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1. Introduction

1.1. Oculopharyngodistal Myopathy

Oculopharyngodistal Myopathy (OPDM, MIM #164310) was �rst described by Sa-

tayoshi and Kinoshita in 1977 as an autosomal dominant muscle condition with onset

in late adulthood and symptoms of ptosis, slowly progressive dysphagia and predom-

inantly distal limb-girdle muscle weakness [1]. Although most reported families show

an autosomal dominant inheritance, patients from Japan [2], the Netherlands [3],

China [4] and Turkey [5] are reported with an autosomal recessive inheritance. To

this day, 82 patients from 34 unrelated families of di�erent ethnic backgrounds have

been reported, with an apparent accumulation of cases in Japan and Turkey. There

had been a discussion, whether OPDM is a clinicopathological distinct entity or a

variant of oculopharyngeal muscular dystrophy (OPMD; MIM #164300) [6] with

the majority of authors claiming, that OPDM is clinically distinguishable from sim-

ilar muscle conditions. Until the causative genetic changes are found, the diagnosis

has to be made based on clinical and histopathological changes as well as on the

exclusion of similar genetic disorders. Furthermore, until the genetic cause or causes

are found, it is not certain if variations in more than one gene are related to a single

distinct phenotype we call OPDM today.

1.1.1. Clinical Symptoms

There is great variability for the age of onset of OPDM, ranging from 7 to 66 years.

In general, Japanese patients tend to develop �rst symptoms much later than in-

dividuals from other countries. Usually, a bilateral ptosis is the initial symptom,

followed by swallowing di�culties, dysarthria, ophthalmoparesis and predominantly

distal limb-girdle muscle weakness. Chinese Patients, however, usually present �rst

with distal muscle impairment [4]. About half of the published cases show respi-

ratory muscle involvement with some of them needing nocturnal non-invasive posi-

tive pressure ventilation. Only two reported patients exhibited cardiac involvement

- common in other muscle conditions such as muscular dystrophies, myo�brillar

myopathies, congenital myopathies and metabolic myopathies - namely hypertra-

beculation and myocardial thinning [7], [8]. CK-levels in those cases are normally

slightly increased ranging from normal to eight-fold of the upper limit [5]. Almost

1



1. Introduction

all examined individuals showed nonspeci�c myopathic changes in electromyography

such as reduced amplitude and duration of muscle unit potentials (MUPs) due to

the reduced number of functioning muscle �bres. Some publications have reported

myotonic discharges [5], [9], [4], [10].

1.1.2. Histopathological �ndings

Light microscopy of all patients reported so far showed myopathic changes such as

�bre size variation, angulated �bres, internal nuclei, interstitial �brosis and fatty

connective tissues as shown in Figure 1.1. Rimmed vacuoles, seen in both �bre

types and appearing with a red margin in Gomori-Trichrome staining, seem to have

a high sensitivity [6], [5] but low speci�city in diagnosing OPDM. They can also

be present in similar muscle conditions like OPMD or inclusion body myositis [11].

Ragged-red �bres or signs of in�ammation were not seen in any of the patients.

Figure 1.1.: Haematoxylin and eosin staining, biopsy taken from tibialis anterior mus-
cle. (A)Non-speci�c myopathological changes with variation in �bre size, increase in
connective tissue and increased number of internal nuclei. Also visible are rimmed
vacuoles (arrows) in angular muscle �bres. (B) Foamy rimmed vacuoles in small and
larger muscle �bres. (Figure taken from Durmus et al. 2011 [5])

Electron microscopy studies have shown a greater variation of �ndings. Some

authors report cytoplasmic �laments [2], [3], which is an unspeci�c �nding in neuro-

muscular disorders. Myelin �gures [5], [9] in rimmed vacuoles seem to be a common

�nding in OPDM, subsarcolemmal masses of lipofuscin were only observed in one

patient [9]. Intranuclear aggregations of tubular �laments, thought to be speci�c

for OPMD, were found in two families [7], [10]. These changes are shown in Figure

1.2. In summary, it is hard to distinguish between OPDM and OPMD based on

histopathological analysis. Therefore, some experts argue that OPDM is a subcat-

egory of OPMD with normal GCG-repeats in the nuclear mRNA binding protein

PABPN1, which are causative for OPMD.
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Figure 1.2.: Electron microscopy lead citrate and uranyl acetate staining. (A)
Tubulo�lamentous inclusions in the nucleus. (B) Numerous myelin �gures were ag-
gregated. (C) (magni�cation: x96.500) Cytoplasmic �laments which are located close
to rimmed vacuoles (the latter indicated by arrows). The �laments are 16-18 nm in
diameter. (Figure taken from Lu et al. 2008 and Uyama et al. 1998 [10], [2])

1.2. Exome Sequencing

1.2.1. The Concept

The human genome consists of around 3 Gb (giga-basepairs) [12] but only 1% of this

vast number constitutes the protein coding part we call the exome - i.e. the protein

coding regions. Nevertheless, it is the region where about 85% of all disease causing

mutations occur [13]. Before the introduction of whole exome sequencing (WES) ,

the common approach in order to identify the underlying genetic variation of inher-

ited diseases included performance of linkage analysis in families with known shared

genetic heritage, followed by Sanger-sequencing of the genomic region of interest or,

alternatively, a candidate gene approach. This is costly and time-consuming and

success in identifying disease underlying mutations has been varying [14]. Hence,

focussing on the exome is a reasonable approach when trying to identify mutations

in Mendelian disorders as this massively reduces time, computational capacity and

the problems with identifying a vast number of intronic and intergenic variants of

unknown signi�cance. In recent years, the hard- and software for WES have im-

proved immensely while costs and hands-on time have decreased, thus making it an

ideal method to target rare inherited conditions of unknown genetic cause. OMIM

(Online Mendelian Inheritance in Man) lists more than 6000 presumably monogenic

disorders but for more than two thirds of these the molecular basis has not yet been

detected [13]. Since the establishment of exome enrichment strategies in 2007 [15],

the �rst genetic diagnosis based on whole-exome sequencing in 2009 [16] and the

�rst identi�cation of a genetic cause of a Mendelian disorder in Miller syndrome

[17], many cases have been solved in this short period of time.
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1.2.2. Method

To perform whole-exome sequencing, the protein coding regions of the genome which

only comprise around 1% of the human genome have to be enriched and ampli�ed.

This is followed by the sequencing step, usually done by modern massive parallel

high-throughput sequencing-by-synthesis machines. Figure 1.3 brie�y summarizes

the work �ow of whole-exome sequencing. There are three possible main principles,

by which exome enrichment can be carried out: By in-solution capture, by hybridis-

ation to an array or by polymerase chain reaction (PCR) . The hybridisation method

uses single stranded oligonucleotides attached to the surface of a chip. These are

complementary to the exonic regions of the human genome. The probe DNA is

sheared to create double stranded fragments and a universal priming sequence is

added. There fragments are then hybridized to the oligonucleotides on the array

and unhybridised DNA is washed away. The remaining fragments are ampli�ed

by PCR and sequenced. Roche NimbleGen is the �rst and most popular system

applying this method. [18]

The most common method for target enrichment, such as the exome, is in-solution

capture. Similarly, to the method described above, it uses a pool of custom oligonu-

cleotides attached to magnetic beads that can hybridize with the targeted region.

Next, they are ferromagnetically pulled down and washed followed by PCR ampli-

�cation and sequencing. [20]

Quite recently, Life Technologies have improved the method of exome enrichment

by PCR and solved many of its problems, such as low read depth and coverage

and combines this with the advantages of being time-saving and needing as little

as 50 ng of template DNA. It is an in-solution capture method and uses primer

pairs for around 300.000 amplicons which are multiplexed in 12 pools of 24.000.

Each of the pools works as one individual multiplex PCR reaction and is then

combined for the sequencing reaction. The sequencing-by-synthesis in this kit works

by measuring H+-ions released during base incorporation as opposed to �uorescence

or chemiluminescence as used in the most common sequencing systems.

The two most common other sequencing techniques were introduced by Illumina

and Roche (454 technique). In both cases, the sequencing library itself has to be

created by PCR-ampli�cation of the DNA-template. Roche then uses an emulsion

PCR to create millions of clonal ampli�cations that are then attached to sequencing

beads. This is followed by pyrosequencing, carried out in cycles. During each cycle,

only one of the deoxyribonucleotides is o�ered. If it matches the base on the comple-

mentary strand, it gets incorporated and pyrophosphate is split o�. Together with

adenosine phosphosulfate (APS) it forms ATP which then, when luciferin is added
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Figure 1.3.: Simpli�ed work �ow of a whole-exome sequencing analysis. Adapted from
Lohmann et al. 2014, [19]
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forms oxy-luciferin and light in the presence of luciferase which can be detected with

a CCD (charge coupled device) -camera, as displayed in Figure 1.4

Figure 1.4.: Schematic illustration of pyrosequencing as used by the Roche 454 se-
quencers.

Illumina, however uses bridge PCRs to create locally di�erentiated clusters of

identical PCR amplicons. DNA and primers get attached to �ow cells and the two

oligonucleotides hybridize to form a bridge as shown in Figure 1.5. After a certain

number of PCR cycles, a cluster of amplicons forms. A step of denaturation leaves

single stranded templates anchored to the surface. The sequencing primer anneals

to the adaptor sequence of each DNA fragment and the sequencing can be done by

a technique called cyclic reversible termination. It uses deoxyribonucleotides which

contain a �uorophore and a reversible blocking group. The four nucleotides have

four di�erent �uorophores attached, emitting at di�erent wave lengths. In each cycle

the polymerase extends the strand by one base and the blocking group terminates
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DNA syntheses. Unbound nucleotides are washed away and the array is imaged

to determine the incorporated nucleotide. In a �nal step, the blocking group gets

removed before a new cycle begins. (See �gure 1.6)

Figure 1.5.: Schematic illustration of Illumina exome enrichment and ampli�ca-
tion. Single DNA fragments and primers (red), complementary to the adaptor-
sequence (green), are attached to �ow cells. In each ampli�cation step, bridges
form and leave clusters of homogenous DNA fragments after the denaturation
step. A universal primer binds to the adaptors for the following sequencing re-
action (adapted from https://www.eurofinsgenomics.eu/de/eurofins-genomics/
produkt-faqs/next-generation-sequencing.aspx).

The common output is FASTQ �les, which is a format for sharing both the se-

quencing read combined with a quality score for each base [21]. The read sequences

now need to be aligned, which means that each short read is mapped to a reference

genome. There is a large number of software tools available that all come with

advantages and disadvantages. The most important aspect in discussing di�erent

alignment algorithms is accuracy. When it comes to single nucleotide polymor-

phisms (SNPs) , SOAP is the most accurate aligner, followed by Bowtie [22], BWA

and Novoalign. Yet, SOAP fails to align any reads with indels greater than 6bp

which limits its use dramatically, considering, that the average pathogenic deletion

has a size of 10bp. Here Novoalign performs best, especially when it comes to greater

indels of 10-16bp. BWA only produces accurate alignment when a threshold value

to remove unfavourable reads is introduced. Another important aspect is runtime.

Here, Novoalign performs very good, even when processing large genomes. How-

ever, Bowtie performs better for high sequencing depth and therefore greater read
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Figure 1.6.: Schematic illustration of sequencing by cyclic reversible termination. Se-
quencing of generated clusters is performed by DNA-replication with reversible dye
terminators. These are deoxyribonucleotides carrying di�erent �uorophores for the
4 bases respectively and a blocking group. Since the blocking group terminates
DNA synthesis the strand is extended only by one labelled nucleotide. The sur-
face is then washed to remove non-incorporated nucleotides. In order to identify
incorporated nucleotide, the �uorescent signal is analysed. Subsequently, the �uo-
rophore and the blocking group is cleaved from the nucleotide and the next cycle
begins. (adapted from https://www.eurofinsgenomics.eu/de/eurofins-genomics/
produkt-faqs/next-generation-sequencing.aspx)

counts. All in all, researchers have to choose the alignment program according to

their computational infrastructure as well as their scienti�c aims and questions.

Post-alignment processing of the data comprises removal of duplicated reads, indel

(insertion or deletion) realignment for a better detection of insertions and deletions,

a base quality score recalibration and �nally the variant calling [23]. Studies in

the past have demonstrated substantial disagreement between variant calls made

by di�erent pipelines. This illustrates the problematic nature of interpreting the

data [24][25][26]. Especially detection of indels is still challenging even though al-

gorithms have improved over the years. Common platforms are genome analysis

toolkit (GATK) [27], Dindel [28], Platypus [29], SAMtools [30] as well as VarScan

[31] for indels. The easiest way of detecting variants is by mapping reads to a ref-

erence genome and then scanning for systematic di�erences [32]. A slightly more

complex way is to reconstruct haplotypes that are well supported by the data to

identify true variants [33]. The advantage is, that this approach ensures semantic

consistency, which means that there can be no logic contradiction in variant calling

such as di�erent bases on the same allele in a detected variant. However, mapping

algorithms also have a number of disadvantages. Firstly, this method focuses on

SNPs and very short indels which leads to errors around larger indels or other vari-
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ants. Secondly, it often fails in regions of high similarity where misalignment creates

a systematic error [29].

Another approach when aiming to avoid these limitations is a reference-free as-

sembly. It does not rely on a reference genome and is therefore variant agnostic. It

also copes well with di�cult to align regions and reconstructs the haplotypes to call

the variants making this algorithm highly speci�c. Especially indels are detected

more sensitively. However, it requires high computational power and has a lower

sensitivity for SNPs compared to mapping algorithms [34]. In addition, some variant

callers also borrow information across a number of samples to support a change in

one sample, if it matches the information contained in many others. Conclusively,

a weakly con�dential variant can be called if it is con�dently identi�ed in another

sample or samples. [29].

Depending on alignment and variant calling programs, one is left with around

50,000-100,000 variants from whole exome sequencing including intronic, intergenic

and changes found in the untranslated regions (UTRs) of which around 20,000 are

on-target meaning in exonic regions [23]. Annotation programs are used to add

information such as genomic feature, gene symbol, exonic function and amino acid

change of each variant. The program Annovar, that was used in this project, also

adds information from dbSNP, 1000genomes and ESP6500 for assessing the minor

allele frequencies, integrates data retrieved from Phylop and Genomic Evolutionary

Rate Pro�ling (GERP) and employes di�erent tools to predict the pathogenicity of

variants.

These called and annotated variants then have to go through a �ltering pipeline

to reduce this high number to just a few candidate variants. The �ltering steps are

based on certain assumptions: First, the disease causing variant is rare, meaning only

present in a�ected individuals. Second, only homozygous or heterozygous mutations

in one single gene are required to cause the observed phenotype. Third, these

mutations are 100% penetrant and have a large e�ect size usually a�ecting protein

sequence (insertions/deletions as well as missense, nonsense, frameshift or splice-

site aberrations). The assumption of a high penetrance is needed when interpreting

allele frequencies. Variants with a small e�ect size usually have a higher frequency

and are associated with polygenic conditions such as diabetes. Therefore, �ltering

for indels and nonsynonymous, nonsense or splice-site changes and for those with a

minor allele frequency of less than 1% is usually the �rst step [35]. Depending on

the project, variants of a�ected individuals from one family can then be intersected

to see, which are present in all and excluded if they are also found in healthy family

members. Finally, the number can be further reduced based on the pattern of
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inheritance. To give an example, heterozygous � but not compound heterozygous

� as well as X-chromosomal variants can be excluded for an autosomal recessive

model.

1.2.3. Limitations

Even though WES provides a fast and relatively a�ordable method, there are a

couple of limitations when trying to detect disease causing variants. Around 15%

of all known causative mutations for Mendelian conditions cannot be found within

the protein coding regions. These variants comprise for example mutations in the

promoter regions, in the introns which form cryptic splice acceptor sites or in the

untranslated regions. It is also possible, that variants in non-coding genes might

a�ect cellular pathways and are therefore pathogenic. These cases are di�cult as

researchers usually spend much time with non-causative, rare variants which segre-

gate with the disease and try to prove their pathogenicity. Additionally, the coverage

is not yet satisfactory. Especially GC-rich regions are hard to enrich resulting in poor

read depth as well as the problem that some regions are not covered at all [36], [35].

Furthermore, duplicated regions such as pseudogenes usually cause a large number

of false positive calls as the alignment programs map these reads to all similar re-

gions and consequently, the di�erences are called as genomic changes. This can be

problematic for scientists when the list of candidate genes after the �ltering steps is

unsatisfactory because one cannot dismiss the possibility that the exonic pathogenic

variant is simply not covered. Even if the coverage would be 100%, one would still

face di�culties with copy number variations and larger insertions or deletions. Copy

number variations are usually undetectable by WES, as read depth varies a lot in

di�erent chromosomal regions and indels are a common cause, why reads cannot

be aligned as they di�er too much from the reference sequence. If a variant in a

gene, which is not yet annotated was disease causing, it would either not be en-

riched before sequencing or �ltered out in the bioinformatic pipeline [13]. On top of

this, one often faces a large number of possible disease causing variants. Especially

with smaller families and dominant models it is then hard to decrease this number

by linkage analysis or homozygosity mapping. These variants are often di�cult to

interpret [19]. Also, when detecting changes that are likely disease-causing, WES

cannot prove that a speci�c variant underlies the condition. Often it is then di�cult

to prove pathogenicity [35]. Usually, researchers try to �nd mutations in the same

gene of other a�ected individuals from di�erent families. If that is not possible,

e.g. in very rare diseases, it is necessary to look at cell and animal models to �nd

the pathomechanism. Also, this problem harbours a second challenge: It can be
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easy to fall for a compelling but false causative variant when being confronted with

a large number of rare, protein altering genetic changes. This e�ect is called the

�narrative-potential� of human genomes [37], [38]. Conclusively, researchers have to

be careful when claiming an association between genetic variants and disease and

consider certain guidelines such as these published by MacArthur et al. in 2014 [39].

Taken together, the limitations of whole exome sequencing only result in a success

rate of around 25% [40], [41].

1.2.4. Ethical Implications

In addition, researchers have to consider ethical implications, when using WES.

Some of these are rather theoretical but still have to be discussed, others occur in

everyday laboratory practice. Most importantly, there are no generally accepted

guidelines determining how to proceed, when detecting pathogenic genetic variants

like mutations in BRCA1, commonly causing breast- and other gynaecological can-

cers. Green et al. from the American College of Medical Genetics and Genomics

(ACMG) have published a list of 56 genes and suggested to inform the patients when

detecting mutations in one of these [42]. These genes are usually associated with

treatable/curable conditions, nevertheless this topic is still subject of debate. Yet,

informing the index patient about an important pathogenic variation is di�cult as

relatives who have a right not to know and never gave their consent to the project

might also be a�ected. Most problems, however, deal with data protection. DNA

contains a lot of information which may be of interest for insurers, employers or the

police. Once it is sequenced and decoded it is hard to tell what is going to happen

in the future. Some sequences from WES and WGS can even be downloaded from

open access libraries and their future use is unspeci�ed [14]. DNA harbours not only

information of the individual who has given informed consent to publishing the data

but also of all his relatives as these share some of his variants[13]. It might even

be possible to identify this individual based on the information from his DNA [14].

In conclusion, it is di�cult to obtain informed consent since it cannot be predicted

what information is gathered from the genomic sequence and how it may be used

in the future [43], [44]. However, when dealing with rare diseases, research is often

the only hope for patients to get a genetic diagnosis. This is important for them

due to implications for relatives as well as family planning. In some rare cases, a

correct genetic diagnosis also poses treatment options such as in Brown-Vialetto-

Van Laere syndrome where high dose ribo�avin substitution results in a tremendous

improvement of symptoms [45]
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2. Aim of the Study

This study aims to identify the causative genetic variant responsible for OPDM.

The �rst descriptions of this disease entity have been published many years ago [1]

[46] and all e�orts to �nd the underlying mutations up to the present have been

unsuccessful. Patients and their families su�er tremendously from OPDM as this

condition a�ects their ability to perform everyday tasks, eating, swallowing, walking

and eventually breathing. It also causes high costs for public health care or insurers,

so it is an important task to take the next step to provide support for the patients

and identify the condition's genetic cause. Most interestingly, di�erent inheritance

patterns and phenotypes have been reported, indicating that a complicated patho-

mechanism might be underlying [5], [7], [3]. A similar condition, OPMD, is caused

by a repeat expansion resulting in a dominant or recessive pattern of inheritance

depending on the number of additional triplets [11]. Finding the causative mutation

in OPDM would answer a number of questions such as whether this condition is a

genetically homogeneous disease and what the underlying pathomechanism is. De-

pending on the disease mechanism researchers could establish diagnostic algorithms

and eventually �nd a treatment as has been the case in Pompe's Disease where the

defective enzyme alpha glucosidase can be substituted intravenously [47]. Also, the

knowledge that a certain mutation results in a speci�c phenotype can provide in-

formation on cellular and tissue physiology. Therefore this study tried to map the

disease locus using linkage analysis, homozygosity mapping and haplotyping in pre-

viously reported families from Turkey [5]. In order to identify the mutation causing

OPDM whole exome sequencing was carried out for 2 patients from a large dominant

family, 3 patients from a recessive family (both from Turkey [5]) and unpublished

patients from Canada, Finland and the United Kingdom. Candidate mutations were

evaluated by segregation analyses in the corresponding families as well as tests for

their occurrence in ethnically matched control individuals.
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3. Materials and Methods

3.1. Patients and Controls

Patients were assessed by their referring clinicians and genomic DNA was sent to the

Institute of Genetic Medicine, Newcastle with the patient's informed consent. DNA

from 70 ethnically matched healthy individuals was provided by the �Friedrich-Baur-

Institut der Medizinischen Fakultät an der Neurologischen Klinik und Poliklinik der

LMU München�. All studies have been approved by the local ethics committee in

Newcastle-upon-Tyne, UK.

3.2. Chemicals

Chemicals used can be found in table 3.1.

3.3. Molecular Biological Methods

3.3.1. Quanti�cation of Nucleic Acid Concentrations

Two di�erent systems were used to determine DNA concentrations. For larger

sample numbers the Nanodrop® spectrophotometer (Thermo Scienti�c), using an

ultraviolet-absorbance method, was used according to the manufacturer's instruc-

tion [48]. A fast alternative for smaller sample quantities is the Qubit® system (Life

Technologies) that applies �uorescent dyes to quantify DNA concentrations.

3.3.2. Polymerase Chain Reaction

3.3.2.1. The Main Principle

Introduced by Karl Mullis in 1983, the polymerase chain reaction (PCR) is a fast

and cheap biochemical process to amplify a target genomic DNA sequence [49], [50].

The method relies on thermal cycling, consisting of cycles to separate the two DNA

strands, for the annealing of the sequence speci�c primers and the elongation by a

heat-stable DNA polymerase (Usually isolated from Thermus aquaticus).
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Chemical Supplier
Agarose Sigma-Aldrich
Tris base Sigma-Aldrich
Glacial acetic acid Sigma-Aldrich
EDTA Sigma-Aldrich
Safeview abm
Taq polymerase Molzym
MgCl �PCR enhancer� Molzym
dNTPs ThermoFisher
Pfu polymerase ThermoFisher
Primers MWG Euro�ns
Restriction endonucleases New England BioLabs (if not stated otherwise)
Nuclease-free water Qiagen
EB-Bu�er Qiagen
Acrylamide/Bis-acrylamide Sigma-Aldrich
TEMED Sigma-Aldrich
Ammonium persulfate Sigma-Aldrich
Ethidium bromide Sigma-Aldrich
Boric acid Sigma-Aldrich

Table 3.1.: Chemicals used in this study and the supplying companies.

Double distilled water 35 µl
10 mM dNTP mix 2 µl
10X Moltaq PCR bu�er 5 µl
Moltaq PCR enhancer 4 µl
Forward primer at 50 pmol/µl 1 µl
Reverse primer at 50 pmol/µl 1 µl
Genomic DNA template at 100 ng/µl 1 µl
Moltaq Polymerase 1 µl

50 µl

Table 3.2.: Amounts of chemicals used for a standard PCR with a Taq-polymerase

3.3.2.2. Standard Protocol

Standard PCR was done using the Moltaq® Taq Polymerase (Molzyme) with the

amount of reagents which are listed in table 3.2 on page 14.

Standard PCR was performed in a Sensoquest® thermal cycler according to the

protocol found in table 3.3.

The melting temperature of primers increases with higher GC content and length.

It was calculated with the UCSC In-Silico-PCR software (https://genome.ucsc.

edu/cgi-bin/hgPcr) and the annealing temperature was adjusted depending on

the primer melting temperature.
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1. 94◦C: 5min Denaturation

2. 40 cycles
(1) 94◦C: 15s Separation of DNA strands
(2) 52-62◦C: 30s Primer annealing
(3) 72◦C: 2min DNA elongation

3. 72◦C: 7min Final elongation

Table 3.3.: Standard PCR-cycler settings with 40 cycles.

Acrylamide/Bis-acrylamide, 30% solution 4,8 ml
Water 4,8 ml
5x TBE bu�er 2,4 ml
10% ammonium persulfate 200 µl
TEMED (Tetramethylethylendiamine) 10 µl

Table 3.4.: Protocol for casting polyacrylamide gels.

