA12) (12)

Dcyt∇NcP ∗ = kPamPmA12 (13)

Mass conservation

On the time scales of polarization establishment and maintenance in C. Ele-

gans PAR protein production and degradation is negligible. Therefore, mass

conservation can be assumed. In the model the species are conserved in the

3
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finite space Ω for the bulk and the boundary region ∂Ω according to:

NA1 =

∫

Ω

ρA1Ω

=

∫

Ω

(
cA1 + cA∗

1

)
dΩ +

∫

∂Ω

(mA1 +mA12) d∂Ω (14)

NA2 =

∫

Ω

ρA2dΩ

=

∫

Ω

cA2dΩ +

∫

∂Ω

mA12d∂Ω∂ (15)

NP =

∫

Ω

ρPdΩ

=

∫

Ω

(cP + cP ∗) dΩ +

∫

∂Ω

mPd∂Ω (16)

COMPUTATIONAL METHODS

In this model many parameters are unknown. In order to perform the analysis

efficiently, but also investigate the full protein dynamics in polarizing param-

eter regimes accurately, we perform two different computational methods: 1.

Linear stability analysis to identify computationally efficiently in which param-

eter regimes polarization can arise out of homogeneous starting conditions. 2.

FEM simulations on a triangular mesh using Comsol Multiphysics 5.1. to un-

derstand the full protein dynamics and to find out for which parameter sets a

polarized protein distribution along the long axis forms a steady state.

Linear stability analysis in elliptical coordinates

The model equations of the reaction-diffusion system (Eqs.1-4) with reactive

boundary conditions are formulated in elliptical coordinates similar to the

formulation of reaction-diffusion systems in elliptical geometry describing the

Min protein dynamics introduced in [1]). Here we shortly recall how to obtain

a set of orthogonal eigenfunctions solving the bulk equations. The equations

are rewritten in elliptical coordinates. The transformation from Cartesian

(x, y) to elliptical coordinates (µ, ν) reads:

x = d coshµ cos ν , (17)

y = d sinhµ sin ν , (18)

4
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with d =
√
a2 − b2 and variables µ > 0 and 0 ≤ ν ≤ 2π An equation for an

inactive cytosolic species reads

∂tc
∗ = −λc∗ +Dcyt∇2c∗ , (19)

where λ → 0 for a species without an inactive phase. Also for the total

concentrations of active and inactive species of the same kind, C := c∗ + c,

one obtains the describing equation by setting λ = 0. The solutions for the

active species alone can then be calculated by exploiting c = C − c∗. To

solve equation (19) in bounded elliptical geometry the Laplace operator is

transformed to elliptical coordinates:

∇2 =
1

d2(sinh2 µ+ sin2 ν)
(∂2
µ + ∂2

ν). (20)

Using this the transformed equation (19) becomes:

∂tc = λc∗ +Dcyt
1

d2(sinh2 µ+ sin2 ν)
(∂2
µ + ∂2

ν)c . (21)

Exploiting an ansatz of separation for time and space variables c(t, µ, ν) =

eσtR(µ)Ψ(ν) one obtains separate equations for all variables:

∂tc(t, µ, ν) = σ · c(t, µ, ν)

⇒ 0 = ∂2
µR(µ)− (α− 2qcosh(2µ))R(µ) (22)

0 = ∂2
νΨ(ν) + (α− 2qcos(2ν))Ψ(ν) (23)

where α is the constant of separation and q = −(σ + λ) d2

4Dcyt
. An orthogonal

set of eigenfunctions solves these so called Mathieu equations. We used this

set of functions, the Mathieu functions, to construct a set of eigenfunctions for

the diffusion equations on the membrane, here the circumference of an ellipse.

This approach is based on previous work by Halatek and Frey [1], where a

detailed description of this construction can be found.

The membrane equations describing diffusion and reaction of a general species

m have the form:

∂tm = Dmem∇2m+ g(c,m) . (24)

The boundary condition is further described by

Dcyt∇c = f(c,m), (25)
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where the flux and diffusion operators are constrained to the membrane or

mathematically to a constant µ = µ0 giving the perimeter ∂Ω. By parameter-

izing ∂Ω one finds the Laplace operator constrained to the membrane:

s(ν) =

∫ ν

0

dν̃
√
b2 + (a2 − b2) sin2 ν̃ . (26)

The Laplace operator then reads

∆ν =∂2
s . (27)

In previous work [1] we constructed a set of orthogonal eigenfunctions as

functions of q as linear combination of the Mathieu functions. This set of

eigenfunctions, which we will now call membrane-bulk modes, solves the cy-

tosolic bulk and membrane diffusion simultaneously. With it we could further

approximate the flux operator acting on the membrane-bulk modes. In the

following we use the same notation for the membrane-bulk modes

Ψne
mem
n (µ, ν, qen) ,Ψno

mem
n (µ, ν, qon) , (28)

where e/o denotes even and odd modes. Furthermore the approximated flux

operator is abbreviated

∂µΨe/omemn |µ=µ0 =Γe/onΨe/omemn |µ=µ0 . (29)

Thus, all ingredients to perform a linear stability analysis are described math-

ematically.

Near homogeneous fixed points

As mentioned in the main text, for a finite λ a perfectly homogeneous base

state for which to start the stability analysis does not exist. However, near

homogeneous fixed points can be approximated by

c̄(µ) =c̄(µ0)Ψ0e
mem
n (µ, ν, qe0) , (30)

where qe0 depends only on λ (σ = 0). The near homogeneous cytosol (c̄(µ)) and

membrane (m̄(µ0) = const.) concentrations are then obtained by solving the

stationary membrane equation and the approximated boundary conditions:

0 =g(c̄, m̄) , (31)

0 =f(c̄, m̄)−DcytΓe/on(qe0) , (32)
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Linearized system

The linearized system is described by matrix An.




D1 ∂mA12
gA1 ∂mP

gA1 ∂cA1
gA1 ∂cA2

gA1 ∂cP gA1 ∂cA∗
1
gA1 ∂cP∗gA1

∂mA1
gA12 D2 ∂mP

gA12∂cA1
gA12 ∂cA2

gA12 ∂cP gA12 ∂cA∗
1
gA12 ∂cP∗gA12

∂mA1
gP ∂mA12

gP D3 ∂cA1
gP ∂cA2

gP ∂cP gP ∂cA∗
1
gP ∂cP∗gP

∂mA1
fA1 ∂mA12

fA1 ∂mP
fA1 D4 ∂cA2

fA1 ∂cP fA1 ∂cA∗
1
fA1 ∂cP∗fA1

∂mA1
fA2 ∂mA12

fA2 ∂mP
fA2 ∂cA1

fA2 D5 ∂cP fA2 ∂cA∗
1
fA2 ∂cP∗fA2

∂mA1
fP ∂mA12

fP ∂mP
fP ∂cA1

fP ∂cA2
fP D6 ∂cA∗

1
fP ∂cP∗fP

∂mA1
fA∗

1
∂mA12

fA∗
1

∂mP
fA∗

1
∂cA1

fA∗
1
∂cA2

fA∗
1
∂cP fA∗

1
D7 ∂cP∗fA∗

1

∂mA1
fP∗ ∂mA12

fP∗ ∂mP
fP∗ ∂cA1

fP∗ ∂cA2
fP∗ ∂cP fP∗ ∂cA∗

1
fP∗ D8




with

gA1 = kaoncA1 − kaoffmA1 − kApmPmA1 − kdmA1cA2

gA12 = kdmA1cA2 − kaoffmA12 − kApmPmA1

gP = kponcP − kpoffmP − kPamA12mP

fA1 = −kaoncA1 + kaoffmA1

fA2 = kApmPmA12 − kdcA2mA1

fP = −kponcP + kpoffmP

fA∗
1

= kApmP (mA1 +mA12)

fP ∗ = kPamPmA12 ,
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and

D1 :=∂mA1
gA1 − σn −Dm

2πn

L

2

D2 :=∂mA12
gA12 − σn −Dm

2πn

L

2

D3 :=∂mP
gP − σn −Dm

2πn

L

2

D4 :=∂cA1
fA1 −DcytΓn(q(σn))

D5 :=∂cA2
fA2 −DcytΓn(q(σn))

D6 :=∂cP fP −DcytΓn(q(σn))

D7 :=∂cA∗
1
fA∗

1
−DcytΓn(q(σn))

D8 :=∂cP∗fP∗ −DcytΓn(q(σn)) .

To perform the linear stability analysis the membrane equations and the

boundary conditions are linearized around the fixed point (c̄, m̄). The sta-

bility of the fixed point is tested by adding small perturbations (δm, δc) which

are expressed in terms of the membrane eigenfunctions Ψe/omemn and an expo-

nential function for the time dependency. This way we can also write out the

flux operator in a linear fashion. The final minimal version for the membrane

equation and boundary condition for (m, c) = (m̄+ δm, c̄+ δc) reads:

An


δm
δc


 =0 , (33)

with

An =


∂mg|(c̄,m̄) − σn −Dm

2πn
L

2
∂cg|(c̄,m̄)

∂mf |(c̄,m̄) ∂cf |(c̄,m̄) −DcytΓn(q(σn))


 , (34)

where L = s(2π) is the full circumference. All steps above can be performed

similarly for equations [1-14]. This results in matrix An shown in Fig. .

8
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COMSOL 5.1 simulations

Setup for FEM simulations

The time dependent solver in COMSOL 5.1 was chosen PARDISO with a

multithreaded nested dissection. The time stepping was performed with a

relative tolerance of 10−6 between time steps and solved with a multistep

method (BDF). In all simulations we used triangular meshing (COMSOL 5.1

setting ”finer”) with additional refinement at the boundary, i.e. along the

membrane.

For the standard parameter sets given in table [I] we tested the stability of the

steady state up to 5 · 106s. In order spare time and memory other simulation

times were limited to 1 · 106s

Initial conditions

For the density profiles in Fig. 2 and also in the Movie we used homogeneous

starting concentrations with aPAR species dominant on the membrane. The

initial concentration of each species was found by solving the time and space

independent model equations. Also the FEM sweep of λ versus Dcyt was initial-

ized with homogeneous starting concentrations with aPAR species dominant

on the membrane. We further performed a test simulation of λ versus Dcyt

which was initialized with gradients to see if the final steady state pattern,

i.e. here long or short axis polarization, depends on the initial perturbation.

This was not the case. Although the initial concentration gradients lead to a

temporary polarization along the same axis as the original gradient, the steady

state polarization was the same as with homogeneous starting concentrations.

Similar observations were made when varying the initial conditions for the

kymographs in Fig. 4.

SUPPLEMENTARY DETAILS FOR THE FIGURES

Supplementary details for Figure 2

The parameters for Fig. 2 can be found in Table I. The homogeneous

initial concentrations are in Table II. Each FEM simulation was initially

perturbed by multiplying the membrane concentration of A1 and A12 with

9
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1 + 0.01 · rand(x, y), where rand(x, y) is a random number drawn from a nor-

mal distribution with zero mean and variance 1.

Fig. a[µm] b[µm] Dcyt[µm
2/s] ka/pon[µm/s] ka/poff [s−1] kAp[µm/s] kPa[µm/s]

2A left 27 15 30 0.1 0.005 2. 6.

2A right 27 15 30 0.1 0.005 2. 6.

Fig. kd Dam[µm2/s] Dpm[µm2/s] λ[s−1] ρA1 [µm−2] ρA2 [µm−2] ρP [µm−2]

2A left 0.17 0.28 0.15 10 1.6 0.5 1.6

2A right 0.17 0.28 0.15 0.05 1.6 0.5 1.6

TABLE I. Parameters used to obtain the density profiles in Fig. 2. The units are

numbers of particles per µm on the membrane and numbers of particles per µm2 in

the cytosol.

Supplementary details for Figure 3

For the sweep using linear stability analysis in Fig. 3 C all parameters but λ

and Dcyt where chosen as in I. λ was varied between 5−3s−1 and 0.26s−1; the

values are uniformly spaced with distance 5−3. Dcyt was varied from 7 to 40

with a uniform spacing of 1.

Supplementary details for Figure 4

For the sweep using linear stability analysis in Fig. 4 A,B all parameters

but λ and kAp and kPa where chosen as in Table I. kAp was varied between

0.1µm/s and 4.0µm/s and kPa was varied between 0.3µm/s and 8.0µm/s;

for both parameters values are uniformly spaced with distance 0.1. Dcyt was

varied from 7µm2/s to 40µm2/s with a uniform spacing of 1µm2/s.

For each kymograph we ran a COMSOL 5.1 simulation for 1000000s initialized

with concentration gradients of the membrane species. The gradient was cho-

sen along the long axis for fast λ, i.e. mA1(x, y) = mfp
A1

(1 + y/b),mA12(x, y) =

10
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Fig. initial mA1
initial mA12

initial mP initial cA1
initial cA2

initial cP initial cA∗
1

initial cP∗

2A left 1.83055 2.69718 0.00987737 1.12083 0.214555 1.59895 0 0

2A right 1.80934 2.91656 0.00758949 0.953638 0.191338 1.32849 0.146215 0.270707

TABLE II. Initial concentrations used for the density profiles in Fig. 2. The units

are numbers of particles per µm on the membrane and numbers of particles per µm2

in the cytosol.

mfp
A12

(1 + y/b),mP (x, y) = mfp
P (1− y/b) where fp denotes the fixed point con-

centration. For the fast λ = 1s−1 kPa and kAp were chosen (6.0, 2.4) and

(6.0, 1.9) for lower and upper regions of the polarity cone, respectively. For

λ = 0.05s−1 the gradient was chosen along the short axis, i.e. mA1(x, y) =

mfp
A1

(1 + x/a),mA12(x, y) = mfp
A12

(1 + x/a),mP (x, y) = mfp
P (1− x/a). kPa and

kAp were set (6.0, 2.4) and (6.0, 2.0).

Supplementary details for Figure 5

For the sweeps using linear stability analysis in Fig. 5 A,B,C,D all parame-

ters but the densities ρA1 , ρA2 and ρP , λ and kAp were set as in Table I.The

simultaneous sweep of ` and kPa/kAp was obtained by varying λ and kAp for

fixed Dcyt = 30µm2/s and kPa = 6.0µm/s. The values of λ were uniformly

spaced with distance 0.01s−1 from 0.01s−1 to 1.0s−1, and kAp was varied from

0.5µm/s to 9.0µm/s with uniform steps of 0.05µm/s.
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INTRODUCTION

From cellular structures to organisms and populations, biological systems are

governed by principles of self-organisation. The intricate cycles of autocatalytic

reactions that constitute cell metabolism, the highly orchestrated processes of

nucleic acid transcription and translation, the replication and segregation of

chromosomes, the cytoskeletal assemblies and rearrangements that mechani-

cally drive important cellular processes like cell division and cell motility, the

morphogenesis of complex tissue from a single fertilised egg - all of these pro-

cesses rely on the generation of structures and gradients based on molecular

self-organisation. Frequently, the assembly and maintenance of these struc-

tures is accompanied by spatial and temporal protein patterning.

What are the principles underlying self-organising processes that result in pro-

tein patterns? Though the term ‘self-organisation’ is frequently employed, as it

is here, in the context of complex systems, it needs to be emphasised that there

is no generally accepted theory of self-organisation that explains how internal

molecular processes are able to coordinate the interactions between a system’s

components such that order and structure emerge. The field which has ar-

guably contributed most to a deeper understanding of emergent phenomena is

‘nonlinear dynamics’, especially with concepts such as ‘catastrophes’ [1], ‘Tur-

ing instabilities’ [2], and ‘nonlinear attractors’ [3]. However, although pattern

formation and its underlying concepts have found their way into textbooks [4],

we are far from answering the above question in a comprehensive and convinc-

ing way. This chapter will highlight some of the recent progress in the field,

but also address some of the fascinating questions that remain open.

In contrast to the conventional representation of pattern–forming systems in

classical texts, our exposition will be closely tied to the analysis of quantitive

models for specific biological systems. At first, this might appear to involve

a loss of generality. However, as we will see, only by studying the actual

physical processes that give rise to what we call self-organisation will we be

able to uncover its key features in the first place. These key aspects can then

be generalised again by identifying the according processes in other systems.

Here, we will mainly, but not exclusively, focus on a model for Min protein

dynamics, a system of self-organising proteins that is essential for cell division

in the bacterium Escherichia coli. The Min system offers an ideal combination

of a broad and rich phenomenology with accessibility to theoretical and exper-

imental analyses on a quantitative level. As we will see, a major finding from

the study of the Min system is the role of mass-conserved interactions and of

system geometry in the understanding of self-organised pattern formation.

4

Protein pattern formation on biological membranes 229



INTRACELLULAR PROTEIN PATTERNS

The formation of protein patterns and the localisation of protein clusters is

a fundamental prerequisite for many important processes in bacterial cells.

Examples include Min oscillations that guide the positioning of the Z-ring to

midcell in Escherichia coli, the localisation of chemotactic signalling arrays

and the positioning of flagella, as well as chromosome and plasmid segrega-

tion. In all these examples, experimental evidence supports mechanisms based

on reaction-diffusion dynamics. Moreover, the central elements of the bio-

chemical reaction circuits driving these processes are P-loop NTPases. These

proteins are able to switch from an NTP-bound ‘active’ form that preferen-

tially binds to an intracellular interface (membrane or nucleoid) to an inactive,

freely diffusing, NDP-bound form in the cytosol.

Interestingly, these types of pattern–forming–mechanisms are not restricted

to prokaryotic cells, but are found in eukaryotic cells as well. An important

example is cell polarisation, an essential developmental process that defines

symmetry axes or selects directions of growth. Signalling molecules accumu-

late in a restricted region of the inner surface of a cell’s plasma membrane

where they initiate further downstream processes. For example, in the yeast

Saccharomyces cerevisiae, cell polarisation determines the position of a new

growth or bud site. The central polarity regulator responsible for this process

is Cdc42, a small GTPase of the Rho family [5]. Similarly, cell polarity plays

an important role in proper stem cell division [6] and in plant growth processes

such as pollen tube or root hair development [7, 8]. Another intriguing exam-

ple of self-organised polarisation occurs in the Caenorhabditis elegans zygote

through the action of mutually antagonistic, so called partitioning-defective

(PAR) proteins [9]. Moreover, the crucial role of protein pattern formation

in animal cell cytokinesis is highlighted by cortical waves of Rho activity and

F-actin polymerization, recently observed in frog and starfish oocytes and em-

bryos [10].

Yet another system where protein patterns play an important role is the trans-

port of motor proteins along cytoskeletal filaments. We will not elaborate on

this system in this review, but would like to note that pattern formation in

these systems is based on similar principles as for the other systems. For in-

stance, microtubules are highly dynamic cytoskeletal filaments, which contin-

ually assemble and disassemble through the addition and removal of tubulin

heterodimers at their ends [11]. It was recently shown that traffic jams of

molecular motors on microtubules play a key regulatory mechanism for the

length control of microtubules [12, 13].

5
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MinCDE oscillations in E. coli

Proteins of the Min system in the rod-shaped bacterium E. coli show pole-

to-pole oscillations [14–17]. A combination of genetic, biochemical, and cell

biological studies has identified the following key features of the underlying

interaction network: (1) The ATPase MinD, in its ATP-bound dimeric form,

cooperatively binds to the cytoplasmic membrane [18–21], and forms a complex

with MinC that inhibits Z-ring formation [22]. (2) MinD then recruits its AT-

Pase Activating Protein (AAP) MinE to the membrane, triggering MinD’s AT-

Pase activity and thereby stimulating detachment of MinD from the membrane

in its monomeric form [23]. (3) Subsequently, MinD undergoes nucleotide ex-

change in the cytosol and rebinds to the membrane [24]. (4) Notably, MinE’s

interaction with MinD converts it from a latent to an active form, by exposing

a sequestered MinD–interaction region as well as a cryptic membrane targeting

sequence [25, 26].

All of these biochemical features give us highly valuable molecular information,

but in themselves they do not suffice to explain the emergent phenomenon

of Min oscillations. There are basically two unknowns. First, the detailed

dynamic processes underlying, for example, cooperative membrane binding of

MinD, as well as the MinE conformational switch are poorly understood on

a mechanistic molecular level. At present, one can only speculate on them

based on structural data. For example, Hill coefficients have been measured

for MinD ATP (∼ 2) and ADP (∼ 1) [21], indicating that recruitment may be

associated with dimerisation. Secondly, and perhaps even more importantly,

even if all the details of the molecular processes were known, one would still

not know which is responsible to what degree for any specific macroscopic

property of the dynamic Min pattern. Furthermore, how these processes are

affected by changing protein expression levels and cell geometry is unclear, a

priori. Both of these obstacles represent major challenges for the field, and

can be overcome only by a combined experimental and theoretical approach.

The main biological function of Min oscillations is to regulate formation and

positioning of the Z-ring [17], comprised of curved, overlapping FtsZ filaments,

which interact with a range of accessory proteins that together make up the cy-

tokinetic machinery [27]. The pole-to-pole oscillations of the MinD-ATP/MinC

complex result in a time-averaged density profile of MinC that is highest at

the cell poles and lowest at midcell. Since MinC acts as an antagonist of FtsZ

assembly, Min oscillations inhibit Z-ring formation at the poles and restrict it

to midcell [22]. How self-organisation into the Z-ring occurs remains unknown

and is subject to extensive research [28–30].

6
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Cell polarity in yeast

Polarity establishment in budding yeast relies on crosstalk between feedback

loops, one based on the actin cytoskeleton, the other on a reaction-diffusion

system [5]. Both are regulated by the Rho-type GTPase Cdc42. To fulfil its

functions, it must constantly cycle between a GTP-bound (active) and a GDP-

bound (inactive) state. In budding yeast, activation of Cdc42 is controlled by

a single guanine nucleotide exchange factor (GEF), Cdc24, and the hydrolytic

activity of Cdc42 is promoted by several GTPase-activating proteins (GAPs).

In addition, Cdc42 is extracted from membranes by a single Rho-guanine nu-

cleotide dissociation inhibitor (GDI), Rdi1 [31]; see Fig. 2 for an illustration

of the biochemical network.

Initially two independent feedback loops were identified: one based on the

actin cytoskeleton and one based on a reaction-diffusion system that in vivo

depends on the scaffold protein Bem1 [31]. A combined experimental and

theoretical study has shown that a combination of actin- and GDI-dependent

recycling of the GTPase Cdc42 is required to achieve rapid, robust and focused

polarisation [32]. However, there are still many open issues on the detailed

interplay between these two mechanisms.

The GDI-mediated polarisation in itself is reasonably well understood. Theo-

retical models differ in how they describe the recruitment of the GEF (Cdc24)

towards active Cdc42 on the membrane [33, 34]. Experimental data [32] sup-

port a reaction network where recruitment of Cdc24 is mediated by Bem1

(Fig. 2): Cytosolic Bem1 is targeted to the membrane by interaction with ac-

tive Cdc42 or other Cdc42-GTP-bound proteins such as Cla4 and subsequent

binding of Bem1 to the membrane [35–37]. Once bound to the membrane it

recruits the Cdc24 from the cytosol to the membrane [35, 36]. Membrane-

bound Cdc24 then enhances both the attachment and activation of cytoso-

lic Cdc42-GDP to the membrane and the nucleotide-exchange of membrane-

bound Cdc42-GDP [32, 34]. A mathematical model [34] based on this reaction

scheme accurately predicts phenotypes associated with changes in Cdc42 ac-

tivity and recycling, and suggests design principles for polarity establishment

through coupling of two feedback loops. Recently, there has even been evidence

for a third feedback loop [38].

In a recent in vivo study the essential component Bem1 was deleted from the

reaction-diffusion feedback loop [39]. Interestingly, after the mutant was al-

lowed to evolve for about 1, 000 generations, a line was recovered that had

regained the ability to polarise, despite the absence of Bem1. Moreover, the

newly evolved network had actually lost more components, resulting in a sim-

7
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pler reaction-diffusion system. The structure of this minimal network has yet

to be identified [40].

Protein pattern formation in animal cell polarisation and cytokinesis

As we have seen for the Min system in E. coli and Cdc42 in budding yeast,

protein patterns are an elegant way to convey intracellular positional infor-

mation. Thus, it is not surprising that more complex organisms also employ

protein pattern formation to control essential processes including cell polari-

sation, cytokinesis, embryogenesis and development.

An animal’s body plan is typically specified during embryogenesis. In this

context, the establishment and stable maintenance of cell polarity is a fun-

damental feature of developmental programs. So-called partitioning defective

(PAR) proteins are key molecular players that promote symmetry breaking

and establish intracellular polarity in diverse animal cells [41]. Here, we focus

on the PAR network in the nematode worm C. elegans, as this system has

been particularly well studied.

C. elegans PAR proteins are required for asymmetric cell division of the zygote,

which they achieve by generating two distinct and complementary membrane

domains with the aid of actomyosin flows [9, 42]. Several “design principles”

of the PAR network have been established by a combination of experiments

and theory [43]. A core feature of PAR polarity is the mutual antagonism

between anterior and posterior PAR components (Fig. 3), which preferentially

accumulate on the anterior and posterior halves of the membrane respectively

while being excluded from the opposite half.

The maintenance of this polarity is highly dynamic and involves mobility of

PAR proteins in the cytosol, their cross-inhibition via phosphorylation as well

as additional feedback loops [43]. Importantly, the mutual antagonism in

the PAR network relies on reversible switching of PAR proteins between “in-

active”, rapidly diffusing cytosolic and “active”, slowly diffusing membrane-

bound states [43], one of the key features of the pattern-forming protein net-

works discussed in this chapter.

Another intriguing example of protein pattern formation occurs during animal

cell cytokinesis. This process involves the small GTPase Rho, whose localised

activation directs assembly of the cytokinetic machinery, consisting of F-actin

and myosin-2, in the equatorial cortex [44]. Recently, cortical waves of Rho

activity and F-actin polymerisation were discovered in frog and echinoderm

oocytes and embryos [10]. These protein patterns exhibited excitable dynamics

8
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and were proposed to emerge through a reaction-diffusion mechanism involving

positive feedback during Rho activation and delayed negative feedback exerted

by F-actin (Fig. 4). In this view, Rho attaches to the plasma membrane in

its inactive GDP-bound form. On the membrane, Rho is then converted to its

GTP-bound active form in an autocatalytic manner, dependent on the Rho

GEF Ect-2. Subsequently, F-actin is assumed to mediate a negative feedback

on Rho, converting it back to its inactive form [10]. Remarkably, this reaction-

diffusion network shares many similarities with our previous examples, such as

reversible protein attachment to a lipid membrane, switching between different

NTP-bound states and coupling of feedback loops.

The switch paradigm

The molecular mechanisms underlying the spatio-temporal organisation of cel-

lular components in bacteria are frequently linked to P-loop ATPases such as

ParA and MinD [27, 45, 46]. ParA and MinD proteins belong to a family of

proteins known as the ParA/MinD superfamily of P-loop ATPases [27]. Both

are known to form self-organised dynamic patterns at cellular interfaces, ParA

on the nucleoid and MinD on the cell membrane. The nucleotide state of these

ATPases determines their subcellular localisation: While the ATP-bound form

dimerises and binds to the appropriate surface, the ADP-bound form is usu-

ally a monomer with a significantly reduced affinity for surface binding that

freely diffuses in the cell. Importantly, both ParA and MinD have a partner

protein (ParB and MinE, respectively) that stimulates their ATPase activity

and causes them to detach from their respective surfaces. Moreover, there is a

delay due to nucleotide exchange between the release of the ADP-bound form

from the surface and its subsequent rebinding in the dimeric ATP-bound form.

These interactions enable proteins to cycle between surface-bound and cytoso-

lic states, depending on the phosphorylation state of their bound nucleotide.

The surface-bound state is typically associated with spatially localised function

(e.g. the downstream regulation of other proteins on the surface), whereas the

cytosolic state enables spatial redistribution and formation of surface bound

patterns of these proteins. Despite the striking similarities on a molecular

level, the biological functions of ParA and MinD differ significantly. The Min

system directs the placement of the division site at midcell by inhibiting the

assembly of FtsZ into a ring-like structure (Z-ring) close to the cell poles. In

contrast, ParA is involved in chromosome and plasmid segregation. Several

other ParA-like proteins have been identified that are also important for the

9
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correct localisation of large cellular structures at the cell poles, at midcell or

along the cell length [27]. One of these is PomZ in M. xanthus. PomZ is part

of a protein system that – like the Min system – is important for Z-ring for-

mation. However, in contrast to the Min system, the Pom system positively

regulates the formation of the FtsZ ring at midcell [47] Apart from the cell

division and the chromosome partitioning machineries, there are various other

multiprotein complexes that are positioned by self-organising processes based

on P-loop NTPases. For example, the GTPase FlhF and the ATPase FlhG

constitute a regulatory circuit essential for defining the distribution of flagella

in bacterial cells [46, 48].

MASS-CONSERVING REACTION-DIFFUSION SYSTEMS

All of the examples of intracellular pattern-forming systems discussed in the

previous section share some common features. They are reaction-diffusion sys-

tems in confined intracellular space, where proteins cycle between the cytosol

and the cell membrane. On the time scale on which these patterns form, net

change in the levels of the proteins involved is negligible and thus the copy

number within each protein species is conserved. The reactions correspond to

transitions of each protein species between a finite number of different states

(membrane-bound, cytosolic, active, inactive, etc.), and these states play dif-

ferent functional roles in the corresponding biochemical circuit. For example,

only membrane-bound MinD induces positive and negative feedback by recruit-

ing MinD and MinE from the cytosol to the membrane. Hence, the protein dy-

namics can be understood as a reaction-diffusion system where diffusion takes

place in different compartments (membrane and cytosol), and where reactions

are sequences of state changes induced by protein-nucleotide, protein-protein,

and protein-membrane interactions.

Mass-conserving dynamics is the generic case for intracellular dynamics. Be-

cause the production of proteins is a resource-intensive process, any mecha-

nism that utilises production and degradation as pattern forming mechanisms

would be highly inefficient and wasteful[49]. This excludes activator-inhibitor

mechanisms [50], since they are based on the interplay between autocatalytic

production of a (slow diffusing) activator and its degradation by a (fast diffus-

ing) inhibitor. Though such a mechanism is frequently invoked as a paradigm

in biological pattern formation [51], it is actually irreconcilable with the funda-

mental physical processes on which intracellular pattern formation is based on.

This in turn implies that the study of biological systems should reveal hitherto

10
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unknown mechanisms for pattern formation. In particular, explicit account for

mass-conservation yields the total protein densities as system control parame-

ters. As we will see, these are crucial for the theoretical understanding of the

experimentally observed phenomena.

Cellular geometry: membrane and cytosol

Figure 5 illustrates the geometry of a rod-shaped prokaryotic cell. It is com-

prised of three main compartments: the cell membrane, the cytosol, and the

nucleoid. There are two major facts that are relevant for intracellular pat-

tern formation. First, the diffusion constants in the cytosol and on the cell

membrane are vastly different. For example, currently accepted values for Min

proteins in E. coli are of the order of Dc≈ 10µm2/s, and Dm≈ 0.01µm2/s,

respectively. Second, due to the rod-like shape, the ratio of cytosolic volume

to membrane area differs markedly between polar and midcell regions. Be-

yond this local variation of volume to surface ratio, the overall ratio of cytosol

volume to membrane area depends on the shape of the cell.

Reaction-diffusion equations for the Min system

The biochemical reactions of the Min system outlined in section are sum-

marised in Fig. 6. In the following we will refer to this scheme as the skele-

ton network, as it accounts only for those molecular interactions that are

(presently) believed to be essential for Min protein phenomenology. For a

quantitative analysis, this skeleton biochemical network has to be translated

into a mathematical model [52, 53].

We denote the volume concentrations of MinE, MinD-ADP, and MinD-ATP

in the cytosol by cE, cDD, and cDT . Since the only reaction that takes place

in the cytosol is reactivation of cytosolic MinD-ADP by nucleotide exchange

(with rate λ) to MinD-ATP, the ensuing reaction-diffusion equations read:

∂tcDD = Dc∇2cDD − λ cDD , (1a)

∂tcDT = Dc∇2cDT + λ cDD , (1b)

∂tcE = Dc∇2cE , (1c)

The diffusion coefficients are typically distinct for all protein configurations,

for simplicity, we only distinguish between cytosolic (Dc) and membrane bound
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(Dm) states.

Only the active form of MinD, cDT , can attach to the membrane, either spon-

taneously with a rate kD or facilitated by MinD-ATP already bound to the

membrane (recruitment) with a rate kdDmd, where md denotes the areal den-

sity of MinD-ATP on the membrane. Overall then, the reaction term reads

R+
D = (kD + kdDmd) c̃DT , where the tilde on the cytosolic concentration of

MinD-ATP indicates that the value must be taken in the immediate vicin-

ity of the membrane. Membrane bound MinD-ATP can also recruit cytosolic

MinE to the membrane and thereby form MinDE complexes. The correspond-

ing reaction term reads R+
E = kdEmd c̃E. Finally, MinE in the MinDE com-

plexes stimulates ATP hydrolysis by MinD and hence facilitates detachment

and decay of membrane bound MinDE complexes into cytosolic MinD-ADP

and MinE, cE, with rate kde. This process is described by the reaction term

R−DE = kdemde where mde denotes the areal density of MinDE complexes on the

membrane. Taken together, the reaction-diffusion equations on the membrane

read

∂tmd = Dm∇2
mmd +R+

D(md, c̃DT )−R+
E(md, c̃E), (2a)

∂tmde = Dm∇2
mmde +R+

E(md, c̃E)−R−DE(mde) , (2b)

where the index m denotes the Laplacian for membrane diffusion.

These two sets of reaction-diffusion equations, Eq. 1 and Eq. 2, are comple-

mented by nonlinear reactive boundary conditions at the membrane surface

that guarantee local particle number conservation. In other words, the chemi-

cal reactions involving both membrane-bound and cytosolic proteins equal the

diffusive flux onto (−) and off (+) the membrane (the index ⊥ denoting the

outward normal vector at the boundary):

Dc∇⊥cDD|m = +R−DE(mde) , (3a)

Dc∇⊥cDT |m = −R+
D(md, c̃DT ) , (3b)

Dc∇⊥cE|m = +R−DE(mde)−R+
E(md, c̃E) . (3c)

For example, Eq. 3a states that detachment of MinD-ADP following hydrolysis

on the membrane is balanced by gradients of MinD-ADP in the cytosol. In

general, any exchange of proteins between the membrane and the cytosol leads

to diffusive fluxes and thereby to protein gradients in the cytosol since the

membrane effectively acts as a sink or source of proteins. These gradients are

essential for understanding the mechanisms underlying intracellular pattern
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formation, and preclude a naive interpretation of the cytosol as a spatially

uniform particle reservoir.

For the model to be complete, one needs to know the values of all of the re-

action rates. However, the estimation and choice of system parameters is a

highly nontrivial problem. Nonlinear systems are generically very sensitive to

parameter changes, whereas biological function has to be sufficiently robust

against variations in the kinetic rates and diffusion coefficients (e.g. caused

by temperature changes). In addition, only rarely are the system parameters

known quantitatively from experiments. For the Min system only the diffusion

coefficients have been measured and estimates for the nucleotide exchange rate

λ [54] and the Min protein densities exist [55]. However, a theoretical investi-

gation of the skeleton model by means of linear stability analysis and numerical

simulations was able to identify parameter regimes where the experimentally

observed patterns are formed [53].

Basic mechanisms underlying Min oscillations in E. coli cells

From the analysis of the skeleton model [53], quantified by the reaction-

diffusion equations in the previous section, one can now learn how Min proteins

self-organize to give rise to pole-to-pole oscillations in vivo.

The basic theme of the protein dynamics is the cycling of proteins between the

membrane and the cytosol. This cycling is driven by the antagonistic roles of

MinD and MinE: Membrane-bound active MinD facilitates flux of MinD and

MinE from the cytosol to the membrane (recruitment). This accumulation of

proteins at the membrane is counteracted by MinE’s stimulation of MinD’s

ATPase activity, which triggers detachment of both MinD and MinE. In con-

cert with redistribution of proteins through cytosolic diffusion, spatio-temporal

patterns may emerge on the membrane.

However, the formation of pole-to-pole oscillations is by no means generic in

the context of the above reaction scheme.[56] In general, there are conditions

on the values of the reaction rates, as well as on the relative abundances of

the proteins which have to be met. An exhaustive parameter scan for model

equations Eq. 1, 2, and 3 has shown that, for spatial patterns to emerge in

the skeleton model, MinE needs to be recruited faster to the membrane-bound

protein layer than MinD, while being lower in total particle number [53]

kdD < kdE , NE < ND . (4)

These conditions give rise to the formation and separation of MinD and MinDE
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domains, the polar zone and MinE ring, as the two basic emergent structures

of pole-to-pole oscillations.

As illustrated in Fig.7, this is (heuristically) understood as follows [53]. The

higher particle number of MinD enables complete sequestration of MinE in

membrane-bound MinDE complexes, while leaving a fraction of MinD avail-

able to initiate a new polar zone.[57] Given a sufficiently high MinD membrane

concentration and MinE recruitment rate kdE, detaching MinE rebinds imme-

diately, forming the prominent MinE ring. Continuous MinE cycling locally

depletes the membrane of MinD, leading to a slow poleward progression of

the MinE ring along the gradient of membrane bound MinD, whereupon a

fraction of detaching MinD initiates a weak polar zone in the opposite cell

half, see Fig.7A. The new polar zone grows due to steady redistribution of

MinD, while most MinE remains sequestrated in the old polar zone until the

remaining MinD molecules are converted into MinDE complexes, see Fig.7B.

Once this state is reached, the Min proteins rapidly detach, dissociate and

diffuse through the cytosol and rapidly reattach at the new polar zone, leaving

behind a region of high MinDE/MinD ratio, where immediate reformation of

polar zones is inhibited. Due to the faster recruitment of MinE, the MinE

ring reassembles at the rim of the new polar zone, which provides the crucial

separation of MinD and MinDE maxima, i.e. a polar zone and a MinE ring.

There is one element of the above argument which needs further consideration:

The sequestration of MinE is transient, and hence the system is oscillatory,

only if detaching MinD gradually leaks from the old to the new polar zone.

But, how is this process established and regulated? Leakage from the old polar

zone is determined by the balance between two opposing factors: the ATPase

cycle of MinD, and the propensity of cytosolic MinD to bind to the membrane.

MinE stimulates ATPase activity of MinD and thereby initiates detachment

of ADP-bound MinD. The inactive MinD cannot reattach to the membrane

until it is reactivated by nucleotide exchange. This delay implies that the zone

near the membrane is depleted of active MinD, i.e. active MinD has time to

diffuse further away from the membrane into the cytosol. Taken together, these

factors effectively suppress immediate reattachment of MinD and promote its

leakage from the polar zone: The slower the nucleotide exchange the more

particles leak from polar zones. This is counteracted by MinD recruitment:

The stronger the recruitment, the “stickier” the membrane and hence the

fewer particles leak from polar zones. Clear evidence for this reasoning comes

from the slowing down of the oscillation with increasing nucleotide exchange

and MinD recruitment rates, depicted in Fig.8A.

Numerical simulation of the reaction-diffusion equations, Eq.1–3, reveals fur-
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ther functional characteristics of Min oscillations. For nucleotide exchange

rates λ = 5 s−1, close to the experimentally determined lower bound of 3 s−1,
reaccumulation of the polar zone always starts in the opposite cell half, and

the recruitment rate kdD of MinD regulates how fast new polar zone grows

towards the old one (Fig. 8B). Notably, at kdD = 0.1µm2/s in Fig. 8B, the

redistribution of MinD from old to new polar zone is highly canalised, i.e. the

total MinD flux is directed towards the opposite cell half immediately after the

polar zones start to shrink (Fig.8B). This implies that growth and depletion

of polar zones are synchronised. This is also reflected in the characteristic

triangular shape observed in MinD kymographs [58], where new polar zone

start growing towards midcell while old polar zones shrink towards the cell

pole (Fig. 8B).

Although most of the Min protein patterns (like stripe patterns) observed in

filamentous mutant E. coli have no biological function, the theory is able to

account for their occurrence. This argues strongly that they too arise from

the mechanism that optimises the spatial profile of pole-to-pole oscillations for

midcell localisation. In other words, the rich phenomenology in mutant cells

appears to be a byproduct of the evolutionary optimisation of the wild-type

dynamics.

Cell geometry and pattern formation

To ensure robustly symmetrical cell division, one would expect Min patterns to

scale with cell size and shape, at least within the biologically relevant range.

Indeed, recent experiments using ‘cell-sculpting’ techniques [59] have shown

that longitudinal pole-to-pole oscillations are highly stable in cells with widths

below 3µm, and lengths in the range of 3 − 6µm. Interestingly, however,

outside of this range of cell geometries, Min proteins show diverse oscillation

patterns, including longitudinal, diagonal, rotational, striped, and even trans-

verse modes [15, 59–65]. What is the origin of the simultaneous robustness

of Min oscillations inside the biologically relevant regime and the bewildering

diversity of patterns and multistability outside of it? In what sense are these

seemingly contradictory features two faces of the same coin?

To answer these questions one has to address how and to what extent the

existence and stability of different patterns is affected by a cell’s geometry,

and which specific biomolecular processes in the Min reaction circuit control

how the system adapts to cell geometry. This has recently been achieved

by a combination of numerical studies, based on the reaction-diffusion model

15

240 Protein pattern formation on biological membranes



discussed in section , and experimental studies, in which the geometry of E.

coli bacteria was systematically varied [61].

There are basically two types of randomness that may affect the process of

pattern selection, or transitions between patterns if multiple stable patterns

are possible. First, the inherent randomness of any chemical reaction may

cause stochastic transitions between patterns. Though such stochastic effects

are possible in principle [66], given the large copy number of Min proteins, they

are unlikely to be the major source for transitions between patterns; factors

like heterogeneities and asymmetries are expected to be far more important.

Second, there are many different factors which cause realistic cellular systems

to be asymmetric or heterogeneous. For example, the membrane affinity of

MinD depends on the lipid composition, which in turn is sensitive to membrane

curvature. Hence, small asymmetries of the cell shape translate to variations

of MinD membrane attachment. While these asymmetries and heterogeneities

are intrinsic to ensembles of cells, they need to be specifically emulated in

numerical simulations. A natural choice are gradients in the MinD attachment

rate that are inclined at all possible angles to the long axis of the cell. The

magnitude of these gradients must be sufficiently large to significantly affect

the pattern selection process, but at the same time small enough not to cause

any asymmetry in the final stable pattern. A relative magnitude of variation

in the range of 20% (well below the natural variability of MinD affinity to

different lipids [21, 67]) fulfills these requirements.

Figure 9 shows histograms of the final stable patterns obtained by sampling

over all directions of the gradient, as a function of cell width and length, and

of the MinD recruitment rate [61]. For a recruitment rate fixed to the value

that facilitates canalised transfer, kdD = 0.1, the following observations are of

note. (i) As cell length is increased, striped oscillations become more frequent

patterns. (ii) The fraction of oscillatory striped patterns tends to decrease in

favour of transverse patterns as the cell width increases, indicating that cell

width, and not cell length, is the main determinant for the onset of trans-

verse modes. Both observations are remarkably consistent with experimental

data based on random sampling of live E. coli cells after they have reached

a defined shape [59]. Numerical simulations allow us to go beyond the anal-

ysis of cell geometry, and investigate the effect of MinD recruitment rate, see

Fig.9B. In narrow cells with widths ranging from 1µm to 3µm, one observes

that the fraction of stripes increases with the MinD recruitment rate [53, 61].

In contrast, for cells that reach a width of 5 µm, stripe patterns are absent

below some threshold MinD recruitment rate. With increasing MinD recruit-

ment rate, transverse patterns appear first and increase in frequency, while the
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fraction of striped patterns takes on a constant value.

There are several conclusions one can draw from these observations. The

most obvious one is that multistability in Min patterns is not determined by

either kinetic parameters or cell geometry alone, but originates from the in-

terdependence between these two factors. In addition, increasing the size of a

Turing-unstable system alone does not in itself facilitate the existence of mul-

tiple stable patterns [68]. This is clearly evident from the observation that the

emergence of a pole-to-pole oscillation in a short cell does not generically imply

the existence of a stable striped oscillation with a characteristic wavelength in

a long filamentous cell [53]. Instead, the emergence of a characteristic length

scale (which becomes manifest in striped oscillations) is restricted to a specific

regime of kinetic parameters, where growth and depletion of spatially separated

polar zones become synchronised such that multiple, spatially separated polar

zones can be maintained simultaneously (“canalised transfer” regime) [53]. A

key element among the prerequisites that permit this regime to be reached is

that the degree of nonlinearity in the kinetics of the system (MinD cooperativ-

ity) must be particularly strong. Notably, the same mechanism that enables

striped oscillations in filamentous cells also facilitates transverse oscillations in

wide cells.

These findings hint at an exciting connection between multistability, the ability

of patterns to sense and adapt to changes in system geometry, and the exis-

tence of an intrinsic length scale in the underlying reaction-diffusion dynamics.

Remarkably – and contrary to the treatments in the classical literature – the

existence of an intrinsic length scale is not generic for a Turing instability per

se. One example is the aforementioned selection of pole-to-pole patterns in

arbitrarily long cells where MinD recruitment is weak. In this case, irrespec-

tive of the critical wavenumber of the Turing instability, the final pattern is

always a single wave traveling from pole to pole. The selection of a single polar

zone is also characteristic in the context of cell polarity [34, 69], where it has

been ascribed to the finite protein reservoir and a winner-takes-all mechanism.

It will be an interesting task for further research to elucidate the general re-

quirements for the emergence of an intrinsic length scale in mass-conserved

reaction-diffusion systems.

Principles of adaption to geometry in reaction-diffusion systems

How does the geometry of a cell affect the formation of spatio-temporal pat-

terns? This question may be rephrased in more mathematical terms as follows:
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What are the inherent features of a reaction-diffusion system in confined ge-

ometry that promote or impede the adaptation of the ensuing patterns to the

size and shape of that confining space[70]? In previous sections, we have seen

two recurrent themes: nucleotide exchange and positive feedback through re-

cruitment. To elucidate the role of these two factors we will in this section

study a minimal pattern-forming system comprised of a single NTPase only.

As illustrated in Fig.10, the NTPase cycles between an NDP-bound inactive

(D) and an NTP-bound active state (T ). Both protein species are able to bind

to the membrane spontaneously; for simplicity we take the rates to be identical

and given by k+. In addition, to direct membrane attachment, each protein

species may also bind cooperatively to the membrane with corresponding re-

cruitment rates kmD for the inactive and kmT for the active protein species.

Detachment of the membrane-bound species is asymmetric: While the inactive

species is simply released to the cytosol with detachment rate k−, detachment

of the active species is triggered by NTP hydrolysis which is thereby converted

into cytosolic inactive D; again, for simplicity, we assume the corresponding

detachment rates to be equal and given by k−. Reactivation of cytosolic inac-

tive D through nucleotide exchange occurs at rate rate λ. Both protein forms

are allowed to freely diffuse in the cytosol and the membrane with diffusion

constants Dc and Dm, respectively.

Denoting the concentrations of D and T in the cytosol by cD and cT and by

mD and mT on the membrane, respectively, the reaction-diffusion equations

read

∂tcT = Dc ∆ cT + λ cD , (5a)

∂tcD = Dc ∆ cD − λ cD , (5b)

∂tmT = Dm ∆mmT + (k+ c̃T − k−mT ) + kmT mT c̃T , (5c)

∂tmD = Dm ∆mmD + (k+ c̃D − k−mD) + kmDmD c̃D . (5d)

As before, reactive and diffusive fluxes balance at the membrane-cytosol

boundary

Dc∇⊥cT |m = −(k+ + kmT mT ) c̃T (6a)

Dc∇⊥cD|m = −(k+ + kmDmD) c̃D + k− (mD +mT ) . (6b)

Solving this set of equations numerically in elliptical geometry reveals a series

of striking features (Fig.11): (i) In elongated cells the protein density on the
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membrane and in the cytosol is always inhomogeneous, and reflects the local

cell geometry. (ii) There are two distinct types of patterns: membrane-bound

proteins either accumulate at midcell or form a bipolar pattern with high

densities at both cell poles. (iii) The protein gradients scale with the size of

the cell, i.e. fully adapt to the geometry of the cell.

The type of polarity of these patterns is quantified by the ratio of the den-

sity of membrane-bound proteins located at the cell poles to that at mid-

cell: P = mpole/mmidcell. Accumulation occurs either at the cell pole or

at midcell depending on the value of the preferential recruitment parameter

R = (kmD−kmT )/(kmD+kmT ): One finds that proteins accumulate at the cell

poles (P > 1) if there is a preference for cooperative binding of D (R > 0).

Moreover, the polarity P of this bipolar pattern becomes more pronounced

with increasing R. In contrast, when cooperative binding favours T (R < 0),

proteins accumulate at midcell (P < 1). Thus, the sign of the recruitment pref-

erence R for a protein in a particular nucleotide state controls the type, while

its magnitude determines the amplitude of the pattern. With increasing eccen-

tricity of the ellipse, the respective pattern becomes more sharply defined; for

a spherical geometry the pattern vanishes. In summary, cell geometry controls

the definition of the pattern, and the preference for membrane recruitment

of a certain nucleotide state determines both the location on the cell mem-

brane where the proteins accumulate and how pronounced this accumulation

becomes.

What is the origin of these polar patterns and their features? To answer

this question in the clearest possible way, it is instructive to consider the

limiting case where positive feedback effects on recruitment are absent and

the dynamics hence is fully linear. Then, Eqs.5-6 imply that both the total

concentration of proteins on the membrane, m = mD+mT , and in the cytosol,

c = cD+cT , are spatially uniform if the detailed balance condition k+ c̃ = k−m
holds for the exchange of proteins between the cytosol and the membrane. This

uniformity in total protein density, however, does not imply uniformity in the

densities of the active and inactive protein species, either on the cell membrane

or in the cytosol! The origin of this effect is purely geometrical, and it is linked

to the finite time required for nucleotide exchange in the cytosol. Heuristically,

this can be seen as follows. As only inactive proteins D are released from the

membrane they act as a source of cytosolic proteins. In the cytosol they are

then reactivated through nucleotide exchange, which is effectively equivalent

to depleting the cytoplasmic compartment of inactive proteins. This in turn

implies the formation of a gradient of inactive protein and a corresponding,

oppositely oriented gradient of active proteins as one moves away from the

19

244 Protein pattern formation on biological membranes



membrane into the cytosol. As is known from standard source-degradation

processes, the ensuing density profile for D in the cytosol is exponential, with

the decay length being set by `λ =
√
Dc/λ.

Due to membrane curvature these reaction volumes overlap close to the cell

poles (Fig. 12B, bottom), which implies an accumulation of D at the cell poles.

The effect becomes stronger with increasing membrane curvature. Moreover,

there is an optimal value for the penetration depth `λ, roughly equal to a third

of the length l of the short cell axis, that maximises accumulation of D at

the cell poles (Fig.12B, top). As `λ becomes larger than l, the effect weakens,

because the reaction volumes from opposite membrane sites also overlap at

mid-cell. In the limit where `λ is much smaller than the membrane curvature

at the poles, the overlap vanishes, and with it the accumulation of D at the

poles.

More generally, these heuristic arguments imply that the local ratio of the

reaction volume for nucleotide exchange to the available membrane surface

is the factor that explains the dependence of the protein distribution on cell

geometry.

IN VITRO RECONSTITUTION AND THEORETICAL ANALYSIS OF

MIN PROTEIN PATTERN FORMATION

A key step towards understanding pattern-formation mechanisms in biological

systems is the identification of the essential functional modules that facilitate

the formation of certain patterns. In living systems, such an identification is

strongly impeded by the vast amount of potentially interacting and, therefore,

interdependent components. A common strategy for tackling the complexity

of biological systems is mathematical modelling, which has been discussed in

the previous section of this chapter. While mathematical analysis is able to

identify possible mechanisms of pattern formation, it is also based on a priori

assumptions about the biological system under consideration. However, these

assumptions need to be tested by suitable experiments. Ideally, a conclu-

sive comparison between theory and experiment requires the ability to isolate

the essential players of the pattern forming dynamics and reconstitute them

in a minimal system lacking any other potential interactions and allowing

for precise control of parameters, such as protein concentrations or geometric

boundaries.

A major breakthrough in this regard was the successful in vitro reconstitution

of Min protein patterns in a lipid bilayer assay [71]. These experiments demon-
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strated that a flat lipid bilayer surface coupled to a cytosolic solution containing

only MinD, MinE, and ATP is sufficient for the formation of membrane bound

Min protein patterns. However, the patterns observed in reconstituted systems

significantly differed from the intracellular patterns found in vivo. While the

majority of patterns found in vivo can be viewed as standing waves with a

wavelength matching the cell length, the patterns on the flat membrane are

travelling and spiral waves with wavelengths one order of magnitude greater

than the typical length of E. coli.

A kaleidoscope of in vitro patterns

The successful reconstitution of Min protein patterns on flat lipid bilayers

stimulated a plethora of in vitro experiments that studied Min protein dynam-

ics under various circumstances and revealed a true kaleidoscope of patterns.

On flat lipid bilayers one observed spiral and travelling wave patterns, and

a varying degree of spatial coherence sometimes verging on chemical turbu-

lence [72]. Other experiments constrained the Min protein dynamics geomet-

rically to small membrane patches [73], semi-open PDMS grooves with varying

lipid composition [74], lipid-interfaced droplets [75], and bilayer coated three-

dimensional chambers of various shapes and sizes [76]. Strikingly, the observed

patterns show a very broad range of characteristics and varying degrees of sen-

sitivity to the geometry of the enclosing membrane. Other experiments were

performed in large, laterally extended flow cell devices with a flat lipid bilayer

of varying lipid composition attached at the bottom [77]. These experiments

showed that Min protein patterns are formed even when there is hydrodynamic

flow in the cytosol. Furthermore, these experiments revealed the capability of

Min protein dynamics to form exotic patterns sharing characteristics of trav-

elling waves and stationary patterns alike [77].

Despite these intensive experimental efforts, a quantitative reconstitution of

Min protein patterns observed in vivo has not been achieved. Instead a broad

range of different patterns has been found, all of which exhibit wavelengths that

are several times larger than that of the in vivo pattern. The pole-to-pole pat-

terns that are observed in (semi-)confined compartments [76, 78] most closely

resemble those seen in vivo. Interestingly, this resemblance is limited to ge-

ometries with dimensions below the typical wavelength of the pattern. In these

systems the characteristic pole-to-pole oscillation is observed in vivo as well as

in vitro. If the length and width of the confined system are increased, the re-

constituted in vitro experiments [76] predominantly show traveling and spiral
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wave patterns, whereas in vivo experiments show longitudinal and transver-

sal standing waves [59, 61]. This suggests that the underlying mechanisms

(dynamic instabilities) are actually not the same[79]. While longitudinal and

transversal standing waves have also been observed in semi-confined PDMS

grooves of specific sizes [78], the patterns became chaotic in these experiments

when the system size was increased [78].

