Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig–Maximilians–Universität München

Synthese 3,4-disubstituierter Pyrrolidinderivate als potentielle GABA-uptake Inhibitoren

Susanne Petz, geb. Kopitz

aus Berlin, Deutschland

2018

Erklärung

Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Klaus T. Wanner betreut.

Eidesstattliche Versicherung

Diese Dissertation wurde selbstständig und ohne unerlaubte Hilfe erarbeitet.

München, den 10.06.2017

(Susanne Petz)

Dissertation eingereicht am: 09.10.2017 Erstgutachter: Prof. Dr. Klaus T. Wanner Zweitgutachter: Prof. Dr. Manfred Heuschmann Mündliche Prüfung am: 27.10.2017 Die vorliegende Arbeit entstand in der Zeit von Januar 2008 bis Juli 2017 am Department für Pharmazie - Zentrum für Pharmaforschung - der Ludwig-Maximilians-Universität München auf Anregung und unter Leitung von

Herrn Prof. Dr. Klaus T. Wanner

Für die vorzügliche Betreuung und Förderung meiner Arbeit und die hervorragenden Forschungsbedingungen danke ich Herrn Prof. Dr. Klaus T. Wanner sehr herzlich.

Herrn Prof. Dr. Manfred Heuschmann danke ich sehr herzlich für die Übernahme des Koreferats.

Mein Dank gilt allen aktuellen und ehemaligen Mitarbeiterinnen und Mitarbeiter des Arbeitskreises. Besonders denen, die mich auf meinem Weg begleitet haben: Dr. Ludwig Angermeier, Gerd Bauschke, Silke Duensing-Kropp, Dr. Michael Felkel, Tanja Franz, Ljiljiana Galogaza, Dr. Marielle Hess, Dr. Georg Höfner, Anne Kärtner, Dr. Toni Lutz, Dr. Jörg Pabel, Dr. Marilena Petrera, Dr. Maria Polley, Dr. Thejavathi Renukappa-Gutke, Dr. Cornelia Schmaunz, Dr. Andreas Schmeller, Dr. Sebastian Schmitt, Dr. Eva Schremmer, Dr. Thomas Wein, Elisabeth Zoller.

Den Mitarbeiterinnen und Mitarbeiter der analytischen Abteilung Dr. Lars Allmendinger, Frau W. Bogatsch, Frau C.Glas, Frau U. Groß danke ich für die zuverlässige Aufnahme zahlreicher NMR-, Masse- und IR-Spektren, Herr Dr. H. Lerche und Frau B. Breitenstein für die Anfertigung der Hochauflösenden Massenspektren und Elementaranalysen. Für die Anfertigung der Röntgenstrukturanalyse möchte ich Herrn P. Mayer herzlich danken.

Katharina Heimberger danke ich besonders für die Hilfe bei diversen organisatorischen Angelegenheiten.

Ein besonderer Dank gilt meinen Laborkollegen Dr. Silke Kerscher-Hack und Dr. Frederike Schwarzer für den freundlichen Empfang im Arbeitskreis, fachlichen Rat und Hilfsbereitschaft. Ebenso danke ich Dr. Tim Hellenbrandt für die gemeinsame Laborzeit. Dr. Felix Kern und Markus Daerr danke ich zudem für die besonders freundschaftliche und manchmal auch beschwingte Atmosphäre. Bisweilen fehlt mir heute noch die stimmungsvolle, musikalische Untermahlung von Markus Daerr.

Dr. Gabriele Quandt möchte ich in ganz besonderem Maße danken. Die freundschaftliche Unterstützung erleichterte so manch unausgewogenen Moment, auch durch zahlreiche Diskussionen über alles uns bewegende. Aber auch der fachliche Rat und die Sicht aus manch neuem Blickwinkel machte die Zusammenarbeit äußerst wertvoll. Danke Gabi!

Meiner Familie und meinen Freunden danke ich besonders, da ohne ihre Unterstützung, Motivation und ihr Verständnis diese Arbeit wohl nicht möglich gewesen wäre. Zudem danke ich meinen beiden Töchtern Charlotte und Sarah, die mir immer wieder verdeutlichen, auf was es ankommt.

Inhaltsverzeichnis

1	Einle	leitung 1					
	1.1	Wirkst	offentwicklung	1			
	1.2	GABA	und die GABAerge Neurotransmission	3			
	1.3	Das G	ABA-Transportsystem	5			
		1.3.1	Die GABA-Transportproteine	5			
		1.3.2	Struktur und Transportmechanismus der SLC6-Transporter	7			
	1.4	Inhibit	ioren der GABA-Transporter	10			
		1.4.1	mGAT1-selektive Substanzen	12			
		1.4.2	mGAT2-selektive Substanzen	14			
		1.4.3	mGAT3- und mGAT4-selektive Substanzen	15			
2	Ziels	setzung		19			
3	The	oretiscł	ner Teil	21			
	3.1	Allgen	neine Grundlagen der Photochemie	21			
	3.2	Grundl	agen der [2+2]-Photocycloadditionen von Enonen mit Alkenen	25			
		3.2.1	Orbitalbetrachtungen	26			
		3.2.2	Diskussion angenommener Mechanismen	26			
		3.2.3	Regiochemie der [2+2]-Photocycloadditionen von Enonen mit Alkenen .	28			
		3.2.4	Photo-Sensitizer	30			
		3.2.5	Aufbau des Photoreaktors der Firma Rayonet und die praktische				
			Durchführung photochemischer Reaktionen	32			
	3.3	[2+2]-]	Photocycloadditionen als Schlüsselschritt zum Aufbau von γ -				
		Amino	buttersäurederivaten	35			
		3.3.1	Synthese monocyclischer 3,4-disubstituierter Pyrrolidinderivate mit ei-				
			nem 3-Pyrrolidinessigsäuregrundgerüst	35			
		3.3.2	Synthese bicyclischer γ -Aminobuttersäurederivate mit einem 3-				
			Azabicyclo[3.2.0]heptangrundgerüst	61			
	3.4	Synthe	se N-substituierter Aminosäurederivate	81			
		3.4.1	Synthese N-substituierter Aminosäureester	81			

	3.4.2 Synthese der freien N-substituierten Aminosäuren				
	3.5	Biolog	ische Prüfung	95	
		3.5.1	Durchführung und Auswertung der GABA-Uptake-Studien	95	
		3.5.2	Testergebnisse der GABA-Uptake-Studien	96	
4	Zusa	ammen	fassung	119	
	4.1	Synthe	ese monocyclischer γ -Aminobuttersäurederivate	119	
	4.2	Synthe	ese von bicyclischen γ-Aminobuttersäurederivaten mit einem 3) –	
		Azabic	cyclo[3.2.0]heptan-Grundgerüst	123	
	4.3	N-Sub	stitution der Aminosäuregrundkörper mit pharmakophoren Strukturen .	125	
	4.4	Ergebr	nisse der biologischen Prüfung	126	
5	Exp	eriment	teller Teil	129	
	5.1	Allgen	neine Angaben	129	
	5.2	Allgen	neine Arbeitsvorschriften (AAV)	131	
	5.3	Experi	mentelle Angaben	134	
6	Rön triflı on (tgenstr uoracet <i>rac</i> -77)	rukturdaten von (3a <i>S</i> ,3b <i>R</i> ,6a <i>R</i> ,6b <i>R</i>)-2,2-Dimethyl-5-(2,2 yl)hexahydro-2 <i>H</i> -furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3a <i>H</i>)-)	2,2- 221	
7	Forr	nelverz	eichnis	231	
8	Abkürzungsverzeichnis 23				
Lit	teratı	ırverzei	ichnis	251	

1 Einleitung

1.1 Wirkstoffentwicklung

Wirkstoffe im Sinne der Pharmakologie sind Substanzen, d.h. Elemente und Verbindungen, die einen bestimmten Effekt auf einen Organismus ausüben und eine biochemische oder pharmakologische Wirkung hervorrufen. Die biologische Wirkung einer Substanz setzt eine Bindung des Moleküls an ein entsprechendes Targetmolekül (z.B. ein Rezeptor) voraus, wobei sich beide Moleküle ähnlich dem Schlüssel-Schloss-Prinzip verhalten. Das Maß der Bioaktivität wird durch die Passgenauigkeit des Wirkstoffs in die spezifische Bindungstasche des Targetmoleküls bestimmt.

Aufgrund der Komplexität solcher biochemischen Prozesse ist die Entwicklung innovativer, medizinalchemisch relevanter Wirkstoffe für die pharmazeutische Industrie seit jeher eine große Herausforderung und ein langwieriger Prozess. Rückschläge und Zufälle sind mitverantwortlich für ein hohes Entwicklungsrisiko mit einem sehr hohen Kapitalbedarf.

Zuerst wird ein entsprechendes, therapeutisch wirksames Target, meist Rezeptoren, Enzyme oder Transporter, zur möglichen Behandlung einer Krankheit ausgewählt und identifiziert. Auf der Suche nach potentiellen Wirkstoffen werden anschließend meist umfangreiche Substanzbibliotheken systematisch durchsucht (Screening). Zudem werden computergestützte Verfahren, wie das Struktur- oder Liganden-basierte Wirkstoffdesign eingesetzt.

In den vergangenen Jahren wurden die Technologien und Verfahren für das struktur-basierte Wirkstoffdesign stetig weiterentwickelt und kommen vermehrt zum Einsatz.^{1,2} Durch den Fortschritt in der Proteinkristrallographie und der NMR-Technik besteht die Möglichkeit zur Aufklärung der dreidimensionalen Strukturen (3D-Strukturen) vieler Proteine. Mit Hilfe der Strukturbestimmungen dieser wichtigen Targetmoleküle, können computergestützt Zusammenhänge zwischen chemischen Strukturen und deren biologischen Wirkung erfasst werden. So kann das Molecular-Modelling für die Entwicklung von neuen Leitstrukturen herangezogen werden.

Auch wenn keine 3D-Strukturen eines Targetmoleküls verfügbar sind, können anhand eines Liganden-basierten Moleküldesigns trotzdem Rückschlüsse gezogen und vergleichbare Optimie-

rungen erzielt werden. Hierbei liefern die Strukturen aktiver Liganden, die an ein bestimmtes Target binden, zahlreiche Informationen und Erkenntnisse zur Entwicklung neuer potenter Verbindungen.

Vielversprechende, biologisch aktive Verbindungen, die bereits über die gewünschten Eigenschaften verfügen, dienen im weiteren Verlauf als Leitstrukturen bei der Weiterentwicklung und Synthese neuer, strukturanaloger Substanzen. Jedoch müssen dabei auch physikalisch-chemische Kriterien wie z.B. Toxizität, Acidität, Molekülgröße, Lipophilie und Löslichkeit bei der Wirkstoffentwicklung und -optimierung berücksichtigt werden.

Das Ziel unseres Arbeitskreises ist die Entwicklung neuer, potentieller Wirkstoffe zur Inhibition der Wiederaufnahme (Uptake) des Neurotransmitters γ -Aminobuttersäure (GABA, **2**) durch die verschiedenen Subtypen der GABA-Transportproteine (GAT1-4). Die Synthese neuer Strukturen und Strukturanaloga sowie die nachfolgende Charakterisierung ihrer biologischen Aktivität hinsichtlich der Affinität und Subtypenselektivität führt zu einem stetig anwachsenden Datensatz. Dieser liefert wertvolle Information und Erkenntnisse und kann als Grundlage weiterer z.T. auch computergestützter Optimierungen herangezogen werden.

1.2 GABA und die GABAerge Neurotransmission

Die Entdeckung von GABA (**2**) (Abb. 1.1) im Gehirn von Säugetieren in den 50er Jahren des 20. Jahrhunderts durch gleich drei unabhängige Forschungsgruppen führte schnell zu einem gesteigerten Interesse und weiterführenden Untersuchungen auf diesem Gebiet.^{3,4,5} Mittlerweile wird GABA (**2**) als der wichtigste inhibitorische Neurotransmitter des Zentralnervensystems (ZNS) bezeichnet.⁶

Die biochemischen Vorgänge der GABAergen Neurotransmission sind äußerst komplex. Die wichtigsten Vorgänge des GABAergen Systems sind in Abbildung 1.1 schematisch dargestellt. GABA (**2**) wird in den Endigungen von Nervenzellen aus dem wichtigsten exzitatorischen Neurotransmitter Glutamat (**1**) unter der enzymatischen Katalyse der Glutamat-Decarboxylasen 65 und 67 (GAD65/67) synthetisiert.⁷ Anschließend kann GABA (**2**) mittels einem, in der Vesikelmembran eingebundenen, GABA-Transporter (VGAT) vesikulär gespeichert werden.⁸ Nach Eintreffen eines Nervenaktionspotentials kann GABA (**2**) durch Exozytose in den postsynaptischen Spalt freigesetzt werden. Dort kann GABA (**2**) an postsynaptische Rezeptoren binden.

Es sind drei GABA-Rezeptoren bekannt: GABA_A, GABA_B und GABA_C. Sie unterteilen sich in zwei Haupttypen, die ionotropen und metabotropen Rezeptoren. Zu den ionotropen Rezeptoren zählen der GABA_A- und GABA_C-Rezeptor, wobei zurzeit noch diskutiert wird, ob der am wenigsten erforschte GABA_C-Rezeptor als eigenständige Klasse oder als Subtyp des GABA_A-Rezeptors bezeichnet werden soll.^{6,9} Beide Rezeptoren gehören zu den schnellen, ligandengesteuerten Cl⁻-Ionenkanälen, die sich durch die Bindung von GABA öffnen. Durch einströmende Cl⁻-Ionen wird ein inhibitorisches, postsynaptisches Potential aufgebaut und so durch Hyperpolarisation der Zellmembran die Erregungsausbreitung gehemmt. Ionotrope Rezeptoren sind Transmembrane-Protein-Komplexe, die aus fünf Untereinheiten bestehen. Der GABA_A-Rezeptor wird aus fünf teils verschiedenen Untereinheiten, meist zwei α -, zwei β - und einer γ -Untereinheit aufgebaut, die zusammen einen Kanal in der Zellmembran bilden, ¹⁰ wohingegen der GABA_C-Rezeptor aus fünf identischen ρ -Einheiten besteht und vor allem in der Retina des Auges vorkommt.

Der metabotrope GABA_B-Rezeptor ist ein G-Protein-gekoppelter Rezeptor und wird von einem Transmembranprotein mit sieben Transmembrandomänen gebildet. Durch Bindung des Neurotransmitters wird ein Guaninnukleotid-bindendes Protein (G-Protein) aktiviert und führt bei den ligandengesteuerten K⁺-Ionenkanälen zu einer Erhöhung der K⁺-Permeabiliät und zugleich zu einer Verminderung der Permeabilität der Ca²⁺-Kanäle. Das Resultat ist eine Hemmung der Neurotransmission.

Eine Regulation der GABA-Konzentration im synaptischen Spalt erfolgt über eine carriervermit-

telte Aufnahme durch spezifische GABA-Transportproteine (GAT, siehe Kapitel 1.3) entweder zurück in die GABA-Axone oder in die umliegenden Gliazellen. In den Axonen kann GABA (2) in Vesikel aufgenommen und oder mittels GABA-Transaminase (GABA-T) enzymatisch zu Succinatsemialdehyd (SSA) abgebaut werden, welches in den Citratzyklus eintritt. Zudem katalysiert die GABA-Transaminase (GABA-T) die Umsetzung von α -Ketoglutarat zu Glutamat, welches mittels GAD wieder in GABA (2) überführt wird. In den Gliazellen findet ebenfalls ein Abbau von GABA (2) zu Succinatsemialdehyd (SSA) statt, wobei auch Glutamat gebildet wird, welches mit Hilfe der Glutamin-Synthethase zu Glutamin metabolisiert wird. Dieses kann mittels Glutamin-Transporter in den extrazellulären Raum gelangen und von den Neuronen aufgenommen werden, wonach sich wieder die Bildung von Glutamat und daraus GABA (2) anschließt.⁶

Abb. 1.1: Synthese von GABA (2) und die GABAerge Neurotransmission

Eine verminderte GABAerge Neurotransmission steht im Zusammenhang mit einer Vielzahl physiologischer und neurologischer Erkrankungen wie Epilepsie¹¹, Morbus Parkinson¹², Morbus Alzheimer¹³, Huntington's Corea¹⁴, Schizophrenie¹⁵ und Depressionen¹⁶ sowie chronischen Schmerzen¹⁷. Bei der GABAergen Neurotransmission sind viele synaptische Mechanismen beteiligt. Bislang bieten vor allem die GABA-Rezeptoren, die GABA-abbauenden Enzyme und die GABA-Transporter ein erhöhtes therapeutisches Potential.¹⁸ Zum einen besteht die Möglichkeit der Erhöhung der Wirkung von GABA an den Rezeptoren. So bewirken Benzodiazepine (BZD; z.B. Diazepam (Valium [®], **3**) oder Barbiturate (z.B. Phenobarbitol (Luminal[®],

1.3 Das GABA-Transportsystem

4) durch eine allosterische Wechselwirkung mit dem $GABA_A$ -Rezeptor eine erhöhte Öffnungswahrscheinlichkeit des Cl⁻-Ionenkanals und führen zu einer gesteigerten Cl⁻-Ionenkonzentration im Zellinneren.

Zum anderen kann durch Modulation der GABA-Konzentration im synaptischen Spalt die GABA-Neurotransmission verstärkt werden. So ist die Inhibition GABA-abbauender Enzyme ein weiterer wichtiger Ansatzpunkt. Vigabatrin (Sabril[®], **5**) und Valproat (Convulex[®], **6**) werden bereits unter anderem zur Behandlung von Epilepsie eingesetzt.

Ebenso liefert die Inhibition der neuronalen und glialen Wiederaufnahme von GABA durch (R)-Tiagabin (Gabitril[®], 7) hierbei bereits gute therapeutische Ergebnisse.

Abb. 1.2: Arzneistoffe mit einem Einfluß auf die GABAerge Neurotransmission

1.3 Das GABA-Transportsystem

1.3.1 Die GABA-Transportproteine

Die Wiederaufnahme von GABA (**2**) in die Glia- und Nervenzellen erfolgt über selektive GABA-Transporter (GAT). Sie gehören zur Familie der Na⁺/Cl⁻-gekoppelten Neurotransmitter-Transporter [SLC6-Familie (solute carrier 6) oder NSS (neurotransmitter:sodium symporters)]^{19,20} und ermöglichen einen Transport gelöster Substanzen (engl. solute) durch die Zellmembran entgegen ihres Konzentrationsgradienten.

Nach dem der erste GABA-Transporter isoliert und die Aminosäuresequenz von ~600 Aminosäuren bestimmt wurde, konnte 1990 der erste GABA-Transporter (GAT-1) als Vertreter der SLC6-Familie kloniert werden.²¹ Bis heute erfolgte die Klonierung und Identifizierung von drei weiteren GABA-Transportproteinen.^{22, 23, 24} Durch die Klonierung der vier GAT-Subtypen aus der Ratte, der Maus und dem Menschen wurden anfangs unterschiedliche Bezeichnungen eingeführt. Die entsprechende Nomenklatur der GABA-Transporter ist in Tabelle 1.1 wiedergegeben. Die Subtypen der Maus werden mit einem entsprechend Präfix "m" versehen und als mGAT1, mGAT2, mGAT3 und mGAT4 bezeichnet.²⁴ Für die Subtypen der Ratte bzw. des Menschen werden die Vorsilben "r" (Ratte) und "h" (Human) vorangestellt. Hierbei gibt es keine speziesübergreifenden Übereinstimmungen. Die Nomenklatur der Ratte und des Menschen weicht von der der Maus ab. mGAT2 ist homolog zu dem Betain/GABA-Transporter und mGAT3 und mGAT4 entsprechen dem GAT-2 bzw. GAT-3 der Ratte (rGAT-2 bzw. rGAT-3) bzw. des Menschen (hGAT-2 bzw. hGAT-3). Es ist darauf zu achten, dass bei allen anderen Spezies als der Maus ein Bindetstrich in der Bezeichnung enthalten ist. Des Weiteren existiert eine Nomenklatur der Human Genome Organisation (HUGO).⁷ Diese ist zwar eigentlich für die humanen Transporter vorgesehen, wird aber oft als speziesunabhängige Nomenklatur gebraucht. Im Folgenden wird die Nomenklatur der Maus verwendet, da das im Arbeitskreis verwendete Testsystem auf den Transportern aus der Maus beruht.

Spezies	GABA-Transporter-Subtypen					
Maus	mGAT1	mGAT2	mGAT3	mGAT4		
Ratte	rGAT-1	rBGT-1	rGAT-2	rGAT-3		
Mensch	hGAT-1	hBGT-1	hGAT-2	hGAT-3		
HUGO	GAT1	BGT1	GAT2	GAT3		

Tabelle 1.1: Nomenklatur der GABA-Transporter-Subtypen

Die vier GABA-Transportproteine zeigen nicht nur einige Unterschiede in ihrer Primärstruktur (Aminosäuresequenz), sondern sind in bestimmten Regionen und Zelltypen unterschiedlich verteilt.^{25,26} Die Transporter mGAT1 und mGAT4 sind die Einzigen, die hauptsächlich im Zentralnervensystem (ZNS) vorkommen. Die größte Dichte an mGAT1 wurde vor allem im Neocortex, im Hippocampus, im Kleinhirn, den Basalganglien,²⁷ dem Rückenmark, dem Riechkolben und der Retina nachgewiesen.²⁸ Dieser Transportersubtyp ist überwiegend neuronal lokalisiert und scheint daher maßgeblich für die schnelle, neuronale Wiederaufnahme von GABA in die Nervenzellen verantwortlich zu sein.²⁹ Der Transportersubtyp mGAT4 hat seinen Verteilungsschwerpunkt im Thalamus und Hypothalamus, ebenfalls in den Basalganglien, sowie im Hirnstamm und im Rückenmark. Man nimmt an, dass mGAT4 ausschließlich für den glialen Transport zuständig ist.²² Die physiologischen Bedeutung der beiden Transportersubtypen mGAT2 und mGAT3 auf die GABAerge Neurotransmission ist bislang weniger aufgeklärt. Neueste Erkenntnisse von Zhou *et al.* zeigen jedoch, dass beide Transporter hauptsächlich in der Leber und in geringerem Ausmaß auch in den Nieren vorkommen.^{30,31} Die Konzentration von mGAT2 im Gehirn ist äußerst gering und scheint hier auf die Leptomeningen und einige Blutgefäße beschränkt.^{26,30} mGAT2 ist in erster Linie ein Betain-Transporter, der die Betain-Konzentration im Blut reguliert.³² Der mGAT3 Transporter ist bei der Regulation von Taurin in der Leber von Bedeutung.³¹ mGAT2 und mGAT3 spielen demnach nur eine unbedeutende Rolle bei der GA-BAergen Neurotransmission im Gehirn.

1.3.2 Struktur und Transportmechanismus der SLC6-Transporter

Für die räumliche Struktur der GABA-Transportproteine wurden 12 transmembrane Helices mit intrazellulärem *N*- und *C*-Termius postuliert.²⁸ Als im Jahr 2005 die Gruppe um Gouaux eine Röntgenkristallstruktur (Auflösung 1.65 Å) des SLC6-homologen Leucin-Transporters (LeuT_{Aa}) des Bakteriums *Aquifex aeolicus* gewinnen konnte, wurde diese Annahme bestätigt.³³ In Abb. 1.3 ist eine schematische Darstellung der Röntgenkristallstruktur des LeuT_{Aa} gezeigt.

Abb. 1.3: Schematische Darstellung der Topologie des LeuT_{Aa} nach Yamashita et al.³³

Die Röntgenkristallstruktur ist ein wichtiges Modell zum besseren Verständnis der Funktionsweise der Transporter aus der SLC6-Familie.

Die 12 Transmembranproteine (TM) sind über intra- und extrazelluläre Schleifen (Loops) miteinander verbunden. Strukturell auffällig ist die gegenseitige Überlagerung der Transmembranproteine TM1-TM5 mit TM6-TM10 bei einer 180°-Drehung um eine *pseudo*-C₂-Symmetrieachse entlang der Membranebene. Die Bindungsstelle bzw. Bindungstasche für Leucin (gelbes Dreieck) und zwei Na⁺-Ionen (blaue Kreise) wird durch die Transmembrandomänen TM1, TM3, TM6 und TM8 gebildet, wobei ein Na⁺-Ion (Na1) zwischen TM1 und TM6 mit der Carboxyl-Grupppe des Leucins koordiniert (Abb. 1.4).

Abb. 1.4: Modell der polaren Wechselwirkungen von Leucin in der Bindungstasche des Leu T_{Aa}^{34}

Des weiteren sind die Carboxylfunktion von Leucin noch durch Wasserstoffbrückenbindungen mit der Amidfunktionen des Leu25 und Gly26 (TM1) und der Hydroxygruppe des Tyr108 (TM3) gebunden. Die Aminofunktion des Leucins wechselwirkt mit den Carbonylfunktionen des Ala22 (TM1), Phe253 und Thr254 (TM6), sowie mit der Hydroxyfunktion des Ser256 (TM6). Das zweite Na⁺-Ion (Na2) befindet sich zwischen den Transmembranproteinen TM1 und TM8 in einer Entfernung von ~7.0 Å zu Na1. TM1 und TM6 zeigen eine antiparallele Orientierung zueinander und verfügen über Unterbrechungen der helikalen Struktur (TM1a/b, TM6a/b) in der Mitte der Lipid-Membran, was zu einer erhöhten Flexibiliät in diesem Bereich führt.

Bei der Familie der Na⁺-gekoppelten Neurotransmitter-Transporter erfolgt die Bereitstellung der benötigten Energie zum Transport durch die Zellmembran über den Cotransport von extrazellulärem Na⁺-Ionen.²⁶ Im Vergleich zum LeuT erfolgt bei den GABA-Transportern zusätzlich der Transport von Cl⁻-Ionen und wird daher auch als Na⁺/Cl⁻-gekoppelter Neurotransmitter-Transporter bezeichnet. Die Stöchiometrie des Na⁺-Cl⁻-GABA-Transports beträgt 2:1:1. Es wird angenommen, dass die Cl⁻-Ionen zur Kompensation positiver Ladungen beitragen.^{10, 35} Auf der Grundlage der Röntgenkristallstruktur des Leucintransporters wird ein Transport eines Substratmoleküls durch die Zellmembran werden drei grundlegende, konformere Strukturen angenommen (Abb. 1.5). Das transmembranäre Protein ist zuerst zum extrazellulären Raum geöffnet (A, "outward-open"). Über diese Form können das Substrat und die beteiligten Ionen in die Bindungstasche des Proteins gelangen. Nach Aufnahme und Bindung von Na⁺, Cl⁻ und des Substrats bildet sich ein geschlossener Zustand (C), in dem sowohl das extrazelluläre als auch das intrazelluläre Gate geschlossen sind. Nach einer Konformationsänderung erfolgt die Öffnung zum intrazellulären Milieu (E, "inward-open"). Die geringere Na⁺- und Cl⁻-Konzentration im Zellinneren ermöglicht nun das Ausströmen der Ionen und die damit einhergehende Abgabe des Substrats. In Abbildung 1.5 wird der geschlossene Zustand zusätzlich in zwei konformere Strukturen unterteilt, so dass eine geschlossene Struktur mit leichter, konformeller Ausrichtung in Richtung extrazellulärem (B, "outward-occluded") bzw. intrazellulärem Milieu (D, "inward-occluded") resultiert. Nach der Abgabe der Ionen und des Substrats schließt sich das extrazellulären Gate (F). Im Folgenden öffnet sich der Transporter wieder zum extrazellulären Bereich und steht für einen weiteren Transportzyklus zur Verfügung.

Abb. 1.5: Schematische Darstellung des "alternating access"-Mechanismus in Anlehnung an Kristensen¹⁹

Die Röntgenkristallstruktur des Leu T_{Aa} (Abb. 1.3) ist die Momentaufnahme des Übergangszustandes, indem die Substratbindungsstelle geschlossen ist und keine Verbindung zum extrazellulären und intrazellulären Milieu aufweist. Der Leucin-Transporter zeigt eine 20-25% Sequenz-Übereinstimmung mit seinen Säugetier-Homologen, wobei im essentiellen Bereich der Substratbindungstasche S1 eine höhere Sequenzübereinstimmung von 55-67% besteht.^{38,39}

Aufgrund der guten Vergleichbarkeit des Leucin-Transporters mit den GABA-Transportern wurde in unserem Arbeitskreis ein 3D-Modell des humanen GABA-Transporters hGAT-1 mit Hilfe des Molecular Modelings erstellt (Abb. 1.6).³⁴ Der Unterschied bei der Substratspezifität resultiert im Grunde auf der Mutation von lediglich drei Aminosäuren: Ser256 zu Gly297, Asn21 zu Tyr60, Ile359 zu Thr400. Die Bindung der Carboxylfunktion von GABA (**2**) erfolgt ebenfalls über die Koordination mit dem Natriumion Na1 und wird durch Wasserstofbrückenbindungen zu der Hydroxyfunktion des Tyr140 und den Amidfunktionen von Leu64 und Gly65 stabilisiert.

Abb. 1.6: Modell der polaren Wechselwirkungen von GABA in der Bindungstasche von hGAT-1³⁴

1.4 Inhibitioren der GABA-Transporter

Seit der Entdeckung der GABA-Transportproteine und deren Evaluation als wichtige pharmakologische Targets im Zusammenhang mit der Behandlung zahlreicher neuropathologischer und psychiatrischen Erkrankungen sind viele cyclische und acyclische Aminosäurederivate synthetisiert und auf ihre inhibitorische Potenz an den GABA-Transportern untersucht worden. Eine wichtige Anforderung an GABA-Uptake-Inhibitoren ist ihre Selektivität an den Transportproteinen. Vor allem acyclische Aminosäurederivate zeigen, zusätzlich zur inhibitorischen Wirkung, eine Beeinflussung der GABA-Rezeptoren.^{40,41}

In Abbildung 1.7 sind die cyclischen Aminosäurederivate (*R*)-Nipecotinsäure (**8**) und Guvacin (**9**)⁴² dargestellt. Sie zeigen eine hohe inhibitorische Affinität gegenüber den Transportproteinen

(Tab. 1.2) und dienen daher bis heute als Leitstrukturen bei der Entwicklung neuer Inhibitoren. Die pIC₅₀-Werte von (*R*)-Nipecotinsäure (**8**) und Guvacin (**9**) sind an mGAT1, mGAT3 und mGAT4 gleich oder sehr ähnlich und an mGAT2 etwas geringer (Tab. 1.2, Eintrag 1 und 2). (*S*)-Homo- β -prolin (**10**) ist eine weitere Verbindung mit hoher inhibitorischer Wirkung auf die GABA-Transportproteine, besonders an mGAT1 (pIC₅₀ = 5.57), weist jedoch zusätzlich eine Affinität zu den GABA-Rezeptoren auf und erfüllt so das Kriterium der Selektivität nicht.⁴³

Abb. 1.7: Hemmstoffe der GABA-Transportproteine mit cyclischer Struktur

Eintrag	Verbindung _	Uptake-Inhibitoren (pIC ₅₀) ^a			
		mGAT1	mGAT2	mGAT3	mGAT4
1	(<i>R</i>)- 8 ·HCl	5.07 ± 0.02	3.28 ± 0.05	4.71 ± 0.04	4.79 ± 0.05
2	9 ·HCl	4.87 ± 0.06	3.31 ± 0.03	4.59 ± 0.05	4.59 ± 0.05
3	(<i>S</i>)- 10 ·HCl	5.57 ± 0.03	4.21 (kein SEM) ^b	4.88 ± 0.12	4.78 (kein SEM) ^b

Tabelle 1.2: GABA-Uptake-Inhibition von (R)-8·HCl, 9·HCl und (S)-10·HCl.

^a zur besseren Vergleichbarkeit stammen die pIC₅₀-Werte aus der biologischen Prüfung aus unserem Arbeitskreis; die Verbindungen wurden als Hydrochloride getestet;

^b kein SEM angegeben, da Einzelmessung

Die Verbindungen (*R*)-8, 9 und (*S*)-10 verfügen über einen ausgeprägten hydrophilen Charakter und sind somit nicht, oder kaum, in der Lage die Blut-Hirn-Schranke im Gehirn zu passieren.^{42,44,45} Um eine signifikanten Anteil eines Wirkstoffs im ZNS zu erzielen, hat es sich bewährt, die Wirkstoffe mit einer großen lipophilen Einheit zu versehen. Hierzu wird oftmals die Aminofunktion mit sterisch anspruchsvollen Resten alkyliert. Es hat sich gezeigt, dass damit sowohl die Subtypenselektivität als auch die inhibitorische Potenz der Verbindungen beeinflusst werden kann. So zeigt z.B. *N*-(4,4-Diphenylbuten-3-yl)pyrrolidin-3-ylessigsäure (DBP-homo- β -Prolin, 11) in GABA-Uptake-Versuchen eine 12-fach höhere Potenz als GAT-Inhibitor als 10 (Tab. 1.3) mit einer deutlich schwächeren Affinität zu den GABA-Rezeptoren.⁴²

Abb. 1.8: N-(4,4-Diphenylbut-3-en-1-yl)pyrrolidin-3-ylessigsäure (RS)-11

Tabelle 1.3: GABA-Uptake-Inhibition von (RS)-10 und (RS)-11.42

Eintrag	Verbindung	IC ₅₀ , μM
1	(<i>RS</i>)-10	1.54 (1.23-1.94)
2	(<i>RS</i>)-11	0.12 (0.01-0.15)

1.4.1 mGAT1-selektive Substanzen

Bislang sind die meisten GABA-Uptake-Inhibitoren subtypenselektiv an mGAT1 wirksam.⁴¹ Von der Nipecotinsäure **8** und Guvacin **9** wurden lipohilere Derivate wie **12**, *rac*-**13** und (*R*)-**7** abgeleitet (Abb. 1.9). Tiagabin (*R*)-**7** (Gabitril[®]) ist der erste mGAT1-selektive GABA-Uptake-Inhibitor, der eine Zulassung als Antiepileptikum für den deutschen Markt erhalten hat. In unserem Arbeitskreis wurde zu den Inhibitoren **12** (pIC₅₀ (mGAT1) = 6.83; Tab. 1.4, Eintrag 1), *rac*-**13** (pIC₅₀ (mGAT1) = 6.16; Tab. 1.4, Eintrag 2) und (*R*)-**7** (pIC₅₀ (mGAT1) = 6.88; Tab. 1.4, Eintrag 3) ein weiteres Strukturanalogon (*S*)-**14** hergestellt. Dieses ist ebenfalls hoch potent und mGAT1-selektiv (pIC₅₀ (mGAT1) = 6.69; Tab. 1.4, Eintrag 4) (Tab. 1.4). Verbindung (*S*)-**15** ist ebenfalls hoch potent an mGAT1 (pIC₅₀ = 5.99; Tab. 1.4, Eintrag 5), wenn auch ein wenig geringer als (*S*)-**14**.

Abb. 1.9: GAT1-selektive Verbindungen

Eintrag	Verbindung	Verbindung			bitoren (pIC ₅₀) ^a	
2		mGAT1	mGAT2	mGAT3	mGAT4	
1	12	6.83 ± 0.06	3.20 ± 0.09	3.62 ± 0.04	3.07 ± 0.05	
2	rac-13	6.16 ± 0.05	3.43 ± 0.07	3.71 ± 0.04	3.56 ± 0.06	
3	(<i>R</i>)-7	6.88 ± 0.12	52% / 100 $\mu\mathrm{M}^\mathrm{b}$	64% / 100 $\mu\mathrm{M}^\mathrm{b}$	73% / 100 $\mu\mathrm{M}^\mathrm{b}$	
4	<i>(S)</i> -14	6.69 ± 0.01	85% / 10 μM	89% / 10 μM	63% / $10~\mu\mathrm{M}$	
5	(<i>S</i>)- 15	5.99 ± 0.11	84% / $10~\mu{ m M}$	99 % / 10 μM	78% / $10~\mu\mathrm{M}$	

Tabelle 1.4: GABA-Uptake-Inhibition von **12**, *rac*-**13**, (*R*)-**7**, **14** und (*S*)-**15**.

^a zur besseren Vergleichbarkeit stammen die pIC₅₀-Werte aus der biologischen Prüfung aus unserem Arbeitskreis;

^b verbleibender [³H]GABA-Uptake in Gegenwart von 1 mM bzw. 100 μ M Testverbindung

1.4.2 mGAT2-selektive Substanzen

Bisher sind nur sehr wenige potente Inhibitoren für mGAT2 bekannt. Viele Verbindungen weisen zwar eine etwas erhöhte Affinität zu mGAT2 auf, sind aber nicht selektiv für diesen GABA-Transportersubtyp (Abb. 1.10). Die monomethylierte Verbindung *N*-Me-*exo*-THPO **16** ist wenig potent und mGAT1-selektiv (pIC₅₀ (mGAT1) = 3.35)(Tab. 1.5, Eintrag 1). Die Kombination aus **16** und dem lipophilen 1-[4,4-Bis(3-methyl-2-thienyl)-but-3-enyl]-Rest liefert den potenten Inhibitor EF-1502 **17** (Tab. 1.5, Eintrag 2). Diese Verbindung zeigt eine gute Potenz an mGAT1 (pIC₅₀ = 5.15) und einen etwas schwächeren Einfluß an mGAT2 (pIC₅₀ = 4.59).

18 ist ebenfalls ein sehr potenter, nicht subtypenselektiver mGAT2-Inhibitor, zeigt aber im Vergleich eine geringfügig höhere Hemmwirkung an mGAT2 (pIC₅₀ = 5.85) als an den übrigen drei GAT-Proteinen (Tab 1.5, Eintrag 3).

Abb. 1.10: mGAT2-selektive Verbindungen

Eintrag	Verbindung	Uptake-Inhibitoren (pIC ₅₀) ^a			
Linung		mGAT1	mGAT2	mGAT3	mGAT4
1	16 ⁴⁶	3.35	<2.5	<2.5	<2.5
2	17^{46}	5.15	4.59	<3.5	<3.5
3	18 ⁴⁷	4.72	5.85	4.39	4.82

Tabelle 1.5: GABA-Uptake-Inhibition von 16, 17 und 18.

^a keine SEM-Werte in der Literatur angegeben.

1.4.3 mGAT3- und mGAT4-selektive Substanzen

Die Entwicklung neuer potenter Inhibitoren für die Transportproteine mGAT3 und mGAT4 befindet sich ebenfalls noch in den Anfängen und es sind nur wenige subtypenselektive Inhibitoren für diese Transporter bekannt. In den meisten Fällen zeigen an mGAT3 inhibitorisch wirksame Substanzen auch eine vergleichbare Aktivität an mGAT4. Die acyclische Aminosäure *cis*-4-Aminocrotonsäure (CACA, **19**) zeigt im Vergleich zu GABA (**2**) eine ähnliche Affinität zu mGAT3 (pIC₅₀ = 4.95) und mGAT4 (pIC₅₀ = 4.93; Abb. 1.11, Tab. 1.6, Eintrag 1). Die, um eine CH₂-Gruppe kürzere Aminosäure β -Alanin (**20**) weist zwar eine geringere Potenz zu diesen Tranportproteinen auf, verfügt aber über eine signifikantere Selektivität (Tab. 1.6, Eintrag 2). Das Hydroxyderivat von β -Alanin (*RS*)-Isoserin **21** zeigt ähnliche Eigenschaften (Tab. 1.6, Eintrag 3).

Abb. 1.11: mGAT3- und mGAT4-selektive Substanzen

Verbindung	Verbindung	Uptake-Inhibitoren (pIC ₅₀) ^a			
		mGAT1	mGAT2	mGAT3	mGAT4
1	19	2.99 ± 0.04	3.67 ± 0.08	4.95 ± 0.04	4.93 ± 0.09
2	20	2.59 ± 0.03	3.48 ± 0.11	4.66 ± 0.06	4.46 ± 0.13
3	(<i>RS</i>)- 21	2.33 ± 0.05	3.39 ± 0.11	4.87 ± 0.05	4.78 ± 0.14

Tabelle 1.6: GABA-Uptake-Inhibition von 19, 20 und 21.

^a zur besseren Vergleichbarkeit stammen die pIC₅₀-Werte aus der biologischen Prüfung aus unserem Arbeitskreis

Von Kragler wurde die cyclische Aminosäuere (2-Amino-1,3-thiazol-4-yl)-essigsäure (**22**) mit einem Thiazol-Grundgerüst als die erste mGAT3-selektive Verbindung entwickelt ($pIC_{50} = 3.36$; Tab. 1.7, Eintrag 1) (Abb. 1.12). Eine ebenfalls in unserem Arbeitskreis gefundene, potente Verbindung an mGAT3 mit einem Imidazol-Grundgerüst ist 3-Imidazol-2-ylpropionsäure (**23**, $pIC_{50} = 4.54$; Tab. 1.7, Eintrag 2). Diese beiden Verbindungen zeigen zwar eine relativ geringe Potenz, eignen sich aber durchaus als Leitstrukturen für die Entwicklung neuer subtypenselektiver mGAT3-Inhibitoren.

Arbeiten von Dhar et al. führten durch Kombination von (*S*)-Nipecotinsäure ((*S*)-**8**) mit einem neuen lipophilen Substituenten zur mGAT4-affinen Verbindung (*S*)-SNAP 5114 ((*S*)-**24**).⁴⁵ Diese Verbindung ist sowohl an mGAT3 (pIC₅₀ = 5.29) und mGAT4 (pIC₅₀ = 5.71) wirksam (Tab. 1.7, Eintrag 3). In Anlehnung an diese Arbeit wurde das (*R*)-Prolin-Analogon (*R*)-**25** als mGAT4-Inhibitor (pIC₅₀ = 4.91) in unserem Arbeitskreis entwickelt (Tab. 1.7, Eintrag 4).⁴⁸

Abb. 1.12: mGAT3- und mGAT4-selektive Substanzen

Eintrag	Verbindung		Uptake-Inhibito	ren (pIC ₅₀) ^a	
		mGAT1	mGAT2	mGAT3	mGAT4
1	22 ⁴⁹	98% / 1 mM ^b	77% / 1 mM	3.36 ± 0.11	55% / 1 mM ^b
2	23·HCl ^c	63% / 1 mM ^b	3.28 ± 0.19	4.54 ± 0.15	3.51 ± 0.03
3	(S)- 24	4.07 ± 0.09	62.9% / 100 μM ^b	5.29 ± 0.04	5.71 ± 0.20
4	(<i>R</i>)-25	45% / 100 $\mu{ m M}^{ m b}$	4.25 ± 0.07	$32\% / 100 \mu{ m M}^{ m b}$	4.91 ± 0.04

Tabelle 1.7: GABA-Uptake-Inhibition von 22, 23·HCl, (S)-24 und (R)-25.

^a zur besseren Vergleichbarkeit stammen die pIC₅₀-Werte aus der biologischen Prüfung aus unserem Arbeitskreis; die Verbindungen wurden als Hydrochloride getestet;

^b verbleibender [³H]GABA-Uptake in Gegenwart von 1 mM bzw. 100 μ M Testverbindung;

^c getested als Hydrochlorid

Abschließend läßt sich festhalten, dass die GABA-Transportproteine wichtige Targets für die Therapie neuronaler Erkrankungen, die mit einer reduzierten GABAergen Neurotransmission assoziiert sind, darstellen. Die Entwicklung neuer potenter und subtypenselektiver Inhibitoren ist bislang nur für mGAT1 gelungen, wobei trotzdem noch Entwicklungspotenzial besteht. Die Forschung bezüglich der Transportproteine mGAT2-mGAT4 befindet sich eher noch in den Anfängen, liefert aber bereits erste, viel versprechende Ergebnisse, die zur Entstehung von Struktur-Aktivitätsbeziehungen beitragen, um so eine Charakterisierung der Transportproteine zu ermöglichen. Neue potente und subtypenselektive Inhibitoren für mGAT2-mGAT4 könnten zudem einen wichtigen Beitrag zum Verständnis der Rolle der Transportersubtypen bei diversen pathophysiologischen Krankheiten leisten und aussichtsreiche Arzneistoffe auf den Weg bringen.

2 Zielsetzung

Das Ziel der vorliegenden Arbeit war die Synthese verschiedener cyclischer Analoga der γ -Aminobuttersäure (2) und deren *N*-alkylierter Derivate sowie die Charakterisierung dieser Verbindungen bezüglich ihrer Potenz und Subtypenselektivität an den verschiedenen GABA-Transportersubtypen mGAT1-mGAT4.

Als primäre Leitstruktur dient das bereits erwähnte homo- β -Prolin **10**, welches eine vergleichbare Potenz aufweist, wie die vielfach verwendete Nipecotinsäure **8**. In Analogie zu diesen Strukturen sollten monocyclische Pyrrolidinderivate **26** mit einem Substituenten in 3- und 4-Position des Pyrrolidinrings synthetisiert werden (Abb. 2.1).

Des Weiteren sollten bicyclische γ -Aminobuttersäurederivate mit einem 3-Azabicyclo[3.2.0]heptan-Grundgerüst **27**, die in Ihrer Konformation deutlich eingeschränkt sind, zugänglich gemacht werden.

Abb. 2.1: Übersicht über GAT-Inhibitoren und die davon abgeleiteten Zielverbindungen mit den allgemeinen Strukturen **26** und **27**

Die am häufigsten verwendete Methode zum Aufbau cyclobutanhaltiger Verbindungen ist die [2+2]-Photocycloaddition. Eine intermolekulare Variante sollte hier als Schlüsselschritt der Synthesen eingesetzt werden.

Die Pyrrolidinderivate **26** sollten nach einer intermolekularen Photocycloaddition über eine sich anschließende Cyclobutanringspaltung entlang der Bindung a realisierbar sein (Abb. 2.2).

Abb. 2.2: Konvention zur Benennung der spaltbaren Bindungen von intermolekular erzeugten Cyclobutanen nach Bach⁵⁰

In einer früheren Arbeit von Schwarzer wurde eine intramolekulare Variante der [2+2]-Photocycloaddition u.a. zum Aufbau von 3-Azabicyclo[3.2.0]heptan-Derivaten verwendet, die Substituenten an den Brückenkopfatomen tragen.⁵¹ In der hier vorliegenden Arbeit sollten in Analogie dazu Derivate syntherisiert werden, die lediglich Substituenten in der 6- und 7-Position des 3-Azabicyclo[3.2.0]heptan-Grundgerüstes aufweisen. Dies sollte ebenfalls über eine intermolekulare Variante der [2+2]-Photocycloaddition erfolgen.

Frühere Arbeiten in unserem Arbeitskreis zeigen, dass zusätzliche funktionelle Gruppen, wie Hydroxy- oder Methoxygruppen, von den GAT-Transportproteinen toleriert werden. Daher sollten solche Substituenten für beide Grundkörper (Abb. 2.1) angestrebt werden.

Wie bereits erwähnt, sind die sehr polaren Grundkörper kaum in der Lage die Blut-Hirn-Schranke des ZNS zu überwinden. Um die ZNS-Gängigkeit zu verbessern, sollten die hier synthetisierten Grundkörper mit N-Substituenten versehen werden. Neben dem sterisch anspruchsvollen Diphenylbut-3-en-1-yl-Rest (**30**), sollten des weiteren C₄-Alkylketten (ein Butyl- **28** und ein But-3-en-1-ylrest **29**) eingeführt werden, um zusätzlich weitere Erkenntnisse über den Bindemodus und die Orientierung der Verbindungen in der Bindetasche der GABA-Transporter zu erhalten.

Abb. 2.3: Übersicht über die verwendeten N-Substituenten

3 Theoretischer Teil

3.1 Allgemeine Grundlagen der Photochemie

Lichtinduzierte chemische Reaktionen sind bereits seit Anfang des 20. Jahrhunderts bekannt und gewinnen in der heutigen Zeit mehr und mehr an Bedeutung. Vor allem in der Naturstoffsynthese werden diese Reaktionstypen zum Aufbau interessanter Verbindungsklassen eingesetzt.^{50, 52} Die Verwendung von Licht als Reagenz in der organischen Chemie bietet den Vorteil milder, reagenzienfreier Reaktionsbedingungen.

Die Grundlage einer photochemischen Reaktion ist die Überführung eines Reaktionspartners in einen angeregten Zustand durch die Bestrahlung mit Licht. Die Energie der verwendeten Strahlung muß mindestens der Energiedifferenz zwischen dem Grundzustand (S₀) und dem angeregten Zustand im Molekül entsprechen (S₁/S₂) und ist der Frequenz v direkt bzw. der Wellenlänge λ indirect proportional (E = hv = hc/ λ , h = Plancksches Wirkungsquantum, c = Lichtgeschwindigkeit). Das Jablonski-Diagramm (Abb. 3.1)⁵³ ist eine vereinfachte Darstellung der relativen Lage der elektronischen Energieniveaus eines Moleküls und verdeutlicht anschaulich die möglichen Übergänge von Valenzelektronen in die verschiedenen Anregungszustände, die zudem mehrere Schwingungsniveaus aufweisen. Bei der Absorption der Energie eines Photons durch eine chemische Verbindung kommt es zur Anhebung eines Elektrons aus dem elektronischen Grundzustand S₀ ($\uparrow\downarrow$, gepaarte Elektronen) in einen angeregten Zustand (S₁/S₂). Entsprechend des Franck-Condon-Prinzips kommt es zu einer Veränderung der elektronischen Konfiguration. Die schweren Atomkerne hingegen behalten ihre geometrische Anordnung des Grundzustandes bei. Das Energieminimum im angeregten Zustand wird durch strahlungslose Schwingungsrelaxation erreicht, wobei die Energie in Form von Rotations-, Schwingungs- und Translationsenergie auf Umgebungsmoleküle übertragen wird. Ausgehend von diesem Schwingungsgrundzustand des elektronisch angeregten Zustandes kann nun die Rückkehr in den Grundzustand S₀ in Form von Fluoreszenz (Vorgänge pro Sekunde: 10^{6} - 10^{9} s⁻¹, entspricht einer Lebensdauer τ von 10^{-9} - 10^{-6} s), d.h. strahlende Desaktivierung durch spontane Emission von Licht (hv[']) oder durch strahlungslose Desaktivierung (internal conversion, IC) erfolgen.

Ausgehend vom angeregten Zustand kann auch Intersystem Crossing (ISC, $10^{6}-10^{11}$ s⁻¹, $\tau = 10^{-11}-10^{-6}$ s) auftreten, wobei eine Spinumkehr in einem halbbesetzten Orbital erfolgt und somit

ein Triplett-Zustand (T₁) resultiert, in dem beide ungepaarten Elektronen einen parallelen Spin ($\uparrow\uparrow$) aufweisen. Wenn sich ein Molekül im Triplett-Zustand befindet, besteht auch hier wieder die Möglichkeit eines strahlungslosen Überganges in den energetisch niedrigeren Schwingungsgrundzustand des Triplett-Zustandes. Aus diesem Zustand kann das Molekül durch Emission von Strahlungsenergie (hv^{''}, 10⁻²-10² s⁻¹, $\tau = 10^{-2}$ -10² s), der sogenannten Phosphoreszenz, oder durch ein erneutes ISC (10²-10⁴ s⁻¹, $\tau = 10^{-4}$ -10⁻² s), wieder in den elektronischen Grundzustand S₀ übergehen.

Abb. 3.1: Jablonski-Diagramm nach Montalti⁵³; \rightarrow = Absorption bzw. Emission von Licht, \rightsquigarrow = strahlungsloser Übergang

Bei der Beschreibung photochemischer Reaktionen stellt sich die Frage, ob ein Singulett- oder ein Triplett-Zustand an der Reaktion beteiligt ist. Dies hängt von der Geschwindigkeit des ISC im Vergleich zu der Geschwindigkeit einer Reaktion aus dem Singulett-Zustand ab. Ist das ISC schneller, verläuft die photochemische Reaktion über den Triplett-Zustand. Umgekehrt kann die Reaktion aus dem Singulett-Zustand erfolgen, wenn sie schneller verläuft als das ISC.

Die Grundlage der photochemischen Reaktionsfähigkeit einer Verbindung ist die Absorption von Energie in Form eines Photons. Das Absorptionsverhalten einer Verbindung wird durch seine funktionellen Gruppen bestimmt. Die charakteristischen Absorptionsbanden organischer Moleküle entstehen durch die Anregung von σ -, π - und n-Elektronen. Ausgehend von diesen besetzten Molekülorbitalen kann ein Elektron in die leeren, antibindenden Molekülorbitale π^* oder σ^* angehoben werden. In Tabelle 3.1 sind einige wichtige Substanzklassen und ihre Absorptionsmaxima λ_{max} [nm] angegeben.⁵⁴ Einfache Alkene zeigen ein Absorptionsmaximum im

Substanzen	Absorptionsmaxima $\lambda_{max}[nm]$
Einfache Alkene	190-200
Acyclische, konjugierte Diene	220-250
Cyclische, konjugierte Diene	250-270
Gesättigte Ketone	270-280
α, β -ungesättigte Ketone	310-330
Aromatische Ketone und Aldehyde	280-300
Aromatische Verbindugen	250-280

Tabelle 3.1: Wellenlängenbereiche der Absorptionsbanden mit der niedrigsten Energie für einige photochemisch wichtige Substanzklassen nach Carey und Sundberg⁵⁴

fernen UV-Bereich um 200 nm. Mit steigender Funktionalisierung verschiebt sich das Absorptionsmaximum zu höheren Wellenlängen. Carbonylverbindungen sind bedeutende Chromophore, die in Verbindung mit Doppelbindungen eine gute Anregbarkeit in einem Wellenlängenbereich von 280-330 nm aufweisen und daher von besonderer Bedeutung für die Photochemie sind (siehe Kap. 3.2).

Ein weiterer wichtiger Faktor und ein Maß für die Effektivität einer photochemischen Reaktion ist die Quantenausbeute Φ (siehe Gleichung 3.1). Sie beschreibt das Verhältnis aus dem Anteil der reagierenden Moleküle bezogen auf die Gesamtmenge der angeregten Moleküle. Da mehrere konkurrierende Prozesse bei einer photochemischen Reaktion möglich sind und nicht jedes angeregte Molekül eine Reaktion eingeht ist die Quantenausbeute häufig < 1.

$$\Phi = \frac{\text{Anzahl der reagierenden Moleküle}}{\text{Anzahl der angeregten Moleküle}}$$
(3.1)

In der Regel erfolgt eine Reaktion zwischen einem Molekül im angeregten Zustand und einem Molekül im Grundzustand. Selten kommt es zu einer Reaktion zwischen zwei angeregten Reaktionspartnern, da die Konzentration angeregter Moleküle gering ist.⁵⁵ Zudem ist die Reaktion aus dem Triplett-Zustand aufgrund der längeren Lebenszeit dieses angeregten Zustandes im Vergleich zum angeregten Singulett-Zustand wahrscheinlicher (Abb. 3.1). Abbildung 3.2 zeigt die verschiedenen Reaktionsmöglichkeiten eines angeregten Moleküls (A-B-C)*. Die häufigsten Reaktionen sind die homolytische Bindungsspaltung (1) (z.B. Norrish-Typ-1), die Zersetzung (2) (z.B. infolge einer Norrish-Typ-2) und die Photosensibilisierung in Gegenwart eines Akzeptormoleküls A_{cc} (7) (siehe Kap. 3.2.4). Des Weiteren kann eine intramolekulare Umlagerung (4), Photoisomerisierung (*E*/*Z*-Isomerisierung, 3) oder Photodimerisierung (8) sowie eine H-Abstraktion (5) auftreten. Ebenso kann durch die Abgabe der Energie in Form von Lumineszenz (Fluoreszenz oder Phosphoreszenz, 6) das Molekül wieder in den Grundzustand übergehen. Aufgrund dieser Reaktionsvielfalt sind die Einsatzmöglichkeiten photochemischer Reaktionen sehr hoch. Allerdings kann dies auch die gezielte Synthese angestrebter Verbindungen extrem erschweren.

Abb. 3.2: Verschiedene Möglichkeiten der Reaktion aus dem angeregten Zustand (A-B-C)* in Anlehnung an Smith⁵⁵ und Wayne⁵⁶

3.2 Grundlagen der [2+2]-Photocycloadditionen von Enonen mit Alkenen

Das Gebiet der Photochemie umfasst einen sehr großen Bereich diverser Reaktionen. Im Folgenden wird auf die lichtinduzierten [2+2]-Cycloadditionen im Allgemeinen und auf die [2+2]-Photocycloadditionen von Enonen mit Alkenen im Speziellen eingegangen, die den Schlüsselschritt in der vorliegenden Arbeit darstellt. Erst in den frühen 1960er Jahren wurden die [2+2]-Photocycloadditionen von Enonen mit Alkenen untersucht und das synthetische Potential dieser Reaktionen erkannt.⁵⁷

Die α, β -ungesättigten Carbonylverbindungen gehören zu den wichtigsten Substraten photochemischer Reaktionen. Daher neigt man dazu, diese Enone als maßgebliche Olefine in einer Photoreaktion zu bezeichnen. Sie absorbieren in einem Wellenlängenbereich von 310-330 nm⁵⁴ (Tab. 3.1), können meist direkt photochemisch angeregt werden und verfügen über einen relativ langlebigen $\pi\pi^*$ -Triplettzustand. Ist eine Anregung nicht möglich oder kommt es aufgrund anderer Prozesse zu einer Abgabe der Energie (z.B. *E/Z*-Isomerisierung) kann keine Photoreaktion stattfinden. In Abbildung 3.3 ist ein allgemeines Schema einer [2+2]-Photocycloaddition dargestellt.⁵⁸ Die Bildung von Cyclobutanverbindungen kann zum einen nach direkter Anregung des im Grundzustand befindlichen Substrats aus dem S₁- (Weg A) oder nach ISC aus dem Triplett-Zustand (T₁) erfolgen (Weg B). Alternativ kann durch einen Sensitizer das Substrat direkt in den Triplett-Zustand überführt werden. Dies wird im Folgenden detaillierter besprochen (Kap. 3.2.4).

Abb. 3.3: Allgemeines Schema einer [2+2]-Photocycloaddition nach Bach⁵⁸

3.2.1 Orbitalbetrachtungen

Analog zum Jablonski-Diagramm sind in der folgenden Darstellung (Abb. 3.4) die Wechselwirkungen der Grenzorbitale der beteiligten Reaktanden einer Photoreaktion dargestellt.⁵⁹ Bei der Absorption von Licht durch ein Chromophor wird ein Elektron aus dem HOMO (highest occupied molecular orbital) in das entsprechende LUMO (lowest occupied molecular orbital) angehoben. Diese Übergänge sind in der Regel $\pi \rightarrow \pi^*$ - oder $n \rightarrow \pi^*$ - Übergänge. Im angeregten Molekül werden die entsprechenden Molekülorbitale dann analog ihrer Bezeichnung im Grundzustand des Moleküls mit 'HOMO' und 'LUMO' bezeichnet. Für eine photochemische Reaktion bestehen nun zwei energetisch günstige Orbital-Wechselwirkungen: 1. die Wechselwirkung des einfach besetzten π^* -Orbital mit einem unbesetzten Molekülorbital des im Grundzustand befindlichen Moleküls ('LUMO'-LUMO-Wechselwirkung) und 2. eine Wechselwirkung zwischen dem einfach besetzten n- oder π -Orbital des angeregten Moleküls und dem zweifach besetzten Molekülorbital des Grundzustandsmoleküls ('HOMO'-HOMO-Wechselwirkung).⁵⁹ Die rechte Abbildung zeigt die bindenden Grenzorbitalwechselwirkungen der Reaktanden einer [2+2]-Photocycloaddition.

Abb. 3.4: Grenzorbital-Wechselwirkungen eines photochemisch angeregten Moleküls und einem Molekül im Grundzustand nach Fleming⁵⁹

3.2.2 Diskussion angenommener Mechanismen

Der Mechanismus der [2+2]-Photocycloaddition von Enonen mit Alkenen war ab den frühen 1960er Jahren immer wieder Bestandteil diverser Untersuchungen. Corey und de Mayo postulierten die Bildung eines Exciplex- bzw. Excimer-Komplexes (Excimer: engl. excited dimer, zwei gleiche Reaktionspartner, Exciplex: engl. excited complex, zwei unterschiedliche Reaktionspartner, Abb. 3.5).^{60,61} Aus einem angeregtem Enon im Triplett-Zustand (${}^{3}K^{*}$) und einem Alken (O) bildet sich der reaktive Exciplex-Zustand ([${}^{3}KO$]* \leftrightarrow [K⁺O⁻]*), welcher in ein Biradikal übergeht und so die Produktbildung ermöglicht.^{57,61,62}

Abb. 3.5: Schematische Darstellung des Exciplex-Zustandes⁶¹

Dieser Exciplex-Zustand konnte allerdings bislang nur für einige wenige Substrate nachgewiesen werden,⁶³ dient eher zur Veranschaulichung der Prozesse und soll hier nur der Vollständigkeit halber erwähnt werden.

Im Gegensatz dazu veröffentlichte Bauslaugh 1970 Untersuchungsergebnisse, die die Regiochemie bei [2+2]-Photocycloadditionen von Enonen mit Alkenen ohne die Bildung eines Exciplex-Übergangszustandes erklären.⁶⁴ Auf der Grundlage, dass es kaum einen experimentellen Beweis für das Auftreten eines Enon-Alken-Exciplex-Zustandes gibt, wird ein Mechanismus mit einem 1,4-Diradikal als reaktive Zwischenstufe für die [2+2]-Photocycloaddition eines Enons mit einem Alken angenommen.⁶⁰ Ein vereinfachter Mechanismus ist in Abb. 3.6 wiedergegeben. Zuerst erfolgt die lichtinduzierte Anregung des Enons in den angeregten Singulett-Zustand (¹[Enon]*), welcher sehr kurzlebig ist und in den angeregten Triplett-Zustand (³[Enon]*) übergeht. Sowohl vom Singulett als auch vom Triplett-Zustand besteht für das angeregte Enon die Möglichkeit wieder in den Grundzustand überzugehen. Mit Hilfe eines Triplett-Sensitizers kann das Enon auch direkt aus dem Grundzustand den Triplett-Zustand erreichen. Steht dem angeregten Enon ein Alken als Reaktionspartner zur Verfügung kann sich ein im Triplett-Zustand befindliches Biradikal (³BIR) bilden, welches unter ISC in den angeregten Singulett-Zustand (¹BIR) übergeht. Dieses Intermediat kann entweder die Edukte (Enon, Alken) oder das Cyclisierungsprodukt bilden.

Abb. 3.6: Schematische Darstellung einer [2+2]-Photocycloaddition eines Enons mit einem Alken⁶⁵

3.2.3 Regiochemie der [2+2]-Photocycloadditionen von Enonen mit Alkenen

Die Regiochemie ist ein entscheidender Faktor bei [2+2]-Photocycloadditionen. Es entstehen gleich zwei neue Einfachbindungen und es resultiert ein Cyclobutanderivat mit bis zu vier neuen Stereozentren. Es besteht die Möglichkeit einer inter- und intramolekularen Reaktion. Im Folgenden wird auf die intermolekulare Variante eingegangen, da diese in der vorliegenden Arbeit angewandt wird.

Reagiert ein unsymmetrisches Enon mit einem unsymmetrischen Alken in einer [2+2]-Photocycloadditionen sind zwei Regioisomere möglich (Schema 3.7). Die Verknüpfung der Reaktanden kann head-to-head (HH) oder head-to-tail (HT) erfolgen. Der Kopf (head) eines Enons ist die Carbonyleinheit. Bei einem Alken wird das höher substituierte Ende oder das Ende mit dem Substituenten der höchsten Priorität (Cahn-Ingold-Prelog-Konvention) als head bezeichnet. Das Beispiel in Schema 3.7 zeigt eine intermolekulare [2+2]-Photocycloaddition von Cyclohexenon (**31**) mit einem unsymmetrisch substituierten Alken (**32**). Das Cyclisierungsprodukt wird in einer Mischung von head-to-tail- und head-to-head-Produkten (HT = **33**, HH = **34**) erhalten. Das Isomerenverhältnis wird durch elektronische und sterische Wechselwirkungen bestimmt. Donorsubstituenten (X) am Alken liefern bevorzugt das head-to-tail-Produkt (HT = **33**), wohingegen Akzeptorsubstituenten das head-to-head-Produkten liefern.^{54, 58, 65}

Schema 3.7: Regioisomere bei der intermolekularen [2+2]-Photocycloaddition von Cyclohexenon (**31**) in Abhängigkeit von den Substituenten X am Alken⁵⁴

Wie bereits erwähnt, sind α , β - ungesättigte Carbonyl-, Carboxyl und ähnliche heterocyclische Verbindungen häufig verwendete, photochemisch anregbare Reaktionspartner in [2+2]-Photocycloadditionen. In Abbildung 3.8 ist eine schematische Darstellung einer [2+2]-Photocycloaddition eines cyclischen Enons (A) mit einem Alken (Ethen) dargestellt.⁶⁵ Photochemisch induziert geht A nach ISC in den angeregten Triplett-Zustand B über. Die Verwendung cyclischer Enone bietet den Vorteil, dass diese im angeregten Zustand (B) ihre Energie nicht durch Rotation um die Einfachbindung abgeben und in den Grundzustand übergehen können. Durch Reaktion mit dem Alken bildet sich ein Biradikal (C/C²). Eine Isomerisierung um die Einfachbindung ist abhängig von der Lebensdauer des entsprechenden Zustandes und bedingt die Vielzahl möglicher Cyclisierungsprodukte.

Schema 3.8: Schematische Darstellung einer [2+2]-Photocycloaddition eines Enons mit einem Alken nach Hehn,⁶⁵ • = ungepaartes Elektron

Aufgrund der Ringspannung können kleine Ringsysteme (3-, 4- und 5-Ringe) miteinander aus-

schließlich *cis*-verknüpft werden. Dies ist ein Effekt, der sich auch auf die Stereochemie der [2+2]-Photocycloaddition cyclischer Reaktanden auswirkt.

In Schema 3.9 wird die diastereomere Produktverteilung im Zusammenhang mit der Ringgröße der cyclischen Alkene verdeutlicht. Das cyclische Enon **35** wird jeweils mit Cyclohexen (**38**) und Cyclopenten (**36**) photochemisch umgesetzt.⁶⁶ Mit Cyclohexen (**38**) wird ein Diastereomerengemisch aus **37a**, **37b** und **37c** erhalten. Im Vergleich dazu liefert die Umsetzung mit Cyclopenten (**36**) das sterisch bevorzugte *exo*-Produkt **39a** mit einem Anteil von 90%, das sterisch ungünstigere *endo*-Isomer **39b** als Nebenprodukt mit 10%. Eine Isomerisierung um die Einfachbindung des Cyclopentens wurde nicht beobachtet.

Schema 3.9: Vergleich der diastereomeren Produktverteilung einer intermolekularen [2+2]-Photocycloaddition von Cyclopentenon mit Cyclopenten und Cyclohexen⁶⁶

3.2.4 Photo-Sensitizer

Photochemische Reaktionen zeichnen sich dadurch aus, dass photochemisch anregbare Verbindungen durch Absorption von Lichtenergie in einen angeregten, reaktiven Zustand übergehen. Die Energie der Strahlung muss der Energiedifferenz zwischen dem angeregtem und Grund-Zustand entsprechen. Neben der direkten Anregung einer chemischen Verbindung durch Bestrahlung mit Licht besteht die Möglichkeit der Photosensibilisierung.⁶⁷ Durch den Zusatz eines Sensitzers zur Reaktionslösung oder Verwendung des Sensitizers als Lösungsmittels (z.B. Aceton) kann eine photokatalysierte Reaktion erfolgen. In Abbildung 3.10 wird der Energietransfer von einem Sensitizer (Sens) auf den Reaktanden (Reakt) verdeutlicht. Zuerst wird der Sensitizer in den angeregten Zustand (¹Sens^{*}) überführt (1) und kann dann nach Intersystem-Crossing in angeregten Triplett-Zustand übergehen (³Sens^{*}) (2). Häufig verlaufen solche Photoreaktionen über den Triplett-Zustand. Die Energie wird vom Sensitizer auf das Acceptormolekül, den Reaktanden im Singulett-Zustand, übertragen (3). Ein leicht anregbarer Sensitizer kann nur seine Triplett-Energie auf einen Reaktanden übertragen, wenn dieser über eine höhere Triplett-Energie verfügt als der Reaktand. Mechanistisch wird eine diffusionskontrollierte Energieübertragung angenommen. Der angeregte Reaktand (³Reakt^{*}) ist dann in der Lage eine photochemische Reaktion einzugehen (4).

Sens	<u>Anregung</u>	¹ Sens*	(1)
¹ Sens*	IntersystemCrossing	³ Sens*	(2)
³ Sens [*] + Reakt	Sensibilisierung	Sens + ³ Reakt*	(3)
³ Reakt*	\longrightarrow	Produkte	(4)

Abb. 3.10: Graphische Darstellung des Energietransfers vom Triplett-Sensitizer (Sens) auf den Reaktanden (Reakt)⁵⁴

Bei der Wahl eines Sensitzers ist zu beachten, dass der Sensitizer, das verwendete Lösungsmittel (siehe Tab. 3.4) und der anzuregende Reaktand nicht im gleichen Wellenlängenbereich absorbieren. Für eine optimale Photosensibilisierung mit einer möglichst hohen Quantenausbeute (Φ , Gleichung 3.1) sollte der Sensitizer unter den gegebenen Reaktionsbedingungen den größten Anteil an der Lichtabsorption der eingehende Strahlung haben und nicht um diese konkurrieren. In der nachstehenden Tabelle 3.2 sind die Triplett-Energien und die Absorptionsmaxima für einige gebräuchliche Sensitizer angegeben.