3.3.2.3. Modi�cation of standard PCR protocol

The Phusion ® High-Fidelity DNA Polymerase (New England Biolabs) was used for

target sequences with a high GC content or repeat-rich parts of the DNA according

to the manufacturer's instructions.

3.3.2.4. PCR Primers

PCR Primers were designed using primer3 (http://primer3.ut.ee/) based on the

hg19/GRCh37 assembly (http://genome.ucsc.edu/cgi-bin/hgNear), introduced

in 2009. They were synthesised by Euro�ns MWG Operon, Ebersberg, Germany

using a HPSF (High Purity Salt Free) puri�cation protocol. A list of all primers

used can be found in the addendum (A.1 on page 93).

3.3.2.5. Gel Electrophoresis

1%-3% agarose gels were used for electrophoreses depending on the PCR prod-

uct's length. Standard agarose concentration for PCR reactions was 2%. The elec-

trophoresis was done in 1X TAE (Tris-acetate-EDTA) bu�er. DNA was made visible

with Safeview (NBS biologicals). TAE was made in 10x stock solutions using 48.4 g

of Tris base [tris(hydroxymethyl)aminomethane], 11.4 ml of glacial acetic acid (17.4

M) and 3.7 g of EDTA, disodium salt in 1l of deionised water.

To determine the length of microsatellites 12% polyacrylamide gels were cast

according to the following protocol:

The gels were run in a vertical electrophoresis system and 1X TBE bu�er. 10X

TBE stock solution was made using 108 g Tris, 55 g Boric acid, 9.3g EDTA and vol-
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ume was adjusted to 1 liter using deionised water. DNA was stained with ethidium

bromide according to the manufacturer's instructions.

3.3.3. PCR DNA Clean-up

DNA was either puri�ed directly after the PCR using the QIAquick PCR Puri�cation

Kit or extracted from agarose gels using the QIAquick Gel Extraction Kit (both

Qiagen). 96-well plate PCR products were puri�ed using the GenEluteTM 96 Well

PCR Clean-Up Kit (Sigma-Aldrich) according to standard protocol.

3.3.4. Cleavage of DNA with Restriction Endonucleases

Whenever possible and reasonable, restriction endonucleases were used for segre-

gation analysis of variants. For DdeI (Promega), 3µl of the supplied 10X bu�er

D, 25µl water and 20 units in 2µl of the restriction enzyme were added to puri-

�ed PCR products and incubated at room temperature overnight. BsrDI -digest

was performed with 15µl puri�ed PCR-products, 2µl 10X Bu�er 2, 2µl 10X BSA

(Bovine Serum Albumin) as well as 5 units in 1µl restriction enzyme and incubated

for 2 hours at 65◦C. Digested DNA fragments were analysed on a 3% agarose gel.

3.3.5. DNA Sequencing and Sequence Analysis

Sequencing was done by Euro�ns MWG Operon (Ebersberg, Germany) by cycle

sequencing, a modi�cation of Sanger sequencing. Sanger sequencing, �rst introduced

in 1977 [51] uses the chain-termination method with �uorescently or radioactively

labelled dideoxynucleotides (ddNTP). Cycle Sequencing however uses a heat-stable

polymerase and �uorescently labelled ddNTPs emitting at di�erent wavelengths

and can therefore be performed in one tube with much less template DNA. The

electrophoresis is done in modern 96-capillaries sequencers.

The results were analysed with Chromas (http://chromas.software.informer.

com/) and BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

3.4. Bioinformatic methods

3.4.1. SNP-Array

SNP-arrays for 36 a�ected and una�ected individuals from 8 Turkish families were

done by Source BioScience (Nottingham, UK). Each sample was normalised to a con-

centration of 50ng/µl. 200ng (4µl) of each normalised sample was ampli�ed and sub-

sequently prepared for hybridisation (fragmentation, precipitation, re-suspension).
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The samples were hybridised to In�nium II Human Linkage-12 arrays from Illumina

for 24 hours. Following hybridization, the In�nium arrays were stained, washed and

�nally scanned.

3.4.2. Linkage Analysis

The program Merlin was used to perform parametric multipoint linkage analyses

[52]. Linkage analyses were carried out for each individual family as well as for

all families together using a dominant, a co-dominant and a recessive model. The

a�ection status of the youngest generation in Family 1 (see �gure 4.1 on page 22

for pedigree) was de�ned as �unknown� to prevent the result of false positive or

negative high linkage loci. Merlin requires 4 input-�les, a data �le (parametric.dat),

a pedigree �le (parametric.ped), a map �le (parametric.map) and a model �le (para-

metric.model). The data �le contains all the single nucleotide polymorphisms that

the linkage analysis is based on. The map �le links these markers to positions on

each chromosome in cM (CentiMorgan). The pedigree �le combines information

from all patients namely their a�ection status, their gender, their generation and

their parents. To calculate the LOD (logarithm of odds)- score for di�erent patterns

of inheritance, a model �le is used to provide data about the estimated penetrance

and the minor allele frequency of the mutation (For example input �les see �gure

A.2 on page 104 in the addendum.). To verify that input �les are being interpreted

correctly, the program Pedstats is used [53] by prompting the following command

in DOS :

prompt> pedstats -d parametric.dat -p parametric.ped

If the pedstats output produced a correct summary of the families, merlin was used

to perform a parametric linkage analysis by prompting the following command:

prompt> merlin -d parametric.dat -p parametric.ped -m parametric.map

��model parametric.model ��step 3 ��pdf

The �step 3 option of the Merlin program was used, which adds an computed cal-

culation of the LOD-score at three steps between two consecutive markers. This

improves the analysis as the LOD-score tends to decrease around marker locations.

By adding �pdf the data is shown in pdf �les. All input �les were created individu-

ally for each chromosome and for di�erent combinations of families. Genetic linkage

is indicated by a so called LOD score, which is the logarithm (base 10) of odds of

the likelihood of obtaining the test data if the two loci are linked compared to the

likelihood of observing the same data purely by chance [54]. By convention, a LOD
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score greater than 3 is considered evidence for linkage whereas a LOD-score of -2 is

considered an exclusion of linkage.

3.4.3. Homozygosity Mapping

Homozygosity mapping was performed based on the data from SNP-arrays and

Exome-Sequencing of individuals II/2, II/3 and II/5 using the program Homozy-

gositymapper (http://www.homozygositymapper.org/) [55]. This web-based pro-

gram stores marker data in a database into which SNP genotype �les can be directly

uploaded. The �les to be uploaded must be tabular with the samples as columns

and the SNPs as rows. Genptypes were written as follows: �AA� for wildtype; �AB�

for heterozygous variant; �BB� for homozygous variant and ��� if this SNP has not

been detected. Doing homozygosity mapping with exome sequencing data is not rea-

sonable as homozygous wildtype polymorphisms are not being detected by variant

calling programs. In consequence, one can not di�erentiate between homozygosity

for the wildtype allele and lack of alignment for this region. In these cases, the geno-

type was declared unknown if the polymorphism was called in one or two siblings.

In order to receive better results the program was provided with 14 control sam-

ples. Genotype data was downloaded from the website of the International Hapmap

Project (http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en). Unfor-

tunately, there is data from only a few ethnic groups and none perfectly matches the

background of the cohort the study at hand is based on. Due to the fact, that Turk-

ish people share a majority of their haplogroups with their caucasian neighbours,

Italian individuals were chosen as a control group.[56] Default settings were used in

Homozygositymapper and the built-in candidate gene search engine GeneDistiller

(http://www.genedistiller.org.) [57] was used to analyse genes in homozygous

regions. An excel spreadsheet with information on the genes, their expression in

skeletal muscle and information from the OMIM database [58] found inside ho-

mozygous regions was downloaded from the website and further analysed. Lists

of genes from the SNP genotyping array and the exome sequencing data were both

concatenated and intersected to retrieve the maximum as well as most likely number

of candidate genes.

3.4.4. Microsatellite analysis

Microsatellite analysis was done using Simple Sequence Length Polymorphisms

(SSLPs) on Chromosome 10. These markers were selected based on the informa-

tion found on UniSTS (http://www.ncbi.nlm.nih.gov/unists) a database listing

sequence tagged sites (STSs) . STSs are de�ned by PCR primer pairs and are asso-
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ciated with additional information such as genomic position, genes, and sequences.

The markers listed in table 3.5 on page 19 were ampli�ed using �uorescently la-

belled primers and their length was determined in capillaries in the laboratory of

Professor Angela Hübner, Klinik- und Poliklinik für Kinder- und Jugendmedizin,

TU-Dresden, Germany.

Marker Position on Position
Genethon Map: (cM) in Mb

D10S1787 70,90 49,8
D10S1793 70,90 50,1
D10S1766 72,00 50,7
D10S196 72,50 52,1
D10S568 74,20 53,7
D10S1643 77,00 55,3
D10S1756 78,40 59,1
D10S589 81,70 61,5
D10S1652 83,30 64,4
D10S561 83,30 65,1
D10S1743 84,90 67,4
D10S1665 92,20 71,3
D10S1688 94,00 72,6
D10S1650 95,60 73,3
D10S1730 103,20 78,9
D10S201 105,90 81,0
D10S1777 105,90 81,1
D10S1686 109,20 85,6

Table 3.5.: List of microsatellites and their genomic position used for haplotype anal-
yses.

3.4.5. Whole Exome Sequencing

3.4.5.1. Target enrichment and sequencing

Exome sequencing for Patients I/5 (OPDM1) and I/10 (OPDM2) was done by Eu-

ro�ns MWG Operon (Ebersberg, Germany) based on the in-solution hybridization

Agilent SureSelect Exome kit with Illumina HiSeq 2000 sequencing. DNA from pa-

tients OPDM 3 - 8 were sent to Otogenetics (Atlanta, USA) for exome sequencing.

The Agilent V4 51Mb kit was used for target enrichment and sequencing was done

on an Illumina HiSeq 2000 sequencer.

3.4.5.2. Bioinformatic work�ow

The raw data was downloaded from the company's servers as FASTQ �les and

aligned to the hg19 assembly using programs working with various algorithms. This
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was done by the Burrows-Wheeler Aligner (BWA) and Bowtie, both using a FM-

index as well as Novoalign and MOSAIK, both hashing the reference [59]. SAMtools

was used to create a sorted BAM �le. Picard, a program that comprises Java-based

command-line utilities that manipulate SAM �les, was used to remove duplicate

reads to decrease the number of false positive heterozygous calls. SAMtools was

used to create a BAI �le and SNVs were called by VarScan whereas indels were

called by Dindel. The calls were �ltered for variants which are 'on-target' (Truseq

62Mb target coordinates +/- 500bp), seen on both DNA strands and for a minimum

coverage of 5. SNVs found in more than 25% of the reads were declared heterozy-

gous, when found in more than 85% they were considered homozygous. Finally,

Annovar was used for gene based annotation of the changes. Given a list of variants

from whole-exome or whole-genome sequencing, it generates an Excel-compatible

�le with gene annotation, the nucleotide- as well as the amino acid change, SIFT

scores [60], PolyPhen2 scores [61], LRT scores [62], MutationTaster scores [63], Phy-

loP conservation scores [64], GERP++ conservation scores, dbSNP identi�ers, 1000

Genomes Project allele frequencies, ESP 6500 exome project allele frequencies and

other information. All variants were �ltered for those with a minor allele frequency

of less than 1% according to dbSNP (http://www.ncbi.nlm.nih.gov/SNP/), 1000

Genomes Project (http://www.1000genomes.org/) and the Exome Variant Server

(http://evs.gs.washington.edu/EVS/) as well as the Newcastle University In-

house MAF list. Any changes that were not found in exonic regions, the UTRs or

putative splice site mutations were �ltered out together with those in duplicated

regions (>92% similarity). Variants found in samples �OPDM1� and �OPDM2� as

well as �OPDM 3� - �OPDM 5� were intersected and analysed.
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4.1. Clinical Findings and Pedigrees

Most of the patients that were subject of the study at hand, come from a region

at the Black Sea in Turkey and were assessed in Istanbul at the Department of

Neurology (as described by Durmus et al. [5]). These 47 patients derive from 9

unrelated families whose pedigrees can be found in �gure 4.1. However, a�ection

status of individuals I/14 and I/15 could not �nally be determined by the clinicians

as they were very young when the study was performed [5]. Therefore, they were

not considered in the linkage- and the haplotype analysis. Apparently, Families 1,

3, 4, 6 and 8 show a dominant pattern of inheritance, whereas Families 2 and 7 are

clearly recessive. The pedigree of Family 5 however implies incomplete penetrance

with an underlying dominant inheritance, as X-chromosomal dominant heredity or

a mitochondrial disease can be excluded due to the una�ected male conductor in the

third generation. OPDM in the single patient from Family 9 could occur sporadi-

cally or be caused by either a recessive mutation or a dominant one with incomplete

inheritance. OPDM-patient DNA was also provided by Dr Tanya Stojkovic in Paris,

France, Professor Dotti in Siena Italy ([9]), Professor Bjarne Udd in Tampere, Fin-

land, Professor Bernard Brais in Montreal, Canada, from Professor Patrick Chinnery

in Newcastle-upon-Tyne, UK and from Dr Paul Maddison in Nottingham, UK. Un-

fortunately, clinical data was not provided for any of the non-Turkish and non-Italian

patients but a clinical diagnosis and a genetic exclusion of other common neuromus-

cular disorders with a similar phenotype like Oculopharyngeal Muscle Dystrophy

was con�rmed.

4.2. Linkage Analysis

Parametric linkage analysis was performed based on SNP genotyping array data

(In�nium II Human Linkage-12 array by Illumina) as described in chapter 3.4.2 on

page 17. It was done for each of the Families 1, 2, 3, 5, 6 and 8 individually as

well as all families 1-9 together. Also single families have been excluded to see how

this a�ects the LOD-score. If it was to drop in a high linkage region this would

be a lead that OPDM might be caused by mutations in di�erent genes in di�erent
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Figure 4.1.: Pedigrees of 9 Turkish families a�ected by oculopharyngodistal myopathy.
Adapted from Durmus et al. 2011 [5]

families. Figures 4.2 and 4.3 summarise the most important �ndings. For no other

chromosome apart from chromosome 2 and 10 a LOD-score greater than 1.0 has

been observed for any combination of families. For a recessive model, Family 2

shows a region around markers at 150cM where the LOD-score reaches 1.5 which

is signi�cant, considering that only 5 individuals have been genotyped. However,

this region can almost certainly be excluded as one shared disease locus for all

families because the LOD-score reaches -2 for markers at this position in Family

1. This is re�ected in the linkage analysis of all families where the LOD-score is 0.

Nevertheless, if all but Family 1 are considered, this increases the LOD score for

this region on chromosome 2 beyond 1.7 indicating that OPDM in other families

might also be caused by a mutation in this region. The linkage peak in Family 1 on

chromosome 2 for a recessive model does not have to be of concern as the pattern

of inheritance is clearly dominant. For a dominant model only chromosome 10

exhibited a positive linkage. If a parametric linkage analysis for the largest clearly

dominant Family 1 is performed, the resulting LOD-score on chromosome 10 is

surprisingly low with values of around 1. Similarly, the LOD-score does not exceed

1 in Family 2 for this region. However, if all families are analysed together, the

LOD-score almost reaches 3 but it stays at values between 1,5 and 2, when Family

1 is excluded. This implies that the disease locus for families showing a dominant

inheritance could be successfully linked since the addition of other families increased

the linkage score considerably. The relatively high linkage on chromosome 10 for
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a recessive model was interpreted to be a by-product of the correctly mapped area

of interest in some families. Conclusively, the area at around 100cM - which is

approximately at the genomic position Chr10:80,000,000 - was considered to be the

most likely disease locus for dominant families.

4.3. Homozygosity Mapping

Given a high linkage to chromosome 2 for Family 2 which shows a recessive pattern of

inheritance, homozygosity mapping was used to further map the disease locus. The

web-based program was used as described previously in chapter 3.4.3 on page 18. It

does not only detect homozygous regions but also combines them with information

on allele frequency to provide an estimation score how likely the disease causing gene

is to be found in a region. For example, if an SNP has a very low frequency and

both alleles are wildtype in all a�ected individuals, this would result in a lower score.

However, a very rare homozygous polymorphism would result in high scores. Figure

4.4 on page 26 shows results from homozygosity mapping from both SNP genotyping

array (A)(Individuals II/1, II/2, II/3, II/4 and II/5) and exome sequencing data (B)

(Indiciduals II/2, II/3 and II/5) and �nally when data was combined prior to analysis

(C). D provides further information on homozygous stretches from combined data

results. Apparently, no larger homozygous regions could be detected which would

be in line with �ndings in a consanguineous family. Additionally, results from the

SNP array data di�er from those retrieved through exome sequencing as there is no

convincing homozygous region shared by both analyses.

When both information is combined and analysed (�gure 4.4, C, D) the output

reaches higher scores than when analysed separately. Nevertheless, no larger ho-

mozygous blocks could be identi�ed. Most interestingly, one large region seems to

be identical in all a�ected individuals. Both the data from the SNP genotyping ar-

ray and the data derived from whole exome sequencing show that all 5 patients are

homozygous and heterozygous for the same polymorphisms in the region between

rs12711538 and rs344689. This might be due to compound heterozygosity for alleles

shared by all patients and could be the disease causing locus. Genotypes for all 5

patients for this region can be found in �gure 4.5 on page 27. A list of all genes

in this region which are expressed in skeletal muscle can be found in table 4.1 on

page 28. Expression data was derived from the Expression Atlas providing data on

tissue expression of all protein coding genes (https://www.ebi.ac.uk/gxa/home).

Among these, Myosin VII B would be a viable candidate gene. Additionally, the
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Figure 4.2.: Parametric linkage analysis of Family 1 (a and b), Family 2 (c
and d), Families 1 to 9 (e and f) and Families 2 to 9 (g and h). a, c, e and g
show linkage analysis for a dominant model and b, d, f and h for a recessive
model of chromosome 2. The location on each chromosome in Centimorgan
(cM) is displayed on the x-axis and the LOD score on the y-axis. The top
grey line in each �eld marks a LOD-score of 3, the purple line marks a LOD
score of 0 and the lower grey bar of -2.
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Figure 4.3.: Parametric linkage analysis of Family 1 (a and b), Family 2 (c
and d), Families 1 to 9 (e and f) and Families 2 to 9 (g and h). a, c, e and g
show linkage analysis for a dominant model and b, d, f and h for a recessive
model of chromosome 10. The location on each chromosome in Centimorgan
(cM) is displayed on the x-axis and the LOD score on the y-axis. The top
grey line in each �eld marks a LOD-score of 3, the purple line marks a LOD
score of 0 and the lower grey bar of -2.
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Figure 4.4.: Homosygosity mapping of individuals from family 2 performed with Ho-
mozygosityMapper. A, B and C show the genome-wide homozygosity scores. A is
based on the SNP genotyping array of individuals II/1, II/2, II/3, II/4 and II/5, whereas
B displays the results based on the exome sequencing data from patients II/2, II/3 and
II/5. C shows the results, when both data is combined. Scores are shown as bars. Red
coloured bars indicate the most promising genomic regions. Note, that grey lines do
not show absolute score values but display the relation to the highest score, which is
plotted to the top grey line. These regions are further speci�ed in D for the combined
analysis data from the SNP genotyping array and exome sequencing.
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RNA polymerase POLR2D can be found among these which is striking, because the

gene POLR3A is located inside the disease locus for the dominant Family 1.

Figure 4.5.: Genotypes for Individuals II/1, II/2, II/3, II/4 and II/5 from rs12711539
and rs344689 (chromosome 2: 121.837.519 - 140.100.106). This �gure displays the single
genotypes of all samples. Each marker position is depicted as a coloured box. Blue codes
for heterozygosity, grey for unknown and red for homozygosity of a certain genotype
where longer homozygous stretches are drawn in a darker shade of red than single
homozygous markers. The black rectangular surrounds the region from rs12711539 to
rs344689 which is heterozygous and shared by all family members. This implies that
OPDM might be caused by compound heterozygous mutations in this region.

4.4. Exome Sequencing

4.4.1. OPDM I and II

4.4.1.1. Work�ow

After mapping the disease locus in Family 1 to a region around Chromosome 10:

80,000,000bp, whole exome sequencing of a�ected individuals I/5 (OPDM1) and

I/10 (OPDM2) was carried out by MWG Euro�ns. The data was downloaded,

aligned and variants were called and �ltered as previously described in chapter 3.4.5

on page 19. Table 4.2 on page 29 describes the applied �ltering steps and the number

of remaining variants afterwards. Among the 66,130 variants found in I/5 and the

60,478 in I/10, 24 changes were detected that were rare (allele frequency <1% in

the EVS and 1000genomes project), on target (exonic or splice site), heterozygous,

protein altering, not in duplicated regions and shared by both patients. Duplicated

regions were excluded because variants found here are most likely false positive

calls due to misalignment. Among these, 18 variants were found in genes that are

expressed in skeletal muscle (information taken from https://www.ebi.ac.uk/gxa/

home).

4.4.1.2. Variants detected

Table 4.3 on page 30 summarises 18 variants left after intersection and �ltering of

variants from WES of individuals I/5 and I/10 found in genes expressed in skeletal

muscle. Interestingly, most of them do have a dbSNP ID, meaning that they have

already been reported as common polymorphisms. Nevertheless, they are very rare

with most changes not being listed in EVS or the 1000genomes. Additionally, the
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genesymbol description startpos
GLI2 GLI family zinc �nger 2 121493441
TFCP2L1 transcription factor CP2-like 1 121974163
CLASP1 cytoplasmic linker associated protein 1 122095352
TSN translin 122513121
GYPC glycophorin C (Gerbich blood group) 127413426
BIN1 bridging integrator 1 127805599
ERCC3 excision repair cross-complementation group 3 128014866
MAP3K2 mitogen-activated protein kinase kinase kinase 2 128056245

PROC
protein C (inactivator of coagulation factors
Va and VIIIa)

128175996

MYO7B myosin VIIB 128293378
LIMS2 LIM and senescent cell antigen-like domains 2 128395996
GPR17 G protein-coupled receptor 17 128403439
WDR33 WD repeat domain 33 128461808
POLR2D polymerase (RNA) II (DNA directed) polypeptide D 128603840
SAP130 Sin3A-associated protein, 130kDa 128698791
UGGT1 UDP-glucose glycoprotein glucosyltransferase 1 128848754
HS6ST1 heparan sulfate 6-O-sulfotransferase 1 129023054
RAB6C RAB6C, member RAS oncogene family 130737235

SMPD4
sphingomyelin phosphodiesterase 4, neutral
membrane (neutral sphingomyelinase-3)

130908965

MZT2B mitotic spindle organizing protein 2B 130939248
IMP4 IMP4, U3 small nucleolar ribonucleoprotein 131100470

PTPN18
protein tyrosine phosphatase, non-receptor type 18
(brain-derived)

131113580

ARHGEF4 Rho guanine nucleotide exchange factor (GEF) 4 131594489
FAM168B family with sequence similarity 168, member B 131805449

PLEKHB2
pleckstrin homology domain containing, family B
(evectins) member 2

131862420

WTH3DI RAB6C-like 132118065
MZT2A mitotic spindle organizing protein 2A 132227298
TUBA3D tubulin, alpha 3d 132233580
C2orf27A chromosome 2 open reading frame 27A 132479973
C2orf27B chromosome 2 open reading frame 27B 132552534
GPR39 G protein-coupled receptor 39 133174147
LYPD1 LY6/PLAUR domain containing 1 133402337

MGAT5
mannosyl (alpha-1,6-)-glycoprotein beta-1,6-
N-acetyl-glucosaminyltransferase

134877502

CCNT2 cyclin T2 135676363
MAP3K19 mitogen-activated protein kinase kinase kinase 19 135722076
RAB3GAP1 RAB3 GTPase activating protein subunit 1 (catalytic) 135809835
R3HDM1 R3H domain containing 1 136289036
UBXN4 UBX domain protein 4 136499189
LCT lactase 136545415
MCM6 minichromosome maintenance complex component 6 136597196
DARS aspartyl-tRNA synthetase 136664252
CXCR4 chemokine (C-X-C motif) receptor 4 136871919
HNMT histamine N-methyltransferase 138721808

Table 4.1.: List of genes in possible disease locus on chromosome 2 which are expressed
in skeletal muscle and their genomic position on chromosome 2.
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changes in CEP152 and ELANE are predicted to be benign by the program Muta-

tionTaster making it less likely that one of them is causative for OPDM in patients

I/5 and I/10.

Filtering step Number of variants

OPDM1 OPDM2

1. All detected variants 66,130 60,478
2. ...�ltered for exonic and
splice site variants

10,266 10,813

3. ...�ltered by the pattern
of inheritance
(autosomal, heterozygous)

6,384 6,622

4. ...�ltered for a frequency
of <1% in 1000genome and EVS

1,269 1,173

5. ...�ltered excluding
synonymous variants

915 848

6. ...�ltered excluding variants
in duplicated regions

761 719

7. Variants shared
by both patients

24

8. Variants expressed in skeletal
muscle (EMBL-EBi-GXA)

18

Table 4.2.: Filtering pipeline applied to whole-exome sequencing data from individuals
OPDM1 and OPDM2. Coding exons and splice sites were de�ned based on the NCBI
annotation.

