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ABSTRACT 

The following dissertation presents a series of chiral pool approaches to amine-containing natural 

products and photoactive lipid analogues. 

The first chapter summarizes the asymmetric total synthesis of lycopalhine A – a compact and 

stereochemically dense Lycopodium alkaloid – using L-glutamic acid as a starting point. The route 

features a diastereoselective Pauson–Khand reaction and an L-proline promoted 5-endo-trig 

Mannich cyclization. The successful synthesis allowed the characterization of a second co-eluting 

alkaloid, epi-lycopalhine A, and confirmed its interconversion with lycopalhine A through a retro-

aldol/aldol equilibrium. A tentative path to palhinine D involving a reductive piperidine 

cyclization is afterwards presented. 

An azomethine ylide [3 + 2]-cycloaddition strategy towards the bioactive Orchidaceae alkaloid 

(+)-dendrobine is described in the second chapter. A cyclization precursor was generated in seven 

steps from (R)-carvone through a convergent esterification and an unconventional high-pressure 

Ireland–Claisen rearrangement. The resulting aldehyde was employed in a decarboxylative 

azomethine ylide cycloaddition following condensation with N-methylglycine to yield 

5-deoxymubironine C, which differs from the natural product mubironine C by the absence of a 

single hydroxyl group. Thwarted attempts to incorporate this final functional group include an 

α-chlorination/lactonization sequence and an unplanned enal–ene reaction.    

The final chapter describes the synthesis of two photoswitchable sphingoid bases (aSph-1 and -2) 

from L-serine, and their coupling with alkyne-bearing fatty acids to generate clickable 

azobenzene-containing ceramide analogues (caCer-3 and caCer-4). Together with fatty acid 

azobenzene (FAAzo)-based caCer-1 and caCer-2 developed by postdoctoral researcher Henry 

Toombs-Ruane, these molecules were evaluated as optically active substrates for sphingomyelin 

synthase (SMS2). CaCers were successful incorporated into supported lipid bilayers (SLBs) and 

could alter the ordered/disorded domain ratio upon light irradiation. CaCer-1, -2 and -3 were 

competent substrates for SMS2 and conversion to their sphingomyelin analogues could be 

controlled in a light-dependent manner in both yeast membranes and HeLa cells.   
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SUMMARY 

Chapter I. Total Synthesis of (+)-Lycopalhine A 

Lycopalhine A (Scheme I), isolated from Palhinhaea cernua, is one of the most heavily 

functionalized and stereochemically dense Lycopodium alkaloids described to date. Its compact 

frame contains nine stereogenic centers – eight of which are contiguous – as well as a fused 

piperidine/hexahydropyrimidine/pyrrolidine ring system.  

We explored a short chiral pool synthesis of the molecule from inexpensive L-glutamic acid. The 

amino acid was elaborated to a linear enyne by a diastereoselective allylation and a 

chemoselective hydride reduction. This intermediate underwent a highly diastereoselective 

Pauson–Khand reaction followed by a conjugate addition to set the molecule’s sole quaternary 

stereocenter and afford a key bicycle. To generate the heavily substituted pyrrolidine of the 

natural product, we developed a novel L-proline-mediated Mannich cyclization following 

condensation of an aminoketone with a β-amino aldehyde. The synthesis concluded with a 

biomimetic aldol reaction and a final oxidative olefin cleavage/aminal formation sequence to 

furnish the natural product. 

 

Scheme I.  Total synthesis of (+)-lycopalhine A. 

Following the synthesis of lycopalhine A, we observed a co-eluting side-product whose spectral 

data directly matched an impurity in the isolated natural product. Two-dimensional NMR analysis 

and deuterium exchange studies identified the minor product as the C16 epimer of lycopalhine A 

(epi-lycopalhine A) which is in equilibrium with the major diastereomer through a retro-

aldol/aldol sequence. This marks the first synthesis of lycopalhine A in an efficient 14 steps from 

glutamic acid.  

B. M. Williams, D. Trauner, Angew. Chem. Int. Ed. 2016, 55, 2191 – 2194.  



vi   Introduction 

 

Chapter II. Azomethine Ylide Cycloaddition Strategy toward Dendrobine 

Our early studies into the synthesis of lycopalhine A explored an azomethine ylide cycloaddition 

route towards the molecule’s crowded azatricyclo[6.2.1.0
4,11

]undecane core. Though ultimately 

unsuccessful, we recognized that such a strategy might be better suited for an efficient 

asymmetric synthesis of dendrobine, a highly caged alkaloid from Dendrobium nobile with 

convulsant and hypotensive properties. We believed the development of a general cycloaddition 

approach towards this tricyclic system could equally be applied to other complex Orchidaceae 

alkaloids such as mubironine C and dendrine.  

Scheme II.  Azomethine ylide cycloaddition approach to (−)-dendrobine. 

Our synthesis began with the construction of a chiral ester from (R)-carvone, which we intended 

to employ in an Ireland–Claisen reaction to set two contiguous stereocenters. As thermal 

conditions led to substantial decomposition of the starting material through ketene formation, we 

developed high-pressure conditions that suppressed alcohol extrusion while increasing reaction 

yield. Condensation of an ensuing aldehyde with sarcosine under dilute conditions and subsequent 

decarboxylation afforded an unstabilized azomethine ylide, which underwent a 1,3-dipolar 

cycloaddition to furnish the desired tricyclic system. We thereby obtained 5-deoxymubironine C – 

differing from the natural product mubironine C by only a single hydroxyl group – in eight steps 

from (R)-carvone. With the carbon skeleton of the natural product complete, we are currently 

engaged in selectively installing the final degree of oxidation at the C5 position.  

B. M. Williams, D. Trauner, J. Org. Chem. 2018, 83, 3061 – 3068. 
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Chapter III. Synthesis of Photoswitchable Ceramides for Optical Control in Lipid 

Metabolism 

The Trauner laboratory operates a wide-ranging program in photopharmacology, in which 

photoswitchable ligands are used to modulate biological systems with the spatiotemporal 

precision of light. Our laboratory has recently expanded this principle to the realm of lipids. In 

one recent instance, artificial ceramides with azobenzene-bearing fatty acid chains (ACes) were 

incorporated into supported lipid bilayers (SLBs) and used to optically control the structure of 

ordered and disordered lipid domains. Though these results allowed the modulation of artificial 

membranes with light, it was unclear whether these photoceramides could be incorporated into 

actual cellular membranes, or if they could act as competent and reversible substrates for 

sphingolipid metabolism.  

To answer these questions, we developed a series of four azobenzene-bearing ceramides with 

added alkyne functionality, termed clickable azo-ceramides (caCers 1-4, Figure I.a), for the 

study of lipid metabolism in living systems. CaCer-1 and caCer-2 featured the azobenzene and 

alkyne moieties on the fatty acid side chain, whereas caCer-3 and caCer-4 required incorporation 

of the azobenzene moiety directly into the backbone of the sphingoid base through a cross-

metathesis strategy. In collaboration with the Schwille group at the Max Planck Institute of 

Biochemistry, we confirmed that caCers-3 and -4 also control membrane behavior in SLBs in a 

light-dependent manner (Figure I.b). 

 

Figure I.  a) Structures of caCers, b) AFM imaging indicates structures of caCer-incorporated SLBs are 

modulated with light, c) caCers in yeast membrane are transformed by SMS2 in a light-dependent fashion. 
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In partnership with the Holthuis group at the University of Osnabrück, caCers were investigated 

for their ability to act as substrates for sphingomyelin synthase (SMS), which converts ceramides 

to sphingomyelins through transfer of a phosphocholine headgroup to the primary alcohol. Initial 

studies in yeast membranes confirmed all caCers were converted into their SM analogues by 

SMS2, and UV-pretreated cis-caCer-1, in particular, showed markedly higher conversion than its 

trans-isomer. Indeed, SM analogue production could be alternatingly stimulated or inhibited by 

irradiating the caCer-incubated cells with UV or blue light, respectively (Figure I.c). 

Importantly, this metabolism could be light-controlled in living cells: SMS2-V5 overexpressing 

HeLa cells were found to convert certain caCers to their SM analogues in a light-dependent 

manner. Overall, these findings represent the first photoswitchable enzyme substrates in lipid 

metabolism and open the possibility that lipid formation and signaling can be controlled with the 

precision of light. 
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ABBREVIATIONS 

Ac acetyl 

acac acetylacetonate 

AD-mix asymmetric dihydroxylation mix 

AFM atomic force microscopy 

AIBN azobisisobutyronitrile 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
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AU arbitrary unit 

9-BBN 9-borabicyclo(3.3.1)nonane 

Bn benzyl 

Boc tert-butyloxycarbonyl 

BSA bis(trimethylsilyl)acetamide 

Bu butyl 

caCer clickable azobenzene-containing ceramide analogues 

CAM cerium ammonium molybdate 

CDI carbonyldiimidazole 

Cer ceramide 

CoA coenzyme A 

CSA camphorsulfonic acid 

DABCO 1,4-diazabicyclo[2.2.2]octane 

DAG diacylglyceride 

DBU 1,8-diazabicyclo[5.4.0]undec-7-ene 

DCC N,N'-dicyclohexylcarbodiimide 

DEAD diethyl azodicarboxylate 

DIBAL diisobutylaluminium hydride 

DIPEA diisopropylethylamine 

DMAP 4-dimethylaminopyridine 

DMDO dimethyldioxirane 

DMF dimethylformamide 
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DMSO dimethyl sulfoxide 

DMP Dess-Martin periodinane 

DOPC 1,2-O-dioleoyl-sn-glycero-3-O-phosphocholine 

DTBMP 2,6-di-tert-butyl-4-methylpyridine 

EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide 

EI electron ionization 

ESI electrospray ionization 

Et ethyl 

EV empty vector 

FA fatty acid 

GABA γ-aminobutyric acid 

GCPR G-protein-coupled receptor 

HBTU 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate 

HG II Hoveyda-Grubb’s catalyst, second generation 

HMDS hexamethyldisilazide 

HMPA hexamethylphosphoramide 

HOBt hydroxybenzotriazole 

HRMS high resolution mass spectrometry 

IBX 2-iodoxybenzoic acid 

IR infrared 

LAH lithium aluminium hydride 

Ld liquid-disordered 

Lo liquid-ordered 

LPA lysophosphatidic acid 

mCPBA meta-chloroperoxybenzoic acid 

Me methyl 

MOM methoxymethyl 

NBS N-bromosuccinimide 

NCS N-chlorosuccinimide 

NHC N-heterocyclic carbene 
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NMDA N-methyl-D-aspartic acid 

NMO N-methylmorpholine N-oxide 

NMP N-methyl-2-pyrrolidone 

NMR nuclear magnetic resonance 

NOESY nuclear Overhauser effect spectroscopy 

o-DCB ortho-dichlorobenzene 

ORTEP Oak Ridge thermal ellipsoid plot 

PC phosphatidylcholine 

PCC pyridinium chlorochromate 

PCL photochromic ligand 

PDC pyridinium dichromate 

PDP bis(2-pyridylmethyl)]-2,2′-bipyrrolidine 

Ph phenyl 

PIDA phenyliodine(III) diacetate 

PKC protein kinase C 

PKR Pauson–Khand reaction 

PPTS pyridinium p-toluenesulfonate 

Pr propyl 

PTL photoswitchable tethered ligand 

PTSA p-toluenesulfonic acid monohydrate 

Rf retardation factor 

RT room temperature 

S1P sphingosine-1-phosphate 

S1PR sphingosine-1-phosphate receptor 

SLB supported lipid bilayer 

SM sphingomyelin 

SMS sphingomyelin synthase 

Sph sphingosine 

TBAF tetrabutylammonium fluoride 

TBAI tetrabutylammonium iodide 
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TBS tert-butyldimethylsilyl  

TBTU 2-(1H-benzotriazole-1-yl)-1,1,3,3-tetramethylaminium tetrafluoroborate 

TCBC 2,4,6-trichlorobenzoyl chloride 

TES triethylsilyl 

TFA trifluoroacetic acid 

TFAA trifluoroacetic anhydride 

THF tetrahydrofuran 

TLC thin layer chromatography 

TMS trimethylsilyl 

TPAP tetrapropylammonium perruthenate 

TRPV transient receptor potential cation channel vanilloid 

UV ultraviolet 
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2   CHAPTER I 

  

1.1.  Introduction to Fawcettimine-Type Lycopodium Alkaloids 

1.1.1.  Lycopodium clubmosses 

The Lycopodium (senso lato) genus (family Lycopodiaceae) of clubmosses is a group of vascular 

plants characterized by their squat pine- or moss-like appearance, their small, narrow, uniform 

leaves and the distinct club-shaped strobili from which their name is derived (Figure 1.1).
[1]

 They 

are geographically wide-spread and species can be found on most continents, ranging from the 

Lycopodium clavatum of Central Europe and South Africa, to the Lycopodiella cernua of the 

Hawaiian islands and Southern China and the Diphasiastrum fawcettii of Jamaica. The historical 

designation ‘Lycopodium’ was broad and encompassed many extant clubmosses. More recent 

taxonomy has subdivided the Lycopodiaceae family into four main genera – Lycopodium, 

Lycopodiella, Diphasiastrum and Huperzia – with Huperzia now often sorted into a seperate 

Huperziaceae family.
[2]

 In many instances, however, the term Lycopodium (s.l.) is still retained 

when referring in general terms to these clubmosses.
[3]

 

                   

Figure 1.1.  Photograph by Christian Fischer (left)
[4]

 and Correvon’s illustration (middle) of the 

Lycopodium clavatum. Photograph by Jeferson Dutra (right)
[5] 

of Lycopodiella cernua showcasing the club-

shaped strobili.  

Lycopods are ancient species that developed amongst terrestrial plants in the Devonian era some 

380 million years ago.
[6]

 On a more contemporary timescale, clubmosses have been used as 

remedies and medicines throughout human history and territory. The Blackfoot tribes of the 

Albertan plains used a decoction of Lycopodium complanatum for the treatment of lung and 

venereal disease;
[7]

 Chinese medicinal practitioners since the Tang dynasty employed whole plant 

Huperzia serrata as the memory-enhancing remedy ‘Qian Ceng Ta’;
[8]

 and the German polymath 

Hildegarde von Bingam documented Lycopodium clavatum as a component for a medicinal tea 

treating a range of maladies.
[3]

 Though interest in the medicinal properties of lycopods has largely 

subsided during modern times, the scientific community is still intrigued by their archaic nature 

and bioactive properties. For synthetic chemists and phytochemists, the source of interest in these 

plants is undoubtedly their high alkaloidal content. It was from Lycopodium clubmosses that the 

complex Lycopodium alkaloids were first isolated.    
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1.1.2.  Classification and biosynthesis of Lycopodium alkaloids 

The Lycopodium alkaloids are a group of highly diverse basic metabolites recognizable by their 

fused polycyclic systems and crowded stereochemistry. Since the discovery of lycopodine in 

1881,
[9]

 they have been a subject of extensive investigation by chemists and a number of reviews 

have since been written on their isolation, applications and syntheses.
[2-3, 10-18]

 The Lycopodium 

alkaloids number over 300 members
[18]

 and feature great structural diversity, making a global 

method of classification non-trivial. A system put forth by Ayers and Trifonov has been distinctly 

favoured by chemists in the 21
st
 century.

[13]
 Ayer’s system sorts all alkaloids into four classes, 

each named after a representative parent molecule: lycopodine (1.1), lycodine (1.2), fawcettimine 

(1.3) and phlegmarine (1.4, also known as the miscellaneous class). The classes are displayed in 

Figure 1.2 with notable examples.  

  

Figure 1.2.  The four classes of Lycopodium alkaloids and representative examples. 

Lycopodine was the first Lycopodium alkaloid to be identified. Bödeker reported its extraction 

from Lycopodium complanatum in 1881
[9]

 and its molecular formula was determined by 

Achmatowizc and Uzieblo in 1932.
[19]

 Lycopodine-class molecules are characterized by their 

(generally) tetracyclic core of fused six-membered rings, their quinolizidine motifs, and a 

carbonyl or alcohol at the C5 position.
[14]

 Their complexity and variety have made them early and 

popular targets of total synthesis.
[20-29]
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Lycodine was first isolated by Anet and Eves in 1958 from the Lycopodium annotinum
[30]

 and its 

structure was elucidated by Ayer shortly afterward.
[31]

 Lycodine-type alkaloids resemble the 

lycopodine class with the notable feature that the A-ring has been rearranged to form a pyridine, 

pyridone or similarly oxidized piperidine system. Many of the most studied biologically-active 

Lycopodium alkaloids fall into this class. The most notable, huperzine A (1.5),
[32-33]

 acts as a 

potent acetylcholinesterase inhibitor and is often exhibited as a poster-child for Lycopodium 

bioactivity. It serves as a dietary supplement in America and is approved for therapeutic treatment 

in China.
[14]

   

Fawcettimine-type alkaloids are the class with which this thesis is most concerned. Fawcettimine 

was isolated from the Jamaican clubmoss Lycopodium fawcetii by Burnell and colleagues and was 

initially referred to as base A.
[34-35]

 Fawcettimine-class alkaloids are distinct in that the C4 atom is 

connected to the C12 atom rather than the C13 atom, resulting in a modified 5,6-bicyclic system 

and an azacyclononane ring. In addition, fawcettimine and many of its relatives exist either in a 

carbinolamine or keto-amine form, with the equilibrium generally favoring the closed 

carbinolamine.
[36]

 This flexibility, together with subsequent biosynthetic oxidations, has made the 

fawcettime class diverse and structurally convoluted. 

The miscellaneous class is a repository for molecules that do not fit neatly into the 

aforementioned categories. Although phlegmarine
[37]

 is often the representative example of the 

group, it has grown to include such unique skeletons as the nankakurines
[38]

 and lyconadins.
[39]

  

Biosynthetic studies into the origin of Lycopodium alkaloids have been hampered by the notorious 

difficulty of cultivating lycopods. Regardless, feeding experiments conducted by Spenser and 

colleagues with wild Lycopodium tristachyum using 
13

C- and 
14

C-labelled substrates have shed 

substantial light on the origin of these complex compounds.
[40-49]

 The biosynthesis (Scheme 1.1) 

begins with the decarboxylation of lysine (1.8) to cadaverine (1.9), followed by oxidation to 

5-aminopentanal and cyclization to Δ
1
-piperideine 1.10.

[50]
 Combination with acetonedicarboxylic 

acid
[47]

 or its coenzyme A  derivative (1.11) grants 1.112, and decarboxylation then confers 

pelletierine 1.13, an essential intermediate on the pathway to the Lycopodium alkaloids.
[43]

 The 

formation of pelletierine is followed by an oxidative dimerization and decarboxylation process to 

afford the phelgmarine (1.4) skeleton. As only a single unit of labeled pelletierine was directly 

incorporated into lycopodine during Spenser’s studies, the second unit is hypothesized to 

originate from another molecule of 1.12.
[42, 49]

  

The  phlegmarine backbone serves as the second key intermediate for the biogenesis of other 

Lycopodium alkaloids.
[37]

 Oxidation and cyclization afford lycodane (1.14) – though it is possible 

the structure is directly formed from pelletierine heterodimerization
[15]

 – and the tetracyclic core 

serves as the branching point for the remaining classes of alkaloids. Aromatization of the 

piperidine ring to a pyridine bestows lycodine 1.2 and its congeners, whereas oxidative 
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disconnection and recombination with the second nitrogen atom leads to lycopodine 1.1. Finally, 

a biogenetic origin of the fawcettimine class of alkaloids was proposed by Inubushi during his 

analysis of serratinine (1.15). The modified skeleton is thought to arise through an oxidative 

rearrangement of the lycopodine system.
[51]

 Oxidation at the C12 position gives lycodoline (1.16) 

and a pinacol-like rearrangement followed by hydration of iminium ion 1.17 produces the 

distinctive fawcettimine (1.3) ring system. 

 

Scheme 1.1.  Condensed biosynthesis of the Lycopodium alkaloids. 

1.1.2.  Bioactivity of Lycopodium alkaloids 

Studies into the bioactivity of the Lycopodium alkaloids have largely focused on select members 

of the family (Figure 1.3). Huperzine A, isolated from the traditional Chinese medicine Qian 

Ceng Ta (whole plant Huperzia serrata), is by far the most researched bioactive Lycopodium 

alkaloid. As a potent and selective acetylcholinesterase inhibitor (IC50 of 0.082 µM in rat 

cortex)
[52]

 it has been investigated for use in the treatment of Alzheimer’s disease.
[8]

 Interest in its 

efficacy, particularly in China, has led to the creation of derivatives and pro-drugs such as ZT-1. 

As the isolation of huperzine A was not patented, however, it is of limited interest to 

pharmaceutical companies in other countries.
[8]

 Complanadine A, a dimeric lycodine-type 
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alkaloid, has also drawn some attention for its ability to induce neurotrophic factor secretion from 

1321N1 cells.
[53-54]

 The fawcettimine-type alkaloids contain few members that have demonstrated 

bioactivity of interest. Sieboldine A has displayed acetylcholinesterase inhibition comparable with 

huperzine A (electric eel, IC50 of 1.6 µM) as well as modest cytotoxicity towards murine 

lymphoma L1210 cells (IC50 of 5.1 µM).
[55]

 Others, such as lycojapodine A, have demonstrated 

some anti-HIV activity.
[56]

 Overall, however, the biological potential of the class remains largely 

unexplored. 

 

Figure 1.3.  Examples of bioactive Lycopodium alkaloids. 

Regardless, the unmatched structures of Lycopodium alkaloids have proven a source of inspiration 

for the synthetic chemistry community. Many momentous accounts of lycopodine, lycodine and 

miscellaneous class alkaloid synthesis have been published. Acting within the constraints of this 

thesis, however, the following section will limit itself to the synthesis of fawcettimine class 

alkaloids, particularly those that exemplify historic and conceptual advances in the field. 

1.1.3.  Synthetic approaches to fawcettimine-type alkaloids 

Despite the middling bioactivity of the class, fawcettimine-type alkaloids have been prized by 

synthetic chemists for their exceptional complexity and compact dimensions. The first synthesis 

of a fawcettimine-type alkaloid was that of serratinine by Inubushi in 1974,
[57]

 followed in time by 

Inubushi’s and Heathcock’s seminal syntheses of fawcettimine proper. Though each subsequent 

synthesis has displayed its own unique tactics and eccentricities, a number of common strategies 

have emerged. They are divided here into four sections: conjugate addition approaches, Pauson–

Khand reaction approaches, cycloaddition approaches and pinacol/semi-pinacol rearrangement 

approaches. 
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1.1.3.1.  Conjugate Addition Approaches 

Due in part to the ready availability of cyclohexenone building blocks 1.18 and 1.19 – derived in 

enantioenriched form respectively from pulegone in a multi-step sequence
[58-59]

 or from 

organocatalytic Robinson annulations
[60]

 (Scheme 1.2) – conjugate addition approaches to 

fawcettimine-type alkaloids have consistently been favored by the synthetic community. The 

appeal of this strategy lies in the versatility and stereoselectivity of 1,4-addition early in the 

synthesis. The initial approach of the nucleophile is directed by the C5-substituent, and the 

subsequently generated enolate can be trapped by electrophiles or silylating agents to arrange the 

C2-position for ensuing C-C functionalization. 

 

Scheme 1.2.  Customary approaches to enantioenriched 2,4-substituted cyclohexenones. 

Heathcock’s synthesis of (±)-fawcettimine 

One of the earliest syntheses of fawcettimine, preceded only by that of Inubushi in 1979 (see 

Scheme 1.12 below), was conducted by the group of Heathcock in 1986 (Scheme 1.3).
[36, 61]

 

Though Inubushi’s synthesis had confirmed the gross structure of the natural product, 

Heathcock’s synthesis addressed questions concerning the stereochemistry of the C4 center and 

it’s bearing on carbinolamine formation. The synthesis began with racemic 1.20, used in 

Heathcock’s previous syntheses of lycodine
[22]

 and employed here in a highly face-selective 

Hosomi-Sakurai reaction to afford 1.21 in quantitative yield. A chromium-mediated allylic 

oxidation and successive Horner–Wadsworth–Emmons olefination/intramolecular Michael 

addition constructed the bicyclo[4.3.0]nonane system 1.22 of the molecule.  

 

Scheme 1.3.  Heathcock’s racemic synthesis of fawcettimine. 
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An Arndt–Eistert homologation, reduction and tosylation sequence set the stage for the nine-

membered ring formation – often a challenging aspect of fawcettimine-class alkaloid syntheses. 

Here, Heathcock used an SN2 displacement with a tosylamine 1.23 to form the azacyclononane 

1.24. Desulfonylation, oxidation to the ketone, and protection of the amine as the perchlorate salt 

was then followed by ozonolysis of the exo-methylene group. Treatment of the crude salt with 

sodium bicarbonate solution and standing in chloroform led to spontaneous epimerization of the 

C4 center and carbinolamine formation, concluding the synthesis of 1.3 in a concise fourteen 

steps. An X-ray crystal structure of the bromide salt of 1.3 then confirmed the configuration of the 

C4 position. 

Toste’s synthesis of (+)-fawcettimine 

The earliest enantioselective synthesis of (+)-fawcettimine was conducted by the group of Toste 

in 2007 (Scheme 1.4).
[62]

 As the first synthesis of this compound since Heathcock’s effort 21 

years earlier, it triggered renewed interest in the study of fawcettimine-group alkaloids during the 

ensuing decade. Toste first employed an organocatalytic cyclization originally developed by the 

Jørgensen group to build enantioenriched cyclohexenone 1.25.
[60]

 Conjugate addition of tin allene 

1.26 using TMSOTf provided silyl enol ether 1.27. A gold-catalyzed 5-endo-trig cyclization of 

the iodoacetylene, developed in the Toste laboratory,
[63]

 then yielded bicyclo[4.3.0]nonenone 

1.28. Acetalization, Suzuki-Miyaura coupling and iodination yielded cyclization precursor 1.29 

and carbamate alkylation mediated by KOtBu granted 1.30. The synthesis culminated with a 

deacetalization, hydroboration/oxidation and acidic cyclization to afford the natural product and, 

by optical rotation and crystal structure analysis of its hydrobromide salt, established its absolute 

configuration. 

 

Scheme 1.4.  Toste’s synthesis of (+)-fawcettimine by a gold(I)-catalyzed cyclization. 
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Ramharter and Mulzer’s synthesis of (+)-lycoflexine 

Ramharter and Mulzer’s synthesis of lycoflexine (1.31) stands – in terms of step count – as one of 

the most efficient syntheses of fawcettimine-type alkaloids to date (Scheme 1.5). Beginning with 

1.32, Sakurai addition and trapping of the enolate with acetaldehyde provided alcohol 1.33.
[64]

 

Oxidation and alkylation of the resulting β-diketone with iodide 1.34 furnished 1.35, and 

formation and elimination of an enol triflate yielded alkyne 1.36. A high-dilution one-pot ene–

yne/ring-closing metathesis and chemoselective reduction of the disubstituted olefin using the 

same ruthenium catalyst formed the tricylic carbon skeleton 1.37 of fawcettimine in a single 

transformation. Hydroboration and complementary iodoxybenzoic acid (IBX) oxidation followed 

by a Mannich cyclization with formaldehyde completed the synthesis of (+)-lycoflexine. When 

the hydroboration/oxidation product was treated with TMSCl in methanol, fawcettimine could be 

generated instead.
[65]

 

  

Scheme 1.5.  Ramharter and Mulzer’s concise synthesis of (+)-lycoflexine. 

Lei’s synthesis of (−)-serratezomine A, (−)-serratinine and (+)-8α-hydroxyfawcettimine  

The Lei laboratory has engaged in the synthesis of many fawcettimine-type alkaloids, with a 

particular emphasis on those with unusual degrees of oxidation that can be formed in short order 

through Michael addition approaches. A notable example (Scheme 1.6) is the syntheses of 

(−)-serratezomine A (1.38), (−)-serratinine (1.15) and (+)-8α-hydroxyfawcettimine (1.39) (as well 

as (−)-lycoposerramine U, not shown here).
[66]

 Building block 1.40 − possessing an extra 

β-hydroxy group at the C4-position relative to previously shown examples − was synthesised on 

multi-gram scale from (+)-carvone. Conjugate addition of allyl cuprate, trapping of the enolate 

with aldehyde 1.41 and oxidation of the aldol product afforded β-keto enol 1.42. Intramolecular 

cyclization proceeded with limited O-alkylation (13%) to form the 9-membered ring of 1.43, 

which constitutes the branching point of the divergent synthesis.  Transformation of the terminal 

olefin to carboxylic acid 1.44 and a one-pot lactonization/deprotection/reductive amination 

sequence afforded both (−)-1.38 and its C4-epimer. Conversely, 1.43 could be converted directly 

to an aldehyde and the cyclopentanone 1.45 formed by benzoin condensation with an NHC 
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precatalyst.
[67]

 Intramolecular SN2 reaction and simultaneous silyl ether deprotection with thionyl 

chloride could be followed either by treatment with sodium borohydride or reductive cleavage 

with samarium diiodide to afford 1.15 and 1.39, respectively. 

 

Scheme 1.6.  Lei’s divergent synthesis of (−)-serratezomine A, (−)-serratinine and (+)-8α-

hydroxyfawcettimine. 

Hartrampf and Trauner’s synthesis of (−)‐lycoposerramine R 

Very recently, Hartrampf and Trauner accomplished a concise synthesis of the 

pyridone-containing alkaloid (−)‐lycoposerramine R (1.46) using a conjugate addition strategy 

partnered with a powerful Conia-Ene-type reaction (Scheme 1.7).
[68]

 Suzuki-Miyaura coupling 

with enantioenriched building block 1.47
[59-60]

 and conjugate addition of trimethylsilyl-3-butynyl 

magnesium bromide produced alkyne 1.48. A novel base-mediated Conia-Ene-type cyclization 

allowed formation of the quaternary stereocenter of 1.49 without necessitating prior activation at 

the C2-position. Allylic oxidation with selenium dioxide and subsequent treatment with Dess-

Martin periodinane gave enone 1.50, which was then reacted with N-carbamoylmethylpyridinium 

chloride in a modified Kröhnke pyridine synthesis.
[69]

 A final reductive amination provided the 

natural product in an efficient seven steps from 1.47. A similar strategy was thereafter used to 

synthesize both lycopladine A and carinatine A.
[70]
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Scheme 1.7.  Hartrampf and Trauner’s synthesis of (−)‐lycoposerramine R by Conia-ene-type cyclization. 

1.1.3.2.  Pauson–Khand Approaches 

The Pauson–Khand reaction has proven to be of great value in the construction of hydroindanone 

cores of fawcettimine-type alkaloids, in part due to the exquisite diastereoselectivity of the 

reaction which can be finely tuned by the substitution pattern of its linear precursor. Prior to its 

use in natural product synthesis, Mukai and coworkers had comprehensively investigated the 

construction of bicyclo[4.3.0]nonenone systems by means of Pauson–Khand cyclizations.
[71-72]

 An 

eventual conclusion of this work was that the diastereoselectivity of the reaction is dictated by a 

pseudo-chair-like conformation based on the substituents of the linear precursor (Scheme 1.8). 

Often, the substituents adopt pseudo-equatorial positions and the reacting olefin orients itself to 

minimize pseudo-diaxial interactions. Bulkier substituents in close proximity to each other, on the 

other hand, would adopt axial positions to minimize steric interactions. This same principle has 

been employed throughout fawcettimine-type alkaloid synthesis using Pauson–Khand reactions. 

 

Scheme 1.8.  Mukai’s deductions on the diastereoselectivity of Pauson-Khand reactions to form 

bicyclo[4.3.0]nonenone systems. 
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Cassayre and Zard’s synthesis of (±)-13-deoxyserratine 

An early and particularly powerful use of the Pauson–Khand reaction in fawcettimine-type 

alkaloid synthesis was employed by Cassayre and Zard in the synthesis of 13-deoxyserratine 

(1.51).
[73]

 Though 1.51 differs from the natural product serratine by a single hydroxyl group, its 

intriguing amidyl radical approach warrants inclusion in this section (Scheme 1.9). Allyl Grignard 

addition, silyl protection and alkyne alkylation from 5-hexyn-2-one 1.52 generated Pauson–

Khand precursor 1.53. The high diastereoselectivity of the ensuing Pauson-Khand reaction (93:7 

in favor of 1.54) is believed to be derived from the pseudo-equatorial orientation of the bulky silyl 

ether in the alkyne-Co2(CO)6 complex, thus orienting the vinyl group with its internal proton 

downwards so as to minimize steric interactions. The synthesis continued with elaboration to allyl 

amide 1.55 as a precursor to an amidyl radical cascade initiated by homolytic cleavage of the N-O 

bond. Initial attempts at the reaction had demonstrated that an olefinic trap lacking a chloride 

substituent would lead to an unwanted 5-exo/5-exo cyclization cascade product. The vinyl 

chloride blocked this mode of reaction to give the desired 5-exo/6-endo cyclization product 1.56 

and was easily removed in the same operation by the addition of a second equivalent of tin 

hydride to the reaction mixture. Final deprotection and reduction of the amide afforded 1.51 in a 

concise manner. 

  

Scheme 1.9.  Cassayre and Zard’s synthesis of 13-deoxyserratine 

Mukai’s synthesis of (−)-magellanine, (+)-magellanone and (+)-paniculatine 

Using the conclusions gleaned in their earlier studies on Pauson-Khand reactions, Mukai and 

colleagues conducted a unified synthesis of magellanine (1.57), magellanone (1.58) and 

paniculatine (1.59) (Scheme 1.10).
[74]

 These three intriguing fawcettimine-type alkaloids were 

isolated from the Lycopodium paniculatum by Castillo and MacLean and feature a piperidine ring 

in a fused tetracyclic framework.
[75-76]

 The authors first improve upon previous Pauson–Khand 

conditions with 1.60
[71]

 to afford 1.61 with good diastereoselectivity and yield. The quaternary 

stereocenter of the molecule is then constructed by means of a Ueno-Stork reaction and 
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simultaneous radical allylation to bestow 1.62. Elaboration to alkyne 1.63 sets the stage for a 

second Pauson-Khand reaction to give cyclopentenone 1.64 with good selectivity. Construction of 

the piperidine ring using Overman’s precedent
[77]

 and extensive modification of functional groups 

then gave access to all three optically-active natural products. Mukai and colleagues have also 

employed Pauson–Khand reaction strategies in the synthesis of (+)-fawcettimine and (+)-

lycoposerramine B,
[78]

 and racemic fawcettidine, lycoflexine, and lycoposerramine Q.
[79]

 

 

Scheme 1.10.  Mukai’s unified synthesis of (−)-magellanine, (+)-magellanone and (+)-paniculatine 

Takayama’s synthesis of (−)-huperzine Q 

The group of Takayama has synthesized a number of fawcettimine-class alkaloids by Pauson-

Khand strategies, including lycoposerramine C and phlegmariurine A.
[16, 80]

 A particularly 

compelling illustration of the reaction’s versatility is displayed in the group’s synthesis of 

huperzine Q (1.65) (Scheme 1.11). The C16 methyl group of this alkaloid has been oxidized to 

bring about a ring-flipped spiroaminal ether, and the synthesis of Takayama uses this extra degree 

of oxidation to its advantage. A five-step sequence from 1.66 involving an asymmetric Noyori 

reduction and diastereoselective allylation affords chiral eneyne 1.67. A Pauson–Khand reaction 

directly from 1.67 resulted in the incorrect stereochemistry at the C7 position due to the hydroxyl 

and hydroxymethylene substituents adopting pseudo-equatorial positions. However, pinning the 

hydroxy groups together with a silyl tether forced the substituents to adopt pseudo-axial positions 

during a subsequent PKR through intermediate 1.68 and conferred 1.69 with the desired 

stereochemistry at C7. The silylation/PKR/desilylation process could be performed in a single 

high-yielding one-pot procedure. Following conversion of 1.69 to the fawcettimine-like 

carbinolamine 1.70, a high-temperature acid-catalyzed isomerization with anhydrous 
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(+)-camphorsulfonic acid then constructed the spiroaminal and completed the asymmetric 

synthesis of 1.65. 

 

Scheme 1.11.  Takayama’s synthesis of (−)-huperzine Q using a silyl ether-tethered PKR precursor. 

1.1.3.3.  Cycloaddition Approaches 

A number of groups have employed pericyclic reaction to great effect either by using relatively 

early-stage Diels−Alder reactions to access the carbocyclic fawcettimine core or by employing 

later-stage dipolar cycloadditions to form otherwise inaccessible heterocycles.     

Inubushi’s synthesis of (±)-fawcettimine 

The first synthesis of fawcettimine was conducted racemically by the group of Inubushi in 1979 

(Scheme 1.12);
[81-83]

 this same group also performed the first synthesis of any fawcettimine-type 

alkaloid five years earlier when (±)-serratinine 1.15 was constructed through a Diels–Alder/ 

aziridination strategy.
[57]

 Before the advent of pulegone- or organocatalytic-based syntheses of 

cyclohexenone 1.25, this building block had to be prepared racemically in a multi-step sequence 

from 5-methylcyclohexane-1,3-dione.
[82]

 A Diels−Alder reaction with butadiene afforded cis-

decalin 1.71 in modest yield with approach of the diene opposite the C5 methyl substituent.  

Acetalization, hydroboration/oxidation and benzyl protection to 1.72 were followed by oxidative 

cleavage of the cis-olefin to dialdehyde 1.73.  The regioselectivity of the subsequent aldol 

condensation proved difficult to direct and, after significant experimentation, the group found that 

a combination of morpholine and camphoric acid followed by Horner–Wadsworth–Emmons 

reaction gave conjugated nitrile 1.74. After transformation of the nitrile to carbamate 1.75, the 

problematic nine-membered ring of 1.76 was constructed through activation of an ensuing acid 

with N-hydroxysuccinimide, carbamate and acetal removal with TFA, and basic lactamization at 

elevated temperature and high dilution. An additional ten steps were required to reduce the 

lactone and install a second ketone by epoxidation of the olefin and Lewis acid-mediated opening 

to the enone. Alternatively, Inubushi synthesized 8-deoxyserratinine by opening the same epoxide 

in a transannular fashion with the pendant amine.  



