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Zusammenfassung (German summary)
Das Verständnis von Transportphänomenen auf molekularer und subzellulärer Ebene ist wichtig
für essenzielle ProzessewieZellteilung oder -migration. Eine zentrale Rolle kommtdabeiMoleku-
laren Motoren zu, die auf den Filamenten des Zytoskeletts gerichtete Bewegung verrichten. In
dieserDoktorarbeit präsentiere ichResultate zu drei Projekten, diewesentlicheAspekte vonTrans-
portphänomenen behandeln: I Das Entstehen von gerichtetem Transport, II dessen Einfluss auf
dieRegulierungder Längender Filamente, sowie III die Rolle von Interaktionen zwischenMoleku-
laren Motoren für das kollektive Transportverhalten.

I Gruppen vonMolekularen Spinnen als Prototyp für kooperierendeMolekulareMotoren
Im ersten Teil dieser Arbeit befassen wir uns mit künstlich hergestelltenen Molekularen Mo-

toren, sogenannten Molekularen Spinnen, die ihre gerichtete Bewegung durch die enzymatische
Reaktionmit einemDNA-Substrat erreichen. Wir haben herausgefunden, dass essenzielle Trans-
porteigenschaften verbessert werden können, wenn mehrere Spinnen zu einer inelastisch gekop-
peltenGruppe kombiniert werden. Durch eineAufteilung in Phasen gerichteter und diffusive Be-
wegung entwickeln wir eine mathematische Theorie, mit der wir eine optimale Kopplungsstärke
vorhersagen können, bei der sich die Spinnen beinahe ballistisch bewegen.

II Die Rolle endlicher Volumina für die Längenregulation vonMikrotubuli
Im zweiten Teil wird die Rolle von Molekularen Motoren des Typs Kinesin-8 für die Längen-

regulation von Mikrotubuli in endlichen Volumina untersucht. Wir betrachten die Auswirkun-
gen zweier ressourcenlimitierter antagonistischer Prozesse, nämlich Polymerisation undDepoly-
merisation derMikrotubuli, indemwir den Transport vonMotorenmithilfe eines Gittergasmod-
ells beschreiben. Ein zentrales Ergebnis unserer Arbeit ist, dass drei verschiedene regulatorische
Regimes existieren, in denen die Länge der Mikrotubuli entweder von den Motoren oder der
Verfügbarkeit der Proteine kontrolliert wird, oder beide Verhalten gleichermaßen möglich sind.
Dieses Verhalten resultiert heuristisch betrachtet von einer unterschiedlichen Verknappung von
Motoren und Tubulin aufgrund deren erheblich verschiedener Anzahl. Mithilfe einer Mean-
Field-Theorie und Monte-Carlo-Simulationen führen wir eine umfangreiche theoretische Anal-
yse des Verhaltens durch. Um insbesondere die physiologische Signifikanz bistabiler Längenreg-
ulation zu untersuchen, werden im Anschluss Ergebnisse einer Reihe von in vitro Experimenten
dargestellt, die einer Kollaboration entstammen. Unter anderem zeigen wir somit, dass Bistabil-
ität zu einer bimodalen Verteilung der Längen von Mikrotubuli führt.

III Die Bedeutung von Interaktionen zwischen Motoren für deren kollektiven Transport
Da sich eine große Zahl von Molekularen Motoren und anderen Proteinen auf Mikrotubuli

befinden, ist es wichtig, deren Interaktionen miteinander und den Effekt auf den kollektiven
Transport zu untersuchen. Wir betrachten daher im letzten Teil dieser Arbeit ein Gittergas-
modell, bei dem Motoren des Typs Kinesin-1 ihre Bindungsstärke an Mikrotubuli gegenseitig
beeinflussen. Wir beobachten, dass durch diese Interaktion die Motorendichte auf Mikrotubuli
gesenkt, aber gleichzeitig deren Fluss erhöht werden kann. Indem wir experimentell zugängliche
Observablen definieren, erhalten wir in einem Vergleich mit Daten aus einem veröffentlichten in
vitroExperiment quantitativeÜbereinstimmung. Dadurch könnenwir auch auf die individuellen
Eigenschaften eines Motors rückschließen und finden unter anderem, dass Kinesin gelegentlich
vorübergehend inaktiv wird. Auf diese Art kann somit auf minimal invasive Weise ein Einblick
in den Schrittmechanismus dieses Motors gewonnen werden.

i





Overview of the thesis

In this thesis, I consider different aspects of transport phenomena on the molecular and subcel-
lular scale, which are important for essential processes ranging from cell division to muscle con-
traction. This work is organised into three parts corresponding to the different projects which I
have investigated during my doctoral studies. I will provide a brief overview of these projects in
the following. A more detailed summary is presented in the next chapter.

I Teams of molecular spiders: a model for groups of molecular motors — with Louis Reese,
and Erwin Frey.

The first part of this thesis deals with molecular spiders, which are artificially constructed
molecular motors. We examine how the coupling of several spiders to a team impacts their trans-
port dynamics. A mathematical analysis is developed which allows us to predict coupling pa-
rameters which optimise the collective dynamics of spider teams. The results of this project have
been published under the title “Cooperative effects enhance the transport properties of molecular
spider teams” in Physical Review E, 87, 3 (2013) (1); I contributed to this publication as first author.
A reprint is included in this thesis.

II The impact of finite resources formicrotubule length regulation bymolecularmotors —
with Aniruddha Mitra, Louis Reese, Stefan Diez, and Erwin Frey.

A project on a molecular motor from the kinesin-8 family, which is known to depolymerise
microtubules, constitutes the second part of this work. We are specifically interested in how fi-
nite volumes and limitation of resources impact the transport dynamics of the motors and the
stationary state properties of the filament. In Chapter 6, we follow a combined theoretical and
experimental approach and find that microtubule length regulation is bistable for a certain con-
centration regime. The findings derived here have been published in Physical Review Letters,
120, 148101 (2018) (2) under the title “Limited Resources Induce Bistability inMicrotubule Length
Regulation”. For this letter, I share co-authorship with Aniruddha Mitra from the group of Stefan
Diez (Dresden), who conducted the experiments. The presentation of this project is completed
in Chapter 7, where we report on a simplified model, which shows the same phenomena, but can
be analysed in a more extensive form.

III Motor-inducedunbinding: the roleof interactions for the collectivedynamicsofmolecular
motors — with Erwin Frey.

In the last part of this thesis, we present results obtained in the context of a project on the
molecular motor kinesin-1. Our focus lies on the interactions of motors with each other. The
model predictions compare well with experimental data, and we can therefore infer information
on the stepping behaviour of individual motors from their collective transport dynamics. The
results shown in this part are currently considered for publication in Biophysical Journal; I will
be the first author of this publication. A preprint with the title “Crowding and pausing strongly
affect dynamics of kinesin-1 motors along microtubules” is available at arXiv:1805.03432 (3).
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Abstracts of the projects

Intracellular transport is vital for the functioning of a cell. So-called molecular motors play a
crucial role for a wide range of processes from muscle contraction over cell migration to cell
division. For example, motors of the kinesin families use microtubules (MTs), long filamentous
polymers, as molecular tracks, along which they perform directed motion (4, 5). In a complex
interplay betweenMTs,molecularmotors, and other proteins, themitotic spindle is formedwhich
orchestrates the segregation of chromosomes into the daughter cells during cell division (6, 7).

The projects presented in this thesis have been inspired by in vitro studies. These experiments
provide deep insight into the biophysical processes, because they allow that the role of individual
proteins is examined without their interference with other proteins. Here, we focus on three
aspects of molecular motors and transport phenomena on the molecular and subcellular scale.
In Part I, the results of a study on an artificial molecular motor are presented. While the origin of
the biased motion of thesemolecular spiders has been characterised previously (8, 9), our specific
goal here is to analyse the stepping behaviour of teams of molecular spiders as a prototypic model
of the motion of groups of molecular motors (10). In Part II of this work, we turn to the collective
dynamics of a specificmolecularmotor of the kinesin-8 family, which has been observed to shrink
MTs. Our specific interest lies in the impact of finite resources on the dynamics of themotors and
the MT. In the last part of this thesis, Part III, we consider interactions of kinesin-1 motors with
each other. More specifically, we examine a motor-induced unbinding process which is based
on experimental findings, and explore its implications on the collective transport and individual
motion of molecular motors.

I Teams of molecular spiders: a model for groups of molecular motors In order to under-
stand howmolecularmotors function, a particularly fruitful approach has been to create recombi-
nant molecular motors, or to construct artificial molecular motors from scratch (11). In such con-
structions, motors can be equipped with well-defined properties. The impact of these properties
on the individual and collective motion of the motors can subsequently be studied. With recent
advances in DNA nanotechnology, so-called molecular spiders have been constructed (12, 13).
These spiders bind to and enzymatically cleave a substrate, which can be tuned in a way that the
binding of spiders to the original substrate is stronger than to its cleaved form. As a consequence,
spiders can distinguish between sites where they have already been, and previously unvisited sites.
It has been shown (8, 9) that this memory effect leads to biased motion, as long as the spider re-
mains at the interface between visited and unvisited sites.

In the project presented here, we consider a model of a group of multiple molecular spiders,
where the spiders comprising a “team” are coupled via an inelastic “leash”. We find in simulations
that spider teams move superdiffusively; the motion of some large teams becomes almost ballis-
tic. The runs of spider teams can be classified into boundary periods where they move in a biased
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fashion, and diffusive periods where they have lost contact to the interface between cleaved and
uncleaved sites. We develop a mathematical theory in which both these cases are considered. An
insightful quantity to characterise boundary periods is the average number of steps for which the
spider team remains in contact with the boundary and therefore can utilise the bias. In the limit
where the time scales for spider stepping and the cleaving of a substrate separate, a combinatorial
approach leads to exact expressions for this quantity. For the diffusive periods, we obtain a map-
ping of the one-dimensional motion of a team comprising n spiders to the diffusive motion of
a single particle in an n-dimensional constrained environment. Furthermore, we conclude that
the team’s coupling strength is crucial to achieve and maintain significantly biased motion. This
is due to the payoff between the ability to explore previously unvisited sites, and the prevention
of retracting to the domain of cleaved substrates. Our theoretical understanding allows us to de-
termine the optimal coupling strength of a spider team depending on its size, at which the bias
becomes maximal and the motion is least random.

In a broader context, our study shows the importance of team work for efficient and directed
transport on the nanoscale, where diffusion is dominant. It is therefore also prototypic for the
collective motion of groups of molecular motors, as found inside cells.

It will be interesting to see in the future how our findings compare with real molecular mo-
tors (10, 14–18). Furthermore, the role of cooperativity between motors as a design principle for
novel artificial motors (11) will need to be studied in more detail, and in an interdisciplinary con-
text of theoretical physics, chemistry, and engineering.

The project which is presented in this work has been published under the title “Cooperative
effects enhance the transport properties of molecular spider teams” in Physical Review E, 87, 3
(2013) (1). A reprint of the publication is included in this thesis.

II The impact of finite resources for microtubule length regulation by molecular motors
Tight regulation of the length of microtubules (MTs) is important for the assembly of the mi-
totic spindle (19). Many proteins are involved in this process through a complex interplay. These
proteins includemolecularmotors of the kinesin-8 family, which are known to depolymeriseMTs
at their plus ends. In in vitro experiments (20, 21), as well as in theoretical studies (22, 23), it has
previously been found that a motor density gradient — arising from the combined effect of ran-
dom motor attachment to the MT, and directed motion on it — leads to a mechanism for how
these polymers can regulate their length.

Based on experimental observations that the formation of themitotic spindle depletes the con-
centration of protein (24, 25), we extend and refine an earlier model (22, 23). In Chapter 6, we
describe the motion of molecular motors on a MT in terms of a driven lattice gas with a dynam-
ically changing lattice length. The role of limited resources is specifically taken into account by
assuming that the motor attachment rate to the MT, as well as the MT elongation rate, depend
on the availability of motors and tubulin dimers in the cytosol, respectively. It is found in Monte
Carlo simulations that three regulatory regimes exist: a regime where depolymerisation dom-
inates, i.e., where motors control the length of the (hence short) MTs; a second regime which
is dominated by polymerisation: here, the availability of tubulin determines MT length; and a
bistable regime where both behaviour is possible. We derive an effective description of the model
in terms of the TASEP/LK. The collective dynamics are obtained from a mean-field theory, and
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we find good agreement with simulation data. This allows us to associate the different regulatory
regimes of MT length with specific phases of the collective motion. In order to test the theoret-
ical predictions, we subsequently present a set of in vitro experiments, conducted in the group
of Stefan Diez (Dresden). These experiments confirm our key results. In particular we find that
MTs with two specific lengths coexist for certain concentrations. The correspondence of these
bimodal length distributions with our theoretical understanding of bistabile length regulation is
argued via a separation of length scales: At stationarity, MTs in spatial proximity, so close that
they share a common pool of resources, assume the same length. In contrast, distant MTs behave
independently, and may therefore evolve towards the different fixed points of the bistable system.

In the second part of this project, Chapter 7, we consider a simplified model where attachment
and detachment ofmotors is possible only at theMTends. Thismodel has the advantage that a full
theoretical analysis is possible without having to rely on numerical methods, while all essential
phenomena of the full model are maintained. We derive a closed set of expressions from which
the existence of a bistable regime follows inevitably. This also allows us to uncover the prerequisite
of bistability on a heuristic level: In particular, we argue that bistability results from a differential
shortage of resources at different MT lengths, and therefore demands that motors and tubulin
dimers are available at vastly different concentrations.

On a broader perspective, phenomena such as bistability are important also because they change
the nature of phase transitions: We show explicitly that, in the absence of a bistable phase, MT
length changes continuously with protein concentrations, whereas discontinuous phase transi-
tions are observed as bistability sets on. The changes of the phase transition may be of particular
importance in the cell cycle, where flexible and quick adaption of certain physical properties such
as MT length are important. Our study is exemplary for a system where two volume-limited pro-
cesses compete with each other, and is not limited to the specific in vitro case here. It reveals how
emergent phenomena arise in a very simple setting when resources are limited.

Future studies will need to include the role of diffusion of protein betweenMTsmore explicitly,
as in this work, only the limits of isolated and well-mixed systems, respectively, were examined.
Such investigations will draw upon insights from both the fields of motor dynamics on MTs, as
well as reaction-diffusionmodels. This research promises to uncover fascinating phenomena such
as Turing instabilities, and hence provide links to different research topics such as Min oscilla-
tions (26). Furthermore, the role of our findings for in vivo systems, the mitotic spindle, or the
cell, has not been considered in this thesis. In fact, it has been observed that the length distribu-
tion of MTs inside spindles is bimodal (27), but the exact reasons are unresolved. We believe that
our generic model setup, comprising two antagonistic, resources-limited processes, is applicable
also to filaments showing, e.g., dynamic instability (28), but this will need to be critically tested
in the future. Moreover, additional research on the role of different types of motors, influencing
MT length in a different way, needs to be undertaken. An essential prerequisite for advances in
these directions will be close communication of theory and experiment.

At the time of the original submission of this thesis, a manuscript containing the first part
of the project presented here had been under review for publication. While preparing the final
version of this work, the manuscript has been accepted and published in Physical Review Letters,
120, 148101 (2018) (2). The in vitro experiments are result of a very fruitful collaboration with
Aniruddha Mitra and Stefan Diez, which I initiated during the course of my doctoral studies.
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III Motor-induced unbinding: the role of interactions for the collective dynamics of molec-
ular motors The ability to achieve efficient transport is a central characteristic of kinesin-1, a
molecular motor which is involved in transporting organelles and other cargoes along MTs (29).
However, the highly crowded conditions inside cells and on MTs require optimised strategies to
circumvent traffic jams, as well as to avoid wasting time and energy. In the last part of this thesis,
we report on a project which describes a way how motors may overcome crowding on filaments.

Our study is based on data from a published in vitro experiment (30), where it was found that
the dwell time of kinesin-1 motors decreases on crowded filaments. Based on these observations,
we consider a dimeric driven lattice gas, where the unbinding ofmotors from theMT is enhanced
when two motors are adjacent. We find that the general effect of this interaction is to reduce the
motor density on filaments; thereby it contributes tomaximising themotor current. Amean-field
theory is developed for the motors’ collective dynamics. In the following, we derive experimen-
tally accessible quantities, and find accurate agreement of the model with experimental data (30).
An additional model test is imposed from experimental observations that motors occasionally
pause on the MT for an extensive time, and that the pauses’ frequency depends on the motor
concentration (30). Because this behaviour cannot be witnessed in our original model, we hy-
pothesise that kinesin-1 may become inactive stochastically; in effect, the crowding-dependent
pausing frequency follows from the emergence of traffic jams behind inactive motors. This in-
dicates that motors align very densely in a traffic jam, with a stoichiometry of one kinesin per
tubulin subunit, as opposed to onemotor per two tubulin dimers as kinesinmoves. Subsequently,
an interpretation of the origin of the motor-motor interaction is discussed. We conjecture that
motors in the vicinity of other motors remain in a weakly bound state for an extended period of
time compared to an unperturbed step. This allows us to estimate the lifetime of this state, and
we find that it comprises a significant fraction of kinesin’s mechanochemical cycle.

From a broader point of view, the close connection of our theoretical approach with published
experimental data represents an appealing example for how properties of individual motors can
be obtained from their collective behaviour. Since only a small fraction of themotors was labelled
in the experiment used for gauging our model (30), and since no force is exerted on them except
for the forces which they apply on each other, our method is minimally invasive, and yet we gain
deep insight into the motion of molecular motors.

It will be interesting to see whether and how the implications of our study such as the existence
of an inactive mode of kinesin’s motion will manifest in future experiments. In addition, the pro-
posed dense alignment of motors in a traffic jam needs to be verified, although experimental data
from immobilised kinesinmotors support our findings (31). Future theoretical studies describing
the details of the collective motion of kinesin-1 motors will explicitly have to take into account
recent observations that kinesin function, and in particular their velocity, is heterogeneous (32).
This may lead to stop-and-go-like traffic jams (33), and may thus have similar effects as motors
that spontaneously become inactive. The methods developed here are not specific to kinesin-1.
We therefore hope that our findings will stimulate both experimental and theoretical efforts, and
also provide insights into the collective and individual motion of other molecular motors.

By the time the final version of this thesis is being completed, a manuscript containing the
results presented in this chapter has been submitted to Biophysical Journal, where it is currently
under consideration for publication. A preprint is available at arXiv:1805.03432 (3).

viii



Contents

Zusammenfassung (German summary) i

Overview of the thesis iii

Abstracts of the projects v

Introduction 3
1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Microtubules and the cytoskeleton. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Molecular motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theoretical framework: The TASEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I. Teams of molecular spiders: a model for groups of molecular motors 17
3 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4 Publication in Physical Review E, 87, 3 (2013): Cooperative effects enhance the

transport properties of molecular spider teams. By M. Rank, L. Reese, and E. Frey 21

II. The impactoffinite resources formicrotubule length regulationbymolec-
ular motors 37

5 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6 Limited resources induce bistability in microtubule length regulation . . . . . . . . . . 41
A Appendix: Calculations and additional experimental data. . . . . . . . . . . . . . . . . . . 49

A.1 Brief review of TASEP/LK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.2 Full mean-field solution based on TASEP/LK . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A.2.1 Reduction to a lattice of constant length . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.2.2 Strategy to obtain the stationary state . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
A.2.3 Case K > 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
A.2.4 Case K < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
A.2.5 Comparison with simulations, and the phase diagram/stability diagram . . 59

A.3 Estimation of the parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
A.4 Robustness of the parameters δ and V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



Contents

A.5 Many MTs with shared reservoirs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
A.5.1 Shared reservoirs with infinitely fast diffusion . . . . . . . . . . . . . . . . . . . . . 63
A.5.2 Shared reservoirs with finite diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

A.6 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
A.7 Variability in experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
A.8 Additional Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7 A minimal lattice gas model for bistable length regulation . . . . . . . . . . . . . . . . . . 77
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.4 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.4.1 Strategy to obtain the stationary state . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.2 High density phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.4.3 Maximal current phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.4 Shock phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.4.5 Low density phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.5 Construction of the phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.5.1 High density phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5.2 Maximal current phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5.3 Shock phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.5.4 Low density phase, case γ0/α0 ≥ 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.5 “L = 0” phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
7.5.6 The phase diagram for γ0/α0 ≥ 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.5.7 Low density phase, case γ0/α0 < 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5.8 The phase diagram for γ0/α0 < 1/3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.6.1 Bistability leads to hysteresis and makes phase transitions discontinuous . 95
7.6.2 The limit in which we observe bistability is biologically relevant . . . . . . . . 96

7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

III. Motor-induced unbinding: the role of interactions for the collective dy-
namics of molecular motors 99

8 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.1 Motivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
8.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.2.1 Monte Carlo simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
8.2.2 Fitting analytical results to experimental data . . . . . . . . . . . . . . . . . . . . . 103

8.3 Model description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
9 Theoretical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

9.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Development of a mean-field theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
9.3 Derivation of quantities important for experiments . . . . . . . . . . . . . . . . . . . . . . 109

x



Contents

9.4 Comparison of model results with experimental data . . . . . . . . . . . . . . . . . . . . 110
9.5 The origin of periods of no or slow motion of motors . . . . . . . . . . . . . . . . . . . . 112
9.6 Insight into the stepping cycle of kinesin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

10 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 123

Acknowledgements 135

xi





Introduction

1





Efficient and optimised transport is important on length scales ranging from astronomical
units down to the molecular level. For example, the swing-by method (34) is employed as a strat-
egy to transport space probes outside our solar system with minimal use of propellant. On an
intermediate length scale, the search for an economic transport route has led to the discovery of
America byChristopherColumbus in 1492 (35). Downon the cellular level, highly complexmech-
anisms have developed which orchestrate the transport and motion of, e.g., enzymes, proteins,
and organelles to their target (7). In this work, we want to focus on two particular components
essential for transport on this scale: Molecular motors, such as kinesin, are molecular machines
that are highly optimised for their function to perform directed motion. They walk on filamen-
tous polymers calledmicrotubules, which are involved in the formation of themitotic spindle that
drives cell division.

Many disciplines haveworked on various aspects ofmicrotubules (MTs) andmolecularmotors.
Biologists have developed ingenious experiments to illuminate the function and properties of
motors and MTs. Chemists have analysed the structure of the involved proteins. Physicists have
designedmicroscopes to observe, and developedmodels to understand the underlying principles
of molecular transport. Computer scientists have established algorithms to test the theoretical
methods which mathematicians have derived. Physicians have discovered how the malfunction
of the interplay ofmotors withMTs can create diseases against which pharmacists have developed
drugs.

As a consequence, studies on molecular motors and MTs have to deal with these interdisci-
plinary problems. In this work, we will report on three different projects which all unite various
aspects of physics, biology, chemistry, mathematics and computer science. After an introduction
we will consider a theoretical model for molecular spiders, which are experimentally established
artificial molecular motors, capable of walking along a substrate. Subsequently, we will examine
the collective dynamics of molecular motors as they interact with MTs in a volume of finite size;
parts of this chapter are the result of a theoretical-experimental collaboration with the group of
Stefan Diez (Dresden). In the last part of our work, we will, based on published data of an in vitro
experiment, in detail shed light on the interactions of molecular motors with each other.
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1. Biological background

1.1. Microtubules and the cytoskeleton

Size, shape and function of cells differ enormously between different species and even within
an organism. Among the properties which eukaryotic cells have in common is the existence of
the cytoskeleton, illustrated in Fig. 1a. It comprises actin filaments, intermediate filaments, and
microtubules (MTs). All of these components are involved in different function: Actin shapes the
cells and is important for cell migration; intermediate filaments provide mechanical strength to
the cell. In thiswork, wewillmostly focus on the third type of filaments: MTs serve as intracellular
tracks for the traffic of molecular motors. Hereby, they provide an essential and effective way to
transport and position organelles and other macromolecules. The complex interplay of these
different types of filaments with each other, and with proteins associated with them, gives rise
to fascinating intracellular machineries. A prototypic example is the mitotic spindle, see Fig. 1b,
which is crucial for the coordinated segregation of chromosomes into daughter cells. (6)

It was the desire for a deeper understanding of mitosis and especially the mitotic spindle that
led to a surge of studies about cytoskeletal filaments, and in particular MTs, in the 1950s (38). By
that time, it had been long established that the spindle is composed of “traction fibers”. However,
it was not before 1951 that Inoué and Dan observed a change of the spindle’s birefringence dur-
ing cell division, which led them to conclude that these filaments are dynamic (39). Borisy and
Taylor discovered in 1967 that the “microtubules” (40) are polymers built from subunits (41, 42),
termed tubulin (43). At the same time, the structure of MTs became increasingly well character-
ized: Ledbetter and Porter constrained the diameter of MTs to roughly 25 nm (40), and Roberts
discovered that a MT consists of 13 one-dimensional subfilaments (44), called protofilaments. A
key property of MTs was brought into focus in a landmark study conducted by Mitchison and
Kirschner (28) who discovered that these filaments can undergo dynamic instability, alternating
periods of relatively slow elongation and rapid shrinkage of MTs. Since then, novel and more
advanced microscopy techniques (45, 46), as well as the emergence of genetic engineering and
nanotechnology (47–49), have led to a detailed understanding of many physical properties of
MTs.

A sketch of a MT with today’s knowledge is shown in Fig. 2. MTs are built from tubulin sub-
units, heterodimers (50) comprising α- and β-tubulin. These subunits, measuring 8.4 nm (49, 51),
align head-to-tail in order to form a protofilament (52). Thirteen of these protofilaments, 14 or 15
for some in vitro assembledMTs (53, 54), form theMT.MTs inherit the polarity of tubulin dimers,
and therefore possess a plus end (right in Fig. 2) and minus end (left). An important difference
between these ends is that — while both ends are dynamic and tubulin dimers can be exchanged
with the cytosol— the kinetics of the dynamic processes occurring at theminus end are relatively
slow, whereas they are quick at the plus end (52, 55–57).
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1. Biological background

Figure 1.: (a) Actin filaments visualised in a phalloidin stained cancer cell as observed in a confocal micro-
scope. Image published under the Creative Commons Attribution-Share Alike 4.0 International li-
cence (36). (b) Image of the mitotic spindle in a human cell. MTs are shown in green, chromosomes
in blue, and kinetochores in red. Source: (37)

Figure 2.: Sketch of a microtubule (MT). It is built from tubulin which itself comprises α-tubulin (light green)
and β-tubulin (dark green). The resulting heterodimers align head-to-tail to form one-dimensional
protofilaments, of which (typically) 13 constitute the MT. MTs are polar in the same way as their
subunits. The different ends have unequal physical properties: The dynamics at the minus end (left)
are relatively slow, while the are fast at the plus end (right).

Figure 3.: Polymerising and depolymerising MTs. In the left part, a growing MT is shown. Here, the newly
incorporated tubulin subunits are in the GTP state (yellow/green); this has the effect that young
protofilaments are relatively straight. As GTP is hydrolysed to GDP (blue/green), tubulin undergoes
a conformational change, and the filaments are curved and unstable (right part). Image taken from
Ref. (58).
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1.2. Molecular motors

It is also at the plus end where dynamic instability occurs. Although a complete understanding
of its physical principles is still missing, it is generally accepted that dynamic instability results
from the association of tubulinwith a guanosine nucleotide. In particular, as aMT is polymerised,
a “cap” of newly addedGTP-tubulin (28, 57) is formed at the plus end. This tubulin has a relatively
straight conformation (59) so that the longitudinal bonds of newly polymerised protofilaments are
stable. Incorporation into the MT triggers the hydrolysis of GTP. The resulting GDP-tubulin is in
a bent conformation (59). As a consequence, the longitudinal bonds of GDP-tubulin, artificially
held straightly in a protofilament by lateral interactions, are relatively weak. The impact of the
conformational difference on the shape of the protofilaments is also visualised in Fig. 3: While
GTP-protofilaments, present in particular whenMTs are polymerised, are straight and stable (left
part of this Figure), GDP-protofilaments (present on depolymerisation) are curved and unstable.
It is therefore essential whether or whether not theMT is capped by a layer of GTP-tubulin: When
the end of the MT is formed by GTP-tubulin, bonds are stable there and the MT can continue
to grow. If the MT stochastically loses its GTP cap, the weakly bound GDP-tubulin, now at the
outside of the MT, quickly dissociates from the end, leading to rapid shrinkage (“catastrophe”).

Different models for how exactly the loss of the cap occurs, or how hydrolysis is executed,
have been suggested. In particular, there has been a long debate (60) about whether hydrolysis
of GTP-tubulin occurs randomly (28, 61), vectorially (60, 62–64), or by a mixture of both (65).
Similarly, the size of the stabilizing cap has been subject to discussion: Some studies indicated
only a short GTP-layer of very few tubulin dimers (66–68), thereby conflicting results of other
groups suggesting that the cap should be hundreds of nm long (28, 68, 69). Significant progress
on this question has been reported recently, when Gardner et al. found that the exchange of
tubulin dimers at the MT plus end happens much more rapidly as thought previously, which
strongly hints towards the existence of a long cap (70). A similar conclusion was made by Surrey
and coworkers, who made use of the property of the protein EB1 to bind particularly to GTP-
tubulin (71). In particular, they observed that the size of the EB1 comet is of the order of several
hundred nm (72). The extension of the EB1 binding region shrinks before catastrophe (72) and
determines the instantaneous MT stability (68). Altogether, it therefore becomes increasingly
evident that MTs are stabilised by a long GTP cap and GTP is hydrolysed randomly.

However, many aspects ofMT dynamics and dynamic instability remain unclear. Among these
is MT ageing: It has been found (65, 73–76) that catastrophe is not a single-step process, but that
probably ≥ 3 sub-steps are necessary to reach catastrophe. Also, a mechanical understanding
of the longitudinal and lateral interactions within and between protofilaments is missing (77).
Furthermore, while it has been observed that MTs are dynamic also inside living cells (78) and
probably also show dynamic instability (79), the impact of the large number of MT associated
proteins (MAPs) and molecular motors on the dynamic behaviour of MTs is far from being un-
derstood (80).

1.2. Molecular motors

A crucial function of MTs and actin filaments is that they serve as intracellular tracks along
which so-called molecular motors perform directed motion. Three families of molecular mo-
tors can be found inside cells: two of them, namely kinesin and dynein motors, walk on MTs.
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1. Biological background

Figure 4.: The structure of kinesin. The two heads are located on the right, the stalk links them to the cargo-
binding domain on the left. Image created by David Goodsell and published under the Creative
Commons Attribution 3.0 Unported licence (81).

Kinesin is (usually) directed to their plus end (82), and dynein to the minus end (29). Motors
of the third type, myosin, move towards the plus end of actin filaments (83). Inside cells, many
different motors of these families are present, so that the function of a cell relies on a complex
interplay of molecular motors with each other, and with other proteins associated with MTs or
actin (83–87). In general, the function of the different motors can be characterised as follows:
Kinesin motors are very processive (21, 30), and are therefore ideal for long-range transport, e.g.,
of organelles (29). Furthermore, some kinesin motors possess catalytic activity which they can
develop at the MT plus end (20). Likewise, dynein motors are very processive (88); these motors
are involved, amongst other functions, in sliding MTs against each other (89), and the movement
of chromosomes (90–93). Motors of the third family, myosin, play a crucial function for trans-
port in membrane protrusion (94), but many motors of this type can only make a single or very
few processive steps, unless they act in larger groups (10). Because myosin does for this reason
not need to follow a complex coordination cycle of its heads, it is are able to perform fast motion,
which is particularly important for example for short-range transport (83), or the contraction of
muscles (95).

In this work, we are mostly interested in molecular motors of the kinesin family. Most motors
falling into this class have two heads, but also some non-processive monomeric kinesin motors
can be found inside cells (82, 96, 97). Fig. 4 shows a sketch of a dimeric kinesin, such as the “con-
ventional” kinesin-1. Its two heads, structurally similar to dynein’s heads (98), on the right in this
Figure bind to distinct sites on the tubulin dimer; a neck linker between the heads holds them
tightly together. The coiled-coiled stalk connects the motor domain to the motor’s tail, where
cargoes can be attached (99). The impact of the structure of kinesin on its motility properties
has been investigated by creating recombinant kinesin (96, 100), as well as introducing genetic
modifications of its components. In particular, it has been found that the neck linker is crucial
for a kinesin step: Disruption of the stability of kinesin’s neck domain causes the motor to spiral
around the MT (101, 102). Similarly, variations of the length of the neck linker modulate proces-
sivity and velocity of the motors (100, 103). In contrast, removing wide parts of the motor’s tail
conserves kinesin’s kinetic parameters (30, 104, 105).

As a result, kinesin motors of different types, despite having similar heads, have differential
physical properties: for example, kinesin-2 (101) and kinesin-8 (106, 107) occasionally side-step
to neighbouring protofilaments. In contrast, kinesin-1 walks straight, i.e., along to aMT’s protofil-
ament (108), and therefore requires special strategies to circumvent obstacles on theMT (30, 109).
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1.2. Molecular motors

Among all kinesin motors, also motor velocity and processivity vastly differs. For instance, kine-
sin-1 is very fast butwalks only for a few hundred steps (30), while kinesin-8 is slow by comparison
but virtually never detaches from the MT before reaching its plus end (21).

A critical questionwhichmay ultimately help to unravel the origin of the differences of kinesin’s
motility is how exactly a step of kinesin functions. By now it has been established that kinesin
follows a hand-over-hand mechanism (110, 111), and during a step hydrolyses a single molecule of
ATP (112). However, the exact transitions between a two-head-bound (2HB) state into a transient
one-head-bound (1HB) state, and back to the 2HB state one site progressed, are very controver-
sial (113). In particular, disagreement is found in the literature about the moment of ATP binding
to the rear head: Some groups report that the rear head dissociates from the MT followed by ATP
binding (114–117), while other studies suggest the opposite (103, 111), see Ref. (113) for an overview.
Similarly, it is not clear how the neck linker binds to the MT, and whether ATP binding to the
head is sufficient for its binding (118) or not (100, 119, 120). Furthermore, the reported kinetics
of the individual substeps differ vastly: Conflicting results have been reported considering the
rate-limiting transition, and there is even disagreement about the number of such transitions.
In particular, optical trapping experiments indicate that a single transition (although it is not
clear which transition this is) comprises most of the time of the kinesin step (100, 121), whereas
dark-field (122) and interferometric scattering (120) measurements suggest that two transitions
are of similar duration. A reason for these conflicting reports may be that the unbinding of heads
strongly depends on the applied force (119, 123). On the other hand, the gold particles used for
visualising kinesin’s heads are large compared to them (120, 122). As a consequence, there is a
need of less invasive methods of determining properties of the motor’s step. For example, stud-
ies analysing the statistics of steps indicate at least two rate limiting steps (124), and the time for
the diffusion of the tethered head, as it “overtakes” the head bound to the MT, may actually have
been underestimated (125). At the time of writing this work, no consent has been reached on
many questions regarding kinesin’s mechanochemical cycle, and it does not seem that a complete
understanding is nigh. It will be interesting to see how the different results will be reconciled in
the future, and how they will contribute to a general understanding to kinesin’s function.

At the end of this very short review about molecular motors, let us briefly mention the be-
haviour and function of some molecular motors of the kinesin family, which have become par-
ticularly important in the past years:

• Many kinesin motors are able to influence the dynamics of MT filaments. For example,
kinesin-8 and kinesin-13 have been extensively studied recently, and they are able to depoly-
merise MTs at their plus end. More specifically, it has been shown that kinesin-8 depoly-
merisesMTs in a length-dependent manner (20, 21); Thismotor also has impact on spindle
size (126, 127). A density gradient of this motor on the MT, arising from the interplay of
attachment to the MT and directed transport, enables MTs to “sense” their length (22, 23).
Kinesin-13, such as MCAK, uses a different mechanism to track plus ends. More specifi-
cally, motors of this family diffuse along the lattice (128), and follow a diffusion and capture
mechanism (129, 130), which is highly optimised to their physical properties. Wewill report
on a project about the kinesin-8 motor Kip3 in Part II.

• Kinesin-1motors influence each other’s binding to theMT (30, 31). Furthermore, they show
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1. Biological background

functional heterogeneity, and can proceed along the MT with characteristically different
speed (32). A project on the motion of kinesin-1 is presented in Part III. Various aspects of
the motion of this motors have also been motivation for the master theses of Alessandro
Bottero (33), and Moritz Striebel (131).

• More recently, also the interactions of many molecular motors with each other, or with
other motors have come into focus (72, 87, 132, 133). These studies have inspired the master
thesis of Maria Eckl (134).

• With the emergence of nanotechnology, leading to fascinating techniques such as DNA
origami (135, 136), the construction of artificial molecular motors has become a flourishing
field of study (12, 13, 137–143). A chapter of this thesis will be devoted to so-called molecu-
lar spiders, see Part I. Self assembly of DNA-coated structures furthermore motivated the
master thesis of Timo Krüger (144).
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2. Theoretical framework: The TASEP

In this Section we review the Totally Asymmetric Simple Exclusion Process (TASEP), which is the
theoretical model underlying wide parts of this work. Chou and coworkers summarise the im-
pact of TASEP as “a paradigmatic model for [non-equilibrium statistical mechanics], much like
the role the Ising model played for equilibrium statistical mechanics” (145). Originally discussed
in the context of ribosomes translating and moving along mRNA by Gibbs and coworkers (146),
TASEP has quickly attracted attention in various different contexts fromBrownian processes with
hard-core interactions (147) to traffic flow (148), but its implications even range towards the evo-
lution of surfaces and zero-range processes (149).

The TASEP with open boundaries is depicted in Fig. 5. It describes the driven motion of par-
ticles along a one-dimensional lattice. Particles enter the lattice at the left end with rate α if the
first site is not occupied by another particle. They proceed towards the right of the lattice at rate
ν, provided the next site is empty. Having arrived at the right end, particles exit the lattice with
rate β. By convention, α and β are measured in units of ν, which amounts to define the basic
time scale in terms of the hopping rate, ν ≡ 1. The TASEP has attracted significant attention in
the past years not only due to its role as the basic process for a wide range of applications, but
also because it shows boundary-induced non-equilibrium phase transitions. In the following, we
proceed along the lines of Krapivsky et al. (149) in order to derive the collective motion and the
phase behaviour of this stochastic process.

The state of the lattice can be described in terms of occupation numbers. Here, ni = 1 indicates
that site i is occupied by a particle, whereas ni = 0 implies its vacancy. ni changes whenever a
particle steps to, or leaves from site i. The former is possible if a motor is located at site i − 1,
and site i is empty. With the Kronecker δ, this can be written as δni−1,1δni,0. Correspondingly, the
leaving of a motor from site i comprises the term δni,1δni+1,0. The probability that the occupation
number ni flips per time dt, is then given by the sum of these terms. In consequence, this implies

ni(t + dt) = {
1 − ni(t) with prob. dt [δni−1(t),1δni(t),0 + δni(t),1δni+1(t),0]
ni(t) with prob. 1 − %

(1)

for any site i in the lattice bulk. Similar Equations can also be derived for the first lattice site (i = 1,

Figure 5.: The Totally Asymmetric Simple Exclusion Process (TASEP) with open boundaries. Particles enter
the one-dimensional lattice at the left end at rate α. They step towards to right with rate ν, obeying
exclusion. From the lattice site on the right end, they may detach at β.
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2. Theoretical framework: The TASEP

particle entrance with rate α) and the last lattice site of a lattice of length N (i = N , exit with rate
β), see Ref. (149).

