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Summary 

Epithelial-Mesenchymal Transition (EMT) is a developmental process that 

converts epithelial cells to migratory mesenchymal cells. EMT has also been 

associated with metastatic dissemination of breast cancer cells and the 

acquisition of tumor-initiating (stem cell (sc)-like) traits (Mani et al., 2008; Scheel 

and Weinberg, 2012). Contradictory, metastases of breast cancers are 

composed of epithelial cells with strong cell-cell adhesions and numerous 

studies suggest tumorigenic cell populations rather to be characterized by 

epithelial than mesenchymal features (Celia-Terrassa et al., 2012; Korpal et al., 

2011; Kowalski et al., 2003).  

In my thesis I set out to reconcile these contrasting observations, by monitoring 

the consequences of an EMT inducing stimulus (Twist1) on mesenchymal 

transdifferentiation and generation of sc-like traits. Utilizing immortalized human 

mammary epithelial cells (HMLE) that express the EMT-transcription factor 

(EMT-TF) Twist1 in an inducible manner, I discovered that Twist1 converted all 

HMLE cells to a mesenchymal phenotype, while only a subset was additionally 

primed for sc-like traits. These sc-like traits exclusively emerged following 

Twist1-deactivation and were enriched in a small subset of cells that underwent 

Mesenchymal-Epithelial Transition (MET). Importantly, cells undergoing MET did 

not return to their original cell state as evidenced by a unique gene expression 

profile. Since only a subset of cells underwent MET, I hypothesized that pre-

existing individual cell states determine how cells respond to transient Twist1-

activation. Due to cellular heterogeneity and in order to elucidate the molecular 

mechanisms that pre-dispose cells for MET competence, I studied Twist1-

activation in isolated HMLE single cell clones (SCCs). Studying these SCCs, I 

discovered that MET competence was based on partial maintenance of epithelial 

identity (expression of epithelial markers) during Twist1-activity. Functional 

studies showed that maintenance of an epithelial identity was required for 

proliferation in 3D environments resembling either primary tumor (collagen gels) 

or metastatic sites (murine lung slices), while irreversible EMT resulted in a loss 

of proliferative and thus a loss of colony forming ability. Finally, a cell surface 

proteomics screen identified 961 proteins differentially expressed on MET 

competent and MET incompetent cells. The identification of these proteins 



Summary 
 

2 
 

generated an important fundament for future studies unraveling molecular 

mechanisms involved in MET competence. 

In conclusion, my study suggests that irreversible mesenchymal 

transdifferentiation prevents, while maintenance of an epithelial cell state during 

Twist1-activity facilitates metastatic outgrowth. Moreover, my study emphasizes 

the urgent need for the development of diagnostic tools that facilitate the 

identification of tumor cells that have undergone MET after transient EMT-TF-

activity: these tumor cells are not detectable by morphology but might have 

gained tumor-initiating traits that stably persist.   
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Zusammenfassung 

Der entwicklungsbiologische Prozess der Epithelial-Mesenchymalen Transition 

(EMT) charakterisiert die Umwandlung epithelialer Zellen in Zellen mit 

mesenchymalen und migratorischen Eigenschaften. Der EMT wurde zudem ein 

zentraler Stellenwert in der metastatischen Aussaat von Karzinomzellen sowie 

der Entstehung von tumorinitiierenden (Stammzell (Sz)-ähnlichen) Eigenschaften 

zugeschrieben (Mani et al., 2008; Scheel and Weinberg, 2012). Dem 

entgegengesetzt weisen die Metastasen von Mammakarzinomen zum einen 

einen epithelialen Phänotyp auf, zum anderen deuten zahlreiche Studien darauf 

hin, dass sich tumorinitiierende Karzinomzellen durch einen epithalialen und 

nicht durch einen mesenchymalen Phänotyp auszeichnen (Celia-Terrassa et al., 

2012; Korpal et al., 2011; Kowalski et al., 2003). 

Ziel dieser Arbeit war es, diese widersprüchlichen Beobachtungen aufzuklären. 

Hierzu wurden die Auswirkungen eines EMT induzierenden Stimulus (Twist1) auf 

die mesenchymale Transdifferenzierung sowie auf die Entstehung Sz-ähnlicher 

Eigenschaften beobachtet. Als Modellsystem dienten immortalisierte humane 

Brustepithelzellen (HMLE), die eine induzierbare Form des EMT-

Transkriptionsfaktors (EMT-TF) Twist1 exprimierten. Hierbei entdeckte ich, dass 

die Aktivierung von Twist1 in allen HMLE Zellen zu einem mesenchymalen 

Phänotyp führte, jedoch nur in einem kleinen Bruchteil der Zellen zusätzlich Sz-

ähnliche Eigenschaften initiierte. Diese Sz-ähnlichen Eigenschaften ließen sich 

ausschließlich nach Twist1-Deaktivierung beobachten und waren in solchen 

Zellen angereichert, die eine Mesenchymal-Epitheliale Transition (MET) 

unterlaufen hatten. Bemerkenswerterweise zeigten HMLE Zellen nach 

vollzogener MET ein einzigartiges Genexpressionsprofil, das darauf schließen 

ließ, dass diese Zellen nach MET nicht in ihren Ausgangszellstatus 

zurückkehrten. Basierend auf der Beobachtung, dass nur ein Bruchteil aller 

HMLE Zellen eine MET unterlief, stellte ich die Hypothese auf, dass ein 

präexistenter individueller Zellstatus die Reaktion einer Zelle auf transiente 

Twist1-Aktivierung bestimmt. Um die Hintergründe der MET Kompetenz von 

HMLE Zellen aufzuklären, die der Heterogenität dieser Zellen gerecht werden, 

habe ich die Folgen einer Twist1-Aktivierung in isolierten HMLE Einzel-Zell-

Klonen analysiert. Dabei entdeckte ich, dass MET Kompetenz auf einer 

(partiellen) Aufrechterhaltung der epithelialen Identität (Expression epithelialer 
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Marker) während der Twist1-Aktivierung beruht. In funktionellen Studien konnte 

ich zeigen, dass die Aufrechterhaltung epithelialer Eigenschaften für die 

Proliferation in einer 3D Umgebung erforderlich ist. Im Gegensatz dazu 

beobachtete ich, dass eine irreversible EMT zu einem Stillstand der Proliferation 

sowie zum Verlust Kolonie-bildender Eigenschaften führte. Diese 

Beobachtungen konnten sowohl an einem Modell für Primärtumoren 

(Kollagengele) wie auch an einem Modell für Fernmetastasierung 

(Mauslungenschnitte) bestätigt werden. Im letzten Teil meiner Arbeit, konnte ich 

mittels Zelloberflächen-Proteomik-Analyse 961 Proteine identifizieren, die auf der 

Oberfläche MET kompetenter und MET inkompetenter Zellen differentiell 

exprimiert werden. Diese Erkenntnisse schaffen eine wichtige Grundlage für die 

zukünftige Aufklärung molekularer Mechanismen, die der MET Kompetenz von 

Mammakarzinomzellen unterliegen. 

Zusammenfassend implizieren meine Studien, dass eine irreversible 

mesenchymale Transdifferenzierung das Auswachsen von Fernmetastasen 

verhindert, wohingegen die Aufrechterhaltung einer epithelialen Identität 

während Twist1-Aktivität, das Auswachsen von Fernmetastasen begünstigt. 