TOTAL SYNTHESIS OF (+)-LYCOPALHINE A  15 

 

 

Scheme 1.12.  Inubushi’s synthesis of (±)-fawcettimine by a Diels−Alder/aldol condensation strategy. 

Yen and Liao’s synthesis of (±)-magellanine 

Yen and Liao’s efficient synthesis of racemic magellanine (1.57) includes both cycloaddition and 

rearrangement key steps. The synthesis (Scheme 1.13) opens at a fast pace with a Diels−Alder 

reaction between cyclopentadiene and a masked o-benzoquinone generated from hypervalent 

iodine-mediated dearomatization of acetovanillone 1.77 to form 1.78. The Diels−Alder was 

followed by a markedly high-yielding light-induced oxa-di-π-methane rearrangement to form the 

triquinane skeleton 1.79.
[84]

 Many key contiguous stereocenters of magellanine, including the 

quaternary carbon, were thereby formed in only two steps from inexpensive starting materials. A 

series of transformations converted the tetracycle to ketone 1.80. The silyl enol ether generated 

from 1.80 could then undergo cyclization to methylcyclopentenone 1.81 by means of a oxo-α-

allylpalladium(II) complex.
[85]

 A final oxidative cleavage to the dialdehyde and dual reductive 

amination then afforded 1.57 in a concise 14 steps and an efficient 9% overall yield. 
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Scheme 1.13.  Yen and Liao’s synthesis of (±)-magellanine by Diels-Alder/ di-π-methane rearrangement. 

Fukuyama’s synthesis of (−)-lycoposerramine S 

Lycoposerramine S (1.82) is an unusual fawcettimine-type alkaloid in that the incorporation of a 

second  nitrogen atom and new  N2’-C5 connectivity has resulted in a heavily-substituted 

pyrrolidine unit.
[86]

 In 2008, the group of Fukuyama reported the first and only total synthesis of 

this natural product using an azomethine ylide cycloaddition strategy (Scheme 1.14).
[87]

 

Following anionic addition of iodide 1.83 to chiral lactone 1.84 and subsequent Ley oxidation, 

condensation with auxiliary-bound amino ester 1.85 resulted in a stabilized azomethine ylide.  

The morpholinone auxiliary directed the facial selectivity of the ensuing intramolecular 

1,3-dipolar cycloaddition with the activated enone to set four stereocenters in a single 

transformation. Pyrrolidine 1.86 was converted to alcohol1.87 by reductive cleavage of the 

auxiliary and selective elimination of a secondary alcohol. Thioester formation and a 5-exo-trig 

radical cyclization then granted the molecule’s second carbocycle to form 1.88. A short sequence 

involving simultaneous bismesylate displacement with 4-nitrobenzenesulfonamide and 

desulfonylation/methylation thereafter yielded lycoposerramine S. 

 

Scheme 1.14.  Fukuyama’s synthesis of (−)-lycoposerramine S by azomethine ylide cycloaddition. 
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Zhang’s synthesis of (±)-palhinine A and (±)-palhinine D 

Important recent syntheses of fawcettimine-type alkaloids palhinine A (1.89) and D (1.90) were 

conducted by the group of Zhang (Scheme 1.15).
[88]

 Both palhinines possess an additional degree 

of oxidation at the C16 position which has resulted in a C4-C16 bond and a bicyclo[2.2.2]octane 

system, granting these molecules architectures distinct from other Lycopodium alkaloids.
[89-90]

 

Zhang’s synthesis began with the construction of cycloaddition precursor 1.92 from 

cyclohexenone 1.91. The bicyclooctane core 1.93 of the molecule was generated by an 

intramolecular Diels–Alder between a derived silyl enol ether and the tethered olefin to form two 

contiguous quaternary stereocenters.
[91]

 The group encountered great difficulty in forming the 

nine-membered ring ring of the target molecule; the dilemma was solved by an ingenious 

[3 + 2]-nitrone cycloaddition from 1.94 to form azanonane 1.95 and simultaneously install the 

C3-hydroxyl group, albeit with inverted configuration compared to the targeted palhinines. 

Oxidation and protecting group manipulation was therefore all that was necessary to afford 1.89 

and 1.90. 

 

Scheme 1.15.  Zhang’s synthesis of (±)-palhinine A and (±)-palhinine D. 
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1.1.3.4.  Pinacol and Semi-Pinacol Rearrangement Approaches 

The final strategies discussed in this section are those featuring pinacol-type rearrangements. 

These syntheses generally involve the formation of the sole quaternary stereocenter of the 

fawcettimine-type system through reactions of this family. 

Overman’s synthesis of (–)-magellanine 

The Overman group has employed complex pinacol and semi-pinacol rearrangements in the 

syntheses of many natural product, and the Lycopodium alkaloids are no exception. One of the 

earliest and most striking examples was adopted during the first synthesis of the megallanane 

alkaloids (Scheme 1.16).
[77]

 Starting from bicyc1o[3.2.0]heptenone 1.96, a nucleophilic bisthiol 

addition and ring expansion, reductive desulfynation and iodination granted bicyc1o[3.3.0]octene 

1.97. Lithium/halogen exchange and addition to chiral ketone 1.98, silylation, oxidation and 

acetal formation then bestowed diene 1.99. Treatment with Lewis acid initiated the key Prins–

pinacol-terminated cationic cascade proceeding along on the convex face of the bicyc1ooctene to 

form the lower three carbocycles of 1.100. The characteristic piperidine ring of the alkaloid was 

made through Lemieux–Johnson cleavage of the cyclopentene ring and double reductive 

amination to 1.101. Finally, incorporation of a methyl group yielded (−)-magellanine 1.57. (+)-

Magellanone (1.58) could be synthesized subsequently by oxidation of the alcohol. 

 

Scheme 1.16.  Overman’s synthesis of (–)-magellanine by a Prins–pinacol-terminated cationic cascade. 

Overman’s synthesis of (+)-sieboldine A 

The natural product sieboldine A (1.6) is notable both for its potent ability to inhibit 

acetylcholinesterase inhibition – comparable to that of racemic huperzine A – as well as its 

uniquely oxidized azanonane system featuring an N-oxide-N,O-acetal.
[55]

 The first 

enantioselective total synthesis of the molecule was conducted by the Overman laboratory 

(Scheme 1.17) using a semi-pinacol rearrangement-terminated gold(I)-promoted cyclization
[92]
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after exploring a series of pinacol-type rearrangements.
[93]

  Enantiopure 1.102
[94]

 was transformed 

into eneyne 1.103 in preparation for the key cyclization. A pinacol-terminated cyclization cascade 

first investigated by Kirsch and coworkers
[95]

 afforded hydroindanone system 1.104. One-pot 

ozonolysis and elimination of phenol followed by Eu(III)-promoted cyclocondensation with ethyl 

vinyl ether to 1.105 provided the final required carbons. Reduction, face-selective oxidation of the 

enol ether and treatment with ethyl mercaptam under Lewis acidic conditions gave stable 

thioacetal 1.106, which could be elaborated by incorporation of hydroxylamine into the final 

alkaloid 1.6.  

  

Scheme 1.17.  Overman’s synthesis of (+)-sieboldine A by a gold(I)-promoted cyclization. 

Tu’s synthesis of (±)-alopecuridine and (±)-sieboldine A 

In contrast with Overman, Tu’s synthesis of sieboldine A (Scheme1.18) uses a biomimetic route 

to the alkaloid through a closely-related alkaloid, alopecuridine (1.107).
[96]

 Tu likewise employed 

a semi-pinacol strategy in the construction of the molecule, but in this scenario used the 

transformation to expand the desired nine-membered ring rather than form the hydroindanone 

system. The convergent synthesis began with the construction of fragment 1.108 from racemic 2-

iodocyclohexenone 1.47. Addition of the cerium salt to ketone 1.110 (produced from 

commercially-available azepine 1.09) and epoxidation of the tri-substituted olefin afforded the 

rearrangement precursor 1.111 and 1.112 as a mixture of diastereomers. The semi-pinacol 

rearrangement occurred cleanly to afford the azacyclonane 1.113. Protection and ozonolysis of the 

terminal alkene followed by SmI2-mediated pinacol coupling provided the final C-C bond, and 

1.114 could be converted to alopecuridine 1.107 in few additional steps. The final transformation 

of 1.107 to 1.6, based on the biosynthetic proposal of Kobayashi et al.,
[55]

 involved a peroxide-
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based oxidation of the amine to the N-oxide, a Polonovski-type elimination and further oxidation 

to the nitrone. Nucleophilic trapping by the tertiary alcohol then yielded sieboldine A. 

 

Scheme 1.18.  Tu’s synthesis of (±)-alopecuridine and (±)-sieboldine A using a semi-pinacol 

rearrangement.  

Many more synthetic methods have been and continue to be developed to perform ever-more 

concise routes to fawcettimine-type alkaloids. These syntheses, however, were particularly 

instructive in our strategy towards one such complex alkaloid, lycopalhine A.  

 

1.1.4. Lycopalhine A In 2012, Zhao and coworkers reported the isolation of a highly oxidized 

fawcettimine class alkaloid, lycopalhine A (1.7, Figure 1.4), as a white gum from whole plant 

Palhinhaea cernua (syn. Lycopodiella cernua).
[97]

 At the time of its discovery, lycopalhine A was 

the only known Lycopodium alkaloid with C9-N2’ and C6-C16 connections, and was one of only 

a few to feature a C3-N2’ bond. In early 2016, the group of Zhao reported the isolation of 

obscurumine H (1.115) and I (1.116), alkaloids which featured congruent C9-N2’ linkages but 

lacked the extra C6-C16 bond.
[98]

 Lycopalhine A demonstrated mild butyryl cholinesterase 

inhibition and no acetyl cholinesterase inhibition, but due to its unusual oxidation pattern and ring 

systems struck us as a considerable synthetic challenge.   
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Figure 1.4.  a) Photograph of Palhinhaea cernua (syn. Lycopodiella cernua) by Henry Oppenheimer, 

reproduced here with his permission,
[99]

 and b) lycopalhine A and closely related alkaloids. 

Lycopalhine A is hypothesized by to be biogenetically derived from obscurinine (1.117) 

(Scheme 1.19) and the two compounds were isolated together from the whole plant extract. Zhao 

proposed that oxidation of C16 and reduction of the cyclohexenone leads to intermediate 1.118. 

An aldol reaction then forges bicyclo[3.3.0]octanol 1.119. Reduction of the imine and N-oxide 

formation yields 1.120 and a Polonovski-type oxidation to 1.121 with successive nucleophilic 

closure to the aminal gives 1.7.  

  

Scheme 1.19.  Zhao’s proposed biosynthesis of lycopalhine A from obscurinine 

Due to its intricate, tightly-fused framework and its intriguing biosynthetic origin, we became 

interested in performing a concise synthesis of lycopalhine A.  Our efforts to construct this 

complex fawcettimine-type base, as well as unpublished results towards similarly complex 

fawcettimine-type alkaloids, are contained within the next sections. 
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1.2.  The Total Synthesis of Lycopalhine A 
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1.3.  Synthetic efforts towards the Palhinine D ring system 

1.3.1. X-ray crystal structures of compounds 10 and 17  

Following the total synthesis of lycopalhine A and the publication of our results, the crystal 

structure of two key intermediates, 10 and 17 (Figure 1.5, numbering from Angew. Chem. Int. 

Ed. 2016, 55, 2191), were resolved by X-ray analysis. A sample of bicycle 17 had been left 

dissolved in diethyl ether and stored in the –35 °C freezer for several months Square crystals 

began to form and were collected for analysis. Compound 10 was submitted to identical 

conditions and a crystal structure of this compound was also analyzed. These crystal structures 

reinforce the relative stereochemistry of the intermediates and, by extension, the stereoselectivity 

of the PKR and conjugate addition reaction. 

 

Figure 1.5.  Molecular structures of compounds 10 and 17 as confirmed by X-ray crystallography. 

1.3.2. Efforts towards the skeleton of Palhinine B  

With the synthesis of lycopalhine A complete, we sought to apply our synthetic approach to other 

fawcettimine-type molecules possessing new connectivity at the C16 position. Of particular 

interest to our group was the palhinine subfamily of Lycopodium alkaloids. Palhinine A (1.89) and 

isopalhinine A (1.122) (Scheme 1.20) were recently isolated from the Palhinhaea cernua by the 

group of Zhao
[89-90]

 and palhinine D (1.90, formerly palhinine B) was isolated by the group of Yu 

from the Lycopodium japonicum.
[100]

 Their unique C4-C16 connectivity is believed to arise either 

from an intramolecular displacement (as proposed by Zhao) or an aldol reaction (as proposed by 

Yu) of a C16 oxidized precursor. Inspired by this biogenetic pathway, we believed a route from 

our previously synthesized bicycle 17 could deliver these complex skeletons in a concise 

synthesis. Nucleophilic displacement of a sulfonyl leaving group at C16 by a β-diketone, 

generated in turn from a Dieckmann condensation of 1.124, would form the key 

bicyclo[2.2.2]octane system 1.123. 1.124 could in turn be accessed from 17 by an aza-Michael 

reaction and a reductive amination.  
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Scheme 1.20.  a) Members of the palhinine subfamily, b) proposed biosynthetic formation of the C4-C16 

bond, c) our retrosynthetic approach to the palhinine D skeleton. 

The following work towards tricycle 1.124 was conducted with the assistance of M.Sc. intern 

Simon Schnell. Our synthesis began once more with bicycle 17 (Scheme 1.21). Lemieux-Johnson 

oxidative cleavage of the terminal olefin gave a 1:1 mixture of the open aldehyde 1.125 and the 

cyclized carbinolamine 1.126. Treatment with acetic acid at ambient temperature promoted full 

cyclization to the lactamol and immediate dehydration to enamide 1.127, which could be 

hydrogenated using standard conditions to tricycle 1.128. 

   

Scheme 1.21. Reductive cyclization to tricycle 1.128. 
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The entire sequence could be condensed in an efficient two-step protocol that afforded tricycle 

1.128 in excellent yield (Scheme 1.22). Global deprotection of 1.128 to 1.129 was accomplished 

using acetyl chloride in methanol, and the structure of 1.129 was confirmed by X-ray analysis of 

the hydrochloride. 

 

Scheme 1.22. Streamlined synthesis of 1.128 and deprotection to amine 1.129. 

A number of conditions for the aza-Michael addition of acrylates to 1.129 were investigated 

(Table 1.1). Though many conventional conditions were unable to grant the desired tertiary 

amine, excellent results were attained using DBU as a base in acetonitrile at higher temperatures.  

Table 1.1.  Aza-Michael reaction conditions for the addition of acrylates to amine 1.124. 

 

Entry Base Solvent T (°C) R Yield
a 

1 Et3N THF RT Me / 

2 K2CO3 MeCN 82 °C Me / 

3 KOtBu THF 0 °C → RT tBu / 

4
b 

DBU MeCN 70 °C Me 86% 

5
c 

DBU MeCN 70 °C Me 93% 

[a] Isolated yield. [b] 0.025 mmol scale. [c] 0.324 mmol scale. 

With ester 1.124 in hand, we began exploring conditions for the Dieckmann condensation to 

tetracycle 1.130. The use of bases such as KOtBu, NaOMe and LiHMDS led only to recovery of 

the starting material or decomposition. An excess of sodium hydride in toluene at elevated 

temperatures, conversely, gave rise to a new compound. Rather than granting the desired 

azaheptanone, however, these conditions had led to transesterification between the unprotected 

alcohol and the methyl ester, presumably through the alkoxide. Indeed, the structure of the 

crystalline solid according to X-ray analysis indicated that two units of tricycle had dimerized to 

form 18-membered lactone 1.131. 
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Scheme 1.23.  Attempts at the Dieckmann condensation to 1.130 and lactonic homodimerization to 1.131.  

To avert this lactonization, 1.124 was protected as tert-butyldimethylsilyl ether 1.132 (Scheme 

1.24). Resubmitting the reaction to the previous basic conditions yielded only starting material. In 

polar solvents such as methanol, gradual retro-aza-Michael reaction was observed.  

   

Scheme 1.24.  Attempts at the Dieckmann condensation with TBS-protected alcohol 1.132. 

As it appeared that the cyclization required a more active electrophile, we opted to form the 

seven-membered ring through an intramolecular aldol reaction. The groups of Heathcock
[101]

 and 

Carter
[102]

 had previously used a one-pot Oppenauer oxidation/aldol condensation sequence to 

form the azahexene ring in syntheses of lycopodine, and we hypothesized the added reactivity of 

an aldehyde towards enolate addition might allow successful functionalization at C4. We 

synthesized 1.135 by TBS-protection and N-alkylation (Scheme 1.25). Unfortunately, the 

oxidation/aldol conditions led to decomposition of the material. HPLC-MS of the crude sample 

indicated formation of some retro-aza-Michael product, suggesting that the oxidation to 1.136 was 

successful but the cyclization to 1.137 did not proceed as planned. 
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Scheme 1.25.  Attempted Oppenauer oxidation/aldol condensation to the seven-membered ring. 

We returned to Pauson–Khand product 10 in a final attempt to functionalize the C4 position 

directly following conjugate addition to the enone. When the 1,4-addition of 

homoallylmagnesium bromide to 10 was worked up with pH 7 phosphate buffer rather than with 

acetic acid, crude silyl enol ether 1.138 could be isolated reasonably cleanly without the use silica 

gel chromatography (Scheme 1.26). However, Mukaiyama aldol reactions to 1.139 with this 

hindered enol were unsuccessful with a number of aldehydes and Lewis acids. Attempts to acylate 

the position directly by lithium-silyl exchange and treatment with Mander’s reagent led instead to 

1.140 through acylation of the N-acyl anion. The silyl enol ether could be successfully brominated 

to give a separable mixture of 1.141 and 1.142, whose relative stereochemistry was determined by 

NOESY correlations. However, attempts to convert either diastereomer to 1.139 by Reformatsky 

reaction were also unsuccessful. As it was becoming clear that the formation of the seven-

membered ring or C-C bond formation at the C4 position would require revising our strategy, we 

opted to focus our efforts on other projects. 

Scheme 1.26.  Attempts to alkylate or acylate the C4 position of 1.138 
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2.1. Introduction to Dendrobine  

2.1.1. Dendrobine and the Orchidaceae alkaloids 

Alkaloids extracted from members of the Orchidaceae family are as varied and as elegant as the 

plants from which they originate. They include complex pyrrolidines, such as dendrobine (2.1); 

indolizidines, such as crepidine (2.2);
[103]

 cyclobutanes, such as dendrowardol C (2.3);
[104]

 

quinazolinones, such as phaitanthrin E (2.4);
[105]

 and intricate pyrrolizidines, such as kumokirine 

(2.6)
[106]

 (Figure 2.1). Of these, dendrobine in particular has found itself a frequent participant in 

the labours of synthetic chemistry. A lactonic sesquiterpenoid base isolated from the orchid 

Dendrobium nobile, dendrobine has been the subject of 8 total syntheses, 5 formal syntheses, and 

innumerable attempts towards its deceptively simple core.  

 

Figure 2.1.  Alkaloids isolated from members of the Orchidaceae family. 

Dendrobine was first isolated from the Dendrobium nobile (Figure 2.2.a) by Suzuki and 

coworkers in 1932, who initially reported the extraction of a base with chemical formula 

C16H25O2N from the orchid-derived Chinese medicinal tonic ‘Chin-Shih-Hu’.
[107-108]

 It was not 

until the substantial degradative and spectroscopic work of Inubushi in 1964, however, that the 

tetracyclic structure was correctly elucidated and the stereochemistry firmly established.
[109-110]

 

Although dendrobine is the most abundant and most commonly encountered of the 

sesquiterpenoid alkaloids isolated from the D. nobile, over 20 closely-related molecules with 

additional layers of oxidation have been identified in this plant and similar orchids.
[111]

 Important 

examples include dendramine (2.7),
[109]

 2-oxodendrobine (2.8, mubironine A),
[112]

 nobiline 

(2.10),
[113]

 dendroxine (2.11),
[114]

 dendrine (2.12)
[115]

 and mubironine C
[112]

 (Figure 2.2.b). 
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Figure 2.2.  a) the Dendrobium nobile LINDL (photograph taken by the author at a local gardening store) 

and b) a selection of related alkaloids with additional oxidation or functionality (in red) relative to 

dendrobine. 

A large portion of these alkaloids have been synthesized through partial synthesis from 2.1, 

including nobiline, dendrine,
[116]

 and 2-hydroxydendobine. However, total syntheses of these 

molecules from commercially available starting materials remain infrequent, with a notable 

exception of Yamada’s synthesis of 2-hydroxydendrobine and nobiline.
[117]

 

2.1.2. Biosynthesis and Bioactivity of Dendrobine 

Dendrobine shares its biogenesis with the picrotoxane family of sesquiterpenes, of which 

picrotoxinin (2.14)
[118]

 (Scheme 2.1), a potent non-competitive GABAA inhibitor,
[119-120]

 and tutin 

(2.15),
[121]

 a toxic glycine receptor antagonist,
[122]

 are the most well-known members. The 

biosynthesis of the Dendrobium alkaloids (Scheme 2.1) has been illuminated by labelling studies 

performed by the laboratories of Yamazaki,
[123]

 Edwards
[124]

 and Jommi,
[125-126]

 as well as by 

studies on tutin biogenesis by Biollaz, Arigoni
[127]

 and Jommi.
[128-129]

 

  

Scheme 2.1.  Important picrotoxanes (left) and proposed biosynthesis of dendrobine (right).  
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Yamazaki first documented the incorporation of labelled mevalonic acid into dendrobine upon 

administration of 2-
14

C-sodium mevalonate to Dendrobium nobile stems,
[123]

 thereby confirming 

that the biogenesis of the alkaloid follows the standard sesquiterpene pathway. According to 

Yamazaki’s proposal, farnesyl pyrophosphate 2.17, generated from mevalonolactone 2.16, 

undergoes cationic cyclization to the cadalane skeleton 2.19 and subsequent rearrangement to the 

bicyclononane skeleton 2.20 of the picrotoxanes. Oxidation to 2.21 and incorporation of ammonia 

or methylamine then provides dendrobine.  These findings were further substantiated by Edwards’ 

labelling studies using 4-
14

C-mevalonate.
[124]

  

A closely related biogenetic hypothesis was put forth by Jommi, one reviewer of Edwards’ 

manuscript, and more recently by Li et al.
[130]

 based on isolated biosynthetic intermediates 

(Scheme 2.2). In this instance, cadalane skeleton 2.19 rearranges directly to copacamphane-like 

tricycle 2.22. Baeyer–Villager-type oxidation to 2.24 and lactone opening are then responsible for 

formation of bicyclononane 2.25. As before, late-stage oxidation and incorporation of ammonia 

by a variety of enzymes, principally cytochrome P450s and aminotransferases, are posited to 

grant the highly oxidized core.
[130]

 

 

Scheme 2.2.  Alternate proposal for the biosynthesis of 2.1. 

The picrotoxane family is noted for its sophisticated bioactivity and dendrobine is no exception. 

The dried stems of the Dendrobium nobile, known in China as ‘Chin-Shi-Hu’ and in Japan as 

‘Sekkuko,’ have been used as a medicinal tonic for hundreds of years.
[131]

 In 1935, Chen and Chen 

conducted extensive pharmacological studies on dendrobine hydrochloride.
[132-133]

 They found the 

alkaloid possessed moderate analgesic effects in frogs and mice lower than that of amidopyrine, 

produced moderate hyperglycemia in rabbits, diminished the cardiac activity of frogs, lowered the 

blood pressured of etherized cats, paralyzed rabbit intestines, contracted Guinea pig uteri, and 

produced death preceded by convulsions in frogs, mice and rabbits. In 1983, Yamada tested the 

neuropharmacological effects of dendrobine on isolated spinal cords of frogs.
[134]

 Dendrobine 

blocked presynaptic inhibition and hyperpolarized dorsal and ventral roots in a manner 

reminiscent of strychnine. The alkaloid also displayed an antagonistic effect on β-alanine and 

taurine but, unlike picrotoxinin, exhibited little inhibitory activity on glycine- and GABA-induced 

depolarizations. Recent research suggests dendrobine also possesses moderate antiviral activity 

against some strains of influenza A.
[135]
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2.1.3. Total syntheses of Dendrobine 

The compact frame of dendrobine has often served as a showcase for new chemical 

methodologies or a demonstration of insightful retrosynthetic planning. As a result, there have 

been a great number of total and formal syntheses of dendrobine since Yamada
[136]

 and 

Inubushi
[137]

 independently synthesized the alkaloid in 1972. Herein is a summary of these works 

and their important features; attempted syntheses of dendrobine are not included. 

Yamada’s synthesis of (±)-dendrobine 

The first synthesis of dendrobine by Yamada and colleagues derived the alkaloid’s carbocyclic 

components from an aromatic precursor (Scheme 2.3).
[136]

 The synthetic route began with 

acetylated dihydronaphthalenone 2.26,
[138]

 which was converted to diketoacid 2.27 by ozonolysis, 

Wittig homologation and Birch reduction. A Michael reaction with concomitant aldol cyclization 

then yielded bicyclo[4.3.0]nonanol 2.28. Methyl ester formation and ozonolysis of an acetate enol 

resulted in acid 2.29, and the molecule’s heterocycle was then generated by methylamide 

formation, α-ketobromination with pyridinium tribromide, and anionic displacement to grant 

pyrrolidone 2.30. Final installation of the isopropyl group, isomerization of the ester and reductive 

lactone formation resulted in the natural product (±)-oxodendrobine 2.8, which could be 

converted to (±)-dendrobine using Borch’s reduction.
[139]

 

 

Scheme 2.3.  Yamada’s synthesis of (±)-dendrobine. 

Inubushi’s synthesis of (±)-dendrobine 

The group of Inubushi reported a synthesis of (±)-dendrobine nearly simultaneously with 

Yamada’s (Scheme 2.4).
[137, 140]

 Opening with bicylic enone 2.31,
[141]

 nitrile substitution with 

retention of stereochemistry, hydrogenation, bromination/elimination and acetalization bestowed 

ketal 2.32. Hydrolysis of the nitrile, deacetalization/Michael addition, and refluxing in aqueous 

methylamine in the presence of acid yielded keto-lactam 2.33, thus furnishing the tricyclic core of 

the alkaloid. The isopropyl group was installed through Grignard addition and elimination of the 
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ensuing alcohol, and an allylic iodination/acetoxylation, saponification and oxidation sequence 

resulted in enone 2.35 together with its regioisomers 2.34. The final carbon of the skeleton was 

then appended by hydrocyanation using diethylaluminum cyanide.
[142]

 Though the reaction gave a 

mixture of diastereomers, the desired isomer 2.36 could be separated and taken forward for the 

remainder of the synthesis. A final series of operations resulted in nitrile hydrolysis, acid 

methylation, and ketone reduction to form the γ-lactone. Once more, reduction of an intermediate 

ethylimino ether by Borch’s method granted (±)-2.1. 

 

Scheme 2.4.  Inubushi’s synthesis of (±)-dendrobine. 

  



AZOMETHINE YLIDE CYCLOADDITION STRATEGY TOWARD DENDROBINE   39 

 

Kende’s synthesis of (±)-dendrobine 

Following these initial two syntheses, Kende and colleagues developed a racemic synthesis of 

dendrobine using a Diels–Alder reaction to form the cis-substituted central bicycle of the 

sesquiterpenoid (Scheme 2.5).
[143]

 Known triacetate 2.37
[144]

 was saponified and oxidized to the 

quinone, which underwent Diels-Alder cycloaddition with butadiene to form adduct 2.38 upon 

methylation. Osmium-catalyzed dihydroxylation then gave an unassigned mixture of isomers 

2.39. Oxidative cleavage of the diol and aldol condensation of the resultant dialdehyde afforded a 

separable mixture of regioisomers 2.40 and 2.41 in equal measures. The desired substrate 2.41 

was submitted to double reductive amination to achieve the azaundecene system 2.42.  Reductive 

transposition of the unsaturated system resulted in enone 2.43, which also served as the 

interception point for the formal syntheses of Mori, Padwa and Chen (see Section 2.14 below).  

Subsequent conjugate addition of vinyl cuprate, ruthenium-based oxidative cleavage and 

methylation granted ester 2.44, and partial isomerization with sodium methoxide followed by 

reductive ring-closure yielded (±)-dendrobine. In 2004, Corey and colleagues developed an 

enantioselective variation of the Diels-Alder reaction using chiral oxazaborolidinium 2.46 which 

conferred the adduct in excellent yield and enantiomeric excess, thus rendering Kende’s synthesis 

theoretically asymmetric.
[145]

 

  

Scheme 2.5.  Kende’s synthesis of (±)-dendrobine and Corey’s enantioselective variant of the opening       

Diels–Alder reaction. 

 

 



40   CHAPTER II 

  

Roush’s synthesis of (±)-dendrobine 

Between 1978 and 1980, Roush released four papers on an optimized Diels-Alder route to 

racemic dendrobine, a pathway that strategically resembled a contemporaneous synthesis of 8-epi-

dendrobine by Borch.
[146]

 The original synthesis of the alkaloid began with phosphonate 2.47 and 

the key Diels–Alder reaction was conducted after elaboration to triene 2.48. Though the method 

successfully delivered the bicyclo[4.3.0]nonane system, it resulted in a mixture of four 

diastereomers and required basic epimerization of the C4 centre before oxidation to 2.49. 

Following Roush’s first synthesis of the alkaloid, Roush and Gillis revisited the route and 

optimized the Diels–Alder reaction with a shorter and higher yielding construction of the key 

bicycle from 2.50. Cyclization of the resulting substrate 2.51 was surprisingly selective for the 

exo transition state, allowing for a more efficient route to 2.49. The synthesis proceeded with 

α-methylation to give the quaternary stereocentre, van Leusen reaction to convert the ketone to a 

nitrile, and reduction of the nitrile to amine 2.52. Epoxidation of the olefin to 2.53 suffered from 

poor facial selectivity, but a concurrent deprotection and epoxide opening provided the 

pyrrolidine with the desired stereochemistry. Oxidation and reduction of the remaining alcohol to 

the correct face then afforded racemic 2.1. 

 

Scheme 2.6.  Roush’s Diels–Alder cycloaddition route to (±)-dendrobine. 

Livinghouse’s synthesis of (±)-dendrobine 

The shortest racemic synthesis of dendrobine - and the shortest synthesis overall to date - is that 

of the group of Livinghouse, who approached the molecule through a highly convergent route 

(Scheme 2.7).
[147]

 1,4-Addition of isocyanomethyllithium to 2-methylcyclopentenone 2.54 and 
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trapping as the silyl enol ether gave isonitrile 2.55. Chlorocarbonyl 2.57 was prepared in three 

steps from ethyl acetoacetate using a carefully controlled chloroacylation/methanolation protocol. 

Combination of the two units and addition to a solution of AgBF4 at low temperature formed 

transient acylnitrilium 2.58 which cyclized to pyrroline 2.59 upon gentle warming. N-Methylation 

and highly diastereoselective reduction with potassium tri-tert-butoxyborohydride afforded the 

pyrrolidine of dendrobine, and samarium-mediated free radical cyclization at higher temperatures 

overrode the kinetic preference for a 5-exo annulation to give the complete carbon skeleton (2.60) 

of dendrobine. The extraneous alcohol was eliminated and the resulting double bond isomerized 

into conjugation with both ester and ketone, whereupon stereoselective hydrogenation and known 

reduction of the ketone afforded racemic dendrobine. 

  

Scheme 2.7.  Livinghouse’s total synthesis of (±)-dendrobine by acylnitrilium ion cyclization and free 

radical annulation. 

Sha’s synthesis of (−)-dendrobine 

The group of Sha reported the first enantioselective synthesis of natural (–)-dendrobine in 1997 by 

employing an impressive α-carbonyl radical approach to the quaternary stereocenter of the 

molecule (Scheme 2.8).
[148]

 (S)-Carvotanacetone 2.61, available in one high-yielding step from 

(S)-carvone, was transformed to 2.62 by a Lewis acid-catalyzed aldol-type reaction with trimethyl 

orthoformate using the protocol of Takazawa et al.
[149]

 Rubottom oxidation and acid-catalyzed 

cyclization led to methyl acetal 2.63. Conjugate addition of alkynyl Grignard reagent 2.64 

occurred exclusively from the β-face due to the imposed axial position of the bulky isopropyl 

group, and trapping as the silyl enol ether with TMSCl was followed by α-iodination with 

m-chloroperbenzoic acid and sodium iodide to generate 2.65. The α-keto radical 5-exo-dig 

cyclization was then accomplished under standard radical conditions and removal of the 

trimethylsilyl vinylsilane with trifluoroacetic acid afforded tricycle 2.66. Oxidation of the 
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resulting system was achieved by elimination of an mCPBA-generated peroxyacetal to form the 

lactone, followed by β-face selective hydroboration/oxidation in which the ketone was also 

reduced, mesylation and azide displacement of the resulting alcohol, and regeneration of the 

ketone to finally yield azido alcohol 2.67. The final pyrrolidine ring of the molecule was then 

formed by sequential Staudinger reaction, reduction of the engendered amine and N-methylation 

to accomplish the first asymmetric total synthesis of the Orchidaceae alkaloid. 

  

Scheme 2.8.  Sha’s synthesis of (−)-dendrobine by α-keto radical cyclization. 

Cassayre and Zard’s synthesis of (−)-dendrobine 

The synthesis of (–)-dendrobine by Cassayre and Zard is currently the shortest enantioselective 

total synthesis of the alkaloid (Scheme 2.9). (+)-Trans-verbenol 2.68, available in three steps and 

46% yield from α-pinene, was transformed into O-benzoyl-N-hydroxycarbamate 2.69 in a one-pot 

procedure. An amidyl radical, generated from homolytic cleavage of the weak N-O bond, induced 

a radical cyclization/fragmentation cascade to furnish an oxazolidinone and an exocyclic 

isopropyl group. Hydrolysis of the oxazolidinone then afforded amino alcohol 2.70.  

Scheme 2.9.  Cassayre and Zard’s synthesis of (−)-dendrobine by amidyl radical cyclization and PKR. 
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After attempts at a dichloroacetimide-based radical cyclization were thwarted,
[150]

 the group 

instead proceeded with a Pauson–Khand strategy. Propargylation and acetylation yielded the 

desired precursor 2.71. Treatment of the alkyne-Co2(CO)6 complex with NMO affected the 

Pauson–Khand reaction and hydrogenation of the crude product granted tricycle 2.72.  Installation 

of the final carbon centre was carried out over four steps by ketone dehydrogenation through 

selenoxide elimination and hydrocyanation to give 2.73. Subsequent erasure of the ketone, 

epimerization of the nitrile centre and acid-promoted cyclization/hydrolysis furnished 2.1 in a 

concise effort.   

Kreis and Carreira’s total synthesis of (−)-dendrobine 

The most recent total synthesis of dendrobine was conducted asymmetrically by Kreis and 

Carreira in 2012 (Scheme 2.10). The starting diol 2.74 was generated from commercially-

available ethyl (R,E)-3-(2,2-dimethyl-1,3-dioxolan-4-yl)acrylate by conjugate addition of 

2-nitropropane and radical nitro group removal. Following expansion to lactone 2.75, a high-

yielding transannular Ireland–Claisen reaction formed the highly-substituted cyclohexane ring of 

dendrobine 2.76. Double deprotection and oxidation of the primary and secondary alcohols 

yielded key precursor 2.77. Addition of methylbenzylamine then induced enamine-Michael 

cyclization to form the second carbocycle, and in situ hydrogenation resulted in reductive 

incorporation of the pendant amine. The diastereoselectivity of the reduction is rationalized by 

concave protonation of the enamine following Michael addition and rapid reduction of the 

resulting iminium. α-Bromination of ketone 2.78 with pyrrolidone hydrotribromide and 

displacement with the amine, reminiscent of Yamada’s heterocycle formation (see Scheme 2.3), 

granted the pyrrolidine ring and the reduction/lactonization protocol developed by Kende then 

afforded 2.1. The Carreira synthesis is currently the highest-yielding enantioselective total 

synthesis of dendrobine. 

 

Scheme 2.10.  Kreis and Carreira’s synthesis of (−)-dendrobine by enamine-Michael addition. 
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2.1.4. Formal Syntheses of Dendrobine   

A number of formal syntheses of dendrobine have been reported which intercept key 

intermediates of previous works, particularly those of Kende and Inubushi.  

Trost’s formal synthesis of (−)-dendrobine 

The formal synthesis of (−)-dendrobine by Trost and colleagues in 1991 represents the first 

asymmetric pathway to the alkaloid (Scheme 2.11), courtesy of a chiral-pool approach from 

(R)-carvone 2.79.
[151]

 A multi-step derivatization of the carvone core afforded 2.80 and set the 

stage for a back-to-back palladium-catalyzed C-C bond formation. The first key step in the 

sequence was a Pd(0)-catalyzed allylic alkylation with a tethered sulfone ester, a reaction 

pioneered in part by the Trost group.
[152]

 Interestingly, the allylic isomer of 2.80 – with the 

carbamate instead proximal and the olefin distal to the sulfone ester – was immune to the same 

reaction conditions, as was a derivative lacking the propargylic side-chain. The authors attribute 

the success of the reaction therefore to coordination between the alkyne tether and the palladium 

centre, which allows kinetic access of the catalyst to the olefin. The second reaction was a 

Pd(0)-catalyzed cycloisomerization to 2.82 which established the quaternary stereocenter of the 

molecule. After formation of these key carbon connections, saponification of the lactone and 

attendant decarboxylation was followed by oxidation and reaction with diazomethane to bicycle 

2.83. The final steps of the formal synthesis include hydroboration/oxidation of the olefin, 

epimerization of the resulting stereocenter by Swern oxidation/epimerization/reduction, erasure of 

the sulfone and finally displacement of a mesylate with methylamine to access Roush’s 

intermediate 2.52. As Roush’s intermediate is five steps from dendrobine proper, the synthetic 

route is overall extensive but showcases exceptional resourcefulness and stereocontrol in its key 

steps.   

