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Zusammenfassung

Das Studium Schwarzer Löcher - das sind Objekte mit einer Fluchtge-
schwindigkeit größer als die Lichtgeschwindigkeit, die in Folge eines Grav-
itationskollapses oder in hochenergetischen Teilchenkollisionen entstehen
können - ist ein faszinierendes Forschungsfeld in der Astrophysik, in der
Teilchenphysik und in der Kosmologie. Aus Sicht der beobachtenden As-
trophysik wurden in den letzten Jahrzehnten große Fortschritte erzielt.
Insbesondere wurden viele (Kandidaten für) astrophysikalische Schwarze
Löcher in unserem Universum entdeckt und kürzlich wurde die Detektion
von Gravitationswellen verschmelzender Schwarzer Löcher gefeiert.

In der theoretischen Physik Schwarzer Löcher, auf die wir uns in dieser
Arbeit beschränken, wurden Hypothesen formuliert und Theoreme bewiesen,
die viel darüber aussagen wie Schwarze Löcher entstehen und was für
Eigenschaften sie haben. Die berühmte Cosmic Censorship Hypothese
besagt, dass Schwarze Löcher in jedem Gravitationskollaps, der zu einer
Raumzeitsingularität führt, entstehen. Die No-Hair Hypothese besagt, dass
man stationäre Schwarze Löcher eindeutig durch Parameter, die einem klas-
sischen Gaußschen Gesetz folgen, charakterisieren kann. Semiklassisch ist
bekannt, dass Schwarze Löcher Objekte sind, denen eine Entropie zugeord-
net werden kann und die thermische Hawkingstrahlung emittieren.

Haare Schwarzer Löcher, das sind Parameter, die Schwarze Löcher cha-
rakterisieren, aber keinem klassischen Gaußschen Gesetz folgen, existieren
in Übereinstimmung mit der No-Hair Hypothese in vielen konkreten Mod-
ellen nicht - ein Faktum, das in sogenannten Eindeutigkeits- und No-Hair
Theoremen (unter bestimmten Voraussetzungen) bewiesen wurde. Heutzu-
tage wissen wir jedoch, dass im Allgemeinen Gegenbeispiele zur No-Hair
Hypothese existieren - es gibt Modelle, in denen haarige Schwarze Löcher
als Lösungen existieren. Das sind auf der einen Seite Schwarze Löcher
mit klassischen Haaren und auf der anderen Seite Schwarze Löcher mit
quantenmechanischen Haaren (letzteres sind Parameter, die nicht klassisch,
sondern nur quantenmechanisch gemessen werden können). Einiger dieser

ix



x Zusammenfassung

bekannten Schwarzen Löcher mit Haaren sind nicht relevant in dem Sinne
dass sie dynamisch instabil sind und man deshalb nicht erwartet, dass sie
in einem realistischen physikalischen Prozess auftreten. Es gibt allerd-
ings auch Schwarze Löcher mit Haaren, von denen wir wissen, dass sie
dynamisch stabil sind oder die zumindest Stabilitätssymptome zeigen, die
stabil gegen lineare Störungen sind.

Viele dieser Schwarzen Löcher mit Haaren, die dynamisch stabil zu sein
scheinen, stehen eng in Verbindung mit dem Konzept der Topologie: Auf
der einen Seite haben diejenigen asymptotisch flachen und sphärisch sym-
metrischen Schwarzen Löcher mit klassischen Haaren, von denen wir wissen,
dass sie dynamisch stabil gegen lineare Störungen sind, es alle gemeinsam,
dass sie Lösungen der Einsteinschen Feldgleichungen in einer Theorie mit
an die Gravitation gekoppelter Lagrangefunktion, welche topologische Soli-
tonen als Lösungen hat, sind. Auf der anderen Seite können viele Schwarze
Löcher mit quantenmechanischen Haaren in Beziehung zu einer nicht ver-
schwindenden Aharonov-Bohm-Phase gebracht werden.

In dieser Arbeit untersuchen wir verschiedene topologische Aspekte von
Schwarzen Löchern mit Haaren und darüber hinaus. Erstens argumentieren
wir für vorgegebene asymptotische Parameter, dass man ein Schwarzes
Loch ohne klassische Haare mit diesen Parametern von einem Schwarzen
Loch mit klassischen Haaren und mit denselben Parametern durch die
Streuung von Wellen unterscheiden kann. Wir demonstrieren dies, indem
wir die differenziellen Wirkungsquerschnitte für viele konkrete Beispiele von
Schwarzen Löchern mit und ohne Haare numerisch bestimmen. Zweitens
studieren wir das konkrete Beispiel von skyrmionischen Haaren Schwarzer
Löcher. Wir zeigen, dass es neben den bekannten Schwarzen Löchern mit
klassischen skyrmionischen Haaren auch Schwarze Löcher mit quanten-
mechanischen skyrmionischen Haaren vom Aharonov-Bohmschen Typ gibt.
Die Kombination der Schwarzen Löcher mit klassischen skyrmionischen
Haaren und derjenigen mit quantenmechanischen skyrmionischen Haaren
hat viele interessante physikalische Konsequenzen, die wir im Detail unter-
suchen; vor allem weisen wir auf eine Lücke in dem Beweis der sogenannten
Folk Theoreme hin, die es erlaubt, ein selbstkonsistentes Szenario zu for-
mulieren, in dem Schwarze Löcher Baryonenzahl nicht verletzen. Drittens
diskutieren wir verschiedene Aspekte von kosmischen Strings in berandeten
Raumzeiten, insbesondere argumentieren wir aus Sicht des Randes unter
welchen Bedingungen diese kosmischen Strings fraktionale Statistik haben
können und stellen heraus wie solche kosmische Strings in Situationen mit
Schwarzen Löchern mit Aharonov-Bohm ZN Haaren auftreten.



Abstract

The study of black holes, that are objects with escape velocity larger than
the speed of light which can be formed in gravitational collapse and in high
energy particle collisions, is a fascinating research topic in particle physics,
astrophysics and cosmology. From the observational point of view a lot of
progress has been achieved within the last decades. In particular, many
(candidates for) astrophysical black holes have been discovered in our uni-
verse and recently the detection of gravitational waves from a black hole
merger has been celebrated.

In theoretical black hole physics, which we will focus on in this thesis,
conjectures have been stated and theorems have been proven which tell
us a lot about black hole formation and black hole properties. Accord-
ing to the famous Cosmic Censorship conjecture, black holes are formed
in every gravitational collapse which leads to a spacetime with a singu-
larity. According to the no-hair conjecture stationary black holes can be
uniquely characterized by parameters associated to a classical Gauss law.
Semi-classically, black holes are known to be thermal objects which carry
entropy and emit thermal “Hawking” radiation.

Black hole hairs, that are parameters which characterize a black hole
but are not associated to a classical Gauss law, do, in agreement with
the no-hair conjecture, not exist in many concrete models, a fact which
has been proven (under certain assumptions) in so-called uniqueness and
no-hair theorems. Today, we know however that in general there are coun-
terexamples to the no-hair conjecture, there are models in which black hole
solutions with hair do exist! These hairy black holes are black holes with
classical hair on the one hand and black holes with quantum hair (that are
black hole parameters not measurable classically but only quantum me-
chanically) on the other hand. Some of these known hairy black holes are
not very relevant in the sense that they are dynamically unstable and are
therefore not expected to be formed in any realistic physical process. There
are however also hairy black holes which are known to be dynamically sta-
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xii Abstract

ble or which at least show symptoms of dynamical stability, that is they
are known to be stable against linear perturbations.

Many of these hairy black holes which seem to be dynamically stable
are known to be tightly related to the concept of topology: On the one
hand, the asymptotically flat and spherically symmetric black holes with
classical hair which are known to be stable against perturbations all have
in common that they are obtained as solutions of the Einstein field equa-
tions in a theory with a matter Lagrangian coupled to gravity which allows
for topological solitons as solutions. On the other hand, many black hole
quantum hairs can be related to a non-vanishing Aharonov-Bohm phase
shift.

In this thesis we study several topological aspects of hairy black holes
and beyond.

First, we argue that, for given asymptotic characteristics, one can distin-
guish a black hole with classical hair with these asymptotic characteristics
from a black hole without classical hair with the same asymptotic charac-
teristics via classical scattering of waves. We demonstrate the viability of
this proposal by calculating differential scattering cross sections for many
concrete examples of hairy and non-hairy black holes numerically.

Second, we study the particular case of skyrmion black hole hair. We
show that on top of the known black holes with classical skyrmion hair
also black holes with quantum Aharonov-Bohm-type skyrmion hair do ex-
ist. The connection of these black holes with classical skyrmion hair on the
one hand and with quantum skyrmion hair on the other hand has many
interesting physical consequences which we discuss in detail. Most impor-
tantly, we point out a loophole in the black hole folk theorems argument
which allows for a self-consistent possibility of baryon number conservation
by semi-classical black holes.

Third, we discuss several aspects of cosmic strings in spacetimes with
boundary, in particular we argue from a boundary point of view under
which conditions these cosmic strings can obey fractional anyon-type statis-
tics and point out how such anyonic cosmic strings appear in situations of
black holes with discrete quantum ZN Aharonov-Bohm-type hair.



Conference Talks

The work for this thesis was carried out at the Arnold Sommerfeld Cen-
ter for theoretical physics at LMU Munich under the supervision of Prof.
Georgi Dvali. Some parts of this work have been presented by the author
in many internal seminar talks as well as in the talks presented at the fol-
lowing conferences/workshops:

• Conference “Recent Developments in Strings and Gravity” 2016 at
the Corfu Summer Institute (plenary talk)

• “LMU Particle Physics Meeting” 2016 in Garmisch-Patenkirchen (ple-
nary talk)

• DESY Theory Workshop “Rethinking Quantum Field Theory” 2016
in Hamburg (parallel talk)

• “LMU Particle Physics Retreat” 2017 in Bayrischzell (plenary talk)

• Conference “3rd Karl-Schwarzschild Meeting” 2017 in Frankfurt (ple-
nary talk, honorably mentioned as one of the best talks of the meeting
given by a PhD student)

xiii



xiv Thesis Publications



Thesis Publications

This thesis is in part based on the following publications. The thesis also
contains many (so far) unpublished results.

• Skyrmion Black Hole Hair: Conservation of Baryon Number by Black
Holes and Observable Manifestations,
by G. Dvali and A. Gußmann,
published in: Nucl. Phys. B913 (2016) 1001-1036

• Scattering of Massless Scalar Waves by Magnetically Charged Black
Holes in Einstein-Yang-Mills-Higgs Theory,
by A. Gußmann,
published in: Class. Quant. Grav. 34 (2017) no.6, 065007

• Aharonov-Bohm Protection of Black Hole’s Baryon/Skyrmion Hair,
by G. Dvali and A. Gußmann,
published in: Phys. Lett. B768 (2017) 274-279

• Aspects of Skyrmion Black Hole Hair,
by A. Gußmann,
Conference Proceedings,
published in: PoS CORFU2016 (2017) 089

xv



xvi Thesis Publications



Part I

Introduction

1





3

In this introduction, topics, on which our research papers and our un-
published results which we will summarize in the next parts of this thesis
are based on, are reviewed in a self-consistent way.

In chapter 1, we start with discussing the forces, both gravitational and
non-gravitational, and the kinds of matter we are dealing with when de-
scribing the physics of our universe. We briefly review some elements of
the fundamental theories which are nowadays used to describe these forces
and different kinds of matter in our universe. We put most emphasis on
the paradigm of effective descriptions which implies that on different length
scales (and different energy scales) matter and forces in our universe can
be properly described by different “effective theories”. We discuss topo-
logical solitons and review how one particular class of topological solitons,
so-called “skyrmions”, can be viewed as effective descriptions of baryons at
low energies.

In chapter 2, we focus on particular objects in our universe, on black
holes. We review several aspects of stationary and asymptotically-flat black
holes, in particular black hole uniqueness theorems, the black hole no-hair
conjecture and black hole no-hair theorems. We review certain types of
classical hair of asymptotically-flat black holes and discuss the role of topo-
logical solitons in the context of classical black hole hair. We review the
formalism of classical wave scattering by black holes and point out that
scattering of classical waves can be useful to detect classical black hole
hair. We then discuss semi-classical and quantum black holes, black hole
thermodynamics and several types of quantum black hole hair. We briefly
review the idea of holography in the context of black hole physics and
mention further developments of this idea which became known as “gauge
gravity duality”.

In chapter 3, we give a short outline about the following parts of this
thesis.
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1. Forces and Matter

1.1 Matter and Forces in our Universe

Since today, we have learned a lot about the universe we are living in
[Muk05]: In particular we know that our universe is approximately 15 bil-
lion years old, it is isotropic and homogeneous on large scales, has structure
on smaller scales and is expanding. The expansion of our universe is driven
by its matter content. We know that our universe is composed out of
less than 10 percent baryonic matter. The rest we call dark matter (the
non-baryonic part of the matter content which has zero pressure) and dark
energy (the part which has negative pressure). Currently we are living in
a period of time in which dark energy starts to be the dominating kind of
matter for driving the expansion of the universe.

How a given matter component drives the expansion of the universe is
described by the laws of gravity. Nowadays we use the laws of Einstein’s
(field) theory of general relativity as laws of gravity on scales which are
significantly larger than the Planck size.

On top of the gravitational interactions, there are also other (non-
gravitational) interactions between the matter components of our universe
which we are describing today on a fundamental level in terms of gauge
field theories.

The history of our universe can be parametrized by energy-scale, 15
billion years ago the typical energies were very high, today they are much
smaller. When describing the interactions between the matter components
of our universe, depending on the energy scale we are working, we use dif-
ferent low energy “effective” field theories.

Let us now, in the next section, briefly comment on the concept of a
field theory and the concept of a low energy “effective” field theory and
then, in the following sections, review the particular field theories and the
particular low energy effective field theories which are nowadays used in
order to describe the physics of our universe.

5



6 1. FORCES AND MATTER

1.2 Field Theories and Effective Field Theo-
ries

The concept of a classical field theory was historically first introduced by
Faraday (see e.g. [Far52]) as a theory which has, in contrast to classical
theories for point particles, uncountably infinitely many degrees of free-
dom. Field theories therefore allow us to describe infinitely near actions
(and thus allow us to avoid “actions at a distance”) by using field quantities
which can take different values at different points of the classical spacetime
continuum. If we quantize these field quantities in classical field theories,
we formally end up with quantum field theories. We shall review the most
important quantum field theories which are nowadays used in order to de-
scribe the physics of our universe in the next sections. As we will review
in these concrete examples, the field quantities can themselves have a fixed
definite number of degrees of freedom per spacetime point.

An effective low energy (or large distance) field theory is a field the-
ory which is valid only in a certain domain of large distance (and low
energy) scales. If such effective field theories exist for describing properly
the physics of our universe, they can therefore be used to properly describe
the relevant physical processes happening in a certain domain of low en-
ergy (and large distance) scales but typically cannot be used for describing
physical processes happening at smaller distance (and higher energy) scales.
This implies that, even if we do not know anything about a (fundamental)
field theory describing the physics at very high energies, we nevertheless
still have a chance to properly describe the physics happening at much
lower energy scales by using (low energy) effective theories which are not
applicable at the higher energy scales. In particular when our universe was
still much younger than today and energies were typically very high, field
theories can be used for describing the universe at that time which are dif-
ferent than the (effective) low energy field theories which we use in order to
describe the universe today in which typically processes with much lower
energies involved are happening.

That such low energy effective theories for properly describing the physics
of our universe in fact have a chance to exist needs to be justified in the
sense that it has to be shown that the physics of our universe at large dis-
tance (and low energy) scales decouples. In nature, as an experimental fact,
it indeed seems to be the case that the physics describing phenomena at
large distance (and low energy) scales decouples. Thus, adequate physical
theories should implement this decoupling property of nature and we have



FIELD THEORIES AND EFFECTIVE FIELD THEORIES 7

a chance to construct effective (field) theories.1

In the context of quantum field theory there are two standard ways
for constructing a low energy effective field theory, the so-called “top down
approach” and the so-called “bottom up approach”. The basic ideas and
recipes are very simple and only (especially for the top down approach)
require some knowledge about the renormalization group (see [Wil75] and
references therein) which we will not review here. On the one hand, in
the top down approach to construct a low energy effective field theory, one
starts with a known theory valid up to a certain high energy scale and ends
up with a theory valid only for lower energy scales by “integrating out”
heavy fields with masses above some definite mass scale and by “flowing
down” to some smaller energy scale using the renormalization group flow.
On the other hand, in the bottom up approach, one constructs an effective
theory at lower energy scales without knowing what the appropriate theory
valid at higher energy scales is (or if such a theory exists at all) or without
knowing how to obtain the low energy effective field theory from a known
high energy theory via the top down approach. In this approach the low
energy effective field theory can for example be constructed by demanding
that the theory contains certain definite fields which are known to exist
from experiments and by demanding that the theory obeys certain symme-
tries.

For discussions on the decoupling properties of quantum field theories
as well as for detailed explanations on how to construct effective quantum
field theories we refer to original works such as the works of Appelquist
and Carrazzone [AC75], of Witten [Wit77] and of Weinberg [Wei80] as well
as to reviews such as [Geo93], [Kap95], [Bur07] and [Wei09] and references
therein. Here we will not discuss these aspects of effective field theories
further. Rather, in the next sections, we will briefly discuss the field theory
which we nowadays use in order to describe the non-gravitational interac-
tions (the so-called “standard model of particle physics”) and then discuss
what kind of effective theories can be used in order to describe some of the
interactions of the standard model at lower energy scales. Here we will put
particular emphasis on so-called “chiral theories” of strong interactions.2

1In the simplest classical case, in order to obtain an effective theory for a given
domain of energy scales, one can set the parameters of a theory which are much smaller
than these energy scales to zero and the parameters of the theory which are much bigger
than these energy scales to infinity. In this way an approriate effective theory can be
obtained.

2Historically, effective chiral theories for the strong interactions were known and used
long before the standard model of particle physics was fully invented and understood.
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1.3 Standard Model of Particle Physics and
Beyond

On a fundamental level we can today describe all the known non-gravitational
interactions in our universe successfully with the so-called standard model
of particle physics. This standard model needs several input parameters
and can describe (almost) all experimental data of particle physics given
these input parameters. The standard model is a (quantum) field theory.
In the following we will briefly review some basic aspects of this field theory.
We will separately discuss the different sectors of the standard model: the
electromagnetic sector which describes the electromagnetic interactions via
the quantum field theory of quantum electrodynamics, a U(1) gauge theory,
the electroweak sector which contains the electromagnetic interactions in a
form unified with the weak interactions, a SU(2)⊗U(1) gauge theory, and
the strong sector which describes the strong interactions via the quantum
field theory of quantum chromodynamics, a SU(3) gauge theory. We also
comment on classical aspects of electromagnetism, on the Aharonov-Bohm
effect, on the concept of spontaneous symmetry breaking, on the Georgi-
Glashow model, on effective chiral theories of the strong interactions as
well as on physics beyond the standard model. For more details we refer to
standard textbooks such as [BD65], [PS95], [Wei05], [Wei13b], [Zee03] and
to the references therein.

1.3.1 Elements of Classical Electrodynamics, Quan-
tum Electrodynamics and the Aharonov-Bohm
Effect

The field theory of classical electromagnetism which describes the dynamics
of the classical electromagnetic field degrees of freedom in our universe can
be obtained from the Lagrangian of a 4-component field Aµ (µ = 0, 1, 2, 3),

L = −1

4
FµνF

µν , (1.1)

where Fµν ≡ ∂[µAν].3 The electromagnetic “vector potential” Aµ is related
to the electric field Ei and the magnetic field Bi (i = 1, 2, 3) as

Ei = −F0i ,

Bi = εijk∂jAk . (1.2)
3An external source Jµ can couple to Aµ via δL = AµJ

µ. (1.1) is therefore often
referred to as the Lagrangian of “source-free electrodynamics”.
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The Lagrangian (1.1) is invariant under

Aµ −→ Aµ + ∂µα(x) , (1.3)

where α(x) is an arbitrary (continuous and single-valued) function. This
transformation does not affect the physical quantities Ei and Bi and is often
referred to as a “redundancy” or “gauge redundancy”. The transformation
(1.3) is called a “gauge transformation”.

Aµ carries two physical propagating degrees of freedom per spacetime
point: The four components A0, A1, A2 and A3 are in general four degrees
of freedom. If Aµ has to be invariant under (1.3), only three out of these
four degrees of freedom are left as physical degrees of freedom. On top
of that, the Maxwell equations which can be obtained from (1.1) via the
principle of least action include the constraint divE = 0 which, when ex-
panded out in terms of Aµ, directly tells us that A0 is constrained by the
spatial components of Aµ for any time, or in other words, that one degree
of freedom of Aµ is not propagating. This leaves us with two propagating
physical degrees of freedom per spacetime point for Aµ.

In classical electrodynamics it is equivalent to use either the fields Ei and
Bi or the vector potential Aµ for describing a given electromagnetic field.
In quantum theory this however is not the case as was first pointed out in
[AB59]. In fact, there are physical effects which can be captured by using
the vector potential but not by using only the electric and magnetic fields
Ei and Bi. These are so-called Aharonov-Bohm effects (or generalisations
of it) which have been verified experimentally (see e.g. [Cha60]). One of
the simplest cases in which this effect can be illustrated is the case in which
there is a solonoid with magnetic flux going through it such that outside of
the solonoid the magnetic field Bi is completely vanishing (which implies
that the vector potential Aµ outside of the solonoid is pure gauge). If we
take a charged particle once (or several times) around this solonoid, this
process induces a shift in the action ∆S of the form

∆S =

∮
dxµAµ , (1.4)

where dxµ parameterizes the world line of the particle and Aµ is the vector
potential (which outside of the solonoid is pure gauge). In quantum theory
such a shift induces a phase shift in the wave function. If we therefore for
example perform an interference experiment, the interference pattern gets
shifted once an Aharonov-Bohm phase shift is induced. For a more detailed
explanation of the Aharonov-Bohm effect we refer to [AB59].
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In a quantum description of electromagnetism, the field Aµ has to be
quantized. In addition to the Maxwell Lagrangian (1.1) which describes
the (quantized) electromagnetic field degrees of freedom, in quantum elec-
trodynamics also the particles which interact via the electromagnetic inter-
actions, for example electrons and positrons, are described by fields which
have to be taken into account in the Lagrangian and which have to be
quantized as well. Electrons and positrons with mass m are spin-1

2
parti-

cles which can be described by a 4-component Dirac spinor Ψ [Dir28]. The
corresponding Lagrangian for the free Dirac spinor takes the form

L = Ψ̄ (iγµ∂µ −m) Ψ . (1.5)

Here Ψ̄ ≡ Ψ+γ0 and γµ are the 4× 4 Dirac gamma matrices which satisfy
the Clifford algebra [Dir28]

{γµ, γν} = 2ηµν . (1.6)

The particles with spin 1
2
obey Fermi-Dirac statistics [Pau40].

There are different procedures which can be used in order to quantize the
Lagrangians (1.1) and (1.5) (see e.g. the textbooks [BD65], [PS95], [Wei05],
[Wei13b], [Zee03] for some detailed discussions). Let us briefly sketch the
so-called “canonical quantization procedure” to quantize Ψ: One promotes
the fields Ψ (and their canonical momenta) to operators and imposes the
equal time canonical anti-commutation relations on these operators

{Ψ̂i(x), Ψ̂+
j (y)} = δ(3)(x− y)δij , (1.7)

with Ψ̂i the i-th component of the spinor Ψ̂. These anti-commutation re-
lations imply that Ψ obeys Fermi-Dirac statistics [PS95]. (For particles
obeying Bose-Einstein statistics, the equal time anti-commutation relations
have to be replaced by equal time commutation relations [PS95].) One can
expand Ψ and Ψ̄ in terms of eigenfunctions of the Hamiltonean which cor-
responds to the Lagrangian (1.5),

us(p)e
ipx , (1.8)

with eigenvalues Ep and
vs(p)e

−ipx , (1.9)

with eigenvalues −Ep, as

Ψ̂(x) =

∫
d3p
∑
s

1√
2Ep

(
âspus(p)e

−ipx + b̂spvs(p)e
ipx
)
,
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ˆ̄Ψ(x) =

∫
d3p
∑
s

1√
2Ep

(
âs+p ūs(p)e

ipx + b̂s+p v̄s(p)e
−ipx

)
. (1.10)

The canonical anticommutation relations (1.7) are fulfilled if the operators
âp and b̂p satisfy

{âip, â
j+
k } = {b̂ip, b̂

j+
k } = δ(3)(p− k)δij . (1.11)

The vacuum state |0〉 of the theory, occupied by no particles, can then
be defined as the state which satisfies

âsp |0〉 = b̂sp |0〉 = 0 (1.12)

and states which are occupied by more particles can be obtained from the
vacuum state by acting with the “creation operators” â+

p (creating electrons
with energy Ep and momentum p) and b̂+

p (creating positrons). In this way
the complete “Fock space” [Foc32] which spans the whole Hilbert space can
be constructed for the theory (1.15).

The quantization of the Maxwell fields of (1.1) follows similar lines as
the quantization of the Ψ fields which we just have briefly recapulated. The
quantization of Aµ is however a bit more involved because of the gauge re-
dundancy of (1.1) which has to be properly taken into account. We refer
to the textbooks [BD65], [PS95], [Wei05], [Wei13b], [Zee03] for discussions
on how to quantize the Maxwell field Aµ.

The Lagrangians (1.1) and (1.5) describe non-interacting photons and
non-interacting electrons (and positrons). We can describe interactions
between these particles if we add a coupling between Ψ and Aµ of the form

eAµJ
µ , (1.13)

with
Jµ ≡ Ψ̄γµΨ (1.14)

and e a coupling constant. The interacting Lagrangian of quantum elec-
trodynamics becomes then

LQED = Ψ̄ (iγµDµ −m) Ψ− 1

4
FµνF

µν , (1.15)

where Dµ ≡ ∂µ − ieAµ is the covariant derivative.
This Lagrangian is invariant under the gauge transformation

Aµ −→ Aµ +
1

e
∂µα(x) ,
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Ψ −→ eiα(x)Ψ , (1.16)

where α(x) is a gauge transformation function. These transformations can
be understood as transformations generated by a U(1) group, (1.15) is
therefore often referred to as a U(1) gauge theory.

If the coupling constant e is small enough, the interaction term (1.13)
can be considered as a small correction to the Lagrangian without any in-
teraction between Ψ and Aµ and one can do calculations by performing
perturbation theory. These perturbative calculations are often visualized
using Feynman diagrams [Fey49]. Such a perturbative treatment is often
done in quantum field theory and especially in quantum electrodynamics.
Many interesting results have been obtained using such perturbative meth-
ods [BD65], [PS95], [Wei05], [Wei13b], [Zee03].

The value of the coupling constant e depends on the energy scale phys-
ical processes are happening. In nature, e becomes larger when the energy
scale increases. Therefore, for small enough energies the perturbative treat-
ment is justified.

In this thesis we however do not focus on these “perturbative aspects”
of quantum electrodynamics. Therefore we neither review any of these per-
turbative techniques and perturbative results nor the quantization proce-
dures in the interacting case here, but refer to the standard textbooks such
as [BD65], [PS95], [Wei05], [Wei13b], [Zee03] and the references therein.
We will now briefly review some aspects of the other sectors of the stan-
dard model of particle physics and then, in the next section, focus on
non-perturbative aspects of quantum field theory.

1.3.2 Elements of Electroweak Interactions and Spon-
taneous Symmetry Breaking

The electromagnetic interactions U(1)EM can be understood as part of a
larger unified class of interactions, the class of “electroweak interactions”
which is characterized by the gauge group SU(2)L⊗U(1)Y . At high enough
energies, which were typical in nature for example when our universe was
very young, SU(2)L⊗U(1)Y was in fact manifest, or, in other words, it was
respected by the ground state of the theory. At low energies SU(2)L⊗U(1)Y
gets however “spontaneously broken” down to U(1)EM , that means that the
ground state developed by the theory is not invariant under the whole group
SU(2)L⊗U(1)Y anymore. At low energies, the electroweak interactions can
be separated into “weak interactions” which are mediated by massive gauge
fields and the electromagnetic interactions which we reviewed above in such
a way that weak and electromagnetic interactions have different coupling
strengths. The transition from SU(2)L⊗U(1)Y to U(1)EM which happend
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for example in our early universe when the typical energies decreased, is
known as the “electroweak phase transition”.

