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Abstract

In this work we study the Maxwell-Lorentz system for point charges without self-interaction.
The latter is a system of coupled partial and ordinary differential equations that describes the
electromagnetic interaction between classical point charges and their electromagnetic fields.

Our first main result states that the initial value problem aiming at continuous solutions
is ill-posed for generic initial values.

This is due to the generation of discontinuous or even singular fronts in the electromagnetic
fields. These are located along the boundary of the light-cones of the initial charge positions
and occur for generic initial values. This phenomenon can be observed with the help of an
explicit solution formula of the Maxwell equations which is provided as a second main result.
It can be seen as a generalization of the famous formula by Liénard and Wiechert. We argue
in mathematical rigorous terms that such fronts are caused by a potential mismatch between
the initial positions and momenta and the initial fields.

We show that smooth solutions can only be attained by imposing a system of constraints
on initial values in addition to the well-known Maxwell constraints. These extra conditions,
however, require knowledge of the history of the solution and, as we discuss, effectively turn
the Maxwell-Lorentz system into a system of delay equations.

A large class of solutions fulfilling these constraints is identified and our third main result
is an existence and uniqueness result for the Maxwell-Lorentz system for point charges without
self-interaction for this class and up to the first time of collision, which may be infinite.





Zusammenfassung

In dieser Arbeit studieren wir das Maxwell-Lorentz-Gleichungssystem für Punktladungen ohne
Selbstwechselwirkung. Dabei handelt es sich um ein gekoppeltes System aus partiellen und
gewöhnlichen Differentialgleichungen, welches die elektromagnetische Wechselwirkung zwis-
chen klassischen Ladungen und ihren Feldern beschreibt.

Unser erstes Hauptresultat sagt aus, dass das Anfangswertproblem für beliebige An-
fangswerte keine stetigen Lösungen besitzt.

Dies ist auf die Existenz von unstetigen sowie singulären Fronten in den elektromagnet-
ischen Feldern zurück zu führen. Diese liegen auf dem Rand der Lichtkegel, welche von
den Ursprüngen der Ladungen ausgehen und treten für generische Anfangswerte auf. Dieses
Phänomen kann mit Hilfe einer expliziten Lösungsformel der Maxwell-Gleichungen beobachtet
werden, welche als zweites Hauptresultat präsentiert wird und als Verallgemeinerung der
berühmten Formel von Liénard und Wiechert betrachtet werden kann. Wir legen auf mathe-
matisch rigorose Weise dar, dass diese Fronten durch eine mögliche Inkompatibilität zwischen
den Anfangspositionen und -implusen und den Anfangsfeldern verursacht werden.

Wir zeigen, dass stetige Lösungen nur unter Hinzunahme von Bedingungen an die An-
fangswerte erreicht werden können, welche über die bekannten Maxwell-Nebenbedingungen
hinaus gehen. Diese Zusatzbedingungen erfordern jedoch Wissen über die Historie der Lösung
und wandeln somit das Maxwell-Lorentz-Gleichungssystem in ein System aus retardierten
Differentialgleichungen um.

Wir präsentieren eine große Klasse von Lösungen, welche die Zusatzbedingungen erfüllt
und unser drittes Hauptresultat zeigt die Existenz und Eindeutigkeit von Maxwell-Lorentz-
Lösungen für Punktladungen ohne Selbstwechselwirkung für obige Klasse und bis zur ersten
Kollisionszeit, welche unendlich sein kann.
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Chapter 1

Introduction

1.1 The Maxwell-Lorentz theory

Classical electrodynamics describes the motion of charged particles in their electromagnetic
fields. The theory goes back to 1864, when Maxwell published his famous paper on a dy-
namical theory of the electromagnetic field. This was, inter alia, preceded by Cavendish’s
experiments in electrostatics and Coulomb’s research published in 1785 (cf. [26]). In 1892
and 1895 Lorentz published his famous works on Maxwell’s theory applied to moving objects
containing the so-called Lorentz-force law. Until today, classical electrodynamics is the most
famous example of a theory about particles and fields. Therein, particles obey the Lorentz
equations, and fields obey the Maxwell equations. Its empirical success notwithstanding, the
underlying fundamental theory has not been fully understood to this day.

In this work we investigate the dynamics of N charged point particles and their electro-
magnetic fields, i.e., the existence of a unique solution to the coupled system of Maxwell’s
and Lorentz’s equations. As both equations are of the form of evolution equations, a natural
choice of initial value could comprise the positions and momenta of the charges as well as the
electromagnetic fields at a predetermined initial time.

Let us introduce these equations together with our notation next. Denoting the index set
of the charges by N := {1, . . . , N} and a charge index by i ∈ N , the position and momentum
of the i-th charge at time t ∈ R is denoted by qi,t ∈ R3 and pi,t ∈ R3. The electromagnetic
field due to charge i at time t ∈ R will be denoted by f i,t = (Ei,t,Bi,t). To keep it simple,
we consider charges of the same mass m > 0 and use units such that the speed of light
equals one and the vacuum permittivity equals (4π)−1. As we are interested in the dynamics
of point charges, the charge density is rigid and given by the three dimensional Dirac delta
distribution centered around the charge position, i.e., at time t the density of charge i is given
by δ(· − qi,t) and its current by v(pi,t)δ(· − qi,t). Contrary to the text-book presentation,
see, e.g. [26, 37, 5], in which one employs only one total electric and magnetic field, it will be
convenient for our purpose to associate with each charge i an individual electric and magnetic
field f i,t = (Ei,t,Bi,t). Thanks to the linearity of the Maxwell equations this is only a
notational convention since summing these individual fields results in a total field which again
fulfills the Maxwell equation for the total charge and current, which are defined by summing



2 1. Introduction

the individual densities and currents, respectively. Denoting the relativistic velocity by

v(pi,t) :=
pi,t√

m2 + p2
i,t

, (1.1)

we introduce the laws of motion of the theory: The dynamics of the electromagnetic fields is
governed by the Maxwell equations

∂t

(
Ei,t

Bi,t

)
=

(
∇∧Bi,t

−∇ ∧Ei,t

)
+

(
−4πv(pi,t)δ(· − qi,t)

0

)
, i ∈ N . (1.2)

In addition to this law of motion, the electromagnetic fields are required to fulfill the Maxwell
constraints

∇ ·Ei,0 = 4π δ(· − qi,0) and ∇ ·Bi,0 = 0, i ∈ N . (1.3)

It turns out that by virtue of (1.2), the constraints (1.3) at t = 0 imply that they hold for
all times t ∈ R; see Lemma A.2.1 (Maxwell constraints). Furthermore, the dynamics of the
charged particles is governed by the Lorentz equations

d

dt

(
qi,t
pi,t

)
=

(
v(pi,t)∑
j eijLij,t

)
, i ∈ N , (1.4)

where the Lorentz force is given by

Lij,t := L(qi,t,pi,t,Ej,t,Bj,t) = Ej,t(qi,t) + vi,t ∧Bj,t(qi,t). (1.5)

For the choice eij = 1 the Lorentz force (1.4) coincides with the textbook formula; each charge
interacts with the total field. Other choices of eij allow to switch on or off the interaction of
the j-th field on the i-th charge.

The Maxwell equations and constraints (1.2)-(1.3) are inhomogeneous, linear partial dif-
ferential equations. Hence, any of their solution can be represented by a convex combination
of special solutions plus a a solution of the homogeneous system which we introduce next.
The homogeneous (or free) Maxwell equations are given by

∂t

(
Ei,t

Bi,t

)
=

(
∇∧Bi,t

−∇ ∧Ei,t

)
, i ∈ N . (1.6)

and the homogeneous Maxwell constraints take the form

∇ ·Ei,0 = 0 and ∇ ·Bi,0 = 0, i ∈ N . (1.7)

Dropping the index i to keep the notation slim, two special solutions to (1.2)-(1.3) for a fixed
charge trajectory (q,p) : t 7→ (qt,pt) are known since the publication [32] by Liénard in 1898
and [48] by Wiechert in 1900. These solutions are the Liénard-Wiechert fields f±t [q,p] =
(e±t , b

±
t ), for ± being a placeholder for + and −, in which case one calls the electromagnetic

fields advanced or retarded Liénard-Wiechert fields, respectively. The square bracket notation
emphasizes the functional dependence on the charge trajectory (q,p). These two special
solutions are given by

e±t (x) :=
(n± v)(1− v2)

|x− q|2(1± n · v)3
+
n ∧ [(n± v) ∧ a]

|x− q|(1± n · v)3

∣∣∣∣±,
b±t (x) := ∓n± ∧ e±t (x), (1.8)
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where we have used the abbreviations

q±:= qt± , v±:= v(pt±), a± := d
dtv(pt)|t=t± ,

n±:= x−q±
|x−q±| , t±:= t± |x− q±|; (1.9)

cf. [37, 41]. The following notion will be convenient to study the properties of the Maxwell
solutions. The future and past light cone at space-time point (t,x) ∈ R4, using ± as a
placeholder for either + or −, is defined by

J±(t,x) := {(s,y) ∈ R4 | |y − x|2 ≤ (s− t)2,±s ≥ ±t}. (1.10)

Their union is denoted by

J(t,x) := J+(t,x) ∪ J−(t,x) (1.11)

and referred to as light-cone of (t,x). The boundaries of the future and past light-cones are
denoted by ∂J±(t,x) and the boundary of the whole light-cone by ∂J(t,x), respectively, cf.

Figure 1.1. The inner of the respective light-cones are denoted by
◦
J±(t,x),

◦
J(t,x).

Note that t± is only defined implicitly. Geometrically, t+ and t− are the two intersection
points of the trajectory (q,p) with the future and past light-cone boundaries, ∂J+(t,x) and
∂J−(t,x), as illustrated in Figure 1.1.

Figure 1.1: Illustration of the future and past light-cones of (t,x) ∈ R4. Their boundaries
cross the charge trajectory (q,p) at the space-time points (t+, q+) and (t−, q−).

All other solutions f t to (1.2)-(1.3) for the same trajectory (q,p) can then be represented
as convex combinations of the special solutions plus a homogeneous solution, i.e.,

f t = λf−t [q,p] + (1− λ)f+
t [q,p] + fht (1.12)

for λ ∈ [0, 1], where fht is a solution to the corresponding homogeneous equations (1.6)-(1.7).
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1.2 Problems of the theory and state of the art

It is well-known that the Maxwell-Lorentz theory is plagued by several difficulties which we
briefly present in this section. The first difficulty we mention is the so-called self-interaction
problem, which is a conceptual problem of the theory and has been observed very early, e.g.
in [1].

The self-interaction problem. In order to calculate the Liénard-Wiechert fields (1.8) due
to charge i ∈ N , one presupposes the trajectory (qi,pi) of that particle. But if both, fields
and trajectories, are not known, the Maxwell equations have to be coupled with the Lorentz
equations and so fields and trajectories have to be computed simultaneously. Assuming eij = 1
for all i, j ∈ N , to obtain the Lorentz force (1.5) acting on charge i one needs to evaluate the
self-field Lii,t, i.e., the field due to charge i at its own position qi,t. This term is ill-defined
because the Maxwell field f i,t is of the form (1.12) and as can be seen from (1.8) has a second
order pole at qi,t, exactly where it would have to be evaluated. Thus, the coupled system
of the Maxwell and Lorentz equations is ill-defined. The problem arises even in the simplest
physical system consisting of one moving charge in its own field.

In essence, there are three broad ways to conceive this problem. Either the Lorentz equa-
tions as given in (1.4) are wrong or the Maxwell equations as given in (1.2) are wrong or both.

1. In the first conception, the problem is cured by changing the Lorentz force. There is
an informal mass renormalization argument by Dirac [15], which effectively replaces the
problematic term Lii,t with the finite Lorentz-Abraham-Dirac back reaction LLAD

ii,t . In
the non-relativistic regime, the latter may be approximated by

LLAD
ii,t ≈

2

3
e2...q i,t, (1.13)

with e denoting the electric charge. This procedure cures the original problem, however,
introduces a dynamical instability as for almost all but very special initial accelerations,
which now must be provided along with initial positions and momenta, the corresponding
charge trajectories approach the speed of light exponentially fast; see [41, 30]. However,
in certain regimes the center manifold of stable solutions can be studied with the help
of singular perturbation theory and the problematic self-interaction term proposed by
Dirac can be approximated by the better tampered Landau-Lifshitz radiation reaction
term [41].

Another more radical way is to build an action-at-a-distance theory, like the theory of
Wheeler and Feynman. In the works [46] and [47] it has been shown that this formulation
is capable of explaining the irreversible nature of radiation. Historically, electrodynamics
by means of direct interaction goes back to works of Gauss [21], Fokker [20], Tetrode
[43] and Schwarzschild [39]. Here the Maxwell fields are given by (1.12) for λ = 1/2 and
fhi,0 = 0 and represent mere mathematical bookkeepers for the interaction of charged
particles. Moreover, each particle interacts solely with the other particles such that the
problematic self-interaction summand is not part of the force law.

Nevertheless, global existence has only been established for very special situations. The
difficulty of these equations lies in the fact that they contain state-dependent delays.
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Such delay equations are considered among the most difficult problems in the area of
differential equations [45]. However, this type of equations is currently heavily under
investigation in the contemporary mathematics literature (see, e.g. [45] and the references
therein) and there is good reason to expect that their solution theory will soon be better
understood.

To this day solutions can only be identified uniquely when whole stripes of trajectories
are specified. When considering two repelling charges and restricting the motion of the
charges to a straight line uniqueness of solutions could be shown; see [16, 17, 6, 3, 9, 13,
25].

2. The second strategy to cure the self-interaction problem is to remedy the field and to
adjust the Maxwell fields such that they no longer lead to the self-interaction problem.
The Maxwell-Born-Infeld theory and the Bopp-Podolsky theory are known candidates.
In the Bopp-Podolsky, or more precisely, Bopp-Landé-Thomas-Podolsky theory, the field
equations are replaced by linear, but higher-order, field equations. The recent work [28]
examines this system and establishes local well-posedness.

In the Maxwell-Born-Infeld theory the Maxwell equations are replaced by non-linear
field equations, which are extremely hard to study; see [27] for a uniqueness result for
the latter.

3. If both Maxwell’s and Lorentz’s equations are questioned, an obvious and famous ansatz
is the Abraham model where particles are modeled as tiny balls with non-zero diame-
ter. This smears out the second order pole in the self-field, however, it breaks Lorentz
invariance and introduces another parameter into the theory that changes each particle;
see for instance [2, 33, 41].

The Maxwell-Lorentz system for smeared out charges is widely understood. For one
smeared out rigid charged particle, global existence and uniqueness of solutions to the
Maxwell-Lorentz system, including the self-interaction summand, has been established
in [29] and in [11] by two different methods. In [4] spinning charges have been discussed.
When constraining the charge trajectories at times |t| ≥ T , for arbitrary large but finite
T , existence of solutions on [−T, T ] was shown for N smoothly extended charges in three
dimensions [12, 7]. In [8] global existence and uniqueness of the Maxwell-Lorentz system
without self-interaction has been established for smeared out charges with same rigid
charge distributions. The semi-relativistic system was considered in [19].

In this work we leave open the question how the term Lii,t has to be changed in order
to infer a mathematically well-defined system of equations. Instead, we chose eij = 1 − δij
in (1.4), which simply omits the term. As suggested by the form of the renormalized term
proposed by Dirac [15], for a large physically relevant regime (small velocities, jerk and elec-
trical charge), this omission can be justified. Moreover, if well-posedness can not even be
shown without the self-interaction summand, there would be no chance to solve the problem
including a well-defined self-interaction term Lii,t as, for instance, LLAD

ii,t or the corresponding
and less problematic term proposed by Landau and Lifshitz in [30]. In this spirit, this work
can also be understood as stepping stone to also include self-interaction.
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The conceptual self-interaction problem aside, looking at typical Maxwell solutions (1.12),
there are two immediate technical problems.

Collisions. The second problem with Maxwell’s fields is the one of collisions, i.e., the charges
must not collide, otherwise the factor 1

|x−q±|2 in (1.8) blows up. This mathematically poses
a similarly delicate problem as in the N -particle problem of gravitation, only now with the
additional complication that the Coulomb potentials in (1.8) are Lorentz-boosted and to be
evaluated at delayed or advanced times t± as given in (1.9); see Figure 1.2.

In the N -body problem of Newtonian gravitation, it is known that the collision of particles
is not well-defined, see for instance [23]. Since the gravitational force scales like 1

|xi−xj |2 , the
dynamics breaks down when particles collide. There is hence no further time evolution after
collision. It may be possible to extend the trajectories after collision, but this extension is not
unique. Although there may be collisions when N particles move in the gravitational field,
the initial conditions resulting in these collisions have measure zero, cf. [38]. We encounter

Figure 1.2: Two particles collide at t = 0. Due to the singular factor 1
|q1,0−q2,0|2

in the force
law, there is no unique dynamics after collision, which is indicated by the red dashed lines.

the same problem for charged particles. The Liénard-Wiechert field (1.8) contains in the near
field the factor 1

|x−q±|2 , which blows up when particles are about to collide. In order to have
well-defined dynamics one needs to make sure that particles cannot come arbitrarily close to
each other. If they still do, another system of equations would be needed to describe the
further motion. Thus, it would be desirable, when investigating initial value problems of the
coupled Maxwell-Lorentz system, to show that initial configurations leading to collisions are
atypical, that is, have measure 0. Then, one could ignore dynamics with collisions.

Runaway solutions. The third singularity in the equations of motion of classical electrody-
namics arises in the term 1

(1±n±·v±)3
of the Liénard–Wiechert fields (1.8), which turns infinite

when charges approach the speed of light. Relativistic trajectories fulfill

vt =
pt√

p2
t +m2

, (1.14)



1.2 Problems of the theory and state of the art 7

and thus, for masses m being strictly positive, vt is bounded by the speed of light. Nev-
ertheless, the theory allows for runaway solutions, that is, solutions (of the Lorentz-Dirac
equation) that approach the speed of light exponentially fast (see Figure 1.3). There are two

Figure 1.3: A particle approaching the speed of light. In this case the electromagnetic field
would accumulate on the light-cone (marked by the arrows).

problems with this kind of solutions. First, we do not observe such accelerating particles.
Second, such a particle needs to constantly radiate, and this very radiation will accumulate
on the light-cone leading to high-energy radiation (see also Figure 1.3). Such a phenomenon
is not observed, either. For technical reasons, however, this phenomenon is not severe, since
in the end we propagate solutions to arbitrarily big, but fixed, times T , such that velocities
are automatically bounded by a constant smaller than 1. Moreover, when handled with care,
it is reasonable to expect that at most only very few initial values (qi,0,pi,0,f i,0)i∈N lead to
catastrophic events.

Finally, setting eij = 1− δij one might hope that there are no further obstacles in arriving
at a solution theory for the Maxwell-Lorentz system (1.2)-(1.4) up to the first time of collision.
However, we ran into a further difficulty which is more subtle and, to the best of our knowledge,
has not received attention yet:

Singular fronts. Given a charge trajectory (qi,pi), only special initial fields f i,0 give rise
to solutions f i,t to (1.2)-(1.3) that are sufficiently regular outside a neighborhood of qi,t in
order to be evaluated in the terms Lij,t in (1.4) for all times. Generic initial fields will generate
singular fronts in the fields traveling at the speed of light, and another charge j moving with
velocities below the speed of light is bound to hit such fronts in finite time. This phenomenon
has been presented in [14], a joint work with D.-A. Deckert. The mathematical rigorous
discussion is content of this work and provides the foundation for the here presented existence
and uniqueness result.
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1.3 Scope of this work

In this work, we investigate the coupled system of Maxwell’s and Lorentz’s equations without
self-interaction for point charges in terms of an initial value problem. The following points
are covered:

1. We demonstrate the existence of singular and discontinuous fronts in the electromagnetic
fields, which are located on the light-cone boundaries of the initial charge positions and
which occur when charge trajectories (qi,pi) do not match the initial electromagnetic
fields f i,0.

2. From this we infer compatibility conditions between trajectories (qi,pi) and initial fields
f i,0, that prevent the generation of these singular and discontinuous fronts.

3. Since generic initial values of the Maxwell-Lorentz system (qi,0,pi,0,f i,0)i∈N violate
these compatibility conditions, we can infer a no-go result for the Maxwell-Lorentz sys-
tem of equations.

4. Nevertheless, we are able to identify a large class of potential solutions for Maxwell-
Lorentz without self-interaction that do not lead to singular fronts. These solutions,
however, are not identified by means of conventional Cauchy data, but by trajectory
histories that satisfy the above compatibility condition.

5. Finally, we present an existence and uniqueness result for such solutions. We obtain
solutions from an initial time 0 up to the first time of particle collision, which may be
infinite.
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1.4 Outline

In Chapter 2 we give a heuristic overview of this work including its physical meaning. Starting
with a basic example demonstrating the generation of singular fronts located at the light-cone
boundary of the initial particle position, we explain this phenomenon by presenting the general
formulas for the Maxwell field for given charge trajectories and given initial fields. We argue
why these singular fronts occur and how they can be circumvented by additional conditions
on the input data. Moreover, this gives rise to two arguments, showing that the initial value
problem of the Maxwell-Lorentz system is in general ill-posed. We present a strategy how,
nevertheless, Maxwell-Lorentz solutions can be established.

Afterwards, we turn over to the core part of the thesis, which is a mathematical rigorous
elaboration motivated by the heuristic discussion in Chapter 2. In Chapter 3 we introduce our
notation and the sense in which charge trajectories, fields and solutions have to be understood
in this work.

Chapter 4 presents our main results. Our first main result, Theorem 4.1.1 (No-go) states
that the initial value problem of Maxwell-Lorentz equations is ill-posed for generic initial
values. This is mainly based on our second main result, Theorem 4.2.1 (Explicit Maxwell
solutions) which reveals the existence of the singular and discontinuous fronts. Nevertheless,
we can show existence and uniqueness of a class of Maxwell-Lorentz solutions in Theorem
4.3.1 (Existence of Maxwell-Lorentz solutions), our third main result. The crucial lemmas for
an understanding of these theorems are, as well, included in Chapter 4.

All the proofs including technical lemmas are found in Chapter 5. We start by proving
all necessary properties of the Liénard-Wiechert fields in Section 5.1. In Section 5.2 we show
existence and uniqueness of Maxwell fields in the distribution sense explained in Chapter 3.
In Section 5.3 we derive the explicit representation formula for the Maxwell field generated
by a point charge for a given initial field, i.e., Theorem 4.2.1 (Explicit Maxwell solutions);
its regularity shall be studied in Section 5.4. In Section 5.5 we can conclude Theorem 4.1.1
(No-go), with the help of the previous sections. Finally, we prove Theorem 4.3.1 (Existence
of Maxwell-Lorentz solutions), in Section 5.6.

We end by a conclusion and an outlook of future projects for which this work provides a
stepping stone, in Chapter 6.

Several additional and partly well-known results which are used throughout the proofs
were collected in the Appendix A for the convenience of the reader.
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Chapter 2

Physical motivation

This chapter is in parts adapted from [14], a joint work with D.-A. Deckert. Moreover,
this section contains a heuristical discussion only and serves as physical motivation of our
work. Therefore, all formulas and calculations mentioned in this section are not rigorous.
However, whenever sensible, forward references to the mathematical rigorous part of this
work in Chapter 3 –5 are already provided.

2.1 Singular fronts in the Maxwell fields

Example. We start with a basic example that demonstrates the existence of singular fronts
in the Maxwell fields. Therefore, consider a system of one point charge with predetermined
trajectory for which we solve the initial value problem of Maxwell’s equations. To keep it
simple we assume the charge to move with the constant velocity v ∈ R3 starting at the space-

time point (0,0). Its trajectory is then given by t 7→
(
qt
pt

)
=

(
vt
v√

1−v2m

)
with t ≥ 0. In order

to compute the field generated by the latter for any time t > 0, we solve Maxwell’s equations
for the given trajectory and a predetermined initial field f0 = (E0,B0). According to the
theory the initial field has to comply with Maxwell’s constraints (1.3) and choosing an initial
Coulomb field

f0(x) :=

(
x
|x|3

0

)
(2.1)

meets this requirement: For all x 6= 0

∇ ·E0(x) = ∇ · x
|x|3

= (∇|x|−3) · x+ |x|(∇ · x)

= (∇(x2
1 + x2

2 + x2
3)−3/2) · x+ |x|(1 + 1 + 1)

= (−3

2
(x2

1 + x2
2 + x2

3)−5/22x) · x+
3

|x|3
= −(

3x1 + 3x2 + 3x3

|x|5
) +

3

|x|3

= 0,
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whereas for any R > 0∫
BR(0)

d3x∇ ·E0(x) =

∫
∂BR(0)

dσ(x)n(x) ·E0(x) =

∫
∂BR(0)

dσ(x)
x

R
· x
|x|3

=

∫
∂BR(0)

dσ(x)
1

R2
=

∫ π

0
dθ

∫ 2π

0
dϕ

1

R2
R2sinθ

= 4π 6= 0.

The set BR(0) ⊂ R3 denotes the closed ball of radius R around 0 and ∂BR(0) its boundary.
Therefore, ∇ · E0 = 4πδ. For the magnetic field we immediately see ∇ ·B0 = 0, and thus,
Maxwell’s constraints hold. Recasting the Maxwell equations in integral form, the Maxwell
field can be written as

f t =

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f0 + 4π

∫ t

0
ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs
js

)
, (2.2)

where Kt denotes the propagator of the wave equation defined in Definition A.1.1 (Propagator
of the d’Alembert operator), ρs and js denote the charge density and current, i.e. in our
example ρs = δ(· − vs) and js = vδ(· − vs). Note that we use the matrix notation, where the
first summand, for instance, is equal to(

∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f0 =

(
∂tKt ∗ e0 +∇∧Kt ∗ b0

−∇ ∧Kt ∗ e0 + ∂tKt ∗ b0

)
. (2.3)

Formula (2.2) can be found in [29] and [8]. Moreover, a derivation of the formula is given
in Appendix A.1 and the proof of Theorem 4.2.1 (Explicit Maxwell solutions) shows that (2.2)
is the unique Maxwell solution for given f0 and given (q,p). According to (2.2) the electric
field is given by

Et(x) = ∂tKt ∗E0(x) A

− 4π

∫ t

0
dsKt−s ∗ ∇ρs(x)− 4π

∫ t

0
ds∂tKt−s ∗ js(x). B

Summand A describes how the initial Coulomb field is propagated by the Maxwell evolution
and can be simplified as

A = (∂tKt ∗E0)(x)
FTC
= ∂tKt ∗E0(x)|t=0 +

∫ t

0
ds∂2

s (Ks ∗E0) (x)

= E0(x) +

∫ t

0
ds

1

4πs

∫
∂Bs(0)

dσ(y)∆
x− y
|x− y|3

=
x

|x|3
+

∫ t

0
ds

1

4πs

∫
∂Bs(0)

dσ(y)(∇∇ · −∇ ∧∇∧)
x− y
|x− y|3

=
x

|x|3
+

∫ t

0
ds

1

4πs

∫
∂Bs(0)

dσ(y)∇4πδ(x− y)

=
x

|x|3
+

∫
Bt(0)

d3y
1

|y|
∇δ(x− y)

=
x

|x|3
−
∫
Bt(0)

d3y
1

|y|
∇yδ(x− y)
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PI
=

x

|x|3
+

∫
Bt(0)

d3y∇y
1

|y|
δ(x− y)−

∫
Bt(0)

d3y∇y
[

1

|y|
δ(x− y)

]
GG
=

x

|x|3
+

∫
Bt(0)

d3y
−y
|y|3

δ(x− y)−
∫
∂Bt(0)

dσ(y)
y

|y|
1

|y|
δ(x− y)

=
x

|x|3
− 1Bt(0)(x)

x

|x|3
−
∫
∂Bt(0)

dσ(y)
y

|y|2
δ(x− y)

= 1Bct (0)(x)
x

|x|3
−
∫ ∞

0
dt

∫
∂Bt(0)

dσ(y)
y

|y|2
δ(x− y)δ(|y| − t)

= 1Bct (0)(x)
x

|x|3
−
∫
d3y

y

|y|2
δ(|y| − t)δ(x− y)

= 1Bct (0)(x)
x

|x|3
− δ(|x| − t) x

|x|2
,

where FTC stands for fundamental theorem of calculus, PI for integration by parts, GG for
Gauss-Green Theorem (see Appendix A.4) and 1Bt(0)(x) denotes the characteristic function
being one for x in the closed set Bt(0) and zero in the open set Bc

t (0) = R3 \ Bt(0). The
electric field component B depending on the charge trajectory can be transformed into

B = 1Bt(0)(x)
(n− − v)(1− v2)

|x− q−|2(1− n− · v)3
+ δ(x− |t|) n− v

(1− n · v)|x|
, (2.4)

where we used the abbreviations

n− :=
x− q−

|x− q−|
, q− := qt− , t− := t− |x− q−|, n =

x

|x|
. (2.5)

Since the computation of B is extremely involving, we refer to the proof of Theorem 4.2.1
(Explicit Maxwell solutions) where it is conducted for general charge trajectories (q,p). Thus,
the electric field at time t > 0 evaluated at space point x is given by

Et(x) = 1Bt(0)(x)
(n− − v)(1− v2)

|x− q−|2(1− n− · v)3
(2.6)

+ 1Bct (0)(x)
x

|x|3
(2.7)

+ δ(x− |t|)
(

n− v
(1− n · v)|x|

− x

|x|2

)
. (2.8)

Summand (2.6) is the electric field component that builds up due to the charge trajectory
(q,p). As the charge is assumed to move with constant velocity v, and thus, without acceler-
ation, this is exactly the retarded Liénard-Wiechert field e−t [q,p] introduced in (1.8) due to
that charge, supported on the closed ball Bt(0). According to (2.7), in this region the initial
Coulomb field E0 is displaced. The field E0 then persists only outside of that closed ball. In
(2.8) one finds a delta distribution supported on the boundary of Bt(0) which depends on the
space point x and the initial velocity v.

This example demonstrates the existence of a singular front located on the light-cone
boundary of the initial charge position (0,0) and that the Maxwell field Et is not necessarily
smooth on R3 \ {qt} although the initial Coulomb field (2.1) is.
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For the magnetic field we obtain the same behavior, the initial Coulomb field persists
outside of the light-cone J+(0,0), inside it is displaced by the retarded Liénard-Wiechert field
generated by the charge and on the light-cone boundary a singular front can be observed. See
Figure 2.1 for illustration. This phenomenon has a rather simple explanation. Morally, the

Figure 2.1: An initial Coulomb field for a charge moving with constant velocity v starting at
time 0 generates a singular front along the boundary of a light-cone.

initial Coulomb field f0 corresponds to the field generated by a charge at rest at position 0;
see Figure 2.2. Therefore, there is a kink between the charge trajectory (qt,pt)|t≥0 and the
one in the past encoded in the initial field. And this kink is responsible for the singular front
observed along the light-cone.

If we look again at equation (2.6)-(2.8), we find that the boundary summand (2.8) cancels
if and only if the charge velocity v equals 0 – like the velocity of a charge corresponding to
the initial Coulomb field.

Figure 2.2: An initial Coulomb field corresponds to a past charge that has been at rest. Thus,
there is a jump in momentum at time 0.

The general case. We turn over to the general case and present a field formula for any
given charge trajectory and any initial field. Moreover, we identify necessary compatibility
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conditions of initial fields and charge trajectories.
According to the general splitting in (1.12), also any relevant initial field f0, obeying the

Maxwell constraint (1.3), can be written as convex combination of the two special solutions
and a homogeneous solution, i.e.,

f0 = λf−0 [q̃, p̃] + (1− λ)f+
0 [q̃, p̃] + fh0 , (2.9)

for some λ ∈ [0, 1], f±t [q̃, p̃] being the Liénard-Wiechert fields (1.8) generated by a auxiliary
charge trajectory (q̃, p̃) fulfilling q̃0 = q0. Note that this representation is just a parame-
terization of the initial field by an initial homogeneous field fh0 and a trajectory (q̃, p̃), and
the requirement q̃0 = q0 is a direct implication of the Maxwell constraints. In this param-
eterization the initial Coulomb field from the introductory example corresponds to λ = 1,
(q̃t, p̃t) = (0,0) for any time t ≤ 0 and fh0 = 0.

Moreover, given any general initial field f0 and an auxiliary trajectory (q̃, p̃), equation
(2.9) is merely a definition of fh0 which must then be a homogeneous field, i.e., one fulfilling
the homogeneous Maxwell constraint (1.7). As this free field fht propagates independently of
the charges one may, for now, think of it to be smooth (which implies fht to be smooth). In the
mathematical part of this work we treat more general cases, cf. Lemma 4.2.2 (Homogeneous
Maxwell solutions).

Plugging the actual trajectory (q,p) and the initial field f0 in the form of (2.9) into the
explicit expressions (2.2) above, for any t ∈ R, one finds

f t =1B|t|(q0)f
−σ(t)
t [q,p] (2.10)

+ 1B|t|(q0)λ
(
f−t [q̃, p̃]− f−σ(t)

t [q̃, p̃]
)

(2.11)

+ 1B|t|(q0)(1− λ)
(
f+
t [q̃, p̃]− f−σ(t)

t [q̃, p̃]
)

(2.12)

+ 1Bc|t|(q0)

(
λf−t [q̃, p̃] + (1− λ)f+

t [q̃, p̃]
)

(2.13)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (2.14)

+ fht , (2.15)

using

r±t,(q0,p0)(x) :=
δ(|t| − |x− q0|)

(1± n0 · v0)|x− q0|

(
n0 ± v0

−n0 ∧ v0

)
, (2.16)

together with
n0 :=

x− q0

|x− q0|
, v0 := v(p0), (2.17)

where σ(t) denotes the sign of t, i.e., f−σ(t)
t stands for f−t if t ≥ 0 and for f+

t if t < 0. The
derivation of this formula is extremely involving. It is the content of Theorem 4.2.1 (Explicit
Maxwell solutions) which can be considered a generalization of the Liénard-Wiechert formulas.
The first three terms have support inside and on the light-cone of (0, q0). The term (2.10)
describes the field that is generated by the actual charge trajectory (q,p) between time 0
and t, and the terms (2.11)-(2.12) describe how the initial advanced and retarded Liénard-
Wiechert fields encoded in (2.9) are propagated inside the light-cone. Depending on the sign
of t, one of the terms (2.11)-(2.12) will vanish and the respective other will be proportional
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to the difference σ(t)(f+
t [q̃, p̃] − f−t [q̃, p̃]), which according to Dirac [15] can be interpreted

as the radiation emitted or absorbed by the auxiliary charge trajectory (q̃, p̃) between time
0 and t. Moreover, the term (2.13) is the propagated remainder of the initial retarded and
advanced Liénard-Wiechert fields, and therefore, only has support outside the light-cone. The
terms in (2.14) are again the distributions given in (2.16) having support on the light-cone,
and fht in (2.15) is simply the field fh0 propagated from 0 to t by the homogeneous Maxwell
equations, i.e., (1.6)-(1.7). Note that fht is as regular as fh0 . See Figure 2.3 for an illustration
of the trajectories and supports of the terms (2.10)-(2.15). The solution f t in (2.10)-(2.15)

Figure 2.3: An illustration of the charge trajectories (q,p) and (q̃, p̃) as well as supports of
the corresponding terms in (4.12)-(4.17) for the case λ = 1 and f0

0 = 0.

can be recast in the more compact form

f t =1B|t|(q0)

(
f
−σ(t)
t [q,p]− f−σ(t)

t [q̃, p̃]
)

(2.18)

+ λf−t [q̃, p̃] + (1− λ)f+
t [q̃, p̃] (2.19)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (2.20)

+ fht , (2.21)

from which one can read off necessary compatibility conditions between the initial field f0 and
the charge trajectory (q,p) that prevent the development of singular light fronts. These con-
ditions correspond to Lemma 5.4.1 (Compatibility Conditions) and Lemma 4.2.4 (Regularity
of f t) in the mathematical part of this work.

(C1) The distributions (2.20) must cancel each other because neither (2.18), (2.19), nor (2.21)
contain Dirac delta distributions. This is the case if and only if (q̃0, p̃0) = (q0,p0), where
q̃0 = q0 was already assumed in order to fulfill the Maxwell constraint (1.3).
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(C2) Provided (C1) is fulfilled, the field f t is continuous on R3 \ {qt} if and only if term
(2.18) vanishes on the light-cone of (0, q0). This can be seen as follows: By virtue of
(1.8), for all times t the terms (2.18)-(2.19) are smooth everywhere except maybe on the
light-cone of (0, q0) as well as the points qt and q̃t. However, since these terms coincide
with (2.10)-(2.13), they must be smooth in q̃t as (2.11) and (2.12) are free fields and
(2.13) has only support outside of the light-cone of (0, q0 = q̃0). As the free field fht is
smooth, and by (C1) terms (2.20), (2.14) vanish, the field f t is continuous on R3\{qt} if
and only if (2.18) vanishes on the light-cone of (0, q0). This is the case if and only if the
accelerations ¨̃qt and q̈t coincide at t = 0. Furthermore, if and only if all l-th derivatives
of q̃t and qt for l = 1, . . . , k + 2 coincide at t = 0, the field f t has k spatial derivatives
on R3 \ {qt}. Finally, if and only if the trajectories q̃t and qt connect smoothly at time
t = 0, the field f t is smooth on R3 \ {qt}.

It was called to our attention that also in [34, 35], where a rigorous electrodynamic point-
charge limit was studied in the dipole approximation, a condition relating the initial fields and
initial momenta similar to (C1) was needed to ensure convergence.

2.2 Implications for the Maxwell-Lorentz system

In this section we discuss the implications of the observations made in Section 2.1 on the
fully coupled system of Maxwell’s and Lorentz’s equations (1.2)-(1.4) and provide a heuristic
explanation for Theorem 4.1.1 (No-go).

First and foremost, we observe that in a system of at least two charges, one charge, say
number 2, will inevitably cross the light-cone of the initial space-time point of another charge,
say number 1, at a time t∗, which is bounded from below by the minimal distance divided by
the speed of light; see Figure 2.4. Thus, at t = t∗ the Lorentz force (1.4) felt by charge 2 must

Figure 2.4: Charge 2 on trajectory (q2,p2) is bound to cross the light-cone of the initial
space-time point (0, q1,0) of charge 1 on trajectory (q1,p1).

evaluate the field f1,t at some point on the light-cone of (0, q1,0). Recall that for an initial
field f i,0 of the form (2.9) with auxiliary charge trajectory (q̃i, p̃i), the propagated field f i,t is
given by (2.10)-(2.15). Should condition (C1) of Section 2.1 not be satisfied, this evaluation
is ill-defined because of the presence of the distributions (2.14). In this case, the dynamics
will cease to exist beyond the time instant t∗. Hence, (C1) is a necessary condition for global
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existence of solutions to the Maxwell-Lorentz system (1.2)-(1.4). Should condition (C1) hold
but not (C2), then the force on charge 2 will undergo a discontinuous jump when traversing
the light-cone at time t∗. Therefore, (C2) is a necessary condition for having continuous or
smooth solutions to the Maxwell-Lorentz system (1.2)-(1.4).

