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1. INTRODUCTION 

 

1.1. Aims of this study 

The main goal of this study was to develop a method for computational de novo 

prediction of short linear motifs (SLiMs) in protein sequences that would provide 

advantages over existing solutions for the users. The users are typically biological 

laboratory researchers, who want to elucidate the function of a protein that is possibly 

mediated by a short motif. Such a process can be subcellular localization, secretion, 

post-translational modification or degradation of proteins. Conducting such studies 

only with experimental techniques is often associated with high costs and risks of 

uncertainty. Preliminary prediction of putative motifs with computational methods, 

them being fast and much less expensive, provides possibilities for generating 

hypotheses and therefore, more directed and efficient planning of experiments. 

  

To meet this goal, I have developed HH-MOTiF – a web-based tool for de novo 

discovery of SLiMs in a set of protein sequences. 

  

While working on the project, I have also detected patterns in sequence properties of 

certain SLiMs that make their de novo prediction easier. As some of these patterns are 

not yet described in the literature, I am sharing them in this thesis. 

  

While evaluating and comparing motif prediction results, I have identified conceptual 

gaps in theoretical studies, as well as existing practical solutions for comparing two 

sets of positional data annotating the same set of biological sequences. To close this 

gap and to be able to carry out in-depth performance analyses of HH-MOTiF in 

comparison to other predictors, I have developed a corresponding statistical method, 

SLALOM (for StatisticaL Analysis of Locus Overlap Method). It is currently available 

as a standalone command line tool. 

  

The results of the work on HH-MOTiF have been published as (Prytuliak et al., 2017). 

The study on the statistical method has been submitted as publication to BMC 

Bioinformatics and is currently under review.     
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1.2. Short linear motif definition 

According to the consensus definition, a short linear motif (further - SLiM) is a stretch in 

the protein sequence that is required to maintain a certain function of that protein. 

‘Linear’ in this context means that the functionality does not directly depend on the 

protein fold or specific tertiary structure. Many sources (e.g., (Edwards and Palopoli, 

2015), (Ren et al., 2008)) add more specifically that such a function consists in 

interaction with a globular domain of another protein. 

 

In literature, one can also meet other, synonymous terms for a SLiM: a motif, a pattern 

(Rigoutsos and Floratos, 1998) or a MoRF (Fang et al., 2013). 

 

The provided definition implies several aspects worth discussing here, as they define the 

scope of this work. It also raises the question, whether one cannot formulate a more 

useful definition for bioinformatics applications.  

 

First, structural motifs (in context of antibodies are also known as epitopes) are not 

considered as SLiMs. Structural motifs are protein surface patches consisting of 

structurally close residues that do not necessarily form a linear motif and which mediate 

binding (Kinjo and Nakamura, 2013). Strictly speaking, SLiMs are a subcase of structural 

motifs. 

 

Second, SLiMs should be distinguished from conserved domains – larger units with 

distinct tertiary structure required for the functionality. Although there is no strictly 

defined border between SLiMs and conserved domains, the maximal length of SLiMs 

listed in ELM (Dinkel et al., 2016) – one of the most comprehensive SLiM databases – is 

23 residues. Consequently, I consider longer functional units as conserved domains. At 

this point, I would like to point at the terminological confusion in names of some 

conserved domains. For example, the HTH (helix-turn-helix) domain is often referred to 

as HTH motif (Brennan and Matthews, 1989), sometimes even interchanging within a 

single publication (Suvorova et al., 2015). Nevertheless, its five helices span more than 

70 residues (Frandsen et al., 2013) and therefore the HTH motif/domain should not be 

considered a SLiM. 
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Third, the definition of a SLiM as given by Edwards and Ren does in principle not include 

protein sequence stretches that have a distinct function from binding to a globular 

domain of another protein. If such a restriction is justified, remains an open question. 

The cases not included are non-exhaustively exemplified by the following: 

 DNA/RNA-binding sequence elements. These technically could also count as 

SLiMs and therefore it seems counter-intuitive that the definition by Edwards 

and Ren excludes them. Although I did not find any justification behind this, I also 

could not find any counter examples (i.e., short motifs that bind to DNA or RNA). 

Instead, there are larger domains (with median length more than 100 residues) 

that are responsible for DNA/RNA binding (Malhotra and Sowdhamini, 2015). 

Nevertheless, short enough protein sequence units that binding to DNA/RNA 

may be still identified in the future. In this case, there will be a need for 

broadening the definition of a SLiM.   

 Sequence elements with primarily non-binding function. These might be 

necessary for structural stability (e.g., beta roll motifs (Blenner et al., 2010)), pH 

optimization (e.g., C-terminal tail of tubulin (Sheldon et al., 2015)), etc. 

 Sequence elements that bind to disordered (non-domain) regions of other 

proteins. These may be responsible for protein aggregation (Defenouillère et al., 

2016) or, in theory, silencing/inhibiting a true SLiM, though I did not find any 

evidence in literature that such an interaction type has been described. 

 

Fourth, the definition does not require the SLiM to be sufficient for the function (see for 

instance (O’Neal et al., 1995), (Milewski et al., 2001)). This aspect has the consequence 

that a single linear part of a structural motif or epitope can be viewed as a SLiM., If a 

SLiM is defined as required but not sufficient, it usually means that other parts of the 

protein probably facilitate the interaction but through a different mechanism. For 

example, the correct membrane localization of CFTR (cystic fibrosis transmembrane 

conductance regulator) requires the presence of more general membrane-affine regions 

in addition to a specific PDZ-motif (Milewski et al., 2001). Nevertheless, motifs can also 

be both, required and sufficient for the function (e.g., (Gasser et al., 2012)). In this case, 

the binding is also observed with isolated peptides (Gorelik and Davidson, 2012). 

 



9 
 

Finally, from the bioinformatics perspective, a SLiM is the aggregate of all possible 

sequence variants of protein sequence stretches, including those not yet detected, that 

still fulfill the required function: this means that the mechanism of the SLiM’s ability to 

interact with the binding partner must be retained. In this manner, one can speak about 

a SLiM as a sequence space. This definition does not contradict the initial one but rather 

includes it. In addition, it is more practical for building SLiM predictors, as their task is 

to find not yet described SLiMs. 

 

1.3. Databases of SLiMs 

1.3.1. ELM 

The ELM (eukaryotic linear motifs) (Dinkel et al., 2016) is currently (June 2017) the 

most comprehensive database of experimentally verified SLiMs. It contains 262 classes 

with a total of 3030 instances that correspond to distinct SLiMs in individual proteins. 

The ELM classes are furthermore grouped into 6 categories: CLV (cleavage), DEG 

(degradation), DOC (docking), LIG (ligand binding), MOD (post-translational 

modification), TRG (targeting). 

 

Each ELM instance consists of a protein identifier (Uniprot-KB ID) with the start and end 

positions of the SLiM described. If a SLiM forms repeats in the same protein, the 

corresponding number of instances appear in the database. SLiMs confirmed in 

orthologs of the same protein in different organisms are also included. Sometimes, the 

instances of the same class are overlapping (e.g., the class LIG_SH3_3 in the protein 

Q9N2H0). 

 

In addition, the ELM database also contains detailed descriptions of the described SLiMs, 

as well as primary sources of evidence for a large part of the instances. If available, PDB 

structures (the PDB database is available under www.rcsb.org , (Berman et al., 2000)) 

are also linked. 

 

It should be noted that some ELM instances correspond to sites that were suggested not 

to be a functional SLiM. These instances are marked as ‘false positive’ (a total of 46 

instances out of 3030), in contrast to ‘true positive’ instances that mark confirmed 

SLiMs. However, after following the associated references, I found that these instances 
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do not actually represent completely non-functional sites, but rather non-typical binding 

sites. For example, the LxCxE motif in the transcription factor Elf-1 binds the pocket 

domain of Rb (retinoblastoma gene product); however, the main effect of this binding 

results not in inhibiting Rb, as it is common for other instances in the class 

LIG_Rb_LxCxE_1, but in inhibiting Elf-1 itself . Furthermore, I could not follow the 

reasoning for marking some other SLiM instances as false positives (e.g., ELMI001864), 

as the corresponding sources clearly proved their functionality in the given context (e.g., 

CaM-binding motif in Sec61α (Erdmann et al., 2011)). In one case, namely the instance 

ELMI003135, the associated source (Xu et al., 2006) does not mention the SLiM in 

question at all.  

 

The Table 1 summarizes the statistics on ELM composition as of March 2016. I include 

only classes that have instances in at least 3 proteins (the dataset that was used for 

testing performance of different SLiM predictors – see Section 2.4.1. Datasets used for 

optimization and performance evaluation). 

 
Type Proteins SLiMs Most abundant class 

N av. len. N classes len. (av.) name SLiMs proteins 
CLV 64 962.1 79 6 3-7 (5.3) CLV_C14_Caspase3-7 39 30 
DEG 164 538.3 177 17 3-18 (8.1) DEG_SCF_TIR1_1 24 24 
DOC 209 708.2 285 19 2-17 (6.4) DOC_WW_Pin1_4 96 57 
LIG 918 748.8 1300 96 3-20 (7.0) LIG_WRPW_1 95 95 
MOD 301 699.4 543 21 3-12 (6.6) MOD_N-GLC_1 156 33 
TRG 187 628.5 225 17 3-23 (7.6) TRG_ER_diArg_1 27 27 

 
Table 1. ELM (as of 26.03.2016) composition statistics excluding classes with instances in less than 3 
proteins 

 
As one can see, the size of the types and classes are highly unequal, while the length 

distribution remains consistent. The CLV type is an exception, as it contains shorter 

SLiMs in longer proteins. 

 

1.3.2. Other, non-specialized SLiM databases 

1.3.2.1. MiniMotif Miner 

Minimotif Miner (MnM) version 3.0 contains information on around 300,000 SLiM 

instances (Mi et al., 2012). Moreover, the MnM records contain not only the SLiM 

position, function, protein, and reference, but also broader information on both, the 

SLiM containing protein and its binding partner, as well as the interaction itself. There 

are in total 28 attributes to an annotated SLiM. To collect this tremendous amount of 
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information, the authors of MnM used the annotation helper MimoSa (Vyas et al., 2010), 

as well as collected information from a number of other protein databases. 

 

MnM 3.0 contains not only the database but also a motif search engine, which scans 

query proteins for SLiMs available in the database. Elaborated statistical models and 

contextual filters remove the vast majority of false positive hits, so that the accuracy of 

the predictions reaches 90%. 

 

Despite many advantages, the underlying MnM database is not available for download, 

which reduces its usability. Moreover, the reachability of the MnM web-server is not 

always given. 

 

MnM restricts the length of motifs to less than 15 residues. From the publication, it is not 

clear, if longer SLiMs are discarded or trimmed (for comparison: ELM contains SLiMs up 

to 23 residues long – see Table 1). 

 

1.3.2.2. PROSITE 

PROSITE is a database of patterns (regular expressions) that correspond to 

experimentally proven domains, SLiMs, and other functional sites. PROSITE does not 

provide distinctions between SLiMs and non-SLiMs; it annotates, among others, also 

motifs that maintain the 3-dimensional protein structure. If a given motif has several 

known functions, they are all described by indicating the role of individual conserved 

residues. The release of 10.05.2017 contains 1787 entries with 1309 associated 

patterns. PROSITE also implements a web application for scanning query proteins for 

PROSITE patterns in database. 

 

The PROSITE entries are available for download. However, they contain only general 

information on the patterns, without details on individual instances.  

 

1.3.3. Specialized SLiM databases 

1.3.3.1. iLIR database 

The iLIR database (Jacomin et al., 2016) contains the positions of all known instances of 

the LIR (LC3-interacting region) motif. This motif is responsible for the interaction with 
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Atg8-family proteins, which are required for autophagy-dependent degradation of their 

substrates. The database as of 02.06.2017 contains 6086 records in 3495 different 

human proteins. In addition, it contains data for 7 widely used model organisms. 

 

All the data from the iLIR database, including the motif positions, are available for 

download as a CSV file. 

 

1.3.3.2. Scansite 

Scansite (Obenauer et al., 2003) is the database for phosphorylation motifs. Version 4.0 

consists of 70 mammalian and 54 yeast motifs, which are further grouped depending on 

the kinase type associated with a phospho-site. 

 

Like other databases, Scansite comes with a web application to scan user-provided 

query sequences for available phosphorylation motifs. The service provides also 

additional types of calculations, which may supplement the SLiM search, such as surface 

accessibility, amino acid composition, etc. 

 

Scansite 4.0 allows viewing the sequence logos of the individual phospho-motifs through 

the web interface, but unfortunately it does not provide the possibility to download full 

records as a file. 

 

1.3.3.3. PhosphoSitePlus 

PhoshoSitePlus, or PSP (PhosphoSitePlus(R), www.phosphosite.org) (Hornbeck et al., 

2015), is a protein modification resource, which contains information on post-

translational modifications including phosphorylation, methylation, ubiquitination, 

succinylation, etc. As of 17.05.2017, PSP contains information on 516,641 records in 

53,577 proteins (of these, 20,264 are non-redundant). In addition, this resource 

provides linkage information of specific PTMs to genetic mutations and diseases. PSP 

also has a dedicated Cytoscape (Su et al., 2014) plugin. 

 

All the sites and datasets from PSP, including positions of modified residues are freely 

available as TSV files; however, the downloading requires user registration and login. 
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1.4. Representation of SLiMs 

1.4.1. Regular expressions 

Regular expressions (shortened singular form: regex) as concept were developed by the 

mathematician Stephen Cole Kleene in the 1950s (Kleene et al., 1956). They represent a 

way to describe a search pattern in a text string or document, if a search result must not 

necessarily be a fixed substring but rather a range of possible substrings satisfying 

certain criteria. In general, a regex is the shortest way to write such a pattern. 

 

Regexes always make use of some set of special characters (thus being a kind of 

metalanguage). Occurrence of these characters in a pattern may have two meanings: (1) 

literal occurrence of this character in the searched text, and (2) its special meaning. For 

example, a dot may mean a literal dot as well as any character. Depending on the exact 

application, the special character set may vary. The most common standards are the 

POSIX and the Perl syntaxes. A much narrower standard, but following the same 

principle is the IUPAC nucleotide degenerate code, in which different letters specify all 

possible combinations of nucleotides allowed at a given position. Similar limited code 

exists for proteins (in this code, Z, for example, means either Glu or Gln). PROSITE 

patterns are a standard developed to describe possible amino acid combinations in a 

motif. It specifies a syntax for lists of possible and prohibited amino acids at a given 

position as well as gaps of variable length. The reference is available under 

http://www.hpa-bioinfotools.org.uk/ps_scan/PS_SCAN_PATTERN_SYNTAX.html. 

Nevertheless, many biologists and programmers tend to use Perl regexes to describe 

SLiMs instead. One of the prominent examples is the ELM database. I will also be using 

the Perl syntax throughout this work. The important syntax elements are exemplified in 

the Table 2. For the full reference, visit http://perldoc.perl.org/perlreref.html. 

 
Syntax Meaning 
. any single symbol 
* the preceding symbol repeated any (perhaps, zero) number of times 
.* arbitrary string (incl. empty string)  
? the preceding symbol repeated exactly either zero or one times 
A? either single letter A or empty string 
{N} the preceding symbol repeated exactly N times 
.{2} exactly two arbitrary symbols 
{K,M} the preceding symbol repeated at least K but no more than M times 
A{2,4} one of the following strings: AA, AAA, AAAA 
[] exactly one symbol of the listed inside the square brackets 

 
Table 2. Selected Perl regular expression syntax examples 

http://www.hpa-bioinfotools.org.uk/ps_scan/PS_SCAN_PATTERN_SYNTAX.html
http://perldoc.perl.org/perlreref.html
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The choice of syntax may not only be a matter of convenience – Perl regexes are 

generally shorter than PROSITE patterns – but also of functionality: Perl allows for 

patterns that cannot be described with a PROSITE pattern. In particular, this is based on 

usage of pipes (|), which allow listing several exact combinations for stretches longer 

than 1 residue. For example, let us consider the two following hypothetical SLiMs: 

 

SLiM 1: AA 

SLiM 2: CC 
 

One potentially can use a Perl regex (AA|CC) to match exactly these two. However, 

excessive usage of pipes will lead to very long and incomprehensive regexes. It will also 

undermine the very purpose of using regexes instead of plain lists of occurrences. 

Therefore, in order not to break the PROSITE convention, one can use a more limited 

[AC][AC] here, although it additionally matches AC and CA. This constraint is 

desirable, if one wants to enumerate regexes combinatorially with relatively 

straightforward algorithms (see examples in Section 1.5.3.2. De novo predictors). It also 

keeps regexes easily readable and reasonably short. However, it is not always used. For 

example, the ELM class TRG_ER_diArg_1 is described by the following regex: 

 

([LIVMFYWPR]R[^YFWDE]{0,1}R)|(R[^YFWDE]{0,1}R[LIVMFYWPR]) 

 

The important property of regexes is their ability to nest: this means that one regex can 

include another one. Let us as an example consider the following three strings: 

 

String 1: ACD 
String 2: AACD 
String 3: ACE 
 

There are a lot of possible regexes that can describe these strings. A few examples are 

listed below: 

 
A.* 

A.*C.* 

A.*C. 

A.?C. 
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A.?C[DEF] 

A.?C[DE] 

A{1,2}C[DE] 

 

Each of this regexes matches all of the three strings above. However, the latter three are 

more precise, less ambiguous representations. The last variant (or its equivalent 

AA?C[DE]) will match only four strings in total (it matches AACE in addition), while the 

three on top will match infinite numbers of potential strings. It is also true that a lower 

regex in this list is nested in an upper (i.e., an upper will match all the strings the lower 

does). When describing a SLiM, it is important to choose the least ambiguous regex 

possible. 

 

1.4.2. Profiles 

A motif profile is a way to store information about a motif that includes frequencies of 

observed amino acids and in some cases gaps for each relevant position. One can see 

them as quantitative multiple sequence alignments (MSAs). 

 

A common way to represent a profile is a position-specific scoring matrix (PSSM), which 

is sometimes also called position weight matrix (PWM). The concept of PSSMs for 

sequences was introduced in 1982 in the course of a study on bacterial proteomes 

(Stormo et al., 1982). Columns of a PSSM correspond to sequence positions and rows 

represent all possible amino acids.  

 

Unlike regexes, which solely list possible amino acids for each position, profiles also 

specify how often each of them might be observed. Nevertheless, profiles do not 

necessary provide information on individual observed instances. For example, let us 

consider the following PWM: 

 
Residue 
type 

Column number 
1 2 3 

A 1 2 1 
C 2 1 2 
… 0 0 0 
 
It could have been formed by the following three sequences: 

 

AAA 
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CAC 

CCC 

 

However, the following three also do match: 

 

ACC 

CAA 

CAC 

 

Thus, conversion of an MSA to a profile is lossy by nature. Because of this, the profiles 

may not capture sequence diversity on a deep enough level and still be misleading if, for 

example, motif instances are divided into subtypes. 

 

Another form of a profile is the sequence logo (Schneider and Stephens, 1990) – a 

graphical representation, in which each position corresponds to a letter or a set of 

letters. The height of the letters usually corresponds to the enrichment of the 

corresponding amino acid relative to its background frequency at a given position. The 

enrichment is usually represented as information content (Schneider et al., 1986) 

measured in bits, although other variants have been proposed (e.g., iceLogos (Colaert et 

al., 2009) plot fold changes by default). 

 

Taken together, matrices are a convenient way to represent sequence profiles for 

further computer processing, while logos are good for their visualization. 

 

1.4.3. Hidden Markov models 

Hidden Markov models (HMM) resemble classical PSSMs. However, in addition to amino 

acid frequencies, they also comprehensively describe the gap patterns in the underlying 

MSA. 

 

The basic idea behind hidden Markov models is that a sequence of unobservable 

(hidden) events causes another, observable, sequence of events. HMMs were first 

described in 1966 (Baum and Petrie, 1966). Since then, it found multiple applications. 

HMMs were used for sequence alignments since the 1990s (Eddy, 1996). In this context, 

the implicit assumption is made that the sequences aligned have a common ancestor, 

while the HMM itself encodes the differences throughout the phylogenetic tree. These 
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differences form the mentioned hidden states, while the sequences themselves are 

observed. 

 

HMM profiles are at the core of the novel alignment method hhsearch (Söding, 2005) 

that together with other HMM-based applications is part of the HH-suite (Remmert et al., 

2011) (see more details in Section 1.7.3. HH-suite).  

 

The key practical difference from the PSSMs is that HMM profiles provide so-called 

transition probabilities for each position in the sequence. These probabilities are, in 

point of fact, frequencies of gap openings and gap closings at the given sequence 

position. There are two types of gaps in a sequence profile HMM: insertions and 

deletions. Insertions denote the positions that are absent in the ancestor sequence but 

appear in the branches; deletions are the opposite. Such comprehensive gap handling 

allows HMM-based methods to consistently outperform other methods for motif search 

and homology deduction in case of low sequence conservation (Meier and Söding, 2015) 

(Siebert and Söding, 2016). 

 

1.5. SLiM discovery techniques 

1.5.1. Direct experimental methods 

The binding capacity of a SLiM to a target protein can be measured experimentally. 

Among the most popular techniques of experimentally verifying a binding event is to use 

immunoprecipitation – western (IP-Western) techniques (Renart et al., 1979)(Taylor 

and Posch, 2014). Other techniques include isothermal titration calorimetry (Pierce et 

al., 1999) and solution NMR (Liu et al., 2016). 

 

Deletion studies or the engineering of chimeric proteins are methods to identify putative 

interacting regions for a functional SLiM without prior knowledge. Whenever a SLiM is 

tested for being required and sufficient, researchers have to use mutants of the putative 

important, interacting residues. The examples of SLiM identification studies applying 

deletions are (Gan et al., 2000), (Deretic et al., 1998). The examples of studies 

constructing chimeric proteins for these purposes are (Oeste et al., 2014), (Foss et al., 

2013). Intriguingly, the naturally synthesized chimeric proteins (those containing parts 
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encoded by different genes) also tend to swap the motifs and domains between the 

original proteins (Frenkel-Morgenstern and Valencia, 2012). 

 

X-ray crystallography is the most direct but also the most laborious method to study 

protein interactions (Turnbull and Emsley, 2013). The main advantage of obtaining a 

complex structure is that it gives direct information about the specific residues, which 

are involved in the interaction; moreover, it also informs us about the mechanism, how 

the interaction is formed (e.g., through hydrogen bond formation or through residue 

stacking). This practically eliminates the need of generating multiple mutants or 

chimeras to guess the key interacting residues. Calculation of the resulting interaction 

strength (i.e., the absolute free energy) from the structure is not straightforward 

(Aldeghi et al., 2016). Nevertheless, the main hindrances for the widespread application 

of X-ray crystallography are its low success rate, laboriousness, and high cost. As of 

12.06.2017, there are only 15,781 protein complexes deposited in PDB (Rose et al., 

2015). At least 9,801 of these represent binary hetero-dimers (AB, A2B2, A3B3, and A2B 

types). However, according to the STRING database (Szklarczyk et al., 2015), there are 

more than one billion protein-protein interactions. Thus, it is not feasible to crystallize 

all possible interaction pairs to establish the nature of all possibly existing interactions.  

 

Specific pipelines for SLiM discovery, which include bioinformatics as well as 

experimental methods, were described in (Gibson et al., 2015). From this study, it is 

clear that it is important to carefully consider the motif identification strategy to get the 

unambiguous answer on motif presence and the key residues of a functional SLiM. 

 

1.5.2. Main concepts of computational SLiM predictors 

A computational SLiM search can be broken into three distinct logical steps: pre-

filtering, matching (the search itself), and post-filtering, the first and the third being 

optional. 

 

Pre-filtering consists of excluding regions in the protein sequence that that are very 

unlikely to harbor the SLiM of interest. This process is performed on the basis of 

characteristic features of the protein sequence itself, irrespective of sequence similarity 

to the given input motif. These features can mostly be classified into one of the two 
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categories: protein properties and sequence properties. Many tools also include a 

homology filter that removes or clusters too similar sequences from the input set. 

 

The most relevant properties for motif discovery are molecular function, cellular 

function, and subcellular localization. The importance of these properties is emphasized 

in the description of the MiniMotif Miner motif searching engine (Mi et al., 2012), where 

they are implemented as contextual pre-filters. This type of pre-filtering always excludes 

whole protein sequences. 

 

Pre-filtering on the basis of sequence properties, on the other hand, excludes only 

specific sequence stretches, although these can in rare cases span over an entire protein. 

Therefore, this type of pre-filtering is also known as masking. Features like surface 

exposure, disorder, low complexity or evolutionary conservation are frequently used 

properties for masking. In addition, it is common to check for the presence of known 

conserved domains, as it is unlikely for a SLiM to be situated in such a domain (Neduva 

et al., 2005). 

 

In addition to the pre-filtering principles described above, the user can also do pre-

filtering manually. By providing a specific protein set as input, the user in fact already 

performs pre-filtering by protein properties, though not including undesired proteins in 

the set. Furthermore, the majority of SLiM predictors allow the user to provide a custom 

mask defining selected stretches in the input sequences. The manual and automatic pre-

filtering can be combined when searching for a motif. 

 

The matching is essentially the ‘core’ of any motif searching method. At this step, the 

matching SLiM candidates are found in the unmasked regions of the retained proteins. 

The output of the search algorithm is a list of SLiM candidates (hits) with associated 

numerical scores. Algorithm may be stopped after finding a specified amount of hits, or 

limited to return only hits above or below a certain given score threshold. Such filtering 

by the alignment score should not be confused with the post-filtering described later in 

this section. 
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The word ‘matching’ in this context means establishing a set of unequivocal matches 

between some residues in the pair of sequences without violating the original sequential 

order. In other words, a set of sequence alignments is produced at this step, although the 

algorithm may be quite different from classical sequence alignment techniques (see 

below). These alignments are local and can contain gaps in the aligned sequences. 

Following the concept of SLiM degeneracy, several different instances of the same SLiM 

candidate generally must not necessary match in every position, as only few columns in 

the alignment may be conserved. SLiM alignments produced at the matching step are 

typically pairwise and not multiple in nature. This holds true even if the input motif 

and/or the query are actually profiles based on MSAs of many sequences. In this case, 

the participating profiles are aligned to each other ‘as is’, without being reassembled or 

corrected. This can also be approximated as a pairwise alignment of two consensus 

sequences. 

 

Matching methods in SLiM predictors do not incorporate traditional sequence search 

techniques like BLAST (Altschul et al., 1990) or alignment engines like Clustal (Sievers et 

al., 2011) or MAFFT (Katoh et al., 2002). In fact, such methods are not suitable for 

searching or aligning SLiMs due to their shortness and their poor conservation. Motif 

matching can in in this context also be one of the techniques that are termed ‘alignment-

free sequence comparisons’ (Bonham-Carter et al., 2014). 

 

Obtained alignments of SLiM candidates typically have a numerical value associated 

with them, such as a significance value, an e-value, etc.. This value is hereafter referred 

to as the score. This allows to: 1) rank the candidates. Only the very best candidate or 

certain number of the top ones is then selected for further consideration; 2) threshold 

the candidates. Only the ones that exceed some predefined score threshold are selected;  

as a result, the selection may also be empty. 

 

Post-filtering consists in additional checks imposed on the identified alignments not 

directly connected to the alignment quality itself as described by the score. This may 

compensate for shortcomings of the matching algorithm, as well as incorporate 

additional information about the sought-for SLiM(s). The shortcomings in this context 

mean associating better scores with seemingly worse candidates: as an example, if raw 
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BLAST scores were used, conserved domain and homology matches would overshadow 

the putative SLiMs. In such a case, good results can be obtained neither by ranking nor 

by thresholding. 

