
 

Dissertation zur Erlangung des Doktorgrades 

der Fakultät für Chemie und Pharmazie 

der Ludwig-Maximilians-Universität München 

 

 

 

Sequence defined oligomers as a carrier platform for 

therapeutic pDNA and mRNA delivery  

 

Ana Krhač Levačić 

aus Novo mesto, Slowenien 

 

2018 

 



    

2 

Erklärung  

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. 

November 2011 von Herrn Prof. Dr. Ernst Wagner betreut. 

 

 

 

 

 

Eidesstattliche Versicherung  

Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet.  

 

 

München, 23.04.2018 

 

............…………………………… 

                                                                                      Ana Krhač Levačić 

 

Dissertation eingereicht am: 14.05.2018 

1. Gutachter: Prof. Dr. Ernst Wagner 

2. Gutachter: PD Dr. Carsten Rudolph 

Mündliche Prüfung am: 21.06.2018 

 



    

3 

 

 

 

 

 

 

 

Meiner Familie 

Rebeka Elin 

 

 

 

 

 

 

 

 

 



   Table of Contents 

   IV 

Table of Contents 

1 Introduction ........................................................................................ 7 

1.1 Non-viral gene therapy ............................................................................... 7 

1.2 Carrier requirements ................................................................................. 10 

1.2.1 Nucleic acid binding .............................................................................. 11 

1.2.2 Polyplex shielding .................................................................................. 15 

1.2.3 Ligands for cellular targeting ................................................................. 16 

1.2.4 Endosomal escape ................................................................................ 20 

1.2.5 Cargo release and nuclear delivery ....................................................... 24 

1.3 Challenges of in vivo delivery ................................................................... 26 

1.4 Optimization of DNA vectors for enhanced gene transfer ......................... 27 

1.5 Aim of the thesis ....................................................................................... 28 

2 Materials and Methods .................................................................... 30 

2.1 Chemicals and reagents ........................................................................... 30 

2.2 Vectors ..................................................................................................... 30 

2.3 Biophysical characterization ..................................................................... 31 

2.3.1 Polyplex formation ................................................................................. 31 

2.3.1.1 pDNA polyplex formation ................................................................ 31 

2.3.1.2 mRNA polyplex and lipopolyplex formation .................................... 31 

2.3.2 Particle size and zeta potential measurement ....................................... 31 

2.3.3 Agarose gel-shift assay for mRNA binding ............................................ 32 

2.3.4 Ethidium bromide compaction assay and polyanionic stress test .......... 32 

2.3.5 mRNA lipopolyplexes under reducing conditions .................................. 33 



   Table of Contents 

   V 

2.3.6 Transmission electron microscopy ........................................................ 33 

2.4 Biological characterization in vitro ............................................................ 34 

2.4.1 Cell culture ............................................................................................ 34 

2.4.2 Determination of HGFR/c-Met expression on DU145 cell line ............... 34 

2.4.3 Luciferase assay ................................................................................... 35 

2.4.3.1 Luciferase gene transfer of DNA polyplexes .................................. 35 

2.4.3.2 Luciferase transfer of mRNA polyplexes and lipopolyplexes .......... 35 

2.4.4 Cell synchronization and cell cycle status analysis ............................... 36 

2.4.5 Cell cycle dependent transfections ........................................................ 36 

2.4.6 Metabolic activity of transfected cells .................................................... 37 

2.4.6.1 MTT assay ...................................................................................... 37 

2.4.6.2 CellTiter-Glo® assay ...................................................................... 37 

2.4.7 EGFP expression .................................................................................. 38 

2.4.8 Fluorescence microscopy ...................................................................... 38 

2.4.9 Statistical analysis ................................................................................. 38 

3 Results ............................................................................................ 39 

3.1 Minicircle versus plasmid DNA delivery by receptor-targeted polyplexes . 39 

3.1.1 Vector constructs and polyplex design .................................................. 39 

3.1.2 Physicochemical characterization of polyplexes .................................... 42 

3.1.3 Transfection efficiency of polyplexes formed with pCMV-luc or 

MC07.CMV-luc ...................................................................................... 45 

3.1.4 Overcoming intracellular barriers ........................................................... 49 

 



   Table of Contents 

   VI 

3.2 Sequence defined oligomers as carriers for mRNA delivery ..................... 51 

3.2.1 Evaluation of mRNA-luc transfection efficiency using polyethylenimine or 

different sequence-defined oligoaminoamides ...................................... 52 

3.2.2 Biophysical characterization of mRNA polyplexes and lipopolyplexes .. 62 

3.2.2.1 Size and zeta potential of carriers .................................................. 62 

3.2.2.2 Stability of mRNA polyplexes and lipopolyplexes determined in 

agarose gel shift assays ................................................................................. 64 

3.2.2.3 Ethidium bromide compaction assay, polyanionic and GSH stress 

test……………………………………………………………………………………. 64 

3.2.3 Evaluation of mRNA-EGFP transfection efficiency using polyethylenimine 

or different sequence-defined oligoaminoamides .................................. 67 

4 Discussion ....................................................................................... 75 

4.1 Minicircle versus plasmid DNA delivery by receptor-targeted polyplexes . 75 

4.2 Sequence defined oligomers as carriers for mRNA delivery ..................... 80 

5 Summary ......................................................................................... 86 

6 Appendix ......................................................................................... 88 

6.1 Abbreviations ............................................................................................ 88 

6.2 Summary of SPS derived oligomers ......................................................... 90 

7 References ...................................................................................... 91 

8 Publications ................................................................................... 110 

9 Acknowledgements ....................................................................... 113 

 

 



   Introduction 

   7 

1 Introduction 

The introduction provides a review of sequence defined oligomers used as a carrier 

platform technology for therapeutic nucleic acid delivery, with a focus on pDNA and 

mRNA, followed by a brief summary about optimization of DNA vectors for enhanced 

gene transfer. 

 

Sections 1.1, 1.2, 1.3 have been adapted from: 

A. Krhac Levacic, S. Morys and E. Wagner. Solid-phase supported design of carriers 

for therapeutic nucleic acid delivery. Bioscience Reports 37 (2017)  

doi 10.1042/BSR20160617 

 

Section 1.4 has been adapted from: 

A. Krhac Levacic, S. Morys, S. Kempter, U. Lächelt and E. Wagner. Minicircle versus 

plasmid DNA delivery by receptor-targeted polyplexes. Human Gene Therapy 28(10) 

(2017) 862-874 

 

1.1 Non-viral gene therapy 

Administration of nucleic acids with therapeutic potential offers a promising approach 

for the treatment of several human diseases that reached already medical use [1-5]. 

Availability of efficient and safe delivery systems is of primary importance for wider 

spread of successful gene-based therapies. Due to large size, biodegradability and 

the negative charge of exogenous nucleic acids (NA) such as plasmid DNA (pDNA), 

mRNA, small interfering RNA (siRNA), microRNA (miRNA), or antisense 

oligonucleotides, transfer of therapeutic NAs to target cells requires help of viral and 

non-viral gene delivery systems. Although in current therapeutic clinical trials viral 

vectors dominate due to their higher efficiency, synthetic carriers show their 

advantages in the type of nucleic acid cargo (including also artificial chemically 

modified forms) [6, 7], manner of production, formulation property, and storage [8-10]. 

Research on lipidic, peptide or polymer-based carriers that complex therapeutic 

nucleic acid by electrostatic interaction, is of particular interest for non-viral delivery. 

These vehicles should complex nucleic acids by formation of stabile polyplexes or 
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lipoplexes [11] and protect against degradation in the bloodstream and reach target 

cells. The next requirement is an efficient intracellular delivery by entering via 

endocytosis into the intracellular space [9, 12, 13]. Endocytosis via invagination of 

nanoparticles by the lipid cell membrane into endosomal vesicles requests later 

escape from endosome instead of endolysosomal degradation [14-16]. In case of 

pDNA, either the whole polyplexes or the released nucleic acid must subsequently 

enter the nucleus via passive, active, or cell-cycle dependent mechanisms [17-21] 

and be transcribed [22]. Nucleic acids such as siRNA, miRNA, or mRNA need to 

reach the cytoplasm for bioactivity. Compared to pDNA gene delivery, mRNA has 

several advantages including its direct activity in the cytoplasm, thus avoiding the 

requirement for nuclear import, improved effectivity in non-dividing cells (as liver 

hepatocytes [23]) as well as in hard-to-transfect cells (dendritic cells and 

macrophages), and absence of risk of insertional mutagenesis. High immunogenicity 

and limited stability of unmodified RNA present a major challenge for successful 

application, but chemical modifications of mRNA were shown to improve efficacy of 

mRNA gene therapy [24-27].  

 

Although on the one side, stability of complexes is important in the time of 

extracellular delivery steps, on the other side, the carrier should release the NA in the 

intracellular space and should not influence its functionality. Thus, for a successful 

nucleic acid delivery, synthetic nucleic acid shuttles have to be responsive to a 

changing bioenvironment just like natural viruses. Chemistry, size, and topology 

(linear, branched, comb, hyperbranched, and dendritic) of the shuttle, as well as size 

and physicochemical characteristics of formed nanostructures can play a decisive 

role for the biological activity [28-38]. For carrier optimization under such complex 

situations, a careful structure–activity relationship of carriers and their nucleic acid 

delivery characteristics is mandatory. This also requests synthetic methods to 

produce carriers in chemical precise form. One option outlined in this thesis presents 

the application of solid-phase assisted synthesis (SPS). Synthesis of peptides by 

SPS was introduced by Merrifield in 1963 [39] and has been refined to a very potent 

technology, which has been even applicable for the assembly of whole proteins such 

erythropoietin [40]. Analogous progress has been made in the area of SPS of 

oligonucleotides, applying phosphoramidite chemistry as initially developed by 

Caruthers [41]. Synthesis of oligonucleotides nowadays is routine; even the synthesis 
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and subsequent recombinant assembly of oligonucleotides into a whole bacterial 

DNA genome was possible [42]. By nature of chemistry, nucleic acid analogs with 

favorable characteristics over their natural counterparts were generated [6, 7, 43].  

 

Although mRNA delivery possesses broad application prospects, as a new 

application area it still requires more improvement compared to DNA delivery [26, 

44]. Numerous studies have attempted to increase efficiency of mRNA delivery 

inspired by pDNA or siRNA delivery, but due to difference between those nucleic 

acids, effective cationic polymers for delivery of large pDNA or small siRNA might not 

necessarily be successful for mRNA delivery [24, 25]. Therefore, for a broader 

overview the sections 1.1, 1.2 and 1.3 present also sequence defined oligomers used 

as a carrier system for siRNA delivery. Protamine was used as the first generation of 

mRNA delivery systems [26, 44], but nowadays various delivery carriers are the 

subject of research [45-49]. Liposomal systems [50-58] present the greatest interest 

in the case of mRNA delivery, contrary to pDNA delivery, where polymers are the 

most broadly investigated [25, 26]. At the moment, immunotherapeutic application is 

the only field with already available clinical experience [59].  

 

 

 

 

 

 

 

 

 

 

 



   Introduction 

   10 

1.2 Carrier requirements 

The multiple requirements for carriers to successfully deliver nucleic acids are 

described in Figure 1 in schematic form.  

 

 

Figure 1 Barriers for the nucleic acid delivery via polyplexes. (A) Formation of stable polyplexes. (B) 

Protection against rapid clearance and unspecific interactions with blood components, and (C) 

overcoming cellular barriers.  
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1.2.1 Nucleic acid binding 

Non-viral carriers tailored by solid-phase synthesis can be composed either solely of 

natural amino acids, solely of artificial building blocks, or of a combination of both 

(Figure 2). Especially homopolymers of the basic amino acid residues lysine (Figure 

2A), ornithine, and arginine had shown ability to bind and condensate nucleic acid 

[60-63]. Later on, instead of polymerized amino acids, defined oligopeptides were 

developed via SPS [64-68]. Linear [64] as well as branched [68] oligolysine peptides 

were evaluated regarding nucleic acid binding and compaction as well as gene 

transfer. A minimum of six to eight cationic amino acids are required to compact 

pDNA into polyplexes active in gene delivery. The DNA binding and compaction 

ranked from arginine > lysine ∼ ornithine residues. Nucleic acid binding represents 

only one crucial step for successful gene delivery; not surprisingly, despite good 

nucleic acid binding oligolysine peptides could mediate gene transfer only to a limited 

extent, because of insufficient endosomal escape. In several cases, combination with 

lysosomatropic chloroquine or lipidic helper molecules was necessary to mediate 

successful nucleic acid delivery [69-72]. 

 

Branched peptides containing α,ε-modified lysines as branching points, and lysines 

and protonatable histidine as nucleic acid binding arms were found as very effective 

in either pDNA or siRNA transfer [73-77]. It had been observed that the type of 

nucleic acid cargo strongly influences the carrier performance [69, 78, 79]. 

Interestingly, combinatorial work pointed out that little changes in topology can 

decide on whether the carriers is effective for pDNA or siRNA delivery [76, 77]. These 

peptides with incorporated histidines had significantly decreased cytotoxicity as 

compared with classical transfection polymers [80].   

 

Introduction of cysteines into oligolysine peptides offered a biodegradable and cross-

linking motif that allowed polymerization of Cys-Lys10-Cys corresponding to 

polylysine Lys205 [81, 82]. Analogously, increased pDNA binding was obtained by 

introduction of cysteines via SPS into Trp-Lys18 peptides, which led to enhanced 

polyplex stability against salt induced stress [83]. Shorter peptides consisting of only 

six lysines mediated sufficient stability and notable gene transfer after cysteine 

dependent cross-linking [84]. With the help of convergent solid-phase synthesis, 
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defined bioreducible polylysine derivatives comprising up to 74 lysines could be 

synthesized [85], revealing the possibilities of solid-phase synthesis. 

 

In another approach, Rice and colleagues introduced acridine onto the ε-amine of a 

lysine suitable for SPS [86]. These acridinylated oligolysines complexed pDNA by 

charge dependent ionic interaction and also by polyintercalation (Figure 2B) [86-89]. 

Further, formulation of polyplexes using the same PEGylated polyacridine peptide to 

bind mRNA through ionic interaction and overcoming mRNA instability was also 

demonstrated [23]. In general, strong complexation presents a key for pDNA vectors, 

but might be a big disadvantage in the case of mRNA delivery due to ineffective 

mRNA release. Based on theoretical considerations, binding of far more flexible 

single stranded mRNA to cationic polymers is stronger comparing to binding to 

double-stranded nucleic acids such as pDNA [90]. 

 

Analogous to classical peptide synthesis, artificial building blocks such as triethylene 

tetramine or fatty acids were incorporated together with natural amino acids [91-93].  

Wang et al. [92] designed a novel lipopeptide system (EHCO) based on (1-

aminoethyl)iminobis [N-(oleoylcysteinylhistinyl-1-aminoethyl) propionamide] (Figure 

2C) containing cysteines and oleic acids for siRNA nanoparticle stabilization, 

histidines for endosomal protonation, and (promoted by the fatty acids) endosomal 

membrane destabilization. The use of completely unnatural building blocks in SPS 

nucleic acid carriers was first introduced by Hartmann, Börner, and colleagues [94-

100]. By alternating coupling of diamines (3,3'-diamino-N-methyl-dipropylamine or a 

bis-tBoc-protected spermine) and a diacid (succinic acid anhydride), the first 

sequence-defined oligo(amidoamines) were yielded. Optionally, disulfide linkage or a 

terminal PEG chain was introduced, and the sequence-defined oligomers were used 

for pDNA polyplex formation. Schaffert et al. [101] optimized the use of artificial 

amino acids for sequence-defined oligomer synthesis (Figure 2D). The design of the 

building blocks was based on the proton sponge diaminoethane motif of PEI. 

Triethylentetramine, tetraethylenpentamine, or pentaethylenhexamine were used with 

tBoc protection groups at the secondary amines and converted into artificial amino 

acids by introducing succinic acid onto one of the terminal primary amines, and Fmoc 

on the other primary amine [101, 102]. With these novel artificial amino acids, 

oligomers were generated benefiting from the nucleic acid binding abilities as well as 
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exhibiting a proton sponge effect, well known from PEI [28, 103]. In combination with 

commercially available Fmoc α-amino acids, fatty acids, and also other artificial 

blocks introducing bioreducible breaking points [104], more than 1000 oligomers with 

different topologies for pDNA as well as siRNA delivery were synthesized. These 

topologies include linear [33, 105], two-arm [105], three-arm [105-108], four-arm [102, 

105, 109], comb architectures [34] as well as compounds with two cationic arms 

attached to a third arm of polyethylene glycol (PEG) of defined length and a targeting 

ligand (Figure 2E) [107-113].  

 

With the precision of chemical design, in contrast with classical polymers like PEI or 

polylysine, oligomers could be generated to address simple questions on structure–

activity relationships. For example, linear sequences of the building block Stp 

(succinyl tetraethylene pentamine, exhibiting three protonatable nitrogens per 

repetition) were prepared and the effect of increasing molecular weight of PEI-like 

oligomers on formed pDNA polyplexes could be investigated [33]. Very clearly, 

oligomers containing 20 Stp units (i.e. 100 nitrogen backbone) demonstrated good 

pDNA compaction, high marker gene transfer (6-fold higher than with gold standard 

LPEI 22kDa) in cell culture transfections, and an oligomer length-dependent 10-fold 

lower cytotoxicity than LPEI (containing in average an approximately 500 nitrogen 

backbone).  

 

For further polyplex stabilization, terminal cysteines [105, 106] or twin cysteines [114, 

115] served the formation of bioreducible disulfides. Optionally, further nanoparticle 

stabilization by incorporation of hydrophobic domains consisting of saturated as well 

as unsaturated fatty acids [104-106, 116, 117], or tyrosine trimers [104, 116] at 

peripheral or central positions lead to T-shaped, i-shaped, or U-shaped oligomers 

with favorable properties for siRNA delivery in vitro as well as in vivo. Also the 

influence of different lengths of shielding agents in PEGylated two-arm structures on 

pDNA compaction and polyplex stability was examined [108]. An increased length of 

PEG (from 12 to 24 ethylene oxide units), resulting in a decreased polycation to PEG 

ratio, led to less compacted pDNA polyplexes as compared with unshielded 

polyplexes.  
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Remy and colleagues [118-120] took a completely different approach, designing a 

covalent incorporation of cationic carrier elements into nucleic acids. They adapted 

oligonucleotide SPS for synthesizing oligospermine–siRNA conjugates, which 

mediated efficient gene silencing in the absence of any other carrier. In course of 

their work, also lipidic elements were incorporated for improved efficacy [121]. 

 

 

 

Figure 2 Oligopeptides and oligomers with nucleic acid binding motifs generated by SPS. Nucleic acid 

binding motifs of (A) oligolysine and (B) acridine-modified oligolysine. (C) EHCO, a lipopeptide 

containing oleic acid, histidine, cysteine, and artificial aminoethyl blocks for nucleic acid binding. (D) 

Artificial amino acids derived from PEI repeat unit that are assembled by SPS to retrieve a nucleic acid 

binding domain within sequence-defined oligomers. (E) Example of HGFR/c-Met targeted PEG-2-arm 

oligomer. 
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1.2.2 Polyplex shielding 

Nucleic acid complexation usually requires an excess of cationic charged carrier and 

thereby usually results in formation of nanoparticles with positive surface potential. 

This positive charge often displays an advantage for gene transfer efficacy in vitro 

due to unspecific binding to negatively charged cell surfaces [122, 123] or by 

facilitating endosomal escape [124-126]. In the extracellular space, however, 

positively charged polyplexes depending on the applied cationic carrier may mediate 

undesired interactions with the complement system, blood cells, or other blood 

components [127-130]. Introduction of a hydrophilic surface shielding domain into 

artificial carriers has shown to reduce these interactions. PEG represents the most 

prominent and well-established shielding agent and has been successfully used for 

shielding of polyplexes in numerous instances, including SPS-designed nucleic acid 

carriers [12, 88, 127, 131-135]. But also poly(N-(2-hydroxypropyl)methacrylamide) 

(pHPMA) [136, 137], hydroxyethyl starch (HES) [138], polysarcosine [139], or repeats 

of Pro-Ala-Ser (PAS) [108] have been investigated as alternative hydrophilic 

shielding agents (Figure 3). 