The electroweak Lagrangian can, according to Glashow [Gla61] who
found the structure of this Lagrangian and to Weinberg [Wei67] and Salam
[Sal68] who wrote it down in its complete form, be written as

L = −1

4
W aµνW a

µν −
1

4
BµνB

µν + Lf + LY + (Dµφ)+Dµφ− V (φ) , (1.17)

where
W a
µν ≡ ∂µW

a
ν − ∂νW a

µ − gεabcW b
µW

c
ν , (1.18)

Bµν ≡ ∂µBν − ∂νBµ , (1.19)

Lf ≡
∑
k

(
Ψ̄kLiγ

µDµΨkL + Ψ̄kRiγ
µDµΨkR

)
, (1.20)

LY = Γ
(1)
ij q̄jLφ̃qiR + Γ

(2)
ij q̄iLφqjR + Γ

(3)
ij l̄iLφljR + Γ

(4)
ij l̄jLφ̃νiR + h.c. , (1.21)

V (φ) ≡ −1

2
µ2φ+φ+ λ

(
φ+φ

)2
. (1.22)

Here the index a runs from 1 to 3. The scalar field φ stands for the two
components

φ ≡
(
φ+

φ0

)
, (1.23)

with the two complex scalar fields φ+ and φ0. φ̃ is defined as φ̃i ≡ εijφ
∗
j

where φ∗ is the complex conjugate of φ. λ and µ are parameters with
λ > 0. The spinors ΨR and ΨL stand for so-called left- and right-handed
Weyl spinors defined as

ΨL ≡
1

2

(
1− γ5

)
Ψ , (1.24)

ΨR ≡
1

2

(
1 + γ5

)
Ψ , (1.25)

with γ5 ≡ iγ0γ1γ2γ3. The sums of the left-handed spinors in (1.20) and
(1.21) run over the three families of left-handed quark doublets qL with
left-handed spinors for the up-quark u, the down quark d, the charm quark
c, the strange quark s, the top quark t and the bottom quark b and the
three families of left handed lepton doublets lL with left-handed spinors for
the electron e, the electron neutrino νe, the muon µ, the muon neutrino νµ,
the tauon τ and tau neutrino ντ :

ΨkL ≡
(
u
d

)
L

,

(
c
s

)
L

,

(
t
b

)
L

,

(
νe
e

)
L

,

(
νµ
µ

)
L

,

(
ντ
τ

)
L

. (1.26)
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The sums of the right-handed spinors in (1.20) and (1.21) run over the
right handed quarks qR and the right handed leptons lR

ΨkR ≡ uR, dR, cR, sR, tR, bR, eR, µR, τR . (1.27)

Γ(i) (i = 1, 2, 3, 4) are matrices which describe the so-called Yukawa
couplings between φ and the quarks and leptons. In the quark sector these
matrices are not diagonal in the space of families but lead to mixing be-
tween the different generations of quarks [KM73].4

The covariant derivatives Dµ are defined as

Dµφ ≡
(
∂µ + i

g

2
σaW a

µ + i
1

2
g̃Bµ

)
φ , (1.28)

DµΨL ≡
(
∂µ + i

g

2
σaW a

µ + i
1

2
g̃Y Bµ

)
ΨL , (1.29)

DµΨR ≡
(
∂µ + i

1

2
g̃Y Bµ

)
ΨR , (1.30)

where Y is the so-called weak hypercharge which is different for different
particle species: For left-handed quarks Y = 1

6
, for right-handed up, charm

and top quarks Y = 2
3
and for right-handed down, strange and bottom

quarks Y = −1
3
. For left-handed leptons Y = −1

2
and for right-handed

leptons Y = −1.

The electroweak Lagrangian is invariant under the gauge transformation

Bµ −→ Bµ −
1

g̃
∂µβ(x) , (1.31)

σaW a
µ −→ ei

σa

2
αa(x)σaW a

µ

(
ei
σa

2
αa(x)

)+

+
1

g
∂µe

iσ
a

2
αa(x)

(
ei
σa

2
αa(x)

)+

, (1.32)

ΨL −→ eiY β(x)ei
σa

2
αa(x)ΨL , (1.33)

ΨR −→ eiY β(x)ΨR , (1.34)

φ −→ eiβ(x)ei
σa

2
αa(x)φ , (1.35)

where β(x) and αi(x) are gauge transformation functions. These transfor-
mations can be understood as transformations of the non-Abelian group
SU(2)L ⊗ U(1)Y .

4Note that here we did not take into account the existence of neutrino masses.
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The kinetic term of the gauge field in the Lagrangian (1.17) is known
as a “Yang-Mills Lagrangian” [YM54].

The fields in this Lagrangian can also, similarly as in the case of quan-
tum electrodynamics, be quantized. We refer to the textbooks such as
[BD65], [PS95], [Wei05], [Wei13b], [Zee03] for the techniques needed.

The scalar field φ develops a vacuum expectation value because the
potential V (φ) has a minimum at the point

φ+φ =
µ2

2λ
. (1.36)

Therefore, classically φ is expected to take this non-trivial minimal value
instead of the value 0. In such a case, usually fluctuations around this
value are considered and quantized. Because of the SU(2)L invariance, this
vacuum expectation value can be chosen on the second component of φ and
fluctuations around the vacuum expectation value can be parameterized as

φ =
1√
2

(
cosγeiδ sinγeiκ

−sinγe−iκ cosγe−iδ

)(
0

µ√
λ

+ h

)
, (1.37)

where h is the so-called Higgs boson and γ, δ, κ are so-called Goldstone
angles.

The vacuum state is invariant under a U(1) transformation whereas the
Lagrangian is, as we pointed out above, invariant under SU(2)L ⊗ U(1)Y .
This effect is called “spontaneous symmetry breaking”. The symmetry
breaking pattern in this case is often denoted as

SU(2)L ⊗ U(1)Y −→ U(1)QED . (1.38)

Spontaneous symmetry breaking can occur also for different Lagrangians in
different setups. (We will recall several other examples in the next section
when reviewing aspects of topological defects.)

According to Goldstones theorem [Nam60, Gol61] whenever a continu-
ous symmetry is spontaneously broken, massless particles, so-called “Nambu
Goldstone bosons”, emerge. In general the number of massless Goldstone
bosons depend on the number of generators of the broken symmetry group
and the number of generators of the subgroup to which the original symme-
try group is broken down. In the case of the above-mentioned electroweak
symmetry breaking (1.38), three massless Nambu Goldstone bosons emerge.
Due to the Higgs effect [EB64, Hig64], the combinations

W±
µ ≡

1√
2

(
W 1
µ ∓ iW 2

µ

)
, Zµ ≡

1√
g2 + g̃2

(
gW 3

µ − g̃Bµ

)
(1.39)
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aquire masses and the Goldstone bosons γ, δ and κ become the longitudinal
components of these massive gauge fieldes. These massive gauge fields, Zµ
and W±

µ , mediate the so-called weak interactions. The combination

Aµ ≡
1√

g2 + g̃2

(
g̃W 3

µ + gBµ

)
(1.40)

remains massless and can be identified with the gauge field of QED if the
electric coupling e is identified with

e =
gg̃√
g2 + g̃2

. (1.41)

. Also the fermions aquire masses because of the couplings of the Higgs to
the fermions in LY . One can read off the masses of the gauge fields and
fermions by plugging in the expansion of the Higgs field (1.37) into the
electroweak Lagrangian.

At energy scales which are much lower than the masses of the Zµ and
W±
µ , these particles can be “integrated out” and we can obtain a low en-

ergy effective theory which properly describes weak interactions on these
low energy scales. This is the theory of Fermi [Fer34, Wil68] which was
known long before the full electroweak Lagrangian has been discovered.

The model proposed by Glashow, Weinberg and Salam was not the
only model which went beyond Fermi’s theory of the weak interactions and
which has been proposed in order to describe the weak and electromag-
netic interactions in a unified way. In fact, Georgi and Glashow proposed
a different model for describing the electroweak interactions [GG72]. Al-
though this model has been ruled out by experiments as a realistic model
for electroweak interactions, it is important both from the point of view of
the theory of topological defects which we will discuss in the next section
as well as from the point of view of the physics beyond the standard model.
The Georgi-Glashow Lagrangian is given by:

L =
1

2
Dµφ

aDµφa − λ

4

(
φaφa − v2

)2 − 1

4
F a
µνF

µνa . (1.42)

Here φa is a scalar triplett (a = 1, 2, 3), F a
µν ≡ ∂µA

a
ν−∂νAaµ−eεabcAbµAcν and

Dµφ
a ≡ ∂µφ

a − eεabcAbµφc. This Lagrangian is invariant under SU(2), the
fields transform in the adjoint representation of SU(2). The symmetry is
spontaneously broken down to U(1) by configurations with the scalar field
condensed.
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The main difference when compared to the model of Glashow, Weinberg
and Salam is that in this model the scalar field φ transforms as a vector
under the adjoint representation of SU(2) whereas φ transforms as a spinor
under the fundamental representation of SU(2) in the Glashow-Weinberg-
Salam model. From this point it follows that, in contrast to the model
of Glashow, Weinberg and Salam, no additional U(1) field is needed in
(1.42) in order for ending up with one massless gauge field (which could in
principle play the role of the massless photon) after spontaneous symmetry
breaking [GG72].

1.3.3 Elements of Strong Interactions

The strong interactions are described by the Lagrangian of quantum chro-
modynamics (QCD),

L = −1

4
Ga
µνG

aµν +
∑
k

Ψ̄i
k

(
iγµ (Dµ)ij −mkδij

)
Ψj
k + θGa

µνG
a
αβε

µναβ .

(1.43)
Here a runs from 1 to 8 and i, j run from 1 to 3. Ψk are tripletts of Dirac
spinors,

Ψk =

 Ψkr

Ψkg

Ψkb

 , (1.44)

where k runs over all the different quark species. In fact, each quark species
k which appeared in the electroweak Lagrangian now comes as a set of three
quarks which differ by the new quantum number “color” (NC): each quark
can carry the quantum number NC = “red”, NC = “green” or NC = “blue”
(“r”, “g” or “b”). The quark masses mk are induced by the Higgs mechanism
as pointed out above. The covariant derivative (Dµ)ij is defined as

(Dµ)ij ≡ δij∂µ − 2igsλ
a
ijG

a
µ . (1.45)

Here gs is the strong gauge coupling constant and λaij are the components
of the Gell-Mann matrices [GM62] which are generators of SU(3). Ga

µ are
the so-called gluon fields and the field strength Ga

µν is defined as

Ga
µν ≡ ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν . (1.46)

The Lagrangian (1.43) is invariant under the SU(3) gauge transforma-
tion

Ψ −→ e−iαa(x)λa
2 Ψ , (1.47)

Ga
µ −→ Ga

µ −
1

gs
∂µα

a(x) + fabcαb(x)Gc
µ , (1.48)
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where αa(x) are gauge transformation functions and fabc are the structure
constants of SU(3).

In contrast to the electroweak couplings, the strong coupling gs gets big-
ger once the distance scales become larger (once the energy scales become
smaller). Therefore, perturbation theory in gs in quantum chromodynam-
ics is only applicable on small enough distance scales.

Perturbation theory in QCD has also been applied using a different
expansion parameter: In that case the number of colors NC is taken as a
free parameter and perturbation theory has been worked out using N−1

C

as expansion parameter keeping the product NCg
2
S (the so-called “t Hooft

coupling”) fixed. This expansion was introduced by ‘t Hooft [tH74a] (see
also the lecture notes [tH02] and [Col88]). It turned out to be very useful
because in the large-NC limit,

NC −→∞, NCg
2
S fix , (1.49)

many simplifications occur and qualitative results for meson and baryon
dynamics can be found. We will later comment on some useful results
which Witten obtained for baryons using this limit [Wit79a].

The Lagrangian (1.43) is invariant under some global symmetry trans-
formations: It is invariant under the U(1) transformation

Ψk −→ eiθΨk . (1.50)

The corresponding Noether current JµB is

JµB =
∑
k

Ψ̄kγ
µΨk . (1.51)

This symmetry is known as baryon number symmetry and the correspond-
ing conserved charge,

∫
J0
B, is the baryon number.

If mu = md, (1.43) is invariant under the SU(2) transformation(
u
d

)
−→ eiσ

aθa
(
u
d

)
. (1.52)

This symmetry is known as isospin symmetry. In the case when more than
the two quark masses mu and md are considered to be equal, the symmetry
can be extended.

In the approximation where the three lightest quarks u, d and s are
considered to be massless, the Lagrangian is invariant under SU(3)R ⊗
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SU(3)L. In case only the two lightest quarks are considered to be massless,
it is invariant under SU(2)R ⊗ SU(2)L:

ΨR −→ eiω
aθaRΨR ,

ΨL −→ eiω
aθaLΨL . (1.53)

Here ωa are either the Pauli matrices (for the case of SU(2)R⊗SU(2)L) or
the Gell-Mann matrices (for the case of SU(3)R ⊗ SU(3)L). This symme-
try is known as chiral symmetry. It is explicitly broken by non-vanishing
quark masses and is therefore (only) an approximate symmetry if we take
into account the non-vanishing quark masses.

Since in nature at low energies we have discovered strongly interacting
particles which are “almost” massless, the so-called pions (π0, π+ and π−), it
is often expected that due to non-perturbative effects SU(2)R⊗SU(2)L chi-
ral symmetry is broken spontaneously and that these pions are the pseudo
Nambu Goldstone bosons which appear due to this symmetry breaking
according to Goldstones theorem [Nam60, Gol61]. The order paramter
for this spontaneous symmetry breaking is considered to be a non-trivial
ground state for the quarks (the so-called “quark condensate” or “QCD
condensate”), 〈

Ψ̄
∣∣Ψ〉 6= 0 . (1.54)

Low energy effective theories for these pions, “chiral theories” for strong
interactions, have been studied for example in [Wei79b, GL84] and have
been reviewed for example in [Leu94, SS12].

At very high energies, which were typical in nature for example in the
very early universe, chiral symmetry is restored and the relevant degrees of
freedom are not pions (and other hadrons) but quarks and gluons. When
the typical energies decreased and chiral symmetry gets spontaneously bro-
ken, the relevant degrees of freedom are pions (and other hadrons). The
transition between these two regimes which is expected to have taken place
in the very early universe is known as “QCD phase transition”.

At low energies many techniques have been developed in order to do
particle physics using meson degrees of freedom instead of the fundamental
quark degrees of freedom. If, for example, a pion π− decays into leptons as

π− −→ e−ν̄e , (1.55)

the amplitude of this weak process can be parameterized by only demanding
certain symmetry relations without taking into account the high energetic
electroweak and strong interactions. In fact, the matrix element for this
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process mediated by a current J5
µ, 〈0| J5

µ |π−(p)〉, can, demanding Lorentz
invariance, be parametrized as

〈0| J5
µ

∣∣π−(p)
〉

= ipµfπ , (1.56)

with a constant fπ, a so-called “form factor”, which is known as the pion
decay constant and which is a free parameter of such a theory.

For a detailed explanation of these techniques we refer to [Leu94, SS12].
Let us now describe in some more details the effective chiral theories for
the strong interactions and in particular the effective sigma models for the
meson degrees of freedom (in our analysis we shall restrict only to pions
and do not take into account other meson degress of freedom).

1.3.4 Sigma Models

The so-called linear sigma model for the pions can be obtained from the
Lagrangian with four real scalar fields φ1, φ2, φ3 and φ4 of the form

L =
1

2
∂µφ

k∂µφk +
µ2

2
|φ|2 − λ

4
|φ|4 , (1.57)

with λ > 0 and k = 1, 2, 3, 4. This Lagrangian leads to spontaneous sym-
metry breaking since the scalar fields develop the vacuum expectation value
|φ|2 = µ2

λ
≡ v2. The Lagrangian of the linear sigma model which was intro-

duced in [GML60] can be obtained from (1.57) if we identify φ1, φ2 and φ3

with the Goldstone bosons πa (a = 1, 2, 3) and expand the last component
of φ around the vacuum expectation value v as φ4 = v + σ:

L =
1

2
∂µπ

a∂µπa +
1

2
∂µσ∂

µσ − µ2σ2 − λ

4

(
π2 + σ2

)2 − µ
√
λσ
(
π2 + σ2

)
,

(1.58)
where π2 ≡ πaπa.

This pion Lagrangian is part of the Lagrangian which was introduced in
order to describe the interactions of pions with nucleons. The correspond-
ing nucleon Lagrangian and the corresponding pion-nucleon interaction La-
grangian were introduced in [GML60] as

L = Ψ̄ (iγµ∂µ + g (v + σ + iσaπaγ5)) Ψ , (1.59)

with the Pauli matrices σa and the coupling constant g.
According to Noethers theorem a conserved axial vector current in this

model is given by

Ja5
µ = Ψ̄γµγ5

σa

2
Ψ + πa∂µσ − v∂µπa − σ∂µπa . (1.60)
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From this current, together with (1.56), it follows that v can be identified
with the pion decay constant fπ.

In the double scaling limit λ→∞ but v2 ≡ µ2

λ
fixed in which σ becomes

infinitely heavy, or equivalently when |φ|2 = f 2
π , the fields σ and πa satisfy

the constraint
π2 + σ2 = −2fπσ . (1.61)

Plugging this constraint into the pion Lagrangian of the linear sigma
model we obtain the so-called non-linear sigma model Lagrangian [Wei68,
CWZ69, CCWZ69]

L =
1

2
∂µπ

a∂µπa +
1

2

πa∂µπ
aπb∂µπb

f 2
π − π2

, (1.62)

which can be expanded as

L =
1

2
∂µπ

a∂µπa +
1

6f 2
π

(
(πa∂µπ

a)2 − πaπa∂µπa∂µπa
)

+O(π6) . (1.63)

The Lagrangian of the non-linear sigma model can also be written in
other representations, one commonly used representation is the so-called
exponential representation where an SU(2) field U is introduced as

U = ei
πaσa

fπ . (1.64)

By Taylor-expanding U , one can see that

U ≡ cos

(
|π|
fπ

)
1 + isin

(
|π|
fπ

)
πaσa
|π|

. (1.65)

The Lagrangian of the non-linear sigma model in this representation
reads

L =
f 2
π

4
Tr
(
∂µU

+∂µU
)
. (1.66)

It is invariant under the SU(2)⊗SU(2) chiral transformations under which
U transforms as

U −→ AUB+ , (1.67)

where A and B are unitary matrices. To this Lagrangian a mass term for
the pions can be added as [AN84]

L =
1

2
m2
πf

2
π (TrU − 2) , (1.68)

where mπ is the pion mass.
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This chiral Lagrangian can be generalized if we take into account not
only pions but also other meson degrees of freedom which we know to exist
in nature. Since at low energies in nature we do not only observe mesons
but also baryons, one important question is how baryons appear in this
low energy effective field theory. One option which one could follow would
be to try to add the baryons as additional fields in the chiral Lagrangians.
Another option, suggested for example by Witten’s analysis in [Wit79a],
is that baryons could appear as solitons in a meson Lagrangian. We will
discuss this latter option in detail after we have reviewed some aspects of
topological solitons in the next section.

1.3.5 Beyond the Standard Model

Before reviewing topological solitons, let us briefly note that there are good
reasons to believe that the standard model of particle physics does not
completely describe all the matter and non-gravitational interactions in
our universe. In particular, as we pointed out in the first section, most
of the matter content in our universe is so-called dark matter or dark en-
ergy which is not included in the standard model. On top of that, the
baryon-antibaryon asymmetry in our universe cannot be explained within
the standard model. There are also aestetical reasons to go beyond the
standard model, in particular the idea of unification which was so success-
ful in the electroweak case could in principle also work in order to unify the
strong and electroweak interactions SU(2) ⊗ U(1)Y ⊗ SU(3) in a simpler
gauge group. Finally, questions of naturalness like the hierarchy and the
strong CP problem are sometimes used as motivations to go beyond the
standard model.

There are many concrete ideas of how we can go beyond the standard
model. In particular there are so-called grand unified theories [Gra84,
Zee82], there are supersymmetric extensions of the standard model [WB92,
Wei13a] as well as higher dimensional models [ACF87, AHDD98].

1.4 Topological Solitons and Skyrmions as Ef-
fective Descriptions of Baryons

In the previous section we reviewed several aspects of quantum field the-
ories. Historically, aspects of quantum field theories which can be studied
by doing a perturbative analysis in small coupling constants, so-called “per-
turbative aspects”, dominated the discussion of quantum field theories for a
long time. Later, it however has been realized that in certain quantum field
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theories also “non-perturbative” classical finite energy solutions which can-
not be continuously deformed to the vacuum state of the theory, so-called
“topological solitons”, can exist as classical ground states of the theory.5
These classical solutions can have important physical consequences which
cannot be captured by perturbative methods. Topological solitons might
have been formed in phase transitions in the very early universe [VS00] and
also arise in systems of condensed matter physics [AS10]. There are two
classes of topological solitons, so-called “topological defects” and so-called
“textures”. Let us now first discuss the structure and some properties of
topological defects and textures in general (assuming the existence of such
configurations) and then review several concrete examples of defects and
of textures. Finally, we will recall how one particular class of textures, so-
called “skyrmions”, can be understood as a low energy effective description
of baryons.

Topological Defects and Textures

Topological defects can arise as classical solutions in certain quantum field
theories if a symmetry of the quantum field theory is spontaneously broken
in a certain way. Let us discuss in detail how topological defects arise in
(gauged) scalar field theories with Lagrangians of the form

L =
1

2
(Dµφ

a)+ (Dµφa)− V (φ)− 1

4
F a
µνF

µνa , (1.69)

where φa is a (set of) scalar field(s) and F a
µν is a field strength tensor of some

Abelian or non-Abelian gauge field Aaµ. Dµ is the corresponding covariant
derivative and V (φ) a potential which has certain degenerate vacua and
which therefore allows for configurations which break some symmetry of
the Lagrangian spontaneously. The symmetry breaking pattern which is
necessary and sufficient for the existence of topological defects in a given
theory of the form (1.69) can be characterized by the so-called “homotopy
groups”. This characterisation can be understood as follows.

If a Lagrangian of the form (1.69) is invariant under the action of a
symmetry group G and if there exists a solution to the equations of motion
of (1.69) which minimizes V (φ) and breaks this symmetry group sponta-
neously down to a subgroup H, G −→ H, then there is a one-to-one cor-
respondence between the degenerate minima of V (φ) and the coset space
G
H
: If a field configuration minimizes V (φ), then the action of any group

element of G on that particular field configuration produces a field con-
figuration which also minimizes V (φ). If that group element is not part

5There are also so-called non-topological solitons. Here we however focus on topo-
logical solitons.
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of H, the new minimizing field configuration is different than the original
one. If that group element however is part of H, the new minimizing field
configuration is the same as the original configuration.

In order for having finite energy, the field configuration of a classical
solution of a quantum field theory (1.69) has to be such that at each point at
spatial infinity the scalar field takes one of the vacuum values (one minimum
of the potential V (φ) of the theory). Therefore one characteristic of such
a configuration is the (continuous) map which maps the field value at each
point at spatial infinity onto one vacuum state of V (φ), or equivalently, onto
one point of G

H
. All these mappings from the d-sphere Sd which sets spatial

infinity in (d+2) spacetime dimensions onto the group G
H
(mapping different

field values onto different points of G
H
) can be supplemented with a group

structure: roughly speaking, two maps that can be continuously deformed
into each other are said to be in the same “homotopy class” and the product
of two classes is defined to be connecting the (multidimensional) pathes of
the representatives of the two classes. These groups of homotopy classes
are so-called homotopy groups πd(GH ). For a more rigorous definition of the
group structure and the homotopy groups one might consult the textbooks
[Raj82], [MS07], [Shi12], [VS00] and [Wei15].

A given classical field configuration with finite energy can be charac-
terized by one element of the homotopy group. If the homotopy group
is isomorphic to the integer numbers, which is the case for example for
πn(Sn) (for any n), the field configurations can be characterized by one
integer number which is sometimes called the “winding number” or “topo-
logical charge”.

It follows from Derricks theorem [Der64] that in a gauged scalar field
theory with Lagrangian (1.69), topological defects with finite energy have
as codimension-1 objects a chance to exist even if the gauge field is zero
everywhere (these codimension-1 configurations are characterized by homo-
topy group π0), as codimension-2 and codimension-3 objects they only have
a chance to exist if the gauge field is non-vanishing (codimension-2 objects
are characterized by π1, codimension-3 objects by π2). For codimension-4
only for pure Yang-Mills (without any scalar) such topological nontrivial
configurations have a chance to exist. For higher codimensions such con-
figurations are not possible. These conclusions can be obtained using a
scaling argument [Der64]:

Let a solitonic solution with finite energy in D space dimensions be
given by φ(sol)(x) and Aj(sol)(x) such that V (φ(sol)) is not vanishing every-
where. Let us define the scaled field configurations ψ(λ)(x) ≡ φ(sol)(λx) and
Ai(λ)(x) ≡ λAi(sol)(λx) with some real parameter λ. In A0 = 0 gauge the
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energy E of the (static) solitonic configuration φ(sol)(x), Aj(sol)(x) is given
by

E =
1

4

∫
dDxF a

ij(sol)F
aij(sol) +

1

2

∫
dDx

(
Diφ(sol)

)+ (
Diφ(sol)

)
+

∫
dDxV (φ(sol)) . (1.70)

The energy functional evaluated on the rescaled configuration can be ex-
pressed in terms of the unscaled field configurations φ(sol) and Ai(sol) as

E(λ) =
1

4
λ4−D

∫
dDxF a

(sol)ijF
aij
(sol) +

1

2
λ2−D

∫
dDx

(
Diφ(sol)

)+ (
Diφ(sol)

)
+ λ−D

∫
dDxV (φ(sol)) . (1.71)

Since φ(sol)(x), Aj(sol)(x) is a solitonic solution, it is a stationary point
of the energy functional among all the rescaled configurations. In fact
∂λE(λ)|λ=1 = 0. This requirement gives

0 = (D − 4)
1

4

∫
dDxF a

(sol)ijF
aij
(sol) + (D − 2)

1

2

∫
dDx

(
Diφ(sol)

)+ (
Diφ(sol)

)
+D

∫
dDxV (φ(sol)) . (1.72)

For D = 2, 3 this equation implies that for vanishing gauge field the only
possible configuration is the trivial configuration where φ is in a minimum
of V (φ) everywhere. Thus, for D = 2, 3 topologically non-trivial topolog-
ical defects without a gauge field cannot exist. For D = 1 this equation
with vanishing gauge field gives the so-called virial identity which can be
fulfilled by a non trivial topological defect, the so-called kink, as we will
point out below. Therefore for D = 1 topological defects do exist even
with vanishing gauge field. For D = 4 it is impossible to fulfill the equa-
tion for non-vanishing scalar field leaving us only with the option of pure
Yang-Mills topological soliton. For D > 4 no nontrivial solutions of this
equation exist. Therefore for D > 4 no topological defects can exist.

So far, we have restricted our discussions to topological solitons in the-
ories with Lagrangians of the form (1.69). There are however also topo-
logical solitons as finite energy configurations in scalar field theories with
Lagrangians which have no scalar field potential and no gauge field but
which have non-linear terms of the scalar field. Such configurations with
the scalar field taking values in some closed manifold X are sometimes
called “textures”. In order for such configurations to have a chance to have
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finite energy, the scalar field has to approach a constant at spatial infinity
(only in that case the gradient energy does not diverge). This is the main
difference when compared to topological defects where the scalar field does
not have to take a single constant value at spatial infinity but could vary
over the whole set of minima of the potential V at spatial infinity. Because
in the case of textures the scalar field has a constant value at spatial infinity,
the physical space of dimension d can be compactified to the d-sphere Sd
by adding one point at spatial infinity (for example via stereographic pro-
jection). If a scalar field φ is mapped into a closed manifold X, these maps
can therefore be characterized by the homotopy groups πn(X). In contrast
to the cases of topological defects, in these cases of textures the homotopy
groups therefore describe mappings of the whole physical space on a mani-
fold (in the case of topological defects the mapping is from the boundary of
the physical space). Therefore, textures with codimension-n are character-
ized by the homotopy group πn whereas, as pointed out above, topological
defects with codimension-n are characterized by homotopy group πn−1.

So far, we have not shown if such topological defects and textures in
fact exist. In order to prove the existence, below, we will review certain
particular examples of textures and defects. Many of the defects have the
property that they are singular at one point whereas textures are typically
non-singular.

To (almost) all topological solitons which we will review below a typical
classical length scale, L, can be associated around which most of the energy
of the soliton is localized. In addition one can associate a mass to all
topological solitions and therefore a Compton wavelength LC . In case the
Compton wavelength of a given topological soliton is much smaller than its
typical classical size,

LC � L , (1.73)

it is indeed justified, as a good approximation, to treat the topological soli-
ton as classical. As we will point out below, this criterion (1.73) is typically
justified if and only if the topological soliton is weakly coupled. In this the-
sis we restrict to such weakly-coupled topological solitons.6 In case (1.73)
is satisfied, in the literature often the approach is followed where perturba-
tions around this classical background are studied and quantized (see e.g.
[GJ75, CG75, RW75] and the discussions in the textbooks [Raj82], [MS07],
[Shi12], [VS00] and [Wei15]). The perturbations are often expanded in nor-
mal modes which are then quantized canonically. Whenever the soliton

6For discussions on solitons for which (1.73) is not satisfied, we refer for example to
[DGGR15].
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breaks symmetries of the Lagrangian, zero modes (normal modes with zero
frequency) appear which are treated seperately: Each zero mode is usu-
ally taken into account by introducing a “collective coordinate” or “mod-
ulus” β(t) and by essentially replacing the static soliton coordinate x by
(x− β(t)). These collective coordinates then appear separately in the La-
grangian and can be quantized canonically. Whenever these zero modes
are excited in a time dependent manner, the conjugate momenta of the
collective coordinates are non-vanishing. We will illustrate this procedure
below on some particular examples.

In what follows we briefly recall some aspects of the topological defects
of codimension-1 (known as “kinks” in (1 + 1) spacetime dimensions and
“domain walls” in higher spacetime dimensions), of codimension-2 (known
as “vortices” in (2 + 1) spacetime dimensions and “cosmic strings” in higher
spacetime dimensions) and of codimension-3 (known as “magnetic monopoles”).
We then review some aspects of textures with codimension-1 (known as
“(nonlinear) kinks”), textures with codimension-2 (known as “lumps” and
“baby skyrmions”) and textures with codimension-3 (known as “skyrmions”).
On these examples we will illustrate some of the previous-mentionned points.
For more details on topological solitons, as well as instantons which we will
not review, we refer to the standard textbooks [Raj82], [MS07], [Shi12],
[VS00] and [Wei15] and the references therein.

Kinks and Domain Walls

Codimension-1 topological defects arise as topologically non-trivial lowest
energy configurations in theories with Lagrangians of the form (1.69) in the
case of a scenario with spontaneous symmetry breaking pattern G −→ H
which is such that the homotopy group π0

(
G
H

)
is non-trivial. In the case

of (1 + 1) spacetime dimensions these topological defects are known as
“kinks” (and “anti-kinks”). They can arise for example in the theory with
the following prototype Lagrangian

L =
1

2
∂µφ∂

µφ− λ

4

(
φ2 − v2

)2
. (1.74)

This Lagrangian has a Z2 symmetry, φ → −φ, which is spontaneously
broken by the potential V (φ) = λ

4
(φ2 − v2)

2 which has two degenerate
minima (φ = ±v). The corresponding homotopy group is π0(S0). Static
solutions of the equations of motion are given by

φkink(x) = ±vtanh

(
m√

2
(x− x0)

)
, (1.75)
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where m2 ≡ v2λ. The solutions with plus sign are called “kinks” whereas
the solutions with minus sign are called “anti-kinks”. With the “topological
current”

Jµ ≡ 1

2v
εµν∂νφ (1.76)

the kink can be characterized by topological charge,

Q ≡
∫ ∞
−∞

J0dx , (1.77)

plus one (Qkink = 1) whereas the anti-kink carries topological charge minus
one (Qantikink = −1). Due to the antisymmetric property of the epsilon
tensor the current (1.76) is trivially conserved (without having to impose
the equations of motion).