 

When certain shortcomings of a reasonably good matching algorithm are identified, it is 

sometimes easier to introduce an additional step – a post-filter – to modify the scores of 

the proposed SLiM candidates or ultimately to remove some candidates completely than 

to re-write the whole algorithm from scratch in order to achieve better scoring. 

Consequently, some novel predictors are built on well-established methods that use sub-

optimal matching algorithms. In this case, some improvements to the scoring approach 

via implementing appropriate post-filters were implemented. An example of such a tool 

is SLiMDisc (Davey et al., 2006), which is built upon TEIRESIAS (Rigoutsos and Floratos, 

1998). 

 

Possible shortcomings include for instance insufficient treatment of gap penalties for 

aligning degenerate SLiMs or inadequate consideration of the contextual background 

amino acid frequency. Post-filtering consists in this case in introduction some kind of a 

score correction term. This term is generic in nature, i.e., applicable to the vast majority 

of SLiMs. For example, one can discard too short hits or matches in only abundant amino 

acid types, even if the amino acid match is perfect and has passed the optimal score 

threshold. 

 

Some additional information may be given about a SLiM. This usually includes 

information on key residues, perhaps in form of a table that lists integral residues and 

their possible variants. This acknowledges the fact that although a SLiM may be 

degenerate, some residues must remain invariant to preserve the motif function. A 

typical example is the SUMOylation site. It has many variants (Endter et al., 2001) (Diella 

et al., 2009) (Hietakangas et al., 2006), which must be considered separately while 

developing a predictor for this motif (Beauclair et al., 2015). Nevertheless, a 

SUMOylation site always has to contain a Lysine to be SUMOylated. Thus, a high-scored 

alignment hit with well matching flanking amino acids and an Arginine instead of the 

Lysine must be discarded at the post-filtering stage. Another good example is the ELM 

motif LIG_AP_GAE_1 (Duncan et al., 2003) (Mattera et al., 2004) (Lui et al., 2003) 
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containing a number of acidic residues. It can be aligned with a high score to a D/E low 

complexity region by most algorithms. However, the motif is not functional without an 

aromatic residue in the middle. Thus, introducing a simple check for an aromatic residue 

may significantly reduce the false positive count, while searching for this motif. 

 

1.5.3. Classification of computational SLiM predictors 

1.5.3.1. Template-based SLiM predictiors 

In some cases, the motif is already known and the task is to find the same motif in 

previously unconsidered proteins. Such a task is a conceptually straightforward 

problem. It requires some sort of scanning of query protein sequences for stretches that 

are similar to the input motif. 

 

There are two basic scenarios, when the template-based prediction is suitable: 

1. Search for a specific SLiM to identify novel proteins with the same function. 

2. Search for all possible SLiMs in a given protein. 

 

Scenario 1 requires a SLiM as an input. A search for SLiMs not present in databases is 

also possible. The target proteins can be predefined or also provided by the user. A 

typical example of a template-based predictor is SLiMSearch (Davey et al., 2011).  

 

Scenario 2 can be satisfied through built-in database predictors. A template-based SLiM 

predictor is a natural extension of a database of SLiMs. Almost all databases discussed in 

this work have built-in predictors of the motifs present in the database in user-provided 

query sequences. Some of them, for example, MiniMotif Miner, employ elaborated 

algorithms to ensure the prediction accuracy. Nevertheless, as they are only an addition 

to a database, they often provide solely basic functionality, which is not sufficient for all 

possible needs of the user. For example, the ELM motif predictor accepts only single 

protein sequence and does not provide a convenient API. Therefore, specialized services 

for searching for motifs from the popular databases were developed. A prominent 

example is the iELM service (Weatheritt et al., 2012), which contains pre-compiled 

hidden Markov model profiles of ELM motifs for searching in the user queries, both, in 

single sequences, as well as in interacting networks. 
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1.5.3.2. De novo SLiM predictors 

In contrast to the template-based prediction, a de novo motif search does not require any 

a priori knowledge about the SLiM(s) to be detected. Instead, it looks for 

overrepresented sequence stretches that have a low enough probability to appear 

purely by chance. This probability is typically expressed in form of a p-value. Necessary 

pre- and post-filtering steps are performed to selectively remove false positive SLiM 

candidates. The core of a de novo predictor, its search algorithm, consists of two parts: a 

SLiM candidate generator and a statistical model that calculates the corresponding p-

values, which may be used as scores for ranking of the candidates. 

 

Here I illustrate the workflows of a SLiM candidate generator with two examples: 

SLiMFinder (Edwards et al., 2007) and GLAM2 (Frith et al., 2008). 

 

SLiMFinder employs a dedicated algorithm for this purpose - SLiMBuild. SLiMBuild 

enumerates all possible regular expressions present in the input dataset within defined 

constraints: minimal and maximal number of non-wildcard positions, maximal length of 

wildcard stretches, etc. The sequence start and the sequence end are treated as separate 

amino acids. If there are nested regexes that match stretches in the same number of 

sequences, only the least ambiguous ones are retained. If a pair of regexes can be 

merged into a more ambiguous regex to increase the number of occurrences in non-

homologous sequences, such a merge is performed to produce a new SLiM candidate. 

Simply put, the SLiMBuild algorithm generates all possible amino acid regular 

expressions and subsequently discards those that are not present in a sufficient number 

of the input sequences. The actual implementation is of course more efficient than this. 

 

GLAM2 employs a simulated annealing algorithm (Kim et al., 1994) to optimize 

alignments between possible instances of the same SLiM. This algorithm is a variant of 

the Gibbs sampling algorithm (Neuwald et al., 1995). It starts with an initial, possibly 

non-optimal local alignment (i.e., SLiM candidate) and tries to iteratively improve it by 

introducing random changes. These include adding and removing of putative key 

columns (‘column sampling’) as well as adjusting individual sequences (‘site sampling’). 

The iterations are carried out until convergence. Repeating the procedure several times 

ensures that the algorithm does not get trapped in a local optimum and that different 
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SLiM candidates are detected in the same set of sequences. Although in theory the 

output of GLAM2 is random to a certain degree, I did not observe discrepancies between 

several runs on the same data with the same parameters. This indicates the robustness 

of the GLAM2 simulated annealing algorithm.  

 

All generated SLiM candidates are then subjected to the corresponding statistical model 

implementation that assigns p-values on the basis of the regex/alignment properties. 

These include the number of sequences with occurrences, the length of the SLiM, its 

ambiguity, as well as background amino acid frequencies. The statistical model of 

SLiMFinder is discussed in more detail later in this thesis.  

 

1.5.3.3. Discriminative de novo SLiM predictors 

A discriminative motif predictor finds SLiM candidates that are overrepresented in a 

positive protein set in comparison to a negative, set. The negative set is usually chosen 

in a way that it theoretically does not contain the SLiM(s) of interest. For example, for a 

task of predicting mitochondrial targeting signals (Neupert and Herrmann, 2007), a set 

of nuclear proteins can serve as a negative set. A classical example of a SLiM predictor 

that employs negative sets on the basis of subcellular localization information is 

presented in (Lin et al., 2011). Alternatively, the negative set can be replaced with a 

background set. The background set theoretically contains the sought-for SLiM(s) but 

with significantly lower frequency in comparison to the positive set. The background set 

is normally a superset of the positive set. A typical choice for the background set is the 

whole proteome of the species being studied. 

 

The pipeline of a discriminative SLiM predictor adds one additional step to what would 

otherwise be a classical de novo predictor. This step consists in searching for the SLiM 

candidate identified in the positive set in the negative one. A statistical score, calculated 

on the basis of the identified numbers of occurrences, is assigned upon here. Therefore, 

a discriminative SLiM predictor can also be viewed as a de novo predictor with a specific 

statistical model or an extra post-filtering step. Nevertheless, I define it as a separate 

type of predictors, because it requires different input data in comparison to a classical de 

novo predcitor. It was shown in (Song et al., 2015) that adding a discrimination 
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capability to a SLiM predictor can in general only marginally improve the resulting 

performance. 

 

The obvious weakness of discriminative algorithms is the necessity to compile a suitable 

negative set. While it may be obvious in some cases, there is usually not enough 

information in a typical SLiM search to reliably mark a large group of proteins as being 

devoid of a particular SLiM. For example, while studying Golgi sorting and trafficking 

(Crevenna et al., 2016), one cannot easily exclude proteins with certain functions or 

localizations, because various proteins are modified in the Golgi apparatus before being 

transported elsewhere. Even finding a reasonable background set can be problematic, if 

the input dataset contains proteins from different species, which is often reasonable, as 

the majority of ELM classes do contain instances in different species. 

 

A general example of a discriminative SLiM predictor is MotifHound (Kelil et al., 2014). 

MotifHound is not restricted to subcellular localization datasets. As input, it accepts the 

background set, which is mandatorily a superset of the positive set. The logic of SLiM 

candidate generation in MotifHound is similar to that of SLiMBuild. After generating the 

SLiM candidates, it performs the hypergeometric test to assign the corresponding p-

value p as the probability of a random occurrence in at least k sequences in the positive 

set of size s, while there are occurrences in n sequences in the background set of size b: 
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Thus, the statistical score of a MotifHound SLiM candidate, unlike the one from 

SLiMFinder, is not dependent on the properties of the SLiM itself. 

 

The statistical model of MotifHound demonstrates another integral weakness of 

discriminative SLiM predictors: the score depends on the relative set sizes. Moreover, it 

can change dramatically upon small positive set contaminations. Let us consider a SLiM 

with the following properties: it occurs in 50% of proteins with the function X, while it 

occurs only in 20% of proteins without the function X. Note: the reasons, why there may 

be so many false positive occurrences of a real SLiM are discussed in (Gibson et al., 
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2015). Let us further assume that MotifHound detects this SLiM with perfect accuracy. 

Table 3 shows the resulting p-values depending on different positive and background 

set sizes. As one can see, the p-value is heavily dependent on the set sizes. For example, 

in an organism with 10,000 proteins, a SLiM predicted in a subset of 100 proteins will 

have a p-value that is 5 orders of magnitude lower than other SLiMs with the same 

underlying statistical properties predicted in a subset of only 50 proteins. Moreover, 

such discrepancies can be caused not only by changes in the real size of the positive set 

but also by failure to identify the set precisely. For example, let us assume that the 

positive set identification was not perfect and as a result, it included 10 additional non-

related proteins (see row 8 of Table 3). This relatively small contamination will actually 

worsen the p-value approximately 7-fold in contrast to the p-value of the non-

contaminated positive set of 100 proteins and approx. 60-fold in contrast to the same set 

containing 110 proteins. This 60-fold change is just the effect of the positive set 

contamination and again not the properties of the underlying SLiM. This change would 

be even more drastic, if the difference between background frequencies of the SLiM in 

positive and negative sets were bigger (e.g., 80% and 5% instead of 50% and 20% 

respectively). Taken together, this means that, at least without appropriate corrections,  

p-values based on the hypergeometric test may be practically only used for SLiM 

ranking within the same search, and not for comparing of SLiM strength between 

searches on different data. 

 
 
No. s b k=s/2 n=k+(b-s)/5 p 
1 10 20 5 7 .029 
2 10 100 5 23 .0090 
3 10 1,000 5 203 .0066 
4 10 10,000 5 2,003 .0064 
5 50 10,000 25 2,015 5.3e-7 
6 100 10,000 50 2,030 6.9e-12 
7 110 10,000 55 2,033 7.6e-13 
8 110* 10,000 52* 2,030* 4.5e-11 

 
Table 3. p-values assigned by MotifHound for a hypothetical SLiM prediction. 
* The values are not derived using the formulas. For explanations, see the text 

 
The two described weaknesses of discriminative tools, namely the difficulty to 

determine the meaningful negative/background set and the strong dependency of the 

results on the set sizes and small contaminations, render them less practical for 

application on real data. 
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1.6. Machine learning in template-based SLiM prediction 

1.6.1. Learning based on sequence features only 

The common weakness of both, classical alignment approaches and de novo regex 

construction such as is done in SLiMBuild is their inability to capture transient 

relationships between different positions (also referred to as columns) of a putative 

motif. These methods are limited to considering amino acid frequencies within single 

columns, as well as determining, which columns will be retained. As an example, let us 

consider the hypothetical motif A in Table 4. The six sequences already form a quite 

good MSA. They can be summarized by the regex [KR][ILV].W[DE]. However, 

neither an MSA algorithm nor SLiMBuild grants a score improvement because of the fact 

that K in the first position is always coupled with E in the last position, while R is always 

coupled with D. Hidden Markov models are generally more flexible. The utility hhmake, 

which is part of HH-suite and generates the HMM from an input MSA, indeed produces 

different HMMs from the given first set and the second set, in which the occurrences of 

Asp and Glu in the last column are flipped (motif B in Table 4). This difference leads to a 

slightly higher score of HMM profile-to-profile comparison against the target motif HMM 

for motif A (see Table 4), which has the same K/R-D/E coupling pattern. Nevertheless, 

this difference is quite small in comparison with other factors influencing the score: the 

Viterbi scores are 10.60 and 10.55, respectively with the autocorrelation term turned off 

in hhalign,. Moreover, HH-suite remains a general-purpose alignment tool, albeit with 

broad functionality and specifically designed for weakly conserved sequences. 

Therefore, it does not conduct in-depth statistical analysis of amino acid composition in 

a pair of compared profiles.  

 
Motif A Motif B Target motif 
RIGWD 

KLMWE 

KISWE 

RVQWD 

KVHWE 

RLPWD 

RIGWE 

KLMWD 

KISWD 

RVQWE 

KVHWD 

RLPWE 

KVHWE 

RLAWD 

RVNWD 

KIGWE 

RIPWD 

KLTWE 

 
Table 4. Selected hypothetical motifs to illustrate inter-column residue dependencies 

 

Machine learning (Baştanlar and Özuysal, 2014) is a much broader approach for 

detecting statistically significant patterns in input data. A properly configured machine 

learning pipeline can potentially detect all significant patterns of inter-column 
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composition dependencies within the considered sequence window. In comparison to 

alignment-based approaches, this would deliver more efficient solutions for two distinct 

problems: 1) the search for a given weakly conserved SLiM within a target sequence; 2) 

the detection of ‘SLiM-like’ regions within a given sequence, which defines a search for 

SLiMs of all types. 

 

Here I provide two examples of a successful application of machine learning for tackling 

the first problem. These examples have one common feature: they both contain a 

contingency table of dependencies between all possible pairs of columns within the 

input window. Such a table is filled with values of a statistical measure that shows, how 

likely the observed coincidences in amino acid composition can arise by chance. 

 

In the first example, O-GlcNAcylation sites classified into subtypes were detected in an 

out-of-sample test set with 84% accuracy (Kao et al., 2015). In this study, the 

contingency table was used to perform the classification with subsequent generation of 

HMMs for each determined subtype. The algorithm for classification on the basis of the 

contingency table is known as maximal dependence decomposition (MDD) and was first 

implemented in a tool called MDDLogo (Lee et al., 2011). The parameters for HMM 

generation were optimized so that the employed support vector machine (SVM) 

(Schölkopf and Smola, 2001) classifier achieves maximal performance in binary 

classification of positive and negative sequence windows by the associated bit score of 

the HMM profile comparison. A similar approach was used by the same authors to detect 

ubiquitination sites with 73.7% accuracy (Huang et al., 2016). 

 

In the second example, a machine learning framework was built to distinguish DNA 

sequences that fluoresce upon binding to silver cations (Copp et al., 2014). The positive 

set consisted of 30% of the brightest sequences (determined in the experimental setup), 

while the negative set contained the 30% darkest sequences. The 40% sequences in the 

middle range were excluded form further consideration. The framework included 

comprehensive enumeration of all possible regexes that contained flexible numbers of 

wildcard positions between conserved DNA bases but considered no degeneration in the 

bases themselves (i.e., without Perl square bracket syntax). The number of occurrences 

of each regex was turned into a feature. A feature was considered informative, if its 
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average value – and thus the frequency of the underlying regex – was lower than the 

specified threshold TN in the negative/positive set and higher than the specified 

threshold TP in the positive/negative set respectively. Thus, features enriched in either 

the positive or negative set were considered. After pruning of non-informative features, 

the SVM classifier was trained to distinguish between positive and negative cases. 

Augmented with some additional features, the resulting classifier demonstrated 76% 

accuracy on the test data. 

 

There are also successful applications of machine learning to tackle the second problem. 

For example, an accuracy exceeding 70% can be reached by analyzing compositional 

skews and evolutionary conservation patterns in collections of orthologs (Fang et al., 

2013). In this study, the protein sequences were divided into SLiM, SLiM-flanking, and 

non-SLiM regions. It was shown that SLiM and SLiM-flanking regions show transient but 

still detectable differences in composition from non-SLiM regions. 

 

1.6.2. Learning based on diverse properties 

The previous section described, how machine learning could be used to detect remote 

similarity in sequence stretches, going beyond the possibilities of conventional 

alignment techniques. Nevertheless, a comprehensive sequence analysis is not the only 

strength of machine learning. Its other innate advantage is being a universal method to 

combine information of different types and from diverse sources to make better 

classifications or value predictions. These other types of information include, in addition 

to the sequence data, structural data, biophysical properties, functional annotations, etc. 

 

The idea of predicting SLiMs on the basis of different information sources has been 

realized in different forms, even if it was not explicitly called machine learning. For 

example, MiniMotif Miner 3.0 represents a framework for a template-based SLiM search 

with filters including molecular function, cellular function, and subcellular localization.  

 

Furthermore, many tools, although not being strictly machine-learning approaches, 

combine diverse features to deliver more accurate results. They for instance use 

structural features to improve the resulting multiple sequence alignment, which are so-

called posterior probability-based MSA methods. Some of them, e.g., 3DCoffee (Poirot et 
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al., 2004), use real 3D structures, while others, e.g., MSACompro (Deng and Cheng, 

2014a), predict the structure on the basis of the sequence. The latter are of course pure 

sequence-based tools, although they use long-range similarity features to facilitate 

possible local alignments. HH-suite also incorporates the secondary structure (real or 

predicted) in its scoring system to produce more accurate alignments of weakly 

conserved sequences. Nevertheless, HH-suite, as well as other alignment methods, 

remain general tools and are by themselves not suited for SLiM discovery. 

 

Using biophysical properties is another way to supplement purely alignment-based 

SLiM predictions. Biophysical properties of individual amino acids are already included 

in alignment methods, as the properties of separate amino acids, such as size, charge, 

and hydrophobicity are the basis for the similarity matrices, which are the basis for 

alignments. The most popular matrix is BLOSUM62 (Eddy, 2004). However, it may 

happen that some other properties are more important for the functioning of a 

particular SLiM. To address this possibility, one could potentially adjust the BLOSUM62 

matrix (Mills and Pearson, 2013) (Hess et al., 2016) for each individual SLiM. A more 

intuitive solution, however, is to use machine learning to analyze the impact of all listed 

properties at once using the standard methods to reduce dimensionality. A good 

example of such a study is (Kumaran Nair et al., 2012), which not only demonstrated a 

good accuracy but also compared different dimensionality reduction methods, as well as 

different classifiers. The weak points of this study, however, were the focus on a single 

motif type and a lack of comparison with conventional alignment methods. Another 

study (Karaçali, 2012) demonstrated the superiority of a similar machine learning 

approach in predicting N-glycosylation sites over other available predictors. 

Unfortunately, it also focused on a single motif type. The common feature of these two 

proposed methods is using only residue-level properties, which in fact makes them 

sequence-only approaches. 

 

To my best knowledge, there is currently no publications describing machine learning 

frameworks for SLiM prediction, which explicitly use both, sequence features and a kind 

of truly non-sequence information to build the initial set of features. 

 

1.7. Selected computational tools used in SLiM predictors 
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1.7.1. BLAST 

BLAST (Altschul et al., 1990), although being ‘local’, is not sensitive enough to find SLiM 

alignments. Nevertheless, it is used in several SLiM predictors, including SLiMFinder and 

HH-MOTiF. In both tools, BLAST is implemented to detect homology relationships 

between proteins. For this purpose, the BLAST alignments themselves are discarded and 

only their statistics (e-value, length, identity counts) are considered. The BLAST e-value 

reflects the strength of the best possible local alignment between a pair of given 

proteins. If certain conditions are satisfied, the proteins are considered homologous, 

otherwise unrelated. 

 

Homologous relationships detected by BLAST can be used in two distinct ways in a SLiM 

predictor: they can be used to 1) find putative orthologs of a query protein in order to 

estimate residue-wise evolutionary conservation, as it was done in HH-MOTiF, which 

was already proven to be helpful in SLiM searches (Davey et al., 2009); and 2)  find 

related proteins within the input set to obtain a set of unrelated proteins for further 

SLiM search; it is applied as such in SLiMFinder. 

 

The BLAST algorithm was realized in many software tools and web-servers. The most 

popular implementation is the one from the National Center for Biotechnology 

Information (NCBI). The pre-installed standalone NCBI BLAST is a prerequisite for 

running both, HH-MOTiF and SLiMFinder. 

 

1.7.2. MAFFT 

MAFFT (Katoh et al., 2002) is an algorithm for global multiple sequence alignments. As 

encoded in the name, MAFFT uses fast Fourier transforms (FFT) in its algorithm with 

the purpose to calculate frequencies of residues of different polarity and size. The key 

advantage of MAFFT is its two-order of magnitude speed gain while retaining 

comparable accuracy in comparison to previously existing methods, such as CLUSTALW 

(Chenna et al., 2003) and T-COFFEE (Notredame et al., 2000). This advantage was 

achieved by implementing a two-step procedure: pre-locating potential homology 

regions with subsequent alignment of regions in between. In the following, multiple 

improvements were introduced to MAFFT by the developers to increase its accuracy, as 

well as to add new features. The current version is 7 (as of June 2017) (Katoh and 
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Standley, 2013). Recently added useful features include the possibility to combine 

existing alignments in different ways, depending on the underlying phylogenetic tree. 

 

As a generally global alignment tool, MAFFT is not directly suited for motif searches. 

However, it can be used for auxiliary purposes, for example to construct an MSA from 

the orthologs that were identified using BLAST, as it is applied in HH-MOTiF. 

 

1.7.3. HH-suite 

HH-suite is the package for generation and alignment of hidden Markov model profiles 

to detect remote sequence similarity. HH-suite consists of several utilities. Among 

others, it contains hhblits (Remmert et al., 2011), hhsearch (Söding, 2005), and 

hhalign to perform alignments, as well as hhmake to generate HMM profiles from 

MSAs. By the scope of functions, HH-suite can be regarded as a substitution for BLAST. 

 

The utilities used in HH-MOTiF are hhmake, hhalign, and hhsearch. 

 

hhmake takes as input an MSA (for example, a FASTA file) and constructs a HMM out of 

it (as an *.hhm file). It also can do filtering of the input alignment by removing too close 

or too distant sequences. As the MSA normally contains gaps, it is important to decide, 

how many gaps in a given column are tolerable to still count the column as being in a 

match state. Alternatively, the match states can be assigned according to the first 

sequence in the MSA. All other columns will be assigned to either a deletion or insertion 

state. 

 

hhalign takes as input two HMMs and outputs a list of hits, where each hit represents 

a local profile-to-profile alignment of two segments of the input HMMs. The number of 

hits is limited by a score threshold, as well as by the maximal number of hits (only 1 hit 

by default). The two HMMs are treated equally, despite the formal distinction into query 

and template. A typical hhalign hit is shown below. 

 

Probab=0.21  E-value=0.29  Score=15.47  Aligned_cols=11  

Identities=36%  Similarity=0.987  Sum_probs=5.5 

 

Q first_HHM       175 KQVCTDINECE  185 (757) 

Q Consensus       175 kq~C~d~neC~  185 (757) 
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                      ++.|.|..-|| 

T Consensus        70 RE~CeDy~pCe   80 (103) 

T second_HHM       70 REACDDYRLCE   80 (103) 

Confidence            33555555554 

 

 

hhsearch is similar to hhalign; however, it can compare one query with a library of 

templates. The advantages over hhalign are only semantics and speed. 

 

1.8. Challenges of computational SLiM discovery 

1.8.1. Low conservation of SLiMs and their statistical (in-)significance 

The main problem with searching SLiMs de novo is their low conservation. For some 

motifs, there is often as few as only two conserved amino acids (for example, the ELM 

class for the PCSK cleavage site CLV_PCSK_PC1ET2_1). As there are 20 amino acids in 

total, this limits the sought-for SLiM space to 400 combinations, which corresponds to 

the pattern probability of 0.0025. This means that for a protein of approximately 400 

amino acids length, the expected e-value to find the SLiM just by chance will be ~1. Note:  

given the background amino acid frequencies, the e-value for the hypothetical SLiM WW 

will be somewhat lower, while for the SLiM AA it will be somewhat higher. Moreover, 

some longer SLiMs have even higher pattern probabilities due to high ambiguity, such as 

the class TRG_ER_diArg_1, which has the pattern probability 0.0054. The approximate 

formula that connects the pattern probability PP and the e-value e for a pattern of length 

Npat in a protein of length Nprot is (adopted from equation 14 in (Altschul et al., 2001)): 

 

                            

 

High pattern probabilities and e-values mean that, in absence of other information, such 

SLiMs can only be identified at the cost of including a tremendous amount of false 

positives. To avoid this, there are several approaches possible: 

 Comparing the actual pattern probability with that of the background or negative 

set. This approach is plausible, as some patterns in certain protein groups occur 

less frequently than they are expected just by background frequencies of 

individual amino acids. As a result, even ‘normal’ occurrences may indicate a 

significant enrichment in this case. Discriminative methods employ this 

approach.  
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 Including additional information (e.g., information from evolutionary 

conservation and flanking amino acids). This approach will effectively lower the 

e-values, as more conditions need to be satisfied for positive identification. 

 Discarding poorly conserved SLiM candidates. 

 

A good de novo SLiM predictor employs some combination of the last two approaches. 

Ideally, the behavior is also tunable, so that the user can select, which filters to apply and 

which thresholds to use. For example, SLiMFinder uses very strict parameters by 

default, which lead to high precision but low recall; however, the parameters can be 

tuned to either increase recall at the cost of precision or further increase precision at the 

cost of additional losses in recall. Here I describe in brief the statistical model of 

SLiMFinder, SLiMChance. 

 

SLiMChance starts with calculating the probability of L positions forming a SLiM of 

length L (not including wildcard positions) with di different amino acids possible at 

position i on the basis of background amino frequencies fa: 

 

      ∏∑  

  

   

 

   

 

 

Then the number of all possible SLiM occurrences in each input protein cluster is 

calculated. For this, the SLiM candidate is broken into dimers of adjacent non-wildcard 

positions and the corresponding linkers are retained. For example, a motif A-x-x-C-

[DE]-x-[ILV] will form the dimers A-x-x-C, C-[DE], and [DE]-x-[ILV]. For 

each dimer i, the number of its occurrences Ndi in the protein cluster is calculated. The 

total number of positions in the cluster, where a dimer of this length can be harbored, is 

marked as Nt. These two numbers are calculated only for unmasked regions of proteins. 

The possible effective number of SLiM occurrences is calculated on the basis of these 

numbers and the effective number M of unrelated sequences in the cluster according to 

the formula: 

 

      ∏
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Note: M was introduced in the SLIMDisc algorithm (Davey et al., 2006) under the name 

‘MST correction’. The probability of the SLiM candidate to occur at least once in the 

protein cluster is then calculated using the binomial formula: 

 

                 

 

This formula can be also viewed as S ida k multiple testing correction (Wright, 1992). 

