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1 Einleitung  

Als Endodont wird die anatomisch-funktionelle Einheit der Zahnpulpa mit dem umliegen-

den Dentin bezeichnet. Das Endodont steht mit dem Foramen apicale der Wurzelspitze, 

und auch über akzessorische Kanäle mit dem Parodontium in Verbindung. Aus diesem 

Grund befasst sich die Endodontologie auch mit der Behandlung der periapikalen Region 

(Hellwig, et al., 2007). Diese Erläuterungen lassen bereits den Umfang einer Selektion aus 

dem Bereich „endodontische Materialien“ erahnen. 

Im Bereich Endodontie können bei einer Indikation völlig unterschiedliche Stoffe zum 

Einsatz kommen, aber auch sehr spezifische Materialien in verschiedenen Bereichen an-

gewendet werden. Es ergeben sich für jede Indikation besondere Anforderungen in der 

Wirkungsweise und den Materialeigenschaften. Die jeweiligen, spezifischen Anforderun-

gen können von den angebotenen Produkten nur in unterschiedlichem Maße erfüllt werden. 

Bei einem Material zur Überkappung der vitalen Pulpa stehen zum Beispiel die Bioaktivi-

tät und -kompatibilität sowie die antibakterielle Wirkung, die Druckfestigkeit, die Isolie-

rung gegenüber Temperaturschwankungen und auch die Verarbeitbarkeit im Fokus. Um 

endodontische Materialien wie Sealer, Liner, Bases und hydraulische Kalziumsilikatze-

mente langfristig erfolgreich einzusetzen, werden die spezifischen Materialeigenschaften 

um weitere biologische, physikalische und praktische Anforderungen ergänzt. Mit Hilfe 

moderner Prüfverfahren und Testmethoden sind detaillierte Aussagen zu all diesen Materi-

aleigenschaften möglich. Bei der Literaturrecherche zu den mikromechanischen Eigen-

schaften Härte und Elastizitätsmodul für Materialien aus dem Bereich der Endodontie, 

wird man jedoch nur schwer fündig. Die wenigen Angaben dazu, behandeln meist nur sehr 

kleine Materialgruppen, wodurch diese Studien keinen Gesamteindruck zu den unter-

schiedlichen Stoffklassen vermitteln können. Vergleiche zwischen den Studien sind durch 

unterschiedliche Methodik nur schwer möglich. Aufgrund der breiten Verteilung der endo-

dontischen Materialien auf verschiedene Stoffklassen, zeigen sich stark abweichende Wer-

te hinsichtlich der mikromechanischen Eigenschaften. 

Die Entwicklung von Wurzelkanalsealern verlief von pastenartigen Sealern, über Zemente 

hin zu Polymeren. In Zukunft erhofft man durch interne Verklebung und Ausbildung eines 

Monoblocks eine Verstärkung des endodontisch behandelten Zahnes zu erreichen, um so 

das Frakturrisiko minimieren zu können (Mounce, 2007). Auch im Bereich der bioaktiven 

Zemente gibt es einige Neuerungen. In der endodontischen Chirurgie haben sie sich be-
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währt, inzwischen wird ihr Einsatz auch als Dentinersatzmaterial geprüft (Kenchappa, et 

al., 2015). Daraus lässt sich schließen, dass in diesem Bereich die Generierung von Labor-

daten an Wichtigkeit gewinnt. Die Untersuchung mikromechanischer Eigenschaften endo-

dontischer Materialien aus verschiedenen Stoffklassen soll die Wissenslücke schließen, 

und zum Verständnis der Materialeigenschaften dieses großen Gebietes beitragen. Mit der 

vorliegenden Studie werden die mikromechanischen Eigenschaften Vickershärte und Elas-

tizitätsmodul von 20 verschiedenen endodontischen Materialien gezeigt, sowie deren Ver-

halten nach Alterung unter Laborbedingungen in einem Zeitraum von sechs Monaten. 

Durch statistische Auswertung werden die Unterschiede der mikromechanischen Eigen-

schaften der Materialien, sowie der Einfluss der Zeit detektiert. Nicht zuletzt sollen die 

Untersuchungen einen Anstoß dazu geben weitere Werkstoffkennwerte zu generieren, um 

diese Grundlagenforschung voran zu treiben.  
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2 Literaturübersicht  

2.1 Chemie und Eigenschaften ausgewählter Materialklassen aus dem 

Anwendungsbereich der Endodontie 

Die Endodontie befasst sich mit der Pathologie des Pulpa-Dentin-Komplexes und des peri-

apikalen Gewebes. In diesem Bereich kommen unterschiedliche Wirkstoffe und Materia-

lien zum Einsatz. Die folgende Auswahl stellt einen Auszug der Materialklassen dar, die 

sowohl zur Vitalerhaltung des Pulpa-Dentin-Komplexes als auch bei der Behandlung des 

erkrankten Endodonts zur Anwendung kommen. Die Chemie dieser Stoffklassen und deren 

Eigenschaften werden im Folgenden erläutert. 

2.1.1 Epoxid-Amin-Harz  

Epoxidharze sind Kunstharze, die in Verbindung mit einem Härter zu einem duroplasti-

schen, makromolekularen Kunststoff reagieren. Sie werden aus Epichlorhydrin und 

Diphenolen hergestellt. Durch abwechselnde Kondensation in alkalischer Lösung entsteht 

ein Epoxy-Makromolekül. Epoxidharze besitzen gute mechanische Eigenschaften und zei-

gen eine hohe Beständigkeit gegenüber Temperaturschwankungen und Chemikalien. Sie 

gelten daher als hochwertige und auch teure Kunststoffe (Domke, 1986). Die erste Herstel-

lung von Epoxidharzen fand in der Schweiz durch De Trey Frères SA statt. 1945 wurde 

erstmals ein Epoxidharz als Klebstoff vorgestellt (Seymour & Raymond, 1981). 1954 wur-

de durch André Schroeder ein Wurzelkanalsealer auf Epoxidharz Basis entwickelt 

(Schroeder, 1954). Das Präparat AH 26 (Dentsply De Trey, Konstanz) zählt zu den welt-

weit am meisten verwendeten Wurzelkanalsealern (Rödig, et al., 2005). Das Nachfolge-

produkt AH Plus (Dentsply De Trey, Konstanz) wurde 1995 eingeführt. 

Zu beiden Sealern existieren zahlreiche Studien. Bei der Bewertung neuer Wurzelkanal-

füllmaterialien werden diese häufig als „Goldstandard“ zum Vergleich herangezogen 

(Saleh, et al., 2004), (Sevimay & Dalat, 2003), (Tagger, et al., 2002). Bei beiden Produkten 

handelt es sich um Bisphenol basierte Epoxidharze. Diese stellen 75 % der weltweit ver-

wendeten Epoxidharze dar. Als Härter kommen basische Amine zur Anwendung. Die Ver-

besserung des Produkts AH Plus gegenüber AH 26 liegt hauptsächlich im Austausch des 

Hexamethylentetramin zu einem disekundären Diamin. Aus Hexamethylentetramin wird 

im sauren Milieu Formaldehyd abgespalten, dies beeinträchtigte die Biokompatibilität des 

https://de.wikipedia.org/wiki/Periapikal
https://de.wikipedia.org/wiki/Periapikal
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AH 26 als Wurzelkanalsealer (Koulaouzidou, et al., 1998), (Spångberg, et al., 1993). Der 

Sealer AH Plus wird auch unter anderen Namen, wie zum Beispiel „Topseal“ oder „2 Se-

al“ vertrieben. Weitere Beispiele von Sealern dieser Stoffklasse sind „Adseal“ (Cumdente, 

Tübingen, Deutschland), „Perma Evolution“ (Alfred Becht GmbH, Offenburg, Deutsch-

land) und „Acroseal“ (Septodont, Cedex, France), welcher einen Calciumhydroxidzusatz 

enthält. Hinsichtlich der Zugabe von Calciumhydroxid in eine polymere Matrix ist anzu-

merken, dass die Calciumionenabgabe nur in geringem Maße stattfindet (Eldeniz, et al., 

2007) und diese nur nachgewiesen werden kann solange die Komponenten nicht ausgehär-

tet sind (Duarte, et al., 2000). Bei vergleichenden Untersuchungen konnte festgestellt wer-

den, dass die Zusammensetzung - hinsichtlich Art und Menge der Einzelkomponenten, 

entscheidenden Einfluss auf Werkstoffeigenschaften wie Löslichkeit, Adhäsion, Abbinde-

zeit und thermische Stabilität hat (Marciano, et al., 2011). 

AH Plus wird als Referenzmaterial bei Untersuchungen neuer Wurzelkanalsealer herange-

zogen, da dieser Sealer hinsichtlich der biologischen, praktischen und physikalischen An-

forderungen in zahlreichen Studien untersucht wurde und, wie nachfolgend erläutert, gute 

Ergebnisse gezeigt hat. Obwohl auch bei AH Plus initial eine geringe Formaldehyd-

Freisetzung messbar ist, können Epoxidharze im abgebundenen Zustand als biokompatibel 

und als nicht irritierend auf das apikale Gewebe bewertet werden (Geurtsen & Leyhausen, 

1997), (Tronstad & Wennberg, 1980). AH Plus weist mäßige antimikrobielle Eigenschaf-

ten auf. Diese sind auf den Inhaltsstoff Bisphenol-A-(di)-methacrylat und die Formalde-

hydfreisetzung während des Abbindevorgangs zurückzuführen (Cobancara, et al., 2004). 

Die dreidimensionale bakteriendichte Obturation des Wurzelkanals stellt einen wichtigen 

Faktor für einen dauerhaften Erfolg der Behandlung dar. Die Dichtigkeit von Wurzelka-

nalsealern kann mit Isotopen, Bakterien, elektrochemischen Untersuchungen, gaschroma-

tografischen Methoden oder Farbstoffen überprüft werden. Allgemein kann für AH Plus 

und AH 26 eine gute Dichtigkeit ausgesprochen werden, die durch die oben besprochenen 

Methoden determiniert wurden (Suprabha, et al., 2002), (Matloff, et al., 1982), (Delivanis 

& Chapman, 1982). 

Das langfristige Abdichtungsvermögen eines Wurzelkanalsealers wird durch verschiedene 

Werkstoffeigenschaften beeinträchtigt. Positiven Einfluss hat dabei die geringe Abbinde-

expansion der Epoxidharze (4- 5%), sowie die Volumenstabilität nach Aushärtung 

(Ørstavik, et al., 2001). Außerdem zeigt AH Plus eine verhältnismäßig hohe Haftkraft so-
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wohl zum Dentin, als auch zu Guttapercha (Lee, et al., 2002). Um eine dreidimensionale 

Obturation zu erreichen spielt das Fließverhalten eine wichtige Rolle. Es konnte belegt 

werden, dass AH Plus aufgrund der guten Fließeigenschaften in Seitenkanäle penetrieren 

kann und diese abdichtet (Venturi, et al., 2003). Positive Auswirkungen auf die Lang-

zeitstabilität hat die geringe Löslichkeit (Schäfer & Zandbiglari, 2003), sowie die geringe 

Wasseraufnahme von 0,25 Gew% (Vitti, et al., 2013). 

2.1.2 Methacrylat 

Die erste industrielle Produktion polymerer Acrylester erfolgte 1927 durch die Firma 

Rohm und Hass in Darmstadt. Im Gussverfahren konnten sie 1934 erstmals Plexiglas aus 

Methylmethacrylaten herstellen (Riddle, 1954). Bereits 1975 wurde der Kunststoffsealer 

Hydron (Fa. Hydron Technologies, Pompano Beach, USA) entwickelt. Dieser Sealer ent-

hielt eine sehr hydrophile Matrix und musste wegen Wasseraufnahme und Quellung 

(Benkell, et al., 1976) sowie anderen negativen klinischen Ergebnissen vom Markt ge-

nommen werden (Ebert & Roggendorf, 2012), (Osins, et al., 1983), (Reid, et al., 1992). 

Daraufhin wurden einige Versuche unternommen um die Materialeigenschaften für den 

Einsatz in Wurzelkanälen zu verbessern (Zidan & El Deeb, 1985), (Leonard, et al., 1996), 

(Ahlberg & Tay, 1998). Nach einigen Jahren und vielen neuen Erkenntnissen konnten die 

Versuche von Kataoka und Kollegen (Kataoka, et al., 2000) zu der Entwicklung von adhä-

siven Sealern auf Methacrylatbasis führen. 

In der Füllungstherapie haben sich Klebetechniken in Verbindung mit Kompositen auf 

Methacrylatbasis längst etabliert. Auch in der Endodontie hofft man Dentinkanälchen und 

Feinheiten des Wurzelkanalsystems mit Hilfe von adhäsiven Systemen füllen zu können, 

um so die Zähne zu stabilisieren (Rawlinson, 1989), (Patel, et al., 2007). Außerdem sollte 

durch die neue Technik das Risiko von Wurzellängsfrakturen nach Wurzelkanalbehand-

lung reduziert werden (Schwartz, 2006). 

In einer Übersichtsarbeit von Kim et al. wurden alle gängigen Sealer auf Methacrylatbasis, 

ähnlich wie die Dentinbonding-Systeme in vier Generationen eingeteilt (Kim, et al., 2010). 

Im Folgenden werden die beiden bekanntesten Systeme „Epiphany/Resilon“ und „Endo-

Rez“ vorgestellt.  
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Das Resilon-System 

Im Jahr 2003 kam mit der Entwicklung von Epiphany
1
 (Fa. Pentron Clinical Technologies, 

Wallingford, USA) ein Wurzelkanalsealer auf den deutschen Markt, der wie ein fließfähi-

ges, mäßig gefülltes Komposit auf Methacrylatbasis aufgebaut ist. Bei Sealern dieser 

Stoffklasse besteht die Möglichkeit zur Selbst- und Lichthärtung (Ebert & Roggendorf, 

2012). Der Sealer Epiphany besteht aus einer Matrix aus BisGMA (Bisphenol-A-glycidyl-

(di)methacrylat), ethoxyliertem BisGMA, UDMA (Urethan-di-methacrylat) und hydrophi-

len, difunktionalen Methacrylaten sowie Photoinitiatoren. Der Füllstoffanteil beträgt 70% 

und besteht aus Calciumhydroxid, Bariumglas, Bariumsulfat, Wismutoxichlorid und Sili-

kat (Ebert & Roggendorf, 2012). Der Sealer wird in Verbindung mit einem selbstätzenden 

Primer und Dentinhaftvermittlern kombiniert. Ein adhäsiver Verbund zu dem Füllmaterial 

Guttapercha ist nicht möglich. Deshalb wurde gleichzeitig mit dem Sealer Epiphany ein 

Ersatz zu Guttapercha entwickelt, das die gleiche Konsistenz aufweist, und mit allen etab-

lierten Fülltechniken wie Guttapercha verwendet werden kann. Dieses neuartige Kernmate-

rial (Resilon) besteht aus dem Polymer Polycaprolacton, Füllstoffen und bioaktivem Glas 

(Firma Resilon Research LLC, Madison, USA) (Ebert & Roggendorf, 2012). Der Vorteil 

dieses Materials soll im adhäsiven Verbund zwischen Sealer und Kernmaterial liegen. Mit 

dem Resilon System soll also ein sogenannter „Monoblock“ aus Primer, Sealer und Kern-

material im Wurzelkanal möglich sein (Rödig, et al., 2005). 

Das EndoRez-System 

Bei dem 2001 eingeführtem Sealer EndoRez (Ultradent, West South Jordan, UT, USA) 

handelt es sich um einen dualhärtenden, fließfähigen Kompositsealer auf UDMA-Basis. Im 

Gegensatz zu Epiphany ist er niedrig gefüllt und wird ohne Primer verwendet. Durch den 

Zusatz von Phosphatestern wurden die hydrophilen Eigenschaften erhöht. Dadurch erhofft 

man ein besseres Anfließen an die noch leicht feuchte Kanalwand zu erreichen (Ebert & 

Roggendorf, 2012), (Rödig, et al., 2005). 

Da auch dieser Sealer keine Verbindung zu Guttapercha aufbauen kann, wurden für das 

System Guttapercha Spitzen mit Kunststoffkomponenten (Polybutadien-Diisocyanat-

Methayrylat) überzogen (EndoRez Points, Ultradent). Somit ist eine Haftung zwischen 

                                                 
1
 Epiphany wird heute auch unter anderen Namen (RealSeal, Next, SimpliFill, InnoEndo, Resinate) vertrie-

ben (Pameijer & Zmener, 2010). 
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methacrylatbasierten Sealern und dem Wurzelfüllungs-Kernmaterial ermöglicht (Grubbs, 

et al., 2000).  

Neben den verschiedenen Untersuchungen zu Biokompatibilität und Zytotoxizität der Sea-

ler und des Kernmaterials, zu deren bakterieller Dichtigkeit, Verträglichkeit mit den Wur-

zelkanalspülflüssigkeiten und deren Entfernbarkeit sind noch spezielle Untersuchungen zu 

beiden oben genannten Systemen notwendig. Zudem stellt sich auch hier die Frage in wie 

weit die adhäsive Dentinhaftung im schwierigen Bereich des Wurzelkanals, mit den ana-

tomischen Besonderheiten funktioniert. Zusätzlich kommt es intrakanalär auch zu einem 

sehr hohen C-Faktor, das heißt, zu einem ungünstigen Verhältnis von gebundenen zu un-

gebundenen Flächen. Dies führt zur vermehrten Schrumpfung bei der Polymerisation, und 

somit zu Spannungen im Material. Anders als bei der koronalen Anwendung muss noch 

geklärt werden ob die Dentinhaftung funktioniert - auch im Fall der Sklerosierung, Konta-

mination mit Spülflüssigkeiten und mit Restfeuchtigkeit.  

Eine weitere Herausforderung ist die Adhäsion des Sealers zum Kernmaterial, wobei nicht 

gesichert ist, ob ein Monoblock gebildet werden kann und ob dadurch der Frakturwider-

stand der Wurzel erhöht wird. Zahlreiche Studien zeigen ein besseres Abdichtungsvermö-

gen der adhäsiven Sealer gegenüber konventionellen Systemen mit Guttapercha, diese Er-

gebnisse werden teilweise mit der Ausbildung eines Monoblocks begründet (Sandhya, et 

al., 2011), (Tunga & Bodrumlu, 2006), (Raina, et al., 2007), (Aptekar & Ginnan, 2006). 

Die Autoren großer Übersichtsartikel kommen zu dem Ergebnis, dass die adhäsiven Füll-

techniken einen interessanten Ansatz bieten aber laut zahlreichen, unabhängigen Studien 

nicht in allen Anforderungen besser sind als konventionelle Systeme und weiterhin kritisch 

zu betrachten sind. Unter anderem führt die besondere Anatomie des Wurzelkanalsystems 

noch zu großen Schwierigkeiten bei der Anwendung von Adhäsivsystemem (Ebert & 

Roggendorf, 2012), (Rödig, et al., 2005), (Kim, et al., 2010). Pameijer und Zmener spre-

chen nach Literaturvergleich der Ergebnisse von ex vivo und in vivo Tests zu den adhäsi-

ven Systemen, von einer widersprüchlichen Datenlage, die kritisch zu beobachten ist. 

Trotzdem kommen sie zu dem Schluss, dass das EndoREZ- und Resilonsystem nun über 

zehn Jahre erfolgreich angewendet wird und methacrylatbasierte Kompositsealer auch in 

Zukunft einen Platz in der Endodontie haben werden (Pameijer & Zmener, 2010). Nach 

Mounce besteht kein Zweifel, dass die Zukunft der Endodontie „adhäsiv“ ist. Die Mög-

lichkeit eines adhäsiven Verbundes von der apikalen Konstriktion über die Kanalverzwei-

gungen bis hin zur okklusalen Oberfläche sei erreichbar (Mounce, 2007). 
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2.1.3 Polysiloxan 

Polysiloxan ist eine chemische Bezeichnung für Silikon. Silikone sind Polymere aus ein-

zelnen Siloxaneinheiten (Si–O–Si Verbindungen). Dabei sind die Siliziumatome der Silo-

xaneinheit mit organischen Resten gesättigt, so dass die Bezeichnung „Polyorganosiloxan“ 

eine genauere Bezeichnung darstellt. Ausgangsmaterialien zur Herstellung von Silikonen 

sind gemahlenes Silizium und Methylchlorid, diese werden zu Chlormethylsilanen umge-

setzt und weiterverarbeitet. Der organische Anteil im Endprodukt liegt meist unter 35% 

(Domke, 1986). Silikone sind aufgrund ihres anorganischen Gerüsts und den organischen 

Resten in gewisser Weise Hybride. Sie nehmen eine Zwischenstellung zwischen Silikaten 

und organischen Polymeren ein. Da unterschiedliche Siloxaneinheiten in einem Molekül 

miteinander verknüpft werden können, resultiert eine Vielzahl möglicher Verbindungen 

mit unterschiedlichen Eigenschaften. Wie die organischen Kunststoffe können auch Sili-

kone in verschiede Systeme eingeteilt werden. Zum Beispiel nach der Art der organischen 

Reste, sowie der daraus resultierenden Struktur der Verbindungen, wie cyclische-, lineare- 

oder vernetzte Polymere. Weitere Systeme werden entweder nach der Art der Reaktion als 

additions- oder kondensationsvernetzende Silikone, oder nach Ein- und Zweikomponen-

tensystemen unterschieden (Schliebs & Ackermann, 1987), (Ackermann & Damrath, 

1989). Typische Eigenschaften der Silikone sind die hohe Wärme-, Witterungs- und 

Coronabeständigkeit. Sie zeigen ein ausgesprochen hydrophobes Verhalten und eine über-

ragende Trennwirkung durch den hohen Benetzungswinkel. Auf mineralischen Untergrün-

den zeigen sie jedoch eine gute Haftung (Brahm, 2009).  

In der Zahnmedizin finden flüssige bis knetbare Silikone Anwendung als Abformmateria-

lien. Hinsichtlich Dimensionsstabilität und dem, in dieser Anwendung negativem hydro-

phoben Verhalten konnten die dentalen Silikone stetig verbessert werden. 1999 wurde mit 

RoekoSeal Automix RSA (Coltène/Whaledent, Langenau, Deutschland) erstmals ein Wur-

zelkanal Sealer auf Silikonbasis vorgestellt. Es handelt sich um ein additionsvernetzendes 

Polydimethylpolymethylhydrogensiloxan das in einer Doppelmischkanüle 

(Base/Katalysator) angeboten wird. Dieser Sealer kann mit allen Fülltechniken in Verbin-

dung mit Guttapercha verwendet werden. 

Bei dem 2004 erschienen Nachfolgeprodukt Roeko GuttaFlow (Coltène/Whaledent, Lan-

genau, Deutschland) handelt es sich um die Silikonbasis des RoekoSeal Automix mit ei-

nem Zusatz von etwa 30 µm großen Guttaperchakügelchen als Füller (Mokeem-Saleh, et 

al., 2010). Durch diesen Zusatz soll die einfache, sogenannte GuttaFlow Methode ermög-

http://de.wikipedia.org/wiki/Silikate
http://de.wikipedia.org/wiki/Polymer


Literaturübersicht 9 

 

licht werden. Bei dieser wird lediglich ein Guttapercha Masterpoint platziert und das übri-

ge Wurzelkanalvolumen mit Roeko GuttaFlow aufgefüllt.  

Als positive Materialeigenschaften von Silikonen sind die hohe Gewebeverträglichkeit 

(Gencoglu, et al., 2003), (Schwarze, et al., 2002), (Bouillaguet, et al., 2004) und die gerin-

ge Löslichkeit (Schäfer & Zandbiglari, 2003) zu nennen. Desweiteren wird die mäßige 

Volumenexpansion (Hammad, et al., 2008) bei der Abbindereaktion als Vorteil in der An-

wendung als Sealer gesehen. Eine typische Eigenschaft der Silikone liegt allerdings auch 

in der Hydrophobie und einem hohen Benetzungswinkel (Tummala, et al., 2012). Damit 

können die niedrigeren Penetrationstiefen in die Dentintubuli erklärt werden (Cergneux, et 

al., 1987). Es resultiert daraus eine geringere Kontaktfläche zum Dentin was wiederum 

negative Auswirkungen auf die Dichtigkeit der Obturation hat (Kouvas, et al., 1989). Al-

lerdings schließt RoekoSeal Automix in diversen Dichtigkeitsuntersuchungen gut ab (Wu, 

et al., 2006), (Bouillaguet, et al., 2004). 

Die Anwendung der sogenannten GuttaFlow Methode (Beschreibung siehe oben) zeigt 

jedoch keine guten Ergebnisse hinsichtlich des Abdichtungsverhaltens (Sandhya, et al., 

2011), (Brackett, et al., 2006). Im Vergleich zu Methacrylatsealern zeigt GuttaFlow einen 

hohen Anteil an Lufteinschlüssen in Form von Poren (Mokeem-Saleh, et al., 2010). Warm-

füllmethoden in Verbindung mit RoekoSeal Automix oder Roecko GuttaFlow werden auf-

grund der Abbindebeschleunigung und der daraus resultierenden schlechteren Adhäsion 

nicht empfohlen (Wu, et al., 2003). 

2.1.4 Zinkoxid-Eugenol 

Nelkenöl ist seit Jahrhunderten bekannt für seine anästhesierende Wirkung bei Zahn-

schmerzen. Die pharmakologisch wirksame Komponente ist das fast wasserunlösliche 

Phenolderivat Eugenol. Eugenol ist der Hauptbestandteil (80%) des Nelkenöls. 

Ende des 19. Jahrhunderts wurde die Mischung mit Zinkoxid erstmals beschrieben 

(Chrisshol, 1873). Pasten auf Basis von Zinkoxid-Eugenol (ZOE) bzw. ZOE-Zemente 

werden als Zweikomponenten-Präparate angeboten. Meist in Form eines Zinkoxid Pulvers 

(Zn(OH)2 das mit Eugenol (2-Allyl-2-Methoxyphenol) angemischt wird. Dem Pulver ist 

häufig Zinkacetat und Zinkstearat zugesetzt, um eine Beschleunigung der Abbindereaktion 

und eine höhere Festigkeit zu erzielen. Der Flüssigkeit werden neben Eugenol (30-100%) 

oftmals weitere, teils ätherische Öle und auch Baumharze zugesetzt. Diese reduzieren die 
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Eugenolfreisetzung und beeinflussen die Konsistenz des Endproduktes. Durch Vermischen 

der Komponenten kommt es zur Ausbildung von Chelat - Bindungen und es entsteht 

Zinkeugenolat ([C10H11O2]2 Zn) (Wilson, et al., 1973). Auch bei sachgerechtem Anmi-

schen oder reduziertem Eugenolanteil liegt stets freies Eugenol und Zinkoxid vor. Dieses 

schwächt die Integrität des Zinkeugenolats, so dass ein wenig widerstandsfähiger, poröser 

Zement vorliegt (Smith, 1958).  

