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1 List of Publications

Berning, M., Boergens, K. M., and Helmstaedter, M.

(2015). SegEM: efficient image analysis for

high-resolution connectomics. Neuron, 87(6):1193–1206

Abstract Progress in electron microscopy-based high-resolution connectomics is limited

by data analysis throughput. Here, we present SegEM, a toolset for efficient

semi-automated analysis of large-scale fully stained 3D-EM datasets for the

reconstruction of neuronal circuits. By combining skeleton reconstructions of

neurons with automated volume segmentations, SegEM allows the reconstruction

of neuronal circuits at a work hour consumption rate of about 100-fold less than

manual analysis and about 10-fold less than existing segmentation tools. SegEM

provides a robust classifier selection procedure for finding the best automated

image classifier for different types of nerve tissue. We applied these methods

to a volume of 44 × 60 × 141µm3 SBEM data from mouse retina and a volume

of 93 × 60 × 93µm3 from mouse cortex, and performed exemplary synaptic

circuit reconstruction. SegEM resolves the tradeoff between synapse detection and

semi-automated reconstruction performance in high-resolution connectomics and

makes efficient circuit reconstruction in fully-stained EM datasets a ready-to-use

technique for neuroscience.

Contributions All work was performed by M.B. and M.H.; K.M.B. acquired the cortex

dataset.

Copyright Reprinted from [Berning et al., 2015], Copyright 2015, with permission from

Elsevier.
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Boergens, K. M., Berning, M., Bocklisch, T., Bräunlein,

D., Drawitsch, F., Frohnhofen, J., Herold, T., Otto, P.,

Rzepka, N., Werkmeister, T., Werner, D., Wiese, G.,

Wissler, H., and Helmstaedter, M. (2017). webknossos:

efficient online 3d data annotation for connectomics.

Nature Methods, 14:691–694

Abstract We report webKnossos, an in-browser annotation tool for 3D electron

microscopic data. webKnossos provides flight mode, a single-view egocentric

reconstruction method enabling trained annotator crowds to reconstruct at a

speed of 1.5 ± 0.6 mm/h for axons and 2.1 ± 0.9 mm/h for dendrites in 3D

electron microscopic data from mammalian cortex. webKnossos accelerates

neurite reconstruction for connectomics by 4- to 13-fold compared with current

state-of-the-art tools, thus extending the range of connectomes that can

realistically be mapped in the future.

Contributions M.H. initiated and supervised the project; K.M.B., M.B., T.B., N.R.,

T.W. and M.H. developed specifications and conceptual design with contributions

by H.W.; T.B., D.B., J.F., T.H., P.O., N.R., T.W., D.W., G.W. and K.M.B.

implemented the software; H.W., M.B., K.M.B. and F.D. provided data; K.M.B.,

M.H., H.W. and M.B. analyzed the data; M.H., K.M.B. and M.B. wrote the

manuscript with contributions by all authors.

Copyright Reprinted by permission from Macmillan Publishers Ltd: Nature methods

[Boergens et al., 2017], copyright 2017.
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Staffler, B., Berning, M., Boergens, K. M., Gour, A.,

van der Smagt, P., and Helmstaedter, M. (2017).

SynEM: Automated synapse detection for connectomics.

eLife, 6:e26414

Abstract Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in

the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense

connectomic mapping requires the identification of millions to billions of synapses.

While the focus of connectomic data analysis has been on neurite reconstruction,

synapse detection becomes limiting when datasets grow in size and dense mapping

is required. Here, we report SynEM, a method for automated detection of synapses

from conventionally en-bloc stained 3D electron microscopy image stacks. The

approach is based on a segmentation of the image data and focuses on classifying

borders between neuronal processes as synaptic or non-synaptic. SynEM yields

97% precision and recall in binary cortical connectomes with no user interaction.

It scales to large volumes of cortical neuropil, plausibly even whole-brain datasets.

SynEM removes the burden of manual synapse annotation for large densely

mapped connectomes.

Contributions Conceived and initiated the project: MH; supervised the project: MH

and PvdS; Developed algorithms, implemented algorithms, analyzed data: BS;

provided segmentations and contributed to algorithm development: MB; provided

EM data: KMB; provided expert synapse annotations: AG; wrote the paper: MH

and BS.

Copyright This article [Staffler et al., 2017] is licensed under the CC BY 4.0.

Note Accepted manuscript, PDF only. Full online edition to follow.
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2 Declaration of contribution as shared

first author

The paper [Boergens et al., 2017] reports the development, implementation and testing

of an efficient 3D data viewing and annotation tool for connectomics.

Key components of this paper are: the conceptual design of the tool; the discovery

of flight mode as an intuitive 3D data interaction in EM data; the extensive testing

of annotation modes and the associated effects on tracing speed and accuracy; the

software implementation; comparison to state-of-the-art tools; implementation of the

connectome-reconstruction workflow.

The two first authors (KMB and MB) have contributed to these as follows: MB

contributed to the conceptual design of the tool; KMB was instrumental in the discovery

of flight mode as an intuitive data mode; MB and KMB contributed to extensive

testing of annotation modes in an about 60% / 40% share; software implementation was

performed by the scalable minds team; the comparison to other tools was performed

primarily by MB with contributions by KMB; the connectome reconstruction workflow

and its results were contributed by KMB.

Kevin Michael Boergens Manuel Berning
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3 Declaration of contribution as a

co-author

The paper [Staffler et al., 2017] describes the development, implementation and

evaluation of an automated method for synapse detection in 3D electron microscopy

data.

Key components of this paper are: the conceptual design of the method, the

implementation of the feature extraction pipeline for interfaces, the formulation and

implementation of the classification task, the single synapse performance measurements,

the synapse ground truth generation and the model for connectome error based on single

synapse performance measurements.

MB has contributed: Provided segmentations of the main dataset used for

development and evaluation of the method, contributed to developing the approach

of synapse classification as an interface classification task, wrote initial implementations

of the interface detection, texture features and pooling statistics. Contributed part of

the tracings used in the sparse local connectome example.

Moritz Helmstaedter Manuel Berning
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4 Summary

Understanding the brain remains one of the frontiers of scientific discovery. While

many biophysical mechanisms in the brain have been studied and the stimuli that single

neurons or brain areas are responsive to have been mapped, the scientific community

has not yet been able to reproduce some of its most exciting capabilities or to simulate

its behavior. While not sufficient on their own, cellular resolution maps of connectivity

and the measurement of their variability and conserved properties between animals,

species and brain regions will be of great importance for understanding the processing

in the brain. This thesis focuses on the challenge of mapping neuronal connections

within a piece of brain tissue with single cell and single synapse resolution using electron

microscopy.

The progress towards a complete description of wiring is limited by two main aspects:

The first one is data acquisition with current techniques requiring a tradeoff between

imaging throughput and quality of the resulting dataset. The quality has to be sufficient

to reconstruct all neurites and identify all synapses contained in a given tissue block. The

other is the manual annotation effort required to extract the neuronal connectivity graph

from such a dataset. Both of these challenges have been addressed in the last decade

by partial automation of data acquisition and analysis. Data acquisition using a Serial

Block Face Scanning Electron Microscope chooses a trade-off between data acquisition

speed and quality which enables mapping of synaptic circuits in mammals today. Here

I present methodological improvements for data analysis in such datasets.

In this thesis three projects are reported. The first project describes a method

for generating volume models of neurons from sparse annotations in conventionally

stained electron microscopy data by using machine learning for automated inference

of membrane position and subsequent segmentation by a seeded watershed algorithm.

This method of reconstructing neurites in such a dataset requires about 100-fold less

manual annotation time than manual volume segmentation and about 10-fold less than

other reconstruction methods published at that time.

In the second project a browser based display and annotation tool for 3D electron
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microscopy datasets was developed and the effects of novel features of this tool on

reconstruction speed and accuracy were quantified. This tool called webKnossos provides

capabilities for efficient generation of annotations by many collaborators in parallel

and its advantages over existing tools, especially focused on data delivery and a novel

annotation mode, were quantified. The tool speeds up data annotation by 4-13 fold.

In the third project an automated method for detecting chemical synapses in such

datasets is proposed and evaluated. The approach classifies all borders between segments

as either synaptic or non-synaptic based on feature calculations on different sub-volumes

close to the interface area of the two involved segments. This methods can generate

binary connectomes with above 97% precision and recall without any manual annotation.

Together these projects provide substantial gains in efficiency for connectomic data

analysis including a significant increase in efficiency of manual annotation for wire

reconstruction and a method for complete automation of synapse detection.
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5 Introduction

I regard the brain as a computer which will stop

working when its components fail. There is no heaven

or afterlife for broken down computers; that is a fairy

story for people afraid of the dark.

Stephen Hawking

5.1 Neurobiology

While most scientists would agree with the quote above, scientists on the other hand

do not yet have mechanistic explanations for the properties of the human brain like for

computers and their components. One property that is currently only attributed to the

human brain is the emergence of consciousness, which is defined as ”the quality or state

of being aware especially of something within oneself” [Merriam-Webster, 2017].

This special property of the brain has fascinated humans for a long time with first

documented cases of cranial trephining, the opening of the skull with primitive tools,

dated back to the Neolithic Age (8000 to 3000 before Christ (B.C.)) [Prioreschi, 1991].

The author suggests that these surgeries were performed with the goal of ”recall of

dead individuals to life”, which today would rather be described as a temporary loss of

consciousness. While this procedure does not imply an understanding of the brain as the

seat of consciousness or the concept of consciousness itself, it can be seen as an indication

of knowledge about the correlation of head trauma with the loss of consciousness.

Hippocrates stated around 400 B.C.: ”Men ought to know that from the brain, and

from the brain only, arise our pleasures, joys, laughter and jests, as well as our sorrows,

pains, griefs and tears. Through it, in particular, we think, see, hear, and distinguish

the ugly from the beautiful, the bad from the good, the pleasant from the unpleasant”

[Jones et al., 1952]. This statement still sums up the reasons for the large interest in

understanding this organ and its emergent properties today.

13



Research on the brain with modern scientific methods has started to make significant

progress over the last few centuries. A first indication that electrical current is involved

in muscle movement was discovered by Luigi Galvani, who observed muscle movement

in frog legs when he created an electronic circuit by connecting a steel wire with a brass

wire and attaching both ends to specific locations of a frog [Galvani and Aldini, 1792].

Galvani did not yet understand that he had created an electronic circuit by exposing

the two different metals to the the salt water in the frog which acted as an electrolyte

and rather thought that the frog generated the ”animal electricity” itself. This led

to a controversy with Alessandro Volta who shortly afterwards showed how metals of

different kind in an electrolyte can generate electrical current and thereby invented the

first battery [Volta, 1800].

Experimental evidence that certain functions are localized in the brain of pigeons

was provided by behavioral research coupled with lesions carried out by Marie Jean

Pierre Flourens. These experiments provided indications of the localization of motor

coordination in the cerebellum, perceptions and judgments in the cerebral hemispheres

and at least some vital functions in the medulla oblongata [Flourens, 1824].

In the mid 19th century work by Paul Pierre Broca and Carl Wernicke showed that

higher human mental abilities are also localized in the brain by studying patients with

lesions in the brain. Broca showed that problems in speech synthesis are correlated

with lesions in a region in the posterior part of the frontal lobe in the left hemisphere

[Broca, 1865], while Wernicke showed a similar correlation of speech comprehension with

lesions in the posterior part of the temporal lobe in the left hemisphere [Wernicke, 1874].

At about the same time Fritsch and Hitzig managed to show that exciting the cerebrum

in certain locations with electrical currents will selectively make muscles of dogs contract

[Fritsch and Hitzig, 1863]. This combined the insight about the role of electricity in our

nervous system with the localization of brain function in a single experiment and thus

summarizes the main discoveries about the brain at this point in time.

The next important insight was the neuron doctrine, stating that the brain is made

up of many clearly delineated building blocks which are the main signaling units in the

brain. The doctrine was formulated by Santiago Ramon y Cajal [Cajal, 1888] after using

the staining procedure developed by Camillo Golgi [Golgi, 1873] to analyze the structure

of sparse collections of neurons within the brain, see Figure 5.1 for an example. Thus at

the beginning of the 20th century two important features about the structure of the brain

had been studied, the localization of certain functions of the brain to specific regions

and that each region is made up of many delineated building blocks.
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Figure 5.1: Golgi stain (A1) and related drawing (A2) of embryonic purkinje
cells from a newborn dog by Ramon Cajal. Reproduced from
[Garcia-Lopez et al., 2010].

The role of electricity in the mechanisms of the nervous system has been studied

in much detail in the 20th century since Galvani’s initial discovery. For example

extracellular microelectrode recordings in the cat cortex and hippocampus were

performed and the observed electrical phenomena were described including the effects

of different agents used for anesthesia and ”rapid deflections of about 1ms in

duration” [Renshaw et al., 1940], which would today be called ”action potentials”.

Initial experiments with respect to the biophysics of the cell membrane focused on

the squid giant axon due to its large diameter, which made it more accessible to

early experimental techniques like conductance and capacity measurements of the

membrane during activity [Cole and Curtis, 1939] and initial current and voltage clamp

experiments [Marmont, 1949]. A biological insight from this work is the measurement

[Hodgkin et al., 1952] and mechanistic explanation [Hodgkin and Huxley, 1952] of

action potential transmission based on the properties of sodium and potassium ion

channels kinetics.

Patch clamp recordings have even made it possible to measure the electric potential

across a patch of (cell) membrane with high temporal accuracy, which allows to measure

the properties of single ionic channels in the membrane [Neher and Sakmann, 1976,
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Sakmann and Neher, 1984] in denervated frog muscle fibers or slice preparations of the

tissue. Experiments using this technique have also led to a good understanding of the

kinetics of other ion channel types, e.g. the family of calcium ion channels [Tsien, 1983].

Using a slight variation of the technique, called whole cell patch clamp, one can measure

or influence the membrane potential of cells as well as use dyes to stain the recorded cells

afterwards [Markram et al., 1997b]. Furthermore this technique has since been extended

to allow recording sub-threshold cell membrane potential in response to presented stimuli

in numerous brain regions of interest in awake mice [Margrie et al., 2002]. The limitation

of these approaches is the small number of cells (or patches) that can routinely be

recorded in parallel or in the same sample or animal in general.

An approach for recording the activity of larger assemblies of neurons over

longer periods of time is measuring their intracellular calcium levels (see

[Grienberger and Konnerth, 2012] for a review of the development of calcium imaging)

using either chemical, based on the BAPTA molecule, or genetically encoded calcium

indicators, like Cameleons [Miyawaki et al., 1997] or GCaMP [Nakai et al., 2001].

These intracellular calcium sensors change their fluorescent properties based on

intracellular calcium levels and their fluorescent responses can then be viewed

with a fluorescence microscope and recorded with a charge coupled device (CCD).

In order to achieve higher resolutions other microscopes, for example confocal

[Minsky, 1961], two photon [Denk et al., 1990] or stimulated emission depletion

microscopes [Hell and Wichmann, 1994] can be used. All these microscopy methods

have different advantages, usually trading off speed, field of view, tissue requirements and

resolution of the imaging procedure. These developments have generated information

about everything from sub-cellular response properties [Euler et al., 2002] to the activity

of almost all cells of certain species measured simultaneously [Ahrens et al., 2013] while

presenting different stimuli or perturbing the system using pharmacological agents or

optogenetics.

These developments have given valuable insights into the correlations of activity in

many neurons types from a diverse set of brain regions with the presentation of stimuli

and the biophysical mechanisms used during these computations. A common practical

challenge is determining relevant configurations in the input space for a given neuron in

a higher brain area due to the large number of inputs to the brain and its inherent state.
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5.2 Structural neurobiology

Structural biology is concerned with the spatial arrangement of atoms within biological

molecules and how these provide a certain functionality. For example how does

the spatial arrangement of atoms in the molecule forming an ion channel in a cell

membrane make it selective for certain ions [Doyle et al., 1998, Jiang et al., 2003], or

how proteins involved in the communication between the individual neurons at synaptic

junctions [Südhof, 1995, Südhof and Rothman, 2009] make the signal transmission fast

and specific. These results have generated mechanistic explanations of the selectivity of

ion channels, the molecular machinery of synapses and transcription and translation of

genes.

In analogy the field of structural neurobiology can be defined as describing the

structure at another level of abstraction: While structural biology describes the spatial

arrangement of atoms within molecules, structural neurobiology describes the structure

of cells and synapses within the information processing network of the brain. Arguments

have been made that structural neurobiology is an important missing link in the

attempt to understand the behavior of the brain and the algorithms it implements

[Denk et al., 2012]. The analogy to a computational device in this paper makes an

important point: There are systems in which mapping the entirety of the functional

responses to all possible inputs might yield a much more complex and and less efficient

way of representation than the structural analysis of the underlying circuits, see

Figure 5.2. Furthermore the argument that knowledge of the connectivity will at least

help with the selection between competing models of neural computation is presented.

The analogy of the brain to an electronic circuit does have its limitations. It is important

to point out that the activity of neurons in animals, as opposed to electronic gates, is

not binned in time and their response properties usually depend on their history. Both

of these differences make the notion of a truth table as a sufficient representation of the

neural responses with respect to the input space problematic in the case of a brain.

A currently running initiative, the human brain project, declared the goal to

simulate the human brain. In case of its predecessor, the blue brain project, the

simulation of a cortical column was performed [Markram, 2006]. These simulations

were based on statistical models of connectivity based on single cell morphology and

pairwise connectivity measurements averaged over animals and instances of neurons of a

given cell-type [Markram et al., 2015]. These approaches for generating connectivity

make implicit assumptions. Most notably the statistical models of connectivity
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Figure 5.2: Function vs. structure exemplified using the analogy of the brain circuits
of neurons to a electrical circuits of logic gates. a) shows the truth table of
the network of logic gates presented in b). Note that arrow inside the the
zoom-in in a) highlights the only position where the truth table changes if the
whole circuit marked with the dashed line in b) would have been omitted.
Adapted by permission from Macmillan Publishers Ltd: Nature Reviews
Neuroscience [Denk et al., 2012], copyright 2012.
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based on morphological reconstructions usually rely on some form of Peter’s rule

[Peters and Feldman, 1976], which states that the probability of a connection between

two neurites is proportional to some notion of spatial proximity. Limitations of this rule

have been discussed [Binzegger et al., 2004] and evidence against this assumption has

recently been presented [Kasthuri et al., 2015]. Furthermore it is important to point out

the differences between mapping the complete set of connections within a brain region,

sometimes called a dense reconstruction, and the sampling of pairwise connectivity

between cell types. The sampling of pairwise connectivity is usually based on

multi-patch recordings and averaged over animals and cell types [Markram et al., 1997a]

[Feldmeyer et al., 1999] [Jiang et al., 2015]. In response to [Jiang et al., 2015] several

authors [Barth et al., 2016] pointed out the general limitations of this approach like

slicing artifacts and consistent definition of cell types. More importantly the approach

of sampling pairwise connectivity cannot provide information about higher-order

connectivity, which is defined as connections between pairs of cells whose probability

depends on more than the morphological cell-type identity of the involved cells.

An example could be a connection probability that depends on whether one of the

involved cells has a specific connection (instead of morphology). This subdivision of

morphologically defined cell types based on connectivity was recently discovered in the

retina [Helmstaedter et al., 2013].

Therefore the self-imposed goal of the initiative to simulate the human brain based

on the available data seems to involve invalidated assumptions and approximations in

how connectivity was measured that have not yet been tested for their validity. This

has generated some opposition in the neuroscience community [Helmstaedter, 2013]

[Frégnac and Laurent, 2014]. Dense mapping of connectivity within a brain region

and measurement of its variability over animals will provide important input to such

initiatives in the future.

While research in recent decades has made available information about the structural,

biophysical and genetic properties of single neurons, a full description of connectivity

on the synaptic level has not yet been measured for any significant fraction of the

brain in any mammalian species. Furthermore nobody has shown that a neural network

based on statistical connectivity models based on single cell morphologies and pairwise

connectivity can reproduce the behavior of the brain. Generating a full description of

the connectivity within a region of the brain is the goal of the scientific field introduced

in the next section.
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5.3 Connectomics

The term ”connectomics” was first introduced in 2005 as ”comprehensive structural

description of the network of elements and connections forming the human brain”

[Sporns et al., 2005] and has since been used for diverse scales, methods and biological

goals. The scales on which these connections are mapped vary from the macroscale

using functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (dTI)

over the mesoscale using anterograde or retrograde tract tracing to the microscale

using electron microscopy. Measurements on the macroscale are either measuring the

correlation in the blood oxygen level dependent (BOLD) signal between brain regions or

the macroscopic diffusion properties of water molecules in the brain. According to the

definition above this would mean the ”network elements” are usually brain regions and

the ”connections” are either correlation of BOLD signal between these brain regions or

faster diffusion of water molecules between them. The former implies co-activation of

the brain regions while the latter would suggest neuronal tracts, collections of neuronal

fibers, between them.

The other two scales both measure connectivity based on neurons as ”network

elements”. The main difference is that with the microscale methods one can map

all chemical synapses made within a given imaged region while the light microscopic

approaches have so far been unable to provide the necessary resolution and labeling

method to reconstruct all neurons in a brain region and usually work with very sparse

labeling approaches [Helmstaedter et al., 2008a] and thus only reconstruct a few neurons

per animal. This currently limits the discovery of higher order connectivity to the

electron microscopy (EM)-based microscale methods. Note that expansion microscopy

[Chen et al., 2015], which shifts the problem of resolution from the microscope to the

sample by enlarging the latter, in combination with super-resolution light microscopy

[Hell, 2007] [Rust et al., 2006] might require changes to this statement at some point.

This thesis will focus on the microscale cellular resolution [Helmstaedter, 2013]

electron-microscopy aimed at dense reconstruction of brain regions.

First results in the field of EM-based cellular resolution connectomics were generated

by Sydney Brenner and colleagues who completed the mapping of the nervous system

of the nematode C.elegans in 1986 [White et al., 1986] and results about parts of the

nervous system a decade earlier [Ward et al., 1975]. These efforts were substantial and

based on annotating each electron micrograph manually and then assigning a label

to each of these cross-section annotations consistently through the image series. A
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complete reconstruction based partially on these initial results but for example fixing

a major gap in the connectivity of ventral cord neurons has since been published

[Varshney et al., 2011].

More recently electron microscopy based mapping of neuronal circuits has been used

to map parts of the brain of larger animals. Note that most of the studies presented in

this section have substantial limitations, which will be discussed in section 7.4.

Studies in the mouse retina have revealed dendrite specific wiring asymmetry from

starburst amacrine cells (SAC) dendrites onto ganglion cells [Briggman et al., 2011],

see Figure 5.3. This wiring asymmetry enhances direction selectivity in ganglion cells

based on specific selectivity for centrifugal motion in SAC dendrites measured earlier

[Euler et al., 2002] which in turn preferentially make output synapses onto direction

selective ganglion cells whose null direction aligns with the centrifugal motion selectivity

of a given dendrite.

Furthermore dense mapping of synaptic circuits in the inner plexiform

layer of the retina discovered new morphologically defined bipolar cell types

[Helmstaedter et al., 2013] and has shown that morphologically defined cell types can

be further subdivided based on their synaptic connectivity [Helmstaedter et al., 2013].

The discovery of new morphological cell types is a result of dense mapping which could

also have been achieved by sparse methods like light microscopy, but is made more

convenient due to the complete mapping of all neurons in a given region. The subdivision

on morphological cell types based on synaptic connectivity on the other hand would not

have been possible using sparse methods. Further analysis performed on datasets from

these initial studies [Kim et al., 2014], together with electrophysiological measurements

[Baden et al., 2013] have also suggested a mechanism responsible for generating SAC

dendrite direction selectivity.

Another example in mouse are the initial results concerning circuits in primary visual

cortex. It has been shown that inhibitory neurons receive local excitatory input from

cells with a diverse set of orientation selectivity [Bock et al., 2011]. Another study

confirmed that pyramidal neurons with similar orientation selectivity preferentially form

synapses with each other [Lee et al., 2016] confirming results obtained previously using

light microscopy only [Ko et al., 2011].

On the other hand drosophila has been used as another main model organism in

connectomics. The optical lobe as well as the mushroom body [Takemura et al., 2017]

have been mapped extensively. In the optical lobe the first study of a single medulla

column suggested a circuit for motion detection [Takemura et al., 2013] while the second
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Figure 5.3: Starburt amacrine cell output synapses color coded according to
direction selectivity of the postsynaptic direction selective ganglion cell.
Scale bars: 50µm Reprinted by permission from Macmillan Publishers Ltd:
Nature [Briggman et al., 2011], copyright 2011.
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study found that wiring in the medulla columns of the fly visual system is very consistent

between columns [Takemura et al., 2015]. The circuit that had been suggested for

direction selectivity consisted of a very small spatial offset of Mi1 and Tm3 cells synapses

onto T4 cells [Takemura et al., 2013]. In combination with information about the

temporal delay between the responses in Mi1 and Tm3 interneurons [Behnia et al., 2014]

in the medulla of the fly visual system, this suggested circuit has strong analogies to

the generation of direction selectivity in the retina [Kim et al., 2014], where BC2 and

BC3a types where observed to show differential time delay and make synapses with a

spatial offset onto SAC dendrites. Note that recent data has shown that when the Tm3

cell is turned off only a subset of motion selectivity is disturbed and thus one might

”require an elaboration of the currently prevailing model for ON motion detection”

[Ammer et al., 2015]. See the section on ”The Emergence of Direction Selectivity in

T4-ON Cells” in [Mauss et al., 2017] for a detailed discussion of these limitations or

[Borst and Helmstaedter, 2015] for a more general review about commonalities and

differences of motion detection in the drosophila and mammal. For example the

commonality of an early divergence of the ON and OFF responses that later synapse

onto a single direction selective cell is discussed.

Another model system has been the fly larvae with initial studies showing higher path

length density of dendritiform than varicose/globular neurites [Cardona et al., 2010],

which is in stark opposition to the mammalian brain. Also the complete wiring

diagram of the mushroom body of the drosophila larvae has recently been published

[Eichler et al., 2017], which could lead to interesting comparisons to the adult circuits.

The olfactory bulb of the zebrafish larvae has also been reconstructed in full showing

wiring specificity with respect to glomerular identity of the cell [Wanner et al., 2016].

Furthermore the zebrafish larvae is small enough to be feasible for whole brain electron

microscopy today [Hildebrand et al., 2017].

Apart from these initial findings, method development is still required on the data

acquisition as well as the data analysis to be able to map whole circuits in the cortex of

mammals. The next section focuses on the data acquisition.

5.4 Electron Microscopy

As discussed in the last chapter currently the only viable method to obtain dense

maps of higher order synaptic connectivity within a brain region is electron microscopy.

Several methods for the acquisition of 3D image data using electron microscopy from
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specifically prepared brain tissue have been developed over the past decades, see

[Helmstaedter et al., 2008a] or [Briggman and Bock, 2012] for detailed reviews.

In order to obtain series of electron micrographs that can later be aligned into a

3D volume, a sample of brain tissue is acquired from the animal by either trans-cardial

perfusion or immersion fixation after extraction. The advantages of the former approach

are usually better preservation of the tissue while the latter procedure can be used in

non-terminal experiments, for example on intra-operative human tissue. Afterwards

an en-bloc staining procedure like reduced osmium thiocarbohydrazide-osmium (rOTO)

[Willingham and Rutherford, 1984], sometimes used in conjunction with post-staining

methods after cutting, are used to selectively increase the electron cross-section of

bilipid membranes by introducing elements with a high atomic weight. For tissue blocks

larger than 100 micrometer along their smallest dimension, improved versions of the

en-bloc staining procedure were required and have been developed [Hua et al., 2015]

[Mikula and Denk, 2015].

The two main types of electron microscopy used today are transmission electron

microscopy (TEM) and scanning electron microscopy (SEM). TEM works on thin

samples of tissue and the electrons traverse the sample. SEM is based on the

detection of back-scattered or secondary electrons from the surface of the sample while

scanning over the surface with an electron beam. The penetration depth and depth

from which information about the structure will be collected when scanning over the

surface in SEM varies with landing energy of the electrons and detector properties

[Hennig and Denk, 2007].

The microscopy techniques can be further subdivided according to several properties

of the cutting process used to generate imaging data from 3D volumes of tissue. One

of the properties is whether the data is imaged before the respective piece of tissue is

cut from the block, often termed block-face methods, or whether each slice is imaged

separately after cutting.

The classic approach of serial section transmission electron microscopy (ssTEM),

see Figure 5.4(a), falls into the latter category just like the approach of automated

tape collecting ultra microtome (ATUM) [Hayworth et al., 2006] based SEM, see

Figure 5.4(b). In both of these approaches the slices are cut prior to imaging,

which has the advantage that the sectioning is independent of the imaging step, but

introduces the challenge of transferring very thin slices onto some form of sample holder

without damage or distortions. The classic approach of serial section transmission

electron microscopy (ssTEM) has the main advantage of very high imaging speed
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[Bock et al., 2011], especially when optimized for this purpose: ”Net imaging throughput

using the TEMCA2 system is 50 MPix/s” [Zheng et al., 2017]. The main improvement

in the automated tape collecting ultra microtome (ATUM) based approach is that

the collection of slices onto tape is automated, but as the carbon coated tape is not

transparent to electrons, SEM has to be used.

The block-face imaging techniques image one side of the tissue block and afterwards

remove a thin slice from the imaged surface of the block. The difference between diamond

knife based serial blockface electron microscopy (SBEM) [Denk and Horstmann, 2004],

see Figure 5.4(c), and focused ion beam based SBEM [Knott et al., 2008], see

Figure 5.4(d), is the method used to remove the thin layer of tissue after imaging. In the

former case the removal is achieved by automated cutting with a diamond knife while

the latter approach uses ablation with a focused ion beam. Both approaches work on

the block of tissue in an automated manner within the vacuum chamber of the electron

microscope. Using an ion-beam has the advantage that higher doses can be used during

the SEM based imaging of the sample, while the method is currently limited by the

sample size that can be reliably ablated without image artifacts along the axis aligned

with the ion beam. In general the block-face methods have the advantage that image

deformations are less severe while the main challenge is that the cutting has to take place

in the vacuum chamber of the microscope which can lead to contamination of the column

or sample holder with debris from the cutting process which in turn can introduce image

artifacts. An interesting recent development is the creation of a multi-beam scanning

electron microscope (mSEM) by ZEISS [Eberle et al., 2015], which promises two order of

magnitude higher imaging speeds than the currently used single beam scanning electron

microscopes.

The work presented in this thesis is focused on a data set from layer 4 of primary

somatosensory cortex obtained by trans-cardial perfusion from a mouse, followed by

rOTO based staining as published in [Briggman et al., 2011] and diamond knife based

SBEM acquisition by my colleague Kevin Boergens. The reasons for choosing this area

are outlined in the next section.
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Figure 5.4: 3D electron microscopy approaches (a) the classic approach of serial
section transmission electron microscopy (ssTEM) (b) similar to (a)
but with automated slice collection is automated tape collecting ultra
microtome (ATUM) based scanning electron microscopy (SEM) (c) diamond
knife cutting based en-bloc SEM (d) ion beam cutting based en-bloc
SEM. Reprinted from [Briggman and Bock, 2012], Copyright 2012, with
permission from Elsevier.
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5.5 Barrel cortex

The brain region from which the main tissue sample presented in this thesis originated

is called barrel cortex, which is a region with distinctive cytoarchitecture located in

somatosensory cortex layer 4 of some rodent species. This region shows structures that

have the 3D form of barrels when stained with e.g. the Nissl stain or for the presence

of cytochrome c oxidase [Wong-Riley, 1989], with the bands in between these barrels

called septa. The arrangement of these structures in cortex has the same layout as the

whisker pad on the snout of the animal (see Figure 5.5). This structure was discovered

in mice [Woolsey and Van der Loos, 1970] using the Nissl stain, while a more systematic

study [Woolsey et al., 1975] found these structures in many other rodent species in

the suborders Myomorpha (gerbils, hamster, rats, muskrat), Cavimorpha (chinchilla,

guinea pig), Sciuromorpha (flying squirrel, chipmunk, ground squirrel, prairie dog, gray

squirrel) and Hystricomorpha (african porcupine). It has since been shown that species

from other orders also show such distinct structures, for example the star nosed mole

[Catania and Kaas, 1997] and the wallaby [Waite et al., 1991]. The conservation of this

structure in different species makes the research on this structure additionally interesting

and will allow for cross-species comparison of local structural features.

Figure 5.5: The whisker sensory pathway. The follicle of each whisker is innervated
by the peripheral branch of a neuron in the trigeminal ganglion which in
turn relays the signal via the thalamus to the barrel cortex. Reprinted by
permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience
[Diamond et al., 2008], copyright 2008.