 

 

Figure 3 Chemical structures of the most prominent agents used for shielding. Left: polyethylene 

glycol (PEG), right: poly(N-(2-hydroxypropyl)methacrylamide) (HPMA). 

 

For example, Fmoc-PEGx-COOH was directly integrated into sequence-defined 

carriers during SPS [107, 111, 112, 140, 141]. Using folate or methotrexate (MTX) as 

folate receptor (FR) targeting ligands, small unimolecular siRNA nanoplexes were 

generated, which demonstrated FR-dependent in vivo gene silencing, and in case of 

MTX also therapeutic antitumor activity [140, 141]. 
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Although PEGylation may greatly improve pharmacokinetics and biodistribution to 

tumor target tissue, it may also negatively affect nucleic acid compaction and 

intracellular performance [108, 142, 143]. The length of the PEG chain, and 

consequently the ratio of hydrophilic to cationic polymer within the polyplex, controls 

characteristics like nucleic acid compaction, polyplex size, and stability [108]. In a 

recent report by Kos et al. [107], systemic c-Met targeted gene transfer of pDNA 

polyplexes was successful, but only if combination polyplexes of a ligand-PEG carrier 

with a non-PEGylated compaction carrier were applied. Alternatively, to avoid 

difficulties with nucleic acid compaction, PEG was also introduced after pDNA [137, 

144] or siRNA [145-147] polyplex formation (“post-PEGylation”). For siRNA delivery, 

this approach led to increased tumor-specificity of RNA delivery in vivo, but only if 

tumor-specific ligands (EGFR binding peptide [145], transferrin protein [146], or folate 

[147]) were applied. Contrary to difficulties with nucleic acid compaction in the case 

of pDNA or siRNA, when PEG was directly integrated into carriers during SPS, 

PEGylation improved mRNA binding as well as transfection efficiency [126].  

 

Reduced intracellular efficacy is the second problem of the so-called “PEG-Dilemma”. 

As previously shown for other carriers, this problem can be overcome by introducing 

a pH-labile shield [134, 148-150]. Removal of the shield at endosomal pH in the 

endolysosomal compartment was found to recover transfection activity in vitro and in 

vivo, also for pDNA polyplexes of sequence-defined oligomers [137]. 

 

1.2.3 Ligands for cellular targeting 

After formulation, carriers loaded with nucleic acid have to be able to reach target 

cells. Physical concentration via adsorption, electrostatic interactions, and ligand–

receptor interaction are possibilities for successful intracellular entry of vehicles. 

Nanoparticles, comprise nucleic acid and cationic core exhibiting target specific 

ligands, may facilitate specific binding to receptors expressed on the surface of target 

cells. Afterward, carriers can be taken up by the cell via receptor-mediated 

endocytosis [14]. When polyplexes are positively charged, unspecific ionic 

interactions can still reduce the value of targeting ligands. Hence, targeting ligands 

are introduced in combination with shielding agents described above. As mentioned, 

targeting ligands plus shielding agents can be included directly during the SPS, 
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conjugated after the synthesis, or introduced after polyplex formation. Many different 

targeting ligands such as antibodies and their fragments, glycoproteins, peptides, 

and small molecules that can bind to receptors overexpressed in cancer or other 

target cells, have been investigated [13, 151-153]. Up to now, several different 

receptor-targeted carriers based on SPS already showed favorable characteristics for 

enhanced nucleic acid delivery. 

 

The group of Rice [154] designed an asialoglycoprotein receptor (ASGP-R) targeted 

carrier with triantennary galactose-terminated oligosaccharide as a ligand, which 

combined with the endosomalytical reagent chloroquine, enhanced DNA delivery on 

the HepG2 cell line. The same group showed receptor specific uptake of 

pDNA/polyacridine glycopeptides (Figure 2B). They introduced high-mannose N-

glycane as a targeting ligand attached to modified forms of polyacridine peptides 

[155, 156]. 

 

The ligand RGD (arginine–glycine–aspartic acid) is one of the most commonly used 

peptides for nucleic acid nanoparticle targeting cell–surface integrins [70, 71, 107, 

111, 157, 158]. RGD–oligolysine peptide in combination with lysosomatropic 

chloroquine or lipidic helper molecules mediated targeted nucleic acid delivery [69-

72, 75]. Leng et al. [74] developed a library of effective vehicles for siRNA delivery, 

branched peptides composed of histidines, and lysines (HK) with optionally attached 

RGD ligand. A promising integrin targeted siRNA delivery system, which showed 

efficient gene silencing in U87 glioma cells, was introduced by Wang et al. [158]. This 

system was based on (1-aminoethyl)iminobis [N-(oleoylcysteinylhistinyl-1-aminoethyl) 

propionamide] (EHCO) (Figure 2C). RGD was attached to siRNA nanoparticles via a 

PEG spacer. Analogously, bombesin was applied as another receptor ligand, which 

binds specifically to the gastrin-releasing peptide receptor, neuromedin B receptor, 

and the orphan receptor bombesin receptor subtype 3 that are overexpressed in 

various cancers. Systemic administration of the targeted nanoparticles loaded with 

anti-HIF-1α siRNA showed significant tumor growth inhibition in vivo [158].  

 

Martin et al. [111] demonstrated ligand-dependent pDNA delivery by designing cyclic 

RGD-PEG-Stp 2-arm oligoaminoamides (Figure 2E); the same strategy was 

successfully developed for the targeting peptide B6, which was initially assumed to 
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enhance uptake via the transferrin receptor (TfR) but later on was discovered as an 

TfR independent tumor cell uptake facilitator [159, 160]. These initial conjugates were 

devoid of endosomal buffering histidines, therefore the presence of the 

endosomolytic reagent chloroquine was necessary for high level transfection. 

Subsequent work demonstrated a greatly improved transfection activity of PEGylated 

2-arm structures upon incorporation of alternating histidines into the Stp carrier 

backbone [109]. This kind of oligomer, containing the peptide ligand cMBP2 binding 

to hepatocyte growth factor receptor/c-Met, showed enhanced gene delivery efficacy 

and target-specificity in vitro in Huh7 hepatoma and DU145 prostate carcinoma. 

Upon intravenous application in vivo in a hepatocellular carcinoma xenograft mouse 

model, specific and ligand-dependent gene transfer was detected, but only if 

combination polyplexes of a ligand-PEG carrier with a non-PEGylated compaction 

carrier were applied. Using a plasmid encoding the theranostic gene sodium iodide 

symporter (NIS), radioiodide-mediated tumor detection, and antitumoral activity were 

demonstrated [107, 161]. 

 

In order to achieve improved selectivity and transfection activity, a dual-targeting 

concept, which simultaneously targets two different overexpressed receptors in 

tumors, was also investigated. Cyclic RGD peptide, B6 peptide, and the epidermal 

growth factor receptor targeting peptide GE11 were evaluated. In the investigated 

DU145 prostate cancer cell culture, which expresses all involved receptors, the most 

successful pDNA delivery was obtained by the combination of GE11 and B6 ligands 

[162]. EGFR targeting via peptide GE11 was also used for siRNA lipopolyplexes, 

which were surface-PEGylated with maleimide–PEG–GE11. These formulations 

showed potential for EGFR-specific siRNA and miRNA-200c delivery [145]. 

 

Transferrin (Tf) as an iron transport protein is targeting the transferrin receptor (TfR) 

overexpressed in many different malignant cells. Therefore, it was applied as ligand 

in pLys/pDNA polyplexes [163, 164]. Previously, a Tf–pLys system was used for the 

preparation of IL-2 gene modified cancer vaccines in the first polyplex ex vivo human 

clinical gene therapy trial [165]. Tf–PEI conjugates were also shown to enhance gene 

transfection efficiency up to 1000-fold in TfR overexpressing cell lines [132, 166-168]. 

A Tf–PEG-coated cationic cyclodextrin carrier was very effective in siRNA delivery, 

which was the basis for the first TfR-targeted in vivo siRNA human clinical trial [169]. 
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Zhang et al. [170] combined sequence-defined, histidinylated 4-arm oligomers with 

Tf–PEI conjugates for efficient TfR-targeted pDNA delivery. An alternative TfR-

targeted system was introduced by Prades et al. [171] with applying the retroenantio 

approach to a peptide that targets TfR; this was found capable to overcome the 

blood–brain barrier. Based on T-shaped lipo-oligomers, TfR-targeted siRNA 

polyplexes were generated by post-introduction of INF7 and PEG–Tf or PEG–TfR 

antibody (TfRab) onto the polyplex surface. These carriers mediated effective target-

dependent gene silencing and potent tumor cell killing in vitro, as well as a tumor-

target specific biodistribution in vivo, but limited in vivo stability [146].  

 

Folic acid (FA), the vitamin with high-binding affinity to the FA receptor in many tumor 

types [172], was also effectively incorporated into 2-arm and 4-arm oligomers [109, 

110, 112, 173, 174] or lipo-oligomers [147] for pDNA or siRNA delivery. FA–PEG–Stp 

2-arms can formulate single influenza peptide INF7 conjugated-siRNA into very small 

nanoplexes [110]. The INF7 peptide was strictly required for endosomal escape. The 

analogous siRNA nanoplexes using MTX as targeting and cytotoxic ligand were able 

to cure mice from KB tumors after intratumoral application [140]. Combination of FA 

targeted PEGylated 2-arm oligomer with untargeted, 3-arm oligomer by directed 

disulfide exchange reaction resulted in generation of larger ∼100 nm TCP 

polyplexes, which enabled FA specific gene silencing in vivo also upon intravenous 

administration [174]. Optimization of FA–PEG containing carriers was extended in a 

library approach, evaluating 2-arms versus 4-arms, different building blocks, 

presence/absence of buffering histidines or polyplex-stabilizing tyrosine trimers. A 

two-arm folate-targeted oligomer containing histidines and tyrosine trimers was 

recognized as the most promising FA-containing carrier for the delivery of both pDNA 

and siRNA [112]. Folate receptor targeting by PEGylating siRNA lipopolyplexes was 

developed by Müller et al. [147]. Tetra-γ-glutamyl FA had to be used as targeting 

ligand; PEGylation with standard FA–PEG (but not FA-free PEG) resulted in 

nanoparticle aggregation.  

 

For targeting brain tumors, the blood–brain barrier (BBB) or at least the blood–tumor 

barrier presents a significant bottleneck. A combinatorial approach for effective 

glioma-targeted siRNA delivery was introduced by An and colleagues [175]. For 

siRNA lipopolyplex formation, a T-shaped oligoaminoamide was combined with an 
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angiopep 2 (LRP-targeting peptide) attached via PEG to a sequence-defined 2-arm 

oligomer (compare Figure 2E). After intravenous delivery, receptor-enhanced 

accumulation in a brain tumor and enhanced gene silencing of a target gene were 

observed. Similarly, another glioma targeting ligand, I6P7, an interleukin-6 receptor 

binding peptide derived from IL-6, was included into a similar sequence defined 

carrier construct for glioma-targeted delivery of pDNA [113]. In this case, a 

histidinylated carrier version was applied and combined with a histidinylated 

compaction carrier analogously as described above for c-Met targeting [107]. In vitro 

and in vivo results demonstrated transfer across BBB as well as therapeutic 

antitumoral effects against the brain tumor when pING4 gene transfer was performed 

[113]. 

 

1.2.4 Endosomal escape 

Effective endosomal escape to release the entrapped polyplexes into the cytosol is 

an important event for successful nucleic acid delivery. Otherwise, nucleic acid will be 

digested during the conversion of endosomes toward lysosomes or recycled to the 

cell surface and removed out of the cell. Endosomes are intracellular vesicles and 

mostly serve for sorting, trafficking, and recycling of endocytosed material. Active 

transport of protons from the cytosol into the vesicle generated by the action of the 

proton pump ATPase is a reason for acidification of a series of vesicles. Based on 

the proton sponge hypothesis (Figure 4A), Jean-Paul Behr and colleagues [103] 

screened a series of “proton-sponge” polymers which exhibit weakly basic 

functionalities with pKa values between physiological and endosomal pH. Thus 

during endocytic trafficking, such polymers would experience increase in protonation. 

Increased cationization and counterion concentration might be a reason for osmotic 

swelling and rupture of the endosomes membrane, causing the escape of polyplexes 

into the cytosol. Such considerations were the basis for the development of 

polyethylenimine (PEI) as transfection agent [28], or subsequent SPS-based 

oligoaminoamides [102, 105] utilizing the aminoethylene motif of PEI. Uchida et al. 

[176] and later on Lächelt et al. [109] showed that oligoaminoethylene building blocks 

with even numbered amine groups (two or four protonatable nitrogens) have the 

highest buffer capacity around pH 5–6. Data accumulating during the last two 

decades rule out a purely osmotic effect for endosomal escape [124, 130, 148, 177-
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180]. Direct interaction of protonated, cationized polymer domains with the 

endosomal phospholipid domain appear as essential for vesicle destabilization. In 

addition, free polycations (not bound to polyplexes) were found to critically contribute 

to gene delivery [181-184], and instead of complete lysis, only partial vesicle 

disruption was observed [180]. Contrary to aforementioned observation regarding 

pDNA polyplexes [176], in the case of mRNA, polyplexes with odd number 

aminoethylene motif showed enhanced mRNA transfection efficacy compared to 

building blocks with even number of repeats [185]. It was concluded that high 

endosomal escape capability of even numbered amino groups resulted in less 

effective system due to its low cytoplasmic stability. Therefore the balance between 

endosomal escape and stability of mRNA in the cytoplasm should be established. 

The same group improved endosomal escape with polyplex nanomicelles prepared 

by self-assembly of PEGylated poly(amino acid) block copolymer for in vivo mRNA 

transfection into the central nervous system [186, 187]. Another proof of importance 

of the balance between good buffering capacity and sufficient stability of mRNA 

complexes was shown by Dohmen et al. who observed favorable endosomal release 

of (2-3-2) tetramine in vitro and in vivo [188]. 

 

 

Figure 4 Strategies for endosomal escape. (A) Schematic presentation of endosomal release by the 

proton sponge effect. Note that beyond osmotic swelling, direct destabilization of the phospholipid 

domain by the cationized polymer domains contributes to endosomal escape. (B) Membrane 

destabilization by amphiphilic lytic peptides. 

 



   Introduction 

   22 

Nonprotonatable polymers such as polylysine can be converted into proton sponges. 

It is known that histidinylation of polylysine or PEI offers higher endosomal buffer 

capacity based on a pKa around 6 of the imidazole groups; therefore, protonatable 

histidines were introduced into sequence-defined oligolysine-based carriers [73-77, 

84, 107, 109, 112, 189-194]. Consequently, total buffer capacities as well as nucleic 

acid transfer increased both in vitro and in vivo. Several groups reported about 

positive effect of histidines in the structures. Incorporation of histidines into a peptide 

of Cys-His-(Lys)6-His-Cys improved in vitro gene expression also in the absence of 

chloroquine as described by McKenzie et al [84]. Read and colleagues reported 

efficient intracellular delivery of siRNA and mRNA with histidine-rich reducible 

polycations [82]. The lab of Mixson developed a series of branched (HK) peptides 

containing lysines for nucleic acid binding and histidines for endosomal-buffering 

[73]. They further modified HK peptides of different length by adding histidine-rich 

tails. Thus, increased buffer capacity further improved transfection efficiency [76]. 

Gonçalves et al. also reported about efficiency of acid-protonable groups in histidine-

rich polymer and improved pDNA as well as mRNA transfection [194]. 

 

The proton sponge effect is not the only solution to overcome the endolysosomal 

entrapment. In fact, previous studies with (non-proton sponge) polylysine carriers 

already had shown that integration of fusogenic peptides (Figure 4B) such as 

influenza-derived INF1-7, JTS-1, or H5WYG into polylysine/pDNA polyplexes 

improved gene transfer significantly. The latter mentioned peptides mimic the 

functions of viral proteins and enable permeabilization of the endosomal membrane 

triggered by acidification of endosomes [195-197]. As reported by Dohmen et al. 

[110], the endosomolytic peptide INF7, originally designed as the glutamic acid-

enriched analog of the influenza hemagglutinin membrane protein HA2 N-terminus, 

was coupled to the 5'-end of the siRNA sense strand, which maintains its silencing 

efficiency with increased endosomal escape when formulated into nanoplexes INF7 

also greatly improved TfR-targeted siRNA lipoplexes when incorporated by post-

modification of lipoplex surface [146]. Artificial amphipathic cationic peptides such as 

KALA and LAH4, or derivatives of the bee venom melittin facilitated significantly 

improved gene transfer [198-200]. The latter peptides own two important properties 

for efficient gene transfer - possibility of DNA binding and destabilization of 

membranes. The positive charge of KALA allows electrostatic interactions with the 
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negatively charged pDNA. However, the positive charged amphiphile KALA can also 

interact with the endosomal membrane and consequently can cause membrane 

leakage [198]. Next, partially mimicking the proton sponge activity of PEI and 

presence of histidine residues are responsible for improved endosomal escape in the 

case of LAH4 [199]. Boeckle et al. [200] showed that melittin–PEI conjugates can 

enhance gene transfer, but also cause high toxicity due to lysis of the plasma 

membrane. Therefore, modifications with acidic residues (glutamic acid or histidine) 

should allow high lytic activity at acidic pH to induce membrane destabilization in 

endosomes. Polyacridine peptides modified with melittin (by either a maleimide-Cys 

or a thiopyridine-Cys linkage) were used in pDNA transfection with efficacies as high 

as for PEI [86]. And Bettinger et al. [90] demonstrated high efficiency of the PEI 2 

kDa–melittin conjugate in mRNA delivery in post-mitotic primary cells. Also others 

peptides called cell-penetrating peptides (CPPs) promote endosomal escape, for 

example, PepFect6 [91] and PepFect14 [201].  

 

In case of cationic lipoplexes, endosomal escape may occur through local, transient 

perturbations of the endosomal membrane by lipid mixing; cationic lipids possess the 

ability to form nonbilayer structures and charge neutral ion pairs with the negatively 

charged phospholipids (shift to the inner part of endosome caused by lipoplexes) 

[202]. Analogously, incorporation of fatty acids into polycation structures presents 

another option for generating amphiphilic characteristics that facilitate endosomal 

escape. The group of Lu generated lipo-oligomer carriers for pDNA and siRNA 

delivery, with two oleic acid residues triggering a pH-dependent disruption of lipid 

membranes [92]. Also Schaffert, Fröhlich, and colleagues generated lipo-oligomer 

carriers based on oligoaminoamides, which were modified with pairs of fatty acids 

incorporated at terminal lysine amines in i-, T-, or U-shaped topologies [105, 106, 

117]. The type of incorporated fatty acid had more influence on the performance than 

the topology. Oligomers modified with the unsaturated (C18) fatty acids oleic acid 

and linoleic acids demonstrated best transfection efficiency due to endosomal pH-

specific lytic activity. Furthermore, myristic acids (C14) caused high, but pH-

independent lytic activity but also cytotoxic effects. Recently, Klein et al. [104] 

designed T-shaped oligomers containing a bioreducible disulfide bond between the 

cationic and lipid building block. Thus, the carriers would dissociate via GSH-

mediated cleavage in the cytosol into nontoxic fragments leading to enhanced 
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intracellular nucleic acid release while improving polyplex stability in the extracellular 

space. Using this strategy, bis-myristyl and bis-cholanic acid based lipo-oligomers 

should enable high lytic activity, high siRNA delivery and silencing activity in the 

absence of cytotoxicity. 

 

1.2.5 Cargo release and nuclear delivery 

Polyplex stability is a critical issue for extracellular delivery, where high stability is of 

highest importance; it also is a critical parameter in intracellular delivery and 

subsequent cargo release at the target site, where nucleic acid release or at least 

exposure in bioactive form is important. To mediate gene silencing, siRNA and 

miRNA need only to reach the cytoplasm for incorporation into the RISC complex. 

For pDNA, further transport through the cytoplasm toward the nucleus (before or after 

endosomal escape, with or without complexation with cationic carrier), entry across 

the nuclear envelope, and accessibility for transcription are required.  