 

Scheme 2.11.  Trost’s formal synthesis of (–)-dendrobine by dual Pd-catalyzed cyclizations.  
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Martin’s, Mori’s and Padwa’s formal syntheses of dendrobine 

In the decade following Trost’s efforts, a number of eminent formal syntheses of 2.1 were 

reported by several groups (Scheme 2.12). Publishing at the same time as Trost, Martin and Li 

presented a nicely convergent Diels–Alder strategy towards the molecule.
[153-154]

 In contrast to the 

key Diels−Alder performed by Roush, Martin’s pericyclic reaction was tethered through a more 

tenuous dienamine 2.86 formed by acylation of imine 2.85 with acyl chloride 2.84. Optimization 

of the cycloaddition resulted in an 8:1 preference for the endo transition state and direct access to 

three stereocenters of aza[4.3.1.0]undecane core 2.87. Intermediate 2.35 of Inubushi’s synthesis 

could then be intercepted by simple epoxidation of the olefin, rearrangement to the allylic alcohol 

and oxidation to the enone. 

Mori and coworkers subsequently presented the second asymmetric path to (−)-dendrobine 

though a formal synthesis employing carveol as a starting material and a zirconium-mediated 

reductive cyclization as a key step. 
[155-156]

 As initial attempts at accessing chiral amine 2.89 from 

(−)-carveol through successive bromination/amination SN2 reactions resulted in almost complete 

racemization of the product, a Mitsunobu reaction between N-tosylbenzylamide and (+)-carveol 

2.88 was employed in its stead. The zirconium-promoted diene cyclization was initiated by 

addition of Negishi reagent to 2.89 to give zirconocycle 2.90, and subsequent stirring under 

carbon monoxide atmosphere and treatment with HCl successfully afforded tricycle 2.91. This 

chiral pool approach therefore provided rapid access to the enantioenriched aza[4.3.1.0]undecane 

system. However, elaboration to Kende’s intermediate 2.43 required an additional eleven steps of 

olefin isomerization and oxidative manipulations. 

The group of Padwa reported a formal synthesis of the Orchidaceae alkaloid by means of an 

intramolecular amidofuran cycloaddition/rearrangement strategy.
[157-159]

 The union of fragements 

2.92 and 2.93, generated expediently from ethyl dimethylacrylate and furfural
[159]

 respectively, 

delivered amidofuran 2.94. Intramolecular cycloaddition at 165 °C afforded tricyclic carbenamine 

2.96 as an inconsequential 2:1 mixture of diastereomers, presumably through cycloadduct 2.95 

and subsequent zwitterionic opening and 1,2-hydrogen shift. A series of functional group 

manipulations then conferred Kende’s intermediate 2.43.  
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Scheme 2.12.  Martin’s, Mori’s and Padwa’s formal syntheses of dendrobine. 

Chen’s formal synthesis of (±)-dendrobine 

A final formal synthesis of dendrobine was accomplished very recently by Chen and colleagues 

and is conceptually different from its predecessors in that it uses a fully linear precursor to 

assemble the bicycloazaoctane system (Scheme 2.13).
[160]

 The synthesis opened with a 

Cu(I)-catalyzed SN2’ reaction between allyl bromide 2.97 and Grignard reagent 2.98, followed by 

substitution of a bromide with sodium azide to furnish 2.99. The SN2’reaction was conducted in a 

racemic fashion during the initial synthesis but could be rendered enantioselective by addition of 

the ferrocene ligand TaniaPhos (2.100).
[161]

 The key step of the route hinged on sequential 

transition-metal-catalyzed cyclizations. A Pd-catalyzed eneyne cycloisomerization generated 

triene 2.102, which could be isolated or transformed immediately by addition of a Rh(I)-catalyst 

to initiate a highly diastereoselective diene-assisted C-H activation reaction.
[162]

 This one pot 

procedure generated the bicyclic pyrrolidine 2.103 in good yield and as a single stereoisomer. An 
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impressively regioselective hydroboration/oxidation protocol to 2.104 followed by aldol 

condensation, tosyl elimination and reductive amination then provided Kende’s intermediate 2.43 

in 11 steps from commercial materials.  

Scheme 2.13.  Chen’s formal synthesis of (±)-dendrobine through tandem Pd- and Rh-catalyzed 

cyclizations. 

2.1.5. Project goals 

As evidenced by these prior successes, dendrobine total synthesis is an exceptionally crowded 

field filled with many excellent methodologies and strategies. We too were drawn to the 

remarkable structure of dendrobine, largely due to the striking similarities between its 

azatricyclo[6.2.1.0
4,11

]undecane system and that of lycopalhine A (1.7). Importantly, we believed 

we could synthesize the molecule through an exceptionally efficient route that could be easily 

adapted to also afford mubironine C and dendrine. Outlined in the next section are our efforts 

towards the synthesis of this Orchidaceae alkaloid by means of an unstabilized azomethine ylide 

cycloaddition reaction. 
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2.2. Azomethine Ylide Cycloaddition Approach toward Dendrobine 

 

 

 

 

 

 

 

 

Reprinted with permission from: 

B. M. Williams and D. Trauner 

J. Org. Chem. 2018, 83, 3061 – 3068 

DOI: 10.1021/acs.joc.8b00192 

Copyright © 2018 American Chemical Society Publishing 
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2.3. Unpublished Efforts toward Orchidaceae Alkaloids 

Additional research not described in the above publication is covered in the following section. 

Synthetic studies were performed with tricycle 15 (numbering from J. Org. Chem. 2018, 83, 

3061) to firmly establish relative configuration as well as to attempt to intercept literature-known 

intermediates in a formal synthesis. First, reaction of 15 with methyl iodide yielded salt 2.105, 

which could be crystallized out of a CH2Cl2/pentane mixture (Scheme 2.14). Single-crystal X-ray 

diffraction confirmed unequivocally that the desired configuration at the C4 stereocenter was 

formed during the [3+ 2]-cycloddition. We then generated the N-oxide of 15 (2.106) using 

mCPBA and attempted to perform a Hoffman elimination/N-O reduction sequence to compound 

2.52. This would intercept an intermediate in Roush’s work and thus constitute a formal synthesis 

of (−)-dendrobine. The Hoffman elimination, however, was unsuccessful in all attempted 

conditions and generally only resulted in auto-reduction back to the amine. Attempts to oxidize 

the C5-position by C-H activation to 2.13 using conditions by White
[163]

 and Sanford
[164]

 have thus 

far led to no reaction or complex mixtures of products.   

 

Scheme 2.14.  Formation of ammonium iodide 2.105, attempts at C-H activation and Hoffman elimination. 

Before we successfully generated compound 21 by α-chlorination/lactonization, we had attempted 

an alternate route to this compound using an allylic C-H oxidation strategy from 2.107 (Scheme 

2.15).
[165-167]

 To this end, we began our synthesis anew from 9. Following ozonolysis of the enone, 

the crude aldehyde/acid was treated with methyltriphenyphosphonium bromide and KHMDS to 

give olefin 2.108. Esterification with 8 using previously established conditions afforded ester 

2.109. We submitted the ester to our optimized high-pressure Ireland–Claisen conditions. Though 

one major product was formed, it could not be cleanly seperated from its diastereomer and certain 

undesired byproducts. Regardless, we assigned the major product as 2.109 by analogy with 

literature and our previous Ireland–Claisen product and carried it through the next reaction in 

hopes that the impurities could then be separated. White’s bis-sulfoxide Pd-catalyst  
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conditions
[165-167]

 were attempted for the lactonization and, after some initial screening, we found 

that using ethyl acetate as solvent at 60 °C led to the formation of lactone 2.110 in low yield. 

Unfortunately, it quickly became clear that Lemieux-Johnson protocols and other 

dihydroxylations selectively targeted the trisubstituted olefin rather than the terminal 

double-bond. NOESY correlations also indicated that the allyl stereocenter was the undesired 

configuration for intramolecular cycloaddition even if the oxidative cleavage were successful. It 

was at this point that we discovered the more robust α-chlorination/lactonization pathway to 21 

and abandoned this route.   

 

Scheme 2.15.  First-generation route to aldehyde 21 by allylic C-H activation. 

  



 

 

 

 

 

 

 

 

 

CHAPTER III:  

SYNTHESIS OF PHOTOSWITCHABLE CERAMIDES FOR 

 OPTICAL CONTROL IN LIPID METABOLISM 

 

 

 

 

  



60   CHAPTER III 

  

3.1. Introduction to the Photopharmacology of Lipids 

3.1.1. Biological Roles of Lipids 

Lipids are hydrophilic or amphipathic metabolites which constitute one of the major classes of 

biomolecules. They are essential for energy storage, cell signalling and membrane composition in 

eukaryotic organisms, which devote around 5% of their genetic code to thier synthesis and 

metabolism.
[168]

 A single cell can comprise over a thousand distinct lipid species,
[168-169]

 ranging 

from rigid sterols such as cholesterol to dynamic glycerides such as triolein and zwitterionic 

membrane lipids such as phosphatidylcholine and sphingomyelin (Figure 3.1). Though they 

differ widely in form, they share a number of biological functions. 

 

Figure 3.1.  Select examples of lipids.  

The first major role of lipids is the compartmentalization of the cell through membrane 

formation.
[168, 170]

 The amphiphilic nature of membrane lipids promotes entropically-driven 

self-assembly into a lipid bilayer which separates the cell from its environment and certain 

organelles from the cytosol.
[171]

 Eukaryotic membrane lipids are composed mainly of 

glycerophospholipids (largely phospatidylcholine and phosphatidylethanolamine), sphingolipids 

(primarily sphingomyelin and glycosphingolipids) and sterols (cholesterol). Embedded membrane 

proteins also make up around 50% of bilayer mass, and its constitution is far from 

homogenous.
[168, 172]

 Transmembrane composition varies from an outer exoplasmic leaflet rich in 



SYNTHESIS OF PHOTOSWITCHABLE CERAMIDES   61 

 

phosphatidylcholine and sphingomyelin to a cytosolic leaflet heavy in aminophospholipids,
[173]

 

and can fluctuate depending on cell types and environmental conditions.  

Laterally, the bilayer is partitioned into heterogeneous domains enriched in cholesterol and 

saturated sphingolipids.  These ordered microdomains, called lipid rafts, are less then 200 nm in 

diameter
[174]

 and play important parts in protein recruitment and transport, membrane trafficking 

and intracellular signalling.
[175-176]

 Lipid rafts are believed to resemble the liquid ordered (Lo) 

phase of model membrane systems,
[177]

 which are significantly less fluid compared to the liquid 

disordered (Ld) phase induced by unsaturated lipids in the rest of the plasma membrane.
[176, 178]

 

Though their nature and purpose are still under considerable scrutiny,
[179]

 they likely play 

important roles in a number of signalling events such as insulin release,
[180]

  neurotrophic factor 

and Ras signalling,
[181]

 and neurotransmitter signalling.
[179]

 

In addition to their role as structural components, lipids are vital signalling agents.
[182]

 Studies in 

the 1930s first indicated that arachidonic acid metabolites, such as prostaglandins and 

leukotrienes, serve important functions in mediating inflammation and immune responses.
[183-184]

 

The importance of lipids in complex cell signalling pathways has since been cemented by the 

discovery that diacylgycerol regulates the action of protein kinase C (PKC)
[185]

 and that 

lysophosphatidic acid (LPA) and other lysophospholipids act on cellular functions through 

specific families of GPCRs.
[186]

 The study of bioactive lipids has accelerated in the past two 

decades due in part to advances in analytical techniques and a growing appreciation for lipid 

pharmacology. Sphingolipid signalling in particular has garnered attention due to the role of 

ceramides in apoptosis and the influence of sphingosine-1-phosphate in cell survival.
[187]

 

Beyond membrane composition and signalling, lipids serve as primary energy reserves for 

eukaryotic organisms. In mammals, triglycerides in adipose tissue are processed to long-chain 

fatty acids
[188]

 which are transported to the mitochondrial matrix and, through β-oxidation, are 

transformed to acetyl-CoA and are fed into the citric acid cycle.
[189-190]

 Lipids are also the primary 

insulators of cells, maintaining ion gradients and thus membrane potentials 
[191]

 and sheathing 

neuronal axons to speed the travel of electrical signals.
[192]

 

The current interest of the Trauner group lies primarily with the signalling behaviour of 

membrane lipids, and this introduction will focus on one particular class known as sphingolipids.  
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3.1.2. Sphingolipids 

Sphingolipids are a family of cell membrane lipids characterized by an aminodiol core with a 

hydrophobic tail – a sphingoid base – to which various fatty acids and polar head groups are 

appended. They were first described by Johann Thudichum in the 1870s and named after the 

mythical Sphinx for the enigma surrounding their behaviour and purpose.
[193]

 They are found in 

great quantities in brain tissue and surrounding nerve cells.
[194]

 

A number of important sphingolipids are presented in Figure 3.2. Sphingosine (Sph) was the first 

documented sphingolipid
[187]

 and, though it constitutes the main sphingoid base on which other 

sphingolipids are contingent, its levels are kept relatively low in cells.
[195]

 Phosphorylation at the 

primary alcohol gives sphingosine-1-phosphate (S1P), a carefully regulated and highly bioactive 

lipid.
[196]

 Ceramides (Cers) are equipped with N-acyl fatty acid residues and are involved in cell 

proliferation and apoptosis. Sphingomyelin features a phosphocholine head group and is the most 

abundant sphingolipid in the plasma membrane.
[197]

 Glycosphingolipids are carbohydrate-bearing 

ceramides; those with monosaccharides head groups are called cerebrosides, while those with 

oligosaccharides containing a sialic acid residue are known as gangliosides.
[198]

 

 

Figure 3.2.  Important sphingolipids. 

Many sphingolipids are crucial signalling molecules, and considerable scientific interest has been 

afforded to S1P and Cer. S1P binds to one of five G-protein coupled receptors (GPCRs), known 

as S1P receptors (S1PR1-5),
[199]

 which mediate its cellular activity. S1P signalling often 

counteracts apoptosis
[196]

 and regulates cell survival, immune cell trafficking
[200]

 and 

inflammation.
[201]

 The mechanism behind ceramide activity is less well-understood, but at least 

partially involves activation of protein phosphatases.
[202]

 Ceramides promote apoptosis, cell 
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differentiation, cell-cycle arrest, and senescence.
[203]

 The balance of pro-aptotic Cer and pro-

survival S1P constitutes a ‘sphingolipid rheostat’
[203]

 of cell subsistence which is directed largely 

by the interconversion between Sph and S1P as well as Cer and ceramide-1-phosphate (C1P).  

Sphingolipid metabolism therefore plays a substantial part in regulating the cellular state. 

Ceramides are the metabolic precursors of all known sphingolipids. Their biosynthesis (Figure 

3.3) begins de novo from serine and palmitoyl-coenzyme A by a series of enzymatic 

transformations initiated by rate-limiting serine palmitoyltranferase. [202] Sphingosine itself is 

generated from ceramide by the action of a ceramidase, and sphingosine kinase in turn converts 

Sph to S1P. Sphingomyelin is derived by the transfer of the choline headgroup from 

phosphatidylcholine (PC) by sphingomyelin synthase (SMS). The only known exit from the 

metabolic cycle is by conversion of S1P to fatty aldehydes by a corresponding lyase. [202] 

 

Figure 3.3.  Overview of sphingolipid metabolism (adapted from Hannun and Obeid).
[202]

 

Imbalances in sphingolipid signalling have been implicated in a number of important diseases, 

including autoimmune disorders, atherosclerosis, cancer and chronic inflammation.
[195]

 As such, 

new tools for the study of their behaviour are highly desirable. The Trauner group has become 

interested in combining the activity of sphingolipids with our ongoing program in 

photopharmacology. 
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3.1.3. Photopharmacology 

Pharmacology concerns itself with the effects of drugs on biological systems. While it is 

uncontested in its ability to produce life-saving therapeutics, classical pharmacology is generally 

diffusion-dependent and lacks mechanisms to control the timing and region of drug effect.
[204]

 

Photopharmacology, conversely, allows the regulation of biological function with the precision of 

light by means of embedded chromophores, called photoswitches, which isomerize upon 

irradiation.
[205]

 By manipulating the shape and polarity of active pharmacophores, photoswitches 

grant optical control over a host of native biopolymers
[205]

  and serve as valuable tools in basic 

research and targeted therapy.
[206]

 

Photoswitches come in many forms, each with unique advantages when applied to biological 

systems (Figure 3.4). Hemithioindigos are robust and tunable units which toggle between E and Z 

in the visible range;
[207-208]

 spiropyrans
[209]

 undergo considerable changes in polarity upon 

irradiation;
[210]

 and diarylethenes can isomerize tens of thousands of times without degrading.
[211]

 

Azobenzenes, however, are most often the switch of choice in photopharmacology
[212]

 due to their 

ease of synthesis, practical isomerization, high photostationary states (the relative composition of 

isomers under irradiation) and resistance to photobleaching.
[213]

 Standard azobenzenes switch 

from a planar trans-isomer to a plane-distorted cis-isomer upon irradiation with ultraviolet light 

(π – π* transition), and undergo the reverse transformation with visible light (n – π* transition) or 

by gradual thermal relaxation.  

 

Figure 3.4.  Generic photoswitches and their isomerizations upon irradiation.
[213]

  

The switching wavelength and relaxation half-life of azobenzenes can be finely tuned by 

substituents and heteroatoms in the aromatic azo system. Ortho-electron donating groups, 

electronic “push-pull” systems and alternate aromates can all drive isomerization farther into the 
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visible range (red-shifting), which is particularly desirable in vivo to maximize tissue penetration 

and reduce photodegradation.
[206]

 In part due to this great versatility, azobenzene-bearing 

biomolecules have been used to regulate ionotropic glutamate,
[214]

 NMDA
[215]

 and AMPA
[216]

 

receptors, voltage-gated ion channels,
[217]

 microtubule dynamics,
[218]

 protein kinases
[219]

 and many 

other targets.  

Photopharmaceuticals can exert their influence through different mechanisms. Photoswitches that 

modulate activity while binding non-covalently to targets are identified as photochromic ligands 

(PCLs) (Figure 3.5.a). Others are instead tethered to the target protein, often through a 

genetically-engineered cysteine residue close to the binding pocket, and are branded as 

photoswitchable tethered ligands (PTLs) (Figure 3.5.b). Both benefit from the flexibility of 

azobenzene building blocks: PCLs remain compact and the wavelength of ligand activity 

transition can be red-shifted through methods described above (Figure 3.5.a features some 

examples), whereas the placement of azobenzenes in the PTL’s tethers dictates ligand position 

and plasticity. 

 

Figure 3.5.  a) Mode of operation of photochromic tethered ligands (PCLs) featuring red-shifted 

photoswitching, and b) Mode of operation of photoswitchable tethered ligands (PTLs). 
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3.1.4. Photolipids 

Prior work in photopharmacology has focused largely on the manipulation of receptors and ion 

channels; until recently, optical control of lipids has been limited to the assembly and disruption 

of artificial membranes.
[220-222]

  Since 2014, the Trauner laboratory has been engaged in the optical 

control of lipid pathways through the use of azobenzene-bearing lipid analogues termed 

photolipids. The first examples of these were photoswitchable fatty acids (FAAzos, Figure 3.6.a), 

which were designed in part to reversibly mimic the cis-conformations of native FAs such as 

arachidonic acid.
[223]

 Their initial incorporation into azo-capsaicin analogues (AzCAs) allowed for 

the modulation of TRPV1 channels in HEK cells by irradiation with UV-A and blue light (Figure 

3.6.b).
[223]

 FAAzos were also integrated into the diacylglyerol (DAG) scaffold to generate 

phoDAGs, allowing optical manipulation of protein kinase C.
[219]

 The scope of photolipids was 

soon expanded to include light-induced control over lipid vesicles using azobenzene-containing 

phosphatidylcholine analogues (azo-PCs)
[224]

 and cannabinoid receptors using photoswitchable 

Δ
9
-tetrahydrocannabinol (azo-THCs).

[225]
 

 

Figure 3.6.  a) Examples of photolipids developed in the Trauner laboratory, b) AzCA-4 reversibly 

modulates TRPV1 in HEK293T cells by light in voltage clamp electrophysiology,
[223]

 and c) ACe-1 

incorporated into SLBs enables fluidification and rigidification of artificial membranes by AFM analysis 

(reprinted with permission from J. Am. Chem. Soc. 2016, 138, 12981−12986. Copyright © 2018 American 

Chemical Society). 

Recently, the Trauner laboratory has combined FAAzos with sphingoid bases to generate 

azobenzene-containing ceramide analogues (ACes, Figure 3.6.a).
[178]

 These photocontrollable 

sphingolipid derivatives were integrated into raft-mimicking supported lipid bilayers (SLBs) and, 

using atomic force microscopy analysis (AFM), were found to modulate raft structure with 
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light.
[178]

 Exposure to 365 nm light and conversion to the cis-isomer was found to induce 

fluidification and the formation of disordered ‘lakes’ in previously ordered phases, whereas return 

to the trans-isomer resulted in rigidification of the disordered phase (Figure 3.6.c).  

Though these results confirmed that the ACes could successfully manipulate artifical membranes, 

it remained to be determined whether sphingolipid analogues could be taken up by cellular 

machinery and used to modulate lipid systems in vivo. The following section details our efforts to 

produce light-active ceramide derivatives whose behaviour can be evaluated in living systems. 

We were particularly interested in the metabolism of these ceramides to sphingomyelin by 

sphingomyelin synthase 2 (SMS2), which is a critical regulator of pro-apoptotic ceramide in the 

membrane.
[226]
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3.2. Results and Discussion 

3.2.1. Project Contributions 

The author conducted the synthesis of caCer-3 and caCer-4, and UV/Vis analysis of all caCers. 

Dr. Henry Toombs-Ruane originally synthesized caCer-1 and caCer-2. Dr. James Frank 

conceived experiments and performed atomic force microscopy and confocal fluorescence 

imaging in supported lipid bilayers with Dr. Henri Franquelin and Prof. Petra Schwille of the Max 

Planck Institute for Biochemistry. Dr. Matthijas Kol and Prof. Dr. Joost Holthuis of the 

Universität Osnabrück conceived experiments and performed studies in yeast membranes and 

HeLa cells. 

3.2.2. Synthesis of Clickable Azobenzene-containing Ceramides 

We anticipated that optically-active sphingolipids prepared for metabolic studies would require 

three components: a sphingoid base for ligand compatability with SMS, an azobenzene unit 

carefully positioned so as to modulate substrate binding and/or localization upon irradiation, and 

an alkyne handle for orthogonal conjugation to a fluorophore and subsequent analysis by 

chromatography. With these constraints in mind, we developed a series of four clickable 

azobenzene ceramide analogues, termed caCers (Scheme 3.1). The first two caCers (caCer-1 

and -2) possessed a photoswitch in fatty acid chains of varying length, similar to previously 

investigated ACes but with added alkyne groups at the FA terminus. These caCers could be 

generated by amide bond formation between clickable fatty acid azobenzenes (cFAAzos) and D-

erythro-sphingosine (3.2).  

 

Scheme 3.1.  Retrosynthesis of clickable azobenzene ceramide analogues (caCers). 
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Two additional caCers (caCer-3 and -4) were designed with the azobenzene installed in the 

sphingoid base as a compliment to the FAAzo-derived caCers. After some unsuccessful efforts 

with a Horner-Wadsworth-Emmon-based route, we opted for a cross-metathesis strategy
[227-228]

 

between allylic alcohol 3.2 and photoswitchable olefins 3.3 and 3.4 to generate these caCers. 

The initial synthesis of caCers-1 and -2 was accomplished by Henry Toombes-Ruane, a 

postdoctoral researcher in the Trauner group who constructed cFAAZo-4 and cFAAzo-1 and 

coupled them to D-erythro-sphingosine. The author of this thesis used a modified amide coupling 

reaction to generate additional material for biological testing and to collect final UV/Vis and 

characterization data for all compounds (Scheme 3.2). 

 

Scheme 3.2.  Amide bond formations to form caCer-1 and caCer-2. 

The synthesis of caCer-3 and -4 required the incorporation of known 14-pentadecynoic acid 

(3.5)
[229]

 to mimic the native fatty acids of ceramides. Though 3.5 is commercially available, its 

high cost led us to develop a short synthesis of the molecule (Scheme 3.3). Alkylation of non-

1-yne with 6-bromohexanoic acid and reduction of the crude acid granted alcohol 3.6. An alkyne-

zipper reaction
[230]

 afforded terminal alkyne 3.7
[231]

 and Jones oxidation
[232]

 delivered 3.5.    

 

Scheme 3.3.  Synthesis of 14-pentadecynoic acid 3.5. 
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The synthesis of the corresponding sphingoid core was performed through an olefin cross-

metathesis route using allylic alcohol 3.2 in a tactic previously employed by a number of 

groups.
[227-228]

 The styrenal azobenzene 3.3 was first generated by oxidation of 4-propylaniline 3.8 

to the nitrosobenzene and Mills reaction with 4-aminobenzyl alcohol to grant azobenzylic alcohol 

3.9 (an attempted Mills reaction directly with 4-vinylaniline resulted instead in uncontrolled 

oxidation of the styrene).
[233]

 Oxidation of the alcohol to aldehyde 3.10 and Wittig reaction with 

methyltriphenylphosphonium bromide delivered styrene 3.3. 

 

Scheme 3.4.  Synthesis of 4-vinyl-4’-propylazobenzene 3.3. 

The second coupling partner (3.4) contained a two-carbon linker between the azobenzene and the 

terminal olefin and was synthesized in a similar fashion to the first. Known azobenzene 3.11
[234]

 

was generated by Mills reaction between 4-nitrosotoluene and 4-iodoaniline. Heck reaction with 

allyl alcohol
[235]

 produced aldehyde 3.12 and Wittig reaction with methyltriphenylphosphonium 

bromide granted olefin 3.4 in good overall yield.   

 

Scheme 3.5.  Synthesis of 4-(but-3-enyl)-4’-methylazobenzene 3.4. 

Allylic alcohol 3.2 was synthesized as previously described
[236]

 by addition of vinylmagnesium 

bromide to aldehyde 3.13 (commonly referred to as Garner’s aldehyde
[237]

) to give a 5.2:1 mixture 

of erythro/threo diastereomers (Scheme 3.6.a). During our first synthesis of the caCers, this 

mixture of diastereomers was carried forward in hopes that the erythro and threo diastereomers 
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could be separated at a later stage to give additional sphingolipid analogues for biological tests. 

Though caCer-4 was successfully separated to its pure erythro isomer in this manner, we found it 

impossible to separate caCer-3 completely – by HPLC and other methods – and a 7.2:1 mixture 

of erythro and threo diastereomers was therefore submitted for testing in supported lipid bilayers 

and biological systems. In a second synthesis, the 5.2:1 mixture of 3.2 was first carefully 

separated by column chromatography
[236]

 and then taken through the same conditions to give 

caCer-3 as the pure erythro diastereomer. The synthesis of caCer-3 continued with the cross-

metathesis of 3.2 and 3.3 using Hoveyda-Grubbs 2
nd

 generation catalyst (HG II) to give E-alkene 

3.14 in modest but acceptable yields. Simultaneous hydrolysis of the acetal and tert-butyl 

carbamate protecting groups granted azobenzene-containing sphingosine aSph-1, and amide 

coupling with acid 3.5 then yielded caCer-3. The analogous pathway using olefin 3.4 was 

conducted to afford 3.15, aSph-2 and caCer-4 (Scheme 3.6.b).   

 

Scheme 3.6.  a) Synthesis of caCer-3 and b) caCer-4 through olefin cross-metathesis strategies. 
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UV/Vis spectroscopy (Figure 3.7.a) indicated that caCers-1, -2 and -4 behaved as standard 

dialkyl-substituted azobenzenes, with λmax near 330 – 340 nm and a dark-adapted trans 

conformation that switched easily to cis with UV-A light (370 nm) and back to trans with blue 

light (460 nm). Styrenal caCer-3, conversely, was slightly red-shifted and exhibited a shift of λmax 

to 380 nm. Kinetic experiments (Figure 3.7b) indicated that the optimal switching wavelength 

was still near 370 nm and caCer-3 could therefore be photoisomerized during biological 

experiments using the same conditions as our other ceramide analogues. 

 

 

Figure 3.7. a) UV/Vis spectra of dark-adapted and illuminated (365 nm and 460 nm) caCers in DMSO 

(50 µL), and b) Kinetic studies of caCer-3 conversion between cis- and trans-isomers at 20 nm wavelength 

increments.  

3.2.3. CaCers in Supported Lipid Bilayers (SLBs)  

Previous studies in the Trauner group demonstrated that ceramide derivatives with 

azobenzene-containing N-acyl groups (ACes, see Section 3.1.5) could optically regulate 

phase-separated lipid domains in supported lipid bilayers (SLBs). We assumed that caCers-1 and 

-2, varying from these ACes only by the alkyne at the FA terminus, would behave similarly in 

artificial membranes. However, it remained to be established whether those analogues bearing the 
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azobenzene moiety in the sphingoid base, such as caCers-3 and -4, could modulate bilayer 

structure in a light-dependent manner. To this end, SLBs were prepared containing a quaternary 

lipid mixture of 1,2-O-dioleoylglycero-3-O-phosphocholine (DOPC), cholesterol, SM (C-18) and 

dark-adapted trans-caCer-3 or caCer-4 at a molar ratio of 10:6.7:7:3 

DOPC:cholesterol:SM:caCer, and were doped with 0.1 mol% ATTO-655-DOPE to distinguish 

liquid-ordered domains.  

Confocal fluorescence imaging indicated that the bilayer segregated into darker, SM- and 

cholesterol-heavy liquid-ordered (Lo) domains dispersed in a liquid-disordered (Ld) phase. These 

findings were corroborated by atomic force microscopy (AFM) imaging, wherein the Lo domains 

rest a nanometer above the Ld phase. Switching the conformation of caCers from the trans- to cis-

isomer upon exposure to 365 nm light resulted in the appearance of liquid-disordered “lakes” 

within the ordered domains, increasing the overall Ld/Lo area ratio. Irradiation with 460 nm light 

and conversion back to trans-azobenzene led to partial reversal of the fluidification. Overall, the 

results indicate that the trans-caCers are preferentially localized in the Lo domains, and upon 

isomerization to the cis-caCers interact better with the more dispersed lipids (such as DOPC) of 

the Ld phase. These findings were consistent with those observed for the ACes and established 

that caCer-3 and caCer-4 could likewise exert control over lipid membrane structure with light. 

 

Figure 3.8.  a) Confocal fluorescence microscopy of SLBs consisting of a quaternary mixture of 

DOPC:cholesterol:SM:caCer and b) Atomic force microscopy of SLBs prepared in identical fashion. 

Isomerization of caCer-3 and caCer-4 to cis with 365 nm light resulted in the appearance of fluidic ‘lakes’ 

inside the Lo domains and an increase in Ld/Lo area ratio. This effect was partially reversed on isomerization 

back to trans with 460 nm light (images courtesy of Dr. James Frank).  

3.2.4. Optical control of SM metabolism with caCers 

CaCers were next investigated for their ability to act as photocontrolled substrates for 

sphingomyelin synthase (SMS2 specifically). Experiments with yeast extract and HeLa cells were 

performed by collaborators Dr. Matthijs Kol and Prof. Dr. Joost Holthuis at the University of 

Osnabrück. The metabolic conversion of caCers to their SM analogues was first examined in 
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yeast cells using heterologously-expressed SMS2. The lysate of yeast cells transfected with either 

V5-tagged SMS2 or an empty vector (EV) was incubated with pre-irradiated cis- (365 nm) or 

trans- (dark-adapted or 470 nm) isomers of all four caCers. An additional ceramide cCer, 

generated by coupling acid 3.5 with D-erythro-sphingosine (performed by Dr. S. Korneev of the 

Universität Osnabrück) and thus lacking any azobenzene moiety, was used as a control. 

Conversion was monitored by lipid extraction, ligation to a fluorophore, thin layer 

chromatography (TLC) separation and fluorescence analysis. Alexa-647 was selected as the 

ligating agent as its absorbance spectrum did not overlap with the azobenzene. 

Assay results (Figure 3.9) indicated that all caCers and cCer were suitable substrates for SMS2 

and were efficiently converted to their SM analogues. Importantly, cis-isomers of caCer-1, 

caCer-2, and, to a lesser extent, caCer-3 were metabolized at a significantly higher rate than their 

trans-counterparts in both the dark-adapted and blue light-irradiated states. To confirm that these 

light-induced effects were due to the conformational changes of the substrates rather than 

different rates of incorporation of the pre-irradiated caCers into yeast membranes, SMS2 was 

expressed cell-free in the presence of liposomes already containing caCer-1. Consistent with our 

previous findings, dark-adapted caCer-1 showed almost no conversion to SM during liposome-

coupled translation of SMS2 mRNA, whereas irradiation with UV-A light inducing 

conformational change to the cis-isomer once more led to increased rates of SM metabolism. 

 

Figure 3.9.  a) Blue, UV-A or dark-adapted caCers were incubated with lysates of control or SMS2-

expressing yeast cells for 30 min at 37°C and their metabolic conversion to SM was determined by TLC 

analysis of total lipid extracts click-reacted with Alexa-647, b) Lysates of control (EV) and SMS2-

expressing yeast cells were incubated with caCers or cCer. Reaction samples were subjected to lipid 

extraction, click-reacted with Alexa-647 and analyzed by TLC (images courtesy of Dr. Matthijas Kol). 
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Light-based temporal control of caCer metabolism was also demonstrated through time-based 

illumination experiments. Cis- or trans-caCer-1 and caCer-3 were incubated in the lysate of 

SMS2-expressing yeast cells at 37 °C and caCer conformation was toggled every 10 minutes by 

alternately illuminating with UV-A or blue light. As illustrated in Figure 3.10, the rate of SMS2 

metabolism of caCer-1 was significantly enhanced during periods of UV-A illumination. 

Conversely, isomerization to the trans-isomer by exposure to blue light resulted in a near-arrest of 

conversion to SM. The same effects were present, though less pronounced, in caCer-3, whereas 

cCer metabolism was generally unaffected by irradiation.  

 

Figure 3.10.  caCer incubation with lysates of SMS2-expressing yeast cells at 37 °C under UV-A or blue 

illumination. After each 10 min period, caCer configuration was switched by illuminating the reactions 

with blue or UV-A light. Reaction samples were taken at the indicated time points, subjected to lipid 

extraction, click-reacted with Alexa-647 and analyzed by TLC. Presented are the relative amounts of SM 

formed (images courtesy of Dr. Matthijs Kol). 

Having demonstrated optical control of sphingolipid metabolism in yeast cell membranes, we 

next investigated caCer behaviour in living cells. Pre-irradiated cis- or trans-isomers of caCer-1 

and caCer-3 were added to SMS2-overexpressing HeLa cells and control cells and were 

incubated for 1 h at 37 °C. Conversion was again monitored by click reaction to Alexa-647 and 

TLC fluorescence analysis. Though all substrates showed improved conversion to SM analogues 

in SMS2-overexpressing cells compared to control (Figure 3.11), cis-caCers were once more 

metabolized at a far greater rate than trans-isomers in both cell lines. The difference in conversion 

between isomers was particularly prominent for caCer-1. Reversible optical control over SM 

metabolism was then evaluated by a second irradiation experiment. Dark-adapted trans-caCer-1 

was incubated in SMS2-overexpressing cells for 15 minutes before flash irradiation with UV-A 
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followed by blue light, or vice versa, and the incubation was continued in the dark for an 

additional 20 minutes before analysis. Irradiating with blue light followed by UV light resulted in 

increased conversion to SM, whereas the reverse resulted in conversion only slightly greater than 

the dark-adapted control, confirming that metabolism by SMS2 could be actively controlled by 

light-induced cis/trans isomerization in human cells. 

 

Figure 3.11.  Blue, UV-A or dark-adapted a) caCer-1 or c) caCer-3 was incubated with control or SMS2-

V5-expressing HeLa cells for 1 h at 37°C. Metabolic conversion to SM was determined by TLC analysis of 

total lipid extracts click-reacted with Alexa-647. Quantitative analysis of SM formed from b) caCer-1 or 

d) caCer-3. e) caCer-1 or cCer were incubated with SMS2-V5-expressing HeLa cells at 37°C in the dark. 

After 15 min, cells were flash-illuminated by blue light followed by UV-A or vice versa and then incubated 

for another 20 min. Metabolic conversion of caCer-1 or cCer to SM was determined by TLC analysis of 

total lipid extracts click-reacted with Alexa-647. f) Quantitative analysis of SM formed from caCer-1 or 

cCer. All data shown are mean values ± s.d. (n = 3) (images courtesy of Dr. Matthijs Kol). 
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Our results in both yeast membranes and human cells indicate that the cis-isomers of caCer-1, 

caCer-2 and caCer-3 are more readily converted to SM by SMS2 than the corresponding 

trans-isomers. It is possible that the conformational change of these ceramide analogues 

influences binding affinity for SMS2, and that cis-caCers are better suited for SMS binding 

despite possessing bent alkyl chains in comparison to the linear residues of native ceramides. 

However, SMS2 is a promiscuous enzyme and should tolerate a variety of substrates regardless of 

conformation.
[238-239]

 An alternate explanation is that the isomerization of caCers alters their 

localization in cell membranes and thereby determines their interactions with SMS2. The trans-

isomers tend to be closely packed and cluster in ordered phases, as demonstrated by our findings 

in SLBs (see Figure 3.8.b), whereas cis-caCers have disrupted packing and a preference for the 

liquid-disordered domains. This would suggest a lateral segregation between SMS and trans-

caCers in native lipid membranes contributing to reduced metabolism of dark-adapted caCers.  