ZOE-Zemente finden Anwendung als vorübergehendes Befestigungsmaterial für Zahner-

satz, als Liner und Base, als Pulpentherapeutikum, als „Zahnfleischverband“ nach Paro-

dontalchirurgie, als Wurzelkanalmedikament und- Sealer (Jones, 1998). Es wirkt an sich 

bakterizid, wobei diese Wirkung durch Zinkoxid verstärkt wird (Meeker, et al., 1986). Wie 

bei den meisten pharmakologisch wirksamen Stoffen entscheidet auch bei Eugenol die 

Konzentration über eine heilsame- oder toxikologische Wirkung. So wirkt es in geringer 

Konzentration antibakteriell, in hoher Konzentration jedoch zellschädigend (Kasugai, et 

al., 1991). Ein weiterer gewünschter Effekt ist die anästhesierende Wirkung (Markowitz, et 

al., 1992), in direktem Kontakt zu Nervenzellen ist Eugenol allerdings irreversibel neuro-

toxisch (Brodin, 1988). Außerdem konnte nachgewiesen werden, dass Eugenol auf ver-

schiedenen biochemischen Ebenen entzündungshemmend wirkt (Cox, et al., 1987), (Watts 

& Paterson, 1987). Demgegenüber steht eine negative, vermehrte Vasodilatation pulpaler 

Blutgefäße (Olgart, et al., 1989), die wiederum zur Pulpanekrose führen kann (Kim, 1990). 

Auch auf die      (Schleim-) Haut kann Eugenol reizend wirken, zudem verfügt es über ein 

hohes allergisierendes Potential (Atsumi, et al., 2005). 

Durch Kontakt mit Speichel oder intratubulärer Flüssigkeit des Dentins kommt es zur Hyd-

rolyse und somit zur Freisetzung von Zinkoxid und Eugenol. Freies Eugenol kann durch 

Dentin diffundieren, die Konzentration freien Eugenols im Pulpenkavum korreliert mit der 

Dentinschichtstärke (Hume, 1984). Deshalb haben ZOE-Zemente positive Eigenschaften in 

der Verwendung als provisorisches Befestigungsmaterial nach Präparation. Die Verwen-

dung zur direkten Überkappung ist heute unzulässig. Als Sealer darf es nur verwendet 

werden, wenn die Gefahr des Überpressens ausgeschlossen werden kann (Markowitz, et 

al., 1992). Besonders im anglo-amerikanischen Raum wird es häufig bei Pulpotomien ein-

gesetzt. Dabei fördert ZOE jedoch nicht die Regeneration, sondern dient lediglich der Prä-

servation des Gewebes (American Academy of Pediatric Dentistry, 2004). 
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Bei allen genannten Indikationen ist zu beachten, dass es zu Wechselwirkungen zwischen 

Eugenol und Kunststoffen wie Adhäsiven- und Kompositmaterialien kommt. Deshalb soll-

te ZOE nicht angewendet werden, wenn nachfolgend adhäsive Restaurationen geplant sind 

(Mosharraf & Zare, 2014), (Itskovich, et al., 2014). Eine weitere Einschränkung besteht in 

der Verwendung von ZOE-Sealern nach der Anwendung von Calciumhydroxid als Wur-

zelkanaleinlage, da ZOE durch Calciumhydroxid-Rückstände nicht abbindet (Margelos, et 

al., 1997). 

2.1.5 Calciumhydroxid 

Calciumhydroxid wird aus Kalkstein hergestellt. Durch Erhitzung des Kalksteins auf eine 

Temperatur von 900-1200°C kommt es zu einer chemischen Umwandlung und es entsteht 

Calciumoxid (CaO) und Kohlendioxid (CO2). 

CaCO3 →CaO + CO2 

Das Calciumoxid reagiert mit Wasser zu Calciumhydroxid (Ca(OH)2). 

CaO + H2O → Ca(OH)2 

Calciumhydroxid ist ein weißes, geruchloses Pulver. Bei längerem Kontakt mit Wasser 

dissoziiert es trotz seiner schlechten Löslichkeit in Calciumionen (Ca
2+

) und Hydroxylio-

nen (OH
-
). 

Ca(OH)2 ↔ Ca
2+ 

+ 2 OH
- 

Die Freisetzung der Ionen bedingt den stark basischen pH-Wert des Calciumhydroxids von 

12,5 – 12,8. In diesem Vorgang liegt die medizinische Wirkung des Calciumhydroxids 

begründet (Herrmann, 1920). Dadurch wirkt es stark antibakteriell (Estrela, et al., 1995). 

Wird Calciumhydroxid im Sinne eines Pulpa-Therapeutikums eingesetzt, führt der hohe 

pH-Wert zur Entstehung einer Koagulationsnekrose im angrenzenden Pulpagewebe. 

Dadurch wird die Pulpa zur Regeneration stimuliert und die Bildung einer Hartgewebsbar-

riere induziert (Doyle, et al., 1962), (Estrela, et al., 1995), (Ranly & Garcia-Godoy, 2000), 

(Kim, 2002), (Swarup, et al., 2014). 
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Die schlechte Löslichkeit des Calciumhydroxids (Athanassiadis, et al., 2007) ist ein Vor-

teil, da dadurch die Ionen bei Kontakt zu Gewebeflüssigkeit über einen längeren Zeitraum 

freigesetzt werden (Fava & Saunders, 1999). Die Ionenabgabe des Calciumhydroxids kann 

durch die Mischung zu Pasten in verschiedenen Trägersubstanzen gesteuert werden (de 

Andrade Ferreira, et al., 2004). Calciumhydroxid wird in Form von wässrigen- oder alko-

holischen Lösungen angeboten (Suspension in destilliertem Wasser, Kochsalzlösung, Pro-

pylenglycol), als Paste (Olivenöl, Eugenol, Glycerin, Salben die Anästhetika oder Gluco-

kortikoide enthalten), als erhärtende Paste oder Lack in Harzen (Ethymethylketon, Kana-

dabalsam), als Beimischung zu Polymeren oder Guttapercha, sowie als Zement (Calcium-

hydroxid reagiert mit Salicylsäureester zu Calciumsalicylat-Zement).  

Die Trägersubstanz beeinflusst die Ionenabgabe hinsichtlich der Quantität und Dauer der 

Abgabe. Dies führt zu einer unterschiedlich stark ausgeprägten Alkalisierung und somit 

Wirkung des Calciumhydroxids. Auch die Diffusion durch das umliegende Dentin wird 

durch die Trägersubstanz beeinflusst (Calt, et al., 1999), (de Andrade Ferreira, et al., 

2004), (Rödig, 2009). Der erste dokumentierte Einsatz von Calciumhydroxid erfolgte als 

antibakterielle Einlage im Wurzelkanal (Herrmann, 1920). Heute ist es das am häufigsten 

verwendete intrakanaläre Medikament (Lee, et al., 2009). Weitere Indikationen für Calci-

umhydroxid sind die direkte- und indirekte Überkappung (Accorinte, et al., 2008) und die 

Apexifikation (Cvek & Sundström, 1974). Desweiteren findet es Anwendung bei Pulpoto-

mien (Yildiz & Tosun, 2014) und bei der Behandlung von internen- und externen Resorp-

tionen (Carrotte, 2004). Zudem wird Calciumhydroxid sowohl als Beimischung zu Wur-

zelkanal Sealern verwendet (Desai & Chandler, 2009), als auch in Guttaperchaspitzen 

(Economides, et al., 1999). 

2.1.6 Glasionomerzement 

Alan Wilson und Brian Kent konnten in den frühen 1960ern den Glasionomerzement 

(GIZ) entwickeln, 1975 hielt er Einzug in die Zahnheikunde (Kent & Wilson, 1973). Die-

ser entstand aus den Silikatzementen, welche hinsichtlich ihrer Bruchanfälligkeit, der An-

falligkeit zu Erosionen bedingt durch Säure aus der Nahrung und dem mangelnden Ver-

bund zur Zahnhartsubstanz verbessert werden sollten. Außerdem bestand der Verdacht, 

dass Silikatzemente pulpale Sensitivitäten verursachen können (Baig & Fleming, 2015). 

Wilson und Batchelor experimentierten mit verschiedenen Säuren um die Phosphorsäure 

der Silikatzemente zu ersetzen. Ein Anteil von 25% Polyacrylsäure in der Lösung erbrach-
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te verbesserte Eigenschaften (Wilson, 1968). Wilson und Kent erkannten außerdem die 

wichtige Rolle des Aluminium-Silikat-Verhältnisses. Mit einer fluorid- und calciumreichen 

Zusammensetzung konnten sie die Verarbeitungs- und Aushärtezeiten verändern (Wilson 

& Kent, 1972). Weitere Optimierungen der Materialeigenschaften wurden nach Entde-

ckung des Einflusses von chelatbildenden Agenzien erreicht. Eine Zugabe von Weinsäure 

als Chelatbilder führte zu einer Verzögerung der Abbindereaktion (Wilson, et al., 1976). 

Heute kommen auch Itakon, Malein- sowie Polyalkensäuren zur Anwendung, wodurch die 

Werkstoffeigenschaften der GIZ weiter verbessert wurden (Baig & Fleming, 2015).  

Nach dem Anmischen der Bestandteile kommt es charakteristischerweise zur Ausbildung 

zweier Härtungsphasen. Beide Säure-Base-Reaktionen sind empfindlich gegenüber Feuch-

tigkeit (Ionenausschwemmung) als auch Austrocknung (Wasserverlust) (Guggenberger, et 

al., 1998). In der ersten Phase bildet sich innerhalb zirka fünf Minuten, durch Ionisierung, 

das instabile Calciumpolycarboxylat (erste Gelbildung). Aus diesem Hydrogel entsteht 

durch den Einbau von Al
3+

-Ionen innerhalb von 24 Stunden ein stabiler, räumlich vernetz-

ter Calcium-Aluminium-Polycarboxylat-Komplex (Guggenberger, et al., 1998). 

GIZ haften an der Zahnhartsubstanz, indem die Carboxylgruppen der Säure über Ionen- 

und Wasserstoffbrückenbindungen mit dem Hydroxylapatit des Zahnes reagieren (Triana, 

et al., 1994). Verglichen mit der Haftung von modernen Adhäsivsystemem an Dentin und 

Schmelz fällt die Haftung der GIZ allerdings weitaus geringer aus (Scaminaci Russo, et al., 

2014). Ein Vorteil der GIZ besteht in der Fluoridabgabe (Forsten, 1991). Diese sinkt je-

doch kontinuierlich innerhalb der ersten Wochen nach Füllungslegung (Aboush, et al., 

1995). GIZ scheinen Fluorid aus der Zahnpaste zu absorbieren und an die Füllungsperiphe-

rie abzugeben (Hatibovic-Kofman, et al., 1997). GIZ Füllungen zeigen in klinisch kontrol-

lierten Studien wenig Sekundärkaries (Mjör, 1996). 

Neben den konventionellen GIZ wurden später auch hochvisköse, sogenannte stopfbare 

GIZ und auch metallverstärkte, sogenannte Cermet-Zemente entwickelt. Eine weitere Ab-

wandlung stellen die, Ende der 80er Jahre entwickelten kunststoffmodifizierten GIZ (Hyb-

ridionomere) dar. Bei diesen fügte man, um eine initiale Photopolymerisation und eine 

längere Verarbeitungszeit zu ermöglichen Methacrylatgruppen an die Polyacrylsäuren der 

konventionellen GIZ an. Die Flüssigkeit enthält zusätzlich hydrophile Monomere, meist 

HEMA (Hydroxy-Ethyl-Methacrylat) und Fotoakzeleratoren. Die lichtgesteuerte Kopoly-

merisation führt zu einer schnellen Ausbildung eines stabilen Gefüges, danach kommt es 
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zur Säure-Base-Reaktion wie bei den konventionellen GIZ (Leyhausen, et al., 1998), 

(Attin, et al., 1996). 

Im Zeitalter der Komposite werden GIZ heute wegen ihrer wesentlich geringeren Biegefes-

tigkeit und Härte in der bleibenden Dentition als provisorisches oder semipermanentes 

Füllungsmaterial verwendet (Bagheri, et al., 2007). Die Vorteile der GIZ liegen in der ein-

fachen und schnellen Verarbeitung, da sie auch ohne Applikation von Haftvermittlern an 

die Zahnsubstanz binden. Trotz der sinkenden Indikationen für Unterfüllungen, nehmen 

die GIZ in der Kinderzahnheilkunde einen wichtigen klinischen Platz ein (Aggarwal, et al., 

2014). Als Befestigungszemente kommen konventionelle- und lichthärtende GIZ ebenfalls 

zum Einsatz (Djordje, et al., 2013). 

Als Wurzelkanalsealer werden die GIZ-Präparate Endion (Voco GmbH, Cuxhafen, Dtl.) 

und Ketac Endo (3M Espe AG Dental Products, Seefeld, Dtl.) angeboten. Ein Vorteil die-

ser Sealer ist die gute Gewebeverträglichkeit. Die Abbindeschrumpfung hebt den Vorteil 

der guten Dentinhaftung von Glasionomerzementen jedoch wieder auf. In Microleakage-

Studien schneiden Wurzelkanalsealer auf der Basis von GIZ deshalb meist unzureichend 

ab (De Gee, et al., 1994). 

2.1.7 Hydraulischer Kalziumsilikatzement 

Zu den in der Zahnmedizin bekannten hydraulischen Kalziumsilikatzementen gehören der 

medizinische Portlandzement, das Mineral-Trioxide-Aggregate (MTA) und ein Dentiner-

satzmaterial („Biodentine“, Septodont, Cedex, France).  

MTA besteht zu 75% aus Portlandzement, Biodentine ist eine Weiterentwicklung des 

MTA und beinhaltet einige der Hauptbestandteile des Portlandzementes. Kalziumsilikat-

zemente gehören zu den bioaktiven Zementen (Gandolfi, et al., 2013). In diesem Kapitel 

sollen die Gemeinsamkeiten und Unterschiede der verschiedenen Kalziumsilikatzemente 

gezeigt werden. An dieser Stelle sei auf die Übersichtsarbeit von Darvell und Wu hinge-

wiesen, die „Portlandzement-ähnliche endodondische Materialien“ vergleichen (Darvell & 

Wu, 2011). 
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Portlandzement 

Als Erfinder des Portlandzementes gilt der Engländer Joseph Aspdin. Für sein 1823 erhal-

tenes Patent zur „Entwicklung von künstlichem Stein“ verwendete er erstmals den Begriff 

Portlandzement. Der Begriff ist angelehnt an den Kalkstein der auf der Halbinsel Portland 

abgebaut wurde (Riepel, 2008). 

Portlandzement (PZ) ist ein feines Pulver das durch das Vermahlen von Ton- und Kalk-

stein hergestellt wird. Dieses Pulver wird bei 1400°C zu sogenannten Klinkern gebrannt. 

Man nennt diesen Vorgang Kalzinierung. Die Kalzinierung bewirkt eine chemische und 

physikalische Veränderung des Rohmaterials. Die Klinker werden wiederum zu einem 

feinen Pulver zermahlen. Die Hauptbestandteile sind (Camilleri, et al., 2008), (Islam, et al., 

2006): 

 Tricalciumsilikat (55%) 

 Dicalciumsilikat (20%) 

 Tricalciumaluminat (10%)  

 Tricalciumaluminoferrit (10%). 

Um die Abbindezeit zu erhöhen werden bestimmte Mengen (3-6%) an Gips (CaSO4) zuge-

führt (Bramante, et al., 2013). Portlandzement ist ein „hydraulischer Zement“, das bedeu-

tet, dass er die Eigenschaft hat, auch unter Wasser abzubinden. Nach Anmischen des Pul-

vers mit Wasser kommt es zu einer mehrphasigen Hydratisierungsreaktion, bei der die ver-

schiedenen Oxidverbindungen zunächst ein kolloidales Gel bilden. Bei der Reaktion von 

Di- und Tricalciumsilikat mit Wasser entstehen Calciumsilikathydrate unter Freisetzung 

von Calciumhydroxid (Portlandit). Die Dissoziation in Calcium und Hydroxylionen be-

wirkt eine starke Alkalisierung des Zementes. Diese Reaktion geht auch in Ruhephasen, 

das heißt im abgebundenen Zustand niemals gegen Null (Benedix, 2011).  

Die Zementstruktur besteht aus Mikroporen und Kapillaren, in denen Wasser eingeschlos-

sen vorliegt. Dieses Wasser wird mit Calciumhydroxid gesättigt und osmotisch bedingt 

wieder an die Oberfläche abgegeben (hydraulisch). Die freien Poren absorbieren wieder 

Wasser aus der Umgebung, so dass in der Zementmatrix ein Kreislauf von ein- und ausdif-

fundierendem Wasser entsteht. Dieser Effekt ist ein Charakteristikum des Portlandzemen-

tes (Schwarze, 2004), (Steffen & van Waes, 2009). 
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Mineral Trioxide Aggregate 

Der erste Kalziumsilikatzement in der Zahnmedizin wurde 1993 beschrieben und Mineral 

Trioxide Aggregate (MTA) genannt. MTA wurde Anfang der 1990er an der Universität 

Loma Linda (Kalifornien, USA) entwickelt (Torabinejad, et al., 1993). Kommerzielle 

MTA Produkte sind eine Mischung aus Portlandzement (75%), Bismutoxid (20%) als 

Röntgenkontrastmittel, und Gips (max. 3%) zur Regulierung der Abbindezeit. Somit sind 

die Hauptbestandteile von MTA in der Reihenfolge ihres Anteils am Gesamtvolumen 

(Schwarze, 2004): 

 Tricalciumsilikat 

 Bismutoxid 

 Dicalciumsilikat 

 Tricalciumaluminat 

 Tetracalciumaluminoferrit 

 Gips 

Die Abbindereaktionen unterscheiden sich kaum gegenüber Portlandzementen. Der Ab-

bindevorgang ist nach 3 bis 4 Stunden abgeschlossen (Camilleri, et al., 2005). Der ausge-

härtete Zement hat einen pH-Wert von 12 bis 13, was einer Calciumhydroxidsuspension 

entspricht, weist eine geringe Löslichkeit von 0,1 bis 1% auf und verfügt über eine Druck-

festigkeit von 70 MPa (Butt, et al., 2014). 

In der Literaturübersicht „Understanding mineral trioxide aggregate / Portland-cement“ 

von Steffen und van Waes wurden 50 Studien zu Portlandzement sowie dem Produkt MTA 

hinsichtlich ihrer chemischen, physikalischen und mechanischen Eigenschaften, sowie 

deren Biokompatibilität ausgewertet. Sie kommen zu dem Schluss, dass die Ergebnisse der 

Studien, die Unterschiede aufzeigen konnten, stets auf die Substitution von Bismut zu-

rückgeführt werden können. Bis auf die höhere Radioopazität des MTA konnten keine 

signifikanten Unterschiede zu Portlandzement festgestellt werden. Außerdem weisen sie 

darauf hin, dass die Unterschiede zwischen weißem und grauem MTA signifikant größer 

sind als zwischen weißem MTA und weißem Portlandzement. Die weißen Zemente enthal-

ten weniger Chromophore (Fe2O3) und zeigen eine geringere und gleichmäßigere Partikel-

größe als die graue Variante. Außerdem kommt durch das Brennen der Rohstoffe mit Gas, 
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anstatt Kohle oder Öl, ein geringerer Anteil an Schwermetallen zustande (Steffen & van 

Waes, 2009). 

Biodentine 

Der Zement Biodentine (Fa. Septodont) wurde 2009 in den USA und 2011 in Deutschland 

als bioaktives Dentinersatzmaterial eingeführt. Mit Biodentine sollen laut Hersteller einige 

Nachteile des MTA (lange Abbindezeit, geringe Druck- und Biegefestigkeit, schwierige 

Handhabung, Risiko von Zahnverfärbungen, sowie der hohe Materialpreis) verbessert, und 

somit der Indikationsbereich des MTA erweitert werden (Dammaschke, 2012). 

Das Pulver besteht hauptsächlich aus Tri- und Dicalciumsilikat, den Hauptbestandteilen 

des Portlandzements. Weitere Bestandteile sind Zirkoniumdioxid als Röntgenkontrast-

mittel, sowie Calciumcarbonat, das die Kristallisation und Mikrostruktur des Zementes 

beeinflusst, und somit für eine schnellere Abbindereaktion von 9-12 Minuten sorgt (Grech, 

et al., 2013), (Camilleri, et al., 2013). Im Gegensatz zu MTA und PZ wird Biodentine nicht 

mit Wasser, sondern mit einer speziellen Flüssigkeit angemischt. Diese besteht aus Wasser, 

Calciumchlorid und Polycarboxylat. Calciumchlorid dient als Reaktionsbeschleuniger. 

Polycarboxylat ist ein wasserlösliches Polymer, das die Härte des Endproduktes erhöht, 

indem es den Wassergehalt reduziert und zu einer größeren Gefügestruktur führt 

(Camilleri, et al., 2013). 

Grundvoraussetzung bioaktiver Zemente ist deren Biokompatibilität. Zahlreiche in vitro 

und in vivo Studien belegen eine sehr gute Biokompatibilität für MTA und Portlandzement 

(Koh, et al., 1998), (Roberts, et al., 2008), (Sarkar, et al., 2005). MTA weiß, MTA grau 

und Portlandzement erwiesen sich gleichermaßen als nicht zyto- oder neurotoxisch 

(Ribeiro, et al., 2006), (Saidon, et al., 2003). Bei verschiedenen in vitro Tests mit Bioden-

tine zeigten sich ebenfalls keine Anzeichen hinsichtlich Zyto- oder Genotoxizität oder Mu-

tagenität. Der Zement hat keinen negativen Einfluss auf die Zellfunktionen (Laurent, et al., 

2008). 

Die Bioaktivität (Zellregeneration, Zellappostion, Zellneubildung, Hartgewebeinduktion) 

der Zemente beruht auf dem hohen pH-Wert, bedingt durch die Calciumhydroxidbildung, 

sowie der Fähigkeit Apatit an der Grenzfläche zu Geweben zu bilden. Außerdem sorgen 

die Poren und Kapillaren für eine große, biointeraktive Oberfläche (Gandolfi, et al., 2013), 

(Kim, 2002), (Schwartz, et al., 1999). Bioaktivität zeigen sowohl Portlandzement (Holland, 
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et al., 2001), (Menezes, et al., 2004), als auch Mineral Trioxide Aggregate (Gandolfi, et al., 

2011). Biodentine zeigte im Vergleich zu MTA eine höhere Freisetzung von Calcium und 

eine verlängerte Alkalinisierungsaktivität in Verbindung mit einer beachtlichen Poren-

struktur und Wasseraufnahme. Die Apatitstruktur (CaP) an der Probenoberfläche unter-

scheidet sich deutlich von der bei MTA (Gandolfi, et al., 2013). 

 

2.2 Begriffserklärungen zur Anwendung endodontischer Materialien 

2.2.1 Direkte -und indirekte Überkappung, Liner und Bases 

 

Wird eine Dentinwunde (pathologisch, traumatisch oder iatrogen entstanden) mit dem Ziel 

der Vitalerhaltung der darunterliegenden Pulpa mit einem Material abgedeckt, spricht man 

von einer Überkappung. In sehr kleiner Menge (max. Stecknadelkopfgroß) wird bei der 

indirekten Überkappung ein Material bzw. ein Medikament (Liner, Subbase) auf die dünne 

Dentinschicht über der darunterliegenden Pulpa appliziert. Bei der direkten Überkappung 

handelt es sich um eine punktuelle Applikation eines Materials bzw. Medikaments (Liner) 

auf die Eröffnung der Pulpa im Dentin. Die so behandelte Pulpa-Dentin Einheit muss da-

raufhin zusätzlich mit einem der Indikation entsprechenden Material zur Abschirmung 

schädlicher Einflüsse dicht verschlossen werden (Füllung, Unterfüllung, Base). Das am 

häufigsten verwendete und wissenschaftlich untersuchte Überkappungsmaterial, insbeson-

dere zur direkten Überkappung stellt das Calciumhydroxid dar (da Rosa, et al., 2017). Die 

Wirkungsweise und Zusammensetzungen von Calciumhydroxid werden in Kapitel 2.1.5 

beschrieben. 

Auf der Suche nach Definitionen zu den Begriffen „Liner“ und „Base“ als Überkappungs- 

und Unterfüllungsmaterialien werden Differenzen sowie Überschneidungen in der Litera-

tur deutlich. Der Begriff „Liner“ und dessen Definition unterliegt einem Wandel (Weiner, 

2011). Im Folgenden Abschnitt sollen die Begriffe geklärt werden. 

Liner und Bases werden unter dem eigentlichen Restaurationsmaterial eingesetzt um post-

operative Sensitivitäten zu reduzieren. Zudem sollen bestimmte Materialeigenschaften, wie 

zum Beispiel eine erhöhte Temperaturleitfähigkeit bei Amalgam Restaurationen durch 
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Bases ausgeglichen werden, um so die Pulpa zu schützen (Ferracane, 2001). Liner werden 

als dünne Zementschicht zum Schutz der Pulpa definiert, Bases dagegen seien dickere 

Schichten (Anusavice, 2003). Im deutschsprachigen Raum werden die Begriffe „Liner“ 

und „Base“ oft mit „Überkappung“ und „Unterfüllung“ gleichgesetzt. Der Fachbuchautor 

Hellwig beschreibt zum Thema „indirekte Überkappung“ die pulpennahe Einlage als 

„Subbase“ und die darüberliegende Unterfüllung als „Base“. Lacke und Liner beschreibt er 

zusammen als „Harze, die in einem organischen Lösungsmittel gelöst sind. Liner haben 

außerdem therapeutische Zusätze wie Calciumhydroxid und Zinkoxid“ (Hellwig, et al., 

2007). Diese Definition zu Linern findet man auch in einer Stellungnahme der Bundes-

zahnärztekammer. Vor der Anwendung von Dentinhaftvermittlern sind Liner jedoch kont-

raindiziert (Bundeszahnärztekammer, 2014). 