Equation (1) can be rewritten in terms of expectation values, andwhen dt → 0, the time deriva-
tive of the average occupation number is obtained:

𝜕t⟨ni⟩ =
⎧{
⎨{⎩

α⟨1 − n1⟩ − ⟨n1(1 − n2)⟩, i = 1 (left end),
⟨ni−1(1 − ni)⟩ − ⟨ni(1 − ni+1)⟩, 1 < i < N (lattice bulk),
⟨nN−1(1 − nN )⟩ − β⟨nN⟩, i = N (right end).

(2)

These Equations have been solved exactly by Derrida and coworkers (150) by using a matrix
ansatz. While this method has been applied to several related models (151), an approximate
way to find the steady state solutions is sufficient for the models and problems discussed in this
work. More specifically, the mean-field approximation has been successfully applied on a variety
of TASEP-related models. This approximation essentially amounts to disregard any correlations
between the occupation of different lattice sites. Consequently, we approximate ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩,
and denote with ρi the probability that site i is occupied by a particle (“particle density”). Fur-
thermore, we consider the limit of a long lattice, 1/N → 0, such that instead of discrete lattice
sites we may consider a continuous spatial variable, {1, … ,N} → [0, 1]. This leads to

𝜕tρ(x) ≈ 𝜕xρ(x) [2ρ(x) − 1] (3)

in the lattice bulk. It is important to note that Eq. (3) has the form of a continuity equation
𝜕tρ = −𝜕xjwith themotor current j(x) = ρ(x)[1−ρ(x)]. This can be understood as a conservation
of mass law in the lattice bulk: particles which have entered the lattice at the left end cannot leave
it before they have arrived at the right end. In the stationary state, when 𝜕tρ(x) = 0, Eq. (3)
directly implies that the density ρ must be constant along the lattice.

Along the same lines, the density at the left and right lattice end can be obtained. In the sta-
tionary state, this leads to

ρ(0) = α, ρ(1) = 1 − β . (4)

A subtlety of Eqs.(3)–(4) is that other than for α = β = 1/2, there exists no solution which has
constant density and meets the two boundary conditions. For parameters different from these
values, the solution must therefore violate one of the boundary conditions, or have non-constant
density somewhere. In general, this can be resolved by assuming that constant densities meeting
the boundary conditions, ρl = α and ρr = 1 − β, extend into the lattice bulk and are connected by
a (virtual) domain wall (DW). Assuming that the DW is located in the lattice bulk originally, the
density profile in the stationary state can then be obtained by exploring the direction in which the
DW is driven. To this end, a traveling wave ansatz ρ = ρ(x − Vt) is inserted into the continuity
equation, Eq. (3); it gives rise to the DW velocity V = β − α (152). If the DW starts inside the
lattice bulk, it will be shifted towards the right lattice end provided α < β, while for β < α it moves
to the left. For the stationary state this implies that as long as the injection rate is small, the DW is
located at the right lattice end, such that the density ρl = α extends over the whole lattice except
for the immediate vicinity of the right end. Correspondingly, for small particle exit rate, the DW
is located at the left end, and the bulk density ρb is given by ρr = 1 − β.

12



0 0.5 1
0

0.5

1

LD

HD MC

Figure 6.: The phase diagram of TASEP. Depending on the rates of particle injection into the lattice, α, and
the exit rate β, we find three different phases: The low density (LD) phase, where the bulk density
ρb = α; the high density (HD) phase, where ρb = 1 − β; and the maximal current phase: here,
ρb = 1/2.

However, it is clear from a heuristic point of view that the densities ρl and ρr cannot be main-
tained for arbitrarily high values of α and β. Consider, for example, a very high exit rate, implying
that particles are quickly removed from the last site. Because the only way particles can “feel”
each others’ presence is via exclusion, indicating that particles can only be influenced by other
particles in their direction of motion, removing particles from the last site cannot have arbitrarily
high impact on the bulk dynamics. Assuming that the boundary rates have direct influence on
the bulk dynamics for some α and β, the threshold value, at which these rates cease to determine
ρb can be computed by considering the collective velocityVcoll. Essentially, this quantity signifies
in which direction a density perturbation is driven. Let us for instance assume that α is slightly
raised from its initial value: If the sign of the collective velocity is positive, the particle density
will adapt to the new α; in the opposite case, the bulk density will show no reaction on an in-
creased injection rate. With the motor current defined above, the collective velocity evaluates as
Vcoll = 𝜕ρj(ρ) = 1 − 2ρ. For the case of the left boundary, where ρl = α, this implies that as α
exceeds 1/2, no more impact on the bulk density can be found. Similarly, for the density match-
ing the exit density, ρr = 1 − β, an increase of β beyond 1/2 does not change the bulk density. As
a consequence, if both α and β exceed 1/2, the bulk density is not determined from one of the
boundaries but from the amount of particles which can be transported through the lattice.

With these considerations, we have explored the full dependence of the bulk dynamics on the
boundary rates. It can be summarised in a phase diagram, see Fig. 6.

Three different phases are found:

• For α < β and α < 1/2, the bulk density is determined via the injection rate at the left end;
α is the bottleneck of these dynamics. Because the bulk density ρb = α is small in this case,
this phase is termed the low density (LD) phase. The density rises to its boundary value
1 − β only in the immediate vicinity of the right lattice end (“boundary layer”).

• For the opposite case, β < α and β < 1/2, the exit rate governs the bulk behaviour, ρb = 1−β.
Here, a boundary layer is found at the left lattice end. This phase is called high density (HD)
phase.
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2. Theoretical framework: The TASEP

• When both α > 1/2 and β > 1/2, we have concluded from the sign of the collective velocity
of the particles that none of the boundary rates directly determines the bulk behaviour.
As a consequence, the density assumes the value ρb = 1/2, at which the particle current
j = ρ(1 − ρ) becomes maximal. Therefore, this phase is termed maximal current (MC)
phase. Boundary layers can be found both at the left and the right end for this phase.

• For the special case α = β < 1/2, the velocity of the DW vanishes, which can therefore be
found anywhere on the lattice. Because the DW undergoes diffusive motion, the average
particle density profile shows a straight line in this case, although the momentary density
profile is flat before and after the DW.

A great number of models have used TASEP as their basis and have served applications in
numerous physical and biological contexts. Several extensive reviews (145, 153) on this topic exist.
The focus of this Section is therefore to briefly summarise results of TASEP-related models which
are important for the motion of molecular motors and for the studies presented in this work.

TASEP with Langmuir kinetics (LK) When the motion of molecular motors is considered, it
is important to note that they can attach to any site on the MT. Likewise, motors may prema-
turely detach before having reached the plus end. However, in its original version, the TASEP
allows for particle binding to and unbinding from the lattice only at the first and last site, respec-
tively. A model including attachment and detachment of particles in the lattice bulk is the TASEP
with Langmuir kinetics (TASEP/LK), which was first considered by Lipowsky et al. (154), and
Parmeggiani et al. (155, 156). It combines an equilibrium process obeying detailed balance (at-
tachment/detachment) with a non-equilibrium process violating detailed balance (directed mo-
tion). When the kinetics of these processes are comparable (mesoscopic limit), a motor density
gradient forms on the lattice as a result of this interplay. Moreover, phase coexistence is found on
the lattice. This implies that different parts of the lattice may show different collective dynamics.
As a result, the domain wall (DW), separating the coexisting density domains, becomes localised.

TASEP ondynamic lattices As amolecular motor moves along theMT, the length of this poly-
mer can change because of the quick polymerisation and depolymerisation dynamics at the MT
plus end. Therefore, the study of a TASEP on a lattice of dynamic length is a crucial problem.
Originally motivated from filamentous fungal growth (157, 158), Sugden and Evans studied a
model in which the lattice dynamically extends (159). A central implication of their study is that
for certain conditions, a DW is found which moves away from the tip in a frame co-moving with
the end. Nowak et al. (160) examined a lattice with a fluctuating wall marking the right end of the
lattice. By invoking a moving-frame finite segment approach, they discovered different regimes
in which the wall either acquires a steady-state position, or moves towards one of the ends. A
very similar phenomenology was observed by Reese et al. (22) and Melbinger et al. (23): In these
studies, the molecular motor kinesin-8 is considered which is known to depolymerise MTs. Sim-
ilar to Ref. (160), different regulatory regimes exist, where the MT either approaches a stationary
length, or shrinks or grows indefinitely.
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TASEP with limited resources Inside cells, the volume concentration of molecular motors is
depleted as they attach to MTs. As a consequence, the attachment rate of motors is thought to
decreasewith the number ofmotors on the lattice. Several studies have thus considered variants of
the TASEPwith limited particle numbers. It was found (161, 162) that finite availability of particles
can lead to phase coexistence and a localised DW, similar to the behaviour of TASEP/LK. Also
multiple TASEP lattices with shared reservoirs have been examined. When all lattices have the
same length (162), the collective dynamics are similar to the case of a single filament; as a mixed
population of lattices is studied (163), non-trivial phase transitions can be observed. Furthermore,
a TASEP with limited resources has been considered together with attachment and detachment
kinetics (164). An interesting aspect was added by Brackley and coworkers (165) who discovered a
rich phase diagram when both the number of particles as well as the availability of “fuel carriers”,
necessary for particle movement, were limited.

TASEP of extended particles When molecular motors are considered, it is important to keep
in mind that the majority of all processive motors are dimers which occupy two adjacent binding
sites on the MT. Addressing this problem, Shaw et al. (166), and Lakatos and Chou (167) have
considered a TASEP with extended objects. A theoretical challenge arising from this generalisa-
tion is that spatial correlations of particles due to their finite size have to be considered explicitly,
which necessarily requires refined mean-field theories. For a more direct application to molecu-
lar motors, a TASEP of dimeric particles has recently been studied together with attachment and
detachment kinetics (168). In the past years, several studies have furthermore examined laterally
extended particles or particles with lateral interactions (131, 169, 170), as well as multi-lane sys-
tems (171–175). These extensions of TASEPhave revealed qualitatively newphases of the collective
dynamics (131).

TASEP with interacting particles While the only possibility how particles can interact with
each other in the TASEP is via hard-core exclusion, molecular motors are thought to show ad-
ditional interactions. Already in the early days of TASEP, studies have looked at related, more
complex models in this direction. One of the most prominent models was introduced by Katz,
Lebowitz and Spohn (176, 177), who considered a two-dimensional lattice gas with particles in
an electric field. More recently, TASEP extensions have been studied in which the hopping rate
of particles depends on whether they are “pushed” by another particle (178). It was shown that
the associated repulsive interaction can optimise the particle flux. Moreover, the dependence of
particle attachment to and detachment from the lattice on the occupation of neighbouring lat-
tice sites has been taken into account by considering so-called “mutually interactive Langmuir
kinetics” (179, 180). As a consequence of these interactions, up to three domains with particles
in different phases coexist on the lattice. More recently, also interactions between motors of two
different species have come into focus (33, 181, 182). Highly interesting effects such as phase sep-
aration of the species can be observed (183), similar to observations in recent experiments (87).
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Part I.

Teams of molecular spiders: a model
for groups of molecular motors
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3. Introduction

The desire to understand the biophysical principles which enable molecular motors to step pro-
cessively along microtubules has created a whole new field of research: Recent advances in nan-
otechnology have led to construction of artificial molecular motors from scratch (11, 137, 184).
An important approach in this direction comprise so-called DNA walkers which move or diffuse
along a substrate (140–142). In this work, we examine properties of a specific DNA built motor
termed molecular spider which was originally described by Pei and coworkers (12). Their name
derives from the multivalent design which was employed: A spider comprises a body to which
several legs of single-stranded DNA are attached. The legs have catalytic activity and can cleave
the substrate to which they bind. Based on these principles, processive motion was observed;
furthermore the spider as a whole remained firmly attached to the substrate for hours due to
their multipedal architecture (12). More recently, prescriptive substrate landscape self-assembled
with DNA origami (135) have been used to assign well-defined tasks to spiders which, for exam-
ple, comprised control of their movement. Lund and coworkers even report “elementary robotic
behaviour” of these spiders (13).

Molecular spiders have also had significant impact in theoretical studies: Antal et al. (9) and
Antal and Krapivsky (8) proposed a simple model in which the catalytic cleaving reaction led to
a binary discrimination between previously visited and unvisited sites; ultimately, this introduces
a memory effect in the substrate (8). In particular for the case of a slow cleaving reaction, it was
found that spiders are biased towards unvisited sites on a one-dimensional lattice (8). Several
studies have built on these findings. For instance, variations of the rate constants involved in the
chemical reactions (185, 186) have been examined, but also the number and length of legs (187).
Furthermore, different stepping mechanisms have been studied (186). However, the amount of
superdiffusion which spiders show in the long run (185) remained relatively small, showing that
an important task is to improve their efficiency and processivity.

This was the starting point for our project. In the following, we examine dynamic and stochas-
tic properties of a novel molecular spider design: nmolecular spiders are constrained due to their
joint attachment to a single linking nodewhichmay be considered as a primitivemodel of a cargo.
The resulting spider-spider interactions lead to collective effects which enhance the motor prop-
erties of the n-spider team. We show that spider teams are faster and move more persistently
along their track than individual spiders. We also predict that the spider teams move at reduced
randomness and thus are candidates for applications that require reliable, i.e. predictable mo-
tion (139). In conclusion, molecular spiders provide a versatile system where cooperativity on the
nanoscale can be studied in great detail.

The findings of our study have been published in Physical Review E, 87, 3 (2013) under the
title “Cooperative effects enhance the transport properties of molecular spider teams”. With kind
permission from the American Physical Society, we will reprint this publication in the following
and present our results in details there.

19





4. Publication

Cooperativeeffectsenhance the transportprop-
erties of molecular spider teams
by

Matthias Rank1, Louis Reese2, and Erwin Frey1

1Arnold Sommerfeld Center for Theoretical Physics (ASC) and Center for NanoScience

(CeNS), Department of Physics, Ludwig-Maximilians-Universität München, Theresien-

straße 37, 80333 München, Germany
2Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sci-

ences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Nether-

lands

published in

Physical Review E, 87, 032706 (2013)

DOI: 10.1103/PhysRevE.87.032706

Reprinted with kind permission from the American Physical Society.

21

https://doi.org/10.1103/PhysRevE.87.032706




PHYSICAL REVIEW E 87, 032706 (2013)

Cooperative effects enhance the transport properties of molecular spider teams
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Molecular spiders are synthetic molecular motors based on DNA nanotechnology. While natural molecular
motors have evolved towards very high efficiency, it remains a major challenge to develop efficient designs
for man-made molecular motors. Inspired by biological motor proteins such as kinesin and myosin, molecular
spiders comprise a body and several legs. The legs walk on a lattice that is coated with substrate which can be
cleaved catalytically. We propose a molecular spider design in which n spiders form a team. Our theoretical
considerations show that coupling several spiders together alters the dynamics of the resulting team significantly.
Although spiders operate at a scale where diffusion is dominant, spider teams can be tuned to behave nearly
ballistic, which results in fast and predictable motion. Based on the separation of time scales of substrate and
product dwell times, we develop a theory which utilizes equivalence classes to coarse-grain the microstate space.
In addition, we calculate diffusion coefficients of the spider teams, employing a mapping of an n-spider team to
an n-dimensional random walker on a confined lattice. We validate these results with Monte Carlo simulations
and predict optimal parameters of the molecular spider team architecture which makes their motion most directed
and maximally predictable.

DOI: 10.1103/PhysRevE.87.032706 PACS number(s): 87.16.Nn, 82.39.Fk, 05.40.Fb, 02.50.Ey

I. INTRODUCTION

How the motion of molecules along predefined traffic
routes emerges and how these molecules self-organize has
become an experimentally tractable question due to advances
in nanotechnology. Molecular motors that have evolved
inside cells and perform well-defined tasks [1] inspired the
engineering of DNA devices performing motor business on
the nanoscale [2–4]: So-called DNA walkers have been built
that move or diffuse along a substrate [5–7]. Among the
first autonomous synthetic walkers was a motor design that
used a catalytic reaction to cleave a substrate in order to
move forward [8]. Since then, a plethora of different motor
molecules have been built from scratch in the laboratory.
They not only serve technological advances, but also shed
light on the basic principles of molecular movement, e.g.,
of biological molecular motors. One class of molecules that
attracted a great deal of attention is molecular spiders [9].
They combine the catalytic activity of nucleic acids with
a multivalent design: Attached to a body are several legs
of single-stranded DNA. These DNA legs can bind to and
catalytically cleave a substrate. This can be repeated over and
over again, which in turn generates processive motion: While
individual legs dissociate from the substrate on a time scale of
seconds, the multipedal architecture ensures tight binding of
the spider to the substrate for hours [9]. Recent experiments
used DNA origami to build quasi-one-dimensional tracks for
molecular spiders [10]. A predescribed substrate landscape
allows one to assign special tasks to a spider and, for instance,
control its movement. The simple yet well-defined design
makes it possible to study spiders in great detail and probe
theoretical predictions.

Molecular spiders have also been theoretically studied
extensively in recent years. Antal et al. [11] and Antal and

*frey@lmu.de

Krapivsky [12] were the first to propose an abstract model that
describes the dynamics of molecular spiders. They analyzed
the spiders’ kinetics for various architectures and found a
variety of interesting effects which arise due to the mutual
exclusion of spider legs on the lattice and the presence of
the substrate. Substrates are cleaved slowly in comparison to
hopping from already cleaved sites. This distinction leads to
subtle memory effects that affect the spiders’ dynamics and
result in a bias towards the substrate [12]. When the spider is in
an all-cleaved area, principles emerging from simple exclusion
processes [13,14] allow a derivation of the spiders’ diffusion
constants [11,15].

In the meantime, mechanistically more detailed systems
have been considered. These include the variation of the
rate constants involved in the chemical reactions [16,17] and
boundary conditions [17], as well as the number and length of
legs [18]. Samii et al. [17] investigated the spiders’ stepping
gait and considered inchworm as well as hand-over-hand
spiders. Semenov et al. [16] showed that spiders experience
a rather extended time period of superdiffusion given that
the cleavage rate r is small. More complex spiders in
quasi-one [19] and in two dimensions [20] have also been
studied. Moreover, there have been studies focusing on
mathematical aspects such as recurrence, transience, and
ergodicity [21,22], as well as random environments [23,24].
These investigations have examined molecular spiders
independently from their chemical motivation as a general
class of multivalent random walkers [19].

The rich variety and diversity of these recent studies show
that molecular spiders are a versatile system to study artificial
molecular motors both theoretically as well as experimentally.
However, many challenges still remain in improving their
efficiency and tailoring the spiders’ design for possible
biotechnological applications [7].

In this study, we examine dynamic and stochastic properties
of a molecular spider team design: n molecular spiders are
constrained due to their joint attachment to a single linking
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node which may be considered as a primitive model of a cargo.
The resulting spider-spider interactions lead to collective
effects which enhance the motor properties of the n-spider
team. We show that spider teams are faster and move more
persistently along their track than individual spiders. We also
predict that the spider teams move at reduced randomness and
thus are candidates for applications that require reliable, i.e.,
predictable motion [4].

This paper is organized as follows: In Sec. II we provide a
detailed picture of how molecular spiders function and give a
comprehensive introduction to the existing theoretical models
before we define an n-spider team. Subsequently, in Sec. III A
we present our main results: spider teams have enhanced
motor properties. To explain these numerical observations, we
present a comprehensive analysis of the stochastic dynamics
of a spider team. In particular, we perform a reduction of
the state space of the spider teams and thereby calculate the
mean number of consecutive directed steps a spider team
performs while attached to the substrate boundary (Sec. III B).
Moreover, we explore the validity of the resulting network
representation of the spider team dynamics and also show
how it breaks down (Sec. III C). In addition to this approach,
we provide an exact mapping of the n-spider team to an
n-dimensional confined random walk (Sec. III D). This enables
us to quantify the diffusion coefficient which describes the
motion of a spider team during diffusive periods (Sec. III E).
Finally, in Sec. IV we bridge theoretical and experimental
observables and predict the existence of optimal parameters
which maximize the spider teams’ predictability. Finally
(Sec. V), we conclude and identify connections to related
fields.

II. MODEL DEFINITION

Our model is based on the theoretical description of
molecular spiders introduced by Antal et al. [11] and Antal
and Krapivsky [12] that was motivated by experiments of Pei
et al. [9]. They propose a spider design that consists of a central
body and l legs that are attached to it. Each leg has a certain
length and thus the overall spider can span a maximal distance
s. In the experiment, a spider is exposed to a (one-dimensional)
lattice, to which a substrate is attached. Since binding of leg and
substrate happens through the Watson-Crick mechanism [25],
only one leg may bind to a lattice site at a time. In the model,
this corresponds to an exclusion process in that the movement
of one spider leg is constrained by the spider’s remaining legs.
The lattice prevails in two states: with and without substrate.
Legs which bind to lattice sites with substrate can remove it
(chemically: they cleave it, only a shorter part remains bound
to the lattice), which happens along with unbinding from that
site at rate r . By contrast, spiders unbind from sites without
substrate (i.e., from product sites) at rate 1. In the model, a
substrate is always cleaved when a leg steps away from it, and
rebinding of a leg to a new lattice site happens instantaneously.
Two different rules to rebind to a new lattice site have to be
distinguished: Spiders’ legs either have a certain ordering, i.e.,
they cannot “overtake” each other; these spiders are termed
inchworm spiders [11,12,16]. Alternatively, spider legs have
no ordering, i.e., they can step over each other; those spiders
have been called “quick spiders” [11] or “hand-over-hand”

spiders [17,18] in previous studies. Both types of spiders
show quite different behavior [18] and have to be well
distinguished. In this paper, we will concentrate on inchworm
spiders.

In our model a leg which has just unbound from the lattice
rebinds to the lattice instantaneously. Furthermore, we allow
a spider’s leg to rebind to any lattice site as long as the
new leg configuration does not violate any of the restrictions
imposed by the leg length or the ordering of the legs (in
particular, this implies that rebinding to the lattice site from
which the leg just unbound is possible [26]); this can be
motivated from experiments where the typical time scales for
binding to substrates exceed those for diffusion by orders of
magnitude [17]. In addition, our choice obviates unphysical
situations that might occur for spider teams due to the complete
blockage of a leg.

Hollow circles (◦) denote unoccupied lattice sites and
filled circles (•) indicate that a leg is attached to that site.
The presence of substrate is marked with a hat, i.e., •̂ or
◦̂. Throughout this paper, we consider bipedal spiders (i.e.,
l = 2) with a maximal leg span of s = 2. Spiders may thus
only arise in either the spanned ( • ◦ • ) or the relaxed ( • • )
configuration. For this case, the geometry of the cleaved sites,
which is usually called product sea, is an interval on the
one-dimensional lattice; it gives rise to memory effects which
stem from irreversible substrate cleavage [11].

Samii et al. [18] suggested that the lattice could be prepared
with substrates on the right, and products on the left-hand
side from the very beginning, and called this initial condition
P-S lattice. This asymmetry makes some calculations easier,
and it provides a symmetry breaking direction already at the
beginning of the dynamics. We are going to use this kind of
lattice throughout the paper.

Taken together, the spiders which we examine in this study
are bipedal (l = 2) inchworm spiders with a maximal span of
s = 2, which walk on a one-dimensional P-S lattice. Every
spider’s leg may rebind to any accessible lattice site as long as
the ordering is preserved, including the site from where it just
unbound.

Based on this model for molecular spiders, we propose
a minimal model for a team of molecular spiders. Several,
say n, molecular spiders are linked to a (virtual) cargo with
an inelastic leash (i.e., a string; sometimes this is also called
cable [27]) of a well-defined length. Each of these spiders
runs on its own one-dimensional track. This is similar to
biological molecular motors like kinesin-1 [28,29] that walk
along one-dimensional microtubule filaments [1]. We call
these ensembles of spiders that jointly pull a cargo a spider
team. For a cartoon of a team of two spiders, see Fig. 1(a).

Note that the role of the “cargo” is not primarily to put load
on the spiders; actually we set the mass of the cargo equal
to zero. In contrast, the cargo mediates the interaction among
the n spiders comprising the team: Since the strings used for
linking the spiders to the cargo are inelastic with some length
a, any two of the spiders’ bodies may mostly be 2a away
from each other. From the bodies, the furthermost reachable
lattice site is given by the spiders’ legs’ length, call it b, so that
the maximal distance between the leftmost and the rightmost
leg of all the spiders in the team is given by 2(a + b) =: d.
Mathematically, letting λi (ρi) denote the position of the ith
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(a) (b)

FIG. 1. (Color online) Cartoon of the spider team model and
definition of the leash length d . (a) Two spiders are attached to a joint
cargo with an inelastic string. Both spiders walk on their respective
one-dimensional track. Hats indicate the presence of substrate.
(b) The finite length of the linking string induces a maximal distance
between the spiders’ bodies which gives rise to a maximal span of
the spider team, characterized by the “leash length” d .

spider’s left (right) leg, this restriction reads

|ρi − λj | � d ∀i,j. (1)

Note that this is a global constraint which restricts the spider
team, in contrast to the local constraint limiting the span of an
individual spider,

|ρi − λi | � s ≡ 2 ∀i. (2)

The definition of d is visualized for a two-spider team in
Fig. 1(b). For simplicity of language, and to capture an intuitive
understanding especially for two-spider teams, we will call d

the leash length in the following.

III. RESULTS

A. Enhanced properties of n-spider teams

We performed extensive numerical simulations to charac-
terize the dynamic properties of n-spider teams. Our simula-
tion data show that the constraint arising through the leash
that holds the spider team together induces collective effects
among the n spiders. We find that the incorporation of a spider
into a team enhances many of the motor properties: The mean
traveled distance of a spider team exceeds that of single spiders
by far, up to orders of magnitude, for a rather small cleavage
rate r = 0.01 [see Figs. 2(a) and 2(b)]. In addition, a spider
team’s movement is a lot more “predictable.” This can be
inferred from the width of the probability distributions, see
Fig. 2(a), and the shaded areas depicted in Fig. 2(b), which
illustrate the standard deviation of the mean displacement.

Another important quantity is the mean square displace-
ment (MSD) of the spider teams [see Fig. 2(c)]. It shows a
steep increase at intermediate time scales, similar but stronger
and longer lasting compared to recent results by Semenov
et al. [16] for single spiders: In this regime spiders move
superdiffusively. To quantify the time-dependent effects of
superdiffusion, we evaluated the “slope” of the variance in
a double logarithmic scaling, i.e., the effective exponent

α(t) = d log〈[x(t) − 〈x(t)〉]2〉
d log t

, (3)

which provides a measure for diffusivity (see also
Refs. [16,19,30]). Figure 2(d) shows α(t) for a single
spider and several different spider teams. Remarkably, the
four-spider team travels almost ballistically (α ≈ 2) for rather

long times and the periods of “instantaneous superdiffusion”
of spider teams (i.e., times with α > 1.1 [16]) last much
longer compared to single spiders. The nontrivial shape of α(t)
indicates the multitude of dynamic processes that are involved
in the spider team’s dynamics: Initially, α ≈ 1 for t � 1 for
all configurations, reflecting the very first hop of the spiders’
left legs. In succession, until t � r−1 = 100, the spiders’ right
legs have typically not yet cleaved a substrate, whereas the left
legs jump back and forth, hence the variance is approximately
constant and thus α < 1 (for these two regimes, see also a
more explicit discussion in Ref. [16]). Had we chosen other
starting conditions for the spiders, the behavior at short time
would look different. Likewise, also the following regime
until t � 102 . . . 103 results from the fixed starting conditions:
While at early times the spider team does not feel the leash and
all spiders can move independently from each other, at some
point the leash is fully spanned and the spiders at the most
extreme position (i.e., those contributing most to the variance)
are retarded. This leads to a transient decrease of α. This
regime is unique to spider teams since it is an effect constituted
by the leash. Finally, for large times t � 102 . . . 103, the
memory of initial conditions is lost and α becomes maximal.
Clearly, the maximal value of α is greatest for n = 4 of the
displayed configuration. As time increases further, α decreases
slowly which is due to the fact that more and more spiders
move away from the product-substrate boundary (see also
Ref. [16]). Figure 2(e) shows the velocity of the spider team by
means of the derivative of the mean displacement with respect
to time. Clearly, the velocity of a four-spider team outperforms
that of a single spider by more than one order of magnitude.

These pronounced effects are in a way surprising: At first
sight, one might speculate that the coupling leash which
imposes an additional constraint on the spiders would handicap
the spider team’s motion and make it slower. This is clearly
not the case. To the contrary, the dynamic properties of the
spider teams are enhanced. In the remainder of this section we
will explain this behavior using analytical arguments.

B. Boundary periods

a. Single spiders. Key to the understanding of an individual
molecular spider’s motion is to unravel the mechanism for
biased motion. To this end we distinguish between two
qualitatively different dynamic states of the spiders: Looking
at single trajectories of molecular spiders we find that there
are periods of time in which the spider’s motion is strongly
directed, and other periods with undirected, diffusive motion
[see Fig. 2(f)]. In the following, we will call these dynamic
states boundary periods and diffusive periods, respectively. To
define the notion of these periods, it is convenient to distinguish
between the steps of the spider’s legs and the step of the
spider as a whole. We define a spider step as a transition
from a spread configuration ( ◦ • ◦ • ◦ ) to another spread
configuration shifted by one lattice unit forwards or backwards,
i.e., ◦ ◦ • ◦ • or • ◦ • ◦ ◦ , irrespective of the sites being
products or substrates. During a diffusive period all the spider’s
legs are attached to product sites and therefore the spider steps
with equal probability in both directions [11]. In contrast,
biased spider motion can emerge in the vicinity of the boundary
between product and substrate sites. We define a boundary

032706-3



MATTHIAS RANK, LOUIS REESE, AND ERWIN FREY PHYSICAL REVIEW E 87, 032706 (2013)

(a) (b)

10−3

10−2

10−1

100

101

102

103

104

105

10−2 100 102 104 106

m
ea

n 
di

sp
la

ce
m

en
t  

 x
(t

)

time t

n = 1
n = 2, d = 8
n = 3, d = 8
n = 4, d = 8

(c)

(d) (e) (f)

10−4

10−2

100

102

104

106

108

10−2 100 102 104 106

m
ea

n 
sq

ua
re

 d
is

pl
ac

em
.

x
2
(t

)

time t

n = 1
n = 2, d = 8
n = 3, d = 8
n = 4, d = 8

10−4

10−3

10−2

10−1

10−2 100 102 104 106

ve
lo

ci
ty

 =
d

x
(t

)
/
d
t

time t

n = 1
n = 2, d = 8
n = 3, d = 8
n = 4, d = 8

0

200

400

600

po
si

tio
n 

x

n = 1

0

200

400

600

0 50000 100000
po

si
tio

n 
x

time t

n = 4, d = 8

0
1

2
3

4
5

6
7

8
9 · 10-3

-400 -200 0 200 400 600

Pr
ob

 (s
pi

de
r

is
at

x
)

position x

n = 1
n = 2, d = 8
n = 3, d = 8
n = 4, d = 8

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

10−2 100 102 104 106

ef
fe

ct
iv

e
ex

po
ne

nt
α

time t

n = 1
n = 2, d = 8
n = 3, d = 8
n = 4, d = 8

FIG. 2. (Color online) Dynamic properties of spider teams. Positions are given in lattice units throughout this work; time is defined by setting
the hopping rate from products to 1. Thin shaded lines show data from finite difference approximations; thick lines show smoothing Bezier curves.
(a) Probability distributions (histograms) of spiders to be at position x at time t = 106; simulation data were binned with a box size 1. Depicted
are distributions for a single spider (n = 1) and spider teams comprised of n = 2,3,4 spiders and leash length d = 8, and cleavage rate r = 0.01.
While the single spider distribution follows nearly a Gaussian centered close to the origin, the distributions of spider teams are clearly skewed and
shifted towards larger x. The asymmetry stems from the P-S preparation of the lattice at t = 0 (products at the left, substrates at the right) [17].
(b) Mean displacement as a function of time (lines). The shaded areas represent the standard deviation around the mean displacement for a
single spider and the four-spider team, respectively, and provide a measure for the randomness of the spiders’ motion. Note that the visual
impression of the standard deviation is rather that of a relative deviation, since the plot is in double logarithmic scale. (c) MSD as a function
of time, 〈x2(t)〉. (d) The variance’s effective exponent α(t) [see Eq. (3)]. For diffusion, 〈[x(t) − 〈x(t)〉]2〉 ∝ t1, hence α = 1; superdiffusion
corresponds to α > 1.1 [16], and ballistic motion to α = 2. The superdiffusive regime of spider teams lasts longer than that of single spiders;
large spider teams reach nearly ballistic motion for significantly long times. For a more detailed discussion, see the main text. (e) Mean velocity
of the spiders as a function of time. The mean velocity is defined as the time derivative of the mean displacement, d〈x(t)〉/dt . Spider teams
outperform single spiders by an order of magnitude. (f) Sample trajectory of a single spider (top), and a four-spider team with d = 8 (bottom).
Periods in which the spider (team) is in the vicinity of the product-substrate boundary are shaded.

period as follows: It starts with a spread configuration where
the right spider leg is attached to a substrate (· · · ◦ • ◦ •̂ ◦̂ · · · ),
and ends when the spider has fully stepped away from the
substrate boundary (· · · • ◦ • ◦ ◦̂ · · · ) (the dots indicate that
the block of displayed lattice sites may have been shifted
during the boundary period), as illustrated in Fig. 3(a). As a
consequence, during a boundary period the substrate boundary
is shifted by an integer number of lattice units forward.

For single spiders the bias can be measured by calculating
the first passage probability, p+, for the spider to progress
one step forward during a boundary period, i.e., p+ =
Prob{ • ◦ • ◦ ◦̂ 	← ◦ • ◦ •̂ ◦̂ → ◦ ◦ • ◦ •̂ } [see also Fig. 3(a)
for an illustration of the corresponding dynamic processes].
By analyzing all possible sequences of transitions, Antal and
Krapivsky found an explicit expression for the bias, namely,
p+(r) = 5+r

8+4r
[12], valid for spiders with legs always jumping

to neighboring sites. Similar calculations can be performed
for spiders whose legs may also rebind to the same site again
(like those we consider throughout this paper), leading to
p̃+(r) = 5+3r

8+8r
. The mathematical expressions for p+ and p̃+

differ only slightly; in particular, they are equal in the limits
limr→0 p̃+(r) = limr→0 p+(r) = 5

8 and p̃+(r = 1) = p+(r =
1) = 1

2 [31].
There is a special feature of single spiders which makes

the definition of p+ straightforward in this case: The spread
configuration • ◦ • of the spider’s legs is unique, since a spider
step to the right corresponds to a translation of both legs to the
right, and hence the configuration before and after a step is the
same [cf. Fig. 3(a) states (i), (iii), and (vii)]. As we will show
below, this is a property which unfortunately does not extend
to spider teams.
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(b)(a)
(i) (ii)

◦ ◦ˆ ◦̂↔◦◦ ˆ ◦̂

◦ ◦̂↔ ◦◦̂↔◦ ◦̂↔◦ ◦̂→◦ ◦ˆ
(iii) (iv) (v) (vi) (vii)

p− = 1 − p+
p+

FIG. 3. (Color online) Definition of a boundary period. (a) Path of a single spider through a boundary period. The period always starts in
state (i). From there, the spider can change to (ii), and back. When the right leg cleaves the substrate, the spider arrives at (iv), (v), (vi), or
(vii). Arriving at (vii) corresponds to continuing the same boundary period from a new substrate [with “(vii) being the new (i)”], since (vii) and
(i) are equivalent up to translation. Hence, the number of steps is raised by one upon arriving at (vii). If, by contrast, the spider reaches (iii),
the boundary period ends and a diffusive period begins. The probability to make a successful step, i.e., to reach (vii) before (iii), is the bias p+
calculated by Antal and Krapivsky [12]. The number of steps during a boundary period is then the number of transitions (i) → (vii), without
reaching (iii) in between. This is equivalent to the number of cleavages during a boundary period, not counting the very last cleavage (which is
not counted since by definition the spider steps away from the boundary after the last cleavage, and we only count forward steps). (b) Example
of a boundary period of a two-spider team. (α) None of the spiders is in a boundary period, hence none of them experiences a bias. Thus, the
spider team is in a diffusive period. When the lower spider reaches a substrate (β) it enters a boundary period. Thus, also the spider team enters
a boundary period. In succession, the lower spider’s right leg happens to cleave the substrate (γ ). The lower spider can then find its way to a
new substrate (δ) what constitutes a 1

2 successful step for the spider team and preserves the boundary period. If the upper spider, in this case,
steps to a substrate (ε), this does not yet, however, constitute a step. This is because although the spider team is in a boundary period, the upper
spider has not been in a boundary period itself during this team’s boundary period. Since a step essentially reflects a cleavage, no step can be
integrated in this case. If the lower spider steps away from the new substrate (ζ ), the spider team enters a diffusive period. In analogy to single
spiders, the number of steps during a spider team’s boundary period is equivalent to the number of cleavages during that period, divided by the
number of spiders, and not counting each spider’s last cleavage event.

A quantity which does not require this uniqueness is the
mean number of consecutive directed steps that a spider
performs during one boundary period. This quantity will be
denoted 〈S〉 in the following. With

pj = (p+)j (1 − p+) (4)

being the probability that the spider walks precisely j steps
during a boundary period, before it leaves the boundary and
enters a diffusive period, 〈S〉 can be calculated as

〈S(p+)〉 =
∞∑

j=0

jpj = p+
1 − p+

(5)

for single spiders. Let us emphasize that 〈S〉 is different from
the mean “number of steps the spider makes in the B state”
[16], 〈SB〉, as defined by Semenov et al., which counts the
number of leg movements (“leg steps” in our terminology). By
contrast, 〈S〉 only counts a step if both legs have been shifted
to the right without having moved to the left (“spider steps”),
i.e., the number of times the spider consecutively reaches (vii)
before (iii), starting from (i) in Fig. 3(a).

The number of consecutive spider steps, 〈S〉, is equivalent
to the number of cleavage events during a boundary period.
Not counted is the last cleavage before the spider leaves the
boundary period, since this corresponds to a backward step of
the spider [cf. Eq. (4)].

b. Spider teams. Clearly, the motion of a single spider is
biased only during boundary periods, and undirected during
diffusive periods. However, it is manifest that a spider team’s
motion is not completely diffusive as long as any of the
spiders comprising the team is in a boundary period. Hence,
we consider the spider team being in a boundary period if at
least one of its spiders resides in a boundary period. In order
to compare the performance of individual spiders with that of

spider teams, it is now essential to find a way how to count
the number of a spider team’s steps during a boundary period.
Basically, a team moves forward by one step if the boundary
between substrate and product sites is shifted forward by one
lattice unit on average. To this end we count every cleavage
event but for each spider’s last cleavage before the team
leaves the boundary period. In analogy to a single spider,
the latter avoids counting those events where the spider team
moves away from the boundary and thereby steps backward
[cf. Fig. 3(b)]. The number of steps of a spider team is then
given by the number of such cleavage events divided by the
number of spiders in a team, in accord with fractional steps of
molecular motors like kinesin [32]. For example,

◦ • ◦ •̂ ◦̂
◦ • •̂ ◦̂ ◦̂ → ◦ ◦ • •̂ ◦̂

◦ ◦ • ◦ •̂ (6)

corresponds to two steps of the lower spider and thus one step
for the spider team.