Meine Ergebnisse zeigen die dringende Notwendigkeit zur Entwicklung 

diagnostischer Hilfsmittel auf, die Tumorzellen identifizieren, welche nach 

transienter EMT-TF-Aktivität eine MET durchlaufen haben. Diese Tumorzellen 

sind anhand ihrer Morphologie nicht zu erkennen, könnten jedoch persistierende 

tumor-initiierende Eigenschaften erworben haben.  
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1 Abbreviations 

 

µ micro 

2D/3D 2/3 dimensional 

7-AAD 7-Aminoactinomycin D  

A ampere 

AML acute myeloide leucemia 

APC Allophycocyanin 

APS ammonium persulfate 

ATP adenosine triphosphate 

bFGF basic fibroblast growth factor 

bHLH basic helix-loop-helix  

BRD4 bromodomain-containing protein 4 

BSA Bovine serum albumin 

C02 carbon dioxide 

CaCl2 calcium chloride 

CD cluster of differentiation 

cDNA complementary DNA 

CFU colony forming units 

ChIP Chromatin Immunoprecipitation Assay  

CNS central nervous system  

CSC cancer stem cell 

CTBP C-terminal-binding protein 

CTC circulating tumor cell 

CTFC corrected total cell fluorescence 

Ctrl control 

d day 

DAPI 4',6-diamidino-2-phenylindole  

DMEM Dulbecco's Modified Eagle Medium 

DMSO dimethyl sulfoxide  

DNA deoxyribonucleic acid 

Dsg3 Desmoglein 3 

DTC disseminated tumor cell 
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e.g. exempli gratia: for example 

E-cad E-cadherin 

ECL enhanced chemiluminescence 

ECM extracellular matrix 

EDTA ethylenediaminetetraacetic acid  

EGF epidermal growth factor 

EGFR epidermal growth factor receptor  

EGTA ethylene glycol tetraacetic acid  

EMT Epithelial-Mesenchymal Transition  

EpCAM Epithelial cell adhesion molecule 

ER estrogen receptor  

ERK extracellular signal-related kinase 

ESRP epithelial splicing regulatory protein 

FACS fluorescence-activated cell sorting 

FCS fetal calve serum  

FGF fibroblast growth factor 

FGFR fibroblast growth factor receptor 

FITC flourescein isothiocyanate 

FN fibronectin 

FOX forkhead box  

g gram/acceleration of gravity 

GFP green fluorescent protein 

H&E Haematoxylin&Eosin 

H2O chemical formula for water 

H3K9 Histone H3 Lysine 9 

HCl hydrogen chloride 

HDAC histone deacetylase 

HEPES 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HER2 human epidermal growth factor receptor 2  

HGFR hepatocyt growth factor receptor 

HMLE Immortalized Human Mammary Epithelial Cells 

hTERT human telomerase reverse transcriptase 

Hz hertz 
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i.e. id est: that is 

ID inhibitor of DNA binding  

IGFR insulin growth factor receptor 

IgG immunoglobulin g 

ITGA6 Integrin, alpha 6 

ITGB4 Integrin, beta 4 

JNK c-Jun N-terminal kinase  

K kilo 

kb kilobase 

l liter 

LB lysogeny broth 

LOXL Lysyl-oxidase like 

LTC lung tissue culture 

M molar 

m milli 

m/v mass/volume 

MAPK Mitogen-activated protein kinase 

MET Mesenchymal-Epithelial Transition 

MgCl2 magnesium chloride 

min minute 

miRNA micro RNA 

mRNA messenger RNA 

MS mammosphere 

n number 

n.d. not detectable 

Na3VO4 sodium orthovanadate 

NaCl sodium chloride 

NaOH sodium hydroxide 

N-cad N-cadherin 

neg negative 

NFκB nuclear factor kappa B  

NGS normal donor goat serum 

nm nanometer 
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nt  non-targeting 

ON over night 

Ovol Ovo-like 

PBS phosphate-buffered saline 

PC principal component  

Pc2 polycomb 2 

PCA principal component analysis 

PCAF p300/CBP-associated factor 

PCR Polymerase Chain Reaction 

PDAC pancreatic ductal adenocarcinoma 

PDGFR platelet-derived growth factor receptor 

PDL Poly-D-Lysine  

PE phycoerythrin 

Pen/Strep Penicillin/Streptomycin  

PFA paraformaldehyde 

PI3K Phosphoinositide-3-kinase 

pos positive 

PR progesterone 

qRT-PCR quantitative Real-Time Polymerase Chain Reaction 

RB retinoblastoma protein 

RIPA radioimmunoprecipitation assay 

RLU relative light units 

RNA ribonucleic acid 

RPL32 ribosomal protein L32 

rpm rotation per minute 

RT room temperature 

RUNX2 Runt related transcription factor 2 

sc stem cell 

SCC single cell clone 

SD standard deviation of the mean 

SDS sodium dodecyl sulfate 

SDS-Page Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis  

sec second 
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SEM standard error of the mean 

shRNA small hairpin RNA 

SIP1 Smad-interacting protein 1 

TACSTD2 Tumor-associated calcium signal transducer 2 

TAM 4-hydroxytamoxifen 

TBS Tris-buffered saline 

TEMED tetramethylendiamine 

TF transcription factor 

TGFBR Transforming Growth Factor beta Receptor 

TGFβ Transforming Growth Factor beta 

TIC tumor-initiating cell 

TKR tyrosine kinase receptor 

TNBC triple-negative breast cancer 

TNS Trypsin Neutralizing Solution 

Trop2 Trophoblast antigen 2 

TSS  transcriptional start site 

U unit 

V volt 

v/v volume fraction 

Vim Vimentin 

vs versus 

Wnt Wingless-Type MMTV Integration Site Family Members 

WST-1 water soluble tetrazolium 1 

ZEB1/2 Zinc Finger E-Box Binding Homeobox 1/2 

ZO-1 Zona occuldens 1 

β-cat β-catenin 
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2 Introduction 

2.1 Breast cancer  

Breast cancer is the most frequent diagnosed cancer amongst women worldwide 

and one in eight women will develop breast cancer during her lifetime (RKI, 

2010). One challenge in breast cancer treatment is the heterogeneity of this 

disease. Breast carcinomas are classified according to clinical parameters, such 

as tumor size or grade, and pathological markers, like the expression of estrogen 

receptor (ER), progesterone receptor (PR) or human epidermal growth factor 

receptor 2 (HER2) (Prat and Perou, 2011; Valentin et al., 2012). Tumors 

belonging to the class of Triple Negative Breast Cancer (TNBC) are 

characterized by lack of the hormone receptors ER, PR or HER2 (Podo et al., 

2010). Importantly, in more than 90% of cases not the primary tumor, but distant 

metastases are the main cause of cancer related death (Weinberg, 2013). 