4.4.1.3. Salient Variants

4.4.1.3.1. MYPN c.3605T>A, p.(V1202E) Among the detected 18 variants,

especially the change c.3605T>A p.(V1202E) in the gene MYPN (NM_032578.3)

seems to be striking. This position is highly conserved in other species and the

change replaces valine by glutamate, meaning the substitution of a hydrophobic for

a positively charged amino acid. This variant is not listed in the EVS, 1000genomes

and dbSNP and is predicted to be disease causing by the program MutationTaster.

The protein myopalladin is a 147kDa muscle scleroprotein which is located in the

I- and Z-discs as well as in the nucleus of cardiac and skeletal muscle cells. It

interacts with alpha-actinin as well as nebulin in skeletal muscle and nebulette in

cardiac muscle with central and C-terminal domains [65]. These complexes tether

actin and titin to the Z-disc. The cardiac ankyrin repeat protein (CARP) is bound

by the N-terminus and is considered to be responsible for the control of muscle

gene expression [66]. Mutation in MYPN are also described to be causative for

hypertrophic, dilatative and/or restrictive cardiomyopathy [67].
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Table 4.3.: List of variants shared by I/5 and I/10 after �ltering steps. Column 1
shows chromosome number, column 2 the exact position in base-pairs, column 3 the
gene symbol, column 4 the exact variant description, column 5 the genetic mechanism.
If listed on the EVS server, the allele frequency is provided in column 6 followed by
dbSNP ID in column 7 if available. Columns 8 and 9 display pathogenicity prediction
by the program MutationTaster.
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This change is also in close proximity to the high linkage region (see chapter 4.2

on page 21). It is for these reasons that it was considered the most likely candidate

to be causative for OPDM in Family 1 and further analysis was initiated.

First, exon 18 of MYPN was ampli�ed by PCR (primer sequences can be found

in the addendum A.1 on page 93) and the c.3605T>A variant was con�rmed by

Sanger sequencing in both patients I/5 and I/10 (see �gure 4.7 A on page 32 for

the sequence of patient I/5)

Subsequently, segregation of theMYPN c.3605T>A in all individuals where DNA

was available was tested using the restriction endonuclease DdeI. Results can be

found in �gure 4.6 on page 32. Patient I/5 was used as a positive control and a

healthy individual as a negative control as presence and absence of the change were

previously con�rmed by Sanger sequencing. The PCR product has a length of 259bp

and DdeI cleaves o� 50bp in all individuals as the recognition motive 5'-CTNAG-

3' is present once in wildtype PCR products and twice in those with the MYPN

c.3605T>A change. The variant is present, when the remaining 209bp fragment is

further digested into a 116bp and a 93bp fragment. All these can be visualised by

gel electrophoresis. The presence of the MYPN c.3605T>A could be excluded in

all una�ected individuals and con�rmed in all a�ected individuals except patient

I/15. The referring clinicians were consulted again and asked to state how certain

the a�ection status could be determined as the patient had been assessed at only

15 years of age and had only presented with minimal ptosis [5]. Eventually it was

decided to exclude this patient from further studies as the a�ection status could not

be ascertained beyond doubt.

At a later point in the study, DNA from patient I/13 was sent back from Dres-

den where microsatellite length analysis had been carried out. PCR and Sanger

sequencing of MYPN exon 18 was done and the absence of the MYPN c.3605T>A

could be con�rmed in this a�ected individual as shown in �gure 4.7 on page 32.

As this patient is most certainly a�ected, presenting with ptosis, ophthalmopare-

sis, swallowing di�culties, facial atrophy and limb-girdle weakness [5], the MYPN

c.3605T>A does not segregate with the disease in Family 1.

Before DNA from patient I/13 was available for segregation analysis, the MYPN

c.3605T>A variant was further evaluated by estimating the frequency in ethnically

matched control samples. Therefore, MYPN exon 18 was ampli�ed by PCR in

74 individuals from Turkey and frequency was estimated by restriction fragment

length polymorphism analysis of PCR products with the restriction endonuclease

DdeI. Apparently, none of the control individuals harboured the c.3605T>A change,

showing that most likely it doesn't constitute a common polymorphism in Turkey.
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Figure 4.6.: Gel electrophoresis for segregation of the MYPN c.3605T>A change. The
MYPN ex18 PCR products for members of Family 1 (I/2, I/16, I/11, I/12, I/8, I/9,
I/15, I/21, I/14) were completely digested with DdeI and the products were analyzed
by 2% agarose gel electrophoresis. Lane M indicates DNA marker, 100bp DNA ladder.
�pos� and �neg� lanes were loaded with DNA with con�rmed presence or absence of the
MYPN change. + indicates cleavage of DNA by DdeI.

Figure 4.7.: Sanger sequencing of MYPN exon 18 of individuals I/5 (A)and I/13 (B).
Presence of the MYPN c.3605T>A could be con�rmed in I/5 and excluded in I/13.
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Next, all exons of MYPN were sequenced in one patient each from all other

Turkish Families 2,3,4,5,6,7 and 8 (published by Durmus et al. in 2001 [5]) as well

as in patients from Finland (FIN/1), France (FRA/1) and Nottingham, UK (NOT).

Primer sequences can be found in the addendum A.1 on page 93. All changes

detected had a minor allele frequency of at least 1% and could therefore be excluded

as possible causes for OPDM in these patients.

4.4.1.3.2. POLR3A c.2551A>G, p.(T851A) A second variant, detected by

whole exome sequencing of patients I/5 and I/10, is the missense mutation POLR3A

(NM_007055.3) c.2551A>G; p.(T851A). The encoded protein of POLR3A is a sub-

unit of the RNA polymerase III, synthesizing small RNAs [68]. It can also recognise

foreign DNA and initiating a consecutive immune response. Mutations in this gene

are reported to cause recessive hypomyelinating leukodystrophy [69]. This vari-

ant substitutes a highly conserved amino acid - even conserved in C.elegans and

Drosophila - and replaces the polar threonine with the hydrophobic alanine, most

likely disrupting the protein structure. It is also predicted to create a new splice

donor site at the genomic position g.29,499. Accordingly, MutationTaster predicts

a disease causing e�ect. It is also not listed in dbSNP, EVS and 1000genomes.

Presence of the POLR3A c.2551A>G variant was con�rmed in patients I/5 and

I/10 by Sanger sequencing (data not shown). Single patients from all other Turkish

families were analysed for the presence of this variant by Sanger sequencing. Ap-

parently, a�ected individuals from Families 1, 4, 6 and 8 were also carriers of the

c.2551A>G variant.

To further analyse the variant, segregation analysis was done by sequencing of

POLR3A exon 19 in a�ected and una�ected Family 1 members. PCR products

from individuals I/2, I/6, I/8, I/9, I/11, I/12, I/14, I/15, I/16, I/17, I/18 and

I/21 were sequenced. Apparently, the variant segregates well with the disease in

all individuals but I/15 and I/6. These two belong to the younger generation and

according to Durmus et al. 2011 [5], do not have any weaknesses, only minimal

ptosis. The age of onset as well as the initial symptom could not be determined

in I/6. Therefore, the clinical data was not strong enough to exclude the POLR3A

c.2551A>G variant from further analyses. Hence, one a�ected family member from

all Turkish families has been screened for the POLR3A c.2551A>G variant using

Sanger sequencing with the result that it was present in individuals IV/3, VI/2 and

VIII/2. Segregation of the variant with the disease in families 4, 6 and 8 as well as

the presence in one sporadic patient from Nottingham, UK, France and Canada each

was tested using the restriction endonuclease BsrDI as described in chapter 3.3.4 on
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page 16. BsrDI cleaves the 236bp PCR fragment when the POLR3A c.2551A>G

is present producing a 152bp and a 84bp fragment. There is no recognition site for

the restriction endonuclease in the wildtype PCR product. Results can be found

in �gure 4.8 on page 34. Apparently, the change segregates in all families with the

disease, given that individual IV/1 is indeed una�ected. The POLR3A c.2551A>G

variant could not be detected in any of the non-Turkish patients from Nottingham,

UK, Finland and France.

Figure 4.8.: Gel electrophoresis for segregation of the POLR3A c.2551A>G change.
The POLR3A exon 19 PCR products for family 4, 6 and 8 Family members as well as
sporadic patients from Nottingham (NOT), France (FRA) and Finland (FIN), named
in the top row, were completely digested with BsrDI and the products were analyzed
by 2% agarose gel electrophoresis. Lane M indicates the 100bp DNA Ladder. �neg�
lanes were loaded with DNA with con�rmed absence of the c.2551A>G change.

Even though the POLR3A c.2551A>G variant did not perfectly segregate in Fam-

ily 1, the frequency of this change was determined in 58 Turkish control samples.

PCR Products of POLR3A exon 19 were digested with the restriction endonuclease

BsrDI and evaluated by gel electrophoresis as described before. Apparently, the

change was present in 22 out of 58 individuals resulting in a minor allele frequency

of more than 37%. Therefore, the POLR3A c.2551A>G could be excluded as being

causative for OPDM. However, the presence of this polymorphism in families with

a dominant pattern of inheritance implies, that these families share a disease allele

including the c.2551A>G variant.

4.4.2. Exome Sequencing of Individuals OPDM III-VIII

4.4.2.1. Exome Sequencing Results OPDM III-V

As exome sequencing of individuals I/5 and I/10 did not reveal any likely candidate

genes, the study was extended and whole exome sequencing was carried out on 5

more patients. Three siblings from Family 2 (II/2, II/3 and II/5 called OPDM3,
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OPDM4 and OPDM5 respectively) as well as sporadic patients from Nottingham,

UK (OPDM6), from Finland (OPDM7) and from Canada (OPDM8) were chosen

and DNA was sent to Otogenetics, Atlanta, US, where the exome enrichment was

done with the Agilent V4 kit and sequencing done on a Illumina HiSeq 2000. Bioin-

formatic analysis was done as previously described in chapter 3.4.5.2 on page 19.

Additionally, an �in-house frequency� database was used to �lter out false positive

calls. This database consists of all exome sequencing data sets from the Institute

of Genetic Medicine in Newcastle-upon-Tyne, UK, and provides a minor allele fre-

quency for every detected variant.

Table 4.4 summarises �ltering steps of individuals OPDM3, OPDM4 and OPDM5

and the number of variants left after each of them.

Filtering step Number of variants
OPDM3 OPDM4 OPDM5

1. All detected variants 79,915 77,898 77,877
2. . . . �ltered for exonic and
splice site variants

18,250 16,924 17,565

3. . . . �ltered by the pattern of inheritance
(homozygous/comp. het.)

7,028 6,201 6,561

4. . . . �ltered for a frequency of <1% in
1000genome and EVS

197 185 178

5. . . . �ltered excluding
synonymous variants

187 181 167

6. . . . �ltered excluding variants
in duplicated regions

180 177 163

7. Variants shared
by both patients

104

8. Variants expressed in skeletal
muscle (EMBL-EBi-GXA)

84

9. Variants with an in-house
frequency of <2%

10

Table 4.4.: Filtering pipeline applied to whole-exome sequencing data from individuals
OPDM3, OPDM4 and OPDM5. Coding exons and splice sites were de�ned based on
the NCBI annotation.

After all variants of individuals OPDM3, OPDM4 and OPDM5 are �ltered and

intersected 84 genetic changes remain. Among these 84, 78 are listed in dbSNP. How-

ever, no single change is listed in the EVS and the 1000genome database. When

the in-house minor allele frequency of these genetic changes is determined, it turns

out, that almost all missense variants are very commonly detected in whole exome

sequencing data, thus most likely being false positive calls speci�c to the bioinfor-

matical pipeline. When all variants with an in-house frequency greater than 2% are
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�ltered out, no single homozygous variant remains in the list and only 10 changes

could be identi�ed, where two or more can be found in one gene, making compound

heterozygosity possible. These variants can be found in table 4.5 on page 37.

As it is very likely that a compound heterozygous mutation on Chromosome 2 is

causing OPDM in Family 2, genes with two or more heterozygous changes within the

heterozygous region described in chapter 4.3 on page 23 have been identi�ed. This

region expands from rs12711538 to rs344689 (121,747,406 - 140,100,106bp according

to the hg19 assembly) on Chromosome 2. No single variant could be detected within

this region that is shared or not covered by all three siblings.

Accordingly, special focus was put on the high linkage region on Chromosome 10.

No rare, protein altering changes could be detected between chr10: 49,968,432 and

93,220,242 in any of the three siblings that are shared among them.

4.4.2.2. Exome Sequencing Results OPDM VI

Table 4.6 summarises �ltering steps of individual OPDM6 from Nottingham, UK

(patient was assessed and DNA provided by Dr Paul Maddison) and the number of

variants left after each of them.

As the pattern of inheritance cannot be determined in sporadic patients, variants

were �ltered for both a dominant and a recessive model. Special focus was put on

variants in the high linkage regions on Chromosome 2 and 10. The only detected

variants near the high linkage locus are a heterozygous AGAP5 (NM_001144000.1)

c.673A>G, p.(M225V) change at the chromosomic position 75,435,676 and a het-

erozygous PIK3AP1 (NM_152309.2) c.775G>A; p.(V259I) at the chromosomic po-

sition 98,411,346. AGAP5 is an ankyrin repeat and GTPase domain and PIK3AP1

a phosphoinositide-3-kinase adaptor protein. Mutations in both genes are very likely

not causing damage to skeletal muscle tissue. On Chromosome 2 two variants could

be detected in NEB (NM_001164507.1), coding for nebulin, a giant protein compo-

nent of the cytoskeletal matrix that coexists with the thick and thin �laments within

the sarcomeres of skeletal muscle [70]. Mutations in this gene are associated with

recessive nemaline myopathy [71]. These heterozygous changes are c.21044C>G,

p.(S7015C) and c.22122C>G, p.(D7374E). However, none of them are listed in the

Leiden Open Variation Database (LOVD), a database that lists all published dis-

ease causing variants in genes known to cause neuromuscular disorders (http://

www.dmd.nl). Additionally, the c.15941C>G variant is listed in ClinVar, a database

that summarises reports of the relationships among human variations and pheno-

types, and is labelled `likely benign' (http://www.ncbi.nlm.nih.gov/clinvar).
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Table 4.5.: List of possible compound heterozygous variants shared by OPDM3,
OPDM4 and OPDM5. Additionally, genotypes for individuals OPDM6, OPD7 and
OPDM8 for these changes are provided.`R' stands for reference allele and `V' for variant,
meaning that `R/R' implies the presence of two reference alleles, `R/V' heterozygosity
and `V/V' homozygosity for the alternative allele. Coding positions refer to the fol-
lowing transcript variants: NM_002457.3 for MUC2, NM_001164425.1 for MBD3L3,
NM_032447.3 for FBN3, NM_133378.4 for the TTN variants
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Filtering Step Number of variants

1. All detected variants 76,103

2. . . . �ltered for exonic and splice site variants 16,769

3. . . . �ltered for a frequency of less than 2% in
1000genomes and ExomeVariantServer

1,569

4. . . . �ltered excluding synonymous variants 1,203
5. . . . �ltered excluding variants in duplicated regions 1,099
6. . . . �ltered excluding variants with an
in-house frequency of less than 2%

676

7. variants for a dominant model 509
8. variants for a recessive model 141

Table 4.6.: Filtering pipeline applied to whole-exome sequencing data from individual
OPDM6. Coding exons and splice sites were de�ned based on the NCBI annotation.
The dominant model includes all heterozygous variants with a frequency of less than 1%
in EVS, 1000genomes and in-house minor allele frequency (MAF) . The recessive model
comprises all variants with a frequency of less than 2% in the databases mentioned above
that are either homozygous or where two or more changes were detected in one gene.

Also, a total number of 4 heterozygous genetic changes in the gene TTN could

be detected. This gene encodes a large structural protein of striated muscle. It

expands from the Z-disc of the sarcomere with its N-terminus to the M-line with

its C-terminus. It also possesses binding sites for other muscle associated genes and

acts as a template for the contractile machinery of muscle �bres [70]. As it is one

of the largest genes in the human genome great variability exists, especially in the

Z-disk-, the M-line- and the I-band regions. Mutations in titin are associated with

a number of pathologies such as dilated cardiomyopathy, autosomal dominant tibial

muscular dystrophy as well as autosomal recessive limb girdle muscular dystrophy

2J [72], [73]. These variants in the TTN -gene (NM_003319.4) are: c.41935C>T,

p.(P13979S), c.18052C>T, p.(R6018W), c.11491A>T, p.(I3831F) and c.1492G>A,

p.(V498I). However, none of them is listed in the LOVD database but the �rst two

and the last one are listed as `benign' or `likely benign' in ClinVar.

One interesting variant could be detected in the RYR1 gene (NM_000540.2), a

heterozygous c.8382C>G, p.(Y2794X) nonsense mutation. This variant is not listed

in the EVS and the 1000genome database and is most certainly disrupting the pro-

tein structure as a premature stop-codon leads to the loss of almost half the protein

chain. This large gene, counting 106 exons, located at 19q13.2, encodes the protein

Ryanodin Receptor 1, functioning as a calcium release channel in the sarcoplasmic

reticulum in skeletal muscle. Its function is also to connect the sarcoplasmic retic-

ulum to the transverse tubule. Mutations in this gene reportedly cause autosomal

dominant or recessive central core myopathy, autosomal recessive minicore myopa-

thy with external ophthalmoplegia and malignant hyperthermia susceptibility [74],
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[75],[76],[77]. Hence, it needs to be discussed, if central core myopathy could mimic

an OPDM phenotype and if this variant could be responsible for it.

4.4.2.3. Exome Sequencing Results OPDM VII

Table 4.7 summarises �ltering steps of individual OPDM7 from Finland and the

number of variants left after each of them (patient was assessed and DNA provided

by Professor Bjarne Udd).

Filtering Step Number of variants

1. All detected variants 89,346

2. . . . �ltered for exonic and splice site variants 16,702

3. . . . �ltered for a frequency of less than 2% in
1000genomes and ExomeVariantServer

1642

4. . . . �ltered excluding synonymous variants 1,275
5. . . . �ltered excluding variants in duplicated regions 1,181
6. . . . �ltered excluding variants with an
in-house frequency of less than 2%

715

7. variants for a dominant model 530
8. variants for a recessive model 132

Table 4.7.: Filtering pipeline applied to whole-exome sequencing data from individual
OPDM7. Coding exons and splice sites were de�ned based on the NCBI annotation.
The dominant model includes all heterozygous variants with a frequency of less than 1%
in EVS, 1000genomes and in-house MAF. The recessive model comprises all variants
with a frequency of less than 2% in the databases mentioned above that are either
homozygous or where two or more changes were detected in one gene.

Variants were analysed on the basis of a recessive and a dominant model as pre-

viously described in chapter 4.4.2.2 on page 36. Special focus was put on the high

linkage regions on Chromosome 2 and 10 as well as on changes in genes which are

associated with neuromuscular disorders. Among the 3 homozygous variants left

after all �ltering steps, none were found in the high linkage regions on Chromosome

2 or 10 or otherwise interesting. Two variants in the gene GLI2, encoding a zinc

�nger and transcription factor of Sonic hedgehog signaling could be detected on

Chromosome 2 [78]. Variants in this gene are associated with various phenotypes of

malformation [79]. The identi�ed heterozygous variants in GLI2 (NM_005270.4)

are: c.4332G>A, p.(M1444I) and c.4333C>T, p.(L1445F). However for a domi-

nant model, two variants could be detected on Chromosome 10 that are located in

the high linkage region. These are POLR3A (NM_007055.3) c.275G>C, p.(C92S)

and NRG3 (NM_001010848.3):c.1951G>A, p.(E651K) at the chromosomic posi-

tions 79,785,423 and 84,745,221 respectively. Both variants cause the substitution

of conserved amino acids and are predicted to be deleterious by various prediction
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tools such as SIFT and MutationTaster. Both changes are listed in the EVS and

the 1000genome database but have a very low frequency. The POLR3A change is

annotated with frequencies of 0,000093 in the EVS and 0,0005 in the 1000genome

database and the NRG3 change with 0,002417 and 0,0023 accordingly. The protein

encoded by POLR3A has been described previously in 4.4.1.3.2 on page 33. NRG3

encodes a ligand for the transmembrane tyrosine kinase ERBB4 which is a member

of the epidermal growth factor receptor family [80]. Neuregulin 3 is thought to in-

�uence neuroblast proliferation, migration and di�erentiation through ERBB4 [81].

It is susceptible to be associated with schizoa�ective disorders and schizophrenia

[82]. Other interesting variants include a heterozygous change in the RYR1 gene

which was described above. This c.785C>T, p.(A262V) change is not listed in the

EVS and has a frequency of 0,0005 according to the 1000genomes database. It is

found in a highly conserved position but mutation prediction tools are inconsistent

with some predicting a deleterious e�ect (PolyPhen2, PhyloP) whereas other claim

that is most likely benign to the protein structure (MutationTaster, LRT). This is

most likely, because the amino acid substitution replaces a non-polar alanine with

the likewise non-polar valine. The presence of this variant was con�rmed by Sanger

sequencing in this patient. Nevertheless, this is the second individual with a variant

in the gene RYR1 and it needs to be discussed, if these patients are a�ected with

central core myopathy instead of OPDM.

4.4.2.4. Exome Sequencing Results OPDM VIII

Table 4.8 summarises �ltering steps of individual OPDM8 from Canada and the

number of variants left after each of them (patient was assessed and DNA provided

by Professor Bernard Brais).

As in OPDM VI and OPDM VII, especially variants within the high linkage re-

gions on Chromosome 2 and Chromosome 10 as well as those within genes associated

with neuromuscular disorders were taken account of. For a recessive model, none

of the three homozygous variants (NDUFS7 c.T617A, p.(L206H) on Chromosome

19, LILRB1 c.893C>A, p.(S298Y) on Chromosome 19 and IFNA10 c.496G>A,

p.(V166I) on Chromosome 9) seem to be likely disease-causing. However, three

variants were detected in the TTN gene on Chromosome 2, namely c.4332G>A,

p.(M1444I), c.12571G>A, p.(V4191M) and c.10366G>A, p.(V3456I). Out of these,

only the c.12571G>A change is listed with a frequency of 0,007965 in the ESP5400

and 0,0046 in the 1000genomes database. None of these variants is listed in the

LOVD database. The �rst variant is a substitution of the non-polar amino acid

methionine with the likewise non-polar isoleucine. Similarly, the non-polar valine is
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Filtering Step Number of variants

1. All detected variants 75,682

2. . . . �ltered for exonic and splice site variants 18,011

3. . . . �ltered for a frequency of less than 2% in
1000genomes and ExomeVariantServer

1,800

4. . . . �ltered excluding synonymous variants 1,345
5. . . . �ltered excluding variants in duplicated regions 1,253
6. . . . �ltered excluding variants with an
in-house frequency of less than 2%

667

7. variants for a dominant model 516
8. variants for a recessive model 119

Table 4.8.: Filtering pipeline applied to whole-exome sequencing data from individual
OPDM8. Coding exons and splice sites were de�ned based on the NCBI annotation.
The dominant model includes all heterozygous variants with a frequency of less than 1%
in EVS, 1000genomes and in-house MAF. The recessive model comprises all variants
with a frequency of less than 2% in the databases mentioned above that are either
homozygous or where two or more changes were detected in one gene.

changed to methionine in the second change and valine replaced with isoleucine in

the third. Thus, it is very hard to predict a pathogenic potential for any of these

variants. Close to the locus on Chromosome 10, two heterozygous variants were

detected in the genes PLAU and WAPAL at chromosomic locations 75,675,086 and

88,230,804 respectively. PLAU encodes a urinary plasminogen activator, involved

in thrombolysis and mutations in this gene are associated with Quebec Platelet

Disorder [83]. WAPAL (wings-apart-like homolog from Drosophila) is involved in

the removal of cohesins from the mitotic human chromosomes and therefore act to

protect from segregation errors and aneuploidy [84]. Considering the gene function

as well as the genomic locations, both changes are an improbable cause of OPDM

in this individual.

However, three heterozygous changes in genes, known to be associated with neu-

romuscular disorders, could be detected. The �rst one is a c.1564G>A, p.(G522R)

change in the gene MEGF10. The protein encoded by this gene is involved in cell

motility, proliferation as well as adhesion. It also plays a role in cell phagocytosis

during apoptosis and amyloid-beta uptake in the brain [85]. Mutations in this gene

cause either autosomal recessive early-onset myopathy, are�exia, respiratory dis-

tress, and dysphagia (EMARDD) or congenital myopathy with minicores [86], [87].

The c.1564G>A, p.(G522R) variant replaces a non-polar glycine with the positively

charged basic polar amino acid arginine, most likely altering the protein structure.

It has a frequency of 0.002231 in ESP5400 and 0.0009 in the 1000genomes database

and is predicted to be deleterious by all prediction tools.
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The second change is a heterozygous c.655C>T, p.(R219X) nonsense variant in

MYOT, a gene encoding for myotilin, which has been con�rmed by Sanger sequenc-

ing. This protein binds several skeletal muscle structural proteins such as F-actin

and alpha-actinin and plays a crucial role in stabilising and anchoring of thin �la-

ments of the sarcomere [88]. Mutations in this gene are associated with a number

of autosomal dominant neuromuscular conditions; namely limb-girdle muscular dys-

trophy, Type 1A [89], myo�brillar myopathy 3 [90] and spheroid body myopathy

[91]. This variant has not been published yet and is not listed in the LOVD. As the

nonsense mutation most certainly a�ects protein integrity it needs to be discussed,

if this mutation could be the underlying genetic defect for this patient's phenotype.