Figure 5.5 sketches the whisker sensory pathway that gives rise to these structures in

cortex. The cell body of the first neuron in this pathway is located in the trigeminal
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ganglion and one branch of this neuron innervates the follicle surrounding a whisker

together with approximately 150 other neurons of the trigeminal ganglion [Vincent, 1913]

and converts mechanical movement into an electrical signal. This signal will then travel

past the cell body and down the other branch to relay the information to the trigeminal

nuclei in the brainstem [Dörfl, 1985]. From there the information is relayed via either

the nucleus ventralis posteromedialis (VPM) or posteromedial complex (POm) region

in the thalamus to the primary and secondary somatosensory cortex. This means that

only three synapses are activated, one in the trigeminal nuclei of the brainstem, on in

the thalamus and one in the barrel cortex to relay the signal generated in the follicle

of the whisker to cortical neurons. Note that in addition to the representation of the

barrel field in cortex, the representation of the whiskers in the trigeminal nucleus as well

as the representation in the VPM is preserving the topography of the whisker pad on

the snout as well [Fox, 2008]. These regions are referred to as barrelettes and barreloids

respectively in analogy to the barrel structures in layer 4 of primary somatosensory

cortex.

The barrel cortex has been studied extensively using pairwise patch clamp

recordings paired with morphological reconstruction, e.g. [Markram et al., 1997a]

[Feldmeyer et al., 1999] [Helmstaedter et al., 2008b]. This has led to an accumulation

of knowledge about the electrophysiological properties, single cell morphologies

[Narayanan et al., 2015] as well as pairwise connection statistics between single

cell types averaged over animals [Markram et al., 1997a] [Feldmeyer et al., 1999]

[Helmstaedter et al., 2007]. Of particular interest when studying the barrel field in layer

4 is the connectivity between cells in layer 4, which was found to ”suggest that in L4

of the barrel cortex synaptic transmission between spiny neurones is largely restricted

to a single barrel” [Feldmeyer et al., 1999]. Another finding of particular interest when

regarding the barrel cortex from a connectomics perspective is the description of an

interneuron whose neurites are to a large extent restricted to layer 4 of a single barrel

[Koelbl et al., 2013]. As long as connectomics is still limited by the size of the volumes

that can be imaged with high quality, these two findings present an opportunity to

reconstruct the complete connectivity between some cells when aiming to reconstruct a

whole barrel.

Additional studies based on viral tracing and immunostaining have mapped the

projections from thalamus to a barrel column [Wimmer et al., 2010], see Figure 5.6,

the distribution of excitatory neurons in a barrel column [Meyer et al., 2010b], the

distribution of boutons originating from nucleus ventralis posteromedialis (VPM)
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and posteromedial complex (POm) within a barrel column [Meyer et al., 2010a]

and the distribution of excitatory versus inhibitory neurons in the barrel column

[Meyer et al., 2011].

Figure 5.6: Thalamocortical projections to the barrel cortex. (A) Projections
from the nucleus ventralis posteromedialis (VPM) to barrel cortex (B)
Projections from the posteromedial complex (POm) to barrel cortex (C)
Overlay of the both channels showing largely non-overlapping projections
of the two thalamic nuclei in barrel cortex layer 4 and 5. Note that
it also shows the columnar structure. This figure is reproduced from
[Wimmer et al., 2010] and is licensed under the CC BY-NC 2.5.

The behavioral importance of whiskers has been proven for a long time, often in

either elevated mazes, texture discrimination tasks [Vincent, 1912] or gap-crossing,

which has been shown to be learnable by mice with only a single whisker

[Celikel and Sakmann, 2007]. This finding is of particular interest, as combined with the

structure of the whisker pathway and barrel field described above, one can hypothesize

that a single barrel has behavioral relevance and can probably be altered in a learning

paradigm. Similarly measurements in vivo of L2/3 cells in barrel cortex showed

stronger and shorter onset latencies of cells in the barrel than in cells in the septum

[Brecht et al., 2003]. More recent experiments have shown that whisking related activity

in barrel cortex is higher during social facial touch compared to touching inanimate

objects [Bobrov et al., 2014] and that active whisking strategies might change during

different behavior [Arkley et al., 2014]. These results suggest that the simple stimuli and

behavioral tasks used in many experiments might be a subsampling of the whole stimulus
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space and might not represent the natural stimulus environment of these animals. In

the analogy to a input-output table of a computational device introduced earlier one can

again see that one of the challenges is finding a complete representation of the stimulus

input space relevant in a certain brain region.

The extensive knowledge about the input pathway, single neuron properties, especially

the confinement of the neurites of some cells to a barrel, behavioral relevance of a single

barrel and its presence in multiple species and orders taken together make this a very

interesting brain region for circuit mapping.

5.6 The reconstruction challenge

The development of better electron microscopy based 3D image data acquisition

techniques described in an earlier section is rapidly advancing our ability to acquire

3D electron microscopy image data from larger volumes. Acquiring a dataset of layer

4 in barrel cortex from mouse, which has a rough size of (300µm)3, is possible within

approximately 1000 hours of experiment [Helmstaedter, 2013].

Using the conventional approach used by Sydney Brenner and colleagues of contouring

all neurites for the dense reconstruction of such a stack would take an estimated 1 million

human annotation hours [Helmstaedter, 2013]. These 3 orders of magnitude between the

time needed for experiments vs. the manual data analysis workload has been termed

the analysis gap [Helmstaedter, 2013].

Note that the example above only describes the reconstruction of one very small

region of the mammalian brain. The work that would currently be involved in in

mapping the whole human brain with its ”86.1 ± 8.1 billion NeuN-positive cells”

[Azevedo et al., 2009] or even the whole mouse brain with its ”70.89±10.41 million total

neurons” [Herculano-Houzel et al., 2006] is more understandable when contemplating

that the barrel only contains 4447 ± 439 neurons in rats [Meyer et al., 2010b]. When

considering that this small set of neurons would already require 1 million annotation

hours using the classic approach and that the effort would scale approximately linearly

with the number of neurons, whole brain reconstruction seems far from feasible in

mammals.

Note that the reconstruction challenge as described above focuses on cable

reconstruction, but at least one other step is required for mapping the connectivity graph

of a brain region: annotation of the connection between neurons, the synapses. As this is

a local problem, a wrong classification of a synapse does not influence the classification
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taken in another location, complete automation with a low error rate seemed more

plausible in the near future than for wire reconstruction. [Staffler et al., 2017] describes

an approach that makes it possible to perform automated synapse detection for a binary

excitatory connectome with above 97% precision and recall.

The challenge of extracting the high-dimensional graph of neuron to neuron synaptic

connectivity from densely packed neurophil involving wire reconstruction and synapse

detection has been termed the ”reconstruction challenge”. Two possible solutions

discussed in [Helmstaedter, 2013] are crowd-sourcing and machine learning. The next

section will focus on the latter approach, while the former approach will be discussed in

the last section of this introduction.

5.7 Artificial Intelligence & Machine Learning

Understanding intelligence is one of the main goals when studying the brain. An

alternative approach to understand intelligence is creating artificial intelligence. In 1950

Alan Turing proposed a test for determining whether artificial intelligence has been

achieved, which he called the ”imitation game” [Turing, 1950]. This test suggests to

test for artificial intelligence by asking a set of interrogators to chat with a human and a

machine and judge which one of them is human. If the interrogators fail to distinguish

the machine from the human, the machine could be deemed intelligent. This might be

extended to other tasks to give intelligence a broader meaning and not focus on natural

language processing.

As this goal has not yet been reached, even in the narrower sense, the field

of ”artificial intelligence” is today usually referred to as ”machine learning”, which

seems to better describe what current algorithms are capable of. The most common

form of machine learning is to learn one very specific task like detecting which of

a given set of objects is present in an image based on a large amount of labeled

examples [Krizhevsky et al., 2012]. This would be called supervised learning of image

classification.

One of the possible solutions of the reconstruction challenge in EM based connectomics

is to use methods from machine learning to automate (part of) the analysis workload.

Interestingly people have also argued the other way around: that insights from

neuroscience are required to further improve machine learning [Hassabis et al., 2017].

This is also the concept of the Intelligence Advanced Research Projects Activity (IARPA)

Machine Intelligence from Cortical Networks (MICRoNS) program which aims to
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improve machine intelligence by studying cortical circuits and is currently a large funder

of connectomics research. This parallel development within neuroscience and machine

learning can be seen in the development of the field of connectomics in neuroscience

to study connectivity in the brain and the field of connectionism in machine learning

to study methods for fitting models to a certain task based on learning connectivity

between simple units. This latter field is today often referred to as deep learning.

A first important step in the development of this field was to introduce the notion of

a simple unit so that the connectivity between instances of these could be learned.

This simple unit was first introduced as an element with multiple inputs and one

binary output that activates if a given threshold on the summed inputs was surpassed

[McCulloch and Pitts, 1943]. This was based on the observed ”all or none” character of

activity of neurons in our nervous system and therefore the simple units are often called

neurons. First artificial neural networks made up of such simple units were developed

a long time ago, with one of the more famous early examples being the perceptron

[Rosenblatt, 1958].

More complex models of neurons than these simple units would be required to

reproduce all biophysical properties of neurons. Nonetheless current machine learning

methods rely on this definition of a simple unit with the slight alteration that the

step-function in the example above is often replaced with other nonlinearities like e.g.

sigmoids or rectified linear functions. It is thus important to keep the differences between

neuron models in machine learning and biophysical plausible intracellular dynamics as

e.g. in multi-compartmental modeling in mind. The artificial neuronal network models

used in machine learning miss some other essential features observed in the brain, like

neuron morphology and dynamic aspects of synapses.

The probably most important method developed for supervised learning is called

backpropagation and was developed in the 1960’s [Kelley, 1960, Dreyfus, 1962] for

optimizing flight paths. Extensions of this technique are used in neural network

implementations to date and it is the central algorithm used for supervised learning.

The algorithm requires a set of input data with an associated label, which denotes the

desired output. The model is then initialized into a state by drawing a random number

for each parameter. From this state the model is updated according to the derivatives

of the loss function with respect to the parameter during each sample presentation, see

Figure 5.7 and [LeCun et al., 2015] for details.

A noticeable improvement in performance of machine learning algorithms for image

classification tasks was observed with the introduction of a model termed convolutional
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Figure 5.7: Backpropagation of errors in multi-layer networks. (left side) Graph
of a neural network with 2 hidden layers and an output layer, and the
formulas for computing the forward pass through the network. For each
neuron in every layer the input from the previous layer is summed up and
the nonlinearity is applied. (right side) Once the forward pass was applied
one can compare the output of the calculation with the supplied ground
truth label and use the given equations to calculate the derivatives of the
loss function with respect to the weights in reverse order through the layers.
Note that error derivative given here is for a squared loss function. Reprinted
by permission from Macmillan Publishers Ltd: Nature Reviews Neuroscience
[LeCun et al., 2015], copyright 2015.
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neural network (CNN). These have two important and related properties: weight sharing

and translation invariance of the output. The translation invariance is achieved by

weight-sharing, which means that some weights in the respective layers of a neural

network are defined to be equal by design. This can be seen in analogy to the tiling

of cell types in the retina which all extract similar features from their respective

field of view. A similar property was found in the simple cells in the cortex of cats

[Hubel and Wiesel, 1959]. The idea of translation invariance in pattern recognition was

first used in the Neocognitron [Fukushima, 1979], while a well known implementation

using max pooling layers for upsampling and backpropagation as a learning rule was

described much later [LeCun et al., 1989]. This latter network managed to perform

handwritten digit recognition with sufficient accuracy that it could be used for

automatic zip code recognition. Other examples have since shown that these models

can achieve better performance in many tasks, for example in image classification

[Krizhevsky et al., 2012] or speech recognition [Hinton et al., 2012], than earlier neural

network architectures or heuristic algorithms.

CNNs have been introduced to connectomics research with some modifications to use

them as an intermediate stage for image segmentation algorithms [Turaga et al., 2009]

[Turaga et al., 2010] [Jain et al., 2010]. Image segmentation is the problem of grouping

pixels based on similarities in the local image content. For connectomics the goal is

usually to group together pixels that belong to the same cell. For this purpose methods

have been developed to train a CNN on a new cost function [Turaga et al., 2010] that

allows one to directly optimize the rand index [Rand, 1971]. The Rand Index is one

of the voxel-wise metrics used for judging segmentation quality. Another one that was

developed for connectomics is called the warping error [Jain et al., 2010]. A network

that directly optimizes the Rand Error was used for the connectomic reconstruction in

[Helmstaedter et al., 2013] on image data stained to specifically suppress intracellular

contrast.

The CNN implementation in [Berning et al., 2015] for classification of voxel in EM

data into membrane vs. non-membrane voxel extended the traditional CNN definition

used for images to 3D input data. The backpropagation was implemented similar to

the definition given above. One of the difference to all earlier published approaches is

that this model was trained on the conventionally stained EM data that provides the

benefit of direct synapse identification based on intracellular structure, which in turn

also makes the classification more difficult. This paper also presents the whole workflow

for generating volume models using sparse annotations and introduces merger and split
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rates as a skeleton based alternative to voxel based error metrics.

5.8 User interaction

Another possible solution of the reconstruction challenge in connectomics is using

online crowd-sourcing to recruit large annotator crowds [Helmstaedter, 2013]. The

existing in-browser annotation tool CATMAID [Schneider-Mizell et al., 2016] streams

EM data by transmitting 2D chunks (images) of data. In [Boergens et al., 2017]

a new approach of data delivery based on 3D cubes of data was implemented in

a tool called webKnossos (https://webknossos.org). This data delivery is better

suited to use the locality of data needed to annotate a certain region. It allows for

arbitrary reslicing on the fly allowing for novel data interaction modes like ”flight-mode”,

an egocentric single view-port data representation that allows faster tracing in a

continuous movement paradigm. Rigorous quantification was provided that showed

that error rates were indistinguishable between the conventional ”ortho-” and the

novel ”flight-mode”. webKnossos is based on the standalone application KNOSSOS

[Helmstaedter et al., 2011] (https://knossostool.org).

Reconstructions based on skeletonization progressed at a speed of 3.7h/mm

[Berning et al., 2015], 5.3h/mm [Helmstaedter et al., 2011], 7.69 [Helmstaedter, 2013]

and 8.47h/mm [Wanner et al., 2016]. The new approaches presented in

[Boergens et al., 2017] show that reconstruction with workload of less than 1h/mm is

possible over a wide range of bandwidth and latency regimes of the internet connection

the user has at his or her disposal.

35

https://webknossos.org
https://knossostool.org


6 Results

6.1 SegEM: Efficient image analysis for high-resolution

connectomics

Abstract Progress in electron microscopy-based high-resolution connectomics is limited

by data analysis throughput. Here, we present SegEM, a toolset for efficient

semi-automated analysis of large-scale fully stained 3D-EM datasets for the

reconstruction of neuronal circuits. By combining skeleton reconstructions of

neurons with automated volume segmentations, SegEM allows the reconstruction

of neuronal circuits at a work hour consumption rate of about 100-fold less than

manual analysis and about 10-fold less than existing segmentation tools. SegEM

provides a robust classifier selection procedure for finding the best automated

image classifier for different types of nerve tissue. We applied these methods

to a volume of 44 × 60 × 141µm3 SBEM data from mouse retina and a volume

of 93 × 60 × 93µm3 from mouse cortex, and performed exemplary synaptic

circuit reconstruction. SegEM resolves the tradeoff between synapse detection and

semi-automated reconstruction performance in high-resolution connectomics and

makes efficient circuit reconstruction in fully-stained EM datasets a ready-to-use

technique for neuroscience.

Contributions All work was performed by M.B. and M.H.; K.M.B. acquired the cortex

dataset.

Copyright Reprinted from [Berning et al., 2015], Copyright 2015, with permission from

Elsevier.
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SUMMARY

Progress in electron microscopy-based high-resolu-
tion connectomics is limited by data analysis
throughput. Here, we present SegEM, a toolset for
efficient semi-automated analysis of large-scale fully
stained 3D-EM datasets for the reconstruction of
neuronal circuits. By combining skeleton reconstruc-
tions of neurons with automated volume segmenta-
tions, SegEM allows the reconstruction of neuronal
circuits at a work hour consumption rate of about
100-fold less than manual analysis and about 10-
fold less than existing segmentation tools. SegEM
provides a robust classifier selection procedure for
finding the best automated image classifier for
different types of nerve tissue. We applied these
methods to a volume of 44 3 60 3 141 mm3 SBEM
data from mouse retina and a volume of 93 3 60 3
93 mm3 from mouse cortex, and performed exem-
plary synaptic circuit reconstruction. SegEM re-
solves the tradeoff between synapse detection and
semi-automated reconstruction performance in
high-resolution connectomics and makes efficient
circuit reconstruction in fully-stained EM datasets a
ready-to-use technique for neuroscience.

INTRODUCTION

Mapping neuronal circuits at single-cell resolution is the goal of

high-resolution connectomics (Helmstaedter, 2013, Denk et al.,

2012, Lichtman andDenk, 2011).While 3D-EM imagingmethods

have progressed substantially (Denk and Horstmann, 2004,

Knott et al., 2008, Hayworth et al., 2006, Helmstaedter et al.,

2013, Takemura et al., 2013; for a review, see Briggman and

Bock, 2012), and 3D-EM imaging setups are being installed in

many laboratories worldwide, the reconstruction speed of such

data is lagging behind by at least 3 orders of magnitude (Helm-

staedter, 2013). Fully automated reconstruction approaches

have not provided the required reconstruction accuracy to

date (Funke et al., 2012; Andres et al., 2012a, 2012b; Vazquez-

Reina et al., 2011; Seyedhosseini et al., 2011, 2013; Jain et al.,

2007, 2010a, 2011; Turaga et al., 2009, 2010; Ciresan et al.,

2012; Kaynig et al., 2015; Nunez-Iglesias et al., 2014; Sommer

et al., 2011; Liu et al., 2014). Instead, combinations of massive

manual annotation with automated analysis methods have

yielded first substantial connectivity maps in the fly optical sys-

tem (Takemura et al., 2013) and mouse retina (Helmstaedter

et al., 2013).

However, these approaches were limited either by analysis

speed when proofreading pre-segmented data (Takemura

et al., 2013; 14,400 hr investment for 105 mm circuit path length)

or by the lack of direct synapse identification when using special

cell-membrane-enhanced EM staining (Briggman et al., 2011;

Helmstaedter, 2013; �20,000 hr investment for 640 mm circuit

path length).

In fact, even small blocks of neuronal tissue (Figures 1A and

1B) contain enormous amounts of local neuronal circuitry: for

example, a block of mouse retina sized 44 mm 3 60 mm 3

141 mm on a side contains about 400 cell bodies, 1.5 m of

neuronal wires, and 0.5 million chemical synapses (Figure 1A;

Briggman et al., 2011; Helmstaedter et al., 2013). To reconstruct

neuronal circuits from such a sizeable volume of neuronal tissue,

dendrites and axons of all neurons have to be followed through

the dataset and all synapses identified. Unequivocal synapse

identification requires the staining of synaptic vesicles and po-

tential postsynaptic structures. Such conventionally stained

3D-EMdata (Figures 1C and 1D), however, also stainsmitochon-

dria and other intracellular structures, which results in highly

overlapping single-voxel gray value distributions (Figure 1E).

The fully manual volume reconstruction of neuronal circuits in

such a 3D-EMdataset (Figures 1A and 1B) would consume enor-

mous amounts of human work hours even for medium-sized

circuits. The reconstruction of neuronal circuits between, for

example, 100 input axons and 100 postsynaptic neurons in

such a dataset from layer 4 of cerebral cortex (Figure 1B) would

consume about 200,000–500,000 work hours, amounting to $2–

$5 million resource investment, which makes such analysis pro-

hibitive in most settings. It is therefore essential to develop auto-

mated classifiers for large-scale 3D-EM data that have been

stained for all relevant structures, including synaptic vesicles

and post-synaptic densities, and to integrate such automated

classifiers into a reconstruction workflow that provides full-

neuron volume reconstructions at a tolerable investment of

manual labor.

To allow the analysis of large-scale EM data, several software

tools have been developed that either focus on the fully manual

annotation of neurites and synapses (KNOSSOS, Helmstaedter

et al., 2011; TrakEM2, Cardona et al., 2012; CATMAID, Saalfeld

et al., 2009) or provide a combination of automated analysis and

proof-reading capabilities (rhoANA, Kaynig et al., 2015; ilastik,

Sommer et al., 2011). While the fully manual tools cannot relieve
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the enormous work load of reconstructing even small circuits,

the computer-supported tools require semi-automated manual

annotation or proof reading. The required residual proof-reading

efforts are substantial, amounting to about 30–300 work hours

per mm path length (for a single annotator, Figure 1F). This is

up to 10 times faster than fully manual annotation, but still an

enormous burden for circuit reconstruction for most

laboratories.

If automated classifiers for fully stained 3D-EMdatawere avail-

able that could be directly combined with efficient skeleton

reconstruction, an additional reconstruction efficiency gain of

about 10-fold would be possible, which can propel the field into

a realistic regime of reconstructing local neuronal circuits sized

on the scale of 0.1–1m integratedpath length (Figures1Fand6A).

Here, we report the development of such automatedmachine-

learning-based classifiers and segmentation procedures that

operate on fully stained synapse-labeled large-scale volume

EMdata.We used convolutional neural network (CNN) classifiers

since they are known to perform well in settings with little prior

algorithmic knowledge about the classification task and since

they profit directly from increased training set size. We applied

semi-automated classifier selection routines that enable classi-

fier training with little prior knowledge in a setting targeted to

large-scale EM data applications.

Our classifiers achieve a volume segmentation quality that

readily provides full-volume reconstructions when combined

with skeleton-annotated neuron reconstructions, at an effective

resource consumption of 4–8 hr/mm path length per annotator.

We exemplify efficient circuit reconstruction for the bipolar cell

inputs to one amacrine cell in an EM dataset from mouse retina,

and local circuit reconstructions of spiny stellate cells and inner-

vating axons in a dataset from mouse somatosensory cortex

A

C

B

D

F

G

E

Figure 1. SegEM-Based Connectomic Analysis of Fully Stained 3D-EM Datasets

(A) Dataset boundaries of a 44 mm3 60 mm3 141 mm sized stack acquired by SBEM in mouse retina (dataset ek563; Briggman et al., 2011) extending from the

ganglion cell layer (GCL) via the inner plexiform layer (IPL) to parts of the inner nuclear layer (INL).

(B) 93 mm 3 60 mm 3 93 mm sized SBEM dataset from mouse somatosensory cortex layer 4 (dataset 2012-09-28_ex145_07x2; K.M.B. and M.H., unpublished

data). Orientation with respect to pial surface (Pia) and white matter (WM) is indicated.

(C) Neuropil was ‘‘fully stained’’ contrasting all membranes (retina).

(D) Magnified excerpts from (C) illustrate difficulty of distinguishing plasma membranes from vesicular and mitochondrial membranes. Outlines of plasma

membrane boundaries from human annotation separating intracellular (in) and extracellular (ex) space are indicated in red. Excerpts sized (35 vx)2 each.

(E) Gray value distributions of extra- (blue) and intracellular (green) image voxels are highly overlapping, making automated analysis difficult.

(F) Annotation time estimates per mm neurite path length as a measure of circuit size (see also Figure 6A) shown for all-manual volume annotation, finished large-

scale connectomic reconstructions (1: Helmstaedter et al., 2013; 2: Takemura et al., 2013), methods descriptions (3: RhoANA, Kaynig et al., 2015; 4: RhoANA

applied to cerebral cortex data, Kasthuri et al., 2015; 5: Jones et al., 2015), and SegEM (reconstruction throughput for retina [top marker] and cortex [bottom

marker]). See Supplemental Experimental Procedures for details of calculation.

(G) SegEM flowchart for the reconstruction of neuronal circuits. Blue dashed boxes: steps involvingmanual annotation. Note that neurite reconstruction (step 1) is

by far the most time-consuming step (see also Figure 6A).
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layer 4. From these example reconstructions, we can predict that

even circuits between hundreds of neurons are reconstructable

using SegEM at resource investments that are realistic in most

laboratories (Figure 6A).

SegEM (Data S8; segem.io) integrates all tools required to

perform circuit analysis in these datasets and the toolset for effi-

ciently analyzing novel 3D-EM datasets of neuronal circuits. In

addition, SegEM comprises all training data and test metrics

(Data S8, segem.io) to establish a large-scale 3D segmentation

challenge for machine learning in connectomics.

In the following, the SegEMworkflow and its application to two

large 3D-EM datasets from mouse retina and cortex is

described. Then, circuit reconstruction examples are presented

for these two datasets, followed by general analysis guidelines

for the application of SegEM to 3D-EM datasets. Finally, seg-

mentation error rates are reported and discussed.

RESULTS

We used SegEM to analyze two large 3D-EM datasets in which

the neuronal tissue had been fully stained to resolve neurites

and synapses. Both datasets were imaged using serial blockface

scanning electron microscopy (SBEM; Denk and Horstmann,

2004): one from mouse retina IPL (ek563; Briggman et al.,

2011; Helmstaedter et al., 2013; voxel size: 12 3 12 3 25 nm3,

dataset size: 443 603 141 mm3; Figure 1A) and one frommouse

S1 neocortex (2012-09-28_ex145_07x2, K.M.B. and M.H., un-

published data; voxel size: 11.24 3 11.24 3 28 nm3, dataset

size: 93 3 60 3 93 mm3; Figure 1B).

SegEM Workflow
The SegEM tools are aimed at replacing the labor-intensive

manual volume segmentation of fully stained 3D-EM data by

an efficient combination of skeleton annotation with automated

volume segmentations (Figure 1F). The first branch of the work-

flow (Figure 1G) is the skeletonizing of axons and dendrites of in-

terest using efficient 3D skeletonization software (such as

KNOSSOS, Helmstaedter et al., 2011; www.knossostool.org,

step 1 in Figure 1G). This is the key step that consumes manual

labor. The consumption is about 4–8 hr per mm neurite path

length for a single skeleton annotator, thus 25- to 100-fold faster

than fully manual volume annotation (Helmstaedter et al., 2011;

see Figure 1F).

To make use of this skeletonized data for volume segmenta-

tion, contact detection, and further circuit analysis, the second

branch of the SegEM workflow is required (steps 2–5 in Fig-

ure 1G). First, small example volumes need to be manually

labeled for training the automated classifiers (step 2 in Figure 1G).

This step consumes about 1,000–2,000 work hours, but only

once per dataset, which is only a fraction of the work hour invest-

ment required for neurite skeletonization in most settings. Next,

the automated image classifiers have to be trained (step 3 in Fig-

ure 1G). Then, the trained classifier is applied to the 3D-EM im-

age data, followed by an automated segmentation step (steps

4 and 5 in Figure 1G). The result of these SegEM steps is a piece-

wise volume segmentation, which is then combined with the

skeleton reconstructions to yield full-volume reconstructions of

neurons.

These full-neuron reconstructions are then fed into the

SegEM-contact detection routines (step 7 in Figure 1G), which

output contact area matrices and pointers to potential synapse

locations. These can be used to finally validate synapses in the

circuit of interest (step 8 in Figure 1G).

The SegEM workflow is rather modular: for example, the clas-

sifier training (steps 2 and 3 in Figure 1G) can be omitted if an

existing classifier is to be applied to the data (for example, the

classifiers developed here can be directly applied to novel 3D-

EM datasets, see Data S2).

The logic of the SegEM workflow is described in the following

as it was applied to the two large example datasets from retina

(Figure 1A) and cortex (Figure 1B). A detailed step-by-step in-

struction for the application of SegEM can be found in the Sup-

plemental Experimental Procedures.

Training Data
Machine-learning-based image analysis requires substantial

amounts of labeled training data. For the retina dataset, we

used manually segmented image volumes in the surroundings

of ribbon synapses, which consisted of bipolar, amacrine, and

ganglion cell neurites (Figure S1A) as training data. These anno-

tations had been used in a previous study for the calibration of

synapse probability based on neurite-to-neurite contact area

(Helmstaedter et al., 2013). The 215 manual segmentations

were generated by contouring of neurites by 33 trained under-

graduate students using a custom-written software (KLEE, im-

plemented in MATLAB; other available tools are, for example,

ilastik, Sommer et al., 2011; CATMAID, Saalfeld et al., 2009;

VAST, Kasthuri et al., 2015) and consumed a total of about

1,500 hr annotation time (thus, about $15,000 salary expense,

which is on the scale of investments in chemicals for 3D-EM pro-

jects). This volume segmentation was split into a training and test

set (�5 3 108 and �1 3 106 voxels, respectively).

For the cortex dataset, we volume-annotated locally dense

data cubes of size (100 voxel)3. We found training set size to

be of critical importance. We initially trained with 10 of such vol-

umes sampled evenly from the entire dataset (thus, about 107

training samples). However, classification results were much

poorer than when training on the final 279 volumes (2.8 3 108

samples). Thus, the factor 30 in annotation cost and effort was

likely required (total of 2,000 hr manual labeling time).

Classifier Training
We trained convolutional neural network (CNN) classifiers to

convert the raw 3D-EM image data into 3D maps of intracellular

continuity between face-to-face adjacent voxels (one map for

each cardinal direction; Figures S1A–S1C; Jain et al., 2010b;

Turaga et al., 2010). For the cortex data, we found it sufficient

to train the CNNs to output a single 3D map, thus representing

the probability of each image voxel to be intra- or extracellular.

Training the CNN to output one map is the default setting in

SegEM but may be switched to three output maps for lower-res-

olution and lower-contrast image datasets.

To find optimal learning rates and architectural parameters for

our CNN training, we implemented a simple hyperparameter

search. This relieved us of the need to hand-design training pa-

rameters, and it made direct use of the availability of GPU
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compute clusters without the need to explicitly parallelize the

training computations. Instead, we used a GPU cluster for paral-

lel training of different CNN architectures. This was essential for

the success of the classifiers. While more sophisticated hyper-

parameter search algorithms have been proposed (Bergstra

et al., 2013; Snoek et al., 2012), the simple evolutionary

approach as described in the following was robust and success-

ful and was aimed at making CNN training for connectomics

widely applicable. When applying SegEM to a novel 3D-EM da-

taset, we recommend to first test our best-performing classifiers

(Data S2) on the novel dataset. This is especially recommended if

the high-resolution ultrastructure is comparable to cortex tissue,

such as is the case for hippocampus, thalamus, and many other

subcortical regions, and the imaging resolution is similar. Then,

SegEM can be used to refine the classifier by training it using

the best training parameters from our search (reported in

Table 1). For novel datasets that have different ultrastructure

and geometry, we recommend using the entire SegEM hyper-

parameter search procedure as described in the following.

The cost function for CNN classifier training was squared

voxel-based error between the adjacency maps and the graded

classifier output; the cost function wasmasked for unlabeled im-

age regions. While this voxel-based metric is known to be

conceptually inferior to segmentation-based metrics, we prof-

ited from its more efficient implementation yielding training times

on the scale of days, not months (see below). Then we randomly

selected training batches out of that masked volume. These

training batches had to fulfil the criteria that at least 1/3 of voxels

in the batch were labeled and that at least 1/3 of these labeled

voxels were from each of the two label classes. These criteria

were necessary to reduce training time and to avoid activity

map saturation (such saturation could occur because the two la-

bel classes were highly unbalanced in regions containing large

dendrites or somata).

For classifier training, two modifications of the training data

proved crucial for classifier convergence and performance.

(1) Since the detection of neurite borders is essential for avoiding

incorrect neurite mergers, we reduced the bias toward intracel-

lular regions by enlarging neurite-to-neurite walls in the labeled

data. This was implemented by eroding the volume objects in

the training data with a spherical structuring element of size 33

voxel, and thus a broadening of neurite-to-neurite walls by about

20–80 nm (Figures S1E and S1F). (2) We excluded those training

volumes that yielded substantial classification performance de-

creases (examples in Figure S1J; 11 of 215 training volumes

were excluded, Table S1; see Supplemental Experimental Pro-

cedures for a quantitative guideline on which training data to

exclude). This is an unusual approach in machine learning, but

proved critical for classifier convergence. The training volumes

that were excluded mostly contained significant errors in the

manual annotations—caused by insufficient annotator attention

or artifacts in the image data. We recommend this training data

co-optimization step in settings where intense curation of

training data is not feasible because it would consume substan-

tial additional annotation time.

The CNNs were implemented on a GPU compute cluster,

which accelerated the parallel screening of CNN architectures.

CNN architectures and training procedures comprised a total

of 17 varied parameters (most relevant: number of hidden

layers, number of feature maps per hidden layer, filter size,

learning rates for weights and biases and their respective

learning rate decay, and batch size; see Table 1 and Fig-

ure S1D). Exhaustive parameter screening was not possible,

since training convergence took at least about 2 days on one

GPU card. We therefore first performed a qualitative manual

network architecture selection. After an initial screening of

about 200 network parameter sets, we started a semi-auto-

mated network selection procedure (Figures 2A–2C; shown

for the retina dataset) with the best parameter set from the

initial broad search (these parameters ranges are reported in

Table 1; see Figure S2B for typical examples of rejected clas-

sifier outputs).

Whenwe applied SegEM to the cortex dataset, wemade a few

improvements to the classifier search procedure, which we

recommend for applying SegEM to novel datasets. First, we

made use of a larger GPU cluster (28 GPUs), but CNNs were

trained for only 1 day per iteration (Figure S2F). Then, the best

half of the CNNs were selected based on averaged training error

over themost recent 200 batch iterations, and the parameters for

these were varied again (see Table 1 for best-performing

network parameters and Supplemental Experimental Proce-

dures for details). This procedure was iterated.