 

Events following endosomal escape (fate of the polymer, nucleic acid, and different 

sortings of endosome) are still poorly understood. In fact, cargo release and 

productive delivery very much depend on the specific cargo size, the carrier, cell 

type, and different intracellular routes [203, 204]; it is impossible to provide a general 

statement on the fates. First of all, even with effective nanoparticle systems, 

endosomal release is a rare event and bottleneck in the delivery process, therefore 

subsequent steps are difficult to track [180, 205, 206]. Even with potent siRNA LNPs, 

only 1–3% of internalized siRNA molecules were delivered into the cytosol [207, 208]. 

For these LNPs, a narrow window of siRNA release from maturating endosomes 

approximately 5–15 min after internalization was observed. Releasing endosomes 

were recognized by cytosolic galectin-8/-9, which target them for autophagy [208]. 

Moreover, exocytosis of recycling siRNA nanoparticle-loaded vesicles was identified 

as a limitation [209]. In a different study, gene silencing potency correlated with 

intracellular siRNA lipopolyplex stabilization instead of early endosomal exit [210].  

 

Only few studies have been performed comparing lipoplexes (e.g. lipofectamine) and 

polyplexes (with PEI), but significant differences were observed in the intracellular 

delivery steps [180, 202, 211, 212]. Endosomal escape of lipoplexes by mixing of 
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cationic lipids with the negatively charged phospholipids of endosomal membranes 

should release nucleic acids in lipid-free form [202, 213]. For some lipoplex-mediated 

transfection using oligocationic lipids, however, despite effective nuclear delivery of 

pDNA, an insufficient release and availability for transcription were reported as 

possible limitation for gene transfer [214]. For polyplexes, the site of release from 

polycations such as PEI is even less clear, although delivery of small polyplexes was 

been reported. Interestingly, free PEI was found to not only enhance endosomal 

escape, but also assist in transfer of pDNA into the nucleus (by ∼5-fold), enhance the 

pDNA-to-mRNA transcription efficiency (by ∼4-fold), and facilitate the nucleus-to-

cytosol translocation of mRNA (by 7–8-fold) [184].  

 

Nuclear import is a crucial size-dependent process, and presents the next important 

barrier for delivery of larger nucleic acids such as pDNA [12]. The nuclear pore 

complex (NPC) only allows the passage of small molecules such as oligonucleotides 

[180, 215, 216] whereas polyplexes greater than ∼50 nm do not have this capacity. 

In that case, nuclear entry relies on nuclear membrane breakdown during cell division 

process [217]. The importance of the nuclear import step has been demonstrated in 

cell cycle studies. Transfection efficiency of branched PEI polyplexes was strongly 

enhanced in the G2/M phase, when the nuclear envelope breaks down. In contrast, 

linear PEI polyplexes showed lower cell cycle dependence. Conjugation of short 

cationic nuclear localization signals (NLS) peptide for an active, targeted transport 

through the NPC has been evaluated as a possible solution for cell-cycle 

independent gene transfer [12, 18-20, 218]. The exact conditions to successfully 

utilize the properties of NLS peptides are still unclear and therefore only a small 

number of carriers which could reach the nucleus have been described [157, 219-

224]. Further optimizations of nuclear import are required for improved pDNA delivery 

into non-dividing cells. 
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1.3 Challenges of in vivo delivery 

In vivo delivery faces several additional hurdles. As mentioned in previous chapter, 

polyplex shielding and receptor-targeting are possible measures to avoid undesired 

reactions such as innate immune responses and to provide some specificity upon 

systemic administration, for example, in passive or active tumor targeting [127, 128]. 

For this purpose, numerous targeting ligands for various cell surface receptors have 

been evaluated in vivo [9, 69, 107, 113, 132, 160, 161, 169, 175, 210, 225-232]. The 

polyplex size may be at least as crucial for in vivo performance as the ligand 

selection; for example, free siRNA or nanoparticles exhibiting a size of approximately 

6 nm are quickly cleared by the kidney [110, 233]. Passive targeting of blood-

circulating nanoparticles by the EPR effect (enhanced permeability and retention of 

tumor tissue) offers polyplexes of a size of 20 nm up to 400 nm distribution into solid 

tumors via leaky vasculature [234, 235]; the EPR effect, however, can be tumor type- 

and patient-specific and also heterogeneous within tumors. Polyplex delivery may be 

ineffective in less vascularized tumors [236]. For tumors such as stroma-rich 

pancreatic cancer, only smaller nanoparticles were effective [237]. Despite the many 

efforts, the efficiency of tumor targeting is still low; Chan and colleagues reviewed 

published work and concluded that on average only 0.7% of the dose is accumulating 

at the target tumor site [238]. Apart from targeting, shielding, and nanoparticle size, 

the stability of polyplexes is an additional challenge for in vivo performance; thus, 

additional measures such as bioreversible internal covalent cross-linkage of 

polyplexes or incorporation of bioresponsive domains into carriers for noncovalent 

stabilization have to be investigated [129, 144, 239-242].  

 

Another critical aspect for in vivo gene delivery is the reduction of polyplex- and 

carrier-triggered toxicity. The transfection efficiency of frequently used high molecular 

weight PEI goes hand in hand with an N/P dependent cytotoxicity; mechanistic 

details are reviewed in Hall et al. [130]. Nevertheless, linear PEI has already been 

developed for clinical application with encouraging results [243]. The therapeutic 

window in systemic administration and wider therapeutic use still would strongly 

benefit from reduced carrier cytotoxicity. In that view, degradable PEI analogs are 

highly desirable [244]. In this regard, SPS offers excellent opportunities to design 

structurally precise carriers with cysteine residues for cleavable linkages. During 
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polyplex formation, the cysteines form bioreducible disulfides and thus enhance 

stability in the extracellular part of the gene delivery process. When having reached 

the bioreductive environment of the cytosol, bioreducibility of the polyplexes 

enhances cargo release and also cause fragmentation of the carriers into smaller 

less toxic pieces [65, 81, 82, 84, 85, 105, 114]. 

 

1.4 Optimization of DNA vectors for enhanced gene transfer  

Apart from enhancing the gene transfer process by improving carrier molecules, DNA 

vectors can also be optimized [245-248]. Standard plasmids contain a eukaryotic 

expression cassette (the gene of interest and regulatory sequences) and a 

backbone, including bacterial sequences. Antibiotic resistance-encoding genes and 

the origin of replication are necessary to maintain and amplify pDNA vectors in the 

bacterial hosts. However, bacterial sequences, including CpG dinucleotide motifs, 

reduce the efficacy, biocompatibility, and safety of pDNA vectors. Regulatory 

agencies recommend avoidance of antibiotic resistance-encoding genes in 

production of plasmids for therapeutic use [249]. Minicircle (MC) DNA contains only 

the therapeutic gene of interest and regulatory sequences. Bacterial backbone 

sequence and antibiotic-resistant genes are excluded. This may result in reduced risk 

of spreading antibiotic-resistant genes, enhanced immunocompatibility, improved 

transfer efficiency, and prolonged transgene expression compared to those of 

standard plasmids [250-255]. In fact, MC DNA has already displayed greatly 

improved transgene expression in several in vitro [22, 256, 257] and in vivo studies 

[252-255, 258-270].  
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1.5 Aim of the thesis 

Although non-viral vectors have reached clinical evaluation and encouraging 

therapeutic effects [271-273], the safety and efficiency of non-viral systems still need 

to be improved for broader application in gene therapy. DNA plasmid vectors are 

easy to produce, formulate, and store [8-10]. In theory, pDNA vectors ultimately need 

to enter the cell nucleus for expressing the encoded genes, but in practice, numerous 

additional extracellular and intracellular barriers also have to be overcome [8, 9, 12, 

13, 274, 275]. Gene transfer can be facilitated by physical and biochemical DNA 

delivery techniques. For example, nanosized polyplexes are formed by complexation 

of negatively charged nucleic acid with positively charged cationic oligomers [8, 9, 

12]. Recently, precise analogs of linear polyethylenimine (linPEI), a frequently used 

transfection carrier, [29, 243, 276] were generated by solid-phase supported 

syntheses [101, 105]. By this sequence-defined assembly process, libraries of 

oligoaminoamides can be generated presenting different functional modifications 

(nucleic acid compaction and nanoparticle stabilization, surface shielding, receptor 

binding, endosomal escape) in defined topologies, which might be most suitable for 

the specific cargo and application [107, 109, 112, 115-117]. Besides improving 

carrier molecules, optimization of DNA vectors is also possible [245-248]. Reduced 

efficacy, biocompatibility, and safety of pDNA vectors is the consequence of antibiotic 

resistance-encoding genes and the origin of replication in the pDNA which are 

necessary to maintain and amplify pDNA vectors in the bacterial hosts. Therefore, 

the use of minicircle (MC) DNA without bacterial backbone sequence and antibiotic-

resistant genes offers several advantages [250-255]. 

 

The first aim of the thesis was the evaluation of the efficiency and comparison of 

physicochemical and transfection characteristics of polyplexes formed with 

sequence-defined oligoaminoamides and either pDNA (pCMV-luc) or MC DNA 

(MC07.CMV-luc). Properties like size, stability, compaction and gene transfer should 

be analyzed. Untargeted as well as receptor-targeted DNA complexes had to be 

used in this study. The well-known transfection polymer linPEI was to be included as 

transfection standard.  
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The second aim of the thesis was to explore the requirements of efficient carriers for 

mRNA delivery. For this purpose, different sequence-defined oligoaminoamides, 

previously synthesized for the purpose of pDNA or siRNA delivery, should be 

screened. The main focus was to be put on oligomers containing tyrosine tripeptides 

or/and fatty acids in the structure. Biophysical characterization and transfection 

characteristics of those oligomers should be examined and compared. This study 

aimed at the investigation of oligomer structure – transfection activity relationships.  
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2 Materials and Methods 

2.1 Chemicals and reagents  

Cell culture media and antibiotics were purchased from Invitrogen (Karlsruhe, 

Germany), fetal bovine serum (FBS) from Life Technologies (Carlsbad, USA), 

Trypsin/EDTA and collagen from Biochrom (Berlin, Germany), HEPES from Biomol 

GmbH (Hamburg, Germany), glucose from Merck (Darmstadt, Germany) and WFI 

from B. Braun (Melsungen, Germany). Luciferase cell culture lysis buffer and D-

luciferin sodium salt were obtained from Promega (Mannheim, Germany), CellTiter-

Glo® from Promega (Wisconsin, USA), thymidine, DAPI (4′,6-diamidino-2-

phenylindole), MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), 

dimethyl sulfoxide (DMSO) and ethidium bromide (EtBr) from Sigma-Aldrich (Munich, 

Germany) and GelRed™ was obtained from Biotum (Hayward, USA). All flasks and 

multi-well plates were manufactured by TPP (Trasadingen, Switzerland). LinPEI was 

synthesized by Wolfgang Rödl, LMU Pharmaceutical Biotechnology as described in 

[277] and succPEI was resynthesized by Dr. Ulrich Lächelt as described in [278]. 

Sequence-defined oligomers were synthesized by Dr. Stephan Morys, Dr. Ulrich 

Lächelt, Dr. Philipp Klein, Sören Reinhard, Dr. Dongsheng He and Dr. Christina 

Troiber, all from LMU Pharmaceutical Biotechnology.  

2.2 Vectors 

pCMV-luc encoding firefly luciferase under control of the CMV promoter (PF461) and 

MC07.CMV-luc as applied in work described in section 3.1 were produced and 

purified by PlasmidFactory GmbH (Bielefeld, Germany). Note that pCMV-luc is 

different from pCMVL frequently used in other work of our laboratory. 

 

mRNA-luc encoding firefly luciferase and mRNA-EGFP encoding enhanced green 

fluorescent protein as applied in work described in section 3.2 were produced, 

purified and provided by ethris GmbH. 
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2.3 Biophysical characterization 

2.3.1 Polyplex formation 

2.3.1.1 pDNA polyplex formation 

Indicated amounts of pCMV-luc or MC07.CMV-luc and the calculated amounts of 

oligomer or oligomers combination at indicated N/P (nitrogen/ phosphate) ratios were 

diluted in separate tubes of equal volumes of HBG (20 mM of HEPES, 5% glucose, 

pH 7.4) each. Only protonatable nitrogens of the Stp units and N-terminal amines of 

cysteine residues were considered in the N/P calculations. In the case of oligomers 

combination, cmb-targeted oligomer was mixed with three-arm oligomer at an 

optimized 70:30 cationic ratio to reach the total N/P ratio of 6 or 12 prior to polyplex 

formation with the DNA. The oligomer solution was added to the nucleic acid solution, 

mixed by pipetting, and incubated for 30 min at room temperature under exposure to 

air oxidation in a closed Eppendorf reaction tube. 

2.3.1.2 mRNA polyplex and lipopolyplex formation 

Indicated amounts of mRNA-luc or mRNA-EGFP and the calculated amounts of 

oligomer at indicated N/P (nitrogen/ phosphate) ratios were diluted in separate tubes 

of equal volumes of WFI (water for injection), HBS (20 mM of HEPES, pH 7.4) or 

HBG (20 mM of HEPES, 5% glucose, pH 7.4) each. The nucleic acid solution was 

added to the oligomer solution, mixed by pipetting, and incubated for 30 min at room 

temperature under exposure to air oxidation in a closed Eppendorf reaction tube. 

 

2.3.2 Particle size and zeta potential measurement 

Particle size and zeta potential of formulations were measured in a folded capillary 

cell (DTS 1070) by dynamic laser-light scattering using a Zetasizer Nano ZS with 

backscatter detection (Malvern Instruments, Malvern, United Kingdom). For the 

measurement of pCMV-luc or MC07.CMV-luc particles (section 3.1), experiments 

were performed with 2 µg of nucleic acid and oligomer or oligomers combination at 

N/P ratio 12 in a total volume of 200 µL of HBG. For the measurement of mRNA-luc 

particles (section 3.2), particles were prepared with 2.5 µg of nucleic acid and 

oligomer at N/P ratio 12 in a total volume of 200 µL of HBS or HBG. For size 
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measurements, the equilibration time was 0 min, the temperature was 25°C, and an 

automatic attenuator was used. The refractive index of the solvent was 1.330, and 

the viscosity was 0.8872 mPa s; the refractive index of polystyrene latex (1.590) was 

fixed. Results were plotted as Z-Average and standard deviation (SD) out of three 

runs, with 12 sub-runs each. For zeta potential measurements, the samples were 

diluted to 800 µL in 20 mM of HEPES buffer (pH 7.4). Zeta potentials were calculated 

by the Smoluchowski equation and are displayed as an average (mV) of three runs 

with up to 15 sub-runs each. 

 

2.3.3 Agarose gel-shift assay for mRNA binding 

For mRNA gel-shift assay, a 1% agarose gel was prepared by dissolving agarose in 

TBE buffer (trizma base 10.8 g, boric acid 5.5 g, disodium EDTA 0.75 g, in 1 L of 

water) and boiling it up to 100 °C. Afterwards, GelRed for the detection of the nucleic 

acid was added and the agarose solution was casted in the electrophoresis unit and 

left to form a gel. Polyplexes and lipopolyplexes were prepared as described above 

containing 250 ng of mRNA-luc in 20 μL HBG. Then, 4 μL of loading buffer (prepared 

from 6 mL of glycerol, 1.2 mL of 0.5 M EDTA, 2.8 mL of H2O, 0.02 g of bromophenol 

blue) were added to each sample before they were placed into the sample pockets. 

Electrophoresis was performed at 120 V for 80 min. 

 

2.3.4 Ethidium bromide compaction assay and polyanionic stress test 

Polyplexes containing 2 µg of pCMV-luc or MC07.CMV-luc were formed at N/P ratio 

12 in a total volume of 200 µL of HBG. In parallel to these polyplexes, the following 

were prepared: HBG buffer (blank value), linPEI polyplexes, and 2 µg of pCMV-luc or 

MC07.CMV-luc in 200 µL of HBG buffer, which was considered as maximum 

ethidium bromide (EtBr) fluorescence intensity (100% value) (section 3.1). For the 

compaction study of mRNA particles (section 3.2), particles were prepared as 

described above with 2 µg of mRNA-luc at N/P ratio 12. HBG buffer, succPEI 

polyplexes, and 2 µg of mRNA-luc in 200 µL of HBG buffer were also prepared at the 

same time. After a 30 min incubation time, 700 µL of EtBr solution (c = 0.5 µg/mL) 

was added to each sample. The fluorescence intensity of EtBr was measured after 

an additional 3 min incubation at the excitation wavelength ex = 510 nm and 
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emission wavelength em = 590 nm using a Cary Eclipse spectrophotometer (Varian, 

Germany). The fluorescence intensity of EtBr was calculated in relation to the 100% 

value. To investigate polyplex stability against polyanionic stress, 250 IU of heparin-

sodium-25000 (Ratiopharm, Ulm, Germany) was added to the each sample after EtBr 

addition, and the fluorescence intensity of EtBr was measured again. 

 

2.3.5 mRNA lipopolyplexes under reducing conditions 

Lipopolyplexes containing 2 µg of mRNA-luc were formed at N/P ratio 12 in a total 

volume of 200 µL of HBG. In parallel to these lipopolyplexes, the following were 

prepared: HBG buffer (blank value), succPEI polyplexes, and 2 µg of mRNA-luc in 

200 µL of HBG buffer, which was considered as maximum ethidium bromide (EtBr) 

fluorescence intensity (100% value). After lipopolyplex incubation, 50 μL of a GSH 

solution (50 mM, pH 7.4) was added to the lipopolyplex solution. Consequently, the 

resulting solutions had the final concentrations 10 mM. The solutions were incubated 

at 37°C for 90 min. A 700 µL of EtBr solution (c = 0.5 µg/mL) was added to each 

sample and an ethidium bromide compaction assay (see section 2.3.4) was 

performed. 

 

2.3.6 Transmission electron microscopy 

For transmission electron microscopy (TEM), samples were prepared with 200 ng of 

pCMV-luc or MC07.CMV-luc and oligomer or oligomers combination at N/P ratio 12 

in Millipore water. The formvar/carbon-coated 300 mesh copper grids (Ted Pella, 

Inc., Redding, CA) were activated by mild plasma cleaning. Then, the copper grids 

were incubated with 20 µL of the polyplex solution for 2.5 min. Excess liquid was 

blotted off using filter paper. Prior to staining, the copper grids were washed with 5 µL 

of staining solution for 5 s. Afterwards, the copper grids were incubated with 5 µL of a 

2% aqueous uranylformate solution for 20 s. Excess liquid was again blotted off using 

filter paper, followed by air-drying for 30 min. Samples were then characterized using 

a JEM-1011 (Jeol, Freising, Germany) operating at 80 kV. 
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2.4 Biological characterization in vitro  

2.4.1 Cell culture 

Human prostate cancer cell line (DU145) was cultured in RPMI-1640 medium, mouse 

neuroblastoma cells (N2a), hepatocellular carcinoma cells (Huh7) and breast 

adenocarcinoma (MDA-MB-231) were grown in Dulbecco's modified Eagle's medium 

(DMEM) and cervix carcinoma (KB) cells were grown in folate free RPMI-1640 

medium. All cell culture media were supplemented with 10% fetal bovine serum 

(FBS), 4 mM of stable glutamine, 100 IU/mL of penicillin, and 100 lg/mL of 

streptomycin. All cell lines were cultured at 37°C and 5% CO2 in an incubator with a 

relative humidity of 95%. 