As we consider two or more coupled spiders, the trans-
lational symmetry of the state before and after a complete
step ( • ◦ •̂ ◦̂ and ◦ • ◦ •̂ , respectively, for a single spider) is
broken, likewise the uniqueness of the state which is the first
during a boundary period ( • ◦ •̂ for a single spider), is lost.
For example,

• ◦ •̂ ◦̂ ◦̂
◦ • • ◦ ◦̂ ,

◦ • ◦ •̂ ◦̂
◦ • • ◦̂ ◦̂ ,

◦ • ◦ •̂ ◦̂
◦ • ◦ • ◦̂ (7)

all are possible states at the beginning of a boundary period.
It is therefore no longer possible to calculate the probability
to step to the right (denoted p+ for single spiders) without
further specification of these initial states. For spider teams
the probability for a forward step explicitly depends on the
particular state from which it starts.
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This complexity prohibits an analytic treatment of the
stochastic dynamics in general. However, if the relative rate
of substrate cleavage is small compared to the rate of hopping
from product sites, i.e., r  1, the dynamics become amenable
to a theoretical analysis. While in this limit the motion of
the boundary between substrate and product sites is slow, the
dynamics of spider legs bound to product sites are fast. This
suggests to group states into classes characterized by the slow
variable, i.e., the distance between the ends of the product
seas, denoted by 
. In addition, it turns out to be convenient
to introduce subclasses according to the number of spiders
attached to substrates, σ . In the following we will illustrate
this for teams comprised of n = 2 spiders and a leash length
d = 2. All states

◦ • ◦ •̂ ◦̂
◦ • ◦ •̂ ◦̂ ∼ ◦ ◦ • •̂ ◦̂

◦ • ◦ •̂ ◦̂ ∼ ◦ • ◦ •̂ ◦̂
◦ ◦ • •̂ ◦̂ ∼ ◦ ◦ • •̂ ◦̂

◦ ◦ • •̂ ◦̂ (8)

comprise the class[◦ • ◦ •̂ ◦̂
◦ • ◦ •̂ ◦̂

]
=: [02] = [
σ ]. (9)

Likewise, configurations with 
 = 0 and σ = 1, i.e., with only
one spider having a leg at the boundary, are possible:[◦ • ◦ •̂ ◦̂

◦ • • ◦̂ ◦̂
]

=: [01]. (10)

Here, we made use of the invariance under renumbering of
spiders, it is irrelevant if we label the “upper” spider as 1 and
the “lower” as 2, or the other way round. Hence, irrespective
of whether the lower or the upper spider’s leg is bound to a
substrate, both contribute to class [01]. That same renumbering
symmetry can also be applied when one considers states where
the lower and the upper product seas do not end at the same
position. This leads to the classes[◦ • ◦ •̂ ◦̂

◦ • •̂ ◦̂ ◦̂
]

=: [12] and

[◦ • • ◦̂ ◦̂
◦ • •̂ ◦̂ ◦̂

]
=: [11], (11)

as well as [◦ ◦ • • ◦̂
◦ • •̂ ◦̂ ◦̂

]
=: [21]. (12)

This completes the list of possible classes with σ 	= 0 since
the constraint d = 2 imposed by the leash forbids class [22],
as well as classes [
σ ] with 
 > 2. For general d, class [d2]
and classes with 
 > d are not allowed.

One can show that the classification of states by means of the
distance of the product seas’ ends and the number of spiders at
the boundary is reflexive, symmetric, and transitive, and hence
defines an equivalence relation. Therefore, we tentatively used
the symbols ∼ and [·] in the previous equations.

Instead of a large number of “micro” states, we are now left
with only five equivalence classes which include all the spider
states at the boundary. The reduction of complexity can be
pushed even further: classes [
1] with only one leg attached
to the substrate are only transient in the sense that they will
always decay into classes with two legs attached [
2] (as
long as 
 < d). Consider, for example, a spider team in class
[01] where one spider’s right leg is attached to a substrate
while the other spider’s legs are free to move on product sites.
Since the diffusion time of legs on products is small compared

to the expected residence time 1/r of the leg on the substrate,
the transition [01] → [02] is almost certain and happens on a
time scale ∼1 (fast compared to substrate cleavage).

All possible transitions between the classes can be visual-
ized as the following reaction scheme:

[(d − 1)0] ⇒ diffusive
period

⇓ ↖
[01] [11] [(d − 1)1] ← [d1]
⇓ ↖↗ ⇓ ↖↗ · · · ↖↗ ⇓ ↗

[02] � [12] � · · · � [(d − 1)2]

, (13)

where 
 is constant along a column and σ along a row,
respectively. As explained above, vertical transitions from
[
1] to [
2] are fast [emphasized with double arrows in
Eq. (13)]. In contrast, horizontal and diagonal transitions
involving substrate cleaving events and hence leading to

 → 
 ± 1 are slow. Since vertical transitions occur with
certainty and fast, we can eliminate the transient classes [
1]
and reduce to a reaction scheme for the most stable subclass
of each class, shown in boldface in Eq. (13) and signified [
]
in the following:

[0]
1−⇀↽−
1
2

[1]
1
2−⇀↽−
1
2

· · ·
1
2−⇀↽−
1
2

[d − 1]
1
2−⇀↽−
�

[d]
1−�−−→ diffusive

period . (14)

The numbers above and below the arrows are transition
probabilities into the respective classes, reflecting that each of
the two spiders may cleave a substrate with equal probability
for 
 < d. The class [d] has to be treated separately as it
constitutes a gate from the boundary into the diffusive period.

Our next set of tasks is now threefold: First, in order for
our classification scheme to be a consistent reduction of the
stochastic processes, all states comprising the gate class [d] =
[d1] should have the same survival probability �, i.e., the same
probability not to exit into a diffusive period. This is indeed the
case for sufficiently small cleavage rates r: In the limit r → 0,
substrate cleavage events are rare compared to hopping from
product sites. Therefore, the dynamics exhibit a time scale
separation where all the legs attached to products quickly visit
any accessible lattice site while the legs on substrate sites
remain stuck. In other words, the dynamics within class [d1] are
ergodic and equilibrate, and all micro states effectively reduce
to one coarse-grained “macro” state, namely, the class [d1].
Second, we have to calculate the survival probability � by an-
alyzing all the various routes between the micro states. Third,
in order to determine the mean number of consecutive steps
〈S〉, the reduced reaction scheme of Eq. (14) has to be solved.

We now address the calculation of the survival probability
�. In principle, this can be done for arbitrary complex spider
teams. For the purpose of illustration, we continue the example
from above with two spiders and a leash length d = 2. We
consider all states comprising class [21]. These are

©1 = ◦ ◦ • • ◦̂
◦ • •̂ ◦̂ ◦̂ , ©2 = ◦ • ◦ • ◦̂

◦ • •̂ ◦̂ ◦̂ , ©3 = ◦ • • ◦ ◦̂
◦ • •̂ ◦̂ ◦̂ ,

©4 = • ◦ • ◦ ◦̂
◦ • •̂ ◦̂ ◦̂ , ©5 = • • ◦ ◦ ◦̂

◦ • •̂ ◦̂ ◦̂ , ©6 = ◦ • • ◦ ◦̂
• ◦ •̂ ◦̂ ◦̂ , (15)

©7 = • ◦ • ◦ ◦̂
• ◦ •̂ ◦̂ ◦̂ , ©8 = • • ◦ ◦ ◦̂

• ◦ •̂ ◦̂ ◦̂ ,

032706-6



COOPERATIVE EFFECTS ENHANCE THE TRANSPORT . . . PHYSICAL REVIEW E 87, 032706 (2013)

0.4

0.5

0.6
Π

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

pr
ob

ab
ili

ty
 to

 st
ep

 fo
rw

ar
d

cleavage rate r

1

2

3

6
4 7
5

8

FIG. 4. (Color online) Justification for the equivalence classes in
the limit r → 0. Shown are the analytically calculated probabilities
that a spider team (n = d = 2) successfully completes one step during
a boundary period, starting from the specific states ©1 –©8 as given
in Eq. (15). Each line corresponds to a state of the equivalence class
[21] [cf. Eq. (12)]. In the limit r → 0, the probability to step forward
for all eight states collapses to a fixed value � ≈ 0.65.

and their respective “mirrored” states, i.e., the states with
spiders 1 and 2 interchanged. Let us illustrate the calculation
for the particular initial state ©1 . Legs unbind from products
at rate 1 and from substrates with rate r . Hence, from
this configuration, the probability that the upper right, or
the lower right leg is the first one to unbind is 1/(3 + r)
and r/(3 + r), respectively. The left legs unbind first with
probability 1/(3 + r) each. If now, for instance, the lower
right leg detaches, it may either reattach to the very same
lattice site again, or it may step one site to the right. In either
case it cleaves a substrate. Both processes happen with equal
probability. Hence, altogether, the transition probability for
the lower right leg to step to the right is given by r/2(3 + r).
The analysis can be continued from the resulting states until
either a step is completed or the team has left the boundary
period, finally leading to a high dimensional system of linear
equations. The results obtained by solving the ensuing sets of
equations are shown in Fig. 4 for all initial states comprising
class [d1].

Clearly, as r approaches 0, all survival probabilities, i.e., all
probabilities to make a step within the team’s boundary period,
approach a single value

� = 115
176 ≈ 0.65. (16)

This result is reassuring, as it confirms our heuristic arguments
on the equilibration of states within class [d1], and thereby
justifies combining several different states into one class in the
limit r → 0.

All the complexity of calculating the mean number of
steps 〈S〉 of a spider team during a boundary period has
now been reduced to analyzing the various routes between
the equivalence classes. Since each transition [33] in Eq. (14)
corresponds to a directed step done during a boundary period,
the number of these steps 〈S〉 is equivalent to the number of
(undirected) jumps performed by a simple random walker with
reflective and absorbing boundary conditions on the left, and
right ends of the reaction scheme, respectively. As detailed in
the Appendix, the general solution for the mean number of

TABLE I. Comparison of analytic and simulation results for the
mean number of steps during a boundary period, 〈S〉. Analytic values
were derived in the limit r → 0; simulation results were obtained for
very small r � 10−4. Simulations and analytical calculations show
excellent agreement.

〈S(r → 0)nd〉, analytic 〈S(r � 10−4)nd〉, simulation

n = 1 5
3 ≈ 1.6667 1.6672 ± 0.0015

n = 2, d = 2 291
61 ≈ 4.770 4.769 ± 0.003

n = 2, d = 3 3 170 931
443 341 ≈ 7.152 7.146 ± 0.005

n = 2, d = 4 4 055 316 673
414 459 263 ≈ 9.785 9.785 ± 0.008

n = 3, d = 2 340 881
48 391 ≈ 7.044 7.042 ± 0.006

n = 3, d = 3 16.3745...

1.34258...
≈ 12.196 12.204 ± 0.012

steps during a boundary period in the limit r → 0, and for
arbitrary d, reads

〈S(d,r → 0)〉 = �

1 − �
+ (d − 1)

1

1 − �
. (17)

For our example of a two-spider team with d = 2, we obtain,
using Eq. (16), 〈

S(r → 0)n=2
d=2

〉 = 291
61 ≈ 4.77. (18)

We also analyzed more complex spider teams with size n =
2,3 and up to a leash length of d = 4, and found even larger
mean step numbers, compared to 5

3 for a single spider. Obvi-
ously, during boundary periods even the simplest spider teams
behave significantly more directed and progress a lot further on
average, compared to individual spiders. This result is remark-
able since directed motion is desirable for applications and a
rare feature at the nanoscale. The analytical results are sum-
marized in Table I where they are also compared with Monte
Carlo simulations which match them at a very high accuracy.

C. Validity of the equivalence classes

With increasing d, the spiders forming a team become more
and more independent since it is increasingly unlikely that a
spider “feels” the constraint of its teammates. In particular,
the probability � that a spider in class [d1] reaches [(d − 1)2]
without exiting the boundary period [cf. Eq. (14)], converges
towards the probability p+ that a single spider makes a step
to the right which is 5

8 for r → 0. Hence, assuming � = 5
8

for large d, Eq. (17) would imply that the mean number of
steps increases linearly with d. Indeed, in the asymptotic limit
r → 0 this agrees well with the simulation data. However, with
increasing r deviations from this linear behavior become more
and more significant (cf. Fig. 5).

This can be explained as follows: For increasing leash
length d, the configuration space accessible to the spider
team becomes progressively larger, so that it takes longer
to completely exploit it, i.e., the equilibration time grows.
Conversely, the average time of substrate cleavage scales as
1/r . With increasing r and/or d these two time scales become
comparable. The assumption of time scale separation, on
which the reduction of the dynamics to equivalence classes was
based, then becomes invalid. In conclusion, the equivalence
class concept which we derived in the previous sections
provides a very good approximation for small but finite
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FIG. 5. (Color online) Validity of the equivalence class formal-
ism. Shown are the simulation results for the mean number of steps
〈S〉 for a two-spider team and different values of d and cleavage
rates r = 0.0001,0.001,0.01; broken lines are a guide to the eye.
The theoretical result derived within the equivalence class formalism
for r → 0 (black) is exact for d = 2,3,4 (Table I), and we assumed
� = 5

8 for d � 5 [Eq. (17)].

substrate cleavage rates r , as long as the leash length d is not
too large.

D. An exact mapping to a confined random walker

For a bipedal spider with a maximal span of s = 2, a single
coordinate, the “center of mass” coordinate, fully describes
the position of the spider’s legs. Hence, it is possible to map
the motion of the single spider’s legs on 1

2Z, the set of integers
and half-integers, with hopping of the legs corresponding to
changes of the center of mass [11,12]. This mapping can be

◦ ◦◦
◦◦
◦◦

◦ ◦
◦ ◦
◦ ◦
◦◦◦

◦
◦◦ ◦◦ ◦◦

◦

◦

◦

◦

◦
◦
◦◦◦

sp
id

er
 2

spider 1

0

1

−1

10−1

1/2

−1/2

1/2−1/2 c1

c2

FIG. 6. (Color online) A spider team can be mapped to a
random walk in a confined environment: Transitions of a spider’s
leg correspond to a change of its center-of-mass coordinate ci of
± 1

2 . Shown is the mapping of a two-spider team with a leash length
d = 2. The shape of the environment (solid) follows from the leash
constraint which confines the span of the spider team. From d = 2
follows that the leftmost left and the rightmost right legs of the two
spiders may be at most two lattice sites apart. With that restriction,
the allowed configurations of the team follow directly, as can be seen
with some explicit configurations in the left and the top part of the
figure.

extended for a spider team: The position of an n-spider team is
characterized by a position on an n-dimensional square lattice
where each of the n axes corresponds to the center of mass
of one of the spiders comprising the team. The dynamics of
a spider team then corresponds to a trajectory on that lattice.
However, due to the leash constraint, not all sites on this lattice
are accessible to the spider team. To illustrate this, let us for the
moment focus on a two-spider team with leash length d = 2.
Fixing the first spider’s center of mass c1, the other spider’s
center of mass c2 is restricted to be near c1 due to the leash
constraint. We have to distinguish between two cases. Spider 1
is either in a spread or a relaxed configuration, e.g., c1 = 0 or
c1 = 1

2 , respectively. If it is in the spread configuration c1 = 0,
then the other spider may be in one of three configurations:
c2 ∈ {− 1

2 ,0, 1
2 }. For the relaxed configuration c1 = 1

2 , there are
five configurations possible for the second spider: − 1

2 , 0, 1
2 , 1,

and 3
2 . Geometrically, this leads to a staircase shape for the

accessible set of states. For arbitrary d, the step width of this
staircase generalizes to 4d − 3 and 4d − 5 (cf. Fig. 6).

While in Sec. III E this mapping will be employed to
calculate diffusion constants during diffusive periods, we use
it here to illustrate the concept of equivalence classes again. To
this end, the mapping is generalized to incorporate substrates
as illustrated in shaded colors in Fig. 7: Each substrate can be
drawn as a box. This is seen as follows: Because each spider
being at a specific substrate site may either be in a spread or

sp
id

er
 2

spider 1

←
→

3 substrates on
spider 2’s lane

1 substrate on
spider 1’s lane

↔[21]

◦ˆ ◦̂ ◦̂
◦ ˆ ◦̂ ◦̂

◦◦̂ ◦◦̂
◦

◦◦̂
◦

◦̂
◦

◦̂

FIG. 7. (Color online) Substrate in the staircase random walker
picture (n = d = 2 as before). Like in Fig. 6, explicit configurations
are shown for some points. In addition, boxes are drawn which
correspond to the substrates on spider 1’s (vertical blue box), or
spider 2’s (horizontal red boxes) lane. This can be understood as
follows: When a spider is attached to a substrate with its right leg,
it can be either in the spread or the relaxed configuration. Hence a
substrate at position c has to be indicated at two points in the center of
mass space, namely, at c − 1

2 and c − 1; therefore the substrate boxes
have width 2. Encircled in the figure are the eight states which have
spider 2 at • ◦ •̂ ◦̂ ◦̂ or ◦ • •̂ ◦̂ ◦̂ , respectively, and spider 1 in one of
the five states • • ◦ ◦ ◦̂ , . . . , ◦ ◦ • • ◦̂ . The resulting states correspond
clearly to those of Eq. (15) and Fig. 4. In the figure, there are three
horizontal red boxes (substrates on spider 2’s lane), and only one
vertical blue box (substrate on lane 1). Hence, the difference of the
product sea’s ends is 
 = 2. Since the encircled states ©1 –©8 have, by
direct reading, only spider 2 at a substrate (i.e., they are only contained
in σ = 1 box), they form the equivalence class [
σ ] = [21].
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a relaxed configuration, a substrate has to be indicated at two
different locations in the center of mass space (thus the width
of every box equals 2). Furthermore, since spider 1 being or
not being at a substrate does not affect spider 2, every box
indicating a substrate at spider 1’s track has to be of a size
that it contains all allowed configurations of spider 2, and vice
versa.

We now return to an example discussed in Sec. III B:
Equation (15) shows all configurations in which spider 1
has cleaved two more substrates than spider 2 and only
spider 2 is attached to a substrate. We referred to this set
of configurations as the equivalence class [
σ ] = [21]. This
situation is illustrated in Fig. 7, where there are 
 = 2 more
boxes (i.e., substrates) for spider 2 than for spider 1. The eight
allowed configurations contained by the ellipse in this figure
are only contained in one box (σ = 1), such that these states
provide a geometrical interpretation of the equivalence class
[21]. Leaving the boundary period in this picture corresponds
to removing the encircled box (i.e., cleaving the substrate) and
stepping down (i.e., away from the substrate boundary).

E. Diffusive periods

We now employ the mapping of the spider team motion to
a confined random walk in order to analyze the spider team’s
dynamics during a diffusive period. Let us first examine the
transition rates between neighboring points in the confined
random walk picture. Consider, for example, the point

(c1,c2) = (0,0) = • ◦ •
• ◦ • (19)

in Fig. 6. From this configuration, every leg may unbind from
its product with rate 1, and then rebind to either the same
product site again, or move to the allowed neighboring site
at equal probability 1

2 . In the confined random walk picture,
this leads to transition rates of 1 × 1

2 along each connection
between adjacent sites from (0,0). The same argument applies
to any site within the allowed region, so that the transition rate
between any two lattice sites equals 1

2 [cf. Fig. 8(a)]. This leads
to the following master equation for the occupation probability
Pc1,c2 on the confined lattice:

d

dt
Pc1,c2 =

∑
〈c1,c2〉

1

2

(
P〈c1,c2〉 − Pc1,c2

)
, (20)

where the sum runs over all nearest neighbors 〈c1,c2〉 of
(c1,c2). In order to calculate the diffusion coefficient D =
1
2 limt→∞ d

dt
〈x2(t)〉 we determine the time derivative of the

mean square displacement of the spider team:

d

dt
〈x2(t)〉 =

∑
(c1,c2)∈C

x2
c1,c2

∑
〈c1,c2〉

1

2

(
P〈c1,c2〉 − Pc1,c2

)
, (21)

where xc1,c2 = 1
2 (c1 + c2) is the position of the spider team

on the molecular track for given values of c1 and c2, and the
summation extends over all (c1,c2) within the allowed region
C. This equation can be reorganized such that

d

dt
〈x2(t)〉 =

∑
C

Pc1,c2

∑
〈c1,c2〉

1

2

(
x2

〈c1,c2〉 − x2
c1,c2

)
. (22)
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0

-1

1
j

FIG. 8. (Color online) Diffusion in the staircase environment.
(a) Transition rates between the sites of the staircase environment.
Along every arrow drawn, the rate is 1

2 leading to local detailed
balance. (b) The staircase can be split into elementary cells, numbered
with integers.

To evaluate this expression we split the lattice into elemen-
tary cells as shown in Fig. 8(b), and use that for asymptotically
large times t → ∞, the probability density P varies only
little between neighboring elementary cells. This follows from
translational symmetry; every cell obeys the same master
equation. The master equation, Eq. (20), then implies a nearly
uniform probability distribution within each elementary cell
j [34]. Upon assuming a constant value Pj within each unit
cell, carrying out the sum over an arbitrary elementary cell j

leads to a further simplification
∑
Cj

Pj

∑
〈c1,c2〉

1

2

(
x2

〈c1,c2〉 − x2
c1,c2

) = 1

2
Pj , (23)

independent of j . Altogether, we obtain

lim
t→∞

d

dt
〈x2(t)〉 ≈

∞∑
j=−∞

1

2
Pj

(∗)≈
∞∑

j=−∞

∑
Cj

1
2

8
Pc1,c2

= 1

16

∑
C

Pc1,c2

(†)= 1

16
= 2D, (24)

where in (∗) we used that each elementary cell comprises eight
points, and in (†) we employed the normalization condition
for P . This procedure can be generalized for arbitrary d. The
formula for the diffusion constants for n = 2 then reads

D(d) = 1

16
+ 1

32(1 − d)
. (25)

This theoretical result agrees well with simulation data for
the diffusion constant D, as a function of the leash length d

(see Fig. 9).

IV. OPTIMIZATION OF DIRECTED MOTION

In the previous sections we mainly focused on ensemble
properties of spider teams. However, in experiments or
applications one has to deal with single realizations of the
stochastic process, i.e., single trajectories [cf. Fig. 2(f)]. Since
it is desirable to achieve a molecular motor design that works
reliably, one would like to minimize the randomness of the
trajectory, i.e., the motion’s standard deviation

σ =
√

〈(x − 〈x〉)2〉. (26)

It is interesting to ask how the microscopic properties of
the spider team (n,d) influence σ : Can we optimize the
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FIG. 9. (Color online) Diffusion constants as a function of the
leash length d for n = 2 and 3 spiders. The dashed line shows the
theoretical result for n = 2 [Eq. (25)]; solid lines are asymptotics for
d → ∞. Our theoretical approximation is in good agreement with
simulation data (points).

performance of a spider team? Is there an optimal choice of
parameters n and d which reduces the randomness of a spider
teams’ motion to a minimum?

The randomness is determined by the interplay between the
dynamics of the spider team during its different episodes of
motion, i.e., the boundary periods and the diffusive periods.
For each episode we found a characteristic feature: During
boundary periods the spider team motion is essentially ballistic
which can be quantified in terms of the mean number of
consecutive steps 〈S〉 [cf. Eq. (17)]. In contrast, during a
diffusive period the spider team performs a random walk with
a diffusion constant D [cf. Eq. (25)].

We have already learned in Sec. III C and Fig. 5 that there is
an optimal choice of parameters for the number of consecutive
directed steps during a boundary period (see Fig. 5). One
could now naı̈vely conclude that the predictability of a spider
team’s motion can as well be optimized with the same set
of parameters. However, this argument would overlook the
impact of the diffusive periods. Indeed, there are several
effects which influence the randomness during these episodes:

(i) In Sec. III E we noted that the diffusion constant
D grows with the leash length d [Eq. (25) and Fig. 9].
Since D determines the mean square displacement during a
diffusive period, increasing d would then also imply a greater
randomness, σ .

(ii) Conversely, a higher diffusion coefficient during diffu-
sive periods speeds up all dynamic processes. Thus, in a given
time window, larger d make it more probable for a spider team
to return to the boundary and start moving ballistically [35].

The combined effect of these two processes can be
estimated by analyzing a random walker with an absorbing
boundary. In one dimension, one finds that 〈x2(t)〉 ∝ √

Dt

[36,37]. Hence, (i) and (ii) together would lead to an increase
of σ with d.

(iii) Consider the geometrical interpretation of the transition
from the boundary period to the diffusive period as given in
Fig. 7. In this picture, entering a diffusive period corresponds
to removing the lowermost red box, and stepping to one of the
three points below states ©6 –©8 . Right after this transition,
the average minimal distance 〈x0〉 of the spider team from the
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FIG. 10. (Color online) Randomness during a diffusive period.
Shown is the mean-squared minimal distance to the boundary of
a random walker in the staircase environment (n = 2), Fig. 6. The
walkers start randomly along every point which provides an entrance
to the diffusive period (for d = 2, these are the three points below
states 6©- 8© in Fig. 7); they are absorbed when they reach the
boundary (which is the second substrate box in Fig. 7; note that
the lowermost box has been removed when the walker entered the
diffusive period). Obviously, the mean-squared distance is greater the
smaller d is. Increasing d thus decreases the randomness.

boundary is therefore given by

〈x0〉 = 1

4

(
3 + 3

4d − 5

)
, (27)

as can be inferred from counting the different transition
pathways. Hence, with increasing d, the spider team entering
the diffusive period is closer to the boundary, and is thereby
more likely to reenter a boundary period quickly.

(iv) In Sec. III D we have shown that with increasing leash
length d the number of pathways in state space to reenter a
boundary period also increases. Pictorially, this can be inferred
from the mapping of the spider team’s motion to a random
walker in a staircase environment: The longer the leash length
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FIG. 11. (Color online) Standard deviation σ of the spider teams’
movement and the mean number of steps 〈S〉 as a function of the
leash length d . Both σ and 〈S〉 show extrema. To emphasize the
correspondence between the minimum of σ and the maximum of
〈S〉 (cf. Fig. 5), the 〈S〉 axis is drawn in reverse (see right scale). σ

is measured at the time t∗ when the mean displacement 〈x〉 equals
1000. This choice is arbitrary; for smaller values the minima of σ

persist, but are less pronounced [cf. Fig. 2(b)].
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TABLE II. Optimal values of d for n = 2 and 3, and several
values of r . Compared are the values of d which maximize the mean
number of steps during a boundary period, and that which minimize
the randomness (for a comparison see Fig. 11). Clearly, both values
of d are closely correlated, where d

opt
〈S〉 is only slightly smaller than

dopt
σ .

n = 2 n = 3

r d
opt
〈S〉 dopt

σ d
opt
〈S〉 dopt

σ

0.001 ∼10–11 ∼13
0.01 4 5 5 6
0.02 3 4 3–4 4–5
0.05 2 3
0.1 2 3 2 3
0.2 2 2 2 3

d the larger is the “angle” under which a random walker sees
the boundary of the staircase. Thus, when the random walker
takes an arbitrary direction the probability that it walks toward
the boundary is increasing with d.

Since there is no unique trend in the various effects
discussed above in (i)–(iv), it is difficult to conclude what
would be the dominant effect of the diffusive period on
the randomness. Therefore, we numerically determine the
randomness of the spider team during diffusive periods [38];
this quantity is depicted in Fig. 10. We observe that the mean
squared distance from the boundary is smaller for larger d

at all times. This implies that—considering only diffusive
periods—increasing d leads to a reduction of the randomness.
From this we can infer that the effects (iii) and (iv), which
decrease the randomness of the process with increasing d,
overcompensate the effects (i) and (ii).

Altogether we can now conclude the influence of the
diffusive periods as follows:

d ↗⇒ σ ↘ .

Analogously we can decipher the influence of boundary
periods. Going back to Fig. 5 we observe

d < d
opt
〈S〉 : d ↗⇒ 〈S〉 ↗⇒ σ ↘ ,

d > d
opt
〈S〉 : d ↗⇒ 〈S〉 ↘⇒ σ ↗ .

These considerations explain that if there is an optimal
value d

opt
σ at which the randomness becomes minimal, it must

be found beyond d
opt
〈S〉 . This is in agreement with our data:

Figure 11 shows the existence of a minimum of the random-
ness, and its positioning with respect to d

opt
〈S〉 . Remarkably, the

positions of both optima are strongly correlated (see Table II).
In conclusion, our analysis shows that the randomness of

the spider team is mainly determined by the mean number
of steps 〈S〉 during boundary periods. Diffusive periods have
only a small effect on the randomness and change the optimal
parameters only slightly.

V. CONCLUSIONS

Based on existing models for molecular spiders [11,12], we
proposed a model for a spider team that explores the collective
behavior of cooperating spiders: In our model, bipedal spiders
are jointly attached to a (zero-mass) linking cargo. Each spider

walks on its own one-dimensional track. This leads to a spacial
constraint which can be characterized by the maximal span d

of the resulting spider team.
Depending on the cleavage rate of the substrate r < 1, the

number of coupled spiders n, and the leash length d, we found
that the coupling leads to a significant enhancement of many of
the spider’s motor properties: Spider teams show a significant
increase of their mean displacement; their motion is a lot less
random; the ensemble’s velocity can be increased by more than
an order of magnitude; and the superdiffusive behavior lasts
longer for orders of magnitude in time. Unlike single spiders,
cooperating spiders could therefore—at least in theory—be
employed for executing well-defined tasks reliably.

Like their individual counterparts [16], spider teams’
motion can be characterized as being in either a boundary
or a diffusive period. We found that the characteristic quantity
is the mean number of consecutive directed steps 〈S〉 which a
spider team performs during a boundary period. In simplified
language, 〈S〉 integrates the number of steps which the spider
teams walk, as long as it stays in the vicinity of the comoving
boundary between substrate and product sites. 〈S〉 is closely
related to the bias p+ of single spiders [12]. For small
r , we succeeded in calculating 〈S〉 analytically through an
equivalence class formalism which made use of the time scale
separation of dwell times on products and substrates. This
formalism is exact for r → 0, regardless of the number of
coupled spiders and the tightness of the coupling. We explicitly
calculated values for various small spider teams, and find
excellent agreement with simulation data. For small but finite
cleavage rates r , the formalism still holds as an approximation
for relatively tight coupling. We found that in this case there is
an optimal value for the coupling tightness d which maximizes
the mean number of steps.

Next, we provided a mapping of the stochastic motion of
an n-spider team to a random walker in an n-dimensional
environment. The motion is confined between parallel
boundaries which have the shape of staircases. This mapping
is exact and allows a complementary interpretation for
the equivalence classes: Substrates can be drawn as boxes
which are easy to enter for random walkers but impossible
to leave without removing, which happens slowly on a
time scale r−1. It is then straightforward to see that an
equivalence class corresponds to an intersection of boxes (cf.
Fig. 7). The staircase picture also allows one to quantify the
dynamics during the diffusive periods of spider teams: In that
case, boxes can be ignored and spider teams correspond to
ordinary diffusive random walkers on the confined lattice. We
calculated the diffusion constants for two-spider teams and
find good agreement with simulation data.

The analysis of the mean number of consecutive steps
during a boundary period 〈S〉 (which shows a maximum
for some value of the leash length d), taken together with
the diffusion constants D (which grow with d) allow for a
comprehensive explanation of our observations. We show that
the optimal value of d that minimizes the randomness (which
involves boundary and diffusive periods) differs only slightly
from the leash length maximizing the mean number of steps
during a boundary period (see Fig. 11).

The staircase picture also illustrates that despite the dif-
ference in complexity, a single spider and a spider team can
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both be described by similar effective random walk models:
The motion of a bipedal spider which has a nontrivial stepping
gait can be fully described by its center of mass coordinate
which performs simple one-dimensional random walks [12].
Likewise, the motion of an n-spider team which involves
complicated interactions between the spiders can equivalently
be described by another single coordinate which performs
n-dimensional random walks that are, however, geometrically
confined due to the leash constraint.

Our results show that the primary factor for improving the
motor properties of molecular spiders is the accessibility of
substrate sites for the spider legs: While single spiders only
have access to one substrate at a time, an n-spider team can
reach n substrates. This would imply that there is a significant
difference between truly one-dimensional spiders [12] and
quasi-one-dimensional spiders [10]. This is enforced by a
very recent study of Olah et al. [19] who examined molecular
spiders on a narrow two-dimensional lattice. As well, it is
in full accordance with recent data by Samii et al. [18] who
concentrated on hand-over-hand spiders: They showed that
motor properties of this class of spiders which have access to
more than one substrate site at a time are superior to inchworm
spiders which can only reach one substrate at once [17,18].

The results presented here can be extended in multiple
ways. In analogy to individual spiders, further studies could
concentrate on varying design specifics like the number or
the length of legs [18]. Likewise, the underlying chemical
processes [9,10] could be modeled in greater molecular detail
also for spider teams. Similarly, the team’s spiders’ stepping
gait could be varied, potentially profiting from studies about
the motion of individual hand-over-hand spiders with more
than two legs [18] which seem to be difficult to realize in the
experiment.

Unlike other studies (e.g., [16]) which have extensively
investigated the role of the cleavage rate r , our focus was
different and the variation of r was only a side aspect of
this work. Nevertheless, our analysis hints towards a scaling
behavior which maps the quantity 〈S(r,d)〉 to a universal form
S̃(d̃) which is independent of r . In this spirit, it would also
be interesting to study the connection of the optimal leash
length and the cleavage rate r . It appears that this relation
might be rather simple for a wide parameter range, although
its mathematical formulation seems to be very complex. The
difficulty is that the simplified formulation of the problem
presented here, i.e., the equivalence classes, cannot be applied
directly. One possibility to address this problem might lie
in drawing analogies from related models such as the burnt-
bridge model [39]. For example, it has been studied for dimeric
motor molecules [40] and as an exclusion process [41].

Our results might also be relevant to study collective
properties of molecular motor assemblies theoretically (cf. e.g.
Ref. [42] or Ref. [43], and references therein). These models
are relevant to understand the interplay between biological
motor molecules such as kinesin, dynein, and myosin inside
cells [44,45]. In contrast to spiders, biological motors are
fueled by ATP hydrolysis; they can build up significant pulling
forces due to strong mechanochemical coupling [46]. In
particular, recent experiments addressed the complex interplay
of multiple coupled kinesin motor proteins where the motors
are coupled via a DNA leash of certain length. It is interesting

to note how in these experiments teams of two kinesin motors
outperform a single motor in terms of run length and pulling
forces [47–49]. Similarly, cooperative effects also improve
the properties of two coupled burnt-bridge motors modeling
collagenase transport [40].

In conclusion, we believe that our model of coupling molec-
ular spiders provides insight on how cooperative behavior
evolves on the molecular scale. We hope that our ideas about
molecular spiders help advance a young and fast growing field
in which much focus is put on the construction of novel, more
efficient molecular designs [4]. We believe that our findings
are not limited to the case of molecular spiders, but apply to
molecular machines working together in general.
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APPENDIX: DERIVATION OF EQ. (17)

We analyze the graph for a two-spider team with arbitrary
d as depicted in Eq. (14). According to this graph, transitions
[i] → [i ± 1] are equally likely as long as i < d, whereas
[d] → [d − 1] happens at probability �. During every transi-
tion, the spider team performs a fractional step 1

n
= 1

2 . Only
during the transition [d] → [d − 1], no step is integrated; in
return, [d − 1] → [d] leads to a whole step for the team. This
is due to the very definition of the number of steps during
a boundary period, which comprises all cleavages but for
each spider’s last cleavage before the team enters the diffusive
period.

With these preparations, we can now establish the proba-
bilities p(j |[i]) that a spider team, being in class [i], performs
exactly j steps before leaving into the diffusive period. These
read

p(j |[0]) = p(j − 1
2 |[1]),

p(j |[i]) = 1
2

(
p(j − 1

2 |[i − 1]) + p(j − 1
2 |[i + 1])

)
,

p(j |[d − 1]) = 1
2

(
p(j − 1

2 |[d − 2]) + p(j |[d])
)
,

p(j |[d]) = �p(j − 1|[d − 1]) (A1)

where 0 < i < d − 1. The mean number of steps 〈S(x)〉 which
a spider team walks from class [x] until going to the diffusive
period is then given by

〈S(x)〉 =
∞∑

j=0, 1
2 ,...

jp(j |[x]). (A2)

Inserting Eq. (A2) into Eq. (A1), and by renumbering indexes
we obtain

〈S(0)〉 = 1
2 + 〈S(1)〉,

〈S(i)〉 = 1
2 + 1

2 〈S(i − 1)〉 + 1
2 〈S(i + 1)〉,

(A3)
〈S(d − 1)〉 = 1

4 + 1
2 〈S(d − 2)〉 + 1

2 〈S(d)〉,
〈S(d)〉 = � + �〈S(d − 1)〉,
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where again 0 < i < d − 1. Solving this system of equations,
we obtain the recursion relation

〈S(k)〉 = 〈S(k + 1)〉 + k + 1
2 (A4)

for 0 � k < d − 2. Substituting this into the remaining equa-
tions leads to

〈S(d)〉 = �d

1 − �
, (A5)

and finally

〈S(d − 1)〉 = d

1 − �
− 1 = (d − 1)

1

1 − �
+ �

1 − �
.

(A6)

Since a spider always enters a boundary period in class [d − 1]
in the limit r → 0 [cf. Eq. (13)], the last equation is equivalent
to 〈S〉, Eq. (17).
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Part II.

The impact of finite resources for
microtubule length regulation by

molecular motors
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5. Motivation

Cell division is orchestrated by a complexmachinery called themitotic spindlewhich is composed
of microtubules (MTs). One of its crucial tasks is to guide and maintain chromosomes in the cell
center, before subsequently segregating them into the daughter cells (6, 7). Control of the size of
the mitotic spindle and likewise MT length is essential for the proper function of a cell (188). A
central questions is how length regulation is achieved inside cells. It is known that many proteins
are involved in this process in a complex interplay.

Among these proteins, molecular motors of the kinesin-8 family play a special role: It has
been found that spindle size increases when this protein is depleted (126), while its overexpres-
sion results in smaller spindles (127). This effect has been attributed to the ability of kinesin-8
to depolymerise MTs at their plus ends (20, 189, 190). Moreover, it has been observed that the
kinesin-8 homologKip3 from Saccharomyces cerevisiae depolymerisesMTs in a length-dependent
fashion (20, 21). A simple explanation for this behaviour is the existence of a motor density gra-
dient on the MT, which arises from the interplay of random attachment to, and directed mo-
tion on it. Effectively, this leads to a mechanism how MTs can “sense” and regulate their own
length (21–23, 191).