The following two arguments illustrate that (C1) and (C2) are violated for generic initial
data (qi,0,pi,0,f i,0)i∈N obeying the Maxwell constraints (1.3) only. Precisely, they show that
global existence is not stable under arbitrarily small perturbations of the initial data. For this
purpose, let us assume that (qi,pi,f i)i∈N is a global solution to the Maxwell-Lorentz system
(1.2)-(1.4) for some initial value (qi,0,pi,0,f i,0)i∈N such that the initial fields f i,0 are of the
form (2.9) for some smooth auxiliary trajectory (q̃i, p̃i) and some smooth initial free field
fhi,0. The corresponding mathematical result is Theorem 4.1.1 (No-go) in Chapter 4, which
represents our first main result.

No-go argument (A1): By Maxwell constraints (1.3) and necessary condition (C1) we
have (q̃i,0, p̃i,0) = (qi,0,pi,0) for i ∈ N . Then, perturbing the initial momentum of charge
1 by p1,0 → p′1,0 = p1,0 + δ for any vector δ of arbitrarily small norm |δ| > 0 leads to a
corresponding local solution (q′i,p

′
i,f
′
i)i∈N with f ′1,t taking the form of (2.10)-(2.15), whereas

the contribution (2.14) equals the distribution r−σ(t)
t,(q0,p0+δ) − r

−σ(t)
t,(q0,p0), which does not vanish.

In other words (C1) is violated, and f ′1,t manifests a singular light front with support on the
light-cone of space-time point (0, q1,0), as discussed in Section 2.1. By virtue of (1.2)-(1.4),
this perturbation in the initial momentum propagates not faster than the speed of light. In
particular, the perturbed field f ′1,t of charge 1 and the perturbed trajectory (q′2,t,p

′
2,t) of

charge 2 remain identical on Bc
|t|(q1,0) for t ∈ R. In consequence, charge 2 is bound to touch

the light-cone of (0, q1,0) at the very same time t∗ as in the unperturbed solution, only now the
perturbed field f ′1,t contains a singular light front consisting of distributions. In conclusion,
the dynamics will cease to exist beyond time t∗, as discussed above. The argument is depicted
in Figure 2.5.

Figure 2.5: Perturbing the initial momentum of charge 1 by p1,0 → p′1,0 leads to a singular
front supported on the light-cone of (0, q1,0) and thus to a sudden stop of the dynamics at
time t∗ when charge 2 touches the light-cone.
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No-go argument (A2): This time, let us assume the global solution is also smooth and
λ > 0 (for λ = 0 a similar argument can be found). Due to condition (C2), ¨̃qi,t and q̈i,t
coincide at time t = 0. Now, we perturb a little bit the trajectory (q̃2, p̃2) that defined the
initial field f2,0 given in (2.9) in an arbitrarily small neighborhood of the retarded time t−

belonging to space-time point (0, q1,0). Due to (2.10)-(2.15) this causes a small perturbation
f2,0 → f ′2,0, and we tune this perturbation such that the Lorentz force (1.4) on charge 1 at t =
0 changes its value. In consequence, the potential local solution (q′i,p

′
i,f
′
i)i∈N corresponding

to this perturbed initial data violates (C2) as the accelerations ¨̃q1,t and q̈
′
1,t do not match

anymore at t = 0. As discussed in Section 2.1, this leads to a discontinuity on the light-cone
of (0, q1,0). However, by virtue of (1.2)-(1.4) the perturbed field f ′1,t of charge 1 and the
perturbed trajectory (q′2,t,p

′
2,t) of charge 2 remain identical on Bc

|t|(q1,0) for t ∈ R. Therefore,
charge 2 is bound to hit the light-cone of (0, q1,0) at the very same time t∗ as in the unperturbed
solution. At this instant, due to the discontinuity of f ′1,t, the acceleration of charge 2 will
undergo a likewise discontinuous jump. Hence, should the perturbed solution exist globally it
can only be piecewise smooth. Furthermore, the discontinuity in the acceleration of charge 2
will give rise to a corresponding discontinuity in the field f2,t on the light-cone of (t∗, q2,t∗),
which charge 1 is bound to cross eventually. By this mechanism, a whole network of singular
light fronts is developed. The argument is depicted in Figure 2.6.

These two arguments indicate that the initial value problem of the Maxwell-Lorentz sys-
tem (1.2)-(1.4) with renormalized (or without) self-interaction term is ill-posed for general
initial values (qi,0,pi,0,f i,0)i∈N only fulfilling the Maxwell constraints (1.3): Even if a global
solution is found, only a small perturbation in the initial values suffices to prevent either global
existence, by (A1), or global smoothness, by (A2), of the potential solution corresponding to
the perturbed initial values.

One might tend to think that these are all problems connected to the point-like nature
of the charges, a concept that could even be considered questionable in the classical regime.
Indeed, it is true that for the Maxwell-Lorentz system of smoothly extended charges those
mathematical problems do not show up. Nevertheless, the qualitative behavior of generation
of singular light fronts for initial conditions that violate (C1) or (C2) remains the same. As the
fields of the extended charges with density ρ are of the form ρ∗f i,t+fhi,t, the discussed singular
fronts are now only smeared out by ρ. For ρ supported on the scale of the classical electron
radius, i.e., re ∼ 10−15m, the singular fronts will still result in sharp – though smooth – steps
in the fields on the respective light-cones. Other charges are bound to eventually traverse such
steps and will suddenly – on time scales of re divided by their respective speed – start or stop
to radiate, thus, leading to potentially observable though physically questionable phenomena.

2.3 Admissible initial values

If for a moment we also admit piecewise smooth solutions to the Maxwell-Lorentz system
(1.2)-(1.4), a sensible restriction on the space of initial values can be taken from condition
(C1). If we require the initial value (qi,0,pi,0,f i,0)i∈N to comprise fields f i,0 of the form (2.9)
for piecewise smooth auxiliary trajectories (q̃i, p̃i) fulfilling (q̃i,0, p̃i,0) = (qi,0,pi,0), condition
(C1) as well as the Maxwell constraints (1.3) are fulfilled by definition and there seems to
be no further obstacle concerning mathematical well-posedness of the respective initial value
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Figure 2.6: Perturbing the initial field of charge 1, f1,0 → f ′1,0, by a small bump in (q̃2, p̃2) at
the corresponding retarded time, leads to a discontinuity of f1,t supported on the light-cone of
(0, q1,0) and thus charge 2 experiences a sudden jump in acceleration at time t∗, which causes
a discontinuity in f2,t.

problem. If, however, we demand smooth global solutions, we would also need to comply with
condition (C2). In order to do so we would have to know the derivatives of the charge trajec-
tories (qi,pi) at initial time t = 0. But those are unknown as they already require knowledge
of a local solution in a neighborhood of t = 0. Hence, there is no possibility to restrict the
space of initial fields a priori in order to ensure well-posedness.

Given initial data (qi,0,pi,0,f i,0)i∈N fulfilling (1.3) and (C1), it is possible to compute
the solution of the Maxwell-Lorentz equations in a sufficiently small time interval [0, τ). This
can be done as the singular fronts live only on the light-cones of the initial space-time points
(0, qi,0) so that τ only has to be chosen smaller than the smallest time t∗ when some charge
hits a singular front. For the case λ = 1 this is the content of Theorem 4.3.1 (Existence of
Maxwell-Lorentz solutions), (i), in Chapter 4.

This preliminary local solution allows to compute all derivatives of the charge trajectories
(qi,pi) at t = 0. So, if for some reason (q̃i, p̃i) in a neighborhood of t = 0 should connect
smoothly to (qi,pi) such that (C2) is fulfilled, we can even establish smooth global solutions,
which, for the case λ = 1 is the content of the second part of Theorem 4.3.1 (Existence of
Maxwell-Lorentz solutions).
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In order to find initial values that indeed match (C2), one could consider the following ap-
proach: Given the local solution on time interval [0, τ) this would allow to adapt the auxiliary
trajectories (q̃i, p̃i) in a neighborhood of t = 0 such that it connects smoothly to (qi,pi). This
procedure changes the initial fields f i,0 → f ′i,0 in a spatial neighborhood around the initial
positions qi,0. Since self-interaction is excluded, the adapted initial values (qi,0,pi,0,f

′
i,0)i∈N ,

however, fulfill the Maxwell constraints (1.3), (C1), and (C2), and therefore, should not bare
any further obstacles concerning smooth global solutions.

Though mathematically sound, physically, this is a rather opaque procedure. It is not
anymore a formulation of classical electrodynamics in terms of an initial value problem for
(1.2)-(1.4) but in terms of an initial guess, that, first, has to be adapted in a quite arbitrary
way before a global solution can be inferred at all.

So what is overlooked when naively regarding the Maxwell-Lorentz system (1.2)-(1.4) as an
initial value problem? Any inhomogeneous solution f i,t to the Maxwell equations (1.2)-(1.3)
is of the form (1.12), which implies that the entire history of the charge trajectory (qi,pi) is
already encoded in the spatial dependence of the field f i,t; recall the t± dependence in (1.8).
Now, if we set some initial field f i,0 by hand, for which the Maxwell constraint (1.3) only
requires that we choose it of the form (2.9) with some auxiliary trajectory (q̃i, p̃i) fulfilling
q̃i,0 = qi,0, the Maxwell time evolution is fooled to believe that the history of the charge tra-
jectory is given by (q̃i, p̃i). But except for q̃i,0 = qi,0, the history of the auxiliary trajectory
(q̃i, p̃i) may have nothing in common with the actual one (qi,pi), which is to be computed.
As a matter of fact, the Maxwell equations propagate such an initial field f i,0 as if it was
generated by the auxiliary charge trajectory (q̃i, p̃i) outside the light-cone of (0, qi,0) while,
inside, a new field is generated according to the actual trajectory (qi,pi). It is therefore not
surprising that the incompatibilities between the actual charge trajectories (qi,pi) and the
initial fields f i,0 of the solution (1.2)-(1.4) discussed in Section 2.1 occur during the dynamics
and that any mismatch between the actual and auxiliary charge trajectories in the sense of
(C1) and (C2) expresses itself as a singular light front.

In view of this, it would be desirable to find a formulation of classical electrodynamics that
automatically avoids any such incompatibilities. This is possible and in Section 2.4 we discuss
a whole class of such formulations having two representatives that are well-known since the
beginning of classical electrodynamics.

2.4 A reformulation of the Maxwell-Lorentz system

As demonstrated, the restriction of the solution space of the Maxwell-Lorentz system (1.2)-
(1.4) to smooth solutions does not allow a formulation in terms of an initial value problem.
Though a potential global solution is uniquely identified by its initial data (qi,0,pi,0,f i,0)i∈N ,
only very special initial fields fulfilling the necessary condition (C2) lead to smooth global
solutions. Furthermore, the information needed to restrict the initial data according to (C2)
would already require knowledge of the unknown solution. These circumstances suggest that
we might need to change the way we look at the solution theory for the Maxwell-Lorentz
system.

The starting point for such a consideration is the fact that the Maxwell field at one time
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instant and the entire trajectory of the charge that generated it are intimately intertwined
beyond the Maxwell constraint (1.3).

This can be observed best when imagining a single charge i incoming from the remote past
t = −∞. Considering, e.g. the case λ = 1, any auxiliary trajectory (q̃i, p̃i) in the expression
of the field f i,t in (2.10)-(2.15) is forgotten during a time evolution from t = −∞ to any finite
time t and so are any potential singular fronts as they escape to spatial infinity with the speed
of light. Concerning point-wise evaluation in any finite region of space-time, the Maxwell field
in (2.10)-(2.15) reduces to the expression

f i,t = f−i,t[qi,pi] + fhi,t. (2.22)

Nothing changes in this argument and in the form of (2.22) when the charge trajectory (qi,pi)
is not prescribed but also develops simultaneously to the evolution of the Maxwell fields, i.e.,
according to the fully coupled system (1.2)-(1.4). Hence, stopping the dynamics at time t = 0
and starting it again in an initial value problem fashion dictates the natural choice (2.22) for
the initial field at t = 0. This means that the initial field f i,0 should be of the form (2.9) for a
auxiliary trajectory (q̃i, p̃i) that coincides with the actual one (qi,pi) and that the free field
fhi,0, as it evolves independently of the charges, equals the incoming free field evolved from
t = −∞ to t = 0.

Hence, in the general case for any λ ∈ [0, 1], where also advanced Liénard-Wiechert fields
may occur, one would expect the Maxwell field to take the form

f i,t = λf−i,t[qi,pi] + (1− λ)f+
i,t[qi,pi] + fhi,t. (2.23)

Any compatibility condition, such as the Maxwell constraint (1.3), (C1), and (C2), is now
naturally fulfilled for all times t. But this comes at a high price. By (2.23), the fields f i,0 at
time t = 0 depend on the entire history of the charge trajectories which consequently means
letting go of the initial value formulation of classical electrodynamics.

In view of the above, however, such a step seems well grounded. In Section 2.2, it was
already indicated when insisting on the merely mathematical property of smoothness of solu-
tions. But there, one might even have been tempted to accept potential kinks in the charge
trajectories, say, as long as they decay fast enough. However, the discussion above and in
Section 2.3 shows that there is also a physical reason why the initial value formulation is
questionable, namely the fact that at each time instant the entire history of a charge tra-
jectory is already encoded in the spatial dependence of its field. Therefore, when entertain-
ing the thought that charges are incoming from the remote past, the form of the Maxwell
fields is already presupposed by (2.23) and the space of potential solutions (qi,pi,f i)i∈N of
the Maxwell-Lorentz system (1.2)-(1.4) should consequently be restricted to solutions having
Maxwell fields f i,t that fulfill (2.23).

Such a restriction is easily implemented in the fundamental equations of motion (1.2)-
(1.4). It simply means replacing the Maxwell fields on the right-hand side of (1.5) with the
explicit form given in (2.23). This makes the Maxwell equations and constraints (1.2)-(1.3)
redundant and turns the coupled system of the ordinary differential equations (1.4) and partial
differential equations (1.2)-(1.3), only consisting of terms that are all evaluated at the same
time instant t, into the following system of ordinary differential equations that involve terms
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depending on advanced or delayed times t± as given in (1.9):

d

dt

(
qi,t
pi,t

)
=

(
vi,t = v(pi,t)∑

j 6=iLij,t

)
, (2.24)

Lij,t := Ej,t(qi,t) + vi,t ∧Bj,t(qi,t),

f i,t = (Ei,t,Bi,t)

= λf−i,t[qi,pi] + (1− λ)f+
i,t[qi,pi] + fhi,t.

It is interesting to note that by virtue of (2.2) the free fields fhi,t, when prescribed in the
remote past, are forgotten should they have some spatial decay at spatial infinity [8, 29].

In this case, for λ = 1/2 and no initial free fields the system of equations (2.24) is equivalent
to the Fokker-Schwarzschild-Tetrode equations [20, 43, 39] as used in Wheeler’s and Feynman’s
investigation of classical radiation reaction [46, 47]. They can be derived from a simple action
principle [20, 47], and furthermore, allow a derivation of Dirac’s radiation damping term LLADii,t

without the need of a mass renormalization procedure [46, 9].
Moreover, for λ = 1 and no initial free fields, the resulting equations are equivalent to the

Synge equations [42].
The nature of these equations, involving a priori unbounded state-dependent delays t±, cf.

(4.7), in the definition of the Liénard-Wiechert fields (4.6), renders a general classification of
solutions very difficult. In mathematics, this problem is known as the electrodynamic N-body
problem.
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Chapter 3

Notation and Definitions

Before we can state our main results we need to make precise the meaning of solutions to the
Maxwell equations (1.2)-(1.3), Lorentz equations (1.4), and the coupled system of Maxwell-
Lorentz equations (1.2)-(1.3) and (1.4). We also use this opportunity to introduce the notation,
which is mostly the standard one with slight adaptation to our setting.

3.1 Distribution spaces

Throughout this work we denote the natural numbers excluding 0 by N and write N0 ≡
N ∪ {0}. We consider as test function space the space of smooth functions with compact
support D := C∞c (R3,R) and as distribution space the corresponding duals Dr, r ∈ N, where
we will generally use only r = 1 and r = 3. The dual space Dr is the space of linear and
continuous maps l : D → Rr, where a linear map l : D → Rr is said to be continuous if for all
sequences (ρ(n))n∈N in D such that there is a compact K with supp ρ(n) ⊆ K for all n ∈ N it
holds:

∀α ∈ N3
0 : lim

n→∞
sup
y∈R3

|Dα
yρ

(n)(y)| = 0 ⇒ lim
n→∞

l(ρ(n)) = 0. (3.1)

Here, for α = (α1, α2, α3) in N3
0, Dα

x denotes the multi-index derivative w.r.t. x ∈ R3, i.e.,
Dα
x := ∂α1

x1 ∂
α2
x2 ∂

α3
x3 , where, if unambiguous, we drop the subscript x and mean the derivative

w.r.t. the argument of the function. We call a sequence (ρ(n))n∈N with such properties a null
sequence in D. Elements l ∈ D3, i.e. for r = 3 or tuples of such elements are expressed in
bold letters. We write ρx ≡ ρ(x− ·) to denote the function y 7→ ρ(x− y) on R3. Moreover,
ρ(·) denotes the function ρ(·) : x 7→ ρx ∈ D.

The Dirac delta distribution δ in (1.2)-(1.3) is to be understood as the distribution δ ∈ D1

acting as δ(ρ) := ρ(0) for all test functions ρ ∈ D. Furthermore, for t ≥ 0 we will often use
another Dirac delta distribution denoted by δ(t − | · |) ∈ D1 and acting as δ(t − | · |)(ρ) :=∫
∂Bt(0) dσ(x) ρ(x) for all ρ ∈ D, where for q ∈ R3, Bt(q) := {x ∈ R3 : |x−q| ≤ t} denotes the
closed euclidean ball of radius t around q, ∂Bt(q) its boundary, and dσ(x) the corresponding
surface measure. Note that we denote the euclidean norm in R3 and R6 by |·|, and the norms
of the Lp spaces by ‖·‖p for 0 < p ≤ ∞.

Moreover, if for a g ∈ Dr there is a locally integrable function g ∈ L1
loc(R3,Rr) such that

g(ρ) =
∫
d3y g(y)ρ(y) for all ρ ∈ D we slightly abuse the notation and identify g ≡ g, i.e.,

the distribution in D and the corresponding element in L1
loc(R3,Rr). In this case g(ρx) ≡
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∫
d3y g(y)ρ(x − y) ≡ g ∗ ρ(x), where ∗ denotes the common short-hand notation for the

convolution. If there is an open set D such that the restriction of g ∈ L1
loc(R3,Rr) to D

has a n ∈ N0-times continuously differentiable representative we write g ∈ Cn(D,Rr), where
Cn(D,Rr) denotes the space of n-times continuously differentiable functions from D to Rr.
Finally, we say that g ∈ Dr can be evaluated at x ∈ R3 if there is an open D with x ∈ D
and g ∈ C0(D,Rr). In this case, we abbreviate the evaluation g(x) = limn→∞ g(ρ

(n)
x ), where

ρ
(n)
x := n3ρ(n(x− ·)) with ρ ∈ C∞c (D,Rr) and ‖ρ‖1 = 1.

3.2 Electromagnetic fields

The electromagnetic fields f are tuples f = (E,B) of electric fields E ∈ D3 and magnetic
fields B ∈ D3, and hence, take values in F := D3 ×D3. We distinguish between electromag-
netic fields f ∈ Fhom, which are defined as those f ∈ F fulfilling the homogeneous Maxwell
constraints, i.e., for all ρ ∈ D,x ∈ R3(

∇x· 0
0 ∇x·

)
f(ρx) =

(
∇x ·E(ρx)
∇x ·B(ρx)

)
= 0, (3.2)

cf. [15], and f ∈ Fq, q ∈ R3 denoting those f ∈ F fulfilling the inhomogeneous Maxwell
constraints, i.e., for all ρ ∈ D,x ∈ R3(

∇x· 0
0 ∇x·

)
f(ρx) =

(
∇x ·E(ρx)
∇x ·B(ρx)

)
=

(
4πρ(x− q)

0

)
, (3.3)

cf. [6]. Note that checking the equality in (3.2) and (3.3) for all ρ ∈ D and only one x ∈ R3

is already necessary and sufficient. However, leaving open the freedom x ∈ R3 is sometimes
helpful for a physical interpretation as these equations then describe the situation of a charge
density ρ attached to the charge at position q; see, e.g. [7, 11, 29].

3.3 Solution sense

The sense in which we consider solutions to the Maxwell and Lorentz equations as well as
the coupled Maxwell-Lorentz system is given by the following three definitions. Let Λ always
denote an interval on R containing 0, possibly Λ = R. Also for maps on Λ we will sometimes
adopt the · notation, e.g. g(·) : Λ → D, t 7→ gt. Moreover, we will always give priority to the
evaluation of the distribution gt at a specific test function ρ ∈ D over operations acting on the
argument t, in particular, the partial derivative ∂tgt(ρ) ≡ ∂t(gt(ρ)). Moreover, the derivatives
d
dt and ∂t at a possible boundary of the one-dimensional domain of t are to be interpreted as
the corresponding left- or right-hand side derivatives and we often use the short-hand notation
d
dtgt = ġt.

Definition 3.3.1 (Charge and field trajectories).

(i) Let n ∈ N. Any tuple (q,p) : t 7→ (qt,pt) for q ∈ Cn(Λ,R3) and p ∈ Cn−1(Λ,R3)
fulfilling q̇t = v(pt) for all t ∈ Λ is called a charge trajectory on Λ. The space of all such
charge trajectories is denoted by T n(Λ).
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(ii) A charge trajectory (q,p) ∈ T 1(Λ) such that there is a constant vmax for which

sup
t∈Λ
|v(pt)| ≤ vmax < 1 (3.4)

holds is called strictly time-like on Λ.

(iii) Let n ∈ N0. A map f : Λ → F , t 7→ f t such that for all ρ ∈ D the map t 7→ f t(ρ) is
in Cn(Λ,R6) is called a field trajectory on Λ. The space of all such field trajectories is
denoted by Fn(Λ).

Prescribed initial positions, momenta and fields will be denoted by q0, p0 and f0, to be
distinguished from the notation (qt,pt)

∣∣
t=0

and f t
∣∣
t=0

denoting the evaluation of the charge
trajectory (q,p) and the field trajectory f at time t = 0. In addition, the latter may be
abbreviated by qt=0, pt=0 and f t=0 to keep the notation slim.

With regard to fields we will encounter the two types of sets

Sq := R3\{q} ∀q ∈ R3 and DΛ
q := {(t,x)

∣∣ t ∈ Λ,x ∈ Sqt} ∀(q,p) ∈ T 0(R), (3.5)

where in case of Λ = R we abbreviate DR
q by Dq.

For a system of N ∈ N charges indexed by N := {1, 2, . . . , N} the solutions to the Lorentz
equations (1.4) we will consider are of the following kind.

Definition 3.3.2 (Lorentz solutions). Given a tuple (f i)i∈N of field trajectories f i ∈ F0(Λ),
we call a tuple (qi,pi)i∈N of charge trajectories t 7→ (qi,t,pi,t) in T 2(Λ) a solution to the
Lorentz equations for (f i)i∈N on Λ if and only if:

(i) For all t ∈ Λ, i, j ∈ N , i 6= j, the distributions f j,t can be evaluated at qi,t and t 7→
f j,t(qi,t) are in C0(Λ,R3).

(ii) For all t ∈ Λ, the tuple (qi,pi)i∈N is a solution to (1.4), where (Ej,t(qi,t),Bj,t(qi,t)) =
f j,t(qi,t).

We say that a Lorentz solution on Λ has initial value (q0,p0) if (qt,pt)|t=0 = (q0,p0).

Similarly, we define solutions to the Maxwell equations (1.2) as follows.

Definition 3.3.3 (Maxwell solutions).

(i) A field trajectory f = (E,B) ∈ F1(Λ) fulfilling for all ρ ∈ D, t ∈ Λ,x ∈ R3

∂tf t(ρx) =

(
0 ∇x∧

−∇x∧ 0

)
f t(ρx) ≡

(
∇x ∧Bt(ρx)
−∇x ∧Et(ρx)

)
(3.6)

is called a homogeneous Maxwell solution on Λ.

(ii) Given a charge trajectory (q,p) ∈ T 2(R), a field trajectory f ∈ F1(Λ) fulfilling for all
ρ ∈ D, t ∈ Λ,x ∈ R3

∂tf t(ρx) =

(
0 ∇x∧

−∇x∧ 0

)
f t(ρx) +

(
−4πv(pt)ρ(x− qt)

0

)
(3.7)

is called a Maxwell solution for (q,p) on Λ.
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We say that a Maxwell solution has initial value f0 if (f t)|t=0 = f0.

By a straight-forward computation it can be seen that the Maxwell constraints (3.2) and
(3.3) are preserved by the Maxwell evolutions (3.6) and (3.7), respectively [7]. More precisely,
if f is a homogeneous Maxwell solution on Λ, f t=0 ∈ Fhom ⇔ ∀t ∈ Λ : f t ∈ Fhom, and
similarly, if f is a Maxwell solution for (q,p) on Λ, f t=0 ∈ Fqt=0

⇔ ∀t ∈ Λ : f t ∈ Fqt ; see,
e.g. [7, 11, 29], and Lemma A.2.1 (Maxwell constraints).

Finally, the solution sense of the coupled system of Maxwell-Lorentz equations (1.4) and
(1.2) considered here is given by the following definition.

Definition 3.3.4 (Maxwell-Lorentz solutions). We call a tuple (qi,pi,f i)i∈N of charge tra-
jectories (qi,pi) ∈ T 2(Λ) and field trajectories f i ∈ F1(Λ) a Maxwell-Lorentz solution on Λ
if and only if:

(i) Given (f i)i∈N , the tuple (qi,pi)i∈N is a Lorentz solution for (f i)i∈N on Λ.

(ii) Given (qi,pi)i∈N , each f i is a Maxwell solution for (qi,pi) on Λ.

We say that a Maxwell-Lorentz solution has initial value (qi,0,pi,0,f i,0)i∈N if (qi,t,pi,t,f i,t)|t=0 =
(qi,0,pi,0,f i,0) for all i ∈ N .

It should be noted that though this is a canonical way to make sense out of equations
of motion of the Maxwell-Lorentz system (1.2)-(1.4) it is not the most general one. For
example, one could regard the Lorentz equation (1.4) in integral form, in which case the
continuity assumption (qi,·,pi,·) ∈ T 2(Λ) as well as the point-wise evaluation f j,t(qi,t) of
the fields assumption can be weakened. We will briefly come back to this point in Lemma
4.2.1 (Properties of Liénard-Wiechert fields) when discussing the precise regularity of generic
Maxwell solutions, however, a weaker sense of solutions than Definitions 3.3.2-3.3.4 is not the
focus of this work.



Chapter 4

Main Results

This chapter contains our main theorems. We start by presenting the no-go result for the
Maxwell-Lorentz initial value problem in Section 4.1. For a understanding, we present the
properties of the Maxwell fields in Section 4.2. With this preparation we may turn to Section
4.3 where our existence and uniqueness result is discussed.

4.1 No-go result for the Maxwell-Lorentz system

It may now seem natural to approach existence and uniqueness of the Maxwell-Lorentz solu-
tions in terms of the initial value problem with initial data specified, e.g. at the equal time
hypersurface {t} × R3: Given an initial value (qi,0,pi,0,f i,0)i∈N of initial positions and mo-
menta qi,0,pi,0 ∈ R3 and initial fields f i,0 ∈ Fqi,0 , we would say that the Maxwell-Lorentz
initial value problem on Λ is well-posed if and only if there exists a unique Maxwell-Lorentz
solution (qi,pi,f i)i∈N on Λ such that (qi,t,pi,t,f i,t)

∣∣
t=0

= (qi,0,pi,0,f i,0) for all i ∈ N . The
question to address is then which regularity assumptions on the initial values would be needed
in order to guarantee well-posedness in terms of Definition 3.3.4 (Maxwell-Lorentz solutions).
As explained in the introduction, an obvious problem that has to be avoided is that of col-
lisions of charges since all Maxwell solutions are singular at the positions of their generating
charges, as can be seen from Lemma 4.2.1 (Properties of Liénard-Wiechert fields) below; a
problem that is closely related to the N -body problem of Newtonian gravitation. But, even
assuming that no collisions occur and that the initial fields are as regular as we would wish
for, there is a more fundamental problem which already appears for N = 2 charges and that
will prevent well-posedness in general. This is the content of our first main result:

Theorem 4.1.1 (No-go). Let N = 2. Assume there is a Maxwell-Lorentz solution

(q̃i, p̃i, f̃ i)i=1,2 (4.1)

on [t1, t2] for times t1 < 0 < t2 having the initial value

(q̃i,0, p̃i,0, f̃ i,0) := (q̃i,t, p̃i,t, f̃ i,t)
∣∣
t=0

, i = 1, 2 (4.2)

such that
q̃1,t1 ∈ ∂J

−(0, q̃2,0), q̃2,t2 ∈ ∂J
+(0, q̃1,0), (4.3)

and, that (q̃2, p̃2) is the unique Lorentz solution for f̃1 with (q̃2,t, p̃2,t)
∣∣
t=0

= (q̃2,0, p̃2,0) on
[t1, t2].
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Furthermore, let ε ∈ R3 and δ ∈ Fhom. Then, in the sense of Definition 3.3.4 (Maxwell-
Lorentz solutions), there is no Maxwell-Lorentz solution (qi,pi,f i)i=1,2 on [0, t2] such that

(q1,t,p1,t,f1,t)
∣∣
t=0

= (q̃1,0, p̃1,0 + ε, f̃1,0) (4.4)

(q2,t,p2,t,f2,t)
∣∣
t=0

= (q̃2,0, p̃2,0, f̃2,0 + δ) (4.5)

unless ε = 0 and L(q̃1,0, p̃1,0, δ) = 0, cf. (1.5).

Figure 4.1: Illustration of the setting given in Theorem 4.1.1 (No-go). The left trajectory
piece is the unique Lorentz solution of charge 2, the right, red trajectory is the solution of
charge 1 extended to whole R and the right, green trajectory represents the solution of charge
1 to the modified initial value.

See Figure 4.1 for the illustration of the setting in this theorem. In other words, an initial
value problem for the Maxwell-Lorentz equations in the sense as discussed above is not well-
posed. As we shall see, this behavior is grounded in the fact that for any time t the information
about the history of the charges, i.e., s 7→ (qi,s,pi,s) for s ≤ t, is encoded in the spatial degrees
of freedom of the fields f i,t of a Maxwell-Lorentz solution (qi,pi,f i)i=1,2, such as the one in
Theorem 4.1.1 (No-go). An arbitrary change of the initial value at t = 0 such as (4.4)-(4.5)
simply renders the initial momenta or fields incompatible with the history of the charge trajec-
tories stored in the initial fields. As we shall see in the proof of Theorem 4.1.1 (No-go), equation
(4.4)-(4.5) causes the fields to become irregular on the boundary of the light-cone J+(0, q̃1,0)
– it turns out that either f1 cannot be evaluated in the point-wise sense or is discontinuous at
∂J+(0, q̃1,0). In consequence, the dynamics in the sense of Definition 3.3.4 (Maxwell-Lorentz
solutions) ceases to exist once the charge trajectory (q2,p2) intersects ∂J+(0, q̃1,0), which is
guaranteed thanks to the uniqueness assumption of the Lorentz solution.

Remark 4.1.1. (i) The uniqueness of the Lorentz equation is a very mild assumption. In
the setting of Theorem 4.1.1 (No-go) it holds as soon as the f i,t(x) are continuous in t
and Lipschitz continuous in x on J+(0, qj,0) ∩ {(t,x) | t1 ≤ t ≤ t2, x ∈ R3} for j 6= i.
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If (q̃2, p̃2) is not assumed to be the unique Lorentz solution, and thus, the time t2 is not
necessarily the time where (q2,p2) hits the light-cone boundary ∂J+(0, q̃1,0), there are
only two possible scenarios: either the dynamics of charge 2, given the modified initial
value, stops at some other finite time when it hits the light-cone boundary ∂J+(0, q̃1,0)
so that the dynamics in the sense of Definition 3.3.4 (Maxwell-Lorentz solutions) ceases
to exist, or, the trajectory must show "run away" behavior, i.e., asymptotically approach
the speed of light. Mathematically, the latter may lead to a solution up to arbitrarily
large times without hitting the light-cone boundary. Physically, however, such solutions
are also questionable.

(ii) If we allowed the acceleration of charge 2 to be discontinuous at time t2, the field f2,t

of charge 2 would show a corresponding discontinuity located at the light-cone boundary
∂J+(t2, q2,t2). If charge 1 does not show runaway behavior it is bound to hit this discon-
tinuous front at a finite time, therefore experiences a jump in acceleration and produces
a discontinuous front in its field, as well, and so a whole network of discontinuities would
build up; see Figure 4.2 for illustration.

Figure 4.2: Illustration of a network of discontinuous fields and accelerations that builds up
whenever the initial field of charge 2 does not fit the initial charge acceleration of charge 1.

4.2 Properties of the Maxwell fields

For the proof of Theorem 4.1.1 (No-go) a detailed analysis of the solution space of the Maxwell
equations is necessary. This is the content of the following Definitions and Lemmata.

The explicit formula for general Maxwell solutions are presented in Theorem 4.2.1 (Explicit
Maxwell solutions) which is our second main result. It can be seen as a generalization of the
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Liénard-Wiechert formulas to the case of prescribed initial fields. For the sake of completeness
we start by calling the definition of the Liénard-Wiechert fields (1.8) next.

Definition 4.2.1 (Liénard-Wiechert fields). Given a strictly time-like charge trajectory (q,p) ∈
T 2(R), we define the so-called advanced and retarded Liénard-Wiechert fields f+[q,p] ≡
(e+, b−) and f−[q,p] ≡ (e−, b−) for t ∈ R, respectively, by point-wise evaluation

e±t (x) :=

[
(n± v)(1− v2)

|x− q|2(1± n · v)3
+
n ∧ [(n± v) ∧ a]

|x− q|(1± n · v)3

]±
,

b±t (x) := ∓n± ∧ e±t (x)

(4.6)

for all (t,x) ∈ DR±
q , where we have used the abbreviations

q± := qt± , v± := v(pt±), a± := d
dtv(pt)|t=t± ,

n± := x−q±
|x−q±| , t± = t± |x− q±|, (4.7)

see, e.g. [41, 37, 26].

As remarked in the introduction, t± in (4.7) is only defined implicitly. The two solutions
t+ and t− to this quadratic equation can be interpreted geometrically as the intersection times
of the charge trajectory (q,p) with the forward and backward light-cone boundaries ∂J+(t,x)
and ∂J−(t,x), respectively, which, due to the strictly time-like nature of (q,p), are guaranteed
to exist; see, e.g. [8]. It is sometimes convenient to make the dependence of t± on t,x and the
charge trajectory (q,p) explicit by writing t± ≡ t±q (t,x). Further, note that |x − q±| = 0 if
and only if t = t±q (t,x) and x = qt = q±, see Lemma 5.1.1 (t±).

Lemma 4.2.1 (Properties of Liénard-Wiechert fields). Let n, k ∈ N0, α ∈ N3
0. Given a strictly

time-like charge trajectory (q,p) ∈ T 2+n(R) it holds:

(i) For all |α|+k ≤ n the map (t,x) 7→ Dα
x∂

k
t f
±
t [q,p](x) is in Cn−|α|−k(Dq,R6), and hence,

for all t ∈ R, f±t [q,p] ∈ F .

(ii) For all (t,x) ∈ Dq and |α| + k ≤ n, the value Dα
x∂

k
t f
±
t [q,p](x) is a function of x and(

d
dt

)l
qt|t=t± for l = 0, . . . , |α|+ k + 2 only.

(iii) f±[q,p] are Maxwell solutions for (q,p) on R, in particular, f±[q,p] ∈ F1(R).

Remark 4.2.1. It turns out that the advanced and retarded Liénard-Wiechert fields are the
unique solutions to the Maxwell equations when specifying any initial fields with sufficient
spatial decay at times t0 → +∞ and t0 → −∞, respectively. The uniqueness is due to the fact
that the Maxwell evolution forgets its initial values, provided they have sufficient spatial decay;
cf. [41, 8].

The property of the Liénard-Wiechert fields stated in Lemma 4.2.1 (ii) allows to extend
the definition f±t [q,p](x) to charge trajectories (q,p) ∈ T 2(I) where I is just an interval of
R. This generalization will be convenient and it will be used without further notice. However,
in this case, great care has to be taken as the resulting expression f±t [q,p](x) is only defined
for (t,x) such that t±q (t,x) ∈ I.

For instance, for (q,p) ∈ T 2+n((−∞, t(0)]), the retarded field f−t [q,p](x) is well-defined

for all (t,x) ∈ R4 \
◦
J(t(0), qt(0)) by claim (ii) and by (i) it follows (t,x) 7→ f−t [q,p](x) in
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Cn(R4 \
◦
J(t(0), qt(0)),R6).

Thanks to the linearity of the Maxwell equations, every Maxwell solution can be repre-
sented as a sum of any convex combination of the two special inhomogeneous Maxwell solutions
f±[q,p] in (4.6) and a homogeneous one fht . As it turns out in Lemma 4.2.2 (Homogeneous
Maxwell solutions), the homogeneous Maxwell solutions are generated from initial fields as
follows:

Definition 4.2.2 (Homogeneous Maxwell evolution). We define a map Wt : F × D → R6

such that for all fh0 ∈ Fhom, ρ ∈ D,x ∈ R3:

Wt(f
h
0 , ρx) :=


fh0(ρx) , t = 0(

∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0) dσ(y)fh0(ρx−|t|y) , t 6= 0

. (4.8)

Definition (4.8) gives rise to a linear evolution operator Wt on F as the following Lemma
shows.

Lemma 4.2.2 (Homogeneous Maxwell solutions).

(i) For all t ∈ R

Wt : Fhom → F ,fh0 7→Wtf
h
0 with (Wtf

h
0)(ρx) :=Wt(f

h
0 , ρx) (4.9)

for all ρ ∈ D,x ∈ R3 is a well-defined linear operator.

(ii) For all fh0 ∈ Fhom, t 7→Wtf
h
0 is in F∞(R).