Given these ambiguous results, how can we reconcile the kaleidoscope of in vitro

patterns and the range of in vivo patterns? In the following, we discuss how

theory can shed some light on these bewildering results. As we will see, a key

problem with the interpretation of recent in vitro reconstitution experiments

and their comparison to in vivo dynamics lies in the lack of the ceteris paribus

condition, i.e. conditions where only one control parameter is varied while the

rest are held constant. Achieving quantitative control over all parameters will

be the key goal for future experiments.

The polychotomy of Min protein patterns

All experimental evidence supports the assumption that the Min system can

be understood as a reaction-diffusion system driven by nonlinear (cooperative)

protein interactions. Therefore, we can expect that Min protein dynamics will

share generic features of such nonlinear systems. In particular, as is well known

in the field of nonlinear dynamics, even very simple models can produce a broad

variety of patterns [80–84]. Moreover, which patterns are observed depends

on the parameters of the system. In the classical mathematical theory these

parameters are the coefficients of the (non-)linear interactions (representing

the “kinetics”), as well as the diffusion coefficients.

Diffusion coefficients (in the cytosol) have been measured in vivo [54] and in

vitro [71, 72], and they can be controlled experimentally by the addition of

crowding agents [73, 76]. Kinetic parameters of the Min system are much

more difficult to measure and to control. However, diffusion coefficients and

kinetic rates are not the only control parameters. Most of the classical lit-

erature in nonlinear dynamics neither accounts for system geometry nor for

the mass-conserving nature of bio-molecular interactions. This might explain

why the fact that system geometry as well as protein densities can be key

control parameters of the system’s dynamics is often overlooked. The effect

of changes in these parameters is not necessarily restricted to changes in the

length- and time-scales of the dynamics (e.g. wavelength, wave speed, and

oscillation period), but can also induce qualitative changes and transitions
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between patterns.

One clear difference between the reconstituted Min system on flat lipid bilayers

and the intracellular system in E. coli is the vastly increased ratio of cytosolic

volume to membrane surface in the in vitro system, where the height of the

system is of the order of milimetres, instead of µm, in the living system. A re-

cent theoretical analysis [85] has shown that increasing this volume–to–surface

ratio leads to an increased wavelength of the pattern. This prediction agrees

with the experimental observation of a reduced wavelength of the Min protein

patterns in fully confined geometries [76] that mimic the in vivo membrane-to-

cytosol ratio more closely than does the flat lipid bilayer. Strikingly, even when

cytosolic diffusion was reduced to in vivo levels, these experiments still showed

a 3- to 4-fold increased wavelength in confined compartments compared to the

intracellular patterns – emphasising an apparent dichotomy between patterns

observed in vivo and in vitro.

However, the surface–to–volume ratio is not the only difference between the

intracellular and the reconstituted Min systems. Another is the particle num-

ber or effective density of MinD as well as MinE. At first glance there is no

apparent difference between the protein concentrations in vivo and in vitro,

since the concentrations in all reconstituted systems are adjusted to the intra-

cellular concentrations which are about 1µM for MinD and MinE. However, it

is important to note that these are the average cytosolic densities with no pro-

teins attached to the membrane. Since all cytosolic proteins are able to bind

to the membrane[86], the total number of cytosolic proteins determines the

upper bound for the maximal membrane densities. Hence, even if the average

cytosolic densities in the reconstituted system are identical to typical intra-

cellular concentrations, the crucial control parameter is the ratio of cytosolic

volume to membrane surface. In vivo, a cytosolic density of about 1µM yields

a number of proteins that can easily be absorbed by the membrane and still

remain up to two orders of magnitude below the saturation limit.[87] How-

ever, in the reconstituted system with flat lipid bilayer the volume to surface

ratio is given by the bulk height h. For the typical bulk height on the order

of millimetres, less than 1% of all proteins can bind to the membrane before

saturation due to volume exclusion is reached. As a consequence, the protein

densities at and on the membrane are highly increased in the reconstituted

system compared to the situation in vivo, despite the average cytosolic densi-

ties being identical. Note that the densities of membrane-bound proteins are

directly involved in the recruitment process which represents the only intrinsi-

cally nonlinear interaction in the Min system (cf. section ). As such, one can

expect that changes in the average protein densities on the membrane affect

23

248 Protein pattern formation on biological membranes



the system dynamics in a significant way. Indeed, estimates of the concen-

tration on the flat lipid bilayer show that the density across a wave profile is

about two orders of magnitude higher than the typical protein densities on

the intracellular membrane [72]. The same can be assumed to be the case for

reconstituted Min oscillations in semi-open PDMS grooves [74, 78], since the

dynamics are initialised with a high cytosolic column above the grooves which

is only removed after the onset of pattern formation (and therefore membrane

accumulation). Elevated protein densities were also found for the reconstituted

Min patterns in confined chambers [76] since these are based on a microfluidic

device. As proteins accumulate on the membrane while the flow is still active,

the density at the inlet is merely a lower bound for the actual protein densities

in the individual chambers. Measurements of the protein fluorescence inside

the confined chambers after careful calibration show that the total densities

of MinD and MinE and the MinE/MinD ratios are increased and are broadly

distributed [76]. A similar result can be expected for Min protein dynamics in

large, laterally extended flow cells where diverse wave patterns are observed

[77, 88].

To put these findings from the in vitro reconstruction of Min protein pattern

in the context of the theoretical framework, the broad variation of volume

to surface ratios, total protein numbers, and MinE/MinD density ratios, is a

crucial aspect to consider (cf. [89]). The theoretical analysis of the skeleton

model, Eqs.1–3, has shown that all these quantities are key control parameters

for the system dynamics. An increase in any of these values (total density,

density ratio, volume/surface ratio) can lead to a Turing- or Hopf-instability

[85]. In the latter case, each point on the membrane can be considered to

be an individual chemical oscillator, and the laterally extended system a field

of diffusively coupled oscillators [85]. Such dynamics describe a broad class

of systems well documented in the classic nonlinear dynamics literature [90].

Key characteristics of oscillatory media are spiral and travelling patterns, as

well as various manifestations of chemical turbulence. All these phenomena

can be observed in the reconstituted Min system. From this point of view, the

observed dichotomy rather appears as a polychotomy, not only between in vivo

and in vitro, but between the many different experimental setups. Its origin lies

in the broad distribution of control parameters and emphasises the diversity

of Min protein dynamics on a phenomenological and mechanistic level.
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DISCUSSION AND OUTLOOK

As outlined in this chapter, the recent focus on the quantitative study of pat-

tern formation in biological systems has led to conceptually new approaches

in theory and experiments. Among the important milestones are the inclu-

sion of cell geometry and a explicit distinction between cell membrane and

cytosolic volume in theoretical models, as well as the identification of particle

numbers and cell geometry as major control parameters of the self-organisation

processes that lead to pattern formation. While these efforts enabled the quan-

titative study of biological pattern formation within the theoretical framework

of nonlinear dynamics, experimental advances in in vitro reconstitution opened

new ways to probe, study, and design protein pattern formation as well con-

trolled minimal systems. Due to its simplicity, the E. coli Min system has

been the subject of intensive theoretical and experimental investigation, es-

tablishing it as a paradigm for protein pattern formation. In contrast, the

eukaryotic systems discussed here remain far less well understood. In part,

this is due to a higher degree of complexity and redundancy in these systems.

For example, PAR networks involve several different molecular players in the

anterior and posterior PAR components respectively, and also interact with

dynamic cytoskeletal structures and physical triggers [43]. Accordingly, the

in vitro reconstitution of eukaryotic pattern-forming systems is typically more

challenging compared to bacterial systems. Yet, efforts to experimentally re-

constitute even basic aspects of such pattern-forming systems in vitro could

substantially enhance our understanding of their underlying mechanisms via

control and perturbation of the experimental conditions.

For the Min system, several key questions remain to be answered. Central is

the experimental control over system parameters that gives rise to the mul-

titude of observed patterns. Future research may reveal additional chemical

states of MinD as well as MinE or additional chemical reactions that refine

the hitherto identified skeleton network. While this will affect the number

of chemical components and reaction terms one has to take into account in

the mathematical model, it does not change the overall structure of the set

of reaction-diffusion equations: (1) Fast cytosolic diffusion is coupled to slow

membrane dynamics by chemical reactions that conserve protein number. (2)

Nucleotide exchange in the cytosol implies that active MinD is spatially sep-

arated from the reactive membrane. As a consequence, the cytosol serves as

a repository for active MinD. (3) MinD and MinE remain the only conserved

species. The sum of individual components of each species, regardless of the

number of components, will always be a conserved quantity.
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Open questions relating to molecular details of Min protein interaction concern

the roles of membrane binding and conformational state switching of MinE

[25]. Only a combined approach, in which the theoretical model is constrained

and supported by unambiguous experimental data, has the potential to truly

relate molecular “design” features of Min proteins to defined roles in pattern

formation.

In summary, protein pattern formation plays key roles in many essential bi-

ological processes from bacteria to animals, including cell polarisation and

division. Combined theoretical and experimental approaches have established

important principles of pattern-forming protein systems. Perhaps the most

crucial feature that has emerged from these research efforts is the identifica-

tion of the cytosol as a depot. This depot enables the system to store proteins

and redistribute them throughout the system. Cytosolic diffusion is the key

process that detects the local shape of the membrane, and it is this explicit

dependence on geometry that is imprinted on membrane-bound protein pat-

terns.
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FIGURES

Figure 1

Figure 1. Oscillatory patterns of Min proteins in vivo. Left: Time-averaged

MinD fluorescence intensity profile along the red rectangle shown in the kymograph.

Adopted from Ref. [72]. Middle: Kymograph of pole-to-pole oscillations of MinD

and MinE in cells of normal length (shorter than 5µm). Right: Micrographs of

GFP-MinD and MinE-GFP in vivo.
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Figure 2
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Figure 2. Reaction network of the Cdc 42 system in yeast with a guanine

exchange factor (Cdc24) and GAPs controlling the hydrolytic activity of Cdc42. The

polarisation relies on activation of Cdc42 through a Bem1-Cdc24-Cla4 complex and

on extraction of Cdc42 from membranes by the GDI Rdi1.
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Figure 3

Figure 3. Cell polarisation in the C. elegans embryo. A reaction-diffusion

network of mutually antagonistic anterior and posterior PAR proteins, switching

between “active” membrane-bound and “inactive” cytosolic states, sustains oppos-

ing membrane domains in the C. elegans embryo. Anterior and posterior PAR

components are shown in red and blue, respectively. Adapted from Ref. [9, 91].
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Figure 4

Figure 4. Cortical waves of Rho activity and F-actin polymerisation in-

volved in animal cell cytokinesis. A, Possible scheme of interactions underlying

wave formation. Inactive GDP-bound Rho (RD) binds to the membrane, where

it is activated to GTP-bound Rho (RT) via nucleotide exchange in an autocat-

alytic, GEF-dependent manner. Subsequently, the theoretical model assumes that

coupled F-actin polymerisation (F) exerts a negative feedback on Rho activity con-

verting it back into its inactive form [10]. B, Fluorescence image of cortical waves

of Rho (malachite) and F-actin (copper) in an Ect2-overeexpressing starfish oocyte.

Adapted from Fluorescence image of cortical waves of Rho (malachite) and F-actin

(copper) in an Ect2-overexpressing starfish oocyte. Adapted from Ref. [10] by per-

mission from Macmillan Publishers Ltd: Nature Cell Biology [10], copyright 2015.
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Figure 5

Figure 5. Schematic representation of the geometry of a rod-shaped bacte-

rial cell. There are three main compartments: cell membrane, cytosol, and nucleoid.

The diffusion constants in these compartments will, in general, be different.
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Figure 6
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Figure 6. Skeleton MinCDE network: Cytosolic MinD-ATP (T) attaches to the

membrane, and recruits MinD-ATP and MinE (E) from the cytosol. Recruitment

of MinE leads to the formation of MinDE complexes. MinE in the MinDE com-

plexes stimulates ATP hydrolysis by MinD and thereby triggers detachment and

dissociation of membrane-bound MinDE complexes into cytosolic MinD-ADP (D)

and MinE.
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Figure 7
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Figure 7. Key mechanism underlying Min oscillations. A, Locally seques-

trated MinE constitutes the MinE ring, which moves toward the left pole through

local cycling. Detaching MinD rebinds predominantly at the left pole and initiates

formation of a weak polar zone at the right end. The delay in reattachment caused

by the need for nucleotide exchange is indicated by dashed lines. B, MinE depletes

the old polar zone of MinD, until only MinDE complexes are left, then reassembles

at the rim of the new polar zone, formed by redistributed MinD.
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Figure 8
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Figure 8. Canalised MinD transfer and regulation of spatial MinD reat-

tachment by MinD recruitment. A, Temporal period of Min oscillations as a

function of the MinD recruitment rate kdD, and nucleotide exchange rate λ in cells of

4µm length. With instantaneous nucleotide exchange, oscillations only exist at low

MinD recruitment rates (grey). Beyond this threshold the nucleotide exchange and

recruitment rates become control parameters for the spatial distribution of MinD

reattachment. At high but finite nucleotide exchange rates the oscillation period

increases with the MinD recruitment rate, as MinD reassembles in front of the polar

zone. At low nucleotide exchange rates the oscillation period decreases with MinD

recruitment, as the pole-to-pole particle transfer becomes canalised between the two

cell halves. B, Kymographs for λ = 5s−1 showing the total MinD membrane density,

md + mde, and MinD flux JD = DD∇⊥(cDT + cDD)|m on (blue) and off (red) the

membrane, for a set of increasing MinD recruitment rates kdD. MinD reaccumulates

at the opposite cell pole while the old pole is still present. Increasing MinD recruit-

ment accelerates the growth of new polar zones towards midcell and synchronises

depletion and formation of polar zones at opposite cell ends by canalising the MinD

flux from old to new polar zones.
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Figure 9

A

B

Figure 9. Basins of attraction predicted from systematic perturbations of

patterns with shallow attachment gradients. A, Relative distribution of the

final patterns (indicated on the right) observed after sampling all alignment angles

of the MinD attachment template from 0 to 90 degrees. The MinD recruitment

rate was set to a constant value kdD = 0.1. The data shows the increase in the

incidence of multistability as the cell size is increased beyond minimal values for cell

length and cell width. B, Fractions of the final patterns in cells of 9- and 10-µm

length after sampling all alignment angles of the MinD attachment template from 0

to 90 degrees. The data shows that increasing the MinD recruitment rate facilitates

multistability. Adpated from [61].
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Figure 10
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Figure 10. The NTPase can bind to the membrane in both of its states with at-

tachment rate k+, or cooperatively with corresponding recruitment rates kmD for D

and kmT for T . NTP hydrolysis by T triggers detachment with rate k−, converting

membrane-bound T into cytosolic D. Membrane-bound D is also spontaneously

released to the cytosol with detachment rate k−. Cytosolic D undergoes nucleotide

exchange with a rate λ.
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Figure 11
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Figure 11. Membrane-bound proteins accumulate either at midcell (left) or form

a bipolar pattern with high protein densities at the cell poles (right). The left

and right plots show the normalised concentration of the membrane density (blue

curve) and the corresponding geometry of the cell (grey ellipse). The membrane

density of the protein is divided by its minimum concentration (left: 113µm−1,

right: 100µm−1) such that the minimum of the normalised density is 1. The polar-

ity P = mpole/mmidcell (colour bar in plot is logarithmically spaced) of the pattern

strongly depends on cell geometry and preference R = (kmD − kmT )/(kmD + kmT )

for the recruitment of a certain nucleotide state (middle); the length of the short

axis is fixed at l = 1µm, and we have used kmD+kmT = 0.1µm/s. While for large

R (preferential recruitment of D) the proteins form a bipolar pattern on the mem-

brane, the membrane-bound proteins accumulate at midcell for small R (preferential

recruitment of T ). If the recruitment processes are balanced (R = 0) the pattern is

flat and polarity vanishes. The cell geometry determines how pronounced a pattern

becomes: The more elongated the ellipse, the more sharply defined the pattern,

which vanishes completely when the ellipse becomes a circle.
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Figure 12
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Figure 12. Membrane affinity controls, and recruitment amplifies adap-

tation to geometry. The cells used for the numerical studies have a length of

L = 5µm and a width of l = 1µm. A, Even when recruitment is turned off, T and

D form inhomogeneous density profiles in the cytosol. D accumulates close to the

poles and is depleted at mid-cell. In contrast, T exhibits high concentration at mid-

cell and a low concentration at the poles. The attachment and detachment rates are

set to 1µm/s and 1s−1, respectively, which gives a penetration depth `λ ≈ 1.6µm.

B, Illustration of the source-degradation mechanism for the spatial segregation of

cytosolic D and T . All proteins that detach from the membrane are in an NDP-

bound state and can undergo nucleotide exchange, the range of D in the cytosol is

limited to a penetration depth `λ (dashed lines); here `λ = 0.35µm. At the poles

this reaction volume receives input from opposing faces of the membrane resulting

in an accumulation of cytosolic D (dark red). The magnitude of this accumula-

tion depends on the penetration depth. The polarity PNDP = mpole
d /mmid-cell

d of

membrane-bound D plotted as a function of `λ shows a maximum at `λ ≈ 0.35µm

and vanishes in the limits of large as well as small penetration depths.
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Figure 13
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Figure 13. Min protein patterns in vivo vs in vitro. Schematic depiction of the

phenomenology observed in experiments when the system geometry is changed. For

small systems the patterns in reconstituted systems [76] are similar to intracellular

dynamics [59], showing pole-to-pole oscillations (with different length scales) in both

cases. However, as the system length and width are increased, patterns appear that

are not normally seen in vivo.
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Figure 14

Figure 14. Min patterns in vitro. A, Spiral- and travelling-wave patterns ob-

served on flat lipid bilayers. Taken from [71]. B, Pole-to-pole oscillations in semi-

confined PDMS grooves. Taken from [74]. C, Standing waves, travelling waves, and

spiral waves observed in fully confined microfluidic chambers with different lateral

dimensions. Taken from [76]. D, Exotic Min protein patterns on flat lipid bilayers

in large laterally extended flow cells showing different phenomenology depending on

the distance to the outlet and inlet of the flow cell device. Taken from [88].
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Abstract

The present theoretical framework for the analysis of pattern formation in complex

systems is mostly limited to the vicinity of fixed (global) equilibria. Here we present

a new theoretical approach to characterize dynamical states arbitrarily far from

(global) equilibrium. We show that reaction-diffusion systems that are driven by

locally mass–conserving interactions can be understood in terms of local equilibria

of diffusively coupled compartments. Diffusive coupling generically induces lateral

redistribution of the globally conserved quantities, and the variable local amounts of

these quantities determine the local equilibria in each compartment. We find that,

even far from global equilibrium, the system is well characterized by its moving local

equilibria. We apply this framework to in-vitro Min protein pattern formation, a

paradigmatic model for biological pattern formation. Within our framework we can

predict and explain transitions between chemical turbulence and order arbitrarily

far from global equilibrium. Our results reveal conceptually new principles of self-

organized pattern-formation that may well govern diverse dynamical systems.
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INTRODUCTION

Equilibria and their stability are crucial concepts for the characterization of

dynamic systems. The stability of an equilibrium is defined as the response of

the system to a perturbation away from an equilibrium position. In pattern-

forming systems any perturbation of a spatially uniform equilibrium can be

represented by Fourier modes [1]. How the amplitudes of these modes grow or

decay is encoded in the growth rates (dispersion relation) of these modes.

For more than two decades the shape of dispersion relations has served as the

only general characteristic for the classification of pattern forming systems [2],

including Turing instabilities [3], oscillatory media, and hydrodynamic insta-

bilities. However, this characterization, which was introduced by Cross and

Hohenberg [2], is meaningful only if the system concerned conforms to certain

restrictions. First, the system needs to be near the threshold of the instability,

which requires fine-tuning of (control) parameters. Second, the nonlinear in-

teractions are required to have a purely stabilizing effect that keeps the system

close to the unstable uniform equilibrium (supercriticality). These restrictions

made possible a tremendous advance in the mathematical analysis of pattern

attractors and their stability. Unfortunately most real systems are rarely found

close to the threshold of an instability. Moreover, catastrophes and discontin-

uous state changes are quite common in many complex dynamical systems

(morphogenesis and cell polarity [4], epidemics, endogenous and exogenous

tipping events in climatic [5], economic [6], and ecological [7–9] systems). In

such cases, nonlinear interactions amplify deviations from an equilibrium po-

sition. They are therefore excluded from the Cross-Hohenberg classification.

Here we propose an alternative approach. Our primary goal is to dissect com-

plex dynamical systems into elementary building blocks that are conceptually

accessible, physically well–defined, and likely to reveal some general physical

mechanisms underlying self–organization. To this end, we introduce the con-

cept of moving local equilibria. The idea is based on the observation that

in mass–conserving systems the available amount of each conserved quantity

determines the nature (number, position, and stability) of all equilibria. As

these conserved quantities will, generally speaking, not be distributed in a spa-

tially uniform manner, neither will be the corresponding equilibria (Fig. 1A).

This suggests that spatially extended systems can best be viewed as being

partitioned into local compartments that can be considered as well–mixed re-

actors, whose individual (local) equilibria are characterized by the respective

local values of conserved quantities. This information serves as a proxy for

the local dynamics, and the set of all local equilibria across all compartments
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characterizes the dynamic state of the whole system.

We show that many self–organization phenomena can be traced back to

changes in the positions (and possibly stabilities) of local equilibria, caused

by lateral mass redistribution that is facilitated by unstable (Fourier) modes.

Further, we find that Turing patterns are scaffolded by patterns of local equi-

libria. Based on this insight we also reveal the mechanistic connection between

Turing instabilities and seemingly unrelated excitability phenomena that arise

in the context of cell polarity (“wave-pinning”) [10, 11].

Of course, the value of a novel theoretical framework is not only measured by its

ability to generalize beyond existing concepts, but also by its predictive power.

Therefore, we tested our framework on a concrete model of oscillatory Min

protein patterns [12, 13] which, owing to their complex phenomenology [14–

17], present a particularly difficult challenge for current theoretical approaches.

We show that an analysis based on moving local equilibria quantitatively pre-

dicts and mechanistically explains a transition from chemical turbulence to

long–range order, in a regime that is far from onset of the instability, but where

nonlinearities have a strongly destabilizing effect. Our results indicate that

these phenomena are not specific to the Min system, but that (catastrophic)

local destabilization is a generic consequence of lateral mass redistribution.

RESULTS

Diffusive coupling moves local equilibria

To illustrate our main conceptual ideas, we consider the simplest possible

case, a reaction–diffusion system over a one-dimensional spatial domain for

one chemical species that is interconvertible between two diffusing components

a and b:

∂ta(x, t) = Da∂
2
xa+ f(a, b), (1)

∂tb(x, t) = Db∂
2
xb− f(a, b), (2)

Here f accounts for all chemical reactions, a(x, t) and b(x, t) are the local

densities, and Da and Db are the diffusion constants.

Let us first disregard any lateral coupling by diffusion and focus on the local

dynamics driven by the chemical reactions encoded in f(a, b) at any point x

in space. These reactions conserve the local value of the total density, nx(t) :=

a(x, t) + b(x, t), which determines the local phase space of the system at any

3
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point x in space (see Fig. 1A,B). Within each of these subspaces, the local

dynamics are characterised by the positions and stability of the local equilibria

(a∗x, b
∗
x), determined by f(a∗x, b

∗
x) = 0 with a∗x+b∗x = nx. If no mass is exchanged

laterally the spatial distribution nx is time independent and so too are the local

equilibria.

Now let us add lateral diffusive coupling to the picture. Once the dynamics

have reached a stationary state (pattern) (ã(x), b̃(x)) (determined by ∂ta(x) =

0 and ∂tb(x) = 0 in Eq. (1), (2)) the diffusive fluxes are balanced, i.e. 0 =

Da∂xã + Db∂xb̃ (see Methods). This balance of diffusive fluxes confines any

stationary pattern to a linear subspace given by η = Daã(x)+Dbb̃(x) (Fig. 1B,

cf. [18]), where η is a constant of integration. Hence, for unequal diffusion

constants the mass distribution of the pattern ñx = ã(x)+ b̃(x) is incompatible

with a spatially uniform mass distribution nx = n , where n denotes the spatial

average of nx (Fig. 1B). Therefore, the spatial distribution of local equilibria

(a∗x, b
∗
x) (determined by nx) is non–uniform for any pattern (ã(x), b̃(x)) as well.

How spatial patterns (ã, b̃) are related to the local equilibria (a∗x, b
∗
x) is one

major question we will address in this article. In this context we study the

relation between pattern forming mechanisms and lateral redistribution of the

total density nx.

Since Alan Turing’s seminal discovery we know that pattern formation can be

self–organized [3]: A spatially uniform and locally stable system can become

laterally unstable such that random fluctuation are amplified, which leads to

the growth of certain Fourier modes ∝ eσqt cos(qx) with growth rates Re[σq]

(the amplitude of the mode cos(qx) grows for Re[σq] > 0 and decays otherwise,

Fig. 1C).

Here, linear stability analysis (Fig. 1B,C, see Supplementary Section I) reveals

that any lateral instability with unequal diffusion coefficients (including the

Turing instability) endogenously induces lateral redistribution of total den-

sity, i.e. nx(t) ∝ eσqt cos(qx) (cf. Fig. 1A). Taken together this shows that

the displacement of local equilibria by lateral mass redistribution is the key

mechanism of self–organized pattern formation in mass–conserved systems. In

Supplementary Section II we explain how this mechanism unifies and general-

izes excitability (“wave–pinning”, [10, 19]) and dynamical instability (“Turing

patterns”) phenomena which have hitherto been treated as mechanistically

distinct in the literature.

From a broader perspective this result immediately suggests a way to dra-

matically reduce the complexity of large multi–component dynamical systems:

If pattern formation can be understood in terms of a displacement of local

equilibria, the total densities become the essential degrees of freedom, since

4
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these are the only control variables that dynamically affect the properties of

local equilibria. Hence, the essential dynamics of a multi–component system

should be captured by the number of control variables (conserved quantities)

and their overall effect on local equilibria. We will refer to the space spanned

by the control variables as control space.

To test this theoretical framework we considered the in vitro Min protein sys-

tem, which is known for its rich phenomenology and has eluded theoretical

characterization so far [14, 20]. In vivo the proteins MinD and MinE self-

organise into standing wave patterns that act as spatial regulators for cell

division [21, 22]. In-vitro a variety of wave patterns has been observed on sup-

ported lipid bilayers [14, 17]. MinD mediates both its own accumulation and

that of MinE on the membrane, MinE drives both itself and MinD off the mem-

brane, and cytosolic diffusion facilitates their spatial redistribution. Biochemi-

cally the process is driven by ATP consumption [23]. The biochemical reaction

circuit contains five chemical components (see Supplementary Information)

of the two globally conserved chemical species, MinD (D = [MinD]/[MinD])

and MinE (E = [MinE]/[MinE]), both normalised with respect to their time-

independent spatial averages [MinE] and [MinD]. Since the dynamics involve

competition between MinD-driven accumulation and MinE-driven depletion,

we use the ratio ∆ := E/D and the sum Σ :=
√

1
2
(E2 +D2) as our set of dy-

namic control variables, and define a vector-valued amplitude in control space

as n(x, t) = (Σ,∆), with n(x, t) =
(
Σ(E,D),∆(E,D)

)
= (1, 1).

Onset dynamics is slaved to moving local equilibria

For our analysis we considered the box geometry as used in experimentally

reconstituted Min systems [14]. The membrane is located at the bottom of

the box, and we use the height h of the cytosolic volume as a control pa-

rameter. To begin with, we adjusted the height to a value h = 20µm just

above the point of onset of a lateral instability (of oscillatory Turing type) at

hLat≈ 19.85µm (Fig. 2A , see Supplementary Information). In this regime,

starting from a spatially uniform protein distribution, our numerical simula-

tions initially showed a standing wave pattern of MinD on the membrane with

an exponentially growing amplitude Apattern (Fig. 2B,C, see Methods).

Strikingly, we find that the local distance between the pattern and the local

equilibria Astate (see Methods) remains constant and small relative to the am-

plitude of the pattern Apattern (Fig. 2B,C). The standing wave pattern follows

the oscillatory time evolution of local equilibria, i.e. u(x, t)∼u∗(x, t), and

5
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can therefore be identified as a pattern of local equilibria. In the Supplemen-

tary Material we show that this scaffolding of the pattern by local equilibria

is a generic property of non-oscillatory patterns in cell polarity models. This

further suggests that scaffolding is a generic property of (locally stable) mass–

conserved dynamics and is not related to specific phenomenology (oscillatory

vs. non–oscillatory). In both cases the movement of local equilibria is caused

by the lateral redistribution of total density (control variable) stimulated by

the lateral instability. This is reflected in the exponential increase of the am-

plitude Acontrol (Fig. 2C) in control space (Σ,∆).

Loss of structural control induces a transition to chemical turbulence

These findings merely mark the beginning of an intriguing story, for the local

equilibria not only shift positions upon variation of the control variables, their

stabilities may also change (Fig. 2D). Indeed, our simulations (Fig. 2E) showed

that the control variables Σx and ∆x will, at some set (cluster) of points x in

space, eventually enter a regime where the moving local equilibria become

unstable (dark grey shaded area in Fig. 2D). Concomitantly with this local

destabilisation at t = tc, we observe that the distance between the pattern and

the moving local equilibria abruptly increases by several orders of magnitude

(Fig. 2C, 3A), which precipitates the formation of a propagating wavefront

at the cluster position (Fig. 3B, Movie 1). The rear of this wavefront remains

structurally within the domain of unstable equilibria as it propagates. Hence,

the passage of the front triggers a cascade of transiently destabilized local

equilibria throughout the system, which facilitates the formation of additional

propagating wavefronts. We observe that all waves finally annihilate each other

in aberrant collisions and the dynamics settles into a turbulent state in which

the dynamics in control space, the change in local stability, and the dynamics

of the observed patterns are spatially uncorrelated (Fig. 3C, Supplementary

Figure 3).

Overall, the transition to turbulence shows that the observed dynamics sensi-

tively react to changes in position and stability of local equilibria. This fur-

ther emphasises that the essential dynamics take place in control space (Σ,∆);

hence, the control variables Σx and ∆x are the essential degrees of freedom.

6
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Establishment of structural control through the lateral instability

In supercritical reaction–diffusion systems nonlinearities have a stabilizing ef-

fect that suppresses jumps in amplitude upon lateral destabilization [1, 2]. In

these classical cases, turbulence originates from the production of incoherent

spatial structures at increasingly shorter length scales due to nonlinear cou-

pling of unstable modes. Here, turbulence only arises far from onset where the

band of unstable modes is wide. In contrast, we observe chemical turbulence

at the very onset of a lateral instability. In this regime the band of unstable

modes is too narrow to facilitate mode coupling and induce turbulence. In-

stead, the lateral instability is subcritical (see Supplementary Material), such

that the inflation in control space (mass redistribution) does not saturate im-

mediately. This allows local equilibria to be destabilized even at onset of the

lateral instability, which leads to chemical turbulence. Strikingly, we find that

spatially coherent patterns are reestablished far from onset through a con-

certed interplay between mutually commensurable, unstable modes in control

space, as we shall see below.

To keep the discussion of this mechanism clear and concise we restrict the

presentation to a conceptual level. However, we emphasise that this conceptual

presentation is entirely based on empirical data extracted from systematic

simulations (see Supplementary Information).

In the preceding sections we established that the lateral instability drives the

spatial redistribution of total mass densities, which in turn act as control vari-

ables for the local equilibria (Fig. 1). Increasing the bifurcation parameter h

beyond the critical value hLat broadens the band of unstable modes respon-

sible for mass redistribution (Fig. 4A). Hence, mass redistribution can occur

on a broader range of length scales, and we find that a larger average frac-

tion of the system is driven into the locally unstable domain in control space

(Fig. 4B, Supplementary Fig. 9A). As the control parameter h passes a critical

value hSW≈ 23.5 µm, we observe a transition from chemical turbulence to a

spatially coherent standing wave pattern (Fig. 4C, Movie 2). Strikingly, this

transition occurs when the unstable mode qmax with the shortest wavelength

becomes commensurable with the critical (fastest growing) mode qc, i.e. when

qmax = 2qc (Fig. 4D, bottom right).

For h > hSW, we find that two unstable commensurable modes qc and

qr = 2qc ≥ qmax have distinct but interdependent roles in the establishment

of global coherence: The critical mode qc coordinates synchronised destabilisa-

tion of local equilibria at distances lc = 2π/qc (see t= t1 in Fig. 4D). Upon local

destabilisation the dynamics undergo a large amplitude excursion in control

7
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space (Supplementary Fig. 9B), first accumulating, then releasing mass syn-

chronously at distances lc. We know that redistribution of mass is mediated

by unstable modes. Assume that this mass is redistributed symmetrically to

the left and right of each cluster at a distance l < lc/2 (t= t1 in Fig. 4D). This

directional redistribution will lead to the formation of wavefronts propagating

away from their source towards points of mutual annihilation in collisions mid-

way between the original sources (t= t2 in Fig. 4D). The mass contained in the

propagating wavefronts, i.e. the mass that has been accumulated during the

original excursion, is released again in the annihilation event at a distance lc/2

from the original cluster (t= t3 in Fig. 4D). If this mass is again redistributed

symmetrically to the left and right of each cluster by the distance l < lc/2, it

will return to its origin and complete the cycle (t= t4 in Fig. 4D). To achieve

this synchronised redistribution of released mass, the mode redistributing

mass qr must be commensurable with the distance between mass sources, i.e.

qr = 2qc. In this case the length scale of mass redistribution is lr/2 =π/qr.

Our simulations show that the transition to standing waves occurs when the

commensurable mode becomes unstable. Additionally, we find that mass re-

distribution takes place on a well defined length scale lr/2 throughout the

standing wave regime (Fig. 4D, Supplementary Section 8). The scenario out-

lined here is further supported by the observation of phase-slip defects in the

vicinity of the commensurable–incommensurable transition (Supplementary

Section 8).

The observed emergence of order due to destabilization of additional modes is

in stark contrast to the classical case where turbulence originates from mode

coupling [2]. However, it is not unusual for chaotic systems to become reg-

ular if external driving is strong enough (cf. the prominent chaotic water-

wheel [24]); indeed, this effect is utilized in control theory [25]. In that case,

the control of chaotic dynamics is based on external forcing, but our results

demonstrate that such control can emerge endogenously as a new mechanism

for self–organisation.

A chimera state marks the transition from short to long-range correlated

patterns

So far we have identified regimes and mechanisms for chemical turbulence

and standing–wave patterns. In-vitro experiments performed at large bulk

heights h ≈ 5 mm show travelling-, and spiral-wave patterns [14] . Such

patterns are generic phenomena observed in oscillatory media. Indeed, if we

8
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increase h beyond a certain point hLoc≈ 37 µm all local equilibria become

oscillatory unstable (Fig. 4A,B) in the uniform state, i.e. the system becomes

an oscillatory medium. Accordingly, simulations of the 3D system with a large

bulk height (e.g. h= 100 µm�hLoc) reproduce the experimentally observed

wave patterns (Fig. 5A, Movie 3).

In fact, the standing wave pattern discussed in the last section arises be-

cause source defects periodically emit propagating wavefronts. However, in

this regime mass sources were depleted after emitting a single pair of propa-

gating wavefronts, such that the local equilibria remain non–oscillatory until

the arrival of the returning wavefronts (Fig. 4D). Surprisingly, at a bulk height

hTW = 33 µm (well below the threshold hLoc where the system becomes an

oscillatory medium globally), our simulations show that a single source defect

remains oscillatory after emitting wavefronts (Fig. 5B, Movie 4). This enables

the source to emit a periodic band of travelling waves, which expands into the

domain of the standing waves. Since this expansion occurs on a time scale

much longer than the local oscillation period (Fig. 5C), the whole pattern is

an example of a chimera state [26, 27], with long-range correlated oscillators in

the travelling–wave phase, and short-range correlated oscillators in the stand-

ing wave phase. In contrast to the sources in the standing wave regime, the

source of travelling waves redistributes mass on a length scale lc/2 set by the

defect control mode qc (Fig. 5D,E, cf. Fig. 1B,4D). This length scale therefore

sets the wavelength of the travelling and spiral waves which we observe for

h > hTW (Fig. 5F). The matching of these length scales suggests that the

experimentally observed patterns are based on the spatiotemporal control of

local stability. Moreover, the in-vitro patterns are based on local oscillations,

and therefore mechanistically distinct from the (Turing) patterns observed in

vivo (see Supplementary Material).

Finally we note that the dispersion relation assumes all forms listed in the

Cross-Hohenberg classification as the control parameter h is increased from

h < hLoc (Type I) through h = hLoc (Type II) to h > hLoc (Type III), yet the

phenomenology remains invariant. In the Supplementary Material we discuss

how a control space analysis for (h > hLoc) identifies the local dynamics as

relaxation oscillations and, in turn, suggests a mechanistic connection between

patterns in the Min protein and the CO–Pt system [28–30].

9
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DISCUSSION

Taken together, these results indicate that local equilibria and their dynam-

ics constitute elementary concepts in a theory of complex dynamical systems

driven by mass–conserving interactions. This encompasses chemical systems

based on cyclical state changes such as biochemical reaction networks driving

intracellular dynamics, and could potentially be extended to catalytic surface

reactions with a conserved number of binding sites (cf. our discussion in the

Supplement). We also note that lateral coupling is not limited to spatial cou-

pling but can be extended to general network topologies.

Our findings also offer unexpected insight into possible causes of spatiotem-

poral chaos (chemical turbulence) and mechanisms for its control. The origin

of chemical turbulence and its control can both be linked to an endogenous

destabilization of local equilibria due to lateral coupling. These mechanisms

are surprisingly distinct from known causes of weak or fully developed turbu-

lence, but due to their generic origin (redistribution of mass) they could apply

in many complex systems.
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METHODS

Glossary

Chemical species: A chemical that is conserved in chemical reactions, e.g.

a protein.

Chemical component: A state of a chemical species that is susceptible to
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change in chemical reactions, e.g. the conformation of a protein.

Total density/mass: The summed density of all components of a chemical

species. The average total density is conserved, while the local total density

can change though lateral mass redistribution.

Control space: The space spanned by the total densities of a system. Its

dimension equals the number of conserved species.

Control variable: A spatiotemporal variable that represents a coordinate of

control space and specifies the values of the local total densities at any point

in space and time.

Control parameter: Any system parameter that does not change endoge-

nously (in contrast to control variables) but is set by the microscopic physics

(kinetic rates, diffusion coefficients) or by the experimentalist (system size,

average total densities).

Local equilibria: The chemical equilibria at any fixed point in time and space

considered as a spatially isolated (and well-mixed) subsystem. Determined by

the local total densities.

Local stability: The linear stability of local equilibria with respect to per-

turbations that do not change the local total densities.

Lateral stability: The linear stability of a spatially uniform state with re-

spect to non-uniform spatial perturbations.

Turing instability: A lateral instability of a locally stable uniform state that

arises as a consequence of diffusive coupling.

Subspace of the stationary pattern

We set the left-hand sides of Eq.1 and 2 to zero and add the two equations to

obtain

0 = Da∂
2
xa+Db∂

2
xb. (3)

Integration shows that the stationary state is characterized by a balance of

diffusive fluxes 0 = Da∂xã+Db∂xb̃. Another integration shows that the pattern

is confined to a subspace η = Daã(x) + Dbb̃(x), where η is a constant of

integration.

Amplitudes

In the following we define the three amplitudes Apattern(x, t), Acontrol(x, t), and

Astate(x, t) used to characterize the dynamics. For illustration purposes the

11
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definitions are given here for the general two-component model. The specific

definitions for the Min system can be found in the Supplementary Information.

The three amplitudes reveal how the observed pattern, the movement of local

equilibria, and the dynamics in control space are interrelated. The “classical”

amplitude of the pattern

Apattern(x, t) = ‖u(x, t)− u(x, t)‖, (4)

denotes the euclidian distance between the concentration vector u(x, t) =[
a(x, t) , b(x, t)

]T
and the vector that represents the spatial averages of all

concentrations u(t) =
[
a(t) , b(t)

]T
.

Similarly, we define the amplitude in control space

Acontrol(x, t) = ‖n(x, t)− n‖, (5)

as the local distance between the control variable and its (conserved) spatial

average. For systems with multiple conserved species (such as the Min system)

the control variables will be combined into a vector and the distance is defined

analogously to Apattern(x, t).

Finally, we trace the local distances between the concentration u(x, t) and the

local equilibria u∗(x, t) =
[
a∗(x, t) , b∗(x, t)

]T
:

Astate(x, t) = ‖u(x, t)− u∗(x, t)‖. (6)

12
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Figure 1
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FIG. 1.

A, A schematic of the compartmentalization concept: Any multi–component

pattern
(
ã(x), b̃(x)

)
, here represented by ã(x) (blue line) can be spatially de-

composed in its local equilibria (a∗x, b
∗
x) (green dots). If all local equilibria are

stable, the pattern is scaffolded by the pattern of local equilibria, i.e. the

pattern is locally driven (red arrows) towards the pattern of local equilibria.

The local total density nx = ã(x) + b̃(x) is the only quantity that dynami-

cally controls the properties (position and stability) of local equilibria. The

essential dynamics of the pattern forming process are therefore encoded in

the spatio-temporal variation of the control variable nx. B, A schematic pro-

jection onto the global phase space (a, b) of two-component reaction-diffusion

systems (Eq. 1,2). At each point in space x and time t the local dynamics

(red arrows) are restricted to the local phase spaces nx(t) := a(x, t) + b(x, t)

(cf. Fig. 1A). A representative line of local equilibria (f(a, b) = 0) is shown in

green. It can be seen that for any typical f(a, b) the positions of local equilibria

change as nx(t) is varied. All stationary patterns are confined to the subspace

η = Daã(x) + Dbb̃(x) (blue line) which is spanned by the unstable mode qmax

(blue arrow) for dispersion relations of any type (Fig. 1C, cf. supplementary

material). C, Top: Schematic dispersion relations max(Re[σ
(1,2)
q ]) for lateral

instabilities with locally stable (top, Re[σ
(2)
q=0] < Re[σ

(1)
q=0] = 0) and unstable

(bottom, Re[σ
(2)
q=0] > Re[σ

(1)
q=0] = 0) steady state; qc denotes the fastest growing

mode and qmax the growing mode with the shortest wavelength. The detailed

definitions of these quantities are given in the Supplementary Material.
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Figure 2
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FIG. 2.

A, Dispersion relation for the Min system model at the onset of the lateral

instability (oscillatory, Turing) at h = 20 µm; note that only the real part of

the largest eigenvalue is shown.

B, A section of the standing wave pattern of membrane-bound MinD at

t = 1.2 · 104 s. Total system size is 500 µm with periodic boundary con-

ditions. We observe that the densities unum(x, t) (the subscript indicates that

this data is extracted from the numerical simulation) are closely tied to their

local equilibria u∗(x, t) (the exact definition of u∗ from unum is provided in the

Supplementary Information).

C, Time evolution of the spatially averaged amplitudesApattern(x, t), Astate(x, t),

and Acontrol(x, t). As implied by the data in Fig. 2B, the distances to the local

equilibria are small compared to the amplitudes of the pattern and the con-

trol variables, i.e. Astate � Apattern ∼ Acontrol, until all amplitudes undergo

a sudden jump at t = tc = 15434 s. This shows that the dynamics of all

densities are globally slaved to the time evolution of the local equilibria set by
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the evolution of the control variables Σ and ∆.

D, Stability diagram of the system in control space (Σ,∆) at h = 20 µm (see

the Supplementary Information for the underlying computation). All values

are normalised to the global averages used in the simulations (all parameter

values are listed in the Supplementary Information). The grey areas highlight

all laterally unstable configurations, with the global average being locally stable

(Turing-type instability) in the light grey area, and locally unstable (oscillatory

medium) in the dark grey area. Here, the global average is at the onset of a

Turing-type instability (see Fig. 2A).

E, Trajectories of the control variables (Σ,∆) at five adjacent (∆x = 0.2 µm)

and fixed points in space during the transition through the jump at t = tc.

The two outer trajectories are highlighted in orange (x = 90 µm) and blue

(x = 91 µm), the trajectories in-between in black. For t < tc all trajectories are

entrained and the corresponding local equilibrium remains in the stable regime.

At t = tc, all five trajectories enter the locally (oscillatory) unstable regime

(dark grey) for the first time. From this point onward, their trajectories begin

to diverge from each other, and their amplitude in control space Acontrol(x, t)

becomes large and irregular.
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Figure 3
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FIG. 3.

A, Distribution of the whole simulated system (system size 500 µm, sampling

∆x = 0.2 µm) in control space (Σ,∆) and corresponding distances to local

equilibria Astate(x, t) before, at, and after the jump at t = tc. The stability of

the local equilibria is encoded by the color, orange for unstable spirals, blue for

stable spirals. Astate(x, t) immediately increases by several orders of magnitude

as a local reactor enters the regime of local instabilities. This supports our

proposed notion of local stability. The final state is characterised by a broad

distribution in control space.

B, Section of the density profiles of membrane-bound MinD during the tran-

sition at t = tc. All points with locally unstable equilibria are highlighted as

red dots. Local destabilisation leads to the formation of laterally propagating

wavefronts that leave behind a spatially increasingly disordered pattern.
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C, Kymograph showing the correlation of the time series (T = 10 s,∆t = 1 s)

of spatially adjacent MinD membrane signals (±∆x = 0.2 µm) for the whole

system (see the Supplementary Information for the underlying definitions).

Correlation is indicated in greyscale with black indicating no correlation, i.e.

stationary signals on the timescale T . Spatial disorder originates from the

sources and sinks of local instability highlighted in orange. The inset highlights

the section shown in Fig. 3B.
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FIG. 4.

A, Dispersion relations for increasing bulk height h, showing the destabilisation

of the zero mode and the preservation of the finite sized critical mode qc as

h→∞.

B, Stability diagram of the system in (∆, h) space, with Σ = 1 kept constant.

As h increases, the regime of local instability (dark grey) approaches the spatial

average ∆ = 1 until the uniform system becomes locally unstable at h = hLoc
(zero mode instability in Fig. 4A). The diagram shows that ∆ and h have

similar effects on local and lateral stability.

C, Sections of the MinD membrane profile with clusters of locally unstable

equilibria highlighted as red dots, showing the emergence of a standing-wave

pattern for h = 25 µm (source-sink defect cycle) starting from a spatially

uniform initial condition (at t = 0 s, not shown).

19

294 Rethinking pattern formation in reaction-diffusion systems:
Moving local equilibria



D, Schematic representation of the mechanism that establishes spatially co-

herent standing wave patterns. Left: Schematic standing-wave profiles for

successive time steps, overlaid with the defect control mode ∼ cos(qcx) (red,

top) and the mass redistribution mode ∼ cos(qrx) (blue, bottom). Both con-

trol modes are defined in the schematically represented dispersion relation

(right, middle). Red dots indicate clusters of local oscillatory unstable equi-

libria. Blue unidirectional arrows indicate distances of mass redistribution as

indicated by cluster distances. Bidirectional arrows indicate distances between

clusters that move away from (blue arrows) or towards (green arrows) each oth-

ers. The length scales corresponding to different arrows can be inferred from

the distribution statistics of cluster distances as schematically represented in

the histogram (top right). The corresponding simulation data can be found

in the Supplementary Material. In the bottom right Figure we plot the mode

commensurability qmin/qc as a function of the control parameter h. Compari-

son with the simulation data (coloured background) shows that the transition

from chemical turbulence to spatially coherent standing waves coincides with

the activation of the commensurable mode qr.
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Figure 5

FIG. 5.

A, Snapshot (t = 1.2 · 103 s) of the simulation in full three-dimensional box

geometry for h = 100 µm showing spiral- and travelling wave patterns on the

two-dimensional membrane.

B, Sections of the MinD membrane profile with clusters of locally unstable

equilibria highlighted as red dots, showing the transition from the standing-

wave pattern (source-sink defect cycle) to a travelling wave pattern (main-

tained central source defect) for h = 33 µm.

C, Kymograph with the correlation of adjacent MinD membrane signals (c.f.

Fig. 3C, 4E) at h = 33 µm, showing the chimera transition from standing-

wave patterns to travelling waves. Black lines show the positions of stationary

standing wave nodes, the blank area the domain of (uniformly correlated)

travelling waves with the maintained source defect at the center. The inset
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highlights the section shown in Fig. 5B.

D, Histogram with the distance-distribution of local instability clusters for

h = 33 µm. Distance is rescaled to the length scale set by the fastest growing

mode qc = 2π/lc. The data shows that the travelling wave pattern consists of

instability clusters separated by a sharply defined distance that corresponds to

the length scale of control variable transport set by the fastest growing mode

π/qc (c.f. Fig 1A).

E, Distribution of the whole system in control space (Σ,∆) and corresponding

distances to local equilibria Astate(x, t) (c.f. Fig. 3A) for h = 33 µm at t =

404 s. With the formation of travelling waves the distribution of the whole

system condenses on a sharply defined two-dimensional circle in control space

(Σ,∆) with only the point corresponding to the remaining source and sink

defect lying outside.

F, Comparison of the wavelengths extracted from simulations (red dots) with

the length scale π/qc set by the lateral instability for the respective bulk height

h. The data shows that the length scale set by the lateral instability controls

the pattern for any h outside the turbulent regime, i.e. the lateral instability

sets the length scale arbitrarily far away from onset but not at onset h ≈
20 µm.
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I. TWO-COMPONENT REACTION-DIFFUSION MODEL

To illustrate our main ideas and to place our exposition in a sufficiently gen-

eral framework, we consider the simplest possible reaction-diffusion system:

a chemical system comprises two chemical components A and B confined to

a finite one-dimensional domain of length L. Let a(x, t) and b(x, t) denote

the local densities of components A and B, respectively. We are interested

in dynamical systems that conserve the total mass N =
∫
nx(t) dx, where

nx(t) := a(x, t) + b(x, t) is the local value of the total mass density. Our

goal in this supplementary section is to show that lateral instabilities generi-

cally induce mass redistribution and thereby shift local equilibria. The most

general reaction-diffusion equation describing such a dynamics reads

∂ta = Da∂
2
xa+ f(a, b) , (1a)

∂tb = Db∂
2
xb− f(a, b) , (1b)

where the function f(a, b) accounts for all chemical reactions, and Da and Db

are the diffusion constants of the chemical components A and B, respectively.

The boundary conditions can be open, periodic, no-flux, or Dirichlet type.

A. Dynamics without diffusive coupling

For a well-mixed system, the dynamics reduces to

∂ta = f(a, b) , (2a)

∂tb = −f(a, b) , (2b)

with spatially uniform densities a(t) and b(t). The equilibria (fixed points)

of the reactive dynamics, a∗ and b∗, are given by the stationarity condition

f(a∗, b∗) = 0 supplemented by the mass conservation constraint a∗ + b∗=n,

where n=N/L is the invariant total mass density. To study the linear stability

of these equilibria one defines the displacement vector δa=
[
a−a∗ , b−b∗

]T
,

and considers the linearised system corresponding to Eq. (2),

∂t δa = J δa , (3)

with the Jacobian given by

J =


 fa f b

−fa −f b


 , (4)

5
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where fa := ∂f
∂a
|(a∗,b∗) and f b := ∂f

∂b
|(a∗,b∗) are the first order Taylor coefficients

evaluated at the fixed point (a∗, b∗). With the ansatz δa(t) = eσt e one finds

the eigenvalues

σ(1) = 0 , (5a)

σ(2) = fa − f b , (5b)

and the corresponding eigenvectors,

e(1) =
[
−f b/fa , 1

]T
, (6a)

e(2) =
[
−1 , 1

]T
. (6b)

The first eigenpair defines a center space, where the eigenvector e(1) is tangent

to the line of fixed points given by f(a, b) = 0, which explains why the associ-

ated eigenvalue σ(1) is zero. The second eigenpair defines the stability of the

equilibrium (fixed point) against perturbations that preserve the total particle

density n; note that the eigenvector e(2) spans a 1-simplex in phase space de-

fined by the mass conservation constraint a+ b=n, whereas e(1) breaks mass

conservation (c.f. main text Fig. 1).

Before continuing with the stability analysis of these spatially uniform equi-

libria (a∗, b∗) against spatially non-uniform perturbations, we first study a

particular system where the initial mass distribution is spatially non-uniform,

nx(0), but there is no mass transport through diffusion. This is equivalent

to the following ‘Gedankenkonstrukt’ (notional construct), whose significance

for the spatiotemporal dynamics will become clear as we proceed: Imagine

the one-dimensional system be divided up into a set of (infinitesimal) com-

partments (reactors) where each of them is considered as well-mixed but they

are separated from each other by walls which inhibit any diffusive flux; for an

illustration see main text Fig. 1A. Then, for a compartment at position x, we

have the same well-mixed dynamics as above,

∂tax = f(ax, bx) , (7a)

∂tbx = −f(ax, bx) , (7b)

but with the difference that each of these compartments contains a different

amount of mass as specified by the local value of the total mass density nx(0).

Since there is no diffusion we have ∂tnx(t) = 0, i.e. the total mass density re-

mains locally invariant in time: nx(t) =nx(0) =: nx. As a consequence, each

6
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spatial position x is characterised by a different fixed point, (a∗x, b
∗
x), which we

term local equilibrium. It is obtained from the conditions of local stationarity

f(a∗x, b
∗
x) = 0, and local mass conservation a∗x + b∗x =nx. Upon defining the dis-

placement vector δax(t) =
[
ax(t)− a∗x , bx(t)− b∗x

]T
, one can study the stabil-

ity of these local equilibria. The linearised systems corresponding to Eq. (7a)

reads

∂t δa = Jx δa (8)

with the local Jacobian given by

Jx =


 fax f bx

−fax −f bx


 , (9)

where fax ≡ ∂f
∂a
|(a∗x,b∗x) and f bx ≡ ∂f

∂b
|(a∗x,b∗x). For each space point x, the linear

system, Eq.(8), is solved by the ansatz δax(t) = eσxt ex. Depending on the

values nx, this ansatz gives a local eigensystem with the two eigenvalues

σ(1)
x = 0 , (10a)

σ(2)
x = fax − f bx , (10b)

and the corresponding eigenvectors

e(1)
x =

[
−f bx/fax , 1

]T
, (11a)

e(2)
x =

[
−1 , 1

]T
, (11b)

spanning the phase space (a, b) of the system (c.f. main text Fig. 1B). The

first eigenpair again defines a local center space, where the eigenvector e
(1)
x

is tangent to the line of fixed points. The second eigenpair now defines the

local stability of fixed points against perturbations that locally preserve the

respective total mass density nx. For each fixed nx, the eigenvector e
(2)
x spans

a 1-simplex defined by ax + bx =nx. This is the local phase space of the com-

partment at position x to which its dynamics remains confined due to mass

conservation (in the absence of diffusion). The eigenvalue σ
(2)
x , which is a

function of nx, defines the stability of these local equilibria. Taken together,

this identifies the local mass density nx as a local control parameter : For any

point x in space we can reduce the local dynamics to the local phase space via

f(a, b) = f(a, nx − a) =: f(a;nx) such that the nonlinear dynamics reduces to

7
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that of a general one-dimensional dynamical system with the control param-

eter nx. Hence, all co-dimension one bifurcation scenarios can be realised by

variation of nx, depending on the choice of the nonlinear function f(a, b).