At the same time, there is evidence that spindle formation significantly depletes the concentra-
tion of tubulin and other proteins. In particular, spindle size is modulated by cytoplasmic volume
both in vitro and in vivo (24, 25). Because spindle size correlates with MT length (27), the avail-
ability of resources is also important for the length of individual filaments. A detailed study of
howmolecular motors like kinesin-8 are involved in the length regulations ofMTsmust therefore
also take limited resources into account.

In the following we will present results on two related projects, where we consider the role of
finite resources for a MT length regulation process by kinesin-8. In the first part, Chap. 6, our
focus lies on direct applicability of our model to a set of in vitro experiments. This project results
from a very fruitful collaborationwithAniruddhaMitra from the group of StefanDiez (Dresden),
that started at a conference in Berlin in December 2015. At the time of the original submission of
this thesis, the findings of our study had been submitted for publication. In the meantime, they
have been published in Physical Review Letters, 120, 14 (2018) under the title “Limited Resources
Induce Bistability inMicrotubule Length Regulation”. In this thesis, we follow this journal’s struc-
ture and present ourmain results in Chap. 6, while most mathematical derivations and additional
experimental tests are presented in Appendix A.

The final Chap. 7 of this part considers a simpler model for MT length regulation in a finite
volume. In fact, it was our first project to be conducted in the field of limited resources. Although
it has less biological significance, all the phenomena present in the more complex model can be
observed, and a more thorough analysis is possible due to its simplicity.
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6. Limited resources induce bistability in
microtubule length regulation

The absolute and relative abundance of particular sets of proteins is important for a wide range
of processes in cells. For example, during Xenopus laevis embryogenesis, importin α becomes
progressively localized to the cell membrane (192). As a consequence of importin’s depletion from
the cytoplasm, the protein kif2a escapes inactivation, and decreases the size of themitotic spindle.
Similarly, formation of the mitotic spindle reduces the concentration of free tubulin dimers, the
building blocks of microtubules (MTs). Thus, up to 60% of all tubulin heterodimers (41, 42) may
be incorporated into the spindle (25). In addition, it has been shown in vivo and in vitro that both
spindle size (24, 25) and the lengths of its constituent MTs (27) scale with cytoplasmic volume.

Assembly and disassembly of MTs are regulated by a set of proteins that interact with the plus
ends of protofilaments (5, 189). One of these factors, the molecular motor kinesin-8, acts as a de-
polymerase (20, 189). As a consequence, spindle size increases in its absence (126), and decreases
upon overexpression of the protein (127). Moreover, the kinesin-8 homolog Kip3 from Saccha-
romyces cerevisiae has been shown to depolymerize MTs in a length-dependent fashion (20, 21).
This is facilitated by a density gradient on the MT, caused by the interplay between the proces-
sive motion of Kip3 along the MT and its depolymerase activity at the plus end, which effectively
enables the MT to “sense” its own length (21, 22). In combination with spontaneous MT poly-
merization, the Kip3 gradient leads to a length regulation mechanism (23, 191).

Here we explore the combined effect of limited resources and Kip3-induced depolymerization
on the length regulation of MTs. As seen in theoretical studies on the collective motion of molec-
ular motors, resource limitation affects the density profile on the MT: Regions of low and high
motor density separate, as a localized domain wall emerges on the MT (154, 162–164). This is a
direct result of resource limitation, and does not rely on the existence of a motor density gradient,
as necessary for domain wall localization in the presence of unlimited resources (132, 133, 155, 156).
So far, most work on the role of limited resources has focused on single components of the rel-
evant system (161–164, 193–196). Only a few studies have considered simultaneous limitation of
two resources (165). In particular, the role of resource limitation has not been explored when two
processes with antagonistic actions are concurrently affected by the limited availability of protein.

In this Letter, we study the impact of limitations in the supply of both tubulin and the depoly-
merizing molecular motor Kip3 on the regulation of MT length. We build on a recently validated
quantitative model of MT dynamics (23), and extend it to include the constraint of resource lim-
itations. We find that Kip3 can tightly control MT length, irrespective of the specific parameter
choice. Over a broad range of tubulin and kinesin concentrations, length regulation is bistable,
i.e., theMT can assume one of two stationary states. We corroborate these findings by performing
in vitro experiments, which show that the MT length distribution is indeed bimodal for certain
concentrations of the components of interest, in accordance with the theoretical expectations.
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6. Limited resources induce bistability in microtubule length regulation

Figure II.1.: Sketch of the model. (a) A MT in a closed volume interacts with molecular motors. (b) Motors
attach to the MT lattice at rate ωA, and detach at rate ωD. Motors proceed stepwise toward
the plus end at rate ν, provided the next site is unoccupied. At the tip, motor-induced lattice
depolymerization (rate δ) competes with spontaneous polymerization (rate γ). ωA and γ and
depend on the concentrations of the proteins available in the closed volume, Eqs. (II.1).

To investigate the impact of limited resources on MT dynamics, we employ a driven diffusive
lattice gas model (145, 149, 153) for spontaneous MT polymerization and kinesin-catalyzed MT
depolymerization (23, 191), as illustrated in Fig. II.1. As kinesin-8 motors predominantly move
along single protofilaments (106, 107), it suffices to consider a one-dimensional lattice of dynamic
length L(t). The state of each site, i, is described by its occupation number, ni, where ni = 0 and
ni = 1 signify an empty and occupied site, respectively. On theMT lattice the dynamics follow the
totally asymmetric simple exclusion process with Langmuir kinetics (TASEP/LK) (154–156, 197):
Motors can attach to any empty site on the MT lattice at rate ωA, and detach at rate ωD. Since
binding of motors to the MT depletes the volume concentration of motors cm, the attachment
rate ωA decreases as

ωA = ω0
A(cm − m/V) . (II.1a)

Here m is the number of motors attached to a protofilament, and V is the effective volume avail-
able to the motors, see Sec. A.3 in Appendix A. We are specifically interested in the molecular
motor Kip3 (20, 198), which is the kinesin-8 homolog in S. cerevisiae. Based on published in
vitro single-molecule experiments, we estimate its detachment rate to be ωD = 4.9 ⋅ 10−3 s−1

and the attachment rate to any vacant site as ω0
A = 6.7 ⋅ 10−4 nM−1 s−1 (21); see Sec. A.3. On a

protofilament, motors move toward the plus end at rate ν = 6.35 s−1 provided that the next site is
empty (21). At the plus end, Kip3 catalyzes MT shrinkage (199). This is described as a stochastic
process where a motor arriving at the last site removes it at rate δ = 2.3 s−1 (21). At the same time,
MTs polymerize spontaneously through attachment of single tubulin heterodimers to their plus
ends. As tubulin resources are limited, this decreases the volume concentration of tubulin cT and
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FIG. 1. Sketch of the model. (a) A MT in a closed volume in-
teracts with molecular motors. (b) Motors attach to the MT
lattice at rate !A, and detach at rate !D. Motors proceed
stepwise toward the plus end at rate ⌫, provided the next site
is unoccupied. At the tip, motor-induced lattice depolymer-
ization (rate �) competes with spontaneous polymerization
(rate �). !A and � and depend on the concentrations of the
proteins available in the closed volume, Eqs. (1).

follow the totally asymmetric simple exclusion process
with Langmuir kinetics (TASEP/LK) [16, 20, 21, 35]:
Motors can attach to any empty site on the MT lattice
at rate !A, and detach at rate !D. Since binding of
motors to the MT depletes the volume concentration of
motors cm, the attachment rate !A decreases as

!A = !0
A(cm �m/V ) . (1a)

Here m is the number of motors attached to a protofil-
ament, and V is the e↵ective volume available to the
motors, see Sec. S.III in the Supp. Mat. [37]. We are
specifically interested in the molecular motor Kip3 [9, 36],
which is the kinesin-8 homolog in S. cerevisiae. Based on
published in vitro single-molecule experiments, we esti-
mate its detachment rate to be !D = 4.9 · 10�3 s�1 and
the attachment rate to any vacant site as !0

A = 6.7 ·
10�4 nM�1 s�1 [12]; see Sec. S.III. On a protofilament,
motors move toward the plus end at rate ⌫ = 6.35 s�1

provided that the next site is empty [12]. At the plus end,
Kip3 catalyzes MT shrinkage [38]. This is described as a
stochastic process where a motor arriving at the last site
removes it at rate � = 2.3 s�1 [12]. At the same time,
MTs polymerize spontaneously through attachment of
single tubulin heterodimers to their plus ends. As tubu-
lin resources are limited, this decreases the volume con-
centration of tubulin cT and the polymerization rate,

� = �0[cT � L/(aV )] , (1b)

decreases with increasing MT length; here, a = 8.4 nm is
the size of a tubulin dimer [39], the (net) polymerization
rate per protofilament is �0 = 0.38 µM�1s�1 [40, 41], and
the e↵ective volume is V ⇡ 1.66 µm3 (Sec. S.III).

We performed extensive stochastic simulations [42],
and explored how the MT dynamics depend on the vol-
ume concentration of the motor Kip3, cm, and tubulin,

FIG. 2. Basic phenomenology. Di↵erently colored traces
depict di↵erent simulation runs under the indicated starting
conditions. (a)–(b) MTs evolve toward a stationary length,
which depends on the concentrations of Kip3 and tubulin.
(c)–(d) The corresponding motor density ⇢ on the MT is
shown; see Fig. S2e: ⇢ increases with distance from the minus
end, and peaks at the plus end. (e) The MT length is bistable
for a range of concentrations. Dotted lines: Results of the full
mean-field theory.

cT . Figure 2a and 2b show the dynamics of MT length for
two representative concentrations of both components,
and for various initial MT lengths. In all cases, the MT
length reaches a stationary state, albeit at di↵erent val-
ues. Moreover, the corresponding motor density ⇢ also
di↵ers (Figs. 2c–2d): While for a short stationary length,
the overall motor density is relatively high, it remains low
when the MT length is long. For both cases, the motor
density peaks at the plus end (forming a “spike”).
We observe that the stationary MT length depends

on its initial value for a certain range of tubulin and ki-
nesin concentrations. Here, depending on whether the
MT starts from a single tubulin dimer or a fully poly-
merized filament with all tubulin resources depleted, the
stationary length is short or long, respectively, i.e. the
MT dynamics is bistable (Fig. 2e). This is fundamen-
tally di↵erent from MT length regulation with unlimited
resources [14, 15], where only one stationary state of finite
length is observed. A parameter scan of the tubulin and
Kip3 concentrations (Figs. 3a–3b) shows that bistable
length regulation occurs over a broad parameter range.
What physical processes determine MT length and

lead to bistability? To answer this question one needs
to analyze the intricate interplay between the crowding
of molecular motors in the lattice bulk [16, 21] and the
(de)polymerization kinetics at the MT tip [13], as well as
the exchange of resources between filament and solution.
The rate of change of protofilament length is determined
by the antagonism between spontaneous polymerization
and Kip3-driven depolymerization kinetics,

@tL(t) =
⇥
�(t)� ⇢+(t)�

⇤
a , (2a)

where ⇢+ is the probability that the terminal site, i.e. the
site directly at the MT tip, is occupied by a motor. The
number of motors on the protofilament changes when a
motor attaches to one of the empty lattice sites, or any
of the motors on it detaches; the number also decreases

Figure II.2.: Basic phenomenology. Differently colored traces depict different simulation runs under the in-
dicated starting conditions. (a)–(b) MTs evolve toward a stationary length, which depends on
the concentrations of Kip3 and tubulin. (c)–(d) The corresponding motor density ρ on the MT is
shown; see Fig. II.6e in Appendix A: ρ increases with distance from the minus end, and peaks at
the plus end. (e) The MT length is bistable for a range of concentrations. Dotted lines: Results of
the full mean-field theory.

the polymerization rate,

γ = γ0[cT − L/(aV)] , (II.1b)

decreases with increasingMT length; here, a = 8.4 nm is the size of a tubulin dimer (51), the (net)
polymerization rate per protofilament is γ0 = 0.38 μM−1s−1 (49, 200), and the effective volume
is V ≈ 1.66 μm3 (Sec. A.3 in Appendix A).

We performed extensive stochastic simulations (201), and explored how the MT dynamics de-
pend on the volume concentration of the motor Kip3, cm, and tubulin, cT . Figure II.2a and II.2b
show the dynamics of MT length for two representative concentrations of both components, and
for various initial MT lengths. In all cases, the MT length reaches a stationary state, albeit at dif-
ferent values. Moreover, the corresponding motor density ρ also differs (Figs. II.2c–II.2d): While
for a short stationary length, the overall motor density is relatively high, it remains low when the
MT length is long. For both cases, the motor density peaks at the plus end (forming a “spike”).

We observe that the stationary MT length depends on its initial value for a certain range of
tubulin and kinesin concentrations. Here, depending on whether the MT starts from a single
tubulin dimer or a fully polymerized filament with all tubulin resources depleted, the stationary
length is short or long, respectively, i.e. the MT dynamics is bistable (Fig. II.2e). This is funda-
mentally different from MT length regulation with unlimited resources (23, 191), where only one
stationary state of finite length is observed. A parameter scan of the tubulin and Kip3 concen-
trations (Figs. II.3a–II.3b) shows that bistable length regulation occurs over a broad parameter
range.

What physical processes determine MT length and lead to bistability? To answer this ques-
tion one needs to analyze the intricate interplay between the crowding of molecular motors in
the lattice bulk (154, 156) and the (de)polymerization kinetics at the MT tip (22), as well as the
exchange of resources between filament and solution. The rate of change of protofilament length
is determined by the antagonism between spontaneous polymerization and Kip3-driven depoly-

43



6. Limited resources induce bistability in microtubule length regulation

Figure II.3.: Theoretical results. (a)–(b) In silico scans of the stationary length of MTs, shown in color, as a
function of cm and cT . Simulations start from a fully depolymerized lattice (short) in panel (a),
in (b) the MT is initially fully polymerized (i.e., long). In the region bounded by the red lines
(obtained from the full MF theory, see Appendix A), the stationary length differs for these two
cases: Here, MT dynamics is bistable. (c) Rate of change of the MT length, 𝜕tL, as a function of
L at cT = 1.5 μM for three different motor concentrations, as obtained from the approximate MF
theory. For low and high motor concentrations, MT length is monostable, while for intermediate
concentrations, two stable stationary states are separated by an unstable state (bistability). (d)
Comparison of the steady-state length obtained from simulations (blue) and the full MF theory
(orange) at cT = 2 μM. (e) Stability diagram as obtained from the full MF theory.

merization kinetics,

𝜕tL(t) = [γ(t) − ρ+(t)δ]a , (II.2a)

where ρ+ is the probability that the terminal site, i.e. the site directly at the MT tip, is occupied
by a motor. The number of motors on the protofilament changes when a motor attaches to one
of the empty lattice sites, or any of the motors on it detaches; the number also decreases when a
motor falls off the plus end, taking the last tubulin heterodimer with it. Together, this yields

𝜕tm(t)= ωA(t)[L(t)/a − m(t)]− ωDm(t)− ρ+(t)δ. (II.2b)

In Eqs. (II.2), the tip density ρ+ drives the loss of tubulin dimers and motors due to depoly-
merization. This density, in turn, is determined by the flux of motors along the protofilament
toward the MT tip. We assume that these bulk dynamics are fast in comparison to MT length
changes due to polymerization and depolymerization. Given this time scale separation, the bulk
density can be assumed to be stationary (Sec. A.2 in Appendix A), such that the tip density is
determined by a balance between bulk current and depolymerization current. Neglecting corre-
lations in the motor density, ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩, and imposing a continuum limit, the mean-field
(MF) bulk current is given by j(x) = νρ(x)[1 − ρ(x)], where ρ(x) denotes the average motor den-
sity at position x. On length scales of the order of the size of a tubulin dimer a, this current is
constant since ωA,ωD ≪ ν, such that the motor flux in the MT bulk equals the flux off the tip:
νρL−a(1 − ρL−a) ≈ ρ+δ. Here, the subscript L− a signifies that the density is evaluated very close
to the MT plus end, just before the density spike begins (cf. Fig. II.2c–II.2d); note that in general
ρ+ ≠ ρL−a.

In order to determine the bulk density ρL−a, one needs to consider the combined effects of
steric exclusion and motor exchange between filament and cytosol along the complete MT. In
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the stationary state, changes in motor density caused by transport are balanced by attachment-
detachment kinetics, i.e.,

νa(2ρ − 1)𝜕xρ = −ωA(1 − ρ) + ωDρ . (II.3)

This differential equation has solutions in terms of Lambert W-functions (155, 156) which allow
one to compute ρL−a without any further approximations (Sec. A.2 in Appendix A). However,
much can already be learned from an approximate solution, where the density is approximated
as a Taylor series, ρ(x) ≈ Ax + Bx2; note that ρ(0) = 0. Upon inserting this expression into
Eq. (II.3), A and B can be read off by comparing the coefficients in the ensuing power series, and
using ρL−a ≈ ρ(L). The motor current off the MT, ρ+δ, is now readily computed, and one obtains
to second order in ωA,DL/a:

ρ+δ ≈ ωAL/a − (ωA + ωD)(L/a)2ωA/(2ν) . (II.4)

With Eqs. (II.2) and (II.4), we have arrived at a closed set of (nonlinear) equations for the dynam-
ics of the MT length and the number of motors bound to a protofilament. It can be viewed as a
dynamical system which, as a function of the control parameters cm and cT , may show bifurca-
tions in the number and nature of its steady states.

The dynamics of nonlinear systems is best visualized by the flow field (𝜕tm, 𝜕tL) in phase
space. Here, the MT state, described by L and m, evolves along the lines drawn in a stream plot
(Figs. II.21). This analysis shows that the number of motors bound to the MT equilibrates almost
instantaneously, much more rapidly than the MT length changes. Therefore, we can assume that
the dynamics reduces to the subspace (nullcline) 𝜕tm = 0. This adiabatic elimination of m yields
an effective dynamics of the MT length L(t), as shown in Fig. II.3c. Keeping the tubulin concen-
tration fixed at a typical value of 1.5 μM, we find that if the motor concentration is either low
(cm = 10 nM) or high (cm = 30 nM)), there is only a single state where the MT length becomes
stationary. Hence, regardless of its initial length, a MT will always reach a uniquely defined stable
steady length (monostability). By contrast, for intermediate motor concentrations (cm = 20 nM),
we observe bistability: Here, three stationary states exist, two stable states for long and short MT
lengths, respectively, and one unstable state at intermediate MT length, see Fig. II.3c. This im-
plies that, depending on its initial length, a MT may either grow long or remain short. The same
behavior is observed for the full MF analysis, which includes an exact solution of Eq. (II.3); see
Sec. A.2 in Appendix A.

Figure II.3d shows that the results obtained from the full MF theory compare very well with
those of the stochastic simulations. In particular, we consistently observe a bistable regime, with
two stable solutions separated by an unstable solution (separatrix). The stability diagram shown
in Fig. II.3e summarizes the different regimes of length regulation as a function of protein concen-
trations. In the regimes dominated by depolymerization or polymerization, the stationary MT
length will be short or long, respectively. At intermediate protein concentrations, the MT length
may be short or long depending on the initial length (bistable regime).

While these results have been obtained for a single MT, they are not limited to this case. We
find that when many MTs globally access proteins in a well-mixed pool, length regulation is still
accurate, see Sec. A.5 in Appendix A. Moreover, the total length of MTs is bistable in a concentra-
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6. Limited resources induce bistability in microtubule length regulation
4

FIG. 4. Experimental results. (a) Length distribution of
MTs grown for 3 hours and subsequently incubated with var-
ious concentrations of Kip3 for one hour. The distribution
is unimodal for 0 nM, 4 nM, and 400 nM Kip3; it is bimodal
for 20 nM Kip3, indicating that length regulation is bistable.
(b) Box plots for the MT length show that the median MT
length decreases as the Kip3 concentration is increased (left
axis). The dashed line (right axis) indicates the average num-
ber of MTs per field of view (fov). (c) Length distributions of
MTs initially grown for 3 hours and subsequently incubated
with 20 nM Kip3 for various amounts of time. Within an
hour, a bistable distribution is established, and its shape is
conserved as the incubation time is increased.

depending on its initial length, a MT may either grow
long or remain short. The same behavior is observed for
the full MF analysis, which includes an exact solution of
Eq. (3); see Sec. S.II.

Figure 3d shows that the results obtained from the full
MF theory compare very well with those of the stochas-
tic simulations. In particular, we consistently observe
a bistable regime, with two stable solutions separated
by an unstable solution (separatrix). The stability dia-
gram shown in Fig. 3e summarizes the di↵erent regimes
of length regulation as a function of protein concentra-
tions. In the regimes dominated by depolymerization or
polymerization, the stationary MT length will be short
or long, respectively. At intermediate protein concentra-
tions, the MT length may be short or long depending on
the initial length (bistable regime).

While these results have been obtained for a single MT,
they are not limited to this case. We find that when many
MTs globally access proteins in a well-mixed pool, length
regulation is still accurate, see Sec. S.V, . Moreover, the
total length of MTs is bistable in a concentration regime
similar to the single-MT case, Fig. S8. Here, all MTs
jointly become short or long, and their average initial
length determines which of these states is reached.

Because di↵usion in a real system is fast only on short
length scales, and large systems are not well-mixed, we
decided to test the actual behavior directly by performing
a set of in vitro experiments. We grew GMP-CPP stabi-
lized MTs from a MT polymerization solution based on
2 µM tubulin at 27 �C (see Sec. S.VI for details). The re-
sulting MTs had a length distribution similar to a Schulz
distribution [43], and their median length could be influ-

enced by varying the incubation time (1.5 or 3 hours).
Subsequent to initial MT polymerization, di↵erent Kip3
concentrations were added to samples of the same poly-
merization solution and, as a control, no Kip3 was added
to the final aliquot; all parts were incubated for another
hour, so that MT polymerization from the remaining free
tubulin and Kip3-induced depolymerization could occur
simultaneously. The resultant MT length distributions
in the samples were imaged as described in Sec. S.VI.
In the first experiment, MTs grown for 3 hours were

incubated with 0, 4, 20, and 400 nM Kip3 for another
hour. In the absence of Kip3 (0 nM), the length dis-
tribution of MTs peaked around 11 µm (Fig. 4a and
Fig. S20). The presence of Kip3 reduced the median MT
length (Fig. 4b, box plots/left axis), and also decreased
the number of MTs per field of view (Fig. 4b, dashed
line/right axis). The latter indicates that a number of
MTs were completely depolymerized or shrank below the
detection limit of our setup. Notably, at low and high
Kip3 concentrations of 4 nM and 400 nM, the length dis-
tributions were unimodal with peaks around 11 µm and
2.5 µm (Fig. 4a), respectively. This corresponds to the
monostable regimes at low and high motor concentra-
tions derived above, where polymerization and depoly-
merization, respectively, dominate and the final length is
independent of the initial length.
In contrast, at a Kip3 concentration of 20 nM, the

MT length distribution was qualitatively di↵erent: Here,
two distinct populations of MTs (peaks around 2.5 µm
and 11 µm) were observed, resulting in a bimodal length
distribution (Fig. 4a). We could exclude that the short
MTs observed in this experiment were additionally nucle-
ated after the addition of Kip3, Fig. S19. Furthermore,
the two peaks are not transient. In contrast, a bimodal
distribution is fully established within an hour, and the
qualitative distribution remained intact until the end of
our experiment, Fig. 4c. The bimodal length distribution
must therefore result from bistable length regulation: Ac-
cording to Fig. S7, MTs in a well-mixed many-filament
system will jointly become short or long in the bistable
regime, and their local average initial length distinguishes
between these cases. However, di↵usion of protein is fast
only on short length scales, and slow in large systems,
such as our experimental setup. In addition, the asso-
ciation of motors with MTs, on which they may remain
for minutes or longer, significantly slows down di↵usion
in crowded environments, e.g., inside cells. The result-
ing separation of length scales of the small well-mixed
range and the large system size may hence allow di↵er-
ent regions of a system to develop independently. Given a
broad initial distribution of MT lengths, the local average
length of MTs in some regions is therefore in the domain
of attraction of the steady state with long length, while in
other regions MTs are attracted towards the short length.
Hence, MTs in distant spatial regions evolve towards the
di↵erent fixed points and domains with long and short

Figure II.4.: Experimental results. (a) Length distribution of MTs grown for 3 hours and subsequently incu-
bated with various concentrations of Kip3 for one hour. The distribution is unimodal for 0 nM,
4nM, and 400nMKip3; it is bimodal for 20nMKip3, indicating that length regulation is bistable.
(b) Box plots for the MT length show that the medianMT length decreases as the Kip3 concentra-
tion is increased (left axis). The dashed line (right axis) indicates the average number of MTs per
field of view (fov). (c) Length distributions of MTs initially grown for 3 hours and subsequently
incubated with 20 nM Kip3 for various amounts of time. Within an hour, a bistable distribution
is established, and its shape is conserved as the incubation time is increased.

tion regime similar to the single-MT case, Fig. II.12. Here, all MTs jointly become short or long,
and their average initial length determines which of these states is reached.

Because diffusion in a real system is fast only on short length scales, and large systems are
not well-mixed, we decided to test the actual behavior directly by performing a set of in vitro
experiments. We grew GMP-CPP stabilized MTs from a MT polymerization solution based on
2 μM tubulin at 27 ∘C (see Sec. A.6 in Appendix A for details). The resulting MTs had a length
distribution similar to a Schulz distribution (202), and theirmedian length could be influenced by
varying the incubation time (1.5 or 3 hours). Subsequent to initial MT polymerization, different
Kip3 concentrations were added to samples of the same polymerization solution and, as a control,
no Kip3 was added to the final aliquot; all parts were incubated for another hour, so that MT
polymerization from the remaining free tubulin and Kip3-induced depolymerization could occur
simultaneously. The resultant MT length distributions in the samples were imaged as described
in Sec. A.6 in Appendix A.

In the first experiment, MTs grown for 3 hours were incubated with 0, 4, 20, and 400 nM
Kip3 for another hour. In the absence of Kip3 (0 nM), the length distribution of MTs peaked
around 11 μm (Fig. II.4a and Fig. II.24). The presence of Kip3 reduced the median MT length
(Fig. II.4b, box plots/left axis), and also decreased the number of MTs per field of view (Fig. II.4b,
dashed line/right axis). The latter indicates that a number ofMTs were completely depolymerized
or shrank below the detection limit of our setup. Notably, at low and high Kip3 concentrations
of 4 nM and 400 nM, the length distributions were unimodal with peaks around 11 μm and
2.5 μm (Fig. II.4a), respectively. This corresponds to the monostable regimes at low and high
motor concentrations derived above, where polymerization and depolymerization, respectively,
dominate and the final length is independent of the initial length.

In contrast, at a Kip3 concentration of 20 nM, the MT length distribution was qualitatively dif-
ferent: Here, two distinct populations of MTs (peaks around 2.5 μm and 11 μm) were observed,
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resulting in a bimodal length distribution (Fig. II.4a). We could exclude that the short MTs ob-
served in this experiment were additionally nucleated after the addition of Kip3, Fig. II.23. Fur-
thermore, the two peaks are not transient. In contrast, a bimodal distribution is fully established
within an hour, and the qualitative distribution remained intact until the end of our experiment,
Fig. II.4c. The bimodal length distribution must therefore result from bistable length regulation:
According to Fig. II.11 in Appendix A, MTs in a well-mixed many-filament system will jointly
become short or long in the bistable regime, and their local average initial length distinguishes
between these cases. However, diffusion of protein is fast only on short length scales, and slow in
large systems, such as our experimental setup. In addition, the association of motors with MTs,
on which they may remain for minutes or longer, significantly slows down diffusion in crowded
environments, e.g., inside cells. The resulting separation of length scales of the small well-mixed
range and the large system size may hence allow different regions of a system to develop inde-
pendently. Given a broad initial distribution of MT lengths, the local average length of MTs in
some regions is therefore in the domain of attraction of the steady state with long length, while in
other regions MTs are attracted towards the short length. Hence, MTs in distant spatial regions
evolve towards the different fixed points and domains with long and short filaments are formed,
which coexist at stationarity. This interpretation is supported by the length distribution of MTs
resulting from a solution of Kip3 and tubulin which is incubated for 1 hour in a shaker at the same
conditions otherwise, Fig. II.22. Because constant mixing leads to a global well-mixed reservoir,
the resulting length distribution is unimodal, confirming our expectations.

We then sought to obtain further information about the domains of attraction of the respective
stationary states and the corresponding separatrix marking the boundary between these domains
(Fig. II.21b). If the MT length distribution at which the length regulation process starts is short,
MTs in all regions will be in the domain of attraction of the short stationary length. To test this
prediction, we stopped MT growth after 1.5 hours and subsequently added the same amounts of
Kip3 to the polymerization solution as before. The median MT length in the absence of Kip3 was
significantly shorter (Fig. II.19b) than the corresponding value for MTs grown for 3 hours. We
observed that the length distribution remained unimodal whenKip3was added, irrespective of its
concentration, Fig. II.19a. This indicates that, after 1.5 hours of initialMTpolymerization, filament
lengths still lie below the separatrix in Fig. II.19b. Taken together, our experimental findings
qualitatively confirm our theoretical predictions, including the existence of a regime where MT
length regulation by Kip3 gives rise to two populations of filaments with clearly distinct lengths.

Taking a broader perspective, we believe that – similar to the case considered here – effects of
resource limitation are of relevance to other aspects ofmitotic spindle formation and disassembly,
and other processes in which protein availability in the cytosol constrains dynamic interactions.
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A. Appendix: Calculations and additional
experimental data

A.1. Brief review of TASEP/LK

The totally asymmetric simple exclusion process with Langmuir kinetics (TASEP/LK), on which
our model presented in the main text is based, is schematically depicted in Fig. II.5. In the lattice
bulk, the stochastic processes in TASEP/LK are identical to those of ourmodel, cf. Fig. II.1b in the
main text. In TASEP/LK, using the notation of Refs. (155, 156), the attachment rateωA is constant,
i.e. one assumes that the motor reservoir is unlimited. The detachment rate in the lattice bulk is
given by ωD. Particles move to the next site a distance a apart at rate ν. At the left end, which
corresponds to the minus end of the MT, Fig. II.1b in the main text, particles enter the lattice at
rate α if the first site is not occupied; at the right end (the plus end), particles leave the lattice at rate
β. Note that unlike for the stochastic model in the main text, in TASEP/LK, particle detachment
at the plus end preserves the lattice integrity, i.e., its length L remains constant.

For TASEP/LK, the density profile of particles on the lattice is well known. Depending on the
parameters K = ωA/ωD, ΩD = ωDL, and the rates α and β, the profile can look very differ-
ent. While we refer the reader to Ref. (156) for full details of the mathematical analysis, here we
summarize the main aspects of TASEP/LK model which are of relevance for our study.

Identical to the main text, Eq. (II.3), the motor density in the lattice bulk in the stationary state
follows from

𝜕tρi = ν [ρi−a(1 − ρi) −ρi(1 − ρi+a)]
+ ωA(1 − ρi) − ωDρi = 0 ,

(II.5)

where we have employed the mean field approximation ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩ = ρiρj, and ρi is the
average motor density at the site located at i ∈ {0, a, 2a, … , L}. The boundary conditions are

Figure II.5.: The totally asymmetric simple exclusion process with Langmuir kinetics (TASEP/LK). Particles
jump to the right at rate ν, provided the next site is empty. They attach to the lattice at ωA; in
addition, particles may enter at the left end of the lattice end at α if the first site is unoccupied.
Particles leave the lattice by exiting at the right end at rate β, or by detaching from any other site
at ωD.
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given by

0 = 𝜕tρ0 = α(1 − ρ0) − νρ0(1 − ρa), (II.6a)

at the minus end of the lattice, and

0 = 𝜕tρL = νρL−a(1 − ρL) − ρLβ (II.6b)

at the plus end. Like in the main text, we perform the continuum limit for Eqs. (II.5) and
(II.6) (156), and obtain 1

aν [𝜕xσ(x) + 𝜕x ln |σ(x)|] = ωD
(K + 1)2

K − 1
, (II.7)

where the density ρ and the “reduced density” σ are related as

σ = K + 1
K − 1

(2ρ − 1) − 1 . (II.8)

In the continuous description, the boundary conditions following from Eq. (II.6) are ρ(0) = α/ν,
and ρ(L) = 1 − β/ν.

Provided K = ωA/ωD > 1, the solutions of Eq. (II.7) can be obtained in terms of the different
branches of the LambertW function (156), which is defined as the inverse function of f (x) = xex .
For the opposite case, K < 1, a solution can be obtained by exploiting the particle-hole symmetry
of the TASEP/LKmodel: Themodelmaps onto itself by changing the spatial coordinate x ↔ L−x
and the density ρ ↔ 1 − ρ, and simultaneously interchanging α and β, and ωA and ωD (156).

In terms of the two branches of the Lambert W function, W0 and W−1, the reduced density
profile in case K > 1 can be written as (156)

σα(x) = W−1(−Yα(x)) (II.9a)

and

σβ =
⎧
{
⎨
{
⎩

W0(Yβ(x)) , if 0 ≤ β
ν < 1 − ωA

ωA+ωD

0 , if β
ν = 1 − ωA

ωA+ωD

W0(−Yβ(x)) , if 1 − ωA
ωA+ωD

< β
ν < 1

2

(II.9b)

with the function Y(x) defined as

Y(x) = |σ(x0)| exp[ωD
ν

(K + 1)2

K − 1
(x − x0)

a
+ σ(x0)] , (II.10)

and Yα and Yβ are the solutions in which the reduced density σ(x0) is evaluated at x0 = 0, or
x0 = L, respectively.

1Note that here, unlike in Ref. (156), x runs from 0 to L.

50



A.2. Full mean-field solution based on TASEP/LK

In Ref. (156) it was shown that among others 2 there are three possible solutions for the actual
density profile:

(i) The density profile ρ(x) is given by ρα(x) along the whole lattice, and has a discontinuity at
the plus end; this is called the low density (LD) phase, see Fig. II.8a.

(ii) The density profile ρ(x) is given by ρβ(x) along the whole lattice, and has a discontinuity at
the minus end; this is called the high density (HD) phase.

(iii) The density profile ρ(x) is given by ρα(x) in the vicinity of the minus end, and ρβ(x) near
the plus end. At position xw , the density ρ(x) increases discontinuously from ρα(xw) to
ρβ(xw), and ρα(xw) = 1 − ρβ(xw). xw is called the domain wall (DW) position, and the
resulting phase is termed the low density/high density (LD/HD) phase or shock phase (SP),
see Fig. II.8b.

To find out which of the qualitatively different density profiles (i)–(iii) describes the physical
behavior of TASEP/LKwith specified parameters, a domain wall analysis has to be performed (23,
152, 203). This essentially amounts to consider a (virtual) DW merging the density functions ρα
and ρβ. The velocity of the DW can be calculated and depending on whether it is (i) positive, (ii)
negative, or (iii) vanishes at a position in the lattice bulk, the density profile is given by (i)–(iii)
described above.

Here we are interested in the case α = 0, cf. Fig. II.1b in the main text. As discussed in detail
in Refs. (156, 204), only two phases are possible in case K > 1: The LD, and the LD/HD phase. In
order to distinguish between these profiles, the DW analysis discussed above suggests a simple
test: If there is a location xw on the lattice where ρα(xw) + ρβ(xw) = 1, a domain wall forms at xw
and the full density profile is given in terms of the LD/HD phase. If no such position xw exists,
the LD phase is established.

A.2. Full mean-field solution based on TASEP/LK

A.2.1. Reduction to a lattice of constant length

As discussed in the main text, Eqs. (II.2), the rate of change of MT length and the number of
motors on it are given by

𝜕tL = (γ − ρ+δ)a , (II.11a)
𝜕tm = ωA(L/a − m) − ωDm − ρ+δ , (II.11b)

and ωA and γ are given by Eqs. (II.1) in the main text. This set of equations was complemented
by a third equation in the main text, Eq. (II.4), approximating the flux off the MT, ρ+δ. In this
Section, we will present a more refined theory which invokes an exact solution of Eq. (II.3) in the
main text, and justifies the assumptions made in the main text in more detail.

2Here we leave out the Meissner phase found in Ref. (156) where the bulk behavior is independent of the rates at the
boundaries, because we do not observe this phase at our conditions.
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In Eqs. (II.11), the dynamic quantities are L, m, and ρ+, and ωA and γ follow from these equa-
tions with Eqs. (II.1) in themain text. At stationarity, the fluctuations around L∗ andm∗ are small,
i.e., ΔL/L∗ ≪ 1, and Δm/m∗ ≪ 1. Moreover, the processes changing the length of the MT, or
the number of motors on it, are slow compared to the hopping of a single motor. For instance, at
a tubulin concentration of cT = 2μM, even when all tubulin resources are available, the polymer-
ization rate is γ = 0.76 s−1 ≪ ν = 6.35 s−1. Hence, although L andωA(m) are dynamic quantities,
their values are effectively constant.

This suggests to reduce our model to an effective model with (exactly) constant attachment
rate and (exactly) constant lattice length. Clearly, this is the TASEP/LK, discussed in Sec. A.1,
see also Fig. II.5. Here, particles attach to the lattice at constant rate ωA, independent of the
availability of particles, and also the lattice length L is constant. This reduction promises to be
a great simplification because TASEP/LK has been studied extensively. In particular, the density
profile of particles in this effective model is well known (156), see Sec. A.1.

To ensure that the dynamic and the effective model lead to the same physical observables, we
require that

• the TASEP/LK lattice length L equals the (a priori unknown) steady state MT length L∗,
which is determined from the interplay of polymerization and motor-induced depolymer-
ization dynamics,

• the TASEP/LK attachment rate ωA equals the (a priori unkown) steady state attachment
rate ω∗

A = ω0
A(cm − m∗/V) in the MT model,

• the TASEP/LK detachment rate at the plus end β equals the detachment rate from the MT
at this site, δ.

Note that because the length of the lattice of TASEP/LK is constant, particle detachment at the
plus end (at rate β) does not change L; in addition, no lattice elongation is possible, i.e. γ0 = 0 for
TASEP/LK.

We can verify the validity of this reduction by comparing the density profiles of motors on the
MT with the corresponding profile of particles in TASEP/LK, as they are obtained from simula-
tions. This is shown in Fig. II.6. The procedure of calculating the motor density ρ(x) on a lattice
of dynamic length is illustrated in Fig. II.6e: In order to obtain the density profile in the vicinity
of the minus (plus) end of a MT, an ensemble of MTs is aligned along their minus (plus) ends
before taking the average; the full density profile is then obtained by merging the two density
profiles in the bulk such that the total length of the profile equals the average MT length. As
Figs. II.6(a)–(d) show for two different sets of parameters, the density profile for the dynamic lat-
tice obtained in this way is in excellent agreement with the corresponding density profiles of the
effective TASEP/LK model on a lattice of constant length L = L∗ and attachment rate ωA = ω∗

A.

A.2.2. Strategy to obtain the stationary state

With the reduction of theMTmodel to TASEP/LK, we can now proceed along the following lines:

(i) In the previous section, Sec. A.2.1, we have found that the MT model with dynamic lat-
tice length and resource-limited attachment rate can be reduced to an effective model with
constant length and constant attachment rate; the effective model is the TASEP/LK (156).
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Figure II.6.: (a)–(d) Comparison of the occupation density on the MT lattice (top) with the correspond-
ing density of TASEP/LK (bottom). For parts (a) and (c), the concentrations are chosen as
in Figs. II.2a–II.2b in the main text, for parts (b) and (d), parameters derive as explained in
Sec. A.2.1. (e) An ensemble of MTs with a varying length can either be aligned at their minus
(top panel), or their plus (bottom panel) ends. The motor occupation density is then obtained by
taking the ensemble average, and the full density profile results by merging both averages in the
lattice bulk, such that the total length of the profile equals the average lattice length.