Sensitizer	$\lambda_{max}[nm]$	E_T [kcal/mol] ⁶⁷	$E_T [kJ/mol]^{67}$
Acetophenon	310	74.1	310.2
Aceton	331	79.4	332.4
Benzophenon	340	69.2	289.7

Tabelle 3.2: Übersicht einiger ausgewählter Sensitizer mit ihren Absorptionswellenlängen (λ_{max}) und ihren Triplett-Energien (E_T)

3.2.5 Aufbau des Photoreaktors der Firma Rayonet und die praktische Durchführung photochemischer Reaktionen

Für die in dieser Arbeit durchgeführten photochemischen Reaktionen wurde ein Photoreaktor RPR-200 der Firma Rayonet verwendet (Abb. 3.11). Dieser Photoreaktor bietet die Möglichkeit die Reaktionslösungen von außen gleichmäßig mit einer hohen Lichtintensität mit einer Leistung von ~400W zu bestrahlen. Dies gelingt durch die Verwendung von 16 identischen, kreißförmig angeordneten UV-Lampen einer bestimmten Emissionswellenlänge (254 nm, 300 nm, 350 nm, 419 nm und 575 nm). Des Weiteren bietet der Rayonet RPR-200 die Möglichkeit die Reaktorkammer über einen unten einbaubaren Ventilator zu kühlen. Jedoch mußte aufgrund der Platzierung des Rührers auf den Einbau des Ventilators verzichtet werden. Für die hier ausgewählten, photochemisch anregbaren α, β -ungesättigen Carbonylverbindungen wurden die UV-Lampen mit 254 nm und 300 nm verwendet. Die spektrale Verteilung der jeweiligen Lampen umfasst hierbei einen Bereich von ungefähr ± 40 nm um die charakteristische Wellenlänge (Abb. 3.11). Die Wahl einer selektiven Wellenlänge im Vergleich zu Lampen mit einem breiten Emissionsspektrum (Hg-Lampen) bietet den Vorteil, dass eventuelle Nebenreaktionen vermieden werden können. In Tabelle 3.3 wird der numerische Zusammenhang der Wellenlänge und der entsprechenden Energie des Lichtes nochmals verdeutlicht.

Abb. 3.11: Rayonet RPR-200 und die Spektralverteilungen der Lampen mit 300, 350, 380 und 419 nm

λ[nm]	\tilde{v} [cm ⁻¹]	ΔE [kcal/mol]
200	50.000	142.9
250	40.000	114.3
300	33.333	95.2
350	28.571	81.6

Tabelle 3.3: Zusammenhang der Wellenlänge λ , der Wellenzahl $\tilde{\nu}$ und der Energie ΔE für den UV-Bereich (200-350 nm) nach Klessinger⁶⁸

Photochemische Reaktionen können prinzipiell in allen drei Aggregatzuständen (gasförmig, flüssig und fest) durchgeführt werden. Allerdings wird die Reaktionsführung in Lösung am häufigsten gewählt. Daher ist, neben der Wahl einer geeigneten Anregungswellenlänge, die Eigenabsorption des zu verwendeten Lösungsmittels entscheidend. In Tabelle 3.4 sind einige gängige Lösungsmittel für photochemische Reaktionen mit ihren Absorptionsgrenzen aufgelistet. Ein weiteres Kriterium ist die Lösungsfähigkeit der Reaktanden im zu verwendenden Lösungsmittel.

$\lambda_{lim}[nm]$		
1		

Tabelle 3.4: Absorptionsgrenzen λ_{lim} für photochemisch häufig verwendete Lösungsmittel⁶⁹

Photochemische Umsetzungen werden in Quarzglasgefäßen (λ_{lim} =190 nm) vorgenommen, um eine Beeinflussung der Lichtleistung durch Eigenabsorption der Reaktionsgefäßes zu vermeiden. Bei bimolekularen Reaktionen ist es von Vorteil, den Reaktanden im großen Überschuß im Vergleich zum Reagenz einzusetzen, um den kurzlebigen angeregten Zustand abzufangen und eine photochemische Reaktion zu ermöglichen.

Für die in dieser Arbeit durchgeführten intermolekularen [2+2]-Photocycloadditionen wurden die Reaktanden im Reaktionsgefäß vorgelegt und mit dem entsprechenden Lösungsmittel versetzt. Die Reaktionslösung wurde, um weitestgehend Sauerstoff zu entfernen, im Ultraschallbad unter Argon-Strom 20 min. entgast und das Gefäß mit einem Septum verschlossen. Das Reaktionsgefäß wurde mit Hilfe eines Statives mittig im Photoreaktor platziert und die Reaktionslösung anschließend unter Rühren bestrahlt, um eine gleichmäßige Durchmischung zu gewährleisten. In der vorliegenden Arbeit wurde, aufgrund der Verfügbarkeit der 3-Pyrrolinderivate, ein Überschuß von 1.5 bis 2 Äquivalenten gewählt.

3.3 [2+2]-Photocycloadditionen als Schlüsselschritt zum Aufbau von γ-Aminobuttersäurederivaten

3.3.1 Synthese monocyclischer 3,4-disubstituierter Pyrrolidinderivate mit einem 3-Pyrrolidinessigsäuregrundgerüst

Ein Teil dieser Arbeit befasst sich mit der Synthese 3,4-disubstituierter Pyrrolidinderivate der allgemeinen Struktur **26**, die sich von homo- β -Prolin **10** durch einen zusätzlichen Substituenten in 4-Position ableiten (Abb. 3.12). Bei der Synthese der monocyclischen 3-Pyrrolidinessigsäurederivate **26**, die in 4-Position des Grundgerüsts weitere funktionelle Gruppen (R), wie Acetyl-, Hydroxymethyl- und auch Methoxymethylfunktionen aufweisen, war geplant, eine intermolekulare [2+2]-Photocycloaddition als Schlüsselschritt einzusetzen.

Abb. 3.12: Angestrebtes Substitutionsmuster des 3-Pyrrolidinessigsäuregrundgerüsts

Synthesekonzept

Formal sind bei [2+2]-Photocycloadditionen zwei Olefine beteiligt, die durch photochemische Anregung ein Cyclobutanderivat bilden. Bei einer häufig verwendeten Reaktionssequenz folgt der Ringbildung eine Ringspaltung. Dies verdeutlicht unter anderem die vielfältigen Möglichkeiten, die diese Cycloadditionsreaktionen bieten. Prinzipiell können in einem Cyclobutanring vier Bindungen (a-d) gespalten werden. Bach hat eine Konvention zur Bezeichnung der Bindungen, die bei einem Cyclobutanring gespalten werden können, eingeführt. Dabei werden diese mittels lateinischen Kleinbuchstaben a-d unterschieden, was in Abbildung 3.13 am vereinfachten Beispiel einer intermolekularen Photocycloaddition eines Enons mit einem Alken verdeutlicht wird.⁵⁰

Schema 3.13: Konvention zur Benennung der spaltbaren Bindungen von intermolekular erzeugten Cyclobutanen nach Bach⁵⁰ am Beispiel einer [2+2]-Photocycloaddition eines Enons mit einem Alken

Die bei [2+2]-Cycloadditionsreaktionen häufig verwendeten α , β -ungesättigten Carbonylverbindungen, speziell 1,3-Dicarbonylverbindungen in Form der Enolate, führen zu Cyclobutanprodukten, welche die wohl wichtigste Fragmentierung, d.h. entlang der Bindung *a* ermöglichen. Diese Retro-Aldolreaktion (Abb. 3.14, I) wird in Kombination mit der [2+2]-Photocycloaddition auch als de-Mayo Reaktion bezeichnet.^{62, 70} Die Produkte verfügen dann über eine 1,5-Diketofunktion (siehe auch Schema 3.15). Des Weiteren sind in Abbildung 3.14 zwei weitere Beispiele für mögliche Fragmentierungen unterschiedlicher Cyclobutanderivate (Typ II + III) dargestellt.⁵⁰ Verbindungen des Typs II, die eine Abgangsgruppe X (z.B. -Cl, SO₃R, -OCOR) tragen, zeigen die sogenannte Grob-Fragmentierung.^{71, 72} Des Weiteren wurde die radikalische Fragmentierung (Typ **III**) bereits in der Naturstoffsynthese von z.B. Terpenen verwendet.⁷³

Abb. 3.14: Cyclobutanspaltung der Bindung a durch Retro-Aldolreaktion (Typ I), Grob-Fragmentierung (Typ II) und radikalische Fragmentierung (Typ III) nach Bach⁵⁰

Eine häufig eingesetzte Verbindungsklasse sind die 1,3-Dioxin-4-one, die bereits bei einer Wellenlänge von $\lambda \leq 300$ nm direkt photochemisch anregbar sind.⁶⁵ Die darin enthaltene Acetalfunktion kann im Anschluß an die Photoreaktion hydrolysiert werden, wodurch in Folge Fragmentierungsreaktionen stattfinden können. So wurden die 1,3-Dioxin-4-one 2,2-Dimethyl-4*H*-1,3-dioxin-4-on (**40**) und 2,2,6-Trimethyl-4*H*-1,3-dioxin-4-on (**44**) zum Aufbau von 5-Oxopentansäurederivaten wie **43** und 5-Oxohexansäurederivaten wie **46** eingesetzt (Abb. 3.15).

Schema 3.15: **40** und **44** als Syntheseäquivalente für 5-Oxopentansäure- **43** bzw. 5-Oxohexansäurederivate **46**

Das von mir entwickelte Synthesekonzept für monocyclische 3,4-disubstituierte Pyrrolidinessigsäurederivate **26** ist in Schema 3.16 zusammengefasst. Der Schlüsselschritt war eine de-Mayo-Reaktion, bestehend aus einer intermolekularen [2+2]-Photocycloaddition und einer Cyclobutanringspaltung (Retro-Aldol) entlang der Bindungen a. Die Wahl einer geeigneten, photochemisch anregbaren Komponente war hier entscheidend. Aliphatische Ester haben lediglich einen schwachen n,π^* -Übergang (λ_{max} 212 nm) und sind daher für [2+2]-Photocycloadditionen nicht geeignet. Als photochemisch anregbare Komponenten, die bereits die gewünschten Funktionalitäten der 5-Oxopentansäure- **43** bzw. 5-Oxohexansäurederivate **46** aufweisen, wurden die Dioxinone **40** und **44** gewählt. Für mein Vorhaben schien die dabei enthaltene Aldehydfunktion besonders interessant. Zum Aufbau der von mir angestrebten Pyrrolidinderivate **26** sollte sie durch Reduktion Zugang zu einer Hydroxymethylseitenkette bieten.

Als Reaktionspartner für die photochemisch anregbaren Dioxinone **40** und **44** wollte ich das Ngeschützte 3-Pyrrolin (**47**) einsetzen. Dieses bietet den Vorteil, dass bei Photoreaktionen wegen der Symmetrie der Verbindung keine HT- bzw. HH-Produkte entstehen können. Zudem sollten die Ringe der beiden Reaktanden, wenn sie über einen Cyclobutanring verknüpft werden, jeweils eine *cis*-Orientierung aufweisen. Bei der Cycloaddition sind jedoch die *endo* bzw. *exo*konfigurierten Produkte zu erwarten. Mit einer sich anschließenden Ringöffnung entlang der Bindung a sollte so der Zugang zu 3,4-disubstituierten Pyrrolidinessigsäurederivaten **26** möglich werden (Schema 3.16).

Als Ausgangspunkt der Synthese 3,4-disubstituierter Pyrrolidinessigsäurederivate **26** dienen zwei Publikationen von Greenwood, in der die photochemische Umsetzung des Dioxinons **44** mit di-

Schema 3.16: Synthesekonzept für die 3,4-disubstituierten Pyrrolidinderivate **50** und **51**, PG = Schutzgruppe (engl. protecting group)

versen N-geschützten 3-Pyrrolinderivaten vorgestellt wird.^{74,75} Diese literaturbekannte Synthese diente mir als Einstieg erste Erfahrungen auf dem Gebiet der intermolekularen [2+2]-Photocycloadditionen zu sammeln und als Anhaltspunkt zur Entwicklung weiterer Photoreaktionen.

Synthese von 3-Pyrrolin (56) und der N-geschützten Derivate

Für die in dieser Arbeit angestrebten, intermolekularen [2+2]-Photocycloadditionen von photochemisch anregbaren Enonen wurde 3-Pyrrolin (**56**) als Ausgangsverbindung benötigt. Dieses ist zwar käuflich, aber vergleichsweise teuer und wurde deshalb nach einer Synthesevorschrift von Meyers *et al.* hergestellt (Schema 3.17).⁷⁶ Durch Umsetzung von *cis*-1,4-Dichlorbut-2-en (**52**) mit Hexamethylentetramin (**53**, Urotropin) und anschließender, saurer Hydrolyse (2 M HCl in EtOH) des quartären Ammoniumsalzes **54** war das primäre Ammoniumsalz **55** in hohen Ausbeuten zugänglich. Die folgende Cyclisierung zu **56** erfolgt durch den Einsatz der nichtnucleophilen Base 1,8-Diazabicyclo-[5.4.0]undec-7-en (DBU), wobei das Produkt **56** unmittelbar aus dem Reaktionsgemisch abdestilliert wurde. Bei der Destillation wurde auf die Anwendung einer Heat-Gun nach Meyers *et al.* verzichtet und ein Graphitbad verwendet. Damit ließ sich ein gleichmäßiges Erhitzen über einen längeren Zeitraum gewährleisten. Mit dem Graphitbad wurde eine Temperatur von 210 °C eingestellt. Die Ausbeuten beliefen sich auf 57% (Lit.: 75%). Bei sehr langen Destillationszeiten (~3-4 h) wurden zwar etwas höhere Ausbeuten (~66%) erzielt, jedoch führte dies zu einer geringeren Qualität des Produktes aufgrund größerer Mengen nicht charakterisierter Verunreinigungen.

Schema 3.17: Synthese von 3-Pyrrolin 56

Ausgehend von 3-Pyrrolin (**56**) ist es möglich unterschiedliche Schutzgruppen zu verwenden. Erste Untersuchungen sollten mit dem *N*-Boc-Derivat **57** erfolgen. Unter Verwendung einer Standardmethode (Di-*tert*-butyldicarbonat (Boc₂O), CH₂Cl₂, RT) konnte ich **57** aus **56** in quantitativer Ausbeute darstellen (Schema 3.18).^{77, 78}

Schema 3.18: Synthese von 57

Als alternative Möglichkeit zur Synthese von **57** ist die Umsetzung von **52** mit *tert*-Butylcarbamat **58** in Gegenwart von NaH in DMF in der Literatur beschrieben (Schema 3.19).⁷⁹ Allerdings konnten die Literaturausbeuten von 60% in einem einmaligen Versuch nicht erzielt werden, weshalb ich diesen Syntheseweg nicht weiter verfolgt habe.

Schema 3.19: Alternative Synthese von 57

39

Greenwood *et al.* setzen in den [2+2]-Photocycloadditionen von Dioxinon **44** auch Ausgangsverbindungen mit einer Trifluoracetamid-Schutzgruppe (TFA-Schutzgruppe) ein.^{74,75} Daher wurde **59** ebenfalls hergestellt. Durch Umsetzung von **56** mit Trifluoressigsäureanhydrid ((CF₃CO)₂O) in Gegenwart von Pyridin konnte ich **59** in einer Ausbeute von 83% erhalten (Schema 3.20).⁸⁰

Schema 3.20: Synthese von 59

Synthese der Pyrrolidin-3-essigsäurederivate mit einer Acetylfunktion

Wie bereits erwähnt, kann 2,2,6-Trimethyl-1,3-dioxinon (**44**) in photochemischen Reaktionen eingesetzt werden, wobei bei nachfolgender Cyclobutanringspaltung 5-Oxohexansäurederivate entstehen (Schema 3.15). Greenwood und Parsons beschrieben bei der Synthese von Kainsäurederivaten die [2+2]-Photocycloaddition von Dioxinon **44** mit diversen N-substituierten 3-Pyrrolinverbindungen (Bn-, Tosyl-, Boc- und TFA-substituiert) durch Bestrahlung mit einer 125 W bzw. 400 W Mitteldruck-Quecksilberdampflampe.⁷⁴ Im Fall von Boc- und TFA-substituiertem 3-Pyrrolin (**57** und **59**) wurden die Photoreaktionen sogar erfolgreich im Multigramm-Maßstab durchgeführt.

Der mir zur Verfügung stehende Rayonet-Photoreaktor ermöglicht den Einsatz einer bestimmten Anregungswellenlänge. Bei Quecksilberdampflampen mit einem breiten Emissionsspektrums werden oft Filter oder Filterlösungen verwendet, um das emittierte Licht auf einen bestimmten Wellenlängenbereich einzugrenzen. Die Absorptionsmaxima für α , β -ungesättigte Ketone liegen im Bereich von ~300 nm (Tab. 3.1). Im Fall von **44** wurden oft Pyrex-Filter oder Corex-Filter verwendet, bei denen das Transmissionsmaximum bei 290nm⁷⁴ bzw. 270 nm⁸¹ liegt. Dem entsprechend habe ich für die photochemischen Umsetzungen von **44** Lampen mit einer Wellenlänge von 254 nm und 300 nm eingesetzt, die diesen Wellenlängenbereichen am nächsten kommen. Zu Beginn verwendete ich das geschützte Pyrrolidinderivat **57**, das ich gemäß der Vorschrift von Greenwood und Parsons mit **44** photochemisch in Essigsäureethylester umsetzte.⁷⁴ Allerdings ließ sich kein Cyclisierungsprodukt isolieren oder genau charakterisieren. Aufgrund dessen wurde für weitere Versuche das TFA-geschützte Derivat **59** als Reaktionspartner gewählt

3.3 [2+2]-Photocycloadditionen als Schlüsselschritt zum Aufbau von γ-Aminobuttersäurederivaten

(Schema 3.21). Die Reaktionszeit der photochemischen Umsetzung von **44** mit **59** betrug bei einer Wellenlänge von 254 nm 29 h, hierbei lag die Ausbeute für das *rac*-Isomer **60** bei 45% und für das *rac*-Isomer **61** bei 7%. Greenwood und Parsons hatten bei einer Reaktionszeit von 72 h und einer Bestrahlung mit einer Mitteldruck-Quecksilberdampflampe (125 W) vergleichbare Ausbeuten (*rac*-**60**: 47%, *rac*-**61**: 12%) erzielt. Die Ausbeuten konnte ich durch Bestrahlung mit Licht einer Wellenlänge von 300 nm noch etwas steigern (*rac*-**60**: 55%, *rac*-**61**: 8%). Die für eine quantitative Umsetzung erforderliche Reaktionszeit erhöhte sich auf 160 h. Die Reaktionslösung zeigt im Laufe der Reaktion eine immer intensivere Gelbfärbung und Trübung. Es ist anzunehmen, dass sich dadurch die Quantenausbeute verschlechterte und daraus die Verlängerung der Reaktionszeit resultiert.

Die Stereochemie dieser Reaktion ist auf den ersten Blick etwas überraschend, da bei [2+2]-Photocycloadditionen in der Regel das *exo*-Isomer *rac*-**61** aus sterischen Gründen bevorzugt gebildet wird (Schema 3.8), während hier das *endo*-Produkt *rac*-**60** als Hauptprodukt auftrat. Allerdings scheint bei der Umsetzung von **44** mit **59** die Methylgruppe in β -Position zur Carbonylfunktion einen massiven sterischen Einfluss auszuüben, so dass die *endo*-Konfiguration bei dieser Cycloaddition favorisiert wird.

Schema 3.21: Synthese von rac-60 und rac-61

In der gleichen Publikation beschrieben Greenwood und Parsons die katalytisch induzierte Ringöffnung über eine Retro-Aldol-Reaktion (Abb. 3.14, I). Die Methoxid-vermittelte Fragementierung (0.1 Äq.) in MeOH unter Rückfluss soll das entsprechende Produkt *rac*-62 in der C3/4*cis*-Konfiguration mit moderaten Ausbeuten von 23 bzw. 63% in Abhängigkeit von der Konfiguration des Edukts (*endo: rac*-60: 63%, *exo: rac*-61: 23%) geliefert haben. Die Ringöffnung der *endo*-Verbindungen verlief im Vergleich zu den *exo*-Verbindungen schneller und sauberer. Leider wurden hier keine genaueren Angaben bezüglich der Reaktionsbedingungen angegeben. Erste Versuche zur Ringöffnung von *rac*-60 führte ich entsprechend der Angaben von Greenwood und Parsons mit NaOMe (0.1 Äq.) in MeOH unter Rückfluss durch. Nach einer Reaktionszeit von 24 h wurde nach wässriger Aufarbeitung im ¹H NMR des Rohproduktes ein Edukt:Produkt-Verhältnis von *rac*-60 zum Diastereomerengemsich aus *rac*-62 und *rac*-63 von 1.7:1.0 bestimmt. Die isolierte Ausbeute des Produktgemisches aus *rac*-62 und *rac*-63 betrug jedoch nur 16%, wobei das Produkt als *cis/trans*-Gemisch aus 62 und *rac*-63 mit einem Isomerenverhältnis von 1.00:0.15 vorliegt.

Eine Zuordnung der Isomere *rac*-**62** und *rac*-**63** war, aufgrund überlagerter ¹H NMR-Spektren (Rotamere und Epimere), jedoch nicht möglich. Alternativ führte ich diese basenkatalysierte Ringöffnungsreaktion in der Mikrowelle bei 70°C durch. Nach 11 h war auch hier die Reaktion noch unvollständig (*rac*-**60**/(*rac*-**62**+*rac*-**63**) = 0.6:1.0), allerdings konnte die Ausbeute auf 30% gesteigert werden (Schema 3.22). Das Isomerenverhältnis im Produktgemisch aus *rac*-**62** und *rac*-**63** lag im ähnlichen Bereich wie vorher, d.h. bei 1.00:0.18.

Schema 3.22: Synthese von rac-62 und rac-63

In einer weiterführenden Publikation beschrieben Greenwood *et al.* Versuche zur Fragmentierung der Dioxinoneinheit an analogen Derivaten.⁷⁵ Wie sie feststellten, führen sowohl basische als auch Lewis-Säure katalysierte Reaktionsbedingungen zu einer schnellen Epimerisierung an der α -Position der Acetylfunktion und daher zur Bildung der thermodynamisch bevorzugten *trans*-Isomere.⁸² Es ist daher anzunehmen, dass bei der Methoxid-induzierten Cyclobutanringspaltung von *rac*-**60** die *trans*-konfigurierte Verbindung *rac*-**63** das Hauptisomer und *rac*-**62** das Nebenisomer war. Die niedrige Ausbeute von 30% bei der Methoxid-induzierten Cyclobutanringspaltung von *rac*-**60** (Schema 3.22) lässt sich durch die Labilität der TFA-Schutzgruppe gegenüber den schwach basischen Reaktionsbedingungen⁸³ erklären, sodass als Nebenreaktion wohl die TFA-Schutzgruppe ebenfalls abgespalten wurde.

Im Folgenden sollte die TFA-Schutzgruppe abgespalten werden. Dies erfolgt bereits unter mil-

den basischen Reaktionsbedingungen,⁸³ wie z.B. mit wässriger K_2CO_3 - oder LiOH-Lösung in MeOH.^{84, 85} Erste Versuche ausgehend *rac*-**62** und *rac*-**63** (im Gemisch) mit wässriger K_2CO_3 -Lösung in MeOH zeigten, dass das freie Amin *rac*-**64** zu polar ist, als dass es nach einer wässrigen Aufarbeitung extrahiert werden kann. Daher wurde eine Variante der TFA-Abspaltung gewählt, die eine wässrige Aufarbeitung umgeht. Tietze *et al.* beschrieben die Spaltung der TFA-Schutzgruppe mittels stark basischem Ionenaustauscher in MeOH unter Erhalt des Methylesters.⁸⁶ Hierbei besteht die Aufarbeitung aus Abfiltrieren und Waschen des Ionenaustauschers. Ausgehend vom Gemisch aus *rac*-**62** und **63** konnte ich das freie Amin *rac*-**64** mit einer Ausbeute von 63% herstellen (Schema 3.23). Für die weiterführenden Reaktionen wurde *rac*-**64** quantitativ in das Hydrochlorid *rac*-**64** mit Boc₂O in Gegenwart von DMAP und Et₃N hergestellt. Hierbei konnte jeweils nur ein Isomer beobachtet werden.

Schema 3.23: Synthese von rac-64 bzw. rac-64 HCl und rac-65

Die Bestimmung der relativen Stereochemie in 5-Ringsystemen, wie Pyrrolinen oder Furanen, ist äußerst schwierig.^{87,88,89} Selbst der Vergleich spektroskopischer Daten analoger Verbindungen sind aufgrund kleiner, konformerer Veränderungen wenig aussagekräftig, vor allem wenn die spektroskopischen Daten nur eines Isomers vorliegen und daher ein Vergleich nicht möglich ist. Trotzdem wurde der Versuch unternommen, die relative Stereochemie von *rac*-64·HCl und dem dafür zusätzlich synthetisierten *N*-Boc-Derivat *rac*-65 mittels 1D-DPFGSE-NOE-Experimenten zu bestimmen. Die eindimensionalen (1D) DPFGSE-NOE-Experimente für *rac*-65 wurden bei 60°C aufgenommen, liefern jedoch keine aussagekräftigen Ergebnisse und werden daher nicht zur eindeutigen Bestimmung der relativen Stereochemie herangezogen. Die Abbildung 3.24 zeigt

die signifikanten NO-Effekte von *rac*-**64**·HCl in der angenommenen *trans*-Konfiguration. Bei der Anregung des Protons in der C-4-Position bei $\delta = 3.37$ ppm werden gleich vier NO-Effekte beobachtet. Wie zu erwarten erfolgt ein NO-Effekt zu dem direkt benachbarten Proton der 3-Position des Pyrrolidinrings bei $\delta \approx 2.96$ ppm. Vergleichsweise schwach, wird diesem Effekt eine untergeordnete Bedeutung beigemessen, zumal in einer *cis*-Konfiguration dieser Effekt deutlicher ausfallen sollte. Des Weiteren zeigen sich starke NO-Effekte zu den Protonen der CH₂-Gruppe der Seitenkette an der 3-Position bei $\delta \approx 2.72$ ppm und den Protonen der CH₃-Gruppe der Acetylfunktion bei $\delta = 2.32$ ppm. Ein weiterer NO-Effekt wird zu dem axialen Proton der CH₂-Gruppe in 2-Position des Pyrrolidinrings bei $\delta \approx 3.15$ ppm erhalten. Diese Ergebnisse stützen die Annahme der *trans*-Konfiguration von *rac*-**64**·HCl.

Abb. 3.24: 1D DPFGSE-Experiment für rac-64·HCl

Die Ausbeuten der Synthese von *rac*-64·HCl ausgehend von *rac*-60 über *rac*-62 bzw. *rac*-63 (Gesamtausbeute 19%) waren hier äußerst unbefriedigend (Schema 3.22 und 3.23). Da sowohl die Ringöffnung der Dioxinoneinheit und die Abspaltung der TFA-Schutzgruppe unter stark basischen Reaktionsbedingungen erfolgen, sollten beide Reaktionsschritte gleichzeitig durchgeführt werden. Die direkte Behandlung des Tricycluss *rac*-60 mit stark basischem Ionenaustauscher in MeOH bei Raumtemperatur über 15 min. liefert das Amin *rac*-64 (Schema 3.25). Nach Behandlung mit etherischer HCl und Umkristallisation aus MeOH/Pentan konnte das entsprechende Hydrochlorid *rac*-64·HCl mit 48% analysenrein isoliert werden. Neben dem Ester *rac*-64·HCl sollte auch die reine Aminosäure *rac*-66 zugänglich gemacht werden. Durch die Reaktion mit wässriger LiOH-Lösung konnte ich *rac*-66 direkt ausgehend von *rac*-60 in hohen Ausbeuten (86%) synthetisieren.

Die 4-Position dieser Acetylderivate ist sehr azide, so dass bei Raumtemperatur in deuterierten Lösungsmitteln ein H/D-Austausch stattfindet. So zeigt für Verbindung *rac*-**66** das Integral im ¹H NMR nach einer Zeit von 20.5 h (über Nacht) in D₂O für das Proton in 4-Position bei δ = 3.37 ppm nur noch einen Wert von 0.59 (bezogen auf ein Proton der CH₂-Gruppe in 2-Position

Schema 3.25: Synthese von rac-66 und rac-64·HCl

des Pyrrolidinrings) und hat somit einen Deuterierungsgrad von 40%. Eine Umsetzung von *rac*-**60** mit stark basischen Ionenaustauscher in deuteriertem Methanol zeigt nach einer Reaktionszeit von 2.25 h und anschließender Überführung in das Hydrochlorid eine vollständige Deuterierung der 4-Position. Das Proton bei $\delta = 3.37$ ppm ist im ¹H-NMR nicht mehr zu beobachten. Alle Fakten zusammengenommen, kann für diese Verbindungen nur die *trans*-Konfiguration angenommen werden.

Synthese 3,4-disubstituierter Pyrrolidin-3-essigsäurederivate mit einer Hydroxymethylfunktion

Des Weiteren sollten 3,4-disubstituierte Pyrrolidin-3-essigsäurederivate mit einer Hydroxymethylfunktion in der 4-Position hergestellt werden. Hierbei wollte ich als photochemisch anregbare Komponente das 5,6-unsubstituierte Dioxinon **40** mit einem N-geschützten 3-Pyrrolin zu den entsprechenden Tricyclen **48** und **49** umsetzen (Schema 3.16). Nach der Cyclobutanringspaltung entlang der Bindung a (Abb. 3.14) sollte eine Reduktion der resultierenden Aldehydfunktion von **50** die entsprechende Hydroxymethylverbindung **67** liefern (Schema 3.26).

Da Dioxinon **40** im Vergleich zu **44** nicht käuflich ist, musste diese Verbindung zu Beginn hergestellt werden.

Schema 3.26: Geplante Synthese des Pyrrolidinderivates 67

Synthese von 2,2-Dimethyl-4H-1,3-dioxin-4-on (40) nach Kaneko et al.⁹⁰

Die Synthese von 40 erfolgte nach einer Literaturvorschrift von Kaneko *et al.* (Schema 3.27).⁹⁰ Entsprechend wurde durch Umsetzung von Meldrumäure **68** mit Trimethylorthoformat (CH(OMe₃)₃) bei 85-90°C Methoxymethylenmeldrumsäure **69** hergestellt.^{90,91} Anschließend wurde **69** durch Hydrolyse mit 2M HCl in CHCl₃ bei Raumtemperatur in Formylmeldrumsäure **70** überführt, die im Gleichgewicht mit der Hydroxymethylenmeldrumsäure **71** vorliegt. Im entscheidenden Schritt der Synthese von **40** wurde durch Erhitzen in Toluol die Bildung des Formylketens **72** induziert, das mit Aceton (**73**) zum Dioxinon **40** cyclisiert.

Die in der Literatur beschriebenen Ausbeuten für die einzelnen Teilschritte sind vergleichbar mit den von mir erzielten Ausbeuten. Lediglich die Ausbeute für die Cyclisierung zu **40** von bis zu $67-82\%^{90,92}$ konnte ich bei mehrmaligen Versuchen nicht reproduzieren. Ich erhielt das Produkt nur mit 30%. Aufgrund der kleineren Ansatzgrößen verzichtete ich auf die angegebene Reinigung mittels Destillation und reinigte stattdessen **40** säulenchromatographisch.

Schema 3.27: Synthese von 2,2-Dimethyl-4H-1,3-dioxin-4-on (40)

Photochemische Umsetzung von 40

Photochemische [2+2]-Cycloadditionsreaktionen von **40** und analoger Verbindungen mit Alkenen wurden mehrfach von Sato *et al.* beschrieben.^{93,94,95} Sato *et al.* verwendeten zur photochemischen Anregung von Dioxinon **40** Lampen mit einer Wellenlänge von 300 nm der Firma Rayonet. Des Weiteren kam eine Hochdruck-Quecksilberlampe mit einem Vycor-Filter zum Einsatz, der ein Transmissionsmaximum bei einer Wellenlänge von ~ 225 nm aufweist.⁹⁶ Als Lösungsmittel wurde hauptsächlich Essigsäureethylester eingesetzt.^{92,95}

In entsprechender Weise habe ich die photochemische Umsetzung von **40** mit **59** in Essigsäureethylester versucht (Schema 3.28, Tabelle 3.5). Zuerst wurde eine Wellenlänge von 300 nm verwendet. Gemäß der Literaturvorschrift von Greenwood *et al.*⁷⁴ zur photochemische Umsetzung von **44** mit **59** wurde für die photochemische [2+2]-Photocycloaddition von **40** und **59** ebenfalls ein Reaktandenverhältnis von 1:2 gewählt.

Unter diesen Reaktionsbedingungen war nach 83 h das Edukt **40** nicht mehr nachweisbar (DC). Ein ¹H NMR der einrotierten Reaktionslösung ließ das Vorliegen zweier Isomere, des *endo*-Isomers *rac*-**74** und des *exo*-Isomers *rac*-**75**, erahnen. Die Isolierung der beiden Verbindungen stellte sich jedoch aufgrund zahlreicher, nicht näher charakterisierter Nebenprodukte mit ähnlichen chromatographischen Eigenschaften als äußerst schwierig heraus. Nach mehrfacher Säulenchromatographie konnte ich eine Verbindung, bei der es sich entweder um *rac*-**74** oder *rac*-**75** handelte, mit 11% isolieren (Schema 3.28; Tab. 3.5, Eintrag 1). Eine genaue Zuordnung der relativen Stereochemie des isolierbaren Cyclisierungsproduktes *rac*-**74** oder *rac*-**75** konnte aufgrund sich überlagernder Signale hier aber nicht erfolgen. Durch die spätere Synthese von *rac*-**75** ließ sich die Bildung von *rac*-**75** bei der photochemischen [2+2]-Photocycloaddition von **40** und **59** und die *endo*-Konfiguration von *rac*-**74** bestätigen (siehe Seite 51).

Um die Ausbeute zu steigern, wurden weitere Versuche mit einem fünffachen Überschuss an **59** bei gleichbleibender Wellenlänge von 300 nm unternommen. Es zeigte sich eine deutliche Reduzierung der Reaktionszeit auf 6.5 h, allerdings war die Ausbeute am isolierbaren Cyclisierungsprodukt *rac*-**74** mit 15% ähnlich gering (Tab. 3.5, Eintrag 2). Eine Wellenlänge von 254 nm führte zwar zu einem schnellen Verbrauch von **40**, lieferte aber sehr geringe Ausbeuten von 5% (Tab. 3.5, Eintrag 3).

Schema 3.28: Photochemische Umsetzung von 40 mit 59

Eintrag	λ	Verhältnis	t	Ausbeute
	[nm]	40:59	[h]	rac- 74 [%]
1	300	1:2	83	11
2	300	1:5	6.5	15
3	254	1:5	0.3	5

Tabelle 3.5: Photochemische Umsetzung von 40 mit 59

Alternative zur photochemischen Umsetzung von 40

Die Ausbeuten der [2+2]-Photocycloaddition von **40** mit **59** konnten nur als unzufriedenstellend bezeichnet werden. Da zudem für die folgende Synthesesequenz größere Mengen des Cyclisierungsproduktes *rac*-**74** bzw. *rac*-**75** benötigt wurden und die Synthese der beiden erforderlichen Edukte mit einem erhöhten synthetischen Aufwand verbunden war, habe ich nach einer Alternative zu **40** für die photochemischen Umsetzungen gesucht.

Baldwin *et al.* beschrieben als Alternative zur direkten Umsetzung von **40** eine Methode, bei der 2,2-Dimethyl-3-(2*H*)-furanon (**76**) als photochemisch anregbare Komponente verwendet wird und bei der anschließend das Cycloadditionsprodukt einer Baeyer-Villiger Oxidation mit *me*-*ta*-Chlorperbenzosäure unterzogen wird.^{97,98} Die photochemischen Eigenschaften von **76** wurden bereits in den 1970er Jahren ausgiebig von Margaretha untersucht.⁹⁹ Das Furanon **76** zeigt in MeOH zwei Absorptionsmaxima bei 294 nm und 258 nm.¹⁰⁰ Neben der Verwendung von Pyrex-Filtern mit einem Transmissionsmaximum von ~290 nm¹⁰¹ bzw. UV-Lampen mit einer Wellenlänge von 300 nm wurden für die optische Anregung auch Lampen mit einer Wellenlängen von 350 nm¹⁰² eingesetzt. Zudem dienten oftmals MeCN oder *n*-Pentan als Lösungsmittel

bei der photochemischen Umsetzung von 76.99,101

In Anlehnung an die photochemische Reaktion von 44 habe ich für die [2+2]-Photocycloaddition von 76 mit 59 wieder ein Reaktandenverhältnis von 1:2 (76:59) gewählt. Die erste photochemische Umsetzung von Furanon 76 mit 59 bei 300 nm in MeCN lieferte sogleich das Produkt rac-77 in guter Ausbeute von 50% (Schema 3.29; Tab. 3.6, Eintrag 1). Wie in der Literatur beschrieben, sollte eine Wellenlänge von 350 nm ebenfalls gut zur photochemische Anregung von 76 geeignet sein. Allerdings sank dabei die Ausbeute drastisch auf 13% bei einer deutlich längeren Reaktionsszeit von 25 h (Tab. 3.6, Eintrag 2). Zusätzlich wurde eine Wellenlänge von 254 nm ausprobiert, wobei jedoch nach 4 h kein Produkt beobachtet werden konnte. Des Weiteren wurden verschiedene Lösungsmittel zusammen mit einer Wellenlänge von 300 nm verwendet (Tab. 3.6, Eintrag 4-6). Im Fall von Essigsäureethylester als Lösungsmittel wurden ähnlich gute Ausbeuten erzielt (47%), wohingegen n-Pentan und Benzol geringere Ausbeuten (38 bzw. 35%) lieferten. Durch den Einsatz eines größeren Überschusses der Alkenkomponente 59 (5 Äq.) konnte ich noch eine Ausbeutesteigerung um 4% gegenüber den Anfangsbedingungen erzielen (Tab. 3.6, vergleiche Eintrag 1 mit Eintrag 7). Allerdings wurde aufgrund der Verfügbarkeit des Eduktes 59 auf einen noch größerer Überschuss verzichtet. Zumal die Ausbeutesteigerung als zu gering eingestuft wurde und eine Rückgewinnung von 59 sich als uneffektiv herausstellte.

Schema 3.29: Photochemische Umsetzung von 76 mit 59 zu rac-77

Die relative Stereochemie von *rac*-77 wurde mittels 1D DPFGSE-NOE-Experimenten bestimmt (Abb. 3.30). Durch Anregung des Protons in der 6b-Position von *rac*-77 bei $\delta = 4.32$ ppm im ¹H NMR wurden zwei positive NO-Effekte beobachtet: zum einen zu den Protonen der CH₂-Gruppe in Position 4 und 6 der Pyrrolidineinheit bei $\delta = 4.22$ und 4.01 ppm und zum anderen zu dem Proton in der 3a-Position bei $\delta = 2.78$ ppm. Die Protonen in der 3b,6a-Position zeigten keinen NO-Effekt, daher ist die relative Stereochemie von *rac*-77 mit einer *cis-trans-cis*-Orientierung in der *exo*-Konfiguration anzunehmen.

Eintrag	λ [nm]	Verhältnis 76:59	Lösungsmittel	t [h]	Ausbeute <i>rac</i> - 77 [%]
1	300	1:2	MeCN	4	50
2	350	1:2	MeCN	25	13
3	254	1:2	MeCN	4	/
4	300	1:2	EtOAc	5	47
5	300	1:2	<i>n</i> -Pentan	10	38
6	300	1:2	Benzol	10	35
7	300	1:5	MeCN	4	54

Tabelle 3.6: Optimierungen der photochemischen Umsetzung von 76 mit 59

Abb. 3.30: Bestimmung der relativen Stereochemie von *rac-***77** mittels 1D DPFGSE-NOE-Experiment

Die Verbindung *rac*-77 konnte zudem aus *n*-Pentan/Et₂O kristallisiert und die komplexe Molekülstruktur von *rac*-77 durch eine Röntgenkristallstrukturanalyse eindeutig bestätigt werden (Abb. 3.31, Kap.: 1.4.3). Die Bildung des entsprechenden *endo*-Cyclisierungsproduktes wurde nicht beobachtet.

Abb. 3.31: Röntgenkristallstruktur von (3a*S*,3b*R*,6a*R*,6b*R*)-2,2-Dimethyl-5-(2,2,2-trifluoracetyl)-hexahydro-2*H*-furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3a*H*)-on (*rac*-77)

Ausgehend von *rac*-77 wurde entsprechend der Versuchsvorschrift von Baldwin *et al.* die Baeyer-Villiger-Oxidation mit mCPBA und NaHCO₃ in CH₂Cl₂ bei Raumtemperatur durchgeführt (Schema 3.32).⁹⁷ Die Oxidation lieferte den Tricyclus *rac*-75 unter Erhalt der relativen Konfiguration (bestätigt durch ¹H NMR- und 1D DPFGSE–NOE-Experimente) in hoher Ausbeute (95%). Diese Verbindung konnte allerdings weder säulenchromatographisch (SiO₂, AlO₂) noch durch Kristallisation weiter gereinigt werden. Dies stellte jedoch kein Problem dar, da die Reinheit von *rac*-75 nach der wässrigen Aufarbeitung zufriedenstellend war (>95%).

Schema 3.32: Alternative Synthese von rac-75

Bei der photochemischen Umsetzung von **40** mit **59** (Schema 3.28) wurde sowohl *rac*-**74** als auch *rac*-**75** gebildet. Dies konnte im ¹H NMR des Rohproduktes eindeutig belegt werden. Das isolierbare Produkt *rac*-**74** musste demnach das *endo*-Isomer *rac*-**74** sein. Da eine chromatographische Isolierung von *rac*-**75** aufgrund der Labilität der Verbindung nicht möglich war, habe ich deren direkte Darstellung über die photochemische Umsetzung von **40** mit **59** nicht weiter verfolgt.

Weiterführende Reaktionen ausgehend von rac-75

Baldwin *et al.* beschrieben in der bereits oben erwähnten Literatur⁹⁷ die Ringöffnung der Dioxinoneinheit unter Erhalt des Cyclobutanrings zur Hydroxycarbonsäure unter wässrigen, methanolischen Reaktionsbedingungen (MeOH/H₂O = 25:1, Rückfluss, 1.5 h).⁹⁷ Aufgrund der Labilität von *rac*-**75** wurde die Hydrolyse zur Hydroxycarbonsäure *rac*-**78** abweichend von den Literaturangaben bei Raumtemperatur durchgeführt (Schema 3.33). Nach einer Reaktionszeit von 5 h konnte das Produkt nach Säulenchromathographie (SiO₂, EtOAc/*n*-Pentan/AcOH = 80:20:2) in 91% Ausbeute isoliert werden. Hierbei war das vollständige Entfernen der aus dem Lösungsmittel zur SC stammenden Essigsäure aus der ölig, harzigen Substanz *rac*-**78** sehr langwierig. Nach Tagen im Hochvakuum waren anschließend Spuren der monocyclischen 4-Formylpyrroldidin-3-essigsäure *rac*-**79** oder *rac*-**80** detektierbar.

Schema 3.33: Synthese von rac-78

Eine sukzessive Öffnung der Dioxinoneinheit und des Cyclobutanrings wurden in der Literatur für ähnliche Systeme durch Erhitzen in Wasser beschrieben, wobei die resultierenden Formylcarbonsäuren schnell zu den *trans*-konfigurierten Verbindungen isomerisierten.^{93,97} *Rac*-**75** ließ sich zur Formylcarbonsäure *rac*-**79** oder *rac*-**80** in refluxierendem H₂O über einen Zeitraum von 4.5 h umsetzen. Durch den Einsatz der Mikrowelle reduzierte sich die Reaktionszeit auf 45 min bei einer identische Ausbeute von 82% nach säulenchromatographischer Reinigung (SiO₂, EtOAc/*n*-Pentan/AcOH = 80:20:2, Schema 3.34). Bei dieser Reaktion konnte ich lediglich die Bildung eines Isomers beobachten, wobei die relative Stereochemie von *rac*-**79** oder *rac*-**80** aufgrund sich überlagender ¹H NMR-Signale hier nicht zu bestimmen war.

Im Folgenden war für die angestrebte Reduktion der Aldehydfunktion die Veresterung der Carbonsäurefunktion notwendig. Eine milde Methode zur Synthese von Methylestern aus Carbonsäuren stellt die Umsetzung mit Diazomethan oder Trimethylsilyldiazomethan (TMSCHN₂)

Schema 3.34: Synthese von rac-79 bzw. rac-80

dar. ^{103, 104} TMSCHN₂ gilt im Vergleich zu Diazomethan als sicherer handhabbar und ist zudem als Lösung (in Et_2O oder *n*-Hexan) käuflich. Smith *et al.* beschrieben eine Veresterung mittels TMSCHN₂ (1.01 Äq.) in CH₂Cl₂/MeOH (7:1) bei Raumtemperatur. Entsprechend dieser Vorschrift habe ich *rac*-**78** und *rac*-**79** bzw. *rac*-**80** umgesetzt, wobei ich jedoch eine Reaktionstemperatur von 0°C wählte (Schema 3.35). Sowohl bei der Umsetzung von *rac*-**78** als auch bei der von *rac*-**79** bzw. *rac*-**80** wurde ein Isomerengemisch der monocyclische Formylester *rac*-**81** und *rac*-**82** erhalten. Das Isomerenverhältnis betrug in beiden Fällen 1:10 (*rac*-**81**/*rac*-**82**).

Schema 3.35: Veresterung von rac-78 und rac-79 bzw. rac-80

Die Synthese des Isomerengemisches aus *rac*-81 und *rac*-82 (Isomerenverhältnis 1:10, *rac*-81/*rac*-82) konnte ich ausgehend von *rac*-75 ohne Ausbeuteverluste auch ohne Reinigung der Zwischenstufe *rac*-80 durchführen (Schema 3.36).

Schema 3.36: Direkte Synthese von rac-81 und rac-82 ausgehend von rac-75

Sowohl Baldwin et al.⁹⁷ als auch Sato et al.⁹³ beschrieben die rasche Gleichgewichtseinstellung analoger Formylcarbonsäureester zugunsten der thermodynamisch stabileren trans-Isomere bei der direkten Synthese der Formylcarbonsäureester ausgehend von Dioxinon-Vorstufen mittels saurer Hydrolyse in refluxierendem MeOH. Ohne genauere Literaturangaben zu den Reaktionsbedingungen habe ich einige Isomerisierungsversuche hierzu unternommen. Zu Beginn wurde Verbindung rac-75 mit einer katalytischen Menge HCl_{etherisch} in MeOH (0.25 Äq.) bei Raumtemperatur umgesetzt. Bei einer Reaktionszeit von 16 h lagen beide Isomere rac-81 und rac-82 in einem Verhältnis von 1:1 (bestimmt über das Aldehyd-Proton im ¹H NMR bei δ =9.70 und 9.83 ppm, Abb. 3.37) vor, bei einer Reaktionszeit von 22 h bereits im Verhältnis rac-81/rac-82 = 1.0:1.9. Ein weiterer Versuch unter Rückfluss lieferte nach 7 h bereits ein Verhältnis von rac-81/rac-82 = 1.0:2.4. Dies bestätigte die Annahme, dass das Hauptisomer bei den gezeigten Synthesewegen die thermodynamisch stabilere trans-Verbindung rac-82 ist (Schema 3.35 und 3.36). Auffällig war das unterschiedliche Aufspaltungsmuster beider Isomere. Beim cis-Isomer *rac*-81 zeigte das Aldehydproton im ¹H NMR ein Singulett bei $\delta = 9.84$ ppm. Wohingegen bei der *trans*-Verbindung *rac*-**82** das Aldehydproton für je ein Rotamer ein Dublett bei δ = 9.72 und 9.71 ppm lieferte (Abb. 3.37).

Abb. 3.37: ¹H NMR-Spektrum von rac-81 und rac-82

Anschließend zu den Isomerisierungsversuchen sollte die Reduktion der Aldehydfunktion zur korrespondierenden Hydroxymethylverbindung untersucht werden. Hierzu wurde das Isomerengemisch aus *rac*-**81** und *rac*-**82** eingesetzt.

Gängige Reduktionsmittel für Aldehyde sind NaBH₄ oder NaBH₃CN. Die Reduktion des Aldehyds *rac*-**81** und *rac*-**82** zum entsprechenden Alkohol *rac*-**83** war insofern problematisch, als die TFA-Schutzgruppe eine hohe Reaktivität gegenüber NaBH₄ aufwies und damit auch gespalten werden konnte. Aufgrund dessen wurde zuerst eine Reduktion mit NaBH₃CN und Essigsäure in THF bei 0 °C durchgeführt.¹⁰⁵ Allerdings trat hierbei eine nicht abtrennbare Verunreinigung auf, weshalb ich nochmals eine Reduktion mit NaBH₄ in MeOH/H₂O (6:1)¹⁰⁶ ebenfalls bei 0 °C durchführte. Es zeigte sich, dass die Reduktion mit einem Hydridäquivalent NaBH₄ (0.5 Äq.) hohe Ausbeuten von 79% an *rac*-**83** lieferte (Schema 3.38). Allerdings war hier auf die sukzessive Zugabe sehr geringer Mengen NaBH₄ zu achten, da ansonsten die Ausbeute dramatisch sank. So wurden z.B. 18 mg NaBH₄ portionsweise über einen Zeitraum von 55 min. zugegeben, um nur die reaktivere Aldehydfunktion zu reduzieren. Unter den gewählten Reaktionsbedingungen

wurde nur ein Isomer, *rac*-**83**, erhalten. Es war naheliegend, dass es sich hier um die *trans*-Konfiguration handelt. Im weiteren Verlauf konnte ich dies durch den Vergleich der NO-Effekte der korrespondirenden *trans*-Aminosäure *rac*-**85** und der *cis*-Verbindung *rac*-**93** eindeutig beweisen (siehe Abb. 3.43).

Schema 3.38: Synthese von rac-83

Das korrespondierende Amin *rac*-**84** sollte durch Abspaltung der TFA-Schutzgruppe von *rac*-**83** mit stark basischem Ionenaustauscher in MeOH synthetisiert werden. Es gelang mir allerdings nicht *rac*-**84** zu isolieren und zu charakterisieren (Schema 3.39). Dafür konnte ich die entsprechende Aminosäure *rac*-**85** in hoher Ausbeute von 83% durch die Umsetzung mit wässriger LiOH-Lösung und anschließende Ionenaustauschchromatographie isolieren.

Schema 3.39: Synthese von rac-85

Um Verbindung *rac*-**84** für nachfolgende *N*-Alkylierungen zugänglich zu machen, sollte die Hydroxyfunktion mit einer Schutzgruppe versehen werden. Neben der einfachen und möglichst quantitativen Einführung bzw. Abspaltung sollte die Schutzgruppe zum einen unter Bedingungen einführbar sein, die die TFA-Schutzgruppe des Amins toleriert. Zum anderen sollte die Schutzgruppe der Alkoholfunktion unter den stark basischen Reaktionsbedingungen, die für die Abspaltung der TFA-Gruppe erforderlich sind, stabil sein. So fiel die Wahl auf die *tert*-Butyldimethylsilyl-Schutzgruppe (TBDMS).

Die Umsetzung von *rac*-**83** mit *tert*-Butyldimethylsilylchlorid (TBDMSCl) in Gegenwart von Imidazol in DMF lieferte das TBDMS-geschützte Derivat *rac*-**86** mit 96% in nahezu quantitativer Ausbeute (Schema 3.40). Ohne Probleme konnte ich dann die TFA-Schutzgruppe mittels stark basischem Ionenaustauscher in MeOH entfernen und das Amin *rac*-**87** in hoher Ausbeute (94%) zugänglich machen.

Schema 3.40: Synthese von rac-87

Nachdem ich die *trans*-Verbindungen *rac*-**83** und *rac*-**85** zugänglich machen konnte, habe ich nach einer Möglichkeit gesucht, auch die korrespondierende *cis*-Verbindung *rac*-**93** herzustellen. Baldwin *et al.* beschrieben ausgehend vom Tricyclus **88** eine Möglichkeit zur Synthese der *cis*-Hydroxycarbonsäure **91**.⁹⁷ Nach der Hydrolyse der Dioxinoneinheit in **88** wurde das gebildete **89** direkt mit einem Überschuss an NaBH₄ (7.6 Äq.) in refluxierendem *i*PrOH versetzt, wonach die *cis*-Hydroxycarbonsäure **91** unter Säurekatalyse zum Lakton **92** umgesetzt wurde (Schema 3.41).

Schema 3.41: Schematische Darstellung des *cis*-Hydroxycarbonsäurederivates **89** nach Baldwin⁹⁷

Die Hydrolyse von *rac*-**75** zur Hydroxycarbonsäure *rac*-**78** erfolgte unter den hier bereits angewandten Reaktionsbedingungen in MeOH:H₂O bei Raumtemperatur. Das Lösungsmittel wurde entfernt, der Rückstand in *i*PrOH gelöst, mit der gesamten Menge NaBH₄ (8 Äq.) versetzt und zum Rückfluss erhitzt. Die Reaktionslösung wurde entsprechend der Vorschrift mit 1M HCl (pH = 1) gequencht. Die Bildung des korrespondierenden Laktons konnte jedoch nicht beobachtet werden. Alternativ wurde die Reaktionslösung mit Puffer (pH = 6) behandelt, um die Aminosäure *rac*-**93** zu synthetisieren. Nach Ionenaustauschchromatographie wurde immer ein Gemisch aus Verbindung *rac*-**93** und *rac*-**85** mit einer Ausbeute von 68% erhalten, wobei hier das Verhältnis *cis/trans* 7:1 betrug (Schema 3.42).

Schema 3.42: Synthese von rac-93

Über den Vergleich der 1D DPFGSE-NOE-Experimente der beiden Isomere *rac*-**85** und *rac*-**93** konnte die relative Stereochemie eindeutig zugeordnet bzw. die für *rac*-**85** bereits angenommene *trans*-Konfiguration bestätigt werden. Die Ergebnisse der 1D DPFGSE-NOE-Experimente sind in Abbildung 3.43 dargestellt. Die *trans*-Verbindung *rac*-**85** zeigte bei der Anregung der CH₂-Gruppe der Seitenkette am C4 bei $\delta \approx 3.71$ ppm einen NO-Effekt zu dem Proton in 3-Position bei $\delta \approx 2.38$ ppm. Im Vergleich dazu trat bei der Anregung der Protonen der CH₂-Gruppe ($\delta = 3.55$ und 3.78 ppm) vom *cis*-Isomer *rac*-**93** kein NO-Effekt zu diesem Proton ($\delta \approx 2.73$ ppm) auf. Dafür konnte hier ein positiver NO-Effekt zu den Protonen der CH₂-Gruppe der Seitenkette am C3 bei $\delta = 2.22$ und 2.38 ppm beobachtet werden. Diese Resultate belegten die *trans*-Konfiguration von *rac*-**85** und somit auch die relative Stereochemie von *rac*-**83**, sowie die *cis*-Konfiguration von *rac*-**93**.

3.3 [2+2]-Photocycloadditionen als Schlüsselschritt zum Aufbau von γ-Aminobuttersäurederivaten

Abb. 3.43: Vergleich der NO-Effekte von rac-85 und rac-93

Zur Darstellung des *cis*-Isomers *rac*-**93** wollte ich noch einen weiteren Versuch unternehmen. Geplant war die Hydrolyse der Dioxinoneinheit von *rac*-**75** in MeOH/H₂O bei Raumtemperatur und der anschließenden Umsetzung des Produktes *rac*-**78** mit NaBH₄ (8 Äq.) im selben Lösungsmittel bei 0 °C. Unter diesen Reaktionsbedingungen wurde jedoch nach anschließendem Quenchen der Reaktionslösung mit HCl lediglich Verbindung *rac*-**94**·HCl , die durch die Abspaltung der TFA-Schutzgruppe entstanden war, beobachtet (Schema 3.44). Aufgrund der zu erwartenden Labilität von *rac*-**94**·HCl wurde diese nur spektroskopisch charakterisiert, auf eine Reinigung und Isolierung mittels Ionenaustauschchromatographie wurde verzichtet.

Schema 3.44: Synthese von rac-94·HCl

Wie aus den Ergebnissen hervorgeht, war das größte Problem bei der Synthese des *cis*-Derivates *rac*-**93** die Instabilität der TFA-Schutzgruppe gegenüber den reduktiven Reaktionsbedingungen. Aufgrund dessen wurde die Boc-Schutzgruppe als Alternative in Betracht gezogen. Die photo-

chemische Umsetzung von **76** mit dem *N*-Boc-geschützten Pyrrolin **57** lieferte jedoch nur geringe Ausbeuten des Cyclisierungsproduktes *rac*-**95** (27%) (Schema 3.45). Ein alternativer Zugang zu *rac*-**95** bestand im Umschützen von *rac*-**77** nach vorangegangener Schutzgruppenabspaltung, was nahezu quantitativ verlief. Allerdings habe ich diesen Syntheseweg aus zeitlichen Gründen nicht weiter verfolgt.

Schema 3.45: Synthese von rac-95

Synthese der monocyclischen Derivate mit einer Methoxymethylfunktion

Neben Pyrrolidinderivaten mit einer Hydroxmethylfunktion, wie *rac*-**83**, sollten solche mit einer Methoxymethylgruppe synthetisiert werden. Unter den klassischen Reaktionsbedigungen der Williamsonschen Ethersynthese (Umsetzung von Alkylhalogeniden mit Alkoholaten) schien eine Reaktion unter Erhalt der TFA-Schutzgruppe nicht möglich. Daher wurde eine alternative Methode von Lin *et al.* zur Synthese von Methylethern mit TMSCHN₂ in Gegenwart wässriger Tetrafluorboronsäure (HBF₄) in CH₂Cl₂ (48%) gewählt.¹⁰⁷

Durch Behandeln von *rac*-**83** mit TMSCHN₂ und HBF₄ in CH₂Cl₂ bei 0°C konnte ich den korrespondierenden Methylether *rac*-**96** in einer Ausbeute von 57% herstellen (Schema 3.46). Ausgehend von *rac*-**96** war ohne Probleme das freie Amin *rac*-**97** durch die Umsetzung mit stark basischem Ionenaustauscher in MeOH in hoher Ausbeute (98%) zugänglich. Die Aminosäure *rac*-**98** wurde durch die Reaktion von *rac*-**96** mit wässriger LiOH-Lösung in MeOH/ H₂O in 83% Ausbeute erhalten.

3.3 [2+2]-Photocycloadditionen als Schlüsselschritt zum Aufbau von γ-Aminobuttersäurederivaten

Schema 3.46: Synthese von rac-97 und rac-98

3.3.2 Synthese bicyclischer γ-Aminobuttersäurederivate mit einem 3-Azabicyclo[3.2.0]heptangrundgerüst

Ein weiterer Teil meiner Arbeit befasst sich mit der Synthese bicyclischer γ -Aminobuttersäurederivate, die eine 3-Azabicyclo[3.2.0]heptanstruktur **27** enthalten (Abb. 2.1). Das 3-Azabicyclo[3.2.0]heptan-Grundgerüst ist in verschiedenen, pharmakologisch aktiven Substanzen zu finden. ^{108, 109, 110} Eine bekannte Methode zum Aufbau von 3-Azabicyclo[3.2.0]heptanderivaten ist die intramolekulare [2+2]-Cycloaddition von N-geschützten Diallylaminoderivaten, welche entweder metallkatalysiert^{111, 112} oder lichtinduziert in Gegenwart eines Triplett-Sensitizers¹¹³ oder Cu(I)-Salzes^{114, 115} durchgeführt wird. Ein weiteres bekanntes Verfahren ist die Multikomponentenreaktion.¹¹⁶

Synthesekonzept

In meiner Arbeit sollte als Schlüsselschritt zum Aufbau bicyclischer γ -Aminobuttersäurederivate mit einem 3-Azabicyclo[3.2.0]heptangrundgerüst eine intermolekulare [2+2]-Photocycloaddition eines Enons mit dem Boc- oder TFA-geschützten 3-Pyrrolinen **57** bzw. **59** eingesetzt werden. In Abbildung 3.47 sind die allgemeinen Strukturen der angestrebten Zielverbindungen dargestellt. Vor allem sollten monosubstituierte Derivate **88** zugänglich gemacht werden, die eine gewisse Analogie zur Nipecotinsäure (**8**) aufweisen. Zudem waren, in Anlehnung an die Arbeit von Schwarzer, Strukturen der Dicarbonsäurederivate **89** geplant.⁵¹ Weitere Verbindungen sollten in 7-Position des 3-Azabicyclo[3.2.0]heptangrundkörpers ähnlich den monocyclischen Pyrrolidinderivaten *rac*-**84** bzw. *rac*-**85** und *rac*-**97** bzw. *rac*-**98** (siehe Kap.: 3.3.1) eine Hydroxymethyl-

bzw. Methoxymethylfunktion aufweisen (siehe 90 und 91).

Abb. 3.47: Übersicht der angestrebten, bicyclischen γ-Aminobuttersäuregrundkörper der allgemeinen Strukturen **88-91**

Als photochemisch anregbare Enon-Komponente habe ich Maleinsäureanhydrid (**99**) und Furan-2(5H)-on (**100**) ausgewählt, da diese bereits die, für die Gewinnung der Zielverbindungen erforderliche Carboxylfunktion in Form eines Säureanhydrids bzw. eines Laktons enthalten. Auch sollten die, nach einer Ringöffnung der Säureanhydrid- bzw. Laktoneinheit entstehenden Bicyclen **101**, **102**, **103** und **104**, nicht zu einer Cyclobutanringspaltung neigen und das gebildete 3-Azabicyclo[3.2.0]heptangrundgerüst erhalten bleiben. Die durch intermolekulare [2+2]-Photocycloadditionen zu erhaltenden Tricyclen **101** bzw. **102** und *rac*-**103** bzw. *rac*-**104** wurden somit als vielversprechende Vorstufen für die Darstellung der bicyclischen Derivate (Abb. 3.48) angesehen. Entsprechend der Literatur und der bereits gemachten Erfahrungen bei der intermolekularen [2+2]-Photocycloaddition von **76** mit **59** ist hierbei für die resultierenden tricyclischen Cycloadditionsprodukte und somit für die korrespondierenden Bicyclen die *exo*-Konfiguration zu erwarten. Die Zielverbindungen sollten hierbei als Carbonsäure- (R = H) und als Methylesterderivate (R = Me) dargestellt werden.

Maleinsäureanhydrid (**99**) ist eine in intermolekularen [2+2]-Photocycloadditionen häufig eingesetzte Verbindung und bietet dabei die Möglichkeit für zahlreiche Folgereaktionen.^{117, 118} Ich hatte das Ziel ausgehend vom Tricyclus **101** bzw. **102** über eine Barton-Decarboxylierung¹¹⁹ die monosubstituierten Derivate *rac*-**105** und *rac*-**106** darzustellen. Ebenso sollten durch Alkoholyse der Anhydridfunktion von **101** bzw. **102** die Dicarbonsäurederivate **107** und **108** zugänglich sein. Als potentielle Vorstufe der Hydroxymethyl- bzw. Methoxymethylverbindungen wurde das Cyclisierungsprodukt der intermolekularen [2+2]-Photocycloaddition aus **100** mit **57** bzw. **59** betrachtet. Nach anschließender Laktonringöffnung sollten die entsprechenden bicyclischen Verbindungen *rac*-**109** und *rac*-**110**, sowie *rac*-**111** und *rac*-**112** synthetisiert werden.

Synthese der tricyclischen Verbindungen 101 bzw. 102

Der Schlüsselschritt des vorgestellten Synthesekonzeptes für die Darstellung bicyclischer γ -Aminobuttersäurederivate *rac*-**105**, *rac*-**106**, **107** und **108** war die intermolekulare [2+2]-Photocycloaddition von Maleinsäureanhydrid (**99**) mit dem 3-Pyrrolinderivat **57** bzw. **59**. Die photochemische Anregung von **99** und seinen Derivaten kann laut Literatur unter diversen Bedingungen erfolgen. Am häufigsten wird **99** indirekt mittels Mitteldruckquecksilberdampflampe und einem Pyrex-Filter mit einem Transmissionsmaximum von ~290 nm¹⁰¹ unter Verwendung diverser Sensitizer wie Aceton^{118,120}, Acetophenon¹¹⁷ oder Benzophenon¹²¹ angeregt. Das dabei gängigste verwendete Lösungsmittel ist Acetonitril.^{117,122,123}

Erste Versuche zur Photocycloaddition von **99** an das *N*-Boc-Derivat **57** habe ich in Acetonitril mit Acetophenon bzw. Benzophenon als Sensitizer unter Bestrahlung mit Licht der Wellenlänge

von 254 nm durchgeführt. Eine Bildung des entsprechenden Cycloadditionsproduktes **101** konnte ich jedoch nicht beobachten.

Anschließend führte ich Cycloadditionsreaktionen mit dem TFA-geschützten 3-Pyrrolinderivat **59** durch. Unter Verwendung der Lampen mit einer Wellenlänge von 300 nm in Gegenwart von Acetophenon (0.1 Äq.)¹¹⁷ als Sensitizer in MeCN konnte ich gleich beim ersten Versuch die photochemische Umsetzung von **99** mit **59** (1.5 Äq.) zu **102** erreichen (Schema 3.49). Es wurde überprüft, ob dieselben Reaktionsbedingungen auch mit **57** zum Erfolg führen, aber auch in diesem Fall ließ sich kein entsprechendes Cycloadditionsprodukt **101** erhalten. Die Boc-Schutzgruppe scheint daher einen ungünstigen Einfluss auf die intermolekulare [2+2]-Photocycloaddition von **99** mit **57** zu haben.

Schema 3.49: Synthese von 102

Die Reinigung des das Cycloadditionsprodukt **102** enthaltenden Rohprodukts stellte sich als schwierig heraus. Häufig erfolgen Photoreaktion unter der Bildung von Nebenprodukten, so dass selbst die Reinigung mittels Säulenchromatographie schwierig ist. Die reaktive Anhydridfunktion von Verbindung **102** ließ die Anwendung dieser Methode aber ohnehin nicht zu. Wie ich fand, ließ sich **102** aber in folgender Weise in reiner Form darstellen. Zuerst wurde das Reaktionsgemisch vom Reaktionslösungsmittel MeCN im Vakuum befreit. Anschließend konnte ich mit Et₂O einen Rückstand ausfällen. Durch Absaugen und gründliches Waschen des Rückstandes mit Et₂O konnten **59** und der Sensitizer Acetophenon abgetrennt werden. Das zurückgebliebene Produkt **102** wurde dann mit CH₂Cl₂ gelöst und von einem nicht charakterisierten Rückstand durch Absaugen abgetrennt. Der Rückstand wurde mit CH₂Cl₂ gewaschen. Aus dem Filtrat wurde im Vakuum das Lösungsmittel entfernt und das erhaltene Produkt **102** getrocknet. Nach dieser Prozedur konnte ich das Cycloadditionsprodukt **102** mit einer Ausbeute von 39% zugänglich machen. Durch Erhöhen des Sensitizeranteils von 0.1 Äquivalente auf 0.25 Äquivalente bei der Photocycloaddition wurde eine Ausbeutesteigerung um 4 Prozentpunkte auf 43% erzielt. Da sich die Ausbeute in einem, für Photoreaktionen, akzeptablen Bereich befand, wurde keine weitere
Optimierung der Photoreaktion vorgenommen. Die Ausbeute blieb auch bei größeren Ansätzen, bis zu 20 mmol, unverändert.

Die *exo*-Stereochemie von **102** wurde mittels 1D DPFGSE-NOE-Experimenten bestimmt (Abb. 3.50). Nach Anregung beider chemisch äquivalenten Protonen in 3a-,6b-Position von **102** (bei $\delta \approx 3.20$ ppm) wurde nur ein positiver NO-Effekt zu den Protonen der CH₂-Gruppe des Pyrrolidinrings (4/6-Position) bei $\delta = 4.12$ und $\delta = 4.34$ ppm beobachtet. Die beiden Protonen in der 3b-,6a-Position des Cyclobutanrings zeigen keinen Effekt. Dies bestätigt die *cis-trans-cis*-Orientierung und somit die *exo*-Stereochemie des tricyclischen Cycloadditionsproduktes **102**.

Abb. 3.50: Bestimmung der relativen Stereochemie von **102** mittels 1D DPFGSE-NOE Experiment

Synthese der monosubstituierten 3-Azabicyclo[3.2.0]heptanderivate *rac*-105 und *rac*-106

Die Syntheseplanung für die monosubstituierten, bicyclischen Derivate (*rac-***105** und *rac-***106**, Abb. 3.47) sah ausgehend vom Anhydrid **102** eine Barton-Decarboxylierung vor. Die klassische Barton-Decarboxylierung verläuft über die Bildung und einer sich anschließenden Fragmentierung der sogenannten Barton-Ester.^{119, 124} Diese werden durch die Umsetzung freier Carbonsäuren bzw. Säurechloride mit 2-Mercaptopyridin-*N*-oxid bzw. dem korrespondierendem Natriumsalz **115** hergestellt. Die Fragmentierung der Barton-Ester kann entweder thermisch¹²⁵ oder photochemisch¹²⁶ erfolgen und verläuft über die Bildung von Radikalen. Durch den Zusatz von z.B. *tert*-Butylthiol oder Tributylzinnhydrid resultieren dann die reduzierten, decarboxylierten Verbindungen.

Für eine Barton-Decarboxylierung von **102** habe ich mich für eine Synthesevorschrift von Winkler *et al.* entschieden.¹²⁵ Winkler *et al.* beschrieben die Umsetzung einer freien Carbonsäure in das korrespondierende Säurechlorid mittels Oxalylchlorid ($C_2O_2Cl_2$) in Gegenwart katalytischer Mengen DMF. Die Bildung und Fragmentierung des Barton-Esters erfolgte *in situ* mit dem Natriumsalz von 2-Mercaptopyridin-*N*-oxid (**115**), DMAP und *tert*-Butylthiol (^tBuSH) in refluxierendem THF.

Zuerst mußte ausgehend von 102 die Carbonsäure rac-113 hergestellt werden. Die Ringöffnung *rac*-113 erfolgte der Anhydridfunktion zum Halbester durch Methanolyse in abs. MeOH. 117, 127, 128 Die Umsetzung von Verbindung 102 zu rac-113 erfolgte bereits bei Raumtemperatur innerhalb kurzer Zeit (~ 15-30 min, Schema 3.51). Das Lösungsmittel wurde entfernt. Verbindung rac-113 wurde ohne weitere Reinigung mit Oxalylchlorid (C2O2Cl2) und katalytischen Mengen DMF in CH₂Cl₂ in das Säurechlorid rac-114 überführt. Hierbei mußte darauf geachtet werden, dass das MeOH aus dem vorherigen Syntheseschritt vollständig entfernt worden war, um eine Nebenreaktion zum Diester 118 (Schema 3.54) zu vermeiden.