All of the above considerations on local equilibria are in a straightforward fash-

ion generalised to systems with s conserved chemical species with respective

conserved mass densities n
(α)
x (t), α ∈ S. The corresponding local equilibria are

then controlled by S independent local mass densities which grants access to

co-dimension S bifurcations. For the Min dynamics (and similar intracellular

protein dynamics) the notion of local equilibria needs to be further generalised

as it couples dynamics on a reactive surface (membrane) with some bulk (cy-

tosol). The subtleties arising in such cases will be discussed in Sec. VI A.

B. Dynamics with diffusive coupling

Next we analyse the effect of diffusion on the system’s dynamics. Since lateral

diffusion induces spatial redistribution of nx, its role becomes that of a dynamic

control variable which we will now investigate in the context of lateral insta-

bilities. Returning to the full reaction-diffusion system, Eq. (1), and assuming

a spatially uniform initial distribution of the total mass density, nx(0) =n, we

can generalise the Jacobian to contain the diffusive part:

Jx → Jq =


f

a −Daq
2 f b

−fa −f b −Dbq
2


 . (12)

The corresponding linearised system reads ∂t δaq =Jq δaq, and is solved by the

separation ansatz δaq ∝ eσqt cos qx. The eigenvalues are given by

σ±q =
1

2

(
τq ±

√
τ 2
q − 4δq

)
, (13)

where τq and δq denote the trace and determinant of the Jacobian, respectively:

τq := trJq = (fa − f b)− (Da +Db) q
2 , (14a)

δq := detJq = (Daf
b −Dbf

a) q2 +DaDb q
4 . (14b)

For wavenumber q= 0, one recovers the results of the well-mixed case discussed

above, Eq. (5): (σ+
q , σ

−
q )|q=0 = (σ(1), σ(2)) for σ(2) < 0, and (σ+

q , σ
−
q )|q=0 = (σ(2), σ(1))

for σ(2)> 0 (note that σ+
q is always the larger of the two eigenvalues). Now

8
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we are interested in the stability of a spatially uniform state against spatially

non-uniform perturbations, i.e. the dynamics of modes with q > 0. There are

special wave vectors where the stability is marginal, σ±q = 0, or equivalently

detJq = 0. They are given by

qmin = 0, qmax =

√
Dbfa −Daf b

DaDb

, (15)

provided that Dbf
a − Daf

b> 0; otherwise the spectrum is marginal only at

qmin = 0. From Eq. (13) one reads off that the condition on the determinant

of the Jacobian, detJq≤ 0, defines a band [0, qmax] of unstable modes, where

Im [σ±q ] = 0 and σ+
q ≥ 0; see Supplementary Fig. 1 A for examples of dispersion

relations. By solving d
dq

detJq = 0 at qmin and qmax we find that the lateral

instability always occurs first at the critical wavenumber qc = 0, c.f. [1].

We have to distinguish between the cases σ(2)< 0 and σ(2) > 0, where the uni-

form state is stable and unstable with respect to spatially uniform perturba-

tions (conserving mass), respectively. The dispersion relations for these two

cases are illustraded in Supp. Fig. 1 A. For σ(2)< 0, where all (spatially

uniform) local equilibria are stable, the lateral instability is of type-II in the

classification scheme of Cross and Hohenberg [2] with the growth rate at q= 0

always zero: σ+
q=0 =σ(1) = 0, see Supp. Fig. 1 A (left). In contrast, for σ(2)> 0,

where all (spatially uniform) local equilibria are unstable, the lateral instabil-

ity is of type-III with the growth rate at q= 0 positive: σ+
q=0 =σ(2)≥ 0, see

Supp. Fig. 1 A (right). As discussed next, both linear instabilities, despite

of belonging to different classes, induce dynamics facilitated by the spatial

redistribution of total mass density.

Let us first consider the case where the local equilibria are spatially uniform

and stable. In this case the local eigenvalue (encoding local stability in local

phase space) is negative: σ
(2)
< 0. Then, the eigenvalue σ

(1)
= 0, with the

corresponding eigenvector e(1) tangent to the line of fixed points (nullcline),

determines the stability of the uniform state (σ+
q=0 =σ(1) = 0) with respect to

uniform perturbations that alter the total mass in the system such that the

system is shifted along the line of fixed points. Once shifted by a perturbation

that breaks mass conservation the system remains in the local phase space,

within which the stability is given by the eigenvalue σ
(2)
< 0. This case corre-

sponds to the classical lateral instability as considered by Turing: The system

is stable without diffusive coupling, and lateral diffusive coupling leads to the

formation of a finite band [0, qmax] of unstable modes for fa/Da>fb/Db. Since

the instability occurs first at qc = 0, we can assume q to be small at onset, and

9
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expand the eigenvector in orders of q2. We find

e(1) = e+
q=0 → e+

q = e(1) − f b

fa
Db −Da

|σ(2)| q2


1

0


+O(q4), (16)

where e(1) is tangent to the line of fixed points (center space).

What does the direction of this eigenvector reveal about the spatial redistri-

bution of mass? The growth of any unstable mode q implies an increase of the

densities a(x, t) and b(x, t) at the maxima and a reduction at the minima. If

the growth of one density (say a(x, t)) at some point in space x is not balanced

by the same decrease of the other density (b(x, t)) mass is being redistributed in

space, and the local total density nx(t) becomes a dynamical control variable.

The distance of redistribution is then given by the distances between minima

and maxima of the unstable mode q, i.e. by half a wavelength π/q. The entries

of the eigenvector of a mode q are the coefficients (pre-factors) of the modes

for both species. Only if the sum of coefficients is zero no mass is being redis-

tributed, in this case the eigenvector reads e =
[
−1 , 1

]T
= e(2) and spans

the 1-simplex a + b = n. We can summarise the meaning of the eigenvector

as follows (see also Supp. Fig. 1 B for an illustration of the eigenvectors):

The eigenvector parametrises, in the vicinity of the uniform steady

state, the flow of density (a,b) in phase space induced by diffusive

coupling between two reactors separated by half a wavelength π/q

in space.

For e+
q , two things are important to note: First, for q > 0, the eigenvector

points away from the line of stable fixed points spanned by e(1). Hence, as ex-

pected for a Turing instability, each reactor is driven away from the stable local

reactive fixed point. However, as the eigenvector also points away from the

local phase space (1-simplex) in which total mass density n is conserved, the

total mass density becomes time- and concomitantly also space-dependent, i.e.

n→ nx(t). Therefore, as each reactor is driven away form its local equilibrium,

the equilibrium (its position and potentially its stability) also changes dynam-

ically. As a consequence, the flow field representing the dynamical system

(reactor) becomes nonuniform in time and space, and the local control param-

eter nx becomes a dynamic control variable nx(t) with dynamics driven by the

lateral instability. As we will see in the following, this result is not specific to

the scenario of a Turing type instability but rather generic for mass-conserved

reaction-diffusion systems.

The second type of instabilities that can occur in the two-component reaction-

diffusion system considerer here is defined by locally unstable equilibria, see

10
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Supp. Fig. 1 A (right). In this case the destabilisation occurs locally such

that σ+
q=0 =σ

(2)
> 0. By expanding the eigenvectors in orders q2 we find a

remarkably similar result as in Eq. 16:

e(2) = e+
q=0 → e+

q = e(2) +
Db −Da

|σ(2)| q2


1

0


+O(q4). (17)

For Da 6= Db, the spatial coupling induces a change in the total mass density

nx(t) as well. Hence, even if the destabilisation of the uniform state occurs

locally, we find that a lateral instability (q > 0) still induces dynamics in the

local equilibria, just as in the previously discussed case of the Turing instability.

For the particular case where the diffusion constants are equal, we note that

the total density obeys the simple diffusion equation, ∂tnx(t) =D∂2
xnx(t), and

hence will relax to a spatially uniform distribution for no-flux boundary condi-

tions. However, in the presence of an external mass flux, the total density will

tend towards some spatial gradient whose magnitude depends on the strength

of this external flux. In this paper we will restrict ourselves to closed sys-

tems without external fluxes. We suppose that generalisations to include the

additional effects of external fluxes are highly interesting and deserve further

study.

C. Type-II instabilities in mass–conserved reaction diffusion systems

The type-II instability in the classification scheme by Cross and Hohenberg

[2] is associated with the presence of conservation laws. It is important to

realize that a lateral instability of type-II only implies that the system will

most likely satisfy a conservation law of some sort. However, in the literature

on pattern formation one often finds statements of the reverse, namely that the

presence of a conservation law necessitates any lateral instability of the system

to be of type-II. In particular, it is often assumed that in any system with a

conservation law the eigenvalues of the zero mode q = 0 need to be zero, i.e.

the system needs to be neutrally/marginally stable with respect to spatially

uniform perturbations. As we have shown mathematically in the previous

section there is indeed a zero eigenvalue for the mode q = 0. Its eigenvector is

tangent to the line of fixed points (f = 0). However, we have also shown that

the other eigenvalue of the zero mode (q = 0) is not generally zero but encodes

the local stability of the system. Its corresponding eigenvector spans the local

phase space where mass is conserved. Hence, spatially uniform perturbations

11
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in this direction do not break mass–conservation. If the mass–conserved system

is locally unstable the dispersion relation takes the shape shown in Supp. Fig.

1 A (right), which is a type-III instability in the Cross-Hohenberg classification

scheme.

For mass–conserved reaction–diffusion systems with two components the shape

of the dispersion relation is limited to type-II and type-III instabilities. How-

ever, mass–conserved systems with more than two components (such as the

Min system and most other intracellular pattern–forming systems) can also

show lateral instabilities of type-I, see main text Fig. 2A (note that the zero

mode (q = 0) is still marginally stable but the band of unstable modes is

bound from below at a finite wavenumber). Hence, our findings show that

mass–conservation does not impose any restrictions on the Type of the disper-

sion relation within the Cross-Hohenberg classification.

Strikingly, we find that the phenomenology of the Min dynamics does not

appear to be related to the type of the dispersion relation in any way (see

main text).

II. WAVE–PINNING IN THE MASS–REDISTRIBUTION FRAME-

WORK

A. The concept of wave–pinning in the literature

The term wave-pinning refers to the mathematical construction of a polarized

stationary state in a certain class of models for cell polarity [3, 4]. The concept

originated from the study of propagating wavefronts in the classical nonlinear

dynamics literature. For general bistable systems without mass–conservation

such wavefronts are interfaces between two (uniform) stable states and propa-

gate at a constant speed. The general idea underlying wave–pinning is that a

propagating wavefront is pinned at a fixed location in space due to global mass

constraints. The concept was introduced for mass-conservative two-component

systems as considered in section I. The mathematical construction is based on

two assumptions: First, the faster diffusing component (cytosolic) is considered

in the limit of infinitely fast diffusion. The density profile of this component

is therefore assumed to be spatially uniform. Second, the ensuing system is

assumed to be bistable when the faster diffusing component is considered as

a parameter. The wavefront solution of this system is constructed with the

well-known rolling–ball–analogy (e.g. see [1]), where both stable states mark
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the start- and end-point of a fictitious ball’s trajectory.

A main claim in the literature is that a wave–pinning pattern is distinct from

any mechanism related to Turing instabilities or Turing patterns. In the fol-

lowing we will study the original wave-pinning model [3] within our mass–

redistribution framework, discuss the origin of the aforementioned statement,

and argue that it is based on a conceptual misinterpretation of local stability

in the limit of infinite cytosolic diffusion.

B. Wave–pinning is based on mass–redistribution

The wave–pinning phenomenon has been introduced for a Rho GTPase model

by Mori et al. [3]. The model considers two diffusive components in a one–

dimensional domain (representing the cell) of length L:

∂ta(x, t) = Da∂
2
xa+ f(a, b), (18)

∂tb(x, t) = Db∂
2
xb− f(a, b). (19)

The authors consider a reaction term with positive feedback described by a

Hill term

f(a, b) = b

(
k0 +

γa2

K2 + a2

)
− δa. (20)

The parameters with their corresponding biological meaning and values are

given in Table I. Due to mass conservation we additionally need to specify the

total mass in the system:

∫ L

0

(a+ b) dx =

∫ L

0

nx dx = N. (21)

Note that we are using our naming conventions here, in the original model [3]

total mass is denoted by C.

With the model definition in place, we can now proceed with the analysis of

the underlying mechanism. To this end we first look at the f = 0 nullcline

in the phase space (a, b). For the given reaction term (Eq. 20), the nullcline

has a characteristic N-shape (Supp. Fig. 1B). In the limit of infinite cytosolic

diffusion (Db → ∞) the spatial distribution of the b component is uniform,

i.e. b(x, t) = b(t). In the phase space (a, b) the whole system will, therefore,

be constrained to lines with constant b. We will refer to these lines as the

subspace of the polarized state.

13
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Da 0.1 µm2s−1 membrane diffusion

Db 10 µm2s−1 cytosolic diffusion

L 10 µm cell length

δ 1 s−1 inactivation rate (GAP hydrolysis)

γ 1 s−1 GEF activation rate

k0 0.0.67 s−1 baseline GEF activity

K 1 µm−1 saturation parameter

TABLE I: Parameters of the wave–pinning model [3].

The construction of the wave–pinning pattern is based on the concept of

bistabilty. For the N-shape of the f = 0 nullcline there is a range of b val-

ues for which the system admits three intersections between the subspace of

the polarized state and the nullcline. Let us denote these intersections by

a∗−(b∗) < a∗m(b∗) < a∗+(b∗). In the wave–pinning literature, bistabilty refers to

the existence of these three intersections. It is important to realize that these

states are local equilibria for different values of the local total density nx. One

part of the system is in the high density state a∗+(b∗) where the local total

density is n+ = a∗+ + b∗. The other part of the system is in a low density state

a∗−(b∗) with n− = a∗− + b∗. Since b∗ is constant and a∗−(b∗) < a∗+(b∗), it follows

that this construction is based on a spatially non-uniform distribution of total

mass density nx: the wave–pinning pattern is a pattern of local equilibria by

construction, see Supp. Fig. 2 C (bottom). Moreover, since there is only one

fixed point for each spatially uniform nx = n, there is no bistabilty in the

local phase space a + b = n. Hence, redistribution of total mass density is

explicitly required to reach the wave–pinning pattern. In the wave–pinning

literature one assumes that an external perturbation facilitates this mass re-

distribution. The perturbation induces formation of a propagating wave front

that stops (becomes “pinned”) due to global mass conservation. However, in

stark contrast to known wave propagation phenomena in bistable media, the

states (a∗−, b
∗) and (a∗+, b

∗) do no exist a priori, but are created by externally

induced mass redistribution. Considering that mass redistribution is the main

feature of a lateral (Turing) instability, it is surprising that wave–pinning is

supposed to be unrelated to any mechanism based on Turing instability.

To shed light on this matter let us analyse the model and its local and lateral

14

Rethinking pattern formation in reaction-diffusion systems:
Moving local equilibria 313



stability in full detail. First, let us remind the reader that a Turing instability

is defined by the local stability of the system and induced by lateral diffusive

coupling alone. Because the Turing instability is an instability of a spatially

uniform state, we will denote spatially uniform states by (a∗, b∗) instead of

a∗(b∗). The latter notation that is used by the authors of the wave–pinning

model (cf. [3]) implies that b∗ is the control parameter, while the actual control

parameter is n. From the previous discussion in section I we know that any

lateral instability (regardless of the local stability) is based on redistribution

of total density which leads to a movement of local equilibria. The main

requirement for redistribution of total density are unequal diffusion coefficients.

This is clearly fulfilled for the wave–pinning model, in particular, in the case

of infinitely fast cytosolic diffusion.

Next, we need to check the local stability of the uniform steady state for all

values of the control parameter n. For any two–component system a local

equilibrium (a∗, b∗) is unstable iff

σ(2) = fa − f b ≥ 0, (22)

where fa = ∂af |(a∗,b∗) and f b = ∂bf |(a∗,b∗). In this case all parameters except

the total mass N (which is related to the total density n through n = N/L)

determining the position of the local equilibria are given. A computation of

σ(2) as a function of n shows that the local equilibrium (a∗(n), b∗(n)) (which

is unique for any fixed choice of n) is always locally stable, including the

“middle” steady state (a∗m, b
∗) in the subspace of the polarized state (constant

b). Therefore, a Turing instability cannot be ruled out a priori for the uniform

steady state (a∗m, b
∗). For a locally stable two–components system a band of

unstable modes (type-II instability) exists iff (see Eq. 15)

Dbf
a −Daf

b > 0. (23)

To check this condition let us first note that −fa/f b denotes the slope of the

f nullcline in the phase space (a, b), i.e.

∂ab
∗(a)|a=a∗ = −fa/f b. (24)

In addition, from Eq. 20 we obtain f b = k0 + γa2

K2+a2
> 0 for all parameter

choices. Then we can immediately read off from the N-shape of the nullcline

that fa > 0 in general for all middle steady states (a∗m, b
∗), see Supp. Fig. 2 A.

In addition, note that fa and f b are independent of the diffusion coefficients

Db and Da. For the assumption of infinite b diffusion (Db →∞), on which the

construction of the wave–pinning solution is based, it immediately follows from

15
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Eq. 23 that (a∗m, b
∗) is always laterally (Turing) unstable, and from Eq. 15 that

there is a band of unstable modes that extends to qmax =
√
fa/Da. Hence,

the assumptions on which wave–pinning is based (bistability for constant b)

guarantees a Turing instability for this type of models (characterized by the

N-shape of the f nullcline), cf. Supp. Fig. 2 A.

Up to this point we have clearly established that the wave–pinning model

does admit a Turing instability. Moreover, wave–pinning relies on mass–

redistribution in order to create bistability of local equilibria in the subspace

of the polarized state (constant b, see Supp. Fig. 2 A). Our findings also

show that any lateral instability generically leads to the redistribution of local

total density and thereby the movement of local equilibria. Taken together,

this implies that the possibility of wave–pinning and the presence of a Turing

instability is not a mere coincidence, but that both phenomena are based on

the same self–organization mechanism. Our previous analysis of the general

two–component model (Eq. 1) revealed that any unstable mode cos(qx) causes

the redistribution of local total density, and that the ensuing mass transport

is associated with a direction in phase space (a, b) given by the eigenvector

e+
q (Eq. 16) of the mode, i.e.

[
a(x, t) , b(x, t)

]T
∼ e+

q exp (σ+
q t) cos (qx) at

onset of the lateral instability. In this previous section we have mainly used

this result to show that any unstable mode causes the redistribution of local

total density nx, as e+
q points away from the subspace where mass is conserved

a∗+ b∗ = n (local phase space). The particular direction of e+
q had no specific

relevance in this general discussion. However, we know that (for Db →∞) the

subspace containing the final pattern is a line for constant b in the phase space.

Hence, the subspace for the polarized state is spanned by the vector
[
1 , 0

]T
.

Let us assume that the system is initially in the uniform (Turing unstable)

steady state (a∗m, b
∗). To reach the polarized state the local total density needs

to be redistributed such that the dynamics approach the states (a∗−, b
∗) and

(a∗+, b
∗). Since we assume infinite diffusion of component b (Db → ∞) it only

matters how the eigenvectors e+
q depend on Db. From Eq. 16 we directly read

off e+
q ∼

[
Dbq

2 , 1
]T

. Hence, in the limit Db →∞ the normalized eigenvector

e+
q spans the subspace of the polarized state, i.e.

lim
Db→∞

e+
q =

[
1 , 0

]T
, ∀q. (25)

We conclude that the polarized state originates from a lateral (Turing) in-

stability, and note that this analytical result is supported by simulations, see

Supp. Fig. 2 C.
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Of course, this does not imply that a Turing unstable uniform steady state is

strictly required for the polarized state to exist. It has already been pointed

out by Goryachev and Leda [5] (also see [6]) that a Turing stable uniform

state near a subcritical Turing instability should admit a polarized state, since

subcritical bifurcations are a sign for excitability. Indeed the authors of the

original wave–pinning model consider a Turing stable uniform solution (a∗−, b
∗)

as the initial base state, and observe that the polarized state is reached if

this state is sufficiently perturbed. Heuristically speaking, this is possible if

a perturbation of the local total density nx puts a sufficiently large part of

the system in the basin of attraction of the state (a∗+, b
∗) by increasing nx(0)

locally beyond nm = a∗m+b∗, i.e. nx(0) > nm for some range of x values at time

t = 0. It is important to realize that such a choice of initial conditions where

the system is spatially distributed between the basins of attraction of (a∗−, b
∗)

(nx(0) < nm) and (a∗+, b
∗) (nx(0) > nm) is exactly the action of the lateral

(Turing) instability at the uniform steady state (a∗m, b
∗). The only difference is

that in the excitable case, an external stimulus guides the system into the basin

of attraction of the polarized state, whereas in the second case, this guidance

is self–organized by the Turing instability. However, even if the system is in an

excitable state, a variation of system parameters (e.g. a change of total density

n) will always (due to the shape of the nullcline) be able to render the excitable

state laterally unstable such that pattern formation becomes self-organized.

Now that we have established the mechanistic connection between the Turing

instability and the wave–pinning phenomenon, two main question remain. The

first questions concerns the length scale of the fastest growing mode which sets

the length scale at onset. The second question concerns the misunderstanding

on which basis the uniform solution (a∗m, b
∗) has been identified as unstable and

therefore ruled out as a candidate for a Turing instability. Because the answers

to both questions turn out to be connected we will discuss them together in

the following section. Again, the realization that the key physical process for

pattern formation is mass redistribution will turn out to be crucial.

C. Local and lateral stability in the limit of infinitely fast diffusion

The fastest growing mode qc from the band of unstable modes (qmin < qc <

qmax) always sets the initial length scale of the pattern forming process in

the linear regime. For lateral instabilities in mass–conserving two–component

models with a locally stable uniform state (Turing) the band of unstable modes

always extends down to the zero mode, i.e. qmin = 0 (cf. Eq. 15). It has been
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previously been realized by Trong et al. [6] that the position of the fastest

growing mode qc strongly depends on the value of the fast diffusion coefficient

(Db in our case). Indeed, one can analytically derive from the q-dependent

spectrum of the Jacobian (Eq. 12) that qc approaches the zero mode as Db

approaches infinity, i.e.

lim
Db→∞

qc = 0, (26)

while maintaining a positive growth rate, i.e.

lim
Db→∞

σ+
qc = fa > 0. (27)

Hence, in the limit Db → ∞ the mode with longest wavelength (which is

infinite in an infinite system) becomes the fastest growing mode. The growth

rate σ+
q→0 > 0 converges towards fa, and not towards zero. The system remains

neutral stability for any finite Db <∞. Only for Db =∞ does the dispersion

obtain the characteristic shape with a maximum at q = 0, i.e.

lim
Db→∞

σ+
q = fa −Daq

2, (28)

which represents a prototypical type-III instability within the Cross-Hohenberg

classification scheme, see Supp. Fig. 2 B. It is absolutely crucial to realize that

this discontinuously displaced zeroth Fourier mode [6] does not represent nor

alter the local stability of the system which is still determined by σ(2) = fa−f b,
and is independent of any lateral diffusion process (e.g. Db) by definition of

locality (fixed x). However, the pathological shape of the dispersion relation

(Supp. Fig. 2 B) in the limit Db → ∞ with an unstable zero mode appears

to be the reason why the middle fixed point (a∗m, b
∗) has been ruled out as

a candidate for a Turing instability. This also emphasizes that local stability

and therefore the condition for a Turing instability cannot be inferred from the

dispersion relation (at q = 0) in such limiting cases, but has to be considered

explicitly by calculating the local stability in the local phase space of the

uniform state (Eq. 22).

Furthermore, we note that the shape of the dispersion relation in the limit

Db →∞ does reveal additional insight about the mechanism underlying wave–

pinning, when considered in the context of mass redistribution. As discussed

in the previous sections, any laterally unstable mode induces a redistribution

of local total density on the length scale π/q (the distance between minima

and maxima of a mode ∼ cos qx). Let us consider a system with length L

(−L/2 < x < L/2) and no–flux boundary conditions at x = ±L/2. Then the

spectrum of modes with finite wave length will be limited to the discrete set
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{sin(nπ/Lx) | n = 1, 2, ...}. Note that the polarized pattern is represented by

the mode with the longest wave length (n = 1) with a minimum at x = −L/2
and a maximum at x = +L/2 (or vice versa). As the wave length of the fastest

growing mode increases with Db we can guarantee for any system length L that

the the first mode (n = 1) will be the fastest growing mode for sufficiently high

Db, i.e. that local total density is redistributed the fastest from x = −L/2 to

x = +L/2 (or vice versa). This is exactly the requirement needed for the

uniform system to approach the polarized wave–pinning state.

This discussion also reveals the physically correct interpretation of the dis-

persion relation at q = 0 in the (pathological) limit Db → ∞ (Supp. Fig.

2). In this limit the fastest growing mode transports local total density from

x = −L/2 to x = +L/2 (or vice versa) for any system length L. Only in this

limit the latter remains to be the case for L → ∞, where the fastest growing

mode qc = π/L induces mass-redistribution from x = −∞ to x = +∞. Clearly

this cannot represent any meaningful physical process. Hence, it becomes ev-

ident that the dispersion relation at q = 0 defines a lateral instability (from

x = −∞ to x = +∞) and does not represent the local stability of the uniform

state (which is independent of diffusion by definition, and still encoded by 22).

This example shows that the distinction between these two physically distinct

properties of a system (local and lateral stability) needs to be carefully consid-

ered. In this case the distinction was obfuscated by the limit Db →∞, where

system becomes laterally coupled on an instantaneous time scale (
√
Db/L2),

i.e. lateral mass transport can be instantaneous across any distance and the

dynamics is effectively “delocalized”.
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III. MIN PROTEIN DYNAMICS AND THE EFFECT OF SYSTEM

GEOMETRY

A. Reaction-diffusion equations for the skeleton model of Min dynamics

We use a mathematical model [7, 8] for the Min system that accounts for the

molecular interactions that are believed to be essential for the Min protein

dynamics. This model includes the following set of chemical reactions:

1. The attachment of cytosolic MinD-ATP, uDT , to the membrane with rate

constant kD.

2. The recruitment of cytosolic MinD-ATP, uDT , to the membrane by mem-

brane bound MinD, ud, with rate constant kdD.

3. The formation of membrane bound MinDE complexes, ude, through the

recruitment of cytosolic MinE, uE, by membrane bound MinD, ud, with

rate constant kdE.

4. The detachment and decay of membrane bound MinDE complexes, ude,

into cytosolic MinD-ADP, uDD, and MinE, uE, with rate kde.

5. The reactivation of cytosolic MinD-ADP, uDD, by nucleotide exchange

to MinD-ATP, uDT , with rate λ.

All components are able to diffuse in their respective domains (cytosol or mem-

brane). Since only the distinction between cytosolic and membrane diffusion is

important for the dynamics, and since the diffusion coefficients with a domain

(cytosol or membrane) are very similar for different proteins, we only distin-

guish between cytosolic and membrane diffusion with diffusion constants Dc

for the cytosol and Dm for the membrane, respectively.

In previous work [8], the mathematical model has been generalised to complex

system geometries with bulk-boundary coupling (this will be discussed in this

section below), and subsequently applied to account for

• the transition from pole-to-pole oscillations to (multi-node) stipe oscil-

lation in filamentous cells [8],

• oscillations with rotating oscillation axis in nearly spherical cells [8],

• the temperature dependence of the oscillation period [8],
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• robustness of the intracellular pattern agains inhomogeneities in the lipid

composition (affecting the attachment process) [8],

• optimisation of the time-average membrane density profile for mid-cell

localisation [8],

• traverse oscillations in broad rectangular cells [9, 10],

• multi-stability of various longitudinal and transversal patterns in large

rectangular cells [9, 10].

This success to consistently reproduce and explain a broad range of exper-

imentally observed features of the Min system suggests that the underlying

molecular interaction are indeed essential for the Min protein dynamics. As

new experimental data on the molecular interactions of Min proteins becomes

available, the kinetic processes assumed in the model can be further refined

(e.g. by replacing one-step processes with multi-step processes). In the latter

case we would expect that the original network would be contained in a de-

tailed model as a limiting case. For this reason we refer to the reaction network

outlined above as the skeleton network, and skeleton model respectively.

In coordinate free form (with index c or m denoting that an operator acts in

the cytosol or at the membrane, respectively) the ensuing system of partial

differential equations for the skeleton model reads:

∂tuDD = Dc∇2
cuDD − λuDD , (29a)

∂tuDT = Dc∇2
cuDT + λuDD , (29b)

∂tuE = Dc∇2
cuE , (29c)

∂tud = Dm∇2
mud + fd(ud, ũDT , ũE), (29d)

∂tude = Dm∇2
mude + fde(ude, ud, ũE) , (29e)

where the chemical reactions on the membrane are given by the nonlinear

functions

fd(ud, ũDT , ũE) := (kD + kdDud) ũDT − kdE uD ũE , (30a)

fde(ude, ud, ũE) := kdE uD ũE − kde ude , (30b)

with ũi denoting the respective cytosolic densities right at the membrane.

These equations are complemented by nonlinear reactive boundary conditions
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at the membrane surface stating that the chemical reactions involving both

membrane-bound and cytosolic proteins equal the diffusive flux onto (−) and

off (+) the membrane (the index n denoting the outward normal vector at the

boundary)

Dc∇nuDD|m = kde ude =: fDD , (31a)

Dc∇nuDT |m = −(kD + kdDud) ũDT =: fDT , (31b)

Dc∇nuE|m = kde ude − kdE uD ũE =: fE , (31c)

and no-flux boundary condition at any non-reactive surfaces (denoted by the

index s)

Dc∇nuDD|s = 0 , (32a)

Dc∇nuDT |s = 0 , (32b)

Dc∇nuE|s = 0 . (32c)

The above set of reaction-diffusion equations locally conserve the total mass

of MinD as well as MinE. This implies that the spatial averages, [MinD] and

[MinE], of the total densities of MinD and MinE obey the relation

[MinD] Ω =

∫

Ω

dc (uDD + uDT ) +

∫

δΩ

dm (ud + ude) , (33a)

[MinE] Ω =

∫

Ω

dc uE +

∫

δΩ

dm ude , (33b)

where
∫

Ω
dc and

∫
δΩ

dm signify integration over the whole cytosolic volume Ω

and membrane surface δΩ, respectively. The values of the overall masses of

these conserved quantities needs to be specified (in the simulation through the

initial condition).

The advantage of such a general (coordinate-free) model definition is that it

can be adjusted to any system geometry, allowing to consistently use the same

model for different experimental setups. For the in-vitro experiments a simple

box geometry is typically used, where the reactive lipid bilayer (membrane)

is located at the bottom of the box, and all other boundaries are reflective.

Since the lateral extension of in-vitro box geometries is typically very large

O(103µm) compared to the wave length of the pattern O(10µm), we will

perform simulations in an intermediate sized computational box O(102µm)

and employ periodic boundary conditions. The height h of the experimental
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box geometry is similarly very large O(103µm) such that the dynamics per-

pendicular to the membrane cannot be neglected for two main reasons that

we will discuss in the following subsection.

The parameter values used in the simulations are given in Table II.

TABLE II: System parameters. The values of the diffusion coefficients and

protein densities are chosen in accordance with experimental data [11]. The

kinetic rate constants are chosen within the order of magnitude of the values

fitted to the in vivo dynamics [8, 10] to reproduce the in-vitro

phenomenology qualitatively and the wavelengths and -velocities

quantitatively within the order of magnitude of the experimental data.

Parameter Symbol Value

MinD and MinE cytosol diffusion Dc 60 µm2s−1

MinD and MinDE membrane diffusion Dm 0.013 µm2s−1

MinD mean total density [MinD] 638µm−3

MinE mean total density [MinE] 410µm−3

MinD attachment rate constant kD 0.065µms−1

MinD recruitment rate constant kdD 0.098µm3s−1

MinE recruitment rate constant kdE 0.126µm3s−1

MinDE detachment rate kde 0.34 s−1

Nucleotide exchange rate λ 6 s−1
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B. Relevance of the cytosolic bulk for the spatiotemporal membrane

dynamics

The dynamics of most intracellular processes, and in particular the Min dy-

namics, involves a coupling between dynamics on a membrane surface and a

cytosolic volume. Biochemical interactions, with the exception of nucleotide

exchange, are confined to the vicinity of the membrane. At first sight, one

might therefore suppose that it is straightforward to eliminate the cytosolic

bulk from the dynamics and consider it simply as a passive particle reser-

voir. Though there are certain limits where this is indeed possible, in general,

however, the bulk dynamics plays a key role for the spatiotemporal dynamics

and can not be disregarded. In the following we will illustrate the under-

lying physics for two simple analytically tractable cases, and discuss general

implications for reaction–diffusion systems with bulk–boundary coupling.

1. The attachment rate constrains the reduction of the bulk dimension

Consider a diffusion process normal to the membrane in a one-dimensional col-

umn of height h. Then for a single protein species with line density c(z, t) and

diffusion constant Dc, the dynamics are given by a one-dimensional diffusion

equation

∂tc(z, t) = Dc∇2
zc(z, t) . (34)

At one end of the column (the reactive membrane) we consider an attachment

process where cytosolic particles attach to the membrane with a rate kon. Then

local mass conservation implies a (Robin) boundary condition which accounts

for the balance of reactive flux on the membrane with diffusive in the cytosol

flux due to ensuing density gradients,

−kon c(0, t) +Dc∇zc(z, t)|z=0 = 0 . (35)

This ‘reactive’ boundary condition is complemented by reaction kinetics on

the membrane

∂tm(t) = kon c̃(t) , (36)

where m(t) denotes the membrane density and we have introduced c̃(t) = c(0, t)

for the cytosolic density right at the membrane. Note that the Robin boundary

condition, Eq.(35), clearly shows that inevitably any reactive coupling between

the cytosol and the membrane (here attachment to the membrane) leads to
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gradients in the cytosolic bulk. The corresponding length scale can be read off

(by simple dimensional analysis) from Eq.(35) as

`on := Dc/kon . (37)

At the other end (the surface of the cytosolic solution), the system is assumed

to be closed which implies a reflective boundary condition

Dc∇zc|z=h = 0 . (38)

We now ask under what conditions one may disregard the diffusive dynamics

normal to the membrane. To this end, we define the spatial average of the

cytosolic protein density as

c(t) =
1

h

∫ h

0

dz c(z, t) . (39)

Combining Eq.(34) with the boundary conditions, Eq.(35) and (38), one ob-

tains

∂tc(t) = −kon

h
c(0, t) . (40)

This reduces to an equation for the concentration at the membrane c(0, t) =

c̃(t) only if one can approximate the average density by the density at the

membrane, c(t)≈ c̃(t). Then one gets

∂tc̃(t) = −kon

h
c̃(t) , (41)

which is solved by c̃(t) = c̃(0) e−t/τon where the relaxation time is given by

τon :=
h

kon

. (42)

However, one can approximate the average density by the density at the mem-

brane only if there are no significant gradients in the bulk. Heuristically, this

requires that the penetration depth `on is much larger that the height h of the

column, h� `on. As the above reaction-diffusion equation is exactly solvable

this can also been seen explicitly. With the separation ansatz c(z, t) =ϕ(t)ζ(z),

and the separation parameter σ one gets

∂tϕ(t) = −σ ϕ(t) , (43a)

Dc∇2
zζ(z) = −σ ζ(z) . (43b)
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These linear equations are solved by ϕ(t) =ϕ(0) e−σt and ζ(z) = ζ(h) cos(q(h−
z)), and linear combinations of these solutions c(z, t); note that we have chosen

the spatial part ζ(z) such that it already respects the reflective boundary

condition at z=h, Eq.(38). The relaxation rate σ is related to the wave vector

q by the dispersion relation (Eq.(43b))

σ = Dc q
2 , (44)

and the set of possible wave vectors {qi} is determined by the eigenvalue con-

dition

hqi tan(hqi) =
h

`on

, (45)

which is obtained from the Robin boundary condition, Eq.(35). This tran-

scendental equation may be solved graphically (or numerically). Analytic so-

lutions are obtained in asymptotic limits only. If h� `on, we may approximate

tan(hq)≈hq to find the smallest eigenvalue as q1 = 1/
√
h`on. The correspond-

ing relaxation rate is τ1 = 1
σ1

= h`on
Dc

= h
kon

, which is identical to τon defined above.

All other relaxation times, corresponding to larger wave vectors, are smaller

and hence correspond to faster decay. Therefore, after initial transients (re-

sulting from some prepared initial state) have decayed, the dominant wave

length is λmax = 2π
q1

= 2π
√
h`on� 2πh, i.e. gradients on the scale of the col-

umn can be neglected. The dynamics of the longest wave length mode then

corresponds to the dynamics of the average cytosolic concentration, Eq.(41),

c(z, t) ∝ e−t/τ1 cos(q1(h − z)); note that cos(q1(h − z)) hardly shows any z-

dependence as q1�h. In the opposite limit, h� `on, the eigenvalues are ap-

proximately given by hqi = (2i−1)π
2

with i ∈ {1, 2, 3, . . .} such that the largest

wave length is λmax = 4h and gradients are significant. We conclude that for

the dominant slow modes (largest wave length modes) the bulk dynamics may

be neglected if the penetration depth `on is much larger than the column height

h. For fast modes and for columns with a height larger than the penetration

depth, there are significant density gradients in the bulk whose dynamics show

an intricate interplay with the membrane dynamics. Hence, the cytosolic dy-

namics is an integral part of the system’s dynamics and can not effectively be

described as some passive reservoir.

All of the above may also be summarised by a simple scaling argument: The

diffusive dynamics normal to the reactive membrane can be neglected if the

time scale of cytosolic mixing, τdiff∼h2/Dc, is much smaller than the typi-

cal time a protein suspended in the bulk needs to attach to the membrane,

τon∼h/kon. This yields the condition

h� Dc

kon

= `on , (46)
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which the ratio of the cytosolic diffusion coefficient, Dc, and the attachment

rate, kon, need to satisfy in order to justify assuming a well-mixed cytosolic

volume and neglect any density gradients.

For the dynamics of the Min system in-vitro an upper bound for the pen-

etration depth can be estimated from the experimental data. MinD accu-

mulation within a traveling wave takes place on a timescale ∆t≈ 40s during

which the membrane density increases by the amount ∆m(t)≈ 1.5 · 104µm−2.

With the upper bound for the cytosolic MinD density set by the mean to-

tal density [MinD]≈ 600µm−3, one can estimate (employing Eq.(36)) a min-

imal attachment rate constant kon, min≈ ∆m/∆t

[MinD]
≈ 0.625µm/s. With the diffu-

sion constant Dc≈ 60µm2s−1 one obtains an upper bound for the penetration

depth: `max
on ≈ 96µm. Since this value is much smaller than the typical bulk

height hexp used in in-vitro experiments hexp≈ 5 · 103µm, one must conclude

that the bulk dynamics can not be neglected. In the above crude estimate

we have mot accounted for the fact that attachment is actually a nonlin-

ear process, and that there is also constant detachment of MinD induced by

MinE recruitment. Therefore, any measured effective attachment rate kon is

actually the net difference between ongoing attachment and detachment of

proteins. In terms of the skeleton model, the total attachment rate is explic-

itly given by kon = kD + kdDud, where the values for the rates kD and kdD are

given in Table II. Extracting the MinD membrane density ud from our sim-

ulations (that reproduce the order of magnitude of experimental time scales)

we find values ranging from a minimal value ud,min≈ 2µm−2 to a maximal

value ud,max≈ 2.7 · 103 µm−2, and an average value of ud≈ 8.3 · 102µm−2. For

the penetration depth this corresponds to an upper bound `on, max≈ 200µm,

a lower bound `on, min≈ 0.2µm, and an average value `on ≈ 0.7µm. Besides

giving estimates for the value of the penetration depth, this analysis also shows

several additional aspects: (i) The nonlinear nature of an attachment process

has to be taken into account when a reduction of the bulk dimension is being

considered. (ii) The penetration depth is a dynamic quantity which varies as

the concentration of proteins on the membrane varies. Upon combining exper-

imental data with our computational analysis we conclude that the attachment

rates of Min proteins clearly forbid the reduction of the bulk dimension when

accounting for in-vitro experiments.
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2. Reduction of the bulk dimension with nucleotide exchange

A second reason why the bulk dimension cannot be reduced easily is cytosolic

nucleotide exchange. MinD is released from the membrane into the cytosol

in its ADP form, and is transformed back into its ATP form by nucleotide

exchange with a rate that can be estimated to λ≈ 6 s−1 (c.f. [8]). This corre-

sponds to a source-degradation process with the membrane as an MinD-ADP

source, and implies that the MinD-ADP density decays exponentially into the

cytosol with a penetration depth given by

` :=
√
Dc/λ . (47)

Since typical values of the cytosolic diffusion constant Dc for proteins is in-

vitro of the order 60µm2 s−1, one estimates `≈ 3µm, which is much smaller

than typical system heights h used experimentally. Hence there are protein

density gradients normal to the membrane due to nucleotide exchange, and we

will show next that they critically influence the chemical equilibrium at the

membrane.

Consider a one-dimensional column of height h where the dynamics of MinD-

ATP and Mind-ADP in the bulk is given by the following reaction-diffusion

equations

∂tuD(z, t) = Dc∇2
zuD − λuD , (48a)

∂tuT (z, t) = Dc∇2
zuT + λuD , (48b)

where uD(z, t) and uT (z, t) denote the cytosolic density of MinD-ADP and

MinD-ATP, respectively. We further assume that MinD-ATP may bind to the

membrane through some nonlinear attachment process specified by an arbi-

trary function fon(um, ũT ) where ũT =uT |z=0 denotes the value of the cytosolic

MinD-ATP concentration at the membrane, and um(t) signifies the MinD-ATP

membrane concentration. Membrane bound MinD-ATP is assumed to trans-

form into MinD-ADP upon detaching from the membrane through a linear

process specified by the rate constant koff. Then, the membrane dynamics

reads

∂tum(t) = fon(um, ũT )− koff um . (49)

and the corresponding reactive boundary condition at the membrane (z= 0),

respecting local mass conservation, is given by

koff um + Dc∇zuD|z=0 = 0 , (50a)

−fon(um, ũT ) + Dc∇zuT |z=0 = 0 . (50b)
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The column is assumed to be closed at z=h, which yields the reflective bound-

ary conditions

Dc∇zuD|z=h = 0 , (51a)

Dc∇zuT |z=h = 0 . (51b)

In the following we consider the steady state. Solving the stationary diffu-

sion equation and stationary membrane kinetics subject to the reactive and

reflective boundary conditions yields for the stationary density profiles in the

bulk,

u∗D(z) = ũ∗D
cosh

(
h−z
`

)

cosh
(
h
`

) , (52a)

u∗T (z) = ũ∗T + ũ∗D

[
1− cosh

(
h−z
`

)

cosh
(
h
`

)
]
, (52b)

where ũ∗D and ũ∗T denote the stationary densities of MinD-ADP and MinD-

ATP, respectively, right at the membrane (z= 0). These bulk profiles explicitly

show that ` plays the role of a penetration depth into the bulk. The MinD-

ADP concentration has its largest value at the membrane, decays exponentially

into the bulk and levels off at a value ũ∗D/ cosh(h/`). In turn, the MinD-ATP

concentration increase from ũ∗T to ũ∗T + ũ∗D[1 − 1/ cosh(h/`)], i.e. the ATP-

form which is the one that can attach to the membrane is depleted close to

the membrane. The latter suggest to call ` a ‘recycling length’ as it binds

the active form of MinD (ATP-bound form) away from the membrane. The

equilibrium values of the protein concentrations at the membrane, ũ∗D, ũ∗T , and

u∗m, are determined by the reactive boundary condition, Eq.(50a)-(50b), and

the stationarity condition for the membrane dynamics, Eq.(49),

`2
off

`
tanh

(
h

`

)
=
u∗m
ũ∗D

, (53a)

fon(u∗m, ũ
∗
T ) = koff u

∗
m , (53b)

where we have defined the length scale `off :=
√
Dc/koff, together with mass

conservation,

n = ũ∗T + ũ∗D + u∗m/h , (54)

where n represents the mean total mass density.
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If the penetration depth is much smaller than the column height, `�h (i.e.

h→∞), Eq.(53a) this reduces to

`2
off

`
=
u∗m
ũ∗D

. (55)

Since the total mass density is an upper bound for the bulk densities, n> ũD,

this implies that the stationary membrane density u∗m remains bound from

above in the limit h→∞

lim
h→∞

u∗m < n
`2

off

`
= n

√
Dcλ

koff

. (56)

Strikingly, despite the absence of an explicit saturation term, there is an emer-

gent saturation effect for the membrane concentration. In addition, this sat-

uration effect is due to the combined effect of detachment and nucleotide ex-

change but completely independent of the attachment dynamics (fon) that

can be highly nonlinear/cooperative. We conclude that if reattachment to the

membrane requires reactivation (which is generic for many protein classes),

e.g. in the form of a nucleotide exchange, then the stationary flux onto the

membrane, fon(um, ũT ) = koff um is limited to the value
√
Dcλ. As an ancil-

lary remark, the emergent saturation provides an explanation for the surpris-

ing observation that models with simplified (unsaturated) recruitment term

∝ kdDuduDT (as the skeleton model used here) reproduces the dynamics in

vivo as well as in-vitro with essentially the same kinetic parameters despite

the fact that membrane densities in-vitro are two orders of magnitude higher

than in vivo.

The saturation effect strictly requires the extended bulk dimension. To see this

consider the analogous set of reaction equations with reduced bulk dimension

(as described in the previous section III B 1)

∂tuD(t) = koff um/h− λuD , (57a)

∂tuT (t) = −fon(um, uT )/h+ λuD (57b)

∂tum(t) = fon(um, uT )− koff um , (57c)

where ui(t) = 1
h

∫ h
0

dz ui(z, t) denotes the spatial average over the cytosolic den-

sities. From Eq. (57a) with the left hand side set to zero we obtain for the

stationary states

u∗m = h
λ

koff

u∗D . (58)
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For any finite u∗D, there is obviously no saturation in the limit h→∞, and

lim
h→∞

u∗m =∞ . (59)

This clearly shows that due to the nucleotide exchange process the reduction

of the bulk dimension is not a valid approximation for large bulk heights. If,

however, the bulk height is small compared to the reactivation length scale

(h� `), then the hyperbolic tangent can approximated as tanh(h/`)≈h/`.
In this limit the reactive boundary conditions, Eq. (50a) and (50b), for the

stationary bulk profiles reduce to

Dc∇zuD|z=0 = λũ∗Dh = koffu
∗
m , (60a)

Dc∇zuT |z=0 = −λũ∗Dh = −fon(u∗m, u
∗
T ) , (60b)

which is equivalent to the stationarity condition in the reduced system obtained

from Eqs. (57a) and (57b) by setting the left hand sides to zero.

We conclude that nucleotide exchange prohibits reduction of the bulk dimen-

sion unless h� `. For the Min system studied in-vitro one has h/`=O(103)

[11], i.e. one is actually in the opposite limit h� ` where bulk dynamics is

essential. Neglecting nucleotide exchange or reducing the bulk dimension if the

condition h� ` is not met would be seriously flawed as it misses the saturation

of membrane attachment. In large (in-vitro) systems this either necessitates

the inclusion of explicit ad hoc saturation terms that perturb the nonlinear dy-

namics and introduce additional parameters, or it leads to membrane densities

that exceed the carrying capacities of a membrane (due to volume exclusion)

by orders of magnitude. Both of these ‘quick fixes’ are unsuitable for a quan-

titative theoretical account for reaction-diffusion systems.

C. Reduction to 2D slice geometry

Since the bulk dimension cannot be eliminated a reduction of the spatial di-

mension can only be sought on the membrane. Let us assume cartesian coor-

dinates (x, y, z) with the membrane at z= 0. Let us further assume a spiral

wave pattern at the membrane with the spiral centre at x= y= 0. On any

coordinate axis (either y= 0 or x= 0) we now find for any protein density ui
an approximately constant density profile in the direction orthogonal to the

axis under consideration, i.e. ∇yui|y=0≈ 0 or ∇xui|x=0≈ 0. By focusing on

such a section of the system we loose the ability to distinguish between spiral

wave patterns, target wave patterns, and travelling wave patterns, but we also
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reduce the reactive membrane to one dimension and the diffusive bulk to two

dimensions. To study the mechanisms behind wave formation and coherence

in general this is a very convenient reduction. Most importantly it allows us to

run simulations on a time-scale of hours and days (2D) rather than weeks and

months (3D). Therefore, we will perform the mechanistic analysis of wave dy-

namics in the 2D section and compare the results with a single representative

3D simulation that utilises the same parameters as the reduced 2D system.

For now on we will refer to the reduced 2D system as the (x, z) frame, with

the lateral dimension x and the extended bulk dimension z.

32

Rethinking pattern formation in reaction-diffusion systems:
Moving local equilibria 331



IV. LINEAR STABILITY ANALYSIS IN BOX GEOMETRY

The starting point of any linear stability analysis is the computation of a

steady state around which the system can be linearised. For spatially extended

systems this is typically a spatially uniform steady state. However, in the

box geometry under consideration such a uniform steady state does not exist:

While the steady state is spatially uniform along the membrane (in the lateral

direction), nucleotide exchange in the bulk (longitudinal direction) induces

density gradients characteristic for source-degradation processes; see also the

discussion in the preceding section. Note that in general nonlinearities acting

on non-uniform density profiles could seriously complicate the stability analysis

due to mode-coupling. In the present case, however, the nonlinearities are

restricted to the reactive boundary (membrane) such that the non-uniformity

in the bulk (cytosol) has no direct effect on the nonlinear dynamics, i.e. it

does not cause mode-coupling.

In the following we consider a 2D slice geometry as described above, with

the lateral dimension x and the extended bulk (longitudinal) dimension z. A

spatially uniform state at the membrane means that ∇xui = 0 for all protein

densities. The stationary density profiles in the bulk are then given by (c.f.

Sec. III B 2)

uDD(z) = ũ∗DD
cosh ((h− z)/`)

cosh (h/`)
, (61a)

uDT (z) = ũ∗DT + ũ∗DD

(
1− cosh ((h− z)/`)

cosh (h/`)

)
, (61b)

uE(z) = ũ∗E , (61c)

where ũ∗i denote the spatially uniform stationary cytosolic densities at the

membrane, and `=
√
Dc/λ gives the penetration depth into the cytosol; note

that the corresponding stationary profiles of the total mass densities, uE(z) and

uD(z) =uDD(z)+uDT (z), are spatially uniform in the bulk. Upon inserting all

these stationary bulk density profiles into the reactive boundary conditions at

the membrane, Eqs. (31a)-(31c), one finds

` ũ∗DD tanh (h/`) = fDD(u∗de)/λ , (62a)

−` ũ∗DD tanh (h/`) = fDT (ũ∗DT , u
∗
d)/λ , (62b)

0 = fE(ũ∗E, u
∗
d, u
∗
de) , (62c)
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which are complemented by the stationarity conditions for the membrane dy-

namics, Eq. (29d)-(29e),

0 = fd(ũ
∗
DT , ũ

∗
E, u

∗
d, u
∗
de) , (63a)

0 = fde(ũ
∗
E, u

∗
d, u
∗
de) . (63b)

(As an aside we note that the above five equations determining the equilib-

ria are not independent: fde = 0 is the same condition as fE = 0, and upon

adding Eq. (63a) and Eq. (63b) one finds fDD+fDT = 0, which is equivalent to

fde = 0 = fd. Hence, there is no new information in the stationarity conditions

on the membrane which is not already contained in the flux balance condition

on the membrane.) Moreover, the stationary states have to satisfy global mass

conservation

[MinD] = ũ∗DD + ũ∗DT + (u∗d + u∗de)/h , (64a)

[MinE] = ũ∗E + u∗de/h . (64b)

In a linear stability analysis one considers the time evolution of small perturba-

tions with respect to these stationary states, i.e. ui(x, z, t) =u∗i (z)+δui(x, z, t)

(where membrane densities lack the dependence on the z-coordinate). Expand-

ing the dynamics of the small perturbations in terms of Fourier modes

δuDD(x, z, t) =
∑

q

eσqt cos(qx) ζDD(z; q) , (65a)

δuDT (x, z, t) =
∑

q

eσqt cos(qx) ζDT (z; q) , (65b)

δuE(x, z, t) =
∑

q

eσqt cos(qx) ζE(z; q) , (65c)

δud(x, t) =
∑

q

eσqt cos(qx) δũqd , (65d)

δude(x, t) =
∑

q

eσqt cos(qx) δũqde , (65e)

and inserting ui(x, z, t) =u∗i (z) + δui(x, z, t) into the (linear) bulk diffusion

equations (Eq. 29a-29c) and taking the boundary conditions (Eq. 31a-32c)

into account, the corresponding bulk functions ζi(z; q) are obtained analytically
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as

ζDD(z; q) = δũqDD

cosh
(

h−z
`q(λ+σq)

)

cosh
(

h
`q(λ+σq)

) , (66a)

ζDT (z; q) = (δũqDT + δũqDD)
cosh

(
h−z
`q(σq)

)

cosh
(

h
`q(σq)

) − δũqDD
cosh

(
h−z

`q(λ+σq)

)

cosh
(

h
`q(λ+σq)

) , (66b)

ζE(z; q) = δũqE

cosh
(

h−z
`q(σq)

)

cosh
(

h
`q(σq)

) , (66c)

where we have defined

`q(χq) :=

√
Dc

χq +Dcq2
, (67)

generalising the penetration depth ` to a wave vector dependent quantity, and

δũqi are Fourier coefficients that depend on the wavenumber q.