(ii) For TASEP/LKwe know, cf. Sec. A.1 and Ref. (155, 156), that there are different phases which
have their characteristic particle density profiles. Assuming that the system is in one of these
phases, we obtain the motor density close to the plus end. Subsequently, mass conservation
can be used to obtain an expression for the density ρ+. With the ensuing equation and
Eqs. (II.11), the steady state quantities L∗, m∗, and ρ∗

+ can be computed.

(iii) Having explicit numerical values for these quantities, it is possible to determine the phase
of TASEP/LK with L = L∗ and ωA = ωA(m∗). This phase should be the same as the phase
whichwe originally assumed (without specifying parameters) in step (ii). Hence, comparing
the assumed and the actual phase provides a self-consistency check. Given this test is passed,
L∗ and m∗ describe the stationary state.

A.2.3. Case K > 1

We will first concentrate on the case K > 1, i.e. the case where the motor attachment rate at
stationarity exceeds the rate of motor detachment, ω∗

A > ωD. Because α = 0, we know from
TASEP/LK (156, 204) that two phases are in principle possible in principle: 1. The LD/HD phase
(shock phase), in which the motor densities at the minus and plus end are low and high, respec-
tively, and a domain wall (DW) connects these densities in the MT bulk, and 2. the LD phase,
where the density is small along the complete lattice, except for a peak (“spike”) at the plus end.

A.2.3.1. Low density/high density (LD/HD) phase

The simplest case is the LD/HD phase, where the MT becomes stationary at length L∗
LD/HD with

m∗
LD/HD motors on it. Assuming such a steady state does not imply its existence. Hence, as dis-

cussed above, after having found a stationary state, it has to be checked for self-consistency.
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Figure II.7.: Nullclines of the vector field (𝜕tm, 𝜕tL) for the case K∗ > 1. As opposed to Fig. II.21, here the full
mean-field solution for themotor flux off theMT, Eq. (II.17), was used. Along the nullclines, L and
m become stationary separately. (a) For small motor concentration, cm = 15nM, we find that L
andm do not become stationary simultaneously. Hence, no LD solution withK∗ > 1 exists for this
concentration. (b) For higher motor concentrations, here cm = 25nM, both nullclines intersect,
i.e. the vector field has a fixed point at (m∗, L∗).

In the LD/HD phase of TASEP/LK, the motor density approaches its value at the plus end
continuously, see Fig. II.8b. Therefore, because ρ varies only slowly with x, the density at the
penultimate site (almost) equals the density at the plus end, ρL−a ≈ ρ+. Because of the conser-
vation of the number of motors (mass conservation), the motor current to the tip equals the flux
off the MT. We obtain

νρL−a(1 − ρ+) ≈ ρ+β , (II.12)

and hence
ρ+,LD/HD ≈ 1 − β/ν . (II.13)

Invoking the correspondence between TASEP/LK and the MT at stationarity, cf. Sec. A.2.1, this
equation can be used together with Eqs. (II.11a) to obtain

L∗
HD = aV[cT −

δ(1 − δ/ν)
γ0

] . (II.14)

In order to be a valid description, L∗
HD obtained in this way should be positive. However, with

the model parameters derived in Sec. A.3, we find that L∗
HD > 0 only for very large tubulin con-

centrations, cT > 4 μM, well above the concentration chosen in our in vitro experiments. We
conclude that the LD/HD phase plays no role for MT length regulation by kinesin motors at our
conditions.

A.2.3.2. Low density (LD) phase

The other phase which is possible for K > 1 and α = 0 is the low density phase. Here, the motor
density remains small along the complete lattice, except for the immediate vicinity of the plus
end, where it peaks (“spike”), see Fig. II.8a.

In the LD phase, the particle density ρ(x) of TASEP/LK is given by Eqs. (II.9a) and (II.8).
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Because the discontinuity at the plus end extends only over very few lattice sites, the density at the
foot of the spike (which we denote ρL−a, like in the main text) can be approximated by evaluating
the density at position L. We therefore obtain

ρL−a ≈ ρα(L)

= 1
2

{K − 1
K + 1

[W−1(−Yα(L)) + 1] + 1} .
(II.15)

As described in the previous paragraph, the motor current is a slowly varying function of x; this
is because attachment and detachment are slow compared to the hopping of motors, ωA,ωD ≪ ν.
Thus, even though the density is discontinuous at the plus end, the motor current is continuous,
and hence the current to the tip equals the current off the tip, which implies

νρL−2a[1 − ρL−a] ≈ νρL−a[1 − ρL−a] ≈ ρ+β . (II.16)

Once again invoking the correspondence between TASEP/LK and the MT at stationarity, this
results in the expression

ρ∗
+δ ≈ νρα(L)[1 − ρα(L)]|L=L∗,ωA=ω∗

A

. (II.17)

Equation (II.17), together with Eqs. (II.11) now fully determine all dynamic quantities at stationar-
ity, L∗,m∗, and ρ∗

+. In particular, they define the vector field (𝜕tm, 𝜕tL) which we also introduced
in the main text, employing a Taylor series solution of ρ+δ.

Nonlinear systems of this kind are best analyzed by flow profiles (vector fields) in the phase
plane (m, L). The solution of the dynamic equations for m and L can directly be read of as tra-
jectories following stream lines (205). An example is shown in Fig. II.21 for the approximate
mean-field solution derived in the main text. For the refined solution of the motor flux off the
MT, Eq. (II.17), we have depicted the nullclines of the vector field (𝜕tm, 𝜕tL) in Fig. II.7. Along
the nullclines, the components of the vector field vanish separately, 𝜕tL = 0 and 𝜕tm = 0, such
that the stationary state, i.e. the fixed point of the vector field, is given by the intersection point
of the nullclines. For an exemplary motor concentration cm = 15nM at cT = 2μM, which is de-
picted in Fig. II.7a, no such fixed point exists. This implies that the MT does not have a stationary
state in the LD phase for these concentrations. By contrast, for an increased motor concentration
cm = 25nM, Fig. II.7b, both nullclines intersect at (m∗, L∗). Hence, a MT with those concentra-
tions may possibly become stationary at m∗ and L∗ in the LD phase.

However, in order to find out whether the MT dynamics will actually become stationary at this
point, we have to check whether it has been obtained in a self-consistent way. In particular, this
implies that two conditions have to be met:

(i) In the derivation of Eq. (II.17) we have assumedK > 1. Hence, the stationary state described
by L∗ and m∗ should also guarantee K∗ > 1.

(ii) Furthermore, we have assumed that the TASEP/LK with the (unknown) parameters L and
ωA is in the LD phase. Having obtained numerical values, L = L∗ and ωA = ωA(m∗), we
can now verify whether TASEP/LK with these parameters is actually in the LD phase.
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Condition (i) imposes a constraint on the concentration of free, i.e. unbound, motors at sta-
tionarity, c∗

f = cm − m∗/V :

K∗ !
> 1 ⇔ c∗

f
!
> ωD
ω0

A
≈ 7nM. (II.18)

Hence, any steady state which yields a number of motors on the MT, m∗, which is so large that
the free motor concentration falls below 7nM, fails to be self-consistent, and must therefore be
rejected.

In order to verify the self-consistency condition (ii), we have to analyze in which phase the
TASEP/LK with L = L∗ and ωA = ωA(m∗) actually is. It is important to understand that the
assumption of being in the LD phase which lead to Eq. (II.17) does not guarantee that the actual
dynamics of the TASEP/LK is given in terms of this phase! In principle, the phase diagram of
TASEP/LK is by now a text book result (156), and thus, given specific motor and tubulin con-
centrations, and hence specific quantities L∗ and ω∗

A, we could look up the behavior in the phase
diagram. However, here we are interested in a general solution. This implies, in analogy with the
analysis for TASEP/LK, Sec. A.1, that we have to closely look at the density functionsmatching the
boundary conditions at the minus and plus end, ρα(x), and ρβ(x), respectively. We have pointed
out in Sec. A.1 that if these functions add to 1 at some position xw on the lattice, a domain wall
establishes at this point; the resulting density profile would then indicate a LD/HD phase. Hence,
we have to ensure that there is no such position xw on the lattice where the densities ρα(xw) and
ρβ(xw) would add to 1. The procedure of determining whether or whether not a domain wall
establishes is illustrated in Fig. II.8 for a lattice of (hypothetical) length L = 100a. The func-
tion ρα(x) is a monotonously increasing function. Likewise, provided that the Langmuir density
K/(K + 1) is smaller than the tip density 1 − β/ν which is implied by our simulation results as
long as the tubulin concentration cT ⪅ 3μM, the density ρβ(x) is also increasing; this implies that
1− ρβ(x) decreases monotonically with x. As 0 = ρα(0) < 1− ρβ(0), a condition for the existence
of a domain wall at 0 < xw < L is hence ρα(L) > 1 − ρβ(L) = β/ν. Because the condition for the
LD phase is that no domain wall exists, a necessary and sufficient condition for the LD phase is
therefore that

ρα(L)
!
< β/ν . (II.19)

Provided this condition is met we have arrived at a self-consistent stationary state.
With the numerical solutions for L∗ and ω∗

A obtained from Eqs. (II.11) and (II.17), a numer-
ical test of Eqs. (II.18) and (II.19) can be performed. In this way, the concentration regime in
which the LD phase for K∗ > 1 yields a physically reasonably, and self-consistent solution, can be
constrained, see Fig. II.3e in the main text.

A.2.4. Case K < 1

In the previous section, Sec. A.2.3, we have considered the case of strongmotor attachment. Here,
we will analyze the opposite case where the motor concentration is either so small or so strongly
depleted in the cytosol that at stationarity ω∗

A < ωD. In the effective model, the TASEP/LK, to
whichwe have reduced the length regulationmodel of aMT, see Sec. A.2.1, this corresponds to the
caseK < 1. For this case, the density profiles of particles on the lattice are most easily obtained by
using the particle-hole symmetry of TASEP/LK:Here, instead of considering themotion ofmotor
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Figure II.8.: Construction of the full density profile of TASEP/LK, and distinction between the LD, and LD/HD
phase. Shown are the density functions ρα(x) and ρβ(x) for a (hypothetical) lattice length
L = 100a, for two different values of K . In both cases, the β branch of the density profile lies
above the Langmuir density K/(K + 1), which implies that the density function ρβ(x) increases
monotonically (156). In part (a), which shows an exemplary profile of the LD phase, at no position
along the lattice the density functions ρα and ρβ add to 1, i.e., ρα and 1− ρβ do not intersect. This
implies that no domain wall forms at these conditions. The full density profile ρ(x) for this case is
therefore identical to the branch ρα(x), and the density shows a discontinuity at the plus end, such
that ρα(L)(1 − ρα(L)) = ρ+β. For the conditions shown in part (b), exemplary for the LD/HD
phase, the behavior is different: Here, aDW is localized at position xw , where ρα(xw)+ρβ(xw) = 1.
Therefore the full density profile is given by ρα(x) for x < xw and ρβ(x) for x > xw , as indicated
by the black dotted line.

Figure II.9.: Parameter scan of the motor and tubulin concentrations for a lattice which is initially short, part
(a), or long (b). The color code indicates the stationary MT length, cf. also Fig. II.3a–II.3b in
the main text. Red lines show the phase transition lines obtained from the full mean-field theory,
Sec. A.2. Part (c) shows the difference of the first two panels, and reveals that the theoretical phase
transition lines indeed constrain the bistable regime, see also Fig. II.3e in the main text.
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particles to the right, we may look at the motion of holes, i.e. lattice sites with nomotors on them,
moving to the left (156). In this picture, particle attachment corresponds to hole detachment and
motor detachment to hole attachment. As a consequence, the concentration-limited process is
detachment of holes. Having arrived at the left lattice end, holes exit the lattice at the same rate as
particles enter at this site; likewise hole injection at the plus end corresponds tomotor detachment
from this site.

In conclusion, denoting the hole parameters and coordinates with a bar, we therefore employ
the following correspondence of TASEP/LK and the dynamic MT at K < 1:

L = L = L∗, x = L − x, ρ = 1 − ρ,
ν = ν, α = β = δ, δ = α = 0,
ωA = ωD, ωD = ωA = ω∗

A = ω0
A(cm − m∗/V) .

(II.20)

With this symmetrymapping, we can now proceed along the same lines as before. In Sec. A.2.3
we concluded that in the specific case α = 0 at K > 1 two phases, the LD and LD/HD phase are
possible. Similarly, for K < 1 where α = 0 implies δ = 0 in the hole picture, we find that only two
phases are possible which we will call low hole density/high hole density (LhD/HhD) phase, and
low hole density (LhD) phase in the following. For the former, the hole density is small around
the injection site of holes (i.e., at the MT plus end), and a DW in the lattice bulk connects this
density to the high hole density at the opposite end (the minus end). In terms of the particle
density, this implies a very similar density profile as for the LD/HD phase, Sec. A.2.3.1.

For the other phase which is possible in this case, the high hole density (HhD) phase, the
hole density is high (i.e., the motor density is small) along the complete MT, except for a small
boundary layer at the hole injection (i.e., the motor exit) site.

A.2.4.1. Low hole density/high hole density (LhD/HhD) phase

In the first case, where the hole density profile on the lattice is low at the injection site and high
at the other end, and a DW separates these regions on the lattice, we can directly use the results
of Sec. A.2.3.1: Here, we made use of the fact that if a domain wall forms in the lattice bulk, the
density is continuous at both ends, which lead to an equation for themotor density at the plus end,
Eq. (II.13). Since the same is true for the LhD/HhD phase, we find that the stationary state length
is also given by Eq. (II.14). However, since we concluded earlier that the tubulin concentration
would have to exceed 4μM such that this steady state length would be positive, we find that also
in the case of weak motor attachment, K∗ < 1, no stationary state showing a domain wall will be
observed for conditions of our in vitro experiments.

A.2.4.2. High hole density (HhD) phase

The only remaining phase is characterized by a high hole density (i.e., low motor density) along
the complete MT. Similar to the LD phase, Sec. A.2.3.2, the hole density is discontinuous at the
plus end of the lattice, where holes are injected, i.e., at x = 0.

In full analogy with the case K > 1, from the notion that the flux of holes (and thus also the
flux of motors) is constant on short length scales, we now conclude that themotor flux off theMT
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equals the hole flux onto the lattice, which equals the hole current a small distance away from the
tip. In accordance with Eq. (II.17), this yields

ρ∗
+δ = νρδ(0)[1 − ρδ(0)]|L=L∗,ωD=ω∗

A,δ=α=0,ν=ν
. (II.21)

In the same way as discussed in Sec. A.2.3.2, Eq. (II.21) together with Eqs. (II.11) defines a vector
field (𝜕tm, 𝜕tL), whose fixed points define the stationary quantities L∗ and m∗.

These fixed points have to be checked for self-consistency. In analogy with Sec. A.2.3.2, this
amounts to ensure that no position xw exists where the two density solutions matching the re-
spective boundary conditions, ρα(x) and ρδ(x), would add to 1, i.e. ρα(xw) = 1−ρδ(xw). Because
we know that 1− ρδ(L) = ρα(0) = 0 < ρα(L), it is sufficient to compare the hole density at the site
where they are injected, i.e. at the MT’s plus end: If 1 − ρδ(0) < ρα(L) = 1 − [1 − ρβ(L)] = β/ν,
no domain wall can localize on the lattice. In this case, the solutions obtained from Eqs. (II.21)
and (II.11) are self-consistent.

A.2.5. Comparison with simulations, and the phase diagram/stability diagram

Having completed the mean-field analysis, we are now in a position to compare these analyti-
cal results with simulation data. Fig. II.3d in the main text shows the MT length as a function
of the motor concentration cm at cT = 2μM. Mean-field theory and simulations show excellent
agreement. Starting at low motor density, the stationary length is long (i.e., polymerization dom-
inates), and K∗ < 1. At high motor densities, the steady state length is short (depolymerization
dominates) with K∗ > 1. In the bistable regime for intermediate concentrations, a third solution
exists which connects the two branches. We have discussed in the main text that this solution is
unstable, and we can obtain its numerical value from the full mean-field theory as a solution of
the HhD phase in case K∗ < 1, Sec. A.2.4.2.

We can use the self-consistency conditions together with the steady state solutions obtained
in the previous sections to summarize the domains in which K∗ > 1 and K∗ < 1, respectively,
see Fig. II.3e in the main text. As expected from simulations, the two regimes overlap; in the
overlapping part, length regulation is bistable. with simulation data, Figs. II.3a and II.3b in the
main text, reveals that the steady stateMT length obtained in simulations starting froma short and
long length, respectively, changes discontinuously at the respective transition lines; this is because
the phase transition lines describe the onset (and offset) of bistability. This is also illustrated in
Fig. II.9c which shows the difference of L∗ obtained in simulations starting from long, and short
length, respectively.

In conclusion, the mean-field theory developed in this Section is in excellent agreement with
simulation data.

A.3. Estimation of the parameters

We are interested in a theoretical description of the motion of the molecular motor Kip3 on MTs.
For many of the motility parameters, accurate measurements exist which allow us to assign nu-
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quantity symbol value reference
hopping rate ν 6.35 s−1 (21)

MT lattice spacing a 8.4nm (51)
detachment rate ωD 4.9 ⋅ 10−3s−1 (21)

attachment rate per site ω0
A 6.7 ⋅ 10−4nM−1s−1 (21)

polymerization rate γ0 0.38μM−1s−1 (49, 200)
depolymerization rate δ 2.3s−1 (21)

volume avail. per protofil. V 1.66μm3 estimated

Table II.1.: Overview of the model parameters, as obtained in Sec. A.3

merical values to most parameters. We have summarized all parameters in Table. II.1 and will
show how to obtain their values in this Section.

Kip3 motors move at 3.2μm/ min (21). In units of the distance between two tubulin dimers
a = 8.4nm (51), this gives rise to the hopping rate to the neighboring lattice site, ν = 6.35 sites/s.

Kip3 runs on the MT for 11μm (21) at this speed, i.e., their dwell time is 206 s. Taking the
inverse, this yields the detachment rate ωD = 4.9 ⋅ 10−3 s−1. The run length might be an under-
estimate, but the specific value of ωD is relatively unimportant, as long as it is small.

In order to obtain the spontaneous polymerization rate ofMTs, we consider the polymerization
speed of stabilizedMTs (these areMTs inwhich theGTP analogueGMP-CPP is used to growMTs
in order to avoid dynamic instability) which we have used in our in vitro experiments (49, 200).
Hyman et al. (49) measured the speed of MT growth, and find the value 0.19μmmin−1 μM−1,
corresponding to a dimer polymerization rate of γ0 = 0.38μM−1s−1 on each protofilament. The
same value was obtained by Brouhard et al. (200). Here, we neglect (slow) spontaneous MT
depolymerization (which was measured to be as low as 0.23μm/h (49), which corresponds to a
spontaneous tubulin loss rate of 7.6⋅10−3 s−1 on each protofilament; another study (200) indicates
a slightly higher tubulin loss rate per protofilament of 3.8 ⋅ 10−2 s−1, which is still small). A
recent study has indicated that the tubulin exchange rate at the MT tip is indeed much faster
than reported previously (70). However, the net spontaneous polymerization in this study, i.e.
the difference of spontaneous polymerization and depolymerization is comparable to the values
reported by Hyman et al. (49) and Brouhard et al. (200). Since we are only interested in the net
values, the estimates of these studies therefore remain valid for our purposes.

The attachment rate of Kip3 motors to a binding site on a MT can be obtained from the motor
landing ratemeasured per concentration, per time, and per length, for whichVarga et al. obtained
the value 24nM−1min−1μm−1 (21). The interpretation of this value is not straightforward for two
reasons: Firstly, the landing rate critically depends on the number of motors which are already
attached to the MT, and even at smalls motor concentration it may be significantly depleted due
to a reduced availability of binding sites (30). Secondly, it is not clear how to convert a per-μm
attachment rate to a per-site attachment rate: The measurement of Varga et al. (21) was done in a
TIRF setup, wheremotors can probably bind to and walk on roughly 5 protofilaments (the “upper
half ”) (109). We decided to use the resulting 5 ⋅ 1000/8.4 binding sites as the conversion factor
between the per-μm and the per-site attachment rate. This results in the per-site attachment rate
ω0

A = 6.7 ⋅ 10−4nM−1s−1.
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For the depolymerization process, we note that the mechanism of Kip3 induced MT depoly-
merization is not fully understood. However, we can obtain a lower bound for δ from the MT
depolymerization speed at high kinesin concentration, which is ∼ 1800 dimers/min (counting all
protofilaments) (21). Therefore, the lower bound for the dimer depolymerization rate per protofil-
ament is δ ≈ 2.3 s−1.

The volume V from which protein can bind to the MT, i.e. the “basin” of a MT, is difficult to
measure directly. We find in experiments that for MTs grown for 1.5 or 3 hours, between 35% and
40% of all tubulin is incorporated into theMTs, see Fig. II.20. At these times of incubations, MTs
were on average 4.8μm and 10.8μm long, respectively, Fig. II.24. This implies that between 1, 600
and 3, 200 tubulin dimers are available for each protofilament 3. Here, we are mostly interested
in a rough estimate of the effective volume. Therefore we chose V in a way convenient for our
simulations, such that a tubulin concentration of 2μM, typical for experiments, corresponds
to 2,000 tubulin heterodimers available per protofilament. The resulting effective volume per
protofilament is V = 1.66μm3. We also verified that the particular choice of V plays no essential
role for the phenomena, see Sec. A.4 and Figs. II.13–II.18.

A.4. Robustness of the parameters δ and V

Here we test our model for robustness against variations of its parameters. In particular, the
values of the depolymerization rate δ and the volume available to each protofilament, V , have
quite significant uncertainties. We have varied these parameters in Figs. II.13–II.18. These Figures
show a parameter scan of the motor and tubulin concentrations, starting from a short, or long
length, see also Figs. II.3a–II.3b in the main text. In particular, parts (c) of these Figures shows
the difference of the simulation results obtained in panels (a) and (b), and hence indicate the
concentration regimes in which length regulation is bistable.

We find that the precise value of δ, of which 2.3 s−1 is a lower bound, has no effect on the
resulting stability diagram (phase diagram), when its value is increased threefold. In contrast,
the volume per protofilament V , has a mild effect: When it is increased, the region in which MT
length regulation is bistable, i.e. where the MT length may assume one of two stationary states,
becomes larger. However, the general qualitative behavior remains unaltered.

The observation that the concentration regime for bistable length regulation becomes smaller
for smaller basin volume V suggests an additional and alternative interpretation why the MT
length distribution is unimodal for MTs grown for 1.5 hours only, and bimodal for MTs grown
for 3 hours, see the main text and Figs. II.19a and II.4a. If, for any reason, the MT density in
solution was larger for the shorter set of experiments, i.e., the volume available for each MT was
smaller, the expected concentration regime in which MT length is bistable would also have been
smaller. Then, it is in principle possible, that the relatively coarse sampling of length distributions
at motor concentrations 0 nM, 4 nM, 20 nM, and 400 nM, has completely misses the bistable
domain. In fact, the number of MTs counted per channel was larger for the set of experiments
where MTs had been grown for 1.5 hours before addition of Kip3, Fig. II.19b, than for the 3 hours
experiments, Fig. II.4b. This could indicate a higher MT density in solution, but could also be

3The large deviation of these numbers reflects that the length distributions of pre-grown MTs can be very different,
even if they are grown for the same time.
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Figure II.10.: A large system with many MTs which share common pools of resources. Tubulin and molecular
motors can be exchanged between the MTs via diffusion. Here, the spatial arrangement of MTs
becomes important: Diffusion can lead to quick exchange of resources on a local scale while it is
slow on long length scales. Hence, wemay decompose the large system into smaller parts: Within
these subsystems, resources are well-mixed, whereas two subsystem behave independently.

the result of fluctuations of the antibody density in the channels. At present, we are unable to
distinguish between these two interpretations. Both of them are possible within our theoretical
analysis. Future studies will help to distinguish between them, and will enable us to more closely
investigate the role of the volume available to each MT.

A.5. Many MTs with shared reservoirs

So far, we have considered amodel with only a singleMTwhich has exclusive access to a reservoir
of protein. However, inside a cell, as well as in our in vitro experiments, many MTs compete for a
pool of tubulin dimers and molecular motors which is shared between all MTs. Fig. II.10 shows
such a system schematically, and it illustrates the additional complexity which arises in such a
system: While the motion of motors along MTs happens in a directed fashion, protein exchange
between the filaments is only possible via diffusion. Already for a single MT, the consideration
of diffusion significantly complicates a theoretical treatment (174). With many MTs in a system,
diffusion furthermore leads to an additional spatial component, which eventually demands that
the three-dimensional arrangement of the MTs in the system is specified. A model like this is
highly interesting and can lead to emergent phenomena (26, 206), but it is far beyond the scope
of this work.

Instead, here we want to focus on a simplified model, making use of a separation of length
scales. On short length scales, diffusion is fast, so that on these scales, the system can be assumed
to be well-mixed: There, all components are shared infinitely fast. In contrast, on longer length
scales, diffusion is slow, so that distant MTs develop independent of another. This suggests to de-
compose our large system into smaller independent, well-mixed subsystems, see Fig. II.10: Inside
a subsystem, diffusion is assumed to be infinitely fast, whereas no resource exchange takes place
between subsystems. We will later argue the implications of this kind of separation, and indicate
how our results can be connected to an in vitro or in vivo system.
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Figure II.11.: Simulation runs of a system of two MTs sharing a common pool of resources. Different colors
represent different simulation runs, whereas a common color is used for the twoMTs of a specific
run. In parts (a)–(b), concentrations are chosen such that the dynamics are in the monostable
regime. Even if the individual length (thick lines) of the two lattices is very different initially,
they approach the same value at the stationary state. Hereby, equilibration is faster for the av-
erage length (thin lines) than for the length of individual filaments. Because the dynamics are
monostable, the MTs in all simulation runs evolve towards a single stationary length which may
be (a) short, or (b) long. Panel (c) shows trajectories for concentrations in the bistable regime.
Here, bothMTs of each simulation run approach the same steady state; the joint stationary length
may be either short or long. Therefore, also a two-MT system shows bistability. Which of these
stationary states is reached depends on the initial average length of the MTs.

A.5.1. Shared reservoirs with infinitely fast diffusion

Let us first focus on the case of several MTs in a small subsystem which is assumed to be well-
mixed. This is the opposite limit compared to the model of a single, isolated MT, considered in
the main text. More specifically, we consider the case of two MTs which share a common pool
of resources which are exchanged between filaments infinitely fast. To compare with the original
model, Fig. II.1b in the main text, we have chosen all parameters of the many-MT model equal
to those of the single-MT model, and the volume of the system is doubled, such that the effective
volume available per MT remains the same. Figure II.11 shows trajectories of the length of the
two filaments at different conditions. For two sets of concentrations, Figs. II.11a–II.11b reveal
that the length of both MTs assumes a common value relatively quickly. At these conditions, the
stationary state is reached independent of the initial MT lengths. For the concentrations shown
in these Figures, the dynamics are therefore monostable.

In contrast, for the concentrations used in Fig. II.11c, length regulation is bistable. Here, we find
that the length of both MTs of a single simulation run still approach the same value. However,
depending on the initial conditions, this length may be either short, or long. In particular, our
simulation results indicate that when the average initial length of the two MTs is relatively short,
it is likely that both MTs will evolve towards the fixed point with short length. By contrast, for
initially (on average) long MTs, the long length will be reached. We conclude that bistability is
found also when two (or more) MTs share a common pool of resources infinitely fast, but that all
MTs in a well-mixed system of this kind approach the same stationary length.

Let us provide a theoretical argument why, even in the case of bistability, all MTs in the system
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Figure II.12.: Scan throughmotor and tubulin concentrations for a system of twoMTs sharing a common pool
of resources. Simulation results show the MT length starting from an initially (a) short and (b)
long lattice. Part (c) shows the difference of the steady state length obtained in this way, and
compares the resulting bistable regime with the results obtained theoretically for the single-MT
model (red line). (d)–(e) show the relative standard deviation of the length of the two MTs,
averaged over time, see Eq. (II.24). In the regime where MT are not completely depolymerized
at stationarity (i.e., in the North West part of the Figure), the relative deviation remains small.
In the South East region, MTs are very short; although the relative deviation is large here, the
absolute standard deviation of both MT lengths is therefore small. This proves that the length of
both MTs is very similar.
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share the same length. The balance equations, describing the rate of change of MT length and the
number of motors on it, Eqs. (II.2) in the main text, can be straightforwardly generalized tomany
MTs:

𝜕tLi = (γi − ρi+δ)a , (II.22a)
𝜕tmi = −ωDmi + ωi

A(Li/a − mi) − ρi+δ , (II.22b)

where the superscript i indicates that these equations apply to all of the N MTs in the system.
Assuming that components in the cytosol are instantaneously available for any MT, the polymer-
ization rate γi, as well as the attachment rate of motors to the MT, ωi

A, depend only on the global
availability of protein:

γi = γ = γ0[cT − ∑
i
Li/(aV)] , (II.23a)

ωi
A = ωA = ω0

A(cm − ∑
i
mi/V) . (II.23b)

These equations imply that when, e.g., a tubulin dimer attaches to any of theN MTs and therefore
elongates it, this will have the same immediate effect on the polymerization rate of all MTs. To
explore the consequences of infinitely fast resource sharing, let us consider the rate of change of
the length of a MT, Eq. (II.22a). With Eqs. (II.23), we find that γi is equal for all MTs, such that
in the stationary state, when 𝜕tLi = 0, also the plus end density must be the same for all lattices,
ρi+ = ρ+. ρ+ is determined from the balance of currents: The bulk current to the tip equals the
motor flux from the tip. We concluded in Sec.A.2 that for relatively smallmotor concentrations, as
considered in this work, the motor density remains small along the complete MT. From Ref. (156)
we know that for this case both the motor density and their current increase with distance from
the minus end. The lattice therefore acts as an antenna, and the longer it is the more motors it
can attract. As a consequence, the density of motors at the tip is monotonously increasing with
MT length. With Eq. (II.22a) we therefore obtain that the MT length is equal for all MT in the
system, Li = L.

In order to examine how the concentration regime in which the system behaves bistable is
modulated in a two-MT system compared to a single MT, we have performed a scan through
motor and tubulin concentrations analogous to the single-MT model (Fig. II.3a–II.3b in themain
text). The resulting diagrams are shown in Fig. II.12. In Fig. II.12a, the average length of the two
MTs is shown when simulations start from a short length, in Fig. II.12b simulations begin at a
long MT length. Fig. II.12c shows the difference of these states’ stationary length. We find that
this difference is large in an extended parameter region; here, two distinct stationary states exist:
MT length regulation is bistable is the domain. Fig. II.12c also compares the extension of the
bistable regime for a system of two well-mixed MTs (color code) with the result obtained for a
single MT (red line), cf. Fig. II.3e in the main text.

Furthermore, with the help of simulations, it is possible to systematically explore how accurate
length regulation of the individual MTs functions. To this end, we have computed the deviation
of the MTs’ length from their average. We denote with Lt the momentary average length of the
two MTs at time t. A good measure for the accuracy of length regulation is the average relative
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standard deviation of MT length,

⟨
√∑i(Li − Lt)2

Lt ⟩t
. (II.24)

Here, ⟨⋅⟩t signifies that the average is taken over time. This quantity is depicted in Figs. II.12d–II.12e.
We observe that for small motor concentrations and large tubulin concentrations (theNorthWest
part of these diagrams), the relative deviation of theMTs’ length from their average value is small.
For large motor, or small tubulin concentrations (the South East part), the relative deviation is
large. However, we find that the concentration regime confined in this way is identical to the
domain in which the MTs completely depolymerize, Figs. II.12a–II.12b. Therefore, absolute fluc-
tuations are small in this domain. In conclusion, length regulation functions accurately for all
concentrations.

Taken together, when resources are shared infinitely fast between two ormoreMTs, we recover
the findings obtained for a singleMT.The length regulatorymechanism is accurate, and bistability
also persists in these larger systems.

A.5.2. Shared reservoirs with finite diffusion

Having discussed the case of many MTs in a well-mixed system, let us now examine the implica-
tions of these findings for an in vitro or in vivo experimental system.

First, let us estimate when the assumption of a well-mixed system breaks down. With Fick’s
law, typical diffusion constants of several 10−8cm2s−1 (207) for tubulin imply that within the time
it takes for MTs to reach their stationary length, say, an hour (Fig. II.11), the length scale which is
explored by free diffusion is of the order of several 100μm. This is significantly below the length
scales of our experimental setup. Therefore, in the in vitro experiments performed in this study,
it is likely that the global system does not behave well-mixed but rather that different parts of the
solution may develop independently.

We found in the previous Section that MTs in a well-mixed system can either become short,
or long, but all of these MTs approach the same length. In spatially separated regions, MTs can
therefore evolve differently: If the local average initial length in a part of system is short, the
MTs in this region is likely to evolve collectively towards the short length; if in another part the
initial local average length is long, these MTs will get long. Therefore, patches of long and short
MTs will emerge which are spatially separated. In conclusion, when the length distribution of
the resulting population of MTs is measured under a microscope, we expect two “classes” of MTs:
One class of short, another with long length. This is what we find in our in vitro experiments:
In a certain concentration regime, MTs with two characteristic length scales coexist, Fig. II.4a.
Further evidence for the existence of spatial patches comes from an experiment, where Kip3 was
added to MTs at a concentration of 20nM, and one part of the solution was incubated at rest,
whereas the other part was mixed constantly. In the latter case, we expect that the complete
system may be considered well-mixed. Therefore, it is unlikely that spatial patches of different
tubulin length exist. In fact, in the case of constant mixing, the length distribution of MTs is
unimodal, as opposed to the bimodal distributions for MTs at rest, Fig. II.22. We conclude that

66



A.6. Experimental Methods

bistability in the sense of our theoretical treatment imply bimodal length distributions in our in
vitro experiments.

Whether bistable length regulation, and the associated two classes of MTs, as described in this
work becomes important in cells, we may not say with certainty. On one hand, length scales, e.g.
in themitotic spindle (24, 25) are shorter than the extension of our experiment. As a consequence,
onemight think that in a system like a cell, protein is well-mixed. On the other hand, protein can-
not diffuse freely within a cell due to the presence of intracellular structures such as cytoskeletal
filaments. It is likely that under these crowded conditions, diffusion is significantly slowed down.
In addition, both kinesin and tubulin can associate with MTs. If, for example, a kinesin-8 motor
attaches to a MT, it may remain there for minutes and longer, because the detachment rate from
the MT is very small (21), and the motor typically has to walk until the end of the MT until it may
detach (132). In conclusion, we hypothesize that the separation of length scales, such as described
here, is also relevant in cells. Hence, also here, we expect that bistability and the associated two
distinct classes of MTs are important.

A.6. Experimental Methods

Protein expression and purification. Porcine tubulin was purified from porcine brain (Vor-
werk Podemus, Dresden, Germany) using established protocols as described previously (208).
Histidine-eGFP tagged Saccharomyces cerevisiae kinesin-8, Kip3-eGFP, was expressed and puri-
fied using established protocols as described previously (20).

MT polymerization. To produce GMP-CCP grown rhodamine labeled MTs, a MT polymer-
ization (MTP) solution was incubated on ice for 5 minutes and then for 1-3 hours (duration de-
termines the MT length distribution) at 27 ∘C to polymerize MTs. The MTP solution consisted of
100 μl of BRB80 (80 mM Pipes [Sigma], pH 6.9, with KOH [VWR], 1 mM EGTA [Sigma], 1 mM
MgCl2 [VWR]) supplemented with 2μM porcine tubulin (1:3 mixture of rhodamine-labeled and
unlabeled), 1 mM GMP-CPP (Jena Bioscience, Jena, Germany) and 1 mM MgCl2.

Simultaneous polymerization and depolymerization of MTs. After the respective incuba-
tion period, the MTP solution was divided into parts of 25 μl and each part was supplemented
with, (1) a dilution of Kip3-eGFP ranging from 0 − 400nM, (2) 10 mM ATP (Roche), (3) 0.2
mg/ml casein (Sigma) and 0.1% Tween20 (Merck) for 1 hour at 27 ∘C. ATP enabled active motil-
ity of Kip3-eGFP to the MT plus ends and the casein as well as Tween20 prevented clustering
and denaturing of the Kip3 motors. After 1 hour the Kip3-MT interaction in the 25 μl parts was
terminated by addition of 300 mM KCl. After 1 minute incubation time, 1 μl of the solution was
added to the imaging solution (BRB80 with 0.2 mg/ml DTT [Sigma], 40 mM glucose [Sigma],
110 mg/ml glucose oxidase [Serva] and 22 mg/ml catalase[Sigma]).

Sample preparation for imaging MT length distribution. To image the MTs, microfluidic
flow channels were constructed, as described in Korten et al. (209), using dichlorodimethylsilane
(DDS) coated 18 mm × 18 mm glass coverslips (Menzel, Braunschweig, Germany; #1.5) on DDS
coated 22mm × 22mmcoverslips separated by parafilm. Typically, each coverslip contained four
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flow channels with dimensions of 18 mm × 2 mm × 100 μm. The channels were flushed with a
sequence of: (i) antibody solution consisting of 3 mg/ml anti-beta tubulin antibody (SAP.4G5,
Sigma) in PBS in order to unspecifically bind antibodies to the surface (incubation time 5 min-
utes), (ii) Pluronic F127 (Sigma, 1% in PBS) in order to block the surface from unspecific protein
adsorption (incubation time > 60 minutes), (iii) 4 times BRB80 buffer to remove excess F127 in
solution and exchange buffers, (iv) imaging solution, with 1 μl of the different 25 μl parts (MT
polymerizationmixture + varying concentrations of Kip3-eGFP) incubated for 2minutes to allow
MTs and free tubulin to attach to the surface, and (v) imaging solution to remove the MTs and
free tubulin still in solution.

Imageacquisition. Optical imagingwas performed using an inverted fluorescencemicroscope
(Zeiss, Axio Observer Z3, Carl Zeiss, Göttingen, Germany) with a 63x oil immersion 1.46 NA ob-
jective (Zeiss) in combination with an electron-multiplied charge-coupled device camera (Andor
iXon Plus, Andor Technology, Belfast, UK) controlled by Metamorph (Molecular Devices Cor-
poration, Sunnyvale, CA, USA). A Lumen 200 metal arc lamp (Prior Scientific Instruments Ltd.,
Cambridge, UK) was used for epifluorescence excitation. Rhodamine-labeled MTs immobilized
on the surface were imaged using a TRITC filterset (Ex 534/30x, DC BC R561, EM BL593/40, all
Chroma Technology Corp., Rockingham, VT) with an exposure time of 200 ms per frame. 20
images were acquired at different regions to scan the entire channel.