 

2.4.2 Determination of HGFR/c-Met expression on DU145 cell line  

A total of 1x106 cells in 100 µL of FACS buffer (10% FBS in PBS) were incubated 

with the monoclonal mouse anti-human HGFR/c-Met antibody (1:200 dilution) or IgG 

control for mouse primary antibodies (1:100 dilution) for 1 h on ice. Afterwards, the 

cells were washed twice with FACS buffer. The cells were then stained with Alexa 

488-labeled goat anti-mouse secondary antibody (1:400 dilution) for 1 h on ice, 

washed, counterstained with DAPI (1 µg/mL), and analyzed on a Cyan ADP Flow 

Cytometer (Dako, Hamburg, Germany) using Summit acquisition software (Summit, 

Jamesville, NY). DAPI fluorescence was excited at 405 nm and detected with a 

450/50 bandpass filter; Alexa-488 fluorescence was excited at 488 nm and detected 

with a 530/40 nm bandpass filter. The percentage of HGFR/c-Met positive cells was 

determined as compared to control IgG stained cells. 
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2.4.3 Luciferase assay 

2.4.3.1 Luciferase gene transfer of DNA polyplexes 

DU145 cells (10000 cells/100 µL) were seeded 24 h prior to nucleic acid delivery in 

96-well plates. Transfection efficiency of oligomers was evaluated using 200 ng of 

pCMV-luc or MC07.CMV-luc per well. Additionally, 320 ng of pCMV-luc per well were 

used in the case of equimolar experiment. Polyplexes were formed at different N/P 

ratios in a total volume of 20 µL of HBG. linPEI (N/P 9) was used as a positive 

control, and HBG buffer was used as a negative control. Before treatment, the cell 

culture medium was exchanged with 80 µL of fresh medium containing 10% FBS. 

Polyplex solution was added to each well and incubated on cells at 37°C for a 

determined period of time (0.75 or 24 h). In the case of 0.75 h incubation time, 

medium was replaced 0.75 h after transfection by fresh medium, and cells were 

further incubated for 23 h. In the case of 24 h incubation time, cells were incubated 

with polyplex solution for 24 h after initial transfection. All experiments were 

performed in quintuplicate. For all experiments 24 h after initial transfection, cells 

were treated with 100 µL of luciferase cell culture 5x lysis buffer. Luciferase activity in 

the cell lysate was measured by using a Centro LB 960 plate reader luminometer 

(Berthold Technologies, Bad Wildbad, Germany) and LAR buffer supplemented with 

1 mM of luciferin solution. Transfection efficiency was evaluated as relative light units 

(RLU) per well (10000 cells). 

2.4.3.2 Luciferase transfer of mRNA polyplexes and lipopolyplexes 

One day prior to nucleic acid delivery 10000 DU145, N2a, Huh7, MDA-MB-231 and 

8000 KB (on collagen coated plates) cells/well in 96-well plates were seeded. 

Transfection efficiency of oligomers was evaluated using 250 ng of mRNA-luc per 

well. Polyplexes were formed at N/P ratio 12 in a total volume of 20 µL of WFI, HBS 

or HBG. WFI, HBS and HBG buffers were used as negative controls. LinPEI (N/P 9), 

brPEI (N/P 10) and succPEI 10% (w/w 4) were used as positive controls. Before 

treatment, the cell culture medium was exchanged with 80 µL of fresh medium 

containing 10% FBS. Nanoparticle solution was added to each well and incubated on 

cells at 37°C for 24 h. All experiments were performed in triplicates. For all 

experiments 24 h after initial transfection, cells were treated with 100 µL of luciferase 

cell culture 5x lysis buffer. Luciferase activity in the cell lysate was assayed by 
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luminometer as described above. Transfection efficiency was evaluated as relative 

light units (RLU) per well. 

 

2.4.4 Cell synchronization and cell cycle status analysis  

Double-thymidine block was used to induce cells to be arrested at different phases of 

a cell cycle. DU145 cells were seeded 24 h prior to treatment with thymidine into 12-

well plates with a density of 7.5x104 cells in 1000 µL of growth media. For double-

thymidine block treatment, cells were treated with 2.5 mM of thymidine (Sigma–

Aldrich) in growth media for 16 h (first block). Afterwards, cells were washed twice 

with PBS, and then fresh growth media without thymidine was added to the cells for 

another 10 h (first release). Then, the thymidine-free growth media was replaced with 

fresh medium with 2.5 mM for another 16 h (second block). At the end of second 

block, the cells were washed twice with PBS and released in thymidine free growth 

medium (second release). Cells were collected at different time points of second 

release and centrifuged and incubated on ice for 3 h in 100 µL of propidium iodide 

staining solution (0.1% sodium citrate, 0.1% Triton X-100, and 50 µg/mL of propidium 

iodide). Thereafter, cells were washed, taken up in PBS, and the cell cycle was 

analyzed by flow cytometry at an excitation wavelength of 488 nm and detection of 

emission with a 613/20 bandpass filter. Cells were gated by forward/sideward scatter 

and pulse width for exclusion of doublets. For each time point, 20000 cells were 

analyzed. Data were recorded by Cyan ADP flow cytometer (Dako) using Summit 

acquisition software (Summit) and analyzed by FlowJo 7.6.5 flow cytometric analysis 

software. 

 

2.4.5 Cell cycle dependent transfections  

DU145 cells were seeded 24 h prior to treatment with thymidine into 96-well plates 

with a density of 7.5x103 cells in 100 µL of growth media. A double-thymidine block 

was applied, as described above, to synchronize cells in specific phases of cell cycle. 

At the end of the second block, the cells were washed twice with phosphate-buffered 

saline (PBS) and released in 80 µL of thymidine free growth medium (second 

release). Polyplexes were prepared as described containing 200 ng of pCMV-luc or 
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MC07.CMV-luc in 20 µL of HBG. Polyplex solutions were added to each well at 

different time points (0, 6, 8, or 12 h) after second release. Transfection medium was 

replaced after 45 min at 37°C, and cells were further incubated at 37°C for 24 h. All 

experiments were performed in quintuplicate. Afterwards, luciferase activity in the cell 

lysate was determined as described above, and metabolic activity of transfected cells 

as described below. 

 

2.4.6 Metabolic activity of transfected cells 

2.4.6.1 MTT assay  

The cells were transfected as described in section 2.4.3.1. At 24 h after initial 

transfection, 10 µL of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium 

bromide) was added to each well, reaching a final concentration of 0.5 mg/mL. 

Medium with unreacted dye was removed after an incubation time of 2 h at 37°C. 

The 96-well plates were stored at -80°C for at least 1 h, and afterwards the purple 

formazan product was dissolved in 100 µL dimethyl sulfoxide per well. The 

absorbance was determined by using a microplate reader (Tecan Spectrafluor Plus, 

Tecan, Switzerland) at 530 nm with background correction at 630 nm. The relative 

cell viability (%) related to the buffer-treated control cells was calculated as ([A] test / 

[A] control)x100%. 

2.4.6.2 CellTiter-Glo® assay 

The cells were transfected as described in section 2.4.3.2. At 24 h after initial 

transfection, the medium in the well was replaced by 50 μL of fresh medium and 50 

μL of CellTiter-Glo® Reagent (Promega, USA). The relative metabolic activity was 

determined as the ratio of measured luminescent signal proportional to the amount of 

ATP present over the signal of untreated cells. For this purpose Centro LB 960 plate 

reader luminometer (Berthold Technologies, Bad Wildbad, Germany) was used. 
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2.4.7 EGFP expression 

DU145 cells were seeded in 24-well plates at the density 50000 cells/well. On the 

following day, cells were transfected with lipopolyplexes formed with 1.5 µg of 

mRNA-EGFP at N/P ratio 12 in a total volume of 100 µL of HBS or HBG. 24 h after 

transfection, cells were washed with 500 μL PBS, detached with trypsin/EDTA and 

resuspended in PBS with 10% FCS. Samples were analyzed for EGFP expression 

using flow cytometry (Cyan™ ADP flow Cytometer - Dako, Hamburg, Germany) and 

Summit acquisition software - Summit, Jamesville, NY, USA) and analyzed by 

FlowJo 7.6.5 flow cytometric analysis software. 

 

2.4.8 Fluorescence microscopy 

DU145 cells were seeded in 8-well chamber slides at a density 30000 cells/well. The 

next day, culture medium was replaced with 240 μL fresh growth medium. mRNA 

polyplexes at N/P ratio 12 in 60 μL HBS or HBG, containing 750 ng mRNA-EGFP 

were added to each well and incubated at 37°C for 24 h. After 24h, cells were 

washed twice with 500 μl PBS and fixed with 4 % PFA solution for 30 min at room 

temperature. Pictures were obtained using Zeiss Axiovert 200 fluorescence 

microscope (Carl Zeiss AG, Germany). 

 

2.4.9 Statistical analysis 

Results are presented as arithmetic mean ±SD and the number of replicates. 

Statistical significances were analyzed using Student’s two-tailed t-test. Significance 

levels were indicated with the following symbols: ns, p > 0.05; * p ≤ 0.05; ** p ≤ 0.01; 

*** p ≤ 0.001; and **** p ≤ 0.0001. 
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3 Results 

3.1 Minicircle versus plasmid DNA delivery by receptor-targeted 

polyplexes  

 

This chapter has been adapted from: 

A. Krhac Levacic, S. Morys, S. Kempter, U. Lächelt and E. Wagner. Minicircle versus 

plasmid DNA delivery by receptor-targeted polyplexes. Human Gene Therapy 28(10) 

(2017) 862-874  

 

Minicircle (MC) DNA presents a promising alternative to plasmid DNA (pDNA) for 

non-viral gene delivery in terms of biosafety and improved gene transfer. Here, 

luciferase pDNA (pCMV-luc) and analogous MC DNA (MC07.CMV-luc) were 

formulated into polyplexes with c-Met targeted, PEG-shielded sequence-defined 

oligoaminoamides, or linear PEI (linPEI) as standard transfection agent. Distinct 

physicochemical and biological characteristics were observed for polyplexes formed 

with either pDNA or MC DNA as vectors. 

 

3.1.1  Vector constructs and polyplex design 

pCMV-luc or MC07.CMV-luc were used for polyplex formation (see Figure 5A). 

pCMV-luc is a double-stranded plasmid DNA of 6233 bp encoding the firefly 

luciferase reporter gene under control of the cytomegalovirus promoter, while 

MC07.CMVluc is smaller MC DNA (3881 bp) encoding the same gene under the 

same promoter. For formulation of DNA, linPEI was used as established and effective 

standard polymeric carrier [29, 243, 276]. Four sequence-defined cationic 

oligoaminoamides were generated (Figure 5B and Table 1) by solid-phase assisted 

synthesis using Fmoc-based peptide synthesis technology. Repeats of the artificial 

amino acid succinoyl-tetraethylenepentamine (Stp) alternating with natural histidines 

served as the central cores for nucleic acid complexation and endosomal buffering 

function. Terminal cysteines provide disulfide-mediated stabilization of DNA 

polyplexes. Lysine residues were integrated as branching units, providing non-
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targeted carriers with three-arm topology (3-arm, 3-arm-Y; see Figure 5B, left). 

Alternatively, one cationic arm was replaced by polyethylene glycol PEG24 and the c-

Met targeting peptide cmb [159, 279, 280] (cmb-PEG, cmb-PEG-Y; see Figure 5B, 

right). PEG24 (containing a precise chain length of 24 oxyethylene units) was chosen 

to shield polyplexes against unspecific interactions [107, 108], and the cmb-ligand to 

trigger receptor-mediated endocytosis, as recently demonstrated [107, 159, 161].  

Oligomers three-arm (689) and cmb-PEG (442) were previously described [107]. The 

additional incorporation of tyrosine trimers (Y3) had been found advantageous for 

aromatic and hydrophobic polyplex stabilization [112, 116]. Therefore, in the current 

study, the Y3-containing analogous carriers, three-arm-Y (849) and cmb-PEG-Y 

(852), were also synthesized. Efficient DNA compaction (Figure 5C) is an important 

requirement for gene transfer. Recent work from our lab revealed suboptimal pDNA 

packaging by cmb-PEG; apparently, the PEG shielding domain interfered with DNA 

condensation (Figure 5C, top) [107, 108]. The PEG-free three arm oligomer and also 

the cmb-PEG/three-arm (7:3 mol/mol) carrier combination (Figure 5C, bottom) 

effectively compacted DNA, resulting in effective pDNA gene transfer in vitro and in 

vivo [107]. For this reason, combination polyplexes were also analyzed in the current 

comparison of pDNA and MC DNA polyplexes.  

 

Table 1 List of oligomers included in this study.   

Structure (from C- to N-terminus) ID Abbreviation 

K-α[cMBP2]- ε[PEG24-H-K-α,ε -[(H-Stp)
4
-H-C]2] 442 cmb-PEG 

K-α[cMBP2]- ε[PEG24-H-K-α,ε -[(H-Stp)
4
-H-Y3-C]2] 852 cmb-PEG-Y 

C-H-(Stp-H)3-K-α,ε[(H-Stp)
3
-H-C]2 689 3-arm 

C-Y3-H-(Stp-H)3-K-α,ε[(H-Stp)
3
-H-Y3-C]2 849 3-arm-Y 
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Figure 5 Schematic structures of (A) plasmid pCMV-luc and minicircle (MC) MC07.CMV-luc. (B) 

Sequence-defined nonshielded three-arm (left) and cmb-PEG (right) oligoaminoamide carriers. R 

represents terminal cysteines in three-arm and cmb-PEG oligomers while in the case of tyrosine trimer 

containing three-arm-Y and cmb-PEG-Y oligomers represents C-Y3 on the N-terminus or Y3-C on the 

C-terminus. (C) Standard (top) polyplex formulations and combination formulations of cmb-targeted 

oligomer and three-arm oligomer (bottom) used in this study. 
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3.1.2 Physicochemical characterization of polyplexes 

Nucleic acid compaction with synthetic gene carriers into nanosized particles is an 

important requirement for successful gene delivery. This study compared pCMV-luc 

and MC07.CMV-luc polyplex formation using a series of different characterizations. 

Particle sizes and zeta potential of polyplexes formed at N/P ratio 12 were 

determined by dynamic light scattering (Table 2). The majority of carriers formed 

nanoparticles of <200 nm, within the size limit for cellular uptake via receptor-

mediated endocytosis [14]. Zeta potential measurements display the expected 

positive surface charges of +~20mV for the nonshielded linPEI and Y3 oligomer, and 

surface charges of +~14mV for cmb-PEG decorated polyplexes, consistent with 

published work [107]. Comparing complexation with pDNA or MC, well-compacting 

cationic polymers such as linPEI or Y3 oligomers formed polyplexes with similar 

diameters, irrespective of the different size of the cargos; linPEI polyplexes had a 

hydrodynamic diameter of ~90 nm. This is not surprising and is in agreement with 

previous work testing various nucleic acid cargos [9]. For plain polycations, the 

different cargo DNA size is compensated by aggregating different cargo copy 

numbers into one polyplex. The situation is different for carriers that avoid nano-

aggregation and form monomolecular DNA polyplexes [133, 281]. In the current 

work, in contrast to linPEI, the tyrosine-free oligoaminoamides form polyplexes where 

sizes significantly differ for pDNA and MC. Especially for cmb-PEG with lower 

compaction activity, hydrodynamic diameters of MC polyplexes were only ~55% of 

the pDNA polyplexes. These findings are consistent with a previously established 

decorated rod model [133, 143]. Mixing of cmb-PEG with PEG-free three-arm results 

in combination polyplexes with far less difference between pDNA and MC (170 nm 

vs. 140 nm diameter).  
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Table 2 Particle size (Z-average) and zeta potential of pCMV-luc and MC07.CMV-luc polyplexes 

formed in HBG buffer determined with DLS. Variations refer to the standard deviation of three 

measurements of the same sample. Combination polyplexes refer to 70 mol% of cmb-targeted 

oligomer and 30 mol% of 3-arm oligomer. PDI: Polydispersity index. 

  
pCMV-luc MC07.CMV-luc 

Polyplex N/P Z-average [nm] Mean PDI 
Mean zeta 

potential [mV] 
Z-average [nm] Mean PDI 

Mean zeta 
potential [mV] 

linPEI 9 93,7 ± 8,2 0,30 ± 0,07 21,0 ± 0,4 92,2 ± 1,2 0,2 ± 0,01 20,1 ± 1,4 

cmb-PEG-Y 12 143,1 ± 1,5 0,04 ± 0,01 11,4 + 0,7 136,1 ± 3,9 0,09 ± 0,01 13,0 ± 1,1 

3-arm-Y 12 131,1 ± 0,9 0,13 ± 0,01 20,6 ± 0,7 136,9 ± 2,5 0,15 ± 0,02 20,4 ± 0,7 

combination 12 134,3 ± 2,8 0,05 ± 0,01 13,7 ± 0,3 104,7 ± 5,1 0,24 ± 0,02 14,8 ± 0,6 

cmb-PEG 12 189,5 ± 0,4 0,04 ± 0,01 12,0 ± 0,7 103,2 ± 3,7 0,30 ± 0,04 14,3 ± 0,8 

3-arm 12 206,3 ± 2,6 0,12 ± 0,03 14,8 ± 0,9 144,3 ± 2,4 0,15 ± 0,01 15,2 ± 0,6 

combination 12 169,0 ± 3,1 0,06 ± 0,02 13,1 ± 1,1 139,9 ± 4,0 0,31 ± 0,03 14,3 ± 1,0 

 

Differences in size and morphologies of the more stable polyplexes (with linPEI and 

tyrosine oligomers) were analyzed in more detail by transmission electron 

microscopy (Figure 6). Considering the methodological differences, TEM data are 

well consistent with DLS. In general, nominal sizes of hydrodynamic diameters by 

DLS (~90-140 nm) are larger than TEM diameters (~30-100 nm) due to the emphasis 

of DLS on larger particle fractions (light scatter intensity ~r6) on the one hand, and 

the dehydrated stage of TEM samples on the other hand. TEM confirmed stabile 

particles formation for all carriers, with nanoparticle shapes differing between the 

carriers but not the DNA used in polyplex formation. In contrast to DLS, TEM 

provided evidence for the presence of smaller ultrastructures for MC than for pDNA 

polyplexes. For example, linPEI formed spherical structures with both DNA vectors, 

with sizes of 50-90 nm for pDNA and smaller 25-70 nm for MC. The addition of a 

three-arm structure to the cmb-targeted structure led to a smaller and more compact 

particle in the case of polyplex formation with both plasmids. In accordance with a 

recent observations [107], the PEGfree three-arm-Y structure formed compact 

spherical structures of around 30-50 nm. In contrast, oligomer cmb-PEG-Y formed 

less compact rods (80-100 nm for pDNA / 50-60 nm for MC) or toroids (40-50 nm for 

pDNA / 30 nm for MC) demonstrating a DNA cargo size-dependence. As expected, 

the oligomer combination resulted in better compacted rod structures, with a clear 
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size difference between pDNA and MC formed polyplexes (65-100 nm vs. 35-40 nm). 

Notably, the majority of nanoparticles were <50nm (at least in one dimension), which 

would be compatible with the <50nm nuclear envelope pore limit to enable transport 

of polyplexes into the nucleus [21].  

 

Figure 6 Transmission electron microscopy (TEM) images of pCMV-luc and MC07.CMV-luc 

polyplexes formed at N/P 12 in deionized water and stained with uranylformate. Combination 

polyplexes refer to 70 mol% of cmb-PEG-Y and 30% of three-arm-Y. Scale bar: 200 nm. 

 

The EtBr exclusion assay (Figure 7) provides an alternative mode for evaluation of 

DNA binding ability of carriers. The decreased fluorescence correlates with an 

increased compaction of polyplexes (Figure 7A). Compaction was best for linPEI 

polyplexes, irrespective of the type of DNA (<5% EtBr fluorescence). Interestingly, 

polyplexes formed with oligoaminoamides displayed better compaction for MC 

compared to pDNA. Consistent with the other presented work, MC DNA combination 

polyplexes showed even better compaction (only 6-8% EtBr fluorescence). Figure 

7B presents the EtBr fluorescence after the addition of 250IU of heparin sulfate to 

mimic physiological anionic dissociative stress, resulting in partial release of DNA 

from polyplexes [129]. Under these conditions, both pDNA and MC polyplexes of 

linPEI are dissociated (>90% EtBr fluorescence). Oligoaminoamide polyplexes, which 
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are stabilized by bioreversible disulfide crosslinks, are more resistant to the applied 

heparin stress. Again, polyplexes formed with MC DNA display higher stability than 

pDNA polyplexes, and MC combination polyplexes the highest stability (~25% EtBr 

fluorescence).  