During the last years, mortality rates of breast cancer patients have decreased, 

mostly due to early diagnosis and improvement of adjuvant chemotherapy (Peto 

et al., 2000; Thomson et al., 2004). However, current prognostic criteria poorly 

predict the risk of metastasis. As a consequence, many patients are “under”- or 

“over-treated”. For instance, 80% of the breast cancer patients receive 

chemotherapy while 60% of the women may be cured by surgery or local 

radiotherapy alone (Weigelt et al., 2005). This clearly emphasizes the urgent 

need for identification of new prognostic markers that predict the risk for 

metastases. Moreover, identification of molecular mechanisms involved in 

metastatic processes might improve understanding of this disease and the 

development of new therapeutic strategies. Recently, the developmental process 

of Epithelial-Mesenchymal Transition (EMT) was found to effect early steps of 

the metastatic cascade such as dissemination and invasion of cancer cells 

(Thiery et al., 2009). Moreover, EMT was linked to the acquisition of tumor-

initiating traits (stem cell (sc)-like traits), suggesting that EMT may also promote 

the last step of the metastatic cascade, colonization at secondary tumor sites 

(Mani et al., 2008). Thus, targeting EMT associated events became of central 

interest for the development of therapeutic strategies eradicating breast cancer. 
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2.2 Epithelial-Mesenchymal Transition 

Epithelial-Mesenchymal Transition (EMT) is the conversion from an epithelial to a 

mesenchymal cell state. In more detail, the process of EMT implies the switch 

from apico-basal polarized epithelial cells with a cobblestone-like morphology to 

spindle-shaped, front-to-back polarized mesenchymal cells. These morphological 

changes are accompanied by the dissolution of strong cell-cell adhesions, mainly 

by down-regulation of the adherens junction protein E-cadherin. Thereby, cells 

are converted from a stationary to a more motile cell state, enabling them to 

migrate as single cells and invade into adjacent tissue (Yang and Weinberg, 

2008). Initially, the term EMT was coined by Elizabeth Hay who observed this 

phenomenon to be important for cell movements in chicken embryos (Hay, 

1968). Since then, EMT was implicated in many more contexts: besides its 

importance in embryonic development, EMT was shown to be involved in wound 

healing and pathological processes like fibrosis and cancer progression 

(Chapman, 2011; Kalluri and Weinberg, 2009; Thiery et al., 2009). Importantly, 

EMT is not an irreversible process. The reverse process, Mesenchymal-Epithelial 

Transition (MET), plays a crucial role during development and pathological 

processes as well (Boyer and Thiery, 1993; Davies, 1996). 

 

2.2.1 EMT and MET in development and injury 

During embryonic development of all metazoans, several turns of EMT and MET 

are required to convert the initial single layer of epithelial cells (ectoderm) to well 

differentiated and specialized cell types. These processes are fundamental for 

the formation of complex three-dimensional organs. EMT processes are well 

described for developmental events like mesoderm formation, neural crest 

development, heart valve development or secondary palate formation (Yang and 

Weinberg, 2008). As an example for EMT, mesoderm formation will be 

illustrated. The mesoderm belongs to the three germ layers and develops during 

gastrulation. Mesoderm formation starts at a specific region within the primitive 

ectoderm. During invagination, epithelial cells reorganize cell shape and 

redistribute their organelles. Next, cells locally break through the basement 

membrane and lose their strong cell-cell adhesions. Finally, cells migrate 

underneath the ectoderm and assemble the mesoderm (Viebahn, 1995). As 
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mentioned above, MET events are also crucial for successful embryogenesis. 

One well-studied MET process is formation of the nephron epithelium during 

kidney development. After outpouching of the uteric bud, nephric cells assemble 

around the branched tips and start to re-epithelialize by expressing laminin and 

components of cell-cell adhesions. Thereby, MET leads to the conversion of 

mesenchymal cells to differentiated, epithelial cells that finally form the kidney 

tubules (Davies, 1996).  

Moreover, interconversions of epithelial and mesenchymal cell states occur in 

adult tissue as a physiological response to injury. During wound healing, 

keratinocytes undergo the process of EMT in response to inflammatory stimuli. 

Thereby, keratinocytes acquire a motile, plastic phenotype, allowing their 

migration to the place of injury where they finally mediate re-epithelization of the 

wound (Arnoux et al., 2008; Thiery et al., 2009). 

 

2.2.2 EMT and MET in pathological processes  

Furthermore, EMT and MET programs are implicated in pathological processes 

like organ fibrosis, tumorigenesis and metastasis (Thiery et al., 2009). 

Interestingly, a visionary description of EMT and its implication in cancer invasion 

already came up 126 years ago: Ramón y Cajal discovered loss of cell adhesion 

and invasion to the stroma of some ductal epithelial cells in breast tumors 

(Ramón y Cajal, 1890). EMT and MET events during cancer progression will be 

described in more detail now. The majority of solid human tumors are 

carcinomas. For successful metastasis, initially epithelial cells of the primary 

tumor need to undergo a series of distinct steps including EMT and MET events. 

The metastatic cascade summarizes all these events (Scheel and Weinberg, 

2012) (Figure1). 
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Figure 1: The metastatic cascade 

For the early steps of the metastatic cascade (1.-4.) primary tumor cells (blue cells) undergo 
Epithelial-Mesenchymal Transition (red cells). After extravastation to distant tissues tumor cells 
remain as single cells or micro-metastases (5.). For colonization and metastatic outgrowth (6.), 
cells need to undergo the reverse process, Mesenchymal-Epithelial Transition (MET). (adapted 
from Scheel and Weinberg, 2012) 

 

First, epithelial cells of the primary tumor undergo EMT. Thereby, they detach 

from neighboring cells, lose their apico-basal polarity and gain the capacity to 

migrate as single cells and invade surrounding tissues. After intravasation into 

lymph or blood vessel system, cells remain as circulating tumor cells (CTCs) and 

become disseminated within the body. After extravasation, tumor cells stay as 

non-proliferating solitary cells or micro-metastases. To complete the metastatic 

cascade and grow out as macro-metastases, cells finally revert back to an 

epithelial phenotype via MET (Celia-Terrassa et al., 2012; Kowalski et al., 2003; 

Ocana et al., 2012; Tsai et al., 2012).  

 

2.2.3 EMT and stemness 

More recently, EMT was linked to the acquisition of stem cell (sc)-like traits 

during breast cancer progression (Mani et al., 2008; Morel et al., 2008). The 

concept of stem cells was initially described for the hematopoietic system where 

stem cells were defined as cells with self-renewal ability that simultaneously give 

rise to more mature daughter cells (Reya et al., 2001). The idea of cancer stem 

cells (CSCs) first emerged in 1997, when Bonnet and Dick showed that a subset 
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of patient derived acute myeloid leukemic (AML) cells was able to re-initiate 

tumors after transplantation into recipient mice (Bonnet and Dick, 1997). Later, 

Al-Hajj and colleagues described the isolation of sc-like human breast cancer 

cells, characterized by the cell surface marker profile CD44high/CD24neg. Even 

after several passages, CD44high/CD24neg cells, in contrast to CD44pos/CD24pos 

or bulk tumor cells, gave rise to tumors, compromised of a mixture of tumorigenic 

CD44high/CD24neg and non-tumorigenic cells, in immunocompromised mice (Al-

Hajj et al., 2003).  

To measure self-renewal of mammary cells in vitro, the mammosphere assay, 

adapted from the neurosphere assay, is often used as a proxy-assay (Dontu et 

al., 2003; Reynolds and Weiss, 1992, 1996). In this assay, cells are suspended 

in highly viscous media and plated as single cells into culture dishes that prevent 

attachment of the cells to the dish surface. Under these conditions, cells that are 

able to proliferate at clonal density in anchorage independence grow out as 

mammospheres. Using this assay, Fillmore and Kupperwasser were able to 

enrich for tumor-initiating breast cancer cells (TICs), indicating that 

mammosphere (MS)-forming capacity, reflects tumor-initiating capacity in vitro 

(Fillmore and Kuperwasser, 2008). First implications linking EMT and CSCs-

generation came up in 2008. Overexpression of either Twist1 or Snail1 in human 

immortalized breast epithelial (HMLE) cells was found to induce EMT, a 

CD44high/CD24neg surface marker profile as well as MS-forming capacity. 

Moreover, after transformation of these cells with the oncogene V12H-Ras, cells 

were enriched for tumor-initiation capacity in immunocompromised mice (Mani et 

al., 2008; Morel et al., 2008). However, at this point, it is important to mention 

that whereas all HMLE cells acquired a mesenchymal, CD44high/CD24neg 

phenotype during EMT, only a minority of them was able to generate MS. 