Entsprechend der Vorschrift von Winkler *et al.* wurde das Säurechlorid *rac*-**114** in Toluol sehr langsam (hier über einen Zeitraum von 110 min.) zu einer refluxierenden THF-Lösung aus dem Natriumsalz von 2-Mercaptopyridin-*N*-oxid (**115**), DMAP und *tert*-Butylthiol getropft.¹²⁵ Das Reaktionsgemsich wurde anschließend noch weitere 10 min zum Rückfluss erhitzt. Nach der thermischen Fragmentierung von *rac*-**116** konnte ich das Produkt *rac*-**117** ausgehend von **102** mit einer Ausbeute von 69% erhalten (Schema 3.51).

Schema 3.51: Barton-Decarboxylierung ausgehend von 102

Die Aminosäure *rac*-105 konnte ich aus *rac*-117 durch die basisch induzierte, simultane Abspaltung der Trifluoracetylschutzgruppe und Hydrolyse der Methylesterfunktion mit NaOH in MeOH/H₂O in hoher Ausbeute (88%) herstellen. Des Weiteren konnte ich ebenfalls ausgehend von *rac*-117 das Amin *rac*-106 durch Behandeln mit stark basischem Ionenaustauscher in MeOH mit 79% Ausbeute synthetisieren (Schema 3.52).

Schema 3.52: Synthese von rac-105 und rac-106

Die relative Stereochemie von *rac*-105 konnte mittels 1D DPFGSE-NOE Experimente bestätigt werden (Abb. 3.53). Durch Anregung des Protons der CH₂-Gruppe des Cyclobutanrings in 7-Position von *rac*-105 bei $\delta = 1.93$ ppm im ¹H NMR wurde ein positiver NO-Effekte zu dem zweiten Proton in der Position 7 bei $\delta = 2.38$ ppm und zu einem Proton in 2-Position der Pyrollidineinheit bei $\delta = 3.40$ ppm beobachtet. Ein weiterer stark positiver NO-Effekt tritt zu dem *cis*-ständigen Proton in 6-Position bei $\delta = 2.69$ ppm auf. Die Protonen in der 1- und 5-Position zeigen keinen NO-Effekt. Somit kommt es unter basischen Reaktionsbedingungen zu keiner Epimerisierung und die relative Stereochemie von *rac*-105 ist die *exo*-Konfiguration.

Abb. 3.53: Bestimmung der relativen Stereochemie von *rac-***105** mittels 1D DPFGSE-NOE Experiment

Synthese der disubstituierten 3-Azabicyclo[3.2.0]heptanderivate 107 und 108

Schwarzer beschrieb die Synthese von 3-Azabicyclo[3.2.0]heptandicarbonsäurederivaten mit Carboxylfunktionen an den Brückenkopfatomen in 1- und 5-Position des 3-Azabicyclo[3.2.0]heptan-Gerüstes mittels intramolekularer [2+2]-Photocycloaddition .⁵¹ Ergänzend hierzu sollten nun die Verbindungen mit den Carbonsäuren und den Carbonsäureesterfunktionen in 6- und 7-Position des 3-Azabicyclo[3.2.0]heptan-Gerüstes (**107** und **108**) synthetisiert werden.

Es gibt viele Beispiele für die Umwandlung von Anhydridfunktionen zu den korrespondierrenden Diestern. ^{121, 129, 130} Die gängigste Methode ist die Öffnung der Anhydridfunktion zum Halbester gefolgt von einer Fischer-Veresterung der Carbonsäureeinheit, eine, oftmals thermisch initiierte, säurekatalysierte Reaktion (MeOH, konz. H₂SO₄).

Nach einer Vorschrift von Birman und Jiang konnte ich ausgehend von Verbindung **102** den korrespondierenden Diester **118** entsprechend den Reaktionsbedingungen einer Fischer-Versterung, d.h. im vorliegenden Fall durch Erhitzen in MeOH in Gegenwart katalytischer Mengen konz. H_2SO_4 in 60% Ausbeute herstellen (Schema 3.54).¹²¹ Die so erhaltene *meso*-Verbindung **118** wurde zuerst basischen Reaktionsbedingungen zur TFA-Abspaltung unterzogen, d.h. **118** wurde 2 h bei Raumtemperatur mit stark basischem Ionenaustauscher in MeOH behandelt. Dabei trat bei einem der beiden Stereozentren in 6- oder 7-Position des 3-Azabicyclo[3.2.0]heptan-Gerüstes eine Epimerisierung auf. Neben dem Hauptisomer **108** wurde so auch das *trans*-Amin *rac*-**119** mit einem Anteil von ~10% (bestimmt anhand der ¹H NMR-Spektren des Rohproduktes) erhalten. Die Isomere konnten jedoch mittels Säulenchromatographie (SiO₂, CH₂Cl₂/MeOH = 20:1, 1% Et₃N) voneinander getrennt werden. Die Verbindung **108** wurde mit 64% rein isoliert, der geringe Anteil an *rac*-**119** konnte hier hingegen nicht isoliert werden (Schema 3.54). Bei einer längeren Reaktionszeit von 4.6 h lag das Verhältnis der *cis-/trans*-Isomere sogar bei gleichen Anteilen.

Schema 3.54: Synthese von 108, * = nicht isoliert

Für die Synthese der Aminodicarbonsäure **107** wurde, um eine Epimerisierung zu vermeiden, die Hydrolyse der in **108** vorhandenen Esterfunktionen unter sauren Reaktionsbedingungen durchgeführt (Schema 3.55). Erhitzen von Verbindung **108** in 2 M, wässriger HCl-Lösung für 1.5 h zum Rückfluss und anschließender Reinigung mit stark saurem Ionenaustauscher liefert **107** quantitativ.

Schema 3.55: Synthese von 107

Aufgrund der bei der Synthese von **108** (Schema 3.54) beobachteten Epimerisierung, lag es nahe, zu versuchen das *trans*-Isomer *rac*-**120** gezielt zu synthetisieren. Epimerisierungen solcher Derivate werden in der Regel unter basischen Reaktionsbedingungen (KO^tBu, ¹³¹ LiOH, ¹¹⁷ NaOMe, ¹³² Kaliumphthalimid¹²¹) durchfgeführt, wobei oftmals keine vollständige Epimerisierung erzielt wird, sondern ein *cis-/trans*-Gemisch resultiert. Aufgrund der Reaktivität, die diese Basen gegenüber der TFA-Schutzgruppe in **118** haben könnten, wurde die nicht-nucleophile Base 1,8-Diazabicyclo[5.4.0]undec-7-en (DBU) gewählt. In MeCN als Lösungsmittel wurden erste Versuche der Epimerisierung bei 40 °C durchgeführt. Eine Überprüfung des Isomerenverältnisses erfolgte mittels ¹H NMR-Spektren. Die Ergebnisse sind in Tabelle 3.7 zusammengefasst. Nach einer Stunde lagen beide Isomere in einem Verhältnis von 64:36 (118/rac-120) vor (Tab. 3.7, Eintrag 1). Nach einer Reaktionszeit von 4 h hatte sich das Verhältnis bereits auf die Seite der trans-Verbindung rac-120 verschoben (41% : 59%, Tab. 3.7, Eintrag 2). Nach einer Reaktionszeit von 7.3 h war der Gleichgewichtszustand mit cis-118/trans-rac-120 gleich 17% : 83% (Tab. 3.7, Eintrag 3) erreicht, wie aus der Tatsache hervorging, dass sich der Wert des Isomerenverhältnisses auch nach 19 h nicht weiter verändert hatte (Tab. 3.7, Eintrag 4). Der für die Gleichgewichtslage erhaltene Wert wurde zudem in einem ¹H NMR-Experiment ausgehend von der reinen trans-Verbindung rac-120 überprüft. In deuteriertem CD₃CN wurde rac-120 mit DBU auf 40 °C erwärmt. Nach einer Reaktionszeit von 22.5 h, nach der keine weitere Veränderung mehr stattfindet, lag das Verhältnis von cis-118/trans-rac-120 ebenfalls bei 17:83. Die Reinigung des Isomerengemisches aus 118 und rac-120 gestaltete sich aufgrund sehr ähnlicher chromatographischer Eigenschaften als äußerst schwierig. Das Produktgemisch musste mehrfach mittels SC gereinigt werden, so dass das reine trans-Isomer rac-120 nur in einer Ausbeute von 42% erhalten wurde. Zudem konnten von Edukt 118 12% zurückgewonnen werden (Schema 3.56).

Eintrag	t [h]	Verhältnis 118:rac-120 [%]
1	1	64:36
2	4	41:59
3	7.3	17:83
4	19	17:83

Tabelle 3.7: Bestimmung des Verhältnisses 118:rac-120 mittels ¹H NMR-Spektren

Reaktionsbedingungen: MeCN, 0.07 M, DBU (1.2 Equiv.), 40°C.

Schema 3.56: Synthese von rac-120

Aufgrund der schwierigen Trennung von **118** und *rac*-**120** konnten nur relativ geringe Mengen an *rac*-**120** rein isoliert werden. Da im Vergleich hierzu die Trennung der daraus darstellbaren Amine **108** und *rac*-**119** effizienter war, wurde für deren Gewinnung ein Gemisch aus **118** und *rac*-**120** (Isomerenverhältnis 17:83) eingesetzt. Unter den Reaktionsbedingungen zur TFA-Abspaltung mittels stark basischem Ionenaustauscher in MeOH wurde nach 2.3 h ein Gemisch mit einem Epimerenverhältnis von 24:76 (**108**/*rac*-**119**) erhalten. Die Ausbeute betrug nach SC für **108** 3% und für *rac*-**119** 53% (Schema 3.57).

Schema 3.57: Synthese von rac-119; * isolierte Ausbeute

Zur Synthese der freien Aminodicarbonsäure rac-121 wurde jedoch auf die reine trans-Verbindung rac-120 zurückgegriffen, da hier davon auszugehen war, dass eine Trennung des Gemisches der isomeren Aminosäuren 107 und rac-121 äußerst aufwendig zu werden schien. Unter den gewählten Reaktionsbedingungen mit LiOH in MeOH/H₂O bei Raumtemperatur wurde nach einer Reaktionszeit von 2 h keine Epimerisierung beobachtet und die Aminosäure rac-121 mit 99% Ausbeute erhalten (Schema 3.58).

Schema 3.58: Synthese von rac-121

Synthese der disubstituierten 3-Azabicyclo[3.2.0]heptanderivate *rac*-109, *rac*-110, *rac*-111 und *rac*-112

Zum Aufbau der disubstituierten Verbindungen mit einer Hydroxymethyl- (*rac*-109 und *rac*-110) bzw. Methoxymethylfunktion (*rac*-111 und *rac*-112) in der 7-Position des 3-Azabicyclo[3.2.0]heptangrundkörpers wurden, wie bereits erwähnt, die Verbindungen *rac*-103 und *rac*-104 als mögliche Vorstufen erachtet (Schema 3.59), welche ebenfalls über eine intermolekulare [2+2]-Photocycloaddition synthetisiert werden sollten.

Schema 3.59: Verbindung *rac*-103 bzw. *rac*-104 als mögliche Vorstufe für *rac*-109, *rac*-110, *rac*-111 und *rac*-112

Aufgrund der bereits gemachten Erfahrungen bei den [2+2]-Photocycloadditionen hatte ich mich entschieden, für die folgenden Umsetzungen ausschließlich das TFA-geschützte Pyrrolinderivat 59 als Reaktand für die intermolekulare [2+2]-Photocycloaddition zu verwenden, wobei 2(5H)-Furanon (100) als photochemisch anzuregende Komponente gewählt wurde (Schema 3.60). Die photochemische Umsetzung des Furanons 100 mit diversen Alkenen ist zwar bekannt, jedoch wird es vergleichsweise selten eingesetzt.^{123, 133, 134} Seine Anregung erfolgt dabei meistens mit einem Sensitizer. Die Arbeitsgruppe um Sato untersuchte bereits in den 1970er Jahren welche Sensitizer zur photochemischen Anregung von Furanon 100 geeignet sind.¹³⁵ Untersucht wurde die Umsetzung von 100 mit Cylopenten in MeCN in Gegenwart von Aceton ($E_T = 80$ kcal/mol), Acetophenon ($E_T = 73.6$ kcal/mol) und Chromon ($E_T = 75.1$ kcal/mol) bei Bestrahlung mit einer Niedrigdampfquecksilberlampe. Sowohl Acetophenon als auch Chromon waren nicht in der Lage, als Sensitizer der Photoreaktion von 100 zu agieren. Daraus wurde geschlossen, dass 100 eine Triplett-Energie besitzt, die über 75, aber vermutlich unter 80 kcal/mol liegt. Daher erfolgt die photochemische Anregung von 100 oft mit Aceton als Sensitizer (kleinste verwendbare Wellenlänge 330 nm), das entweder zugesetzt oder als Lösungsmittel¹³³ verwendet wurde, oder über die direkte Anregung unter Verwendung eines Vycor-Filters, der ein Transmissionsmaximum von einer Wellenlänge > 225 nm aufweist. Für die intermolekulare [2+2]-Photocycloadditionen von 100 wurden des Weiteren diverse Lösungsmitteln wie z.B. MeCN¹²³ oder Et₂O¹³³ verwendet.

Die photochemische Umsetzung von **100** mit **59** habe ich unter diversen Reaktionsbedingungen versucht (Tabelle 3.8). Hierbei wurden 2 Äquivalente der Alkenkomponente **59** eingesetzt. Entsprechend der Literaturangaben wurden als Lichtquellen Lampen mit einer Wellenlänge von 254 nm bzw. 300 nm verwendet. Erste Versuche habe ich bei einer Anregungswellenlänge von 254 nm in MeCN (Tab. 3.8, Eintrag 1-3) durchgeführt. Bei allen hier unternommenen Versuchen waren die Reaktionen unvollständig. Zudem gestaltete sich die Reinigung des Produktes *rac*-**104** als schwierig. Nach einer Bestrahlungszeit von 4 h erhielt ich 13% des Produktes *rac*-**104** (Tab. 3.8, Eintrag 1). Bei einer Verlängerung der Reaktionszeit auf 10 h konnten 17% isoliert werden, wohingegen bei einer Reaktionszeit von 38 h die isolierte Ausbeute wieder geringfügig auf 14% sank (Tab. 3.8, Eintrag 2 und 3). Der Einsatz von 10% Aceton (MeCN/Aceton = 10:1) als Sensitizer führte zu einer leichten Steigerung der Ausbeute auf 19% bei einer Bestrahlungszeit von 18 h (Tab. 3.8, Eintrag 4). Der Wechsel der Anregungswellenlänge zu 300 nm bei Verwendung des selben Lösungsmittelgemisches (MeCN/Aceton = 10:1) lieferte die höchste Ausbeute von 22% (Tab. 3.8, Eintrag 6). Erstaunlicher Weise konnte ich in reinem Aceton als Lösungsmittel keine Produktbildung beobachten (Tab. 3.8, Eintrag 7). Weitere Versuche mit ^{*t*}BuOH bei 254 nm und EtOAc bei 300 nm ergaben ebenfalls nur geringe Ausbeuten von 10 bzw. 11% (Tab. 3.8, Eintrag 5 und 8).

Schema 3.60: Synthese von *rac*-104 mittels intermolekularer [2+2]-Photocycloaddition 100 mit 59

		1		υ
Eintrag	λ [nm]	Lösungsmittel	t [h]	Ausbeute <i>rac</i> - 104 [%]
1	254	MeCN	4	13
2	254	MeCN	10	17
3	254	MeCN	38	14
4	254	MeCN:Aceton 10:1	18	19
5	254	^t BuOH	15	10
6	300	MeCN:Aceton 10:1	25.5	22
7	300	Aceton	15	/b
8	300	EtOAc	20	11

Tabelle 3.8: Versuche zur photochemischen Umsetzung von 100 mit 59^a

^a Verbindung **59** wurde im zweifachen Überschuss eingesetzt;

^b keine Produktbildung beobachtet

Alternativer Zugang zu rac-104

Unter Berücksichtigung der moderaten Ausbeuten bei der photochemischen Umsetzung von **100** mit **59** (Tabelle 3.8) habe ich eine alternative Syntheseroute für *rac*-**104** entwickelt. In der Literatur werden Laktone oft über die direkte Reduktion von Anhydriden synthetisiert. ^{128, 136, 137} Häufig wird hierfür NaBH₄ in THF bei erhöhten Temperaturen verwendet. Jedoch werden diese Bedingungen ebenfalls zur Abspaltung der Trifluoracetyl-Schutzgruppe von Trifluoracetamiden herangezogen. ¹³⁸

3.3 [2+2]-Photocycloadditionen als Schlüsselschritt zum Aufbau von γ-Aminobuttersäurederivaten

Nach den Erfahrungen bei der Reduktion der Aldehydfunktion von *rac*-**82** (Schema 3.39) mit NaBH₄, bei der die TFA-Schutzgruppe erhalten blieb, habe ich erste Umsetzungen von **102** bei einer Temperatur von 0°C untersucht (Schema 3.61). Bei der direkten Reaktion von **102** mit 2.5 Äquivalenten NaBH₄ in THF bei 0°C konnte ich das Produkt *rac*-**104** mit 32% Ausbeute synthetisieren. Problematisch erwies sich unter diesen Reaktionsbedingungen die geringe Löslichkeit von *rac*-**102** und NaBH₄ in kaltem THF. Die Verwendung von DME anstatt THF als Lösungsmittel, in dem sich die Reaktanden besser lösten, lieferte bei 0°C mit 27% Ausbeute ein ähnliches Ergebnis.

Schema 3.61: Synthese von rac-104 via Reduktion ausgehend von 102

Parallel zu diesen Untersuchungen habe ich, inspiriert von der Barton-Decarboxylierung, eine weitere Reaktionssequenz zur Synthese von Verbindung *rac*-**109** bzw. *rac*-**110** entwickelt. Die Säurechloridfunktion von Intermediat *rac*-**114** (Schema 3.51) sollte eine höhere Reaktivität aufweisen als die Trifluoracetamidgruppe und somit eine selektive Reduktion von *rac*-**114** zum korrespondierenden Alkohol *rac*-**122** erlauben.

Die Verbindung **102** wurde entsprechend der Synthese von *rac*-**117** durch Methanolyse in den korrespondierenden Halbester *rac*-**113** und anschließend mit Oxalylchlorid ($C_2O_2Cl_4$) in CH₂Cl₂ in Gegenwart katalytischer Mengen DMF in das Säurechlorid *rac*-**114** überführt (Schema 3.51). Die Reduktion von *rac*-**114** zu der angestrebten Hydroxymethyl-Verbindung *rac*-**122** habe ich ebenfalls mit NaBH₄ bei 0 °C durchgeführt. Wegen der hohen Reaktivität des Säurehalogenids *rac*-**114** bedarf es bei der Reduktion entscheidende Vorsichtsmaßnahmen. Der Einsatz von protischen Lösungsmitteln wie z.B. MeOH kann hier nicht erfolgen, weshalb wieder THF eingesetzt wurde. Allerdings besteht hier wieder das Problem der Löslichkeit von NaBH₄ bei niedrigen Temperaturen. Deshalb wurde NaBH₄ gelöst in Triglyme (2 M) eingesetzt, was eine sehr langsame und äußerst dosierte Zugabe des Reduktionsmittels ermöglichte.

Die Verbindung *rac*-**122** konnte allerdings nicht isoliert werden. Im Rahmen der Aufarbeitung habe ich während des Entfernen des Lösungsmittels mehrfach eine DC-Kontrolle durchgeführt.

Hierbei konnte die Bildung von *rac*-104 beobachtet werden. Es liegt nahe, dass es zur spontanen Cyclisierung von *rac*-122 zu *rac*-104 kommt (Schema 3.62).^{128,139} Ausgehend von 102 wurde Verbindung *rac*-104 mit 59% Ausbeute erhalten. Die *exo*-Konfiguration von *rac*-104 wird hierbei durch die Stereochemie von 102 bedingt.

Schema 3.62: Synthese von rac-104 mittels Reduktion des Säurechlorids rac-114

Durch die Anwendung basischer Reaktionsbedingungen (NaOH, MeOH/H₂O) zur simultanen Schutzgruppenabspaltung und Esterhydrolyse ausgehend von Tricyclus *rac*-104 konnte ich die entsprechende Aminosäure *rac*-109 mit 71% Ausbeute synthetisieren (Schema 3.63). Hierbei zeigte sich, dass *rac*-109 stabil ist und isoliert werden konnte.

Schema 3.63: Synthese von rac-109

Die relative Stereochemie von *rac*-**109** konnte mittels 1D DPFGSE-NOE Experiment bestätigt werden (Abb.3.64). Durch Anregung des Protons in der 7-Position von *rac*-**109** bei δ = 2.87 ppm im ¹H NMR wurde ein positiver NO-Effekte zu dem Proton in Position 6 des Cyclobutanrings und zu einem Proton in der 2-Position der Pyrrolidineinheit bei δ = 3.47 ppm beobachtet. Die Protonen in der 1- und 5-Position zeigten keinen NO-Effekt. Daher ist es unter den basischen Reaktionsbedingungen zu keiner Isomerisierung gekommen und die relative Stereochemie von

rac-109 ist die exo-Konfiguration.

Abb. 3.64: Bestimmung der relativen Stereochemie von *rac-109* mittels 1D DPFGSE-NOE Experiment

Ein Versuch die TFA-Schutzgruppe von *rac*-104 mit stark basischem Ionenaustauscher in MeOH unter Erhalt der Laktoneinheit abzuspalten, misslang und lieferte lediglich die Aminosäure *rac*-109 (Schema 3.65). Daher bestand keine Möglichkeit zur Synthese der angestrebten Hydroxy-methylverbindung *rac*-122 und der korrespondierenden N-substituierten Alkylderivate für eine biologische Testung.

Schema 3.65: Umsetzung von *rac*-104 mit stark basischem Ionenaustauscher in MeOH führt zu *rac*-109

Des Weiteren wollte ich die Methoxymethylderivate *rac*-**111** und *rac*-**112** synthetisieren. King beschrieb eine einstufige Synthese, bei der Laktone mittels Reaktion mit einem Orthoester in die korrespondierenden Verbindungen mit einer Ester- und Etherfunktion überführt werden (Schema 3.66).¹⁴⁰

Am Beispiel von Butyrolacton (123) diskutierte King einen möglichen Mechanismus, der die Bildung des ringoffenen Produktes, hier 125, mit einer Ester- und Etherfunktion erklärt. Durch

den Zusatz katalytischer Mengen Säure, wie z.B. H_2SO_4 , wird aus Trimethylorthoformat ein Carbokation **124** regeneriert, welches als Lewis-Säure fungiert und mit dem Lakton **123** das Addukt **125** bildet. Die Ringöffnung erfolgt durch einen nucleophilen Angriff von MeOH an das γ -Kohlenstoffatom, woraufhin nach Solvolyse das Produkt **126** resultiert. Ohne den Zusatz des Orthoesters erfolgt unter ansonsten gleichen Reaktionsbedingungen die Hydrolyse zu der korrepondierenden Hydroxysäure **127**.

Schema 3.66: Möglichkeiten zur Öffnung eines Laktons 123 nach King¹⁴⁰

Entsprechend der Synthesevorschrift von King setzte ich *rac*-**104** mit Trimethylorthoformat $[CH(OMe_3)_3]$ in Gegenwart katalytischer Mengen konz. Schwefelsäure in MeOH bei 50°C um. Nach Aufarbeitung konnte ich Verbindung *rac*-**128** in 79% Ausbeute erhalten (Schema 3.67).

Schema 3.67: Synthese von rac-128

Die Aminosäure *rac*-**111** ließ sich schließlich durch die Umsetzung von *rac*-**128** mit NaOH in MeOH/H₂O mit 94% Ausbeute herstellen. Durch Behandlung mit stark basischem Ionenaustau-

scher in MeOH gelang es, die Trifluoracetyl-Schutzgruppe von *rac*-**128** abzuspalten. Durch Zusatz von etherischer HCl wurde *rac*-**112**·HCl in einer Ausbeute von 99% erhalten (Schema 3.68).

Schema 3.68: Synthese von rac-111 und rac-112·HCl

Die relative Stereochemie von *rac*-112·HCl konnte mittels 1D DPFGSE-NOE Experimente bestätigt werden (Abb. 3.69). Durch Anregung des Protons in der 6-Position von *rac*-112·HCl bei $\delta = 3.11$ ppm im ¹H NMR wurde ein positiver NO-Effekte zu dem Proton in der Position 7 bei δ = 2.65 ppm beobachtet. Das Proton in der 1-Position zeigt keinen NO-Effekt. Die Anregung des Protons in der 7-Position von *rac*-112·HCl bei $\delta = 2.65$ ppm im ¹H NMR zeigt einen stark positiven NO-Effekt zu den Protonen in der 6-Position bei $\delta = 3.11$ ppm und der Methylengruppe (Position 7a) bei 3.54 ppm im ¹H NMR. Das Proton in der 5-Position zeigt keinen NO-Effekt. Daher ist es unter den basischen Reaktionsbedingungen ebenfalls zu keiner Isomerisierung gekommen und die relative Stereochemie von *rac*-112·HCl ist die *exo*-Konfiguration.

Abb. 3.69: Bestimmung der relativen Stereochemie von *rac*-**112**·HCl mittels 1D DPFGSE-NOE Experiment

Die Signale der Protonen in der 6- und 1-Positon von *rac*-**111** im ¹H NMR überlagern sich. Die Anregung des Protons in 7-Position zeigt keinen NO-Effekt zu dem Proton in 5-Position. Die ¹H und ¹³ C NMR-Spektren zeigen zudem keinerlei Hinweise auf ein Epimeriserung der Carboxyl-funktion in 6-Position unter den hier verwendeten Reaktionsbedingungen.

3.4 Synthese N-substituierter Aminosäurederivate

3.4.1 Synthese N-substituierter Aminosäureester

Die N-Substitution der in dieser Arbeit erfolgreich synthetisierten Aminosäureester erfolgte mit pharmakologisch relevanten Strukturelementen. Zum einen sollte der in der Literatur bereits bekannte lipophile Diphenylbutenylrest **30**¹⁴¹ verwendet werden, um die Affinität und Selektivität gegenüber mGAT1 positiv zu beeinflussen. Des Weiteren wurden die Aminosäureester mit zwei einfachen Alkylsubstituenten (n-Butyl (**28**) und n-But-3-en-1-yl (**29**)) versehen, um eventuell weitere, neue Erkenntnisse über die Orientierung der Inhibitoren in der Bindungstasche zu erhalten.

In Anlehnung an die Arbeit von Schwarzer, die ähnliche Aminosäureester mit Pyrrolidin- und 3-Aza-bicyclo[3.2.0]heptanstruktur synthetisierte und N-alkylierte, wurde die im Arbeitskreis bereits bewährte und optimierte Methode zur N-Alkylierung angewandt.⁵¹ Schwarzer erhielt mit Alkylbromiden als Alkylierungsmittel in der Regel gute Ausbeuten im Bereich von 60-95%. Daher wurde ausschließlich mit den Alkylbromiden **129**, **130** und **131** als Alkylantien gearbeitet (Abb. 3.70). Der jeweilige Aminosäureester wurde in MeCN vorgelegt und mit K₂CO₃ (2.5 Äq.) und KI (3.0 Äq.) versetzt. Anschließend wurde das Alkylbromid (1.2 Äq.) zugetropft, wobei die flüssigen Bromide **129** und **130** direkt und das zähflüssige Bromid **131** hingegen als Lösung in MeCN zugetropft wurden. Das Reaktionsgemsich wurde dann über Nacht von Raumtemperatur auf 60 °C erwärmt. Noch höhere Temperaturen erwiesen sich als ungeeignet.

Abb. 3.70: Übersicht über die verwendeten Alkylbromide

Erste Versuche unter diesen Reaktionsbedingungen erfolgten mit dem Aminosäureester *rac*-**64**·HCl und **131** als Alkylanz (Schema 3.71, Tab. 3.9). Entsprechend der Vorschrift von Schwarzer wurde *rac*-**64**·HCl mit **131** über Nacht (~20 h) umgesetzt, wobei eine Ausbeute des Alkylierungsproduktes **134** von 37% resultierte (Tab. 3.9, Eintrag 1). Eine Verlängerung der Reaktionszeit auf 70 h lieferte eine deutliche Ausbeutenverminderung auf 11% (Tab. 3.9, Eintrag 2). Dagegen lieferte eine auf 6.5h verkürzte Reaktionszeit mit einer Ausbeute von 56% eine deutliche Verbesserung (Tab. 3.9, Eintrag 3). Eine noch kürzere Reaktionszeit von 2.5 h führte allerdings zu keiner weiteren Verbesserung, sondern zu einer etwas geringeren Ausbeute von 46% (Tab. 3.9, Eintrag 4).

Da Verbindung *rac*-134 nach diesen Versuchen in ausreichenden Mengen vorhanden war und das Edukt *rac*-64·HCl nicht unnötigerweise verbraucht werden sollte, wurde die N-Alkylierung mit einem anderen Alkylierungsmittel untersucht. Bei der Umsetzung von *rac*-64·HCl mit 130 wurde die Reaktion bei 40 °C durchgeführt. Hier zeigte sich, dass bereits nach 40 min 22% des Produktes *rac*-133 isoliert werden konnten (Tab. 3.9, Eintrag 5). Bei einer Reaktionszeit von 3.3 h und 1.5 Äquivalenten konnte ich solide 63% isolieren (Tab. 3.9, Eintrag 6). Durch eine weitere Erhöhung der Menge am Alkylierungsreagenz 130, auf 2 Äquivalente, konnte ich die Ausbeute auf sehr zufriedenstellende 78% steigern (Tab. 3.9, Eintrag 7). Unter diesen Reaktionsbedingungen zur N-Alkylierung (K₂CO₃ (2.5 Äq.), KI (3.0 Äq.), MeCN, 40 °C, 2 Äquivalente des Alkylierungsreagenzes) konnte ich *rac*-132 bei einer Reaktionszeit von 3.0 h mit einer Ausbeute von 77% erhalten (Tab. 3.9, Eintrag 8).

Schema 3.71: Allgemeines Schema der N-Alkylierung von rac-64·HCl

Eintrag	Alkylanz (Äq.)	Reaktionszeit [h]	Temperatur [°C]	Produkt	Ausbeute [%]
1	131 (1.2)	20	60	rac- 134	37
2	131 (1.2)	70	60	rac-134	11
3	131 (1.2)	6.5	60	rac-134	56
4	131 (1.2)	2.5	60	rac- 134	46
5	130 (1.3)	0.7	40	rac-133	22
6	130 (1.5)	3.3	40	rac-133	63
7	130 (2.0)	3.3	40	rac-133	78
8	129 (2.0)	3.0	40	rac-132	77

Tabelle 3.9: N-Alkylierung von rac-64·HCl

Entsprechend der oben beschriebenen Ergebnisse wurden im Folgenden die N-Alkylierungen der Aminosäureester mit K_2CO_3 (2.5 Äq.) und KI (3.0 Äq.) in MeCN bei 40 °C mit 2 Äquivalenten des Alkylierungsreagenzes durchgeführt. Unter diesen optimierten Reaktionsbedingungen für die N-Alkylierung der Aminosäureester *rac*-64·HCl, *rac*-97, *rac*-106, *rac*-112·HCl, 108, *rac*-119 und *rac*-87 konnte ich alle korrespondierenden Alkylderivate bei vergleichsweise kurzen Reaktionszeiten von 2-4 h in hohen Ausbeuten, d.h. zwischen ~60% und 90% herstellen. Die Ergebnisse der N-Alkylierungen sind in den Tabellen 3.10,3.11und 3.12 zusammengefasst.

Die epimerisierungsgefährdeten Verbindungen *rac*-132, *rac*-133, *rac*-134, *rac*-138, *rac*-139, *rac*-140, *rac*-141, *rac*-142, *rac*-143, 144, 145, 146, *rac*-147, *rac*-148 und *rac*-149 zeigten im ¹H und ¹³C NMR unter diesen Reaktionsbedingungen keine Epimerisierung. Bei den meso-Verbindungen 144, 145, 146 würde eine Epimerisierung zu den Verbindungen *rac*-147, *rac*-148 und *rac*-149 führen. Umgekehrt würde eine Epimerisierung der Verbindungen *rac*-147, *rac*-148 und *rac*-149 zu meso-Verbindungen führen. Die entsprechenden Signale wurden im ¹H NMR nicht beobachtet. Die relative Stereochemie von *rac*-143 konnte, ebenso wie die der N-substituierten Aminosäure *rac*-169, mittels 1D DPFGSE NOE-Experimenten bestätigt werden. Wohingegen für die übrigen Verbindungen eine Überprüfung der relativen Stereochemie mit 1D DPFGSE NOE-Experimenten aufgrund sich überlagernder Signale im ¹H NMR nicht erfolgen konnte. Allerdings konnte im Vorfeld bestätigt werden, dass basische Reaktionsbedingungen nicht zu einer Epimerisierung bei *rac*-64·HCl, *rac*-105 und *rac*-112·HCl führten und die relative Stereochemie erhalten bleibt.

			Reaktions-	Ausbeute
Edukt	Alkylanz	Produkt	zeit [h]	[%]
		MeO CO ₂ Me		
		N		
	129	125	3.3	70
MeO CO Mo		MeO CO-Me		
N H		N N		
	130		2.5	60
rac- 97		rac-136		
		MeO CO ₂ Me		
	131	125	3.3	81
		<i>rac-137</i>		
		Hun Dung		
	129	<u></u>	3.0	78
0		rac-138		
H III. OMe		O OMe		
L N H		H m H		
	130		3.0	63
rac-106	100	rac-139	5.0	05
		OMe		
		Ť,		
	131		3.0	75
		rac- 140		

Tabelle 3.10: Synthese der N-alkylierten Aminosäureester

			Reaktions-	Ausbeute
Edukt	Alkylanz	Produkt	zeit [h]	[%]
		MeO ^{-14,} H ^{IIII} - ¹⁴ H		
0	129	<i>rac</i> -141	2.0	89
MeO ^{¹/1} , OMe H ¹ /1, M ¹ /1 H HCl		MeO ⁻¹		
<i>rac-112</i> ·HCl	130	rac- 142	2.0	83
		MeO ^{~/··} H ^{···} H N		
	131	rac-143	3.0	52
	129	Meo H H H H H H H H H H H H H H H H H H H	3.5	88
Meo H H H H H H H H H H H H H H H H H H H	130	Meo HH H H H H H H H H H H H H H H H H H	2.7	86
	131	146	2.0	65

Tabelle 3.10: Fortsetzung

Tabelle 3.10: Fortsetzung

Die Synthese der für die biologische Prüfung vorgesehenen Aminosäureester *rac*-**153**, *rac*-**154** und *rac*-**155** erfolgte über 2 Schritte (Schema 3.72). Zuerst wurde das Amin *rac*-**87** unter Verwendung der hier entwickelten Reaktionsbedingungen in Gegenwart von K_2CO_3 (2.5 Äq.) und KI (3.0 Äq.) in MeCN bei 40 °C mit 2 Äquivalenten des Alkylierungsreagenzes (**129**, **130** und **131**) umgesetzt. Hierbei wurden für die Zwischenstufen Ausbeuten von 70% (*rac*-**150**) und 76% (*rac*-**151** und *rac*-**152**) erzielt. Anschließend erfolgte die Abspaltung der TBDMS-Schutzgruppe des Alkohols entsprechend einer Vorschrift von Corey mit Tetrabutylammoniumfluorid (Bu₄NF, 2 Äq.) in THF mit Ausbeuten zwischen 69 und 76% .¹⁴² Die Ausbeuten der N-Alkylierung und Abspaltung der TBDMS-Schutzgruppe sind in Tabelle 3.11 zusammengefasst.

Schema 3.72: Allgemeines Schema der N-Alkylierung von *rac*-**87** und der sich anschließenden Synthese von *rac*-**153**, *rac*-**154** und *rac*-**155**

		Zwischen-	Reaktions-	Ausbeute		Reaktions-	Ausbeute
Eintrag	R-Br	stufe	zeit [h]	[%]	Produkt	zeit [h]	[%]
1	129	TBDMS-0 rac-150	3.5	70	HO CO ₂ Me	1.8	69
2	130	TBDMS-0 NCO2Me rac-151	3.5	76	HO CO ₂ Me	1.7	75
3	131	TBDMS-0 CO ₂ Me	3.5	76	но созме созме гас-155	0.8	76

Tabelle 3.11: Synthese der N-substituierten Aminosäureester rac-153, rac-154 und rac-155

Zusätzlich zu den monocyclischen und bicyclischen Estern (Tab. 3.10 und Tab. 3.11) wurde die tricyclische Verbindung *rac*-**156** mit den drei Alkylketten versehen. Durch die Umsetzung von *rac*-**156** mit dem jeweiligen Alkylanz (**129**, **130** oder **131**) in Gegenwart von K₂CO₃ (2.5 Äq.) und KI (3.0 Äq.) in MeCN bei 40 °C konnte ich für die N-alkylierten Derivate *rac*-**157**, *rac*-**158** und *rac*-**159** Ausbeuten von 56-63% erzielen (Tab. 3.12).

			Reaktions-	Ausbeute
Edukt	Alkylanz	Produkt	zeit [h]	[%]
	129	5	1.7	63
		rac-157		
Ĥ HCI	130		1.7	61
<i>rac</i> - 156 ·HCl		rac-158		
		O H H H H M H		
	131		6.0	56
		rac-159		

Tabelle 3.12: Synthese der N-substituierten tricyclischen Derivate rac-157, rac-158 und rac-159

3.4.2 Synthese der freien N-substituierten Aminosäuren

Die freien N-substituierten Aminosäuren wurden durch Hydrolyse unter basischen oder sauren Reaktionsbedingungen aus den jeweiligen Aminosäureestern hergestellt. Hierbei wurden drei unterschiedliche Methoden angewandt. Die freien Aminosäuren mit n-Butyl- bzw. n-But-3-en-1-yl-Substituenten konnten aufgrund ihrer geringen Lipophilie jedoch nicht extrahiert werden, so dass eine im Arbeitskreis entwickelte Alternativmethode zum Einsatz kam. Die Umsetzung des Aminosäureesters erfolgte mit Ba(OH)₂·H₂O in MeOH/H₂O (1:1). Anschließend wurden die Bariumsalze durch Zugabe von Trockeneis als BaCO₃ ausgefällt. Dieses konnte mittels Polypropylenfilter (VWR, 0.2 µm) abgetrennt werden. Nach Gefriertrocknung der wässrigen Phase wurde die freie Aminosäure erhalten (Methode A). Die Hydrolyse der Aminosäureester mit dem lipophilen Diphenylbutenyl-Rest erfolgte unter basischen Bedingungen mit NaOH bzw. LiOH in MeOH/H₂O (1:1). Die Produkte wurden anschließend durch Extraktion mit CH₂Cl₂ bei pH = 6 isoliert (Methode B). Der dritte Weg zur Synthese der N-alkylierten Aminosäuren war die saure Hydrolyse und wurde bei den Dicarbonsäurederivaten 144, 146 und rac-149 eingesetzt (Tab. 3.13, Eintrag 16, 18 und 21). Für die Hydrolyse wurde der jeweilige Ester in Dioxan gelöst und nach Zugabe von 2M HCl zum Rückfluss erhitzt (Methode C).

Generell konnten mit diesen Verfahrensweisen die N-alkylierten Aminosäuren in hohen Ausbeuten zugänglich gemacht werden. Bei den Verbindungen rac-160 (Tab. 3.13, Eintrag 1), 175 (Eintrag 16) und rac-179 (Eintrag 20) war ein weiterer Reinigungsschritt (Reinigung durch Ionenaustauschchromatographie) notwendig. In diesen Fällen lagen die Ausbeuten etwas geringer, im Bereich zwischen 52 und 73 %. Die Ergebnisse der Synthese der N-substituierten Aminosäuren sind in Tabelle 3.13 zusammengefasst.

Die Verbindungen aus Tabelle 3.13 zeigten im ¹H und ¹³C NMR unter diesen Reaktionsbedingungen keine Epimerisierung.

Tabelle 3.13: Synthese der N-alkylierten Aminosäuren*					
	N-alkylierter		N-alkylierte	Ausbeute	
Eintrag	Aminosäureester	Methode	Aminosäure	[%]	
1	о N Гас-132	А	о	68 ¹	

	N-alkylierter		N-alkylierte	Ausbeute		
Eintrag	Aminosäureester	Methode	Aminosäure	[%]		
			N CO ₂ H			
2		Δ		94		
2	rac-133	11	rac- 161	74		
			0 			
	O CO ₂ Me		CO ₂ H			
3		В		61		
	rac- 134		rac-162			
	HO CO ₂ Me		но СО2Н			
	Ň		N			
4		А		92		
	rac-153		rac-163			
	HO CO ₂ Me		но СО2Н			
	Ň		Ň			
5		А		99		
	rac-154		rac- 164			
	HO CO ₂ Me		HO CO ₂ H			
	N N					
6		В		51		
	rac-155		rac-165			
	MeO CO ₂ Me		MeO			
	N		N			
7		А	کر	94		
	rac-135		rac- 166			

Tabelle 3.13: Fortsetzung

	N-alkylierter		N-alkylierte	Ausbeute
Eintrag	Aminosäureester	Methode	Aminosäure	[%]
	MeO CO ₂ Me		MeO CO ₂ H	
	Ň		Ň	
8	<i>"</i> /	А		98
	rac-136		rac-167	
	MeO CO ₂ Me		MeO CO ₂ H	
9		В		97
	rac-137		rac-168	
			Hum H	
10		А	<u></u>	99
	rac-138		rac-169	
	H m H M OMe		H Internet A state of the state	
11		А		97
	rac-139		rac-170	
	H		H - OH H - OH M - OH	
12	\bigcirc	В		96
	rac-140		rac-171	

Tabelle 3.13: Fortsetzung

		ie 5.15.101680		
	<i>N</i> -alkylierter		<i>N</i> -alkylierte	Ausbeute
Eintrag	Aminosäureester	Methode	Aminosäure	[%]
	MaQ Ma		MeO OH	
			H Internet in the second secon	
12				00
15	rac-141	A	rac-172	99
	0		0	
	MeO ^{-Ma} , MeO ^{-Ma} OMe		MeO MeO	
	Ň		Ň	
14		А		99
	rac- 142		rac-173	
	0		MeO ^¹ OH	
	MeO ^{'''} OMe		H	
	N N			
			N X	
15		В		87
	rac- 143		rac- 174	
	MeO OMe		HO HO	
	H Ino		H III	
16		С		52^{1}
	rac- 144		rac-175	
	Meo Me		HO OH	
15	, Í		, I	. -
17	//	А	//	97
	rac- 145		rac-176	

Tabelle 3.13: Fortsetzung

	N-alkylierter		<i>N</i> -alkylierte	Ausbeute
Eintrag	Aminosäureester	Methode	Aminosäure	[%]
	MeO H m H m H		HO HO HU HU HU HU HU HU HU HU HU HU HU HU HU	
18		С		74
	rac-146		rac-177	
	MeO H me N		HO HO HIM N	
19	5	А	<u>ک</u>	99
	rac- 147		rac-178	
20		А	<u>_</u>	73 ¹
	rac- 148		rac- 179	
	MeO Hardon H N		HO HO N HIM N HIM N HIM N	
21		С		81
	rac- 149		rac-180	

Tabelle 3.13: Fortsetzung

*Die Synthese der N-alkylsubstituierten Aminosäuren wurde entsprechend einer der nachfolgenden Vorschriften A, B oder C durchgeführt:

Methode A: Eine Lösung des entsprechenden Methylesters in MeOH/H₂O (1:1) wurde mit Ba(OH)₂·8 H₂O (2 Äq.) versetzt und bei RT gerührt. Durch die sukzessive Zugabe von Trockeneis wurde BaCO₃ ausgefällt. MeOH wurde im Vakuum entfernt und der verbleibenden wässrigen Phase nochmals etwas Trockeneis zugesetzt. Der Nieder-

schlag wurde mit Hilfe eines Polypropylenfilters (VWR, $0.2 \mu m$) mehrfach abfiltriert und das Lösungsmittel mittels Gefriertrocknung entfernt.

Methode B: Eine Lösung des entsprechenden Methylesters im angegebenen Lösungsmittel (sie Experimenteller Teil) wurde bei 0 °C mit wässriger NaOH oder wässriger LiOH (10 Äq.) versetzt und bei RT gerührt. Das organische Lösungsmittel wurde entfernt und mit HCl-Lösung und/oder Phosphatpuffer (pH = 6) angesäuert. Die Lösung wurde mit CH_2Cl_2 mehrfach extrahiert. Die vereinigten org. Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt.

Methode C: Der entsprechende Methylester wurde in Dioxan gelöst und mit 2 M HCl versetzt und zum Rückfluss erhitzt. Das Lösungsmittel wurde im Vakuum entfernt.

¹: Verbindung wurde mit stark saurem Ionenaustauscher gereinigt.

Wie bereits erwähnt, war es nicht möglich, das Amin *rac*-**110** herzustellen, um die N-alkylsubstituierten Derivate zu erhalten (siehe Kap.3.3.2).

Die reduktive Aminierung ist eine Möglichkeit zur N-Alkylierung von Aminosäuren. Die Aminosäure *rac*-**109** ließ sich durch reduktive Aminierung mit **181** (1.2 Äq.) in EtOH in Gegenwart von H_2 und Pd/C bei 5 bar 5 h zum *N*-Butylderivat **182** umsetzen. Diese Reaktion wurde aus Zeitgründen und Eduktmangel lediglich zweimal durchgeführt. Das erste Mal lieferte die Umsetzung von **109** mit **181** eine geringe Ausbeute von 44%. Bei der Wiederholung wurde hingegegen eine Ausbeute von 99% erhalten, allerdings dabei eine nicht charakterisierbare Verunreinigung beobachtet, die sich selbst durch Chromatographie mit stark sauren Ionenaustauscher oder durch Umkristallisation nicht entfernen ließ.

Schema 3.73: Synthese von rac-182

3.5 Biologische Prüfung

Die in Kapitel 3.3 und Kapitel 3.4 beschriebenen Aminosäuren, Aminosäuremethylester und deren N-alkylsubstituierten Derivate wurden auf ihre inhibitorische Potenz und Subtypenselektivität an den vier murinen GABA-Transportern mGAT1-mGAT4 untersucht.

3.5.1 Durchführung und Auswertung der GABA-Uptake-Studien

Die Untersuchungen wurden an den in HEK-Zellen stabil exprimierten vier murinen GABA-Transportern mGAT1-mGAT4 durchgeführt, wobei ein im Arbeitskreis von Kragler entwickeltes Verfahren zur Bestimmung der Aufnahme (Uptake) von GABA in das Zellinnere Verwendung findet.¹⁴³ Dabei wird ermittelt, in welchem Ausmaß die zu untersuchenden Verbindungen die Wiederaufnahme von GABA über die membranständigen GABA-Transportproteine (mGAT1mGAT4) inhibieren.

Die Zellen werden zu Beginn mit einer Verdünnungsreihe der Testsubstanz vorinkubiert und nach einer bestimmten Zeit mit tritiiertem GABA ([³H]-GABA) versetzt. Die Bestimmung der aufgenommenen Menge an [³H]-GABA erfolgt nach den genauestens festgelegten Inkubations-, Wasch- und Filtrationsschritten mit Hilfe eines Szintillationsspektrometers. Als Maß für die inhibitorische Potenz einer Testverbindung dient der pIC50-Wert, der negative dekadische Logarithmus des IC₅₀-Wertes. Je höher der pIC₅₀-Wert, desto höher ist die inhibitorische Potenz der Testverbindung. Der IC₅₀-Wert gibt die Wirkstoffkonzentration an, welche die spezifische Aufnahme von GABA gegenüber der nicht-inhibierten, spezifischen Aufnahme in die Zellen um 50% reduziert. Die spezifische Aufnahme wird dabei aus der Differenz der Gesamtaufnahme in Gegenwart eines Inhibitors und der nicht-spezifischen Aufnahme berechnet. Die nicht-spezifische Aufnahme wird hierbei in Gegenwart eines Überschusses (1mM) GABA bestimmt. Die Versuche wurden in der Regel drei mal in Triplikaten durchgeführt und die pIC50-Werte als Mittelwert dieser Messungen mit einer entsprechenden Standardabweichung (SEM = standard error of the mean) angegeben. Liegt der gemessene pIC₅₀-Wert unter 5.00 so wurde nur ein Experiment durchgeführt, wobei dann keine Fehlergrenze angegeben wird. Betrug die Inhibition der spezifischen Wiederaufnahme in der höchsten eingesetzten Konzentration der Testsubstanz (1 mM bzw. 100 μ M) jedoch nicht mindestens 50%, so wurden die Versuche nicht wiederholt. In diesen Fällen wurden anstatt der pIC₅₀-Werte die Prozentwerte der verbleibenden GABA-Aufnahme bei der entsprechenden Konzentration angegeben. Um die Prozentangaben mit den pIC50-Werten besser vergleichen zu können, werden für alle Werte > 50% bei einer Konzentration von 1mM

ein pIC₅₀-Wert von \leq 3.00 bzw. bei einer Konzentration von 100 μ M ein pIC₅₀-Wert von \leq 4.00 angenommen.

3.5.2 Testergebnisse der GABA-Uptake-Studien

Testergebnisse der Aminosäuregrundkörperderivate

Als erstes wurden die in dieser Arbeit synthetisierten, monocyclischen Aminosäurederivate auf ihre inhibitorische Potenz bezüglich der vier mGATs (mGAT1-mGAT4) untersucht. Zur besseren Vergleichbarkeit sind in Tabelle 3.14 die mit dem in unserem Arbeitskreis etablierten Testverfahren erhaltenen Werte für drei ausgewählte Referenzsubstanzenten (RS)-183, (R)-8·HCl und (S)-10·HCl aufgeführt.

(*RS*)-Nipecotinsäure ((*RS*)-183) zeigt eine mittelstarke Inhibition (Tab. 3.14, Eintrag 1), insbesondere an den Transportern mGAT1 (pIC₅₀ = 4.88), mGAT3 (pIC₅₀ = 4.64) und mGAT4 (pIC₅₀ = 4.70). An mGAT2 (pIC₅₀ = 3.10) hingegen weist (*RS*)-183 eine schwächere Potenz auf. Die Werte der enantiomerenreinen Verbindung (*R*)-8·HCl (Tab. 3.14, Eintrag 2) sind im Vergleich zum Racemat (*RS*)-183 bei gleicher Wirkung und Selektivität etwa gleich bis geringfügig besser. Für die ringkleinere Verbindung (*S*)-10·HCl wurde ein ähnliches Selektivitätsprofil mit einer nominal bis signifikant gesteigerten Wirksamkeit an allen vier Transportproteinen mGAT1-mGAT4 (Tab. 3.14, Eintrag 3) gegenüber (*RS*)-183 und (*R*)-8·HCl gemessen. An mGAT1 (pIC₅₀ = 5.57) und an mGAT2 (pIC₅₀ = 4.21) ist die inhibitorische Potenz deutlich gestiegen. Die Wirkung auf mGAT3 (pIC₅₀ = 4.88) und mGAT4 (pIC₅₀ = 4.70) hingegen ist ähnlich gut wie bei (*RS*)-183 und (*R*)-8·HCl.

In Anbetracht der bei den zum Vergleich herangezogenen Grundkörper (*RS*)-**183**, (*R*)-**8**·HCl und (*S*)-**10**·HCl erhaltenen inhibitorischen Potenzen (Tab. 3.14) bestand die Hoffnung, durch eine Substitution des Pyrrolidingrundgerüstes in 3- bzw. 4-Position der Pyrrolidin-3-yl-essigsäure die Potenz und die Selektivität gegenüber den Transportproteinen steigern zu können. In Tabelle 3.15 sind die Testergebnisse der am Pyrrolidinring substituierten monocyclischen Pyrrolidinderivate *rac*-**66**, *rac*-**85** und *rac*-**98** und deren korrespondierender Methylester *rac*-**64**·HCl und *rac*-**97** aufgeführt.

Es zeigt sich, dass eine zusätzliche Substitution der Pyrrolidin-3-yl-essigsäure-Einheit bzw. der korrespondierenden Ester zu einem massiven Einbruch der inhibtorischen Potenz an den Transportproteinen mGAT1-mGAT4 führt und bei einer Konzentration von 100μ M die Aufnahme von

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	(RS)-183	$\begin{array}{l} pIC_{50} \\ \pm \ SEM \end{array}$	$\begin{array}{c} 4.88 \\ \pm \ 0.07 \end{array}$	3.10 ± 0.09	$\begin{array}{c} 4.64 \\ \pm \ 0.07 \end{array}$	$\begin{array}{c} 4.70 \\ \pm \ 0.07 \end{array}$
2	$(R)-8\cdot\mathrm{HCl}^{\mathrm{CO_2H}}$	$pIC_{50} \pm SEM$	5.07 ± 0.02	3.28 ± 0.05	4.71 ± 0.04	4.79 ± 0.05
3	$\overbrace{(S)-10}^{\text{CO}_{2}\text{H}}$	$pIC_{50} \pm SEM$	5.57 ± 0.03	4.21	4.88 ± 0.12	4.78

Tabelle 3.14: Ergebnisse der biologischen Prüfung der Vergleichssubstanzen (*RS*)-183, (*R*)-8·HCl und (*S*)-10·HCl

GABA weit über ~50% liegt, was einem pIC₅₀-Wert deutlich unter 4 entspricht (Tab. 3.15). Die Verbindungen *rac*-**66**, *rac*-**64**·HCl, *rac*-**85**, *rac*-**98** und *rac*-**97** sind damit bei der verwendeten Konzentration, 100 μ M, weites gehend inaktiv.

	und <i>rac-31</i>					
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	O N H CO ₂ H	pIC ₅₀	-	-	-	-
	rac- 66	IC ₅₀	110.0% 100μM	80.6% 100μM	101.0% 100μM	77.8% 100μM
2	CO ₂ Me N HCl	pIC ₅₀	-	-	-	-
	<i>rac-</i> 64 ·HCl	IC ₅₀	103.0% 100μM	101.0% 100μM	91.4% 100µM	93.6% 100µM
	HO CO ₂ H	pIC ₅₀	-	-	-	-
3	rac- 85	IC ₅₀	84.4% 100μM	82.7% 100µM	91.5% 100µM	81.7% 100μM
4	MeO CO ₂ H	pIC ₅₀	-	-	-	-
	rac- 98	IC ₅₀	88.4% 100µM	77.9% 100μM	79.0% 100μM	93.8% 100µM
	MeO CO ₂ Me	pIC ₅₀	-	-	-	-
5						
	rac- 97	IC ₅₀	81.9% 100μM	98.3% 100μM	82.5% 100μM	84.2% 100μM

Tabelle 3.15: Ergebnisse der biologischen Prüfung der monocyclischen Aminosäure-Grundkörper *rac*-66, *rac*-85 und *rac*-98 und den Methylester *rac*-64·HCl und *rac*-97

Im Weiteren wurden die in Tabelle 3.16 aufgeführten bicyclischen Verbindungen sowie die tricyclische Verbindung rac-156·HCl hinsichtlich ihrer inhibitorischen Potenz und Selektivität an den vier Transportern mGAT1-mGAT4 untersucht. Interessant schien die Frage, wie die starre Konformation der bicyclischen Derivate und der tricyclischen Verbindung deren inhibitorische Potenz an mGAT1-mGAT4 im Vergleich zu den monocyclischen Derivaten beeinflusst. In Tabelle 3.16 sind die erhaltenen Werte für die Aminosäuren und deren Methylester wiedergegeben. Die Ergebnisse der biologischen Prüfung der bicyclischen Aminosäure-Grundkörper rac-105, rac-109, rac-111, 107, rac-121 und den Methylestern rac-106, rac-112·HCl, 108, rac-119, sowie der tricyclischen Verbindung rac-156·HCl zeigen keine nennenswerte Affinität an den vier Transportproteinen mGAT1-mGAT4. Allenfalls Verbindung rac-105 zeigt eine schwache inhibitorische Potenz an mGAT1-mGAT4 (Tab. 3.16, Eintrag 1). Damit ist rac-105 deutlich schwächer wirksam als die Referenzsubstanz (S)-10·HCl. Der korrespondierende Methylester rac-106 zeigt eine ähnliche Affinität an mGAT1 (Tab. 3.16, Eintrag 2). Die Hydroxymethylfunktion in 7-Position des 3-Azabicyclo[3.2.0]heptanstruktur von rac-109 führt zu einer leicht erhöhten Selektivität gegenüber mGAT2 (Tab. 3.16, Eintrag 3). Die trans-Dicarbonsäurederivate rac-121 und rac-119 sind ähnlich gering wirksam, jedoch mit schwach erhöhter Affinität an mGAT4

(Tab. 3.16, Eintrag 8 und 9).

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	Hard H	pIC ₅₀	3.23	-	-	3.52
	rac-105	IC ₅₀	-	85.8% 100μM	57.9% 100μM	-
2	O H ^m , M H	pIC ₅₀	-	-	-	-
	rac-106	IC ₅₀	78.6% 100μM	106.0% 100μM	86.0% 100μM	94.7% 100μM

Tabelle 3.16: Ergebnisse der biologischen Prüfung der bicyclischen Aminosäure-Grundkörper *rac-105, rac-109, 107, rac-121* und den Methylestern *rac-106, rac-111, rac-112*·HCl, 108, *rac-119*, sowie der tricyclischen Verbindung *rac-156*·HCl

Iabelle 3.16: Fortsetzung								
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4		
3	HO HO HIM H	pIC ₅₀	-	-	-	-		
	rac-109	IC ₅₀	86.0% 100μM	65.9% 100μM	107.0% 100μM	93.9% 100μM		
4	MeO ⁻⁴ , w ^H OH H	pIC ₅₀	-	-	-	-		
	rac-111	IC ₅₀	94.1% 100μM	84.9% 100μM	94.0% 100μM	94.6% 100μM		
5	MeO ^{-///} , Hirophini Hirophini H HCl	pIC ₅₀	-	-	-	-		
	<i>rac</i> -112·HCl	IC ₅₀	109.0% 100μM	91.7% 100μM	92.7% 100μM	95.8% 100μM		
6		pIC ₅₀	-	-	-	-		
	107	IC ₅₀	79.6% 100μM	107.0% 100μM	85.0% 100μM	88.7% 100μM		
7	MeO ⁻¹ H III- H III- H	pIC ₅₀	-	-	-	-		
	108	IC ₅₀	91.1% 100µM	107.0% 100μM	91.4% 100μM	87.6% 100μM		
8	HO HO HIM HIM N H	pIC ₅₀	-	-	-	-		
	rac-121	IC ₅₀	89.9% 100μM	87.8% 100μM	105.0% 100μM	70.4% 100μM		

Tabelle 3.16: Fortsetzung
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
9	MeO H ^m , H ^m , H	pIC ₅₀	-	-	-	-
	rac-119	IC ₅₀	104.0% 100μM	100.0% 100μM	110.0% 100μM	67.9% 100μM
10	O H H H H H H H H H H H H H H H H	pIC ₅₀	-	-	-	-
	<i>rac-</i> 156 ·HCl	IC ₅₀	97.1% 100μM	83.3% 100µM	107.0% 100μM	90.4% 100μM

Tabelle 3.16: Fortsetzung

Zusammenfassend ist festzuhalten, dass die im Rahmen dieser Arbeit synthetisierten, monocyclischen und bicyclischen Aminosäuren und Methylesterderivate keine nennenswerte Affinität an die vier Transportproteine mGAT1-mGAT4 aufweisen. Die monocyclischen Derivate mit einer zusätzlichen funktionellen Gruppe in der 3- bzw. 4-Position des Pyrrolidingerüsts zeigen alle eine deutlich verminderte Wirksamkeit im Vergleich zu (*S*)-**10**·HCl (Tab. 3.14, Eintrag 3). Daher scheinen die Transporter eine Substitution mit einer Acetyl-, Hydroxymethyl- und Methoxymethylfunktion der Pyrrolidineinheit nicht zu tolerieren. Ein ähnliches Verhalten wurde für die bicyclischen Derivate beobachtet.

Testergebnisse für die N-alkylsubstituierten Derivate

Die in Kapitel 3.4.1 und Kapitel 3.4.2 beschriebenen N-substituierten Aminosäureester und Nsubstituierten Aminosäuren sollten ebenfalls auf ihre inhibitorische Potenz an den vier Transportproteinen mGAT1-mGAT4 untersucht werden. Es bestand die Hoffnung, die kaum bis schwach wirksamen Grundkörper durch eine N-Alkylierung in ihrer inhibitorischen Potenz und Selektivität gegenüber den Transportproteinen mGAT1-mGAT4 zu steigern.

In Tabelle 3.18 sind zwei Vergleichssubstanzen *rac*-13 und (*S*)-15 mit einem Diphenylbutenylsubstituenten aufgeführt. Verbindung *rac*-13 zeigt eine ausgeprägte Wirksamkeit (pIC₅₀ = 6.16) an und Selektivität für mGAT1 (Tab. 3.18, Eintrag 1). Verbindung (*S*)-15 weist ein im Vergleich zu (*rac*)-13 ein ähnliches Wirkungsprofil auf (Tab. 3.18, Eintrag 2). Mit einer vergleichbaren inhibitorischen Potenz an mGAT1 (pIC₅₀ = 5.99) wie *rac*-13 zeigt (*S*)-15 auch schwache Wirkungen gegenüber den Transportproteinen mGAT2-mGAT4 mit Prozentwerten zwischen 80 und 100% bei einer 10 μ M-Konzentration, hierfür wird ein pIC₅₀-Wert von \leq 5 angenommen.

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	со ₂ н Со ₂ н гас- 13	pIC ₅₀ ± SEM	6.16 0.05	3.43 0.07	3.71 0.04	3.56 0.06
2	Со ₂ н Су-15	pIC_{50} \pm SEM IC_{50}	5.99 0.11	84.2% 10μM	98.9% 10μM	78.3% 10μM

Tabelle 3.17: Ergebnisse der biologischen Prüfung der N-substituierten Vergleichssubstanzen rac-13 und (S)-15

Neben dem Diphenylbutenylsubstituenten wurde der Einfluss der Butyl- bzw. But-3-en-1-ylsubstituenten auf die inhibitorische Potenz und Selektivität untersucht. Hierfür wurden in unserem Arbeitskreis diverse *N*-Butylderivate potenter Aminosäuren synthetisiert und auf ihre Bindungsaffinität und ihr ihibitorisches Potenzial an GAT1 untersucht.¹⁴⁴ Die Ergebnisse für die *N*-Butylderivate (*R*)-**184** und (*S*)-**185** sind in Tabelle 3.18 wiedergegeben. Im Vergleich zu den potenten Aminosäuren (*R*)-**8** und (*S*)-**10** zeigen die *N*-Butylderivate (*R*)-**184** (Tab. 3.18, Eintrag 1) und (*S*)-**185** (Tab. 3.18, Eintrag 2) eine deutliche Verminderung der Bindungsaffinität und inhibitorischen Potenz.

Eintrag	Verbindung	$pIC_{50}{\pm}~SEM$
1	(<i>R</i>)-184	3.72±0.09
2	(<i>S</i>)-185	3.21±0.03

Tabelle 3.18: Ergebnisse der biologischen Prüfung der *N*-Butylsubstituierten Vergleichssubstanzen (*R*)-**184** und (*S*)-**185** an GAT1¹⁴⁴

Zunächst wurden die monocyclischen N-alkylsubstituierten Derivate auf ihre inhibitorische Potenz und Selektivität an den Transportproteinen mGAT1-mGAT4 untersucht. Die erhaltenen Werte sind in Tabelle 3.19 zusammengefasst.

Der Aminosäuregrundkörper *rac*-**66** zeigt im Vergleich zum Methylester *rac*-**64**·HCl eine schwach erhöhte Potenz gegenüber mGAT2 und mGAT4 (Tab. 3.15, Eintrag 1 und 2). Die Ergebnisse der biologischen Prüfung der monocyclischen *N*-Butyl- (*rac*-**160**,*rac*-**132**, *rac*-**163**, *rac*-**153**, *rac*-**166** und *rac*-**135**) und *N*-But-3-en-1-yl-Derivate (*rac*-**161**, *rac*-**133**, *rac*-**164**, *rac*-**154**, *rac*-**167** und *rac*-**136**) von *rac*-**66** und *rac*-**64**·HCl zeigen keine nennenswerte Wirksamkeit und auch keine nennenswerte Selektivität an den vier Transportern mGAT1-mGAT4. Die sehr schwachen inhibitorischen Potenzen liegen im Bereich von 63-106%. Der Diphenylbutenylsubstituent in Verbindung *rac*-**134** hingegen führt zu einer deutlichen Steigerung der Potenz an mGAT1 (pIC₅₀ = 4.21), mGAT3 (pIC₅₀ = 4.11) und mGAT4 (pIC₅₀ = 4.84) (Tab. 3.19, Eintrag 6). Allerdings geht diese Wirksamkeit bei der Aminosäure *rac*-**162** wieder verloren und es zeigt sich nur noch eine schwache Aktivität an mGAT3 (Tab. 3.19, Eintrag 5). Für die diphenylbutenylsubstituierte Aminosäure *rac*-**165** sind die höchsten Potenzen an mGAT1 und mGAT4 zu beobachten, mit Prozentwerten bei einer Konzentration von 100 μ M knapp über 60% und somit pIC₅₀-Werten um 4 (Tab. 3.19, Eintrag 11). Bei dem korrespondierenden Methylester *rac*-**155** ließ sich im Vergleich zu *rac*-**165** eine minimale Steigerung der Potenzen erkennen (mGAT1mGAT4), wobei sich für mGAT3 ein pIC₅₀-Wert von 4.02 ergab (Tab. 3.19, Eintrag 12). Der Diphenylbutenylrest in *rac*-**168** führt zu einer leichten Verbesserung der Affinität an einzelnen GABA-Transportersubtypen gegenüber *rac*-**97** (Tab. 3.15, Eintrag 4). Verbindung *rac*-**168** zeigt dabei an allen Subtypen etwa die gleiche Wirksamkeit im Bereich von 74-77% (Tab. 3.19, Eintrag 17). Verbindung *rac*-**137** zeigt interessanter Weise eine vergleichsweise hohe inhibitorische Potenz an allen GABA-Transportersubtypen mGAT1-mGAT4 (Tab. 3.19, Eintrag 18).

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	O N CO ₂ H	pIC ₅₀	-	-	-	-
	rac-160	IC ₅₀	98.0% 100μM	92.5% 100μM	75.1% 100μM	103.0% 100μM
2	O N CO ₂ Me	pIC ₅₀	-	-	-	-
	ر <i>rac</i> -132	IC ₅₀	99.9% 100μM	73.0% 100μM	97.5% 100μM	82.5% 100μM
	O N N CO ₂ H	pIC ₅₀	-	-	-	-
5	rac-161	IC ₅₀	96.8% 100μM	85.4% 100μM	96.3% 100μM	83.8% 100μM
4	O N CO ₂ Me	pIC ₅₀	-	-	-	-
	rac-133	IC ₅₀	104.0% 100μM	75.3% 100μM	88.9% 100μM	92.4% 100μM

Tabelle 3.19: Ergebnisse der biologischen Prüfung der monocyclischen *N*-Alkylderivate der Aminosäuren und Aminosäureester

		Tuotine	5.17.10100	24115		
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
	N CO ₂ H	pIC ₅₀	-	-	-	-
5						
			87.6%	90.3%	68.4%	82.5%
	rac- 162	IC_{50}	100µM	100µM	100µM	100µM
6	O N CO ₂ Me	pIC ₅₀	4.21	-	4.11	4.84
				51 30%		
	rac-134	IC ₅₀	-	51.5% 100μM	-	-
	HO CO ₂ H	pIC ₅₀	-	-	-	-
7						
	rac 163	IC	90.6%	96.1%	93.8%	89.5%
	746-105	10.50	100µM	100µM	100µM	100µM
	HO CO ₂ Me	pIC ₅₀	-	-	-	-
8						
	rac-153	IC50	106.0%	90.9%	87.8%	86.2%
			100µM	100µM	100µM	100µM
0	HO CO ₂ H	pIC ₅₀	-	-	-	-
2			92.0%	73.6%	100.0%	78.8%
	rac- 164	IC ₅₀	100µM	100µM	100µM	100µM

Tabelle 3.19: Fortsetzung

		Tabelle	5.19: Fortsetz	zung		
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
10	HO CO ₂ Me	pIC ₅₀	-	-	-	-
	rac-154	IC ₅₀	98.5% 100μM	93.6% 100μM	73.2% 100μM	88.7% 100μM
11	HO N CO ₂ H	pIC ₅₀	-	-	-	-
	rac- 165	IC50	59.0%	102.0%	80.5%	66.1%
		1030	100µM	100µM	100µM	100µM
	HO CO ₂ Me	pIC ₅₀	-	-	4.02	-
12						
	rac-155	IC ₅₀	55.0% 100μM	58.6% 100μM	-	42.9% 100μM
	MeO CO ₂ H	pIC ₅₀	-	-	-	-
13						
	rac- 166	IC50	83.0%	100.0%	91.4%	63.1%
	100	1030	100µM	100µM	100µM	100µM
14	MeO CO ₂ Me	pIC ₅₀	-	-	-	-
	rac-135	IC ₅₀	81.9% 100μM	103.0% 100μM	82.5% 100μM	78.6% 100μM

Tabelle 3.19: Fortsetzung

		racene	011711010000	24119		
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
15	MeO CO ₂ H	pIC ₅₀	-	-	-	-
	1 / 8	IC	95.2%	105.0%	95.7%	79.4%
	rac-167	IC_{50}	100µM	100µM	100µM	100µM
	MeO CO ₂ Me	pIC ₅₀	-	-	-	-
16	<i></i>					
	uga 126	IC	96.2%	93.7%	89.0%	90.2%
	<i>ruc</i> -130	IC 50	100µM	100µM	100µM	100µM
	MeO CO ₂ H	pIC ₅₀	-	-	-	-
17						
	rac 168	IC	74.4%	73.6%	77.6%	77.1%
	7uc-100	1050	100µM	100µM	100µM	100µM
	MeO CO ₂ Me	pIC ₅₀	-	-	4.14	4.28
18						
	~ rac- 137	IC ₅₀	64.4% 100μM	45.8% 100μM	-	-

Tabelle 3.19: Fortsetzung

Zusammenfassend lässt sich feststellen, dass im Vergleich zu den monocyclischen Aminosäuregrundkörpern *rac*-66, *rac*-85, *rac*-98 und den Methylestern *rac*-64·HCl und *rac*-97 (Tab. 3.15) durch eine Butyl- und But-3-en-1-ylsubstitution keine Steigerung der Wirksamkeit an den GABA-Transportproteinen mGAT1-mGAT4 gemessen wurde (Tab. 3.19). Ein wenngleich geringer, aber nennenswert positiver Effekt konnte durch den Diphenylbutenylrest bei den Methylestern *rac*-134, *rac*-155 und *rac*-137 erzielt werden und führte zu einer leicht gesteigerten Potenz an den vier Transportproteinen mGAT1-mGAT4 (Tab. 3.15, Eintrag 6, 12 und 18). Erstaunlich ist der Verlust dieser bei den Estern erzielten Wirksamkeit bei den korrespondierenden Aminosäuren rac-162, rac-165 und rac-168 (Tab. 3.19, Eintrag 5, 11 und 17).