(iii) Let fh0 ∈ Fhom and fh be a homogeneous Maxwell solution on Λ such that fht
∣∣
t=0

= fh0 .
Then,

fht = Wtf
h
0 , ∀ t ∈ R. (4.10)

Henceforth, we therefore write fht := Wtf
h
0 for all t ∈ R to denote the unique homoge-

neous Maxwell solution for initial value fh0 ∈ Fhom.

(iv) If for n ∈ N0, fh0 ∈ Fhom has a representative fh0 ∈ C1+n(R3,R6) it follows that at least
(t,x) 7→ fht (x) ∈ Cn(R4,R6).

It should be noted that in item (iv) the requirement fh0 ∈ C1+n(R3,R6), i.e., that we
require one more derivative, is only of technical nature as we simply apply formula (4.8) in
the proof, which already comprises one derivative.

Collecting these results one infers unique solutions to the inhomogeneous Maxwell solutions
for (q,p).

Lemma 4.2.3 (Inhomogeneous Maxwell solutions). Let n ∈ N0 and (q,p) ∈ T 2+n(R) be
strictly time-like and f0 ∈ Fqt=0

. Then:

(i) There is a Maxwell solution f for (q,p) on Λ such that f t=0 = f0 in the sense of
Definition 3.3.3 (Maxwell solutions).

(ii) Let g be a Maxwell solution for (q,p) on Λ with gt = f t for t = 0. Then gt = f t for all
t ∈ Λ.
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(iii) Let λ ∈ [0, 1]. Then fh0 = f0 − (λf−t=0[q,p] + (1 − λ)f+
t=0[q,p]) is in Fhom and the

unique Maxwell solution for (q,p) on Λ such that f t=0 = f0 is given by

f t = λf−t [q,p] + (1− λ)f+
t [q,p] +Wtf

h
0 . (4.11)

Thanks to these Lemmata we can provide a generalization of the Liénard-Wiechert formu-
las that reveals how the discussed irregular fronts are formed in the Maxwell fields on which
our first main result Theorem 4.1.1 (No-go) was based. Contrary to the result in Lemma
4.2.3 (Inhomogeneous Maxwell solutions) (iii) we parameterize the initial homogeneous field
fh0 by an auxiliary trajectory (q̃, p̃), a notation that is motivated by the fact that in the full
Maxwell-Lorentz system the real trajectory (q,p) is unknown at initial time t = 0.

Theorem 4.2.1 (Explicit Maxwell solutions). Let n ∈ N0, 0 ≤ λ ≤ 1, f0 ∈ Fqt=0
, and

(q,p), (q̃, p̃) strictly time-like charge trajectories in T 2+n(R) such that q0 := qt=0 and q̃0 :=
q̃t=0 coincide, i.e., q0 = q̃0. Then the unique Maxwell solution f on R for (q,p) with f t=0 =
f0 takes the form

f t =1B|t|(q0)f
−σ(t)
t [q,p] (4.12)

+ 1B|t|(q0)λ
(
f−t [q̃, p̃]− f−σ(t)

t [q̃, p̃]
)

(4.13)

+ 1B|t|(q0)(1− λ)
(
f+
t [q̃, p̃]− f−σ(t)

t [q̃, p̃]
)

(4.14)

+ 1Bc|t|(q0)

(
λf−t [q̃, p̃] + (1− λ)f+

t [q̃, p̃]
)

(4.15)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (4.16)

+ fht (4.17)

for

fht = Wtf
h
0 and fh0 = f0 − (λf−0 [q̃, p̃] + (1− λ)f+

0 [q̃, p̃]) ∈ Fhom (4.18)

and all t ∈ R, where we have used the abbreviations

r±t,(q0,p0)(x) :=
δ(|t| − |x− q0|)

(1± n0 · v0)|x− q0|

(
n0 ± v0

−n0 ∧ v0

)
, n0 :=

x− q0

|x− q0|
, v0 := v(p0),

(4.19)

σ(t) := t/|t|, 1M is the characteristic function taking value 1 on the set M ⊆ R3 and value 0
on the compliment M c = R3 \M , and p0 := pt|t=0, p̃0 := p̃t|t=0.

Remark 4.2.2. (i) It should be noted that (4.18) is a very large class of initial fields. As
(1.2)-(1.3) are linear partial differential equations, any solution can be decomposed in
a convex combination of special inhomogeneous solutions and the homogeneous solution
and that is why (4.18) is a general representation of any solution. Note, that this class
is parameterized by (q̃, p̃) ∈ T 2+n(R) and fh0 ∈ Fhom, which we refer to as history of a
charge and initial inhomogeneous Maxwell field, respectively. One may think of (q̃, p̃) as
denoting the history of a charge trajectory that generated the initial field f0 and (q,p) as
the actual charge trajectory. For example, for λ = 1, the history (q̃t, p̃t)t≤0, by Lemma
4.2.1 (Properties of Liénard-Wiechert fields) (iii), defines the initial field f0 completely,
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so that for any actual future trajectory (qt,pt)t≥0 of a charge the corresponding field
is given by f t for (4.12)-(4.17). Mathematically, (q̃, p̃) and fh0 is just a convenient
parameterization of the here considered class of initial fields.

(ii) Theorem 4.2.1 (Explicit Maxwell solutions) will be applied for any initial time t(0) ≥ 0 and
strictly time-like charge trajectories (q,p) ∈ T 2+n([t(0), t(1)]), (q̃, p̃) ∈ T 2+n((−∞, t(0)]).

In this case, the expressions f±t [q,p](x),f±t [q̃, p̃](x) are only defined for (t,x) such that
t±q (t,x) ∈ [t(0), t(1)], t±q̃ (t,x) ∈ (−∞, t(0)]. In Section 5.6 this generalization will be used
without further notice.

(iii) Note that the requirement q0 = q̃0 on (q,p) and (q̃, p̃) together with f0 ∈ Fq0 implies
fh0 ∈ Fhom by Lemma 4.2.3 (Inhomogeneous Maxwell Solutions). If we assumed an
homogeneous initial free field fh0 ∈ Fhom to be given, f0 ∈ Fq0 is equivalent to q̃0 = q0,
because

f0 = λf−0 [q̃, p̃] + (1− λ)f+
0 [q̃, p̃] + fh0 (4.20)

and the requirement

∇ · f0(ρx) = λ∇ · f−0 [q̃, p̃](ρx) + (1− λ)∇ · f+
0 [q̃, p̃](ρx)

=

(
4πρ(x− q̃0)

0

)
!

=

(
4πρ(x− q0)

0

)
∀x ∈ R3, ρ ∈ D,

is equivalent to q̃0 = q0.

Moreover, note that the Maxwell solution f given by (4.12)-(4.17) fulfills Maxwell con-
straints for all times t ∈ R, which is shown in Lemma A.2.1 (Maxwell constraints).

The next lemma is a statement about the regularity of the Maxwell field as given in equa-
tion (4.12)-(4.17). The formula directly suggests that the regularity of the Liénard-Wiechert
fields f±t [q,p],f±t [q̃, p̃] is transferred to the whole expression, however, the light-cone bound-
ary, where the distributions in (4.16) and the boundaries of the supports of (4.12)-(4.15) are
located, have to be investigated in more detail.

As we have presented in in Section 2.1, condition (C1), (4.19) vanishes if and only if
q̃0 = q0 and p̃0 = p0. For continuity or even higher regularity one needs further additional
conditions on (q̃, p̃) and (q,p) as we have argued in (C2) in Section 2.1. Hence, proposition
(ii) of the next lemma is the mathematical formulation of (C1) and (iii) corresponds to (C2).

Lemma 4.2.4 (Regularity of f t). Let n ∈ N0, 0 ≤ λ ≤ 1, f0 ∈ Fqt=0
, and (q,p), (q̃, p̃)

strictly time-like charge trajectories in T 2+n(R) such that q0 := qt=0 and q̃0 := q̃t=0 coincide.
Define p0 := pt=0 and p̃0 := p̃t=0 and let

fh0 = f0 − (λf−0 [q̃, p̃] + (1− λ)f+
0 [q̃, p̃]) ∈ C1+n(R3,R6). (4.21)

Then, for the Maxwell solution f given by (4.12)-(4.17) it holds

(i) f ∈ Cn((Dq ∩Dq̃) \ ∂J(0, q0),R6).

For the special case λ = 1 and the restriction on t ≥ 0 we get f ∈ Cn(D
[0,∞)
q \

∂J+(0, q0),R6).
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(ii) f can be evaluated point-wise on Dq ∩Dq̃ if and only if q̃0 = q0 and p̃0 = p0.

(iii) And for all 0 ≤ m ≤ n one has also f ∈ Cm(Dq ∩Dq̃,R6) if and only if

lim
t→0

dl

dtl
qt = lim

t→0

dl

dtl
q̃t, ∀ 0 ≤ l ≤ 2 +m. (4.22)

For the special case λ = 1 and the restriction on t ≥ 0 we have f ∈ Cm(D
[0,∞)
q ,R6) if

and only if

lim
t↘0

dl

dtl
qt = lim

t↗0

dl

dtl
q̃t, ∀ 0 ≤ l ≤ 2 +m (4.23)

holds true.

Remark 4.2.3. (i) Actually, with little more effort, one could even show f ∈ Cm(Dq,R6)
as inside of the light-cone J(0, q0) formula (4.12)-(4.17) comprises Liénard-Wiechert
fields of (q,p) and (q̃, p̃) which are singular at the respective charge positions the singu-
larities at (q̃, p̃) in (4.13) and (4.14) cancel each other. Physically, this is to be expected,
since the auxiliary trajectory serves only to parameterize the initial fields. However, as
we will not need regularity of (4.12)-(4.17) inside the light-cone, in this work the above
result suffices.

(ii) Note that Lemma 4.2.4 (Regularity of f t) (iii) indicates already the mechanism behind
Theorem 4.1.1 (No-go)– namely, generic initial fields generate singular or discontinuous
fronts located along the light-cone of the initial charge positions. If other charges hit
those fronts their dynamics cannot be uniquely determined beyond the hitting.

4.3 Existence of Maxwell-Lorentz solutions

Even though Theorem 4.1.1 (No-go) reveals that for generic initial values the initial value
problem of Maxwell’s and Lorentz’s equations is ill-posed, we can nevertheless arrive at an
existence and uniqueness result of a large class of Maxwell-Lorentz solutions from initial time
to the time of the first collision, which may be infinite. This is the content of our third main
result Theorem 4.3.1 (Existence of Maxwell-Lorentz solutions).

As we have seen in Theorem 4.1.1 (No-go) the standard initial value formulation fails to
provide solutions for generic initial values (qi,0,pi,0,f i,0)i∈N . This is due to the existence of
singular and discontinuous fronts in the Maxwell fields for generic initial fields which was con-
tent of Theorem 4.2.1 (Explicit Maxwell solutions). Thus, finding solutions is now a question
of eliminating these fronts.

In Lemma 4.2.4 (Regularity of f t), (iii), a condition on how to obtain regular fields has been
given, cf. (4.23). In order to encode this condition into initial values (qi,0,pi,0,f i,0)i∈N it is con-
venient to parameterize the initial fields (f i,0)i∈N by means of f i,0 := f−0 [q̃i, p̃i]+f

h
i,0 for suit-

able trajectories (q̃i, p̃i)i∈N with q̃i,0 = qi,0 and initial homogeneous fields fhi,0 ∈ Fhom, i ∈ N ,
cf. (4.18) for λ = 1. In this case, (4.23) reduces to the special case where for all i ∈ N , (q̃i, p̃i)
is defined on (−∞, 0] and (qi,pi), should it exist, for non-negative times. In this sense, we
speak of (q̃i, p̃i)i∈N as a given history of charges and (qi,pi)i∈N as charge trajectories of a
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potential solution of the Maxwell-Lorentz system. The distinction between [0,∞) as future
and (−∞, 0) as past is just a convention and has no technical implication.

However, applying condition (4.23) to the initial configuration is still problematic since this
condition is formulated with the help of the unknown charge trajectory (qi,pi) of a potential
solution for t > 0. Nevertheless, in terms of the parameterization f i,0 = f−0 [q̃i, p̃i] + fhi,0 we
are able to formulate an equivalent condition for (4.23) by making use of the Lorentz force
law (1.4). Thereby, the condition on (q̃i, p̃i) and the solution (qi,pi) at initial time t(0) = 0
is translated to a condition on the past trajectories (q̃j , p̃j) of all other charges j 6= i only. In
conclusion, we have a possibility to define admissible initial values through conditions on the
history (q̃i, p̃i)i∈N to, as we shall show, ensure the absence of singular and discontinuous fronts.

In the following, we make these conditions and all other restrictions precise and visualize
the difference between (4.23) and the new condition, introduced in Definition 4.3.4 (H3) below,
in Figure 4.3. We restrict ourselves to initial values which are specified by special choices of
(q̃i, p̃i)i∈N and (fhi,0)i∈N . These restrictions are formulated in the following definitions for
arbitrary initial times t(0) ≥ 0, whereas for this section one may think of t(0) = 0.

Moreover, let d > 0 and n ∈ N – not to be confused with n ∈ N0 – be fixed numbers in
the rest of this section and the corresponding proofs in Section 5.6. The parameter d “detects
collisions” by stopping the dynamics when a distance between two charges attains d and n will
control the regularity of the corresponding solutions. As d may be chosen arbitrarily small we
talk about collisions whenever charges attain this minimum fixed distance.

To define the initial fields, in terms of the parameterization discussed in Section 4.2, we
make use of the following type of charge histories:

Definition 4.3.1 (History for t(0)). For the initial time t(0) ≥ 0, a tuple (q̃i, p̃i)i∈N of charge
trajectories in T 1((−∞, t(0)]) is called a history for t(0). For single charges i, (q̃i, p̃i) is called
a charge history for t(0). Moreover, we define the following properties:

(H0) (q̃i, p̃i) ∈ T 2+n((−∞, t(0)]) for all i ∈ N .

(H1) (q̃i, p̃i) : (−∞, t(0)]→ R6 is strictly time-like for all i ∈ N .

(H2) |q̃i,t(0) − q̃j,t(0) | > d for all i, j ∈ N with i 6= j.

The fields we rely on in Theorem 4.3.1 (Existence of Maxwell-Lorentz solutions) below and
the corresponding section of proof, Section 5.6, are given in the following definitions.

Definition 4.3.2 (Initial fields). Let (q̃i, p̃i)i∈N denote a history for time t = 0. We only
consider initial fields (f i,0)i∈N , parameterized and restricted by

f i,0 = f−0 [q̃i, p̃i] + fhi,0, for fhi,0 ∈ Fhom ∩ C1+n(R3,R6), i ∈ N . (4.24)

Moreover, we set
fhi,t := Wtf

h
i,0, ∀ t ∈ R, i ∈ N . (4.25)

Note that fhi,t has a representative

(t,x) 7→ fhi,t(x) ∈ Cn(R4,R6), ∀i ∈ N , (4.26)
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cf. Lemma 4.2.2 (Homogeneous Maxwell solutions), (iv).

With the above definition of the considered initial fields, we can turn over to the next
definition of considered Maxwell fields. It is important to note that this definition depends on
a initial time t(0) and a history for t(0), which will both be changing throughout Section 5.6.

Definition 4.3.3 (Maxwell field for t(0)). Let (q̃i, p̃i)i∈N denote a history for t(0) ≥ 0. For
all i ∈ N , we define

f i,t(x) := f−t [q̃i, p̃i](x) + fhi,t(x), ∀ (t,x) ∈ R4 \
◦
J+(t(0), q̃i,t(0)), i ∈ N , (4.27)

where fhi,t is given by (4.26).

Remark 4.3.1. (i) By Theorem 4.2.1 (Explicit Maxwell solutions), regarding also Remark
4.2.2, (ii), the field f i is the unique Maxwell solution for charge i with the initial field

f i,0 in (4.24) restricted to (t,x) ∈ R4 \
◦
J+(t(0), q̃i,t(0)).

(ii) By virtue of (4.26) its regularity depends on the regularity of the history (q̃i, p̃i) only
and is given by Lemma 4.2.1 (Properties of Liénard-Wiechert fields), (i).

(iii) Given the parameterization (4.24) of the initial fields f i,0, the Maxwell-Lorentz system of
equations can be considered as the system of Lorentz equations (2.24) for λ = 1 in which
the formula (4.27) is plugged in for the fields in the Lorentz force. This point of view
naturally results in a delay system which we exploit in Section 5.6 of the proof in order
to construct Lorentz solutions, first, and by means of these we derive Maxwell-Lorentz
solutions.

The key criterion for the histories to guarantee the absence of singular fronts is given by
the next definition:

Definition 4.3.4 (H3). We say that a history (q̃i, p̃i)i∈N for t(0) fulfilling (H0)-(H1) meets
condition (H3) if and only if for all i ∈ N and all k ∈ {1, . . . , 1 +n} the charge histories obey

lim
t↗t(0)

dk

dtk

(
q̃i,t
p̃i,t

)
= lim

t↗t(0)

dk−1

dtk−1

(
v(p̃i,t)∑

j 6=iEj,t(q̃i,t) + v(p̃i,t) ∧Bj,t(q̃i,t)

)
, (H3)

where (f i,t = (Ei,t,Bi,t))i∈N is given by (4.27).

We can finally turn to our third main result.

Theorem 4.3.1 (Existence of Maxwell-Lorentz solutions). Let (q̃i, p̃i)i∈N be a history for
t(0) = 0 fulfilling (H0)-(H2) and (f i,0)i∈N be initial fields of the form (4.24). Then, the
following propositions hold true:

(i) (Local existence) There is a time Tmax > d
2 such that there is a Maxwell-Lorentz so-

lution (qi,pi,f i)i∈N on [0, Tmax] for initial value (q̃i,t=0, p̃i,t=0,f i,0)i∈N in the sense
of Definition 3.3.4 (Maxwell-Lorentz solutions). Furthermore, this local solution fulfills
(qi,pi) ∈ T 2+n([0, Tmax]) and f i ∈ Cn(D

[0,Tmax]
qi \ ∂J+(0, q̃i,0),R6).
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(ii) (Existence until collision) In addition, if the history (q̃i, p̃i)i∈N fulfills also (H3), then
for some T ∈ R+ there are charge trajectories (qi,pi) in T 2([0, T ]), i ∈ N , such that for

Tmax := sup{t ∈ [0, T ] | ∀ i, j ∈ N , i 6= j,∀s ∈ [0, t] : |qi,s − qj,s| > d} (4.28)

there are fields (f i)i∈N ∈ F1([0, Tmax]) with the property that (qi,pi,f i)i∈N is a Maxwell-
Lorentz solution on [0, Tmax] for initial value (q̃i,0, p̃i,0,f i,0)i∈N in the sense of Definition
3.3.4 (Maxwell-Lorentz solutions). Furthermore, the resulting solution (qi,pi,f i)i∈N

fulfills (qi,pi) ∈ T 2+n([0, Tmax]) and f i ∈ Cn(D
[0,Tmax]
qi ,R6) for i ∈ N .

(iii) (Uniqueness) Let Λ be an interval. Should there be another Maxwell-Lorentz solution
(q̂i, p̂i, f̂ i)i∈N on Λ, then

(q̂i,t, p̂i,t, f̂ i,t)|t=0 = (q̃i,t=0, p̃i,t=0,f i,0) (4.29)

if and only if

(q̂i,t, p̂i,t, f̂ i,t) = (qi,t,pi,t,f i,t) ∀ t ∈ Λ ∩ [0, Tmax]. (4.30)

(iv) The solution (qi,pi,f i)i∈N fulfills the Maxwell constraints (3.3) for all t ∈ [0, Tmax], i.e.,
for all t ∈ [0, Tmax], i ∈ N we have f i,t ∈ Fqi,t .

(v) ((R)⇔(H3)) The Maxwell-Lorentz solution (qi,pi,f i)i∈N on [0, Tmax] and the respective
history (q̃i, p̃i)i∈N fulfills the condition (R) given by

lim
t↘0

dk

dtk

(
qi,t
pi,t

)
= lim

t↗0

dk

dtk

(
q̃i,t
p̃i,t

)
, ∀ k = 0, . . . , 1 + n, i ∈ N (R)

if and only if the history (q̃i, p̃i)i∈N fulfills (H3).

Condition (R) corresponds to (4.23) from Lemma 4.2.4 (Regularity of f t). One should

note that we use the notation
(
qi,t
pi,t

)
in (R) whereas in (4.23) we write qt, which implies the

difference between 1+n in (R) and 2+m in (4.23). Moreover, in the setting of Theorem 4.3.1
(Existence of Maxwell-Lorentz solutions), for all i ∈ N (q̃i, p̃i) ∈ T 2+n((−∞, 0]) for n ∈ N is
solely the history of charge i and (q̃i, p̃i) ∈ T 2+n([0, t(1)]) denotes the local solution of charge
i, and thus, the limit on the left hand side of (R) exists only from above whereas the right
hand side limit exists only from below.

Remark 4.3.2. (i) The fact that we need trajectories to be 1 +n times continuously differ-
entiable for n ∈ N throughout the past and at t = 0 is only a technical assumption needed
in our strategy of proof as we exploit the additional derivative to control the Lipschitz
continuity.

(ii) Statement (i) shows that there are general local solutions at least up to time t(1) ≥
mini,j∈N |qi,t=0 − qj,t=0| > d/2, however, as Theorem 4.1.1 (No-go) states, most cannot
be continued beyond t(1). In fact, the time t(1) is exactly the first time, where a solution
trajectory impinges the light-cone boundary ∂J(0, qj,0) of another charge j. If, however,
(H3) is met the solution trajectories connect regular to the charge histories, and then
statement (ii) provides existence and uniqueness of solutions for all times such that the
charges maintain a minimum distance d.
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Figure 4.3: The figure illustrates how the condition (R) defined in Theorem 4.3.1 (Existence
of Maxwell-Lorentz solutions) on the future and past trajectories can be replaced by the
condition (H3) from Definition 4.3.4 (H3) on the past trajectories only by making use of the
Lorentz force law. The arrows denote the necessary limits in expressions (R) and (H3).

(iii) The set of charge histories fulfilling (H0)-(H3) is not empty, which we illustrate by the
following construction:

For each i ∈ N choose (t(0), q̃i,t(0)), such that (H2) holds. The minimal distance >
d guarantees that later, when elaborating on the solution theory of the equations, the
minimal time t(1) up to which one can propagate solution trajectories from the given
admissible history fulfills t(1) > d/2. Secondly, we need to construct histories ending in
the points (t(0), q̃i,t(0)) such that (H3) holds. For each i ∈ N set

t
(−1)
i := max{t < t(0)|∃ j 6= i : ∂B|t(0)−t|(q̃i,t(0)) ∩ ∂B|t(0)−t|(q̃j,t(0)) 6= ∅}, (4.31)

the first time in history, where the light-cone boundary of the initial position of charge
i crosses one of the other light-cones, cf. the dashed lines in the upper image in Figure
4.4.

Afterwards, chose a strictly time-like charge history (q̃i, p̃i) ∈ T 2+n((−∞, t(−1)
i ]) lying in

the inner of J−(t(0), q̃i,t(0)), i.e., (H0) and (H1) are met on (−∞, t(−1)
i ]. By the choice of

the times t(−1)
i we made sure that for each i ∈ N the trajectory piece (q̃i, p̃i) eventually

crosses ∂J−(t(0), q̃j,t(0)) for each j 6= i. The blue dots in the upper image of Figure 4.4
illustrate these intersection points.

Therefore, each parameter needed to compute the right hand side of (H3) is known,
computable and allows us to set the left hand side of (H3), i.e. the derivatives up to degree
1 +n at the initial positions. The lower image in Figure 4.4 visualizes the dependence of
the derivatives at position (t(0), qi,t(0)) on the histories of all charges j 6= i at the positions
where the backward light-cone ∂J−(t(0), qi,t(0)) crosses these histories.

Finally, we can extend (q̃i, p̃i) : (−∞, t(−1)
i ]→ R6 to a trajectory on (−∞, t(0)] which is

2 + n times continuously differentiable, strictly time like, and matches the derivatives at
time t(0) computed in the previous step. Doing so for each i finishes the construction.
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Figure 4.4: Illustration of the suggested construction from Remark 4.3.2, (iii), of an admissible
history for 3 charges.
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(iv) It should be noted that, by construction in (iii), the set of valid charge histories is a very
large set as one may freely choose strictly time-like trajectories in T 2+n((−∞, t(−1)

i ] for
each i. Therefore, the global existence and uniqueness result holds for a respectively large
set of initial values.

(v) Moreover, we remark that in [10, 14, 24] it was shown that collisions never occur for two
repulsive charges which are initially prepared with initial values that constrain the charge
motion on a straight-line (which is preserved under the Maxwell-Lorentz dynamics) for
vanishing initial homogeneous fields fh0 = 0. By definition, the solutions in [6, 14, 24] are
contained in the class of solutions considered in Theorem 4.3.1 (Existence of Maxwell-
Lorentz solutions), and therefore, the set of global solutions, i.e., fulfilling Tmax =∞, is
not empty.



Chapter 5

Proofs

5.1 Properties of the Liénard-Wiechert fields

In order to prove Lemma 4.2.1 (Properties of Liénard-Wiechert fields) we need the following
auxiliary result:

Lemma 5.1.1 (t±). For all strictly time-like charge trajectories (q,p) ∈ T m(R), m ∈ N,
solutions t± to equation (4.7) in Definition 4.2.1 (Liénard-Wiechert fields), recall the notation
t± = t±q (t,x), fulfill the following propositions for all t ∈ R, x ∈ R3:

(i) Both t+q (t,x) and t−q (t,x) exist, and t±q (t,x) = t if and only if x = qt = qt± .

(ii) For all α ∈ N3
0, k ∈ N0 such that k + |α| ≤ m the map (t,x) 7→ Dα

x∂
k
t t
±
q (t,x) is in

Cm−|α|−k(Dq,R) and Dα
x∂

k
t t
±
q (t,x) is a function of x, d

l

dsl
qs
∣∣
s=t±q (t,x)

, l = 0, . . . , k + |α|
only.

Proof. (i) Letm ∈ N and (q,p) ∈ T m(R). By assumption, (q,p) ∈ T 1(R) and strictly time-
like, see Definition 3.3.1 (Charge and field trajectories). Thus, by geometrical reasoning
and the intermediate value theorem, there exists exactly one intersection point of (q,p)
with each of the light-cone boundaries ∂J+(t,x) and ∂J−(t,x). By the definition in
(4.7), the times of intersection correspond to t+q (t,x) and t−q (t,x). Hence, t±q is a well-
defined function t± : R× R3 → R, (t,x) 7→ t±q (t,x).

If t±q (t,x) = t both light-cone boundaries ∂J+(t,x) and ∂J−(t,x) intersect the trajectory
at the same time t, and thus, at space point x = qt = qt± . If on the other hand
x = qt = qt± , it follows t±q (t,x) = t.

(ii) By induction we show the following statement:

For all α ∈ N3
0, k ∈ N0 such that |α| + k ∈ {1, . . . ,m} there exists a function g±α,k ∈

Cm−|α|−k(Dq,R) such that

(t,x) 7→ Dα
x∂

k
t t
±
q (t,x) = g±α,k(s,x)|s=t±q (t,x) ∈ C

0(Dq,R). (5.1)

Moreover, g±α,k(s,x) is a function of x, d
l

dsl
qs, l = 0, . . . , |α|+ k.
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Base case: Since (q,p) ∈ T 1(R), the definition in (4.7) implies

∂tt
±
q (t,x) =

1

1± n · v
∣∣± and ∂xit

±
q (t,x) =

±ni
1± n · v

∣∣±, i = 1, . . . , 3, (5.2)

which are well-defined since, by assumption, (q,p) is strictly time-like, there is a vmax
such that |n± ·v±| ≤ vmax < 1. Therefore, t± is differentiable in each component of (t,x),
hence, continuous and in conclusion for m = 1, (t,x) 7→ Dα

x∂
k
t t
±
q (t,x) ∈ C0(Dq,R).

Moreover, we set

g±α,k : Dq → R, (s,x) 7→

{
1

1±ns·vs , k = 1
±ns,i

1±ns·vs , αi = 1
. (5.3)

Then, g±α,k is a composition of the maps (s,x) 7→ ns ∈ Cm(Dq,R3) and (s,x) 7→ vs ∈
Cm−1(R4,R3), and thus, g±α,k ∈ C

m−1(Dq,R) and depends on x, qs,vs only.

Inductive step: Assume the hypothesis holds for |α|+ k < m. We show, that it holds
for α′, k′ with |α′| + k′ = |α| + k + 1. Thereby we distinguish two cases: Either an
additional time-derivative ∂t or an additional spatial derivative ∂xi for i ∈ {1, 2, 3} is
applied. In the first case we obtain

Dα′
x ∂

k′
t t
±
q (t,x) = ∂tD

α
x∂

k
t t
±
q (t,x)

(IH)
= ∂tg

±
α,k(s,x)|s=t±q (t,x)

=
[
∂sg
±
α,k(s,x)∂tt

±
q (t,x)

]
s=t±q (t,x)

(IH)
=
[
∂sg
±
α,k(s,x)g±0,1(s,x)

]
s=t±q (t,x)

,

and in the second case

Dα′
x ∂

k′
t t
±
q (t,x) = ∂xiD

α
x∂

k
t t
±
q (t,x)

(IH)
= ∂xig

±
α,k(s,x)|s=t±q (t,x)

=
[
∂sg
±
α,k(s,x)∂xit

±
q (t,x) + ∂xig

±
α,k(s,x)

]
s=t±q (t,x)

(IH)
=
[
∂sg
±
α,k(s,x)g±α′−α,0(s,x) + ∂xig

±
α,k(s,x)

]
s=t±q (t,x)

.

Thus, we define

(s,x) 7→ g±α′,k′(s,x) :=∂sg
±
α,k(s,x)g±α′−α,k′−k(s,x)

+ ∂
α′1−α1
x1 ∂

α′2−α2
x2 ∂

α′3−α3
x3 g±α,k(s,x).

Applying the induction hypothesis, we obtain

(s,x) 7→ ∂sg
±
α,k(s,x), ∂

α′1−α1
x1 ∂

α′2−α2
x2 ∂

α′3−α3
x3 g±α,k(s,x) ∈ Cm−|α|−k−1(Dq,R), (5.4)

and, by the base case,

(s,x) 7→ g±α′−α,k′−k(s,x) ∈ Cm−1(Dq,R). (5.5)
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This implies g±α,k ∈ C
m−|α|−k−1(Dq,R). Moreover,

(t,x) 7→ Dα′
x ∂

k′
t t
±
q (t,x) = g±α′,k′(s,x)

∣∣
s=t±q (t,x)

∈ C0(Dq,R) (5.6)

because (t,x) 7→ t±q (t,x) is continuous on R× R3.

Furthermore, by the induction hypothesis, g±α,k is a function of x, d
l

dsl
qs, l = 0, . . . , |α|+

k only, i.e. ∂sg
±
α,k(s,x) and ∂

α′1−α1
x1 ∂

α′2−α2
x2 ∂

α′3−α3
x3 g±α,k(s,x) depends on x, d

l

dsl
qs, l =

0, . . . , |α| + k + 1 only. By the base case, g±α′−α,k′−k(s,x) is a function of x, qs,vs,

and therefore, g±α′,k′ depends on x,
dl

dsl
qs, l = 0, . . . , |α|+k+1 only. Hence, the induction

hypothesis holds which concludes the proof.

With the help of Lemma 5.1.1 (t±) we can now move on to the proof of Lemma 4.2.1
(Properties of Liénard-Wiechert fields). Note that in in this proof Lemma 5.1.1 (t±) is needed
in the case m = 2 + n with n ∈ N0.

Proof of Lemma 4.2.1. (Properties of Liénard-Wiechert fields)

Let n ∈ N0 and assume (q,p) ∈ T 2+n(R) is strictly time-like. We start by proving item
(i)+(ii) together:

1. We write the Liénard-Wiechert fields e±[q,p] as composition of an auxiliary, explicit
field function ê±[q,p] and the advanced/retarded time function t±, i.e.,

(t,x) 7→ e±t [q,p](x) = (ê±[q,p] ◦ τ±)(t,x), (5.7)

for
τ± : Dq → R4, (t,x) 7→ (t±q (t,x),x) (5.8)

and

ê±[q,p] : Dq → R3,

(s,x) 7→ (ns ± vs)(1− v2
s)

|x− qs|2(1± ns · vs)3
+
ns ∧ [(ns ± vs) ∧ as]
|x− qs|(1± ns · vs)3

.
(5.9)

2. For this proof it is convenient to regard the expressions qs,vs,as and ns as functions of
(s,x) although they depend on s only. Since by assumption we have (q,p) ∈ T 2+n(R)
it follows:

• The expressions qs,vs,as are well-defined on R4 with (s,x) 7→ qs in C2+n(R4,R3),
(s,x) 7→ vs in C1+n(R4,R3), (s,x) 7→ as in Cn(R4,R3).

• The expression ns = x−qs
|x−qs|

is well defined onDq with (s,x) 7→ ns in C2+n(Dq,R3).

Moreover, the denominators are finite:

• sups∈R |1 ± ns · vs| > 0, because (q,p) is assumed to by strictly time-like, cf.
Definition 3.3.1 (Charge and field trajectories), and hence, there is a vmax < 1 such
that |ns · vs| ≤ |vs| ≤ vmax for all s ∈ R.



46 5. Proofs

• For all (s,x) ∈ Dq, |x− qs| > 0.

Therefore, the auxiliary field function ê±[q,p](s,x) is well-defined on Dq.

3. Collecting these facts about ê±[q,p] defined in (5.9), we know that it is a composition
of functions in Cn(Dq,R6), which by chain rule ensures that for all α ∈ N3

0 and all k ≤ n
it holds (s,x) 7→ Dα

x∂
k
s ê
±[q,p](s,x) ∈ Cn−k(Dq,R3) and Dα

x∂
k
s ê
±[q,p](s,x) depends

on x and
(
d
ds

)l
qs for l = 0, . . . , k + 2 only.

4. By the definition in (5.7), item 3., and again by chain rule, for all |α| + k ≤ n, it
holds (t,x) 7→ Dα

x∂
k
t e
±
t [q,p](x) ∈ Cn−|α|−k(Dq,R3). This is due to Lemma 5.1.1 (t±)

according to which

• (t,x) ∈ Dq implies t±q (t,x) := t± |x− qt± | 6= t, and thus, |x− qt± | > 0.

• (t,x) 7→ Dα
x∂

k
t t
±
q (t,x) ∈ C2+n−|α|−k(Dq,R) for all |α|+ k ≤ 2 + n.

Moreover, Dα
x∂

k
t e
±
t [q,p](x) depends on x, d

l

dtl
qt|t=t± , l = 0, . . . , |α|+k+2 only, because:

• By Lemma 5.1.1 (t±), Dα
x∂

k
t t
±(t,x) depends on t,x, d

l

dtl
qt, l = 0, . . . , |α|+ k only.

• By item 3., Dα
x∂

k
s ê
±[q,p](s,x) depends on x and

(
d
dt

)l
qs for l = 0, . . . , k+ 2 only.

5. The corresponding assertion for the magnetic field can be derived from the Liénard-
Wiechert formula (4.6)

b±t [q,p](x) = ∓n± ∧ e±t (x), (5.10)

which together with the product rule implies that for all |α|+ k ≤ n

Dα
x∂

k
t b
±
t [q,p](x) =

∑
α1+α2=α,
k1+k2=k

∓Dα1
x ∂

k1
t σ(t)n± ∧Dα2

x ∂
k2
t e
±
t [q,p](x). (5.11)

The first factor of the cross product can be controlled directly and is in the space
C2+n−|α1|−k1(Dq,R3) ⊂ C2+n−|α|−k(Dq,R3), depending on the values x and dl

dtl
qt|t=t±

for l = 0, . . . , |α1| + k1 only. The second factor is in Cn−|α2|−k2(Dq,R3), and thus, in
Cn−|α|−k(Dq,R3) and depends on x, d

l

dtl
qt|t=t± , l = 0, . . . , |α2|+k2 + 2, as shown in item

4.

Thus, for all |α| + k ≤ n the map (t,x) 7→ Dα
x∂

k
t f
±
t [q,p](t,x) is in Cn−|α|−k(Dq,R6)

and for all (t,x) ∈ Dq the value Dα
x∂

k
t f
±
t [q,p](x) is a function of x and

(
d
dt

)l
qt|t=t±

for l = 0, . . . , |α|+ k + 2 only.

6. It remains to show, that for all t ∈ R it holds f±t [q,p] ∈ F . For this it suffices to show
integrability of f±t [q,p] on compact domains. By assumption (q,p) is strictly time-like,
and thus, sup(t,x)∈R4 |1± n± · v±| ≥ 1− vmax > 0. Moreover, we can estimate |x− q±|
for all (t,x) ∈ R4 by

|x−q±| ≥ |x−qt|+ |qt−q±| ≥ |x−qt|−vmax|t±− t| = |x−qt|−vmax|x−q±|, (5.12)

using Definition (4.7) in the last step. This implies

1

|x− q±|
≤ 1− vmax

|x− qt|
. (5.13)
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Moreover, for all x ∈ B1(qt) \ {qt} there exists a C <∞ such that the electric Liénard-
Wiechert field can be estimated by

∣∣e±t [q,p](x)
∣∣ ≤ C

|x− qt|2
. (5.14)

This follows from the subsequent estimation of (4.6):

∣∣e±t [q,p](x)
∣∣ =

∣∣∣∣ (n± v)(1− v2)

|x− q|2(1± n · v)3
+
n ∧ [(n± v) ∧ a]

|x− q|(1± n · v)3

∣∣∣∣±
≤
[

1 + |v|+ |x− q||n± v||a|
|x− q|2(1± n · v)3

]±
≤ 1 + vmax + 2amax

|x− q±|2(1− vmax)3
,

where in the last step we used that x ∈ B1(qt) \ {qt} and since B1(qt) is compact,
also the range of the continuous map t±q (t, ·) of B1(qt) is. Hence, there is a bound
on acceleration a± called amax. Eventually, with estimate (5.13) the electric Liénard-
Wiechert field estimate (5.14) can be found.

From the continuity shown in item 5., we get that for all t ∈ R, f±t [q,p] ∈ C(Sqt ,R
6).

Thus, there is a upper bound for each x arbitrarily close to the singularity qt that is
locally integrable in three dimensions. By dominated convergence, we can therefore
conclude that e±t [q,p] is locally integrable on R3.

By (5.10) the same upper bound can be found for the magnetic field
∣∣b±t [q,p](x)

∣∣.
Therefore, f±t [q,p] ∈ L1

loc(R3,R6) and thus f±t [q,p] ∈ F for all t ∈ R.