Using the shorthand notation for a term describing the coupling between the

membrane concentrations and the density profiles in the bulk

Γq(χq) =
Dc

`q(χq)
tanh

(
h

`q(χq)

)
, (68)

and the first Taylor coefficient for the reaction terms

f ij =
∂fj(u)

∂ui

∣∣∣∣
u=u∗

, (69)

the linear system reads Lq δũq = 0, for each δũq =
[
δũqDD, δũ

q
DT , δũ

q
E, δũ

q
d, δũ

q
de

]T
,

where Lq is given by

Lq =




fDD
DD−Γq(σq+λ) fDT

DD fEDD fdDD fdeDD

fDD
DT +Γq(σq+λ)−Γq(σq) fDT

DT −Γq(σq) fEDT fdDT fdeDT

fDD
E fDT

E fEE−Γq(σq) fdE fdeE

fDD
d fDT

d fEd fdd−σq−Dmq
2 fded

fDD
de fDT

de fEde fdde fdede−σq−Dmq
2




.

(70)

The first three rows of Lq are the linearisation of the reactive boundaries

Eq. (31a)-(31c), and the last two rows are the linearisation of the membrane

dynamics Eq. (29d)-(29e).
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The dispersion relation max Re[σq] (i.e. the fastest growth rates of each

wavenumber q) are then obtained as solutions of

detLq = 0 . (71)

Since Lq is non-algebraic in σq, solutions can only be obtained numerically.

For this purpose we use the iterative solver FindRoot[] provided by Wolfram

Mathematica 9 to compute the data used in Fig. 2A,D and Fig. 4A,B in the

main text.

V. NUMERICAL SIMULATION

All simulations have been performed with Comsol Multiphysics 4.4 that em-

ploys the finite element method. In all 2D simulations of the aforemen-

tioned (x, z) frame the system geometry is a rectangle with variable height

h and fixed width L= 500µm. The boundaries x= 0, L we employ periodic

boundary conditions. We use a free triangular mesh with minimal mesh ele-

ment sizeMmin = 0.05µm at the membrane and a maximal mesh element size

Mmax = 5µm in the bulk far away from the membrane. Close to the membrane

the bulk mesh element size increases with a mesh growth rate r set to r= 1.2

(c.f. the documentation of Comsol Multiphysics for the details). All mesh sizes

are chosen conservatively well below the smallest length scale of the observed

pattern. Further reducing the mesh size has no effect on the simulation results.

All simulations were performed using the direct PARDISO solver with relative

tolerance manually set to 10−6 and default settings otherwise.
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VI. EXTRACTING LOCAL EQUILIBRIA, AMPLITUDES AND CON-

TROL VARIABLES FROM NUMERICAL DATA

This chapter contains a description of the procedures we used to determine

local equilibria, amplitudes and control variables from our numerical data.

A. Local membrane equilibria

In Section I we have introduced the ‘Gedankenkonstrukt’ (notional construct)

of a local equilibrium for reaction-diffusion systems in a uniform d-dimensional

reaction volume. Here we generalize this concept to situations where a reactive

surface (membrane) is coupled to a bulk volume (cytosol).

Before giving a formal definition, let us take a step back and reiterate and

expand on the main idea behind the local equilibrium concept. From the anal-

ysis of the planar 2-component reaction-diffusion system in Section I we have

learned that any lateral instability (with unequal diffusion coefficients) induces

a local change of total mass densities, and thereby shifts local equilibria. But

what can be learned from the information about the local equilibria? One of

the key advances brought about by the framework of nonlinear dynamics is

the concept of phase portraits, which are geometric representation of the flow

(system trajectories) in the phase space of a dynamical system. For well-mixed

systems, already a calculation of the fixed points (equilibria) along with the

surrounding flow field (linear stability) may often suffice to infer the global

dynamics (attractors) of the system qualitatively. For instance, the dynamics

in a system with one stable equilibrium will converge towards this stable state.

In a system with two stable and one unstable equilibria, the unstable equilib-

rium will separate the basins of attraction of the two stable equilibria; as such

the initial condition will fully determine the fate of the dynamics. If there is

a single equilibrium which is oscillatory unstable (complex eigenvalues) the

attractor approached by the dynamics is likely to be a limit cycle and the

structure of the flow field (i.e. the topology of the associated vector field) that

guides any dynamics will be that of a spiral with increasing amplitude (i.e.

the distance to the unstable equilibrium). Of course, there are many more

intricate cases that do not allow such a global a priori assessment of the flow

flied in phase space (phase portrait). However, it is striking that a broad range

of non-equilibrium phenomena can be reproduced and elucidated on the basis

of such simple systems. Let us now illustrate how the notion of phase portraits

is useful also for the investigation of spatially extended systems. One of the
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most prominent classical examples, is the complex Ginzburg-Landau equation,

which exhibits wave solutions as well as states of spatio-temporal chaos. In

this model system the local flow field has the generic structure of a stable

limit cycle close to supercritical Hopf bifurcation (Stuard-Landau oscillators).

In the complex Ginzburg-Landau equation these local dynamics are coupled

diffusively, however, the local flow field in phase space is spatially uniform and

invariant with respect to the system dynamics (i.e. there is no movement of

equilibria). If we now imagine the time-evolution of a spatially non-uniform

state (e.g. a wave pattern) then all local dynamics will be guided by the

flow field imposed by the Stuard-Landau oscillator. However, neighbouring

points will be shifted in phase and diffusion will try to remove this difference.

Therefore, the actual local trajectories of the spatially extended system will

not be trajectories of the local dynamical system (Stuard-Landau oscillators)

per se, and the stable limit cycle of the local dynamical system will never be

reached (despite being the local attractor). We note this to emphasise that it

is actually not the local attractors which reflect the dynamics of the spatially

extended system, but the flow fields they impose. These flow fields can be

inferred from a linear stability and bifurcation analysis of the local dynamical

system.

With this in mind we can rephrase and specify the idea behind the notion of a

local equilibrium: To infer local attractors from the observed spatiotemporal

dynamics (in our case simulation data) in order to infer the structure of the

local flow field (in local phase space) by computing the position, stability, and

bifurcations of local equilibria as some control variables (local total densities)

are varied.

Therefore, in the case of a reactive membrane coupled to a cytosolic volume,

these local equilibria and attractors have to be defined such as to reflect the

structure of the instantaneous local flow field in local phase space which guides

the dynamics at a given membrane position (x, y, z)|z= 0 at time t. Consider a

(two-dimensional) slice of the box geometry as described in Section III C and

denote the membrane position by x. Since the reactive dynamics at the mem-

brane is coupled to a cytosolic column of height h, one has to specify in the

definition of local equilibria at the membrane (short: local membrane equilib-

ria) how to account for the diffusive dynamics in the extended bulk direction.

At first sight, one might argue that one should (for each membrane position x)

integrate the instantaneous cytosolic densities over the whole cytosolic column

[0, h] , and then compute the local equilibria (at position x) using the thereby
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obtained total masses. Such a definition would, however, in general not be

useful for understanding the local reaction dynamics at the membrane at a

given time t as it includes proteins far away from the membrane that do not

participate in the reactive dynamics at that given time. Those proteins only

have a delayed effect since they need to diffuse to the membrane before they

can participate in any reaction (in addition, these proteins would also spread

laterally).

Aiming for an instantaneous local flow field in local phase space one needs

a definition of local membrane equilibria that only depends on the protein

densities at the membrane. This includes the cytosolic densities at the mem-

brane {ũDD(x, t), ũDT (x, t), ũE(x, t)}, as well as the densities on the membrane

{ud(x, t), ude(x, t)}. Imagine now a situation where at some time t the cytoso-

lic column is in diffusive equilibrium with the membrane (and hence the bulk

profiles are the stationary profiles corresponding to the given protein densities

at the membrane, c.f. Section III B 2). Then, there would be no net protein

flux to and from the membrane due to cytosolic diffusion, i.e. no effect of

the diffusive dynamics in the cytosol on the membrane dynamics. In this case

only a change of the densities at the membrane would induce dynamics in the

cytosol. As a consequence, the structure of the flow field in local phase space

would be completely determined by the densities at the membrane at time

t and invariant with respect to diffusive dynamics in the cytosolic column.

Moreover, the local values of the total mass densities controlling the ensuing

equilibria and their stability would be those contained in the whole cytosolic

column [0, h].

All these statements would remain strictly valid as long as the bulk adiabat-

ically follows the membrane dynamics (which in any realistic scenario is cer-

tainly not the case). However, for defining local membrane equilibria, it is key

to realise that the local flow field which guides the local protein dynamics at

the membrane is not determined by the globally conserved mass densities, but

only by the local values of these mass densities right at the membrane. This

suggests the following definition of a local membrane equilibrium: Given the

protein densities at the membrane at some time t, one constructs the stationary

density profiles in the bulk that correspond to these membrane densities; we

call this an adiabatically extrapolated bulk. This ensures, as we have argued

above, that the ensuing flow fields are independent of the diffusive cytosolic

dynamics far away from the membrane at this particular time t. Hence, the

local flow fields obtained from constructing the adiabatic bulk corresponding

to a given set proteins densities at the membrane have precisely that property

which one expects from a proper notion of local equilibrium: It reflects the
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flow field of the nonlinear dynamics at the membrane at time t.

It is important to realise that the total mass computed with the adiabatic bulk

does not necessarily coincide with the total mass in the actual system, it only

reflects the total mass that affects the nonlinear dynamics at time t. As we

will see below, for the model of the Min system considered in this article the

average mass in the adiabatic bulk does coincide with the actual mass in the

cytosol system. As such, all spatial averages of densities computed with the

adiabatic bulk remain conserved.

Next we will present the detailed computation of local equilibria from the simu-

lations of the model for the Min system. We denote all densities extracted from

simulations by a superscript and positions and times by subscripts unum
i (x, t).

With the total cytosolic MinD density uD =uDD + uDT the stationary bulk

dynamics are obtained by solving the stationary diffusion equation

0 = DD∇2
zuD , (72a)

0 = DE∇2
zuE , (72b)

subject to reflective boundary conditions at the surface z = h

DD∇zuD|z=h = 0 , (73a)

DE∇zuE|z=h = 0 , (73b)

and fixed (Dirichlet) boundary conditions at the membrane

ũD = uD|z=0 = unum
DD (x, t) + unum

DT (x, t) , (74a)

ũE = uE|z=0 = unum
E (x, t) . (74b)

Since the solutions to theses equations are simply constant in space we obtain

for the local total densities, [MinD]num
x,t and [MinE]num

x,t , extracted from the

simulations

[MinD]num
x,t = unum

DD (x, t) + unum
DT (x, t) +

[
unum
d (x, t) + unum

de (x, t)
]
/h , (75)

[MinE]num
x,t = unum

E (x, t) + unum
de (x, t)/h . (76)

The local equilibria are then obtained as shown in Section IV with the local

total densities

[MinD]num
x,t = u∗num

DD + u∗num
DT + (u∗num

d + u∗num
de )/h (77)

[MinE]num
x,t = u∗num

E + u∗num
de /h. (78)
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As discussed above, we note that due to the assumption of an adiabatic bulk

the (lateral) spatial averages denoted by an overbar are not identical in general,

i.e. [MinD]num
x,t 6= [MinD]x and [MinE]num

x,t 6= [MinE]x. However, we find that

the deviation is small and maximal in the turbulent state (h= 20µm):
(

[MinD]num
x,t − [MinD]x

)
/[MinD]x ≤ 0.01 (79)

(
[MinE]num

x,t − [MinE]x

)
/[MinE]x ≤ 0.02. (80)

These error bounds are one order of magnitude smaller for globally coherent

traveling wave pattern observed at h> 33µm. The stability of local equilib-

ria can be computed for the data extracted from simulations at any point x

and time t as shown in Section IV by setting q= 0 and using [MinD]num
x,t and

[MinE]num
x,t as total densities.

B. Control variables Σ and ∆

By our definition control variables are the local values of globally conserved

quantities (total mass densities). We are mainly interested in the local change

of these control variables relative to their globally conserved average. Hence,

we normalise the total mass densities to the global averages

Dx,t = [MinD]num
x,t /[MinD] (81)

Ex,t = [MinE]num
x,t /[MinE]. (82)

Min protein oscillations are driven by the cyclic alternation between MinD

dominance (accumulation at the membrane) and MinE dominance (depletion

of the membrane). This dominance can only alternate by changing local densi-

ties. Therefore, the local ratio of MinE and MinD represents a natural control

parameter for the dynamics, we define

∆x,t = Ex,t/Dx,t (83)

Since the cytosol is adiabatically slaved to the membrane dynamics on average,

i.e.

[MinD]num
x,t ≈ [MinD]x, (84)

[MinE]num
x,t ≈ [MinE]x, (85)
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the values of ∆x,t remain centered around the ratio of the global average

∆0 = Ex,t/Dx,t. (86)

For the second control variable we choose the orthogonal coordinate which is

a measure for the relative change of the joined total mass of MinD and MinE

Σx,t =

√
1

2
(E2

x,t +D2
x,t), (87)

and analogously the global average

Σ0 =

√
1

2
(E2

x,t +D2
x,t). (88)

A representation of the coordinates in control space is shown in Supplementary

Fig. 3.

C. Amplitudes

To simplify summation over components of the species MinD and MinE we

define the index sets for MinD

D = {DD,DT, d, de} (89)

and for MinE

E = {E, de}, (90)

as well as the coefficient

γi =





1/h2 if i ∈ {d, de} (surface densities)

1 if i ∈ {DD,DT,E} (volume densities)
(91)

to homogenise the dimensions.

We define the local amplitude of the pattern Apattern(x, t):

A2
pattern(x, t) =




√∑
i∈D γi (u

num
i − unum

i )2

√∑
i∈D γi (u

num
i )2




2

+




√∑
i∈E γi (u

num
i − unum

i )2

√∑
i∈E γi (u

num
i )2




2

(92)
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the local distance from the local equilibrium Astat(x, t):

A2
stat(x, t) =




√∑
i∈D γi (u

num
i − u∗num

i )2

√∑
i∈D γi (u

∗num
i )2




2

+




√∑
i∈E γi (u

num
i − u∗num

i )2

√∑
i∈E γi (u

∗num
i )2




2

(93)

and the amplitude in control space Acontrol(x, t):

A2
control(x, t) = (Σx,t − 1)2 + (∆x,t − 1)2 . (94)

Note that Σx,t and ∆x,t are defined with respect to the normalised densities D

and E.
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VII. MAINTENANCE OF CHEMICAL TURBULENCE BELOW THE

ONSET OF THE TURING INSTABILITY

To test whether a lateral instability of the spatially uniform state is required

for the maintenance of chemical turbulence we modified the bulk equation of

MinE (Eq. 29c) such that the total MinE density in the system slowly degrades

∂tuE = Dc∇2
cuE − µ−uE . (95)

The degradation rate µ− is set such that the induced gradients of size

`−=
√
Dc/µ− at the membrane are negligible, i.e. h� `− (c.f. section III B 2).

As initial condition for the simulation with slow bulk degradation we import

a numerical solution at a specific time after the system became tubulent. In

this case we picked the time index t= 1.7 · 104 s. With this initial condition

we then start a new simulation with bulk degradation, where we used the

degradation rate µ−= 1 · 10−3 s−1. This choice ensures that the penetration

depth is negligible, i.e. h/`−= 0.08.

We ran this simulation for 1.7 · 103 s after which the total Min density and the

MinE/MinD ratio reduced to the values Σ = 0.96 and ∆ = 0.91, respectively.

Although these values were well below the critical values (Σ,∆) = (1, 1) for

the onset of the lateral instability (c.f. Fig. 2D in the main text), the turbu-

lent state remained phenomenologically unaltered during the whole simulation

time, c.f. Supplementary Fig. 4. This shows that the lateral instability is

subcritical and that linear instability of the uniform state is not required for

chemical turbulence. In other words: The lateral instability is a route to

chemical turbulence, but not the origin.
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VIII. POINT-TO-POINT CORRELATION KYMOGRAPHS

To visually inspect the spatiotemporal dynamics of pattern-forming systems

kymographs of the particle densities are typically used. In the present case the

system size is very large compared to the smallest intrinsic spatial structure

of the pattern (e.g. nonlinear wave profiles), which makes kymographs of the

densities ill-suited for visual inspection. We are mainly concerned with the

distinction between turbulent phases of the dynamics, standing wave patterns,

and travelling wave patterns. In particular, we are interested in transition

between these phases. The structure of the pattern on the smallest length

scales is secondary.

For an oscillatory system, the spatial correlations between histories at different

points in space reveal information about the spatial coherence of the pattern.

We will, therefore, compare the histories of membrane densities at specific

time points t and compute the correlation of spatially nearby membrane sig-

nals. This will yield point-to-point correlation kymographs which are defined as

follows: The spatial domain of length L= 500µm is discretised into bins with

a spatial resolution of ∆x= 0.2µm; the position of these bins reads xi = i∆x

with i an integer. For a given time t, we record at each position xi the mem-

brane signal (here the overall MinD membrane density utot
d :=ud + ude)) over

a time interval T = 10 s with a temporal resolution of ∆t= 1 s

mT
i (t) =

[
utot
d (xi, t− T ), . . . , utot

d (xi, t−∆t), utot
d (xi, t)

]
. (96)

We then, for each time point t, compute the Pearson correlation coefficients

ρ[mT
i (t),mT

i±1(t)] =

〈[
mT
i (t)−

〈
mT
i (t)

〉]
·
[
mT
i±1(t)−

〈
mT
i±1(t)

〉]〉
√〈

[mT
i (t)− 〈mT

i (t)〉]2
〉√〈[

mT
i±1(t)−

〈
mT
i±1

〉
(t)
]2〉

(97)

between membrane signals of neighbouring sites; here 〈·〉 denotes the temporal

mean, i.e. an average over the time sequence. Next, for each point xi in space,

we define what we term local point-to-point correlation

ρTi (t) :=
1

2

(
ρ[mT

i (t),mT
i−1(t) + ρ[mT

i (t),mT
i+1(t)]

)
, (98)

where we assume periodic boundaries. This point-to-point correlations are

then plotted as kymographs; see main text Figs. 3C, 5C, and Supplementary

Fig. 9.

Since ∆x is chosen much smaller that the characteristic length scales of the

pattern, the point-to-point correlation will be typically high, i.e. ρTi ≈ 1. How-

ever, for any wave pattern with standing wave characteristic (which are at least
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transiently maintained on the timescale T ), there will be wave nodes where

the local variation of the signal is small compared to the variation of signals

in the vicinity of the node. Accordingly, at these points the point-to-point

correlation will be very small, i.e. ρTk ≈ 0.

The point-to-point correlations function provides kymographs with a high con-

trast between spatial domains of high and low point-to-point correlations, and

thereby gives high-resolution information on the spatiotemporal evolution of

wave node positions and distances of wave nodes. For instance, standing wave

patterns can be clearly identified by the uniform separation of spatially fixed

wave nodes, c.f. main text Fig. 5 and Supplementary Fig. 9. Bands of travel-

ling waves emitted from a source defect are identified as broad spatial domains

of uniformly high point-to-point correlation which surrounds the two wave

nodes of the source defect (single standing wave), c.f. main text Fig. 5. In the

turbulent regime we observe spontaneous formations of wavefronts at (seem-

ingly) random position, that drift in random directions with randomly varying

velocities, and vanish spontaneously after random times, c.f. main text Fig. 3.

A detailed analysis of the turbulent phase close to the transition to standing

wave order will be made below in the following Supplementary section.
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IX. TRANSITION FROM CHEMICAL TURBULENCE TO GLOB-

ALLY COHERENT STANDING WAVES

In this section we provide the numerical evidence that the transition from

chemical turbulence to coherent standing wave patterns is facilitated by the

activation and interplay of two mutually commensurable modes induced by

the lateral instability.

A. The defect control mode qc

We start the discussion with the role of the defect control mode with wave

vector qc, which is the fastest growing mode within the band of linearly unstable

modes. As described in the main text, its role is the spatiotemporal coordination

of local destabilisation, which results in the timed formation of finite sized and

uniformly separated clusters of oscillatory unstable equilibria.

To test this assertion we traced the temporal evolution of local stability in

our numerical simulations: At every point x on the reactive membrane we

extracted the local protein densities from the numerical data, and computed

the stability of the respective local equilibria as described in the previous

Sections VI A and IV of this Supplementary Material. Since we were primarily

interested in their destabilisation we assigned a binary value to each local

equilibrium, 0 for a stable equilibrium, and 1 for an unstable equilibrium. We

extracted data from our simulations with a spatial resolution of ∆x= 0.4µm

and a temporal resolution of ∆t= 1 s. We ran the simulations sufficiently

long for the dynamics to enter a “stationary” phase, i.e. the spatiotemporal

patterns to remain qualitatively unchanged for a sufficiently long time, here

for about O(102)-O(103) oscillation cycles (i.e. the spatial average of the local

oscillation periods at each point in space x). From this “stationary” window we

extracted the last 500s (T = 500 s) corresponding to about O(101)-O(102) local

cycles. In this extracted window we computed the stability of local equilibria.

Thereby we obtained, for every point x on our spatial grid, a binary sequence

(string of 0s and 1s), s(x) = {si(x)}, of length T/∆t= 500, encoding the time

evolution of local stability change.

If the formation of defects is spatiotemporally coordinated, the local change of

stability must be spatially correlated. To test defect coordination we, therefore,

first computed the Pearson correlation coefficient ρ(x1, x2) := ρ[s(x1), s(x2)]

(c.f. Eq. (97)) for each pair of time sequences at space points x1 and x2

on our spatial grid. We then defined the spatial correlation function C(r)
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characterising the local stability change,

C(r) = ρ(x1, x2)||x1−x2|=r , (99)

where the average is taken over all pairs of space points (x1, x2) with given fixed

distance |x1 − x2|= r. Since we were interested how the spatial correlation of

the local equilibria’s stability depends on the length scale lc = 2π/qc, set by the

fastest growing mode qc, we rescaled the spatial dimension by lc and defined

the dimensionless quantity r̃ := r/lc. To compare the spatial correlation for

different system heights (control parameters) h we fitted an envelope G(r̃) to

all rescaled correlations functions C(r̃),

G(r̃) =
(

1 + r̃/ξ̃
)−2

, (100)

where ξ̃ := ξ/lc serves as a measure for the correlation length in units of lc. The

correlation functions with corresponding envelopes are shown for a large set

of control parameters h in Supplementary Fig. 5. Please note that the wave

length of the fastest growing mode, lc, depends on the value of the control

parameter, here the system height, lc = lc(h).

From these data we make two key observations: (i) First, the correlation func-

tions oscillate spatially with a period set by the wave length of the fastest

growing mode, lc. This shows that local destabilisation of equilibria is con-

trolled by the fastest growing mode qc. (ii) Second, the correlation length ξ is

effectively zero for h≤ 23µm (in the turbulent regime), and increases mono-

tonically to finite values ξ > lc for h≥ 24µm, i.e. as soon as the first mode

qr = 2qc that is commensurable with qc becomes part of the band of unstable

modes and thereby active (Supplementary Fig. 6, c.f. main text Fig. 4D). This

indicates that as soon as it becomes unstable the commensurable mode qr plays

a key role in maintaining controlled local destabilisations at distances lc. We

will discuss this role and its consequences for the spatiotemporal dynamics in

the following section.

B. The mass redistribution mode qr

In the main text we argued that the concurrence of the transition from chemical

turbulence to standing waves with the activation of the commensurable mode

qr is not a coincidence, but that commensurability of qr with the wave vector of

the fastest growing mode qc is in fact the mechanism underlying the emergence

of order. Key to the argument was that the qr-mode is responsible for mass
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transport and determines the positions (distance from the source defect) where

wavefronts are formed that are being send out by the source defects (which, in

turn, are controlled by the qc-mode). As a reminder: Source and sink defects

can only be periodically formed at fixed positions if the mode responsible

for mass transport is commensurable with the mode that coordinates defect

distances (c.f. main text Fig. 4D and the corresponding section in the main

text).

To consolidate this scenario, we inferred the characteristic distances of mass

transport from the simulation data. Since mass transport is responsible for the

destabilisation of local equilibria it must also be the cause for the redistribution

of instability clusters (spatially connected sets of nearby unstable equilibria)

from depleting source defects to nearby (propagating) wavefronts. Therefore,

we can take the distance between instability clusters as a reliable and easyly

accessible measure for the distance of mass transport.

Consider now a standing wave pattern (c.f. main text Fig. 4C,D), and let’s

take a closer look at the distances between instability clusters. From the

wave profiles we infer three distinct distances between instability clusters (,

c.f. Supplementary Figure 7):

(i) First, we observe short distances between shrinking instability clusters,

corresponding to source defects, and instability clusters, belonging to wave-

fronts emitted by source defects. Let us denote this length scale as the source-

wavefront (sw) distance dsw. (ii) Second, we observe large, temporally increas-

ing distances, dw+, that correspond to nearby wavefronts that originated from

the same source and are propagating away from each other. These distances

between instability clusters are found once the source is fully depleted, and all

local equilibria at the source position become stable, such that no instability

clusters are left between the wavefronts emitted by the source. As those wave-

fronts propagate away from each other, dw+ is bound from below by twice the

distance between source and wavefront, 2dsw ≤ dw+. (iii) Third, we observe

intermediate, temporally decreasing distances, dw-, that correspond to wave-

fronts emitted by neighbouring sources, and, therefore, propagate towards each

other. This distance continuously shrinks until the instability clusters (wave-

fronts) merge. Since sources are separated at uniform distances lc, this distance

dw- is bound from above by dw-< lc − 2dsw.

To check whether these distances are characteristic length scales of the spa-

tiotemporal dynamics in the standing wave regime, we computed the statistical

distribution of the distances between instability clusters, dic. These distances

were extracted from the same data as the spatial correlations in the previous

section (i.e. stationary phases of the pattern, T = 500 s, ∆t= 1 s). In the
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standing wave regime (24 µm≤h≤ 32µm), all cluster distance distributions

have a characteristic bimodal shape (Supplementary Fig. 7, c.f. main text

Fig. 4D). Normalising the cluster distances dic to the respective length scale

lr = 2π/qr, set by the commensurable mode qr, shows that the first peak of

the bimodal distribution exhibits a maximum around lr/2, and extends to lr,

while the second peak of the distribution is bound from below by lr.

From the foregoing observation of cluster distances in the standing wave profile

we know that there are two bound distances, dw+ and dw-. The distance

dw-, corresponding to merging wavefronts, is bound from above. Hence, these

distances are entirely accumulated in the first peak of the distribution shown

in Supplementary Fig. 7. On the other hand, the distance dw+ is bound from

below since it corresponds to wavefronts propagating away from each other.

Therefore, the distances dw+ must be entirely accumulated in the second peak

of the cluster distribution. Moreover, since dw+ is bound from below by the

distance of cluster redistribution dsw, i.e. 2dsw≤ dw+, our data reveals that

this bound is set by lr and we can identify dsw≈ lr/2. In other words, the

maximum of the first peak of the cluster distribution accumulates the source-

wavefront distances dsw, and this distance is set by the commensurable mass

redistribution mode qr in the standing wave regime.

Overall, the separation and sharpness of the two peaks in the cluster distance

distribution can be seen as a measure for the precision with which the distance

of mass transport (i.e. redistribution of instability clusters) is controlled. Upon

comparing the instability cluster distance distributions of the standing wave

regime and turbulent phase (e.g. at h= 20µm), the following features become

apparent: In the turbulent phase (i) the distribution becomes much broader,

(ii) the first peak gains weight and its maximum shifts towards zero, (iii)

the separation between the two peaks becomes much weaker, and (iv) the

alignment with the commensurable mode qr is lost in the first peak. Hence, in

the turbulent phase mass transport (redistribution of unstable clusters) takes

place on a broad range of length scales. Strikingly, full separation between both

peaks in the cluster distribution occurs between h= 23µm and h= 24µm, i.e.

right as the commensurable mode qr becomes active (unstable).

Taken together, we conclude that mass transport (redistribution of instability

clusters) is controlled by the active commensurable mode qr, otherwise (when

qr is not active) there is no robust length scale of mass redistribution.
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C. Commensurability and interaction of mass redistribution and defect

coordination modes: Predictions

So far we have made the following key observations when the system height

(control parameter) h is increased above a threshold value h≈ 23.5µm where

an unstable mode qr emerges which is commensurable with the fastest growing

mode qr = 2qc:

• Instead of the (turbulent) pattern we observe spatially coherent standing

waves with a characteristic wavelength set by the fastest growing mode:

lc = 2π/qc.

• Changes in the stability of local equilibria become spatially correlated,

and the corresponding correlation length ξ increases monotonously with

the system height (control parameter) h.

• The correlation function for the stability of local equilibria oscillates

spatially with a period set by the fastest growing mode qc.

• A fixed length scale lr/2 for mass transport (redistribution of instability

clusters) is established by the active (unstable) commensurable mode

qr = 2qc.

In the main text we argued that these observations are caused by the con-

certed interplay between the two commensurable modes qc and qr = 2qc: If

source defects are synchronously formed at a uniform distance, and if the

emission of mass by these source defects (wavefront formation) is symmetric

and synchronised in all directions, then the positions of source and sink defects

are invariant. Based on this mode commensurability mechanism, one can make

predictions for the dynamics in the turbulent phase close to the transition to

the standing wave phase, where defect coordination and mass transport are

almost commensurable. These predictions can then be compared with our

numerical data and provide a critical test for the proposed mode commensu-

rability mechanism for the emergence of standing wave patterns.

Assuming that robust defect coordination and mass transport are indeed

caused by the interaction of the commensurable modes qc and qr, what can

we infer about the phenomenology at the transition? Let us perform the fol-

lowing “Gedankenexperiment” (thought experiment): Assume that the mode

qmax at the outmost right of the band of unstable modes, i.e. the unstable

mode with the shortest wavelength lmin = 2π/qmax, is almost commensurable
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with the fastest growing mode qc such that 2π/(lmin−δ) = 2qc with some small

δ > 0.

Suppose that we align the troughs (the minima of the defect control mode

which represent source defects where mass is redistributed from the minima

to the maxima of the mass redistribution mode, c.f. main text Fig. 4D) of

the modes qc and qmax at some point in space. Henceforth, we will refer to

this point as the interface); see Supp. Fig. 8 for an illustration. Then, at the

right and left nearest neighbouring crests of the control mode (qc), the mass

redistribution mode (qmax) has a phase shift of +δ and −δ with respect to the

control mode, respectively. At the next neighbouring crests, this phase shift is

± 2δ, and it accumulates further as one moves away from the point of alignment

(interface) until it reaches a full period ±2π (phase slip) at some distance from

the interface. Imagine now that an initial state given by a standing wave train

of n wave nodes to the right and left to the interface respectively, and, for

specificity, let’s consider the left hand side of the interface. How does the

concerted action of the control mode and the mass distribution mode now

play out?

While the depleting mass sources, controlled by the qc-mode, are still redis-

tributed by the action of the mass redistribution mode qmax, incommensu-

rability between these modes implies that the left-right symmetry of mass

redistribution is broken within each wave period of the control mode (c.f. Re-

mark [12]). Wavefronts emitted by neighbouring sources do no longer merge

(in a sink defect) in the exact center between the emitting sources, but at

some off-center position which is half-way between the wavefronts at the crest

of the mass-redistribution mode; for an illustration see again Supp. Fig. 8.

We can expect that the phase shift between defect control and mass redis-

tribution modes induces an increasing frustration with the distance from the

interface that will at some point impede the concerted interplay between these

two modes, and that this point will be reached well before the modes get out

of phase at nδ = lc/2. As a consequence, the standing wave will be a finite

wave packet with k � lc/(2δ) nodes. After a half time period of the defect

control mode the phase of the defect control mode will be shifted with respect

to the mass redistribution mode by δ/2 at the position of the first source de-

fect left of the interface, 3δ/2 at the second source defect up to (2k − 1)δ/2

at the k-th defect to the left. Hence, in a band of k wave (space) periods

the phase shift will have increased at each node by δ/2 within a half time

period (source-sink defect cycle), further increasing the frustration caused by

the phase shift throughout the band of k waves. To maintain the wave form

the positions of defects need to shift to the left – along with the controlling
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mode qc. The increased frustration can be removed entirely at one side of the

interface (here the left side) by shifting the defect control mode δ/2 to the

left each half period. Assuming that the phase shift is small enough at the

k-th node to maintain the standing wave pattern, a shift of the defect con-

trol mode by δ to the left per cycle would maintain a constant phase shift at

each wave node, and thereby the pattern. However, this would also shift the

position of the interface by ∼ 2lmin ≈ lc to the left with each cycle, whereas

the wave nodes are only shifted by ∼ δ to the left with each cycle. Given

that δ � lc for weak incommensurability this suggests that with each cycle a

wave node is lost at the right hand side of the pattern as it slips behind the

interface whereas an additional wave node can be maintained at the left hand

side, overall maintaining a band of k wave nodes.

Since we have, for specificity, assumed that mass distribution leads to realign-

ment of the wave nodes for the control and mass distribution mode to the

left of the interface, this concomitantly leads to an increasing misalignment to

the right of the interface, as can be easily inferred from Supp. Fig. 8. The

accumulating phase shift then quickly leads to phase slips at some constant

distance from the interface. As the interface moves, these phase slips should,

therefore, move alongside at a constant distance from the interface. In other

words, while the wave train of k nodes to the left of the interface remains at

some finite length is maintained, the pattern at the right of the interface is

constantly broken up into smaller wave trains by those periodically generated

phase slips.

Since the same arguments apply if we had assumed that the realignment of

the wave combs happens to the right of the interface, one should observe

interface propagation with the features of right and left propagating wave

trains reversed. The choice between left and right will presumably depend on

the history of the system.

Taken together, we predict – based on the hypothesis that order (global co-

herence) emerges due to commensurable mode interaction – the following pre-

cursor phenomena in the turbulent regime close below the threshold to the

standing wave pattern regime:

(1) Alignment between the incommensurable wave modes qr and qc will lead

to interfaces between left and right propagating wave trains. The speed

of these interfaces vI will be of the order of vI ≈ lc/τ , where τ denotes

the period of one oscillation cycle. However, the above line of arguments

suggests that the wave trains on both sides of the interface try to achieve

alignment of the control modes to minimise the frustration caused by the

phase shift on their respective sides. One may, therefore, expect that the
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realignment to the side where the wave train is maintained is hampered

by the realignment the wave trains on the other side try to achieve.

Hence, the estimate of the interface speed, which took only one side

of the interface into consideration, is likely to be an upper bound, i.e.

vI / lc/τ .

(2) In addition, we can also estimate the speed of the propagating train of

standing waves vW to be of the order of vW ' δ/τ , which is the minimal

phase shift per period required to maintain the wave pattern.

(3) The two points above imply that the speed of the interface is much faster

than the speed of the wave train, vI � vW . This means that during each

oscillation cycle the (rightmost) wave at the interface slips behind the

interface, thereby, dropping out of the wave train. At the same time the

phase shift left to the wave train is reduced, enabling an additional wave

node to join the wave train.

(4) The maintenance of wave nodes in the wave train should be more stable

close to the interface where the phase shift between defect control and

mass redistribution mode is minimal.

(5) There will be a preferred formation of extended propagating wave packets

close to one side of the interface, and turbulent-like dynamics at the

other side. More precisely, the wave trains emerging on the other side

of the interface are short because of phase slips induced by the moving

interface. These phase slips should have a constant distance from the

moving interface.

In the following section we will compare these predictions with the simulation

data.

D. Commensurability and interaction of mass redistribution and defect

coordination modes: Comparison with the simulation data

Supplementary Fig. 9 shows the point-to-point correlation kymograph for the

case where qc and qmax are weakly incommensurable (δ/lc = 0.03 for a control

parameter h= 23µm) in the turbulent regime. Indeed, visual inspection of

the kymograph does confirm our predictions: In the observed time window

we find a standing wave train comprising a few (≈ 5± 2) wave nodes drifting

to the left. The right boundary of the wave packet marks a moving interface
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to right moving wave trains. As predicted, the maintenance of drifting wave

nodes is most stable (i.e. the position of the wave node changes continuously

without any interruptions) close to the interface where the phase shifts δ have

not given rise to a phase slip. As soon as phase slips occur (visible as irregular

interruptions of wave nodes) the pattern become more turbulent , such that

the left boundary of the standing wave train cannot be well defined. On the

right hand side of the interface (the right boundary of the standing wave train),

wave nodes mainly drift to the right, but are often interrupted and reformed

at an approximately constant distance nearby the interface.

All these observations are fully consistent with the above predictions based on

our idealised Gedankenexperiment. To test the predictions also quantitatively

we extracted the speed of the interface vI and the speed of few wave trains vW
from the kymograph in Supplementary Fig. 9. We estimated the local oscilla-

tion period τ ≈ 16.67 s by averaging over several local oscillation periods. For

the speed of the interface we find vI ≈ 0.42µm/s < lc/τ ≈ 0.77µm/s, which,

given the idealised nature of our estimate is a surprisingly good agreement

(note that we expected the actual interface speed to be slower due to the in-

fluence of counter-propagating waves). For the speed of wave trains vW we

find values in the range 0.026µm/s − 0.069µm/s, which is also consistent

with our estimate of the lower bound vW & δ/τ ≈ 0.023µm/s. Hence, the spa-

tial structure of the turbulent state closely below threshold is not only fully

consistent with our commensurability mechanism, but it even enables us to

infer qualitative and quantitative details of precursor phenomena close to the

transition from the turbulent to the standing wave phase from the assumption

that order emerges from the control of local stability by two commensurable

modes.

We will next discuss the spatiotemporal dynamics for a control parameter

value, h= 24µm, which is slightly above the threshold for the activation of the

commensurable mode qr. Visual inspection of the point-to-point correlation

kymograph shows that wave nodes are now maintained (in time) throughout

the whole spatial domain. Strikingly, we also observe considerable drift of

wave nodes in some parts of the spatial domain, as well as local defects (phase

slips) of the spatial structure. We can identify interfaces between right- and

left-moving wave trains similar to those found in the turbulent regime (for

the control parameter h= 23µm). In the particular time window shown in

Supp. Fig. 9, there are several locations (interfaces) where the propagation

direction of wave trains change. If this happens, the wave trains start to move

apart from each other. The corresponding kymograph (Supp. Fig. 9) shows

that the distance between the two wave nodes neighbouring the interface on
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the left and right start to increase. However, according to our notion that

the pattern (which is comprises all wave trains) is controlled by two global

(extending through the whole spatial domain) modes qc and qr, c.f. Supp. Fig

8 and main text Fig 4D, the observed divergence of wave nodes cannot proceed.

If we assume that the modes maintain alignment with the wave train in one

direction (say with the right propagating wave train), then the phase difference

with the wave train propagating in the other direction will increase, leading to

a phase slip at some point. In this case both wave trains will merge following

the phase slip and maintain the drift in one direction. Alternatively, if neither

wave train achieves alignment with the control modes, the phase difference

will increase for the wave trains propagating in both directions and both will

undergo a phase slip defect at some point. In this case both wave trains will

also merge following the phase slip. These two possibilities are exactly what we

observe in the kymograph. For both cases we can summarise that the global

dynamics (the pattern) follow the control modes (trying to achieve alignment

with them).

Increasing the control parameter h even further (h≥ 25µm) shows that the

propagation of wave trains is reduced and the point-to-point correlation ky-

mographs show increasing global coherence, which is consistent with the in-

creasing correlation length of local stability change (c.f. Supp. Fig. 6).

E. Commensurability and interaction of mass redistribution and defect

coordination modes: Conclusion and Summary

One main finding of our article is that the relevant part of the pattern forming

dynamics in mass-conserved reaction-diffusion systems is the redistribution of

total mass by unstable modes activated in a lateral instability. We were able

to show analytically that unstable modes always induce a redistribution of

total mass for unequal diffusion constants. Hence, it remained to show that

the redistribution of the total masses of the proteins comprising the biochem-

ical network is the key process underlying pattern forming dynamics. Based

on the assumption that mass redistribution is indeed the key process, we in-

ferred that the concerted action of two mutually commensurable modes qc
and qr = 2qc is responsible for the transition from chemical turbulence to long

range coherent standing wave order. Indeed, the point where the commensu-

rable mode qr = 2qc becomes linearly unstable marks the threshold where the

phenomenology of the spatiotemporal dynamics changes on a qualitative as

well as a quantitative level, gaining characteristic features set by the length
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scales lc and lr:

• The turbulent pattern becomes a standing wave pattern with wavelength

approximately given by lc.

• The change of local stability becomes spatially correlated and the corre-

sponding correlation length increases with the control parameter h.

• The correlation function of local stability change oscillates on a length

scale set by lc which sets the distance separating source/sink defects.

• The redistribution of total mass occurs on a length scale set by lr/2. This

controls the positions where wavefronts emitted by the source defects are

formed (c.f. main text Fig. 4).

In addition the proposed mechanism based on mutually commensurable modes

controlling local stability enabled us to infer the precursor dynamics close to

the transition from turbulence to standing wave order. In particular, we were

able to predict and explain:

• Standing waves trains propagating at a finite velocity vw & δ/τ in dif-

ferent directions.

• Moving domain interfaces (with speed vI . lc/τ) separating the direction

of wave-node propagation.

• A preferred formation of propagating wave trains close to the interface

in one domain and turbulent dynamics (phase slips defects) in the other

domain closely below the transition (weak incommensurability).

• Bands of propagating wave packets that tend to maintain a constant dis-

tance between wave nodes thereby showing short to intermediate range

coherence closely beyond the transition in the standing wave regime

(weak commensurability).

Taken together this presents a large set of independent evidence that strongly

supports the conclusion that the relevant part of the pattern forming dynamics

in mass-conserved reaction-diffusion systems is the redistribution of total mass

by unstable modes activated in a lateral instability. We therefore summarise

that order emerges from the control of local stability.
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X. THE TRANSITION TO LOCAL OSCILLATIONS AND SIMILAR-

ITIES BETWEEN THE MIN SYSTEM AND THE CO–PT SYSTEM

A. The local oscillatory instability is subcritical

To further investigate the local dynamics at the transition to local instability

we consider an isolated cytosolic column, i.e. a one-dimensional column of

length h (representing the bulk height) with reactive boundary conditions (Eq.

31a-31c) at z= 0 and no-flux boundary conditions at z=h (Eq. 32a-32c). The

parameters are identical to those given in Table 1 (for the laterally extended

system), therefore, the steady state coincides with the uniform steady state

in the spatially extended system. As described in Supplementary Section IV,

we perform a linear stability analysis of the steady state by setting q = 0 (the

stability of the membrane point is equivalent to the stability of the extended

membrane against uniform perturbations represented by the zero mode (q =

0)). This reveals that the steady state of this system will become unstable for

h=hLoc ≥ 36.3µm (Supplementary Fig. 10B, c.f. main text Fig. 4B). To test

this stability analyis we performed simulations of the one-dimensional system.

First we used the computed steady states u∗i as initial conditions (c.f. Section

IV), and perturbed the bulk profiles (Eq. 61) spatially with white noise,

ui(z, 0) = u∗i (z) [1 + 0.02Φ(z)] , (101)

where Φ(z), at every point in space z, is drawn from a standard normal distri-

bution (zero mean, and unit (1) variance). We kept the membrane densities

unperturbed to minimise the perturbation of total mass (the bulk perturbation

is zero on average, i.e.
∫ h

0
dz Φ(z) ≈ 0). The simulations precisely confirmed

the critical bulk height for the onset of autonomous oscillations, see Supple-

mentary Fig. 10A. We also observed that the dynamics always enter a large

amplitude limit cycle, regardless of the distance from the bifurcation at hLoc.

Since the amplitude does not vanish as the bifurcation is approached from

above the bifurcation appears to be subcritical.

To consolidate the possible subcriticality of the bifurcation, we ran additional

simulations for bulk heights below the bifurcation, h < hLoc, with initial condi-

tions far from the steady state, specifically with all MinD on the membrane and

all of MinE in the cytosol. Indeed, the simulations (Supplementary Fig. 10C)

confirm that the large amplitude limit cycle exists before the steady state be-

comes unstable, and it can be reached for these particular initial conditions for

h≥ 35µm. Hence, the dynamics indeed show clear signs of excitability. It is
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worth pointing out that we did not find any stable limit cycles for h= 33µm,

i.e. the value where the spatially extended system undergoes a chimera tran-

sition from standing to travelling waves. Intuitively, one might have been

inclined to ascribe the formation of the maintained source emitting travelling

waves to the existence of a large amplitude limit cycle which is then reached

by the pattern forming dynamics at the location of the source. Our results

indicate that this limit cycle does not exist (or cannot be reached easily , i.e.

has a small basin of attraction) for h= 33µm (and our choice of total densities

of MinD and MinE) in the uniform state (which is equivalent to the point

oscillator studied above). In turn, this implies that for the limit cycle to be

created (made reachable) one has to change the total densities locally (here,

by increasing the local MinE/MinD ratio ∆).

B. Are Min protein patterns in-vitro based on the same mechanism as

patterns in vivo?

So far, Min protein patterns in vivo and in-vitro have been unanimously seen

as an example for Turing patterns in a biological system. As a reminder for

the reader: The mechanism for pattern formation found by Alan Turing, and

now commonly referred to as Turing instability, is fundamentally based on the

assumption that local dynamics (i.e. with lateral diffusion turned off) are in a

stable chemical equilibrium. The astonishing discovery that Alan Turing made

was that (lateral) diffusive coupling of these locally stable dynamics can lead

to an instability that induces the formation of a non-uniform pattern form an

initially uniform state. This is surprising and highly counterintuitive because

diffusion is supposed to remove any concentration gradients and not induce

them. In vivo, the assumption of a Turing mechanism for the Min protein

dynamics appears to be justified. Theoretical models [8, 10] have shown that

there is a critical cell length for the onset of pattern formation below which

the system is uniform and stable. Furthermore, in almost two decades of

experimental research on Min protein dynamics there has been (to the best of

our knowledge) not a single report of blinking cells, i.e. cells that show uniform

oscillations without any spatial heterogeneity (of course, this would biologically

be undesired). However, in the case of in-vitro patterns, our analysis suggests

that the Min protein patterns as observed experimentally (travelling waves

and spirals) actually originate from local oscillatory dynamics. Therefore, the

Min system in-vitro represents an example for an oscillatory medium and not

a Turing mechanism. In the classical literature on pattern formation [1, 2, 13],
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the field of oscillatory media is mostly seen as a class of pattern forming systems

that are distinct from Turing systems. It is, therefore, particularly interesting

that the Min proteins are able to generate patterns based on both mechanisms,

only by a change of the system geometry (which is accompanied by a change of

diffusion coefficients and total particle numbers). Investigating the transition

between both mechanisms as control parameters are varied will be a very

interesting future research project.

C. A mechanistic connection between the Min system and the CO–Pt

system?

The heterogeneous catalysis of carbon monoxide oxidation (CO) on platinum

(Pt) crystal lattices has been widely studied for its industrial application, and

for its ability to form oscillatory patterns as spiral waves, standing waves,

target patterns, and a broad range of irregular and chaotic wave phenomena

[14–16]. At first glance, the structure of the reaction network appears to be

very different from the Min system (and most other biological systems). In-

stead being based on the cycling between different states, the dynamics require

a constant supply of CO and O2 which is transferred into CO2, without the

reverse reaction taking place. However, the essential nonlinear process driv-

ing the CO oxidation is the catalytic action of the platinum lattice, which

has a fixed and finite number of binding sites. The importance of this con-

servation law for the oscillatory dynamics has been nicely summarized by G.

Eigenberger[17]:

“The oscillation observed with the CO- and H2-oxidation on plat-

inum however often had the character of relaxation oscillations.

This class of oscillations can be interpreted by the combination

of one storage element with a switching device which changes the

direction of the current to and from the storage.”
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Here storage denotes the dynamical reservoir of free binding sites, and the

switching element the nonlinear kinetics selecting between predominant CO/O2

adsorption and catalytic CO2 desorption. It is important to note that this dis-

cussion addresses the (uniform/local) oscillation of the CO-Pt system, and not

any aspect of pattern formation. To establish a clear conceptual connection

to the in-vitro Min dynamics on the level of local oscillations, let us consider

the dynamics of a point on the membrane in the oscillatory regime h > hLoc

(cf. main text Fig. 4B). In supplementary section VI A we have discussed that

the calculation of the control variable (from which we infer local equilibria)

is based on the adiabatic extrapolation of cytosolic protein densities near the

membrane. This means, that only protein densities that participate in the

nonlinear dynamics at time t contribute to the control variables; cytosolic

densities far away from the membrane do not. We find that once the local

equilibrium undergoes a oscillatory instability, the control variables become

locally oscillatory and we can analyze the local oscillation in the control space

framework (see Supp. Fig. 12). Note that this example emphasizes that the

concept of local equilibrium refers to locality in space and time. Let us have

a look at the trajectory of the local oscillation in its local control space. The

trajectory is centered around the total mass in the system, i.e. as obtained

from bulk integrations instead of adiabatic extrapolation. During the oscilla-

tion, mass is being shuffled to and from this cytosolic storage. Hence, we can

therefore identify it as the storage in the sense of Eigenberger’s interpretation.

The amplitude in control space encodes the fraction of mass which is not

adiabatically slaved to (does participate in) nonlinear dynamics at the mem-

brane point. We can also identify three distinct regimes in control space along

the ∆ axis: For low ∆ (MinD dominance) the cytosolic storage is full. The

dynamics are driven by MinD/MinE accumulation on the membrane, which

depletes the storage. For high ∆ (MinE dominance) the storage is empty.

The dynamics are driven by MinE-catalyzed detachment from the membrane,

which refills the storage. In between these two regimes lies the domain of local

instabilities, which we can interpret as a “switching device which changes the

direction of the current to and from the storage.” This control space picture

reveals the interconnection between switching and storage: The position in

control space, i.e. the momentary level of the storage, regulates the nonlinear

dynamics to and from the storage. This highlights the major concept of our

mass redistribution framework: The local dynamics (in space and time) are

determined by the position of the control variables in control space.

There are several interesting conclusions to be drawn from the preceding dis-

cussion:
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• The generalization of in-vitro Min protein dynamics within the mass re-

distribution framework strongly implies a fundamental mechanistic con-

nection between the Min system and the CO-Pt system. This is partic-

ularly remarkable, as the connection only becomes evident through the

realization that the Min system studied in-vitro is an oscillatory medium

— in contrast to Min dynamics in vivo (cf. supplementary section X B).

Note that this result also directly follows from the control space analy-

sis, i.e. the characterization of local equilibria and their stability through

control variable dynamics.

• The analysis of the local oscillation in its control space characterizes

the local Min oscillation in-vitro as a relaxation oscillation in control

space. The local oscillation is driven by the transfer of mass between the

reactive membrane and a cytosolic storage (non-adiabatic bulk). On the

one hand, this finding emphasizes that bulk dynamics must be explicitly

considered in models of the in-vitro Min system (this question has been

under considerable debate in the literature, see [18]). On the other hand,

it suggests that the bulk coupling in the Min system mainly fulfils the

role of a storage element, which is a generic part of relaxation oscillations

as pointed out by Eigenberger [17]. Note that there is also coupling to

a bulk (the gas phase) in the CO-Pt system. However, in contrast to

the Min system the dynamics in the gas phase can be neglected. Instead

the (slow) restructuring of the finite (conserved) number of lattice sites

serves as the storage element in the CO-Pt system.

• The essential control space variable driving the local Min protein relax-

ation oscillation is the ratio ∆ between MinE and MinD.

• Explicitly mass–conserved models of the CO-Pt system were, to the best

of our knowledge, only studied in context of the uniform oscillation [16],

but not in context of CO pattern formation. Our results show that Min

protein dynamics are capable to generate very similar patterns as the

CO-Pt system, including standing waves and spirals, as well as chem-

ical turbulence. We explained these phenomena by lateral mass redis-

tribution through unstable modes. This lateral mass redistribution re-

quires different diffusion coefficients between the different components of

a conserved species (cf. supplementary section I). In case of the CO-

Pt system, the conserved species is the Pt lattice, its components are

the occupation states (empty, CO occupied, O2 occupied). Since CO is

weakly bound to Pt (compared to O2), it is usually considered as diffus-
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ing component in classical models (cf. [14]), while O2 is considered to

be immobile. Therefore, the generic prerequisites for lateral mass redis-

tribution are given, and an analysis of mass conserved CO-Pt models in

our control space framework could shed new light on the principles and

conditions underlying CO pattern formation on Pt surfaces.
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XI. SUPPLEMENTARY FIGURES

A. Supplementary Figure 1: Lateral instabilities in mass–conserving

two–component systems

A
uniform state locally unstableuniform state locally stable

B

Supp. Fig. 1

A, Exemplary dispersion relations for the situation where the uniform state

is locally stable (σ(2) < 0) and the dispersion is governed by σ
(1)
q (left), and

the situation where the uniform state is locally unstable (σ(2) > 0) such that

this instability governs the dispersion relation. B, Phase-space illustration of

the eigenvectors associated with unstable modes. The eigenvectors associated

with uniform perturbations q = 0 parametrise the line of fixed points e
(1)
q=0 and

the local phase space e
(2)
q=0respectively. The eigenvector of the fastest growing

mode e
(1)
q=qc (assuming local stability, i.e. σ(2) < 0) points away from the line

of fixed points and from the local phase space of the uniform state n, showing

that the lateral instability induces a lateral redistribution of total density.
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B. Supplementary Figure 2: Wave–pinning in the mass–redistribution

framework
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Supp. Fig. 2

A, Phase space illustration of the wave–pinning model (Eq. 18-20, cf. main

text Fig 1B). For Db/Da � 1 (Db → ∞) the system is constrained to a sub-

space b = const. (blue line). The curve shows the line of equilibria (f(a, b) = 0)

and its intersections with the subspace of the pattern mark the local equilibria

(a∗−, b
∗) and (a∗+, b

∗) used in the construction of the polarized state [3, 4]. The

blue highlighted part of the nullcline marks the part where the uniform state is
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laterally unstable (Turing instability). The flow induced by the lateral instabil-

ity is depicted by the blue arrows. B, Dispersion relations for the wave–pinning

model (Eq. 18-20, n = 2.35) for various cytosolic diffusion constants Db. The

data clearly shows that as Db →∞ the fastest growing mode approaches the

zero mode q = 0 but q = 0 remains marginally stable (σ
(1)
q=0 = 0) for any finite

Db. C, Snapshots from the simulation of the wave–pinning model (Eq. 18-20,

n = 2.35) staring with a weakly perturbed uniform steady state. It can be

clearly seen that the lateral instability of the uniform state induces a dynamic

displacement of local equilibria (green dots) which scaffold the spatiotemporal

evolution of the observed pattern (here membrane species a). The final pattern

(t = 200 s) is a diffusive interface spanned between plateaus determined by

the local equilibria a∗− and a∗+.
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C. Supplementary Figure 3: Control space parametrization for the Min

model

Supp. Fig. 3

For the Min model (cf. section III A) the control space is spanned by the

(normalised) total densities of the conserved protein species MinD and MinE.