By considering the Hamiltonean which corresponds to the Lagrangian
(1.74) and evaluating it on the kink solution, it is easy to show that the
total energy (mass) M of a the kink (1.75) is given by

M =
2
√

2

3

m3

λ
. (1.78)

Most energy is concentrated in a localized region with size of order L ≡
m−1. Therefore, the criterion (1.73) is satisfied if λ

m2 is very small, or in
other words if the kink is weakly coupled. Thus, it is justified to treat such
weakly coupled kinks classically as a good approximation.

In this regime one can study perturbations β(x, t) around the classical
kink solution:

φ(x, t) = φkink(x) + β(x, t) , (1.79)

with |β(x, t)| � |φkink(x)|. The function β(x, t) can be expanded in nor-
mal modes fk(x) which diagonalize the quadratic part of the perturbed
Lagrangian, (

− d2

dx2
+ V ′′(φkink)

)
fk(x) = w2

kfk(x) , (1.80)

and which correspond to solutions

βk(x, t) = fk(x)e−iwkt . (1.81)

The expansion of the perturbations can be written as

β(x, t) =
∑
k

(ck(t)fk(x) + h.c.) , (1.82)

with operators ck. There is the zero mode f0 = ∂xφkink which originated
because the kink breaks translational invariance of the Lagrangian (see e.g.
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the discussion in [Wei15]). In order to take this into account one usually
introduces a “collective coordinate” z(t) as

φ(x, t) = φkink(x− z(t)) + β(x− z(t)) , (1.83)

which leads to the quadratically perturbed kink Lagrangian

L =
1

2
Mż2 +

∑
k

(
1

2
ċ2
k −

1

2
w2
kc

2
k

)
. (1.84)

In this way, the collective coordinate can be interpreted as the position of
the kink which can be quantized canonically by introducing the canonical
momentum P ≡ Mż and imposing standard commutation relations be-
tween z and P . Whenever the zero mode is excited in a time dependent
manner, P is non-zero.

One can trivially embedd the kinks in higher dimensional spacetimes
with the kink solution being independent of all coordinates but one (there-
fore “codimension-1 objects”). These higher dimensional kinks are known
as “domain walls”.

Vortices and Cosmic Strings

Codimension-2 topological defects arise as topologically non-trivial lowest
energy configurations in theories of the form (1.69) in scenarios with a
spontaneous symmetry breaking pattern G −→ H which is such that the
homotopy group π1

(
G
H

)
is non-trivial. In the case of (2 + 1) spacetime

dimensions these are “vortices” which can arise for example in the gauged
scalar field theory with Lagrangian

L =
1

2
(Dµφ)+ (Dµφ)− λ

4

(
φ+φ− v2

)2 − 1

4
FµνF

µν , (1.85)

where Dµφ ≡ ∂µφ + ieAµφ is the covariant derivative and Fµν ≡ ∂[µAν]. φ
is a complex scalar field which can be parameterized as

φ(x) = ρ(x)eiα(x) , (1.86)

with the two real valued functions ρ(x) and α(x). This Lagrangian has
a U(1) symmetry under which the fields transform as φ → eiw(x)φ and
Aµ → Aµ − 1

e
∂µw(x) with w(x) a gauge transformation function. This

symmetry is spontaneously broken by the potential V (φ) = λ
4

(φ+φ− v2)
2.

The corresponding homotopy group is π1(U(1)) = π1(S1) = Z. A topolog-
ical current can be defined as

Jµ ≡ εµνγ∂ν∂γα(x) , (1.87)
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where (1.86) was used. Using Stokes theorem the charge which corresponds
to this current,

∫
J0d

2x, can be rewritten as∫
J0d

2x =

∮
dxµ∂µα(x) . (1.88)

Therefore the topological charge,
∫
d2xJ0, measures the number of times α

winds around S1.
One can show that the topological charge

∮
dxµ∂µα(x) is nothing but

the magnetic flux
∫
d2xB [NO73].

Topological non-trivial lowest energy configurations (“vortices”) with
topological charge n can be obtained numerically by minimizing the energy
functional which corresponds to (1.85) with the ansatzes

φ(r, θ, φ) = veinθf(evr), A0 = 0, Ai = εike
k a(evr)

er
, (1.89)

where ek is a unit vektor in k− th direction and f(evr) and a(evr) are two
real-valued ansatz-functions which take the boundary conditions

f(0) = 0, a(0) = 0, f(∞) = 1, a(∞) = n . (1.90)

These boundary conditions have to be chosen for the configurations to be
regular at the origin and to have finite energy. (Finite energy is obtained
in particular because for these boundary conditions the covariant deriva-
tive Dµφ which appears in the energy density vanishes at spatial infinity.)
Solution profile functions for certain choices of parameters can be obtained
numerically and can be found for example in [NO73].

The mass of a vortex can be obtained by evaluating the Hamiltonean
which corresponds to the Lagrangian (1.85) on the vortex solution. It is of
order

M = v2 . (1.91)

A typical length scale L in which most of the energy is concentrated is
given by

L =
1

ev
. (1.92)

Vortices can safely be considered as classical to a good approximation when-
ever (1.73) holds. This is the case if and only if e

v
� 1.

In this regime one can study perturbations around the vortex solution
Aµ(vortex), φ(vortex),

Aµ = Aµ(vortex) + δAµ ,
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φ = φ(vortex) + δφ , (1.93)
with |δAµ| � |Aµ(vortex)| and |δφ| � |φ(vortex)| and quantize them canoni-
cally. In contrast to the case of the a kink, since the theory with Lagrangian
(1.85) is a gauge theory, one has to take into account that not all perturba-
tions which fullfull the perturbed equations of motion are physical. Instead,
some of the perturbations are gauge redundancies. One should therefore
only quantize the physical perturbations and only study the physical zero
modes. One can show that in the case of the vortex there are two physical
zero modes (see e.g. the discussion in [Wei15]) which, in complete analogy
to the kink case, originate from the broken translational invariance. As in
the case of the kink, they can be taken into account by introducing two
collective coordinates.

Julia and Zee showed in [JZ75] that all (2 + 1) dimensional static finite
energy vortices which can be obtained from (1.85) are electrically-neutral.
Electrically charged vortices can however exist as static finite energy con-
figurations in the theory with Lagrangian (1.85) if a Chern-Simons term
is added to this Lagrangian [PK86, dVS86]. The electric charge of such
Chern-Simons vortices is then proportional to the winding number and the
coefficient introduced in front of the Chern-Simons term. These Chern-
Simons vortices are so-called “anyons” [Wil82], indeed they carry fractional
statistics [FM89].

As in the case of kinks, the vortices can also be trivially embedded in
higher dimensions by letting the vortex solution be independent of the other
coordinates (therefore “codimension-2 objects”). These higher dimensional
vortices are known as cosmic strings.

Vortices (and cosmic strings) can also arise for example for Lagrangians
which are slightly modified when compared to (1.85) such that the U(1)
symmetry is not completely broken but broken down to a discrete subgroup
ZN . Such a symmetry breaking pattern can be realized for a Lagrangian

L =
1

2
| (∂µ + iNeAµ)φ|2 − λ

4

(
φ+φ− v2

)2 − 1

4
FµνF

µν , (1.94)

which is invariant under φ→ eiNw(x)φ and Aµ → Aµ− 1
e
∂µw(x) where w(x)

is a gauge transformation function. When the scalar field φ which has
charge N condenses and develops a vacuum expectation value, 〈φ(x)〉 = v,
the ground state is invariant under the above shift (only) when w(x) is an
integer multiple of 2π

N
. Any other scalar field which is charged under Aµ

such that it has carries charge 1 and does not condense transforms under
this “residual” ZN symmetry.
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Vortices can be obtained as lowest energy configurations of the energy
functional which corresponds to the Lagrangian (1.94) exactly in the same
way as in the case of (1.85) except that now the boundary condition for
the gauge field has to be chosen such that it goes as Aθ → n

Ne
for r → ∞

instead of as n
e
as in the case of vortices in (1.85). For such an asymptotic

behaviour, the discrete ZN charges can be detected via Aharonov-Bohm
experiment if we for example take a probe particle at infinity once around
the cosmic string: Such a process induces a change in the action

∆S =

∮
S∞

Aµdx
µ =

2π

N
, (1.95)

where dxµ parametrizes the world line of the particle. This change in the
action leads to a measurable Aharonov-Bohm phase shift whenever N > 1.

For some applications it is useful to note that a ZN gauge theory is dual
to a “topological BF-theory” which might be more convenient to use in cer-
tain applications. We refer for example to [BS11] for a detailed explanation
of what this means.

Magnetic Monopoles

Magnetic monopoles are codimension-3 topological defects which arise as
topologically non-trivial lowest energy configurations in theories of the form
(1.69) in scenarios with spontaneous symmetry breaking pattern G −→ H
which is such that the homotopy group π2

(
G
H

)
is non-trivial. In (3 + 1)

spacetime dimensions a famous example where such a scenario is realized
is the model of Georgi and Glashow [GG72] which has a symmetry SU(2)
spontaneously broken down to U(1) as reviewed in (1.42). In this model ‘t
Hooft [tH74b] and Polyakov [Pol74] found topological defects as classical
solutions. As reviewed in (1.42), the Georgi-Glashow Lagrangian is given
by:

L =
1

2
Dµφ

aDµφa − λ

4

(
φaφa − v2

)2 − 1

4
F a
µνF

µνa . (1.96)

Here φa is a scalar triplett (a = 1, 2, 3), F a
µν ≡ ∂µA

a
ν − ∂νAaµ − eεabcAbµAcν

and Dµφ
a ≡ ∂µφ

a − eεabcAbµφc. This Lagrangian is invariant under SU(2)
transformations. The SU(2) symmetry is broken down to U(1) by con-
figurations with the scalar field condensed. The homotopy group which
corresponds to this symmetry breaking pattern in (3+1) spacetime dimen-
sions is π2

(
SU(2)
U(1)

)
= π2(S2) = Z. A topological current can be defined

as

Jµ =
εµναβεabc∂νφ

a∂αφ
b∂βφ

c

8π|φ|3
. (1.97)



TOPOLOGICAL SOLITONS AND SKYRMIONS AS EFFECTIVE
DESCRIPTIONS OF BARYONS 33

Topological non-trivial lowest energy configurations with topological
charge one (“magnetic monopoles”) can be obtained numerically by mini-
mizing the energy functional which corresponds to (1.42) with the ansatzes

φa = vh(r)ear , A
a
0 = 0, Aai = εiak

(
1− u(r)

er

)
ekr , (1.98)

where ear is a unit vector in radial direction (in fact φa assumes a hedgehog
ansatz). h(r) and u(r) are two ansatz-functions which take the boundary
conditions

h(0) = 0, u(0) = 1, h(∞) = v, u(∞) = 0 . (1.99)

One can find the solution functions for several parameter choices for exam-
ple in [tH74b].

Since there is an unbroken U(1) subgroup in the above model when
SU(2) gets spontaneously broken, one can define U(1) magnetic and electric
fields for the solutions: Defining Ba

i ≡ −1
2
εijkF

ajk and Ea
i ≡ F a

i0, the
components of Ba

i and Ea
i that lie in the unbroken U(1) subgroup can be

projected out by multiplying them with the normalized field of φa. This
leads to the electric and magnetic charges

QM =

∫
dSi

φa

|φ|
Ba
i , (1.100)

QE =

∫
dSi

φa

|φ|
Ea
i . (1.101)

The magnetic monopole solutions have vanishing electric field and at large
distances, r →∞, a magentic field of the form [tH74b]

Ba
i ≡ −

1

2
εijkF a

jk → eare
i
r

1

er2
, (1.102)

which is exactly the magnetic field of a magnetic monopole (therefore these
solitons are called “magnetic monopoles”).

In contrast to the case of vortices, spherically-symmetric magnetic monopoles
with topological charge higher than one do not exist (except in the so-called
“BPS limit” λ

e2
= 0 [Bog76, PS75, Wei79a]) [Wei15].

One can define several characteristic mass and length scales of such a
magnetic monopole solution with topological charge one as

Mm =
v

e
,MH =

√
λv, L =

1

ev
, LC =

1√
λv

. (1.103)
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Up to numerical constants of order one these scales can be identified as
follows: Mm can be identified with the mass or total energy of a mag-
netic monopole, MH can be identified with the mass of the Higgs field and
therefore LC with the Compton wavelength of the Higgs field. L sets the
Compton wavelength of the gauge field. The criterion (1.73) is satisfied if
and only if e2 � 1. Thus, in this case of e2 � 1 magnetic monopoles can
be considered as classical objects as a good approximation.

As in the cases of the kink and the vortex, one can study perturbations
around the classical monopole solution

Aaµ = Aaµ(mon) + δAaµ ,

φa = φa(mon) + δφa , (1.104)

with |δAaµ| � |Aaµ(mon)| and |δφa| � |φa(mon)| and can quantize the pertur-
bations. The monopole solution has four zero modes. Three zero modes
correspond to spatial translations in complete analogy to the cases of the
kink and vortex. The fourth zero mode can be understood as a result from
the unbroken U(1) subgroup.

We discuss the fourth zero mode in some more details: This zero mode
(which in particular is not pure gauge [Wei15]) is for a small parameter α
given by [Wei15]

δφ = 0, δAaµ =
1

v
Dµφ

a
(mon) . (1.105)

In the case of small α this transformation can be understood as the in-
finitesimal form of the global U(1) rotation of Aaµ(mon) and φa(mon) via the
matrix

U = eiα
φaσa

v . (1.106)

Thus, α and α + 2π can be identified and α is in this sense an angular
variable. If we introduce a collective coordinate, α becomes the angular
collective coordinate (see e.g. the discussion in [Wei15]).

Thus, the generator of these transformations is eiαk where k is the in-
teger Noether charge. The Noether charge can be written as integral over
the zeroth component of the Noether current corresponding to these trans-
formations [Wit79b]:

k =

∫
d3x

(
∂L

∂ (∂0Aµ)
δAµ +

∂L
∂ (∂0φ)

δφ

)
=

∫
d3x

∂L
∂ (∂0Ai)

Diφ . (1.107)

Using (1.101), one obtains

k =
QE

e
. (1.108)
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If a θ term is added to the Lagrangian (1.42):

∆L =
e2θ

32π2
εαβγδF a

αβF
a
γδ , (1.109)

the Noether charge gets modified and becomes

k =
QE

e
+

eθ

8π2
g . (1.110)

This modification leads, using eg = −4π, to an electric charge

QE = ke+
eθ

2π
. (1.111)

Therefore, even if there is a configuration which has no electric charge in
the case no theta term is taken into account, k = 0, (for example the case
of the ‘t Hooft Polyakov monopole solution) after a theta term is added to
the Lagrangian (1.42), an electric charge is automatically induced and the
magnetic monopole becomes a dyon. This is the celebrated Witten effect
[Wit79b].

A nontrivial homotopy group π2 which leads to magnetic monopoles can
also be obtained in Lagrangians with symmetry breaking patterns which
are different than the one in the ‘t Hooft Polyakov case. In fact, in grand
unified theories, magnetic monopoles are therefore quite generically pre-
dicted (see e.g. the discussion in [Wei15]). The existence of such GUT
magnetic monopoles (formed for example in GUT phase transitions in the
very early universe) would have important physical implications, for ex-
ample the existence of magnetic monopoles predicts the quantization of
electric charge (see for example [Wei15] for an explanation).

Nonlinear Kinks

So-called “Sine-Gordon kinks” can appear as static topologically non-trivial
finite energy configurations in the (1+1) dimensional scalar field theory
with Lagrangian

L =
1

2
∂µφ∂

µφ− (1− cosφ) . (1.112)

Sine-Gordon kinks are the lowest energy configurations of this theory which
take the form

φ(x) = 4tan−1
(
ex−a

)
, (1.113)

where a is some constant. In the same way as the φ4 kinks which we dis-
cussed above, these Sine-Gordon kinks can as topological defects be char-
acterized by the homotopy group π0(Z).
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Alternatively, Sine-Gordon kinks can also be understood as textures
(see e.g. the discussion in [MS07]). This can be seen introducing a two-
component scalar field φ̃a (a = 1, 2) which is related to the field φ via

φ̃ = (sinφ, cosφ) . (1.114)

The Lagrangian (1.112) written in terms of φ̃ takes the form

L =
1

2
∂µφ̃

a∂µφ̃2 −
(

1− φ̃2

)
+ λ

(
1− φ̃aφ̃a

)
, (1.115)

with a Lagrange multiplier λ which enforces the constraint φ̃aφ̃a = 1 on
the scalar field which therefore takes values in S1. The homotopy group of
textures in this model is thus given by π1(S1) = Z.

A static lowest energy configuration with topological charge one and
boundary conditions φ̃→ (0, 1) at spatial infinity is given by

φ̃1 = sin (φ(x)) , φ̃2 = cos (φ(x)) , (1.116)

where φ(x) is the solution (1.113).

Lumps and Baby Skyrmions

The simplest codimension-2 textures are so-called “lumps”. They arise as
topologically non-trivial static classical finite energy configurations for ex-
ample in the (2+1) dimensional scalar field theory with Lagrangian

L =
1

2
∂µφ

a∂µφa + λ (1− φaφa) , (1.117)

where a = 1, 2, 3 and λ is a Lagrange multiplier which enforces the con-
straint φaφa = 1 on the scalar field and therefore implies that the scalar field
takes values in S2. This model is invariant under O(3) rotations, φ −→ Oφ
(where O is a O(3) matrix), and is known as “O(3) sigma model”. Topo-
logical non-trivial configurations in this model are characterized by the
homotopy group π2(S2) = Z and the topological current can be written as

Jµ =
1

4π
εµναε

abcφa∂νφb∂αφc . (1.118)

Lowest energy configurations with given topological charge can be found
as solutions of the equations of motions when boundary conditions are
chosen such that φ takes a constant value at spatial infinity. The energy of
a solution with given topological charge N satisfies the so-called Bogomolny
bound [Bog76, PS75, Wei79a]

E ≥ 2π|N | . (1.119)
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In the case of E = 2π|N | the solutions of the equations of motion are the
same as the solutions of the so-called Bogomolny equation [Bog76, PS75,
Wei79a] which is a first order differential equation. These solutions of the
Bogomolny equation can be obtained analytically and are given in terms
of so-called “rational maps” in the case of topological charge one as

R(z) =
αeiβ

z − γ
, (1.120)

where α > 0 is a real consant and β a complex constant. The function
R(z) is related to the scalar field triplett φa as

R(z) ≡ φ1 + iφ2

1 + φ3

(1.121)

and z is the complex coordinate z ≡ x + iy with x and y the standard
eucledian coordinates on the two dimensional plane. The solution is peaked
around z = γ.

The energy of this lump is given by E = 2π. This is independent of the
typical radius of the configuration and in fact leads to an instability which
lets the lump to collapse in a finite amount of time (see e.g. [MS07]).

Stable textures in (2 + 1) spacetime dimensions can be obtained for
example if the Lagrangian (1.117) is modified and takes the form

L =
1

2
∂µφ

a∂µφa− 1

8
(∂µφ

a × ∂νφ
a) (∂µφa × ∂νφa)−m

2

2
(1− φ3) . (1.122)

Topologically non-trivial static finite energy configurations are character-
ized by the same topological current as the lumps discussed above. These
configurations can, in the case of topological charge one, be obtained from
(1.122) by making the ansatz

φ1 = sinf(r)cosθ, φ2 = sinf(r)sinθ, φ3 = cosf(r) , (1.123)

where r, θ are the polar coordinates on the two dimensional plane and f(r) is
a “profile function” taking the boundary conditions f(0) = π and f(∞) = 0.
By minimizing the energy functional which corresponds to (1.122), one
can numerically obtain solutions for f(r) [PSZ95]. These solutions are
sometimes called “baby skyrmions” because the terms in (1.122) are lower
dimensional forms of the so-called “Skyrme term” which appears in the
case of codimension-3 textures (“skyrmions”) which we will recall in what
follows. The instability which is present in the case of lumps is absent in
the case of baby skyrmions (see e.g. [MS07]). As we will point out below,
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in contrast to the case of codimension-2 textures, for the codimension-3
case lumps do not exist and thus for codimension-3 the addition of the
Skyrme term is essential in order to have topologically non-trivial static
finite energy configurations.

Skyrmions

Skyrmions in (3 + 1) spacetime dimensions were originally introduced by
Skyrme [Sky61, Sky62] as topological solitons which can appear as non-
trivial static lowest energy configurations in the model given by the effective
chiral Lagrangian of Gell-Mann and Levy [GML60] which we reviewed in
(1.57) and (1.58) with a term of fourth order in derivatives (sometimes
referred to as the “Skyrme term”) added. This Skyrme term is the unique
term with four derivatives which is invariant under chiral transformations
(1.53) and has two time derivatives.7

This Lagrangian is given by the linear sigma model

L = L1 + L2 , (1.124)

with
L1 ≡ ∂µφ

k∂µφk + λ
(
φkφk − f 2

π

)
(1.125)

and the Skyrme term

L2 ≡ −
1

2

(
∂µφ

k∂µφk
)2

+
1

2

(
∂µφ

k∂νφ
k
) (
∂µφk∂νφk

)
. (1.126)

Here k = 1, 2, 3, 4 and λ is a Lagrange multiplier which enforces the con-
straint φkφk = f 2

π on the scalar field and therefore implies that the scalar
field takes values in S3. This is the linear sigma model (1.57) with the
Skyrme term added. The associated non-linear sigma model Lagrangian is
obtained when the field φ4 is expanded around the expectation value fπ,
φ4 = fπ + σ, and the fields σ and πa satisfy the constraint (1.61).

In the exponential representation which we introduced in (1.66) this
Lagrangian can be written as:

LS =
f 2
π

4
Tr
(
∂µU∂

µU+
)

+
1

32e2
Tr[∂µUU

+, ∂νUU
+]2 . (1.127)

As pointed out in the context of (1.66), a mass term for the pions with
mass mπ can be added:

Lm =
1

2
m2
πf

2
π (TrU − 2) . (1.128)

7We only know how to quantize Lagrangians with not more than two time derivatives.
Therefore, in this sense, the Skyrme term is the only term with four derivatives which
is meaningful.
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Here, as in (1.64), U is in the case of SU(2)⊗ SU(2) chiral theory defined
as

U ≡ e
i
fπ
πaσa , (1.129)

with πa the pion fields and σa the Pauli matrices. fπ is the pion decay
constant with dimensionality

[fπ] =

√
[mass]

[length]
(1.130)

and e is the “Skyrme coupling constant” with dimensionality

[e] =
1√

[mass][length]
. (1.131)

Using these two parameters one can define a length scale L and a mass
scale MS as

L ≡ 1

efπ
, (1.132)

MS ≡
fπ
e
. (1.133)

Length scales and masses of solitonic configurations of (1.127) can therefore
be measured in units of (efπ)−1, fπ

e
respectively.

For the case of chiral SU(3) ⊗ SU(3) the Lagrangian (1.127) has to
be modified (see e.g. [Shi12]). In fact, one has to add the so-called Wess
Zumino Witten term [WZ71] to the Lagrangian. We however restrict to
the case of SU(2) ⊗ SU(2) chiral in this thesis and refer to [Wit83b] and
[Wit83a] for the discussion on cases with three instead of two quark flavors.

The Skyrme Lagrangian (1.127) can also be understood as an expansion
of pion interactions in the inverse number of colors N−1

C if we take into
account that for any NC the Skyrme model is the low energy effective model
of QCD. This is easy to see: In the large-NC expansion of QCD it was shown
that the quartic meson interactions scale like N−1

C [Wit79a]. Since quartic
meson interactions scale like N−1

C in large-NC QCD and the chiral model
with Lagrangian (1.63) is supposed to be the low energy effective theory of
large-NC QCD, it follows by matching that

f 2
π ∼ NC , (1.134)

e2 ∼ N−1
C . (1.135)
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Therefore the Lagrangian (1.63) is an expansion of the pion interactions in
powers of N−1

C .

Topologically non-trivial static finite energy configurations which min-
imize the energy E corresponding to (1.127),

E =

∫
d3xHS , (1.136)

where HS is the Skyrme Hamiltonean density, so-called “skyrmions”, can
be obtained numerically in the spherically-symmetric case when making a
hedgheog ansatz for the pions

πa
fπ

= F (r)na , (1.137)

where na is a unit vector in radial direction and F (r) an ansatz “profile”
function and minimizing E with the boundary conditions

F (0) = Bπ , (1.138)

F (∞) = 0 , (1.139)

with B a natural number. For such configurations to exist the existence of
the Skyrme term in (1.127) is essential. Without the presence of this term
there are no topologically non-trivial static lowest energy configurations due
to Derricks theorem [Der64]: Assuming that such a configuration Ulowest(x)
does exist for the energy E corresponding to (1.127) with the Skyrme term
left out, leads to a contradiction. This is because the function Ulowest(λx)
for some λ > 1 would be a configuration which has lower energy than
Ulowest(x):

E(Ulowest(λx)) =
1

λ
E(Ulowest)(x) . (1.140)

This is in contrast to the (2 + 1) dimensional case where lumps do in fact
exist as reviewed above.

For the whole Skyrme Lagrangian (1.127) lowest energy configurations
however do exist. The asymptotic behaviour of the solution profile function
of these configurations is in the case of mπ = 0 (for large r) given as
[ANW83]

F (r)→ 1

r2
, (1.141)

whereas for a finite pion mass mπ it is [AN84]

F (r)→ e−mπr

r
. (1.142)
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For illustration, plotted solution profile functions for some parameter choices
can be found for example in [ANW83, AN84]. The configurations can be
classified by the homotopy group π3(S3).

These skyrmions can be treated classically if the criterion (1.73) is sat-
isfied. This is the case if, using (1.133) and (1.132), e2 � 1. According
to (1.135) this is the case if and only if NC � 1. This implies that in the
large-NC expansion it is justified to treat skyrmions classically.

One can define a topological current for such configurations in the ex-
ponential representation as

Jµ ≡ −
εµναβ
24π2

Tr
(
U+∂νUU+∂αUU+∂βU

)
. (1.143)

In terms of the linear sigma model fields φa, this current (1.143) can be
written as [HY]

Jµ =
1

12π2|φ|4
εijklεµναβφi∂νφ

j∂αφ
k∂βφ

l . (1.144)

The above discussed skyrmions with ansatz (1.137) and boundary con-
ditions (1.138) and (1.139) have topological charge B. However, only in the
case of B = 1 these hedgehog skyrmions are minimal energy configurations.
For some B > 1 also lowest energy topologically non-trivial static configu-
rations in the Skyrme model have been found [KS87, Man87, Ver87, BS97,
BTC90, BS02]. These are however not of hedgehog form but have a more
complicated symmetry structure. We refer to [MS07] and references therein
for a discussion on lowest energy configurations in the Skyrme model with
topological charge higher than one.

Since skyrmions appear as non-trivial topological configurations in a chi-
ral theory which is a low energy effective theory of QCD, it is an important
questions if and how we can understand skyrmions from the QCD point of
view. Skyrme introduced the skyrmions originally as models for baryons
[Sky61, Sky62] and later it was shown by Witten [Wit83b, Wit83a, Wit84]
in the framework of QCD with a large number of colors NC that skyrmions
are really nothing than baryons. Let us now briefly review the main steps
which lead to this conclusion.

One important step which shows that the idea that skyrmions are noth-
ing than baryons in the framework of QCD with a large number of colors
is consistent, is to show that the masses and length scales of baryons and
skyrmions scale in the same way with NC and that the cross sections which
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can be calculated in large-NC QCD also scale in the same way with NC

as the anologous cross sections in the chiral theory. On the one hand it
was established by Witten in [Wit79a] that in large-NC QCD the masses of
baryons scale linearly with NC whereas the size and the baryon-meson scat-
tering cross sections are independent of NC . That, on the other hand, the
analogous quantities in the Skyrme model have the same scaling behavior
with NC can be seen easily from (1.132), (1.133), (1.135), (1.134).

That parameters in the Skyrme models have the same scaling behavior
in NC as the analogous parameters for baryons in large-NC QCD does not
show that skyrmions are in fact nothing than baryons. In order to show
this, it has to be shown that baryons and skyrmions have the same quantum
numbers (spin, isospin and flavor) and in particular that skyrmions are
fermions for NC odd (as baryons with odd number of colors are) and bosons
for NC even (as baryons with even number of colors are). If two objects (in
this case baryons and skyrmions) have the same quantum numbers, they
can be considered to be the same objects. In fact, it has been shown that
in the case of two quark flavors, skyrmions can be treated as fermions for
NC odd [Wit83a, FR68].8 Let us now briefly go through the arguments
which establish these claims in the case of two quark flavors.

That skyrmions can be quantized as fermions in the case of two quark
flavors is based on the fact that π4(SU(2)) = Z2 [Wit83a, FR68]. Therefore,
the maps from the 4 dimensional spacetime to SU(2) fall into two classes.
If we consider a process where a skyrmion which is created by skyrmion-
antiskyrmion pair creation is rotated around the antiskyrmion with an angle
2π and then annihilated again, this process is topologically different to the
same process with the skyrmion not rotated. One process can be weightend
with a factor (−1) meaning that the skyrmion is a fermion. Therefore, in
the case of two quark flavors, in this sense, skyrmions can be treated as
fermions.