Having proved item (i) and (ii), we turn over to the proof of item (iii):

By assumption we have n ∈ N0 and (q,p) ∈ T 2+n(R). In order to show that f±[q,p]
is a Maxwell solution, we need to verify that for all ρ ∈ D, t ∈ R, x ∈ R3 the expression
f±t [q,p](ρx) = f±t [q,p](ρ(x − ·)) solves (3.3) and (3.7). This is guaranteed by Theorem
3.10. and Theorem 3.12. in [8]. Namely, in Theorem 3.10. it has been shown that for all
(q,p) ∈ T 2(R)

f±t [q,p](ρx) = 4π

∫ t

±∞
ds

(
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)
vsρ(· − qs)

)
(x), (5.15)

where we have used the notation Kt from Definition A.1.1 (Propagator of the d’Alembert
operator) for the propagator of the wave equation, and according to Theorem 3.12. in [8] the
right hand side of equation (5.15) is a solution to the Maxwell equations including Maxwell
constraints for all t ∈ R. Moreover, Theorem 3.10. in [8] states that x 7→ f±t [q,p](ρx) is in
C∞(R3,R6) for all t ∈ R.

To verify, that (5.15) is indeed in F1(R) and thus a Maxwell solution in terms of Definition
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3.3.1 (Charge and field trajectories) we compute

t 7→ ∂t4π

∫ t

±∞
ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)
vsρ(· − qs)

)
(x)

= ∂t4π

∫ t

±∞
ds

(
−∇ −∂t
0 ∇∧

)
(t− s)−

∫
B|t−s|(0)

dσ(y)

(
ρ(x− y − qs)
vsρ(x− y − qs)

)
= ∂t4π

∫ t

±∞
ds

(
−∇ −∂t

0 ∇∧

)
(t− s)−

∫
B1(0)

dσ(y)

(
ρ(x− |t− s|y − qs)
vsρ(x− |t− s|y − qs)

)
= 4π

(
−∇ −∂t
0 ∇∧

)
(t− s)−

∫
B1(0)

dσ(y)

(
ρ(x− |t− s|y − qs)
vsρ(x− |t− s|y − qs)

) ∣∣∣∣
t=s

+ 4π

∫ t

±∞
ds

(
−∇ −∂t
0 ∇∧

)
−
∫
B1(0)

dσ(y)

(
ρ(x− |t− s|y − qs)
vsρ(x− |t− s|y − qs)

)
+ 4π

∫ t

±∞
ds

(
−∇ −∂t

0 ∇∧

)
(t− s)−

∫
B1(0)

dσ(y)

(
∂tρ(x− |t− s|y − qs)
vs∂tρ(x− |t− s|y − qs)

)
.

Now, the first summand vanishes, since t − s = 0 for t = s. The second summand equals
f±t [q,p](ρx) and is therefore well-defined. In the third summand the partial time derivative
∂t acts on test function ρ and since the latter is smooth it is well defined and continuous.
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5.2 Existence of Maxwell solutions

In this section we prove Lemma 4.2.2 (Homogeneous Maxwell solutions) and 4.2.3 (Inhomo-
geneous Maxwell solutions).

Proof of Lemma 4.2.2. (Homogeneous Maxwell solutions)

(i) First, we show that for all t ∈ R the mapping Wt : Fhom → F , fh0 7→Wtf
h
0 given by

(Wtf
h
0)(ρx) : =Wt(f

h
0 , ρx)

=


fh0(ρx) , t = 0(

∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0) dσ(y)fh0(ρx−|t|y) , t 6= 0

(5.16)

(cf. (4.8) in Definition 4.2.2 (Homogeneous Maxwell evolution)) for all x ∈ R3, ρ ∈ D
gives rise to a well-defined linear operator.

Therefore, let fh0 ∈ Fhom ⊂ F and write fh0 = (eh0 , b
h
0) for the electric and magnetic field

components. The expression Wt(f
h
0 , ρx) in (5.16) is well-defined for all x ∈ R3, ρ ∈ D

because:

• For t = 0 it follows by the definition of F and fh0 ∈ F .

• For t 6= 0 is follows by the facts that fh0(ρ(·)) ∈ C∞(R3,R6) and that the integra-
tion domain ∂B1(0) is compact. Therefore, the integral in (5.16) exists, the time
derivative acting on 1/(4πt) and on fh0(ρx−|t|y) can be applied and the curl acting
on eh0(ρx−|t|y) and bh0(ρx−|t|y) can be applied, respectively.

Next, we show Wtf
h
0 ∈ F for all t ∈ R, i.e., Wtf

h
0 : D → R6, ρx 7→ Wt(f

h
0 , ρx) is linear

and continuous in ρx for all x ∈ R3. This is true because:

• For t = 0 we have Wt(f
h
0 , ρx) = fh0(ρx) for all ρ ∈ D, x ∈ R3 by definition, and

hence, Wtf
h
0 = fh0 ∈ F by assumption.

• For t 6= 0 the mapping is linear and continuous with respect to ρx for all x ∈ R3,
which shall be shown now:
Linearity w.r.t. ρx follows by linearity of fh0 , linearity of the integral and linearity
of the differential operators ∂t,∇x∧.
Thus, it remains to verify continuity of Wtf

h
0 . Let therefore (ρ(n))n∈N be a null

sequence in D, i.e., as introduced in Chapter 3, there is a compact K ⊂ R3 such
that for all n ∈ N supp ρ(n) ⊆ K and for all n ∈ N and α ∈ N3

0

lim
n→∞

sup
y∈R3

∣∣∣Dα
yρ

(n)(y)
∣∣∣ = 0. (5.17)

In consequence, for all x ∈ R3 also (ρ
(n)
x )n∈N is a null sequence in D; cf. Lemma

A.3.1 (Distributions), (i).
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We need to show, limn→∞(Wtf
h
0)(ρ

(n)
x ) = 0 for all x ∈ R3. For this purpose, we

consider

|(Wtf
h
0)(ρ

(n)
x )| =

∣∣∣∣∣
(

∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)fh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
≤

∣∣∣∣∣∂t 1

4πt

∫
∂B1(0)

dσ(y)eh0(ρ
(n)
x−|t|y) +

1

4πt

∫
∂B1(0)

dσ(y)∇x ∧ bh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
+

∣∣∣∣∣∂t 1

4πt

∫
∂B1(0)

dσ(y)bh0(ρ
(n)
x−|t|y)− 1

4πt

∫
∂B1(0)

dσ(y)∇x ∧ eh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
≤

∣∣∣∣∣∂t 1

4πt

∫
∂B1(0)

dσ(y)eh0(ρ
(n)
x−|t|y)

∣∣∣∣∣+

∣∣∣∣∣∂t 1

4πt

∫
∂B1(0)

dσ(y)bh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
+

∣∣∣∣∣ 1

4πt

∫
∂B1(0)

dσ(y)∇x ∧ bh0(ρ
(n)
x−|t|y)

∣∣∣∣∣+

∣∣∣∣∣ 1

4πt

∫
∂B1(0)

dσ(y)∇x ∧ eh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
=

1

4πt2

∣∣∣∣∣
∫
∂B1(0)

dσ(y)eh0(ρ
(n)
x−|t|y)

∣∣∣∣∣+
1

4πt2

∣∣∣∣∣
∫
∂B1(0)

dσ(y)bh0(ρ
(n)
x−|t|y)

∣∣∣∣∣
+

1

4π|t|

∣∣∣∣∣
∫
∂B1(0)

dσ(y)eh0(∂tρ
(n)
x−|t|y)

∣∣∣∣∣+
1

4π|t|

∣∣∣∣∣
∫
∂B1(0)

dσ(y)bh0(∂tρ
(n)
x−|t|y)

∣∣∣∣∣
+

1

4π|t|

∣∣∣∣∣
∫
∂B1(0)

dσ(y)bh0(∇x ∧ ρ(n)
x−|t|y)

∣∣∣∣∣+
1

4π|t|

∣∣∣∣∣
∫
∂B1(0)

dσ(y)eh0(∇x ∧ ρ(n)
x−|t|y)

∣∣∣∣∣
≤ 2

1 + |t|
4πt2

[∣∣∣∣∣
∫
∂B1(0)

dσ(y)fh0(ρ
(n)
x−|t|y)

∣∣∣∣∣+
3∑
i=1

∣∣∣∣∣
∫
∂B1(0)

dσ(y)fh0(∂xiρ
(n)
x−|t|yyi)

∣∣∣∣∣
+

∣∣∣∣∣
∫
∂B1(0)

dσ(y)fh0(∇x ∧ ρ(n)
x−|t|y)

∣∣∣∣∣
]
, (5.18)

where we have used the inequality |f | ≤ |e|+ |b| ≤ 2|f | for f = (e, b) ∈ R3×R3 in
the first and in the last step of the estimation and in the second step the triangle
inequality. In the third step the product rule was applied for the time derivative.
Furthermore, we used

∂te
h
0(ρ

(n)
x−|t|y) = eh0(∂tρ

(n)
x−|t|y) = −eh0(∇ρ(n)

x−|t|y · y)

= −
3∑
i=1

eh0(∂iρ
(n)
x−|t|yyi),

which can be verified by direct computation. A respective equation can be found for
the magnetic field component. Now, each of the summands in the last line can be
written as

∣∣∣∫∂B1(0) dσ(y)fh0(Dα
xϕ

(n)
x−|t|y)

∣∣∣ for |α| ≤ 1 and a null sequence (ϕ(n))n∈N

since for y ∈ ∂B1(0), (ρ(n)yi)n∈N is again a null sequence. Then, for all t 6= 0,
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x ∈ R3 we compute

lim
n→∞

∣∣∣∣∣
∫
∂B1(0)

dσ(y)fh0(Dα
xϕ

(n)
x−|t|y)

∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣
∫
∂B|t|(x)

dσ(z)fh0(Dα
zϕ

(n)
z )

∣∣∣∣∣
= lim

n→∞

∣∣∣∣∫
R3

d3z1∂B|t|(x)(z)fh0(Dα
zϕ

(n)
z )

∣∣∣∣
= lim

n→∞

∣∣∣∣fh0 (∫
R3

d3z1∂B|t|(x)(z)Dα
zϕ

(n)
z

)∣∣∣∣
= lim

n→∞

∣∣∣fh0(1∂B|t|(x) ∗Dα
(·)ϕ

(n)
(·) (0))

∣∣∣
= 0,

where the following arguments have been applied:
The assumption of (ϕ(n))n∈N being a null sequence in D implies that for all z ∈ R3,
(ϕ

(n)
z )n∈N is a null sequence, (Dα

zϕ
(n)
z )n∈N is a null sequence and for compact sets K

also (1K ∗Dα
(·)ϕ

(n)
(·) (0))n∈N is a null sequence; see Lemma A.3.1 (Distributions), (i).

As ∂B|t|(x) is compact and by assumption fh0 ∈ F for any x ∈ R3 the last equality
holds. Furthermore, in the second last equality we made use of the fact that for
any f ∈ F , ϕ ∈ D, and any ψ ∈ L1(R3,R) with compact support convolutions and
distributions can be interchanged, i.e.,∫

d3zψ(z)f(ϕz) = f(ψ ∗ ϕ0) (5.19)

as shown in Lemma A.3.1 (Distributions), (iii).
Finally, each summand in (5.18) converges to 0 as n→∞, and thus, for all ρ ∈ D,
x ∈ R3 Wt(f

h
0 , ρx) is also continuous in ρx.

In conclusion, ρ 7→ Wt(f
h
0 , ρx) is in F .

Furthermore, by definition, the map fh0 7→ (Wtf
h
0)(ρx) is linear for all ρ ∈ D,x ∈ R3.

This can directly be read off the defining equation (5.16) together with the linearity of
convolution, integration, and the differential operators.

We may therefore conclude that for all t ∈ R, Wt : F → F is a well-defined linear
operator.

(ii) We need to show that for all ρ ∈ D,x ∈ R3:

t 7→ (Wtf
h
0)(ρx) =Wt(f

h
0 , ρx) ∈ C∞(R,R6). (5.20)

For a slimmer notation, we write the operator Wt in terms of the propagator Kt of the
wave equation, introduced in Definition A.1.1 (Propagator of the d’Alembert operator).
Therewith, the action of Wt on fh0 evaluated at test function ρx reads

(Wtf
h
0)(ρx) =


fh0(ρx) , t = 0(

∂t ∇x∧
−∇x∧ ∂t

)
Kt ∗ fh0(ρ·)(x) , t 6= 0

. (5.21)
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Let n ∈ N0, then for t 6= 0

∂nt (Wtf
h
0)(ρx) = ∂t

(
∂t ∇x∧
−∇x∧ ∂t

)
Kt ∗ fh0(ρ(·))(x)

=

(
∂1+n
t Kt ∗ eh0(ρ(·))(x) + ∂nt Kt ∗ ∇ ∧ bh0(ρ(·))(x)

∂nt Kt ∗ ∇ ∧ eh0(ρ(·))(x) + ∂1+n
t Kt ∗ bh0(ρ(·))(x)

)
.

Since for any test function ρ ∈ D, eh0(ρ(·)), b
h
0(ρ(·)) ∈ C∞(R3,R3), and thus, ∇ ∧

eh0(ρ(·)),∇∧bh0(ρ(·)) ∈ C∞(R3,R3), we can apply Lemma 3.4. (iii) from [8] which states,
that for all f ∈ C∞(R3) the map (t,x) 7→ (Kt ∗ f)(x) can uniquely be extended at t = 0
to give rise to a C∞(R × R3) function fulfilling Kt ∗ f

∣∣
t=0

= 0 and ∂tKt ∗ f
∣∣
t=0

= f

and ∂2
tKt ∗ f

∣∣
t=0

= ∆f ; cf. also Lemma A.1.1 (Properties of Kt). Hence, for all n ∈ N0

the mapping t 7→ ∂nt (Wtf
h
0)(ρx) is continuous on R \ {0} and can uniquely be extended

smoothly at t = 0 by choice (5.21).

(iii) First we shall show that Wtf
h
0 is a homogeneous Maxwell solution on R, and second,

that it is uniquely defined by the initial value fh0 .

Solution: We need to show thatWtf
h
0 is a homogeneous Maxwell solution for the initial

value fh0 ∈ Fhom. We thus have to verify equality (3.6) and (3.2), i.e.,

∂tWtf
h
0(ρx) =

(
0 ∇x∧

−∇x∧ 0

)
Wtf

h
0(ρx) (5.22)

and (
∇x· 0

0 ∇x·

)
Wtf

h
0(ρx) = 0 (5.23)

for all ρ ∈ D, x ∈ R3, t ∈ R, and verify

lim
t→0

Wtf
h
0 = fh0 . (5.24)

Let t 6= 0, x ∈ R3, ρ ∈ D. Then, we have(
∂t −

(
0 ∇x∧

−∇x∧ 0

))
Wtf

h
0(ρx)

=

((
∂2
t ∂t∇x∧

−∂t∇x∧ ∂2
t

)
−
(
−∇x ∧∇x∧ ∇x ∧ ∂t
−∇x ∧ ∂t −∇x ∧∇x∧

))
Kt ∗ fh0(ρ(·))(x)

=

(
∆x +∇x ∧∇x∧ 0

0 ∆x +∇x ∧∇x∧

)
Kt ∗ fh0(ρ(·))(x)

= Kt ∗
(
∇∇· 0

0 ∇∇·

)
fh0(ρ(·))(x)

= Kt ∗
(
∇∇ · eh0(ρ(·))

∇∇ · bh0(ρ(·))

)
(x)

= 0,

where the last equality is due to the assumption fh0 ∈ Fhom, i.e., the homogeneous
Maxwell constraints (3.2) hold, and the second equality uses the property ∂2

tKt ∗ g =
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Kt∗∆g for functions g ∈ C2(R3,R) (cf. Lemma A.1.1 (Properties ofKt)) and the identity
∆ +∇∧∇∧ = ∇∇· . Therefore, (5.22) holds for all t 6= 0, and hence, by the smoothness
shown in (ii) for all t ∈ R.

Equation (5.23) is met because Lemma A.2.1 (Maxwell constraints) states that once
(5.22) holds under the assumption fh0 ∈ Fhom the homogeneous Maxwell constraints
(3.2) hold for all t ∈ Λ, i.e., fht ∈ Fhom for all t ∈ Λ.

Next, we compute the initial value

lim
t→0

Wtf
h
0(ρx) = lim

t→0

(
∂t ∇x∧
−∇x∧ ∂t

)
Kt ∗ fh0(ρ(·))(x)

=

(
limt→0 ∂tKt ∗ eh0(ρ(·))(x) + limt→0Kt ∗ ∇ ∧ bh0(ρ(·))(x)

− limt→0Kt ∗ ∇ ∧ eh0(ρ(·))(x) + limt→0 ∂tKt ∗ bh0(ρ(·))(x)

)
=

(
eh0(ρ(·))(x)

bh0(ρ(·))(x)

)
= fh0(ρx),

where we have used limt→0 ∂tKt ∗ g = g and limt→0Kt ∗ g = 0 for g ∈ C2(R3,R) (see
again Lemma A.1.1 (Properties of Kt)).

Uniqueness: Let Λ ⊆ R be an interval including point t = 0. By assumption fh0 ∈ Fhom

and fh is a homogeneous Maxwell solution on Λ such that fht = (eht , b
h
t ) ∈ F1 and

fht
∣∣
t=0

= fh0 . According to the paragraph above it follows fht ∈ Fhom for all t ∈ Λ.

Firstly for all ρ ∈ D, x ∈ R3, (−t) ∈ Λ

lim
t→0

Wtf
h
−t(ρx) = lim

t→0

(
∂t ∇x∧
−∇x∧ ∂t

)
Kt ∗ fh−s(ρ(·))(x)

∣∣
s=t

= lim
t→0

(
limt→0 ∂tKt ∗ eh−t(ρ(·))(x) + limt→0Kt ∗ ∇ ∧ bh−t(ρ(·))(x)

− limt→0Kt ∗ ∇ ∧ eh−t(ρ(·))(x) + limt→0 ∂tKt ∗ bh−t(ρ(·))(x)

)
=

(
eh0(ρ(·))(x)

bh0(ρ(·))(x)

)
= fh0(ρx),

where we used fht ∈ F1 and limt→0 ∂tKt ∗ gt = g0, limt→0Kt ∗ gt = 0 for gt ∈ C2(R ×
R3,R) (cf. Lemma A.1.1 (Properties of Kt)), and the computation rules for limits of
compositions of continuous maps. And, secondly, exploiting (5.22) and (3.6) we find

∂t(Wtf
h
−t)(ρx) =

[
∂tWtf

h
−s(ρx) +Wt∂sf

h
−s(ρx)

] ∣∣
s=t

=

[
∂tWtf

h
−s(ρx)−Wt

(
0 ∇x∧

−∇x∧ 0

)
fh−s(ρx)

] ∣∣
s=t

=

((
∂2
t ∂t∇x∧

−∂t∇x∧ ∂2
t

)
−
(
−∇x ∧∇x∧ ∂t∇x∧
−∂t∇x∧ −∇x ∧∇x∧

))
Kt ∗ fh−s(ρ·)(x)

∣∣
s=t
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=

(
∆x +∇x ∧∇x∧ 0

0 ∆x +∇x ∧∇x∧

)
Kt ∗ fh−s(ρ(·))(x)

∣∣
s=t

= Kt ∗
(
∇∇· 0

0 ∇∇·

)
fh−s(ρ(·))(x)

∣∣
s=t

= Kt ∗
(
∇∇ · eh−s(ρ(·))

∇∇ · bh−s(ρ(·))

)
(x)
∣∣
s=t

= 0,

where in the last step we have used fht ∈ Fhom for all t ∈ Λ. Respectively, we have
shown W−tfht = fh0 . This implies

fht = idFhom
fht = WtW−tf

h
t = Wtf

h
0 (5.25)

for all t ∈ Λ, i.e., fht = Wtf
h
0 is the unique solution on t ∈ Λ, provided WtW−t = idFhom

holds true, which we show next. We use the abbreviation A :=

(
0 ∇∧
−∇∧ 0

)
. For all

ρ ∈ D, x ∈ R3, hh ∈ Fhom we have for t = 0 WtWth
h = hh, and for t 6= 0:

∂t(WtW−t)h
h = ∂sWsW−th

h +Wt∂sW−sh
h
∣∣
s=t

= AWtW−th
h −Wt∂sWsh

h
∣∣
s=−t

= AWtW−th
h −WtAWsh

h
∣∣
s=−t = AWtW−th

h −AWtW−th
h = 0,

where we have used that:

• hh ∈ Fhom implies W−thh ∈ Fhom, by Lemma A.2.1 (Maxwell constraints) and
thus Wt(W−th

h) is a Maxwell solution by the paragraph solution above.
• hh ∈ Fhom implies Wsh

h is a Maxwell solution also by the paragraph above.
• We can interchange the differential operator A with the operator Wt, since the

spacial derivatives in A are applied to the respective test function, only.

(iv) Let fh0 ∈ C1+n(R3,R6). We show that for the solution t 7→ fht = Wtf
h
0 it holds

fh ∈ Cn(R4,R6). By definition, for all ρ ∈ D, x ∈ R3, t 6= 0:

fht (ρx) =

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)fh0(ρx−|t|y)

=

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)

∫
d3zfh0(z)ρ(x− z − |t|y)

=

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)

∫
d3zfh0(z − |t|y)ρ(x− z),

where we used fh0 ∈ C1+n(R3,R6) in the second line. Moreover, this implies that the
left hand side is a continuous function as well and we can write∫

d3zfht (z)ρ(x− z)

=

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)

∫
d3zfh0(z − |t|y)ρ(x− z)

=

∫
d3zρ(x− z)

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)fh0(z − |t|y),
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by the use of Fubini in the second line. Hence, for almost every z ∈ R3 and t 6= 0

fht (z) =

(
∂t ∇x∧
−∇x∧ ∂t

)
1

4πt

∫
∂B1(0)

dσ(y)fh0(z − |t|y). (5.26)

This representation shows that for fh0 ∈ C1+n(R3,R6) we have (t,x) 7→ fht (x) ∈ Cn(R \
{0} × R3,R6).

For t = 0, we make use of the properties of propagator Kt. According to item (iii)
of Lemma A.1.1 (Properties of Kt) (t,x) 7→ fht (x) as given in (5.26) can be n times
continuously extended at t = 0.
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We move on to the proof of Lemma 4.2.3(Inhomogeneous Maxwell solutions), which can
be deduced from the previous results on the homogeneous Maxwell equations.

Proof of Lemma 4.2.3. (Inhomogeneous Maxwell solutions)

Let n ∈ N0, (q,p) ∈ T 2+n strictly time-like, and f0 ∈ Fqt=0
.

(ii) We start by proving the uniqueness of inhomogeneous Maxwell solutions, which is a
straight forward consequence of the uniqueness result for the homogeneous Maxwell
equations from Lemma 4.2.2 (Homogeneous Maxwell solutions), (iii) as we shall see
now.

Assume that t 7→ f t and t 7→ gt are Maxwell solutions on the interval Λ containing
t = 0 with initial values f t=0 = gt=0 = f0 ∈ Fqt=0

. By linearity of Maxwell’s equations
t 7→ ht := f t−gt, t ∈ Λ is a homogeneous Maxwell solution on Λ uniquely characterized
by its initial value ht=0 = f t=0 − gt=0, which vanishes by assumption and lies in Fhom.
Now, Lemma 4.2.2 (Homogeneous Maxwell solutions), (iii), guarantees that for all t ∈ Λ
it holds ht = Wtht=0 = 0, and hence, for all t ∈ Λ, f t = gt.

(i)+(iii) By (ii) it suffices to show that f given by (4.11) is a Maxwell solution on R for (q,p) ∈
T 2+n(R) with n ∈ N0.

Let λ ∈ [0, 1]. By Lemma 4.2.1 (Properties of Liénard-Wiechert fields), (iii), f±[q,p]
are Maxwell solutions on R for (q,p), i.e., f±t=0[q,p] ∈ Fqt=0

as well as λf−t=0[q,p]+(1−
λ)f+

t=0[q,p] ∈ Fqt=0
for any λ ∈ [0, 1]. Together with the condition f0 ∈ Fhom and the

linearity of the divergence operator in Maxwell’s constraints (3.2) and (3.3), this implies

fh0 = f0 − (λf−t=0[q,p] + (1− λ)f+
t=0[q,p]) ∈ Fhom. (5.27)

Hence, by Lemma 4.2.2 (Homogeneous Maxwell solutions), (iii), for all t ∈ R, fht = Wtf
h
0

is a homogeneous Maxwell solution on R with initial value fh0 . Again, due to Lemma
4.2.1 (Properties of Liénard-Wiechert fields), (iii), and the linearity of the Maxwell
equations

t 7→ f t = λf−t [q,p] + (1− λ)f+
t [q,p] +Wtf

h
0 (5.28)

(4.11) is a Maxwell solution on R for (q,p). By definition of fh0 in (5.27) we have
f t=0 = f0.
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5.3 Explicit Maxwell solutions

This section consists of the proof of our second main result which is Theorem 4.2.1 (Explicit
Maxwell solutions).

Proof of Theorem 4.2.1. (Explicit Maxwell solutions)

Let n ∈ N, (q,p), (q̃, p̃) ∈ T 2+n(R) be strictly time-like charge trajectories with qt=0 =:
q0 = q̃0 := q̃t=0 and f0 ∈ Fq0 . We show that f : t 7→ f t where f t is given by (4.12)-(4.17) is
the unique Maxwell solution on R for (q,p) with f t=0 = f0.

The strategy is to, at first, provide a solution of the Maxwell equation in which δx is
replaced by ρx, i.e., a solution of the initial value problem

�

(
Et

Bt

)
= 4π

(
−∇ −∂t
0 ∇∧

)(
ρt
jt

)
(
E0

B0

)
:=

(
Et

Bt

)
|t=0

∂t

(
E0

B0

)
:= ∂t

(
Et

Bt

)
|t=0=

(
∇∧B0 − 4πj0

−∇ ∧E0

), (5.29)

cf. (A.11), Appendix A.1. In a second step we show that this solution gives rise to a distribu-
tion and in this way a Maxwell solution according to Definition 3.3.3 (Maxwell solutions).

We divide the proof into the following steps:

1. Given (q,p), f0 and any test function ρ ∈ D, t ∈ R, x ∈ R3, we define

gρ(t,x) := g(1)
ρ (t,x) + g(2)

ρ (t,x), (5.30)

g(1)
ρ (t,x) :=

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0(x), (5.31)

g(2)
ρ (t,x) := 4π

∫ t

0
ds

(
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)
vsρ(· − qs)

)
(x), (5.32)

where we use the notation

x 7→ F 0(x) := f0(ρx) ≡ f0(ρ(x− ·)). (5.33)

Thanks to Lemma A.1.3 (Kirchhoff’s formula) the formula (5.30)-(5.32) gives rise to a
solution of (5.29). Moreover, with regard to formula (4.18), f0 can be written in the
parameterization

f0 = λf−0 [q̃, p̃] + (1− λ)f+
0 [q̃, p̃] + fh0 , (5.34)

which is merely a definition of fh0 . Note that fh0 ∈ Fhom by (4.18), the assumption
f0 ∈ Fq0 , and the linearity of the Maxwell constraints.

2. We verify that (t,x) 7→ gρ(t,x) is well-defined and in C∞(R4,R6).

3. We show, that for all ρ ∈ D, gρ solves (3.7) and (3.3) in the strong sense fulfilling the
initial condition gρ(t,x)|t=0 = F 0(x) = f0(ρ(x− ·)).
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4. For all t ∈ R, x ∈ R3, ρ ∈ D we compute an explicit formula for g(2)
ρ (t,x), which gives

rise to a distribution g(2)
t for all t ∈ R with g(2)

t (ρx) = g
(2)
ρ (t,x) for all x ∈ R3, ρ ∈ D.

5. Making use of the parameterization (5.34) for the initial field f0, for all t ∈ R we derive
an explicit representation for the distribution g(1)

t which is given by g(1)
t (ρx) = g

(1)
ρ (t,x)

for all x ∈ R3, ρ ∈ D. Thereby, we exploit the formula for g(2)
t derived in item 4 and the

fact that the Liénard-Wiechert fields are Maxwell solutions (cf. Lemma 4.2.1 (Properties
of Liénard-Wiechert fields)).

6. We conclude that for all t ∈ R, x ∈ R3, ρ ∈ D gρ(t,x) is of the form

gρ(t,x) =

∫
d3zρ(x− z)f t(z) = f t(ρ(x− ·)), (5.35)

where for all t ∈ R, x ∈ R3, f t(x) is given by (4.12)-(4.17) and f : t 7→ f t ∈ F1(R).

This implies, that f is a Maxwell solution with initial value f t=0 = f0 according to
Definition 3.3.3 (Maxwell solutions).

Moreover, from Lemma 4.2.3 (Inhomogeneous Maxwell solutions), (ii), we then know
that f : t 7→ f t is the unique Maxwell solution for initial value f0.

ad 2. The mapping (t,x) 7→ g
(1)
ρ (t,x), defined in (5.31), is well-defined and in C∞(R4,R6)

because:
The map x 7→ F 0(x) = f0(ρx) is in C∞(R3,R6) by Lemma A.3.1 (Distributions),

(ii). From Lemma A.1.1 (Properties of Kt) we obtain that (t,x) 7→ Kt ∗ F 0(x) is in
C∞(R \ {0} × R3,R6) with smooth extension at time t = 0. The same holds for (t,x) 7→
∂tKt∗F 0(x) and (t,x) 7→ Kt∗∇∧F 0(x), which gives that (t,x) 7→ g

(1)
ρ (t,x) is in C∞(R4,R6)

and in particular well-defined.

The mapping (t,x) 7→ g
(2)
ρ (t,x), defined by (5.32) is well-defined because:

The electric component of g(2)
ρ is given by

(t,x) 7→ −4π

∫ t

0
dsKt−s ∗ ∇ρ(· − qs)(x)− 4π

∫ t

0
ds∂tKt−s ∗ vsρ(· − qs)(x) (5.36)

and the magnetic component of g(2)
ρ is

(t,x) 7→ 4π

∫ t

0
dsKt−s ∗ ∇ ∧ vsρ(· − qs)(x). (5.37)

We note that for fixed s ∈ R, x 7→ ∇ρ(x − qs) ∈ C∞c (R3,R3) and x 7→ vsρ(x − qs) ∈
C∞c (R3,R3). Hence, for fixed t ∈ R and x ∈ R3 the maps s 7→ Kt−s ∗ ∇ρ(· − qs)(x),
s 7→ ∂tKt−s ∗ vsρ(· − qs)(x), and s 7→ Kt−s ∗∇∧ vsρ(· − qs)(x) are continuous which implies
the existence of the integral.
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In order to prove that (t,x) 7→ g
(2)
ρ (t,x) is in C∞(R4,R6), we transform (5.36) into

(t,x) 7→ −
∫ t

0
ds

1

t− s

∫
∂B|t−s|(0)

dσ(y)∇xρ(x− y − qs)

−
∫ t

0
ds∂t

1

t− s

∫
∂B|t−s|(0)

dσ(y)vsρ(x− y − qs)

TT
= −

∫ t

0
ds(t− s)

∫
∂B1(0)

dσ(y)∇xρ(x− |t− s|y − qs)

−
∫ t

0
ds∂t(t− s)

∫
∂B1(0)

dσ(y)vsρ(x− |t− s|y − qs),

where TT denotes transformation theorem, cf. Appendix A.4. Since x 7→ ∇xρ(x) ∈ C∞c (R3,R3)
and x 7→ vsρ(x) ∈ C∞c (R3,R3) the above function is smooth in the x-component. For the
t-component the smoothness follows as well by the smoothness of ρ and the fundamental theo-
rem of calculus. Here one should note that there is no t-dependence in the trajectory elements
qs and vs, which may destroy smoothness.

The magnetic component of g(2)
ρ can be transformed analogously to the first summand

of the electric part and is smooth by the same arguments. We only need to interchange the
∇x-operator with the ∇x∧-operator.

And therefore, we can conclude that the object (t,x) 7→ gρ(t,x) is a well-defined smooth
function.

ad 3. In order to show that t 7→ gρ(t, ·) is indeed a solution to the Maxwell equations, we
need to verify that for all ρ ∈ D, t ∈ R, x ∈ R3 equation (3.7), or respectively,(

∂t −
(

0 ∇∧
−∇∧ 0

))
gρ(t,x) =

(
−4πv(pt)ρ(x− qt)

0

)
(5.38)

is fulfilled. Note that by virtue of item 1. of this proof, gρ is smooth and hence the expression
on the left hand side is well defined and we can compute

A : =

(
∂t −

(
0 ∇∧
−∇∧ 0

))
gρ(t,x)

=

((
∂2
t ∂t∇∧

−∂t∇∧ ∂2
t

)
−
(
−∇ ∧∇∧ ∇ ∧ ∂t
−∇ ∧ ∂t −∇ ∧∇∧

))
Kt ∗ F 0(x)

+ 4π∂t

∫ t

0
ds

(
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x)

− 4π

∫ t

0
ds

(
−∂t∇ ∇∧∇∧

0 ∂t∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x)

=

(
∆ +∇∧∇∧ 0

0 ∆ +∇∧∇∧

)
Kt ∗ F 0(x)

+ 4π lim
s→t

((
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x)

)
+ 4π

∫ t

0
ds∂t

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x)
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− 4π

∫ t

0
ds

(
−∂t∇ ∇∧∇∧

0 ∂t∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x)

Thereby, we interchanged derivatives which can be done by Schwarz’s theorem, we applied
that the rotation of a gradient field is zero and the total differentiation theorem, which states
that for continuously differentiable functions h

∂t

∫ t

0
dsh(t, s) = lim

s→t
h(t, s) +

∫ t

0
ds∂th(t, s). (5.39)

By assumption, f0 ∈ Fq0 , i.e., f0 fulfills Maxwell constraints (3.3), and respectively, for each
ρ ∈ D, x 7→ F 0(x) = f0(ρx) fulfills Maxwell constraints in the strong sense. Thus, writing
F 0 = (E0,B0), we have ∇ ·B0 = 0 and ∇ ·E0 = 4πρ(· − q0).

Applying ∆+∇∧∇∧ = ∇∇· in the first summand, as well as Lemma A.1.1 (Properties of
Kt) stating that limt→0(Kt ∗ht) = 0 and limt→0(∂tKt ∗ht) = h0 for all h with ht ∈ C2(R3,R),
h(·)(x) ∈ C(R,R) in the second summand, and bringing the third and the fourth summand
together, we obtain

A = ∇Kt ∗
(
∇ ·E0

0

)
(x)

+

(
−4πv(pt)ρ(x− qt)

0

)
+ 4π

∫ t

0
ds

(
−∂t∇ −∂2

t −∇ ∧∇∧
0 ∂t∇∧

)
Kt−s ∗

(
ρ(· − qs)

v(ps)ρ(· − qs)

)
(x).

Given −∂2
t −∇∧∇∧ = −�−∇∇·, whereas the d’Alembert Operator applied on the propagator

Kt equals zero (cf. Lemma A.1.1 (Properties of Kt), (iv)), we get

A =

(
4πKt ∗ ∇ρ(· − q0)

0

)
(x) +

(
−4πv(pt)ρ(x− qt)

0

)
+ 4π

∫ t

0
ds

(
−∂tKt−s ∗ ∇ρ(· − qs) +Kt−s ∗ ∂s∇ρ(· − qs)

0

)
(x)

=

(
4πKt ∗ ∇ρ(· − q0)

0

)
(x) +

(
−4πv(pt)ρ(x− qt)

0

)
− 4π

∫ t

0
ds

(
∂tKt−s ∗ ∇ρ(· − qs)

0

)
(x) + 4π

∫ t

0
ds

(
Kt−s ∗ ∂s∇ρ(· − qs)

0

)
(x).

Making use of integration by parts the last summand can be transformed as

4π

∫ t

0
ds

(
Kt−s ∗ ∂s∇ρ(· − qs)

0

)
(x)

= 4π

[
Kt−s ∗

(
∇ρ(· − qs)

0

)
(x)

]t
s=0

− 4π

∫ t

0
ds

(
∂sKt−s ∗ ∇ρ(· − qs)

0

)
(x)

=

(
−4πKt ∗ ∇ρ(· − q0)

0

)
(x) + 4π

∫ t

0
ds

(
∂tKt−s ∗ ∇ρ(· − qs)

0

)
(x)
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and therefore it cancels with the first and the last summand, which shows that(
(∂t −

(
0 ∇∧
−∇∧ 0

))
gρ(t,x) =

(
−4πv(pt)ρ(x− qt)

0

)
for any ρ ∈ D, (t,x) ∈ R4.

Next, we verify gρ(t,x)|t=0 = F 0(x) = f0(ρx) for all x ∈ R3, ρ ∈ D. For t → 0 the
integral term g

(2)
ρ (t,x) vanishes and it remains to compute the first term, which corresponds

to the homogeneous case from Lemma 4.2.2 (Homogeneous Maxwell solutions):

lim
t→0

gρ(t,x) = lim
t→0

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0(x)

=

(
limt→0 ∂tKt ∗E0(x) + limt→0Kt ∗ ∇ ∧B0(x)
− limt→0Kt ∗ ∇ ∧E0(x) + limt→0 ∂tKt ∗B0(x)

)
= F 0(x),

where we have used Lemma A.1.1 (Properties of Kt), (i) and (ii).

Finally, we show that Maxwells constraints (3.3) are satisfied likewise. Given that gρ solves
(3.7) in the strong sense, gρ(t,x)

∣∣
t=0

= f0(ρx), and the assumption f0 ∈ Fq0 , or respectively,
for all ρ ∈ D gρ(t = 0, ·) ∈ Fq0 , it follows that for all t ∈ R we have gρ(t, ·) ∈ Fqt . This is due
to Lemma A.2.1 (Maxwell constraints).

ad 4. For any ρ ∈ D, (t,x) ∈ R4 we compute g(2)
ρ (t,x). In the first place, we introduce the

objects and notations that will be frequently used throughout the computations.

• Effectively, we compute g(2)
ρ (t,x) solely for t 6= 0. The formula for gρ(t,x) that we

obtain in the end can be continuously extended at t = 0 which has been subject to item
2. Moreover, whenever the case distinction ± or ∓ appears in the computations it is to
be read such that the upper case corresponds to times t > 0 and the lower case to t < 0.