Furthermore, HMLE cells are heterogeneous and were shown to give rise to a 

small CD44high/CD24neg, mesenchymal subpopulation spontaneously (Chaffer et 

al., 2011). Therefore, it remains obscure whether transdifferentiation to a 

mesenchymal cell state is directly linked to the acquisition of sc-like traits. One 

could hypothesize that activation of the EMT program might select for pre-

existing sc-like cells, but not induce the conversion of non-sc-like to sc-like cells.  



Introduction 

21 
 

2.2.4 Pleiotropic, interacting transcription factors orchestrate EMT 

At the molecular level, EMT is orchestrated by a set of pleiotropic, interacting 

transcription factors (TFs). Together the so-called EMT-TFs coordinate 

repression of epithelial markers and induction of mesenchymal markers by acting 

as both, transcriptional repressors or activators (De Craene and Berx, 2013). 

There are three main EMT-TF families: 1) the Snail TF family, 2) the zinc-finger 

E-box-binding (ZEB) TF family and 3) the basic helix-loop-helix (bHLH) TF 

family. More recently, TFs of the forkhead box (FOX), GATA and SRY box (SOX) 

TF family were described to be involved in EMT processes during development 

and cancer progression (Campbell et al., 2011; Eijkelenboom and Burgering, 

2013). In the following paragraphs, the three main EMT-TF families will be 

described in more detail. 

2.2.4.1 Snail transcription factors 

There are three Snail proteins in vertebrates: Snail1 (also known as Snail), 

Snail2 (also known as Slug) and Snail3 (also known as Smuc) (Barrallo-Gimeno 

and Nieto, 2005). All members of the Snail family are characterized by a 

common protein structure: a highly conserved carboxy-terminal region, 

characterized by four zinc-finger domains of the C2H2-type and a variant N-

terminal domain (Knight and Shimeld; 2001). Via their zinc-fingers, Snail proteins 

specifically bind to E-box DNA sequences characterized by a core of six bases 

(5´-CATGGTG-3´) (Cano et al., 2000). After binding to DNA, Snail members act 

as transcriptional repressors by recruiting co-repressors like the C-terminal 

binding protein (CTBP) or chromatin modifiers, such as histone deacetylases or 

demethylases (Lin et al., 2010; Tong et al., 2012). One prominent target directly 

repressed by Snail1 and Slug is CDH1, which encodes the main epithelial 

adherens junction protein E-cadherin (Cano et al., 2000; Hajra et al., 2002). In 

line with their ability to suppress components of an epithelial phenotype, Snail 

proteins were shown to be involved in various EMT processes during 

development and cancer (Barrallo-Gimeno and Nieto, 2005). During mesoderm 

or neural crest formation, Snail1 promotes dissociation of cell adhesion and cell 

migration (Nieto, 2002). Moreover, Snail1 and Slug expression are associated 

with metastasis and poor clinical outcome in various types of carcinomas like 
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breast, ovarian or colorectal cancer (Elloul et al., 2005; Moody et al., 2005; Roy 

et al., 2005; Shioiri et al., 2006).  

2.2.4.2 ZEB transcription factors 

The ZEB TFs family consists of two members, ZEB1 (also known as EF1) and 

ZEB2 (also known as SIP1) (Eger et al., 2005). Common for ZEB proteins are 

two zinc finger clusters, one consisting of three and one consisting of four zinc 

fingers. Moreover, ZEB proteins are characterized by a central homeobox-

domain and additional regions, like CTBP- or SMAD-interacting sites (Peinado et 

al., 2007). ZEB proteins interact with DNA by simultaneous binding of both zinc 

finger clusters to bipartite E-boxes (Remacle et al., 1999). After binding, they 

recruit co-repressors (CTBP for ZEB2) or interact with transcriptional co-

activators (p300/CBP-associated factor (PCAF) for ZEB1), thereby either 

repressing or activating gene transcription (Postigo et al., 2003). During 

development, ZEB1 and ZEB2 are expressed in hematopoietic, heart, skeletal 

and central nervous system cells (Postigo and Dean, 2000). Moreover, ZEB 

proteins are important regulators of cancer-related EMT. In mouse or human 

tumor cell lines, ZEB1 and ZEB2 were found to reduce cell-cell adhesion and 

promote migration as well as invasion via repression of CDH1 (Comijn et al., 

2001; Shirakihara et al., 2007). 

2.2.4.3 (b)HLH transcription factors 

The (basic) helix-loop-helix ((b)HLH) transcription factors represent the third 

large family of proteins that directly or indirectly participate in the silencing of 

CDH1 expression (Peinado et al., 2007). bHLH TFs belong to the huge family of 

HLH proteins that are subdivided into seven classes (Massari and Murre, 2000). 

The common protein structure is characterized by two amphipatic α-helices 

linked via a loop. In addition, all bHLH members possess a basic domain. In 

regard to DNA binding, bHLH TFs act as hetero- or homodimers and recognize 

consensus E-box sequences (Ellenberger et al., 1994). Among all HLH proteins, 

the class I proteins (E12, E14), the class II proteins (Twist1 and Twist2) as well 

as the inhibitor of DNA binding proteins (Id1-Id4), belonging to class V, were 

found to be key regulators of developmental and cancer-related EMT (Xu et al., 

2009). The impact of Twist1 on developmental and cancer-related EMT will be 
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described in more detail: Twist1 was shown to be important during development 

of both, invertebrates and vertebrates. Besides its function as a key factor for 

mesoderm specification and dorsal-ventral patterning in Drosophila, the absence 

of Twist1 was found to be lethal in mouse embryos (Chen and Behringer, 1995; 

Simpson, 1983). Moreover, upregulation of Twist1 expression was described for 

various cancer types, like breast, prostate, squamous cell and hepatocellular 

carcinomas (Kwok et al., 2005; Lee et al., 2006; Mironchik et al., 2005; Yuen et 

al., 2007). In metastatic mammary tumor cell lines, high Twist1-expression was 

shown to be required for successful metastatic spread to murine lungs (Yang et 

al., 2004).  

 

2.2.5 EMT-TFs are induced by external stimuli  

EMT-TF activity and therefore the whole EMT program are regulated by external 

stimuli, such as growth factors or signaling molecules (Lamouille et al., 2014). 

Besides various tyrosine kinase receptor (TKR) pathways, like fibroblast, 

epidermal, platelet derived or hepatocyte growth factor receptor (FGFR, EGFR, 

PDGFR, HGFR) signaling, collaboration of the canonical, non-canonical Wnt- 

and transforming growth factor (TGF)β -signaling pathway were shown to be 

sufficient to induce EMT and later maintain a mesenchymal cell state (Scheel et 

al., 2011; Yang and Weinberg, 2008). Moreover, the Notch signaling pathway 

contributes to EMT during development and tumor progression (Timmerman et 

al., 2004). Recently, inflammatory cytokines and hypoxia were identified to 

induce EMT-TF activity, as well (Lester et al., 2007; Tsai and Yang, 2013; Yang 

and Weinberg, 2008). Finally, EMT can be induced by mechanotransduction: 

matrix stiffness was found to regulate Twist1 localization and thereby Twist1-

activity (Wei et al., 2015).  