 

Figure 7 Ethidium bromide exclusion assay to determine the ability of DNA compaction of the 

oligomers, inversely correlating with the remaining fluorescence of DNA intercalating ethidium bromide 

(EtBr). Results are presented in % against free pCMV-luc or MC07.CMV-luc. Polyplexes at N/P 12 

without (A) or with (B) treatment by 250 IU of heparin. Statistical analysis (Student’s t-test): * p < 0.05; 

** p < 0.01; *** p < 0.001; **** p < 0.0001. 

 

3.1.3 Transfection efficiency of polyplexes formed with pCMV-luc or 

MC07.CMV-luc  

To compare transfection efficiency of polyplexes formed with either pCMV-luc or 

MC07.CMV-luc, luciferase gene transfer in the prostate carcinoma cell line DU145 

was performed. This cancer cell line expresses the cell surface receptor HGFR/c-Met 

(Figure 8).  
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Figure 8 HGFR/c-Met expression on DU145 cell line. The results were obtained with the IgG control 

(A) and monoclonal mouse anti-human HGFR/c-Met antibody (B). For the detection of receptor level 

expression by flow cytometry, Alexa 488-labeled goat anti-mouse secondary antibody was used.  

 

First, cells were incubated with polyplexes for a defined period in complete serum-

supplemented medium, and luciferase gene expression (Figures 9 and 10A) as well 

as metabolic activity of cells (Figures 10B and 11) was recorded after 24 h. 

Metabolic activity assays confirmed that the transfection were performed under 

nontoxic conditions. As shown in Figure 9A, polyplexes formed with MC07.CMV-luc 

and linPEI mediated better transfection than polyplexes formed with pCMV-luc. The 

advantage was particularly pronounced (5-fold higher transfection) in short-term (0.75 

h) incubations with polyplexes, but still visible (2.3-fold higher transfection) in 24 h 

long-term incubations. For pCMV-luc polyplexes, this prolonged incubation was 

necessary to reach the same transgene expression levels as obtained with 

MC07.CMV-luc polyplexes after short incubation. Also, for three-arm-Y polyplexes, 

upon 24 h of incubation, an advantageous gene transfer by MC compared to pDNA 

was observed (Figure 9B). For receptor-mediated transfections, cells were incubated 

with cmb-PEG or cmb-PEG-Y polyplexes for only 0.75h. Previous work demonstrated 

enhanced, HGF receptor-specific uptake at these short incubation times [107]. 

Additionally, the corresponding combination polyplexes (targeted oligomers plus 

three-arm oligomers) were applied (Figure 9C). Also, in these settings, polyplexes 

formed with MC07.CMV-luc showed 6- to 13-fold higher transfection efficiency than 

polyplexes formed with pCMV-luc. An advantageous effect of the novel c-Met 

targeted oligomers with integrated tyrosine trimers analogously was also noted, as 

previously observed for folate receptor targeted pDNA polyplexes [112, 116]. 
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Altogether, the beneficial effect of tyrosine trimer integration, formation of 

combination polyplexes, and use of MC added up to a ~200-fold enhanced gene 

expression. In the presented transfections, polyplexes with equal mass quantities of 

DNA were used. To rule out that the higher copy number of MC07.CMV-luc than the 

corresponding pCMV-luc vector is responsible for the enhanced transfection, 

additional polyplex transfections were performed with equimolar quantities of vectors. 

Under these conditions, linPEI and combination polyplexes formed with MC also 

showed around 3.5- and 3-fold higher transfection efficiency, respectively, in 

comparison to equimolar quantities of pDNA polyplexes (Figure 9D and E). 

 

Figure 9 Luciferase reporter gene expression in the DU145 prostate carcinoma cell line at 24 h after 

transfection with pCMV-luc (gray) or MC07.CMV-luc (black) polyplexes. (A) Transfections after 0.75 

and 24 h of incubation with linPEI at N/P 9. (B) Transfections after 24 h of incubation with three-arm-Y 

at indicated N/P ratios. (C) Transfections after 0.75 h of incubation with cmb-PEG-Y, cmb-PEG, and 

corresponding combination polyplexes at N/P 12. (D) Transfection after 24 h incubation with linPEI 

polyplexes at equimolar vector ratio. (E) Transfection after 0.75 h incubation with cmb-PEG-Y/three-

arm-Y combination polyplexes (N/P 6) at equimolar vector ratio. Combination polyplexes: 70 mol% of 

cmb-PEG(-Y) and 30 mol% of three-arm(-Y). 
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Figure 10 Luciferase reporter gene expression of pCMV-luc or MC07.CMV-luc in DU145 cell line of 

polyplexes formed with cmb-PEG-Y. Transfections were performed at four different ratios: N/P 3, 6, 12 

and 24. (A) Polyplexes formed with cmb-PEG-Y; transfection time of only 0.75 h because of the faster 

receptor-enhanced cell uptake. Statistical analysis (Student’s t-test): ns p > 0.05, * p < 0.05; ** p < 

0.01; *** p < 0.001 **** p < 0.0001. (B) Corresponding cell viability assays of DU145 cells after 

transfections. Cell viability was calculated as percentage to cells treated with HBG. 

 

Figure 11 Corresponding cell viability assays of DU145 cells after transfections as presented in Figure 

9. Cell viability was calculated as percentage to cells treated with HBG. (A) Transfections after 0.75 h 

and 24 h incubation with linPEI at N/P 9. (B) Transfections after 24 h incubation with 3-arm-Y at 

indicated N/P ratios. (C) Transfections after 0.75 h incubation with cmb-PEG-Y, cmb-PEG, and 

corresponding combination polyplexes at N/P 12. (D) Transfection after 24 h incubation with linPEI 

polyplexes at equimolar vector ratio. (E) Transfection after 0.75 h incubation with cmb-PEG-Y /3-arm-

Y combination polyplexes (N/P 6) at equimolar vector ratio. 
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3.1.4 Overcoming intracellular barriers 

To explain the advantage of MC DNA in polyplex transfection, transfections using 

DU145 cells were performed in different stages of cell cycle (Figure 13). For 

synchronization, a double-thymidine block was used [282, 283]. The cell cycle stage 

was monitored by flow cytometry (Figure 12). Upon second release (0 h), 88% of 

cells were in G1 phase, at 6 h after release 45% of cells peaking in S phase, and at 8 

h 60% of cells in G2/M phase.  

 

Figure 12 Cell cycle analysis of synchronous DU145 cells treated with double-thymidine block. Cells 

were analyzed with flow cytometer every 2h after second release. (A) Non treated control cells. (B) 

Cells treated with thymidine. 

 

Cells were transfected at time points 0 h (G1), 6 h (largely S), 8 h (G2/M), and 12 h 

(after M). Three different formulations, the well-compacting carriers linPEI and the 

cmb-PEG-Y plus three-arm-Y combination, and the less compacted cmb-PEG-Y, 

were selected for packaging pDNA or MC DNA. Irrespective of cell cycle stage, the 

MC formulations mediated up to a 10-fold higher gene expression (Figure 13). The 

transfections confirmed the lack of significant cell cycle dependence for linPEI/pDNA 

polyplexes, which correlates with previous studies [18]. An absence of cell cycle 



   Results 

   50 

dependence was also observed for linPEI/MC polyplexes. An analogous lack of cell 

cycle dependence was found for both types (pDNA and MC) of well-compacted cmb-

PEG-Y/three-arm-Y combination polyplexes. Interestingly, for the less compacting 

carrier cmb-PEG-Y, the pDNA- but not the MC-mediated transfection shows cell 

cycle dependence at 12 h (after mitosis), which is about 10-fold lower than for 

transfection before mitosis (0 or 6 h), and also about 10-fold lower than the better 

compacted pDNA polyplex (Figure 13, top left). Importantly, MC DNA polyplexes 

(Figure 13, top right) display lack of cell cycle dependence for all formulations, 

suggesting an advantage from their inherent smaller size. 

Figure 13 Cell cycle dependence of gene transfer. DU145 cells were transfected in specific phases of 

cell cycle after release from double thymidine block; primarily G1 phase (0 h), S phase (6 h), G2 phase 

(8 h), and G1 phase of the second cycle (12 h). Luciferase reporter gene expression (top) and 

corresponding cell viability by MTT assay (bottom) at 24 h after 0.75 h of incubation with pCMV-luc 

(left) or MC07.CMV-luc polyplexes (right) at N/P ratio 12. 
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3.2 Sequence defined oligomers as carriers for mRNA delivery 

In the gene delivery process, successful interaction between the gene delivery 

vector, extracellular surrounding and the cell are required for efficient delivery of a 

gene to a target cell. Insufficient nuclear transport of plasmid DNA (pDNA) is highly 

responsible for their lower transfection efficiency compared to viral vectors. 

Therefore, therapeutic gene delivery using messenger RNA (mRNA) has become an 

interesting alternative to pDNA gene therapy. Compared to pDNA gene delivery, 

mRNA has following advantages. First of all, mRNA exerts its function in the 

cytoplasm, where transgene expression starts prompt, therefore gene silencing 

mechanisms operating in the nucleus are irrelevant and the risk of insertional 

mutagenesis can be excluded. Due to the transfection procedures without destruction 

of nuclear envelope, cell viability is well maintained. Besides, mRNA is also effective 

in non-dividing cells as well as hard-to-transfect cells, thus mRNA delivery possesses 

broad application prospects. Nevertheless, mRNA delivery possesses also some 

disadvantages such as strong immunogenicity and limited stability of conventional 

mRNA [23-27]. Delightedly, these disadvantages have recently been greatly 

improved by various chemical modifications [284]. Despite that, effective delivery 

carrier for cellular entry and cytosolic release is also required. Complexation of 

negatively charged nucleic acid with positively charged cationic polymers and lipids 

for delivery via endocytic pathways has become an interesting method not only for 

pDNA, but also for mRNA [188].  

 

In the current study, we focused on the development of an appropriate system for 

mRNA delivery. Firstly, we evaluated different sequence-defined oligoaminoamides 

synthesized previously in purpose of pDNA or siRNA delivery (the library was 

established in our group) for single stranded mRNA transfection. Secondly, starting 

from first successful mRNA carrier candidates, we explored the structure-activity 

relationship (SAR) requirements of refined carriers for successful mRNA delivery. 
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3.2.1 Evaluation of mRNA-luc transfection efficiency using polyethylenimine 

or different sequence-defined oligoaminoamides  

Chemically modified stabilized non-immunogenic messenger RNA encoding firefly 

luciferase (mRNA-luc) was produced, purified and provided by ethris GmbH. Our first 

transfections were based on the use of gene delivery “gold standard” 

polyethylenimine (PEI) in 22 kDa linear and 25 kDa branched form as very potent 

pDNA transfection agents [28, 29] and succinylated PEI 25 kDa branched (succPEI) 

as an excellent siRNA transfection agent [278]. Different linear and branched PEI 

with various molecular weights had been previously tested to enable regulation of 

polyplex stability, transfection efficacy and toxicity [285-288]. To compare transfection 

efficiency of the selected different PEI types (Figure 14A), polyplexes were formed 

with mRNA-luc in different solutions (WFI: water for injection, HBS: HEPES buffered 

saline, HBG: HEPES buffered glucose) and luciferase mRNA transfer and expression 

was evaluated in various cancer cell lines (DU145: prostate carcinoma, N2a: mouse 

neuroblastoma, Huh7: hepato cellular carcinoma, MDA-MB-231: breast 

adenocarcinoma, KB: cervix carcinoma). Cells were incubated with polyplexes for 

24h in 10% serum-supplemented medium, and afterwards luciferase gene 

expression as well as cell viability assay (Figure 14B and C) were recorded. As 

shown in Figure 14B (top), polyplexes formed in different solutions showed similar 

transfection profile in different cell lines. The lowest transfection was observed in the 

case of linPEI (polyplexes formed at optimal N/P ratio 9) in almost all cell lines 

(except DU145) and all three solutions. BrPEI polyplexes (formed at optimal N/P ratio 

10) mediated better transfection than linPEI polyplexes (except in Huh7 and KB cells 

in the case of HBS solution polyplex formation), whereas the highest transfection 

efficiency was observed with succPEI (10% succinylation [278], w/w ratio 4) 

polyplexes in HBS and HBG polyplexes formation and in the case of WFI polyplex 

formation only for DU145 cell line.  
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Figure 14 (A) Chemical structures of linPEI 22 kDa, brPEI 25 kDa and succPEI 25 kDa. (B) Luciferase 

reporter gene expression and corresponding cell viability assay in the different cell lines at 24 h after 

transfection with mRNA polyplexes. Polyplexes were formed in different solutions (WFI, HBS or HBG). 

LinPEI polyplexes at N/P ratio 9, brPEI at N/P ratio 10 and succPEI at w/w ratio 4 were formed. 

(C) Transfections and corresponding cell viability assay (DU145 cell line) after 24 h of incubation with 

succPEI polyplexes with different succinylation percentage of PEI. Cell viability was assessed by Cell 

Titer Glo® Assay (Promega) and calculated as percentage to cells treated with HBS or HBG.  
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The succPEI 10%, 20%, 30% and 50% had been synthesized analogously as 

described in [278] using stoichiometric amounts of succinic anhydride for 10%, 20%, 

30% or 50% modification. In case of succPEI 10% indeed 10% succinylation 

(determined by NMR) was achieved. However, with increasing succinic anhydride 

amount, the reaction is less effective and based on NMR evaluation, the degree of 

modification is 10%, 15%, 16% and 18% respectively. SuccPEI polyplexes were 

formed with equal mass quantities of mRNA-luc, and four different w/w ratios have 

been tested (Figure 14C). SuccPEI with modification degree higher than 10% was 

not advantageous for transfection efficiency in any of the tested w/w ratio, therefore 

for the further experiments succPEI with 10% succinylation and w/w ratio 4 was used 

as a positive control. It was confirmed that the transfections were taking place under 

nontoxic conditions (Figures 14B and C bottom) through measuring metabolic cell 

activities via CellTiter-Glo assay. 

 

In order to find appropriate carriers and also identify critical bottlenecks for mRNA 

delivery, we performed a screening of our established transfection oligomer library of 

sequence defined oligomers produced by solid-phase-assisted synthesis. Therefore, 

more than 60 oligomers with various sequences and topological structures were 

tested: linear, branched 2-arm, 3-arm, 4-arm, 8-arm, T-shape, U-shape, comb-like 

oligomers. Results showed that oligomers containing tyrosine tripeptides (Y3) or/and 

fatty acids in their structures mediated higher transfection efficiency. The advantage 

of tyrosine tripeptides (Y3) within the structure was particularly pronounced in the 

case of 3-arm oligomers used in both HBS and HBG polyplex formations (Figure 15). 

The addition of tyrosine tripeptides (Y3) lead to higher transfection, 3-arm-Y showed 

significant enhanced efficiency (7.6-fold higher) over succPEI, however only when 

HBS buffer was used for polyplex formation (Figure 15B left). 
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Figure 15 (A) Schematic structures of sequence-defined 3-arm oligomers (Stp: succinoyl-

tetraethylene-pentamine, C: cysteine, K: lysine, H: histidine, Y: tyrosine). (B) Luciferase reporter gene 

expression of DU145 cells treated with mRNA polyplexes formed with 3-arm oligomers at 24 h after 

transfection. Polyplexes were formed in HBS (left) or HBG (right) buffer. (C) Corresponding cell 

viability was assessed by Cell Titer Glo® Assay (Promega) and calculated as percentage to cells 

treated with HBS or HBG.  

Nevertheless, in the evaluation of other sequence topologies, it was found that 

tyrosine Y3 incorporation in the structure was not sufficient; additional incorporation of 

fatty acids plays an important role for optimal mRNA delivery (Figure 16). First of all, 

MyrA and OleA in T-shape structures showed advantageous luciferase expression 

over structures with SteA in HBS lipopolyplex formation in both cell lines (DU145 and 

N2a). Secondly, a beneficial effect of the tyrosine introduction in the same structures 

was also noted, especially in the case of CholA and OleA in DU145 cell line. Previous 

study demonstrated that additional tyrosine increase polyplex stability [112, 116]. 

Considering a higher stability of SteA polyplexes, the additional tyrosines did not 

shown any improvement in transfection. Besides, integration of additional cysteine 

and arginine (CRC motif) for supplemental stabilization also did not show any further 

advantageous for mRNA delivery. Regarding toxicity of above mentioned fatty acids, 

significant reduction of cell viability was observed only in MyrA formulations (Figure 

16C) which is consistent with previous work [104].  
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Figure 16 (A) Schematic structures of sequence-defined lipo-oligomers with T-shape topology and 

different modifications (Stp: succinoyl-tetraethylene-pentamine, C: cysteine, K: lysine, Y: tyrosine, R: 

arginine, MyrA: myristic acid, SteA: stearic acid, OleA: oleic acid, CholA: 5β-cholanic acid). 

(B) Luciferase reporter expression of mRNA lipopolyplexes formed with T-shape oligomers and lipo-

oligomers (N/P ratio 12) at 24 h after transfection in DU145 and N2a cell lines. Lipopolyplexes were 

formed in HBS (left) or HBG (right) buffer. (C) Corresponding cell viability was assessed by Cell Titer 

Glo® Assay (Promega) and calculated as percentage to cells treated with HBS or HBG.  
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The findings of the importance of T-shape topology and also the influence of tyrosine 

and fatty acids in the structure for mRNA delivery led us to the next two similar and 

already published (for siRNA delivery) groups of T-shape lipo-oligomers. Lipo-

oligomers with cationic backbone and hydrophobic domain such as unsaturated oleic 

acid are known as potent siRNA carriers because of strong electrostatic and 

hydrophobic lipopolyplex formation and endosomal membrane destabilization [105, 

106, 116]. TFA (trifluoroacetic acid), used for removal of protecting groups and 

cleavage from the resin during lipo-oligomer synthesis through solid-phase-assisted 

synthesis, in case of the unsaturated fatty acid oleic acid can induce side products 

such as 10-30% hydroxystearic acid (OH-SteA) derivatives. This occurs via TFA 

addition, which after hydrolysis generates the hydroxylated product. Reinhard et al 

[289] optimized the cleavage protocol in terms of temperature and time to minimize 

unintended side products. As a results, highly pure T-shape lipo-oligomers, 

containing either only the unsaturated oleic acid (OleA) or linoleic acid (LinA), the 

saturated stearic acid (SteA), or T-shapes with the monohydroxylated hydrocarbon 

chain OH-SteA, LinA-OH, or alternatively 8-nonanamidooctanoic acid moieties 

(NonOcA) were synthesized [289]. To find out which fatty acid could be valuable for 

further improvement of mRNA delivery, aforementioned sequences with T-shapes 

topology, tyrosine tripeptides and the different fatty acids were tested (Figure 17). 

Transfections were performed with lipopolyplexes formed in HBS (Figure 17B left) or 

HBG (Figure 17B right) in DU145 and N2a cell lines. In general, lipopolyplexes 

formed in HBS showed enhanced transfection efficiency than those formed in HBG in 

case of all lipo-oligomers except OH-SteA. Nevertheless, the same efficiency of OH-

SteA lipopolyplexes formed in HBS and HBG was observed only in the case of 

DU145 transfection. Again, saturated SteA lipopolyplexes showed significantly lower 

efficiency compared to structures with unsaturated or modified hydrocarbon chains, 

probably due to lower polyplex stability and enhanced lytic potential of OleA, OH-

SteA and NonOcA. Besides, both OH-SteA and NonOcA showed increased 

efficiency relative to OleA lipopolyplex formation in HBS in both cell lines, closely 

related with their high lytic activity which is consistent with previous results [289]. 

Higher lytic activity may increase cellular internalization, but it can also be a reason 

for unwanted cytotoxicity as it was found in HBS lipopolyplex formation of NonOcA 

(both cell lines) and LinA-OH (N2a cell line) (Figure 17C). 
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Figure 17 (A) Schematic structure of sequence-defined lipo-oligomers with T-shape topology and 

different modifications; Stp: succinoyl-tetraethylene-pentamine, C: cysteine, K: lysine, Y: tyrosine, 

OleA (454): oleic acid with OH-SteA impurity, SteA: stearic acid, OH-SteA: hydroxystearic acid, OleA: 

oleic acid, LinA: linoleic acid, LinA-OH: hydroxylinoleic acid, NonOcA: 8-nonanamidooctanoic-acid. 