Image Analysis. Image analysis was performed using FIESTA tracking software (210) to track
individual MTs in every imaged frame and obtain their length with nanometer precision. MTs
smaller than 500nmwere ignored (visually not very different frompotential tubulin clusters) from
the image analysis leading to undersampling at lower microtubule lengths (< 500nm). Statistics
performed on the MT lengths are discussed in the experimental results.

Measurement of tubulin concentration incorporated inMTs. Tomeasure the concentration
of free tubulin in the MTP solution after incubation times of 1.5 hours and 3 hours, the solutions
were centrifuged using a Beckman airfuge (Beckman, Brea, CA) at 100,000g for 10minutes. SDS-
PAGE gel analysis was performed on the supernatant (free tubulin in MTP solution), the pellet
(resuspended in 100 μl BRB80) and stock tubulin (diluted in 100 μl BRB80). The intensities
of the gel bands were measured using ImageJ to obtain estimates of the percentages of tubulin
incorporated in the polymerized MTs (see Fig. II.20).

A.7. Variability in experimental data

Number ofMTs in per field of view. This is a qualitative indicator of the density of MTs grow-
ing in theMTP solution under different conditions. The number ofMTs attaching on the channel
surface depends on the density of anti-beta tubulin antibodies adsorbed on the channel surface
which in turn depends on (i) the hydrophobicity of the glass coverslips, (ii) the volume in the
channel (built manually) and (ii) the time of incubation of antibodies in the channel. Variations
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in these factors could be minimized in a single experimental set allowing us to still infer the rela-
tive difference in MT density induced by different concentrations of Kip3. However, it is difficult
to compare different sets of experiments.

Initial MT length distribution in Control experiments. MT growth is extremely sensitive to
the time of polymerization, concentration of tubulin, temperature, ionic strength and pH of the
growth solution. While efforts were made to keep the conditions similar between different exper-
imental sets, the initial MT length distribution before addition of Kip3 still varied significantly, as
can be seen in Fig. II.24.

Microtubule length distribution. While separating the MTP solution, mixing reagents (ATP,
Kip3 solution, casein, Tween20, KCl, etc.), diluting the solution and flushing the solution into the
channels, few MTs would break due to the shear forces generated. Therefore, it is possible that
the number of short MTs is slightly overestimated in the length histograms.

Amount of active Kip3 motors. The Kip3 concentration indicated in the experiments is the
amount of protein added to the solution and not the concentration of active Kip3 motors. Un-
fortunately, it is impossible to prevent the inactivation of a percentage of motors during the pu-
rification, snap-freezing and thawing process. Further, one would expect some motor clustering
as well. The motor is soluble in a high ionic strength buffer but in the BRB80 solution used in
the MTP solution, motors tend to cluster. To minimize the clustering of motors casein, Tween20
and a high concentration (10 mM) of ATP was added in the MTP solution. Due to the above
reasons, it is not possible to quantitatively compare the theoretical and experimental values for
Kip3 concentration.

A.8. Additional Figures

69



A. Appendix: Calculations and additional experimental data

Figure II.13.: Scan of the MT length (color code) with the motor and tubulin concentrations as control param-
eters, see also Figs. II.3a–II.3b in the main text. In panel (a), MTs are initially short, in panel
(b), MTs start fully polymerized. Part (c) shows the difference between the values obtained in
the first two parts, and therefore indicates the parameter regime in which MT length is bistable.
Because the estimates for the volume V and the depolymerization rate δ have significant uncer-
tainties, we explore in which way the dynamics change when these parameters are varied. Here,
δ = 2.4 s−1 = 0.36ν, V = 1.66μm3 (such that 1 μM ̂=1000 dimers per protofilament).

Figure II.14.: As in Fig. II.13, but with δ = 6.35 s−1 = ν, V = 1.66μm3 (such that 1 μM=̂1000 dimers per
protofilament).

Figure II.15.: As in Fig. II.13, but with δ = 2.4 s−1 = 0.36ν, V = 3.32μm3 (such that 1 μM ̂=2000 dimers per
protofilament).
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Figure II.16.: As in Fig. II.13, but with δ = 6.35 s−1 = ν, V = 3.32μm3 (such that 1 μM ̂=2000 dimers per
protofilament).

Figure II.17.: As in Fig. II.13, but with δ = 2.4 s−1 = 0.36ν, V = 8.3μm3 (such that 1 μM=̂5000 dimers per
protofilament).

Figure II.18.: As in Fig. II.13, but with δ = 6.35 s−1 = ν, V = 8.3μm3 (such that 1 μM=̂5000 dimers per
protofilament).
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Figure II.19.: Length distribution of MTs grown for 1.5 hours followed by addition of 0nM, 4nM, 20nM and
400nMKip3 for 1 hour. (a)MTs have amedian length of 5μm (iqr=5μm) when no Kip3 is added.
Histograms of MT lengths (bin size = 1μm) at different Kip3 concentrations indicate that MTs
remain in the short length regime with the medianMT length going down on increasing the Kip3
concentration, as seen in the box plots (b). As seen from the dashed line (right scale) of panel
(b), the average number of MTs per imaged frame decreases with the concentration of Kip3.
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Figure II.20.: Percentage of free tubulin in solution. MTs were grown for 1.5 hours and 3 hours and centrifuged
to separate the free tubulin (supernatant) from the tubulin incorporated in MTs (pellet) and an
SDS gel was performed. The intensities of the supernatant and the pellet indicate thatMTs grown
for 1.5 hours have ∼65% free tubulin while MTs grown for 3 hours have ∼60% free tubulin. The
intensities of the supernatant and the pellet approximately add up to the intensity for the stock
tubulin.
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Figure II.21.: Plots of representative stream lines of the vector field (𝜕tm, 𝜕tL) as from Eqs. (II.2) in the main
text, for the three different motor concentrations of Fig. II.3c in the main text at tubulin con-
centration cT = 1.5μM. Here, the approximate mean-field theory result for the flux off the MT,
Eq. (II.4) in the main text, was used. The null clines 𝜕tm = 0 and 𝜕tL = 0 are also shown, cf.
Fig. II.7. For all three concentrations, the stream lines are almost horizontal until they approach
the cline 𝜕tm = 0. This implies that the dynamics of m are much faster than those of L. This is
due to the fact that motor binding and unbinding is possible at every binding site along the whole
lattice, whereas MT elongation and shrinkage occur at the plus end only. Once the number of
motors on the MT is quasi-stationary, the MT slowly adapts its length until its state reaches a
fixed point. Because this effectively restricts the MT-motor dynamics to the nullcline 𝜕tm = 0,
a reduction to this subspace is possible, which was used in Fig. II.3c in the main text. In parts
(a) and (c), only a single fixed point exists, and a MT at these motor concentrations will always
approach the uniquely defined stationary state. By contrast, for the intermediate motor concen-
tration displayed in part (b), two fixed points at the north east, and south west of the diagram
are present. In the middle, the separatrix and the corresponding saddle point divide phase space
into regions attracted by the respective fixed points.
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Figure II.22.: Constant mixing of the MT-Kip3 solution changes the length distribution. 20 nM Kip3 were
added to a solution of MTs which were pre-grown for 3 hours. One part of the resulting solution
was left at rest for another hour, a second part was constantly mixed in a shaker for the same
time. The resulting length distributions are strikingly different: While a bimodal distribution is
observed for the part at rest, we find a unimodal distribution for the solution mixed in a shaker.
This supports our interpretation of bistability: MTs jointly evolve to either the long or the short
stationary length, as long as the system is so small that all resources are well-mixed. MTs at
two different lengths can therefore only coexist in a solution when spatially separated domains
exist in a large system. When a system is constantly mixed, we can assume that it behaves well-
mixed on all length scales. As a consequence, only a single characteristic length is observed in
the system.
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Figure II.23.: MTs do not nucleate in the presence of Kip3. 20 nMKip3were added to solutions of 2 μM and 1.2
μM of tubulin. Here, the latter concentration approximately corresponds to the amount of free
tubulin remaining in solution after MTs have formed in the absence of Kip3, cf. Fig. II.20. Each
solution was centrifuged after incubation of 1 hour, the supernatant and pellet were separated
and an SDS gel was performed. We find that the intensity of the supernatant greatly exceeds
the intensity of the pellet, both for Kip3 and tubulin. This indicates that (almost) all tubulin and
Kip3 is free at these conditions. MTs therefore do not nucleate in the presence of 20 nM Kip3.
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Figure II.24.: Overview of the experimental measurements. Shown are MT length distributions recorded
in various experiments at different conditions. For each column, the same initial solution was
used, and varying amounts of Kip3 were added to a solution of MTs pre-grown for a specific
amount of time (indicated in the column head). Varying the polymerization time of MTs in
the absence impacts on the length distribution (control 1; MTs imaged directly at the time point
when Kip3 is added to the other parts), although precise control of the average length is not
possible in this way, see Sec. A.7 for details. Subsequent to initial growth, MTs were incubated
without (control 2), or with Kip3 for another hour. The columns are ordered by the MTs’ average
length, when no Kip3 was added (control 2). We find that for short initial lengths, all length
distributions are unimodal. In contrast, for longer initial MT lengths, distributions at certain
motor concentrations become bimodal. The most prominent qualitatively difference is found for
cm = 20 nM and 50 nM.
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7. A minimal lattice gas model for bistable
length regulation

7.1. Introduction

In Chapter 6, we studied a model motivated by the depolymerising molecular motor kinesin-8,
which is known to influence and regulate MT length (23). A central goal of this study was to con-
nect the simple lattice gas model with in vitro experiments conducted in the group of Stefan Diez.
Consequently, relatively many biological and microscopic details were included in the model. In
particular, in the original model of Chapter 6, motors were able to attach to and detach from any
site on the MT. This combination of processes obeying (attachment/detachment) and breaking
(directed transport) detailed balance does not only lead to the emergence of interesting phenom-
ena (155, 156), but also significantly raises the complexity of the theoretical treatment. As a result,
the mean-field theory developed in Chap. 6 relied on an approximate approach. We succeeded
in deriving a more refined mean-field theory, shown in Appendix A, but the Equations involved
were so complicated that key results, such as the phase transition lines leading to the stability
diagram, could only be obtained numerically.

While the significance of themodel presented in the previous chapters in a biological and phys-
iological context is indisputable, there is hence need for a simplified model in a doctoral thesis
conducted in the field of theoretical physics. In the following, we will therefore report on results
of a similar but conceptually simplermodel where attachment and detachment ofmotors are only
possible at the first and last site of the lattice, respectively. We will show that, while the key phe-
nomena observed in the original model of Chap. 6 are conserved, the simplification of the model
leads to a reduction of the complexity of the equations, and by that allows for a closed mean-field
theory. With a full theoretical understanding at hand, we are also able to find heuristic arguments
for, e.g., the emergence of bistability.

7.2. Model description

We are interested in a theoretical description of the motion of depolymerizing molecular mo-
tors along MTs and their interactions with the MT. We concentrate on molecular motors of the
kinesin-8 family such as Kip3 from S. cerevisiae, which are known to catalyze depolymerization,
and move in a directed fashion toward the MT plus end. Hereby, they predominantly walk along
a single protofilament, i.e. parallel to the axis of the MT (106, 107), and bind to distinct binding
sites on each tubulin heterodimer (211), subunit of the MT (41, 42). This implies that the mo-
tor dynamics can effectively be described in terms of the stochastic motion of particles along a
one-dimensional lattice of dynamic length L(t).
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Figure II.25.: The model. (a) Molecular motors interact with aMT in a closed compartment. (b) Motors enter
the lattice at the minus end of the lattice with rate α, provided the first site is empty. They then
proceed stepwise at the hopping rate ν, obeying exclusion. Having arrived at the right end, a mo-
tor leaves the lattice at rate δ, taking the last site with it. MT depolymerization competes with
spontaneous lattice polymerization at rate γ. Because motor attachment and MT polymeriza-
tion are concentration dependent, their speeds depend on the availability of motors and tubulin
dimers in the reservoir, respectively, Eqs. (II.25).

We employ a driven diffusive lattice gas model (145, 149, 153) for spontaneous MT polymeriza-
tion and kinesin-catalyzed MT depolymerization (2, 22, 23, 191), as illustrated in Fig. II.25. The
dynamics of motors on the lattice are described by a variant of the totally asymmetric simple ex-
clusion process (TASEP) (146, 147). Here, motors enter the lattice at its left end, corresponding
to the MT minus end, at rate α. From there, they proceed stepwise towards the right, i.e., into the
direction of the MT plus end, at rate ν. Hereby, they obey the exclusion principle, indicating that
no more than a single motor can occupy a binding site. Having arrived at the plus end, motors
catalyze the removal of the terminal site at rate δ; on depolymerization the motor also detaches
from the MT. This competes with spontaneous lattice polymerization at γ. We describe the state
of each site, i, in terms of its occupation number, ni ∈ {0, 1}, where ni = 0 and ni = 1 signify an
empty and occupied site, respectively.

We consider a MT in a closed compartment with volumeV . In this volume, the absolute num-
ber of the tubulin dimers and motors in the system is limited. Because polymerization of the
MT through binding of tubulin, as well as the binding of motors to the lattice, depletes the con-
centrations of these proteins, the MT polymerization rate and the motor attachment rate decay
with the MT length L and the number of motors on it, m, respectively, as γ = γ0(cT − L/V), and
α = α0(cm − m/V); here, L is measured in units of the length of a tubulin dimer, a = 8.4nm (51),
and γ0 and α0 are normalized rates per volume concentration of the respective protein. Intro-
ducing the rescaled rates ̂α = Mα0/V , and ̂γ = Tγ0/V , which denote the motor injection and
MT polymerization rate, respectively, at undepleted conditions, the resource dependence can be
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expressed as

α = ̂α
M − m
M

, (II.25a)

and

γ = ̂γ
T − L
T

. (II.25b)

Here, T = cTV and M = cmV are the total number of tubulin dimers, and kinesin motors,
respectively, which are available in the volume V . The rescaling to the parameters ̂α and ̂γ is
convenient because these rates are directly comparable to the hopping rate ν. In addition, it allows
for a reduction of the five parameters α0, γ0, cm, cT , and V to only four: ̂α, ̂γ, M, and T .

Throughout this work, we will use the hopping rate as the basic time scale, ν = 1, and the lattice
spacing between two tubulin dimers as the unit of space, a = 1.

In Chapter 6, we have studied amodel similar to the one presented here. Themajor difference is
that in the formermodel particles can attach to any lattice site, andmay prematurely detach before
having arrived at the plus end. While the focus of that model was to describe an experimental
situation as detailed as possible, the model presented in this Chapter has two advantages: (i) It is
conceptually simpler and has less parameters than the original model. As a result, a full analytical
description is possible, whilemost results presented inChapter 6 relied onnumerical calculations.
(ii) The consideration of attachment and detachment kinetics along the MT, which was included
in the model of Chapter 6, can lead to motor gradients and domain walls on the lattice (155,
156), phenomena similar to the behavior of lattice gas models which take limited resources into
account (162). As a consequence, when limited resources as well as attachment at detachment
of particles along the lattice are considered at the same time, the physical principles causing the
observed phenomena cannot be determined uniquely. The advantage of considering a model
which disregards binding and unbinding of motors in the MT bulk is therefore that the role of
limited resources can be studied in an isolated environment.

7.3. Simulation results

We performed extensive stochastic simulations, using Gillespie’s algorithm (201), and explored
how the MT dynamics depend on the model parameters. Regardless of the specific parameter
choice, we observe that the lattice evolves to a state in which its length shows only relatively small
fluctuations about a stationary value L∗. Likewise, the number of motors on the MT, m∗, is on
average constant. Figs. II.26a–II.26d show four representative kymographs of the MT lattice for
model parameters as indicated. Here, simulations start from an initially fully depolymerized lat-
tice (shown in green). These kymographs represent four distinct phases, in which the motors
(shown in red) form qualitatively different density profiles on the lattice: In Fig. II.26a, the motor
density quickly assumes a high value (high density phase: HD); in contrast, in part (b) the mo-
tor density remains low along the whole MT (low density phase: LD); for other parameters, part
(c), the lattice is half occupied with motors — at this occupation, the motor current is maximal
(maximal current phase: MC); finally, for the case shown in part (d), the density profile shows
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Figure II.26.: Kymographs of the dynamics obtained from simulation runs of the model. Simulations start
from a fully depolymerized MT. Motors are shown in red, empty lattice sites in green. For all
cases, the steady state inwhichMT length and the occupation of the lattice sites bymotors become
stationary is reached quickly. We observe four qualitatively different phases, in which we find
that (a) the motor density is high (HD), (b) their density is low (LD), or (c) the density equals
1/2; here, the motor current becomes maximal (MC). In the fourth case, the shock phase (SP)
shown in part (d), a localized domain wall (DW) separates coexisting regions of low and high
motor density. Parameters: (a) ̂α = 0.7, ̂γ = 0.6, δ = 0.3, M = 3500, T = 3000; (b) ̂α = 0.2,
̂γ = 0.6, δ = 0.3,M = 1000, T = 3000; (c) ̂α = 0.8, ̂γ = 0.5, δ = 0.7,M = 4000, T = 2500; (d)
̂α = 0.5, ̂γ = 0.6, δ = 0.3,M = 2500, T = 3000.

coexistence of a region with low motor density at the left, and high motor density at the right end
— both density regions are separated by a domain wall (DW), also called shock (shock phase:
SP). Remarkably, not only the MT length becomes stationary in the SP but also the position of
the DW on the lattice.

The long-term evolution of the lattice may or may not depend on initial conditions, depend-
ing on model parameters. Fig. II.27 shows kymographs of a lattice when simulations are started
from a short and long length, respectively; the parameters are equal for part II.27a and II.27b, as
well as for II.27c and II.27d. We observe two different scenarios: For the parameters shown in
Figs.II.27a–II.27b, the initially short, and the initially long lattice approach a common station-
ary state. By contrast, for the parameters of Figs. II.27c–II.27d, the lattice which was originally
relatively short shrinks, while the initially relatively long lattice grows. Despite equal sets of pa-
rameters, the MTs shown in these simulation runs evolve towards different stationary states: The
system behaves bistable. Our numerical simulations reveal that there is a critical length which
separates simulation runs evolving towards the longer from those approaching the shorter sta-
tionary length. We also find that while the evolution towards two distinct stable stationary states
is the dominant behavior in particular for large reservoir sizes, occasional switches between both
lengths can be observed, predominantly for MTs in small volumes (data not shown).

The existence of qualitatively different phases, aswell as the presence ofmonostable and bistable
parameter regimes, have both also been observed for the similar model studied in Chap. 6 whose
results have been published in Ref. (2). This model allowed for motor attachment and detach-
ment kinetics also in the bulk of the MT lattice, and is consequently more complex to analyze.
Its theoretical predictions, including the existence of the bistable regime, were confirmed by an
accompanying in vitro experiment. The agreement of the key emergent effects of the original
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Figure II.27.: Kymographs of the dynamics for two different parameters sets. In panel (a)–(b) the model pa-
rameters are chosen as ̂α = 0.7, ̂γ = 0.6, δ = 0.3, M = 1750, T = 1500, in (c)–(d) they assume
the values ̂α = 0.7, ̂γ = 0.23, δ = 0.3, M = 175, T = 2300. The color code is the same as in
Fig. II.26. For the first parameter set, both (a) a lattice starting from an initially short length,
as well as (b) an originally long (and empty) lattice approach a common stationary state. In
contrast, for the parameters of parts (c)–(d), MTs which are initially (c) short approach a short,
(d) originally long MTs a long length: The system behaves bistable.

model presented in Chap. 6 with the simplified model of this study is encouraging, as it justifies
the model reduction conducted here. We conclude that a simple model is sufficient to describe
biologically and physiologically relevant phenomena such as bistable length regulation of MTs.

7.4. Theoretical analysis

In order to understand the length-regulation mechanism as well as the emergence of bistability
in detail, a full theoretical description of our model is indispensable. This includes the analysis
of the intricate interplay of the crowding phenomena in the lattice bulk, and the polymerization-
depolymerization dynamics at the tip. We can express the rate of change of the MT length result-
ing from the antagonism of spontaneous lattice polymerization, and motor-induced depolymer-
ization as

𝜕tL = γ − ρ+δ , (II.26a)

where time and space are measured in units of the hopping rate and the lattice spacing between
two tubulin dimers, respectively. Here, ρ+ = ⟨n+⟩ is the probability that the binding site directly
at the MT tip is occupied by a motor. Likewise, the number of motors on each protofilament
changes when a particle enters the lattice at the left, or leaves it at the right end:

𝜕tm = α(1 − ρ−) − ρ+δ , (II.26b)

where ρ− = ⟨n0⟩ is the motor occupation density at the minus end. These equations are incom-
plete without a specification of the tip densities, or an additional expression relating L and m. A
way to obtain the missing relation is to consider an effective description of the MT model which
utilizes the finding that the lattice length as well as the motor injection rate are (almost) constant
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7. A minimal lattice gas model for bistable length regulation

at the stationary state. We will show in the following that with this strategy, Eqs. (II.26) can be
completed, which eventually leads to a solution for the stationary state length L∗ and the number
of motors on the MT, m∗.

It is important to note that our simulation results imply that the relative fluctuations of the
lattice length are small,ΔL/L∗ ≪ 1 at stationarity, cf. Fig. II.26. Similarly, the relative fluctuations
of the motor occupation number is small, Δm/m∗ ≪ 1, from which we conclude that also the
injection rate α shows only mild variations at stationarity. In addition, we find that the processes
leading to a change of the lattice length are typically slow compared to motor hopping, γ∗ =
γ(L∗) = ρ∗

+δ ≪ 1 = ν. This separation of time scales implies that in the vicinity of the plus end,
where changes to the lattice occur, the motors quickly reestablish their local stationary density
whenever the lattice shrinks or grows by one site. Because at the stationary state the dynamic
MT model has thus a dynamic but effectively constant lattice length L∗, as well as a dynamic but
effectively constant injection rate α∗ = α(m∗), wemay rephrase ourmodel in terms of an effective
model. Here, both the lattice length and the injection rate are (exactly) constant, and therefore
this effectivemodel is identical to the TASEP onwhich ourmodel was originally based. To ensure
that both models show the same behavior, we require that (i) the TASEP lattice length equals the
average MT lattice length at stationarity L∗; (ii) the TASEP injection rate α equals the average MT
injection rate at stationarity α∗; (iii) the TASEP rate β, at which particles leave the lattice (without
changing the lattice length, see Fig. II.28) equals the rate δ in our model, at which motors cut off
the last lattice site and dissociate from there at the same time.

With this correspondence, the density profile ofmotors on theMT lattice can be comparedwith
the particle density profile of the TASEP, see Fig. II.28. In order to compute the average motor
density on the MT lattice with varying length, shown in the left part of this Figure, snapshots of
a MT at different times or from different simulation runs are aligned at their minus (blue), or
plus ends (yellow), respectively, before taking the mean; the total density profile is then obtained
by merging the two half profiles in the middle. The density profiles of the left part of Fig. II.28
obtained in this way correspond to the kymographs of Fig. II.26. For parts II.28a–II.28c, left
panels, the density profile is flat, except for a discontinuity at II.28a the plus end, II.28b the minus
end, or II.28c at both ends. For these three cases, the MT density profiles agree excellently with
the corresponding TASEP density profiles (II.28a–II.28c, right panels). By contrast, in the SP the
density profile of the MT model looks different from the corresponding TASEP density profile,
Fig. II.28d. The reason is that in the TASEP, a DW is only present on the lattice for fine-tuned
parameters α = β. Moreover, the TASEP DW is not localized, i.e., its position diffuses across the
lattice. In effect, while a snapshot of the density profile at a specific point in time is similar to the
left density profile of Fig. II.28d, the average profile shown in the right panel comprises a straight
line. However, the density profiles of the TASEP and the MT model agree in a property which
will be of central importance later: The tip densities are approached continuously from the lattice
bulk for both the plus and the minus end, and the values at the tips agree for the MT and the
TASEP model.

We have thus uncovered an important aspect of resource limitation: They lead to a localization
of the DW (162). The mechanism is as follows: If the DW is located left of its stationary position,
the number of particles on the lattice is greater than at the stationary state, and consequently
only relatively few particles remain in solution, wich implies that the injection rate is relatively
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Figure II.28.: Density profiles of the dynamic MT model (left), compared with the corresponding profile of its
effective description in terms of the TASEP (right). For the dynamic lattice, the density profile is
averaged by aligning MTs at their left (right) ends, so that the density near the minus (plus) end
is obtained; the final profile is then merged in the middle. The parameters of the left panels are
the same as for Fig. II.26a–II.26d; the parameters of the TASEP model in the right part of this
Figure derive as explained in the main text. Panels (a) show the density profiles obtained for the
LD phase, (b) the HD phase, in (c) theMC phase is shown. For these phases the density profile of
the MT with varying length and injection rate agrees well with the average profile of the TASEP
with constant length and injection rate. In contrast, the profile of the SP, panel (d), is different
for both cases: While for the MT model, the profile shows a domain wall (DW), the profile is
flat for TASEP. The reason is that the DW found in TASEP diffuses across the lattice, i.e., it is
not localized. On taking the average, a sharp density increase is therefore no longer observed,
resulting in the continuous (average) density profile.
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7. A minimal lattice gas model for bistable length regulation

small. In effect, relatively few particles enter the lattice while many particles can exit the lattice.
Consequently, the DW is shifted towards the right. By contrast, if the DW is located right of its
stationary position, many particles are left in the reservoir, and the injection rate is high. There-
fore, many particles entering the lattice per unit time, and the DW is displaced to the left. These
two mechanisms balance exactly at the stationary state, and thus the DW is localized.

Having found an effective description of the dynamic MT model in terms of the well-studied
TASEP, we can now employ the theoretical framework of TASEP. While we refer the reader to
some of the numerous extensive reviews, such as, e.g., Ref. (145, 149) for full details, we only
summarize the most essential results about the different phases of TASEP here. In TASEP, four
different phases have to be distinguished, see Fig. II.28: For the low density (LD) phase, Fig. II.28a,
the bulk density ρb is determined by the particle injection rate, such that ρb = α; this behavior
is found provided α < β and α < 1/2. For the high density (HD) phase, Fig. II.28b, present if
β < α and β < 1/2, the bulk density assumes the value ρb = 1 − β. In case α, β > 1/2, the bulk
density ρb = 1/2, irrespective of the particular values of α and β, cf. Fig. II.28c; in this case, the
particle current becomes maximal, suggesting the name maximal current (MC) phase. Finally, in
case α = β < 1/2, a DW separates regions of low motor density ρl = α at the left lattice end and
high density ρr = 1−α = 1− β near the right end; as we noted earlier, the DW diffuses across the
whole lattice, and therefore the average density profile, Fig. II.28d, right panel, is a straight line.

7.4.1. Strategy to obtain the stationary state

In order to find the stationary state properties of aMTwith given parameters, we will now employ
the following strategy:

• We will first assume that the MT settles into one of the four phases described above. For
these phases, the density of particles on the lattice is known, and the number of particles
on the lattice is directly related to its length. With this knowledge, the balance equations,
Eq. (II.26) are complete and give rise to the steady state values L∗ and m∗, from which we
also find α∗ = α(m∗) with Eq. (II.25a).

• Having obtained numerical values for α∗ and δ, which correspond to the rates α and β in
the TASEP, it is now essential to verify that the dynamic behavior of the TASEP with these
parameters is in fact given by the phase assumed in the first step. E.g., if we have assumed
a HD phase originally, the obtained parameters should in fact yield δ = β < α = α∗, as well
as δ = β < 1/2.

7.4.2. High density phase

For a start, let us consider the simplest case of the collective dynamics which we have found to be
the HD phase. In this phase, the motor density is high along the complete lattice, and the density
in the lattice bulk equals the plus end density, ρ+ = ρb. Because the number of motors on the
lattice changes only when a motor enters or leaves the lattice at one of the ends, at the stationary
state the particle current onto the lattice equals the current off the lattice, and it is furthermore
equal to the bulk current:

α(1 − ρ−) = ρb(1 − ρb) = ρ+δ . (II.27)
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Here, we have utilized the mean-field approximation ⟨ninj⟩ ≈ ⟨ni⟩⟨nj⟩ = ρiρj which assumes
that any correlations between the occupation of sites i and j can be neglected. From Eq. (II.27),
the density at the plus end follows right away: ρ∗

+,HD = 1 − δ. With Eq. (II.26a) and the resource
dependence of γ, Eq. (II.25b), we obtain the steady state length:

L∗
HD = T(δ2 − δ + ̂γ)/ ̂γ . (II.28)

From these results, all other important steady state properties follow directly: The number of
motors on the lattice is proportional to the lattice length: m∗

HD = L∗
HD(1 − δ). Therefore,

α∗
HD = ̂α(1 − m∗

HD/M) (II.29)

is the stationary value of the injection rate of motors. With Eq. (II.27), we also find the motor
density at the minus end as

ρ∗
−,HD = 1 − δ(1 − δ)/α∗

HD . (II.30)

7.4.3. Maximal current phase

Also for the case of fast motor injection at the left, and ejection from the right end, leading to
collective dynamics in the maximal current (MC) phase, expressions for the relevant physical
quantities can be obtained in a relatively straightforward manner. For the MC phase it is known
that the bulk density is independent of the specific boundary rates α and δ. On average, one in
two lattice sites is occupied, ρb = 1/2, maximizing the current: jb = ρb(1 − ρb) = 1/4. As before,
this current equals both the motor flux onto, and off the MT, which implies that ρ∗

+,MCδ = 1/4.
Consequently, the stationary state length is given by

L∗
MC = T(1 −

1
4 ̂γ

) . (II.31)

The injection rate α∗
MC follows from m∗

MC = L∗
MC/2 in the same way as Eq. (II.30).

7.4.4. Shock phase

As displayed in Fig. II.28d, the motor density profile is continuous at both tips for certain pa-
rameters, and it shows a discontinuity in the bulk, which is called the domain wall (DW). We
demonstrated in Fig. II.26d that this DW is localized at a well-defined position on the lattice. In
the SP, the motor density is constant at the minus end, ρl = ρ−, as well as in the vicinity of the
plus end, ρr = ρ+. Both these densities extend into the lattice bulk. Hence, because of current
conservation, we find similar to the considerations of the HD phase, Sec. 7.4.2 that the tip density
in the SP is given by ρ∗

+,SP = ρ∗
+,HD = 1 − δ. Therefore, also the steady state length of the SP is

identical to the same quantity obtained for the HD phase: L∗
SP = L∗

HD.
A quantity of particular interest is the position of the DW of the lattice, x∗

w . It may be obtained
by requiring that the motor current is constant along the lattice. The motor current left of the
domain wall, j0 = ρl(1 − ρl) must in consequence equal the current right of it, jr = ρr(1 − ρr).
Therefore, in agreement with the condition α = β from TASEP, we find ρl = α∗

SP = 1 − ρr =
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1 − ρ∗
+,SP = δ, from which α∗

SP = δ follows. On the other hand, we obtain the value of α∗
SP

from its dependence on the number of motors on the lattice, Eq. II.25a. Furthermore,m∗
SP can be

computed by integrating the motor density over the complete lattice: m∗
SP = δx∗

w + (1 − δ)(L∗
SP −

x∗
w). From the two equations for α∗

SP, we obtain a condition for the position of the DW, which
simplifies to

x∗
w = ( ̂α − δ) ̂γM + ̂α(δ − 1)[(δ − 1)δ + ̂γ]T

̂α(2δ − 1) ̂γ
. (II.32)

7.4.5. Low density phase

Arguably the most difficult treatment has to be employed for the LD phase. The reason is that,
for this phase, the bulk density ρb = α carries a direct resource dependence. This can be seen as
follows: Because α = α(m) as of Eq. (II.25a), the number of motors on the lattice feeds back on
the injection rate which in turn determines the number of motors on the lattice. This implies that
m = α(m)L, which solves as

α∗
LD = ̂αM

̂αL∗
LD +M

(II.33)

in the stationary state. Conservation of the motor current together with Eq. (II.26a) implies
α∗
LD(1 − α∗

LD) = γ∗
LD, which leads to a polynomial of third order:

0 = ̂α3T(m∗
LD)3 + ̂α2MT(1 − 3 ̂α)(m∗

LD)2

+ ̂αM2T( ̂γM
̂αT

− 2 ̂α + 3 ̂α2 + ̂γ)m∗
LD + ̂αM3T( ̂α − ̂α2 − ̂γ) .

(II.34)

This Equation yields solutions for m∗
LD; L∗

LD then follows as L∗
LD = m∗

LD/α∗
LD. A third order

polynomial such as Eq. (II.34) has at least one real root, but it may have three real roots; we can
distinguish between these cases by computing the sign of the discriminant. In this way we find
that if γ0/α0 ≥ 1/3, there is only a single solution m∗

LD. In contrast, for γ0/α0 < 1/3, which will
be discussed in detail later, this Equation yields three different stationary states. We will discuss
both cases separately, see Secs. 7.5.4 and 7.5.7.

7.5. Construction of the phase diagram

With the steady state properties of the MT characterized for all phases, we are now in a position
to find the parameters for which these phases are physically possible. The goal of these consider-
ations will be to obtain the phase diagrams, which is shown in Figs. II.29 and II.30. Hereby, we
will follow the strategy explained in Sec. 7.4.1.

A convenient way of constraining the respective phases is in the space of the parameters ̂α
and ̂γ. This is because once the injection rate of motors per motor concentration α0, and the
MT elongation rate per tubulin concentration γ0 is specified, moving along the axes of the phase
diagram corresponds to changing these concentrations, which are natural control parameters in
an experimental setup such as the one presented in Chap. 6.
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7.5.1. High density phase

We know from the TASEP that the collective dynamics of particles fall into the HD phase if β < α
and β < 1/2. It was concluded in Sec. 7.4 that the MT model can effectively be described by
a TASEP if a corresponding choice of parameters is made, and in particular β = δ, as well as
α = α∗. For the HD phase, we have computed the motor injection rate at the stationary state α∗

HD
in Eq. (II.29). As a result, following the strategy described in Sec. 7.4.1, it must be ensured that
δ < α∗

HD, as well as δ < 1/2.
The first condition δ < α∗

HD reduces to

̂γ < δ(1 − δ) −
δ − ̂α
1 − δ

γ0
α0

. (II.35)

Remarkably, this inequation depends only on the ratio of the elongation and injection rate per
concentration. Because β = δ, the second condition reduces to δ < 1/2.

7.5.2. Maximal current phase

With the above equations and the correspondence of the MT model and the TASEP, we have to
ensure the necessary condition for the MC phase α∗

MC > 1/2, which reduces to

̂γ < 1
4
+ (2 ̂α − 1)γ0

α0
. (II.36)

Also Eq. (II.36) depends only on the ratio of the two concentration dependent rates γ0 and α0 and
not on them separately.

The second condition for the presence of the MC phase is that β = δ > 1/2. Note that this
condition is complementary to the constraint for the HD phase. As a result, MC and HD phase
are disjoint, anddrawn in the space of the injection and elongation rates ̂α and ̂γ, no phase diagram
can contain both phases.

7.5.3. Shock phase

For the SP, theTASEP conditionα = β, corresponding toα∗
SP = δ ismet by construction, because it

is condition for the derivation of the position of the DW, x∗
w , see Sec. 7.4.4. An essential constraint

is however imposed by requiring that 0 < x∗
w < L∗

SP, i.e., that the DW is actually located in the
lattice bulk and not at (or beyond) one of its boundaries. What happens in the limits x∗

w = 0 or
x∗
w = L∗

SP, i.e., when the DW reaches one of the tips? Assuming x∗
w = 0, this would imply that the

high motor density emanating from the plus end spreads over the complete lattice; this is exactly
the behavior of the HD phase. In fact, the condition 0 ≤ x∗

w reduces the opposite of Eq. (II.35),
such that a condition for the SP is that ̂γ must exceed the value obtained from the right hand side
in this equation; as a result, the SP and HD phase bear a common transition line.

Also the second limit, where we require x∗
w ≥ L∗

SP, can be utilized to find a phase transition:
Here, the low density extends over the complete MT. In the same way as for the transition line
between the HD phase and the SP, this limit seems to give rise to the transition where the SP
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ceases to exist and turns into the LD phase instead. While we will discuss the subtleties of this
interpretations in Sec. 7.5.7, the reduction of the condition x∗

w < L∗
SP can be done right away, and

it yields a second constraint for the SP:

̂γ < δ − δ2 −
γ0
α0

(1 + ̂α
δ

) =: fδ( ̂α) . (II.37)

In the same way as demonstrated for the HD phase in Sec. 7.5.1, a second condition for the SP
is given by β = δ < 1/2.

7.5.4. Low density phase, case γ0/α0 ≥ 1/3

Wenow turn to the restriction of the parameter regime in which the dynamics of motors on aMT
fall into the LD phase. Similar to the consideration of the other phases in the previous Sections,
this amounts to verifying the conditions α∗

LD < δ and α∗
LD < 1/2. In contrast to the simple

equations obtained for all other phases, the stationary state properties for the LD phase rely on
finding roots of a third order polynomial, Eq. (II.34), and their form is therefore complex. In fact,
even with the help of powerful symbolic computational programs such as Mathematica, a direct
reduction of the conditions is impossible, such that a comparison of α∗

LD and δ is only possible
numerically.

In order to analytically constrain the LD phase, we therefore employ an argument based on a
result obtained earlier: Here, we found that the SP ceases to exist and turns into the HD phase as
the DW is found at the left lattice end. In the opposite limit, leading to Eq. (II.37), the low density
extends over the whole lattice. This suggests that along the transition line fδ( ̂α), defined in this
Equation, the SP turns into a LD phase.

In fact, we find by direct comparison of the regime constrained in this waywith the numerically
reduced conditions for the LD phase that both methods lead to the same domains in which the
LD phase is possible, as long as γ0/α0 ≥ 1/3. Hence, ̂γ > fδ( ̂α) is a necessary condition for the
LD phase in this limit.

For the opposite case, when γ0/α0 < 1/3, we will show later that subtle care has to be taken, cf.
Sec. 7.5.7 and Fig. II.32.

7.5.5. “L = 0”phase

As different phases are considered, it is advisable to critically askwhat the physical concept behind
a “phase” is. Essentially, we hereby group parameters for which themodel shows similar collective
dynamics. However, this also implies that the distinction between phases becomes meaningless
as the lattice shrinks and its length eventually vanishes completely: In what phase is a MT with
length zero? The only answer can be to explicitly restrict the parameter domain in which the MT
length vanishes, which can be done with the steady state quantities obtained in Sec. 7.4 4. For the
HD phase, the domain of vanishing MT length is bounded by ̂γ < δ(1 − δ), cf. Eq. (II.28); the

4Of course it has to be critically verified whether a field-theoretical treatment of a lattice gas model remains a good
approximation for very short lattices. For the present purpose to constrain the region in which the MT shrinks
to zero length, our numerical simulations reveal good agreement with the transition lines obtained theoretically.
This hence provides an a posteriori justification of the mean field assumptions.
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corresponding constraint for the MC phase is given by ̂γ < 1/4, see Eq. (II.31). For the case of
the LD phase, the parameters along which the stationary length vanishes can be found by setting
m∗

LD → 0 in Eq. (II.34), which implies that L∗
LD = 0 as ̂γ = ̂α(1 − ̂α). For a polymerization rate

smaller than this, the MT at the stationary state is completely depolymerized.