When applying the SegEM classifier search to a novel EM da-

taset, we recommend first trying to use the best-performing

SegEM classifiers directly. When we applied the retina-trained

classifier to cortex data, we obtained rather poor results (Figures

S2D and S2E) and therefore applied the entire SegEM parameter

search to the cortex dataset again. However, for datasets

resembling cortex data or retina data in ultrastructure, the trans-

fer of classifiers between datasets may be feasible.

After testing the existing classifiers on novel datasets, we

recommend then performing SegEM hyperparameter search

by initializing with our most successful hyperparameters (Ta-

ble 1). This can provide a successful classifier within only about

10 such search iterations.

After classifier optimization, the best 2–5 output networks

were used as input to the segmentation optimization (see below).

Automated Volume Segmentation
The three adjacency maps obtained as classifier output for the

retina dataset or the one output map obtained for the cortex da-

taset were then used in awatershed-based segmentation proce-

dure to generate a space-filling volume segmentation (Figure 3).

The segmentation procedure consisted of the following steps

(Figure 3). (1) Morphological opening and closing by reconstruc-

tion using a spherical structuring element of radius rse. This was

intended to suppress mergers in the segmentation by removing

small connecting bridges between otherwise unconnected im-

age regions. This step provided improvements for the retina,

but not the cortex data (see Table 2). (2) Generation of markers

for watershed using a threshold or local minimum operation on

the classifier output (parameters: qmg and qhm), followed by con-

nected components. In contrast to the retina classifier, for

the cortex data, the hmin operation for marker generation per-

formed better than thresholding. (3) Exclude markers smaller

than qms voxels. (4) Marker-based watershed on the result of
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Table 1. Search Ranges and Best Parameters for SegEM-CNN Training

Retina Initial

Screening

(ranges)

Retina CNN Selection

Iteration 1 Retina CNN Selection Iteration 2 Retina CNN Selection Iteration 3 Cortex Automated CNN Selection

Min Max

CNN1,j

(ranges) CNN1,1

CNN2,j

(ranges) CNN2,1 CNN2,2

CNN3,j

(ranges) CNN3,1

CNN3,2

(best class)

CNN

(ranges) 20130516T2040408,3 20131012T23421941,3

nHL 1 8 4 4 4 4 4 4 4 4 3–4 4 4

nfm 5 30 10 10 10 10 10 10 10 10 [15,15,10,10],

[10,10,10,10],

[10 10 10]

[10,10,10,10] [10,10,10,10]

nom 1 3 3 3 3 3 3 3 3 3 1 1 1

SFx/y, SFz 5,5–20,10a 8,4 8,4 8,4 8,4 8,4 8,4 8,4 8,4 5,3–21,11 11,5 11,5

db 1 5 2 2 2 2 2 2 2 2 4 10 4+

SBxy,z 1,1–100,50b 12,6 12,6 12,6 12,6 12,6 4,2–100,50c 12,6 4,2 100,100 100,100 100,100

hw0 10�8 103 10�5–10�1 10�4 10�6–10�3 10�6 10�6 10�7–1 10�7 10�6 10�7–10-13 – –

hb0 10�6 100 10-100 10 0.01-10 0.1 10 0.01-1 0.1 0.1 10�7–10-13 – –

tw, tb 107–93 1012 (l,e) 5 3 108(l,e) 5 3 108(e) 5 3 108(l) 5 3 108(l) 5 3 108(l) 107–5 3 108(l) 5 3 108(l) 5 3 108(l) (l) – –

Nit,cum

(3106)

5*10�4 3.7665 1.4355–

1.75

1.7475 2.806–

2.8095

2.8075 2.8085 2.8295–

3.3855

3.2055 3.3855 3.5–7 3 10�4 / it. – –

Network CNN3,2 was best performing on retina data and used for Figures 3 and 4. Network 20130516T2040408,3 was best performing on cortex data and used for Figures 3 and 5. nHL: number of

hidden layers; nfm: number of feature maps per hidden layer; nom: number of output maps; SFx/y, SFz: filter size in x/y and z direction in vx, respectively; db: mask border size in vx; SBxy,z: batch size

in x/y and z direction, respectively; hb0: weight learning rate initialization; hb0: bias learning rate initialization; tw, tb: decay constants for weight and bias learning rates; Nit,cum: cumulative number

of training iterations (number of batch learning iterations). l,e: linear and exponential learning rate decay, respectively.
a8,4; 20,10; 12,6; 10,5; 5,5; 7,7.
b{[5,5,5], [10,10,10], [2,2,2], [20,20,20], [1,1,1], [30,30,30], [12,12,6], [8,8,4], [4,4,2], [20,20,10], [40,40,20], [100,100,50]}.
c{[12,12,6],[40 40 20],[20 20 10],[4 4 2],[100,100,50]}.
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segmentation step 1 (see Supplemental Experimental Proce-

dures for details and Data S8 for all required routines).

Thus, the segmentation procedure had a total of three relevant

parameters ([rse, qmg, qms] and [rse, qhm, qms], respectively; Table

2). We optimized these segmentation parameters by an iterated

parameter grid search (see Table 2 for parameter ranges and

best-performing parameters). Segmentations were judged by

the average inter-error distance (i.e., the combined split-merger

inter-error distance, see below), the average segmentation ob-

ject size, merger suppression, and avoidance of longitudinal

neurite splits (see Experimental Procedures for details).

Combining Skeletons and Automated Segmentations
We then used our automated volume segmentations for whole-

neuron reconstruction (step 6 in Figure 1F). We skeletonized

the axons of 276 bipolar cells and the dendritic tree of one ama-

crine cell from the mouse retina dataset ek563 (Figure 4). 37 re-

constructions were identified to be type 5 cone bipolar cell axons

based on their lamination in the inner plexiform layer (dendrites

could not be reconstructed since ek563 only spanned from the

GCL to the beginning of the INL, see Figure 1A; each axon was

traced by one experienced student). Of these skeletons, 10

were randomly chosen (Figures 4A and 4B), proofread by one

additional tracer, and all volume segmentation objects overlap-

ping with at least one skeleton node were collected (inset in Fig-

ure 1F) for each bipolar cell axon. Skeletons were traced at an

average consumption of 7.2 ± 4.1 hr/mm, which is similar to

the speed achieved in the surface-enhanced contrast sample

from mouse retina (e2006; Helmstaedter et al., 2011, 2013; see

Figure 1F for comparisons).

The resulting whole-cell volume reconstructions (Figures 4A

and 4B) contained 3 obvious merge errors in 10 bipolar cells
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Figure 2. Classifier Training and Semi-auto-

mated CNN Hyperparameter Selection Pro-

cedure

(A) Sketch of CNN variation and selection proce-

dure (Sel.it: selection iteration). See Table 1 for

CNN and training parameters.

(B) Example classification results (average affinity

maps) for classifiers developed via procedures in

(A). Arrows indicate typical classification chal-

lenges and their improvement over selection iter-

ations (mitochondria close to plasma membrane,

broad arrow; intracellular clustered large mito-

chondria, narrow arrow; intracellular staining pre-

cipitate close to plasma membrane and proximity

to small diameter neurites, double arrow).

(C) Normalized test error development during se-

lection procedure shown in (A). Colors match

CNNs in (A) and (B). Error was calculated every 500

batch iterations and averaged over 101 of those

errors using a sliding window. Arrow: initial error

after random initialization of CNN.

with a total path length of 4.13 mm, i.e.,

1.38 mm distance between mergers (see

below for a more detailed quantification

of error rates). This was comparable to

the error estimates in the retinal circuit reconstruction based

on special cell-membrane enhanced staining.

Automated Contact Detection and Synaptic Circuits
in Mouse Retina
We then used the volume reconstructions of type 5, 6, and 7 bi-

polar cells (CBCs 5, 6, 7; n = 37, 37, 22), rod bipolar cells (RBCs,

n = 117), yet unclassified cells (n = 23), and a peculiar amacrine

cell with wide-field ramifications (Figure 4C) to measure the syn-

aptic bipolar-cell innervation profile of this amacrine cell. A total

of 243 contacts between these neurons were automatically de-

tected (step 6 in Figure 1F). Since we had previously shown

that contact area predicts synaptic contact in bipolar-to-gan-

glion cell and amacrine cell synapses in mouse retina (Helm-

staedter et al., 2013), we only validated three of these automat-

ically detected contacts (of which two were ribbon synapses;

Figure 4D). Synapse validation was performed using either

KNOSSOS (Helmstaedter et al., 2011; knossostool.org) or web-

KNOSSOS (K.M.B. M.B., T. Bocklisch, and M.H., unpublished

data; webknossos.brain.mpg.de); SegEM outputs skeleton files

that point directly to the contact locations of interest, thus facil-

itating synapse validation for the human annotator (step 7 in Fig-

ure 1F). Synapse validation consumed about 3–5 min inspection

time per contact. Figures 4C and 4D show the resulting innerva-

tion pattern of the investigated amacrine cell, providing evidence

for a spatially segregated CBC innervation (Figure 4D; total

annotation time 280 hr: 1 hr for each bipolar cell axon, 3 hr for

AC, and 3 min per inspected synapse).

Synaptic Circuits in Cortical Layer 4
To perform local circuit analysis in cortex, we skeleton-recon-

structed the dendrites of 4 spiny stellate neurons (52 hr of
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tracing), combined them with the SegEM-generated volume

segmentations (Figures 5A and 5B), and then identified the

axons providing synaptic input to three directly adjacent spines

on one of the neurons’ dendrites (cell 1, primary dendrite 1; Fig-

ure 5C). We then reconstructed the three corresponding pre-

synaptic axons and used SegEM to compute the local high-res-

olution contact matrix (Figure 5D) reporting the size of all

contacts between these three axons and all of the spiny neuron

dendrites (total of 33 contacts). For neuron-to-neuron contacts

in cortex, a direct prediction of the existence of a chemical

synapse based on the size of an individual neuron-to-neuron

contact is not possible. We therefore inspected each of the de-

tected contacts and determined the local synaptic connectome

(Figure 5D, bottom; 8 of 33 contacts were confirmed to be syn-

aptic; examples in Figure 5E). Synapses were validated by vi-

sual inspection using direct links to contact locations in our

web-based annotation tool, webKNOSSOS (K.M.B., M.B., T.

Bocklisch, and M.H., unpublished data; webknossos.brain.

mpg.de), which consumed less than 1 min annotation time
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Figure 3. Segmentation Procedure Shown

for Retina and Cortex Data

(A) Raw data forward-passed through a CNN

classifier (retina; classifier CNN3,2, see Table 1)

yielding three voxel-to-voxel affinity maps (only

x-output [ox] shown, see Figures S1A and S1C),

followed by image inversion, morphological

reconstruction with radial structuring element of

radius rse (shown is result for rse = 1, see Table 2),

map binarization at threshold qmg (shown qmg =

0.3), application of connected component (c.c.)

segmentation (26-surround) for marker generation,

exclusion of markers with volume < qms voxels

(qms = 150 shown), and marker-based watershed

(w.s.) on inverted morphologically reconstructed

affinity maps using the shown markers.

(B) Classification and segmentation for cortex

dataset; steps are as for retina data (A) except

for local minimum operation with minimal depth

parameter qhm = 0.39 (rse = 0, qms = 50). Note

that maps were inverted before watershed

marker generation but are shown in non-inverted

form here. Image sizes: (6.2 mm)2 (A) and

(5.8 mm)2 (B).

per suspected synaptic contact. The re-

sulting local high-resolution synaptic

connectome (Figure 5D, bottom) thus

required a total manual annotation effort

of 53 hr; skeleton tracing was possible

at only 3.7 hr per mm path length, which

we attribute to the better data quality in

our cortex dataset and the skill level of

the annotators. We finally searched all

pairs of axons and dendrites for addi-

tional synaptic contacts to estimate the

rate of missed synapses by SegEM. We

found no additional synaptic contact (0

missed contacts for 33 detected con-

tacts), which provides an additional validation of the quality of

the SegEM volume segmentations.

Circuit Reconstruction Time Estimates
How realistic are synaptic circuit reconstructions at the

measured throughput using SegEM, based on the small

example circuits reported for the retina and cortex? Take, for

example, the innervation of excitatory neurons in cortical layer

4 by thalamocortical axons (Figure 6A). While single synaptic

innervations have been studied, the pattern of local target

selectivity (or the lack thereof) of the thalamocortical innerva-

tion is not known. Therefore, a study to reconstruct the connec-

tome between say 10 thalamocortical axons and 30 postsyn-

aptic L4 neurons would be highly relevant. What investment

would such a circuit reconstruction require using SegEM?

Each of the involved neurites has a couple of millimeters of

path length; let’s assume that a redundancy of 4 tracings per

dendrite and 2 per axon is about sufficient (tracing redundancy

can be scaled to the required circuit accuracy, which depends
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on the type of circuit that is being studied; see Helmstaedter

et al., 2011, 2013), then we end up with about 3,300 work hours

for neurite tracing. If distributed between, for example, 15 un-

dergraduate students, who each work about 40 hr per month,

such an analysis would take about 5.5 months and consume

about $33,000 (assuming about $10 per hour salary expenses).

Then, the about 1,000 contacts between the axons and den-

drites need to be inspected, which would require about 15–

20 work hours, thus only a fraction of the neurite reconstruction

effort. Together, such a project is realistic in resource and work

Table 2. Best-Performing Segmentation Parameters for Retina and Cortex Segmentations

Segmentation Parameters Retinaa Segmentation Parameters Cortexb

Parameter ranges

for split-merger

metrics (Figure 7F)

Optimum

segmentation

(Figure 7F)

qn = 1;2

Whole-cell

segmentations

(Figure 4)

All else

shown

Parameter ranges

for split-merger

metrics (Figure 7F)

Optimum

segmentation

(Figure 7F)

qn = 1;2

Whole-cell

segmentations

(Figure 5)

All else

shown

rse {0,1} 1; 1 1 1 0 0; 0 0 0

qmg {0.2,0.21,..0.5} 0.5; 0.38 0.31 0.3 – – – –

qms {0,20,40,60,

100,150}

100; 0 20 150 {0,50,100} 50; 0 10 50

qhm – – – – {0.02,0.04,.. 0.7} 0.58; 0.04 0.25 0.39

IED (mm)c – 3.85; 7.91 2.20; 7.04 2.21; 6.24 – 1.58; 4.93 0.93; 4.48 1.26; 3.86

Split (mm)c – 7.71; 9.76 2.37; 7.38 2.56; 6.65 – 2.89; 5.03 0.96; 4.56 1.46; 4.47

Merge (mm)c – 7.71; 41.73 30.26; 151.28 16.36; 110.02 – 3.48; 214.52 28.41; 241.52 9.29; 28.41

rse = radius of spherical structuring element for morphological operations; qmg: threshold used for marker generation; qhm: depth parameter of H-

Minima operation; qms: voxel threshold for watershed marker size. IED: average inter-error distance; split: average distance between splits; merge:

average distance between mergers (see Experimental Procedures for calculation).
aUsing CNN3,2 (see Table 1).
bUsing CNN 20130516T2040408,3 (Table 1).
cReported for node overlap thresholds qn = {1;2}, see Figure 7F.

Figure 4. Connectomic Analysis in Fully Stained Retina Data

(A) Volume reconstruction of 10 randomly selected cone bipolar cell type 5 (CBC5) axons in dataset ek563 frommouse retina (see Figure 1) obtained by relabeling

the computer-generated segmentation objects (classifier CNN3,2, rse = 1, qmg = 0.31, qms = 20, see Tables 1 and 2) according to human-generated skeleton

annotations. Tracing time was about 1 hr per bipolar cell axon. Arrows point to obvious merge errors (3 obvious errors, total skeleton path length: 4.13 mm, i.e.,

inter-merger distance � = 1.38 mm). Gray spheres indicate somata.

(B) Same reconstruction as in (A) viewed in the IPL plane.

(C) Automated contact detection of CBC inputs to a displaced amacrine cell (insets in C). Contacts with CBCs of type 5–7, RBCs, and unclassified neurons are

shown as spheres; sphere surface proportional to contact size. Since this dataset was fully stained, automated contacts can be visually inspected and existence

and directionality of synapses confirmed (Rib. syn.: ribbon synapse CBC/AC confirmed; No syn: accidental contact without evidence for synaptic contact).

CBCs were annotated twice, AC once by an expert annotator. Annotation consumption: 7.2 hr/mm path length for a single annotator.

(D) Same reconstruction as in (C) viewed in the IPL plane. All images show the whole dataset with dimensions 141 mm (z), 44 mm (x), 60 mm (y).
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hour consumption and would provide unprecedented circuit

data that currently cannot be obtained with other techniques.

Notably, without SegEM, this reconstruction would have

consumed about 10 times more work hours and resources,

which would make it not feasible in most settings.

Similarly, one can project the required investments for other

circuit reconstructions of similar or larger scale in cortex and

retina (for example, the connectome between 300 bipolar and

300 small-field amacrine cells would consume about 6,500 hr to-

tal; see Supplemental Experimental Procedures and Figure 6A

for details of the calculation and further examples).

Analysis Guideline for Novel Large-Volume EMDatasets
The analysis steps needed to perform circuit reconstruction in

large-scale 3D-EM datasets (Figure 6B) can thus be summarized

as a methodological guideline based on the SegEM analysis

package. As a prototypical example, assume a SBEM dataset

from mouse barrel cortex covering one layer 4 barrel from one

cortical column at the required resolution (450 mm3 volume,

12 3 12 3 25 nm3 voxel size, i.e., 23 TB image data, about

60 days of experiment for 16,000 successive image layers).

Manual analysis for training label generation can be done in par-

allel to data acquisition (Figure 6B), such that the CNN selection

procedures are finished when data acquisition is. Dataset classi-

fication and segmentation will then approximately equal the im-

aging time (assuming a compute cluster of �60 GPUs and
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Figure 5. Connectomic Analysis in Fully

Stained Cortex Data

(A) Volume reconstruction of 4 spiny neurons (or-

ange, gray, green, yellow, respectively) by com-

bination of skeleton tracing with SegEM classifier

(see Figure 4, CNN 20130516T2040408,3; see

Tables 1 and 2 for classification and segmentation

parameters).

(B) Same reconstruction as in (A) viewed from a

different angle.

(C) The presynaptic axons from three neighboring

spines of one neuron (orange, C) were also volume

reconstructed (black, blue, red axon). Arrows in

(A), (B), and (C) point to all detected contacts be-

tween these axons and spiny neurons (* and #: 5

and 6 contacts, respectively).

(D)The local connectomebetween the3axons (red,

black, blue, respectively) and the primary dendrites

(d1–d4) and somata (s) of the 4 spiny neurons. Top

panel shows the total size of contact areas Ac (see

magenta arrows in A–C). Bottom panel shows the

result of visual inspection of each contact to

determine the presence of chemical synapses.

(E) Examples of synapses and one accidental

contact (bottom right). Annotation consumption:

3.7 hr/mm path length for a single annotator.

�75 CPUs). Annotation investment (for

training data acquisition) would be about

2,000 work hours distributed to about 30

annotators, if de novo training is required.

This step can be omitted if the existing

SegEM classifiers are already successful

without additional parameter search (see above). Circuit recon-

struction by skeleton reconstruction is then possible at a con-

sumption of about 4–8 hr/mm path length. Within 2 months (as

proposed in Figure 6B), a team of 30 annotators working at

40 hr/month can provide 2,400 work hours—sufficient for recon-

structing the circuits between 30 TC axons and 30 spiny stellate

neurons, or 100 bipolar cells and 30 amacrine cells (Figure 6A;

80–180mmcircuit size) atmoderate cost.Of course, this analysis

phase can be extended for larger circuits. All processing code

required for such an analysis setup is contained in SegEM

(segem.io, Data S8).

Segmentation Metrics
The main contribution of SegEM is to enable efficient circuit

reconstruction in fully stained 3D-EM datasets by combination

of skeleton reconstructions with automated volume segmenta-

tions. For this, it was crucial to make 3D-EM classifiers suffi-

ciently reliable such that they can be combined into full-neuron

reconstructions by assembly along the center line of neurites

as shown above.

In addition to this concrete application, it was however desir-

able to compare the SegEM volume segmentations to the perfor-

mance of other segmentation benchmarks (Figure 7). For this, we

computed voxel, rand, and warping error using the routines

made available in the ISBI EM challenge (see Supplemental

Experimental Procedures; Figure 7H). SegEM results according

Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc. 1201



to the ISBI challenge metrics were among the best with respect

to the warping error (aimed at directly optimizing topology of

neurites) and rand error (Figure 7I). This is notable since the im-

age data used in our (larger-volume) SegEM challenge was at

resolution about 10-fold lower than that in the ISBI small-volume

challenge (see Figure 7H, left panels).

However, such comparisons should be treated with caution,

since the ISBI challenge is evaluated only on 2D-EM data slices

(Figure 7H), and voxel based metrics can be highly biased by

the concrete shape and size of local objects contained in the

test volume.

We therefore used an additional metric to measure SegEM

segmentation error rates: we compared the volume segmenta-

tions to manually annotated skeleton (center-line) neurite recon-

structions (Figures 7A–7G). This metric (skeleton-based split-

merger metric; Figures 7C–7F) evaluates neurite continuity along

the main axis of the neurites. Since the center line path length of

neurons is on the scale of millimeters, such a metric therefore

evaluates the most challenging aspect of neurite reconstruc-

tions: volume pieces as small as 50 nm in diameter, but at milli-

meters path distance, have to be correctly assigned to each

other. The skeleton-based split-merger metric measures the

rate of splits, i.e., breaks in the volume segmentation along the

neurite center line axis (Figure 7E), and the rate of mergers,

i.e., volume segmentation objects that link together two separate

neurite skeletons (Figure 7D; see Experimental Procedures for

details of the calculation or evaluateSeg.m in Data S8 or SegEM

package on github). Both measures are expressed as their in-

verse, i.e., the average distance between splits ds and the

average distance between mergers dm.

Figure 7F shows the split-merger distances in the retina data-

set for 372 combinations of segmentation parameters using

CNN3,2 and for 99 combinations of segmentation parameters

using CNN 20130516T2040408,3 for cortex. Error distances are

reported for two node thresholds qn indicating the minimum

number of skeleton nodes that had to overlap with a segmenta-

tion object to be considered amatch; higher values of qn result in

more resistance to noise from the imprecise manual placement

of skeleton nodes.

The optimum inter-error distance 1/(1/ ds +1/ dm) for qn = 1,2

was 3.9 mm, 7.9 mm, respectively (retina), and 1.6 mm, 4.9 mm

(cortex; see Table 2 for the corresponding optimal segmentation

parameter sets). This optimum inter-error distance assumes

splits and mergers in the automated segmentation to be of

equally detrimental effect.

However, the key goal of our automated segmentation was

to enable the efficient combination of skeleton reconstructions

and volume segmentations for whole-neuron reconstructions.

For this application, the optimal segmentation is one with

maximal merger distances under the constraint that objects
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Figure 6. SegEM Circuit Reconstruction Time Estimates

(A) Projected circuit reconstruction cost measured in required work hour investment for two example circuits. Top left, circuit within layer 4 of cerebral cortex

comprising thalamocortical axons (TC) and postsynaptic spiny neurons (L4 ss). Reconstructing a circuit of 30 TC axons and 30 spiny neurons would consume

about 2,160 work hours for neurite tracing (at 2- to 4-fold tracing redundancy) and about 50 hr for synapse validation. Even a circuit of 100 axons and 100

dendrites is realistic (total effort: 7,700 work hours, i.e., less than $80,000 salary investment). Bottom right, examples for circuits between bipolar neurons and

amacrine cells in mouse retina. Note that for novel dataset, an additional volume labeling investment of 1,500–2,000 hr may be required. See Supplemental

Experimental Procedures for details of calculations.

(B) SegEManalysis procedure for large-scale 3D-EMdatasets, exemplified by the analysis timeline for a SBEMdataset frommouse somatosensory cortex, where

a volume of (450 mm)3 contains layer 4 of one cortical column and the required voxel size is about (12 3 12 3 25) nm3 (dataset size �25 TB). All numbers are

approximate. SBEM: SBEM imaging (60 days) assumes an effective imaging speed of �5 3 106 vx/s (including cutting, motor movements, etc.). Vol.: volume

training data annotation for CNN training;�200 dense volume labelings of (100 vx)3 consuming�1,600 work hours (wh) distributed between 30–40 students over

2 weeks. Skel.: skeleton training data annotation for segmentation optimization; 5 students, �300 work hours (wh) over 2 weeks. CNN train.: classifier training/

selection procedure (see Figure 4) over approximately 28 days (28 selection iterations as in Figure 4B). Segm. optim.: segmentation optimization (Table 2) using

skeleton training data; about 2–5 days of computation. Alignment: alignment of SBEM images and conversion to Knossos data format (3D). Preproc.: dataset

preprocessing (after entire dataset acquired); gray scale equalization; blood vessel masking, nucleus masking, potential correction of tiling effects (about 7 days

of computation). Classification: dataset classification (forward pass of best CNN from selection procedure): 77 days on 56-GPU cluster. Segm.: local dataset

segmentation in (128 vx)3 cubes with 10 vx margin on all sides on a 70-80-CPU cluster. Skeleton Circ. Rec: skeleton-based circuit reconstruction (at 4–8 hr per

mm path length). Syn. Val.: synapse validation (at about 0.5–1 min per contact).
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are rarely split longitudinally (example of longitudinal split: Fig-

ure S2C). Under this constraint, we find at node threshold qn =

2 an inter-merger distance of 151.3 mm and inter-split distance

of 7.4 mm (Figure 7F, purple dashed line) to be most useful for

whole-cell reconstruction in retina. For cortex, the segmenta-

tion used for whole-cell reconstruction had an inter-merger dis-

tance of 241.5 mm and inter-split distance of 4.6 mm (Figure 7F,

blue dashed line; see Figure 7G for an example skeleton-seg-

mentation overlay of a cortical axon using this segmentation

setting).

Thus, in addition to enabling high-throughput circuit recon-

struction, SegEM provides all training data and test metrics for

large, truly 3D-EM datasets. The supplied training data comprise

987 mm3 of labeled data, thus about 100 times more than that

in the available EM challenges. Importantly, these data are

sampled from many locations within a large 3D-EM dataset,

providing properly generalizing classifiers. With this, SegEM

also becomes a next-generation benchmark for machine

learning in connectomics.

DISCUSSION

Wehave developed SegEM, a semi-automated volume segmen-

tation toolset for circuit reconstruction in fully stained 3D-EM im-

age data (Figure 6). We applied our toolset to neuronal tissue

from mouse retina and cerebral cortex. The exemplary synaptic

innervation analyses (Figures 4 and 5) illustrate that SegEM re-

solves the tradeoff between synapse detectability in fully stained

EM data and the reconstruction efficiency gain obtained by

crowd-sourced skeleton reconstructions, which is required for

dense circuit reconstruction in large-scale EM data.

We have proven the applicability to two types of neuronal

tissue data even though the voxel-based classifiers do not

generalize well between volume datasets from different neuronal

tissues (Figures S2D and S2E). This may point to relevant local

geometrical differences between peripheral and central nervous

tissue.

While throughput of image analysis is still the major bottleneck

in high-resolution connectomics, SegEM has made a substantial
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Figure 7. Segmentation Metrics and SegEM

3D Segmentation Challenge for Connec-

tomics

(A–C) Quantification of segmentation accuracy by

comparison of automated volume segmentation U

(shown in B, classifier CNN3,2, see Table 2; rse = 1,

qmg = 0.3, qms = 150) with dense human-labeled

skeleton annotation (A) yields overlap matrix AU
ak

between skeleton objects a and segmentation

objects k, which is binarized at node-overlap

threshold Qn (C, see Experimental Procedures).

Row sums exceeding 1 integrate to total split

count; column sums exceeding 1 integrate to total

merger count.

(D and E) Examples of mergers (D) and splits (E)

(see Data S4 and S5 for complete gallery).

(F) Skeleton-based split-merger metric: average

distance between splits (ds) and mergers (dm) for

372 segmentations obtained from varying the

segmentation parameters as shown in Figure 2D

for retina (magenta) and 99 segmentations cortex

(cyan). Error distances are reported for skeleton-

node-to-segmentation object overlap thresholds

Qn = 1,2 (the larger threshold is less sensitive to

node placement noise; see Experimental Pro-

cedures). Squares: optimal inter-error distance for

Qn = 1,2 (3.85 mm, 7.91 mm for retina and 1.58,

4.93 mm for cortex, respectively). Dashed lines:

segmentation used in Figures 4 (retina, purple line)

and 5 (cortex, blue line); see also (G); solid lines:

segmentation used in all other figures (lines con-

nect split-merger point for Qn = 1,2.

(G) Cortex axons and overlapping segmentation

objects from segmentation in (F) (blue dashed line)

to illustrate average object size (2 axons from

Figure 5).

(H) Comparison of image data from ISBI 2012 2D-

EM challenge and SegEM 3D-EM challenge. Note

higher resolution of data in xy (ISBI) versus problematic resolution and alignment in third dimension. Shown data are the entire training dataset for ISBI challenge.

SegEM challenge comprises 279 of the volumes shown in (H).

(I) Comparison of all results submitted to ISBI 2012 2D-EM segmentation challenge as reported on http://brainiac2.mit.edu/isbi_challenge/ (black) and SegEM

performance on test set of 34 (100 voxel)3 regions from cortex dataset (blue) evaluated using the ISBI metrics (see Supplemental Experimental Procedures for

details of calculation). Scale bars, 1 mm in (D) and (E); 10 mm in (G).
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difference in our own circuit analyses, reducing the investment

per circuit analysis project by greater than 10-fold.

Further improvements in automated segmentation and hu-

man-machine interaction will be required for the most ambi-

tious projects, such as whole-brain circuit reconstruction in

the farther future, but SegEM has the ambition to make high-

resolution connectomics a ready-to-use technique for many

laboratories today (Figures 4, 5, and 6) and to furthermore pro-

vide a benchmark for fully 3D-EM-based connectomic data

analysis (Figure 7).

EXPERIMENTAL PROCEDURES

For the application of SegEM, please follow the detailed instructions in the

Supplemental Experimental Procedures.

3D-EM Image Datasets

The ‘‘retina’’ EM dataset (designated ek563, from Briggman et al., 2011 and

Helmstaedter et al., 2013) was acquired using serial blockface EM (SBEM,

Denk and Horstmann, 2004). Tissue from a P30 mouse retina was stained us-

ing a conventional en bloc EM protocol comprising osmium tetroxide, thiocar-

bohydrazide amplification, and uranyl acetate staining steps (for details, see

Briggman et al., 2011). SBEM images were aligned as described in Briggman

et al. (2011): briefly, cross-correlation-derived shift vectors were computed in

overlapping image regions, shift vectors were globally least-square optimized,

and images were shifted using fourier-shift interpolation. The image data

(4,096 3 5,304 3 5,760 voxels; voxel size 12 3 12 3 25 nm3; dataset size

50 3 65 3 145 mm3; Briggman et al., 2011) were normalized to zero mean

and unit SD on a grid with spacing of (128 3 128 3 128) vx3 and cubes of

size (163 3 163 3 143) vx3 for the whole dataset. Each training volume was

accordingly normalized (training volumes varied in size from [256 3 256 3

256] vx3 to [512 3 512 3 256] vx3; Table S1).

The ‘‘cortex’’ EM dataset (designated 2012-09-28_ex145_07x2; K.M.B.

and M.H., unpublished data) was acquired using SBEM. Tissue from S1 cor-

tex of a P28 mouse was stained using a conventional en bloc EM protocol

similar to the retina dataset. Image data (8,274 3 5,338 3 3,321 voxels;

voxel size 11.24 3 11.24 3 28 nm3; dataset size 93 3 60 3 93 mm3) were

normalized to approximately zero mean (unnormalized mean: 122) and

unit SD (unnormalized SD: 22) for the whole dataset (see Figure S1H).

Each training volume was accordingly normalized (size of training volumes:

[100 3 100 3 100) vx3]). Images were aligned as for ek0563, but shift vec-

tors between images were weighted before global optimization. Note that a

re-evaluation of effective cutting thickness indicated a voxel size of 11.24 3

11.24 3 26 nm3; this correction was not applied to the data in this paper. All

procedures were approved by the local animal care committee and were in

accordance with the law of animal experimentation issued by the German

Federal Government.

Split and Merger Rates

The densely skeletonized segmentation test volume (see above and Figure 7A)

was used to calculate the average length between merger (Figure 2C) and split

(Figure 2D) errors (Turaga et al., 2010). To allow comparison of split-merger

metrics between independently skeletonized datasets of different neurite ge-

ometry (training and test skeletonizations from retina and cortex), we first

equilibrated skeleton node densities between skeleton sets (resulting average

inter-node distance: 460 nm).