Heute weiß man, dass postoperative Sensitivitäten hauptsächlich durch Bakterien und de-

ren Nebenprodukte verursacht werden. Die Bakterien der oralen Flora dringen über kapil-

lare Kräfte in die Randspalten vorhandener Restaurationen ein. Dieses Phänomen wird als 

Microleakage bezeichnet (Craig & Powers, 2002). Der Begriff Microleakage kann erwei-

tert werden, und bezeichnet die Durchlässigkeit für bakterielle-, chemische- und molekula-

re Substanzen über den Randspalt zwischen Zahn und Restaurationsmaterial (Kanika, et 

al., 2011). Bedingt durch die Erfolge der Komposit- und Dentine Bonding Technologie ist 

ein starker Rückgang im Bedarf an Linern und Bases zu verzeichnen. Gründe hierfür sind 

bei dieser Technik die weitgehend ausreichende und dauerhafte Abschirmung exogener 

Einflüsse gegenüber der Pulpa sowie die gute Verträglichkeit für das Pulpagewebe bei 

Dentinschichtstärken über 0,5 mm. Der Autor Harders spricht bei der Anwendung von 

fließfähigen Kompositen am Kavitätenboden von Linern (Harders, 2007). Als Begründung 

gibt er eine Studie an, die eine Reduzierung von Microleakage an Kompositfüllungen 

zeigt, wenn als erste Schicht ein fließfähiges Komposit verwendet wurde (Korkmaz, et al., 

2007 ).  

Die Induktion von Hartgewebe stellt jedoch ebenfalls einen entscheidenden Faktor für den 

Erfolg von Überkappungen dar. Die Induktion von Reparaturdentin (bridging) erfolgt bei 

Calciumhydroxid und hydraulischem Kalziumsilikatzement (MTA und Biodentin) in höhe-

rer Dichte im Vergleich zu einem Überkappungsmaterial in Form eines methacrylatbasier-

ten Dentinadhäsivs (Single Bond Universal, 3M Espe, Seefeld, Deutschland) (Nowicka, et 

al., 2015). 
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Für indirekte und direkte Überkappungen war das Medikament der Wahl lange das Calci-

umhydroxid (Horsted-Bindslev, et al., 2003), (da Rosa, et al., 2017). Als weiteres Über-

kappungsmaterial wurde auch Zinkoxid-Eugenol häufig beschrieben. Inzwischen wird aus 

verschiedenen Gründen (siehe Kapitel 2.1.4) davon abgeraten (Markowitz, et al., 1992). 

Heute werden für die indirekte und direkte Überkappung auch Mineral Trioxide Aggregate 

sowie der bioaktive Zement „Biodentine“ empfohlen (Dammaschke, 2012), (Mente, 2009), 

(da Rosa, et al., 2017). 

2.2.2 Indikationen bioaktiver endodontischer Zemente 

Bedingt durch die spezifischen Eigenschaften und Wirkungen auf das Endodont und Paro-

dont kommen die bioaktiven Kalziumsilikatzemente bei einem breiten Spektrum an Indika-

tionen zum Einsatz. Die inzwischen vielfältigen Anwendungsmöglichkeiten und die Ter-

minologie der Indikationen sollen hier kurz aufgezeigt werden. Die genauen Vorgehens-

weisen dieser Behandlungen werden in verschiedenen Publikationen hervorragend be-

schrieben. Als Beispiel sei hier die Arbeit von Johannes Mente „Mineral Trioxide Aggre-

gate - Indikationen und Beschreibung der praktischen klinischen Anwendung anhand von 

Fallbeispielen“ zu nennen (Mente, 2009). Im Folgenden treffen die Indikationen auf MTA 

und Biodentine zu. Ausnahmen werden erläutert. Veröffentlichungen findet man vermehrt 

zu MTA, da diese bereits seit 1990 erhältlich sind. (Gandolfi, et al., 2013), (Mente, 2009), 

(Rödig, 2011), (Vizgirda, et al., 2004), (Steffen & van Waes, 2009), (Butt, et al., 2014) 

Direkte und indirekte Überkappung  

Wie in Kapitel 2.2.1 beschrieben, werden hydraulische Kalziumsilikatzemente erfolgreich 

als Überkappungsmaterial eingesetzt. Die positive Wirkung auf das Pulpagewebe, mit ei-

nem hartgewebeinduzierenden Effekt beruht ähnlich wie bei Calciumhydroxid auf dem 

hohen pH-Wert der hydraulischen Kalziumsilikatzemente (Kim, 2002). 

MTAs und Biodentine regen die Pulpazellen an, neues, sogenanntes Reparaturdentin und 

Tertiärdentin zu bilden (Koubi, et al., 2013). Die Induktion von Hartgewebe stellt einen 

entscheidenden Faktor für den Erfolg von Überkappungen dar. Biodentine wird darüber 

hinaus auch für die direkte Überkappung empfohlen und zeigt beste Ergebnisse als Dentin-

ersatzmaterial bei großen Kavitäten. Die Überlegenheit von Biodentine gegenüber MTA 

zeigt sich bei diesen Indikationen durch eine bessere Randdichtigkeit. Dies kommt zustan-
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de durch vermehrte Ablagerung von Apatit an der Grenzfläche zum Dentin (Han & Okiji, 

2011). Außerdem eignet sich Biodentine auch als Material für temporäre und zervikale 

Füllungen, es entspricht somit den Anforderungen als Liner und Base.  

Gegen diesen Einsatz, und die Verwendung hydraulischer Kalziumsilikatzemente als gene-

relles Unterfüllungsmaterial spricht der höhere Materialpreis, die Farbe, die Randdichtig-

keit und die geringere Druck- und Biegefestigkeit (Dammaschke, 2012). 

Pulpotomie 

Die Pulpotomie ist die Entfernung des koronalen Anteils der Pulpa des Zahnes. Pulpoto-

mien werden nur in der Kinderzahnheilkunde durchgeführt, da nur in Milchzähnen Repara-

tur- und Heilungsmöglichkeiten für die in den Wurzeln verbleibenden Pulpenanteile beste-

hen (Heinrich-Weltzien & Künisch, 2003). Im Gegensatz zur direkten Überkappung wird 

diese Behandlung bei einer großflächigen Freilegung der Pulpa in Folge von Karies oder 

Trauma in Betracht gezogen. Die aktuellen Leitlinien zur Pulpotomie empfehlen heute die 

Verwendung von hydraulischen Kalziumsilikatzementen (MTA), und nicht mehr das Cal-

ciumhydroxid zur Auflage auf die verbleibende Pulpa (Krämer, 2007). 

Seit vielen Jahrzehnten sind Calciumhydroxidprodukte das Standardmaterial bei verschie-

denen Verfahren zur Vitalerhaltung (Regenerationsverfahren) der Pulpa. Neben allen ande-

ren Materialien, die hier angewendet wurden, konnte es als Goldstandard bezeichnet wer-

den (Kopel, 1997). Heute werden die Erfolge der bioaktiven Zemente den Calciumhydro-

xidprodukten gegenübergestellt. In allen Parametern, die für den Erfolg bei der direkten 

Überkappung und der Pulpotomie entscheidend sind, konnten Studien mit hydraulischen 

Kalziumsilikatzementen (MTA) eine Überlegenheit gegenüber Calciumhydroxid zeigen. 

So fällt die höhere Randdichtigkeit als Barriere gegen bakterielles Mikroleakage (Han & 

Okiji, 2011) und die gute Induktion zur Bildung von Hartgewebe auf (Srinivasan, et al., 

2006). MTAs zeigen außerdem eine bessere Biokompatibilität (Aeinehchi, et al., 2007), 

(Mitchell, et al., 1999).  

Apexifikation 

Zähne mit abgeschlossenem Wurzelwachstum haben an der Wurzelspitze (Apex) eine 

Konstriktion. Diese Hartsubstanzbarriere ist für die Schaffung einer dichten Wurzelfüllung 

äußerst hilfreich. Bei jugendlichen Zähnen mit nicht abgeschlossenem Wurzelwachstum 
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fehlt diese Barriere. Wird eine Wurzelkanalbehandlung notwendig, besteht die Gefahr, 

Material in das umliegende Gewebe, den Knochen oder auch in die Kieferhöhle zu über-

pressen. Bei der Apexifikation wird die Bildung einer natürlichen Konstriktion mit Einlage 

von Calciumhydroxid in den offenen Wurzelkanal herbeigeführt. Der Vorgang der Harts-

ubstanzbildung vollzieht sich über mehrere Monate und benötigt mehrere Sitzungen. Mit 

Hilfe von bioaktiven Zementen können offene Wurzelspitzen in einer Sitzung direkt ver-

schlossen werden. Aufgrund der vielen positiven Eigenschaften kann der Zement dauerhaft 

in Kontakt mit dem apikalen Gewebe verbleiben (Laurent, et al., 2008), (Han & Okiji, 

2011). 

Perforationsdeckung 

Eine Wurzelperforation stellt eine pathologische Verbindung zwischen dem stützenden 

parodontalen Zahnapparat und dem Wurzelkanalsystem dar. Sie kann iatrogene oder pa-

thologische Ursachen haben. Zu erster zählen Komplikationen, die während der endodonti-

schen Behandlung oder im Rahmen rekonstruierender Verfahren, wie zum Beispiel der 

Wurzelstiftpräparation auftreten können. Pathologische Prozesse, die eine Verbindung 

zwischen dem Wurzelkanalsystem und dem Parodont zur Folge haben, können Karies oder 

resorptive Prozesse sein (Mente, et al., 2014) 

Ein ideales Material zur retrograden Wurzelkanalfüllung, zur Reparatur von Perforationen 

und zur Apexifikation sollte eine Regeneration der parodontalen Gewebe induzieren. Zu 

diesen Geweben gehört unter anderem das Parodontalligament, der Wurzelzement und der 

umliegende Knochen (Schwarze, 2004). In mehreren Studien konnte gezeigt werden, dass 

hydraulische Kalziumsilikatzemente (MTA) in der Lage sind, die Regeneration von Paro-

dontalligamentfibroblasten zu fördern und die Anlagerung von zementoblastenähnlichen 

Zellen sowie die Neubildung von Knochen zu induzieren (Schwartz, et al., 1999). Als Ma-

terial, das in der endodontischen Chirurgie zum Einsatz kommt, ist es von großem Vorteil, 

dass dieses auch in Gegenwart von Flüssigkeiten wie Blut problemlos abbindet 

(Torabinejad, et al., 1994), es folgten zahlreiche Studien, die das bestätigen. 

Retrograde und orthograde Wurzelkanalfüllung 

Unter einer retrograden Wurzelkanalfüllung versteht man die Füllung eines Wurzelkanals 

von der Wurzelspitze ausgehend. Diese wird im Zuge einer Wurzelspitzenresektion 
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(WSR), das heißt einer chirurgischen Entfernung der Wurzelspitze notwendig. Die Durch-

führung einer WSR wird notwendig, wenn eine vorausgehende Wurzelkanalfüllung nicht 

zum Erfolg geführt hat. Ziel der retrograden Wurzelfüllung ist es, einen dichten Abschluss 

einer Wurzelkanalfüllung zu erhalten. Neben den positiven bioaktiven Effekten der Kalzi-

umsilikatzemente auf die umliegenden Gewebe, sei hier auch die Eigenschaft erwähnt, 

dass diese auch in nasser Umgebung abbinden und dicht abschließen (Torabinejad, et al., 

1994).  

In einigen Studien wurden die bioaktiven Zemente auch als orthogrades Wurzelfüllmaterial 

empfohlen (als Wurzelkanalsealer). Auch bei dieser Verwendung zeigen die oben genann-

ten Eigenschaften der Zemente einen positiven Einfluss (Rödig, 2011). Aufgrund der ho-

hen Endhärte sind die Zemente im Falle einer Revision allerdings nur schlecht zu entfernen 

(Vizgirda, et al., 2004). Aus diesem Grund wurden spezielle MTA basierte Sealer entwi-

ckelt. Materialeigenschaften wie Fließverhalten, Filmdicke, Radioopazität, Abbindezeit 

sowie Dimensionsstabilität entsprechen dem ISO-Standard für Wurzelkanalsealer. 

In einer Literaturübersicht informiert Rödig über vier verschiedene Sealer auf Basis hyd-

raulischer Kalziumsilikatzemente (MTA). Laut der Studie konnte hinsichtlich der Dichtig-

keit dieser Sealer kein signifikanter Unterschied im Vergleich zu einem epoxidbasierten 

Sealer (AH Plus) festgestellt werden. Außerdem waren die Haftwerte am Wurzeldentin 

beinahe viermal höher als bei dem Produkt AH Plus. Die Ergebnisse sind allgemein viel-

versprechend, wobei klinische Untersuchungen noch ausstehen (Rödig, 2011). 

2.2.3 Temporäre Wurzelkanalfüllpasten und Wurzelkanalsealer 

Das Ziel einer Wurzelkanalfüllung (WF) ist der dauerhafte, hermetische und biokompatib-

le Verschluss des gesamten Wurzelkanalsystems. Dieser Verschluss soll das Passieren von 

Flüssigkeiten und Mikroorganismen von koronal und apikal verhindern.  Das gebräuch-

lichste und am besten untersuchte WF-Material ist Guttapercha. Mit diesem Material allei-

ne ist es allerdings, unabhängig von der Verarbeitung und Methode, nicht möglich eine 

dauerhaft dichte WF zu erreichen (Tagger, et al., 1994), (Skinner & Himell, 1987). Gutta-

percha soll als Kernmaterial in Verbindung mit einer erhärtenden Wurzelfüllpaste (Sealer) 

verwendet werden. Dem Sealer kommt die Aufgabe zu, die Inkongruenzen zwischen dem 

Kernmaterial und der Form der Wurzelkanalwand volumenstabil auszufüllen. Wurzelfüll-

pasten jeglicher Art sind als alleiniges Füllmaterial ebenfalls nicht in der Lage den Wur-
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zelkanal dauerhaft, bakteriendicht und hermetisch auszufüllen (Wesselink, 1995). Grund 

dafür ist, dass fast alle WF-Pasten kontrahieren und so eine ungenügende Wanddichtigkeit 

resultiert (De Gee, et al., 1994).  

Neben den nur temporär eingesetzten, weichbleibenden WF-Pasten ist mit dem Begriff 

„Sealer“ immer die WF-Paste zum dauerhaften Verschluss durch die Wurzelfüllung ge-

meint. Ein idealer Sealer sollte folgende Kriterien erfüllen (Grossman, 1976):  

 Biologische Anforderungen: biokompatibel, bakteriostatisch/bakterizid, nicht resor-

bierbar 

 Physikalische Anforderungen: dimensionsstabil, porenfrei, unlöslich in Gewebeflüs-

sigkeiten, undurchlässig für Flüssigkeiten, gute Haftung an der Zahnhartsubstanz 

 Praktische Anforderungen: ausreichende Verarbeitungszeit, leicht applizierbar, 

leicht entfernbar, radioopak, keine Verfärbung der Zahnhartsubstanz 

Kann oder soll die Wurzelkanalbehandlung aus verschiedenen Gründen nicht in einer Sit-

zung abgeschlossen werden, wird eine antiseptisch wirkende Paste in den Wurzelkanal 

eingebracht. Diese wird auch als „medikamentöse Einlage“, „weichbleibende WF-Paste“ 

oder „temporäre WF-Paste“ beschrieben. Auch hier gilt die Anwendung von calciumhyd-

roxidhaltigen Pasten als Mittel der Wahl (Rödig & Hülsmann, 2005). Als veraltet anzuse-

hen ist die Verwendung eugenolhaltiger Pasten (Bawazir, 2014). Diese werden in offiziel-

len Stellungnahmen ebenfalls nicht mehr empfohlen (Schäfer & Hickel, 1999). Aufgrund 

seiner guten antimikrobiellen Wirkung kann Chlorhexidin ebenfalls als medikamentöse 

Einlage, in Form eines Gels empfohlen werden. Als nachteilig gegenüber dem Calcium-

hydroxid ist hier die nicht gewebeauflösende Wirkung, sowie die fehlende Neutralisation 

von Endotoxinen zu beachten (Rödig & Hülsmann, 2005).  

Häufig finden auch kortikosteroidhaltige Pasten Verwendung. Umstritten ist jedoch der 

Einfluss auf die periapikale Heilung sowie die antibakterielle Wirkung. Grundsätzlich 

werden Zusätze wie Paraformaldehyd, Kortikosteroide und Phenol-Derivate aufgrund ihrer 

lokalen und systemischen Nebenwirkungen kritisch betrachtet und nicht mehr empfohlen 

(Schäfer & Hickel, 1999). Dahingegen argumentiert Walton, dass der intrakanaläre Ge-

brauch von kortikosteroidhaltigen Medikamenten (z. B. Ledermix) als sicher angenommen 

werden kann. Aufgrund der geringen Abgabemenge sei von keinen bis nur sehr geringen 

systemischen Nebenwirkungen auszugehen (Walton, 2002). 
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3 Material und Methode  

3.1 Materialauswahl 

 

Aus dem Spektrum endodontischer Materialien wurden für vorliegende Untersuchung Pro-

dukte zu den Anwendungsbereichen Sealer, Liner und Bases sowie zu den Indikationen 

bioaktiver, endodontischer Zemente ausgewählt. Durch die getroffene Auswahl werden die 

verschiedenen Stoffklassen gezeigt. Weitere Kriterien für die Einbeziehung zu vorliegen-

der Studie waren die Erhältlichkeit und die aktuelle Verwendung auf dem deutschen 

Markt, sowie die Anwendung gemäß aktueller Empfehlungen. Letztendlich kamen nach 

Abschluss der Vorversuche folgende Materialien zur Untersuchung: 

Tabelle 1:  Liste der Materialien sortiert nach Stoffklassen. Mit Hersteller, Darreichungsform, 

Indikation und Lotnummer. 

Produkt Stoffklasse Hersteller Darreichungs-

form Ausgangs-

produkt 

Indikation Lot 

Nummer 

1. Ultracal 

XS 

Calciumhydroxid Ultradent 

Products, 

South Jor-

dan, USA 

Fertige Paste in 

Applikations-

spritze 

Temporäre Wur-

zelkanalfüllpaste 

1-800-

552-5512 

2. Hydroxy-

line SN 

Calciumhydroxid in 

Ethylmethylketon  

Merz Dental 

GmbH, Lüt-

jenburg, Dtl. 

Lack und Ver-

dünner 

Liner (indirekte 

ÜbK) 

636317 

3. Adseal Epoxid-Amin-Harz Cumdente, 

Tübingen, 

Dtl. 

Doppel-

schubspritze 

Sealer 72901331 

4. AH Plus 

Jet 

Epoxid-Amin-Harz Dentsply De 

Trey GmbH, 

Konstanz, 

Dtl. 

Doppel-

schubspritze mit 

Mischkanüle 

Sealer 1,003E+0

9 

5. 2Seal 

easymix 

Epoxid-Amin-Harz VDW, Mün-

chen, Dtl. 

Doppel-

schubspritze mit 

Mischkanüle 

Sealer 1,003E+0

9 

6. Ketac-

Bond Ap-

licap 

Glasionomerzement 3M ESPE 

AG Dental 

Products, 

Seefeld, Dtl. 

Aplicap Kapsel Base 388005 

7. Vitre 

Bond 

Glasionomerzement  3M ESPE 

AG Dental 

Pulver und Flüs-

sigkeit 

Base P: 

N114766 
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Produkt Stoffklasse Hersteller Darreichungs-

form Ausgangs-

produkt 

Indikation Lot 

Nummer 

Products, 

Seefeld, Dtl. 
F: 

N109036 

8. Fuji Li-

ning LC 

Glasionomerzement 

kunststoffmodifiziert 

3M ESPE 

AG Dental 

Produkte, 

Seefeld, Dtl. 

Pulver und Flüs-

sigkeit 

Base 1007021 

9. Biodentine Kalziumsilikatzement Septodont, 

Cedex, 

France 

Pulver in Misch-

kapsel und Flüs-

sigkeit in Ampul-

le 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

B02050 

10. Medcem Kalziumsilikatzement 

(med. Portlandzement) 

Medcem 

GmbH, 

Weinfelden, 

Schweiz 

Pulver in Portion-

skapsel 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

Mwz 

100709 

11. MTA An-

gelus grau 

Kalziumsilikatzement Angelus 

Industria de 

Produtos 

Odontologi-

cos S/A, 

Londrina, 

Brasil 

Pulver und Flü-

ssigkeit 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

12872 

12. MTA An-

gelus weiß 

Kalziumsilikatzement Angelus 

Industria de 

Produtos 

Odontologi-

cos S/A, 

Londrina, 

Brasil 

Pulver und Flü-

ssigkeit 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

22013 

13. MTA ra-

pid 

Kalziumsilikatzement Cumdente, 

Tübingen, 

Dtl. 

Pulver und Flü-

ssigkeit 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

14414-0 

14. Pro Root 

MTA 

Kalziumsilikatzement Dentsply 

Tulsa Den-

tal, Johnson 

City, USA 

Pulver in Portins-

beutel und Flüs-

sigkeit in Porti-

onsampulle 

Base, Liner (ind. u. 

dir.-ÜbK), bioakt, 

endod. Zement 

9001921 

15. EndoRez Methacrylat Ultradent 

Products, 

South Jor-

dan, USA 

Doppel-

schubspritze mit 

Mischkanüle 

Sealer B5BH2 

16. Epiphany Methacrylat Pentron 

Clinical, 

Wallingford, 

USA 

Doppel-

schubspritze mit 

Mischkanüle 

Sealer 202377 

17. Cp-Cap Zinkoxid-

Eu-

genol/Calciumhydroxid 

Lege artis, 

Dettenhau-

sen, Dtl. 

Pulver und Flüs-

sigkeit 

Base, Liner (ind. u. 

dir.-ÜbK) 

P: 

0170210 

F: 

0160210 
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Produkt Stoffklasse Hersteller Darreichungs-

form Ausgangs-

produkt 

Indikation Lot 

Nummer 

18. Pulpal Zinkoxid-Eugenol Merz Dental 

GmbH, Lüt-

jenburg, Dtl. 

Pulver und Flüs-

sigkeit 

Base, Liner (ind. 

ÜbK) 

F: 32110 

P: 40110 

19. Pulp canal 

Sealer 

Zinkoxid-Eugenol Kerr Italia 

S.r.l., 

Scafati, Italia 

Pulver und Flüs-

sigkeit 

Sealer 3490325 

20. Tubli-Seal Zinkoxid-Eugenol  Kerr Italia 

S.r.l., 

Scafati, Italia 

Paste und Paste Sealer 3458738 

„ind. u. dir. ÜbK“ = indirekte und direkte Überkappung; „bioakt, endod. Zement“ = bioaktiver, endodonti-

scher Zement. 

Die folgende Beschreibung der Produkte basiert auf den Herstellerangaben (Packungsbei-

lagen, Produktdossiers und Sicherheitsdatenblätter). Die Verarbeitung der Materialien er-

folgte stets nach Herstellervorschrift. 

1. Ultracal
 
XS (Utradent Products): 

 Indikation:  

Zur Anwendung bei Apexifikationsbehandlungen und als temporäre Wurzelka-

naleinlage 

 Zusammensetzung:  

35 %ige Calciumhydroxid-Paste in wässriger Lösung, röntgensichtbar durch 20% 

Bariumsulfat  

 Verarbeitung:  

Fertige Paste in Applikationsspritze mit Navi Tip. Nach der Instrumentierung fül-

len Sie den Kanal von apikal an aufwärts. Bleiben Sie mindestens 2 mm vom 

Apex entfernt. 

2. Hydroxyline
 
SN (Merz Dental): 

 Indikation:  

Pulpatherapeutikum, d. h. zur Desensibilisierung und zum Schutz frisch präparier-

ter Dentinwunden, als medikamentöse Unterlage unter Amalgam-, Zement- und 

Kunststofffüllungen, als Verband der frischen Dentin-Wunde nach dem Beschlei-

fen der Zähne, als Pulpaschutz vor Anwendung der Schmelz-Ätz-Technik, bei fla-

chen Kavitäten als alleiniger Pulpaschutz, als Liner ohne Unterfüllung. 
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 Zusammensetzung:  

Die Suspension enthält Calciumhydroxid in Ethylmethylketon als Dispersionsmit-

tel 

 Verarbeitung:  

Vor jeder Anwendung Flasche gut durchschütteln. Hydroxyline kann mit ver-

schiedenen Instrumenten in dünner lackähnlicher Schicht aufgetragen werden. 

Diese Schicht trocknet innerhalb 20 Sekunden. Wird eine dickere Schicht ge-

wünscht, soll diese in einzelnen Lagen aufgebracht und einzeln getrocknet wer-

den. 

 

 

3. Adseal (Cumdente): 

 Indikation:  

Wurzelkanalsealer für definitive Wurzelkanalfüllungen in Verbindung mit Wur-

zelkanal- (Guttapercha) Points. 

 Zusammensetzung:  

Basis: Mischung aus Epoxy-Oligomeren, Ethylenglycolsalicylat, Calciumphos-

phat, Bismuthsubcarbonat, Zirkoniumoxid  

Katalysator: Mischung aus Polyaminobenzoat, Triethanolamin, Calciumphosphat, 

Bismuthsubcarbonat, Zirkoniumoxid, Calciumoxid. 

 Verarbeitung:  

Doppelkolbenspritze zu 13,5 g (Basis 9 g, Katalysator 4,5 g). Adseal auf Misch-

block vorlegen und durchmischen bis homogene Farbe vorliegt (etwa nach 45 s 

Mischzeit). 

4. AH Plus Jet (Dentsply DeTrey): 

 Indikation:  

Permanenter Wurzelkanalverschluss von Zähnen der zweiten Dentition in Kombi-

nation mit Wurzelkanal-Stiften. 