7.5.6. The phase diagram for γ0/α0 ≥ 1/3

Having found constraints for the extension of all different phases, we may now summarize our
findings in a phase diagram. Interestingly, we find that all transition lines computed in the previ-
ous Sections depend on the ratio γ0/α0 only and not on these parameters separately. As a conse-
quence, only two parameters, the depolymerization rate δ and the ratio γ0/α0 have to be specified
in order to depict the the phase diagram. We will first concentrate on the case γ0/α0 ≥ 1/3 to
which our previous discussion of the LD phase was limited.

For an exemplary ratio γ0/α0 = 1 and two different values of δ, the resulting phase diagram
is shown in Figs. II.29–II.30 along with the phases’ most characteristic quantities. Here, the the-
oretically predicted transition lines as they were derived in Secs. 7.5.1–7.5.5 are shown in red. In
Fig. II.29, the value of the depolymerization rate is δ = 0.3, in Fig. II.30, this parameter is chosen
as δ = 0.7. Fig. II.29a shows the difference of the injection and ejection rate at stationarity, α∗ −δ,
as obtained from simulations. In the North West part, we observe α∗ < δ as expected for the
LD phase predicted for this regime; in the North East part the opposite is true: here, δ < α∗, in
agreement with the behavior of the HD phase. By contrast, in between these domains (SP), both
rates are equal, α∗ = δ, implying that a domain wall separates the coexisting regions of low and
high motor density in this case. Fig. II.29b shows the stationary state length for the same param-
eters: In the bottom part (L = 0), the MT is completely depolymerized. Fig. II.29c summarizes
these four phases. The phase transition lines agree excellently with the transitions apparent from
the characteristic quantities in Figure parts II.29a and II.29b. Fig. II.29d shows cuts through the
diagrams II.29a–II.29b for the respective quantities, at the parameters indicated with symbols.
Here, blue lines show results obtained from theoretical calculations, whereas dots indicate mea-
surements from simulations. Once more, this Figure stresses the good agreement of simulation
data and theoretical results.

Fig. II.30a shows the average motor density on the MT for a larger value of δ = 0.7 at the same
ratio of the concentration-dependent rates as before. While the average density is small in the
LD phase in the left part of the Figure, its value equals 1/2 in the MC phase irrespective of the
precise value of ̂α and ̂γ, as expected. Also the description of the MC phase is accurate, which is
emphasized in Fig. II.30b.

We conclude that for a relatively large ratio of the concentration-dependent rates γ0/α0 > 1/3,
we find five different phases which occupy distinct domains in the space of the parameters α and
γ: The LD and HD phase where the motor density is constantly low or high, respectively, the SP
where low and high motor density coexist, the MC phase, where the motor density equals 1/2,
and the “L = 0” phase where the MT completely depolymerizes.
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Figure II.29.: Phase diagram and comparison of simulation data with theoretical calculations for γ0/α0 = 1
and δ = 0.3. For the simulation data in part (a)–(b), ̂γ is normalized in a way such that ̂γ = 1
corresponds to 5000 available tubulin dimers in the system. Part (a) shows the difference of
the injection rate at stationarity, α∗, and the ejection rate δ in the color code, as obtained from
simulations. In the top left part, α∗ < δ, in the center α∗ = δ, and on the right side α∗ > δ.
These three cases are characteristic for the LD phase, SP, and HD phase, respectively, see part
(c). The phase transition lines, obtained from the theoretical mean-field calculations, which are
shown in red lines, confine the domains obtained in this way to good accuracy. Panel (b) shows
the stationary state length L∗ which is obtained from simulations. In the bottom part, the length
vanishes, i.e., the MT is completely depolymerized. Part (c) summarizes these findings in a
phase diagram. Part (d) in detail compares the theoretical predictions (lines) of the difference of
injection and ejection rate, as well as theMT length, with simulation data (points) for all phases.

90



7.5. Construction of the phase diagram

Figure II.30.: Phase diagram for γ0/α0 = 1 and δ = 0.7. (a) The average density is shown which is small in
the LD phase, and equals 1/2 in the MC phase. In the bottom part, the MT length vanishes,
cf. Fig. II.29b. Part (d) reveals that simulation results (dots) agree well with theoretical calcula-
tions (lines) for the average density and the steady state length at the parameters as indicated by
symbols.
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Figure II.31.: The SP-LD transition line fδ( ̂α), as obtained in the limit x∗
w = L∗

SP for two different ratios γ0/α0,
and several values of δ. For a relatively large ratio γ0/α0, as shown in part (a), decreasing δ
shrinks the domain above the respective transition line. By contrast, part (b), for a small ra-
tio, decreasing δ leads to an additional space above the transition line in the left bottom of the
diagram. For more detailed discussions, see the main text.
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7.5.7. Low density phase, case γ0/α0 < 1/3

When we derived the extension of the LD phase in parameter space in Sec. 7.5.4, we invoked the
limit x∗

w = L∗
SP of the SP which led to the transition line fδ( ̂α). It was argued that in this limit

the low motor density extends over the complete MT lattice; assuming a continuous transition
between the LD phase and the SP, the end of the SP would therefore mark the beginning of the
LD phase. This argument is valid in the limit considered so far, as a comparison with the direct
numerical reduction of the conditions for the LD phase, as well as with simulation data reveals.
However, a subtlety was concealed previously which becomes important as γ0/α0 < 1/3. Let us
assume that the motors on a MT with ejection rate δ′ are in the LD phase. As a consequence,
given this parameter, the condition α∗

LD < δ′ is met. On increasing δ beyond δ′, α∗
LD does not

change, cf. Eq. (II.33), such that α∗
LD < δ is also true for all δ > δ′. In conclusion, if a system is

in the LD phase for δ′, it is also in the LD phase for all δ > δ′. The extension of the LD phase for
a given value of δ can therefore be obtained as the union of all regions above the transition lines
fδ′( ̂α) for all δ′ < δ, i.e.

̂γ > ⋃
δ′<δ

{ ̂γ > fδ′( ̂α)} . (II.38)

In order to make this more explicit we revisit the case γ0/α0 ≥ 1/3, for which we concluded in
Sec. 7.5.4 that the phase boundary of the LD phase is identical to that of the SP. Fig. II.31a shows
the function fδ( ̂α) which was found to be the transition line for this case for different values of δ
and γ0/α0 = 1. As the Figure shows, any decrease of δ also decreases the extension of the region
confined left/above this line. In other words this implies that there are no points which are above
this transition line for small δ, but below a transition line for larger δ, or stated mathematically,
∪δ<δ′{ ̂γ > fδ( ̂α)} = { ̂γ > fδ′( ̂α)}. For this reason, the extension of the LD phase was — in
the limit of large ratios γ0/α0 — correctly constrained as the domain complementing the SP, see
Sec. 7.5.4.

The situation is different when the ratio γ0/α0 < 1/3. Incidentally this is the parameter regime
where the polynomial Eq. (II.34), from which the steady state properties of the LD phase follow,
has up to three (real) roots. Fig. II.31b shows the transition lines fδ( ̂α) for different values of δ and
γ0/α0 = 0.1. For the displayed case, decreasing δ changes the transition line fδ( ̂α) in a way such
that there are now some points in parameter space which are below the transition line for large δ,
but above the line fδ( ̂α) for a smaller value of δ. E.g., the transition line f0.4( ̂α) for δ = 0.4 omits
the points in the bottom left of the diagram, which are well above f0.1( ̂α). For these parameters,
the condition for the LD phase α∗

LD < δ = 0.1 is met, which is obviously still true for δ = 0.4 and
hence implies that these points must also be in the LD phase for δ = 0.4. As a consequence, in
order to find the LD region for, e.g., δ = 0.4, we have to calculate the union of all regions defined
in the described way for δ = 0.4.

How can this union be obtained? Given specific parameters ̂α and δ′, we have to find the
value δ < δ′ which minimizes the transition function fδ( ̂α), and subsequently evaluate fδ at this
point. This is done by taking the derivative with respect to δ, and finding the roots of the resulting
equation. As ̂α > 1/27α0/γ0, only a single extremum exists (which is a maximum) that is at δ < 0
and can therefore be ignored in our discussion. Conversely, if ̂α ≤ 1/27α0/γ0, two different δ
extremize fδ( ̂α), of which the minimum is located between 0 and 1/3. Subsequent evaluation of
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fδ( ̂α) at the minimum yields the envelope function enclosing all transition lines fδ( ̂α), which is
shown as the black dashed line in Fig. II.31b. We have thus found an analytic way how the LD
phase can be constrained.

7.5.8. The phase diagram for γ0/α0 < 1/3

Having found the domain of the LD phase for the case when the MT elongation rate per con-
centration is significantly smaller than the motor injection rate per concentration, γ0/α0 < 1/3,
we are now in a position to draw the phase diagram also for this case. To this end, let us recall
that in the limit under consideration, the polynomial Eq. (II.34), giving rise to the LD steady state
properties, yields up to three (real) solutions. We have described how to constrain one of them
as the envelope of the transition function fδ( ̂α) in the previous section. Furthermore, we have
constrained the parameter region where the MT length vanishes in Sec. 7.5.5, which eliminates a
second solution for the LD phase. Therefore, we are left with the consideration of the third LD
phase obtained from Eq. (II.34).

To this end, let us examine the rate of change of MT length, 𝜕tL, in the case where the length
becomes stationary at three different values. Here, we assume that — even out of the stationary
state — the motor density is constant along the lattice and its value is determined by the injection
rate α. This is true as long as the MT length changes slowly compared to the motor dynamics.
Fig. II.32a shows 𝜕tL in this limit, as obtained from Eq. (II.26a). We find that the slope of 𝜕tL is
positive for the intermediate zero, which implies that small fluctuations about this steady state are
amplified: This state is unstable. Furthermore, we observe that of the extreme zeroes, which are
the stable fixed points, one is at long length, while the other is at negative length (which signifies
a completely depolymerized MT). We now have to distinguish between two different cases: If
the intermediate (unstable) stationary state is at small but positive length (blue line in Fig. II.32a,
corresponding to the parametersmarked by an asterisk in Fig. II.32b), MTswhich are shorter than
this length are attracted towards the lower fixed point (i.e., the completely depolymerized MT),
while all MTs longer than the unstable fixed point are likely to end at long length. In contrast, if
the intermediate, unstable, length is at negative (or zero) length, see the yellow line marked by a
diamond in Fig. II.32a–II.32b, even very shortMTs are in the basin of attraction of the long length.

From Eq. (II.34), we have concluded in Sec. 7.5.5 that L∗
LD = 0 along the line ̂γ = ̂α(1 − ̂α),

see the dashed line in Fig. II.32b. Fig. II.32a reveals that for parameters inside (blue asterisk) and
outside (yellow diamond) of this domain, shown in Fig. 8(a), it is the intermediate, unstable, LD
steady state length which switches sign. More specifically, the unstable LD state features a positive
length only if ̂γ < ̂α(1 − ̂α). As a consequence, in this domain two stable stationary states can be
reached; in the opposite case, the MT will always end in the long LD state.

Concluding these considerations for the limit of small ratios γ0/α0, we summarize our findings
in a phase diagram, Fig. II.32c. For δ = 0.3 and γ0/α0 = 1/40 in this Figure, we recover the well-
known phases which we had obtained earlier for a larger ratio, Sec. 7.5.6. Furthermore, we find
that the LD phase overlaps with the “L = 0” domain, the HD phase, and the SP. In the overlapping
region, the system behaves bistable. This means that depending on the initial lattice length, the
system will become stationary at one of the two stable steady states. Fig. II.32d shows a parameter
scan of the steady state length, where ̂α and ̂γ are chosen as control parameters in the same way as
before. Here, MTs are initially short (top panel), or long (bottom panel). In fact, the MT length
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Figure II.32.: The phase diagram for small γ0/α0, here γ0/α0 = 1/40 and δ = 0.3. (a) For two different pa-
rameters, the rate of change of the lattice length, 𝜕tL is shown. The length becomes stationary
at three values. Due to the positive slope of 𝜕tL at the intermediate length, this state is unstable.
Depending on the location outside (diamond) and inside (asterisk) the domain ̂γ < ̂α(1 − ̂α),
marked in dashed lines in part (b), the intermediate length is negative, or positive. As an ef-
fect, the stable fixed point at negative (i.e., completely depolymerized) length cannot, or can be
reached; see the main text for a detailed discussion. (c) The resulting phase diagram. (d)–(e)
For initially long or short MTs, both the steady state length (d), and the difference of steady state
injection and ejection rate (e) are different in the bistable regime. In (d)–(e), the absolute value
of γ0 is chosen such that an undepleted elongation rate of ̂γ = 0.25 corresponds to 5000 available
tubulin dimers.
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Figure II.33.: The MT length shows hysteresis. The Figure shows the steady state length L as a function of the
injection rate ̂α for the parameters of Fig. II.32d, where ̂γ = 0.22. In the middle, two stationary
states are possible, one of them in SP, the other in LD phase. Both curves are linked by an unstable
solution of the LD phase (dashed line) which functions as a separatrix between the stable lengths.

at stationarity is different for these cases in the bistable domain. Fig. II.32e depicts the difference
of the injection and ejection rate at the respective stationary state: For simulation runs starting
from a long length (bottom panel), α∗ < δ throughout the bistable regime; this implies that the
dynamics is in LD phase. In contrast, when L is initially short (top panel), for the two domains
where the length assumes a finite stationary value we observe α∗ > δ, and α∗ = δ, in the domains
termed LD/HD, and LD/SP, respectively. Hence, in this case, motors on an initially short MT are
in a different phase as motors on an initially long lattice.

We note that the transition lines, in particular the line separating the LD phase from the LD/0
phase deviates slightly from the transitionwhich can be guessed by looking at the simulation data.
The reason is that in the LD/0 domain around the transition line, the unstable steady state is at
very short length. Any fluctuations above this lengthwill bring theMT into the basin of attraction
of the long length, implying that although the fixed point with vanishing length is mathematically
stable, its bassin can easily be left. In fact we find that simulation results and theoretical predic-
tions agree even better for larger reservoir sizes, when the relative fluctuations become smaller.

Depending on the exact parameters γ0/α0 and δ, the extension of the bistable regime varies. In
particular, for ratios γ0/α0 smaller than in Fig. II.32c, the size of the bistable phase grows, while
the composition is modulated and the LD/0 phase becomes increasingly popular. For δ > 1/2,
we also observe the existence of a LD/MC bistable phase (not shown).

We conclude that both our theoretical calculations and simulation results confirm the existence
of a bistable domain. One stationary state in this domain is in the LD phase, the other steady state
may be in the HD, SP, MC, or L = 0 phase.

7.6. Discussion

7.6.1. Bistability leads to hysteresis andmakes phase transitions discontinuous

We now turn to a discussion how the MT length changes when a phase transition line is crossed.
Fig. II.29b shows the steady state length L∗, scanned over the parameters ̂α and ̂γ, in the case
γ0/α0 = 1, which we argued is the regime where the dynamics are monostable. We find that the
steady state length changes smoothly, i.e., continuously, along the complete diagram. In particu-
lar, this applies also when transition lines are crossed, see also Fig. II.29d. The situation is different
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for γ0/α0 < 1/3 which is the parameter range where the phase diagram includes bistable phases.
As Fig. II.32d reveals, the steady state length may change discontinuously on crossing a transition
line. This is stressed also in Fig. II.33 which cuts through the diagram Fig. II.32c at ̂γ = 0.22. The
steady state length for small and large values of ̂α is given by L∗

LD and L∗
SP = L∗

HD, respectively;
in the middle, for intermediate ̂α, both these branches coexist (i.e., the length is bistable here).
However, L∗

SP and L∗
LD do match continuously. In contrast, a third solution, drawn as a dashed

gray line, links L∗
LD and L∗

SP. This branch is the unstable LD steady state discussed in Fig. II.32a,
which follows fromEq. (II.34). As a consequence, if an originally small ̂α is increased to ̂α ∼ 0.7 in
Fig. II.33, e.g., due to the increase of the motor concentration, an initially long MT will be forced
to shrink to a much shorter length L∗

SP. When, subsequently, the injection rate ̂α drops, the MT
will remain at this short length until ̂α ∼ 0.42 before the short stationary length vanishes and the
MT is bound to become long again. This does not only define a hysteresis cycle but also stresses a
crucial difference between the monostable and bistable phase diagrams: Bistability makes phase
transitions discontinuous (205).

This raises the question whether the restriction of the domain in which the dynamics are in
the LD phase, Sec. 7.5.4 and 7.5.7, was done in a correct way: Here, the implicit assumption was
that wherever the SP ceases, obtained from the limit x∗

w = L∗
SP where the low density emanating

from the minus end spreads over the complete lattice, it should continuously become a LD phase.
Now that we found that L∗ changes discontinuously between the SP and the LD phase in the
case of bistability, this argument seems to break down. However, the unstable LD steady state
solution obtained from Eq. (II.34), which is shown linking the different branches of L in Fig. II.33
rescues our argument: This branch approaches both L∗

SP and L∗
LD continuously. Even though

this stationary state is unstable, this implies that as x∗
w = L∗

SP, an (unstable) LD phase is defined.
This unstable length, equal to the (stable) SP length, functions as a separatrix between the stable
lengths, and thus MTs at the transition point which are, due to stochastic fluctuations, slightly
longer than L∗

SP will be driven towards the long length L∗
LD. We conclude that, the argument used

for constraining the LD phase is true even for the bistable regime where phase transitions may be
discontinuous.

7.6.2. The limit in which we observe bistability is biologically relevant

Before concluding this work, we would like tomake another, more heuristic, argument how bista-
bility can be understood: We find that a bistable regime exists for γ0/α0 ≪ 1, and typically in a
region where ̂γ and ̂α are comparable. BecauseM/T = γ0/α0 ̂α/ ̂γ, we haveM ≪ T in the bistable
regime, i.e. much less motors than tubulin dimers are available in the reservoir. In this limit, con-
sider on one hand a MT which is so short that it can carry only a very small number of motors
compared to the total number of motors in the reservoir, m ≈ L ≪ M. Then, since nearly all
motors are left in the reservoir, the resulting injection rate of motors is relatively high (α ≈ ̂α), al-
lowing for a relatively highmotor density on theMTwhich also leads to a high number of motors
at the tip which can catalyze MT shrinkage. Thus, the (originally short) MT will rather shrink,
such that it will likely remain at a short length. On the other hand, consider a slightly longer MT
which is still so short that the number of tubulin dimers bound to it is small compared to the
total number of tubulins, but so long that the number of motors on it significantly depletes the
free motor reservoir; in other words, m ≈ M ≈ L ≪ T . In this case, the polymerization speed
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is still nearly unaffected, γ ≈ ̂γ, but the motor injection rate is crucially smaller, α ≪ ̂α. Thus,
only very few motors enter the MT, and as a consequence their presence at the plus end cannot
balance polymerization. Hence, the MT will tend to grow until also the tubulin reservoir is de-
pleted. Because initially short MTs will therefore shrink further and long MTs are likely to grow,
the system is bistable in this limit.

Interestingly, the limit M ≪ T , which corresponds to cm ≪ cT , is the limit which is relevant
both in physiological environments in vivo, as well as in in vitro experiments. Ghaemmaghami et
al. have measured the abundance of both kinesin-8 Kip3 and tubulin by creating an S. cerevisiae
fusion library (212). While they found that in a yeast cell there are only ∼ 700 motor molecules,
several 10000 tubulin dimers are available. The same limit of small motor concentrations was also
used in the in vitro experiment presented in Chap. 6, for which bimodal MT length distributions
— corresponding to bistable length regulation — were found. We conclude that bistability is not
only a theoretical artifact of limited resources, but its implications are also important for in vitro
setups, and potentially even the biological function of MTs and cells.

7.7. Conclusion

In this Chapter we have in detail considered a lattice gas model describing a length regulation
mechanism of MTs. The antagonistic actions of motor-induced MT depolymerization and spon-
taneous lattice polymerization rely on particles from finite reservoirs. We have concluded that
finite resources lead to modified motor density profiles on the MT, and in particular to the emer-
gence of domain walls on the lattice, where the motor density shows a sudden increase. Further-
more, we have demonstrated that in a well-characterized limit two stationary states coexist such
that the system is bistable. Remarkably, phase transitions become discontinuous in the case of
bistability, while the steady state MT length changes continuously for monostable conditions. We
have demonstrated that a phase transition can be caused, e.g., by the change of concentrations of
one of the involved proteins. Findings of this kindmay have various implications for intracellular
behavior where protein concentrations are known to change, and sudden transitions, e.g. during
anaphase, are observed.

97





Part III.

Motor-induced unbinding: the role of
interactions for the collective
dynamics of molecular motors
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8. Introduction

8.1. Motivation

The collective motion of molecular motors on microtubules (MTs) and their interactions with
each other are highly complex processes that underlie important intracellular functions. For ex-
ample, motors of the kinesin-8 family use MTs as molecular tracks along which they perform
directed transport (20, 198). Having arrived at the MT end, these motors influence the depoly-
merisation dynamics at this point, and thus have an effect onMT length (2, 20, 21, 23) and spindle
size (126, 127), properties whose tight regulation is crucial for the normal operation of a cell (188).

Kinesin-1 was the first kinesin to be discovered (213), and it is arguably the motor which has
been studied in greatest detail. Kinesin-1 is a versatile cargo transporter (214) which uses its two
heads (29) to processively walk towards the plus-end of a MT. In the crowded environment of a
typical cell, molecular motors and MT-associated proteins (215) compete for a limited number of
binding sites on the MTs. As a consequence, “traffic jams” consisting of molecular motors may
develop on (parts of) the MT (132, 133).

A central question is how motors interact with each other in crowded situations like this, and
how motors affect each other’s ability to bind to and detach from MTs. Several studies have re-
ported (apparently) conflicting results relating to these issues: Thus, Vilfan et al. (31) observed
that kinesin motors primarily bind near other motors. Similarly, Muto et al. (216) observed long-
range cooperative binding, and Roos et al. (217) discovered that the dwell time ofmotors increases
when they are in the proximity of other motors on the MT. In contrast, Leduc et al. (132) found a
reduction in the dwell time of kinesin-8 motors on crowded filaments, in agreement with in vitro
measurements of kinesin-1 carried out by Telley et al. (30).

How can these findings be reconciled? Firstly, we note that interactions may differ depending
on whether motors are mobile (30, 132) or have been immobilized by genetic engineering (31,
217): It appears that an increased dwell time of motors on the MT or cooperative attachment to a
MT is primarily found for immobile motors, while mobile motors experience no, or at least less
attractive interactions. A second differentiator of these studies was pointed out by Telley et al. (30)
who found that the label used to visualise motors by fluorescence microscopy can be crucial. In
particular, when these authors failed to reproduce their own earlier results (105) for the crowding
behaviour of kinesin-1 using a different label, they concluded that extensive labelling or the use of
large labels may lead to non-specific interactions betweenmotors. Therefore, attractive potentials
may develop which hold motors on the MT.

To minimise these potential effects, Telley et al. removed parts of kinesin’s tail (104), such that
the motor could still walk with wild-type characteristics (105), and attached a GFP label to only
a small proportion of the motors, leaving the vast majority of kinesin motors unlabelled (30). As
a consequence, when they varied the abundance of kinesin, they found that this motor’s dwell
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time was inversely related to its (volume) concentration. In our understanding, the situation
considered in this study by Telley et al. (30) is closest to the behaviour in an actual cell. Hence, in
our theoretical analysis we will mainly compare our results with their data.

The Totally Asymmetric Simple Exclusion Process with Langmuir Kinetics (TASEP/LK) (154–
156) is commonly employed to describe the collective dynamics ofmotors on aMT. In this stochas-
tic lattice gas model, motors are described as particles on a one-dimensional lattice (a protofil-
ament of a MT) and step stochastically towards the lattice end. This approach has successfully
predicted (155, 156) the existence of traffic jams and domain walls, which were recently observed
in experiments (132, 133). Several variations of this stochastic process have considered specific
properties of motors, such as their longitudinal (218) or lateral (170) extension. Furthermore, ad-
ditional interactions of motors with each other have been examined (178, 219, 220). Among them
are so-calledmutually interactive Langmuir kinetics (179, 180, 221), where binding and unbinding
of monomeric particles are directly influenced by the occupation of the nearest-neighbour bind-
ing sites. Most of these studies concentrated on fundamental physical properties of the dynamics
of motors, such as the different phases of their collective motion. Consequently, the impact of
motor-motor interactions on experimentally accessible quantities, such as the motor run length,
dwell time, velocity or their numbers of landings (initial attachments) on the lattice per unit length
and time, was usually not considered.

In this study, we theoretically examine a model which includes motor-motor interactions and
a dimeric driven lattice gas. Our aim is to describe the collective motion of processive molecular
motors, such as kinesin-1, along a MT. We find that a simple, motor-induced detachment mech-
anism suffices to quantitatively account for the experimental measurements reported by Telley et
al. (30). By developing a mean-field theory, we explore in detail the dependence of motor dwell
time, run length, velocity, and landing rate on the volume concentration of kinesin. Furthermore,
we find that stochastic pausing of motors on the MT is significantly enhanced by crowding and
leads to short-lived traffic jams on the MT, thus recovering the long and frequent periods of in-
terrupted motor motion observed in experiments (30). By comparing the rates of spontaneous
detachment and motor-induced detachment from the MT, we gain insight into the stepping cycle
of kinesin-1, and find that this motor spends a significant fraction ( ∼ 22%) of its stepping cycle
in a weakly bound state.

The results of the present study have been submitted for publication to Biophysical Journal,
and are preprinted under the title “Crowding and pausing strongly affect dynamics of kinesin-1
motors along microtubules” as arXiv:1805.03432 (3).

8.2. Methods

8.2.1. Monte Carlo simulations

Wesimulate our stochastic lattice gasmodelwithGillespie’s algorithm (201), which provides away
of exactly modelling stochastic processes. In the first step, all possible events are collected and
statistically weighed with their rates, and an event is randomly chosen out of the resulting vector.
Another random number is drawn from an exponential distribution with the total rate (i.e., the
sum of the rates of all possible events) as the decay parameter, in order to obtain the update time.
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Subsequently, all rates are updated and the algorithm starts over. In order to account for the long
length of MTs compared to the motors’ run length (on the order of 100 steps), periodic boundary
conditions were employed on a lattice with 2000 sites.

8.2.2. Fitting analytical results to experimental data

For the four sets of quantitiesmeasured experimentally (30), namely run length, dwell time, veloc-
ity, and landing rate of kinesin motors, analytic equations were obtained, see Eqs. (III.11)–(III.14).
The parameters ν (hopping rate of motors) and ωD (their detachment rate) were obtained from
the experimental data (30) at low concentrations, as well as the landing rate λ0 of normalised
concentration of motors to the MT. In order to obtain the remaining parameters ωA and θ, the
analytic results were taken at the concentrations tested in experiments, and the deviations from
experimental data were weighed by the experimental standard error (30). Subsequently, the sum
of the squared weighed errors was taken, and minimized with Mathematica’s NMinimize func-
tion. In this way, the global fit values ωD and θ are found, see Eq. (III.18).

8.3. Model description

We wish to analyse the stochastic motion of kinesin-1 motor molecules on MTs. Kinesin-1 is
a dimer with two heads (29) that can bind to distinct binding sites (50) on two neighbouring
tubulin dimers (111). Powered by the hydrolysis of ATP (112), it moves processively and unidirec-
tionally (222) towards the MT’s plus-end (5) along a protofilament (108, 223). It walks hand-over-
hand (111), which implies that the rear (lagging) head steps over the front (leading) head to the
next binding site in order to complete a step.

To describe the collective dynamics of kinesin-1 motors on protofilaments, we employ a one-
dimensional lattice gas model as illustrated in Fig. III.1, where the fluid surrounding the MT can
be considered as a homogeneous and constant reservoir of motors with concentration c. The
corresponding mathematical model is based on the Totally Asymmetric Simple Exclusion Pro-
cess with Langmuir Kinetics (TASEP/LK) (155, 156). Here, we extend it to include the dimeric
nature of kinesin-1, and consider an additional interaction which accounts for the enhanced de-
tachment of neighbouring motors. To accommodate the extended size of kinesin, and to allow us
to adopt simple stepping rules, each motor is described as a rigid particle which simultaneously
occupies two sites of a one-dimensional lattice (218). The directed motion of motors is modelled
as a stepwise stochastic hopping process with rate ν (Poisson process) towards the plus-end (to-
tally asymmetric); stepping is possible only if the target site is not occupied by another motor
(exclusion). In the limit of low coverage of a protofilament, each motor would then move at an
average speed v0 = νa, where a = 8.4 nm (51) is the size of a tubulin heterodimer. Motors from the
reservoir can attach to the protofilament lattice at rate ωA at locations where two adjacent lattice
sites are empty. This rate depends on the volume concentration of motors as ωA = ωac with a
constant ωa.

There are two pathways that may lead to the detachment of motors from a protofilament.
Firstly, motors may detach spontaneously at a rate ωD. Because this alone cannot explain the de-
crease in motor dwell time on crowded filaments (30), we secondly assume that motors interact
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Figure III.1.: Lattice gas model for the collective dynamics of kinesin-1 motor proteins moving along a protofil-
ament of a microtubule (MT). Motors are modelled as dimers that simultaneously occupy two
neighbouring lattice sites, and advance unidirectionally towards the plus-end (right) of a protofil-
ament at a rate ν (Poisson stepper), if no other motor occupies the next binding site (exclusion
process). Kinesin-1 is also assumed to randomly bind to and detach from the protofilament at
rates ωA and ωD, respectively. Due to steric exclusion binding is possible only if two adjacent
binding sites are empty. In addition to spontaneous detachment with rate ωD, we also account
for facilitated detachment of motors that are immediate neighbours. For specificity, we assume
that the dissociation rate of the rear motor, i.e., the motor closer to the minus-end (left) is en-
hanced by a rate θ.

with each other via a process that enhances the detachment rate of motors which are immediate
neighbours. Specifically, when two motors meet, we assume that the rear motor’s unbinding rate
is enhanced by an additional rate θ; the trailing motor therefore “bounces off” the leading motor,
which is consistent with experiments showing that when kinesin runs into an obstacle on theMT,
the motor (and not the obstacle) is likely to detach (30, 109). The opposite case, where the trail-
ing motor “kicks” the leading motor off the filament, leads to the same phenomena. Alternative
scenarios, e.g., enhanced detachment of both motors, have been examined in Ref. (179).
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9.1. Simulation results

Two central quantities that characterise the collective transport of kinesin-1 along MTs are the
motor density ρ and the motor current j. In general, both quantities depend on the position
along the MT. At the minus-end, the density is expected to show an initial (approximately) linear
increase towards a Langmuir plateau due to an “antenna effect” (132, 155, 156): This gradient arises
from the combined effects of random motor attachment to and detachment from the MT, as well
as driven transport along it; the slope of the initial increase is proportional to the attachment rate
ωA. Similarly, a density gradient can also be found at the MT’s plus-end, in particular for motors
which remain bound at this tip for an extended time. Molecularmotors with this property include
kinesin-8 (132) and kinesin-4 (133); to the best of our knowledge, no such behaviour has been
reported for kinesin-1. Due to (potential) gradients at the MT’s ends, it is generally difficult to
determine the full quantitative behaviour of themotor density (179, 218). One particular property
of kinesin-1, the motor in which we are primarily interested in this study, allows for a significant
simplification in this respect: its run length (on the order of 1 μm (30)) is significantly less than
the length of typical MTs (usually several μm (202)). For this reason, the extent of the gradient
region is small relative to the MT length, and the density profile is for the most part spatially
uniform on the MT for this motor. By assuming a very long lattice and/or periodic boundary
conditions (see Appendix), one can dispense with the specification of the boundary processes.

Figures III.2a and III.2b show the bulk density ρ and current j, respectively, as obtained from
stochastic simulations using Gillespie’s algorithm (201), see Methods. We find that the addi-
tional detachment of motors facilitated by the interaction between neighbouring motors leads to
a monotonic decrease in the bulk density (Fig. III.2a) with increasing rate θ; in the limit θ = 0, we
recover previous results (218). Interestingly, the motor current shows non-monotonic behaviour
as a function of θ (Fig. III.2b). There is an optimal value of θ at which the current is maximal. This
can be understood in terms of the ability of motor-induced detachment to remove motors from
very crowdedMTs. Here, the flow ofmotors is suboptimal due to the emergence of traffic jams, as
in the case of vehicular traffic (148). A decrease in the motor density may therefore enhance the
numbers of motors transported along theMT per unit time. We will see later that the existence of
a maximum motor current follows naturally from the non-monotonic current-density relation,
Eq. (III.10). As an aside, one may thus speculate that motor-induced detachment may serve to
optimise cargo transport along MTs by reducing crowding.

In this work, we are mainly interested in examining the collective dynamics of kinesin-1 (213).
In experiments, such as those in the study of Telley et al. (30), its collective motion has been
characterised in terms of run length on the MT l, dwell time τ, velocity V , and the rate λ (the
number of motor landings on the MT per unit time and length). All of these quantities may
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Figure III.2.: Bulk motor density and current. Symbols show data obtained from stochastic simulations, the
lines depict the results of the mean-field analysis, cf. Eqs. (III.8) and (III.10) for parameters
ωA = 0.01ν and ωD =ωA/10. (a) The interaction-induced unbinding mechanism reduces the
motor density ρ. (b) In contrast, the motor current j reaches a maximum for some finite value of
the detachment rate θ.

also be extracted from simulation data. However, not all of the model parameters necessary for
simulations can be directly measured in experiments. We will therefore employ the following
strategy: First, we develop a theoretical analysis of our model, and extract model parameters
from experimental data as far as possible. With analytical expressions for all relevant quantities
at hand, we then fit our model to the experimental measurements. Eventually, we will show that,
with the global fit parameters obtained in this way, the theoretical predictions and simulation data
of our model are in excellent agreement with experimental measurements.

9.2. Development of a mean-field theory

The configuration of a lattice at any given instant in time is described by a set of occupation
numbers {ni}. A lattice site i (a tubulin heterodimer on the protofilament) is either empty (ni = 0)
or occupied by the front head (ni = f ) or back head (ni = b) of a motor dimer. For a statistical
description we need the one-site and two-site probabilities, defined as

p(i, α) = Prob(ni = α) , (III.1a)
p(i, α; j, β) = Prob(ni = α ∧ nj = β) . (III.1b)

We denote the position of a motor by the position of its front head and define the time-averaged
dimer density as

ρi = p(i, f ) , (III.2)

which is then bounded to ρ ∈ [0, 1
2 ].

The rate of change of these probabilities can be described in terms of a set of master equa-
tions (224). For instance, for the time evolution of the probability that site i is occupied by the
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front head of a motor, one obtains

𝜕tp(i, f ) = ν [p(i−1, f ; i, 0) − p(i, f ; i+1, 0)] (III.3)
+ ωA p(i, 0; i−1, 0) − ωD p(i, f ) − θ p(i, f ; i+1, b) .

Here, the first term on the right-hand side represents a transport current given by the difference
between a gain and a loss term. The gain term describes the probability per unit time that a mo-
tor (front head of a dimer) located at lattice site i−1 moves forward onto an empty site i, and
the loss term describes the probability per unit time that a motor hops from site i to the next
(empty) site, i+1. The remaining terms describe attachment and detachment processes with the
joint probabilities selecting the allowed lattice configurations. Thus, attachment of a dimer to the
lattice is possible only if two neighbouring empty sites are available (ni = 0 and ni−1 = 0). While
an interaction-induced detachment process requires that two dimers are immediate neighbours
(ni = f and ni+1 = b), the rate of spontaneous detachment is proportional to the single-site proba-
bility p(i, f ).

In general, the master equation, Eq. (III.3), is not closed as it links single-site to two-site joint
probabilities. However, progress can be made by employing a mean-field approximation that
neglects all correlations between the positions of motor dimers other than the steric constraint
that dimers are not allowed to overlap, i.e. the front and the back heads of differentmotors cannot
occupy the same lattice site. Furthermore, for rigid dimers ni = b implies that site i+1 is occupied
by the front head of the same motor, ni+1 = f .

In order to show how the two-site joint probabilities can be reduced to one-site probabilities
we will consider as an example p(i, f ; i+1, b). This probability, like any joint probability, can be
expressed in terms of a conditional probability: p(i, f ; i+1, b) = p(i+1, b|i, f ) p(i, f ). As we are
neglecting correlations in the position of different dimers, the probability that site i+1 is occupied
by the back head of a dimer is independent of whether site i is occupied by the front head of
another dimer or empty: p(i+1, b|i, f ) = p(i+1, b|i, 0). Hence, in a mean-field approximation we
have p(i+1, b|i, f ) = p (i+1, b|(i, f )∨(i, 0)) = p (i+1, b|¬(i, b)). Using Bayes’ theorem, this can be
rewritten in the form p (¬(i, b)|i+1, b) × p(i+1, b)/p (¬(i, b)). Here, the remaining conditional
probability p (¬(i, b)|i+1, b) equals 1 because the states (i, b) and (i+1, b) are mutually exclusive.
Hence, we are left with the desired decomposition into single-site occupation probabilities:

p(i, f ; i+1, b) = p(i+1, b) p(i, f )
1−p(i, b)

=p(i+1, b) p(i, f )
p(¬(i, b))

. (III.4)

Compared to a naive decomposition into single-site occupation probabilities p(i+1, b)p(i, f ), this
equation includes a factor 1−p(i, b) which corrects for dimers spanning sites i and i+1, i.e., which
takes into account those correlations that are due to the dimeric nature of the motor molecules.
In the following we refer to such a factor as the local correlation factor. Using p(i, b) = p(i+1, f )
one may rewrite this result solely in terms of the density ρi as

p(i, f ; i+1, b) = ρi+2 ρi
1−ρi+1

. (III.5)

In the sameway, cf. Ref. (218), we can also approximate the other joint probabilities of Eq. (III.3).
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The ensuing mean-field master equation reads

𝜕tρi = ν [(1−ρi−ρi+1)ρi−1
1−ρi

−
(1−ρi+1−ρi+2)ρi

1−ρi+1
] (III.6)

+ ωA
(1−ρi−ρi+1)(1−ρi−1−ρi)

1−ρi
− ωDρi − θ

ρi+2 ρi
1−ρi+1

.

In the stationary state, where 𝜕tρi = 0, this expression recursively determines the occupation den-
sity of site i in terms of the densities of the neighbouring sites i±1. In general, the dynamics of such
a system is very rich and entails boundary-induced phase transitions (146, 156, 166, 167, 179, 218).

As discussed above, kinesin-1 has a run length which is short (30) compared to the typical
length of MTs (202). We also expect that attachment of motors to the MT occurs at relatively
high rates. Here, the focus of our interest lies in the behaviour in the bulk of MTs. Hence, we may
assume that the motor density is constant, ρi = ρ, 5 and arrive at the mean-field equation

𝜕tρ = ωA
(1−2ρ)2

1−ρ
− ωDρ − θ

ρ2

1−ρ
, (III.7)

which yields the motor density ρs in the stationary state (𝜕tρ = 0) as

ρs =
2ωA

4ωA+ωD+√4ωAωD+4θωA+ω2
D

. (III.8)

Note that we could also have arrived at Eq. (III.8) by assuming attachment-detachment balance

ωA p(i, 0; i−1, 0) = ωD p(i, f ) + θ p(i, f ; i+1, b) . (III.9)

As we are only interested in the behaviour at steady state, we will omit the index s in the following,
i.e. ρ: = ρs.