Then, we calculated a skeleton node-to-segmentation object overlap matrix

AU
ak reporting for each combination of skeleton a and segmentation object k

(in segmentation U) the number of skeleton nodes in a that overlapped with

any voxel labeled as segmentation object k (see Figure 7C):

AU
ak =

X
m= 1::Na

dðUðiðamÞÞ; kÞ;

with Na the total number of nodes in skeleton a, iðamÞ the voxel location of the

mth node in skeleton a, and UðiÞ the label of segmentation U at location i. This

matrix was then binarized at a node threshold qn, which was varied between 1

and 2 to assess the influence of labeling (i.e., skeleton node placement) noise

(see Figure 7F): AU#
ak =

�
1 if AU

akRqn
0

:

The number of mergers and splits was then calculated as

nmerger =
X

a= 1::NS

  X
k = 1::NU

AU#
ak � 1

!
�Q
 

� 1:5+
X

k = 1::NU

AU#
ak

!!

and

nsplits =
X

a= 1::NU

  X
k = 1::NS

AU#
ak � 1

!
�Q
 

� 1:5+
X

k =1::NS

AU#
ak

!!
;

with NS and NU as the number of skeletons and segments, respectively, while

Q is the Heaviside step function. Finally, the average distance between splits

ds and betweenmergers dmwas calculated as ds = L / nsplit and dm = L / nmerger,

with L the total skeleton path length in the segmentation test volume (L =

0.48 mm and 1.21 mm for cortex and retina test volumes, respectively). In

cases where no split or no merger was detected, nmerger or nsplit were set to

1 to limit error distance confidence. Segmentations resulting in only 1 merger

or only 1 split were not evaluated. Optimal inter-error distance (the minimum of

1/(1/ds + 1/dm)) was determined by a sliding 3-nearest neighbor average in the

ds-dm plane (Figure 7F).

Note that to avoid artifacts by different fractions of wall voxels in different

segmentations, the split-merger metric should be computed on fully grown

segmentations only (no remaining wall classified voxels; Figure 7F was

computed for such fully grown out segmentations only).

The code for computing this metric is contained in evaluateSeg.m

(Data S8).

SegEM 3D Image Segmentation Challenge for Connectomics

For participation in the SegEM 3D image segmentation challenge for connec-

tomics, please follow the instructions below. SegEM (segem.io) provides 279

densely volume-annotated volumes in which (100 voxel)3 are each labeled.

These volumes are sampled from throughout the cortex dataset, providing a

representative sampling of neurite geometry and image statistics (see Table

S2 for a detailed overview). To allow training of classifiers of larger field of

view, we supply the raw data for each labeled volume of size 200 3 200 3

150 voxel, i.e., with a border of 100 3 100 3 50 voxel around the labeled

volume.

For testing the split-merger metric, we provide a densely skeletonized test

set (Data S3), which was used for Figure 7F. Split-merger metrics calculation

is contained in cortex/segmentation/evaluateSeg.m of the SegEM package

(Data S8 or segem.io). For calculation of pixel, warp, rand error, and variation

of information as in Figure 7I, please use the code provided by the ISBI 2012

2D-EM segmentation challenge (see above).

For submission of results to the SegEM 3D image segmentation chal-

lenge, an email containing the code to process raw data volumes of the

same size as the training data should be sent to segEMchallenge@brain.

mpg.de. This will be evaluated on 34 test stacks of the same size as the

training stacks given above and on an additional densely skeletonized

test set from several regions in the cortex dataset. Random examples of

the raw data of these hidden test sets will be provided on segem.io, but

not the respective labels. Ranking of segmentation results will be continu-

ously updated on segem.io with respect to the ISBI challenge metrics and

skeleton-based split-merger metrics.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

two figures, two tables, and nine data files and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2015.09.003.
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ziska Hentzschel, Hanna Jakobi, Hanna Rogg, Jana Munstermann, Johanna

Lott, Josephine Reinhardt, Karin Bretzel, Katharina Kappler, Kathrin Haase,

Kathrin Schleich, Kira Garbe, Lisa Keitel, Madeleine Joel, Marcel Smykalla,

Martin Moll, Monika Berberich, Nina Wommelsdorf, Patricia Hegemann, Pat-

rick Weber, Philip Gallandi, Raphael Foitzik, Rebekka Wiggers, Sarah Kaspar,

Steffen Klein, Stephanie Best, Susanne Dettmer, Susanne Schuster, Victoria

Wissdorf, and Wolfram Volkwein for volume tracing. M.H. is a shared stake-

holder of the patent ‘‘Method and apparatus for image processing,’’ Published

Patent Application No. 20100183217.

Received: March 11, 2015

Revised: August 3, 2015

Accepted: August 27, 2015

Published: September 23, 2015

REFERENCES

Andres, B., Koethe, U., Kroeger, T., Helmstaedter, M., Briggman, K.L., Denk,

W., and Hamprecht, F.A. (2012a). 3D segmentation of SBFSEM images of neu-

ropil by a graphical model over supervoxel boundaries. Med. Image Anal. 16,

796–805.

Andres, B., Kroeger, T., Briggman, K., Denk, W., Korogod, N., Knott, G.,

Koethe, U., and Hamprecht, F. (2012b). Globally Optimal Closed-Surface

Segmentation for Connectomics. In Computer Vision – ECCV 2012, A.

Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, eds. (Springer

Berlin Heidelberg).

Bergstra, J., Yamins, D., and Cox, D.D. Hyperopt: A Python library for opti-

mizing the hyperparameters of machine learning algorithms. Proceedings of

the 12th Python in Science Conference, 2013. 13-20.

Briggman, K.L., and Bock, D.D. (2012). Volume electron microscopy for

neuronal circuit reconstruction. Curr. Opin. Neurobiol. 22, 154–161.

Briggman, K.L., Helmstaedter, M., and Denk, W. (2011). Wiring specificity in

the direction-selectivity circuit of the retina. Nature 471, 183–188.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S.,

Longair, M., Tomancak, P., Hartenstein, V., and Douglas, R.J. (2012).

TrakEM2 software for neural circuit reconstruction. PLoS ONE 7, e38011.

Ciresan, D., Giusti, A., Gambardella, L.M., and Schmidhuber, J. (2012). Deep

neural networks segment neuronal membranes in electron microscopy im-

ages. Adv. Neural Inf. Process. Syst. 25, 2843–2851.

Denk, W., and Horstmann, H. (2004). Serial block-face scanning electron mi-

croscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biol.

2, e329.

Denk, W., Briggman, K.L., and Helmstaedter, M. (2012). Structural neurobi-

ology: missing link to a mechanistic understanding of neural computation.

Nat. Rev. Neurosci. 13, 351–358.

Funke, J., Andres, B., Hamprecht, F.A., Cardona, A., and Cook, M. Efficient

automatic 3D-reconstruction of branching neurons from EM data. Computer

Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, 16-21

June 2012 2012. 1004-1011.

Hayworth, K., Kasthuri, N., Schalek, R., and Lichtman, J. (2006). Automating

the collection of ultrathin serial sections for large volume TEM reconstructions.

Microsc. Microanal. 12, 86–87.

Helmstaedter, M. (2013). Cellular-resolution connectomics: challenges of

dense neural circuit reconstruction. Nat. Methods 10, 501–507.

Helmstaedter, M., Briggman, K.L., and Denk,W. (2011). High-accuracy neurite

reconstruction for high-throughput neuroanatomy. Nat. Neurosci. 14, 1081–

1088.

Helmstaedter, M., Briggman, K.L., Turaga, S.C., Jain, V., Seung, H.S., and

Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in

the mouse retina. Nature 500, 168–174.

Jain, V., Murray, J.F., Roth, F., Turaga, S., Zhigulin, V., Briggman, K.L.,

Helmstaedter, M.N., Denk, W., and Seung, H.S. Supervised learning of image

restoration with convolutional networks. Computer Vision, 2007. ICCV 2007.

IEEE 11th International Conference on, 2007. IEEE, 1-8.

Jain, V., Bollmann, B., Richardson, M., Berger, D.R., Helmstaedter, M.N.,

Briggman, K.L., Denk, W., Bowden, J.B., Mendenhall, J.M., and Abraham,

W.C. Boundary learning by optimization with topological constraints.

Computer Vision and Pattern Recognition (CVPR), (2010a) IEEE Conference

on, 2010. IEEE, 2488-2495.

Jain, V., Seung, H.S., and Turaga, S.C. (2010b). Machines that learn to

segment images: a crucial technology for connectomics. Curr. Opin.

Neurobiol. 20, 653–666.

Jain, V., Turaga, S.C., Briggman, K.L., Helmstaedter, M.N., Denk, W., and

Seung, H.S. (2011). Learning to Agglomerate Superpixel Hierarchies. Adv.

Neural Inf. Process. Syst. 24, 2.

Jones, C., Liu, T., Cohan, N.W., Ellisman, M., and Tasdizen, T. (2015). Efficient

semi-automatic 3D segmentation for neuron tracing in electron microscopy

images. J. Neurosci. Methods 246, 13–21.

Kasthuri, N., Hayworth, K.J., Berger, D.R., Schalek, R.L., Conchello, J.A.,

Knowles-Barley, S., Lee, D., Vázquez-Reina, A., Kaynig, V., Jones, T.R.,

et al. (2015). Saturated Reconstruction of a Volume of Neocortex. Cell 162,

648–661.

Kaynig, V., Vazquez-Reina, A., Knowles-Barley, S., Roberts, M., Jones, T.R.,

Kasthuri, N., Miller, E., Lichtman, J., and Pfister, H. (2015). Large-scale auto-

matic reconstruction of neuronal processes from electronmicroscopy images.

Med. Image Anal. 22, 77–88.

Knott, G., Marchman, H., Wall, D., and Lich, B. (2008). Serial section scanning

electron microscopy of adult brain tissue using focused ion beam milling.

J. Neurosci. 28, 2959–2964.

Lichtman, J.W., and Denk, W. (2011). The big and the small: challenges of im-

aging the brain’s circuits. Science 334, 618–623.

Liu, T., Jones, C., Seyedhosseini, M., and Tasdizen, T. (2014). A modular hier-

archical approach to 3D electron microscopy image segmentation.

J. Neurosci. Methods 226, 88–102.

Nunez-Iglesias, J., Kennedy, R., Plaza, S.M., Chakraborty, A., and Katz, W.T.

(2014). Graph-based active learning of agglomeration (GALA): a Python library

to segment 2D and 3D neuroimages. Front. Neuroinform. 8, 34.

Saalfeld, S., Cardona, A., Hartenstein, V., and Toman�cák, P. (2009). CATMAID:

collaborative annotation toolkit for massive amounts of image data.

Bioinformatics 25, 1984–1986.

Seyedhosseini, M., Kumar, R., Jurrus, E., Giuly, R., Ellisman, M., Pfister, H.,

and Tasdizen, T. (2011). Detection of neuron membranes in electron

Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc. 1205



microscopy images using multi-scale context and radon-like features. Med

Image Comput Comput Assist Interv 14, 670–677.

Seyedhosseini, M., Sajjadi, M., and Tasdizen, T. Image segmentation with

cascaded hierarchical models and logistic disjunctive normal networks.

Computer Vision (ICCV), 2013 IEEE International Conference on, 2013. IEEE,

2168-2175.

Snoek, J., Larochelle, H., and Adams, R.P. (2012). Practical Bayesian optimi-

zation of machine learning algorithms. Adv. Neural Inf. Process. Syst. 25,

2951–2959.

Sommer, C., Straehle, C., Kothe, U., and Hamprecht, F.A. Ilastik: Interactive

learning and segmentation toolkit. Biomedical Imaging: From Nano to

Macro, 2011 IEEE International Symposium on, March 30 2011-April 2 2011

2011. 230-233.

Takemura,S.-Y.,Bharioke,A., Lu,Z.,Nern,A.,Vitaladevuni,S.,Rivlin,P.K.,Katz,

W.T., Olbris, D.J., Plaza, S.M., Winston, P., et al. (2013). A visual motion detec-

tion circuit suggested by Drosophila connectomics. Nature 500, 175–181.

Turaga, S.C., Briggman, K.L., Helmstaedter, M., Denk, W., and Seung, H.S.

2009. Maximin affinity learning of image segmentation. arXiv preprint

arXiv:0911.5372.

Turaga, S.C., Murray, J.F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K.,

Denk, W., and Seung, H.S. (2010). Convolutional networks can learn to

generate affinity graphs for image segmentation. Neural Comput. 22,

511–538.

Vazquez-Reina, A., Gelbart, M., Huang, D., Lichtman, J., Miller, E., and Pfister,

H. Segmentation fusion for connectomics. Computer Vision (ICCV), 2011 IEEE

International Conference on, 2011. IEEE, 177-184.

1206 Neuron 87, 1193–1206, September 23, 2015 ª2015 Elsevier Inc.



6.2 webKnossos: Efficient online 3D data annotation for

connectomics

Abstract We report webKnossos, an in-browser annotation tool for 3D electron

microscopic data. webKnossos provides flight mode, a single-view egocentric

reconstruction method enabling trained annotator crowds to reconstruct at a

speed of 1.5 ± 0.6 mm/h for axons and 2.1 ± 0.9 mm/h for dendrites in 3D

electron microscopic data from mammalian cortex. webKnossos accelerates

neurite reconstruction for connectomics by 4- to 13-fold compared with current

state-of-the-art tools, thus extending the range of connectomes that can

realistically be mapped in the future.
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M.H., H.W. and M.B. analyzed the data; M.H., K.M.B. and M.B. wrote the

manuscript with contributions by all authors.
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when an expert follows an axon through 3D serial blockface EM 
(SBEM1) data from mouse cortex (Fig. 1c). Under less optimal 
bandwidth and latency conditions (as are often experienced by 
student annotators at home and in mobile settings), however, 
reconstruction speed drops to 59–88 µm/h (measured for regu-
lar 3G connectivity and for transcontinental access, Fig. 1c).

webKnossos (Fig. 1d, https://webknossos.org) uses 3D data stor-
age and transmission in small cubic packages of 323 vx (Fig. 1b).  
Cubic 3D image data storage using cubes of 1283 vx is being 
employed in KNOSSOS8 and pyKNOSSOS9,10, standalone data 
annotation applications for connectomics. We reduced 3D cube 
size to 323 vx for lag-free in-browser data transmission and for 
enabling the flight-mode data visualization introduced below. 
webKnossos enables data interaction in 3D EM images dis-
played in orthogonal planes (Fig. 1d) at a speed of about 2 mm/h  
(Fig. 1c), which drops to 0.7–1.2 mm/h for regular 3G connec-
tivity and transcontinental annotation (Fig. 1c). Thus, 3D data 
visualization when following an axon is about 4-fold faster under 
ideal and up to 13-fold faster under nonoptimal connectivity  
settings than with existing in-browser tools (Fig. 1c).

We next tested whether student annotators can be trained to 
interact with 3D brain image data at such speeds. Previously, 
annotators interacted with the image data using orthogonal 
image projections in the three cardinal planes for following 
the neuronal processes and for their annotation as ‘skeletons’  
(Fig. 1d,e, ‘ortho mode’, KNOSSOS8). Effective tracing speed was  
100–270 µm/h4,8,10–12 for reconstructions in mouse retina, 
zebrafish olfactory bulb and mouse cortex. We asked whether 
annotators can be trained to annotate faster in ortho mode, and 
whether a more intuitive data presentation can further accelerate 
human annotation. For the latter, we developed ‘flight mode’, in 
which the 3D image data are sampled on a hemisphere centered 
at the annotator’s current position (Fig. 1f). To enable such non-
orthogonal data transmission and display in browser, we used 
(in addition to the small 3D cube size (Fig. 1b)) a simple form 
of path prediction (the data being loaded in a stump in direction 
of flight; Fig. 1g). Flight mode requires the EM image data to be 
sufficiently well aligned in 3D, as is routinely the case for neuronal 
tissue imaged using SBEM1. In flight mode, the annotator focuses 
on centering the target cursor onto the axon or dendrite being fol-
lowed, steering the orientation with the mouse or keyboard while 
moving forward (Supplementary Video 1). We suspected that 
this focusing on one intuitive egocentric visualization and inter-
action may accelerate annotation, since the user does not have to 
explicitly recenter the viewport and switch image plane orienta-
tion for processes running in off-axis directions (Fig. 1e).

To investigate whether flight mode in fact accelerates human 
3D image data annotation, we trained 51 student annotators on 

webKnossos: efficient 
online 3d data annotation 
for connectomics
Kevin M Boergens1,3    , Manuel Berning1,3,  
Tom Bocklisch2, Dominic Bräunlein2, Florian Drawitsch1, 
Johannes Frohnhofen2, Tom Herold2, Philipp Otto2, 
Norman Rzepka2, Thomas Werkmeister2,  
Daniel Werner2, Georg Wiese2, Heiko Wissler1 & 
Moritz Helmstaedter1    

We report webKnossos, an in-browser annotation tool for 3d 
electron microscopic data. webKnossos provides flight mode, a 
single-view egocentric reconstruction method enabling trained 
annotator crowds to reconstruct at a speed of �.5 ± 0.6 mm/h 
for axons and 2.� ± 0.9 mm/h for dendrites in 3d electron 
microscopic data from mammalian cortex. webKnossos 
accelerates neurite reconstruction for connectomics by 4- to 
�3-fold compared with current state-of-the-art tools, thus 
extending the range of connectomes that can realistically be 
mapped in the future.

With the acceleration of 3D electron microscopic (EM) imaging 
of brain tissue1–3, image data sets sized tens of terabytes (TB) or 
even petabytes (PB) are becoming available. A cubic millimeter 
imaged at (15 nm)3 voxel (vx) size corresponds to 0.3 PB of data 
(Fig. 1a); a mouse brain imaged at the same resolution corre-
sponds to 110 PB of data. Single neurons typically extend over a 
large fraction of the data set (Fig. 1a), making it impracticable 
to distribute data on hard drives to large numbers of annotators 
who want to follow the processes of entire neurons. At the same 
time, data analysis in connectomics is limited by the amount of 
human annotation time that can be recruited for a given analysis 
project4. Thus, enabling efficient distributed 3D data annotation 
in PB-sized data sets, ideally in browser, is essential.

The existing in-browser annotation tool for connectomics, 
CATMAID5,6, uses efficient data storage and transmission in 2D 
image planes (comparable to Google Maps7), which are sequen-
tially browsed (Fig. 1b). While this approach makes data viewing 
and annotation seamless in the plane of imaging, 3D neurite trac-
ing is slowed down by the time required to progress to the sub-
sequent image plane. Under ideal high-bandwidth, low-latency 
connectivity conditions (like those within research institutions), 
this approach yields a reconstruction speed of about 470 µm/h 

1Department of Connectomics, Max Planck Institute for Brain Research, Frankfurt, Germany. 2Scalable minds UG (haftungsbeschränkt) & Co. KG, Potsdam, Germany. 
3These authors contributed equally to this work. Correspondence should be addressed to M.H. (mh@brain.mpg.de) or K.M.B. (kevin.boergens@brain.mpg.de).
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figure � | In-browser 3D annotation of axons and dendrites for connectomics. (a) Sketch of mouse whole-brain 3D EM data set size (top) and  
1 mm3 of cerebral cortex (bottom) compared with the extent of a typical single pyramidal neuron (dendrites, magenta; axon, black). (b) Sketch of 
online data delivery modes using lateral prefetching in 2D (top, Google maps, CATMAID) and in 3D (bottom, webKnossos). (c) Comparison of data 
transmission when following a neurite using 2D image prefetching (black, in CATMAID) and 3D data prefetching in webKnossos (blue, ortho mode) 
under different bandwidth and latency conditions. Transcont, transcontinental access (https://www.openconnectomeproject.org from Europe, custom 
CATMAID and webKnossos from South America, bottom to top). (d) webKnossos in-browser user interface with orthogonal viewports (xy, yz, xz), one 
3D skeleton viewport, and the abstract tree viewer (right). (e) Sketch of viewing surface orientation (red) in orthogonal mode (top) and flight mode 
(bottom). (f) Flight-mode egocentric 3D image sampling on a hemisphere (top), yielding a single flight-mode data view (bottom). (g) Example of  
3D prefetching in flight mode given flight direction and current position (gray, prefetched webKnossos cubes; red, flight-mode image surface).  
(h) Annotator speed training in ortho mode (black, n = 25 annotators) and flight mode (magenta, n = 26 annotators) on 40 neurites in cortex 
(randomly ordered per annotator). (i) Tracing speed test on 20 randomly selected cortical axons (including branches) performed by 26 annotators  
8 weeks after training. Dashed line, first five neurites presented again from training. Solid line, 20 test axons. Box plots report tracing speed for 
these 20 test axons in ortho (black) and flight mode (magenta), reported over n = 26 annotators (left) and n = 20 axons (right); flight 1.51 ±  
0.04 mm/h, ortho 0.96 ± 0.03 mm/h (n = 520, mean ± s.e.m.). (j) Display of 20 test axons within data set boundary. (k) Illustration of tracing error 
measurement in one of the 20 axons—local errors (inset, less than 10-µm path length) and continuation errors (right). Black, ground truth; red,  
six-fold consolidated flight-mode tracing. (l) Tracing errors reported over tracing redundancy (using RESCOP8) for 10 axons in ortho mode, flight mode 
and for 10 dendrites in flight mode (cyan), respectively. (m) same as l but only continuation errors (see k). Dashed lines in l and m, path length 
corrected for each RESCOPed skeleton (see Online Methods). (n) Relation between tracing speed and error rates for single-annotator reconstructions 
(n = 30) of axons and dendrites (colors as in l and m). Crosses indicate mean ± s.e.m. (o) same as n for continuation errors only. (p) Summary 
comparison of annotation time requirements for neurite reconstruction. Data from c, (black, webKnossos, https://webknossos.org; red, CATMAID) and 
from i and n (crosses). Asterisk, annotation consumption documented in published work; pyK, consumption by experienced annotators10; K, KNOSSOS 
annotation consumption from refs. 8, 11 and 12.
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40 neurites in a 3D EM data set from mouse cortex sized 93 × 
60 × 93 µm3, imaged at 11.24 × 11.24 × 28 nm3 using SBEM 
(data not shown; Fig. 1h). The sequence of neurites to trace was 
shuffled for each student (total path length of all 40 neurites, 
6.11 mm; number of branch points, 258; overall branch point 
rate, 42 per mm). The student annotators came from our pool of 
trained annotators and were thus experienced in connectomic 
data reconstruction (Supplementary Fig. 1). They were randomly 
assigned to two groups of 25 and 26 students, respectively. One 
group was asked to trace in ortho mode, the other in flight mode. 
We supplied both groups with an 8.5-min tutorial movie (a sepa-
rate movie for each group), which encouraged them to increase 
their movement speed whenever they felt they could go faster 
during reconstructions (Supplementary Fig. 1b,d). To enable 
constantly maximized tracing speed for each annotator, we auto-
matically tracked the fraction of time during which the annota-
tors proceeded at the preset movement speed (i.e., when holding 
the forward key pressed while navigating) and reminded them to 
increase their preset movement speed if they spent more than 75% 
of their tracing time constantly pressing the forward key. In ortho 
mode (Fig. 1h), annotators initially traced at 0.49 ± 0.04 mm/h 
(first ten processes, mean ± s.e.m.) and accelerated to 0.63 ± 0.05 
mm/h (last ten processes traced, P < 10−3, Wilcoxon signed-rank 
test). In flight mode (Fig. 1h), annotators started at a speed of 
0.84 ± 0.05 mm/h (faster than ortho mode, P < 10−4, Wilcoxon 
rank-sum test) and were able to increase their speed to an average 
of 1.11 ± 0.07 mm/h (P < 10−4, Wilcoxon signed-rank test), 1.8 
times faster than ortho mode tracing (P < 10−5, Wilcoxon rank-
sum test). These data indicate that a substantial reconstruction 
speed gain comes from per-user speed maximization, enabled 
by efficient 3D data handling, and an additional gain from the 
egocentric flight mode data interaction.

To test whether this tracing speed can be routinely achieved for 
axons in mammalian cerebral cortex (Fig. 1i,j), we next randomly 
selected 20 axons from a (2.5 µm)3 region in the same data set 
(Fig. 1j) and asked students trained in ortho mode to again use 
ortho mode and students trained in flight mode to again use flight 
mode. In each group, 13 of the trained students participated in 
this second experiment 8 weeks after the training (their initial 
training performance had been indistinguishable from the whole 
group, P > 0.24, Wilcoxon rank-sum test). We first presented five 
of the processes reconstructed during training to calibrate the 
persistence of the training effects, and then we presented the 20 
new axon seeds in random order to all tracers (Fig. 1i; note that 
the five neurites from the training session were not included in 
the final speed measurement). Tracers resumed annotation at the 
speed attained during training and were able to further accelerate, 
yielding a reconstruction speed of 0.96 ± 0.03 mm/h in ortho and 
1.51 ± 0.04 mm/h in flight mode (Fig. 1i, mean ± s.e.m., n = 20 
previously unseen randomly selected cortical axons; total path 
length, 2.53 mm; overall branch-point rate, 39 per mm).

But were faster tracings more error prone? We next quanti-
fied the rate of errors for 10 randomly drawn axons out of the 20 
test axons. For each axon, we manually counted the number of 
incorrect stops and incorrect continuations (Fig. 1k, performed 
by two expert annotators blinded to tracing mode, see Online 
Methods) and distinguished between errors yielding continua-
tion mistakes (i.e., a premature stop or missed branch of a major 
part of the axon) or local errors (yielding less than 10 µm neurite 

loss or neurite addition). Figure 1l reports the rate of errors for  
flight-mode and ortho-mode tracings for single-annotator recon-
structions and for consolidations of multiple reconstructions of 
the same axon (consolidated using RESCOP8). We found that, 
first, the rate of tracing errors was not distinguishable between 
ortho and flight mode tracings (P > 0.34 for all errors, P > 0.28 for 
continuation errors, Wilcoxon rank-sum test). Second, the aver-
age error rate for single-annotator reconstructions obtained at the 
achieved speed in webKnossos was not worse than the error rates 
reported previously in mouse retina8,11 and cortex13. The rate of 
continuation errors (Fig. 1m) was 7.5 ± 3.4 per mm in ortho mode 
and 5.3 ± 3.0 per mm in flight mode for single-annotator trac-
ings. We finally asked whether a speed–accuracy tradeoff could 
be observed in either of the tracing modes. For this we correlated 
the rate of errors with tracing speed in single-annotator tracings 
(Fig. 1n). No positive correlation could be found for ortho mode 
nor for flight mode (ortho r = −0.5, P = 0.007, flight r = −0.4,  
P > 0.05, Pearson’s correlation). This also was true when only 
analyzing the continuation errors (Fig. 1o, ortho r = −0.34,  
P > 0.05, flight r = −0.20, P > 0.28, Pearson’s correlation).

We thus conclude that annotators can be trained to trace corti-
cal axons at 1.51 ± 0.04 mm/h in flight mode without a reduc-
tion in accuracy. webKnossos can support this speed online and 
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figure 2 | Connectome reconstruction using webKnossos. (a) Flow chart 
and illustration (b) of connectome reconstruction steps. Ves. cloud det., 
vesicle cloud detection; syn. partner, identification of postsynaptic 
partner. (c) Comparison of annotation times for axons, dendrites, spines 
and synapses including the speed gains for neurite reconstruction in 
webKnossos (fig. �) for the local connectome shown in panels d and e 
and for a sparse example reconstruction (estimate, see inset, 100 layer-4 
cortical axons innervating 300 layer-2/3 pyramidal cells within a cubic 
millimeter of cortex tissue, amounting to 2 m total path length).  
(d) Reconstruction of 497 dendrites and 32 axons in local SBEM data set 
from mouse cortex following the workflow in a. Colored spheres indicate 
excitatory (Exc., violet) and inhibitory (Inh., red) synaptic contacts 
(syn.). (e) Resulting connectome between 32 presynaptic axons (presyn.) 
and 497 postsynaptic (postsyn.) dendrites (only the 70 innervated 
dendrites are shown).
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in browser, and it provides a 6- to 15-fold improvement over  
published tracing speeds, depending on the reconstructed data 
sets (summarized in Fig. 1p).

To determine tracing speeds for dendrites, we reconstructed 
the shafts of ten randomly chosen dendrites (1.8-mm total path 
length, overall branch point rate 16 per mm) and measured trac-
ing errors as described above. Since dendrites are about three 
times wider in diameter14, annotators could zoom out further 
and fly along dendrites faster than they do along axons. We found 
that tracing speed was 2.11 ± 0.16 mm/h including branch-point 
reconstruction, and single-annotator error rates were 2.7 ± 0.69 
errors per mm dendrite (Fig. 1l–o).

In mammalian brains, which constitute a main challenge 
of connectomics, about 90% of the neuronal processes are 
axons14,15. The speed gain for representative axon reconstruc-
tion in flight mode was therefore critical for the acceleration of 
connectomic reconstruction in mammalian cortex. However, the 
reconstruction of connectomes additionally requires the identi-
fication of synapses and the assignment of postsynaptic partners 
to the respective neuronal cell bodies and dendrites. Figure 2a,b 
illustrates a workflow for such connectome reconstruction. In 
this workflow, axons and dendritic shafts are reconstructed first 
(including branch points). Then a synapse movie mode is acti-
vated in webKnossos; in this mode, the user can fly along the pre-
traced axon and click into the postsynaptic process whenever a 
synapse is encountered. In the final step, the postsynaptic partner 
(in about 90% a spine head, Supplementary Fig. 2a) is seeded 
for annotators to trace back to the main shaft of dendrites. In 
this workflow, the fraction of time spent on synapse annotation 
is small for sparse reconstructions (7–11% for typical network 
reconstructions, Fig. 2c, Supplementary Fig. 2b) but is becoming 
more substantial for dense reconstructions, approaching about 
50% of reconstruction time (Supplementary Fig. 2b). Since syn-
apse detection requires only a local image classification (unlike 
neurite tracing), automated synapse detection is likely to soon 
replace manual synapse detection in dense connectome recon-
structions (e.g., refs. 16–19). To exemplify a full connectomic 
reconstruction using webKnossos, we finally reconstructed 497 
dendrites (total path length of 93.6 mm, tracing redundancy 3),  
and determined all synapses with 32 axons from the training set 
(Fig. 1j, 4.55 mm path length of axons, tracing redundancy 6). 
We detected 104 synapses in this local connectome (Fig. 2d,e) 
(total annotation time was 27.3 h for axons, 133 h for dendrites, 
and 19.2 h for synapses).

In summary, webKnossos accelerates human 3D data inter-
action for EM-based connectomics in browser by about 4- to 
13-fold, which likely saturates human interaction speed with 
3D EM data of nervous tissue using flight mode. While tested 
on well-aligned 3D SBEM data from mammalian cortex, these  
results are expected to be comparable for other neuropil with 
comparable neurite morphology (especially branch-point rates, 
e.g., in subcortical structures and ganglion cells in mammalian 
retina, see http://www.neuromorpho.org). Reconstructions  
in highly anisotropic and potentially less well-aligned image 
data can still profit from the speedup because of faster display 
rates in ortho mode tracings (see Fig. 1i). Thus webKnossos  
can serve as a versatile high-efficiency tool for 3D image data 
annotation in various 3D image analysis settings in connectomics 
and other fields.

methods
Methods, including statements of data availability and any associated  
accession codes and references, are available in the online version 
of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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online methods
3D SBEM data, animal experiments. The 3D EM image data 
was acquired using serial blockface electron microscopy (SBEM1) 
from primary somatosensory cortex layer 4 of a P28 C57BL/6 
male mouse, same data set as in ref. 12 (93 × 60 × 93 µm3, 11.24 
× 11.24 × 28 nm3 resolution, data set 2012-09-28_ex145_07x2_
new2). All animal experiments were carried out with approval  
of the local animal research authorities (Regierungspräsidium 
Oberbayern, Germany) and in accordance with the German 
Animal Welfare Act.

Image data transmission. For efficient volume data transmis-
sion, data is requested in small cubic packages 323 voxel in size 
(‘buckets’) stored at original 8-bit depth. For bandwidth-limited 
settings, each voxel in a bucket is trimmed to the 4 most signifi-
cant bits for transmission (‘4-bit mode’, user activatable). Buckets 
are requested along a priority ranking based on the current  
view point and direction of movement. In ortho mode, all buckets 
in the plane of the active viewport are loaded first, prioritized by 
the Manhattan distance to the viewport center. The buckets of the 
next two bucket layers in direction of movement are prioritized 
next, with two- and four-fold-reduced priority, respectively. All 
buckets are loaded at the user-specified magnification level.

In flight mode the preview volume is a square frustum with basis 
sized 5 × 5 buckets, height of 2.5 buckets, oriented along the cur-
rent movement direction, and top sized 4 × 4 buckets. All buckets 
fully or partially contained in this volume are requested at original 
magnification, prioritized by the Manhattan distance between the 
respective bucket center and the current viewpoint. The prioritized 
bucket request queue is updated on each user movement.

Measurement of 3D data transmission speed: webKnossos. 
The speed of data transmission for 3D navigation in webKnossos  
(Fig. 1d) was measured as follows. webKnossos was run at a 
Hetzner (Gunzenhausen, Germany) data center on a server with 
the following specifications: Intel(R) Xeon(R) CPU E3-1245 V2 
(4 × 3,4 GHz); 32 GB RAM; 15 × 3 TB HWRaid HDD. The EM 
data set was viewed in 4-bit mode in webKnossos run in Google 
Chrome (version 56) on a computer in the MPI for Brain Research.  
A neurite was picked and followed using the forward and arrow 
keys, keeping the forward key pressed where possible (which 
resulted in continuous image stream in webKnossos). To emu-
late reduced connectivity settings, the developer tools function 
of Google Chrome was used. The ‘transcontinental’ experiment 
(Fig. 1c) was performed on a computer connected to the network 
of the Instituto de Investigación en Biomedicina de Buenos Aires, 
Argentina, accessing the webKnossos instance running on the 
Hetzner server in Germany (see above).