 

Next, this probability is averaged across all protein clusters and the resulting average is 

converted to the p-value using the cumulative binomial distribution formula. Finally, 

this p-value is adjusted, again using the multiple testing correction, for the space of 

regexes that could have been potentially generated. 

 

The SLiMFinder approach also demonstrates an important difference from classical 

alignment methods: in a classical local alignment such as is produced for instance by 

BLAST, all positions are scored, regardless of their conservation. Moreover, a position 

score must be negative on average for a local alignment algorithm to function properly 

(Altschul et al., 2001). This means that a longer SLiM with non-conserved positions will 

score lower than a shorter SLiM with all positions conserved, given that the total 

number of conserved positions is the same. In case of SLiMs, however, the presence of 

non-conserved central positions does not mean a lower quality. This is a corollary of the 

fact that SLiMs are generally a result of a convergent evolution (Chemes et al., 2012). 

Moreover, to be functional, they need to provide only a few essential, interacting amino 

acids, which must not necessarily be adjacent. Indeed, some motifs (e.g., the ELM class 

TRG_NLS_Bipartite_1) show as many as 15 non-conserved positions between the key 

residues. Thus, classical local alignment approaches are not suitable for SLiM alignments 

and, consequently, for SLiM search. The same logic applies also for global alignments. 

Instead, a SLiM search requires an approach, which would not introduce penalties for 

non-conserved, central columns. 

 

1.8.2. Conserved domains and larger homology regions 
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As computational SLiM discovery is mainly a problem of finding similar short stretches 

in protein sequences, the presence of other sequence regions that exhibit similarity is an 

obvious obstacle and potential source of numerous false positives. The most common 

‘SLiM competitors’ in this sense are conserved domains and larger homologous regions. 

Conserved domains are longer sequence elements with dedicated functions and a 

compact 3D structure. A conserved domain functions and evolves independently and 

can often fold by itself. Conserved domains in different proteins typically have a 

common evolutionary origin (Liu and Nash, 2012), with some exceptions, where a 

similar fold or function can arise by convergent evolution (Hudson and Cooley, 2013). 

Homologous regions represent a common ancestral origin. Next to sequence similarity, 

homologous regions often show also common functions. Although the underlying 

biological nature of conserved domains and homologous regions might be quite 

different, the problem they pose to the SLiM search is essentially the same: they 

introduce many short, highly similar sequence stretches, which are not SLiMs. In 

addition, there is an implicit assumption that SLiMs cannot occur inside conserved 

domains (Neduva et al., 2005). According to this assumption, many SLiM predictors, 

including SLiMFinder or DILIMOT (Neduva and Russell, 2006), implement conserved 

domain filters. Nevertheless, no explicit evidence could be found to support this 

statement. Instead, there are several studies that challenge it. For example, (Mohamed et 

al., 2015) have shown that different protein- and ligand-interacting interfaces can 

overlap within the same protein. Moreover, there is a dedicated method for 

identification of SLiMs that lie specifically inside conserved domains (Horan et al., 2010). 

In addition, the DILIMOT study itself recognizes the need to turn off the conserved 

domain filter to be able to recover certain SLiMs, for example, the EB1 motif (Neduva 

and Russell, 2006). 

 

To deal with homologous regions, one can cluster the input protein set and further 

consider each cluster as one sequence. Following this approach, SLiMFinder makes 

corresponding adjustments to score calculations. Although clustering in general sounds 

like a reasonable approach, it has two major weaknesses. First, it does not provide a 

good solution for proteins with a homologous region occupying only part (e.g., 50%) of 

the full-length sequences of the proteins. The percent sequence similarity, as well as the 

score of the best BLAST hit can be used for thresholding. However, no matter what type 
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of threshold is used, both decisions are not good: not clustering the proteins together 

will lead to a quite large homologous region that is retained, while the clustering will 

remove (or at least discount) quite long unique regions from clustered proteins for 

further SLiM discovery. Second, as protein similarity measures are not Euclidian 

distances (e.g., the distance between proteins A and C could be greater than the sum of 

distances A-B and B-C), forming clusters imposes one more hard choice without a good 

solution. In the example above, dissimilar proteins A and C would belong to the same 

cluster, if protein B is similar enough to both of them. This can be the case, if, for 

example, A and B share a domain D1, while B and C share domain D2. Should then all 

three proteins be clustered together? On the one hand, if the answer is no, then there 

would be no practical way to form unbiased and non-overlapping clusters. In this 

example, the next question would then be, if B should be clustered with A, with C, with 

both, or with none. On the other hand, if the answer is yes, then huge clusters with up to 

half of the proteome will form in large data sets (Edwards and Palopoli, 2015). 

 

To deal with conserved domains, one can retrieve annotations for known conserved 

domains from databases such as SMART (Schultz et al., 1998), CDD (Marchler-Bauer et 

al., 2015), InterPro (Mitchell et al., 2015) or Pfam (Finn et al., 2016) for further masking. 

To apply this approach, one should first decide, which database to use and which 

features to focus on. CDD, for instance annotates structural motifs in addition to 

conserved domains. In addition, for developing a novel SLiM predictor, one needs to 

consider dependencies and resulting technical problems, such as access to and updates 

of the used database(s). 

 

1.8.3. Low complexity regions 

Low complexity regions (LCRs) are sequence stretches with strong compositional bias 

towards a specific amino acid or amino acid group. A popular, more specific definition, 

which can be easily expressed with an algorithm, defines an LCR as a stretch, in which 

among each 8 consecutive residues at least 5 are the same. SEG (Wootton and Federhen, 

1996) and the SLiMFinder algorithms use exactly these numbers as default parameter 

values. 
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As in the case of conserved domains, LCRs are generally considered as incompatible 

with SLiMs at the same position. Again, no evidence could be found for this statement. 

On the contrary, some known SLiMs definitely have a low complexity nature. For 

example, the ELM class LIG_SH3_1 and LIG_EF_ALG2_ABM_2 are P-rich, and 

LIG_AP_GAE_1 is D/E-rich. 

 

1.9. SLiMs and sequence properties 

1.9.1. Surface exposure and SLiMs 

As SLiMs mediate interaction of two proteins, they must be accessible to be functional. A 

SLiM buried deep in a globular protein will in general not be able to bind to other 

proteins, although there are exception, where the binding site is located in a cleft 

(Laskowski et al., 1996). Therefore, it makes sense to predict buried regions in order to 

mask them out for the subsequent SLiM search. The are two measures associated with 

residue-wise surface exposure: absolute surface area (ASA), measured in square units, 

and relative surface area (RSA), which is the ratio between the actual ASA and the 

reference ASA for the same residue in an unfolded, reference peptide (Topham and 

Smith, 2015). Residues with an RSA below a certain threshold are considered buried. 

 

Although the idea behind the masking of buried regions looks generally sound, there are 

two possible caveats, in addition to already mentioned cleft binding sites: First, 

experimentally determined 3D structures are not available for all proteins. As of 

28.06.2017, only 441 ELM proteins have a corresponding structure in the PDB database, 

which corresponds to roughly 20% of all ELM proteins. This means that in most cases, 

the surface accessibility cannot be calculated directly, but must be predicted. As this 

prediction is often not perfect, its errors will propagate into the resulting SLiM 

predictor. Second, a real SLiM may be actually buried in the native protein conformation. 

It will only become exposed and functional upon induced conformational changes or 

cleavage (Vallon et al., 2012). 

 

1.9.2. Sequence disorder and SLiMs 

Intrinsic sequence disorder defines protein sequence stretches that do not adopt a 

defined 3D structure. Disordered regions vary in length and are present in at least half of 

all identified natural proteins (Necci et al., 2016). It was shown that disordered regions 
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are more likely to harbor SLiMs than ordered ones (Dosztányi et al., 2009).  It is 

speculated that this tendency arises due to the need for a SLiM to adopt a certain 

conformation in order to bind to its partner. Flexible regions might therefore be 

preferred, as they can fold into the required structure (Breitenlechner et al., 2004). 

 

Similarly to surface exposure, sequence disorder can be directly inferred only from a 3D 

structure, or more precisely, the lack thereof. However, in this case the conclusion is not 

unequivocal, as the failure to crystallize the protein or assess its conformation in 

another way does not necessarily imply intrinsic disorder. For proteins without a known 

structure, sequence disorder must be predicted. A popular predictor in SLiM discovery 

is IUPred (Dosztányi et al., 2005). It shows true positive rate (TPR) of 76.3% and false 

positive rate (FPR) of 5.3%. 

 

1.10. Evaluating the performance of SLiM predictors 

1.10.1. Ambiguity in the performance evaluation 

Objective evaluation of the performance is a vital part of the development process of any 

predictor. It is needed for initial assessment of the method’s usability for the given task. 

It is also needed for assessment of newly added features and parameter optimization. 

Finally, it is needed for comparison with alternative method to evaluate, if the developed 

method provides any advantages to the field. Therefore, all the publication of SLiM 

predictors known to me include at least a short statement on their performance. This 

also concerns predictors of sequence properties (surface exposure, etc.) mentioned in 

this thesis. 

 

However, the performance evaluation is not a straightforward, unambiguous task. 

Developers of different tools use different metrics to evaluate their tools. Furthermore, 

even if the same metrics are used, they are often calculated under different assumptions 

and with deviations in formulas. This makes the direct comparison of different 

predictors quite complicated. 

 

Such differences and deviations do not imply that some authors evaluate their 

predictors in a wrong way. Instead, the problem of comparing positional data – in this 

case, positions of SLiMs in sequences – is complex and multi-faceted by itself. In the next 
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subsections, I introduce the sources of ambiguity that may arise while evaluating the 

performance of a SLiM predictor. 

 

1.10.2. Resolving overlaps and duplicates of predicted and annotated SLiMs 

All the tools tested, excluding MEME (Bailey et al., 2006), return predicted SLiMs that 

are overlapping or duplicated. In order to deal with these motif instances, some 

questions must be answered before processing and/or evaluating the results. The main 

two questions are: 

1. Should the predicted motifs be treated separately or merged on overlaps and 

duplications? 

2. Are the residues that are traversed by multiple motifs predicted with more 

confidence? 

 

In addition, annotated, so-called ‘golden-standard’ SLiMs in ELM can be overlapping, 

even within the same class (e.g., LIG_SH3_3 in the protein P25049). To be able to 

measure the prediction accuracy, one needs to define the approach on how to treat 

these overlaps. 

 

1.10.3.  Assigning matches between predicted and database SLiMs 

To evaluate the performance of a SLiM predictor, one needs to compare its results with a 

benchmark database, such as ELM. The prediction and the database can both be seen as 

annotations of sequence elements in a given set of proteins. Each record in such an 

annotation describes one motif site. It consists of a protein identifier, a start and an end 

residue. The task of the performance evaluation process is to evaluate, how similar two 

sets of motif sites are. 

 

Ideally, one would like to answer the question, if a particular real SLiM was recovered by 

the predictor or not and if a particular predicted SLiM matches a real one or not. A good 

illustration is the study describing NestedMICA (Doğruel et al., 2008), where each 

database motif is classified as either ‘correctly recovered’ or ‘missed’. 

 

However, the situation is not always clear-cut. Sometimes, a predictor returns a site that 

overlaps only to a small extent with a database SLiM. The overlap can be as little as one 
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residue. Furthermore, a predicted site can be much longer than the real SLiM it 

completely recovers. Therefore, a predictor might be trained to return only very long 

sites that are able to cover enough real SLiMs merely by chance. If the database and/or 

the prediction contain multiple, closely spaced or even overlapping sites in the same 

protein, unambiguous matching and subsequent performance measuring become even 

more challenging. 

 

Thus, as part of the development process of a SLiM predictor, one should also carefully 

design the motif matching scheme to be able to train, evaluate, and compare the 

predictor. The problem was outlined in (Song and Gu, 2015); however, the proposed 

solution still did not consider all cases of ambiguity. 

 

1.10.4. Counting true negatives in SLiM prediction 

The task of a SLiM predictor is not only to correctly identify real SLiMs, but also to avoid 

making false positive predictions. This means that it must also correctly identify non-

SLiM regions as such. Intuitively, one could say that the longer the protein sequence in 

comparison to the SLiMs is, the more challenging this task becomes. The direct measure 

for evaluating the correct identification of negative elements is specificity – the share of 

negative (i.e., absent in the database) elements that were also predicted as negative (i.e., 

absent in the prediction). 

 

This calculation is straightforward, when the element to count is a single residue, as the 

number of negative residues is exactly known. However, the corresponding site-wise 

calculation is ambiguous, as there is no strict definition of a non-SLiM protein site. 

Should one count all combinatorially possible peptides at all possible starting positions 

and of all possible lengths that do not contain any SLiM residues as negative? 

 

1.10.5. Choosing the main statistical metric for SLiM prediction 

There are several statistical routines that can be used to evaluate the performance of a 

positional data predictor. 

 

First, it is necessary to calculate similarity scores. These may simply represent a share of 

correctly predicted elements within some category. For example, the recall is the share 
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of true positives within true elements. Other simple measures of this type are precision, 

specificity, and accuracy. Alternatively, similarity scores can combine several simple 

measures. For instance, the F1 score is the harmonic mean of recall and precision. One 

can also consider element counts in a more comprehensive manner. The Matthew’s 

correlation coefficient would be an example of this measure. The similarity scores, being 

just numbers, provide the direct answer to the question of how good the predictor 

performs from a certain point of view. They always relate to a specific configuration of 

the predictor’s input settings; however, they can be plotted against values of the input 

parameters to assess the predictor’s robustness. An example of a thorough application 

of similarity scores for evaluating different SLiM predictors is provided in (Song and Gu, 

2015). 

 

Second, one can make use of ROC curves (Beck and Shultz, 1986). This approach consists 

in measuring the true positive rate (TPR) at different levels of false positive rates (FPR). 

This method is by design more robust, as it assess the whole range of performance, and 

not just a single point. The user can choose from it the most suitable configuration on 

the basis of a maximal tolerable FPR and/or a minimal tolerable TPR. Area under the 

curve (AUC) (Hanley and McNeil, 1982) represents another number that can be used as 

a performance measure. Although being very illustrative and robust, ROC curves cannot 

be built for all types of predictors. One of the necessary conditions is the performance 

dependence on the parameter of a single tunable real number. Another condition is the 

absence of local maxima and minima in the functions of TPR and FPR on this parameter. 

This means that with an increase in the parameter, one should not observe a positive 

change in TPR or FPR coupled with a negative change in FPR or TPR, respectively. 

Situations, when TPR or FPR rise in one range of parameter values and falls in another 

range are not acceptable. If these conditions are not met, there will be potentially 

several different values of TPR or FPR for a single given value of FPR or TPR, 

respectively, which will break the concept of the ROC curve. In some cases, this effect 

can be addressed by building multiple curves. For example, if there are multiple input 

parameters, a curve can be plotted for each parameter separately, with all the others 

being ‘frozen’. ROC curves were used to demonstrate the performance of hhsearch in 

homology searching (Söding, 2005), as well as some SLiM predictors (QSLiMFinder 

(Palopoli et al., 2015)). 
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Third, one can perform a statistical enrichment analysis with significance score(s) as 

output. The most useful type of such an analysis is the hypergeometric analysis 

(Taskesen et al., 2013) implemented, for example, in the software tool diffReps (Shen et 

al., 2013) to evaluate and compare ChIP-Seq data. 

 

While building a performance report on a given predictor or an overview of several 

predictors, one can compute multiple measures of different types for the purpose of 

comprehensiveness. However, while developing and optimizing a predictor, one must 

focus on a single measure. The procedure can be also more complex, taking into account 

many separate measures, for example, through averaging. Not all abovementioned 

measures are suitable to be used as such a performance metric. For example, if the recall 

is chosen as the main metric, a predictor that always classifies all input data as positive, 

will be the winner. If the precision is chosen, the high-performer will be a predictor that 

positively identifies only the small fraction of positive elements that is easiest to detect. 

Both these predictors will be practically useless for the user, despite scoring high. 

Therefore, the resulting metric for optimization should satisfy the following 

requirement: it reaches its maximal value if and only if the prediction reproduces the 

benchmark annotation perfectly. If non-perfect predictions can also result in the 

maximal score, the optimization becomes problematic. 

 

1.11. Visualization of SLiM prediction results 

1.11.1. Plain text and pseudographics for SLiM representation 

Plain text with a clear pre-defined structure is the most simple program output that can 

be produced. It has the advantage of also being easily machine-readable. It is universal 

and does not depend on additional software. That is why all known SLiM predictors can 

produce plain text output, even if they also support more sophisticated formats. 

Properly used spacing and special characters (i.e., elements of pseudographics) help to 

show the SLiM alignments, scores, and other supporting information in a way that is 

easily understood by humans. MEME (Bailey et al., 2006), for example, draws a 

simplified position-specific probability matrix for each identified motif. The 

pseudographics is dependent on the font with the main restriction that the font must be 

monospace. 
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1.11.2. Image files 

SLiMs can be also represented as images. Sequence logos represent the most popular 

images for SLiMs (Schneider and Stephens, 1990). The current software solutions to 

build the logos from the alignments include WebLogo (Crooks et al., 2004) and IceLogo 

(Colaert et al., 2009). The logos depict the enrichment of the corresponding amino acid 

types through the height of the letters in each position of the SLiM. The enrichment is by 

default measured as information content. In addition, the gap frequency may be 

depicted through the letter width (the more gaps the thinner the letters). 

 

1.11.3. Interactive web-based interfaces 

There is quite a lot of information associated with SLiMs. This includes SLiM instances 

themselves, flanking residues, positions in whole protein sequences, conservation, 

scores, etc.. It is therefore not easy to display it all at once without overloading the visual 

field of the user. A good solution for this problem will make use of both, text properties 

(font, case, size, weight, color, etc.) and graphical elements (images, lines, arrows, etc.) to 

encode as much information about the SLiM as possible in an intuitive manner. In 

addition, interactiveness can be used to improve the user’s experience. 

 

1.12. Relation to published and submitted manuscripts 

The ideas and results of this thesis has resulted in one published and one submitted 

manuscript. HH-MOTiF was published as (Prytuliak et al., 2017). SLALOM was submitted 

as “SLALOM, a flexible method for the identification and statistical analysis of 

overlapping continuous sequence elements in sequence- and time-series data” to BMC 

Bioinformatics. My contribution in the first manuscript was designing the algorithms, 

developing the software, conducting performance tests, and assist in writing the text. 

The contribution of co-authors was as follows: Michael Volkmer – technical support, 

Markus Meier – implementing required modifications to HH-suite, Bianca Habermann – 

supervising the project, correcting and writing the text. My contribution to the second 

manuscript was designing and developing the software, analyzing data and assist in 

writing the text. The contribution of co-authors was following: Friedhelm Pfeiffer – 

providing and pre-processing the genome data, assist in writing the text, Bianca 

Habermann – supervising the project, writing the text. 



45 
 

 

The first manuscript describes the web-tool HH-MOTiF and represent an intermediate 

state of the thesis project. The thesis goes deeper in detail concerning the method 

descriptions. In addition, it focuses more on the question of how the ideas and 

algorithms behind HH-MOTiF can contribute to other applications as well as formulates 

and develops further the hypothesis on impact of short motif diversity on the accuracy 

of their computational recovery. 

 

The second manuscript  in its current state describes the standalone tool SLALOM. It 

includes detailed explanations of all the implemented operation modes together with 

the user instructions, which remained out of the scope of this thesis. On the other hand, 

the thesis provides more extended examples (‘case studies’) to demonstrate the added 

value of SLALOM.   
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2. METHODS 

 

2.1. Development procedures and techniques 

2.1.1. Programming languages, libraries, and auxiliary tools 

The main back-end application of HH-MOTiF is written in the Python programming 

language. The syntax is compatible with version 3.4 or higher. Besides the standard 

modules, the following libraries are used in HH-MOTiF: 

 numpy: for compact data storing 

 sharedmem: for sharing a numpy array between different processes 

 mpi4py: for implementing MPI enabling running HH-MOTiF on a cluster 

 

The web-server wrapper application operates within the Django framework with 

MySQL as the broker. The corresponding additional Python modules (with 

dependencies) are used: 

 mysql.connector 

 django 

 

The plots were prepared with R in the IDE program RStudio. The package ggplot2 was 

used for plotting with the additional packages plyr and reshape for data preparation 

as well RColorBrewer for better visualization. 

 

The web pages of the server are served in HTML5. The Bootstrap library of version 3.3.7 

was used to design the site with CSS3 and JavaScript elements. The JQuery library of 

version 3.3.1 was in addition used for the flow control scripts. 

 

The C++ programming language of the standard C++14 was used to generate the GI lists 

for separate taxonomic units. 

 

2.1.2. Performance tests 

Three types were conducted to boost the performance of HH-MOTiF as well as to 

prevent running application crashes: 
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 Runtime comparisons of different implementations of the same mini-tasks in 

Python. The mini-tasks corresponded to calculation types being performed by 

HH-MOTiF. The implementations compared: 

o generic programming vs. OOP 

o Python objects vs. numpy arrays 

o multiprocessing vs. MPI 

 Wall clock runtime measures of the running HH-MOTiF back-end application. 

These are done with the time module from the main process. 

 Per-process peak RAM consumption measures of the running HH-MOTiF back-

end application. The data are read from the Linux system file 

‘/proc/{pid}/status’. 

 

2.2. HH-MOTiF pipeline 

2.2.1. Pipeline overview 

After checking the input for validity, HH-MOTiF in the de novo mode starts processing of 

the query sequences by searching the orthologs. The retrieved orthologs are aligned and 

converted to HMM profiles. In parallel, sequence masking is performed according to the 

user-defined criteria. Then, the masked HMM profiles are compared to each other in an 

all-to-all, pairwise manner. The best alignment hits identified in each pair are integrated 

into hierarchical structures, which are termed ‘motif trees’. Next, the generated motif 

trees are evaluated by several additional criteria and, if needed, trimmed or even 

completely discarded. The retained trees are shown to the user on the interactive web 

page. 

 

 
 
Figure 1. The separate steps in the HH_MOTiF pipeline as they are implemented in the backend 
application 
 

input sequences

Search for orthologs Building HMMs Masking
Pairwise HMM-HMM

comparisons

Motif tree generation
Regex generation,

statistical evaluation

output motif trees

Alignment recognition
Domain and homology

detection
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The pipeline is schematically shown in Figure 1. 

 

2.2.2. Search for orthologs 

The utility blastp from the NCBI BLAST+ standalone package is used to find the BLAST 

hits (Altschul et al., 1990). The search for orthologs is performed as the reciprocal best 

BLAST hit (Bork et al., 1998) detection. 

 

The initial BLAST is performed against the nr database for each query sequence and 

saved in a separate file input_temp.fasta: 

 

blastp -db nr -query input_temp.fasta -evalue 1e-10 -

num_alignments 2000 -outfmt 5 -out blast_temp.xml -num_threads 

32 

 

The generated file blast_temp.xml is parsed to read the information on the BLAST 

hits. 

 

In this file, the top hits, the query itself is searched for. All hits belonging to the same 

species as the top hit with 100% identity and length in range [L, L+2], where L is the 

length of the query, are considered as the ‘self-candidates’. If no self-candidates can be 

identified (i.e., there is no hit displaying 100% identity and length in the required 

range), the ortholog search is interrupted. Otherwise, the species of the top qualified hit 

is resolved to the NCBI taxonomy identifier according to the file gi_taxid_prot.dmp 

(downloaded from the NCBI FTP server). The files containing GI lists for each species are 

pre-generated with a custom C++ program.  

 

Then, the best BLAST hit for each species with coverage of at least 90% and identity of at 

least 70% but at most 95% is back-BLASTed against the species of the query (i.e., of the 

top qualified hit of the initial BLAST). If this species belongs to the smaller database 

refseq_protein, it is used instead of nr. A separate FASTA file is generated for each 

hit being tested: 

 

blastp -db refseq_protein -query hit_{hit_id}.fasta -evalue 

1e-10 -num_alignments 2000 -outfmt 5 -out blast_temp.xml -

num_threads 32 –gilist gi_{tax_id}.txt 
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Pre-generated GI lists and sub-database identification do not influence the results but 

enhance the performance many-fold. As blastp is not capable of efficient 

parallelization of searches against single species, the reciprocal BLASTs are themselves 

performed in parallel in a pool of processes. 

 

If the top hit in the back-BLAST search is one of the self-candidates, the hit is confirmed 

as an ortholog; otherwise, it is rejected. 

 

The final list of orthologs is saved as a non-aligned FASTA file. 

 

2.2.3. Building hidden Markov models 

The FASTA file with orthologs is aligned with MAFFT v. 7 (Katoh and Standley, 2013) to 

produce the global MSA: 

 

mafft --maxiterate 1000 --thread 32 --globalpair 

orthologs.fasta > orthologs_aligned.fasta 

 

The alignment file is then subjected to the utility hhmake from HH-suite (Söding, 2005) 

(Remmert et al., 2011) to generate the corresponding HMM. The option ‘-M first’ 

forces using of the positions of the query sequence as match states regardless of their 

conservation (i.e., the resulting HMM is ‘centered’ around the query), while the option ‘-

id 100’ prohibits removing any of the identified orthologs: 

 

hhmake -i orthologs_aligned.fasta -o query.hhm -M first -id 

100 

 

For performance reasons, the *.hhm files for all the ELM proteins were cached and not 

re-calculated during the optimization, unless changes at or prior to the HMM generation 

step were introduced. 

 

2.2.4. Masking 

The query sequences can be masked according to one of three criteria: 

1. User-specified masking file. 
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2. Surface exposure. 

3. Sequence disorder. 

 

The user-specified file contains the regions (start and end residues) of interest for each 

input protein. All the residues that do not belong to these regions, are masked. Query 

proteins not mentioned in this file remain unmasked. 

 

Surface exposure masking is performed through predicting the surface exposure with 

NetSurfP (Petersen et al., 2009). The input file is re-used from the ortholog search 

procedure: 

 

netsurfp –i input_temp.fasta > netsurfp_output.txt 

 

The NetSurfP output contains residue-wise RSA values. The residues, whose value is 

below a certain threshold (default value: 0.16), are masked. 

 

Sequence disorder masking is performed through predicting residue-wise disorder with 

IUPred (Dosztányi et al., 2005). All residues with an IUPred value below 0.2 are masked. 

The IUPred program is run with the option ‘short’: 

 

iupred input_temp.fasta short > iupred_output.txt 

 

The user can select the three masking approaches independently. If several of them are 

applied, the masks are merged, so that a residue that is masked in at least one of them is 

considered masked. 

 

The resulting mask is resolved so that there are no regions less than 3 residues with 

different masking status (either masked or unmasked). To resolve the termini, the 

sequences are viewed as being flanked by infinitely long masked regions. To achieve 

this, the following algorithm is implemented: 

1. Determine all the regions that already satisfy the length requirement and keep 

them unchanged. 
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2. For remaining regions, give them the masking status of the majority of residues 

within them, and rendering them non-masked, if the number of masked and un-

masked regions are equal. 

 

The final mask is saved as the text string listing the regions of masked residues 

separated by commas. A region is represented as the start and end residue numbers 

separated by a dash. Lone terminal residues are listed as single numbers. If the sequence 

is completely unmasked, the string is empty. This format is compatible with the HH-

suite utilities hhalign and hhsearch. 