Regardless, the development of the caCers series has illustrated that the biosynthesis of 

sphingolipids can be dynamically regulated by means of light. We have confidence that these 

chemical tools can soon be put to use to probe the fundamental role of ceramides in apoptosis and 

metabolic disorders. 
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4.1.  General Experimental Details 

 Unless otherwise stated, all reactions were performed with magnetic stirring under a positive 

pressure of nitrogen or argon gas. Oven-dried glassware (oven temperature of 100 °C) was further 

dried with a heat-gun at 650 °C under vacuum, followed by back-filling with inert gas, three times 

and fitted with rubber septa prior to use for moisture-sensitive reactions.  

Solvents and Reagents: Tetrahydrofuran (THF) and diethyl ether (Et2O) were distilled over 

sodium benzophenone under nitrogen atmosphere prior to use. Dichloromethane (CH2Cl2), 

triethylamine (Et3N) and chlorotrimethylsilane (TMSCl) were distilled over calcium hydride 

under a nitrogen atmosphere. N,N-dimethylformamide (DMF), toluene (PhMe) and methanol 

(MeOH) were purchased from Acros Organics as 'extra dry' reagents under inert gas atmosphere 

and stored over molecular sieves. Solvent used for extraction and flash column chromatography 

were purchased at technical grade and distilled under reduced pressure (ethyl acetate (EtOAc), 

pentane, Et2O) or purchased at HPLC grade (CH2Cl2, acetone, MeOH). 

Hexamethylphosphoramide (HMPA) and 1.0 M lithium bis(trimethylsilyl)amide (LiHMDS) in 

THF were purchased from Sigma Aldrich under inert gas atmosphere. Potassium carbonate was 

oven-dried (100 °C) for three days prior to use and cooled under nitrogen atmosphere. All other 

solvents and reagents were used as received from commercial sources (Sigma-Aldrich, Tokyo 

Chemical Industry Co., Alfa Aesar, Acros Organics, Strem Chemicals). 

Chromatography:  Reactions were monitored by thin-layer chromatography (TLC) using silica 

gel F254 pre-coated glass plates (Merck) and visualized by exposure to ultraviolet light (λ = 254 

nm) or by staining with aqueous potassium permanganate (KMnO4) or  aqueous acidic ceric 

ammonium molybdate (IV) (CAM) solution. Flash column chromatography was performed using 

silica gel (60 Å, 40-63 µm, Merck) and a forced flow of eluent.  

NMR Spectroscopy: Proton (
1
H) and carbon (

13
C) nuclear magnetic resonance spectra were 

recorded on a Bruker Avance III HD 400 MHz spectrometer equipped with a CryoProbe™, a 

Varian VXR400 S spectrometer, a Bruker AMX600 spectrometer or a Bruker Avance III HD 800 

MHz spectrometer. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and 

referenced to residual undeuterated solvent signals (CDCl3: 7.26 ppm, toluene-d
8
: 2.09 [pentet] 

ppm, pyridine-d
5
: 7.19 [t] ppm, CD3OD: 3.31 [pentet] ppm). Carbon chemical shifts are expressed 

in parts per million (ppm, δ scale) and referenced to the central carbon resonance of the solvent 

(CDCl3: 77.2 ppm, toluene-d
8
: 137.9 ppm, pyridine-d

5
: 123.4 [t] ppm, CD3OD: 49.2 [heptet] 

ppm). The reported data is represented as follows: chemical shift in parts per million (ppm, δ 

scale) (multiplicity, coupling constants J in Hz, integration intensity). Abbreviations used for 

analysis of multiplets are as follows: s (singlet), br s (broad singlet), d (doublet), t (triplet), q 
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(quartet), p (pentet), h (hextet), and m (multiplet). Variable temperature NMR spectroscopy was 

performed at the Ludwig-Maximilians-Universität NMR facility. 

FTIR Spectroscopy: IR spectra were recorded on a PerkinElmer Spectrum BXII FTIR 

spectrometer equipped with an attenuated total reflection (ATR) measuring unit. IR data is 

recorded in frequency of absorption (wavenumber in cm
-1

) with bands described as weak (w), 

medium (m), strong (s), broad (br) and combinations thereof.  

Mass Spectrometry: Mass spectrometry (MS) experiments were performed at high resolution on 

a Thermo Finnigan MAT 95 (electron ionization [EI] double-focusing magnetic sector mass 

spectrometer) or on a Thermo Finnigan LTQ FT (electrospray ionization [ESI] linear ion trap-

based Fourier Transform Ion Cyclotron Resonance mass spectrometer) instrument at the Ludwig-

Maximilians-Universität mass spectrometry facility.  

Optical Rotation: Optical rotation values were measured on a PerkinElmer 411 polarimeter or a 

Krüss P8000-P8100-T polarimeter equipped with a sodium lamp.  

Melting Point: Melting points were measured using a Stanford Research Systems MPA120 

Automated Melting Point Apparatus in open capillaries and are uncorrected. 

High Pressure Experiments: High-pressure reactions were performed using a high-pressure 

apparatus (max. 14 kbar, piston 25 mm) from Andreas Hofer Hochdrucktechnik GmbH equipped 

with a Julabo MA-4 heating circulator. 
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4.2.  Experimental Procedures for Chapter I 

The following section uses numbering from Angew. Chem. Int. Ed. 2016, 55, 2191 – 2194. 

Synthesis of N-Boc-L-glutamic acid dimethyl ester (12) 

 

Following a procedure by Yang et al.,
[240]

 L-glutamic acid (15.0 g, 102 mmol, 1.0 equiv.) was 

suspended in MeOH (250 mL) and the suspension was cooled to 0 °C. TMSCl (56.9 mL, 

449 mmol, 4.4 equiv.) was added to the flask via drop funnel and the resulting clear solution was 

warmed to room temperature and stirred for 15 h. Et3N (92.4 mL, 663 mmol, 6.5 equiv.) was then 

added dropwise via syringe over the course of 1 h while an ice bath was used periodically to cool 

the warming solution. Following addition of base, di-tert-butyl dicarbonate (25.8 mL, 0.112 mol, 

1.1 equiv.) was added via syringe and the cloudy white reaction mixture was stirred for 16 h, 

gradually turning clear and colorless. Solvent was removed under reduced pressure and the 

resulting white residue was taken up in Et2O (400 mL) and filtered through a pad of Celite
®
. The 

pad was washed with Et2O (800 mL) and the combined organic washings were concentrated 

under reduced pressure. The crude residue was purified by flash column chromatography (20% 

EtOAc in pentane) to afford N-Boc-L-glutamic acid dimethyl ester 12 (26.4 g, 95.9 mmol, 94%) 

as a colorless oil. The 
1
H NMR spectrum is in agreement with that previously reported.

[240]
 

1
H NMR (400 MHz, CDCl3) δ 5.10 (d, J = 8.2 Hz, 1H), 4.34 (q, J = 7.9 Hz, 1H), 3.75 (s, 3H), 

3.68 (s, 3H), 2.50 – 2.31 (m, 2H), 2.19 (dq, J = 13.8, 6.5 Hz, 1H), 1.95 (dq, J = 13.8, 7.7 Hz, 1H), 

1.44 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ 173.30, 172.80, 155.45, 80.15, 52.95, 52.57, 51.94, 30.18, 28.41, 

27.91. 
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Synthesis of dimethyl (2S,4S)-2-allyl-4-((tert-butoxycarbonyl)amino)pentanedioate (13) 

 

Following a modified procedure by Hanessian et al.,
[241]

 LiHMDS (1.0 M in THF, 59.2 mL, 2.2 

equiv.) was added via cannula to a solution of N-Boc-L-glutamic acid dimethyl ester 12 (7.41 g, 

26.9 mmol, 1.0 equiv.) in THF (100 mL) at –78 °C.  The reaction mixture was stirred at this 

temperature for 30 minutes, whereupon allyl bromide (6.83 mL, 80.7 mmol, 3.0 equiv.) was 

added and the pale yellow solution was stirred at –78 °C for an additional 2 h. A saturated 

aqueous solution of NH4Cl (50 mL) was then added and the reaction mixture was warmed to 

room temperature. The aqueous layer was separated and extracted with EtOAc (3 × 120 mL). The 

combined organic layers were rinsed with brine (50 mL), dried over anhydrous sodium sulfate 

(Na2SO4), filtered and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography (10 – 15% EtOAc in pentane) to afford allylated glutamic acid ester 

13 (7.91 g, 25.1 mmol, 93%) as a pale yellow oil.  

Rf : 0.27 (15% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.70 (ddt, J = 17.2, 10.1, 7.0 Hz, 1H), 5.09 (dd, 17.2, 1.6 Hz, 1H), 

5.06 (d, 10.1 Hz, 1H), 4.95 (d, J = 7.8 Hz, 1H), 4.35 (q, J = 7.8 Hz, 1H), 3.73 (s, 3H), 3.66 (s, 

3H), 2.57 (quin, J = 7.0 Hz, 1H), 2.34 (m, 2H), 2.00 (t, J = 7.0 Hz, 2H), 1.43 (s, 9H).v 

13
C NMR (100 MHz, CDCl3) δ 175.60, 172.94, 155.46, 134.47, 117.80, 80.16, 52.53, 52.22, 

51.89, 41.96, 36.54, 33.81, 28.41. 

HRMS (ESI
+
): Calc. for C15H26NO6

+
 [M + H

+
]: 316.1755. Found: 316.1764.  

IR (ATR): 𝜈 = 3367 (br w), 2979 (w), 2954 (w), 1734 (s), 1713 (s), 1512 (m), 1438 (m), 

1367 (m), 1246 (m), 1161 (s), 1050 (w), 1026 (w), 995 (w), 919 (w), 857 (w), 780 (w). 

[𝜶]𝑫
𝟐𝟐 = +21.3° (c = 1.2, CHCl3). 
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Synthesis of tert-butyl ((3S,5S)-5-allyl-2-hydroxytetrahydro-2H-pyran-3-yl)carbamate (14) 

 

Allylated glutamic acid ester 13 (405 mg, 1.28 mmol, 1.0 equiv.) was dissolved in THF (12 mL) 

and the resulting solution was cooled to –78 °C. DIBAL (1.0 M in PhMe, 5.78 mL, 5.78 mmol, 

4.5 equiv.) was then slowly added to the solution along the walls of the vessel. The mixture was 

stirred at –78 °C for 1 h where TLC analysis indicated some unreacted 13 remained. Additional 

DIBAL (0.64 mL, 0.5 equiv.) was added and the mixture was stirred at –78 °C for 2 h before slow 

addition of MeOH (10 mL). The mixture was warmed to room temperature and poured into an 

Erlenmeyer containing a saturated aqueous solution of Rochelle’s salt (20 mL). The resulting 

emulsion was stirred vigorously for 2 h until two clear and colorless phases formed. The aqueous 

phase was separated and extracted with Et2O (3 × 30 mL). The combined organic layers were then 

dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (20 – 30% EtOAc in pentane) to afford 

lactol 14 (274 mg, 1.06 mmol, 83%) as a colorless oil. 
1
H NMR indicates a 1:1 mixture of 

diastereomers at C1. 

Rf : 0.70 (40% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.74 (m, 2H), 5.11 – 4.94 (m, 6H), 4.84 (br s, 2H), 3.98 (ddd, J = 

11.5, 3.8, 1.1 Hz, 1H), 3.87 (br s, 1H), 3.75 – 3.64 (m, 2H), 3.55 (dd, J = 10.8, 3.0 Hz, 1H), 3.26 

(dd, J = 11.5, 7.7 Hz, 1H), 2.15 – 1.89 (m, 5H), 1.79 – 1.67 (m, 3H), 1.71 – 1.63 (m, 1H), 1.55 – 

1.48 (m, 1H), 1.45 (s, 9H), 1.45 (s, 9H).  

13
C NMR (100 MHz, CDCl3) δ 156.25, 155.86, 135.90, 135.62, 116.87, 116.85, 94.53, 94.34, 

79.99, 67.37, 64.64, 48.47, 47.98, 36.66, 35.64, 32.33, 31.29, 30.99, 29.82, 28.47, 28.47, 27.98.  

HRMS (ESI
+
): Calc. for C13H23NO4Na

+
 [M + Na

+
]: 280.1519. Found: 280.1518.  

IR (ATR): 𝜈 = 3354 (br s), 3077 (w), 2977 (m), 2932 (m), 1688 (s), 1641 (w), 1504 (s), 1448 (w), 

1392 (m), 1366 (m), 1246 (m), 1169 (s), 1068 (s), 1014 (s), 915 (m), 881 (w), 778 (w). 

[𝜶]𝑫
𝟐𝟐 = –2.3° (c = 2.0, CHCl3). 
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Synthesis of tert-butyl ((3S,5S)-5-(((tert-butyldimethylsilyl)oxy)methyl)oct-7-en-1-yn-3-yl) 

carbamate (11) 

 

Potassium carbonate (5.96 g, 43.1 mmol, 2.0 equiv.) was added to a solution of dimethyl (1-

diazo-2-oxopropyl)phosphonate 15 (8.83 g, 43.1 mmol, 2.0 equiv.) in MeOH (150 mL) at 0 °C 

and the bright yellow suspension was stirred at this temperature for 2 h. Lactol 14 (5.54 g, 21.5 

mmol, 1.0 equiv.) in MeOH (25 mL) was then added dropwise via syringe. The mixture was 

gradually warmed to room temperature and stirred for 12 h. The reaction was diluted with H2O 

(80 mL) and Et2O (80 mL), and the aqueous phase was separated and further extracted with Et2O 

(3 × 50 mL). The combined organic layers were rinsed with brine (50 mL), dried over anhydrous 

Na2SO4, filtered and concentrated under reduced pressure. The crude product was purified by 

flash column chromatography (20 – 30% EtOAc in pentane) to afford a mixture of predominantly 

the alkyne product, along with some co-eluting unreacted 14 (~5 – 10%), as a colorless oil (4.31 

g). The mixture was submitted directly to the next reaction. 

Imidazole (1.27 g, 18.7 mmol, 1.1 equiv.) and DMAP (0.204 g, 1.67 mmol, 0.1 equiv.) were 

added sequentially to a solution of impure alkyne (4.31 g, assumed 16.7 mmol, 1.0 equiv.) in 

CH2Cl2 (105 mL) at room temperature. The solution was cooled to 0 °C and TBSCl (3.07 g, 20.4 

mmol, 1.2 equiv.) was added in a single portion. The resulting cloudy suspension was allowed to 

warm to room temperature and stirred for 4 h. A saturated aqueous solution of NaHCO3 (50 ml) 

was then added to the reaction mixture. The aqueous layer was separated and further extracted 

with CH2Cl2 (50 mL) and the combined organic layers were rinsed with brine (50 mL), dried over 

anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude product was 

purified by flash column chromatography (3 – 4% EtOAc in pentane) to afford alkyne 11 (4.81 g, 

13.1 mmol, 61% over two steps) as a pale yellow oil.
 1

H NMR indicates a 10:1 mixture of 

diastereomers with S1. 

Rf : 0.41 (4% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3, major diastereomer) δ 5.73 (ddt, J = 18.4, 10.1, 7.0 Hz, 1H), 5.02 

(d, J = 18.4 Hz, 1H), 5.01 (d, J = 10.1 Hz, 1H), 4.83 (d, J = 5.9 Hz, 1H), 4.42 (q, J = 6.8 Hz, 1H), 

3.50 (m, 2H), 2.24 (s, 1H), 2.16 (dt, J = 13.4, 6.7 Hz, 1H), 2.03 (dt, J = 13.4, 6.7 Hz, 1H), 1.76 

(dt, J = 12.2, 6.1 Hz, 1H), 1.68 (m, 1H), 1.60 (dt, J = 12.2, 6.4 Hz, 1H), 1.43 (s, 9H), 0.88 (s, 9H), 

0.03 (s, 6H). 
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13
C NMR (100 MHz, CDCl3, major diastereomer) δ 154.90, 136.55, 116.71, 84.19, 83.87, 

79.83, 70.73, 64.83, 41.29, 37.44, 35.93, 28.47, 26.05, 18.39, -5.32. 

HRMS (ESI
+
): Calc. for C20H38NO3Si

+
 [M + H

+
]: 368.2616. Found: 368.2618.  

IR (ATR): 𝜈 = 3313 (w), 3077 (w), 2954 (m), 2929 (m), 2857 (m), 1704 (s), 1640 (w), 1496 (s), 

1390 (w), 1366 (m), 1250 (s), 1168 (s), 1098 (m), 1004 (m), 912 (m), 833 (s), 774 (s).  

[𝜶]𝑫
𝟐𝟐 = –23.1° (c = 1.7, CHCl3). 

 

Synthesis of tert-butyl ((4S,6S,7aS)-6-(((tert-butyldimethylsilyl)oxy)methyl)-2-oxo-

2,4,5,6,7,7a-hexahydro-1H-inden-4-yl)carbamate (10) 

 

Cobalt carbonyl (2.44 g, 7.13 mmol, 1.2 equiv.) was added to a solution of alkyne 11 (2.18 g, 

5.94 mmol, 1.0 equiv.) in degassed toluene (80 mL) at room temperature. The dark red solution 

was stirred for 1.5 h, whereupon thin layer chromatography analysis indicated complete 

conversion of starting material to the alkyne-Co2(CO)6 complex. The mixture was heated to 70 °C 

for 15 h, then cooled to room temperature and filtered through a short pad of Celite.
®
 The pad was 

washed with EtOAc (250 mL) and the combined solvent was concentrated under reduced 

pressure. The crude product was purified by flash column chromatography (15 – 30% EtOAc in 

pentane) to afford enone 10 (1.67 g, 4.28 mmol, 72%) as a clear, colorless oil. 
1
H NMR indicates 

a 10:1 mixture of diastereomers with S2. 

Rf : 0.23 (20% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3, major diastereomer) δ 5.89 (s, 1H), 4.77 (br s, 1H), 4.44 (dt, J = 

13.3, 6.8 Hz, 1H), 3.45 (d, J = 5.7 Hz, 2H), 2.81 (dt, J = 12.3, 6.6 Hz, 1H), 2.64 (dd, J = 18.8, 6.6 

Hz, 1H), 2.25 – 2.10 (m, 2H, H-7a), 2.04 (d, J = 18.8 Hz, 1H), 1.89 (m, 1H), 1.44 (s, 9H), 1.07 (q, 

J = 12.3 Hz, 1H), 0.88 (m, 1H) 0.86 (s, 9H), 0.01 (s, 6H). 

13
C NMR (100 MHz, CDCl3, major diastereomer) δ 207.61, 184.28, 155.18, 125.25, 80.09, 

66.81, 53.52, 51.32, 42.57, 40.22, 38.71, 36.97, 28.39, 25.97, 18.37, -5.38. 

HRMS (ESI
+
): Calc. for Calc. for C21H38NO4Si

+
 [M + H

+
]: 396.25645. Found: 396.2564.  
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IR (ATR): 𝜈 = 3327 (br w), 2953 (m), 2928 (m), 2856 (m), 1703 (s), 1623 (m), 1520 (m), 

1471 (w), 1390 (w), 1365 (m), 1250 (s), 1162 (s), 1109 (m), 1181 (m), 1017 (w), 909 (m), 834 (s), 

775 (s), 731 (m).  

[𝜶]𝑫
𝟐𝟐 = –40.1° (c = 2.8, CHCl3). 

 

Synthesis of tert-butyl ((3aR,4S,6S,7aS)-3a-(but-3-en-1-yl)-6-(((tert-

butyldimethylsilyl)oxy)meth-yl)-2-oxooctahydro-1H-inden-4-yl)carbamate (17) 

 

4-Bromobutene (3.05 mL, 30.0 mmol) in THF (20 mL) was added gradually to a suspension of 

magnesium turnings (729 mg, 30.0 mmol) in THF (10 mL) so as to maintain a gentle reflux. The 

resulting solution was stirred for 1 h at room temperature, then titrated with 

2-hydroxybenzaldehyde phenylhydrazone (61.2 mg, 0.288 mmol in 5 mL THF) to determine the 

molarity of the 3-butenylmagnesium bromide solution (0.74 M).
[242]

 

Freshly-prepared 3-butenylmagnesium bromide solution (22.6 mL, 0.74 M in THF, 16.7 mmol, 

4.5 equiv.) was added dropwise to a light brown suspension of CuBr·SMe2 (153 mg, 0.744 mmol, 

0.2 equiv.) in THF (40 mL) at –78 °C. The mixture was stirred at –78 °C for 1 h. HMPA (1.89 

mL, 11.2 mmol, 3.0 equiv.) was added and the mixture was stirred for 10 minutes. TMSCl (1.42 

mL, 11.2 mmol, 3.0 equiv.) and enone 10 (1.47 g, 3.72 mmol, 1.0 equiv.) in THF (15 mL) were 

then added simultaneously. The resulting bright yellow reaction mixture was stirred for 2 h at –78 

°C and 1 h at –35 °C. Acetic acid (2.12 mL, 37.2 mmol, 10.0 equiv.) was then added to the 

reaction mixture and the solution was allowed to warm to room temperature over 45 minutes. A 

3:1 mixture of saturated aqueous NH4Cl solution and saturated aqueous NaHCO3 solution (pH 10, 

40 mL) was added and the biphasic system was stirred until the aqueous phase turned a deep blue. 

The aqueous phase was extracted with Et2O (3 × 80 mL) and the combined organic layers were 

rinsed with brine (70 mL), dried over anhydrous Na2SO4, filtered and concentrated under reduced 

pressure. The crude product was purified by flash column chromatography (15 – 20% Et2O in 

pentane) to afford cyclopentanone 17 (1.31 g, 2.91 mmol, 78%) as a pale yellow oil and a single 

diastereomer. 

Rf : 0.22 (20% Et2O in pentane, stains with KMnO4). 
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1
H NMR (400 MHz, CDCl3) δ 5.78 (ddt, J = 17.1, 10.2, 6.6 Hz, 1H), 5.02 (d, J = 17.1 Hz, 1H), 

4.93 (d, J = 10.2 Hz, 1H), 4.18 (d, J = 10.1 Hz, 1H), 3.92 (td, J = 10.1, 4.5 Hz, 1H), 3.45 (dd, J = 

9.8, 5.2 Hz, 1H), 3.38 (dd, J = 9.8, 6.4 Hz, 1H), 2.55 (dd, J = 18.8, 7.3 Hz, 1H), 2.34 (d, J = 17.6 

Hz, 1H),  2.29 (m, 2H), 2.03 (dq, J = 18.3, 5.8 Hz, 1H), 1.92 (d, J = 18.8 Hz, 1H), 1.86 (d, J = 

12.5 Hz, 1H), 1.73 (d, J = 17.6 Hz, 1H), 1.73 (overlapping, 1H) 1.68 – 1.51 (m, 2H, H-4a), 1.43 

(s, 9H), 1.30 (dt, J = 14.5, 11.9, 5.1 Hz, 1H), 1.06 (q, J = 12.5 Hz, 1H), 0.87 (s, 9H), 0.77 (q, J = 

13.1 Hz, 1H), 0.02 (s, 6H). 

13
C NMR (100 MHz, CDCl3) δ 217.98, 155.55, 138.54, 114.88, 79.60, 67.46, 50.16, 46.10, 

44.44, 43.29, 38.24, 36.63, 35.29, 33.16, 32.00, 28.48, 27.88, 26.08, 18.49, -5.25. 

HRMS (ESI
+
): Calc. for C25H46NO4Si

+
 [M + H

+
]: 452.3191. Found: 452.3191.  

IR (ATR): 𝜈 = 3348 (w), 2928 (m), 2856 (m), 1740 (s), 1711 (s), 1697 (s), 1518 (m), 1502 (m), 

1462 (w), 1390 (m), 1365 (m), 1249 (s), 1172 (m), 1154 (m), 1109 (m), 1003 (m), 908 (m), 834 

(s), 775 (s).  

[𝜶]𝑫
𝟐𝟐 = –53.7° (c = 1.2, CHCl3). 

 

Synthesis of (3aR,4S,6S,7aS)-4-amino-3a-(but-3-en-1-yl)-6-(hydroxymethyl)octahydro-2H-

inden-2-one (8) 

 

Acetyl chloride (539 μL, 7.56 mmol. 10.0 equiv.) was added dropwise via syringe to a solution of 

carbamate 17 (342 mg, 0.756 mmol, 1.0 equiv.) in MeOH (10 mL) at room temperature. The pale 

pink reaction mixture was heated to 45 °C for 2 h, then cooled to room temperature and 

concentrated under reduced pressure. The crude residue was purified by flash column 

chromatography (91.2:8:0.8 CH2Cl2/MeOH/aqueous NH3 solution) to afford aminoketone 8 (165 

mg, 0.696 mmol, 92%) as a yellow oil. Note: Neat 8 was prone to partial decomposition when left 

under strong vacuum for extended periods of time (>3 h). 

Rf : 0.39 (20% MeOH in CH2Cl2, stains with ninhydrin and KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.78 (ddt, J = 16.7, 10.3, 6.4 Hz, 1H), 5.02 (d, J = 18.8 Hz, 1H), 

4.95 (d, J = 10.3 Hz, 1H), 3.42 (d, J = 6.1 Hz, 2H), 2.97 (dd, J = 11.7, 4.4 Hz, 1H), 2.55 (dd, J = 

18.8, 7.3 Hz, 1H), 2.39 (d, J = 18.3 Hz, 1H), 2.22 (dt, J = 12.8, 7.3 Hz, 1H), 2.07 (m, 2H), 1.89 (d, 
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J = 18.8 Hz, 1H), 1.78 (d, J = 18.3 Hz, 1H),  1.76 (m, 1H), 1.74 (m, 1H), 1.72 (m, 1H) 1.59 (m, 

1H), 1.38 (ddd, J = 15.6, 11.4, 5.2 Hz, 1H), 1.05 (q, J = 12.2 Hz, 1H), 0.79 (q, J = 12.8 Hz, 1H). 

13
C NMR (100 MHz, CDCl3) δ 218.78, 138.34, 115.12, 67.64, 50.73, 46.99, 44.50, 43.34, 38.17, 

36.50, 34.85, 33.72, 31.12, 27.84. 

HRMS (ESI
+
): Calc. for C14H24NO2

+
 [M + H

+
]: 238.1802. Found: 238.1801.       

IR (ATR): 𝜈 = 3352 (br s), 2923 (s), 2857 (m), 2360 (m), 2340 (m), 1734 (s), 1640 (w), 

1458 (m), 1406 (m), 1154 (m), 1060 (m), 912 (m), 670 (m).  

[𝜶]𝑫
𝟐𝟐 = –92.6° (c = 0.7, CHCl3). 

 

Synthesis of N-Boc-3-(methylamino)propanal (9) 

 

Oxalyl chloride (1.61 mL [1.0 M in CH2Cl2], 3.21 mmol, 1.3 equiv.) was added dropwise to a 

solution of DMSO (0.439 mL, 6.18 mmol, 2.5 equiv.) in CH2Cl2 (15 mL) at –78 °C and the 

mixture was stirred at this temperature for 30 minutes. N-Boc-3-methylamino-1-propanol (463 

mg, 2.47 mmol, 1.0 equiv.) in CH2Cl2 (5 mL) was then added to the solution. The reaction 

mixture was stirred an additional 30 minutes at –78 °C, whereupon Et3N (1.55 mL, 11.1 mmol, 

4.5 equiv.) in CH2Cl2 (5 mL) was added. The mixture was allowed to warm to room temperature 

and stirred for 16 h. The solution was then poured into brine (30 mL), and the aqueous layer was 

separated and further extracted with CH2Cl2 (2 × 30 mL). The combined organic layers were dried 

over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (30% EtOAc in pentane) to afford aldehyde 9 (401 mg, 

2.14 mmol, 87%) as a colorless oil. Note: 
1
H NMR signals are broadened and some 

13
C NMR 

signals are doubled due to conformational isomerization of the Boc group. 

Rf : 0.35 (30% EtOAc in pentane, stains with KMnO4 and p-anisaldehyde solution). 

1
H NMR (400 MHz, CDCl3) δ 9.81 (br s, 1H), 3.54 (t, J = 6.4 Hz, 2H), 2.87 (s, 3H), 2.68 (t, J = 

6.4 Hz, 2H), 1.45 (s, 9H). 

13
C NMR (100 MHz, CDCl3) δ 201.28, 200.90, 155.75, 155.46, 80.01, 79.91, 42.85, 34.97, 

34.65, 28.49. 

HRMS (ESI
+
): Calc. for C9H18NO3

+
 [M + H

+
]: 188.1281. Found: 188.1285.  
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IR (ATR): 𝜈 = 2976 (w), 2933 (w), 2729 (w), 1722 (m), 1687 (s), 1481 (m), 1457 (w), 1391 (m), 

1366 (m), 1321 (w), 1247 (w), 1218 (w), 1174 (m), 1146 (s), 1060 (m), 877 (m), 773 (m). 

 

Synthesis of tert-butyl (2-((2S,2aR,2a1R,4aS,6S,7aS)-2a1-(but-3-en-1-yl)-6-(hydroxymethyl)-

3-oxodecahydro-1H-cyclopenta[cd]indol-2-yl)ethyl)(methyl)carbamate (7) 

 

Triethylamine (177 μL, 1.27 mmol, 3.0 equiv.) was added to a solution of amine 8 (100 mg, 

0.422 mmol, 1.0 equiv.) and aldehyde 9 (87.1 mg, 0.465 mmol, 1.1 equiv.) in CH2Cl2 (6 mL) at 

room temperature. The mixture was stirred for 1.5 h, then concentrated under reduced pressure. 

The resulting residue was dissolved in DMF (5 mL) and L-proline (48.7 mg, 0.422 mmol, 

1.0 equiv.) was added at room temperature. The reaction was stirred at room temperature for 18 h 

and then concentrated to afford a yellow residue. The crude product was purified by flash column 

chromatography (3 – 8% MeOH in CH2Cl2) to afford pyrrolidine 7 (103 mg, 0.253 mmol, 60%) 

as a yellow oil. 

Rf : 0.60 (10% MeOH in CH2Cl2, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.80 (ddt, J = 17.1, 10.2, 6.3 Hz, 1H), 5.06 (d, J = 17.1 Hz, 1H), 

5.00 (d, J = 10.2 Hz, 1H), 3.49 (m, 3H), 3.46 – 3.36 (m, 1H), 3.30 (q, J = 6.5 Hz, 1H), 3.12 (ddd, 

J = 14.2, 9.1, 5.2 Hz, 1H), 2.85 (s, 3H), 2.73 (dd, J = 17.7, 8.2 Hz, 1H), 2.32 (bs, 1H), 2.19 – 1.99 

(m, 5H), 1.93 (m, 1H), 1.78  (m, 2H), 1.72 – 1.58 (m, 3H), 1.53 (m, 1H), 1.44 (s, 9H), 1.43 

(overlapping, 1H).  

13
C NMR (100 MHz, CDCl3) δ 218.24, 155.93, 137.84, 115.38, 79.75, 66.25, 62.40, 59.64, 

57.61, 52.65, 46.57, 46.16, 39.10, 36.45, 34.74, 32.57, 29.86, 29.51, 29.26, 28.59, 28.12. 

HRMS (ESI
+
): Calc. for C23H39N2O4

+
 [M + H

+
]: 407.2904. Found: 407.2906.  

IR (ATR): 𝜈 = 3305 (br m), 3076 (w), 2974 (w), 2923 (s), 2865 (m), 1733 (s), 1689 (s), 1641 (w), 

1481 (m), 1451 (m), 1394 (m), 1365 (m), 1309 (w), 1251 (w), 1218 (w), 1154 (s), 1051 (m), 911 

(m), 878 (m), 772 (m).  

[𝜶]𝑫
𝟐𝟐 = +4.2° (c = 0.60, CHCl3). 
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Synthesis of tert-butyl (2S,2aR,2a1R,4aS,6S,7aS)-2a1-(but-3-en-1-yl)-2-(2-((tert-butoxy 

carbonyl)(methyl)amino)ethyl)-6-(hydroxymethyl)-3-oxodecahydro-1H-

cyclopenta[cd]indole-1-carboxylate (20) 

 

Di-tert-butyl dicarbonate (353 μL, 1.48 mmol, 5.0 equiv.) was added to a solution of pyrrolidine 7 

(120 mg, 0.296 mmol. 1.0 equiv.) in CH2Cl2 (6 mL) at room temperature. The solution was stirred 

for 72 h, then concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (50% EtOAc in pentane) to afford dicarbamate 20 (140 mg, 0.276 mmol, 

93%) as a colorless yellow oil.  

Rf : 0.34 (50% EtOAc in pentane, stains with KMnO4) 

1
H NMR (400 MHz, d

8
-toluene, 353 K) δ 5.70 (ddt, J = 16.8, 10.2, 6.5 Hz, 1H), 5.03 (dt,   = 

16.8, 1.3 Hz, 1H), 4.95 (dq, J = 10.2, 1.3 Hz, 1H), 3.94 (d, J = 9.7 Hz, 1H), 3.52 (dd, J = 8.1, 4.2 

Hz, 1H), 3.36 (m, 1H), 3.17 (m, 2H), 3.10 (m, 1H), 2.76 (s, 3H), 2.40 (m, 1H), 2.26 (dd, J = 18.5, 

10.2 Hz, 1H), 1.96 (m, 2H), 1.87 (d, J = 18.5 Hz, 1H), 1.83 – 1.76 (m, 2H, H-18a), 1.65 – 1.55 

(m, 3H), 1.49 (m, 2H) 1.44 (s, 9H), 1.42 (s, 9H), 1.40 – 1.28 (m, 2H), 0.97 (dt, J = 14.6, 7.5 Hz, 

1H). 

13
C NMR (100 MHz, d

8
-toluene, 333 K) δ 216.07, 155.72, 154.47, 138.77, 115.32, 79.79, 79.29, 

68.20, 63.55, 59.93, 58.72, 52.42, 46.78, 45.92, 38.98, 36.33, 34.96, 34.31, 33.81, 29.93, 28.95, 

28.95, 27.92, 25.21. 

HRMS (ESI
+
): Calc. for C28H47N2O6

+
 [M + H

+
]: 507.3429. Found: 507.3433.  

IR (ATR): 𝜈 = 3455 (br m), 2975 (m), 2928 (m), 2865 (m), 1739 (m), 1690 (s), 1479 (w), 

1454 (w), 1392 (s), 1366 (m), 1316 (w), 1252 (w), 1219 (w), 1170 (s), 910 (w), 873 (w), 774 (w).  

[𝜶]𝑫
𝟐𝟐 = +40.3° (c = 1.8, CHCl3). 
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Synthesis of tert-butyl (2S,2aR,2a1R,4aS,7aS)-2a1-(but-3-en-1-yl)-2-(2-((tert-butoxycarbonyl) 

(methyl)amino)ethyl)-6-formyl-3-oxodecahydro-1H-cyclopenta[cd]indole-1-carboxylate (S3) 

 

2-Iodoxybenzoic acid (63.7 mg, 0.227 mmol, 3.0 equiv.) was added to a solution of alcohol 20 

(38.4 mg, 0.0757 mmol, 1.0 equiv.) in EtOAc (4 mL) and the suspension was heated to 80 °C for 

2 h. The mixture was then cooled to room temperature, filtered through a fritted glass filter and 

concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (30% EtOAc in pentane) to afford aldehyde S3 (30.2 mg, 0.0598 mmol, 79%) as 

a colorless oil. 
1
H NMR analysis (d

8
-toluene, 353 K) indicated an inconsequential ~6:1 mixture of 

epimers at C19. Note: S3 was prone to epimerization on silica and to degradation in CHCl3 and 

acetone.   

Rf : 0.55 (40% EtOAc in pentane, stains with KMnO4) 

1
H NMR (400 MHz, d

8
-toluene, 353 K, major diastereomer) δ 9.31 (s, 1H), 5.70 (ddt, J = 17.1, 

10.0, 6.4 Hz, 1H), 5.04 (dd, J = 17.1, 1.7 Hz, 1H), 4.98 (dd, J = 10.0, 1.7 Hz, 1H), 3.89 (d, J = 

10.1 Hz, 1H), 3.51 (dd, J = 5.7 Hz, 1H), 3.37 (ddd, J = 14.4, 10.3, 5.0 Hz, 1H), 3.07 (ddd, J = 

14.7, 9.8, 6.1 Hz, 1H), 2.76 (s, 3H), 2.39 (br s, 1H), 2.19 (dd, J = 19.4, 10.5 Hz, 1H), 1.93 (m, 

4H), 1.69 (m, 2H), 1.58 (m, 2H), 1.45 (m, 11H), 1.43 (m, 10H), 1.35 (m, 1H), 1.20 (ddd, J = 13.8, 

9.0, 4.4 Hz, 1H) . 

13
C NMR (100 MHz, d

8
-toluene, 333 K, major diastereomer) δ 215.45, 201.82, 155.70, 153.99, 

138.56, 115.44, 80.04, 79.31, 62.38, 61.02, 59.34, 58.87, 52.30, 46.63, 44.86, 43.73, 41.81, 38.07, 

35.52, 34.96, 29.72, 28.94, 28.88, 22.99. 

HRMS (ESI
+
): Calc. for C28H45N2O6

+
 [M + H

+
]: 505.3272. Found: 505.3272.  

IR (ATR): 2975 (w), 2930 (w), 1739 (m), 1690 (s), 1479 (w), 1455 (w), 1391 (m), 1366 (m), 

1313 (w), 1255 (w), 1169 (m), 911 (w), 774 (w), 668 (w). 