(B) Luciferase reporter expression of mRNA lipopolyplexes (N/P ratio 12) at 24 h after transfection in 

DU145 and N2a cell lines. Lipopolyplexes were formed in HBS (left) or HBG (right) buffer. (C) 

Corresponding cell viability was assessed by Cell Titer Glo® Assay (Promega) and calculated as 

percentage to cells treated with HBS or HBG.  
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While in the extracellular condition high stability of polyplexes is important, 

intracellular disassembly is required for the cytosolic release of mRNA. The 

incorporation of a bioreducible disulfide bond (SSBB) between the cationic backbone 

and the hydrophobic domain [104] should enhance release of mRNA in the 

intracellular reductive space where higher concentration of glutathione (GSH) is 

present. Therefore, the second group of T-shape oligomers with tyrosine trimers and 

different fatty acids included bioreducible sequence-defined lipo-oligomers as well as 

their non-reducible analogs (Figure 18) [104]. Moreover, in contrast to the previous 

structures, these lipo-oligomers did not contain terminal cysteines. 

 

 

Figure 18 Schematic overview of the T-shape structures with different modifications (Y: tyrosine, Stp: 

succinoyl-tetraethylene-pentamine, K: lysine, G: glycine, SSBB: succinoyl-cystamine, CholA: 5β-

cholanic acid, MyrA: myristic acid, SteA: stearic acid, OleA: oleic acid, NonOcA: 8-

nonanamidooctanoic acid). 

 

As well as in the aforementioned experiments, lipopolyplexes were formed in HBS or 

HBG and all transfection experiments were performed in DU145 and N2a cell lines 

(Figure 19). Results revealed again enhanced transfection efficiency of 

lipopolyplexes formed in HBS than those formed in HBG in the case of all lipo-

oligomers except SteA SSBB (only N2a cell line) (Figure 19A and B). Statistical 

significant enhanced transfection efficiency has been observed also in the almost all 

cases of HBS formed bioreducible lipopolyplexes comparing to their non-reducible 

analogs, except in the case of SteA (Figure 19A and B, top). In general, saturated 

SteA lipopolyplexes once more showed significantly lower efficiency compare to 

other fatty acids, which was particularly pronounced in the case of HBS 
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lipopolyplexes formation. Whereas in the case of HBG lipopolyplex formation, the 

similar low transfection efficiency was also observed for CholA and NonOcA in both 

cell lines and MyrA in N2a cell line (Figure 19A and B, bottom). Although HBG 

lipopolyplex formation showed lower transfection efficiency, enhanced efficiency of 

bioreducible lipopolyplexes over their non-reducible analogs, was achieved as well. 

Besides OleA SSBB, which showed significant better transfection over OleA in both 

cell lines, MyrA SSBB and NonOcA SSBB lipopolyplexes also showed superior 

efficiency compare to their non-reducible analogs, but only in the case of DU145 cell 

line. Notably, high cytotoxicity of MyrA lipopolyplexes was observed in HBS 

lipopolyplexes formation in both cell lines. Interestingly, OleA lipopolyplexes formed 

in HBS also showed high toxicity (especially in the case of DU145 cell line), whereas 

bioreducible OleA (OleA SSBB) lipopolyplexes were found to be non-toxic (Figure 

19C). 

 

Luciferase expression was tested in DU145 and N2a cell lines. Some differences in 

transfection efficiency were noticed, but the transfection profile was similar for all 

oligomers used in the study. Therefore DU145 cell line was chosen for further 

experiments.  

 



   Results 

   61 

 

Figure 19 Luciferase reporter expression at 24 h after transfection with mRNA lipopolyplexes formed 

with T-shape structures presented in Figure 5. (A) DU145 cell line. (B) N2a cell line. Lipopolyplexes 

were formed in HBS (top) or HBG (bottom) buffer. Statistical analysis (Student's t-test): *p < 0.05; 

**p < 0.01; ***p < 0.001; ****p < 0.0001. (C) Corresponding cell viability was assessed by Cell Titer 

Glo® Assay (Promega) and calculated as percentage to cells treated with HBS or HBG.  
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3.2.2 Biophysical characterization of mRNA polyplexes and lipopolyplexes 

Nucleic acid compaction with gene carriers into nanosized particles is an important 

requirement for successful mRNA delivery, therefore different characterization 

methods were used to compare various polyplex and lipopolyplex formations.  

 

3.2.2.1 Size and zeta potential of carriers 

Particle sizes and zeta potential of polyplexes and lipopolyplexes formed at N/P ratio 

12 were determined by dynamic light scattering (Table 3). Polyplexes and 

lipopolyplexes were formed in both HBS and HBG. In general, bigger particles were 

observed when prepared in HBS than in HBG. Only in the cases of succPEI 

polyplexes and LinA-OH lipopolyplexes the sizes were consistent regardless of 

whether they were formed in HBS or HBG. Most of the carrier formulations prepared 

in HBS exhibited particle sizes of more than 1000 nm, while the size of nanoparticles 

formed in HBG were almost in all cases within the size limit for cellular uptake (<200 

nm) [14]. Nevertheless, succPEI, OleA (454), LinA and LinA-OH carriers prepared in 

HBS also exhibiting particle sizes of <200 nm, while only OH-SteA prepared in HBG 

formed nanoparticles >1000 nm. Interestingly, all bioreducible carriers, prepared in 

HBG, showed larger size as their corresponding non-reducible analogs. Zeta 

potential measurements display the expected positive surface charges between +~20 

mV and +~40 mV for all the polyplexes and lipopolypexes formed in HBG, and lower 

surface charges between +~3 mV and +~15 mV for polyplexes and lipopolyplexes 

formed in HBS.  
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Table 3 Particle size (Z-average) and zeta potential of polyplexes and lipopolyplexes formed in HBG 

or HBS buffer determined with DLS. 

  HBS HBG 

Polyplex/lipopolyplex N/P 
Z-average 

(nm) 
Mean PDI 

Mean zeta 
potential (mV) 

Z-average 
(nm) 

Mean PDI 
Mean zeta 

potential (mV) 

succPEI 4 61,6 ± 3,4 0,23 ± 0,01 5,6 ± 0,5 59,8 ± 0,9 0,29 ± 0,05 27,8 ± 3,9 

        

Stp 12 1633,3 ± 47,4 0,35 ± 0,02 4,8 ± 0,1 157,5 ± 1,4 0,09 ± 0,01 24,5 ± 0,8 

H-(Stp-H) 12 1390,0 ± 56,6 0,29 ± 0,08 4,9 ± 0,3 75,4 ± 0,3 0,15 ± 0,00 30,4 ± 1,2 

H-(Stp-H)-Y 12 999,0 ± 60,6 0,28 ± 0,04 5,8 ± 0,1 79,1 ± 1,2 0,21 ± 0,01 33,3 ± 2,3 

        

OleA (454) 12 79,8 ± 0,3 0,14 ± 0,01 6,9 ± 0,7 46,0 ± 0,3 0,19 ± 0,01 27,9 ± 0,7 

        
SteA 12 2211,3 ± 45,6 0,38 ± 0,15 11,6 ± 1,2 69,8 ± 1, 0,31 ± 0,02 37,2 ± 2,1 

OH-SteA 12 1752,3 ± 14,0 0,22 ± 0,04 3,0 ± 0,2 1360,3 ± 84,1 0,27 ± 0,02 16,6 ± 0,3 

OleA 12 2171,0 ± 136,5 0,35 ± 0,06 8,6 ± 0,7 62,0 ± 0,9 0,16 ± 0,02 28,4 ± 1,5 

LinA 12 113,8 ± 0,9 0,10 ± 0,01 13,2 ± 1,0 71,7 ± 0,5 0,25 ± 0,01 35,7 ± 0,8 

LinA-OH 12 70,5 ± 1,0 0,15 ± 0,01 14,2 ± 1,2 68,4 ± 0,7 0,24 ± 0,01 24,7 ± 0,0 

NonOcA 12 246,5 ± 6,3 0,46 ± 0,02 12,0 ± 0,7 86,4 ± 0,1 0,25 ± 0,01 37,6 ± 2,6 

        
CholA 12 3125,3 ± 183,3 0,23 ± 0,09 6,5 ± 0,8 79,4 ± 1,3 0,27 ± 0,01 28,4 ± 0,6 

CholA SSBB 12 2448,3 ± 145,1 0,31 ± 0,03 6,9 ± 0,6 165,2 ± 5,3 0,11 ± 0,01 25,8 ± 1,0 

MyrA 12 2353,6 ± 89,3 0,21 ± 0,08 14,8 ± 1,3 79,0 ± 0,1 0,27 ± 0,01 39,3 ± 2,0 

MyrA SSBB 12 3752,0 ± 136,4 0,37 ± 0,07 3,8 ± 0,6 102,0 ± 0,7 0,21 ± 0,01 33,6 ± 1,5 

SteA 12 3781,3 ± 327,2 0,26 ± 0,08 7,4 ± 1,5 55,2 ± 0,4 0,17 ± 0,01 27,3 ± 0,7 

SteA SSBB 12 3361,3 ± 80,4 0,25 ± 0,05 5,0 ± 2,0 102,2 ± 0,8 0,21 ± 0,01 31,7 ± 0,7 

OleA 12 3368,6 ± 92,2 0,42 ± 0,14 7,3 ± 1,3 73,2 ± 0,9 0,20 ± 0,01 32,5 ± 0,2 

OleA SSBB 12 2087,6 ± 136,3 0,37 ± 0,05 8,4 ± 1,1 77,1 ± 1,4 0,21 ± 0,01 41,1 ± 0,4 

NonOcA 12 2115,6 ± 56,7 0,26 ± 0,06 15,2 ± 1,9 66,6 ± 0,5 0,22 ± 0,01 39,7 ± 2,6 

NonOcA SSBB 12 2631,0 ± 27,8 0,36 ± 0,29 7,2 ± 0,5 116,1 ± 0,6 0,11 ± 0,02 30,0 ± 1,6 
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3.2.2.2 Stability of mRNA polyplexes and lipopolyplexes determined in agarose 

gel shift assays 

Polyplexes and lipopolyplexes were formed only in HBG, because of agglomeration 

in HBS. Complete binding of 250 ng of mRNA by lipo-oligomers at N/P 12 was 

determined by measuring the electrophoretic mobility of mRNA in a 1% agarose gel. 

In general, all tested formulations showed complete binding under above mentioned 

conditions (Figure 20).  

 

Figure 20 Agarose gel shift assays of mRNA binding at N/P ratio 12. Polyplexes and lipopolyplexes 

were formed in HBG. 

 

3.2.2.3 Ethidium bromide compaction assay, polyanionic and GSH stress test 

To further investigate the ability of different carriers in compacting mRNA, mRNA 

compaction ability was determined with an ethidium bromide (EtBr) exclusion assay. 

Polyplexes and lipopolyplexes were formed in HBG. In Figure 21 (black bars), it is 

displayed the intensity of EtBr fluorescence normalized to uncomplexed mRNA. 

SuccPEI polyplexes (<5% EtBr fluorescence) showed the best compaction. 

Interestingly, all lipopolyplexes displayed good compaction in the range between 20 

and 30% EtBr fluorescence, but for OH-SteA lipopolyplexes (~50% EtBr 

fluorescence), mRNA compaction decreased, which is consistent with the other 

presented work. The addition of 250IU of heparin sulfate causes anionic dissociative 

stress and results in partial release of mRNA from polyplexes and lipopolyplexes. 

Dotted bars in Figure 21 presents the EtBr fluorescence after the addition of 250IU of 

heparin sulfate. Under these conditions, mRNA polyplexes of succPEI are less 

dissociated (~75% EtBr fluorescence) compare to standard OleA (454) 

lipopolyplexes, which completely release mRNA and cause full EtBr fluorescence, 
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indicating succPEI polyplexes are more stable. Besides, lipopolyplexes formed with 

OH-SteA displayed the least release of mRNA (~65% EtBr fluorescence), within the 

first group of T-shapes lipo-oligomers with tyrosine trimers and different fatty acids, 

whereas other carriers cause higher EtBr fluorescence between 85% and 95% 

(Figure 21B). On the other side, polyplexes formed with bioreducible lipo-oligomers 

as well as their non-reducible analogs display full dissociation (Figure 21C). 

  

 

Figure 21 Ethidium bromide exclusion assay to determine the ability of mRNA compaction of the lipo-

oligomers, inversely correlating with the remaining fluorescence of mRNA intercalating ethidium 

bromide (EtBr). Results are presented in % against free mRNA. Polyplexes and lipopolyplexes were 

formed in HBG at N/P 12 without (black bars) or with (with pattern) treatment by 250 IU of heparin. (A) 

succPEI and OleA (454). (B) T-shape lipo-oligomers with different fatty acids. (C) T-shape lipo-

oligomers without and with succinoyl-cystamine building block.  

 

Afterwards, stability of lipopolyplexes from the group of bioreducible lipo-oligomers as 

well as their non-reducible analogs at intracellular GSH concentrations (∼10 mM) 

was investigated. Lipopolyplexes were formed in HBG at N/P 12 and subsequent 90 

min incubated at 37°C with 10 mM of physiological reducing agent GSH in HEPES 

buffer pH 7.4. Consequently, mRNA binding efficacy of carriers significantly 

decreased for the reducible but not the stable lipo-oligomers (Figure 22). The most 

significant difference between reducible and stable lipo-oligomers was observed in 

the case of OleA. Whereas, mRNA binding efficacy of reducible NonOcA remained 

the same compare to its stabile analog, consistently mRNA compaction remained the 

same without and with GSH agent as well as transfection efficacy. Position of the 

SSBB within the carrier, allows the release of the lipid i.e. the most important 
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stabilization motif, however a weak binding ability of the remaining cationic backbone 

still exists [116]. Therefore, destabilization of lipopolyplexes, with reductive cleavage, 

ensure better availability of mRNA in intracellular space. 

 

 

Figure 22 Ethidium bromide exclusion assay. Lipopolyplexes were formed in HBG at N/P 12 and 

subsequent incubated for 90 min at 37 °C with 10 mM of GSH in HEPES buffer pH 7.4. Results are 

presented in % against free mRNA. Statistical analysis (Student's t-test): *p < 0.05; **p < 0.01; 

***p < 0.001; ****p < 0.0001. 

 

 

 

 

 

 

 

 

 

 



   Results 

   67 

3.2.3 Evaluation of mRNA-EGFP transfection efficiency using 

polyethylenimine or different sequence-defined oligoaminoamides 

For a more detailed investigation and direct comparison of the luciferase and GFP 

reporter systems, expression vector coding for GFP instead of luciferase containing 

the same backbone was transfected into the DU145 cells. On one side, a flow 

cytometric quantitative analysis of the transfected cells was performed; on the other 

side, qualitative GFP expression of cells was detected via fluorescence microscopy 

using a fluorescence microscope. Again, polyplexes and lipopolyplexes were formed 

in HBS or HBG and N/P ratio 12 was used. Expression of mRNA-EGFP was detected 

24 h after transfection. In Figure 23, GFP expression of our control carriers succPEI 

and OleA (454) is presented. Surprisingly, much more GFP positive cells were 

measured in cells transfected with the OleA (454) lipopolyplexes than succPEI 

(Figure 23A). This finally brings up the dilemma of very high succPEI control 

transfections. Although succPEI polyplexes showed very high luciferase reporter 

expression (1.5 log scale unit higher than OleA (454)), the fraction of GFP positive 

cells in succPEI treated cultures was ~55% lower both in HBS and HBG polyplex 

formation. It is known that flow cytometry provides quantification of reporter gene 

expression in every cell of the transfected population, thus higher luciferase activity of 

succPEI polyplexes was probably due to very high expression of mRNA-luc in a 

smaller population of cells. This assumption can be further confirmed with mean 

fluorescence intensity (MFI) values to GFP expression determined by flow cytometry 

(Figure 23C). MFI value of succPEI polyplexes group is around 90% higher than in 

the case of OleA (454) lipopolyplexes group, which is consistent with the higher 

luciferase reporter expression of succPEI polyplexes. Besides, MFI value of OleA 

(454) lipopolyplexes treated cells is rather very low, which proves lower intensity of 

transfected cells. Therefore, flow cytometry analysis shows not only the total amount 

of protein expression, but also the percentage of mRNA transfected positive cells and 

is particularly useful when transfection efficiency of luciferase system is low, so that 

detection of cells that are transfected with a low intensity is also enabled. Thus, GFP 

expression showed us a quantitative impression of successful transfection at cellular 

level. The same results were confirmed when GFP expression cells was observed via 

fluorescence microscopy (Figure 23B). There were no fluorescence signals imaged 

on the controls (non-treated cells, cells treated with HBS or HBG). Besides, there 

was increased fluorescence for cells transfected with either succPEI polyplexes or 
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OleA (454) lipopolyplexes as compared to controls. Again, we could notice a lower 

amount of GFP positive cells, with different intensity (few with very high intensity), 

when they were transfected with succPEI polyplexes. While, in the case of OleA 

(454) transfection, higher amount of GFP positive cells with more uniform low 

intensity was examined. In both experiments, flow cytometry and also fluorescence 

microscopy, very small differences in cells transfected between polyplexes or 

lipopolyplexes formed in HBS or HBG were observed.  

 

Results of GFP expression studies of 3-arm oligomers (Figure 24) were consistent 

with their previous luciferase expression studies (Figure 15), showing almost 

nonexistent GFP expression when Stp or H-(Stp-H) carriers were used. While in the 

case of H-(Stp-H)-Y carrier significantly higher GFP expression was found, indicating 

the advantage of tyrosine trimers in structure. Besides, the difference between HBS 

and HBG polyplex formation is more emphasized in this experiment (as was the case 

with luciferase expression of the same vectors). HBS polyplex formation obviously 

lead to higher GFP expression in more cells and with different intensity, while HBG 

polyplex formation resulted in three time lower amount of transfected cell with lower 

intensity. It’s also confirmed with corresponding MFI values to GFP expression 

(Figure 24C), high MFI value for HBS and low MFI for HBG polyplex formation.  
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Figure 23 (A) GFP expression after 24h incubation of succPEI polyplexes or OleA (454) 

lipopolyplexes with DU145 cells as determined by flow cytometry. Polyplexes and lipopolyplexes were 

formed in HBS (left column) or HBG (right column) buffer. (B) Fluorescence microscopy of fixed 

untreated DU145 cells, cells treated with succPEI polyplexes or OleA (454) lipopolyplexes formed in 

HBS or HBG buffer for 24h. Left column: brightfield images of the treated cells. Middle column: GFP 

fluorescence of the treated cells. Right column: Merge. Scale bar is 50 µm. In (C) corresponding mean 

fluorescence intensity (MFI) values to GFP expression determined by flow cytometry are displayed. 
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Figure 24 (A) Schematic structures of sequence-defined 3-arm oligomers (Stp: succinoyl-

tetraethylene-pentamine, C: cysteine, K: lysine, H: histidine, Y: tyrosine). (B) GFP expression after 24h 

incubation of Stp, H-(Stp-H) and H-(Stp-H)-Y polyplexes with DU145 cells as determined by flow 

cytometry. Polyplexes were formed in HBS (top) or HBG (bottom) buffer at N/P ratio 12. (C) 

Corresponding mean fluorescence intensity (MFI) values to GFP expression determined by flow 

cytometry. 

 

Next, flow cytometry analyses and fluorescence microscopy were also performed for 

the last two groups of sequences with T-shape topology, tyrosine tripeptides and 

different fatty acids. The results of the first group of lipo-oligomers (Figure 25) 

emphasize superiority of the HBG over HBS lipopolyplex formation and at the same 

time demonstrate the difference to the luciferase expression system where HBS 

lipopolyplex formation resulted in higher transfection efficiency. In almost all cases 

(except LinA), GFP positive cells of lipopolyplexes group formed in HBG were more 

than the corresponding lipopolyplexes group formed in HBS (Figure 25A). Consistent 

with previous measured luciferase expression data, hight MFI value was measured 

for HBS lipopolyplex formation of OH-SteA and NonOcA, but also for OH-SteA 
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lipopolyplexes formed in HBG (Figure 25B). Besides, the high intensity of GFP 

expression of the same lipopolyplexes in some cells is demonstrated on Figure 25A. 