 

2.2.5. Pairwise HMM-HMM comparisons 

After the HMMs from the query sequences are generated, they are compared with each 

other in a pairwise, comprehensive manner. To this end, the utility hhalign from the 

version 3 of HH-suite is used. It accepts two HMMs and two corresponding masks as 

input and produces the list of alignment hits placed in an *.hhr file as the output. The 

‘input’ is submitted with the option key ‘-i’ and the ‘template’ with the option key ‘-t’; 

flipping the input files does not influence the results. Masks are submitted by the options 

‘-excl’ and ‘-template_excl’ respectively. An example of hhalign command line 

call is provided below: 

 

hhalign –i query_A.hhm -t query_B.hhm -o output.hhr -smin 0 -

alt 100 -gaph 999.0 -gapi 999.0 -norealign -nocontxt -excl 

1,9-33,42-145,286-312 -template_excl 118-214,342-395 

 

The options ‘-smin 0 -alt 100’ force hhalign to output at least 100 hits to choose 

from. Although only few hits will be selected to proceed to the next stage, this is needed 

in case the top hits are not suitable according to the additional criteria. 

 

The options ‘-gaph 999.0 -gapi 999.0’  are applied, when the gap restriction is 

chosen by the user. The gap restriction will not allow gaps longer than 1 residue in the 

SLiM alignments. The options achieve this by effectively setting the gap continuation 

penalty to infinity. 
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The options ‘-norealign’ and ‘-nocontxt’ switch off the maximal accuracy (MAC) 

algorithm and the context term to the score, respectively. The user of the web 

application does not have control over these options. Nevertheless, they were tested 

during the optimization of the back-end application. 

 

The alignment hits in the output are sorted by their Viterbi scores. The hits not 

satisfying the following criteria are not considered: 

 The number of aligned columns is in the range [3, 30] 

 The Viterbi score is in the range [11.0, 40.0] 

 

The number of retained hits, as well as the number of columns and Viterbi score ranges 

cannot be changed by the user of the web application. However, different values were 

tested during the optimization process. From the retained hits, the four with the highest 

Viterbi scores are selected.  

 

An alignment hit in the output file is represented as alignment with some additional 

information (an example is provided in Section 1.7.3. HH-suite). The start and end 

positions, the Viterbi score, the two gapped sequence stretches, and the alignment signs 

(the middle line) for the retained alignment hits are saved in a structured numpy array. 

 

2.2.6. Motif tree generation 

The retained alignment hits are accumulated to detect the most plausible SLiM locations. 

For each query in an input set of N sequences, two distinct values are calculated residue-

wise: the average Viterbi score of all the hits traversing this position and the number of 

other query proteins these hits involve. The latter can vary in the range [0, N-1]. If it is 

positive, the former can vary in the range [11.0, 40.0], which is same as the score of each 

individual hit. The residues that have hits with less than Nmin-1 other queries, as well as 

residues with the average Viterbi score below 13.0, are masked from further 

consideration. Nmin is a function of N (for details, see Section 2.4.6. Statistical model for 

false positive prediction). The unmasked residues form putative SLiM regions. Regions 

shorter than four residues are discarded. The score threshold and the minimal length of 

the region cannot be changed in the web application; however, different values were 

tested during the optimization. Each retained region becomes a so-called ‘motif root’. 
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The corresponding aligned sequence stretches in other queries from the associated hits 

become ‘motif leaves’. Although a motif leaf is usually shorter than the original sequence 

stretch in the hit as it represents only the part that is aligned to the motif root, its score 

is left unchanged. A motif root with corresponding motif leaves form a ‘motif tree’. 

 

2.2.7. Alignment recognition: the algorithm for motif tree trimming 

As a motif tree represents a true MSA with only root-leaf but not leaf-leaf pairs being 

aligned, it may turn out that the leaves do not show enough similarity with each other to 

form a putative SLiM. Therefore, a technique called ‘alignment recognition’ was 

developed to trim and, if needed, to completely discard an obtained motif tree. 

 

A putative SLiM alignment may not be suitable in two distinct ways: 

1. Motif leaves are aligned to different parts of the motif root. In this case, the root is 

quite long, much longer than an average leaf, so that many leaf pairs do not even 

overlap with each other (see leaves C and D in Figure 2). 

2. Motif leaves are aligned to the same part of the root, but show strongest matches 

in different positions. In this case, there are too few alignment columns with good 

matches in the majority of the leaves. An extreme case would be a situation, 

where certain leaves show strong matches in odd columns but mismatches in 

even columns, and vice versa for the other leaves (see leaves A and B in Figure 2). 

 

 

 
Figure 2. Schematic example of a motif tree in which all the leaves are aligned well with the root but show 
nevertheless poor consistency with each other. Squares of different colors depict residues of different 
types. Those with a tick match to the corresponding residue in the motif root. The dashed vertical lines 
mark the borders of the motif tree. Although leaves A and B match the root in 4 positions each, they do not 
have a single match between each other. The same is true for the pair C and D. 
 

leaf A 

motif root

leaf B 

leaf C 

leaf D 



54 
 

In both cases, a situation arises, in which it is not possible to summarize the SLiM with a 

reasonable regex that would describe the majority of the leaves. Such motif trees are 

unlikely to represent instances of real SLiMs. 

 

There may be two underlying reasons for bad alignment quality of a motif tree. First, the 

motif tree can arise completely by chance from non-related leaves. Second, the motif 

tree can represent a real SLiM, but be contaminated by a few, non-related leaves 

displaying similarity to the root only by chance. 

 

The alignment recognition algorithm should be able to selectively prune the tree in the 

latter case and completely discard it in the first case. The proposed realization of the 

algorithm attempts to do so by applying an iterative trimming procedure. The trimming 

can proceed both, in horizontal direction, shortening the motif root and corresponding 

leaves by discarding columns at the edges; and in vertical direction, discarding distinct 

leaves showing the least similarity with the rest of the tree. The quality of a match in 

individual root-leaf pairs is determined on the basis of the alignment signs from the 

hhalign output: ‘|’ and ‘+’ mean a good match and are assigned 2 points as the 

position score; ‘.’ means a mediocre match and is assigned 1 point; ‘-’ and ‘=’ mean 

mismatch and are assigned 0 points. The algorithm can be outlined as follows: 

1. Classify all motif tree columns by the conservation. A column that has 2 points 

with leaves in at least Nmin-1 query sequences is classified as well-conserved and 

gets 2 points column-wise. Nmin is calculated on the basis of the input size N (for 

details see Section 2.4.6. Statistical model for false positive prediction). A column 

that fails to be classified as well-conserved, but has at least 1 point with leaves in 

at least Nmin-1 query proteins is classified as mediocre-conserved and gets 1 

point column-wise. All other columns are classified as non-conserved and get 0 

points. 

2. If the sum of all column-wise scores is less than 6, discard the motif tree and 

terminate. 

3. Discard all non-conserved columns at the borders of the motif tree, so that it 

begins and ends with either well- or mediocre-conserved column (horizontal 

trimming). 
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4. For positional scores of individual root-leaf pairs, reduce these to the column-

wise score, if the latter is lower; this step helps to disregard strong individual 

matches in non-conserved columns. 

5. For each individual root-leaf pair, if the sum of newly adjusted positional scores 

is less than 6, discard the leaf (vertical trimming). 

6. If the retained leaves are in less than Nmin-1 query proteins, discard the motif tree 

and terminate. 

7. If no trimming occurred at the steps 3 and 5, return the resulting tree and 

terminate. 

8. Go to the step 1. 
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Figure 3. Schematic example illustrating the alignment recognition algorithm. All leaves are located in 
different query proteins. The tree must have at least 3 leaves (i.e., Nmin being 4). The alignment signs (‘|’, 

‘+’, ‘.’, ‘-’, and ‘=’) are produced with hhalign and represent column-wise quality in pairwise root-leaf 

alignments. The signs are scored as follows: 0 (‘=’, ‘-’), 1 (‘.’) or 2 (‘+’, ‘|’). The scores are first assessed 
vertically to produce column scores. The column score is 2, if there are at least Nmin-1=3 root-leaf pairs 
with a minimum score of 2; the column score is 1 when the condition for scoring 2 is not satisfied but 
there is at least 3 root-leaf pairs scoring at least 1 in it; the column score is 0 otherwise. Dark red columns 
are highly conserved (scoring 2), while light red ones are moderately conserved (scoring 1); white 
columns are non-conserved (scoring 0). After the column scores are calculated, the maxima of the actual 
alignment sign scores and the corresponding column scores are summed up horizontally to produce leaf 
scores. In this way, a leaf score cannot exceed the whole tree score, which is the sum of the column scores. 
Leaves with a score less than 6 are discarded and the procedure is repeated iteratively until conversion. 
Column scores that have changed are shown in red. The figure was reprinted from (Prytuliak et al., 2017) 
in agreement with the license no. 4200740316935. The copyright belongs to Oxford University Press.  

 

The algorithm is also illustrated in Figure 3. 

 

Finally, in the retained, trimmed motif trees, sums of positional scores of leaves in the 

same query protein are compared and leaves with lower sums are discarded (note that 

discarding suboptimal leaves in the same query protein does not trigger recalculation of 

the whole tree, as N, Nmin, etc. refer to the number of proteins in which the SLiM 

candidate occurs and not the number of leaves). If a tree has leaves with the same sum 

in the same query protein, they are all retained. 

 

2.2.8. Domain and homology detection 

A motif tree of high alignment quality may arise not only out of genuine SLiMs but also 

out of longer homologous regions in query proteins. These regions can reflect overall 

evolutionary and functional proximity of these proteins or a shared conserved domain. 

Therefore, HH-MOTiF implements an algorithm to prevent homologous regions from 

being identified as SLiM candidates. 

 

The HH-MOTiF homology filter, like the primary detection of the SLiM candidates, is 

based on the Viterbi alignment scores and aligned column counts of alignment hits from 

the hhalign output. However, unlike the SLiM detection, it looks for very long and 

high-scoring hits, namely the ones that satisfy at least one of the two conditions: 

1. The Viterbi score is at least 150. 

2. The number of aligned columns is at least 90% of the length of the shortest query 

in the pair. 
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These long, high-scoring alignment hits are hereafter referred to as homology markers. 

Each homology marker, therefore, is a pair of aligned sequence stretches from two 

different query proteins. The motif trees retained after the trimming and filtering steps 

are checked for their location to homology markers. Ideal SLiM candidates should avoid 

locating in a homology marker. Only leaf-leaf pairs need to be checked at this point, as 

root-leaf pairs have already passed a much stricter length and score criteria (see Section 

2.2.5. Pairwise HMM-HMM sequence comparisons). 

 

Simple checking itself is performed in the following manner: if two leaves are within the 

same homology marker by at least 3 residues, they are considered homologous. This 

consideration, however, always relates to a pair of leaves in a given motif tree, and not 

to individual leaves or to individual query proteins. If only one of the two leaves locates 

to a homology marker, or the leaves locate to different markers, they are considered 

non-homologous. 

 

After all homologous leave pairs are identified, the total number of query proteins, to 

which the motif tree locates, Ntree , is adjusted correspondingly to generate the corrected 

protein count Ncorr. If no homologous leave pairs are detected, Ncorr equals Ntree. 

Otherwise, for each group of leaves interconnected through homology in N’ queries 

proteins, Ncorr is reduced by N’-1, as if only one leaf from the group were retained. If Ncorr 

becomes less than the minimal required number Nmin of proteins to participate in a 

SLiM, the whole tree is discarded. Otherwise, all leaves are retained in the output. 

However, Ncorr is used instead of Ntree for subsequent calculation, as lowering the value 

negatively impacts the SLiM score. 

 

2.2.9. Regex generation and statistical evaluation 

After the trimming and filtering of motif trees on the basis of general alignment quality, 

the retained trees may still be of insufficient quality to be considered as SLiM 

alignments. There may be five issues degrading the motif tree quality: 

1. Although being conserved in the majority of leaves, a well-conserved column can 

still have leaves in remaining query proteins with a too strong mismatch. 

2. Mediocre-conserved columns can show too much variety in amino acid 

composition. This is an especially acute case for columns with Asn as the 
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dominant amino acid in the root, as Asn aligns with a negative score less 

frequently than other amino acids. Asn aligns with 10 amino acids with a non-

negative score in the BLOSUM62 matrix; alignment scores in HH-suite are more 

complex, but the tendency is the same. 

3. The matches are achieved with too frequent amino acids in the input dataset. 

4. The residue combinations that make the conserved part of the motif tree are too 

typical for the query sequences (e.g., a hypothetical motif WDA in a protein with 

several WD domains). 

5. The query proteins are very long and putative SLiMs have a higher probability to 

occur just by chance. 

 

To check, if these issues are relevant for a specific motif tree, its regex is built. In this 

regex, the non-conserved columns, which scored 0 at the tree trimming step become 

wildcards and are displayed as dots, as the Perl syntax is applied. If a column contains at 

least one gap, it is also treated as non-conserved. For all other columns, all the occurring 

amino acids are listed – in square brackets, if there are several – including those that are 

located in the leaves having the positional score 0 in this column. If there are several 

leaves in a single protein, amino acids from all leaves are considered. Therefore, the 

rules for regex generation are stricter than the criteria for alignment recognition.  

 

For each generated regex, its p-value – the probability to occur just by chance in the 

input dataset – is estimated. The lower the regex p-value, the more reliable is the 

predicted SLiM candidate. The issues 1-3 listed above are addressed by calculating total 

frequencies fi of all amino acids occurring in each conserved column i out of total C 

conserved columns as sums of corresponding background frequencies in the input data 

set. The issues 4-5 are addressed by calculating the total number T of combinations to 

construct each motif element – either root or leaf – from the corresponding 2-residue 

blocks, hereafter referred to as dimers, available in the respective query sequence. The 

lower the frequencies and the dimer counts, the lower is the p-value. 

The S ida k correction formula is used for calculating the p-value: 

 

       ∏  
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The combination count T is calculated as the product of C-1 dimer counts along the C 

conserved columns of the regex. A dimer is a regex that includes exactly two 

neighboring conserved positions of the motif tree regex, including the linker (wildcard 

position) of exactly the same length. For example, the hypothetical motif tree regex 

[ILV]..[DE]C forms two dimers: [ILV]..[DE] and [DE]C. To get the count for the 

first of them, all occurrences of I..D, I..E, L..D, L..E, V..D, and V..E will be 

counted and summed up in each of the query sequences, the motif tree locates to. 

Similarly, the occurrences of DC and EC will be counted and summed up. As the 

sequences do contain the motif, at least one dimer for each column pair will be counted. 

If the regex dimers are too typical for the current query protein, T can become very 

large, indicating low significance of the motif tree. 

 

The displayed regex p-value is the p averaged through all the retained leaves of the 

motif tree. It should be noted that it represents the p-value of a regex, not the underlying 

motif tree, as the conversion of a tree to the regex loses much information about the 

potential SLiM candidate. Therefore, a quite high threshold value (0.3) is used by default. 

However, this threshold can be changed by the user. 

 

2.2.10. SLiM visualization 

After the SLiM prediction is finished, the user can access the HTML page with the results 

(see example on Figure 4). The page includes the FASTA-formatted proteins from the 

input dataset. It preserves the original headers or the filenames (depending on the 

submission mode) as well as the sequences themselves, 80 residues per line with 

residue numbers at the end of each line. 

 

At the top of the page, there is information on the total number of identified motif trees 

followed by the list of the motif roots sorted by the position in the input dataset. Upon 

clicking on a listed motif, the page is scrolled to the position of the motif root in the 

dataset and the motif tree gets selected. By default, the motif roots are presented in red 

and underlined in the dataset. Upon its selection, the color changes to purple, the root 

gets enlarged, and the associated motif leaves appear in purple. In addition, dashed lines 

connect the root with the leaves. If a leaf overlaps with another motif root, the 
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overlapping stretch changes the color to purple but remains underlined, so that such 

overlaps can be easily seen. 

 

After selecting a motif tree, a panel appears on the right side. This panel contains the 

sequence logo (generated with WebLogo (Crooks et al., 2004)), as well as the 

information box with the regex, the regex p-value, the averaged alignment score, and the 

pseudo-MSA. In addition, there is a link to download the pseudo-MSA as a FASTA file. 

This file can be directly submitted as input motif in the proteome-wide search of HH-

MOTiF. 

 

 

 
Figure 4. Example of the HH-MOTiF output web page for a de novo motif search. Three motif trees are 
identified in this search. Their roots are underlined. The motif root of the selected tree is shown in 
underlined bold purple with the associated motif leaves displayed in plain purple; the root is connected to 
the leaves with dashed lines. The sequence logo, the (pseudo-)MSA, the alignment scores and the regex 
are shown at the right. The figure was reprinted from (Prytuliak et al., 2017) in agreement with the license 
no. 4200740316935. The copyright belongs to Oxford University Press. 
 

The sequences are placed inside HTML span tags. Upon changing of color or style, a 

new object is started. The motif roots are stretched vertically upon selecting with the 

scale property. The FASTA headers are coded as boxes (in div tags) to limit their 
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width to the width of sequences. The dotted lines are coded as boxes using the rotate 

transformation. The information box has the maximal width of 31em. Both the logo, in 

SVG format (an img tag), and the pseudo-MSA (in a pre tag) have defined maximal 

height (35% of the page) and width (30em). The pseudo-MSA as text of fixed font size 

can potentially overflow both, the width and the height. To assure the correct 

appearance of the sliding bars, the CSS properties ‘overflow-x: hidden’ and 

‘overflow-y: auto’ are used, which prevent the appearance of the vertical bar, 

which has its own width from triggering the appearance of an unnecessary horizontal 

bar. To prevent the vertical bar covering the right-most characters of the pseudo-MSA, 

an extra space is added after each line. The position of the information box is 

automatically adjusted by the scrolling event listener. 

 

The result page is non-scalable, as zooming distorts the positions of the dotted lines in 

some browsers. Instead it retains its complete functionality on mobile browsers, 

although both horizontal and vertical scrolling must be employed. 

 

2.3. Web-server layout 

The HH-MOTiF web-server consists of five pages accessible through a menu on top, 

which is stylized with the Bootstrap library. The links are relative, so that the server can 

operate as the site root as well as a sub-page. The CSS and JavaScript functionality used 

support all modern desktop and mobile browsers, starting with IE9. The site does not 

use cookies. 

 

The main page displays by default the message on disabled JavaScript. If JavaScript is 

turned on, however, this message is replaced with the actual content – the two levels of 

Bootstrap tabs enabling switching between three distinct input forms. The outer level – 

the switcher between de novo and proteome-wide searches – is located to the left side 

on default-sized pages. It is connected with the input forms by one horizontal and one 

diagonal line. The latter is implemented as a rotated div and is adjusted upon form 

switching. On small screens, the outer level tabs collapse to a hamburger menu. The 

forms themselves (see Figure 5) are coded as Django templates; the served pages 

contain the input fields as input tags and the submit button as a button element. The 

input is partially checked for validity with JavaScript, so that the user can correct the 
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errors without communicating with the server. For security reasons, the checks are 

repeated on the server side, as well. 

 

 
 
Figure 5. Input forms of the HH-MOTiF web-server: the De novo tab (left) and the proteome-wide tab 
(right). Two modes – standard and advanced – are supported in the de novo tab. In addition to data 
submission, the forms contain links to the sample input files and output web pages. 

 

After a form submission, the input data are transferred as a POST request to the server 

for validity checking. AJAX requests with one-second intervals are sent from the client 

side to get the status. The time out is set to 60 seconds; however, normally, the very first 

request delivers the status. If the check has failed, the user is returned to the same form 

with the error message displayed at the bottom. Otherwise, the user receives the link to 

the job page. The link contains a 40-digit hexadecimal number (job ID) randomly 

generated on the fly to distinguish between the jobs and to prevent an unauthorized 

access. For security reasons, this number differs from the initial session key used for 

AJAX requests. 

 

If the input check on the server succeeds and an AJAX request with the valid session key 

is received from the client, the server responds with the job ID and proceeds to the 

actual motif prediction. To prevent rogue requests, the server proceeds only after the 

AJAX request. There can be up to 10 checking tasks running in parallel but only one 

single prediction task. The queue can contain up to five waiting tasks. If it is filled, the 

server stops accepting new tasks. 
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The communication between the server back-end components is performed through a 

MySQL database. Separate tables are established for checking and running queues. The 

worker scripts listen for upcoming tasks to launch the corresponding back-end 

applications. Another worker launches daily to remove all results more than 7 days old. 

In addition, a special script is launched each time the input checking is finished. This 

script will clear the corresponding record from the MySQL table after a 30-second time-

out. This prevents database overflows caused by multiple user-interrupted task 

submissions. MySQL connections themselves are wrapped in pools to ensure stability 

and to prevent the number of connections from ballooning on reasonably high loads. 

 

2.4. Optimization and evaluation of the HH-MOTiF algorithm 

2.4.1. Datasets used for optimization and performance evaluation 

For optimization, performance evaluation, and performance comparison of HH-MOTiF 

to other SLiM predictors, all experimentally verified SLiMs from the ELM database as of 

26.03.2016 were used (Dinkel et al., 2016). Only SLiMs that have instances in at least 

three proteins were considered for all the tests, unless specified otherwise. These 

included a total of 176 ELM classes (also referred to as groups) divided into six 

categories: CLV, DEG, DOC, LIG, MOD, TRG. The classes contain instances of 1,677 unique 

proteins. However, as some proteins harbor SLiMs from more than one class, the gross 

number of proteins (i.e., sum of class sizes) is 2,022. These proteins have a total gross 

length of 1,452,618 residues, out of which 17,909 residues gross belong to the retained 

ELM classes. 

 

During the optimization of parameters such as minimal and maximal Viterbi scores, 

minimal and maximal number of columns, minimal length, minimal number of hits, and 

maximal regex p-value, the two categories CLV and DEG were used as the training set, 

while the remaining four constituted the test set. The relatively small size of the training 

set was chosen due to computational restrictions. 

 

2.4.2. Evaluation of low complexity filtering 

To shed light on the question, if masking of low complexity regions (LCRs) improves the 

SLiM search performance, I looked for colocation of LCRs and ELM instances. An LCR 

was defined as a sequence stretch of the window length length W residues, out of which 
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at least W/2+1 residues are of the same type. For this, I measured the shares of LCR 

residues in all proteins containing retained ELM classes separately for SLiM- (belonging 

to at least one of the retained ELM instances) and non-SLiM residues (hereafter referred 

to as LCSLiM and LCnonSLiM, respectively). In addition, the site-wise measure SLC50, 

indicating the share of sites being at least 50% covered by an LCRs, and therefore 

getting practically non-accessible for the prediction, was computed. Overlapping ELM 

instances were counted separately.  

 

2.4.3. Evaluation of machine learning-based SLiM-likeliness filtering 

2.4.3.1. ELM-based peptide sets 

ELM data were used to test the pipelines. For this, the instances of each of the retained 

ELM classes, were saved as 20-residue long peptides centered on the actual instances; in 

case of odd instance length, the center was shifted leftwards to the 10th residue. 

Terminal instances, for which the centered 20-residue long peptides do not exist, were 

skipped. Three instances in different proteins were selected from each class, in the order 

they appear in their respective ELM instances file downloaded from the website. To 

avoid randomization during the selection, the proteins were sorted alphabetically 

according to their Uniprot identifiers (The UniProt Consortium, 2017). The classes 

lacking three non-terminal instances were skipped completely to avoid over-

representation of certain motifs in the dataset. In total, 468 peptides centered on ELM 

motifs were generated. These peptides represented the positive set. The positive set was 

divided into training and test sets. Two different dataset splits were tried out. First, all 

the ELM classes sorted alphabetically with the odd index (indexing starts from 0) 

formed the training set, while the classes with the even index formed the test set (the 

odd-even split). Second, all the classes from CLV, DEG, DOC, and LIG categories formed 

the training set, while the MOD and TRG classes formed the test set (the 4-vs-2 split). 

Third, all the classes from CLV and DEG categories formed the training set, while the 

DOC, LIG, MOD, and TRG classes formed the test set (the 2-vs-4 split). Although 

instances of different ELM classes can in theory overlap, this was considered as an 

innate property of the data and the positive test set was not checked for instances 

already represented in the training set. However, such cases are not frequent for the 

ELM classes. To form the negative sets, all possible 20-residue long peptides were taken 

from all proteins containing the retained SLiM instances of the corresponding positive 
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set. Peptides containing any SLiM residues, including those from non-retained classes, 

were excluded. After the features were generated from the peptides (see below), 

duplicating records were removed from the negative sets. In addition, the records 

already present in the corresponding training set were removed from negative test sets. 

The exact dataset sizes are provided in Table 5.  

 
Training-test set split Positive set size Negative test size 

Training Test Training Test 
Odd-even 234 234 153,799 123,770 
4-vs-2 381 87 242,372 33,150 
2-vs-4 111 357 73,940 210,716 

 
Table 5. Numbers of peptides in the datasets under two variants of training-test set partition. 
 

2.4.3.2. SLiM feature generation 

To form the features, the amino acids were divided in overlapping groups following 

(Fang et al., 2013) (see Table 6). 

 
Group name Residue types Cumulative background probability 
Acidic DE 0.1198 
Aliphatic ILV 0.2019 
Aromatic FHYW 0.0998 
Basic HKR 0.1440 
Charged DEHKR 0.2638 
Hydrophobic ACFILMPVWY 0.4529 
P-substrates STY 0.1591 
Polar DEHKNQRST 0.4783 
Small ACDGNPSTV 0.5037 
Tiny AGS 0.2195 

 
Table 6. The amino acid groups that were used to form the fuzzy dimers potentially important for motif-
likeness of a peptide. 

 

The following 434 features were generated: 

 Number of occurrences of single amino acids in the peptide (20 features total) 

 Number of occurrences of the amino acid groups in the peptide (10 features 

total) 

 Number of occurrences of the dimers consisting of two amino acids belonging to 

certain groups separated by a linker of the fixed length in the range 0-3 

(hereafter referred to as fuzzy dimers), e.g., tiny-x-x-charged or polar-

hydrophobic (400 features total) 

 Number of stretches of a length at least 2 consisting of the same amino acid type 

(e.g., AAACCCCD counts 2) 
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 Number of pairs of consecutive positions formed of the same amino acid type 

(e.g., AAACCCCD counts 5) 

 Number of different amino acid types represented (e.g., AAACCCCD counts 3) 

 Maximal number of occurrences of a single amino acid type (e.g., AAACCCCD 

counts 4) 

 

2.4.3.3. Artificial SLiM peptide sets as the control test 

A similar procedure to generating the ELM-based peptide sets was chosen. However, 

instead of selecting peptides out of real protein sequences, 20-residue long peptides 

were generated, with 250 peptides in each (the training and the test) positive set and 

100,000 peptides in each negative set. The negative sets contained exclusively random 

peptides based on background amino acid probabilities for cytosolic mammalian 

proteins taken from (Gaur, 2014). The positive set was generated randomly, but with 

certain patterns in amino acid distribution, which I was then trying to detect. The 

inserted patterns represented the fuzzy dimers with predetermined linker lengths LL 

and thus corresponded to the features that would be generated during the classifier’s 

pre-processing step. In addition, each pattern had its pattern insertion probability PIP 

(0≤PIP≤1). To insert a dimer, a random peptide as described for the negative set was 

first generated. After this, a random number in the range [0,1) was generated and 

compared with the respective PIP. To proceed with inserting of the current dimer, PIP 

had to be greater than the random number. Then, a dimer position was chosen 

randomly from the available positions. For the first dimer, 19 –LL positions are 

available. For the subsequently inserted dimers, the number of available positions is 

reduced according to the positions of already inserted dimers. To avoid positional biases 

at this step, the list of dimers rto insert was reshuffled for each peptide. After choosing 

the position, the two amino acids are generated. Each amino acid is drawn from the 

corresponding amino acid group with the relative probabilities inside the group 

preserved from the background probabilities. For example, if an acidic amino acid is 

generated, only D or E can be drawn; as the respective background probabilities are 

0.0493 and 0.0705, the resulting rescaled probabilities in the group are 0.412 and 0.588. 