Des Weiteren wurden die bicyclischen, N-substituierten 3-Azabicyclo[3.2.0]heptanderivate auf ihre inhibitorische Potenz und Selektivität untersucht. Die Ergebnisse sind in Tabelle 3.20 zusammengestellt.

Die bicyclische Aminosäure *rac*-105 zeigte eine moderate Wirksamkeit an den vier GABA-Transportersubtypen mGAT1-mGAT4 (Tab. 3.16, Eintrag 1). Unter denen, in dieser Arbeit synthetisierten Verbindungen schienen die N-alkylsubstituierten Derivate von *rac*-105 als vergleichsweise vielversprechend. Ähnlich den monocyclischen Derivaten zeigen die Butylderivate *rac*-169 und *rac*-138 (Tab. 3.20, Eintrag 1 und 2) und But-3-en-1-yl-Derivate *rac*-170 und *rac*-139 (Tab. 3.20, Eintrag 3 und 4) keine Steigerung der inhibitorischen Potenz. Die Diphenylbutenylverbindungen *rac*-140 und *rac*-171 sind bei geringer Potenz mit einem pIC₅₀-Wert um 4 an allen Transportproteinen mGAT1-mGAT4 nicht selektiv (Tab. 3.20, Eintrag 5 und 6).

Die um eine Hydroxymethylfunktion in der 7-Position des 3-Azabicyclo[3.2.0]heptangrundgerüstes erweiterte, *N*-butylsubstituierte Verbindung *rac*-**182** zeigt keine Steigerung der inhibitorischen Potenz im Vergleich zu der Aminosäure *rac*-**109** und ist nicht wirksam (Tab. 3.20, Eintrag 7). Auch ist wie bei *rac*-**109** keine Subtypenselektivität vorhanden. Das analoge Methoxymethylderivat *rac*-**172** liefert ein ähnliches Wirkungsprofil mit allenfalls leicht gesteigerter Potenz (Tab. 3.20, Eintrag 8). Im Vergleich hierzu zeigen die Esterverbindungen *rac*-**141** und *rac*-**142** eine leichte Steigerung der Potenzen mit einer Selektivität an mGAT3 (Tab. 3.20, Eintrag 9 und 11). Zudem zeigt die Aminosäure *rac*-**173** bei ähnlichen Potenzen neben mGAT3 eine gesteigerte Affinität an mGAT2 (Tab. 3.20, Eintrag 10). Der Diphenylbutenylsubstituent in Verbindung *rac*-**174** zeigt keinen nennenswerte Wirkung auf die Potenz oder Selektivität an den Transportproteinen mGAT1-mGTA4 (Tab. 3.20, Eintrag 12) Allerdings war für Verbindung *rac*-**143** eine Steigerung der inhibitorischen Potenz an allen Transportersubtypen (pIC₅₀-Wert zwischen 4-4.5) zu erkennen (Tab. 3.20, Eintrag 13).

Die *cis*-Dicarbonsäurederivate **144**, **175**, **145** und **176** weisen im Vergleich zu den Grundkörpern **107** und **108** keine gesteigerte inhibitorische Potenz oder nennenswerte Selektivität auf, wobei die Methylesterderivate **144** und **145** im Vergleich zu den Aminosäuren **175** und **176** eine tendenziell erhöhte Wirksamkeit zeigen (Tab. 3.20, Eintrag 14-17). Die Esterverbindung **146** liefert im Vergleich zu der Aminosäure **177** (Tab. 3.20, Eintrag 18) eine deutlich erhöhte inhibitorische Potenz an allen vier Transportern, wobei die Wirksamkeit von an mGAT3 (pIC₅₀ = 4.56) am höchsten ist (mGAT1: pIC₅₀ = 4.31; mGAT2: pIC₅₀ = 4.41; mGAT4: pIC₅₀ = 4.17) (Tab. 3.20, Eintrag 19).

Für die trans-Dicarbonsäurederivate, die sich vom Grundkörper rac-121 (Tab. 3.16, Eintrag 8) ableiten, wurden ähnliche Ergebnisse erzielt. Die N-butylsubstituierte Verbindung rac-178 und rac-179 sind schwach wirksam mit einer leicht erhöhten Affinität an mGAT2 (Tab. 3.20, Eintrag 20 und 22). Im Vergleich hierzu ist rac-147 an allen vier Transportproteinen mGAT1-mGAT4 gleichermaßen unwirksam (Tab. 3.20, Eintrag 21). Der Methylester rac-148 ist eher an mGAT3 und mGAT4 wirksam (Tab. 3.20, Eintrag 23). Das diphenylbutenylsubstituierte Derivat rac-180 ist gering aktiv an den Transportern, wobei die Wirksamkeit an mGAT3 im Vergleich zu den anderen GABA-Transportern, leicht erhöht ist (Tab. 3.20, Eintrag 24). Diese Selektivität von rac-180 zu Gunsten von mGAT3 bleibt bei der Esterverbindung rac-149 bestehen und ist mit einem pIC₅₀-Wert von 4.76 (mGAT3) einigermaßen ausgeprägt (Tab. 3.20, Eintrag 25). Neben den monocyclischen und bicyclischen Verbindungen wurden zusätzlich die N-alkylsubstituierten Derivate der tricyclischen Verbindung rac-156·HCl auf ihre inhibitorische Potenz an und Selektivität gegenüber den GABA-Transportern mGAT1-mGAT4 untersucht. Im Vergleich zu rac-156·HCl (Tab. 3.16, Eintrag 10) konnte durch eine N-Substitution mit einem Butyl- bzw. Butenylrest die inhibitorische Potenz großteils geringfügig gesteigert werden (Tab. 3.20, Eintrag 26 und 27). Verbindung rac-157 zeigt sogar eine schwach ausgeprägte Selektivität an mGAT2. Die Wirksamkeit für rac-159 ist sogar für alle GABA-Transporter deutlich verbessert (Tab. 3.20, Eintrag 28).

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
1	H m H	pIC ₅₀	-	-	-	-
	rac-169	IC ₅₀	73.4% 100μM	94.5% 100μM	78.1% 100μM	105.0% 100μM

Tabelle 3.20: Ergebnisse der biologischen Prüfung der bicyclischen, N-substituierten Aminosäuren und Aminosäureester

Fintmag	Vorbindurg		mC AT1		mCAT2	mC AT4
Emtrag	verbindung		IIIGALI	IIIGAI 2	IIIGAIS	IIIGAI4
2	O H H N N N	pIC ₅₀	-	-	-	-
	rac-138	IC ₅₀	82.5% 100µM	94.3% 100μM	75.9% 100μM	77.4% 100μM
3	H m H	pIC ₅₀	3.13	-	-	-
	rac- 170	IC ₅₀	-	77.1% 100μM	71.3% 100μM	82.7% 100μM
1	O H m N N	pIC ₅₀	-	-	-	-
-						
	rac-139	IC ₅₀	86.2% 100μM	81.5% 100μM	82.3% 100μM	77.3% 100μM
5	H - OH N - H	pIC ₅₀	-	-	-	-
	<i>rac-171</i>	IC ₅₀	89.7% 100μM	76.3% 100μM	87.7% 100μM	86.9% 100μM

Tabelle 3.20: Fortsetzung

—	X7 1 4 1	1000110	C ATT1	C A TO	C ATT2	CATA
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
6	H H	pIC ₅₀	-	4.02	-	4.001
	<i>rac-140</i>	IC ₅₀	64.7% 100μM	-	74.1% 100μM	-
7		pIC ₅₀	-	-	-	-
	<u> </u>					
	ugo 199	IC	88.1%	92.5%	98.8%	97.5%
	rac-182	IC_{50}	100µM	100µM	100µM	100µM
8	MeO ^{-Ma} , oH H ^{IIII} N	pIC ₅₀	-	-	-	-
	rac- 172	IC ₅₀	86.8% 100μM	78.4% 100μM	85.7% 100μM	81.1% 100μM
	MeO ^{~un} . H ^{IIII} , MeO ^{~un} H	pIC ₅₀	-	-	-	-
9						
	rac-141	IC	94.7%	92.1%	58.9%	99.6%
	140-141	1050	100µM	100µM	$100 \mu M$	$100 \mu M$

Tabelle 3.20: Fortsetzung

		Tubene	5.20. 1 01000	Julig		
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
10	MeO ⁻¹ Hum OH Hum H	pIC ₅₀	-	-	-	-
	rac- 173	IC ₅₀	87.5% 100μM	68.6% 100μM	59.3% 100μM	88.9% 100μM
11	MeO MeO Me	pIC ₅₀	-	-	-	-
	rac- 142	IC_{50}	84.9%	87.5%	66.5%	72.6%
			100µM	100µM	100µM	100µM
12		pIC ₅₀	-	-	-	-
	rac- 174	IC ₅₀	77.2% 100μM	85.5% 100μM	83.2% 100μM	72.8% 100μM
13		pIC ₅₀	-	4.28	4.30	4.51
	rac-143	IC ₅₀	66.4% 100μM	-	-	-

Tabelle 3.20: Fortsetzung

		Tabelle	<i>5.20.</i> Portset2	Lung		
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
	HO HO HIM HIM N HIM N	pIC ₅₀	-	-	-	-
14						
	175	IC	90.1%	91.2%	72.8%	90.7%
	175	10.50	100µM	100µM	100µM	100µM
	Meo Hundred Hundred N	pIC ₅₀	-	-	-	-
15						
	144	IC	83.6%	81.0%	85.1%	80.8%
	144	IC_{50}	100µM	100µM	100µM	100µM
	HO HO HO HO HO HO HO HO HO HO HO HO HO H	pIC ₅₀	-	-	-	-
16	N					
	176	IC	106.0%	79.5%	90.5%	100.0%
	170	IC_{50}	100µM	100µM	100µM	100µM
	MeO Hereiner Hereiner Hereiner N	pIC ₅₀	-	-	-	-
17						
	145	IC	94.4%	92.5%	81.5%	88.9%
	140	1050	$100 \mu M$	$100 \mu M$	$100 \mu M$	100µM

Tabelle 3.20: Fortsetzung

Tabelle 5.20. Folisetzung						
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
18	HO HO N N N	pIC ₅₀	-	-	-	-
	177	IC ₅₀	90.7% 100μM	93.0% 100μM	80.7% 100μM	80.0% 100μM
19	MeO H== N	pIC ₅₀	4.31	4.41	4.56	4.17
	146	IC ₅₀	-	-	-	-
20	HO Ho Ho HO HO HO HO HO N	pIC ₅₀	-	-	-	-
	rac- 178	IC ₅₀	101.0% 100μM	70.3% 100μM	89.6% 100μM	79.6% 100μM
	MeO HIMO N	pIC ₅₀	-	-	-	-
21						
	rac- 147	IC ₅₀	89.4% 100μM	92.9% 100μM	90.5% 100μM	85.1% 100μM

Tabelle 3.20: Fortsetzung

rabene 5.20. i orisetzung							
Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4	
22	HO Ho Ho H	pIC ₅₀	-	-	-	-	
	rac- 179	IC ₅₀	100.0% 100μM	77.6% 100μM	96.2% 100μM	91.8% 100μM	
22	MeO Hump N	pIC ₅₀	-	-	-	-	
23							
	rac- 148	IC ₅₀	91.4% 100μM	86.2% 100μM	70.7% 100μM	78.2% 100μM	
	HO HO HIM N HIM N H	pIC ₅₀	-	-	-	-	
24							
	rac-180	IC ₅₀	71.4% 100μM	84.4% 100μM	69.0% 100μM	79.9% 100μM	
25		pIC ₅₀	-	-	4.76	-	
	<i>rac-149</i>	IC ₅₀	53.5% 100μM	56.7% 100μM	-	51.0% 100μM	

Tabelle 3.20: Fortsetzung

Eintrag	Verbindung		mGAT1	mGAT2	mGAT3	mGAT4
26		pIC ₅₀	-	-	_	_
	rac-157	IC ₅₀	78.7% 100μM	68.0% 100μM	91.0% 100μM	85.1% 100μM
		pIC ₅₀	-	-	-	-
27						
	rac-158	IC ₅₀	88.4%	95.2%	91.0%	81.2%
28		pIC ₅₀	-	-	4.36	-
	rac-159	IC ₅₀	45.8% 100μM	56.1% 100μM	-	48.2% 100μM

Tabelle 3.20: Fortsetzung

Zusammenfassend lässt sich festhalten, dass die bicyclischen, N-substituierten γ -Aminobuttersäurederivate mit einem 3-Aza-bicyclo[3.2.0]heptangrundgerüst im Vergleich zu den Grundkörpern in Abhängigkeit vom Stickstoffsubstituenten eine gesteigerte Potenz an den vier GABA-Transportproteinen aufweisen. Hierbei zeigten die *N*-Butyl- und *N*-But-3-en-1-ylsubstituierten Derivate im allgemeinen keine Verbesserung der Wirksamkeit (Tab. 3.20). Der Diphenylbutenylsubstituent zeigte eine deutliche Steigerung der inhibitorischen Potenz und auch Selektivität. Als vergleichsweise potent, aber wenig selektiv erwies sich *rac*-**143** (Tab. 3.20, Eintrag 13). Ebenso konnte für **146** eine gesteigerte Potenz (mGAT1: pIC₅₀ = 4.31, mGAT2: pIC₅₀ = 4.41, mGAT3: pIC₅₀ = 4.56, mGAT4: pIC₅₀ = 4.17) gemessen werden (Tab. 3.20, Eintrag 19). Die nonimal wirksamste, der hier synthetisierten Verbindungen mit erkennbarer Selektivität, für mGAT3, war *rac*-**149** mit einem pIC₅₀-Wert von 4.76 (mGAT3) (Tab. 3.20, Eintrag 25). Ebenso zeigte die tricycliscche *N*-Diphenylbutenylsubstituierte Verbindung *rac*-**159** eine vergleichsweise hohe inhibitorische Potenz an mGAT3, jedoch ohne eine nennenswerte Selektivität an den vier GABA-Transportproteinen mGAT1-mGAT4 (Tab. 3.20, Eintrag 28)

4 Zusammenfassung

Das Ziel meiner Arbeit war die Entwicklung neuer monocyclischer und bicyclischer γ -Aminobuttersäurederivate, abgeleitet von homo- β -Prolin **10**, mit einem 3,4-disubstituierten Pyrrolidingrundgerüst, wobei der Schlüsselschritt der Synthese für beide Grundstrukturen eine intermolekulare [2+2]-Photocycloaddition eines Enons mit einem N-substituierten 3-Pyrrolinderivat sein sollte. Die nach weiterführenden Reaktionen erhaltenen, heterocyclischen Aminosäuren und deren am N-Atom mit aliphatischen oder aliphatisch-aromatischen Resten substituierten Derivate wurden als potentielle Inhibitoren an den verschiedenen GABA-Transportproteinen mGAT1mGAT4 im Hinblick auf ihre inhibitorische Potenz sowie Subtypenselektivität untersucht.

4.1 Synthese monocyclischer γ -Aminobuttersäurederivate

Für die Darstellung monocyclischer γ-Aminobuttersäurederivate wurde eine De-Mayo-Reaktion als Schlüsselreaktion genutzt. Diese lieferte durch eine intermolekulare [2+2]-Photocycloaddition zunächst tricyclische Zwischenstufen, die in einer Retro-Aldolreaktion zu monocyclischen 3,4-disubstituierten Pyrrolidinderivaten reagierten (Schema 4.1). Durch die direkte, lichtinduzierte Anregung ließen sich das Dioxinon 40 (R = H) bzw. 44 (R = Me) mit dem Ntrifluoracetylgeschützten 3-Pyrrolin 59 umsetzen, wobei sowohl die endo- (R = H: rac-74; R = Me: rac-60) als auch die *exo*-Isomere (R = H: rac-75; R = Me: rac-61) gebildet wurden. Die photochemische Reaktion von 40 mit 59 zu rac-74 und rac-75 war jedoch wenig effektiv. Als alternative Synthese konnte eine [2+2]-Photocycloaddition von Furanon 76 mit 59 mit einer sich anschließenden Baeyer-Villiger-Oxidation entwickelt werden. Bei der Cycloaddition wurde nur das exo-konfigurierte Produkt rac-77 erhalten, weshalb so nur das entsprechende Derivat rac-75 synthetisiert werden konnte. Die sich anschließende Retro-Aldolreaktion der isomeren tricyclischen Cyclisierungsprodukte rac-60 und rac-61 erfolgte unter basischen Reaktionsbedingungen (NaOMe, MeOH, 70°C) und lieferte direkt ein Isomerengemsich der monocyclischen Methylester rac-62 und rac-63. Bei rac-75 genügte die Behandlung mit MeOH/H₂O, um die Retro-Aldolreaktion zu initiieren. Nach Methylierung der Carbonsäurefunktion resultierten ein cis/trans-Gemisch aus rac-81 und rac-82.

Schema 4.1: Synthese der monocyclischen γ -Aminobuttersäurederivate

Bei der Behandlung der Pyrrolidinderivate *rac*-**62** und *rac*-**63**, als Gemisch, mit stark basischem Ionenaustauscher in MeOH und anschließend mit HCl, konnte die Trifluoracetylschutzgruppe abgespalten werden (Methode B), wobei nur das thermodynamisch stabilere *trans*-Isomer *rac*-**64**·HCl erhalten wurde (Schema 4.2). Ausgehend von der tricyclischen Verbindung *rac*-**60** konnte unter Anwendung von Methode B *rac*-**64**·HCl direkt hergestellt werden. Ebenso wurde durch Behandlung mit wässriger LiOH-Lösung (Methode A), die zu einer simultanen Abspaltung der TFA-Schutzgruppe und des Methylesters führt, Verbindung *rac*-**60** zu *rac*-**66** umgesetzt.

Schema 4.2: Synthese der monocyclischen γ-Aminobuttersäurederivate *rac*-66 und *rac*-64·HCl mit einer Acetylfunktion

Auch die Reduktion der Formylgruppe des Isomerengemisches bestehend aus *rac*-**81** und *rac*-**82** mit NaBH₄ in THF lieferte mit *rac*-**83** ebenfalls nur das *trans*-konfigurierte Produkt (Schema 4.3). Ausgehend von *rac*-**83** konnte ich die korrespondierende Aminosäure *rac*-**85** mittels Behandlung mit wässriger LiOH-Lösung in MeOH/H₂O herstellen (Methode A).

Die Synthese der methoxymethylsubstituierten Verbindung *rac*-**96** erfolgte mittels TMSDA (Trimethylsilyldiazomethan) und HBF₄. Die Aminosäure *rac*-**98** wurde ausgehend von *rac*-**96** durch Behandeln mit wässriger LiOH-Lösung in MeOH/H₂O synthetisiert (Methode A). Der am Stickstoff entschützte Methylester *rac*-**97** war durch Umsetzung mit stark basischem Ionenaustauscher in MeOH zugänglich (Methode B).

Schema 4.3: Synthese der monocyclischen γ-Aminobuttersäurederivate mit einem Hydroxymethyl- (*rac*-**85**) bzw. Methoxymethylsubstituenten (*rac*-**98** und *rac*-**97**)

Um Verbindung *rac*-**83** für die beabsichtigten N-Alkylierungen vorzubereiten, wurde zunächst die Hydroxyfunktion von *rac*-**83** als *tert*-Butyldimethylsilylether geschützt, was durch die Umsetzung mit *tert*-Butyldimethylsilylchlorid (TBDMSCl) in Gegenwart von Imidazol in DMF gelang (Schema 4.4). Ohne Probleme konnte ich dann von *rac*-**86** in MeOH die TFA-Schutzgruppe durch Einsatz stark basischen Ionenaustauschers entfernen und so das Amin *rac*-**87** für die nachfolgenden N-Alkylierungen erhalten.

Schema 4.4: Synthese von rac-87

4.2 Synthese von bicyclischen γ-Aminobuttersäurederivaten mit einem 3-Azabicyclo[3.2.0]heptan-Grundgerüst

Die Synthese von bicyclischen γ -Aminobuttersäurederivaten mit einem 3-Azabicyclo[3.2.0]heptan-Grundgerüst erfolgte ebenfalls über eine [2+2]-Photocycloaddition als Schlüsselschritt. Verbindung **102** diente als zentrales Zwischenprodukt für die Synthese aller angestrebten, bicyclischen Aminosäuregrundkörper (Schema 3.47). Für ihre Darstellung wurde Maleinsäureanhydrid **99** mittels Sensitizer (Acetophenon) photochemisch mit 3-Pyrrolin **59** zur Reaktion gebracht (Schema 4.5).

Schema 4.5: Synthese von 102

Ausgehend von dem tricyclischen Cycloadditionsprodukt **102** waren die gewünschten bicyclischen Aminosäuregrundkörper über wenige Syntheseschritte zugänglich. Der erste weiterführende Schritt, die Ringöffnung der Anhydridfunktion von **102** zum Halbester *rac*-**113**, erfolgte über eine einfache Alkoholyse mit MeOH (Weg **A**). Ausgehend von der freien Carbonsäurefunktion in *rac*-**113** konnte über weitere, verschiedene Reaktionsschritte die Synthese der angestrebten Verbindungen erfolgen (Schema 4.6 und 4.7). Eine Barton-Decarboxylierung ermöglichte den Zugang zu den monosubstituierten Verbindungen *rac*-**105** und *rac*-**106** (**B**). Über den Reaktionsweg **C** wurde in Folge einer weiteren Veresterung der Diester **108** nach Abspaltung der TFA-Schutzgruppe synthetisiert. Die korrespondierende Dicarbonsäure **107** wurde dann durch saure Hydrolyse von **108** erhalten. Ausgehend vom Diester **118** (Schema 3.54) wurden die *trans*-Verbindungen *rac*-**121** und *rac*-**119** nach vorangegangener Epimerisierung zugänglich (**C**).

Schema 4.6: Übersicht der synthetisierten bicyclischen Aminosäuregrundkörper ausgehend von 102; entscheidender Reaktionsschritt bei A: Methanolyse, B: Barton-Decarboxylierung, C: Veresterung, D: Epimerisierung

Eine weitere wichtige tricyclische Verbindung war *rac*-104. Diese Verbindung konnte auf drei unterschiedlichen Wegen synthetisiert werden: durch Methanolyse der Anhydridfunktion von 102 (A) und anschließender Reduktion (B), durch direkte Reduktion von 102 (C) und die [2+2]-Photocycloaddition von 100 mit 59 (D). Eine anschließende Furanonringöffnung (E) lieferte die Verbindungen *rac*-109, *rac*-111 und *rac*-112·HCl.

Schema 4.7: Übersicht der synthetisierten bicyclischen Aminosäuregrundkörper ausgehend von 102; entscheidender Reaktionsschritt bei A: Methanolyse, B: Reduktion, C: Reduktion, D: [2+2]-Photocycloaddition, E: Furanonringöffnung

4.3 N-Substitution der Aminosäuregrundkörper mit pharmakophoren Strukturen

Die in dieser Arbeit erfolgreich hergestellten Aminosäuregrundkörper wurden im Weiteren am N-Atom mit aliphatischen oder aliphatisch-aromatischen Resten versehen, um potentielle Inhibitoren der GABA-Transportproteine mGAT1-mGAT4 herzustellen. Zur Synthese dieser Derivate wurden die Methylester der Grundkörper mit den entsprechenden Halogeniden der in Abbildung 4.8 aufgeführten Reste **28-30** zur Reaktion gebracht.

Die N-Alkylierungen der Aminosäureester wurden in Gegenwart von $K_2CO_3(2.5 \text{ Åq.})$ und KI (3.0 Åq.) in MeCN bei milden 40 °C mit 2 Äquivalenten des jeweiligen Alkylbromids durchgeführt. Die entsprechenden N-substituierten Aminosäuren waren aus den erhaltenen Aminosäureestern durch hydrolytische Spaltung der Esterfunktion zugänglich.

Abb. 4.8: Übersicht über die verwendeten N-Substituenten

4.4 Ergebnisse der biologischen Prüfung

Neben den Aminosäuregrundkörpern in Form der Ester und freien Aminosäuren wurden auch alle N-substituierten Aminosäureester und Aminosäuren, sowie einige tricyclische Derivate auf ihre biologische Wirksamkeit an den vier murinen GABA-Transportproteinen mGAT1-mGAT4 getestet.

Im Allgemeinen war bei der biologischen Prüfung der Grundkörper als auch der N-substituierten Derivate der monocyclischen und bicyclischen Aminosäureester und Aminosäuren keine nennenswert inhibitorische Wirkung an den vier murinen GABA-Transportproteinen mGAT1mGAT4 zu erkennen. Das Einbringen einer Acetyl-, Hydroxymethyl- bzw. Methoxymethylgruppe in die 3- bzw. 4-Position des Pyrrolidingerüsts führt zu einer stark verminderten Wirksamkeit im Vergleich zu homo- β -Prolin (*S*)-**10**·HCl (Tab. 3.14, Eintrag 3).

Für die monocyclischen und bicyclischen Derivate konnte durch einen *N*-Butyl- bzw. *N*-But-3en-1-ylsubstituenten in der Regel keine Verbesserung der inhibitorischen Potenz erzielt werden. Durch den Diphenylbutenylrest wurde tendenziell eine leichte Verbesserung der inhibitorischen Wirksamkeit an den vier Transportproteinen mGAT1-mGAT4 beobachtet, gleichwohl konnte keine nennenswert potente Verbindung erhalten werden. Die monocyclische Verbindung *rac*-**134** zeigt ihre höchste Wirksamkeit an mGAT4. Mit einem pIC₅₀-Wert von 4.84 (Tab. 3.19, Eintrag 6) ist sie die nominal potenteste, der hier synthetisierten Verbindungen bezogen auf alle vier Transportersubtypen. Eine ähnlich hohe Potenz war nur noch für das bicyclische Derivat *rac*-**149** zu beobachten, die mGAT3-selektiv ist und einem pIC₅₀-Wert von 4.76 besitzt (Tab. 3.20, Eintrag 25) (Abb. 4.9).

Abb. 4.9: Nominal wirksamste Substanzen

5 Experimenteller Teil

5.1 Allgemeine Angaben

NMR-Spektroskopie:

Die Aufnahme der Spektren erfolgte an einem JNMR-GX 400 (400 MHz) oder JNMR-GX 500 (500 MHz) der Firma Jeol im angegebenen Lösungsmittel und bei der angegebenen Temperatur. Die chemischen Verschiebungen (δ -Werte) sind in ppm angegeben und beziehen sich entweder auf Tetramethylsilan als internen Standard oder auf die Restprotonensignale des verwendeten Lösungsmittels. ¹³C-Spektren in D₂O wurden unter Zusatz von Aceton oder Dioxan als sekundärer interner Standard aufgenommen. Die Auswertung der Spektren erfolgte mit der NMR-Software MestReNova (Version 5.1.1-3092, 2007) der Firma MestrelabResearch S.L.. Die Genauigkeit der Kopplungskonstanten (J) wurde mit einer Genauigkeit von 0.3 Hz angegeben. Die Zuordnung der Multiplizität der ¹³C Signale erfolgte mittels ¹³C DEPT-Spektren, wobei CH₃ und CH-Gruppen ein positives (+), CH₂-Gruppen ein negatives (-) und quartäre C-Atome kein Signal zeigen.

Massenspektrometrie:

Die Aufnahmen der Massenspektren erfolgte an einem 5989A Mass Spectrometer mit 59980B Particle Beam LC/MS Interface der Firma Hewlett Packard (EI und CI) oder einem LC-MS/MS-Massenspektrometer API 2000 der Firma Applied Biosystems (ESI).

Hochauflösende Massenspektrometrie:

Die hochauflösenden Massenspektren wurden entweder an einer MStation 700 der Firma Joel (FAB), einem GCmate II der Firma Joel (EI) oder einem LTQ FT der Firma Thermo Finnigan (ESI) aufgenommen.

Elementaranalysen:

Die Messungen der CHN-Analyse wurden an einem CHN-Elementaranalysator Vario EL der Firma Elementar durchgeführt.

Schmelzpunkte:

Die angegebenen Schmelzpunkte wurden mit einer Schmelzpunktapparatur nach Dr. Tottoli der Firma Büchi bestimmt und sind unkorrigiert.

IR-Spektroskopie:

Die Aufnahme der IR-Spektren erfolgte mit FT-IR Spektrometer Paragon 1000 der Firma Perkin Elmer und die Bearbeitung mit der Software Spectrum TM der Firma Perkin Elmer. Die Vermessung der Substanzen erfolgte entweder als KBr-Pressling oder als Film zwischen zwei NaCl-Platten.

Dünnschichtchromatographie (DC):

Für die Dünnschichtchromatographischen Untersuchungen wurden DC-Fertigplatten mit Kieselgel 60 F254 der Firma Merck verwendet. Die Detektion erfolgte durch Fluoreszenzlöschung (254 nm), durch das Einfärben mit Iod oder durch Verwendung folgender Tauchreagenzien:

- Cer-(IV)-ammoniummolybdat-Tauchreagenz (5% $NH_4 \times Mo_7O_{24}$ und 0.2% Ce(SO₄)₂, gelöst in einer 5% igen wässrigen H_2SO_4 mit anschließendem Erhitzen.
- Dragendorff-Tauchreagenz (0.085 g Bi(NO₃)₃ und 2 g KI in 109 mL Wasser und 21 mL Eisessig).

Säulenchromatographie (SC):

Zur säulenchromatographischen Reinigung wurde Kieselgel 60 (Korngröße 0.040-0.063 mm) der Firma Merck verwendet. Die angegebenen Mischungsverhältnisse geben Volumenanteile wieder.

Reagenzien und Lösungsmittel:

Die Reaktionen wurden, sofern nicht anders beschrieben, in im Vakuum ausgeheizten Glasgeräten durchgeführt, wobei Argon als Schutzgas verwendet wurde. Die Lösungsmittel wurden, soweit nicht anders angegeben, getrocknet und nach Bedarf frisch in einer Umlaufapparatur unter N₂ destilliert. THF und Et₂O wurden über Natrium mit Benzophenon, Toluol und DME über Natrium getrocknet. EtOH und MeOH wurden über Magnesium, CH_2Cl_2 und MeCN über CaH₂ absolutiert. Die Lösungsmittel für chromatographische Zwecke wurden vor Gebrauch destilliert. Die Reagenzien waren hierbei von handelsüblicher Qualität.

Photochemische Reaktionen:

Für die photochemischen Reaktionen wurde der Photoreaktor RPR-200 der Firma Rayonet mit den Lampen RPR-2537 Å, RPR-3000 Å eingesetzt. Es wurden Quarzglasreaktionsgefäße RQV-5, RQV-7, RQV-118 oder RQV-218 verwendet.

Gefriertrocknung:

Zur Trocknung der Substanzen mittels Gefrieretrocknung wurde Gefriertrocknungsanlage AL-PHA 2-4 mit Hybridpumpe RC-5 der Firma Christ eingesetzt.

Mikrowelle:

Die Reaktionen wurden in einer Biotage Initiator Mikrowelle der Firma Biotage duchgeführt. Dies erfolgte unter Rühren in dazugehörigen Vials.

Phosphatpuffer pH 6:

Der Phosphatpuffer pH 6 wurde entsprechend der nachfolgenden Vorschrift hergestellt: 62.4 g NaH₂PO₄·H₂O ad 1000 mL bidest. H₂O; pH-Einstellung mit 12 N NaOH.

5.2 Allgemeine Arbeitsvorschriften (AAV)

Allgemeine Arbeitsvorschrift für photochemische [2+2]-Cycloadditionen (AAV 1):

Ein photochemisch anregbares Enon wurde in einem Quarzgefäß im angegebenen Lösungsmittel mit dem entsprechenden Alken 20 min. unter Argonstrom im Ultraschallbad entgast und das Gemisch im Rayonet Reaktor RPR-200 unter Rühren bei der angegebenen Wellenlänge bestrahlt. Die Reaktion wurde mittels Dünnschichtchromatographie oder evtl. per NMR-Spektroskopie verfolgt. Nach Verbrauch des Enons wurde das Lösungsmittel im Vakuum entfernt und das Rohprodukt mittels SC gereinigt.

Allgemeine Arbeitsvorschrift für die N-Alkylierung (AAV 2):

Zu einer Lösung des entsprechenden Hydrochlorids oder Amins in MeCN wurden K_2CO_3 (2.5 Äq.) und KI (3 Äq.) gegeben und mit einer Lösung des betreffenden Alkylbromids (1.2 oder 2.0 Äq.) in MeCN versetzt und bei der angegebenen Temperatur gerührt. Nach dem Abkühlen wurde der Niederschlag abfiltriert und das Lösungsmittel entfernt. Die Reinigung des Rohproduktes

erfolgte mittels SC.

Allgemeine Arbeitsvorschrift für die Abspaltung der Trifluoracetylschutzgruppe (AAV 3): Die zu entschützende Verbindung wurde in abs. MeOH (10 mL/mmol) gelöst und mit stark basischem Ionenaustauscher (2.2 g/mmol) versetzt. Nach Reaktionsende wurde der Ionenaustauscher abfiltriert, mit MeOH gewaschen und das Lösungsmittel entfernt. Anschließend wurde das Amin in Et₂O gelöst, über einen Polypropylenfilter (VWR, 0.2 μ m) filtriert und das Lösungsmittel im Vakuum entfernt.

Stark basischer Ionenaustauscher:

Der Ionenaustauscher Merck III wurde mit bidest. H_2O , MeOH (zwei mal) und mit bidest. H_2O gewaschen, mit 1 M HCl deaktiviert und anschließend mit bidest. H_2O neutral gewaschen. Durch die Behandlung mit 1 M NaOH erfolgte die Aktivierung des Ionenaustauschers. Anschließend wurde der Ionenaustauscher nochmals mit bidest. H_2O gewaschen bis das Waschwasser neutral war. Um den Ionenaustauscher auch unter wasserfreien Bedingungen verwenden zu können, wurde dieser anschließend nochmals mit MeOH gewaschen und das Lösungsmittel im Vakuum entfernt.

Allgemeine Arbeitsvorschrift für die simultane Abspaltung der Trifluoracetylschutzgruppe und des Methylesters (AAV 4):

Die entsprechende Verbindung wurde im angegebenen Lösungsmittel gelöst und unter Eiskühlung mit der angegebenen Base (4 Äq. oder 6 Äq.) versetzt und bei RT gerührt. Die wässrige Phase wurde dann auf den angegebenem pH eingestellt und evtl. extrahiert. Die Reinigung erfolgte mittels stark saurem Ionenaustauscher. Das Lösungsmittel wurde dann im Hochvakuum entfernt.

Stark saurer Ionenaustauscher:

Der Ionenaustauscher Amberlite (R)IR-120 der Firma Merck wurde mit bidest. H₂O, MeOH (zwei mal) und mit bidest. H₂O gewaschen, mit 20% NH₃-Lösung deaktiviert und anschließend mit bidest. H₂O neutral gewaschen. Durch die Behandlung mit 1 M HCl erfolgte die Aktivierung des Ionenaustauschers. Anschließend wurde der Ionenaustauscher nochmals mit bidest. H₂O gewaschen bis das Waschwasser neutral ist. Das Produkt wurde in 1 M HCl-Lösung gelöst und auf den Ionenaustauscher aufgetragen. Es wurde mit bidest. H₂O gewaschen bis das Waschwasser neutral ist. Das Produkt wurde in 1 M HCl-Lösung gelöst und auf den Ionenaustauscher aufgetragen. Es wurde mit bidest. H₂O gewaschen bis das Waschwasser neutral wurde mit 20% NH₃-Lösung eluiert und anschließend lyophillisiert.

Allgemeine Arbeitsvorschrift für die Esterhydrolyse mit Ba(OH)₂ (AAV 5):

Eine Lösung des entsprechenden Methylesters in MeOH/H₂O (1:1) wurde mit Ba(OH)₂ · 8 H₂O (2 Äq.) versetzt und bei RT gerührt. Sobald kein Edukt mehr vorhanden war, wurde CO₂ in Form von Trockeneis zugegeben, wobei die Reaktionslösung zwischenzeitlich immer wieder auf RT erwärmt wurde. Das MeOH wurde dann im Vakuum entfernt und der wässrigen Phase nochmals etwas Trockeneis zugesetzt. Der Niederschlag wurde mit Hilfe eines Polypropylenfilters (VWR, 0.2 μ m) mehrfach abfiltriert und das Lösungsmittel im Hochvakuum entfernt.

Allgemeine Arbeitsvorschrift für die Esterhydrolyse mit NaOH/LiOH (AAV 6):

Zu einer Lösung des entsprechenden Methylesters im angegebenen Lösungsmittel wurde bei 0 °C NaOH- oder LiOH-Lösung getropft und bei RT gerührt. Das organische Lösungsmittel wurde entfernt und mit HCl-Lösung und/oder Phosphatpuffer (pH = 6) angesäuert. Die Lösung wurde mit CH_2Cl_2 mehrfach extrahiert. Die vereinigten org. Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt.

Allgemeine Arbeitsvorschrift für die Abspaltung der TBDMS-Schutzgruppe (AAV 7):

Zu einer Lösung der zu entschützenden Verbindung in abs. THF wurde bei 0 °C Bu_4NF in THF (1 M, 2 Äq.) getropft und bei RT gerührt. Die Reaktionslösung wurde dann mit H₂O versetzt und die wässrige Phase mit CH₂Cl₂ drei mal extrahiert, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels SC (SiO₂).

5.3 Experimentelle Angaben

rac-(4aS,4bS,7aS,7bR)-2,2,4a-Trimethyl-6-(2,2,2trifluoracetyl)hexahydro-[1,3]dioxino[4',5':3,4]cyclobuta[1,2-c]pyrrol-4(4aH)-on (rac-60) und rac-(4aR,4bR,7aR,7bS)-2,2,4a-Trimethyl-6-(2,2,2trifluoracetyl)hexahydro-[1,3]dioxino[4',5':3,4]cyclobuta[1,2-c]pyrrol-4(4aH)-on (rac-61)

Nach **AAV 1** wurde **59** (828 mg, 5.01 mmol, 2.00 Äq.) mit 2,2,6-Trimethyl-4*H*-1,3-dioxin-2-on (**44**) (356 mg, 2.51 mmol, 1.00 Äq.) in EtOAc (50 mL) bei 300 nm unter Rühren umgesetzt. Reaktionszeit 160 h. Die Reinigung erfolgte mittels SC (Isohexan:EtOAc 1:1 \rightarrow EtOAc).

rac-**60**: 425 mg, 1.38 mmol (55%). Farbloser Feststoff, Smp. 82 °C:. DC: $R_f = 0.20$ (Et₂O). **IR** (KBr): $\tilde{v} = 2996$, 2949, 1731, 1687, 1460, 1381, 1319, 1283, 1252, 1197, 1186, 1157 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 18.9 °C, TMS) $\delta = 1.55$ (s, 3 H, CH₃), 1.55 + 1.56 (2 s, 3 H, CH₃), 1.62 (s, 0.45 x 3 H, CH₃), 1.63 (s, 0.55 x 3 H, CH₃), 2.81–2.86 (m, 0.55 x 1 H, CHCCH₃), 2.89–2.94 (m, 0.45 x 1 H, CHCCH₃), 3.03 (dd, J = 9.4/2.1 Hz, 0.45 x 1 H, CHCO), 3.08 (dd, J = 10.0/1.8 Hz, 0.55 x 1 H, CHCO), 3.16–3.48 (m, 3 H, CHCHCO, NCH₂CHCCH₃, NCH₂CHCH), 4.24 (d, J = 12.5 Hz, 0.55 x 1 H, NCH₂CHCCH), 4.33 (d, J = 12.5 Hz, 0.45 x 1 H, NCH₂CHCCH₃), 4.44 (d, J = 12.9 Hz, 1 H, NCH₂CHCCH₃) ppm. Rotamerenverhältnis (18.9 °C) 45:55. ¹³C NMR (125 MHz, CDCl₃, 18.5 °C, TMS): $\delta = 28.03$ (q, 1 C, C(CH₃)₂), 28.43 (q, 1 C, C(CH₃)₂), 28.57 (q, 1 C, C(CH₃)₂), 28.64 (q, 1 C, C(CH₃)₂), 33.75 (d, 1 C, CHCHCO), 36.30 (d, 1 C, CHCHCO), 40.49 (d, 1 C, CHCO), 40.67 (d, 1 C, CHCO), 45.11 (q, ⁴ $J_{CF} = 3.5$ Hz, 1 C, NCH₂CHCCH₃), 46.18 (t, 1 C, NCH₂CHCCH₃), 46.29 (t, 1 C, CHCCH₃), 47.45 (q, ⁴ $J_{CF} = 3.3$ Hz, 1 C, NCH₂CHCCH), 47.82 (t, 1 C, NCH₂CHCH), 49.35 (d, 1

C, CHCCH₃), 71.12 (s, 1 C, CCH₃), 71.22 (s, 1 C, CCH₃), 105.12 (s, 1 C, $C(CH_3)_2$), 105.51 (s, 1 C, $C(CH_3)_2$), 116.01 (q, ${}^{1}J_{CF} = 285.8$ Hz, 1 C, CF₃), 116.18 (q, ${}^{1}J_{CF} = 286.3$ Hz, 1 C, CF₃), 155.72 (q, ${}^{2}J_{CF} = 37.4$ Hz, 1 C, COCF₃), 155.77 (q, ${}^{2}J_{CF} = 37.4$ Hz, 1 C, COCF₃), 167.27 (s, 1 C, CO), 167.52 (s, 1 C, CO) ppm. M (C₁₃H₁₆F₃NO₄) = 307.27. **MS** (CI, CH₅⁺) *m/z* (%): 308 (43, [M+H]⁺), 250 (100).

rac-61: 61.4 mg, 0.20 mmol (8%). Farbloser Feststoff, Smp.: 112 °C (Lit.: 99–103 °C). DC: R_f = 0.39 (Et₂O). **IR** (KBr): \tilde{v} = 2984, 2895, 1739, 1688, 1464, 1389, 1310, 1215, 1202, 1143, 978 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 21.7 °C, TMS): δ = 1.39 (s, 0.55 x 3 H, CH₃), 1.46 (s, 0.45 x 3 H, CH₃), 1.59–1.62 (3 s, 6 H, C(CH₃)₂), 2.63 (dd, J = 4.4/1.2 Hz, 0.55 x 1 H, CHCO), 2.72 (dd, *J* = 3.7/1.1 Hz, 0.45 x 1 H, CHCO), 2.98–3.03 (m, 0.55 x 1 H, CHCCH₃), 3.09–3.14 (m, 0.45 x 1 H, CHCCH₃), 3.20–3.31 (m, 0.55 x 1 H + 1 H, 0.55 x NCH₂CHCCH₃, 1 x CHCHCO), 3.49 (dd, J = 12.9/7.2 Hz, 0.45 x 1 H, NCH₂CHCCH₃), 3.64–3.72 (m, 1 H, NCH₂CHCH), 4.01 (d, J = 12.6 Hz, 0.55 x 1 H, NCH₂CHCH), 4.07 (d, J = 13.5 Hz, 0.45 x 1 H, NCH₂CHCCH₃/NCH₂CHCH), 4.06 (d, J = 14.0 Hz, 0.45 x 1 H, NCH₂CHCCH₃/NCH₂CHCH), 4.25 (d, J = 14.0 Hz, 0.55 x 1 H, NCH₂CHCCH₃) ppm. Rotamerenverhältnis (21.7 °C) 45:55. ¹³C NMR (125 MHz, CDCl₃, 24.0 °C): $\delta = 21.47$ (q, 1 C, CCH₃), 21.77 (q, 1 C, CCH₃), 28.64 (q, 1 C, C(CH₃)₂), 28.85 (q, 1 C, C(CH₃)₂), 29.34 (q, 1 C, C(CH₃)₂), 29.40 (q, 1 C, C(CH₃)₂), 36.72 (d, 1 C, CHCCH₃), 40.04 (d, 1 C, CHCCH₃), 44.42 (d, 1 C, CHCO), 44.92 (d, 1 C, CHCO), 46.59 (d, 1 C, CHCHCO), 47.05 (q, ${}^{4}J_{CF}$ = 2.9 Hz, 1 C, NCH₂CHCCH₃), 47.34 (t, 1 C, NCH₂CHCCH₃), 49.68 (d, 1 C, CHCHCO), 51.81 (q, ${}^{4}J_{CF}$ = 2.8 Hz, 1 C, NCH₂CHCH), 52.81 (t, 1 C, NCH₂CHCH), 75.72 (s, 1 C, CCH₃), 75.74 (s, 1 C, CCH₃), 106.40 (s, 1 C, CCH₃), 106.47 (s, 1 C, CCH₃), 116.33 (q, ${}^{3}J_{CF}$ = 285.9 Hz, 2 C, COCF₃), 155.75 (q, ${}^{2}J_{CF}$ = 36.8 Hz, 2 C, COCF₃), 169.97 (s, 1 C, CO), 170.02 (s, 1 C, CO) ppm. M ($C_{13}H_{16}F_3NO_4$) = 307.27. MS (CI, CH₅⁺) m/z (%): 308 (45, [M+H]⁺), 250 (100). MS (EI, 70 eV) *m/z* (%): 250 (5), 165 (45), 85 (100). HRMS (EI+): M⁺ ber. C₁₃H₁₆F₃NO₄, 307.1031; gef. 307.1013.

Greenwood, E.S.; Parsons, P.J. Synlett 2002, 1 (28), 167–169.

Die analytischen Daten von *rac*-**60** und *rac*-**61** entsprechen den Literaturwerten (¹H-NMR, ¹³C-NMR). Ich komme lediglich zu einer anderen Zuordnung der NCH₂-Protonen bei *rac*-**61**.

rac-Methyl-2-[(3*S*,4*S*)-4-acetyl-1-(2,2,2-trifluoroacetyl)pyrrolidin-3-yl]acetat (*rac*-63)

rac-**60** (241.8 mg, 0.79 mmol, 1.00 eq) wurde in abs. MeOH (15 mL) gelöst und mit NaOMe (7.5 mg, 0.14 mmol, 0.18 eq) versetzt und 11 h in der Mikrowelle auf 70 °C erhitzt. Das Lösungsmittel wurde im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels SC (EtOAc/Isohexan = 1:1).

rac-63: 67 mg, 0.24 mmol (30%). Braunes Öl. DC: $R_f = 0.23$ (EtOAc/Isohexan = 1:1). IR (Film): $\tilde{v} = 2956, 2924, 1735, 1691, 1461, 1438, 1355, 1250, 1204, 1166, 1143 \text{ cm}^{-1}$. ¹**H NMR** (500) MHz, CDCl₃, 20.6 °C, TMS): δ = 2.25 (s, 0.59 x 3 H, COCH₃), 2.26 (s, 0.41 x 3 H, COCH₃), 2.28 (s, 0.59 x 3 H, COCH₃), 2.29 (s, 0.41 x 3 H, COCH₃), 2.40-2.50 (m, 1 H, CH₂CO₂), 2.54–2.60 (m, 1 H, CH₂CO₂), 2.84–2.91 (m, 0.41 x 1 H, CHCH₂CO₂), 2.92–2.99 (m, 0.59 x 1 H, CHCH₂CO₂), 3.05 (dd, 0.59 x 1 H, J = 15.4/7.4 Hz, CHCO), 3.17 (dd, 0.41 x 1 H, J = 7.0 Hz, CHCO), 3.38 (dd, 0.41 x 1 H, J = 12.9/6.7 Hz, NCH₂CHCH₂), 3.42 (dd, 0.59 x 1 H, J = 11.1/6.7 Hz, NCH₂CHCH₂), 3.66 (dd, 0.59 x 1 H, J = 12.8/7.3 Hz, NCH₂CHCO), 3.70 (s, 0.41 x 3 H, CO₂CH₃), 3.71 (s, 0.59 x 3 H, CO₂CH₃), 3.80–3.93 (m, 1 H + 2 x 0.41 H, 1 x NCH₂CHCO, 0.41 x NCH₂CHCO, 0.41 x NCH₂CHCH₂), 3.97 (dd, 0.59 x 1 H, NCH₂CHCH₂) ppm. Rotamerenverhältnis (20.6 °C) 41:59. ¹³C NMR (100 MHz, CDCl₃, 18.5 °C, TMS): δ = 29.44 (q, 1 C, COCH₃), 29.47 (q, 1 C, COCH₃), 35.27 (d, 1 C, CHCH₂CO₂CH₃), 36.19 (t, 1 C, CH₂CO₂CH₃), 36.62 (t, 1 C, CH₂CO₂CH₃), 37.52 (d, 1 C, CHCH₂CO₂CH₃), 37.94, 46.84–46.95 (q, ${}^{4}J_{CF}$ = 3 Hz, 1 C, NCH₂), 48.12 (t, 1 C, NCH₂), 50.82–50.72 (q, ${}^{4}J_{CF}$ = 3 Hz, 1 C, CH₂), 51.52 (1, 1 C, CH₂), 52.05 (q, 2 C, 2 x CO₂CH₃), 52.70 (d, 1 C, CHCOCH₃), 55.27 (d, 1 C, CHCOCH₃), 120.36–111.79 (q, ${}^{3}J_{CF}$ = 285 Hz, 1 C, CF₃) R2, 116.13 (q, ${}^{3}J_{CF}$ = 286 Hz 1 C, CF₃), 155.50 (q, ${}^{2}J_{CF}$ = 38 Hz 1 C, COCF₃), 155.39 (q, ${}^{2}J_{CF}$ = 37 Hz 1 C, COCF₃), 171.52 (s, 1 C, CO₂CH₃), 171.55 (s, 1 C, CO₂CH₃), 205.34 (s, 1 C, COCH₃), 205.68 (s, 1 C, COCH₃) ppm. M ($C_{11}H_{14}O_4NF_3$) = 281.23. MS (CI, CH₅⁺) m/z (%): 282 (100, M+H), 250 (18). HRMS
(EI+): ber. für C₁₁H₁₄O₄NF₃, 281.0875; gef. 281.0885.

rac-2-[(3S,4S)-4-Acetylpyrrolidin-3-yl]essigsäure (rac-66)

Nach **AAV 4** wurde *rac*-**60** (111 mg, 0.357 mmol) in CH_2Cl_2/H_2O (10:1, 1.1 mL) mit LiOH (2 M, 0.72 mL, 4 Äq.) versetzt. Reaktionszeit 33 min. Die wässrige Phase wurde drei mal mit CH_2Cl_2 gewaschen, anschließend mit HCl (1 M) auf pH = 2–3 eingestellt und nochmal mit CH_2Cl_2 gewaschen. Die wässrige Phase wurde mittels stark saurem Ionenaustauscher gereinigt.

rac-**66**: 53 mg, 0.31 mmol (86%). Farbloser Feststoff, Smp.: 163 °C (Zers.). **IR** (KBr): \tilde{v} = 3414, 2996, 2959, 2932, 2703, 2394, 1715, 1636, 1549, 1450, 1394, 1352, 1308, 1226, 1171, 1103, 1054, 1000 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 21.4 °C) δ = 2.30 (s, 3 H, COCH₃), 2.41 (dd, J = 15.4/7.7 Hz, 1 H, CH₂CO), 2.49 (dd, J = 15.4/7.1 Hz, 1 H, CH₂CO), 2.78–2.87 (m, 1 H, CHCH₂CO), 3.10 (dd, J = 12.0/6.7 Hz, 1 H, NCH₂CHCH₂), 3.29–3.34 (m, 1 H, CHCO), 3.45–3.58 (m, 3 H, NCH₂CHCO, NCH₂CHCH₂) ppm. ¹³C **NMR** (125 MHz, D₂O, 23 °C) δ = 27.29 (q, 1 C, CH₃), 36.82 (d, 1 C, CHCH₂CO₂ H), 38.61 (t, 1 C, CH₂CO₂ H), 44.49 (t, 1 C, NCH₂CHCO), 48.21 (t, 1 C, NCH₂CHCH₂), 52.34 (d, 1 C, CHCO), 177.65 (s, 1 C, CO₂ H), 209.67 (s, 1 C, COCH₃) ppm. M (C₈H₁₃NO₃) = 171.20. **MS** (CI, CH⁺₅) *m/z* (%): 172 (100, [M+H]⁺), 154 (34). **HRMS** (FAB, NBA): [M+H]⁺ ber. C₈H₁₄NO₃, 172.0974; gef. 172.0977.

rac-Methyl[2-(3S,4S)-4-acetylpyrrolidin-3-yl]acetat·HCl (rac-64·HCl)

rac-64·HCl

Nach **AAV 3** wurde *rac*-**61** (65.6 mg, 0.213 mmol, 1.00 Äq.) mit MeOH (2.20 mL) und stark basischem Ionenaustauscher (485 mg) umgesetzt. Reaktionszeit 15 min.. Unter Eiskühlung wurde dann etherische HCl (0.220 mL, 0.440 mmol, 2.07 Äq.) zugetropft und anschließend das Lösungsmittel im Vakuum entfernt. Nach Umkristallisation aus MeOH/*n*-Pentan konnte das Produkt *rac*-**64** als farbloser Feststoff erhalten werden.

rac-**64**·HCl: 22 mg, 1.00 mmol (47%). Farbloser Feststoff, Smp.: 83–85 °C. **IR** (KBr): $\tilde{v} = 2951$, 2910, 2744, 2549, 2431, 1730, 1709, 1439, 1413, 1361, 1265, 1218, 1165 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 21.4 °C): $\delta = 2.32$ (s, 3 H, COCH₃), 2.68 (dd, J = 16.9/7.4 Hz, 1 H, CH₂CO₂), 2.75 (dd, J = 16.9/7.1 Hz, 1 H, CH₂CO₂), 2.89–3.00 (m, 1 H, CHCH₂CO₂), 3.15 (dd, J = 12.1/7.4 Hz, 1 H, NCH₂CHCH₂), 3.37 (dt, J = 8.2/6.4 Hz, 1 H, CHCO), 3.52–3.61 (m, 3 H, NCH₂CHCO, NCH₂CHCH₂), 3.71 (s, 3 H, CO₂ CH₃) ppm. ¹³C **NMR** (125 MHz, D₂O, 22.9 °C) $\delta = 27.32$ (q, 1 C, COCH₃), 34.50 (t, 1 C, CH₂CO₂), 35.04 (d, 1 C, CHCH₂CO₂), 44.64 (t, 1 C, NCH₂CHCO), 47.89 (t, 1 C, NCH₂CHCH₂), 50.79 (q, 1 C, CO₂CH₃), 52.12 (d, 1 C, CHCO), 172.41 (s, 1 C, CO₂CH₃), 209.18 (s, 1 C, CO) ppm. M (C₉H₁₅NO₃·HCl) = 221.68. **MS** (CI, CH₅⁺) *m/z* (%): 187 (33, [M-Cl]⁺), 186 (100, [M-HCl]). **HRMS** (EI+): M⁺ ber. für C₉H₁₅NO₃, 186.1130; gef. 186.1125. C₉H₁₅NO₃·HCl + 1/6 H₂O (224.68): ber. C 48.11, H 7.33, N 6.23; gef. C 48.09, H 7.35, N 6.13.

rac-Methyl-2-[(35,45)-4-acetyl-1-(tert-butyl-oxycarbonyl)pyrrolidin3yl)acetat (rac-65)

*rac-***60** (393 mg, 1.28 mmol) wurde nach **AAV 3** mit stark basischem Ionenaustauscher (2.78 g) in MeOH (13.0 mL) umgesetzt. Reaktionszeit 3 h. Das Amin (185 mg, 1.00 mmol, 78%) wurde dann in CH_2Cl_2 (3.4 mL) gelöst und bei 0 °C mit Boc₂O (264 mg, 1.21 mmol, 1.21 Äq.), Et₃N (102 mg, 1.01 mmol, 0.14 mL, 1.01 Äq.) und DMAP (13.0 mg, 0.106 mmol, 0.11 Äq.) versetzt.

Das Reaktionsgemisch wurde auf RT erwärmt und über Nacht (16 h) gerührt. Das Lösungsmittel wurde im Vakuum entfernt und das Rohprodukt durch SC (Et₂O/*n*-Pentan = 2:1) gereinigt.

rac-65: 209 mg, 0.74 mmol (57%). Farbloses Öl. DC: $R_f = 0.50$ (Et₂O/*n*-Pentan = 2:1). **IR** (Film): $\tilde{v} = 2976$, 2887, 1737, 1695, 1406, 1366, 1255, 1165, 1128 cm⁻¹. ¹**H NMR** (400 MHz, C₂D₂Cl₄, 60 °C): $\delta = 1.38$ (s, 9 H, C(CH₃)₃), 2.13 (s, 3 H, COCH₃), 2.30 (dd, J = 15.8/7.6 Hz, 1 H, CH₂CO₂), 2.42 (dd, J = 15.8/6.4 Hz, 1 H, CH₂CO₂), 2.74–2.84 (m, 1 H, CHCH₂CO₂), 2.85 (q, J = 7.4 Hz, 1 H, CHCO), 2.98 (dd, J = 10.6/7.5 Hz, 1 H, NCH₂CHCH₂), 3.32 (dd, J = 11.0/7.6 Hz, 1 H, NCH₂CHCO), 3.56 (d, J = 10.9 Hz, 1 H, NCH₂CHCH₂), 3.58 (d, J = 11.0 Hz, 1 H, NCH₂CHCO), 3.61 (s, 3 H, COOCH₃) ppm. ¹³C NMR (100 MHz, C₂D₂Cl₄, 60 °C) $\delta = 28.78$ (q, 3 C, C(CH₃)₃), 29.44 (q, 1 C, COCH₃), 37.04 (d, 1 C, CHCH₂CO₂), 37.22 (t, 1 C, CH₂CO₂), 47.56 (t, 1 C, NCH₂CHCO), 50.93 (t, 1 C, NCH₂CHCH₂), 52.02 (q, 1 C, CO₂CH₃), 55.00 (d, 1 C, CHCO), 79.91 (s, 1 C, C(CH₃)₃), 154.28 (s, 1 C, NCO₂), 172.16 (s, 1 C, CO₂CH₃), 206.89 (s, 1 C, CO) ppm. M (C₁₄H₂₃NO₅) = 285.34. MS (CI, CH₅⁺) *m/z* (%): 286 (1, [M+H]⁺), 186 (100). HRMS (EI+): M⁺ ber. für C₁₄H₂₃NO₅, 285.1576; gef. 285.1581.

rac-Methyl-2-[(35,45)-4-acetyl-1-butylpyrrolidin-3-yl]acetat (rac-132)

rac-132

Nach **AAV 2** wurde *rac*-**64**·HCl (75 mg, 0.34 mmol) mit K_2CO_3 (117 mg, 0.848 mmol, 2.5 Äq.), KI (168 mg, 1.02 mmol, 3.0 Äq.) und Brombutan (**129**) (0.07 mL, 87 mg, 0.65 mmol, 1.93 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 3.0 h. Das Rohprodukt wurde mittels SC (EtOAc, 1% Et₃N) gereinigt.

rac-132: 63 mg, 0.26 mmol (77%). Gelbes Öl. DC: $R_f = 0.14$ (EtOAc). IR (Film): $\tilde{v} = 2956$, 2932, 2873, 2795, 1736, 1712, 1478, 1458, 1437, 1356, 1248, 1197, 1159, 1014, 997 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 22.7 °C, TMS) $\delta = 0.91$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.28–1.37 (m, 2 H, CH₂CH₃), 1.41–1.49 (m, 2 H, NCH₂CH₂), 2.19 (s, 3 H, COCH₃), 2.32–2.39 (m, 2 H, NCH₂CHCH₂, NCH₂CH₂), 2.41–2.47 (m, 1 H, NCH₂CH₂), 2.47–2.53 (m, 2 H, CH₂CO), 2.59 (dd, J = 8.9/6.0 Hz, 1 H, NCH₂CHCO), 2.76 (dd, J = 9.1/7.3 Hz, 1 H, NCH₂CHCH₂), 2.79–2.90 (m, 3 H, NCH₂CHCO, CHCO, CHCH₂CO), 3.66 (s, 3 H, CO₂ CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.9 °C, TMS) $\delta = 14.03$ (q, 1 C, CH₂CH₃), 20.68 (t, 1 C, CH₂CH₃), 28.71 (q, 1 C, COCH₃), 30.76 (t, 1 C, NCH₂CH₂), 36.27 (d, 1 C, CHCH₂CO), 39.12 (t, 1 C, CH₂CO), 51.63 (q, 1 C, CO₂ CH₃), 55.64 (t, 1 C, NCH₂CH₂), 56.46 (t, 1 C, NCH₂CHCO), 56.69 (d, 1 C, CHCO), 59.81 (t, 1 C, NCH₂CHCH₂), 172.77 (s, 1 C, CO₂CH₃), 208.34 (s, 1 C, COCH₃) ppm. M (C₁₃H₂₃NO₃) = 241.33. MS (CI, CH⁺₅) *m/z* (%): 242 (100, [M+H]⁺). HRMS (EI+): M⁺ ber. für C₁₃H₂₃NO₃, 241.1678; gef. 241.1671.

rac-Methyl-2-[(35,45)-4-acetyl-1-(but-3-en-1-yl)pyrrolidin-3yl]acetat (rac-133)

rac-133

Nach AAV 2 wurde *rac*-64·HCl (67 mg, 0.30 mmol) mit K_2CO_3 (104 mg, 0.754 mmol, 2.5 Äq.), KI (151 mg, 0.909 mmol, 3.0 Äq.) und 4-Brombut-1-en (0.06 mL, 80 mg, 0.59 mol, 1.96 Äq.) in MeCN (2 mL) bei 40 °C umgesetzt. Reaktionszeit 3.3 h. Das Rohprodukt wurde mittels SC (EtOAc, 1% Et₃N) gereinigt.

rac-133: 57 mg, 0.24 mmol (78%). Gelbes Öl. DC: $R_f = 0.14$ (EtOAc). IR (Film): $\tilde{v} = 3075$, 2952, 2794, 1737, 1712, 1436, 1356, 1249, 1198, 1160 cm⁻¹. ¹H NMR (400 MHz, CDCl₃, 17.1 °C, TMS) $\delta = 2.20$ (s, 3 H, COCH₃), 2.21–2.27 (m, 2 H, NCH₂CH₂), 2.37–2.57 (m, 5 H,

NC*H*₂CH₂, CH₂CO, NC*H*₂CHCH₂), 2.62 (dd, *J* = 8.7/5.9 Hz, 1 H, NC*H*₂CHCO), 2.75–2.80 (m, 1 H, NC*H*₂CHCH₂), 2.80–2.85 (m, 2 H, CHCO, C*H*CH₂CO), 2.86–2.92 (m, 1 H, NC*H*₂CHCO), 3.66 (s, 3 H, COOCH₃), 4.98–5.01 (m, 1 H, CH=C*H*_{2,*cis*}), 5.03–5.08 (m, 1 H, CH=C*H*_{2,*trans*}), 5.81 (ddt, *J* = 17.0 /10.2/6.7 Hz, 1 H, C*H*=CH₂) ppm. ¹³C NMR (100 MHz, CDCl₃, 18.4 °C, TMS) δ = 28.70 (q, 1 C, COCH₃), 33.09 (t, 1 C, NCH₂CH₂), 36.28 (d, 1 C, CHCH₂CO), 39.07 (t, 1 C, CH₂CO), 51.65 (q, 1 C, CO₂ CH₃), 55.10 (t, 1 C, NCH₂CH₂), 56.27 (t, 1 C, NCH₂CHCO), 56.61 (d, 1 C, CHCO), 59.66 (t, 1 C, NCH₂CHCH₂), 115.65 (t, 1 C, CH=CH₂), 136.44 (d, 1 C, CH=CH₂), 172.73 (s, 1 C, CO₂CH₃), 208.27 (s, 1 C, COCH₃) ppm. M (C₁₃H₂₁NO₃) = 239.32. MS (CI, CH₅⁺) *m*/*z* (%): 240 (100, [M+H]⁺), 198 (30). HRMS (EI+): M⁺ ber. C₁₃H₂₁NO₃, 239.1521; gef. 239.1515.

rac-Methyl-2-[(35,45)-4-acetyl-1-(4,4-diphenylbut-3-en-1yl)pyrrolidin-3-yl]acetat (rac-134)

rac-134

Nach **AAV 2** wurde *rac*-**64**·HCl (56 mg, 0.25 mmol) mit K₂CO₃ (87 mg, 0.63 mmol, 2.5 Äq.), KI (126 mg, 0.757 mmol, 3.0 Äq.) in MeCN (1 mL) und einer Lösung des Alkylbromids **131** (89 mg, 0.31 mol, 1.2 Äq.) in MeCN (1 mL) bei 60 °C umgesetzt. Reaktionszeit 6.5 h. Das Rohprodukt wurde mittels SC (Et₂O) gereinigt.

rac-134: 55 mg, 0.14 mmol (56%). Gelbes Öl. DC: $R_f = 0.09$ (Et₂O). IR (Film): $\delta = 3080$, 3055, 3023, 2952, 2921, 2795, 1738, 1732, 1713, 1494, 1443, 1359, 1250, 1198, 1164, 1074 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.4 °C, TMS) $\delta = 2.17$ (s, 3 H, COCH₃), 2.25–2.31 (m, 2 H, NCH₂CH₂), 2.32 (dd, J = 9.2/5.4 Hz, 1 H, NCH₂CHCH₂), 2.41–2.51 (m, 3 H, CH₂CO,

NCH₂CH₂), 2.51–2.59 (m, 2 H, NCH₂CH₂, NCH₂CHCO), 2.71 (dd, J = 9.0/7.3 Hz, 1 H, NCH₂CHCH₂), 2.75–2.84 (m, 3 H, CHCO, CHCH₂CO, NCH₂CHCO), 3.64 (s, 3 H, OCH₃), 6.08 (t, J = 7.4 Hz, 1 H, CHC(C₆H₅)₂), 7.15–7.38 (m, 10 H, H_{ar}) ppm. ¹³C NMR (100 MHz, CDCl₃, 18.4 °C, TMS) $\delta = 28.69$ (q, 1 C, COCH₃), 29.14 (t, 1 C, NCH₂CH₂), 36.26 (d, 1 C, CHCH₂CO), 39.06 (t, 1 C, CH₂CO), 51.61 (q, 1 C, CO₂ CH₃), 55.52 (t, 1 C, NCH₂CH₂), 56.24 (t, 1 C, NCH₂CHCO), 56.61 (d, 1 C, NCH₂CHCO), 59.66 (t, 1 C, NCH₂CHCH₂), 126.94 (d, 1 C, C_{ar}), 127.01 (d, 1 C, C_{ar}), 127.20 (d, 1 C, CHC(C₆H₅)₂), 127.21 (d, 2 C, C_{ar}), 128.08 (d, 2 C, C_{ar}), 128.20 (d, 2 C, C_{ar}), 129.80 (d, 2 C, C_{ar}), 139.98 (s, 1 C, COCH₃) ppm. M (C₂₅H₂₉NO₃) = 391.51. MS (CI, CH⁺₅) m/z (%): 392 (100, [M+H]⁺), 198 (83). HRMS (EI+): M⁺ für ber. C₂₅H₂₉NO₃, 391.2147; gef. 391.2162. C₂₅H₂₉NO₃ (391.51): ber. C 76.70, H 7.47, N 3.58; gef. C 76.40, H 7.11, N 3.58.

rac-2-[(3S,4S)-4-Acetyl-1-butylpyrrolidin-3-yl]essigsäure (rac-160)

Nach **AAV 5** wurde *rac*-**132** (46 mg, 0.19 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ \cdot 8 H₂O (121 mg, 0.385 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 130 min. Das Produkt wurde zusätzlich mittels stark saurem Ionenaustauscher gereinigt.

rac-160: 30 mg, 0.13 mmol (68%). Gelbliches Öl. IR (Film): $\tilde{v} = 2960, 2935, 2875, 2509, 1710, 1583, 1394, 1173 cm⁻¹. ¹H NMR (500 MHz, CD₃CN, 23.5 °C) <math>\delta = 0.90$ (t, J = 7.4 Hz, 3 H, COCH₃), 1.29–1.39 (m, 2 H, CH₂CH₃), 1.54 (m, 2 H, NCH₂CH₂), 2.17 (s, 3 H, COCH₃), 2.41 (dd, J = 16.3/7.3 Hz, 1 H, CH₂CO₂ H), 2.47 (dd, J = 16.3/5.7 Hz, 1 H, CH₂CO₂ H), 2.66–2.74 (m, 3 H, NCH₂CH₂, CHCH₂CO₂ H), 2.83 (dd, J = 10.1/4.7 Hz, 1 H, NCH₂CHCH₂), 2.88–2.94 (m, 2 H, NCH₂CHCH₂, NCH₂CHCO), 3.01 (m, 1 H, CHCO), 3.22 (dd, J = 10.0/8.7 Hz, 1 H,

NCH₂CHCO), 8.85 (s, 1 H, CO₂ H) ppm. ¹³C NMR (125 MHz, CD₃CN, 21.3 °C) δ = 14.15 (q, 1 C, CH₂CH₃), 21.05 (t, 1 C, CH₂CH₃), 29.42 (q, 1 C, COCH₃), 29.77 (t, 1 C, NCH₂CH₂), 37.78 (d, 1 C, CHCH₂CO₂ H), 41.52 (t, 1 C, CH₂CO₂ H), 55.21 (t, 1 C, NCH₂CH₂), 55.35 (t, 1 C, NCH₂CHCO), 55.89 (d, 1 C, CHCO), 59.46 (t, 1 C, NCH₂CHCH₂), 176.26 (s, 1 C, CO₂H), 208.14 (s, 1 C, COCH₃) ppm. M (C₁₂H₂₁NO₃) = 227.30. **MS** (CI, CH₅⁺) *m/z* (%): 228 (100, [M+H]⁺). **HRMS** (EI+): M⁺ ber. für C₁₂H₂₁NO₃, 227.1521; gef. 227.1536.