 Zusammensetzung:  

Paste A: Bisphenol-A-Epoxidharz  

Bisphenol-F-Epoxidharz, Calciumwolframat, Zirkoniumoxid, hochdisperses Sili-

ciumdioxid, Eisenoxid  
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Paste B: Dibenzyl- Diamin, Aminoadamantin  

Tricyclodecan-Diamin, Calciumwolframat, Zirkoniumoxid, hochdisperses Silici-

umdioxid, Silikonöl 

 Verarbeitung: Mithilfe der Doppelkammerspritze und dem mixing tip werden die 

Pasten 1:1 gemischt. Die Verarbeitungszeit beträgt mind. 4 Stunden bei 23°C. Die 

Aushärtezeit beträgt mind. 8 Stunden bei 37°C. 

5. 2Seal easymix (VDW GmbH) 

 Ist identisch zu dem Produkt AH Plus Jet (Dentsply De Trey), siehe oben 

 

 

6. Ketac Bond Aplicap (3M ESPE):  

 Indikation:  

Basisfüllungen unter Composite und Amalgam, erweiterte Fissurenversiegelung 

ohne Säureätztechnik, Stumpfaufbauten 

 Zusammensetzung:  

es sind keine Herstellerangaben erhältlich 

 Verarbeitung:  

Die Kapsel mit dem Aplicap Aktivator 2 s aktivieren. Die Kapsel in einem Hoch-

frequenzmischgerät (z. Bsp. CapMix) 10 s, oder im Rotationsmischer (z. B. Ro-

toMix) 8 s mischen und mit dem Aplicap Applier applizieren.   

Verarbeitungszeit incl. Mischen 1 min 45 s, Abbindung (ab Mischbeginn) 4 min, 

Abbindung im Mund 2 min 15 s. 

7. Vitre Bond
 
(3M ESPE):  

 Indikation:  

Vitre Bond ist geeignet als Abdeckung oder Unterfüllung von Kompositen, 

Amalgam, Keramik und Metall 

 Zusammensetzung:  

Die Pulverkomponente ist ein lichtempfindliches Fluor-Aluminiumsilikat-Glas. 

Die flüssige Komponente ist eine lichtempfindliche polyalkenische Säure 

 Verarbeitung:  

Pulver mit dem Dosierlöffel entnehmen und abstreifen. Das Pulver auf einen 
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Mischblock geben. Ein Dosierlöffel Pulver und ein Tropfen Lösung ergeben das 

gewünschte Pulver-Lösung-Verhältnis. Dieses kann in der Viskosität verändert 

werden (1 Löffel auf 2 Tropfen bzw. 2 Löffel auf 1 Tropfen). Mischungswerte au-

ßerhalb dieser Werte werden nicht empfohlen.   

Das Pulver wird mit einem Zementspatel schnell (10-15 sec) in die Lösung ge-

mischt. Zu intensives Anmischen verkürzt die Applikationszeit. Den Zement in 

dünner Schicht (0,5 mm) auf das Dentin applizieren. Die Arbeitszeit beträgt 2 Mi-

nuten 40 Sekunden. Die Unterfüllung 30 Sekunden mit einer Halogenlampe oder 

einem Polymerisationsgerät gleicher Intensität aushärten. 

8. Fuji Lining LC (GC Corporation):  

 Indikation: Als Unterfüllung oder Liner in präparierten Kavitäten 

 Zusammensetzung: es sind keine Herstellerangaben erhältlich 

 Verarbeitung: Das Standardverhältnis von Pulver zu Flüssigkeit beträgt 1,4 / 1,0 

g, entsprechend einem Messlöffel Pulver zu einem Tropfen Flüssigkeit. Mit dem 

Plastikspatel das Pulver auf dem Mischblock in zwei gleiche Teile aufteilen. Die 

erste Portion mit der gesamten Flüssigkeit für 5-10 s mischen. Das restliche Pul-

ver hinzufügen und für weitere 10-15 s mischen. Zement mit einem geeigneten In-

strument platzieren und mit einer Handlichtlampe (470 nm Wellenlänge) 30 s 

lichthärten. Bei Applikation über 1,6 mm nach der Schichttechnik verfahren. 

9. Biodentine (Septodont):  

 Indikation:  

(siehe 2.2.2 „Indikationen bioaktiver, endodontischer Zemente“) 

 Zusammensetzung:  

Tricalciumsilikatpulver, Calciumchloridlösung, sonstige Bestandteile 

 Verarbeitung:  

Pulverkapsel leicht gegen feste Oberfläche klopfen, öffnen und in den Kapselhal-

ter legen. Den gesamten Inhalt der Einzeldosis Flüssigkeit in die Pulverkapsel lee-

ren. Kapsel verschließen und in einen Kapselrüttler (z. B. CapMix, Rotomix, Ult-

ramat) einspannen und 30 s mischen. Kapsel öffnen und Konsistenz überprüfen. 

Wird eine festere Konsistenz bevorzugt 30 – 60 s warten und erneut kontrollieren. 

Die Mischung mit dem Spatel aus der Kapsel entnehmen und mit einem geeigne-

ten Instrument applizieren. 
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10. Medizinischer Portlandzement
 
MED-PZ (Medcem GmbH) 

 Indikation:  

(siehe 2.2.2 „Indikationen bioaktiver, endodontischer Zemente“) 

 Zusammensetzung:  

SiO2, Na2O, K2O, Al2O3, Fe2O3, SO3, CaO, MgO sowie unlösliche Reste von 

CaO, K2SO4, Na2SO4 

 Verarbeitung:  

Eine Kapsel enthält ca. 0,35 g medizinischen Portlandzement.   

Das Pulver und normales Wasser (idealerweise steril) wird auf einer Glasplatte 

oder einem Anmischblock bereitgelegt. Dann werden in kleinen Portionen beide 

Medien gemischt. Ist das Material in seiner Konsistenz zu dick, ein wenig Wasser 

dazu spateln. Ist es zu dünn, wenig Pulver dazu spateln. Als Pfropf (Plug) wird die 

Konsistenz eher dicker gewählt, als Überkappungsmaterial eher wie bei einem 

dünnflüssigen Liner. Diese Mischvorgänge sollten nach ca. 3 Minuten abge-

schlossen sein.   

Nach 3 bis 4 Minuten beginnt der Zement ein Gel zu bilden. Bis dann sollte das 

Material auf die zu behandelnde Zahnstruktur aufgebracht sein. Gemäß ISO 1997-

1 ist diese erste Gel-Abbindephase nach ca. 195 Minuten beendet. Nach 25 Tagen 

sind 95% der Endhärte erreicht. 

11./12  MTA grey (Angelus) / MTA white (Angelus):  

(diese Materialien werden in vorliegender Arbeit als MTA Angelus grau bzw. weiß 

bezeichnet) 

 Indikation:  

(siehe 2.2.2 „Indikationen bioaktiver, endodontischer Zemente“) 

 Zusammensetzung:   

Pulver: SiO2, K2O, Al2O3, Na2O, Fe2O3, SO3, CaO, Bi2O3, MgO,   

unlösliche Rückstände von CaO, KSO4, NaSO4, kristallines Silica  

Flüssigkeit: destilliertes Wasser 

 Verarbeitung:  

Der Inhalt eines MTA-Sachets (oder 1 Löffel MTA) wird mit einem Tropfen des-

tilliertem Wasser für 30 Sekunden mit einem Spatel vermischt. Der Zement kann 

mit einer Amalgam Pistole oder einem anderen geeigneten Instrument appliziert 
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werden. Die Verarbeitungszeit kann verlängert werden indem der angemischte 

Zement mit einem feuchten Gazestreifen abgedeckt wird um die Dehydrierung zu 

verlangsamen. 

13. MTA rapid (Cumdente):  

 Indikation:  

(siehe 2.2.2 „Indikationen bioaktiver, endodontischer Zemente“) 

 Zusammensetzung:  

SiO2, K2O, Al2O3, Na2O, Fe2O3, SO3, CaO, Bi2O3, MgO,   

unlösliche Rückstände von CaO, KSO4, NaSO4, kristallines Silica 

 Verarbeitung:  

Durch manuelles Mischverhältnis einstellbare Konsistenz. Pulver und Flüssigkeit 

auf einer Glasplatte vorlegen und mittels Spatel zu einer festen, plättchenförmig - 

schuppenden Konsistenz anrühren. Nach 10-15 Minuten ist das Material hart. 

14. Pro Root
 
MTA (Dentsply): 

 Indikation:  

(siehe 2.2.2 „Indikationen bioaktiver, endodontischer Zemente“) 

 Zusammensetzung:  

SiO2, K2O, Al2O3, Na2O, Fe2O3, SO3, CaO, Bi2O3, MgO,  

unlösliche Rückstände von CaO, KSO4, NaSO4, kristallines Silica 

 Verarbeitung:  

Den Inhalt eines Beutels auf einen Anmischblock geben. Das Ende einer Micro 

Dose Ampulle mit Pro Root Flüssigkeit (steriles Wasser) abschneiden und den ge-

samten Inhalt neben das Zementpulver geben. Die Flüssigkeit portionsweise unter 

das Pulver mischen. Der Mischvorgang sollte etwa eine Minute dauern. Nach Be-

darf können weitere ein oder zwei Tropfen Flüssigkeit hinzugefügt werden. Die 

Verarbeitungsdauer beträgt rund fünf Minuten. Die Aushärtung erfolgt über einen 

Zeitraum von fünf Stunden. 

15. EndoRez (Ultradent):  

 Indikation:  

Wurzelkanalsealer für definitive Wurzelkanalfüllungen. Obwohl EndoREZ Points 
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empfohlen werden, kann EndoREZ bei allen üblichen endodontischen Obturati-

onstechniken eingesetzt werden. 

 Zusammensetzung:  

es sind keine Angaben vom Hersteller erhältlich. 

 Verarbeitung:   

Doppelspritze mit Mischkanüle, Skini Syringe und Navi Tip. Das Material kann 

direkt in den Kanal appliziert werden. Nach setzen des Masterpoints und Accesso-

ry Points 40 s lichthärten. Die initiale Oberflächenpolymerisation mit Licht reicht 

nur weniger als 0,3 mm tief und unterstützt einen sofortigen Verschluss. Endo-

REZ ist in 20-30 Min. voll auspolymerisiert. Bei dem Obturationsverfahren mit 

EndoREZ Accelerator werden die Accessory Points (nicht der Masterpoint) vor 

dem Einsetzten in EndoREZ Accelerator eingetaucht. Dadurch geschieht die voll-

ständige Aushärtung im Kanal in 5 Minuten. 

16. Epiphany
 
(Pentron Clinical):  

 Indikation:  

Das Epiphany System ist beim Verschluss von Wurzelkanälen indiziert. Das zum 

Epiphany Sealer passende Wurzelfüllmaterial aus Resilon wird empfohlen.  

 Zusammensetzung:  

es sind keine Angaben vom Hersteller erhältlich. 

 Verarbeitung:  

Nach Trocknung des Kanals wird Epiphany Primer im Wurzelkanalraum einmas-

siert. Der Sealer wird aus der Doppelkolbenspritze auf einen Mischblock vorge-

legt. Nach Bedarf kann dieser mit einem Epiphany Verdünner in der Konsistenz 

angepasst werden. Der Kanal kann nun mit Resilon Spitzen (laterale Kondensati-

on) gefüllt werden. Bei Anwendung der vertikalen Kompaktion wird empfohlen 

koronal eine abschließende Versieglerschicht einzubringen.   

Nach Abschluss 40 Sekunden lichthärten. Die Wurzelkanalfüllung härtet nach 45 

Minuten selbst. 

17. Cp-Cap (Lege artis):  

 Indikation:  

Cp-Cap dient als Pulpenschutz zur direkten und indirekten Überkappung der Pul-
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pa, sowie zum Befestigen von Provisorien nach Präparation von vitalen Zahn-

stümpfen. 

 Zusammensetzung:  

Lösung: Eugenol, Kolophonium, Perubalsam  

Pulver: Calciumhydroxid, Zinkoxid, Zinkacetat-Dihydrat, Zirkonium(IV)-oxid 

und Kanadabalsam 

 Verarbeitung:  

ein Tropfen Cp-Cap Lösung mit möglichst viel Cp-Cap Pulver rasch, so dick wie 

möglich (im Mischungsverhältnis von 1 Teil Lösung zu 6 Teilen Pulver), zu einer 

kurzabreißenden Konsistenz anrühren. Diese Mischung mit dem Kugelstopfer in 

die gereinigte und trockene Kavität applizieren. 

18. Pulpal
 
(Merz Dental):  

 Indikation:  

provisorisches Verschluss- oder temporäres Füllungsmaterial, bei reversiblen pul-

pitischen Beschwerden bei geschlossener Dentindecke (indirekte Pulpaüberkap-

pung), zur temporären Befestigung von definitiven und provisorischen Restaurati-

onen, zur Unterfüllung von definitiven Füllungen und Kronen 

 Zusammensetzung:  

Pulpal Pulver enthält Zinkoxid, Pulpal Flüssigkeit enthält Eugenol 

 Verarbeitung:  

Für die individuelle Verarbeitungskonsistenz werden Pulver und Flüssigkeit (Mi-

schungsverhältnis = 0,4 g : 0,3 g) getrennt auf eine Glasplatte gegeben. Das Pul-

ver wird bei Raumtemperatur nach und nach mit dem Spatel in die Flüssigkeit 

gemischt und gründlich durchgespatelt, bis eine sahnig-cremige Konsistenz ent-

standen ist. Die Mischzeit beträgt 15 – 30 sec. Der Zement wird mit einem feuch-

ten Wattebausch an den Kavitätenboden angedrückt. Die Verarbeitungszeit be-

trägt 1,5 – 2 min, die Endhärte ist nach 24 Stunden erreicht. 

19. Pulp canal Sealer (Kerr):  

 Indikation:   

zur definitiven Wurzelkanalfüllung in Verbindung mit Wurzelkanalstiften 

 Zusammensetzung:  

(laut Sicherheitsdatenblatt)  
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Pulver: Zinkoxid, Silberpulver, Thymol-Jodid, Kunstharz  

Flüssigkeit: Eugenol, Canada Balsam 

 Verarbeitung:  

Einen gestrichenen Messlöffel Pulver auf einen Mischblock aufbringen. Einen 

Tropfen Flüssigkeit mit der Pipette hinzufügen. Pulver- und Flüssigkeitsbehältnis-

se sofort verschließen. Mit einem Spatel Pulver und Flüssigkeit auf kleiner Fläche 

anrühren. Verarbeitungszeit 45 Minuten, intraorale Abbindezeit > 60 Minuten. 

20. Tubli-Seal (Kerr):  

 Indikation:  

Tubli-Seal wird zusammen mit Guttapercha-Spitzen zur endgültigen Obturation 

von Wurzelkanälen verwendet.  

 Zusammensetzung:  

es sind keine Angaben vom Hersteller erhältlich, in der Literatur wird Tubli-Seal 

wie folgt deklariert (Ingle, et al., 2002):  

Basis-Paste: Zinkoxid, Bariumsulfat, Mineralöl, Maisstärke, Lecithin  

Katalysator: Kunstharz, Eugenol, Thymol-Jodid 

 Verarbeitung:  

Die Paste wird auf dem Mischblock zubereitet indem je gleiche Längen Basispas-

te und Akzelerator mit dem Spatel während 1 Minute vermengt werden. Bei 

Raumtemperatur (23±2 °C) und einer rel. Luftfeuchtigkeit von 50±10 % hat Tu-

bli-Seal eine Verarbeitungszeit von 8-20 Minuten und eine Abbindezeit von einer 

Stunde. 

3.2 Herstellung und Lagerung der Prüfkörper 

Die zu messenden Materialien wurden auf ein Zahnscheibchen aufgetragen, das auf einen 

Objektträger geklebt wurde. Die Herstellung dieser Proben wurde wie folgt vorgenommen. 

Im Vorfeld wurden extrahierte menschliche Molaren gesammelt (Anzahl ca. 70). Diese 

sind bis zur vollständigen Sammlung (max. drei Monate) in einer ca. 0,01%igen Wasser-

Natriumazid Lösung aufbewahrt worden. Die Molarenkronen wurden in 2 mm dicke 

Scheibchen zerteilt (ca. 3 Scheibchen pro Zahn). 
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Abbildung 1:  Schnittebenen der Zahnscheibchen 

Dies erfolgte mit einer Präzisionskreissäge (VC-50 Vari, Leco corporation) in Verbindung 

mit einem rotierenden Diamantsägeblatt (Diamond Blade, 5“ x 0,15“ x 1/2“, Leco corpora-

tion). Die Dentinscheibchen wurden 30 s mit Natriumhypochlorid 3% (Hedinger, Deutsch-

land) gespült, danach mit destilliertem Wasser gereinigt und in destilliertem Wasser auf-

bewahrt. Nach grober Trocknung mit dem Luftbläser wurden die Scheibchen auf zuvor 

angerauten Objektträgern aus Vinyl befestigt. Dies geschah mittels Säureätztechnik (Total 

Etch, Ivoclar Vivadent) in Verbindung mit einem Dentinhaftvermittler (XP Bond, 

Dentsply).  

Eine wichtige Voraussetzung für die Messbarkeit der Materialien mit der instrumentierten 

Eindringprüfung ist die Planparallelität und die Glattheit der Oberfläche. Die Parallelität 

wurde durch Verdrängung des Materials mit Hilfe einer Aufbringvorrichtung erzeugt. Die-

se Vorrichtung besteht aus einem Glasobjektträger, an dem an den Enden jeweils ein klei-

ner Sockel angebracht wurde. Diese Sockel wurden so beschliffen, dass der darauf befes-

tigte Objektträger exakt planparallel zur Tischebene liegt (siehe Abb. 2). 

Die zu prüfenden Materialien wurden nach den Herstellerangaben (siehe Kapitel 3.1) ver-

arbeitet. Die hergestellten Pasten (Mischung von Pulver und Flüssigkeit oder Paste und 

Paste, auf Mischblock, aus Mischkanülen oder gerüttelten Kapseln) wurden auf das Zahn-

scheibchen appliziert. Dieses wurde zuvor getrocknet jedoch nicht völlig dehydriert. Auf 

das applizierte Probenmaterial wurde anschließend ein Stück steife Folie (Directa Matrix 

Strips, SDI) gelegt um ein Verkleben zu verhindern und um eine glatte Oberfläche zu 

schaffen. Mit Hilfe des planen „Tischchens“ (Sockel und Glasobjektträger) wurde das Ma-

terial angedrückt bzw. verdrängt. 
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Abbildung 2:  Vorrichtung zur Planparallelisierung der Probenmaterialien 

 

 

 

 

 

Direkt nach der Herstellung wurden die Prüfkörper in eine spezielle Lagerungsbox gelegt.  

 

 

Abbildung 3:  Lagerungsbox 

Die Abdeckfolie (siehe 4, Abb. 2) wurde nach einer Stunde entfernt. Eine Ausnahme bil-

den hier die Materialien, die nicht unter Luftkontakt abbinden (AH Plus, 2Seal, Adseal). 

Bei diesen wurde zusätzlich ein Glyceringel (Airblock Gel, Dentsply De Trey) am Rand 

des Materials aufgetragen. Die Folie und das Gel wurden erst nach 24 Stunden entfernt. 

Das Glyceringel wurde mit einem Schaumstoffpellet unter Verwendung einer Lupenbrille 

abgewischt. 
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(6) Glasobjektträger 
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Die Prüfkörper wurden bis zu sechs Monate gelagert und nach Ablauf bestimmter Zeitin-

tervalle (siehe nachfolgender Text) gemessen. Um eine wasserdampfgesättigte Umgebung 

bei 37°C zu schaffen, wurde eine spezielle Aufbewahrungsbox (siehe Abbildung 3) herge-

stellt. Sie besteht aus einem dicht abgeschlossenen, flachen Behälter. In diesem schwim-

men je zwei weitere Schalen ohne Deckel auf destilliertem Wasser. Durch die Umgebungs-

temperatur von 37°C im Wärmeschrank entsteht Wasserdampf in der abgeschlossenen 

Aufbewahrungsbox. Der Dampf umgibt die Prüfkörper, die in der offenen Schale liegen. 

Um Tropfnässe, ausgehend vom Deckel der Box und den inneren Wänden der Schalen zu 

verhindern, wurden diese Flächen mit einem dünnen Schwammtuch ausgekleidet.  

Der Messvorgang der mechanischen Eigenschaften zum ersten Lagerungszeitintervall 

wurde 24 Stunden nach Herstellung der Prüfkörper vorgenommen, darauf folgten die wei-

teren Messungen nach einer Woche, vier Wochen, drei Monaten und sechs Monaten. Jeder 

der sechs Prüfkörper, die pro Material hergestellt wurden, durchlief alle fünf Messungen 

jeweils zu den oben genannten Zeitpunkten. Je nach Oberflächenbeschaffenheit des zu 

untersuchenden Materials dauerte ein Messvorgang 30 bis 40 Minuten. In dieser Zeit be-

fand sich die Probe in klimatisierter, trockener Raumluft (ca. 20 C). 

3.3 Die instrumentierte Eindringprüfung 

Zur Messung der mikromechanischen Eigenschaften wurde das Messsystem (Fischerscope 

H100C, Fischer, Sindelfingen) gemäß DIN 50 359, Entwurf DIN 55 676 und Technical 

Report ISO TR 14 577 verwendet (Ilie, 2004). 

Unter Zuhilfenahme des integrierten Auflichtmikroskops (40-fache Vergrößerung) wurden 

für jeden Messvorgang Messkoordinaten auf der Oberfläche der Prüfkörper festgelegt. Aus 

den erhaltenen Messergebnissen wurden nach Beobachtung des Messverlaufs für jeden 

Prüfkörper je fünf Messdaten gesammelt und in die Auswertung einbezogen. Offensichtli-

che Fehlmessungen (über Luftblasen oder Messungen auf einem Zirkondioxid-Korn, Riss-

bildung) wurden von der Bewertung ausgeschlossen. 

Mit der instrumentierten Eindringprüfung wurden die folgenden Werkstoffkenngrößen 

bestimmt (Berechnung der Werkstoffkenngrößen gemäß DIN EN ISO 14577-1 und ASTM 

E 2546): 

 Eindringhärte HIT (umwertbar in Vickershärte HV). 
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 Elastischer Eindringmodul EIT.  

 (Helmut Fischer GmbH, 2015). 

Bei der instrumentierten Eindringprüfung wird eine Diamantpyramide mit quadratischer 

Grundfläche (nach Vickers) langsam mit konstanter Geschwindigkeit (2 μm/s) senkrecht 

auf die Oberfläche der zuvor festgelegten Messpunkte der Prüfkörper abgesenkt. Im Laufe 

des Prüfvorganges wird die Prüfkraft F und die Eindringtiefe h sowohl bei Prüfkraftzu-

nahme als auch -rücknahme gemessen. Aus der Eindringtiefe wird dann der Universalhär-

tewert HU = F/A (A = Oberfläche des Eindrucks) berechnet. Bei der kontinuierlichen Stei-

gerung der Prüfkraft (F max = 300 mN) wird gleichzeitig die Eindringtiefe des Vickersdia-

manten gemessen. Dabei wird auch der elastische Eindringungsmodus bestimmt, der sich 

aus der Steigerung der Tangente an die Entlastungskurve bei F ꞊ Fmax ergibt. Das elastische 

Eindringmodul darf mit dem Elastizitätsmodul (E-Modul) des Probenwerkstoffes vergli-

chen werden (Ilie & Hickel, 2011).  

Der Messungszyklus erfolgt in vier Etappen. In der ersten Phase wird der gesamte Här-

teeindruck bestimmt, indem die Prüfkraft von minimal bis maximal (300 mN) aufgebracht 

wird. Dabei entsteht die plastische und elastische Verformung, die den Härteeindruck 

ergibt. In diesem Zeitabschnitt erfolgt eine Härteberechnung. In der zweiten Phase wird die 

maximale Prüfkraft eine gewählte Zeit (t = 5s) konstant gehalten. In dieser Zeit ist es mög-

lich das Kriechverhalten des Materials einzuschätzen. In der dritten Phase wird die Prüf-

kraft reduziert. Dabei wird aus der Steigerung der sich ergebenden Kurve bei Fmax das 

„Elastische Eindringmodul“ berechnet. Die vierte Phase gibt Informationen über die Härte 

an der Oberfläche und den Härteverlauf innerhalb oberflächennaher Grenzschichten sowie 

über die plastischen und elastischen Eigenschaften des Werkstoffes, die bei minimaler 

Prüfkraft gewonnen werden können  (Helmut Fischer GmbH, 2015) 

3.4 Statistische Verfahren 

Die so gewonnenen Daten wurden einer deskriptiven und induktiven Auswertung unterzo-

gen. Diese wurde mit dem statistischen Programm SPSS 22.0 erstellt. Statistisch wurden 

Aussagen zu den Unterschieden der gemessenen mikromechanischen Eigenschaften inner-

halb der einzelnen Materialien in Abhängigkeit zu den Messintervallen generiert. Damit 

lässt sich die Frage nach dem Einfluss der Zeit auf die Entwicklung der Eigenschaften E-

Modul und Vickershärte beantworten. Zudem wurde überprüft welche Materialien sich 
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innerhalb ihrer Stoffklasse voneinander unterscheiden, bzw. welche Materialien ähnliche 

Eigenschaften aufweisen. Sowohl für die Fragestellungen nach dem Einfluss der Zeit, so-

wie nach den Unterschieden zwischen den Materialien wurde die Rangvarianzanalyse nach 

Friedman eingesetzt. Aufgrund der kleinen Fallzahl und den Verstößen gegen die Normal-

verteilungsannahme wurde ein nichtparametrisches Verfahren zu Untersuchung von Unter-

schieden verwendet. Der Friedman Test entspricht der einfaktoriellen Varianzanalyse für 

verbundene Stichproben. Die Berechnung des Tests erfolgt durch das Ermitteln der Rang-

summen der k Bedingungen über die N Testobjekte. Sollte die Nullhypothese korrekt sein, 

müssten die verschiedenen Rangsummen nicht oder nur kaum voneinander abweichen. Die 

Bestimmung des Signifikanzniveaus erfolgt durch Berechnung einer Teststatistik und an-

schließendem Vergleich des errechneten Wertes mit einem Tabellenwert (Bortz & Lienert, 

2008).  