That, for large number of colors, skyrmions have the same spin and
isospin quantum numbers as baryons in large-NC QCD was shown by Wit-
ten in [Wit83a] (see als [BNRS83]). This can be seen once we quantize the
collective coordinates which have to be introduced due to the appearance
of zero modes when quantizing fluctuations around the classical skyrmion
solution. There are three zero modes since skyrmions break the transla-
tional invariance (in all three directions of space), in complete analogy to
the translational zero modes of the kinks, vortices and monopoles which we

8For cases with more quark flavors which we are not considering here, the stronger
statement that skyrmions have to be treated as fermions if and only if NC is odd was
established as a consequence of the Wess Zumino Witten term added to the Lagrangian
[Wit83a, Wit83b].



TOPOLOGICAL SOLITONS AND SKYRMIONS AS EFFECTIVE
DESCRIPTIONS OF BARYONS 43

mentionned above, and there are additional three zero modes due to the
rotation in real space and the rotation in SU(2) space which are coupled
in the case at hand (see e.g. [Shi12]) in analogy to the U(1) related zero
mode in the monopole case. Introducing the collective coordinates xi and
wi (i = 1, 2, 3) leads to a Hamiltonean which can be written as (see e.g.
[Shi12])

H = M +
1

2
Mẋ2 +

1

2I
∇2

3 , (1.145)

where I is the momentum of inertia which can be calculated (see e.g.
[Shi12]) and ∇2

3 is the Laplace operator on the 3-sphere with respect to
the canonical momenta of the collective coordinates wi. The eigenvalues of
the last term of H are thus

Emm′j =
j(j + 1)

2I
, (1.146)

where j is an integer which stands for the angular momentum and m,m′ ∈
(−j, j) are magnetic quantum numbers. Using Noethers theorem it can be
shown that spin (the Noether charge with respect to rotations in real space)
and isospin (the Noether charge with respect to rotations in isospin space)
are related by I2 = J2 and that these are nothing but ∇2

3. Eigenstates
of the Hamiltonean are characterized by the quantum numbers spin i =
ispospin j, m and m′. For bosons (even number of colors) j is even and for
fermions j is odd. These are exactly the same quantum numbers baryons
have.

Let us finally emphasize what the restrictions are which are made when
skyrmions are identified with baryons. First, skyrmions and baryons were
identified (only) in the framework of large NC QCD. We did not argue if
and how this correspondence between skyrmions and baryons is modified
once we work with a finite numter of colors. It has however been argued
[Wit84] that even for finite NC baryons still correspond to skyrmions, that
however, as pointed out below (1.142), for small NC the skyrmions cannot
be treated classically anymore. Second, the Skyrme Lagrangian (only)
describes pion degrees of freedom. In nature, we however have many more
meson degrees of freedom which have to be present in a proper low energy
description of QCD. In this sense, the Skyrme model with only pions taken
into account is an approximation to a (unknown) large NC effective meson
Lagrangian which is equivalent to QCD and which takes into account all
meson degrees of freedom. It is known that some calculations done in the
Skyrme model are around 30 percent off from experimental data (see e.g.
[Wit84] and references therein). It is expected that this error comes from
the fact that in the calculation we only take into account the existence
of pions and neglect the other meson degrees of freedom [Wit84]. It is
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expected that calculations would coincide with experimental data once we
use the (unknown) effective meson Lagrangian (for large NC) which takes
into account all the meson degrees of freedom and which is really equivalent
to (large-NC) QCD [Wit84].

1.5 Classical Gravity
On top of the non-gravitational interactions described by the quantum field
theories which we reviewed in the previous sections, all objects which carry
energy-momentum do also interact gravitationally. These gravitational in-
teractions were originally introduced in a geometric way but can also be
understood in terms of the language of quantum field theory of a massless
spin-2 field. We briefly review a few aspects of these two viewpoints.

Geometric Point of View

The main idea which underlies general relativity as theory of gravity is
to use Riemann’s insights about geometry (see for example [Rie54]) and to
apply them to Minkowski spacetime [Min08]. In particular, every spacetime
point of the Minkowski spacetime is assigned a quadratic differential form
whose coefficients gµν are postulated to be a dynamical field such that the
proper time ds along a given world line is given by

ds2 = gµνdx
µdxν . (1.147)

This implies that gµν = gνµ. The evolution of this dynamical field is set by
the Einstein field equations [Ein15]

Gµν = 8πGNTµν , (1.148)

which can be obtained from the Einstein-Hilbert action,

S =
1

16πGN

∫
d4x
√
−g (R + gµνTµν) , (1.149)

with g ≡ det(g), via the principle of least action. Here Tµν is the energy-
momentum tensor of some kind of matter and Gµν is the Einstein tensor
which is defined via gµν as

Gµν ≡ Rµν −
1

2
gµνR , (1.150)

where the Ricci tensor Rµν is defined as Rµν ≡ Rα
µαν and the Ricci scalar

R as R ≡ gµνRµν with the Riemann tensor

Rα
µβν ≡ ∂βΓανµ − ∂νΓαβµ + ΓαβγΓ

γ
νµ − ΓανγΓ

γ
βµ (1.151)
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and the Christoffel symbols

Γαµν ≡
1

2
gαβ (∂νgβµ + ∂µgβν − ∂βgµν) . (1.152)

Therefore, in this sense, the evolution of the field gµν is determined by the
matter, described by Tµν , which is present in the spacetime.

The metric tensor gµν in four spacetime dimensions has 16 components
among which are only 10 independent ones because of the property gµν =
gνµ. Under the change of coordinate system, xa → x̃b = f b(xa), these
components transform as

gµν(x)→ g̃µν(x̃) = gαβ(x)
dxα

dx̃µ
dxβ

dx̃ν
. (1.153)

Since we are free to choose four functions fa to do a coordinate transforma-
tion, only 6 out of the 10 independent components of gµν can be physical
degrees of freedom in the sense that they are independent of the choice of
coordinate system.

The Riemann tensor in four spacetime dimensions has 256 components.
Because by definition the Riemann tensor fulfills the relations Rµναβ =
−Rµνβα = −Rνµαβ, Rµναβ = Rαβµν and Rµναβ + Rµαβν + Rµβνα = 0, out
of these 256 components 20 independent components are left. Since the
metric has 6 physical degrees of freedom, 8 out of these 20 components are
left to describe curvature.9

In order to determine how many of the 6 physical degrees of freedom of
the metric gµν are propagating, we can use the coordinate freedom to fix for
example the four components g00 and g0i, as it is often done in the so-called
“ADM formalism” [ADM59]. In the case of vanishing energy-momentum
tensor, Tµν = 0, we are then left with 6 second order differential equations
Gij = 0 to deterime the physical components gij. This requires 12 initial
conditions. 4 of these 12 initial conditions are fixed by the first order
constraint equations G0i = 0 which fix the 4 components for all times (this
can be seen from the Bianchi identies in complete analogy to the constraint
divE = 0 in the source-free electromagnetic case). This leaves us with 8
initial conditions, or 4 degrees of freedom. Since we can fix the 4 functions
g00 and gi0 arbitarily, in total we have 2 physical degrees of freedom for gµν .

9This statement heavily depends on the number of spacetime dimensions. For exam-
ple, in three spacetime dimensions the Riemann tensor has only 6 independent compo-
nents and the metric has 3 physical degrees of freedom leaving us with no free component
to describe curvature.
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Gravity Viewed as a Quantum Field Theory

Instead of thinking in terms of geometric concepts such as curvature of
spacetime, one can also understand general relativity by using the concepts
of quantum field theory. This viewpoint is nicely reviewed for example in
[Duf73] and [Fey96].

Perturbatively this is done by expanding the metric gµν in small per-
turbations hµν around a background metric ḡµν ,

gµν = ḡµν + hµν , (1.154)

by inserting this expansion into the Einstein-Hilbert action (1.149) and by
applying the rules of quantum field theory to the linearized action. Using
(1.153) it is easy to see that under coordinate transformations, xµ −→
xµ + εµ, hµν transforms as

hµν −→ hµν + ∂µεν + ∂νεµ . (1.155)

The linearized Einstein Hilbert action is the unique action of a massless
spin-2 field hµν which both transforms as (1.155) and is consistent with
Newton’s theory of gravity [Wei65]. For the Minkoswki case, ḡµν = ηµν ,
this linearized Einstein Hilbert action takes the form∫

d4x
[ 1

32πGN

(
1

2
∂λh

µν∂λhµν −
1

2
∂λh∂

λh− ∂λhλν∂µhµν + ∂νh∂µhµν

)
− 1

2
hµνT

µν
]
, (1.156)

with h ≡ hµµ. For convenience the spin-2 field hµν is usually “canonically
normalized” via hµν →

√
GNhµν .

The corresponding linearized Einstein field equations are given by

Πhµν = 8πGNTµν , (1.157)

where Πhµν is the linearized Einstein tensor

Πhµν ≡ 2hµν− ηµνh−∂µ∂αhαν−∂ν∂αhαµ + ηµν∂
α∂βhαβ +∂µ∂νh . (1.158)

The full non-linear theory can be obtained iteratively by considering
the first order perturbations hµν as a source for higher order perturbations
(see e.g. the discussion in [DG14b]).

Using the linearized Einstein Hilbert action one can quantize the field
hµν and one can do perturbative calculations in the “coupling constant” GN

analogously as in other quantum field theories. For a detailed discussion
with many examples of this we refer to [Fey96] and [Duf73].

Since gravity viewed as quantum field theory is not UV complete, the
perturbative results can only be trusted on low enough energies or on scales
much larger than the Planck size.
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1.6 Classical Singularities and Quantum Grav-
ity

Some exact analytical solutions to the classical Einstein field equations have
been discovered (see for example [Wal84]). Historically, the first solution
which was found is the spherically symmetric metric with the following line
element which solves the Einstein field equations Gµν = 0:

ds2 =

(
1− 2MGN

r

)
dt2 −

(
1− 2MGN

r

)−1

dr2 − r2dΩ2 . (1.159)

This metric which is characterized by one free parameter denoted as M is
well known as the “Schwarzschild metric” due to Karl Schwarzschild who
discovered it in 1916 [Sch16].

The metric (1.159) has a curvature singularity at the point r = 0. In
fact, at this point curvature invariants diverge.

Spacetime singularities occur in many classical solutions of the Einstein
field equations. In general the unboundedness of curvature invariants how-
ever turned out not to be a complete satisfactory criterium to characterize
singular spacetimes in general (see e.g. [Wal84] for a detailed discussion).
Therefore, different criteria to characterize the existence of classical space-
time singularities have been proposed. For example, a spacetime is some-
times said to be singular if it possesses (at least) one geodesic which is
incomplete [HP70]. This criterium is used in the context of the well known
“singularity theorems” [HE11].

At spacetime singularites the classical description of general relativity
is expected to break down and quantum effects of gravity are expected to
become dominant. In the case of curvature singularities this breakdown of
the classical description happens at scales at which the curvature invariants
become of Planck size.10

1.7 Classical and Quantum Matter on Classi-
cal Backgrounds

In the cases the spacetime can be treated classically, matter coupled to
this classical background, both in the case matter is treated classically and

10Since the classical description breaks down at (or close to) a spacetime singularity,
it is in fact questionable if classical criteria such as the above mentionned criterium
of geodesic incompleteness are adequate to characterize spacetime singularities or if
quantum criteria should better be used (see e.g. [HS15] for a recent discussion).
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in the case matter is treated as quantum, has been studied a lot. Let us
briefly review some aspects of both cases.

Classical Matter

The equations of motion which describe classical matter on curved back-
grounds are given by the Euler Lagrange equations which can be derived
from the Einstein Hilbert action (1.149) by varying this action with respect
to the matter fields. For the example of a minimally-coupled scalar field φ
with potential V (φ) on a spacetime described by a metric gµν the Einstein
Hilbert action takes the form

S =

∫
d4x
√
−g
(
R +

1

2
gµν∂µφ∂νφ− V (φ)

)
(1.160)

and the Euler Lagrange equations for the scalar field φ become

2gφ =
∂V (φ)

∂φ
, (1.161)

with
2gφ ≡

1√
−g

∂µ
(√
−ggµν∂νφ

)
. (1.162)

Similar equations can be obtained for higher spin fields coupled to gravity.

Quantum Matter

A regime which is often studied in the literature is the regime in which
the gravitational degrees of freedom are treated as classical whereas the
matter fields which are coupled to the classical spacetime are treated as
quantum. This “semiclassical” regime is supposed to arise from the full
theory of quantum gravity where both gravitational and matter degrees
of freedom are quantized in some semi-classical limit. This can be seen
in analogy to the regime of “strong electromagnetic fields”, considered for
example in the book [GMR85] and in the references therein.

One of the most important physical effects which can appear in this
regime is the effect of particle antiparticle creation. We briefly review the
canonical formalism which is usually used in semiclassical gravity for the
case of a minimally-coupled scalar field.11 We focus on how the effect of
particle antiparticle creation is implemented in this formalism. For more
details we refer to reviews in the literature, for example [MW07], [BD84]
and [DeW75].

11Alternatively, one can use path integral techniques.
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Given a background solution gµν of the (vacuum) Einstein equations,
one usually starts with the classical action (1.160) with the classical solution
gµν inserted and, in complete analogy to the canonical quantization of scalar
fields in flat spacetimes, performs a mode expansion

φ(t, x, y, z) =

∫
d3k

(2π)
3
2

(
âkv

∗
k(t) + â+

−kvk(t)
)
eikx , (1.163)

with
[âk1 , â

+
k2

] = δ(k1 − k2) ,

[âk1 , âk2 ] = [â+
k1
, â+

k2
] = 0 . (1.164)

One then derives the equations of motions for the “mode functions” vk(t)
(the “mode equations”) via (1.161) and normalizes these mode functions
such that

d

dt
vkv
∗
k − vk

d

dt
v∗k = 2i . (1.165)

The left hand side is known as the (time independent) Wronskian. This
normalisation condition is needed for φ and its canonical momentum to
satisfy the standard canonical commutation relations. The vacuum state
|0〉 is defined by

âk |0〉 = 0 . (1.166)

The mode functions vk(t) are by the mode equations and the normalisation
condition (1.165) however only defined up to a Bogoliubov transformation,
indeed one can also choose alternative mode functions ṽ′k(t) which can be
expressed in terms of the “old” mode functions vk as

ṽk′ =

∫
(αkk′vk + βkk′v

∗
k) dk , (1.167)

whenever the time independent complex coefficients αk and βk satisfy∫
dk (αkk′α

∗
kk′′ − βkk′β∗kk′′) = δ(k′ − k′′) . (1.168)

Therefore also the vacuum (and the corresponding Fock space) is not uniquely
defined by (1.166). In fact, using the “new” mode functions implies the use
of “new” annihilation (and creation) operators b̂k (and b̂+

k ) which can be
expressed in terms of the “old” ones âk and â+

k as

b̂k =

∫
dk′
(
αkk′ âk′ + βkk′ â

+
k′

)
. (1.169)

The equality âk |0〉 = 0 does not imply the equality b̂k |0〉 = 0. This is
formally the source of particle antiparticle creation in spacetimes which do
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not have a global timelike killing vector field. In such spacetimes different
observers use different (local) timelike killing vector fields and therefore
identify different mode functions (all related by a Bogolubov transforma-
tion) as positive and negative frequency functions which they use to define
what they mean with “particles” and “antiparticles”. In other words, there is
no invariant meaning of positive and negative frequency functions in space-
times without a global timelike killing vector field and different observers in
such spacetimes disagree on what they call vacuum. Thus, if one observer
observs a state occupied with no particles, some other observers observing
the same state interpret it as a state containing particles.

Hawking applied this reasoning to the case of the Schwarzschild space-
time (1.159) and in this way discovered the famous Hawking radiation
which we will recall after having introduced classical black holes in the
next chapter.



2. Black Holes

Due to J. A. Wheeler objects with escape velocity larger than the speed
of light are called “black holes”. After some early ideas about such objects
with escape velocity larger than the speed of light, based on Newtonian
gravity (for example by Michell [Mic84] and by Laplace [Lap96]), the study
of black holes became a popular research topic only later in the context
of general relativity. The Schwarzschild metric (1.159) characterizes the
simplest known classical black hole solution in general relativity (it can be
completely described by one parameter, its mass M). This metric has an
event horizon at r = 2MGN , indeed a surface such that light emitted from
the inside can never reach an outside observer. (Due to the existence of this
surface, the Schwarzschild metric describes therefore a black hole.12) More
complicated black hole solutions (completely describable only by more than
one parameter) are also known in general relativity. In Einstein-Maxwell
theory (without sources) the number of these different black hole solutions is
however limited; under the assumption of analyticity, all classical stationary
non-extremal asymptotically-flat black holes which can be found as black
hole solutions with regular event horizon in source-free Einstein-Maxwell
theory are completely describable by the three parameters mass, electric
(and magnetic) charge and angular momentum (“uniqueness theorems”)
[Isr67, Isr68, Car71, Rob74, Rob75, Maz82] (see also [Heu96], [CLCH12],
[Maz00] and [Car79] for some reviews and for further references therein).
These black holes are known as “Kerr-Newman black holes”.

It has been conjectured that black holes (and no “naked singularities”)
are formed in every gravitational collapse which leads to a spacetime sin-
gularity [Pen69].

Wheeler and Ruffini conjectured in 1971 that every asymptotically-flat
black hole (which is formed by gravitational collapse) is completely describ-
able by its mass, electric (and magnetic) charge and angular momentum

12Note that the point r = 2MGN in the metric (1.159) is a “coordinate singularity”,
indeed the solution is perfectly regular at r = 2MGN . This can be seen for example
by using Eddington-Finkelstein coordinates [Edi24, Fin58]. From the historical point of
view it took a long time to realize this.

51
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- not only black holes in (source-free) Einstein-Maxwell theory [RW71].
They emphasized that electric charge for example is distinguished when
compared to many other physical parameters in the sense that it is associ-
ated to a Gauss law. Therefore, the association of a Gauss law to a physical
parameter is in the spirit of Wheeler and Ruffini sometimes conjectured to
be a nessecary and sufficient condition for the parameter to describe a
black hole (“no-hair conjecture”). This conjecture has been proven clas-
sically for several special types of non-Maxwellian matter (“no-hair theo-
rems”13), most prominently by Bekenstein [Bek72c, Bek72b, Bek72d], Teit-
elboim [Tei72a, Tei72b] and Hartle [Har71]. However, from the late 80s
on many classical black hole solutions of the Einstein field equations (with
different matter sources) with primary hair (with parameters not associa-
ble to a Gauss law) have been discovered (see e.g. [VG99, HR15b, Vol17,
Biz94, Bek96] for some reviews). Although many of these solutions turned
out to be dynamically unstable (in Lyapunov sense), some of them are
known to be stable against perturbations (on the linear level). All of the
asymptotically-flat and spherically-symmetric black hole solutions of this
kind which are known to be stable against spherically-symmetric linear
perturbations are black hole solutions of the Einstein field equations where
the matter source is played by a topological soliton. In this sense, it seems
therefore that topology is a necessary condition for spherically-symmetric
and asymptotically-flat classical hairy black holes to be dynamically stable
against linear perturbations.

Classical black hole hair can be detected via classical experiments, for
example via classical scattering of waves.

On top of classical hair, black holes can also carry certain types of
quantum hair, indeed parameters which desribe a black hole but become
invisible in the classical limit and which therefore can only be detected via
quantum experiments. Different types of quantum hairs have been discov-
ered, for example black hole parameters which characterize a black hole
but can only be detected via quantum Aharonov-Bohm-type experiments
(“Aharonov-Bohm-type black hole hair”). Recently, in the literature, also
“soft black hole hair” [HPS16, ADGL16] and black hole hair which are due
to a proposed quantum microscopic substructure of the black hole (“quan-
tum 1/N hair”, [DG13a]) have been discussed.

In the following subsections we briefly recapulate the Kerr-Newman
black hole solutions and the uniqueness theorems in Einstein-Maxwell the-
ory without sources, the no-hair conjecture and no-hair theorems, classical
black hole hair and the role of topology in this context, scattering of clas-

13Sometimes in the literature also some of the black hole uniqueness theorems in
Einstein-Maxwell theory are referred to as “no-hair theorems”.



KERR-NEWMAN BLACK HOLES AND UNIQUENESS THEOREMS53

sical waves by black holes as one way to detect classical black hole hair,
quantum Aharonov-Bohm-type black hole hair and 1/N black hole hair.

2.1 Kerr-Newman Black Holes and Unique-
ness Theorems

In addition to the Schwarzschild black hole solution (1.159), electrically-
charged “Reissner-Nordstroem black holes” [Rei16, Nor18] and rotating (ax-
isymmetric) “Kerr black holes” [Ker63] have been discovered as asymptotically-
flat black hole solutions of the source-free Einstein-Maxwell equations.
Newman discovered the “Kerr-Newman black holes” which are black holes
which are both electrically-charged and rotating [NJ65, NCC+65]. These
Kerr-Newman black holes are described by the metric with line element (in
Boyer-Lindquist coordinates [BL67])

ds2 = −
(
dr2

A
+ dθ2

)
ρ2 +

(
dt− J

M
sin2θdφ

)2
A

ρ2

−

((
r2 +

(
J

M

)2
)
dφ− J

M
dt

)2
sin2θ

ρ2
, (2.170)

with

ρ2 ≡ r2 +

(
J

M

)2

cos2θ ,

A ≡ r2 − 2GNMr +

(
J

M

)2

+Q4G2
N . (2.171)

Here Q can be identified as the electric charge of the black hole, M as
its mass and J can be interpreted as its angular momentum. For J = 0
this is the line element of the Reissner-Nordstroem metric, for Q = 0 this is
the line element of the Kerr metric and for Q = J = 0 it reduces to the line
element of the Schwarzschild metric. For M2 = J2

M2 +Q2 the corresponding
black holes are known as “extremal black holes”.

All these spacetimes are stationary, that is they admit an asymptotically
timelike killing vector field. The Scharzschild and Reissner-Noerdstroem
spacetimes are static, that is the killing vector field k wich generates the
stationary symmetry is hypersurface-orthorgonal (that is k ∧ dk = 0). The
Kerr-Newman spacetime is axisymmetric, that is it has a rotation axis and
is invariant under the SO(2) transformations with the rotation axis as fix
point.
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Under the assumption of an analytic spacetime, it has been proven that
all non-extremal asymptotically-flat stationary black hole solutions with
regular event horizon of the source-free Einstein-Maxwell equations can
classically be completely characterized by the parameters mass, electric
(and magnetic) charge and angular momentum J ; in other words, assuming
analyticity of the spacetime, that the non-extremal Kerr-Newman metric
completely characterizes any stationary asymptotically-flat classical non-
extremal black hole solution of Einstein-Maxwell theory without sources
[Isr67, Isr68, Car71, Rob74, Rob75, Maz82]. The according theorems are
the “black hole uniqueness theorems” (see also [Heu96], [CLCH12], [Maz00]
and [Car79] for some reviews). In fact, Israel gave a first proof of the stat-
ment that all static asymptotically-flat non-extremal black hole solutions of
Einstein-Maxwell theory without sources which have a horizon with spher-
ical topology can classically be completely described by the Schwarzschild
or Reissner-Nordstroem metric [Isr67, Isr68] (see also [MzHRJa, MzHRJb,
Sim85, Bun, BuAAKM87] for different proofs and technical assumptions
involved). Carter [Car71], Robinson [Rob74, Rob75] and Mazur [Maz82]
showed that all non-extremal axisymmetric asymptotically-flat stationary
black hole solutions of the source-free Einstein-Maxwell equations which
have a horizon with spherical topology can classically be completely de-
scribed by the Kerr-Newman metric. Since, assuming that the space-
time is analytic, all stationary asymptotically-flat black hole solutions of
Einstein-Maxwell theory (without sources) are either static or axisym-
metric and have a horizon with spherical topology (“rigidity and static-
ity theorems” [Haw72a, HE11, Chr97]) this proves the uniqueness of the
non-extremal Kerr-Newman metric for stationary black hole solutions in
Einstein-Maxwell theory (without sources) in the asymptotically-flat case
in the case of analytic spacetimes.

2.2 No-Hair Conjecture and No-Hair Theo-
rems

In the spirit of Wheeler and Ruffini [RW71] it was sometimes conjectured
that even beyond Einstein-Maxwell theory, for any kind of matter, all black
hole solutions of the Einstein field equations (with any conserved energy
momentum tensor) can classically be completely described by parameters
which are associable to a Gauss law. Parameters which are not associable
to a classical Gauss law and which nevertheless can characterize a black
hole are sometimes referred to as “primary black hole hair”. Thus, one for-
mulation of the conjecture of Wheeler and Ruffini is that black holes do
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not carry classical primary hair (“no-hair conjecture”).14

For certain energy momentum tensors coupled to Einstein gravity, the
no-hair conjecture in fact was proven to be correct, for example in [Bek72c,
Bek72b, Bek72d], Teitelboim [Tei72a, Tei72b] and Hartle [Har71]. Let us,
for illustration, briefly review the simple and elegant proof of one such “no-
hair theorem”. Namely, we will recall one proof which shows that, under
the assumption of analyticity, for a stationary asymptotically-flat (rotating)
black hole, a minimally-coupled real scalar field Φ with massm which obeys
∂tΦ = ∂φΦ = 0 cannot appear as classical black hole hair [Bek72c, HR15b].
This setup is described by the action

S =

∫
d4x
√
−g
(
R− 1

2
gµν∂µΦ∂νΦ−

m2

2
Φ2

)
, (2.172)

where R is the Ricci scalar. The scalar field obeys the Klein Gordon equa-
tion on curved spacetime (1.161). Let us now assume that a stationary
asymptotically-flat black hole exists as solution of the field equations cor-
responding to (2.172) and then show that in such a case the scalar field Φ
either has to vanish everywhere or becomes singular at the event horizon at
the black hole. This conclusion implies that no regular massive minimally-
coupled real scalar field can be a classical black hole hair in the case of
stationary asymptotically-flat black holes.

As a first step in the proof, let us multiply the equation of motion for
Φ by Φ and integrate over the exterior region of the black hole,∫

d4x
√
−g
(
Φ∇µ∇µΦ− Φm2Φ

)
= 0 . (2.173)

Integrating the first term by parts, assuming Φ to be regular at the horizon,
gives ∫

d4x
√
−g
(
−∇µΦ∇µΦ−m2Φ2

)
+

∫
d3xnµΦ∇µΦ = 0 , (2.174)

where the second integral is taken over the black hole horizon with normal
vector nµ (the boundary term at spatial infinity vanishes because the space-
time was assumed to be asymptotically-flat). Since, under the assumption

14On top of classical primary black hole hair, also so-called “secondary” black hole hair
are discussed in the literature. These “secondary hairs” are parameters that characterize
a classical black hole and are not associated to a Gauss law which can however completely
be re-parametrized (or “re-expressed”) in terms of parameters associated to a Gauss law.
Famous examples for such classical secondary black hole hairs are conformally coupled
scalar fields [BBM70, Bek74a, Bek75]. Another well-known example is discussed in
[Gib82].
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of analyticity, the event horizon of any asymptotically-flat and stationary
spacetime is killing [Haw72a, HE11, Chr97], the boundary term of (2.174)
vanishes provided analyticity. This implies∫

d4x
√
−g
(
∇µΦ∇µΦ +m2Φ2

)
= 0 . (2.175)

This equality can only hold if Φ = 0.

For many other kinds of matter Lagrangians similar theorems and proofs
do exist. We however want to emphasize that such theorems do not exist
for all possible matter Lagrangians. In the following section we will point
out several examples of matter Lagrangians for which classical black hole
hair can in fact exist.

2.3 Classical Black Hole Hair and Topology
In the late 1980s it turned out that for certain types of (non-Abelian) mat-
ter there exist black hole solutions of the classical Einstein field equations
which are classically not completely describable by parameters which are
associated to a Gauss law and which therefore violate the no-hair conjec-
ture. Most prominently, Volkov and Gal’tsov discovered numerical hairy
black hole solutions in Einstein-Yang-Mills theory with gauge group SU(2)
[VG89], indeed black hole solutions of the Lagrangian

L =
√
−g
(

1

4
R− 1

4
F a
µνF

aµν

)
, (2.176)

where R is the Ricci scalar and F a
µν ≡ ∂[µA

a
ν] + εabcAbµA

c
ν , which can-

not be completely characterized by parameters associated to a Gauss law.
They found these solutions by making the following spherically-symmetric
ansatzes for the metric g and the gauge field Aaµ

ds2 = N2(r)h(r)dt2 − dr2

h(r)
− r2dΩ2 , (2.177)

Aai = εaik
xk

r2
(1− w(r)) , (2.178)

with the ansatz-functions N(r), h(r) and w(r), and by solving the Ein-
stein field equations with appropriate boundary conditions for the ansatz-
functions. For certain boundary conditions there exist black hole solutions,
indeed solutions with event horizon rh (a point rh such that h(rh) = 0),
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where in particular for r → ∞ the Yang-Mills field strength behaves as
F a
ij → 1

r3
. Therefore, this field strength is not associated to a Gauss

law and cannot be seen from far away. From infinity these black holes
which were found for arbitrary event horizon sizes in fact are indistin-
guishable from Schwarzschild black holes. However the solution-metric de-
scribing these black holes is in the near-horizon regime different from the
Schwarzschild metric. This shows that for given ADM mass a black hole
therefore is not uniquely characterized (for given ADM mass there exist
both the Schwarzschild black hole metric and the metric found by Volkov
and Gal’tsov as black hole solution). Numerically, it is relatively easy to find
the black hole solutions outside of the event horizon [VG89, VG90, Biz90]
but much more involved to obtain solutions inside of the event horizon
[BLM98, DGZ97]. For plots where the solution functions N(r), h(r) and
w(r) are visualized both inside and outside of the event horizon we refer
for example to the review [VG99].