Measurement of 3D data transmission speed: sequential 2D. 
The speed of data transmission for sequential 2D image navigation 
(Fig. 1c) was measured as follows. We followed the instructions 
by the CATMAID authors to optimize server performance (pub-
lished under https://groups.google.com/forum/#!topic/catmaid/ 
vE__4iLrPv4 ). A CATMAID instance (version 2016.12.16) was 
installed on a server in the compute center of the Max Planck 
Society (Garching, Germany) with the following specifications: 
Xeon E5-2630 12 cores, 128 GB RAM, 10 Gb network, JBOD of 
4× Intel DC S3500 240 GB SSDs, Ubuntu 14.04. Postgres and 

data partitions resided on SSDs; XFS was used with noatime. The 
3D image data set 2012-09-28_ex145_07x2_new2 (s. above) was 
converted to a series of 256 × 256 px jpg images, compressed by 
75% with jpg headers removed to further reduce file size as sug-
gested by the CATMAID authors. The data were resliced into 
three image series along the three cardinal directions.

The ‘transcontinental’ experiment was performed by accessing 
CATMAID on https://www.openconnectomeproject.org from a 
desktop computer in the MPI for Brain Research and by accessing 
the custom CATMAID instance at the Max Planck datacenter in 
Germany from a computer connected to the network of the Instituto 
de Investigación en Biomedicina de Buenos Aires, Argentina. All 
tests were performed in Google Chrome (version 56). The view-
ports in CATMAID and webKnossos were set to similar size.

Annotator training. For training annotators at high-speed anno-
tation (Fig. 1h), 40 training neurites were selected from the cortex 
data set (see above). For this, a bounding box sized 4.5 × 4.5 × 4.2 µm3  
was chosen. Then, two annotators were asked to reconstruct all 
processes within this bounding box. Next, each of the recon-
structed processes was classified as axon, dendrite or glia. Finally, 
40 of the 68 processes classified as axons were randomly selected. 
For each process, an expert annotator defined a starting position 
and a starting direction (required for flight-mode annotation).

51 annotators were trained. These annotators were randomly 
assigned to two groups (flight (n = 26) and ortho mode (n = 25)). 
Annotators were asked to watch an introductory video, which 
instructed them to increase their maximum velocity setting (the 
speed at which the annotator progresses through the data when 
the space key is held down continuously). Each annotator was 
presented with the 40 training processes in random order. The 
annotators’ preset maximum velocities were monitored during 
the annotation process. If the ratio of tracing speed and preset 
maximum velocity was higher than 0.75 for an entire tracing, 
the annotator was notified via e-mail and asked to increase the 
maximum velocity setting for the next annotation.

Axon test reconstruction. For the test of axon reconstruction 
speed (Fig. 1i), the 51 previously trained annotators were asked 
to reconstruct 20 randomly selected axons 8 weeks after the ini-
tial training. 26 annotators signed up for this experiment (13 that 
had been trained on flight mode and 13 that had been trained  
on ortho mode). These annotators had not been faster in the 
final ten training iterations than the whole group of annotators 
(P = 0.246 (Wilcoxon rank-sum test) und P = 0.250 (t-test)) 
and had not been faster in the final training iteration (P = 0.699 
(Wilcoxon rank-sum test) and P = 0.649 t-test).

To select a set of representative axons, a (2.5 µm)3 bounding box 
(located randomly within the cuboid of 15 µm edge length cen-
tered to the data set center) was chosen that did not contain a soma, 
and all neuronal and glial processes within this bounding box were 
reconstructed by one expert annotator. Then all processes were clas-
sified as axonal, dendritic or glial. Three additional expert annota-
tors proofread the annotation. Then, 20 of the 41 processes labeled 
as axonal were randomly selected, and for each axon a seed position 
and initial orientation were defined within the bounding box.

The 26 annotators were first asked to again reconstruct five 
neurites from the training experiment (these five neurites were 
randomly chosen from the 40 training seeds and were the same 



©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.

doi:10.1038/nmeth.4331nature methods

for all annotators; the sequence in which these were presented was 
randomized for each annotator). Then each annotator was asked 
to reconstruct the 20 previously unseen test axons (in a sequence 
randomized per annotator) in flight mode or ortho mode.  
After all annotators had finished, all annotations were automati-
cally scanned for open branch points (i.e., positions at which the 
annotator had set a branch point flag but had forgotten to jump 
back to for inspection) and seed nodes with a degree of 1 (i.e., 
starting points which had only been traced in one direction). 
17 open branch points (12 at first node) and 22 unidirectional  
seeds were detected (5 in flight, 17 in ortho) of 2,170 fully anno-
tated branch points, total. In these cases the annotators were 
asked to go back to the task and continue their annotations. 
The code for this automated annotation checking is provided in 
Supplementary Software 1.

Dendrite reconstruction. 497 dendrites were reconstructed in 
flight mode by 47 of the annotators previously trained in ortho or 
flight mode (see above). Those annotators that had worked in ortho 
mode before were asked to watch the instruction movie for flight 
mode before performing the dendrite reconstructions. Annotators 
were instructed to set the data set quality setting in webKnossos to 
medium (which means that image data is displayed at lower resolu-
tion) and not to reconstruct spines.

The 497 dendrite seeds for the connectome reconstruction 
(Fig. 2) were drawn randomly from a set of over 2,000 dendrites 
that had previously been reconstructed using webKnossos. For 
all dendrites, the z-axis pointing toward the data set center was 
used as initial flight orientation.

Measurement of annotation speed. For measurement of anno-
tation speed, the path length of a given neurite and the time 
it took to annotate that neurite were determined. To measure 
neurite path length from a skeleton annotation, the lengths of 
all edges within a skeleton were summed (as in refs. 8 and 11). 
However, this method has two caveats. First, noise in the place-
ment of skeleton nodes will be biased to only increase apparent 
skeleton length, not decrease it, which could potentially lead to 
an overestimation of annotation speed. Second, this effect will 
depend on the density of placed skeleton nodes. Since in flight 
mode the skeleton nodes are placed automatically, the density of 
skeleton nodes is substantially higher in flight mode than in ortho 
mode tracings (flight, 6.3 ± 0.68 nodes/µm; ortho, 1.79 ± 0.67  
nodes/µm, measured on the ten axons used for Fig. 1l–o). To 
account for these potential biases, we first used nonuniform rational 
b-spline (NURBS20)-based skeleton smoothing to calibrate the effect 
of node placement noise on skeleton path length (Supplementary 
Fig. 1f); using the skeleton nodes as support knots, NURBS spline 
order (i.e., the degree of smoothing) NO = 4 and clamping the first 
and last node. We found that post-NURBS path length measure-
ments of flight tracings are still on average 14.93 ± 1.08% (mean ± 
s.e.m.) longer than ortho tracings (Supplementary Fig. 1g). To cor-
rect for this and for the difference in node densities between tracing 
modes, we scaled NO in dependence of skeleton node density Ds (in 
number of nodes per µm edge-based skeleton length), 
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with Nn (the total number of skeleton nodes per tracing) and 
parameters c1, c2 and c3. The parameters were adjusted such that the 
average path lengths of neurites from the training set were similar 
for flight- and ortho-mode tracings (resulting in c1 = 50, c2 = 5, c3 = 
4; as a result, average ortho and flight path length for a given axon 
agreed within 1.79 ± 1.16%). See Supplementary Figure 1g and 
Supplementary Software 1–3 for comparisons of skeleton path 
length measurements based on edge length and NURBS smoothing 
with fixed NO and variable NO, respectively. The length measure-
ments involving NURBS smoothing with fixed NO and variable 
NO reduced the path length obtained from the simple edge length 
addition method by less than 20% (Supplementary Fig. 1g). The 
variable NO path length measurement method was used for speed 
measurements in the axon test set and the dendrite tracings.

To determine the annotation time of a given tracing, the 
administrative API of webKnossos was used (Supplementary  
Software 4) to log autosave events. Autosave events are triggered 
when the annotator is actively tracing within the last 30 s and the 
last autosave was more than 30 s ago. Therefore, during annota-
tion work, an autosave is submitted every 30 s (but not during 
pauses the annotator chooses to take). Annotation time was meas-
ured as the number of autosave events times 30 s. This is also the 
time used for determining annotator payment.

Annotation redundancy: RESCOP. For determining the depend-
ence of annotation error rates on annotation redundancy (Fig. 1l–o),  
multiple annotations of the same neurite from different annotators 
were consolidated using RESCOP8. Briefly, the priors and decision 
boundaries were fitted separately for axons traced in ortho and 
flight mode (Supplementary Fig. 1h,i). The priors were fitted using  
20 randomly selected annotations for each neurite from the train-
ing annotations (i.e., 800 annotations for ortho and flight mode, 
respectively, total of 865,121 edges, 866,721 nodes for computing 
the vote histogram, Supplementary Fig. 1h). The resulting decision 
boundaries are shown in Supplementary Figure 1i.

Measurement of annotation error rates. For the measurement 
of annotation errors, 10 of the 20 test axons (Fig. 1j) were ran-
domly selected. For these ten axons, a ground truth annotation 
was generated. To do this, the axon was first traced by one expert 
annotator. Then, all annotations of this axon from all tracers and 
tracing modes were superimposed; and all locations of discrep-
ancy between the experts’ annotation and all other annotations 
were inspected. Remaining errors in the expert annotation were 
corrected. Finally, two additional experts verified the ground 
truth annotation independently.

Then, for each of the ten axons, three ortho-mode and three 
flight-mode annotations were randomly selected and their  
discrepancies to the ground truth annotation counted as in  
ref. 8 (Fig. 5c in this reference). Similarly, consensus skeletons 
at redundancies 2, 3, 4, 5, 6, 7, 10 and 13 were computed using 
RESCOP8 (see above) for each of the ten axons and the two  
tracing modes, respectively. For each redundancy, 3 sets  
of tracings were randomly drawn from the available 13 tracings 
per axon and tracing mode. Thus, together, 540 reconstructions 
were error analyzed.

Error analysis was done by one expert annotator and proof-
read by a second expert annotator. Both experts were blinded to  
the tracing mode in which the reconstructions were performed. 
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For error analysis, the reconstructions were plotted in the three 
cardinal projections, overlaid with the ground truth reconstruc-
tion. Errors were classified into missing branches (false negatives) 
and wrongly added branches (false positives). Jumps from one 
process into another were counted twice, once as FP and once 
as FN. Errors were further classified according to the length of 
added or omitted neurite pieces (>10 µm, 5–10 µm, 3–5 µm,  
1–3 µm; discrepancies smaller than 1 µm were not counted, as  
in ref. 8). Error segments larger than 10 µm were classified as  
continuation errors (Fig. 1k).

For the measurement of errors in dendrite reconstructions, 10 
of the 497 reconstructed dendrites were randomly selected and 
error-annotated as for the axon reconstructions. Since error rates 
were substantially lower for dendrites than for axons (Fig. 1l–o), 
only redundancies 1–6 were evaluated for dendrites.

Path length of consolidated reconstructions. To make our 
results comparable to error rates reported in refs. 8, 11 and 13, 
we normalized the number of errors to the path length of the 
ground truth skeleton for each axon (Fig. 1l,m). However, since 
some annotations were shorter (due to missed neurite pieces) 
and others longer (due to added neurite pieces), we wanted to 
assure that our conclusions about error rates (Fig. 1l–o) were still 
correct when instead the neurite path length of the actual tracing 
or consolidation was used for error rate computation. To do so, 
we determined the path length for each RESCOP-consolidated  
reconstruction by generating a version of the ground truth recon-
struction that matched the respective RESCOP-consolidated 
reconstruction (including its possible false negative errors), and 
we measured that skeleton’s path length as described above.

Synapse annotation and connectome reconstruction. To 
exemplify the full analysis workflow for reconstructing connec-
tomes using webKnossos, we used all axons from the training 
reconstructions (32 axons, at RESCOP redundancy 6, step I in  
Fig. 2a–c) and 497 dendrite reconstructions (Fig. 2d, at redun-
dancy 3, step II in Fig. 2a–c). For synapse annotation (step III  
in Fig. 2a–c), a synapse movie mode in webKnossos was used 
(this mode is automatically activated for webKnossos tasks of type 
‘synapseannotation’). This was built as an extension of flight mode 
in which the previously reconstructed skeleton was displayed. The 
annotator was asked to mark synapses by setting a single node 
into the postsynaptic process while navigating along the axon. 
For the synapse movie mode, the (consolidated) reconstruction 
was first cut into unbranched parts, and each of these parts was 
presented to the annotators (see Supplementary Software 1 for 
the corresponding MATLAB code).

Ten annotators were trained for synapse annotation in an intro-
ductory 1-h seminar followed by two training axons for which 
they received immediate feedback. Then all annotators were asked 
to determine the output synapses of all 32 axons. To measure the 
precision and recall of synapse detection by student annotators, 
four of the axons were randomly selected, and synapse detec-
tion errors were determined by expert annotators. The student 
annotator with optimal precision and recall of synapse detection 
(precision 96%, recall 89%) was selected for the generation of the 
output connectome. In addition, annotators were instructed to 
mark axons as putative inhibitory axons if the majority of output 
synapses were made onto shafts.

For the axons that the best annotator marked as inhibitory, 
a second annotator was asked to annotate the synapses of that 
axon. For the annotation of inhibitory synapses, the annotator 
was instructed not to focus on speed of synapse annotation. The 
resulting synapse annotations were reviewed by an expert annota-
tor to establish error rates for inhibitory synapse annotation (no 
error in 20 reviewed synapse annotations).

This procedure operated at 1.2 ± 0.5 h per mm candidate axon 
segment length (n = 151, excitatory axons; 1.8 ± 1.0 h per mm 
for all axons, n = 178)

To determine whether the postsynaptic targets of the recon-
structed axons matched any of the 497 dendrites in the con-
nectome, the annotation of the postsynaptic partner in synapse  
mode was used as a new seed for an annotation task (step IV 
in Fig. 2a–c). The annotators for these tasks were asked to only 
reconstruct the postsynaptic structure (in about 90% of cases a 
spine) in ortho mode until it entered a dendritic shaft and to 
then place three additional skeleton nodes in the shaft center to 
simplify the matching to dendrite reconstructions. This anno-
tation had a consumption of 31.1 ± 28.0 s annotation time per 
spine, mean ± s.d., n = 975; i.e. 2.3 ± 1.3 h per mm axon path 
length. Error rates of this postsynaptic process annotation were 
established by inspection of 30 randomly selected postsynaptic 
structures by an expert annotator (one wrong annotation).

To match the postsynaptic partner reconstructions (step V in 
Fig. 2a) with the 497 dendrite reconstructions, we finally meas-
ured the average distance dpd between all dendrites and the three 
shaft nodes of each postsynaptic partner reconstruction, and 
we detected the dendrite with the smallest average distance. To 
determine an attachment threshold—i.e. a maximum average 
distance dpd* up to which a postsynaptic partner reconstruction 
was considered to match a dendrite reconstruction—we used a 
randomly chosen set of 200 partner reconstructions. In these, 
the distribution of dpd (Supplementary Fig. 2a) indicated a 
threshold distance dpd* of 250 nm. To determine the error rate 
of postsynaptic partner matching, we evaluated the matching in 
an additional set of 200 randomly chosen spines and their closest 
dendrite (21 true positives, 1 false positive, 178 true negatives, 
no false negatives). All code for these procedures is available in 
Supplementary Software 1.

Connectome annotation time estimates. For the annotation 
time approximation of an example L2/3-L4 cortical connectome 
(Supplementary Fig. 2c), we used 1.5 mm/h reconstruction speed 
and six-fold redundancy for axons, and 2.1 mm/h reconstruction 
speed at three-fold redundancy for dendrites. For estimating the 
reconstruction time spent on synapse annotation (Supplementary 
Fig. 2b), two approaches for synapse annotation were consid-
ered. One, axon-based synapse annotation (Fig. 2a,b), proceeds 
along axons, marking synapses and identifying postsynaptic part-
ners, which are then matched to dendrite reconstructions (see 
“Results”). The other, dendrite-based synapse annotation, pro-
ceeds along dendrites, reconstructing all spines along dendritic 
shafts. Spine annotation along dendrites proceeds at about 40 s 
per spine (time taken to reconstruct a spine and mark its presyn-
aptic partner) at a spine density of about 1 per µm dendrite length. 
In both strategies, we assumed that only proximities of axons 
and dendrites at less than 5 µm distance need to be investigated 
for synapses. Therefore, depending on the density of axons and 
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dendrites in a given reconstruction task, the length of axons and 
dendrites that need to be synapse searched varies, which yields 
an optimal strategy for any given volume density of axons and 
dendrites. Dendrite and axon reconstruction speed used for these 
estimates was 2.1 mm/h and 1.5 mm/h (at three- and six-fold 
redundancy, respectively).

Statistical tests. The speed and the error comparison between 
ortho and flight tracers and the speed comparison between the 
subset of annotators for the second experiment and all anno-
tators used Wilcoxon rank-sum test. The speed comparison for 
annotators between beginning and end of training used Wilcoxon 
signed-rank test. The correlation between tracing error rate and 
tracing speed was computed using Pearson’s correlation.

Software availability, code availability and licensing. webKnossos 
is available for testing at https://demo.webknossos.brain.mpg.de  
together with example data sets: the published retina data sets 
e2198 (ref. 21), k0563 (refs. 8, 11 and 21) and e2006 (ref. 11), 
a 20 × 20 × 20 µm3 sized subvolume of the data set 2012-09-
28_ex145_07x2_new2 used for webKnossos testing (see above), 
and an example fluorescence data set (FD0149-2, data not shown).  
See Supplementary Video 2 for an introductory video.

The webKnossos source code is provided as Supplementary 
Software 5 and is also available at https://github.com/scalableminds/ 
webKnossos. webKnossos is licensed under the AGPLv3 license 
(this applies to all source code files in Supplementary Software 
1–5 and GitHub repository). webKnossos uses the following soft-
ware packages and technologies: Scala, JDK 8, Play, mongoDB, 
WebGL, ThreeJS, Backbone, sbt.

Data availability statement. webKnossos is openly accessible 
at https://demo.webknossos.brain.mpg.de, where data sets from 
retina and cortex can be browsed and annotated. The entire SBEM 
data set of the mouse cortex that support the findings in this 
study are available from the corresponding author upon reason-
able request. webKnossos is open source, source code is avail-
able as Supplementary Software 5 and at https://github.com/ 
scalableminds/webknossos. All reconstructions used in this study 
are available in Supplementary Software 1, 2 and 3. Source data 
for Figures 1 and 2 are available online.

20. Piegl, L. & Tiller, W. The NURBS book (Springer Science & Business Media, 
2012).

21. Briggman, K.L., Helmstaedter, M. & Denk, W. Nature 47�, 183–188 
(2011).



6.3 SynEM: Automated synapse detection for

connectomics

Abstract Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in

the mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense

connectomic mapping requires the identification of millions to billions of synapses.

While the focus of connectomic data analysis has been on neurite reconstruction,

synapse detection becomes limiting when datasets grow in size and dense mapping

is required. Here, we report SynEM, a method for automated detection of synapses

from conventionally en-bloc stained 3D electron microscopy image stacks. The

approach is based on a segmentation of the image data and focuses on classifying

borders between neuronal processes as synaptic or non-synaptic. SynEM yields

97% precision and recall in binary cortical connectomes with no user interaction.

It scales to large volumes of cortical neuropil, plausibly even whole-brain datasets.

SynEM removes the burden of manual synapse annotation for large densely

mapped connectomes.
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ABSTRACT 20 

 21 

Nerve tissue contains a high density of chemical synapses, about 1 per µm3 in the 22 

mammalian cerebral cortex. Thus, even for small blocks of nerve tissue, dense 23 

connectomic mapping requires the identification of millions to billions of synapses. 24 

While the focus of connectomic data analysis has been on neurite reconstruction, 25 

synapse detection becomes limiting when datasets grow in size and dense mapping 26 

is required. Here, we report SynEM, a method for automated detection of synapses 27 

from conventionally en-bloc stained 3D electron microscopy image stacks. The 28 

approach is based on a segmentation of the image data and focuses on classifying 29 

borders between neuronal processes as synaptic or non-synaptic. SynEM yields 30 

97% precision and recall in binary cortical connectomes with no user interaction. It 31 

scales to large volumes of cortical neuropil, plausibly even whole-brain datasets. 32 

SynEM removes the burden of manual synapse annotation for large densely mapped 33 

connectomes. 34 

 35 

  36 
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 37 

INTRODUCTION 38 

 39 

The ambition to map neuronal circuits in their entirety has spurred substantial 40 

methodological developments in large-scale 3-dimensional microscopy (Denk & 41 

Horstmann, 2004, Hayworth et al., 2006, Knott et al., 2008, Eberle et al., 2015), 42 

making the acquisition of datasets as large as 1 cubic millimeter of brain tissue or 43 

even entire brains of small animals at least plausible (Mikula et al., 2012, Mikula & 44 

Denk, 2015). Data analysis, however, is still lagging far behind (Helmstaedter, 2013). 45 

One cubic millimeter of gray matter in the mouse cerebral cortex, spanning the entire 46 

depth of the gray matter and comprising several presumed cortical columns (Fig. 1a), 47 

for example, contains at least 4 kilometers of axons, about 1 kilometer of dendritic 48 

shafts, about 1 billion spines (contributing an additional 2-3 kilometers of spine neck 49 

path length) and about 1 billion synapses (Fig. 1b). Initially, neurite reconstruction 50 

was so slow, that synapse annotation comparably paled as a challenge (Fig. 1c): 51 

when comparing the contouring of neurites (proceeding at 200-400 work hours per 52 

millimeter neurite path length) with synapse annotation by manually searching the 53 

volumetric data for synaptic junctions (Fig. 1d, proceeding at about 0.1 hour per 54 

µm3), synapse annotation consumed at least 20-fold less annotation time than 55 

neurite reconstruction (Fig. 1c). An alternative strategy for manual synapse detection 56 

is to follow reconstructed axons (Fig. 1e) and annotate sites of vesicle accumulation 57 

and postsynaptic partners. This axon-focused synapse annotation reduces synapse 58 

annotation time by about 8-fold for dense reconstructions (proceeding at about 1 min 59 

per potential contact indicated by a vesicle accumulation, which occurs every about 60 

4-10 µm along axons in mouse cortex). 61 

With the development of substantially faster annotation strategies for neurite 62 

reconstruction, however, the relative contribution of synapse annotation time to the 63 

total reconstruction time has substantially changed. Skeleton reconstruction 64 

(Helmstaedter et al., 2011) together with automated volume segmentations 65 

(Helmstaedter et al., 2013, Berning et al., 2015), allow to proceed at about 7-10 66 

hours per mm path length (mouse retina, Helmstaedter et al., 2013) or 4-7 hours per 67 

mm (mouse cortex, Berning et al., 2015), thus about 50-fold faster than manual 68 

contouring. Recent improvements in online data delivery and visualization (Boergens 69 

et al., 2017) further reduce this by about 5-10 fold. Thus, synapse detection has 70 

become a limiting step in dense large-scale connectomics. Importantly, any further 71 
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improvements in neurite reconstruction efficiency would be bounded by the time it 72 

takes to annotate synapses. Therefore, automated synapse detection for large-scale 73 

3D EM data is critical. 74 

High-resolution EM micrographs are the gold standard for synapse detection (Gray, 75 

1959, Colonnier, 1968). Images acquired at about 2-4 nm in-plane resolution have 76 

been used to confirm chemical synapses using the characteristic intense heavy 77 

metal staining at the postsynaptic membrane, thought to be caused by the 78 

accumulated postsynaptic proteins (“postsynaptic density”, PSD), and an 79 

agglomeration of synaptic vesicles at the membrane of the presynaptic terminal. 80 

While synapses can be unequivocally identified in 2-dimensional images when cut 81 

perpendicularly to the synaptic cleft (Fig. 1f), synapses at oblique orientations or with 82 

a synaptic cleft in-plane to the EM imaging are hard or impossible to identify. 83 

Therefore, the usage of 3D EM imaging with a high resolution of 4-8 nm also in the 84 

cutting dimension (FIB/SEM, Knott et al., 2008) is ideal for synapse detection. For 85 

such data, automated synapse detection is available and successful (Kreshuk et al., 86 

2011, Becker et al., 2012, 2013, Suppl. File 1). However, FIB-SEM currently does not 87 

scale to large volumes required for connectomics of the mammalian cerebral cortex. 88 

Serial Blockface EM (SBEM, Denk & Horstmann, 2004) scales to such mm3 -sized 89 

volumes. However, SBEM provides a resolution just sufficient to follow all axons in 90 

dense neuropil and to identify synapses across multiple sequential images, 91 

independent of synapse orientation (Fig. 1g, see also Synapse Gallery in 92 

Supplementary File 4; the resolution of SBEM is typically about 10x10x30 nm3; Fig. 93 

1g). In this setting, synapse detection methods developed for high-in plane resolution 94 

data do not provide the accuracy required for fully automated synapse detection (see 95 

below). 96 

Here we report SynEM, an automated synapse detection method based on an 97 

automated segmentation of large-scale 3D EM data (using SegEM, Berning et al., 98 

2015; an earlier version of SynEM was deposited on biorxiv, Staffler et al., 2017). 99 

SynEM is aimed at providing fully automated connectomes from large-scale EM data 100 

in which manual annotation or proof reading of synapses is not feasible. SynEM 101 

achieves precision and recall for single-synapse detection of 88% and for binary 102 

neuron-to-neuron connectomes of 97% without any human interaction, essentially 103 

removing the synapse annotation challenge for large-scale mammalian 104 

connectomes.  105 

 106 

 107 
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RESULTS 108 

 109 

Interface classification 110 

 111 

We consider synapse detection as a classification of interfaces between neuronal 112 

processes as synaptic or non-synaptic (Fig. 2a; see also Mishchenko et al., 2010, 113 

Kreshuk et al., 2015, Huang et al., 2016). This approach relies on a volume 114 

segmentation of the neuropil sufficient to provide locally continuous neurite pieces 115 

(such as provided by SegEM, Berning et al., 2015, for SBEM data of mammalian 116 

cortex), for which the contact interfaces can be evaluated.  117 

The unique features of synapses are distributed asymmetrically around the synaptic 118 

interface: presynaptically, large vesicle pools extend into the presynaptic terminal 119 

over at least 100-200 nm; postsynaptically, the PSD has a width of about 20-30 nm. 120 

To account for this surround information our classifier considers the subvolumes 121 

adjacent to the neurite interface explicitly and separately, unlike previous approaches 122 

(Kreshuk et al., 2015, Huang et al., 2016), up to distances of 40, 80, and 160 nm 123 

from the interface, restricted to the two segments in question (Fig. 2b; the interface 124 

itself was considered as an additional subvolume). We then compute a set of 11 125 

texture features (Table 1, this includes the raw data as one feature), and derive 9 126 

simple aggregate statistics over the texture features within the 7 subvolumes. In 127 

addition to previously used texture features (Kreshuk et al., 2011, Table 1), we use 128 

the local standard deviation, an intensity-variance filter and local entropy to account 129 

for the low-variance (“empty”) postsynaptic spine volume and presynaptic vesicle 130 

clouds, respectively (see Fig. 2c for filter output examples and Fig. 2d for filter 131 

distributions at an example synaptic and non-synaptic interface). The “sphere 132 

average” feature was intended to provide information about mitochondria, which 133 

often impose as false positive synaptic interfaces when adjacent to a plasma 134 

membrane. Furthermore, we employ 5 shape features calculated for the border 135 

subvolume and the two subvolumes extending 160 nm into the pre- and postsynaptic 136 

processes, respectively. Together, the feature vector for classification had 3224 137 

entries for each interface (Table 1).  138 

 139 
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 140 

SynEM workflow and training data 141 

 142 

We developed and tested SynEM on a dataset from layer 4 (L4) of mouse primary 143 

somatosensory cortex (S1) acquired using SBEM (dataset ex145_07x2, Boergens et 144 

al., in prep.; the dataset was also used in developing SegEM, Berning et al., 2015). 145 

The dataset had a size of 93 x 60 x 93 µm3 imaged at a voxel size of 11.24 x 11.24 x 146 

28 nm3. The dataset was first volume segmented (SegEM, Berning et al., 2015, Fig. 147 

2a, see Fig. 2e for a SynEM workflow diagram). Then, all interfaces between all pairs 148 

of volume segments were determined, and the respective subvolumes were defined. 149 

Next, the texture features were computed on the entire dataset and aggregated as 150 

described above. Finally, the shape features were computed. Then, the SynEM 151 

classifier was implemented to output a synapse score for each interface and each of 152 

the two possible pre-to-postsynaptic directions (Fig. 3a-c). The SynEM score was 153 

then thresholded to obtain an automated classification of interfaces into synaptic / 154 

non-synaptic (θ in Fig. 3a). Since the SynEM scores for the two possible synaptic 155 

directions at a given neurite-to-neurite interface were rather disjunct in the range of 156 

relevant thresholds, we used the larger of the two scores for classification (Fig. 3b; θs 157 

and θnn refer to the SynEM thresholds optimized for single synapse or neuron-to-158 

neuron connectome reconstruction, respectively, see below).  159 

We obtained labels for SynEM training and validation by presenting raw data 160 

volumes of (1.6 x 1.6 x 0.7-1.7) µm3 that surrounded the segment interfaces to 161 

trained student annotators (using a custom-made annotation interface in Matlab, Fig. 162 

3 – figure supplement 1). The raw data was rotated such that the interface was most 163 

vertically oriented in the image plane presented to the annotators; the two interfacing 164 

neurite segments were colored transparently for identification (this could be switched 165 

off by the annotators when inspecting the synapse, see Methods for details). 166 

Annotators were asked to categorize the presented interface as either non-synaptic, 167 

pre-to-postsynaptic, or post-to-presynaptic (Fig. 3c, Fig. 3 – figure supplement 1). 168 

The synaptic labels were then verified by an expert neuroscientist. A total of 75,383 169 

interfaces (1,858 synaptic, 73,525 non-synaptic) were annotated in image volumes 170 

drawn from 40 locations within the entire EM dataset (Fig. 3 – figure supplement 2). 171 

About 80% of the labels (1467 synaptic, 61,619 non-synaptic) were used for training, 172 

the remaining were used for validation.  173 
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Initially, we interpreted the annotator’s labels in an undirected fashion: irrespective of 174 

synapse direction, the label was interpreted as synaptic (and non-synaptic otherwise, 175 

Fig. 3c, “Undir.”). We then augmented the training data by including mirror-reflected 176 

copies of the originally presented synapses, maintaining the labels as synaptic 177 

(irrespective of synapse direction) and non-synaptic (Fig. 3c, “Augmented”). Finally, 178 

we changed the labels of the augmented training data to reflect the direction of 179 

synaptic contact: only synapses in one direction were labeled as synaptic, and non-180 

synaptic in the inverse direction (Fig. 3c “Directed”). 181 

SynEM evaluation 182 

Fig. 3d shows the effect of the choice of features, aggregate statistics, classifier 183 

parameters and label types on SynEM precision and recall. Our initial classifier used 184 

the texture features from Kreshuk et al., 2011 with minor modifications and in 185 

addition the number of voxels of the interface and the two interfacing neurite 186 

segmentation objects (restricted to 160 nm distance from the interface) as a first 187 

shape feature (Table 1). This classifier provided only about 70% precision and recall 188 

(Fig. 3d). We then extended the feature space by adding more texture features 189 

capturing local image statistics (Table 1) and shape features. In particular, we added 190 

filters capturing local image variance in an attempt to represent the “empty” 191 

appearance of postsynaptic spines, and the presynaptic vesicle clouds imposing as 192 

high-frequency high-variance features in the EM images. Also, we added more 193 

subvolumes over which features were aggregated (see Fig. 2b), increasing the 194 

dimension of the feature space from 603 to 3224. Together with additional aggregate 195 

statistics, the classifier reached about 75% precision and recall. A substantial 196 

improvement was obtained by switching from an ensemble of decision-stumps (one-197 

level decision tree) trained by AdaBoostM1 (Freund & Schapire, 1997) as classifier to 198 

decision stumps trained by LogitBoost (Friedman et al., 2000). In addition, the 199 

directed label set proved to be superior. Together, these improvements yielded a 200 

precision and recall of 87% and 86% on the validation set (Fig. 3d).  201 

We then evaluated the best classifier from the validation set (Fig. 3d, ‘Direct & Logit’) 202 

on a separate test set. This test set was a dense volume annotation of all synapses 203 

in a randomly positioned region containing dense neuropil of size 5.8 x 5.8 x 7.2 µm3 204 

from the L4 mouse cortex dataset. All synapses were identified by 2 experts, which 205 

included the reconstruction of all local axons, and validated once more by another 206 

expert on a subset of synapses. In total, the test set contained 235 synapses and 207 

20319 non-synaptic interfaces. SynEM automatically classified these at 88% 208 
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precision and recall (Fig. 3e, F1 score of  0.883). Since the majority of synapses in 209 

the cortex are made onto spines we also evaluated SynEM on all spine synapses in 210 

the test set (n=204 of 235 synapses, 87%, Fig. 3e). On these, SynEM performed 211 

even better, yielding 94% precision and 89% recall. (Fig. 3e, F1 score of 0.914 ).  212 