With respect to this normalisation we consider coordinates given by the sum

Σ and the ratio ∆ of MinE and MinD. The highlighted area (red) shows the

typical range in which the system is found in the simulations.
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D. Supplementary Figure 4: Subcritical turbulence with cytosolic

degradation

A

C

B

lateral instability

local instability

stable

Supp. Fig. 4

Subcritical turbulence with cytosolic degradation. A, Phase diagram of

the control space showing the area where the uniform steady state is unstable

laterally (light grey) and locally (dark grey). The line connecting the red

dots shows the time evolution of the total densities as the system moves from

the laterally unstable domain (t= 0s) into the stable domain (t= 1700s). B,

Wave profiles of the MinD densities on the membrane in the simulation with

slow MinE degradation in the cytosol. The data shows that the patterns is

maintained even if the uniform state is stable. Hence, a lateral instability is

not required to maintain chemical turbulence. C, Distribution of the system

in control space (c.f. main text Fig. 3) as the system moves in the regime

where the uniform state is stable. The data shows that the local dynamics

keep entering and leaving the unstable domain, thereby maintaining chemical

turbulence.

68

Rethinking pattern formation in reaction-diffusion systems:
Moving local equilibria 367



E. Supplementary Figure 5: Spatial correlation of local destabilisation

Supp. Fig. 5: Spatial correlation of local destabilisation.

Table of spatial correlation functions C(r/lc) (blue solid lines) for different

values of the system height (control parameter) h, indicated in the graph, with

the corresponding envelopes G(r/lc) (dashed lines). The figure is split into two

panels, one where the commensurable mode qr = 2qc is inactive (stable) [left],

and the other where it is active (unstable) [right]. The data shows that the

spatial correlation oscillates with a period set by the fastest growing mode

qc = 2π/lc close to the transition.
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F. Supplementary Figure 6: Correlation length dependence on mode

commensurability

Supp. Fig. 6: Correlation length dependence on mode commensurability.

The correlation length ξ as a function of the control parameter h extracted

from the envelope fits G(r/lc) = ((r/lc)/ξ + 1)−2 in Supp. Fig. 5. The data

shows a clear transition at the value of the control parameter h= 23.5µm where

the commensurable mode qr = 2qc becomes active. Beyond the transition the

spatial correlation increases monotonously (linear fit included for convenience).
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G. Supplementary Figure 7: Cluster distance distributions

A

B

Supp. Fig. 7: Cluster distance distributions.

A, Reprint of main text Figure 4 D with the added definitions of cluster

distance length scales dsw, dw+, and dw-.

B, Histograms with the distance-distribution of local instability clusters for

various values of the control parameter h. All distances are rescaled to the

respective length scale set by the commensurable (mass redistribution) mode
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qr = 2π/lr. The bimodal distribution shows a clear separation between both

peaks for values of the control parameter h> 23.5µm where the commensu-

rable mode qr = 2qc is active. In this regime the first peak aligns with the

characteristic distance of mass redistribution lr/2 mediated by the commen-

surable (mass redistribution) mode qr, and the second peak becomes bound

from below by lr.
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H. Supplementary Figure 8: Control mode alignment in the weakly

incommensurable regime

left-shift

left-right interface

right-shift

reduced left-shift

interface shift
control mode shift

increased right-shift

removal of accumulated phase shift induces interface shift

Supp. Fig. 8: Schematic of the precursor phenomenon

At t = 0 s we align the troughs of the weakly incommensurable control modes

qc (red) and qmax (blue) at some point in space. Right and left to this interface

the weak incommensurability causes a phase shift of +δ and −δ of the mass

redistribution mode (qmax) with respect to the defect control mode (qc), which

increases by ±δ with each wave node away from the interface. After a half

temporal period this phase difference has increased by δ/2 at each node to

the right and the left, respectively. This increase increase can only be reduced
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by shifting the defect control mode qc (the unshifted modes are plotted with

dashing for reference). However, as illustrated for t = τ , while this will decrease

the phase shift at one side, it will increase the phase shift at the other side. It

will also lead to movement of the interface by one spatial period per oscillation

cycle, vI ≈ lc/τ .
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I. Supplementary Figure 9: Point-to-point correlation kymographs

Supp. Fig. 9: Point-to-point correlation kymographs.

The kymographs show the point-to-point correlation as defined in the Supple-
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mentary section VIII for increasing values of the control parameter h. The

greyscale reflects the correlation of nearby membrane signals with light val-

ues corresponding to high correlation. We observe chemical turbulence in the

regime where the commensurable mode qr is inactive and the transition to

standing wave patterns once qr is activated (for h> 23.5µm). For h= 23µm

the mode with the smallest wavelength qmax is almost commensurable with

the fastest growing mode qc (phase difference δ/lc = 0.03, c.f. Supplementary

section IX D). As expected we observe the formation of short bands of propa-

gating wave trains (thick red lines) bounded by phase boundaries that separate

predominant phase propagation direction (highlighted by the light red line).
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J. Supplementary Figure 10: The Min point oscillator

A

B C

Supp. Fig. 10: The Min point oscillator.

A, Time evolution of membrane bound MinD (ud + ude) in a one dimensional

system (bulk column with reactive boundary as membrane) starting with a

initial condition in the vicinity of the steady state. The data show exponential

growth for h > 36.2µm as expected from the stability analysis in B. B, The

growth rate Re[σ+
0 ] shows the stability of the uniform steady state against

uniform perturbations (in this case reflecting the stability of steady state in

the 1 dimensional bulk column). C Time evolution of membrane bound MinD

(ud+ude) in a one dimensional system (bulk column with reactive boundary as

membrane) starting with an initial condition where MinD is on the membrane

and MinE is in the cytosol. The data shows stable limit cycles even if the

equilibrium of the system is stable.
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K. Supplementary Figure 11: Supplementary data

A B

Supp. Fig. 11: Supplementary data.

A, Fraction of locally unstable equilibria extracted from simulation for in-

creasing values of the control parameter h. The fraction of local instabil-

ities increases with h and local destabilisation occurs sooner as the regime

of local instability approaches the global average in control space (c.f. main

text Fig. 2D and 4B). B, Distribution of the whole system in control space

(Σ,∆) and corresponding distances to local equilibria Astate(x, t) (c.f. main

text Fig. 3A) for h= 25µm at t= 625s. With the onset of finite spatial correla-

tion the distribution starts to contract towards a circle in control space (Σ,∆).

A single trajectory for a fixed spatial position (x= 28µm, t= 600 . . . 650s) is

highlighted in black.
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L. Supplementary Figure 12: The local Min oscillation in-vitro in con-

trol space - an analogy to the CO-Pt relaxation oscillator
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Supp. Fig. 12: The local Min oscillation in-vitro in control space.

A, The trajectory of an laterally isolated point (cf. Supp. Fig. 8) in control

space (h = 60µm). The local equilibria are computed using the adiabatic ex-

trapolation of the bulk state (cf. section VI A). The point (1, 1) represents the

average total density in the system. The data shows that the oscillation can be

identified as a relaxation oscillation comprising a storage element and a switch-

ing device as heuristically described by G. Eigenberger for the CO-Pt system

[17]. In the MinD and MinE dominant regimes the system approaches sta-

ble local equilibria with high and low membrane densities respectively. These

regimes correspond to distinct values of the control variables. The dynamics

of the control variables represent the periodic filling and draining of the cy-

tosolic storage. The local destabilization acts as a “switching device” between

draining and filling this storage. Hence, the non-adiabatic cytosol in the Min

system has a similar role as the delayed restructuring of the platinum lattice in

the CO-Pt system. B, The local oscillation of the MinD membrane densities

for the data in Supp. Fig. 10A. The blue parts represent the sections of the

trajectory where the local equilibria are stable. Local destabilization acts as

switch (in the sense of Eigenberger) between accumulation and depletion of

the membrane.
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XII. MOVIE CAPTIONS

A. Movie 1: Onset of chemical turbulence

Top: Membrane profile of MinD during the transition from small amplitude

standing waves to chemical turbulence for a control parameter (bulk height)

h = 20µm. (Also, see main text Fig. 3B)

Bottom: Temporal evolution of the system’s distribution in control space cor-

responding to the time step shown in the top wave profiles. (Also, see main

text Fig. 3A)

B. Movie 2: Emergence of standing wave order

Top: Membrane profile of MinD at the onset of standing wave order for a

control parameter (bulk height) h = 25µm. (Also, see main text Fig. 4C)

Bottom: Temporal evolution of the system’s distribution in control space cor-

responding to the time step shown in the top wave profiles. (Also, see Supple-

mentary Fig. 9B)

C. Movie 3: Spiral wave patterns in a 3d box geometry

Spatiotemporal dynamics of membrane bound MinD in the simulation of the

full 3d box geometry for a control parameter (bulk height) h = 100µm.

D. Movie 4: Chimera transition from standing to travelling waves

Top: Membrane profile of MinD during the chimera transition from from stand-

ing to travelling waves (light grey highlighted area) for a control parameter

(bulk height) h = 33µm. (Also, see main text Fig. 5B)

Bottom: Temporal evolution of the system’s distribution in control space cor-
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responding to the time step shown in the top wave profiles. (Also, see main

text Fig. 5E) Data points corresponding to the spatial domain in the grey

highlighted area (in the top wave profile) are plotted opaque to show the con-

traction of the distribution in control space to a well defined cycle.
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Abstract

The dynamics of any physical system are encoded in the (flow) structure of the

system’s phase space. All essential dynamics of a particular system are qualitatively

contained in the phase portrait. Unfortunately, phase portraits can, in general, only

be derived for low dimensional ODE systems. This strongly limits the applicability

of the powerful geometric concepts with which the dynamics of a system can be in-

ferred from the structure phase portraits. Here, we present a systematic theoretical

framework to derive the phase portraits of quantitative reaction-diffusion models

with mass-conserving interactions. This framework is based on the spatial decom-

position of any system into local compartments. The phase space flows of isolated

compartments are determined by the positions and stabilities of local equilibria. In

turn, local equilibria are uniquely determined by the local amounts of the (globally

conserved) total densities n of all protein species in these compartments. The es-

sential effect of diffusive coupling between individual compartments is the lateral

exchange of (globally conserved) total densities which changes the structure of the

local phase spaces. Our key results is that the entire pattern forming process can

be understood in terms of moving local equilibria, i.e. the dynamically changing

structure of local phase spaces caused by lateral diffusive transport. As such, the

phase portrait of the pattern forming system is obtained form the local phase spaces

and the (linear) effect of diffusive coupling.

The geometrization lets us systematically extend a broad range of concepts from

ODE theory (excitability, bifurcations, basins of attraction, nullclines) to pattern

formation in mass-conserving reaction-diffusion systems. This, in turn, leads to

a natural unification of existing pattern forming mechanisms, such as linear (e.g.

Turing) instabilities and excitability. Furthermore, this geometrization approach

reveals that the shape of the line of local equilibria (kinetic nullcline) is the central

geometric object that universally classifies reaction-diffusion models on a mechanistic

level. This classification is based on the topological equivalence classes of kinetic
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nullclines, which is well-established for dynamical systems theory of ODEs.

To demonstrate the utility of our framework, we apply it to a quantitative model

for Min protein patterns in vivo. The Min system regulates cell division in E. Coli

through pole-to-pole oscillations. This lets the Min system appear mechanistically

unique among biological systems with similar function (cell polarity), that are typ-

ically non-oscillatory. The systematic reduction of Min protein dynamics within

our framework reveals that the underlying pattern forming process is intrinsically

non-oscillatory and strictly equivalent to mechanisms underlying non-oscillatory po-

larity patterns in other biological system. MinD generates polarity through phase

separation, whereas MinE takes the role of a control variable regulating the exis-

tence of polarized MinD patterns. Oscillations are facilitated by MinE redistribution

and can be understood mechanistically as relaxation oscillations of the polarization

direction.

Keywords: mass-conserving reaction–diffusion mechanism; pattern formation; geometriza-

tion; topological equivalence; self–organization; Min oscillations; timescale separation;
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INTRODUCTION

Protein pattern formation is essential for spatial organization of many intra-

cellular processes like cell division [1–4] , morphogenesis [5], and flagellum

positioning [6]. The emergence of such function is a remarkable example for

self-organization in real world systems: in the majority of cases any intracellu-

lar spatial structure arises endogenously as a consequence of the interactions

between intracellular biomolecules.

Given this crucial role, it would certainly be desirable to generalize and unify

self-organized pattern formation principles within a rigorous, quantitative the-

oretical framework. But is this a feasible goal? Pattern formation in reaction-

diffusion system has been actively studied by the scientific community over the

past six decades. A succinct review of this field would go beyond the scope of

this introductory section. For the purpose of this article we can summarize that

previous efforts to characterize and generalize pattern formation mechanisms

were either based on a phenomenological analogy between observed patterns

(e.g. amplitude equations, [7, 8]), or the effective molecular interactions (e.g.

activator-inhibitor models, [9]). The amplitude equation formalism [7, 8] is

a perturbative approach to study pattern formation in the weakly nonlinear

regime. It provides a classification scheme based on the linear stability of the

uniform state, and proposes that effective models (amplitude equations) rep-

resent each class, such as the (complex) Swift-Hohenberg equation [7, 8] or the

(complex) Ginzburg-Landau equation [7, 8, 10]. The formalism distinguished

between three different shapes of the dispersion relation, each of which can

be oscillatory or non-oscillatory, giving rise to six distinct classes. This clas-

sification suggests that oscillatory and non-oscillatory instabilities comprise

different pattern forming mechanisms. It is crucial to realize that this formal-

ism is only applicable if the system is close to the onset of the linear instability

(i.e. weakly nonlinear), and the bifurcation is supercritical (i.e. the amplitude

of the pattern is small close to the instability). However, from an evolutionary

perspective it seems implausible that a biological system is close to the insta-

bility that gives rise to its primary function (e.g. forming a pattern) in the first

place — unless the system is excitable. In that case the biological system is

natively in some stable (uniform) base state, and only switches promptly into

a patterned state upon reception of some signal (external or internal perturba-

tion with finite amplitude). This case, however, is at odds with the assumption

of a supercritical bifurcation and rules out a perturbative approach. Hence, it

is implausible that amplitude equations are applicable to biological systems.

Another widespread conceptual approach is that of Turing instabilities. In his
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work [11], Turing used a reaction-diffusion model with two chemical compo-

nents to show that such a system can undergo a lateral instability giving rise

to pattern formation. His findings were later scrutinized by Segel and Jack-

son [12], and the underlying mechanism summarized as short range activation

and long range inhibition. Employing this mechanism Gierer and Meinhardt

[9] presented a class of activator-inhibitor models, and the activator-inhibitor

mechanism and Turing mechanism are nowadays often used synonymously.

This lead to the conception that in order to identify a pattern in a biologi-

cal system as a Turing pattern, one needs to find the corresponding activator

and inhibitor, cf. [13]. For systems with more than two components, as ba-

sically all biological systems are, the roles of activator and inhibitor are often

heuristically assigned to “putative elements” of protein interaction networks

[13]. This heuristic approach stems from the motif paradigm, where systems

are represented by networks of the bio-molecular interactions, see e.g. [14].

However, the motif representation lacks any information about the parame-

ters and diffusive coupling characterizing the (nonlinear) system. As such it

is hardly surprising that motifs cannot be mapped uniquely to patterns, nor

can patterns be uniquely mapped to motifs. For instance, the same interac-

tion network for Min protein patterns can give rise to a multitude of different

patterns, depending on system parameters[15–17], and the same pattern can

be reproduce by a multitude of interaction networks [18, 19].

In these cases a strict identification with the actual activator-inhibitor mech-

anism as summarized by Segel and Jackson [12] is usually impossible, leaving

the underlying mechanism elusive. However, there is no a priori reason that

the activator-inhibitor mechanism should represent the general physical prin-

ciple underlying Turing instabilities. Rather, the major issue appears to be

that it is still unclear on which conceptual level the dynamics of self-organized

pattern formation can be understood systematically in the physically most

general terms. Addressing this issue is the goal of this article.

In physics the broadest and most general conceptual level to study dynamics

is the level of phase space [20]. Each point in phase space represents a state

of the system, and flow in phase space encodes the dynamics of state changes.

For low dimensional ODE systems it is often possible to extrapolate the struc-

ture (topology) of the flow in a phase portrait from the properties (positions

and stabilities) of the system’s equilibria. This powerful geometric approach

was fist introduced by Poincaré [20], and is now a centerpiece of Nonlinear

Dynamics Theory [21, 22]. In the best case it provides full knowledge about

the qualitative dynamics of a system without solving the underlying equations

(which is often not possible in the fist place). One of the most use full concepts
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from this geometric approach is topological equivalence, see e.g. [22]. Two sys-

tems are equivalent if their phase portraits can be continuously deformed into

each other. To enable a systematic classification and unification of pattern

forming mechanisms our aim is to develop an analogous concept for reaction-

diffusion systems. A similar approach can be found in the theory of excitable

media, where nullcline of the system are used to construct specific patterns

(waves, pulses, fronts) based on the nullcline-structure [8, 22]. However, this

framework strictly requires equal diffusion coefficients and a timescale separa-

tion of the reactive dynamics. As such, is not applicable to biological systems

in general. Moreover, excitability strictly exclude all cases where the (uni-

form) base state of the system is laterally unstable, e.g. Turing unstable. A

prominent example where excitability has been applied is cell polarity. Here

the wave–pinning mechanism has been proposed as alternative to the Turing

mechanisms [23, 24]. However, several commenters raised doubt that wave–

pinning and Turing instabilities are indeed distinct mechanisms [18, 19, 25],

but the exact connection remains unknown.

In this article we exploit the fact that protein dynamics are in general confor-

mational state changes — the interactions driving the pattern forming process

are mass-conserving. In a mass-conserving system the average total densi-

ties of all interacting protein species are control parameters for the pattern

forming dynamics. It has recently been shown that pattern formation in mass-

conserving systems is based on the lateral redistribution of the total densities

[25]. Therefore, pattern formation can be understood by decomposing the

system spatially into local (i.e. well-mixed) compartments containing variable

amounts of local total densities, cf. [25]: The dynamically changing positions

and stabilities of the local chemical equilibria of each compartment are uniquely

determined by the local total densities, and any dynamical state of the system

is scaffolded by these local equilibria. The local phase spaces of these com-

partments are low dimensional, and one can easily extrapolate the local phase

portrait. The essential degrees of freedom of the pattern forming process are

the total densities, spanning the control space of the system. In this article we

combine the action of the local reactive dynamics with the diffusive dynamics

to systematically construct phase portraits in the joint phase space spanned

by the control space and the local phase spaces of the pattern forming system.

This geometrization reveals general principles for lateral instability (“Turing

instability”) and lateral excitability and enables us to transfer the classifica-

tion via topological equivalence to pattern forming systems. Further we find

geometric criteria for the properties, bifurcations, and basins of attraction of

stationary polarity patterns. While these results are discussed in context of
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cell polarity models (e.g. wave–pinning [23]), the underlying principles are

based on the properties of local equilibria alone, and are therefore indepen-

dent of specific molecular interactions (e.g. as activator-inhibitor models [9]).

The central geometric object classifying the pattern and the pattern forming

process is the line of local equilibria (kinetic nullcline).

The key insight of the mass-redistribution framework is that pattern formation

is a consequence of lateral redistribution of total densities. This suggests a

systematic reduction scheme for multi-species reaction-diffusion models. Even

if multiple protein species participate in the interactions, not all of them need

to be necessarily redistributed to give rise to self-organized pattern formation.

In any model, lateral redistribution of total densities can easily be turned off

by setting the diffusion coefficients of entire protein species to zero. We use

this idea to study a quantitative model for in vivo Min protein oscillations.

The biological function of Min proteins is to inhibit the assembly of the

cell division machinery at the cell poles, thereby guiding assembly to mid-

cell[1, 4, 26]. The Min system achieves this task by forming polarized patterns

on the cell membrane that oscillate between both cell poles. In other biolog-

ical systems cell division is ubiquitously regulated by non-oscillatory polarity

patterns, and so far, there is no good explanation why it is mediated by oscil-

latory dynamics in E. Coli. Biochemically, Min protein dynamics are based on

generic cooperative interactions similar to many non-oscillatory systems: The

ATPase MinD drives the accumulation of itself and its AAP (ATPase activat-

ing protein) MinE on the membrane, while MinE drives itself and MinD off

the membrane into the cytosol, cf. [26].

To gain a better understanding of the mechanism underlying Min protein dy-

namics we put the model to scrutiny by separating the effects of diffusive mass

transport of MinD and MinE, respectively. Strikingly, this approach reveals

that the fundamental mechanisms for pattern formation in the Min systems is

only based on MinD transport and generically non-oscillatory. In fact, our ap-

proach reveals that the Min system is topologically equivalent to cell polarity

system. MinE transport is not involved in pattern formation, but regulates the

shape and existence of both possible polarized states. The oscillatory dynam-

ics are induced by the periodic loss of MinD polarity in one cell half that forces

the system to switch to the opposite polarized state. Through the employed

reduction scheme we were further able to map the Min system to a generic re-

laxation oscillation dynamics. Hence, the separation of the Min system into its

fundamental mechanisms rigorously reveals unambiguous analogies to other bi-

ological system. This shows that mass–conserved dynamics are a proper basis

to generalize reaction-diffusion systems within a unified framework.

7
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RESULTS PART I — TRANSFERRING ODE GEOMETRIZATION TO

SPATIALLY EXTENDED SYSTEMS

In their simplest form, cell-polarization models involve a single protein species

that can cycle between a cytosolic (c, fast diffusing) and a membrane bound

(m, slowly diffusing) state via some nonlinear attachment–detachment kinetics

f(m, c). If geometry sensing is of no concern, the cell can be assumed as a one

dimensional line of length L with reflective boundaries at x = 0, L. Accordingly

the dynamics of the concentration profiles m(x, t) and c(x, t) are given by

∂tm = Dm∇2
xm+ f(m, c), (1)

∂tc = Dc∇2
xc− f(m, c), (2)

where the global total density n0

∫ L

0

dx m(x, t) + c(x, t) = L · n0 (3)

is conserved. Our goal is to find the relevant concepts and principles that

allow us to characterize pattern formation of systems of this form. In the lit-

erature, a characterization of pattern formation is usually sought by means of

network/circuit diagrams representing the kinetic interactions f(m, c). ODE

geometrization is based on geometric structures (nullclines, fixed points, invari-

ant manifolds) in the phase space of the dynamics, i.e. the space of the dynamic

variables [8, 21, 22]. The dynamics due to kinetic interactions of two chemical

states — with respective densities m and c — take place in (m, c)-phase space

(see Fig. 1a). The kinetic interactions (conversion from m to c and vice versa)

are balanced along the line of chemical equilibria f(m, c) = 0 (also called ki-

netic nullcline). When the kinetic interactions are not balanced, there will be

a net reactive flow from one conformational state into the other, until a stable

chemical equilibrium is restored. Since the kinetic interactions conserve mass,

this reactive flow is restricted to the reactive phase space m + c = n = const.

The total density (mass) n determines the position of the phase space and

is thereby a parameter of the reactive flow (see Fig. 1a). In particular, the

chemical equilibria are determined by

(m∗, c∗) : f(m∗, c∗) = 0 and m∗ + c∗ = n, (4)

i.e. the intersections of the line of chemical equilibria and the reactive phase

space. This allows us to geometrically characterize the reactive flow (reac-

tive phase portrait) using the reactive phase spaces and the line of chemical

equilibria (kinetic nullcline).

8

Geometrization of pattern formation:
From quantitative models to the identification of self-organization mechanisms 391



By varying the total density — hence shifting the reactive phase space respec-

tively — we can construct a diagram of the chemical equilibria in dependence

of the total density (bifurcation structure, see Fig. 1b). As the reactive flow is

directed towards stable chemical equilibria and away from unstable equilibria,

the reactive phase portrait can be extrapolated from the properties (position

and stability) of local equilibria. (cf. Fig. 1a). Moreover, in the vicinity of the

line of equilibria (m∗(n), c∗(n)), the reactive flow can be approximated by the

eigenvalue σloc(n) of the local equilibrium (linearization in local phase space):

f(m, c) ≈ σloc(n) ·
(
m−m∗(n)

)
= σloc(n) ·

(
c− c∗(n)

)
(5)

This equation concisely summarizes the two central elements of nonlinear ODE

geometrization: fixed points (equilibria) and their linear stability. Together

they can be used to approximate the structure of the flow field in phase space.

We will later use that structure to understand the core self-organization princi-

ples of pattern formation in mass-conserving systems. But first we characterize

stationary patterns in the mass-redistribution framework.

Stationary patterns lie in a flux-balance subspace of phase space

To extend the above geometrization approach of the kinetic interactions to

a spatially extended system we have to understand the role of the diffusive

coupling. Let us start our analysis of spatially extended systems by studying

a stationary pattern profile obtained in numerical simulations of a pattern

forming system of form Eqs. (1,2), e.g. the “wave–pinning” model by Mori et

al. [23, 24].

Consider a steady state of Eqs. (1,2), i.e. a stationary pattern m̃(x), c̃(x) (see

Fig. 2a) — solution to the PDE system

Dm∇2
xm̃+ f(m̃, c̃) = 0, (6)

Dc∇2
x c̃ − f(m̃, c̃) = 0. (7)

Comparing these equations with Eq. (4) reveals that the stationary pattern

only deviates from reactive equilibria due to the local change of diffusive flux

Dm∇2
xm̃(x) and Dc∇2

x c̃(x). Note that for any steady state (stationary pattern)

the diffusive fluxes of m and c have to balance everywhere

Dm∇xm̃(x) = −Dc∇xc̃(x) ∀x, (8)

9
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as obtained by adding both steady state Eqs. (6,7) and integrating over x.

Integrating this pointwise flux-balance over the whole spatial domain yields

that any stationary pattern fulfills the linear relation

Dm/Dcm̃(x) + c̃(x) = η0 = const. ∀x. (9)

where η0 is the integration constant. In the (m, c)-phase space any spatial den-

sity profile is a curve parametrized by x. Equation (9) implies that any station-

ary pattern confined to a linear subspace of the (m, c)-phase space (see Fig. 2b).

We shall call this subspace the flux-balance subspace, since it represents the

pointwise balance of diffusive fluxes in membrane and cytosol (Eq. (8)). The

intercept η0 is not a priori known. We will later see that a balance of reactive

processes determines the value η0 in dependence of global total density n0 and

system size L, i.e. η0 = η0(n0, L). The slope −Dm/Dc of the flux-balance

subspace is uniquely determined by the diffusion constants. Consequentially,

whenever the diffusion constants Dm and Dc are unequal, the flux-balance

subspace cannot coincide with any reactive phase space (which has slope −1).

Hence, any stationary pattern (non-uniform m̃(x)) must have a non-uniform

total density profile nx = m̃(x) + c̃(x). Therefore, the local total densities nx
determine the local (reactive) phase spaces of the spatially extended system,

which we will next use to characterize the stationary pattern.

Stationary patterns are scaffolded by local equilibria

We now will use this non-uniform total density profile nx to find the relation

between the stationary pattern and the kinetic nullcline. Consider the system

spatially dissected into local compartments, an approach first put forward in

[turbulence paper]. Within each compartment local kinetic interactions induce

a reactive flow f(m, c) that lies in the local phase space m + c = nx which is

determined by the local mass nx. The local (chemical) equilibria, where the

kinetic interactions within a compartment balance, depend on the total density

nx in the compartment:

(m∗x, c
∗
x) : f(m∗x, c

∗
x) = 0 for m∗x + c∗x = nx. (10)

Hence, given a mass distribution nx we can calculate the local chemical equi-

libria (and their stability) within each compartment. These equilibria and

their linear stability then serve as proxies for the local reactive flow (as in our

discussion of the well-mixed system in the previous section; cf. Eq. (5)). The
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compartmentalization extends the geometrization of the local kinetic interac-

tions to the spatially extended system.

In summary, we have established three major geometric structures in (m, c)-

phase space: First, the line of chemical equilibria f(m, c) = 0 along which

the local kinetic interactions are balanced; second, the local phase spaces m+

c = nx determined by the local total densities nx — local equilibria (m∗x, c
∗
x)

are intersections of the kinetic nullcline and the local phase space; third, the

family of flux-balance subspaces, within which diffusive flows in membrane

and cytosol balance each other. The flux-balance subspaces hence represent

diffusive coupling, which is — as we shall see below — essential to understand

pattern formation. As Eq. (9) shows, the stationary pattern state (m̃(x), c̃(x))

is embedded in a flux-balance subspace with a particular intercept η0, which

is determined by a balance of reactive processes as we will see later. Note that

during the dynamic pattern formation process mass will be redistributed until

the flux-balance is established (e.g. as the system becomes stationary).

A note on diffusion constants In the following we will only discuss the case

Dm � Dc, so that we can neglect the non-constant term in Eq. (9) and

approximate c̃(x) ≈ c0 = η0(n, L) ∀x. Importantly, c0 is not a parameter:

instead it is determined by the balance of reactive flows, as we will se later,

and depends on the parameters n and L in addition to the kinetic rates. When

considering not stationary states but dynamics, e.g. linear stability, both limits

Dm → 0 and Dc → ∞ are pathological regarding the interpretation of the

dispersion relation (cf. [19, 25]). In the Supplementary Material we show

that all results of the following analysis can be simply extended to cases with

arbitrary ratios Dm/Dc > 1. In essence, we can transform the phase space

coordinates to coordinates that parametrize the dynamics within the flux-

balance subspace, φ = m+Dm/Dc c, and the respective orthogonal complement

η = c − Dm/Dcm. All geometric relations which are below worked out in

(m, c)-phase space for the case Dm � Dc hold generally in (φ, η)-phase space

for arbitrary diffusion constants.

The shape of the kinetic nullcline characterizes the stationary pattern

To understand the self-organization principle underlying pattern formation we

need to understand the mechanism that induces mass redistribution. But first,

we will discuss how qualitative properties of the stationary pattern (profiles)

can be deduced from the geometrization.

Any stationary pattern must fulfill the stationarity condition Eq. (6) at every

11
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point in space. We already discussed above that this condition contains two

parts: the spatial change of diffusive flux and reactive flow. Both need to be

balanced at every point in space. Flux-balance (Eq. (8)) ensures that if this

balance is established for one diffusive component, it holds for all components.

We can therefore restrict the discussion to the membrane density m alone. Let

us start by considering points where the diffusive flux Dm∇xm̃(x) does not

vary between neighboring compartments, i.e. ∇2
xm̃(x) = 0. At these points

the stationary pattern must coincide with a local equilibrium (cf. Eq (6)).

In (m, c)-phase space, these points are marked by intersections of the flux-

balance subspace with the kinetic nullcline. For a pattern composed of two

plateaus, connected by a diffusive interface (see Fig. 2), there are three such

intersection points: the plateaus (m−, c0) and (m+, c0), where the gradient of

the density profiles vanish in extended regions — as well as the inflection point

m0 = m̃(x0) where the the diffusive flux is locally constant:

x0 : ∇2
xm̃(x0) = 0 ⇔ f

(
m̃(x0), c̃(x0)

)
= 0 (11)

The inflection point x0 marks the center of the diffusive interface of a pattern.

Due to the density gradient at the inflection point x0, there will be a diffusive

flux across x0. This diffusive flux must be balanced by all reactive flows f(m, c)

on either side of the interface (illustrated by the red arrows and shaded areas

in Fig. 2). Integrating Eq. (6) multiplied by the local flux ∂xm(x) from the

boundaries to the interface x0 yields the diffusive flux across the interface

Dm∇xm̃
∣∣
x0

=

∫ x0

0

dx f
(
m̃(x), c0

)
(12)

= −
∫ L

x0

dx f
(
m̃(x), c0

)
(13)

The reactive flow integrated over space (reactive turnover) on either side of the

interface has to exactly balance the diffusive flux across it. This flux–turnover

balance is the core physical criterium that determines the stationary pattern:

The spatially non-uniform local equilibria scaffold the stationary pattern by

means of “restoring forces” towards the (stable) local equilibria which maintain

the pattern by balancing against the diffusive flux. In the vicinity of the local

equilibria m∗x, the reactive flow (“restoring force”) can be approximated by the

eigenvalue σloc
x of the local equilibrium (linearization in local phase space, cf.

Eq. (5)):

f
(
m(x), c(x)

)
≈ σloc

x ·
(
m(x)−m∗x

)
(14)

The shape of the nullcline determines how the local equilibria shift due to mass

redistribution. Therefore we classify the possible patterns of two-component
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systems based on the topological equivalence classes of kinetic nullcline and the

flux-balance subspace (Fig. 3). First of all, plateaus are not necessary to obtain

a stationary pattern. Instead, diffusive flux and reactive turnover can balance

before the flow vanishes at local equilibria (Fig. 3a). This can happen, for

instance, in a short system where only one discrete harmonic (eigen-)mode is

unstable and the diffusive flux across the interface is confined to grow linearly

with the pattern amplitude. The system assumes plateaus only where the

local equilibria are reached in spatially extended parts of the system (regions),

such that diffusive gradients have to vanish, cf. Eq. (6). When this happens

only on one side of the interface (i.e. inflection point) only one plateau forms

and the interface takes on the role of a peak (Fig. 3b). The turnover on

the plateau side is bounded determining the peak amplitude via flux–turnover

balance. When mass is added (i.e. n0 increased) to a peak pattern, it cannot

go into the cytosol, since this would shift the flux-balance subspace upwards

breaking flux-turnover balance. Inescapably, the additional mass goes into

the peak, which grows in hight and width, while the flux–balance subspace

moves must move to lower c0, to restore flux-turnover balance by increasing

the turnover on the plateau side. Peak patterns are typically observed in cell-

polarization systems such as the Cdc42 system of budding and fission yeast.

Plateau patterns are formed when local equilibria are reached on both sides of

the inflection point (Fig. 3c). Adding mass to such a system shifts the interface

in space without significant change of amplitude and c0. We will make use of

this property later to analyze the bifurcations of plateau patterns with respect

to the average total density n0.

A mathematical trick allows us to formulate flux–turnover balance without

knowledge of the explicit shape of the stationary profile m̃(x): If we multiply

Eq. (6) by the local flux ∂xm(x) before integrating, we can reparametrize the

integration to obtain

Dm/2
(
∇xm̃

∣∣
x0

)2
=

∫ m0

m̃(0)

dmf(m, c0) (15)

= −
∫ m̃(L)

m0

dmf(m, c0), (16)

which only depends on the boundary values m̃(0) and m̃(L) of the membrane

density. This formulation of flux–turnover balance is useful to easily obtain

quantitative properties (amplitude |m̃(L)−m̃(0)| and interface slope m̃′(x0) =

∇xm̃|x0) of stationary patterns without the need to perform full numerical

simulations. In the case of plateau patterns, the boundary values of m̃(x) are

given by the plateau densities which are marked by the intersections of flux-
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balance subspace and kinetic nullcline. We will later use this to geometrically

construct the bifurcation structure of plateau patterns.

Turing instability is a mass-redistribution instability

The thorough analysis of stationary polarity patterns provided us the tools

and intuition to now finally turn to the dynamic mechanism of self-organized

pattern formation. Essentially we need to understand how the system is driven

into a nonuniform total density distribution governing a polarity pattern. As

we will see, this redistribution can either occur endogenously due to lateral

mass-redistribution instability of a uniform steady state or due to a strong

external perturbation. These cases represent the two generic classes by which

state changes of dynamical systems are characterized: linear instability and

excitability.

Let us start with the first case, the response (linear stability) of a system in a

spatially uniform chemical equilibrium (uniform steady state) to a small spa-

tial perturbation of the membrane density δm(x). This spatial perturbation

will always perturb the total density distribution nx = n0 +δn(x). Consequen-

tially the local equilibria (m∗x, c
∗
x) will be shifted. This shift of local equilibria

builds up spatial gradients in the cytosolic density c(x) = c0 + δc(x). Due

to the fast cytosolic diffusion, gradients in the cytosolic density induce a flux

Dc∂xδc(x), which will redistribute total density. This the most central process

of self-organized pattern formation: The direction of the cytosolic flux decides

the fate of the further dynamics. If the slope of the kinetic nullcline is posi-

tive, compartments with more total density will have higher cytosolic density

(see Fig. 4), so the flux will homogenize the non-uniform total density redis-

tribution and the system returns to its uniform steady state. If however, the

slope of the kinetic nullcline is negative, even more mass will be redistributed

into compartments that have higher total density, further shifting the local

equilibria and in turn increasing the diffusive flux. This cascade of shifting lo-

cal equilibria and mass-redistribution via cytosolic flows will drive the system

away from the uniform steady state and into a pattern state, which becomes

stationary when flux–turnover balance is re-established.

We have revealed how the slope of the kinetic nullcline — a purely geometric

criterion — determines the existence of mass-redistribution instability. This

can be viewed as a topological equivalence class (see below for a mechanical

system that has the same type of instability). In the case Dm � Dc, which

we discussed above, a negative slope of the kinetic nullcline at the uniform
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steady state ((m∗(n0), c∗(n0))) marks lateral instability. In the general case

of arbitrary diffusion constants one has to compare the slope of the kinetic

nullcline ∂mc
∗|m∗ with the slope of the flux-balance subspace −Dm/Dc and the

criterion for mass-redistribution instability becomes ∂mc
∗|m∗ < −Dm/Dc (see

Supplementary Material). This geometric criterion implies that bifurcations

where a uniform steady state changes its lateral stability are marked by changes

of the geometric structure of the kinetic nullcline as it deforms under changes

of the kinetic parameters.

The cascade of shifting local equilibria due to cytosolic diffusive transport is

the general principle underlying the Turing instability. Form the physical point

of view this instability was always considered at odds with the central physi-

cal property of diffusion, which is the removal of any gradients, seemingly the

exact opposite of pattern formation. Here we clearly see that the fundamen-

tal physical principle underlying pattern formation is exactly the removal of

gradients by lateral transport of total density.

Cytosolic diffusion facilitates mass redistribution and hence is the essential

driver of lateral mass-redistribution instability, which is the generalization of

Turing instability. Membrane diffusion on the other hand counteracts the

growth of perturbation and acts against the reactive flow towards the shifted

local equilibria. This also naturally explains why Turing instability, and mass-

redistribution instabilities in general, are based on different diffusion coeffi-

cients. Yet, in contrast to the activator-inhibitor paradigm, no finite slow

diffusion is required, the pattern forming process is entirely based on the lat-

eral redistribution of the fast diffusing component.

The diffusive flux of the membrane component depends on the length scale of

the perturbation. The minimal length scale where both processes exactly bal-

ance is determined by flux–turnover balance. By putting a the harmonic mode

ansatz m(x) = m0 + δm cos(πx/L) into the flux–turnover balance condition

(12) we naturally obtain the minimal system length Lmin = π
√
Dm/fm for the

length scale of neutral lateral (in-)stability (in the approximation Dm � Dc)

. In the dispersion relation this length scale is marked by the right edge of

the band of unstable modes qmax = π/Lmin (see Supplement Material for a de-

tailed discussion of the dispersion relation in the context of mass redistribution

instability and a comparison to the classical picture of short range activation

and long range inhibition).
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Subcritical patterns: lateral excitability and regional lateral instability

To address the question of excitability let us consider a system that exhibits

plateau patterns when the length L is much larger than the interface width (e.g.

the “wave–pinning” model used by Edelstein-Keshet et al., see Supplementary

Material for details and the parameters used). As discussed above, the plateau

values of m(x) can be approximated by the local equilibria

m±(c0) : f(m±, c0) = 0 (17)

The intercept c∞0 is then uniquely determined by the condition that the total

reactive turnover has to vanish

c∞0 :

∫ m+

m−

dmf(m, c∞0 ) = 0. (18)

Hence, plateau patterns are uniquely determined simply by global turnover

balance (Eq. (18)), which determines the position of the flux-balance subspace

c∞0 and thereby the plateau densities m±(c∞0 ). Additionally, flux–turnover

balance yields the interface properties (e.g. slope and width) via Eq. (15).

Using the uniquely determined flux-balance subspace position c∞0 , we can now

geometrically construct the range of average total densities n0 for which sta-

tionary patterns exist. Two geometric conditions determine this range: First,

the center of mass in (m, c)-phase space always lies in the 1-simplex m+c = n0.

Second, the center of mass has to lie in the flux-balance subspace determined

by η∞0 . In particular it can only lie in-between the plateau values m−(c∞0 ) and

m+(c∞0 ) (see Fig. 5). Therefore, patterns exist only in the range

m−(c∞0 ) + c∞0 =: n−exc < n0 < n+
exc := m+(c∞0 ) + c∞0 . (19)

Note that these bounds on n0 equal the total densities in the plateau regions of

a system much longer than the interface width, where the reactive turnover sat-

urates at the intersection points of flux-balance subspace and kinetic nullcline.

Only if the average total density n0 lies between these plateaus a polarized

pattern can be formed.

As Fig. 5 clearly shows, patterns exist even if the uniform steady state is lat-

erally stable. In fact, the possibility of a subcritical lateral Turing bifurcation

has been suggested as cause for wave-pinning by Goryachev and Leda [18].

Other than in the vicinity of supercritical bifurcations, the pattern properties

are apparently not determined by the lateral stability spectrum, i.e. dispersion

relation, of the uniform steady state. This raises two questions: First, what
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is the threshold (pattern) that separates basins of attraction of the uniform

steady state and the polarized pattern? And second, what is the role of the

lateral (mass-redistribution) instability for the properties of plateau patterns?

To answer the first question, we need to find out what kind of (non-uniform)

perturbation is necessary to drive a subcritical system from the uniform state

into the polarized pattern. We learned that a non-uniform distribution of to-

tal density (local equilibria) is the core characteristic of stationary patterns.

Hence, a perturbation that leads into a polarized pattern must redistribute

mass in such a way, that the reactive turnover and diffusive flux induced by

the perturbation drive the system away from the uniform state . The in-

duced reactive turnover is the “driving force”, whereas the diffusive flux acts

as “restoring force”. From the previous discussions we know that the diffu-

sive flux balances the reactive flow locally proportional to Dm∇2
xm̃(x) and

Dc∇2
x c̃(x), respectively (cf. Eq. (6) and (7)). Hence, the diffusive “restoring

force” will only act in regions where the density gradients are not constant.

This is clearly the case for plateau shaped perturbations. Let us therefore

study the simplest spatial perturbation with that property: a step function

which represents moving a “block” of mass (total density) from one end of the

system to the other (see Fig. 6). Cytosolic perturbations quickly equilibrate

back to a uniform profile, so we only consider a perturbation of the membrane

density. The reactive flow induced by the perturbation in the plateau region

must point away from the uniform state, and must be strong enough to dom-

inate the diffusive flux of the membrane species induced at the “interface” of

the plateau shaped perturbation. The reactive flow always points towards the

stable local equilibria and thus switches its direction upon crossing the line of

chemical equilibria. Crossing the kinetic nullcline in m-direction yields a lower

bound for the threshold mth. Strikingly, this simple criterion already provides

a very good approximation for the excitability threshold in comparison to full

numerical simulation (see Supplementary Figure 3). Again, as in the analysis

of lateral mass-redistribution instability, we found that the kinetic nullcline,

in particular its slope, provides the key information for understanding pattern

formation dynamics.

Beyond bifurcations at n±exc where stationary patterns disappear, we find that

perturbations can still lead to an excursion through a transient pattern, which

mimics an actual stationary pattern, before returning to the uniform steady

state. These excursions are typical for excitable systems in the vicinity of

bifurcations where new attractors appear.

All results so far were based on the decomposition of spatially extended systems

into isolated local compartments [25]. These compartments were assumed to
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be so small that they can be considered well-mixed. That allowed us to apply

the geometry ODE picture to the spatially extended system. Our discussion

of plateaus and lateral excitability suggests an additional decomposition of the

system on a coarser (regional) length scale where lateral coupling cannot be

neglected a priori : the plateaus and the diffusive interface (shaded in gray)

around the inflection point x0. To study these regions individually, let us

isolate the regions from each other by imposing no-flux boundary conditions.

Note that this approach is analogous to the isolation of local compartments

which leads to the notion of local equilibria. In the case of isolated regions

lateral coupling cannot be neglected (inside each region) such that the local

attractors are (in general) patterns and not points (equilibria). Just like in

the case of local compartments these regional attractors are fully determined

by the (average) total density contained in each region. The regional average

densities can be estimated as n± ≈ c0 +m± for the plateaus and nint ≈ m0 +c0

at the interface. The attractors of the plateau regions are simply uniform

steady states. Importantly, note that the plateaus will always be laterally

stable because the slope of the kinetic nullcline can only be positive at the

respective intersections with the flux-balance subspace — hence, there cannot

be anti-coarsening [compare e.g. “Self-replication of mesa patterns” [27], where

plateaus are laterally unstable]. Conversely, the interface region is always

laterally unstable. Since the plateau regions are isolated from the interface,

the regional attractor of the interface is a harmonic profile. In other words:

The interface is spanned and maintained by mass-redistribution instability.

Because the reactive flow vanishes at the plateaus, the dominant contribution

to the turnover comes from the interface region — flux-turnover balance has

to be achieved within the interface region. We can estimate flux-turnover

balance by linearizing around the inflection point, which is equivalent to linear

stability analysis at n = nint. The eigenmode fulfilling flux-turnover balance

is cos(qmax(nint)x), the right edge of the band of unstable modes. Hence, the

interface width can be approximated by Lint ≈ π/qmax(nint).

We conclude that any stationary pattern in mass-conserving two-component

reaction–diffusion systems is inextricably linked with lateral instability, which

maintains the diffusive interface. Just as the local equilibria scaffold the inter-

face, we can think of the regional attractors as scaffold for the global pattern!

The properties of the global pattern can be pieced together by (character-

istically distinct) isolated regions (plateaus and interface). Intersections of

flux-balance subspace and kinetic nullcline provide sharp characteristics in

(m, c)-phase space: Plateaus are intersections where the slope of the kinetic

nullcline is positive while interfaces extend around the point where the slope
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is negative. The average total density in each of these regions determines the

properties of the regional attractor. Regions are the natural extension of the

compartmentalization approach, with regional attractors taking the place of

local equilibria, and average total densities (in each region) the place of local

total densities.

A mechanical analogy for Turing instability

Above we identified the core elements underlying lateral mass redistribution

instability (e.g. Turing instability): shifting local equilibria that drive cas-

cading redistribution of mass by the faster diffusing (here: cytosolic) species.

The discussion of lateral excitability and regional attractors showed that this

principle of shifting local equilibria by mass redistribution in central to all as-

pects of pattern formation. Due to the central role of this principle we would

like to present a strikingly simple mechanical analogy for the lateral mass re-

distribution instability that captures all essential physical processes. To that

end consider the mechanical system shown in Fig. 7 — a water-filled bucket

resting on an overdamped spring. The amount (volume V ) of water in the

bucket determines the water level above ground h∗(V ) in (mechanical) equi-

librium. Let us now ask a very simple question: How will the the equilibrium

position h∗ change if we either increase or decrease the water volume? The

answer is simple: For sufficiently hard springs, the water level increases e.g.

infinitely hard springs. For sufficiently soft springs however, the compression

of the springs can overcompensate the increase of the water level within the

bucket, such that the water level above ground decreases as more water is put

in the bucket. Note that this is a simple mechanical example for a system

where an equilibrium changes with mass contained in the system.

Now let us consider two identical bucket-on-spring systems: What happens

when we couple both by connecting the buckets with a thin tube that allows

water to slowly flow from one bucket to the other (Fig. 7b)? When a small

amount of water is transferred from one bucket to the other, the equilibrium

position of both buckets shift in opposite directions. The height difference

of the water levels induces a pressure gradient which in turn leads to a flux

through the tube. When the water level above ground h∗(V ) increases with

the volume V in the bucket, this flux will equilibrate the water levels so that

the system returns to a uniform equilibrium (left side in Fig. 7b). In the case of

sufficiently soft springs (k < kc), the water level above ground decreases with

volume, inducing a flux into the bucket that already holds more water thereby
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further increasing the difference of volumes. This self-amplifying flux drives

the mass-redistribution instability, analogously to the lateral instability of a

mass-conserving reaction–diffusion systems. The driver of lateral instability is

the removal of gradients (hydrostatic pressure difference) by lateral transport

of total density (water volume).

The mechanical analogy demonstrates the concept of topological equivalence:

two distinct physical systems, a chemical one and a mechanical one, that share

the same topological structure in phase space follow the same unifying principle

of mass-redistribution instability. If we can establish such equivalence between

mechanical and chemical systems, clearly we can establish it between different

chemical systems alone.

In principle, the line of chemical equilibria is experimentally accessible since

it can be studied using a single, isolated, and well-mixed reactor by exter-

nally controlling the available conserved quantity (e.g. particle number). Such

experiments would allow probe and classify the core mechanism without knowl-

edge of the molecular details (which are irrelevant for such a classification).

PART II — APPLICATION TO A QUANTITATIVE MULTI-SPECIES

MODEL

Up to this point we have discussed our geometrization approach only for mass-

conserving two component models. However, real biological pattern formation

systems typically involve multiple protein species with many different confor-

mal states (components of the kinetic interaction network). On the other hand,

we learned that the essential process underlying pattern formation is the re-

distribution of total densities (though cytosolic diffusion). A pattern forming

biological system contains as many total densities as there are individual (con-

served) protein species participating in protein-protein interactions. While the

diffusion coefficients of membrane-bound and cytosolic proteins are fixed, there

is no a priori reason that the cytosolic redistribution of all protein species is

required for pattern formation. This raises the following question: Can we sys-

tematically map a quantitative multi-species, multi-components model onto a

core species governed by an effective two-component reaction diffusion system

of the form Eqs. (1,2)? The key idea behind such a systematic approach is

that mass redistribution of all species except for the core species can be set

to a slower timescale without affecting the pattern qualitatively (topological

equivalence).

In the following we demonstrate this approach for in vivo Min protein dynam-
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ics which serve as a paradigmatic example for self-organized pattern formation

in the literature [1, 4]. Min protein dynamics are based on the interactions

between two (globally conserved) protein species: MinD and MinE. Physio-

logically this system exhibits pole-to-pole oscillations of the MinD and MinE

total density profiles. Thus, superficially judging by phenomenology, the Min

protein dynamics seem unrelated to stationary cell polarization. Before we

proceed with the analysis of the model, let us first summarize the bimolecular

basis of Min protein interactions (for a review, see [26]).

Quantitative model of Min oscillations

Cell division of E. coli is spatially organized by the reaction–diffusion dynam-

ics of MinD and MinE: Cytosolic ATP-bound MinD dimerizes and binds to the

membrane. It then recruits further MinD-ATP from the cytosol, as well as its

ATPase-activating protein MinE. Together, MinD and MinE form membrane-

bound MinDE complexes. Then, MinE stimulates MinD’s ATPase activity,

which initiates the disintegration of MinDE complexes and subsequent release

of MinE and ADP-bound MinD into the cytosol. Reattachment of MinD is

delayed by the requirement for nucleotide exchange (substitution of ATP for

ADP). This biochemical reaction network, which we refer to as the skeleton

network [15, 28], suffices to generate Min patterns in vivo [15–17] and in vitro

[25], as has been confirmed by numerous experimental and theoretical stud-

ies. In it’s full form the skeleton model comprises five interacting components

[15, 28]: MinD-ATP (cDT), MinD-ADP (cDD), and MinE (cE) in the cytosol,

as well as MinD (md) and MinDE complexes (mde) on the membrane (see

Fig. 8b). The state changes (membrane attachment and detachment, complex

formation and disintegration) of the proteins are accounted for by mass action

law kinetics and conserve the total number of MinD and MinE proteins indi-

vidually. Here, our goals is to reveal the mechanistic core principles underlying

the in vivo pattern formation. So far, in vivo Min protein pattern formation

has been studied in context of geometry adaption, i.e. the interdependence of

pattern formation and cell geometry. In that regard, the cytosolic nucleotide

exchange process has proven to be crucial. The main physical principle under-

lying pattern formation per se has so far been only identified as a oscillatory

Turing instability. Form the preceding discussion we know that such a char-

acterization is not very revealing without proper analysis in context of mass

redistribution. For the in vitro variant of the model the analysis in the mass

redistribution framework has proven to be highly interesting, revealing several
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new concepts for pattern formation, see [25]. Hence, we now seek a systematic

reduction scheme for the in vivo dynamics, based on the general property of

mass conservation, which maps the quantitative model to a physically well

defined, generic core model. In the following we present the main conceptual

steps and ideas of this reduction. For the analytical details we refer the reader

to the Supplementary Material.

Since we are interested in the pattern formation mechanism per se, and not

in geometry adaption, the finite rate of nucleotide exchange in the cytosol is

negligible. We can therefore eliminate the MinD-ADP (cDD) from the dynamics

in the limit of infinitely fast nucleotide exchange (see Supplementary Material

for details).

For simplicity it is convenient to consider the model in a 2D rectangular box

geometry (dimensions L×h) with the membrane at one long edge and reflective

boundaries at all other sides. The on–off dynamics are such that the cytosol

quickly equilibrates in the direction normal to the membrane (in the following

called vertical direction, see Supplementary Material). Under this condition

the cytosol concentrations at the membrane (y = 0) can be approximated

by the cytosol concentrations averaged over the vertical y-direction. Thereby

the dynamics can be systematically reduced to effective dynamics on a line.

Note that this reduction is only valid for the small system size in vivo, but

not for large system sizes in-vitro, cf. [25, 29]. In the effective the 1D model,

the diffusion constants only affect lateral diffusion in the cytosol and on the

membrane, such that they now act as control parameters for the lateral mass

transport alone (note that vertical bulk diffusion in an extended bulk geometry

affects attachment, see Supplementary Material). The ensuing effective 1D

model equations read

∂tcD = DD∇2
xcD − h−1 [(kD + kdDmd)cD + kdemde]. (20)

∂tcE = DE∇2
xcE − h−1 [kdEmdcE + kdemde], (21)

∂tmd = Dd∇2
xmd + (kD + kdDmd)cD − kdEmdcE, (22)

∂tmde = Dde∇2
xmde + kdEmdcE − kdemde, (23)

conserving of total MinD and MinE mass

∫ L

0

dx (h · cD +md +mde) = L · nD, (24)

∫ L

0

dx (h · cE +mde) = L · nE. (25)
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Note that cD and cE are the averaged cytosolic area densities while md and

mde are line densities on the membrane. All rate constants are identical

to the original rate constants in the 2D box geometry at this point. For

notational convenience we absorb the height h in the cytosolic concentra-

tions hcD → ĉD, hcE → ĉE, and respectively rescale the attachment rates

kD/h → k̂D, kdD/h → k̂dE, kdE/h → k̂dE. After this rescaling, the cytosolic

component concentrations are also measured as line densities like the mem-

brane concentrations. Because we will exclusively use the rescaled cytosolic

densities and rate constants throughout the paper we suppress the hats to

simplify notation.