On top of the hairy black holes in Einstein-Yang-Mills theory with gauge
group SU(2) many other hairy black holes have been discovered (for differ-
ent matter Lagrangians), see e.g. [VG99, HR15b, Vol17, Biz94, Bek96] for
some reviews. There are both hairy black holes which are asymptotically-
flat and hairy black holes which are asymptotically de Sitter or anti de
Sitter. Many of these hairy black holes turned out to be dynamically unsta-
ble. To my knowledge the only spherically-symmetric and asymptotically-
flat black hole solutions with classical hair which are known to be stable
against perturbations have in common that they are obtained as solutions
of the Einstein field equations with a matter Lagrangian coupled to grav-
ity which (in flat spacetime) allows for topological solitons as non-trivial
lowest-energy configurations. Thus, from what we know today, in this
sense topology seems to be a necessary condition for asymptotically-flat
and spherically-symmetric hairy black holes to be dynamically stable (at
least against perturbations). This can be the Lagrangian which allows
for magnetic monopoles as non-trivial lowest energy configurations (the
Lagrangian of Einstein-Yang-Mills-Higgs theory) or the Lagrangian which
allows for skyrmions as non-trivial lowest energy configurations.

These asymptotically-flat hairy black holes which are known to be dy-
namically stable against perturbations, all have in common that (in contrast
to the SU(2) case by Volkov and Gal’tsov) they are known for parameters
and boundary conditions (for the ansatz-functions) chosen such that the
black hole event horizon of the hairy black hole is smaller than a maximal
possible size which is set by a characteristic length scale associated to the
topological soliton. Therefore, for “small” solitons these black holes are
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typically very “small” and the event horizon is located inside of the core of
the soliton; they are thus also sometimes called “horizons inside classical
lumps” [KT92].

2.4 Scattering of Probe Waves by Black Holes
and Detecting Classical Hair

Scattering of classical probe waves by black holes has been a research topic
since the 1960s when Hildreth [Hil64] and Matzner [Mat68] first studied
cross sections of probe (scalar) waves scattered by black holes. Since to-
day much work has been done on that topic and detailed scattering and
absorption cross sections for many different kinds of probe waves scat-
tered by many different types of black holes have been obtained (see e.g.
[FHM12] and references therein and [GA01, DLDH05, DDL06, COHM07,
CDO09b, CDO09a, CHO09, OCH11, MLO+13, BdODC14, Spo17] for some
more recent works). Typically the cross sections of a probe wave scattered
by a black hole differ for the same wave scattered by different black holes
with same asymptotic characteristics but different near-horizon geometries.
Therefore, since black holes with and without classical hair are character-
ized by the same asymptotic characteristics but different near-horizon ge-
ometries, using classical scattering of (probe) waves is a natural way to
discriminate black holes with and without classical hair.

In the simplest case of a probe wave - a monochromatic massless scalar
wave Φ - the quantitative analysis to obtain cross sections is usually done
as follows. The motion of the scalar field in the background spacetime
of a classical black hole which is described by a metric g is given by the
Klein-Gordon equation (1.161) with zero mass,

2gΦ = 0 , (2.179)

where 2g is the d’Alambert operator in the spacetime of the black hole
with metric g. With the expansion

Φ(t, r, θ, φ) =
∑
lm

AWl(r)

r
Ylm(θ, φ)e−iWt , (2.180)

where Ylm(θ, φ) are the standard spherical harmonics, one can separate
this equation into a radial part and an angular part. For a black hole
metric g which is parametrized by the line element (2.177) with h(x) ≡
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1− 2M(x)GN
x

)
,

ds2 = N2(r)

(
1− 2M(r)GN

r

)
dt2 −

(
1− 2M(r)GN

r

)−1

dr2 − r2dΩ2 ,

(2.181)
the radial part can be written as

∂2
x∗Awl(x) +

(
w2 − Veff (x)

)
Awl(x) = 0 , (2.182)

where x∗ is defined as

∂x∗ = N(r)

(
1− 2M(r)GN

r

)
∂r (2.183)

and the effective potential Veff (x) is given by

Veff (x) = N2(x)h(x)
l(l + 1)

x2
+
N(x)

x
h(x)∂x (N(x)h(x)) . (2.184)

In this form the radial part has the form of a Schroedinger equation.
Cross sections can therefore be analyzed by using the same methods which
are used in the study of quantum (one-dimensional) scattering theory.

One can, for example, perform a partial wave analysis in order to obtain
scattering (or absorption) cross sections. The effective potentials Veff (x)
for black holes usually obey Veff (x

∗) → 0 for x∗ → ∞. Therefore, for
x∗ →∞, one can write

Awl(x
∗)→ A

(1)
wl e
−iwx∗ + A

(2)
wl e

iwx∗ , (2.185)

where A(1)
wl and A(2)

wl are two complex coefficients. For x∗ → −∞ one can
choose the boundary condition

Awl → A
(3)
wl e
−iwx∗ , (2.186)

with a complex coefficient A(3) which satisfies

|A(1)
wl |

2 + |A(2)
wl |

2 = |A(3)
wl |

2 . (2.187)

Choosing this boundary condition means that we consider a monochromatic
wave which is purely ingoing (at the horizon).

The differential scattering cross section can then be obtained as (see
e.g. [New82])

dσ

dΩ
= |h(θ)|2 , (2.188)
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where

h(θ) =
1

2iw

∞∑
l=0

(2l + 1)
(
e2iδl(w) − 1

)
Pl(cosθ) , (2.189)

with Pl the Legendre Polynomials. δl(w) are the phase shifts defined as

e2iδl(w) = (−1)l+1A
(2)
wl

A
(1)
wl

. (2.190)

Depending on the form of the effective potential, it might be difficult to
calculate the sum. There is however a method which has been developed
long time ago in the context of classical Coulomb scattering [YRW54] (the
“method of reduced series”) and which can also be applied in the case of
black holes.

Typically scattering cross sections obtained in this way by a partial
wave analysis are characterized by certain “glory peaks” and the location
of these peaks can characterize a black hole very well.

In certain regimes, in particular for high frequencies and scattering an-
gles θ ≈ π, there exist approximation methods which can be used in order
to obtain scattering cross sections without doing a detailed partial wave
analysis (see e.g. [HM80, MDMNZ85]).

In our work we used black holes which can be parametrized by the
above-mentioned metric and used both a detailed partial wave analysis
and certain approximation methods in order to find diffential scattering
cross sections for several monochromatic scalar waves scattered by these
black holes. We showed by considering several examples that (for these
examples) the scattering cross sections for black holes with and without
hair differ. The characteristic glory peaks are located at different scatter-
ing angles. Therefore, scattering cross sections can be used in order to
discriminate these black holes.

One can generalize this analysis in several directions, for example one
can easily study also cross sections caused by waves of higher spin, for
example electromagnetic waves or gravitational waves.
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2.5 Quantum Aharonov-Bohm-Type Black Hole
Hair

On top of the classical black hole hair discussed so far, several so-called
Aharonov-Bohm-type (quantum) black hole hair have been discussed in
the literature. These hairs are parameters which can characterize a black
hole but which do not gravitate in the sense that they do not appear in the
classical black hole metric. These black hole parameters are only measur-
able via (quantum) Aharonov-Bohm-type experiments (and not classically).
Let us briefly review some aspects of the different kinds of Aharonov-
Bohm-type black hole hair which have been discussed in the literature
[KW89, PK90, CPW92, BGH+88, ABL90, KR91, Dva06]: Discrete ZN
Aharonov-Bohm hair, axion Aharonov-Bohm hair (both massless and mas-
sive) and massive spin 2 Aharonov-Bohm hair. For more details we refer
to [KW89, PK90, CPW92, BGH+88, ABL90, KR91, Dva06].

ZN Hair:

Discrete (ZN) gauge theories can be realized in a model with two complex
scalar fields Φ and Ψ which are charged under a U(1) gauge field Aµ such
that Φ has charge N and condenses at some scale v whereas Ψ has charge
1 and does not condense. The Lagrangian for such a model is given by

L = −1

4
FµνF

µν+| (∂µ − ieNAµ) Φ|2+| (∂µ − ieAµ) Ψ|2−V (Φ,Ψ) , (2.191)

where Fµν ≡ ∂[µAν], e is the gauge coupling and V (Φ,Ψ) is a potential which
is taken such that Φ condenses at the scale v and Ψ does not condense, e.g.

V (Φ,Ψ) = λ(Φ2 − v2)2 , (2.192)

with a constant parameter λ. This Lagrangian (2.301) is invariant under

Aµ → Aµ +
1

e
∂µα(x) ,

Φ→ eiNα(x)Φ ,

Ψ→ eiα(x)Ψ , (2.193)

where α(x) is a gauge transformation function.
When Φ condenses and develops a vacuum expectation value (vev), the

Lagrangian (2.301) allows for cosmic strings. The vev v of Φ is invariant
under the above transformation only when α(x) is an integer-multiple of
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2π
N
. Since Ψ transforms nontrivially under these “residual” gauge transfor-

mations, the original U(1) theory is broken down to a discrete ZN theory
when Φ condenses. If a quantum of Ψ moves once around the cosmic string,
an Aharonov-Bohm phase is induced via (1.4)∮

Aµdx
µ . (2.194)

Here dxµ parametrizes the world line of the particle. That is also the case if
this quantum is inserted into a black hole because (2.194) does not depend
on whether the particle crossed a black hole horizon or not. In this sense
the black hole develops a ZN hair.

Axion Hair:

A different kind of Aharonov-Bohm-type hair has been discussed in the
context of axions [BGH+88]. In the case of massless axions, the Lagrangian
for the two-form axion field Bµν is given by

Laxion = HµναH
µνα , (2.195)

where the field strength H is defined as H = dB. The axion charge q can
be defined as

q =

∮
S2

B . (2.196)

Note that due to the existence of the field B, q can be non-zero also if
H is vanishing. This is the case for example if Bµν = qεµν

4πr2
with εµν the

volume-form on S2.
A solution to the coupled Einstein-axion equations,

Gµν =
16πGN√
−g

δ (
√
−gLaxion)

δgµν
, (2.197)

is given by

ds2 = −
(

1− 2MGN

r

)
dt2 +

(
1− 2MGN

r

)−1

dr2 + r2dΩ2 ,

Bµν =
qεµν
4πr2

. (2.198)

The corresponding field strength vanishes everywhere except at the origin,

εµναHµνα = qδ(3)(x) . (2.199)
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That this is in fact the unique solution was shown in [BGH+88]. Since the
axion charge q is defined at infinity, it is irrelevant if the charge-carrying
axion crossed the event horizon of the black hole or not. In particular if
the axion with charge q is inserted into a black hole, the above solution
describes the system correctly.

The axion charge of the black hole can be measured via a stringy-
generalisation of the Aharonov-Bohm effect. In fact, if a string couples
to the axion field B an Aharonov-Bohm phase shift is induced via∮

BµνdX
µ ∧ dXν = q , (2.200)

where Xµ are the string embedding coordinates. This phase shift leads to
a physical effect whenever q is not an integer-multiple of 2π.

A generalisation to the case of massive axions is studied in [ABL90].

Massive Spin-2 Hair:

That black holes can also be charged under massive spin-2 was argued in
[Dva06]. Let us here briefly review the essence of that argument.

The unique ghost-free (linearized) theory of massive spin-2 is given by
the Pauli-Fierz action [FP39] which leads to the following equation of mo-
tion for the massive spin-2 field hµν with mass m

Παβ
µνhαβ = m2 (hµν − ηµνh) . (2.201)

Here h ≡ hαα and Παβ
µν is the linearized Einstein tensor (1.158).

The massive spin-2 field hµν has five degrees of freedom which can be
decomposed into two degrees of freedom of a field ĥµν and three degrees of
freedom of a massive “Stueckelberg” gauge field Aµ as

hµν = ĥµν + ∂µAν + ∂νAµ . (2.202)

It is then argued in [Dva06] that among all possible configurations of hµν
(allowed by the equations of motion) there are configurations where hµν
is classically zero (pure-gauge) but nevertheless can produce a non-trivial
phase shift at infinity in appropriate Aharonov-Bohm-type experiments.
These are configurations where Aµ takes the form of a Dirac magnetic
monopole,

Aµ =
(cos(θ)− 1)

rsin(θ)
∂µφ (2.203)



64 2. BLACK HOLES

on the upper hemisphere and

Aµ =
(cos(θ) + 1)

rsin(θ)
∂µφ (2.204)

on the lower hemisphere and ĥµν ≡ −(∂µAν + ∂νAµ).
Although hµν is pure gauge everywhere, one can detect such a config-

uration via stringy generalisation of the Aharonov-Bohm effect provided
there exists a probe string which couples to Fµν ≡ ∂[µAν] as

gFµν

∫
d2σ∂aX

µ∂bX
νεabδ(4)(x−X) , (2.205)

with g a coupling constant which is not an integer, σ the world-sheet coor-
dinates of the string and Xµ(σ) the embedding coordinates. In fact, if g is
non-integer the change in the action,

∆S = 4πg , (2.206)

in a process in which the probe string encloses a black hole which swal-
lowed a particle charged under massive spin-2 induces, can be detected via
Aharonov-Bohm effect.

2.6 Semiclassical Black Holes, Hawking Radi-
ation, Quantum Black Holes and 1/N Hair

On top of the pure classical studies of black holes, there have been done
a lot of studies on quantum fields in classical black hole backgrounds and
on quantum black holes. We briefly review some of the aspects studied in
these contexts and point out implications which these studies have on the
topic of black hole hair.

Semiclassical Black Holes and Hawking Radiation

The Schwarzschild spacetime (1.159) has an event horizon and therefore
no global timelike killing vector field. As reviewed in the last section we
therefore expect particle anti-particle creation to happen in this spacetime if
we consider quantum fields on the classical black hole backround. In general
these created particle anti-particle pairs then backreact on the classical
spacetime (1.159), there is however a particular double scaling limit in
which this backreaction is absent. This is the limit [Dva16]

GN → 0,M →∞, GNM kept fix , (2.207)
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in which in particular gravity is decoupled. In this “semi-classical limit”
the surface area of the black hole event horizon, A = 16πG2

NM
2, is kept

fix. Thus, although in this limits a black hole becomes infinitely heavy, it
has a finite size. What is known as “black hole thermodynamics”, which we
will briefly review in what follows, can be understood self-consistently in
this limit.

The research topic of black hole thermodynamics was born when Beken-
stein conjectured with the help of Gedankenexeriments that a black hole
has an intrinsic entropy SBH which is proportional to the surface area of
its event horizon [Bek72a, Bek73],

SBH ∝
A

L2
P

, (2.208)

where LP is the Planck length which can be related to Newtons constant
GN via

L2
P ≡ ~GN . (2.209)

Therefore, there exists a second law of thermodynamics for the black hole
event horizon which can be stated as follows: The black hole event horizon
never decreases. This is exactly the statement of the Hawking area theo-
rem (for this theorem and assumptions involved one may consult [Haw71,
Haw72b, HE11]).15 On this level of the discussion the concept of black hole
entropy should be understood as a phenomenological concept analogous to
the Clausius entropy in thermodynamics and not as a statistical concept
analogous to the Boltzmann entropy in thermodynamics.

In the semi-classical limit (2.207) the black hole entropy becomes infinite
if ~ is kept fix. Hawking showed in [Haw74] and [Haw75], by using methods
from semi-classical gravity, that in this limit the black hole emits thermal
radiation with temperature TH given by

TH =
~

8πMGN

(2.210)

and that a first law of thermodynamics holds in semi-classical black hole
physics:

dM = THdSBH . (2.211)
Using this result one can also determine the proportionality constant be-
tween the area and the entropy of the black hole event horizon as

SBH =
A

4L2
P

. (2.212)

15If a physical system consists of a black hole and any other subsystem which carries
entropy, the second law states that the total entropy (the sum of the black hole entropy
and the entropy of the other subsystem) never decreases.
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On the level of this discussion there are many open questions about
black hole thermodynamics. For example, from the discussion above, it is
not clear if (and how) the entropy of a black hole can be understood as a
statistical concept. Such an understanding would require certain black hole
microstates. It is often argued that some of the open questions can only be
answered if we treat black holes as quantum mechanical objects instead of
describing them by a classical metric.

Quantum Black Holes

We will in what follows point out two examples of ideas about quantum
black holes.

One line of research follows some early ideas which have been pointed
out for example by Bekenstein [Bek74b]. He argued that the black hole
event horizon is an adiabatic invariant and should therefore, in the spirit of
“old quantum mechanics” [Bor25], only take discrete values in a quantum
theory of gravity. We will not elaborate more on this line of research but
refer to the review [Bek00] and to the references therein.

In another line of research a microscopic picture for a black hole, inspired
by methods which are commonly used in condensed matter physics, has re-
cently been suggested by Dvali and Gomez [DG13b, DG14a, DG14b]. They
argued that a quantum black hole can be understood as a Bose-Einstein
condensate of certain microscopic spacetime constituents stuck at the criti-
cal point of a quantum phase transition. In fact, it was assumed that there
exist certain microscopic (quantum) black hole constituents which are the
origin of black hole entropy. If we take N of such quantum constituents
with de Broglie wavelength λ which interact pairwise with an interaction
strength

α =
L2
P

λ2
, (2.213)

these constituents can form a self-sustained bound state

Ekin + V = 0 . (2.214)

This is because each of the N constituents “feels” a potential

V = −(N − 1)α
~
λ
≈ −Nα~

λ
(2.215)

by interaction with all the other constituents. Further, each constituent
has a kinetic energy

Ekin =
~
λ
. (2.216)
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Condition (2.214) is fulfilled whenever

α =
1

N
. (2.217)

Therefore a black hole can be thought of a self sustained bound state made
out of N spacetime constituents of wavelength λ = N

LP
.

The constituents in this bound state may scatter with each other and
constituents may leave the bound state due to this re-scattering. This leads
in leading order of 1

N
to a depletion rate [DG13b]

Γ =
1√
NLP

(2.218)

and to
Ṅ = − 1√

NLP
. (2.219)

In the double scaling limit

N →∞, GN → 0,
√
NGN and ~ kept fix (2.220)

this can be interpreted as a thermal Stefan Boltzmann depletion when we
identify N = SBH and TH = ~√

NLP
. Therefore, in this limit, Hawkings

result of thermal black hole evaporation can be understood consistently.
Beyond that limit (for finite N) we however get 1

N
corrections to this “ther-

mal depletion”,

Γ =
1√
NLP

+
1

LP
O(N−

3
2 ) , (2.221)

Ṅ = − 1√
NLP

+
1

LP
O(N−

3
2 ) . (2.222)

Therefore, thermality of the radiation in this picture is an emergent prop-
erty which only arises in the semi-classical limit. These corrections give
rise to new kind of “microscopic” quantum hair considered in [DG13a].

Black Hole 1
N Hair

In the above described quantum bound state picture of a black hole also
other matter ingrediants can be implemented. In that case the bound state
consists both of microscopic spacetime constituents and of matter quanta.
If the matter quanta rescatter with the microscopic constituents (which
is the case if there are appropriate interaction vertices), they can leave
the condensate and in this sense appear as black hole hair. If there is
a vertex between the matter constituents and the spacetime constituents
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which contributes to the probability of re-scattering with a factor αmatter,
the rate for one single matter constituent goes as

Γmatter = αmatter
1

N
3
2LP

+
1

LP
O(N−

5
2 ) . (2.223)

When compared to the depletion rate (2.218) this is a 1
N
-effect.

These matter constituents can for example be baryons. If there are B
baryons in the bound state with N spacetime constituents, the rate will be

Γbaryon = αbaryon
B

N
3
2LP

(
1 +O

(
B

N

))
. (2.224)

This leads to a depletion of the baryon number of the form

Ḃ = − 1√
NLP

B

N

(
1 +O

(
B

N

))
. (2.225)

Therefore, compared to the depletion of spacetime constituents (2.219) this
is a B

N
effect. This effect vanishes in the semi-classical limit if we keep B

fixed. It however remains in the semi-classical limit if we both take N and
B to infinity with the ratio B

N
kept fixed.

There are also many other ideas related with quantum black holes dis-
cussed in the literature which we will however not recall here.

2.7 Holography and Gauge Gravity Correspon-
dence

We have pointed out in (2.208) that the entropy of a black hole scales as the
area of its event horizon and not for example as the volume bounded by the
black hole event horizon. This behaviour of black hole entropy can motivate
the idea that the whole information about the black hole is “holographi-
cally” encoded in its event horizon. This idea as well as the generalisation
of this idea to other physical systems without black holes (the question
whether it is possible to encode the entire information of a theory defined
in a given bounded volume in another (effective) theory which is living on
the boundary of that volume) have been discussed a lot in the literature
starting with the work of ‘t Hooft in 1993 [tH93] (see e.g. [Bou02] for a
review).

One approach which implements this “holographic principle” beyond
black hole physics in a concrete framework is the AdS/CFT conjecture
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[Mal99, Wit98] (see also [AE15] for a pedagogical introduction). According
to the AdS/CFT conjecture, it is possible to relate the whole physical con-
tent of a certain gravitational “bulk” theory in a dynamical boundary theory
which is in this sense dual to the bulk theory. In fact, it is conjectured that
N = 4 Super Yang-Mills theory [DP99] with gauge group SU(NC) and
Yang-Mills coupling constant g in (3 + 1) spacetime dimensions (which is a
conformal field theory) is dual to type IIB superstring theory on AdS5×S5

with string length l and coupling constant gs ≡ g2

2π
. Several consistency

checks have been performed in order to “test” this conjecture in certain
limits [AE15]. In many cases it is however not possible to perform exact
calculations on both sides of the correspondence. If the AdS/CFT conjec-
ture is correct, this implies that in such cases by doing a pure gravitational
calculation one can get results in the strongly coupled field theory which
one cannot obtain by doing a pure field theoretical calculation.
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3. Outline

In the following parts of this thesis we summarize our research papers as
well as many unpublished results [DG16, DG17, Gus17, Guß17, GSW18].
For more details we refer to the original publications.

In part II of this thesis we shall summarize our results of the paper
[DG16]. This paper makes use of the following topics which we have re-
viewed in part I of this thesis: Effective field theories (reviewed in 1.2),
sigma models and skyrmions (reviewed in 1.3.3, 1.3.4 and 1.4), the Aharonov-
Bohm effect (reviewed in 1.3.1), classical gravity (reviewed in 1.5), classical
matter on classical backgrounds (reviewed in 1.7) and all the topics of black
hole physics which we reviewed in 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6.

We shall review the known black hole solutions with classical skyrmion
hair in the asymptotically flat and spherically symmetric case in great de-
tail. We shall then point out that the so-called black hole bound on the
maximal allowed number of particle species for which strong quantum grav-
ity effects can be ignored [Dva10, DR08, DG09] plays an important role
in understanding the parameter space of solutions in which black holes
with classical skyrmion hair do exist. We shall show that, on top of the
known black holes with classical skyrmion hair, there exist also black holes
with quantum skyrmion hair of Aharonov-Bohm-type. We shall show that
these Aharonov-Bohm-type skyrmion black hole hair can exist for arbitrar-
ily large black holes whereas the classical skyrmion black hole hair has been
found only for black holes which are smaller than a critical size. We shall
review the so-called black hole folk theorems and argue that the existence
of black holes with skyrmion black hole hair provides a loophole in the proof
of the black hole folk theorems which allows for a self-consistent possibility
of baryon number conservation by black holes. We propose a dynamical
process which realizes baryon number conservation by black holes. We shall
also point out that the existence of black holes with skyrmion hair implies a
loophole in a standard argument which is often used in order to justify the
so-called weak-gravity conjecture. Finally, we show that classical skyrmion
hair can be detected via classical scattering of waves by calculating scatter-
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ing cross sections of massless minimally-coupled scalar waves scattered by
black holes with and without classical skyrmion hair (which both have the
same asymptotic characteristics) numerically. We find that the locations of
the characteristic peaks in the differential scattering cross sections depend
on whether the black hole carries a classical hair or not and determine the
shift in the location of these peaks “induced” by the black hole hair in some
concrete cases quantitatively.

In part III of this thesis we shall summarize our results of the paper
[DG17] and point out some related unpublished results. This paper is a
follow-up paper of [DG16]. In addition to the topics on which [DG16] is
based on, [DG17] makes use of the following topics which we have reviewed
in part I of this thesis: Cosmic strings (reviewed in 1.4), the Witten effect
(reviewed in 1.4) as well as textures and point defects in different spacetime
dimensions (reviewed in 1.4).

We shall show that under certain assumptions which we will specify the
Aharonov-Bohm-type skyrmion hair can be detected via stringy generalisa-
tions of the Aharonov-Bohm effect in experiments in which a probe string
encloses the skyrmion. Although it is not important for our purpose what
kind of string exactly plays the role of the probe string, we shall show that
the role of the probe string can for example be played by a cosmic string.
We shall argue that one can understand the Skyrme topological charge of
a black hole as coming from a Witten-type effect. Finally, we present a
general procedure which allows to construct boundary differential forms
for textures in a definite number of spacetime dimensions from topological
currents of point defects in one dimension higher.

In part IV of this thesis we shall summarize our results of the paper
[Guß17]. This paper makes use of the following topics which we have re-
viewed in part I of this thesis: The Georgi-Glashow model (reviewed in
1.3.2), magnetic monopoles (reviewed in 1.4), classical gravity (reviewed
in 1.5), classical matter on classical backgrounds (reviewed in 1.7) and all
topics of black hole physics reviewed in 2.1, 2.2, 2.3 and 2.4.

We shall review aspects of magnetically charged black holes solutions,
both with and without classical hair, in the Georgi-Glashow model coupled
to gravity in detail. We shall show that one can distinguish black holes with
and without classical hair in that model (which both have the same asymp-
totic characteristics) by scattering of classical waves. We shall determine
differential scattering cross sections of massless minimally-coupled scalar
waves scattered by these black holes explicitly for some concrete cases. We
show that the location of the characteristic peaks in the differential scat-
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tering cross sections depend on whether the black hole carries a classical
hair or not and find that (and explain why) the shift in the location of the
peaks “induced” by the hair is qualitatively different as the analogous shifts
which we found in the case of classical skyrmion black hole hair. We also
point out that the proposed method of classical wave scattering can have
interesting astrophysical implications for finding out if a given black hole
in nature carries some classical hair or not.

In part V of this thesis we mention our conference proceedings paper
[Gus17]. In this paper we discussed some of the results of the papers which
we reviewed in part II, part III and part IV. The presentation of the topics
in [Gus17] is, in part, given from a different perspective when compared to
the presentation of the topics in [DG16], [DG17] and [Guß17].

In part VI of this thesis we summarize some preliminary results of the
ongoing project [GSW18]. This project makes use of the following topics
which we have reviewed in part I of this thesis: Vortices and cosmic strings
(reviewed in 1.4) and holography (reviewed in 2.7).

We shall review in detail the anyon-type statistics of Chern-Simons vor-
tices in (2+1) spacetime dimensions. We shall then consider cosmic strings
in (3 + 1) dimensional spacetimes with boundary. We argue that cosmic
strings in (3 + 1) spacetime dimensions obey fractional statistics whenever
the boundary endpoint vortices of the strings are electrically charged and
when the upper endpoint vortex carries a different electric charge than the
lower endpoint vortex. We demonstrate this claim in several concrete mod-
els for cosmic strings in (3 + 1) spacetime dimensions. We show that in our
setups of cosmic strings with fractional statistics, the statistics of the string
can be fully understood by studying only the statistics of its boundary end-
points. We shall point out that our results can have interesting applications
to the AdS/CFT correspondence as well as to the topic of black holes with
ZN Aharonov-Bohm-type quantum hair.
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Part II

Summary of Project 1:
“Skyrmion Black Hole Hair - Conservation of Baryon Number by

Black Holes and Observable Manifestations”
authors: Gia Dvali and Alexander Gußmann

published in: Nucl. Phys. B913 (2016) 1001-1036
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In the paper “Skyrmion Black Hole Hair - Conservation of Baryon Num-
ber by Black Holes and Observable Manifestation” [DG16] we investigated
several aspects of skyrmion black hole hair. In the first part of the pa-
per, after carefully reviewing the known classical black hole solutions with
skyrmion hair of the Einstein-Skyrme equations and after pointing out how
these solutions can be related to the so-called black hole species bound, we
showed that black holes can not only carry the known classical skyrmion
hair but also quantum Aharonov-Bohm-type skyrmion hair. We argued
that the existence of skyrmion black hole hair sheds new light on the ques-
tion if baryon number can be respected by black holes. In the second part
of the paper we showed that classical skyrmion black hole hair can be de-
tected via scattering of classical waves.

We summarize these discussions in what follows. For more details we
refer to [DG16].
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1. Review of Classical Skyrmion
Black Hole Hair

In the late 1980s and in the beginning 1990s it has been realized that
skyrmions can play the role of classical black hole hair. After some early
ideas by H. Luckock and I. Moss in 1986 who argued in the “probe limit”
(by studying probe skyrmions on a fixed Schwarzschild background) that
black holes with classical skyrmion hair exist [LM86], the full backreact-
ing problem in the asymptotically-flat and spherically-symmetric case was
solved by S. Droz, M. Heusler and N. Straumann in 1991 [DHS91] and
was further studied by P. Bizon and T. Chmaj in 1992 [BC92]. It was
shown there that black holes with classical skyrmion hair in a certain do-
main of parameters indeed exist as solutions of the Einstein-Skyrme equa-
tions. Both works focused on numerical black hole solutions outside of the
event horizon. Dynamical stability of some of the asymptotically-flat and
spherically-symmetric black hole solutions with classical skyrmion hair was
established on the linear level by M. Heusler, S. Droz and N. Straumann
in 1992 [HDS92] and was also discussed by P. Bizon and T. Chmaj [BC92].
Classical skyrmion black hole solutions inside of the event horizon were
discussed by T. Tamaki, K. Maeda and T. Torii in 2001 [TMT01]. Axisym-
metric black holes with classical skyrmion hair were studied by N. Sawado,
N. Shiiki, K. Maeda and T. Torii in 2004 [SSMT04]. Black holes with
classical skyrmion hair in anti de Sitter spacetime were studied in 2005 by
N. Shiiki and N. Sawado [SS05a, SS05c] and in de Sitter spacetime by Y.
Brihaye and T. Delsate in 2006 [BD06]. Classical skyrmion black holes in a
generalized Skyrme model (with higher order terms in the effective meson
Lagrangian (1.127) taken into account) were studied by S. B. Gudnason,
M. Nitta and N. Sawado [GNS16] as well as by C. Adam, O. Kichakova,
Y. Shnir and A. Wereszczynski [AKSW16] in 2016. Higher-order derivative
terms (as replacement for the Skyrme term) and their relevance for black
hole hair have been discussed in 2018 by S. B. Gudnason and M. Nitta
[GN18]. A review was written by N. Shiiki and N. Sawado in 2005 [SS05b].
Other related works are for example [Nie06] and [BHRT17]. In this thesis
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we focus on the spherically-symmetric and asymptotically-flat case in the
“minimal” Skyrme model (1.127) in four spacetime dimensions.