Comparison to previous methods 213 

We next compared SynEM to previously published synapse detection methods (Fig. 214 

3f, Mishchenko et al., 2010, Kreshuk et al., 2011, Kreshuk et al., 2014, Becker et al., 215 

2012, Roncal et al., 2015, Dorkenwald et al., 2017). Other published methods were 216 

either already shown to be inferior to one of these approaches (Perez et al., 2014, 217 

Marquez Neila et al., 2016) or developed for specific subtypes of synapses, only 218 

(Jagadeesh et al., 2014, Plaza et al., 2014, Huang et al., 2016); these were therefore 219 

not included in the comparison. SynEM outperforms the state-of-the-art methods 220 

when applied to our SBEM data acquired at 3537 nm3 voxel size (Fig. 3f, Fig. 3 – 221 

figure supplement 3). In addition, we applied SynEM to a published 3D EM dataset 222 

acquired at more than 10-fold smaller voxel size (3 x 3 x 30 = 270 nm3) using 223 

automated tape-collecting ultramicrotome-SEM imaging (ATUM, Kasthuri et al., 224 

2015). SynEM also outperforms the method developed for this data (VesicleCNN, 225 

Roncal et al., 2015; Fig. 3f and Fig. 3 – figure supplement 4), indicating that SynEM 226 

is applicable to EM data of various modalities and resolution.  227 

It should furthermore be noted that for connectomics, in addition to the detection of 228 

the location of a synapse, the two neuronal partners that form the synapse and the 229 

direction of the synapse have to be determined. The performance of the published 230 

methods as reported in Fig. 3f only include the synapse detection step. Interestingly, 231 

the recently published method (Dorkenwald et al., 2017) reported that the additional 232 

detection of the synaptic partners yielded a drop of performance of 3% precision and 233 

10% recall (F1 score decreased by about 5% from 0.906 to 0.849) compared to 234 

synapse detection alone (Fig. 3f, see Dorkenwald et al., 2017). This indicates that 235 

the actual performance of this method on our data would be lower when including 236 

partner detection. SynEM, because of the explicit classification of directed neurite 237 

interfaces, in contrast, explicitly provides synapse detection, partner detection and 238 

synapse directionality in one classification step.  239 

 240 
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Remaining SynEM errors, feature importance, and computational 241 

feasibility 242 

Fig. 4a shows examples of correct and incorrect SynEM classification results 243 

(evaluated at θs). Typical sources of errors are vesicle clouds close to membranes 244 

that target nearby neurites (Fig. 4a, FP), Mitochondria in the pre- and/or postsynaptic 245 

process, very small vesicle clouds and/or small PSDs (Fig. 4a, FN), and remaining 246 

SegEM segmentation errors. To estimate the effect of segmentation errors on 247 

SynEM performance, we investigated all false positive and false negative detections 248 

in the test set and checked for the local volume segmentation quality. We found that, 249 

in fact, 26 of the 28 FNs and 22 of the 27 FPs were at locations with a SegEM error 250 

in proximity. Correcting these errors also corrected the SynEM errors in 22 of 48 251 

(46%) of the cases. This indicates that further improvement of volume segmentation 252 

can yield an even further reduction of the remaining errors in SynEM-based 253 

automated synapse detection. 254 

We then asked which of the SynEM features had highest classification power, and 255 

whether the newly introduced texture and shape features contributed to 256 

classification. Boosted decision-stump classifiers allow the ranking of features 257 

according to their classification importance (Fig. 4b). 378 out of 3224 features 258 

contributed to classification (leaving out the remaining features did not reduce 259 

accuracy). The 10 features with highest discriminative power (Table 2) in fact 260 

contained two of the added texture filters (int-var and local entropy) and a shape 261 

feature. The three most distinctive subvolumes (Fig. 4b) were the large presynaptic 262 

subvolume, the border and the small postsynaptic subvolume. This suggests that the 263 

asymmetry in pre- vs. postsynaptic aggregation volumes in fact contributed to 264 

classification performance, with a focus on the presynaptic vesicle cloud and the 265 

postsynaptic density. 266 

Finally, SynEM is sufficiently computationally efficient to be applied to large 267 

connectomics datasets. The total runtime on the 384592 μm3 dataset was 2.6 hours 268 

on a mid-size computational cluster (480 CPU cores, 16GB RAM per core). This 269 

would imply a runtime of 279.9 days for a large 1 mm3 dataset, which is comparable 270 

to the time required for current segmentation methods, but much faster than the 271 

currently required human annotation time (105 to 106 h, Fig. 1c). Note that SynEM 272 

was not yet optimized for computational speed (plain matlab code, see Suppl. Code 273 

and git repository posted at https://gitlab.mpcdf.mpg.de/connectomics/SynEM). 274 
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 275 

SynEM for connectomes 276 

 277 

We so far evaluated SynEM on the basis of the detection performance of single 278 

synaptic interfaces. Since we are interested in measuring the connectivity matrices of 279 

large-scale mammalian cortical circuits (connectomes) we obtained a statistical 280 

estimate of connectome error rates based on synapse detection error rates. We 281 

assume that the goal is a binary connectome containing the information whether 282 

pairs of neurons are connected or not. Automated synapse detection provides us 283 

with weighted connectomes reporting the number of synapses between neurons, 284 

from which we can obtain binary connectomes by considering all neuron pairs with at 285 

least nn synapses as connected (Fig. 5a). Synaptic connections between neurons in 286 

the mammalian cerebral cortex have been found to be established via multiple 287 

synapses per neuron pair (Fig. 5b, Feldmeyer et al., 1999, Feldmeyer et al., 2002, 288 

Feldmeyer et al., 2006, Frick et al., 2008, Markram et al., 1997, range 1-8 synapses 289 

per connection, mean 4.3 ± 1.4 for excitatory connections). The effect of synapse 290 

recall Rs on recall of neuron-to-neuron connectivity Rnn can be estimated (Fig. 5c) for 291 

each threshold nn given the distribution of the number of synapses per connected 292 

neuron pair nsyn. For connectomes in which neuron pairs with at least one detected 293 

synapse are considered as connected (nn = 1), a neuron-to-neuron connectivity 294 

recall Rnn of 97% can be achieved with a synapse detection recall Rs of 65.1% (Fig. 295 

5c, black arrow) if synapse detection is independent between multiple synapses of 296 

the same neuron pair. SynEM achieves 99.4% synapse detection precision Ps at this 297 

recall (Fig. 3e).  298 

The resulting precision of neuron-to-neuron connectivity Pnn then follows from the 299 

total number of synapses in the connectome Nsyn = N2
×cr×<nsyn>, with cr the pairwise 300 

connectivity rate, about 20% for local excitatory connections in cortex (Feldmeyer et 301 

al., 1999), <nsyn> the mean number of synapses per connection  (4.3 ± 1.4, Fig. 5b), 302 

and N2 the size of the connectome. A fraction Rs of these synapses is detected (true 303 

positive detections, TPs). The number of false positive (FP) synapse detections was 304 

deduced from TP and the synapse precision Ps as FP=TP×(1-Ps)/Ps, yielding 305 

Rs×Nsyn×(1-Ps)/Ps false positive synapse detections. These we assumed to be 306 

distributed randomly on the connectome and estimated how often at least nn 307 

synapses fell into a previously empty connectome entry. These we considered as 308 

false positive connectome entries, whose rate yields the binary connectome 309 
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precision Pnn (see Methods for details of the calculation). At Rnn of 97.1%, SynEM 310 

yields a neuron-to-neuron connection precision Pnn of 98.5% (Fig. 5d, black arrow, 311 

Fig. 5e; note that this result is stable against varying underlying connectivity rates 312 

cre=5%..30%, see indicated ranges in Fig. 5e).  313 

For the treatment of inhibitory connections, we followed the notion that synapse 314 

detection performance could be optimized by restricting classifications to interfaces 315 

established by inhibitory axons (as we had analogously seen for restricting analysis 316 

to spine synapses above, Fig. 3e). For this, we evaluated SynEM on a test set of 317 

inhibitory axons for which we classified all neurite contacts of these axons (171 318 

synapses, 9430 interfaces). While the precision and recall for single inhibitory 319 

synapses is lower than for excitatory ones (75% recall, 82% precision, Fig. 5 – figure 320 

supplement 1, SynEM(i)
s), the higher number of synapses per connected cell pair ( 321 

n(i)
syn is on average about 6, Suppl. File 3, Gupta et al., 2000; Markram et al., 2004; 322 

Koelbl et al., 2015; Hoffmann et al., 2015) still yields substantial neuron-to-neuron 323 

precision and recall also for inhibitory connectomes (98% recall, 97% precision, Fig. 324 

5e, Fig. 5 – figure supplement 1, SynEM(i)
nn; this result is stable against varying 325 

underlying inhibitory connectivity rates cri=20%..80%, see ranges indicated in Fig. 326 

5e). Error rates of less than 3% for missed connections and for wrongly detected 327 

connections are well below the noise of synaptic connectivity so far found in real 328 

biological circuits (e.g., Helmstaedter et al., 2013, Bartol et al., 2015), and thus likely 329 

sufficient for a large range of studies involving the mapping of cortical connectomes. 330 

In summary, SynEM provides fully automated detection of synapses, their synaptic 331 

partner neurites and synapse direction for binary mammalian connectomes up to 332 

97% precision and recall, a range which was previously prohibitively expensive to 333 

attain in large-scale volumes by existing methods (Fig. 5e, Fig. 5 – figure supplement 334 

2). 335 

 336 

Local cortical connectome 337 

 338 

We applied SynEM to a sparse local cortical connectome between 104 axons and 339 

100 postsynaptic processes in the dataset from L4 of mouse cortex (Fig. 6a, neurites 340 

were reconstructed using webKnossos (Boergens et al., 2017) and SegEM as 341 

previously reported (Berning et al., 2015)). We first detected all contacts and 342 

calculated the total contact area between each pair of pre- and postsynaptic 343 
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processes (“contactome”, Fig. 6b). We then classified all contacts using SynEM (at 344 

the classification threshold θnn (Table 3) yielding 98.5% precision and 97.1% recall for 345 

excitatory neuron-to-neuron connections and 97.3% precision and 98.5% recall for 346 

inhibitory neuron-to-neuron connections) to obtain the weighted connectome Cw (Fig. 347 

6c). The detected synapses were clustered when they were closer than 1500 nm for 348 

a given neurite pair. This allowed us to concatenate large synapses with multiple 349 

active zones or multiple contributing SegEM segments into one (Fig. 6 – figure 350 

supplement 1). To obtain the binary connectome we thresholded the weighted 351 

connectome at nn  = 1 for excitatory and at nn = 2 for inhibitory neuron-to-neuron 352 

connections (Fig. 6d). The resulting connectome contained 880 synapses distributed 353 

over 536 connections. 354 

Frequency and size of automatically detected synapses 355 

 356 

Finally, to check whether SynEM-detected synapses matched previous reports on 357 

synapse frequency and size, we applied SynEM to half of the entire cortex dataset 358 

used for this study (i.e. a volume of 192296 µm3). SynEM detected 195644 359 

synapses, i.e. a synapse density of 1.02 synapses per µm3, consistent with previous 360 

reports (Merchan-Perez et al., 2014).  361 

We then measured the size of the axon-spine interface of SynEM detected synapses 362 

in the test set (Fig. 7a, b). We find axon-spine interface size of 0.263 ± 0.206 µm2 363 

(mean ± s.d.; range 0.033 – 1.189 µm2; n= 181), consistent with previous reports (de 364 

Vivo et al., 2017: (SW) 0.297 ± 0.297 µm2 (p = 0.518, two-sample two-tailed t-test on 365 

the natural logarithm of the axon-spine interface size), (EW) 0.284 ± 0.275 µm2 (p = 366 

0.826, two-sample two-tailed t-test on the natural logarithm of the axon-spine 367 

interface size). This indicates that, first, synapse detection in our lower-resolution 368 

SBEM data (in-plane image resolution about 11 nm, section thickness about 26-30 369 

nm) yields similar synapse size distributions as in the higher-resolution data in de 370 

Vivo et al., 2017 (in-plane image resolution 5.9 nm; section thickness about 50 nm) 371 

and, secondly, that SynEM-based synapse detection has no obvious bias towards 372 

larger synapses. 373 

 374 

 375 
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 376 

DISCUSSION 377 

 378 

We report SynEM, a toolset for automated synapse detection in EM-based 379 

connectomics. The particular achievement is that the synapse detection for densely 380 

mapped connectomes from the mammalian cerebral cortex is fully automated 381 

yielding below 3% residual error in the binary connectome. Importantly, SynEM 382 

directly provides the location and size of synapses, the involved neurites and the 383 

synapse direction without human interaction. With this, synapse detection is removed 384 

as a bottleneck in large-scale mammalian connectomics. 385 

 386 

Evidently, synapse detection is facilitated in high-resolution EM data, and becomes 387 

most feasible in FIB-SEM data at a resolution of about 4-8 nm isotropic (Kreshuk et 388 

al., 2011, Fig. 3f). Yet, only by compromising resolution for speed (and thus volume) 389 

of imaging, the mapping of large, potentially even whole-brain connectomes is 390 

becoming plausible (Fig. 3f). Therefore it was essential to obtain automated synapse 391 

detection for EM data that is of lower resolution and scalable to such volumes. The 392 

fact that SynEM also outperforms state-of-the-art methods on high-resolution 393 

anisotropic 3D EM data (Fig. 3f, Roncal et al., 2015) indicates that our approach of 394 

segmentation-based interface classification has merits in a wider range of 3D EM 395 

data modalities. 396 

 397 

In addition to high image resolution, recently proposed special fixation procedures 398 

that enhance the extracellular space in 3D EM data (Pallotto et al., 2015) are 399 

reported to simplify synapse detection for human annotators. In such data, direct 400 

touch between neurites has a very high predictive power for the existence of a 401 

(chemical or electrical) synapse, since otherwise neurite boundaries are separated 402 

by extracellular space. Thus, it is expected that such data also substantially simplifies 403 

automated synapse detection. The advantage of SynEM is that it achieves fully 404 

automated synapse detection in conventionally stained and fixated 3D EM data, in 405 

which neurite contact is most frequent at non-synaptic sites. Such data is widely 406 

used, and acquiring such data does not require special fixation protocols. 407 

 408 

Finally, our approach to selectively classify interfaces of inhibitory axons (Fig. 5f, Fig 409 

5 – figure supplement 1) requires discussion. So far, the classification of synapses 410 
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into inhibitory (symmetric) vs. excitatory (asymetric) was carried out for a given single 411 

synapse, often in single cross sections of single synapses (e.g. Colonnier, 1968). 412 

With the increasing availability of large-scale 3D EM datasets, however, synapse 413 

types can be defined based on multiple synapses of the same axon (e.g. Kasthuri et 414 

al., 2015). In the case of a dataset sized a cubic millimeter of cortical tissue, most 415 

axons of interneurons will be fully contained in the dataset since most inhibitory 416 

neurons are local. Consequently, the classification of single synapses can be 417 

replaced by the assignment of synapses to the respective axon; the type of axon is 418 

then inferred from the neurons’ somatic and dendritic features. Even for axons which 419 

are not completely contained in the dataset, the assignment to inhibitory or excitatory 420 

synaptic phenotypes can be based on dozens or hundreds rather than single 421 

synapses.  422 

 423 

Together, SynEM resolves synapse detection for high-throughput cortical 424 

connectomics of mammalian brains, removing synapse detection as a bottleneck in 425 

connectomics. With this, SynEM renders the further acceleration of neurite 426 

reconstruction again the key challenge for future connectomic analysis. 427 

  428 
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METHODS 429 

 430 

Annotation time estimates 431 

 432 

Neuropil composition (Fig. 1b) was considered as follows: Neuron density of 157,500 433 

per mm3 (White & Peters, 1993), axon path length density of 4 km per mm3 and 434 

dendrite path length density of 1 km per mm3 (Braitenberg & Schüz, 1998), spine 435 

density of about 1 per µm dendritic shaft length, with about 2 µm spine neck length 436 

per spine (thus twice the dendritic path length), synapse density of 1 synapse per 437 

µm3 (Merchan-Perez et al., 2014) and bouton density of 0.1 – 0.25 per µm axonal 438 

path length (Braitenberg & Schüz, 1998). Annotation times were estimated as 200 - 439 

400 h per mm path length for contouring, 3.7 – 7.2 h/mm path length for 440 

skeletonization (Helmstaedter et al., 2011, Helmstaedter et al., 2013, Berning et al., 441 

2015), 0.6 h/mm for flight-mode annotation (Boergens et al., 2017), 0.1 h/µm3 for 442 

synapse annotation by volume search (estimated form the test set annotation) and 443 

an effective interaction time of 60 s per identified bouton for axon-based synapse 444 

search. All annotation times refer to single-annotator work hours, redundancy may be 445 

increased to reduce error rates in neurite and synapse annotation in these estimates 446 

(see Helmstaedter et al., 2011). 447 

 448 

EM image dataset and segmentation 449 

 450 

SynEM was developed and tested on a SBEM dataset from layer 4 of mouse primary 451 

somatosensory cortex (dataset 2012-09-28_ex145_07x2, K.M.B. and M.H., 452 

unpublished data, see also Berning et al., 2015). Tissue was conventionally en-bloc 453 

stained (Briggman et al., 2011) with standard chemical fixation yielding compressed 454 

extracellular space (compare to Pallotto et al., 2015).  455 

The image dataset was volume segmented using the SegEM algorithm (Berning et 456 

al., 2015). Briefly, SegEM was run using CNN 20130516T2040408,3  and 457 

segmentation parameters as follows: rse = 0; θms = 50; θhm = 0.39; (see last column in 458 

Table 2 in (Berning et al., 2015)). For training data generation, a different voxel 459 

threshold for watershed marker size θms = 10 was used. For test set and local 460 

connectome calculation the SegEM parameter set optimized for whole cell 461 

segmentations was used (rse = 0; θms = 50; θhm = 0.25, see Table 2, Berning et al., 462 

2015). 463 

 464 
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Neurite interface extraction and subvolume definition 465 

 466 

Interfaces between a given pair of segments in the SegEM volume segmentation 467 

were extracted by collecting all voxels from the one-voxel boundary of the 468 

segmentation for which that pair of segments was present in the boundary’s 26-469 

neighborhood. Then, all interface voxels for a given pair of segments were linked by 470 

connected components, and if multiple connected components were created, these 471 

were treated as separate interfaces. Interface components with a size of 150 voxels 472 

or less were discarded.  473 

To define the subvolumes around an interface used for feature aggregation (Fig. 2b), 474 

we collected all voxels that were at a maximal distance of 40, 80 and 160 nm from 475 

any interface voxel and that were within either of the two adjacent segments of the 476 

interface. The interface itself was also considered as a subvolume yielding a total of 477 

7 subvolumes for each interface. 478 

 479 

Feature calculation 480 

 481 

Eleven 3-dimensional image filters with one to 15 instances each (Table 1) were 482 

calculated as follows and aggregated over the 7 subvolumes of an interface using 9 483 

summary statistics, yielding 3224 features per directed interface. Image filters were 484 

applied to cuboids of size 548x548x268 voxels, each, which overlapped by 72,72 485 

and 24 voxels in x,y and z dimension, respectively, to ensure that all interface 486 

subvolumes were fully contained in the filter output. 487 

Gaussian filters were defined by evaluating the unnormalized 3d Gaussian density 488 

function 489 

�̂�𝜎(𝑥, 𝑦, 𝑧) =  exp (−
𝑥2

2𝜎𝑥
2 −

𝑦2

2𝜎𝑦
2 −

𝑧2

2𝜎𝑧
2

) 

at integer coordinates (x, y, z) ∈ U = {-fx,-fx-1, … fx} x {-fy,-fy-1, … fy} x {-fz,-fz-1, … fz} 490 

for a given standard deviation σ = (σx, σy, σz) and a filter size f = (fx, fy, fz) and 491 

normalizing the resulting filter by the sum over all its elements 492 

𝑔𝜎(𝑥, 𝑦, 𝑧) =
�̂�𝜎(𝑥, 𝑦, 𝑧)

∑ �̂�𝜎(𝑥′, 𝑦′, 𝑧′)(𝑥′,𝑦′,𝑧′)∈𝑈
.  

First and second order derivatives of Gaussian filters were defined as 493 
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𝜕

𝜕𝑥
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)

−𝑥

𝜎𝑥
2 , 

𝜕2

𝜕𝑥2
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧) (

𝑥2

𝜎𝑥
2 − 1)

1

𝜎𝑥
2, 

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑔𝜎(𝑥, 𝑦, 𝑧) = 𝑔𝜎(𝑥, 𝑦, 𝑧)

𝑥𝑦

𝜎𝑥
2𝜎𝑦

2. 

and analogously for the other partial derivatives. Normalization of gσ and evaluation 494 

of derivatives of Gaussian filters was done on U as described above. Filters were 495 

applied to the raw data I via convolution (denoted by ) and we defined the image’s  496 

Gaussian derivatives as 497 

𝐼𝑥
𝜎(𝑥, 𝑦, 𝑧) = 𝐼 ∗

𝜕𝑔𝜎

𝜕𝑥
(𝑥, 𝑦, 𝑧), 

𝐼𝑥𝑦
𝜎 (𝑥, 𝑦, 𝑧) = 𝐼 ∗

𝜕2𝑔𝜎

𝜕𝑥𝜕𝑦
(𝑥, 𝑦, 𝑧) 

and analogously for the other partial derivatives. 498 

Gaussian smoothing was defined as Igσ.  499 

Difference of Gaussians was defined as (Igσ - Igkσ), where the standard deviation of 500 

the second Gaussian filter is multiplied element-wise by the scalar k.  501 

Gaussian gradient magnitude was defined as 502 

√𝐼𝑥
𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑦

𝜎(𝑥, 𝑦, 𝑧)2 + 𝐼𝑧
𝜎(𝑥, 𝑦, 𝑧)2. 

Laplacian of Gaussian was defined as  503 

𝐼𝑥𝑥
𝜎 (𝑥, 𝑦, 𝑧) +  𝐼𝑦𝑦

𝜎 (𝑥, 𝑦, 𝑧) +  𝐼𝑧𝑧
𝜎 (𝑥, 𝑦, 𝑧)  

Structure tensor S was defined as a matrix of products of first order Gaussian 504 

derivatives, convolved with an additional Gaussian filter (window function) gσw: 505 

𝑆𝑥𝑦 = (𝐼𝑥
𝜎𝐷𝐼𝑦

𝜎𝐷) ∗ 𝑔𝜎𝑤
 

and analogously for the other dimensions, with standard deviation σD of the image’s 506 

Gauss derivatives. Since S is symmetric, only the diagonal and upper diagonal 507 
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entries were determined, the eigenvalues were calculated and sorted by increasing 508 

absolute value. 509 

The Hessian matrix was defined as the matrix of second order Gaussian derivatives:  510 

𝐻𝑥𝑦 =  𝐼𝑥𝑦
𝜎 , 

and analogously for the other dimensions. Eigenvalues were calculated as described 511 

for the Structure tensor. 512 

The local entropy feature was defined as 513 

− ∑ 𝑝

𝐿∈{0,…,255}

(𝐿) log2 𝑝(𝐿), 

where p(L) is the relative frequency of the voxel intensity in the range {0, …, 255} in a 514 

given neighborhood U of the voxel of interest (calculated using the entropyfilt function 515 

in MATLAB). 516 

Local standard deviation for a voxel at location (x, y, z) was defined by  517 

√
1

|𝑈| − 1
∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

−  
1

|𝑈|(|𝑈| − 1)
( ∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

)

2

, 

for the neighborhood U of location (x, y, z) with |U| number of elements and 518 

calculated using MATLABs stdfilt function. 519 

Sphere average was defined as the mean raw data intensity for a spherical 520 

neighborhood Ur with radius r around the voxel of interest, with   521 

𝑈𝑟 = {(𝑥, 𝑦, 𝑧)|𝑥2 +  𝑦2 +  (2𝑧)2  ≤ 𝑟2} ∩ 𝑍3, 

where Z3 is the 3 dimensional integer grid; x,y,z are voxel indices; z anisotropy was 522 

approximately corrected. 523 

The intensity/variance feature for voxel location (x, y, z) was defined as 524 

∑ 𝐼(𝑥′, 𝑦′, 𝑧′)2

(𝑥′,𝑦′,𝑧′)∈𝑈

− ( ∑ 𝐼(𝑥′, 𝑦′, 𝑧′)

(𝑥′,𝑦′,𝑧′)∈𝑈

)

2

 , 

for the neighborhood U of location (x, y, z). 525 
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The set of parameters for which filters were calculated is summarized in Table 1.  526 

11 shape features were calculated for the border subvolume and the two 160 nm-527 

restricted subvolumes, respectively. For this, the center locations (midpoints) of all 528 

voxels of a subvolume were considered. Shape features were defined as follows: 529 

The number of voxel feature was defined as the total number of voxels in the 530 

subvolumes. The voxel based diameter was defined as the diameter of a sphere with 531 

the same volume as the number of voxels of the subvolumes. Principal axes lengths 532 

were defined as the three eigenvalues of the covariance matrix of the respective 533 

voxel locations.  Principal axes product was defined as the scalar product of the first 534 

principal components of the voxel locations in the two 160 nm-restricted subvolumes. 535 

Voxel based convex hull was defined as the number of voxels within the convex hull 536 

of the respective subvolume voxels (calculated using the convhull function in 537 

MATLAB). 538 

 539 

Generation of training and validation labels 540 

 541 

Interfaces were annotated by 3 trained undergraduate students using a custom-542 

written GUI (in MATLAB, Fig. 3 – figure supplement 1). A total of 40 non-overlapping 543 

rectangular volumes within the center 86 x 52 x 86 μm3 of the dataset were selected 544 

(39 sized 5.6 x 5.6 x 5.6 μm3 each and one of size 9.6 x 6.8 x 8.3 μm3). Then, all 545 

interfaces within these volumes were extracted as described above. Interfaces with a 546 

center of mass less than 1.124 µm from the volume border were not considered. For 547 

each interface, a raw data volume of size (1.6 x 1.6 x 0.7–1.7) μm3, centered on the 548 

center of mass of the interface voxel locations was presented to the annotator. When 549 

the center of mass was not part of the interface, the closest interface voxel was used. 550 

The raw data was rotated such that the second and third principal components of the 551 

interface voxel locations (restricted to a local surround of 15x15x7 voxels around the 552 

center of mass of the interface) defined the horizontal and vertical axes of the 553 

displayed images. First, the image plane located at the center of mass of the 554 

interface was shown. The two segmentation objects were transparently overlaid (Fig. 555 

3 – figure supplement 1) in separate colors (the annotator could switch the labels off 556 

for better visibility of raw data). The annotator had the option to play a video of the 557 

image stack or to manually browse through the images. The default video playback 558 

started at the first image. An additional video playback mode started at the center of 559 

mass of the interface, briefly transparently highlighted the segmentation objects of 560 
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the interface, and then played the image stack in reverse order to the first plane and 561 

from there to the last plane. In most cases, this already yielded a decision. In 562 

addition, annotators had the option to switch between the 3 orthogonal reslices of the 563 

raw data at the interface location (Fig. 3 – figure supplement 1). The annotators were 564 

asked to label the presented interfaces as non-synaptic or synaptic. For the synaptic 565 

label, they were asked to indicate the direction of the synapse (see Fig. 3 – figure 566 

supplement 1). In addition to the annotation label interfaces could be marked as 567 

“undecided”. Interfaces were annotated by one annotator each. The interfaces 568 

marked as undecided were validated by an expert neuroscientist. In addition, all 569 

synapse annotations were validated by an expert neuroscientist, and a subset of 570 

non-synaptic interfaces was cross-checked. Together, 75,383 interfaces (1858 571 

synaptic, 73,525 non-synaptic) were labeled this way. Of these, the interfaces from 8 572 

label volumes (391 synaptic and 11906 non-synaptic interfaces) were used as 573 

validation set; the interfaces from the other 32 label volumes were used for training. 574 

 575 

SynEM classifier training and validation 576 

 577 

The target labels for the undirected, augmented and directed label sets were defined 578 

as described in the Results (Fig. 3c). We used boosted decision stumps (level-one 579 

decision trees) trained by the AdaBoostM1 (Freund & Schapire, 1997) or LogitBoost 580 

(Friedman et al., 2000) implementation from the MATLAB Statistical Toolbox 581 

(fitensemble). In both cases the learning rate was set to 0.1 and the total number of 582 

weak learners to 1500. Misclassification cost for the synaptic class was set to 100. 583 

Precision and recall values of classification results were reported with respect to the 584 

synaptic class. For validation, the undirected label set was used, irrespective of the 585 

label set used in training. If the classifier was trained using the directed label set then 586 

the thresholded prediction for both orientations were combined by logical OR. 587 

 588 

Test set generation and evaluation 589 

 590 

To obtain an independent test set disjunct from the data used for training and 591 

validation, we randomly selected a volume of size 512 x 512 x 256 voxels (5.75 x 592 

5.75 x 7.17 μm3) from the dataset that contained no soma or dominatingly large 593 

dendrite. One volume was not used because of unusually severe local image 594 
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alignment issues which are meanwhile solved for the entire dataset. The test volume 595 

had the bounding box [3713, 2817, 129, 4224, 3328, 384] in the dataset. First, the 596 

volume was searched for synapses (see Fig. 1d) in webKnossos (Boergens et al., 597 

2017) by an expert neuroscientist. Then, all axons in the volume were skeleton-598 

traced using webKnossos. Along the axons, synapses were searched (strategy in 599 

Fig. 1e) by inspecting vesicle clouds for further potential synapses. Afterwards the 600 

expert searched for vesicle clouds not associated with any previously traced axon 601 

and applied the same procedure as above. In total, that expert found 335 potential 602 

synapses. A second expert neuroscientist used the tracings and synapse 603 

annotations from the first expert to search for further synapse locations. The second 604 

expert added 8 potential synapse locations. All 343 resulting potential synapses were 605 

collected and independently assessed by both experts as synaptic or not. The 606 

experts labeled 282 potential locations as synaptic, each. Of these, 261 were in 607 

agreement. The 42 disagreement locations (21 from each annotator) were re-608 

examined jointly by both experts and validated by a third expert on a subset of all 609 

synapses. 18 of the 42 locations were confirmed as synaptic, of which one was just 610 

outside the bounding box. Thus, in total, 278 synapses were identified. The precision 611 

and recall of the two experts in their independent assessment with respect to this 612 

final set of synapses was 93.6%, 94.6% (expert 1) and 97.9%, 98.9% (expert 2), 613 

respectively. 614 

Afterwards all shaft synapses were labeled by the first expert and proofread by the 615 

second. Subsequently, the synaptic interfaces were voxel-labeled to be compatible 616 

with the method by Becker et al. This initial test set comprised 278 synapses, of 617 

which 36 were labeled as shaft/inhibitory.  618 

Next, all interfaces between pairs of segmentation objects in the test volume were 619 

extracted as described above. Then, the synapse labels were assigned to those 620 

interfaces whose border voxels had any overlap with one of the 278 voxel-labeled 621 

synaptic interfaces. Afterwards, these interface labels were again proof-read by an 622 

expert neuroscientist. Finally, interfaces closer than 160 nm from the boundary of the 623 

test volume were excluded to ensure that interfaces were fully contained in the test 624 

volume. The final test set comprised 235 synapses out of which 31 were labeled as 625 

shaft/inhibitory. With this we obtained a high-quality test set providing both voxel-626 

labeled synapses and synapse labels for interfaces, to allow the comparison of 627 

different detection methods. 628 
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For the calculation of precision and recall, a synapse was considered detected if at 629 

least one interface that had overlap with the synapse was detected by the classifier 630 

(TPs); a synapse was considered missed if no overlapping interface of a given 631 

synapse was detected (FNs); and a detection was considered false positive (FP) if 632 

the corresponding interface did not overlap with any labeled synapse.  633 

 634 

Inhibitory synapse detection 635 

 636 

The labels for inhibitory-focused synapse detection were generated using skeleton 637 

tracings of inhibitory axons. Two expert neuroscientists used these skeleton tracings 638 

to independently detect all synapse locations along the axons. Agreeing locations 639 

were considered synapses and disagreeing locations were resolved jointly by both 640 

annotators. The resulting test set contains 171 synapses. Afterwards, all SegEM 641 

segments of the consensus postsynaptic neurite were collected locally at the 642 

synapse location. For synapse classification all interfaces in the dataset were 643 

considered that contained one SegEM segment located in one of these inhibitory 644 

axons. Out of these interfaces all interfaces were labeled synaptic that were between 645 

the axon and a segment identified as postsynaptic. The calculation of precision and 646 

recall curves was done as for the dense test set (see above) by considering a 647 

synapse detected if at least one interface overlapping with it was detected by the 648 

classifier (TPs); a synapse was considered missed if no interface of a synapse was 649 

detected (FNs); and a detection was considered false positive (FP) if the 650 

corresponding interface did not overlap with any labeled synapse. 651 

 652 

Comparison to previous work 653 

 654 

The approach of Becker et al., 2012 was evaluated using the implementation 655 

provided in Ilastik (Sommer et al., 2011). This approach requires voxel labels of 656 

synapses. We therefore first created training labels: an expert neuroscientist created 657 

sparse voxel labels at interfaces between pre- and postsynaptic processes and twice 658 

as many labels for non-synaptic voxels for five cubes of size 3.4 x 3.4 x 3.4 μm3 that 659 

were centered in five of the volumes used for training SynEM. Synaptic labels were 660 

made for 115 synapses (note that the training set in Becker et al., 2012 only 661 

contained 7-20 synapses). Non-synaptic labels were made for two training cubes 662 
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first. The non-synaptic labels of the remaining cubes were made in an iterative 663 

fashion by first training the classifier on the already created synaptic and non-664 

synaptic voxel labels and then adding annotations specifically for misclassified 665 

locations using Ilastik. Eventually, non-synaptic labels in the first two training cubes 666 

were extended using the same procedure.  667 

For voxel classification all features proposed in (Becker et al., 2012) and 200 weak 668 

learners were used. The classification was done on a tiling of the test set into cubes 669 

of size 256x256x256 voxels (2.9 x 2.9 x 7.2 μm3) with a border of 280 nm around 670 

each tile. After classification, the borders were discarded, and tiles were stitched 671 

together. The classifier output was thresholded and morphologically closed with a 672 

cubic structuring element of three voxels edge length. Then, connected components 673 

of the thresholded classifier output with a size of at least 50 voxels were identified. 674 