Amino acids selected in this manner replace the original ones from the random peptide. 
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Even if a certain pattern was not inserted, it still can occur in the random peptide. This 

pattern occurrence probability is calculated according to the formula: 

 

                     
      

 

Pleft and Pright denote the cumulative amino acid group background probabilities for the 

dimer and are taken from Table 6. 

 

2.4.3.4. The classification pipeline 

The classification pipeline was constructed as a complete machine-learning model, 

which was then executed on all the datasets described. The model was independently, 

without information leakage from one set to another, fit to the data of the training sets 

and then applied on the respective test sets. As a consequence, relative feature 

importance was determined for each training-test set pair individually. 

 

To build the machine learning model, the features were first pre-processed, while the 

feature values were scaled so that each feature has the mean value 0 and the standard 

deviation value 1. The features with a constant value, if there were any, were pruned 

away. 

 

Then, the univariate feature selection procedure was carried out to leave k best features 

out of those that survived pruning. Support vector machines (SVM) with the radial basis 

function (RBF) kernel with gamma 0.01 and slack C were used to carry out binary 

classification of the peptides on the basis of retained features. 

 

The hyperparameters k and C were being optimized in a nested cross-validation (CV) 

procedure with subsequent validation on the corresponding test set, which was 

effectively an out-of-sample test set. In the outer CV layer, the positive test set was 

selected as a random continuous block of the original positive training set so that it 

contained approx. 20% of the ELM classes. In this manner, the new training and test set 

did not contain SLiM instances from the same classes. The respective negative sets were 

formed through random choosing without replacement of the corresponding number of 

elements from the original negative training set, so that the numbers of negative and 
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positive elements are equal for each run of the classifier. Finally, the inner CV layer was 

a simple random split with 20% of the outer CV training set forming the inner CV test 

set. For the outer CV, 50 splits were performed, while the inner CV had 10 splits. The 

high number of splits for the outer CV was justified, as each split involved not only 

partitioning of the set but also undersampling of the negative set. The inner CV layer was 

needed, as a single training round proved to be extremely prone to over-fitting, which 

was reflected in a high discrepancy between the training and test scores. With the 

nested CV, the inner and outer test scores were much closer to each other, although the 

outer level still showed somewhat lower mean and significantly larger variance (see 

Figure 6). 

 

 
 
Figure 6. Balanced accuracy (BAC) of the SVM classifier (RBF, C=1, γ=0.01) in the single-layer (left) and 
the nested (right) cross-validation as dependency of the number k of best features retained. 20% test set; 
outer layer: 50 splits, inner layer: 10 splits. The dataset used is the training set of the odd-even split of the 
ELM dataset (see main text). The lines show the average value, the bands show the standard deviation. 

 

Optimization of the SVM hyperparameters C and γ was straightforward, as the outer CV 

scores showed the clear optimal value γ=0.01 (see Figure 7) and the strong boundary 

between C<1 and C≥1 (see Figure 8). Nine values in the logarithmic space were tried for 

both C and γ. More charts like those shown were examined to draw the conclusion on 

the optimal values. The trend in C was consistent across different values of γ, and vice 

versa. 

 

Optimization of k turned out to be more complicated, as there was no clear optimal 

value across different values of C and γ. For example, the combination C=1, γ=0.1 

suggested that the classifier can operate only with small k, while the combination C=1, 

γ=0.001 demonstrated positive correlation of performance and k. The selected optimal 
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combination suggested rather an optimum around k=200; however, this tendency was 

not stable upon repeating the procedure several more times. Therefore, I made the 

decision to continue optimizing k for each dataset individually. 

 

The resulting classification pipeline retains an element of randomness, as individual 

training runs were performed on randomly chosen subsets of the input dataset, which 

includes undersampling the negative set. 

 

The resulting machine learning models, which included the list of retained features with 

their scaling transformations, as well as the SVM hyperplane; all random ones up to a 

certain degree were tested on the corresponding out-of-sample test sets. No 

undersampling of the negative sets was performed during this test. Due to the 

randomness, the procedure was repeated 20 times and the mean and standard deviation 

were calculated. 

 

 
 
Figure 7. Balanced accuracy (BAC) of the SVM classifier (RBF, C=1) in the nested cross-validation as 
dependency of γ and the number k of best features retained. The dataset used is the training set of the 
odd-even split of the ELM dataset (see main text). The lines show the average value, the bands show the 
standard deviation. 
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Figure 8. Balanced accuracy (BAC) of the SVM classifier (RBF, γ=0.01) in the nested cross-validation as 
dependency of C and the number k of best features retained. The dataset used is the training set of the 
odd-even split of the ELM dataset (see main text). The lines show the average value, the bands show the 
standard deviation. 

 

2.4.4. Estimation of HH-MOTiF result quality with an automated procedure 

At the early stages of development, an estimator for the quality of the prediction results 

was written. This estimator fulfilled the following requirements: 1) it provided a 

confidence score in the absence of an external reference, as is the case when really 

unknown SLiMs are predicted. 2) it chose the best results from multiple alternatives. 

 

All motif leaves were classified as reciprocal or non-reciprocal. Reciprocity is marked in 

the pseudo-MSAs of the current version of HH-MOTiF, although the classification does 

not influence the tree scoring or filtering in any way. A reciprocal leaf overlaps with the 

root of another motif tree by at least three residues. In this case, a ‘reciprocity score’ R is 

calculated as the share of the overlapping residues of another tree among all motif 

leaves. This score was used as a confidence score for the results. 

 

Before the statistical model for deriving the minimal number Nmin of query proteins to 

contain a SLiM from the total number of queries N and the homology filter were 
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introduced, choosing the right Nmin for a given dataset represented a challenging task. 

Therefore, different values, which depended on shares/percentages of N, were tried. For 

relatively large datasets (N>50), the Nmin values of the share in the range [0.05, 1.00] 

with the step 0.05 were tested. The actual Nmin was calculated as products of N and the 

share; Nmin has been rounded upwards. In addition, different thresholds for the Viterbi 

score were tried, whereby scores from 6 to 17 with a step size of 0.5 were tested. As a 

result, a parameter matrix was being generated. The estimator had to pick the best 

combination of all tested parameters with the highest R. 

 

2.4.5. Calculation of performance metrics (the SLALOM algorithm) 

The performance estimator is implemented as an independent Python program named 

SLALOM. The earlier versions were tuned specifically for the evaluation and comparison 

of HH-MOTiF, SLiMFinder (Edwards et al., 2007), MEME (Bailey et al., 2006), and GLAM2 

(Frith et al., 2008). The recent version, however, is a generalized version for working 

with arbitrary kinds of positional annotations of a grouped collection of sequences. It 

was initially adapted from the work of Song and Gu (Song and Gu, 2015), but then 

became more similar to Bioconductor (Lawrence et al., 2013) and bedtools (Quinlan, 

2014). The current version is, however, expanded beyond the possibilities of these in 

evaluating performance of SLiM predictors. 

 

To make the description of the algorithm more general, I refer to an instance of a SLiM – 

predicted or annotated – as site (the term was coined by Song and Gu in (Song and Gu, 

2015)). Speaking generally, a site is a continuous sequence element characterized by its 

start and end positions in a specific sequence. Moreover, for further generalization, I 

introduce the term symbol in the meaning of a minimal unit the sequence consists of. 

While speaking about protein sequences, I continue to refer to symbols as residues. In 

further examples of application of SLALOM – concerning DNA and time series – symbols 

become base pairs and time units, respectively. 

 

SLALOM takes two different annotations of sites in the same collection of sequences. In 

the case of a SLiM predictor evaluation, these annotations are the ELM database (the 

standard) and the output of the predictor. 
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In the SLALOM algorithm, the following basic measures are calculated residue-wise: TP: 

true positives: residues being present in both, the golden standard and the prediction; 

FP: false positives: residues predicted but not annotated in the standard; FN: false 

negatives: annotated in the standard but not predicted; and TN: true negatives: present 

neither in the standard nor in the prediction. However, all numbers except for TN will be 

different depending on the way of resolving overlaps: the counts may be residue-

resolved, which means that a residue is counted only once, even if it is a part of multiple 

sites; or gross, if a residue is counted as many times as it occurs. The schematic example 

is shown on Figure 9. As a result, FP and FN both split to residue-resolved and gross, 

while TP splits to three different measures: residue-resolved TP, which are residues that 

are present at least once in both the standard and the prediction, TPrr; and two gross 

TPs: residues gross in the standard that are also present in the prediction, TPgross,a; and 

residues gross in the prediction that are also present in standard annotation, TPgross,p. 

These measures are calculated as total residue counts in all the input sequences. 

Residue-resolved counts sum up to the total length of the sequences; gross measures, in 

sum or separately, can exceed the total length. If there are no overlaps, residue-resolved 

and gross measures are equal. 

 

 

 
Figure 9. Schematic example illustrating the difference between residue-resolved (symbol-resolved) and 
gross counting. The gray circles mark residues in an input sequence. The red circles depict overlapping 
annotated sequence elements within this sequence. The black circles illustrate the residues counted by 
SLALOM. The hollow circles indicate that nothing was counted at this position. The figure was submitted 
as part of a publication to BMC Bioinformatics. 
 

Based on these measures, the following statistics are calculated: 

 Recall (a.k.a. true positive rate, TPR, or sensitivity): 

Residue-resolved

Gross
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 Precision (a.k.a. positive predictive value, PPV): 

   
  

     
 

 

 Specificity (SPC): 

   
  

     
 

 

 False positive rate (FPR): 

    
  

     
 

 

 Performance coefficient (PC): 

   
  

        
 

 

 Accuracy (ACC): 

     
     

           
 

 

All of these measures can be calculated as residue-resolved and as gross. It makes more 

sense to calculate the gross recall with TPgross,a and the gross precision with TPgross,p. 

The gross PC and ACC are even more ambiguous. Therefore, SLALOM does not calculate 

gross ACC. For calculation of gross PC, TPgross,p is used. Note that PC with this definition 

deviates slightly from the original calculation for HH-MOTiF as described in (Prytuliak et 

al., 2017). 

 

The same measures are also calculated site-wise. In this case, however, the counts are 

always gross and, as TN is undefined, specificity and false positive rate cannot be 

calculated. Moreover, in order to classify predicted sites into TP and FP, as well as 

benchmark sites into TP and FN, one needs to set the criteria, when one considers a 

predicted and an annotated site as a match. These matching criteria define, to what 
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extent a benchmark and a predicted site have to overlap to consider them as a match. In 

SLALOM, a match is only considered, when two sites overlap by at least R residues 

and/or P% of the site length. It is also possible to select, from which of the two sites 

these P% should be taken, if their length is different: the current (the benchmark site for 

the recall calculation, the predicted site for the precision, etc.), the shortest or the 

longest. In addition, one can try simultaneous matching of several closely located, 

predicted sites to a single benchmark site, and vice versa. This is referred to as a patched 

overlap logic: one site can be patched with several small sites, so that they meet the R 

and P criteria cumulatively. A schematic example is shown on Figure 10. 

 

 

 
Figure 10. Schematic example illustrating differences between four site matching logics supported in 
SLALOM. The input annotation pair is parsed twice, so that each of the annotations becomes the current 
one once. Each site in the current annotation is evaluated separately to be classified as either having a 
match in the other annotation or having no match. In this example, the current site is 10 residues/symbols 
long and it overlaps with two sites in the other annotation: one 12-residue-long and the other 4-residue-
long. If the current, shortest or longest logic is chosen, the current site is evaluated against each site in the 
other annotation it overlaps with separately (i.e., one site at a time) with subsequent choice of the best 
candidate, while under the patched logic all the sites in the other annotation are implicitly combined and a 
cumulative match is assessed. The figure was submitted as part of the SLALOM publication to BMC 
Bioinformatics. 
 

On the basis of these measures, additional measures are calculated. The following are 

relevant for the examples provided in this thesis: 

The current annotation

The other annotation

current
50%

The current annotation

The other annotation

shortest
75%50%

The current annotation

The other annotation

longest
33%42%

longest

The current annotation

The other annotation

patched
80%

33%
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 Informedness (In): 

           

 

 F1 score: 

   
       

     
 

 

Note that in the publication (Prytuliak et al., 2017) the balanced accuracy was used 

instead of informedness. These metrics are related to each other through a linear 

transformation. The reason for the replacement is that random performance will result 

in the balanced accuracy of 0.5 and the informedness of 0.0. The latter is more 

consistent with the corresponding value of the F1 score, which was chosen as the main 

metric for performance evaluation, optimization, and comparison. 

 

SLALOM is designed to handle grouped collections of sequences. For example, in the 

particular case of the HH-MOTIF evaluation, a group is all the sequences containing 

SLiMs from an ELM class. The groups may be overlapping. All the metrics are calculated 

for each group separately. The counts TP, FP, FN, and TN are simply summed up for 

sequences in each group before any metrics are calculated. After this, the metrics are 

simply-averaged across all the groups to produce the final metric for the whole ELM 

dataset. This approach is hereafter referred to as group-wise averaging. Alternatively, 

the counts (TP, etc.) can be calculated for each sequence separately, divided by the 

sequence length, and only then summed up within the group with the rest of the 

procedure being unchanged. This approach is hereafter referred to as sequence-wise 

averaging. During the evaluation of HH-MOTiF, the group-wise averaging was applied. 

 

It should be noted that sometimes a zero division is encountered during the calculation 

of certain metrics. This happens when one of the annotations does not contain any sites 

in the given sequence group. For example, when a SLiM predictor does not return any 

candidates for the given ELM class, the TP and FP counts are both zeros. In this case, the 

zero division is encountered while calculating the precision. If the zero division is 

encountered, the metric value is by default set to nan and it is not considered for 

subsequent averaging across the dataset. Alternatively, the nans can be treated as zeros, 
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generally reducing the average value. The former logic was applied while measuring the 

precision of HH-MOTiF and other SLiM predictors. However, for measuring the natural 

F1 score (see below), nans were treated as zeros during the averaging. 

 

Finally, the overall F1 score can be calculated as average of the F1 scores for each group 

as well as by calculating F1 based on averaged recall and precision. The former is 

hereafter referred to as the natural F1, while the latter is referred to as the synthetic F1. 

The natural F1 is the value returned by the SLALOM program and it was used as the 

internal optimization goal throughout the development of HH-MOTiF. The synthetic F1, 

however, was reported in the publication (Prytuliak et al., 2017) for the reasons of 

consistency with the approach of Song and Gu (Song and Gu, 2015), who reported the 

synthetic F1. 

 

2.4.6. Statistical model for false positive predictions and tests on negative data 

A false positive prediction in the benchmarking context is a putative SLiM returned by a 

predictor but absent in the benchmark database. Such a prediction occurs, if there are 

similar enough sequence stretches in the input protein set. These stretches may 

represent homologous regions, a yet unknown SLiM or just a random coincidence of 

amino acid composition. I assume that HH-MOTiF can successfully filter out the 

homologous regions and the probability of getting an unknown real SLiM in a small set 

of randomly selected proteins is negligibly small. Random occurrences, however, are a 

serious problem, given the shortness and weak conservation of real motifs. 

 

A rigorous ab initio model would require an assessment of the whole sequence space of 

a motif that theoretically can be detected by HH-MOTiF, as it was done for the SLiMBuild 

algorithm in (Edwards et al., 2007). However, unlike SLiMFinder, HH-MOTiF does not 

explicitly construct a motif space internally. Instead, it constructs the motif trees from 

pairwise alignments outputted by hhalign in a multi-step procedure. Assessing the 

motif space would require the knowledge on the distribution of the alignments and their 

associated scores for real protein sequence pairs, as well as careful evaluation of the 

impact of each of the steps of the procedure.  
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Therefore, a simpler alternative of the ab initio model was developed. I call it a posterior 

model, as it estimates the probability of an observed false positive prediction. As 

outlined in (Gelman et al., 1996), there are three general ways to evaluate such a model. 

The first way is to check for the robustness of the model, i.e. how sensitive it is to small 

changes in the initial assumptions. The second way is the rigorous analytical check of 

the model logic under the given context. The third way is a goodness-of-fit test to check, 

how the model fits the real data. In this work, the third way is chosen. 

 

The goal of developing this model is to calculate a minimal number Nmin of proteins 

required to share a SLiM on the basis of the dataset size N. Too low Nmin will lead to 

excessive false positives, while too high one will discard too many true positives. 

 

At the beginning I made a preliminary estimation Nprel of a reasonable Nmin: 

 

                          

 

Then, I measured the actual residue-wise FPR (residue-resolved) for random, negative 

data sets of different sizes. A negative set of size N is constructed from shuffled proteins 

containing ELM SLiMs, whereby only one protein per ELM class can belong to the same 

set. 100 negative sets of six different sizes (600 sets in total) were constructed. All the 

predictions from these data sets were considered false positives, even if they are 

occasionally overlapping with ELM instances. The first round of measurements was 

done using Nprel as Nmin. 

 

After this, I modeled the FPR with the following posterior model: 

 

Let us assume that the shared ambiguous sequence stretch that led to the formation of a 

given false positive SLiM candidate has the probability P1 to occur by chance in a typical 

protein sequence. Ambiguous means that this stretch might be described with 

ambiguous, optional and/or wildcard positions; however, it still must contain enough 

information to pass the score threshold. Then, the probability to find this stretch in Nmin 

independent sequences is 
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Let us furthermore assume that we observe most of the trees in exactly Nmin proteins, 

although they potentially can locate to Nmin+1,…,N proteins. This assumption is 

reasonable as long as P1<<1; it is also confirmed by the manual inspection of randomly 

picked false positives trees. As Nmin<=N, the observed false positive motif tree could 

have potentially located also to some other subset of Nmin proteins within a given N-set. 

To continue, one has to estimate the expected number E of trees that could have been 

formed in the given N-set from a stretch with probability P1 to occur in a single protein. 

Here, it would be tempting to calculate E as      

    
    . However, this would only be 

correct for the case of prior probabilities, while a posterior model is being developed. In 

the considered case, it is already known that the stretch is present in the specific Nmin 

proteins. Therefore, the resulting expected number of trees is in fact the probability that 

some of the observed instances could have been ‘flipped’ to other N-Nmin proteins of the 

N-set. The probability to find the stretch in one of these other proteins is P1, while the 

corresponding probability for the Nmin-subset is 1. Thus, the formula is: 

 

  ∑   
         

 

                 

   

 

 

If no ‘flipping’ is possible (when Nmin=N), the E is expectedly 1. Moreover, E grows with 

growing N for a fixed Nmin, while E decreases with growing Nmin for a fixed N. This is the 

intuitively expected behavior. 

 

Finally, the FPR can be modeled by applying the S ida k multiple testing correction 

formula (Wright, 1992): 

            
  

 

The resulting formula is a function of N, Nmin, and P1. The latter reflects some 

generalized protein property not dependent on the particular set. Thus, P1 is also 

dependent on neither N nor Nmin and, once estimated from a particular case, be applied 

to all other cases. Let us estimate P1 for the case Nmin=N=3. The formula in this case 

simplifies to: 
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From the negative set testing, it was observed that FPR3,3=0.017. This leads to P1=0.26. 

This value then can be applied to estimate FPR for other values of N and Nmin=Nprel. 

These values are shown in Table 7. Note that these values were measured at a 

preliminary version of HH-MOTiF, before introducing the Nmin estimation as well as 

certain other modifications, so that they must not exactly correspond to the 

corresponding FPR values of the current version. The current version demonstrates 

lower FPR values. 

 
N Nprel Observed FPR Modeled FPR 
3 3 0.017 0.018 
5 3 0.023 0.028 
10 3 0.095 0.083 
15 5 0.012 0.012 
20 6 0.010 0.008 
25 8 0.003 0.001 

 
Table 7. Observed and modeled FPR for HH-MOTiF with Nprel as Nmin applied to negative sets (100 
randomly generated sets of each size). 

 

From Table 7, it can be concluded that the model accuracy is acceptable for the purposes 

of being used in HH-MOTiF. Therefore, it was added to HH-MOTiF to evaluate the FPR 

for different alternative Nmin for a given N. The lowest Nmin, for which the predicted FPR 

is below 1%, is chosen as the final Nmin. The exception is N=4: in this case, the FPR is 

slightly above 1% for Nmin=3; Nmin=4 turns out to be too strict, suppressing virtually all 

true positive predictions as well. Therefore, the former gets chosen, overriding the 

model decision. 

 
N Nmin Observed FPR Modeled FPR 
3 3 0.018 0.015 
5 4 0.006 0.004 
10 5 0.004 0.003 
15 6 0.002 0.001 
20 6 0.008 0.009 
25 7 0.005 0.009 

 
Table 8. Observed and modeled FPR for HH-MOTiF with Nmin proposed by the specially developed 
statistical model applied to negative sets (100 randomly generated sets of each size). 

 

To prove that the model works as expected, the FPR measurements for the proposed 

Nmin values were conducted. Again, 600 random negative sets were generated. The 

procedure was repeated also for N=3 and N=20, although there was no change in Nmin 
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for these. As can be seen from Table 8, all values, except the one for N=3 (and N=4), lie 

below the threshold of 1%. After the model was finished, other modifications were 

introduced to HH-MOTiF. These modifications further reduced the observed FPR values.  

 

2.4.7. In-depth performance analysis 

To spot possible opportunities for improvement of HH-MOTiF, as well as to provide 

more comprehensive comparison with other available tools, an in-depth performance 

analysis was conducted. This analysis consisted of several independent parts. 

 

First, the weighted averages for the selected performance metrics were calculated. By 

default, all the groups (i.e., ELM classes) have the weights of 1 during the database-wide 

averaging. I additionally tried weighting by the total number of proteins, sites, and 

residues (the total length of the proteins) in the class. The weights themselves are 

available in Supplementary Table S10 of (Prytuliak et al., 2017). The number of sites is 

equal to the number of proteins for the majority of the classes; however, the former 

exceeds the latter if there are multiple SLiM instances in the same protein. 

 

Second, the classes (groups) were classified by the number of proteins they contain to 

detect, if there is a dependency of the tools’ performance on the dataset size. The classes 

with less than three proteins had been already filtered out and therefore were not 

considered. The following categories were formed according to the class sizes: 3-5, 6-10, 

11-15, 16-25, 26-50, 51+, and 3-50 member proteins. The synthetic residue-wise F1 was 

calculated for each cluster as the performance measure. 

 

Third, different site matching criteria were applied to calculate the recall and precision 

of the HH-MOTiF prediction of ELM motifs. The minimal numbers of residues R=1;3;5 

were tried. For R=1, the minimal length percentages P=0;25;50;75 were tried. For each 

combination of R and P, all four possible ways to choose the site to apply the R and P 

were tried: current, shortest, longest, patched (explained in Section 2.4.6. Calculation of 

performance metrics (the SLALOM algorithm)). 

 

Fourth, different overlap resolving and averaging logics were tried to study their impact 

on the performance of HH-MOTiF. Three distinct logic-defining parameters were tried: 
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gross vs. residue-resolved counting, group-wise vs. sequence-wise averaging, and 

setting the zero division results to nan vs. zero. As a result, eight different logic 

combinations were tested. Residue wise recall, precision, and FPR were computed for 

each of them. 

 

2.4.8. Comparison with existing tools 

The performance of HH-MOTiF was compared with that of standalone versions of 

SLiMFinder (Edwards et al., 2007) (v. 5.2.3), MEME (Bailey et al., 2006) (v. 4.0), and 

GLAM2 (Frith et al., 2008) (v. 4.11.1). In addition, data on the performance of whmm 

(Song and Gu, 2015) were provided for comparison. In this case, published data were 

used. All the tools were compared on the whole ELM dataset (176 classes) using the 

same performance metric calculation procedure. The following metrics were calculated: 

residue-wise recall (residue-resolved), precision (gross), synthetic F1, natural F1 

(gross), PC (gross), specificity (residue-resolved), and informedness (residue-resolved); 

site-wise recall, precision, synthetic F1, natural F1, and PC. The data on whmm lack 

natural F1, specificity, and informedness; furthermore, it is not clear from the 

publication, if residue-wise recall and PC are calculated as gross or residue-resolved. 

 

The command lines to run SLiMFinder, GLAM2 and MEME respectively with the 

optimized configurations: 

 

slimsuite/tools/slimfinder.py seqin=input_file.fasta 

resdir=output_directory/ resfile=output_directory/output.csv 

dbtype=prot walltime=24.0 blast+path=/usr/bin 

iupath=/home/roman/apps/iupred/iupred dismask=T consmask=T 

probcut=1.0 topranks=5 

 

glam2 -a 3 -b 15 -O output_directory/ p input_file.fasta 

 

meme input_file.fasta -oc output_directory/ -minw 3 -maxw 15 -

nmotifs 5 -protein -maxsize 1000000 

 

To be able to use the same standalone performance evaluation tool with all the 

predictors, the output of the predictors was pre-parsed with dedicated Python scripts to 

produce CSV files of the same format. 
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3. RESULTS 

 

3.1. Application scenarios of HH-MOTiF 

To predict SLiMs in proteins de novo is a pressing problem in bioinformatics – and 

biology. Many research groups aim to map interaction sites in proteins, which can 

subsequently be mutated, for instance to create specific loss of function mutants. HH-

MOTiF was developed to match this demand in the scientific community, which is not 

well covered by existing software solutions. In HH-MOTiF, I automated the procedures 

that were performed manually during earlier collaboration projects for SLiM detection. 

The goal was to develop a tool that would fill the gap in basic SLiM search scenarios. 

There are four such scenarios, on which I focused my development efforts: 

1. Finding a potential, yet unknown SLiM in a set of 4-10 proteins of diverse length 

and composition that are experimentally supported candidates to have a 

common biological function (e.g., binding to the same interaction partner or 

shared subcellular localization). 

2. Finding a conserved SLiM, which, however, moves along the sequence during the 

evolution. The input in this case is a collection of distant orthologs or paralogs of 

the same protein. 

3. Finding enriched SLiM candidates in a larger number of proteins (500-2000) 

identified, for example, in the course of a proteomic study. 

4. Finding already known SLiMs, which are not yet annotated in publicly available 

databases; these can for instance be SLiMs that were identified in the course of a 

motif search in one of the first three scenarios. 

 

Scenario 1 has become the main application of HH-MOTiF. Scenario 2 is also covered by 

the functionality of HH-MOTiF; however, we lack a collection of experimentally verified 

datasets to reliably evaluate the performance of HH-MOTiF under these conditions. 

Scenario 3 can be handled by the HH-MOTiF back-end application, which allows 

command-line application of the tool: owing to the long processing times, the size of the 

input dataset in the web-server is limited to 50 proteins. Scenario 4 is implemented as 

the proteome-wide search option of the HH-MOTiF web-server. 

 

3.2. The HH-MOTiF web-server 
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HH-MOTiF is publicly available as web-server under the address http://hh-

motif.biochem.mpg.de. Neither registration nor providing personal data is required to 

access the full functionality of the server. Cookies and additional plugins are also not 

required. 

 

The web-server consists of four pages: the main Search page with data submission 

forms; the About page with the short description of the algorithm and the application 

scope; the Guide page with explanation on input formatting, usage, and output 

interpretation; the Tests page with additional examples of datasets that can be 

processed with HH-MOTiF. In addition, there is a page with the Contact information of 

the authors. 