rac-2-[(35,45)-4-Acetyl-1-(but-3-en-1-yl)pyrrolidin-3-yl]essigsäure (rac-161)

rac-161

Nach **AAV 5** wurde der **133** (59 mg, 0.25 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ \cdot 8 H₂O (156 mg, 0.495 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 1 h.

rac-161: 52 mg, 0.23 mmol (94%). Gelbliches Öl. **IR** (Film): $\tilde{v} = 3078$, 3003, 2925, 2798, 2551, 1710, 1581, 1574, 1402, 1372, 1360, 1172 cm⁻¹. ¹H **NMR** (500 MHz, CD₃CN, 19.2 °C, TMS) $\delta = 2.16$ (s, 3 H, COCH₃), 2.26–2.33 (m, 2 H, NCH₂CH₂), 2.41 (dd, J = 16.3/7.1 Hz, 1 H, CH₂CO₂ H), 2.46 (dd, J = 16.3/5.7 Hz, 1 H, CH₂CO₂H), 2.65–2.76 (m, 4 H, NCH₂CH₂, NCH₂CHCH₂CO₂H, CHCH₂CO₂H), 2.83–2.92 (m, 2 H, NCH₂CHCH₂CO₂ H, NCH₂CHCO), 2.92–3.00 (m, 1 H, CHCO), 3.13 (t, J = 9.2 Hz, 1 H, NCH₂CHCO), 5.04–5.01 (m, 1 H, CH=CH_{2,cis}), 5.08–5.13 (m, 1 H, CH=CH_{2,trans}), 5.81 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CD₃CN, 20.1 °C, TMS) $\delta = 29.38$ (q, 1 C, COCH₃), 32.50 (t, 1 C, NCH₂CH₂), 37.65 (d, 1 C, CHCH₂CO₂ H), 41.88 (t, 1 C, CH₂CO₂ H), 54.93 (t, 1 C, NCH₂CH₂), 55.64 (t, 1 C, NCH₂CHCO), 56.20 (d, 1 C, CHCO), 59.85 (t, 1 C, NCH₂CHCH₂CO₂H), 117.01 (t, 1 C, CH=CH₂), 136.66 (d, 1 C, CH=CH₂), 176.75 (s, 1 C, CO₂H), 208.55 (s, 1 C, COCH₃) ppm. M (C₁₂H₁₉NO₃) = 225.28. MS (CI, CH₅⁺) *m/z* (%): 226 (100, [M+H]⁺), 184 (13). HRMS

(FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₀NO₃, 226.1443; gef. 226.1447.

rac-2-[(35,45)-4-Acetyl-1-(4,4-diphenylbut-3-en-1-yl)pyrrolidin-3yl]essigsäure (rac-162)

rac-162

Nach **AAV 6** wurde *rac*-**134** (28 mg, 0.07 mmol) in MeOH (1.5 mL) mit LiOH-Lsg. (2 M, 0.36 mL, 50 Äq.) umgesetzt. Reaktionszeit 1.8 h. Der Rückstand wurde zusätzlich mit Et_2O gewaschen.

rac-162: 17 mg, 0.04 mmol (61%). Farbloses Öl. IR (Film): $\tilde{v} = 3079$, 3048, 3026, 2954, 2854, 2791, 1710, 1596, 1444, 1361, 1170 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 22.5 °C, TMS) $\delta = 2.22$ (s, 3 H, COCH₃), 2.39–2.46 (m, 2 H, NCH₂CH₂), 2.53 (dd, J = 16.5/5.5 Hz, 1 H, CH₂CO), 2.57 (dd, J = 16.6/5.4 Hz, 1 H, CH₂CO), 2.63–2.71 (m, 2 H, NCH₂CHCH₂CO, CHCH₂CO), 2.78 (dd, J = 10.4/7.5 Hz, 1 H, NCH₂CHCO), 2.83–2.88 (m, 2 H, NCH₂CH₂), 3.05 (dd, J = 9.9/2.2 Hz, 1 H, NCH₂CHCH₂CO), 3.10 (td, J = 7.7/4.5 Hz, 1 H, CHCO), 3.31 (dd, J = 10.2/8.3 Hz, 1 H, NCH₂CHCO), 6.01 (t, J = 7.4 Hz, 1 H, CHC(C₆H₅)₂), 7.13–7.18 (m, 2 H, H_{ar,ortho}), 7.18–7.29 (m, 5 H, H_{ar}), 7.29–7.34 (m, 1 H, H_{ar,para}), 7.35–7.41 (m, 2 H, H_{ar,meta}) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.4 °C, TMS) $\delta = 27.26$ (t, 1 C, NCH₂CHC₂), 29.35 (q, 1 C, COCH₃), 37.07 (d, 1 C, CHCH₂CO), 40.62 (t, 1 C, CH₂CO), 53.76 (t, 1 C, NCH₂CHCO), 54.31 (t, 1 C, NCH₂CHCH₂), 54.55 (d, 1 C, CHCO), 57.77 (t, 1 C, NCH₂CHCH₂), 124.00 (d, 1 C, CHC(C₆H₅)₂), 127.24 (d, 2 C, C_{ar,ortho}), 127.35 (d, 1 C, C_{ar,ortho}), 139.42 (s, 1 C, C_{ar}), 141.87 (s, 1 C, C_{ar}), 144.48 (s, 1 C, C(C₆H₅)₂), 174.97 (s, 1 C, CO₂ H), 206.94 (s, 1 C, COCH₃)

ppm. M ($C_{24}H_{27}NO_3$) = 377.49. **MS** (CI, CH₅⁺) *m/z* (%): 378 (100, [M+H]⁺), 184 (63). **HRMS** (EI+): M⁺ ber. für C₂₄H₂₇NO₃, 377.1991; gef. 377.1955.

rac-2,2-Dimethyl-6-(trifluoracetyl)hexahydro[1,3]dioxin [4',5':3,4]cyclobuta[1,2-c]pyrrol-4(4aH)-on (rac-74)

Nach **AAV 1** wurde **56** (831 mg, 5.03 mmol, 4.80 Äq.) und **40** (134 mg, 1.05 mmol, 1.00 Äq.) in EtOAc (200 mL) 6.5 h bei einer Wellenlänge von 300 nm bestrahlt. Die Reinigung erfolgte mittels SC (Et₂O \rightarrow EtOAc, Si₂O).

rac-**74**: 48 mg, 0.16 mmol (15%). Braunes Öl. DC: $R_f = 0.12$ (Et₂O). **IR** (Film): $\tilde{v} = 2987$, 1686, 1463, 1350, 1212, 1148, 1048 cm⁻¹. ¹**H NMR** (400 MHz, CDCl₃, 21.6 °C, TMS): $\delta = 1.49$ (s, 0.50 x 3 H, CH₃), 1.49 (s, 0.50 x 3 H, CH₃), 1.50 (s, 0.50 x 3 H, CH₃), 1.51 (s, 0.50 x 3 H, CH₃), 3.17–3.24 (m, 0.50 x 1 H, NCH₂CHCHO), 3.25–3.33 (m, 0.50 x 2 H, NCH₂CHCHCO, CHCHO), 3.33–3.50 (m, 0.50 x 7 H, CHCHO, CHCHCO, CHCO, NCH₂CHCHCO, NCH₂CHCHO), 4.16 (d, J = 12.3 Hz, 0.50 x 1 H, NCH₂CHCHCO), 4.31 (d, J = 11.9 Hz, 0.50 x 1 H, NCH₂CHCHO), 4.35 (d, J = 13.6 Hz, 0.50 x 1 H, NCH₂CHCHCO), 4.49 (d, 0.50 x 1 H, J = 12.9 Hz, NCH₂CHCHO), 4.61–4.76 (m, 0.50 x 2 H, CHO) ppm. Rotamerenverhältnis (21.6 °C) 50:50. ¹³C NMR (100 MHz, CDCl₃, 19.0 °C, TMS): $\delta = 25.06$ (q, 1 C, CH₃), 25.07 (q, 1 C, CH₃), 27.73 (q, 1 C, CH₃), 28.05 (q, 1 C, CH₃), 35.67 (d, 1 C, CHCO), 35.87 (d, 1 C, CHCO), 36.72 (d, 1 C, CHCHCO), 37.72 (d, 1 C, CHCHO), 39.52 (d, 1 C, CHCHCO), 40.38 (d, 1 C, CHCHO), 45.11 (q, ⁴J_{CF} = 3.5 Hz, 1 C, NCH₂CHCHO), 45.60 (t, 1 C, NCH₂CHCHO), 47.67 (q, ⁴J_{CF} = 3.3 Hz, 1 C, NCH₂CHCHCO), 48.07 (t, 1 C, NCH₂CHCHCO), 65.02 (d, 1 C, CHO), 65.06 (d, 1 C, CHO), 105.79 (s, 1 C, C(CH₃)₂), 105.99 (s, 1 C, C(CH₃)₂), 116.11 (q, ³J_{CF})

= 286.0 Hz 1 C, CF₃), 116.26 (q, ${}^{3}J_{CF}$ = 286.0 Hz 1 C, CF₃), 155.23 (q, ${}^{2}J_{CF}$ = 36.8 Hz 1 C, COCF₃), 155.37 (q, ${}^{2}J_{CF}$ = 36.9 Hz 1 C, COCF₃), 166.96 (s, 1 C, CO), 167.12 (s, 1 C, CO) ppm. M (C₁₂H₁₄NO₄F₃) = 293.24. **MS** (CI, CH₅⁺) m/z (%): 294 (82, M+H), 236 (100). MS (EI, 70 eV) m/z (%): 235 (38), 179 (100), 163 (16), 151 (18), 129 (23). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₂H₁₅F₃NO₄, 294.0953; gef. 294.0921

rac-(3aS,3bR,6aR,6bR)-2,2-Dimethyl-5-(2,2,2trifluoracetyl)hexahydro-2H-furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3aH)-on (rac-77)

Nach **AAV 1** wurde Furanon **100** (116 mg, 1.04 mmol, 1.0 Äq.) mit **59** (831 mg, 5.03 mmol, 4.9 Äq.) in MeCN (52 mL) bei einer Wellenlänge von 300 nm umgesetzt, Reaktionszeit 4 h. Das Rohprodukt wurde durch SC ($Et_2O/Isohexan = 1:1$) gereinigt.

rac-77: 155 mg, 0.56 mmol (54%). Farbloser Feststoff, Smp.: 78 °C. DC: $R_f = 0.20$ (Et₂O/Isohexan = 1:1). **IR** (KBr): $\tilde{v} = 2978$, 2392, 1750, 1695, 1460, 1216, 1202, 1181, 1141, 1063, 1014 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 23.6 °C, TMS): $\delta = 1.17$ (2 s, 3 H, CH₃), 1.39 (s, 3 H, CH₃), 2.76 (dt, J = 5.0/0.8 Hz, 0.55 x 1 H, CHCO), 2.80 (dt, J = 4.7/1.1 Hz, 0.45 x 1 H, CHCO), 2.94 (tq, J = 7.6/1.1 Hz, 0.55 x 1 H, CHCHO), 3.00 (tq, J = 7.0/1.2 Hz, 0.45 x 1 H, CHCHO), 3.04 (td, J = 6.9/3.7 Hz, 0.45 x 1 H, CHCHCO), 3.12 (td, J = 6.4/4.6 Hz, 0.55 x 1 H, CHCHCO), 3.37 (ddd, J = 13.4/6.5/0.9 Hz, 0.45 x 1 H, NCH₂CHCHCO), 3.42 (ddd, J = 13.9/8.5/0.9 Hz, 0.55 x 1 H, NCH₂CHCHO), 3.54 (m, 0.45 x 1 H + 0.55 x 1 H, NCH₂CHCHO, NCH₂CHCHCO), 4.21 (d, J = 12.8 Hz, 0.45 x 1 H, NCH₂CHCHO), 4.23 (d,

J = 13.0 Hz, 0.55 x 1 H, NCH₂CHCHCO), 4.31 (dd, *J* = 5.2/0.8 Hz, 0.55 x 1 H, CHO), 4.33 (dd, *J* = 5.5/1.0 Hz, 0.45 x 1 H, CHO) ppm. Rotamerenverhältnis (23.6 °C) 55:45. ¹³C NMR (125 MHz, CDCl₃, 20.7 °C) δ = 23.86 (q, 1 C, CH₃), 24.27 (q, 1 C, CH₃), 24.42 (q, 1 C, CH₃), 24.61 (q, 1 C, CH₃), 37.73 (d, 1 C, NCH₂CHCHCO), 40.77 (d, 1 C, NCH₂CHCHCO), 43.42 (d, 1 C, NCH₂CHCHO), 46.40 (d, 1 C, NCH₂CHCHO), 46.68 (d, 1 C, CHCO), 47.05 (d, 1 C, CHCO), 49.89 (t, 1 C, NCH₂CHCHO), 50.03 (q, 1 C, ⁴*J*_{CF} = 3.3 Hz, COCF₃NCH₂CHCHCO), 52.34 (t, 2 C, NCH₂CHCHO, NCH₂CHCHCO), 75.57 (d, 1 C, CHO), 75.62 (d, 1 C, CHO), 82.40 (s, 1 C, *C*(CH₃)₂), 82.60 (s, 1 C, *C*(CH₃)₂), 116.40 (q, 2 C, ¹*J*_{CF} = 285.7 Hz, CF₃), 156.11 (q, 2 C, ²*J*_{CF} = 36.9 Hz, COCF₃), 216.19 (s, 1 C, CO), 216.37 (s, 1 C, CO) ppm. M (C₁₂H₁₄F₃NO₃) = 277.24. **MS** (CI, CH₅⁺) *m/z* (%): 278 (100, [M+H]⁺), 113 (25). **MS** (CI, 70 eV) *m/z* (%): 278 (2, [M+H]⁺), 113 (100). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₂H₁₅F₃NO₃, 278.1004; gef. 278.0988. C₁₂H₁₄F₃NO₃ (277.24): ber. C 51.99, H 5.09, N 5.05; gef. C 51.90, H 5.11, N 4.95.

rac-(3a*R*,3b*S*,6a*S*,6b*S*)-2,2-Dimethylhexahydro-2*H*furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3a*H*)-on·HCI (*rac*-156·HCI)

rac-156·HCl

Nach **AAV 3** wurde *rac*-**77** (104 mg, 0.373 mmol, 1 Äq.) mit stark basischem Ionenaustauscher (0.829 g) in MeOH (5 mL) umgesetzt, Reaktionszeit 30 min.. Das gelbliche Öl wurde in Et_2O (1 mL) gelöst und mit etherischer HCl (2 M, 0.35 mL, 2.0 Äq.) bei 0 °C versetzt und das Lösungsmittel im Vakuum entfernt.

rac-156·HCl: 74 mg, 0.34 mmol (91%). Hellbrauner Feststoff, Smp.: 182 °C (Zers.). IR (KBr): $\tilde{v} = 2980, 2931, 2742, 1749, 1594, 1459, 1377, 1363, 1173, 1108, 1078, 1057 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 23.0 °C, TMS) <math>\delta = 1.19$ (s, 3 H, CH₃), 1.39 (s, 3 H, CH₃), 3.10 (t, J = 7.2 Hz, 1 H, CHCHO), 3.20 (td, J = 6.8/4.2 Hz, 1 H, CHCHCO), 3.28 (dd, J = 12.3/8.0 Hz, 1 H,

NC*H*₂CHCHCO), 3.26 (dd, J = 12.0/6.3 Hz, 1 H, NC*H*₂CHCHO), 3.38 (ddd, J = 5.6/4.3/1.4 Hz, 1 H, CHCO), 3.68 (d, J = 12.5 Hz, 1 H, NCH₂CHCHO), 3.70 (d, J = 12.2 Hz, 1 H, NC*H*₂CHCHCO), 4.62 (dd, J = 5.5/1.2 Hz, 1 H, CHO), 10.39 (s, 2 H, N⁺H₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.6 °C, TMS) $\delta = 23.76$ (q, 1 C, CH₃), 24.26 (q, 1 C, CH₃), 39.24 (d, 1 C, CHCHCO), 45.20 (d, 1 C, CHCHO), 45.55 (d, 1 C, CHCO), 48.49 (t, 1 C, NCH₂CHCHO), 50.74 (t, 1 C, NCH₂CHCHCO), 74.54 (d, 1 C, CHO), 82.47 (s, 1 C, C(CH₃)₃), 215.26 (s, 1 C, CO) ppm. M (C₁₀H₁₅NO₂·HCl) = 181.23 + 36.49. **MS** (CI, CH⁺₅) *m/z* (%): 182 (100, [M+H]⁺), 164 (12). **HRMS** (EI+): M⁺ ber. für C₁₀H₁₅NO₂, 181.1103; gef. 182.1112. C₁₀H₁₅NO₂*HCl + 0.17 H₂O (220.69): ber. C 54.42, H 7.46, N 6.35; gef. C 54.26, H 7.16, N 6.39.

rac-(3aR,3bS,6aS,6bS)-5-(tert-Butyl-oxycarbonyl)-2,2dimethylhexahydro-2H-furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3aH)on (rac-95)

Methode A: Nach **AAV 1** wurde **100** (122 mg, 1.08 mmol, 1 Äq.) mit **59** (358 mg, 2.12 mmol, 2 Äq.) in MeCN (22 mL) bei einer Wellenlänge von 300 nm umgesetzt, Reaktionszeit 20 h. Das Rohprodukt wurde durch SC (Et_2O/n -Pentan = 1:1) gereinigt. Ausbeute: 81 mg, 0.29 mmol (27%).

Methode B: Nach **AAV 3** wurde *rac-***77** (298 mg, 1.08 mmol) mit stark basischem Ionenaustauscher (2.37 g) in MeOH (11 mL) umgesetzt. Reaktionszeit 1.75 h. Der Rückstand wurde in CH_2Cl_2 (4 mL) gelöst und mit Et_3N (0.15 mL, 110 mg, 1.08 mmol, 1.00 Äq.), DMAP (13 mg, 107 mmol, 0.10 Äq.) und Boc₂O (282 mg, 1.29 mmol, 1.20 Äq.) bei 0 °C zugesetzt. Das Reaktionsgemisch wurde über Nacht auf RT erwärmt und das Lösungsmittel entfernt. Die Reinigung

des Rohproduktes erfolgte mittels SC (Et₂O/Isohexan = 1:1). Ausbeute: 293 mg, 1.04 mmol (97%).

rac-95: Smp.: 88 °C. DC: $R_f = 0.22$ (Et₂O/*n*-Pentan = 1:1). **IR** (KBr): $\tilde{v} = 2977, 2932, 2867, 1741, 1687, 1478, 1461, 1393, 1360, 1250, 1230, 1171, 1149, 1098, 864, 782 cm⁻¹. ¹H NMR (400 MHz, C₂D₂Cl₄, 80 °C): <math>\delta = 1.19$ (s, 3 H, CH₃), 1.40 (s, 3 H, CH₃), 1.49 (s, 9 H, C(CH₃)₃), 2.76–2.87 (m, 2 H, CHCHO, CHCO), 2.90–2.97 (m, 1 H, CHCHCO), 3.24 (m, 2 H, NCH₂CHCHO, NCH₂CHCHCO), 3.76 (d, *J* = 12.0 Hz, 2 H, NCH₂CHCHO, NCH₂CHCHCO), 4.33 (d, *J* = 5.1 Hz, 1 H, CHO) ppm. ¹³C NMR (100 MHz, C₂D₂Cl₄, 80 °C) $\delta = 24.38$ (q, 1 C, CH₃), 24.87 (q, 1 C, CH₃), 28.79 (q, 3 C, C(CH₃)₃), 40.30 (d, 1 C, CHCHCO), 46.07 (d, 1 C, CHCHO), 47.68 (d, 1 C, CHCO), 49.62 (t, 1 C, NCH₂CHCHO), 52.10 (t, 1 C, NCH₂CHCHCO), 76.46 (d, 1 C, CHO), 79.99 (s, 1 C, C(CH₃)₂), 82.23 (s, 1 C, C(CH₃)₃), 155.11 (s, 1 C, CO₂C(CH₃)₃), 217.32 (s, 1 C, CO) ppm. M (C₁₅H₂₃NO₄) = 281.35. MS (CI, CH⁺₅) *m/z* (%): 282 (4, [M+H]⁺), 226 (100). HRMS (FAB, NBA): ber. für C₁₅H₂₄NO₄, 282.1705; gef. 282.1685.

rac-(3a*R*,3b*S*,6a*S*,6b*S*)-5-Butyl-2,2-dimethylhexahydro-2*H*-furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3a*H*)-on (*rac*-157)

rac-157

Nach **AAV 2** wurde *rac*-**156** (44 mg, 0.20 mmol) mit K₂CO₃ (68 mg, 0.49 mmol, 2.4 Äq.), KI (101 mg, 0.61 mmol, 3.0 Äq.) und Brombutan (**129**) (43 μ L, 55 mg, 0.40 mmol, 2.0 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 1.7 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:1, 1% Et₃N) gereinigt.

rac-157: 30 mg, 0.13 mmol (63%). Farbloses Öl. DC: $R_f = 0.25$ (Et₂O/*n*-Pentan = 1:1). **IR** (Film): $\tilde{v} = 2958$, 2931, 2873, 2784, 1748, 1458, 1375, 1178, 1163, 1110, 1010 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.1 °C, TMS) $\delta = 0.93$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.18 (s, 3 H, CH₃), 1.33–1.41 (m, 2 H, CH₂CH₃), 1.39 (s, 3 H, CH₃), 1.47–1.54 (m, 2 H, NCH₂CH₂), 2.01 (dd, J = 9.6/6.3 Hz, 1 H, NCH₂CHCHO), 2.04 (dd, J = 9.7/5.3 Hz, 1 H, NCH₂CHCHCO), 2.43–2.47 (m, 2 H, NCH₂CH₂), 2.67–2.71 (m, 1 H, CHCHO), 2.77–2.81 (m, 1 H, CHCHCO), 2.83–2.86 (m, 1 H, CHCO), 3.03 (d, J = 9.8 Hz, 1 H, NCH₂CHCHCO), 3.04 (d, J = 9.8 Hz, 1 H, NCH₂CHCHO), 4.34 (dd, J = 5.3/1.0 Hz, 1 H, CHO) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.5 °C, TMS) $\delta = 14.05$ (q, 1 C, CH₂CH₃), 20.74 (t, 1 C, CH₂CH₃), 24.33 (q, 1 C, CH₃), 24.57 (q, 1 C, CH₃), 30.96 (t, 1 C, NCH₂CH₂), 57.48 (t, 1 C, NCH₂CHCHO), 59.50 (t, 1 C, NCH₂CHCHCO), 76.68 (d, 1 C, CHO), 81.84 (s, 1 C, C(CH₃)₂), 219.09 (s, 1 C, CO) ppm. M (C₁₄H₂₃NO₂) = 237.34. MS (CI, CH₅') m/z (%): 238 (100, [M+H]⁺). HRMS (EI+): M⁺ ber. für C₁₄H₂₃NO₂, 237.1729; gef. 237.1714.

rac-(3a*R*,3b*S*,6a*S*,6b*S*)-5-(But-3-en-1-yl)-2,2-dimethylhexahydro-2*H*-furo[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3a*H*)-on (*rac*-158)

rac-158

Nach **AAV 2** wurde *rac*-**156** (44 mg, 0.20 mmol) mit K₂CO₃ (71 mg, 0.51 mmol, 2.5 Äq.), KI (102 mg, 0.62 mmol, 3.0 Äq.) und 4-Brombut-1-en (**130**) (45 μ L, 60 mg, 0.44 mmol, 2.2 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 1.7 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:1, 1% Et₃N) gereinigt.

rac-158: 29 mg, 0.12 mmol (61%). Gelbliches Öl. DC: $R_f = 0.36$ (Et₂O/*n*-Pentan = 1:1). IR (Film): $\tilde{v} = 3076$, 2975, 2930, 2786, 1474, 1175, 1109 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.3 °C, TMS) $\delta = 1.18$ (s, 3 H, CH₃), 1.39 (s, 3 H, CH₃), 2.05 (dd, J = 9.4/6.1 Hz, 1 H, NCH₂CHCHO), 2.08 (dd, J = 9.5/5.2 Hz, 1 H, NCH₂CHCHO), 2.26–2.32 (m, 2 H, NCH₂CH₂), 2.52–2.56 (m, 2 H, NCH₂CH₂), 2.67–2.71 (m, 1 H, CHCHO), 2.77–2.81 (m, 1 H, CHCHCO), 2.82–2.85 (m, 1 H, CHCO), 3.04 (d, J = 9.7 Hz, 1 H, NCH₂CHCHCO), 3.05 (d, J = 9.7 Hz, 1 H, NCH₂CHCHO), 4.33 (dd, J = 5.3/1.1 Hz, 1 H, CHO), 4.99–5.02 (m, 1 H, CH=CH_{2,*cis*}), 5.06–5.10 (m, 1 H, CH=CH_{2,*trans*}), 5.84 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 22.4 °C) $\delta = 24.53$ (q, 1 C, CH₃), 24.78 (q, 1 C, CH₃), 33.45 (t, 1 C, NCH₂CH₂), 39.89 (d, 1 C, CHCHCO), 45.97 (d, 1 C, CHCHO), 47.87 (d, 1 C, CHCO), 54.95 (t, 1 C, NCH₂CH₂), 57.53 (t, 1 C, NCH₂CHCHCO), 59.52 (t, 1 C, NCH₂CHCHO), 76.83 (d, 1 C, CHO), 82.04 (s, 1 C, C(CH₃)₂), 115.66 (t, 1 C, CH=CH₂), 136.86 (d, 1 C, CH=CH₂), 219.25 (s, 1 C, CO) ppm. M (C₁₄H₂₁NO₂) = 235.32. MS (CI, CH₅⁺) *m/z* (%): 236 (100, [M+H]⁺). HRMS (EI+): M⁺ ber. für C₁₄H₂₁NO₂, 235.1572; gef. 235.1572.

rac-(3aR, 3bS, 6aS, 6bS)-5-(4, 4-Diphenyl-but-3-enyl)-2, 2dimethylhexahydro-2*H*-furo[2', 3':3, 4]cyclobuta[1, 2-c]pyrrol-3(3a*H*)on (*rac*-159)

Nach **AAV 2** wurde *rac*-**156** (206 mg, 0.95 mmol) mit K_2CO_3 (327 mg, 2.37 mmol, 2.5 Äq.), KI (478 mg, 2.88 mmol, 3.0 Äq.) in MeCN (2 mL) und einer Lösung des Alkylbromids **131**

(327 mg, 1.14 mol, 1.2 Äq.) in MeCN (2 mL) bei 60 °C umgesetzt. Reaktionszeit 6 h. Das Rohprodukt wurde mittels SC ($Et_2O/Isohexan = 1:1, 1\% Et_3N$) gereinigt.

rac-159: 207 mg, 0.53 mmol (56%). Farbloser Feststoff. Smp.: 86 °C. DC: $R_f = 0.60$ (Et₂O). **IR** (Film): $\tilde{v} = 3078, 3054, 3022, 2970, 2927, 2787, 1745, 1597, 1493, 1443, 1375, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 1325, 1359, 13$ 1231, 1170, 1108, 1010 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 19.2 °C, TMS) δ = 1.17 (s, 3 H, CH₃), 1.38 (s, 3 H, CH₃), 1.99 (dd, *J* = 9.7/6.4 Hz, 1 H, NCH₂CHCHO), 2.03 (dd, J = 9.6/5.2 Hz, 1 H, NCH₂CHCHCO), 2.35 (q, J = 7.3 Hz, 2 H, NCH₂CH₂), 2.56–2.61 (m, 2 H, NCH₂CH₂), 2.66 (t, J = 6.6 Hz, 1 H, CHCHO), 2.74–2.79 (m, 1 H, CHCHCO), 2.80–2.83 (m, 1 H, CHCO), 2.97 (d, J = 9.7 Hz, 1 H, NCH₂CHCHCO), 2.98 (d, J = 9.7 Hz, 1 H, NCH₂CHCHO), 4.31 (dd, J = 5.3/0.9 Hz, 1 H, CHO), 6.12 (t, J = 7.3 Hz, 1 H, CHC(C₆H₅)₂), 7.17–7.40 (m, 10 H, H_{ar}) ppm. ¹³**C NMR** (125 MHz, CDCl₃, 20.4 °C. TMS) δ = 24.32 (q, 1 C, CH₃), 24.57 (q, 1 C, CH₃), 29.29 (t, 1 C, NCH₂CH₂), 39.69 (d, 1 C, CHCHCO), 45.80 (d, 1 C, CHCHO), 47.65 (d, 1 C, CHCO), 55.25 (t, 1 C, NCH₂CH₂), 57.25 (t, 1 C, NCH₂CHCHO), 59.36 (t, 1 C, NCH₂CHCHCO), 76.62 (d, 1 C, CHO), 81.84 (s, 1 C, C(CH₃)₃), 126.94 (d, 1 C, C_{ar}), 127.03 (d, 1 C, C_{ar}), 127.25 (d, 2 C, C_{ar}), 127.59 (d, 1 C, CHC(C₆H₅)₂), 128.10 (d, 2 C, C_{ar}), 128.20 (d, 2 C, C_{ar}), 129.86 (d, 2 C, C_{ar}), 140.05(s, 1 C, C_{ar}), 142.41 (s, 1 C, C(C₆H₅)₂), 142.69 (s, 1 C, C_{ar}), 219.04 (s, 1 C, CO) ppm. M ($C_{26}H_{29}NO_2$) = 387.51. MS (CI, CH_5^+) m/z (%): 388 (87, (M+H]⁺), 194 (100). HRMS (EI+): M⁺ ber. für C₂₆H₂₉NO₂, 387.2198; gef. 387.2192.

rac-(4aS,4bR,7aR,7bR)-2,2-Dimethyl-6-(2,2,2-trifluoracetyl)hexahydro-[1,3]dioxino[4',5':3,4]cyclobuta[1,2-c]pyrrol-4(4aH)on (rac-75)

Zu einer Lösung aus *rac*-**77** (824 mg, 2.97 mmol) in CH_2Cl_2 (30 mL) wurde NaHCO₃ (575 mg, 6.84 mmol, 2.30 Äq.) und mCPBA (76%ig, 960 mg, 4.23 mmol, 1.42 Äq.) gegeben und 3 h bei RT gerührt. Es wurde eine Na₂SO₃-Lsg. (10%ig, 3.2 mL) zugetropft und die Lösung weitere 10 min. gerührt. Anschließend wurde die wässrige Phase mit CH_2Cl_2 extrahiert. Die vereinigten org. Phasen wurden mit ges. NaHCO₃-Lsg. gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt.

rac-75: 828 mg, 2.82 mmol (95%). Farbloses Öl. DC: $R_f = 0.54$ (Et₂O). IR (KBr): $\tilde{v} = 2996$, 2944, 1737, 1693, 1459, 1305, 1209, 1141 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 23.5 °C) δ = 1.54 (s, 0.60 x 3 H, CH₃), 1.54 (s, 0.40 x 3 H, CH₃), 1.61 (s, 0.40 x 3 H, CH₃), 1.62 (s, 0.60 x 3 H, CH₃), 2.78 (td, J = 6.2/6.3/1.4 Hz, 0.60 x 1 H, CHCO), 2.83 (ddd, J = 6.3/4.7/1.4 Hz, 0.40 x 1 H, CHCO), 2.99 (td, J = 8.1/1.5 Hz, 0.60 x 1 H, CHCHO), 3.07 (td, J = 8.1/1.1 Hz, 0.40 x 1 H, CHCHO), 3.35 (td, J = 7.5/4.7 Hz, 0.40 x 1 H, CHCHCO), 3.39–3.47 (m, 1 H + 0.60 x 1 H, NCH₂CHCHO, NCH₂CHCHCO, CHCHCO), 3.55 (dd, J = 12.5/7.3 Hz, 0.40 x 1 H, NCH₂CHCHO), 3.58 (dd, J = 12.6/6.2 Hz, 0.60 x 1 H, NCH₂CHCHCO), 4.01 (d, J = 12.3 Hz, 0.40 x 1 H, NCH₂CHCHO), 4.08 (d, J = 12.7 Hz, 0.60 x 1 H, NCH₂CHCHCO), 4.20 (d, J = 13.7 Hz, 0.60 x 1 H, NCH₂CHCHO), 4.26 (d, J = 13.3 Hz, 0.40 x 1 H, NCH₂CHCHCO), 4.33–4.37 (m, 1 H, CHO) ppm. Rotamerenverhältnis (20.6 °C) 60:40. ¹³C NMR (125 MHz, CDCl₃, 20.8 °C, TMS) $\delta = 24.61$ (q, 1 C, CH₃), 24.69 (q, 1 C, CH₃), 28.26 (q, 1 C, CH₃), 28.31 (q, 1 C, CH₃), 38.17 (d, 1 C, CHCO), 38.36 (d, 1 C, CHCHCO), 38.88 (d, 1 C, CHCO), 40.70 (d, 1 C, CHCHO), 41.72 (d, 1 C, CHCHCO), 43.74 (d, 1 C, CHCHO), 49.94 (t, 2 C, NCH₂CHCHO), 52.15 (q, 1 C, ⁴*J_{CF}* = 3.3 Hz, NCH₂CHCHCO), 52.26 (t, 1 C, NCH₂CHCHCO), 71.46 (d, 1 C, CHO), 71.69 (d, 1 C, CHO), 106.67 (s, 1 C, $C(CH_3)_3$), 106.68 (s, 1 C, $C(CH_3)_3$), 116.16 (q, 1 C, ${}^1J_{CF}$ = 285.8 Hz, CF₃), 116.19 (q, 1 C, ${}^{1}J_{CF}$ = 285.7 Hz, CF₃), 156.07 (q, 2 C, ${}^{2}J_{CF}$ = 36.9 Hz, COCF₃), 168.88 (s, 1 C, CO), 168.91 (s, 1 C, CO) ppm. M ($C_{12}H_{14}NO_4F_3$) = 293.24. MS (CI, CH₅⁺) m/z (%): 294 $(100, [M+H]^+)$. **HRMS** (FAB, NBA): $[M+H]^+$ ber. für C₁₂H₁₅NO₄F₃, 295.0953; gef. 294.0938.

rac-(1*R*,5*R*,6*S*,7*R*)-7-Hydroxy-3-(2,2,2-trifluoracetyl)-3azabicyclo[3.2.0]heptan-6-carbonsäure (*rac*-78)

rac-78

*rac-***75** (116 mg, 0.396 mmol) wurde in einem Gemisch aus MeOH: H_2O (25:1, 7.50 mL) 5 h bei Raumtemperatur gerührt. Anschließend wurde das Lösungsmittel im Vakuum entfernt. Die Reinigung erfolgte mittels SC (*n*-Pentan:EtOAc:AcOH 20:80:2).

rac-78: 91.0 mg, 0.359 mmol (91%). Farbloses Öl. DC: $R_f = 0.18$ (*n*-Pentan:EtOAc:AcOH 20:80:2). **IR** (Film): $\tilde{v} = 3417, 3163, 2978, 2600, 1703, 1693, 1463, 1349, 1209, 1144, 922 cm⁻¹.$ ¹**H** NMR (500 MHz, (CD₃)₂CO, 20.0 °C, TMS): δ = 2.91–2.96 (m, 0.47 x 1 H, CHCHOH), 3.05-3.12 (m, 0.53 x 1 H, CHCHOH), 3.13-3.18 (m, 1 H, CHCO), 3.19-3.25 (m, 0.53 x 1 H, CHCHCO), 3.37–3.42 (m, 0.47 x 1 H, CHCHCO), 3.49 (ddd, J = 13.1/7.6/0.8 Hz, 0.47 x 1 H, NCH₂CHCHOH), 3.57 (ddd, J = 13.3/8.3/0.8 Hz, 0.53 x 1 H, NCH₂CHCHCO), 3.66 (dd, J = 11.9/6.7 Hz, 0.53 x 1 H, NCH₂CHCHOH), 3.75 (dd, J = 11.9/7.6 Hz, 0.47 x 1 H, NCH₂CHCHCO), 3.85 (d, J = 12.9 Hz, 0.5 x 1 H, NCH₂CHCHCO), 3.86 (d, J = 13.1 Hz, 0.5 x 1 H, NCH₂CHCHCO), 3.92 (d, J = 11.8 Hz, 0.53 x 1 H, NCH₂CHCHOH), 3.96 (d, J = 13.1 Hz, 0.47 x 1 H, NCH₂CHCHO), 4.28 (dd, J = 7.7/3.9 Hz, 0.47 x 1 H, CHOH), 4.32 (dd, J = 8.0/4.8 Hz, 0.53 x 1 H, CHOH) ppm. Rotamerenverhältnis (20.0 °C) 53:47. ¹³C NMR (125 MHz, $((CD_3)_2CO, 20.8 \text{ °C}, TMS) \delta = 33.24 (d, 1 C, CHCHCO_2), 36.87 (d, 1 C, CHCHCO_2), 45.86$ (d, 1 C, CHCHOH), 49.16 (d, 1 C, CHCHOH), 49.39 (d, 1 C, CHCO₂), 50.16 (d, 1 C, CHCO₂), 51.37 (q, 1 C, ${}^{4}J_{CF}$ = 3.3 Hz, NCH₂CHCHOH), 51.91 (t, 1 C, NCH₂CHCHOH), 52.06 (q, 1 C, ${}^{4}J_{CF}$ = 3.4 Hz, NCH₂CHCHCO), 52.68 (t, 1 C, NCH₂CHCHCO), 70.46 (d, 1 C, CHOH), 71.23 (d, 1 C, CHOH), 117.48 (q, 2 C, ${}^{1}J_{CF}$ = 285.7 Hz, CF₃), 155.72 (q, 1 C, ${}^{2}J_{CF}$ = 35.8 Hz, COCF₃), 155.78 (q, 1 C, ${}^{2}J_{CF}$ = 36.1 Hz, COCF₃) 172.60 (s, 1 C, CO₂), 172.92 (s, 1 C, CO₂) ppm. M (C₉H₁₀F₃NO₄) = 253.18. **MS** (CI, CH₅⁺) m/z (%): 254 (100, [M+H]⁺), 236 (29), 198 (30), 180 (37). **HRMS** (EI+): M^+ ber. für C₉H₁₀NO₄F₃, 253.0562; gef. 253.0559. C₉H₁₀NO₄F₃

(253.18): ber. C 42.70, H 3.98, N 5.53; gef. C 42.44, H 4.09, N 5.13.

rac-2-[(3R,4S)-4-Formyl-1-(2,2,2-trifluoracetyl)pyrrolidin-3yl]essigsäure (rac-79) oder rac-2-[(3S,4S)-4-Formyl-1-(2,2,2-trifluoracetyl)pyrrolidin-3yl]essigsäure (rac-80)

rac-**75** (255 mg, 0.868 mmol, 1.00 Äq.) wurde in dest. H_2O (7 mL) für 45 min. in der Mikrowelle (100 °C, 2 bar) erhitzt. Die Reinigung des Rohproduktes erfolgte mittels SC (*n*-Pentan:EtOAc: AcOH 20:80:2).

rac-**79** oder *rac*-**80**: 178 mg, 0.701 mmol (82%). Gelbliches Öl. DC: $R_f = 0.42$ (*n*-Pentan:EtOAc: AcOH 20:80:2). **IR** (Film): $\tilde{v} = 2971$, 2922, 2842, 1725, 1687, 1466, 1242, 1209, 1146 cm⁻¹. ¹**H NMR** (500 MHz, (CD₃)₂CO, 19.7 °C, TMS) $\delta = 2.66$ (dd, J = 17.1/8.0 Hz, 0.50 x 1 H, CH₂COO), 2.67 (dd, J = 17.0/8.2 Hz, 0.50 x 1 H, CH₂COO), 2.74 (dd, J = 17.1/5.8 Hz, 0.50 x 1 H, CH₂COO), 2.74 (dd, J = 17.0/6.4 Hz, 0.50 x 1 H, CH₂COO), 2.95–3.03 (m 0.44 x 1 H, CHCH₂COO), 3.04–3.11 (m, 0.50 x 2 H, CHCH₂COO, CHCHO), 3.21 (ddd, J = 14.9/6.8/1.5Hz, 0.44 x 1 H, CHCHO), 3.39 (dd, J = 12.5/6.7 Hz, 0.44 x 1 H, NCH₂CHCH₂), 3.56 (dd, J = 10.9/6.5 Hz, 0.56 x 1 H, NCH₂CHCH₂), 3.82–3.93 (m, 1 H + 0.56 x 1 H, NCH₂CHCH₂, NCH₂CHCHO), 3.98–4.10 (m, 1 H + 0.56 x 1 H, NCH₂CHCH₂, NCH₂CHCHO), 9.76 (2 x s, 0.50 x 2 H, CHO) ppm. Rotamerenverhältnis (19.7 °C) 56:44. ¹³C NMR (125 MHz, (CD₃)₂CO, 21.4 °C, TMS) $\delta = 34.32$ (d, 1 C, CHCH₂COO), 36.16 (t, 1 C, CH₂COO), 36.62 (t, 1 C, CH₂COO), 37.20 (d, 1 C, CHCH₂COO), 45.76 (q, ⁴J_{CF} = 3.8 Hz, 1 C, NCH₂CHCHO), 46.96 (t, 1 C, NCH₂CHCHO), 51.66 (t, ⁴J_{CF} = 3.4 Hz, 1 C, NCH₂CHCH₂), 52.56 (t, 1 C, NCH₂CHCH₂), 53.52 (d, 1 C, CHCHO), 56.09 (d, 1 C, CHCHO), 117.33 (q, ³J_{CF} = 285.6 Hz, 1 C, CF₃), 117.35 (q, ${}^{3}J_{CF} = 285.4 \text{ Hz}$, 1 C , CF₃), 155.41 (q, ${}^{2}J_{CF} = 35.9 \text{ Hz}$, 1 C , COCF₃), 155,44 (q, ${}^{2}J_{CF} = 35.8 \text{ Hz}$, 1 C , COCF₃), 173.15 (s, 1 C, COO), 173.20 (s, 1 C, COO), 200.32 (d, 1 C, CHO), 200.57 (d, 1 C, CHO) ppm. M (C₉H₁₀NO₄F₃) = 253.18. **MS** (CI, CH₅⁺) m/z (%): 254 (100, [M+H]⁺), 236 (26). **HRMS** (EI+): ber. für C₉H₁₀NO₄F₃, 253.0562; gef. 253.0580.

rac-Methyl-2-[(3R,4S)-4-formyl-1-(2,2,2-trifluoracetyl)pyrrolidin-3yl)acetat (rac-81) und rac-Methyl-2-[(3S,4S)-4-formyl-1-(2,2,2-trifluoracetyl)pyrrolidin-3yl)acetat (rac-82)

Tricyclus *rac*-**75** (338 mg, 1.15 mol) wurde in H_2O (9.5 mL) aufgenommen und in der Mikrowelle auf 100 °C (2bar) für 45 min. erhitzt. Das Lösungsmittel wurde im Vakuum entfernt, der Rückstand in CH₂Cl₂:MeOH (4.1 mL, 7:1) gelöst und auf 0 °C gekühlt. Nach der Zugabe von TMSCHN₂ (2 M in Et₂O, 0.58 mL, 1.0 eq) wurde noch 10 min. bei 0 °C gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand mittels SC (Et₂O) gereinigt. Das Produkt wurde als Gemisch beider Isomere *rac*-**81** und *rac*-**82** mit einem Isomerenverhältnis von 1:10 erhalten.

rac-**81** und *rac*-**82**: 338 mg, 1.15 mmol (83%). Farbloses Öl. DC: $R_f = 0.19$ (Et₂O). **IR** (Film): $\tilde{v} = 2957, 2908, 2851, 2739, 1732, 1692, 1463, 1439, 1352, 1244, 1208, 1144 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 24.5 °C, TMS, Hauptisomer) <math>\delta = 2.50$ (dd, J = 16.6/7.8 Hz, 0.50 x 1 H, CH₂COO), 2.54–2.63 (m, 0.50 x 1 H + 1 H, CH₂COO), 2.89–2.94 (m, 0.50 x 1 H, CHCHO), 2.94–3.00 (m, 0.50 x 1 H, CHCH₂COO), 3.00–3.07 (m, 1 H, CHCH₂COO, CHCHO), 3.39 (dd, J = 12.7/6.5 Hz, 0.50 x 1 H, NCH₂CHCHO), 3.44 (dd, J = 11.3/7.0 Hz, 0.50 x 1 H, NCH₂CHCH₂COO), 3.72 (s, 0.50 x 6 H, CH₃), 3.83–3.93 (m, 0.50 x 4 H, NCH₂CHCHO, NCH₂CHCH₂COO), 3.96

(dd, J = 11.2/7.2 Hz, 0.50 x 1 H, NCH₂CHCH₂COO), 4.03 (dd, J = 11.6/6.7 Hz, 0.50 x 1 H, NCH₂CHCH₂CHO), 9.71 (d, J = 2.0 Hz, 0.50 x 1 H, CHO), 9.72 (d, J = 1.6 Hz, 0.50 x 1 H, CHO) ppm. Rotamerenverhältnis (22.4 °C) 50:50. ¹³C NMR (125 MHz, CDCl₃, 19.6 °C, TMS) $\delta = 33.66$ (d, 1 C, CHCHCOO), 35.86 (t, 1 C, CH₂COO), 36.28 (d, 1 C, CHCHCOO), 36.35 (t, 1 C, CH₂COO), 44.81 (q, ⁴ $J_{CF} = 3.7$ Hz, 1 C, NCH₂CHCHO), 46.02 (t, 1 C, NCH₂CHCH₂COO), 50.82 (q, ⁴ $J_{CF} = 3.4$ Hz, 1 C, NCH₂CHCH₂COO), 51.62 (t, 1 C, NCH₂CHCHO), 52.17 (q, 2 C, CH₃), 52.71 (d, 1 C, CHCHO), 55.27 (d, 1 C, CHCHO), 116.03 (q, ¹ $J_{CF} = 285.5$ Hz, 1 C, CF₃), 116.06 (q, ¹ $J_{CF} = 285.7$ Hz, 1 C, CF₃), 155.52 (q, ² $J_{CF} = 37.2$ Hz, 1 C, COCF₃), 155.58 (q, ² $J_{CF} = 37.3$ Hz, 1 C, COCF₃), 171.32 (s, 1 C, COO), 171.36 (s, 1 C, COO), 197.82 (d, 1 C, CHO), 198.19 (d, 1 C, CHO) ppm. M (C₁₀H₁₂NO₄F₃) = 269.22. MS (CI, CH₅⁺) *m/z* (%): 268 (100, [M+H]⁺), 250 (47). HRMS (EI+): M⁺ ber. (C₁₀H₁₂NO₄F₃), 267.0718; gef. 267.0712.

rac-Methyl-2-[(3S,4S)-4-(hydroxymethyl)-1-(2,2,2trifluoracetyl)pyrrolidin-3-yl]acetat (rac-83)

Das Gemsich aus *rac*-**81** und *rac*-**82** (241 mg, 0.90 mmol, 1.00 Äq.) wurde in einem Gemisch aus MeOH/H₂O (6:1, 15.4 mL) gelöst. Die Zugabe von NaBH₄ (18 mg, 0.47 mmol, 0.52 Äq.) erfolgte bei 0 °C über einen Zeitraum von 55 min. in sehr kleinen Portionen. Anschließend wurde mit 1M HCl pH = 7 eingestellt und das Lösungsmittel im Vakuum eingeengt. Die verbleibende wässrige Phase wurde drei mal mit CH_2Cl_2 extrahiert, die vereinigten organischen Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels SC (EtOAc/*n*-Pentan = 2:1).

rac-**83**: 192 mg, 0.712 mmol (79%). Farbloses Öl. DC: $R_f = 0.14$ (Et₂O). **IR** (Film): $\tilde{v} = 3473$, 2956, 2892, 1736, 1689, 1465, 1439, 1352, 1239, 1207, 1144 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 24.5 °C, TMS) $\delta = 2.06-2.14$ (m, 0.48 x 1 H, CHCH₂O), 2.14–2.22 (m, 0.52 x 1 H, CHCH₂O), 2.38–2.68 (m, 3 H, CH₂COO, CHCH₂COO), 3.26 (dd, J = 12.5/8.8 Hz, 0.52 x 1 H,

NCH₂CHCH₂COO), 3.35 (dd, J = 10.9/8.7 Hz, 0.48 x 1 H, NCH₂CHCH₂COO), 3.44 (dd, J = 12.7/8.9 Hz, 0.48 x 1 H, NCH₂CHCH₂O), 3.58 (t, J = 10.2 Hz, 0.52 x 1 H, NCH₂CHCH₂O), 3.66 (dd, J = 11.3/5.6 Hz, 0.52 x 1 H, CH₂O), 3.68–3.75 (m, 0.52 x 1 H, 2 x 0.48 x 1 H, CH₂O), 3.72 (s, 3 H, CH₃), 3.82 (dd, J = 12.8/8.2 Hz, 0.48 x 1 H, NCH₂CHCH₂O), 3.89 (dd, J = 10.4/8.6 Hz, 0.52 x 1 H, NCH₂CHCH₂O), 3.98 (dd, J = 12.5/7.6 Hz, 0.52 x 1 H, NCH₂CHCH₂COO), 4.06 (dd, J = 10.8/7.2 Hz, 0.48 x 1 H, NCH₂CHCH₂COO) ppm. Rotamerenverhältnis (24.5 °C) 48:52. ¹³C NMR (125 MHz, CDCl₃, 25.2 °C, TMS) $\delta = 34.00$ (d, 1 C, CHCH₂COO), 35.98 (t, 1 C, CH₂COO), 36.07 (t, 1 C, CH₂COO), 37.04 (d, 1 C, CHCH₂COO), 43.85 (d, 1 C, CHCH₂O), 46.71 (d, 1 C, CHCH₂O), 48.76 (q, 1 C, ⁴ $J_{CF} = 3.2$ Hz, NCH₂CHCH₂O), 49.46 (t, 1 C, NCH₂CHCH₂O), 51.63 (q, 1 C, ⁴ $J_{CF} = 3.1$ Hz, NCH₂CHCH₂COO), 52.07 (q, 1C, CH₃), 52.11 (q, 1C, CH₃), 52.43 (t, 1 C, NCH₂CHCH₂O), 61.14 (t, 1 C, CH₂O), 61.69 (t, 1 C, CH₂O), 116.26 (q, 2 C, ¹ $J_{CF} = 286.3$ Hz, CF₃), 155.54 (q, 1 C, ² $J_{CF} = 36.3$ Hz, COCF₃), 172.48 (s, 1 C, COO), 172.63 (s, 1 C, COO) ppm. M (C₁₀H₁₄NO₄F₃) = 269.22. MS (CI, CH₅⁺) *m*/z (%): 270 (100, [M+H]⁺), 238 (19). HRMS (FAB, NBA): [M+H]⁺ ber. C₁₀H₁₅NO₄F₃, 270.0953; gef. 270.0948.

rac-2-[(3S,4S)-4-(Hydroxymethyl)pyrrolidin-3-yl]essigsäure (rac-85)

Nach AAV 4 wurde *rac*-83 (46 mg, 0.17 mmol) in MeOH: H_2O (1.5 mL, 1:2) mit wässriger LiOH-Lösung (2 M, 0.34 mL, 4.0 Äq.) umgesetzt. Reaktionszeit 1 h. Das Lösungsmittel wurde im Vakuum entfernt und dann die wässrige Phase bei 0 °C mit einer HCl-Lösung (1 M) auf pH = 4–5 gebracht. Die Reinigung des Rohproduktes erfolgte mittels stark saurem Ionenaustauscher.

rac-85: 22 mg, 0.14 mmol (83%). Farbloses Öl. **IR** (KBr): $\tilde{v} = 3347$, 2933, 2739, 2674, 2590, 2471, 1636, 1564, 1557, 1423, 1397, 1371, 1288, 1180, 1113, 1095, 1058 cm⁻¹. ¹H **NMR** (500 MHz, D₂O, 18.5 °C) $\delta = 2.12-2.20$ (m, 1 H, CHCH₂OH), 2.20 (dd, J = 14.8/8.7 Hz, 1 H, CH₂CO₂H), 2.30–2.38 (m, 1 H, CHCH₂CO₂H), 2.44 (dd, J = 14.8/5.6 Hz, 1 H, CH₂CO₂H), 2.97 (dd, J = 11.8/8.9 Hz, 1 H, NCH₂CHCH₂CO₂H), 3.10 (dd, J = 12.0/8.5 Hz, 1 H,

NC*H*₂CHCH₂OH), 3.48 (dd, *J* = 12.0/8.3 Hz, 1 H, NC*H*₂CHCH₂OH), 3.51 (dd, *J* = 11.9/7.9 Hz, 1 H, NC*H*₂CHCH₂CO₂H), 3.52 (dd, *J* = 11.3/7.0 Hz, 1 H, C*H*₂OH), 3.68 (dd, *J* = 11.5/4.6 Hz, 1 H, C*H*₂OH) ppm. ¹³C NMR (125 MHz, D₂O, 20.5 °C, Dioxan) δ = 37.57 (t, 1 C, CH₂CO₂H), 40.33 (d, 1 C, CHCH₂CO₂ H), 45.32 (d, 1 C, CHCH₂OH), 48.44 (t, 1 C, NCH₂CHCH₂OH), 51.04 (t, 1 C, NCH₂CHCH₂CO₂H), 61.72 (t, 1 C, CH₂OH), 180.92 (s, 1 C, CO₂H) ppm. M (C₇H₁₃NO₃) = 159.18. **MS** (CI, CH₅⁺) *m/z* (%): 160 (100, [M+H]⁺), 142 (45). **HRMS** (EI+): M⁺ ber. für C₇H₁₃NO₃, 159.0895; gef. 159.0928.

rac-2-[(3R,4S)-4-(Hydroxymethyl)pyrrolidin-3-yl]essigsäure (rac-93)

rac-**75** (102 mg, 0.346 mol) wurde in MeOH:H₂O (25:1, 6.6 mL) für 2 h bei Raumtemperatur gerührt. Das Lösungsmittel wurde entfernt, der Rückstand in Isopropanol (6.5 mL) zum Rückfluss erhitzt und NaBH₄ (103 mg, 2.73 mol, 7.9 Äq.) auf einmal zugesetzt. Das Gemisch wurde 1 h zum Rückfluss erhitzt. Anschließend wurde die Lösung auf Raumtemperatur abgekühlt und mit einem Phosphatpuffer (pH = 6) versetzt und das Lösungsmittel im Vakuum entfernt. Das Produkt wurde mittels saurem Ionenaustauscher gereinigt und man erhält ein *cis/trans*-Gemisch im Verhältnis von 7:1.

rac-**93**: 38 mg, 0.24 mol (68 %). Gelbliches Öl. **IR** (Film): $\tilde{v} = 3374, 2971, 2931, 2884, 2659, 1643, 1467, 1380, 1305, 1160, 1128, 950 cm⁻¹. ¹H$ **NMR** $(500 MHz, D₂O, 20.7 °C) <math>\delta = 2.22$ (dd, J = 15.3/9.0 Hz, 1 H, CH_2CO_2H), 2.38 (dd, J = 15.3/6.7 Hz, 1 H, CH_2CO_2H), 2.51–2.58 (m, 1 H, $CHCH_2O$), 2.69–2.78 (m, 1 H, $CHCH_2CO_2H$), 3.02 (dd, J = 11.7/8.7 Hz, 1 H, NC H_2 CHCH $_2CO_2H$), 3.25 (dd, J = 12.1/5.4 Hz, 1 H, NC H_2 CHCH $_2O$), 3.39–3.45 (m, 2 H, NC H_2 CHCH $_2CO_2H$, NC H_2 CHCH $_2O$), 3.55 (dd, J = 11.4/7.0 Hz, 1 H, CH $_2O$), 3.68 (dd, J = 11.4/5.4 Hz, 1 H, CH $_2O$). ¹³C **NMR** (125 MHz, D $_2O$, 22.0 °C, MeOH) $\delta = 35.99$ (t, 1 C, CH $_2CO_2H$), 37.54 (d, 1 C, CHCH $_2CO_2H$), 42.00 (d, 1 C, CHCH $_2O$), 48.19 (t, 1 C, NCH $_2$ CHCH $_2O$), 50.33 (t, 1 C, NCH $_2$ CHCH $_2CO_2H$), 60.15 (t, 1 C, CH $_2O$), 181.01 (s, 1 C, CO $_2H$) ppm. M (C₇H₁₃NO₃) = 159.18. **MS** (CI, CH $_5^+$) m/z (%): 160 (95, [M+H]⁺), 142 (100).

HRMS (FAB, NBA): [M+H]⁺ ber. für C₇H₁₄NO₃, 160.0974; gef. 160.0970.

rac-(1*S*,5*S*,6*R*,7*S*)-7-Hydroxy-3-azabicyclo[3.2.0]heptan-6-carbonsäure·HCI(*rac*-94·HCI)

*rac-***75** (16 mg, 0.05 mmol) wurde 2 h in MeOH:H₂O (25:1, 1.0 mL) bei RT gerührt. Anschließend wurde das Gemisch auf 0 °C abgekühlt und NaBH₄ (17 mg, 0.44 mmol, 8.4 Äq.) zugegesetzt. Nach 15 min. wurde die Reaktionslösung mit 1M HCl auf pH = 1 gebracht. Das Lösungsmittel wurde im Vakuum entfernt.

rac-94·HCl: ¹**H** NMR (500 MHz, D₂O, 21.3 °C) δ = 3.103.18 (m, 1 H, CHCOOH), 3.293.40 (m, 3 H, NCH₂CHCHOH, NCH₂CHCHCOOH, CHCHOH), 3.50 (d, *J* = 11.4 Hz, 1 H, NCH₂CHCHCOOH), 3.473.55 (m, 1H, CHCHCOOH), 3.62 (d, *J* = 12.6 Hz, 1 H, NCH₂CHCHOH), 4.41 (dd, *J* = 8.4/4.0 Hz, 1 H, CHOH) ppm. ¹³C NMR (125 MHz, D₂O, 22.5 °C) δ = 32.35 (d, 1 C, CHCHCOOH), 43.88 (d, 1 C, CHCOOH), 45.71 (d, 1 C, CHCHOH), 47.73 (t, 1 C, NCH₂CHCHOH), 48.22 (t, 1 C, NCH₂CHCHCOOH), 66.73 (d, 1 C, CHOH), 172.45 (s, 1 C, COOH) ppm.

rac-Methyl-2-[(35,45)-4-{[(tert-butyldimethylsilyl)oxy]methylt}-1-(2,2,2-trifluoracetyl)pyrrolidin-3-yl]acetat (rac-86)

Zu einer Lösung des Alkohols *rac*-**83** (69 mg, 0.25 mmol, 1.0 Äq.) und Imidazol (69 mg, 1.0 mmol, 4.0 Äq.) in DMF (1 mL) wurde *tert*-Butyldimethylsilylchlorid (75 mg, 0.50 mmol, 2.0 Äq.) gegeben und 3 h bei RT gerührt. Das Gemisch wurde mit H₂O und Toluol (je 1.7 mL) versetzt und die wässrige Phase zwei mal mit Toluol extrahiert. Die vereinigten org. Phasen wurden dann je zwei Mal mit H₂O und ges. NaCl-Lösung gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:2).

rac-86: 94 mg, 0.24 mmol (96%). Farbloses Öl. DC: $R_f = 0.14$ (Et₂O/*n*-Pentan = 1:2). IR (Film): $\tilde{v} = 2954, 2931, 2888, 2858, 1739, 1695, 1463, 1251, 1205, 1143, 838 \text{ cm}^{-1}$. ¹**H NMR** (500) MHz, CDCl₃, 22.3 °C, TMS) $\delta = 0.05$ (s, 0.50 x 6 H, Si(CH₃)₂), 0.05 (s, 0.50 x 6 H, Si(CH₃)₂), 0.88 (s, 2 x 0.50 18 H, SiC(CH₃)₂), 2.04–2.13 (m, 0.50 x 1 H, CHCH₂O), 2.16–2.26 (m, 0.50 x 1 H, CHCH₂O), 2.31 (dd, J = 16.1/9.1 Hz, 0.50 x 1 H, CH₂CO), 2.34 (dd, J = 16.0/8.7 Hz, 0.50 x 1 H, CH₂CO), 2.43–2.53 (m, 0.50 x 1 H, CHCH₂CO), 2.54–2.61 (m, 0.50 x 1 H, CHCH₂CO), 2.63 (dd, J = 15.9/5.1 Hz, 0.50 x 1 H, CH₂CO), 2.68 (dd, J = 16.1/4.7 Hz, 0.50 x 1 H, CH₂O), $3.27 (dd, J = 12.8/8.0 Hz, 0.50 x 1 H, NCH_2CHCH_2CO), 3.35 (dd, J = 10.8/8.5 Hz, 0.50 x 1 H)$ H, NCH₂CHCH₂CO), 3.39 (dd, J = 13.0/8.5 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.53 (dd, J = 13.0/8.5 Hz, 0.50 x 1 H, 0 11.2/8.5 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.59 (dd, J = 10.4/6.0 Hz, 0.50 x 1 H, CH₂O), 3.64 $(dd, 0.50 \times 1 \text{ H}, J = 10.4/5.4 \text{ Hz}, \text{CH}_2\text{O}), 3.66-3.71 \text{ (m}, 0.50 \times 2 \text{ H}, \text{CH}_2\text{O}), 3.70 \text{ (s}, 0.50 \times 3 \text{ H})$ H, OCH₃), 3.70 (s, 0.50 x 3 H, OCH₃), 3.79 (dd, *J* = 12.9/8.3 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.83 (dd, J = 11.8/8.9 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.98 (dd, J = 12.7/7.9 Hz, 0.50 x 1 H, NCH₂CHCH₂CO), 4.07 (dd, J = 10.7/7.5 Hz, 0.50 x 1 H, NCH₂CHCH₂CO) ppm. Rotamerenverhältnis (22.3 °C) 50:50. ¹³C NMR (125 MHz, CDCl₃, 20.3 °C) δ = -5.35 (q, 2 C, 2 x SiCH₃), 18.40 (s, 1 C, C(CH₃)₃), 18.42 (s, 1 C, C(CH₃)₃), 25.98 (s, 3 C, C(CH₃)₃), 26.01 (s, 3 C, C(CH₃)₃), 34.91 (d, 1 C, CHCH₂CO), 36.54 (t, 1 C, CH₂CO), 36.88 (t, 1 C, CH₂CO), 37.78 (d, 1 C, CHCH₂CO), 43.73 (d, 1 C, CHCH₂O), 46.50 (d, 1 C, CHCH₂O), 48.63 (q, ${}^{4}J_{CF}$ = 3.2 Hz, 1 C, NCH₂CHCH₂O), 49.54 (t, 1 C, NCH₂CHCH₂O), 52.01 (q, ${}^{4}J_{CF}$ = 3.3 Hz, 1 C, NCH₂CHCH₂CO), 52.11 (q, 2 C, 2 x OCH₃), 52.85 (t, 1 C, NCH₂CHCH₂CO), 62.50 (t, 1 C, CH₂O), 62.77 (t, 1 C, CH₂O), 116.46 (q, ${}^{1}J_{CF}$ = 285.7 Hz, 1 C, CF₃), 116.48 (q, ${}^{1}J_{CF}$ = 285.9 Hz, 1 C, CF₃), 155.68 (q, ${}^{2}J_{CF}$ = 36.4 Hz, 2 C, COCF₃), 172.15 (s, 1 C, COO), 172.25 (s, 1 C, COO) ppm. M (C₁₆H₂₈F₃NO₄Si) = 383.49. **MS** (CI, CH₅⁺) *m/z* (%):(100, [M+H]⁺). **HRMS** (EI+): M⁺ ber. C₁₆H₂₈F₃NO₄Si, 383.1740; gef. 383.1709.

rac-Methyl-2-[(3S,4S)-4-{[(tert-butyldimethylsilyl)oxy]methyl}pyrrolidin-3-yl]acetat (rac-87)

Nach **AAV 3** wurde *rac*-**86** (118 mg, 0.31 mol) mit stark basischem Ionenaustauscher (960 mg) in abs. MeOH (3 mL) umgesetzt. Reaktionszeit 8 h.

rac-**87**: 84 mg, 0.29 mmol (94%). Farbloses Öl. **IR** (Film): $\tilde{v} = 2952$, 2929, 2856, 1739, 1644, 1437, 1255, 1087, 836 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 22.6 °C, TMS) $\delta = 0.01$ (s, 6 H, Si(CH₃)₂), 0.85 (s, 9 H, SiC(CH₃)₃) 1.86 (m, 1 H, CHCH₂O), 2.01 (s_{br}, 1 H, NH), 2.09–2.17 (m, 1 H, CHCH₂CO), 2.31 (dd, J = 15.6/8.7 Hz, 1 H, CH₂CO), 2.50 (dd, J = 11.2/7.2 Hz, 1 H, NCH₂CHCH₂CO), 2.51 (dd, J = 15.5/6.1 Hz, 1 H, CH₂CO), 2.75 (dd, J = 11.3/5.6 Hz, 1 H, NCH₂CHCH₂O), 2.98 (dd, J = 11.3/7.9 Hz, 1 H, NCH₂CHCH₂O), 3.19 (dd, J = 11.2/7.5 Hz, 1 H, NCH₂CHCH₂CO), 3.52 (dd, J = 9.9/6.6 Hz, 1 H, CH₂O), 3.58 (dd, J = 9.9/5.7 Hz, 1 H, CH₂O), 3.64 (s, 3 H, COOCH₃) ppm. ¹³C **NMR** (125 MHz, CDCl₃, 20.9 °C, TMS) $\delta = -5.44$ (q, 2 C, Si(CH₃)₂), 18.26 (s, 1 C, SiC(CH₃)₃), 25.90 (q, 3 C, SiC(CH₃)₃), 38.51 (t, 1 C, CH₂COO), 39.00 (d, 1 C, CHCH₂CO), 47.69 (d, 1 C, CHCH₂O), 50.41 (t, 1 C, NCH₂CHCH₂O), 51.52 (q, 1 C, COOCH₃), 53.72 (t, 1 C, NCH₂CHCH₂CO), 65.25 (t, 1 C, CH₂O), 173.27 (s, 1 C, COO) ppm. M (C₁₄H₂₉NO₃Si) = 297.48. MS (CI, CH₅⁺) *m/z* (%): 288 (100, [M+H]⁺). **HRMS** (EI+): M⁺ ber. C₁₄H₂₉NO₃Si, 287.1917; gef. 287.1907.

rac-Methyl-2-[(3*S*,4*S*)-1-butyl-4-{[(*tert*-butyldimethylsilyl)oxy]methyl}pyrrolidin-3-yl]acetat (*rac*-150)

rac-150

Nach **AAV 2** wurde *rac*-**87** (205 mg, 0.71 mmol, 1.00 Äq.) mit K₂CO₃ (245 mg, 1.78 mmol, 2.49 Äq.), KI (354 mg, 2.13 mmol, 3.0 Äq.) und Brombutan (**129**) (0.15 mL, 192 mg, 1.40 mmol, 1.97 Äq.) in MeCN (3 mL) umgesetzt. Reaktionszeit 3.5 h bei 40 °C. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:3, 1% Et₃N).

rac-150: 171 mg, 0.50 mmol (70%). Farbloses Öl. DC: $R_f = 0.30$ (Et₂O). IR (Film): $\tilde{v} = 2955$, 2930, 2858, 2791, 1742, 1471, 1462, 1463, 1255, 1196, 1156, 1090, 837 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 18.3 °C, TMS) $\delta = 0.04$ (2 x s, 6 H, Si(CH₃)₂), 0.88 (s, 9 H, SiC(CH₃)₃), 0.90 (t, J = 7.4 Hz, 3 H, CH₂CH₃), 1.27–1.37 (m, 2 H, CH₂CH₃), 1.40–1.50 (m, 2 H, NCH₂CH₂), 1.92–2.00 (m, 1 H, CHCH₂O), 2.16–2.34 (m, 3 H, NCH₂CH₂, NCH₂CHCH₂CO, CHCH₂CO), 2.36 (dd, 1 H, J = 15.7/5.7 Hz, CH₂CO), 2.36–2.45 (m, 2 H, NCH₂CHCH₂O, NCH₂CH₂), 2.56 (dd, J = 15.6/5.6 Hz, 1 H, CH₂CO), 2.60 (t, J = 8.7 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, J = 15.6/5.6 Hz, 1 H, CH₂CO), 2.60 (t, J = 8.7 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, J = 15.6/5.6 Hz, 1 H, CH₂CO), 2.60 (t, J = 8.7 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, J = 15.6/5.6 Hz, 1 H, CH₂CO), 2.60 (t, J = 8.7 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, J = 15.6/5.6 Hz, 1 H, CH₂CO), 2.60 (t, J = 8.7 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, J = 15.6/5.6 Hz, 1 H, NCH₂CHCH₂O), 2.77 (t, 8.1 Hz, 1 H, NCH₂CHCH₂CO), 3.55 (dd, J = 9.8/7.6 Hz, 1 H, CH₂O), 3.58 (dd, J = 9.8/6.5 Hz, 1 H, CH₂O), 3.66 (s, 3 H, OCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.5 °C) δ = -5.17 (q, 1 C, SiCH₃), -5.15 (q, 1 C, SiCH₃), 14.28 (q, 1 C, CH₂CH₃), 18.49 (s, 1 C, SiC(CH₃)₃), 21.00 (t, 1 C, CH₂CH₃), 26.12 (q, 3 C, SiC(CH₃)₃), 31.10 (t, 1 C, NCH₂CH₂), 37.43 (d, 1 C, CHCH₂CO), 39.73 (t, 1 C, CH₂CO), 46.61 (d, 1 C, CHCH₂O), 51.67 (q, 1 C, OCH₃), 56.46 (t, 1 C, NCH₂CH₂), 57.41 (t, 1 C, NCH₂CHCH₂CO), 60.59 (t, 1 C, NCH₂CHCH₂O), 66.07 (t, 1 C, CH₂O), 173.57 (s, 1 C, COO) ppm. M (C₁₈H₃₇NO₃Si) = 343.59. **MS** (CI, CH₅⁺) m/z (%): 344 (100, [M+H]⁺), 300 (13). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₈H₃₈NO₃Si, 344.2621; gef. 344.2613. C₁₈H₃₇NO₃Si (343.59): ber. C 62.92, H 10.85, N 4.08; gef. C 62.68, H 10.92, N 4.05.