Die Nullhypothese lautete: Die Messungen unterscheiden sich bei den k-Bedingungen 

nicht. Als Signifikanzniveau wurde bei allen Tests der Wert 0,05 verwendet. Wird ein p-

Wert ermittelt, der größer als dieser Wert ist, wird somit das Signifikanzniveau verfehlt. Im 

Allgemeinen spricht man von hochsignifikanten Ergebnissen bei p < 0,01. Von signifikan-

ten Ergebnissen spricht man bei 0,01 < p < 0,05 (Eckey, 2006). Um dem zufälligen Auftre-

ten von Signifikanzen zu begegnen, wurde eine sog. Bonferroni Korrektur angewendet. 
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4 Ergebnisse 

Die Darstellung der Ergebnisse erfolgt in Form von Übersichtsdiagrammen anhand einer 

Gruppenzuteilung, sowie tabellarisch zu den einzelnen Materialien. Eine denkbare Eintei-

lung der endodontischen Materialen nach ihrer Zusammensetzung ergibt die vier Stoff-

gruppen: 

 Polymere 

 Zinkoxid-Eugenol und Calciumhydroxid  

 Glasionomerzemente und kunststoffmodifizierte Glasionomerzemente  

 hydraulische Kalziumsilikatzemente 

Die statistische Auswertung gibt Aufschluss zu den Unterschieden der mikromechanischen 

Eigenschaften innerhalb der Materialien einer Gruppe, sowie zu den Veränderungen zwi-

schen den Messintervallen jedes Materials. Bei beiden Fragestellungen wurde die Rangva-

rianzanalyse nach Friedmann herangezogen. In den Tabellen der Einzelmaterialien werden 

statistische Unterschiede zwischen den Messintervallen durch hochgestellte Buchstaben 

hervorgehoben, so verdeutlicht ein Wert 
A 

einen (hoch)-signifikanten Unterschied zu einem 

Wert 
B
. Die Nullhypothese lautete: Es gibt keine Unterschiede der mikromechanischen 

Eigenschaften im zeitlichen Verlauf. Das Signifikanzniveau beträgt 0,05. 

Zu einigen Messzeitpunkten konnten keine Daten generiert werden. Nähere Erläuterungen 

folgen in anschließender Diskussion. 

4.1 Polymere 

Die Polymere, die in dieser Arbeit untersucht wurden, gehören zu den Gruppen Epoxidhar-

ze (AH Plus, 2Seal, Adseal) und Methacrylate (EndoRez, Epiphany). Aufgrund der zum 

Zeitpunkt 24 Stunden noch stattfindenden plastischen Verformung der Materialien AH 

Plus, 2Seal und Adseal konnten zu dem Messintervall 24 Stunden keine Daten generiert 

werden. Im Rahmen der Vorversuche mussten die Silikone (RoekoSeal Automix und Roe-

ko GuttaFlow) aufgrund ihrer niedrigen Härte und ihrem nichtlinear elastischen Verhalten 

als nicht messbar mit dem Indentierungsversuch eingestuft werden. Das Material Perma 

Evolution (Alfred Becht GmbH, Offenburg, Deutschland) der Gruppe Epoxidharze zeigte 

in den Voruntersuchungen keine validierbaren Ergebnisse, so dass es in vorliegender Ar-
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beit nicht berücksichtigt wurde. Erläuterungen zu den genannten Materialien, sowie zur 

Dauer des Aushärtevorgangs von Sealern der Epoxid-Amin-Gruppe werden unter 5.2.1 

diskutiert.  

Die folgende Grafik gibt Aufschluss zur Verteilung der Vickershärte der Polymere zu den 

einzelnen Messintervallen. 

 

Abbildung 4:  Polymere - Vickershärte zu Material und Messintervall   
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Abbildung 4 veranschaulicht die ungleiche Ausprägung der Eigenschaft Vickershärte bei 

den Polymeren, mit Ausnahme der Epoxide AH Plus und 2Seal, die in der Eigenschaft 

Vickershärte vergleichbar sind. Das dritte Material auf Epoxidbasis (Adseal) erreicht erst 

nach sechs Monaten eine komparable Endhärte. Mit Hilfe der Rangvarianzanalyse nach 

Friedman wird gezeigt, dass sich das Material Epiphany hochsignifikant vom Material 

2Seal (p-Wert 0,002) sowie vom Material AH Plus (p-Wert 0,001) unterscheidet. Ein sig-

nifikanter Unterschied liegt ebenfalls beim Vergleich Adseal mit 2Seal, sowie Adseal mit 

AH Plus vor (p-Werte 0,028 bzw. 0,023). 
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Die folgende Grafik gibt Aufschluss zur Verteilung des E-Moduls der Polymere zu den 

einzelnen Messintervallen. 

 

Abbildung 5:  Polymere - E-Modul zu Material und Messintervall  
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Abbildung 5 zeigt, dass die Polymere auch in der Eigenschaft des E-Moduls inhomogen 

auftreten. Dabei weisen 2Seal und AH Plus ähnliche Werte auf. Laut Statistik unterschei-

det sich lediglich das Material Epiphany von 2Seal (p-Wert 0,001) sowie von AH Plus (p-

Wert 0,000), in beiden Fällen hochsignifikant. 

4.1.1 AH Plus 

Bei dem Material AH Plus handelt es sich um einen Wurzelkanalsealer auf Epoxid-Amin-

Harz Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 2:  AH Plus. Vickershärte in N/mm
2
  

AH Plus Min. Median Max. 

1 Woche 21,6 27,0
 A

 40,3 

4 Wochen 23,3 27,1
 A

 40,7 

3 Monate 24,1 27,9
 A

 33,4 

6 Monate 20,5 28,9
 A

 32,4 

Min. = Minimalwert, Max. = Maximalwert 

Bei der statistischen Untersuchung der Unterschiede zwischen den Messintervallen konn-

ten keine Veränderungen der Vickershärte im Laufe der Zeit festgestellt werden. 

Folgende Tabelle zeigt den Elastizitätsmodul zu den Messintervallen. 

Tabelle 3:  AH Plus. E-Modul in GPa 

AH Plus Min. Median Max. 

1 Woche 8,4 9,5
 A

 12,4 

4 Wochen 7,9 8,4
 B

 8,9 

3 Monate 8,2 8,7
 AB

 10,1 

6 Monate 8,5 9,2
 AB

 11 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen hochsignifikanten Unterschied in der zeitlichen Entwicklung des 

E-Moduls (p-Wert 0,002), der paarweise Vergleich verdeutlicht, dass ein signifikanter Un-

terschied (p-Wert 0,044) zwischen 1 Woche und 4 Wochen vorliegt. Der Elastizitätsmodul 
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sinkt zwischen den Messintervallen 1 Woche und 4 Wochen, daraufhin bleibt er statistisch 

gleich. 

4.1.2 2Seal  

Bei dem Material 2Seal handelt es sich um einen Wurzelkanalsealer auf Epoxid-Amin-

Harz Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 4:  2Seal. Vickershärte in N/mm
2
  

2Seal Min. Median Max. 

1 Woche 20,1 30,2
 A

 37,6 

4 Wochen 24,2 29,3
 A

 36,0 

3 Monate 24,1 29,4
 A

 32,2 

6 Monate 19,7 28,4
 A

 33,2 

Min. = Minimalwert, Max. = Maximalwert 

Die statistische Untersuchung konnte für die Vickershärte keine Unterschiede zwischen 

den Messintervallen aufzeigen (p-Wert 0,782). 

Folgende Tabelle zeigt den Elastizitätsmodul zu den Messintervallen. 

Tabelle 5:  2Seal. E-Modul in GPa 

2Seal Min. Median Max. 

1 Woche 7,2 8,4
 A

 8,8 

4 Wochen 7,8 8,5
 A

 9,9 

3 Monate 8,2 9,0
 A

 9,5 

6 Monate 8,1 9,0
 A

 10,1 

Min. = Minimalwert, Max. = Maximalwert 

Die Eigenschaft E-Modul zeigt statistisch ebenfalls keine Veränderung zwischen den 

Messintervallen (p-Wert 0,564) 



Ergebnisse 47 

 

4.1.3 Adseal 

Bei dem Material Adseal handelt es sich um einen Wurzelkanalsealer auf Epoxid-Amin-

Harz Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 6:  Adseal. Vickershärte in N/mm2 

Adseal Min. Median Max. 

1 Woche 0,4 0,5
 A

 0,5 

4 Wochen 0,4 0,6
 A

 1 

3 Monate 5 15,4
 AB

 27,3 

6 Monate 18,7 25,1
 B

 38,3 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen hochsignifikanten Unterschied (p-Wert 0,001) in der zeitlichen 

Entwicklung der Vickershärte. Der paarweise Vergleich verdeutlicht, dass ein hochsignifi-

kanter Unterschied (p-Wert 0,002) zwischen 1 Woche und 6 Monaten, sowie ein signifi-

kanter Unterschied (p-Wert 0,010) zwischen 4 Wochen und 6 Monaten vorliegt. 

Folgende Tabelle zeigt den Elastizitätsmodul zu den Messintervallen. 

Tabelle 7:  Adseal. E-Modul in GPa 

Adseal Min. Median Max. 

1 Woche 0,1 0,2 A 0,3 

4 Wochen 0,1 0,2 A 1 

3 Monate 3,9 4,4 AB
 6,4 

6 Monate 4,4 5,3 B 5,4 

 Min. = Minimalwert, Max. = Maximalwert 

Auch bei der Entwicklung des E-Moduls ist ein hochsignifikanter Unterschied erkennbar 

(p-Wert 0,002). Der paarweise Vergleich zeigt, dass signifikante Unterschiede (p-Werte 

jeweils 0,010) zwischen 1 Woche und 6 Monaten, sowie zwischen 4 Wochen und 6 Mona-

ten vorliegen. 
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4.1.4 EndoRez 

Bei dem Material EndoRez handelt es sich um einen Wurzelkanalsealer auf Methacrylat 

Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 8:   EndoRez. Vickershärte in N/mm
2
 

EndoRez Min. Median Max. 

24 Stunden 5,9 10,7 A 16,6 

1 Woche 9,5 12,2 AB
 18,3 

4 Wochen 16,6 18,9 B 20,8 

3 Monate 9,5 13,5 AB
 16 

6 Monate 10 14,5 AB
 16,8 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied in der zeitlichen Entwicklung der 

Vickershärte (p-Wert 0,021). Der paarweise Vergleich verdeutlicht, dass dieser zwischen 

24 Stunden und 4 Wochen vorliegt (p-Wert 0,027). 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 9:  EndoRez. E-Modul in GPa 

EndoRez Min. Median Max. 

24 Stunden 2 2,9 A 3 

1 Woche 2,5 2,8 A 3,8 

4 Wochen 2,7 3,3 A 3,6 

3 Monate 3,1 3,5 A 3,7 

6 Monate 2,6 3,5 A 3,8 

Min. = Minimalwert, Max. = Maximalwert 

Die statistische Untersuchung der Eigenschaft E-Modul konnte keine Unterschiede zwi-

schen den Messintervallen aufzeigen. Hier sind die Unterschiede insgesamt nicht signifi-

kant (p-Wert 0,104). 
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4.1.5 Epiphany 

Bei dem Material Epiphany handelt es sich um einen Wurzelkanalsealer auf Methacrylat 

Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 10:  Epiphany. Vickershärte in N/mm
2
 

Epiphany Min. Median Max. 

24 Stunden 3,6 4,5 A 8,8 

1 Woche 3,5 9,4 A 11 

4 Wochen 6,7 8,1 A 10,2 

Min. = Minimalwert, Max. = Maximalwert 

Die statistische Untersuchung konnte für die Vickershärte keine Unterschiede zwischen 

den Messintervallen aufzeigen (p-Wert 0,091). 

Tabelle 11:  Epiphany. E-Modul in GPa 

Epiphany Min. Median Max. 

24 Stunden 0,9 1,3 A 1,7 

1 Woche 0,5 1,4 A 2,1 

4 Wochen 0,6 1,41 A 1,8 

Min. = Minimalwert, Max. = Maximalwert 

Die statistische Untersuchung des E-Modul stellt ebenfalls keine Unterschiede zwischen 

den Messintervallen fest (p-Wert 0,247). 

4.2 Zinkoxid-Eugenol und Calciumhydroxid 

Die Materialien aus den Stoffklassen Zinkoxid-Eugenol sowie Calciumhydroxid stellten 

sich anspruchsvoll gegenüber den Lagerungsbedingungen sowie der Messmethode dar. 

Zwölf Materialien dieser Stoffklassen wurden im Rahmen der Voruntersuchungen beo-

bachtet. Von acht ausgewählten Materialien der Klasse Calciumhydroxid bzw. Mischun-

gen aus diesem mit Zinkoxid-Eugenol konnten nur zwei Materialien die Vorversuche 

durchlaufen. Keines der vier Materialien der Klasse Zinkoxid-Eugenol konnte bis zum 
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Messintervall sechs Monate beständig bleiben. Aufgrund der ähnlichen Materialeigen-

schaften sowie der Tatsache, dass es sich bei dem Material Cp-Cap ebenfalls um eine Mi-

schung beider Komponenten handelt, werden diese Stoffklassen zusammen beschrieben 

und auch miteinander verglichen. Neben den vier Vertretern aus der Stoffklasse der Zin-

koxid-Eugenol-Zemente (Tubli Seal, Pulp Canal Sealer und Pulpal) werden im folgenden 

Abschnitt auch das Material Ultracal (Calciumhydroxid in wässriger Lösung), Hydroxyline 

(Calciumhydroxid in Ethylmethylketon) sowie das Material Cp-Cap (calciumhydroxidhal-

tiger ZOE-Zement) vorgestellt. 

Die folgenden Grafiken sollen eine Übersicht zu diesen Materialien darstellen. Ob es signi-

fikante Unterschiede zwischen den Materialien gibt wurde statistisch geprüft. Die Ergeb-

nisse fließen bei den Erläuterungen zur jeweiligen Grafik ein. Das Aufzeigen der Ergebnis-

se der einzelnen Materialien erfolgt anschließend.  



Ergebnisse 51 

 

Die folgende Grafik gibt Aufschluss zur Verteilung der Vickershärte der Materialien der 

Gruppe Zinkoxid-Eugenol und Calciumhydroxid zu den einzelnen Messintervallen. 

 

Abbildung 6:  Calciumhydroxid und ZOE - Vickershärte zu Material und Messintervall 
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Abbildung 6 veranschaulicht die Uneinheitlichkeit der Materialien dieser Gruppe. Dies 

wiederspiegelt sich sowohl in der Messbarkeit an sich, sowie im Einfluss der Zeit, als auch 

in Form der unterschiedlich starken Streuung der Messwerte. Die Statistik erkennt in dieser 

Konstellation hochsignifikante Unterschiede der Vickershärte zwischen den Materialien 

(p-Wert 0,000). Die paarweisen Vergleiche zeigen hochsignifikante Unterschiede zwischen 

Tubli Seal und Pulpal (p-Wert 0,002) sowie Tubli Seal und Pulp canal Sealer (p-Wert 

0,000). Ebenfalls hochsignifikant unterschiedlich sind Cp-Cap und Pulp canal Sealer (p-

Wert 0,006). Ein weiterer signifikanter Unterschied wurde zwischen Cp-Cap und Pulpal 

gefunden (p-Wert 0,046). 
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Die folgende Grafik gibt Aufschluss zur Verteilung des E-Moduls der Materialien der 

Gruppe Zinkoxid-Eugenol und Calciumhydroxid zu den einzelnen Messintervallen. 

 

Abbildung 7:  Calciumhydroxid und ZOE - E-Modul zu Material und Messintervall  
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Auch bei Betrachtung der mikromechanischen Eigenschaft E-Modul fällt in dieser Gruppe 

die Diversität der einzelnen Vertreter auf. Eine Gemeinsamkeit dieser Materialien ist, dass 

sich der E-Modul in niedrigen Bereichen ansiedelt. In dieser Materialgruppe scheint eine 

Tendenz zur Abnahme des E-Moduls erkennbar. Der Einfluss der Zeit wird bei den einzel-

nen Materialien besprochen. Zwischen den Materialen kann statistisch ein hochsignifikan-

ter Unterschied des E-Moduls erkannt werden. Die paarweisen Vergleiche zeigen hochsig-

nifikante Unterschiede zwischen Tubli Seal und Ultracal (p-Wert 0,008) sowie Pulpal (p-

Wert 0,000). Auch die Materialien Pulp canal Sealer und Pulpal können nicht miteinander 

verglichen werden (p-Wert 0,011). 

4.2.1 Tubli-Seal 

Bei dem Material Tubli-Seal handelt es sich um einen Wurzelkanalsealer auf Zinkoxid-

Eugenol Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 12:  Tubli-Seal. Vickershärte in N/mm
2
 

Tubli-Seal Min. Median Max. 

24 Stunden 1,9 2,7 A 3,6 

1 Woche 2,9 3,6 A 6,5 

Min. = Minimalwert, Max. = Maximalwert 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen 

Tabelle 13:  Tubli-Seal. E-Modul in GPa 

Tubli-Seal Min. Median Max. 

24 Stunden 0,3 0,6 A 0,8 

1 Woche 0,6 1,1 A 1,4 

Min. = Minimalwert, Max. = Maximalwert 

Die statistische Untersuchung konnte sowohl für die Vickershärte (p-Wert 0,414) als auch 

den E-Modul (p-Wert 0,102) keine Unterschiede zwischen den Messintervallen aufzeigen.  
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4.2.2 Cp-Cap 

Das Material Cp-Cap beinhaltet Calciumhydroxid sowie Zinkoxid-Eugenol. Es findet An-

wendung bei Überkappungen. Folgende Tabelle zeigt die Vickershärte zu den Messinter-

vallen. 

Tabelle 14:  Cp-Cap. Vickershärte in N/mm
2
 

Cp-cap Min. Median Max. 

24 Stunden 7 8,6 A 9,1 

1 Woche 3,9 5,0 A 7,5 

4 Wochen 3,9 6,0 A 6,7 

3 Monate 2,7 5,8 A 7,4 

Min. = Minimalwert, Max. = Maximalwert 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 15:  Cp-Cap. E-Modul in GPa 

Cp-cap Min. Median Max. 

24 Stunden 3,4 5,5 A 5,9 

1 Woche 2 3,3 A 4,2 

4 Wochen 1,1 2,5 A 3,3 

3 Monate 0,7 1,7 A 1,7 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt sowohl für die Vickershärte als auch den E- Modul einen Unterschied 

(beide p-Werte 0,042) im zeitlichen Verlauf, jedoch sind die paarweisen Vergleiche alle-

samt nicht signifikant. Das bedeutet, dass eine Veränderung zwischen den Messintervallen 

feststellbar ist, jedoch nicht detektiert werden kann wo genau diese stattfindet. 

4.2.3 Pulpal 

Das Material Pulpal auf Basis von Zinkoxid-Eugenol wird als Liner und Base angewendet. 

Folgende Tabelle zeigt die Vickershärte zu den Messintervallen. 
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Tabelle 16:  Pulpal. Vickershärte in N/mm
2
 

Pulpal Min. Median Max. 

24 Stunden 10,8 20,1 A 25,3 

1 Woche 13,6 18,0 A 21,0 

4 Wochen 15,4 17,4 A 18,2 

Min. = Minimalwert, Max. = Maximalwert 

Es gibt insgesamt keinen Unterschied, da der p-Wert (0,717) deutlich über dem Signifi-

kanzniveau liegt. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 17:  Pulpal. E-Modul in GPa 

Pulpal Min. Median Max. 

4 Wochen 5,8 9,5 A 12,7 

1 Woche 7,7 10,0 A 11,7 

24 Stunden 5,7 5,7 A 9,9 

Min. = Minimalwert, Max. = Maximalwert 

Statistisch verändert sich der E-Modul bei Pulpal nicht (p-Wert 0,368). 

4.2.4  Pulp canal Sealer 

Bei dem Material Pulp canal Sealer handelt es sich um einen Wurzelkanalsealer auf Zin-

koxid-Eugenol Basis. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen.  

Tabelle 18:  Pulp canal Sealer. Vickershärte in N/mm
2
 

Pulp canal Sealer Min. Median Max. 

24 Stunden 1,9 4,7 A 6,4 

1 Woche 17,9 23,2 AB
 28,8 

4 Wochen 25 32,9 B 45,6 

Min. = Minimalwert, Max. = Maximalwert 
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Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 19:  Pulp canal Sealer. E-Modul in GPa 

Pulp canal sealer Min. Median Max. 

24 Stunden 0,6 0,7 A 1,2 

1 Woche 1,8 2,8 AB
 4 

4 Wochen 2 3,7 B 4,5 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt sowohl für die Vickershärte als auch das E- Modul einen Unterschied im 

zeitlichen Verlauf (beide p-Werte 0,015). Bei den paarweisen Vergleichen zeigt sich ein 

signifikanter Unterschied zwischen 24 Stunden und 4 Wochen, ebenfalls bei beiden Para-

metern (p-Werte jeweils 0,013). Die Messwerte für E-Modul und Vickershärte steigen im 

Verlauf der Zeit signifikant an. 

4.2.5 Ultracal 

Das Material Ultracal ist eine Calciumhydroxidpaste zur Anwendung bei Apexifikations-

behandlungen und als temporäre Wurzelkanaleinlage. Folgende Tabelle zeigt die Vickers-

härte zu den Messintervallen. 

Tabelle 20:  Ultracal. Vickershärte in N/mm
2
 

Ultracal Min. Median Max. 

24 Stunden 0,2 1,0 A 2,1 

1 Woche 3,2 9,4 B 21,2 

4 Wochen 8,7 12,0 AB
 19,1 

3 Monate 7,3 13,1 AB
 34,8 

6 Monate 8,8 13,6 AB
 24,9 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,043) in der zeitlichen Ent-

wicklung der Vickershärte. Der paarweise Vergleich verdeutlicht, dass ein signifikanter 

Unterschied (p-Wert 0,045) zwischen 24 Stunden und 1 Woche vorliegt. In diesem Zeit-
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raum steigt die Vickershärte an, in den nachfolgenden Messintervallen bleibt die Härte 

statistisch gesehen unverändert. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 21:  Ultracal. E-Modul in GPa 

Ultracal Min. Median Max. 

24 Stunden 0,5 1,1 A 1,2 

1 Woche 3,8 6,4 B 10,5 

4 Wochen 4,6 5,2 AB
 8,6 

3 Monate 2,4 7,5 AB
 11,7 

6 Monate 4,3 6,2 AB
 9,5 

Min. = Minimalwert, Max. = Maximalwert 

Bei Untersuchungen der Messdaten zum E-Modul konnte ebenfalls ein signifikanter Unter-

schied (p-Wert 0,034) festgestellt werden, auch hier zeigt der paarweise Vergleich einen 

signifikanten Unterschied (p-Wert 0,019) zwischen 24 Stunden und 1 Woche.  

4.2.6 Hydroxyline 

Das Material Hydroxyline ist eine Calciumhydroxidsuspension in Ethylmethylketon. Es 

kommt zur Anwendung bei Apexifikationsbehandlungen und als temporäre Wurzelkanal-

einlage. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 22:  Hydroxyline. Vickershärte in N/mm
2
 

Hydroxyline Min. Median Max. 

24 Stunden 7,9 10,7 A 15,4 

1 Woche 6,7 12,3 AB
 14,6 

4 Wochen 9,0 12,0 AB
 15,0 

3 Monate 10,5 12,4 AB
 20,6 

6 Monate 11,7 12,7 B 20,4 

Min. = Minimalwert, Max. = Maximalwert 
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Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,020) in der zeitlichen Ent-

wicklung der Vickershärte. Der paarweise Vergleich zeigt, dass dieser Unterschied zwi-

schen 24 Stunden und 6 Monaten vorliegt (p-Wert 0,027). 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 23:  Hydroxyline. E-Modul in GPa 

Hydroxyline Min. Median Max. 

24 Stunden 1,9 3,0 A 3,5 

1 Woche 2 3,5 AB
 3,7 

4 Wochen 2,3 3,4 AB
 4 

3 Monate 2,9 3,6 B 4,6 

6 Monate 3,4 3,7 B 4,6 

Min. = Minimalwert, Max. = Maximalwert 

Bei Untersuchungen der Messdaten zum E-Modul konnte ein hochsignifikanter Unter-

schied (p-Wert 0,007) festgestellt werden, hier zeigt der paarweise Vergleich einen signifi-

kanten Unterschied (p-Wert 0,027) zwischen 24 Stunden und 3 Monaten, sowie einen 

hochsignifikanten Unterschied zwischen 24 Stunden und 6 Monaten. 

4.3 Glasionomerzement und modifizierter Glasionomerzement 

Die folgenden Grafiken stellen eine Übersicht zu dem Glasionomerzement Ketac Bond 

und den kunststoffmodifizierten GIZ Fuji Lining und Vitre Bond dar. Bei den Vertretern 

dieser Gruppe handelt es sich um Materialien die als Base eingesetzt werden. Bei Fuji Li-

ning gibt der Hersteller auch die Indikation als Liner an (Begriffe siehe 2.2.1). 

Ob es signifikante Unterschiede zwischen den Materialien gibt wurde statistisch geprüft. 

Die Ergebnisse fließen bei den Erläuterungen zu den Grafiken ein. Das Aufzeigen der Er-

gebnisse der einzelnen Materialien erfolgt anschließend.  
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Die folgende Grafik gibt Aufschluss zur Verteilung der Vickershärte der Materialien der 

Gruppe Glasionomerzement und kunststoffmodifizierter GIZ zu den einzelnen Messinter-

vallen. 

 

Abbildung 8:  GIZ und modifizierte GIZ - Vickershärte zu Material und Messintervall  
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Abbildung 8 zeigt die Entwicklung der Vickershärte der Glasionomerzemente die im Be-

reich Pulpaschutz zum Einsatz kommen. Zu erkennen sind die höheren Werte des klassi-

schen GIZ im Vergleich zu den modifizierten Varianten. Laut Statistik liegt jedoch nur 

zwischen den Materialien Vitre Bond und Ketac Bond ein Unterschied vor. Dieser ist 

hochsignifikant mit einem p-Wert von 0,000. Die Prüfkörper der Materialien Fuji Lining 

und Vitre Bond konnten aufgrund zunehmender Versprödung die fünf Messintervalle nicht 

vollständig durchlaufen.  