In addition to the changes mentioned above, a heterozygous c.313C>T, p.(R105C)

variant in the geneMATR3 at the genomic position chr5:138,660,985 in the hg19 as-

sembly was detected. Matrin 3 is a nuclear matrix protein that binds DNA and RNA

[92]. It is known to cause autosomal dominant Amyotrophic Lateral Sclerosis 21, for-

merly called vocal cord and pharyngeal dysfunction with distal myopathy (VCPDM)

[93], [94]. This variant is a substitution of the polar and positively charged amino

acid arginine with the non-polar cysteine and is conclusively most likely altering

the protein structure. However, this variant is located at the exon-intron bound-

ary of intron 13 and exon 14 in only some of the common transcript variants (e.g.

NM_018834.5). It also changes the strength of two splice acceptor sites at positions

g.51556 (wt:0.42/mu:0.56) and g.51547 (wt:0.24/mu:0.36) according to the calcula-

tions of the program MutationTaster as shown in �gure 4.10 on page 43. Other splice

site prediction tools have been used to further validate this in silico analysis, ASSP

(alternative splice site prediction; http://wangcomputing.com/assp/) and Fruit�y

(http://www.fruitfly.org/seq_tools/splice.html) [95], [96]. The score for the

alternative splice acceptor site (Exon 14a alt. in �gure 4.10 c) increases from 7.012

to 7.609 according to ASSP. The score for the splice acceptor site, resulting in exon

14a (�gure 4.10 b), decreases from 8.424 to 8.020. Fruit�y predicts no change in the

strength for this site (0.89 -> 0.90) but an increase form 0.50 to 0.70 for the cryptic

acceptor site resulting in exon14a alt.

Therefore it needs to be discussed if the frequency of this particular transcript

variant is increased by the altered splice acceptor site strength and, if that is the

case the missense mutation disrupts the protein structure.
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Figure 4.9.: Position of the variant in MATR3 : c.313C>T, p.(R105C). The nine
lines comprise nine di�erent UCSC transcript variants. Transcripts in darker blue
accord the consensus coding sequence (https://www.ncbi.nlm.nih.gov/projects/
CCDS/CcdsBrowse.cgi). Note that the variant only a�ects the protein sequence of
transcript variant NM_018834.5. However, it alters the strengths of splice acceptor
sites and might therefore increase the frequency of NM_018834.5.

Figure 4.10.: Predicted isoforms of MATR3 and the in silico predicted e�ect of the
c.313C>T variant. a shows the most common and b the 144bp longer alternative
transcript variant where the c.313C>T, p.(R105C) is located in exon 14a. This variant,
however, also creates a cryptic splice acceptor site resulting in a 14bp smaller alternative
exon 14a, displayed in c.
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4.5. Fine mapping the disease locus for Family 1

4.5.1. Fine mapping of the locus on Chromosome 10

Fine mapping of the locus on Chromosome 10 was undertaken by haplotype con-

struction and identi�cation of recombinant haplotypes by use of genotyping data for

the 53 markers that span the region of interest. Among these, 18 are microsatellites

and 35 are SNP markers with a frequency greater than 5%. A list of the microsatel-

lite markers can be found in table 3.5 on page 19. As the a�ection status of the

youngest generation could not be determined with con�dence, a total of 9 a�ected

individuals from generations 3 and 4 were studied and several recombinant haplo-

types identi�ed. Reconstruction was carried out in a way that ensured that the

largest possible chromosomic region was covered. The most telomeric microsatel-

lite marker, D10S1686, turned out to be uninformative. Therefore, the telomeric

recombination point located at chromosomic position 85,566,388bp had to be deter-

mined based on SNP data to rs1188786, most likely overestimating the size of the

locus (all positions referring to the hg19 assembly). The centromeric recombination

point could be identi�ed by sequencing a synonymous POLR3A (NM_007055.3)

c.2829C>T change that did not segregate with the disease in all patients and is

therefore determined at chromosomic position 79,750,884bp. The identi�ed disease

locus consequently spans from position 79,750,884 to 85,566,388 within Chromosome

10. The reconstruction of recombinant haplotypes and the recombination points can

be found in �gure 4.11 on page 46.

4.5.2. Characterization of the locus

Given, that a conserved haplotype could be identi�ed, the region on Chromosome

10: 79,750,884 - 85,566,388 was further analysed. Figure 4.12 shows a schematic

Chromosome 10 q22.3q23.1 area linked to autosomal dominant OPDM as well as all

genes located in this region. A total number of 44 genes could be found of which

28 are protein-coding. 19 of them are reported to be expressed in skeletal muscle

according to either the in Common Fund's Genotype-Tissue Expression (GTEx)

[93]database (http://www.gtexportal.org/home/) or the Human Protein Atlas

(HPA) (http://www.proteinatlas.org/) [97], [98]. A list of these can be found

in table 4.9 on page 45 and 45.

Gene Expression Expression Gene Function

Symbol in GTEx in HPA

POLR3A X Catalytic component of RNA polymerase III,

which synthesizes small RNAs. Also acts

as a sensor to detect foreign DNA and
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trigger an innate immune response.

RPS24 X Encodes a ribosomal protein that is a

component of the 40S subunit.

Mutations result in Diamond-Blackfan anemia.

PLAC9 X Homo sapiens placenta-speci�c 9

ZMIZ1 X Member of the PIAS (protein inhibitor of

activated STAT) family of proteins.

It regulates the activity of various

transcription factors, including the

androgen receptor, Smad3/4, and p53.

It may also play a role in sumoylation.

A translocation between this locus on

Chromosome 10 and the protein tyrosine

kinase ABL1 locus on chromosome 9 has

been associated with acute lymphoblastic

leukemia

DYDC1 X X Member of a family of

proteins that contains a DPY30 domain.

It is involved in acrosome formation

during spermatid development.

PPIF X Member of the peptidyl-prolyl

cis-trans isomerase (PPIase) family.

PPIases catalyse the cis-trans

isomerization of proline imidic peptide bonds

and accelerate the folding of proteins.

Part of the mitochondrial permeability

transition pore in the inner mitochondrial

membrane. Activation of this pore

may be involved in the induction

of apoptotic and necrotic cell death.

ZCCHC24 X X Zinc �nger, contains a CCHC domain

SFTPD X Part of the innate immune response,

protecting the lungs against

inhaled microorganisms and chemicals.

May also be involved in surfactant metabolism

SH2D4B X SH2 domain containing 4B

EIF5AL1 X Eukaryotic translation initiation factor

5A-like 1

TMEM254 X Transmembrane protein 254.

ANXA11 X X Member of the annexin family,

a group of calcium-dependent phospholipid-

binding proteins. It is recognized by

sera from patients with various

autoimmune diseases.

FAM213A X X Involved in redox regulation of the cell.

Acts as an antioxidant. Inhibits TNFSF11-

induced NFKB1 and JUN activation and

osteoclast di�erentiation. May a�ect bone

resorption and help to maintain bone mass.

TSPAN14 X X Tetraspanin 14.

Table 4.9.: List of genes and their function in the re�ned locus on Chromosome 10:
77,991,127 - 84,563,458. The gene information was extracted from: http://www.ncbi.
nlm.nih.gov/mapview/. Source for gene-expression information is: https://www.ebi.
ac.uk/gxa/experiments/.
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Figure 4.11.: Reconstruction of Family 1 recombinant haplotypes for Chromosome 10:
77,991,127-84,563,458 based on 50 markers. The disease haplotype is shown in black
colour. The youngest generation was not considered as their a�ection status could not
be determined with con�dence. Haplotypes were reconstructed manually to result in
the largest possible shared haplotype.
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Figure 4.12.: Characterisation of the shared haplotype region Chromosome 10:
77,991,127-84,563,458. (A) Chromosomal location of the disease locus indicated by
the red box: Chr10 (q22.3q23.1). (B) Map of all genes found in the locus. (C) Map
containing all protein coding genes inside the locus.

4.6. Chromosome 10 Locus Sanger Sequencing

Since whole exome sequencing did not cover all coding exons of the 44 genes in

the disease locus for Family 1 with a read depth of at least 10, Sanger sequencing

was used to screen all of them for undetected variants. A list of primers used can

be found in the addendum A.1 on page 93. Uncovered exons were ampli�ed by

PCR and sent to MWG Euro�ns for Sanger-sequencing. These were found in genes

NRG3, RPS24, ZMIZ1, PPIF, EIF5AL1, C10orf57, PLAC9, ANXA11, SH2D4B,

AK302451, AX747983, ZCCHC24, FAM213A, MAT1A, GHITM, CDHR1, LRIT2,

LRIT1. No single mutation could be detected that is not listed in the dbSNP

database with a frequency greater than 1% apart from a EIF5AL1 c.254A>G,

p.(K85R) variant.

4.6.1. MicroRNAs Within the Disease Locus for Family 1

As the results so far do not show any convincing variants in the coding sequences of

genes within the disease locus for Family 1, the two microRNAs found in this region,

MIR_554 (chr10: 83,467,245-83,467,350) and hsa-miR-3198-3p (chr10: 82,904,458-

82,904,477), were analysed by Sanger sequencing. Primer sequences can be found in

the addendum in A.1 on page 93. No variants that are not listed with a frequency

of less than 1% in dbSNP could be detected in these two microRNAs.
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4.6.2. EIF5AL1 c.254A>G, p.(K85R)

When uncovered exons within the locus were sequenced, a rare missense variant

in the gene EIF5AL1 (NM_001099692.1) was discovered: c.254A>G, p.(K85R).

This change is listed in dbSNP with the ID rs201647668 but was neither found

in the ESP or the 1000genomes databases. It is reported to have a minor allele

frequency of 0.3% according to dbSNP build 146. The amino acid change replaces

the basic polar positively charged lysine with the likewise basic polar positively

charged arginine. Nevertheless, the variant is predicted to be �disease causing� by

the program MutationTaster. The gene EIF5AL1 encodes the eukaryotic translation

initiation factor 5A-like 1, a homologue of the eukaryotic translation initiation factor

5A. The function of EIF5AL1 is still unknown, EIF5A, however, plays a role in

the elongation phase and, more speci�cally, stimulates the production of proteins

containing runs of consecutive proline residues. It is the only known protein where a

lysine residue is post-translationally modi�ed to hypusine [99]. It is predicted to be

expressed in skeletal muscle by the Illumina body map (https://www.ebi.ac.uk/

gxa/home) but not by the UniGene database, which o�ers an expression sequence

tag (EST)-based expression pro�le (http://www.ncbi.nlm.nih.gov/est/). This

variant was detected in patient I/9 and con�rmed in patient I/5. Therefore it is most

likely present in all a�ected individuals, as it is located on the conserved haplotype.

To see if the change segregates in other OPDM families as well, a�ected individuals

from all other Turkish pedigrees (III/2, IV/3, V/1, VI/1, VII/2, VIII/2) as well as

three patients from France, and two from the United Kingdom were genotyped for

this change. Apparently, the variant could be detected in all of them. 36 Turkish

control samples were screened for the c.254A>G, p.(K85R) variant as well and it

was present in all. Most likely, the primers bind to other homologues of EIF5A with

homology in all bases except for this, where the variant was assumed to be.

4.6.3. Triple Repeat Analysis

As OPMD, which is phenotypically very similar to OPDM, is caused by a triple-

repeat expansion in the gene PABPN1, intronic triple- and hexarepeats within the

disease locus on Chromosome 10 were analysed. Five repeats were found in the

genes NRG3, and one in LOC219347, ZMIZ1, LOC100132987 and TSPAN14 each.

They were ampli�ed by PCR in individual I/9 followed by Sanger sequencing. PCR

reactions did not work for the TSPAN14 - as well as for the NRG3 repeats 2 and 5.

The �rst triple-repeat in intron 1 of NRG located at chr10: 83,665,964-83,665,990

in the hg19 assembly appears to be homozygous for a total number of eight ATC

repeats (ATC)8. The average length in control individuals is 8.7. However, larger
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repeat expansions and complete deletions cannot be detected by Sanger sequencing.

The third, a CAC-repeat within NRG3, was ampli�ed, sequenced and analysed

with the program Chromas and the website BLAST. Interestingly, the alignment

maps to a region on Chromosome 11: 70,895,189-70,895,773. The primer pairs were

reevaluated but are speci�c to the repeat in intron 2 of NRG3, mispriming can

almost be excluded. A TTA-repeat within the NRG3 gene, located in intron 4

(Chr10: 84,429,004 - 84,429,044) shows an average length of (TTA)13.3 . In patient

I/9 it could be determined as 11 and 13. Additionally, triple-repeats in non-coding

genes within the disease locus were analysed. The length of the intronic TTG-repeat

in LOC100132987 was found to be (TTG)9, while the average length in controls is

11.7. The sequence appeared to be homozygous. The intronic AAT-repeat in the

gene LOC219347 appeared to be heterozygous with lengths of 12 and 15. The

average length is reported being (AAT)14. The intronic TTA-repeat in the gene

ZMIZ1 located at chr10:81,038,152 - 81,038,182 appeared to be homozygous for a

length of 11 triplets whereas the average in controls is 9.7.

4.7. Array-CGH

DNA from patient I/5 was sent to the �Medizinisch Genetisches Zentrum�, Munich

for comparative genomic hybridization on a microarray (array CGH). Array CGH is

a molecular cytogenic method to study copy number variations [100]. It is employed

to uncover deletions, ampli�cations, breakpoints and ploidy abnormalities which

might be causing OPDM as no single mutation could be detected in the coding

regions within the disease locus for Family 1. Unfortunately, the analysis failed due

to bad quality of the DNA sample. As patients live in a very remote area of Turkey,

no new blood samples could be collected for a reanalysis.
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5.1. Is OPDM a genetically heterogeneous disease?

To identify the genetic cause or causes of OPDM mapping by linkage analysis fol-

lowed by reconstruction of recombinant haplotypes was performed and exome se-

quencing was done to detect possible causative variants. However, it is not certain

yet, if OPDM is a homogeneous disease and this needs to be discussed �rst, as

di�erent families with di�erent genetic background were included in this study.

Studying the literature of all OPDM cases reported so far revealed that there is

some variation in the clinical as well as the histological presentation. For exam-

ple, two patients with autosomal dominant OPDM were also diagnosed with dilated

cardiomyopathy � a �nding not common among other OPDM patients [7]. Some

patients show tubulo�lamentous inclusions in the nuclei but some do not in electron

microscopy ultrastructural studies [6]. Most importantly, both autosomal domi-

nant and autosomal recessive inheritance reportedly imply genetic heterogeneity [5].

Nevertheless, OPMD, witch is phenotypically a very similar neuromuscular disorder,

presents with both dominant and recessive inheritance, depending on the length of

the GCG repeat expansion in the gene PABPN1 and a similar mechanism could be

responsible in OPDM.

Therefore, linkage analysis was performed separately for the dominant Family 1

and the recessive Family 2 and results show that there is a clear dominant disease

locus on chromosome 10. The LOD-score for this region, however, is around 0

for family 2 for both a dominant and a recessive model. The genotyping array

and microsatellite analysis revealed that OPDM could be mapped to a locus on

chromosome 2 for Family 2, for which all patients should be compound heterozygous.

Yet, linkage analysis of Family 1 revealed a negative LOD-score for this region. In

summary, this study shows that OPDM is a genetically heterogeneous disease and all

families should be analysed with special focus on the loci identi�ed on chromosome

2 and 10.
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5.2. Possible Genetic Causes for OPDM in Family 1

5.2.1. Intronic and UTR Repeat expansions

As exome sequencing of two individuals from Family 1 did not result in any ob-

vious candidate genes, it needs to be discussed, which genetic variants could be

causative for OPDM but missed by this technology. The most plausible would be

repeat expansions either in coding or non-coding regions due to the similarity to

other neuromuscular disorders, especially OPMD. Repeat expansions can either be

pathogenic on RNA or protein level. In OPMD, oligomerisation of polyalanine ex-

panded PABPN1 results in nuclear protein aggregation and causes cell death [101].

Depending on the number of expanded GCG-repeats, OPMD is inherited with a

autosomal dominant or recessive trait which also conforms to the fact that most

families a�ected by OPDM stem from a small region in Turkey and show both dom-

inant and recessive inheritance. The idea of whole exome sequencing is to detect

all protein altering mutations and therefore only the coding regions are enriched.

Repeat expansions in the untranslated regions (UTRs) of genes and the introns are

commonly missed if they are not close to the exons. Additionally, larger expansions

cannot be identi�ed by the methods used in this study (Illumina HiSeq 2000) be-

cause the additionally inserted bases cause too many mismatches in comparison to

the reference genome. For a more detailed description see chapter 5.7.1 on page 67.

5.2.2. Transcription-Reducing Variants

A second conceivable mechanism to explain which genetic defect could lead to

OPDM is mutations that reduce transcription of a certain gene. These are com-

monly found in the promoter region e.g. in the RNA-polymerase binding site or

regulatory elements. There are not many reported cases with this underlying ge-

netic mechanism because �rstly, they are rare and secondly di�cult to identify as

they are not enriched by whole exome sequencing. One example would be a study

of patients with limb-girdle muscular dystrophy type 2O (OMIM #613157) where a

9bp deletion was detected in the promoter region of POMGNT1 resulting in reduced

expression [102]. As the promoter regions are commonly not covered by WES this

could be the genetic aberration leading to OPDM. A second mechanism how tran-

scription could be reduced are mutations in the UTRs. Even though they do not

change the amino acid structure of the protein, they are transcribed and might a�ect

post-transcriptional regulation. There is a number of processes involved that control

mRNA half-life and conclusively protein translation. First, there is capping of the 5-

prime end of the mRNA to protect it from 5' exonuclease as well as polyadenylation
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of the 3-prime end which adds adenine bases to the 3' end to bu�er the e�ects of

the 3' exonuclease. Long poly(A) tails therefore correlate with a long half-life [103].

Additionally, a long poly(A) tail can increase translation by binding of poly(A)

binding proteins (PABP) that initiate the translation through interaction with the

eukaryotic initiation factors EIF4E and EIF4G [104]. Second, a process called RNA

editing can alter the sequence of mRNA molecules by deamination of adenosine to

inosine bases. This reaction is catalysed by `Adenosine Deaminase Acting on RNA'

(ADAR) enzymes and can alter the splicing and translation machineries, the double-

stranded RNA structures and the binding a�nity between RNA and RNA-binding

proteins with unpredictable e�ects [105]. And third, microRNA mediated regulation

controls the expression of about 60% of all protein coding genes [106]. These genes'

mRNAs have conserved binding sites, mostly found in the 3' UTR, for microRNAs

that reduce expression. Conclusively, mutations in this region can either create a

microRNA binding site or lose one and therefore alter the expression of a gene. Re-

cently, a study has demonstrated that mutations in the 3' UTR of GFPT1 creates

a new binding site for miR-206* resulting in repression of translation and causing

congenital myasthenic syndrome in the a�ected individuals [107]. These genetic

mechanisms should be considered possible causes for OPDM.

5.2.3. Copy Number Variation

A third group of genetic aberration that can cause disease in mammals is copy

number variation (CNVs). This is a phenomenon where sections of the genome are

repeated � usually duplicated, seldom triplicated or quadruplicated � or deleted.

There are a number of disease phenotypes associated with CNVs most of which are

congenital malformations and mental retardations. Some are caused by loss of gene

function due to under- or overexpression such as deletions in TBX1 causing Velocar-

diofacial Syndrome (OMIM #192430) [108], or PMP22 resulting in Charcot-Marie-

Tooth disease type 1A (OMIM #118220) [109]. Others are caused by overexpression

and protein aggregation such as duplications of the APP gene in Alzheimers disease

or SNCA in Parkinsons disease [110], [111], [112]. Quite recently, Ankala and col-

leagues have studied 41 genes by next-generation sequencing and array CGH and

discovered a rate of 5 CNV out of 70 patients presenting with congenital muscular

dystrophies (CMD) and 8 CNV out of 193 patients presenting with limb-girdle mus-

cular dystrophies (LGMD) . Conclusively, it seems to be a common genetic mecha-

nism in neuromuscular disorders [113]. However, detection of copy number variation

is challenging from whole-exome sequencing data, as the coverage is much more vari-

able compared to whole-genome sequencing [114] and computational algorithms are
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still being improved to increase speci�city and sensitivity of CNV prediction from

NGS-data [115].

5.2.4. Candidate Genes in the Locus on chromosome 10

As �ne-mapping de�ned a clear disease locus for Family 1 by reconstruction of

recombinant haplotypes (4.5 on page 44) and no missense or nonsense variants were

identi�ed in this region, it was discussed which other genetic mechanisms could

be underlying OPDM in these patients. Thus, genes within the locus have to be

evaluated for a candidate gene approach.

One of the genes, located within the disease locus on chromosome 10 is NRG3.

Neuregulin 3 is a ligand for the Erbb4 transmembrane tyrosine kinase receptor and

can signal in an autocrine, paracrine and juxtacrine fashion [116]. Erbb4 activa-

tion mediates cell migration, control of cell proliferation, cell strati�cation, and cell

adhesion in developmental as well as pathogenic processes in the nervous system,

heart, kidney, and mammary gland [116], [117]. It has been shown to be involved in

embryonic mammary gland development [118] but little is known about its function

in the developing brain, where it is highly expressed, and in skeletal muscle tissue.

Common genetic variation in NRG3 is thought to increase the risk of schizophrenia

[82].This gene, even though not expressed in skeletal muscle is particularly interest-

ing because its introns contain a large number of repeats, which might be causing

OPDM when expanded. A recent study has shown that a microsatellite repeat ex-

pansion within intron 7 in the NRG3 gene correlates with reduced levels of NRG3

expression. However, the phenotypical correlation was impaired mammary gland

development in mice, reducing the possibility of an association with a muscle pheno-

type [119]. Nevertheless, repeats within this gene should be screened for expansions

in further studies to identify the mutation causing OPDM in this family.

POLR3A is a subunit of the RNA polymerase III which transcribes genes encoding

ribosomal 5S RNA, tRNAs, U6 small nuclear RNA, mitochondrial RNA-processing

RNA, H1 RNA, Y RNAs, and 7SK RNA [68]. 5S RNA is imported into mitochon-

dria but, more importantly, is also an essential component of the large ribosomal

60S subunit and reduced or increased expression might a�ect protein biosynthesis

resulting in a muscle phenotype with rimmed vacuoles in histological studies repre-

senting protein depositions [120]. The U6 small nuclear RNA is involved in splice

site detection and conclusively, impaired or excessive transcription could result in

a huge amount of alternatively spliced mRNA and therefore cause disease [121].

Mutations in the gene POLR3A have been associated with recessive hypomyelinat-

ing leukodystrophy (MIM #607694) [69] but it cannot be excluded that an OPDM
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phenotype is a variant speci�c phenotype resulting from mutations in the POLR3A

gene. Conclusively, further studies such as whole-genome sequencing should be done

to detect or exclude genetic variation within the POLR3A gene.

A third interesting gene, found within the detected disease locus is PPIF, encod-

ing Cyclophilin D, a mitochondrial peptidyl-prolyl cis/trans isomerase. Cyclophilins

catalyse the cis to trans isomerisation of certain proline imidic peptide bonds but

Cyclophilin D is also known to be an activator of the mitochondrial permeability

transition pore (MPTP) [122], [123]. Under certain conditions like oxidative stress

or calcium overload, the pore opens and allows free passage of smaller molecules

over the mitochondrial membranes resulting in ATP depletion by uncoupling of ox-

idative phosphorylation and conclusively necrotic cell death. PPIF de�cient mice

(PPIF-/-) showed protection against reperfusion injury after ischemia of heart and

brain tissue due to the reduced activity of the MPTP, whereas overexpression of

PPIF in cardiac tissue lead to mitochondrial swelling and spontaneous cell death

[124]. Knockout of PPIF in a mouse model for sarcoglycanopathies (SGCD-/-),

a limb-girdle muscular dystrophy showed markedly less dystrophic disease in both

skeletal muscle and cardiac muscle compared to a single knockout of SGCD [125].

Conclusively, mutations leading to a gain of function of PPIF could result in mito-

chondrial swelling and necrotic cell death of muscle �bres and might be causative

for OPDM.