Interestingly, external stimuli either directly regulate EMT-TF expression or 

modulate EMT-TF activity on the protein level. For instance, Wnt and TGFβ-

signaling are implicated in the regulation of EMT-TF expression. In murine 

mammary cells, Twist1 levels were found to be upregulated in response to Wnt1 

(Howe et al., 2003). Moreover, Wnt signaling was found to regulate Slug 

expression in Xenopus neureal crest cells (Vallin et al., 2001). Snail expression 
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is modulated by TGFβ-signaling, either directly via Smad3 or indirectly via the 

high mobility group A2 (HMGA2) (Thuault et al., 2008; Thuault et al., 2006). At 

the post-transcriptional level, EMT-TF activity can be modified both, by 

phosphorylation or by protein-protein interactions. For instance, phosphorylation 

of Snail1 influences its cellular localization or degradation and thereby its 

function as a TF (Yang et al., 2005; Zhou et al., 2004). Besides, interaction of 

Snail with the lysyl-oxidase like (LOXL) proteins modulates Snail1 stability 

(Peinado et al., 2005). ZEB proteins are also regulated by protein-protein 

interactions. For example, polycomb protein Pc2 sumoylates ZEB2 thereby 

preventing its interaction with CTBP and thus its repressive function (Long et al., 

2005). TF-activity of the bHLH family members is mainly regulated by the 

availability of dimerization partners and the formation of distinct homo- or 

heterodimers. For instance, human Twist1 exclusively binds to E-box sequences 

after heterodimerization with an E-protein while Twist1 homodimers lack this 

ability (Chang et al., 2015). Moreover, binding of Id proteins to class I or II bHLH 

TFs influences their function in a dominant-negative manner as Id proteins lack 

the DNA binding domain (Massari and Murre, 2000). In addition, bHLH TF 

activity is regulated by phosphorylation: Hong and colleagues revealed that 

mitogen-activated protein kinases (MAPK) mediated phosphorylation prevents 

proteasomal degradation of Twist1 (Hong et al., 2011). Besides post-

transcriptional regulation of EMT-regulators by phosphorylation or protein-protein 

interaction, they are modulated by microRNAs (miRNAs). MiRNAs are about 22 

nucleotides-long non-coding RNA molecules that negatively influence gene 

expression by either mRNA destabilization or translational inhibition. The 

miR200-family represents one prominent example. Members of this family and 

the EMT-TFs ZEB1 and ZEB2 were shown to repress each other in a reciprocal 

negative feedback loop (Bracken et al., 2008).  

 

2.2.6 TGFβ-signaling pathways 

Since TGFβ-signaling will be addressed later in this thesis, it will be explained in 

more detail now. TGFβ-signaling is one of the best-studied pathways during 

developmental and cancer related EMT. Interestingly, the effects of TGFβ-

signaling are cell context dependent and change during cancer progression. 
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While TGFβ-signaling induces cell cycle arrest and cell death in normal and 

premalignant tumor cells, it can favor malignant progression by EMT promotion 

as well: malignant tumor cells show resistance to TGFβ-induced cell death and 

utilize TGFβ-signaling to gain the capacity to invade, systemically disseminate 

and extravasate at distant sites (Massague, 2008). Interestingly, this so-called 

TGFβ-switch was found to be conveyed by forced expression of the EMT-TF 

Snail1 (Franco et al., 2010). At the molecular level, TGFβ-signaling is subdivided 

in the canonical (Smad-dependent) and the non-canonical (Smad-independent) 

pathway. During canonical signaling, direct binding of TGFβ ligands to TGF-β 

receptor type II (TGFBR2), a transmembrane serine/threonine protein kinase 

receptor, induces dimerization with the serine/threonine kinase TGF-β receptor 

type I (TGFBR1). Thereby, TGFBR1 becomes trans-phosphorylated and 

activated. Subsequently, Smad2/3 are recruited and phosphorylated, allowing 

the interaction with Smad4. Upon generation of the heterotrimeric Smad2/3/4 

complex, this complex translocates into the nucleus and regulates gene 

expression. Independently of the Smad proteins, TGFβ-signaling activates 

mitogen-activated protein (MAP) kinase family members- like the extracellular 

signal-related kinase 1/2 (ERK1/2), the c-Jun N-terminal kinase (JNK) or p38 

MAPK. Moreover, non-canonical TGFβ-signaling regulates focal adhesion 

signaling, phosphoinositide-3-kinase (PI3K) signaling and the activation of Rho-

family GTPases (Parvani et al., 2011). 

 

2.2.7 Cross-regulation between EMT-TFs 

Besides external stimuli, EMT-TFs regulate each other´s transcription 

themselves. For instance, cross-regulation of EMT-TFs reinforces transcriptional 

repression of E-cadherin: while Snail1, Slug and ZEB-TFs directly bind to the E-

cadherin promotor, Twist1 indirectly represses E-cadherin transcription by 

induction of other EMT-TFs expression (Casas et al., 2011; Dave et al., 2011; 

Peinado et al., 2007). Specifically, Twist1 was described to bind to an E-box 

sequence within the Slug promotor, thereby inducing its transcription. In contrast, 

knockdown of Slug completely prevented suppression of E-cadherin by Twist1 

(Casas et al., 2011). In Drosophila Twist1 was found to directly induce Snail1 

and thereby promote EMT processes during mesoderm formation (Leptin, 1991). 
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Moreover, Snail1 and Twist1 functionally cooperate during EMT: Snail1 as well 

as Twist1 directly regulate expression of ZEB1 during TGFβ-induced EMT in 

mouse breast epithelial NMuMG cells (Dave et al., 2011). Up-regulation of ZEB1 

by Snail1 was discovered in other mammalian epithelial cell lines as well and 

Snail1 was found to be required for expression of the ZEB1 homolog (Zfh1) in 

Drosophila (Guaita et al., 2002; Lai et al., 1991). Interestingly, EMT-TFs were 

also discovered to negatively regulate each other. Recently, a temporal and 

spatial cooperation between Snail1 and Twist1 in breast cancer metastasis was 

described: during early steps of transient TGFβ-induced EMT, Snail1 was found 

to bind within the promotor of Twist1 thereby directly repressing its transcription 

(Tran et al., 2011).  

 

2.2.8 EMT-TFs are transiently active during cancer progression  

EMT-TFs are important key regulators during cancer progression as they repress 

cell-cell adhesion genes and induce a migratory, mesenchymal phenotype 

(Peinado et al., 2007). In addition, as discussed above EMT-TF activity was 

linked to the acquisition of sc-like traits (Mani et al., 2008). Contradictory, 

metastases of invasive breast cancers are composed of epithelial cells with 

strong cell-cell adhesion (Kowalski et al., 2003). These observations suggest that 

EMT-TFs may be merely transiently active during cancer progression. Moreover, 

they indicate that a mesenchymal cell state and sc-like traits are not necessarily 

linked to each other. One example supporting this hypothesis was described 

during the progression of squamous cell carcinoma in mice: in the primary tumor, 

Twist1-activity induced cell invasion by EMT-induction and promotion of 

invadopodia-mediated extracellular matrix (ECM) degradation. However, at the 

metastatic site, Twist1-deactivation was crucial for outgrowth of metastases (Tsai 

et al., 2012). In addition, transient Snail-activation was described to be crucial 

during cancer progression: Tran and colleagues found that continuous Snail1 

overexpression increased the amount of disseminated tumor cells (DTC), but not 

the number of lung metastases. In contrast, transient Snail1 expression 

increased both, DTCs and lung metastases (Tran et al., 2014). Moreover, the 

recently discovered EMT inducer homeobox factor Prrx1 promotes mesenchymal 

transdifferentiation and invasion while its loss is absolutely required for cancer 
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cell outgrowth at metastatic sites (Ocana et al., 2012). Extending these 

observations, I discovered that transient but not continuous Twist1-activation 

induces mammosphere-forming capacity in HMLE cells (Schmidt et al., 2015).  