Timescale separation of mass redistribution

For (well-mixed) systems described by ODEs, like metabolic networks or reg-

ulatory networks of genes and their promoters, one usually tries to dissect the

interaction circuit into sub-circuits (so called motifs or modules) which can

be analyzed independently (e.g. by separating timescales). For pattern for-

mation, however, diffusive spatial coupling of the chemical components is an

essential part of the dynamics. In previous work [25] it has been shown that

diffusive redistribution of quantities conserved by the kinetic interactions are

the essential degrees of freedom for spatially extended systems. In the pre-

ceding general analysis of mass-conserving two-component systems we have

learned that the core mechanism of pattern formation is diffusive redistribu-

tion of the globally conserved total density (mass). Flux–turnover balance then

determines the properties of the stationary pattern profile. This core mecha-

nism is determined by how the chemical equilibria depend on the total density

whereas molecular details of the interaction circuitry are irrelevant. Based

on this insight, we seek a systematic reduction not on the level of interaction

circuitry but on the level of diffusive redistribution of conserved quantities.

In the Min system there are two protein species, MinD and MinE, each of

whose copy number is conserved by their kinetic interactions. Separating the

timescales of their diffusive transport will be our starting point to elucidate

their bio-mechanistic role in the pattern formation dynamics.
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Linear stability analysis

Preamble — characterizing the onset of lateral instability at the minimal system

length Due to the reflective boundary conditions at x = 0 and x = L, only

modes cos(qkx) with qk = kπ/L, k ∈ N are compatible to a system of length

L: the mode spectrum is discrete. Specifically, the system length imposes the

smallest wavenumber (i.e. longest wavelength) q1 = π/L compatible with the

reflective boundaries. Lateral instability only occurs if q1 is smaller than the

right edge of the (continuous) band of unstable modes qmax : Re[σ(qmax)] = 0.

Hence, qmax determines the minimal system length Lmin := π/qmax at which

the first compatible mode cos(q1x) becomes unstable. At the bifurcation point

Lmin, the real part of the first mode growth rate vanishes (Re[σ(qmax)] = 0). It

can further be characterized by the imaginary part Im[σ(qmax)]. If Im[σ(qmax)]

is non-zero, the dynamics are oscillatory at the onset of instability (lateral Hopf

bifurcation or oscillatory Turing instabilty), otherwise the onset dynamics are

non-oscillatory. Also note that when there is no band of unstable modes in the

continuous dispersion relation (qmax = 0) there will be no pattern formation

based on lateral instability for any system length.

Linear stability analysis reveals the regimes of pattern formation Mass redis-

tribution of a protein species is facilitated by the diffusion of the individual

components (i.e. conformal states, complex forms) belonging to that species.

Hence, tuning the diffusion constants of all these components allows us to

change the lateral redistribution of a species. In particular, note that when all

diffusion constants belonging to one species are set to the same value, the total

density of this species will not be redistributed in the flux balance subspace

(since the flux balance subspace coincides with a local phase space where total

density uniform and conserved).. By performing lateral linear stability anal-

ysis of uniform steady states (for identical diffusion coefficients of individual

species) we can test if mass redistribution of a species is essential for lateral

instability — and hence essential for pattern formation driven by mass redis-

tribution. Thereby we can reveal the core mechanisms underlying Min protein

dynamics.

MinD transport is essential for lateral instability Applying this idea to the

Min protein system, we calculated the linear stability of the uniform steady

state of (20) to (23) upon variation of the lateral diffusion of all the dynam-

ical densities (DD, DE, Dd and Dde, see Fig. 8a, data for MinD diffusion not

shown). It turns out, that the system is only laterally unstable if cytoso-

lic MinD diffusion is much faster than diffusion of membrane bound MinD

(already a hint, that MinD redistribution drives lateral instability as in the
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two-component system). Furthermore, diffusion of cytosolic MinE may not to

be much faster than diffusion of cytosolic MinD. We conclude that redistri-

bution of MinD mass primarily drives lateral instability of the uniform Min

protein steady sate. Next, let us turn to the role of MinE diffusion on the

membrane and in the cytosol.

MinE transport can be set to a slower timescale In the diagram of lateral sta-

bility phases in dependence of DE and Dde (Fig. 8a) we observe three regimes:

Above some threshold value of DE, the uniform state is always stable against

lateral perturbations (qmax = 0). The lateral instability becomes oscillatory

(Im[σ(qmax)] 6= 0) if cytosolic diffusion DE of free MinE dominates over mem-

brane diffusion Dde of MinDE complexes. This behavior extends down to

arbitrarily small MinE diffusion constants. We therefore conclude that the

essential dynamics of Min proteins is preserved in the limit of arbitrarily small

MinE diffusion. Hence, MinE transport is not required for pattern formation

— the lateral instability is a mass-redistribution instability of MinD alone and

generically leads to non-oscillatory polarity patterns. The oscillatory nature

of Min protein dynamics seems to be the result of Min redistribution. Hence,

we can consider MinE redistribution on a slower timescale to study the princi-

pal mechanisms underlying the Min oscillations (the validity of this separation

of timescales is corroborated by simulations and by reverting to physiological

timescales after the core processes have been identified).

Effective dynamics under timescale separation

Before we proceed, we introduce the average MinE diffusion constant dE :=

(DE + Dde)/2. For small enough dE (i.e. dE � Dd and dE � L2/τr where

τr ∼ |σloc|−1 is the typical timescale of the kinetic interactions (which can

be estimated by the eigenvalue of the local equilibrium, see Supplementary

Material), the total MinE density

ρE(x) = cE(x) +mde(x) (26)

can be considered to be stationary on the timescale of local reactive dynamics

and MinD diffusion. As illustrated in Fig. 8b, the MinE density thus paramet-

rically influences the fast MinD dynamics, which rapidly approaches its steady

state profiles satisfying the reduced two-component system (see Supplementary
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Material for derivation):

DD∇2
xcD − feff(cD,md; ρE) = 0, (27)

Dd∇2
xmd + feff(cD,md; ρE) = 0, (28)

∫ L

0

dx [cD +md +mde(md; ρE)] = ND, (29)

with the effective reaction kinetics feff , as well as the slaved MinE concentra-

tions cE(md; ρE) and mde(md; ρE) given by

feff(md; ρE) = (kD + kdDmd)cD − kdemde(md; ρE), (30)

cE(md; ρE) =
kde

kdEmd

mde(md; ρE), (31)

mde(md; ρE) = ρE
md

kde/kdE +md

. (32)

The first term of feff describes MinD attachment, which is independent of

MinE. Detachment of MinD is catalyzed by the locally available MinE ρE =

ρE(x, τ) (cf. Fig. 8b). Hence, the effective steady-state detachment rate is de-

termined by Michaelis–Menten kinetics kdemde(md; ρE). The locally available

MinE density is given by the MinE total density profile ρE(x, τ) which is a

function of x and varies on the slow (MinE redistribution) timescale τ . The

kinetic nullcline of the effective kinetics feff has the shape shown in panels (a)

and (b) of Fig. 3.

Due to the imposed timescale separation, the MinD quickly assumes its (quasi-

) stationary patterns — solutions of the effective steady state equations (27,

28)). The densities of the MinE states mde(md; ρE) and cE(md; ρE) depend

on the MinD membrane profile md(x) (see Eq. (32)). The resulting gradients

of MinD-bound and free (cytosolic) MinE induce the redistribution of MinE

when the diffusion constants of MinD-bound and free MinE differ. Introducing

the parameter δE := (DE−Dde)/(2dE), representing the relative dominance of

MinE diffusion constants, we obtain the purely diffusive dynamics on the slow

( dimension-less) timescale τ = (dE/L
2) t

∂τρE = ∇x/L jE = ∇2
x/L ρE + δE∇2

x/L

[
cE(md, ρE)−mde(md, ρE)

]
, (33)

with δE := (DE −Dde)/(2dE).

Coupling to the MinD stationary profile md(x) via δE drives the MinE distri-

bution away from the uniform distribution approached when δE = 0. Equa-

tions (30) and (33) express the mutual interdependence of MinD and MinE
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dynamics: The steady state of each species is controlled by the density pro-

file of the respective other species. The dynamics are the process of ongoing

mutual adaption to these steady states as we will detail in the following.

We study the system close to the minimal length L & Lmin, where only the first

mode cos(πx/L) is laterally unstable and the stationary patterns are harmonic

profiles which are well approximated by the first harmonic mode. We can

therefore apply a projection of the spatial profiles to the first harmonic mode

(Galerkin expansion, see Supplementary Material)

md(x, t) ≈ m0
d +m1

d(t) cos(πx/L), , (34)

ρE(x, τ) ≈ nE + ρ1
E(τ) cos(πx/L). (35)

MinE is not an inhibitor

Let us point out an important consequence of the phase diagram structure

(Fig. 9b) before we work out the stationary patterns of the effective MinD two-

component system: Pattern formation in reaction–diffusion systems is usually

explained using the activator–inhibitor paradigm “short range activation and

long range inhibition”, see Gierer and Meinhardt [9], and Segel and Jackson

[12]. A frequently used approach is to identify activator and inhibitor based

on the biochemical interactions of the system components, e.g. see Kondo and

Miura [13]. According to this approach one would naively identify MinE as an

inhibitor in the Min system. However, to fulfill the role as an inhibitor (“long

range inhibition”) in the activator–inhibitor scheme it would need to diffuse

sufficiently fast in the lateral direction for the dynamics to become Turing

unstable. The phase diagram (Figure 8a) shows that this condition is clearly

not fulfilled. Turing instability persists for arbitrarily small MinE diffusion.

Hence, based on the quantitative model (20) to (23), we can conclude that

the Min protein dynamics cannot be represented (not even effectively) by an

activator–inhibitor system.

MinD steady states controlled by the MinE total density profile

The separation of the diffusive timescales on the level of conserved species

(MinD and MinE) reduces the essential dynamics to a two-component system

with mass–conservation and a slowly varying, spatially nonuniform control

variable ρE(x, τ). This two-component system, effectively modeling reaction–
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diffusion dynamics of MinD, is topologically equivalent to the type of system

we studied in Part I of this paper. We can therefore conclude that the core

mechanism of MinD is polarization — thus linking it to other cell-polarity

systems, e.g. see [18]. The Min system is distinct from these cell-polarity

systems only due to the (secondary) control of the polarized MinD (steady)

states by MinE.

To find out how the MinE total density profile ρE(x, τ) controls the MinD

stationary states, we numerically implemented the flux–turnover balance con-

dition, making use of the first harmonic projection: For a short system — close

to the onset length Lmin — we can approximate the stationary pattern by a

truncated harmonics expansion (see Eq. (34)). The expansion coefficients m0
d

and m1
d are then determined by plugging the harmonic mode ansatz (34) into

flux–turnover balance Eq. (12). As result, we obtain the stationary MinD pat-

terns in dependence of the MinE total density profile amplitude ρ1
E(τ). This

relation can be cast as a bifurcation diagram (see Fig. 9b) that depicts the

dependence of the stationary MinD pattern on the MinE control profile.

Note: In a generic two-component system, the local total density is given

by n = m + c, i.e. the local phase spaces are simplexes in the (m, c)-phase

space. In the reduced system for the MinD dynamics (27-29) the MinDE

complex concentration m∗de(md; ρE) also contributes to the total MinD density

nD = md + cD + m∗de(md; ρE). Hence the local phase spaces are nonlinearly

deformed. The equations to calculate the local equilibria are adopted accord-

ingly. Because the local phase spaces are still monotonously decreasing in cD

as md is increased, the slope of the kinetic nullcline still uniquely determines

the lateral stability. Furthermore, the formulation of flux-turnover balance

(12) only depends on the reactive flow f(md, cD; ρE) and is hence unaffected

by the deformation of the local phase spaces.

Redistribution of MinE drives periodic re-orientation of the polarized

MinD pattern

Lateral transport of MinE total density is facilitated by diffusion of both free

(cytosolic) MinE and its MinD-bound state (MinDE complexes on the mem-

brane). Since free MinE is recruited to zones with high MinD concentration

(polar zones), the flow of free MinE is intrinsically co-polarizing. MinDE

complexes are formed in the polar zone and diffuse away from it. Their

resulting flow is always counter-polarizing (see Fig. 10a). The balance of

the co-polarizing flow of free MinE and the contra-polarizing flow of MinDE
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complexes determines the steady state MinE profiles (see MinE nullclines in

(ρ1
E,m

1)-phase space, Fig. 10b).

From the preceding analysis of pattern formation in two-component systems,

we know that MinD polarized steady states are scaffolded by local equilib-

ria. These equilibria are controlled by the local total density of MinD, whose

(self-organized) lateral redistribution drives pattern formation. Because the

effective local MinD dynamics are catalyzed by MinE (cf. Fig. 8a), MinE

controls the reactive MinD dynamics locally. Specifically, the MinE total den-

sity profile ρE(x, τ) ≈ nE +ρ1
E(τ) cos(πx/L) controls the flux–turnover balance

that maintains MinD polarity attractors (see Fig. 9a). While the MinD at-

tractors are mirror symmetric for a uniform MinE distribution (ρ1
E = 0), any

(lateral) asymmetry in the MinE distribution breaks the symmetry between

the two polarized MinD states. These two states are distinguished by their po-

larization relative to MinE, i.e. MinD can be co-polarized or counter-polarized

with MinE. At critical MinE profile amplitudes ±ρ1,crit
E , MinD flux–turnover

balance breaks down for the co-polarized MinD attractor, which vanishes in a

(saddle node) bifurcation. At these depolarization catastrophes the MinD dy-

namics rapidly reorganizes into the respectively remaining counter-polarized

attractor, i.e. the polarized MinD patter switches to the opposite pole. From

there, MinE will start to co-polarize with MinD again and the cycle repeats

itself thus constituting the essential pole-to-pole Min protein oscillation cycle

shown in Fig. 10b. This oscillation cycle presents itself in its minimal, reduced

form as a relaxation oscillator of MinD polarized steady states, controlled by

redistribution of MinE mass. Hence, the lateral transport of (globally con-

served) mass is found at the core of both (physically well defined) mechanisms

— MinD polarity and control by MinE.

Strikingly, we find that the (self-organized) pattern forming mechanism under-

lying the oscillatory Turing instability of the skeleton model is not oscillatory:

Oscillations are merely a consequence of the purely diffusive redistribution of

the MinE total density, which passively follows the pattern forming process of

MinD.

This relation of MinD driven polarization and oscillations due to control by

MinE is also reflected in the structure of the dispersion relation. For dE = 0,

there is no MinE redistribution, so the dispersion relation of the full system

σ(q) is given by the dispersion relation σD(q) of the effective MinD system

alone. The right edge of the band of unstable modes qmax,D marks the on-

set of lateral instability in a confined system Lmin,D = π/qmax,D. Because

the effective MinD system is a mass-conserving two-component system, the

eigenvalues in the band of unstable modes is purely real valued, in particular
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Im[σD(qmax,D)] = 0. How does switching on slow MinE diffusion, 0 < dE � Dd,

affect the dispersion relation? We performed a perturbation analysis of σ(q) in

the vicinity of qmax,D (see Supplementary Material). At the bifurcation point

qmax,D we find

σ(qmax,D) = α ·
√
−δEdE +O[dE/Dd],

which implies that for δE > 0, the eigenvalue will become imaginary such

that the onset dynamics become oscillatory with a frequency proportional to√
δEdE. The pre-factor α is depends on the linearization Eqs. (30) and (33)

encoding the cross-coupling between MinD and MinE dynamics.

In the vicinity of qmax,D we can write the dispersion relation as a perturbative

expansion

σ(q) ≈ σD(q) + iωE, (36)

with ωE := α
√
δEdE (37)

illustrating that the dispersion relation can be split into a polarity term σD

dependent on MinD redistribution and a control term iωE dependent on MinD

induced MinE redistribution. Using (36) the time evolution at onset has the

form eσDt cos(ωEt) illustrating the respective roles of MinD and MinE in the

dynamics.

DISCUSSION

In the introduction of this article we asked whether quantitative models for

biochemical reaction–diffusion dynamics of proteins can be placed in a unify-

ing framework revealing the general mechanisms underlying specific models.

This would enable a classification of specific models by general mechanisms

that follow from a systematic reduction of any reaction–diffusion system to a

minimal functional core form.

A characterization of the general principles underlying the emergent dynamics

of such a model based on the structure of its interaction network (motif) is not

possible. Take the example of the skeleton model of Min protein dynamics: By

changing the system parameters (kinetic rate constants, diffusion coefficients,

system geometry, protein copy numbers) one encounters a broad range of phe-

nomena in vivo (pole-to-pole oscillations, striped patterns, circular waves), and

in-vitro (chemical turbulence, standing waves, travelling waves, spiral waves).

Moreover, key characteristics of self-organized pattern formation such as multi-

stability, geometry adaption, and intrinsic length scale selection can be turned
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on and off by changing the parameters alone without altering the underlying

interaction network (motif).

If not the motif, what does then encode the principal mechanism for pattern

formation? Previous work revealed that pattern formation in mass-conserving

reaction diffusion is based on shifting local equilibria by lateral diffusive trans-

port of total density (mass-redistribution framework). In this article we fur-

ther expanded this framework to extend the concept of topological equivalence

to pattern forming systems. Two systems are topologically equivalent (and

thereby members of the same mechanistic class) if their phases space flows can

be continuously deformed into each other. The flow structure of a system’s

phase space is the most general characteristic of the system’s dynamics. We

found that the central geometric objects in phase space to characterize pattern

formation are (i) the line of local equilibria (cf. control space [25]), (ii) the

family of local (reactive) phase spaces, and (iii) the (diffusive) flux–balance

subspace.

We found that this geometric characterization (in phase space) provides a

fine grained classification of patterns and mechanisms, based on the shape

of the kinetic nullcline. This classification takes into account the full phase

space structure of the system far away from onset and supercriticality, and

thereby goes beyond existing approaches based on Fourier modes and the shape

of the dispersion relation (band of unstable modes). For stationary polarity

patterns the geometrization reveals three distinct sub-classes based on regional

properties (peaks, plateaus). Moreover, this approach reveals that the Turing

instability and lateral excitability are two manifestations of the same (mass-

redistribution) instability, further unifying pattern formation on a mechanistic

level based on the shape of the line of local equilibria.

In in general terms the requirement for a mass-redistribution instability is an

interaction network in which the (chemical) equilibrium density of the faster

diffusing component decreases if the total density increases. This leads to a

mass-redistribution cascade though cytosolic transport and a continual shift-

ing of local equilibria that scaffold the pattern of the slowly diffusing compo-

nent. In context of biological systems, the separation of diffusion coefficients

is generic: membrane diffusion is typically orders of magnitude slower than cy-

tosolic diffusion. Hence, any system based on membrane-cytosol cycling meets

the basic requirements for pattern formation, and the only remaining (evolu-

tionary) engineering task is the design of a protein-interaction network where

cytosolic equilibrium densities decrease with increasing.

Form that perspective is not very surprising that our analysis of Min protein

dynamics revealed that oscillatory Min protein patterns are based on the same
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core mechanisms (mass-redistribution instability) as non-oscillatory models for

cell polarity. The striking picture this analysis puts forward is that pattern for-

mation in complex biochemical interactions networks can be understood by a

decomposition into core mechanisms and control mechanisms. For pole-to-pole

Min oscillations the core mechanism (MinD polarity by mass-redistribution in-

stability) is controlled by diffusive MinE redistribution: the MinE total density

profile controls the properties (shape, existence) of MinD polarity attractors.

It would be very interesting to know if other multi-component multi-species

pattern forming systems such as the CDC42 system in yeast [3], or the PAR

system in C. Elegans [30] can be similarly decomposed into core and control

modules.

In this article our analysis was focused on the core principle for pattern for-

mation and the characteristic of polarity patterns. A main question in pattern

formation theory is the selection of patterns, in particular the existence and se-

lection of characteristic length scales. In the literature the term Turing pattern

is closely tied to the existence of a characteristic length scale that is determined

by the fastest growing mode. For systems close to a supercritical bifurcation

the existence of a characteristic length scale is a given. However, in general

the fastest growing mode does not determine the length scale of the pattern.

Moreover, the coexistence of many stable patterns with different length scales

is not uncommon [17, 31, 32]. The mechanistic origins of such multistability

phenomena and pattern selection in general are still widely unclear for systems

that are not in the vicinity of supercritical bifurcations (i.e. cannot be ana-

lyzed by amplitude equations, cf. Introduction). Expanding the toolset of the

mass-redistribution framework to tackle these questions will be an interesting

task down the road.

The main concept underlying the mass-redistribution framework is spatial

compartmentalization followed by a phase space analysis of spatially isolated

structures. We started the analysis with local equilibria of well-mixed com-

partments. Here we extended it to characteristic regions of patterns (interface,

peak, and plateau). This decomposition was essential for the systematic anal-

ysis of pattern formation. As a next step it would interesting to naturally ex-

tend this conceptual approach to decompose patterns with multiple interfaces

(finite wavelength) into elementary sections that represent polarized patterns

considered in this article, and study the lateral coupling between these elemen-

tary sections to address questions such as coarsening, wave-length selection,

multistability, and their relation to the band of unstable modes.
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FIGURES

Figure 1

n

c

m

c
(m,c)-phase space bifurcation diagram

reactive flow

reactive phase spaces

(un)stable chem. equilibria( )

FIG. 1. The total density is a control parameter of mass-conserving reactions.

The properties (number, position, and stability) of chemical equilibria depend on

the total density (mass) in a well-mixed reactor.

(a) The conservation law is geometrically represented by 1-simplexes in phase

space — each value of the total density corresponds to a unique 1-simplex. We

will call these subspaces reactive phase spaces (local phases spaces in context

of spatially extended systems). Kinetic interactions interconvert the confor-

mal states of the proteins and hence change the densities of the components

representing these conformal states. The changes in densities give rise to a

flow in phase space which, due to mass conservation, is confined to the reac-

tive phase space (1-simplex). Along the line of chemical equilibria the flow

vanishes f(m, c) = 0. (b) Intersections of reactive phase spaces and the line of

chemical equilibria allow us to read off the chemical equilibria in dependence

of the total density n and plot the respective bifurcation diagram.
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Figure 2
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(a) (b)Spatial profile Phase space picture

reactive turnover

line of chemical equilibria

FIG. 2. Polarized states are determined by flux–turnover balance.

(a) Local chemical equilibria (black dots) scaffold the pattern profile due to

the local reactive flow towards the local equilibria (red arrows). At x0 the

pattern intersects the kinetic nullcline f(m(x0), c0) = 0. In a steady state,

the diffusive flux across the inflection point blue arrow exactly cancels the

cumulative reactive turnover on either side of the inflection point (indicated

by red shaded areas). (Remark: The parameters were chosen to exaggerate

the local deviation from the local equilibria for visualization). (b) Plotting

the distribution of the pattern (blue line) in phase space shows how mass re-

distribution shifts the local equilibria, giving rise to the pattern. The local

reactive dynamics (red arrows) are restricted to the local phase spaces where

total density is conserved locally. The intersections of the local phase spaces

with the kinetic nullcline f(m, c) = 0 yields the local equilibria. Fast cytosolic

diffusion restricts the stationary pattern to a line of nearly constant cytoso-

lic concentration c0 (flux balance subspace). Slow membrane diffusion (blue

arrows) balances the reactive dynamics spreading the pattern.
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Figure 3
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FIG. 3. Three possible types of polarized patterns, classified by the number of

plateaus. Since the plateaus reveal themselves as intersections of flux-balance sub-

space and kinetic nullcline (in regions with positive slope) in phase space, the shape

of the kinetic nullcline together with the ratio of diffusion constants (flux–balance

subspace) determine the characteristic pattern type of a given two-component sys-

tem.

(a) The harmonic profile type only occurs in short systems where the reactive

turnover is balanced by the linearly growing diffusive flux at small amplitude

(before any plateau is reached). (b) A peak connected to a single plateau

forms when a local equilibrium is reached on one side of the inflection point.

At this equilibrium, the flow vanishes so the turnover is bounded, which in

turn determines the peak amplitude on the other side. (c) When local equi-

libria limit further amplitude growth on both sides of the inflection point two

plateaus form. (Note that the number of arrows shown does not have a deeper

meaning but is chosen for visualization purposes alone.)
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Figure 4

Redistribution of mass
due to cytosolic gradient

Local reactive flow
towards local equilibrium

Phase space distribution
after small perturbation

Uniform steady state

Laterally stable Laterally unstable

FIG. 4. Lateral (in-)stability is determined by the slope of the nullcline (black

line). Consider a small perturbation of the uniform steady state (m∗(n0), c∗(n0))

(blue line) that redistributes mass n0 ± δn and thereby shifts the local equilibria

(black dots). The local reactive flow in the shifted local phase spaces (purple lines)

drive the system locally towards these shifted equilibria (illustrated by red arrows).

This, in turn, builds up a cytosolic gradient δc. Diffusive flow in the cytosol acts to

remove this gradient by redistributing mass in the direction of the cytosolic gradient.

If the slope of the nullcline is positive (bottom left), the cytosolic mass redistribution

removes the gradient in total density δn (purple arrows), and both gradients (δc

and δn) vanish as the system approaches n0. In that case the system is laterally

stable. If the slope of the nullcline is negative (bottom right), cytosolic densities

are redistributed in the opposite directions, such that the total density gradient δn

increases (purple arrows). This shifts the local equilibria away from the uniform

steady state and thereby maintains a finite the cytosolic gradient. This cascade of

shifting local phase spaces (mass redistribution) and a maintained cytosolic gradient

drives lateral instability.
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Figure 5
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FIG. 5. Bifurcations of plateau patterns reveal themselves from the geometric

properties of the line of chemical equilibria.

(a) Given some local kinetic interactions f(m, c) (here shown for the “wave–

pinning” model [23] and the diffusion constants (here Dm = 0.01µm2s−1

and Dc = 0µm2s−1 one can simply calculate the line of chemical equilibria

f(m, c) = 0 (black line) and the position of the flux-balance subspace c∞0 , de-

termined by global turnover balance Eq. (18). These two geometric objects can

then be used to obtain the properties and bifurcations of the plateau patterns:

The uniform steady state is laterally unstable where the slope of the kinetic

nullcline is smaller than the slope of the flux balance subspace −Dm/Dc (red

shaded area). The range of pattern existence extends beyond the range of lat-

eral instability and is bounded by the total densities of the plateaus (Eq. (19)).

These are determined by the intersections of the flux-balance subspace with

the line of chemical equilibria (blue dots). (b) Schematic bifurcation structure

(subcritical) of plateau patterns geometrically constructed from the the line of

local equilibria and the flux-balance subspace we can construct.
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Figure 6
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FIG. 6. Subcritical stationary patterns emerge from lateral excitability.

(a) After a small small perturbation (blue profile, yellow arrows in phase

space), a laterally stable system returns to its uniform steady state (green
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line). The high density region in the perturbation is below the threshold

where the direction of reactive flow in (m, c)-phase space changes direction and

thereby induces the cascade of lateral mass redistribution, i.e. a regional lateral

instability. (b) A perturbation above that threshold induces to the mass-

redistribution cascade (regional lateral instability) and the dynamics approach

the polarized state (lateral excitability). Geometrically, the threshold can be

read off the nullcline (intersection of the uniform cytosolic density with the

kinetic nullcline). (c) The polarized pattern can be decomposed into three

regions: two plateaus and a diffusive interface (shaded in gray) around the

inflection point x0. (d) We isolate these regions by imposing no-flux boundary

conditions such that the dynamics in each of the regions approaches its regional

attractor. (e) The local phase spaces corresponding to the respective average

total densities (n−, nint, and n+) in each region reveal the lateral stability

properties of the regions. The plateaus are laterally stable regions — anti-

coarsening is not possible. On the other hand, the interface region is always

laterally unstable, even if the global system (uniform state n0) is laterally

stable. (f) Because the diffusive interface is spanned by lateral instability,

we its properties can be estimated from the dispersion relation at nint. In

particular, the interface width Lint can be estimated by the rightmost root qmax

of the dispersion relation: Lint ≈ π/qmax. The dashed lines show the dispersion

relation for the spatially uniform state of the global system determined by n0

(laterally stable).
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Figure 7
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FIG. 7. A simple mechanical system exhibiting the key features necessary for a

mass-redistribution instability.

(a) The (mechanical) equilibrium position of the water level h in a bucket with

cross section area A, resting on an overdamped spring with spring constant k

can either increase or decrease when water is added to the bucket. It increases

when the the water level in the bucket V/A raises faster than the spring is

compressed due to the added mass. When the spring is sufficiently soft, it will

be compressed more than the water level in the bucket rises such that the water

level measured from the ground will decrease. (b) The V -axis is the control

space of the mechanical system. Plotting the equilibrium position h∗(V ) of

the water level yields a line of equilibria that has positive (left) or negative

(right) slope depending on the spring constant. Consider a system of two

identical buckets connected by a thin tube, and perturbed by moving a small

amount of water from one bucket to the other. Due to the shifting (mechanical)

equilibrium positions of the buckets, a gradient in hydrostatic pressure ∼ δh,

is built up (red arrows). The phase spaces of each bucket (purple lines) shift

(purple arrows) as water flows through the pipe to remove this gradient in
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hydrostatic pressure. The slope of the line of equilibria determines whether

the flow through the pipe induced by this gradient drives the system back to

a uniform state or further away from it, analogously to the chemical system

(cf. Fig. 4). For k < kc, where the equilibrium position shifts downwards

as the volume increases, the system is destabilized by a mass-redistribution

instability, driven by water flow acting to equilibrate the water levels h1 and

h2. Note that the chemical analog to the (V, h)-space is the (n, c)-space which

is related to the (m, c)-phase space via the simple transformation n = m+ c.
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Figure 8
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FIG. 8. Application of the mass-redistribution framework to applied to the Min

system of E. Coli.

(a) We calculate linear stability of uniform steady states of the skeleton Min

model under variation of the MinE diffusion constants. The structure of re-

sulting diagram of linear stability phases extends smoothy to arbitrarily small

diffusion of MinE. The transition between stationary and oscillatory behavior

essentially depends on the relative dominance of the diffusion of free and MinD-

bound MinE. We introduce the variables dE and δE to encode the timescale

separation and relative diffusive dominance (see inset). The phase diagram also

shows that a finite nucleotide exchange rate does not change lateral stability

significantly. (b) Lateral transport of conserved quantities is the essential dy-

namics in the mass-redistribution framework. In the Min system, there are two

conserved quantities: the total densities of MinD and MinE, illustrated by the

blue and red compartments. The structure of linear stability phases (cf. (a))

motivates us to set MinE transport on a slower timescale, τ = (dE/L
2) t, such

that on the fast timescale only MinD mass is redistributed between compart-

ments (reduced system on the right). This allows us to treat the local total

MinE density as a local parameter on the fast timescale. here, we consider

dynamics in the limit λ → ∞, cf. (a), reducing the fast MinD dynamics to

a two–component core system (md, cD) for membrane-bound md and cytosolic

cD MinD.
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Figure 9
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FIG. 9.

(a) Overview of the stationary MinD profiles controlled by the total density

profile of MinE. The co-polarized state vanishes if the amplitude of the MinE

profile exceeds a certain threshold ρ1,crit
E . (b) Bifurcation structure of the MinD

pattern amplitude with the MinE amplitude ρ1
E > 0 as parameter. For a uni-

form MinE profile (ρ1
E = 0), there are two mirror symmetric MinD attractors

(A, B). Shifting the MinE density towards one of the poles ρ1
E 6= 0 breaks the

mirror symmetry of the MinD attractors (C, D). When the MinE amplitude ρ1
E

exceeds the critical amplitude ±ρ1,crit
E , the co-polarized MinD state vanishes in

a (saddle-node) bifurcation because flux–turnover balance breaks down. Only

the contra-polarized state (E) remains such that MinD polarity switches to

the opposite pole.
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Figure 10
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FIG. 10. The nonuniform MinD distribution (steady state of the fast polarization dynam-

ics) induces diffusive fluxes of MinE.

(a) Visualization of the MinE flows: cytosolic MinE is recruited by MinD in

the polar zone resulting in formation of MinDE complexes. This drives a flow

of free MinE towards the polar zone (co-polarizing flow). The MinDE com-

plexes diffusive out of the polar zone and respectively generate a MinE flow

away from the polar zone (contra-polarizing flow). The sum of both flows de-

termines the total MinE flow jE(ρ1
E,m

1
d) for a given MinD and MinE density

profiles (cf. Eq. (33)). (b) For the physiological parameter configuration of the

wild type system (in vivo skeleton model) the MinE dynamics are intrinsically

co-polarizing (δE � 0) and oscillations are generically observed. In the phase

space of the amplitudes, the Min oscillation cycle is revealed as a relaxation

oscillator of the MinD polarization direction controlled by MinE redistribution.

Out of the Turing unstable homogenous steady state(mass-redistribution in-

stability), MinD rapidly polarizes and reaches a steady state. The nonuniform

MinD distribution induces a MinE flux on the slow timescale. While MinE

slowly redistributes, MinD stays slaved to its polarized steady state. The sys-

tem moves along the branch of MinD steady states. When the MinE amplitude

reaches a critical value, the co-polarized MinD steady state gets annihilated

in a saddle-node bifurcation (depolarization catastrophe). The MinD pattern

rapidly switches to the counter-polarized state. The MinE dynamics again

drive the system towards the co-polarized states, eventually inducing another

depolarization catastrophe. The ongoing repetition of this cycle constitutes

the principal mechanism underlying pole-to-pole oscillations.
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1 2-Component system

1.1 Classical linear stability analysis

Linear stability analysis of spatially extended systems is performed

by expanding a spatial perturbation in the eigenbasis of the diffusion

operator (Laplacian) in the geometry of the system. In a line geometry

with reflective boundary conditions at x = 0, L, the eigenfunctions are the

discrete symmetric Fourier modes cos(nπx/L) with n ∈ N. Linearization

of the dynamics of a mass-conserving two-component system around a

uniform steady state (m∗, c∗) yields the linear dynamics

∂t

(
δmq(t)
δcq(t)

)
= J(q)

(
δmq(t)
δcq(t)

)
(1)

with the so called Jacobian

J(q) =

(
−Dmq

2
n + fm fc
−fm −Dcq

2
n − fc

)
, (2)

where we use the usual abbreviations qk = kπ/L for the wavenum-

bers and fm,c = ∂m,cf
∣∣
(m∗,c∗)

for the linearized kinetics at the uniform

steady state. The eigenvalues of the Jacobian yield the growth rates

σ
(i)
q of the respective eigenmodes such that a perturbation in the spatial

eigenfunction cos(qx) evolves in time as
(
δmq(t)
δcq(t)

)
=
∑

i=1,2

A(i)
q e(i)

q exp(σ(i)
q t) cos(qx), (3)

with the eigenvectors e
(i)
q and the coefficients A

(i)
q determined by project-

ing the initial condition into the eigenbasis e
(i)
q cos(qx).

0.1

0

0.1

0.5 1 1.5

SUPP. FIG. 1. Typical dis-
persion relation of a
mass-conserving two-
component system in the
laterally unstable regime.

For every wavenumber q the Jacobian J(q) has to eigenvalues (and

associated eigenvectors), so the dispersion relation has two branches, as

shown in Supp. Fig. 1. Only the fastest growing mode with the largest

Reσ(q) is relevant for the dynamics since it exponentially outgrows slower

modes. Special care has to be taken at the point q = 0 corresponding to

a spatially uniform perturbation. The eigenvalues there are

σ
(1)
0 = 0 and σ

(2)
0 = fc − fm. (4)

with the respective eigenvectors

e
(1)
0 = (fc,−fm)T and e

(2)
0 = (1,−1)T . (5)
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Hence marginal perturbation breaks mass-conservation and moves the

local equilibrium along the kinetic nullcline. Only the second eigenvalue

σ
(i)
0 represents the stability of the an isolated local equilibrium within

its local phase space where mass-conservation is fulfilled.

1.2 Linear stability analysis ofmass-redistributiondynamics

In the main text we discussed the core processes underlying lateral

instability: shifting local equilibria and mass redistribution due to cy-

tosolic gradients. We now want to systematize this conceptual picture

in mathematical framework of linear stability analysis. The natural

choice of variables to study lateral instability in a mass conserving sys-

tem are the local total density nx(t) shifting the local equilibria and

c(x, t) the fast diffusing species diffusively redistributing mass. Starting

with the usual linearized dynamics Eq. (1), we add the second to the

first row and to obtain the dynamics of the total density perturbation

δnq(t) = mq(t) + cq(t). The respective control space Jacobian then reads

J̃(q) =

(
−Dmq

2 (Dm −Dc)q
2

−fm −Dcq
2 − fc

)
. (6)

The first row of this Jacobian represents diffusive redistribution of total

density, and thus the dynamics in control space.

To put the reactive dynamics into the context of shifting local equi-

libria, consider an alternative linearization of f(m, c) in the vicinity of

the equilibrium
(
m∗(n), c∗(n)

)
:

f(m, c) ≈ σ0(n) ·
(
m−m∗(n)

)
= σ0(n) ·

(
c− c∗(n)

)
, (7)

where the eigenvalue of the equilibrium σ0(n) = fc − fm simply tells

us how fast the local densities relax towards it. Because we study a

small perturbation of uniform steady state, we also need to linearize this

equation in the total density n(x) = n0 + δn(x, t). We obtain

f(n0 + δn, c∗ + δc) ≈ σ0(n0) ·
(
δc− δnγ

)
, (8)

where γ := ∂nc
∗|n0 denotes the slope of the line of chemical equilibria in

control space. Using this linearization we obtain the Jacobian

J̃(q) =

(
−Dmq

2 (Dm −Dc)q
2

−σ0γ −Dcq
2 + σ0

)
, (9)

2
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which is identical to Eq. (6) because −σ0γ = fm as a straightforward

calculation shows.

If the dispersion relation of a mass-conserving two-component system

has a band of unstable modes, this band will always extend down

to q → 0. The derivative of the dispersion relation ∂q2σq|q=0 is thus

necessarily positive if there is a band of unstable modes. A simple

calculation using shows

∂q2σq|q=0 = −Dm∂nm
∗ −Dc∂nc

∗,

where we used ∂nm
∗ + ∂nc

∗ = 1. The geometric criterion for onset of

mass-redistribution is therefore

Dm∂nm
∗ +Dc∂nc

∗ < 0,

which is equivalent to

∂mc
∗ < −Dm/Dc (10)

using the slope of the kinetic nullcline in (m, c)-phase space ∂mc
∗ =

∂nc
∗/∂nm∗.
The control space representation of the reaction-diffusion system also

allows us to geometrically construct the linearized flow field in control

space, which is mathematically represented by the Jacobian (1.2) (see

Supp. Fig. 2).

Moreover, the generalization to other physical systems is possible on

the control space level. In the main text we presented the buckets-on-

springs system, where the conserved quantity is the water volume, while

redistribution is driven by height differences.

1.3 Flux-balance coordinate frame

As we established in the main text, every stationary pattern lies in a

flux-balance subspace,

c̃(x)−Dm/Dcm̃(x) = η0 (11)

where the intercept η0 is determined by a balance of reactive turnovers

on both sides of the interface. The geometric relation between the flux-

balance subspace and the kinetic nullcline f(m, c) = 0 underlies lateral

instability, pattern properties and bifurcations. In the main text these

relations are derived and illustrated in the limit Dm � Dc where the

3
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Supp. Fig. 2. Using the kinetic nullcline in control space, we can construct
the vector field generated by local reactive flow and diffusive flux which
encodes lateral instability. The red arrow represents the local reactive flow
towards the local equilibrium (black dot) on the line of local equilibria c∗(n).
This flow vector it only points in c-direction, i.e. does not change local total
density. The purple arrow represents the diffusive flux due to the diffusive
gradient q2δc. It is diagonal since the flux redistributes total density via
transport of cytosolic density. The actual flow of the system is given by the
sum of the reactive flow and the diffusive flux, represented by the blue arrow.
This reaction-diffusion flow drives the dynamics in control space, spanning
the control space distribution of the spatially extended system (blue line).

flux-balance subspace can be approximated by c = c0 = const.. These

results fully extend to arbitrary diffusion constants as we will show in

the following.

We introduce new coordinates in (m, c)-phase space parametrizing

the flux-balance subspace φ and its orthogonal complement η:

φ = m+Dm/Dc c, η = c−Dm/Dcm. (12)

In these coordinates, any flux-balance subspace is a line of constant

η, such that the spatial structure of a stationary pattern is contained

in phi(x) alone. All results in the main text were derived in the limit

Dm � Dc where φ(x) ≈ m(x) and c(x) ≈ c0 = η0 such that the flux-

balance subspace could be approximated to be a line of constant c = c0

in (m, c)-phase space. Using (φ, η)-coordinates these results turn out

to hold strictly for any ratio of diffusion constants. We just need to

transform the kinetic nullcline f(m, c) = 0 into (φ, η)-coordinates. To

that end we need the inverse transformation of (12) which read

m(φ, η) =
φ−Dη
1 +D2

, c(φ, η) =
Dφ− η
1 +D2

, (13)

where we introduced the relative unitless diffusion constant D = Dm/Dc.

4
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Applying (12) and (13) we obtain

f̃(φ, η) = f
(
m(φ, η), c(φ, η)

)
= f

(
φ−Dη
1 +D2

,
Dφ− η
1 +D2

)
. (14)

Transforming the geometric criterion for lateral instability Eq. (10) yields

the simple form

∂φη
∗(φ)

∣∣
φ∗ < 0.

1.4 Lateral excitability

What is the basin of attraction of plateau patterns in the subcritical

regime, i.e. for n−
exc < n0 < n−

lat or n+
lat < n0 < n+

exc (cf. Fig. 5 in

the main text)? We motivated a simple geometric criterion for the

excitability threshold: the part of the kinetic nullcline with negative

slope marks a threshold in (m, c)-phase space (cf. Fig. 6 in the main text).

When a part of the system is shifted beyond this threshold (whereas

the rest of the system has to shift in opposite direction due to mass

conservation), the flow in phase space will increase the amplitude of the

perturbation. If the reactive turnover due to the growing perturbation

dominates over the cytosolic flux, the system will make an excursion

and end up in a stationary pattern. Consider a perturbation where a

“block” of membrane density is moved from the region 0 < x < L− w
into the region L − w < x < L via a step function perturbation (see

Supp. Fig. 3a). Mass conservation relates the amplitude of the step

function on the left a, with the amplitude on the right aL−w
w

. The

maximal amplitude of the perturbation on the left is limited by the

uniform steady state, a < m = m∗(n0). For such a perturbation, our

simple geometric criterion predicts the excitability threshold to be

ath(L− w)/w = mth(n0) (15)

where the amplitude on the right is equals the threshold mth(n0) which

is determined by the intersection with the kinetic nullcline (cf. Fig. 6 in

the main text). Below the threshold, the system quickly returns to the

uniform steady state. Above it, mass-redistribution drives the system

further away from the uniform state and into a stationary pattern.

1.5 The “wave–pinningmodel”

In [3] Mori et al. introduce a model for cell polarity, which effectively

describes proteins of a single species, that can cycle between membrane

5
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Supp. Fig. 3. A simple geometric criterion predicts the excitability threshold
of subcritical patterns. (a) We consider a simple step perturbation of a
uniform steady state m that moves mass from the region x < L− w into the
region x > L − w. The perturbation amplitude on the left side of the step
is determined (via mass conservation) by the perturbation amplitude a on
the right which can be freely chosen in the range 0 < a < m. (b,c) To find
the basins of attraction numerically, we ran simulations of the wave-pinning
model initially perturbed as shown in (a) for different total densities and for
different perturbation profiles, parametrized by w and a. The excitability
threshold derived from the geometric criterion (red line) matches well with the
basin of attraction boundary between stationary pattern (blue) and uniform
state (gray). See Sec. 1.5 for the parameters.
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and cytosol. To stay consistent with our notation, let us denote the

respective densities by m and c (Edelstein-Keshet et al. use a and b).

The reaction term reads

f(m, c) =

(
k0 +

γm2

K2 +m2

)
c− δm, (16)

where the parameters in [Mori2008] are set to k0 = 0.067 s−1, γ = 1 s−1,

δ = 1 s−1 and K = 1µm−1. The system has a single chemical equilibrium

for all total densities n = m+ c.

For the diffusion constants Dm = 0.01µm2s−1, Dc = 10µm2s−1 the

chemical equilibrium is laterally unstable in the range 2.30037µm−1 <

n02.59822µm−1. A representative dispersion relation for n0 = 2.35µm−1

is shown in Supp. Fig. 1.

1.6 Discussion of wave–pinning

Redistribution of mass and shifting local equilibria are the general

principles underlying pattern formation in mass conserving systems. For

the case of a two component system, the mass redistribution framework

generically leads to polarized patterns established by mass-redistribution

and maintained by flux–turnover balance. Wave–pinning turns out out

to be a special case of polarized patterns, in which, far away from the

diffusive interface, the system is slaved to plateaus of local equilibria.

In the wave-pinning construction “bistability” (actually meaning

“bistability in flux-balance subspace”) is assumed a priori such that there

is always slaving to plateaus of reactive equilibria far away. As the above

discussion shows, wave–pinning is just a special case of polarized patterns.

Neither “bistability” nor slaving to plateaus of reactive equilibria are

necessary to obtain polarized steady states. Plateau patterns arise as a

special case of a broader polarity mechanism based on redistribution of

mass, scaffolding by local equilibria, and flux–turnover balance.

1.7 Comparison to domain walls bistablemedia

Domain walls in bistable media propagate when flux–turnover balance is

broken, and hence there must be an advective flow. Pattern formation

by mass redistribution is fundamentally different from bistable media

because the local equilibria are shifted due to mass redistribution. The

system with a stationary pattern can be locally monostable at every

7
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point in space, because the shifting of local equilibria, which scaffold

the pattern, is the essential pattern formation process. The interface of

a stationary pattern is maintained by flux-turnover balance — lateral

instability of the interface region prevents relaxation back to a uniform

steady state. In contrast, interfaces in bistable media are maintained by

local instability of the unstable fixed point inbetween t

2 Simplifying the Minmodel

2.1 Skeleton Minmodel in box geometry

The actual Min protein dynamics take place in the three dimensional

geometry of the rod shaped cell. Both MinD and MinE can freely

diffusive in the cytosol. MinD in its Active ATP-bound form can bind to

the membrane where it recruits both more active MinD as well as MinE

forming a membrane bound MinDE complex. In this complex, MinD

is hydrolyzed (converting ATP to ADP) followed by dissociation of the

complex, which releases both MinD and MinE into the cytosol. The

freshly released MinD is ADP bound and can only bind the membrane

again after nucleotide exchange. The interactions between MinD and

MinE are illustrated by the reaction network Supp. Fig. 4 and can be

mathematically modeled by mass action law.

SUPP. FIG. 4. Interaction
network of MinD and
MinE. Finite nucleotide
exchange can be ne-
glected for the analysis
of the elementary oscilla-
tion cycle.

The additional spatial dimension of the cytosolic domain is an essen-

tial aspect of the cellular geometry. Processes where proteins bind or

detach from the membrane generate cytosolic fluxes orthogonal to the

membrane. Since we are interested in the pattern formation mechanism

per se, and not in geometry adaption we consider the simplest geometry

capturing the coupling between cytosol and membrane: a rectangle of

height h and length L representing the cytosol, with one of the horizontal

edges representing the membrane. Robin boundary conditions at this

edge couple the membrane to the cytosol, while all other edges have

no-flux boundary conditions. The respective reaction-diffusion equations

of the Min protein dynamics in this two-dimensional “box-geometry”

8
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read:

∂tcDD(x, y, t) = DD∇2cDD(x, y, t)− λcDD(x, y, t), (17)

∂tcDT(x, y, t) = DD∇2cDT(x, y, t) + λcDD(x, y, t), (18)

∂tcE(x, y, t) = DE∇2cE(x, y, t)cDD(x, y, t), (19)

−DD∇ycDD(x, y, t)|y=0 = kdemde(x, t), (20)

−DD∇ycDD(x, y, t)|y=0 = −(kD + kdDmd(x, t))cDT(x, 0, t), (21)

−DE∇ycE(x, y, t)|y=0 = −kdEmd(x, t)cE(x, 0, t) + kdemde(x, t), (22)

∂tmd(x, t) = Dd∇2
xmd(x, t) + (kD + kdDmd(x, t))cDT(x, 0, t)

(23)

− kdEmd(x, t)cE(x, 0, t), (24)

∂tmde(x, t) = Dde∇2
xmde(x, t) + kdEmd(x, t)cE(x, 0, t) (25)

− kdemde(x, t). (26)

These dynamics conserve the total density of MinD and MinE respectively.

We use the parameters from [1].

2.2 Cytosol averaging and fast nucleotide exchange

In [2], it has been shown that the extra cytosolic dimension can only

be averaged out, if the height of the cytosol is much smaller than the

penetration depth of the cytosolic gradients induced by the attachment

dynamics H �
√
Dc/kon,max. In vitro the cytosol can not be averaged

out and is essential for the observed dynamics. Here we are interested in

the core pattern formation process in vivo where h ≈ 0.25µm and the

maximal membrane densities are much smaller than in vitro. Therefore

we can reduce the geometry to a one-dimensional line using the averaging

ansatz

c̄(x, t) =
1

h

∫ h

0

dy c(x, y, t)

for the cytosolic components. In the following we suppress the overbar

for the averaged cytosolic densities. The resulting model reads

∂tcDD = DD∇2
xcDD − λcDD + h−1 kdemde, (27)

∂tcDT = DD∇2
xcDT + λcDD − h−1 (kD + kdDmd)cDT, (28)

∂tcE = DE∇2
xcE − h−1 [kdEmdcE + kdemde], (29)

∂tmd = Dd∇2
xmd + (kD + kdDmd)cDT − kdEmdcE, (30)

∂tmde = Dde∇2
xmde + kdEmdcE − kdemde, (31)

9
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fulfilling the conservation of total MinD and MinE mass
∫ L

0

dx (cDD + cDT +md +mde) = L · nD, (32)

∫ L

0

dx (cE +mde) = L · nD. (33)

Linear stability analysis shows that the linear stability regimes (stable,

non-oscillatory unstable and oscillatory unstable) remain structurally

invariant when the nucleotide exchange is instantaneous (i.e. λ→∞).

In particular, in the regime where diffusive transport of MinE is set

to a slower timescale (dE � Dd), a finite nucleotide exchange rate is

quantitatively negligible (see Fig. 8a in the main text). In the following

analysis we will therefore use the reduced four-component system

∂tcD = DD∇2
xcD − h−1 [(kD + kdDmd)cD + kdemde]. (34)

∂tcE = DE∇2
xcE − h−1 [kdEmdcE + kdemde], (35)

∂tmd = Dd∇2
xmd + (kD + kdDmd)cD − kdEmdcE, (36)

∂tmde = Dde∇2
xmde + kdEmdcE − kdemde, (37)

which is obtained in the limit λ → ∞ where cDD → 0 and MinD can

immediately reattach after detaching from the membrane.

For notational convenience we absorb the height h in the cytoso-

lic concentrations hcD → ĉD, hcE → ĉE, and respectively rescale the

attachment rates kD/h → k̂D, kdD/h → k̂dE, kdE/h → k̂dE. After this

rescaling, the cytosolic component concentrations are also measured as

line densities like the membrane concentrations. We suppress the hats

to simplify notation.

3 Separation of di�usive transport timescales
Linear stability analysis shows, that the phase space structure of the

in vivo Min system extends smoothly towards arbitrarily small MinE

diffusion rates. This provides the motivation to impose a separation on

the level of diffusive MinE transport. Adding Eqs. (35,37) we obtain the

purely diffusive dynamics

∂tρE = DE∂
2
xρE + (Dde −DE)∇2

xmde. (38)

of the total MinE density

ρE(x) = cE(x) +mde(x). (39)

10

440 Geometrization of pattern formation:
From quantitative models to the identification of self-organization mechanisms



If Dde = DE, the above equation (38) reduces to ∂tρE = DE∂
2
xρE. This

means that forDde = DE the MinE total density and will always approach

a uniform distribution. Deviations from this uniform distribution of

MinE are caused by relative dominance of the MinE diffusion rates. This

inspires a transformation of these parameters:

DE = dE(1 + δE)

Dde = dE(1− δE)
with

dE = (DE +Dde)/2

δE = (DE −Dde)/(DE +Dde)
(40)

so that (38) becomes

∂τρE(x, τ) = ∇2
xρE(x, τ) + δE∇2

x

(
cE(x)−mde(x)

)
. (41)

The timescale separation is now encoded in the parameter dE with the

respective slow time τ = (dE/L
2)t.

On the fast timescale t, the MinE density profile ρE(x, τ) is almost

stationary and therefore has the role of a parameter. We want to find the

steady states of the fast dynamics in dependence of this parameter. The

dynamic variables on the fast timescale are the MinD components md(x),

cD(x). We denote their stationary (pattern) state by
(
m̃d(x), c̃D(x)

)
.

Our goal is to find the MinD steady state profiles for a fixed MinE profile.

The individual MinE densities cE and mde are then determined by the

local equilibria of MinE for the given local MinE total density ρE

(m∗
de, c

∗
E) : fE(md,mde, cE) = 0 & cE +mde = ρE. (42)

Solving this pair of equations simply yields

c∗E
(
m̃d(x), ρE(x, τ)

)
=

ρE(x, τ)

1 + kdE
kde
m̃d(x)

, (43)

m∗
de

(
m̃d(x), ρE(x, τ)

)
=

ρE(x, τ)

1 + kdE
kde
m̃d(x)

· kdE

kde

m̃d(x), (44)

for the local equilibria of MinE. These can then be plugged into (34)

and (36) to obtain

local
parameter

fast slow

SUPP. FIG. 5. E�ective
MinD reaction scheme,
with MinE entering as a
local control parameter.

DD∇2
x c̃D(x)− feff

(
m̃d(x), c̃D(x); ρE(x, τ)

)
= 0, (45)

Dd∇2
xm̃d(x) + feff

(
m̃d(x), c̃D(x); ρE(x, τ)

)
= 0, (46)

with

∫ L

0

dx m̃d(x) + c̃D(x) +m∗
de(m̃d(x), ρE(x)) = L · nD, (47)
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and the effective MinD reactive term

feff(md, cD; ρE) = (kD + kdDm)c− kdEmdρE

1 + kdEmd

kde

. (48)

These equations define the steady states of a two–component mass–

conserving reaction–diffusion system.