5.3. Possible Genetic Causes for OPDM in Family 2

5.3.1. Recessive or Dominant Trait?

When discussing the possible underlying genetic defect responsible for OPDM in

Family 2 it �rst needs to be deliberated whether the disease in this family follows a

dominant or recessive inheritance pattern. At �rst glance, this is easy to answer - as

the parents are reported to be consanguineous and none of them are a�ected, it is

recessive. However, the chances of being homozygous for the mutation is 25% and

one would not expect 5/6 of the descendants to be a�ected by the disease. Addi-

tionally, one would assume that the patients in this family would be homozygous in

the regions with a high LOD-score in the linkage analysis. Nonetheless, haplotyping

for chromosome 2, as well as homozygosity mapping revealed, that the patients all

inherited the same allele from their mother but a di�erent one from their father

that is likewise shared by all a�ected siblings (see �gure 4.5 on page 27 and �g-

ure 5.1 on page 55). If the disease is not caused by a homozygous mutation, it

is also imaginable that the underlying pattern of inheritance is dominant and the
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Figure 5.1.: Reconstruction of haplotype alleles in Family 2 for chromosome 2 from
microsatellite marker from D2S2254 to D2S1326 (Chr2: 119,988,825 - 139,923,024).
Apparently, all patients inherited the same set of alleles (from D2S283 to D2S1326:
Chr2: 121,643,494 - 139,923,024) further narrowing down the possible disease locus
on chromosome 2. These results imply, that OPDM could be caused by compound
heterozygosity in this family.

causative genetic variant is heterozygous. Since none of the parents are a�ected, ei-

ther incomplete penetrance, a germ-line mutation or genetic mosaicism would have

to underlie the condition in this family. Still, chromosome 2 at around 150cM would

be a good candidate region, presenting with a LOD-score greater than 1 (top score

for a dominant model).

5.3.2. Candidate Genes on chromosome 2

In summary, special attention was put on the list of genes inside the conceivable

disease locus on chromosome 2 mapped to the region from rs12711539 and rs344689

(chromosome 2: 121,837,519 - 140,100,106) by genotype analysis based on SNP

genotyping array and whole exome sequencing data (see Figure 4.5 on page 27) which

was further mapped by recombinant haplotype analysis done in Dresden by Prof.
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Angela Hübner to D2S283 to D2S1326 (chromosome 2: 121,643,494 - 139,923,024) as

displayed in �gure 5.1 on page 55. None of the genes found in table 4.1 on page 28 are

striking candidate genes according to their gene function, yet the most likely would

be MYO7B, encoding the protein myosin VIIB. Myosins are molecular motors that

use energy from adenosine triphosphate (ATP) hydrolysis to generate mechanical

force upon their interaction with actin �laments. There are seven vertebrate myosin

classes, the conventional myosin II and the unconventional myosins I, V, VI, VII,

IX and X. Unconventional myosins have a structurally conserved head that moves

along actin �laments. Their highly divergent tails are presumed to enable them to

transport cargo [126]. MYO7B is expressed in small amounts in skeletal muscle,

its main function, still not fully understood, however seems to be in the small and

large intestines as well as the kidneys, where it is highly expressed [127]. Exome

sequencing of three siblings from Family 2 did not identify any rare, protein altering

variants within the locus from rs12711539 and D2S1326 (chromosome 2: 121,837,519

- 139,923,024) that are shared by all three patients.

5.3.3. Possible Compound Heterozygous Variants

Exome sequencing revealed a number of variants with two or more of them being

found in one single gene. Therefore, these could be compound heterozygous and

causative for a recessive inheritance. Namely, these are variants in the genes MUC2,

MBD3L3, FBN3 and TTN and are listed in Table 4.5 on page 37. MUC2 encodes

a member of the mucin protein family, which are large glycoproteins produced by

many epithelial tissues. Mucin 2 is secreted by the gut mucosa and forms an insoluble

barrier to protect the intestines [128]. The two detected variants are c.5014T>G,

p.(S1672A) and c.4876A>T, p.(I1626F) (transcript variant NM_002457.3). In 4362

control alleles from the ExAC browser, the c.50T>G variant can be found twice in

a heterozygous state whereas the c.4876A>T is not listed. However, there is a huge

number of homozygous missense variants listed in the ExAC browser. In a nutshell,

MUC2 is not a good candidate gene by it's function and by the identi�ed variants.

MBD3L3 encodes the protein methyl-CpG-binding domain protein 3 like 3 and

there are no studies up to date about its cellular function. Methyl-CpG binding

domain protein 3, however, is a subunit of the NuRD (Nucleosome Remodeling

Deacetylase), a multisubunit complex with ATP-dependent chromatin remodeling

and histone deacetylase activities [129]. This complex is crucial for the regulation

of chromatin structure and promotion of transcriptional repression [130]. Variants

in this gene have not been associated with any diseases yet. The two identi�ed vari-

ants in MBD3L3 (NM_001164425.1), located on chromosome 19, are c.622A>G,
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p.(R208G) and c.619T>G, p.(C207G) both of which are not listed in the dbSNP-,

EVS5400- and the 1000genomes database. The �rst variant is a substitution of the

positively charged amino acid arginine with the hydrophobic glycine. This position

is the last amino acid before the stop codon in MBD3L3 and conserved in rhesus

and dog. The second change alters a hydrophobic cysteine to a likewise hydrophobic

glycine. Eventually, a disul�de bond could get lost and therefore alter the protein's

tertiary structure. These variants are both not listed in the ExAC-browser database

but ExAC-coverage of this gene is very bad in general (average: 5.947) resulting

in unreliable data. However, the linkage analysis for this region on chromosome 19

results in a negative LOD score of less than -2. Most interestingly, individuals from

Finland (OPDM7) and Canada (OPDM8) carry the same pair of variants, whereas

an individual from the UK (OPDM6) is homozygous for the c.622A>G, p.(R208G)

change. Even though the linkage analysis implies that the other two a�ected indi-

viduals from Family 2 do not carry the same two variants Sanger sequencing should

be done to verify the changes followed by segregation analysis in Family 2.

Two other variants were detected in the gene FBN3 (NM_032447.3) which is

located on chromosome 19 and encodes the protein �brillin 3. This extracellu-

lar matrix macromolecule assembles into micro�brils in a vast number of con-

nective tissues, especially during fetal development [131]. Polycystic ovary syn-

drome susceptibility was linked to a dinucleotide repeat expansion in Intron 55 by

a genomewide association study (OMIM: %184700) [132]. The two variants are

c.6397G>A, p.(Gly2133Ser) and c.5399G>A, p.(Gly1800Asp). The �rst one sub-

stitutes the non-polar amino acid glycine with the uncharged polar serine and the

second one substitutes glycine with the likewise uncharged polar asparagine. Amino

acid position 2133 is highly conserved but some other species, including chicken, ze-

bra�sh and xenopus tropicalis, express serine instead of glycine at position 1800. The

c.6397G>A variant can be found 21 times in the ExAC browser, and c.5399G>A

20 times. Linkage analysis revealed a LOD-score of around -1 for this region on

chromosome 19, implying that the other two a�ected siblings might not carry the

same pair of variants within FBN3. Additionally, it is more likely that mutations

in a cytoplasmic or nuclear protein are causative for OPDM as microscopic studies

on muscle tissue showed a clear intracellular pathology. Deleterious missense muta-

tions are expected to result in a loss of function and result in a gene-function related

phenotype. Therefore, these two variants were not investigated any further.

Finally, a number of 4 heterozygous rare and protein altering variants in the gene

TTN (NM_133378.4) were detected, shared by OPDM3, OPDM4 and OPDM5:

c.92522G>A, p.(C30841Y) (listed 12 times in a heterozygous state in the ExAC-
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browser), c.87147T>A, p.(D29049E) (listed 345 times in a heterozygous state in the

ExAC-browser), c.11138C>G, p.(T3713S) (listed 359 times in a heterozygous state

in the ExAC-browser) and c.1267A>C, p.(S423R) (listed once in a heterozygous

state in the ExAC-browser). Additionally, c.87147T>A and c.11138C>G are listed

in dbSNP and have a frequency of about 0,24% and c.73031G>A of 0,02% according

to the ESP5400 database, the other one is not listed in any of these databases as

shown in table 4.5 on page 37.

Mutations in the titin gene are associated with a number of neuromuscular dis-

orders such as autosomal recessive (AR) limb-girdle muscular dystrophy 2J (MIM

#608807) [133] and it's milder form, the autosomal dominant (AD) tibial muscu-

lar dystrophy (MIM #600334) [73], where patients are heterozygous for the muta-

tions causing AR LGMD2J. They can also cause early-onset myopathy with fatal

cardiomyopathy (MIM #611705) [134]. Cases with inherited hypertrophic (MIM

#613765) or dilative (MIM #604145) cardiomyopathy have also been described [72].

Most of these skeletal muscle titinopathies are caused by truncation and other loss

of function alleles in the most distal M-band (C-Terminus) region of titin, commonly

with autosomal recessive inheritance [135].

Evaluation of assigning pathogenicity to single variants in the titin gene is chal-

lenging as genetic polymorphisms are common and associated with a number of

conditions - a study by Herman et al. showed, that heterozygous truncating mu-

tations (nonsense-, frameshift- and splicing mutations) in the titin gene occur in

about 3% of apparently healthy individuals [72]. For truncating variants, a length

dependent algorithm has been established to estimate the chance of being causative

for nonischemic dilated cardiomyopathy [136]. In neuromuscular disorders, how-

ever, this is much more di�cult, as the number of patients with conditions caused

by aberrations in the titin gene are rare and most are missense and not nonsense

mutations. A second problem, especilly with next-generation sequencing of titin, is

the challenge of mapping short reads against such a repetitive sequence leading to

false positive variants being called [135]. Filtering out variants that occur often �

the so called �in-house frequency� � tries to tackle this issue but cannot completely

solve it.

The c.11138C>G, p.(T3713S) and c.1267A>C, p.(S423R) variants are located

towards the N-terminal end of the titin protein and c.92522G>A, p.(C30841Y) as

well as c.87147T>A, p.(D29049E) within the elastic I-band region. Therefore they

are most likely not causing any of the neuromuscular conditions described above.

Additionally, some of the variants are listed with a higher frequency in the ExAC-
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browser, decreasing the likelihood of pathogenicity. Conclusively, these variants were

also excluded from further studies.

5.3.4. Summary

In Family 2, a very likely disease locus has been identi�ed by reconstruction of

recombinant haplotype alleles which was mapped to chromosome 2: 121,837,519 -

139,923,024 and patients would be expected to be compound heterozygous as they

inherited di�erent alleles from their parents. Homozygosity mapping did not uncover

any larger shared homozygous regions on chromosome 2 providing evidence, that

OPDM can be mapped to the locus described above. However, no candidate genes

could be identi�ed, indicating, that similarly to Family 1, a more complex genetic

reason is underlying OPDM in this family. Conceivable mechanisms would be larger

deletions as well as copy number variations or repeat expansions as found in myotonic

dystrophies or OPMD [137], [138], [139]. Larger insertions cannot be detected by

next generation sequencing techniques as they provide too many mismatches to

the reference assembly for alignment tools. Conclusively, further studies such as

sequencing of repeats will be necessary to �nd the causative mutation for OPDM in

this family.

5.4. Possible Genetic Causes for OPDM in Individual OPDM

VI

5.4.1. NEB c.21044C>G, p.(S7015C) and c.22122C>G, p.(D7374E)

Whole exome sequencing identi�ed 2 variants of unknown signi�cance in the

gene NEB (NM_001164508.1) encoding nebulin, c.21044C>G, p.(S7015C) and

c.22122C>G, p.(D7374E) which are located within the high linkage area on Chro-

mosome 2. As previously mentioned, mutation in the NEB gene are associated

with autosomal recessive Nemaline myopathy (OMIM #256030), a muscle condi-

tion where patients usually exhibit generalised hypotonia at birth also a�ecting

respiratory muscles. Proximal limb muscles are usually weaker initially, but distal

limb muscle weakness eventually occurs. The facies is commonly myopathic with a

high-arched palate and extraocular muscles spared. Chest deformities, hyperlordosis

and scoliosis develop in some cases at puberty. Deep tendon re�exes are usually de-

creased or absent. None of the patients initially reported showed cardiac involvement

[140]. Histopathological studies usually show nemaline bodies which are thread- or

rod-like structures. Also, in 2007 a novel entity caused by homozygous missense
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variants in NEB was described in four Finnish families where a�ected individuals

only presented with mild distal myopathy and no nemaline bodies were seen in his-

tological examinations[141]. The NEB c.21044C>G, p.(S7015C) and c.22122C>G,

p.(D7374E) variants were rare with frequencies of 0.004122 and 0.009407 in the

ESP respectively but are also listed in dbSNP. However, the ExAC-browser lists 411

heterozygous and 4 homozygous carriers for the c.21044C>G-variant as well as 1085

heterozygous and 13 homozygous control individuals for the c.22122C>G-variant.

To con�rm the compound-heterozygous state of the variants the changes would have

to be segregated in the families or tested by cloning and sequencing NEB. However,

DNA from the parents was not available. Looking at both the Nemaline-Myopathy

phenotype and the frequencies, it is unlikely that the variants mentioned above are

the underlying genetic defects in this patient.

5.4.2. Variants in the TTN gene

A total number of four variants within the TTN -gene, encoding titin, a gigantic

structural protein of muscle �bres and the largest human protein , could be identi�ed:

c.42310C>T, p.(P14104S), c.18427C>T, p.(R6143W), c.11866A>T p.(I3956F) and

c.1492G>A, p.(V498I) (NM_133432.3). Di�culties with assigning pathogenicity to

mutations in the TTN gene are discussed in chapter 5.3.3 on page 56.

Most of these skeletal muscle titinopathies are being caused by truncation and

other loss of function alleles in the most distal M-band (C-Terminus) region of

titin, commonly with autosomal recessive inheritance [135]. The c.18427C>T,

p.(R6143W), c.11866A>T p.(I3956F) and c.1492G>A, p.(V498I) variants, however,

are located towards the N-terminal end of the titin protein and the c.41935C>T,

p.(P13979S) change within the elastic I-band region most likely not causing one of

the conditions described in chapter 5.3.3 on page 56. Additionally, the phenotype

of tibial muscular dystrophy or limb-girdle muscular dystrophy 2J di�er decisively

from that of OPDM. To further evaluate these variants, their allele frequency was

determined based on the data from the ExAC-browser which lists exome data

from around 60,000 controls. c.42310C>T is found in 407 healthy individuals in a

heterozygous- and once in a homozygous state. The c.18427C>T-variant is rare and

was only found 6 times in a heterozygous state. There were 659 heterozygous and 3

homozygous controls listed for the c.11866A>T-change and 1801 heterozygous and

21 homozygous individuals for the c.1492G>A-variant. These frequencies almost

certainly exclude a causative association between the variants and the patient's

phenotype. Therefore, carrier status of the parents was not tested to see which

changes are compound heterozygous.
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5.4.3. RYR1 : c.8382C>G, p.(Y2794X)

Exome sequencing detected a truncating variant in RYR1, encoding the protein

ryanodin receptor 1. Mutations in this gene consisting of 106 exons are associ-

ated with autosomal dominant central core myopathy (MIM #117000), autosomal

recessive minicore myopathy with external ophthalmoplegia (MIM #255320) and

malignant hyperthermia susceptibility (MIM #145600) [74], [75],[76],[77].

Central core disease (CCD) is an autosomal dominant myopathy presenting in in-

fancy and involving predominantly proximal muscles [142]. Muscle weakness of the

lower limb is the most important feature and can be slow- or non-progressive. Diag-

nosis is made by muscle biopsy showing amorphous central areas (cores). Mutations

in RYR1 identi�ed so far are missense variants and small in-frame deletions which

are mostly located in the C-terminal domain. Multi-minicore disease (MmD) is quite

similar with the only distinct di�erences being the pattern of inheritance and the dif-

ferent size of the histological lesions in skeletal muscle �bres [74]. Most likely, patient

OPDM VI does not have a congenital myopathy with cores in the muscle biopsy,

otherwise DNA would not have been provided as an OPDM patient. Additionally,

the nonsense-mutation p.(Y2794X) would lead to nonsense-mediated decay of the

mRNA and therefore exclude a dominant negative e�ect. The ExAC-Browser lists

all variants in about 120,000 control alleles (http://exac.broadinstitute.org).

It lists 50 loss of function variants (LoF) in the RYR1 -gene in healthy individuals,

resulting in a pLI (probability of LoF intolerance) of 0.00. Therefore, it is unlikely,

that the variant described above results in haplotype insu�ciency and is causing the

muscle phenotype in this patient. As the parents of the patients were reported to be

healthy, it would also be crucial to test them for the carrier status and con�rm that

the variant is de novo to argue for a deleterious e�ect. It might also be the case that

a second mutation within the RYR1 gene was missed by whole exome sequencing

leading to autosomal recessive MmD - but even then the phenotype would not �t

to OPDM.

5.4.4. Summary

All in all, none of the variants described above is very likely to be responsible for the

muscle condition in this patient if she presents with a OPDM phenotype including

those on chromosome 2. There were no mutations detected within the novel disease

locus on chromosome 10. As the most complex and largest genes in the human

genome including TTN, RYR1, NEB and DMD are associated with neuromuscular

disorders it is foreseeable, that variants are being detected here. A recent study

has identi�ed variants of unknown signi�cance in 32% of 177 samples in these and
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other large NMD-genes [143]. If mutations in the same gene are responsible for the

disease in Family 1 and OPDM VI it it understandable that they are missed by

whole exome sequencing.

5.5. Possible Genetic Causes for OPDM in Individual OPDM

VII

5.5.1. Variants Within High Linkage Areas

A number of variants were identi�ed within the high linkage area on chromosome 2

and the de�ned disease locus on chromosome 10. Two changes within the gene

GLI2 (NM_005270.4) were identi�ed, c.4332G>A, p.(M1444I) and c.4333C>T,

p.(L1445F) at genomic locations 121,747,822 and 121,747,823 on chromosome 2.

Mutations in GLI2 � encoding a zinc �nger and transcription factor of Sonic hedge-

hog signaling � are associated with various kinds of malformation (OMIM #610829,

#615849) [78], [79]. Both the c.4332G>A and the c.4333C>T change can be found

20 times in a homozygous state in healthy individuals according to the ExAC-

browser, therefore excluding pathogenicity.

Two variants were identi�ed within the shared recombinant haplotype region on

chromosome 10. The �rst is a change in the third exon of POLR3A (NM_007055.3):

c.275G>C, p.(C92S) and thus located very close to the centromeric recombination

point of the disease haplotype. Even though mutations in POLR3A are associated

with recessive hypomyelinating leukodystrophy (OMIM #607694) [69], it is conceiv-

able that they are also responsible for a completely di�erent phenotype like OPDM.

However, this variant has a frequency of 0.0002 according to the 1000genomes

database as it was identi�ed on 1 out of 5008 alleles. The ExAC browser lists

34 individuals carrying the variant in a heterozygous state. Considering an autoso-

mal dominant trait or de novo status, the minor allele frequency of 0.0002801 is too

high to consider this variant to be causative for the patient's phenotype.

The second change found within the disease locus isNRG3 : c.901G>A, p.(E301K).

A detailed description of the gene function as well as phenotypes associated with

mutations can be found in chapter 5.2.4 on page 53. This variant is reported to

have a minor allele frequency of 0.002417 in the ESP and 0.0023 in the 1000genomes

database, meaning, that around 1 in 218 individuals is heterozygous for this vari-

ant, which is far too many for a dominant trait. The ExAC browser also lists 9

homozygotes, thus con�rming that c.901G>A is a benign polymorphism.
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5.5.2. RYR1 : c.10025C>T, p.(A3342V)

A variant within the RYR1 (NM_000540.2) was detected in patient OPDM VII,

c.10025C>T, p.(A3342V). Most interestingly, this is the second variant found in

a patient with suspected diagnosis of OPDM. This variant substitutes the non-

polar amino acid alanine with the likewise non-polar valine which most likely does

not disrupt the protein structure. This variant is not listed in the ESP- and has

a minor allele frequency of 0.0002 according to the 1000genomes database. The

ExAC browser lists 52 control alleles carrying this variant resulting in a minor allele

frequency of 0.0004323. This number is far too high for an autosomal dominant

trait or de novo status. Therefore, this variant was considered not to be associated

with the patient's muscle condition and consequently not segregated in the patient's

family.

5.6. Possible Genetic Causes for OPDM in Individual OPDM

VIII

5.6.1. Variants in the TTN -Gene

Whole exome sequencing uncovered three variants in gene TTN (NM_001267550.1)

namely c.107098G>A, p.(D35700N), c.16303G>A, p.(V5435M) and c.10879G>A,

p.(V3627I). The ExAC browser lists 673 heterozygotes and 7 homozygotes for the

c.16303G>A, p.(V5435M) variant resulting in a minor allele frequency of 0.005636.

Therefore, this change has to be benign to the gene. The other two variants are

not listed in in the 1000genomes-, the EVS- and the ExAC- database. However,

without the patient's parents' DNA it was not possible to proof biallelic location of

the c.107098G>A and the c.10879G>A change. Similarly to the discussion of the

changes within the titin gene found in patients OPDM III, OPDM IV, OPDM V

and OPDM VI (5.3.3 on page 56), the latter were not thought to be the underlying

genetic cause for this patient's muscular condition.

5.6.2. MYOT : c.655C>T, p.(R219X)

Exome sequencing uncovered a variant in the gene MYOT, associated with Limb-

Girdle Muscular dystrophy type 1A (LGMD1A, MIM #159000), Myo�brillar My-

opathy (MIM #609200) and Spheroid Body Myopathy (MIM #182920), all of which

are inherited in an autosomal dominant way. Patients with LGMD1A exhibit a prox-

imal pattern of muscle weakness progressing to include distal limb-girdle muscles.

CK levels are elevated up to 9-fold of the normal upper limits. Biopsies of a�ected
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individuals show myopathic changes such as variations in �ber size, �ber splitting,

and other hallmarks of degeneration as well as a large number of rimmed vacuoles. Z-

line streaming, similar to that seen in nemaline myopathy, was also observed [144].

Although some individuals with LGMD1A exhibit a distinctive nasal, dysarthric

pattern of speech [144], the predominantly proximal pattern of muscle involvement

is quite distinct from the phenotypical presentation of OPDM.

Myo�brillar myopathies (MFMs) are a genetically heterogeneous group of muscu-

lar disorders. They are characterised by a pathologic pattern of myo�brillar degra-

dation and accumulation of Z disc proteins [145]. MFM due to mutations in MYOT

(myotilin) includes progressive distal muscle weakness and peripheral neuropathy

with hypore�exia. The age of onset is usually in the �fties or sixties. Cardiac in-

volvement, as seen in some OPDM patients occurs in a number of individuals. Mus-

cle biopsies show abnormal muscle �bers deposits consisting of amorphous granular

and/or hyaline material. Some hyaline structures are thought to comprise beta-

pleated amyloid sheets. Electron microscopy studies show smear like aggregates

of dense material emerging from Z discs [90]. Although patients exhibit a distal

limb-girdle weakness, the phenotype of myo�brillar myopathy caused by mutations

in MYOT di�ers from that of OPDM as these patients typically do not have any

pharyngeal or ocular involvement.

A subgroup of MFM caused by mutations in the MYOT gene is called spheroid

body myopathy due to accumulation of myo�lamentous material within individual

muscle �bers [146], [91]. Patients present �rst in adolescence and proceed to some

motor incapacitation, but life span is not shortened. Muscle weakness is predomi-

nantly proximal, almost excluding a misdiagnosis of OPDM.

The variant found in patient OPDM VIII inside the myotilin gene is not easy

to evaluate as it is the heterozygous nonsense mutation c.655C>T, p.(R219X) in

exon 5 (of 10) of the MYOT gene (transcript variant NM_006790.2). To discuss,

if a heterozygous missense mutation can cause a dominant inherited condition the

molecular basis of dominance has to be understood. First, protein levels can be

reduced by a phenomenon called haploinsu�ciency. This is, when the monoallelic

expression of a gene is not enough to result in a �normal� phenotype [147]. This phe-

nomenon, common in cancer progression, however, is rare in other �elds of medicine

when focussing on single nucleotide alterations and smaller deletions. Second, pro-

tein function can be altered, producing a gain or loss of function. A loss of function

could be exemplary explained, when both the wildtype and the mutated protein

get incorporated into a structural protein causing a lack of stability such as in

Ehlers-Danlos syndrome [148]. Gain of function, such as in Chronic mucocutaneous
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candidiasis disease caused by mutations in the gene STAT1, results in this condi-

tion through increased activation of some cytokines thus inhibiting the development

of a subgroup of T-cells [149]. The missense variant p.(R219X) is very likely not

altering the protein function as in most cases with nonsense mutations the mRNA

is eliminated by nonsense-mediated decay resulting in no protein production at all

[150].

The only remaining explanation how this variant can cause a neuromuscular phe-

notype is haploinsu�ciency. This is a phenomenon that appears to be extremely

rare in autosomal dominant neuromuscular disorders with only a small number of

publications where authors claim that haploinsu�ciency is the underlying genetic

mechanism as by Benedetti et al. 2007 [151]. A rough prediction, if loss of function

variants result in haploinsu�ciency can be derived from the pLI-score (probability of

LoF intolerance) provided by the ExAC browser. It is assumed that there are three

classes of genes with respect to tolerance to LoF variation: null (complete toler-

ance to LoF), recessive (heterozygous LoFs tolerance), and haploinsu�cient (where

heterozygous LoFs are not tolerated). Observed and expected LoF variants counts

are used to determine the probability of LoF intolerance (pLI). The closer pLI is

to one, the more LoF intolerant the gene appears to be. A pLI ≥ 0.9 is considered

an extremely LoF intolerant set of genes [152]. MYOT has a pLI of 0.00, therefore

it is very likely to tolerate the loss of one allele which makes it unlikely that the

heterozygous MYOT p.(R219X) variant could cause OPDM in this patient.