 

2.2.9 EMT-TFs impart oncogenic functions independent of EMT 

The fact that EMT-TF expression is already detectable in non-invasive neoplastic 

lesions of human tumor samples, suggests that these factors might have 

oncogenic functions in primary tumors besides initiation of mesenchymal 

transdifferentiation and invasion (Ansieau et al., 2013; Geradts et al., 2011). 

Indeed, EMT-TFs have been found to convey survival advantages for tumor cells 

under oncogenic stress signals (Puisieux et al., 2014). For instance, Twist1 was 

shown to prevent apoptosis and allow escape from cell cycle control by 

suppression of p53- and retinoblastoma protein (RB)-pathways, respectively 

(Ansieau et al., 2008; Maestro et al., 1999; Valsesia-Wittmann et al., 2004). In 

addition, ZEB1 was described to be involved in overcoming cell cycle arrest by 

repression of the cyclin-dependent kinase inhibitors p15INK4B and p16INK4A 

(Ohashi et al., 2010). Finally, members of the Snail TF family were implicated in 

p53 downregulation and inhibition of its transcriptional activity as well (Lee et al., 

2009; Wu et al., 2005).  
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2.3 Aims of the project 

The developmental process EMT has been associated with the acquisition of 

aggressive traits by breast cancer cells, including the ability to complete various 

steps of the metastatic cascade and tumor-initiating traits (stem cell (sc)-like 

traits (Thiery et al., 2009; Mani et al., 2008; Morel et al., 2008). Recent studies 

suggesting a link between EMT and the acquisition of sc-like traits (measured as 

mammosphere (MS)-forming ability) were carried out using bulk populations of 

immortalized human mammary epithelial cells (HMLE) (Elenbaas et al., 2001; 

Mani et al., 2008). Importantly, HMLE bulk cells are heterogeneous and contain 

pre-existing subpopulations that are phenotypically and functionally distinct: 

besides epithelial cells, HMLE bulk cells contain a small mesenchymal 

subpopulation enriched for MS-forming ability (Mani et al., 2008; Scheel et al., 

2011). Furthermore, HMLE cells were shown to give rise to this small 

CD44high/CD24neg, mesenchymal subpopulation spontaneously (Chaffer et al., 

2011). Thus, one cannot distinguish whether EMT generates mesenchymal, MS-

forming cells de novo or whether the EMT process selects and expands pre-

exiting mesenchymal, MS-forming cells.  

To elucidate this issue, the initial aim of my project was to study the following 

questions: Does EMT select for pre-existing MS-forming cells or are there 

actually cells residing within the HMLE bulk population that obtain this trait during 

EMT? What are the characteristics of these “specific” cells (if they exist)?  

To address these questions, the dynamics and functional consequences of the 

EMT-TF Twist1 were assessed using the HMLE-Twist1-ER cell line (Casas et al., 

2011). To exclude the possibility of selection and figure out which particular cells 

might acquire MS-forming capacity during EMT, HMLE cells were separated into 

subpopulations based on the cell surface markers CD44 and CD24. 

Subsequently, the pre-existing mesenchymal CD44high/CD24neg fraction was 

excluded and Twist1 was activated in two pure epithelial subpopulations 

(CD24high and CD24low). Thereby, I discovered that Twist1 induced both, 

mesenchymal transdifferentiation (EMT) and MS-forming ability of CD24pos 

HMLE cells. However, these traits were induced sequentially and independently 

of each other, suggesting that acquisition of a mesenchymal phenotype and MS-

forming ability are not linked to each other. Moreover, MS-forming cells were 

enriched in a small subset of CD24high cells that underwent MET after Twist1-
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deactivation. These data were published in Cell Reports in January 2015 

(Schmidt et al., 2015). Based on the observations from the first part of my thesis, 

I developed the hypothesis that a pre-existing cell state predisposed cells to 

undergo MET. In the second part of my thesis I set out to investigate the 

molecular mechanisms that predispose cells to undergo MET. Given that single 

cells within the FACS purified CD24high subpopulation responded differently 

(some underwent MET while most remained in a mesenchymal phenotype) to 

transient Twist1-activation, single cell clones (SCCs) were isolated from the 

CD24high subpopulation and studied during Twist1-activation. Thereby, I 

discovered both, EMT competent (M-SCCs) and EMT resistant (E-SCCs) cell 

clones. Moreover, none of the EMT competent cells underwent MET after 

subsequent Twist1-activation. These observations were contradictory to the 

results from the CD24high bulk population. Therefore, I set out to elucidate why 

EMT resistance was not detected in the bulk population, while some cells 

appeared to revert back to an epithelial cell state via MET following Twist1-

deactivation. Moreover, I investigated what predisposes cells to resist Twist1-

induced EMT and which functional consequences might result from EMT 

resistance.  
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3 Materials and Methods 

3.1 Materials 

3.1.1 Cell lines 

Cell line Origin/Citation 

HEK293T Human embryonic kidney cells that express SV40 large-T 

antigen. (DuBridge et al. 1987) 

HMLE Immortalized Human Mammary Epithelial Cells; 

Cells that were transformed by infection with retroviruses 

containing the SV40 large T early region and hTERT gene, 

but which are not tumorigenic and are ER-negative. 

(Elenbaas et al. 2001; Ince et al. 2007) 

HMLE-Twist1-ER HMLE-derived cell line; 

HMLE cells that were transduced with pWZL-mTwist1-ER 

plasmid followed by selection with 5 ng/ml blasticidin; 

HMLE-Twist1-ER cells express an inducible Twist1 protein 

upon treatment with 4-hydroxytamoxifen. (Casas et al., 

2011) 

 

3.1.2 Laboratory equipment 

Equipment Manufacturer 

10 cm cell culture dishes Becton-Dickinson, Heidelberg 

6-, 24-, 96-well plates Becton-Dickinson, Heidelberg 

Cell culture inserts with 8 μm pores Becton-Dickinson, Heidelberg 

Cell scraper VWR, Radnor (USA) 

Cell strainer 40 μm nylon Becton-Dickinson, Heidelberg 

Conicals Falcon Corning, Midland (USA) 

Cover glass, 13 mm, round VWR, Radnor (USA) 

Cryotubes Thermo Scientific, Waltham (USA) 

F96 MicroWell white polystyrene plate Thermo Scientific, Waltham (USA) 

FACS tube 5 ml with strainer cap 35 μm Becton-Dickinson, Heidelberg 

GeneChip® Human Gene 2.0 ST Array Affymetrix, Santa Clara (USA) 

KOVA Glasstic SLIDE 10 with GRIDS VWR, Radnor (USA) 
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Equipment Manufacturer 

Micro cover glasses, 22 mm x 40 mm VWR, Radnor (USA) 

Microscope slides, cut edges, matt strip Thermo Scientific, Waltham (USA) 

Optical 384-well reaction plate Life Technologies, Darmstadt 

Pipette tips filtered and unfiltered Starlab, Hamburg 

PVDF Blotting Membrane GE Healthcare, Farifield (USA) 

PVDF filter pore size 0.45 µM Millipore, Darmstadt 

QIAshredder Qiagen; Hilden 

Reaction Tubes Eppendorf, Hamburg 

Rotilabo® - Blotting papers, thick 1.5 

mm, 580x600 mm 

Carl Roth, Karlsruhe 

Scalpels VWR, Radnor (USA) 

Stripettes 

 

Greier Bio-One, Kremsmünster 

(Österreich) 

Superfrost ultra plus microscope slides Thermo Scientific, Waltham (USA) 