Again, this data correlate well with previous measured luciferase expression data. 

Nevertheless, very interesting results were observed also with others lipo-oligomers, 

which did not show especially notable luciferase expression previously. In HBS 

lipopolyplex formation group, 79% of cells expressed GFP when we used LinA-OH 

carrier and even more (92% of GFP expression) when we used LinA carrier. Even 

better results were obtained in HBG lipopolyplex formation, GFP expression of 78% 

for SteA, 96% for OleA, 89% for LinA, 83% for LinA-OH and 89% for NonOcA lipo-

oligomers. Additionally, fluorescence microscopy confirmed GFP expression with 

more cells with different intensity in the case of OH-SteA (Figure 25C).  

 

In the second group of lipo-oligomers, we compared GFP expression of bioreducible 

lipo-oligomers and their non-reducible analogs in HBS and HBG lipopolyplex 

formation (Figure 26). First imposed finding regarding difference in GFP expression 

determined by flow cytometry is correlated with bioreducibility (Figure 26A and B). 

Bioreducible carriers showed higher GFP expression in all carriers over their non-

reducible analogs and in both options, HBS or HBG lipopolyplex formation. The only 

exception was OleA containing lipo-oligomers, where bioreducible OleA showed the 

same GFP expression as its non-reducible analog. Further, GFP positive cells of 

HBG formed lipopolyplexes was again higher compare to the same lipopolyplexes 

formed in HBS (except MyrA) (Figure 26B), which is opposite to previous luciferase 

expression results (Figure 19A). More than 80% of cells were observed in all 

lipopolyplexes formed in HBG, except MyrA (Figure 26B, grey bars). However, the 

highest (more than 95% transfected cells) GFP expression were achieved with 

bioreducible CholA and bioreducible NonOcA lipopolyplexes formed in HBG, while 

the lowest difference between bioreducible oligomer and its non-reducible analog 

was observed in the case of OleA. Next, the lowest GFP expression was detected 

when lipopolyplexes of NonOcA, MyrA and their bioreducible analogs were formed in 

HBS, probably due to their cytotoxicity. For the same bioreducible carriers the highest 

MFI value was measured (Figure 26C). Surprisingly, high GFP expression was 

observed also in the case of lipo-oligomers, which did not show especially interesting 

luciferase expression previously (presented on Figure 19A). Presence of reducible 

SteA in HBS lipopolyplex formation resulted in almost 80% of cells expressing GFP. 
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When we formed lipopolyplex in HBG, the obtained results were even better. 

Reducible lipo-oligomers and their non-reducible analogs containing CholA, SteA or 

NonOcA as well as non-reducible OleA showed very poor or no transfection 

efficiency in the case of luciferase expression system, whereas with flow cytometry 

analyses, GFP expression of more than 80% in all cases, were determined. 

Fluorescence microscopy results confirmed above mentioned flow cytometry data 

(Figure 26D). Again, higher GFP expression of bioreducible lipo-oligomers compare 

to their non-reducible analogs was observed. As flow cytometry data of bioreducible 

MyrA showed ~15% lower GFP positive cells and high MFI value when 

lipopolyplexes were formed in HBS compare to HBG lipopolyplex formation (low MFI 

value), fluorescence microscopy pictures clearly present differences in GFP 

expression intensity within the cell population (Figure 26D, left). Therefore, on one 

side, transfection with bioreducible MyrA (HBS) resulted also in quite high intensity of 

GFP expression, but on the other side also caused higher cytotoxicity as shown in 

the Figure 26D, but also with Cell Titer Glo® Assay (Figure 19C). In the case of 

OleA containing lipo-oligomers, similar percentage of GFP expression is in both, HBS 

and HBG lipopolyplex formation, and flow cytometry analyses can be also certificated 

by fluorescence microscopy. Non-reducible OleA polyplexes transfected the same 

amount of cells with poor GFP expression level, while reducible OleA transfected 

some cells with higher level of GFP (Figure 26D, right).  
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Figure 25 (A) GFP expression after 24h incubation of lipopolyplexes with DU145 cells as determined 

by flow cytometry. Lipopolyplexes were formed from T-shape oligomers modified with different fatty 

acids in HBS (top) or HBG (bottom) buffer. (B) Corresponding mean fluorescence intensity (MFI) 

values. (C) Fluorescence microscopy of fixed DU145 cells treated with OH-SteA or NonOcA 

lipopolyplexes for 24 h. Lipopolyplexes were formed in HBS or HBG buffer. Left column: brightfield 

images of the treated cells. Middle column: GFP fluorescence of the treated cells. Right column: 

Merge. Scale bar is 50 µm. 
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Figure 26 (A) GFP expression after 24h incubation of lipopolyplexes with DU145 cells as determined 

by flow cytometry. Lipopolyplexes were formed in HBS (top) or HBG (bottom) buffer. Empty peak 

present cells treated with HBS or HBG. Tinted peak present cells treated with lipopolyplexes formed 

by oligomers without SSBB, while filled peak present cells treated with lipopolyplexes formed by 

oligomers with SSBB. (B) GFP expression of the same samples as described in (A) presented as a 

percentage. (C) Corresponding mean fluorescence intensity (MFI) values. (D) Fluorescence 

microscopy of fixed DU145 cells treated with MyrA, MyrA SSBB, OleA or OleA SSBB lipopolyplexes 

for 24 h. Lipopolyplexes were formed in HBS or HBG buffer. Left column: brightfield images of the 

treated cells. Middle column: GFP fluorescence of the treated cells. Right column: Merge. Scale bar is 

50 µm. 
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4 Discussion 

4.1 Minicircle versus plasmid DNA delivery by receptor-targeted 

polyplexes  

This chapter has been adapted from: 

A. Krhac Levacic, S. Morys, S. Kempter, U. Lächelt and E. Wagner. Minicircle versus 

plasmid DNA delivery by receptor-targeted polyplexes. Human Gene Therapy 2017 

28(10), 862-874 

 

Due to its minimal size and lack of bacterial backbone sequences, minicircle (MC) 

DNA presents a promising alternative to plasmid DNA (pDNA) for non-viral gene 

delivery in terms of biosafety and improved gene transfer. Different nucleic acid 

cargos, due to their different size or nature, are known to differ in their formulation 

requirements [78, 79]. Therefore, the present study compared physicochemical and 

transfection characteristics of polyplexes formed with pDNA (pCMV-luc) or MC DNA 

(MC07.CMV-luc) and linPEI, as well as untargeted and targeted oligoaminoamides. 

 

Four sequence-defined cationic oligoaminoamides were generated (Table 1) by 

solid-phase assisted synthesis; previously described [107] three-arm (689) and cmb-

PEG (442) and Y3-containing analogous carriers, three-arm-Y (849) and cmb-PEG-Y 

(852). The additional incorporation of tyrosine trimers (Y3) had been found 

advantageous for aromatic and hydrophobic polyplex stabilization [112, 116]. 

Efficient DNA compaction is an important requirement for gene transfer. Recent work 

revealed suboptimal pDNA packaging by cmb-PEG; apparently, the PEG shielding 

domain interfered with DNA condensation [107, 108]. The PEG-free three arm 

oligomer and also the cmb-PEG/three-arm carrier combination effectively compacted 

DNA, resulting in effective pDNA gene transfer in vitro and in vivo [107]. For this 

reason, combination polyplexes were also analyzed in the current comparison of 

pDNA and MC DNA polyplexes. 

 

Nucleic acid compaction with synthetic gene carriers into nanosized particles is an 

important requirement for successful gene delivery. This study compared pCMV-luc 
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and MC07.CMV-luc polyplex formation using a series of different characterizations 

methods: particle size and zeta potential (DLS), transmission electron microscopy 

(TEM) and EtBr exclusion assay. As expected, well-compacting cationic polymers 

such as linPEI or Y3 oligomers formed polyplexes with similar diameters, irrespective 

of the different size of the cargos, whereas the tyrosine-free oligoaminoamides form 

polyplexes where sizes significantly differ for pDNA and MC. For plain polycations, 

the different cargo DNA size is compensated by aggregating different cargo copy 

numbers into one polyplex. The situation is different for carriers that avoid nano-

aggregation and form monomolecular DNA polyplexes [133, 281]. However, addition 

of a three-arm structure to the cmb-targeted structure led to a smaller and more 

compact particle in the case of polyplex formation with both plasmids. These 

observations were confirmed by DLS as well as TEM. Investigating morphologies by 

TEM showed that nanoparticle shapes differing between the carriers but not the DNA 

used in polyplex formation. Nevertheless, TEM provided evidence for the presence of 

smaller ultrastructures for MC than for pDNA polyplexes. Notably, the majority of 

nanoparticles were within the <50nm nuclear envelope pore limit to enable transport 

of polyplexes into the nucleus [21]. In addition, EtBr exclusion assay confirmed best 

compaction for linPEI polyplexes, but also almost complete dissociation under stress 

conditions (addition of heparin sulfate), irrespective of the type of DNA. Interestingly, 

polyplexes formed with oligoaminoamides displayed better compaction and higher 

stability under stress conditions for MC compared to pDNA, while MC DNA 

combination polyplexes showed even better compaction and the highest stability. 

Oligoaminoamide polyplexes, stabilized by bioreversible disulfide crosslinks, are 

more resistant to stress conditions. 

 

To compare transfection efficiency of polyplexes formed with either pCMV-luc or 

MC07.CMV-luc, luciferase gene transfer in the prostate carcinoma cell line DU145 

which expresses the cell surface receptor HGFR/c-Met was performed. In general, 

polyplexes formed with MC07.CMV-luc mediated better transfection than polyplexes 

formed with pCMV-luc in all tested settings; short-term (0.75 h) and long-term (24h) 

incubations with polyplexes as well as equal mass quantities of used DNA and 

equimolar quantities of vectors. Besides, another three important findings were 

observed. First, when polyplexes were formed with pCMV-luc and linPEI, prolonged 

incubation helped to increase transgene expression to the same level as obtained 
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with MC07.CMV-luc polyplexes after short incubation. Second, an advantageous 

effect of the novel c-Met targeted oligomers with integrated tyrosine trimers 

analogously was noted, as previously observed for folate receptor targeted pDNA 

polyplexes [112, 116]. And third, higher copy number of MC07.CMV-luc than the 

corresponding pCMV-luc vector is not responsible for the enhanced transfection 

when equal mass quantities of DNA was used. Altogether, the beneficial effect of 

tyrosine trimer integration, formation of combination polyplexes, and use of MC 

added up to a ~200-fold enhanced gene expression. 

 

The advantage of MC DNA in polyplex transfection, although confirmed in the current 

and other previous work, is not easy to understand. The clear-cut differences in 

physicochemical properties, such as smaller and more compacted nanostructures of 

MC DNA polyplexes, might favorably or unfavorably translate in the complex, multi-

step process of non-viral gene delivery [130]. 

 

 

Figure 27 Schematic presentation of the gene delivery process of polyplexes formed from DNA and 

sequence-defined cationic oligomer. 
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For electroporation of free DNA, MC DNA presented a more effective vector uptake 

[255]. Maucksch et al. [290] also reported that a small pDNA size can be important 

for cell and nucleus entry upon electroporation; comparing 4.7 kb of pEGFP-

monomer with 9.4 kb of pEGFP-dimer pDNA, a 17% versus 13% nuclear delivery 

was observed. For polyplexes, which usually package multiple vector molecules, 

nanoparticle size may have more impact for initial cellular uptake than vector size. On 

the one hand, larger PEI polyplexes were previously found to possess increased 

transfection efficiency due to their enhanced cellular contact by sedimentation in cell 

culture, subsequent uptake, and enhanced endosomal escape activity by the proton 

sponge effect [291]. On the other hand, smaller nanoparticle sizes may provide 

favorable characteristics in cellular uptake by mechanisms of receptor-mediated 

endocytosis, and favorable subsequent intracellular sorting pathways avoiding 

lysosomal destruction. Intuitively, by their smaller size, they might have advantages 

in sneaking across intracellular barriers. In particular, the intranuclear delivery of the 

vector presents a crucial size-dependent process, followed by unpackaging and 

successful gene expression in the nucleus [22]. Recent work suggests that DNA/PEI 

with a diameter <50 nm would pass through nuclear envelope pores [21]. Larger 

pDNA nanoparticles might enter the nucleus during the small window of mitosis, 

when the nuclear membrane breaks down. Smaller MC nanoparticles might have the 

advantage to enter the nucleus at any stage of cell cycle. Therefore, transfections 

using DU145 cells were performed in different stages of cell cycle. Irrespective of cell 

cycle stage, the MC formulations mediated up to a 10-fold higher gene expression. 

The transfections confirmed the lack of significant cell cycle dependence for 

linPEI/pDNA polyplexes, which correlates with previous studies [18], as well as for 

linPEI/MC polyplexes. An analogous lack of cell cycle dependence was found for 

both types (pDNA and MC) of well-compacted cmb-PEG-Y/three-arm-Y combination 

polyplexes. Thus, from these experiments, a hypothetically improved nuclear entry of 

smaller MC polyplexes over pDNA polyplexes can be neither verified nor excluded. It 

rather appears that nuclear import is a low barrier for both types of small compacted 

polyplexes. Interestingly, for the less compacting carrier cmb-PEG-Y, the pDNA- but 

not the MC-mediated transfection shows cell cycle dependence at 12 h (after 

mitosis), which is about 10-fold lower than for transfection before mitosis (0 or 6 h), 

and also about 10-fold lower than the better compacted pDNA polyplex. Importantly, 
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MC DNA polyplexes display lack of cell cycle dependence for all formulations, 

suggesting an advantage from their inherent smaller size.  

 

MC DNA comprises several additional advantages beyond the aspects discussed 

above. In particular, for in vivo gene transfer, reduced innate immune responses and 

strongly improved maintenance of transgene expression are noteworthy [252, 255, 

256]. This favorable sustained expression appears to be linked with incorporation of 

MC DNA into active chromatin [258]. Following in vivo gene transfer of standard 

pDNA into the liver of mice, the presence of the bacterial backbone resulted in a 10- 

to 1000-fold reduction of gene expression over a period of few weeks due to gene 

silencing at the nuclear transcription stage. Apparently, DNA elements in cis (directly 

linked with the transgene expression cassette) are responsible for transcriptional 

blockade; the in vivo excision of the transgene cassette from such elements strongly 

improved maintenance of gene expression [292]. Interestingly, the size (≥1 kb) of the 

extragenic DNA had more impact than the CpG content [293, 294], though the 

increase of A/T content in the backbone or antibiotic resistance genes reduced 

transcriptional silencing [295].  

 

In conclusion, the work presented here demonstrates better physicochemical 

characteristics and transfection efficiencies of MC DNA polyplexes compared to 

standard pDNA with linPEI or sequence-defined oligoaminoamides. Within the latter 

class of carriers, novel c-Met targeted and tyrosine trimer-stabilized oligomers were 

designed, which by optimized formulation in combination with MC DNA yielded more 

than 100-fold enhanced gene transfer efficiency in receptor positive target cells. 

These results provide an encouraging future perspective for targeted in vivo gene 

delivery. 
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4.2 Sequence defined oligomers as carriers for mRNA delivery 

Messenger RNA (mRNA) is recognized as versatile, safe, and cost-effective 

technologies for the treatment of cancer and also other disease; mRNA-based drug 

technologies have attracted serious attention over the past years. Since, the major 

limitations of mRNA, strong immunogenicity and limited stability, have been recently 

greatly improved by various chemical modifications, the important restriction remains 

in cellular entry. Cationic sequence-defined oligoaminoamides for delivery via 

endocytic pathways represent a promising approach to improve gene transfection. 

Therefore, this part of the thesis focused on the exploration of the cationic carrier 

requirements which could be necessary for the delivery of mRNA. 

 

To find a carrier which could be used as positive control in the project, first the 

transfection efficiency of different types of the gene delivery “gold standard” 

polyethylenimine (PEI) was compared. Lower transfection efficiency of PEI is often a 

consequence of the toxicity, therefore introduction of succinic acid groups to the PEI 

structure had been recognized as less toxic alternative when applied at higher 

concentrations for enhanced siRNA transfection [278]. Since succPEI (10% 

succinylation, w/w ratio 4) showed the highest transfection efficiency under nontoxic 

conditions, we decided to use it as control polymer in all future experiments. In the 

next step, transfection efficiency of more than 60 oligomers with various sequences 

and topologies was tested. The main finding of this initial mRNA-luc transfection 

experiment was that tyrosine or/and fatty acids containing oligomers mediated higher 

transfection efficiency. Tyrosine trimers and fatty acids are already recognized as 

stability domains for pDNA and siRNA polyplex formation through hydrophobic 

interactions, thus they had been previously integrated into oligomers [106, 116]. 

Incorporation of only tyrosine trimers into the 3-arm structure was enough for 

enhanced transfection efficiency for 5 or 2.5 log scale units in HBS and HBG polyplex 

formation, respectively. In T-shape oligomer topology, like for siRNA delivery, the 

combination of tyrosine trimers with fatty acids was favorable. On one side, low 

stability of nanoparticles is a critical issue for successful delivery (especially for the 

small siRNA double helix), but on the other side, too stable nanoparticles (for single 

stranded mRNA) could also cause low protein expression as a results of low mRNA 

release and translation in the cytosol. Therefore, additional stability motif CRC [115] 
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did not show any further advantageous on transfection efficiency probably due to 

high stability of nanoparticles. Further on, the influence of different fatty acids in T-

shape structures was examined. For this purpose, we used two groups of T-shape 

lipo-oligomers previous designed and used for siRNA delivery in our group. Sören 

Reinhard (PhD student, Pharmaceutical Biotechnology, LMU Munich) synthesized a 

first group of T-shape lipo-oligomers containing tyrosine tripeptides, terminal 

cysteines, and different fatty acids [289], while the second group of similar, but 

cysteine-free, bioreducible sequence-defined lipo-oligomers as well as their non-

reducible analogs was created by Dr. Philipp Klein (PhD thesis 2017, LMU Munich) 

[104]. In general, several important assumptions can be made based on luciferase 

expression results. First, saturated SteA lipopolyplexes are less effective compare to 

lipo-oligomers with unsaturated or modified hydrocarbon chains. Second, enhanced 

lytic potential of OleA, OH-SteA and NonOcA caused enhanced transfection 

efficiency on one side, and unwanted cytotoxicity (associated with other transfection 

conditions as HBS lipopolyplex formation) in some cases on other side. Third, 

incorporation of a bioreducible disulfide bond (SSBB) between the cationic and the 

lipid arm of oligomers enhanced release of mRNA in the intracellular reductive space, 

reduced cytotoxicity, and also enhanced transfection efficiency of those 

lipopolypexes. Fourth, MyrA is recognized as cytotoxic regardless with or without 

SSBB in structure when the polyplexes were formed with HBS. And fifth, formation of 

polyplexes in HBS is responsible for enhanced transfection efficiency compared to 

those formed in HBG in almost all tested cases, but it sometimes also correlated with 

higher cytotoxicity. All aforementioned findings correlate well with our previous 

published data [104, 289, 291]. Although we noticed differences in transfection 

efficiency in different cell lines, the relative transfection profile of all oligomers used in 

the study was similar over several cell lines.  

 

Nucleic acid compaction into nanosized particles is another important requirement for 

mRNA delivery. The size of nanoparticles formed in HBG in almost all cases was 

within the size limit for cellular uptake (<200 nm) [14], while HBS is recognized as the 

cause of the formation of particles bigger than 1000nm. Tendency of HBS causing 

large aggregates is already reported in previous work [291]. Unlike all other 

measured nanoparticles, only the sizes of succPEI polyplexes and LinA-OH 

lipopolyplexes were consistent regardless of whether they were formed in HBS or 
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HBG. It is consistent with previous published results that branched PEI during 

polyplex formation is slightly less dependent on the salt concentration [203, 286]. 