rac-Methyl-2-[(3S,4S)-1-(but-3-en-1-yl)-4-{[(tert-butyldimethylsilyl)oxy]methyl}pyrrolidin-3-yl]acetat (rac-151)

Nach **AAV 2** wurde Amin *rac*-**87** (210 mg, 0.73 mmol, 1.00 Äq.) mit K₂CO₃ (252 mg, 1.83 mmol, 2.49 Äq.), KI (364 mg, 2.20 mmol, 3.0 Äq.) und **130** (0.15 mL, 200 mg, 1.48 mmol, 2.02 Äq.) in MeCN (3 mL) umgesetzt. Reaktionszeit 3.5 h bei 40 °C. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:3, 1% Et₃N).

rac-151: 190 mg, 0.56 mmol (76%). Farbloses Öl. DC: $R_f = 0.38$ (Et₂O). IR (Film): $\tilde{v} =$ 3077, 2953, 2929, 2857, 2790, 1741, 1472, 1436, 1255, 1157, 1091, 837, 776 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 18.3 °C, TMS) δ = 0.04 (s, 3 H, SiCH₃), 0.04 (s, 3 H, SiCH₃), 0.88 (s, 9 H, SiC(CH₃)₃), 1.93–2.02 (m, 1 H, CHCH₂O), 2.16–2.31 (m, 4 H, NCH₂CHCH₂O, CH₂CO, NCH_2CH_2), 2.39 (dd, J = 15.6/9.2 Hz, 1 H, CH_2CO), 2.35–2.43 (m, 2 H, NCH_2CH_2 , NCH_2CHCH_2O), 2.48–2.53 (m, 1 H, NCH_2CH_2), 2.55 (dd, J = 15.7/5.7 Hz, 1 H, CH_2CO), 2.63 (t, J = 8.6 Hz, 1 H, NCH₂CHCH₂O), 2.79 (dd, J = 9.0/7.5 Hz, 1 H, NCH₂CHCH₂CO), $3.55 \text{ (dd, J} = 9.8/7.6 \text{ Hz}, 1 \text{ H}, \text{CH}_2\text{O}), 3.58 \text{ (dd, J} = 9.8/6.4 \text{ Hz}, 1 \text{ H}, \text{CH}_2\text{O}), 3.66 \text{ (s, 3 H}, 1 \text{ H}, 1 \text{ CH}_2\text{O}), 3.66 \text{ (s, 3 H}, 1 \text{$ OCH₃), 4.97–5.00 (m, 1 H, CH=CH_{2,cis}), 5.08–5.03 (m, 1 H, CH=CH_{2,trans}), 5.81 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.9 °C, TMS) δ = -5.38 (q, 1 C, SiCH₃), -5.36 (q, 1 C, SiCH₃), 18.27 (s, 1 C, SiC(CH₃)₃), 25.91 (q, 3 C, SiC(CH₃)₃), 33.21 (t, 1 C, NCH₂CH₂), 37.18 (d, 1 C, CHCH₂CO), 39.48 (t, 1 C, CH₂CO), 46.39 (d, 1 C, CHCH₂O), 51.47 (q, 1 C, OCH₃), 55.73 (t, 1 C, NCH₂CH₂), 57.05 (t, 1 C, NCH₂CHCH₂O), 60.27 (t, 1 C, NCH₂CHCH₂CO), 65.77 (t, 1 C, CH₂O), 115.46 (t, 1 C, CH=CH₂), 136.69 (d, 1 C, CH=CH₂), 173.31 (s, 1 C, COO) ppm M ($C_{18}H_{35}NO_3Si$) = 341.57. **MS** (CI, CH₅⁺) m/z (%): 342 (100, [M+H]⁺), 300 (51). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₈H₃₆NO₃Si, 342.2464; gef. 342.2474. C₁₈H₃₅NO₃Si (341.57): ber. C 63.30, H 10.33, N 4.10; gef. C 63.12, H 10.26, N 4.11.

rac-Methyl-2-[(3S,4S)-4-{[(tert-butyldimethylsilyl)oxy]methyl}-1-(4,4-diphenylbut-3-en-1-yl)pyrrolidin-3-yl]acetat (rac-152)

rac-152

Nach **AAV 2** wurde *rac*-**87** (77 mg, 0.27 mmol, 1.0 Äq.) in MeCN (1 mL) mit K₂CO₃ (92 mg, 0.66 mmol, 2.5 Äq.), KI (133 mg, 0.80 mmol, 3.0 Äq.) und einer Lösung des Alkylbromids **131** (169 mg, 0.59 mmol, 2.2 Äq.) in MeCN (1 mL) umgesetzt. Reaktionszeit 3.5 h bei 40–45 °C. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:1, 1% Et₃N).

rac-152: 91 mg, 0.18 mmol (69%). Farbloses Öl. DC: $R_f = 0.12$ (Et₂O/*n*-Pentan = 1:1). IR (Film): $\tilde{v} = 3051, 3025, 2951, 2926, 2854, 2787, 1739, 1471, 1442, 1252, 1153, 1087, 834$ cm⁻¹. ¹**H** NMR (500 MHz, CDCl₃, 21.1 °C, TMS) $\delta = 0.03$ (s, 6 H, Si(CH₃)₂), 0.87 (s, 9 H, SiC(CH₃)₃), 1.88–1.97 (m, 1 H, CHCH₂O), 2.13–2.19 (m, 1 H, CHCH₂CO), 2.19 (dd, J = 8.8/6.1 Hz, 1 H, NCH₂CHCH₂CO), 2.28 (m, 2 H, NCH₂CH₂), 2.33 (dd, 1 H, J = 9.3/6.0 Hz, NCH₂CHCH₂O). 2.36 (dd, 1 H, J = 15.6/8.7 Hz, CH₂CO), 2.41–2.47 (m, 1 H, NCH₂CH₂), 2.51 $(dd, 1 H, J = 15.6/5.6 Hz, CH_2CO), 2.49-2.55 (m, 1 H, NCH_2CH_2), 2.55 (dd, J = 9.1/8.1 Hz, 1)$ H, NCH₂CHCH₂O), 2.72 (dd, J = 8.6/7.2 Hz, 1 H, NCH₂CHCH₂CO), 3.52 (dd, J = 9.7/7.6 Hz, 1 H, CH₂O), 3.56 (dd, J = 9.8/6.5 Hz, 1 H, CH₂O), 3.64 (s, 3 H, OCH₃), 6.08 (t, J = 7.3 Hz, 1 H, *C*HC(C₆H₅)₂), 7.16–7.38 (m, 10 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.3 °C) δ = -5.17 (q, 1 C, SiCH₃), -5.15 (q, 1 C, SiCH₃), 18.49 (s, 1 C, SiC(CH₃)₃), 26.13 (q, 3 C, SiC(CH₃)₃), 29.50 (t, 1 C, NCH₂CH₂), 37.43 (d, 1 C, CHCH₂CO), 39.73 (t, 1 C, CH₂CO), 46.61 (d, 1 C, CHCH₂O), 51.67 (q, 1 C, OCH₃), 56.33 (t, 1 C, NCH₂CH₂), 57.26 (t, 1 C, NCH₂CHCH₂O), 60.42 (t, 1 C, NCH₂CHCH₂CO), 66.03 (t, 1 C, CH₂O), 127.07 (d, C_{ar}), 127.15 (d, C_{ar}), 127.45 (d, 2 C, Car), 127.76 (d, 1 C, Car), 128.26 (d, 2 C, Car), 128.39 (d, 2 C, Car), 130.05 (d, 2 C, Car), 140.28 (s, 1 C, C_{ar}), 142.58 (s, 1 C, C(C₆H₅)₂), 142.90 (s, 1 C, C_{ar}), 173.52 (s, 1 C, COO) ppm. M ($C_{30}H_{43}NO_3Si$) = 493.77. **MS** (CI, CH₅⁺) m/z (%): 494 (100, [M+H]⁺), 300 (52). **HRMS** (EI+): M⁺ ber. für C₃₀H₄₃NO₃Si, 493.3012; gef. 493.3012.

rac-Methyl-2-[(35,45)-1-butyl-4-(hydroxymethyl)pyrrolidin-3yl]acetat (rac-153)

rac-153

Nach **AAV 7** wurde *rac*-**150** (153 mg, 0.45 mmol) in THF (0.9 mL) mit Bu₄NF (1 M in THF, 0.9 mL, 2.0 Äq.) umgesetzt. Reaktionszeit 107 min. Die Reinigung des Rohproduktes erfolgte mittels SC (EtOAc/MeOH = 50:1, 1% Et₃N).

rac-**153**: 77 mg, 0.34 mmol (75%). Farbloses Öl. $R_f = 0.50$ (Aceton). **IR** (Film): $\tilde{v} = 2955, 2931$, 2873, 2798, 1738, 1458, 1437, 1245, 1156, 1051 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 19.2 °C, TMS) $\delta = 0.90$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.28–1.36 (m, 2 H, CH₂CH₃), 1.42–1.50 (m, 2 H, NCH₂CH₂), 1.95–2.03 (m, 2 H, NCH₂CHCH₂CO, CHCH₂O), 2.32–2.41 (m, 2 H, NCH₂CH₂), 2.41–2.51 (m, 3 H, CH₂CO, CHCH₂CO), 2.51–2.55 (m, 1 H, NCH₂CHCH₂O), 2.60 (dd, J = 9.3/3.5 Hz, 1 H, NCH₂CHCH₂O), 3.02–3.06 (m, 1 H, NCH₂CHCH₂CO), 3.59 (dd, J = 10.1/4.6 Hz, 1 H, CH₂O), 3.68 (s, 3 H, OCH₃), 3.68 (dd, J = 10.1/5.2 Hz, 1 H, CH₂O) ppm. ¹³C **NMR** (125 MHz, CDCl₃, 20.0 °C) $\delta = 14.19$ (q, 1 C, CH₂CH₃), 20.85 (t, 1 C, CH₂CH₃), 30.85 (t, 1 C, NCH₂CH₂O), 55.82 (t, 1 C, NCH₂CH₂), 57.78 (t, 1 C, NCH₂CHCH₂CO), 60.55 (t, 1 C, NCH₂CHCH₂O), 66.92 (t, 1 C, CH₂O), 173.64 (s, 1 C, CO) ppm. M (C₁₂H₂₃NO₃) = 229.32. **MS** (FAB, NBA) m/z (%): 230 (100, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₄NO₃, 230.1756; gef. 230.1769. C₁₂H₂₃NO₃ (229.32): ber. C 62.85, H 10.11, N 6.11; gef. C 62.56, H 9.59, N 6.13.

rac-Methyl-2-[(3*S*,4*S*)-1-(but-3-en-1-yl)-4-(hydroxymethyl)pyrrolidin-3-yl]acetat (*rac*-154)

Nach **AAV 7** wurde *rac*-**151** (165 mg, 0.48 mmol) in THF (0.9 mL) mit Bu₄NF (1 M in THF, 1.0 mL, 2.0 Äq.) umgesetzt. Reaktionszeit 100 min. Die Reinigung des Rohproduktes erfolgte mittels SC (EtOAc/MeOH = 50:1, 1% Et₃N).

rac-154: 84 mg, 0.37 mmol (76%). Farbloses Öl. $R_f = 0.48$ (Aceton). IR (Film): $\tilde{v} = 3407$, 3076, 2950, 2921, 2796, 1737, 1641, 1437, 1354, 1157, 1055, 995, 912 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 18.8 °C, TMS) $\delta = 1.95-2.01$ (m, 1 H, CHCH₂O), 2.02–2.07 (m, 1 H, NCH₂CHCH₂CO), 2.20–2.27 (m, 2 H, NCH₂CH₂), 2.41–2.53 (m, 5 H, NCH₂CH₂, CHCH₂CO, CH₂CO), 2.56 (dd, J = 9.2/7.2 Hz, 1 H, NCH₂CHCH₂O), 2.62 (dd, J = 9.3/3.6 Hz, 1 H, NCH₂CHCH₂O), 3.03–3.08 (m, 1 H, NCH₂CHCH₂CO), 3.59 (dd, J = 10.2/4.7 Hz, 1 H, CH₂O), 3.68 (dd, J = 10.2/5.3 Hz, 1 H, CH₂O), 3.68 (s, 3 H, CH₃), 4.99–5.02 (m, 1 H, CH=CH_{2,cis}), 5.04–5.08 (m, 1 H, CH=CH_{2,trans}), 5.79 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.6 °C) $\delta = 33.17$ (t, 1 C, NCH₂CHC₁₂OO), 66.87 (t, 1 C, NCH₂CH₂O), 39.56 (t, 1 C, CH₂CO), 45.69 (d, 1 C, CHCH₂CO), 51.87 (q, 1 C, CH₃), 55.28 (t, 1 C, NCH₂CH₂), 57.64 (t, 1 C, NCH₂CHCH₂O), 60.41 (t, 1 C, NCH₂CHCH₂CO), 66.87 (t, 1 C, CH₂O), 115.93 (t, 1 C, CH=CH₂), 136.57 (d, 1 C, CH=CH₂), 173.62 (s, 1 C, CO) ppm. M (C₁₂H₂₁NO₃) = 227.31. MS (FAB, NBA) *m/z* (%): 228 (100, [M+H]⁺). HRMS (FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₂NO₃, 228.1600; gef. 228.1594. C₁₂H₂₁NO₃ (227.31): ber. C 63.41, H 9.31, N 6.16; gef. C 63.18, H 9.58, N 6.19.

rac-Methyl-2-[(35,45)-1-(4,4-diphenylbut-3-en-1-yl)-4-(hydroxymethyl)pyrrolidin-3-yl]acetat (rac-155)

rac-155

Nach **AAV 7** wurde *rac*-**152** (97 mg, 0.17 mmol) in THF (0.5 mL) mit Bu₄NF (1 M in THF, 0.4 mL, 2.0 Äq.) umgesetzt. Reaktionszeit 50 min.. Die Reinigung des Rohproduktes erfolgte mittels SC (EtOAc, 1% Et₃N).

rac-155: 68 mg, 0.18 mmol (91%). Farbloses Öl. $R_f = 0.14$ (Aceton). IR (Film): $\tilde{v} = 3406$. 3079, 3054, 3023, 2950, 2920, 2796, 1736, 1494, 1442, 1155, 1073, 1056, 1031 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 18.5 °C, TMS) $\delta = 1.88-2.04$ (m, 2 x 1 H, NCH₂CHCH₂CO, CHCH₂O), 2.30 (q, J = 7.4 Hz, 2 H, NCH₂CH₂), 2.36–2.58 (m, 7 H, NCH₂CHCH₂O, NCH₂CH₂, CH₂CO, CHCH₂CO), 2.94–3.00 (m, 1 H, NCH₂CHCH₂CO), 3.56 (dd, J = 10.1/4.6 Hz, 1 H, CH₂O), 3.66 (s, 3 H, CH₃), 3.64 (dd, J = 10.1/5.2 Hz, 1 H, CH₂O), 6.05 (t, J = 7.3 Hz, 1 H, CHC(C₆H₅)₂), 7.16–7.38 (m, 10 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.1 °C) $\delta = 29.18$ (t, 1 C, NCH₂CH₂), 36.94 (d, 1 C, CHCH₂CO), 39.51 (t, 1 C, CH₂CO), 45.71 (d, 1 C, CHCH₂O), 51.86 (q, 1 C, CH₃), 55.80 (t, 1 C, NCH₂CH₂), 57.54 (t, 1 C, NCH₂CHCH₂O), 60.41 (t, 1 C, NCH₂CHCH₂CO), 66.81 (t, 1 C, CH₂O), 127.14 (d, 1 C, C_{ar}), 127.21 (d, 1 C, C_{ar}), 127.26 (d, 2 C, C_{ar}), 127.42 (d, 1 C, C_{ar}), 128.28 (d, 2 C, C_{ar}), 128.39 (d, 2 C, C_{ar}), 130.01 (d, 2 C, C_{ar}), 140.19 (s, 1 C, C_{ar}), 142.73 (s, 1 C, C_{ar}), 142.96 (s, 1 C, C(C₆H₅)₂), 173.61 (s, 1 C, COO) ppm. M (C₂₄H₂₉NO₃) = 379.50. MS (FAB, NBA) *m/z* (%): 380 (100, [M+H]⁺). HRMS (FAB, NBA): [M+H]⁺ ber. für C₂₄H₃₀NO₃, 380.2226; gef. 380.2211. C₂₄H₂₉NO₃ (379.50): ber. C 75.96, H 7.70, N 3.69; gef. C 75.50, H 7.61, N 3.84. *rac*-2-[(3*S*,4*S*)-1-Butyl-4-(hydroxymethyl)pyrrolidin-3-yl]essigsäure (*rac*-163)

Nach **AAV 5** wurde *rac*-**153** (54 mg, 0.24 mmol) in MeOH/H₂O (1:1, 3 mL) mit Ba(OH)₂ · 8 H₂O (149 mg, 0.47 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 1.0 h.

rac-163: 46 mg, 0.22 mmol (92%). Farbloses Öl. IR (KBr): $\tilde{v} = 3358$, 2960, 2936, 2875, 2577, 1578, 1458, 1399, 1045 cm⁻¹. ¹H NMR (500 MHz, D₂O, 18.2 °C) $\delta = 0.86$ (t, J = 7.4 Hz, 3 H, CH₃), 1.28–1.36 (m, 2 H, CH₂CH₃), 1.57–1.66 (m, 2 H, NCH₂CH₂), 2.21–2.28 (m, 1 H, CHCH₂O), 2.25 (dd, J = 14.5/8.0 Hz, 1 H, CH₂CO), 2.35–2.42 (m, 1 H, CHCH₂CO), 2.44 (dd, J = 14.5/5.5 Hz, 1 H, CH₂CO), 3.05–3.25 (m, 4 H, NCH₂CH₂, NCH₂CHCH₂O, NCH₂CHCH₂CO), 3.48–3.56 (m, 2 H, NCH₂CHCH₂O, NCH₂CHCH₂CO), 3.54 (dd, J = 11.5/6.7 Hz, 1 H, CH₂O), 3.66 (dd, J = 11.5/4.7 Hz, 1 H, CH₂O) ppm. ¹³C NMR (125 MHz, D₂O, 22.0 °C, Dioxan) $\delta = 13.36$ (q, 1 C, CH₃), 19.82 (t, 1 C, CH₂CH₃), 27.83 (t, 1 C, NCH₂CH₂), 36.95 (d, 1 C, CHCH₂CO), 40.77 (t, 1 C, CH₂CO), 44.84 (d, 1 C, CHCH₂O), 55.77 (t, 1 C, NCH₂CH₂), 56.78 (t, 1 C, NCH₂CHCH₂O), 59.42 (t, 1 C, NCH₂CHCH₂CO), 62.02 (t, 1 C, CH₂O), 180.78 (s, 1 C, CO) ppm. M (C₁₁H₂₁NO₃) = 215.29. MS (FAB, NBA) *m/z* (%): 216 (100, [M+H]⁺). HRMS (FAB, NBA): [M+H]⁺ ber. für C₁₁H₂₂NO₃, 216.3006; gef. 216.1616.

rac-2-[(3*S*,4*S*)-1-(But-3-en-1-yl)-4-(hydroxymethyl)pyrrolidin-3yl]essigsäure (*rac*-164)

Nach **AAV 5** wurde *rac*-**154** (31 mg, 0.14 mmol) in MeOH/H₂O (1:1, 2 mL) mit Ba(OH)₂ \cdot 8 H₂O (85 mg, 0.27 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 1.5 h.

rac-164: 29 mg, 0.14 mmol (99%). Farbloses Öl. IR (KBr): $\tilde{v} = 3348, 2927, 1578, 1399, 1053 cm^{-1}. {}^{1}H NMR (500 MHz, D₂O, 20.2 °C) <math>\delta = 2.23-2.32$ (m, 1 H, CHCH₂O), 2.27 (dd, J = 14.8/7.9 Hz, 1 H, CH₂CO) 2.36–2.51 (m, 4 H, NCH₂CH₂, CH₂CO, CHCH₂CO), 3.05–3.17 (m, 1 H, NCH₂CHCH₂CO), 3.17–3.28 (m, 3 H, NCH₂CH₂, NCH₂CHCH₂O), 3.49–3.58 (m, 2 H, NCH₂CHCH₂CO, NCH₂CHCH₂O), 3.56 (dd, J = 11.5/6.6 Hz, 1 H, CH₂O), 3.68 (dd, J = 11.5/4.7 Hz, 1 H, CH₂O), 5.15–5.18 (m, 1 H, CH=CH_{2,cis}), 5.20–5.24 (m, 1 H, CH=CH_{2,trans}), 5.78 (ddt, J = 17.1/10.2/6.8 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, D₂O, 20.5 °C, MeOH) $\delta = 30.41$ (t, 1 C, NCH₂CH₂), 36.95 (d, 1 C, CHCH₂CO), 40.78 (t, 1 C, CH₂CO), 44.87 (d, 1 C, CHCH₂O), 55.03 (t, 1 C, NCH₂CH₂), 56.87 (t, 1 C, NCH₂CHCH₂O), 59.58 (t, 1 C, NCH₂CHCH₂CO), 62.06 (t, 1 C, CH₂O), 119.41 (t, 1 C, CH=CH₂), 133.53 (d, 1 C, CH=CH₂), 180.82 (s, 1 C, CO). ppm. M (C₁₁H₁₉NO₃) = 213.28. MS (FAB, NBA) *m/z* (%): 214 (100, [M+H]⁺). HRMS (FAB, NBA): [M+H]⁺ ber. für C₁₁H₂₀NO₃, 214.1443; gef. 214.1447.

rac-2-[(3*S*,4*S*)-1-(4,4-Diphenylbut-3-en-1-yl)-4-(hydroxymethyl)pyrrolidin-3-yl]essigsäure (*rac*-165)

Nach **AAV 6** wurde der Ester *rac*-**155** (53 mg, 0.14 mmol) in MeOH (2 mL) mit NaOH (1 M, 1.4 mL, 10 Äq.) umgesetzt. Reaktionszeit 70 min.

rac-165: 26 mg, 0.07 mmol (51%). Farbloser Festsoff. Smp.: 62 °C. IR (Film): $\tilde{v} = 3347$, 3081, 3055, 3027, 2957, 2929, 2873, 1711, 1577, 1494, 1444, 1399, 1364, 1266, 1074, 1053 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 16.9 °C, TMS) $\delta = 2.09-2.20$ (m, 1 H, CHCH₂O), 2.26 (dd, J = 14.7/5.8 Hz, 1 H, CH₂CO), 2.32–2.50 (m, 4 H, CH₂CO, CHCH₂CO, NCH₂CH₂), 2.65–2.78 (m, 1 H, NCH₂CHCH₂CO), 2.82–3.02 (m, 3 H, NCH₂CHCH₂O), NCH₂CH₂), 3.03–3.17 (m, 1 H, NCH₂CHCH₂O), 3.19–3.33 (m, 1 H, NCH₂CHCH₂CO), 3.48 (dd, J = 10.9/6.2 Hz, 1 H, CH₂O), 3.60 (dd, J = 11.0/5.2 Hz, 1 H, CH₂O), 5.99 (t, J = 7.4 Hz, 1 H, CHC(C₆H₅)₂), 7.10–7.39 (m, 10 H, H_{ar}), 8.89 (s_{br}, 1 H, COOH) ppm. ¹³C NMR (125 MHz, CDCl₃, 18.0 °C, TMS) $\delta = 26.44$ (t, 1 C, NCH₂CH₂), 36.68 (d, 1 C, CHCH₂CO), 40.21 (t, 1 C, CH₂CO), 45.40 (d, 1 C, CHCH₂OO), 54.57 (t, 1 C, NCH₂CH₂), 55.71 (t, 1 C, NCH₂CHCH₂O), 58.83 (t, 1 C, NCH₂CHCH₂CO), 62.51 (t, 1 C, CH₂O), 123.24 (d, 1 C, CHC(C₆H₅)₂), 127.23 (d, 2 C, C_{ar}), 127.38 (d, 1 C, C_{ar}), 127.45 (d, 1 C, C_{ar}), 128.16 (d, 2 C, C_{ar}), 128.49 (d, 2 C, C_{ar}), 129.55 (d, 2 C, C_{ar}), 139.22 (s, 1 C, C_{ar}), 141.73 (s, 1 C, C_{ar}), 144.70 (s, 1 C, C_{ar}), 177.35 (s, 1 C, CO) ppm. M (C₂₃H₂₇NO₃) = 365.48. MS (CI, CH⁺₅) *m/z* (%): 366 (14, [M+H]⁺), 348 (100). HRMS (FAB, NBA): [M+H]⁺ ber. für C₂₃H₂₈NO₃, 366.2069; gef. 366.2058.

rac-Methyl-2-[(35,45)-4-(methoxymethyl)-1-(2,2,2trifluoracetyl)pyrrolidin-3-yl]acetat (rac-96)

*rac-*83 (302 mg, 1.12 mol) wurden in CH₂Cl₂) (5.1 mL) gelöst, auf 0 °C gekühlt und mit HBF₄ (48%, 155µL, 1.14 mol, 1.01 Äq.) versetzt. Nach 30 min wurde Trimethylsilyldiazomethan TMSCH₂N₂ (2M in Hexan, 0.57 mL, 1.14 mol, 1.02 Äq.) langsam zugetropft. Im Abstand von 20 min. wurden zwei weitere Portionen TMSCH₂N₂ (0.28 mL, 0.56 mmol, 0.50 Äq.) und (0.14 mL, 0.28 mmol, 0.25 Äq.) zugetropft und anschließend auf RT erwärmt. Nach einer weiteren Stunde wurde nochmals TMSCH₂N₂ (0.28 mL, 0.56 mmol, 0.50 Äq.) dazu gegeben. Nach 30 min. wurde H₂O (6mL) der Reaktionslösung zugesetzt und die wässrige Phase mit CH₂Cl₂ extrahiert. Die vereinigten org. Phasen wurden über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittel SC (Et₂O/*n*-Pentan = 2:1).

rac-96: 181 mg, 0.64 mmol (57%). Farbloses Öl. DC: $R_f = 0.30$ (Et₂O/*n*-Pentan = 2:1). **IR** (Film): $\tilde{v} = 2954$, 2895, 2837, 1736, 1691, 1461, 1439, 1243, 1205, 1141, 1098, 757 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 19.7 °C, TMS) $\delta = 2.13$ –2.05 (m, 0.50 x 1 H, CHCH₂O), 2.24–2.31 (m, 0.50 x 1 H, CHCH₂O), 2.30–3.39 (m, 1 H, CH₂CO), 2.43–2.52 (m, 0.50 x 1 H, CHCH₂CO), 2.53–2.62 (m, 0.50 x 1 H, CHCH₂CO), 2.65 (dd, J = 16.0/5.0 Hz, 0.50 x 1 H, CH₂CO), 2.71 (dd, J = 16.3/4.8 Hz, 0.50 x 1 H, CH₂CO), 3.25 (dd, J = 12.7/8.6 Hz, 0.50 x 1 H, NCH₂CHCH₂CO), 3.31–3.39 (m, 0.50 x 3 H, NCH₂CHCH₂O, NCH₂CHCH₂CO, CH₂O), 3.34 (s, 0.50 x 3 H, OCH₃), 3.34 (s, 0.50 x 3 H, OCH₃), 3.38–3.49 (m, 0.50 x 4 H, 3 x CH₂O, NCH₂CHCH₂O), 3.70 (s, 0.50 x 3 H, COOCH₃), 3.71 (s, 0.50 x 3 H, COOCH₃), 3.81 (dd, J = 12.9/8.3 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.89 (dd, J = 10.6/8.3 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.99 (dd, J = 12.7/7.9 Hz, 0.50 x 1 H, NCH₂CHCH₂CO), 4.07 (dd, J = 11.0/7.6 Hz, 0.50 x 1 H, NCH₂CHCH₂O), 3.828 (d, 1 C, CHCH₂CO), 41.62 (d, 1 C, CHCH₂O), 44.40 (d, 1 C, CHCH₂O), 49.09 (q, ⁴*J_{CF}* = 3.4 Hz, 1 C, NCH₂CHCH₂CO), 49.71 (t, 1 C, NCH₂CHCH₂O), 51.72 (q, ⁴*J_{CF}* = 3.3
Hz, 1 C, NCH₂CHCH₂CO), 51.9 (q, 1 C, COOCH₃), 51.93 (q, 1 C, COOCH₃), 52.54 (t, 1 C, NCH₂CHCH₂CO), 59.15 (q, 1 C, OCH₃), 59.17 (q, 1 C, OCH₃), 72.23 (t, 1 C, CH₂O), 72.59 (t, 1 C, CH₂O), 116.24 (q, ${}^{1}J_{CF}$ = 286.9 Hz, 2 C, CF₃), 155.17 (q, ${}^{2}J_{CF}$ = 36.7 Hz, 1 C, COCF₃), 155.76 (q, ${}^{2}J_{CF}$ = 36.9 Hz, 1 C, COCF₃), 171.93 (s, 1 C, CO), 172.04 (s, 1 C, CO) ppm. M (C₁₁H₁₆F₃NO₄) = 283.24. **MS** (CI, CH₅⁺) *m/z* (%): 284 (100, [M+H]⁺). **HRMS** (EI, 70 eV): M⁺ ber. für C₁₁H₁₆F₃NO₄, 283.1031; gef. 283.1024.

rac-2-[(3*S*,4*S*)-4-(Methoxymethyl)pyrrolidin-3-yl]essigsäure (*rac*-98)

Nach **AAV 4** wurde *rac*-**96** (46 mg, 0.17 mmol) in MeOH: H_2O (1.5 mL, 1:2) mit wässriger LiOH-Lösung (2 M, 0.34 mL, 4.0 Äq.) versetzt. Reaktionszeit 1 h.

rac-**98**: 24 mg, 0.14 mmol (83%). Gelblicher Feststoff, Smp.: 210 °C (Zers.). **IR** (KBr): $\tilde{v} = 2990$, 2977, 2935, 2920, 2894, 2836, 2817, 2693, 2564, 2508, 2435, 2287, 1660, 1545, 1477, 1466, 1399, 1123, 1107, 1094, 964, 719, 661 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 20.4 °C) $\delta = 2.23$ (dd, J = 14.6/8.4 Hz, 1 H, CH₂CO), 2.25–2.32 (m, 1 H, CHCH₂O), 2.32–2.40 (m, 1 H, CHCH₂CO), 2.44 (dd, J = 14.6/5.6 Hz, 1 H, CH₂CO), 2.97 (dd, J = 11.8/8.7 Hz, 1 H, NCH₂CHCH₂CO), 3.10 (dd, J = 12.0/8.1 Hz, 1 H, NCH₂CHCH₂O), 3.33 (s, 3 H, OCH₃), 3.42 (dd, J = 10.0/7.5 Hz, 1 H, CH₂O), 3.48 (dd, J = 12.0/8.1 Hz, 1 H, NCH₂CHCH₂O), 20.9 °C, Dioxan) $\delta = 38.09$ (d, 1 C, CHCH₂CO), 40.48 (t, 1 C, CH₂CO), 43.12 (d, 1 C, CHCH₂O), 48.80 (t, 1 C, NCH₂CHCH₂O), 50.96 (t, 1 C, NCH₂CHCH₂CO), 59.01 (q, 1 C, OCH₃), 73.15 (t, 1 C, CH₂O), 180.77 (s, 1 C, CO) ppm. M (C₈H₁₅NO₃) = 173.21. **MS** (CI, CH₅⁺) *m/z* (%): 174 (100, [M+H]⁺). **HRMS** (EI, 70eV): M⁺ ber. für C₈H₁₅NO₃, 173.1052; gef. 173.1066.

rac-Methyl-2-[(3S,4S)-4-(methoxymethyl)pyrrolidin-3-yl]acetat (rac-97)

Nach **AAV 3** wurde *rac*-**96** (291 mg, 1. 03 mmol) in abs. MeOH (10.3 mL) mit stark basischem Ionenaustauscher (2.2 g) umgesetzt. Reaktionszeit 3.2 h.

rac-**97**: 188 mg, 1.00 mmol (98%). Farbloses Öl. **IR** (Film): $\tilde{v} = 2925$, 2863, 1735, 1543, 1437, 1200, 1164, 1098 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 21.7 °C, TMS) $\delta = 1.93$ -2.04 (m, 2 H, CHCH₂O, NH), 2.11-2.20 (m, 1 H, CHCH₂CO), 2.35 (dd, J = 15.7/8.5 Hz, 1 H, CH₂CO), 2.54 (dd, J = 11.3/7.3 Hz, 1 H, NCH₂CHCH₂O), 2.54 (dd, J = 15.7/6.1 Hz, 1 H, CH₂CO), 2.76 (dd, J = 11.3/5.8 Hz, 1 H, NCH₂CHCH₂O), 3.06 (dd, J = 11.2/7.9 Hz, 1 H, NCH₂CHCH₂O), 3.22 (dd, J = 11.2/7.5 Hz, 1 H, NCH₂CHCH₂CO), 3.28–3.34 (m, 4 H, CH₂O, OCH₃), 3.38 (dd, J = 9.1/5.9 Hz, 1 H, CH₂O), 3.68 (s, 3 H, COOCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 22.3 °C, TMS) $\delta = 38.39$ (t, 1 C, CH₂CO), 39.41 (d, 1 C, CHCH₂CO), 45.40 (d, 1 C, CHCH₂O), 50.68 (t, 1 C, NCH₂CHCH₂O), 51.55 (q, 1 C, COOCH₃), 53.46 (t, 1 C, NCH₂CHCH₂CO), 58.96 (q, 1 C, OCH₃), 75.37 (t, 1 C, CH₂O), 173.21 (s, 1 C, CO) ppm. M (C₉H₁₇NO₃) = 187.24. MS (CI, CH₅⁺) *m/z* (%): 188 (31, [M+H]⁺), 174 (88). **HRMS** (EI, 70 eV): M⁺ ber. für C₉H₁₇NO₃, 187.1208; gef. 187.1224.

rac-Methyl-2-[(3*S*,4*S*)-1-butyl-4-(methoxymethyl)pyrrolidin-3-yl]acetat (*rac*-135)

174

rac-135

Nach **AAV 2** wurde *rac*-**97** (55 mg, 0.30 mmol) mit K₂CO₃ (102 mg, 0.74 mmol, 2.5 Äq.), KI (150 mg, 0.90 mmol, 3.1 Äq.) und Brombutan (**129**) (0.07 mL, 90 mg, 0.65 mmol, 2.2 Äq.) in MeCN (1.5 mL) bei 40-45 °C umgesetzt. Reaktionszeit 3.3 h. Das Rohprodukt wurde mittels SC (EtOAc/Isohexan = 4:1, 1% Et₃N) gereinigt.

rac-135: 50 mg, 0.21 mmol (70%). Farbloses Öl. DC: $R_f = 0.18$ (EtOAc/Isohexan = 4:1). IR (Film): $\tilde{v} = 2955$, 2928, 2873, 2825, 2793, 1740, 1437, 1244, 1198, 1157, 1126, 1101 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.5 °C, TMS) $\delta = 0.90$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.27–1.36 (m, 2 H, CH₂CH₃), 1.40–1.49 (m, 2 H, NCH₂CH₂), 2.00–2.08 (m, 1 H, CHCH₂O), 2.16–2.25 (m, 2 H, CHCH₂CO, NCH₂CHCHCH₂CO), 2.27–2.35 (m, 1 H, NCH₂CH₂), 2.37–2.44 (m, 3 H, NCH₂CH₂, CH₂CO, NCH₂CHCHCH₂O), 2.53 (dd, J = 15.7/5.7 Hz, 1 H, CH₂CO), 2.63 (dd, J = 9.2/8.2 Hz, 1 H, NCH₂CHCH₂O), 2.77–2.82 (m, 1 H, NCH₂CHCH₂CO), 3.29–3.34 (m, 1 H, CH₂O), 3.33 (s, 3 H, OCH₃), 3.37 (dd, J = 9.0/6.3 Hz, 1 H, CH₂O), 3.67 (s, 3 H, COOCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 22.4 °C, TMS) $\delta = 14.07$ (q, 1 C, CH₂CH₃), 20.80 (t, 1 C, CH₂CH₃), 30.90 (t, 1 C, NCH₂CH₂), 37.55 (d, 1 C, CHCH₂CO), 39.36 (t, 1 C, CH₂CO), 43.88 (d, 1 C, CHCH₂O), 51.49 (q, 1 C, COOCH₃), 56.20 (t, 1 C, NCH₂CH₂), 57.64 (t, 1 C, NCH₂CHCH₂O), 58.88 (q, 1 C, OCH₃), 60.28 (t, 1 C, NCH₂CHCH₂CO), 75.93 (t, 1 C, CH₂O), 173.28 (s, 1 C, CO) ppm. M (C₁₃H₂₅NO₃) = 243.18. MS (CI, CH₅⁺) *m/z* (%): 244 (19, [M+H]⁺), 83 (100). HRMS (EI+): M⁺ ber. für C₁₃H₂₅NO₃, 243.1834; gef. 243.1833.

rac-Methyl-2-[(3S,4S)-1-(but-3-en-1-yl)-4-(methoxymethyl)pyrrolidin-3-yl]acetat (rac-136)

rac-136

Nach **AAV 2** wurde *rac-***97** (42 mg, 0.22 mmol) mit K_2CO_3 (78 mg, 0.56 mmol, 2.5 Äq.), KI (114 mg, 0.69 mmol, 3.1 Äq.) und 4-Brombut-1-en (**130**) (0.05 mL, 67 mg, 0.49 mmol, 2.2 Äq.) in MeCN (1.5 mL) bei 40-45 °C umgesetzt. Reaktionszeit 2.5 h. Das Rohprodukt wurde mittels

SC (EtOAc/Isohexan = 5:1, 1% Et₃N) gereinigt.

rac-136: 32 mg, 0.13 mmol (60%). Gelbliches Öl. DC: $R_f = 0.13$ (EtOAc/Isohexan = 5:1). **IR** (Film): $\tilde{v} = 3075$, 2977, 2951, 2805, 2792, 1738, 1436, 1198, 1157, 1125, 1102 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 20.7 °C, TMS) $\delta = 2.00-2.09$ (m, 1 H, CHCH₂O), 2.17–2.28 (m, 4 H, NCH₂CHCH₂CO, CHCH₂CO, NCH₂CH₂), 2.37–2.45 (m, 3 H, NCH₂CHCH₂O, CH₂CO, NCH₂CH₂), 2.47–2.53 (m, 1 H, NCH₂CH₂), 2.53 (dd, J = 15.7/5.9 Hz, 1 H, CH₂CO), 2.65 (dd, J = 9.2/8.1 Hz, 1 H, NCH₂CHCH₂O), 3.33 (s, 3 H, OCH₃), 3.37 (dd, J = 9.0/6.2 Hz, 1 H, CH₂O), 3.67 (s, 3 H, COOCH₃), 4.97–5.00 (m, 1 H, CH=CH_{2,cis}), 5.03–5.07 (m, 1 H, CH=CH_{2,trans}), 5.81 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.8 °C, TMS) $\delta = 33.20$ (t, 1 C, NCH₂CH₂), 37.49 (d, 1 C, CHCH₂CO), 39.29 (t, 1 C, CH₂CO), 43.84 (d, 1 C, CHCH₂O), 51.52 (q, 1 C, COOCH₃), 55.66 (t, 1 C, NCH₂CH₂), 57.48 (t, 1 C, NCH₂CHCH₂O), 58.89 (q, 1 C, OCH₃), 60.13 (t, 1 C, NCH₂CHCH₂CO), 75.83 (t, 1 C, CH₂O), 115.49 (t, 1 C, CH=CH₂), 136.64 (d, 1 C, CH=CH₂), 173.24 (s, 1 C, CO) ppm. M (C₁₃H₂₃NO₃) = 241.33. **MS** (CI, CH⁺₅) *m/z* (%): 242 (22, [M+H]⁺), 83 (100). **HRMS** (EI+): M⁺ ber. für C₁₃H₂₃NO₃, 241.1678; gef. 241.1683.

rac-Methyl-2-[(35,45)-1-(4,4-diphenylbut-3-en-1-yl)-4-(methoxymethyl)pyrrolidin-3-yl]acetat (rac-137)

rac-137

Nach **AAV 2** wurde *rac*-**97** (44 mg, 0.23 mmol) mit K_2CO_3 (82 mg, 0.59 mmol, 2.5 Äq.), KI (117 mg, 0.71 mmol, 3.0 Äq.) in MeCN (1 mL) gelöst und einer Lösung des Alkylbromids **131** (154 mg, 0.54 mmol, 2.3 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 3.3 h. Das

Rohprodukt wurde mittels SC (EtOAc/Isohexan = 4:1, 1% Et₃N) gereinigt.

rac-137: 74 mg, 0.19 mmol (81%). Farbloses Öl. DC: $R_f = 0.21$ (EtOAc/Isohexan = 4:1). IR (Film): $\tilde{v} = 3079, 3055, 3022, 2949, 2921, 2825, 2791, 1737, 1494, 1443, 1196, 1155, 1123, 1101$ cm^{-1} . ¹**H NMR** (500 MHz, CDCl₃, 20.7 °C, TMS) $\delta = 1.98-2.04$ (m, 1 H, CHCH₂O), 2.15-2.22 (m, 2 H, CHCH₂CO, NCH₂CHCH₂CO), 2.29 (q, J = 7.5 Hz, 2 H, NCH₂CH₂), 2.35–2.61 (m, 6 H, CH₂CO, NCH₂CHCH₂O, NCH₂CH₂), 2.74–2.80 (m, 1 H, NCH₂CHCH₂CO), 3.27–3.32 (m, 1 H, CH₂O), 3.31 (s, 3 H, OCH₃), 3.34 (dd, *J* = 9.0/6.3 Hz, 1 H, CH₂O), 3.65 (s, 3 H, COOCH₃), 6.07 (t, J = 7.3 Hz, 1 H, $CH = C(C_6H_5)_2$), 7.15–7.18 (m, 2 H, $H_{ar,ortho}$), 7.19–7.32 (m, 6 H, H_{ar}), 7.34–7.38 (m, 2 H, H_{ar.meta}) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.5 °C, TMS) δ = 29.26 (t, 1 C, NCH₂CH₂), 37.52 (d, 1 C, CHCH₂CO), 39.31 (t, 1 C CH₂CO), 43.86 (d, 1 C, CHCH₂O), 51.49 (q, 1 C, COOCH₃), 56.04 (t, 1 C, NCH₂CH₂), 57.41 (t, 1 C, NCH₂CHCH₂O), 58.87 (q, 1 C, OCH₃), 60.10 (t, 1 C, NCH₂CHCH₂CO), 75.83 (t, 1 C, CH₂O), 126.88 (d, 1 C, C_{ar,para}), 126.96 (d, 1 C, Car, para), 127.24 (d, 2 C, Car, ortho), 127.47 (d, 1 C, CH=C(C₆H₅)₂), 128.06 (d, 2 C, Car,meta), 128.19 (d, 2 C, Car,meta), 129.83 (d, 2 C, Car,ortho), 140.06 (s, 1 C, Car), 142.42 (s, 1 C, $C(C_6H_5)_2$), 142.68 (s, 1 C, C_{ar}), 173.21 (s, 1 C, CO) ppm. M ($C_{25}H_{31}NO_3$) = 393.52. **MS** (CI, CH₅⁺) *m/z* (%): 394 (80, [M+H]⁺), 200 (100). **HRMS** (EI+): M⁺ ber. für C₂₅H₃₁NO₃, 393.2304; gef. 393.2267.

rac-2-[(3*S*,4*S*)-1-Butyl-4-(methoxymethyl)pyrrolidin-3-yl]essig-säure (*rac*-166)

rac-166

Nach **AAV 5** wurde *rac*-**135** (22 mg, 0.09 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (57 mg, 0.18 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 1.2 h.

rac-166: 19 mg, 0.08 mmol (94%). Farbloses Öl. IR (Film): $\tilde{v} = 2961, 2935, 2875, 2834,$

2507, 1653, 1576, 1458, 1398, 1299, 1191, 1120, 1094 cm⁻¹. ¹**H** NMR (500 MHz, D₂O, 18.5 °C, Dioxan) δ = 0.91 (t, *J* = 7.4 Hz, 3 H, CH₂CH₃), 1.31–1.41 (m, 2 H, CH₂CH₃), 1.62–1.71 (m, 2 H, NCH₂CH₂), 2.31 (dd, *J* = 14.1/7.2 Hz, 1 H, CH₂CO), 2.35–2.51 (m, 3 H, CH₂CO, CHCH₂CO, CHCH₂O), 3.07–3.20 (m, 3 H, NCH₂CHCH₂CO, NCH₂CH₂), 3.25 (s_{br}, 1 H, NCH₂CHCH₂O), 3.36 (s, 3 H, OCH₃), 3.46 (dd, *J* = 9.9/7.2 Hz, 1 H, CH₂O), 3.49–3.62 (m, 2 H, NCH₂CHCH₂O, NCH₂CHCH₂CO), 3.58 (dd, *J* = 9.9/4.5 Hz, 1 H, CH₂O) ppm. ¹³C NMR (125 MHz, D₂O, 20.9 °C, Dioxan) δ = 13.37 (q, 1 C, CH₂CH₃), 19.82 (t, 1 C, CH₂CH₃), 27.84 (t, 1 C, NCH₂CH₂), 57.04 (t, 1 C, NCH₂CHCH₂O), 59.01 (q, 1 C, OCH₃), 59.33 (t, 1 C, NCH₂CHCH₂CO), 73.30 (t, 1 C, CH₂O), 180.63 (s, 1 C, CO) ppm. M (C₁₂H₂₃NO₃) = 229.32. MS (CI, CH₅⁺) *m/z* (%): 230 (100, [M+H]⁺), 186 (14). HRMS (EI+): M⁺ ber. für C₁₂H₂₃NO₃, 229.1678; gef. 229.1682.

rac-2-[(35,45)-1-(But-3-en-1-yl)-4-(methoxymethyl)pyrrolidin-3yl]essigsäure (rac-167)

Nach **AAV 5** wurde *rac*-**136** (18 mg, 0.07 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (47 mg, 0.15 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 1.7 h.

rac-167: 16 mg, 0.07 mmol (98%). Farbloses Öl. IR (Film): $\tilde{v} = 3075$, 2977, 2926, 2830, 2813, 2494, 1708, 1642, 1578, 1478, 1458, 1397, 1122, 1096, 919 cm⁻¹. ¹H NMR (500 MHz, D₂O, 19.3 °C, Dioxan) $\delta = 2.31$ (dd, J = 14.2/7.1 Hz, 1 H, CH₂CO), 2.36–2.51 (m, 5 H, 1 x CH₂CO, CHCH₂CO, CHCH₂O, 2 x NCH₂CH₂), 3.13 (m, 1 H, NCH₂CHCH₂CO), 3.20–3.31 (m, 3 H, NCH₂CHCH₂O, NCH₂CH₂), 3.36 (s, 3 H, OCH₃), 3.46 (dd, J = 9.9/7.1 Hz, 1 H, CH₂O), 3.50–3.63 (m, 2 H, NCH₂CHCH₂O, NCH₂CHCH₂CO), 3.23–5.27 (m, 1 H, CH=CH_{2,trans}), 5.80 (ddt, J = 17.1/10.2/6.9

Hz, 1 H, C*H*=CH₂) ppm. ¹³C NMR (125 MHz, D₂O, 20.7 °C, Dioxan) δ = 30.36 (t, 1 C, NCH₂CH₂), 37.29 (d, 1 C, CHCH₂CO), 40.84 (t, 1 C, CH₂CO), 42.61 (d, 1 C, CHCH₂O), 54.95 (t, 1 C, NCH₂CH₂), 57.10 (t, 1 C, NCH₂CHCH₂O), 59.01 (q, 1 C, OCH₃), 59.47 (t, 1 C, NCH₂CHCH₂CO), 73.30 (t, 1 C, CH₂O), 119.43 (t, 1 C, CH=CH₂), 133.44 (d, 1 C, CH=CH₂), 180.61 (s, 1 C, CO) ppm. M (C₁₂H₂₁NO₃) = 227.30. MS (CI, CH₅⁺) *m/z* (%): 228 (100, [M+H]⁺), 186 (42). HRMS (EI+): M⁺ ber. für C₁₂H₂₁NO₃, 227.1521; gef. 227.1529.

rac-2-[(3*S*,4*S*)-1-(4,4-Diphenylbut-3-en-1-yl)-4-(methoxymethyl)pyrrolidin-3-yl]essigsäure (*rac*-168)

Nach **AAV 6** wurde *rac*-**137** (24 mg, 0.06 mmol) in MeOH (2 mL) mit LiOH-Lsg. (2 M, 0.31 mL, 10 Äq.) umgesetzt. Reaktionszeit 7.5 h.

rac-168: 23 mg, 0.06 mmol (97%). Farbloses Öl. IR (Film): $\tilde{v} = 3079$, 3054, 3022, 2925, 2810, 2477, 1709, 1597, 1577, 1494, 1444, 1390, 1216, 1191, 1120, 1098, 760, 701 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.2 °C, TMS) $\delta = 2.20-2.31$ (m, 1 H, CHCH₂O), 2.31–2.41 (m, 2 H, CHCH₂CO, CH₂CO), 2.41–2.50 (m, 3 H, CH₂CO, NCH₂CH₂), 2.65 (t, J = 9.3 Hz, 1 H, NCH₂CHCH₂O), 2.82–2.91 (m, 2 H, NCH₂CH₂), 2.92–2.98 (m, 1 H, NCH₂CHCH₂CO), 3.00–3.08 (m, 1 H, NCH₂CHCH₂CO), 3.21 (t, J = 9.2 Hz, 1 H, NCH₂CHCH₂O), 3.29 (s, 3 H, OCH₃), 3.32 (dd, J = 9.4/6.7 Hz, 1 H, CH₂O), 3.38 (dd, J = 9.4/4.5 Hz, 1 H, CH₂O), 6.00 (t, J = 7.4 Hz, 1 H, CH=C(C₆H₅)₂), 7.11–7.16 (m, 2 H, H_{*ar,ortho*}), 7.17–7.27 (m, 6 H, H_{*ar*}), 7.29–7.34 (m, 1 H, H_{*ar,para*), 7.35–7.40 (m, 2 H, H_{*ar,meta*}) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.2 °C, TMS) $\delta = 26.78$ (t, 1 C, CH₂CH₂N), 36.60 (d, 1 C, CHCH₂CO), 40.15 (t, 1 C, CH₂CO), 42.77} (d, 1 C, CHCH₂O), 54.41 (t, 1 C, NCH₂CH₂), 55.51 (t, 1 C, NCH₂CHCH₂O), 58.66 (t, 1 C, NCH₂CHCH₂CO), 58.96 (q, 1 C, OCH₃), 73.05 (t, 1 C, CH₂O), 123.79 (d, 1 C, CH=C(C₆H₅)₂), 127.25 (d, 2 C, C_{ar,ortho}), 127.32 (d, 1 C, C_{ar,para}), 127.39 (d, 1 C, C_{ar,para}), 128.16 (d, 2 C, C_{ar,meta}), 128.44 (d, 2 C, C_{ar,meta}), 129.58 (d, 2 C, C_{ar,ortho}), 139.37 (s, 1 C, C_{ar}), 141.87 (s, 1 C, C_{ar}), 144.48 (s, 1 C, C(C₆H₅)₂), 176.08 (s, 1 C, CO) ppm. M (C₂₄H₂₉NO₃) = 379.49. **MS** (CI, CH₅⁺) m/z (%): 380 (100, [M+H]⁺), 215 (20), 186 (84). **HRMS** (EI+): M⁺ ber. für C₂₄H₂₉NO₃, 379.2147; gef. 379.2103.

(1*R*,2*S*,6*R*,7*S*)-9-(Trifluoracetyl)-4-oxa-9-azatricyclo-[5.3.0.0^{2,6}]decan-3,5-dion (*meso*-102)

Nach AAV 1 wurde eine Lösung aus 59 (1.67 g, 10.1 mmol, 1.5 Äq.), Maleinsäureanhydrid 99 (0.66 g, 6.7 mmol, 1.0 Äq.) und Acetophenon (0.20 g, 1.7 mmol, 0.25 Äq.) in abs. MeCN (100 mL) bei 300 nm für 64 h bestrahlt. Das Lösungsmittel wurde im Vakuum entfernt. Nach Ausfällen aus Et_2O wurde der Rückstand abfiltriert und mit Et_2O mehrmals gewaschen. Das Produkt 102 wurde dann mit CH_2Cl_2 gelöst und von einem unlöslichen Rückstand abgetrennt. Nach Entfernen des Lösungsmittels im Vakuum erhält man das Produkt in Form eines gelblichen Feststoffes.

102: 763 mg, 2.90 mmol (43%). Gelblicher Feststoff, Smp.: 148 °C (Zers.). **IR** (KBr): $\tilde{v} = 2996$, 2942, 2886, 1859, 1792, 1774, 1695, 1457, 1212, 1183, 1155, 1130, 1087, 1059, 925, 918 cm⁻¹. ¹**H NMR** (400 MHz, CD₂Cl₂, 17.0 °C, TMS): $\delta = 3.16-3.23$ (m, 2 H, CHCO), 3.29 (td, J = 6.9/2.5 Hz, 1 H, CHCH₂), 3.38 (td, J = 6.7/2.9Hz, 1 H, CHCH₂), 3.44 (dd, J = 13.4/6.7 Hz, 1 H, NCH₂), 3.59 (dd, J = 12.7/6.2 Hz, 1 H, NCH₂), 4.12 (d, J = 12.9 Hz, 1 H, NCH₂), 4.34 (d, J = 13.4 Hz, 1 H, NCH₂) ppm. ¹³**C NMR** (100 MHz, CD₂Cl₂, 18.5 °C, TMS): $\delta = 39.30$ (d, 1 C, CHCH₂), 41.87 (d, 1 C, CHCH₂), 42.94 (d, 1 C, CHCO), 43.26 (d, 1 C, CHCO), 52.05 (t, 1 C, NCH₂), 52.10 (q, ${}^{4}J_{CF}$ = 3.3 Hz, 1 C, NCH₂), 116.58 (q, ${}^{1}J_{CF}$ = 286.0 Hz, 1 C, CF₃), 156.25 (q, ${}^{2}J_{CF}$ = 36.9 Hz, 1 C, COCF₃), 171.97 (s, 1 C, CO), 171.98 (s, 1 C, CO) ppm. M (C₁₀H₈O₄NF₃) = 263.17. **MS** (CI, CH₅⁺) *m/z* (%): 264 (54, M+H). **HRMS** (FAB, NBA): [M+H]⁺) ber. für C₁₀H₉O₄NF₃, 264.0484, gef. 264.0464.

rac-(1*R*,2*S*,6*R*,7*S*)-9-(Trifluoracetyl)-4-oxa-9-azatricyclo-[5.3.0.0^{2,6}]-decan-3,5-dion (*rac*-113)

102 (61 mg, 0.23 mmol) wurde unter Argonatmosphäre mit abs. MeOH (4 mL) versetzt. Nach 15 min. war das Anhyrid **102** aufgelöst. Das Lösungsmittel wurde im Vakuum entfernt.

rac-113: 68 mg, 0.23 mmol (99%). Braunes Öl. IR (Film): $\tilde{v} = 3193$, 2957, 2713, 2652, 1736, 1692, 1459, 1438, 1354, 1211, 1146, 1078 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.8 °C, TMS): $\delta = 3.14-3.16$ (m, 2 H, CHCO), 3.30 (m, 1 H, CHCHCO₂CH₃), 3.45–3.54 (m, 2 H, CHCHCO₂H, NCH₂CHCHCO₂CH₃), 3.61 (dd, J = 12.4/6.6 Hz, 1 H, NCH₂CHCHCO₂H), 3.72 (2 x s, 3 H, CH₃), 3.93 (d, J = 12.2 Hz, 1 H, NCH₂CHCHCO₂H), 4.11 (dd, J = 13.2/5.7 Hz, 1 H, NCH₂CHCHCO₂CH₃), 10.20 (s, 1 H, CO₂H) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.1 °C, TMS): $\delta = 36.50$ (d, 1 C, CHCHCO₂CH₃), 36.60 (d, 1 C, CHCHCO₂CH₃), 39.67 (d, 1 C, CHCHCO₂H), 39.82 (d, 1 C, CHCHCO₂H), 42.72 (d, 1 C, CH), 42.82 (d, 1 C, CH), 43.64 (d, 1 C, CH), 43.77 (d, 1 C, CH), 51.76 (q, ²*J*_{CF} = 3.3 Hz, 2 C, NCH₂CHCHCO₂H), 52.14 (t, 2 C, NCH₂CHCHCO₂CH₃), 52.33 (q, 1 C, CO₂CH₃), 52.35 (q, 1 C, CO₂CH₃), 116.20 (q, ¹*J*_{CF} = 285.7 Hz, 2 C, CF₃), 156.14 (q, ²*J*_{CF} = 37.0 Hz, 2 C, COCF₃), 171.98 (s, 1 C, CO₂CH₃), 172.35 (s, 1 C, CO₂CH₃), 177.08 (s, 1 C, CO₂H), 177.38 (s, 1 C, CO₂H) ppm. Rotamerenverhältnis (21.8 °C) 50:50. M (C₁₁H₁₂NO₅F₃) = 295.22. MS (CI, CH₅⁺) *m/z* (%): 296 (100, M+H), 278

(91), 264 (94). **HRMS** (EI+): ber. für $C_{11}H_{12}NO_5F_3$, 295.0668; gef. 295.0655.

rac-(1*S*,5*S*,6*S*)-Methyl-3-(2,2,2-trifluoracetyl)-3-azabicyclo[3.2.0]heptan-6-carboxylat (*rac*-117)

102 (646 mg, 2.45 mmol, 1.0 Äq.) wurde mit abs. MeOH (20 mL) 30 min. bei RT gerührt und das Lösungsmittel im Vakuum entfernt. Der entstandene Halbester *rac*-**113** wurde anschließend in abs. CH_2Cl_2 (74 mL) gelöst, mit Oxalylchlorid (0.63 mL, 932 mg, 7.34 mmol, 3.00 Äq.) und einem Tropfen DMF 1 h bei RT gerührt. Das Lösungsmittel wurde im Vakuum entfernt. Der Rückstand wurde dann in abs. Toluol (49 mL) gelöst und über 110 min. langsam zu einem refluxierendem Gemisch aus *N*-Mercaptopyridin-*N*-oxid Natriumsalz (951 mg, 6.38 mmol, 2.60 Äq.), DMAP (90 mg, 0.73 mmol, 0.30 Äq.) und *tert*-Butylthiol (4.4 mL, 3.65 g, 40.5 mmol, 16.5 Äq.) in abs. THF (49 mL) getropft. Nach Abkühlen wurde das Reaktionsgemisch mit EtOAc vermischt, mit ges. NaCl-Lösung gewaschen und über MgSO₄ getrocknet. Das Lösungsmittel wurde im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:1).

rac-117: 427 mg, 1.70 mmol (69%). Gelbes Öl. DC: $R_f = 0.30$ (Et₂O/*n*-Pentan = 1:1). IR (Film): $\tilde{v} = 2955, 2885, 1733, 1693, 1458, 1438, 1349, 1284, 1270, 1209, 1141, 1057, 756 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.7 °C, TMS) <math>\delta = 1.93-2.01$ (m, 0.5 x 2 H, CH₂), 2.50–2.58 (m, 0.50 x 2 H, CH₂), 2.79–2.88 (m, 0.5 x 2 H, 2 x CHCO), 2.94–3.01 (m, 0.52 x 1 H, CHCH₂), 3.06–3.14 (m, 0.48 x 1 H, CHCH₂), 3.20–3.24 (m, 0.48 x 1 H, CHCHCO), 3.30–3.33 (m, 0.52 x 1 H, CHCHCO), 3.39 (dd, J = 13.0/6.8 Hz, 0.48 x 1 H, NCH₂CHCH), 3.48 (dd, J = 13.2/7.8 Hz, 0.52 x 1 H, NCH₂CHCH₂), 3.52 (dd, J = 12.2/6.3 Hz, 0.52 x 1 H, NCH₂CHCH), 3.58 (dd, J = 12.2/7.1 Hz, 0.48 x 1 H, NCH₂CHCH₂), 3.71 (s, 0.5 x 6 H, 2 x CH₃), 3.83 (d, J = 12.2 Hz, 0.48 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.48 x 1 H, NCH₂CHCH₂), 3.90 (d, J = 12.4 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH₂), 3.90 (d, J = 12.4 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH₂), 3.90 (d, J = 12.4 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.48 x 1 H, NCH₂CHCH₂), 3.90 (d, J = 12.4 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH₂), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, NCH₂CHCH), 4.01 (d, J = 12.7 Hz, 0.52 x 1 H, 0.52 x 1 H, 0.52 x Hz) = 0.52 Hz, 0.52 x 1 Hz, 0.55 x 6 H 0.52 x 1 H, NC*H*₂CHCH₂), 4.11 (d, *J* = 13.2 Hz, 0.48 x 1 H, NC*H*₂CHCH) ppm. ¹³C **NMR** (100 MHz, CDCl₃, 18.0 °C, TMS) δ = 27.16 (t, 1 C, CH₂), 27.67 (t, 1 C, CH₂), 32.50 (d, 0.52 x 1 C, CHCH₂), 35.42 (d, 0.48 x 1 C, CHCH₂), 39.12 (d, 0.48 x 1 C, CHCHCO), 40.05 (d, 0.52 x 1 C, CHCO), 40.51(d, 0.48 x 1C, CHCO), 41.76 (d, 0.52 x 1 C, CHCHCO), 52.07 (q, 2 C, 2 x CH₃), 52.34 (q, 0.52 x 1 C, ⁴*J*_{*CF*} = 3.1 Hz, COCF₃N*C*H₂CHCH), 52.65 (t, 0.48 x 1 C, N*C*H₂CHCH), 52.70 (q, 0.48 x 1 C, ⁴*J*_{*CF*} = 3.2 Hz, COCF₃N*C*H₂CHCH₂), 53.16 (t, 0.48 x 1 C, N*C*H₂CHCH₂), 116.32 (q, 1 C, ¹*J*_{*CF*} = 286.0 Hz, CF₃), 116.35 (q, 1 C, ¹*J*_{*CF*} = 285.9 Hz, CF₃), 156.01 (q, 1 C, ²*J*_{*CF*} = 36.6 Hz, COCF₃), 156.05 (q, 1 C, ²*J*_{*CF*} = 36.4 Hz, COCF₃), 174.59 (s, 1 C, CO), 174.79 (s, 1 C, CO) ppm. Rotamerenverhältnis (20.7 °C) 48:52. M (C₁₀H₁₂F₃NO₃) = 251.21. **MS** (CI, CH₅⁺) *m*/*z* (%): 252 (100, [M+H]⁺). **HRMS** (EI+): M⁺ ber. für C₁₀H₁₂F₃NO₃, 251.0769; gef. 251.0767.

rac-(1S,5S,6S)-3-Azabicyclo[3.2.0]heptan-6-carbonsäure (rac-105)

Nach **AAV 4** wurde *rac*-**117** (48 mg, 0.19 mmol) in MeOH:H₂O (1.5 mL, 1:2) wurde unter Eiskühlung eine wässrige NaOH-Lösung (2 M, 0.38 mL, 4.0 Äq.) getropft und anschließend 1 h bei RT gerührt. Das Reaktionsgemisch wurde dann bei 0 °C mit einer HCl-Lösung (1 M) auf pH = 4-5 gebracht. Die wässrige Phase wurde jeweils drei mal mit CH₂Cl₂ und Et₂O extrahiert und dann die wässrige Phase vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgte mittels stark saurem Ionenaustauscher.

rac-105: 24 mg, 0.17 mmol (88%). Farbloser Feststoff, Smp.: 234 °C. **IR** (KBr): $\tilde{v} = 3508$, 2959, 2895, 2764, 2598, 2547, 2363, 1631, 1549, 1467, 1397, 816, 660 cm⁻¹. ¹H NMR (500 MHz, D₂O, 20.8 °C) $\delta = 1.93-2.01$ (m, 1 H, CH₂), 2.38–2.47 (m, 1 H, CH₂), 2.70–2.78 (m, 1 H, CHCO), 3.08–3.16 (m, 1 H, CHCH₂), 3.22–3.31 (m, 3 x 1 H, NCH₂CHCH₂, NCH₂CHCH, CHCHCO), 3.44 (d, J = 12.1 Hz, 1 H, NCH₂CHCH₂), 3.50 (d, J = 11.7 Hz, 1 H, NCH₂CHCH)

ppm. ¹³**C NMR** (125 MHz, D₂O, 21.3 °C, Dioxan) δ = 27.46 (t, 1 C, CH₂), 34.05 (d, 1 C, CHCH₂), 41.58 (d, 1 C, CHCHCO), 42.62 (d, 1 C, CHCO), 52.17 (t, 1 C, NCH₂), 52.26 (t, 1 C, NCH₂), 183.67 (s, 1 C, CO) ppm. M (C₇H₁₁NO₂) = 141.17. **MS** (CI, CH₅⁺) *m/z* (%): 142 (100, [M+H]⁺), 124 (13). **HRMS** (EI+): M⁺ ber. für C₇H₁₁NO₂, 141.0790; gef. 141.0780.

rac-(1*S*,5*S*,6*S*)3-Azabicyclo[3.2.0]heptan-6-carbonsäuremethylester (*rac*-106)

Nach **AAV 3** wurde *rac*-**117** (69 mg, 0.27 mmol) in MeOH (3 mL) und stark basischem Ionenaustauscher (605 mg) 2.2 h bei RT umgesetzt.

rac-106: 34 mg, 0.22 mmol (79%). Farblose Flüssigkeit. **IR** (Film): $\tilde{v} = 3313, 2951, 2857, 1730, 1435, 1354, 1262, 1238, 1199, 1170 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.1 °C, TMS) <math>\delta = 1.74-1.81$ (m, 1 H, CH₂), 2.34 (brs, 1 H, NH), 2.42–2.50 (m, 1 H, CH₂), 2.66–2.70 (m, 1 H, CHCO), 2.72 (2 x dd, J = 11.3/6.2 Hz, J = 11.4/5.8 Hz, 2 x 1 H, 2 x 1 H, NCH₂CHCH₂, NCH₂CHCH), 2.78–2.84 (m, 1 H, CHCH₂), 2.93 (d, J = 11.2 Hz, 1 H, NCH₂CHCH₂), 3.00 (d, J = 11.4 Hz, 1 H, NCH₂CHCH), 2.99–3.03 (m, 1 H, CHCHCO), 3.70 (s, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.8 °C) $\delta = 26.80$ (t, 1 C, CH₂), 35.57 (d, 1 C, CHCH₂), 40.20 (d, 1 C, CHCO), 42.42 (d, 1 C, CHCHCO), 51.95 (q, 1 C, CH₃), 53.50 (t, 1 C, NCH₂CHCH), 53.72 (t, 1 C, NCH₂CHCH₂), 176.42 (s, 1 C, CO) ppm. M (C₈H₁₃NO₂) = 155.20. MS (CI, CH₅⁺) *m/z* (%): 156 (100, [M+H]⁺). HRMS (EI+): M⁺ ber. für C₈H₁₃NO₂, 155.0946; gef. 155.0955.

rac-(1*S*,5*S*,6*S*)-3-Butyl-3-azabicyclo[3.2.0]heptan-6-carbonsäuremethylester (rac-138)

Nach **AAV 2** wurde *rac*-**106** (82.0 mg, 0.53 mmol, 1.0 Äq.) in MeCN (2 mL) mit K₂CO₃ (183 mg, 1.31 mmol, 2.5 Äq.), KI (263 mg, 1.59 mmol, 3.0 Äq.) und Brombutan (**129**) (0.12 mL, 154 mg, 1.12 mmol, 2.1 Äq.) bei 40-45 °C umgesetzt. Reaktionszeit 3 h. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:4, 1% Et₃N).

rac-138: 87 mg, 0.41 mmol (78%). Farbloses Öl. DC: $R_f = 0.16$ (Et₂O/*n*-Pentan = 1:4, 1% Et₃N). **IR** (Film): $\tilde{v} = 2953$, 2873, 2781, 1735, 1434, 1348, 1273, 1243, 1176, 1055 1020 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 19.0 °C, TMS) $\delta = 0.93$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.33–1.42 (m, 2 H, CH₂CH₃), 1.48–1.58 (m, 2 H, NCH₂CH₂), 1.92–2.01 (m, 3 H, NCH₂CHCH₂, NCH₂CHCH₂), 2.88 (d, J = 9.5 Hz, 1 H, NCH₂CHCH₂), 2.90–2.98 (m, 3 x 1 H, CHCHCO, CHCO, NCH₂CHCH), 3.68 (s, 3 H, COOCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.3 °C) $\delta = 14.31$ (q, 1 C, CH₂CH₃), 21.03 (t, 1 C, CH₂CH₃), 27.63 (t, 1 C, NCH₂CHCH₂), 31.38 (t, 1 C, NCH₂CHCH₂), 34.58 (d, 1 C, NCH₂CHCH₂), 40.85 (d, 1 C, CHCHCO), 41.34 (d, 1 C, CHCO), 51.84 (q, 1 C, COOCH₃), 55.83 (t, 1 C, NCH₂CH₂), 60.15 (t, 1 C, NCH₂CHCH), 60.61 (t, 1 C, NCH₂CHCH₂), 176.83 (s, 1 C, CO) ppm. M (C₁₂H₂₁NO₂) = 211.31. MS (CI, CH₅⁺) *m/z* (%): 212 (24, [M+H]⁺), 170 (100). HRMS (EI+): M⁺ ber. für C₁₂H₂₁NO₂, 211.1572; gef. 211.15131. C₁₂H₂₁NO₂ (211.31): ber. C 68.21, H 10.02, N 6.63; gef. C 67.78, H 9.69, N 6.63.