  



Ergebnisse 62 

 

Die folgende Grafik gibt Aufschluss zur Verteilung der Vickershärte der Materialien der 

Gruppe Glasionomerzement und kunststoffmodifizierter GIZ zu den einzelnen Messinter-

vallen. 

 

 

Abbildung 9:   GIZ und modifizierte GIZ – E-Modul zu Material und Messintervall  
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Auch in der Eigenschaft E-Modul ist der Unterschied zwischen den modifizierten und dem 

klassischen GIZ erkennbar. Die statistische Untersuchung jedoch bestätigt nur einen Un-

terschied zwischen dem Material Vitre Bond und dem Material Ketac Bond. Dieser Unter-

schied ist hochsignifikant mit einem p-Wert von 0,001. Angaben zur zeitlichen Entwick-

lung folgen in der Darstellung der einzelnen Materialien. 

4.3.1 Ketac Bond 

Das Material Ketac Bond ist ein Glasionomerzement zur Verwendung als Base. Folgende 

Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 24:  Ketac Bond. Vickershärte in N/mm
2
 

Ketac Bond Min. Median Max. 

24 Stunden 88,6 100,6 A 126,4 

1 Woche 92,9 106,6 A 144,5 

4 Wochen 73,0 102,2 A 119,0 

3 Monate 45,6 85,1 A 93,2 

6 Monate 75,5 80,4 A 87,1 

Min. = Minimalwert, Max. = Maximalwert 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 25:  Ketac Bond. E-Modul in GPa 

Ketac Bond Min. Median Max. 

24 Stunden 18,1 20,0 A 22,3 

1 Woche 19,1 23,1 A 25,2 

4 Wochen 17,5 21,8 A 23,5 

3 Monate 12,2 21,8 A 24,4 

6 Monate 22,5 23,3 A 26 

Min. = Minimalwert, Max. = Maximalwert 
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Die Statistik zeigt im Friedmantest einen signifikanten Unterschied im zeitlichen Verlauf 

der Entwicklung der Vickershärte sowie des E-Moduls (beide p-Werte 0,037), jedoch sind 

die paarweisen Vergleiche allesamt nicht signifikant. Das bedeutet, dass zwar eine Verän-

derung der Werte zwischen den Messintervallen stattfand, jedoch kann nicht detektiert 

werden wo genau die Unterschiede liegen. 

4.3.2 Vitre Bond 

Das Material Vitre Bond ist ein kunststoffmodifizierter Glasionomerzement zur Verwen-

dung als Base. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 26:  Vitre Bond. Vickershärte in N/mm
2
 

Vitre Bond Min. Median Max. 

24 Stunden 17,1 21,8 A 31,8 

1 Woche 30,1 37,0 B 44,5 

4 Wochen 32,2 38,6 B 40,4 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied im zeitlichen Verlauf der Vickershärte 

(p-Wert 0,011). Der paarweise Vergleich verdeutlicht, dass ein solcher Unterschied zwi-

schen 24 Stunden und 1 Woche vorliegt (p-Wert 0,028), sowie zwischen 24 Stunden und 4 

Wochen (p-Wert 0,028). Zu Beginn erfolgt ein Anstieg der Härte, die Messintervalle 1 

Woche und 4 Wochen zeigen jedoch keinen Unterschied mehr. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 27:  Vitre Bond. E-Modul in GPa 

Vitre Bond Min. Median Max. 

24 Stunden 4,5 5,3 A 6,9 

1 Woche 5,6 6,6 A 8,2 

4 Wochen 5,9 6,4 A 7,5 

Min. = Minimalwert, Max. = Maximalwert 
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Bei der statistischen Untersuchung zur Entwicklung des E-Moduls konnte kein Unter-

schied festgestellt werden. 

4.3.3 Fuji Lining 

Das Material Fuji Lining ist ein kunststoffmodifizierter Glasionomerzement zur Verwen-

dung als Liner und Base. Folgende Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 28:  Fuji Lining. Vickershärte in N/mm
2
 

Fuji Lining Min. Median Max. 

24 Stunden 19,9 31,6 A 53,8 

1 Woche 39,3 40,9 AB
 47,4 

4 Wochen 34 40,7 AB
 58,6 

3 Monate 40,6 52,9 B 65,2 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,019) in der zeitlichen Ent-

wicklung der Vickershärte. Der paarweise Vergleich zeigt, dass dieser Unterschied zwi-

schen dem Messintervall 24 Stunden und 3 Monaten vorliegt (p-Wert 0,020). 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 29:  Fuji Lining. E-Modul in GPa 

Fuji Lining Min. Median Max. 

24 Stunden 5,4 6,8 A 9,2 

1 Woche 5,8 7,0 A 10,7 

4 Wochen 5,8 7,8 A 8,7 

3 Monate 6,9 7,8 A 9,5 

Min. = Minimalwert, Max. = Maximalwert 

Bei der Untersuchung des E-Moduls wurde die Nullhypothese bestätigt (p-Wert 0,241). Es 

konnte im Gesamtverlauf der Messintervalle kein signifikanter Unterschied festgestellt 

werden. 
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4.4 Hydraulischer Kalziumsilikatzement 

Die folgenden Grafiken stellen eine Übersicht zu den hydraulischen Kalziumsilikatzemen-

ten dar. Dazu gehören die Mineraltrioxid-Aggregate Angelus grau und weiß, MTA rapid 

und Pro Root MTA. Sowie der medizinische Portlandzement Medcem und das Material 

Biodentine. Ob es signifikante Unterschiede zwischen den Materialien gibt wurde statis-

tisch geprüft. Die Ergebnisse fließen bei den Erläuterungen zu den Grafiken ein. Das Auf-

zeigen der Ergebnisse der einzelnen Materialien erfolgt anschließend. 

An dieser Stelle sei darauf hingewiesen, dass die Ergebnisse des Materials Biodentine zum 

Messintervall 1 Woche in der Diskussion kritisch betrachtet werden. 
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Die folgende Grafik gibt Aufschluss zur Verteilung der Vickershärte der Materialien der 

Gruppe hydraulische Kalziumsilikatzemente zu den einzelnen Messintervallen. 

 

Abbildung 10:  hydraulische Kalziumsilikatzemente - Vickershärte zu Material und Messintervall  
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In der Übersichtsgrafik zu den hydraulischen Kalziumsilikatzementen ist eine Einheitlich-

keit dieser Stoffklasse erkennbar. Anhand der statistischen Auswertung kann gezeigt wer-

den, dass sich lediglich das Material MTA Angelus weiß von den Materialien MTA rapid 

(p-Wert 0,046), Pro Root MTA (p-Wert 0,014) sowie dem Portlandzement Medcem (p-

Wert 0,005) signifikant unterscheidet. MTA Angelus weiß zeigt im Vergleich zu diesen 

signifikant geringe Werte in der Eigenschaft Vickershärte. Zwischen MTA Angelus weiß 

und Biodentine, sowie zwischen Biodentine und den weiteren Vertretern der hydraulischen 

Kalziumsilikatzemente liegt kein Unterschied vor. 
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Die folgende Grafik gibt Aufschluss zur Verteilung des E-Moduls zu den einzelnen 

Messintervallen der Materialien der Gruppe hydraulische Kalziumsilikatzemente  

 

Abbildung 11:  hydraulische Kalziumsilikatzemente - E-Modul zu Material und Messintervall  



Ergebnisse 70 

 

Auch an dieser Stelle sei darauf hingewiesen, dass die Ergebnisse des Materials Biodentine 

zum Messintervall 1 Woche in der Diskussion kritisch betrachtet werden. Anhand der sta-

tistischen Auswertung kann jedoch eindeutig festgestellt werden, dass sich das Material 

Biodentine hinsichtlich des Elastizitätsmoduls nicht von den anderen Kalziumsilikatze-

menten unterscheidet. 

Jedoch unterscheidet sich MTA Angelus weiß von den Materialien MTA rapid (p-Wert 

0,003) und dem Material Pro Root MTA (p-Wert 0,002) hochsignifikant. MTA Angelus 

weiß zeigt im Vergleich zu diesen eine hochsignifikant geringere Ausprägung des E-

Moduls. 

4.4.1 Biodentine 

Das Material Biodentine ist ein hydraulischer Kalziumsilikatzement. Die Anwendung wird 

beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Folgende Tabelle 

zeigt die Vickershärte zu den Messintervallen. 

Tabelle 30: Biodentine. Vickershärte in N/mm
2
 

Biodentine Min. Median Max. 

24 Stunden 47,8 57,9 AB
 76,5 

1 Woche 19,2 21,1 A 25,8 

4 Wochen 66,7 69,7 AB
 81,5 

3 Monate 70 75,9 AB
 76,6 

6 Monate 68,3 82,8 B 93 

Min. = Minimalwert, Max. = Maximalwert 

Statistisch zeigt sich ein signifikanter Unterschied in den Werten der Vickershärte der ein-

zelnen Messintervalle (p-Wert 0,031). Der paarweise Vergleich detektiert diesen zwischen 

dem Messintervall 1 Woche und 6 Monaten (p-Wert 0,017). 

Da die Validität des Ergebnisses zum Zeitpunkt 1 Woche kritisch betrachtet werden muss 

(siehe Diskussion der Ergebnisse) wurde die statistische Überprüfung gleichermaßen unter 

Ausschluss dieses Zeitintervalls durchgeführt. Hier konnten keine signifikanten Unter-

schiede zwischen Werten der Vickershärte der einzelnen Messintervalle festgestellt werden 

(p-Wert 0,118). 
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Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 31:  Biodentine. E-Modul in GPa 

Biodentine Min. Median Max. 

24 Stunden 20 22,0 A 27,3 

1 Woche 12,3 14,8 A 16,1 

4 Wochen 24 27,1 A 32,2 

3 Monate 23,9 25,3 A 26,8 

6 Monate 22,2 27,5 A 39,4 

 Min. = Minimalwert, Max. = Maximalwert 

Auch hier zeigt sich ein signifikanter Unterschied der einzelnen Messintervalle (p-Wert 

0,034), jedoch sind keine signifikanten Einzelvergleiche nachgewiesen worden. 

Da die Validität des Ergebnisses zum Zeitpunkt 1 Woche kritisch betrachtet werden muss 

(siehe Diskussion der Ergebnisse) wurde die statistische Überprüfung gleichermaßen unter 

Ausschluss dieses Zeitintervalls durchgeführt. Hier konnten keine signifikanten Unter-

schiede zwischen Werten des E-Moduls der einzelnen Messintervalle festgestellt werden 

(p-Wert 0,118) Aus diesem Grund wird kein paarweiser Vergleich vorgenommen. 

4.4.2 MTA Angelus grau 

Das Material MTA Angelus grau ist ein hydraulischer Kalziumsilikatzement. Die Anwen-

dung wird beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Fol-

gende Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 32:  MTA Angelus grau. Vickershärte in N/mm
2
 

MTAAngelus 

grau 
Min. Median Max. 

24 Stunden 9,4 44,5 A 77,1 

1 Woche 43,7 53,7 AB
 112,8 

4 Wochen 56,8 72,7 AB
 89,7 

3 Monate 31 71,9 AB
 99,8 

6 Monate 47,2 105,5 B 108,2 
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Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied in der zeitlichen Entwicklung der 

Vickershärte (p-Wert 0,020), der paarweise Vergleich zeigt, dass dieser zwischen 24 Stun-

den und 6 Monaten vorliegt (p-Wert 0,014). Im Verlauf des sechs monatigen Messinter-

valls zeigt das Material eine signifikante Zunahme der Vickershärte. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 33:  MTA Angelus grau. E-Modul in GPa 

MTA Angelus 

grau 
Min. Median Max. 

24 Stunden 9,7 20,8 A 24 

1 Woche 19,6 23,6 A 37,3 

4 Wochen 23,2 26,2 A 31,2 

3 Monate 18,5 25,9 A 36,3 

6 Monate 19,2 30,4 A 40,3 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen hochsignifikanten Unterschied im zeitlichen Verlauf des E-

Moduls (p-Wert 0,034), jedoch sind die paarweisen Vergleiche allesamt nicht signifikant. 

Das bedeutet, dass die ersichtliche Steigerung des E-Moduls zwar hochsignifikant ist, je-

doch kann zwischen den einzelnen Messintervallen kein Unterschied detektiert werden. 
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4.4.3 MTA Angelus weiß 

Das Material MTA Angelus weiß ist ein hydraulischer Kalziumsilikatzement. Die Anwen-

dung wird beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Fol-

gende Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 34:  MTA Angelus weiß. Vickershärte in N/mm2 

MTA Angelus 

weiß 
Min. Median Max. 

24 Stunden 10,1 22,4 A 25 

1 Woche 34 34,2 AB
 34,4 

4 Wochen 41,9 49,9 AB
 52 

3 Monate 50 53,1 AB
 55,3 

6 Monate 54,9 56,9 B 58,7 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen hochsignifikanten Unterschied (p-Wert 0,003) in der zeitlichen 

Entwicklung der Vickershärte. Der paarweise Vergleich verdeutlicht, dass ein hochsignifi-

kanter Unterschied (p-Wert 0,003) zwischen 24 Stunden und 6 Monaten vorliegt. Die 

Vickershärte ist in diesem Zeitraum gestiegen. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 35:  MTA Angelus weiß. E-Modul in GPa 

MTA Angelus 

weiß 
Min. Median Max. 

24 Stunden 6 12,7 A 16,4 

1 Woche 10 15,1 AB
 17,3 

4 Wochen 13,7 19,9 AB
 21,2 

3 Monate 10,2 21,6 AB
 24,7 

6 Monate 21,6 27,6 B 28,3 

Min. = Minimalwert, Max. = Maximalwert 
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Bei Untersuchungen der Messdaten zum E-Modul konnte ebenfalls ein hochsignifikanter 

Unterschied (p-Wert 0,003) festgestellt werden, auch hier zeigt der paarweise Vergleich 

einen hochsignifikanten Anstieg (p-Wert 0,003) zwischen 24 Stunden und 6 Monaten. 

4.4.4 Medcem 

Das Material Medcem ist ein hydraulischer Kalziumsilikatzement. Die Anwendung wird 

beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Folgende Tabelle 

zeigt die Vickershärte zu den Messintervallen. 

Tabelle 36:   Medcem. Vickershärte in N/mm2 

Medcem Min. Median Max. 

24 Stunden 11,5 61,8 A 72,8 

1 Woche 38,6 59,2 A 84 

4 Wochen 50,3 72,5 A 106,6 

3 Monate 64,7 79,0 A 95,7 

6 Monate 51,5 82,3 A 100,9 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,026) in der zeitlichen Ent-

wicklung der Vickershärte. Jedoch sind die paarweisen Vergleiche allesamt nicht signifi-

kant. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 37:  Medcem. E-Modul in GPa 

Medcem Min. Median Max. 

24 Stunden 14,3 23,4 A 28,4 

1 Woche 22,5 26,5 A 36,9 

4 Wochen 20,1 26,5 A 36,7 

3 Monate 26,3 32,5 A 35,6 

6 Monate 25,6 30,0 A 36,6 

Min. = Minimalwert, Max. = Maximalwert 
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Bei der Untersuchung des E-Moduls wurde die Nullhypothese bestätigt. Es gibt keinen 

Unterschied zwischen den Messintervallen (p-Wert 0,163) 

4.4.5 MTA rapid 

Das Material MTA rapid ist ein hydraulischer Kalziumsilikatzement. Die Anwendung wird 

beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Folgende Tabelle 

zeigt die Vickershärte zu den Messintervallen. 

Tabelle 38:  MTA rapid. Vickershärte in N/mm
2
 

MTA rapid Min. Median Max. 

24 Stunden 18,9 45,1 A 92 

1 Woche 52,7 63,3 AB
 126,3 

4 Wochen 53,9 74,9 AB
 78,9 

3 Monate 60,1 80,8 AB
 97,1 

6 Monate 69,8 113,0 B 127,6 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,036) in der zeitlichen Ent-

wicklung der Vickershärte. Der paarweise Vergleich detektiert diesen Unterschied zwi-

schen 24 Stunden und 6 Monaten (p-Wert 0,019). Es liegt ein signifikanter Anstieg der 

Vickershärtevor. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 39:  MTA rapid. E-Modul in GPa 

MTA rapid Min. Median Max. 

24 Stunden 4,3 20,4 A 25,1 

1 Woche 20,7 25,9 AB
 29,1 

4 Wochen 23,8 27,0 AB
 36,9 

3 Monate 27,3 28,4 B 30,5 

6 Monate 15,6 33,8 B 38,5 

Min. = Minimalwert, Max. = Maximalwert 
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Bei Untersuchungen der Messdaten zum E-Modul konnte ein hochsignifikanter Unter-

schied (p-Wert 0,008) festgestellt werden, hier zeigt der paarweise Vergleich einen signifi-

kanten Unterschied zwischen 24 Stunden und 3 Monaten (p-Wert 0,035), sowie einen sig-

nifikanten Unterschied (p-Wert 0,010) zwischen 24 Stunden und 6 Monaten. Auch hier 

handelt es sich um einen Anstieg des Parameters E-Modul. 

4.4.6 Pro Root MTA 

Das Material Pro Root MTA ist ein hydraulischer Kalziumsilikatzement. Die Anwendung 

wird beschrieben unter 2.2.2 Indikationen bioaktiver endodontischer Zemente. Folgende 

Tabelle zeigt die Vickershärte zu den Messintervallen. 

Tabelle 40:  Pro Root MTA. Vickershärte in N/mm
2
 

Pro Root MTA Min. Median Max. 

24 Stunden 30,7 57,9 A
 94,8 

1 Woche 35,1 63,8 A
 144,6 

4 Wochen 50,4 84,0 A
 110,9 

3 Monate 83,1 90,9 A
 151,7 

6 Monate 78,8 106,3 A
 117,7 

Min. = Minimalwert, Max. = Maximalwert 

Die Statistik zeigt einen signifikanten Unterschied (p-Wert 0,021) in der zeitlichen Ent-

wicklung der Vickershärte. Bei den paarweisen Vergleichen ergibt sich jedoch keine Signi-

fikanz. 

Folgende Tabelle zeigt den E-Modul zu den Messintervallen. 

Tabelle 41:  Pro Root MTA. E-Modul in GPa 

Pro root MTA Min. Median Max. 

24 Stunden 15,2 21,7 A
 31 

1 Woche 20 23,3 AB
 28,8 

4 Wochen 16,7 25,9 AB
 34,4 

3 Monate 29,1 31,7 B
 39,1 

6 Monate 25,8 31,1 B
 39,3 
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Min. = Minimalwert, Max. = Maximalwert 

Der statistische Vergleich der Messintervalle zur Eigenschaft E-Modul stellt einen hoch-

signifikanten Unterschied fest (p-Wert 0,002). Der paarweise Vergleich zeigt, dass ein Un-

terschied zwischen 24 Stunden und 3 Monaten vorliegt (p-Wert 0,010), als auch zwischen 

24 Stunden und 6 Monaten (p-Wert 0,010). 
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5 Diskussion 

5.1 Diskussion der Materialauswahl und Methodik 

Mit der vorliegenden Studie werden die mikromechanischen Eigenschaften Vickershärte 

und Elastizitätsmodul von 20 verschiedenen endodontischen Materialien gezeigt, sowie 

deren Verhalten nach Alterung unter Laborbedingungen in einem Zeitraum von sechs Mo-

naten. Durch statistische Auswertung werden die Unterschiede der mikromechanischen 

Eigenschaften der Materialien, sowie der Einfluss der Zeit detektiert.  Die Bestimmung der 

Mikrohärte (Vickershärte) und des Elastizitätsmoduls wurde mit Hilfe eines speziellen 

Indentationsmessgerätes (Fischerscope H100c, Fischer, Sindelfingen) durchgeführt. Es 

wurden Materialien verschiedener zahnmedizinischer Stoffklassen, die im Bereich der En-

dodontie Anwendung finden, untersucht. Bei den Vorversuchen kamen 13 Sealer aus fünf 

verschiedenen Stoffklassen, sieben Materialien zur Verwendung als Pulpenschutz, fünf 

temporäre Wurzelkanalpasten und sechs verschiedene hydraulische Kalziumsilikatzemente 

zur Auswahl. Die Indikationen reichen vom Schutz der vitalen Pulpa, bis hin zur Versor-

gung endodontischer Probleme oder Misserfolge.  

Aus Untersuchungen anderer Autoren ist festzustellen, dass meist nur kleine Gruppen en-

dodontischer Materialien zum Vergleich herangezogen werden. Durch fehlende Standardi-

sierung im Vorgehen ist zudem die Vergleichbarkeit zwischen den Autoren schwierig. 

Häufiger als Härteuntersuchungen finden bei endodontischen Materialien Festigkeitsunter-

suchungen statt. Bei Restaurationsmaterialien wie den Kompositen finden vergleichende 

Härtemessungen jedoch oft Anwendung. Im Gegensatz zu Zug-, Druck- und Biegefestig-

keitsversuchen kann die Härtemessung zerstörungsfrei und an sehr geringen Schichtstärken 

erfolgen. Die Definition von Härte ist einfach, und eine Umrechnung von Martenshärte in 

Vickershärte ist möglich. Zudem kann mithilfe des Indentationsmessverfahrens der Elasti-

zitätsmodul gewonnen werden. Mithilfe der Parameter Vickershärte und Elastizitätsmodul 

kann die Alterung der Materialien verfolgt werden. Dennoch wird das hier gewählte Ver-

fahren nicht allen Stoffklassen gerecht. Bei den Materialien, die sich im oberen Härtebe-

reich einordnen (KetacBond Aplicap und die hydraulischen Kalziumsilikatzemente) sowie 

bei den kunststoffmodifizierten GIZ kam es bei der Indentation teilweise zu Rissen und 

Brüchen durch zunehmende Austrocknung. Die Silikone (RoekoSeal Automix und Roeko 
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GuttaFlow) hingegen konnten aufgrund der hohen plastischen Verformung keine validen 

Ergebnisse generieren. 

Die Härteprüfung nach Vickers wird in drei Bereiche unterteilt (DIN EN ISO 6507). Die 

Kraft der bei dieser Arbeit gewählten Prüfmethode (0,3 N) liegt im Mikrobereich, was sie 

besonders für Zahnmaterialien geeignet werden lässt (Soares, et al., 2014). Das gewählte 

Mikroindentationsverfahren erfordert glatte, ebene Oberflächen und geht von einer einheit-

lichen Materialcharakteristik in tieferliegenden Bereichen aus. Der Faktor Oberfläche hat 

großen Einfluss auf die Messergebnisse. Bei Versuchen im Makrobereich (49,03 N - 980,7 

N) spielt dieser Parameter meist nur eine untergeordnete Rolle, bei Reduktion der Prüfkraft 

verstärkt sich der Einfluss jedoch (Tabor, 1951). Sowohl experimentelle Untersuchungen, 

als auch theoretische Überlegungen haben für makroskopische Messungen eine Unabhän-

gigkeit der Härte von der Rauigkeit der Oberfläche gezeigt. Die im Verhältnis zum Ein-

dringkörper um Größenordnungen kleineren Unebenheiten der Probenoberfläche bewirken 

keine Änderung der Eindringtiefe (Tabor, 1951). Ändert sich, wie im Falle der Mikro-

indentation, das Verhältnis der Größe des Diamanten zur Unebenheit auf Eins (beides 

gleich groß), sind die Auswirkungen der nicht mehr planen Oberfläche leicht ersichtlich. 

Durch sorgfältige Präparation der Probe kann dieser Einfluss minimiert werden.   

Im Gegensatz zu den Kompositen sind jedoch die meisten hier verwendeten Materialien 

nur schlecht oder gar nicht polierbar. Da eine Politur endodontischer Materialien keine 

klinische Relevanz hat, wurde auf die Politur der Prüfkörper verzichtet. Eine Bearbeitung 

der Oberfläche würde zudem oftmals eine Veränderung der Härte durch Verdichtung be-

wirken oder den Abtrag einer materialspezifischen Oberfläche erzeugen. Die Auswirkun-

gen der Verfestigung sind nur dicht an der Oberfläche messbar, dem Messbereich von Här-

temessverfahren im Mikrometerbereich (Braunovic, 1971). Bei dem hier verwendeten Här-

temessgerät (Fischerscope H100c) beträgt die maximale Indentierungstiefe 150 µm. 

Durch Indentierung im Bereich der Korngrößen resultieren ebenfalls inhomogene Materi-

alwerte. Die an verschiedenen Stellen gemessenen Materialparameter repräsentieren die 

gesamte Probe, man geht also von einem homogenen Gefüge aus. Mit Hilfe der Mikro-

indentation werden sehr kleine Bereiche vermessen. Diese sind unter Umständen kleiner 

als die Korngrößen bzw. Füllkörper im Material. Es wird demnach nicht die Härte des Ge-

füges gemessen, sondern einzelner Körner. Erst durch vielfache Messungen, und Mittelung 

der Resultate durch geeignete Homogenisierungsverfahren kann die Gefügehärte bestimmt 
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werden (Tertsch, 1953). Bei einigen Materialien, wie zum Beispiel dem Zinkoxid-

Eugenol-Zement mit Calciumhydroxid-Zusatz (Cp-Cap) ist unabhängig von der Anmisch-

dauer- und- art, bereits ohne Zuhilfenahme optischer Vergrößerung eine inhomogene 

Struktur erkennbar. In vielen Stoffklassen ist Zirkonoxid zugesetzt. Indentierungen in Zir-

konoxidpartikel führen zu einzelnen extremen Spitzenwerten bei den Messergebnissen. 

Dazu kommen teilweise unterschiedliche Mittelwerte am Rand des Prüfkörpers im Ver-

gleich zu den Messpunkten im Zentrum. Dennoch wurde kein spezielles Homogenisie-

rungsverfahren angewendet. Nach genauem studieren der Graphenverläufe wurden fehler-

hafte Ergebnisse aussortiert. Fehlerhafte Messungen kommen zum Beispiel bei Indentie-

rung mit Rissbildung, Indentierung im Feld großer Gläser (bei den Glasionomerzementen), 

oder Indentierungen innerhalb von Lufteinschlüssen des Materials bzw. in Füllkörperparti-

kel vor. Die Messpunktbestimmung erfolgte mit Hilfe von Auflichtmikroskopie.  