1.1 Black Holes with Classical Skyrmion Hair
as Solutions of the Einstein-Skyrme Equa-
tions

Black holes with classical skyrmion hair can be obtained as classical solu-
tions of the Einstein-Skyrme equations,

Gµν = 8πGNT
s
µν , (1.226)

where Gµν is the Einstein tensor and T sµν the energy momentum tensor
which corresponds to the Skyrme Lagrangian (1.127),

T sµν ≡
2√
−g

δ (
√
−gLs)
δgµν

. (1.227)

Black hole solutions with classical skyrmion hair in the asymptotically-
flat and spherically-symmetric case have been studied with a hedgehog
ansatz for the pions and a spherically-symmetric ansatz for the metric of
the following kind

πa
fπ

= F (r)na ,

ds2 = −N2(r)

(
1− 2M(r)GN

r

)
dt2 +

(
1− 2M(r)GN

r

)−1

dr2 + r2dΩ2 ,

(1.228)
where F (r), N(r) and M(r) are three ansatz-functions and na is a unit-
vector in radial direction. With these ansatz functions the independent
components of the Einstein-Skyrme equations can be written as

∂x
((
x2 + 2sin2F

)
N(x)h(x)∂xF

)
= N(x)

(
sin2F

(
1 + h(x) (∂xF )2 +

sin2F

x2

)
+ β2x2sinF

)
, (1.229)

∂xm = α
[x2

2
h(x) (∂xF )2 + sin2F

+ sin2F

(
h(x) (∂xF )2 +

sin2F

2x2

)
− 1

2
β2x2 (2cosF − 2)

]
, (1.230)

∂xN = α

(
x+

2

x
sin2F

)
N(x) (∂xF )2 , (1.231)
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where we introduced the dimensionless quantities x ≡ efπr, α ≡ 4πGNf
2
π ,

β ≡ mπ
~efπ and m(x) ≡ efπGNM(r) as well as the function h(r) which is

defined as
h(x) ≡ 1− 2m(x)

x
. (1.232)

For certain choices of parameters α and β and certain boundary conditions
for the ansatz-functions solutions have been found numerically both with-
out event horizon (“gravitating skyrmions”) and with event horizon (“black
holes with skyrmion hair”). Here we focus on the black hole solutions (with
event horizon of size rh). In order to obtain these solutions, the following
boundary conditions can be taken for a given event horizon size xh:

m(xh) =
xh
2
, F (∞) = 0, N(∞) = 1 . (1.233)

One boundary condition still has to be chosen to fix the boundary value
problem completely. This is usually done by choosing F (xh) as a shooting
parameter and to solve the equations (1.229), (1.230) and (1.231) numeri-
cally with the shooting method. For certain choices of event horizon sizes
xh numerical solutions of the equations in fact do exist. The values of xh
for which solutions do exist depend on the values of α and β. In order to
understand this parameter domain of black hole solutions from a physical
point of view, we now elaborate first on the physical meanings of α and β:
α and β set the ratios of the relevent length scales in the system, in fact α is
proportional to the ratio of the characteristic length scale of the skyrmion
L (1.132) and the gravitational radius of the skyrmion Lg ≡ 2MSGN with
the mass MS defined in (1.133):

α ∼ Lg
L

(1.234)

and β is equal to the ratio of L and of the Compton wavelength of the pion
LC :

β =
L

LC
. (1.235)

On top of that, since Lg scales linearly with the number of colors NC and
L is independent of the number of colors, α scales linearly with the number
of colors [Wit79a]

α ∼ NC , (1.236)

whereas β is independent of NC because both L and LC do not depend on
NC . For fixed β the parameter space of solutions with boundary conditions
F (∞) = 0 and N(∞) = 1 is given as follows: There exists a maximal value
αmax and hairy black hole solutions of (1.229), (1.230) and (1.231) have
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only been found for 0 ≤ α ≤ αmax. According to (1.234) and (1.236), this
maximal value αmax for α represents both a maximal value for Lg

L
and a

maximal value of NC for which hairy black hole solutions of (1.229), (1.230)
and (1.231) have been found. Therefore, this means that hairy black hole
solutions have only been found as long as the size of the skyrmion L is
bigger than its gravitational radius Lg (or, in other words, as long as the
skyrmion not itself becomes a black hole). On top of that, for a given
value of α (which is smaller than αmax) there exists a maximal value for
the event horizon size rmax,αh and black holes with skyrmion hair have only
been found for event horizon sizes rh ≤ rmax,αh . For α→ αmax, rmax,αh goes
to zero, in fact rmax,αmaxh = 0. This implies that the event horizon size rh of
black holes with skyrmion hair is always located inside of a typical length
scale associated to the skyrmion (which itself is a function of L and Lg).
Therefore, one can think of the black holes with classical skyrmion hair as
black holes with event horizon size which is located inside the skyrmion.
The skyrmion is therefore a classical hair of the black hole in the sense that
it “goes through” the black hole and is not fully swallowed by it.

We plot for illustration some solution functions of black holes with clas-
sical skyrmion hair for some allowed values of parameters in Figure 1.1,
Figure 1.2, Figure 1.3, Figure 1.4 and Figure 1.5. The solution function
F (r) for β = 0 scales as 1/r2 for r → ∞ and as 1

r
exp−mπr for β 6= 0 as

r →∞ (as in the flat spacetime case as mentioned in (1.141) and (1.142)).
The solution function m(x) approaches a constant when r →∞ which sets
the ADM mass of the black hole. In the near horizon regime m(x) how-
ever, depending on the parameter choices, can significantly differ from this
constant. Thus, for given ADM mass, the black holes with skyrmion hair
provide black hole solutions which have the same asymptotic characteristics
than the Schwarzschild black holes with this ADM mass but can have sig-
nificantly different near-horizon geometries (therefore, these solutions are
called “hairy” black holes).

The graphs in the Figures are in all cases plotted only in regimes outside
of the event horizon of the black hole. Finding the solutions inside of the
black hole event horizon is numerically much more difficult than finding the
plotted solutions in the regime outside of the event horizon. The internal
structure of classical skyrmion black holes was studied in [TMT01]. There
it was found that in most cases the mass function m(x) has an oscillating
behaviour inside of the event horizon but that there are also exceptional
cases where no oscillations appear. Plots of the functions inside of the event
horizon can be found in [TMT01].

Finally, we want to note that there exist for given parameter choices
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Figure 1.1: Profile function F (x) for black holes with classical skyrmion
hair in the case β = 0 and mADM = 0.065

Figure 1.2: m(x) for black holes with classical skyrmion hair in the case
β = 0 and mADM = 0.065
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Figure 1.3: Profile function F (x) for black holes with classical skyrmion
hair in the case α = 0.01 and mADM = 0.065

Figure 1.4: m(x) for black holes with classical skyrmion hair in the case
α = 0.01 and mADM = 0.065
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Figure 1.5: m(x) for black holes with classical skyrmion hair in the case
β = 0 and xh = xmax,α,β=0

h

two different branches of solutions. We will discuss in the next section
that only the solution of one branch are dynamically stable (against linear
perturabations) whereas the solutions of the other branch are dynamically
unstable.

1.2 Stability of Black Holes with Classical Skyrmion
Hair

If black holes with classical skyrmion hair are stable against (radial) pertur-
bations or not is usually investigated by studying the linearized Einstein-
Skyrme equations. One can derive a closed form of the radial matter per-
turbations δF which has the form of a one-dimensional radial Schroedinger
equation [HDS92] (

− d2

dy2
+ Veff (y)

)
ζ = w2ζ , (1.237)

with a “radial coordinate” y which is defined as

dy

dx
=

1

N(x)
(

1− 2M(x)GN
x

) , (1.238)

an effective potential Veff (y) and ζ the Fourier component of the radial
perturbations of the profile function

δF (x, t) =
1√

x2 + 2sin2F
ζ(x)eiwt . (1.239)
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If there exists a negative eigenvalue w2, the corresponding mode is expo-
nentially growing and the system is unstable. Since the equation for the
radial perturbations (1.237) has the form of a (radial) Schroedinger equa-
tion, one can apply the theorem that states that the number of negative
eigenvalues is equal to the nodes of the zero mode (w2 = 0) solution of the
perturbations ζ [RS78]. Using this method it was shown in [HDS92] that
for one branch (the “upper branch”) of black hole solutions with classical
skyrmion hair there is one unstable mode whereas for the other branch (the
“lower branch”) of black hole solutions with classical skyrmion hair there
is no unstable mode. Therefore, the black holes with classical skyrmion
hair of the lower branch are stable against linear perturbations whereas the
black holes of the upper branch are dynamically unstable.

To our knowledge, a stability analysis beyond the linear level has not
yet been performed for black holes with classical skyrmion hair.



2. Classical Skyrmion Black
Holes and Species Bound

We argued in [DG16] that the existence of the maximal value of α, αmax,
in the parameter domain in which black holes with classical skyrmion hair
have been discovered can be understood as a particular manifestation of
the so-called black hole bound on the maximal allowed number of particle
species for which strong quantum gravity effects can be ignored [Dva10,
DR08, DG09].

This bound states that for N � 1 independent particle species, the
scale LQG at which quantum gravity effects become strong is given by

LQG =
√
NLP , (2.240)

where LP is the Planck length.
In order to see how this bound is realized in the case of skyrmion black

holes, consider a large black hole which evaporates due to Hawking ra-
diation. We argued in [DG16] that one can think about the evaporation
process on scales much larger than LQCD as process in which either a quark
or an anti-quark is emitted and then hadronizes by combining with a part-
ner from the “quark sea”. This implies that the number of emission channels
scales as the number of colors NC . Thus

Ṫ

T 2
= NC

(
T

MP

)2

. (2.241)

Once the parameter on the left hand side becomes order one, semi-classical
gravity can no longer be trusted because if this is the case deviations from
thermality become large [Dva16]. This happens at a temperature

T =
~

LQG
, (2.242)

with LQG =
√
NLP from the species bound. The requirement that LQG

must be shorter than L which is of order the QCD length LQCD then gives
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the bound

NC <

(
L

LP

)2

, (2.243)

which is nothing then the bound on α.



3. Existence of
Aharonov-Bohm-Type Skyrmion
Black Hole Hair

We realized in [DG16] that on top of the classical black hole solutions with
skyrmion hair (which - as discussed below - can be detected classically) also
Aharonov-Bohm-type black hole skyrmion hair which cannot be detected
classically can exist. One of the most important differences when compared
to the black holes with classical skyrmion hair is, that the black holes with
Aharonov-Bohm-type skyrmion black hole hair can exist for arbitrary large
event horizon sizes rh and not only for event horizon sizes below a maximal
value rmaxh .

In order to see that Aharonov-Bohm-type skyrmion black hole hair can
exist, we proceed in two steps. First we study skyrmions in flat spacetime,
then we go to the black hole case.

We realized that there exists a differential two-form Sµν such that the
Skyrme topological current (in flat spacetime) - understood as a differential
one-form - can be written as Hodge dual of the exterior derivative of that
two-form. We figured out that this two-form is given as

Sµν = − 1

4π2
cos2γ∂[µα∂ν]β , (3.244)

where α, β and γ are three angles parameterizing the SU(2) matrix U
which enters the Skyrme topological current (1.143):

U =

(
cosγeiα sinγeiβ

−sinγe−iβ cosγe−iα

)
. (3.245)

Note that every SU(2) matrix can be parameterized via three angles like
this, therefore this is not a particular ansatz for U but a generic parametriza-
tion. The angles α, β and γ can be identified with the hedgehog ansatz for
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the pions via
γ = arcsin(sinF sinθ) ,

β = φ ,

α = arctan(tanF cosθ) . (3.246)

Evaluated on the hedgehog ansatz this gives for the topological charge B
the two-form (up to the exterior derivative of a one-form)

Sµν = − 1

4π2

(
F (r)− 1

2
sin(2F (r))−Bπ

)
∂[µcos(θ)∂ν]φ . (3.247)

Note that everything is written in the language of differential forms, if one
wants to work in the language of functions in the equation for Sµν an over-
all multiplicative factor of (r2sinθ)−1 has to be added. The constant Bπ in
the equation is crucial for the form to be well-defined everywhere. With-
out adding this constant, the two-form would be singular at the origin.
For topological charge B this constant of Bπ is the unique constant which
makes the two-form well-defined everywhere.

Now, since this two-form exists - via Stokes theorem - one can write the
Skyrme topological charge as surface integral over this two-form evaluated
on a boundary at spatial infinity, e.g. a two-sphere S2:∫

S2

SµνdX
µ ∧ dXν = B . (3.248)

Let us now consider the black hole case. Since this two-form exists
and the charge which corresponds to a conserved current can be defined at
infinity, by the same argument as for example in the case of black holes with
Aharonov-Bohm-type axion hair (which we have reviewed in section 2.5 of
part I in this thesis), even if we locally insert the skyrmion into a black
hole, the charge can still be defined at infinity. Or, in other words, there
exists a solution of the Einstein-Skyrme equation for which the metric is
pure Schwarzschild but still has a non-vanishing Skyrme topological charge
due to a non-vanishing two-form Sµν . This solution which is there for black
holes with arbitrary large event horizon sizes is given by

ds2 =

(
1− 2MGN

r

)
dt2 −

(
1− 2MGN

r

)−1

dr2 − r2dΩ2 ,

Sµν =
Bπ

4π2
∂[µcos(θ)∂ν]φ . (3.249)
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As in the flat spactime case, the Skyrme charge of this configuration can be
defined as surface integral over this two-form evaluated on spatial infinity∫

S2

SµνdX
µ ∧ dXν = B . (3.250)

One remaining question is if this charge can “only” be defined at spatial
infinity or if it can also be detected in some way (under certain assump-
tions). We will in detail argue in the next part of this thesis that, how (and
under what assumptions) this charge can indeed be measured via stringy
generalisations of the Aharonov-Bohm effect similarly as in the case of black
holes with Aharonov-Bohm-type axion hair.16 In what follows in this chap-
ter we take it as granted, that an asymptotic observer indeed has the ability
to measure the Skyrme topological charge of a black hole of arbitrary event
horizon size via Aharonov-Bohm-type experiments.

16In [DG16] we also discussed skyrmion black holes with weakly-gauged baryon num-
ber and a way to measure such weakly-gauged baryon number of a black hole. In this
thesis we will not review this case of a baryon number which is weakly-gauged in detail
but only comment on one implication in section 4.3.
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4. Baryon Number Conservation
by Black Holes

The existence of skyrmion black hole hair (both classical and Aharonov-
Bohm-type) sheds new light on the question if baryon number can be con-
served by black holes or not. Let us, in this chapter, first briefly recall the
black hole folk theorems which claim that global charges such as baryon
number are not respected by black holes. Let us then elaborate on how the
existence of skyrmion black hole hair changes these “standard” arguments.
Finally, we will point out how the existence of skyrmion black hole hair
sheds new light on the weak gravity conjecture [AHMNV07].

4.1 Black Hole Folk Theorems

The “standard” folk theorems argument is often presented as follows: Con-
sider some particles which carry a global charge (in our case baryon number)
and insert these particles into a black hole which can be arbitrarily large.
The resulting black hole metric is, according to the folk theorems argument,
classically completely described by the Kerr-Newman metric, irrespective
of the baryon charge which has been inserted into the black hole. Then the
black hole evaporates (via emitting Hawking radiation) and shrinks until
it reaches the Planck size. Since the evaporation is, according to the folk
theorems argument, said to be thermal, no (or negligible) baryon number
is emitted during the evaporation process. Therefore, the “end product”
is a Planck size Kerr-Newman black hole with no sign of baryon number.
Usually it is then concluded in the folk theorems argument that the baryon
number which has been inserted into the black hole is either lost or “hid-
den” in a Planck size black hole remnant which can only be described by a
theory of quantum gravity operating at the Planck scale.

This argument is based on two main assumptions: First, that black
holes cannot carry any (semi)classical hair which carries information about
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the baryon charge. Second, that the Hawking evaporation is exactly ther-
mal. In what follows we will argue that there is a loophole in the folk
theorems argument because, as we will discuss, the first assumption is not
correct. (Note that, as discussed in detail in [DG16], the two assumptions
are not unrelated and that also the second assumption is not correct since
evaporating black holes shrink and can thus not evaporate exactly ther-
mally. Here we shall however focus only on the first assumption which,
as we will discuss, is enough to point out a loophole in the folk theorems
argument.)

4.2 Baryon Number Conservation due to Black
Hole Skyrmion Hair

In a first step we will argue that the existence of classical skyrmion black
hole hair makes baryon number conservation in systems with black holes
logically possible. We will describe one possible dynamical scenario by
which baryon number conservation can possibly be realized. We then argue
in a second step that, taking into account also the existence of Aharonov-
Bohm-type skyrmion black hole hair, baryon number is respected by black
holes (under certain assumptions which we will point out) and that thus
(under these assumptions) baryon number is in fact conserved in systems
with black holes. We do not claim that the baryon number conservation is
necessarily realized in nature by the dynamical scenario which we discuss
in the first step (there might in fact be other, more exotic, dynamical
scenarios).

For simplicity we restrict in the following to the case of a black hole
which swallowed only one baryon. The arguments can be generalized to
the case of more baryons. In the arguments we consider two regimes: The
regime when the event horizon size rh of the black hole which swallowed
the baryon is larger than the characteristic size L of the skyrmion, rh > L,
on the one hand and the regime when the event horizon of the black hole
is smaller than L, rh < L, on the other hand.

Let us first only take into account the existence of black holes with clas-
sical skyrmion hair. This existence already implies that the first assumption
in the folk theorems argument is not correct since (from the point of view
of a low energy observer) these black holes with classical skyrmion hair
are nothing but black holes with classical baryon hair [Wit84]. Thus, the
following dynamical scenario cannot be ruled out by the arguments used
in favor of the folk theorems and is therefore a logical possibility which
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Figure 4.6: Black hole with event horizon size xh shrinks via Hawking
evaporation up to a size L; after reaching size L, it shrinks further inside
of the skyrmion/baryon with size L

may or may not be realized in nature: Consider a large black hole in the
regime rh > L which swallows a skyrmion/baryon. Then, as in the folk
theorems argument, one concludes (if one is not aware of the existence of
Aharonov-Bohm-type skyrmion hair) that the metric of the resulting black
hole is of Kerr-Newman type and that thus the resulting black hole of size
rh > L carries from the point of view of an outside observer no measur-
able baryon number. As in the folk theorems argument the black hole
then starts to shrink via emitting Hawking radiation. Since in the regime
of a size smaller than L, black holes with classical skyrmion/baryon hair
are known (a fact which is not taken into account in the folk theorems
argument), it is now in contrast to the folk theorems argument however
logically possible that the baryon/skyrmion which was swallowed by the
black hole might classically re-emerge in the form of a classical skyrmion
hair once the shrinking black hole reaches a size L or, in other words, that
when reaching the size L the shrinking Kerr-Newman black hole under-
goes a phase transition and becomes a black hole with classical skyrmion
hair. Since the size L is much larger than the Planck size (for realistic
baryons), the baryon number in such a scenario is revealed long before the
black hole reaches the Planck size. After the baryon number re-emerged
in such a scenario, the black hole might shrink further down to the Planck
size inside of the baryon/skyrmion. This option is visualized in Figure 4.6.

Let us now in a second step take into account the existence of the
skyrmion Aharonov-Bohm-type black hole hair. The difference when com-
pared to the discussion in the first step is that an outside observer at spa-
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tial infinity can now use the Aharonov-Bohm effect to measure the Skyrme
topological charge/the baryon number of a skyrmion/baryon which allows
him to monitor the Skyrme topological charge/the baryon number at in-
finity, also if the baryon/skyrmion which carries this charge gets locally
swallowed by a black hole of size rh > L (this is doable under certain
assumptions which we will discuss in detail in the next part of this the-
sis).17 Therefore from the point of view of such an outside asymptotic
observer black holes of size rh > L which swallowed a baryon/skyrmion
carry a measurable baryon number/Skyrme topological charge and thus
baryon number is conserved in the presence of black holes (under the as-
sumptions which have to be fulfilled that an asymptotic observer can do
such an Aharonov-Bohm-type experiment which we will discuss in the next
part of this thesis). The conservation might dynamically be realized in
nature via a process such as the one visualized in Figure 4.6. For such a
process at each definite moment of time a static black hole solution with
fixed baryon number is known (for black holes with size rh > L the black
holes with Aharonov-Bohm-type skyrmion hair and for black holes with
size rh < L both the black holes with Aharonov-Bohm-type skyrmion hair
and the black holes with classical skyrmion hair). It can however also be
the case that in nature a (more exotic) dynamical scenario is realized which
conserves baryon number in systems with black holes.

4.3 Consequences for the Weak-Gravity Con-
jecture

One formulation of the so-called “weak gravity conjecture” [AHMNV07]
states that due to black hole physics a gauge coupling cannot be arbitrarily
weak. Instead, it is conjectured that there is a lower bound on any gauge
coupling. One argument leading to this conjecture goes in complete analogy
to the folk theorems argument for global charges which we have reviewed
in section 4.1: Consider a weakly-gauged symmetry with a gauge coupling
which is so tiny that there is only negligible correction to the Schwarzschild
metric due to the gauge “electric” field and thus only negligible correction
to the assumed thermality of the Hawking radiation. Then - as in the
standard folk theorems argument - it is argued in [AHMNV07] that when
a particle which is charged under this gauge symmetry is inserted into a
black hole, the charge cannot be detected by an outside observer anymore
and can also not reappear when the black hole shrinks down to the Planck

17We will discuss such possible Aharonov-Bohm-type experiments in detail in the next
part of this thesis.
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size (at least not in a sufficiently large amount because Hawking radiation
is considered to be thermal).

As in the standard folk theorems argument, the existence of black holes
with baryon/skyrmion hair implies a loophole in that argument in the case
the weakly-gauged symmetry is weakly-gauged baryon number symmetry.
In fact, as discussed in the previous section, a logical possible scenario for
arbitrarily-weak gauge coupling is that (weakly-gauged) baryon number
reappears in form of a classical baryon/skyrmion hair when the black hole
shrinks down to a size L.
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5. Detecting Classical Skyrmion
Black Hole Hair via Classical
Scattering of Waves

In the second part of the paper [DG16] we showed, by studying mass-
less minimally-coupled probe scalar waves scattered on the one hand by
a Schwarzschild black hole and on the other hand by a black hole with
classical skyrmion hair which has the same asymptotic characteristics as
the Schwarzschild black hole, that the differential scattering cross sections
of the scalar field differ for these two cases. Therefore, given the asymp-
totic characteristics (the ADM mass) of a black hole, one can find out if
this black hole is Schwarzschild or if it carries a classical skyrmion hair by
studying scattering of classical waves. In this analysis we used the same
techniques which we reviewed in section 2.4 in the introduction (part I)
of this thesis. We focused on the effects which are due to gravitational
interactions of the probe scalar field with the black hole. We therefore ne-
glected non-gravitational interactions between the scalar and the skyrmion.

We considered two particular examples of black holes with classical
skyrmion hair and studied scattering cross sections for these two examples
for the case of several massless minimally-coupled monochromatic probe
scalar waves with different frequencies. As a first example we used a black
hole with classical skyrmion hair which is described by the parameters
α = 0.01, β = 0 and xh = 0.1263 (note that this xh = 0.1263 is the
maximal value for the given α and β; xh = 0.1263 ≡ xmax,α=0.01,β=0

h ). As
a second example we studied a black hole with classical skyrmion hair
which is given by the parameters α = 0.01, β = 0.5 and xh = 0.116. We
determined differential scattering cross sections of probe monochromatic
massless minimally-coupled scalar waves both of frequency w = 8 and
w = 25 scattered by these two hairy black holes and by the Schwarzschild
black holes which have the same asymptotic characteristics as the hairy
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Figure 5.7: Orbits for massless particles on null geodesics in the back-
ground of the skyrmion black hole of our first example for different impact
parameters b

black holes.18 We both did a complete partial wave analysis and a glory
approximation in order to detemine these cross sections. For this purpose
we also studied geodesic motion of massless particles in the background
of our two skyrmion black holes. We visualize the results in the following
plots.

One can see from the plots that the characteristic peaks in the differen-
tial scattering cross sections of the waves scattered by the hairy black holes
are located at smaller scattering angles when compared to the analogous
peaks in the cross sections of the waves scattered by the Schwarzschild black
holes with same asymptotic characteristics as the hairy black holes. This
effect comes from the different near-horizon geometries of the hairy black
holes and the non-hairy black holes with same asymptotic characteristics.

18Here we use the dimensionless frequency w ≡ W (efπ)
−1, where W is the dimen-

sionful frequency.
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Figure 5.8: Orbits for massless particles on null geodesics in the background
of the skyrmion black hole of our second example for different impact pa-
rameters b

Figure 5.9: Differential scattering cross section of a massless scalar wave
with frequency w = 8 scattered by the skyrmion black hole of our first
example
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Figure 5.10: Differential scattering cross section of a massless scalar wave
with frequency w = 25 scattered by the skyrmion black hole of our first
example

Figure 5.11: Differential scattering cross section of a massless scalar wave
with frequency w = 8 scattered by the skyrmion black hole of our second
example
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Figure 5.12: Differential scattering cross section of a massless scalar wave
with frequency w = 25 scattered by the skyrmion black hole of our second
example

Figure 5.13: Differential scattering cross section of a massless scalar wave
with frequency w = 8 scattered by the skyrmion black hole of our first
example and differential scattering cross section of the same scalar wave
scattered by a Schwarzschild black hole with same ADM mass
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Figure 5.14: Differential scattering cross section of a massless scalar wave
with frequency w = 25 scattered by the skyrmion black hole of our first
example and differential scattering cross section of the same scalar wave
scattered by a Schwarzschild black hole with same ADM mass

Figure 5.15: Differential scattering cross section of a massless scalar wave
with frequency w = 8 scattered by the skyrmion black hole of our second
example and differential scattering cross section of the same scalar wave
scattered by a Schwarzschild black hole with same ADM mass and dif-
ferential scattering cross section of the same scalar wave scattered by a
skyrmion black hole with same ADM mass but with β = 0
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Figure 5.16: Differential scattering cross section of a massless scalar wave
with frequency w = 25 scattered by the skyrmion black hole of our sec-
ond example and differential scattering cross section of the same scalar
wave scattered by a Schwarzschild black hole with same ADM mass and
differential scattering cross section of the same scalar wave scattered by a
skyrmion black hole with same ADM mass but with β = 0
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Part III

Summary of Project 2 and
Related Aspects:

“Aharonov-Bohm Protection of Black Hole’s Baryon/Skyrmion Hair”
authors: Gia Dvali and Alexander Gußmann
published in: Phys. Lett. B768 (2017) 274-279
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In the paper “Aharonov-Bohm Protection of Black Hole’s Baryon/Skyrmion
Hair” [DG17] we studied several aspects of the Aharonov-Bohm-type skyrmion/
baryon black hole hair which we introduced in [DG16]. We discussed in de-
tail how and under what assumptions the Aharonov-Bohm-type skyrmion/
baryon hair of a black hole can be detected with the help of a probe string.
We considered the scenario in which the role of the probe string is played by
a cosmic string and pointed out how the Skyrme topological charge/baryon
number detected in this way can be understood as a result of a Witten-type
effect.

We summarize these discussions in what follows and discuss several
unpublished related aspects. For more details we refer to [DG17].
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1. Detecting Skyrmion Black
Hole Hair of
Aharonov-Bohm-Type

Although the black hole solutions (3.249) of the Einstein-Skyrme equations
do not have any locally-observable classical asymptotic field, the Skyrme
topological charge/baryon number of such configurations is nevertheless
measurable via a stringy generalisation of the Aharonov-Bohm effect pro-
vided there is a probe string which couples to the two-form Sµν via

g

∫
d2σ∂aX

µ∂bX
νεabδ(4)(x−X)Sµν , (1.251)

with a coupling constant g which is not an integer-multiple of 2π, world-
sheet coordinates σa and embedding coordinates Xµ(σ): If such a coupling
exists each process in which the probe string encloses the skyrmion induces
a change in the action of

∆S = gB , (1.252)

which is due to the Aharonov-Bohm effect measurable whenever g is not
an integer-multiple of 2π. Two of such processes are visualized in Figure
1.17 and Figure 1.18.

On the level of an effective theory consideration the coupling (1.251)
has to be included in the Lagrangian, it is however from the effective point
of view not clear what value g takes in nature. It can for example be the
case that in the high-energy theory there is a superselection rule which
forbids any value of g which is not an integer-multiple of 2π. In that
case the Skyrme topological charge/baryon number is not measurable via
such Aharonov-Bohm-type effects. Therefore, on the level of our effec-
tive desription, in this sense it is an assumption that a coupling of the
above-mentioned form with g not an integer-multiple of 2π exists. If such
a coupling (1.251) with g not an integer-multiple of 2π however does exist,
an asymptotic observer who has appropriate probe strings at his disposal

111



112 1. DETECTING SKYRMION BLACK HOLE HAIR OF
AHARONOV-BOHM-TYPE

Figure 1.17: A process in which a probe string encloses the (red) skyrmion.