[𝜶]𝑫
𝟐𝟐 = +99.6 ° (c = 0.17, PhMe). 
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Synthesis of tert-butyl (2S,2aR,2a1R,4aS,6S,7aS,8S)-2a1-(but-3-en-1-yl)-2-(2-((tert-butoxy 

carbonyl)(methyl)amino)ethyl)-8-hydroxy-3-oxodecahydro-1H-4,6-methanocyclopenta[cd] 

indole-1-carboxylate (21) 

 

K2CO3 (24.3 mg, 0.176 mmol, 3.0 equiv.) was added to a solution of aldehyde S3 (30.2 mg, 

0.0598 mmol, 1.0 equiv.) in MeOH (1.5 mL) at room temperature. The pale yellow suspension 

was stirred for 20 minutes and then concentrated under reduced pressure. The residue was then 

partitioned between H2O (5 mL) and Et2O (5 mL) and the aqueous phase was further extracted 

with Et2O (2 × 10 mL). The combined organic layers were dried over anhydrous Na2SO4, filtered 

and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (40% EtOAc in pentane) to afford alcohol 21 (29.6 mg, 0.0587 mmol, 98%) as a 

colorless oil.  

Rf : 0.28 (40% EtOAc in pentane, stains with KMnO4) 

1
H NMR (400 MHz, d

8
-toluene, 353 K) δ 5.71 (ddt, J = 17.1, 10.2, 6.5 Hz, 1H), 5.05 (d, J = 17.1 

Hz, 1H), 4.94 (d, J = 10.2 Hz, 1H), 3.96 (m, 1H), 3.69 (s, 1H), 3.49 (m, 1H), 3.34 (m, 1H), 3.07 

(dt, 15.4, 7.7 Hz, 1H), 2.75 (s, 3H), 2.56 (br s, 1H) 2.40 (overlapping, 1H), 2.40 (d, J = 8.4 Hz, 

1H), 2.33 (dd, J = 8.4, 5.3 Hz, 1H), 1.97 (m, 1H), 1.79-1.71 (m, 2H), 1.68 (ddd, J = 13.2, 11.6, 4.7 

Hz, 1H), 1.52 (ddd, J = 13.2, 8.7, 4.1 Hz, 1H), 1.44 (s, 9H), 1.44 (overlapping, 2H), 1.39 (s, 9H), 

1.30 (d, J = 11.8 Hz, 1H), 1.30 (overlapping, 1H), 0.37 (dd, J = 15.8, 8.7 Hz, 1H). 

13
C NMR (100 MHz, d

8
-toluene, 333 K) δ 216.86, 155.80, 154.65, 138.83, 115.28, 85.00, 79.57, 

79.29, 61.47, 59.22, 58.88, 54.66, 53.58, 47.24, 39.99, 39.86, 37.57, 34.79, 31.44, 30.60, 29.34, 

28.96, 28.96, 28.03. 

HRMS (ESI
+
): Calc. for C28H45N2O6

+
 [M + H

+
]: 505.3272. Found: 505.3275.  

IR (ATR): 𝜈 = 3446 (br m), 2974 (m), 2932 (m), 1732 (m), 1690 (s), 1479 (w), 1454 (w), 

1391 (s), 1366 (s), 1342 (w), 1316 (w), 1253 (w), 1212 (w), 1160 (s), 1088 (w), 1060 (w), 

1028 (w), 995 (w), 911 (m), 871 (w), 773 (m), 731 (m).  

[𝜶]𝑫
𝟐𝟐 = +72.0° (c = 0.40, CHCl3). 
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Synthesis of lycopalhine A (2) and epi-lycopalhine A 

 

2,6-lutidine (14.3 μL, 0.124 mmol, 5.0 equiv.), NaIO4 (54.0 mg, 0.248 mmol, 10.0 equiv.), and 

OsO4 (2.5% in t-BuOH, 30.8 μL, 2.5 μmol, 0.1 equiv.) were added sequentially to a solution of 

olefin 21 (12.5 mg, 0.025 mmol, 1.0 equiv.) in a 3:1 mixture of dioxane/H2O (1.2 mL) at room 

temperature. The mixture was stirred at room temperature for 2 h and the suspension was then 

diluted with CH2Cl2 (4 mL) and Na2S2O3 (4 mL). The aqueous layer was further extracted with 

CH2Cl2 (3 × 5 mL) and the combined organic layers were dried over anhydrous Na2SO4, filtered 

and concentrated under reduced pressure. The resulting colorless residue was then dissolved in 

CH2Cl2 (0.75 mL) and cooled to 0 °C, whereupon trifluoroacetic acid (0.25 mL) was added 

dropwise. The reaction mixture was stirred at 0 °C for 1 h, then warmed to room temperature and 

stirred an additional 2 h. The solution was then diluted with CH2Cl2 (4 mL) and the aqueous phase 

was adjusted to pH 10 by dropwise addition of saturated Na2CO3 solution. The aqueous layer was 

separated and further extracted with CH2Cl2 (2 × 10 mL), and the combined organic layers were 

dried over anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (189:10:1 – 89:10:1 

CH2Cl2/MeOH/aqueous NH3 solution) to afford lycopalhine A (1) and epi-1 (4.0 mg, 0.014 mmol, 

56%) as a white gum. 
1
H NMR analysis indicates a 5.5:1 mixture of diastereomers at C16. 

Rf : 0.33 (89:10:1 CH2Cl2/MeOH /aqueous NH3 solution, stains with KMnO4) 

1
H NMR (600 MHz, pyridine-d5, major diastereomer) δ 6.81 (s, 1H), 4.29 (s, 1H), 3.65 (dd, J = 

10.5, 6.7 Hz, 1H), 3.56 (ddd, J = 7.7, 5.8, 3.8 Hz, 1H), 3.05 (dd, J = 7.9, 2.3 Hz, 1H), 2.98 (ddd, J 

= 12.5, 9.8, 4.2 Hz, 1H), 2.57 (t, J = 10.1 Hz, 1H), 2.45 (s, 3H), 2.43 (m, 1H), 2.40 (m, 1H), 2.37 

(ddd, J = 5.9, 2.4, 1.1 Hz, 1H), 2.34 (dt, J = 12.5, 5.5 Hz, 1H), 2.27 (m, 1H), 2.16 (dt, J = 11.6, 4.8 

Hz, 1H), 2.07 (dt, J = 15.5, 9.8 Hz, 1H), 1.86 (td, J = 11.9, 7.1 Hz, 1H), 1.74 (m, 1H), 1.71 (m, 

1H), 1.71 (m, 1H), 1.63 (m, 1H), 1.55 (dd, J = 12.4, 7.8 Hz, 1H), 0.93 (dd, J = 15.4, 10.3 Hz, 1H). 

13
C NMR (150 MHz, pyridine-d5, major diastereomer) δ 221.66, 85.63, 77.02, 65.56, 65.27, 

63.46, 61.11, 54.34, 42.99, 42.85, 42.26, 41.36, 36.00, 27.94, 27.29, 25.46, 24.23. 

13
C NMR (150 MHz, pyridine-d5, minor diastereomer) δ 219.17, 76.28, 75.55, 64.30, 62.13, 

58.74, 58.21, 55.62, 43.82, 42.10, 41.05, 37.66, 36.69, 27.03, 23.53, 23.02, 22.84. 

HRMS (ESI
+
): Calc. for C17H24N2O2

+
 [M + H

+
]: 289.1910. Found: 289.1911.  
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IR (ATR): 𝜈 = 3370 (br s), 2930 (s), 1717 (s), 1454 (m), 1376 (w), 1300 (w), 1176 (m), 1098 

(m), 1048 (m), 1027 (m), 854 (w), 711 (w), 644 (w).  

[𝜶]𝑫
𝟐𝟐 = +109° (c = 0.15, CHCl3). 
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Table 4.1.  Comparison of 
1
H NMR and 

13
C NMR spectral data and optical rotation between natural and 

synthetic lycopalhine A.
[97]

 

 

 1
H NMR (δ in ppm, J in Hz) 

13
C NMR (δ in ppm) 

 Natural (500 MHz)
1 

Synthetic (600 MHz) Natural  

(125 MHz)
1
 

Synthetic  

(150 MHz) 

1a 2.98 (1H, ddd, 13.5, 10.5, 

4.5) 

2.98 (1H, ddd, 12.5, 9.8, 4.2) 43.06 42.99 

1b 2.34 (1H, m) 2.34 (1H, dt, 12.5, 5.5) - - 

2a 2.27 (1H, m) 2.27 (1H, m) 24.32 24.23 

2b 1.74 (1H, m) 1.74 (1H, m) - - 

3 3.56 (1H, m) 3.56 (1H, ddd, 7.7, 5.8, 3.8) 61.17 61.11 

4 2.36  (1H, m) 2.37 (1H, ddd, 5.9, 2.4, 1.1) 63.57 63.46 

5 - - 221.56 221.66 

6 3.05 (1H, d, 7.5) 3.05 (1H, dd, 7.9, 2.3) 65.58 65.56 

7 2.43  (1H, m) 2.43 (1H, m) 42.31 42.26 

8a 2.16  (1H, dt, 12.0, 4.5) 2.16 (1H, dt, 11.6, 4.8) 27.95 27.94 

8b 1.70  (1H, overlap) 1.71 (1H, m) - - 

9 3.64 (1H, dd, 10.5, 7.5) 3.65 (1H , dd, 10.5, 6.7) 77.12 77.02 

10a 1.70  (1H, overlap) 1.71 (1H, m) 25.48 25.46 

10b 1.63  (1H, m) 1.63  (1H, m) - - 

11a 1.85 (1H, td, 12.0, 7.5) 1.86 (1H, td, 11.9, 7.1)  36.07 36.00 

11b 1.55 (1H, dd, 12.0, 7.5) 1.55 (1H, dd, 12.4, 7.8) - - 

12 - - 54.38 54.34 

13 2.56 (1H, t, 10.0) 2.57 (1H, t, 10.1) 65.35 65.27 

14a 2.07 (1H, dt, 15.5, 10.0) 2.07 (1H, dt, 15.5, 9.8) 27.34 27.29 

14b 0.92 (1H, dd, 15.5, 10.0) 0.93 (1H, dd, 15.4, 10.3) - - 

15 2.40 (1H, m) 2.40 (1H, m) 41.41 41.36 

16 4.29 (1H, br s) 4.29 (1H, s) 85.68 85.63 

17 2.45 (3H, s) 2.45 (3H, s) 42.86 42.85 

18 - 6.81 (1H, br s) - - 

 

Natural (+)-lycopalhine A Synthetic (+)-lycopalhine A 

[𝜶]𝑫
𝟏𝟓 = + 89.1 (c 0.17, CH3OH) [𝜶]𝑫

𝟐𝟐 = + 109 (c 0.15, CH3OH) 
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Synthesis of tert-butyl (4aR,7aS,9S,10aS)-9-(((tert-butyldimethylsilyl)oxy)methyl)-6-oxo-

5,6,7,7a,8,9,10,10a-octahydrocyclopenta[e]quinoline-1(4H)-carboxylate (1.127) 

 

Olefin 17 (52.3 mg, 0.120 mmol, 1.0 equiv.) was dissolved in a 3:1 mixture of dioxane/H2O (2 

mL) and the solution was cooled to 0 °C. 2,6-Lutidine (33.5 µL, 0.290 mmol, 2.5 equiv.), NaIO4 

(124 mg, 0.579 mmol, 5.0 equiv.) and OsO4 (2.5% w/w in tBuOH, 72.0 µL, 5.80 µmol, 0.05 

equiv.) were added sequentially to the reaction flask and the resulting white suspension was 

allowed to warm to ambient temperature and was stirred for 3.5 h. Saturated aqueous sodium 

thiosulfate solution (15 mL) was then added and the biphasic mixture was stirred for 25 minutes. 

The aqueous layer was extracted with CH2Cl2 (2 × 20 mL) and the combined layers were dried 

over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude 

product was purified by flash column chromatography (10 → 20% EtOAc/pentane) to afford 

1.125 and 1.12 together as colorless oils. The combined substrates were dissolved in AcOH (3 

mL) and stirred at ambient temperature for 2 h, then concentrated under reduced pressure to 

afford enamine 1.127 as a colorless oil (47.6 mg, 0.109 mmol) in 91% yield. 

Rf: 0.56 (30% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 6.77 (d, J = 8.3 Hz, 1H), 4.77 (ddd, J = 8.0, 5.3, 2.4 Hz, 1H), 3.57 

(dd, J = 9.9, 4.6 Hz, 1H), 3.47 (dd, J = 11.8, 4.2 Hz, 1H), 3.40 (dd, J = 9.9, 6.9 Hz, 1H), 2.75 (m, 

1H), 2.62 (dd, J = 18.6, 7.4 Hz, 1H), 2.35 (d, J = 18.6 Hz, 1H), 2.07 – 1.93 (m, 4H), 1.85 (m, 1H), 

1.63 – 1.51 (m, 3H), 1.45 (s, 9H), 0.88 (s, 9H), 0.79 (m, 1H), 0.03 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 218.5, 153.3, 129.6, 103.7, 81.0, 68.1, 60.8, 45.2, 42.9, 42.6, 

41.0, 38.7, 36.9, 33.6, 29.1, 28.5, 26.1, 18.5, -5.2. 

HRMS (ESI
+
): Calc. for C24H44O5NSi

+
 [M + H3O

+
]: 454.2983. Found: 454.2988.  

IR (ATR): 𝜈 = 2954 (m), 2928 (m), 2856 (m), 1742 (s), 1715 (s), 1657 (m), 1472 (w), 1391 (m), 

1366 (m), 1339 (w), 1303 (m), 1269 (m), 1252 (s), 1165 (s), 1101 (s), 836 (s), 776 (m), 726 (w). 

[𝜶]𝑫
𝟐𝟐 = –84° (c = 0.86, CHCl3).          
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Synthesis of tert-butyl (4aR,7aS,9S,10aS)-9-(((tert-butyldimethylsilyl)oxy)methyl)-6-

oxodecahydrocyclopenta[e]quinoline-1(2H)-carboxylate (1.128) 

 

Olefin 17 (254 mg, 0.563 mmol, 1.0 equiv.) was dissolved in a 3:1 mixture of dioxane/H2O 

(8 mL) and the solution was cooled to 0 °C. 2,6-Lutidine (163 µL, 1.41 mmol, 2.5 equiv.), NaIO4 

(613 mg, 2.82 mmol, 5.0 equiv.) and OsO4 (2.5% w/w in tBuOH, 350 µL, 0.0282 mmol, 

0.05 equiv.) were added sequentially to the reaction flask and the resulting white suspension was 

allowed to warm to ambient temperature and was stirred for 2 h. Saturated aqueous sodium 

thiosulfate solution (10 mL) was then added and the biphasic mixture was stirred for 25 minutes. 

The aqueous layer was extracted with CH2Cl2 (3 × 10 mL) and the combined layers were dried 

over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude oil 

was dissolved in AcOH (8 mL) and stirred at ambient temperature for 20 minutes. Pd/C 

(10% w/w, 59.9 mg, 0.0563 mmol, 0.10 equiv.) was added and the suspension was stirred rapidly 

under H2 atmosphere (balloon pressure) for 5 h. The sample was filtered over Celite
®
 with EtOAc 

washing (50 mL) to remove catalyst and the filtrate was concentrated under reduced pressure. The 

crude residue was purified by flash column chromatography (10 → 20% EtOAc/pentane) to 

afford 1.128 as a colorless oil (240 mg, 0.563 mmol) in 97% yield. 

Rf: 0.25 (10% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 4.19 (d, J = 13.3 Hz, 1H), 3.48 (dd, J = 9.8, 6.5 Hz, 1H), 3.40 (dd, 

J = 9.8, 6.5 Hz, 1H), 3.06 (dd, J = 12.5, 3.7 Hz, 1H), 2.72 (td, J = 12.9, 3.3 Hz, 1H), 2.61 (d, J = 

18.8 Hz, 1H), 2.54 (dd, J = 18.8, 7.6 Hz, 1H), 2.15 (q, J = 12.6 Hz, 1H), 2.06 – 1.87 (m, 4H), 1.86 

– 1.72 (m, 2H), 1.70 – 1.47 (m, 3H), 1.42 (s, 9H), 1.40 (m, 1H), 0.88 (s, 9H), 0.76 (q, J = 12.6 Hz, 

1H), 0.03 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 219.0, 155.0, 79.7, 68.0, 64.9, 49.4, 45.0, 44.1, 42.7, 40.4, 40.4, 

37.6, 34.0, 30.9, 28.6, 26.1, 22.9, 18.5, -5.2, -5.2. 

HRMS (ESI
+
): Calc. for  C24H44O4NSi

+
 [M + H

+
]: 438.3034. Found: 438.3036.  

IR (ATR): 𝜈 = 2928 (m), 2856 (m), 1741 (s), 1682 (s), 1464 (m), 1427 (m), 1390 (m), 1364 (m), 

1250 (s), 1169 (s), 1155 (s), 1127 (m), 1097 (s), 1045 (m), 1007 (w), 836 (s), 775 (m), 667 (w). 

[𝜶]𝑫
𝟐𝟐 = –90° (c = 0.43, CHCl3).          
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Synthesis of (4aR,7aS,9S,10aS)-9-(hydroxymethyl)decahydrocyclopenta[e]quinolin-6(5H)-

one (1.129) 

 

Acetyl chloride (392 µL, 5.49 mmol, 10.0 equiv.) was added dropwise to a solution of carbamate 

1.128 (240 mg, 0.549 mmol) in MeOH (10 mL) at ambient temperature. The mixture was then 

heated to 45 °C for 2 h 15 minutes, then cooled to ambient temperature and concentrated under 

reduced pressure. The crude oil was purified by flash column chromatography (10% MeOH in 

CH2Cl2 + 1% v/v aqueous NH3 solution) to afford amine 1.129 (119 mg, 0.535 mmol) in 97% 

yield. 

Rf: 0.18 (10% MeOH in CH2Cl2 + 1% v/v aqueous NH3 solution, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 3.42 (m, 2H), 3.05 (m, 1H), 2.71 (td, J = 11.4, 5.0 Hz, 1H), 2.58 – 

2.37 (m, 4H), 2.30 (d, J = 18.9 Hz, 1H), 2.16 (d, J = 18.9 Hz, 1H), 1.95 – 1.82 (m, 2H), 1.77 – 

1.56 (m, 6H), 1.27 (m, 1H), 1.11 (q, J = 12.2 Hz, 1H), 0.78 (q, J = 13.3 Hz, 1H). 

 
13

C NMR (100 MHz, CDCl3) δ 219.2, 67.2, 62.4, 47.6, 43.9, 43.8, 41.2, 39.8, 38.6, 35.5, 33.4, 

31.1, 23.0. 

HRMS (ESI
+
): Calc. for  C13H22O2N

+
 [M + H

+
]: 224.1645. Found: 224.1645. 

IR (ATR): 𝜈 = 3282 (br w), 2923 (m), 2854 (m), 1732 (s), 1459 (w), 1444 (w), 1407 (w), 1316 

(w), 1157 (m), 1116 (w), 1067 (w), 1027 (w), 943 (w), 923 (w), 736 (m). 

[𝜶]𝑫
𝟐𝟐 = –123° (c = 0.21, CHCl3).          
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Synthesis of methyl 3-((4aR,7aS,9S,10aS)-9-(hydroxymethyl)-6-oxodecahydrocyclopenta 

[e]quinolin-1(2H)-yl)propanoate (1.124) 

 

Methyl acrylate (88.1 µL, 0.973 mmol, 3.0 equiv.) and DBU (145 µL, 0.973 mmol, 3.0 equiv.) 

were added sequentially to a partially dissolved suspension of amine 1.129 (72.4 mg, 0.324 mmol, 

1.0 equiv.) in acetonitrile (3.2 mL) at ambient temperature. The mixture was heated to 70 °C for 

21 h, then cooled to ambient temperature and concentrated under reduced pressure. Purification 

by flash column chromatography (5% MeOH in CH2Cl2) afforded aminoester 1.124 (93.2 mg, 

0.301 mmol) in 93% yield. 

Rf: 0.26 (5% MeOH in CH2Cl2, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 3.62 (s, 3H), 3.45 (d, J = 6.1 Hz, 2H), 2.96 (q, J = 6.7 Hz, 1H) 

2.85 (dd, J = 9.8, 2.4,  1H), 2.67 (ddd, J = 13.7, 8.3, 5.5 Hz, 1H), 2.55 – 2.16 (m, 7H), 2.12 (d, J = 

18.5 Hz, 1H), 1.90 (m, 1H), 1.81 (d, J = 18.5 Hz, 1H), 1.73 – 1.44 (m, 5H), 1.19 (m, 1H), 0.99 (q, 

J = 12.2 Hz, 1H), 0.75 (q, J = 12.8 Hz, 1H). 

 
13

C NMR (100 MHz, CDCl3) δ 219.5, 173.5, 67.6, 66.0, 53.6, 51.7, 47.8, 44.1, 44.0, 41.5, 41.0, 

38.5, 35.7, 33.1, 30.8, 27.5, 21.7. 

HRMS (ESI
+
): Calc. for  C17H28O4N

+
 [M + H

+
]: 310.2013. Found: 310.2013. 

IR (ATR): 𝜈 = 3450 (br w), 2924 (m), 2854 (m), 1733 (s), 1440 (m), 1407 (w), 1376 (w), 1309 

(w), 1292 (w), 1195 (m), 1161 (m), 1093 (w), 10248 (w), 1022 (w), 913 (w), 881 (w), 841 (w), 

814 (w), 793 (w), 736 (w), 677 (w). 

[𝜶]𝑫
𝟐𝟎 = –59° (c = 1.3, CHCl3).          
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Synthesis of bis[3-((4aR,7aS,9S,10aS)-9-(hydroxymethyl)-6-

oxodecahydrocyclopenta[e]quinolin-1(2H)-yl)propanoate] (1.131) 

 

Sodium hydride (60%in mineral oil, 20.0 mg, 0.494 mmol, 10.0 equiv.) was added in one portion 

to a stirring solution of ketoester 1.124 in PhMe (2 mL) at ambient temperature. The cloudy 

mixture was stirred at ambient temperature for 20minutes, then warmed to 80 °C for 2 h. Upon 

cooling once more to ambient temperature, saturated aqueous ammonium chloride solution 

(5 mL) was added and the product was extracted with EtOAc (3 × 5 mL). The combined layers 

were washed with brine (5 mL), dried over anhydrous sodium sulfate, filtered and concentrated 

under reduced pressure. The crude residue was purified by flash column chromatography (3 → 

5% MeOH/CH2Cl2) to afford product 1.131 as a white solid (8.1 mg, 0.0292 mmol) in 59% yield. 

Rf: 0.43 (5% MeOH in CH2Cl2, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 4.12 (dd, J = 10.6, 3.4 Hz, 1H), 3.66 (t, J = 10.6 Hz, 1H), 3.01 – 

2.90 (m, 2H), 2.85 (m, 1H), 2.59 – 2.47 (m, 2H), 2.46 – 2.29 (m, 2H), 2.27 – 2.07 (m, 4H), 1.97 

(q, J = 6.2 Hz, 1H), 1.86 (d, J = 18.5 Hz, 1H), 1.82 – 1.51 (m, 6H), 1.20 (m, 1H), 1.03 (q, J = 12.2 

Hz, 1H), 0.79 (q, J = 13.0 Hz, 1H). 

 
13

C NMR (100 MHz, CDCl3) δ 218.8, 172.6, 68.5, 65.2, 53.7, 49.3, 44.1, 44.1, 41.3, 41.0, 35.7, 

35.6, 32.4, 29.2, 28.1, 22.1. 

HRMS (ESI
+
): Calc. for  C32H47O6N2

+
 [M + H

+
]: 555.3429. Found: 555.3434. 

IR (ATR): 𝜈 = 2925 (s), 2800 (w), 1735 (s), 1451 (m), 1406 (w), 1369 (m), 1309 (m), 1291 (m), 

1188 (m), 1156 (m), 1097 (m), 1028 (m), 1007 (m), 987 (w), 968 (w), 914 (w), 881 (w), 732 (m). 

[𝜶]𝑫
𝟐𝟎 = –139° (c = 0.76, CHCl3).          
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Synthesis of methyl 3-((4aR,7aS,9S,10aS)-9-(((tert-butyldimethylsilyl)oxy)methyl)-6-oxodeca 

hydrocyclopenta[e]quinolin-1(2H)-yl)propanoate (1.132) 

 

Imidazole (10.0 mg, 0.147 mmol, 1.3 equiv.) and DMAP (2.8 mg, 0.023 mmol, 0.2 equiv.) were 

added sequentially to a solution of alcohol 1.124 (34.9 mg, 0.113 mmol, 1.0 equiv.) in CH2Cl2 

(2.0 mL) at ambient temperature. The solution was cooled to 0 °C and TBSCl (22.1 mg, 0.147 

mmol, 1.3 equiv.) was added. The ice bath was removed and the cloudy mixture was stirred at 

ambient temperature for 4 h. Saturated aqueous ammonium chloride (6 mL) was added and the 

aqueous layer was extracted with CH2Cl2 (3 × 10 mL). The combined layers were dried over 

anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Purification by flash 

column chromatography (3 → 4% MeOH in CH2Cl2) afforded silyl ether 1.132 as a colorless oil 

(48.2 mg, 0.110 mmol) in 97% yield. 

Rf: 0.32 (4% MeOH in CH2Cl2, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 3.64 (s, 3H), 3.42 (d, J = 6.1 Hz, 2H), 2.97 (ddd, J = 13.8, 8.6, 6.6 

Hz, 1H), 2.87 (m, 1H), 2.75 (ddd, J = 13.8, 8.6, 5.5 Hz, 1H), 2.51 (dd, J = 18.4, 6.9 Hz, 1H), 2.44 

(m, 1H), 2.39 – 2.10 (m, 5H), 1.94 – 1.87   (m, 2H), 1.84 (d, J = 18.6 Hz, 1H), 1.73 – 1.46 (m, 

5H), 1.19 (m, 1H), 0.97 (q, J = 13.1, 12.2 Hz, 1H), 0.86 (s, 9H), 0.73 (q, J = 12.7 Hz, 1H), 0.02 (s, 

6H). 

 
13

C NMR (100 MHz, CDCl3) δ 219.5, 173.3, 68.0, 66.1, 53.8, 51.7, 48.1, 44.2, 44.1, 41.6, 41.1, 

38.8, 35.8, 33.3, 30.7, 27.6, 26.0, 22.0, 18.4, -5.2, -5.2. 

HRMS (ESI
+
): Calc. for C23H42NO4Si

+
 [M + H

+
]: 424.2878. Found: 424.2874. 

IR (ATR): 𝜈 = 2928 (m), 2855 (m), 1737 (s), 1462 (w), 1437 (w), 1408 (w), 1388 (w), 1250 (m), 

1222 (w), 1195 (m), 1157 (m), 1157 (m), 1111 (s), 1094 (m), 1074 (m), 1006 (w), 939 (w), 914 

(w), 836 (s), 776 (s), 668 (w). 

[𝜶]𝑫
𝟐𝟎 = –43° (c =1.00, CHCl3).          
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Synthesis of (4aR,7aS,9S,10aS)-9-(((tert-butyldimethylsilyl)oxy)methyl)-1-(3-hydroxypropyl) 

decahydrocyclopenta[e]quinolin-6(5H)-one (1.135) 

 

K2CO3 (20.8 mg, 0.151 mmol, 2.1 equiv.) and 3-iodo-1-propanol (12.8 µL, 0.108 mmol, 

1.5 equiv.) were added to a solution of amine 1.134 (24.2 mg, 0.0717 mmol, 1.0 equiv.) in 

acetone (1.5 mL) at ambient temperature. The cloudy white mixture was heated to 60 °C and 

stirred for 3 h, then cooled to ambient temperature and concentrated. The crude residue was 

purified by flash column chromatography (3 → 10% MeOH in CH2Cl2) to afford product 1.135 as 

a white solid (16.6 mg, 0.0420 mmol) in 59% yield. 

Rf: 0.22 (5% MeOH in CH2Cl2, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 3.80 – 3.70 (m, 2H), 3.45 (d, J = 6.1 Hz, 2H), 3.23 (d, J = 10.5 

Hz, 1H), 3.05 (ddd, J = 12.7, 8.1, 4.3 Hz, 1H), 2.53 (dd, J = 18.5, 7.1 Hz, 1H), 2.40 – 2.30 (m, 

2H), 2.29 – 2.03 (m, 4H), 1.98 – 1.83 (m, 2H), 1.83 – 1.54 (m, 7H), 1.27 (m, 1H), 1.08 (q, J = 

12.3 Hz, 1H), 0.88 (s, 9H), 0.75 (q, J = 12.8 Hz, 1H), 0.04 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 218.4, 68.0, 67.9, 64.4, 54.6, 52.8, 44.0, 41.9, 40.8, 38.8, 35.6, 

33.1, 28.3, 27.9, 26.1, 21.3, 18.5, -5.2, -5.2. 

HRMS (ESI
+
): Calc. for  C22H42O3NSi

+
 [M + H

+
]: 396.2929. Found: 396.2925. 

IR (ATR): 𝜈 = 3406 (br w), 2928 (m), 2855 (m), 1739 (s), 1471 (w), 1407 (w), 1388 (w), 1360 

(w), 1251 (m), 1159 (m), 1111 (m), 1072 (m), 1006 (w), 836 (s), 776 (m), 668 (w). 

[𝜶]𝑫
𝟐𝟎 = –48° (c = 1.1, CHCl3).       
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Synthesis of tert-butyl ((3aS,4S,6S,7aS)-3a-(but-3-en-1-yl)-6-(((tert-butyldimethylsilyl)oxy) 

methyl)-2-((trimethylsilyl)oxy)-3a,4,5,6,7,7a-hexahydro-1H-inden-4-yl)carbamate (1.138) 

 

Freshly-prepared 3-butenylmagnesium bromide solution (131 µL, 0.72 M in THF, 0.940 mmol, 

4.5 equiv.) was added dropwise to a light brown suspension of CuBr·SMe2 (8.6 mg, 0.042 mmol, 

0.2 equiv.) in THF (3.2 mL) at –78 °C. The mixture was stirred at –78 °C for 1 h. HMPA 

(109 µL, 0.626 mmol, 3.0 equiv.) was added and the mixture was stirred for 10 minutes. TMSCl 

(79.5 µL, 0.626 mmol, 3.0 equiv.) and enone 10 (82.6 mg, 0.209 mmol, 1.0 equiv.) in THF 

(2.0 mL) were then added simultaneously. The resulting bright yellow reaction mixture was 

stirred for 2.5 h at –78 °C and 1 h at –40 °C. pH 7 Phosphate buffer (3 mL) was then added to the 

reaction mixture and the solution was allowed to warm to room temperature. The aqueous phase 

was extracted with pentane (50 mL) and the organic layer was rinsed numerous times with 10% 

w/w aqueous LiCl solution (7 × 20 mL mL) to remove HMPA. The pentane layer was dried over 

anhydrous Na2SO4, filtered and concentrated under reduced pressure. The crude silyl enol ether 

1.138 was isolated as a colorless oil and was used directly in subsequent reactions without 

purification. 

1
H NMR (400 MHz, C6D6) δ  5.91 (m, 1H), 5.18 (d, J = 16.9 Hz, 1H), 5.02 (d, J = 10.0 Hz, 1H), 

4.62 (d, J = 9.3 Hz, 1H), 4.47 (s, 1H), 3.96 (td, J = 9.7, 3.4 Hz, 1H), 3.33 – 3.20 (m, 2H), 2.62 

(ddd, J = 15.6, 6.6, 2.1 Hz, 1H), 2.44 (m, 1H), 2.25 – 2.04 (m, 2H), 1.88 – 1.61 (m, 4H), 1.60 – 

1.38 (m, 12H), 1.12 (q, J = 11.3 Hz, 1H), 0.98 (s, 9H), 0.13 (s, 9H), 0.06 (s, 6H). 

 

Synthesis of N-Boc-methyl ((3aR,4S,6S,7aS)-3a-(but-3-en-1-yl)-6-(((tert-

butyldimethylsilyl)oxy) methyl)-2-oxooctahydro-1H-inden-4-yl)carbamate (1.140) 

 

The residue from the above reaction (assumed 0.713 mmol, 1.0 equiv.) was azeotropped twice 

with PhMe, dissolved in Et2O (12 mL) and cooled to –78 °C. MeLi solution (1.6 M in Et2O, 0.980 

mL, 2.2 equiv.) was added dropwise to the flask and the mixture was stirred at –78 °C for 1 h, 
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warmed to –20 °C for 20 minutes, then cooled to –78 °C once more. HMPA (372 µL, 2.14 mmol, 

3.0 equiv.) and Mander’s reagent (170 µL, 2.14 mmol, 3.0 equiv.) were added sequentially and 

the reaction mixture was stirred at –78 °C for 2.5 h. After allowing the mixture to warm gradually 

to ambient temperature, saturated aqueous ammonium chloride solution (10 mL) was added. The 

aqueous phase was extracted with Et2O (3 × 20 mL) and the combined organic layers were 

washed with brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated.  The 

crude residue was purified by flash column chromatography (2 → 20 →30 % Et2O in pentane) to 

afford product 1.140 as a bright yellow oil (142 mg, 0.278 mmol) in 39% yield over two steps. 

Rf : 0.45 (20% Et2O in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.72 (ddt, J = 16.8, 10.1, 6.4 Hz, 1H), 4.99 (dd, J = 17.1, 1.8 Hz, 

1H), 4.91 (d, J = 10.2 Hz, 1H), 4.41 (dd, J = 12.6, 3.7 Hz, 1H), 3.73 (s, 3H), 3.49 – 3.34 (m, 2H), 

2.67 (d, J = 18.1 Hz, 1H), 2.42 (dd, J = 18.1, 7.3 Hz, 1H), 2.33 – 2.17 (m, 2H), 2.05 – 1.53 (m, 

8H), 1.45 (s, 9H), 1.23 (m, 1H), 0.93 – 0.74 (m, 10H), 0.00 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 219.0, 155.8, 153.6, 138.3, 114.8, 82.9, 67.6, 57.6, 53.6, 46.9, 

45.2, 43.3, 39.7, 37.9, 34.8, 33.2, 29.8, 27.9, 27.7, 26.0, 18.5, -5.3, -5.3. 

HRMS (ESI
–
): Calc. for  C27H46O6NSi

–
 [M – H

+
]: 508.3100. Found: 508.3113. 

IR (ATR): 𝜈 = 2953 (w). 2930 (w), 2857 (w), 1741 (m), 1707 (s), 1641 (w), 1472 (w), 1462 (w), 

1440 (m), 1392 (w), 1369 (m), 1332 (s), 1251 (m), 1221 (m), 1131 (s), 1113 (s), 1398 (s), 1006 

(w), 972 (w), 911 (w), 835 (s), 814 (m), 775 (s), 734 (m), 668 (w). 

 

Synthesis of tert-butyl ((3S,3aR,4S,6S,7aS)-3-bromo-3a-(but-3-en-1-yl)-6-(((tert-

butyldimethylsilyl)oxy) methyl)-2-oxooctahydro-1H-inden-4-yl)carbamate (1.141) and      

tert-butyl ((3R,3aR,4S,6S,7aS)-3-bromo-3a-(but-3-en-1-yl)-6-(((tert-butyldimethylsilyl)oxy) 

methyl)-2-oxooctahydro-1H-inden-4-yl)carbamate (1.142) 

 

Freshly recrystallized N-bromosuccinimide (7.6 mg, 0.0426 mmol, 1.2 equiv.) was added to a 

solution of silyl enol ether 1.138 (18.6 mg, 0.0355 mmol, 1.0 equiv.) in THF (1.0 mL) at –78 °C. 

The solution was stirred for 1 h at –78 °C, then was allowed to gradually warm to ambient 

temperature over 20 minutes. The sample was concentrated under reduced pressure and the crude 

residue was purified by flash column chromatography (5 → 20% Et2O in pentane) to afford 
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bromide 1.141 (6.9 mg, 0.0130 mmol, 37%) bromide and 1.142 (5.6 mg, 0.0106 mmol, 30%) as 

colorless oils. 

Characterization data for bromide 1.141: 

Rf : 0.40 (15% Et2O in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.75 (ddt, J = 17.0, 10.1, 6.5 Hz, 1H), 5.04 (d, J = 17.0 Hz, 1H), 

4.99 – 4.85 (m, 2H), 4.10 (td, J = 12.2, 5.9 Hz, 1H), 3.89 (s, 1H), 3.49 (dd, J = 9.8, 4.5 Hz, 1H), 

3.43 (dd, J = 9.8, 5.5 Hz, 1H), 2.65 (dd, J = 19.7, 8.2 Hz, 1H), 2.43 – 2.21 (m, 3H), 2.12 – 1.95 

(m, 2H), 1.86 – 1.58 (m, 5H), 1.45 (s, 9H), 1.17 (m, 1H), 0.88 (s, 10H), 0.03 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 211.4, 155.9, 137.6, 115.6, 79.8, 77.2, 67.5, 52.9, 50.5, 49.1, 

42.2, 38.4, 37.5, 37.1, 33.3, 32.8, 28.5, 26.1, 18.5, -5.2. 

HRMS (ESI
+
): Calc. for  C25H45O4NBrSi

+
 [M + H

+
]: 530.2296. Found: 530.2311. 

IR (ATR): 𝜈 = 2928 (s), 2857 (m), 1751 (m), 1739 (s), 1496 (s), 1472 (m), 1391 (w), 1366 (m), 

1252 (m), 1172 (m), 1110 (m), 1005 (w), 912 (w), 837 (s), 777 (m), 668 (w). 

Characterization data for bromide 1.142: 

Rf : 0.21 (15% Et2O in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 5.78 (ddt, J = 17.1, 10.1, 6.3 Hz, 1H), 5.12 (d, J = 10.1 Hz, 1H), 

5.05 (d, J = 17.1 Hz, 1H), 4.96 (d, J = 10.1 Hz, 1H), 4.87 (s, 1H), 4.03 (m, 1H), 3.50 (dd, J = 9.9, 

4.8 Hz, 1H), 3.40 (dd, J = 9.9, 6.2 Hz, 1H), 2.59 – 2.42 (m, 2H), 2.29 (m, 1H), 2.08 (d, J = 18.3 

Hz, 1H), 2.04 – 1.86 (m, 3H), 1.87 – 1.66 (m, 2H), 1.44 (s, 9H), 1.20 (m, 1H), 1.12 – 0.92 (m, 

2H), 0.87 (s, 9H), 0.02 (s, 6H). 