Das Design der Prüfkörper wurde einheitlich gewählt, unabhängig von der jeweiligen An-

wendungsform der Materialien in vivo, so dass eine gute Vergleichbarkeit der jeweiligen 

Messergebnisse resultiert. Da jeder Probenkörper innerhalb der sechs Monate, für alle 

Messzyklen wiederverwendet wurde, war es wichtig eine große Oberfläche zur Verfügung 

zu haben. Aus diesem Grund konnte nicht auf eine Methode mit künstlichen Wurzelka-

nalmodellen oder standardisiert aufbereiteten Molaren zurückgegriffen werden. Bei diesen 

Untersuchungen erfolgt das Einbringen des Sealers in den Wurzelkanal meist mithilfe der 

Kondensationsmethode. Das Einbringen des Sealers unter Druck und in dünnen Schichten 

führt im Ergebnis zu einer geringeren Anzahl von Lufteinschlüssen in Form von Poren 

(Mutal & Gani, 2005). 

Bei der Prüfkörpergestaltung und der Lagerung der Proben hat die Feuchtigkeit, bezie-

hungsweise Trockenheit, Einfluss auf das Material. Als Kompromiss wurde als Träger für 

die Materialien ein Dentinscheibchen mit dentinähnlicher Restfeuchtigkeit gewählt. Die 

Lagerung erfolgte bei 37°C und 100% Luftfeuchtigkeit. Diese Form der Lagerung kann 

ebenfalls nicht allen Materialien gerecht werden. So konnte man erkennen, dass für die 

Glasionomerzemente tendenziell zu trockene Verhältnisse vorlagen. Im Laufe der Lage-

rung und Indentierung kam es zur sogenannten „Craquelierung“. Bei einigen Calciumhyd-

roxiden jedoch konnte auf der Oberfläche eine vermehrte Wasseranlagerung beobachtet 

werden. Für die Methacrylate stellt der Kontakt zu Luftsauerstoff ein Problem dar. Bei den 

Zinkoxid-Eugenol-Zementen führt die im Laufe der Lagerung häufig zu beobachtende Vo-
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lumenänderung zu Unebenheiten in der Oberfläche. Die Einflüsse der Bedingungen und 

deren Auswirkungen werden im Folgenden für die jeweiligen Stoffklassen beschrieben. 

5.2 Diskussion der Ergebnisse 

5.2.1 Polymere 

Die Kunststoffe, die in der Endodontie eine wichtige Rolle spielen, siedeln sich im An-

wendungsbereich der Wurzelkanalsealer an. Seit Jahrzehnten sind Sealer auf Zinkoxid- 

Basis erfolgreich in Gebrauch (Cohen & Burns, 2002). Von dieser Stoffklasse ausgehend 

wurde versucht die Materialeigenschaften entsprechend den Anforderungen eines Sealers 

weiter zu entwickeln (Lucena-Martin, et al., 2002). Mit der Absicht einer Verbesserung der 

Bindung zur Zahnstruktur hielten die Methacrylate Einzug bei den endodontischen Sealern 

(Hiraishi, et al., 2006). Die Polymere, die in dieser Arbeit untersucht wurden, gehören zu 

den Gruppen Epoxidharze (AH Plus, 2 Seal, Adseal), Methacrylate (EndoRez, Epiphany) 

und Silikone (RoekoSeal Automix, Roeko GuttaFlow). Die Silikone (RoekoSeal Automix 

und Roeko GuttaFlow) sind aufgrund ihrer niedrigen Härte und ihrem nichtlinear elasti-

schen Verhalten nicht messbar. Zu dieser Erkenntnis kamen auch die Autoren um Mo-

keem-Saleh, die unter sehr ähnlichen Bedingungen vergleichende Härteuntersuchungen an 

GuttaFlow, zwei Methacrylat basierten- und einem Zinkoxid basierten Sealer vornahmen. 

Desweiteren untersuchten sie die Porosität dieser Sealer mittels Microcomputertomogra-

phie. GuttaFlow wies dabei eine Porendichte von 1,89 %. auf Diese ist um den Faktor 8,5 

höher als bei dem Sealer EndoRez (Mokeem-Saleh, et al., 2010).  

 Nach Orstavik sollten Sealer als Ergänzung zu den Anforderungen auch Elastizität auf-

weisen, um sich bei mastikatorischen Kräften den Kanalkrümmungen anpassen zu können. 

In dieser Hinsicht können Elastomere Vorteile bieten (Ørstavik, et al., 2001). Neben dem 

Silikonsealer Roeko GuttaFlow, der hochfeine Guttapercha Partikel als Füller enthält, und 

so laut Hersteller mit der einfachen und schnellen „GuttaFlow Methode“ angewendet wer-

den kann, steht die aufwendige und techniksensitive Adhäsivmethode mit Methacrylat Sea-

lern und speziellen Füllstiften. Bei dieser Methode soll ein sogenannter „Monoblock“ im 

Wurzelkanal ausgebildet werden. In der Monoblock Theorie ist Härte eine wichtige Eigen-

schaft. Um Belastungen Stand zu halten sollte die Sealer- Füllmaterial-Einheit einen hohen 

Härtegrad aufweisen (Tay & Pashley, 2007). Bei den koronal angewendeten Kompositen 

(hoch gefüllte Polymethylmethacrylate) ist eine hohe Härte wichtig um Abrasion zu ver-
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meiden. Dies spielt in der Endodontie keine Rolle, jedoch machen Härteunterschiede Aus-

sagen zu den Abbindereaktionen der Einzelkomponenten, beziehungsweise zum Polymeri-

sationsgrad innerhalb eines Materials. Eine hohe Konversionsrate führt zu einer Verbesse-

rung der physikalischen und mechanischen Eigenschaften, und zu einer Verringerung ver-

schiedener biologischer Reaktionen (Beriat, et al., 2009). 

Als ein Ergebnis vorliegender Arbeit konnte gezeigt werden, dass die Sealer auf Epoxid-

harzbasis deutlich härter sind als Methacrylat basierte Sealer. Die erhöhte Widerstandsfä-

higkeit gegen Längsfrakturen soll jedoch ein Vorteil methacrylatbasierter Sealer gegenüber 

anderen Sealern sein (Shipper, et al., 2004), (De Oliveira, et al., 2006), (Hammad, et al., 

2008), (Schäfer, et al., 2007). Es gibt bereits Untersuchungen zur Steigerung der Härte 

methacrylatbasierter Sealer, durch den Zusatz neuer Füller (Leitune, et al., 2013). Konkrete 

Angaben zur Härte des Sealers AH Plus (Epoxidharz), der zu den am häufigsten untersuch-

ten Sealern gehört, konnten nur in zwei, durch Medline veröffentlichten Studien gefunden 

werden. Dabei handelt es sich um eine Studie, die die Auswirkungen der Zugabe von Ben-

zalkoniumchlorid untersucht (Arias-Moliz, et al., 2015), sowie einer Studie, die die 

weichmachenden Effekte durch Endosolv-R und Xylene ermittelt (Shenoi, et al., 2014). 

Die Form der Prüfkörper wurde bei Shenoi et al. vergleichbar mit der Form der Prüfkörper 

in vorliegender Arbeit gewählt. Shenoi gibt eine Lagerung von zwei Wochen bei ebenfalls 

37°C und 100% Luftfeuchtigkeit an. Arias-Moliz macht zur Lagerung keine Angaben. Die 

ermittelte Vickershärte des unbehandelten Sealers AH Plus liegt bei Shenoi bei 163,92 

(±6,99) und bei Arias-Moliz bei 21,78 (±1,51). Im Vergleich dazu wurden in vorliegender 

Untersuchung im gesamten Messzeitraum von 6 Monaten ein Minimal- bzw. Maximalwert 

von 20,5-40,7 (VHN) ermittelt.  

Beide verwenden bei der Härteprüfung Kräfte im Mikrobereich, das heißt zwischen 

0,098 N und 1,961 N, und greifen auf die klassische Vickershärteprüfung mit optischer 

Ausmessung der Eindruckdiagonalen zurück. Arias-Moliz belastet mit 100 g für 20 s, 

Shenoi mit 10 g für 10 s. Die Vickershärte ist unabhängig von der Prüfkraft, allerdings gilt 

dies nur für große Prüfkräfte von mindestens 50 N. Mit kleiner werdender Prüfkraft zeigen 

sich folgende Abweichungen (Dengel, 1988): 

 Die Streuung zwischen den Ergebnissen mehrerer Einzelmessungen steigt merklich 

an. Bei einer Prüfkraft von 20…2…0,2 N ist eine Streuung von 4…8…16 % als nor-

mal anzusehen. 
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 Das Verhältnis des bleibenden (gemessenen) Eindrucks zum gesamten Eindruck (plas-

tisch + elastisch) wird immer kleiner. Die Härte steigt daher scheinbar an. 

 In einem Prüfbereich von 3 N herab bis auf 0,1 N kann sich das Verhältnis Eindruck-

diagonale / Korngröße bemerkbar machen (Dengel, 1988). Außerdem sollen Prüfein-

drücke mit Diagonalen kleiner 20 µm vermieden werden, da sonst die Prüfungenauig-

keit zu groß wird. 

Aus genannten Gründen, und der Tatsache, dass Shenoi et al. eine geringe Prüfkörperan-

zahl mit jeweils nur drei Indentierungen zur Auswertung herangezogen haben, könnten die 

ermittelten Werte als falsch hoch begründet werden. 

Bei den Studien zur Aushärtungsdauer der Epoxidharz Sealer differieren ebenfalls die 

Aussagen. Die Autoren geben für die Dauer der Abbindereaktion von AH Plus 10 Stunden 

(Marin-Bauza, et al., 2010), und auch 38 Stunden (Baldi, et al., 2012) an. Bei dem Vor-

gängermaterial AH 26 soll die Reaktion erst nach vier Wochen abgeschlossen sein (Allan, 

et al., 2001). In vorliegender Untersuchung konnte festgestellt werden, dass die Aushär-

tungsreaktion der Epoxide nach 24 Stunden nicht vollständig abgeschlossen war. Dies äu-

ßert sich in einer plastischen Verformung der gesamten planparallelen Oberfläche der 

Prüfkörper und führte folglich zu Fehlmessungen. Innerhalb einer Woche konnten jedoch 

plausible und reproduzierbare Daten erhoben werden. In vorliegender Studie wurde folg-

lich eine Aushärtungsreaktion von maximal einer Woche für die Epoxide konstatiert. Au-

ßerdem konnte gezeigt werden, dass sich die Vickershärte innerhalb der Messintervalle 

eine Woche bis 6 Monate bei den Materialien AH plus und 2Seal statistisch nicht mehr 

verändert.  Der Epoxid Sealer Adseal jedoch zeigt erst nach sechs Monaten eine vergleich-

bare Endhärte wie AH Plus bzw. 2 Seal. Bei dem Material Adseal zeigt sich eine hochsig-

nifikante Steigerung der Vickershärte zwischen dem Messintervall eine Woche und dem 

Zeitpunkt sechs Monate, sowie eine signifikante Steigerung des E-Moduls im gleichen 

Zeitraum. Ein weiterer Sealer dieser Stoffklasse, Perma Evolution, konnte dahingegen kei-

ne aussagekräftigen Ergebnisse erzielen. Das Material erschien nach Aushärtung farblich 

uneinheitlich und es entwickelten sich zunehmend Unebenheiten in der Oberfläche. Bei 

mikroskopischer Betrachtung unterscheiden sich die einzelnen Prüfkörper zudem hinsicht-

lich ihrer Porosität. Aufgrund der resultierenden hohen Streuung wurde auf eine Darstel-

lung der Ergebnisse verzichtet. Auf die großen Unterschiede in der gleichen Stoffklasse 

weisen auch andere Studien hin. Die Zusammensetzung der Einzelkomponenten hat ent-
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scheidenden Einfluss auf die Werkstoffeigenschaften wie Abbindezeit, Löslichkeit, Adhä-

sion und thermische Stabilität (Marciano, et al., 2011). 

Zu den Sealern auf Methacrylatbasis konnte nur eine Studie, die Härtewerte untersucht und 

angibt, gefunden werden. Die Autoren um Mokeem-Saleh verglichen die Vickershärte, die 

Porosität und den Konversionsgrad von Real Seal und EndoRez. Für Real Seal geben sie 

eine Härte von 26,72 (±2,46) VHN, (Belastung 300 g/10 s), einen Konversionsgrad von 

85,26% und die Porosität mit 0,41 Vol% an. Bei EndoRez liegen die Werte bei 28,54 

(±3,85) VHN, 70,02 % und 0,67 Vol% (Mokeem-Saleh, et al., 2010). Die Materialien Real 

Seal und EndoRez zeigen keinen signifikanten Unterschied in der Härte. Die Messungen 

wurden nach einigen Stunden Lagerung bei 37°C und 100% Luftfeuchtigkeit durchgeführt. 

Die Aussagen zur Vickershärte sind vergleichbar mit den Werten für AH Plus in dieser 

Arbeit. Bei dem Messintervall eine Woche liegen diese bei 27,0 (Min. 21,6-Max. 40,3) 

liegen jedoch weit über den ermittelten Werten von EndoRez und Epiphany (Real Seal). 

Erklärungen zu den Unterschieden der Ergebnisse können im Versuchsaufbau gesucht 

werden. In der Studie von Mokeem-Saleh et al. wurden die Sealer in 12x2 mm große Zy-

linderformen appliziert und mit einem Plättchen mit Gegendruck verschlossen. Durch die-

se Form der Prüfkörperlagerung besteht kein Kontakt zu Luftfeuchtigkeit- und Sauerstoff. 

Im Gegensatz zu Mokeem-Saleh wurden die Materialien in vorliegender Studie auf Den-

tinscheibchen appliziert und mit einem Stück steifer Folie bis zur 24 Stunden Messung 

abgedeckt. Nach Entfernung dieser Folie hat die Probenoberfläche Kontakt zur wasser-

dampfgesättigten Luft. Eine Reaktion auf Sauerstoff wurde am freiliegenden Rand der 

Proben festgestellt. In diesem Bereich fand keine Härtungsreaktion statt. Speziell bei dem 

Sealer Epiphany konnte im Laufe der Lagerung eine Veränderung der Oberfläche beobach-

tet werden. Dies ist wohl eine Folge von dimensionalen Veränderungen und evtl. einer 

nachträglichen Reaktion mit Luft. Auswirkungen verschiedener Lagerungsbedingungen 

wurden durch Nielson et al. untersucht. Es wurde die Aushärtungsdauer von Epiphany in 

Luft, und unter Luftausschluss, sowie nach Lagerung in Phosphat gepufferter Salzlösung 

(PBS) untersucht. In PBS und unter Luftausschluss härtete der Resilon (Methacrylat) Sea-

ler innerhalb von 30 min aus, wobei in PBS oberflächlich eine ungehärtete Schicht ver-

blieb. Unter Luftkontakt war die Aushärtungsreaktion erst nach einer Woche abgeschlos-

sen (Nielsen, et al., 2006). Andere Autoren bestimmten die Dauer der Polymerisation von 

Epiphany mit zwei Wochen (Beriat, et al., 2009). 
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Nach den Leitlinien der American Dental Association / American National Standards Insti-

tute (ANSI / ADA) entsprechen die Volumenänderungen des Materials Epiphany nicht den 

Vorgaben zu Wurzelkanalsealern (Resende, et al., 2009), (Marín-Bauza, et al., 2012). Aus-

geprägte Volumenänderungen wurden auch im Rahmen dieser Arbeit beobachtet und führ-

ten zum Abbruch der Messungen. Für Epiphany wird eine Expansion von 8,1% (im Ver-

gleich dazu AH Plus 1,3%), sowie eine Löslichkeit von 3,4% (AH plus 0,2%) angegeben 

(Versiani, et al., 2006). Aufgrund dieser Tatsachen, und den unterschiedlichen Bedingun-

gen, wie Gegendruck und Lagerung ohne Kontakt zu Feuchtigkeit und Luft, könnten die 

durch Mokeem-Saleh weit höher ermittelten Werte der Methacrylat Sealer erklären. 

5.2.2 Zinkoxid-Eugenol und Calciumhydroxid  

Aus den Materialgruppen Calciumhydroxid und Zinkoxid-Eugenol wurden zwölf Materia-

lien für die Untersuchung ausgewählt. Die Indikationen dieser Stoffklassen umfassen so-

wohl den Pulpenschutz, in Form von Überkappungs- und Unterfüllungsmaterialien oder 

temporären Zementen, als auch die medikamentöse Einlage im Wurzelkanal und die Wur-

zelkanalsealer. Von diesen zwölf Materialien konnten nur sechs Materialien Ergebnisse 

generieren, wobei die Untersuchungen in den meisten Fällen frühzeitig abgebrochen wur-

den. Diese Tatsache veranschaulicht die Heterogenität in diesen Stoffklassen und die Emp-

findlichkeit gegenüber den Lagerungsbedingungen. 

Bei den messbaren Vertretern handelt es sich um vier Zinkoxid-Eugenol Zemente (CP-

Cap, Pulpal, Pulp canal Sealer, Tubli-Seal), ein Calciumhydroxid in wässriger Suspension 

(Ultracal) und einem Calciumhydroxid in Form eines Lackes (Hydroxyline). 

Die Calciumhydroxide in wässriger Suspension gehören zu den „nichterhärtenden Calci-

umhydroxid Pasten“. Neben dem Material Ultracal wurden auch Calxyl (Oco Präparate, 

Dirmstein, Deutschland) und Calcicur (Voco GmbH, Cuxhafen, Deutschland) in den Vor-

versuchen untersucht. Diese Calciumhydroxid Präparate schienen die Luftfeuchtigkeit zu 

Lagerungsbedingungen zu absorbieren, die Proben zerflossen nahezu. Nach experimentel-

lem Umstellen des Wassergehalts in der Umgebung durch tägliches Öffnen des Deckels 

zeigten sich ausgetrocknete Oberflächen mit den typischen Craquelierungen. Eine weitere 

Ausprägung der Probenoberflächen waren verschiedenartige kristalline Ausfällungen. Um-

so verwunderlicher, dass aus dieser Gruppe das Material Ultracal eine messbare Härte 

aufweist, und die Prüfkörper über den sechs monatigen Messzeitraum stabil blieben. Die 
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Absorption und Abgabe von Wasser schien ausgeglichener zu erfolgen. Die drei wässrigen 

Suspensionen Calxyl, Calcicur und Ultracal unterscheiden sich kaum in ihrer Zusammen-

setzung. Der Calciumhydroxid-Anteil beträgt bei Calcicur 45%, Ultracal setzt sich zusam-

men aus 35% Calciumhydroxid, 2% Bariumsulfat, Wasser und unbekannten Additiven. Im 

Sicherheitsdatenblatt von Calxyl wird neben Calciumhydroxid auch Calciumoxid angege-

ben. Dieses zieht Wasser und Kohlenstoffdioxid an, bis es allmählich zu Calciumcarbonat 

zerfällt. Die Temperatur- und Feuchtigkeitsabhängigkeit und die resultierenden Reaktion-

produkte sind genau beschrieben (Dubina , et al., 2013 ). Es ist zu vermuten, dass es sich 

bei Ultracal um eine besonders feinkörnige Suspension handelt, da dieses Material durch 

eine dünne Kanüle direkt in den Wurzelkanal appliziert werden kann. Ultracal zeigt eine 

zunehmende Härte mit Maximum bei drei Monaten. Dieses Verhalten deutet auf eine Re-

aktion des Calciumhydroxids mit den Additiven hin. Verschiedene Autoren haben bereits 

Anfragen zu den Additiven an den Hersteller gestellt, jedoch gibt dieser keine Informatio-

nen preis. Meist handelt es sich bei nichtdeklarierten Additiven um Methylcellulose (Bel-

tes, et al., 1997). 

Der zweite messbare Vertreter der Calciumhydroxide ist der Liner Hydroxyline. Die Trä-

gersubstanz hat entscheidenden Einfluss auf die Wirkung des Calciumhydroxids (Rödig, 

2009). Hydroxyline zeigt weder antimikrobielle Effekte, noch konnte eine Calciumionen 

Freisetzung festgestellt werden (Staehle, et al., 1989). Es ist anzunehmen, dass die gemes-

sene Härte dieses Lackes nur eine Werkstoffeigenschaft der Trägersubstanz Ethylmethyl-

keton darstellt. Die vier weiteren Materialien, die in den Abbildungen 6 und 7 gezeigt wer-

den, gehören zur Gruppe der Zinkoxid-Eugenol Zemente (Cp-Cap, Pulpal, Pulp canal Sea-

ler, Tubli-Seal). Auch in dieser Gruppe ist die große Heterogenität auffallend. Die genaue 

Zusammensetzung der Materialien scheint die Werkstoffeigenschaften Härte und Elastizi-

tätsmodul stark zu beeinflussen. Als Gemeinsamkeit aller Proben dieser Gruppe zeigt sich 

eine zunehmende Brüchigkeit, mit vorausgehender Craquelierung, sowie die Veränderung 

der Oberfläche durch Expansion und Ausfällungen. Diese Umstände, sowie die zunehmen-

de Streuung führten zum Abbruch der Messungen. 

Zinkoxid-Eugenol Zemente reagieren auf die umgebende Luftfeuchtigkeit und die Tempe-

ratur. So gibt der Hersteller von Cp-Cap (Lege artis, Dettenhausen, Dtl.) an, dass hohe 

Temperaturen zu einer Verkürzung der Abbindezeit, und hohe Luftfeuchtigkeit zu einer 

verlängerten Reaktion führen. Cp-Cap bindet laut Hersteller innerhalb von 40-220 s ab. Für 

den Zement Tubli-Seal wurde eine Aushärtungsdauer von 70 min festgestellt (Mc Michen, 

http://www.seilnacht.com/Chemie/ch_caco3.htm
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et al., 2003). Eine andere Aussage lautet, dass die Reaktion von Tubli-Seal erst nach vier 

Wochen abgeschlossen ist (Allan, et al., 2001). Ein Grund für die zunehmende Bruchanfäl-

ligkeit kann die Aufnahme von Wasser durch die umgebende Luftfeuchtigkeit sein. Durch 

Kontakt mit Flüssigkeit kommt es zur Hydrolyse und somit zur Freisetzung von Zinkoxid 

und Eugenol (Hume, 1984). Das freie Eugenol schwächt die Integrität des Zinkeugenolats, 

so dass ein wenig widerstandsfähiger, poröser Zement vorliegt (Smith, 1958). Aufgrund 

nicht validierbarer Messergebnisse nach den Vorversuchen wurden die Untersuchungen zu 

folgenden Materialien eingestellt. Die Calciumsalicylate Apexit Plus (Ivoclar Vivadent, 

Schaan, Liechtenstein) und Sealapex (Kerr Italia S.r.l., Scafati, Italia), sowie Gangräna 

Merz (Merz Dental GmbH, Lütjenburg, Deutschland), eine Mischung aus Calciumhydro-

xid und Glycerin-Fettsäureestern. Bei den Calciumsalicylaten findet die Reaktion zwischen 

dem Calciumhydroxid und den Salicylat-Estern, die als Protonen Donor fungieren, statt. Es 

kommt zur Säure-Basen-Reaktion mit simultaner Salz- oder Chelat Bildung. Die Calci-

umsalicylate werden zu den Zementen gezählt, jedoch reicht die Reaktion der Komponen-

ten nicht aus, um ein ausreichend festes Gefüge zu bilden. Auch die sogenannte Versei-

fungsreaktion, wie sie bei Gangräna Merz stattfindet, führt nicht zu einer messbaren Härte. 

Die Härtungsreaktion wird in Kontakt mit Wasser erreicht, indem Hydroxylionen die un-

gesättigten Doppelbindungen des Öls aufbrechen. 

Die Calciumsalicylate Apexit Plus und Sealapex gehören zu den häufiger untersuchten 

Materialien dieser Stoffklasse. Es wurde festgestellt, dass Sealapex unter Luft nicht aushär-

tet (Erdemir, et al., 2003), bzw. nicht unter trockenen Bedingungen aushärtet, bei 100% 

Luftfeuchtigkeit jedoch innerhalb von 2-3 Wochen abbindet (Allan & Williams, 2001). Bei 

der Untersuchung der Löslichkeit acht verschiedener Sealer aus sechs Stoffklassen in 

künstlichem Speichel, zeigte Sealapex die signifikant höchsten Werte (Schäfer & Zand-

biglari, 2003). Eine weitere Studie gibt neben Sealapex für Apexit Plus die höchste Lös-

lichkeit an (Mc Michen, et al., 2003). Auch die volumetrische Expansion der Calciumsa-

licylate wird mehrfach beschrieben. In feuchter Umgebung wurden 80-200% Expansion 

gemessen (Caceido & von Fraunhofer, 1988). 

Poren und Flüssigkeitsgefüllte Hohlräume findet man grundsätzlich bei jeder Art von Sea-

lern. Jedoch ist die Anzahl und Größe bei Zinkoxid-Eugenol basierten Sealern höher im 

Vergleich zu Epoxidharz Sealern und Glasionomer Sealern. Am meisten Poren und Hohl-

räume weisen Sealer auf, die Calciumhydroxid enthalten (Mutal & Gani, 2005). Die ge-

nannten Eigenschaften der Stoffklassen Calciumhydroxide und Zinkoxid-Eugenol Zemente 
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machen ein Indentationshärtemessverfahren über einen längeren Zeitraum schwierig bis 

unmöglich. 