5.6.3. MEGF10 : c.1564G>A, p.(G522R)

A second heterozygous variant, uncovered by whole exome sequencing in this pa-

tient is c.1564G>A, p.(G522R) in the gene MEGF10. Mutations in MEGF10 are

associated with autosomal recessive early-onset myopathy, are�exia, respiratory dis-

tress, and dysphagia (EMARDD, MIM #614399) as well as recessive congenital

myopathy with minicores [86], [87]. Both conditions are not very likely to cause

a phenotype similar to that of OPDM. Additionally, the c.1564G>A, p.(G522R)

change was found twice in a homozygous status in control individuals according to

the ExAC browser. Therefore, this variant is most likely not associated with the

muscle condition in this patient.
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5.6.4. MATR3 : c.313C>T, p.(R105C)

5.6.4.1. Can Distal Myopathy Mimic OPDM?

As a change in the gene MATR3, associated with vocal cord pharyngeal distal my-

opathy (VCPDM, OMIM #606070), was detected in patient OPDM VIII, it �rst

needs to be discussed, if VCPDM can mimic the phenotype of OPDM. In VCPDM

patients the mean age of onset is 42.2 years (range: 30-55 years) in [153]. Patients

exhibit a speci�c pattern of muscle weakness: Legs seem to be more severely af-

fected than the arms. Weakness in the distal limbs is commonly more pronounced

than in the proximal compartments. Still, most patients remain ambulant for a long

time. Dysphagia and voice pathology is common but ocular muscle involvement

has not been described so far. Interestingly, the Achilles re�ex was absent in all

patients assessed by Müller et al.. Histopathology shows myopathic changes such

as �ber size variation, minor fatty replacement and internal nuclei in all patients.

Additionally, subsarcolemmal rimmed vacuoles, also observed in hereditary inclu-

sion body myositis [154], OPMD [155], and other myopathies as well as atrophic

�bers consistent with denervation, can be seen in most patients. Ultrastructural

studies showed sparse and small tubular aggregates but no �lamentous inclusions

[156]. Patients with VCPDM usually present with myopathic changes in electromyo-

graphical assessments [157]. Pathological spontaneous activity was found in some

patients [153]. Creatine kinase (CK) serum levels were generally within twice the

upper limits of normal levels. [153].

All these pathologic �ndings are consistent with the clinical diagnosis of OPDM

except that ocular muscles are usually spared in patients with VCPDM [157]. There-

fore, it is not farfetched that patients with VCPDM can clinically be diagnosed with

OPDM and consequently, the detected mutation in the gene MATR3 should be

considered a good candidate gene in this patient.

5.6.4.2. Evaluation of the Mutation

The c.313C>T, p.(R105C) in the Matrin 3 gene, transcript variant (NM_018834.5)

found in this patient was predicted to alter the strength of two splice acceptor sites

and cause a substitution of the polar and positively charged amino acid arginine

with the nonpolar cysteine. However, this variant is located in a non-canonical

transcript and the proportion of expression has not been published, yet. If this

region would be coding in only a small percentage it would be di�cult to argue

that this mutation is deleterious. However, if the altered strength of two splice

acceptor sites caused by this variant is shifting the ratio towards the transcripts
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including this region to the protein coding part it would most likely disrupt the

protein structure. Only one mutation in the MATR3 gene, found in patients from

Tennessee., USA, Bulgaria, Germany and Japan, namely p.(S85C), is reported to

cause autosomal dominant vocal cord pharyngeal distal myopathy (VCPDM) [94].

Most interestingly, the variant is not listed in the ExAC browser and the pLI is 1.00

as there is not a single LoF variant in the MATR3 gene found in control individuals.

This implies, that the observed variant is most likely deleterious if this transcript

is expressed in skeletal muscle. No speci�c diagnostic criteria for VCPDM has

been determined yet as immunohistochemical staining shows no di�erences between

patients and controls concerning subcellular location inside the nuclei of muscle cells

as well as expression levels determined by real-time PCR and Western-Blot analyses

[153]. To further investigate the case, cDNA analyses to determine the ratio of

transcript variants as well as quanti�cation of Matrin 3 protein as well cDNA have

to be done. In summary, the c.313C>T, p.(R105C) variant detected in the gene

MATR3 is considered a good candidate gene in this individual.

5.6.5. Variants Within the High-Linkage Areas

In addition to variants in genes known to cause neuromuscular diseases, special in-

terest was put on the mapped disease locus on chromosome 10 as well as on the high-

linkage area on chromosome 2. No single rare and protein-altering change was seen

at chromosome 10: 79,750,884 - 85,566,388 and only the TTN -changes discussed

above were interesting among those detected on chromosome 2. Conclusively, the

best candidate variant in this patient is MATR3 c.313C>T, p.(R105C) and needs

to be further evaluated by expression analyses, immunohistochemical stainings and

screening of patients with a similar phenotype for this particular mutation.

5.7. How Disease Causing Variants can be Missed by

Whole-Exome Sequencing

5.7.1. Technical Issues

As exome sequencing of patients from two larger families as well as 2 individual pa-

tients did not detect convincing candidate genes it needs to be discussed, how disease

causing variants can be missed by this technology. First, there are a number of tech-

nical issues which should be considered when analysing WES data. Obviously, only

the protein-coding parts of the genome are covered by this method and variants in

the gene's noncoding as well as intergenic regions cannot be identi�ed. Additionally,
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some coding regions of rarely expressed transcript variants might not be targeted

by exome sequencing libraries. Also, only around 92% of the exome is currently en-

riched by modern kits as it is di�cult to design hybridisation probes for some coding

regions, especially repetitive elements and GC rich sequences. Furthermore, even

coverage for targeted coding exons is not 100% accurate with some regions being

poorly and some being not covered at all. Modern established sequencing pipelines

reach a coverage of around 97-98% with a minimum read depth of 20x which is

required for con�dent variant calling [36], [158]. As the bioinformatical pipeline

used in this study has not been validated and tested against di�erent approaches for

coverage as well as sensitivity and speci�city of variants being called the coverage is

expected to be less than 97%. The importance of these technical issues was high-

lighted by a study displaying that especially some exons of genes associated with

neuromuscular disorders are di�cult to enrich for next-generation sequencing [159].

They also reported that approximately 10-20% of the 92% of targeted exons had

low or zero coverage in their whole exome database [159]. The main reason for the

incomplete coverage is GC-rich regions which are a challenge for exome enrichment

kits that use clonal ampli�cation of templates. These commonly comprise the �rst

exons of protein coding genes. As PCR is required for these techniques, AT-rich

and GC-rich target sequences may be underrepresented in genome alignments and

assemblies which may result in very low coverage [160], [161], [162]. All in all, this

may well be an explanation, why this study was not able to identify the genetic

reason for OPDM. However these issues are mitigated by the fact, that the disease

could be mapped and uncovered exons within the linkage area were analysed by

Sanger sequencing.

5.7.2. Repeat Expansions

A second issue, why exome sequencing studies might fail to identify causative genetic

aberration, could be that a repeat expansion is underlying the inherited condition.

This is likely in OPDM as discussed in chapter 5.2 on page 51. Identi�cation of

large expansions can fail on di�erent stages during the process of next-generation

sequencing [163]. First, hybridisation of patient DNA to the probe for target enrich-

ment could be impaired and result in no coverage. Second, as target enrichment is

based on PCR, the polymerase might struggle which results in poor coverage. Third,

sequencing itself is challenging for repeat regions because most next-generation se-

quencing platforms, as the Illumina sequencing system used in our studies, rely on

reading signal from bulk DNA populations, like Sanger sequencing does. Therefore

they are limited by the loss of sequence phase coherence - a particular problem of the
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often GC-rich repeat regions. Conclusively, even the best ampli�cation based NGS

technology cannot sequence alleles with expansions of around 100 repeats [164]. And

�nally, reads covering an expanded repeat might not be aligned by software tools

due to the number of mismatches to the reference genome as the maximum read

length is 100bp using an Illumina platform. In summary, standard approaches for

NGS enrichment will not always work in high-repeat genomic regions and preferen-

tial use of alternative technologies such as the PacBio system should be considered

when a repeat expansion is likely to be the underlying genetic cause of a disease.

5.7.3. Indels

Additionally insertions and deletions (so-called indels) could be causative for OPDM

and be missed by whole-exome sequencing. There are two main di�culties in identi-

fying indels: First, next-generation sequencing technology is susceptible to produce

indel artifacts, especially 1 bp heterozygous indels inserted to or deleted from long

poly-A or poly-T runs (homopolymers) [165], [166]. And second, alignment of reads

spanning indels is challenging with many of them being misaligned, resulting in

bad coverage which might not be enough for a con�dent variant call [167], [165].

Unsurprisingly, a recent study has demonstrated that the concordance between dif-

ferent software tools to call indels is as little as 30% [25]. Thus, if the causative

genetic variation for OPDM was an indel, it is likely to be missed by whole-exome

sequencing.

5.7.4. Copy Number Variations

A special subset of indels are structural variants called copy number variation mean-

ing very large insertions or deletions ranging up to several megabases in size. In

recent years as detection tools improved, their role in inherited diseases as well as

in cancer has been highlighted [168], [169], [170]. There are two main options to

identify copy number variations. One is detecting linkage disequilibrium by SNP

genotyping array data meaning that certain SNPs �anking CNV regions are inher-

ited combined (linkages) more or less often than would be expected judging by their

distance apart in the genome [171]. The other is a read-depth approach, where the

the mapping ratio of next-generation sequencing read counts relative to a reference

genome is determined for detection of copy number variations [172]. At the time of

bioinformatical processing of the exome-sequencing data for this study, many of the

software tools for detection of copy number variation were not available. Therefore

these structural variations could not be identi�ed, if present at all, and programs like
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CNV-seq, Pindel or ExomeDepth should be included in a reanalysis of whole-exome

sequencing data [173], [174], [175].

5.7.5. Bioinformatic Di�culties

Also, bioinformatical analysis of exome-sequencing raw data poses problems and

needs to be discussed as the choice of annotation tool and variant callers can result

in various discrepancies. In one study, two di�erent transcript sets � RefSeq and

Ensemble � were used as a basis for annotation and the authors only found 44%

agreement in annotations for loss of function variants [176]. The same study also

showed, that only 65% of loss of function changes and 87% of all variants in the

coding regions were matching when comparing results from two annotation software

tools annovar and VEP (Variant E�ect Predictor, [177]), implying that there is a

huge number of false negative variants. A similar study demonstrates that combina-

tion of di�erent read aligners with variant calling software tools vary in performance

[178]. They also show huge discrepancies for indels and SNPs, as all alignment tools

use di�erent algorithms coming with diverging strengths and weaknesses. For ex-

ample the usage of gapped alignment algorithms - i.e. the ability of allowing a gap

in a read compared to the reference sequence - is important for indel detection on

the cost of e�ciency and time [59]. Faster alignment tools will therefore identify

less indels and might miss the causative genetic change.

Additionally, the e�ect of grouped or single sample variant calling needs to be dis-

cussed as the exome sequencing data has been analysed one at a time. Pooled sample

variant calling allows the use of reads across all samples of a batch at a position to

determine the presence of a polymorphism, markedly improving the sensitivity. One

study showed that grouped sample variant calling resulted in 4.30% more detected

SNPs [179]. To sum it up, the perfect bioinformatical pipeline does not exist and

all combinations of software tools, like Mosaik Aligner and Varscan/Dindel variant

caller as used in this study, have their weaknesses and will not be able to detect all

present variants.

5.7.6. Familial Locus Heterogeneity

A recent study highlighted the problem of familial locus heterogeneity, meaning

that two or more disease-causing mutations are responsible for the same phenotype

in a larger family. Rehman et al. presented 10 consanguineous Pakistani families

with autosomal recessive hearing loss due to mutations in two or more genes [180].

They concluded that familial locus heterogeneity occurs in around 15% of families in

their collection, making it a common cause of failure in next-generation sequencing
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projects. In such cases, linkage analysis would result in decreased LOD-scores. It

might therefore be a good strategy to obtain the MLOD score for each pedigree

from simulations using information on the pedigree structure, mode of inheritance,

a�ection status, penetrance and availability of genotype data. The MLOD score

is the highest possible LOD score obtained for all replicates. If the actual LOD

score does not reach the level of the simulated MLOD score it is reasonable to

assume familial locus heterogeneity and analyses should be repeated for the di�erent

branches of a family. This could be the underlying cause of the low LOD score in

Family 1 which was expected to be higher due to the size of the pedigree. Further

analyses as suggested above should be performed to exclude this phenomenon in

Family 1.

5.8. Options to Find the Genetic Cause of OPDM

5.8.1. Upcoming Advances in Next-Generation Sequencing

As this study was unable to identify the genetic cause or causes of OPDM even

though two disease loci could be identi�ed, further options need to be discussed how

to solve this case.

First, some of the technical issues, discussed in chapter 5.7.1 on page 67 are being

tackled everyday and there will be advances in next-generation sequencing technol-

ogy that will solve many of these issues. One of the most interesting advances will

be the improvement of real-time DNA sequencing from single polymerase molecules

such as the PacBio Sequencing platforms [181]. This sequencing platform produces

reads with an average length of 10kb with half the amount of reads being longer

than 20kb [182]. Therefore it would be ideal for the detection of larger aberra-

tions such as indels or repeat expansions and should be considered the number one

choice for further studies on OPDM. An alternative sequencing platform, which is

currently being established and improved, is the the Oxford Nanopore which shows

great potential regarding accuracy as well as cost- and time e�ciency. From �rst

studies, a proof of concept and improvements by using genetically improved biolog-

ical pores in 2009 to the introduction of the minION sequencing device of the size

of a palm being commercially available since May 2015 this technology is expected

to revolutionise the �eld of high-throughput sequencing [183], [184]. If �rst studies

prove a higher sensitivity in comparison with established platforms from Illumina

and Roche it might be a good option for further sequencing projects on OPDM.
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5.8.2. Analysis for Copy Number Variations

As discussed in chapter 5.2.3 on page 52, copy number variations are an underesti-

mated genetic basis of neuromuscular disorders and the bioinformatic pipeline used

in this study is not able to detect them. There are two main strategies how to call

CNVs, one is from paired data where the ratio of read counts from a test- and a

control sample is used to detect regions that deviate from one; the other is from

pooled data where CNVs are detected as di�erence of read counts from the average

depth of coverage (DOC) pro�le in a region [185]. The raw data should therefore

be reanalysed including the use of programs like exome2CNV or PropSeg in order

to identify CNVs from the exome sequencing data, which is cheaper and faster than

additional usage of the array CGH technology [186], [187].

5.8.3. Whole Genome Sequencing or Target Sequencing of the Disease

Locus

When whole-exome sequencing fails to identify disease-causing variants one possible

explanation is that the mutation is located in an area of the genome which is not

targeted. Intronic as well as promoter regions are conceivable locations where genetic

changes could result in a disease phenotype as discussed in chapter 5.2 on page 51.

Therefore, it is a reasonable step to perform whole genome sequencing next in order

to identify the mutation causing OPDM. Alternatively, target resequencing for the

de�ned disease locus on chromosome 10 could be done, which might be cheaper

and should provide a higher sensitivity since a recent study showed, that target

sequencing of genes associated with neuromuscular disorders resulted in 20-30%

more detected variants compared to whole exome sequencing [143]. Apart from

coverage of intronic as well as intergenic regions, WGS comprehends the advantages

of reliable detection of copy number variations as well as better identi�cation of

repeat expansions compared to WES [188]. However, variant detection from whole

genome sequencing is still limited by the ability to annotate and interpret non-

coding sequence variants. Additionally, there are only few data sets of high coverage

reference genomes to compare results to [37]. In the worst case one would identify

a large number of small genetic variants within the disease locus and would not be

able to �nd the one true disease causing mutation. Still, whole-genome sequencing

is the most obvious next step in order to identify the genetic cause of OPDM.
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5.8.4. RNA-Sequencing

RNA-seq (RNA-sequencing), also called whole transcriptome shotgun sequencing

(WTSS) is a method to sequence the set of all messenger RNA in a population

of cells. Apart from being capable of detecting mutations, it comprises a number

of advantages over DNA sequencing: First, it is able to identify alternative spliced

transcripts, especially, when a cryptic splice acceptor site is missed by WES. Second,

it can detect gene fusions, which is more important in cancer research, but might be

underlying an inherited disease like OPDM. And third, it is widely used to analyse

gene expression which might be a�ected by mutations in regulatory elements such

as the promoter [189]. If WES and WGS fail to detect good candidate variants, this

technology could be used to study the di�erences in gene expression with special

focus on those located within the de�ned disease locus on chromosome 10 and on

chromosome 2 between patient derived material and control samples. However, this

would require either muscle tissue from a biopsy or �broblasts from a skin biopsy

which could be transformed into myoblasts by MyoD virus transduction [190]. This

would be challenging, as patients live in Turkey and also because invasively taking

tissue samples for research reasons rises ethical questions.

5.8.5. Immunohistochemical Staining for Candidate Gene Products

A possibility to get around the issue of taking further tissue samples would be

immunohistochemical studies of para�n embedded tissue at hand. As there are

only 14 protein coding genes in the mapped disease locus on chromosome 10, im-

munohistochemical staining for their encoded proteins could identify aberrant stain-

ing patterns as well as reduced or missing transcription. The human protein at-

las (http://www.proteinatlas.org) summarises information on tissue expression,

sub-cellular localisation and provides antibodies for most known protein coding gene

products [98]. For all 14 proteins mentioned above, there are antibodies available

and could be used for further studies.
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6. Summary

Oculopharyngodistal myopathy (OPDM) is an inherited adult onset muscle disease

with both dominant and recessive patterns of inheritance. Ptosis is usually the initial

symptom, followed by distal weakness and swallowing di�culties. Histopathological

�ndings include chronic myopathic changes and rimmed vacuoles. Despite all e�orts,

the underlying genetic cause for OPDM could not yet be identi�ed.

The aim of the study described in this thesis was to identify the mutation respon-

sible for OPDM and is based on 49 individuals from unrelated Turkish families as

well as three sporadic patients from England, Finland and Canada.

Linkage analysis was done using SNP-genotyping array data and showed high

LOD-scores for regions on chromosome 2 for a recessive family and on chromosome

10 for a large dominant family. To further map the disease loci �nemapping was

carried out by microsatellite analysis. Two separate disease loci could be identi�ed

and reconstruction of recombinant haplotypes mapped them to chr2 q14.2-q22.1 for

the recessive family and chr10 q22.3-q23.1 for the dominant family.

Subsequently, whole exome sequencing and Sanger sequencing of �ve individuals

from two unrelated families as well as three sporadic patients was used in order to

identify the underlying genetic cause of OPDM. Intriguingly, no likely disease caus-

ing variants or candidate genes could be identi�ed in the Turkish families. However,

in one sporadic patient, a heterozygous variant in the MATR3 gene was identi�ed,

which is predicted to cause the substitution of a conserved amino acid as well as

result in aberrant splicing. Another variant in MATR3, detected in 5 unrelated

families, has previously been associated with vocal cord pharyngeal distal myopa-

thy. This �nding could replicate the association of MATR3 with a myopathy and

expand the phenotypical presentation of patients with MATR3 -related disorders.

It has been discussed that there is a number of possible explanations why the

underlying genetic cause of OPDM has remained elusive despite WES analysis in-

cluding the possibilities of larger deletions or duplications, intronic or intergenetic

mutations and also repeat expansions. There are also a number of problems arising

from the sequencing process and the bioinformatical analysis. Any of these issues

may be the reason, why the underlying genetic cause for OPDM has not yet been

identi�ed and further studies including technologies like RNA-Seq or whole genome

sequencing will be necessary to �nally understand the genetic basis of OPDM.
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Die Oculopharyngodistale Myopathie (OPDM) ist eine erbliche Muskelerkrankung

des Jungend- und Erwachsenenalters, die sowohl autosomal dominant als auch rezes-

siv vererbt werden kann. Typischerweise entwickeln Patienten initial eine Ptose,

die von einer distalen Gliedergürtelschwäche und einer Dysphagie gefolgt wird.

Histopathologisch lassen sich chronische myopathische Veränderungen und vakuoläre

Einschlüsse nachweisen. Trotz intensiver Bemühungen konnte die genetische Ursache

der OPDM noch nicht identi�ziert werden.

Das Ziel dieser Arbeit war es, die genetische Veränderung, die für die OPDM

verantwortlich ist zu �nden und zu erforschen. Die Studie basierte auf 49 Indi-

viduen aus 9 nicht-verwandten türkischen Familien und sporadischen Patienten aus

England, Finnland und Kanada.

Mittels SNP-Array wurde eine Kopplungsanalyse durchgeführt, die hohe LOD-

Scores für Marker auf Chromosom 2 für eine Familie mit rezessivem und auf Chro-

mosom 10 für eine Familie mit dominantem Erbang ergab. Um den Genlokus für die

OPDM weiter einzugrenzen, wurde eine Untersuchung von Mikrosatelliten durchge-

führt, um die Haplotypen in den gekoppelten Regionen zu rekonstruieren. Hier

konnten zwei unterschiedliche Krankeitslozi identi�ziert werden, Chromosom 2q14.2-

q22.1 für die rezessive und Chromosom 10q22.3-q23.1 für die dominante Familie.

Anschlieÿend wurde von fünf betro�enen Individuen aus zwei nicht-verwandten

und von drei sporadischen Patienten eine Exom-Sequenzierung durchgeführt, um die

der Erkrankung zugrunde liegenden genetische Ursache zu identi�zieren. Zu unserem

Erstaunen konnten wir in den türksichen Familien keinerlei genetische Veränderun-

gen identi�zieren, die möglicherweise mit der Erkrankung assoziiert werden können.

Dennoch fand sich bei einem sporadischem Patienten eine heterozygote Variante

im MATR3 -Gen. Auf Grund der Variante wird der Austausch einer konservierten

Aminosäure und aberrantes Spleiÿen vorhergesagt. In 5 nicht-verwandten Familien

mit einer Stimmband-Pharyngealen distalen Myopathie konnte eine Mutation im

MATR3 -Gen als genetische Ursache identi�ziert werden. Dieses Ergebnis könnte

eine Replikation der Assoziation von MATR3-Varianten mit Myopathien darstellen

und das phänotypische Spektrum dieser Erkrankungsgruppe erweitern.