rac-(1*S*,5*S*,6*S*)-3-(But-3-en-1-yl)-3-azabicyclo[3.2.0]heptan-6-carbonsäuremethylester (*rac*-139)

rac-139

Nach **AAV 2** wurde *rac*-**106** (85 mg, 0.54 mmol, 1.0 Äq.) in MeCN (2 mL) mit K₂CO₃ (187 mg, 1.35 mmol, 2.5 Äq.), KI (271 mg, 1.63 mmol, 3.0 Äq.) und 4-Brombut-1-en (**130**) (0.11 mL, 146 mg, 1.08 mmol, 2.0 Äq.) bei 40-45 °C umgesetzt. Reaktionszeit 3 h. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:3, 1% Et₃N).

rac-139: 71 mg, 0.34 mmol (63%). Farbloses Öl. DC: $R_f = 0.22$ (Et₂O/*n*-Pentan = 1:3, 1% Et₃N). **IR** (KBr): $\tilde{v} = 3075$, 2927, 2854, 2783, 1733, 1488, 1457, 1349, 1272, 1191, 1170, 1145, 858 cm⁻¹. ¹**H** NMR (500 MHz, CDCl₃, 18.9 °C, TMS) $\delta = 1.92-1.98$ (m, 1 H, NCH₂CHCH₂), 2.01 (dd, J = 9.6/6.0 Hz, 1 H, NCH₂CHCH), 2.01 (dd, J = 9.4/7.1 Hz, 1 H, NCH₂CHCH₂), 2.31 (m, 2 H, NCH₂CH₂), 2.39 (m, 1 H, NCH₂CHCH₂), 2.55 (m, 2 H, NCH₂CH₂), 2.70–2.78 (m, 1 H, NCH₂CHCH₂), 2.89 (d, J = 9.4 Hz, 1 H, NCH₂CHCH₂), 2.90–2.98 (m, 2 H, CHCO, CHCHCO), 2.94 (d, J = 9.9 Hz, 1 H, NCH₂CHCH), 3.68 (s, 3 H, CH₃), 4.99–5.02 (m, 1 H, CH=CH_{2,cis}), 5.06–5.11 (m, 1 H, CH=CH_{2,trans}), 5.88 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) pm. ¹³C NMR (125 MHz, CDCl₃, 20.1 °C, TMS) $\delta = 27.43$ (t, 1 C, NCH₂CHCH₂), 33.45 (t, 1 C, NCH₂CH₂), 34.37 (d, 1 C, NCH₂CHCH₂), 40.63 (d, 1 C, CHCO), 41.10 (d, 1 C, CHCHCO), 51.65 (q, 1 C, CH₃), 55.10 (t, 1 C, NCH₂CH₂), 59.80 (t, 1 C, NCH₂CHCH), 60.26 (t, 1 C, NCH₂CHCH₂), 115.29 (d, 1 C, CH=CH₂), 136.94 (t, 1 C, CH=CH₂), 176.58 (s, 1 C, CO) ppm. M (C₁₂H₁₉NO₂) = 209.29. MS (FAB, NBA) m/z (%): 210 (92, [M+H]⁺), 168 (100). HRMS (FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₀NO₂, 210.1494; gef. 210.1487. *rac*-(1*S*,5*S*,6*S*)-3-(4,4-Diphenylbut-3-en-1-yl)-3-azabicyclo-[3.2.0]heptan-6-carbonsäuremethylester (*rac*-140)

rac-140

Nach **AAV 2** wurde *rac*-**106** (58 mg, 0.37 mmol) in MeCN (2 mL) mit K₂CO₃ (129 mg, 0.93 mmol, 2.5 Äq.), KI (186 mg, 1.20 mmol, 3.0 Äq.) und einer Lösung des Alkylbromids **131** (214 mg, 0.75 mmol, 2.00 Äq.) in MeCN (2 mL) bei 40-45 °C umgesetzt. Reaktionszeit 3 h. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O/*n*-Pentan = 1:1, 1% Et₃N).

rac-140: 100 mg, 0.28 mmol (75%). Farbloses Öl. DC: $R_f = 0.41$ (Et₂O/*n*-Pentan = 1:1, 1% Et₃N). **IR** (Film): $\tilde{v} = 3055$, 3022, 2947, 2785, 1731, 1494, 1443, 1434, 1349, 1272, 1171, 1073, 1055 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.7 °C, TMS) $\delta = 1.90-2.00$ (m, 3 x 1 H, NCH₂CHCH₂, NCH₂CHCH, NCH₂CHCH₂), 2.34–2.41 (m, 2 + 1 H, NCH₂CH₂, NCH₂CHCH₂), 2.55–2.65 (m, 2 H, NCH₂CH₂), 2.67–2.75 (m, 1 H, NCH₂CHCH₂), 2.83 (d, J = 9.4 Hz, 1 H, NCH₂CHCH₂), 2.87 (d, J = 9.6 Hz, 1 H , NCH₂CHCH), 2.89–2.95 (m, 2 x 1 H, CHCO, CHCHCO), 3.67 (s, 3 H, CH₃), 6.16 (t, J = 7.3 Hz, 1 H, NCH₂CH₂CH), 7.18–7.40 (m, 10 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 22.6 °C, TMS) $\delta = 27.37$ (t, 1 C, NCH₂CHCH₂), 29.46 (t, 1 C, NCH₂CH₂), 34.39 (d, 1 C, NCH₂CHCH₂), 40.59 (d, 1 C, NCH₂CHCH₂), 41.16 (d, 1 C, CHCHCO), 51.62 (q, 1 C, CH₃), 55.51 (t, 1 C, NCH₂CH₂), 59.77 (t, 1 C, NCH₂CHCH), 60.17 (t, 1 C, NCH₂CHCH₂), 126.86 (d, 1 C, C_{ar}), 126.94 (d, 1 C, C_{ar}), 127.24 (d, 2 C, C_{ar}), 127.92 (d, 1 C, NCH₂CH₂CH), 128.08 (d, 2 C, C_{ar}), 128.15 (d, 2 C, C_{ar}), 129.89 (d, 2 C, C_{ar}), 140.16 (s, 1 C, C_{ar}), 142.23 (s, 1 C, C(C₆H₅)₂), 142.77 (s, 1 C, C_{ar}), 176.54 (s, 1 C, CO) ppm. M (C₂₄H₂₇NO₂) = 361.49. MS (CI, CH₅⁺) *m*/z (%): 362 (73, [M+H]⁺), 168 (100). HRMS (FAB, NBA): [M+H]⁺ ber. für C₂₄H₂₈NO₂, 362.2120; gef. 362.2120.

rac-(1*S*,5*S*,6*S*)-3-Butyl-3-aza-bicyclo[3.2.0]heptan-6-carbonsäure (*rac*-169)

rac-169

Nach **AAV 5** wurde *rac*-**138** (27 mg, 0,13 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (81 mg, 0.26 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 45 min.

rac-169: 25 mg, 0.13 mmol (99%). Farbloses Öl. **IR** (Film): $\tilde{v} = 2958$, 2936, 2781. 2554, 2458, 1709, 1573, 1454, 1401, 1346, 1277, 1189, 1051 cm⁻¹. ¹H NMR (500 MHz, D₂O, 22.0 °C) $\delta = 0.90$ (t, J = 7.4 Hz, 3 H, CH₃), 1.30–1.41 (m, 2 H, CH₂CH₃), 1.66–1.76 (m, 2 H, NCH₂CH₂), 1.94–2.03 (m, 1 H, NCH₂CHCH₂), 2.34–2.43 (m, 1 H, NCH₂CHCH₂), 2.69–2.80 (m, 1 H, CHCO), 3.05–3.20 (m, 5 H, NCH₂CHCH₂, NCH₂CHCH, NCH₂CHCH₂), 3.64 (d, J = 11.5 Hz, 1 H, NCH₂CHCH) ppm. ¹³C NMR (125 MHz, D₂O, 20.1 °C, Dioxan) $\delta = 13.41$ (q, 1 C, CH₃), 20.05 (t, 1 C, CH₂CH₃), 27.51 (t, 1 C, NCH₂CHCH₂), 28.12 (t, 1 C, NCH₂CH₂), 33.94 (d, 1 C, NCH₂CHCH₂), 41.31 (d, 1 C, CHCHCO), 42.80 (d, 1 C, CHCO), 55.56 (t, 1 C, NCH₂CH₂), 60.41 (t, 1 C, NCH₂CHCH), 60.56 (t, 1 C, NCH₂CHCH₂), 183.53 (s, 1 C, CO) ppm. M (C₁₁H₁₉NO₂) = 197.28. **MS** (CI, CH₅⁺) *m/z* (%): 198 (100, [M+H]⁺), 180 (14), 154 (17). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₁H₂₀NO₂, 198.1494; gef. 198.1509.

rac-(1*S*,5*S*,6*S*)-3-But-3-enyl-3-azabicyclo[3.2.0]heptan-6-carbonsäure (*rac*-170)

rac-170

Nach **AAV 5** wurde *rac*-**139** (29 mg, 0,14 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ \cdot 8 H₂O (87 mg, 0.28 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 30 min.

rac-170: 26 mg, 0.13 mmol (97%). Farbloses Öl. **IR** (Film): $\tilde{v} = 3079$, 2941, 2783, 2541, 2454, 1707, 1642, 1571, 1469, 1401, 1347, 1276, 1187, 1124, 1057, 995, 915 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 21.2 °C) $\delta = 1.94-2.02$ (m, 1 H, CH₂CHCO), 2.34–2.43 (m, 1 H, CH₂CHCO), 2.48–2.57 (m, 2 H, NCH₂CH₂), 2.71–2.80 (m, 1 H, CHCO), 3.05–3.13 (m, 1 H, NCH₂CHCH₂), 3.14–3.22 (m, 2 H, NCH₂CHCH₂, NCH₂CHCH), 3.23–3.31 (m, 3 H, NCH₂CH₂), CHCHCO), 3.60 (d, *J* = 11.6 Hz, 1 H, NCH₂CHCH₂), 3.65 (d, *J* = 11.7 Hz, 1 H, NCH₂CHCH), 5.15–5.17 (m, 1 H, CH=CH_{2,cis}), 5.20–5.25 (m, 1 H, CH=CH_{2,trans}), 5.81 (ddt, *J* = 17.1/10.3/6.8 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, D₂O, 20.3 °C, Dioxan) $\delta = 27.42$ (t, 1 C, NCH₂CHCH₂), 30.51 (t, 1 C, NCH₂CH₂), 30.90 (d, 1 C, NCH₂CHCH₂), 41.25 (d, 1 C, CHCHCO), 42.77 (d, 1C, CHCO), 54.70 (t, 1 C, NCH₂CH₂), 60.49 (t, 1 C, NCH₂CHCH), 60.66 (t, 1 C, NCH₂CHCH₂), 118.93 (t, 1 C, CH=CH₂), 133.64 (d, 1 C, CH=CH₂), 183.49 (s, 1 C, CO) ppm. M (C₁₁H₁₇NO₂) = 195.26. **MS** (CI, CH⁺₅) *m/z* (%): 196 (100, [M+H]⁺), 178 (14), 154 (33). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₁H₁₈NO₂, 196.1338; gef. 196.1320.

rac-(1*S*,5*S*,6*S*)-3-(4,4-Diphenyl-but-3-enyl)-3-azabicyclo-[3.2.0]heptan-6-carbonsäure (*rac*-171)

rac-171

Nach **AAV 6** wurde *rac*-**140** (33 mg, 0.09 mmol) in MeOH (1 mL) mit LiOH-Lsg. (2 M, 0.45 mL, 10 Äq.) umgesetzt. Reaktionszeit 1 h.

rac-**171**: 30 mg, 0.09 mmol (96%). Farbloses Öl. **IR** (Film): $\tilde{v} = 3079$, 3054, 3023, 2940, 2854, 2784, 1712, 1597, 1574, 1494, 1444, 1402, 1208, 1186, 1074 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 21.6 °C, TMS) $\delta = 1.99-2.07$ (m, 1 H, NCH₂CHC*H*₂), 2.28–2.36 (m, 1 H, NCH₂CHC*H*₂), 2.40–2.48 (m, 2 H, NCH₂CHC*H*, NCH₂C*H*CH₂), 2.49–2.56 (m, 2 H, NCH₂CH₂), 2.78–2.86 (m, 1 H, NCH₂CHCH₂), 2.88–2.98 (m, 3 H, NCH₂CH₂C₁, CHCO), 3.05–3.13 (m, 1 H, C*H*CHCO), 3.36 (2 d, *J* = 12.2, 12.2 Hz, 2 H, NCH₂CHCH, NCH₂CHCH₂), 6.06 (t, *J* = 7.4 Hz, 1 H, C*H*=C(C₆H₅)₂), 7.13–7.38 (m, 10 H, H_ar), 11.83 (sbr, 1 H, COOH) ppm. ¹³C **NMR** (125 MHz, CDCl₃, 20.7 °C) $\delta = 27.41$ (t, 2 C, NCH₂CHCH₂, *C*H₂CH=), 34.12 (d, 1 C, NCH₂CHCH₂), 41.04 (d, 1 C, CHCHCO), 41.24 (d, 1 C, CHCO), 55.32 (t, 1 C, NCH₂CH₂), 59.54 (t, 2 C, NCH₂CH), 124.80 (d, 1 C, *C*H=C(C₆H₅)₂), 127.41 (d + s, 3 C, *C*_{ar}), 127.48 (d, 1 C, *C*_{ar}), 128.33 (d, 2 C C_{ar}), 128.55 (d, 2 C, *C*_{ar}), 129.82 (d, 2 C, *C*_{ar}), 139.70 (s, 1 C, *C*_{ar}), 142.20 (s, 1 C, *C*₄)₅), 179.76 (s, 1 C, CO) ppm. M (C₂₃H₂₅NO₂) = 347.46. **MS** (CI, CH₅) *m/z* (%): (100, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₂₃H₂₆NO₂, 348.1964.

rac-(3a*S*,3b*R*,6a*S*,6b*R*)-5-(2,2,2-Trifluoracetyl)octahydro-1*H*-furo[3',4':3,4]cyclobuta[1,2-c]pyrrol-1-on (*rac*-104)

rac-104

Methode A: Nach AAV 1 wurde 100 (42 mg, 0.50 mmol) mit 59 (164 mg, 0.99 mmol, 2 Äq.) in MeCN:Aceton (5 mL, 10:1) bei 300 nm 25.5 h bestrahlt. Das Rohprodukt wurde mittels SC $(CH_2Cl_2 \rightarrow Et_2)$ gereinigt: Ausbeute 27 mg, 0.11 mmol (22%).

Methode B: 102 (183 mg, 0.69 mmol) wurde in abs. THF (5 mL) vorgelegt, bei 0 °C mit NaBH₄ (66 mg, 1.7 mmol, 2.5 Äq.) versetzt und 30 min. gerührt. Zu dem orangen Gemisch wurde langsam 2 M HCl (3 mL) getropft und das Lösungsmittel im Vakuum eingeengt. Der Rückstand wurde mit CH₂Cl₂ extrahiert. Die vereinigten org. Phasen wurden mit H₂O gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Die Reinigung erfolgte mittels SC (EtOAc): 6 mg, 0.02 mmol (32%).

Methode C: 102 (541 mg, 2.06 mmol) wurde mit MeOH (21 mL) versetzt und 30 min. bei RT gerührt. Das Lösungsmittel wurde im Vakuum entfernt und der Rückstand in CH_2Cl_2 (41 mL) gelöst. Oxalylchlorid (0.21 mL, 311 mg, 2.45 mmol, 1.19 Äq.) und zwei Tropfen DMF wurden zugesetzt, die Reaktionsmischung wurde 1.5 h bei RT gerührt und anschließend das Lösungsmittel entfernt. Das braune Öl wurde in THF (21 mL) gelöst und unter Eiskühlung wurde eine NaBH₄-Lösung (2 M in Triglyme, 0.57 mL, 43 mg, 1.14 mmol) über eine Zeit von 25 min langsam zugetropft. Anschließend wurden noch zwei weitere Portionen NaBH₄ (jeweils: 2 M, 0.1 mL, 7.6 mg, 0.2 mmol) zugesetzt. Das Reaktionsgemisch wurde dann mit HCl (1 M, 0.5 mL) und H₂O (12 mL) versetzt. Die wässrige Phase wurde mit CH_2Cl_2 extrahiert, die vereinigten org. Phasen über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt. Das Rohprodukt wurde chromatographisch (Cyclohexan \rightarrow Et₂O) gereinigt und anschließend aus Cyclohexan umkristallisiert: 302 mg, 1.21 mmol (59%)

rac-104: Farblose Kristalle, Smp.: 109 °C. DC: $R_f = 0.21$ (Et₂O). IR (KBr): $\tilde{v} = 2972$, 2905, 1764, 1692, 1458, 1222, 1206, 1185, 1166, 1132 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.1 °C, TMS): $\delta = 2.74-2.83$ (m, 1 H, CHCO), 2.85 (td, J = 7.7/2.5 Hz, 1H, CHCH₂O), 2.99 (td, J =6.8/4.0 Hz, 0.50 x 1H, CHCHCH₂O), 3.05–3.10 (m, 0.50 x 1H, CHCHCH₂O), 3.13 (t, J = 7.4 Hz, 0.50 x 1H, CHCHCO), 3.21 (td, J = 7.0/2.7 Hz, 0.50 x 1H, CHCHCO), 3.35 (dd, J = 13.0/6.5 Hz, 0.50 x 1H, NCH₂CHCHCH₂O), 3.47–3.55 (m, 1H, NCH₂CHCHCO, NCH₂CHCHCH₂O), 3.63 (dd, J = 12.6/7.1 Hz, 0.50 x 1H, NCH₂CHCHCO), 3.98 (d, J = 12.4 Hz, 0.50 x 1H, NCH₂CHCHCO), 4.08 (d, J = 12.5 Hz, 0.50 x 1H, NCH₂CHCHCO), 4.23 (d, J = 13.1 Hz, 0.50 x 1H, NCH₂CHCHCH₂O), 4.27 (d, J = 13.6 Hz, 0.50 x 1H, NCH₂CHCHCH₂O), 4.36–4.50 (m, 2 H, CH₂O) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.1 °C) δ = 37.86 (d, 1 C, CHCO), 37.92 (d, 1 C, CHCO), 39.10 (d, 1 C, NCH2CHCHCO), 40.98 (d, 1 C, CHCH2O), 41.05 (d, 1 C, CHCH₂O), 41.34 (d, 1 C, NCH₂CHCHCH₂O), 41.71 (d, 1 C, NCH₂CHCHCO), 43.42 (d, 1 C, NCH₂CHCHCH₂O), 52.13 (q, ${}^{4}J_{CF}$ = 3.2 Hz, 2 C, COCF₃NCH₂), 52.23 (t, 1 C, NCH₂), 52.24 (t, 1 C, NCH₂), 73.13 (t, 1 C, CH₂O), 73.47 (t, 1 C, CH₂O), 116.39 (q, ${}^{1}J_{CF}$ = 285.7 Hz, 2 C, CF₃), 156.23 (q, ${}^{2}J_{CF}$ = 37.0 Hz, 1 C, COCF₃), 156.09 (q, ${}^{2}J_{CF}$ = 36.8 Hz, 1 C, COCF₃), 178.38 (s, 1 C, CO), 178.40 (s, 1 C, CO) pmm. Rotamerenverhältnis (21.1 °C) 50:50. M (C₁₀H₁₀F₃NO₃) = 249.06. **MS** (FAB, NBA) *m/z* (%): 250 (100, [M+H]⁺), 239 (75), 195 (95). **HRMS** (FAB, NBA): $[M+H]^+$ ber. für C₁₀H₁₁F₃NO₃, 250.0691; gef. 250.0700.

rac-(3a*S*,3b*R*,6a*S*,6b*R*)-5-(2,2,2-Trifluoracetyl)octahydro-1*H*-furo[3',4':3,4]cyclobuta[1,2-c]pyrrol-1-on (*rac*-109)

Analog **AAV 4** wurde *rac*-**104** (60 mg, 0.24 mmol) in MeOH:H₂O (1.5 mL, 1:2) unter Eiskühlung mit wässriger NaOH-Lösung (1 M, 0.97 mL, 4.0 Äq.) versetzt und anschließend 2 h bei RT gerührt. Das Reaktionsgemisch wurde dann mit einer HCl-Lösung (1 M) auf pH = 1 gebracht.

Das Lösungsmittel wurde im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels stark saurem Ionenaustauscher.

rac-109: 29 mg, 0.17 mmol (71%). Farbloser Feststoff. Smp.: 280 °C (Zersetzung). **IR** (KBr): \tilde{v} = 3333, 2959, 2782, 2714, 2592, 2556, 2479, 1628, 1566, 1451, 1401, 1313, 1218, 1047 cm⁻¹. ¹H **NMR** (500 MHz, D₂O, 19.6 °C, Aceton) δ = 2.42–2.50 (m, 1 H, CHCH₂O), 2.85–2.91 (m, 1 H, CHCHCH₂O), 2.93 (ddd, *J* = 10.4/6.1/1.1 Hz, 1 H, CHCO), 3.26 (dd, *J* = 12.2/7.0 Hz, 1 H, NCH₂CHCHCO), 3.32 (dd, *J* = 12.4/7.6 Hz, 1 H, NCH₂CHCHCH₂O), 3.34–3.40 (m, 1 H, CHCHCO), 3.46 (d, *J* = 12.2 Hz, 1 H, NCH₂CHCHCO), 3.47 (dd, *J* = 12.4/1.3 Hz, 1 H, NCH₂CHCHCH₂O), 3.59 (dd, *J* = 11.2/9.1 Hz, 1 H, CH₂O), 3.79 (dd, *J* = 11.2/5.8 Hz, 1 H, CH₂O) ppm. ¹³C **NMR** (125 MHz, D₂O, 20.8 °C, Aceton) δ = 38.18 (d, 1 C, CHCHCH₂O), 38.59 (d, 1 C, CHCHCO), 40.54 (d, 1 C, CHCH₂O), 180.32 (s, 1 C, CO) ppm. M (C₈H₁₃NO₃) = 171.19. **MS** (FAB, NBA) *m/z* (%): 172 (5, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₈H₁₄NO₃, 172.0974; gef. 172.0982.

rac-(1*R*,5*S*,6*R*,7*S*)-Methyl-7-(methoxymethyl)-3-(trifluoracetyl)-3azabicyclo[3.2.0]heptan-6-carboxylat (*rac*-128)

rac-104 (117 mg, 0.47 mmol, 1 Äq.) wurde in abs. MeOH (1 mL) gelöst und mit Orthoameisensäuretrimethylester (0.1 mL, 97 mg, 0.91 mol, 1.95 Äq.) und einem Tropfen konz. H_2SO_4 für 2 h auf 50 °C erwärmt. Das Lösungsmittel wurde entfernt, der Rückstand in EtOAc aufgenommen, mit ges. NaHCO₃-Lsg. gewaschen und mit MgSO₄ getrocknet. Das Lösungsmittel wurde entfernt und das Rohprodukt mittels SC (Isohexan/EtOAc = 1:1) gereinigt.

rac-128: 110 mg, 0.369 mmol (79%). Gelbes Öl. DC: $R_f = 0.21$ (Et₂O). IR (Film): $\tilde{v} = 2952$, 2929, 2884, 2833, 1731, 1693, 1456, 1437, 1211, 1194, 1140 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 20.3 °C, TMS) δ = 2.48–2.56 (m, 0.50 x 2 H, CHCH₂O), 2.76–2.82 (m, 0.52 x 1 H, CHCHCH₂), 2.89-2.95 (m, 0.48 x 1 H, CHCHCH₂ + 0.50 x 2 H, CHCO), 3.29 (s, 0.52 x 3 H, OCH₃) 3.29 (s, 0.48 x 3 H, OCH₃), 3.33 (dd, J = 13.6/7.2 Hz, 1 H, CHCHCO), 3.38–3.56 (m, 0.50 x 8 H, CH₂O, NCH₂, CHCHCO), 3.58 (dd, J = 12.2/7.3 Hz, 0.48 x 1 H, NCH₂), 3.70 (s, 0.50 x 6 H, COOCH₃), 3.84 (2 x d, J = 12.7 Hz, J = 11.0 Hz, 0.50 x 2 H, NCH₂), 4.02 (2 x d, J = 13.2 Hz, J = 13.0 Hz, 0.50 x 2 H, NCH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.6 °C, TMS) $\delta =$ 35.81 (d, 1 C, CHCHCO), 36.03 (d, 1 C, CHCHCH₂), 38.83 (d, 1 C, CHCHCO), 39.09 (d, 1 C, CHCHCH₂), 39.95 (d, 1 C, CHCH₂O), 40.63 (d, 1 C, CHCH₂O), 41.50 (d, 1 C, CHCO), 42.14 (d, 1 C, CHCO), 51.70 (q, 1 C, COOCH₃), 51.71 (q, 1 C, COOCH₃), 52.02 (q, 1 C, ⁴*J*_{CF} = 3.2 Hz, NCH₂), 52.20 (q, 1 C, ⁴*J_{CF}* = 3.2 Hz, NCH₂), 52.36 (t, 1 C, NCH₂), 52.64 (t, 1 C, NCH₂), 58.89 (q, 1 C, COCH₃), 58.92 (q, 1 C, COCH₃), 71.58 (t, 1 C, CH₂O), 71.60 (t, 1 C, CH₂O), 116.33 (q, 1 C, ${}^{1}J_{CF}$ = 285.8 Hz, CF₃), 116.36 (q, 1 C, ${}^{1}J_{CF}$ = 285.7 Hz, CF₃), 155.99 (q, 1 C, ${}^{2}J_{CF}$ = 36.6 Hz, COCF₃), 156.02 (q, 1 C, ${}^{2}J_{CF}$ = 36.8 Hz, COCF₃), 172.65 (s, 1 C, COO), 172.78 (s, 1 C, COO) ppm. Rotamerenverhältnis (20.3 °C) 48:52. M (C₁₂H₁₆F₃NO₃) = 295.26. **MS** (CI, CH₅⁺) *m/z* (%): 296 (66, [M+H]⁺), 264 (100). **HRMS** (EI+): M⁺ ber. für C₁₂H₁₆F₃NO₄, 295.1031; gef. 295.1036.

rac-(1*R*,5*S*,6*R*,7*S*)-Methyl-7-(methoxymethyl)-3-azabicyclo-[3.2.0]heptan-6-carboxylat·HCl (*rac*-112·HCl)

rac-112·HCl

Nach **AAV 3** wurde *rac*-**128** (22.4 mg, 0.076 mmol) in MeOH (1.5 mL) mit stark basischem Ionenaustauscher (167 mg) umgesetzt. Reaktionszeit 130 min.. Der Rückstand wurde in Et_2O (1 mL) gelöst und mit etherischer HCl (1.3 M, 0.22 mL, 0.29 mmol, 3.8 Äq.).

rac-112·HCl: 18 mg, 0.08 mmol (99%). Farbloser Feststoff. Smp.: 155 °C. **IR** (KBr): $\tilde{v} = 2977$, 2938, 2872, 2734, 1725, 1579, 1446, 1382, 1240, 1177, 1094, 966, 950 cm⁻¹. ¹H **NMR** (500 MHz, D₂O, 25.7 °C) $\delta = 2.67-2.74$ (m, 1 H, CHCH₂O), 2.94–3.00 (m, 1 H, CHCHCH₂O), 3.16 (dd, J = 10.3/5.8 Hz, 1 H, CHCO), 3.31 (s, 3 H, OCH₃), 3.28–3.36 (m, 2 H, NCH₂), 3.47–3.55 (m, 3 H, NCH₂, CHCHCO), 3.56 (dd, J = 10.1/5.7 Hz, 1 H, CH₂O), 3.60 (dd, J = 10.0/7.1 Hz, 1 H, CH₂O), 3.74 (s, 3 H, COOCH₃) ppm. ¹³C **NMR** (100 MHz, D₂O, 19.7 °C) $\delta = 36.89$ (d, 1 C, CHCHCO), 37.30 (d, 1 C, CHCHCH₂O), 38.48 (d, 1 C, CHCH₂O), 40.80 (d, 1 C, CHCO), 50.80 (t, 1 C, NCH₂), 50.95 (t, 1 C, NCH₂), 52.50 (q, 1 C, COOCH₃), 58.39 (q, 1 C, OCH₃), 71.46 (t, 1 C, CH₂O), 175.16 (s, 1 C, CO) ppm. M (C₁₀H₁₇NO₃*cdot*HCl) = 235.71. **MS** (CI, CH₅⁺) *m/z* (%): 200 (61, [M+H]⁺), 168 (100). **HRMS** (EI+): ber. für C₁₀H₁₇NO₃, 199.1208; gef. 199.1218. C₁₀H₁₇NO₃*cdot*HCl + 1/8 H₂O (244.71): ber. C 50.47, H 7.73, N 5.89; gef. C 50.15, H 7.70, N 5.70.

rac-(1*R*,5*S*,6*R*,7*S*)-7-(Methoxymethyl)-3-azabicyclo[3.2.0]heptan-6-carbonsäure (*rac*-111)

Nach **AAV 4** wurde *rac*-**128** (70 mg, 0.24 mmol) in MeOH:H₂O (2 mL, 1:1) unter Eiskühlung mit wässriger NaOH-Lösung (1 M, 0.95 mL, 4.0 Äq.) versetzt und anschließend 1.5 h bei RT gerührt. Das Reaktionsgemisch wurde dann bei 0 °C mit einer wässrigen HCl-Lösung (1 M) auf pH = 1 gebracht. Die wässrige Phase wurde drei mal mit CH₂Cl₂ extrahiert und vom Lösungsmittel befreit. Die Reinigung des Rohproduktes erfolgte mittels stark saurem Ionenaustauscher.

rac-111: 42 mg, 0.23 mmol (94%). Farbloser Feststoff, Smp.: 242 °C (Zers.). **IR** (KBr): \tilde{v} = 3432, 2962, 2827, 2746, 2578, 1615, 1457, 1383, 1304, 1283, 1121, 1100, 960, 679 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 19.3 °C, Dioxan) δ = 2.50–2.57 (m, 1 H, CHCH₂O), 2.89–2.95 (m, 2 H, CHCO, CHCHCH₂O), 3.26 (dd, *J* = 12.2/7.0 Hz, 1 H, NCH₂), 3.32 (dd, *J* = 12.5/7.6 Hz,

1 H, NCH₂), 3.32 (s, 3 H, OCH₃), 3.35–3.40 (m, 1 H, CHCHCO), 3.46 (d, J = 12.1 Hz, 1 H, NCH₂), 3.47 (d, J = 12.3 Hz, 1 H, NCH₂), 3.51 (dd, J = 9.7/8.7 Hz, 1 H, CH₂O), 3.64 (dd, J = 9.8/5.1 Hz, 1 H, CH₂O) ppm. ¹³C NMR (125 MHz, D₂O, 20.3 °C, Dioxan) $\delta = 38.32$ (d, 1 C, CHCHCH₂O), 38.48 (d, 1 C, CHCH₂O), 38.52 (d, 1 C, CHCHCO), 43.74 (d, 1 C, CHCO), 51.59 (t, 1 C, NCH₂), 51.68 (t, 1 C, NCH₂), 58.87 (q, 1 C, OCH₃), 73.12 (t, 1 C, CH₂O), 179.61 (s, 1 C, CO) ppm. M (C₉H₁₅NO₃) = 185.22. MS (CI, CH₅⁺) *m/z* (%): 186 (50, [M+H]⁺), 168 (100). HRMS (EI+): M⁺ ber. für C₉H₁₅NO₃, 185.1052; gef. 185.1081.

rac-(1*R*,5*S*,6*R*,7*S*)-Methyl-3-butyl-7-(methoxymethyl)-3-azabicyclo[3.2.0]heptan-6-carboxylat (*rac*-141)

rac-141

Nach **AAV 2** wurde *rac*-**112**·HCl (74 mg, 0.32 mmol) mit K₂CO₃ (109 mg, 0.786 mmol, 2.5 Äq.), KI (167 mg, 0.943 mmol, 3.0 Äq.) und Brombutan (**129**) (0.07 mL, 90 mg, 0.65 mmol, 2.1 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 2 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 2:1, 1% Et₃N) gereinigt.

rac-141: 72 mg, 0.28 mmol (89%). Farbloses Öl. DC: $R_f = 0.27$ (Et₂O/*n*-Pentan = 2:1). IR (Film): $\tilde{v} = 2931$, 2893, 2874, 2780, 1731, 1457, 1434, 1357, 1241, 1192, 1158, 1125, 1101, 1079 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 19.9 °C, TMS) $\delta = 0.92$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.32–1.43 (m, 2 H, CH₂CH₃), 1.46–1.54 (m, 2 H, NCH₂CH₂), 1.98 (m, 2 H, NCH₂), 2.42–2.49 (m, 3 H, CHCHCH₂O, NCH₂CH₂), 2.53–2.62 (m, 1 H, CHCH₂O), 2.86 (d, J = 9.6 Hz, 1 H, NCH₂), 2.90 (d, J = 9.7 Hz, 1 H, NCH₂), 3.01–3.09 (m, 2 H, CHCHCO, CHCHCO), 3.28 (s, 3 H, OCH₃), 3.40 (dd, J = 9.3/6.6 Hz, 1 H, CH₂O), 3.47 (dd, J = 9.3/6.8 Hz, 1 H, CH₂O), 3.66 (s, 3 H, COOCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.8 °C) $\delta = 14.28$ (q, 1 C, CH₂CH₃), 20.94 (t, 1 C, CH_2CH_3), 31.31 (t, 1 C, NCH_2CH_2), 37.56 (d, 1 C, CHCHCO), 38.34 (d, 1 C, $CHCHCH_2$), 40.03 (d, 1 C, $CHCH_2$), 42.15 (d, 1 C, CHCO), 51.48 (q, 1 C, $COOCH_3$), 55.63 (t, 1 C, NCH_2CH_2), 58.98 (q, 1 C, OCH_3), 59.67 (t, 1 C, $NCH_2CHCHCO$), 59.88 (t, 1 C, $NCH_2CHCHCH_2O$), 72.93 (t, 1 C, CH_2O), 174.64 (s, 1 C, CO) ppm. M ($C_{14}H_{25}NO_3$) = 255.35. **MS** (FAB, NBA) m/z (%): 256 (68, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für $C_{14}H_{26}NO_3$, 256.1913; gef. 256.1907.

rac-(1*R*,5*S*,6*R*,7*S*)-Methyl-3-(but-3-en-1-yl)-7-(methoxymethyl)-3azabicyclo[3.2.0]heptan-6-carboxylat (*rac*-142)

rac-142

Nach **AAV 2** wurde *rac*-**112**·HCl (58 mg, 0.25 mmol) mit K₂CO₃ (85 mg, 0.612 mmol, 2.5 Äq.), KI (122 mg, 0.767 mmol, 3.0 Äq.) und 4-Brombut-1-en (**130**) (0.05 mL, 67 mg, 0.49 mmol, 2.0 Äq.) in MeCN (1.5 mL) bei 40 °C umgesetzt. Reaktionszeit 2 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 2:1, 1% Et₃N) gereinigt.

rac-142: 52 mg, 0.20 mmol (83%). Gelbes Öl. DC: $R_f = 0.30$ (Et₂O/*n*-Pentan = 2:1). IR (Film): $\tilde{v} = 3075, 2977, 2943, 2893, 2783, 1730, 1641, 1435, 1352, 1240, 1192, 1177, 1158, 1125, 1101, 911 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 18.5 °C, TMS) <math>\delta = 1.97-2.06$ (m, 2 H, NCH₂), 2.26–2.32 (m, 2 H, NCH₂CH₂), 2.44–2.51 (m, 1 H, CHCHCH₂O), 2.51–2.60 (m, 3 H, CHCH₂O, NCH₂CH₂), 2.87 (d, J = 9.5 Hz, 1 H, NCH₂), 2.91 (d, J = 9.5 Hz, 1 H, NCH₂), 3.01–3.09 (m, 2 H, CHCO, CHCHCO), 3.28 (s, 3 H, OCH₃), 3.40 (dd, J = 9.3/6.6 Hz, 1 H, CH₂O), 3.47 (dd, J = 9.3/6.8 Hz, 1 H, CH₂O), 3.66 (s, 3 H, COOCH₃), 4.98–5.00 (m, 1 H, CH=CH_{2,cis}), 5.05–5.10 (m, 1 H, CH=CH_{2,trans}), 5.87 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 19.6 °C) $\delta = 33.60$ (t, 1 C, NCH₂CH₂), 37.55 (d, 1 C, CHCHCO), 38.30 (d, 1 C, CHCHCH₂O), 40.02 (d, 1 C, CHCH₂O), 42.11 (d, 1 C, CHCO), 51.51 (q, 1 C, COOCH₃), 55.17 (t, 1 C, NCH₂CH₂), 58.99 (q, 1 C, OCH₃), 59.52 (t, 1 C, NCH₂CHCHCO), 59.74 (t, 1 C, NCH₂CHCHCH₂O), 72.88 (t, 1 C, CH₂O), 115.48 (t, 1 C, CH=CH₂), 137.16 (d, 1 C, CH=CH₂), 174.60 (s, 1 C, CO) ppm. M (C₁₄H₂₃NO₃) = 253.34. **MS** (FAB, NBA) m/z (%): 254 (56, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₄H₂₄NO₃, 254.1756; gef. 254.1753.

rac-(1*R*,5*S*,6*R*,7*S*)-Methyl 3-(4,4-diphenylbut-3-en-1-yl)-7-(methoxymethyl)-3-azabicyclo[3.2.0]heptan-6-carboxylat (*rac*-143)

Nach **AAV 2** wurde *rac*-**112**·HCl (71 mg, 0.30 mmol) mit K_2CO_3 (104 mg, 0.753 mmol, 2.51 Äq.), KI (153 mg, 0.919 mmol, 3.07 Äq.) in MeCN (2 mL) und einer Lösung des Alkylbromids **131** (124 mg, 0.432 mmol, 1.44 Äq.) in MeCN (2 mL) bei 40 °C umgesetzt. Reaktionszeit 3h.

Die Reinigung des Rohproduktes erfolgte mittels SC (Et_2O/n -Pentan = 1:1).

rac-143: 64 mg, 0.16 mmol (52%). Farbloses Öl. DC: $R_f = 0.17$ (Et₂O/*n*-Pentan = 1:1). IR (Film): $\tilde{v} = 3079$, 3054, 3022, 2944, 2891, 2786, 1728, 1494, 1443, 1434, 1352, 1238, 1191, 1175, 1123, 1100, 1076, 760, 701 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.0 °C, TMS) $\delta = 1.97$ (t, J = 9.1 Hz, 1 H, NCH₂), 1.98 (t, J = 9.5 Hz, 1 H, NCH₂), 2.35 (q, J = 7.3 Hz, 2 H, NCH₂CH₂), 2.43–2.47 (m, 1 H, CHCHCO), 2.53–2.57 (m, 1 H, CHCH₂O), 2.58 (t, J = 7.3 Hz, 2 H, NCH₂CH₂), 2.81 (d, J = 9.5 Hz, 1 H, NCH₂CHCHCO), 2.85 (d, J = 9.6 Hz, 1 H, NCH₂CHCHCH₂), 3.00–3.07 (m, 2 x 1 H, CHCO, NCH₂CHCHCH₂), 3.26 (s, 3 H, OCH₃), 3.39 (dd, J = 9.3/6.6 Hz, 1 H, CH₂O), 3.46 (dd, J = 9.3/6.8 Hz, 1 H, CH₂O), 3.65 (s, 3 H, COOCH₃),

6.16 (t, J = 7.3 Hz, 1 H, $CHC(C_6H_5)_2$), 7.17–7.32 (m, 8 H_{ar}), 7.37 (m, 2 H_{ar,meta}) ppm. ¹³C NMR (125 MHz, CDCl₃, 22.9 °C) $\delta = 29.46$ (t, 1 C, NCH₂CH₂), 37.39 (d, 1 C, CHCHCH₂), 38.16 (d, 1 C, CHCHCO), 39.77 (d, 1 C, CHCH₂O), 41.87 (d, 1 C, CHCO), 51.29 (q, 1 C, OCH₃), 55.51 (t, 1 C, NCH₂CH₂), 58.76 (q, 1 C, COOCH₃), 59.34 (t, 1 C, NCH₂CHCHCO), 59.53 (t, 1 C, NCH₂CHCHCH₂), 72.67 (t, 1 C, CH₂O), 126.86 (d, 1 C, C_{ar,para}), 126.95 (d, 1 C, C_{ar,para}), 127.23 (d, 2 C, C_{ar,ortho}), 127.81 (d, 1 C, CHC(C₆H₅)₂), 128.09 (d, 2 C, C_{ar,meta}), 128.16 (d, 2 C, C_{ar,meta}), 129.87 (d, 2 C, C_{ar,ortho}), 140.15 (s, 1 C, C_{q,ar}), 142.25 (s, 1 C, C(C₆H₅)₂), 142.72 (s, 1 C, C_{q,ar}), 174.37 (s, 1 C, CO) ppm. M (C₂₆H₃₁NO₃) = 405.54 MS (CI, CH₅⁺) *m/z* (%): 406 (100, [M+H]⁺), 374 (97), 212 (98). HRMS (FAB, NBA): [M+H]⁺ ber. C₂₆H₃₂NO₃, 406.2382; gef. 406.2386. (C₂₆H₃₁NO₃): ber. C 3.45, H 77.01, N 7.71; gef. C 3.33, H 76.60, N 7.86.

rac-(1*R*,5*S*,6*R*,7*S*)-3-Butyl-7-(methoxymethyl)-3-azabicyclo-[3.2.0]heptan-6-carbonsäure (*rac*-172)

rac-172

Nach **AAV 5** wurde *rac*-**141** (30 mg, 0.12 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ \cdot 8 H₂O (73 mg, 0.23 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 4.5 h.

rac-**172**: 28 mg, 0.11 mmol (99%). Farbloses Öl. **IR** (Film): $\tilde{v} = 2957$, 2933, 2874, 2473, 1707, 1577, 1458, 1389, 1192, 1100 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 18.6 °C, Dioxan) $\delta = 0.93$ (t, J = 7.4 Hz, 3 H, CH₂CH₃), 1.35–1.43 (m, 2 H, CH₂CH₃), 1.69–1.78 (m, 2 H, NCH₂CH₂), 2.54–2.61 (m, 1 H, CHCH₂O), 2.88–2.94 (m, 1 H, CHCHCH₂O), 2.96 (dd, J = 10.3/6.0 Hz, 1 H, CHCO), 3.18–3.31 (m, 4 H, NCH₂, NCH₂CH₂), 3.32 (s, 3 H, OCH₃), 3.34–3.39 (m, 1 H, CHCHCO), 3.49 (t, J = 9.3 Hz, 1 H, CH₂O), 3.63 (dd, J = 9.8/5.0 Hz, 1 H, CH₂O), 3.61–3.70 (m, 2 H, NCH₂) ppm. ¹³C **NMR** (125 MHz, D₂O, 20.1 °C, Dioxan) $\delta = 13.38$ (q, 1 C, CH₂CH₃),

20.01 (t, 1 C, CH_2CH_3), 28.08 (t, 1 C, NCH_2CH_2), 38.21 (d, 1 C, $CHCHCH_2O$), 38.29 (d, 1 C, CHCHCO), 38.41 (d, 1 C, $CHCH_2O$), 44.12 (d, 1 C, CHCO), 55.63 (t, 1 C, NCH_2CH_2), 58.88 (q, 1 C, OCH_3), 59.87 (t, 1 C, NCH_2), 59.98 (t, 1 C, NCH_2), 73.16 (t, 1 C, CH_2O), 179.75 (s, 1 C, CO) ppm. M ($C_{13}H_{23}NO_3$) = 241.33. **MS** (FAB, NBA) m/z (%): 242 (84, $[M+H]^+$). **HRMS** (FAB, NBA): $[M+H]^+$ ber. für $C_{13}H_{24}NO_3$, 242.1756; gef. 242.1740.

rac-(1*R*,5*S*,6*R*,7*S*)-3-(But-3-en-1-yl)-7-(methoxymethyl)-3-azabicyclo[3.2.0]heptan-6-carbonsäure (*rac*-173)

rac-173

Nach **AAV 5** wurde *rac*-**142** (24 mg, 0.09 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (60 mg, 0.19 mmol, 2.0 Äq.) umgesetzt. Reaktionszeit 4.5 h.

rac-173: 22 mg, 0.9 mmol (99%). Farbloses Öl. IR (Film): $\tilde{v} = 3075$, 2976, 2927, 2892, 2807, 2782, 2542, 1707, 1641, 1577, 1390, 1192, 1123, 1101, 915 cm⁻¹. ¹H NMR (500 MHz, D₂O, 17.5 °C, Dioxan) $\delta = 2.51-2.61$ (m, 3 H, NCH₂CH₂, CHCH₂O), 2.88–2.94 (m, 1 H, CHCHCH₂O), 2.96 (dd, J = 10.4/6.1 Hz, 1 H, CHCO), 3.18–3.32 (m, 4 H, NCH₂, NCH₂CH₂), 3.32 (s, 3 H, OCH₃), 3.33–3.39 (m, 1 H, CHCHCO), 3.48 (dd, J = 9.7/8.9 Hz, 1 H, CH₂O), 3.63 (dd, J = 9.8/4.9 Hz, 1 H, CH₂O), 3.60–3.68 (m, 2 H, NCH₂), 5.17–5.20 (m, 1 H, CH=CH_{2,cis}), 5.23–5.27 (m, 1 H, CH=CH_{2,trans}), 5.83 (ddt, J = 17.1/10.2/6.8 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, D₂O, 21.1 °C, Dioxan) $\delta = 30.57$ (t, 1 C, NCH₂CH₂), 38.23 (d, 1 C, CHCHCH₂O), 38.31 (d, 1 C, CHCHCO), 38.39 (d, 1 C, CHCH₂O), 44.18 (d, 1 C, CHCO), 54.84 (t, 1 C, NCH₂CH₂), 58.88 (q, 1 C, OCH₃), 60.01 (t, 1 C, NCH₂), 60.14 (t, 1 C, NCH₂), 73.17 (t, 1 C, CH₂O), 119.02 (t, 1 C, CH=CH₂), 133.67 (d, 1 C, CH=CH₂), 179.77 (s, 1 C, CO) ppm. M (C₁₃H₂₁NO₃) = 239.15. MS (FAB, NBA) *m/z* (%): 240 (100, [M+H]⁺). HRMS (FAB,

NBA): [M+H]⁺ ber. für C₁₃H₂₂NO₃, 240.1600; gef. 240.1607.

rac-(1*R*,5*S*,6*R*,7*S*)-3-(4,4-Diphenylbut-3-en-1-yl)-7-(methoxymethyl)-3-azabicyclo[3.2.0]heptan-6-carbonsäure (*rac*-174)

rac-174

Nach **AAV 6** wurde *rac*-**143** (24 mg, 0.06 mmol) in MeOH (1.5 mL) mit LiOH-Lsg. (2 M, 0.29 mL, 10 Äq.) umgesetzt. Reaktionszeit 21.5 h.

rac-174: 20 mg, 0.05 mmol (87%). Farbloses Öl. **IR** (Film): $\tilde{v} = 3055$, 3022, 2927, 2890, 2827, 2480, 1709, 1597, 1575, 1494, 1444, 1242, 1193, 1122, 1101 cm⁻¹. ¹H **NMR** (500 MHz, CDCl₃, 20.55 °C, TMS) $\delta = 2.31-2.41$ (m, 2 H, NCH₂), 2.46–2.54 (m, 2 H, NCH₂CH₂), 2.58–2.67 (m, 2 H, CHCHCH₂O, CHCH₂O), 2.87 (t, J = 7.9 Hz, 2 H, NCH₂CH₂), 3.15 (dd, J = 9.6/5.9 Hz, 1 H, CHCO), 3.19–3.28 (m, 2 H, NCH₂CHCHCO, CHCHCO), 3.23 (s, 3 H, OCH₃), 3.33 (d, J = 10.7 Hz, 1 H, NCH₂CHCHCHC₂O), 3.41 (t, J = 8.9 Hz, 1 H, CH₂O), 3.55 (dd, J = 9.4/5.0 Hz, 1 H, CH₂O), 6.06 (t, J = 7.4 Hz, 1 H, CH=C(C₆H₅)₂), 7.12–7.17 (m, 2 H, H_{ar}), 7.17–7.28 (m, 5 H, H_{ar}), 7.29–7.34 (m, 1 H, H_{ar}), 7.34–7.39 (m, 2 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.3 °C) $\delta = 27.68$ (t, 1 C, NCH₂CH₂), 37.92 (d, 1 C, CHCHCO), 38.25 (d, 1 C, CHCHCH₂O), 38.76 (d, 1 C, CHCH₂O), 42.39 (d, 1 C, CHCO), 55.34 (t, 1 C, NCH₂CH₂), 58.87 (q, 1 C, OCH₃), 59.03 (t, 1 C, NCH₂), 59.10 (t, 1 C, NCH₂), 73.21 (t, 1 C, CH₂O), 125.22 (d, 1 C, CH=C(C₆H₅)₂), 127.39 (d, 2 C, C_{ar,ortho}), 127.40 (d, 1 C, C_{ar,para}), 127.50 (d, 1 C, C_{ar,para}), 128.35 (d, 2 C, C_{ar,meta}), 128.57 (d, 2 C, C_{ar,meta}), 129.81 (d, 2 C, C_{ar,ortho}), 139.78 (s, 1 C, C_{ar}),

142.25 (s, 1 C, C_{ar}), 144.05 (s, 1 C, $C(C_6H_5)_2$), 177.02 (s, 1 C, CO) ppm. M ($C_{25}H_{29}NO_3$) = 391.51. **MS** (CI, CH₅⁺) m/z (%): 392 (30, [M+H]⁺), 198 (100), 183 (57), 145 (77). **HRMS** (EI+): M⁺ ber. für C₂₅H₂₉NO₃, 391.2147; gef. 391.2153.

(1*R*,5*S*,6*R*,7*S*)-Dimethyl-3-(trifluoracetyl)-3-azabicyclo-[3.2.0]heptan-6,7-dicarboxylat (*meso*-118)

102 (200 mg, 0.761 mmol) wurde mit MeOH (10 mL) und mit konz. H_2SO_4 (2 Tropfen) 5 h zum Rückfluss erhitzt. Das Lösungsmittel wurde im Vakuum entfernt, der Rückstand in Et₂O aufgenommen, drei mal mit ges. NaHCO₃-Lsg. gewaschen und über MgSO₄ getrocknet. Die Reinigung des Rohproduktes erfolgte mittels SC (Et₂O).

118: 142 mg, 0.46 mmol (60%). Farbloser Feststoff. Smp.: 75 °C. DC: $R_f = 0.46$ (Et₂*O*). **IR** (KBr): $\tilde{v} = 2959$, 2920, 2890, 2858, 1736, 1707, 1443, 1363, 1258, 1198, 1134, 1083, 1013, 925, 902, 751, 724 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 21.5 °C, TMS) $\delta = 3.08-3.13$ (m, 2 H, CHCO), 3.28 (t, J = 7.7 Hz, 1 H, CHCHCO), 3.46–3.51 (m, 1 H, CHCHCO), 3.49 (dd, J = 13.4/7.6 Hz, 1 H, NCH₂), 3.59 (dd, J = 12.3/6.7 Hz, 1 H, NCH₂), 3.71 (2 x s, 6 H, CH₃), 3.91 (d, J = 12.3 Hz, 1 H, NCH₂), 4.09 (d, J = 13.6 Hz, 1 H, NCH₂) ppm. ¹³**C NMR** (125 MHz, CDCl₃, 20.0 °C, TMS) $\delta = 36.53$ (d, 1 C, CHCO), 39.72 (d, 1 C, CHCO), 42.80 (d, 1 C, CHCHCO), 43.71 (d, 1 C, CHCHCO), 51.79 (q, ⁴ $J_{CF} = 3.2$ Hz, 1 C, NCH₂), 52.15 (t, 1 C, NCH₂), 52.24 (q, 1 C, OCH₃), 52.25 (q, 1 C, OCH₃), 116.23 (q, ² $J_{CF} = 36.9$ Hz, 1 C, COCF₃), 156.04 (q, ¹ $J_{CF} = 285.8$ Hz, 1 C, CF₃), 171.91 (s, 1 C, CO), 172.24 (s, 1 C, CO) ppm. M (C₁₂H₁₄F₃NO₅) = 309.24. **MS** (CI, CH₅⁺) m/z (%): 310 (92, [M+H]⁺), 278 (100). **HRMS** (EI+): ber. für C₁₂H₁₄F₃NO₅, 309.0824; gef. 309.0825. C₁₂H₁₄F₃NO₅ (309.24): M⁺ ber. C 46.61, H 4.56, N 4.53; gef. C 46.54, H 4.56, N 4.58.

rac-(1*R*,5*S*,6*S*,7*S*)-Dimethyl 3-(2,2,2-trifluoracetyl)-3-azabicyclo-[3.2.0]heptan-6,7-dicarboxylat (*rac*-120)

rac-120

118 (280 mg, 0.906 mmol) wurde in MeCN (13.5 mL) gelöst und mit DBU (0.17 mL, 0.173 mg, 1.14 mmol, 1.3 Äq.) für 7.25 h auf 40 °C erhitzt. Nach Abkühlen der Reaktionslösung wurde 1M HCL (1.5 mL) zugetropft, mit H₂O (5 mL) versetzt und mit CH₂Cl₂ extrahiert. Die vereinigten organsichen Phasen wurden über MgSO₄ getrocknet. Das Rohprodukt (*cis/trans* = 1:5) wurde mehrfach mittels SC (Et₂O/*n*-Pentan = 2:1) gereinigt. Es konnten 12% Edukt **118** wieder zurück gewonnen werden.

rac-120: 119 mg, 0.385 mmol (42%). Farbloses Öl. DC: $R_f = 0.41$ (Et₂O). **IR** (Film): $\tilde{v} = 2957$, 2889, 1732, 1693, 1459, 1438, 1269, 1205, 1142, 1021 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.0 °C, TMS) $\delta = 3.13$ (dd, J = 13.6/6.6 Hz, 1 H, CHCO), 3.18-3.27 (m, 4 H, CHCO, CHCO, CHCHCO), 3.29-3.36 (m, 2 H, NCH₂, CHCHCO), 3.39-3.46 (m, 1 H, NCH₂), 3.50 (dd, J = 12.2/5.3 Hz, 1 H, NCH₂), 3.55 (dd, J = 13.1/8.1 Hz, 1 H, NCH₂), 3.56-3.60 (m, 1 H, CHCO), 3.62 (t, J = 9.2 Hz, 1 H, CHCHCO), 3.72 (s, 3 H, CH₃), 3.73 (s, 9 H, CH₃), 3.93 (dd, J = 12.2/1.6 Hz, 1 H, NCH₂), 3.98 (d, J = 13.0 Hz, 1 H, NCH₂), 4.02 (dd, J = 14.0/1.6 Hz, 1 H, NCH₂), 4.13 (d, J = 13.1 Hz, 1 H, NCH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.5 °C, TMS) $\delta = 35.63$ (d, 1 C, CHCO/CHCHCO), 36.98 (d, 1 C, CHCO), 38.31 (d, 1 C, CHCHCO), 42.06 (d, 1 C, CHCO/CHCHCO), 42.57 (d, 1 C, CHCO), 47.64 (q, $^4J_{CF} = 3.5$ Hz, NCH₂), 48.30 (t, 1 C, NCH₂), 51.62 (q, $^4J_{CF} = 3.2$ Hz, NCH₂), 52.01 (t, 1 C, NCH₂), 52.14 (q, 1 C, CH₃), 52.34 (q, 2 C, CH₃), 52.40 (q, 1 C, CH₃), 116.18 (q, $^1J_{CF} = 286.1$ Hz, CF₃), 116.19 (q, $^1J_{CF} = 285.4$ Hz, CF₃), 155.61 (q, $^2J_{CF} = 26.7$ Hz, COCF₃), 155.90 (q, $^2J_{CF} = 26.3$ Hz, COCF₃), 170.85 (s, 2 C,

CO), 172.80 (s, 1 C, CO), 172.91 (s, 1 C, CO) ppm. Rotamerenverhältnis (21.0 °C) 50:50. M $(C_{12}H_{14}F_3NO_5) = 309.24$. **MS** (CI, CH₅⁺) *m/z* (%): 310 (100, [M+H]⁺). **HRMS** (EI+): M⁺ ber. für C₁₂H₁₄F₃NO₅, 309.0824; gef. 309.0838.

(1*R*,5*S*,6*R*,7*S*)-Dimethyl-3-azabicyclo[3.2.0]heptan-6,7dicarboxylat (*meso*-108)

Nach **AAV 3** wurde **118** (342 mg, 1.11 mmol) in MeOH (11 mL) mit stark basischem Ionenaustauscher (2.43 g) umgesetzt. Reaktionszeit 2 h. Die Reinigung erfolgte mittels SC (CH_2Cl_2 /MeOH = 20:1, 1% Et₃N).

108: 150 mg, 0.70 mmol (64%). Farbloser Feststoff. Smp.: 76 °C. DC: $R_f = 0.31$ (CH₂Cl₂ /MeOH = 5 :1). **IR** (Film): $\tilde{v} = 3308$, 2989, 2954, 2923, 2865, 1735, 1712, 1438, 1370, 1263, 1201, 1172 cm⁻¹. ¹**H** NMR (500 MHz, CDCl₃, 19.7 °C, TMS) $\delta = 2.37$ (s, 1 H, NH), 2.74–2.79 (m, 2 H, NCH₂), 3.01 (d, J = 11.4 Hz, 2 H, NCH₂), 3.03–3.05 (m, 2 H, CHCO), 3.10–3.16 (m, 2 H, CHCHCO), 3.68 (s, 6 H, CH₃) ppm. ¹³**C** NMR (125 MHz, CDCl₃, 21.2 °C, TMS) $\delta = 39.22$ (d, 2 C, CHCHCO), 42.79 (d, 2 C, CHCO), 51.87 (q, 2 C, CH₃), 52.32 (t, 2 C, NCH₂), 173.40 (s, 2 C, CO) ppm. M (C₁₀H₁₅NO₄) = 213.23. MS (CI, CH₅⁺) m/z (%): 214 (33, [M+H]⁺), 182 (100). **HRMS** (EI+): M⁺ ber. für C₁₀H₁₅NO₄, 213.1001; gef. 213.0993.

rac-(1*R*,5*S*,6*R*,7*R*)-Dimethyl-3-azabicyclo[3.2.0]heptan-6,7-dicarboxylat (*rac*-119)

Ein *cis/trans*-Gemisch **118**:*rac*-**120** (254 mg, 0.823 mmol, *cis/trans* = 1:5) wurde nach **AAV 3** in MeOH (8.2 mL) und stark basischem Ionenaustauscher (1.8 g) umgesetzt. Reaktionszeit 2.3 h. Die Reinigung des Produktgemisches erfolgte mittels SC ($CH_2Cl_2/MeOH = 20:1$, 1% Et₃N). Ausbeute *cis/trans* = 3%:53% (**118**:*rac*-**119**).

rac-**119**: 93 mg, 0.44 mmol (53%). Farbloses Öl. DC: $R_f = 0.41$ (CH₂Cl₂ /MeOH = 5 :1). **IR** (Film): $\tilde{v} = 3322, 2955, 2865, 1728, 1437, 1320, 1262, 1231, 1201, 1020 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.3 °C, TMS) <math>\delta = 2.37$ (s, 1 H, NH), 2.67 (dd, J = 13.0/6.6 Hz, 1 H, NCH₂), 2.67 (dd, J = 12.0/5.1 Hz, 1 H, NCH₂), 2.97 (d, J = 12.6 Hz, 1 H, NCH₂), 2.99–2.95 (m, 1H, CHCHCO), 3.01–3.08 (m, 1 H, CHCHCO), 3.06 (d, J = 12.0 Hz, 1 H, NCH₂) 3.10 (ddd, J = 8.3/6.0/1.0 Hz, 1 H, CHCO), 3.56 (dd, J = 9.9/8.3 Hz, 1 H, CHCO), 3.71 (s, 3 H, CH₃), 3.72 (s, 3 H, CH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.4 °C, TMS) $\delta = 38.67$ (d, 1 C, CHCHCO), 39.34 (d, 1 C, CHCO), 40.77 (d, 1 C, CHCHCO), 41.31 (d, 1 C, CHCO), 49.60 (t, 1 C, NCH₂), 51.84 (q, 1 C, CH₃), 52.05 (q, 1 C, CH₃), 53.14 (t, 1 C, NCH₂), 172.37 (s, 1 C, CO), 174.20 (s, 1 C, CO) ppm. M (C₁₀H₁₅NO₄) = 213.23. **MS** (CI, CH₅⁺) m/z (%): 214 (100, [M+H]⁺), 395 (49). **HRMS** (EI+): M⁺ ber. für C₁₀H₁₅NO₄, 213.1001; gef. 312.0983.

(1*R*,5*S*,6*R*,7*S*)-3-Azabicyclo[3.2.0]heptan-6,7-dicarbonsäure (*meso*-107)

108 (40 mg, 0.19 mmol) wurde in einer wässrigen HCl-Lösung (2 M, 9.4 mL, 100 Äq.) gelöst und für 1.5 h zum Rückfluss erhitzt. Das Lösungsmittel wurde im Vakuum eingeengt und mittels stark saurem Ionenaustauscher gereinigt.

107: 35 mg, 0.19 mmol (99%). Farbloser Feststoff. Smp.: 319 °C (Zersetzung). **IR** (KBr): \tilde{v} = 3436, 3014, 2977, 2956, 2894, 2765, 2639, 2570, 2489, 2295, 1903, 1686, 1638, 1545, 1450, 1389, 1346, 1322, 1209, 1196, 1023, 828, 780 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 20.5 °C, Dioxan) δ = 2.88–2.98 (m, 2 H, CHCO), 3.22–3.37 (m, 4 H, CHCHCO, NCH₂), 3.49 (d, *J* = 11.3 Hz, 2 H, NCH₂) ppm. ¹³**C NMR** (125 MHz, D₂O, 21.8 °C, Dioxan) δ = 39.17 (d, 2 C, CHCHCO), 46.51 (d, 2 C, CHCO), 51.65 (t, 2 C, NCH₂), 181.18 (s, 2 C, CO) ppm. M (C₈H₁₁NO₄) = 185.18. **MS** (CI, CH₅⁺) *m/z* (%): 254 (?, [M+H]+). **HRMS** (EI+): M⁺ ber. für C₈H₁₁NO₄, 185.0688; gef. 185.0703.

rac-(1*R*,5*S*,6*R*,7*R*)-3-Azabicyclo[3.2.0]heptan-6,7-dicarbonsäure (*rac*-121)

Nach **AAV 4** wurde *rac*-**119** (40 mg, 0.13 mmol) in MeOH:H₂O (1.5 mL, 1:2) bei 0 °C mit wässriger LiOH-Lösung (2 M, 0.39 mL, 6.0 Äq.) versetzt und anschließend 2 h bei RT gerührt. Die wässrige Phase wurde bei 0 °C mit einer HCl-Lösung (1 M) auf pH = 1 gebracht. Das Lösungsmittel wurde im Vakuum entfernt. Die Reinigung des Rohproduktes erfolgte mittels stark saurem Ionenaustauscher.

rac-121: 24 mg, 0.13 mmol (99%). Farbloses Öl. IR (Film): $\tilde{v} = 2924, 2854, 1736, 1587, 1488, 1455, 1366, 1129, 1145, 1020 cm⁻¹. ¹H NMR (400 MHz, D₂O, 17.2 °C, Dioxan) <math>\delta = 2.89-2.93$ (m, 1 H, CHCO), 3.16–3.23 (m, 1 H, CHCO), 3.23–3.34 (m, 4 H, 2 x NCH₂, 2 x C_HCHCO), 3.34–3.41 (m, 1 H, NCH₂), 3.55 (d, J = 11.8 Hz, 1 H, NCH₂) ppm. ¹³C NMR (100 MHz, D₂O, 19.3 °C, Dioxan) $\delta = 36.38$ (d, 1 C, CHCHCO), 39.22 (d, 1 C, CHCHCO), 44.25 (d, 1 C, CHCO), 46.47 (d, 1 C, CHCO), 48.99 (t, 1 C, NCH₂), 52.03 (t, 1 C, NCH₂), 180.44 (s, 1 C, CO), 182.04 (s, 1 C, CO) ppm. M (C₈H₁₁NO₄) = 185.18. MS (CI, CH₅⁺) *m/z* (%): 186 (100, [M+H]⁺), 168 (35), 142 (47), 130 (51), 127 (32). HRMS (EI+): M⁺ ber. für C₈H₁₁NO₄, 185.0688; gef. 185.0690.

(1*R*,5*S*,6*R*,7*S*)-Dimethyl-3-butyl-3-azabicyclo[3.2.0]heptan-6,7-dicarboxylat (*meso*-144)

Nach **AAV 2** wurde **108** (126 mg, 0.59 mmol) mit K₂CO₃ (205 mg, 1.48 mmol, 2.5 Äq.), KI (295 mg, 1.76 mmol, 3.0 Äq.) und Brombutan (**129**) (0.13 mL, 166 mg, 1.21 mmol, 2.1 Äq.) in MeCN (2 mL) bei 40 °C umgesetzt. Reaktionszeit 3.5 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:2, 1% Et₃N) gereinigt.

144: 140 mg, 0.52 mmol (88%). Farbloses Öl. DC: $R_f = 0.48$ (Et₂O). **IR** (Film): $\tilde{v} = 2953, 2930, 2873, 2861, 2787, 1743, 1435, 1355, 1267, 1192, 1174, 1015 cm⁻¹. ¹$ **H NMR** $(500 MHz, CDCl₃, 20.3 °C, TMS) <math>\delta = 0.90$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.30–1.39 (m, 2 H, CH₂CH₃), 1.44–1.51 (m, 2 H, CH₂CH₂N), 1.96–2.01 (m, 2 H, NCH₂), 2.41–2.46 (m, 2 H, CH₂CH₂N), 2.90 (d, J = 10.0 Hz, 2 H, NCH₂), 3.01–3.06 (m, 2 H, CHCHCO), 3.15–3.19 (m, 2 H, CHCO), 3.64 (s, 6 H, CH₃) ppm. ¹³**C NMR** (125 MHz, CDCl₃, 22.1 °C) $\delta = 14.24$ (q, 1 C, CH₂CH₃), 20.88 (t, 1 C, CH₂CH₃), 31.20 (t, 1 C, NCH₂CH₂), 38.65 (d, 2 C, CHCHCO), 43.62 (d, 2 C, CHCO), 51.95 (q, 2 C, COOCH₃), 55.21 (t, 1 C, NCH₂CH₂), 59.31 (t, 2 C, NCH₂CH), 173.85 (s, 2 C, CO) ppm. M (C₁₄H₂₃NO₄) = 269.34. **MS** (FAB, NBA) m/z (%): 270 (40, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₄H₂₄NO₄, 270.1705; gef. 270.1709.

(1*R*,5*S*,6*R*,7*S*)-Dimethyl-3-(but-3-en-1-yl)-3-azabicyclo-[3.2.0]heptan-6,7-dicarboxylat (*meso*-145)

Nach **AAV 2** wurde **108** (88 mg, 0.41 mmol) mit K₂CO₃ (144 mg, 1.04 mmol, 2.5 Äq.), KI (206 mg, 1.24 mmol, 3.0 Äq.) und 4-Brombut-1-en (**130**) (0.09 mL, 120 mg, 0.89 mmol, 2.1 Äq.) in MeCN (3 mL) bei 40 °C umgesetzt. Reaktionszeit 2.7 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:2, 1% Et₃N) gereinigt.

145: 95 mg, 0.36 mmol (86%). Farbloses Öl. DC: $R_f = 0.50$ (Et₂O). **IR** (Film): $\tilde{v} = 3074, 2949, 2787, 1741, 1435, 1353, 1267, 1192 cm⁻¹. ¹$ **H NMR** $(500 MHz, CDCl₃, 20.5 °C, TMS) <math>\delta = 2.01-2.08$ (m, 2 H, NCH₂), 2.27–2.31 (m, 2 H, CH₂CH₂N), 2.54–2.57 (m, 2 H, CH₂CH₂N), 2.94 (d, J = 9.8 Hz, 2 H, NCH₂), 3.02–3.10 (m, 2 H, CHCHCO), 3.16–3.22 (m, 2 H, CHCO), 3.67 (s, 6 H, CH₃), 4.99–5.01 (m, 1 H, CH=CH_{2,trans}), 5.06–5.10 (m, 1 H, CH=CH_{2,cis}), 5.86
(ddt, J = 17.0/10.2/6.7 Hz, 1 H, $CH=CH_2$) ppm. ¹³C NMR (125 MHz, $CDCl_3$, 23.3 °C) $\delta = 33.51$ (t, 1 C, CH_2CH_2N), 38.66 (d, 2 C, CHCHCO), 43.63 (d, 2 C, CHCO), 51.98 (q, 2 C, CH₃), 54.73 (t, 1 C, CH_2CH_2N), 59.17 (t, 2 C, NCH_2), 115.60 (t, 1 C, $CH=CH_2$), 137.01 (d, 1 C, $CH=CH_2$), 173.82 (s, 2 C, CO) ppm. M ($C_{14}H_{21}NO_4$) = 267.32. MS (CI, CH_5^+) m/z (%): 268 (21, [M+H]⁺), 236 (100), 226 (29). HRMS (EI+): M⁺ ber. für C₁₄H₂₁NO₄, 267.1471; gef. 267.1479.

```
(1R,5S,6R,7S)-Dimethyl-3-(4,4-diphenylbut-3-en-1-yl)-3-
azabicyclo[3.2.0]heptan-6,7-dicarboxylat (meso-146)
```


Nach **AAV 2** wurde **108** (103 mg, 0.48 mmol) mit K₂CO₃ (167 mg, 1.20 mmol, 2.5 Äq.), KI (240 mg, 1.45 mmol, 3.0 Äq.) und **131** (278 mg, 0.97 mmol, 2.0 Äq.) in MeCN (2 mL) bei 40 °C umgesetzt. Reaktionszeit 2 h. Das Rohprodukt wurde mittels SC (Et_2O/n -Pentan = 1:1, 1% Et_3N) gereinigt.