• We use a slightly modified set of abbreviations than in (4.7) and (4.19), namely

n :=
y

|y|
v := vt±|y| a := at±|y| (5.40)

t± := t±
∣∣z − q±∣∣ q± := qt±

n± :=
z − q±

|z − q±|
v± := vt± a± := at±

(5.41)

q0 := qt=0 n0 :=
z − q0

|z − q0|
v0 := vt=0 a0 := at=0. (5.42)

Note that (5.41) corresponds to (4.7) and (5.42) to (4.19), however, with the parameter
z instead of x.
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• It will be convenient to transform derivatives∇xρ(x−y−qt±|y|) into∇yρ(x−y−qt±|y|),
where y is the integration variable, and thus, this will allow us to integrate by parts.
For this purpose we shall exploit the following computation

∂yiρ(x− y − qt±|y|) = ∇xρ(x− y − qt±|y|) · ∂yi(x− y − qt±|y|)

=
∑
j

∂xjρ(x− y − qt±|y|)(−δij − vt±|y|,j∂yi(t± |y|))

=
∑
j

∂xjρ(x− y − qt±|y|) (−δij ∓ vt±|y|,j
yi
|y|

)︸ ︷︷ ︸
=:L−1(y)±ij

⇒ ∇yρ(x− y − qt±|y|) = L−1(y)± · ∇xρ(x− y − qt±|y|)
∇xρ(x− y − qt±|y|) = L(y)± · ∇yρ(x− y − qt±|y|),

where

L−1(y)±ij = −δij ∓ vjni

L(y)±ij = −δij ±
nivj

1± n · v
.

• Furthermore, we make use of the transformation T given by

T (y) := z = y + qt±|y|. (5.43)

Since by assumption the trajectory (q,p) is strictly time-like, we find that T is a diffeo-
morphism, and thus, the equation z = y + qt±|y| holds for a unique pair z,y ∈ R3, cf.
Figure 5.1, namely,

T−1(z) = z − q±. (5.44)

Figure 5.1: This figure illustrates for the retarded case that the transformation T is bijective;
i.e., for each z ∈ R3 there is exactly one intersection point of the backward light-cone of (t, z)
and the charge trajectory (q,p) such that T−1(z) = y is uniquely determined.

The Jacobi determinant of the transformation T is given by

detDT (y) = detD(y + qt±|y|) = det

1± v1
y1
|y| ±v1

y2
|y| ±v1

y3
|y|

±v2
y1
|y| 1± v2

y2
|y| ±v2

y3
|y|

±v3
y1
|y| ±v3

y2
|y| 1± v3

y3
|y|


= 1± n · v,
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which can be computed with Sarrus’ rule. And therefore, we find

1

|detDT (T−1(z))|
=

1

1± n± · v±
. (5.45)

Transforming the domain B|t|(0) by T gives

T (B|t|(0)) = {y + qt±|y||y ∈ B|t|(0)}
= ∪r∈[0,|t|]{y + qt±r|y ∈ ∂B|t|−r(0)}
= B|t|(q0).

Whenever this transformation is applied, it is denoted by T
=.

• Moreover, the following derivatives will be needed:

∂yj
1

|y|
= − yj

|y|3
= − nj

|y|2

∂yjy =
yj
|y|

= nj

∂yjn =
1

|y|

δ1j

δ2j

δ3j

− njn


∂yj (n · v) =
vj
|y|
− y · vyj
|y|3

± y · ayj
|y|2

=
vj
|y|
− n · vnj

|y|
± (n · a)nj

∂yjv = ±nja

∂ym(njvm) =
δjm − njnm
|y|

vm ± njnmam =
vj − nj(n · v)

|y|
± nj(n · a)

∂ym(vmvknj) = ±(n · a)vknj ± (n · v)aknj +
vkvj
|y|
− (n · v)njvk

|y|
∂ym(|y| (1± n · v)) = nm(1± n · v)± vm ∓ (n · v)nm + (n · a)nm |y|

Having collected the necessary tools, we pass over to the computation of g(2)
ρ defined in

(5.32). We divide the expression into three integrals to be computed separately, namely,

g(2)
ρ (t,x) = 4π

∫ t

0
ds

(
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρ(· − qs)
vsρ(· − qs)

)
(x) :=

(
1 + 2

3

)
. (5.46)

Thereby, expression 1 + 2 is referred to as electric field component and 3 as magnetic field
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component. Now,

1 = −4π

∫ t

0
ds(Kt−s ∗ ∇xρ(· − qs))(x)

= −4π

∫ t

0
ds

1

4π(t− s)

∫
∂B|t−s|(0)

dσ(y)∇xρ(x− y − qs)

= −
∫ t

0
ds

1

(t− s)

∫
∂B|t−s|(0)

dσ(y)∇xρ(x− y − qs)

= +

∫ 0

t
dr

1

r

∫
∂B|r|(0)

dσ(y)∇xρ(x− y − qt−r)

= −
∫ t

0
dr

1

r

∫
∂B|r|(0)

dσ(y)∇xρ(x− y − qt−r)

= −
∫ |t|

0
dr(∓1)

∫
∂B|r|(0)

dσ(y)︸ ︷︷ ︸∫
B|t|(0)

d3y

1

∓r
∇xρ(x− y − qt±r)

= −
∫
B|t|(0)

d3y
1

|y|
∇xρ(x− y − qt±|y|).

We denote the ith component of vector 1 by 1 i and compute the latter. Note that we make
use of the Einstein summation convention such that ajbj is to be read as

∑3
j=1 ajbj in the

sequel.

1 i = −
∫
B|t|(0)

d3y
1

|y|
∂xiρ(x− y − qt±|y|)

= −
∫
B|t|(0)

d3y
1

|y|
L(y)±ij∂yjρ(x− y − qt±|y|)

PI
=

∫
B|t|(0)

d3y∂yj

[
1

|y|
L(y)±ij

]
ρ(x− y − qt±|y|) 1a i

−
∫
B|t|(0)

d3y∂yj

[
1

|y|
L(y)±ijρ(x− y − qt±|y|)

]
, 1b i

where the two summands in the last equation are named 1a i and 1b i. Moreover, PI denotes
integration by parts. For the expression 1a i, which is the ith component of the vector 1a
we compute

1a i =

∫
B|t|(0)

d3y∂yj

[
1

|y|
L(y)±ij

]
ρ(x− y − qt±|y|)

T
=

∫
T (B|t|(0))

d3z
1

1± n± · v±
∂yj

[
1

|y|
L(y)±ij

]
y:=z−q±

ρ(x− z),
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where the derivative computes as

∂yj

[
1

|y|
L(y)±ij

]
= ∂yj

[
− δij
|y|
± yivj

|y|2 (1± n · v)

]
=
δijyj

|y|3
±

∂yj (yivj)

|y|2 (1± n · v)
∓
yivj∂yj (|y|

2 (1± n · v))

|y|4 (1± n · v)2

=
yi

|y|3
± δijvj − yiyj |y|−1 aj

|y|2 (1± n · v)

∓
yivj

(
2yj(1± n · v)± |y|2 ∂yi(n · v)

)
|y|4 (1± n · v)2

.

For the sake of convenience we continue in vector notation. The derivative then equals

n

|y|2
± v

|y|2 (1± n · v)
+

n(a · n)

|y| (1± n · v)
∓ 2n(v · n)

|y|2 (1± n · v)

− v2n

|y|2 (1± n · v)2
+

(n · v)2n

|y|2 (1± n · v)2
∓ (n · a)(n · v)n

|y| (1± n · v)2

=
n± v + (n · v)v − v2n

|y|2 (1± n · v)2
+

(n · a)n

|y| (1± n · v)2
.

Plugging this into the last formula for expression 1a we obtain

1a =

∫
B|t|(q0)

d3zρ(x− z)

[
n± − v±

|z − q±|2 (1± n± · v±)2
+

(n± · v±)n± − (v±)2n±

|z − q±|2 (1± n± · v±)3

+
(n± · a±)n±

|z − q±| (1± n± · v±)3

]
.

We turn over to compute 1b i, which is the ith component of expression 1b .

1b i = −
∫
B|t|(0)

d3y∂yj

[
1

|y|
L(y)±ijρ(x− y − qt±|y|)

]
GG
= −

∫
∂B|t|(0)

dσ(y)nj

[
−δij ±

nivj
1± n · v

]
1

|y|
ρ(x− y − qt±|y|)

=

∫
∂B|t|(0)

dσ(y)
ni

(1± n · v) |y|
ρ(x− y − q0)

S
=

∫
∂B|t|(q0)

dσ(z)
n0,i

(1± n0 · v0) |z − q0|
ρ(x− z),

where the Gauss-Green theorem (GG) has been applied and the substitution z := y+q0 (S).
Hence, we obtain

1b =

∫
∂B|t|(q0)

dσ(z)
n0

(1± n0 · v0) |z − q0|
ρ(x− z).
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This concludes the computation of the first summand. Note that it is convenient not to sum
1a and 1b at that point. The second summand of (5.46) is computed as follows:

2 = 4π

∫ t

0
ds(−∂t)Kt−s ∗ vsρ(· − qs)(x)

= −4π

∫ t

0
dr(∂rKr) ∗ vt−rρ(· − qt−r)(x)

= −4π

∫ t

0
dr∂rr−

∫
∂B|r|(0)

dσ(y)vt−rρ(x− y − qt−r)

= −4π

∫ t

0
dr

[
−
∫
∂B|r|(0)

dσ(y)vt−rρ(x− y − qt−r)

+r∂r−
∫
∂B1(0)

dσ(y)vt−rρ(x− |r|y − qt−r)

]

= −4π

∫ t

0
dr

[
−
∫
∂B|r|(0)

dσ(y)vt−rρ(x− y − qt−r)

+r−
∫
∂B1(0)

dσ(y)vt−r(±y) · ∇xρ(x− |r|y − qt−r)

]

= −4π

∫ t

0
dr

[
−
∫
∂B|r|(0)

dσ(y)vt−rρ(x− y − qt−r)

+r−
∫
∂B|r|(0)

dσ(y)vt−r(±
y

|r|
) · ∇xρ(x− y − qt−r)

]

= −4π

∫ t

0
dr

[
−
∫
∂B|r|(0)

dσ(y)vt−rρ(x− y − qt−r)

−−
∫
∂B|r|(0)

dσ(y)vt−ry · ∇xρ(x− y − qt−r)

]

= −4π

∫ |t|
0

dr(∓1)−
∫
∂B|r|(0)

dσ(y)
[
vt±|r|ρ(x− y − qt±|r|)

−vt±|r|y · ∇xρ(x− y − qt±|r|)
]

= ±
∫
B|t|(0)

d3y
1

|y|2
[
vt±|y|ρ(x− y − qt±|y|)

−vt±|y|y · ∇xρ(x− y − qt±|y|)
]

= ±
∫
B|t|(0)

d3y
1

|y|2
[
vt±|y|ρ(x− y − qt±|y|)

−vt±|y|y · L(y)± · ∇yρ(x− y − qt±|y|)
]

= ±
∫
B|t|(0)

d3y
1

|y|2
vt±|y|ρ(x− y − qt±|y|)
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∓
∫
B|t|(0)

d3y
1

|y|2
vt±|y|ykL(y)±kj∂yjρ(x− y − qt±|y|)

We apply the integration by parts formula (PI) first, secondly we make use of the Gauss-Green
theorem (GG) applied to the second summand, and thus, we obtain

2
PI,GG

= ±
∫
B|t|(0)

d3y
1

|y|2
vt±|y|ρ(x− y − qt±|y|) 2c

±
∫
B|t|(0)

d3y∂ym

[
1

|y|2
vt±|y|yjL(y)±jm

]
ρ(x− y − qt±|y|) 2a

∓
∫
∂B|t|(0)

dσ(y)nm

[
1

|y|2
vt±|y|yjL(y)±jmρ(x− y − qt±|y|)

]
2b

Again, computing the three summands in a row, gives

2c = ±
∫
B|t|(0)

d3y
1

|y|2
vt±|y|ρ(x− y − qt±|y|)

T
= ±

∫
T (B|t|(0))

d3z
1

(1± n± · v±) |z − q±|2
v±ρ(x− z)

for the summand 2c , the summand 2a simplifies as follows

2a
T
= ±

∫
T (B|t|(0))

d3z
1

(1± n± · v±)
∂ym

[
1

|y|2
vt±|y|yjL(y)±jm

]
y=z−q±

ρ(x− z)

=

∫
B|t|(q0)

d3z
1

(1± n± · v±)

∂ym

[
1

|y|2
vt±|y|yj(∓δjm +

njvm
1± n · v

)

]
y=z−q±

ρ(x− z)

(∗)
=

∫
B|t|(q0)

d3z

[
∓v±

(1± n± · v±) |z − q±|2
+
∓(v±)2v± − (n± · v±)v±

(1± n± · v±)3 |z − q±|2

± (n± · a±)v±

(1± n± · v±)3 |z − q±|
− a±

(1± n± · v±)2 |z − q±|

]
ρ(x− z),

where in the step marked by (∗) the following calculation for the derivative in 2a has been
taken into account.

∂ym

[
1

|y|2
vt±|y|yj(∓δjm +

njvm
1± n · v

)

]
= ∓∂ym

[
1

|y|2
vt±|y|ymδjm

]
α

+ ∂ym

[
1

|y|2
vt±|y|yj

njvm
1± n · v

)

]
β ,
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where α simplifies to

α = ∓
(
∂ym

1

|y|2
vt±|y|yj +

1

|y|2
∂ymvt±|y|yj +

1

|y|2
vt±|y|∂ymyj

)
δjm

= ∓
(
−2ym

|y|4
vyj ±

yma

|y|3
yj +

vδjm

|y|2

)
δjm

=
±2y2v

|y|4
− y2a

|y|3
∓ 3v

|y|2

=
∓v
|y|2
− a

|y|
=
∓v
|y|2

+
(n · v)a− a

(1± n · v) |y|

and β simplifies to

β =

[
−2nmnjv

|y|2
± nmnja

|y|
+
vδjm

|y|2

]
njvm

1± n · v

+
vyj

|y|2

[
∂ym(njvm)

1± n · v
∓ njvm∂ym(n · v)

(1± n · v)2

]
=
−2(n · v)v

(1± n · v) |y|2
± (n · v)a

(1± n · v) |y|
+

(n · v)v

(1± n · v) |y|2

+
vnj
|y|

[
vj − nj(n · v)

(1± n · v) |y|
± nj(n · a)

(1± n · v)
∓ njv

2 − (n · v)2nj
(1± n · v)2 |y|

− nj(n · a)(n · v)

(1± n · v)2

]
=
−(n · v)v ∓ v2v

(1± n · v)2 |y|2
± (n · a)v

(1± n · v)2 |y|
− (n · v)a

(1± n · v) |y|
.

Their sum is equal to

α + β =
∓v
|y|2

+
−(n · v)v ∓ v2v

(1± n · v)2 |y|2
± (n · a)v

(1± n · v)2 |y|
− a

(1± n · v) |y|
.

Therefore, the sum of 2a and 2c yields

2a + 2c =

∫
B|t|(q0)

d3z

[
(v±)2v± − (n± · v±)v±

(1± n± · v±)3 |z − q±|2
− (n± · a±)v±

(1± n± · v±)3 |z − q±|

− a±

(1± n± · v±)2 |z − q±|

]
ρ(x− z).
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It remains to compute summand 2b :

2b = ∓
∫
∂B|t|(0)

dσ(y)nm

[
1

|y|2
vt±|y|yjL

±(y)jmρ(x− y − qt±|y|)
]

= −
∫
∂B|t|(0)

dσ(y)nm
1

|y|2
v0yj(∓δjm +

njvm
1± n · v

)ρ(x− y − q0)

= −
∫
∂B|t|(0)

dσ(y)
1

|y|2
v0yj

nj
1± n · v

ρ(x− y − q0)

= ±
∫
∂B|t|(0)

dσ(y)
1

|y|
v0

1

1± n · v0
ρ(x− y − q0)

S
= ±

∫
∂B|t|(q0)

dσ(y)
v0

(1± n0 · v0) |z − q0|
ρ(x− z),

where in the last step we substituted z := y + q0 (S). Finally, we sum up the summands in
the first component of (5.46), which are supported in the inner of the closed ball B|t|(q0), and
obtain:

1a + 2a + 2c

=

∫
B|t|(q0)

d3zρ(x− z)

[
n± ± v±

|z − q±|2 (1± n± · v±)2
+
∓(n± · v±)n± − (v±)2n±

|z − q±|2 (1± n± · v±)3

+
(n± · a±)n±

|z − q±| (1± n± · v±)3
+
∓(v±)2v± − (n± · v±)v±

(1± n± · v±)3 |z − q±|2

± (n± · a±)v±

(1± n± · v±)3 |z − q±|
− a±

(1± n± · v±)2 |z − q±|

]
=

∫
B|t|(q0)

d3zρ(x− z)

[
n± ± v± − (v±)2n∓ (v±)2v±

(1± n± · v±)3 |z − q±|2

+
(n± ± v±)(n± · a±)− (a±(n± · (n± ± v±)

(1± n± · v±)3 |z − q±|

]
=

∫
B|t|(q0)

d3zρ(x− z)

[
(n± ± v±)(1− (v±)2)

(1± n± · v±)3 |z − q±|2
+
n± ∧ [(n± ± v±) ∧ a±]

(1± n± · v±)3 |z − q±|

]
=

∫
d3zρ(x− z)1B|t|(q0)(z)

[
(n± ± v±)(1− (v±)2)

(1± n± · v±)3 |z − q±|2
+
n± ∧ [(n± ± v±) ∧ a±]

(1± n± · v±)3 |z − q±|

]

Summands 1b and 2b are referred to as boundary terms. These sum up to

1b + 2b =

∫
∂B|t|(q0)

dσ(y)ρ(x− z)
n0 ± v0

(1± n0 · v0) |z − q0|

=

∫
d3zρ(x− z)δ(|t| − |z − q0|)

n0 ± v0

(1± n0 · v0) |z − q0|
,

where the δ in the last line denotes the distribution introduced in Chapter 3.
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The second component of g(2)
ρ (t,x), which corresponds to the magnetic part, computes as

3 = 4π

∫ t

0
dsKt−s ∗ ∇ ∧ vsρ(· − qs)(x)

=

∫ t

0
ds

1

t− s

∫
∂B|t−s|(0)

dσ(y)∇∧ vsρ(x− y − qs)

=

∫ t

0
dr

1

r

∫
∂B|r|(0)

dσ(y)∇∧ vt−rρ(x− y − qt−r)

=

∫ |t|
0

(∓1)dr
1

∓r

∫
∂B|r|(0)

dσ(y)∇∧ vt±rρ(x− y − qt±r)

The ith component of 3 is equal to:

3 i =

∫
B|t|(0)

d3y
1

|y|
εijkvk∂xjρ(x− y − qt±|y|)

=

∫
B|t|(0)

d3y
1

|y|
εijkvkL

±(y)jm∂ymρ(x− y − qt±|y|)

=

∫
B|t|(0)

d3y
1

|y|
εijkvk(−δjm ±

njvm
1± n · v

)∂ymρ(x− y − qt±|y|)

PI
= ∓

∫
B|t|(0)

d3y∂ym

[
1

|y|
εijkvk(∓δjm +

njvm
1± n · v

)

]
ρ(x− y − qt±|y|) 3a i

±
∫
B|t|(0)

d3y∂ym

[
1

|y|
εijkvk(∓δjm +

njvm
1± n · v

)ρ(x− y − qt±|y|)
]
. 3b i

Again we compute the two summands 3a i and 3b i in a row:

3a i = ∓
∫
B|t|(0)

d3y∂ym

[
1

|y|
εijkvk(∓δjm +

njvm
1± n · v

)

]
ρ(x− y − qt±|y|)

T
= ∓

∫
T (B|t|(0))

d3zρ(x− z)
1

1± n± · v±
εijk

∂ym

[
1

|y|
vk(∓δjm +

njvm
1± n · v

)

]
y=z−q±

(∗∗)
=

∫
B|t|(q0)

d3zρ(x− z)

[
∓ n∧(

∓(v2 − 1)v

(1± n · v)3 |z − q|2
± (n · a)v

(1± n · v)3 |z − q|
− a

(1± n · v)2 |z − q|

)
+

v ∧ v
(1± n · v) |z − q|

]±
=

∫
B|t|(q0)

d3zρ(x− z)[
∓n ∧

(
(n± v)(1− v2)

(1± n · v)3 |z − q|2
+

(n± v)(n · a)− a(n · (n± v))

(1± n · v)3 |z − q|

)]±
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=

∫
B|t|(q0)

d3zρ(x− z)

[
∓n ∧

(
(n± v)(1− v2)

(1± n · v)3 |z − q|2
+
n ∧ ((n± v) ∧ a)

(1± n · v)3 |z − q|

)]±
=

∫
B|t|(q0)

d3zρ(x− z)1B|t|(q0)(z)(∓n ∧ e±(z)),

where in the step marked with (∗∗) the following auxiliary calculation for the derivative has
been exploited:

∂ym

[
1

|y|
vk(∓δjm +

njvm
1± n · v

)

]
= ∂yj

∓vk
|y|

+ ∂ym
vmvknj

|y| (1± n · v)

=
±yjvk
|y|2

− aknj
|y|

+
∂ym(vmvknj)

|y| (1± n · v)
− vmvknj∂ym(|y| (1± n · v))

|y|2 (1± n · v)2

=
±njvk
|y|3

− aknj
|y|
± (n · a)vknj

(1± n · v) |y|
± (n · v)aknj

(1± n · v) |y|

+
vkvj

(1± n · v) |y|2
− (n · v)vknj

(1± n · v) |y|2
− vmvknjnm

(1± n · v) |y|2

∓ vmvmvknj

(1± n · v)2 |y|2
± vmnmvknj(n · v)

(1± n · v)2 |y|2
− vmnmvknj(n · a)

(1± n · v)2 |y|

= njvk

(
∓v2 ± 1

(1± n · v)2 |y|2
± n · a

(1± n · v)2 |y|

)
− njak

1

(1± n · v) |y|
+ vjvk

1

(1± n · v) |y|2
.

Note that the last summand cancels in vector notation, since for any v ∈ R3 it holds v∧v = 0.
We turn over to the ith component of the second summand of 3 .

3b i = ±
∫
∂B|t|(0)

dσ(y)nm
1

|y|
εijkvk(∓δjm +

njvm
1± n · v

)ρ(x− y − qt±|y|)

= ±
∫
∂B|t|(0)

dσ(y)
1

|y|
εijk

∓njvk
1± n · v

ρ(x− y − qt±|y|)

and returning to the full vector we obtain

3b = −
∫
∂B|t|(0)

dσ(y)
n ∧ v

|y| (1± n · v)
ρ(x− y − qt±|y|)

S
=

∫
∂B|t|(q0)

dσ(z)
−n0 ∧ v0

|z − q0| (1± n0 · v0)
ρ(x− z)

=

∫
d3zρ(x− z)δ(|t| − |z − q0|)

−n0 ∧ v0

|z − q0| (1± n0 · v0)
,

(S) denoting the substitution z := y + q0. Summing up each component of the electric part
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gives

1 + 2 =

∫
R3

d3zρ(x− z)

[
δ(|t| − |z − q0|)

n0 − v0

(1± n0 · v0) |z − q0|

+ 1B|t|(q0)(z)

(
(n± ± v±)(1− (v±)2)

(1± n± · v±)3 |z − q±|2
+
n± ∧ [(n± ± v±) ∧ a±]

(1± n± · v±)3 |z − q±|

)]
=

∫
R3

d3zρ(x− z)

[
δ(|t| − |z − q0|)

n0 ± v0

(1± n0 · v0) |z − q0|
+ 1B|t|(q0)(z)e±t (z)

]
and for the magnetic part we get

3 =

∫
R3

d3zρ(x− z)[
δ(|t| − |z − q0|)

−n0 ∧ v0

(1± n0 · v0) |z − q0|
+ 1B|t|(q0)(z)

(
∓n± ∧ e±t (z)

)]
=

∫
R3

d3zρ(x− z)

[
δ(|t| − |z − q0|)

−n0 ∧ v0

(1± n0 · v0) |z − q0|
+ 1B|t|(q0)(z)b±t (z)

]
,

or in a more compact representation

g(2)
ρ (t,x) =

(
1 + 2

3

)
=

∫
R3

d3zρ(x− z)
[
r±t,(q0,p0)(z) + 1B|t|(q0)(z)f±t (z)

]
,

with

r±t,(q0,p0)(z) :=
δ(|t| − |z − q0|)

(1± n0 · v0)|z − q0|

(
n0 ± v0

−n0 ∧ v0

)
,

and f±t denoting the advanced/retarded Liénard-Wiechert fields, where we write f±t = f±t [q,p]
to emphasize the functional dependence of the charge trajectory (q,p). Moreover r±t,(q0,p0) is
referred to as boundary term since it is supported only on the light-cone boundary ∂B|t|(q0),
and, r±t,(q0,p0) depends on the initial position and momentum of the charge, only.

Finally, we write g(2)
ρ (t,x) for all t ∈ R as distribution in F , which we denote by g(2)

t , i.e.
for all ρ ∈ D, x ∈ R we have g(2)

t (ρx) = g
(2)
ρ (t,x). Then, we obtain

g
(2)
t = g

(2)
t [q,p] = 1B|t|(q0)f

−σ(t)
t [q,p] + r

−σ(t)
t,(q0,p0). (5.47)

ad 5. In order to compute g(1)
ρ it is essential to make explicit the functional dependence on

the trajectory (q,p) in each component of g(2)
ρ , since g(1)

ρ depends on the initial field which,
in our parameterization is a functional of the trajectory (q̃, p̃) ∈ T 2+n(R), cf. (5.34). The
distribution g(1)

t ∈ F with
g

(1)
t : ρ 7→ g(1)

ρ (t,x) (5.48)

is given by

g
(1)
t =

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f0. (5.49)
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Plugging in the explicit representation of f0 from (5.34) depending on (q̃, p̃), an initial free
field fh0 , and a parameter λ ∈ [0, 1], we obtain

g
(1)
t =λ

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f−0 [q̃, p̃] (5.50)

+ (1− λ)

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f+

0 [q̃, p̃] (5.51)

+

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ fh0 . (5.52)

Making use of Lemma 4.2.1 (Properties of Liénard-Wiechert fields) which guarantees that the
Liénard-Wiechert fields f±t [q̃, p̃] solve the Maxwell equations, of item 3., which shows that
gρ from (5.30) solves the Maxwell equations (3.7), of Lemma 4.2.3 (Inhomogeneous Maxwell
solutions) which states that the Maxwell solution is unique for predetermined initial values,
and of Lemma 4.2.2 (Homogeneous Maxwell solutions), stating that the homogeneous Maxwell
equations with initial value fh0 have a unique solution fh(·) : t 7→ fht , we can simplify the three
summands (5.50)-(5.52) with the aid of the following two equations(

∂t ∇∧
−∇∧ ∂t

)
Kt ∗ f±0 [q̃, p̃] = f±t [q̃, p̃]− f (2)

t [q̃, p̃] (5.53)(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ fh0 = fht . (5.54)

Plugging in the solution formula in (5.47) for the field component g(2)
t [q̃, p̃] in (5.53) we get

g
(1)
t =λ

(
f−t [q̃, p̃]− r−σ(t)

t,(q0,p0) − 1B|t|(q0)f
−σ(t)
t [q̃, p̃]

)
+ (1− λ)

(
f+
t [q̃, p̃]− r−σ(t)

t,(q0,p0) − 1B|t|(q0)f
−σ(t)
t [q̃, p̃]

)
+ fht .

ad 6. Plugging this result together with (5.47) into (5.30), we arrive at the representation

f t =1B|t|(q0)

(
f
−σ(t)
t [q,p]− f−σ(t)

t [q̃, p̃]
)

(5.55)

+ λf−t [q̃, p̃] + (1− λ)f+
t [q̃, p̃] (5.56)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (5.57)

+ fht , (5.58)

for the field f t ∈ F which is equal to the representation (4.12)-(4.17).
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5.4 Regularity of the Maxwell fields

In this section we aim to prove Lemma 4.2.4 (Regularity of f t). Therefore, Lemma 5.4.1
(Compatibility Conditions) is needed. Before presenting this Lemma we need to introduce
some notation that will be used throughout this section, first.

Definition 5.4.1 (Light-cone limit). Let (t,x) 7→ h(t,x) be a function, (q,p) a strictly time-
like charge trajectory in T 2+n(R), and (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)}. We write

lim
(t,x)↑(t∗,x∗)

h(t,x) = L (5.59)

if and only if for all (tn,xn)n∈N with (tn,xn) ∈
◦

Jσ(t∗)(0, q0) ∩Dq ∩Dq̃
lim
n→∞

(tn,xn) = (t,x) ⇒ lim
n→∞

h(tn,xn) = L. (5.60)

Analogously, we write
lim

(t,x)↓(t∗,x∗)
h(t,x) = L (5.61)

if and only if for all (tn,xn)n∈N with (tn,xn) ∈ (Rσ(t∗) × R3) \ Jσ(t∗)(0, q0)

lim
n→∞

(tn,xn) = (t,x) ⇒ lim
n→∞

h(tn,xn) = L, (5.62)

where for t∗ < 0, Rσ(t∗) ≡ (−∞, 0) and for t∗ > 0, Rσ(t∗) ≡ (0,∞).
If both lim(t,x)↑(t∗,x∗) h(t,x) = L and lim(t,x)↑(t∗,x∗) h(t,x) = L coincide, we write

lim
(t,x)→(t∗,x∗)

h(t,x) = L. (5.63)

It should be noted that whenever (t,x) ↑ (t∗,x∗) occurs in this section, (t∗,x∗) is located
on the boundary of the light-cone of the initial charge position of the considered charge tra-
jectory, ∂J(0, q0) \ {(0, q0)}, and (t,x) approaches (t∗,x∗) from the inner of that light-cone.
Moreover, by Definition 5.4.1 (Light-cone limit), (t,x) is always in the same half-space as
(t∗,x∗), i.e., for t∗ > 0 only sequences (tn,xn)n∈N in the forward light-cone are considered
and for t∗ < 0 sequences in the backward light-cone are considered. Thus, the notation from
Definition 5.4.1 (Light-cone limit) goes along with σ(t) = σ(t∗). Respectively, (t,x) ↓ (t∗,x∗)
denotes the limit from outside of the light-cone.

Secondly, we shall use the equivalent notations in order to distinguish the two cases of
t∗ > 0 and t∗ < 0: The expression

lim
(t,x)↑(t∗,x∗)

h−σ(t)(t,x) = lim
(t,x)↑(t∗,x∗)

h−σ(t∗)(t,x) (5.64)

shall be written as
lim

(t,x)↑(t∗,x∗)
h±(t,x), (5.65)

where ± (or later also ∓) serves as placeholder for the two cases t∗, t ≶ 0. This short-hand
notation will be convenient, since we consider only retarded Liénard-Wiechert fields on the
forward light-cone and advanced Liénard-Wiechert fields on the backward light-cone of the
initial charge position. Note that an analogous notation has already been applied in the proof
of Theorem 4.2.1 (Explicit Maxwell solutions) in order to distinguish the two cases of positive
and negative times.
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Lemma 5.4.1 (Compatibility Conditions). Let n,m, k ∈ N0, α ∈ N3
0, and (q,p), (q̃, p̃) strictly

time-like charge trajectories in T 2+n(R) such that q0 := qt=0 and q̃0 := q̃t=0 coincide. Further
denote p0 := pt=0 and p̃0 := p̃t=0.

(i) The expression r−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (cf. (4.16)) vanishes if and only if p0 = p̃0.

(ii) Let p0 = p̃0. For all (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} and all |α|+ k ≤ m with m ≤ n

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
f
−σ(t)
t [q,p](x)− f−σ(t)

t [q̃, p̃](x)
)

= 0 (5.66)

if and only if

lim
t→0

dl

dtl
qt = lim

t→0

dl

dtl
q̃t, ∀ 0 ≤ l ≤ 2 +m. (5.67)

In order to prove Lemma 5.4.1 (Compatibility Conditions) we make use of the auxiliary
Lemma 5.4.2 (Explicit form of derivatives) below in which the algebraic form of derivatives of
the Liénard-Wiechert fields is studied.

In its formulation and the corresponding proof we make use of the following notation. Re-
call the definition t± = t±q (t,x) from (4.7) and below. For a compact notation, for any l ∈ N0,

t ∈ R, x ∈ R3 we use the abbreviation, q(l)
0 :=

(
d
ds

)l
qs|s=0 and q(l)± :=

(
d
ds

)l
qs|s=t±q (t,x). For

l = 0 we omit the upper index and write q0 and q±. For the first derivative we shall also stick
to the common notation introduced in (4.7) and (4.19) and use v0 ≡ q(1)

0 and v± ≡ q(1)±. For
the second derivatives we use a0 ≡ q(2)

0 and a± ≡ q(2)±. Moreover, we recycle the notation
n0 := x−q0

|x−q0|
and n± := x−q±

|x−q±| from (4.7) and (4.19). Whenever [. . .]± occurs all arguments
in the squared bracket that require a time argument are evaluated at the time t± = t±q (t,x).

Lemma 5.4.2 (Explicit form of derivatives). Let n,m, k ∈ N0, α ∈ N3
0, (q,p) ∈ T 2+n(R) be a

charge trajectory, and the map (t,x) 7→ e±t [q,p](x) denote the electric advanced and retarded
Liénard-Wiechert field of (q,p); see (4.6).

(i) Then, for each |α|+ k ≤ n, there exists a function

(t,x) 7→ h±α,k(t,x) = h±α,k(x, q
±, . . . , q(|α|+k+1)±) ∈ C1+n−|α|−k(Dq,R3) (5.68)

such that for all (t,x) ∈ Dq

∂ktD
α
xe
±
t [q,p](x) = h±α,k(x, q

±, . . . , q(|α|+k+1)±)

+
(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi
[
n ∧

[
(n± v) ∧ q(|α|+k+2)

]
(1± n · v)3|x− q|

]±
.

(5.69)
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(ii) In particular, for any (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)}

lim
(t,x)↑(t∗,x∗)

∂ktD
α
xe
±
t [q,p](x) = h±α,k(x

∗, q0, . . . , q
(|α|+k+1)
0 )

+ lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi
n0 ∧

[
(n0 ± v0) ∧ q(|α|+k+2)

0

]
(1± n0 · v0)3|x− q0|

,

(5.70)

where the index ± corresponds to the cases t∗, t ≶ 0.

One should note that in the function h±α,k there is no further dependence on the trajectory
but the given arguments, and therefore for q± = q̃±, . . . , q(|α|+k+1)± = q̃(|α|+k+1)± it follows

h±α,k(x, q
±, . . . , q(|α|+k+1)±) = h±α,k(x, q̃

±, . . . , q̃(|α|+k+1)±). (5.71)

Moreover, Lemma 5.4.2 (Explicit form of derivatives) is the essential tool for showing (5.66)
in Lemma 5.4.1 (Compatibility conditions), (ii). The idea is to extract the parameter with
the highest derivative of the charge trajectory from the other terms such that in an inductive
argument only the extracted term needs to be investigated.

Proof. (i) By assumption (q,p) ∈ T 2+n(R) is strictly time-like. In order to study the
regularity of the function (t,x) 7→ h±α,k(t,x) we shall need the following ingredients:

(*1) Lemma 5.1.1 (t±), (ii), states that for all α ∈ N3
0, k ∈ N0 such that k+|α| ≤ 2+n the

map (t,x) 7→ Dα
x∂

k
t t
±
q (t,x) is in C2+n−|α|−k(Dq,R) and Dα

x∂
k
t t
±
q (t,x) is a function

of x, d
l

dsl
qs
∣∣
s=t±q (t,x)

, l = 0, . . . , k + |α|, only.
In particular, (t,x) 7→ t±q (t,x) ∈ C2+n(Dq,R) and t±q (t,x) depends on x, q±.

(*2) The function (t,x) 7→ n± = ns|s=t±q (t,x) ∈ C
2+n(Dq,R3) because it is composed

of s 7→ ns ∈ C2+n(Dq,R3) and (t,x) 7→ t±q (t,x) ∈ C2+n(Dq,R) (cf. (*1)) and n±

depends on x, q± by definition.
The first partial derivatives ∂t, ∂xi , i = 1, 2, 3 applied to (t,x) 7→ n± are each
functions in C1+n(Dq,R3) depending on x, q±,v±.
Correspondingly, (t,x) 7→ v± = vs|s=t±q (t,x) ∈ C

2+n(Dq,R3) because it is composed
of s 7→ vs ∈ C2+n(Dq,R3) and (t,x) 7→ t±q (t,x) ∈ C2+n(Dq,R).

For 0 ≤ l ≤ 2 + n, (t,x) 7→ q(l)± = dl

dsl
qs|s=t±q (t,x) ∈ C

2+n−l(Dq,R3) because it is

composed of s 7→ dl

dsl
qs ∈ C2+n−l(Dq,R3) and (t,x) 7→ t±q (t,x) ∈ C2+n(Dq,R).

(*3) Let p ∈ {1, 2}. The function (t,x) 7→ 1/((1 ± n± · v±)3|x − q±|p) = 1/((1 ± ns ·
vs)

3|x − qs|p)|s=t±q (t,x) is in C1+n(Dq,R) because of (*1) , (*2), and the fact that
sups∈R |1±n± · v±| > 0 for strictly time like charge trajectories (q,p) ∈ T 2+n(R).
The expression depends on x, q±,v±, only.
The first derivative, i.e., ∂t or ∂xi , i = 1, 2, 3 applied to (t,x) 7→ 1/((1±n± ·v±)3|x−
q±|p), is in ∈ Cn(Dq,R) and depends on the parameters x, q±,v± ≡ q(1)±, q(2)±,
only.
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(cf. proof of Lemma 4.2.1 (Properties of Liénard-Wiechert fields), where this ex-
pression has been discussed in more detail. Moreover, recall from this proof and
the proof of Lemma 5.1.1 (t±) that the charge trajectory needs to be excluded from
the domain and is the only singularity to deal with in the above expression.)

With these ingredients we turn to the actual proof, which is done by means of induction
over the order |α|+ k.

Base case: Let |α|+k = 0. Then, by definition of the Liénard-Wiechert field, cf. (4.6)
and (4.7),

∂ktD
α
xe
±
t [q,p](x) = e±t [q,p](x) =

[
(n± v)(1− v2)

|x− q|2(1± n · v)3
+
n ∧ [(n± v) ∧ a]

|x− q|(1± n · v)3

]±
.

(5.72)
Since k = α1 = . . . = α3 = 0 the second summand corresponds to the second summand
in equation (5.69), namely,[
n ∧ [(n± v) ∧ a]

|x− q|(1± n · v)3

]±
=
(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi [n ∧ [(n± v) ∧ q(|α|+2)
]

(1± n · v)3|x− q|

]±
.

(5.73)
Therefore, we set

(t,x) 7→ h±0,0(t,x) = h±0,0(x, q±, q(1)±) :=

[
(n± v)(1− v2)

|x− q|2(1± n · v)3

]±
. (5.74)

According to (*2) and (*3) (5.74) is in C1+n(Dq,R3). Note that the (t,x)-dependence
is encoded in t± = t±q (t,x).