Figure 1.18: Another process in which a probe string encloses the (red)
skyrmion.
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can measure each baryon number/Skyrme topological charge B of a black
hole which is such that the product gB is not an integer-multiple of 2π via
the stringy Aharonov-Bohm effect.

It is not important what kind of probe string couples to the two-form.
This can in principle for example be a fundamental string or also a com-
posite object such as a cosmic string. In the next chapter we explicitly
consider the case of a cosmic string.
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2. Manufacturing a Probe String
- Cosmic String

We showed in [DG17] that the role of the probe string which couples to
Sµν can be played by a cosmic string of Nielsen-Olesen type [NO73]. The
Lagrangian which allows for cosmic strings as non-trivial lowest-energy con-
figurations is given by (see equation (1.85))

L = −1

4
FµνF

µν + |DµH|2 − λ2
(
|H|2 − v2

)2
, (2.253)

where Dµ is the covariant derivative, Dµ ≡ ∂µ − iqAµ, with q the gauge
coupling, Fµν ≡ ∂[µAν] is the field strength and H a complex scalar field.

This Lagrangian admits cosmic “Nielsen-Olesen” strings [NO73] as so-
lutions when the scalar field condenses, 〈|H|〉 = v. This Nielsen-Olesen
cosmic string acts as a source for the skyrmion two-form Sµν when a cou-
pling of the following form is introduced

cSµνFαβε
µναβ . (2.254)

Here c is a parameter. This coupling is a legitimate coupling on the level
of an effective field theory discussion. In the case in which the thickness of
the string is much smaller than the a string loop, this coupling reduces to

c

∫
d4xSµνFαβε

µναβ → c

q

∫
dXµ ∧ dXνSµν . (2.255)

This is nothing but (1.251) which shows that a cosmic string can play the
role of the probe string considered before.
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3. Skyrme Topological Charge of
a Black Hole from Witten-Type
Effect

One way to understand how the skyrmion aquires a charge under the Hig-
gsed U(1) symmetry of the cosmic string Lagrangian is in terms of a Witten
kind effect [Wit79b]. In order to see this, one has to realize that the asymp-
totic configuration of the skyrmion two-form takes the form of a magnetic
monopole: Asymptotically, Sµν is (for B = 1) given as

Sµν =
1

4π
∂[µcos(θ)∂ν]φ . (3.256)

This form is nothing but the field strength of a Dirac monopole,

Sµν = ∂[µζν] , (3.257)

with the one-form ζν given by

ζν =
1

4π
(cos(θ)− 1) ∂νφ (3.258)

on the upper hemisphere and

ζν =
1

4π
(cos(θ) + 1) ∂νφ (3.259)

on the lower hemisphere.

Therefore, the coupling cSµνFαβενµαβ is nothing than the dual coupling
between the field strengths of Aµ and ζµ. The Witten effect states that the
ζν-monopole (and thus the skyrmion via the asymptotic two-form (3.256))
aquires via this coupling an electric charge c

q
under the U(1) gauge sym-

metry of the cosmic string Lagrangian.
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4. Related Aspects:
Boundary-Form for Textures
from Point Defects

In this chapter, we shall outline a procedure which allows in various space-
time dimensions to construct a boundary differential form for a texture in
that spacetime dimensions from the topological current of a point defect
in one dimension higher. (3.244) will turn out to be the special case in
which the texture is (3 + 1) dimensional. Such a procedure can exist since
both point defects in (d + 1) spatial dimensions and textures in d spatial
dimensions are characterized by the same homotopy group πd. We shall
illustrate our points in the case of the homotopy groups π2 and π3. The
result obtained in the case of π3 matches with (3.244).

4.1 Case Homotopy Group π2

The topological current of a ‘t Hooft Polyakov magnetic monopole in 3
spatial dimensions is (up to constants of normalisation) given by the three-
form

εabc∂νφ̂
a∂αφ̂

b∂βφ̂
cdxν ∧ dxα ∧ dxβ , (4.260)

where φ̂a are normalized fields,

φ̂a ≡ φa

|φ|
. (4.261)

These normalized fields can be parameterized in spherical coordinates as

φ̂a = (cosφsinθ, sinφsinθ, cosθ) . (4.262)

Up to constants the three-form (4.260) can be written as the exterior deriva-
tive of the two-form

εabc
(
φ̂a∂αφ̂

b∂βφ̂
c
)
dxα ∧ dxβ . (4.263)
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This two-form can be considered on a boundary two-sphere at spatial in-
finity. In order to cover the whole sphere, (at least) two coordinate patches
are needed. Using (4.262), this two-form on the boundary two-sphere can
be written as

sinθdθ ∧ dφ . (4.264)

This two-form can be written as exterior derivative of a one-form which
takes the form

(cosθ − 1) dφ (4.265)

on the patch covering the north pole and

(cosθ + 1) dφ (4.266)

on the patch covering the south pole. In case the two-sphere is decom-
pactified (by stereographic projection), the decompactified sphere can be
covered with a single coordinate patch and the one-form can be written as

(cosθ + 1) dφ (4.267)

This is nothing but a texture on a plane, a baby skyrmion, when making
the identification

φ = φ , (4.268)

θ = f(r) , (4.269)

where f(r) is the profile function of the baby skyrmion. Using this identi-
fication, the two-form (4.264) can be written as

sinf(r)f ′(r)dr ∧ dφ (4.270)

and the one-form (4.267) becomes

(cosf(r) + 1) dφ . (4.271)

4.2 Case Homotopy Group π3

In one dimension higher, the topological current is given (up to constants
of normalisation) by the four-form

εabcd∂νφ̂
a∂αφ̂

b∂βφ̂
c∂γφ̂

ddxν ∧ dxα ∧ dxβ ∧ dxγ (4.272)

and φ̂a can be parametrized in spherical coordinates as

φ̂a = (cosφsinθ1sinθ2, sinφsinθ1sinθ2, sinθ1cosθ2, cosθ1) . (4.273)
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This four-form can be written as exterior derivative of the three-form

εabcd
(
φ̂a∂αφ̂

b∂βφ̂
c∂γφ̂

d
)
dxα ∧ dxβ ∧ dxγ , (4.274)

which on the boundary-sphere can be written as

sinθ2sin2θ1dθ1 ∧ dθ2 ∧ dφ . (4.275)

After decompatifying this sphere (by stereographic projection), this can on
a single patch be written as the exterior derivative of the two-form

sinθ2

(
θ1 −

1

2
sin2θ1 − π

)
dφ ∧ dθ2 . (4.276)

This form matches (up to normalisation which we did not take into
account here) with (3.244) after making the identification

φ = φ , (4.277)

θ2 = θ , (4.278)

θ1 = F (r) , (4.279)

where F (r) is the profile function of the skyrmion.
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Part IV

Summary of Project 3:
“Scattering of Massless Scalar Waves by Magnetically-Charged Black

Holes in Einstein-Yang-Mills-Higgs Theory”
author: Alexander Gußmann

published in: Class. Quant. Grav. 34 (2017) no.6, 065007

123





125

In the paper “Scattering of Massless Scalar Waves by Magnetically-
Charged Black Holes in Einstein-Yang-Mills-Higgs Theory” [Guß17], af-
ter carefully reviewing magnetically-charged classical black hole solutions
in Einstein-Yang-Mills-Higgs theory with gauge group SU(2) and a Higgs
triplett (both with and without classical hair), we studied scattering cross
sections of massless minimally-coupled probe scalar waves scattered by
certain black holes which can be obtained as solutions of this Einstein-
Yang-Mills-Higgs theory. For some “working examples” we compared the
scattering cross sections of the same scalar waves scattered by magnetically-
charged black holes without hair on the one hand and magnetically-charged
black holes with classical hair on the other hand (both having the same
asymptotic characteristics). We then discussed, since we studied only
certain examples, how general the result that one can distinguish these
magnetically-charged black with same asymptotic characteristics via clas-
sical scattering of waves, is. In view of our results, we pointed out that
classical scattering of waves can provide a useful tool to find out if a given
(astrophysical) black hole carries some classical hair or not.

We summarize these discussions in what follows and refer to [Guß17]
for more details.
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1. Review of Classical
Yang-Mills-Higgs Black Hole
Hair

About the possibility of classical hairy black holes in Einstein-Yang-Mills-
Higgs theory it was first speculated in [Ort92]. That such hairy black
hole solutions in Einstein-Yang-Mills-Higgs theory do really exist was then
shown and discussed later, for example in [LNW92]. We will now review
these black hole solutions in the spherically-symmetric and asymptotically-
flat case in Einstein-Yang-Mills-Higgs theory with a Higgs triplett and
gauge group SU(2). The corresponding matter Lagrangian is the Georgi-
Glashow Lagrangian (1.42) given by

LYM = −1

4
F a
µνF

µνa +
1

2
Dµφ

aDµφa − λ

2

(
φaφa − v2

)2
, (1.280)

where
F a
µν ≡ ∂µA

a
ν − ∂νAaµ − eεabcAbµAcν , (1.281)

Dµφ
a ≡ ∂µφ

a − eεabcAbµφc , (1.282)

with Greek indices referring to spacetime indices and Latin indices refering
to SU(2) indices. Here e is the Yang-Mills coupling constant, λ the Higgs
coupling constant and v is the vacuum expectation value of the Higgs field
φa. In flat spacetime this Lagrangian allows for topological solitons (‘t
Hooft Polyakov magnetic monopoles [tH74b, Pol74]) as lowest energy con-
figurations.

This Lagrangian can be coupled to gravity and the Einstein field equa-
tions

Gµν = 8πGNT
YM
µν , (1.283)

with T YMµν ≡ 2√
−g

δ(
√
−gLYM )
δgµν

can be solved numerically. Usually this is done
by making the ansatzes

φa = vh(r)ear , A0 = 0, Aai = εiak

(
1− u(r)

er

)
ekr (1.284)
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for the matter fields and

ds2 = N2(r)t(r)dt2 − t(r)−1dr2 − r2dΩ2 (1.285)

for the metric (here h(r), u(r), N(r) and t(r) are ansatz-functions) and by
solving the Einstein field equations numerically with appropriate bound-
ary conditions for these ansatz functions. Besides solutions which do not
have an event horizon (“gravitating magnetic monopoles” [BR75, CF75,
VNWP76]), there are two different classes of black hole solutions (indeed
solutions with event horizon). First, the following functions solve the field
equations:

u(r) = 0, h(r) = 1,M(r) = M − 4π

2e2r
,N(r) = 1 , (1.286)

where M(r) is defined via

t(r) ≡
(

1− 2M(r)GN

r

)
. (1.287)

These solutions are nothing but the Reissner-Nordstroem metric which for

M2 ≥ 2π

GNe2
(1.288)

describes black holes.
The other class of black hole solutions are black hole solutions which

have the same asymptotic characteristics as the Reissner-Nordstroem solu-
tions but different near-horizon geometries (called “black holes with classical
Yang-Mills-Higgs hair”). They can be obtained numerically when using the
boundary conditions

u(∞) = 0, h(∞) = 1, N(∞) = 1 . (1.289)

In complete analogy to the classical skyrmion black holes, these solutions
have been found only in a certain domain of parameters. Namley, there
exists a maximal value αmax and solutions have for given β only been found
for

0 ≤ α ≤ αmax(β) . (1.290)

In complete analogy to the case of classical skyrmion black holes, α and
β set the ratios of the relevant length scales of the system: α and β are
defined as

α2 ≡ 2π
Lg
L

= 4πv2GN , (1.291)
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β ≡ L

LC
=

√
λ

e
, (1.292)

where Lg is the gravitational radius of the ‘t Hooft Polyakov magnetic
monopole, L its typical size and LC the Compton wavelength of the Higgs
field (see equation (1.103) for a definition of these scales in terms of pa-
rameters of the theory). On top of that, for given α and β these black
holes have only been found as solutions of the Einstein-Yang-Mills-Higgs
equations for event horizon sizes rh which are smaller than a maximal a
maximal value

0 ≤ rh ≤ rmax,α,βh . (1.293)

In complete analogy to the classical skyrmion black holes, this means from a
physical point of view that hairy black hole solutions of the Einstein-Yang-
Mills-Higgs equations are known only when first the magnetic monopole not
itself becomes a black hole and second, when the event horizon is located
inside of a critical length scale which is set by the Compton wavelength of
the gauge field.

There is one limit in which these hairy black holes in Einstein-Yang-
Mills-Higgs theory have been studied in much detail, namley when the
Higgs field is taken to be infinitely heavy, MH ≡

√
λv~ → ∞, by taking

the Higgs coupling constant to infinity, but keeping all the other parameters
constant (see for example [AB93]). In this limit the Higgs field is frozen in
its vacuum expectation value und h(r) ≡ 1. In this limit the independent
components of the Einstein field equations can be written as

∂xN(x) = 2α2N(x)

x
(∂xu(x))2 , (1.294)

∂xm(x) = α2

(
(∂xu(x))2 t(x) +

(1− u(x)2)
2

2x2
+ u(x)2

)
, (1.295)

∂x (∂xu(x)N(x)t(x)) =
N(x)u(x)

x2

(
x2 − (1− u(x)2)

)
, (1.296)

where the dimensionless quantity x ≡ evr and the dimensionless mass
function m(x) ≡ evGNM(r) were used. Hairy black hole solutions in this
limit are known to be stable on the linearized level [AB93]. In our work we
restricted to this limit.
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2. Classical Scattering Cross
Sections of Massless
Minimally-Coupled Scalar Waves

We studied scattering cross sections of massless minimally-coupled probe
scalar waves scattered by hairy and non-hairy classical black holes ob-
tained as solutions of the Einstein-Yang-Mills-Higgs equations in the above-
mentioned limit of an infinitely heavy Higgs field. We considered the “work-
ing example” α = 0.01, β = ∞, xh = 0.02, mADM = 0.01018 and did a
detailed partial wave analysis (as well as a glory approximation) for sev-
eral monochromatic scalar waves to obtain the differential scattering cross
sections of these scalar waves scattered by the black hole of our working
example and the Reissner-Nordstroem black hole with same asymptotic
characteristics. We plot the mass functions of these black holes in Figure
2.19.

We focused on pure gravitational interactions and therefore neglected
non-gravitational interactions between the scalar field and the magnetic
monopole. We then argued that the qualitative features of the scattering
cross sections obtained in our working example when compared to the anal-
ogous differential scattering cross sections of the same scalar field scattered
by a non-hairy (Reissner-Nordstroem) black hole with same asypmtotic
characteristics apply also for all other hairy black holes in the limit of an
infinitely-heavy Higgs field.

From the plots of our results one can see that - as in the case of black
holes with classical skyrmion hair when compared to Schwarzschild black
holes with same asymptotic characteristics - the characteristic glory peaks
in the differential scattering cross sections of the probe scalar wave scat-
tered by a hairy black hole are located at different scattering angles as
the analogous peaks in the cross sections of the same wave scattered by
Reissner-Nordstroem black holes which have the same asymptotic charac-
teristics as the hairy black holes. In contrast to the skyrmion case the
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Figure 2.19: solution mass function m(x) in the regime x > xh for the
metric of our working example and the metric of the Reissner-Nordstroem
black hole with same asymptotic characteristics

Figure 2.20: Orbits for massless particles moving on null geodesics in the
background of the hairy black hole of Einstein-Yang-Mills-Higgs theory of
our working example
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Figure 2.21: Orbits for massless particles moving on null geodesics in the
background of the Reissner-Nordstroem black hole which has the same
asymptotic characteristics than the hairy black hole of Einstein-Yang-Mills-
Higgs theory of our working example

Figure 2.22: Differential scattering cross section of a massless minimally-
coupled probe scalar wave with frequency w = 100 scattered by the hairy
black hole of our working example
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Figure 2.23: Differential scattering cross section of a massless minimally-
coupled probe scalar wave with frequency w = 300 scattered by the hairy
black hole of our working example

Figure 2.24: Differential scattering cross section of a massless minimally-
coupled probe scalar wave with frequency w = 100 scattered by the hairy
black hole of our working example and differential scattering cross section of
the same scalar wave scattered by a Reissner-Nordstroem black hole which
has the same asymptotic characteristics than the hairy black hole of our
working example
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Figure 2.25: Differential scattering cross section of a massless minimally-
coupled probe scalar wave with frequency w = 300 scattered by the hairy
black hole of our working example and differential scattering cross section of
the same scalar wave scattered by a Reissner-Nordstroem black hole which
has the same asymptotic characteristics than the hairy black hole of our
working example

“shift” of the peaks in the differential scattering cross sections of the hairy
black holes (when compared to the analogous peaks in the cross sections of
the black holes without hair) is in the different direction as in the skyrmion
black hole case. That is because the event horizon size of hairy black holes
of the Einstein-Yang-Mills-Higgs equations is larger than the event horizon
size of a Reissner-Nordstroem black hole with same asymptotic character-
istics whereas in the skyrmion black hole case it is the other way around.

Since, to our knowledge, all black holes with Einstein-Yang-Mills-Higgs
hair in the considered limit share this property of the event horizon, we
expect that the numerical results obtained for our two working examples
qualitatively also apply to all these other black holes with Einstein-Yang-
Mills-Higgs hair.
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3. Outlook: Astrophysical
Implications

The studies of how the differential scattering cross sections of waves scat-
tered by hairy black holes differ from the differential scattering cross sec-
tions of the same waves scattered by black holes without classical hair which
have the same asymptotic characteristics as the hairy black holes can have
many interesting applications for example in astrophysics.

For example, for astrophysical black holes these studies can provide a
method to check if a given black hole in nature with known asymptotic
characteristics carries a classical hair or not:19 Given the asymptotic char-
acteristics of an astrophyiscal black hole in nature (determined by appro-
priate experiments), one can see from the cross sections of waves scattered
by such a black hole if the black hole carries a classical hair or not. Instead
of scalar waves, for such an experiment of course different kinds of waves
(for example electromagnetic waves or gravitational waves) should be con-
sidered. (A similar analysis as was done here for probe scalar waves can
easily be done also for such waves of higher spin.)

19See e.g. [HR14, HR15a] for a recently discussed astrophysical black hole candidate
with classical hair.
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Part V

Summary of Project 4:
“Aspects of Skyrmion Black Hole Hair”

author: Alexander Gußmann
published in: PoS CORFU2016 (2017) 089
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In the conference paper “Aspects of Skyrmion Black Hole Hair” [Gus17],
prepared for the Proceedings of the Corfu Meeting 2016, we reviewed several
aspects of skyrmion/baryon black hole hair which were studied in [DG16,
DG17] and which were presented at the Corfu Meeting by the author. Since
we have already reviewed these aspects in the previous parts of this thesis,
we refer to [Gus17] for the details of this conference talk.



142



Part VI

Summary of Project 5:
“Bulk-Boundary Correspondence between Charged, Anyonic Strings

and Vortices”
authors: Alexander Gußmann, Debajyoti Sarkar, Nico Wintergerst

work in progress
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In the paper [GSW18] “Bulk-Boundary Correspondence between Charged,
Anyonic Strings and Vortices”, the question under what conditions cosmic
strings in (3 + 1) dimensional theories in spacetimes with boundary can
obey fractional statistics was investigated from the point of view of the
boundary theory. As one particular example, statistics of cosmic strings
in (3 + 1) dimensional global AdS spacetime was studied from the point of
view of the (2 + 1) dimensional boundary point of view. The appearance
of fractional statistics for cosmic strings in spacetimes with boundary can
have interesting consequences for the black holes with discrete Aharonov-
Bohm-type quantum hair as well as for holography and in particular the
AdS/CFT conjecture.

This paper is still work in progress and not all aspects have been worked
out in detail so far. In what follows we shall summarize some of the pre-
liminary results.
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1. Statistics of Particles and
Extended Objects

If the positions of two identical point particles in (3 + 1) (or in higher)
spacetime dimensions are interchanged, the corresponding wave function
aquires a multiplicative factor of (+1) or (−1). In the case of (+1) the
point particles are known as bosons, in the case of (−1) they are known as
fermions. Fermions are half-integer spin particles which distribute them-
selves according to the Fermi-Dirac statistics and bosons are integer spin
particles which distribute themselves according to the Bose-Einstein statis-
tics [Pau40]. It is well known [Wil82] that in (2 + 1) spacetime dimensions
point particles can carry any spin and can obey fractional statistics. These
point particles with fractional spin and statistics are known as “anyons”
[Wil82]. If the positions of two identical anyons are exchanged, the wave
function aquires a factor of eiα where all real values of α can be realized.
In (2+1) dimensional quantum field theories such anyons can be realized
in certain cases if a Chern-Simons term is present in the field theory La-
grangian [WZ83, ASWZ85]. One particular well known example where such
anyons can be realized within quantum field theory is the case of electri-
cally charged Chern-Simons vortices: According to the theorem of Julia and
Zee [JZ75] finite energy (2 + 1) dimensional vortices of Nielsen-Olesen type
[NO73] cannot be electrically charged. If however a Chern-Simons term
is added to the Nielsen-Olesen Lagrangian, electrically charged vortices do
exist as (2 + 1) dimensional topologically non-trivial static lowest energy
configurations in this theory [PK86, dVS86] and these electrically charged
Chern-Simons vortices can obey fractional statistics [FM89].

Although in higher spacetime dimensions point-like objects cannot obey
fractional statistics because the braid group is trivial in such cases, it is an
interesting question if higher dimensional objects can obey fractional statis-
tics in spacetime dimensions higher than (2 +1). Since the (generalisations
of the) braid group for n dimensional objects in n + 1 space dimensions
are nontrivial [MS89], one can in fact not a priori exclude the option that
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in certain quantum field theories n dimensional objects obeying fractional
statistics in n + 1 space dimensions are realized, for example that string-
like objects of certain quantum field theories can obey fractional statistics
in (3 + 1) spacetime dimensions. Discussions on this topic have already
appeared in the literature (see e.g. [ABKS91] and [Har07] for a discussion
in a string theory context).

Here, we shall investigate this question for the case of Abelian cosmic
strings in (3 + 1) dimensional quantum field theories in spacetimes with
boundary from the point of view of the induced boundary theory. For this
purpose we consider Abelian cosmic strings in the (3+1) dimensional space-
time which end on the (2 + 1) dimensional boundary of the spacetime and
investigate the question if and under what conditions these cosmic strings
in (3 + 1) spacetime dimensions obey fractional statistics. We argue that
one can answer this question by considering only the endpoint vortices of
the cosmic string which live on the (2 + 1) dimensional boundary. Our
investigations, when applied to AdS spacetime, can have interesting appli-
cations in the context of the AdS4/CFT3 duality [Mal99, Wit98].

In order to illustrate our points in the (3 + 1) dimensional case, we in-
vestigate two particular setups. First, we study the case of Abelian cosmic
strings in the (3 + 1) dimensional spacetime which are obtained as finite
energy configurations in the theory with Nielsen-Olesen Lagrangian with
a term ∆L = θεµναβFµνFαβ with a θ which is such that it changes dis-
continuously somewhere (e.g. because of the presence of an axion domain
wall) added and which have both endpoints ending on the (2 + 1) dimen-
sional boundary of the spacetime.20 Second, we study the case of a cosmic
string, ending with both endpoints on the (2 + 1) dimensional boundary
of the spacetime, which is charged through an additional gauge field which
we add to the theory. Such a string is similar to the well-known super-
conducting Abelian cosmic string which has been introduced in [Wit85].
Throughout, we shall work in the limit in which backreaction of the strings
on the spacetime is absent.

The next chapters are organized as follows. In chapter 2 we study cer-
tain electrically charged (2 + 1) dimensional Abelian vortices in flat space-
time. In section 2.1 we point out, by considering such vortices from the
dual point of view, that (2 + 1) dimensional electrically charged Chern-
Simons vortices obey fractional statistics as a consequence of being electri-

20Such a discontinuous jump of θ can in certain condensed matter systems also be
realized by junctions of matter (see e.g. [NZvdB16]).
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cally charged. This is a well-known result [FM89]. In section 2.2 we argue
that also (2 + 1) dimensional vortices with no pure Chern-Simons term can
obey fractional statistics in the case a certain additional internal current
which we will specify is present. In chapter 3 we study some particular
(3 + 1) dimensional Abelian cosmic strings in spacetimes with boundary.
In section 3.1 we consider, in complete analogy to the (2 + 1) dimensional
case which we considered in section 2.1, (3+1) dimensional cosmic strings
from the dual point of view and show that cosmic strings obey fractional
statistics if they are electrically charged. In section 3.2 we consider two
particular cosmic strings which are electrically charged due to the presence
of an additional current which we will introduce. In chapter 4 we combine
our discussions of chapter 2 and chapter 3 and point out that the boundary
endpoints of the particular cosmic strings discussed in section 3.2 are noth-
ing but the vortices which we considered in chapter 2. We conclude with
an outlook in chapter 5 where we shall mention possible implications of our
findings in different contexts, for example in the context of the AdS/CFT
duality.
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2. Fractional Statistics of
Vortices in (2 + 1) Dimensions

We consider two cases of electrically charged vortices in (2+1) flat spacetime
dimensions and argue that these vortices obey fractional statistics as a
consequence of being electrically charged. These are in part well known
results (see e.g. [FM89]).

2.1 Case 1: Abelian Chern-Simons Vortices
Electrically charged static Abelian vortices in (2+1) dimensional Minkowski
spacetime can be obtained numerically as static lowest energy topologically-
nontrivial configurations in the theory with Nielsen-Olesen Lagrangian (1.85)
with Chern-Simons term added [PK86]:

L = −1

4
FµνF

µν +
1

2
(Dµφ)+ (Dµφ)− λ

4

(
φ+φ− v2

)2
+ µεµναAµ∂νAα .

(2.297)
Here Fµν ≡ ∂[µAν] and Dµφ ≡ ∂µφ − ieAµφ. φ is a complex scalar field
which can be parametrized as

φ(x) = ρ(x)eiθ(v)(x) , (2.298)

with the two real valued functions ρ(x) and θ(v)(x).
This Lagrangian is invariant under the U(1) transformation φ→ eiw(x)φ,

Aµ → Aµ + 1
e
∂µw(x) with w(x) a gauge transformation function.

The electric current Jµ (“electric” referring to electric charge under the
gauge field Aµ) is given by

Jµ =
ie

2

(
φ (Dµφ)+ − φ+Dµφ

)
. (2.299)

Electrically charged vortices have been found in [PK86] numerically by
minimizing the energy functional which corresponds to this Lagrangian

151



152 2. FRACTIONAL STATISTICS OF VORTICES IN (2 + 1)
DIMENSIONS

after using appropriate ansatz-functions and boundary conditions for the
scalar and gauge field. These electrically charged vortices carry electric
charge µΦB, where ΦB ≡

∫
d2xεij∂iAj is the magnetic flux [PK86]:∫

J0d
2x = 2µΦB . (2.300)

At spatial infinity for these vortices the solution-functions behave as ρ(x)→
v and

(
∂µθ(v) − eAµ

)
→ 0 [PK86]. This implies that the vortices have finite

energy.

Let us now for simplicity use the approximation that the vortex is point-
like, indeed that the vortex solution-function ρ(x) ≡ v everywhere except
at x = 0. More rigorous treatments without using this approximation
can be found for example in [KL94] and in references therein. With this
approximation the Lagrangian (2.297) can then be written as

L =
v2

2

(
∂µθ(v) − eAµ

)2 − 1

4
FµνF

µν + µεµναAµ∂νAα . (2.301)

The electric current (2.299) is then

Jµ = ev2
(
∂µθ(v) − eAµ

)
. (2.302)

It is well known that, at low energies, one can dualize the Lagrangian
(2.301) and that in the dual theory the vortices appear as point charges of
a gauge field Cµ. As we will now demonstrate, going to the dual picture is
very useful to visualize that (if the constant µ in (2.301) is appropriately
chosen) electrically charged vortices obey fractional statistics [WZ89b], a
result which is well known [FM89] and which could also be inferred directly
from (2.301) [WZ89b].

The Lagrangian (2.301) can be dualized as follows. First we introduce
an auxiliary field J (aux)

µ as

J (aux)
µ = εµνα∂

νBα , (2.303)

where Bµ is a U(1) gauge field which can later be identified with Cµ.
Using the auxiliary field J (aux)

µ , the Lagrangian (2.301) can be written
as

L = − 1

2v2
J (aux)
µ J (aux)µ + J (aux)

µ

(
∂µθ(v) − eAµ

)
+ µεµναAµ∂νAα , (2.304)
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which in terms of the field Bµ can be written as

L = − 1

4v2
∂[µBν]∂

[µBν]+εµνα∂
νBα

(
∂µθ(v) − eAµ

)
+µεµναAµ∂νAα . (2.305)

Here we neglected the kinetic term for Aµ which is justified at low
enough energies.21 Integrating out Aµ we get

L = − 1

4v2
∂[µBν]∂

[µBν] + εµνα∂
νBα∂µθ(v) + µ̃εµναBµ∂νBα , (2.308)

with µ̃ ≡ − e2

4µ
. We see in particular that the Chern-Simons term manifests

itself also in the dual theory at low energies, a well known result sometimes
referred to as “Chern-Simons self-duality”. The term εµνα∂

µ∂νθ(v) (which
for a vortex is non-zero since θ(v) is 2π-periodic) can be interpreted as a
vortex current j(vortex)α (see e.g. [KL94]) and the Lagrangian can be written
as

L = − 1

4v2
∂[µBν]∂

[µBν] +Bαj(vortex)α + µ̃εµναBµ∂νBα . (2.309)

In fact, the vortex current appears as “electric” current for the gauge po-
tential Bµ.