3.1 Galerkin expansion of flux–turnover balance

We study the Min system close to the onset of lateral instability, i.e.

for L & Lmin,D, where Lmin,D = π/qmax,D is the right edge of the band

unstable modes of the effective MinD system Eqs. (45,46). In such a

short system, only the first harmonic mode cos(q1x), with q1 = π/L, is

unstable. The all higher harmonics cos(kπx/L) with k ≥ 2 are strongly

suppressed by diffusion. We can therefore apply a Galerkin expansion,

expressing the approximate solution as a sum of harmonics and neglecting

higher harmonics. The error due to that truncation lies in a subspace

orthogonal to the approximate solution. In a short system, we can

truncate after the first harmonic such that the Galerkin ansatz becomes

particularly simple:

m̃1
d(x) = m0

d +m1
d cos(q1x), (49)

c̃1
D(x) = c0

D −Dm/Dcm
1
d cos(q1x), (50)

where we used the flux-balance condition (11). Because the slaved

component m∗
de(md, ρE) contributes to the total density of MinD (cf.

Eq. (47)), the average total density in Galerkin approximation becomes

nD = m0
d + c0

D +
1

L

∫ L

0

dxm∗
de

(
m̃1

d(x), nE + ρ1
E cos(q1x)

)
, (51)

where we approximated the MinE profile as ρE(x) ≈ nE + ρ1
E cos(q1x)

in accordance with our Galerkin ansatz. The integral in (51) can be

calculated analytically, e.g. using Mathematica.

To express flux-turnover balance in the Galerkin solution subspace

(spanned by (1, cos(q1x)) we need to project the reactive flow feff(m̃d(x), c̃D(x); ρE(x))

into this subspace

f0 :=
1

L

∫ L

0

dx feff

(
m̃1

d(x), c̃1
D(x);nE + ρ1

E cos(q1x)
)

f1 :=
2

L

∫ L

0

dx cos(q1x)feff

(
m̃1

d(x), c̃1
D(x);nE + ρ1

E cos(q1x)
)
.
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These integrals, similarly to the one in (51), can be calculated analytically.

Flux-turnover balance

Dm∇xm̃
∣∣
x0

=

∫ x0

0

dx f0 + f1 cos(q1x) (52)

= −
∫ L

x0

dx f0 + f1 cos(q1x) (53)

then yields two conditions

f0 = 0, (54)

f1 = −Dmπ/Lm
1
d, (55)

representing the conditions that (i) the total turnover must vanish, and

(ii) turnover in either half-cell balances the flux across the interface x0 =

L/2. Together with the total density (51) these conditions determine

the Galerkin solution (m0
d, c

0
D,m

1
d) in dependence of the MinE profile

amplitude ρ1
E.

3.2 Lateral instability of the essential (control variable) dy-
namics

Above we have shown that the essential degrees of freedom of Min protein

dynamics are the total densities of MinD and MinE. Their diffusive

transport underlies both, polarization of MinD, driven by redistribution

of MinD mass, as well as the oscillation of the MinD polarization direction,

emerging due to redistribution of MinE mass. In the following we

further corroborate this finding by showing that the lateral stability of a

uniform steady state is fully determined by essential (mass-redistribution)

dynamics.

Originally we performed linear stability analysis (of uniform steady

states) of the full 4-component PDE system (34) to (37). Let us now

study the linear stability of a system reduced to the essential degrees of

freedom:

The core dynamics of MinD, without MinE transport (dE = 0), are

an effective 2-component system (cf. Eqs. (45,46). Lateral instability

of this core MinD system is driven by cascading mass-redistribution.

This instability sets in at the minimal system length Lmin,D = π/qmax,D

where the eigenvector eqmax,D
∼ (Dc,−Dm)T in phase space coincides

with the flux-balance subspace (for Dm � Dc we can approximate

13
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eqmax,D
≈ (1, 0)T). Therefore the amplitude dynamics of modes q close

to qmax,D can be projected onto the flux-balance subspace (coordinate

φ = m−Dm/Dcc, for simplicity we can approximate as φ = m as long as

Dm � Dc), which captures the essential MinD mass redistribution that

drives lateral instability. In that subspace the amplitude growth rate

simply reads σD(q) = −Dφq
2 + fφ. From this the maximal wavenumber

can simply be read off as q2
max,D = fφ/Dφ.

How does switching on slow redistribution of MinE mass (dE �
Dd) influence the dynamics at onset of pattern formation L ≈ Lmin,D?

Essentially we want to know how the coupling between MinD and MinE

perturbs the eigenvalue σ(qmax,D) of the critical mode. From the above

analysis of the Min oscillations, we learned that MinD polarized states

are controlled by redistribution of MinE mass. We therefore replace the

individual dynamics of the two MinE conformal states in the full system

(34) to (37) by the effective dynamics of the total MinE density ρE(x, t)

given by Eq. (41) (mathematically this approximation is justified by the

separation of timescales; more abstractly put: we project the dynamics

of the two MinE densities onto their slow invariant manifold). Using the

abbreviation

g(md, ρE) = cE(md, ρE)−mde(md, ρE) = ρE
kde − kdEmd

kde + kdEmd

In the projection onto the essential (mass-redistribution) degrees of

freedom, we obtain the effective Jacobian for the mode (harmonic)

Fourier mode cos(qx)

Jeff =

(
σD(q) fρE
gφ(q) gρE(q)

)
=

(
σD(q) fρE

−dE δE q
2 gφ −dE q

2(1 + δE gρE)

)
, (56)

where fρE , gφ and gρE are coupling coefficients between MinD and

MinE total density dynamics linearized around the uniform steady state

(md(x) = m∗
d, ρE(x) = nE)

fρE = ∂ρEf
∣∣
∗ = − kdekdEm

∗
d

kde + kdEm∗
d

,

gφ = ∂φg
∣∣
∗ = − kdekdEnE

(kde + kdEm∗
d)2

,

gρE = ∂ρEg
∣∣
∗ =

kde − kdEm
∗
d

kde + kdEm∗
d

.

The eigenvalues of the effective Jacobian (56) yield linear stability of the

system in the vicinity qmax,D (in fact we can reproduce the full dispersion

14
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relation and the phase diagram as long as dE < Dd, so the mapping

to the essential phase space only breaks down when MinE diffusion

completely dominates over MinD diffusion. In this case there is no

pattern formation at all because the lateral instability due to MinD mass

redistribution is suppressed by fast MinE redistribution). In particular

at the onset of lateral instability q = qmax,D we find to leading order

σ(qmax,D) =
√
−δE fφgφfρE · [dE/Dφ]1/2 +O[dE/Dφ].

Hence, if δE > 0 growth rate will become imaginary — the system will

be oscillatory at onset (L ≈ Lmin,D). Using the growth rate σ(q) we can

write down the initial time evolution of the Fourier amplitude δmq(t):

δmq(t) ≈ δmq(0) · exp
[
σD(q)

]
· exp

[√
dE

√
gφfρE

]

The first term represents lateral instability by redistribution of MinD

mass while the second term arises from a secondary bifurcation due to

redistribution of MinE mass on the slow timescale τ making the onset

dynamics oscillatory if δE > 0. The oscillations are not intrinsic to the

core mechanism of pattern formation (MinD polarization) but only arise

due to coupling to MinE redistribution. Conversely, oscillatory instability

can only arise under the precondition, that the reduced (2-component)

MinD system is laterally unstable. Hence, the observed “oscillatory

Turing instability” is not a mechanistically separate class of instability.
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Abstract: 

Robust protein patterning is vital for many fundamental cellular processes. An 
established motif of intracellular pattern-forming networks is the self-organization of 
nucleoside triphosphatases (NTPases), which upon interaction with a cognate NTPase 
activating protein switch between an NTP-bound and nucleoside diphosphate (NDP)-
bound form. In the Min system, a prototypical example for pattern formation during 
bacterial cell division, the adenosine triphosphatase (ATPase) MinD in turn triggers a 
conformational switch in its activating protein MinE from a latent to a reactive state, 
although the role of such mutual switching is unclear. By combining nonlinear 
dynamics analyses and in vitro reconstitution of mutant proteins, we show here that 
the MinD-dependent switch of MinE is essential for pattern formation in a broad and 
physiological range of protein concentrations. Our combined theoretical and 
experimental approach demonstrates that though simpler reaction networks can 
reproduce patterns, interlinking protein switches confers pattern robustness  - a 
fundamental prerequisite for the evolvability of organisms.   
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Main Text 
Correct and robust protein localization is vital for many fundamental cellular 
processes ranging from cell division 1 and chromosome segregation2 to chemotaxis3. 
An intriguing question is to what extent these intrinsically complex processes can be 
reduced to their core principles and, in turn, what is the role of molecular details? An 
established motif of intracellular networks is the self-organization of P-loop NTPases, 
molecular switches that can exist in an active, NTP-bound and an inactive, NDP-
bound form4,5. Transitions between these states are facilitated by an NTPase-
activating protein, which is essential for protein pattern formation. 
 
Among intracellular pattern-forming networks, the E. coli Min system is a 
particularly instructive example, and has become a paradigmatic model for both 
experimental6-10 and theoretical6,11-15 studies of protein pattern formation over the 
last 15 years. Here, ATP-bound MinD dimerizes and binds to the plasma 
membrane16,17. It then recruits further MinD-ATP, as well as its ATPase-activating 
protein MinE, which together form membrane-bound MinDE complexes16. MinE 
stimulates MinD’s ATPase activity, thereby initiating disintegration of MinDE 
complexes and subsequent release of MinE and ADP-bound MinD into the 
cytosol16,18. Reattachment of MinD is delayed by the requirement for nucleotide 
exchange (substitution of ATP for ADP)12,17. This biochemical reaction network, 
which we refer to as the skeleton network (Fig. 1a), suffices to generate Min patterns, 
as has been confirmed by numerous experimental and theoretical studies8,11-14,16.  
 
In particular, the latter suggest that the MinE-induced conversion of MinD from an 
ATP- to an ADP-bound state (Fig. 1b) is critical for efficient localization of the FtsZ 
ring to mid-cell12, formation of multistable patterns, and adaptation to cell geometry 
8. However, all theoretical studies11-15 also suggest that patterns can form only if 
MinE is less abundant than MinD, but this prediction is decisively refuted by 
reconstitution experiments, in which patterns emerge for MinE/MinD ratios ranging 
between 0.125 and 56,9,19-21. This contradiction prompts a reconsideration of the 

Geometry and mass-conservation:
The switching paradigm and pattern robustness 449



current perspective on the Min reaction network and raises the general question of 
how pattern-forming networks become robust against variations in protein 
concentrations.  
 
Indeed, recent biochemical findings22,23 suggest a possible extension of the skeleton 
network. In addition to the MinE-induced switch in MinD's nucleotide state, MinE 
itself is now believed to undergo a MinD-dependent conformational switch. 
According to this notion, upon encountering membrane-bound MinD, cytosolic MinE 
unmasks its buried MinD- and membrane-interaction regions, i.e. its anti-MinCD 
helix and membrane-targeting sequence  (MTS), respectively (Fig. 1b). In this open 
conformation, MinE is assumed22 to rapidly bind to membrane-bound MinD and 
stimulate its ATPase activity. In addition, after dissociation of the MinDE complex 
and release of MinD-ADP, MinE’s MTS enables it to remain bound to the membrane, 
and the protein may reassociate with another membrane-bound MinD molecule or 
eventually return to the cytosol7,22,23. Upon detachment, open MinE quickly re-
assumes its latent conformation with its MinD- and membrane-interaction regions 
buried  (Fig. 1b). However, it is reasonable to assume that, after detachment, MinE 
persists in its reactive conformation for a short time before reverting to its latent state. 
In the reactive state, MinE could again be rapidly recruited to membrane-bound 
MinD. These two elements of MinE's conformational switch – the MinE-MinD 
interaction and the persistent membrane binding – could independently affect the 
formation of patterns. To analyze their respective impacts on pattern robustness to 
variations in the MinE/MinD ratio, we numerically studied the dynamics of reaction 
networks that exhibit either aspect of the switch by a linear stability analysis, and 
then tested the theoretical predictions by reconstituting the networks using suitable 
MinE mutants (see Methods and Supplementary Note 1, 2). We find that whereas 
persistent membrane binding does not affect the protein concentration range 
compatible with pattern formation, the MinE-MinD interaction switch of MinE is 
critical for patterns to emerge over a broad and physiological range of protein 
concentrations. Our study shows that interlinked protein switches are essential to 
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achieve robustness of patterns in intracellular reaction-diffusion networks, which are 
known to regulate many vital cellular processes.  
 

Results 
MinE-MinD interaction switch. First, we addressed the functional relevance of the 
MinD-induced exposure of MinE’s buried MinD interaction region alone. For this, 
we extended the skeleton network to include both a latent, closed MinE conformation 
with low, and a reactive, open form with high recruitment rates to membrane-bound 
MinD, 𝑘"#$  and 𝑘"#% , respectively (Fig. 1c). Upon recruitment of MinE, a membrane-
bound MinDE complex is formed, in which MinE is assumed to remain in its reactive 
state. After disintegration of a MinDE complex, both partners are released into the 
cytosol. The timescale for reversion of reactive MinE to its latent conformation is 
taken to be 0.01s, the upper bound for a typical conformational switch24.  
 
Our analysis shows that in the physiologically relevant regime of low 𝑘"#$  and high 
𝑘"#% , patterns are formed over a broad range of MinE/MinD ratios, including those 
where MinE is present in excess (Fig. 2a, b). To test these predictions experimentally, 
we made use of the MinE L3E mutant, which is impaired in membrane interaction22. 
It should therefore be capable of undergoing the MinD-induced interaction switch, 
without staying attached to the membrane in the absence of MinD (see 
Supplementary Note 2). When reconstituted together with MinD on flat membranes, 
MinE L3E promoted pattern formation over a wide range of MinE/MinD ratios, just 
like wild-type MinE (Fig. 3). In agreement with our predictions (Fig. 2a, b), patterns 
formed even when MinE was present in excess over MinD (Fig. 3, 4). 
 
These results suggest that MinE’s ability to switch between high and low affinity for 
MinD is responsible for the robustness of Min protein patterns. If so, locking MinE in 
its reactive conformation should decrease the concentration range compatible with 
pattern formation. To test this prediction, we took advantage of the I24N mutation, 
which was previously shown to bypass the need for MinD to trigger MinE’s 
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conformational switch (22, Supplementary Note 2). Strikingly, introducing this 
mutation into either WT MinE or MinE L3E dramatically reduced the concentration 
range in which protein patterns formed  (Fig. 3, 4). In agreement with our model 
predictions, patterns only prevailed in a very narrow range and only for MinE/MinD 
ratios far below 1 (Fig. 3, 4). In particular, MinE I24N forms patterns only outside the 
physiological concentration range 25, consistent with cell division defects described in 
vivo22,26. In summary, our analyses demonstrate that mutually interlinked protein 
switching is critical for the robustness of an exemplary pattern-forming system 
against variations in protein concentrations. 
 
The relationship between the MinE/MinD ratio and the ability to generate patterns 
can be understood by considering the roles of the two proteins in the establishment of 
Min oscillations. Min oscillations are essentially characterized by alternating 
dominance of MinE and MinD12,19. In membrane regions depleted of Min proteins, 
cooperative binding of MinD first facilitates its accumulation on the membrane 
(MinD dominance). Then recruitment of MinE, and MinE-induced detachment of 
MinD, outpaces further MinD accumulation, and progressively depletes it from the 
membrane (MinE dominance). But MinE-induced detachment can only outpace 
MinD accumulation if the released MinE is recruited more rapidly to membrane-
bound MinD than is MinD itself. Thus, the rate of recruitment of MinE must be 
higher than that of MinD. Since the skeleton network incorporates only a single, 
rapidly recruited MinE conformation, initial dominance of MinD accumulation is 
feasible only if [MinD] exceeds [MinE]. In contrast, if MinE can exist both in a latent 
and a reactive conformation, dominance of MinD over MinE becomes possible even 
if [MinE] exceeds [MinD]. This is because initially most MinE is in the latent form, 
whose recruitment rate is low (Fig. 2c). This would lead to accumulation of MinD on 
the membrane and Min dynamics would cease. However, after inducing ATP 
hydrolysis by MinD, MinE is released into the cytosol in its reactive conformation. 
As this state is short-lived, the reactive species is effectively restricted to a thin 
boundary layer close to the membrane (Fig. 2c), and will be preferentially recruited 
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(over cytosolic MinD) to membrane-bound MinD. This enables a transient 
dominance of MinE, which displaces MinD from the membrane. Remarkably, our 
theoretical analysis predicts an extended range of MinE/MinD ratios that support 
patterns even for very rapid MinE switching, i.e. when the layer of reactive MinE (~ 
0.7 µm) is orders of magnitude thinner than the depth of the cytosol (~ 5,000 µm)  
(Supplementary Note 3).  
 
Persistent MinE membrane binding. As MinE’s conformational switch affects its 
affinity for both MinD and the membrane22, we independently explored the impact of 
persistent MinE membrane binding mediated by its MTS (Fig. 1d, Supplementary 
Note 1, 4). This was previously shown to influence Min patterns15,19,20,27,28, and was 
implied to be required for pattern formation 15, although the validity of the theoretical 
model15 is controversial29. From our stability analysis (Supplementary Note 4, 5, 
Supplementary Figure 2, 3) in combination with our reconstitution experiments (Fig. 
3, 4) we infer that persistent membrane binding is not required for pattern formation 
and, unlike the MinE-MinD switch, does not markedly affect the concentration range 
of in vitro Min patterns (Fig. 3, 4). 
 
The skeleton network. In the MinE L3E/I24N double mutant, both membrane 
interactions and the MinE-MinD interaction switch are disabled, mimicking the MinE 
dynamics in the original skeleton network12. This mutant still self-organized into 
dynamic protein patterns, albeit only in a narrow range of MinE/MinD ratios (Fig. 3, 
4), and – notably – only if [MinD] exceeds [MinE], in agreement with previous 
theoretical studies11-14. This result shows that, given a suitable choice of low 
MinE/MinD ratios, neither persistent membrane binding nor the MinE-MinD switch 
is required to generate patterns, and confirms the skeleton network as a valid and 
useful basis for the investigation of pattern-forming mechanisms in the Min system.  
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Discussion 
In view of the ubiquity of structurally switchable proteins, including NTPases and 
possibly further NTPase-activating proteins4,5, our study sheds new light on the role 
of alternative conformations in pattern formation and spatial regulation. Mutually 
interlinked switching enables self-regulation of the pattern-forming network by 
dynamically adapting its constituents’ mode of action (Fig. 2c, 4).  We propose that 
mutually interlinked switching is likely to be a general design principle which 
enhances the robustness of vital patterns to variations in protein concentrations in 
many biological reaction-diffusion systems. In particular, mutual switching of active 
and latent states has been reported for the widely conserved F1hF-F1hG circuit, 
which is essential for flagellar patterning4. It is also thought to play a major role in 
eukaryotic systems – for instance, in the process of cell polarization in budding 
yeast30. In the context of evolution, robustness of biochemical circuits is an important 
prerequisite for adaptability to environmental change31. 

 

Methods: 

Mathematical Methods 

Theoretical prediction of MinE to MinD ratios that permit the formation of patterns 

Our theoretical analyses are based on different biochemical reaction circuits 
(networks) that incorporate either a MinE-MinD interaction switch or persistent MinE 
membrane binding. These networks extend a previous model12,14 for the Min system, 
which accounts for the molecular interactions that are believed to be essential for Min 
protein dynamics (see Supplementary Methods), to include a MinE-MinD interaction 
switch and persistent MinE membrane binding, respectively, as additional features.  

Reaction-diffusion network with a MinE-MinD interaction switch  
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Extension of the previously studied skeleton network12,14 to include a MinE-MinD 
interaction switch leads to the following set of partial differential equations for the 
cytosolic concentrations of MinD-ATP,	𝑢(), MinD-ADP, 𝑢((, reactive MinE,	𝑢#,%, 
and latent MinE,	𝑢#,$, and the concentrations of membrane-bound MinD,	𝑢", and 
membrane-bound MinDE complexes,	𝑢"+. 

𝜕-	𝑢(( = 𝐷0∇23𝑢(( − 	𝜆	𝑢((,	
𝜕-	𝑢() = 𝐷0∇23𝑢() + 	𝜆	𝑢((,	
𝜕-	𝑢#,% = 𝐷0∇23𝑢#,% − 	𝜇	𝑢#,%,	
𝜕-	𝑢#,$ = 𝐷0∇23𝑢#,$ + 	𝜇	𝑢#,%,	

𝜕-	𝑢" = 𝐷8∇93𝑢" +	𝑓" 𝑢", 𝑢(), 𝑢#,%, 𝑢#,$ ,	

𝜕-	𝑢"+ = 𝐷8∇93𝑢"+ +	𝑓"+ 𝑢"+, 𝑢", 𝑢#,%, 𝑢#,$ 	. 

These equations are written in coordinate-free form, and the indices c or m signify 
that the corresponding Laplacian is acting in the cytosol or at the membrane, 
respectively. The chemical reactions on the membrane are given by the nonlinear 
functions  

𝑓" 𝑢", 𝑢(), 𝑢#,%, 𝑢#,$ : = 	 𝑘( + 𝑘"(𝑢" 𝑢() − 𝑢" 𝑘"#$ 𝑢#0 + 𝑘"#% 𝑢#= ,	
𝑓"+ 𝑢"+, 𝑢", 𝑢#=, 𝑢#0 : = 	𝑢" 𝑘"#0 𝑢#0 + 𝑘"#= 𝑢#= 	− 𝑘"+𝑢"+, 

where 𝑢> denotes the respective cytosolic densities immediately adjacent to the 
membrane. These equations are complemented by nonlinear reactive boundary 
conditions at the membrane surface:  

𝐷0 ∇?uAA 8 = 𝑘"+𝑢"+,	
𝐷0 ∇?uAB 8 = − 𝑘( + 𝑘"(𝑢" 𝑢(),	
𝐷0 ∇?uC,D 8

= 𝑘"+𝑢"+ − 𝑘"#% 𝑢"𝑢#,%,	

𝐷0 ∇?uC,E 8
= −𝑘"#$ 𝑢"𝑢#,$	.	
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Moreover, we use a no-flux boundary condition at all non-reactive surfaces. The 
above set of reaction-diffusion equations conserves the total protein number of MinD 
as well as MinE. For the in vitro experiments a simple box geometry is typically 
used, in which the reactive lipid bilayer (membrane) is located at the bottom of the 
box and the cytosol extends in the vertical direction. All other boundaries are 
reflective. Since the lateral extension of in vitro box geometries is typically very large 
(~10I	𝜇𝑚) compared to the wavelength of the pattern (~10	𝜇𝑚), we perform our 
analyses in a box of length (~103	𝜇𝑚) and employ periodic boundary conditions. 
The height of the experimental box geometry is similarly very large (~10I	𝜇𝑚), such 
that the dynamics perpendicular to the membrane must be taken into account29.  

Varying the MinE protein concentration for a fixed MinD protein concentration and a 
fixed set of reaction rates (see Supplementary Table 1), we numerically determined 
the linear stability of the stationary solutions (see Supplementary Note 1), and 
identified the regimes of MinE protein concentrations in which perturbations with 
respect to a steady state with uniform protein distribution on the membrane grow and 
patterns are predicted (Fig. 2b).  The maximal MinE concentrations for a fixed MinD 
concentration of 1µM and different recruitment rates of reactive and latent MinE are 
plotted in Fig. 2a. We identified the regimes of MinE concentration where patterns 
are predicted by carrying out an extensive survey of different reaction rates, and 
obtained qualitatively similar results in all cases.   

Reaction-diffusion network with persistent MinE membrane binding 

In contrast to the biochemical reaction network with a MinE-MinD interaction 
switch, the network with persistent MinE membrane binding has only one MinE 
conformation with concentration𝑢#; however, after disintegration of MinDE 
complexes and MinD detachment, MinE can now persist as a MinD-free, membrane-
bound form with a concentration 𝑢+. On the membrane, this ‘free’ MinE can either 
reassociate with membrane-bound MinD with a rate 𝑘+" or disengage and return to 
the cytosol with a rate 𝑘+. The ensuing reaction-diffusion equations read 

456 Geometry and mass-conservation:
The switching paradigm and pattern robustness



𝜕-	𝑢(( = 𝐷0∇23𝑢(( − 	𝜆	𝑢((	,	
𝜕-	𝑢() = 𝐷0∇23𝑢() + 	𝜆	𝑢((	,	
𝜕-	𝑢# = 𝐷0∇23𝑢#	,	
𝜕-	𝑢" = 𝐷8∇93𝑢" +	𝑓" 𝑢", 𝑢+, 𝑢(), 𝑢# 	,	
𝜕-	𝑢"+ = 𝐷8∇93𝑢"+ +	𝑓"+ 𝑢"+, 𝑢", 𝑢+, 𝑢# 	,	
𝜕-	𝑢+ = 𝐷8∇93𝑢+ +	𝑓+ 𝑢"+, 𝑢", 𝑢+ 	. 

The chemical reactions on the membrane are now given by the nonlinear functions  

𝑓" 𝑢", 𝑢+, 𝑢(), 𝑢# : = 	 𝑘( + 𝑘"(𝑢" 𝑢() − 𝑢" 𝑘"#KL + 𝑘+"𝑢+ 	,	
𝑓"+ 𝑢"+, 𝑢", 𝑢+, 𝑢# : = 	𝑢" 𝑘"#𝑢# + 𝑘+"𝑢+ 	− 𝑘"+𝑢"+	,	
𝑓+ 𝑢"+, 𝑢", 𝑢+ : = 	𝑘"+𝑢"+ − 𝑢"𝑘+"𝑢+ − 𝑘+𝑢+	, 

with 𝑢> denoting the respective densities in the bulk, but in the immediate vicinity of 
the membrane. These equations are complemented by nonlinear reactive boundary 
conditions at the membrane surface:  

𝐷0 ∇?uAA 8 = 𝑘"+𝑢"+	,	
𝐷0 ∇?uAB 8 = − 𝑘( + 𝑘"(𝑢" 𝑢()	,	
𝐷0 ∇?uC 8 = 𝑘+𝑢+ − 𝑘"#	𝑢"𝑢#	,	

 

and a no-flux boundary condition at any non-reactive surfaces. In analogy to the 
reaction network with MinE-MinD interaction switch, we varied the MinE protein 
concentration for a fixed MinD concentration and fixed reaction rates (see 
Supplementary Table 2) and numerically determined the linear stability of the 
stationary solutions (see Supplementary Note 1). In this way, we identified the 
regimes of MinE protein concentrations where perturbations with respect to a steady 
state with uniform protein distribution on the membrane are predicted to grow and 
form patterns (Supplementary Fig. 2b). The maximal MinE concentration for a fixed 
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MinD concentration of 1	µM for different reassociation rates and MinE detachment 
rates is plotted in Supplementary Fig. 2a. We identified the regimes of MinE 
concentration in which stable pattern formation is predicted in the course of an 
extensive survey of different reaction rates, and obtained qualitatively similar results 
in all cases.   

Experimental Methods 
Protein purification  
Expression and purification of His-MinD, His-eGFP-MinD as well as WT and mutant 
His-MinE were performed as described previously (29, 6).  
Self-organization assays  
Self-organization assays on flat supported lipid bilayers were performed essen- tially 
as described previously (29, 6). Briefly, SLBs composed of E. coli polar lipids 
(Avanti Polar Lipids, Alabaster, AL, USA) were prepared on glass as described in 
(29). Then, 1µM MinD incl. 20% eGFP-MinD, 2.5mM ATP (F. Hoffmann-La Roche 
AG, Basel, Switzerland) and MinE of varying concentration were added to Min 
buffer (25 mM Tris-HCl pH 7.5, 150mM KCl, 5mMMgCl2) in a total volume of 200 
µL. The samples were then incubated for several hours to provide ample time for 
protein patterns to form. The concentration ranges compatible with pattern formation 
reported here were consistently observed in at least three independent experiments. 
For 0.3µM MinE L3E/I24N, patterns were observed in only 50% of experiments. We 
therefore categorized this concentration as being incapable of reliable pattern 
formation.  
Microscopy and image processing  
Fluorescence imaging was performed with a ZEISS LSM780 confocal laser scan- 
ning microscope equipped with a Zeiss C-Apochromat 40x/1.20 water-immersion 
objective (Carl Zeiss AG, Oberkochen, Germany). All images were processed using 
Fiji. As fluorescence intensities were low around the upper bounds in MinE 
concentration compatible with pattern formation, we adjusted the brightness and 
contrast levels to better visualize the transition. As, for consistency, the same 
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adjustments were equally made for all other images, the intensities in the micro- 
graphs corresponding to low MinE concentrations can be displayed outside the 

dynamic range. 
Data availability: All relevant data are within the paper and its Supporting 

Information files. 
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Figures 

 

Figure 1. MinE's conformational switch suggests distinct ways to form MinDE 
complexes. (a) The skeleton model only accounts for one MinE conformation. (b) 
Scheme of interlinked MinDE protein switches: Whereas reactive MinE is known to 
trigger MinD's ATPase activity, membrane-bound (active) MinD induces a switch of 
MinE from a latent to a reactive state with inaccessible or exposed MinD interaction 
region (yellow) and membrane-targeting sequence (purple), respectively. (PDBs 
1EVO, 2KXO and 3Q9L illustrate latent and reactive MinE and MinD, respectively). 
(c) The proposed extension to the skeleton network includes a MinE-MinD 
interaction switch for interconversion between latent and reactive states of MinE, 
which are weakly or strongly recruited to MinD with rates 𝑘"#$  or 𝑘"#% , respectively. 
(d) Persistent MinE membrane binding allows MinDE complexes to form either by 
recruitment of cytosolic MinE or reassociation of membrane-bound MinE with 
membrane-bound MinD. 
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Figure 2. The MinE-MinD interaction switch is essential for the robustness of 
Min patterns in silico. (a) For high 𝑘"#%  and low 𝑘"#$  (compared to the MinD 
recruitment rate 𝑘"(), linear stability analysis predicts an increase in the maximal 
MinE concentration compatible with patterns ([MinE]max) relative to the skeleton 
network where 𝑘"#% = 𝑘"#$  (indicated by S). [MinD] is fixed at 1 µM. (b) Along the 
trajectory (I) in (a) the range of [MinE] compatible with patterns increases with 𝑘"#%  / 
𝑘"#$ . (c) MinD-induced switching of MinE facilitates alternation of MinD 
accumulation and MinD depletion. For kinetic rates see Supplementary Tables 1, 2. 
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Figure 3. Impairment of 
MinE’s MinE-MinD 
interaction switch 
dramatically decreases the 
robustness of Min protein 
patterns in vitro. 
Reconstitution assays were 
performed on flat supported 
lipid bilayers in the presence 
of 1 µM MinD with 20 % 
eGFP-MinD. The L3E 
mutation, which impairs 
MinE membrane binding, 
permits pattern formation 
over a similar range of MinE 
concentrations as WT MinE 
(purple background). In 
contrast, the I24N mutation, 
which locks MinE into its 
reactive conformation, 
dramatically decreases the 
maximal MinE concentration 
at which patterns can form. 
Scale bar: 50 µm. 
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Figure 4. Mutually interlinked switching dramatically increases the robustness 
of protein pattern formation. (a) The MinE variants in which the MinE-MinD 
interaction switch is disabled (I24N and L3E/I24N) display patterns only within a 
narrow range (purple region) of MinE/MinD ratios below 1 (dotted line). (b) In 
contrast, variants that retain the interaction switch (WT and L3E) also form patterns 
even when MinE is present in great excess. The schematic networks highlight the 
roles of MinE and MinD in dynamically switching the activity of their respective 
interaction partner. 
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Mutually interlinked protein switches are
essential for the robustness of protein patterns
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Supplementary Note 1: Reaction-diffusion equations accounting
for a MinD-dependent switch of MinE

Reaction-diffusion equations including a MinE-MinD interaction
switch

We base our mathematical models on previous models1–3 for the Min system that ac-
count for the molecular interactions that are taken to be essential for the Min protein
dynamics. This model, which we referred to as skeleton network in the manuscript,
includes the following set of biochemical reactions (Supplementary Figure 1a):

1. The attachment of MinD-ATP from the bulk, uDT , to the membrane with rate
constant kD.

2. The recruitment of bulk MinD-ATP, uDT , to the membrane by membrane
bound MinD, ud , with rate constant kdD.

3. The formation of membrane bound MinDE complexes, ude, through the re-
cruitment of bulk MinE.

4. The disintegration and detachment of membrane bound MinDE complexes,
ude, into bulk MinD-ADP, uDD, and bulk MinE with rate kde.

5. The reactivation of bulk MinD-ADP, uDD, by nucleotide exchange to MinD-
ATP, uDT , with rate λ .

To incorporate a MinE-MinD interaction switch of MinE we extend this skeleton
network by the following reactions (Supplementary Figure 1b):

1. MinE exists in a latent and a reactive conformation, uE,l and uE,r, respectively.
The recruitment rates of latent and reactive MinE, kl

dE and kr
dE , respectively,

can be different while the skeleton network is recovered for kr
dE = kl

dE , i.e. if
there is only one MinE conformation.

2. recruitment of latent or reactive MinE leads to the formation of MinDE com-
plexes, in which MinE exists in its reactive form. After disintegration and
detachment of membrane-bound MinDE complexes bulk MinE persists in
its reactive form for a very short time before it undergoes a conformational
switch to latent MinE with a rate µ .

All components are able to diffuse in their respective domains (bulk or mem-
brane). Since only the distinction between bulk and membrane diffusion is im-
portant for the dynamics, and since the diffusion coefficients with a domain (bulk

2

Geometry and mass-conservation:
The switching paradigm and pattern robustness 469



or membrane) are very similar for different proteins, we only distinguish between
bulk and membrane diffusion with diffusion constants Dc for the bulk and Dm for
the membrane, respectively.

In coordinate-free form (with index c or m denoting that an operator acts in the
bulk or at the membrane, respectively) the ensuing system of partial differential
equations for a model with MinE-MinD interaction switch reads:

∂tuDD = Dc∇2
cuDD−λuDD , (1a)

∂tuDT = Dc∇2
cuDT +λuDD , (1b)

∂tuE,r = Dc∇2
cuE,r−µuE,r , (1c)

∂tuE,l = Dc∇2
cuE,l +µuE,r , (1d)

∂tud = Dm∇2
mud + fd(ud, ũDT , ũE,r, ũE,l), (1e)

∂tude = Dm∇2
mude + fde(ude,ud, ũE,r, ũE,l) , (1f)

where the biochemical reactions on the membrane are given by the nonlinear
functions

fd(ud, ũDT , ũE,r, ũE,l) := (kD + kdDud) ũDT − ud (kl
dE ũE,l + kr

dE ũE,r) , (2a)

fde(ude,ud, ũE,r, ũE,l) := ud (kl
dE ũE,l + kr

dE ũE,r)− kde ude , (2b)

with ũi denoting the respective bulk densities right at the membrane. These equa-
tions are complemented by nonlinear reactive boundary conditions at the membrane
surface stating that the biochemical reactions involving both membrane-bound and
bulk proteins equal the diffusive flux onto (−) and off (+) the membrane (the index
n denoting the outward normal vector at the boundary)

Dc∇nuDD|m = kde ude =: fDD , (3a)

Dc∇nuDT |m =−(kD + kdDud) ũDT =: fDT , (3b)

Dc∇nuE,r|m = kde ude− kr
dE ud ũE,r =: fE,r , (3c)

Dc∇nuE,l
∣∣
m =−kl

dE ud ũE,l =: fE,l , (3d)

and no-flux boundary condition at any non-reactive surfaces (denoted by the
index s)

Dc∇nuDD|s = 0 , (4a)

Dc∇nuDT |s = 0 , (4b)

Dc∇nuE,r|s = 0 . (4c)

Dc∇nuE,l
∣∣
s = 0 . (4d)

3
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The above set of reaction-diffusion equations locally conserve the total mass of
MinD as well as MinE. This implies that the spatial averages, [MinD] and [MinE],
of the total densities of MinD and MinE obey the relation

[MinD]Ω =
∫

Ω
dc (uDD +uDT )+

∫

δΩ
dm (ud +ude) , (5a)

[MinE]Ω =
∫

Ω
dc (uE,r +uE,l)+

∫

δΩ
dm ude , (5b)

where
∫

Ωdc and
∫

δΩdm signify integration over the whole bulk volume Ω and
membrane surface δΩ, respectively. In order to study the robustness of patterns
against variations in protein concentrations we performed extensive parameter scans
in [MinE] and [MinD]. We found that changing the total protein concentration
[MinE] + [MinD] only yields quantitative changes in the robustness. We therefore
focused on varying [MinE] while fixing [MinD] to the experimental concentration
of 1µM.

The advantage of such a general (coordinate-free) model definition is that it can
be adjusted to any system geometry, allowing to consistently use the same model
for different experimental setups. For the in vitro experiments a simple box geom-
etry is typically used, where the lipid bilayer (membrane) is located at the bottom
of the box and the bulk extends into the vertical direction. All other boundaries
are reflective. Since the lateral extension of in vitro box geometries is typically
very large O(103µm) compared to the wavelength of the patterns O(10 µm), we
perform our analyses in a two-dimensional box of length L = 250µm and employ
periodic boundary conditions on the two sides. The bottom of the box represents
the membrane with reactive boundary conditions and we assume no-flux boundary
conditions on the top of the box (Supplementary Figure 1c). The height h of the ex-
perimental box geometry is similarly very large O(103µm) such that the dynamics
perpendicular to the membrane can, in principle, not be neglected4.

Reaction-diffusion equations including persistent membrane bind-
ing of MinE
In addition to the biochemical reactions of the skeleton network, we included the
following biochemical reactions to allow for persistent membrane binding of MinE
(Supplementary Figure 1d):

1. MinE exists in only one conformation, uE , and is recruited by membrane-
bound MinD, ud to the membrane with a rate kdE , which leads to the forma-

4

Geometry and mass-conservation:
The switching paradigm and pattern robustness 471



tion of MinDE complexes, ude. Membrane-bound MinDE complexes disinte-
grate with a rate kde whereupon MinD-ADP detaches into the bulk and MinE
remains membrane-bound.

2. Free, membrane-bound MinE, ue, reassociates with membrane-bound MinD,
ud , with a rate ked or detaches from the membrane with a rate ke.

In coordinate-free form (with index c or m denoting that an operator acts in the
bulk or at the membrane, respectively) the ensuing system of partial differential
equations for a model accounting for persistent membrane binding of MinE reads:

∂tuDD = Dc∇2
cuDD−λuDD , (6a)

∂tuDT = Dc∇2
cuDT +λuDD , (6b)

∂tuE = Dc∇2
cuE , (6c)

∂tud = Dm∇2
mud + fd(ud,ue, ũDT , ũE), (6d)

∂tude = Dm∇2
mude + fde(ude,ud,ue, ũE) , (6e)

∂tue = Dm∇2
mue + fe(ude,ud,ue) , (6f)

where the biochemical reactions on the membrane are given by the nonlinear func-
tions

fd(ud,ue, ũDT , ũE) := (kD + kdDud) ũDT − ud (kdE ũE + kedue) , (7a)

fde(ude,ud,ue, ũE) := ud (kdE ũE + kedue)− kde ude , (7b)

fe(ude,ud,ue) := kde ude−ud kedue− keue , (7c)

with ũi denoting the respective bulk densities right at the membrane. The reactive
boundary conditions at the membrane surface read:

Dc∇nuDD|m = kde ude =: fDD , (8a)

Dc∇nuDT |m =−(kD + kdDud) ũDT =: fDT , (8b)

Dc∇nuE |m = ke ue− kdE ud ũE =: fE , (8c)

and no-flux boundary condition at any non-reactive surfaces (denoted by the index
s)

Dc∇nuDD|s = 0 , (9a)

Dc∇nuDT |s = 0 , (9b)

Dc∇nuE |s = 0 . (9c)

5
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The spatial averages, [MinD] and [MinE], of the total densities of MinD and MinE
obey the relation

[MinD]Ω =
∫

Ω
dc (uDD +uDT )+

∫

δΩ
dm (ud +ude +ue) , (10a)

[MinE]Ω =
∫

Ω
dc uE +

∫

δΩ
dm (ude +ue) , (10b)

Again, to study the robustness of patterns against variations in protein concentra-
tions we performed extensive parameter scans in [MinE] and [MinD] and then fixed
[MinD] to 1µM while varying [MinE].

6
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Linear stability analysis in a box geometry
In order to make predictions about the stability of steady solutions, we performed
linear stability analyses of the sets of equations (1)–(9). The starting point of a linear
stability analysis is the computation of a steady state around which the system can
be linearised. In the box geometry under consideration the steady state is spatially
uniform along the membrane (in the lateral direction). Along the vertical direc-
tion, however, the nucleotide exchange and the MinE-MinD interaction switch in
the bulk induce density gradients even for the steady state. Here, one considers the
time evolution of small perturbations with respect to the resprective steady states.
When the (exponential) growth rate of these perturbations is positive, these pertur-
bations grow and will eventually lead to spatial or temporal patterns. In contrast,
for negative growth rates perturbations decay and the system will eventually relax
to a stable steady state, which is uniform on the membrane. Calculating the growth
rates of small perturbations for different rate constants and protein concentrations
thus yields the regimes in terms of these parameters where patterns are predicted or
where uniform protein concentrations on the membrane prevail.

In the following we will focus on the linear stability analysis of the network
inculding a MinE-MinD interaction switch. The stability analysis for the network
with persistent MinE membrane binding is carried out analogously. In the following
we consider a 2D slice geometry as described above, with the lateral dimension x
and the extended bulk dimension z. A spatially uniform state at the membrane
means that ∇xui=0 for all protein densities. Using the network with a MinE-MinD
interaction switch, eqs.(1),(3)–(4), the stationary density profiles in the bulk are then
given by

uDD(z) = ũ∗DD
cosh((h− z)/`D)

cosh(h/`D)
, (11a)

uDT (z) = ũ∗DT + ũ∗DD

(
1− cosh((h− z)/`D)

cosh(h/`D)

)
, (11b)

uE,r(z) = ũ∗E,r
cosh((h− z)/`E)

cosh(h/`E)
, (11c)

uE,l(z) = ũ∗E,l + ũ∗E,r

(
1− cosh((h− z)/`E)

cosh(h/`E)

)
, (11d)

(11e)

where ũ∗i denote the spatially uniform stationary bulk densities at the membrane,
and `D=

√
Dc/λ and `E =

√
Dc/µ give the penetration depth of respectively MinD-

ADP and reactive MinE into the bulk; note that the corresponding stationary profiles

7
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of the total mass densities, uE(z) = uE,r(z)+ uE,l(z) and uD(z)=uDD(z)+ uDT (z),
are spatially uniform in the bulk. Upon inserting all these stationary bulk density
profiles into the reactive boundary conditions at the membrane, (3), one finds

`D ũ∗DD tanh(h/`D) = fDD(u∗de)/λ , (12a)

−`D ũ∗DD tanh(h/`D) = fDT (ũ∗DT ,u
∗
d)/λ , (12b)

`E ũ∗E,r tanh(h/`E) = fE,r(u∗de,u
∗
d, ũ
∗
E,r)/µ , (12c)

−`E ũ∗E,l tanh(h/`E) = fE,r(ũ∗E,l,u
∗
d)/µ , (12d)

(12e)

which are complemented by the stationarity conditions for the membrane dynamics,
Eq. (1d)-(1e),

0 = fd(ud, ũDT , ũE,r, ũE,l) , (13a)

0 = fde(ude,ud, ũE,r, ũE,l) . (13b)

Moreover, the stationary states have to satisfy global mass conservation

[MinD] = ũ∗DD + ũ∗DT +(u∗d +u∗de)/h , (14a)

[MinE] = ũ∗E,r + ũ∗E,l +u∗de/h . (14b)

In a linear stability analysis one considers the time evolution of small pertur-
bations with respect to these stationary states, i.e. ui(x,z, t)=u∗i (z) + δui(x,z, t)
(where membrane densities lack the dependence on the z-coordinate). Expanding
the dynamics of the small perturbations in terms of Fourier modes

δuDD(x,z, t) = ∑
q

eσqt cos(qx)ζDD(z;q) , (15a)

δuDT (x,z, t) = ∑
q

eσqt cos(qx)ζDT (z;q) , (15b)

δuE,r(x,z, t) = ∑
q

eσqt cos(qx)ζEo(z;q) , (15c)

δuE,l(x,z, t) = ∑
q

eσqt cos(qx)ζEc(z;q) , (15d)

δud(x, t) = ∑
q

eσqt cos(qx)δ ũq
d , (15e)

δude(x, t) = ∑
q

eσqt cos(qx)δ ũq
de , (15f)

and inserting ui(x,z, t)=u∗i (z)+δui(x,z, t) into the (linear) bulk diffusion equations

8
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(Eq. 1a-1c) and taking the boundary conditions (Eq. 3a-4b) into account, the corre-
sponding bulk functions ζi(z;q) are obtained analytically as

ζDD(z;q) = δ ũq
DD

cosh
(

h−z
`q(λ+σq)

)

cosh
(

h
`q(λ+σq)

) , (16a)

ζDT (z;q) = (δ ũq
DT +δ ũq

DD)
cosh

(
h−z

`q(σq)

)

cosh
(

h
`q(σq)

) −δ ũq
DD

cosh
(

h−z
`q(λ+σq)

)

cosh
(

h
`q(λ+σq)

) , (16b)

ζEo(z;q) = δ ũq
E,r

cosh
(

h−z
`q(µ+σq)

)

cosh
(

h
`q(µ+σq)

) , (16c)

ζEc(z;q) = (δ ũq
E,r +δ ũq

E,l)
cosh

(
h−z

`q(σq)

)

cosh
(

h
`q(σq)

) −δ ũq
E,r

cosh
(

h−z
`q(µ+σq)

)

cosh
(

h
`q(µ+σq)

) , (16d)

(16e)

where we have defined

`q(χq) :=

√
Dc

χq +Dcq2 , (17)

generalising the penetration depths `D and `E to wave vector dependent quantities,
and δ ũq

i are Fourier coefficients that depend on the wavenumber q.
Using the shorthand notation for a term describing the coupling between the

membrane concentrations and the density profiles in the bulk

Γq(χq) =
Dc

`q(χq)
tanh

(
h

`q(χq)

)
, (18)

and the first Taylor coefficient for the reaction terms

f i
j =

∂ f j(u)
∂ui

∣∣∣∣
u=u∗

, (19)

the linear system reads Lq δ ũq=0, for each δ ũq=
[
δ ũq

DD,δ ũq
DT ,δ ũq

E,r,δ ũq
E,l,δ ũq

d,δ ũq
de
]T

,
where Lq is given by

9

476 Geometry and mass-conservation:
The switching paradigm and pattern robustness



Lq =




f DD
DD−Γq(σq+λ ) f DT

DD f Eo
DD

f DD
DT +Γq(σq+λ )−Γq(σq) f DT

DT −Γq(σq) f Eo
DT

f DD
Eo f DT

Eo f Eo
Eo−Γq(σq+µ)

f DD
Ec f DT

Ec f Eo
Ec +Γq(σq+µ)−Γq(σq)

f DD
d f DT

d f Eo
d

f DD
de f DT

de f Eo
de

f Ec
DD f d

DD f de
DD

f Ec
DT f d

DT f de
DT

f Ec
Eo f d

Eo f de
Eo

f Ec
Ec−Γq(σq) f d

Ec f de
Ec

f d
d−σq−Dmq2 f de

d
f Ec
de f d

de f de
de−σq−Dmq2




(20)

The first four rows of Lq are the linearisation of the reactive boundaries Eq. (3),
and the last two rows are the linearisation of the membrane dynamics Eq. (1d)-(1e).

The dispersion relation maxRe[σq] (i.e. the fastest growth rates of each wavenum-
ber q) are then obtained as solutions of

detLq = 0 . (21)

Since Lq is non-algebraic in σq, solutions can only be obtained numerically. For
this purpose we use the iterative solver FindRoot[] provided by Wolfram Mathe-
matica 11 to compute the data used in Fig. 2a,b,d, and e in the main text. Here, we
tested the stability of perturbations of wavelengths in a range of approx. 5−250µm
to cover the lengthscale of experimentally observed patterns.

The parameter values used in the linear stability analysis for the network with
MinE-MinD interaction switch and persistent membrane binding of MinE are given
in Supplementary Tables 1 and 2, respectively.

10
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Supplementary Note 2: Relation of MinE mutant proteins to model
extensions

Here, we discuss how the biochemical characteristics of the tested MinE variants
(Fig. 3) relate to our reaction networks (Fig. 1).

WT MinE
As stated in the main text, MinE is recruited to membrane-bound MinD, where-
upon it forms a MinDE complex in its reactive conformation. Upon stimulation of
MinD’s ATPase activity, disintegration of the complex and MinD detachment, MinE
can stay attached to the membrane, a behavior termed persistent binding. In the per-
sistently membrane-bound state, MinE can either reassociate with another MinD on
the membrane or detach from the membrane and quickly revert to its latent state in
the bulk phase. It can then again be recruited to membrane-bound MinD either in
the short-lived reactive or, after conformational switching, in the latent state. Ex-
periments5–7 suggest that attachment of MinE to the membrane depends on prior
interaction with membrane-bound MinD5–7.

MinE L3E
The L3 residue lies on the hydrophobic face of MinE’s amphipathic membrane
targeting sequence6,8 and is inserted into the lipid bilayer during membrane inter-
action8. Thus, substitution with a polar residue is expected to impair membrane
binding. In agreement with this, in vivo experiments confirmed that this mutation
perturbs membrane interaction6. In these experiments, the L3E mutation was in-
troduced on top of the I25R or I24N mutation, both of which release the MTS and
thereby bypass the need for MinD to enable MinE membrane attachment6. Such de-
liberate exposure of the MTS is a necessary step to test MinE membrane interaction
independent of MinD binding. As the I24N mutation locks MinE in its reactive con-
formation with exposed MTS6, this state also represents the conformation of MinE
that would persist on the membrane after MinD detachment. As the L3E mutation
disrupts membrane interaction of MinE I24N6, we reason that it also abolishes per-
sistent membrane interaction of MinE. In conclusion, these observations indicate
that MinE L3E can neither bind to, nor persist on the membrane in the absence of
MinD.

We note that Park et al.6 suggested that the L3E mutation also interferes with
MinE’s sensing of MinD, i.e. the MinD-dependent conversion of MinE from the
latent to the reactive state. However, there is no experimental evidence for this
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notion, which was based on the observation that the L3E mutation resulted in a
defect in cell division and colony growth in vivo6. In principle, it would be possible
that the L3E mutation slows down recruitment of MinE to MinD. However, it is
impossible that the mutant is completely deficient in binding to MinD, as this would
impair its ability to form patterns and stimulate MinD’s ATPase activity. In contrast,
we observe pattern formation with the L3E mutant and even in a similar range as
for WT MinE (Fig. 3).

In summary, the L3E mutation is a suitable means to impair persistent MinE
membrane binding without disabling MinE’s conformational switch. Therefore,
it emulates our model extension with MinE-MinD interaction switch but without
MinE membrane interaction.

MinE I24N
As noted above, the I24N mutation locks MinE in its membrane- and MinD-interactive
conformation6. In this state, the β1 strand of each MinE subunit in the dimer
is converted to a contact helix that interacts with MinD in the membrane-bound
MinDE complex6. The reactive state of MinE is expected to have a higher affinity
to MinD than the latent form, which is incorporated as fast and slow recruitment in
our model, respectively. Thus, locking MinE in the reactive conformation through
the I24N mutation prevents switching to the latent form, resulting in an overall
higher affinity and faster recruitment to membrane-bound MinD.

Besides modulating MinE’s affinity to MinD, the I24N mutation also impacts
MinE’s ability to interact with the membrane6. Like the WT, MinE I24N would be
expected to persist on the membrane even in the absence of MinD. In conclusion,
the I24N mutation disrupts reversion of MinE from the reactive to the latent state,
without disabling persistent MinE membrane binding.

We note that, due to its constitutively exposed MTS, MinE I24N is expected to
have a higher effective membrane affinity than the WT. In particular, it can bind
to the membrane independent of recruitment by MinD6. However, we argue that
direct membrane binding is not responsible for the observed change in robustness
for MinE I24N, as detailed below (see Supplementary Note 5).

MinE L3E/I24N
This double mutant combines the effects of the I24N and L3E mutations. Conse-
quently, the mutant cannot undergo switching from the reactive to the latent form.
Furthermore, even though the MTS is exposed, the L3E mutation prevents the mu-
tant from binding the membrane directly or persistently6. Due to these deficiencies
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in switching and membrane interaction, MinE L3E/I24N closely mimics the skele-
ton network1,2 (Fig. 1a).

Supplementary Note 3: Thickness of reactive MinE layer

In the network with MinE-MinD interaction switch, after detachment of MinE from
the membrane MinE remains in its reactive state until it quickly reassumes its latent
form of low MinD binding affinity at a rate µ . Thus, the region in which reactive
MinE exists is limited by the region it can diffuse through before it changes its
conformation. The extension of this region into the bulk is given by the penetration
depth of reactive MinE, `E =

√
Dc/µ , as defined in . For our analyses we assumed

Dc = 60 µm2s−1 and µ = 100s−1 such that `E =
√

0.6µm≈ 0.77µm. The vertical
extension of the box geometry used in our analyses is assumed to be 5000µm which
is a good approximate of the bulk height in our in vitro experiments. This means
that a bulk layer of reactive MinE that is three orders of magnitude thinner than the
total bulk is sufficient to dramatically increase the robustness of patterns as shown
in Fig. 2a,b in the main text.

Supplementary Note 4: Effect of persistent MinE membrane bind-
ing on the concentration range of pattern formation

To determine the impact of persistent membrane binding on the concentration range
of pattern formation we studied a reaction network in which MinE remains on the
membrane after detachment of MinD (see ). Membrane-bound MinE can either de-
tach at a rate ke or reassociate at a rate ked with membrane-bound MinD to form
a new MinDE complex (Supplementary Figure 1d). We find that this model ex-
hibits two qualitatively different regimes (Supplementary Figure 2), depending on
whether reassociation with MinD or detachment of MinE is the faster process. If
MinE detachment is dominant, the range of MinE/MinD ratios that allows pattern
formation increases, as previously suggested1 (Supplementary Figure 2b). Con-
versely, if reassociation is favoured, the maximal MinE/MinD ratio compatible with
pattern formation decreases as the residence time of free MinE on the membrane is
increased (Supplementary Figure 2c).