Inductive step: Assume that for |α| + k < n the claim holds true and consider the
derivative ∂k′t Dα′

x of order |α′| + k′ = |α| + k + 1. Then, by inductive hypothesis, there
exists a function

(t,x) 7→ h±α,k(t,x) = h±α,k(x, q
±, . . . , q(|α|+k+1)±) ∈ C1+n−k−|α|(Dq,R3) (5.75)

such that

∂k
′
t D

α′
x e
±
t [q,p](x) = ∂k

′−k
t Dα′−α

x ∂ktD
α
xe
±
t [q,p](x)

= ∂k
′−k
t Dα′−α

x

(
h±α,k(x, q

±, . . . , q(|α|+k+1)±)

+
(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi [n ∧ [(n± v) ∧ q(|α|+k+2)
]

(1± n · v)3|x− q|

]±)
.

Applying the outer derivative on the single components gives
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∂k
′
t D

α′
x e
±
t [q,p](x) = ∂k

′−k
t Dα′−α

x h±α,k(x, q
±, . . . , q(|α|+k+1)±) (5.76)

+

(
∂k
′−k
t Dα′−α

x

[(
∂tt
±
q (t,x)

)k∏3
i=1

(
∂xit

±
q (t,x)

)αi
(1± n± · v±)3|x− q±|

])
(5.77)(

n± ∧
[
(n± ± v±) ∧ q(|α|+k+2)±

])
(5.78)

+

(
∂tt
±
q (t,x)

)k∏3
i=1

(
∂xit

±
q (t,x)

)αi
(1± n± · v±)3|x− q±|

(5.79)

∂k
′−k
t Dα′−α

x

(
n± ∧

[
(n± ± v±) ∧ q(|α|+k+2)±

])
, (5.80)

where by the product rule (5.80) is given by

(5.80) = ∂k
′−k
t Dα′−α

x n± ∧
[
(n± ± v±) ∧ q(|α|+k+2)±

]
(5.81)

+ n± ∧
[
∂k
′−k
t Dα′−α

x (n± ± v±) ∧ q(|α|+k+2)±
]

(5.82)

+ n± ∧
[
(n± ± v±) ∧ ∂k′−kt Dα′−α

x q(|α|+k+2)±
]
. (5.83)

Making use of (*1)-(*3) we can study the regularity of (t,x) 7→ ∂k
′
t D

α′
x e
±
t [q,p](x) given

by formula (5.76)-(5.80). Each regularity statement is referred to parameter (t,x).

• Term (5.76) is in C1+n−|α|−k−1(Dq,R3) by inductive hypothesis and |α′| − |α| +
k′ − k = 1.

• Term (5.79), which is equal to the expression in the squared bracket in (5.77),
consists of factor 1/((1± n± · v±)3|x− q±|) which is in C1+n(Dq,R) by (*3) and
the factors ∂tt±q (t,x), ∂xit

±
q (t,x) being in C1+n(Dq,R) by (*1), and hence, is in

C1+n(Dq,R).
Moreover, the expression depends on x, q±,v±, only, by (*1) and (*3).

• Applying the derivative ∂k
′−k
t Dα′−α

x in (5.77) on the expression in the squared
bracket, where |α′| − |α| + k′ − k = 1 implies that this expression is in Cn(Dq,R)
by (*1) and (*3).
Because of (*1) and (*3) it depends on the parameters x, q±, . . . , q(2)±, only.

• Term (5.78) is in C2+n−(|α|+k+2)(Dq,R3), since n± and v± are in C1+n(Dq,R3)
by (*2), and therefore, the expression is as regular as q(|α|+k+2)±, i.e., (5.78) is in
Cn−|α|−k(Dq,R3) by (*2).
It depends on the parameters x, q±, . . . , q(|α|+k+2)±.

• For expression (5.80) we study (5.81) and (5.82) first and treat (5.83), which is the
crucial component, in the end.
Both, (5.81) and (5.82) are composed of n± in C2+n(Dq,R3), ∂k

′−k
t Dα′−α

x n± in
C1+n(Dq,R3), v± in C1+n(Dq,R3), and, the map q(|α|+k+2)± in
C2+n−(|α|+k+2)(Dq,R3).
Thus, they are both functions in Cn−|α|−k(Dq,R3). Moreover, they depend on the
parameters x, q±, . . . , q(|α|+k+2)±, only. This item is due to (*2).
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Putting this together, we define the function

(t,x) 7→ h±α′,k′(x, t) = h±α′,k′(x, q
±, . . . , q(|α|+k+2)±)

= (5.76) + (5.77) · (5.78) + (5.79) · (5.81) + (5.79) · (5.82)

and find h±α′,k′ ∈ C
n−|α|−k(Dq,R3).

Now, carrying out the derivation in (5.83), we obtain

∂k
′
t D

α′
x e
±
t [q,p](x) = h±α′,k′(x, q

±, . . . , q(|α|+k+2)±)

+

(
∂tt
±
q (t,x)

)k · . . . · (∂x3t±q (t,x)
)α3 · ∂k′−kt Dα′−α

x t±q (t,x)

(1± n± · v±)3|x− q±|(
n± ∧

[
(n± ± v±) ∧ q(|α|+k+3)±

])
,

where the factor ∂k
′−k
t Dα′−α

x t±q (t,x) arises by applying the chain-rule

∂k
′−k
t Dα′−α

x q(k+|α|+2)± = q(|α|+k+3)±∂k
′−k
t Dα′−α

x t±q (t,x), (5.84)

and thus,

∂k
′
t D

α′
x e
±
t [q,p](x) = h±α′,k′(x, q

±, . . . , q(|α|+k+2)±)

+

(
∂tt
±
q (t,x)

)k · . . . · (∂x3t±q (t,x)
)α′3

(1± n± · v±)3|x− q±|(
n± ∧

[
(n± ± v±) ∧ q(|α|+k+3)±

])
,

respectively. This concludes the induction.

(ii) It remains to prove the last statement of Lemma 5.4.2 (Explicit form of derivatives),
namely, (5.70). Let therefore (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} ⊂ Dq. Again, ± corre-
sponds to the cases t∗, t ≶ 0.

For the limit (t,x) ↑ (t∗,x∗) it follows

lim
(t,x)↑(t∗,x∗)

t±q (t,x) = t±q (t∗,x∗) = 0, (5.85)

by geometrical reasoning and the intermediate value theorem, cf. proof of Lemma 5.1.1
(t±), (i).

By the assumption (q,p) ∈ T 2+n(R), the continuity of (t,x) 7→ h±α,k(t,x), and (5.85), it
follows

lim
(t,x)↑(t∗,x∗)

h±α,k(t,x) = h±α,k(t
∗,x∗), (5.86)
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which, writing it as function of the arguments, gives

h±α,k

(
x∗, lim

(t,x)↑(t∗,x∗)
q±, . . . , lim

(t,x)↑(t∗,x∗)
q(|α|+k+1)±

)
= h±α,k(x

∗, q0, . . . , q
(|α|+k+1)
0 ).

(5.87)
Therefore, by (q,p) ∈ T 2+n(R) and (5.85)

lim
(t,x)↑(t∗,x∗)

∂ktD
α
xe
±
t [q,p](x) = lim

(t,x)↑(t∗,x∗)
h±α,k(x, q

±, . . . , q(|α|+k+1)±)

+ lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi
lim

(t,x)↑(t∗,x∗)

[
n ∧

[
(n± v) ∧ q(|α|+k+2)

]
(1± n · v)3|x− q|

]±
= h±α,k(x

∗, q0, . . . , q
(|α|+k+1)
0 )

+ lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi
n0 ∧

[
(n0 ± v0) ∧ q(|α|+k+2)

0

]
(1± n0 · v0)3|x− q0|

.

(5.88)
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Proof of Lemma 5.4.1. (Compatibility Conditions)

(i) We show, that r−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) = 0 (cf. (4.16)) if and only if p0 = p̃0.

We shall use the notation from Theorem 4.2.1 (Explicit Maxwell solutions), namely,

n0 :=
x− q0

|x− q0|
, v0 := v(p0), ṽ0 := v(p̃0). (5.89)

By the definition in (4.19), q̃0 = q0, and (4.16) it is sufficient to show that

1

1± n0 · v0

(
n0 ± v0

−n0 ∧ v0

)
=

1

1± n0 · ṽ0

(
n0 ± ṽ0

−n0 ∧ ṽ0

)
, (5.90)

for all (t,x) ∈ Dq ∩∂J(0, q0) is equivalent to p0 = p̃0, where ± serves as placeholder for
either + in the case t < 0 and − in the case t > 0.

First, let us assume (5.90) holds for all (t,x) ∈ Dq ∩ ∂J(0, q0). Since, there is no t-
dependence in (5.90) it is equivalent to state that (5.90) holds for all x ∈ R3 \ {q0}.
This implies, that n0 6= 0. Moreover, 1 ± n0 · v0, 1 ± n0 · ṽ0 6= 0 by the assumption
(q,p), (q̃, p̃) strictly time-like. We distinguish the following two cases:

• Let v0 = 0. Then, n0 ± v0 = n0 6= 0 and therefore n0 ± ṽ0 6= 0. The first line of
(5.90) then gives

n0 ‖ n0 ± ṽ0, ∀x ∈ R3 \ {q0}. (5.91)

Assume ṽ0 6= 0. Then, ∃ c ∈ R \ {0} such that (1− c)n0 = ±cv0. Since this needs
to hold for all x ∈ R3 \ {q0} the assumption leads to a contradiction, and thus,
ṽ0 = 0 and p0 = p̃0.

• Let v0 6= 0. Let M := {x ∈ R3 \ {q0} : n0,v0 linearly independent}. For x ∈ M
it holds n0 ∧ v0 6= 0 and therefore by the second line of (5.90) n0 ∧ ṽ0 6= 0. This
implies

n0 ∧ v0 ‖ n0 ∧ ṽ0, ∀x ∈M. (5.92)

By definition of the outer product ṽ0 has to lie on the surface spanned by the
vectors n0 and v0. Consequently, there exist reals α, β ∈ R with ṽ0 = αn0 + βv0.
As for x ∈M it follows n0 ± v0 6= 0 and in return n0 ± ṽ0 6= 0, we find

n0 ± v0 ‖ n0 ± (αn0 + βv0) = (1± α)n0 ± βv0 ∀x ∈M (5.93)

by the first line of equation (5.90). Since there exists a x ∈M such that n0 and v0

are linearly independent, it follows β = 1±α, and in return, ṽ0 = α(n0 ± v0) + v0

for all x ∈M . Since n0 ± v0 6= 0 for x ∈M and by the choice of x ∈M , n0 ± v0

may point in almost any direction, it follows α = 0, β = 1, and hence, ṽ0 = v0 and
p̃0 = p0.

On the other hand, p̃0 = p0 implies immediately that (5.90) is true for all (t,x) ∈
Dq ∩ ∂J(0, q0).



82 5. Proofs

(ii) By assumption of the claim, we have (q,p), (q̃, p̃) ∈ T 2+n(R) strictly time-like with
q0 = q̃0 and p0 = p̃0. Further fix m ≤ n throughout this proof.

We show, that for all (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} and |α|+ k ≤ m

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
f
−σ(t)
t [q,p](x)− f−σ(t)

t [q̃, p̃](x)
)

= 0 (5.94)

is equivalent to
q

(l)
0 = q̃

(l)
0 , ∀ 0 ≤ l ≤ 2 +m. (5.95)

Note that by virtue of (5.64)-(5.65), we continue in the equivalent notation, where ± or
∓ correspond to the cases t∗, t ≶ 0, i.e., we write ± for −σ(t) and ∓ for σ(t).

First, we show, that the equivalence holds for the electric field component, i.e., that the
following statements are equivalent:

(*1) For all |α|+ k ≤ m and all (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} it holds

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
e±t [q,p](x)− e±t [q̃, p̃](x)

)
= 0. (5.96)

(*2) q̃0 = q0, . . . , q̃
(2+m)
0 = q

(2+m)
0 .

Assume statement (*1) holds. We show by induction over m that statement (*2) holds:

Base case: For m = 0 item (*1) reads

lim
(t,x)→(t∗,x∗)

e±t [q,p](x)− e±t [q̃, p̃](x) = 0. (5.97)

For all (t∗, q∗) ∈ ∂J(0, q0)\{(0, q0)} it holds that t±q (t∗,x∗) = 0 = t±q̃ (t∗,x∗). Moreover,
by assumption we have q̃0 = q0 and p̃0 = p0. Plugging this in, the first summands of
the Liénard-Wiechert fields cancel each other and it remains

n∗0 ∧ [(n∗0 ± v0) ∧ (a0 − ã0)]

(1± n∗0 · v0)3|x∗ − q0|
= 0 (5.98)

where we used the notation n∗0 := (x∗ − q0)/|x∗ − q0|.
It should be noted, that though the light-cone ∂J(0, q0) \ {(0, q0)} covers each space
coordinate in R3 \ {q0}, the corresponding time coordinate does not appear but in form
of advanced and retarded times, which are 0 in this limit. Thus, (5.98) holds true for all
x∗ ∈ R3 \ {q0}. And hence, at least one of the following statements is true:

(a) a0 − ã0 = 0

(b) ∀x∗ ∈ R3 \ {q0} : n∗0 ± v0 ‖ a0 − ã0

(c) ∀x∗ ∈ R3 \ {q0} : n∗0 ‖ (n∗0 ± v0) ∧ (a0 − ã0)

Item b) and c) cannot be fulfilled because in case on finds an x∗ for which the statement
is true, there are other x∗ such that the statement is violated. Therefore, it follows
a0 − ã0 = 0, which implies statement (*2) to be true for m = 0.
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Inductive step: Now, assume that the implication (∗1)⇒ (∗2) is true for m < n. We
show, that this implies the claim to be true for 1 +m.

Assume (*1) is true for 1 +m, i.e., for all k + |α| ≤ 1 +m it holds

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
e±t [q,p](x)− e±t [q̃, p̃](x)

)
= 0. (5.99)

Recall, that the limit is such that (t,x) always lies in the same half space as (t∗,x∗).

By induction hypothesis this implies q̃0 = q0, . . . , q̃
(2+m)
0 = q

(2+m)
0 . Therefore, making

use of Lemma 5.4.2 (Explicit form of derivatives) we can transform (5.99) for |α|+ k =
1 +m by

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
e±t [q,p](x)− e±t [q̃, p̃](x)

)
= h±α,k(x

∗, q0, . . . , q
(2+m)
0 )− h±α,k(x

∗, q0, . . . , q
(2+m)
0 )

+ lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂xit

±
q (t,x)

)αi
n∗0 ∧

[
(n∗0 ± v0) ∧ (q

(3+m)
0 − q̃(3+m)

0 )
]

(1± n∗0 · v0)3|x− q0|

= lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)k 3∏
i=1

(
∂x3t

±
q (t,x)

)α3

n∗0 ∧
[
(n∗0 ± v0) ∧ (q

(3+m)
0 − q̃(3+m)

0 )
]

(1± n∗0 · v0)3|x− q0|
= 0,

(5.100)

where, again, the abbreviation n∗0 := (x∗ − q0)/|x∗ − q0| has been used.

We recall formula (5.2) for the derivatives of the advanced and retarded time function,
which gives ∂tt±(t,x) = 1

1±n·v
∣∣± and ∂xit±(t,x) = ±ni

1±n·v
∣∣± for i = 1, 2, 3 and in partic-

ular

lim
(t,x)↑(t∗,x∗)

(
∂tt
±
q (t,x)

)α0

3∏
i=1

(
∂xit

±
q (t,x)

)αi
=

(
1

1± n∗0 · v0

)k 3∏
i=1

( ±n∗0,i
1± n∗0 · v0

)αi
6= 0

since x∗ ∈ R3 \ {q0} for (t∗,x∗) ∈ J(0, q0) \ {(0, q0)}.
Therefore, it follows from (5.100)

n∗0 ∧
[
(n∗0 ± v0) ∧ (q

(3+m)
0 − q̃(3+m)

0 )
]

= 0. (5.101)

Analogously to the the base case, (5.101) needs to be met for all x∗ ∈ R3 \ {q0} because
the light-cone boundary ∂J(0, q0) \ {(0, q0)} covers exactly these space points and the
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dependence on t∗ disappears since it only appears in the advanced and retarded times
and t±q (t∗,x∗) = 0 = t±q̃ (t∗,x∗).

Accordingly to the base case of the induction, this implies that at least one of the
following statements needs to hold true:

(a) q(3+m)
0 − q̃(3+m)

0 = 0

(b) ∀x∗ ∈ R3 \ {q0} : n∗0 ± v0 ‖ a0 − ã0

(c) ∀x∗ ∈ R3 \ {q0} : n∗0 ‖ (n∗0 ± v0) ∧ (a0 − ã0)

Again, analogously to the base case, item b) and item c) can not be fulfilled for all
x∗ ∈ R3 \{q0}, and therefore, q̃(3+m)

0 = q
(3+m)
0 . Hence, we have shown that (∗1) implies

(∗2).

Second, it is left to show (∗2) ⇒ (∗1). By Lemma the explicit representation of the
derivatives in 5.4.2 (Explicit form of derivatives), item (∗2), i.e., q̃0 = q0, . . . , q̃

(2+m)
0 =

q
(2+m)
0 , implies that for all k + |α| ≤ m

lim
(t,x)↑(t∗,x∗)

∂ktD
α
xe
±
t [q,p](x) (5.102)

and
lim

(t,x)↑(t∗,x∗)
∂ktD

α
xe
±
t [q̃, p̃](x) (5.103)

coincide, and therefore, (∗1) holds true.

To conclude the proof, it remains to prove that the assumption q̃0 = q0, . . . , q̃
(2+m)
0 =

q
(2+m)
0 also implies

lim
(t,x)↑(t∗,x∗)

∂ktD
α
x

(
b±t [q,p](x)− b±t [q̃, p̃](x)

)
= 0 (5.104)

for all (t∗,x∗) ∈ J(0, q0) \ {(0, q0)} and k + |α| ≤ m.

By Definition 4.2.1 (Liénard-Wiechert fields) the magnetic field due to some charge with
trajectory (q,p) ∈ T 2+n(R) at (t,x) ∈ J(0, q0) ∩Dq is given by

b±t [q,p](x) := ∓n± ∧ e±t [q,p](x), (5.105)

and therefore, by product rule, for |α|+ k ≤ n we have

∂ktD
α
xb
±
t [q,p](x) =

∑
k1+k2=k
α1+α2=α

∓∂k1t Dα1
x n

± ∧ ∂k2t Dα2
x e
±
t [q,p](x). (5.106)

With (5.106) the left hand side of (5.104) can be transformed into

lim
(t,x)↑(t∗,x∗)

∑
k1+k2=k
α1+α2=α

(
∓∂k1t Dα1

x n
± ∧ ∂k2t Dα2

x e
±
t [q,p](x)

±∂k1t Dα1
x ñ

± ∧ ∂k2t Dα2
x e
±
t [q̃, p̃](x)

)
,



5.4 Regularity of the Maxwell fields 85

which can be written as

lim
(t,x)↑(t∗,x∗)

∑
k1+k2=k
α1+α2=α

∓ ∂k1t Dα1
x n

± ∧ ∂k2t Dα2
x (e±t [q,p](x)− e±t [q̃, p̃](x))

∓ ∂k1t Dα1
x (n± − ñ±) ∧ ∂k2t Dα2

x e
±
t [q̃, p̃](x).

(5.107)

Since by assumption q̃0 = q0, . . . , q̃
(2+m)
0 = q

(2+m)
0 it follows

lim(t,x)↑(t∗,x∗) ∂
k1
t D

α1
x

(
e±t [q,p](x)− e±t [q̃, p̃](x)

)
= 0 for all |α1|+ k1 ≤ m and

lim(t,x)↑(t∗,x∗) ∂
k2
t D

α2
x

(
n± − ñ±

)
= 0 for all |α2|+k2 ≤ m because there is no trajectory

dependence beyond the α2 + kth derivative, and thus, (5.107) vanishes.
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Proof of Lemma 4.2.4. (Regularity of f t)

By condition we have (q,p), (q̃, p̃) ∈ T 2+n(R), fh0 ∈ C1+n(R3,R6), and thus, by Lemma
4.2.2 (Homogeneous Maxwell solutions) fh ∈ Cn(R4,R6). We write the Maxwell solution f
given by (4.12)-(4.17) in the shorter form

f t = 1B|t|(q0)

(
f
−σ(t)
t [q,p]− f−σ(t)

t [q̃, p̃]
)

(5.108)

+ λf−t [q̃, p̃] + (1− λ)f+
t [q̃, p̃] (5.109)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (5.110)

+ fht . (5.111)

(i) The property f ∈ Cn(Dq ∩Dq̃ \ ∂J(0, q0),R6) is a consequence of our previous results:

By Lemma 4.2.1 (Properties of Liénard-Wiechert fields), for (q,p), (q̃, p̃) ∈ T 2+n(R) the
Liénard-Wiechert fields fulfill f±t [q,p] ∈ Cn(Dq,R6) and f±t [q̃, p̃] ∈ Cn(Dq̃,R6).

By definition (4.19), the boundary terms (t,x) 7→ r±t,(q0,p0)(x) and (t,x) 7→ r±t,(q̃0,p̃0)(x)

are only supported on the light-cone boundary ∂J(0, q0).

Furthermore, since q0 = q̃0, (5.108) is in Cn(Dq ∩ Dq̃ \ J(0, q0),R6), (5.109) is in
Cn(Dq̃ \ J(0, q0),R6), and, (5.110) is in Cn(Dq ∩Dq̃ \ ∂J(0, q0),R6). As stated in the
beginning of the proof (5.111) is in Cn(R4,R6), which concludes the claim.

For the special case λ = 1 for t ≥ 0 the field writes

f t = 1B|t|(q0)f
−σ(t)
t [q,p] (5.112)

+ 1Bc|t|(q0)f
−σ(t)
t [q̃, p̃] (5.113)

+ r
−σ(t)
t,(q0,p0) − r

−σ(t)
t,(q̃0,p̃0) (5.114)

+ fht (5.115)

and fulfills f ∈ Cn(D
[0,∞)
q \ ∂J+(0, qi,0),R6), which concludes the proof.

(ii) By (i), to show that f can be evaluated in the point-wise sense on Dq ∩Dq̃, it suffices
to prove that f can be evaluated point-wise on the boundary of the light-cone ∂J(0, q0)
because f ∈ Cn(Dq∩Dq̃ \∂J(0, q0),R6) by (i). On the light-cone the only singular term
arises from (5.110) and by Lemma 5.4.1 (Compatibility Conditions) the latter vanishes
if and only if p̃0 = p0.

(iii) Let m ≤ n be given. Given q̃0 = q0, p̃0 = p0, which is necessary and sufficient for
point-wise evaluation and cancellation of (5.110), we have that (5.111) is in Cn(R4,R6),
(5.109), as function of (t,x), is in Cn(Dq̃,R6) due to Lemma 4.2.1 (Properties of Liénard-
Wiechert fields), and therefore, it remains to show that summand (5.108) as function of
(t,x) is in Cn(Dq ∩Dq̃,R6). Since (5.108) is in Cn(J(0, q0)∩Dq ∩Dq̃,R6), and, due to
the indicator function, in C∞(Jc(0, q0),R6), it suffices to verify that the light-cone limit
of (5.108) exists, i.e., we need to prove:
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For all |α|+ k ≤ m and all (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} the limit

lim
(t,x)→(t∗,x∗)

Dα
x∂

k
t

[
1B|t|(q0)

(
f
−σ(t)
t [q,p](x)− f−σ(t)

t [q̃, p̃](x)
)]

(5.116)

exists if and only if

lim
t→0

dl

dtl
qt = lim

t→0

dl

dtl
q̃t, ∀ 0 ≤ l ≤ 2 +m. (5.117)

Let (t∗,x∗) ∈ ∂J(0, q0)\{(0, q0)}, then for the outer limit, (t,x) ↓ (t∗,x∗) (cf. Definition
5.4.1 (Light-cone limit)) we find

lim
(t,x)↓(t∗,x∗)

Dα
x∂

k
t 0 = 0 (5.118)

for all |α| + k ≤ m, (t∗,x∗) ∈ ∂J(0, q0) \ {(0, q0)} and according to Lemma 5.4.1
(Compatibility conditions), (ii),

lim
(t,x)↑(t∗,x∗)

Dα
x∂

k
t

(
f
−σ(t)
t [q,p](x)− f−σ(t)

t [q̃, p̃](x)
)

= 0 (5.119)

if and only if (5.117).

In conclusion, f ∈ Cm(Dq ∩Dq̃,R6) if and only if (5.117).

Moreover, for the special case λ = 1 and the restriction to t ≥ 0 we obtain f ∈
Cn(D

[0,∞)
q ,R6) if and only if

lim
t↘0

dl

dtl
qt = lim

t↗0

dl

dtl
q̃t, ∀ 0 ≤ l ≤ 2 +m. (5.120)
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5.5 No-go theorem

In this section we prove Theorem 4.1.1 (No-go). The proof is essentially based on Theorem
4.2.1 (Explicit Maxwell solutions) and Lemma 5.4.1 (Compatibility Conditions), which was
proven in the previous section. We recall the Definitions 3.3.2 (Lorentz solutions), 3.3.3
(Maxwell solutions), and 3.3.4 (Maxwell-Lorentz solutions) in which we make precise the
notion of solutions to the Maxwell, Lorentz and Maxwell-Lorentz equations.

Proof of Theorem 4.1.1. (No-go) Let N = 2, t1 < 0 < t2, ε ∈ R3 and δ ∈ Fhom. By
assumption there is a Maxwell-Lorentz solution

(q̃i, p̃i, f̃ i)i=1,2 (5.121)

on [t1, t2] having the initial value

(q̃i,0, p̃i,0, f̃ i,0) := (q̃i,t, p̃i,t, f̃ i,t)
∣∣
t=0

, i = 1, 2 (5.122)

such that
q̃1,t1 ∈ ∂J

−(0, q̃2,0), q̃2,t2 ∈ ∂J
+(0, q̃1,0), (5.123)

and, that (q̃2, p̃2) is the unique Lorentz solution for f̃1 and (q̃2,t, p̃2,t)
∣∣
t=0

= (q̃2,0, p̃2,0).

We shall now show that there is no Maxwell-Lorentz solution (qi,pi,f i)i=1,2 on [0, t2] such
that

(q1,t,p1,t,f1,t)
∣∣
t=0

= (q̃1,0, p̃1,0 + ε, f̃1,0) (5.124)

(q2,t,p2,t,f2,t)
∣∣
t=0

= (q̃2,0, p̃2,0, f̃2,0 + δ) (5.125)

unless ε = 0 and L(q̃1,0, p̃1,0, δ) = 0, cf. (1.5). (Recall Figure 4.1 for an illustration of the
setting.)

We aim at a proof by contradiction. Therefore, for either ε 6= 0 or L(q̃1,0, p̃1,0, δ) 6= 0
or both, let us assume that there is a Maxwell-Lorentz solution (qi,pi,f i)i=1,2 on [0, t2]
fulfilling (q1,0,p1,0,f1,0) := (q1,t,p1,t,f1,t)

∣∣
t=0

= (q̃1,0, p̃1,0 + ε, f̃1,0) and (q2,0,p2,0,f2,0) :=

(q2,t,p2,t,f2,t)
∣∣
t=0

= (q̃2,0, p̃2,0, f̃2,0 + δ). The proof is divided into the following five steps:

1. As preparation, which allows the application on Theorem 4.2.1 (Explicit Maxwell solu-
tions), we extend the two solution charge trajectories of charge 1:

• Given the Maxwell-Lorentz solution (q̃i, p̃i, f̃ i)i=1,2 on the interval [t1, t2] we extend
(q̃1, p̃1) ∈ T 2([t1, t2]) to a strictly time-like (q̃1, p̃1) ∈ T 2(R) in an arbitrary smooth
way; red dashed line in Figure 4.1.

• Given (q1,p1) ∈ T 2([0, t2]) we extend it smoothly to a strictly time-like (q1,p1) ∈
T 2(R) in an arbitrary smooth way; green dashed line in Figure 4.1.

• Note that by definition, q1,0 = q̃1,0 and f1,0 ∈ Fq1,0 .
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2. The strictly time-like charge trajectories (q1,p1), (q̃1, p̃1) ∈ T 2(R) with q1,0 = q̃1,0 and
f1,0 ∈ Fq1,0 as ingredients allow to apply Theorem 4.2.1 (Explicit Maxwell solutions)
for λ = 1 and n = 0 to express the field f̃1,t for all t > 0 as follows:

f̃1,t = f−t [q̃1, p̃1]

+ f̃
h
1,t

(5.126)

with
f̃
h
1,t = Wt

[
f̃1,0 − f−0 [q̃1, p̃1]

]
, (5.127)

where the latter is well-defined as f̃1,0 ∈ Fq1,0 , f
−
0 [q̃1, p̃1] ∈ Fq1,0 , and thus, f̃1,0 −

f−0 [q̃1, p̃1] ∈ Fhom which follows directly by definition of the homogeneous and inhomo-
geneous Maxwell constraints (3.2) and (3.3).

Applying Theorem 4.2.1 (Explicit Maxwell solutions) again results in the following rep-
resentation of the field f1,t:

f1,t = 1Bt(q0)f
−
t [q1,p1]

+ 1Bct (q0)f
−
t [q̃1, p̃1]

+ r−t,(q1,0,p1,0) − r
−
t,(q̃1,0,p̃1,0)

+ f̃
h
1,t,

(5.128)

where we used fh1,t = f̃
h
1,t, which holds true because:

• By assumption it holds f1,0 = f̃1,0, and thus, fh1,0 = f̃
h
1,0 by the definition in (4.18)

for λ = 1.
• By Lemma 4.2.2 (Homogeneous Maxwell solutions) the homogeneous Maxwell evo-

lution is unique, i.e., fh1,t = Wtf
h
1,0 = Wtf̃

h
1,0 = f̃

h
1,t.

3. For the difference of the two fields we obtain

f1,t − f̃1,t = 1Bt(q0)(f
−
t [q1,p1]− f−t [q̃1, p̃1])

+ r−t,(q̃1,0,p̃1,0+ε) − r
−
t,(q̃1,0,p̃1,0),

(5.129)

where we used q1,0 = q̃1,0 and p1,0 = p̃1,0 + ε. In particular, f1,t = f̃1,t on the open set
J(0, q1,0)c ∩ (R+ × R3) and by Lemma 5.4.1 (Compatibility Conditions) we have

(∗1) ε 6= 0⇒ f1,t − f̃1,t cannot be evaluated at x ∈ ∂J+(0, q1,0);

(∗2) L(q̃1,0, p̃1,0, δ) 6= 0, i.e., ṗ1,t|t=0 6= ˙̃p1,t|t=0 ⇒ f1,t − f̃1,t is not continuous at
x ∈ ∂J+(0, q1,0).

4. By assumption (q̃2, p̃2) is the unique Lorentz solution for f̃1 on [0, t2), but, as for all
t ∈ [0, t2) we have

L(q̃2,t, p̃2,t, f̃1,t) = L(q̃2,t, p̃2,t,f1,t), (5.130)

it is also the unique Lorentz solution for f1 on [0, t2). Hence, for all t ∈ [0, t2) we have
(q̃2,t, p̃2,t) = (q2,t,p2,t).
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Since (q̃2, p̃2), (q2,p2) ∈ T ([t1, t2]) we may compute

lim
t→t2

q2,t

p2,t

ṗ2,t

−
q̃2,t2
p̃2,t2
˙̃p2,t2

 = 0. (5.131)

5. By item 3., 4., the Lorentz equation and the linearity of the latter

d

dt
p2,t −

d

dt
p̃2,t = L(q2,t,p2,t,f1,t)− L(q̃2,t, p̃2,t, f̃1,t)

= L(q2,t,p2,t,f1,t − f̃1,t)

= 0

even for t = t2. This leads to a contradiction since for ε 6= 0, (f1,t2 − f̃1,t2)(x) does not
exist at x = q2,t2 by (∗1) and, for L(q̃1,0, p̃1,0, δ) 6= 0, it is not continuous at x = q2,t2 ,
by (∗2).

Hence, (q2,p2) /∈ T 2([0, t2]), and therefore, there is no Maxwell-Lorentz solution in the
sense of Definition 3.3.4 (Maxwell-Lorentz solutions) (qi,pi,f i)i=1,2 on [0, t2] with initial
value (4.4)-(4.5), unless,

ε = 0 ∧ L(q̃1,0, p̃1,0, δ) = 0. (5.132)

We recall the physical explanation, why the modification in Theorem 4.1.1 (No-go) leads
to an ill-posed initial value problem: As can be taken from the field representation formula
in Theorem 4.2.1 (Explicit Maxwell solutions), after the modification, the field generated by
charge 1 features an irregularity located on the boundary of the light-cone ∂J(0, q1,0); cf.
Lemma 4.2.4 (Regularity of f t). Unless charge 2 moves with the speed of light, there exists a
finite time t2 ∈ R+, where the solution charge trajectory (q̃2, p̃2) would cross the light-cone
boundary ∂J(0, q1,0). In the perturbed case the force on charge 2 due to charge 1 does not
change until that time t2 and if existent up to that point the solution trajectory (q2,p2) would
fulfill

∀ t ∈ [0, t2) : q2,t = q̃2,t. (5.133)

At time t2, however, the modified dynamics stop as f1,t2(q2,t2) can not be evaluated or is
discontinuous, which prevents us from computing the force on charge 2. Thus, the dynamics
ceases to exist beyond that time instant. At most one can have piece-wise well-posedness in
the sense of Definition 3.3.4 (Maxwell-Lorentz solutions) when extending this solution sense
in an appropriate way.
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5.6 Solutions to the Maxwell-Lorentz equations

In this section we prove Theorem 4.3.1 (Existence of Maxwell-Lorentz solutions) and start by
recalling the setting of the theorem, which was presented in Chapter 4.

The parameters n ∈ N and d > 0 are considered to be fixed in this section and control
the regularity of the solutions and potential particle collisions by stopping the dynamics when
particle distances attain the value d. Moreover, (q̃i, p̃i)i∈N denotes a predetermined history for
initial time t(0) = 0 fulfilling (H0)-(H2). The tuple (f i,0)i∈N of initial fields is parameterized
and restricted by

f i,0 = f−[q̃i, p̃i] + fhi,0, for fhi,0 ∈ Fhom ∩ C1+n(R3,R6), i ∈ N ,

cf. (4.24), which implies, by means of Theorem 4.2.1 (Explicit Maxwell solutions) and Remark
4.2.2, (ii), that for i ∈ N the unique Maxwell solution f i with initial value f i,0 is given by

f i,t(x) := f−t [q̃i, p̃i](x) + fhi,t(x), ∀ (t,x) ∈ R4 \
◦
J+(t(0), q̃i,t(0)), i ∈ N ,

where fhi,t := Wtf
h
i,0 is the unique homogeneous Maxwell solution with initial value fhi,0; cf.

(4.27).

Furthermore, for any charge i ∈ N , we denote the union of two trajectory pieces (q̃i, p̃i) ∈
T 2((−∞, t(0)] and (qi,pi) ∈ T 2([t(0), t∗]) by

(q̃i, p̃i) ∪ (qi,pi) : (−∞, t∗]→ R6

t 7→
{

(q̃i,t, p̃i,t), t ∈ (−∞, t(0)]

(qi,t,pi,t), t ∈ (t(0), t∗]
.

Recall from Chapter 4 that, even though the actual solution trajectory of charge j ∈
N , (qj ,pj), is unknown for t > t(0), the field due to charge j can be evaluated for all

(t,x) ∈ R4 \
◦
J+(t(0), q̃j,t(0)) by virtue of t−q̃j (t,x) and the fact that the charge history (q̃j , p̃j)

is strictly time-like; cf. Definition 4.2.1 (Liénard-Wiechert fields) and Lemma 4.2.1 (Properties
of Liénard-Wiechert fields), (ii). Thus, the force due to charge j acting on charge i 6= j can
be computed as long as charge i does not cross the light-cone boundary ∂J+(t(0), qj,t(0)).

This motivates the strategy of the proof, in which, in a first step, Lorentz solutions are
constructed up to the time, say t(1), where the first light-cone boundary ∂J+(t(0), q̃i,t(0)), i ∈ N
is hit by a solution trajectory. As we shall show in Lemma 5.6.3 (Local existence of Lorentz
solutions) this time can be estimated by t(1) > d

2 .
Using t(1) as the new initial time, one observes that the Maxwell field as given in (4.27)

can again be extended to the larger space R4 \
◦
J+(t(1), qj,t(1)).

This allows us to propagate the Lorentz solution one step further provided one can control
the regularity at the times t(m) between the steps, and hence, to compute the Maxwell fields
again on a larger set, and so on. Note that this procedure is similar to the so-called method
of steps, known from the theory of delay differential equations. However, in this case, the step
length is not fixed, as it depends on the solution trajectories from the corresponding step.
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However, as the procedure is stopped at the time of a collision only, it is guaranteed that the
step length until a potential collision is always greater than d

2 .

We start our proof with Lemma 5.6.1 (Lorentz solution of charge i on Gi), which states
the existence and uniqueness of Lorentz solutions for a single charge i on an interval [t(0), t

(1)
i ]

given the a history (q̃i, p̃i)i∈N for t(0). Note that t(0) ≥ 0 can be any initial time. This
lemma is the key ingredient for the next claim in this section, Lemma 5.6.3 (Local existence
of Lorentz solutions), which shows the existence of a unique Lorentz solution (qi,pi)i∈N for
(f i)i∈N given by (4.27) with initial value (q̃i,0, p̃i,0)i∈N on a time interval [t(0), t(1)]. Finally,
Lemma 5.6.3 (Local existence of Lorentz solutions) allows to conclude the proof of Theorem
4.3.1 (Existence of Maxwell-Lorentz solutions).

In order to formulate Lemma 5.6.1 (Lorentz solution of charge i on Gi), we define the
following set: Let i ∈ N be a charge index, then,

Gi := J+(t(0), q̃i,t(0)) \ ∪j 6=i
◦
J+(t(0), q̃j,t(0)) ⊂ R4, (5.134)

represents the space-time region in which the retarded Liénard-Wiechert fields of all charges
j 6= i can be evaluated, as they depend on the predetermined history (q̃j , p̃j), i.e., Gi is
the domain where the Lorentz equation for charge i can be solved in terms of an ordinary
differential equation. Note that, in order to keep the notation simple, the dependence on the
initial time t(0) is omitted in the symbol Gi.