By employing the mean-field approximation we can also derive an expression for the motor
current j. This quantity is defined as the number of motors that pass through a site on the MT
per unit time, and is therefore given by ji = νp(i, f ; i+1, 0). By analogy with the derivations of the
previous paragraph and Ref. (218), and in agreement with Refs. (146, 166, 167), the motor current
simplifies to

j(ρ) ≈ ν
ρ (1−2ρ)

1−ρ
. (III.10)

In this equation, we again identify the local correlation factor 1/(1−ρ). Its significance can
be understood as follows: Compared to the current-density relation for monomeric particles,
j(ρ) = ρ(1−ρ), Eq. (III.10) is skewed, i.e. its maximum lies at a density exceeding half-occupation,
ρ = 1

2(2−√2) ≈ 0.29. This agrees remarkably well with the intuitive value for the density 1
3 , where

on average, every dimer is followed by a vacancy, and is therefore free to jump.

5We have verified this assumption a posteriori with the parameters found in Eqs. (III.15)–(III.18) by performing sim-
ulations (data not shown). Our results indicate that already at small motor concentrations around 5 nM, boundary
effects are restricted to a layer of approximately 100 lattice sites at the MT ends, much below their typical length.
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9.3. Derivation of quantities important for experiments

With the analytical expressions for the stationary motor density ρ on the MT [Eq. (III.8)] and
their flux j(ρ) [Eq. (III.10)], we now have a description of the most central physical quantities that
characterise the collective motion of molecular motors on a MT. As Figs. III.2a and III.2b show,
these analytically calculated quantities agree very well with data from stochastic simulations.

Unfortunately, with present-day experimental techniques, it is difficult to measure collective
quantities like the density ρ and the current j. It is much easier to determine quantities derived
from the observation of single labelled motors. These include the dwell time τ of motors on the
MT, their velocity V , run length l, and the landing rate λ. In order to define the link between
theory and experiment which we ultimately aim for, we must therefore also find expressions for
these quantities.

We first turn to the calculation of the dwell time τ. A motor located at site i can detach either
spontaneously at rate ωD, or additionally at a rate θ when another motor is located right next to
it at site i+2. The corresponding probability is given by p(i+2, f |i, f ), which reduces to ρ/(1−ρ),
following the same steps as before. Hence, the dwell time is given by the inverse of the total
detachment rate, comprising spontaneous and interaction-induced detachment:

τ ≈ [ωD + θ
ρ

1−ρ
]

−1
. (III.11)

Similarly, in order to obtain the velocity of a motor we need to consider the probability that a
particle located at site i finds the next site empty, p(i+1, 0|i, f ). This gives for the motor velocity,
again using a mean-field approximation,

V = V0 p(i+1, 0|i, f ) ≈ V0
1−2ρ
1−ρ

. (III.12)

With Eqs. (III.11) and (III.12), the run length of a motor is given by

l = τV ≈ V0
1−2ρ

ωD(1−ρ) + θρ
. (III.13)

Finally, we need to compute the landing rate of kinesin on a MT. In experiments, this quantity
is determined by labelling only a small fraction of kinesin, e.g., with GFP, while the vast majority
of motors remains unlabelled (30). The concentration of labelled motors is kept constant at a
reference concentration c0, and the unlabelled motors act as crowding agents which are added at
varying concentrations. The landing rate is then obtained by counting how many labelled motors
land on the MT per unit length and time. In our model, a motor can attach to a site i on the MT
only if it finds both site i and the adjacent lattice site i−1 empty, ni = ni+1 = 0. With λ0 being the
landing rate of the normalised amount (c0) of labelled kinesin on an otherwise empty MT, the
landing rate is λ = λ0 p(i, 0; i−1, 0), which at the mean-field level is approximated by

λ ≈ λ0
(1 − 2ρ)2

1 − ρ
. (III.14)
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It is important to note that the normalised landing rate λ0 may differ fromωA(c0). This is because
the size of a label such as GFP is comparable to that of the motor. Hence, the attachment rates of
labelled and unlabelled motors to the MT may be different.
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Figure III.3.: Comparison with experimental data. Orange circles show the measurements for (a) the run
length, (b) dwell time, (c) velocity, and (d) landing rate of kinesin motors, as measured by Telley
et al. (30). In blue, we show the fit of our model to this data. Lines are results of our mean
field theory, squares compare these calculations with simulations based on Gillespie’s algorithm.
Green diamonds show data for amodel wheremotors can temporarily switch to an inactive state,
see the main text.
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Figure III.4.: Characterisation of crowding effects. The plot depicts important physical quantities available
from our model, for the same parameters as in Fig. III.3. (a) The density of motors on the MT.
Because kinesin-1 is a dimer, ρ = 1

2 implies that the lattice is fully decorated with motors. (b)
Fraction of detachment events which are due specifically to motor-induced detachment. Even
at low concentrations around 7 nM, facilitated dissociation is as prominent as spontaneous de-
tachment. (c) The motor current on the MT, i.e., the number of motors passing over a lattice site
per unit time. (d) The landing rate of motors on the MT (orange: experimental data (30), blue:
mean-field results), assuming that a single lattice site were sufficient for the landing of a motor.
The agreement is worse than for the original model [Fig. III.3d].

9.4. Comparison of model results with experimental data

The primary goal of this work is to compare the predictions of our theoretical model with ex-
perimental data. Telley et al. (30) have provided an extensive set of measurements for the motor
kinesin-1, which is shown in Fig. III.3. Here, the volume concentration of themotor is varied, and
this process is incorporated into our model by setting ωA =ωac. From their data, we can directly
extract several of our model parameters. The hopping rate ν is obtained from the velocity V0 of a
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motor in the limit of low motor density (Fig. III.3c),

ν = 0.66 μms−1a−1 = 79 s−1 . (III.15)

The detachment rate ωD follows from the dwell time at small motor concentration (Fig. III.3b),

ωD = 1
1.9 s

= 0.53 s−1 , (III.16)

and similarly the landing rate of a normalised amount of labelled kinesin can be directly read off
from Fig. III.3d at c ≈ 0,

λ0 = 1.8 ⋅ 10−2μm−1s−1 . (III.17)

This leaves two parameters to be specified, the attachment rate of unlabelled motors to the MT
per concentration, ωa, and the rate θ specifying interaction-induced detachment. As there are
four independent sets of quantities that have beenmeasured (30) (run length, dwell time, velocity,
and landing rate), comparison of all four with our theoretical results constitutes a stringent test of
the validity of the assumptions onwhich themodel is based. Wehave performed a global fit for the
four independent quantities l, τ, V , and λ by minimising the squared sum of deviations between
experimental measurements and mean-field results, weighted by the experimental confidence
interval, see Methods. This gives the following values for the rates

ωa = 5.4 ⋅ 10−2 nM−1s−1 , (III.18a)
θ = 2.4 s−1 . (III.18b)

As can be seen in Fig. III.3, using these global fit parameters we find excellent agreement between
our theory and all experimentally measured quantities.

Both these fit parameters are interesting in themselves. The attachment rate ωa specifies how
quickly kinesin attaches to empty lattice sites. In this context, one must keep in mind the fact
that the physical quantity underlying the fit is the total motor density ρ on the MT, while the data
from Telley et al. (30) are derived from observations of the small minority of labelled motors.
In our model, the rate ωa specifies the attachment rate of the unlabelled motors, which act as a
crowding agent but are otherwise invisible experimentally (30). How then doesωa compare to the
landing rate λ0 for labelledmotors? This rate wasmeasured at amotor concentration of 5 pM and,
assuming that motors in the TIRF setup can walk on roughly half of the 13 protofilaments (109),
this can be converted into a per-site attachment rate of approximately 5 ⋅ 10−3 nM−1s−1. This
value is 10 times smaller than the attachment rate for unlabelledmotors, and it demonstrates that,
while labelling with GFP conserves many kinetic parameters of native kinesin (105, 225, 226), the
attachment rate of the labelled protein is significantly lower.

Secondly, let us look more closely at the rate θ, which quantifies motor-induced detachment
from the filament. The value of θ exceeds that of the spontaneous detachment rate ωD by four-
fold. This is remarkable, because it implies that, under crowded conditions, motor-induced de-
tachment is the dominant mechanism by which motors leave the MT. We will analyse this and
other implications of these parameters in greater detail in the following section.

One strength of our approach to the quantitative description of the collective dynamics of
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molecular motors with a theoretical model is that it allows us to infer physical quantities which
are experimentally difficult to access. In particular, it is interesting and instructive to study the
behaviour of the motor density along the MT, ρ, which is the fundamental quantity characteris-
ing the degree of crowding on the MT. In Figure III.4a, ρ is plotted as a function of the volume
concentration of motors c. At small concentrations, the density rises steeply with c, and becomes
half-maximal around 20 nM. At this concentration, on average every second binding site on the
MT is occupied by a motor head. As c is increased further, the motor density rises only mod-
estly. This is because attachment of additional motors becomes increasingly unlikely when many
motors are already present on theMT, andmotor-induced detachment becomesmore prominent.

Figure III.4b shows the fraction of motor detachments induced by the presence of another
motor, plotted as a function of c. With Eq. (III.7), we find that the contributions of spontaneous
and motor-induced detachment are already comparable at a motor concentration around 7 nM,
significantly below the concentration required for half-occupation [Fig. III.4a]. The reason for
this is that the rate θ exceeds ωD by several-fold, such that motor-induced detachment plays the
central role even onfilamentswith relatively little crowding. The steep increase in the contribution
ofmotor-induced detachment to all dissociation events at lowmotor concentrations also explains
the rapid decrease of quantities such as the motors’ run length l [Fig. III.3a] and dwell time τ
[Fig. III.3b] at these concentrations.

The motor current j may also be examined directly with our model and the parameters ex-
tracted from experimental measurements (Fig. III.4c). Once more, we find a steep increase at
low concentrations. The current becomes maximal at around c ∼ 20 nM, i.e. the concentration
where the density is half-maximal, and for higher concentrations the motor current remains al-
most constant.

Finally, the good agreement of our model with experimental data allows us to study the im-
pact of model variations. For example, it has been suggested (120) that kinesin-1 first binds via
a single head to the MT on landing, and subsequently attaches its other head. We have directly
tested how a different attachment mechanism might affect the landing rate by assuming that a
single binding site is sufficient for the motor to attach to the MT. As a result, the attachment term
in Eq. (III.7) reduces to ωA(1 − ρ). Fig. III.4d compares the landing rate obtained in this way
with experimental data. Clearly, neither with the fit parameters for the original model, nor with
parameters fitted to the modified model do we obtain satisfactory agreement between theoretical
results and experimental data. Therefore, our data suggest that kinesin can land on the MT only
where two adjacent binding sites are empty.

9.5. The origin of periods of no or slowmotion of motors

As shown in the previous sections, our mathematical model explains the kinetic data for the run
length, dwell time, velocity, and landing rate of kinesin-1 motors on MTs with high accuracy.
These quantities are averaged over a large number of motors and characterise their collective
transport along MTs very well. However, with our model, as well as in experiments, quantities
other than averages are also accessible, such as the statistics of individual steps of motors. Such
quantities are instructive, as they afford insight into the stochastic motion of kinesin at a deeper
level. A particularly interesting findingmade by Telley et al. (30) in this respect was that kinesin-1
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motors, which normally move at a speeds as high as 79 steps/s along the MT under uncrowded
conditions, sometimes show periods in which they rest on the MT or their motion is at least
considerably slowed down. These periods lasted for several tenths of a second, during which a
motorwould typically proceed by dozens of steps. It was found that the frequency of these periods
increased with the volume concentration of kinesin, and hence with the degree of crowding on
the MT (30).

However, the authors of that study were only able to image themotors every 0.1 s, such that the
localisation accuracy of kinesin-1 was of the same order of magnitude as the typical distance tra-
versed between twomeasurements. Furthermore, because kinesin’s steppingmechanism includes
chemical reactions as well as diffusive motion, this motor is a stochastic stepper. Consequently,
Telley et al. (30) were faced with the problem of robustly distinguishing periods of no (or very
slow) motion,6 in which motors are assumed to hardly move at all, from stochastically slow mo-
tion which simply reflects the stochasticity of kinesin’s steps but is otherwise normal.

To overcome these problems, Telley et al. (30) developed a detection scheme for the periods of
no or slow motion as follows: The location of the motors was measured every 0.1 s. If a motor
failed to advance a critical distance dc between two time frames, or itsmotionwas directed off-axis
or backwards (exceeding a critical angle αc), this displacement was considered as a candidate for
the onset of a period of no or slow motion. However, in order to mark the start of such a period,
three successive small displacements were required. To account for the effect of experimental
noise, single advances exceeding dc were allowed during a period of no or slow motion, so that
the period was only considered as terminated when the displacement was greater than dc twice
in a row.

The key parameters which determine the sensitivity of the detection of periods of no or slow
motion are αc and (in particular) dc . On the one hand, these quantities should be chosen to be
so large that fluctuations due to experimental noise are unlikely to prematurely terminate such
periods. On the other hand, the critical distance must be kept so small that these periods can be
robustly distinguished from normal motion which is slow because of the stochasticity of kinesin’s
steps. With the parameters dc = 40 nm and αc = 60∘, Telley et al. (30) found that approximately
every second kinesin motor showed a period of no or slow motion at some point while it pro-
gressed along the MT. During the periods of no or slow motion, motors proceeded on average
10 lattice sites. This value seems large, but it is much less than the expected ∼ 30 lattice sites
which a motor would traverse under uncrowded condition during the minimal time necessary
for detection of these periods (0.3s).

In order to compare the predictions of ourmodelwith the experimental data of Telley et al. (30),
we adapted and applied their experimental detection scheme for periods of no or slow motion to
our system. Note, however, that the motion of motors is restricted to a single dimension in our
model, while occasional side-steps, as well as off-axis fluctuations are possible in experiments.
Consequently, the two parameters, dc and αc , used for the experimental detection have to be re-
duced to a single parameter dc for our purposes. Moreover, since a finite progression dc between

6Note that Telley et al. (30) use the term “pause” for periods in which no or little motion was detected, and they
further distinguish between “wait” and “stop” for such events in which kinesin continued its run subsequent to the
pause, or detached from the MT. In this work, we distinguish between the phenomenon observed in experiments,
which we will call “periods of no or slow motion”, and the cause of these periods, which we term “pause” in the
following.
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two frames was allowed primarily in order to account for experimental inaccuracies which are
absent in simulations, dc has to be critically evaluated, and the role of noise must be simulated.
To this end, we first chose the same threshold distance dc = 40 nm as in Ref. (30), corresponding
to 5 lattice sites. With this value, we found that the progression of a motor between the beginning
and the end of a so defined period of no or slow motion was almost 30 lattice sites [Fig. III.5a].
This is significantly larger than the experimentally measured length of 10 lattice sites, and there-
fore indicates that most of the detected events in fact do not show behaviour which is physically
different from normal motion. Thus, most of the periods of no or slow motion detected with
this choice of dc result from the stochastic motion of kinesin. Even for a threshold distance of 3
lattice sites, the progression exceeded experimental data, so that we had to reduce the value of dc
to 2 lattice sites in order to find agreement with experimental results [Fig. III.5a]. However, the
agreement found with this parameter choice deteriorated when Gaussian noise was added to the
simulation data (in order to account for experimental fluctuations) before applying the protocol
[σ = 20 nm in Fig. III.5a].

Moreover, the statistics of the durations of periods of no or slow motion detected from our
simulation data differed from experimental results. While Telley and coworkers (30) report an
exponential distribution, our results indicate a non-exponential distribution with peaks around
0.4–0.5 s, see Fig. III.5b. Also the addition of Gaussian noise, or variation of the detection thresh-
old dc did not qualitatively change this distribution.

We therefore conclude that the detection protocol of Telley et al. (30) is inappropriate for the
analysis of the data obtained from stochastic simulations of our original model for two reasons.
Firstly, it fails to distinguish reliably between periods of no or slowmotion and stochastically slow,
but normal motion of kinesin, as the progression of motors between the beginning and end of
the detected periods clearly exceeds experimental results. Secondly, the distribution of the dura-
tions of periods of no or slowmotion in simulations differs fundamentally from the experimental
findings of Telley et al. (30). Consequently, in order to understand the full dynamic behaviour
of motors on the MT additional stochastic processes must be taken into account, which are not
captured by our original model. This will be the focus of the next section.

In order to examinemodel variationswhich could possibly explain the experimental findings of
Telley et al. (30) on periods inwhich themotors did not or only very slowlymove, we looked at the
data they obtained at lowmotor concentrations. Interestingly, even thoughmotors proceed along
the MT (almost) in the absence of other motors at these concentrations, periods of no or slow
motion were observed occasionally. This prompted us to study a variant of our model in which
motors can stochastically pause on theMT, i.e., theymay temporarily switch to an inactive state in
which they cannotmove. From the experimental data at low concentrations, we read off a per-step
chance of lapsing into inactivity of pinactivation = 0.4%, and a pausing time with average duration
T = 0.12 s, after which motors are reactivated again. We therefore introduced rates rinactivation =
0.004ν = 0.32 s−1 and ractivation = 1/0.12 s−1 = 8.3 s−1 at which motors switch to an inactive
or active state, respectively. At the molecular level, a motor might become inactive, for instance,
when a motor is trapped in an unfavourable chemical state due to imperfect synchronisation of
its heads (120); however, the particular molecular mechanism involved is not important for the
argument below.

Spontaneous pausing of driven particles has in the past been studied in the context of RNA
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transcription (227–229) as well as the motion of myosinmotors (230, 231). However, these studies
focused mostly on collective properties of the systems, as opposed to the statistics of individual
steps of kinesin-1 (30) whichwe aim to describe here. On this level, if motors are allowed to switch
into an inactive mode, we expect crowding to enhance the measured probability of undergoing a
period of no or slow motion, because other motors will tend to form a traffic jam behind inactive
motors. Although the motors caught up in the traffic jam are not intrinsically inactive, they are
unable to progress until the inactive motor has become active again. Therefore, crowding should
amplify the impact of stochastic pausing and consequently lead to frequent periods in which
kinesin motors show no or only slow motion along the MT.

We tested these expectations directly by performing Monte Carlo simulations of this variant
model. Since the two additional stochastic processes, namely spontaneous inactivation and ac-
tivation of motors, are rare events, we found that they have only a small impact on motor run
lengths, dwell time, velocity and landing rate (green diamonds in Fig. III.3). In contrast, motor
behaviour changed considerably at the level of individual steps: Unlike the case in our original
model, Fig. III.1, the durations of periods of no or slow motion were (approximately) exponen-
tially distributed in the variant model, in accordance with experimental findings (30)7. Following
Telley et al. (30), it is essential to extrapolate this exponential distribution below the cutoff time
0.3 s in order to obtain the corrected frequency and mean duration of the periods of no or slow
motion. The reason for this is that the cutoff 0.3 s is a technical choice, but there is no physical
reason why motors would not also experience periods of no or slow motion which are shorter
than that. As a result, periods of no or slow motion comprise the detected periods (those lasting
0.3 s and longer), as well as the undetected periods (those of shorter duration). The mean dura-
tion of the periods of no or slow motion is therefore given by the parameter of the exponential
decay of the distribution. Figure III.5c shows the concentration dependence of themean duration
of periods of no or slowmotion, as they were extracted from simulation data in this way, and they
reproduce the experimental findings (30) well. Moreover, these values were almost independent
of the parameter dc used for the detection algorithm, which ensures that periods of no or slow
motion of our model variant are now detected robustly and accurately.

We are now in a position to compare simulation data for the frequencies of periods of no or
slow motion with those of the experiments of Telley et al. (30), as shown in Fig. III.5d. While
the uncorrected probabilities (asterisks) remain below experimental values, as expected, the fre-
quencies corrected for the cutoff (squares) are comparable to those found experimentally (30)
for low concentrations. However, as the concentration is increased, we found that the frequen-
cies measured in our simulations exceed experimental values. This points to the need for further
modifications of our model.

In principle, any additional interactions can be included into our model and data obtained

7As reactivation from an inactive state is a one-step process, the distribution of the duration of periods of no or
slow motion should be exactly exponentially distributed in the absence of crowding and noise; this agrees with
simulation data analysed with the detection algorithm of Telley et al. (30). As the degree of crowding increased
due to additional motors on the MT, and as noise was added to the simulation data, the distribution gradually
changed and was non-exponential for high crowding and noise level, albeit with an exponential tail for durations
> 0.5 s. In order to complywith the procedure of Telley et al. (30), we used the distribution’s tail to fit an exponential
function to the simulation data, as we extrapolated the distribution below the cutoff value 0.3 s in order to obtain,
e.g., the mean duration.
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from stochastic simulations. However, a more instructive approach for our purposes is, however,
to analyse the physical principles leading to periods of no or slowmotion, and explore how exactly
the inactivation of a single motor results in the formation of traffic jams which amplify the effect
of pausing. To study this, we employed a different algorithm to detect periods of no or slow
motion: Here, we only counted motors that were (i) inactive themselves, or (ii) trapped in a
traffic jam behind an inactive motor. In contrast, events in which motors moved slowly because
they were caught up in a stochastically assembled traffic jam (in which no motor is inactive)
were not taken into account. The frequencies of periods of no or slow motion obtained with this
alternative algorithm (triangles in Fig. III.5d) agree well with those calculated with the original
algorithm (squares in the same Figure). This implies that although stochastically arising traffic
jams (in which no motor is inactive) slow down the collective motion of motors (132, 156), they
do not increase the incidence of periods of no or slow motion. In contrast, these periods are
predominantly due to the spontaneous (and transient) inactivation of motors and the associated
formation of traffic jams behind these motors.

Given that the dominant cause of periods of no or slow motion is the formation of traffic jams
behind inactive motors, further insight can be gained by estimating theoretically the length of
these traffic jams. Imagine that a motor pauses at some lattice site. Then, the n-th motor behind
this inactive motor is on average n/ρ sites away from it. Since each motor requires two binding
sites on the MT, the n-th motor therefore typically has to travel n/ρ − 2n sites to reach the end
of the traffic jam. Hence, the time needed for the n-th motor to reach the end of the traffic jam
may be estimated as t(n) = (n/ρ−2n)/V . As a consequence, during the time T required for
reactivation of an inactive motor, a traffic jam containing N1 = n(T) =TV/(ρ−1−2) motors will
form. After the inactive motor has resumed its run, all the motors stuck in the traffic jam can
start moving again one after another, so that it will typically take a timeN1ν−1 before the original
traffic jam has completely dissolved. During this time, another N2 = n(N1ν−1) motors will have
reached the end of the traffic jam, and more time will be needed until this additional traffic jam
is dispersed, and so on. Taking the sum over the number of motors caught in traffic jams found
in this way, the number of motors N = N1 + N2 + … which are ultimately affected by a single
spontaneously pausing motor is consequently obtained from a geometric series, yielding

N = Tv
ρ−1 − 2 − Vν−1 . (III.19)

This equation suggests that the effect of spontaneous pausing is considerably amplified by crowd-
ing. While the cause of traffic jams is the inactivation of a single motor, the phenomenon detected
with the scheme of Telley et al. (30) is also visible forN other motors that are effectively caught in
a traffic jam; consequently, pper. no/slow mot. = pinactivation(1+N). Figure III.5d shows the probabil-
ity per step obtained in this way. Given the level of the heuristic arguments, the agreement with
simulation data is satisfactory.

Having a theoretical estimate for the density dependence, and with Eq. (III.8) also the concen-
tration dependence, of the frequencies of periods of no or slow motion at hand, further model
variations can now be tested in a relatively simple way. For example, it seems plausible that mo-
tors align in a traffic jam very compactly, such that each motor requires a single lattice site on the
MT only. This would be in accordance with studies in which the decoration of MT sheets with
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immobilised dimeric kinesin was investigated, and it was found that kinesin binds to the MT via
a single head only under certain conditions (31, 232). For this model, the n-th motor behind an
inactive motor would then have to travel further compared to the original (i.e., spaced) jamming
model, namely n/ρ−n sites. In consequence, the term ρ−1−2 in Eq. (III.19) would bemodified to
ρ−1−1, and the amplification of spontaneous pausing changes accordingly. As shown in dashed
lines in Fig. III.5d, the resulting per step probability of entering a period of no or slow motion
reproduces the experimental concentration dependence (30) better than the original model in
which motors align spaciously in a traffic jam.

In conclusion, we have shown that spontaneous and transient inactivation of motors is the
key to an understanding of the occurrence of periods of no or slow motion. The frequency of
these periods is determined by the formation of traffic jams, in which motors (which are not
intrinsically inactive themselves) cannot, or only slowly progress. However, we are at present
unable to uniquely determine the precise mechanisms of jamming, and predict quantitatively
how exactly they amplify the frequencies of periods of no or slow motion of molecular motors. A
central problem seems to be that periods of no or slowmotion are relatively short-lived compared
to the threshold time required to detect such an event. This implies that large numbers of these
events remain undetected, and can only be resolved by extrapolating the duration distribution,
as explained above. As a consequence, we expect that the estimates of the frequencies of periods
in which kinesin motors move only very slowly or come to a complete halt on the MT are subject
to relatively large errors. It will in the future therefore be important to further investigate the
origin of these periods; in particular, algorithms have to be developed which allow a more direct
detection of short pauses, e.g., by increasing the frame rate of experiments. Furthermore, direct
visualisation of the inactive state would be highly informative. In summary, crowding is most
probably not the underlying reason for periods of no or slow motion of motors, but acts as an
amplifier to increase their frequency, although their ultimate cause is related to inactive states of
kinesin motors.

9.6. Insight into the stepping cycle of kinesin

Our findings concerning the motor-induced detachment of kinesin motors provide insight into
their stepping cycle. We would like to emphasise first that none of the results presented in the
previous sections depends on whether disengagement of the front or rear motor from the MT
is enhanced by the presence of another motor. Consequently, “bouncing off” (the rear motor
detaches) and “kicking off” (the front motor detaches) interactions lead to identical results (data
not shown). In fact, there are experimental indications that it is the trailingmotor which bounces
off when it encounters another motor on the MT. This was suggested by, among others, Telley et
al. (30), who used non-motile rigourmutants, in addition to wild-type kinesin-1. Here, the tightly
boundmutantmotors act as obstacles on theMT, and thewild-typemotors detach at an enhanced
rate on encountering such an obstacle. This would also suggest that when two wild-type kinesin
motors come into contact on the MT, it is the trailing motor that is more likely to detach.

At the molecular level, these indications enables us to associate the motor-induced unbinding
process with a specific state in the mechanochemical cycle of kinesin. This cycle comprises tran-
sitions between several states in which one or both kinesin heads are bound to the MT, and the
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two heads contain different bound nucleotides. During the stepping cycle, kinesin passes through
a state in which only a single head is bound to the MT. This weakly bound state is reached after
the back (i.e., the tethered) head is released from the MT, and the head that remains bound to
the MT binds and hydrolyses ATP. It is likely that this one-head-bound (1HB) state, in which the
head attached to the MT is associated either with ADP or ADP⋅Pi, is the state from which mo-
tors usually detach into the cytosol at finishing their run (97, 119). If the lifetime of this state is
increased, kinesin should therefore also unbind at an enhanced probability.

We hypothesise that the increase in the detachment rate seen when twomotors occupy directly
adjacent binding sites on the MT is directly related to this weakly bound state. Our idea is related
to that of Klumpp et al. (233) who found thatmolecularmotors with a two-stepmechanochemical
cycle show crowding-dependent unbinding when detachment happens at different rates from
both states. More specifically, we suspect when the rear motor’s tethered head attempts to step to
the next binding site, but finds this site occupied by another motor, the rear motor can leave its
1HB state only by stepping back (which is rare (121)), or by waiting until the next site is vacated.
In this case, the back motor is “trapped” in a weakly bound state, and the detachment rate is
enhanced accordingly. We, therefore, interpret θ as the dissociation rate of kinesin from the 1HB
ADP(⋅Pi) state. This interpretation is also supported by measurements of the dissociation rate of
single-headed kinesinmotors which are artificially held in the ADP andADP⋅Pi state, where rates
of 3.7 s−1 and 3.8 s−1, were found, respectively (97); these measurements are remarkably similar
to the value of θ obtained fromEq. (III.18b). Following these arguments, the time fraction f which
amotor spends in the 1HB state during a normal step, may be determined fromωD = fθ. By direct
comparison, we obtain f = 0.22, which implies that kinesin-1 remains in the 1HB ADP(⋅Pi) state
for approximately 22% of the time needed to complete a stepping cycle.

In summary, our findings suggest that the kinesin-1 step cycle comprises (at least) two transi-
tions which are of similar duration, as opposed to a single rate-limiting step. This is in agreement
with a recent interpretation of the kinesin step cycle (113). We believe that our study will also
help to reconcile conflicting results on the number and type of rate-limiting steps obtained from
optical trapping experiments (100, 121), dark-field (122) and interferometric scattering (120) mi-
croscopy experiments, as well as from measurements of the statistics of single motor runs (124).
While the methods employed in most of these experiments give rise to much shorter length and
time scales, labelling of the heads of motors, or applying force to them using an optical trap risks
interfering with the step cycle. The advantage of our analysis is that interference effects are min-
imised. Therefore, crowding experiments (30) provide unique insight into a microscopic process
in a minimally invasive way.
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Matthias Rank and Erwin Frey

Figure 5: Periods in which kinesin-1 motors show no or only very slow motion. The model parameters are the same as in
Fig. 3. Experimental measurements from Telley et al. (18) are shown in orange. For the detection of these periods, the protocol
of Telley et al. (18) was used (see the main text). (a)–(b) Our model cannot explain the frequent periods of no or slow motion of
motors observed experimentally. (a) Distance travelled by a motor between the beginning and end of such a period. A threshold
value of dc = 5 sites (red line) is too large for reliable detection of these periods: Motors traverse for almost 30 lattice sites
between the beginning and end of such a period, which is three times the experimental result (orange line). This implies that
most of the detected events actually reflect stochastically slow motion which is otherwise normal, and hence the scheme detects
these events inaccurately with this choice of dc . Reduction of the threshold to dc = 3 sites (green), or dc = 2 sites (blue) leads to
results that are in closer agreement with experimental data. However, this correspondence deteriorates on addition of Gaussian
noise (� = 20nm) to the simulation data before applying the detection protocol (dashed lines) (b) Duration of the so detected
periods of no or slow motion for c = 20 nM and a detection threshold dc = 2 sites. In contrast to the experimental findings,
where an exponential distribution was observed, the duration peaks around 0.4 s. This result does not change qualitatively
when dc is varied, or Gaussian noise is added at various strengths. (c)–(d) Qualitative agreement with experiments is found
when motors can spontaneously switch between an active and inactive mode at rates extracted from experimental data (18). (c)
The duration of periods of no or slow motion detected from simulations of this model variant (red squares) is similar to those
measured in experiments (18). The duration was computed by extrapolating the (now) approximately exponential distribution of
the detected periods below the cuto� time 0.3 s (18) and the main text for details. (d) The per-step probability that a motor is
found in a period of no or slow motion. The direct yield from the detection algorithm (red asterisks) is below experimentally
observed (18) values. When their frequency is corrected for the time cuto� (red squares), similar to the procedure used in
experiments (18), good qualitative agreement is found, in particular at low motor concentrations. Violet triangles show the
frequencies obtained with a di�erent algorithm which counts motors that are inactive, or caught up in a tra�c jam behind an
inactive motor, but not motors which move slowly due to their stochastic motion. The good agreement between these results and
the original detection protocol (red squares) reveals that spontaneously inactivated motors are the dominant contribution for
periods of no or slow motion. Solid and dashed lines show heuristic estimates of the probability of entering such a period,
assuming that motors in a tra�c jam require two, or only one binding site on the lattice. For details, see the main text.

To overcome these problems, Telley et al. (18) developed
a detection scheme for the periods of no or slow motion
as follows: The location of the motors was measured every
0.1 s. If a motor failed to advance a critical distance dc
between two time frames, or its motion was directed o�-axis
or backwards (exceeding a critical angle↵c), this displacement
was considered as a candidate for the onset of a period of
no or slow motion. However, in order to mark the start of
such a period, three successive small displacements were
required. To account for the e�ect of experimental noise,
single advances exceeding dc were allowed during a period of
no or slow motion, so that the period was only considered as
terminated when the displacement was greater than dc twice
in a row.

The key parameters which determine the sensitivity of
the detection of periods of no or slow motion are ↵c and (in
particular) dc . On the one hand, these quantities should be

chosen to be so large that fluctuations due to experimental
noise are unlikely to prematurely terminate such periods. On
the other hand, the critical distance must be kept so small
that these periods can be robustly distinguished from normal
motion which is slow because of the stochasticity of kinesin’s
steps. With the parameters dc = 40 nm and ↵c = 60�, Telley et
al. (18) found that approximately every second kinesin motor
showed a period of no or slow motion at some point while it
progressed along the MT. During the periods of no or slow
motion, motors proceeded on average 10 lattice sites. This
value seems large, but it is much less than the expected ⇠ 30
lattice sites which a motor would traverse under uncrowded
condition during the minimal time necessary for detection of
these periods (0.3s).

In order to compare the predictions of our model with
the experimental data of Telley et al. (18), we adapted and
applied their experimental detection scheme for periods of no
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Figure III.5.: Periods in which kinesin-1 motors show no or only very slow motion. The model parameters are
the same as in Fig. III.3. Experimental measurements from Telley et al. (30) are shown in orange.
For the detection of these periods, the protocol of Telley et al. (30) was used (see the main text).
(a)–(b) Our model cannot explain the frequent periods of no or slow motion of motors observed
experimentally. (a) Distance travelled by a motor between the beginning and end of such a pe-
riod. A threshold value of dc = 5 sites (red line) is too large for reliable detection of these periods:
Motors traverse for almost 30 lattice sites between the beginning and end of such a period, which
is three times the experimental result (orange line). This implies that most of the detected events
actually reflect stochastically slow motion which is otherwise normal, and hence the scheme de-
tects these events inaccurately with this choice of dc . Reduction of the threshold to dc = 3 sites
(green), or dc = 2 sites (blue) leads to results that are in closer agreement with experimental
data. However, this correspondence deteriorates on addition of Gaussian noise (σ = 20nm) to
the simulation data before applying the detection protocol (dashed lines) (b) Duration of the so
detected periods of no or slow motion for c = 20 nM and a detection threshold dc = 2 sites. In
contrast to the experimental findings, where an exponential distribution was observed, the dura-
tion peaks around 0.4 s. This result does not change qualitatively when dc is varied, or Gaussian
noise is added at various strengths. (c)–(d) Qualitative agreement with experiments is found
when motors can spontaneously switch between an active and inactive mode at rates extracted
from experimental data (30). (c) The duration of periods of no or slow motion detected from
simulations of this model variant (red squares) is similar to those measured in experiments (30).
The duration was computed by extrapolating the (now) approximately exponential distribution
of the detected periods below the cutoff time 0.3 s (30) and the main text for details. (d) The
per-step probability that a motor is found in a period of no or slow motion. The direct yield
from the detection algorithm (red asterisks) is below experimentally observed (30) values. When
their frequency is corrected for the time cutoff (red squares), similar to the procedure used in ex-
periments (30), good qualitative agreement is found, in particular at low motor concentrations.
Violet triangles show the frequencies obtained with a different algorithm which counts motors
that are inactive, or caught up in a traffic jam behind an inactive motor, but not motors which
move slowly due to their stochastic motion. The good agreement between these results and the
original detection protocol (red squares) reveals that spontaneously inactivated motors are the
dominant contribution for periods of no or slow motion. Solid and dashed lines show heuris-
tic estimates of the probability of entering such a period, assuming that motors in a traffic jam
require two, or only one binding site on the lattice. For details, see the main text.
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In this work, we have theoretically studied the impact of interactions between kinesin-1 motors
on their motility and transport properties along microtubules. Based on experimental observa-
tions, we have generalised a lattice gas model (155, 156) that has previously proven successful in
explaining collective phenomena, such as the existence of traffic jams, which have recently been
observed experimentally for kinesin-8 (132), and kinesin-4 (133). The generalised model includes
the additional process of motor-induced detachment from the microtubule when one motor is
directly adjacent to another, as well as the stochastic inactivation (pausing) of motors. With only
two fit parameters, namely the rate of motor-induced detachment θ, and the attachment rate of
motors to empty lattice sites ωA, our model can account for four independent sets of measure-
ments from in vitro experiments (30) with kinesin-1 (Fig. III.3).

The level of agreement of our model with experimental data allows us to explore the origin of
the relatively long periods duringwhichmotors hardlymove along theMT at all, which have been
observed in experiments (30). We find that crowding alone cannot explain the high frequency of
these periods ( Fig. III.5). We therefore hypothesize that motors may stochastically switch into
an inactive mode. Consequently, crowding leads to the formation of traffic jams behind inactive
motors; these traffic jams significantly amplify the number ofmotors which pause on the filament,
Eq. (III.19). Our findings suggest that motors might actually be aligned very densely in a traffic
jam (Fig. III.5) such that every motor occupies only a single tubulin dimer, in accordance with
Ref. (31). By comparing the rates of motor-induced detachment and spontaneous unbinding, we
find that kinesin-1 motors spend approximately 22% of their stepping cycle in a weakly bound
state. Most probably, motor-induced detachment occurs when the rear motor is held in this state
for a prolonged time when two motors are directly adjacent, and that its unbinding is therefore
increasingly likely.

Our approach to quantitatively model the dynamics of molecular motors enables us to investi-
gate collective properties of kinesin-1 motors in a “real life” situation. Firstly, in the experiments
of Telley and coworkers (30), on which our model is based, only a small fraction of motors was
labelled. Secondly, insight into the interactions of motors with each other has been gained in our
study without perturbing motor behaviour by applying forces etc. Our results enable us, for ex-
ample, to compare the landing rates of labelled and unlabelled motors, and we have found that in
fact labelledmotors attach to theMTmore slowly than unlabelledmotors. This illustrates that the
choice of a large label can have a crucial impact on certain quantities, and thus great care should
be taken in interpreting experimental data. Most importantly, our model and the experiments of
Telley et al. (30) provide unique insight into the stepping cycle of kinesin, which allows us to esti-
mate the lifetime of a specific, weakly bound state. The major drawback of our method is at once
its greatest strength: Our approach is very indirect. The application of forces to kinesin motors,
e.g. by using optical traps (100, 119), as well as the attachment of large labels such as gold parti-
cles to kinesin heads (120, 122) might have crucial influence on motor dynamics (123). Therefore,
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indirect methods (124, 125) such as the approach employed in this work are essential to confirm,
and improve experimental results found by direct observation.

Future studies, both theoretical and experimental, will have to examinemore closely the forma-
tion and dissolution of traffic jams induced by the spontaneous inactivity of a motor, for example.
In the same way, the spatial arrangement and conformation of motors in a traffic jam requires
closer attention. Such studies are essential to further improve our understanding of the role of
interaction between molecular motors for the dynamics along cytoskeletal filaments. This might
have important implications for the biological function of such processes in the crowded envi-
ronments within cells.
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