146: 131 mg, 0.31 mmol (65%). Farbloses Öl. DC: $R_f = 0.17$ (Et₂O:*n*-Pentan = 1 :1). **IR** (Film): $\tilde{v} = 3054$, 3022, 2949, 2786, 1740, 1435, 1351, 1267, 1166, 1072, 1016 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 21.5 °C, TMS) $\delta = 1.97$ –2.02 (m, 2 H, NCH₂), 2.35 (q, J = 7.3 Hz, 2 H, CH₂CH₂N), 2.60 (t, J = 7.3 Hz, 2 H, CH₂CH₂N), 2.87 (d, J = 9.9 Hz, 2 H, NCH₂), 3.01–3.06 (m, 2 H, CHCHCO), 3.15–3.19 (m, 2 H, CHCO), 3.66 (s, 6 H, CH₃), 6.14 (t, J = 7.3 Hz, 1 H, CH=C(C₆H₅)₂), 7.16–7.40 (m, 10 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.8 °C) $\delta = 29.58$ (t, 1 C, CH₂CH₂N), 38.69 (d, 2 C, CHCHCO), 43.56 (d, 2 C, CHCO), 51.98 (q, 2 C, CH₃), 55.33 (t, 1 C, CH₂CH₂N), 59.18 (t, 2 C, NCH₂CH), 127.13 (d, 1 C, C_{ar}), 127.21 (d, 1 C, CH₂CH₂N), 2.87 (d, 2 C, CHCO), 2.87 (d, 1 C, C_{ar}), 127.21 (d, 1

 C_{ar}), 127.43 (d, 2 C, C_{ar}), 127.80 (d, 1 C, C_{ar}), 128.33 (d, 2 C, C_{ar}), 128.40 (d, 2 C, C_{ar}), 130.05 (d, 2 C, C_{ar}), 140.29 (s, 1 C, C_{ar}), 142.62 (s, 1 C, $C(C_{6}H_{5})_{2}$), 142.86 (s, 1 C, C_{ar}), 173.81 (s, 2 C, CO) ppm. M ($C_{26}H_{29}NO_{4}$) = 419.51. **MS** (FAB, NBA) *m/z* (%): (55, [M+H]⁺), 226 (100). **HRMS** (FAB, NBA): [M+H]⁺ ber. für $C_{26}H_{30}NO_{4}$, 420.2175; gef. 420.2155.

(1*R*,5*S*,6*R*,7*S*)-3-Butyl-3-azabicyclo[3.2.0]heptan-6,7dicarbonsäure (*meso*-175)

144 (23 mg, 0.09 mmol) wurde in Dioxan (0.1 mL) gelöst und mit einer HCl-Lösung (2 M, 1.7 mL, 3.4 mmol, 40 Äq.) unter Rückfluss umgesetzt. Reaktionszeit 3.5 h. Der Rückstand wurde in H_2O gelöst, mit CH_2Cl_2 gewaschen und das Lösungsmittel im Vakuum entfernt. Der Rückstand wurde stand wurde über einen stark sauren Ionenaustauscher gereinigt.

175: 11 mg, 0.04 mmol (52%). Gelbliches Öl. **IR** (KBr): $\tilde{v} = 3433$, 3246, 2961, 2875, 2756, 2559, 1718, 1577, 1403, 1200, 1081, 1031 cm⁻¹. ¹**H NMR** (400 MHz, D₂O, 17.3 °C) $\delta = 0.86$ (t, J = 7.4 Hz, 3 H, CH₃), 1.25–1.38 (m, 2 H, CH₂CH₃), 1.61–1.73 (m, 2 H, CH₂CH₂N), 2.90–2.95 (m, 2 H, CHCO), 3.09–3.23 (m, 6 H, NCH₂CH, CHCHCO, CH₂CH₂N), 3.58 (d, J = 11.3 Hz, 2 H, NCH₂CH) ppm. ¹³**C NMR** (125 MHz, D₂O, 19.0 °C, Dioxan) $\delta = 13.39$ (q, 1 C, CH₃), 20.02 (t, 1 C, CH₂CH₃), 28.13 (t, 1 C, CH₂CH₂N), 38.88 (d, 2 C, CHCHCO), 46.65 (d, 2 C, CHCO), 55.69 (t, 1 C, CH₂CH₂N), 59.95 (t, 2 C, NCH₂CH), 181.11 (s, 2 C, CO) ppm. M (C₁₂H₁₉NO₄) = 241.38. **MS** (FAB, NBA) *m/z* (%): 242 (39, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₀NO₄, 242.1392; gef. 242.1402.

(1*R*,5*S*,6*R*,7*S*)-3-(But-3-en-1-yl)-3-azabicyclo[3.2.0]heptan-6,7dicarbonsäure (*meso*-176)

Nach **AAV 5** wurde **145** (31 mg, 0.12 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (148 mg, 0.47 mmol, 4.0 Äq.) umgesetzt. Reaktionszeit 3 h.

176: 27 mg, 0.11 mmol (97%). Farbloser Feststoff, Smp.: > 220 °C. **IR** (KBr): $\tilde{v} = 3409$, 3098, 2978, 2943, 2794, 1643, 1560, 1419, 1319, 918, 854 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 21.6 °C, Dioxan) $\delta = 2.47-2.53$ (m, 2 H, CH₂CH₂N), 2.97 (d, J = 4.0 Hz, 2 H, CHCO), 3.03–3.12 (m, 2 H, NCH₂CH), 3.12–3.19 (m, 2 H, CH₂CH₂N), 3.19–3.26 (m, 2 H, CHCHCO), 3.52 (d, J = 11.7 Hz, 2 H, NCH₂CH), 5.16 (ddd, J = 10.2/2.5/1.2 Hz, 1 H, CH=CH₂), 5.23 (ddd, J = 17.2/3.0/1.4 Hz, 1 H, CH=CH₂), 5.84 (ddt, J = 17.1/10.3/6.8 Hz, 1 H, CH=CH₂) ppm. ¹³C **NMR** (125 MHz, D₂O, 20.4 °C, Dioxan) $\delta = 30.98$ (t, 1 C, CH₂CH=CH₂), 38.95 (d, 2 C, CHCHCO), 46.79 (d, 2 C, CHCO), 55.09 (t, 1 C, CH₂CH₂N), 60.06 (t, 2 C, NCH₂CH), 118.49 (t, 1 C, CH=CH₂), 134.40 (d, 1 C, CH=CH₂), 181.70 (s, 2 C, CO) ppm. M (C₁₂H₁₇NO₄) = 239.27. **MS** (CI, CH₅⁺) m/z (%): 240 (7, [M+H]⁺), 222 (100). **HRMS** (EI+): [M+H]⁺ ber. für C₁₂H₁₇NO₄, 239.1158; gef. 239.1125.

(1*R*,5*S*,6*R*,7*S*)-3-(4,4-Diphenylbut-3-en-1-yl)-3azabicyclo[3.2.0]heptan-6,7-dicarbonsäure (*meso*-177)

146 (33 mg, 0.08 mmol) wurde in Dioxan (0.2 mL) gelöst, mit einer HCl-Lösung (2 M, 3.9 mL, 7.8 mmol, 99 Äq.) versetzt und 1 h zum Rückfluss erhitzt. Das Lösungsmittel wurde entfernt. Der schwer lösliche Rückstand wurde mit einem Phosphatpuffer (pH = 6) aufgenommen und mit CH_2Cl_2 extrahiert. Die vereinigten organischen Phasen wurden mit H_2O gewaschen, über MgSO₄ getrocknet und das Lösungsmittel im Vakuum entfernt.

177: 23 mg, 0.06 mmol (74%). Farbloser Feststoff, Smp.: 172 °C. **IR** (KBr): $\tilde{v} = 3473$, 3055, 3025, 2997, 2972, 2925, 2558, 1721, 1673, 1595, 1575, 1495, 1443, 1377, 1293, 1243, 1210, 1195, 1177, 1079, 1029, 767, 703 cm⁻¹. ¹**H NMR** (400 MHz, DMSO-D₆, 16.7 °C, TMS) $\delta = 2.07$ (sbr, 2 H, NCH₂), 2.25–2.36 (m, 2 H, CH₂CH₂N), 2.60–2.73 (m, 2 H, CH₂CH₂N), 2.84–2.93 (m, 4 H, NCH₂, CHCHCO), 2.93–3.01 (m, 2 H, CHCO), 6.18 (t, J = 7.3 Hz, 1 H, CH=C(C₆H₅)₂), 7.14–7.44 (m, 10 H, H_{ar}) ppm. ¹³C **NMR** (100 MHz, DMSO-D₆, 17.6 °C, TMS) $\delta = 28.51$ (t, 1 C, CH₂CH₂N), 37.70 (d, 2 C, CHCHCO), 42.92 (d, 2 C, CHCO), 54.21 (t, 1 C, CH₂CH₂N), 58.33 (t, 2 C, NCH₂), 126.69 (d, 2 C, C_{ar}), 126.92 (d, 1 C C_{ar}), 127.06 (d, 1 C, CH=C(C₆H₅)₂), 128.17 (d, 2 C, C_{ar}), 128.28 (d, 2 C, C_{ar}), 129.34 (d, 2 C, C_{ar}), 139.40 (s, 1 C, C_{ar}), 141.52 (s, 1 C, C(C₆H₅)₂), 141.93 (s, 1 C, C_{ar}), 173.87 (s, 2 C, CO) ppm. M (C₂₄H₂₅NO₄) = 391.46. **MS** (CI, CH⁺₅) m/z (%): 254 (100, [M+H]+). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₂₄H₂₆NO₄, 392.1862; gef. 392.1856.

rac-(1*R*,5*S*,6*R*,7*R*)-Dimethyl-3-butyl-3-azabicyclo[3.2.0]heptan-6,7-dicarboxylat (*rac*-147)

rac-147

Nach **AAV 2** wurde *rac*-**119** (56 mg, 0.26 mmol) mit K₂CO₃ (93 mg, 0.67 mmol, 2.5 Åq.), KI (133 mg, 0.80 mg, 3.0 Äq.) gelöst in MeCN (2 mL) mit Brombutan (**129**) (0.06 mL, 77 mg, 0.56 mmol, 2.1 Äq.) bei 40 °C umgesetzt. Reaktionszeit 2 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:2, 1% Et₃N) gereinigt.

rac-147: 54 mg, 0.20 mmol (75%). Farbloses Öl. DC: $R_f = 0.17$ (Et₂O/*n*-Pentan = 1:2). IR (Film): $\tilde{v} = 2954$, 2933, 2873, 2785, 1733, 1435, 1377, 1317, 1274, 1233, 1195, 1021 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 20.0 °C, TMS) $\delta = 0.91$ (t, J = 7.3 Hz, 3 H, CH₂CH₃), 1.30–1.39 (m, 2 H, CH₂CH₃), 1.39–1.49 (m, 2 H, CH₂CH₂CH₃), 1.90 (dd, J = 10.3/6.3 Hz, 1 H, NCH₂CH), 1.98 (dd, J = 9.6/5.3 Hz, 1 H, NCH₂CH), 2.34 (ddd, J = 11.7/7.7/6.3 Hz, 1 H, CH₂CH₂N), 2.47 (ddd, J = 11.7/7.7/6.6 Hz, 1 H, CH₂CH₂N), 2.82 (dt, J = 7.4/5.4 Hz, 1 H, CHCHCO), 2.90 (d, J = 9.6 Hz, 1 H, NCH₂CH), 2.99 (dt, J = 10.1/7.0 Hz, 1 H, CHCHCO), 3.04 (d, J = 10.3 Hz, 1 H, NCH₂CH), 3.36 (ddd, J = 8.0/5.5/0.7 Hz, 1 H, CHCO), 3.51 (dd, J = 10.0/8.0 Hz, 1 H, CHCO), 3.69 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃) ppm. ¹³C NMR (125 MHz, CDCl₃, 20.0 °C, TMS) $\delta = 14.02$ (q, 1 C, CH₂CH₃), 20.39 (t, 1 C, CH₂CH₃), 30.89 (t, 1 C, CH₂CH₂CH₃), 37.67 (d, 1 C, CHCHCO), 38.86 (d, 1 C, CHCHCO), 39.68 (d, 1 C, CHCO), 42.99 (d, 1 C, CHCO), 51.53 (q, 1 C, OCH₃), 51.92 (q, 1 C, OCH₃), 54.52 (t, 1 C, CH₂CH₂N), 55.08 (t, 1 C, NCH₂CH), 59.61 (t, 1 C, NCH₂CH), 172.27 (s, 1 C, CO), 174.88 (s, 1 C, CO) ppm. M (C₁₄H₂₃NO₄) = 269.34. MS (CI, CH₅⁺) m/z (%): 270 (5, [M+H]⁺), 85 (60), 83 (100). HRMS (EI+): M⁺ ber. für C₁₄H₂₃NO₄, 269.1627; gef. 269.1618. *rac*-(1*R*,5*S*,6*R*,7*R*)-Dimethyl-3-(but-3-en-1-yl)-3azabicyclo[3.2.0]heptan-6,7-dicarboxylat (*rac*-148)

*rac-***148**

Nach **AAV 2** wurde *rac*-**119** (56 mg, 0.26 mmol) mit K₂CO₃ (92 mg, 0.67 mmol, 2.5 Äq.), KI (132 mg, 0.80 mg, 3.0 Äq.) gelöst in MeCN (2 mL) mit 4-Brombut-1-en (**130**) (0.06 mL, 80 mg, 0.59 mmol, 2.2 Äq.) bei 40 °C umgesetzt. Reaktionszeit 2.8 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:2, 1% Et₃N) gereinigt.

rac-148: 54 mg, 0.20 mmol (76%). Gelbliches Öl. DC: $R_f = 0.20$ (Et₂O/*n*-Pentan = 1:2). **IR** (Film): $\tilde{v} = 3075$, 2976, 2951, 2786, 2740, 1732, 1435, 1319, 1272, 1233, 1195, 1179, 1021 cm⁻¹. ¹**H NMR** (500 MHz, CDCl₃, 19.8 °C, TMS) $\delta = 1.95$ (dd, J = 10.2/6.4 Hz, 1 H, NCH₂), 2.02 (dd, J = 9.5/5.3 Hz, 1 H, NCH₂), 2.20–2.27 (m, 2 H, CH₂CH₂N), 2.44 (ddd, J = 11.7/7.9/6.5 Hz, 1 H, CH₂CH₂N), 2.57 (ddd, J = 11.7/7.6/7.4 Hz, 1 H, CH₂CH₂N), 2.83 (dt, J = 7.4/5.4 Hz, 1 H, CHCHCO), 2.92 (d, J = 9.6 Hz, 1 H, NCH₂), 3.00 (dt, J = 10.0/7.0 Hz, 1 H, CHCHCO), 3.07 (d, J = 10.2 Hz, 1 H, NCH₂), 3.36 (dd, J = 8.1/5.5 Hz, 1 H, CHCO), 3.51 (dd, J = 10.0/8.1 Hz, 1 H, CHCO), 3.70 (s, 3 H, CH₃), 3.70 (s, 3 H, CH₃), 4.97–5.00 (m, 1 H, CH=CH_{2,cis}), 5.03–5.08 (m, 1 H, CH=CH_{2,trans}), 5.85 (ddt, J = 17.0/10.2/6.7 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.7 °C, TMS) $\delta = 33.24$ (t, 1 C, CH₂CH₂N), 37.65 (d, 1 C, CHCHCO), 38.85 (d, 1 C, CHCHCO), 39.67 (d, 1 C, CHCO), 42.94 (d, 1 C, CHCO), 51.57 (q, 1 C, CH₃), 51.92 (q, 1 C, CH₃), 54.35 (t, 1 C, CH=CH₂), 172.20 (s, 1 C, CO), 174.81 (s, 1 C, CO) ppm. M (C₁₄H₂₁NO₄) = 267.32. MS (CI, CH₅⁺) *m*/z (%): 268 (100, [M+H]⁺), 226 (11). HRMS (EI+): M⁺ ber. für C₁₄H₂₁NO₄, 267.1471; gef. 267.1478.

rac-(1*R*,5*S*,6*R*,7*R*)-Dimethyl-3-(4,4-diphenylbut-3-en-1-yl)-3azabicyclo[3.2.0]heptan-6,7-dicarboxylat (*rac*-149)

rac-149

Nach **AAV 2** wurde *rac*-**119** (56 mg, 0.26 mmol) mit K₂CO₃ (92 mg, 0.67 mmol, 2.5 Äq.), KI (131 mg, 0.79 mg, 3.0 Äq.) gelöst in MeCN (1mL) und einer Lösung des Alkylbromids **131** (162 mg, 0.56 mmol, 2.2 Äq.) in MeCN (1 mL) bei 40 °C umgesetzt. Reaktionszeit 2 h. Das Rohprodukt wurde mittels SC (Et₂O/*n*-Pentan = 1:2, 1% Et₃N) gereinigt.

rac-149: 86 mg, 0.20 mmol (79%). Farbloses Öl. DC: $R_f = 0.29$ (Et₂O/*n*-Pentan = 1 :1.5). **IR** (Film): $\tilde{v} = 3079$, 3054, 3022, 2950, 2899, 2788, 1732, 1435, 1273, 1233, 1196, 1179, 1021 cm⁻¹. ¹H NMR (500 MHz, CDCl₃, 22.6 °C, TMS) $\delta = 1.93$ (dd, J = 10.3/6.5 Hz, 1 H, NCH₂CH), 1.95 (dd, J = 9.6/5.3 Hz, 1 H, NCH₂CH), 2.23–2.36 (m, 2 H, CH₂CH₂N), 2.48–2.59 (m, 2 H, CH₂CH₂N), 2.81 (dt, J = 7.4/5.3 Hz, 1 H, CHCHCO), 2.87 (d, J = 9.5 Hz, 1 H, NCH₂CH), 2.98 (ddd, J = 9.9/7.1/6.9 Hz, 1 H, CHCHCO), 3.05 (d, J = 10.2 Hz, 1 H, NCH₂CH), 3.37 (ddd, J = 8.1/5.5/0.9 Hz, 1 H, CHCO), 3.50 (dd, J = 10.0/8.1 Hz, 1 H, CHCO), 3.57 (s, 3 H, CH₃), 3.69 (s, 3 H, CH₃), 6.17 (t, J = 7.2 Hz, 1 H, CH=C(C₆H₅)₂), 7.17–7.27 (m, 7 H, H_{ar}), 7.27–7.32 (m, 1 H, H_{ar}), 7.34–7.39 (m, 2 H, H_{ar}) ppm. ¹³C NMR (125 MHz, CDCl₃, 21.7 °C, TMS) $\delta = 29.24$ (t, 1 C, CH₂CH₂N), 37.61 (d, 1 C, CHCHCO), 38.92 (d, 1 C, CHCHCO), 39.59 (d, 1 C, CHCO), 42.96 (d, 1 C, CHCO), 51.50 (q, 1 C, CH₃), 51.90 (q, 1 C, CH₃), 54.76 (t, 1 C, CH₂CH₂N), 55.10 (t, 1 C, NCH₂CH), 59.27 (t, 1 C, NCH₂CH), 126.82 (d, 1 C, C_{ar}), 127.24 (d, 2 C, C_{ar}), 127.71 (d, 1 C, CH=C(C₆H₅)₂), 128.04 (d, 2 C, C_{ar}), 128.15 (d, 2 C, C_{ar}), 140.20 (s, 1 C, C_{ar}), 142.14 (s, 1 C, C(C₆H₅)₂), 142.65 (s, 1 C, C_{ar}), 172.16 (s, 1 C, CO), 174.76 (s, 1 C, CO) ppm. M (C₂₆H₂₉NO₄) = 419.51. MS (CI, CH⁺₅) *m*/*z* (%): 420 (100, [M+H]⁺), 226 (33). **HRMS** (EI+): M⁺ ber. für C₂₆H₂₉NO₄, 419.2097; gef. 419.2095.

rac-(1*R*,5*S*,6*R*,7*R*)-3-Butyl-3-azabicyclo[3.2.0]heptan-6,7-dicarbonsäure (*rac*-178)

Nach **AAV 5** wurde *rac*-**147** (24 mg, 0.09 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ · 8 H₂O (112 mg, 0.35 mmol, 4.0 Äq.) bei 0 °C umgesetzt. Reaktionszeit 4 h.

rac-**178**: 21.0 mg, 0.09 mmol (99%). Farbloser Feststoff, Smp.: > 240 °C. **IR** (KBr): $\tilde{v} = 3422$, 2962, 2938, 2875, 2735, 2578, 1560, 1404, 1280, 787 cm⁻¹. ¹**H NMR** (500 MHz, D₂O, 19.7 °C) $\delta = 0.90$ (t, J = 7.4 Hz, 3 H, CH₃), 1.32–1.43 (m, 2 H, CH₂CH₃), 1.65–1.76 (m, 2 H, CH₂CH₂N), 2.87–2.94 (m, 1 H, CHCO), 3.10–3.23 (m, 5 H, CH₂CH₂N, NCH₂, CHCHCO), 3.24–3.31 (m, 2 H, CHCHCO, CHCO), 3.49 (d, J = 12.1 Hz, 1 H, NCH₂), 3.68 (d, J = 10.2 Hz, 1 H, NCH₂) ppm. ¹³**C NMR** (125 MHz, D₂O, 21.0 °C) $\delta = 10.76$ (q, 1 C, CH₃), 17.24 (t, 1 C, CH₂CH₃), 25.57 (t, 1 C, CH₂CH₂N), 33.32 (d, 1 C, CHCHCO), 36.31 (d, 1 C, CHCHCO), 42.09 (d, 1 C, CHCO), 44.47 (d, 1 C, CHCO), 52.36 (t, 1 C, CH₂CH₂N), 54.65 (t, 1 C, NCH₂CH), 57.77 (t, 1 C, NCH₂CH), 178.16 (s, 1 C, CO), 179.29 (s, 1 C, CO) ppm. M (C₁₂H₁₉NO₄) = 241.28. **MS** (CI, CH₅⁺) *m/z* (%): 254 (, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺ ber. für C₁₂H₂₀NO₄, 242.1392; gef. 242.1376.

rac-(1*R*,5*S*,6*R*,7*R*)-3-(But-3-en-1-yl)-3-azabicyclo[3.2.0]heptan-6,7-dicarbonsäure (*rac*-179)

rac-179

Nach **AAV 5** wurde *rac*-**149** (23 mg, 0.09 mmol) in MeOH/H₂O (2 mL, 1:1) mit Ba(OH)₂ \cdot 8 H₂O (19 mg, 0.34 mmol, 4.0 Äq.) bei 0 °C umgesetzt. Reaktionszeit 4.5 h. Zudem wurde das Produkt mittels stark saurem Ionenaustauscher gereinigt.

rac-179: 15 mg, 0.06 mmol (73%). Farbloser Feststoff, Smp.: 118 °C. **IR** (KBr): $\tilde{v} = 3430$, 3078, 3006, 2973, 2749, 2582, 1708, 1577, 1398, 1058, 1010, 929 cm⁻¹. ¹H NMR (500 MHz, CD₃OD, 22.2 °C) $\delta = 2.53-2.61$ (m, 2 H, CH₂CH₂N), 2.98–3.02 (m, 1 H, CHCO), 3.07 (dd, J = 11.7/6.4 Hz, 1 H, NCH₂), 3.13 (dd, J = 11.6/6.7 Hz, 1 H, NCH₂), 3.24–3.33 (m, 4 H, CHCHCO, CHCHCO, CH₂CH₂N), 3.37–3.42 (m, 1 H, CHCO), 3.61 (d, J = 11.7 Hz, 1 H, NCH₂), 3.77 (d, J = 11.5 Hz, 1 H, NCH₂), 5.19–5.22 (m, 1 H, CH=CH_{2,cis}), 5.27–5.31 (m, 1 H, CH=CH_{2,trans}), 5.87 (ddt, J = 17.0/10.2/6.8 Hz, 1 H, CH=CH₂) ppm. ¹³C NMR (125 MHz, CD₃OD, 22.3 °C) $\delta = 31.73$ (t, 1 C, CH₂CH₂N), 36.68 (d, 1 C, CHCHCO), 40.15 (d, 1 C, CHCHCO), 46.11(d, 1 C, CHCO), 47.67 (d, 1 C, CHCO), 54.31 (t, 1 C, CH₂CH₂N), 58.45 (t, 1 C, NCH₂), 60.84 (t, 1 C, NCH₂), 119.40 (t, 1 C, CH=CH₂), 134.32 (d, 1 C, CH=CH₂), 179.54 (s, 1 C, CO), 180.01 (s, 1 C, CO) ppm. M (C₁₂H₁₇NO₄) = 239.17. MS (CI, CH₅⁺) *m/z* (%): 240 (100, [M+H]⁺), 222 (12), 198 (20), 174 (14). HRMS (EI+): M⁺ ber. für C₁₂H₁₇NO₄, 239.1158; gef. 239.1124.

rac-(1*R*,5*S*,6*R*,7*R*)-3-(4,4-Diphenylbut-3-en-1-yl)-3-azabicyclo-[3.2.0]heptan-6,7-dicarbonsäure (*rac*-180)

rac-180

rac-**149** (28 mg, 0.07 mmol) wurde in Dioxan (1 mL) gelöst, mit einer HCl-Lösung (2 M, 3.3 mL, 6.6 mmol, 100 Äq.) versetzt und 1.5 h zum Rückfluss erhitzt. Die Reaktionslösung wurde mit einem Phosphatpuffer (pH = 6) versetzt, mit CH₂Cl₂ extrahiert und die vereinigten organischen über MgSO₄ getrocknet. Das Lösungsmittel im Vakuum entfernt. Der schwer lösliche Rückstand wurde mehrfach mit Et₂O und *n*-Pentan gewaschen und im Hochvakuum getrocknet.

rac-**180**: 21 mg, 0.05 mmol (81%). Farbloser Feststoff, Smp.: 222 °C. **IR** (KBr): $\tilde{v} = 3076$, 3055, 3026, 3004, 2966, 2917, 2852, 2500, 1959, 1701, 1573, 1494, 1467, 1443, 1419, 1351, 1290, 1279, 1216, 1201, 1161, 1075, 1046, 1030 cm⁻¹. ¹**H NMR** (500 MHz, DMSO-D₆, 19.5 °C) $\delta = 1.88$ –1.96 (m, 1 H, NCH₂), 1.96–2.02 (m, 1 H, NCH₂), 2.18–2.26 (m, 2 H, CH₂CH₂N), 2.51–2.60 (m, 2 H, CH₂CH₂N), 2.70–2.76 (m, 1 H, CHCHCO), 2.80 (d, J = 9.5 Hz, 1 H, NCH₂), 2.84–2.92 (m, 1 H, CHCHCO), 3.03–3.06 (m, 2 H, CHCO, NCH₂), 3.27 (dd, J = 9.8/8.5 Hz, 1 H, CHCO), 6.21 (t, J = 7.2 Hz, 1 H, CH=C(C₆H₅)₂), 7.12–7.17 (m, 2 H, H_{*ar,ortho*}), 7.17–7.24 (m, 3 H, H_{*ar,ortho*}, H_{*ar,para*}), 7.25–7.30 (m, 2 H, H_{*ar,meta*}), 7.32–7.36 (m, 1 H, H_{*ar,para*}), 7.39–7.44 (m, 2 H, H_{*ar,meta*}) ppm. ¹³**C NMR** (125 MHz, DMSO-D₆, 21.1 °C) $\delta = 28.65$ (t, 1 C, CH₂CH₂N), 36.51 (d, 1 C, CHCHCO), 38.19 (d, 1 C, CHCHCO), 39.42 (d, 1 C, CHCO), 42.63 (d, 1 C, CHCO), 54.27 (d, 1 C, CH₂CH₂N), 54.95 (t, 1 C, NCH₂), 58.48 (t, 1 C, NCH₂), 126.83 (d, 2 C, C_{*ar,ortho*}), 126.90 (d, 1C, C_{*ar,para*), 127.10 (d, 1C, C_{*ar,para*), 127.49 (d, 1 C, CH=C(C₆H₅)₂), 128.20 (d, 2 C, C_{*ar,meta*}), 128.39 (d, 2 C, C_{*ar,meta*), 129.47 (d, 2 C, C_{*ar,ortho*), 139.66 (s, 1 C, C_{*ar,ortho*), 141.41 (s, 1 C, C(C₆H₅)₂), 142.03 (s, 1 C, C_{*ar,p*, 172.94 (s, 1 C, CO), 175.08 (s, 1 C, CO) ppm.}}}}}}

M ($C_{24}H_{25}NO_4$) = 391.46. **MS** (CI, CH₅⁺) *m/z* (%): 254 (100, [M+H]⁺). **HRMS** (FAB, NBA): [M+H]⁺) ber. für C₂₄H₂₆NO₄, 392.1862; gef. 392.1844.

6 Röntgenstrukturdaten von (3aS,3bR,6aR,6bR)-2,2-Dimethyl-5-(2,2,2-trifluoracetyl)hexahydro-2Hfuro[2',3':3,4]cyclobuta[1,2-c]pyrrol-3(3aH)-on (rac-77)

Abb. 6.1: Röntgenstruktur von rac-77

Crystal Data	
Formula	$C_{12}H_{14}F_{3}NO_{3}$
Formula Weight	277.24
Crystal System	Orthorhombic
Space group	Pbca (No. 61)
a, b, c [Å]	7.8049(2), 17.6548(6), 18.4558(5)
alpha, beta, gamma [°]	90, 90, 90
V [³]	2543.10(13)
Ζ	8
D (calc) [g/cm ³]	1.448
Mu (MoK α) [/mm]	0.132
F(000)	1152
Crystal Size [mm]	$0.37 \times 0.33 \times 0.28$
Data Collection Temperature (K)	173
Radiation [Å]	MoKa 0.71073
Theta Min-Max [°]	4.4, 26.3
Dataset	-9: 9; -22: 21; -23: 21
Tot., Uniq. Data, R(int)	18361, 2580, 0.030
Observed data $[I > 2.0 \text{ sigma}(I)]$	1801
Refinement Nref, Npar	2580, 174
R, wR2, S	0.0387, 0.1102, 1.05
$w = 1/[\langle s^2 (Fo^2) + (0.0649P)^2 \rangle]$	where $P=(Fo^2^+2Fc^2^)/3$
Max. and Av. Shift/Erro	0.00, 0.00
Min. and Max. Resd. Dens. $[e/^{-3}]$	-0.33, 0.41

U(eq) [²] Atom Z Х у 0.0528(4)F1 0.28319(13) 0.24221(6) 0.72163(5)F2 0.26583(14)0.33758(6) 0.65014(5)0.0540(4)F3 0.28426(7) 0.66916(6) 0.0602(4)0.50782(13)**O**1 0.43872(13)0.19529(7)0.56130(6)0.0416(4)**O**2 -0.22254(15)0.00642(7)0.56541(6)0.0427(4)O3 -0.4023(2)0.09923(9)0.71117(9)0.0832(7)N1 0.15246(15) 0.19948(7)0.57975(7)0.0307(4)C1 0.31386(18) 0.21772(9)0.59490(8)0.0303(5)C2 0.3431(2)0.27039(10)0.65981(9)0.0381(5)C3 0.15020(9)0.51761(8) 0.11506(18) 0.0331(5)C4 -0.06458(18)0.12095(9)0.53195(8)0.0306(5)C5 -0.14016(18)0.17259(9)0.59275(8)0.0317(5)C6 -0.00761(19)0.23355(9)0.60741(9)0.0353(5)C7 -0.07701(19)0.05297(9)0.58286(8)0.0357(5)C8 -0.13347(19)0.10426(10)0.64522(8)0.0368(5)C9 -0.3028(2)0.07222(11)0.66841(9)0.0448(6)C10 -0.3323(2)-0.00125(10)0.62776(9)0.0384(6)C11 -0.06734(13)-0.2754(3)0.67492(11) 0.0629(8)C12 -0.5138(2)-0.00973(12)0.0562(7)0.60204(11)

Tabelle 6.1: Final Coordinates and Equivalent Isotopic Displacement Parameters of the non-Hydrogen atoms

Atom	X	У	Z	U(iso) [²]
НЗА	0.19800	0.10790	0.51490	0.0400
H3B	0.11940	0.17910	0.47170	0.0400
H4	-0.13800	0.11700	0.48770	0.0370
H5	-0.25810	0.19210	0.58270	0.0380
H6A	-0.03560	0.28090	0.58110	0.0420
H6B	0.00100	0.24460	0.65990	0.0420
H7	0.03270	0.02490	0.59100	0.0430
H8	-0.04760	0.10930	0.68510	0.0440
H11A	-0.28430	-0.11460	0.64720	0.0940
H11B	-0.34890	-0.07040	0.71790	0.0940
H11C	-0.15630	-0.05960	0.69000	0.0940
H12A	-0.54250	0.03240	0.56960	0.0840
H12B	-0.59130	-0.00930	0.64380	0.0840
H12C	-0.52590	-0.05780	0.57590	0.0840

Tabelle 6.2: Hydrogen Atom Positions and Isotropic Displacement Parameters

Tabelle 6.3: (An)isotropic Displacement Parameters

Atom	U(1,1) or U	U(2,2)	U(3 , 3)	U(2,3)	U(1,3)	U(1,2)
F1	0.0627(7)	0.0642(7)	0.0315(5)	0.0034(5)	-0.0020(4)	-0.0158(5)
F2	0.0718(7)	0.0358(6)	0.0545(6)	-0.0072(5)	-0.0104(5)	-0.0014(5)
F3	0.0393(6)	0.0773(9)	0.0641(7)	-0.0103(6)	-0.0123(5)	-0.0210(5)
01	0.0231(6)	0.0514(8)	0.0502(7)	-0.0018(6)	0.0039(5)	-0.0007(5)
O2	0.0460(7)	0.0419(7)	0.0403(7)	-0.0118(5)	0.0109(5)	-0.0121(5)
O3	0.0969(12)	0.0800(12)	0.0727(10)	-0.0308(9)	0.0553(9)	-0.0271(9)
N1	0.0213(6)	0.0361(8)	0.0348(7)	-0.0104(6)	0.0011(5)	0.0009(5)
C1	0.0257(8)	0.0327(9)	0.0324(8)	0.0055(7)	-0.0019(6)	-0.0036(6)
C2	0.0349(9)	0.0417(10)	0.0376(9)	0.0047(8)	-0.0048(7)	-0.0102(7)
C3	0.0290(8)	0.0367(9)	0.0337(8)	-0.0077(7)	0.0006(6)	0.0005(7)
C4	0.0271(8)	0.0362(9)	0.0284(8)	-0.0042(7)	-0.0035(6)	-0.0005(6)
C5	0.0213(7)	0.0378(9)	0.0359(8)	-0.0037(7)	-0.0017(6)	0.0025(6)
C6	0.0254(8)	0.0367(10)	0.0439(10)	-0.0096(8)	0.0031(6)	0.0034(7)
C7	0.0298(8)	0.0376(10)	0.0397(9)	-0.0020(7)	-0.0007(6)	0.0030(7)
C8	0.0349(9)	0.0459(10)	0.0295(8)	-0.0047(7)	-0.0055(6)	-0.0033(7)
C9	0.0522(11)	0.0502(11)	0.0319(9)	-0.0032(8)	0.0109(7)	-0.0052(9)
C10	0.0405(10)	0.0387(10)	0.0359(9)	0.0022(7)	0.0061(7)	-0.0030(7)
C11	0.0693(14)	0.0551(13)	0.0643(13)	0.0192(11)	-0.0019(10)	0.0052(11)
C12	0.0464(11)	0.0601(14)	0.0620(13)	0.0085(10)	0.0000(9)	-0.0117(9)

Tabelle 6.4: Bond Distances [Å]

F1-C2	1.3296(19)	C9-C10	1.516(3)
F2-C2	1.343(2)	C10-C11	1.522(3)
F3-C2	1.3201(19)	C10-C12	1.502(2)
01-C1	1.2211(18)	C3-H3A	0.9900
O2-C7	1.4385(19)	C3-H3B	0.9900
O2-C10	1.441(2)	C4-H4	1.0000
O3-C9	1.206(2)	C5-H5	1.0000
N1-C1	1.3299(18)	C6-H6A	0.9900
N1-C3	1.469(2)	C6-H6B	0.9900
N1-C6	1.4776(19)	C7-H7	1.0000
C1-C2	1.534(2)	C8-H8	1.0000
C3-C4	1.517(2)	C11-H11A	0.9800
C4-C5	1.562(2)	C11-H11B	0.9800
C4-C7	1.527(2)	C11-H11C	0.9800
C5-C6	1.517(2)	C12-H12A	0.9800
C5-C8	1.548(2)	C12-H12B	0.9800
C7-C8	1.529(2)	C12-H12C	0.9800
C8-C9	1.500(2)		

C7-O2-C10	110.14(12)	C11-C10-C12	112.31(16)
C1-N1-C3	119.72(12)	N1-C3-H3A	111.00
C1-N1-C6	129.03(13)	N1-C3-H3B	111.00
C3-N1-C6	110.05(11)	C4-C3-H3A	111.00
O1-C1-N1	124.80(14)	C4-C3-H3B	111.00
O1-C1-C2	118.33(13)	НЗА-СЗ-НЗВ	109.00
N1-C1-C2	116.87(13)	C3-C4-H4	114.00
F1-C2-F2	106.66(13)	C5-C4-H4	114.00
F1-C2-F3	107.44(13)	C7-C4-H4	114.00
F1-C2-C1	113.02(14)	C4-C5-H5	115.00
F2-C2-F3	106.92(14)	C6-C5-H5	115.00
F2-C2-C1	111.41(13)	C8-C5-H5	115.00
F3-C2-C1	111.07(13)	N1-C6-H6A	111.00
N1-C3-C4	104.42(11)	N1-C6-H6B	111.00
C3-C4-C5	106.00(12)	C5-C6-H6A	111.00
C3-C4-C7	115.69(12)	C5-C6-H6B	111.00
C5-C4-C7	89.58(11)	H6A-C6-H6B	109.00
C4-C5-C6	106.54(12)	O2-C7-H7	115.00
C4-C5-C8	88.96(11)	C4-C7-H7	115.00
C6-C5-C8	114.73(12)	С8-С7-Н7	115.00
N1-C6-C5	103.07(12)	С5-С8-Н8	114.00
O2-C7-C4	111.18(12)	С7-С8-Н8	114.00
O2-C7-C8	106.22(12)	С9-С8 -Н8	114.00
C4-C7-C8	90.92(12)	C10-C11-H11A	109.00
C5-C8-C7	90.02(11)	C10-C11-H11B	110.00
C5-C8-C9	116.28(13)	C10-C11-H11C	109.00
C7-C8-C9	104.20(13)	H11A-C11-H11B	109.00
O3-C9-C8	127.25(17)	H11A-C11-H11C	110.00
O3-C9-C10	124.37(16)	H11B-C11-H11C	109.00
C8-C9-C10	108.38(14)	C10-C12-H12A	109.00
O2-C10-C9	102.97(13)	C10-C12-H12B	109.00
O2-C10-C11	110.81(14)	C10-C12-H12C	109.00
O2-C10-C12	108.53(14)	H12A-C12-H12B	109.00
C9-C10-C11	109.19(15)	H12A-C12-H12C	110.00
C9-C10-C12	112.65(14)	H12B-C12-H12C	110.00

Tabelle 6.5: Bond Angles [°]

Tabelle 6.6: Torsion Angels[°]

C10-O2-C7-C4	-123.13(13)	C3-C4-C7-O2	-150.09(13)
C10-O2-C7-C8	-25.63(16)	C3-C4-C7-C8	102.11(14)
C7-O2-C10-C9	29.43(16)	C5-C4-C7-O2	102.31(12)
C7-O2-C10-C11	-87.21(17)	C5-C4-C7-C8	-5.49(11)
C7-O2-C10-C12	149.03(14)	C4-C5-C6-N1	-21.34(15)
C3-N1-C1-O1	-1.4(2)	C8-C5-C-N1	75.32(15)
C3-N1-C1-C2	179.05(13)	C4-C5-C8-C7	-5.42(11)
C6-N1-C1-O1	-167.55(15)	C4-C5-C8-C9	-111.31(14)
C6-N1-C1-C2	12.9(2)	C6-C5-C8-C7	-113.19(13)
C1-N1-C3-C4	161.47(13)	C6-C5-C8-C9	140.93(14)
C6-N1-C3-C4	-29.94(15)	O2-C7-C8-C5	-106.86(12)
C1-N1-C6-C5	-160.37(15)	O2-C7-C8-C9	10.32(16)
C3-N1-C6-C5	32.41(15)	C4-C7-C8-C5	5.54(11)
O1-C1-C2-F1	-120.36(16)	C4-C7-C8-C9	122.72(13)
O1-C1-C -F2	119.56(16)	C5-C8-C9-O3	-74.7(2)
O1-C1-C -F3	0.5(2)	C5-C8-C9-C10	104.46(16)
N1-C1-C2-F1	59.23(19)	C7-C8-C9-O3	-171.90(18)
N1-C1-C2-F2	-60.85(18)	C7-C8-C9-C10	7.26(17)
N1-C1-C2-F3	-179.93(14)	O3-C9-C10-O2	157.27(17)
N1-C3-C4-C5	14.70(15)	O3-C9-C10-C11	-85.0(2)
N1-C3-C4-C7	-82.75(15)	O3-C9-C10-C12	40.6(2)
C3-C4-C5-C6	4.29(16)	C8-C9-C10-O2	-21.92(16)
C3-C4-C5-C8	-111.24(12)	C8-C9-C10-C11	95.87(17)
C7-C4-C5-C6	120.96(12)	C8-C9-C10-C12	-138.63(15)
C7-C4-C5-C8	5.43(11)		

F1.N	12.9098(16)	C5.O1_h	3.3616(17)
F1.C6	3.1014(18)	C6.O1_g	3.384(2)
F1.F3_a	3.0386(15)	C6.F1	3.1014(18)
F1.O3_b	3.1632(19)	C6.F2	2.9240(19)
F2.N1	2.9009(16)	C8.O3_b	3.208(2)
F2.C6	2.9240(19)	C11.F3_i	3.352(3)
F3.O1	2.5925(16)	C2.H6B	2.7100
F3.C11_d	3.352(3)	C7.H11C	2.8700
F3.F1_b	3.0386(15)	C8.H11C	3.0100
F1.H6B	2.4800	H3A.O1	2.5800
F1.H6B_b	2.7700	H3A.H7	2.4100
F2.H6B	2.6500	H3A.O2_f	2.5100
F2.H4_c	2.7700	H3B.F3_g	2.8200
F2.H6A	2.8600	H3B.O1_g	2.7000
F3.H3B_c	2.8200	H4.F2_g	2.7700
F3.H11A_d	2.8300	H5.O1_h	2.4000
O1.F3	2.5925(16)	H6A.F2	2.8600
O1.C5_e	3.3616(17)	H6A.O1_g	2.6700
O1.C3_c	3.3847(19)	H6B.F1	2.4800
O1.C6_c	3.384(2)	H6B.F2	2.6500
O2.C3_f	3.271(2)	H6B.C2	2.7100
O3.C8_a	3.208(2)	H6B.H8	2.4600
O3.F1_a	3.1632(19)	H6B.F1_a	2.7700
O1.H12A_e	2.8800	H7.H3A	2.4100
O1.H6A_c	2.6700	H8.H6B	2.4600
O1.H5_e	2.4000	H8.O3_b	2.2300
O1.H3B_c	2.7000	H11A.H12C	2.5100
O1.H3A	2.5800	H11A.F3_i	2.8300
O2.H3A_f	2.5100	H11B.H12B	2.5700
O3.H12B	2.7200	H11C.C7	2.8700
O3.H8_a	2.2300	H11C.C8	3.0100
N1.F1	2.9098(16)	H12A.O1_h	2.8800
N1.F2	2.9009(16)	H12B.O3	2.7200
C3.O1_g	3.3847(19)	H12B.H11B	2.5700
C3.O2_f	3.271(2)	H12C.H11A	2.5100

Tabelle 6.7: Contact Distances [Å]

C3-H3A_O2	0.9900	2.5100	3.271(2)	133.00	5_556
C5-H5_O1	1.0000	2.4000	3.3616(17)	161.00	1_455
C6-H6B_F1	0.9900	2.4800	3.1014(18)	120.00	
C8-H8_O3	1.0000	2.2300	3.208(2)	165.00	6_556

Tabelle 6.8: Hydrogen Bonds [Å, Deg]

7 Formelverzeichnis

Im Folgenden Verzeichnis sind die Strukturformeln aller in dieser Arbeit erstmals oder auf neuem Weg hergestellten Verbindungen aufgeführt. Die Zahlen hinter den Verbindungsnummern verweisen auf die Seiten im theoretischen und experimentellen Teil (*kursiv*), auf denen die jeweiligen Substanzen erstmalig erwähnt werden.

rac-132, 82, 139

rac-133, 82, 140

rac-134, 82, 141

rac-140, 84, 187

rac-169, 91, 188

rac-170, 91, 189

rac-**141**, 85, 196

rac-142, 85, 197

rac-172, 92, 199

rac-174, 92, 201

rac-120, 69, 203

rac-147, 86, 213

rac-148, 86, 214

rac-149, 86, 215

rac-178, 93, 216

rac-179, 93, 217

8 Abkürzungsverzeichnis

Å	Ångström
Abb.	Abbildung
abs.	absolut
Ac	Acetyl
ber.	berechnet
Boc	<i>tert</i> -Butyloxycarbonyl
Boc ₂ O	Di(tert-butyl)dicarbonat
Bu ₄ NF	Tetrabutylammoniumfluorid
CDCl ₃	Chloroform, deuteriert
CHN	Verbrennungsanalyse, Elementaranalyse
CI	chemische Ionisation
COSY	Correlated Spectroscopy
DBU	1,8-Diazabicyclo[5.4.0]undec-7-en
DC	Dünnschichtchromatographie
DMAP	4-Dimethylaminopyridin
ME	Dimethoxyethan
DME	Dimethoxyethan
DMF	Dimethylformamid
DMSO	Dimethylsulfoxid
d	Dublett (NMR)
D_2O	Wasser, deuteriert
EE	Ethylacetat, Essigsäureethylester
EI	Elektronenstoß-Ionisation
ESI	Elektrospray-Ionisation
Et	Ethyl
Et ₂ O	Diethylether
Et ₃ N	Triethylamin
EtOH	Ethanol
FAB	Fast Atom Bombardement
GABA	γ-Aminobuttersäure

GAT	GABA-Transportproteine
gef.	gefunden
ges.	gesättigt
h	Stunde (n)
HC1	Salzsäure
HMBC	Heteronuclear Multiple Bond Coherence
HMQC	Heteronuclear Multiple Quantum Coherence
HR-MS	High Resolution Mass Spectrometry
HV	Hochvakuum
Hz	Hertz
IA	Ionenaustauscher
IC ₅₀	Inhibitorkonstante
IR	Infrarot
ISC	inter system crossing
J	Kopplungskonstante
konz.	konzentriert
Lit.	Literatur
m	Multiplett (NMR)
m	molar
M^+	Molekülion
Me	Methyl
MeCN	Acetonitril
MeOH	Methanol
min.	Minuten
MS/ms	Massenspektrometrie/ massenspektrometrisch
NMR	Kernresonanzspektroskopie (engl.:nuclear magnetic resonance)
NOE	Nuclear Overhauser Effect
org.	organisch
q	quartet (NMR)
R_f	Retentionsfaktor (engl.: front of ratio)
RT	Raumtemperatur
rac	racemisch
S	Singulett (NMR)
SC	Säulenchromatographie

Sdp.	Siedepunkt
Smp.	Schmelzpunkt
sec	sekundär
subst.	substituiert
t	Triplett (NMR)
TBDMS	tert-Butyldimethylsilyl
TMSCHN ₂	Trimethylsilyldiazomethan
THF	Tetrahydrofuran
TMS	Tetramethylsilan
Urotropin	Hexamethylentetramin
UV	Ultraviolet
V	Frequenz [s ⁻¹]
ĩ	Wellenzahl [cm ⁻¹]
λ	Wellenlänge [nm]
δ	chemische Verschiebung [ppm]
С	chemische Verschiebung von C-Atomen [ppm]
Н	chemische Verschiebung von H-Atomen [ppm]

Literaturverzeichnis

- [1] Gubernator, K.; Böhm, H.-J. *Structure-based Ligand Design*; Wiley-VCH: Weinheim, 1998; Vol. 6.
- [2] Greer, J.; Erickson, J. W.; Baldwin, J. J.; Varney, M. D. J. Med. Chem. 1994, 37, 1035– 1054.
- [3] Awapara, J.; Landua, A. J.; Fuerst, R.; Seale, B. J. Biol. Chem. 1950, 187, 35–39.
- [4] Roberts, E.; Frankel, S. J. Biol. Chem. 1950, 187, 55-63.
- [5] Udenfriend, S. J. Biol. Chem. 1950, 187, 65-69.
- [6] Aktories, K. Allgemeine und spezielle Pharmakologie und Toxikologie für Studenten der Medizin, Veterinärmedizin, Pharmazie, Chemie und Biologie sowie für Ärzte, Tierärzte und Apotheker; mit 305 Tabellen, 10th ed.; Elsevier, Urban & Fischer: München, 2009.
- [7] Madsen, K. K.; White, H. S.; Schousboe, A. Pharmacology & Therapeutics 2010, 125, 394–401.
- [8] Owens, D. F.; Kriegstein, A. R. Nat. Rev. Neurosci. 2002, 3, 715–727.
- [9] Krogsgaard-Larsen, P. *Textbook of drug design and discovery*, 4th ed.; CRC Press/Taylor & Francis: Boca Raton, 2010.
- [10] Loland, C. J.; Gether, U. In *Textbook of Drug Design and Discovery*, 4th ed.; Krogsgaard-Larsen, P., Ed.; CRC Press/Taylor & Francis: Boca Raton, 2010; pp XV, 460 S.
- [11] Treiman, D. M. Epilepsia 2001, 42, 8–12.
- [12] Ishiwari, K.; Mingote, S.; Correa, M.; Trevitt, J. T.; Carlson, B. B.; Salamone, J. D. J. *Neurosci. Methods* **2004**, *140*, 39–46.
- [13] Rissman, R. A.; De Blas, A. L.; Armstrong, D. M. J. Neurochem. 2007, 103, 1285–1292.
- [14] Frank, S.; Jankovic, J. Drugs 2010, 70, 561–571.
- [15] Lewis, D. A. Brain Research Reviews 2000, 31, 270–276.

- [16] Kalueff, A. V.; Nutt, D. J. Depress. Anxiety 2007, 24, 495–517.
- [17] Todorov, A. A.; Kolchev, C. B.; Todorov, A. B. *The Clinical Journal of Pain* **2005**, *21*, 358–361.
- [18] Madsen, U.; Bräuner-Osborne, H.; Greenwood, J. R.; Johansen, T. N.; Nielsen, M.; Frølund, B. In *Drug Discovery Handbook*; Gad, S. C., Ed.; Wiley-VCH, 2005; Chapter 18: GABA and Glutamate Receptor Ligands and their Therapeutic Potential in CNS Disorders, pp 797–881.
- [19] Kristensen, A. S.; Andersen, J.; Jørgensen, T. N.; Sørensen, L.; Eriksen, J.; Loland, C. J.; Strømgaard, K.; Gether, U. *Pharmacol. Rev.* 2011, 63, 585–640.
- [20] Hediger, M.; Romero, M.; Peng, J.-B.; Rolfs, A.; Takanaga, H.; Bruford, E. *Pflügers Ar-chiv European Journal of Physiology* 2004, 447, 465–468.
- [21] Guastella, J.; Nelson, N.; Nelson, H.; Czyzyk, L.; Keynan, S.; Miedel, M.; Davidson, N.; Lester, H.; Kanner, B. *Science* **1990**, *249*, 1303–1306.
- [22] Borden, L. A.; Smith, K. E.; Hartig, P. R.; Branchek, T. A.; Weinshank, R. L. J. Biol. Chem. 1992, 267, 21098–21104.
- [23] Yamauchi, A.; Uchida, S.; Kwon, H. M.; Preston, A. S.; Robey, R. B.; Garcia-Perez, A.; Burg, M. B.; Handler, J. S. J. Biol. Chem. 1992, 267, 649–652.
- [24] Liu, Q. R.; López-Corcuera, B.; Mandiyan, S.; Nelson, H.; Nelson, N. J. Biol. Chem. 1993, 268, 2106–12.
- [25] Borden, L. A. Neurochem. Int. 1996, 29, 335-356.
- [26] Dalby, N. O. Eur. J. Pharmacol. 2003, 479, 127–137.
- [27] Jin, X.; Galvan, A.; Wichman, T.; Smith, Y. Front. Syst. Neurosci 2011, 5.
- [28] Chen, N.-H.; Reith, M. A.; Quick, M. Pflug. Arch. Eur. J. Phy. 2004, 447, 519–531.
- [29] Deken, S. L.; Wang, D.; Quick, M. W. J. Neurosci. 2003, 23, 1563–1568.
- [30] Zhou, Y.; Holmseth, S.; Hua, R.; Lehre, A. C.; Olofsson, A. M.; Poblete-Naredo, I.; Kempson, S. A.; Danbolt, N. C. Am. J. Physiol. Renal. Physiol. 2012, 302, F316–F328.
- [31] Zhou, Y.; Holmseth, S.; Guo, C.; Hassel, B.; Höfner, G.; Huitfeldt, H. S.; Wanner, K. T.; Danbolt, N. C. J. Biol. Chem. 2012, 287, 35733–35746.
- [32] Sarup, A.; Larsson, O. M.; Schousboe, A. CNS & Neurological Disorders Drug Targets 2003, 2, 269–277.
- [33] Yamashita, A.; Singh, S. K.; Kawate, T.; Jin, Y.; Gouaux, E. Nature 2005, 437, 215–223.
- [34] Wein, T.; Wanner, K. J. Mol. Model. 2010, 16, 155–161.
- [35] Ben-Yona, A.; Kanner, B. I. J. Biol. Chem. 2012, 287, 7159–7168.
- [36] Jardetzky, O. Nature 1966, 211, 969–970.
- [37] Forrest, L. R.; Zhang, Y.-W.; Jacobs, M. T.; Gesmonde, J.; Xie, L.; Honig, B. H.; Rudnick, G. PNAS 2008, 105, 10338–10343.
- [38] Skovstrup, S.; Taboureau, O.; Bräuner-Osborne, H.; Jørgensen, F. S. Chem. Med. Chem 2010, 5, 986–1000.
- [39] Gether, U.; Andersen, P. H.; Larsson, O. M.; Schousboe, A. *Trends Pharmacol. Sci.* 2006, 27, 375–383.
- [40] Krogsgaard-Larsen, P.; Frølund, B.; Frydenvang, K. Curr. Pharm. Des. 2000, 6, 1193– 1209.
- [41] Hog, S.; Greenwood, J. R.; Madsen, K. B.; Larsson, O. M.; Frolund, B.; Schousboe, A.; Krogsgaard-Larsen, P.; Clausen, R. P. *Curr. Top. Med. Chem.* 2006, *6*, 1861–1882.
- [42] Ali, F. E. et al. J. Med. Chem. 1985, 28, 653–660.
- [43] Larsson, O. M.; Thorbek, P.; Krogsgaard-Larsen, P.; Schousboe, A. J. Neurochem. 1981, 37, 1509–1516.
- [44] Krogsgaard-Larsen, P.; Frølund, B.; Kristiansen, U.; Frydenvang, K.; Ebert, B. *Eur. J. Pharm. Sci.* **1997**, *5*, 355–384.
- [45] Dhar, T. G. M.; Borden, L. A.; Tyagarajan, S.; Smith, K. E.; Branchek, T. A.; Weinshank, R. L.; Gluchowski, C. J. Med. Chem. 1994, 37, 2334–2342.

- [46] Clausen, R. P.; Moltzen, E. K.; Perregaard, J.; Lenz, S. M.; Sanchez, C.; Falch, E.; Frølund, B.; Bolvig, T.; Sarup, A.; Larsson, O. M.; Schousboe, A.; Krogsgaard-Larsen, P. *Bioorg. Med. Chem.* 2005, 13, 895–908.
- [47] Thomsen, C.; Sørensen, P. O.; Egebjerg, J. Br. J. Pharmacol. 1997, 120, 983–985.
- [48] Fülep, G. H. Entwicklung selektiver GABA-uptake-Inhibitoren mit Pyrrolidinstruktur. Ph.D. thesis, 1998.
- [49] Kragler, A.; Höfner, G.; Wanner, K. T. Eur. J. Pharmacol. 2005, 519, 43-47.
- [50] Bach, T.; Hehn, J. P. Angew. Chem., Int. Ed. 2011, 50, 1000–1045.
- [51] Schwarzer, M. F. Synthese potentieller GABA-uptake-Inhibitoren mit bicyclischer Struktur durch 1,3-dipolare Cycloadditionen und [2+2]-Photocycloadditionen; 2008.
- [52] Iriondo-Alberdi, J.; Greaney, M. F. Eur. J. Org. Chem. 2007, 4801–4815.
- [53] Montalti, M. Handbook of Photochemistry, 3rd ed.; CRC/Taylor & Francis: Boca Raton, 2006.
- [54] Carey, F. A. Organische Chemie; 1995.
- [55] Smith, M. B.; March, J. March's advanced organic chemistry reactions, mechanisms, and structure, 6th ed.; Wiley: Hoboken, NJ, 2007; Chapter 7, pp 328–355.
- [56] Wayne, C. E.; Wayne, R. P. Photochemistry; Oxford Univ. Press, 1996; p 92.
- [57] Corey, E. J.; Bass, J. D.; LeMahieu, R.; Mitra, R. B. J. Am. Chem. Soc. 1964, 86, 5570– 5583.
- [58] Bach, T. Synthesis 1998, 1998, 683-703.
- [59] Fleming, I. *Molecular orbitals and organic chemical reactions*, student ed., 1. publ. ed.; Wiley: Chichester [u.a.], 2009.
- [60] Schuster, D. I. In CRC Handbook of Organic Photochemistry and Photobiology, 2nd ed.; Horspool, W., Lenci, F., Eds.; CRC Press LLC, 2004; Chapter 72.
- [61] Loutfy, R. O.; De Mayo, P. J. Am. Chem. Soc. 1977, 99, 3559-3565.
- [62] De Mayo, P. Acc. Chem. Res. 1971, 4, 41–47.

- [63] Caldwell, R. A.; Hrncir, D. C.; Muñoz, T.; Unett, D. J. J. Am. Chem. Soc. 1996, 118, 8741–8742.
- [64] Bauslaugh, P. G. Synthesis 1970, 287–300.
- [65] Hehn, J. P.; Müller, C.; Bach, T. In *Handbook of Synthetic Photochemistry*; Albini, A., Fagnoni, M., Eds.; Wiley-VCH, 2010; Chapter 6, pp 171–211.
- [66] Grota, J.; Domke, I.; Stoll, I.; Schröder, T.; Mattay, J.; Schmidtmann, M.; Bögge, H.; Müller, A. Synthesis 2005, 2321–2326.
- [67] Albini, A. Synthesis 1981, 249–264.
- [68] Klessinger, M.; Michl, J. Excited states and photochemistry of organic molecules Lichtabsorption und Photochemie organischer Moleküle <engl.>; VCH: New York, NY [u.a.], 1995.
- [69] Klán, P.; Wirz, J. *Photochemistry of organic compounds from concepts to practice*, 1st ed.; Wiley: Chichester, 2009.
- [70] Oppolzer, W. Acc. Chem. Res. 1982, 15, 135–141.
- [71] Grob, C. A.; Schiess, P. W. Angew. Chem. Int. Ed. 1967, 6, 1–15.
- [72] Grob, C. A. Angew. Chem. Int. Ed. 1969, 8, 535–546.
- [73] Lange, G. L.; Gottardo, C. J.Org. Chem. 1995, 60, 2183-2187.
- [74] Greenwood, E. S.; Parsons, P. J. Synlett 2002, 167–169.
- [75] Greenwood, E. S.; Hitchcock, P. B.; Parsons, P. J. Tetrahedron 2003, 59, 3307–3314.
- [76] Meyers, A. I.; Warmus, J. S.; Dilley, G. J. Org. Synth. 1998, 9, 666.
- [77] Horiuchi, T.; Ohta, T.; Shirakawa, E.; Nozaki, K.; Takaya, H. J. Org. Chem. 1997, 62, 4285–4292.
- [78] Barker, G.; O'Brien, P.; Campos, K. R. Org. Lett. 2010, 12, 4176–4179.
- [79] Tsuzuki, Y.; Chiba, K.; Mizuno, K.; Tomita, K.; Suzuki, K. *Tetrahedron: Asymmetry* 2001, 12, 2989–2997.

- [80] Ziegler, C. B.; Bitha, P.; Lin, Y.-I. J. Heterocycl. Chem. 1988, 25, 719–723.
- [81] Baldwin, S. W.; Wilkinson, J. M. J. Am. Chem. Soc. 1980, 102, 3634–3635.
- [82] Monn, J. A.; Valli, M. J. J. Org. Chem. 1994, 59, 2773–2778.
- [83] Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 4th ed.; Wiley: New York, 2007.
- [84] Hasegawa, M.; Nagahama, Y.; Kobayashi, K.; Hayashi, M.; Somei, M. *Heterocycles* 2000, 52, 483–491.
- [85] Nordlander, J. E.; Payne, M. J.; Njoroge, F. G.; Balk, M. A.; Laikos, G. D.; Vishwanath, V. M. J. Org. Chem. 1984, 49, 4107–4111.
- [86] Tietze, L. F.; Schneider, C.; Grote, A. Chem. Eur. J. 1996, 2, 139–148.
- [87] Napolitano, J. G.; Gavín, J. A.; García, C.; Norte, M.; Fernández, J. J.; Hernández Daranas, A. Chem. Eur. J. 2011, 17, 6338–6347.
- [88] Infarnet, Y.; Duplan, J. C.; Huet, J. Org. Magn. Reson. 1981, 16, 90-93.
- [89] Filippova, T. M.; Lavrukhin, B. D.; Shmyrev, I. K. *Organic Magnetic Resonance* **1974**, *6*, 92–98.
- [90] Kaneko, C.; Sato, M.; Ogasawara, H. Process for Producing 1,3-Dioxin-4-one Derivatives. 1986.
- [91] Bihlmayer, G. A.; Derflinger, G.; Derkosch, J.; Polansky, O. E. *Monatsh. Chem.* 1967, 98, 564–578.
- [92] Sato, M.; Sekiguchi, K.; Ogasawara, H.; Kaneko, C. Synthesis 1985, 1985, 224–226.
- [93] Sato, M.; Ogasawara, H.; Sekiguchi, K.; Kaneko, C. Heterocycles 1984, 22, 2563–2570.
- [94] Sato, M.; Abe, Y.; Kaneko, C.; Furuya, T.; Inukai, N. Heterocycles 1990, 30, 217–221.
- [95] Murakami, M.; Kamaya, H.; Kaneko, C.; Sato, M. *Tetrahedron: Asymmetry* 2003, 14, 201 215.
- [96] Sato, M.; Sekiguchi, K.; Ogasawara, H.; Kaneko, C. Chem. Lett. 1985, 1057–1058.

- [97] Baldwin, S. W.; Crimmins, M. T.; Gross, P. M. Tetrahedron Lett. 1978, 19, 4197–4200.
- [98] Baldwin, S. W.; Wilkinson, J. M. Tetrahedron Lett. 1979, 20, 2657-2660.
- [99] Margaretha, P. *Tetrahedron* **1973**, *29*, 1317 1319.
- [100] Margaretha, P. Tetrahedron Lett. 1971, 12, 4891 4892.
- [101] Baldwin, S. W.; Mazzuckelli, T. J.; Gross, P. M. Tetrahedron Lett. 1986, 27, 5975–5978.
- [102] Gebel, R.-C.; Margaretha, P. Chem. Ber. 1990, 123, 855-858.
- [103] Kühnel, E.; Laffan, D. D. P.; Lloyd-Jones, G. C.; Martínez del Campo, T.; Shepperson, I. R.; Slaughter, J. L. Angew. Chem. Int. Ed. 2007, 46, 7075–7078.
- [104] Smith, A. B.; Liu, Z. Organic Letters 2008, 10, 4363–4365.
- [105] Ibrahem, I.; Zhao, G.-L.; Rios, R.; Vesely, J.; Sundén, H.; Dziedzic, P.; Córdova, A. Chem. Eur. J. 2008, 14, 7867–7879.
- [106] Gil, A. M.; Buñuel, E.; Cativiela, C. ARKIVOC 2007, 157-169.
- [107] Lin, Y.; Jones, G. B.; Hwang, G.-S.; Kappen, L.; Goldberg, I. H. Org. Lett. 2004, 7, 71–74.
- [108] Rice, L. M.; Grogan, C. H. J. Org. Chem. 1957, 22, 1100-1103.
- [109] Casara, P. Azabicyclo[3.2.0] hept-3-yl compounds, a process for their preparation and pharmaceutical compositions containing them. 2011.
- [110] Steiner, G.; Bach, A.; Bialojan, S.; Greger, G.; Hege, H.-G.; Höger, T.; Jochims, K.; Munschauer, R.; Neumann, B.; Tesch-endorf, H.-J.; Traut, M.; Unger, L.; Gross, G. Drugs Future 1998, 23, 191–204.
- [111] Bouwkamp, M. W.; Bowman, A. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2006, 128, 13340–13341.
- [112] Baik, T.-G.; Luis, A. L.; Wang, L.-C.; Krische, M. J. J. Am. Chem. Soc. 2001, 123, 6716– 6717.
- [113] Bach, T.; Krüger, C.; Harms, K. Synthesis 2000, 2000, 305–320.
- [114] Salomon, R. G.; Ghosh, S.; Raychaudhuri, S. R.; Miranti, T. S. *Tetrahedron Lett.* 1984, 25, 3167–3170.

- [115] Malik, C. K.; Vaultier, M.; Ghosh, S. Synthesis 2007, 2007, 1247,1250.
- [116] Kriis, K.; Ausmees, K.; Pehk, T. o.; Lopp, M.; Kanger, T. o. Org. Lett. 2010, 12, 2230– 2233.
- [117] Faure, S.; Jensen, A. A.; Maurat, V.; Gu, X.; Sagot, E.; Aitken, D. J.; Bolte, J.; Gefflaut, T.; Bunch, L. J. Med. Chem. 2006, 49, 6532–6538.
- [118] Jung, M. E.; Sledeski, A. W. Journal of the Chemical Society, Chemical Communications 1993, 589–591.
- [119] Barton, D. H. R.; Dowlatshahi, H. A.; Motherwell, W. B.; Villemin, D. J. Chem. Soc., Chem. Commun. 1980, 732–733.
- [120] Shinohara, I.; Nagaoka, H. Tetrahedron Lett. 2004, 45, 1495–1498.
- [121] Birman, V. B.; Jiang, X.-T. Org. Lett. 2004, 6, 2369–2371.
- [122] Smith, A. B.; Boschelli, D. J. Org. Chem. 1983, 48, 1217–1226.
- [123] Parés, S.; de March, P.; Font, J.; Alibés, R.; Figueredo, M. Eur. J. Org. Chem. 2011, 2011, 3888–3895.
- [124] Barton, D. H. R.; Crich, D.; Motherwell, W. B. J. Chem. Soc., Chem. Commun. 1983, 939–941.
- [125] Winkler, J. D.; Henegar, K. E.; Hong, B.-C.; Williard, P. G. J. Am. Chem. Soc. 1994, 116, 4183–4188.
- [126] Eaton, P. E.; Nordari, N.; Tsanaktsidis, J.; Upadhyaya, S. P. Synthesis 1995, 501–502.
- [127] Wheatley, B. M. M.; Keay, B. A. J.Org.Chem. 2007, 72, 7253–7259.
- [128] Kennewell, P. D.; Matharu, S. S.; Taylor, J. B.; Westwood, R.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1 1982, 2553–2562.
- [129] Torres, E.; Gorrea, E.; Burusco, K. K.; Da Silva, E.; Nolis, P.; Rúa, F.; Boussert, S.; Díez-Pérez, I.; Dannenberg, S.; Izquierdo, S.; Giralt, E.; Jaime, C.; Branchadell, V.; Ortuño, R. M. Organic & Biomolecular Chemistry 2010, 8, 564–575.
- [130] Martín-Vilà, M.; Minguillón, C.; Ortuño, R. M. Tetrahedron: Asymmetry 1998, 9, 4291– 4294.

- [131] Ito, Y. N.; Ariza, X.; Beck, A. K.; Boháă, A.; Ganter, C.; Gawley, R. E.; Kühnle, F. N. M.; Tuleja, J.; Wang, Y. M.; Seebach, D. *Helv. Chim. Acta* **1994**, 77, 2071–2110.
- [132] Buchman, E. R.; Reims, A. O.; Skei, T.; Schlatter, M. J. J. Am. Chem. Soc. 1942, 64, 2696–2700.
- [133] Kosugi, H.; Sekiguchi, S.; Sekita, R.-i.; Uda, H. Bull. Chem. Soc. Jpn. 1976, 49, 520–528.
- [134] Cucarull-González, J. R.; Hernando, J.; Alibés, R.; Figueredo, M.; Font, J.; Rodríguez-Santiago, L.; Sodupe, M. J. Org. Chem. 2010, 75, 4392–4401.
- [135] Tada, M.; Kokubo, T.; Sato, T. Tetrahedron 1972, 28, 2121–2125.
- [136] Baldwin, J. E.; Burrell, R. C. J. Org. Chem. 2000, 65, 7139-7144.
- [137] Ried, W.; Bellinger, O. Liebigs Annalen der Chemie 1984, 1984, 1109–1116.
- [138] Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis; 2007.
- [139] Shroff, C. C.; Stewart, W. S.; Uhm, S. J.; Wheeler, J. W. J. Org. Chem. 1971, 36, 3356– 3361.
- [140] King, S. A. J. Org. Chem. 1994, 59, 2253–2256.
- [141] Zhao, X.; Hoesl, C. E.; Hoefner, G. C.; Wanner, K. T. Eur. J. Med. Chem. 2005, 40, 231– 247.
- [142] Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190–6191.
- [143] Kragler, A.; Höfner, G.; Wanner, K. T. Eur. J. Med. Chem. 2008, 43, 2404–2411.
- [144] Wein, T.; Petrera, M.; Allmendinger, L.; Höfner, G.; Pabel, J.; Wanner, K. T. ChemMed-Chem 2016, 11, 509–518.