 
13

C NMR (100 MHz, CDCl3) δ 209.2, 155.5, 137.9, 115.4, 79.6, 77.2, 67.2, 57.3, 50.4, 46.9, 

40.9, 38.4, 35.6, 33.0, 31.4, 31.3, 28.5, 27.7, 26.1, 18.5, -5.2. 

HRMS (ESI): Calc. for  C25H45O4NBrSi
+
 [M + H

+
]: 530.2296. Found: 530.2308. 

IR (ATR): 𝜈 = 3435 (w), 2928 (m), 2856 (m), 1757 (m), 1712 (s), 1642 (w), 1504 (m), 1472 (w), 

1391 (w), 1366 (m), 1250 (m), 1173 (m), 1101 (m), 1006 (w), 912 (w), 836 (s), 812 (w), 776 (m), 

668 (w). 
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4.3.  Experimental Procedures for Chapter II 

The following section uses numbering from J. Org. Chem. 2018, 83, 3061 – 3068. 

Synthesis of (R)-3-((1,3-dioxolan-2-yl)methyl)-4-methylpentanoic acid (9)  

 

Platinum oxide (82.0 mg, 0.361 mmol, 0.16 mol %) was added to (R)-carvone (30.0 g, 230 mmol, 

1.0 equiv.) and the mixture was stirred under a hydrogen atmosphere (balloon pressure) for 26 h 

at ambient temperature. Conversion was carefully monitored by H
1
 NMR to prevent 

overreduction. The mixture was passed through a short pad of silica to remove catalyst and the 

pad washed with Et2O (500 mL). Concentration under reduced pressure afforded carvatanacetone 

9 (30.3 g, 230 mmol) in quantitative yield. The H
1
 NMR spectrum is in accordance with that 

previously reported in literature. 

1
H NMR (400 MHz, CDCl3) δ 6.74 (d, J = 5.9 Hz, 1H), 2.53 (dd, J = 15.8, 2.8 Hz, 1H), 2.36 (dt, 

J = 17.7, 5.3 Hz, 1H), 2.17 – 2.02 (m, 2H), 1.85 (m, 1H), 1.77 (s, 3H), 1.57 (h, J = 6.7 Hz, 1H), 

0.91 (d, J = 6.7 Hz, 6H). 

 

Synthesis of (R)-3-((1,3-dioxolan-2-yl)methyl)-4-methylpentanoic acid (7)  

 

Acid 7 was prepared using a modified procedure by Deslongchamps et al.25 A stream of ozone 

was bubbled through a solution of (R)-carvotanacetone 9 (5.02 g, 33.0 mmol, 1.0 equiv.) in 

EtOAc (90 mL) at –78 °C until a deep blue color persisted (approximately 25 minutes). Nitrogen 

was passed through the solution until the blue color dissipated and the mixture was warmed to 

ambient temperature while nitrogen was bubbled through. The solution was then cooled to 0 °C 

and palladium on charcoal (10% w/w, 70.2 mg, 65.9 µmol, 0.2 mol %) was added. The vessel was 

purged with a hydrogen gas balloon for 5 minutes and then stirred under hydrogen atmosphere 

(balloon pressure) for 6 h at 0 °C. The mixture was filtered through Celite and concentrated to 

afford a crude yellow oil which was used without further purification.  
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The crude oil was dissolved in benzene (30 mL), and ethylene glycol (10.2 mL, 165 mmol, 5.0 

equiv.) and p-toluenesulfonic acid monohydrate (0.628 g, 3.30 mmol, 10 mol %) were added. The 

flask was equipped with a Dean-Stark trap and a reflux condenser and the mixture was heated to 

reflux for 6 h. After cooling to ambient temperature, benzene was removed under reduced 

pressure and 1 M NaOH (60 mL) was added. The biphasic mixture was stirred vigorously for 18 

h. The aqueous layer was washed with Et2O (3 × 100 mL), then cooled to 0 °C and acidified to 

pH 3 with 1 M HCl. The resulting cloudy layer was extracted with Et2O (3 × 100 mL) and the 

combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated 

under reduced pressure. The crude product was purified by flash column chromatography (30% 

EtOAc in pentane) to afford acid 7 (2.78 g, 13.8 mmol, 42% over two steps) as a pale yellow oil. 

The 
1
H NMR spectrum is in accordance with that previously reported in literature. 

Rf: 0.38 (30% EtOAc in pentane + 0.5% v/v acetic acid, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 11.13 (br s, 1H), 4.90 (t, J = 4.8 Hz, 1H), 3.97 (m, 2H), 3.83 (m, 

2H), 2.46 (dd, J = 15.8, 6.7 Hz, 1H), 2.35 (d, J = 15.8, 6.7 Hz, 1H), 2.05 (m, J = 8.7, 4.3, 2.2 Hz, 

1H), 1.88 – 1.70 (m, 2H), 1.55 (ddd, J = 14.1, 8.7, 5.2 Hz, 1H), 0.89 (d, J = 6.0 Hz, 3H), 0.87 (d, J 

= 5.9 Hz, 3H). 

13
C NMR (100 MHz, CDCl3) δ 179.9, 104.1, 65.0, 64.7, 36.6, 36.3, 34.7, 30.5, 19.1, 18.7.  

IR (ATR): 𝜈 = 3024 (br w), 2959 (m), 2877 (m), 1703 (s), 1466 (w), 1411 (m), 1389 (m), 1370 

(m), 1280 (m), 1220 (m), 1132 (s), 1101 (m), 1042 (m), 944 (m), 825 (w).  

HRMS (ESI
+
): Calc. for C10H19O4

+
 [M + H

+
]: 203.1278. Found: 203.1277. 

 [α]D
20

 = –2.2° (c = 1.14, CHCl3). 

 

Synthesis of (S)-2-methylcyclopent-2-enol (8)  

 

Iodide 11 (7.02 g, 33.4 mmol, 1.0 equiv.) was dissolved in THF (174 mL) and NMP (29.0 mL) 

and the resulting solution was cooled to 0 °C with an ice bath. Fe(acac)3 (2.36 g, 6.69 mmol, 0.20 

equiv.) was added in one portion and the bright orange suspension was stirred for 10 minutes. 

Methyl magnesium bromide (33.4 mL, 3 M in Et2O, 3.0 equiv.) was then added in a steady flow 

over the course of 5 mins as a constant evolution of gas was observed. Following addition, the ice 

bath was removed and the dark brown mixture was stirred for 25 minutes at ambient temperature. 
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Aqueous pH 7 phosphate buffer (100 mL) was carefully added to the mixture and the aqueous 

phase was extracted with Et2O (3 × 100 mL). The combined organic phases were washed with 

brine (80 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced 

pressure (no lower than 200 mbar at 30 °C to prevent evaporation of product). The crude product 

was purified by flash column chromatography (30% Et2O in pentane) to afford cyclopentenone 8 

(3.06 g, 31.2 mmol mmol, 93%) as a pale yellow oil. Due to cautious evaporation of this volatile 

product, some solvent remains. Diethyl ether accounts for 3.5% of the sample by weight and THF 

accounts for < 2%. The 
1
H NMR spectrum is in accordance with that previously reported in 

literature.
[243]

  

1
H NMR (400 MHz, CDCl3) δ 5.53 (m, 1H), 4.58 (m, 1H), 2.47 – 2.26 (m, 2H), 2.21 (m, 1H), 

1.77 (m, 3H).1.69 (ddt, J = 13.2, 8.8, 4.4 Hz, 1H), 1.39 (br s, 1H). 

 

Synthesis of (S)-2-methylcyclopent-2-en-1-yl (R)-3-((1,3-dioxolan-2-yl)methyl)-4-

methylpentanoate (6)  

 

Triethylamine (7.73 mL, 55.4 mmol, 2.0 equiv.) and 2,4,6-trichlorobenzoyl chloride (5.20 mL, 

33.3 mmol, 1.2 equiv.) were added sequentially to a vigorously stirring solution of acid 7 (5.60 g, 

27.7 mmol, 1.0 equiv.) in THF (100 mL) at ambient temperature. The solution was stirred at 

ambient temperature for 1 h, where it became cloudy. Alcohol 8 (2.72 g, 27.7 mmol, 1.0 equiv.) 

and DMAP (339 mg, 2.77 mmol, 0.10 equiv.) in THF (20 mL) were then added to the suspension 

and the flask was sealed with a Teflon cap and left to stir at ambient temperature for 17 h. 

Saturated aqueous ammonium chloride solution (80 mL) was added to the resulting bright yellow 

suspension and the aqueous phase was extracted with EtOAc (3 × 80 mL). The combined organic 

phases were washed with brine (80 mL), dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (7 → 8% EtOAc in pentane) to afford ester 6 (6.88 g, 24.3 mmol, 88%) as a pale 

yellow oil. 

Rf: 0.39 (10% EtOAc in pentane, stains with KMnO4 and CAM).
  

1
H NMR (400 MHz, CDCl3) δ 5.64 (s, 1H), 5.57 (m, 1H), 4.89 (t, J = 5.0 Hz, 1H), 3.95 (m, 2H), 

3.82 (m, 2H), 2.48 – 2.18 (m, 5H), 2.06 (dtt, J = 8.6, 6.8, 4.6 Hz, 1H), 1.83 – 1.67 (m, 6H), 1.53 

(ddd, J = 13.9, 8.5, 5.2 Hz, 1H), 0.87 (d, J = 6.9 Hz, 3H), 0.86 (d, J = 6.9 Hz, 3H).
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13
C NMR (100 MHz, CDCl3) δ 173.7, 138.2, 130.8, 104.2, 82.2, 64.9, 64.7, 36.9, 36.8, 34.9, 

31.1, 30.5, 30.4, 19.1, 18.7, 13.9.  

IR (ATR): 𝜈 = 2958 (m), 2876 (m), 1726 (s), 1457 (w), 1437 (m), 1412 (m), 1370 (m), 1334 (m), 

1304 (m), 1210 (w), 1149 (s), 1103 (m), 1045 (m), 1024 (s), 979 (m), 955 (m), 920 (w), 834 (w), 

712 (w).  

HRMS (EI): Calc. for C16H26O4 [M]: 282.1818. Found: 282.1831.  

[α]D
20

 = –40.8° (c = 1.3, CHCl3). 

 

Synthesis of (2S,3S)-3-((1,3-dioxolan-2-yl)methyl)-4-methyl-2-((S)-2-methylcyclopent-2-en-1-

yl)pentanoic acid (12)  

 

Ester 6 (765 mg, 2.71 mmol, 1.0 equiv.) in toluene (2.5 mL) was added dropwise to a solution of 

LiHMDS (3.53 mL, 1 M in THF, 1.3 equiv.) in toluene (7 mL) at –78 °C. The pale orange 

mixture was stirred for 1 h at this temperature, whereupon freshly distilled TMSCl (516 µL, 4.07 

mmol, 1.5 equiv.) was added dropwise. The mixture was stirred at –78 °C for 15 minutes and was 

then allowed to gradually warm to ambient temperature over 30 minutes. The resulting cloudy 

mixture was transferred to two 10 mL high pressure containers (washing the original vessel with 3 

mL PhMe) and the containers were subjected to 14 kbar of pressure at 70 °C for 21 h. Upon 

returning to ambient pressure and temperature, the contents of the containers were poured into 

saturated aqueous ammonium chloride solution (40 mL) and Et2O (40 mL). The aqueous layer 

was separated and further extracted with Et2O (2 × 40 mL) and the combined organic layers were 

washed with brine (40 mL), dried over anhydrous sodium sulfate, filtered and concentrated under 

reduced pressure. Purification by flash column chromatography (10 → 15 % EtOAc in pentane 

with added 0.5% v/v acetic acid) afforded acid 12 (578 mg, 2.05 mmol, 76%) and acid 13 (46.8 

mg, 0.166 mmol, 6%) as pale yellow foams.  

Characterization data for acid 12: 

Rf: 0.32 (25% EtOAc in pentane, stains with KMnO4).  

1
H NMR (400 MHz, CDCl3) δ 11.22 (bs, 1H), 5.39 (s, 1H), 4.97 (t, J = 4.9 Hz, 1H), 4.00 (m, 

2H), 3.87 (m, 2H), 3.12 (q, J = 8.4 Hz, 1H), 2.41 (dd, J = 9.5, 4.9 Hz, 1H), 2.23 – 1.94 (m, 5H), 
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1.85 (ddd, J = 14.9, 10.1, 4.9 Hz, 1H), 1.73 (dt, J = 14.5, 4.4 Hz, 1H), 1.67 (s, 3H), 1.56 (dq, J = 

12.4, 8.7 Hz, 1H), 0.94 (d, J = 6.9 Hz, 3H), 0.76 (d, J = 6.7 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 180.0, 142.6, 127.0, 104.5, 65.1, 64.8, 50.6, 46.9, 39.8, 30.8, 

30.2, 30.1, 26.4, 23.5, 17.1, 16.1.  

IR (ATR): 𝜈 = 3030 (br w), 2956 (m), 2890 (m), 1699 (s), 1441 (w), 1413 (w), 1391 (w), 1370 

(w), 1206 (m), 1140 (m), 1098 (m), 1041 (m), 968 (w), 943 (m), 839 (w), 799 (w).  

HRMS (ESI
−
): Calc. for C16H25O4

−
 [M – H

+
]: 281.1758. Found: 281.1761.  

[α]D
20

 = +5.2° (c = 1.0, CHCl3). 

Characterization data for acid 13: 

Rf: 0.21 (25% EtOAc in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 5.32 (s, 1H), 4.88 (t, J = 5.3 Hz, 1H), 3.92 (m, 2H), 3.79 (m, 2H), 

2.82 (m, 1H), 2.63 (dd, J = 10.1, 4.5 Hz, 1H), 2.27 – 2.10 (m, 3H), 2.04 – 1.86 (m, 3H), 1.77 (dt, J 

= 14.9, 5.1 Hz, 1H), 1.72 (s, 3H), 1.49 (dt, J = 14.9, 5.1 Hz, 1H), 0.96 (d, J = 6.7 Hz, 3H), 0.80 (d, 

J = 6.7 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 181.0, 140.4, 126.7, 104.5, 64.8, 64.7, 50.4, 48.7, 38.8, 33.5, 

31.3, 27.7, 24.4, 20.9, 16.5, 15.1.  

IR (ATR): 𝜈 = 3428 (br w), 3039 (w), 2958 (m), 2876 (m), 1727 (s), 1464 (m), 1441 (m), 1389 

(m), 1371 (m), 1207 (m), 1127 (s), 1089 (s), 1045 (s), 986 (m), 960 (s), 948 (s), 794 (m), 732 (m).  

HRMS (ESI): Calc. for C16H25O4
−
 [M – H

+
]: 281.1758. Found: 281.1760.  

[α]D
20

 = +3.2° (c = 1.0, CHCl3). 
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Synthesis of methyl (2S,3S)-3-isopropyl-2-((S)-2-methylcyclopent-2-en-1-yl)-5-

oxopentanoate (14)  

 

Trimethylsilyldiazomethane (1.32 mL, 2.0 M in hexanes, 1.2 equiv.) was added dropwise to a 

solution of acid 12 (623 mg, 2.21 mmol, 1.0 equiv.) in CH2Cl2 (14.4 mL) and MeOH (1.6 mL) at 

0 °C. The solution was allowed to warm to ambient temperature and stirred for 50 minutes, 

whereupon acetic acid (50 µL) was added to quench excess diazomethane and the solution was 

concentrated under reduced pressure to afford crude methyl ester. The oil was dissolved in 

acetone (18 mL) and H2O (2.0 mL) and p-toluenesulfonic acid monohydrate (420 mg, 2.21 mmol, 

1.0 equiv.) was added. The flask was capped with a Teflon stopper and heated to 60 °C for 75 

minutes, then cooled to ambient temperature and concentrated to ~4 mL total volume under 

reduced pressure. The sample was loaded directly onto a silica column and purified by flash 

column chromatography (8% Et2O in pentane) to afford aldehyde 14 (378 mg, 1.50 mmol, 68% 

over two steps) as a colorless oil.  

Rf: 0.36 (10% Et2O in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 9.74 (m, 1H), 5.32 (p, J = 2.0 Hz, 1H), 3.62 (s, 3H), 2.90 (q, J = 

7.9 Hz, 1H), 2.58 – 2.45 (m, 2H), 2.42 (t, J = 6.9 Hz, 1H), 2.32 (ddd, J = 16.3, 4.3, 1.8 Hz, 1H), 

2.14 (m, 2H), 2.02 (dtd, J = 12.5, 8.0, 4.2 Hz, 1H), 1.85 (pd, J = 6.9, 2.5 Hz, 1H), 1.73 (m, 1H), 

1.60 (s, 3H), 0.85 (d, J = 6.9 Hz, 3H), 0.70 (d, J = 6.9 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 202.3, 175.2, 141.5, 127.5, 51.4, 50.5, 47.8, 41.8, 37.7, 30.4, 

29.0, 28.0, 22.6, 17.0, 15.9.  

IR (ATR): ν ̃ = 3037 (w), 2953 (m), 2720 (w), 1723 (s), 1456 (m), 1435 (m), 1371 (m), 1248 (m), 

1230 (m), 1190 (m), 1161 (s), 1139 (m), 1105 (w), 1024 (m), 799 (w).  

HRMS (ESI
+
): Calc. for C15H25O3

+
 [M + H

+
]: 253.1798. Found: 253.1805.  

[α]D
20

 = +31.8° (c = 1.0, CHCl3). 
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Synthesis of methyl (2aS,2a
1
R,4aS,5S,6S,7aR)-6-isopropyl-1,2a

1
-dimethyldecahydro-1H-

cyclopenta[cd]indole-5-carboxylate (15)  

 

A 250 mL Schlenk flask was charged with a stir bar, 4Å molecular sieves (freshly activated by 

heating to 650 °C at 5 × 10
-2

 mbar for 10 minutes,  then backfilling with N2 and repeating three 

times), sarcosine (393 mg, 4.41 mmol, 10.0 equiv.) and o-dichlorobenzene (32 mL) and was 

submerged to the solvent line in a 160 °C oil bath. Aldehyde 14 (111 mg, 0.441 mmol, 1.0 equiv.) 

in o-dichlorobenzene (6 mL) was added over the course of 2 hours by means of a syringe pump. 

The suspension was stirred for an additional 4 h at 160 °C, then cooled to ambient temperature, 

filtered through cotton with Et2O (30 mL) and concentrated by rotary evaporator (heat bath set to 

70 °C to remove o-dichlorobenzene following ether removal). Purification of the residue by 

column chromatography (2 → 4% MeOH/CH2Cl2) afforded amine 15 as a pale yellow oil (74.1 

mg, 0.265 mmol) in 54% yield.  

Rf: 0.26 (4% MeOH in CH2Cl2, stains with KMnO4 and CAM).
  

1
H NMR (400 MHz, CDCl3) δ 3.63 (s, 3H), 2.71 (d, J = 9.2 Hz, 1H), 2.58 (dd, J = 12.0, 5.5 Hz, 

1H), 2.31 (t, J = 8.6 Hz, 1H), 2.09 – 1.97 (m, 6H), 1.90 – 1.62 (m, 5H), 1.54 (dd, J = 12.5, 6.4 Hz, 

1H), 1.23 (dt, J = 11.9, 6.2 Hz, 1H), 1.16 (s, 3H), 1.15 – 1.06 (m, 1H), 0.92 (d, J = 6.9 Hz, 3H), 

0.74 (d, J = 6.9 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 175.8, 73.0, 66.1, 51.2, 49.9, 49.4, 48.7, 47.0, 40.7, 33.9, 31.6, 

30.4, 28.0, 26.4, 22.1, 21.5, 15.5.  

IR (ATR): 𝜈 = 2948 (s), 2867 (m), 2768 (m), 1737 (s), 1651 (w), 1455 (m), 1367 (w), 1344 (w), 

1272 (w), 1245 (m), 1231 (w), 1207 (m), 1160 (s), 1141 (m), 1109 (m), 1044 (w), 1024 (w), 951 

(w), 925 (w), 872 (w), 803 (w).  

HRMS (ESI
+
): Calc. for C17H30O2N

+
 [M + H

+
]:280.2271. Found: 280.2276.  

[α]D
20

 = –64.8° (c = 0.50, CHCl3).  
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Synthesis of methyl (3S,4S)-4-isopropyl-1-methyl-3-((S)-2-methylcyclopent-2-en-1-

yl)piperidin-2-one (16)  

 

An oven-dried pressure tube was charged with aldehyde 14 (36.1 mg, 0.143 mmol, 1.0 equiv.), 

sarcosine (127 mg, 1.43 mmol, 10.0 equiv.), and m-xylene (1.4 mL). The tube was sealed with a 

Teflon cap and the rapidly stirring suspension was heated at 150 °C for 75 minutes when gas 

evolution had ceased and all suspended sarcosine had been visibly consumed. The mixture was 

cooled to ambient temperature, additional sarcosine (127 mg, 1.43 mmol, 10.0 equiv.) was added 

and the tube was once more sealed and heated to 150 °C for 75 minutes. This process was 

repeated twice more for a total of 40 equivalents of sarcosine. The mixture was then cooled to RT 

and concentrated under reduced pressure. Purification of the crude reaction mixture by column 

chromatography (first column: 2 → 4% MeOH/CH2Cl2, second column: 20 → 30% EtOAc/pent) 

afforded amine 15 as a pale yellow oil (9.3 mg, 0.033 mmol, 24%) and lactam 16 as a colorless 

oil (10.7 mg, 0.0455 mmol, 32% yield).  

Rf: 0.24 (30% EtOAc in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 5.48 (s, 1H), 3.27 (m, 2H), 2.86 (s, 3H), 2.70 (br s, 2H), 2.43 (m, 

1H), 2.25 – 2.07 (m, 2H), 1.95 – 1.82 (m, 2H), 1.78 – 1.66 (m, 2H), 1.58 (s, 3H), 1.58 – 1.52 (m, 

1H), 0.95 (d, J = 6.5 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H).  

13
C NMR (100 MHz, CDCl3) δ 172.4, 141.3, 128.36, 48.9, 48.8, 46.0, 43.9, 35.2, 34.2, 30.7, 

27.9, 22.1, 21.8, 20.4, 16.6.  

IR (ATR): 𝜈 = 3036 (w), 2954 (m), 2872 (m), 1736 (w), 1644 (s), 1502 (m), 1440 (m), 1399 (m), 

1369 (w), 1342 (m), 1241 (m), 1110 (w), 1026 (w), 990 (w), 922 (w), 795 (w).  

HRMS (ESI
+
): Calc. for C15H26ON

+
 [M + H

+
]: 236.2009. Found: 236.2011.  

[α]D
20

 = +112° (c = 0.80, CHCl3). 
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Synthesis of methyl (2a
1
S,4S,5S,5aS,7aS)-4-isopropyl-2a

1
-methyl-2a

1
,3,4,5,5a,6,7,7a-

octahydro-indeno[7,1-cd]isoxazole-5-carboxylate (18)  

 

Sodium acetate (256 mg, 3.48 mmol, 5.0 equiv.) and hydroxylamine hydrochloride (194 mg, 2.79 

mmol, 4.0 equiv.) were added sequentially to a solution of aldehyde 14 (176 mg, 0.696 mmol, 1.0 

equiv.) in MeOH (12 mL) at ambient temperature. The mixture was stirred for 30 minutes at 

ambient temperature, where thin layer chromatography analysis indicated complete conversion. 

The mixture was concentrated to ~ 2 mL using a stream of nitrogen gas, then partitioned between 

water (25 mL) and Et2O (25 mL). The aqueous layer was separated and further extracted with 

Et2O (2 × 25 mL) and the combined organic layers were dried over anhydrous sodium sulfate, 

filtered and concentrated under reduced pressure to afford crude oxime, which was used without 

further purification. The residue was dissolved in EtOH (10 mL), and silica gel (400 mg) and 

chloramine-T trihydrate (392 mg, 1.39 mmol, 2.0 equiv.) were added sequentially at ambient 

temperature. The mixture was stirred for 45 minutes and additional silica gel (1.5 g) was added to 

the mixture. The suspension was concentrated to dryness and loaded onto an equilibrated silica 

gel column (30% Et2O in pentane). Purification by flash column chromatography (30% Et2O in 

pentane) afforded isoxazoline 18 (147 mg, 0.553 mmol, 79%) as a white solid.  

Rf: 0.38 (30% Et2O in pentane, stains faintly with KMnO4).  

1
H NMR (400 MHz, CDCl3) δ 4.52 (d, J = 6.1 Hz, 1H), 3.67 (s, 3H), 2.80 (dd, J = 11.9, 4.6 Hz, 

1H), 2.54 (dd, J = 12.8, 4.0 Hz, 1H), 2.24 (dt, J = 10.6, 5.6 Hz, 1H), 2.07 – 1.86 (m, 3H), 1.76 

(pd, J = 6.9, 2.6 Hz, 1H), 1.70 – 1.54 (m, 2H), 1.48 (m, 1H), 1.36 (s, 3H), 0.94 (d, J = 6.9 Hz, 

3H), 0.85 (d, J = 6.9 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 174.4, 159.9, 90.3, 60.8, 51.8, 50.4, 44.6, 40.4, 35.0, 28.8, 26.3, 

21.2, 20.4, 19.7, 15.6.  

IR (ATR): 𝜈 = 2956 (m), 2889 (w), 2845 (w), 1726 (s), 1453 (w), 1438 (m), 1374 (m), 1348 (m), 

1334 (w), 1251 (w), 1205 (m), 1187 (w), 1162 (s), 1052 (w), 986 (m), 952 (w), 866 (w), 850 (m), 

777 (w), 718 (w).  

HRMS (ESI
+
): Calc. for C15H24O3N

+
 [M + H

+
]: 266.1751. Found: 266.1751.  

[α]D
20

 = –54.0° (c = 0.53, CHCl3).  

Melting Point: 120 – 122 °C.       
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Synthesis of methyl (2R,3S)-4-chloro-3-isopropyl-2-((S)-2-methylcyclopent-2-en-1-yl)-5-

oxopentanoate (19) 

 

L-Proline (2.8 mg, 24 µmol, 30 mol %) was added to a solution of aldehyde 14 (20.2 mg, 0.0801 

mmol, 1.0 equiv.) in CH2Cl2 (1.0 mL) at 0 °C. After stirring for 15 minutes, N-chlorosuccinimide 

(11.8 mg, 0.0881 mmol, 1.1 equiv.) was added in one portion. The mixture was stirred for 1 h at 

0 °C and was allowed to warm to ambient temperature and stirred for an additional 20 h. The 

mixture was diluted with pentane (15 mL) and the organic layer was washed with saturated 

aqueous ammonium chloride solution (10 mL), saturated aqueous sodium bicarbonate solution 

(10 mL) and brine (10 mL). The organic phase was dried over anhydrous sodium sulfate, filtered 

and concentrated under reduced pressure. Purification by flash column chromatography (50% 

CH2Cl2 in pentane) afforded chloride 19 (15.7 mg, 0.0547 mmol, 68%) as a colorless oil. 
1
H 

NMR analysis indicates a 1.1:1 mixture of diastereomers. 

Rf: 0.27 (6% Et2O in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 9.60 (d, J = 1.5 Hz, 1H), 9.54 (d, J = 3.2 Hz, 1H), 5.44 – 5.37 (m, 

2H), 4.68 (dd, J = 4.4, 1.5 Hz, 1H), 4.38 (dd, J = 6.4, 3.2 Hz, 1H), 3.67 (s, 6H), 3.03 (m, 1H), 2.91 

(t, J = 6.6 Hz, 1H), 2.83 (m, 1H), 2.74 (t, J = 6.5 Hz, 1H), 2.65 (m, 1H), 2.51 (td, J = 6.4, 2.2 Hz, 

2H), 2.26 – 2.07 (m, 7H), 2.00 (m, 1H), 1.79 (m, 1H), 1.69 (s, 3H), 1.64 (s, 3H), 1.04 (d, J = 7.0 

Hz, 3H), 1.00 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 7.0 Hz, 3H), 0.86 (d, J = 7.0 Hz, 3H).  

13
C NMR (100 MHz, CDCl3) δ 196.2, 195.6, 174.7, 174.1, 141.4, 141.4, 128.1, 128.1, 66.0, 65.1, 

51.8, 51.7, 49.3, 48.5, 48.2, 47.7, 46.6, 46.6, 31.1, 30.5, 30.3, 29.4, 28.7, 27.9, 23.3, 22.4, 20.9, 

17.4, 16.3, 16.1. IR (ATR): 𝜈 = 2952 (m), 2855 (w), 1732 (s), 1457 (m), 1435 (m), 1373 (m), 

1192 (m), 1162 (s), 1051 (w), 1024 (w), 972 (w), 802 (w), 734 (w).  

HRMS (ESI
+
): Calc. for C15H22O3C

+
l [M + H

+
]: 287.1409. Found: 287.1409. 
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Synthesis of (2S,3S)-3-isopropyl-2-((S)-2-methylcyclopent-2-en-1-yl)-5-oxopentanoic acid 

(20) 

 

 p- Toluenesulfonic acid monohydrate (131 mg, 0.686 mmol, 1.0 equiv.) was added to a solution 

of dioxolane 12 (194 mg, 0.686 mmol, 1.0 equiv.) in acetone (12 mL) and H2O (1.5 mL) at 

ambient temperature. The flask was sealed with a Teflon cap and heated to 50 °C for 4 h, then 

cooled to ambient temperature and concentrated to ~2 mL total volume under reduced pressure. 

The sample was loaded directly onto a silica column and purified by flash column 

chromatography (10% → 12% →15% acetone in pentane) to afford aldehyde 20 (115 mg, 0.483 

mmol, 70%) as a colorless oil. 

Rf: 0.50 (20% acetone in pentane, stains with CAM).
  

1
H NMR (400 MHz, CDCl3) δ 9.79 (t, J = 1.4 Hz, 1H), 5.38 (s, 1H), 2.98 (m, 1H), 2.66 (ddd, J = 

17.3, 6.8, 1.5 Hz, 1H), 2.57 (tdd, J = 7.7, 6.8, 5.9, 2.6 Hz, 1H), 2.48 (dd, J = 7.5, 6.4 Hz, 1H), 2.39 

(ddd, J = 17.3, 5.2, 1.8 Hz, 1H), 2.20 (m, 1H), 2.09 (dtd, J = 12.4, 8.1, 3.8 Hz, 1H), 1.95 (pd, J = 

6.8, 2.6 Hz, 1H), 1.81 (m, 1H), 1.69 (s, 3H), 0.91 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 202.3, 181.5, 141.3, 127.8, 50.3, 48.0, 41.7, 37.6, 30.5, 28.8, 

28.3, 22.7, 17.1, 16.0.  

IR (ATR): 𝜈 = 3020 (br w), 3039 (w), 2959 (m), 2720 (w), 1723 (s), 1699 (s), 1442 (w), 1416 

(w), 1391 (m), 1370 (m), 1250 (m), 1204 (m), 1135 (w), 1106 (w), 1024(w), 928 (w), 800 (w). 

HRMS (ESI
−
): Calc. for C14H21O3

−
 [M – H

+
]: 237.1496. Found: 237.1498.  

[α]D
20

 = +29.0° (c = 1.00, CHCl3). 
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Synthesis of (2S,3S,4R)-3-isopropyl-4-((S)-2-methylcyclopent-2-en-1-yl)-5-oxotetrahydro 

furan-2-carbaldehyde (21) 

 

L-Proline (7.2 mg, 0.038 mmol, 1.0 equiv.) and N-chlorosuccinimide (10.1 mg, 0.0754 mmol, 

1.2 equiv.) were added simultaneously to a solution of aldehyde 20 (15.0 mg, 0.0628 mmol, 1.0 

equiv.) in CH2Cl2 (1.0 mL) at 0 °C. The mixture was stirred for 50 minutes at 0 °C and then 

loaded onto a silica gel column and eluted with 10% EtOAc in pentane + 1% v/v AcOH. The 

fractions containing the chloride were concentrated under reduced pressure. The oil was dissolved 

in CH2Cl2 (1.0 mL) and Et3N (13.1 µL, 0.0942 mmol, 1.5 equiv.) was added at ambient 

temperature. The mixture was stirred for 10 minutes, then concentrated and purified by flash 

column chromatography (30% EtOAc in pentane) to afford oxopentanolide 21 (6.2 mg, 

26.3 µmol, 42% over 2 steps) as a colorless oil.  

Rf: 0.28 (30% EtOAc in pentane, stains with KMnO4).  

1
H NMR (400 MHz, CDCl3) δ 9.79 (s, 1H), 5.46 (p, J = 1.8, 1.3 Hz, 1H), 4.58 (d, J = 1.3 Hz, 

1H), 2.88 (m, 1H), 2.62 (ddd, J = 8.2, 3.1, 1.7 Hz, 1H), 2.55 (t, J = 8.4 Hz, 1H), 2.31 – 2.12 (m, 

4H), 1.88 (s, 3H), 1.68 (m, 1H), 1.02 (d, J = 6.8 Hz, 3H), 0.91 (d, J = 6.8 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 199.5, 176.8, 141.9, 128.1, 80.8, 47.1, 45.3, 44.3, 30.6, 30.5, 

26.1, 22.0, 17.9, 17.1.  

IR (ATR): 𝜈 = 3039 (w), 2964 (m), 2858 (m), 1782 (s), 1737 (s), 1467 (w), 1444 (w), 1377 (w), 

1351 (w), 1241 (w), 1176 (m), 1138 (m), 1118 (m), 1048 (m), 1024 (m), 934 (m), 884 (w), 804 

(w), 658 (w).  

HRMS (ESI
+
): Calc. for C14H21O3

+
 [M + H

+
]: 237.1485. Found: 237.1485.  

[α]D
20

 = +44° (c = 0.50, CHCl3). 

 

  



EXPERIMENTAL INFORMATION   119 

 

Synthesis of (3R,4S,5S)-5-(hydroxymethyl)-4-isopropyl-3-((S)-2-methylcyclopent-2-en-1-

yl)dihydrofuran-2(3H)-one (22)  

 

Sodium borohydride (7.9 mg, 0.212 mmol, 2.0 equiv.) was added to a solution of oxopentanolide 

21 (25.0 mg, 0.106 mmol) in MeOH (2.0 mL) at 0 °C. After stirring for 30 minutes at this 

temperature, saturated aqueous ammonium chloride solution (3 mL) and Et2O (3 mL) were added 

and the biphasic mixture was stirred vigorously for 10 minutes. The aqueous phase was separated 

and further extracted with Et2O (2 × 3 mL) and the combined organic layers were dried over 

anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude product 

was purified by flash column chromatography (15 → 20 → 25% EtOAc in pentane) to afford 

hydroxypentanolide 22 (20.7 mg, 0.0877 mmol, 82%) as a colorless oil.  

Rf: 0.32 (30% EtOAc in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 5.46 (s, 1H), 4.36 (dt, J = 5.8, 3.6 Hz, 1H), 3.83 (dd, J = 12.2, 3.6 

Hz, 1H), 3.69 (dd, J = 12.3, 5.8 Hz, 1H), 2.95 (t, J = 8.2 Hz, 1H), 2.88 (m, 1H), 2.35 – 2.14 (m, 

4H), 2.09 (pd, J = 6.8, 4.2 Hz, 1H), 1.88 (s, 3H), 1.75 (m, 1H), 0.94 (d, J = 6.8 Hz, 3H), 0.90 (d, J 

= 6.8 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 178.5, 141.9, 128.1, 79.4, 64.7, 45.9, 45.9, 44.8, 31.1, 30.5, 26.0, 

22.1, 18.0, 17.1.  

IR (ATR): 𝜈 = 3438 (br m), 3038 (w), 2962 (s), 2875 (m), 1769 (s), 1466 (m), 1394 (m), 1376 

(m), 1358 (m), 1240 (m), 1223 (m), 1176 (m), 1157 (m), 1063 (m), 1021 (m), 996 (m), 928 (w), 

806 (w), 674 (w).  

HRMS (ESI
−
): Calc. for C15H23O5

−
 [M + HCOO

−
]: 283.1551. Found: 283.1554.  

[α]D
20

 = +60.8° (c = 1.0, CHCl3).          
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Synthesis of methyl (2R,3S)-4-formyl-3-isopropyl-2-((S)-2-methylcyclopent-2-en-1-yl)pent-4-

enoate (23)  

 

Formaldehyde (37% in H2O, 31.0 µL, 0.415 mmol, 2.0 equiv.), propionic acid (3.1 µL, 42 µmol, 

0.2 equiv.) and pyrrolidine (3.4 µL, 42 µmol, 0.2 equiv.) were added sequentially to a solution of 

aldehyde 12 (52.3 mg, 0.207 mmol, 1.0 equiv.) in iPrOH (2.0 mL) at ambient temperature. The 

flask was sealed with a Teflon cap and the stirring mixture was heated to 45 °C for 6 h. Upon 

cooling to ambient temperature, the mixture was poured into CH2Cl2 (10 mL) and saturated 

aqueous sodium bicarbonate (10 mL). The aqueous phase was separated and further extracted 

with CH2Cl2 (2 × 10 mL). The combined organic layers were dried over anhydrous sodium 

sulfate, filtered and concentrated under reduced pressure. The crude product was purified by flash 

column chromatography (5% Et2O in pentane) to afford enal 23 (44.7 mg, 0.169 mmol, 82%) as a 

white solid. 