Ultra-low attachment 96-well plates Sigma, St. Louis (USA) 

 

3.1.3 Primers and Vectors 

3.1.3.1 Primers used for RT-PCR 

Gene Forward (5’) Reverse (3’)  

E-cadherin TGCCCAGAAAATGAAAAAG

G 

GTGTATGTGGCAATGCGTT

C 

Fibronectin CAGTGGGAGACCTCGAGA

AG 

TCCCTCGGAACATCAGAAA

C 

FOXC2 GCCTAAGGACCTGGTGAA

GC 

TTGACGAAGCACTCGTTGA

G 

mTwist1 GTCCGCAGTCTTACGAGG

AG 

TGGAGGACCTGGTAGAGG

AA 

N-cadherin ACAGTGGCCACCTACAAA

GG 

CCGAGATGGGGTTGATAAT

G 

Ovol2 ACAGGCATTCGTCCCTACA

AA 

CGCTGCTTATAGGCATACT

GC 
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Gene Forward (5’) Reverse (3’)  

RPL32 CAGGGTTCGTAGAAGATTC

AAGG 

CTTGGAGGAAACATTGTGA

GCGATC 

Slug GGGGAGAAGCCTTTTTCTT

G 

TCCTCATGTTTGTGCAGGA

G 

Wnt5a ATGGCTGGAAGTGCAATG

TCT 

ATACCTAGCGACCACCAAG

AA 

ZEB1 GCACAAGAAGAGCCACAA

GTAG 

GCAAGACAAGTTCAAGGGT

TC 

 

3.1.3.2 Primers used for ChIP analysis 

Gene Forward (5’) Reverse (3’)  

ZEB1_ve site TTCCATATTGAGCTGTTGC

CG 

AAAGCGAACAGCTCTTTCC

GA 

ZEB1_+ve site GCAGAGGCCATCATTCCA

CAA 

TTGCAAAATCTGGCAAACA

CTATCA 

 

3.1.3.3 Vectors 

Name Gene/Insert  Source/Citation 

pCMV-dR8.2 dvpr none  

(2nd generation 

lentiviral packaging 

plasmid) 

Laboratory 

of Robert Weinberg 

pCMV-VSV-G none  

(Envelope protein for 

producing lentiviral 

particles) 

Laboratory 

of Robert Weinberg 

pGIPZ non targeting shRNAs non targeting shRNA: 

#RHS4346 

Thermo Scientific, 

Waltham (USA) 
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Name Gene/Insert  Source/Citation 

pGIPZ ZEB1 targeting 

shRNAs 

shRNA constructs: 

V3LHS_356186 (sh1) 

V3LHS_356187 (sh2) 

Dharmacon, 

Lafayette (USA)  

 

pRRL-cPPT-CMV-GFP-W GFP Laboratory 

of Timm Schröder 

pRRL-cPPT-CMV-mCherry-W mCherry Laboratory 

of Timm Schröder 

 

3.1.4 Instruments 

Instrument Manufacturer 

Axioplan 2 Imaging Microscope Carl Zeiss, Jena 

ChemiDoc™ MP System Bio-Rad, Hercules (USA) 

FACSAria IIIu Becton-Dickinson, Heidelberg 

FV1000 inverted confocal laser  

scanning microscope 

Olympus, Shinjuku (Japan) 

Heracell 240i CO2 incubator Thermo Scientific, Waltham (USA) 

Heraeus Megafuge 40R Centrifuge Thermo Scientific, Waltham (USA) 

Hyrax V55 Vibratome Carl Zeiss, Jena 

iMark™ Microplate Absorbance Reader Bio-Rad, Hercules (USA) 

Leica CM3050 S Research Cryostat Leica, Wetzlar 

Leica DM IL LED Leica, Wetzlar 

Leica RM2125 RTS microtome Leica, Wetzlar 

LTQ-Orbitrap XL Thermo Scientific, Waltham (USA) 

Luminometer Centro XS³ LB 960 Berthold Technologies,  

Bad Wildbad 

Mastercycler nexus gradient Eppendorf, Hamburg 

Mini-PROTEAN® Tetra Cell Systems Bio-Rad, Hercules (USA) 

NanoDrop® ND 1000 

Spectrophotometer 

Thermo Scientific, Waltham (USA) 

QuantStudio 12K Flex qPCR System Life Technologies, Darmstadt 

Sonopuls HD 2070 Sonicator Bandelin, Hagen 
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Instrument Manufacturer 

SteREO Lumar.V12 Carl Zeiss, Jena 

Thermomixer comfort 1.5 ml Eppendorf, Hamburg 

Ultimate 3000 nano HPLC system Thermo Scientific, Waltham (USA) 

Wet/Tank Blotting System Bio-Rad, Bio-Rad, Hercules (USA) 

 

3.1.5 Chemicals 

Chemicals Manufacturer 

(Z)-4-Hydroxytamoxifen Sigma, St. Louis (USA) 

1,7-Dichloro-octamethyltetrasiloxane Santa Cruz, Santa Cruz (USA) 

16% formaldehyde solution Sigma, St. Louis (USA) 

4',6-diamidino-2-phenylindole (DAPI) Sigma, St. Louis (USA) 

7-Aminoactinomycin D (7-AAD) Becton-Dickinson, Heidelberg 

Agarose, low gelling temperature  Sigma, St. Louis (USA) 

Aluminum potassium sulfate Sigma, St. Louis (USA) 

Aminooxy-Biotin Biotium, Hayward (USA) 

Ammonium Persulfate (APS) Thermo Scientific, Waltham (USA) 

Amphotericin Sigma, St. Louis (USA) 

Ampicillin Sigma, St. Louis (USA) 

Anilin Sigma, St. Louis (USA) 

AQUA-POLY MOUNT Polysciences, Warrington (USA) 

B27 (50x) Life Technologies, Darmstadt 

Basic FGF, human recombinant Millipore, Darmstadt 

Blasticidine S hydrochloride Sigma, St. Louis (USA) 

Bovine Serum Albumin (BSA)  Sigma, St. Louis (USA) 

Carmine Sigma, St. Louis (USA) 

CellTiter-Glo® Promega, Madison (USA) 

Collagen type I rat tail Corning, Midland (USA) 

Collagenase type I Sigma, St. Louis (USA) 

cOmplete™ protease inhibitor cocktail Roche, Basel (Schweiz) 

Dimethyl sulfoxide (DMSO) Sigma, St. Louis (USA) 

DMEM Life Technologies, Darmstadt 
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Chemicals Manufacturer 

DMEM/F12 Life Technologies, Darmstadt 

DMEM/Ham´s F12 Life Technologies, Darmstadt 

DNase/Rnase free water Life Technologies, Darmstadt 

EGF, human recombinant Millipore, Darmstadt 

Ethanol VWR, Radnor (USA) 

Ethylene glycol tetraacetic acid (EGTA) Sigma, St. Louis (USA) 

Ethylenediaminetetraacetic acid (EDTA) Sigma, St. Louis (USA) 

Fetal calf serum (FCS) Pan Biotech, Aidenbach 

Formaldehyde 37% Sigma, St. Louis (USA) 

Glycine Carl Roth, Karlsruhe 

H&E Carl Roth, Karlsruhe 

Heparin sodium salt from porcine 

intestinal mucosa 

Sigma, St. Louis (USA) 

HEPES Applichem, Darmstadt 

Hydrochloric acid solution Applichem, Darmstadt 

Hydrocortisone Sigma, St. Louis (USA) 

Insulin from bovine pancreas Sigma, St. Louis (USA) 

LB Agar Miller Sigma, St. Louis (USA) 