Lemma 5.6.1. (Lorentz solution of charge i on Gi) Let (q̃i, p̃i)1≤i≤N be a history for t(0)

fulfilling (H0)-(H2). For charge i the following propositions hold true:

(i) (Existence) For all T > t(0), there exists a map (qi,pi) ∈ T 2([t(0), T ]) such that (qi,pi)

is a Lorentz solution of charge i for (f i)i∈N given by (4.27) on [t(0), t
(1)
i ] with

t
(1)
i := sup{t ∈ [t(0), T ] | (t, qi,t) ∈ Gi}. (5.135)

(ii) (Uniqueness) Moreover, let Λ ⊂ R be an interval containing t(0). For any Lorentz so-
lution (q̂i, p̂i) ∈ T 1(Λ,R6) for (f i)i∈N given by (4.27) on Λ with (q̂i,t, p̂i,t)|t=t(0) =
(qi,t,pi,t)|t=t(0) it follows

(q̂i,t, p̂i,t) = (qi,t,pi,t), ∀ t ∈ Λ ∩ [t(0), t
(1)
i ]. (5.136)

(iii) (Regularity) (qi,pi) ∈ T 2+n([t(0), t
(1)
i ]).

Assume T is chosen arbitrarily large. Then, the Lorentz solution (qi,pi) either hits the
boundary of the light-cone of (t(0), qj,t(0)) for some j 6= i at a finite time – according to (5.135),

the first time of intersection is called t(1)
i – or it approaches the speed of light and never leaves

the domain Gi. In the latter case, one has t(1)
i = T , and as T is arbitrarily large, one infers a

global Lorentz solution; see Figure 5.2. Such a runaway behavior is however not expected.
For two charges, Gi is always unbounded, for more than two charges the domain is, for

most charges i, in general bounded by the light-cones of initial positions of charges j 6= i,
and then, the time t(1)

i lies in between t(0) + d/2 and the time instant in which the boundary
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Figure 5.2: In the case of 2 charges i and j, the Lorentz solution of charge i either hits the
boundary of the future light-cone ∂J+(t(0), qj,t(0)) or it’s velocity approaches the speed of light
and never leaves the domain Gi.

light-cones of Gi cross each other. Only those charges located on the edge of the system may
have a corresponding domain Gi that is infinite.

Outside Gi solutions cannot be obtained because retarded Liénard-Wiechert fields due to
charges j 6= i are not defined, cf. Definition 4.2.1 (Liénard-Wiechert fields) and Lemma 4.2.1
(Properties of Liénard-Wiechert fields), (ii).

Proof. (i) Let T > t(0) ≥ 0 be given. For a compact notation we abbreviate the position and
momentum of the fixed charge i at time t by ϕt := (qi,t,pi,t), for the initial configuration
we write ϕ0 := (qi,t(0) ,pi,t(0)), respectively, and the Lorentz equation for charge i will be
abbreviated by the short hand notation

d

dt
ϕt = L(t,ϕt) with L(t,ϕt) :=

(
v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t)

)
. (5.137)

We define the sets

LTi := {(t,x) ∈ J+(t(0), qi,t(0))|t ∈ [t(0), T ]} and GTi := LTi ∩Gi, (5.138)

In general, neither Gi nor LTi is a subset of each other. Just in the case in which Gi is
bounded and T is sufficiently large, it holds Gi ⊂ LTi .
First, for all j 6= i we extend the charge history (q̃j , p̃j) to a history defined up to time
T > t(0). We will use the same symbol for the extension, i.e., for t ≤ t(0), t 7→ (q̃j,t, p̃j,t)

denotes the original history and for t ∈ (t(0), T ], t 7→ (q̃j,t, p̃j,t) denotes the extension.
By means of Definition 4.2.1 (Liénard-Wiechert fields) and Lemma 4.2.1 (Properties of
Liénard-Wiechert fields) this allows us to compute the Maxwell field of charge j 6= i on
[t(0), T ]×R3, whereas on the subset J(t(0), q̃j,t(0)) ∩ ([t(0), T ]×R3) the field f j depends
on the extension and outside it depends on the history.

We fix the extension such that for each j 6= i
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(a) the extended history (q̃j , p̃j) is in T 2+n((−∞, T ],R6), i.e., in particular it connects
smoothly to the original history at time t(0).

(b) for each time t ∈ (t(0), T ] the distance between the extended history of charge j and
the forward light-cone of charge i is greater than d

2 .

(c) the extended history (q̃j , p̃j) is strictly time-like.

For each charge history such an extension exists because at time t(0) the distance |q̃i,t(0)−
q̃j,t(0) | > d, thus, the extension of j may be chosen within a tube of diameter d2 in order to
fulfill b) without leaving the light-cone J(t(0), q̃j,t(0)). Since time T is fixed and finite, the
charge can stay in this tube without exceeding the speed of light. Thus, c) is feasible and
we can chose a trajectory strip in T 2+n((−∞, T ],R6). See Figure 5.3 for an illustration
of the extension. Note that by construction the extended history again fulfills (H0)-(H2).

Figure 5.3: Illustration of the extension of the histories of to charges j 6= i indicated by
the dashed lines. Thereby, the extension has to connect regular to the history and needs to
maintain a distance of d/2 to the light-cone of charge i (grey). This requirement implies that
|x− q̃−j | > d/4 for all (t,x) ∈ LTi .

The notation L(t,ϕt) for the force term, as well as f j,t for the fields will be maintained,
not distinguishing whether the input values come from the original history or the ex-
tension of the history. For the fields f j defined in (4.27) given the extended history
(q̃j , p̃j)j∈N , we obtain

f j ∈ Cn(Dq̃j \
◦
J+(T, q̃j,T ),R6). (5.139)

This holds true because the homogeneous field is governed by (4.26) and the retarded
Liénard-Wiechert field is n times continuously differentiable on its domain thanks to
Lemma 4.2.1 (Properties of Liénard-Wiechert fields) (i).
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Since by construction the extension of the history of charge j maintains a spatial distance
greater than d

2 from the light-cone J+(t(0), q̃i,t(0)) it follows

LTi ∩ (Dq̃j \
◦
J+(T, q̃j,T )) = LTi , (5.140)

and hence,
f j ∈ Cn(LTi ,R6). (5.141)

Figure 5.4: Illustration of the argument that (H2) implies that for each (t,x) ∈ Gi the distance
|x − qj,t−(t,x)| > d

2 , considering the worst case solution trajectory heading towards charge j
along the light-cone (red).

The strategy is to apply Banach’s fixed point theorem: Let M be a nonempty, closed set
in some Banach space X. Consider an operator S : M → X. If S is a contraction and a
self mapping on M , i.e., S(M) ⊂M , there is a unique solution x∗ ∈M to the equation
x = S(x) (see, for instance, [44]).

Hence, the following points need to be addressed:

1. We define a suitable Banach space.
2. We define a self-mapping on a subspace.
3. We show that the self-mapping is a contraction.

ad 1. For α ∈ R+, we define the normed, linear space

XT :=

{
ϕ(·) : [t(0), T ]→ R6

∣∣∣∣ϕ(·) ∈ C0([t(0), T ]),R6),

∥∥∥ϕ(·)

∥∥∥
XT

:= sup
t∈[t(0),T ]

e−α|t| |ϕt|R6 <∞

}
. (5.142)

First of all, XT is complete thanks to the completeness of R6:

Therefore, consider a Cauchy sequence (ϕ
(n)
(·) )n∈N in (XT , ‖·‖XT ). By definition, this

sequence is uniformly Cauchy w.r.t. the metric space (R6, |·|R6). Since (R6, |·|R6) is
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complete, the sequence of functions is also uniformly convergent w.r.t. that space, i.e.
there exists a limit function ϕ(·). Moreover, the fact that (ϕ

(n)
(·) )n∈N converges uniformly

implies that the limit function ϕ(·) is again continuous. To show, that ϕ(·) is indeed in

XT it remains to verify that
∥∥∥ϕ(·)

∥∥∥
XT

is bounded. This follows by the compactness of

the interval [t(0), T ] and continuity of the limit function, which renders |ϕt|R6 to be finite
for all t and by

∣∣e−α|t|∣∣ < 1 for t ∈ [t(0), T ].

Consequently, XT is a Banach space.

Furthermore, for any ϕ0 ∈ R6 we define the subspace

MT,ϕ0 :=
{
ϕ(·) ∈ XT | ϕt|t=t(0) = ϕ0

}
, (5.143)

which is closed in XT since for any convergent series (ϕ(n))n∈N with ϕ(n)
t |t=t(0) = ϕ0 for

n ∈ N also limn→∞ϕ
(n)
t |t=t(0) = ϕ0.

ad 2. On the space MT,ϕ0 we define the mapping

Sϕ0 : MT,ϕ0 →MT,ϕ0 ϕ(·) 7→ Sϕ0 [ϕ(·)] := ϕ0 +

∫ (·)

t(0)
dsL(s,ϕs). (5.144)

Elements in the range of Sϕ0 fulfill
∣∣q̇i,t∣∣ =

∣∣v(qi,t)
∣∣ < 1 by the definition of the force L,

and thus, trajectory pieces in Sϕ0 [MT,ϕ0 ] stay in the inner of the light-cone LTi bounded
by T , or in other words for all t ∈ [t(0), T ] the corresponding charge position qi,t is in
the inner of Bt−t(0)(qi,t(0)).

Sϕ0 is well-defined: for t ∈ [t(0), T ] the integral,

∫ t

t(0)
dsL(s,ϕs), (5.145)

is well defined for the following reason: for ϕ(·) ∈ XT the mapping t 7→ (qi,t,pi,t) is in
C0([t(0), T ],R3) and the integral domain is compact.

By (5.141) it follows t 7→ f−j,t(qi,t) ∈ C1([t(0), T ],R6) and t 7→ fhj,t(qi,t) ∈ C1([t(0), T ],R6).
Consequently, s 7→ L(s,ϕs) is continuous on the compact set [t(0), T ] and its anti-
derivative exists by the fundamental theorem of calculus.

Furthermore Sϕ0 is a self-mapping, because Sϕ0 [ϕ(·)] |t=t(0)= ϕ0 by definition, the right
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hand side of (5.144) is continuous on [t(0), T ], and Sϕ0 [ϕ(·)] is bounded:∥∥∥Sϕ0 [ϕ(·)]
∥∥∥
XT

= sup
t∈[t(0),T ]

e−α|t|
∣∣∣∣ϕ0 +

∫ t

t(0)
dsL(s,ϕs)

∣∣∣∣
R6

≤
∣∣ϕ0
∣∣
R6 + sup

t∈[t(0),T ]

e−α|t|
∣∣∣∣∫ t

t(0)
dsL(s,ϕs)

∣∣∣∣
R6

≤
∣∣ϕ0
∣∣
R6 + sup

t∈[t(0),T ]

e−α|t|
∫ t

t(0)
ds |L(s,ϕs)|R6

≤
∣∣ϕ0
∣∣
R6 + T sup

t∈[t(0),T ]

e−α|t| |L(t,ϕt)|R6

≤
∣∣ϕ0
∣∣
R6 + T sup

t∈[t(0),T ]

|L(t,ϕt)|R6

≤
∣∣ϕ0
∣∣
R6 + T sup

t∈[t(0),T ]

∣∣∣∣( v(pi,t)∑
j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t))

)∣∣∣∣
R6

≤
∣∣ϕ0
∣∣
R6 + T sup

t∈[t(0),T ]

1 +
∑
j 6=i

∣∣Ej,t(qi,t)
∣∣
R3 +

∣∣Bj,t(qi,t)
∣∣
R3

 <∞,

since by (5.141) f j is continuous in t on the interval [t(0), T ], and thus, the supremum
over the compact set [t(0), T ] exists.

ad 3. Next, it remains to show that Sϕ0 is a contraction. Therefore, let ϕ(·) and ϕ̂(·)
be in MT,ϕ0 . Then,∥∥∥Sϕ0 [ϕ(·)]− Sϕ0 [ϕ̂(·)]

∥∥∥
XT

= sup
t∈[t(0),T ]

e−α|t|
∣∣∣∣∫ t

t(0)
dsL(s,ϕs)−L(s, ϕ̂s)

∣∣∣∣
R6

≤ sup
t∈[t(0),T ]

e−α|t|
∫ t

t(0)
dseα|s|e−α|s| |L(s,ϕs)−L(s, ϕ̂s)|R6

≤ sup
t∈[t(0),T ]

e−α|t|
eα|t|

α
sup

s∈[t(0),t]

e−α|s| |L(s,ϕs)−L(s, ϕ̂s)|R6

=
1

α
sup

t∈[t(0),T ]

e−α|t| |L(t,ϕt)−L(t, ϕ̂t)|R6

=
1

α
sup

t∈[t(0),T ]

e−α|t|
∣∣∣∣( v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t))

)
−
(

v(p̂i,t)∑
j 6=iEj,t(q̂i,t) + v(p̂i,t) ∧ (Bj,t(q̂i,t))

)∣∣∣∣
R6

=
1

α
sup

t∈[t(0),T ]

e−α|t|
( ∣∣v(pi,t)− v(p̂i,t)

∣∣2
R3

+

∣∣∣∣∑
j 6=i
Ej,t(qi,t) + v(pi,t) ∧Bj,t(qi,t)−

∑
j 6=i

(Ej,t(q̂i,t) + v(p̂i,t) ∧Bj,t(q̂i,t))

∣∣∣∣2
R3

)
= c
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and by first binomial formula we obtain

c ≤ 1

α
sup

t∈[t(0),T ]

e−α|t|∣∣v(pi,t)− v(p̂i,t)
∣∣
R3 1

+
∑
j 6=i

∣∣Ej,t(qi,t)−Ej,t(q̂i,t)
∣∣
R3 2

+
∑
j 6=i

∣∣v(pi,t) ∧Bj,t(qi,t)− v(p̂i,t) ∧Bj,t(q̂i,t))
∣∣
R3 3

According to the mean value theorem there exists a k ∈ {pi,t + λ(p̂i,t − pi,t)|λ ∈ (0, 1)}
such that summand 1 equals

1 =
∣∣Dv(k) · (pi,t − p̂i,t)

∣∣
R3 ≤ ‖Dv(k)‖max

∣∣pi,t − p̂i,t∣∣R3 ,

where Dv(k) denotes the Jacobimatrix of v at point k ∈ R3 and for matrices A ∈ R3×3

we consider the maximum norm ‖A‖max := maxi,j=1,2,3 |aij |.
For estimating ‖Dv(k)‖max we make use of the auxiliary calculation

[Dv(k)]ij = ∂kivj(k) = ∂ki
kj√

k2 +m2
=

δij√
k2 +m2

− kj∂ki

√
k2 +m2√

k2 +m2
2

=
δij√
k2 +m2

− kjki√
k2 +m2

3

=
1√

k2 +m2

(
δij −

kjki

k2 +m2

)
.

This gives

‖Dv(k)‖max = max
ij

∣∣∣∣∣ 1√
k2 +m2

(
δij −

kjki

k2 +m2

)∣∣∣∣∣
≤ max

ij

1√
k2 +m2

(
|δij |+

∣∣∣∣ kikj

k2 +m2

∣∣∣∣)
≤ 2√

k2 +m2
≤ 2

m
,

where we used |kikj | ≤ k2. And thus,

1 ≤ 2

m

∣∣pi,t − p̂i,t∣∣R3 =: C1

∣∣pi,t − p̂i,t∣∣R3 . (5.146)

The second summand can as well be estimated by the mean value theorem, i.e., there
exists a k ∈ {qi,t + λ(q̂i,t − qi,t)|λ ∈ (0, 1)} such that

2 =
∑
j 6=i

∣∣Ej,t(qi,t)−Ej,t(q̂i,t)
∣∣
R3 =

∑
j 6=i

∣∣DEj,t(k) · (qi,t − q̂i,t)
∣∣
R3 . (5.147)
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Then, we find

2 ≤
∑
j 6=i
‖DEj,t(k)‖R3×3

∣∣qi,t − q̂i,t∣∣R3

≤
∑
j 6=i

sup
(t,k)∈LTi

‖DEj,t(k)‖R3×3

∣∣qi,t − q̂i,t∣∣R3

=: C2

∣∣qi,t − q̂i,t∣∣R3 ,

where we used qi,t, q̂i,t ∈ Bt−t(0)(qi,t(0)) and thus k ∈ Bt−t(0)(qi,t(0)) in the second line.
Since t ∈ [t(0), T ] and k ∈ {qi,t+λ(q̂i,t−qi,t)|λ ∈ (0, 1)} we can estimate ‖DEj,t(k)‖R3×3

by the supremum over (t,k) ∈ LTi for each j 6= i. Since LTi is compact and (t,k) 7→
DEj,t(k) is continuous (cf. (5.141)) sup(t,k)∈LTi

‖DEj,t(k)‖R3×3 exists. Therefore, the
sum over all j 6= i exists as well and can be estimated by a finite constant, which we call
C2.

3 =
∑
j 6=i

∣∣v(pi,t) ∧Bj,t(qi,t)− v(p̂i,t) ∧Bj,t(q̂i,t)
∣∣
R3

≤
∑
j 6=i

∣∣v(pi,t) ∧ (Bj,t(qi,t)−Bj,t(q̂i,t))
∣∣
R3 +

∑
j 6=i

∣∣(v(pi,t)− v(p̂i,t)) ∧Bj,t(q̂i,t))
∣∣
R3

≤
∑
j 6=i

∣∣v(pi,t)
∣∣
R3

∣∣Bj,t(qi,t)−Bj,t(q̂i,t)
∣∣
R3 +

∑
j 6=i

∣∣Bj,t(q̂i,t)
∣∣
R3

∣∣v(pi,t)− v(p̂i,t)
∣∣
R3

≤
∑
j 6=i
‖DBj,t(k)‖R3×3

∣∣qi,t − q̂i,t∣∣R3 +
∑
j 6=i
|Bj,t(k)|R3 ‖Dv(k)‖R3×3

∣∣pi,t − p̂i,t∣∣R3

≤
∑
j 6=i

sup
(t,k)∈LTi

‖DBj,t(k)‖R3×3

∣∣qi,t − q̂i,t∣∣R3

+
∑
j 6=i

sup
(t,k)∈LTi

‖Bj,t(k)‖R3×3

2

m

∣∣pi,t − p̂i,t∣∣R3

=: C3a

∣∣qi,t − q̂i,t∣∣R3 + C3bC1

∣∣pi,t − p̂i,t∣∣R3 .

The constants C3a and C3b exist and are finite because by (5.141) the expressions (t,k) 7→
Bj,t(k), DBj,t(k) are continuous maps on LTi and since LTi is compact the suprema exist.
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Bringing all the partial estimates together we obtain the following Lipschitz estimation:∥∥∥Sϕ0 [ϕ(·)]− Sϕ0 [ϕ̂(·)]
∥∥∥
XT

≤ 1

α
sup

t∈[t(0),T ]

e−α|t|(
C1(1 + C3b)

∣∣pi,t − p̂i,t∣∣R3 + (C2 + C3a)
∣∣qi,t − q̂i,t∣∣R3

)
≤ 1

α
sup

t∈[t(0),T ]

e−α|t|(
C1(1 + C3b)

∣∣pi,t − p̂i,t∣∣R3 + (C2 + C3a)
∣∣qi,t − q̂i,t∣∣R3

)
≤ 1

α
(C1(1 + C3b) + C2 + C3a)

sup
t∈[t(0),T ]

e−α|t|
√∣∣qi,t − q̂i,t∣∣2R3 +

∣∣pi,t − p̂i,t∣∣2R3

≤ 1

α
(C1(1 + C3b) + C2 + C3a)

∥∥∥ϕ(·) − ϕ̂(·)

∥∥∥
XT

.

Each of the constants C1, C2, C3a, C3b is finite, thus finite sums and products of these
are finite. For any T > 0 one can define α > 0 such that 1

α(C1(1 + C3b) + C2 + C3a) is
smaller than one, i.e., for each T > 0 one can choose α > 0 such that it defines a norm
‖·‖XT with respect to which Sϕ0 is a contraction.

By Banach’s fixed point theorem this implies the existence of a unique solution in Mϕ0

to the equation ϕ(·) = Sϕ0 [ϕ(·)] and thus, for a given initial value ϕ0 ∈ R6 and a given
time T there exists a unique continuous solution trajectory t 7→ ϕt, t ∈ [0, T ] to the
differential equation (5.137). On the domain GTi = Gi ∩ LTi this solution is the unique
solution to the original initial value problem with predetermined history (q̃i, p̃i)i∈N .

We denote the solution by ϕ in the remaining proof.

(ii) Uniqueness is implied in Banach’s fixed point theorem in the proof of (i).

(iii) We show that ϕ(·) fulfills ϕ(·) ∈ T 2+n([t(0), t
(1)
i ]). Continuity follows directly by the

definition of the Banach space XT and the subspace Mϕ0 , which assures that ϕ(·) ∈
C0([t(0), t

(1)
i ],R6), and hence, by q̇i,t = v(pi,t) it follows directly ϕ(·) ∈ T 1([t(0), t

(1)
i ]).

For t ∈ [t(0), t
(1)
i ] the solution reads

t 7→ ϕt = ϕ0 +

∫ t

t(0)
dsL(s,ϕs) (5.148)

and for k = 1, . . . , 1 + n the kth derivative reads

dk

dtk
ϕt =

dk−1

dtk−1

(
v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧ (Bj,t(qi,t))

)
. (5.149)

The right hand side of (5.149) consists of the velocity function p 7→ v(p), which is
smooth, and the field (t,x) 7→ (Ej,t,Bj,t)(x) which is in Cn(LTi ,R6) by (5.141). Both,
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v and the fields (Ej,t,Bj,t) are composed with the solution trajectory ϕ = (qi,pi). We
prove that the right hand side of (5.149) is well-defined by induction.

For k = 1 the right hand side of (5.149) is continuous as composition of continuous
functions and thus ϕ ∈ T 2([t(0), t

(1)
i ]).

Now, assume that for any k ≤ 1 +n it holds ϕ ∈ T k([t(0), t
(1)
i ]), then the right hand side

of (5.149) is in T 1([t(0), t
(1)
i ]) as it is composed of continuous functions and thus dk

dtk
ϕt is

in T 1([t(0), t
(1)
i ]), as well, and respectively, it follows ϕ ∈ T k+1([t(0), t

(1)
i ]). By induction,

we therefore obtain ϕ ∈ T 2+n([t(0), t
(1)
i ]).
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The next Lemma corresponds to statement (v) in Theorem 4.3.1 (Existence of Maxwell-
Lorentz solutions) with the slight difference that it is formulated for arbitrary initial times
t(0) ≥ 0 and corresponding histories (q̃i, p̃i)i∈N . Since the assertion is needed in the following
proofs, it is positioned at this place.

Lemma 5.6.2 ((H3)⇔(R)). Let (q̃i, p̃i)i∈N denote a history for t(0) fulfilling (H0)-(H2) for
initial time t(0) ≥ 0. Further, let t(1) > t(0) and (qi,pi)i∈N denote a local Lorentz solution
for the fields (f i = (Ei,Bi))i∈N given by (4.27) on [t(0), t(1)] such that (qi,t=t(0) ,pi,t=t(0)) =

(q̃i,t=t(0) , p̃i,t=t(0)) and (qi,pi) ∈ T 2+n([t(0), t(1)]). Then, (H3) is fulfilled if and only if (R) is
fulfilled.

Proof. Assume (H3) is met. Let i ∈ N be any charge index. Then, for all k ∈ {1, . . . , 1 + n}
it holds

lim
t↗t(0)

dk

dtk

(
q̃i,t
p̃i,t

)
(H3)
= lim

t↗t(0)

dk−1

dtk−1

(
v(p̃i,t)∑

j 6=iEj,t(q̃i,t) + v(p̃i,t) ∧Bj,t(q̃i,t)

)
= lim

t↘t(0)

dk−1

dtk−1

(
v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t)

)
= lim

t↘t(0)

dk

dtk

(
qi,t
pi,t

)
,

and hence, (R) holds. This is true because: The third equality is due to the Lorentz force law
and the second equality is valid for the following reasons:

• In the proof of Lemma 5.6.1 it has been shown that f j ∈ Cn(Dq̃j \
◦
J+(T, q̃j,T ),R6) for

all j ∈ N holds, cf. (5.139).

• For k = 1 the equality holds by assumption (qi,t=t(0) ,pi,t=t(0)) = (q̃i,t=t(0) , p̃i,t=t(0)).
Assume that the second equality is true for all k ≤ l ∈ {1, . . . , n}, i.e., the three equalities
are true for k ≤ l, and in particular

lim
t↗t(0)

dl

dtl

(
q̃i,t
p̃i,t

)
= lim

t↘t(0)

dl

dtl

(
qi,t
pi,t,

)
(5.150)

and thus, the second equality is true for k ≤ l + 1. Therefore, by induction the second
equality is true for all k ∈ {1, . . . , 1 + n}.

If on the other hand we assume (R) to be true, it follows for all i ∈ N and all k ∈
{1, . . . , 1 + n} that

lim
t↗t(0)

dk

dtk

(
q̃i,t
p̃i,t

)
(R)
= lim

t↘t(0)

dk

dtk

(
qi,t
pi,t

)
= lim

t↘t(0)

dk−1

dtk−1

(
v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t)

)
= lim

t↗t(0)

dk−1

dtk−1

(
v(p̃i,t)∑

j 6=iEj,t(q̃i,t) + v(p̃i,t) ∧ b−j,t(q̃i,t)

)
.

Here, the second equality is due to the force law and the third equality is due to assumption
(H0) on the histories together with condition (R).
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Lemma 5.6.3 (Local existence of Lorentz solutions). Let (q̃i, p̃i)i∈N be a history for t(0)

fulfilling (H0)-(H2). The following propositions hold true:

(i) (Existence) There exists a time t(1) with t(1) − t(0) > d
2 such that there exists a Lorentz

solution (qi,pi)i∈N for (f i)i∈N given by (4.27) on [t(0), t(1)].

(ii) (Uniqueness) Moreover, let Λ ⊂ R be an interval containing t(0). For any Lorentz solu-
tion (q̂i, p̂i)i∈N for (f i)i∈N given by (4.27) on Λ with (q̂i,t, p̂i,t)|t=t(0) = (qi,t,pi,t)|t=t(0)
for all i ∈ N it follows

(q̂i,t, p̂i,t) = (qi,t,pi,t), ∀ t ∈ Λ ∩ [t(0), t(1)], i ∈ N . (5.151)

(iii) (Regularity) The Lorentz solutions fulfill (qi,pi) ∈ T 2+n([t(0), t(1)]) for all i ∈ N .

(iv) (Connection) If in addition the history fulfills (H3) for initial time t(0), the tuple ((q̃i, p̃i)∪
(qi,pi))i∈N is a history fulfilling (H0), (H1), and (H3) for initial time t(1).

Proof. (i) - (iii) By assumption the requirements for Lemma 5.6.1 (Lorentz solution of
charge i on Gi) are met to apply it for all i ∈ N and any T > d

2 . Thus, we obtain the
existence of a unique Lorentz solution (qi,pi) ∈ T 2+n([t(0), t

(1)
i ]) on Gi for each charge

i ∈ N , where t(1)
i is defined by (5.135). Setting

t(1) := min{t(1)
1 , . . . , t

(1)
N }, (5.152)

we obtain Lorentz solutions for (f i)i∈N on [t(0), t(1)] according to Definition 3.3.2 (Lorentz
solutions).

Moreover, t(1) > 1
2 minj 6=i |q̃i,0 − q̃j,0| > d

2 due to the light-cone geometry (see Figure
5.4) and the choice of the time T > d

2 .

(iv) We need to verify that the solutions (qi,pi)i∈N fulfill (H0), (H1), (H3):

(H0) Since (q̃i, p̃i) and (qi,pi) are strictly time-like and 1 + n times continuously differ-
entiable for all i ∈ N it remains to check the regularity at the connection time t(0).
Since, for t(0), condition (H3) holds by assumption and this is equivalent to (R) by
Lemma 5.6.2 ((H3)⇔(R)), it follows

(q̃i, p̃i) ∪ (qi,pi) ∈ T 2+n((−∞, t(1)],R6). (5.153)

(H1) Let t ∈ [t(0), t(1)]. It holds∣∣pi,t∣∣ =

∣∣∣∣pi,t(0) +

∫ t

t(0)
dsEj,s(qi,s) + v(pi,s) ∧Bj,s(qi,s)

∣∣∣∣
≤
∣∣∣pi,t(0)∣∣∣+ (t(1) − t(0)) max

t∈[t(0),t(1)]

∣∣Ej,t(qi,t)
∣∣+
∣∣Bj,t(qi,t)

∣∣
≤ c <∞,

since t 7→ Ej,t(qi,t) and t 7→ Bj,t(qi,t) are continuous on the compact interval
[t(0), t(1)]. Thus, there exists a constant cv < 1 such that

q̇i,t = v(pi,t) :=
pi,t√

m2
i + p2

i,t

≤ cv < 1 (5.154)
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holds for t ∈ [t
(0)
i , t

(1)
i ], and since the history is strictly time-like by condition, the

union ((q̃i, p̃i) ∪ (qi,pi)) is strictly time like for each 1 ≤ i ≤ N .

(H3) By the proof of Lemma 5.6.1 (Lorentz solution of charge i on Gi), the Lorentz
solution can be written in the integral form (5.148). Therefore, for k = 1, . . . , 1 +n
it holds

lim
t↗t(1)

dk

dtk

(
qi,t
pi,t

)
= lim

t↗t(1)

dk

dtk

[(
qi,t(0)
pi,t(0)

)
+

∫ t

t(0)
ds

(
v(pi,s)∑

j 6=iEj,s(qi,s) + v(pi,s) ∧Bj,s(qi,s)

)]
= lim

t↗t(1)

dk−1

dtk−1

(
v(pi,t)∑

j 6=iEj,t(qi,t) + v(pi,t) ∧Bj,t(qi,t)

)
.
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We are now able to conclude the proof of Theorem 4.3.1 (Existence of Maxwell-Lorentz
solutions). The proof can be deduced from Definition 3.3.4 (Maxwell-Lorentz solutions) and
Lemma 5.6.3 (Local existence of Lorentz solutions) applied step by step until particles collide.

Proof of Theorem 4.3.1. (Existence of Maxwell-Lorentz solutions)

Let T ∈ R+, (q̃i, p̃i)i∈N be a history for the initial time t(0) = 0 fulfilling (H0)-(H2) and
(f i,0)i∈N be initial fields of the form f i,0 = f−0 [q̃i, p̃i] + fhi,0 as given in (4.24). Recall, that
by virtue of (4.25)-(4.26) the homogeneous field fhi,t := Wtf

h
i,0 is uniquely determined for all

t ∈ R with a representative in Cn(R4,R6).

Let us start by proving item (i).

Given t(0) = 0 and setting (q̃
(0)
i , p̃

(0)
i )i∈N := (q̃i, p̃i)i∈N which fulfill (H0)-(H2), we can

define

f
(1)
i,t (x) := f−t [q̃

(0)
i , p̃

(0)
i ](x) + fhi,t(x), ∀ (t,x) ∈ R4 \

◦
J+(t(0), q̃i,t(0)), i ∈ N , (5.155)

cf. (4.27), which is the unique Maxwell solution for the initial field f i,0 restricted to (t,x) ∈

R4 \
◦
J+(t(0), q̃i,t(0)) according to Theorem 4.2.1 (Explicit Maxwell solutions) with regard to

Remark 4.2.2, (ii).

Moreover, we may apply Lemma 5.6.3 (Local existence of Lorentz solutions), (i)-(iii), and
obtain a time t(1) > d

2 and a unique Lorentz solution (q
(1)
i ,p

(1)
i )i∈N for (f

(1)
i )i∈N with initial

value (q
(1)

i,t(0)
,p

(1)

i,t(0)
)i∈N = (q̃

(0)

i,t(0)
, p̃

(0)

i,t(0)
)i∈N on [t(0), t(1)] such that

(q
(1)
i ,p

(1)
i ) ∈ T 2+n([t(0), t(1)]), ∀ i ∈ N . (5.156)

With the aid of this Lorentz solution we may extend the field f (1)
i for all i ∈ N by virtue

of Theorem 4.2.1 (Explicit Maxwell solutions) and we obtain a unique Maxwell solution for
(q

(1)
i ,p

(1)
i ) with initial value f i,0 on the interval [t(0), t(1)] given by

f
(1)
i,t := 1

B|t|(q̃
(0)

i,t(0)
)
f−t [q

(1)
i ,p

(1)
i ]

+ 1
Bc|t|(q̃

(0)

i,t(0)
)
f−t [q̃

(0)
i , p̃

(0)
i ]

+ fhi,t,

(5.157)

and, since charge trajectories can be smoothly extended to all R, cf. Lemma 4.2.1 (Properties
of Liénard-Wiechert fields), (ii), we may apply Lemma 4.2.4 (Regularity of f t), (i), for the
special case λ = 1 and obtain

f
(1)
i ∈ C

n(D
[t(0),t(1)]

q
(1)
i

\ ∂J+(t(0), q̃i,t(0)),R
6), ∀ i ∈ N . (5.158)

Collecting the results we have

• a unique Lorentz solution (q
(1)
i ,p

(1)
i )i∈N for (f

(1)
i )i∈N with initial value (q̃i,0, p̃i,0)i∈N

on [t(0), t(1)],
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• unique Maxwell solutions f (1)
i for (q

(1)
i ,p

(1)
i ) with initial value f i,0 on [t(0), t(1)] for all

i ∈ N ,

• and thus, a unique Maxwell-Lorentz solution (q
(1)
i ,p

(1)
i ,f

(1)
i )i∈N on [t(0), t(1)] with initial

value
(q̃i,0, p̃i,0,f i,0)i∈N (5.159)

fulfilling the regularity properties (5.156) and (5.158).

Setting Tmax := t(1), this concludes the proof of claim (i).

Next, we prove claim (ii). Should no collision occur and assuming in addition that the
history (q̃i, p̃i)i∈N fulfills (H3), we shall show next that we can construct the solution up to
the first collision, or in the absence of collision also globally, by induction: In the following we
will construct, among other objects, the following ones:

t(m) ∈ R, (q
(m)
i ,p

(m)
i ) ∈ T 2+m([t(m−1), t(m)]), ∀ i ∈ N , (5.160)

inductively for certain m ∈ N and with their help define

T (m)
max := sup{t ∈ [t(m−1), t(m)]∩[0, T ] | ∀ i, j ∈ N , i 6= j,∀s ∈ [0, t] : |q(m)

i,s −q
(m)
j,s | > d}, (5.161)

which detects whether a collision occurred in the m-th step of the induction.

First, we complete the base case m = 1.

Under the additional assumption of (H3), by Lemma 5.6.2 ((H3)⇔(R)), the Maxwell-
Lorentz solution (q

(1)
i ,p

(1)
i ,f

(1)
i )i∈N on [t(0), t(1)] and the respective history (q̃

(0)
i , p̃

(0)
i )i∈N

fulfill (R), and hence, also (4.23). As we are in the special case λ = 1 and the respective
charge trajectories can be smoothly extended to all R without changing the fields on the
interval [t(0), t(1)] we can apply Lemma 4.2.4 (Regularity of f t), (iii), and find

f
(1)
i ∈ C

n(D
[t(0),t(1)]

q
(1)
i

,R6), ∀ i ∈ N . (5.162)

If T (1)
max < t(1) we cannot continue the induction and conclude the proof for Tmax := T

(1)
max.

Otherwise, for T (1)
max = t(1), we continue the induction and define a new history for t(1) by

(q̃
(1)
i , p̃

(1)
i ) := (q̃

(0)
i , p̃

(0)
i ) ∪ (q

(1)
i ,p

(1)
i ), i ∈ N . (5.163)

Due to Lemma 5.6.3 (Local existence of Lorentz solutions), (iv), and (H3) we know that the
new history (q̃

(1)
i , p̃

(1)
i )i∈N fulfills (H0), (H1), (H3), and furthermore, by virtue of T (1)

max = t(1)

also (H2).

Finally, note that by construction ((q̃
(1)
i , p̃

(1)
i )|[t(0),t(1)])i∈N is the unique Lorentz solution

for (f
(1)
i )i∈N with initial value (q̃i,0, p̃i,0)i∈N on [t(0), t(1)] and in terms of the new history

(q̃
(1)
i , p̃

(1)
i )i∈N , f

(1)
i,t from (5.157) is equal to

f
(1)
i,t = f−t [q̃

(1)
i , p̃

(1)
i ] + fhi,t, (5.164)

for all t ∈ [t(0), t(1)] and i ∈ N . Summing up, for m = 1 we have shown:
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(*1) t(m) > md
2 .

(*2) (q̃
(m)
i , p̃

(m)
i )i∈N is a history for t(m) fulfilling (H0)-(H3).

(*3) ((q̃
(m)
i , p̃

(m)
i )|[t(0),t(m)])i∈N is the unique Lorentz solution for (f

(m)
i )i∈N with initial value

(q̃i,0, p̃i,0)i∈N on [t(0), t(m)], where for all t ∈ [t(0), t(m)]

f
(m)
i,t := f−t [q̃

(m)
i , p̃

(m)
i ] + fhi,t. (5.165)

We turn to the inductive step. Therefore, let us assume that for some m ∈ N the proposi-
tions (*1)-(*3) hold true.

Correspondingly to (4.27), we can define the extension of the field f (m)
i,t as

f
(m+1)
i,t (x) := f−t [q̃

(m)
i , p̃

(m)
i ](x)+fhi,t(x), ∀ (t,x) ∈ R4 \

◦
J+(t(m), q̃i,t(m)), i ∈ N , (5.166)

by Theorem 4.2.1 (Explicit Maxwell solutions).

Moreover, we may apply Lemma 5.6.3 (Local existence of Lorentz solutions), (i)-(iii), for
the history (q̃

(m)
i , p̃

(m)
i )i∈N and the initial time t(m) and obtain a time

t(m+1) > t(m) +
d

2
> (m+ 1)

d

2
(5.167)

such that there is a

(*L) unique Lorentz solution (q
(m+1)
i ,p

(m+1)
i )i∈N for (f

(m+1)
i )i∈N with initial value

(q
(m+1)

i,t(m) ,p
(m+1)

i,t(m) )i∈N = (q̃
(m)

i,t(m) , p̃
(m)

i,t(m))i∈N (5.168)

on [t(m), t(m+1)] such that

(q
(m+1)
i ,p

(m+1)
i ) ∈ T 2+n([t(m), t(m+1)]), ∀ i ∈ N . (5.169)

Given (*L), we define a new history for t(m+1) by

(q̃
(m+1)
i , p̃

(m+1)
i ) := (q̃

(m)
i , p̃

(m)
i ) ∪ (q

(m+1)
i ,p

(m+1)
i ), i ∈ N . (5.170)

Due to Lemma 5.6.3 (Local existence of Lorentz solutions), (iv), and (H3) we know that
the new history (q̃

(m+1)
i , p̃

(m+1)
i )i∈N up to time t(m+1) fulfills (H0), (H1), (H3).