 

The main page contains two submission forms: one for the de novo search and one form 

for the proteome-wide search (see Figure 5). De novo search can be done in two modes: 

standard and advanced. The standard mode requires only the input dataset and will 

start a SLiM search with the optimized parameters, as they were published in (Prytuliak 

et al., 2017). 

 

The advanced mode allows the user to modify some parameters – switching on/off 

sequence masking (the surface accessibility, homology, and sequence disorder filters), 

as well as adjusting the maximal regex p-value – as well as to submit his/her own 

collections of orthologs instead of relying on the automatic reciprocal BLAST procedure. 

The standard mode accepts the dataset either as a FASTA file or as FASTA-formatted 

input in the text field. The advanced mode accepts either a FASTA file or a ZIP archive of 

FASTA files – one file for each query protein with its orthologs; if the FASTA file is 

submitted or the ZIP archive consists only of FASTA files with a single sequence, and the 

automatic orthology search is switched off, then evolutionary sequence conservation 

will not be assessed. In advanced mode, the user also has the possibility to submit a 

masking file, which will be merged with other selected masking options. The gap 

restriction option will discard SLiM candidates with gaps longer than one residue in 

their alignments. The option “Show best suboptimal if no motifs found” will display the 

best identified motif tree, even if it does not satisfy the minimal Viterbi score or the 

regex p-value criteria, or if it does not pass the alignment recognition filter.  

http://hh-motif.biochem.mpg.de/
http://hh-motif.biochem.mpg.de/
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For searching proteome-wide, the user has to submit the sought-for motif as a FASTA-

formatted alignment and choose the organism to look in. The option “Only full-length 

matches” will suppress hits that do not have full-length alignments with the input motif 

profile. 

 

All three modes have the optional field for the e-mail address to notify the user, when 

the job is complete. Furthermore, the user can provide an optional name to the job, 

which may be useful to distinguish between the results from different submissions. 

 

After pressing the “Submit” button, the user’s input data are getting checked for validity. 

If the check fails, the user is redirected to the submitted form with the corresponding 

error message displayed. From the error log written so far, I observed that the most 

typical user errors are caused by trying to submit too few (usually only one) or too many 

(more than 50) proteins, as well as by submitting aligned FASTA files instead of the 

required non-aligned ones. 

 

The Guide page is divided into five sections describing in detail the input and output of 

both, the de novo and the proteome-wide search in addition to general information. 

 

The Tests page highlights five input datasets (ELM classes) that in my opinion most 

clearly demonstrate the advantages of HH-MOTiF over other available tools. These 

advantages are the ability to carry out motif searches also in homologous query 

proteins, as well as to distinguish low complexity SLiMs from unrelated LCRs. The 

corresponding exemplary output web pages look exactly like the real HH-MOTiF 

outputs, but with additional highlighting of the real ELM instances. This makes it easier 

to estimate the performance of HH-MOTiF and double check the author’s calculations. 

 

3.3. SLALOM – a statistical method for positional data comparisons 

As the performance evaluation, optimization, and comparison of HH-MOTiF with other 

tools turned out to be an ambiguous tasks with no solution described in the available 

literature, I developed SLALOM – a statistical method to carry out these tasks. SLALOM 
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emphasizes some sources of ambiguity that may arise during a comparison of a pair of 

positional annotations. 

 

Here, I outline the SLALOM’s scope of applications followed by the description of the 

identified sources of ambiguity. 

 

SLALOM can compare a wide range of types of positional annotations represented as 

lists of sites in a grouped collection of sequences. The sequences may be of any kind; 

however, the two annotations must relate to the same sequence. When comparing a pair 

of such annotations, there are two mutually exclusive, cumulatively exhaustive 

situations possible: 

1. The annotations concern the same type of sites, e.g., when comparing one 

annotation of motif against another annotation of motifs. In this case, the 

expected ideal situation would be complete identity of them. 

2. The annotations concern different types of sites, e.g., when associating genes with 

their promoters in DNA sequences or different types of events in time series. In 

this case, the two annotations are not expected to be identical. In fact, they often 

will not overlap at all; however, when a respective null hypothesis is true, they 

must relate to each other according to some rules. 

 

SLALOM can deal with both situations. For this, different statistical metrics are 

calculated. Residue-wise accuracy (ACC), informedness, F1 score, or Matthew’s 

correlation coefficient (MCC) will be in most cases suitable for the situation 1. Site-wise 

recall and precision in combination with total site counts will be normally the most 

informative metrics in the situation 2. It is important to note that SLALOM can also 

match non-overlapping sequence elements (e.g., genes and promoters) just by 

proximity. The produced results in the TSV format can be assessed manually or piped to 

another script or a statistical software package for in-depth statistical analysis and/or 

plot building. Furthermore, in scenario 1, the two annotations can either have the same 

level of reliability, when comparing the output of two predictors with each other; or one 

can be more reliable than the other, when comparing the output of a predictor with a 

verified, ‘golden standard’ annotation. The latter is also referred to as benchmarking. 
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These two cases are distinguished in SLALOM through providing different sets of 

performance metrics in the output. 

 

SLALOM was designed to specifically deal with four sources of ambiguity: 

1. Resolving overlapping sites within one annotation. If a residue/symbol is 

traversed by more than one site, it can be counted in several different ways. 

2. Matching sites between the two input annotations. It must be specified which 

degree of overlap is sufficient to register a match. Moreover, the degree of 

overlap itself can be computed in different way, especially if the sites have 

different lengths. 

3. Diversity in site length. As the similarity or performance can be measured 

residue-wise, longer sites may outweigh the shorter ones. This may be desired or 

not, depending on the research question. 

4. Diversity in sequence length. If the site length and number do not depend on the 

sequence length, the positive and negative residues (symbols) become more 

unbalanced in longer sequences. Because of this, some metrics become highly 

dependent on the order of averaging. A schematic example is shown in Figure 11. 

 

 
 
Figure 11. Schematic example of the impact of the averaging order on performance metrics. Sequence-
wise averaging is sensitive to distribution of true positives (TP) and false positives (FP) among the input 
sequences, while group-wise averaging is not. In this example, two alternative predictions (red lines) of 
the same real sequence elements (blue lines) in a dataset consisting of two sequences (100 and 25 
residues long) ate illustrated. All the sequence elements – both real and predicted – are 5 residues long. If 
sequence-wise averaging is applied, the prediction, which correctly identifies the element in the shorter 
sequence (lower panel) is scored better than the alternative prediction (upper panel): the corresponding 
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precision values are 80% and 20%. On the other hand, with group-wise averaging both predictions score 
50%. The figure was submitted as part of the SLALOM publication to BMC Bioinformatics. 

 

To ensure the correct treatment of each of the sources of ambiguity applicable to the 

given dataset, SLALOM offers the user a number of options to control the input data 

preprocessing and subsequent calculations (for details, see Section 2.4.6. Calculation of 

performance metrics (the SLALOM algorithm)). 

 

SLALOM is publicly available for download as a standalone software package at 

https://github.com/BCF-calanques/SLALOM. 

 

3.4. Performance of HH-MOTiF in comparison with other tools 

To estimate the added value of HH-MOTiF to the field of in silico SLiM prediction, I 

compared HH-MOTiF with other available tools in the task of recovering ELM motifs, 

whereby a total 176 motifs was analyzed. The tools that are most cited in the recent 

literature and which are available for download as a standalone version were used for 

comparison. These include MEME (Bailey et al., 2006), GLAM2 (Frith et al., 2008), and 

SLiMFinder (Edwards et al., 2007). The results are summarized in Table 10. In 

(Prytuliak et al., 2017), we also included the tool whmm, as it also employs HMM 

comparisons (Song and Gu, 2015). Unfortunately, the downloadable version of the tool 

did not work in our hands. We therefore calculated performance values in a way that 

ensures compatibility with the results published in (Song and Gu, 2015) and (Song et al., 

2015): we have chosen the synthetic F1 as the main performance metric. Some tested 

SLiM predictors perform quite differently with different parameter sets. SLiMFinder, for 

instance, shows variable performance with and without the statistical model evaluating 

the motif space. Therefore, I also calculated performance values for other configurations 

of the selected tools (see Table 11). 

 
Tool Residue-wise Site-wise 

TPR PPV SPC F1n F1s PC In TPR PPV F1n F1s PC 
HH-MOTiF training set 0.2072 0.4321 0.9932 0.2014 0.2801 0.1725 0.2004 0.2212 0.5319 0.2315 0.3125 0.2176 

test set 0.2107 0.4185 0.9924 0.1963 0.2803 0.1583 0.2032 0.2386 0.5683 0.2499 0.3361 0.2213 
overall 0.2102 0.4202 0.9925 0.1970 0.2802 0.1602 0.2028 0.2363 0.5638 0.2475 0.3330 0.2209 

SLiMFinder default 0.1324 0.6337 0.9989 0.1398 0.2190 0.1317 0.1313 0.1546 0.6698 0.1570 0.2512 0.1469 
optimized 0.2034 0.3500 0.9917 0.1940 0.2573 0.1715 0.1951 0.2715 0.3893 0.2357 0.3199 0.2080 

GLAM2 default 0.4902 0.0433 0.7109 0.0734 0.0796 0.0429 0.2011 0.5126 0.1925 0.2614 0.2799 0.1857 
optimized 0.3731 0.0839 0.8750 0.1220 0.1370 0.0822 0.2481 0.4162 0.1839 0.2301 0.2551 0.1782 

MEME default 0.0440 0.0257 0.9850 0.0298 0.0324 0.0216 0.0107 0.0481 0.0779 0.0531 0.0595 0.0469 
optimized 0.2192 0.0609 0.9363 0.0881 0.0953 0.0547 0.1555 0.2490 0.0989 0.1324 0.1416 0.0878 

 
Table 10. Comparison of performance metrics for different tools and configurations tested. TPR: true 
positive rate, sensitivity, recall; PPV: positive predictive value, precision; SPC: specificity; F1n: natural F1 

https://github.com/BCF-calanques/SLALOM
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score, average of F1 scores for individual ELM classes; F1s: synthetic F1 score, harmonic mean of the 
averaged Rc and Pr; PC: performance coefficient: In: informedness. The table is based on the data 
published in (Prytuliak et al., 2017). 
 

The two tables show that the performance was significantly different not only between 

different tools but also between different configurations of the same tool. Moreover, the 

performance varied to a different extent for different metrics. Some configurations could 

recover more ELM SLiMs – resulting in higher recall – , while others had a higher share 

of positive occurrences in their predictions – showing higher precision. Precision also 

expectedly correlated with specificity. 

 
Tool Residue-wise Site-wise 

TPR PPV SPC F1n F1s PC In TPR PPV F1n F1s PC 
HH-MOTiF I 0.214 0.375 0.992 0.197 0.272 0.159 0.206 0.242 0.508 0.250 0.328 0.222 

II 0.240 0.370 0.990 0.214 0.291 0.175 0.230 0.269 0.490 0.266 0.347 0.237 
III 0.300 0.265 0.969 0.213 0.281 0.164 0.269 0.342 0.374 0.286 0.357 0.238 
IV 0.233 0.258 0.989 0.221 0.245 0.175 0.222 0.268 0.351 0.288 0.304 0.251 

SLiMFinder V 0.101 0.615 0.999 0.113 0.174 0.104 0.100 0.118 0.661 0.128 0.200 0.120 
VI 0.142 0.680 0.999 0.153 0.235 0.142 0.141 0.166 0.722 0.174 0.270 0.163 

 
Table 11. Performance metrics for additional configurations of HH-MOTiF and SLiMFinder that differ 
from the default configurations in the following ways: I – with disorder masking in addition; II – with 
surface accessibility masking replaced by disorder masking, III – with homology filtering disabled, IV – 
with the option 'show best suboptimal if no motifs found' activated, V – with surface accessibility masking 
(NetSurfP RSA with cutoff 0.16), VI – with disorder and conservation masking (providing the options 
‘dismask=T consmask=T’). TPR: true positive rate, sensitivity, recall; PPV: positive predictive value, 
precision; SPC: specificity; F1n: natural F1 score, average of F1 scores for individual ELM classes; F1s: 
synthetic F1 score, harmonic mean of the averaged Rc and Pr; PC: performance coefficient: In: 
informedness. The table is based on the data published in (Prytuliak et al., 2017). 
 

Neither a high recall nor a high precision by itself is indicative of a good SLiM predictor. 

A recall of 100% can be reached by marking whole query sequences as SLiMs. The 

perfect precision can be reached by exactly predicting only a few instances of one – the 

most conserved and easiest to identify – SLiM, while completely ignoring all the others. 

The latter will also achieve highest specificity, although this can be achieved even in an 

easier way, namely by returning no SLiMs at all. However, neither of these predictors 

will be useful, despite scoring 100% in certain metrics. Furthermore, as SLiMs mark only 

a small share of proteins sequences (on average, 1.2% in the ELM dataset), we deal with 

strongly unbalanced positive and negative elements. This means that also high (approx. 

98.8%) accuracy (ACC) can be easily achieved with an algorithm returning always no 

SLiMs. Therefore, I have formulated two requirements for candidates for the main 

statistical metric: 1) It should achieve its maximal value if and only if a perfect 

prediction is given; and 2) its value should be close to zero for random or useless 

predictions. 
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I have chosen the F1 score, which is the harmonic mean of recall and precision and 

satisfies the requirements as the main statistical metric. To clarify ambiguities in the 

order of averaging, I further defined the synthetic and natural F1 scores. In addition, I 

calculated informedness and performance coefficient (PC) that also satisfy the 

requirements. 

 

Although I used the F1 score as the main metric, I have provided and considered 

different metrics to understand the advantages and disadvantages of each tool and 

configuration. Based on my observations, I have come to several conclusions: 1) GLAM2 

systematically overpredicts SLiMs, which helps to achieve high recall, but comes at the 

cost of low precision. As the dataset is imbalanced, this allows maintaining specificity at 

a reasonable level (>80%), which also translates in high informedness; 2) SLiMFinder 

can work in two different modes: in the first mode, the number of SLiMs in the output is 

limited by the significance threshold. In this mode, high precision is achieved, although 

at the cost of low recall. SLiMFinder returns no results for 127 out of 176 ELM classes 

with settings optimized to achieve high F1. Precision can be increased even further (up 

to 80% residue-wise) through the activating of more rigorous statistical modeling (the 

option ‘-cloudfix=T’); however, the recall drops even more, causing also the F1 score 

to fall substantially. In the second mode, the number of outputted SLiM candidates is 

always fixed. I found five to be the optimal value. As SLiMFinder often outputs 

overlapping SLiMs, the returned set of five SLiMs may however still effectively represent 

only one or two SLiM candidates. Therefore, with some ELM classes, SLiMFinder 

demonstrates high precision also in this mode. Nevertheless, the averaged precision is 

significantly lower in this case. Generally, this second mode of SLiMFinder resembles the 

performance profile of HH-MOTiF. HH-MOTiF was from the beginning designed to 

achieve performance balanced in terms of recall and precision. As a consequence, HH-

MOTiF is not able to match neither GLAM2 in recall nor SLiMFinder in precision, but 

performs better than the other tools, if a harmonic evaluation is performed. 

 

3.5. In-depth analysis of the performance of selected SLiM predictors 

Besides providing the averaged F1 score for evaluating the overall performance of a tool, 

one can obtain much more information on fine details of the performance of a predictor 
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by conducting additional procedures. First, one can Compare values of different metrics 

between each other. Second, one can compare values of the same metrics for different 

subgroups of the input dataset. Finally, one can compare values of the same metrics 

computed with different logics (overlap resolving, order of averaging, etc.). 

 

In the previous section, some conclusions through comparing different metrics, namely 

the recall and precision, were discussed. I have also looked at the differences between 

residue-wise and site-wise performance. Site-wise metrics judge the ability of a 

predictor to roughly hit the positions of annotated SLiMs in the database – i.e. the 

benchmark dataset. Residue-wise metrics evaluate in addition the ability to correctly 

predict the lengths and exact positions of SLiMs. Therefore, residue-wise metrics are 

generally expected to be lower than the corresponding site-wise ones, although, if the 

SLiM instances (real or predicted) are highly diverse in length, the opposite may also 

become true. 

 

One can indeed see that the site-wise performance was always better than the residue-

wise performance. The magnitude of the differences, however, varies between the tools. 

For example, both precision values of SLiMFinder are quite similar. This suggests that 

when this predictor finds a true SLiM, it is also able to avoid predicting too many 

flanking residues of the SLiM. The differences are somewhat larger in recall. Taken 

together, SLiMFinder tends to under-predict SLiMs, and the returned SLiMs are shorter 

than annotated. The situation is opposite for GLAM2: its site-wise recall only marginally 

exceeds the residue-wise one, while the differences in precision are much larger. This 

indicates that GLAM2 tends to rather over-predict SLiMs, capturing excessive flanking 

residues along with the core SLiMs. Both MEME (with optimized settings) and HH-

MOTiF have slightly elevated site-wise recalls and approx. 1.5-fold greater site-wise 

precisions indicating a slight over-prediction of SLiMs. 

 

Next, I have looked at results for subgroups of ELM motifs. The division in subgroups of 

the ELM dataset can be performed in many ways. For example, Song and Gu divide the 

ELM dataset into six parts according to its inherent categories: CLV, DEG, DOC, LIG, MOD, 

TRG (Song and Gu, 2015)(Song et al., 2015). I have also looked at the performance of 

HH-MOTiF across these categories (see Table 12) and observed that performance on the 
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SEG and LIG categories was substantially better than on the CLV and DOC categories. I 

also saw that the performance differences between the categories reflected consistently 

on both recall and precision, both residue- and site-wise. The exception was the MOD 

category, which had an exceedingly high precision, both residue- and site-wise. The 

ratios between corresponding site-wise and residue-wise metrics also remained 

relatively constant, further showing that the abovementioned over-prediction of SLiMs 

by HH-MOTiF was consistent across the motif categories. The good performance of HH-

MOTiF on the DEG category may be also explained by its belonging to the training set: it 

was used for training, and subsequent fine-tuning of the algorithm. I also measured the 

category-wise performance for other tools (see Table 13). Intriguingly, SLiMs from DEG, 

LIG, and TRG categories were easier to identify for all the tools, including whmm – see 

Figure 3 in (Song and Gu, 2015). On the contrary, the CLV, DOC, and MOD categories 

proved to be difficult to handle. This observation led me to the preliminary conclusion 

that some motifs are objectively harder to predict than others, independent of the 

method used. Nevertheless, there are exceptions to this trend. For example, the 

performance of SLiMFinder on DOC motifs exceeded its performance on LIG ones. This 

suggests that some algorithms are better suited than others to identify specific SLiMs. 

These issues are more specifically discussed in a later part of this thesis (Section 4.4. 

SLiM heterogeneity as the challenge to statistical evaluation of predictors). 

 

In addition to the functional classification of SLiMs provided by ELM, I have also divided 

the ELM classes into subgroups according to various criteria. One such criterion was the 

dataset size, which represents the number of unique proteins a specific SLiM is 

encountered in. The data are summarized in Table 14. Only SLiMFinder showed a clear 

dependence on the dataset size. 

 

Motif 
category 

Residue-wise Site-wise 
TPR PPV SPC F1n F1s PC In TPR PPV F1n F1s PC 

CLV 0.103 0.250 0.997 0.092 0.146 0.074 0.100 0.103 0.371 0.112 0.161 0.104 
DEG 0.244 0.473 0.992 0.240 0.322 0.207 0.236 0.263 0.568 0.274 0.360 0.258 
DOC 0.080 0.211 0.996 0.065 0.116 0.053 0.076 0.083 0.290 0.079 0.129 0.073 
LIG 0.265 0.424 0.990 0.243 0.326 0.196 0.255 0.302 0.580 0.314 0.397 0.278 
MOD 0.119 0.519 0.997 0.135 0.194 0.105 0.116 0.130 0.650 0.161 0.217 0.133 
TRG 0.163 0.399 0.996 0.151 0.231 0.129 0.159 0.188 0.581 0.190 0.284 0.178 

 
Table 12. Performance of HH-MOTiF across six ELM categories. TPR: true positive rate, sensitivity, recall; 
PPV: positive predictive value, precision; SPC: specificity; F1n: natural F1 score, average of F1 scores for 
individual ELM classes; F1s: synthetic F1 score, harmonic mean of the averaged Rc and Pr; PC: 
performance coefficient: In: informedness. 
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Motif 
category 

Dataset 
count 

Residue-wise synthetic F1 
HH-MOTiF SLiMFinder GLAM2 MEME 

CLV 6 0.146 0.005 0.026 0.000 
DEG 17 0.322 0.428 0.215 0.175 
DOC 19 0.116 0.258 0.059 0.020 
LIG 96 0.326 0.236 0.149 0.112 
MOD 21 0.194 0.155 0.079 0.081 
TRG 17 0.231 0.390 0.182 0.199 

 
Table 13. Performance of different tools and optimized configurations across different ELM categories. 

 
Dataset size Dataset count Residue-wise synthetic F1 

HH-MOTiF SLiMFinder MEME GLAM2 
3-5 61 0.236 0.114 0.074 0.148 
6-10  48 0.297 0.267 0.097 0.129 
11-15 24 0.232 0.352 0.069 0.084 
16-25 29 0.310 0.314 0.104 0.144 
26-50 12 0.407 0.442 0.225 0.169 
51+ 2 0.434 0.059 0.056 0.137 
3-50 174 0.279 0.259 0.095 0.126 
All 176 0.280 0.257 0.095 0.137 

 
Table 14. Performance of different tools (the optimized settings) subgroups of the whole ELM dataset 
according to the size of individual sub-datasets. The table is based on the data published in (Prytuliak et 
al., 2017). 

 

3.6. Initial application of automated results parsing and optimization 

This section describes an algorithm, which was initially implemented in HH-MOTiF but 

was later phased out due to discovery of better alternatives. Nevertheless, the work on 

this algorithm has enabled other improvements in HH-MOTiF. For this reason, these 

initial attempts are briefly discussed here.  

 

The output produced by an earlier version of HH-MOTiF was very bulky. As alignment 

recognition and some other filters were not yet implemented, a much higher number of 

motif trees were present in the output. For the same reason, the average number of 

motif leaves per tree was higher and the leaves themselves were longer. As a result, the 

output file size for larger datasets could reach several gigabytes. In addition, the core 

HH-MOTiF algorithm has one parameter, for which a valid parameter value was yet 

undefined: the number of query proteins that need to contain the SLiM. Different values 

of this parameter were tried to select the intuitively best output. The generalized 

optimal value could not be defined, as it was varying heavily for different input datasets. 

As it was challenging to process such amounts of data manually, I implemented an in situ 

optimization procedure to parse different alternative outputs and select the intuitively 

best one automatically. The procedure was launched each time a dataset was processed. 
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The initial goal of the in situ optimization was to maximize the internal quality criteria – 

the reciprocity score R. The data for the three test datasets formed out of all proteins 

harboring SLiMs in distinct ELM categories are presented in Table 15. 

 

The idea of maximizing R was based on the assumption that for strong SLiM candidates, 

multiple instance can assume the role of a motif root, making the corresponding motif 

leaves reciprocal. The idealization of this situation is illustrated by the ELM class 

TRG_LysEnd_APsAcLL_3, which is the sample motif used on the HH-MOTiF web-server. 

There are three motif trees found in this 3-protein dataset; each motif root overlaps 

with the leaf of both other trees and each motif leaf overlaps with the root of another 

tree. As all the overlaps are no less than three residues, the reciprocity score is 1 for this 

dataset. On the other hand, if the leaves are mostly not reciprocal, there is a high chance 

that the motif tree is formed randomly. Further tests proved this assumption to be 

correct only for relatively large datasets and low values of R. The latter is based on the 

observation that upon substantial over-prediction of SLiMs, high reciprocity is achieved 

by chance. Ultimately, if every single residue in the dataset is predicted to be in a motif 

root, the reciprocity is always 1. The measurement of correlations between residue-wise 

F1 score and R for different ranges of R showed that the optimal value for R is close to 

0.2 (see Table 16). Therefore, I redefined the optimization goal as minimization of |R-

0.2|. 

 
Dataset Residue-wise F1 score 

Maximal Automatically chosen 
CLV 0.050 0.025 
DEG 0.256 0.090 
DOC 0.053 0.041 

 
Table 15. Performance of an earlier versions of HH-MOTiF on the category-wide datasets with the 
automated in situ optimization. The Maximal F1 score refers to the parameter configuration that would be 
optimal for the specific dataset. 

 

Range of R Dataset 
CLV DEG DOC MOD TRG 

[0, 1] 0.46 -0.36 -0.33 0.15 -0.11 
[0, 0.2] -0.40 -0.83 -0.55 -0.46 -0.77 
[0.2, 1] 0.74 0.66 0.38 0.54 0.38 

 
Table 16. Pearson correlation coefficients between residue-wise F1 and the reciprocity score for different 
parameter configurations of HH-MOTiF on the category-wide datasets. 
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Yet, the correlation between R and the performance was observed only for relatively 

large (50+ proteins) and noisy datasets, in which the sought-for SLiMs are present only 

in part of the queries. As the typical use case of HH-MOTiF was rather small datasets, the 

in situ optimization was ultimately phased out. Such an approach had obvious speed 

disadvantages caused by a need to launch the SLiM search several hundred times with 

different parameters with subsequent result analysis. However, intermediate data 

caching allowed running the whole search in only approximately twice the time of a 

single independent search. On the other hand, auto-choosing the parameters each time 

is less prone to the danger of over-fitting in comparison to approaches, where optimal 

values for the parameters are derived in a training procedure as a compromise between 

optimal values for individual subsets in the training set. 

 

However, the idea of adaptive results was implemented in the option of showing the 

best suboptimal hit, if no results are found with default parameters: activating this 

option forces turning off some of the filters and recalculating the results if no SLiM 

candidates are found initially. As expected, activating this option increases recall and 

decreases precision of HH-MOTiF. However, the increase in recall is quite small 

(residue-wise 0.233 vs. 0.210 for the default configuration) and the net effect on 

synthetic F1 is markedly negative (0.245 vs. 0.280). This means that the implemented 

filters are tuned very well to the task; turning them off results in retrieving many more 

additional false positives but rescuing only few false negatives. Nevertheless, this option 

is left for the user’s consideration, as seeing the best suboptimal hit may give a better 

idea of what can be found in the submitted dataset with the proposed method. 

 

3.7. Other biological applications of SLALOM 

The statistical method, SLALOM, is not limited to a certain type of positional annotation 

data. Therefore, besides evaluating and comparing the output of SLiM predictors, it can 

be applied to a wide range of problems, whenever comparison of positional annotations 

of continuous sequence elements (also referred to as sites) in a set of sequences is 

required. 

 

SLALOM is applicable to comparing annotations of various sequence elements (sites) as 

well as sequence properties, which are assessed residue-wise. Besides SLiMs, sites 
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include conserved domains in proteins or genes in genomes. Residue-wise sequence 

properties include the degree of disorder or surface exposure in proteins and propensity 

for point mutations in genomes. SLALOM can compare annotations of the same elements 

or properties originating from different sources. It assesses their similarity or reliability. 

In addition, its ability to match heterogeneous elements can answer, among others, 

question about the percentage of motifs located in transmenbrane regions or the extend 

to which disordered or exposed regions overlap.  