Es wurde diskutiert, dass es eine Reihe möglicher Erklärungen gibt, weshalb

der, der OPDM zugrundeliegende, genetische Defekt bisher noch nicht identi�ziert
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werden konnte, trotz der Sequenzierung des gesamten Exoms. Beispielsweise könn-

ten Deletionen oder Duplikationen, intronische oder intergene Mutationen und

auch Repeat-Expansionen eine Erkrankung hervorrufen. Es gibt auÿerdem einige

Schwierigkeiten beim Sequenzieren und bei der bioinformatischen Auswertung,

die bedacht werden müssen. All diese Punkte könnten ein Grund sein, weshalb

die genetische Ursache der OPDM bisher noch nicht identi�ziert worden ist und

Folgestudien mit weitergehenden Methoden wie der Transkriptom- und Genomse-

quenzierung sind nötig, um den komplexen genetischen Mechanismus zu verstehen,

der für die OPDM verantwortlich ist.
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A.1. List of Primers

List of primers used:

MYPN :

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

MYPN ex 18 fwd agcctgggtgacagagcaagac 64 6818

MYPN ex 18 rev ccagactcaaatagcagcagac 60,3 6706

MYPN ex18 fwd2 ctcagccaaagaggtgaagaa 57,9 6497

MYPN ex1 fwd cataggtgctgtcctgctatgg 62,1 6957

MYPN ex1 rev tgccctgttatcaaaacacact 56,5 6638

MYPN ex2 fwd tgggtgacaaagtgagaccttc 60,3 6799

MYPN ex2 rev ataaactggagctgttttcctg 58,4 6765

MYPN ex3 fwd atggtttgaatactgccaactc 56,5 6709

MYPN ex3 rev agaagagcgcatggtagaggag 62,1 6922

MYPN ex4 fwd aaatcttatgtcgtgtttaggaacc 58,1 7670

MYPN ex4 rev ggagccacccttcttaagttc 59,8 6357

MYPN ex5 fwd cacctgtaagcagtgatgcc 59,4 6101

MYPN ex5 rev tgcaagatggtcatggtcac 57,3 6157

MYPN ex6 fwd ttgggatgcatttcatat 54 6411

MYPN ex6 rev ccgtacatacagaagaccaaatc 58,9 6994

MYPN ex7 fwd atgcacatccacagaactgaag 58,4 6721

MYPN ex7 rev tggaaaggtgttcattaaatgttg 55,9 7461

MYPN ex8 fwd aatatccatcctgtccctgttg 58,4 6636

MYPN ex8 rev tgctggaattacagacatgagc 58,4 6783

MYPN ex9 fwd aattgttttgaccaattgttttc 51,7 7009

MYPN ex9 rev ttttagaagagccaagccagc 57,9 6439

MYPN ex10 fwd tgtgaacactttcccatttgtg 56,5 6691

MYPN ex10 rev gtgtgagcaactgtgcctagc 61,8 6462

MYPN ex11 fwd tctgaacattgtttgaaaggtg 54,7 6804

MYPN ex11 rev gagatttggtttgcacagagg 57,9 6541

MYPN ex12 fwd tgtcatttcaaccactctgatttc 57,6 7228

MYPN ex12 rev gtatccgaggactgaatcaagt 60,3 6768

MYPN ex13 fwd gcttcctcaattgtactgatgg 58,4 6716

MYPN ex13 rev agaccttcttgaaggcactg 57,3 6116
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MYPN ex14 fwd tcacttaaaagatggcagttgg 56,5 6798

MYPN ex14 rev tttcctcagcaatccttagtaactc 59,7 7526

MYPN ex15 fwd atttcacggtgttctggtcc 57,3 6089

MYPN ex15 rev atccagtactttggtgctcacg 60,3 6701

MYPN ex16 fwd tgttttacatcagctccacacc 58,4 6605

MYPN ex16 rev tgacattaaatactccaaacaagcc 58,1 7586

MYPN ex17 fwd agcaaggataaagaattcagcc 56,5 6785

MYPN ex17 rev atgaaggaattctggcagagg 57,9 6559

MYPN ex19 fwd ttcctggaaccctaaatttgac 56,5 6669

MYPN ex19 rev accttgcctgacccatttatc 57,9 6292

MYPN ex20 fwd gtgaaggacagaatgcacctc 59,4 6151

MYPN ex20 rev gcttggaaaccaccaagtctg 59,8 6415

MYPN ex11b fwd cgaagtatttcttcccctccac 60,3 6581

MYPN ex11b rev gagagccctgtttcagatcaag 60,3 6759

MYPN ex2b fwd ataaccctcgaagtcccacc 59,4 5990

MYPN ex2b rev aaaccaggtgcttaaatgataatac 56,4 7682

MYPN ex3 fwd (2) ttaagagaatatctggagctgtct 57,6 7406

MYPN ex3 rev (2) tgctgtatcctcattgcctaga 58,4 6676

MYPN ex2a fwd (2) ttgagctttaatttctaacgagtc 55,9 7332

MYPN ex9 fwd (2) gccagctttttatattgactttg 55,3 7010

MYPN ex9 rev (2) ggaatggaaacacaaaatctgc 56,5 6785

MYPN ex8 fwd (2) taatatccatcctgtccctgtt 56,5 6611

MYPN ex8 rev (2) tttattcatctcagtgtaacttcatt 55,3 7876

MYPN ex18 fwd (3) agaatgacccttctcttgctca 60,4

6645 MYPN ex16 fwd (2) gttctctaggtctgtagccatgc 62,4 7021

Table A.1.: List of Primers MYPN

POLR3A:

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

POLR3A ex19 fwd ttagctcccagctgccaaag 59,4 6061

POLR3A ex19 rev attacagctcatgtgcaaaacg 56,5 6727

POLR3A ex1 fwd gcgagtagcggaagaggaag 61,4 6305

POLR3A ex1 rev atctctgaccctgcaagacc 59,4 6021

POLR3A ex2 fwd aggttggttatggtgggcta 57,3 6259

POLR3A ex2 rev gctcctttcaatctggtaagtca 58,9 6989

POLR3A ex3 fwd gcaaaagaaatgattctgtgtca 55,3 7095

POLR3A ex3 rev ctagatgtatcccccaccactc 62,1 6575

POLR3A ex4 fwd tcacgtggttaagggtacaaaa 56,5 6807

POLR3A ex4 rev aaaagctgactcccgaacatta 56,5 6696
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POLR3A ex5 fwd ggacctctcatctttcattgct 58,4 6627

POLR3A ex5 rev ttttggaagaaagtgggtgtct 56,5 6860

POLR3A ex6 fwd aaacatagtgaaggaaaaccttgc 57,6 7402

POLR3A ex6 rev tttttctcacattttcttgacca 53,5 6905

POLR3A ex7 fwd gcctcccatttccttgtaagtt 58,4 6627

POLR3A ex7 rev gagaagctggacagacactcct 32,1 6753

POLR3A ex8 fwd agtctctccgttcttattgttcc 58,9 6922

POLR3A ex8 rev tttctactgcctgttgtttgc 55,9 6360

POLR3A ex9 fwd caggatgcctctctttctccta 60,3 6612

POLR3A ex9 rev tgtggctgagtatgaccacagt 60,3 6790

POLR3A ex10 fwd tcctgatctgaagagggagaaa 58,4 6832

POLR3A ex10 rev agaagtccactgtttagcactga 58,9 7047

POLR3A ex11 fwd ttttaatgtttcaaaacagagaagc 54,8 7688

POLR3A ex11 rev tggtgttttcatgtaagtttcctt 55,9 7345

POLR3A ex12 fwd aaaccttgtgattcaggctttg 56,5 6740

POLR3A ex12 rev tgaatcactatgaacgaggaaca 57,1 7089

POLR3A ex13 fwd tgttggtcatggttcaaatttat 53,5 7074

POLR3A ex13 rev cactcatttcaccagtctaccc 60,3 6550

POLR3A ex14 fwd ggggtagactggtgaaatgagt 60,3 6919

POLR3A ex14 rev cagaaacaatgaatttgcttgc 54,7 6742

POLR3A ex15 fwd gctttgaggagaatttctgtttg 57,1 7115

POLR3A ex15 rev gggatgaaatggcagtaaaaga 56,5 6905

POLR3A ex16 fwd gcaggcataaactgtatttagtagg 59,7 7745

POLR3A ex16 rev tacctctattcatggctcagca 58,4 6645

POLR3A ex17 fwd gcatcttgcctcagtattttca 56,5 6651

POLR3A ex17 rev gctgtgactatcacattttctgg 58,9 7020

POLR3A ex18 fwd ctgttttacccttccaatctgc 58,4 6587

POLR3A ex18 rev ccaacggtctttgatctgaata 56,5 6709

POLR3A ex19 fwd tttctgatttgcgtggatttca 52,8 6761

POLR3A ex19 rev tgtgcaaaacgtgtactcaatac 57,1 7071

POLR3A ex20 fwd tgcttgtaaccttgagactcttg 58,9 7020

POLR3A ex20 rev aactgcaattgatagtccaaaca 55,3 7024

POLR3A ex21 fwd gctaaaagctcaccttgggtaa 58,4 6743

POLR3A ex21 rev cccttgcaaacagagttcaa 57,9 6381

POLR3A ex22 fwd cagtatccagattgggtccttt 58,4 6716

POLR3A ex22 rev tgtacacatggggaaacagaag 58,4 6841

POLR3A ex23 fwd gctgggactcacatcctaattt 58,4 6685

POLR3A ex23 rev ccagggagcacaaaactcttta 58,4 6712

POLR3A ex24 fwd ggtgataaccagaagcctctcc 62,1 6704

POLR3A ex24 rev atgccacccagagtttaagaca 58,4 6712
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POLR3A ex25 fwd cacttgggtttaacaaagcagta 57,1 7071

POLR3A ex25 rev tggcagctgatttttacacttc 56,5 6691

POLR3A ex26 fwd aagcagtcgtgtgctcttagg 59,8 6477

POLR3A ex26 rev tgcttagctcttgccctagttt 58,4 6658

POLR3A ex27 fwd gggtgcttagaacaaacctgac 60,3 6768

POLR3A ex27 rev gggataaggccaagaagaaatta 57,1 7178

POLR3A ex28 fwd agctggggtgatcaaggtga 59,4 6262

POLR3A ex28 rev tgcagatggcacaaggaaga 57,3 6224

POLR3A ex29 fwd acagggtttgctttgaaactg 55,9 6476

POLR3A ex29 rev tctatgatggtcctcacagcag 60,3 6710

POLR3A ex30 fwd ggaggatttttgttgattgtattg 55,9 7474

POLR3A ex30 rev gcctagccatggtctatttgta 58,4 6716

Table A.2.: List of Primers POLR3A

Microsatellites:

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

D10S606 fwd tttgaacctgggagacg 52,8 5250

D10S606 rev catggacattctgctgc 52,8 5161

D10S1136 fwd gtgggctgaaactctgctt 56,7 5834

D10S1136 rev gtggggaaacagacaaacc 56,7 5879

D10S1730 fwd gtgcagccactgttgagag 58,8 5868

D10S1730 rev aagtttgagaaccactggtctatc 59,3 7351

D10S1164 fwd ggtgctgaggtgggaagat 58,8 5988

D10S1164 rev gaggtgtaaggaaagcacga 57,3 6264

D10S201 fwd agctcatgggatggaagcat 57,3 6206

D10S201 rev agctaaaaggctgctggaga 57,3 6215

D10S1774 fwd ctcttgtccacttggcctca 59,4 5994

D10S1774 rev cctgccttcacactgctctg 61,4 5979

D10S523 fwd tggaggttgtggtgagctg 58,8 5970

D10S523 rev ccattctagactgcggctg 58,8 5779

D10S583 fwd tctgaccaaaataccaaaagaac 55,3 7002

D10S583 rev agagactccagatgtttgatga 56,5 6798

D10S577 fwd ttgcacaccagcctaag 52,8 5139

D10S577 rev gcccaagagttggagac 55,2 5244

Table A.3.: List of Primers Microsatellites
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UNC5B

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

UNC5B ex9 fwd gctcagactggaactcagcac 61,8 6400

UNC5B ex9 rev ctctggtctgggtaccacca 61,4 6068

Table A.4.: List of Primers UNC5B

NRG3

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

NRG3 ex1-1 fwd cagggagcggatttgcat 56,0 5579

NRG3 ex1-1 rev atgaagccgatgaacagaggta 58,4 6841

NRG3 ex1-2 fwd ggctcctaggatgagtgaagg 61,8 6551

NRG3 ex1-2 rev aagtggtagtggtggtggtctc 62,1 6877

NRG3 ex1-3 fwd ctcagcctcatgcttctcaaat 58,4 6605

NRG3 ex1-3 rev agcgtgctgctactgaagaac 59,8 6455

NRG3 ex1-4 fwd caccaccactaccacttccac 60,8 6200

NRG3 ex1-4 rev ggaggaggaagaagaggaagaa 60,3 7004

NRG3 ex1-5 fwd ggcatacgctacctcctccta 61,8 6302

NRG3 ex1-5 rev agggggcttgctagaaaacag 59,8 6544

NRG3 ex1-1 fwd (2) cggctcctaggatgagtgaag 61,8 6511

NRG3 ex1-1 rev (2) gaacagaggtaccacgcacag 61,8 6458

NRG3 ex1-2 fwd (2) tgaagccgatgaacagaggta 57,9 6528

NRG3 ex1-2 rev (2) atgaagccgatgaacagaggt 57,9 6528

NRG3 ex1-3 fwd (2) aagaccggctcctaggatgagt 62,1 6784

NRG3 ex1-3 rev (2) aaggtgaagaccggctccta 59,4 6151

NRG3 ex2 fwd cattttcccaggaggtgtttag 58,4 6756

NRG3 ex2 rev ctgagggccctgtcaataatg 59,8 6406

NRG3 ex2 fwd (2) gagggttggagctgtctgtcta 62,1 6837

NRG3 ex2 rev (2) aaacggtgggactgtgtgtatc 60,3 6830

NRG3 ex1-1 fwd (3) tcttccgagctccttaccg 58,8 5690

NRG3 ex1-1 rev (3) agaggaagaaggggtcctg 58,8 5966

NRG3 ex1-1 fwd (4) ccctcttccgagctccttac 61,4 5939

NRG3 ex1-1 rev (4) atgtaagccgatgaacagaggta 58,4 6841

NRG3 ex2 fwd (2) agcagtcatttttgagagcaca 56,5 6758

NRG3 ex2 rev (2) cagatttttcccctcttttcct 56,5 6553

NRG3 ex9 fwd ggccacaacaagtctactgga 59,8 6424

NRG3 ex9 rev tcactgaattctcacagcaacc 58,4 6623

Table A.5.: List of Primers NRG3
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Micro RNAs

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

MIR_554 fwd tcaaaaatgaaaatatgctggatg 54,2 7432

MIR_554 rev tttaacagttcccatgcacttg 56,5 6660

hsa-miR-3198-3p fwd tggccctagaattgtaatccat 56,5 6709

hsa-miR-3198-3p rev actcccccataaacctgaaagt 58,4 6632

Table A.6.: List of Primers miRNAs

RPS24

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

RPS24 fwd gggctgtggcaagtatttacag 60,3 6830

RPS24 rev ggagaagaaggtggagagatga 60,3 6986

Table A.7.: List of Primers RPS24

ZMIZ1

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

ZMIZ1 3'-UTR fwd gttccttttcactgtctgtgg 57,9 6385

ZMIZ1 3'-UTR fwd (2) gggcgagttgattcacttactc 60,3 6741

ZMIZ1 3'-UTR rev gggacactttaagggaaaaacc 58,4 6801

ZMIZ1 ex9 fwd ctatggccaatgccaacaac 57,3 6054

ZMIZ1 ex9 rev actgctgcagcgccttatct 59,4 6043

ZMIZ1 ex10 fwd caagtggcacaaatgaatgg 55,3 6199

ZMIZ1 ex10 rev caccctaatgcagtcagctctc 62,1 6615

ZMIZ1 ex11 fwd tccctccctgcactttcaat 57,3 5938

ZMIZ1 ex11 rev acacctcctcaagtccctcaag 62,1 6584

ZMIZ1 ex12 fwd gtgacctggctatgtgacgtt 59,8 6468

ZMIZ1 ex12 rev aacacacgcagggtcagagt 59,4 6160

ZMIZ1 ex21 fwd aggtcacctgggtgtctgtc 61,4 6139

ZMIZ1 ex21 rev gccaccatcagcacagaaat 57,3 6063

ZMIZ1 ex21 fwd (2) tgtggtgagagtgggagcag 61,4 6318

ZMIZ1 ex21 rev (2) gggggatgtgttacttctctct 60,3 6763

ZMIZ1 ex23 fwd ggttgtgttgggtttcattttc 56,5 6784

ZMIZ1 ex23 rev ctcacacccaccccttctct 61,4 5868

Table A.8.: List of Primers ZMIZ1
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PPIF

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

PPIF ex1 fwd caggggtagtccacggacag 63,5 6192

PPIF ex1 rev cattctcagaaatggggaaact 56,5 6767

PPIF ex2 fwd ttggatgtttattgaccccttt 54,7 6697

PPIF ex2 rev aatgctgagacagcctacagtg 60,36 6768

Table A.9.: List of Primers PPIF

EIF5AL1

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

EIF5AL1 ex1 fwd tcatatgaaagacgtgtaaaatgc 55,9 7408

EIF5AL1 ex1 rev acgaaggtcctctggtacctc 61,8 6382

EIF5AL1 ex1 fwd (2) gtgtaaaatgcctgggtagagg 60,3 6879

EIF5AL1 ex1 rev (2) cttgccaaggtctccctcag 61,4 6028

EIF5AL1 ex1 fwd (3) aagatcgtggagatgtctgctt 58,4 6805

EIF5AL1 ex1 rev (3) ggtggggaaaaccaaaataaaa 54,7 6858

Table A.10.: List of Primers EIF5AL1

C10orf57

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

C10orf57 fwd gagactcgctctcagggactt 61,8 6098

C10orf57 rev gattgtgcttgcacgacttc 57,3 6446

Table A.11.: List of Primers C10orf57

PLAC9

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

PLAC9 fwd ggttctctcgagccagaaagt 59,8 6446

PLAC9 rev cagctctctctccgtctctctc 64,0 6524

PLAC9 fwd (2) gctcgtaacaaacccctgac 59,4 6030

PLAC9 rev (2) cattccttcctcgccatct 56,7 5625

Table A.12.: List of Primers PLAC9

ANXA11

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

ANXA11 ex11 fwd cccatctactgagccatgtgt 59,8 6357

ANXA11 ex11 rev caggctctgctttgtgtcct 59,4 6065
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Table A.13.: List of Primers ANXA11

SH2D4B

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

SH2D4B ex1 fwd aactgacaatgctgcacagaga 58,4 6761

SH2D4B ex1 rev cctggccctgctaatttttct 57,9 6314

SH2D4B ex1 fwd (2) tgggtagaggagatgagttcgt 60,3 6910

SH2D4B ex1 rev (2) atcttgaagaagggcacagc 57,3 6175

SH2D4B ex4 fwd ggttcctggactattaggttgg 60,3 6812

SH2D4B ex4 rev ccaaactacacagcaaatctgg 58,4 6681

Table A.14.: List of Primers SH2D4B

AK302451

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

AK302451 fwd gaactcaaacactccctccatc 60,3 6568

AK302451 rev tgaggagattcatgtgaaggtg 58,4 6894

Table A.15.: List of Primers AK302451

AX747983

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

AX747983 ex1 fwd gacctctgttattccagcaacc 60,3 6630

AX747983 ex1 rev tgggtaatcaatcccctttatg 56,5 6700

AX747983 ex2 fwd aagatggctgtggaaactgatt 56,5 6838

AX747983 ex2 rev gaattcttggctgaactgtgtg 58,4 6796

AX747983 ex2 fwd (2) gaggatcagttgagtccaggag 62,1 6864

AX747983 ex2 rev (2) ggctgaactgtgtgcaatagaa 58,4 6823

Table A.16.: List of Primers AX747983

ZCCHC24

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

ZCCHC24 ex1 fwd aggaagagcgggtcagacag 61,4 6629

ZCCHC24 ex1 rev aaaagtttcctgcccaactttc 56,6 5941

ZCCHC24 ex2 fwd agcagggacaaaagggtagag 59,8 6602

ZCCHC24 ex2 rev cccaaggcagaggctgtagtat 62,1 6784

ZCCHC24 ex2 fwd (2) atttgaactcaggcttctggag 58,4 6765

ZCCHC24 ex2 rev (2) aatcccagcagggacaaaag 57,3 6153
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ZCCHC24 ex4 fwd gcttttgcttgcctttgtcc 57,3 6031

ZCCHC24 ex4 rev ctctccctcactgtgtctgtca 62,1 6588

ZCCHC24 ex4 fwd (2) ctcatcgggtgtgtgtctctc 61,8 6395

ZCCHC24 ex4 rev (2) ctggacatgggcttttgctt 57,3 6129

Table A.17.: List of Primers ZCCHC24

FAM213A

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

FAM213A ex1 fwd caaccagcaccatcttctcc 59,4 5941

FAM213A ex1 rev accagtatgcttgctctcattg 58,4 6676

FAM213A alternate ex fwd catctacttgggaggctgagg 61,8 6502

FAM213A alternate ex rev acccactgaaagagaagcagag 60,3 6795

FAM213A alternate ex fwd (2) cacgtgtagtcccatctacttg 60,3 6661

FAM213A alternate ex rev (2) tgaaagagaagcagagacacaga 58,9 7172

Table A.18.: List of Primers FAM123A

MAT1A

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

MAT1A ex9 fwd gctgtgttacagttcgttgctc 60,3 6723

MAT1A ex9 rev tgacaggacaggctaaatgaga 58,4 6841

Table A.19.: List of Primers MAT1A

GHITM

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

GHITM ex2 fwd tttggttggttttgccttttt 52,0 6421

GHITM ex2 rev aggagggaccagaatgatacaa 58,4 6850

Table A.20.: List of Primers GHITM

CDHR1

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

CDHR1 ex1 fwd gagccgtgtcatcctcttagc 61,8 6373

CDHR1 ex1 rev aggaagatggaaggacttctcc 60,3 6808

CDHR1 alternate exon fwd gataaatggatggagctgctg 60,3 6821

CDHR1 alternate exon rev tggtgggtagggaagtattcag 60,3 6910

Table A.21.: List of Primers CDHR1
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LRIT2

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

LRIT2 ex2 fwd gtttgagatccaagaccctcag 60,3 6719

LRIT2 ex2 rev tggccagatgttagagggttat 58,4 6845

LRIT2 ex3 fwd gataaatggatggagctgctg 57,9 6550

LRIT2 ex3 rev ccccggaatcaatacttatgct 58,4 6654

LRIT2 alternate exon fwd ctgacagagcagtgtcttctcc 62,1 6686

LRIT2 alternate exon rev ggcacttcctgaagctcataat 58,4 6694

Table A.22.: List of Primers LRIT2

LRIT1

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

LRIT1 ex2 fwd gtgataacaggcagaactggag 60,3 6857

LRIT1 ex2 rev aagaccccaggtgaaggttg 59,4 6191

LRIT1 ex3 fwd cttcagccagcttgaactgag 59,8 6406

LRIT1 ex3 rev aagagccactgtcattgttgaa 56,5 6758

LRIT1 ex4 fwd ctgtgaacttggccctgaaag 59,8 6446

LRIT1 ex4 rev gtcagctcctcctttgtgct 59,4 6025

Table A.23.: List of Primers LRIT1

MYOT

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

MYOT ex5 fwd gaacttaccagggctgttcaaa 58,4 6743

MYOT ex5 rev ttcccctgtgatagttttgatg 56,5 6722

Table A.24.: List of Primers MYOT

FKRP

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

FKRP fwd ctctacgaggagcgctggac 63,5 6143

FKRP rev gtactgcacgcggaaaaagt 57,3 6175

Table A.25.: List of Primers FKRP
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RYR1

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

RYR1 fwd tccctaagacccttagcttgttc 60,6 6925

RYR1 rev atgtgaaattgcctcactcctc 58,4 6645

RYR1 ex93 fwd gaatggttttgaatgaatgaactc 55,9 7430

RYR1 ex93 rev caaggtgagcaggagaggtg 61,4 6296

Table A.26.: List of Primers RYR1

Intronic repeats

Oligo Name Sequence (5'->3') Tm [◦C] MW [g/mol]

NRG3 repeat1 fwd gggcaaggagactcttctaggt 62,1 6815

NRG3 repeat1 rev tagcaattgaatgaaggaggag 56,5 6896

NRG3 repeat2 fwd agcttctttcttgttgtgagga 56,5 6762

NRG3 repeat2 rev gtggtggtgcatgtctgtagtc 62,1 6828

NRG3 repeat3 fwd tttatgtgctcttggattgctg 56,5 6753

NRG3 repeat3 rev caaataggagggatgtgcaagt 58,4 6872

NRG3 repeat4 fwd caaattgaaagtctgccatcct 56,5 6678

NRG3 repeat4 rev gtgtccaacccaagaaaatgat 56,5 6736

NRG3 repeat5 fwd aaggaaaatgacaggctgagaa 56,5 6874

NRG3 repeat5 rev tgtagtcccagctactcggaag 62,1 6735

LOC100132987 rep fwd gtcagggttctgcagctctaaa 60,3 6750

LOC100132987 rep rev ggcaacacagcaagatgtagtc 60,3 6777

ZMIZ1 rep fwd ccttggtcataagccctttgta 58,4 6676

ZMIZ1 rep rev ctctgcctaggaaaaccagaga 60,3 6737

LOC219347 rep fwd acctggatccaatgtacacaag 58,4 6632

LOC219347 rep rev tagccaaggtgagtcagtgaaa 58,4 6832

TSPAN14 rep fwd tttgagacagggtcttgctgt 57,9 6483

TSPAN14 rep rev ggtgaaaccccatctctacaaa 58,4 6672

Table A.27.: List of Primers Intronic repeats
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A.2. Merlin Input Files

A OPDM

M rs876724

M rs12714396

M rs381726

M rs300739

M rs1350779

M rs6548222

M rs907302

M rs1320362

M rs2293085

M rs7575263

M rs6548255

M rs7559853

M rs5020134

M rs7426276

M rs938326

M rs1368233

M rs709276

M rs1667023

M rs1729916

M rs6767

M rs12988769

M rs1024026

M rs10174999

M rs792065

M rs813779

M rs2118186

M rs1079417

M rs921229

M rs309276

M rs2352400

M rs7598142

M rs1560382

M rs1364054

M rs1025053

M rs3102960

M rs168293

M rs2001660

M rs12995394

M rs1309

M rs728282

M rs4669630

M rs1686430

M rs730990

M rs726843

M rs1370548

M rs6432244

M rs4668758

M rs1469217

M rs956596

M rs779343

M rs1510834

M rs765786

M rs1862110

M rs767624

M rs340767

Figure A.1.: Exemplary .dat Merlin input �le. Left column indicates that all SNPs
are markers to be considered by the program. Right column lists the SNPs which have
been genotyped. Note, that only a few markers are shown to �t this �gure to one page.