Synapse detection precision and recall rates were determined as follows: A ground 675 

truth synapse (from the final test set) was considered detected (TP) if it had at least a 676 

single voxel overlap with a predicted component. A ground truth synapse was 677 

counted as a false negative detection if it did not overlap with any predicted 678 

component (FN). To determine false positive classifications, we evaluated the center 679 

of the test volume (shrunk by 160 nm from each side to 484 x 484 x 246 voxels) and 680 

counted each predicted component that did not overlap with any of the ground truth 681 

synapses as false positive detection (FP). For this last step, we used all ground truth 682 

synapses from the initial test set, in favor of the Becker et al. classifier. 683 

For comparison with (Kreshuk et al., 2014) the same voxel training data as for 684 

(Becker et al., 2012) was used. The features provided by Ilastik up to a standard 685 

deviation of 5 voxels for the voxel classification step were used. For segmentation of 686 

the voxel probability output map the graph cut segmentation algorithm of Ilastik was 687 

used with label smoothing ([1, 1, 0.5] voxel standard deviation), a voxel probability 688 

threshold of 0.5 and graph cut constant of λ = 0.25. Objects were annotated in five 689 

additional cubes of size 3.4 x 3.4 x 3.4 μm3  that were centered in five of the interface 690 

training set cubes different from the one used for voxel prediction resulting in 299 691 

labels (101 synaptic, 198 non-synaptic). All object features provided by Ilastik were 692 

used for object classification. The evaluation on the test set was done as for (Becker 693 

et al., 2012).  694 

For comparison with (Dorkenwald et al., 2017) six of the 32 training cubes used for 695 

interface classification with a total volume of 225 μm3 were annotated with voxel 696 

labels for synaptic junctions, vesicle clouds and mitochondria. The annotation of 697 
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vesicle clouds and mitochondria was done using voxel predictions of a convolutional 698 

neural network (CNN) trained on mitochondria, vesicle clouds and membranes. The 699 

membrane predictions were discarded and the vesicle clouds and mitochondria 700 

labels were first proofread by undergraduate students and then twice by an expert 701 

neuroscientist. The voxels labels for synaptic junctions were added by an expert 702 

neuroscientist based on the identified synapses in the interface training data. Overall 703 

310 synapses were annotated in the training volume. A recursive multi-class CNN 704 

was trained on this data with the same architecture and hyperparameter settings as 705 

described in (Dorkenwald et al., 2017) using the ElektroNN framework. For the 706 

evaluation of synapse detection performance only the synaptic junction output was 707 

used. The evaluation on the test set was done as for (Becker et al., 2012) with a 708 

connected component threshold of 250 voxels. 709 

 710 

Evaluation on the dataset from Kasthuri et al., 2015 711 

 712 

The image data, neurite and synapse segmentation from (Kasthuri et al., 2015) 713 

hosted on openconnecto.me (kasthuri11cc, kat11segments, kat11synapses) was 714 

used (downloaded using the provided scripts at https://github.com/neurodata-715 

arxiv/CAJAL ). The segmentation in the bounding box [2432, 7552; 6656, 10112; 716 

769, 1537] (resolution 1) was adapted to have a one-voxel boundary between 717 

segments by first morphologically eroding the original segmentation with a 3-voxel 718 

cubic structuring element and running the MATLAB watershed function on the 719 

distance-transform of the eroded segmentation on a tiling with cubes of size [1024, 720 

1024, 512] voxels. Since the Kasthuri et al., 2015 segmentation in the selected 721 

bounding box was not dense, voxels with a segment id of zero in the original 722 

segmentation whose neighbors at a maximal distance of 2 voxels (maximum-723 

distance) also all had segment ids zero were set to segment id zero in the adapted 724 

segmentation. All segments in the adapted segmentation that were overlapping with 725 

a segment in the original segmentation were set to the id of the segment in the 726 

original segmentation. The bounding box [2817, 6912; 7041, 10112; 897, 1408] of 727 

the resulting segmentation was tiled into non-overlapping cubes of [512, 512, 256] 728 

voxels. For all synapses in the synapse segmentation the pre- and postsynaptic 729 

segment of the synapse were marked using webKnossos (Boergens et al., 2017) and 730 

all interfaces between the corresponding segments at a maximal distance of 750 nm 731 

to the synapse centroid that were also overlapping with an object in the synapse 732 
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segmentation were associated to the corresponding synapse and assigned a unique 733 

group id. Only synapses labeled as “sure” in Kasthuri et al., 2015 were evaluated. All 734 

interfaces with a center of mass in the region ac3 with the bounding box [5472, 6496; 735 

8712, 9736; 1000, 1256] were used for testing. All interfaces with a center of mass at 736 

a distance of at least 1 μm to ac3 were used for training if there was no interface 737 

between the same segment ids in the test set. Interfaces between the same segment 738 

ids as an interface in the test set were only considered for training if the distance to 739 

ac3 was above 2 μm. For feature calculation the standard deviation of Gaussian 740 

filters was adapted to the voxel size 6 x 6 x 30 nm of the data (i.e. s in Table 2 was 741 

set to 12/2 in x- and y-dimension and 12/30 in z-dimension). The directed label set 742 

approach was used for classification. The calculation of precision recall rates was 743 

done as described above (“test set generation and evaluation”). 744 

 745 

Pairwise connectivity model 746 

 747 

The neuron-to-neuron connection recall was calculated assuming an empirical 748 

distribution p(n) of the number of synapses n between connected excitatory neurons 749 

given by published studies (see Supp. Table 2, Feldmeyer et al., 1999, Feldmeyer et 750 

al., 2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram et al., 1997). For 751 

inhibitory connections we used a fixed value of 6 synapses (see Supp. Table 3, 752 

Koelbl et al., 2015, Hoffmann et al., 2015, Gupta et al., 2000, Markram et al., 2004). 753 

We further assumed that the number of retrieved synapses is given by a binomial 754 

model with retrieval probability given by the synapse classifier recall Rs on the test 755 

set: 756 

𝑃(𝑘 ≥ 
𝑛𝑛

|𝑅𝑠) =  ∑ 𝐵𝑖𝑛(𝑘 ≥ 
𝑛𝑛

|𝑛, 𝑅𝑠)𝑝(𝑛)

𝑛

, 

Where nn is the threshold on the number of synapses between a neuron pair to 757 

consider it as connected (see Fig. 5a). This equates to the neuron-to-neuron recall: 758 

Rnn = P(k ≥ nn | Rs). 759 

To compute the neuron-to-neuron precision, we first calculated the expected number 760 

of false positive synapse detections (FPs) made by a classifier with precision Ps and 761 

recall Rs:  762 
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𝐹𝑃𝑠 =  
(1 − 𝑃𝑠)

𝑃𝑠
𝑅𝑠𝑁𝑠𝑦𝑛 

where Nsyn is the total number of synapses in a dataset calculated from the average 763 

number of synapses per connected neuron pair <nsyn> times the number of 764 

connected neuron pairs Ncon and cr is the connectivity ratio given by Ncon/N
2 with N 765 

the number of neurons in the connectome. 766 

We then assumed that these false positive synapse detections occur randomly and 767 

therefore are assigned to one out of N2 possible neuron-to-neuron connections with a 768 

frequency FPs/N
2.  769 

We then used a Poisson distribution to estimate the number of cases in which at 770 

least nn FPs synapses would occur in a previously zero entry of the connectome, 771 

yielding a false positive neuron-to-neuron connection (FPnn). 772 

𝐹𝑃𝑛𝑛 = 𝑁2(1 − 𝑐𝑟)𝑃𝑜𝑖(𝑥 ≥ 
𝑛𝑛

|𝐹𝑃𝑠/𝑁2). 

Finally, the true positive detections of neuron-to-neuron connections in the 773 

connectome TPnn are given in terms of the neuron-to-neuron connection recall Rnn by 774 

𝑇𝑃𝑛𝑛 = 𝑁2 𝑐𝑟𝑅𝑛𝑛. 

Together, the neuron-to-neuron connection precision Pnn is given by 775 

𝑃𝑛𝑛 =  
𝑇𝑃𝑛𝑛

𝑇𝑃𝑛𝑛 + 𝐹𝑃𝑛𝑛
=

𝑐𝑟𝑅𝑛𝑛

𝑐𝑟𝑅𝑛𝑛 + (1 − 𝑐𝑟)𝑃𝑜𝑖(𝑥 ≥ 
𝑛𝑛

|𝐹𝑃𝑠/𝑁2) 
. 

The connectivity ratio was set to cr = 0.2 (Feldmeyer et al., 1999) for excitatory and to 776 

0.6 for inhibitory connections (Gibson et al., 1999, Koelbl et al., 2015). 777 

 778 

Local connectome 779 

 780 

For determining the local connectome (Fig. 6) between 104 pre- and 100 781 

postsynaptic processes, we used 104 axonal skeleton tracings (traced at 1 to 5-fold 782 

redundancy) and 100 dendrite skeleton tracings. 10 axons were identified as 783 

inhibitory and are partially contained in the inhibitory test set. All volume objects 784 

which overlapped with any of the skeleton nodes were detected and concatenated to 785 

a given neurite volume. Then, all interfaces between pre- and postsynaptic 786 

processes were classified by SynEM. The area of each interface was calculated as in 787 
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(Berning et al., 2015) and the total area of all contacts between all neurite pairs was 788 

calculated (Fig. 6b). To obtain the weighted connectome Cw (Fig. 6c), we applied the 789 

SynEM scores threshold θnn (Table 3) for the respective presynaptic type (excitatory, 790 

inhibitory). Detected synaptic interfaces were clustered using hierarchical clustering 791 

(single linkage, distance cutoff 1,500 nm) if the interfaces were between the same 792 

pre- and postsynaptic objects. To obtain the binary connectome Cbin (Fig. 6d) we 793 

thresholded the weighted connectome at the connectome threshold nn = 1 for 794 

excitatory and nn = 2 for inhibitory connections (Table 3). The overall number of 795 

synapses in the dataset was calculated by considering all interfaces above the score 796 

threshold for the best single synapse performance (θs) as synaptic. To obtain the 797 

final synapse count the retrieved synaptic interfaces were clustered using 798 

hierarchical clustering with single linkage and a distance cutoff between the centroids 799 

of the interfaces of 320.12 nm (this distance cutoff was obtained by optimizing the 800 

synapse density prediction on the test set). 801 

 802 

Axon-spine interface area comparison 803 

 804 

For the evaluation of axon-spine interface area (ASI) all spine synapses in the test 805 

set were considered for which SynEM had detected at least one overlapping neurite 806 

interface (using θs for spine synapses, Fig. 3e). The ASI of a detected synapse was 807 

calculated by summing the area of all interfaces between segmentation objects that 808 

overlapped with the synapse. For comparison to ASI distributions obtained at higher 809 

imaging resolution in a recent study (spontaneous wake (SW) and enforced wake 810 

(EW) conditions reported in Table S1 in de Vivo et al., 2017), it was assumed that the 811 

ASI distributions are lognormal (see de Vivo et al., 2017, Fig. 2B). Two-sample two-812 

tailed t-tests were performed for comparing the natural logarithmic values of the 813 

SynEM-detected ASI from the test set (log ASI -1.60 ± 0.74, n=181; mean ± s.d.) with 814 

the lognormal distributions for SW and EW from de Vivo et al., 2017,  (log ASI -1.56 815 

± 0.83, n=839, SW; -1.59 ± 0.81, n=836, EW; mean ± s.d.), p = 0.5175 (SW) and p = 816 

0.8258 (EW). 817 

 818 
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 819 

 820 

Code and data availability 821 

 822 

All code used to train and run SynEM is available under the MIT license in the 823 

Supplementary Code and will be made available at 824 

https://gitlab.mpcdf.mpg.de/connectomics/SynEM upon publication. To run SynEM, 825 

please follow instructions in the readme.md file in Suppl. Code. Data used to train 826 

and evaluate SynEM will be made available at https://synem.rzg.mpg.de/webdav/. 827 

 828 

  829 
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FIGURE LEGENDS 842 

 843 

Figure 1  844 

The challenge of synapse detection in connectomics. (a) Sketch of mouse primary 845 

somatosensory cortex (S1) with circuit modules (“barrels”) in cortical layer 4 and 846 

minimum required dataset extent for a “barrel” dataset (250 µm edge length) and a 847 

dataset extending over the whole cortical depth from pia to white matter (WM) (1 mm 848 

edge length). (b) Number of synapses and neurons, total axonal, dendritic and spine 849 

path length for the example datasets in (a) (White & Peters, 1993, Braitenberg & 850 

Schüz, 1998, Merchan-Perez et al., 2014). (c) Reconstruction time estimates for 851 

neurites and synapses; For synapse search strategies see sketches in d,e. Dashed 852 

arrows: latest skeletonization tools (webKnossos, Boergens et al., 2017) allow for a 853 

further speed up of neurite skeletonization by about 5-to-10-fold, leaving synapse 854 

detection as the main annotation bottleneck. (d) Volume search for synapses by 855 

visually investigating 3d image stacks and keeping track of already inspected 856 

locations takes about 0.1 h/µm3. (e) Axon-based synapse detection by following 857 

axonal processes and detecting synapses at boutons consumes about 1 min per 858 

bouton. (f) Examples of synapses imaged at an in-plane voxel size of 6 nm and (g) 859 

12 nm in conventionally en-bloc stained and fixated tissue (Briggman et al., 2011, 860 

Hua et al., 2015) imaged using SBEM (Denk & Horstmann, 2004). Arrows: synapse 861 

locations. Note that synapse detection in high-resolution data is much facilitated in 862 

the plane of imaging. Large-volume image acquisition is operated at lower resolution, 863 

requiring better synapse detection algorithms. (h) Synapse shown in 3D EM raw 864 

data, resliced in the 3 orthogonal planes. Scale bars in f and h, 500 nm. Scale bar in f 865 

applies to g. 866 

  867 



31 of 50 
 

Figure 2   868 

Synapse detection by classification of neurite interfaces. (a) Definition of interfaces 869 

used for synapse classification in SynEM. Raw EM data (left) is first volume 870 

segmented (using SegEM, Berning et al., 2015). Neighboring volume segments are 871 

identified (right). (b) Definition of perisynaptic subvolumes used for synapse 872 

classification in SynEM consisting of a border (red) and subvolumes adjacent to the 873 

neurite interface extending to distances of 40, 80 and 160 nm. (c) Example outputs 874 

of two texture filters: the difference of Gaussians (DoG) and the intensity/variance 875 

filter (int./var.). Note the clear signature of postsynaptic spine heads (right). (d) 876 

Distributions of int/var. texture filter output for image voxels at a synaptic (top) and 877 

non-synaptic interface (bottom). Medians over subvolumes are indicated (arrows, 878 

color scale as in b). (e) SynEM flow chart. Scale bars, 500 nm. Scale bar in a applies 879 

to a,b. 880 

  881 
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Figure 3 882 

SynEM training and evaluation. (a) Histogram of SynEM scores calculated on the 883 

validation set. Fully automated synapse detection is obtained by thresholding the 884 

SynEM score at threshold θ. (b) SynEM scores for the two possible directions of 885 

interfaces. Note that SynEM scores are disjunct in a threshold regime used for best 886 

single synapse performance (θs) and best neuron-to-neuron recall and precision 887 

(θnn), see Fig. 5, indicating a clear bias towards one of the two possible synaptic 888 

directions. (c) Strategy for label generation. Based on annotator labels (Ann. Label), 889 

three types of label sets were generated: Initial label set ignored interface orientation 890 

(Undir.); Augmented label set included mirror-reflected interfaces (Augment.); 891 

Directed label set used augmented data but considered only one synaptic direction 892 

as synaptic (Directed, see also Fig. 3 – figure supplement 1). (d) Development of the 893 

SynEM classifier. Classification performance for different features, aggregation 894 

statistics, classifier parameters and label sets. Init: initial classifier used (see Table 895 

1). The initial classifier was extended by using additional features (Add feat, see 896 

Table 1, first row), 40 and 80 nm subvolumes for feature aggregation (Add subvol, 897 

see Fig. 2b) and aggregate statistics (Add stats, see Table 1). Direct: Classifier 898 

trained on directed label set (see Fig. 3c). Logit: Classifier trained on full feature 899 

space using LogitBoost. Augment & Logit: Logit classifier trained on augmented label 900 

set (see Fig. 3c). Direct & Logit: Logit classifier trained on directed label set (see Fig. 901 

3c). (e) Test set performance on 3D SBEM data of SynEM (purple) evaluated for 902 

spine and shaft synapses (all synapses, solid line) and for spine synapses (exc. 903 

synapses, dashed line), only. Threshold values for optimal single synapse detection 904 

performance (black circle) and an optimal connectome reconstruction performance 905 

(black square, see Fig. 5). (see also Fig. 3 – figure supplement 2) (f) Relation 906 

between 3D EM imaging resolution, imaging speed and 3D EM experiment duration 907 

(top), exemplified for a dataset sized 1 mm3. Note that the feasibility of experiments 908 

strongly depends on the chosen voxel size. Bottom: published synapse detection 909 

performance (reported as F1 score) in dependence of the respective imaging 910 

resolution (see also Suppl. File 1). dark blue, Mishchenko et al., 2010; cyan, Kreshuk 911 

et al., 2011; light gray, Becker et al., 2012; dark gray, Kreshuk et al., 2014; red, 912 

Roncal et al., 2015; green, Dorkenwald et al., 2017; Black brackets indicate direct 913 

comparison of SynEM to top-performing methods: SynEM vs Roncal et al., 2015 on 914 

ATUM-SEM dataset (Kasthuri et al., 2015); SynEM vs Dorkenwald et al., 2017 and 915 

Becker et al., 2012 on our test set. See Fig. 3 – figure supplement 3 for comparison 916 

of Precision-Recall curves. Note that SynEM outperforms the previously top-917 
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performing methods. Note also that most methods provide synapse detection, but 918 

require the detection of synaptic partners and synapse direction in a separate 919 

classification step. Gray solid line: drop of partner detection performance compared 920 

to synapse detection in Dorkenwald et al., 2017; dashed gray lines, analogous 921 

possible range of performance drop as reported for bird dataset in Dorkenwald et al., 922 

2017. SynEM combines synapse detection and partner detection into one 923 

classification step.  924 

  925 
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Figure 4 926 

SynEM classification and feature importance. (a) SynEM classification examples at 927 

θs (circle in e). True positive (TP), true negative (TN), False negative (FN) and false 928 

positive (FP) interface classifications (blue arrow, classified interface) shown as 3 929 

image planes spaced by 56 nm (i.e. every second SBEM data slice, top to bottom). 930 

Note that synapse detection in 3D SBEM data requires inspection of typically 10-20 931 

consecutive image slices (see Synapse Gallery in Supplementary File 4 for 932 

examples). 1: presynaptic; 2: postsynaptic; x: non-synaptic. Note for the FP example 933 

that the axonal bouton (1) innervates a neighboring spine head, but the interface to 934 

the neurite under classification (x) is non-synaptic (blue arrow). (b) Ranked 935 

classification importance of SynEM features. All features (top left), relevance of 936 

feature quality (bottom left), subvolumes (top right) and pooling statistics (bottom 937 

right). Note that only 378 features contribute to classification. See Table 3 for the 10 938 

feature instances of highest importance, Table 1 for feature name abbreviations, and 939 

text for details. Scale bars, 500 nm. 940 
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 942 

Figure 5 943 

Effect of SynEM classification performance on error rates in automatically mapped 944 

binary connectomes. (a) Sketch of a weighted connectome (left) reporting the 945 

number of synapses per neuron-to-neuron connection, transformed into a binary 946 

connectome (middle) by considering neuron pairs with at least nn synapses as 947 

connected. (b) Distribution of reported synapse number for connected excitatory 948 

neuron pairs obtained from paired recordings in rodent cerebral cortex (Feldmeyer et 949 

al., 1999, Feldmeyer et al., 2002, Feldmeyer et al., 2006, Frick et al., 2008, Markram 950 

et al., 1997). Average distribution (cyan) is used for the precision estimates in the 951 

following (see Suppl. File 2). (c) Relationship between SynEM recall for single 952 

interfaces (synapses) Rs and the ensuing neuron-to-neuron connectome recall Rnn 953 

(recall in Cbin, a) for each of the excitatory cortico-cortical connections (summarized 954 

in b) and for connectome binarization thresholds of nn = 1 and nn = 2 (full and 955 

dashed, respectively). (d) Relationship between SynEM precision for single 956 

interfaces (synapses) Ps and the ensuing neuron-to-neuron connectome precision 957 

Pnn. Colors as in c. (for inhibitory synapses see also Fig. 5 – figure supplement 1) (e) 958 

Predicted remaining error in the binary connectome (reported as 1-F1 score for 959 

neuron-to-neuron connections) for fully automated synapse classification using 960 

SynEM on 3D EM data from mouse cortex using two different imaging modalities: 961 

ATUM-SEM (left, Kasthuri et al., 2015) and our data using SBEM (right). e,i: 962 

excitatory or inhibitory connectivity model (see b and methods) shown for cre=20% 963 

and cri=60%. Black lines indicate range for varying assumptions of pairwise 964 

connectivity rate cre = (5%, 10%, 30%) (excitatory) and cri = (20%, 40%, 80%) 965 

(inhibitory). Note that SynEM yields a remaining error of close to or less than 2%, 966 

well below expected biological wiring noise, allowing for fully automated synapse 967 

detection in large-scale binary connectomes. See Suppl. Fig. 5 – figure supplement 2 968 

for comparison to previous synapse detection methods. 969 
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Figure 6 971 

Example sparse local cortical connectome obtained using SynEM. (a) 104 axonal (94 972 

excitatory, 10 inhibitory) and 100 dendritic processes within a volume sized 86 x 52 x 973 

86 µm3 from layer 4 of mouse cortex skeletonized using webKnossos (Boergens et 974 

al., 2017), volume segmented using SegEM (Berning et al., 2015). (b) Contactome 975 

reporting total contact area between pre- and postsynaptic processes. (c) Weighted 976 

connectome obtained at the SynEM threshold θnn optimized for the respective 977 

presynaptic type (excitatory, inhibitory) (see Fig 2e, black square, Table 3). (see also 978 

Fig. 6 – figure supplement 1) (d) Binary connectome obtained from the weighted 979 

connectome by thresholding at nn = 1 for excitatory connections and nn = 2 for 980 

inhibitory connections. The resulting predicted neuron-to-neuron recall and precision 981 

were 98%, 98% for excitatory and 98%, 97% for inhibitory connections, respectively 982 

(see Fig. 5e). Green: number of pre- (right) and postsynaptic (bottom) partners for 983 

each neurite. 984 
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Figure 7 987 

Comparison of synapse size in SBEM data. (a) Distribution of axon-spine interface 988 

area ASI for the SynEM-detected synapses onto spines in the test set from mouse 989 

S1 cortex imaged at 11.24 x 11.24 x 28 nm3 voxel size (see Fig. 3e), purple; and 990 

distributions from de Vivo et al., 2017 in S1 cortex from mice under two wakefulness 991 

conditions (SW: spontaneous wake, EW: enforced wake), imaged at higher 992 

resolution of  5.9 nm (xy plane) with a section thickness of 54.7 ± 4.8 nm (SW), 51.4 993 

± 10.3 nm (EW) (de Vivo et al., 2017). (b) Same distributions as in (a) shown on 994 

natural logarithmic scale (log ASI SynEM -1.60 ± 0.74, n=181; log ASI SW -1.56 ± 995 

0.83, n=839; log ASI EW -1.59 ± 0.81, n=836; mean ± s.d.). Note that the 996 

distributions are indistinguishable (p=0.52 (SynEM vs. SW), p=0.83 (SynEM vs. EW), 997 

two-sample two-tailed t-test), indicating that the size distribution of synapses 998 

detected in our lower-resolution data is representative, and that SynEM does not 999 

have a substantial detection bias towards larger synapses. 1000 
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Features Kreshuk 

et al., 

2011 

Becker 

et al., 

2012 

Init. 

Class. 

Syn

EM 

Parameters N of 

instances

* 

 

Texture:       

Raw data     - 1 

3 EVs of Structure 

Tensor 

    (σw, σd) = {(s,s), (s,2s), (2s,s), 

(2s,2s), (3s,3s)} 

15 

3 EVs of Hessian     σ = {s, 2s, 3s, 4s} 12 

Gaussian Smoothing     σ = {s, 2s, 3s} 3 

Difference of Gaussians     (σ,k) = {(s, 1.5), (s, 2), (2s, 1.5), 

(2s, 2), (3s, 1.5)} 

5 

Laplacian of Gaussian     σ = {s, 2s, 3s, 4s} 4 

Gauss Gradient Magn.     σ = {s, 2s, 3s, 4s, 5s} 5 

Local standard deviation     U = 15x5x5 1 

Int./var.     U = {13x3x3, 15x5x5} 2 

Local entropy     U = 15x5x5 1 

Sphere average     r = {3, 6} 2 

       

Shape:       

Number of voxels     Bo, 160 3 

Diameter (vx based)     Bo 1 

Lengths of principal axes     Bo 3 

Principal axis product     160 1 

Convex hull (vx based)     Bo, 160 3 

 1166 

Table 1 1167 

Overview of the classifier features used in SynEM, and comparison with 1168 

existing methods. 11 3-dimensional texture filters employed at various filter 1169 

parameters given in units of standard deviation (s) of Gaussian filters (s was 1170 

12/11.24 voxels in x and y-dimension and 12/28 voxels in z-dimension, sizes of filters 1171 
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were set to σ/s*ceil(2*s)). When structuring elements were used, 1axbxc refers to a 1172 

matrix of size a x b x c filled with ones and r specifies the semi-principal axes of an 1173 

ellipsoid of length (r, r, r/2) voxels in x, y and z-dimension. All texture features are 1174 

pooled by 9 summary statistics (quantiles (0.25, 0.5, 0.75, 0, 1), mean, variance, 1175 

skewness, kurtosis, respectively) over the 7 subvolumes around the neurite interface 1176 

(see Fig. 2b). Shape features were calculated for three of the subvolumes: border 1177 

(Bo) and the 160 nm distant pre- and postsynaptic volumes (160). Init. Class: initial 1178 

SynEM classifier (see Fig. 3d for performance evaluation). N of instances: number of 1179 

feature instances per subvolume (n=7) and aggregate statistic (n=9). *: Total number 1180 

of employed features is 63 times reported instances for texture features.  For shape 1181 

features, the reported number is the total number of instances used, together yielding 1182 

3224 features total. 1183 
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Rank Feature Parameters Subvolume Aggregate 

statistic 

1 EVs of Struct. Tensor 

(largest) 

σw = 2s, 

σD = s 

160 nm, S1 Median 

2 EVs of Struct. Tensor 

(smallest) 

σw = 2s, 

σD = s 

160 nm, S1 Median 

3 Local entropy U = 15x5x5 160 nm, S2 Variance 

4 Difference of Gaussians σ = 3s, 

k = 1.5 

Border 25th perc 

5 Difference of Gaussians σ = 2s, 

k = 1.5 

Border Median 

6 EVs of Struct. Tensor 

(middle) 

σw = 2s, 

σD = s 

40 nm, S2 Min 

7 Int./var. U = 13x3x3 Border 75th perc 

8 EVs of Struct. Tensor 

(largest) 

σw = 2s, 

σD = s 

80 nm, S1 25th perc 

9 Gauss gradient magnitude σ = s 40 nm, S2 25th perc 

10 Principal axes length (2nd) - Border - 

 1185 

Table 2 1186 

SynEM features ranked by ensemble predictor importance. See Fig. 4b and 1187 

Methods for details. Note that two of the newly introduced features and one of the 1188 

shape features had high classification relevance (Local entropy, Int./var., Principal 1189 

axes length; cf. Table 1). 1190 
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Threshold 

score 

Single synapse Ps/Rs Neuron-to-neuron 

Pnn/Rnn 

  nn = 1 nn = 2 

θs = -1.67 

(exc) 

88.5% / 88.1% 72.5% / 99.7% 98.1% / 95.6% 

θnn = - 0.08 

(exc) 

99.4% / 65.1% 98.5% / 97.1% 100% / 83.4% 

θs = -2.06 

(inh) 

82.1% / 74.9% 77.1% / 100% 92.7% / 99.5% 

θnn = -1.58 

(inh) 

88.6% / 67.8% 84.7% / 99.9% 97.3% / 98.5% 

 1192 

Table 3 1193 

SynEM score thresholds and associated precision and recall. SynEM score 1194 

thresholds θ chosen for optimized single synapse detection (θs) and optimized 1195 

neuron-to-neuron connection detection (θnn) with respective single synapse precision 1196 

(Ps) and recall (Rs) and estimated neuron-to-neuron precision and recall rates (Pnn, 1197 

Rnn, respectively) for connectome binarization thresholds of nn = 1 and nn = 2 (see 1198 

Fig. 5). 1199 

 1200 
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FIGURE SUPPLEMENTS 1202 

 1203 
Figure 3 – figure supplement 1 1204 
 1205 
Figure 3 – figure supplement 2 1206 
 1207 
Figure 3 – figure supplement 3 1208 
 1209 
Figure 3 – figure supplement 4 1210 
 1211 
Figure 5 – figure supplement 1 1212 
 1213 
Figure 5 – figure supplement 2 1214 
 1215 
Figure 6 – figure supplement 1 1216 
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FIGURE SUPPLEMENTS: Legends 1218 

 1219 

Figure 3 – figure supplement 1 1220 

Graphical user interface (implemented in MATLAB) for efficient annotation of neurite 1221 

interfaces as used for generating the training and validation labels. 3D image data is 1222 

centered to the neurite interface and rotated such that the second and third principal 1223 

components of the neurite interface span the displayed image plane. Segments are 1224 

indicated by transparent overlay (interface, red; subsegment S1, blue and S2, 1225 

green). Note that the test labels were independently annotated by volume search by 1226 

multiple experts in webKnossos (Boergens et al., 2017), see Methods. 1227 

 1228 

Figure 3 – figure supplement 2 1229 

Distribution of training, validation and test data volumes within the dataset 1230 

ex145_07x2. Soma locations are indicated by spheres of radius 5 μm. 1231 

 1232 

Figure 3 – figure supplement 3 1233 

Synapse detection performance comparison of SynEM with SyConn (Dorkenwald et 1234 

al., 2017) and (Becker et al., 2012) on the 3D SBEM SynEM test set (Figure 3e). 1235 

Note that while SynEM performs synapse detection and partner detection in one step 1236 

these are separate steps in SyConn with an overall performance that is potentially 1237 

different from the synapse detection step (in Dorkenwald et al., 2017, a reduction in 1238 

performance by 10% in recall and 3% in precision from synapse detection to partner 1239 

detection is reported, yielding a drop in F1 score of 0.057). Becker et al., 2012, does 1240 

not contain a dedicated partner detection step. 1241 

 1242 

Figure 3 – figure supplement 4 1243 

Synapse detection performance comparison of SynEM with VesicleCNN 1244 

(Dorkenwald et al., 2017; Roncal et al., 2015) on a 3D EM dataset from mouse S1 1245 

cortex obtained using ATUM-SEM (Kasthuri et al., 2015). Note that VesicleCNN was 1246 

developed on that ATUM-SEM dataset. 1247 

 1248 
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Figure 5 – figure supplement 1 1249 

Performance of SynEM on a test set containing all interfaces between 3 inhibitory 1250 

axons and all touching neurites (total of 9430 interfaces, 171 synapses). Single 1251 

synapse detection precision and recall (solid line) and the ensuing predicted neuron-1252 

to-neuron precision and recall for inhibitory connections (dashed line) assuming on 1253 

average 6 synapses for connections from interneurons (see Methods). 1254 

 1255 

Figure 5 – figure supplement 2 1256 

Effect of synapse detection errors on predicted connectome error rates for competing 1257 

methods. Predicted neuron-to-neuron errors (reported as (1 - F1 score) in percent) 1258 

for the ATUM-SEM dataset (Kasthuri et al., 2015) using VesicleCNN (Roncal et al., 1259 

2015, orange) and for our SBEM dataset using Becker et al., 2012 (gray) and 1260 

Syconn (Dorkenwald et al., 2017, green). Note that these approaches provide 1261 

synapse detection, only. When including the detection of the synaptic partners, 1262 

Dorkenwald et al., 2017 reported a drop of detection performance by 3% precision 1263 

and 10% recall (indicated by gray crosses, tentatively also for the other approaches). 1264 

SynEM provides synapse detection and partner detection together (compare to Fig. 1265 

5e).  1266 

 1267 

Figure 6 – figure supplement 1 1268 

Procedure for obtaining synapse counts in the local connectome (Fig. 6). (a) 1269 

Segmentation used for SynEM (note that a segmentation biased to neurite splits was 1270 

used, see Berning et al., 2015) and (b) interfaces detected as synaptic (black lines). 1271 

(c) combined skeleton-SegEM segmentation of neurites. (d) Synaptic neurite 1272 

interfaces established between the same pre- and postsynaptic processes (as 1273 

determined by the skeleton-SegEM segmentation, c) were clustered using 1274 

hierarchical clustering with a distance cutoff of d = 1.5 μm (b) for obtaining the final 1275 

synapse count. Scale bar, 500 nm. 1276 
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SUPPLEMENTARY FILES 1278 

 1279 

Supplementary File (Table) 1 1280 

Overview of methods for automated synapse detection. Res. Fac: Image voxel 1281 

volume of SBEM data used in this study relative to the voxel volume in the reported 1282 

studies. Note that most studies employ data of substantially higher image resolution. 1283 

 1284 

Supplementary File (Table) 2 1285 

Number of synapses between connected neurons obtained from published 1286 

studies of paired recordings of excitatory neurons in rodent cortex. These 1287 

distributions were used in Fig. 5 for prediction of connectome precision and recall. 1288 

 1289 

Supplementary File (Table) 3 1290 

Number of synapses between connected neurons obtained from published 1291 

studies of paired recordings of inhibitory neurons in rodent cortex. 1292 

 1293 

Supplementary File 4 1294 

Synapse gallery. Document describing the criteria by which synapses in 3D SBEM 1295 

data were detected by human expert annotators. These criteria are exemplified for 1296 

synapses from the test set of the SynEM classifier. 1297 
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SOURCE DATA FILES 1299 

 1300 
Figure 1 – source data 1 1301 
Source data for plots in panels 1b, 1c 1302 
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Figure 3 - figure supplement 1
Staffler et al.