Rf: 0.44 (10% Et2O in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 9.51 (s, 1H), 6.22 (s, 1H), 6.20 (s, 1H), 5.31 – 5.24 (m, 1H), 3.65 

(s, 3H), 3.37 (dd, J = 12.1, 4.3 Hz, 1H), 2.97 (dd, J = 12.1, 2.6 Hz, 1H), 2.58 (m, 1H), 2.17 – 1.97 

(m, 3H), 1.92 – 1.81 (m, 2H), 1.69 (s, 3H), 0.74 (d, J = 6.9 Hz, 3H), 0.70 (d, J = 6.9 Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 194.7, 174.7, 148.3, 141.0, 136.9, 128.1, 52.1, 51.5, 48.9, 41.7, 

30.8, 30.1, 29.7, 21.8, 16.9, 16.6.  

IR (ATR): 𝜈 = 3036 (w), 2958 (m), 2856 (m), 2700 (w), 1732 (s) , 1693 (s), 1619 (w), 1435 (m), 

1388 (m), 1370 (m), 1320 (w), 1227 (m), 1210 (m), 1190 (m), 1159 (s), 1092 (m), 1024 (w), 953 

(m), 811 (w).  

HRMS (ESI
+
): Calc. for C16H25O3

+
 [M + H

+
]: 265.1798. Found: 265.1798.  

[α]D
20

 = +15° (c = 1.0, CHCl3).  

Melting point: 72 – 73 °C. 
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Synthesis of aldehyde methyl (1R,2S,3S,3aS,6aS)-3-formyl-2-isopropyl-3,3a-dimethyl-

1,2,3,3a,6,6a-hexahydropentalene-1-carboxylate (25)  

 

A pressure tube was charged with enal 23 (40.1 mg, 0.152 mmol, 1.0 equiv.) and DMF (5.0 mL) 

and the sealed vessel was heated to 160 °C for 4 h. Upon cooling to ambient temperature, the 

solvent was removed under reduced pressure and the residue was purified by flash column 

chromatography (8% Et2O in pentane) to afford cyclopentanone 25 (37.5 mg, 0.142 mmol, 93%) 

as a white solid.   

Rf: 0.30 (10% Et2O in pentane, stains with KMnO4).  

1
H NMR (400 MHz, CDCl3) δ 9.76 (s, 1H), 5.68 (dt, J = 5.6, 2.4 Hz, 1H), 5.50 (ddd, J = 5.4, 2.4, 

1.2 Hz, 1H), 3.70 (s, 3H), 3.32 (t, J = 11.6 Hz, 1H), 2.83 (dd, J = 11.6, 7.5 Hz, 1H), 2.59 (dddd, J 

= 17.6, 7.5, 2.4, 1.2 Hz, 1H), 2.14 (dd, J = 11.6, 6.9 Hz, 1H), 2.03 (ddt, J = 17.6, 2.4, 1.2 Hz, 1H), 

1.59 (octet, J = 6.9 Hz, 1H), 1.20 (s, 3H), 0.95 (s, 3H), 0.88 (d, J = 6.9 Hz, 3H), 0.78 (d, J = 6.9 

Hz, 3H).
  

13
C NMR (100 MHz, CDCl3) δ 206.6, 175.0, 135.3, 130.3, 62.6, 61.9, 57.6, 51.7, 50.5, 47.7, 

36.4, 28.4, 23.4, 21.2, 20.3, 16.3. 

IR (ATR): 𝜈 = 3061 (w), 2960 (m), 2901 (w), 2874 (w), 1722 (vs), 1454 (m), 1435 (m), 1383 

(m), 1372 (m), 1341 (w), 1290 (w), 1207 (m), 1190 (s), 1174 (m), 1142 (m), 1123 (w), 1038 (w), 

964 (m), 793 (w), 726 (m).  

HRMS (EI): Calc. for C16H24O3 [M]: 264.1725. Found: 264.1720.  

[α]D
20

 = –68.4° (c = 1.0, CHCl3).  

Melting Point: 75 – 76 °C. 
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Synthesis of (S)-2-(2-isopropylpent-4-en-1-yl)-1,3-dioxolane (2.108)  

 

A stream of ozone was bubbled through a solution of (R)-carvotanacetone 9 (3.01 g, 19.7 mmol, 

1.0 equiv.) in EtOAc (60 mL) at –78 °C until a deep blue color persisted (approximately 

20 minutes). Nitrogen was passed through the solution until the blue color dissipated and the 

mixture was warmed to ambient temperature. The solution was then cooled to 0 °C and palladium 

on charcoal (10% w/w, 40.0 mg, 38.0 µmol, 0.2 mol %) was added. The vessel was purged with a 

hydrogen gas balloon for 5 minutes and then stirred under hydrogen atmosphere (balloon 

pressure) for 6 h at 0 °C. The mixture was filtered through Celite and concentrated to afford a 

crude yellow oil of which a portion was used in the next procedure.  

KHMDS (0.5 M in toluene, 12.8 mL, 2.0 equiv.) was added to a suspension of 

methyltriphenylphosphonium bromide (2.29g, 6.40 mmol, 2.0 equiv.) at 0 °C. The mixture was 

stirred at 0 °C for ten minutes, warmed to ambient temperature for twenty minutes, then cooled 

once more to 0 °C. A portion of crude oil (500 mg, 3.20 mmol [assumed], 1.0 equiv.) in THF 

(10 mL) was added dropwise to the mixture and the suspension was stirred at 0 °C for 1 h. 1 M 

HCl (30 mL) was added and the aqueous layer was extracted with Et2O (4 × 40 mL). The 

combined organic layers were washed with brine (30 mL), dried over anhydrous sodium sulfate, 

filtered and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (12 → 17% EtOAc in pentane) to afford acid 2.108 (221 mg, 1.42 mmol, 44% 

over two steps) as a colorless oil.  

Rf: 018 – 0.35 (10% EtOAc in pentane, stains with KMnO4). 

1
H NMR (400 MHz, CDCl3) δ 9.80 (br s, 1H), 5.75 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.12 – 4.96 

(m, 2H), 2.31 (dd, J = 15.5, 6.6, 1H), 2.24 (dd, J = 15.5, 6.6, 1H), 2.16 (dt, J = 13.1, 6.1, 1H), 1.98 

(dt, J = 14.3, 7.7 Hz, 1H), 1.88 (h, J = 6.7 Hz, 2H), 1.76 (m, 1H), 0.88 (m, 6H) 

13
C NMR (100 MHz, CDCl3) δ 180.3, 137.0, 116.8, 40.4, 35.6, 35.5, 29.8, 19.3, 18.9.  

IR (ATR): 𝜈 = 3078 (w), 2961 (m), 2930 (w), 1705 (s), 1641 (w), 1466 (w), 1412 (w), 1388 (w), 

1370 (w), 1296 (w), 1228 (w), 1195 (w), 1120 (w), 995 (w), 913 (m).  

HRMS (ESI
−
): Calc. for C9H15O4

−
 [M − H

+
]: 155.1078. Found: 155.1077. 

 [α]D
20

 = +32.0° (c = 1.00, CHCl3). 
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Synthesis of (S)-2-methylcyclopent-2-en-1-yl (R)-3-isopropylhex-5-enoate (2.109)  

 

Triethylamine (545 µL, 3.91 mmol, 2.0 equiv.) and 2,4,6-trichlorobenzoyl chloride (397 µL, 

2.54 mmol, 1.3 equiv.) were added sequentially to a vigorously stirring solution of acid 2.108 

(351 g, 2.25 mmol, 1.15 equiv.) in THF (8 mL) at ambient temperature. The solution was stirred 

at ambient temperature for 1 h, where it became cloudy. Alcohol 8 (192 mg, 1.95 mmol, 1.0 

equiv.) and DMAP (35.8 mg, 0.293 mmol, 0.10 equiv.) in THF (3 mL) were then added to the 

suspension and the flask was sealed with a Teflon cap and left to stir at ambient temperature for 

16 h. Saturated aqueous ammonium chloride solution (10 mL) was added to the resulting bright 

yellow suspension and the aqueous phase was extracted with EtOAc (3 × 10 mL). The combined 

organic phases were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered 

and concentrated under reduced pressure. The crude product was purified by flash column 

chromatography (1 → 1.5% Et2O in pentane) to afford ester 2.109 (446 mg, 1.88 mmol, 84%) as a 

colorless oil. 

Rf: 0.52 (3% Et2O in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 5.74 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.65 (s, 1H), 5.57 (m, 1H), 

5.06 – 4.96 (m, 2H), 2.52 – 2.17 (m, 5H), 2.14 (dt, J = 12.3, 5.7 Hz, 1H), 2.02 – 1.85 (m, 2H), 

1.81 – 1.64 (m, 5H), 0.93 – 0.82 (m, 6H).
 

13
C NMR (100 MHz, CDCl3) δ 174.1, 138.2, 137.3, 130.8, 116.4, 82.2, 40.6, 36.1, 35.7, 31.1, 

30.4, 29.8, 19.4, 18.9, 14.0. 

IR (ATR): 𝜈 = 3077 (w), 2960 (m), 2874 (w), 1728 (s), 1640 (w), 1439 (w), 1370 (2), 1335 (w), 

1303 (2), 1253 (m), 1223 (m), 1167 (s), 1120 (m), 1024 (m), 975 (m), 911 (m), 831 (w).  

HRMS (EI): Calc. for C15H24O2 [M]: 236.1776. Found: 236.1772.  

[α]D
20

 = –24.0° (c = 1.00, CHCl3). 
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Synthesis of (S)-2-methylcyclopent-2-en-1-yl (R)-3-isopropylhex-5-enoate (2.107)  

 

Ester 2.109 (300 g, 1.27 mmol, 1.0 equiv.)  in PhMe (2 mL) was added to a solution of LiHMDS 

(1 M in THF, 1.90 mL, 1.90 mmol) at –78 °C. The solution was stirred for 1 h at –78 °C, 

whereupon TMSCl (271 µL. 2.16 mmol, 1.7 equiv.) was added dropwise. The mixture was stirred 

at –78 °C for 15 minutes and then allowed to warm gradually to ambient temperature over 30 

minuttes. The cloudy suspension was transferred to a N2-purged high-pressure container and was 

submitted to 14 kbar of pressure at 70 °C for 24 h. Upon returning to ambient temperature and 

pressure, the mixture was poured into a saturated aqueous ammonium chloride solution (10 mL) 

and the aqueous phase was extracted with Et2O (3 × 10 mL). The combined organic layers were 

washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. 

Purification by flash column chromatography (10 → 15% EtOAc in pentane) afforded acid 2.107 

(246 mg, 1.04 mmol, 82%) as a pale yellow oil. 
1
H NMR analysis indicated that the product was 

obtained as a mixture, with the major product being ~70% pure. 

Rf: 0.27 → 0.32 (10% EtOAc in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3, major product) 5.60 (ddt, J = 17.2, 10.2, 7.0 Hz, 1H), 5.22 (s, 1H), 

4.94 (d, J = 17.1 Hz, 1H), 4.88 (d, J = 10.4 Hz, 1H), 2.91 (q, J = 8.6 Hz, 1H), 2.25 (dd, J = 8.5, 5.2 

Hz, 1H), 2.10 – 1.80 (m, 6H), 1.63 (m, 1H), 1.52 (s, 3H), 1.41 (m, 1H), 0.80 (d, J = 7.1 Hz, 3H), 

0.63 (d, J = 6.8 Hz, 3H).
 

13
C NMR (100 MHz, CDCl3, major product) δ 182.7, 142.3, 138.4, 127.1, 116.8, 49.6, 47.2, 

44.0, 31.6, 30.3, 30.1, 27.3, 23.4, 17.4, 16.1. 

HRMS (ESI
−
): Calc. for C15H23O2

−
 [M − H

+
]: 235.1704. Found:235.1704.  
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Synthesis of (S)-2-methylcyclopent-2-en-1-yl (R)-3-isopropylhex-5-enoate (2.111)  

 

A 10 mL round-bottom flask was charged with acid 2.107 (26.2 mg, 0.111 mmol, 1.0 equiv.), bis-

sulfoxide-Pd(II) catalyst (11.1 mg, 0.0222 mmol, 0.2 equiv.), Cr(III)(salen)Cl (35.0 mg, 

0.0554 mmol, 0.5 equiv.) and bezoquinone (24.0 mg, 0.222 mmol, 2.0 equiv.). EtOAc (1.1 mL) 

was added along the walls of the flask and the rapidly stirring solution was heated to 60 °C for 

17 h. Upon cooling to ambient temperature, the mixture was diluted with Et2O (10 mL) and 

washed with saturated aqueous sodium metabisulfite solution (5 mL), saturated aqueous sodium 

thiosulfate solution (5 mL) and brine (10 mL). The ether layer was dried over anhydrous sodium 

sulfate, filtered and concentrated. Purification by flash column chromatography (6 → 8 → 10% 

Et2O in pentane) afforded lactone 2.111 (6.4 mg, 0.0273mmol, 25%) as a colorless oil which 

solidified on standing. 

Rf: 0.48 (10% Et2O in pentane, stains with KMnO4).
  

1
H NMR (400 MHz, CDCl3) δ 5.87 (ddd, J = 17.2, 10.6, 4.8 Hz, 1H), 5.45 (m, 1H), 5.35 (ddd, J 

= 17.1, 1.6, 1.1 Hz, 1H), 5.24 (ddd, J = 10.7, 1.6, 1.1 Hz, 1H), 4.78 (dq, J = 5.1, 1.8 Hz, 1H), 2.88 

(m, 1H), 2.77 (t, J = 8.3 Hz, 1H), 2.31 – 2.16 (m, 4H), 2.10 (m, 1H), 1.89 (s, 3H), 1.70 (m, 1H), 

0.99 (d, J = 6.8 Hz, 3H), 0.92 (d, J = 6.9 Hz, 3H).
 

13
C NMR (100 MHz, CDCl3) δ 178.0, 142.4, 136.0, 127.6, 116.4, 78.0, 50.1, 44.3, 44.2, 30.7, 

30.6, 26.2, 22.1, 17.9, 17.2. 

HRMS (ES): Calc. for C15H23O2 [M]: 234.1623. Found: 234.1620.  
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4.4.  Experimental Procedures for Chapter III 

Synthesis of 4-(4-(4-(but-3-yn-1-yl)phenyl)diazenyl)phenyl)-N-((2S,3R,E)-1,3-

dihydroxyoctadec-4-en-2-yl)butanamide (caCer-1) 

 

To a stirred solution of cFAAzo-4 (12.0 mg, 0.0371 mmol, 1.0 equiv.) in EtOAc (1.5 mL) was 

added TBTU (12.0 mg, 0.0374 mmol, 1.0 equiv.) at ambient temperature. After stirring for 1 h, 

D-erythro-sphingosine 3.1 (14.6 mg, 0.0487 mmol, 1.3 equiv.) was added to the solution, followed 

by Et3N (20.1 µL, 0.150 mmol, 4.0 equiv.). The reaction was continued for 15 h, when progress 

was determined to be complete via TLC analysis. Aqueous saturated NaHCO3 solution (3 mL) 

was added to the reaction mixture, and the aqueous layer was separated and further extracted with 

EtOAc (2 × 5 mL). The combined organic layers were washed with brine (5 mL), dried over 

anhydrous sodium sulfate, filtered and concentrated. The residue was purified by flash column 

chromatography (75 → 85% EtOAc in hexanes) to afford caCer-1 (14.8 mg, 0.0246, 66%) as an 

orange powder. 

Rf: 0.22 (80% EtOAc in hexane, stains with KMnO4).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.83 (t, J = 8.2 Hz, 4H), 7.34 (dd, J = 17.0, 8.5 Hz, 4H), 

6.28 (d, J = 7.6 Hz, 1H), 5.81-5.75 (m, 1H), 5.55-5.49 (m, 1H), 4.30-4.28 (m, 1H), 3.97-3.89 (m, 

2H), 3.68 (dd, J = 11.1, 3.2 Hz, 1H), 2.92 (t, J = 7.4 Hz, 2H), 2.74 (t, J = 7.5 Hz, 2H), 2.54 (td, J = 

7.5, 2.6 Hz, 2H), 2.28-2.24 (m, 2H), 2.05-1.99 (m, 6H), 1.34-1.31 (m, 3H), 1.24 (s, 22H), 0.89-

0.86 (m, 3H). 

13
C NMR (CDCl3, 101 MHz, 25 °C): δ 173.32, 151.47, 151.33, 144.87, 143.67, 134.42, 129.36, 

129.31, 128.83, 123.03, 123.00, 83.53, 77.21, 74.79, 69.39, 62.50, 54.45, 35.89, 35.16, 34.77, 

32.43, 32.06, 29.83, 29.80, 29.77, 29.63, 29.51, 29.37, 29.25, 27.00, 22.84, 20.52, 14.28.  

IR (neat, ATR): 3294, 2919, 2850, 1646, 1603, 1547, 1498, 1466, 1417, 1378, 1302, 1271, 1223, 

1201, 1154, 1102, 1056, 1025, 1013, 961, 920, 892, 850, 832, 720, 633, 571, 560.  

HRMS (ESI
+
): Calc. for [C38H56N3O3]

+
: 602.4316, found: 602.4316 ([M+H]

+
).  

Melting point: 103-105 °C. 
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Synthesis of 4-(4-(but-3-yn-1-yl)phenyl)diazenyl-N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-

yl)benzamide (caCer-2) 

 

To a stirred solution of cFAAzo-1 (4.2 mg, 0.015 mmol, 1.0 equiv.) in EtOAc/DMF (5:1, 0.6 mL) 

was added HBTU (5.7 mg, 0.015 mmol, 1.0 equiv.) under an inert nitrogen atmosphere at ambient 

temperature. After 1 h, D-erythro-sphingosine 3.1 (5.4 mg, 0.018 mmol, 1.2 equiv.) was added, 

followed by Et3N (6.3 µL, 0.045 mmol, 3.0 equiv.). The reaction was continued for 6.5 h, when 

progress was determined to be complete via TLC analysis. The reaction was quenched by the 

addition of saturated NaHCO3 solution (5 mL). The mixture was extracted with EtOAc (3 × 

5 mL), and the combined organic layers were washed with brine (5 mL), dried with anhydrous 

sodium sulfate, filtered and concentrated under reduced pressure. The crude product was purified 

by flash column chromatography (60 → 75% EtOAc in pentane) to afford caCer-2 as an orange 

powder (7.0 mg, 0.013 mmol, 83%). 

Rf: 0.43 (75% EtOAc in hexane, stains with KMnO4).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.92 (d, J = 1.0 Hz, 4H), 7.88 (d, J = 8.4 Hz, 2H), 7.38 (d, 

J = 8.4 Hz, 2H), 7.12 (d, J = 7.6 Hz, 1H), 5.87-5.80 (m, 1H), 5.60 (dd, J = 15.4, 6.3 Hz, 1H), 4.47 

(t, J = 4.7 Hz, 1H), 4.14-4.07 (m, 2H), 3.83 (dd,  J = 11.2, 3.1 Hz, 1H), 2.93 (d, J = 14.8 Hz, 2H), 

2.54 (td, J = 7.4, 2.6 Hz, 2H), 2.06 (dt, J = 11.0, 5.3 Hz, 2H), 2.01 (t, J = 4.1 Hz, 1H), 1.37-1.34 

(m, 2H), 1.2 3 (s, 22H), 0.87 (t, J = 6.9 Hz, 3H).  

13
C NMR (CDCl3, 101 MHz, 25 °C): δ 167.19, 154.59, 151.39, 144.62, 135.85, 134.71, 129.45, 

128.88, 128.21, 12   3.39, 123.03, 83.43, 75.02, 69.48, 62.52, 54.88, 34.81, 32.46, 32.08, 29.84, 

29.81, 29.76, 29.64, 29.52, 29.36, 29.27, 22.85, 20.47, 14.29.  

IR (neat, ATR): 3295, 2921, 2851, 1637, 1541, 1493, 1467, 1341, 1297, 1055, 1014, 964, 858.  

HRMS (ESI
+
): Calc. for [C35H50N3O3]

+
: 560.3847, found: 560.3851 ([M+H]

+
).  

Melting point: 120 °C. 
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Synthesis of pentadec-7-yn-1-ol (3.6) 

 

A solution of 1-nonyne (0.500 g, 4.03 mmol, 1.0 equiv.) in THF (30 mL) and HMPA (8 mL) was 

cooled to –78 °C and treated with a solution of n-BuLi (2.48 M in hexanes, 3.41 mL, 8.45 mmol, 

2.1 equiv.). The opaque, black solution was warmed to 0 °C and stirred for 1 h, then cooled once 

more to –78 °C and 6-bromohexanoic acid (0.785 g, 4.03 mmol, 1.0 equiv.) in THF (6 mL) was 

added dropwise. The reaction mixture was allowed to warm to ambient temperature and stirred 

for 48 h, where the solution became clear and pale brown. Saturated aqueous ammonium chloride 

solution (25 mL) was then added to the solution and the aqueous layer was separated and 

extracted with EtOAc (3 × 30 mL). The combined organic layers were washed with distilled water 

(2 × 20 mL), saturated aqueous lithium chloride solution (2 × 20 mL) and brine (20 mL), dried 

over anhydrous sodium sulfate, filtered and concentrated. The pale orange oil was used directly in 

the next procedure without purification. 

The crude oil from the previous step was dissolved in THF (5 mL) and was added dropwise to a 

suspension of lithium aluminum hydride (229 mg, 6.05 mmol, 1.5 equiv.) cooled to 0 °C with an 

ice bath. The mixture was allowed to warm to room temperature and stirred for 1.5 h, where thin 

layer chromatography analysis indicated complete conversion. The mixture was cooled with an 

ice bath and carefully quenched with distilled water (5 mL) followed by 2 M aqueous sodium 

hydroxide solution (10 mL). The aqueous phase was extracted with Et2O (3 × 30 mL) and the 

combined organic layers were washed with saturated aqueous ammonium chloride (30 mL) and 

brine (20 mL), dried over anhydrous sodium sulfate, filtered and concentrated under reduced 

pressure. The crude oil was purified by flash column chromatography (15% EtOAc in pentane) to 

yield pentadec-7-yn-1-ol 3.6 (127 mg, 0.567 mmol, 14 % over two steps) as a colorless oil. 

Rf = 0.62 (30% EtOAc in pentane, stains with CAM).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 3.64 (t, J = 6.6 Hz, 2H), 2.19 – 2.08 (m, 4H), 1.58 (pentet, 

J = 6.7 Hz, 2H), 1.53 – 1.18 (m, 17H), 0.88 (t, J = 6.8 Hz, 3H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 80.55, 80.16, 63.14, 32.83, 31.93, 29.31, 29.21, 28.99, 

28.99, 28.74, 25.43, 22.79, 18.90, 18.84, 14.26.  

IR (neat, ATR): 3328, 2927, 2856, 1460, 1434, 1378, 1332, 1073, 1054, 1030, 724. 

MS (FAB
+
): Calc.for [C16H17N2O]

+
: 225.4, found: 225.4 ([M+H]

+
).  

 



EXPERIMENTAL INFORMATION   129 

 

Synthesis of pentadec-14-yn-1-ol (3.7) 

 

Sodium hydride (60% in mineral oil, 149 mg, 3.74 mmol, 8.0 equiv.) was added in one portion to 

1,3-diaminopropane (5 mL) at room temperature. The mixture was heated to 70 °C and stirred for 

1h, where it became opaque and brown, then cooled to room temperature. Pentadec-7-yn-1-ol 3.6 

(105 mg, 0.467 mg, 1.0 equiv.) in 1,3-diaminopropane (2 mL) was added to the vessel and the 

mixture was heated to 60 °C and stirred for 19 h. The reaction mixture was allowed to cool to 

room temperature and diluted with Et2O (10 mL). Distilled water (10 mL) was then carefully 

added and the aqueous layer was separated and further extracted with Et2O (3 × 10 mL). The 

combined organic layers were washed with distilled water (10 mL), 1 M HCl (10 mL) and brine 

(10 mL), dried over anhydrous sodium sulfate, filtered and concentrated. The crude residue was 

purified by flash column chromatography (15% EtOAc in pentane) to yield pentadec-14-yn-1-ol 

3.7 (70.3 mg, 0.313 mmol, 67 %) as a white solid. The 
1
H NMR spectrum is in agreement with 

that previously reported.
[231]

  

Rf = 0.44 (20% EtOAc in pentane, stains with KMnO4).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 3.61 (t, J = 6.7 Hz, 2H), 2.16 (td, J = 7.1, 2.7 Hz, 2H), 

1.92 (t, J = 2.7 Hz, 1H), 1.59 – 1.46 (m, 5H), 1.40 – 1.22 (m, 18H). 

 

Synthesis of pentadec-14-ynoic acid (3.5) 

 

A chromic acid oxidizing solution was prepared according to literature.
[232]

 Chromium trioxide 

(67.0 g, 670 mmol) was dissolved in distilled water (125 mL) and the solution was cooled to 0 °C. 

Concentrated sulfuric acid (58 mL) was added to the solution and the mixture was allowed to 

warm to room temperature. Distilled water was added to bring the total volume of the solution to 

225 mL, making a ~3 M aqueous solution of chromic acid oxidizing solution. The chromic acid 

solution (0.149 mL, 0.446 mmol, 1.5 equiv.) was added dropwise to a solution of pentadec-14-yn-

1-ol 3.7 (66.7 mg, 0.297 mmol, 1.0 equiv.) in acetone (2.0 mL) at 0 °C. The mixture was stirred 

for 2 h at 0 °C until TLC analysis indicated complete conversion. The solution was filtered 

through a pad of Celite
®
 and the vessel and pad were washed with Et2O (50 mL). The filtrate was 
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washed with distilled water (20 mL) and brine (20 mL) and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (10 → 30% EtOAc in pentane) 

to yield pentadec-14-ynoic acid 3.5 (58.1 mg, 0.244 mmol, 82 %) as a waxy white solid. The 
1
H 

NMR spectrum is in agreement with that previously reported.
[229]

  

Rf = 0.24 (20% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 11.24 (broad s, 1H), 2.34 (t, J = 7.5 Hz, 2H), 2.18 (td, J = 

7.1, 2.7 Hz, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.62 (q, J = 7.2 Hz, 2H), 1.52 (pentet, J = 7.2 Hz, 2H), 

1.43 – 1.19 (m, 16H). 

 

Synthesis of 4-((4-propylphenyl)diazenyl)benzyl alcohol (3.9) 

 

A solution of 4-propylaniline 3.8 (2.50 g, 18.5 mmol, 2.1 equiv.) in CH2Cl2 (80 mL) was treated 

with Oxone
®
 (22.7 g, 74.0 mmol, 8.5 equiv.) in distilled water (100 mL) at room temperature and 

the biphasic mixture was stirred vigorously at room temperature for 20 h. The aqueous phase was 

separated further extracted with CH2Cl2 (2 × 60 mL). The combined organic phases washed with 

1 M hydrochloric acid solution (75 mL), saturated aqueous sodium bicarbonate solution (75 mL) 

and brine (75 mL), then dried over anhydrous sodium sulfate, filtered and concentrated under 

reduced pressure. The crude residue was purified by flash column chromatography (CH2Cl2), and 

the collected green fractions were combined and concentrated to afford 4-propylnitrosobenzene as 

a clear green oil, which was taken directly to the next procedure. 

The nitrosobenzene was redissolved in glacial acetic acid (75 mL) and 4-aminobenzyl alcohol 

(1.08 g, 8.74 mmol, 1.0 equiv.) in acetic acid (25 mL) was added to the solution at room 

temperature. The mixture was stirred vigorously for 72 h at room temperature, then concentrated 

under reduced pressure and azeotroped twice with toluene (50 mL). The crude orange solid was 

purified by flash column chromatography (20 → 25% EtOAc in pentane) to afford 4-((4-

propylphenyl)diazenyl)benzyl alcohol 3.9 (911 mg, 3.58 mmol, 41% yield) as an orange solid.  

Rf = 0.43 (30% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.90 (d, J = 8.4 Hz, 2H), 7.85 (d, J = 8.4 Hz, 2H), 7.50 (d, 

J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 4.77 (s, 2H), 2.67 (t, J = 7.5 Hz, 2H), 1.89 (broad s, 1H), 

1.70 (pentet, J = 7.5 Hz, 2H), 0.97 (t, J = 7.5 Hz, 3H). 
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13
C NMR (CDCl3, 100 MHz, 25 °C): δ 152.32, 151.05, 146.49, 143.62, 129.31, 127.56, 123.07, 

122.96, 65.03, 38.08, 24.55, 13.94.  

IR (neat, ATR): 3332, 2958, 2930, 2869, 1661, 1585, 1499, 1449, 1417, 1340, 1303, 1222, 1026, 

1010, 852, 832.  

HRMS (ESI
+
): Calc. for [C16H19N2O]

+
: 255.1492, found: 255.1491 ([M+H]

+
).  

Melting point: 138 °C. 

 

Synthesis of 4-((4-propylphenyl)diazenyl)benzaldehyde (3.10) 

 

A solution of 4-((4-propylphenyl)diazenyl)benzyl alcohol 3.9 (302 mg, 1.19 mmol, 1.0 equiv.) in 

CH2Cl2 (12 mL) was treated with Dess-Martin periodinane (655 mg, 1.55 mmol, 1.3 equiv.) at 

room temperature. The reaction mixture was left to stir for 45 minutes and a mixture of saturated 

aqueous sodium bicarbonate solution and saturated aqueous sodium thiosulfate solution (1:1, 

20 mL) was added. The biphasic mixture was stirred for 30 minutes, then the aqueous phase was 

separated and extracted with CH2Cl2 (2 × 20 mL). The combined organic layers were washed with 

saturated aqueous sodium bicarbonate solution (30 mL), dried over anhydrous sodium sulfate, 

filtered and concentrated under reduced pressure. The crude residue was purified by flash column 

chromatography (3 → 4% EtOAc in pentane) to afford 4-((4-propylphenyl)diazenyl) 

benzaldehyde 3.10 (282 mg, 1.12 mmol, 94%) as a red crystalline solid. 

Rf = 0.43 (30% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 10.07 (s, 1H), 8.00 (s, 4H), 7.88 (d, J = 8.1 Hz, 2H), 7.32 

(d, J = 8.1 Hz, 2H), 2.66 (t, J = 7.6 Hz, 2H), 1.69 (pentet, J = 7.5 Hz, 2H), 0.97 (t, J = 7.4 Hz, 3H). 

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 191.64, 156.01, 150.91, 147.57, 137.24, 130.70, 129.34, 

123.36, 123.25, 38.04, 24.40, 13.88.  

IR (neat, ATR): 3023, 2956, 2929, 2845, 2739, 1696, 1597, 1581, 1498, 1460, 1416, 1378, 1316, 

1304, 1289, 1197, 1183, 1148, 1129, 1112, 1090, 1003, 908, 847, 831, 811, 793, 75, 729, 663.  

HRMS (ESI
+
): Calc. for [C16H19N2O]

+
: 253.1335, found: 253.1336 ([M+H]

+
). 

 Melting point: 107 °C. 
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Synthesis of 1-(4-propylphenyl)-2-(4-vinylphenyl)diazene (3.3) 

 

A suspension of methyltriphenylphosphonium bromide (439 mg, 1.23 mmol, 1.1 equiv.) in THF 

(12 mL) at 0 °C was treated with a solution of n-BuLi (2.48 M in hexanes, 0.496 mL, 1.23 mmol, 

1.1 equiv.). The resulting bright yellow suspension was stirred for 20 minutes at 0 °C and a 

solution of 4-((4 propylphenyl)diazenyl)benzaldehyde 3.10 (282 mg, 1.12 mmol, 1.0 equiv.) in 

THF (5 mL) was added dropwise. The mixture was allowed to warm to room temperature and 

stirred for 1 h. Saturated aqueous ammonium chloride solution (20 mL) was added and the 

aqueous phase was extracted with CH2Cl2 (3 × 20 mL). The combined organic layers were dried 

over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (dry loading with 1 g silica gel, 0 → 3% Et2O in 

pentane) to yield 1-(4-propylphenyl)-2-(4-vinylphenyl)diazene 3.3 (237 mg, 0.946 mmol, 84%) as 

a crystalline orange solid. 

Rf = 0.43 (30% EtOAc in pentane). 
 

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.89 (d, J = 8.5 Hz, 2H), 7.86 (d, J = 8.4 Hz, 2H), 7.55 (d, 

J = 8.5 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 6.79 (dd, J = 17.6, 10.9 Hz, 1H), 5.87 (d, J = 17.6 Hz, 

1H), 5.36 (d, J = 10.9 Hz, 1H), 2.68 (t, J = 7.5 Hz, 2H), 1.70 (hextet, J = 7.5 Hz, 2H), 0.98 (t, J = 

7.5 Hz, 3H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 152.31, 151.17, 146.42, 140.00, 136.33, 129.30, 127.03, 

123.21, 122.96, 115.55, 38.09, 24.56, 13.95.  

IR (neat, ATR): 3045, 2958, 2929, 2870, 1626, 1598, 1497, 1454, 1414, 1402, 1303, 1287, 1226, 

1155, 1109, 1011, 988, 908, 848, 802, 748.  

HRMS (ESI
+
): Calc. for [C17H19N2]

+
: 251.1543, found: 251.1543 ([M+H]

+
).  

Melting point: 37 °C.  
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Synthesis of 4-iodo-4’-methylazobenzene (3.11) 

 

4-Iodo-4’-methylazobenzene was synthesized following a modified procedure of Strueben et 

al.
[234]

 A solution of p-toluidine (2.50 g, 24.3 mmol, 1.0 equiv.) in CH2Cl2 (80 mL) was treated 

with Oxone
®
 (29.8 g, 97.1 mmol, 4.1 equiv.) in distilled water (120 mL) at room temperature and 

the biphasic mixture was stirred vigorously at room temperature for 18 h. The aqueous phase was 

separated and further extracted with CH2Cl2 (2 × 50 mL). The combined organic phases were 

washed with 1 M hydrochloric acid solution (80 mL), saturated aqueous sodium bicarbonate 

solution (80 mL) and brine (80 mL), then dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure. The crude residue was purified by flash column 

chromatography (CH2Cl2), and the collected green fractions were combined and concentrated to 

afford a clear green oil. The oil was redissolved in CH2Cl2 (20 mL) and acetic acid (30 mL) and 

4-iodoaniline (5.13 g, 23.4 mmol, 1.0 equiv.) was added to the solution. The mixture was stirred 

for 15 h at room temperature, during which an orange-yellow crystalline solid precipitated. The 

mixture was concentrated under reduced pressure, suspended in ice-cold ethanol (30 mL) and 

filtered. The recovered crystals were washed with ice-cold ethanol (30 mL) and dried to afford 4-

iodo-4’-methylazobenzene 3.11 (3.35 g, 10.4 mmol, 45% yield) as an orange-yellow crystalline 

solid. The 
1
H NMR and 

13
C NMR spectra are in agreement with those previously reported.

[234]
  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.85 (d, J = 8.5 Hz, 2H), 7.82 (d, J = 8.5 Hz, 2H), 7.64 (d, 

J = 8.5 Hz, 2H), 7.32 (d, J = 8.5 Hz, 3H), 2.44 (s, 3H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 152.13, 150.70, 142.17, 138.43, 129.96, 124.51, 123.12, 

97.37, 21.72. 
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Synthesis of 3-(4-(p-tolyldiazenyl)phenyl)propanal (3.12) 

 

1-(4-Iodophenyl)-2-(p-tolyl)diazene 3.11 (3.34 g, 10.4 mmol, 1.0 equiv.) was suspended in DMF 

(12 mL) and toluene (12 mL) at room temperature and tetrabutylammonium chloride (2.89 g, 

10.4 mmol, 1.0 equiv.), sodium bicarbonate (2.18 g, 26.0 mmol, 2.5 equiv.) and allyl alcohol 

(0.906 g, 15.6 mmol, 1.5 equiv.) were added sequentially to the stirring mixture. The orange 

suspension was stirred for 10 minutes at room temperature, whereupon PdCl2 (0.369 mg, 

2.08 mmol, 0.20 equiv.) was added to the flask.  The bright red suspension was warmed to 45 °C 

and stirred for 2.5 h, then cooled back to room temperature and stirred for 48 h. The reaction 

mixture was then diluted with EtOAc (125 mL) and washed successively with 1 M aqueous 

hydrochloric acid solution (50 mL), distilled water (4 × 50 mL) and brine (50 mL). The organic 

layer was dried over anhydrous sodium sulfate, filtered and concentrated. The crude residue was 

purified by flash column chromatography (6 → 10% EtOAc in pentane) to yield 3-(4-(p-

tolyldiazenyl)phenyl)propanal 3.12 (2.28 g, 9.07 mmol, 87%) as a crystalline orange solid. 

Rf = 0.36 (10% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 9.82 (s, 1H), 7.85 (d, J = 7.5 Hz, 2H), 7.83 (d, J = 7.5 Hz, 

2H), 7.33 (d, J = 7.5 Hz, 2H), 7.31 (d, J = 7.5 Hz, 2H),  3.02 (t, J = 7.5 Hz, 2H), 2.81 (t, J = 7.5 

Hz, 2H), 2.43 (s, 1H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 201.18, 151.36, 150.78, 143.48, 141.52, 129.80, 129.06, 

123.06, 122.85, 45.08, 27.97, 21.57.  

IR (neat, ATR): 3022, 2921, 2832, 2730, 1716, 1600, 1497, 1448, 1416, 1390, 1356, 1302, 1221, 

1210, 1153, 1111, 1061, 1038, 1011, 904, 843, 822, 728, 705, 682.  

HRMS (ESI
+
): Calc. for [C16H17N2O]

+
: 253.1335, found: 253.1336 ([M+H]

+
).  