Although bigger particles can also enter the cells, the smaller particles usually can 

easier circumvent most of the cellular barriers and tend to show no or low toxicity. 

Previous studies in our laboratory showed that smaller nanoparticles could be less 

effective in transfection because of reduced cell binding, inefficient intracellular 

release or subsequent steps of intracellular delivery. Besides, it is shown that larger 

nanoparticle, in our case lipopolyplexes formed in HBS, could increase transfection 

efficiency, because of their enhanced uptake and endosome destabilizing activity 

[291]. Regardless of the small size of succPEI polyplexes in both HBS and HBG 

polyplex formation, enhanced luciferase expression in both cases was observed, 

probably due to endosomal escape capability of PEI by acting as a ‘proton sponge’ 

[28]. Next, increased PDI of HBS nanoparticles indicated less homogenous particle 

formation. Additionally, the zeta potential of HBS formed particles decreased 

indicating aggregates. To further investigate compaction of oligomers, ethidium 

bromide compaction assay was used. SuccPEI polyplexes showed best compaction, 

while others lipopolyplexes displayed well compaction in the range of between 20 

and 30% residual EtBr fluorescence. The worst compaction was observed for OH-

SteA (~50% residual EtBr fluorescence) probably also correlating with particle sizes 

of >1000 nm. However, these characteristics of OH-SteA are presumably responsible 

for its high efficiency. The addition of 250IU of heparin sulfate causes anionic 

dissociative stress and results in partial release of mRNA from polyplexes and 

lipopolyplexes. Under these conditions, succPEI polyplexes were more stable 

compared to other carriers which caused EtBr fluorescence increase to more than 

85% and displayed high dissociation. This finding indicated that endosomal escape 

of other lipopolyplexes formed in HBG should be better or at least the same 

comparing to succPEI. Additionally, destabilization of bioreducible lipopolyplexes with 

disulfide building block (SSBB) at intracellular GSH concentrations (∼10 mM) was 

observed. The position of the SSBB linkage within the carrier allows the release of 

the lipid i.e. the most important nanoparticle stabilization motif, from a small cationic 

backbone [104]. Therefore, destabilization of lipopolyplexes with reductive cleavage 

may ensure better availability of mRNA in the intracellular space. As expected, 

mRNA binding efficacy of carriers significantly decreased for the reducible but not the 

analogous stable lipo-oligomers under reducing cytosolic conditions. These results 
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explained the transfection experiments that transfection efficiency of bioreducible 

lipopolypexes was enhanced over their non-reducible analogs.  

 

Alternatively, a lower fraction of luciferase expressing cells or a prevalence of cells 

with lower expression levels could be the reason of decreased transfection efficiency 

of smaller nanoparticles. Therefore, for a more detailed investigation of cellular 

mRNA expression, transfer of GFP mRNA was applied to detect GFP expression of 

DU145 cells by flow cytometry and fluorescence microscopy of the transfected cells. 

Results obtained by flow cytometry point at the dilemma of a very high succPEI 

standard transfection activity. Although succPEI polyplexes showed very high 

luciferase reporter system expression (1.5 log scale unit higher than OleA (454)), the 

fraction of GFP positive cells in the succPEI group was ~55% lower compare to OleA 

(454). Flow cytometry as a sensitive method enables quantification of reporter gene 

expression in every cell of the transfected population, while higher luciferase activity 

of succPEI polyplexes was obviously resulting from high expression of mRNA-luc in a 

smaller population of cells. This assumption was confirmed with mean fluorescence 

intensity (MFI) values of GFP expression determined by flow cytometry. MFI value of 

succPEI polyplexes is around 90% higher than for OleA (454) lipopolyplexes, which 

is directly correlated to the higher luciferase reporter system expression of succPEI 

polyplexes. Besides, low MFI value of OleA (454) lipopolyplexes proves lower 

intensity of transfected cells. Therefore, flow cytometry analysis is particularly 

powerful in detection of cells that are transfected with a low intensity. Similar findings 

regarding correlation of low luciferase expression with more GFP positive cells and 

low MFI value or contrariwise were identified when we tested other lipo-oligomers. 

Therefore, very interesting results i.e. high GFP positive cells were observed also 

with others lipo-oligomers such as SteA, OleA, LinA, LinA-OH, NonOcA lipo-

oligomers as well as reducible lipo-oligomers and their non-reducible analogs 

containing CholA, SteA or NonOcA. These observations suggest that also those 

aforementioned oligomers can transfect high percentage of cell population, but with a 

lower intensity of expressed protein. The lowest GFP expression value was detected 

when MyrA lipopolyplexes were used, most probably due to cytotoxicity of MyrA lipo-

oligomers which was noticed already in luciferase expression system (especially 

when bigger HBS particles were used) and in GFP expression system become even 

more obvious. High luciferase transfection efficiency of reducible MyrA lipopolyplexes 
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is due to high expression level per cell as was confirmed with fluorescence 

microscopy. Importantly, bioreducible carriers showed higher GFP expression in all 

carriers over their non-reducible analogs. In general, GFP expression detected with 

flow cytometry is consistent with our previous findings, however some differences 

were observed. Firstly, both results demonstrate the transfection efficiency 

depending on lipopolyplex formation solution. Contrary to luciferase expression 

system where HBS lipopolyplex formation resulted in higher transfection efficiency, 

HBG lipopolyplexes showed enhanced GFP positive cells over the same HBS 

lipopolyplex. As is already explained before, expression level of smaller in HBG 

formed lipopolyplexes per cell was probably lower and therefore more hardly 

detectable in the case of luciferase expression system. And secondly, reducible OleA 

and its non-reducible analog showed similar percentage of GFP expression in both 

HBS and HBG lipopolyplex formation. Fluorescence microscopy results also showed 

us that non-reducible OleA transfected higher amount of cells which expressed very 

poor level of GFP, while in cells transfected by reducible OleA higher level of GFP 

were noticed. Altogether, fluorescence microscopy results correlated well with flow 

cytometry data and enabled us to visualize the quantity of transfected cells as well as 

differences in GFP expression intensity. 

 

To sum up, an appropriate carrier mediating successful mRNA delivery depends on 

cell line type, type of carrier, its modification and also buffer used for complex 

formation. Two different topology of carriers, 3-arm and T-shape sequence-defined 

oligoaminoamides, were recognized as potentially successful mRNA delivery 

platform. Overall, this work is consistent with our previous work, pointing out the 

positive effect of different carrier modifications as tyrosine trimers or/and fatty acids 

which present stability enhancement domains through hydrophobic interactions. 

Ideally, formed mRNA complexes should be stable and homogenous, and they differ 

not only because of different carrier sequence but also depending on solutions (HBS, 

HBG) used for complexes formation. Complexes formed in HBS were larger and 

more efficient in luciferase mRNA transfer probably due to their enhanced uptake and 

endosome escape activity. GFP expression enabled us detection of a high fraction of 

cells with lower GFP expression level, which was particularly important in the case of 

smaller complexes formed in HBG. Both results are valuable, but for different 

applications. The superior effect of reducible lipo-oligomers over their non-reducible 
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analogs confirmed the importance of destabilization in the intracellular cytosolic 

place, leading to the release of the mRNA for protein translation by the ribosomal 

machinery. In conclusion, several carriers were identified which showed positive 

characteristics and could be used for mRNA delivery, depending on purpose.  

 

Table 4 Summary of oligomer characteristics  

 
 HBS complex formation HBG complex formation 

ID 
Carrier 

abbreviation 

Luciferase 
gene 

transfer 
Toxicity 

GFP 
expression 

(%) 
Size 

Luciferase 
gene 

transfer 
Toxicity 

GFP 
expression 

(%) 
Size Compaction 

Heparin 
resistance 

 succPEI ++++ 
 

40,8 + ++++  44,2 + +++ - 

3-arm 
 

386 Stp - 
 

0,4 +++ -  0,4 + / / 

689 H-(Stp-H) - 
 

1,1 +++ -  0,8 + / / 

849 H-(Stp-H)-Y +++++ 
 

72,5 ++ +++  24,6 + / / 

T shapes with 
terminal Y3-Cys 

 

454 OleA (454) ++ 
 

95,8 + ++  96,5 + ++ - 

 
  

 SteA + 
 

40,0 +++ -  78,0 + ++ - 

1105 OH-SteA ++++ 
 

64,2 +++ +++  71,2 +++ + + 

 OleA ++ 
 

65,9 +++ -  95,8 + ++ - 

1165 LinA ++ 
 

92,4 + -  89,5 + ++ - 

1166 LinA-OH ++ 
 

79,4 + +  83,3 + ++ - 

1104 NonOcA ++++ 
 

76,3 ++ -  89,1 + ++ - 

Cys-free T shapes 
with terminal Y3  

991 CholA + 
 

50,2 +++ +  80,4 + ++ - 

992 CholA SSBB ++++ 
 

85,5 +++ -  97,4 + ++ - 

1081 MyrA ++ 
 

48,1 +++ -  29,6 + ++ - 

1082 MyrA SSBB ++++ 
 

60,2 +++ ++  75,2 + ++ - 

989 SteA - 
 

56,2 +++ -  83,3 + ++ - 

990 SteA SSBB - 
 

78,4 +++ -  88,9 + ++ - 

1107 OleA +++ 
 

84,1 +++ -  83,3 + ++ - 

1108 OleA SSBB ++++ 
 

75,7 +++ +++  80,4 + ++ - 

1083 NonOcA + 
 

24,3 +++ -  78,9 + ++ - 

1084 NonOcA SSBB ++++ 
 

47,8 +++ +  94,0 + ++ - 

 

Luciferase gene transfer of polyplexes (DU145 cell line): +++++ transfection efficacy ≥ 10
8 

RLU/10000cells, ++++ between 10
7
 

and 10
8
, +++ between 10

6
 and 10

7
, ++ between 10

5
 and 10

6
, + between 10

4
 and 10

5
, - no transfection signal compared to 

untreated cells ( ≤ 10
4
). 

Toxicity: ≥ 85% viable cells, between 70% and 85%, ≤ 70%. 

Size: + smaller than 200nm, ++ between 200 nm and 1000 nm, +++ bigger than 1000 nm. 

Particle compaction: +++ highest compaction, ++ mediate compaction, + compaction (evaluated by EtBr exclusion assay).  

Heparin resistance against 250 IU: +/- indicates Yes/No. 

/ indicates Not measured.
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5 Summary 

Over the past decades, significant progress has been made in the field of nucleic 

acid delivery vehicles. Sequence-defined macromolecular carriers synthesized by 

SPS play a significant role in this development. As several different extracellular and 

intracellular barriers must be overcome for successful transfer, the multifunctional 

nature of such carriers is of greatest importance. Carriers need to be dynamic [296, 

297]. On the one hand, stability of complexes is important at the time of extracellular 

delivery steps, while on the other hand, the carrier must release therapeutic nucleic 

acid after delivery inside the cell. SPS offers excellent opportunities to develop 

structural precise carriers, which is crucial for establishing appropriate structure–

activity relationships. Still further optimization of delivery carriers is required. A better 

understanding of structures characteristics in nucleic acid complexation, target cell 

recognition, endosomal escape, nuclear delivery, and transgene expression or 

toxicity is necessary.  

 

The first part of the thesis focuses on the optimization of DNA nucleic acid cargo as 

well as the compacting carrier system. Bacterial sequences within the standard 

plasmids reduce their efficacy, biocompatibility and safety, therefore minicircle (MC) 

DNA with its minimal size and lack of bacterial backbone sequences presents a 

promising alternative to plasmid DNA (pDNA) for non-viral gene delivery. Herein, we 

compared physicochemical and transfection characteristics of polyplexes formed with 

pDNA (pCMV-luc) or MC DNA (MC07.CMV-luc) and linPEI as well as untargeted and 

targeted oligoaminoamides. For this purpose four sequence-defined cationic 

oligoaminoamides were generated by solid-phase assisted synthesis; previously 

described three-arm (689) and targeted cmb-PEG (442) and Y3-containing analogous 

carriers, three-arm-Y (849) and targeted cmb-PEG-Y (852). The carriers were found 

to dominate the shape of polyplexes, whereas the DNA type was decisive for the 

nanoparticle size. c-Met-targeted, tyrosine trimer-containing polyplexes were 

optimized into compacted rod structures with a size of 65–100nm for pDNA and 35–

40nm for MC. Notably, these MC polyplexes display a lack of cell cycle dependence 

of transfection and a ~200-fold enhanced gene transfer efficiency in c-Met-positive 
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DU145 prostate carcinoma cultures over their tyrosine-free pDNA analogues. These 

results provide an encouraging future perspective for targeted in vivo gene delivery. 

 

In the second part the thesis focused on the development of appropriate carriers for 

mRNA delivery starting from examination of different sequence-defined 

oligoaminoamides which had been previously synthesized as library in purpose of 

pDNA or siRNA delivery. These initial mRNA transfections had to figure out structure-

activity relationships, as a basis to find the optimal carrier for mRNA delivery. Two 

different topology of carriers (3-arm and T-shape) modified by tyrosine tripeptides 

or/and fatty acids were recognized as potentially successful mRNA delivery 

platforms. Different carrier sequences and also buffers (HBS, HBG) used for complex 

formation were evaluated side by side. The importance of high extracellular stability 

and destabilization in the intracellular environment, leading to the release of the 

mRNA in the cytosol, was confirmed.  

 

In sum, sequence-defined delivery carriers containing natural and/or artificial building 

blocks represent a valuable part in the development of “smart” delivery systems for 

gene encoding minicircle DNAs or therapeutic mRNAs, which most likely will have 

great impact in the medicine of tomorrow. 
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6 Appendix 

6.1 Abbreviations 

Boc  tert-Butoxycarbonyl protecting group 

BrPEI Branched polyethylenimine 

CholA  5β-Cholanic acid 

DLS Dynamic light scattering 

DMEM  Dulbecco’s modified Eagle’s medium  

DNA  Desoxyribonucleic acid  

EDTA  Ethylendiaminetetraacetic acid  

EGF/EGFR Epidermal growth factor / (receptor) 

EtBr  Ethidium bromide  

FBS  Fetal bovine serum  

Fmoc  Fluorenylmethoxycarbonyl protecting group  

FolA  Folic acid  

FR  Folate receptor  

GSH  Glutathione 

HBG  Hepes-buffered glucose  

HEPES  N-(2-Hydroxethyl) piperazine-N‘-(2-ethansulfonic acid)  

HGF/HGFR Hepatocyte growth factor (receptor) 

Inf7 Endosomolytic influenza virus derived peptide  

kDa Kilodalton 

LinA                         Linoleic acid 

LinA-OH                  Hydroxylinoleic acid 

linPEI  Linear polyethylenimine  

MC07.CMV-luc       Minicircle plasmid encoding for firefly luciferase under the control 

                                of the cytomegaly virus (CMV) promoter 

mM Millimolar 

mRNA  Messenger RNA 

mRNA-luc                Messenger RNA encoding firefly luciferase 

mRNA-EGFP           Messenger RNA encoding enhanced green fluorescent protein 

MTT  3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide  
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mV Millivolt 

MyrA                        Myristic acid  

N/P  Nitrogen to phosphates ratio  

nm Nanometer 

NMR  Nuclear magnetic resonance  

NonOcA                  8-nonanamidooctanoic acid 

OH-SteA                 Hydroxystearic acid 

OleA Oleic acid 

pCMVLuc  Plasmid encoding for firefly luciferase under the control of the 

cytomegaly virus (CMV) promoter  

pHPMA  Poly-N-(2-hydroxypropyl)methacrylamide 

PDI  Polydispersity index  

pDNA  Plasmid DNA  

PEG  Polyethylene glycol  

pKa -log10 Ka (acid dissociation constant) 

RLU  Relative light units  

RNA  Ribonucleic acid  

siRNA                     Small interfering RNA 

SSBB                      Succinoyl-cystamine  

Spermine N,N-(Butane-1,4-diyl)bis(propane-1,3-diamine) 

SPS    Solid-phase synthesis  

SteA                        Stearic acid  

Stp  Succinyl-tetraethylene pentamine  

succPEI                   Succinylated polyethylenimine 

TBE Tris-boric acid-EDTA buffer  

TFA   Trifluoroacetic acid  
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6.2 Summary of SPS derived oligomers 

Table 5 Overview of the used sequence defined oligomers, their abbreviations used in the chapter 3.2 

and internal library compound IDs 

Carrier 
abbreviation 

ID Sequence Synthesized by 

Stp 386 C-Stp3-K(Stp3-C)2 Dr. Dongsheng He 

H-(Stp-H) 689 C-H-(Stp-H)3-K-[H-(Stp-H)3-C]2 Dr. Dongsheng He 

H-(Stp-H)-Y 849 C-Y3-H-(Stp-H)3-K-[H-(Stp-H)3-Y3-C]2 Dr. Stephan Morys 

    

MyrA 48 C-Stp2-K-(K-MyrA2)-Stp2-C Dr. Christina Troiber 

SteA 462 C-Stp2-K-(K-SteA2)-Stp2-C Dr. Christina Troiber 

OleA 49 C-Stp2-K-(K-OleA2)-Stp2-C Dr. Christina Troiber 

Y 465 C-Y3-Stp2-K-(K)-Stp2-Y3-C Dr. Christina Troiber 

CholA-Y 1021 C-Y3-Stp2-K-(K-CholA2)-Stp2-Y3-C Dr. Philipp Klein 

SteA-Y 1072 C-Y3-Stp2-K-(K-SteA2)-Stp2-Y3-C Dr. Philipp Klein 

OleA-Y 454 C-Y3-Stp2-K-(K-OleA2)-Stp2-Y3-C Dr. Philipp Klein 

OleA-Y-CRC 595 C-R-C-Y3-Stp2-K-(K-OleA2)-Stp2-Y3-C-R-C Dr. Christina Troiber 

    

OleA (454) 454 C-Y3-Stp2-K-(K-OleA2)-Stp2-Y3-C Dr. Philipp Klein 

    

SteA 
 

C-Y3-Stp2-K-(G-K-SteA2)-Stp2-Y3-C Sören Reinhard 

OH-SteA 1105 C-Y3-Stp2-K-(K-OHSteA2)-Stp2-Y3-C Sören Reinhard 

OleA 
 

C-Y3-Stp2-K-(K-OleA2)-Stp2-Y3-C Sören Reinhard 

LinA 1165 C-Y3-Stp2-K-(K-LinA2)-Stp2-Y3-C Sören Reinhard 

LinA-OH 1166 C-Y3-Stp2-K-(K-OHLinA2)-Stp2-Y3-C Sören Reinhard 

NonOcA 1104 C-Y3-Stp2-K-(K-[OcA-NonA]2)-Stp2-Y3-C Sören Reinhard 

  
  

CholA 991 Y3-Stp2-K-(G-K-CholA2)-Stp2-Y3 Dr. Philipp Klein 

CholA SSBB 992 Y3-Stp2-K-(G-SSBB-K-CholA2)-Stp2-Y3 Dr. Philipp Klein 

MyrA 1081 Y3-Stp2-K-(G-K-MyrA2)-Stp2-Y3 Sören Reinhard 

MyrA SSBB 1082 Y3-Stp2-K-(G-SSBB-K-MyrA2)-Stp2-Y3 Sören Reinhard 

SteA 989 Y3-Stp2-K-(G-K-SteA2)-Stp2-Y3 Sören Reinhard 

SteA SSBB 990 Y3-Stp2-K-(G-SSBB-K-SteA2)-Stp2-Y3 Sören Reinhard 

OleA 1107 Y3-Stp2-K-(G-K-OleA2)-Stp2-Y3 Dr. Philipp Klein 

OleA SSBB 1108 Y3-Stp2-K-(G-SSBB-K-OleA2)-Stp2-Y3 Dr. Philipp Klein 

NonOcA 1083 Y3-Stp2-K-(G-K-[OcA-NonA]2)-Stp2-Y3 Dr. Philipp Klein 

NonOcA SSBB 1084 Y3-Stp2-K(G-SSBB-K-[OcA-NonA]2)-Stp2-Y3 Dr. Philipp Klein 
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