Because of assumption (*3), (*L), and the fact that the history (q̃
(m+1)
i , p̃

(m+1)
i )i∈N fulfills

(H0), so that it is 2 + n times continuously differentiable at t(m), we can conclude that

((q̃
(m+1)
i , p̃

(m+1)
i )|[t(0),t(m+1)])i∈N (5.171)

is the unique Lorentz solution for (f
(m+1)
i )i∈N with initial value (q̃i,0, p̃i,0)i∈N on [t(0), t(m+1)].



108 5. Proofs

With the aid of the obtained history (q̃
(m+1)
i , p̃

(m+1)
i )i∈N , which was shown to fulfill the

regularity condition (H0) up to t(m+1), we may extend the field f (m+1)
i for all i ∈ N by virtue

of Theorem 4.2.1 (Explicit Maxwell solutions) for all t ≤ t(m+1) and obtain

f
(m+1)
i,t = f−t [q̃

(m+1)
i , p̃

(m+1)
i ] + fhi,t (5.172)

as the unique Maxwell solution f (m+1)
i for (q̃

(m+1)
i , p̃

(m+1)
i ) with initial value f i,0 on the

interval [t(0), t(m+1)]. Moreover, exploiting property (H0) again, Lemma 4.2.1 (Properties of
Liénard-Wiechert fields), (i), and (4.26) guarantee

f
(m+1)
i ∈ Cn(D

[t(0),t(m+1)]

q̃
(m+1)
i

,R6), ∀ i ∈ N . (5.173)

Summing up the results we have

• a unique Lorentz solution ((q̃
(m+1)
i , p̃

(m+1)
i )|[t(0),t(m+1)])i∈N for (f

(m+1)
i )i∈N with initial

value (q̃i,0, p̃i,0)i∈N on the interval [t(0), t(m+1)],

• unique Maxwell solutions f (m+1)
i for (q̃

(m+1)
i , p̃

(m+1)
i ) with initial value f i,0 on the in-

terval [t(0), t(m+1)] for all i ∈ N ,

• and thus, a unique Maxwell-Lorentz solution (q
(m+1)
i ,p

(m+1)
i ,f

(m+1)
i )i∈N on the interval

[t(0), t(m+1)] with initial value

(q̃i,0, p̃i,0,f i,0)i∈N (5.174)

fulfilling the regularity properties (5.169) and (5.173).

If T (m+1)
max < t(m+1) we cannot continue the induction and conclude the proof for Tmax :=

T
(m+1)
max .

Otherwise, for T (m+1)
max = t(m+1), the history (q̃

(m+1)
i , p̃

(m+1)
i )i∈N for initial time t(m+1)

fulfills (H2), and hence, proposition (*2). Furthermore, (5.167) and the definition of T (m+1)
max

implies (*1). Summing up, for given m ∈ N, we have shown that proposition (*1)-(*3) are
also fulfilled for m replaced by m+ 1. This concludes the induction until the first collision or
globally in case no collision occurs.

Thus, we have proven item (ii) and (iii). Furthermore, f i,0 ∈ Fqi,0 because: fhi,0 ∈ Fhom

by assumption and f−0 [q̃i, p̃i] ∈ Fq̃i,0 = Fqi,0 by Lemma 4.2.1 (Properties of Liénard-Wiechet
fields), (iii). Therefore, Lemma A.2.1 (Maxwell constraints) implies that the Maxwell-Lorentz
solution (qi,pi,f i)i∈N fulfills f i,t ∈ Fqi,t for all t ∈ [0, Tmax], and hence, claim (iv) is met. By
virtue of (i) and (ii) we have

(q̃i,0, p̃i,0) = (qi,t=0,pi,t=0), ∀ i ∈ N (5.175)

so that Lemma 5.6.2 ((H3)⇔(R)) guarantees that claim (v) holds true.
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Remark 5.6.1. (i) One should note that condition (H2) solely checks the smallest particle
difference at the end time of a propagation step (the initial time of the next step), whereas
the implicit definition (4.28) of Tmax checks the distance at any time. Therefore, it
might happen, that charges approach each other but separate again so that we can obtain
solutions up to a time t which is greater than Tmax. However, one may think of d as a
arbitrary small entity detecting collisions and then, in the time-like regime, a collision in
a interval [t(m), t(m+1)] goes hand in hand with the violation of (H2) for the time t(m+1).

(ii) If T in Theorem 4.3.1 (Existence of Maxwell-Lorentz solutions), (ii), is chosen arbitrarily
big and no collision occurs, the Lorentz solution can be obtained at a finite number of
propagation steps. This is due to the required condition (H2), which implies that in each
step where Lemma 5.6.1 (Lorentz solution of charge i on Gi) is applied to each charge
i, the solution is extended by an interval greater than d

2 (see Figure 5.4 for illustration
of the step length). So after the mth step the trajectories of all charges go further than
the time d

2n. Thus, for any arbitrarily big, fixed, time T > 0, we can find a finite step
number m(T ) ∈ N such that

d

2
m(T ) > T. (5.176)
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Chapter 6

Conclusion and Outlook

Our first main result has shown that generic initial configurations (qi,0,pi,0,f i,0)i∈N lead to
an ill-defined initial value problem, if one aims at solutions with continuous momenta, since,
as we have shown, the initial particle configuration and the initial electromagnetic field are
highly intertwined beyond the Maxwell constraints.

In fact, the introduced system of constraints necessary to infer sufficiently regular solutions
suggests that the coupled system of Maxwell’s and Lorentz’s equations (1.2)-(1.4), a set of
ordinary differential equations and partial differential equations, should rather be read as a
system of ordinary delay differential equations

d

dt

(
qi,t
pi,t

)
=

(
vi,t = v(pi,t)∑

j 6=iLij,t

)
, i ∈ N (6.1)

Lij,t := Ej,t(qi,t) + vi,t ∧Bj,t(qi,t),

f i,t = (Ei,t,Bi,t)

= λf−i,t[qi,pi] + (1− λ)f+
i,t[qi,pi] + fhi,t,

where solely the initial charge positions and momenta (qi,0,pi,0) and initial homogeneous
fields (fhi,0)i∈N have to be specified. The arbitrary parameter λ just makes precise how the
homogeneous fields fhi,0 are to be interpreted. This has already been pointed in the physical
discussion in Section 2.4, (2.24).
In fact, our strategy of proof of our existence of solutions result in Theorem 4.3.1 (Existence
of Maxwell-Lorentz solutions) is based on this formulation.

This observation seems to be in line with Rohrlich’s work [37], where is was also empha-
sized that the Maxwell and Lorentz equations cannot be treated separately and that initial
configurations on a Cauchy surface for the coupled Maxwell-Lorentz system need to be con-
strained. Moreover, it seems that he is also well-aware of the fact that one needs to tackle a
delay problem instead of a Cauchy problem, as can be taken from the following quotation:

If one wants to specify a Cauchy problem at t = 0 together with the current
for t > 0, the problem will separate into two problems: (a) the Cauchy problem
with Cauchy data on t = 0; this will determine the fields for t > 0 outside the
light-cone whose vertex is Q0 (Fig. 4-2); (b) the retarded field problem due to the
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current at t = 0; this will determine the fields inside and on the future light-cone
with vertex at Q0. The Cauchy data for problem (a), however, are not known and
must be found by solving a problem of type (b) for t < 0. Thus one simply has a
retarded field problem [type (b)] for all space-time. It is very essential to realize
that the finite propagation velocity of the field forces one into a problem posed for
all space-time which would be very difficult (and physically awkward) to specify
as (partially) a Cauchy problem. ([37], p. 78)

We feel that this work has provided a mathematical explanation of the above quotation
by a rigorous analysis of the Maxwell fields. In addition, we have demonstrated that generic
initial fields lead to singular fronts in the fields located along the light-cone boundaries of
the initial charge positions, and thus, to an ill-posed initial value problem, which let to the
original question in which sense one can still solve (6.1).

Our third main result partially answered this question and provided an existence result
for the Maxwell-Lorentz system, that can be read as an existence result for the delay Lorentz
system (6.1) for λ = 1 and propagation in future direction, i.e., on the positive half-line.

Therefore, we considered initial data defined by means of initial homogeneous fields (fhi,0)i∈N
and trajectory histories (q̃i, p̃i)i∈N . In our proof we assumed the whole histories to be given.
It would be sufficient, though, to consider trajectory histories that for each charge only reach
back to the earliest time where a backward light-cone of all other charges crosses its history;
cf. red dots in Figure 6.1. In order to avoid the phenomenon of singular or discontinuous light
fronts in the fields, these initial trajectory pieces had to be compatible with the Lorentz forces
at time t = 0.

Figure 6.1: Illustration of the method of steps. Initial data depicted colored red; iterated
solution trajectories colored blue.
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Under these conditions we were able to construct solutions via a method of steps until a
time Tmax, the first time of collision, or in case of no collision until a predetermined, arbitrarily
large time T .

Since our proof of Theorem 4.3.1 was based on an iterative construction, it would be
obvious to implement an algorithm that delivers Lorentz solutions for the considered class
of initial data, which we briefly sketch. In contrast to the proof, such an algorithm would
propagate each charge trajectory until the maximum time, until which the Lorentz force can
be computed; cf. blue dots in Figure 6.1.

Data: fixed minimal distance d ;
maximal propagation time T > 0;
history[i]:= (q̃i, p̃i)i∈N fulfilling (H0)-(H3) ;
homfield[i]:= fhi,0 ∈ Fhom ∩ C1+n(R3,R6), i ∈ N ;
Result: Unique solution on interval [0, Tmax]
IT = ∅;
while |IT | < |N | do

for i ∈ N \ IT do
[solution[i], t[i]] = solution-of-charge-i-on-GTi (history, homfield);
if t[i] = T then
IT = IT ∪ {i};

end
history[i] = history[i] ∪ solution[i];

end
Tmax = collision-time(history, d) ;
if Tmax < T then

for i ∈ N \ IT do
IT = IT ∪ {i};

end
end

end
return history
Unfortunately, with this method, Maxwell-Lorentz solutions are constructed on the half

axis only. Even though the initial trajectory pieces avoid singular and discontinuous fronts in
the fields, they will in general not solve the delay Lorentz system (6.1) on the whole time axis.
This becomes clear, when propagating the obtained Lorentz solution backwards. The con-
structed solutions can therefore be only understood as solutions whose past was constrained,
e.g., by mechanical forces.

However, this approach may serve as a starting point for obtaining solutions on the entire
time axis R. Namely, when the future solutions are propagated into the past, the obtained
past solutions can serve as new initial data for future propagation. The new future solutions
can be propagated back again, and the past trajectories forth again. If this kind of iteration
converges at some point, i.e., the obtained solutions do not differ anymore from the ones in
the previous step, one indeed ends up with global solutions to the delay problem by numerical
methods. If and for which initial trajectory pieces such an iteration converges is unclear.
Moreover, the suggested approach is valid solely for the choice λ = 1 or λ = 0.
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If both advanced and retarded fields are taken into account the initial fields fhi,0 have to
be replaced accordingly in each step. For any choice of λ ∈ [0, 1] and N smeared out charges,
the iterative construction mentioned above was carried out in [8] on finite but arbitrarily large
time intervals. Solving the delay problem in particular for λ = 1/2 would therefore also be
mathematical highly interesting. This dynamics complies with the Wheeler-Feynman dynam-
ics [46, 47]. From [24], where existence of solutions has been established for the special case
of two charges on a straight line, it becomes clear how hard it is to build a corresponding
solution theory on the entire time axis.

Another step towards a better understanding of classical electrodynamics for point charges
is to take into account radiation reaction. Whereas in this work the self-interaction summand
Lii,t has been completely ignored, it would be desirable to extend it including a suitable
self-interaction; in general one should think of Lii,t as a functional of the charge trajectory
(qi,pi). As mentioned in Section 1.2, the Lorentz-Abraham-Dirac term LLAD

ii,t may be one of
the physically derivable candidates. However, as pointed out it is not too well-tempered as it
allows for run-away solutions, and there are concerns on the correctness of this term; see e.g.
[36]. A more promising term might therefore be the Landau-Lifshitz term (cf. formula (9.10)
in [41]) first mentioned in [30] and later derived in [40, 36]. As this term does only involve a
second derivative in time it may be controlled with the same ODE techniques and we have
high hopes that we will be able to extend our existence proof in this direction in the near
future.



Appendix A

Appendices

A.1 The Kirchhoff formulas

Definition A.1.1 (Propagator of the d’Alembert operator). The propagator of the d’Alembert
operator � := ∂2

t −∆ is denoted by Kt. It is given by

Kt := K−t −K
+
t for K±t :=

δ(| · | ± t)
4π| · |

∈ D′, (A.1)

where K±t are the advanced and retarded Green’s functions of the d’Alembert operator, i.e.,
symbolically, K±t fulfills the equation

�K±t (x) = δ(t)δ(x), (A.2)

where δ denotes either the one dimensional Dirac delta distribution for input values in R or
the three dimensional Dirac delta distribution for input values in R3.

Remark A.1.1. By Fourier transformation, for instance, the explicit representation can be
derived. Note that Kt fulfills the homogeneous wave equation �Kt = 0 and thus it is also
called the propagator of the homogeneous wave equation.

Lemma A.1.1 (Properties of Kt). Let n ∈ N0 and g ∈ C2+n(R3,R) and h(·) : R × R3 → R
such that for all t ∈ R and all x ∈ R3 it holds ht ∈ C2+n(R3,R) and h(·)(x) ∈ C(R,R). Then,
the distribution Kt introduced in Definition (A.1.1) (Propagator of the d’Alembert operator)
has the following properties:

(i) The mapping (t,x) 7→ (Kt ∗ g)(x) is in C2+n(R \ {0} × R3,R) and for t 6= 0 it is given
by

Kt ∗ g =
1

4πt

∫
∂B|t|(0)

dσ(y)g(· − y). (A.3)

Furthermore,

lim
t→0

Kt ∗ g = 0 and lim
t→0

Kt ∗ ht = 0. (A.4)

(ii) The mapping (t,x) 7→ (∂tKt ∗ g)(x) is in Cn(R \ {0} × R3,R) and for t 6= 0 it is given
by

∂tKt ∗ g =
1

4πt2

∫
∂B|t|(0)

dσ(y)g(· − y) +
1

12π

∫
B|t|(0)

d3y∆g(· − y). (A.5)
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Furthermore,

lim
t→0

∂tKt ∗ g = g and lim
t→0

∂tKt ∗ ht = h0. (A.6)

(iii) For any g ∈ C∞(R3,R) the mapping R\{0}×R3 → R, (t,x) 7→ (Kt∗g)(x) is continuously
extendable to a C∞(R× R3,R) function.

(iv) ∂2
tKt ∗ g = ∆Kt ∗ g = Kt ∗∆g

Note that Kt is also subject to [29] and [8]. The following proof is in parts taken from the
proof of Lemma 4.11. in [12].

Proof. (i) Let ∓t > 0 and g ∈ C2+n(R3,R). Then,

(K±t ∗ g)(x) =

∫
d3yK±t (y)g(x− y) =

∫
d3y

δ(|y| ± t)
4π|y|

g(x− y)

=

∫ ∞
0

dr

∫ π

0
dθ

∫ 2π

0
dϕ r2 sin θ

δ(r ± t)
4πr

g

x− r
sin θ cosϕ

sin θ sinϕ
cos θ


=

∫ ∞
0

dr

∫
∂B1(0)

dσ(z)r2 δ(r ± t)
4πr

g(x− rz)

=

∫
∂B1(0)

dσ(z)

∫ ∞
0

dr
r

4π
δ(r ± t)g(x− rz)

=
∓t
4π

∫
∂B1(0)

dσ(z)g(x± tz) = ∓ 1

4πt

∫
∂B∓t(0)

dσ(y)g(x− y)

= ∓t−
∫
∂B∓t(0)

dσ(y)g(x− y).

For t∓ < 0 the expression is 0 by definition. For the sum Kt = K−t −K
+
t and all t 6= 0

we therefore obtain

Kt ∗ g = K−t ∗ g −K
+
t ∗ g

= t−
∫
∂B|t|(0)

dσ(y)g(· − y) (A.7)

= t−
∫
∂B1(0)

dσ(y)g(· − ty),

which is a well-defined expression since it is a integral over a continuous function on a
compact domain and x 7→ (K±t ∗ g)(x) is in C2+n(R3,R). Moreover, the function t,
t 7→ (K±t ∗ g)(x) is in C1+n(R \ {0},R).

The equation limt→0Kt ∗ g = 0 can be read of directly the above representation formula
(A.7).
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Next, we show limt→0Kt ∗ ht = 0 by the following estimation. Let x ∈ R3. Then,

lim
t→0
|(Kt ∗ ht)(x)| ≤ lim

t→0
|(Kt ∗ (ht − h0))(x)|+ lim

t→0
|(Kt ∗ h0)(x)|

= lim
t→0
|(Kt ∗ (ht − h0))(x)|+ 0

≤ C lim
t→0

sup
y∈Bδ(x)

|(ht − h0))(y)| = 0,

where the last inequality holds for |t| small enough and C > |t| and the equality above
is due to the continuity of the mapping t 7→ ht(x).

(ii) For t > 0 we have

∂t−
∫
∂Bt(0)

dσ(y)g(x− y) = ∂t−
∫
∂B1(0)

dσ(y)g(x− ty) = −
∫
∂B1(0)

dσ(y)∂tg(x− ty)

=
1

4π

∫
∂B1(0)

dσ(y)∇g(x− ty) · ∂t(x− ty)

= − 1

4πt2

∫
∂Bt(0)

dσ(y)∇g(x− y) · y
t

=
1

4πt2

∫
∂Bt(0)

dσ(y)∇yg(x− y) · n(y)

GG
=

1

4πt2

∫
Bt(0)

d3y∇y · ∇yg(x− y)

=
1

4πt2

∫
Bt(0)

d3y∆yg(x− y) =
1

4πt2

∫
Bt(0)

d3y∆g(x− y)

=
t

3
−
∫
Bt(0)

d3y∆g(x− y),

where GG abbreviates Gauss-Green Theorem, cf. Appendix A.4. Using this, for all
∓t > 0 we compute

(∂tK
±
t ∗ g)(x) = ∂t

(
∓t−
∫
∂B∓t(0)

dσ(y)g(x− y)

)

= ∓−
∫
∂B∓t(0)

dσ(y)g(x− y)∓ t∂t−
∫
∂B∓t(0)

dσ(y)g(x− y)

= ∓−
∫
∂B∓t(0)

dσ(y)g(x− y)∓ t2

3
−
∫
B∓t(0)

d3y∆g(x− y).

For the sum Kt = K−t −K
+
t , we therefore obtain

∂tKt ∗ g = ∂tK
−
t ∗ g − ∂tK

+
t ∗ g

= −
∫
∂B|t|(0)

dσ(y)g(· − y) +
t2

3
−
∫
B|t|(0)

d3y∆g(· − y), t 6= 0.
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Next, we show, limt→0 ∂tKt ∗ g = g.

(∂tKt ∗ g)(x) = −
∫
∂B|t|(0)

dσ(y)g(x− y) +
t2

3
−
∫
B|t|(0)

d3y∆g(x− y)

= −
∫
∂B1(0)

dσ(y)g(x− |t|y)

+
3t2

4π|t|3 · 3

∫ |t|
0

dr r2

∫
∂B1(0)

dσ(y)∆xg(x− ry),

where for the first summand we have

lim
t→0
−
∫
∂B1(0)

dσ(y)g(x− |t|y) = −
∫
∂B1(0)

dσ(y)g(x) = g(x)

and the second summand can be estimated by∣∣∣∣∣ 1

4π|t|

∫ |t|
0

dr r2

∫
∂B1(0)

dσ(y)∆xg(x− ry)

∣∣∣∣∣
≤ |t|3

12π|t|

∫
∂B1(0)

dσ(y) max
y∈B|t|(x)

|∆g(y)|

=
t2

3
max

y∈B|t|(x)
|∆g(y)| → 0 for t→ 0,

because maxy∈B|t|(x) |∆g(y)| is finite by the condition g ∈ C2+n(R3,R).

It remains to show limt→0 ∂tKt ∗ht = h0. Let x ∈ R3. Similar to the argument in (i) we
estimate

lim
t→0
|(∂tKt ∗ ht)(x)− h0(x)|

≤ lim
t→0
|(∂tKt ∗ (ht − h0))(x)|+ lim

t→0
|(∂tKt ∗ h0)(x)− h0(x)|

= lim
t→0
|(∂tKt ∗ (ht − h0))(x)|+ 0

≤ lim
t→0

sup
y∈Bδ(x)

(
|ht(y)− h0(y)|+ C2

3
|∆ht(y)−∆h0(y)|

)
= 0,

where the last inequality holds for |t| small enough and some constant C > |t| and the
last equality is due to the continuity of the mapping t 7→ ht(x).

(iii) From (i) and (ii), for all n ∈ N, one can compute the nth partial derivative of R \
{0}×R3 → R, (t,x) 7→ (Kt ∗ g)(x) inductively making use of Lebesgue’s Differentiation
Theorem (cf. Appendix A.4) and finds that for any g ∈ C∞(R3,R) the mapping is in
C∞(R \ {0} × R3,R).
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Moreover, the limits limt→0Kt ∗ g and limt→0 ∂tKt ∗ g exist by (i) and (ii) and for all
n ≥ 2 we obtain

lim
t→0

∂nt Kt ∗ g =

{
0 n even
∆

n−1
2 g n odd

, (A.8)

by induction; i.e., the limit from the right and from the left coincides for all n ∈ N0 and
therefore, the mapping can be continuously extended at t = 0.

(iv) Trivial by the fact that Kt fulfills the homogeneous wave equation �Kt = 0.

The next lemma gives a solution formula for the homogeneous wave equation for given
initial values; cf. Corollary 4.13. in [12] and [18].

Lemma A.1.2. Consider the homogeneous wave equation �At = 0 to the initial values A0 :=
At|t=0 and Ȧ0 := ∂tAt|t=0. Then (At)t∈R given by

At = ∂tKt ∗A0 +Kt ∗ Ȧ0 (A.9)

represents a solution to the given initial value problem.

Proof. Given Lemma A.1.1 (Properties of Kt) the assertion can easily be verified:

�(∂tKt ∗A0 +Kt ∗ Ȧ0) = ∂3
tKt ∗A0 + ∂2

tKt ∗ Ȧ0 − ∂tKt ∗∆A0 −Kt ∗∆Ȧ0

= ∂tKt ∗∆A0 +Kt ∗∆Ȧ0 − ∂tKt ∗∆A0 −Kt ∗∆Ȧ0

= 0.

Moreover,

lim
t→0

(∂tKt ∗A0 +Kt ∗ Ȧ0) = A0 + 0 = A0

lim
t→0

∂t(∂tKt ∗A0 +Kt ∗ Ȧ0) = lim
t→0

Kt ∗∆A0 + ∂tKt ∗ Ȧ0 = Ȧ0.

Derivation of the solution formula for the Maxwell fields We consider one charge and
its electromagnetic field. The trajectory (q,p) ∈ T 2(R) is assumed to be known. Furthermore,
let ρ ∈ D, x ∈ R3. Then ρ can be seen as a test function or a smeared out rigid charge
distribution, i.e., either ρ(x − qt) = δ(· − qt)(ρx) is the point charge distribution at time
t applied to the shifted test function ρx, or it represents the charge distribution at time t
evaluated at x. For better readability we use the abbreviations ρt := ρ(· − qt) for the charge
distribution at time t and jt := vtρ(·−qt) for the charge current at time t. Then, the Maxwell
equations and constraints read

∂tEt = ∇∧Bt − 4πjt

∂tBt = −∇ ∧Et

∇ ·Et = 4πρt

∇ ·Bt = 0

(A.10)
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Now, we transform Maxwell’s equations taking into account the constraints into a inhomo-
geneous wave equation. Therefore, let � = ∂2

t − ∆ denote the d’Alembert operator. Then,
(A.10) implies

�

(
Et

Bt

)
=

(
∂t(∇∧Bt)− 4π∂tjt −∆Et

−∂t(∇∧Et)−∆Bt

)
=

(
−∇ ∧∇ ∧Et − 4π∂tjt −∇∇ ·Et +∇∧∇ ∧Et

∇∧ (−∇ ∧Bt + 4πjt)−∇∇ ·Bt +∇∧∇ ∧Bt

)
= 4π

(
−∇ρt − ∂tjt
∇∧ jt

)
.

Thus, any solution to the initial value problem

�

(
Et

Bt

)
= 4π

(
−∇ −∂t
0 ∇∧

)(
ρt
jt

)
(
E0

B0

)
:=

(
Et

Bt

)
|t=0

∂t

(
E0

B0

)
:= ∂t

(
Et

Bt

)
|t=0=

(
∇∧B0 − 4πj0

−∇ ∧E0

) (A.11)

is a solution to (A.10) for initial value
(
E0

B0

)
.

Since wave equations are well understood by methods of partial differential equations, we
find a solution representation formula to (A.11). In the proof of Theorem 4.2.1 (Explicit
Maxwell solutions), we show that this solution is indeed the unique solution to (1.2)-(1.3) in
the weak sense.

Lemma A.1.3 (Kirchhoff’s formula). A solution to the initial value problem (A.11) is given
by

F t =

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0 − 4πKt ∗

(
j0

0

)
+ 4π

∫ t

0
dsKt−s ∗

(
−∇ −∂s

0 ∇∧

)(
ρs
js

)
. (A.12)

After a integration by parts in the time variable s formula (A.12) can be transformed into

F t =

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0 + 4π

∫ t

0
ds

(
−∇ −∂t

0 ∇∧

)
Kt−s ∗

(
ρs
js

)
. (A.13)

Proof. We abbreviate the inhomogeneity in the wave equation (A.11) by

It := 4π

(
−∇ −∂t
0 ∇∧

)(
ρt
jt

)
(A.14)

and a solution to the corresponding homogeneous wave equation with initial value F 0 by F h
t .

For t > 0 a solution to (A.11) is given by

F t = F h
t +

∫ ∞
0

dsK−t−s ∗ Is. (A.15)
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This is true because

�F t = 0 +

∫ ∞
0

ds�tK
−
t−s ∗ Is

=

∫ ∞
0

ds

∫
d3y�t−sK

−
t−s(· − y)Is(y)

=

∫ ∞
0

ds

∫
d3yδ(t− s)δ(· − y)Is(y)

= It,

where the third equality is due to Definition A.1.1 (Propagator of the d’Alembert operator),
and the initial value is taken since

lim
t→0

F t = lim
t→0

F h
t +

∫ ∞
0

dsK−t−s ∗ Is

= F 0 +

∫ ∞
0

dsK−−s ∗ Is

= F 0,

where the the second summand vanishes since K−−s is 0 for s > 0. According to the solution
formula for homogeneous wave equations in Lemma A.1.2, F h

t = ∂tKt∗F 0 +Kt∗Ḟ 0. Plugging
this into (A.15) we obtain

F t = ∂tKt ∗ F 0 +Kt ∗
(
∇∧B0 − 4πj0

−∇ ∧E0

)
+

∫ ∞
0

dsK−t−s ∗ 4π

(
−∇ −∂s

0 ∇∧

)(
ρs
js

)
=

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0 − 4πKt ∗

(
j0

0

)
+ 4π

∫ t

0
dsKt−s ∗

(
−∇ −∂s
0 ∇∧

)(
ρs
js

)
=

(
∂t ∇∧
−∇∧ ∂t

)
Kt ∗ F 0 + 4π

∫ t

0
ds

(
−∇ −∂t
0 ∇∧

)
Kt−s ∗

(
ρs
js

)
.

For t < 0 the proof works analogously, only replacing (A.15) by

F t = F h
t +

∫ 0

−∞
dsK+

t−s ∗ Is. (A.16)
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A.2 The Maxwell constraints

Lemma A.2.1. (Maxwell constraints) Let Λ ⊂ R.

(i) Let fh0 ∈ Fhom and fh : Λ→ F be a homogeneous Maxwell solution on Λ with fht |t=0 =
fh0 . Then, for all t ∈ Λ it holds fht ∈ Fhom.

(ii) Let f0 ∈ Fqt=0
and f : Λ → F be a Maxwell solution for (q,p) on Λ with f t|t=0 = f0.

Then, for all t ∈ Λ it holds f t ∈ Fqt .

Proof. (i) It suffices to check the Maxwell constraints (3.2) for a ρ ∈ D and x ∈ R3. Since
fh is a homogeneous Maxwell solution it holds

∂t

(
∇x· 0

0 ∇x·

)
fht (ρx) =

(
∇x· 0

0 ∇x·

)
∂tf

h
t (ρx)

=

(
∇· 0
0 ∇·

)(
0 ∇x∧

−∇x∧ 0

)
fht (ρx)

=

(
0 ∇x · ∇x∧

−∇x · ∇x∧ 0

)
fht (ρx) = 0,

and, by the condition it holds
(
∇x· 0

0 ∇x·

)
fh0(ρx) = 0. Therefore,

(
∇x· 0

0 ∇x·

)
fht (ρx) = 0 (A.17)

for any time t ∈ Λ.

(ii) Analogously, we can compute

∂t

(
∇x· 0

0 ∇x·

)
f t(ρx) =

(
∇x· 0

0 ∇x·

)
∂tf t(ρx)

=

(
∇x· 0

0 ∇x·

)[(
0 ∇x∧

−∇x∧ 0

)
f t(ρx)−

(
4πv(pt)ρ(x− qt)

0

)]
=

(
0 ∇x · ∇x∧

−∇x · ∇x∧ 0

)
f t(ρx)−

(
∇x· 0

0 ∇x·

)(
4πv(pt)ρ(x− qt)

0

)
= 0−

(
4π∇x · v(pt)ρ(x− qt)

0

)
= −

(
4πv(pt) · ∇xρ(x− qt)

0

)
,

as f is a Maxwell solution for (q,p). On the other hand, if we compute the partial time
derivative of the right hand side of (3.3) we obtain

∂t

(
4πρ(x− qt)

0

)
=

(
4π∇xρ(x− qt) · (−v(pt))

0

)
= −

(
4πv(pt) · ∇xρ(x− qt)

0

)
.
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By condition, for t = 0 we have(
∇x· 0

0 ∇x·

)
f0(ρx) =

(
4πρ(x− q0)

0

)
. (A.18)

Therefore the time derivative for all t ∈ Λ of the right and left hand side of (3.3) coincide,
as well as their values at time t = 0, and thus, Maxwell’s constraints hold for any time
t ∈ Λ.

A.3 Distributions

Lemma A.3.1 (Distributions). Let ρ ∈ D, (ρ(n))n∈N be a null sequence in D, and f ∈ F .
Moreover, x ∈ R3 and α ∈ N3

0. Then:

(i) (Dα
xρ

(n)
x )n∈N is again a null sequence.

(ii) The function x 7→ f(ρx) is in C∞(R3,R6) and (Dα
xf)(ρx) := Dα

xf(ρx) = f(Dα
xρx).

(iii) For compactly supported ψ ∈ L1(R3) it holds∫
d3xψ(x)f(ρx) = f(ψ ∗ ρ0), (A.19)

where ρ0 = ρ(0− ·) = ρ(− ·).

In the proof of item (ii) and (iii) we follow the proof of Lemma 6.8. (Interchanging
convolutions with distributions) in [31].

Proof. (i) By condition (ρ(n))n∈N is a null sequence in D, i.e. for all α ∈ N3
0

lim
n→∞

sup
y∈R3

|Dα
yρ

(n)(y)| = 0. (A.20)

For the sequence (Dα
xρ

(n)
x )n∈N and all γ ∈ N3

0 we get

lim
n→∞

sup
y∈R3

|Dγ
yD

α
xρ

(n)
x (y)| = lim

n→∞
sup
y∈R3

|Dγ+α
y ρ(n)(x− y)|

= lim
n→∞

sup
y∈R3

|Dγ+α
y ρ(n)(y)|

= 0.

Therefore, (Dα
xρ

(n)
x )n∈N is again a null sequence.

(ii) Let x ∈ R3, ρ ∈ D, and ε > 0. For all |z| > ε there exists a C <∞ such that

|ρx(y)− ρx+z(y)| = |ρ(x− y)− ρ(x+ z − y)| < Cε, (A.21)

because ρ is compactly supported, has continuous derivatives, and therefore, the deriva-
tives are uniformly continuous. Analogously, for each α ∈ N3

0 there exists a Cα < ∞
such that∣∣Dα

yρx(y)−Dα
yρx+z(y)

∣∣ =
∣∣Dα
yρ(x− y)−Dα

yρ(x+ z − y)
∣∣ < Cαε. (A.22)
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Therefore,
lim
z→0

sup
y∈R3

∣∣Dα
yρx(y)−Dα

yρx+z(y)
∣∣ = 0 (A.23)

and by definition ρx+z → ρx in D for z → 0. This implies f(ρx+z)→ f(ρx) for z → 0
because f ∈ F and f is continuous. Therefore, x 7→ f(ρx) is continuous on R3.

Moreover, for all x ∈ R3, ρ ∈ D, ε > 0, |z| < ε there exists a C ′ < ∞ such that for the
directional derivative along z we obtain∣∣∣∣ρ(x+ tz − y)− ρ(x− y)

t
−∇ρ(x− y) · z

∣∣∣∣ < C ′tε. (A.24)

As above, this implies that for all |α| = 1 it holds Dα
xρx+z → Dα

xρx in D. And thus,
by continuity of f it holds, f(Dα

xρx+z)→ f(Dα
xρx), which means that x 7→ f(Dα

xρx) is
continuous. For |α| > 1 the argument can be shown by induction using similar arguments
which we omit here.

(iii) As ψ can be approximated by a C∞c -function, cf. Theorem 2.16 in [31]), we prove the
assertion for ψ ∈ D.

Then, x 7→ ψ(x)f(ρx) is a product of two functions in D. Thus,
∫
d3xψ(x)f(ρx) can

be approximated by a Riemann sum
n∑
i=1

(xi+1 − xi)ψ(xi)f(ρxi). (A.25)

Likewise, for any α ∈ N3
0,

Dα(ψ ∗ ρ0) =

∫
d3xψ(x)Dαρ(−(· − x)) =

∫
d3xψ(x)Dαρx (A.26)

can be approximated by
n∑
i=1

(xi+1 − xi)ψ(xi)D
αρxi , (A.27)

which implies that
∑n

i=1(xi+1 − xi)ψ(xi)ρxi → ψ ∗ ρ0 as n→∞ in D. Setting ∆(n) :=
(xi+1 − xi) it holds∫

d3xψ(x)f(ρx) = lim
n→∞

∆(n)
n∑
i=1

ψ(xi)f(ρxi)

= lim
n→∞

f

(
∆(n)

n∑
i=1

ψ(xi)ρxi

)

= f

(
lim
n→∞

∆(n)
n∑
i=1

ψ(xi)ρxi

)
= f(ψ ∗ ρ0),

where the second equality holds by linearity of f and the third equality holds by conti-
nuity of f w.r.t. D.
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A.4 Calculus

In this section we collect the calculation rules and theorems from (vector) analysis that are
frequently used throughout the computations in this work (cf. [22, 18, 31]).

Rotation and cross product For a, b, c ∈ R3 it holds

a ∧ (b ∧ c) = (a · c)b− (a · b)c

and therefore, for each v ∈ R3 it follows

∇∧ (∇∧ v) = ∇(∇ · v)−∆v.

With εijk denoting the Levi-Cevita-symbol and δij the Cronecker-delta for all k = 1, 2, 3 it
holds

(a ∧ b)k =
∑
i,j

εijkaibj

since

εijkεimn = δjmδkn − δjnδkm.

Moreover, the rotation of a gradient field is zero

∇∧ (∇f) = 0

and the divergence of a rotation field is zero

∇ · (∇∧ v) = 0.

Gauss-Green theorem Let U ⊂ R3 be bounded. Suppose F ∈ C1(Ū ,R3). Then∫
U
d3y∇ · F (y) =

∫
∂U
dσ(y)n(y) · F (y), (A.28)

where n(y) denotes the outward pointing unit normal field of the boundary ∂U .

In particular this holds for any F = fc, where f is a scalar function and c a constant
vector, and hence, ∫

U
d3y∇f(y) =

∫
∂U
dσ(y)n(y)f(y) (A.29)

or respectively for single components i = 1, 2, 3∫
U
d3y∂yif(y) =

∫
∂U
dσ(y)ni(y)f(y). (A.30)

Note that the theorem is also known as Divergence Theorem.

Integration by parts formula Let U ⊂ R3 be bounded. Further, let f, g ∈ C1(U,R).
Then ∫

U
d3x∂xif(x)g(x) = −

∫
U
d3xf(x)∂xig(x) +

∫
U
d3x∂xi [f(x)g(x)] (A.31)
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Transformation theorem Let Φ : Ω → R3 be a diffeomorohism. Then f is integrable on
the domain Φ(Ω)) if the function |det(DΦ)(y)|f(Φ(y)) is integrable on Ω and it holds∫

Φ(Ω)
d3yf(y) =

∫
Ω
d3y|det(DΦ)(y)|f(Φ(y))

Equivalently it holds ∫
Φ(Ω)

d3y
1

|detDΦ(Φ−1(y))|
f(y) =

∫
Ω
d3yf(Φ(y)).

Special cases which are frequently used in our calculations are

∫
Bt(0)

d3yf(y) =

∫ t

0
dr

∫ π
2

−π
2

dθ

∫ 2π

0
dϕf

r
cosθsinϕcosθcosϕ

sinθ

 r2cosθ

and
1

4πt2

∫
∂Bt(0)

dσ(y)f(y) =
1

4π

∫
∂B1(0)

dσ(y)f(ty)

or in normalized notation

−
∫
∂Bt(0)

dσ(y)f(y) = −
∫
∂B1(0)

dσ(y)f(ty).

Lebesgue’s differentiation theorem Let f : Rn → R be locally summable w.r.t. some
1 ≤ p <∞, i.e. f ∈ Lploc(R

n). Then, for almost every x ∈ Rn we have

−
∫
Bε(x)

dny |f(y)− f(x)| → 0 as ε→ 0. (A.32)

Fundamental theorem of calculus For all (t,x) ∈ R4 and let s 7→ fs(x) be in C1([0, t],R)
such that s 7→ ∂sfs(x) is integrable on [0, t]. Then,

ft(x) = f0(x) +

∫ t

0
ds∂sfs(x). (A.33)

Note that this theorem is used in order to transform surface integrals over a set ∂Bt(0) into
volume integrals over Bt(0).
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