104



A. Anhang

CHROMOSOME MARKER POSITION

2 rs876724 0,001765

2 rs12714396 0,002412

2 rs381726 0,0033

2 rs300739 0,00644

2 rs1350779 0,006729

2 rs6548222 0,137572

2 rs907302 0,427542

2 rs1320362 0,558847

2 rs2293085 0,767507

2 rs7575263 0,869165

2 rs6548255 0,939968

2 rs7559853 1,165881

2 rs5020134 1,208016

2 rs7426276 1,347943

2 rs938326 1,861933

2 rs1368233 2,657625

2 rs709276 4,87012

2 rs1667023 5,572099

2 rs1729916 6,740577

2 rs6767 10,90533

2 rs12988769 8,525858

2 rs1024026 9,285462

2 rs10174999 9,286284

2 rs792065 11,69467

2 rs813779 11,82321

2 rs2118186 11,93157

2 rs1079417 12,76831

2 rs921229 13,24073

2 rs309276 14,80846

2 rs2352400 14,80918

2 rs7598142 14,81039

2 rs1560382 14,86523

2 rs1364054 18,72203

2 rs1025053 18,77044

2 rs3102960 19,93544

2 rs168293 21,33897

2 rs2001660 22,32186

2 rs12995394 23,3701

2 rs1309 25,52654

2 rs728282 25,52657

2 rs4669630 25,52749

2 rs1686430 25,52749

2 rs730990 26,75621

2 rs726843 27,11846

2 rs1370548 27,96878

2 rs6432244 28,3712

2 rs4668758 29,83475

2 rs1469217 31,26161

2 rs956596 31,26445

2 rs779343 31,26473

2 rs1510834 32,54884

2 rs765786 32,73141

2 rs1862110 33,28779

2 rs767624 34,0628

2 rs340767 35,71467

Figure A.2.: Exemplary .map Merlin input �le. This �le connects all markers from
the .dat �le to a position on a Chromosome in Centimorgan. Note, that only a few
markers are shown to �t this �gure to one page.

105



A. Anhang

1 1 0 0 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 2 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 5 0 0 2 0 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 6 0 0 1 0 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 7 0 0 2 0 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 8 1 2 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 9 6 5 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 10 6 7 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 11 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 9401 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 9402 8 9401 2 2 A/G A/G A/G G/G A/G A/C A/A A/C A/G G/G G/G G/G A/G A/G A/G A/A A/A A/C A/A G/G G/G G/G A/G A/G G/G C/C C/C A/G A/G G/G A/A A/A A/G A/G A/A A/A A/G A/A A/A A/A A/G A/G A/G A/G G/G A/A C/C G/G G/G A/A 

1 8898 8 9401 1 0 A/G A/G A/G G/G A/G A/C A/A A/C A/G G/G G/G G/G A/G A/G A/G A/A A/A A/C A/A G/G G/G G/G A/G A/G G/G C/C C/C G/G A/A G/G A/A A/A A/A A/G A/A A/A A/G A/A A/G A/G G/G G/G A/A A/G A/G A/G C/C A/A A/A G/G 

1 8863 1 2 2 0 A/G A/G A/G A/G A/G A/C G/G C/C G/G G/G A/A G/G A/A G/G G/G A/A A/A A/A G/G A/G A/A A/G G/G A/G A/G C/C C/C G/G A/A A/G A/A G/G G/G A/G A/A A/G A/G A/A A/A A/A G/G G/G A/A A/G A/G A/G C/C G/G G/G A/A 

1 8879 9 8863 2 2 A/G A/G G/G G/G A/G A/C A/G C/C G/G G/G A/A G/G A/A G/G G/G A/A A/A A/A A/G A/G A/G G/G G/G A/G A/G C/C C/C G/G A/G A/G A/G G/G G/G A/G A/G A/G G/G A/G A/A A/A G/G G/G A/G A/G G/G A/G A/C G/G G/G A/A 

1 8869 9 8863 2 2 A/G A/G G/G G/G A/G A/C A/G C/C G/G G/G A/A G/G A/A G/G G/G A/A A/A A/A A/G A/G A/G G/G G/G A/G A/G C/C C/C G/G A/G A/G A/G G/G G/G A/G A/G A/A A/G A/G A/A A/A G/G G/G A/G G/G A/G A/G A/C G/G G/G A/A 

1 8868 0 0 1 1 A/G A/A A/A G/G A/A A/A G/G A/C A/G A/G G/G A/G A/A G/G G/G A/A A/A C/C A/G A/G G/G A/G G/G G/G G/G C/C C/C A/G G/G A/A A/A A/G A/G A/G A/A A/G A/A A/G A/A A/A G/G G/G A/G A/G G/G A/A C/C G/G G/G A/A 

1 8866 8868 8869 1 0 A/A A/G A/G G/G A/G A/C G/G A/C A/G A/G A/G G/G A/A G/G G/G A/A A/A A/C G/G A/G A/G G/G G/G A/G A/G C/C C/C A/G A/G A/G A/A A/G A/G G/G A/A A/G A/A A/G A/A A/A G/G G/G A/G G/G A/G A/A C/C G/G G/G A/A 

1 8873 9 8863 2 2 A/A G/G G/G G/G G/G C/C A/G A/C G/G G/G A/G A/G A/G G/G A/G A/A A/A A/A G/G A/G A/A G/G A/G A/A A/G C/C C/C G/G A/G A/G A/A G/G G/G A/G A/G A/G A/G A/G A/A A/A A/G A/G A/A A/A G/G A/G C/C G/G G/G A/A 

1 9405 6 7 1 2 G/G A/A A/G G/G A/A A/A A/G A/C G/G G/G A/G A/G A/A G/G G/G X/X A/A A/C A/A A/G A/G G/G A/G G/G A/G C/C C/C A/G G/G A/A A/G G/G G/G A/A G/G A/G A/G G/G A/G A/G A/G A/G A/G A/G G/G G/G A/C G/G A/G A/G 

1 9403 10 11 1 2 A/G A/G A/G G/G A/G A/C A/A A/C G/G G/G G/G A/A G/G G/G A/A A/A A/A A/A G/G A/G A/A G/G A/G A/G G/G C/C C/C G/G A/G A/G A/A G/G A/G G/G A/G A/G G/G A/G A/G A/G A/A A/A G/G A/A A/G A/G C/C G/G A/G A/G 

1 8801 10 11 1 2 G/G A/A A/A G/G A/A A/A A/A A/C G/G G/G G/G A/A G/G G/G A/A A/A A/A A/A G/G A/G A/A G/G A/G A/G G/G C/C C/C G/G A/G A/G A/A G/G A/G G/G A/G A/G G/G A/G A/G A/G A/A A/A G/G A/A A/G A/G C/C G/G A/G A/G 

1 8892 6 7 1 2 A/G A/G A/G G/G A/G A/C A/G A/C A/G G/G A/G A/A G/G G/G A/G A/G A/A A/A A/G A/G A/G G/G A/G A/A G/G C/C A/C G/G A/G A/G A/A G/G A/G G/G A/A A/G A/G A/A A/A A/A A/G A/G G/G A/A G/G A/A C/C A/G A/G A/G 

1 8893 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

1 8870 8892 8893 1 2 G/G A/A A/A G/G A/A A/A G/G A/C A/A A/G A/G A/A A/G G/G G/G A/G A/A A/A A/A A/A G/G G/G G/G A/A G/G C/C A/C A/G A/G A/G A/A A/G A/G A/G A/A A/G A/G A/A A/A A/A G/G G/G A/G A/G A/G A/A C/C A/G A/G A/G 

2 1 0 0 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

2 2 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

2 3 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

2 8876 1 2 1 2 G/G A/A A/A A/A A/A A/A A/A C/C A/G A/G A/G G/G A/G G/G A/G A/A A/G C/C A/G A/A A/G A/G G/G G/G A/G C/C C/C A/G G/G A/A A/A A/G A/G A/G A/G A/G A/G A/G A/G A/G G/G G/G A/G G/G A/G A/G A/A G/G G/G A/A 

2 8875 1 2 1 2 G/G A/A A/A A/A A/A A/A A/A C/C A/G A/G A/G G/G A/G G/G A/G A/A A/G C/C A/G A/A A/G A/G G/G G/G A/G C/C C/C A/G G/G A/A A/A A/G A/G A/G A/G A/G A/G G/G A/A A/A A/G A/G A/A A/G G/G G/G A/C A/G A/G A/G 

2 8878 1 3 2 2 A/G A/G G/G G/G A/G A/C A/G A/C G/G A/G G/G G/G A/A G/G A/G A/G A/A A/C G/G A/G G/G A/G A/G A/G G/G C/C C/C G/G A/A G/G A/A A/G G/G A/G A/G G/G A/G A/G A/G A/G G/G G/G G/G G/G A/A A/A A/C G/G G/G A/A 

3 1 0 0 1 2 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

3 2 0 0 2 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

3 8887 1 2 2 2 G/G A/A A/G G/G A/A A/A A/A C/C G/G A/G A/A G/G A/A G/G A/G A/A A/A A/C G/G A/A G/G G/G G/G G/G G/G C/C A/C G/G A/A G/G A/G A/A A/G A/G A/G A/G A/A G/G A/G A/G G/G G/G A/G A/G G/G A/A A/C A/A A/A G/G 

3 8855 1 2 1 2 G/G A/A A/A A/G A/A A/C A/G C/C A/G A/G A/G A/G A/G G/G A/G A/G G/G C/C A/A G/G G/G A/A G/G G/G G/G C/C C/C G/G A/G A/G A/A A/A A/G A/G A/G A/A A/G A/A A/A A/A G/G G/G A/A G/G G/G A/G A/C A/A A/A G/G 

3 8888 1 2 2 2 G/G A/A A/G G/G A/A A/A A/G C/C A/G A/A A/G A/G A/G G/G A/G A/G A/G A/C A/G A/G G/G A/G G/G G/G G/G C/C A/C G/G A/G A/G A/A A/A A/G A/G A/A A/A A/A A/G A/G A/G G/G G/G A/A A/G G/G A/A A/C A/A A/A G/G 

3 8852 1 2 2 2 G/G A/A A/G G/G A/A A/A A/A C/C G/G A/G A/A G/G A/A G/G A/G A/A A/A A/C G/G A/A G/G G/G G/G G/G G/G C/C A/C G/G A/A G/G A/G A/A A/G A/G A/G A/G A/A G/G A/G A/G G/G G/G A/G A/G G/G A/A A/C A/A A/A G/G 

3 8854 1 2 1 2 G/G A/A A/G G/G A/A A/A A/G C/C A/G A/A A/G A/G A/G G/G A/G A/G A/G A/C A/G A/G G/G A/G G/G G/G G/G C/C A/C G/G A/G A/G A/A A/A A/G A/G A/A A/A A/A A/G A/G A/G G/G G/G A/A A/G G/G A/A A/C A/A A/A G/G 

4 1 0 0 2 0 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

4 2 0 0 1 0 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

4 3 0 0 1 1 X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X X/X 

4 8811 1 2 2 1 A/G A/G G/G G/G A/G A/C A/A A/C A/G A/G G/G G/G A/A G/G A/G A/G A/A C/C A/G A/G G/G A/A G/G A/G G/G A/C C/C A/A A/A G/G A/G A/G A/G A/G A/A A/A A/G A/A A/A A/A A/G A/G A/G A/A A/G A/A C/C A/G A/G A/G 

4 8810 1 2 2 2 A/A G/G G/G G/G G/G C/C A/G A/A A/G G/G A/G A/G A/A G/G A/G A/G A/G C/C G/G A/G G/G A/A G/G A/G G/G C/C A/C A/G A/G A/G A/G A/G A/A A/G A/A A/G G/G A/A A/G A/G A/G A/G A/A G/G G/G A/G C/C A/G A/A G/G 

4 8871 1 2 1 2 A/A G/G G/G G/G G/G C/C G/G A/C A/A G/G A/G A/A A/A G/G G/G A/A A/G A/C G/G A/G G/G A/A G/G G/G A/G C/C A/A G/G G/G A/A G/G G/G A/A A/A A/A A/G G/G A/A A/G A/G A/G A/G A/A G/G G/G A/G C/C A/G A/A G/G 

4 8872 8811 3 1 2 A/G A/G A/G G/G A/G A/C A/G A/A A/G A/G G/G G/G A/A G/G A/A A/G A/A C/C G/G A/G A/G A/A G/G A/A G/G C/C C/C A/A A/G A/G A/A A/G A/G A/G A/A A/G G/G A/A A/G A/G G/G G/G A/G A/G A/G A/G C/C A/G A/G A/G 

Figure A.3.: Exemplary .ped Merlin input �le. First column names the family, second
column the individual's name. Since the program requires a consistent pedigree, parents
which have not been genotyped have to be added and numbered. Third column names
the father and fourth column the mother of each individual giving the program all
the information to reconstruct the pedigree. Fifth column indicates disease status, �1�
stands for una�ected, �2� for a�ected and �0� for unknown. Then, SNP data is added
after each individual according to the order of SNPs in the .map �le. If a family member
has not been genotyped �X/X� is used.
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OPDM 0,01 0.01,0.99,0.99 Dominant_Model

OPDM 0,01 0.01,0.01,0.99 Recessive_Model

OPDM 0,01 0.01,0.5,0.99 Co-Dominant_Model

Figure A.4.: Exemplary .model Merlin input �le. This �le is required for parametric
linkage analysis and consists of 4 �elds per line: an a�ection status label (matching the
data �le), a disease allele frequency, a probability of being a�ected for individuals with
0, 1 and 2 copies of the disease allele (penetrances), and �nally a label for the analysis
model.
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A.3. List of homozygous variants shared by OPDM3,

OPDM4 and OPDM5

Chr Position Ref Obs Variant Func

chr1 109792750 - CGC CELSR2:c.49_50insCGC:p.L17delinsPL exonic

chr1 31905904 - CAG
SERINC2:c.1116_1117insCAG:

p.Q372delinsQQ
exonic

chr10 7605079 C - ITIH5:c.2154delG:p.M718fs exonic

chr10 97920100 - C ZNF518A:c.4021_4022insC:p.L1341fs exonic

chr11 111853108 - C DIXDC1:c.181_182insC:p.L61fs exonic

chr11 118898437 C - SLC37A4:c.527delG:p.W176fs exonic

chr11 118939941 - C VPS11:c.222_223insC:p.S74fs exonic

chr11 125452303 - C EI24:c.735_736insC:p.P245fs exonic

chr11 14101494 - C SPON1:c.602_603insC:p.A201fs exonic

chr11 3661588 - TGG ART5:c.71_72insCCA:p.P24delinsPT exonic

chr11 67786065 - C ALDH3B1:c.231_232insC:p.N77fs exonic

chr11 67795380 - C ALDH3B1:c.1268_1269insC:p.P423fs exonic

chr11 76751543 T - B3GNT6:c.948delT:p.L316fs exonic

chr11 76751605 T - B3GNT6:c.1010delT:p.L337fs exonic

chr12 124824739 - GCCGCTGCT
NCOR2:c.5470_5471insAGCAGCGGC:

p.S1824delinsSSGS
exonic

chr12 6777111 CTG - ZNF384:c.1153_1155del:p.385_385del exonic

chr12 6938024 - G P3H3:c.419_420insG:p.R140fs exonic

chr12 7080212 - C EMG1:c.126_127insC:p.S42fs exonic

chr12 76424952 CTG - PHLDA1:c.568_570del:p.190_190del exonic

chr12 9994450 GTT - KLRF1:c.377_379del:p.126_127del exonic

chr14 24646413 - AAG REC8:c.688_689insAAG:p.A230delinsEA exonic

chr14 53619494 - CGCCGC
DDHD1:c.323_324insGCGGCG:

p.S108delinsSGG
exonic

chr14 73957982 - C C14orf169:c.260_261insC:p.A87fs exonic

chr15 35230936 - GTTA AQR:exon10:c.718+2-TAAC splicing

chr15 93198687 GAGCTG - FAM174B:c.198_203del:p.66_68del exonic

chr16 138773 - G NPRL3:c.930_931insC:p.T310fs exonic

chr16 2059625 C - ZNF598:c.124delG:p.G42fs exonic

chr16 3602230 G - NLRC3:c.2318delC:p.A773fs exonic

chr17 26699368 - C SARM1:c.315_316insC:p.C105fs exonic

chr17 26727723 A - SLC46A1:c.1142delT:p.I381fs exonic

chr17 43192550 - C PLCD3:c.1622_1623insG:p.R541fs exonic

chr17 61660895 G - DCAF7:c.561delG:p.G187fs exonic

chr17 6555548 - G C17orf100:c.315_316insG:p.R105fs exonic

chr17 7470288 A - SENP3:c.1308delA:p.K436fs exonic

chr17 7750216 - ACCACC
KDM6B:c.791_792insACCACC:

p.P264delinsPPP
exonic

chr17 79614938 AACT - TSPAN10:c.682_685del:p.228_229del exonic

chr17 8725216 - G PIK3R6:c.1826_1827insC:p.S609fs exonic

chr18 19100762 - CTT GREB1L:c.5586_5587insCTT:p.L1862delinsLL exonic

chr18 43833704 - CTG C18orf25:c.757_758insCTG:p.G253delinsAG exonic

chr18 74090964 G - ZNF516:c.3106delC:p.P1036fs exonic

chr19 16268213 A - HSH2D:c.668delA:p.K223fs exonic

chr19 21299776 - AAT ZNF714:c.306_307insAAT:p.Y102delinsYN exonic

chr19 2340156 - C SPPL2B:c.824_825insC:p.P275fs exonic

chr19 30500143 TGA - URI1:c.798_800del:p.266_267del exonic

chr19 36258940 G - PROSER3:c.1193delG:p.G398fs exonic

chr19 41123095 - G LTBP4:c.3034_3035insG:p.V1012fs exonic

chr19 41173904 TTGCTG - NUMBL:c.1294_1299del:p.432_433del exonic

chr19 4954680 - C UHRF1:c.2015_2016insC:p.A672fs exonic

chr19 51835893 - G VSIG10L:c.2576_2577insC:p.A859fs exonic;splicing

chr19 56599452 GTC - ZNF787:c.1087_1089del:p.363_363del exonic

chr19 58718361 - G ZNF274:c.216_217insG:p.E72fs exonic

chr2 31805882 - G SRD5A2:c.88_89insC:p.P30fs exonic

chr2 95847047 GCG - ZNF2:c.348_350del:p.116_117del exonic

chr20 21186163 - G KIZ:c.987_988insG:p.R329fs exonic

chr20 278701 GGC - ZCCHC3:c.474_476del:p.158_159del exonic

chr20 32664865 - AGC RALY:c.642_643insAGC:p.A214delinsAS exonic

chr21 34166190 A T C21orf62:c.T543A:p.F181L exonic

chr3 12942852 C - IQSEC1:c.2976delG:p.L992fs exonic

chr3 14561629 - G GRIP2:c.1309_1310insC:p.P437fs exonic

chr3 16926642 A G PLCL2:c.A94G:p.T32A exonic

chr3 16926648 T G PLCL2:c.T100G:p.S34A exonic

chr3 50251835 - G SLC38A3:c.103_104insG:p.V35fs exonic;splicing

chr3 50306757 - C SEMA3B:c.85_86insC:p.H29fs exonic

chr4 140651610 TGC - MAML3:c.2277_2279del:p.759_760del exonic

chr4 177605086 CAT - VEGFC:c.1252_1254del:p.418_418del exonic

chr4 184367560 TGC - CDKN2AIP:c.723_725del:p.241_242del exonic
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chr22 37602586 - C SSTR3:c.1257_1258insG:p.X419delinsX exonic

chr5 140568035 - A PCDHB9:c.1143_1144insA:p.T381fs exonic

chr5 176930176 AGG - DOK3:c.555_557del:p.185_186del exonic

chr5 77745854 - A SCAMP1:c.730_731insA:p.I244fs exonic

chr6 160211649 GTT - MRPL18:c.30_32del:p.10_11del exonic

chr6 161519381 CTG - MAP3K4:c.3596_3598del:p.1199_1200del exonic

chr6 170871039 - GCA TBP:c.155_156insGCA:p.Q52delinsQQ exonic

chr6 28239933 - G ZSCAN26:c.236_237insG:p.C79fs exonic

chr6 30558478 - A ABCF1:c.2424_2425insA:p.X808delinsX exonic

chr7 128533516 - C KCP:c.940_941insG:p.G314fs exonic

chr7 128550685 C - KCP:c.46delG:p.G16fs exonic

chr7 149426307 - C KRBA1:c.1656_1657insC:p.A552fs exonic

chr7 150713903 - C ATG9B:c.2295_2296insG:p.E765fs exonic

chr7 28997597 - C TRIL:c.66_67insG:p.L22fs exonic

chr8 145106943 CC - OPLAH:c.3497_3498del:p.1166_1166del exonic

chr8 145738769 G - RECQL4:c.2296delC:p.P766fs exonic

chr8 30620844 - T UBXN8:c.625_626insT:p.X209delinsL exonic

chr8 38827187 C - PLEKHA2:c.1164delC:p.A388fs exonic

chr8 86126830 - ATTAAC
C8orf59:c.262_263insGTTAAT:

p.V88delinsVNV
exonic

chr9 123476563 GCGGCG - MEGF9:c.69_74del:p.23_25del exonic

Table A.28.: List of homozygous variants in genes expressed in skeletal muscle shared
by OPDM3, OPDM4 and OPDM5.

109



A. Anhang

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt,

dass ich die vorliegende Dissertation mit dem Thema

Mapping the Chromosomal Locus of Oculopharyngodistal

Myopathy with Microsatellite Markers and Next Generation

Sequencing

selbständig verfasst, mich auÿer der angegebenen keiner weiteren Hilfsmittel bedient

und alle Erkenntnisse, die aus dem Schrifttum ganz oder annähernd übernommen

sind, als solche kenntlich gemacht und nach ihrer Herkunft unter Bezeichnung der

Fundstelle einzeln nachgewiesen habe.

Ich erkläre des Weiteren, dass die hier vorgelegte Dissertation nicht in gleicher oder

in ähnlicher Form bei einer anderen Stelle zur Erlangung eines akademischen Grades

eingereicht wurde.

München, 02.07.2018

Ort, Datum

Matias Wagner

Unterschrift Doktorand

110


	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Oculopharyngodistal Myopathy
	Clinical Symptoms
	Histopathological findings

	Exome Sequencing
	The Concept
	Method
	Limitations
	Ethical Implications


	Aim of the Study
	Materials and Methods
	Patients and Controls
	Chemicals
	Molecular Biological Methods
	Quantification of Nucleic Acid Concentrations
	Polymerase Chain Reaction
	The Main Principle
	Standard Protocol
	Modification of standard PCR protocol
	PCR Primers
	Gel Electrophoresis

	PCR DNA Clean-up
	Cleavage of DNA with Restriction Endonucleases
	DNA Sequencing and Sequence Analysis

	Bioinformatic methods
	SNP-Array
	Linkage Analysis
	Homozygosity Mapping
	Microsatellite analysis
	Whole Exome Sequencing
	Target enrichment and sequencing
	Bioinformatic workflow



	Results
	Clinical Findings and Pedigrees
	Linkage Analysis
	Homozygosity Mapping
	Exome Sequencing
	OPDM I and II
	Workflow
	Variants detected
	Salient Variants
	MYPN c.3605T>A, p.(V1202E)
	POLR3A c.2551A>G, p.(T851A)


	Exome Sequencing of Individuals OPDM III-VIII
	Exome Sequencing Results OPDM III-V
	Exome Sequencing Results OPDM VI
	Exome Sequencing Results OPDM VII
	Exome Sequencing Results OPDM VIII


	Fine mapping the disease locus for Family 1
	Fine mapping of the locus on Chromosome 10
	Characterization of the locus

	Chromosome 10 Locus Sanger Sequencing
	MicroRNAs Within the Disease Locus for Family 1
	EIF5AL1 c.254A>G, p.(K85R)
	Triple Repeat Analysis

	Array-CGH

	Discussion
	Is OPDM a genetically heterogeneous disease?
	Possible Genetic Causes for OPDM in Family 1
	Intronic and UTR Repeat expansions
	Transcription-Reducing Variants
	Copy Number Variation
	Candidate Genes in the Locus on chromosome 10

	Possible Genetic Causes for OPDM in Family 2
	Recessive or Dominant Trait?
	Candidate Genes on chromosome 2
	Possible Compound Heterozygous Variants
	Summary

	Possible Genetic Causes for OPDM in Individual OPDM VI
	NEB c.21044C>G, p.(S7015C) and c.22122C>G, p.(D7374E)
	Variants in the TTN gene
	RYR1: c.8382C>G, p.(Y2794X)
	Summary

	Possible Genetic Causes for OPDM in Individual OPDM VII
	Variants Within High Linkage Areas
	RYR1: c.10025C>T, p.(A3342V)

	Possible Genetic Causes for OPDM in Individual OPDM VIII
	Variants in the TTN-Gene
	MYOT: c.655C>T, p.(R219X)
	MEGF10: c.1564G>A, p.(G522R)
	MATR3: c.313C>T, p.(R105C)
	Can Distal Myopathy Mimic OPDM?
	Evaluation of the Mutation

	Variants Within the High-Linkage Areas

	How Disease Causing Variants can be Missed by Whole-Exome Sequencing
	Technical Issues
	Repeat Expansions
	Indels
	Copy Number Variations
	Bioinformatic Difficulties
	Familial Locus Heterogeneity

	Options to Find the Genetic Cause of OPDM
	Upcoming Advances in Next-Generation Sequencing
	Analysis for Copy Number Variations
	Whole Genome Sequencing or Target Sequencing of the Disease Locus
	RNA-Sequencing
	Immunohistochemical Staining for Candidate Gene Products


	Summary
	Zusammenfassung
	Bibliography
	Anhang
	List of Primers
	Merlin Input Files
	List of homozygous variants shared by OPDM3, OPDM4 and OPDM5