 

SLALOM has been used to compare genome annotations from two different sources, 

namely GenBank (Benson et al., 2013) and RefSeq (Pruitt et al., 2012). The genome of 

the archeon Natronomonas pharaonis was used for this comparison. Its GenBank 

annotation contains 2,694 protein-coding genes, while its RefSeq annotation contains 

only 2,608 genes. Each gene is assigned to one of the six reading frames, three frames in 

each strand. Besides the fact that some genes are missing in one of the annotations, 

those that do exist in both sometimes do not match perfectly. As the two databases use 

different identifiers, it is not possible to unambiguously determine, if the identical gene 

is annotated, should two genes only overlap partially. Initially, a threshold of 50% of the 

current gene length was used. The key comparison statistics are provided in Table 17. 

 

If gene matching is tried regardless of the reading frames, differences in symbol-

resolved and gross counts were observed, indicating the presence of overlaps. However, 

these were gone upon discrimination of the reading frame: the 4 still overlapping base 

pairs in the RefSeq genome could be attributed to an overlap with a pseudo-gene. This 

means that almost all the overlaps occur only in different reading frames, which is an 

expected situation. 

 
Measure Without frame separation 6 distinct reading frames 

Symbol-
resolved 

Gross Symbol-
resolved 

Gross 

GenBank total gene length 2,359,033 2,367,915 2,367,915 2,367,915 

RefSeq total gene length 2,336,204 2,339,349 2,339,345 2,339,349 

Genbank genes matched 2,589 2,583 

Refseq genes matched 2,596 2,587 

Symbol-wise ACC 0.9861 - 0.9967 - 

Symbol-wise F1 0.9923 0.9923 0.9892 0.9892 

Site-wise F1 0.9779 0.9751 

 
Table 17. Statistics on comparing two annotations of the Natronomonas pharaonis genome. A pair of 
sites/genes is matched if >=50% overlap of the current site is reached. 
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Furthermore, there was a rise in ACC upon frame separation. This rise can be explained 

by the false positive paradox, which influences some metrics on unbalanced datasets. A 

genome is an example of an unbalanced dataset. The genes in all frames cover ~90% of 

the whole DNA length (2,595,221 base pairs). However, for each frame, the coverage is 

only ~15%. As the number of mismatches in this specific case is roughly proportional to 

the gene length, a higher ACC is observed when averaging ACC from all the frames 

separately, as compared to measuring ACC for all the frames together. The F1 score, on 

the other hand, is a more robust metric and is not subject to the false positive paradox. 

The F1 score dropped upon frame separation, because the matches between genes in 

different frames are gone. 

 

Moreover, we could see that different numbers of genes were matched in different 

genomes, which means that some matches are not unequivocal. This is not a desired 

situation, when mapping features from one genome to another. Therefore, stricter 

matching criteria were tested for registering a match between a pair of genes in 

different annotations. As shown in Table 18, a higher threshold of overlap of the current 

gene does not solve the problem of non-reciprocal matches: when one annotation 

contains a shorter gene that is completely covered by a longer one in the other 

annotation, the number of non-reciprocal matches can only increase with the minimal 

overlap criteria, as the shorter gene is always covered to 100%. However, when 

applying the minimal overlap percentage to the longer gene, one gets the full reciprocity 

already with 50%; increasing the criterion will further eliminate dubious matches until 

only perfectly matched genes are left. For further analysis, SLALOM offers the option to 

output only unmatched (‘-os_diff unmatched’) or only non-perfectly matched (‘-

os_diff discrepant’) sites. 

 
Measure Minimal overlap to match a pair of genes 

Of the current gene Of the longest gene 

50% 90% 50% 90% 100% 

Genbank genes matched 2,583 2,555 2,580 2,528 2,400 

Refseq genes matched 2,587 2,562 2,580 2,528 2,400 

Site-wise F1 0.9751 0.9651 0.9732 0.9536 0,9053 

 
Table 18. Statistics on comparing two annotations of the Natronomonas pharaonis genome. The reading 
frames are treated separately. 
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3.8. Analysis of time series data with SLALOM 

SLALOM was developed as a general-purpose software for any kind of positional 

annotations in a collection of sequences. There are no specific requirements concerning 

the type of elements (symbols) the sequences consist of. These must not necessarily be 

alphabetical, such as proteins and DNA. A sequence can also be a time series, where each 

symbol represents a time unit, e.g., a minute or a day. The annotated elements in this 

case represent events with defined start and end time points. The time stamps provided 

by the user are converted to sequence positions, representing distances to the sequence 

start, so that the time series are internally treated in the same way as the protein 

sequences. Note: The very first element has the position 1. 

 

Time series analysis is useful in medical studies, where one needs to correlate onset 

times of symptoms or psychological conditions (see for instance (Nielsen et al., 2017)) in 

a group of patients or to determine possible reasons for increased mortality during an 

epidemic (Nunes et al., 2011). 

 

Here, the application of SLALOM on economic time series is shown. We looked at 

possible correlations between economic news releases and the movements in the 

EURUSD exchange rate. 

 

First, one needs to define an exchange rate movement. I looked into two separate 

categories of movements. All the movements were assessed on the basis of the prices at 

the end (a.k.a. closing price) of consecutive time intervals with fixed duration (one such 

interval is also called a candlestick). The first movement category is referred to as a 

trend: it is defined as at least five consecutive 5-minute candlesticks, where each 

interval, including the first one, is closing at the consistently higher or lower price than 

the previous one. The second category is a spike: it determines a series of consecutive 1-

minute candlesticks that satisfies the two following criteria: 

1. The difference between the closing prices of the last candlestick in the series and 

the last candlesticks before the series is at least 0.002 USD 

2. Each candlestick has consistently higher or lower closing price than the previous 

one by at least 0.0005 USD. 
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The trends and spikes were marked as time intervals (by start and end time points) with 

a specially written Python script on the basis of data downloaded from HistData.com. In 

the calendar year 2015, there were 1,801 trends and 426 spikes with the average 

durations 29 and 2 minutes, respectively. 

 

The news releases were marked correspondingly as time intervals beginning at the 

release time point and ending after 30 or 2 minutes, respectively to approximately 

match the duration of a trend or a spike. The data on the news releases were 

downloaded from FXStreet.com. SLALOM can work with the downloaded files directly 

with no need of additional pre-processing. In this example, I grouped the news releases 

by country. Data from seven countries were considered, out of which three form the 

control group, i.e. have neither EUR nor USD as domestic currency. Sometimes, there 

were several releases announced simultaneously in a certain country. These I counted as 

a single release. While analyzing trends, non-simultaneous releases, although not 

frequent, could also tightly follow each other, so that the corresponding 30-minutes 

intervals overlapped. In this case, I considered only the last release in the series, as the 

effects of the preceding releases, if there were any, may have been distorted: if there 

were positive news followed by negative ones for EUR, the beginning upward trend 

could be interrupted and reversed into a downward one; or if there were non-significant 

news closely followed by important ones, the impact of the latter could be mistakenly 

associated with the former. 

 

In this example, I considered news releases, as well as movements as atomic events and 

therefore focused on the site-wise statistics. Note that the duration (length) was not 

important. Upon analysis of releases, they were classified in two categories, depending 

on whether the following 30- or 2-minute interval coincided with a movement. A similar 

classification was carried out for movements. To avoid non-specific matches with 

trends, I registered the coincidence if and only if it spanned at least 50% of the duration 

of the release or trend; as the spikes lasted on average only 2 minutes, any coincidence 

was registered as a match in the analysis of spikes. 

 

The operating mode of SLALOM should be chosen on the basis of the data interpretation. 

In this example, the movements were treated as a given fact, while the news releases 
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were considered as a putative predictor of upcoming movements. Therefore, SLALOM 

was launched in the benchmarked mode, with movements being the first annotation 

(the benchmark). As a result, the site-wise TPR was the share of matched movements, 

while the site-wise PPV was the share of matched news releases. Consistent with the 

assumed causality, I also tried limiting matches to cases, in which movements actually 

start not earlier than the news release: this means that the predictor has the ‘leading’ 

nature. However, as a release-driven enhancement of an already developing subtle 

movement in the same direction will be overseen with the current trend definition, this 

additional criterion may create false negatives. The results – with and without the 

criterion – are presented in Table 19. 

 
 
 
 
Country Number of 

news 
releases 

News releases as trend predictor Ratio ‘leading’ / ‘any 
order’ Any begin order Release is leading 

TPR PPV TPR PPV TPR PPV 

United States 857 0.0866 0.1628 0.0489 0.0910 0.565 0.559 

China 139 0.0133 0.1633 0.0083 0.1020 0.624 0.625 

Japan 387 0.0316 0.1587 0.0217 0.1108 0.687 0.698 

Germany 240 0.0272 0.2125 0.0150 0.1250 0.551 0.588 

United Kingdom 331 0.0361 0.1971 0.0200 0.1088 0.554 0.552 

France 154 0.0144 0.1753 0.0056 0.0714 0.389 0.407 

Italy 179 0.0155 0.1639 0.0105 0.1093 0.677 0.667 

 

Table 19. Performance of economic events as a predictor of trends in EURUSD throughout the calendar 
year 2015. 
 

Without performing exact statistical tests, one can notice that the data obtained imply 

the independence of news releases and price movements. Approximately seven 29-

minute trends per trading day mean that the market in 2015 was trending ~15% of the 

time, which explains the share of matched news releases well: the market was trending 

equally often regardless of a news release. Furthermore, the share of matched trends 

was linear with the number of releases, which strengthens the last argument. There was 

also no visible difference between the impact of news releases in the control and 

EUR/USD countries. Indeed, the news releases from UK seemed to influence the 

EURUSD rate more than the events in France or USA. The only exception represented 

Germany, where 51 out of 240 releases coincided with trends. Though, whether this 

number is statistically significant is hard to tell. With the background probability 0.173, 
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which is the average for the control countries, the binomial test yielded the p-value 

0.065. After a multiple testing correction for 4 countries: 

 

                    

 

This means that also for Germany, the results hardly can be viewed as significant. 

 

The ratios between the numbers for the ‘leading’ releases and the corresponding 

numbers for both leading and non-leading (‘any order’) releases additionally strengthen 

the assumption of independence. The duration of both releases and trends is around six 

5-minute intervals on average. Therefore, if at least 50% overlap is required, there are 

seven possible relative positions expected: a trend starts 15 minutes earlier, 10 minutes 

earlier, and so forth until 15 minutes later than the release (see Figure 12). Four out of 

them are leading releases (i.e., satisfy the requirement of the trend starting not earlier). 

Thus, the expected ratio under the independency assumption is 4/7 (≈0.57), which is 

consistent with the observed ratios. 

 

 
 
Figure 12. Schematic representation of relationships between theoretically possible news releases and a 
30-minute trend. Each rectangle depicts a 5-minute interval. At least 50% ‘overlap’ is required to register 
a match between a news release and the trend. A release is leading if and only if it ‘begins’ no later than 
the trend. 

 

The data for spikes are presented in the Table 20. The metrics were measured with the 

‘leading’ requirement, as in the case of spikes, the minimal price difference per 

candlestick was imposed, which makes it much less probable for a random movement to 
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become a part of a spike. As one can see from the TPR numbers, there were only two 

spikes out of 426 that coincided with the news releases in USA, only one for Germany 

and Italy, and no single one for France. I consider this fact to be strong evidence for the 

assumption of independence between spikes and news releases. 

 
Country Number of events Site-wise TPR Site-wise PPV 

United States 1185 0.0094 0.0025 

China 152 0.0000 0.0000 

Japan 415 0.0047 0.0048 

Germany 241 0.0047 0.0083 

United Kingdom 341 0.0469 0.0528 

France 158 0.0000 0.0000 

Italy 195 0.0047 0.0103 

 
Table 20. Performance of economic events as a predictor of spikes in EURUSD throughout the calendar 
year 2015 
 

3.9. Application of machine learning for evaluating SLiM-likeness 

In this section, I discuss the performance of the SVM-based pipeline in discriminating 

between SLiM-containing peptides and peptides containing no SLiMs annotated in ELM. 

Hyperparameters of the pipeline were optimized only for the odd-even dataset 

partition; the same parameters were used for all other runs. The results are summarized 

in Table 21. There is an expected tendency of rising performance with the rising size of 

the training set. 

 
Training-test set split BAC k 

Mean SD Mean SD 
Odd-even 0.595 0.012 180 78 
4-vs-2 0.594 0.028 213 103 
2-vs-4 0.540 0.017 171 104 

 
Table 21. Performance on out-of-sample test sets for different splits of the ELM-based peptide dataset. 
BAC: balanced accuracy. The mean and SD are based on n=20 tests. 

 

To assess the amount of information the SLiM-likeness is based on, as well as the 

potential maximal performance of this kind of approach, I also tested the pipeline on 

artificial, randomly generated peptides. This test also served as the control to check, if 

the demonstrated above-random performance is not a computational artifact. The 

results are summarized in Table 22. As one can see from the table, strong patterns, 

which exactly correspond to one of the analyzed features (series A), ensured the high 

classification accuracy with low variance. 100% accuracy could not be achieved, as some 

peptides from the negative set contain the pattern just by chance. The performance 
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expectedly dropped, when some of the peptides from the positive set did not contain the 

pattern (series B against A and series E against D). Weaker patterns, which almost 

certainly occur just by chance, showed drastically weaker performance (series D against 

A and series D against J). Nevertheless, when the same weak pattern was repeated 

several times, the performance rose again (series H), which was also an expected 

behavior, as the current classification pipeline is based on feature occurrence counts and 

not on the binary occurrence detection. Some of the inserted patterns did not 

correspond exactly to any analyzed feature. Namely, the series C presents the linker 

length 4 that is not covered in the feature space. The series F, on the other hand, 

represents the case of not predefined amino acid groups, [ST] and Proline. 

Nevertheless, these are still subgroups of, for example, P-substrates and Hydrophobic 

respectively. This is no longer the case for the groups in the series I and K: Every Fifth, 

First Five, Navy, and Vowels – see Table 21 – are neither predefined amino acid groups 

nor subgroups of those. However, the classification was still possible, although with a 

lower accuracy (series C against A and series I against J). When there are different 

patterns inserted simultaneously, the performance expectedly grew (series L against I 

and K). Finally, the accuracy was expectedly close to 50%, when completely random 

positive datasets were used (series G) or the pattern to be found was too weak (series 

E). 

 
Group name Residue types Cumulative background probability 
Every Fifth FLRY 0.2227 
First Five ACDEF 0.2472 
Navy ANVY 0.1922 
Vowels AEIY 0.2097 

 
Table 21. Artificial amino acid groups that were used to test the ability of the proposed machine learning 
pipeline to detect differences in features not explicitly checked for. All these groups are not part of the 
groups formed on the basis of biophysical and biochemical properties and presented in Table 6. 

 

Series Inserted patterns PIP POP BAC k 

Mean SD 
Mean SD 

A acidic-aromatic 1.0 0.2043 0.896 0.005 32 17 
B acidic-aromatic 0.5 0.2043 0.681 0.008 25 9 
C acidic-x-x-x-x-aromatic 1.0 0.1651 0.664 0.009 237 96 
D polar-small 1.0 0.9947 0.514 0.013 182 129 
E polar-small 0.5 0.9947 0.501 0.011 263 105 
F [ST]P 1.0 0.1524 0.716 0.018 44 42 
G Completely random positive set 0.498 0.008 246 107 
H polar-small 1.0 0.9947 0.711 0.016 78 64 

polar-small 1.0 0.9947 
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polar-small 1.0 
0.9947 

I vowels-x-x-first_five 1.0 0.5954 0.569 0.012 195 92 
J charged-x-x-aliphatic 1.0 0.6056 0.673 0.015 94 60 
K every_fifth-navy 1.0 0.5645 0.555 0.017 177 118 
L vowels-x-x-first_five 1.0 0.5954 0.632 0.018 101 63 

every_fifth-navy 1.0 0.5645 

 
Table_22. Performance on out-of-sample test sets for different series of the artificial peptide datasets 
containing different inserted patterns. For disambiguation of the amino acid groups, see Table 6 and Table 
21. BAC: balanced accuracy; PIP: pattern insertion probability; POP: pattern occurrence probability. The 
means and SDs are based on n=20 tests. 

 

The dataset-specific optimization of the number k of features led to another 

observation: although optimal k shows high variance, there is a negative correlation 

between k and the performance. This trend is logical, as both, low k and higher 

performance have a common cause: stronger patterns require fewer features for 

successful detection. From the optimization logic, direct causality between k and the 

performance is excluded from consideration. The most remarkable difference is 

between the series B and C. They demonstrate comparable performance achieved at 

very different optimal k values. Indeed, in series B, there is a pattern exactly 

corresponding to one of the features analyzed but diluted with random samples, while in 

series C, there is a persistent pattern, which must be replicated through other features. 

Thus, conducting optimization of k in situ also made the pipeline adaptable for scenarios 

when the putative patterns are not known in advance, which is the real world case. 
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4. DISCUSSION 

 

4.1. Discussion overview 

In this discussion, I first describe the innovations introduced in the SLiM predictor HH-

MOTiF in comparison to similar existing software tools. Then, I explain, how the 

development of the positional data analyzer SLALOM facilitated, among other tasks, the 

performance comparison between different SLiM predictors. Next, I address the 

challenges in interpreting the performance metrics values that arise due to relatively 

small number of the experimentally verified SLiMs and high diversity in properties of 

those. Finally, I evaluate the successfulness of methods for detection of SLiMs of any 

type to assist in a de novo SLiM search. 

 

4.2. The novelty in the SLiM searching pipeline of HH-MOTiF 

4.2.1. Notes to the pipeline design 

Although computational de novo SLiM searching is not a new field, there are some 

distinct innovations introduced in HH-MOTiF. These innovations include already known 

bioinformatics techniques extensively used for other purposes (e.g., for multiple 

sequence alignments or search for conserved domains) but not yet for SLiM search, as 

well as novel algorithms that can potentially find their application in other areas (e.g., 

the alignment recognition algorithm may be adapted for the more general problem of 

multiple sequence alignment). The proposed pipeline is able to outperform on average 

all other SLiM predictors available to date. 

 

4.2.2. Conservation-based search for orthologs 

The HH-MOTiF pipeline begins with the search for orthologs of all sequences in the 

input dataset. This by itself is usually not part of other SLiM predictors’ pipelines, such 

as MEME-Suite (Bailey et al., 2009)(Bailey et al., 2015) and SLiMFinder (Edwards et al., 

2007). This task is therefore left to the user. The DILIMOT web-server (Neduva and 

Russell, 2006) offers such a functionality by fetching the pre-compiled ortholog lists of 

several organisms (17, as of 12.07.2017). This, however, limits the number of orthologs 

that can be found, as well as prohibits any ortholog searches for organisms not in the 

list. On the other hand, pre-computation offers significant speed advantages. In addition, 

it opens the room for streamlining the usage of high-quality manual ortholog 
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annotations from different databases, which would show higher sensitivity than fully 

software-based ortholog detection procedures. However, such a half-automated 

protocol is currently not yet implemented in DILIMOT. HH-MOTiF uses reciprocal BLAST 

searches to detect orthologs. The BLAST searches against the NCBI nr database support 

virtually all known proteins from all organisms at the cost of the speed. The speed 

problem, however, is partially addressed by caching of ortholog search results. 

 

Another aspect, which I noticed during the development of HH-MOTiF, is that only the 

orthologs in a certain similarity range are useful for considering the evolutionary 

conservation in the context of a SLiM search. The general tendency is that the 

conservation of SLiMs and their flanking regions is slightly higher than that of the 

remaining sequence (Chica et al., 2009). However, too close orthologs have too few 

mutations to be informative, while too distant ones have a high chance to have the SLiM 

moved along the sequence (e.g., the Dpb11/TopBP1 interaction motif in Slx4 proteins 

from different eukaryotes (Gritenaite et al., 2014)) or lost altogether. The level of 

conservation between orthologs varies heavily from one protein to the other, even for 

the same pair of organisms, like human and mouse (Makałowski et al., 1996). Therefore, 

I speculate that the specified cut-off levels based on coverage and identity are a more 

sensible solution than using orthologs from a predefined set of organisms regardless of 

the conservation levels. 

 

4.2.3. Building HMM profiles from aligned orthologs 

The identified orthologs are aligned and subsequently transformed to hidden Markov 

model profiles. Consequently, positions (columns) will have a score, which reflects the 

level of conservation. Thus, HH-MOTiF will give a lower (worse) score to weakly 

conserved columns at the profile-to-profile comparison step. This is different from other 

tools such as SLiMFinder, DILIMOT, whmm (Song and Gu, 2015), dhmm (Song et al., 

2015), which implement the all-or-nothing decision: each residue either is considered as 

completely conserved or is fully ignored. Therefore, the HH-MOTiF approach considers 

evolutionary information in a much more elegant way and eliminates a need for an 

additional threshold to distinguish between conserved and non-conserved residues. In 

addition, operating with orthologs allows us to compare mutation patterns of the 

corresponding positions in a pair of regions from different query proteins. Regions with 
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similar mutation patterns get higher scores in hhalign alignments and therefore have 

a higher chance to be integrated into a common motif tree. Profile-to-profile HMM 

alignments have found their application in the search for remote homologs both, for 

protein (Deng and Cheng, 2014b) and DNA (Wheeler and Eddy, 2013) sequences. 

Furthermore, they were successfully used for the identification of protein domains 

(Zhang and Sun, 2012), as well as DNA sequence elements (Edlefsen and Liu, 2010). 

There is also a SLiM predictor, which cuts out SLiMs from surrounding domains (Horan 

et al., 2010). However, to my best knowledge, HH-MOTiF is the pioneering tool for de 

novo SLiM identification by profile-to-profile alignments of HMMs which are built from 

orthologs. 

 

4.2.4. Separate masking of buried and ordered sequence regions 

After HMMs are built, HH-MOTiF performs binary residue-wise masking of buried, 

globular regions as well as of overly ordered regions with subsequent resolving of the 

obtained mask. The ordered regions masking is implemented as in SLiMFinder. The 

resolving is also implemented in a way similar to SLiMFinder, although this step is not 

mentioned in the manuscript (Edwards et al., 2007), nor in the manual downloaded 

from the website of the author’s group. The surface exposure-based masking is also not 

a new invention, as it is offered by, among others, DILIMOT. In this work, I show that 

such masking with NetSufpP (Petersen et al., 2009) indeed masks non-SLiM residues 

with reasonable selectivity, which was not explicitly shown before. 

 

The exposed and disordered regions are partially related, as disordered residues, 

although they may occasionally become buried in some conformations the region 

adopts, will be accessible to the solvent for at least some time, and residues buried 

inside globular domains should remain ordered to maintain the conformation of the 

domain. In (Sheriff et al., 1985), it is shown that the surface exposure is related to the 

flexibility. The flexibility in turn correlates with the disorder, although these two terms 

should not be confused (Radivojac et al., 2004). In (Edwards and Palopoli, 2015) it is 

stated that only approx. 15% of SLiMs lie on the surface of globular domains, with the 

remaining 85% being predominantly in disordered regions. This can be the reason for 

Edwards et al. to implement only disordered region-, but not exposure masking in 

SLiMFinder. Nevertheless, in our work (Prytuliak et al., 2017), we showed that these two 
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types of masking have a quite different impact on the performance of both, SLiMFinder 

and HH-MOTiF, and therefore should be evaluated separately. Intriguingly, surface 

exposure masking, despite being selective per se, does not boost the final performance 

of either of the two tools,(see section 4.5. On filtering by sequence properties in de novo 

SLiM prediction for details). 

 

4.2.5. Residue-wise accumulation of alignment statistics  

After completing the pairwise HMM-HMM comparisons, HH-MOTiF performs the 

residue-wise accumulation of the scores. This is performed for each query sequence 

separately. This approach is different from that of other tools, which manipulate inter-

query SLiM representations, in the form of either regular expressions (SLiMFinder, 

MEME, MotifHound (Kelil et al., 2014)) or suboptimal alignments (GLAM2 (Frith et al., 

2008)), throughout their pipelines. The approach of HH-MOTiF, on the other hand, in 

that matter is similar to that of MFSPSSMpred (Fang et al., 2013), which assigns each 

residue its ‘SLiM-likeness’ based on a machine learning prediction. Unlike the latter, 

though, HH-MOTiF operates in the context of a small dataset and computes its ‘SLiM-

likeness’ score not on the basis of similarity to a generalized feature profile of a 

collection of known SLiMs, but on the basis of higher than usual similarity to other 

proteins from the input dataset. Concerning this aspect, however, it is not possible to 

provide any evidence showing superiority or disadvantage of this approach, as it is not 

possible to construct a tool that would have only this part replaced with all other 

algorithm steps intact. 

 

4.2.6. Hierarchical representation of SLiMs 

The representation of SLiM candidates in HH-MOTiF is also unique. While other tools 

operate with regular expressions, profiles, and multiple sequence alignments, HH-

MOTiF builds hierarchical structures, which are referred to as motif trees. 

 

Each motif tree has exactly one motif root, which is aligned with all other motif instances 

– the so-called motif leaves. Motif leaves, however, are not strictly aligned with each 

other, which brings a hierarchy to the SLiM representation. In other tools, all the motif 

instances are always equal and maintain a kind of an ‘all-to-all’ alignment. The initial 

motivation for such a representation in HH-MOTiF was to mimic an evolutionary 
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process, where a motif would have an ‘ancestor’ and a number of ‘descendants’. In 

theory, if the evolution of a motif is divergent, the ancestor will be more similar to its 

descendants than the descendants are among each other. Unfortunately, motif evolution 

is hard to trace, as there is very little information on experimentally verified motifs of 

the same type in orthologous proteins throughout multiple species. If it is available, it is 

often not conclusive: e.g., in the ELM class LIG_WRPW_1 the instances in the orthologous 

proteins are too well conserved to support or reject the theory. Moreover, there are 

indications that the motif evolution is not divergent but rather convergent (Chemes et 

al., 2012). Furthermore, even if the evolution of a particular SLiM is strictly divergent, it 

is not guaranteed that a given dataset contains the ancestor instance and not only a 

subset of descendants. Taken together, a hierarchical motif structure does not reflect a 

mimic of the evolutionary process in contrast to my initial motivation. 

 

Nevertheless, the hierarchical approach of HH-MOTiF demonstrated an unexpected 

advantage. As it was already discussed, the similarity between SLiMs extends to their 

flanking regions. The flanking regions, however, are not part of the SLiM, and 

consequently are not included in the database annotations. Therefore, they should not 

be reported in the output to the user; flanking regions that are reported are treated as 

false positives in all the tests I performed. SLiMFinder performs well in strictly pointing 

at a SLiMs’ core regions; however, because of the generally low information content in 

SLiMs, many potential correct predictions are rejected as non-significant leading to the 

subdued recall with default configuration of SLiMFinder. GLAM2, on the other hand, has 

high recall, but tends to predict very long SLiM candidates, which demonstrates its 

inability to separate SLiMs and associated flanking regions. This is also supported by 

high divergence between the residue-wise and the site-wise precision of the default 

configuration of GLAM2 (see Table 10). HH-MOTiF combines the best of these two 

worlds: flanking regions influence the score of individual root-leaf alignments, but are 

trimmed away in the output due to the HH-MOTiF algorithm which concentrates on the 

well-conserved SLiM core. Thus, the enhanced conservation in the SLiM neighborhood 

helps HH-MOTiF to collect the critical mass of positions which subsequently can be 

reduced to the returned core. An example from the processing of the ELM class 

TRG_LysEnd_APsAcLL_3 is shown in Figure 12. In this example, the two initial alignment 

hits count 11 and 10 residues; however, they are trimmed to a motif tree of length 8 and 
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therefore cover the target motif of length 7. The matches in flanking residues contribute 

to the score and subsequently to the higher ranking of the alignment hits, but are 

subsequently trimmed in the output. 