If we take two of such currents and consider a process in the theory
(2.309) where one vortex is moving adiabatically around the other iden-
tical one in such a way that finally the initial positions of the vortices
are exchanged, both the interaction jµ(vortex)Bµ and the Chern-Simons term
induce Aharonov-Bohm phase shifts [KL94, WZ89b, WZ89a]:

The equations of motion for the dual gauge field Bµ are

jµ(vortex) = −2µ̃εµνα∂νBα . (2.310)

In order to see the statistical Aharonov-Bohm phase which is induced in
the process in which the positions of two identical vortices are adiabatically
exchanged it is convenient to introduce a “total current” jtotµ as [WZ89a]

jtotµ ≡ j(vortex)µ + µ̃εµνα∂
νBα . (2.311)

21 The equations of motion for the auxiliary field give

J (aux)
µ =

1

e
Jµ . (2.306)

Using Stokes theorem, the electric charge can thus be written as

2µΦB ≡
∫
J0d

2x = e

∫
∂iBjε

ijd2x = e

∮
Bµdx

µ . (2.307)
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This total current is the coefficient of ∂µΛ(x) in the variation of (2.309)
under Bµ → Bµ + ∂µΛ. The total charge, Q ≡

∫
d2xjtot0 , is then, using the

equations of motion (2.310), given by

Q =
1

2

∫
d2xj(vortex)0 . (2.312)

If one vortex (1) with charge Q = 1
2
is moving adiabatically once around

another identical vortex (2) at rest which produces the potential B(2)
µ , an

Aharonov-Bohm phase

ei
1
2

∮
dxiB

(2)
i = ei

1
2e

∫
d2xJ

(2)
0 = ei

µ
e

ΦB (2.313)

is induced. Here dxi parametrizes the contour (worldline) of vortex (1). In
(2.313), equation (2.307) was used.

If the positions of the vortices are exchanged, in fact if one vortex is
only moved half-way around the contour and the vortices are then parallel-
shifted, a change in the action ∆S of

∆S =
µ

2e
ΦB (2.314)

is induced which can be measured as Aharonov-Bohm phase provided µ is
chosen such that ∆S is not an integer multiple of 2π. Thus, in that case,
the vortices obey fractional statistics.

We want to emphasize that using the total current (2.311) makes sure
that both the phase shifts generated by the interaction j(vortex)µB

µ and by
the Chern-Simons term are taken into account [GW89]. In our setup the
use of the total current instead of the vortex current “only" produces an
additional factor of 1

2
, in other similar setups not using the total current

can however lead to qualitatively completely wrong conclusions [GW89].

Alternatively, in order to obtain the correct statistical phase which a
process in which one vortex is adiabatically moved around another identical
one induces, one could have integrated out Bµ in (2.305) or in (2.309). This
would have given rise to an effective non-local Lagrangian, known as “Hopf
term",

LHopf =
1

4µ̃
j(vortex)µ

εµνλ∂ν
∂2

j(vortex)λ , (2.315)

which leads to the correct quantum statistics [WZ89a].
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2.2 Case 2: Electrically Charged Abelian Vor-
tices with Additional Current

Vortices in (2 + 1) spacetime dimensions which obey fractional statistics
can also be obtained in some cases where the Nielsen-Olesen Lagrangian is
modified in a different way than by adding a pure Chern-Simons term.

One obvious example is the case of a mixed Chern-Simons term in the
dual theory with an additional gauge field Eµ introduced and an internal
current J̃µ which is localized on the vortex and is coupled to Eµ. The
corresponding dual low energy Lagrangian without kinetic terms is given
by

L = Bµj(vortex)µ + EµJ̃
µ + κεµναE

µ∂νBα . (2.316)

In a process in which one vortex (1) is taken adiabatically around an-
other identical one (2) in such a way that finally the initial positions of
the vortices are interchanged, the interaction term Bµj(vortex)µ induces a
change in the action of

∆S =
1

2

∮
B(2)
µ dxµ , (2.317)

where dxµ is the worldline of the vortex (1) which is adiabatically taken
around the vortex (2) which is at rest and which sources B(2)

µ . The factor
of 1

2
is included in (2.317) because in order to exchange the positions of the

vortices, vortex (1) has to be taken half-way around vortex (2). Using the
equations of motion for E(2)

µ ,

J̃µ = −κεµνα∂νBα , (2.318)

and Stokes theorem this change can be written as

∆S ≡ 1

2

∮
B(2)
µ dxµ = − 1

2κ

∫
J̃

(2)
0 d2x . (2.319)

Therefore, if the charge
∫
d2xJ̃

(2)
0 of the vortex at rest is non-vanishing and

if κ is chosen appropriately such that a non-trivial Aharonov-Bohm phase
shift is induced by ∆S, these vortices obey fractional statistics.22

22Note, that in contrast to the case which we have discussed in section 2.1, here the
contributions of the field terms were not taken into account. Taking these into account
gives, in complete analogy to the previous case, an additional multiplicative factor of 1

2
entering ∆S.
Alternatively, the correct statistical phase can be inferred from integrating out Bµ in

(2.316) by using (2.318). This leads to an effective non-local Hopf term which gives rise
to the correct statistics.
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This setup can also be generalized by adding pure Chern-Simons terms
for Bµ and/or for Eµ to (2.316). The statistical phase then changes accord-
ingly.



3. Fractional Statistics of Cosmic
Strings

In (3 + 1) dimensional flat spacetime cosmic strings exist as static topo-
logically non-trivial lowest energy configurations in the theory given by
the Nielsen-Olesen Lagrangian [NO73]. Such Nielsen-Olesen cosmic strings
have also been studied as solutions in different spacetimes, for example in
global AdS spacetime (both with and without the backreaction of the cos-
mic string on the spacetime taken into account) [DGM02].

An analogous dualization argument as we gave for (2 + 1) dimensional
vortices in section 2.1 also works for cosmic strings in (3 + 1) spacetime
dimensions [Fra07]: Let us consider a cosmic string with electric charge∫

J0d
3x = ev2

∫ (
∂0θ(v) − eA0

)
d3x . (3.320)

As before, an auxiliary field J (aux)
µ can be introduced as

J (aux)
µ = εµναβ∂

νBαβ (3.321)

for some two-form Bµν . Since εµναβ∂µBαβ −→ 0 at spatial infinity, the two-
form Bµν can at spatial infinity locally be written as exterior derivative of
a one-form Bµ:

Bµν −→ ∂[µBν] . (3.322)

Following an analogous argument as the one before, one can easily see
that the electric charge of the cosmic string can be written in terms of Bµν

as ∫
J0d

3x = e

∫
∂iBjkε

ijkd3x = e

∮
Bijdx

i ∧ dxj . (3.323)

For Nielsen-Olesen cosmic strings this electric charge is zero [JZ75].
Let us now consider two kinds of cosmic strings (not of Nielsen-Olesen
type) in spacetimes with boundary (for example AdS4), which are elec-
trically charged and show, in particular by dualizing the corresponding
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Lagrangians, that in these cases the strings obey fractional statistics. As
we will discuss in chapter 4, these electrically charged cosmic strings are,
in contrast to the pure Nielsen-Olesen cosmic strings, cosmic strings which
have boundary vortices/antivortices as endpoints which carry different elec-
tric charges.

In our discussion we shall work in the limit in which backreaction of the
cosmic string on the spacetime is absent.

3.1 Abelian Cosmic String with θ terms

Let us first consider the theory with Nielsen-Olesen Lagrangian with the
term δL = θεµναβFµνFαβ added to the Nielsen-Olesen Lagrangian,

L =
√
−g
(
−1

4
FµνF

µν +
1

2
(Dµφ)+ (Dµφ)− λ

4

(
φ+φ− v2

)2
)

+θεµναβFµνFαβ .

(3.324)
Here g is the metric of the spacetime and εµναβ is the Levi-Civita symbol
(note, that throughout we shall use εµναβ for the Levi-Civita symbol and
not for the Levi-Civita tensor).

In what follows we will study the statistics of cosmic strings which are
topologically non-trivial lowest energy configurations of this Lagrangian
first in the case of a constant θ parameter and second in the case of θ
which is constant everywhere except at one axion domain wall along which
θ changes discontinuously.

3.1.1 Constant Parameter θ

If θ is a constant parameter, the term θεµναβFµνFαβ is a boundary term,

θεµναβFµνFαβ = ∂µ
(
4θεµναβAν∂αAβ

)
, (3.325)

and thus has no effect on the bulk equations of motion. Therefore,
in the bulk, the standard Nielsen-Olesen cosmic strings are topologically
non-trivial lowest energy configurations of this Lagrangian.

These pure Nielsen-Olesen cosmic strings do not obey fractional statis-
tics as a consequence of not being electrically charged [JZ75]. We shall show
in chapter 4 by considering the endpoint vortices of the cosmic string and
the boundary term (3.325) that not obeying fractional statistics in this case
is consistent with the statistics of the induced boundary theory. In other
words, we shall show in chapter 4 that in the case of the Nielsen-Olesen
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cosmic string solution of (3.324) with constant θ (which does not obey frac-
tional statistics) also the boundary endpoint vortices of that string do not
obey fractional statistics.

Let us now consider the case with θ not a constant parameter, but a
function.

3.1.2 Non-Constant Parameter θ

In the case of a non-constant θ the term δL = θεµναβFµνFαβ is not a
boundary term, but differs from a boundary term by −2∂µθε

µναβAνFαβ:

θεµναβFµνFαβ = ∂µ
(
2θεµναβAνFαβ

)
− 2∂µθε

µναβAνFαβ . (3.326)

Let us consider the setup of a cosmic string, oriented in the z-direction,
which ends on both sides on some (2 + 1) dimensional boundary and a θ
parameter which is constant everywhere except at one hypersurface along
which θ changes discontinuously.23

In this setup the Nielsen-Olesen cosmic string gets electrically-charged
due to an effect which can be seen in analogy to the Witten effect now
applied to U(1) [Wit79b, NZvdB16]. The electric charge density ρ which
is induced by the term ∆L = θεµναβFµνFαβ with a non-constant θ is given
by

ρ = div(θBmag) = Bmag∂zθ , (3.327)
where Bmag is the magnetic field. The electric charge QE of the cosmic
string is then

QE ≡
∫
d3xρ =

∫
d2xBmag

∫
dz∂zθ = ΦB (θu − θd) , (3.328)

with ΦB the magnetic flux and θu and θd the values of θ at the upper and
lower endpoints of the cosmic string.

Let us now argue, from the dual point of view which is analogous to the
one used in section 2.1, that such electrically charged cosmic strings obey
fractional statistics.

Dualizing the Lagrangian (3.324) at low energies (neglecting kinetic
terms for Aµ) in the approximation analogous to the one used in section 2.1
for the (2 + 1) dimensional vortices gives, using the auxiliary field J (aux)

µ ≡
1√
−g εµναβ∂

νBαβ, [Fra07]

L = −
√
−g

4v2
HµναH

µνα+εµναβ∂νBαβ∂µθ(v)−eεµναβ∂νBαβAµ+θεµναβFµνFαβ ,

(3.329)
23Such a hypersurface can for example be realized by an axionic domain wall [DP14].
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where Hµνα ≡ Bµν,α +Bµα,ν +Bνα,µ.
Integrating by parts and neglecting the kinetic term for Bµν , this La-

grangian can be written as

L = Lbulk + Lboundary , (3.330)

with

Lbulk ≡ Bµνj
µν
(vortex) + eεµναβBαβ∂νAµ − 4∂µθε

µναβAν∂αAβ , (3.331)

where jµν(vortex) ≡ εµναβ∂α∂βθ(v) can be interpreted as a vortex loop current
[Fra07], and with the boundary part24

Lboundary ≡ ∂ν
(
εµναβBαβ∂µθ(v) − eεµναβBαβAµ − 4θεµναβAµ∂αAβ

)
.

(3.332)
We shall consider Lboundary in chapter 4 and now, in this chapter, focus

on Lbulk. Integrating out Bµν in Lbulk gives the effective Lagrangian

Lbulk = − 4

e2
jµν(vortex)∂µθ∂νθ(v) . (3.333)

In a process in which one cosmic string (1) is adiabatically taken around
another identical one (2) at rest in such a way that the positions of the
strings are exchanged, this term induces a change in the action of

∆S = − 4

2e2

∮
∂µθ∂νθ

(2)
(v)dx

µ ∧ dxν , (3.334)

where dxµ ∧ dxν parametrizes the trajectory of string (1) and θ
(2)
(v) is the

vortex angle of the string (2) which is at rest. The factor of 1
2
was included

because in a process in which the positions of the two strings are exchanged,
one string has to be taken half-way around the other one.

Using cylindrical coordinates and a taking into account that the string
(1) is oriented in the z-direction at rest, this change in the action can
according to Stokes theorem be written as

∆S =
4

2e2

∫
d3x∂zθj

(1)0z
(vortex) . (3.335)

Using the equations of motion for Bµ from (3.331),

j(vortex)µν(1) = eεµναβ∂αA
(1)
β , (3.336)

24Note that, as pointed out in (3.322), on the boundary locally Bµν ≡ ∂[µBν] for some
vector field Bµ. Therefore in (3.332) Bµν can locally be replaced by ∂[µBν]. We shall
make use of this in chapter 4.



CHARGING U(1) COSMIC STRINGS USING ADDITIONAL
CURRENT 161

gives

∆S =
4

2e

∫
d3x∂zθε

0zαβ∂αA
(1)
β =

4

2e
ΦB (θu − θd) . (3.337)

Whenever (θu−θd) is chosen such that ∆S is not an integer multiple of 2π,
this change in the action induces a measurable Aharonov-Bohm phase shift
in a process in which the positions of two identical strings are exchanged.
These strings, in that case, therefore obey fractional statistics.

3.2 Charging U(1) Cosmic Strings Using Ad-
ditional Current

In complete analogy to the case of (2 + 1) dimensional vortices which we
have considered in section 2.2, cosmic strings in (3 + 1) spacetime dimen-
sions can also be obtained in the case an additional gauge field Eµ and an
internal current J̃µ (localized on the string and coupled to Eµ) are present.
In this case, in a setup with constant θ and without any embedded axionic
domain wall, the cosmic string can obey fractional statistics. This setup
is well-known and has been studied in the past for flat spacetime [ABKS91].

The corresponding dual low energy bulk Lagrangian without kinetic
terms is given by25

L = Bµνj
µν
(vortex) + J̃µE

µ + θεµναβ∂µEνBαβ . (3.338)

This Lagrangian can be seen in analogy to the Lagrangian in (2 + 1) di-
mensions which we have considered in section 2.2. As shown in [ABKS91],
in complete analogy to the case of the (2 + 1) dimensional vortices which
we have considered in section 2.2, such cosmic strings of (3.338) obey frac-
tional statistics if the constant θ and the current J̃µ in (3.338) are such that
the charge

∫
J̃0 is not an integer-multiple of 2πθ. To see this, we note that

the equations of motion for Eµ are given by

J̃β = −θεβµνα∂µBνα . (3.339)

Therefore, in a process in which one cosmic string is adiabatically taken
around another identical one at rest such that the initial positions of the

25Just as in section 2.2, the present setup can also be generalized. For example, one
can add a term εµναβBµνBαβ and/or a term εµναβ∂µEν∂αEβ to (3.338). The statistical
phase then changes accordingly.
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strings get exchanged, the interaction term Bµνj
µν
(vortex) induces a change in

the action of the form

∆S =
1

2

∮
Bµνdx

µ ∧ dxν = − 1

2θ

∫
d3xJ̃0 , (3.340)

where Stokes theorem was used. Bµν is the field corresponding to the string
at rest. dxµ ∧ dxν parametrizes the worldsheet of the moving string. As in
the case of (2.317), the factor of 1

2
is included because in order to exchange

the positions of the strings, one string has to be taken half-way around
the other one at rest.26 Note that, once we identify both θ above, with
the Chern-Simons coefficient κ which we have introduced in (2.316), then
the bulk phase shift (3.340) matches exactly with the boundary phase shift
obtained in section 2.2. We will elaborate on this relation between the bulk
and boundary phase shifts in chapter 4.

26Note that once again, here we did not take into account that there can be an
additional change in the action induced by the last two field terms in (3.338). Taking
into account these terms when determining ∆S gives rise to an additional multiplicative
factor of 1

2 in (3.340) as shown in [ABKS91]. Thus, the correct statistical phase can be
obtained from (3.340) when taking this additional factor of 1

2 into account. Alternatively,
the correct statistical phase can also be obtained by integrating out Bµν in (3.338) and
by following an analysis analogous to the one performed in section 3.1.



4. Electrically Charged Vortices
as Endpoints of Cosmic Strings

In the previous chapters we have independently studied the statistics of
certain (2 + 1) dimensional vortices in flat spacetime and of certain (3 + 1)
dimensional cosmic strings in the corresponding bulk. At the end of chap-
ters 2 and 3, we have already demonstrated how to obtain the boundary
statistics of a vortex starting from the bulk statistics in one higher dimen-
sion. In this chapter we will argue that the statistics of the cosmic strings
which we found in chapter 3, is exactly the same as the combined statistics
of the upper and lower endpoint boundary vortices of the corresponding
strings (which we discussed in chapter 2). Thus, the statistics of the cos-
mic strings in (3 + 1) dimensional bulk spacetime can be fully understood
by considering only the statistics of the boundary vortices of the string on
the (2 + 1) dimensional boundary.

This section is organized as follows. First, we shall consider the case of
the cosmic string which can be obtained as classical solution of the Nielsen-
Olesen Lagrangian with ∆L = θεµναβFµνFαβ added to the Lagrangian (dis-
cussed in section 3.1) and the corresponding Chern-Simons vortices (dis-
cussed in section 2.1). Second, we consider the correspondences between
the cosmic strings of section 3.2 and the boundary vortices of section 2.2.

4.1 Bulk Cosmic Strings with θ-Term and Bound-
ary Chern-Simons Vortices

Let us consider the cosmic strings which are obtained as finite energy con-
figurations of the Nielsen-Olesen Lagrangian with an additional term ∆L.
We will first consider the cosmic strings in the case of a constant param-
eter θ. As mentioned in section 3.1, only for the case of non-constant θ,
do we get a non-trivial fractional statistics. Since the boundary term in-
duced by δL is an Abelian Chern-Simons term, the endpoints of the cosmic
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string are nothing but the Abelian Chern-Simons vortices (or antivortices)
which we have discussed in section 2.1. There we noted that generically,
separate Abelian Chern-Simons vortices/antivortices can obey fractional
statistics. However, as discussed in chapter 2, the upper and lower end-
points of the cosmic string taken together do not obey fractional statistics
for a constant θ. In what follows, we will reconcile the two by noting that
the Aharonov-Bohm phases of the upper and lower endpoint boundary vor-
tices/antivortices always cancel in a process in which one cosmic string is
taken around another identical one.

To see this clearly and for concreteness, let us consider the two di-
mensional spatial boundary sphere of conformally compactified AdS4 (S2)
and two cosmic strings in AdS4 which end on this sphere. Let the upper
endpoints of the strings end on the northern hemisphere of this 2-sphere
and the lower endpoints of the strings end on the southern hemisphere.
From the point of view of an observer who is located on this S2, the upper
endpoints are vortices whereas the lower endpoints are antivortices. Since
θµ(vortex) = −θµ(antivortex), we obtain

jµ(vortex) = −jµ(antivortex) . (4.341)

Here the jµ is once again the vortex current, jµ(vortex) ≡ εµνα∂ν∂αθ(vortex),
which was introduced in (2.309). Using Stokes theorem and the equations
of motion εµνα∂νBα ∝ jµvortex (2.310), the change in the action induced by
one upper vortex moving around the other identical one goes as (2.313)∮

Bµdx
µ
upper =

∫
d2xj0

(vortex) , (4.342)

whereas the change in the action induced by one lower antivortex moving
around the other identical one goes as (2.313)∮

Bµdx
µ
lower =

∫
d2xj0

(antivortex) . (4.343)

Here dxµupper is the worldline of a vortex current whereas dxµlower is the
worldline of an antivortex current, implying dxµlower = −dxµupper.27 Since
j0

(vortex) = −j0
(antivortex), in total∮

Bµdx
µ
upper +

∮
Bµdx

µ
lower =

∫
d2x

(
j0

(vortex) + j0
(antivortex)

)
= 0 . (4.344)

27In (4.343) two minus signs cancel: one coming from the change in directions in the
curve integration (when compared to the upper case) and other one due to the difference
between an antivortex and a vortex: dxµupper = −dxµlower.
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Thus, the combined Aharonov-Bohm phase shift of the upper and lower
endpoint boundary vortices/antivortices cancel and in this sense the up-
per and lower boundary endpoint vortices/antivortices of the cosmic string
taken together do not obey fractional statistics. Since also the Nielsen-
Olesen bulk cosmic strings of the form discussed in section 3.1 do not obey
fractional statistics for constant θ, the statistics of the boundary endpoint
vortices/antivortices matches with the statistics of the bulk cosmic strings
in this case.

Let us now consider the case of a string which ends on both sides on the
global boundary of AdS4 and is piercing an axionic domain wall embedded
in AdS4 along which θ changes discontinuously. In this case, in contrast to
the case of a constant θ parameter, the induced Aharonov-Bohm phases of
the upper and lower boundary endpoint vortices/antivortices of a cosmic
string do not cancel in a process in which one cosmic string is moved around
another identical one. This is because in this case the Chern-Simons term
on the upper hemisphere of the AdS boundary is induced with a different
prefactor than the Chern-Simons term on the lower hemisphere and thus
|j0

(vortex)| 6= |j0
(antivortex)|. The induced boundary Lagrangian can be written

at the boundary i (i = 1, 2) as (3.332)

Li = −εναβ∂νθ(v)∂αBβ + eεναβAν∂αBβ + 4θiε
ναβAν∂αAβ , (4.345)

where θi are the values of the θ parameter at the ith boundary. In our
convention, boundary number 1 is the boundary of global AdS4 on the
upper hemisphere and boundary number 2 is the lower hemisphere. Both
hemispheres are separated by the domain wall. When we identify 4θi in
(4.345) with −µ in (2.305), this Lagrangian (4.345) is nothing but minus
the dual Lagrangian (2.305) which describes the Chern-Simons vortices.
In the case of the constant θ parameter discussed above, θ1 = θ2 which
induces boundary Lagrangians of the type (2.305) with both having the
same constant in front of the Chern-Simons term. This leads to the above
mentioned cancelation of the induced Aharonov-Bohm phases of the up-
per and lower boundary vortices/antivortices of the cosmic string since in
this case j0

(vortex) = j0
(antivortex). In the case of a non-constant θ parameter

(e.g. which jumps discontinuously along the domain wall with θ1 6= θ2), the
induced Chern-Simons terms on the boundaries arise with different pref-
actors. Therefore, the charges of the upper endpoint vortices are different
than the charges of the lower endpoint antivortices (for the same strings)
and the Aharonov-Bohm phases do not cancel. In such a case, the upper
and lower boundary endpoint (Chern-Simons) vortices/antivortices of the
cosmic string taken together obey fractional statistics (as discussed in sec-



166 4. ELECTRICALLY CHARGED VORTICES AS ENDPOINTS OF
COSMIC STRINGS

tion 2.2) and the statistics in the bulk and on the boundary matches. In
other words, we can say that the statistics of the bulk cosmic string can
be obtained by considering only the statistics of the boundary endpoint
vortices/antivortices of the string.

4.2 Bulk Cosmic String and Boundary Vor-
tices with Additional Current

Let us now argue that the boundary vortices/antivortices of the (super-
conducting) cosmic string which we discussed in sections 3.2 and 3.3 are
vortices/antivortices of the kind we have discussed in section 2.2. We will
again study the Aharonov-Bohm phase of the upper and lower boundary
vortices/antivortices from both bulk and boundary perspectives in a process
where one (superconducting) string is adiabatically taken around another
identical one in such a way that the initial positions of the strings get ex-
changed.

The low energy dual Lagrangian with constant parameter θ,

L = εµναβ∂νBαβ∂µθ(v) + θεµναβEµ∂νBαβ , (4.346)

can be written as
L = Lbulk + Lboundary , (4.347)

with
Lbulk ≡ j(vortex)αβBαβ + θεµναβ∂µEνBαβ , (4.348)

Lboundary ≡ ∂µ
(
−εµναβBβ∂ν∂αθ(v) + θεµναβEνBαβ

)
. (4.349)

If we couple the bulk current,

J̃µ ≡
∫
d2σδ(4)(x− x(σ))εab∂ax

µ∂bγ , (4.350)

and its boundary current [BSS79],

J̃ boundaryµ ≡
∫
dσ0δ(4)(x− x(σ0))∂0x

µ(σ0)γ(σ0, σ1 = σ1|boundary) , (4.351)

to (4.348) and (4.349) respectively, then the resulting bulk Lagrangian is
the Lagrangian which we have considered in section 3.2 and the resulting
boundary Lagrangian is equal to minus the Lagrangian which we have con-
sidered in section 2.2 (when we identify θ in (4.349) with the parameter
−κ used in section 2.2). Thus, in this sense, the vortices which we have
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considered in section 2.2 can be viewed as the boundary vortices of the
cosmic string which we have considered in section 3.2.

If γ(σ0, σ1 = σ1|boundary1) 6= γ(σ0, σ1 = σ1|boundary2), the electric charges
of the upper and lower boundary endpoint vortices/antivortices are differ-
ent and induce different Aharonov-Bohm phase shifts which do not cancel.
Thus, as follows from the discussion in section 3.2, the phase shift induced
on the boundary is the same as the one in the bulk.

Therefore, the conclusion that the Aharonov-Bohm phase shifts (which
are induced on the boundary in a process in which the boundary vor-
tices/antivortices are taken adiabatically around each other, such that their
initial positions get exchanged) is equal to the analogous phase shifts of the
cosmic strings in the bulk, applies equally for both setups which we have
discussed.
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5. Summary and Outlook

We have first demonstrated separately in two different setups that elec-
trically charged vortices in (2 + 1) spacetime dimensions and electrically
charged cosmic strings in (3 + 1) dimensions obey fractional statistics. In
both setups, we have explicitly calculated the induced Aharonov-Bohm
phase shifts in processes in which two identical vortices or strings are ro-
tated around each other. As we have mentioned throughout the text, some
of these results are well-known: It is well known that, as we discussed in
section 2.1, electrically charged Chern-Simons vortices in (2+1) dimensions
obey fractional statistics [FM89] and it is also well known that, as we dis-
cussed in section 3.2, cosmic strings in (3+1) dimensions can obey fractional
statistics if a certain additional current is localized on the string [ABKS91].
To our knowledge, the presentations which we gave in section 2.2 and in
particular in section 3.1 however have not been appeared in the literature
so far, although there are related works such as [Har07]. In chapter 4 we
combined the discussions of the previous two chapters and presented a uni-
fied way of understanding the statistics of the cosmic strings in a (3 + 1)
dimensional spacetime with boundary and the statistics of corresponding
boundary endpoint vortices/antivortices of the string which are located on
the boundary of the spacetime. In both setups that we have considered,
the cosmic strings obey fractional statistics if and only if their boundary
endpoint vortices and antivortices carry different electric charges. This
might be a very general criterium, not only applicable to the two ways of
charging cosmic strings which we have considered explicitly. Thus, we are
naturally led to the following general conjecture: Cosmic strings in space-
times with boundary obey fractional statistics if and only if their boundary
endpoint vortices and antivortices carry different electric charges. Since
the statistical phase shifts are purely due to the topological terms both
at the bulk and on the boundary, it is clear that our result goes through
for any suitable manifoldM, which can support these topological solutions.

This result might have generalisations to higher dimensional extended
objects in higher spacetime dimensions with boundary. In fact, one can
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wonder under what conditions membranes in concrete theories can obey
fractional statistics. Given our results, one can expect that e.g. two-
dimensional membranes in five dimensional spacetimes with boundary obey
fractional statistics if and only if their boundary endpoint strings carry dif-
ferent electric charges.

Throughout we have worked in the probe limit in which the backre-
action of the topological objects on the spacetime is absent. Although,
for a given spacetime it is not easy to determine the backreaction effects
completely, because this would require to solve the whole coupled Einstein-
Higgs equations, in certain approximations backreaction effects have al-
ready been studied, for example in [DGM02] for the case of cosmic strings
in AdS. It might be interesting to study such backreaction effects in the
context of fractional statistics which we have considered.

Our results can have several interesting applications in different con-
texts. We want to conclude by commenting on some of them.

First, as we have already mentioned several times , our configurations
can be naturally extended to global AdS spacetime, since AdS cosmic
strings exist as solutions of (3.324) [DGM02]. For us, it means that the
fractionally charged cosmic strings are embedded in AdS spacetime with
anyonic boundary endpoint vortices/antivortices located on the boundary
of AdS. In chapter 4, we have already focused on such setups.

In the literature, e.g. in [DGM02, DHIS14], in the context of the
AdS/CFT correspondence, setups with (Nielsen-Olesen type) vortices lo-
cated on the AdS boundary which are endpoints of cosmic strings in the
AdS bulk have already been studied. In [DHIS14] it has been emphasized
that in the context of AdS/CFT (which relates a gravitational bulk theory
to a conformal field theory on the AdS boundary), these lower dimensional
vortices/antivortices can be understood as conformal defects (of the low en-
ergy field theory on the boundary). These defects break the full conformal
group SO(3, 2) of the boundary field theory down to SO(2, 1)×SO(2). So
in this case, the boundary field theory is only invariant under the subgroup
SO(2, 1) × SO(2). To our knowledge, the possible impact of fractionally
charged anyonic vortices on such conformal defects has not yet been studied
in the literature. In this setting, it will thus be interesting to investigate
this question both from the perspectives of a boundary vortex and also for
the bulk string-vortex.
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Our results can also have interesting applications at finite tempera-
ture and, in the context of AdS/CFT, will closely relate to the studies
of holographic superconductors [HHH08a, HHH08b] and to the studies of
the fractional quantum hall effect [KVK08, NR16]. Because vortices lo-
cated at the AdS boundary have already been studied in such contexts in
[MPS09, DHIS14], one might hope to learn the effects of fractional statis-
tics on such condensed matter applications.

Finally, our results may have implications in the physics of Aharonov-
Bohm-type black hole hair. In fact, it is well-known that black holes can be
charged under discrete ZN symmetry [CPW92], and in those cases, cosmic
strings do appear as solutions. It is therefore an interesting question as to
whether our studies on the fractional statistics of cosmic strings might have
some implications on the physics of black holes.
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