Graphical user interface (implemented in MATLAB) for efficient annotation of neurite 
interfaces as used for generating the training and validation labels. 3D image data is 
centered to the neurite interface and rotated such that the second and third principal 
components of the neurite interface span the displayed image plane. Segments are 
indicated by transparent overlay (interface, red; subsegment S1, blue and S2, green). 
Note that the test labels were independently annotated by volume search by multiple 
experts in webKnossos (Boergens et al., 2017), see Methods.



Figure 3 - figure supplement 2
Staffler et al.
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Synapse detection performance comparison of SynEM with SyConn (Dorkenwald et 
al., 2017) and (Becker et al., 2012) on the 3D SBEM SynEM test set (Figure 3e). Note 
that while SynEM performs synapse detection and partner detection in one step these 
are separate steps in SyConn with an overall performance that is potentially different 
from the synapse detection step (in Dorkenwald et al., 2017, a reduction in perfor-
mance by 10% in recall and 3% in precision from synapse detection to partner detec-
tion is reported, yielding a drop in F1 score of 0.057). Becker et al., 2012, does not 
contain a dedicated partner detection step.

Figure 3 - figure supplement 3
Staffler et al.
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Synapse detection performance comparison of SynEM with VesicleCNN (Roncal et 
al., 2015) on a 3D EM dataset from mouse S1 cortex obtained using ATUM-SEM 
(Kasthuri et al., 2015). Note that VesicleCNN was developed on that ATUM-SEM 
dataset.

Figure 3 - figure supplement 4
Staffler et al.
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Performance of SynEM on a test set containing all interfaces between 3 inhibitory 
axons and all touching neurites (total of 9430 interfaces, 171 synapses). Single
synapse detection precision and recall (solid line) and the ensuing predicted neu-
ron-to-neuron precision and recall for inhibitory connections (dashed line) assuming 
on average 6 synapses for connections from interneurons (see Methods).



Figure 5 - figure supplement 2
Staffler et al.

Effect of synapse detection errors on predicted connectome error rates for competing 
methods. Predicted neuron-to-neuron errors (reported as (1 - F1 score) in percent) for 
the ATUM-SEM dataset (Kasthuri et al., 2015) using VesicleCNN (Roncal et al., 2015, 
orange) and for our SBEM dataset using Becker et al., 2012 (gray) and Syconn (Dor-
kenwald et al., 2017, green). Note that these approaches provide synapse detection, 
only. When including the detection of the synaptic partners, Dorkenwald et al., 2017 
reported a drop of detection performance by 3% precision and 10% recall (indicated 
by gray crosses, tentatively also for the other approaches). SynEM provides synapse 
detection and partner detection together (compare to Fig. 5e). 

ATUM SBEM
Mouse S1 cortex

VesicleCNN
Syconn
Becker et al., 2012
tentative partner detection

0

15

20

5

10
R

em
ai

ni
ng

 N
N

-e
rr

or
(fu

lly
 a

ut
.) 

in
 %

eee



Figure 6 - figure supplement 1
Staffler et al.

Procedure for obtaining synapse counts in the local connectome (Fig. 6). (a) Segmen-
tation used for SynEM (note that a segmentation biased to neurite splits was used, 
see Berning et al., 2015) and (b) interfaces detected as synaptic (black lines). (c) 
combined skeleton-SegEM segmentation of neurites. (d) Synaptic neurite interfaces 
established between the same pre- and postsynaptic processes (as determined by the 
skeleton-SegEM segmentation, c) were clustered using hierarchical clustering with a 
distance cutoff of d = 1.5 μm (b) for obtaining the final synapse count. Scale bar, 500 
nm.
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7 Summary & Discussion

Understanding the brain and its unique abilities is a major preoccupation of many

scientists today. This broad effort includes many disciplines like biology, computer

science, physics, psychology, chemistry, mathematics and medicine. For this endeavor,

mapping the synaptic circuits of any given brain region densely at cellular resolution

could provide a valuable additional constraint to select between or rule out certain

models of how brains work. Currently the main challenge to achieve this goal is to

extract the synaptic connectivity graph from a given piece of brain tissue. The results

in this thesis present methodological developments in the reconstruction of such synaptic

circuits from 3D electron microscopy data.

This involves at least two important parts, one is neurite reconstruction and the

other one is detecting the chemical synapses between them. The method for wire

reconstruction presented here is split up in an automated part, used to generate locally

accurate volume segmentations, and a manual part, for generating sparse annotations

that provide the necessary long range information to join these local volumes.

[Berning et al., 2015] focuses on the automated part while [Boergens et al., 2017] focuses

on speeding up the manual annotation. The task of synapse detection on the other hand

was investigated by phrasing the problem as a classification task for borders between

segments [Staffler et al., 2017] which yielded sufficient performance to generate a binary

connectome with 97% precision and recall without manual interaction.

7.1 From sparse annotations to volume models

Summary

[Berning et al., 2015] presents a semi-automated reconstruction workflow to generate

volume models of cells in conventionally stained 3D electron microscopy data. It

provides example reconstructions of synaptic networks in fully stained datasets from

mouse retina and cortex and gives a detailed explanation of the workflow. The
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reconstruction method presented is approximately 10-times faster than other methods

published on conventionally stained data. Furthermore, a method was developed

and tested to perform proximity detection on the reconstructed neurons to guide

manual synapse validation to all close appositions of the reconstructed cells. Synapse

validation was not possible using the cell-membrane only staining from previous studies

[Briggman et al., 2011] [Helmstaedter et al., 2013]. These developments in combination

resolved the trade-off between direct synapse validation and fast annotation of volume

models in fully stained 3D electron microscopy data.

The automated part of the volume reconstruction approach involved a custom written

CNN to detect membranes in fully stained SBEM data and generating a segmentation

using marker based watershed on the results of the membrane CNN. This provided an

over-segmentation of the neurites in the dataset, which could then be used in conjunction

with sparse manual annotations providing longer-range information of neurite identity to

create volume models. The sparse manual annotations annotate the center line of each

branch of the neuron with points set at arbitrary distances resulting in a representation of

a connected graph of nodes embedded in a 3D space termed skeleton reconstruction. The

hyper-parameter optimization strategy for training the CNN as well as for optimizing the

parameters in the marker generation for the watershed segmentation is described. These

parameter selections were based on the split-merger metric described in the following

paragraph.

The split-merger error metric was used to optimize the results of the automated

procedures of membrane detection and subsequent segmentation on a training set

and was afterwards measured on a test set. The metric uses the overlap matrix

between manual skeleton annotations of all neurites in the dataset and an automated

segmentation to calculate two types of errors: A split error was defined as each occurrence

of a manually annotated skeleton overlapping with more than one segmentation volume

object, while a merger error is defined as each instance of a segmentation object traversed

by more than one manual skeleton annotation. The results were additionally evaluated

and compared using the metrics of pixel, rand and warping error as proposed in the

ISBI2012 challenge.

All data, especially the manually generated dense ground truth segmentations used for

training the CNN and the skeleton annotations used for hyper-parameter optimization

and evaluation of the segmentation were provided with the paper. Synaptic circuits that

could be mapped with this approach were presented and details about the timelines in

imaging, computation and manual analysis were discussed.
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Discussion

A similar reconstruction technique as described in [Berning et al., 2015] for generating

volume models from sparse annotations had been used in [Helmstaedter et al., 2013],

but in cell-membrane-only stained 3D electron microscopy data from mouse retina

which lacked the benefit of direct synapse identification. The approaches presented

[Berning et al., 2015] were based on the results from [Helmstaedter et al., 2013] and

CNN architectures [Turaga et al., 2010] but extended their applicability to other staining

methods and brain regions and provided the complete toolset needed for mapping

synaptic circuits in such datasets.

The affinity maps introduced in [Turaga et al., 2010] were implemented and tested

on the retina dataset in [Berning et al., 2015]. Affinity maps use a probability of each

neighboring pair of voxel along the three cardinal axes to belong to the same neurite

as an alternative representation for the intermediate result of image classification. We

also classified the voxel directly into membrane vs. non-membrane voxel for the cortex

dataset in [Berning et al., 2015]. Earlier implementations of CNN used for handwritten

digit recognition [LeCun et al., 1989] were used as guides for weight initialization, choice

of non-linearity and other model parameters.

Multiple improvements, alternative approaches or extensions to the automated

methods for generation of an over-segmentation of neurites [Berning et al., 2015] have

since been published. Just as [Berning et al., 2015] demonstrated the applicability of this

method to fully stained EM datasets, [Pallotto et al., 2015] showed that extracellular

space preservation can improve automated segmentation performance as the interface

area between cells decreases and mergers can be more easily avoided.

Other improvements for partial automation of dense reconstruction are based on

improvement of the segmentation procedure itself including the intermediate image

classification step. Most notably Flood Filling Networks [Januszewski et al., 2016] aim

to combine the two steps of membrane detection and watershed segmentation in a single

step using a recursive 3D CNN. These models provide the advantage that end-to-end

learning of image segmentation is possible without the intermediate step, while their

current disadvantage is the higher computational cost. An improvement in error rates

for segmentation was reported for a new model presented in [Funke et al., 2017], which

extends the approach presented in [Turaga et al., 2009] and uses the training data and

dense skeleton reconstructions published in [Berning et al., 2015] as one of three test

cases for the method.

Note that [Januszewski et al., 2016] and [Funke et al., 2017] also suggest
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an improvement and an alternative to the split-merger metric described in

[Berning et al., 2015]. The alternative metric had previously been described in

[Funke et al., 2015] and the authors neither discuss nor compare to a node threshold

of 1 as introduced in [Berning et al., 2015] when dismissing the node threshold of 2 as

too high for their performance measurements [Funke et al., 2017] and rather use their

previously published method. The improvement to the split-merger metric is presented

with a strong argument [Januszewski et al., 2016] and will thus probably yield a better

metric for segmentation performance. Note that this argument is only important in the

very under-segmented regime, which means that many merge errors are present. This

regime is uninteresting in the biological sense as it would not provide any help with

the reconstruction effort and all segmentations presented in [Berning et al., 2015] were

rather biased into the regime of over-segmentation as discussed in detail in the paper.

A rigorous comparison between all alternative metrics has not yet been performed.

The analysis of reconstruction speed using sparse annotations reported in

[Berning et al., 2015], has since been used to estimate reconstruction effort needed

for whole mouse brain reconstructions [Mikula, 2016]. Furthermore the training data

published with this work have since been used to train adversarial networks that aim

to optimize the alignment of the dataset [Jain, 2017], during which the images taken

by the microscope are put into a 3D reference frame. This is usually done by means

of cross-correlation or matching of image features. In the case of the cortex dataset

in [Berning et al., 2015] a modified version of [Preibisch et al., 2009] was used. As

alignment is of crucial importance for all further 3D processing of the data, it is likely

that this improvement would benefit all subsequent processing steps.

In summary, while improvements of the error rate in the automated segmentation

presented in [Berning et al., 2015] as well as improvements or alternatives to the

split-merger metric have been published, no new method for the extraction of neural

wires based on these automated results have been published since. This would suggest

that while one might choose a more accurate automated segmentation technique, the

rest of the workflow presented in the paper should still be considered the state of the

art for the generation of volume models and synaptic circuits from 3D EM data.
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7.2 Novel annotation interactions

Summary

[Boergens et al., 2017] presents an in-browser annotation tool for viewing and annotating

3D electron microscopic data. The methodological improvement over the existing

in-browser annotation tool CATMAID [Schneider-Mizell et al., 2016] was highlighted

and the importance of efficient streaming of electron microscopy data for crowd-sourcing

was discussed. The main result of these methodological improvements is enabling

seamless navigation through the data with minimal bandwidth and latency requirements.

Together with a novel egocentric single view-port reconstruction method, ”flight mode”,

this tool enables trained annotators to create skeleton annotations at a speed of 2.1±0.9

mm/h (mean ± std) for dendrite trunks and 1.5±0.6 mm/h (mean ± std) for axons in a

SBEM dataset from mammalian cerebral cortex. This speeds up skeleton annotation by

a factor of 4-13 over published methods. Extensive quantification of the error rates and

annotation speed in two annotation modes were performed, and comparisons to speeds

and error rates published with other reconstruction tools were made. Furthermore a

workflow for extraction of a synaptic circuit from 3D EM data is outlined and applied

to a SBEM dataset.

The need for online delivery of data for crowd sourcing of data analysis is evident

when considering the size of currently published 3D EM datasets with sizes of up to

100 terabytes [Zheng et al., 2017] and accepting the premise that continuous annotation

of whole cells should be possible for each annotator. This would otherwise require

tens of hard-drives to be delivered to each annotator. In order to minimize bandwidth

and latency requirements webKnossos loads data close to the current position of the

annotator first. This is enabled by a new data storage and transmission format in small

(32voxel)3 cubes refereed to as ”buckets”. Any 2D data storage and transmission by

design prioritizes the data locality along a 2D plane within the 3D volume and will thus

prioritize loading data further away from the current point of interest along a given

dimension and thus require longer time to display the needed information.

The transmission and local assembly of these buckets into one reference frame allows

for arbitrary views in this data. This fact was used to develop a novel reconstruction

mode, called ”flight mode”. In this mode the user is virtually placed in a hollow sphere

carved out of the dataset and can freely choose the current orientation of viewing

and move the sphere forward or backward throughout the dataset along the current

viewing orientation. This egocentric view mode seemed much more intuitive than the 3
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axis-aligned view-ports usually used called ”ortho mode”. One can try both annotation

approaches at https://webknossos.org.

Comparisons of tracing speed and accuracy of flight and ortho mode revealed that this

new annotation mode enables faster tracing at indistinguishable error rates. In order to

quantify error rates at different tracing redundancies, the redundant skeleton consensus

procedure (RESCOP) algorithm [Helmstaedter et al., 2011] was used to consolidate

multiple redundant annotations of the same process. This shows that even trained

annotators have an error rate of 14 errors/mm at single redundancy when counting all

errors and about 7 errors/mm when only counting errors due to which more than 10

micron path length is lost or added when tracing axons. This error number can then

be scaled down by increasing the redundancy in the annotation which shows that most

errors are uncorrelated, see also [Helmstaedter et al., 2011] for an earlier quantification

of tracing accuracy on a different dataset and an introduction of the RESCOP algorithm.

The connectome reconstruction workflow proposed in [Boergens et al., 2017] does not

require any automated processing, and is thus the recommended way of analysis for

datasets of quality not deemed sufficient for automation or if initial investments in

automation is not justified by the reconstruction goal. Note that the annotation tool

can also be used for semi-automated annotation approaches, but this is not emphasized

in the paper for reasons of focusing on the core improvements. The first step for

connectome reconstruction is to trace all processes in the dataset at a given redundancy,

for example in the paper redundancies of 3 and 6 are used for dendritic trunks and axons

respectively. The redundancy should be chosen according to the error tolerance for the

biological question under investigation. The redundant tracings are then consolidated

using the RESCOP algorithm. Afterwards all synapses made by the consolidated axons

were annotated manually by clicking the postsynaptic process in a viewing mode that

automatically follows the consolidated skeleton. These locations are then used as seed

locations for tracing the postsynaptic process, usually a spine head, back to the dendritic

trunk, which is then automatically matched to the dendrite trunks annotated before.

This provides all information required to assemble a connectome. In this paper all code

is provided to set up a server deploying this tool and all auxiliary code to perform the

connectome assembly, path length, speed and error measurements.

The main result is the speedup of human data annotation in browser for EM based

connectomics by 4-13 fold over published results and that these theoretical speed gains

can be achieved by a human annotators. The error quantification additionally shows

that this is possible without a loss in tracing accuracy. The connectome workflow shows
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how to use this method to reconstruct synaptic circuits within an EM dataset.

Discussion

The improvements in annotation speed coupled with the browser based data delivery

have enabled projects that would not have been feasible using the old reconstruction

methods or means of data distribution. Most prominent is the recent discovery of

a sorting of output synapses along the proximal part of axons of excitatory cells in

medial entorhinal cortex, which first target inhibitory cells and later other excitatory

cells [Schmidt et al., 2017]. The paper furthermore describes that these targeted

inhibitory cells in turn make synapses back onto the excitatory population suggesting

a very concrete circuit implementation of cellular feed-forward inhibition in cortex,

including wide diameter myelinated inhibitory axons as a biophysical mechanism for

fast transmission of this feed forward inhibition. All data annotation for this project

was performed using webKnossos [Boergens et al., 2017].

A total path length of 2.89 m dendritic trunks was traced in 3,654 work hours in

the orthogonal tracing mode [Schmidt et al., 2017]. Note that this yields a tracing

speed of 0.79 mm/h, slightly lower than for the speed measurements performed in

[Boergens et al., 2017]. As also discussed in the latter paper this could be attributed

to either the larger dataset with worse image and alignment quality or motivation of

the human annotators over long annotation projects in general. Also note the measured

error rates at 2-fold redundancy reported in [Boergens et al., 2017] would suggest that

the tracings of dendrites at ”average redundancy of 2.0” [Schmidt et al., 2017] contain

an average of approximately 3 errors per mm traced path length. [Schmidt et al., 2017]

show that the efficient online data delivery presented in [Boergens et al., 2017] enabled

the collaboration of more than 20 people on a dataset of approximately 40 terabyte and

provides valuable numbers about possible speed gains and error rate considerations for

such reconstruction projects.

The approach for connectome generation presented in [Boergens et al., 2017] does

not require any automation and can thus be used for fast sparse annotations of

synaptic networks as in [Schmidt et al., 2017]. If either volume models of neurons

[Berning et al., 2015] or automated synapse detection [Staffler et al., 2017] is needed,

webKnossos provides additional features to visualize the results generated with these

methods. In general the decision for or against partial automation of the analysis

depends on the quality of the dataset, because worse alignment or image quality will

generate higher error rates in the automated part while human annotators can usually
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ignore these to a some extent, and on the overall expected manual annotation workload

as automation involves some overhead like training data generation and deployment and

possible modification of algorithms.

It is very important to note that [Boergens et al., 2017] mainly focuses on the

reconstruction of axons. This is due to the fact that the error rates in dendrites are

much lower and dendritic trunk path length is only a fraction of axon path length. Axon

reconstruction thus presents the main challenge in the generation of cortical connectomes

in mammals. Also note that the most difficult part in reconstruction of dendrites is the

tracing of the spine necks which can get very thin [Helmstaedter, 2013].

The methods described in [Boergens et al., 2017] have only been tested on a single

SBEM datasets and it is not yet clear which quality of alignment is needed for the

novel annotation interactions. The new annotation mode ”flight mode” is likely to

be useful in any context where the imaged volume can be sufficiently well aligned to

guarantee 3D membrane continuity. Reconstructions in datasets, which do not meet

these requirements, can still profit from the speed improvements in the ”ortho mode”

annotation approach.

7.3 Automated synapse detection

Summary

[Staffler et al., 2017] presents a method for automatic inference of synaptic locations and

directionality in 3D EM data. The classifier achieved a performance of 88% precision

and recall on single synapses. Furthermore, a model is introduced which shows that the

method will achieve 97% recall and precision in a binary connectome when taking into

account synapse count distributions between pairs of cells from the literature.

The method is based on classifying interfaces, the surface between two neighboring

segmentation objects, as either synaptic or non-synaptic. The method thus requires

a segmentation, in this case one of those presented in [Berning et al., 2015] was used

for all experiments, except for the experiments described on the ATUM dataset from

[Kasthuri et al., 2015], where a manual segmentation provided with the dataset was

used. A representation of these interfaces is created by defining different sub-volumes

based on distance to the interface. This representation is used to calculate different

summary statistics, moments of the distribution, as well as some rank-based measures

on the pixel values of different 3D-filter applied to the raw data over these sub-volumes.
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The paper describes in detail how the classifier was developed and continually

improved by adding additional 3D-filter, sub-volumes and summary statistics. In

addition to these extensions, slightly different ways of defining the classification tasks

are described and it is shown that best performance can be achieved when using the

intrinsic directionality of the synapse and classifying segment pairs in both directions

and only predicting a synapse when the ordering of the segment pairs is from pre- to

postsynaptic. Additional analysis of remaining error locations of the synapse detection

and the importance of different sub-volumes, 3D-filter and summary statistics for the

classification decision is provided.

The model that predicts the performance for a binary connectome based on

classification performance on single synapses is motivated and the underlying literature

is discussed. This shows that this method can be used for fully automated neuron to

neuron connectivity inference with 97% precision and recall.

Discussion

Synapse detection performance as presented in this paper is dependent on the dataset

analyzed, especially on the staining and imaging method used as these take different

trade-offs between imaging speed, emphasized intracellular structures and quality of

the dataset. Focused ion-beam based SEM at an isotropic voxel size of 4-8nm makes

automated synapse detection most feasible and low error rates have been reported

previously [Kreshuk et al., 2011]. As this microscopy method can currently only be

used to image small volumes, only trading off resolution for more imaged volume per

time makes it plausible to start imaging whole neurons in the mammalian brain. This

trade-off is for example encountered in ssTEM or ATUM based SEM, which sacrifice

resolution mostly along one dimension, and diamond knife based SEM, which is usually

used with a more isotropic trade-off on resolution in all dimensions.

The approach presented in [Staffler et al., 2017] outperforms other approaches for

automated synapse detection on a SBEM dataset from mouse cortex, most notably

the previous state of the art models described in [Dorkenwald et al., 2017] and

[Roncal et al., 2014]. The transferability of the method and its good performance are

shown on a ATUM based SEM [Kasthuri et al., 2015] dataset. Note that transferring

the method between these two datasets requires retraining the classifier, which is to

be expected for datasets from such different imaging modalities. This is an indication

that a segmentation based interface classification as proposed in [Staffler et al., 2017]

can provide superior performance than methods which classify single voxel, for example
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[Dorkenwald et al., 2017].

Because the approach predicts a pre- and postsynaptic segment it intrinsically also

provides synaptic partner detection, e.g. predicting a region that belongs to the pre- and

postsynaptic process respectively, which has to be incorporated in a different step when

only classifying single voxel as synaptic and can lead to a drop in overall performance,

as documented in [Dorkenwald et al., 2017].

As for wire reconstruction, automated synapse detection performance can be expected

to improve if extracellular space preservation [Pallotto et al., 2015] is used because touch

of two processes will provide a stronger indication for a synapse. Furthermore the surface

for false positive detection is decreased. The method presented here is itself sufficient

for generating binary connectomes in conventionally stained data.

It is important to note that so far the analysis of single electron micrographs, usually

imaged using a TEM, have been regarded as the gold standard for establishing the

existence of a synapse in a certain location. This is usually based on the darkening of

the plasma membrane close to the surface in the postsynaptic process, the postsynaptic

density, and vesicles close to or even docked to the plasma membrane in the presynaptic

process. The advantage of using a high-resolution single plane electron micrograph for

this purpose is that these intracellular structures are more easily resolved than using

a 3D image stack with less resolution along the imaging dimensions, especially when

taking into account the volume vs. resolution tradeoff taken in datasets aimed at the

reconstruction of cortical circuits in mammals discussed above. The disadvantage of the

methods with high in-plane resolution is their worse resolution along the cutting direction

[Briggman and Bock, 2012]. This will make the detection of synaptic interfaces parallel

to the imaging plane more difficult.

The main advantage of 3D image microscopy methods is that a lot of contextual

information along all dimensions can be used for judging whether a certain location

is synaptic. For this reason [Staffler et al., 2017] provides a comprehensive guide

for identifying synaptic locations in SBEM data in the supplementary material. In

general, the quantification of synapse detectability in different 3D-EM datasets is still

outstanding, and all precision and recall measurements reported in [Staffler et al., 2017]

are based on the the annotation of synapses by expert annotators using the criteria

presented in the supplementary material.
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7.4 General discussion

While I have presented my view of why connectomics is and will be important

for neuroscience in the introduction, and presented methods for easier generation of

connectomes based on electron microscopy in the results, it is also important to discuss

the limitations of the approach of dense EM reconstructions. Note that due to renewed

interest for these topics in the recent decade, these limitations are likely to shift with

further method development in image acquisition and analysis.

Currently the most important consideration in all electron microscopy approaches is

the tradeoff between volume that can be imaged versus resolution and image quality.

Furthermore, each imaging technique has different inherent image artifacts which

can lead to additional challenges in data analysis or even make dense mapping of

circuits impossible. The methods summarized in this thesis have all been evaluated

on SBEM data from mouse cerebral cortex. In [Berning et al., 2015] an additional

mouse retina SBEM dataset was used for validation of the transferability of the method

while in [Staffler et al., 2017] an additional ATUM dataset originally presented in

[Kasthuri et al., 2015] was used for for this purpose. Both of these methods for acquiring

3D EM data are aimed at acquiring volumes at a resolution just sufficient for dense

reconstruction and are thus able to image larger volumes than using focused ion-beam

based SEM. The SBEM datasets presented in [Berning et al., 2015] have a volume of

approximately 0.5 million µm3, while the ATUM dataset in [Kasthuri et al., 2015] spans

about 80.000 µm3 in highest resolution. Note that larger datasets have been published,

but rigorous quantification of reconstructability across these datasets is still missing.

No matter which 3D electron microscopy technique is used to acquire data, an

inherent tradeoff between imaged volume, resolution and quality of the dataset, e.g.

with respect to signal-to-noise ratio of single voxel or imaging artifacts, can be

observed. For the non block-face methods this is particularly pronounced for the cutting

dimensions as some sections are usually lost or damaged during the slicing procedure

and all datasets with a volume aimed at circuit reconstruction published so far have

even reported multiple consecutive slice losses [Bock et al., 2011] [Kasthuri et al., 2015]

[Lee et al., 2016]. This tradeoff can also be noted for other methods when comparing

e.g. [Hildebrand et al., 2017] or [Schmidt et al., 2017] to the smaller datasets of the

respective method as presented in [Kasthuri et al., 2015] or [Boergens et al., 2017].

The volume of current datasets clearly limit the insights that can be gained. For

example, no known neuron in mammalian cerebral cortex has dendritic or axonal
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arborisations restricted to such a small volume as for the datasets presented in this thesis.

Therefore, current connectomic studies in mammalian cortex are limited by slicing

artifacts and can only answer a small subset of questions about connectivity. Some recent

methodological improvements for image acquisition like mSEM [Eberle et al., 2015],

development of high throughput ssTEM [Zheng et al., 2017] or the hot knife technique

[Hayworth et al., 2015] show approaches to overcome the volume limitations of some

image acquisition techniques. So far, none of these approaches have yielded datasets

of a size large enough to encompass whole neurons with sufficient data quality for even

manual dense annotation. Current automated methods require even better quality. For

non block-face approaches and the hot knife technique it further remains unclear how

well the continuation of neurites over lost, damaged and folded slices or hot knife cuts

can be established. See [Hayworth et al., 2015] for first quantifications of this issue for

the hot-knife technique.

Furthermore, EM based connectomics will only ever be able to yield a snapshot of

the connectivity in any given animal. This is due to the nature of the experimental

technique of sample preparation, which fixes the tissue block at a given time point. This

is especially challenging as it has not yet been quantified how reproducible the synaptic

connectivity graph is or which properties of it might (not) be conserved. It has been

observed that the lifetimes of spines vary greatly with only about 50% being present over

the imaging period of a month [Trachtenberg et al., 2002]. Therefore a quantification

of the inter-individual variability in the connectivity graph and a study of it conserved

properties is of great importance to the field of EM based connectomics.

Finally, while methods exist to image a given volume using a fluorescence microscope

prior to connectomic circuit reconstruction and map their functional responses to stimuli

[Briggman et al., 2011], one should note that most connectomic datasets do not provide

that information and additional challenges in the sample preparation are usually a

consequence. It has not yet been shown that these correlated datasets do not generate

a trade-off between functional data and a good preservation of the ultrastructure which

is essential for (partial) automation of the reconstruction.

7.5 Outlook

Especially after the improvements in automated synapse detection [Staffler et al., 2017]

presented in the last section of this thesis, the major bottleneck for generating

connectomes from 3D EM data is generating volume models of the neurites which
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provide the necessary information to connect these synapses. The approach of

manual sparse skeleton annotations in combination with a locally accurate segmentation

[Berning et al., 2015] still requires a human annotator to follow the neurite throughout

the dataset.

While the speed of this manual annotation was improved significantly

[Boergens et al., 2017], it still limits the path length that can be achieved during

a given manual reconstruction time and even reconstructing the approximately 4

kilometers of axons and 1 kilometer of dendrites [Braitenberg and Schüz, 2013] in a

cubic millimeter of cortical tissue at one fold redundancy would require more than one

million hours manual annotation effort. When considering that higher redundancy

might be required, we can conclude that further method development in data analysis

for wire reconstruction from 3D-EM data is required.

One approach to further improve reconstruction speed is to focus human annotation

on locations that the current algorithms have problems in solving automatically and to

use this information to gradually improve the algorithms. This in turn will focus human

attention on more difficult locations over time and provide further gains in reconstruction

speed by eliminating the need for a human annotator to inspect each location of a neurite

manually.

Therefore, developing a method for ”focused annotation” of neurites has been the focus

of my work recently. The approach is based on the classification on the level of interfaces,

as in [Staffler et al., 2017], but with the question whether the local interface between

two segments should be a continuation of the neurite. This could be called a ”neurite

continuity classifier” for the segment graph. Each pair of segments that is merged based

on such a classifier would remove one split error in the metric presented above and would

not have to be annotated manually. In addition to this neurite continuity classifier, a

method is required to determine the location of the two types of errors, splits and

mergers, which the initial over-segmentation might introduce [Berning et al., 2015]. For

this an algorithm which detects endings in cylindrical elongated structures was developed

and is currently evaluated. This information is then used to focus human annotation

to these positions to fix split errors by manual annotation. Furthermore, some notion

of a merger detector is required as well. For this purpose we currently use a detector

of all intersections in neurite morphology with more than 4 exits, which would suggest

a merger error. As the biological frequency of such configurations is much lower than

current merger rates, the additional annotation of the error free locations is not yet an

issue.
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While I think that complete automation of the analysis process is desirable, I do not

think that this likely in the foreseeable future, especially for datasets with numerous

artifacts and varying quality as currently present in datasets of sufficient volume for

circuit reconstruction in mammalian cortex. I therefore believe that the automated

guidance of manual annotation to difficult locations or errors in a current state of the

automation on the dataset will be the main approach for connectomic data analysis in

the foreseeable future and I have presented approaches here which could be extended in

this way.

The field of connectomics in general will have to validate some of its approaches. The

reconstructability of wires in a given dataset, as well as the detectability of synapses

needs to be formalized in some way to allow for calculation and discussion of these

quantities for each biological question and comparison of the accuracy of reconstruction

between different studies in a reliable manner. Furthermore the inter-individual

variability between animals needs to be quantified and quantities derived which are

preserved for animals that have the same genetics and were raised in the same

environment even if their overall connectivity graph varies.
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