 

 

 
Figure 12. Two of the alignment hits found in the ELM class TRG_LysEnd_APsAcLL_3 dataset. They are 
forming a motif tree with the common stretch in the middle sequence (in the gray box) being the motif 
root and the bold marked stretches in the two other queries becoming the motif leaves; the grayed out 
residues are not part of the motif tree. The figure was reprinted from (Prytuliak et al., 2017) in agreement 
with the license no. 4200740316935. The copyright belongs to Oxford University Press. 
 

However, the described concept of graceful handling of flanking residues will not work 

for those cases, where the flanking residues are conserved throughout the majority of 

the SLiM instances. In these cases, they will be considered as part of the SLiM. In such 

situations, the hard limit of five conserved positions, as implemented in SLiMFinder, 

presents a better solution. 

 

4.2.7. Alignment recognition algorithm 

The ‘alignment recognition’ algorithm was initially designed to control the maximal level 

of SLiM degeneration in motif trees, or to avoid situations where the motif root is 

relatively well aligned to each of the leaves, but the leaves are completely incompatible 

with and non-alignable to each other. A schematic example with four residue types is 

presented in the Figure 2.  

 

The algorithm successfully tackles the described problem and in the end ensures 

reasonably high precision of HH-MOTiF (>55% site-wise) and is only outmatched by 

SLiMFinder with strict default settings. Alignment recognition has no direct analog in 

other SLiM predictors, because at this step, the pipeline of HH-MOTiF is cardinally 
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different: all other published tools work with multiple sequence alignments or profiles 

throughout the pipeline and have no need in combining pairwise alignments. 

 

In addition, such an algorithm may come useful when dealing with the more general 

problem of integration of multiple sequence alignments. This problem is partially 

addressed in MAFFT v.7 through the options ‘--merge’ ,  ‘--add’, ‘--addprofile’, 

and ‘--addfragments’ as well as through the separate mode ‘mafft-profile’ 

(Katoh and Standley, 2013). Similar functionality is also implemented in PyMod 

(Bramucci et al., 2012). However, these tools address only the case of non-overlapping 

sequence sets in the input alignments (i.e., they can produce the four-sequence 

alignment A-B-C-D from the input A-B and C-D or A-B-C and D but not from A-B-C and A-

C-D or A-B, A-C, and A-D). M-COFFEE (Wallace et al., 2006) (Moretti et al., 2007), which 

is part of T-COFFEE (Notredame et al., 2000), on the other hand, can combine 

information from several suboptimal alignments of the same sequences into a more 

reliable MSA. This means that it can take several different A-B-C-D alignments and 

produce another, better, A-B-C-D alignment; however, it still cannot integrate A-B-C and 

A-C-D into A-B-C-D. In addition, all these tools can neither perform further shortening of 

input local alignments (horizontal trimming) nor discard the worst matching sequences 

(vertical trimming). Therefore, the HH-MOTiF alignment recognition algorithm can 

potentially also fill the gap in existing approaches for integration of suboptimal local 

alignments. Nevertheless, to be applicable, it has to be first outsourced as a standalone 

application and additionally adjusted. This was not done in the scope of the current 

work. 

 

4.2.8. Length penalties in the statistical model 

Statistical evaluation of regex significance is a standard procedure during a SLiM search 

and is part of almost al predictors. It is common to calculate the probability of the regex 

to be assembled just by chance given the background frequencies of the amino acids 

with subsequent corrections for sequence and motif spaces. SLiMFinder implements 

perhaps the most comprehensive statistical model for SLiMs found de novo in a given 

dataset – SLiMChance. The statistical model of HH-MOTiF is similar to that of 

SLiMFinder, but has two key differences from SLiMChance. 
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First, it does not consider the motif space (explained in detail in Section 2.2.9. Regex 

generation and statistical evaluation). This may be the reason for HH-MOTiF’s failure to 

reach the precision levels achieved with SLiMFinder. Nevertheless, the SLiMFinder’s 

losses in recall are too large to be offset with the improvements in precision.  

 

Second, it accounts for the query protein length differently. In short, in SLiMChance the 

effective number of independent tests (the power in the Šidák correction formula) 

grows linearly with the protein length L, while in HH-MOTiF it grows as LC-1, where C is 

the number of conserved columns in the regex. The former is undoubtedly true for 

completely random sequences; however, it does not takes into account the biological 

reality, where certain amino acid patterns tend to occur more often than a pure 

calculation based on the background frequencies of individual amino acids would 

suggest. Such a pattern distribution skew may be observed because of better suitability 

of some patterns for alpha-helices (White and Jacobs, 1993) or because the protein is 

constructed from blocks duplicated in the course of evolution (Cahn et al., 2016). In the 

course of work on side projects with our collaboration partners, we for instance 

observed that false SLiM candidates can be abundant in the data sets of Ca-binding 

proteins, mainly due to the repeated EF-hand-like (Gifford et al., 2007) domains which 

are additionally surrounded by cysteine-rich regions to support the conformation 

through disulfide bonds (Kizawa et al., 2002)(Engel et al., 1987). These conserved 

domains are quite short and degenerate in comparison to other conserved domains 

(they are even sometimes called ‘motifs’, like in (Gifford et al., 2007)), and therefore they 

often pass the homology and domain filters of SLiM predictors. Moreover, proteins 

typically bear multiple instances of Ca-binding domains, some of which seem to be no 

longer functional but still have detectable sequence similarity. This leads to substantial 

pattern distribution skews in Ca-binding proteins, which in turn may result in extensive 

false positive predictions. Therefore, I speculate that a motif predictor requires stricter 

protein length discounting than a totally random model would imply, although the 

comprehensive and robust quantification of ‘how much stricter’ remained out of the 

scope of this work. 

 

The HH-MOTiF model seems to be quite good in keeping the residue-wise precision at 

the same level across different average lengths of the input dataset. However, after 



112 
 

carrying out the same analysis for other tools, it is not clear if such smoothness is indeed 

achieved through the strict sequence length penalties. Although the optimized 

configurations of MEME and SLiMFinder, which both select top 5 hits scored by a length-

linear penalty model, expectedly show a drop in precision upon rising query protein 

length, GLAM2 – which does not implement any explicit length penalties at all – 

demonstrates flat precision (see Table 23). Moreover, the high variance in performance 

between individual sets does not allow to draw firm conclusions from these data. 

 
Average protein length 
in the dataset 

Residue-wise precision 
HH-MOTiF SLiMFinder GLAM2 MEME 

>=1000 (n=28) 0.4245 0.2804 0.0764 0.0408 
[500, 1000) (n=105) 0.4226 0.3242 0.0721 0.0614 

<500 (n=43) 0.4141 0.5229 0.0735 0.0727 

 
Table 23. Dependence of the average residue-wise precision on the average query protein length for 
different tools tested (optimized configurations used). The measurements were done on total n=176 ELM 
classes. 

 

Intriguingly, the performance of SLiMFinder is maximized with the significance-based 

filtering being actually switched off and the output being limited to a fixed number of the 

best-ranked hits. For the optimized configuration I have used versus the default one, see 

Table 10; more SLiMFinder configurations are described in the publication (Prytuliak et 

al., 2017). I observed that the number of hits is also an important parameter for the HH-

MOTiF performance; nevertheless, the best performance was achieved with the 

significance-based filtering of SLiM candidates turned on. 

 

4.2.9. Contextual homology and conserved domain filtering 

De novo SLiM searching is based on the detection of similar regions in query sequences. 

Therefore, the presence of similarities that arise for reasons other than common SLiMs 

obviously interferes with the search. Nevertheless, many SLiM predictors, among them 

MEME and GLAM2, do not address this issue, leaving the responsibility of handling 

conserved domains or redundant sequences, which are the most typical such non-SLiM 

similarities, to the user. 

 

SLiMFinder addresses the problem by clustering the input sequences by similarity. This 

was also the initial approach implemented in HH-MOTiF. However, after extensive 

testing on different datasets, I found that clustering has some significant drawbacks 

originating from the fact that protein similarity measures are not Euclidian distances. 
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Generally, such situations require specifically adjusted clustering algorithms (Hathaway 

and Bezdek, 1994) and even then careful consideration of the logic is needed to avoid 

artifacts. The key question is what to do, when A is similar to both B and C, but B and C 

are not similar to each other (the problem is somewhat similar to the one with the motif 

trees – see Section 4.2.7. Alignment recognition alrorithm). The implications of this 

problem on SLiMFinder are already mentioned in Section 1.8.2. Conserved domains and 

larger homology regions. In addition, clustering algorithms I have tried (the 

SLiMFinders’, Leaf (Bull et al., 2013), CD-HIT (Li and Godzik, 2006), as well as 

implementations of my own ideas) had a stability problem. The clusters often change 

significantly upon adding to or removing single sequences from a quite large dataset . 

Moreover, clustering results generally also depend on the order of the sequences in the 

dataset, and Leaf generates different results from run to run, even for the same input 

files due to initial random seeding. The order and randomization issues can be easily 

fixed through input sorting and constant seeding, respectively. However, the A-B-C and 

stability issues are not so easy to address. 

 

In addition to the ambiguity of clustering, correcting for redundant sequences as a 

whole from the input dataset has another, unwanted implication: unique, non-similar 

regions will also be affected. This can happen, for example, for proteins that share a 

large conserved domain but are not related otherwise. To tackle this, DILIMOT offers a 

more elegant solution by masking out not the whole query sequences but only the 

similar regions. Such a solution in most cases avoids the problems of clustering or non-

redundant subset generation, as well as handles gracefully partially homologous 

proteins. However, it still has one drawback, which I conceptually eliminated in HH-

MOTiF. 

 

DILIMOT homology masking is static, i.e. it is performed at the beginning of the motif 

searches without considering the context of actually identified motifs. The homologous 

regions, however, become a problem only, if there is an identified SLiM candidate that 

locates to more than one instance of the same region. SLiMs that locate to only one 

instance (which can happen, because the homologous regions must not be 100% 

identical and one can still harbor a motif that the other does not) should not be affected 

by homology filtering. Furthermore, it can be argued that if a SLiM does locate to 
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homologous regions, the highest-scored from all the affected SLiM instances should be 

retained for further analysis of the whole SLiM. However, if masking is performed before 

the search, there is no way to know, which of the homologous proteins will harbor the 

best SLiM representative. Finally, if there are overlapping homologous regions in more 

than two proteins (i.e., A is homologous to B and B is homologous to C), we come to the 

same problem of biased choice of representatives as with whole sequence clustering. 

 

Therefore, to combat these issues, I implemented the contextual homology masking. It 

does not affect input sequences per se but triggers the SLiM candidate re-check if it 

contains pairs of instances located to the corresponding homologous regions. This re-

check does not remove the individual leaves: if the tree has enough instances in non-

homologous parts of the query proteins, it is retained and the user can see all the 

identified instances, including the homologous ones. The problem of the biased 

representatives choice was not fully tackled in the published version of HH-MOTiF. 

Namely, in the A-B-C case it was retaining the common homolog B, while more motif 

trees could be retained by discarding B and retaining non-homologous A and C instead. 

However, I fixed this issue in a newer version. This modification led to slight overall 

improvement in synthetic residue-wise F1 from 28.0% to 28.2% and in PC from 16.0% 

to 17.2%. 

 

The provided data show that the homology masking plays an important role in the 

whole pipeline and affects the search results significantly. SLiMFinder does not process 

68 out of 176 ELM classes at all, because the corresponding datasets are too homologous 

and therefore form less than three clusters of independent sequences. HH-MOTiF, 

however, was able to partially recover 19 of these 68 SLiMs. Moreover, 16 of them were 

identified with F1 score exceeding 0.28 (averaged result for all ELM classes), indicating 

the ability of HH-MOTiF to successfully overcome the dataset homology problem while 

identifying SLiMs, avoiding too stringent rejection of positives, as well as not allowing 

too much false positives to arise due to homology regions or conserved domains. The 

stringency of SLiMFinder, on the other hand, reduces substantially its resulting recall. 

Lack of homology filtering, however, can lead to low precision, which is what we observe 

for GLAM2. 
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4.2.10. Dynamic FASTA output format 

The output format is an important part for a SLiM predictor, as it ensures easiness of 

understanding of the results for lab biologist not having much experience in 

programming or running console-based applications. 

 

Displaying SLiM search results is conceptually not a hard task, when there is only one 

SLiM found in a relatively small dataset (3-5 proteins). The task gets more complicated, 

if there is a need to display multiple SLiMs in larger datasets. If the SLiM instances are 

overlapping, showing all of them together on the query sequences will lead to an 

incomprehensible meshwork. Therefore, some compromises are required. 

 

To avoid overloading of the output page with information, DILIMOT displays one motif 

at a time on another page. Output motifs in MEME are not overlapping, so they are 

shown all together but marked with different colors. Output motif trees in HH-MOTiF 

are often overlapping; however, we did not want users to experience inconveniences 

associated with multiple pages. As the number of motif trees is theoretically unlimited, 

distinguishing them by colors is non-applicable. Therefore, we decided for a 

compromise of always showing only motif roots (which cannot overlap), while motif 

leaves become highlighted only upon selection of a tree. We implemented font 

stretching and appearing diagonal lines to make the selected tree instantly visible. To 

my best knowledge, HH-MOTiF is currently the only SLiM predictor with scrolling effects 

in the output page. The decision to show all the input sequences makes the motif 

positions very easy to see. On the down side, one needs a lot of scrolling in case of larger 

datasets and longer proteins sequences. 

 

4.3. Advantages of statistical evaluations with SLALOM 

SLALOM was developed to fill the niche in analyzing certain kinds of positional data, 

more specifically – the short motif predictions. The blueprint for SLALOM was the 

procedure described in (Song and Gu, 2015). However, their description lacks several 

important aspects. Namely, there is no information on handling overlaps in the 

prediction and in the ELM database, as well as no specification of the order of averaging. 

Moreover, the procedure is not available as standalone software. 

 



116 
 

The performance evaluation of other predictors being published was even less 

comprehensive. For example, in (Doğruel et al., 2008), (Edwards et al., 2007) and 

(Palopoli et al., 2015), only a binary classification of motifs as either “true or “false” 

predictions, and as “missed or “recovered” database motifs was provided. In (Kelil et al., 

2014) the provided statistics are limited to residue-wise recall, which is referred to as 

‘motif coverage’. Nevertheless, as shown throughout this thesis, the problem of a 

predictor’s performance evaluation is much more complex than just providing values of 

one metric for several datasets tested and therefore requires a separate statistical tool. 

 

The statistical problems covered with SLALOM are generally not unique to the motif 

predictor cases and therefore were already mostly tackled in various software packages. 

For example, Bioconductor (Lawrence et al., 2013) and BEDtools (Quinlan, 2014) 

represent comprehensive solutions for genomics. With appropriate data pre-processing, 

they both can be used for estimating the performance of motif predictors. Nevertheless, 

they are from the concept site- or gene-oriented and as such do not provide the 

necessary flexibility to calculate residue-wise statistics. For example, they do not 

support gross residue counting. Moreover, they do not calculate performance metrics 

such as an F1 score. To expand potential areas of applicability, I additionally 

implemented time series processing in SLALOM. This functionality is also missing in the 

mentioned packages. 

 

However, currently SLALOM remains a beta-version software.  

 

4.4. SLiM heterogeneity as the challenge to statistical evaluation of predictors 

Throughout this work, we often mention average values of different performance 

metrics across the ELM classes for different tools and configurations. However, we 

usually do not mention dispersion or significance values. This is caused by the fact that 

the values have different distributions across metrics, tools, and configurations. The 

only common feature of these distributions is the relatively large share of ELM classes 

with zero values (completely missed SLiMs), as one can see in Figure 13 A and C. Even if 

we remove all the zeros, the remaining values do not show a distinct pattern. Although 

the precision of HH-MOTiF (Figure 13 B) is distributed somewhat normally, this holds 

neither for the recall of HH-MOTiF, which exhibits almost perfect uniform distribution, 
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nor for the precision of SLiMFinder (Figure 13 D), which is clearly bimodal. The inability 

to determine the distribution type results in the impossibility of applying classical 

statistical tests such as ANOVA to evaluate the significance of the difference in 

performance between different tools or different configurations of the same tool. 

 

 
 
Figure 13. Violin plots, also known as smoothed bin histograms, showing the distribution of performance 
metric values among the analyzed ELM classes for the default configuration of HH-MOTiF (A, B) and the 
optimized configuration of SLiMFinder (C, D). All the 176 ELM classes are shown (A, C) or only those with 
non-zero performance (B, D). 

 

The reason for the absence of a common distribution type for the performance values is 

the underlying heterogeneity of the ELM classes themselves. They do not represent 176 

SLiM-containing datasets drawn at random from some large population. Instead, they 

represent a collection of datasets with different properties drawn from different sub-

populations. Alternatively, we can say that the sample size in this case is not large 

enough to adequately capture the heterogeneity of the population. 

 

We exclude zero and nan values for individual ELM classes from consideration on all the 

charts presented in this section, unless specified otherwise. Such a correction makes 

sense, as we want to quantify the dependence of prediction quality on different features. 
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The difference between zero and a positive value is on the other hand rather qualitative 

and not quantitative. We do not want zero values from SLiMs that cannot be predicted to 

distort the conclusions. 

 

The factors that we identified as causing the heterogeneity are the following: 

1. Diversity in the SLiM length 

2. Diversity in the query protein length 

3. Diversity in the dataset size 

4. Diversity in the SLiM conservation 

5. Diversity in the dataset intrinsic homology 

6. Diversity in the relative position of the SLiM 

7. Diversity in miscellaneous sequence properties (e.g. low complexity) 

 

Those SLiMs, which are annotated in ELM vary in length from 2 to 23 residues. Longer 

SLiMs have theoretically better chances to be identified correctly. Indeed, GLAM2 shows 

a tendency to perform better on ELM classes with longer motifs (Figure 14 left). The 

same is true for MEME (Figure 14 right). This tendency is not random and can be 

explained by the general inability of these tools to trim SLiM candidates to the proper 

length: they can identify the shorter SLiMs but report too many flanking residues along 

with it. Logically, this affects precision but not recall. SLiMFinder and HH-MOTiF do not 

show this dependency; however, it was also observable in older versions of HH-MOTiF. 

 

 
 
Figure 14. Scatter plot showing the correlation between SLiM length and the performance of GLAM2 (left) 
and MEME (right) with the optimized configuration. Each SLiM corresponds to an ELM class. Each point 
represents an ELM class; r is the correlation coefficient. Only ELM classes with non-zero performance are 
retained. 
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The conservation of SLiMs has a quite obvious influence on the performance. Indeed, we 

see that performance of both HH-MOTiF (Figure 15 left) and SLiMFinder (Figure 15 

right) shows a correlation with the underlying SLiM conservation. Intriguingly, we could 

not detect this correlation for either MEME or GLAM2. 

 

 
 
Figure 15. Scatter plots showing the correlation between SLiM conservation and predictability by HH-
MOTiF (left) and SLiMFinder (right). Each SLiM corresponds to an ELM class. Only ELM classes with non-
zero performance are retained. Each point represents an ELM class; r is the correlation coefficient. 

 

The relative position may also make SLiMs harder or easier to find, as the terminal 

regions of the sequence may be influenced by various biases. MFSPWSSpred, for 

instance, cannot capture the termini, because it evaluates the SLiM-likeness of residues 

in the center of a sliding window. There are 14 ELM classes that represent exclusively N- 

or C-terminal motifs. As Table 24 shows, all the tools, except, perhaps, for MEME, show 

substantially different performances on these classes in comparison to the rest of the 

ELM database: HH-MOTiF and SLiMFinder find the terminal motifs better, while GLAM2 

performs worse in these situations. In my opinion, GLAM2 indeed has a bias in the 

algorithm, as it finds the best SLiM candidates through moving the alignment from an 

initially random position; terminal positions in these situation have lower probability to 

be reached, although more detailed studies on the simulated annealing algorithm are 

needed to confirm or reject this hypothesis. However, the relatively low number of 

terminal motifs does not allow us to draw a firm conclusion from these data. 

 
Terminal position of the 
SLiM 

Residue-wise synthetic F1 
HH-MOTiF SLiMFinder GLAM2 MEME 

yes (n=14) 0.3754 0.3709 0.0616 0.1142 
no (n=162) 0.2711 0.2483 0.1278 0.0934 

 
Table 24. Dependence of the average residue-wise precision on the average query protein length for 
different tools tested (optimized configurations used). The measurements were done on total n=176 ELM 
classes. 
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Finally, a number of miscellaneous properties of the query sequences can impact the 

easiness of discovery of the SLiMs they harbor. The sequences, for example, may contain 

numerous low complexity regions (LCRs). When occurring in several input proteins, 

they will generate multiple false predictions. If a low complexity filter is implemented, it 

will mask those regions; however, this may hide true SLiMs that have low complexity 

nature. As one can see from Table 25, LCRs are more or less equally distributed between 

SLiM and non-SLiM residues. With the default settings of LCR filtering, the filter per se 

has even a negative impact on the performance, masking more SLiMs than unrelated 

LCRs. When LCRs are defined with the default window length, there are approx. 11% of 

ELM sites that have low complexity nature. Thus, there is a relatively large subgroup of 

SLiMs that require special handling from the perspective of a SLiM predictor. Similarly, 

input datasets can differ substantially in average surface exposure, sequence disorder, 

etc. The data in Table 26 show that approx. 7% of ELM sites are located in predicted 

buried regions. Moreover, the study from (Edwards and Palopoli, 2015) states that there 

are approx. 15% of SLiMs in ordered regions. Therefore, adding even a well-performing 

sequence property filter may result in the predictor becoming insensitive to a particular 

group of SLiMs, while gaining in performance on other groups. In addition, masking 

impacts the effective sequence length. If a large share of residues can be outright 

discarded as low complexity, buried or ordered, this leaves only few remaining positions 

for potential SLiM candidates. This makes the prediction easier. In such datasets, a 

predictor that implements the corresponding filters has an advantage over a predictor 

that does not. This, however, will not hold true for the datasets, where only few or no 

residues can be masked based on these features. 

 
Measure Low complexity window length 

6 8 (default) 10 
Share of non-SLiM residues covered (LCnonSLiM), % 0.265 0.097 0.050 

Share of SLiM residues covered (LCSLiM), % 0.297 0.105 0.046 
Share of ELM sites containing no low complexity residues, %  0.521 0.841 0.934 

Share of ELM sites covered by LCRs to at least 50% (SLC50), % 0.314 0.112 0.050 

 
Table 25. Performance evaluation of an isolated low complexity filter on the ELM dataset. The default 
value of the window length in SLiMFinder and SEG (Wootton and Federhen, 1996) is 8. 

 

Measure RSA threshold 
0.16 0.18 

Share of non-SLiM residues buried (BnonSLiM), % 0.183 0.202 

Share of SLiM residues buried (BSLiM), % 0.120 0.140 
Share of ELM sites containing no buried residues, %  0.646 0.604 
Share of ELM sites buried to at least 50% (SB50), % 0.065 0.084 
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Table 26. Performance evaluation of an isolated surface exposure filter on the ELM dataset. 

 

The influence of some other parameters has already been addressed in Results. 

 

The list of factors causing the heterogeneity is probably still not complete. 

 

The underlying heterogeneity in the input dataset properties leads to the heterogeneity 

in performance dataset-wise. A desired situation for comparison between different 

predictors would be a normally distributed performance. This could for instance have a 

mean of 0.4 and a standard deviation of 0.1. Unfortunately, as was already pointed out, 

the reality is quite different, with a substantial number of datasets containing no slim 

and performing exactly at the zero level and the rest of the values following a generally 

unknown distribution. This forced me to break the complete ELM dataset consisting of 

176 separate datasets into subgroups and analyze the advantages and disadvantages of 

predictors in terms of certain specific SLiM and dataset properties, which was discussed 

in this thesis. 

 

In addition, the heterogeneity can also explain, why the prediction of SLiM-likeness as a 

sequence property is much more challenging than for instance of secondary structure or 

surface exposure. The maximal reported balanced accuracy of SLiM-likeness prediction 

is currently only slightly over 60%. It has been reported with 61.0% for non-masked 

non-smoothed PSSM on the MoRF dataset in (Fang et al., 2013) and approx. 60% on the 

ELM data for the pipeline described in this thesis. Yet, it reaches almost 80% for surface 

exposure (Pugalenthi et al., 2012) and almost 90% for secondary structure (Feng et al., 

2014). If the heterogeneity is removed and only one specific SLiM type is considered, a 

substantially higher accuracy (84%) can be reached (Kao et al., 2015). 

 

4.5. On filtering by sequence properties in de novo SLiM prediction 

De novo motif search relies on the identification of weak similarities between sequences 

in an input dataset. It does not identify SLiMs as such, but only enriched SLiMs in a given 

dataset. Therefore, it also does not directly rely on properties of a single sequence to 

operate. The same sequence region can be identified as SLiM in one dataset and as non-

SLiM in another dataset. Even if some parts of the sequence can be outright masked 

solely on the basis of their properties, this will not affect the dataset performance, unless 
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there are similar stretches in a sufficient number of the other sequences in this dataset. 

This fact explains, why the discussed sequence property filters on low complexity, 

surface exposure and sequence disorder have relatively low – and sometimes even a 

negative – impact on the overall performance of predictors. For example, adding a 

sequence disorder filter decreases the residue-wise synthetic F1 of HH-MOTiF by 0.8 

percentage points, but increases the performance of the default SLiMFinder 

configuration by 1.6 percentage points; the surface exposure filter on the other hand 

decreases the F1 by 0.5 and 4.5 points, respectively. The negative impact of the surface 

exposure filter can be to some extent explained by the insufficient performance of the 

filter itself. As Table 26 shows, the filter with the default threshold value of 0.16 masks 

only approx. 1.5 times more non-SLiM residues than of actual ELM sites. This means that 

the filter definitely has a certain selectivity per se; however, at the levels of ~20% recall 

and ~40% precision with the default HH-MOTiF configuration, the loss in recall will be 

too large to be consolidated by the gain in precision. Therefore, a slight drop in the 

resulting F1 score is expected. As the SLiMFinder precision is even higher, the drop is 

expectedly higher too. In fact, SLiMFinder with its ~65% precision is already more 

selective than the surface exposure filter. Therefore the latter can only ‘dilute’ the 

former, if combined. 

 

Finally, it would be interesting to see, how filtering for the ultimate sequence property 

of the so-called SLiM-likeness would impact de novo SLiM prediction. It is interesting to 

note that the reported balanced accuracy 59.5% of my pipeline is consistent with 61.0% 

for non-smoothed non-masked reported in (Fang et al., 2014). Both approaches use 

randomized undersampling of the negative set, which leads to certain volatility in 

performance. I report the SD of 1.2 percentage points, while (Fang et al., 2014) reports 

only one value. Due to significant differences in the analyzed features, a direct 

comparison between the two approaches is not feasible. My approach does not require 

evolutionary information to work and is not designed to predict very terminal SLiMs. 

Nevertheless, the close performance values for distinct approaches indicate that it 

would be hard to achieve significantly higher performance. The balanced accuracy is 

further slightly increased to ~64% in MFSPSSmpred by combining the evolutionary 

conservation, surface exposure, and intrinsic disorder information with direct 

classification of PSSMs by SVM in one tool. Taken together, prediction of SLiM-likeness 
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itself is even less accurate than that of surface exposure and sequence disorder (Deng et 

al., 2015), I do not expect a significant improvement from such a filter. Nevertheless, the 

algorithmic novelties implemented in HH-MOTiF and discussed here already help to 

achieve previously unreachable levels in de novo SLiM search performance. 
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