5.2.3 Glasionomerzement und modifizierter Glasionomerzement 

Bei den Glasionomerzementen (GIZ) wurden zur Untersuchung speziell die Varianten aus-

gewählt, die für den Einsatz als Liner oder Base vorgesehen sind. Die Materialien Fuji Li-

ning LC und Vitre Bond sind sogenannte kunstoffmodifizierte GIZ, KetacBond Aplicap ist 

ein konventioneller Glasionomerzement. Eine wichtige Eigenschaft dieser Unterfüllungs-

materialen ist, dass sie einfach, in dünnen Schichten und auf kleinen Flächen appliziert 

werden können. Außerdem sollte die Aushärtung rasch einsetzen, damit die Überschich-

tung mit dem Folgematerial stattfinden kann. Eine hohe Endhärte hat für diese Indikation 

eine geringere Priorität. Höhere Härte ist bei Glasionomerzementen mit kleineren Glaspar-

tikeln und geringerer Porosität assoziiert (Xie, et al., 2000). Bei endodontisch behandelten 

Zähnen wird GIZ als Unterfüllung vor Komposit empfohlen, da die Frakturresistenz durch 

Reduzierung des Schrumpfungsstresses und der Kaubelastung steigt (Pereira, et al., 2015) 

An den ermittelten Werten ist die weit höhere Härte des konventionellen GIZ im Vergleich 

zu den kunststoffmodifizierten GIZ ersichtlich. Dies wird in vergleichenden Studien bestä-

tigt. Neben der niedrigeren Härte, zeigen kunststoffmodifizierte GIZ auch eine geringere 

Biegefestigkeit und diametrale Zugfestigkeit. (Xie, et al., 2000). Die Härte von Ketac Bond 

Aplicap reicht fast an die Härte von Ketac Molar, einem GIZ für lasttragende Indikationen 

heran. Diese liegt nach vier wöchiger Lagerung bei 120 ± 3,2 VHN (ohne Einheit) (Ellaku-

ria, et al., 2003), in vorliegender Studie wurde zu diesem Zeitpunkt für Ketac Bond ein 

mittlerer Wert von 102,2 N/mm
2
 ermittelt. 

Auffallend ist auch der Härteverlauf. Variationen der Härte sind ein Indikator der stattfin-

denden Reaktionen. Die Säure-Base Reaktion findet auch bei den kunststoffmodifizierten 

GIZ nach erfolgter Lichthärtung statt. Diese Reaktion führt zu einem stabilen, räumlich 

vernetzten Calcium-Aluminium-Polycarboxylat-Komplex (Ludwig, 2004). Bei mehreren 

Untersuchungen des Härteverlaufes, als Indikator für diese Reaktion, konnte eine kontinu-

ierliche Steigerung bis zu einer Woche, und eine darauffolgende Stagnation festgestellt 

werden (Silva, et al., 2007), (Tüzüner & Ulusu, 2012). Andere bestimmen den maximalen 

Härtegrad nach 30 Tagen (Shintome, et al., 2009), weitere Studien stellen signifikante Un-

terschiede der Härte, zwischen den Materialien, und bei den einzelnen Verläufen innerhalb 
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der Lagerung fest (Ellakuria, et al., 2003). Nur eine Studie zieht die Unterfüllungsmateria-

lien Fuji Lining LC und Vitre Bond mit ein. In dieser wurde für Vitre Bond eine Steige-

rung der Härte bis zu 39 Tage, und bei Fuji Lining LC das Maximum bei 90 Tagen festge-

legt (Kanchanavasita, et al., 1998). Die vorliegende Arbeit bestätigt diese Ergebnisse. 

Bei dem konventionellen GIZ KetacBond wird durch statistische Rangvarianzanalyse kein 

Unterschied zwischen den Ergebnissen der Vickersärte der einzelnen Messintervalle ange-

zeigt. Jedoch erkennt man, dass die Vickershärte bei einer Woche ein Maximum zeigt und 

bei den nachfolgenden Messungen wieder absinkt. Einen wesentlichen Einfluss auf die 

Härte der GIZ hat die umgebende Feuchtigkeit. Alle in diesem Kapitel genannten Autoren 

wählten eine Lagerung in destilliertem Wasser. Wasserlagerung führt zu niedrigeren Här-

tewerten als eine Lagerung in trockener Umgebung, künstlicher Speichel als Medium er-

zeugt die geringsten Härtewerte (Kanchanavasita, et al., 1998). Bei Austrocknung hinge-

gen kommt es zu einer Abbindekontraktion, sowie zu matt-opaken und craquelierten Ober-

flächen (Hellwig, et al., 2007). Bei einer Untersuchung zur Beeinflussung der Härte ver-

schiedener Glasionomerzemente durch unterschiedliche Feuchtigkeitsgrade während der 

Lagerung, konnten die Auswirkungen veranschaulicht werden (Tsuruta & Viohl, 1996). In 

dieser Studie kamen ebenfalls die lichtaktivierten, modifizierten Glasionomerzemente Fuji 

Lining LC und Vitre Bond zum Einsatz. Als trockene Lagerung bezeichneten sie eine Um-

gebung mit 36% relativer Luftfeuchtigkeit, als feuchte Lagerung eine Umgebung mit 100% 

relativer Luftfeuchtigkeit (beide 37°C). Die maximale Lagerungsdauer betrug eine Woche. 

Die Erhebung der Vickershärte erfolgte mit einer Belastung von 300 g. Die ermittelte 

Vickershärte (Angaben ohne Einheit) liegt nach einer Woche für Fuji Lining LC nach tro-

ckener Lagerung bei 56,8 (±4,4), nach feuchter Lagerung bei 16,6 (±2,6). Dazu im Ver-

gleich die in vorliegender Arbeit erhaltenen Werte (in N/mm
2
) nach einer Woche Lagerung 

40,9 (±6,5). Vitre Bond erreichte nach trockener Lagerung eine Vickershärte von 69,9 

(±6,4), nach feuchter Lagerung 15,4 (±2,7). Dazu im Vergleich die hier erhaltenen Werte 

nach einer Woche Lagerung 37 (±7,5). Eine weitere Aussage der Studie von Tsuruta und 

Viohl ist, dass die Oberflächenhärte von GIZ, bei trockener Lagerung zunehmend steigen, 

die Werte bei anschließender Lagerung in Wasser jedoch wieder abnehmen (Tsuruta & 

Viohl, 1996). Anhand dieser Aussage könnte das Verhalten des konventionellen GIZ 

KetacBond erklärt werden. Im Laufe der Lagerung kann bei KetacBond ein Anstieg der 

Härte bis zu einer Woche beobachtet werden, daraufhin folgt eine kontinuierliche Abnah-

me. In den verwendeten Lagerungsboxen (Abb. 3) wurden mehrere Proben gelagert. Zur 
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Durchführung der Messungen wurde der Deckel jeweils geöffnet um die Prüfkörper zu 

entnehmen, wobei Wasserdampf entwich. Deshalb konnte in der ersten Woche eine relati-

ve Luftfeuchtigkeit von 100% nicht kontinuierlich aufrechterhalten werden. Nach Ab-

schluss der Messung nach einer Woche, sind die folgenden Intervalle länger, so dass ein 

stetiges, feuchtes Milieu erhalten bleibt. Der Härteverlauf des konventionellen GIZ zeigt 

aufgrund der hohen Feuchtigkeitssensitivität die Reaktion auf die Wasserdampfsättigung 

der Umgebung. Das Absinken der Härte wird zusätzlich dadurch beeinflusst, dass sehr 

hohe Messergebnisse bei zunehmender Lagerungsdauer häufig mit Rissbildungen einher-

gehen. Messungen die mit Rissbildungen einhergehen, können jedoch nicht in die Auswer-

tung einfließen. 

Ebenfalls auffallend an den Ergebnissen der Glasionomerzemente ist die Entwicklung des 

Elastizitätsmoduls. Statistisch gesehen bleibt der E-Modul bei allen drei GIZ unverändert 

im Verlauf der Messintervalle. Jedoch ist bei den kunststoffmodifizierten GIZ eine gleich-

mäßige, schwache Steigung ersichtlich, wohingegen bei KetacBond der E-Modul nach 

einer Woche sinkt um nach drei Monaten wieder anzusteigen. Bei der sechs Monats Mes-

sung erreicht der E-Modul sein Maximum. Der E-Modul verhält sich demnach proportio-

nal zur Entwicklung der Härte. Der Elastizitätsmodul beschreibt den Zusammenhang zwi-

schen Spannung und Dehnung bei der Verformung eines festen Körpers bei linear elasti-

schem Verhalten. Er ist umso größer, je mehr Widerstand der Verformung entgegenge-

bracht wird. Ein Material mit hohem Elastizitätsmodul besitzt damit eine höhere Steifigkeit 

(Kuchlin, 2011). Dieses Materialverhalten zeigt sich in einer zunehmenden Versprödung 

der Prüfkörper. Von der Problematik der zunehmenden Versprödung der konventionellen 

GIZ berichten auch die Autoren um Xie, wie folgt. Die konventionellen GIZ zeigen sich 

entweder sehr spröde, oder mit nur geringem Anteil bleibender Deformation. Die kunst-

stoffmodifizierten GIZ hingegen weisen durch die flexible Polymermatrix eine deutliche 

bleibende Deformation auf, bevor es zum Bruch kommt (Xie, et al., 2000). 

5.2.4 Hydraulischer Kalziumsilikatzement 

Zu den sechs hydraulischen Kalziumsilikatzementen die in dieser Arbeit zur Untersuchung 

herangezogen wurden, gehören die sogenannten Mineraltrioxidagregate (MTA), medizini-

scher Portlandzement und das Material Biodentine. Die Unterschiede und Gemeinsamkei-

ten in der Zusammensetzung wurden in Kapitel 2.1.7 erläutert. 

http://de.wikipedia.org/wiki/Mechanische_Spannung
http://de.wikipedia.org/wiki/Dehnung
http://www.maschinenbau-wissen.de/skript3/mechanik/festigkeitslehre/152-widerstandsfaehigkeit
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Im Ergebnisteil werden die mikromechanischen Eigenschaften des Kalziumsilikatzementes 

Biodentine ohne Berücksichtigung des Messintervalls eine Woche dargestellt. Zu diesem 

Messzeitpunkt konnten Daten erhoben werden, jedoch mussten diese als Messfehler beur-

teilt werden. Ohne das Messintervall zu einer Woche stellt sich die Vickershärte als auch 

der E-Modul kontinuierlich leicht steigend dar. Statistisch konnte bei beiden Eigenschaften 

jedoch kein Unterschied zwischen den Zeitpunkten festgestellt werden. Obgleich die Prüf-

körperherstellung und die jeweilige Härtemessung an unterschiedlichen Tagen stattfanden, 

und zudem ein großer Datensatz (Mittelwertberechnung aus 30 Messdaten von 90 Mess-

punkten) vorlag, wird geschlussfolgert, dass es sich bei dem Messintervall eine Woche um 

eine Verunreinigung des Indenters handeln muss. Dafür spricht, dass keine Veröffentli-

chung gefunden werden konnte, die ähnlich niedrige Härtewerte zu diesem Zeitpunkt an-

gibt. Nachforschungen zu den spezifischen Additiven des Silikatzementes Biodentine 

(Calciumcarbonat, Calciumchlorid, Polycarboxylat) konnten ebenfalls keine Bestätigungs-

grundlage bieten (Grech, et al., 2013), (Camilleri, et al., 2013). Es wird angegeben, dass 

Polycarboxylat in Zementen als Fließmittel zugegeben wird, mit den Nebenwirkungen 

erhöhter Porosität, Verringerung der Festigkeit und Erstarrungsverzögerung (Kampen & 

Richter, 2014). Allerdings sei dies ein Phänomen bei Silikatzementen für Bauzwecke.  

Bei der Literaturrecherche zu den verschiedenen Kalziumsilikatzementen kann festgestellt 

werden, dass die Unterschiede zwischen den Materialien häufig untersucht wurden. Hin-

sichtlich der Biokompatibilität und Bioaktivität sollen zwischen MTA, Portlandzement und 

Biodentine nur sehr geringe bis keine Unterschiede vorliegen (Gandolfi, et al., 2011), 

(Roberts, et al., 2008). Abweichende Ergebnisse physikalisch-chemischer Eigenschaften, 

seien stets auf die Substitution von Bismutoxid (MTA) zurückzuführen. Außerdem wird 

darauf hingewiesen, dass die Unterschiede zwischen weißem und grauem MTA signifikant 

größer sind als zwischen weißem MTA und weißem Portlandzement (Steffen & van Waes, 

2009). Hinsichtlich der mikromechanischen Eigenschaften kann diese Aussage durch vor-

liegende Untersuchung bestätigt werden. Biodentine unterscheidet sich in Vickershärte und 

E-Modul nicht von den weiteren Kalziumsilikatzementen. Der einzige weiße Vertreter der 

MTAs (MTA Angelus weiß) erzielte jedoch deutlich geringere Härtewerte, im Vergleich 

zu den grauen Vertretern und Medcem. Auch die Autoren um Elnaghy, die die Härte von 

Biodentine und weißem MTA (ohne Herstellerangabe) verglichen haben, kommen zu dem 

Ergebnis, dass MTA weiß eine geringere Vickershärte aufweist als Biodentine. Die Unter-

suchungen fanden unter dem Einfluss von Lagerung in Lösungen unterschiedlicher pH-
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Werte statt (Elnaghy, 2014). Eine weitere Veröffentlichung macht die gegenteilige Aussa-

ge – weißes MTA sei signifikant härter als Biodentine. Verwendet wurde hier white Pro 

Root MTA (Dentsply Tulsa Dental). Für die Untersuchung wurde ein Apexifikationsmo-

dell erstellt und die Materialien wurden unter verschiedenen Bedingungen (feucht und tro-

cken) untersucht (Caronna, et al., 2014). Ebenfalls nicht übereinstimmend mit den Ergeb-

nissen vorliegender Arbeit ist die Aussage des Autors Danesh. Dieser behauptet, dass eine 

herausragende Eigenschaft der MTAs die deutlich höhere Härte gegenüber Portlandzemen-

ten sei. Die Ergebnisse lauten: Pro Root MTA VHN 40,0 ± 16,7 und PZ VHN 16,3 ± 4,2 

(Danesh, et al., 2006). Bei dieser Studie wurde kein medizinischer Portlandzement ver-

wendet, sondern ein Portlandzement für Bauzwecke. In eigener Untersuchung wird darge-

stellt, dass kein Unterschied zwischen dem medizinischen Portlandzement Medcem und 

den übrigen hydraulischen Kalziumsilikatzementen vorliegt. 

An diesen Ergebnissen, sowie in den bereits erwähnten Studien (Elnaghy, 2014), (Caronna, 

et al., 2014) sind ebenfalls große Abweichungen zwischen der ermittelten Härte von MTA 

erkennbar. Es kann angenommen werden, dass die jeweiligen Versuchsbedingungen, in 

oben genannten Beispielen Feuchtigkeit und pH-Wert, auf MTA einen größeren Einfluss 

hat als auf Biodentine. Bei einer Untersuchung des Einflusses der Lagerungsbedingungen 

auf verschiedene Zemente, stellte sich heraus, dass MTA nach Aushärtung in Wasser eine 

instabile Oberfläche entwickelt und nach 24 h lediglich eine Härte (N/mm
2
) von 37,5 ± 3,1 

zeigt. Bei trockener Lagerung hingegen wird eine Härte von 207,7 ± 47,2 erreicht (Rhim, 

et al., 2012). 

Bei der Recherche über die Datenbank Medline konnten sieben Angaben zur Härte von 

weißem MTA gefunden werden (in fünf von sieben wird kein Hersteller genannt), zwei 

Angaben zu grauem MTA und zwei Angaben zu Biodentine. Die Ergebnisse der Autoren 

variieren stark. Folgende Ergebnisse werden als VHN ohne Einheit angegeben. So werden 

für weißes MTA Vickershärten von 35,9 ± 2,9 nach sieben Tagen, bis hin zu 103,3 ± 29,7 

nach zehn Tagen genannt (Elnaghy, 2014), (Caronna, et al., 2014). Für das graue Pro Root 

MTA wird eine Härte von 51,5 ± 4,7 nach sieben Tagen angegeben (Wang, et al., 2015). 

Im Vergleich dazu wird in vorliegender Studie ein Medianwert von 63,8 N/mm2 (Perzenti-

le 25 = 44,6; Perzentile 75 = 97,8) für Pro Root MTA erzielt. Die große Varianz der Er-

gebnisse erschwert es, klare, evidenzbasierte Aussagen zu machen. 
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Bei all den aufgeführten Literaturangaben kann kein Zusammenhang zwischen Lagerungs-

dauer und Härte festgestellt werden. Dahingegen zeigt sich in vorliegender Studie bei allen 

MTAs ein statistisch signifikanter Einfluss der Zeit auf die mikromechanischen Eigen-

schaften. Ausgenommen sind die Materialien Biodentine und Medcem, die sich im Verlauf 

der Messintervalle statistisch nicht verändern. 

Die Uneinheitlichkeit der Aussagen der Literatur kann damit begründet werden, dass viele 

Faktoren die Eigenschaften der Kalziumsilkatzemente beeinflussen. So hat neben dem Ein-

fluss von Feuchtigkeit auch die Anmischtechnik große Auswirkungen. So wird beschrie-

ben, dass nach Trituration die höchste Härte in Verbindung mit einer kürzeren Abbindezeit 

erreicht wird, durch Ultraschall (US) unterstütztes Anmischen verlängert sich jedoch die 

Aushärtungsreaktion (Saghiri, et al., 2014). Mit steigender US-Behandlungszeit sinkt die 

Härte signifikant obwohl die Verdichtung steigt. Jedoch zeigt MTA bei einer US-

Applikation von nur 2 s eine höhere Härte und Dichtigkeit als bei Hand Applikation (Pa-

rashos, et al., 2014). Daneben werden die Materialeigenschaften auch von der Dosis des 

zugegebenen Wassers, der Menge untergemischter Luft und dem ausgeübten Kondensati-

onsdruck bei der Applikation beeinflusst (Lee, et al., 2004). Auch die Menge und Partikel-

größe des zugesetzten Bismutoxids hat Einfluss auf die Härte von MTA. In zwei Untersu-

chungen dazu werden signifikante Unterschiede gezeigt, jedoch mit gegenteiliger Aussage 

(Grazziotin-Soares, et al., 2014), (Saghiri, et al., 2015). 
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6 Zusammenfassung und Ausblick 

Mit vorliegender Studie wird das Verhalten endodontischer Materialien nach Alterung un-

ter Laborbedingungen in einem Zeitraum von sechs Monaten gezeigt. Ausgewertet werden 

die mikromechanischen Eigenschaften Vickershärte und Elastizitätsmodul von 20 endo-

dontischen Materialien. Die verschiedenen Stoffklassen finden Anwendung im Bereich der 

Wurzelkanalbehandlung mit Sealern und der temporären Wurzelkanaleinlage, sowie bei 

der Vitalerhaltung der Pulpa. Mit den hydraulischen Kalziumsilikatzementen kommen die 

Indikationen Pulpotomie, Apexifikation, Perforationsdeckung und retrograde Wurzelkanal-

füllung hinzu. Die gewählten Lagerungsbedingungen von 37 ºC und 100% Luftfeuchtig-

keit, in Verbindung mit der Messmethodik der Mikroindentation werden nicht allen Mate-

rialklassen gerecht. Aufgrund der Unvereinbarkeit wurden neun von 29 Materialien im 

Verlauf der Vorversuche von der Auswertung ausgeschlossen. Trotzdem wurde die ein-

heitliche Vorgehensweise und die lange Lagerungsdauer zur besseren Vergleichbarkeit für 

alle Stoffklassen beibehalten.  

Bei den erhobenen Daten zur Stoffklasse der Polymere zeigt sich eine große Divergenz der 

Ergebnisse. Trotz der hier einheitlichen Indikation als Sealer reicht die mikromechanische 

Eigenschaft Vickershärte (VHN) von 0,7 N/mm
2
 als Minimalwert bis hin zu maximalen 

Werten von 40 N/mm
2
. Der E-Modul verteilt sich von 0,4 bis 9,2 GPa. In beiden Eigen-

schaften liefert der Epoxid Sealer Adseal die Minimalwerte und der Epoxid Sealer AH 

Plus die Maximalwerte. Der Unterschied zwischen Adseal versus AH Plus und 2Seal wird 

statistisch bestätigt. Die Unterschiede liegen somit nicht nur zwischen den Epoxiden und 

den Methacrylaten. Der Methacrylat Sealer Epiphany zeigt sogar hochsignifikant niedrige-

re Werte bei Vickershärte und E-Modul als die Epoxide AH Plus und 2Seal, EndoRez als 

Methacrylat unterscheidet sich innerhalb der Polymere jedoch nicht. Einen deutlichen Ein-

fluss der Alterung zeigt hingegen Adseal, mit hochsignifikant steigenden Eigenschaften 

innerhalb des Messzeitraumes. 

Die Zinkoxid-Eugenol Zemente sind seit Jahrzehnten in Gebrauch, jedoch nicht Bestand-

teil aktueller Untersuchungen. Aufgrund der hohen Löslichkeit und aufgrund von volumet-

rischen Veränderungen machen die Zemente Härtemessungen nur erschwert möglich. Die 

Calciumhydroxide reagieren ebnfalls sensibel auf Schwankungen der Luftfeuchtigkeit und 

zeigen Ausfällungsreaktionen. Die Hersteller versuchen die Wirkung des Eugenols und die 

der Calciumhydroxide in einem Produkt zu vereinen. Sowohl bei der Vickershärte als auch 
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beim E-Modul werden hochsignifikante Unterschiede zwischen den Materialien detektiert. 

Die Vickershärte variiert von 0,2 N/mm
2
 (Ultracal, 24 h) bis 45,6 N/mm

2
 (Pulp canal Sea-

ler, 6 Monate). Der E-Modul reicht von 0,3 GPa (Tubli Seal, 24 h) bis 25,3 GPa (Pulpal, 

24 h). Vergleicht man die Vickershärte der sechs Vertreter der Stoffklasse ZOE und Calci-

umhydroxid so ist festzustellen, dass sich bei vier paarweisen Vergleichen 

(hoch)signifikante Unterschiede zeigen, bei der Eigenschaft E-Modul sind es drei. Es liegt 

also eine große Heterogenität vor. Die Alterung hat keinen Einfluss auf die Eigenschaften 

der ZOE-Zemente, mit Ausnahme des Materials Pulp canal Sealer das mit einer Steigerung 

der Härte und des E-Moduls reagiert. Beide Calciumhydroxide (Hydroxyline und Ultracal) 

zeigen jedoch signifikant steigende Eigenschaften im Verlauf der Messintervalle. 

Bei den Glasionomerzementen konnte bestätigt werden, dass die Modifizierung mit Kunst-

stoff zu einer reduzierten Härte, sowie zu einem niedrigeren E-Modul führt. Zwischen den 

Materialien Ketac Bond und Vitre Bond ist dieser Unterschied sogar hochsignifikant. Die 

erzielten Minimal- bzw Maximalwerte liegen bei 17,1 N/mm
2 

(Vitre Bond, 24 h) bis 144,5 

N/mm
2
 (Ketac Bond, 1 Woche), sowie im Bereich von 4,5 GPa (Vitre Bond, 24 h) bis 26 

GPa (Ketac Bond, 6 Monate). Auch bei Betrachtung des zeitlichen Verlaufs zeigen sich 

Unterschiede durch Alterung. Bei dem konventionellen GIZ verändert sich die Härte und 

der E-Modul statistisch gesehen nicht mehr nach dem Messintervall zu 24 Stunden. Bei 

den modifizierten Vertretern hingegen kommt es zu einem signifikanten Anstieg der Härte, 

der E-Modul hingegen bleibt unverändert. 

Bei den hydraulischen Kalziumsilikatzementen handelt es sich um drei graue-, sowie ein 

weißes MTA, einen medizinischen Portlandzement und das Material Biodentine. Es konn-

ten homogene, eindeutige Ergebnisse generiert werden. Es wird bestätigt, dass sich Bio-

dentine und medizinischer Portlandzement hinsichtlich ihrer Härte und des E-Moduls nicht 

von den MTAs unterscheiden. Weißes MTA hingegen zeigt eine mit 10,7 N/mm
2
 (24 h, 

Minimalwert) signifikant geringere Vickershärte als die grauen Vertreter MTA rapid 

(127,6 N/mm
2
, 6 Monate, Maximalwert) und Pro Root MTA, sowie hochsignifikant gerin-

gere Werte als der Portlandzement Medcem. Der E-Modul des MTA Angelus weiß liegt 

hochsignifikant unter dem der MTAs -rapid und -Pro Root. Der E-Modul der Gruppe hyd-

raulische Kalziumsilikatzemente erstreckt sich von 4,3 GPa (MTA rapid, 24 h) bis hin zu 

40,3 GPa (Angelus grau, 6 Monate).  
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Die Veränderungen der Eigenschaften durch Alterung zeigt sich Einheitlich bei allen Ma-

terialien in einer Steigerung der Härte und des E-Moduls. Signifikante Steigerungen der 

Vickershärte werden bei Biodentine und MTA Angelus grau detektiert, MTA Angelus 

weiß steigt hochsignifikant. Beim E-Modul sind ebenfalls Anstiege erkennbar, statistisch 

steigen jedoch nur MTA Angelus weiß, MTA rapid und Pro Root MTA, allesamt hochsig-

nifikant. 

Es ist ein Anstieg der Veröffentlichungen bei den hydraulischen Kalziumsilikatzementen 

zu verzeichnen, diese werden des Öfteren auch als bioaktive, endodontische Zemente zu-

sammengefasst. Der Wunsch nach hoher Biokompatibilität, Bioaktivität und Biomimetik 

spiegelt sich auch in der steigenden Zahl an Untersuchungen zu Calciumphosphat-

Zementen wieder. In modifizierter Form, als Sealer, soll das Material vielversprechend 

sein. Calcium reagiert in feuchter Umgebung mit Phosphat zu Hydroxylapatit, dem Haupt-

bestandteil der Zahn- und Knochensubstanz (Jacob, et al., 2014), (Suzuki, et al., 2015). Die 

Zukunft geht deutlich hin zur Regeneration und Erhaltung der Substanz, anstelle der Repa-

ratur (Seemann, 2014). Dies kann bei der Induktion der Gefäßneubildung innerhalb des 

Wurzelkanals beginnen. Die Autoren sprechen von einer neuen Ära in der Endodontie (Al-

rahabi & Ali, 2014). Die fortwährende Entwicklung der Methoden und Materialien machen 

auch in Zukunft die Erhebung von Labordaten zu spezifischen Materialeigenschaften not-

wendig und spannend. 
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