Melting point: 78 °C. 
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Synthesis of 1-(4-(but-3-en-1-yl)phenyl)-2-(p-tolyl)diazene (3.4) 

 

A suspension of methyltriphenylphosphonium bromide (3.87 g, 10.8 mmol, 1.2 equiv.) in 

THF (50 mL) at –78 °C was treated with a solution of n-BuLi (2.48 M in hexanes, 4.37 mL, 

10.8 mmol, 1.2 equiv.). The resulting bright yellow suspension was warmed to 0 °C for 

20 minutes, then cooled once more to at –78 °C. 3-(4-(p-Tolyldiazenyl)phenyl)propanal 3.12 

(2.28 g, 9.02 mmol, 1.0 equiv.) in THF (10 mL) was added dropwise and the mixture was allowed 

to warm to room temperature and stirred for 15 h. Saturated aqueous ammonium chloride solution 

(60 mL) was added and the aqueous phase was separated and further extracted with CH2Cl2 (2 × 

80 mL). The combined organic layers were dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure. The residue was purified by flash column chromatography 

(dry loading, 1 → 2% EtOAc in pentane) to yield 1-(4-(but-3-en-1-yl)phenyl)-2-(p-tolyl)diazene 

3.4 (2.06 g, 8.22 mmol, 91%) as a crystalline orange solid. 

Rf = 0.30 (2% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.78 (d, J = 8.2 Hz, 2H), 7.76 (d, J = 7.5 Hz, 2H), 7.25 (d, 

J = 8.2 Hz, 2H), 7.23 (d, J = 7.5 Hz, 2H), 5.80 (ddt, J = 16.9, 10.2, 6.6 Hz, 1H), 4.99 (dd, J = 16.9, 

1.7 Hz, 1H), 4.94 (dd, J = 10.2, 1.7 Hz, 1H), 2.72 (t, J = 7.5 Hz, 2H), 2.36 (m, 5H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 151.20, 150.92, 145.14, 141.35, 137.80, 129.82, 129.23, 

122.88, 122.86, 115.38, 35.42, 35.37, 21.61. 

IR (neat, ATR): 3074, 3054, 3024, 2977, 2922, 2857, 1640, 1601, 1580, 1497, 1440, 1415, 1302, 

1224, 1209, 1155, 1105, 1012, 996, 950, 907, 837, 823, 708, 643.  

HRMS (ESI
+
): Calc. for [C17H19N2]

+
: 251.1543, found: 251.1542 ([M+H]

+
).  

Melting point: 57 °C. 
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Synthesis of N-Boc-(R)-1-((S)-2,2-dimethyloxazolidin-4-yl)prop-2-en-1-ol (3.2) 

 

Vinyl magnesium bromide (1.0 M in THF, 22.7 mL, 22.7 mmol, 2.0 equiv.) was added over 

30 minutes via drop funnel to a solution of (S)-1,1-dimethylethyl 4-formyl-2,2-

dimethyloxazolidine-3-carboxylate 3.13 (2.61 g, 11.4 mmol, 1.0 equiv.) in THF (50 mL) at          

–78 °C. The reaction mixture was stirred for 2 h at –78 °C until TLC analysis indicated complete 

conversion, and saturated aqueous ammonium chloride solution (40 mL) was added at this 

temperature. After warming to room temperature, the aqueous layer was separated and extracted 

with EtOAc (3 × 70 mL). The combined organic layers were dried over anhydrous sodium sulfate, 

filtered and concentrated. The crude residue was purified by flash column chromatography 

(15% EtOAc in pentane) to afford 3.2 (2.33 g, 9.07 mmol, 80%) as a colorless oil. 

High-temperature 
1
H NMR analysis indicates a 5.2:1 anti/syn mixture of diastereomers at C3, 

consistent with previous literature results.
[236]

 Further purification of the mixture by careful 

column chromatography (10% EtOAc in pentane) yielded the pure anti diastereomer. 

Rf = 0.35 (20% EtOAc in pentane).  

1
H NMR (toluene-d8, 400 MHz, 90 °C): δ 5.81 (ddd, J = 16.7, 10.5, 5.2 Hz, 1H), 5.31 (dt, J = 

16.7, 1.8 Hz, 1H), 5.06 (d, J = 10.5 Hz, 1H), 4.26 (broad s, 1H), 3.87 (m, 1H), 3.77 (m, 1H), 3.66 

(dd, J = 9.0, 6.8 Hz, 1H), 1.58 (s, 3H), 1.43 (s, 3H), 1.38 (s, 9H).  

13
C NMR (toluene-d8, 100 MHz, 90 °C): δ 153.39, 138.68, 115.44, 94.68, 80.27, 73.87, 64.81, 

62.47, 28.49, 26.82, 24.43.  

IR (neat, ATR): 3461, 2978, 2936, 2879, 1694, 1478, 1456, 1377, 1365, 1255, 1206, 1170, 1095, 

1049, 989, 923, 848, 807, 767.  

HRMS (ESI
+
): Calc. for [C13H24NO4]

+
: 258.1700, found: 258.1699 ([M+H]

+
). 
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Synthesis of N-Boc-(R,E)-1-((S)-2,2-dimethyloxazolidin-4-yl)-3-((4-(4-

propylphenyl)diazenyl)phenyl)prop-2-en-1-ol (3.14) 

 

Hoyveda-Grubbs 2
nd

 generation catalyst (29.6 mg, 0.0472 mmol, 0.10 equiv.) was added to a 

solution of allyl alcohol 3.2 (121 mg, 0.472 mmol, 1.0 equiv.) and olefin 3.3 (236 mg, 0.944 

mmol, 2.0 equiv.) in degassed CH2Cl2 (6 mL) at room temperature. The deep red mixture was 

heated to 45 °C and stirred for 21 h. The mixture was cooled to temperature and, without 

concentrating, was loaded on an equilibrated silica gel column and purified by flash column 

chromatography (15 → 25% EtOAc in pentane). The combined fractions contained traces of 

remnant catalyst, and the product was purified a second time by flash column chromatography 

(15 → 25% EtOAc in pentane) to yield 3.14 (71.1 mg, 0.148 mmol, 31%) as a dark orange gum.  

Rf = 0.32 (20% EtOAc in pentane).  

1
H NMR (toluene-d8, 400 MHz, 90 °C): δ  7.90 (d, J = 8.3 Hz, 2H), 7.88 (d, J = 8.3 Hz, 2H), 

7.35 (d, J = 8.4 Hz, 2H), 7.07 (d, J = 8.3 Hz, 2H), 6.68 (dd, J = 15.8, 1.5 Hz, 1H), 6.26 (dd, J = 

15.8, 5.6 Hz, 1H), 4.37 (m, 1H), 3.98 (m, 1H), 3.81 (m, 1H), 3.70 (dd, J = 9.1, 6.7 Hz, 1H), 2.43 

(t, J = 7.3, 2H), 1.56 (s, 3H), 1.52 (q, J = 7.3, 2H),  1.41 (s, 3H), 1.32 (s, 9H), 0.84 (t, J = 7.3 Hz, 

3H). 

13
C NMR (toluene-d8, 100 MHz, 90 °C): δ 153.79, 152.91, 152.14, 146.11, 140.24, 131.86, 

130.52, 129.35, 127.55, 123.72, 123.49, 94.78, 80.53, 74.33, 65.21, 62.93, 38.27, 28.46, 27.02, 

24.51, 13.81.  

IR (neat, ATR): 3426, 2976, 2933, 2873, 1693, 1600, 1497, 1477, 1455, 1389, 1376, 1366, 1255, 

1205, 1156, 1100, 1068, 1050, 967, 921, 864, 847, 768, 733.  

HRMS (ESI
+
): Calc. for [C28H38N3O4]

+
: 480.2857, found: 480.2860 ([M+H]

+
).  
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Synthesis of (2S,3R,E)-2-amino-5-(4-((4-propylphenyl)diazenyl)phenyl) pent-4-ene-1,3-diol 

(aSph-1) 

 

Carbamate 3.14 (23.9 mg, 0.0498 mmol, 1.0 equiv.) was dissolved in THF (1.25 mL) and the 

solution was cooled to 0 °C with an ice bath. 2 M hydrochloric acid solution (0.50 mL) was added 

dropwise and the reaction mixture was heated to 60 °C. After stirring for 3 h, the solution was 

cooled to ambient temperature and saturated sodium carbonate solution (5 mL) was added. The 

aqueous phase was extracted with CH2Cl2 (3 × 10 mL) and the combined organic layers were 

dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The crude 

orange solid was purified by flash column chromatography (5/94.5/0.5 → 10/89/1 

MeOH/CH2Cl2/aqueous ammonium hydroxide solution) to afford aSph-1 (13.1 mg, 

0.0386 mmol, 77%) as an orange solid. 

Rf = 0.14 (40% acetone in toluene).  

1
H NMR (methanol-d4, 400 MHz, 25 °C): δ 7.77 (d, J = 8.6 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 

7.53 (d, J = 8.6 Hz, 2H), 7.26 (d, J = 8.4 Hz, 2H), 6.66 (d, J = 15.9 Hz, 1H), 6.38 (dd, J = 15.9, 6.8 

Hz, 1H), 4.19 (t, J = 5.8 Hz, 1H), 3.65 (dd, J = 10.9, 4.6 Hz, 1H), 3.48 (dd, J = 10.9, 6.9 Hz, 1H), 

2.85 (q, J = 5.7 Hz, 1H), 2.58 (d, J = 7.5 Hz, 2H), 1.60 (hextet, J = 7.4 Hz, 2H), 0.88 (t, J = 7.4 

Hz, 3H). 

13
C NMR (methanol-d4, 100 MHz, 25 °C): δ 153.28, 152.36, 147.76, 141.00, 132.46, 132.26, 

130.31, 128.38, 124.10, 123.82, 74.80, 64.24, 58.28, 38.89, 25.61, 14.10.  

IR (neat, ATR): 3045, 2958, 2929, 2870, 1626, 1598, 1497, 1454, 1414, 1402, 1303, 1287, 1226, 

1155, 1109, 1011, 988, 908, 848, 802, 748.  

HRMS (ESI
+
): Calc. for [C20H26N3O2]

+
: 340.2020, found: 340.2020 ([M+H]

+
).  

Melting point: 135 °C. 
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Synthesis of N-((2S,3R,E)-1,3-dihydroxy-5-(4-((4-propylphenyl) diazenyl)phenyl)pent-4-en-

2-yl)pentadec-14-ynamide (caCer-3) 

 

ASp-1 (7.9 mg, 0.023 mmol, 1.0 equiv.) and pentadec-14-ynoic acid 3.5 (6.1 mg, 0.026 mmol, 

1.1 equiv.) were dissolved in CH2Cl2 (0.8 mL) and the solution was cooled to 0 °C with an ice 

bath. Diisopropylethylamine (12.2 µL, 0.0698 mmol, 3.0 equiv.), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimide hydrochloride (7.6 mg, 0.040 mmol, 1.7 equiv.) and 

1-hydroxybenzotriazole hydrate (6.8 mg, 0.044 mmol, 1.9 equiv.) were added sequentially to the 

flask, and the mixture was allowed warm to room temperature and was stirred for 20 h. Saturated 

aqueous sodium bicarbonate solution (5 mL) was added. The aqueous layer was separated and 

extracted with CH2Cl2 (3 × 5 mL). The combined organic layers were washed with 1 M 

hydrochloric acid (5 mL) and brine (5 mL), dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure. The residue was purified by flash column chromatography 

(2 → 4% MeOH in CH2Cl2) to afford caCer-3 (11.0 mg, 0.0197 mmol, 85%) as an orange solid. 

Note: Due to initially proceeding with a mixture of epimers from compound 3.2, our first 

synthesis of caCer-3 produced a 7.3:1 mixture of erythro/threo ceramide by 
1
H NMR analysis 

and biological assays were conducted with this mixture. The procedures reported here are from a 

second synthesis conducted with anti-3.2 to yield pure erythro-caCer-3. 

Rf =0.36 (90% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ  7.86 (d, J = 8.5 Hz, 2H), 7.83 (d, J = 8.3 Hz, 2H), 7.50 

(d, J = 8.5 Hz, 2H), 7.31 (d, J = 8.3 Hz, 2H), 6.77 (d, J = 16.1 Hz, 1H), 6.38 (dd, J = 16.1, 5.7 Hz, 

1H), 6.37 (s, 1H),  4.59 (t, J = 4.0 Hz, 1H), 4.05 (m, 2H), 3.78 (m, 1H), 2.66 (t, J = 7.5 Hz, 2H), 

2.24 (m, 2H), 2.16 (td, J = 7.1, 2.6 Hz, 2H), 1.94 (t, J = 2.6 Hz, 1H), 1.66 (m, 4H), 1.50 (pentet, J 

= 7.3 Hz, 2H) 1.41 – 1.15 (m, 18H), 0.97 (t, J = 7.3 Hz, 3H). 

13
C NMR (CDCl3, 100 MHz, 25 °C: δ 174.30, 152.30, 151.11, 146.52, 138.71, 131.21, 130.19, 

129.31, 127.38, 123.33, 122.99, 84.99, 74.62, 68.19, 62.52, 54.62, 38.09, 36.99, 29.74, 29.71, 

29.64, 29.61, 29.52, 29.43, 29.25, 28.90, 28.62, 25.94, 24.55, 18.54, 13.95.  

IR (neat, ATR): 3296, 2922, 2850, 1645, 1600, 1547, 1467, 1440, 1302, 1257, 1155, 1116, 1065, 

1002, 964, 862, 825, 724, 696.  
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HRMS (ESI
+
): Calc. for [C35H50N3O3]

+
: 560.3847, found: 560.3862 ([M+H]

+
).  

Melting point: 133 °C. 

 

 Synthesis of N-Boc-(R,E)-1-((S)-2,2-dimethyloxazolidin-4-yl)-6-(4-(p-

tolyldiazenyl)phenyl)hex-2-en-1-ol (3.15) 

 

Hoyveda-Grubbs catalyst, 2
nd

 generation (63.8 mg, 0.102 mmol, 0.10 equiv.) was added to a 

solution of allyl alcohol 3.2 (262 mg, 1.02 mmol, 1.0 equiv.) and 1-(4-(but-3-en-1-yl)phenyl)-2-

(p-tolyl)diazene 3.4 (510 mg, 2.04 mmol, 2.0 equiv.) in degassed CH2Cl2 (8 mL) at room 

temperature. The deep red mixture was heated to 45 °C and stirred for 16 h. The mixture was 

cooled to ambient temperature and, without concentrating, was loaded on an equilibrated silica 

gel column and purified by flash column chromatography (15 → 25% EtOAc in pentane). The 

combined fractions contained traces of remnant catalyst, and the product was purified a second 

time by flash column chromatography (15 → 25% EtOAc in pentane) to yield 3.15 (223 mg, 

0.450 mmol, 44%) as an orange gum.  

Rf = 0.35 (20% EtOAc in pentane).  

1
H NMR (toluene-d8, 400 MHz, 90 °C): δ 7.89 (d, J = 8.1 Hz, 2H), 7.86 (d, J = 8.1 Hz, 2H), 7.08 

(m, 4H), 5.72 (dt, J = 13.3, 6.5 Hz, 1H), 5.49 (dd, J = 15.4, 5.6 Hz, 1H), 5.06 (d, J = 10.5 Hz, 1H), 

4.26 (broad s, 1H), 3.87 (m, 1H), 3.77 (m, 1H), 3.66 (dd, J = 9.0, 6.8 Hz, 1H), 2.15 (s, 3H), 1.58 

(s, 3H), 1.43 (s, 3H), 1.38 (s, 9H).  

13
C NMR (toluene-d8, 100 MHz, 90 °C) 129.94, 129.37, 123.45, 123.38, 94.71, 80.24, 73.64, 

64.92, 62.81, 35.99, 34.20, 28.60, 26.94, 24.55, 21.22.  

IR (neat, ATR): 3448, 2978, 2933, 1694, 1602, 1498, 1478, 1454, 1388, 1376, 1365, 1255, 1206, 

1156, 1101, 1067, 1014, 968, 912, 842, 768, 733.  

HRMS (ESI
+
): Calc. for [C28H38N3O4]

+
: 480.2857, found: 480.2873 ([M+H]

+
).  
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Synthesis of (2S,3R,E)-2-amino-7-(4-(p-tolyldiazenyl)phenyl)hept-4-ene-1,3-diol (aSph-2) 

 

2 M Hydrochloric acid solution (2 mL) was added dropwise to a solution of 3.15 (94.2 mg, 

0.196 mmol, 1.0 equiv.) in THF (4 mL) at room temperature and the reaction mixture was heated 

to 60 °C for 3 h. The solution was then basified to pH 10 with 2 M sodium hydroxide solution 

(2.4 mL) and the aqueous mixture was extracted with CH2Cl2 (3 × 10 mL). The combined organic 

layers were washed with brine (10 mL), dried over anhydrous sodium sulfate, filtered and 

concentrated under reduced pressure. The crude orange solid was purified by flash column 

chromatography (5/94.5/0.5 → 10/89/1 MeOH/CH2Cl2/aqueous 25% ammonium hydroxide 

solution) to afford aSph-2 (55.5 mg, 0.164 mmol, 84%) as an orange solid. 

Rf = 0.14 (40% acetone in toluene).  

1
H NMR (methanol-d4, 400 MHz, 25 °C): δ 7.79 (d, J = 8.1 Hz, 2H), 7.76 (d, J = 7.9 Hz, 2H), 

7.34 (d, J = 8.1 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 5.76 (dt, J = 15.4, 6.8 Hz, 1H), 5.47 (dd, J = 

15.4, 6.8 Hz, 1H), 3.95 (t, J = 6.7 Hz, 1H), 3.59 (dd, J = 11.2, 4.1 Hz, 1H), 3.43 (dd, J = 11.2, 6.9 

Hz, 1H),  2.80 (q, J = 6.8 Hz, 2H), 2.71 (q, J = 6.0 Hz, 1H), 2.45 (m, 2H), 2.40 (s, 3H).  

13
C NMR (methanol-d4, 100 MHz, 25 °C): δ 152.39, 152.09, 146.59, 142.86, 133.97, 131.66, 

130.80, 130.43, 123.77, 123.73, 74.42, 63.66, 57.95, 36.28, 35.05, 21.45.  

IR (neat, ATR): 3345, 3286, 3024, 2922, 2855, 1601, 1581, 1497, 1451, 1416, 1302, 1154, 1050, 

1034, 1012, 965, 849, 827, 712, 643, 617, 558.  

HRMS (ESI
+
): Calc. for [C20H26N3O2]

+
: 340.2020, found: 340.2022 ([M+H]

+
).    

Melting point: 141 °C. 
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Synthesis of N-((2S,3R,E)-1,3-dihydroxy-7-(4-(p-tolyldiazenyl) phenyl)hept-4-en-2-

yl)pentadec-14-ynamide (caCer-4) 

 

aSph-2 (15.0 mg, 0.0442 mmol, 1.0 equiv.) and pentadec-14-ynoic acid 3.5 (10.5 mg, 0.0442 

mmol, 1.0 equiv.) were dissolved in CH2Cl2 (1.5 mL) and the solution was cooled to 0 °C with an 

ice bath. Diisopropylethylamine (23.1 µL, 0.133 mmol, 3.0 equiv.), 1-ethyl-3-(3-

dimethylaminopropyl)carbodiimidehydrochloride (12.7 mg, 0.0663 mmol, 1.5 equiv.) and 

1-hydroxybenzotriazole hydrate (11.5 mg, 0.0751 mg, 1.7 equiv.) were added sequentially to the 

flask, and the mixture was allowed warm to room temperature and was stirred for 4 h. TLC 

analysis indicated some aSph-2 remained, and the mixture was cooled to 0 °C and additional 3.5 

(5.2 mg, 0.022 mmol, 0.5 equiv.), diisopropylethylamine (7.7  µL, 0.044 mmol, 1.0 equiv.), 1-

ethyl-3-(3-dimethylaminopropyl)carbodiimidehydrochloride (4.2 mg, 0.022 mmol, 0.5 equiv.) 

and 1-hydroxybenzotriazole hydrate (3.4 mg, 0.22 mmol, 0.5 equiv.) were added.. The mixture 

was left to stir at room temperature for 17 h and saturated aqueous sodium bicarbonate solution 

(5 mL) was added. The aqueous layer was separated and extracted with CH2Cl2 (3 × 5 mL). The 

combined organic layers were washed with 1 M hydrochloric acid (5 mL) and brine (5 mL), dried 

over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (80% EtOAc in pentane) to afford caCer-4 (17.2 mg, 

0.0307 mmol, 70%) as an orange solid.  

Rf = 0.30 (80% EtOAc in pentane).  

1
H NMR (CDCl3, 400 MHz, 25 °C): δ 7.82 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.31 (d, 

J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.20 (d, J = 7.6 Hz, 1H), 5.79 (dt, J = 14.0, 6.5 Hz, 1H), 

5.52 (dd, J = 14.0, 6.2 Hz, 1H), 4.28 (t, J = 5.0 Hz, 1H), 3.85 (dq, J = 7.5, 3.7 Hz, 1H), 3.79 (dd, J 

= 11.3, 3.9 Hz, 1H), 3.61 (dd, J = 11.3, 3.5 Hz, 1H), 2.79 (t, J = 7.5 Hz, 2H), 2.46 (m, 2H), 2.43 

(s, 3H), 2.18 (m, 4H), 1.94 (t, J = 2.6 Hz, 1H), 1.61 (t, J = 7.3 Hz, 2H), 1.50 (q, J = 7.3 Hz, 2H), 

1.43 – 1.33 (m, 2H), 1.30 – 1.22  (m, 16H).  

13
C NMR (CDCl3, 100 MHz, 25 °C): δ 174.14, 151.32, 150.86, 144.70, 141.56, 132.33, 130.28, 

129.86, 129.30, 122.90, 122.89, 84.97, 74.45, 68.19, 62.41, 54.56, 36.92, 35.35, 33.83, 29.73, 

29.71, 29.63, 29.51, 29.42, 29.25, 28.90, 28.62, 25.88, 21.65, 18.53.  
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IR (neat, ATR): 3294, 2920, 2850, 1643, 1603, 1542, 1467, 1377, 1279, 1156, 1104, 1049, 1014, 

960, 895, 840, 722.  

HRMS (ESI
+
): Calc. for [C35H50N3O3]

+
: 560.3847, found: 560.3851 ([M+H]

+
).  

Melting point: 111 °C. 
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4.1. 
1
H NMR and 

13
C NMR Spectra 

4.1.1. 
1
H NMR and 

13
C NMR Spectra for Chapter I 
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Figure 5.1: NOESY spectrum of 10 (CDCl3, 400 MHz). 

 

 

 

 

 

 

 

 

 

 
 

 

H-8 

H-13 

H-14 



152   CHAPTER V 

  

 

 

 



APPENDIX   153 

 

 

 



154   CHAPTER V 

  

 

 
 

 



APPENDIX   155 

 

 

 
 

 



156   CHAPTER V 

  

 

 

 

H2O 



APPENDIX   157 

 

 

 



158   CHAPTER V 

  

 

 

 

H2O 



APPENDIX   159 

 

 

 

  



160   CHAPTER V 

  

  

1
H NMR Comparison of Synthetic and Natural Lycopalhine A 
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Figure 5.2.  Key COSY correlations of epi-1 (pyridine-d5, 800 MHz). 
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Figure 5.3.  Key NOESY correlations of epi-1 (pyridine-d5, 800 MHz). 
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Figure 5.4.  
13

C NMR signal assignment of epi-1 (pyridine-d5, 600 MHz). 
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Figure 5.5.  HSQC correlations of epi-1 (pyridine-d5, 800 MHz). 
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Figure 5.6.  Key HMBC correlations of epi-1 (pyridine-d5, 800 MHz).  
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Deuterium exchange studies of lycopalhine A 

 

 
 

 

Figure 5.7.  Deuterium exchange studies of lycopalhine A and epi-lycopalhine A 

  

 

 
 

Note: No additional deuterium exchange was observed after stirring for >24 h in MeOD with K2CO3 or 

after repeating the experiment over 3Å molecular sieves.
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4.1.2. 
1
H NMR and 

13
C NMR Spectra for Chapter II 
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Figure 5.8.  NOESY correlations of 22 (CDCl3, 400 MHz, 298K). 
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Figure 5.9.  NOESY correlations of 2.111 (CDCl3, 400 MHz, 298K). 
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4.1.3. 
1
H NMR and 

13
C NMR Spectra for Chapter III 

 

 



200   CHAPTER V 

  

 

 



APPENDIX   201 

 

 

 



202   CHAPTER V 

  

 

 



APPENDIX   203 

 

 

 



204   CHAPTER V 

  

 

 



APPENDIX   205 

 

 

 



206   CHAPTER V 

  

 

 



APPENDIX   207 

 

 

 



208   CHAPTER V 

  

 

 



APPENDIX   209 

 

 

 



210   CHAPTER V 

  

 

 



APPENDIX   211 

 

 

 



212   CHAPTER V 

  

 

 



APPENDIX   213 

 

 

 



214   CHAPTER V 

  

 

 



APPENDIX   215 

 

 

 

  



216   CHAPTER V 

  

5.2. Crystallographic Data 

5.2.1. Crystallographic Data for Chapter I 

Crystallographic data for 10 

 

Figure 5.10.  ORTEP projection of the molecular structure of 10 (50% probability ellipsoids).  

Crystallized by dissolution in minimal Et2O and resting at −32 °C.  

Table 5.1.  Crystallographic data for 10.  

net formula C21H37.50NO4.25Si 

Mr/g mol
−1 400.11 

crystal size/mm 0.100 × 0.090 × 0.070 

T/K 100.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system monoclinic 

space group 'P 1 21 1' 

a/Å 6.0492(4) 

b/Å 11.3972(6) 

c/Å 16.9316(10) 

α/° 90 

β/° 92.614(2) 

γ/° 90 

V/Å
3 1166.12(12) 

Z 2 

calc. density/g cm
−3 1.140 

μ/mm
−1 0.126 

absorption correction Multi-Scan 

transmission factor range 0.8785–0.9705 

refls. measured 7149 
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Rint 0.0281 

mean σ(I)/I 0.0516 

θ range 3.371–26.357 

observed refls. 4044 

x, y (weighting scheme) 0.0278, 0.2427 

hydrogen refinement mixed 

Flack parameter 0.03(8) 

refls in refinement 4355 

parameters 260 

restraints 1 

R(Fobs) 0.0386 

Rw(F
2
) 0.0827 

S 1.034 

shift/errormax 0.001 

max electron density/e Å
−3 0.252 

min electron density/e Å
−3 −0.169 

 

H(C) constr, H(N) refall, H(O) not considered in refinement. 

Formula: C21H37NO4Si · 0.25 H2O 
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Crystallographic data for 17 

 

Figure 5.11.  ORTEP projection of the molecular structure of 17 (50% probability ellipsoids).  

Crystallized by dissolution in minimal Et2O and resting at −32 °C.  

Table 5.2.  Crystallographic data for 17.  

net formula C25H45NO4Si 

Mr/g mol
−1 451.71 

crystal size/mm 0.563 × 0.473 × 0.374 

T/K 173(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system tetragonal 

space group 'P 43 21 2' 

a/Å 10.5065(3) 

b/Å 10.5065(3) 

c/Å 51.339(3) 

α/° 90 

β/° 90 

γ/° 90 

V/Å
3 5667.1(4) 

Z 8 

calc. density/g cm
−3 1.059 

μ/mm
−1 0.109 

absorption correction 'multi-scan' 

transmission factor range 0.75341–1.00000 
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refls. measured 10498 

Rint 0.0385 

mean σ(I)/I 0.0553 

θ range 4.337–25.022 

observed refls. 3847 

x, y (weighting scheme) 0.0450, 0.3176 

hydrogen refinement Constr 

Flack parameter −0.06(9) 

refls in refinement 4961 

parameters 365 

restraints 71 

R(Fobs) 0.0505 

Rw(F
2
) 0.1116 

S 1.042 

shift/errormax 0.001 

max electron density/e Å
−3 0.128 

min electron density/e Å
−3 −0.174 

 

C4 side-chain and tBu/methyl groups bound to Si heavily disordered, split models applied; SIMU, 

ISOR, SAME restraints used to enhance the refinement quality. The figure shows the main parts 

of disordered groups only. 
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Crystallographic data for 1.129 (hydrochloride) 

 

Figure 5.12. ORTEP projection of the molecular structure of 1.129 (hydrochloride, 50% probability 

ellipsoids).  

Crystallized by slow evaporation of CH2Cl2 solution. 

Table 5.3.  Crystallographic data for 1.129 (hydrochloride).  

net formula C13H22ClNO2 

Mr/g mol
−1

 259.76 

crystal size/mm 0.286 × 0.152 × 0.138 

T/K 123(2) 

radiation MoKα 

diffractometer 'Oxford XCalibur' 

crystal system triclinic 

space group 'P 1' 

a/Å 6.5578(8) 

b/Å 6.8576(6) 

c/Å 7.7584(9) 

α/° 71.399(9) 

β/° 89.946(9) 

γ/° 79.903(9) 

V/Å
3
 324.99(6) 

Z 1 

calc. density/g cm
−3

 1.327 

μ/mm
−1

 0.285 

absorption correction 'multi-scan' 

transmission factor range 0.98377–1.00000 

refls. measured 3605 

Rint 0.0263 



APPENDIX   221 

 

mean σ(I)/I 0.0487 

θ range 4.329–25.346 

observed refls. 2263 

x, y (weighting scheme) 0.0213, 0.0435 

hydrogen refinement Mixed 

Flack parameter 0.04(4) 

refls in refinement 2362 

parameters 166 

restraints 3 

R(Fobs) 0.0324 

Rw(F
2
) 0.0708 

S 1.077 

shift/errormax 0.001 

max electron density/e Å
−3

 0.186 

min electron density/e Å
−3

 −0.164 

C-H: constr, N-H and O-H: refall. 
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Crystallographic data for 1.131 

 

Figure 5.13.  ORTEP projection of the molecular structure of 1.131 (50% probability ellipsoids).  

Crystallized by slow evaporation of Et2O solution. 

Table 5.4.  Crystallographic data for 1.131.  

net formula C32H46N2O6 

Mr/g mol
−1

 554.71 

crystal size/mm 0.100 × 0.060 × 0.040 

T/K 173.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system monoclinic 

space group 'P 1 21 1' 

a/Å 8.0568(3) 

b/Å 16.5848(5) 

c/Å 11.2909(3) 

α/° 90 

β/° 106.7530(10) 

γ/° 90 

V/Å
3
 1444.66(8) 

Z 2 

calc. density/g cm
−3

 1.275 

μ/mm
−1

 0.087 

absorption correction Multi-Scan 

transmission factor range 0.9097–0.9705 

refls. measured 18562 

Rint 0.0331 
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mean σ(I)/I 0.0528 

θ range 3.607–30.492 

observed refls. 7801 

x, y (weighting scheme) 0.0529, 0.2507 

hydrogen refinement constr 

Flack parameter 0.0(4) 

refls in refinement 8751 

parameters 366 

restraints 1 

R(Fobs) 0.0456 

Rw(F
2
) 0.1124 

S 1.037 

shift/errormax 0.001 

max electron density/e Å
−3

 0.286 

min electron density/e Å
−3

 −0.283 
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5.2.2. Crystallographic Data for Chapter II 

Crystallographic data for 12 

  

Figure 5.14.  ORTEP projection of the molecular structure of 12 (50% probability ellipsoids). 

Table 5.5.  Crystallographic data for 12.  

net formula C16H26O4 

Mr/g mol
−1

 282.37 

crystal size/mm 0.100 × 0.080 × 0.050 

T/K 100.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system orthorhombic 

space group 'P 21 21 21' 

a/Å 10.3207(2) 

b/Å 13.0112(3) 

c/Å 24.0063(6) 

α/° 90 

β/° 90 

γ/° 90 

V/Å
3
 3223.68(13) 

Z 8 

calc. density/g cm
−3

 1.164 

μ/mm
−1

 0.082 

absorption correction Multi-Scan 

transmission factor range 0.9221–0.9705 

refls. measured 19336 
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Rint 0.0268 

mean σ(I)/I 0.0291 

θ range 3.221–26.372 

observed refls. 6102 

x, y (weighting scheme) 0.0562, 0.9609 

hydrogen refinement H(C) constr, H(O) refxyz 

Flack parameter 0.1(3) 

refls in refinement 6566 

parameters 392 

restraints 19 

R(Fobs) 0.0398 

Rw(F
2
) 0.1057 

S 1.040 

shift/errormax 0.001 

max electron density/e Å
−3

 0.441 

min electron density/e Å
−3

 −0.278 

Disorder handled by a split model. 
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Crystallographic data for 18 

 

Figure 5.15.  ORTEP projection of the molecular structure of 18 (50% probability ellipsoids). 

Table 5.6.  Crystallographic data for 18.  

net formula C15H23NO3 

Mr/g mol
−1

 265.34 

crystal size/mm 0.080 × 0.030 × 0.030 

T/K 103.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system monoclinic 

space group 'C 1 2 1' 

a/Å 22.4524(8) 

b/Å 6.2502(2) 

c/Å 10.4159(4) 

α/° 90 

β/° 102.2005(13) 

γ/° 90 

V/Å
3
 1428.67(9) 

Z 4 

calc. density/g cm
−3

 1.234 

μ/mm
−1

 0.085 

absorption correction Multi-Scan 

transmission factor range 0.9298–0.9705 

refls. measured 13065 

Rint 0.0344 

mean σ(I)/I 0.0258 
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θ range 3.389–25.377 

observed refls. 2473 

x, y (weighting scheme) 0.0299, 0.7409 

hydrogen refinement constr 

Flack parameter 0.2(4) 

refls in refinement 2594 

parameters 176 

restraints 1 

R(Fobs) 0.0307 

Rw(F
2
) 0.0714 

S 1.082 

shift/errormax 0.001 

max electron density/e Å
−3

 0.173 

min electron density/e Å
−3

 −0.157 

Correct structure derived from synthesis. 
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Crystallographic data for 23 

 

Figure 5.16.  ORTEP projection of the molecular structure of 23 (50% probability ellipsoids). 

Crystallized by slow concentration of Et2O solution at ambient temperature.  

Table 5.7.  Crystallographic data for 23.  

net formula C16H24O3 

Mr/g mol−1 264.35 

crystal size/mm 0.100 × 0.080 × 0.070 

T/K 103.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system monoclinic 

space group 'P 1 21 1' 

a/Å 7.2928(4) 

b/Å 11.7582(7) 

c/Å 9.4213(5) 

α/° 90 

β/° 112.645(2) 

γ/° 90 

V/Å3 745.60(7) 

Z 2 

calc. density/g cm−3 1.177 

μ/mm−1 0.080 

absorption correction Multi-Scan 

transmission factor range 0.89–0.99 

refls. measured 7557 

Rint 0.0243 

mean σ(I)/I 0.0322 
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θ range 3.465–26.358 

observed refls. 2797 

x, y (weighting scheme) 0.0281, 0.1653 

hydrogen refinement constr 

Flack parameter −0.3(4) 

refls in refinement 3023 

parameters 176 

restraints 1 

R(Fobs) 0.0332 

Rw(F2) 0.0766 

S 1.078 

shift/errormax 0.001 

max electron density/e Å−3 0.175 

min electron density/e Å−3 −0.152 
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 Crystallographic data for 25 

 

Figure 5.17.  ORTEP projection of the molecular structure of 25 (50% probability ellipsoids). 

Crystallized by slow concentration of MeOH solution at ambient temperature.  

Table 5.8.  Crystallographic data for 25.  

net formula C16H24O3 

Mr/g mol
−1

 264.35 

crystal size/mm 0.100 × 0.090 × 0.080 

T/K 103.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system Monoclinic 

space group 'P 1 21 1' 

a/Å 8.2370(2) 

b/Å 10.4144(3) 

c/Å 8.7895(3) 

α/° 90 

β/° 102.9060(10) 

βγ/° 90 

V/Å
3
 734.95(4) 

Z 2 

calc. density/g cm
−3

 1.195 

μ/mm
−1

 0.081 

absorption correction Multi-Scan 

transmission factor range 0.91–0.99 

refls. measured 8711 

Rint 0.0210 
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mean σ (I)/I 0.0395 

θ range 3.204–33.138 

observed refls. 4926 

x, y (weighting scheme) 0.0555, 0.0556 

hydrogen refinement constr 

Flack parameter 0.0(3) 

refls in refinement 5437 

parameters 177 

restraints 1 

R(Fobs) 0.0397 

Rw(F
2
) 0.1032 

S 1.069 

shift/errormax 0.001 

max electron density/e Å
−3

 0.335 

min electron density/e Å
−3

 −0.188 
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Crystallographic data for 2.105 

 

Figure 5.18.  ORTEP projection of the molecular structure of 2.105 (50% probability ellipsoids). 

Crystallized from pentane/CH2Cl2 at 4 °C. 

Table 5.9.  Crystallographic data for 2.105.  

net formula C19H34Cl2INO2 

Mr/g mol
−1

 506.27 

crystal size/mm 0.100 × 0.050 × 0.020 

T/K 100.(2) 

radiation MoKα 

diffractometer 'Bruker D8 Venture TXS' 

crystal system orthorhombic 

space group 'P 21 21 21' 

a/Å 7.5112(2) 

b/Å 10.2207(4) 

c/Å 28.8202(10) 

α/° 90 

β/° 90 

βγ/° 90 

V/Å
3
 2212.52(13) 

Z 4 

calc. density/g cm
−3

 1.520 

μ/mm
−1

 1.701 

absorption correction Multi-Scan 

transmission factor range 0.89–0.97 
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refls. measured 23058 

Rint 0.0314 

mean σ (I)/I 0.0270 

θ range 3.366–26.371 

observed refls. 4349 

x, y (weighting scheme) 0.0241, 0.4564 

hydrogen refinement constr 

Flack parameter −0.032(8) 

refls in refinement 4525 

parameters 232 

restraints 0 

R(Fobs) 0.0210 

Rw(F
2
) 0.0485 

S 1.049 

shift/errormax 0.001 

max electron density/e Å
−3

 0.364 

min electron density/e Å
−3

 −0.416 
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