In analogy to the case with MinE-MinD interaction switch the change in robust-
ness can be understood by considering the opposing roles of MinE and MinD in the
establishment of Min oscillations. As detailed in the main text, for the skeleton net-
work the alternation of MinD accumulation and MinE-dependent MinD depletion
on the membrane requires the rate of MinE recruitment to be higher while MinD
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has to be more abundant.
In our network with persistent MinE membrane binding we found that for ‘slow’

reassociation, i.e. when reassociation of membrane-bound MinE with membrane-
bound MinD is slower than detachment of free MinE from the membrane, we found
that the maximal MinE/MinD ratio compatible with pattern formation increases as
the residence time of free MinE on the membrane is increased. As previously sug-
gested1, in this case, persistent membrane binding would partially sequester MinE
on the membrane where it hardly contributes to the formation of MinDE complexes.
This sequestration partially disables MinE in its action to deplete MinD on the mem-
brane and thereby enables MinD accumulation for an increased MinE to MinD ratio
(Supplementary Figure 2b).

For ‘fast‘ reassociation, i.e. when reassociation of free membrane-bound MinE
with membrane-bound MinD is faster than detachment of free MinE from the mem-
brane, the maximal MinE/MinD ratio compatible with pattern formation decreases
as the residence time of free MinE on the membrane is increased (the y-axis of Sup-
plementary Figure 2a shows the minimal residence time of MinE on the membrane
with persistent membrane binding (1/ked +1/ke) as compared to the residence time
without persistent membrane binding (1/ked)). We argue, that for fast reassocia-
tion, the overall binding of free MinE to MinD on the membrane is amplified with
respect to the skeleton network, which in turn favors depletion over accumulation of
MinD on the membrane. As a consequence, initial MinD accumulation and subse-
quent patterns require lower MinE/MinD ratios than without persistent membrane
binding (Supplementary Figure 2c).

These predictions can be tested with the MinE I24N mutant, which is capable of
persistent membrane binding but defective in the MinE-MinD interaction switch as
discussed above. As noted above, I24N mutant patterns only form in a very narrow
range of MinE/MinD concentration ratios far below 1 (Fig. 3, 4). This demonstrates
that, unlike the MinE-MinD switch, persistent MinE membrane binding cannot ex-
plain the robustness of in vitro Min patterns.

Supplementary Note 5: Direct membrane binding of the I24N
mutant does not cause the poor robustness of patterns

After we theoretically studied persistent MinE membrane binding in the absence
of a MinE-MinD interaction switch, we employed the MinE I24N mutant to ex-
perimentally test our theoretical predictions. The MinE I24N mutant is deficient in
conformational switching while retaining the ability to independently bind to the
membrane6. In addition to the persistent MinE membrane binding included in our
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mathematical approach (6)–(9), MinE I24N is also able to directly bind to the mem-
brane even in the absence of MinD due to its permanently exposed MinD binding
reagion and membrane targeting sequence6. To rule out that the observed change
in robustness for MinE I24N is due to direct membrane attachment of MinE, and
not to the lack of a MinE-MinD interaction switch, we included an extra term in
the equations (6)–(9) which enables direct attachment of MinE with a rate kE . The
terms fE and fe then read:

fE := ke ue− kdE ud ũE − kE ũE (22)

fe := kE ũE + kde ude−ud kedue− keue . (23)

We performed a parameter scan in the MinE attachment rate kE of MinE to the
membrane. For low values of kE the range of MinE/MinD ratios compatible with
pattern formation only changes quantitatively (Supplementary Figure 3), i.e. it does
not change the effect of an increase or decrease in the maximal MinE concentration
compatible with patterns for slow or fast reassociation, respectively. In particular,
for slow or fast reassociation, the respective increase or decrease of the maximal
MinE/MinD ratio compatible with pattern formation is merely amplified. Only for
very high kE , when attachment of MinE is more than two orders of magnitude faster
than attachment of MinD (kE & 100kD), the range of MinE/MinD where patterns
are predicted decreases and shifts to lower MinE/MinD values for slow as well as
fast reassociation. This is likely because for high kE MinE is so abundant on the
membrane that reassociation of free MinE and MinD on the membrane becomes
more likely than MinE sequestration.

However, we note that the rate of the direct attachment of MinE is very likely
of the same order of the MinD attachment rate or even smaller considering the ap-
proximately equal lengths of MinD’s and MinE’s amphipathic membrane targeting
sequences6,9. Thus, direct membrane binding very likely only changes the effect
of persistent membrane binding quantitively; however, it cannot yield a decrease
in the range of predicted patterns, where persistent membrane binding alone would
yield an increase of this range. Furthermore, the I24N/L3E double mutant, which
lacks persistent as well as direct membrane binding, shows patterns in the same
narrow range of protein concentrations as the I24N mutant. This demonstrates that
the dramatic decrease of robustness of patterns is due to the lack of a MinE-MinD
interaction switch and rules out direct MinE attachment as responsible for poor ro-
bustness.
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Supplementary Tables

Parameter Symbol Value
MinD and MinE bulk diffusion Dc 60 µm2s−1

MinD and MinDE membrane diffusion Dm 0.013 µm2s−1

MinD mean total density [MinD] 638 µm−3

MinD attachment rate constant kD 0.065 µms−1

MinD recruitment rate constant kdD 0.02 µm3s−1

MinDE detachment rate kde 0.34s−1

Nucleotide exchange rate λ 6s−1

Conformational switch of MinE µ 100s−1

Supplementary Table 1. Kinetic rate constants for the MinE-MinD inter-
action switch network. The values of the diffusion coefficients and protein den-
sities are chosen in accordance with experimental data7. The kinetic rate constants
are chosen within the order of magnitude of the values fitted to reproduce the in
vitro phenomenology qualitatively and the wavelengths and -velocities quantita-
tively within the order of magnitude of the experimental data. In our analyses we
performed extensive parameter scans in the recruitment rates kr

dE and kl
dE and the

mean total MinE density [MinE].
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Parameter Symbol Value
MinD and MinE bulk diffusion Dc 60 µm2s−1

MinD and MinDE membrane diffusion Dm 0.013 µm2s−1

MinD mean total density [MinD] 638 µm−3

MinD attachment rate constant kD 0.065 µms−1

MinD recruitment rate constant kdD 0.02 µm3s−1

MinE recruitment rate constant kdE 0.126 µm3s−1

MinDE disintegration rate kde 0.34s−1

Nucleotide exchange rate λ 6s−1

Supplementary Table 2. Kinetic rate constants for the network including
persistent MinE membrane binding. All rates that appear in both studied net-
works, the one with a MinE-MinD interaction switch and the one with persistent
MinE membrane binding, are chosen equal. To study the impact of persistent mem-
brane binding on the robustness of patterns, we performed extensive scans in MinE’s
reassociation rate ked with MinD and its detachment rate ke from the membrane and
the mean total MinE density [MinE].
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Supplementary Figures

D      + Persistent membrane binding

: reassociation
: strong recruitment
: weak recruitment

B      + MinE-MinD interaction switch

membrane

bulk

reactive 
boundary conditions

no-flux

periodic

h

L

MinD-ATP MinD-ADP

A      Skeleton network

: recruitment

latent MinEreactive
MinE

C     Box geometry for analysis 
MinE

Supplementary Figure 1. Studied reaction networks. (a), In the previously
studied skeleton network1, MinD-ATP attaches to the membrane, where it recruits
further MinD-ATP and MinE. Upon recruitment of MinE, MinE and membrane-
bound MinD form a membrane-bound MinDE complex. MinE induces a switch
of MinD to its ADP-bound form and thereby leads to MinDE disintegration and
detachment of MinD-ADP and MinE into the cyctosol. There, MinD has to ex-
change ADP for ATP before it can attach to the membrane anew. The kinetic rates
are indicated next to arrows of their respective reactions. (b), To emulate a MinE-
MinD interaction switch, the respective reaction network includes a switch with rate
µ from reactive MinE with a high recruitment rate kr

dE to latent MinE with a low
recruitment rate kl

dE . (c), Since the lateral extension of patterns in vitro are typi-
cally very large compared to their wavelength, we assume a reduced box geometry.
Here, the membrane is modeled as the bottom line. The perturbations in our lin-
ear stability analysis are given by planar waves extending along the membrane. (d),
When MinE is able to persist on the membrane after MinD detachment, it can either
reassociate with membrane-bound MinD at a rate ked or detach at a rate ke.
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Supplementary Figure 2. Persistent membrane binding can modulate the
range of pattern formation in silico. (a) Persistent MinE membrane binding can
either increase or decrease [MinE]max, depending on whether detachment or reas-
sociation is favored (inside or outside the red lines), respectively (red lines denote
equal detachment and reassociation). The y-axis depicts the minimal persistence
time of MinE (compared to the disintegration time 1/kde). (b), (c) Along the trajec-
tories (I) and (II) in (a) the region of MinE concentrations compatible with patterns
increases (b) and shifts to higher [MinE] or decreases (c), when detachment or re-
association is favored, respectively.
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Supplementary Figure 3. Theory suggest that direct MinE attachment is

not responsible for the the poor robustness of Min patterns. (a), For slow re-
association (log(ked/kdE) ≈ −4.5) the region of MinE concentrations compatible
with patterns (colored regions) is only changed qualitatively for unphysiologically
high kat . (b), For fast reassociation (log(ked/kdE) ≈ −1), increasing kat amplifies
the decrease of the maximal MinE/MinD ratio compatible with pattern formation.
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LETTER TO THE EDITOR

Subject article: Schweizer, J., Loose, M.,Bonny, M., Kruse, K., Mönch, I.,

and Schwille, P., Geometry sensing by self-organized protein patterns, Proc.

Natl. Acad. Sci. USA, 109, 15283-15288 (2012)

By means of a computational model analysis accompanying new intriguing

experiments, Schweizer et al. [1] claim to show that MinE membrane binding

is responsible for self-organized geometry sensing.

We investigated the simulation files provided by the authors and found that

the model neither accounts for actual MinE membrane interactions nor for

any observed MinDE protein patterns. It does not reproduce any of the com-

putational data presented in the article [1]. For the published parameters,

pattern formation is restricted to very small cytosol/membrane ratios. Cy-

tosolic volume is not accounted for and total densities indicate an effective

bulk height below 6µm. We find that scaling the cytosolic dynamics by a small

factor O(1) or increasing gold layer size eliminates the instability. Hence, the

model configuration deviates from the experiment by orders of magnitude. In

striking contradiction to the accompanying experiments and to the claim in

the article, bulk volume has a severe effect on the computational model. The

authors compensated for this system size dependence by adjusting intrinsic

system parameters (MinE/MinD ratio) without mentioning it. Moreover, the

adjusted parameters deviate from the experimental value while the published

parameters do not.

Even with these adjustments the model relies on simulation artifacts to repro-

duce the experimental data. Alignment to the aspect ratio requires periodic

boundaries at the gold layer. The alignment angle is controlled by cross-

boundary coupling in horizontal and vertical directions. The aspect ratio of

the patch has a negligible effect on alignment. Without periodic boundaries

or for gold layers sizes as used in the experiment alignment ceases and waves

become disordered blobs. This invalidates the model on a conceptual level.

The model is claimed to extend and supersede previous models by incorpo-

rating experimental evidence regarding MinE membrane interactions [3, 4].

We note that MinE membrane binding was already proposed and analyzed by

Arjunan and Tomita [2]. Moreover, the model contradicts the experimental

references in several aspects. Park et al. [4] have shown that unmasking the

2

Geometry and mass-conservation:
Why a rigorous account for the system geometry and total protein numbers is
important

491



anti-MinCD domains in MinEF7E/I24N restores the wild type phenotype with-

out membrane binding. In contrast, computational patterns are lost if MinE

membrane binding is reduced and cannot be recovered by adjusting MinE

recruitment. Hence, the model actually implies that MinE membrane binding

is required for pattern formation in the first place and not for geometry sensing

in particular as the paper claims. The ratio of MinE/MinD residence times

quantifies the relative strength of MinE membrane binding. It has been quan-

tified experimentally by Loose et al.[3]. The value in the computational model

exceeds the experimental value by an order of magnitude. As a consequence

MinDE waves contain about ten times more MinE than MinD, in contradic-

tion to experiments [3, 5]. In particular, we note that the computational data

in Figure 5C cannot be reproduced. We find a 16-fold increased MinE/MinD

ratio, which represents a 23-fold deviation from the cited experiments [3].

We conclude that the computational model is invalid and any conclusions

drawn from it are void.
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INTRODUCTION

Here we provide a thorough discussion of the model for Min protein dynamics

proposed by Schweizer et al. [14]. The manuscript serves as supplementary

document for our letter to the editor to appear in PNAS. Our analysis is based

on the original COMSOL simulation files that were used for the publication.

We show that all computational data in Schweizer et al. rely on exploitation of

simulation artifacts and various unmentioned modifications of model parame-

ters that strikingly contradict the experimental setup and experimental data.

We find that the model neither accounts for MinE membrane interactions nor

for any observed MinDE protein patterns. All conclusions drawn from the

computational model are void. There is no evidence at all that persistent

MinE membrane binding has any role in geometry sensing.

SUMMARY OF RESULTS AND CONCLUSIONS

• The authors do not use the same parameters that are given in the article

but a lower MinE/MinD ratio that also deviates from the experimental

value.

• With the experimental MinE/MinD ratio no patterns emerge. (cf. Fig-

ure 3)

• With the lower MinE/MinD value patterns emerge but do not resemble

the experiments nor the computational data presented in the article. (cf.

Figure 4/5)

• The quantitative data presented in Figure 5B/C/D in the paper cannot

be reproduced by the proposed model (cf. Figure 7B and section ).

• Alignment to the aspect ratio (Figure 5D in the paper) solely relies

on self-coupling via the periodic boundaries in horizontal and vertical

directions. (cf. Fig. 2/4/5)

• Alignment to curved membranes (Figures 5A/S7 in the paper) fails for

gold layer sizes as used in the experiment. (cf. Figure 7D)

• Transient MinE membrane binding is an order of magnitude stronger

than in the experiments. (cf. section )

3
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• Adjusting MinE membrane binding to meet the experiment leads to loss

of any patterns. (cf. section )

• The model assumes a very small bulk volume and is highly sensitive to

volume effects in contrast to the experimental evidence and the claim in

the paper. (cf. section )

We investigated the proposed model by means of linear stability analysis and

numerical simulations. First, we note that the actual simulations provided

to us by the authors use reduced MinE/MinD ratios (CD0/CE0 = 2.23 and

CD0/CE0 = 4.03) that deviate from the experiments ([MinD]/[MinE]=1.6)

and the published parameter values (CD0/CE0 = 1.56). For the experimen-

tal/published values we find pattern formation to be restricted to very small

ratios of gold layer to membrane, or equivalently bulk volume to membrane.

The model does not account for cytosolic volume explicitly, but the choice

of the total protein densities indicates an effective bulk height below 6µm.

We find that rescaling the effective bulk volume by a small factor O(1) or

explicitly increasing gold layer size yields loss of instability. Hence, the model

behavior described in the published simulations is limited to system sizes that

deviate from the experiment by several orders of magnitude. Moreover, in

striking contradiction to the accompanying experiments and to the claim in

the article, bulk size does have severe effects on protein patterns. The authors

have compensated for the effects of reservoir size by adjusting intrinsic system

parameters (total protein densities). This was not mentioned in the published

article. It should go without saying that the need to adjust genuinely intrinsic

system properties to keep certain desired phenomena invariant to variations

of system size clearly proves that those phenomena are not intrinsic to the

system. This directly contradicts the main experimental findings the model

claims to account for.

However, even with these adjustments in place the model relies on employing

simulation artifacts to reproduce the published data. We find that alignment

to the aspect ratio (Fig. 5D in the paper) strictly requires periodic boundary

conditions at the outer boundary of the gold layer. These cross-boundary cou-

plings in horizontal and vertical directions controls the alignment angle, while

the aspect ratio of the patch has a negligible effect on alignment. Wave align-

ment ceases and waves become disordered propagating blobs if gold layer sizes

are inclreased to match the experimental setup or if cross-boundary coupling

is disabled by replacing periodic boundary conditions with no-flux conditions.

Plainly put, for simulations to resemble the presented set of computational

4

Geometry and mass-conservation:
Why a rigorous account for the system geometry and total protein numbers is
important

497



data several distinct and independent artifacts and unphysical parameter ad-

justments have to be employed for each dataset individually. We were unable

to determine the specific combinations of gold layer size, cross-boundary cou-

pling, and total [MinE]/[MinD] density ratio, that yield the published data.

Altogether, this invalidates the model on a conceptual level.

The model is claimed to extend and supersede all previous models by in-

corporating recent experimental evidence [6, 13] regarding MinE membrane

interactions. We note that MinE membrane binding was already considered in

the computational model by Arjunan and Tomita [1]. Furthermore, the model

contradicts the cited experimental references [6, 13] in several implications

regarding transient MinE membrane binding.

Park et al. [13] have shown that unmasking the anti-MinCD domains in

MinEF7E/I24N restores the wild type phenotype without membrane binding.

We find that the model loses instability if the MinE membrane affinity is re-

duced. In contrast to the experiment the instability cannot be restored by

any adjustment of the MinE recruitment rate (representing the unmasking of

anti-MinCD domains). Hence, without any experimental support the model

actually implies that MinE membrane binding is required for pattern forma-

tion in the first place. The claim that MinE membrane binding is supposed to

be responsible for geometry sensing in particular is thereby unsubstantiated.

By means of the ratio of MinE/MinD residence times the relative strength

of MinE membrane binding can be quantified. The individual residence times

have been determined experimentally by Loose et al.[6]. We find that the value

in the computational model exceeds the experimental value by one order of

magnitude. While experiments show that the MinE membrane desity is always

lower than the MinD density [6, 7], the waves in the computational model

contain up to ten times more MinE than MinD. In particular, we note that

the computational data in Figure 5C cannot be reproduced. The simulations

yield a MinE/MinD density ratio which is increased up to 16-fold compared

to the published computational data in Figure 5C. This represents a 23-fold

deviation from the experiments cited alongside [6]. The fact that the model

assumes wave propagation based on very high concentrations of membrane

bound MinE not co-localized with MinD invalidates the model on a qualitative

level in addition to the various aforementioned quantitative discrepancies. We

conclude that the model neither accounts for MinE membrane interactions nor

for any observed MinDE protein patterns. Therefore, all conclusions drawn

from the computational model are void.

5

498
Geometry and mass-conservation:

Why a rigorous account for the system geometry and total protein numbers is
important



SIMULATIONS

p0

d0 dx

dy py
px

FIG. 1. Model geometry and scaling operations.

Model files and definitions

Since we were unable to reproduce the published results we asked the au-

thors, following PNAS journal policies, to provide us with the full set of model

files that were used to produce the data in the paper and accompanying sup-

plement. The files we received are listed in Table 1 with the correspond-

ing parameter configurations. In contrast to the value given in the paper

(CE0 = 1.9 · 103/µm2) the MinE density is set to CE0 = 1.3 · 103/µm2 in all

simulations except the one for the L-shaped membrane patch (c.f. Fig 5 in

the paper), where it is set to CE0 = 0.72 · 103/µm2. We did not receive an

explanation or justification for the use of two different parameter values. Be-

cause the modification creates a conflict with the [MinD]/[MinE] ratio in the

experiment[10], we will consider both cases in the investigation of the compu-

tational model. Table 1 lists the protein densities, and the ratios of gold layer

and membrane area used in the simulations. One notices that the gold layer

area is always smaller or of comparable size as the membrane area but never

very large as the experiments suggest. It is largest for the L-shape simulation

where the MinE density is smallest. We further note that the boundary con-

ditions are periodic. In combination with the small gold layer size a coupling

of patch dynamics across the periodic boundaries appears likely. This will be
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considered below in the context of wave alignment to rectangular membrane

patches. The aspect ratio in the corresponding model file is preset to a = 0.5.

The geometry is constructed by applying scaling operations on two squares

with sides d0 and p0. The scaling operations are defined in Figure 1. All simu-

lations of rectangular patches with altered aspect ratio or increased gold layer

size are derived from this model file. For all simulations we have computed the

solutions for 1.6 · 104s from onset and compared the results with the solution

at 1.2 · 104s to ensure that the system reached a steady state. In simulations

with increased gold layer sizes we have coarsened the gold layer mesh with

increasing distance from the membrane patch. In these cases the mesh size in

the gold layer was increased up to 5-fold of the value of the membrane mesh.

We have carefully verified that this does not affect the patch dynamics by

comparing the results with the simulations that employ a constant mesh size

in the gold layer that corresponds to the membrane mesh. In particular, we

have compared the onset of pattern formation (first 1000s) for original and

coarse gold layer mesh. In addition we have verified that the final pattern

after 1.6 · 104s does not change if the simulation is continued for 1000s with a

constant mesh in the gold layer that equals the membrane mesh.

Simulations with CE0 = 1.9 · 103/µm2 ([MinD]/[MinE] = 1.53)

In all following simulations the total MinE density is set to CE0 = 1.9·103/µm2

unless noted otherwise.

Alignment to rectangular membrane patches

The simulation file corresponding to Figure 5D in the original paper (Aspec-

tRatio Paper.mph) produces the reported alignment to the diagonal for the

preset aspect ratio a = 0.5 (c.f. Figure 2A). We started out increasing the

size of the surrounding gold layer (2d0, g = 5.25) and found that the system

settles in an homogeneous stable state (Figure 2B). This implies that pattern

formation requires a very small gold layer to membrane ratio. Next, we went

to investigate wave coupling across periodic boundaries and the impact on

wave alignment in the original model simulations. To eliminate any possible

coupling across periodic boundaries we replaced the periodic condition by a

no-flux condition. As a result waves ceased to align to the diagonal in contrast

to the data in the original paper. Instead we observed a disordered pattern

7
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filename CD0 [µm−2] CE0 [µm−2] g

AspectRatio Paper.mph 2.9 1.3 0.56

circle S7.mph 2.9 1.3 4.13

CouplingD15 S11.mph 2.9 1.3 0.38

CouplingD50 S11.mph 2.9 1.3 0.38

L shape Paper.mph 2.9 0.72 6.68

largeGaps S10.mph 2.9 1.3 1.67

LargePatch S09.mph 2.9 1.3 0.35

note S7.mph 2.9 1.3 4.14

serpentine S7.mph 2.9 1.3 4.16

smallGaps S10.mph 2.9 1.3 0.61

smallPatch S9.mph 2.9 1.3 0.86

TABLE I. Comsol Multiphysics simulation files provided by the authors. We list

the preset values for the total MinD and MinE densities, CD0 and CE0, as well as

the gold/membrane ratio g (Fig. 1).

of oscillatory blots without any apparent alignment but with preference for

the edges and center of the patch (Figure 2C). This leads us to the conclusion

that the alignment observed in the simulation must result from the coupling

across periodic boundaries. To shed light on this matter we changed the as-

pect ratio of the surrounding gold layer, leaving the aspect ratio and size of

the membrane patch unaltered. Increasing either the horizontal (x) or vertical

(y) width of the gold layer by a factor 1.5 or more resulted in a stable homo-

geneous state without any pattern on the membrane patches. Increasing the

width merely by a factor 1.25 led to a standing wave pattern aligned to the

major axis of the patch (Figure 2D). This complex change in dynamics due to

a small perturbation of the surrounding geometry strongly indicates that the

ratio of gold layer area to membrane area as well as the anisotropic coupling

across boundaries mainly regulate the formation and selection of patterns on

the rectangular membrane patches. Since the alignment angle is regulated by

the aspect ratio of the patch in the experiment one might expect a similar

result in the simulation. The paper clearly states that the model accounts
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for these experimental findings. In our attempts to reproduce this claim we

rescaled the membrane patch along with the surrounding gold layer in order to

obtain a membrane patch and gold layer with an aspect ratio of 0.2. For this

case the paper reports alignment of waves to the long axis in the experiment

as well as in the simulation. In contrast, we find that waves start at the edges

of the patch and align to the diagonals in the initial phase. After 1.6 · 104s the

system consists of a mixture of disordered waves and imperfect drifting spirals

with no alignment to a specific axis (Figure 2E). Again, slightly increasing the

size of surrounding gold layer leads to a complete loss of any patterns and a

spatially uniform density. Increasing the vertical width by a factor 1.25 leads

to a pattern of standing nodes attached to the edges of the long axis with odd

symmetry with respect to the short axis (Figure 2F). Increasing the horizontal

width instead leads to domains forming consecutively in the upper and lower

half of the patch (Figure 2G).

To conclude, we find that the published data (Figure 5D in the paper) can-

not be recovered. Waves do not align to the aspect ratio of the membrane

patch. On the contrary, alignment arises as pure result of the cross-boundary

coupling, and only if the surrounding gold layer area is very small compared

to the patch size. Hence, alignment is not intrinsic to the membrane geome-

try as the authors claim but, in fact, the exact opposite: there is no intrinsic

alignment (i.e. independent of cross-boundary coupling) to the membrane ge-

ometry at all. This point is further emphasized by the simulation that the

authors used to investigate decoupling of patters due to increased patch dis-

tance (large gaps S10.mph). In contrast to the published data (Figure S10B in

the paper), we find that the system settles in a homogeneous stationary state

(Figure 3A) for the published parameter set.

Alignment to curved membrane patches

The second quantitative dataset provided by the computational analysis in

the paper concerns the alignment of Min protein waves to curved membrane

patches. In the simulation files the membrane patches are embedded in rect-

angular domains representing surrounding gold layer. The preset ratio of gold

layer area to membrane area g can be found in Table 1. Again, we ran all

simulations with the total MinE and MinD concentrations as published in the

paper and found that the system settled in a stable homogeneous state (Fig-

ure 3A-C). It is obvious that a rectangular domain surrounding curved patches

cannot be made arbitrarily small to yield dynamical instabilities. Therefore,

9
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other parameters need to be changed to trigger any pattern formation process

and enable comparison with the published results. To reproduce the pub-

lished results the initial MinE density has been reduced by the authors to

CE0 = 1.3 · 103/µm2 ([MinD]/[MinE] = 2.23) in all simulations except the

one for the L-shape simulation, in which case the initial MinE concentration

had been set to CE0 = 0.72 · 103/µm2, i.e. [MinD]/[MinE] = 4.03. This does

not come as a surprise, given that the sensitivity of Min protein patterns to

[MinD]/[MinE] ratios is well documented in the literature [3–5, 9]. Nonethe-

less, the necessity to change this parameter in this particular case directly

contradicts the accompanying experiments the model strives to account for.

To gather insight into the reported model dynamics we repeated the simula-

tions with the reduced total MinE density that was preset in the simulations

files. The results are discussed in the next section.

Simulations with CE0 = 1.3 · 103/µm2 ([MinD]/[MinE] = 2.23)

In all following simulations the total MinE density is set to CE0 = 1.3·103/µm2

unless noted otherwise.

Alignment to rectangular membrane patches

Running the simulation of rectangular patches with the preset MinE concen-

tration CE0 = 1.3 · 103/µm2 yields target patterns forming approximately at

the center of one of the long edges. The target waves propagate along the short

axis (Figure 4A) and the pattern remains disordered. Increasing the size of

surrounding gold layer first stabilizes the target pattern and yields clean tar-

get waves centered at the edge of the long axis for 2d0 (Figure 4B). However,

further increase of the gold layer size leads to a destabilization of the target

pattern and we observe disordered propagating blots for 5d0 (Figure 4C) and

disordered standing waves/blots for 10d0 (Figure 4D). These waves and blots

are typically attached to the inner boundaries of the patch and tend to form

and propagate rather chaotically within the patch domain. As none of these

patterns resembles the reported data from the paper we investigated the effect

of cross-boundary coupling. Increasing the width of the gold layer in either

direction yields waves roughly aligned to the diagonal (Figure 4E/F). Leaving

the gold layer unaltered but replacing the periodic boundary conditions with

no-flux boundary conditions yields disordered waves and blots that are aligned
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to the long axis (Figure 4G). Once more, the results indicate that the reported

alignment to the diagonal requires careful tuning of the cross-boundary cou-

pling and gold layer size.

To investigate the effect of the patch geometry we repeated the simulations

for different aspect ratios of the membrane patch. Rescaling the whole system

to obtain a membrane patch with aspect ratio 0.2 yields counter-propagating

waves aligned to the diagonal and originating at two diagonally opposed cor-

ners (Figure 5A). Note that the paper reports alignment to the long axis for

this aspect ratio in the experiment and corresponding simulations. Increasing

the horizontal width of the gold layer yields diagonally aligned waves originat-

ing from horizontally opposed corners (Figure 5B). We find that the alignment

to the long axis requires increasing the vertical width of the rescaled gold layer

(Figure 5C). In this case wave originate from all four corners of the patch,

and waves originating from vertically opposed corners merge to align to the

long axis. However, the pattern is symmetric as counter-propagating waves

annihilate each other. As in the previously discussed simulations for patches

with aspect ratio a = 0.5 we find disordered waves and blots attached to

the membrane edges if the area of the gold layer is increased uniformly (Fig-

ure 5D). Similar results are obtained for membrane patches with aspect ratio 1

(Figure 5E/F). Hence, any realistically sized gold layer where cross-boundary

coupling can be excluded results in a disordered state that does not resemble

the experimental or computational data from the paper.

As the experimental data for large membrane patches indicates a much broader

distribution of alignment angles one might suspect that the failure of the model

originates from the choice of patch size. In particular, the experiments imply

that misalignment occurs if the patch is much larger than the wavelength of

the patterns. Therefore, we investigated the model dynamics for large gold

layers and smaller patches with constant aspect ratio. We find that reducing

the patch size to 0.75p0 and 0.5p0 results in a pure standing wave pattern

aligned to the long axis for aspect ratios a = 0.5 (Figure 6A/B) and a = 0.2

(Figure 6C/D). Hence, the patch size is not the cause for the disordered waves

and failed alignment.

We conclude that a commensurable alignment can only be achieved by ex-

ploiting cross-boundary coupling effects and tuning the total MinE density.

For instance, to recover alignment to the long axis one needs to employ an

anisotropic rescaling of the cross-boundary coupling in y-direction and reduce

the MinE density. This demonstrates that the [MinE]/[MinD] ratio sensitively

regulates the alignment angle in presence of active cross-boundary coupling.

Moreover, reducing the total MinE density entails that the dynamical insta-
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bility is not lost when the gold layer is increased. This enables us to study the

alignment to curved membrane patches in the following section.

Alignment to curved membrane patches

As mentioned above the MinE concentration in the L-shape model file pro-

vided by the authors is preset to CE0 = 0.72 · 103/µm2 while it is set to

CE0 = 1.3 · 103/µm2 in all other model files (cf. Table 1). For the sake of a

systematic study we adjusted the MinE concentration to match all other simu-

lations. With an otherwise unaltered model file we find that wave trains align

to the patch as reported in the paper after about 104s (Figure 7A). While the

phenomenology is quite similar, i.e. waves are aligned to the long rectangular

sections then turn into the kink and realign afterwards, neither wave velocities

nor [MinE]/[MinD] ratios along the patch match the data from the paper. The

paper reports velocities in the range 1.3µm/s − 3.2µm/s (on the rectangular

section and at the outer edge of the curve) while we find waves with velocities

in the range 0.8µm/s − 2.2µm/s. This shows that the data in the paper is

not recovered with the current parameters. The ability of waves to realign is

ascribed to the dynamics that locally increase the [MinE]/[MinD] ratio (and

thereby the wave velocity) at the outer part of the curve. This mechanism for

geometry sensing is ascribed to MinE membrane binding, quoting the paper:

“When we plotted the ratio between the activator MinE and the

membrane-bound ATPase MinD along the travel path of the mem-

brane, we found that this ratio is significantly higher at the outer

part compared to the inner part of the wave, thereby accelerat-

ing the detachment of the proteins from the membrane (23) (Fig.

5C). [...] Importantly, we could only reproduce this behavior when

we considered transient binding of MinE to the membrane in our

model.”

In this context the authors cite their previous work [6] where the local

[MinE]/[MinD] ratio within a wave had been quantified. These previous

experiments revealed that the [MinE]/[MinD] membrane density ratio peaks

at the rear of the wave. The maximal [MinE]/[MinD] ratio is about 0.9 and

it marks the point where the protein flux off the membrane is maximized and

drives wave propagation. For the computational model the authors report a

[MinE]/[MinD] ratio about 1.33 at the outer part vs. 1.15 at the inner part,

(cf. Figure 5C in the paper).
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We find that the simulations yield a local [MinE]/[MinD] ratio about 21 at the

outer part of the curve and 15 at the inner part (Figure 7B). This represents

a striking 16-fold deviation from the simulation data in the paper and a 23-

fold deviation from the experimental data the authors cite in this particular

context to support the model. We have also plotted the mean profile of the

[MinE]/[MinD] density ratio on the patch in Figure 7C. Time-integration was

performed over 950s which is the period of the envelope modulating the am-

plitude of the protein waves [2]. As expected the mean [MinE]/[MinD] profile

shows a maximum at the outer part of the curve and a minimum at the in-

side. The mean [MinE]/[MinD] density ratio takes values between 3.6 and 9.5

throughout the patch. Comparison of the wave profile for MinE and MinD den-

sities and [MinE]/[MinD] ratios from the rectangular section of the L-shaped

patches with experimental data published by the authors (see supplementary

figure 1 in [6]) reveals a similar quantitative inconsistency, cf. Figure 8. We

note that these results are equally recovered if the simulations are performed

with a further reduced total MinE concentration (CE0 = 0.72 · 103/µm2) that

was preset in the model file we received from the authors. The most no-

table difference was that alignment was already established after about 1000s

with CE0 = 0.72 · 103/µm2, hence, one order of magnitude earlier than with

CE0 = 1.3 · 103/µm2. The origin of the quantitative discrepancies between

[MinE]/[MinD] membrane density ratios in the published dataset and the sim-

ulations remains elusive. It appears to be intrinsic to the model as it relies

on very strong MinE membrane binding. This will be discussed in the next

section.

Before we go into that, we address the question if waves are sustained for

realistically large gold layers as the experiments dictate. We note that the

variation of the cytosolic protein densities is already very small at the system

boundary (well below 1%). Still, when the surrounding gold layer is increased

(g = 72) waves become disordered and cease to align (Figure 7D). This obser-

vation is consistent with the previous simulations of rectangular patches (cf.

Figure 4C/D and 5D/F). This observation emphasizes that coupling across

the periodic boundary and the gold/membrane ratio g are two distinct aspects

of the geometry affecting the model dynamics. The irregular waves found for

the increased gold layer do not span the patch width but are attached to the

interior edges. Also, waves do not align and realign after passing through

the curve. Apparently, transient MinE membrane binding does not facilitate

the local increase of the [MinE]/[MinD] ratio at the outer part of the curve

(Figure 7E/F) any more. To conclude: For simulations to resemble the data

depicted in the paper, both, the total MinE density as well as the size of the
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surrounding gold layer need to be fine tuned. While this procedure already

conflicts with the experiments in the first place, the simulations one recovers

deviate from the published experimental and computational data by one order

of magnitude in the very quantity that is argued to be key for the phenomenon

of geometry sensing that the computational analysis tries to explain.

INCOMPATIBILITY OF MODEL ASSUMPTIONS AND EXPERI-

MENTAL DATA

So far we have established by means of numerical simulations that the model

does not account for any experimental observation in the paper. Clearly, this

conflicts with the final conclusion reached by the authors in the paper’s ab-

stract:

“Using a computational model we quantitatively analyzed our ex-

perimental findings and identified persistent binding of MinE to

the membrane as requirement for the Min system to sense geome-

try. Our results give insight into the interplay between geometrical

confinement and biochemical patterns emerging from a nonlinear

reaction-diffusion system.”

The molecular basis of the model is set by the authors’ previous experimental

work [6] and the work by Park et al. [13]. The main intention is to address

the role of MinE membrane binding by means of the computational analysis,

quoting from the paper:

“Recently, two reports have shown that MinE persists at the MinD-

membrane surface after activation of the MinD ATPase (23, 30).

Although persistent binding of MinE appears to be important for

its ability to completely remove MinD from the membrane (23),

its possible role for the ability of the Min system to organize the

interior of the cell has so far not been addressed. Our model ex-

tends previous models by incorporating that MinE transiently in-

teracts with the membrane during the activation of MinD. This

description gives a unified account of all currently known stable

Min-protein patterns in vivo and in vitro as will be discussed in

detail elsewhere.”

The final statement is proven false by the results from the previous sections.

In this context the question arises whether the model can be used for an

14

Geometry and mass-conservation:
Why a rigorous account for the system geometry and total protein numbers is
important

507



assessment of MinE membrane binding at all. The research by Park et al. [13]

strongly suggests that MinE membrane interactions take place. We want to

emphasize that we do not question these experimental findings in any way.

On the contrary we find these results very helpful to understand the molecular

basis of MinE protein dynamics as reflected in our own research [3].

In this section we show that the model conflicts with the available experimental

evidence in it’s molecular basis. Our analysis will show that the model operates

in a kinetic regime that contradicts the experimental data. As such, the model

is invalid as a theory for MinE membrane interactions. No conclusions about

MinE membrane interaction can be drawn from it. To establish a mutual basis

in terminology we start by describing how the proposed model introduces MinE

membrane interactions. We discuss the distinct molecular processes the model

is based on and compare the qualitative and quantitative implications with

experimental data. We limit the comparison to experimental research papers

that are explicitly cited in the paper to motivate the model. In the last part

we will address the role of particle numbers, bulk-membrane ratio, and the

validity of an effective 2D modeling.

The role of MinE membrane interactions

The model assumes that cytosolic MinE is able to sense membrane bound

MinD-ATP and form a MinDE complex upon recruitment. These two steps are

introduced and quantified by the MinE recruitment rate ωE = 5 · 10−4µm2/s.

Upon MinDE complex formation, MinE stimulates MinD ATPase activity

which leads to the detachment of MinD-ATP (nucleotide exchange is ne-

glected in the model) from the membrane. The stimulation of MinD AT-

Pase with MinD detachment is quantified by the sum of detachment rates

ωde ≡ ωde,c + ωde,m = 0.88s−1. Persistent MinE binding is introduced by en-

abling the MinE dimer bound in a MinDE complex to directly interact with the

membrane. Upon stimulation of MinD ATPase activity MinE remains bound

to the membrane with a certain probability pm = ωde,m/ωde = 0.91 or detaches

instantly along with MinD with probability pc = 1 − pm = ωde,c/ωde = 0.09.

Of course, within the notion of a deterministic model pm and pc can be in-

terpreted as fraction of MinE concentration that remains membrane bound

or becomes cytosolic upon stimulation of MinD ATPase activity, respectively.

The strength of the MinE-membrane bond is characterized by the MinE de-

tachment rate ωe = 0.08s−1. The parameter ωed = 2.5 · 10−3µm2/s quanti-

fies MinE-MinD reassociation at the membrane. All these parameters can be
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tuned individually to study the model dynamics. However, no experimental

data exists to support any particular parameter choice. Moreover, mutations

studies (e.g. regarding the MTS of MinE) are unlikely to affect only one corre-

sponding model parameter alone. To constrain MinE membrane binding and

MinE-MinD interactions in the model we will take the experimentally deter-

mined Min protein residence times into account. This enables us to establish a

direct relation between quantitative experimental data and the corresponding

model parameters.

Residence times of Min proteins in vitro

The residence < τD > and < τE > times of MinD and MinE along the protein

wave have been quantified by the authors in previous experiments [6]. The

experiments revealed that MinE remains longer in a membrane bound state

than MinD which indicates transient MinE membrane binding. While the

individual residence times increase from front to rear of the wave, the ratio of

residence times ∆τ =< τE > / < τD > appears to be constant throughout

the wave (∆τexp ≈ 1.31). Therefore, we can use the ratio of residence times as

characteristic parameter to quantify transient MinE membrane interaction in

context of any specific model.

The mean residence time of MinD < τD > is given by the time it takes cytosolic

or membrane-bound MinE to sense and attach to a membrane-bound MinD,

and the time MinE needs to drive MinD off the membrane. Hence,

< τD >= (ωEcE + ωedce)
−1 + ω−1

de . (1)

For the mean MinE residence time < τE > one has to consider the con-

ditional branches whether MinE detaches alongside MinD (with probabil-

ity pc) or remains on the membrane (with probability pm = 1 − pc), and

whether membrane-bound MinE detaches from the membrane (with prob-

ability qc = ωe/(ωe + ωedcd)) or reassociates with MinD (with probability

qm = 1− qc):

< τE >= pcω
−1
de,c + pm(ω−1

de,m + qcω
−1
e + qm((ωedcd)

−1+ < τE >)). (2)

After a few algebraic manipulations one obtains an expression for the mean

MinE residence time

< τE >=
2(ωde,m + ωedcd + ωe)

ωde,cωedcd + ωdeωe

, (3)
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and for the ratio of the residence times ∆τ

∆τ =
2ωde(ωde,m + ωedcd + ωe)(ωedce + ωEcE)

(ωde,cωedcd + ωdeωe)(ωde + ωedce + ωEcE)
. (4)

By comparison with the experiment (∆τexp ≈ 1.31) we obtain an expression

relating all processes that characterize MinE interaction with the membrane

to interactions with MinD. Due to the explicit dependency on the protein con-

centration cd, ce, and cE numerical simulations or additional approximations

are required for further progression. We note that for the specific parameter

choice in the present model ∆τ becomes independent of cd. The reason is that

both exit processes for MinE occur on the same time scale, i.e. ωde,c = ωe,

such that < τE >→ 2/ωe and

∆τ → 1

pc
· 2(ωedce + ωEcE)

ωde + ωedce + ωEcE
. (5)

To obtain a first estimate we approximate the missing values for the protein

concentrations by the stationary solution that represents the mean concen-

trations in linear approximation. For the parameters provided in the paper

we find ∆τ ≈ 14.7, hence an 11-fold deviation from the experimental value

∆τexp ≈ 1.31. We conclude that the model’s assumption regarding MinE dy-

namics (in terms of parameter choice) clearly conflicts with experimental data.

It represent the underlying molecular processes. In the following section we

will investigate the model’s linear stability upon varying the MinE dynamics.

Linear Stability for varying MinE dynamics

The research by Park et al. [13] indicates that membrane associated MinE

has an increased MinE-MinD interaction rate due to an exposed contact helix

compared to the stable conformation in solution where the contact helix is

buried in the dimeric interface. It is our understanding that this is the main

idea which defines persistent binding [6] and tarzan of the jungle [13] mod-

els. To keep these mechanisms unaltered while trying to reduce the relative

residence times we focus on the isolated effect of MinE membrane interac-

tions. The membrane affinity of MinE can be expressed by pm = 1− pc alone.

Tuning this parameter enables a smooth reduction of the relative residence

time ∆τ without altering the reassociation process with MinD. By decreasing

the MinE membrane affinity we find that the dynamical instability is lost for

pm < 0.72 at ∆τ = 3.9, c.f. Figure 9A. Releasing the constraint ωde,c = ωe
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and increasing ωe to weaken MinE membrane binding similarly leads to loss of

dynamical instability for ωe > 0.65 at ∆τ = 4.5, c.f. Figure 9B. We draw two

conclusions from these results. First, tweaking the MinE membrane affinity

alone proves to be insufficient to recover consistency with the experimental

data. It appears that the problems are at least inherent to the parameter con-

figuration as a whole (in particular, the MinE-MinD interactions) such that

the model requires a broad reinvestigation in it’s vast parameter space.[11]

Second, the fact that the model requires at least 72% of MinE remaining

membrane bound after stimulating MinD ATPase activity implies that strong

membrane interactions are a key requirement for pattern formation in the

proposed model. Translated into an experimental test a hypothetical MinE

mutant with slightly reduced membrane binding affinity but otherwise unal-

tered protein-protein interactions should lack any Min oscillations. In that

case one would expect to observe the corresponding phenotypes (filamentous

cells and minicells). However, we couldn’t find any experimental evidence that

supports this major model prediction. In Park et al. [13] four mutations of the

MinE MTS (minEL3E, minEF7E, minEL4E, minEF6E) are investigated, quoting

[13]:

“Surprisingly, the strains containing minEL3E and minEF7E were

extremely filamentous and could not form colonies on plates with

arabinose (Figure 4B and data not shown), indicating that MinE

function was absent. In contrast, strains containing minEL4E and

minEF6E formed colonies normally on plates with arabinose, but

the morphologies of the cells were heterogeneous in length with

some minicells. The average cell length of an exponential culture

of the strain with minEWT was 2.84± 0.89µm compared to 4.68±
2.48µm for the strain lacking Min function. The strains containing

minEF6E and minEL4E had average cell lengths of 3.81 ± 2.67µm

and 2.95± 1.37µm, respectively (N ∼ 250 for each). In summary,

each of the four charge substitution mutations eliminated mem-

brane binding of the MinEI25R mutant. However, two of the muta-

tions, minEL3E and minEF7E, completely eliminated the ability of

MinE to counteract MinC/MinD, whereas the other two, minEL4E

and minEF6E, did not, although they did reduce the ability of

MinE to spatially regulate division as evidenced by the increases

in the average cell length and the standard deviation.”

Hence, removing MinE membrane binding affects the performance of the Min

system rather than disabling it’s function altogether. As discussed in our
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previous work [3], altering Min protein recruitment rates (which represent the

sensing step discussed before) has significant impact on midcell localization by

pole-to-pole oscillations. Therefore, the observed filamentous phenotypes in

Park et al. [13] might be explained by an altered Min oscillation with reduced

midcell localization precision due to weakened MinE-MinD interactions. The

explanation offered by Park et al. [13] appears to agree with this line of

thought, quoting [13]:

“ [...] two of the MinE mutants we described above, MinEF7E and

MinEL3E, were unable to rescue cells from expression of MinC/

MinD (Figure 4B). This was surprising because these residues lie

beyond the putative interacting helix. We reasoned that these

residues could play a role in sensing MinD and therefore might

have a defect in MinD-MinE interaction similar to that of the

MinDM193L mutant. If so, the minEI24N mutation should sup-

press these mutations. As shown in Figure 2D, the double mu-

tant MinEF7E/I24N rescued cells from expression of MinC/MinD,

demonstrating that the minEI24N mutation is an intragenic sup-

pressor of minEF7E. It also suppressed minE3LE [sic] (data not

shown).”

This picture is also consistent with the earlier experimental results by Ma et

al. [8] which showed that MinEI25R lacks the ability to sense MinD. In turn,

this leads to the loss of Min-oscillations and results in the filamentous pheno-

type. The fact that minEL4E, minEF6E, and MinEF7E/I24N seems to retain the

function of the Min system, while lacking the ability to bind to the membrane

clearly implies that not membrane binding itself but the effect it has on MinD

sensing enables proper Min oscillations. For minEL4E and minEF6E the specific

effect on MinD sensing cannot be deduced from the experimental data. This

impedes an unequivocal comparison with the model. However, this is not the

case for MinEF7E/I24N . MinEI24N shows significantly increased MinD sensing

ability through unmasking of the anti-MinCD domains (β1 strands) which are

buried in the dimeric interface in WT MinE. So, on one hand MinEF7E/I24N

lacks the ability to interact with the membrane, such that membrane binding

effects can be excluded. On the other hand the unmasked anti-MinCD do-

mains enable it to interact with MinD as if it were in it’s membrane bound

conformation. As the experiment indicates that this mutation restores proper

function of the Min system this scenario can be directly translated into a test

of the model dynamics: We incorporate the corresponding modification by pre-

venting MinE to bind to the membrane ωde,m = 0/s, ωde,c = 0.88/s and setting
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the recruitment rate ωE for cytosolic MinE equal to the reassociation rate ωed

of former membrane bound MinE species, i.e. ωE = ωed = 2.5 · 10−3µm2/s.

The experimental observation implies that the dynamical instability should be

restored. In contrast, the linear stability analysis reveals no instabilities in this

kinetic configuration, cf. Figure 9C.[12] Moreover, we find that without MinE

membrane binding the instability cannot be restored by changing the MinE

recruitment rate. Therefore, not the modified MinE-MinD interaction but

MinE membrane binding is the crucial component in the model. Assuming

that the MinEF7E/I24N mutant most likely restores pole-to-pole Min oscilla-

tions (hence, geometry sensing) without requiring membrane binding further

questions the claim that MinE membrane binding is responsible for geometry

sensing, we conclude that the experiments by Park et al. [13] disprove the

proposed model. We stress that a loss of dynamical instability without MinE

membrane binding does not imply that MinE membrane bindings is required

or responsible for geometry sensing in any way. The demonstration is given

by the model simulations above: There one observes pattern formation based

on dynamical instabilities but no geometry sensing.

Total particle numbers, bulk-membrane ratio, and effective 2D modeling

In this last section we focus on questions about volume effects, spacial dimen-

sions, and effective system size. A main claim of the theoretical investigation

in the paper is that

“ [...] Min protein waves sense the geometry of the flat, two-

dimensional membrane, rather than the three-dimensional space

of the cell or the curvature of the membrane. ”

Certainly, there is no doubt that the available experimental data offers such

a conjecture as waves are found for various system/bulk heights and the gold

layer size does not seem to have any impact beyond enabling and disabling

patch-to-patch coupling. However, in light of the numerical investigation above

this statement raises the question why the size of the space above the mem-

brane should not matter while additional space around the membrane (in form

of the surrounding gold layer) has significant impact on the model dynam-

ics. Increasing gold layer size leads to loss of patterns for the experimental

[MinE]/[MinD] ratio and impedes wave alignment (i.e. geometry sensing phe-

nomena) for fine tuned [MinE]/[MinD] ratios. This indicates that bulk size (via

bulk/membrane ratio) affects wave dynamics. Furthermore, our investigation
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showed that alignment to rectangular membrane patches solely emanates from

cross-boundary coupling effects. This directly contradicts the model-based

claim that “Min proteins waves sense the geometry of the flat, two-dimensional

membrane”. The foundation of this conclusion appear inscrutable to us. The

authors state in the supplementary document to the paper that they “have

checked on specific examples that the same phenomena [...] can also be ob-

served in the full three-dimensional description”. Obviously this requires an

explicit mapping between the full 3D dynamics and the effective 2D reduction.

However, no such mapping is provided in the model definition. Inspection

of the model parameters reveals that the cytosolic protein concentrations are

treated as surface densities: CD0 = 2.9·103µm−2 and CE0 = 1.9·103µm−2. This

indicates an underlying bulk integration. The protein concentrations in the ex-

periment are cD = 0.8µM ≈ 481.8µm−3 MinD and cE = 0.5µM ≈ 301.1µm−3

MinE. Comparison with the model parameters implies integration of 6µm bulk,

i.e. CD0/E0 ≈ 6cD/E. The paper does not provide the experimental bulk height

explicitly, however, it is stated that the bulk height is very large, quoting [14]:

“Although the space above the membrane was not limited in our

experiments, the proteins were located only in a small layer above

the membrane during pattern formation.”

The corresponding figure (Figure S1 in the supplement of the paper) clearly

shows that the experimental bulk height is much larger than 6µm, and previous

in vitro experiments were performed with a total bulk height about h = 5 ·
103µm [7]. Regarding particle numbers the model accounts for a system that

is three orders of magnitude smaller than the typical experimental setup.

Without any notion of bulk volume in the model definition we are left with ad

hoc approximations that maintain the mathematical structure of the model.

The bulk dynamics in normal direction to the membrane can be eliminated via

integration or averaging to yield a 2D reaction-diffusion system. In the first

case we increase the total densities of MinD (CD0) and MinE (CE0) keeping

the ratio constant. In the second case we keep the total densities of MinD and

MinE fixed and introduce a scaling factor h between between membrane and

bulk dynamics, i.e.

∂tcB = DB∇2cB +
1

h
fB (6)

where cB denotes any bulk species with membrane reactions given by fB. Note

that in this case bulk densities are (mean) volume densities and not surface

densities as the reported parameters suggest. Using the effective system size

as parameter we find that dynamical instabilities are rapidly lost in both ap-

proximation (Figure 9E/F). This proves that the model’s dynamics are actually
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highly sensitive to volume effects in contrast to the authors’ claim in the paper.

We further note that these findings are supported by the fact that patterns

vanish if the gold layer size is increased.

We conclude that the model cannot account for experimental system sizes.

Moreover there is no explicit notion of bulk volume and no relation to the full

three-dimensional dynamics. Increasing the effective system size leads to loss

of any pattern forming instabilities which directly contradicts the claim that

three dimensional dynamics do not affect pattern formation.
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B: increased gold layer (g=5.25)

F: increased gold layer width (vertical) 

D: increased gold layer width (vertical)  

G: increased gold layer width (horizontal)

FIG. 2. Dynamics on rectangular patches for CE0 = 1.9 · 103/µm2 as published in

the paper. All simulations are based on the file AspectRatio Paper.mph
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A: unmodi�ed (PNAS parameters)

B: unmodi�ed (PNAS parameters)

C: unmodi�ed (PNAS parameters)

FIG. 3. Absence of patterns on quadratic and curved patches for CE0 = 1.9·103/µm2

as published in the paper.
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B: increased gold layer (g=5)

C: increased gold layer (g=38) D: increased gold layer (g=155)

E: increased gold layer width (horizontal) F: increased gold layer width (vertical)

FIG. 4. Dynamics on rectangular patches for CE0 = 1.3 · 103/µm2 as preset in the

simulation files. All simulations are based on the file AspectRatio Paper.mph

27

520
Geometry and mass-conservation:

Why a rigorous account for the system geometry and total protein numbers is
important



B: increased gold layer width (horizontal) 

C: increased gold layer width (vertical) 

D: increased gold layer (g=74) 

F: increased gold layer (g=155) 

FIG. 5. Dynamics on rectangular patches for CE0 = 1.3 · 103/µm2 as preset in the

simulation files. All simulations are based on the file AspectRatio Paper.mph
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A: reduced patch (factor 0.75), increased gold layer B: reduced patch (factor 0.5), increased gold layer

C: reduced patch (factor 0.75), increased gold layer D: reduced patch (factor 0.5), increased gold layer

FIG. 6. Dynamics on smaller rectangular patches for CE0 = 1.3 · 103/µm2. All

simulations are based on the file AspectRatio Paper.mph
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D: increased gold layer (g=67.5), [MinD]

E: increased gold layer (g=67.5), [MinE]/[MinD]

F: increased gold layer (g=67.5), <[MinE]/[MinD]>

FIG. 7. Dynamics on L-shaped patches for CE0 = 1.3 · 103/µm2. All simulations

are based on the file L shape Paper.mph
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A: MinE and MinD density wave pro�les (model simulation) B: [MinE]/[MinD] ratio wave pro�le (model simulation)  

FIG. 8. Computational data of protein density profiles and [MinE]/[MinD] ratios

along a wave in the L-shape simulation.
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FIG. 9. Dispersion relations for varying MinE-MinD interactions and effective sys-

tem sizes showing loss of instabilities.
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