LB-Medium (Lennox) Carl Roth, Karlsruhe 

Mammary epithelial growth medium  PromoCell, Heidelberg 

Methanol, ROTIPURAN Carl Roth, Karlsruhe 

Methylcellulose Stock Solution R&D Systems, Wiesbaden 

Natrium Chloride Carl Roth, Karlsruhe 

Non-fat dried milk powder Carl Roth, Karlsruhe 

Normal Donor Donkey Serum Genetex, Irvine (USA) 

Normal Donor Goat Serum  Biozol, Eching  

NP-40 Thermo Scientific, Waltham (USA) 

PageRuler Prestained Protein Ladder Thermo Scientific, Waltham (USA) 

PBS, pH 7.4 Life Technologies, Darmstadt 

Penicillin Sigma, St. Louis (USA) 

Penicillin/streptomycin Invitrogen, Karlsruhe 
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Chemicals Manufacturer 

Phosphatase Inhibitor Cocktail 2 Sigma, St. Louis (USA) 

Phosphatase Inhibitor Cocktail 3 Sigma, St. Louis (USA) 

PNGase F NEB, Massachusetts (USA) 

Poly-D-Lysine Sigma, St. Louis (USA) 

Power SYBR green PCR Master Mix  Life Technologies, Darmstadt 

Protamine Sulfate Sigma, St. Louis (USA) 

Recombinant TGFβ1 R&D Systems, Wiesbaden 

RNase-Free H2O  Life Technologies, Darmstadt 

Rotiphorese® Gel 30 (37.5:1) Carl Roth, Karlsruhe 

SDS, ultrapure Carl Roth, Karlsruhe 

Sodium deoxycholate Merck, Darmstadt 

Sodium metaperiodate Merck, Darmstadt 

Sodium orthovanadate Sigma, St. Louis (USA) 

Sodium pyrophosphate Santa Cruz, Santa Cruz (USA) 

Streptavidin beads IBA, Edina (USA) 

Streptomycin Sigma, St. Louis (USA) 

Tetramethylendiamine (TEMED) Carl Roth, Karlsruhe 

Tissue-TEK® O.C.T. Compound VWR, Radnor (USA) 

Tris Hydrochloride Carl Roth, Karlsruhe 

TritonX-100 Sigma, St. Louis (USA) 

Trizma® base Sigma, St. Louis (USA) 

Trypsin Neutralizing Solution (TNS) PromoCell, Heidelberg 

Trypsin-EDTA 0.05% (1x) Invitrogen, Karlsruhe 

Trypsin-EDTA 0.25% (1x) Invitrogen, Karlsruhe 

Tween®20 Sigma, St. Louis (USA) 

WST-1 Roche, Basel (Schweiz) 

XL10-Gold Ultracompetent Cells Agilent Technologies, Santa Clara 

(USA) 

X-treme GENE HP DNA Transfection 

Reagent 

Roche, Basel (Schweiz) 

β-glycerophosphate Santa Cruz, Santa Cruz (USA) 
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Chemicals Manufacturer 

β-Mercaptoethanol Sigma, St. Louis (USA) 

 

3.1.6 Buffers and solutions 

Buffer  Ingredients 

4% PBS-buffered 

formaldehyde 

4% (v/v) Paraformaldehyde in 1x PBS 

APS 10% (m/v) APS 

Biotinylation buffer 1 mM NaIO4 

500 µM Aminooxy-Biotin 

10 mM Aniline in 1xPBS 

Blocking Solution for 

Immunoblotting 

5% (m/v) non-fat dried milk powder or 

5% (m/v) Bovine Serum Albumin in 1x TBS/T 

Carmine staining 

solution 

1 g Carmine 

2.5 g aluminum potassium sulfate 

in 500 ml MilliQ water 

Collagenase I solution 300 U/ml Collagenase type I in 1xPBS 

FACS Buffer 0.1% (v/v) BSA in 1x PBS 

Laemmli Running Buffer 

1x 

192 mM Glycine 

3.5 mM SDS ultrapure 

25 mM Trizma® base  

Lysis buffer 

(Proteomics) 

1% (v/v) NP40 

10 mM NaCl 

10 mM Tris/HCl pH 7.6  

add freshly before use  

1x cOmpleteTM protease inhibitor cocktail 

Neutralizing Solution 10% (v/v) 1 M HEPES in 2x PBS 

adjust to pH 7.3 with NaOH (1 M) 

PBS/CaCl2/MgCl2 Buffer 1 mM CaCl2 

500 uM MgCl2 in 1xPBS 

adjust to pH 6.7 with HCl (1 M) 
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Buffer  Ingredients 

PBS-buffered blocking 

solution for 

Immunofluorescence 

10% (v/v) Normal Goat Serum or  

10% (v/v) Normal Donkey Serum 

in 0.1% (v/v) BSA in 1x PBS 

Permeabilization Buffer 

for Immunofluorescence 

0.2 % (v/v) TritonX-100 in 1x PBS 

Protamine Sulfate 

Solution 

980 µM Protamine Sulfate 

RIPA Buffer 20 mM Tris/HCl (pH 7.5) 

150 mM NaCl 

1 mM Na2EDTA 

1 mM EGTA 

1% (v/v) NP40  

1% (v/v) Sodium Deoxycholate 

2.5 mM Sodium Pyrophosphate 

1 mM Beta-glycerophosphate 

add freshly before use 10% (v/v) Phosphatase 

Inhibitor Cocktail 2 and 3, and 1 mM Sodium 

Orthovanadate Solution 

SDS loading Buffer 5x  30% (v/v) Glycerol  

10% (v/v) 2-Mercaptoethanol 

35 mM SDS 

250 mM Tris/HCl (pH 6.8) 

pinch of Bromphenol Blue 

Sodium Orthovanadate 

Solution 

1 M Na3VO4  

Stripping Buffer 200 mM Glycine 

35 mM SDS 

1% (v/v) Tween® 20 

adjust to pH 2.2-2.6 with HCL (1 M) 

TBS 10x 1.5 M Sodium chloride 

0.1 M Trizma® base 

adjust to pH 7.2-7.4 with HCl (1 M) 
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Buffer  Ingredients 

TBS/T 10x TBS supplemented with 

0.1% (v/v) Tween® 20 

Transfer Buffer 192 mM Glycine 

 20% (v/v) Methanol 

26 mM Trizma® base 

Tris/HCl 1 M Trizma® base 

adjust to pH 6.8 or 8.8 with HCl (1 M) 

 

3.1.7 Antibodies 

3.1.7.1 Immunofluorescence Antibodies 

3.1.7.1.1 Primary Antibodies 

Antibody  Manufacturer Species Dilution 

E-cadherin [EP700Y] Biozol, Eching rabbit 1:250 

E-cadherin-Alexa 488 

[24E10] 

New England Biolabs, 

Ipswich (USA) 

rabbit 1:50 

Laminin [L9393] Sigma, St. Louis (USA)  rabbit 1:100 

Phalloidin-Atto 647N Sigma, St. Louis (USA) - 1:250 

Twist1 [Twist2C1a] Santa Cruz, Santa Cruz 

(USA) 

mouse 1:500 

Vimentin [D21H3] XP Biozol, Eching rabbit 1:100 

Vimentin [V9] Abnova, Heidelberg mouse 1:100 

Z0-1-Alexa 594 [1A12] Invitrogen, Carlsbad (USA) mouse 1:100 

ZEB1 [H-102] Santa Cruz, Santa Cruz 

(USA) 

rabbit 1:250 

 

3.1.7.1.2 Secondary Antibodies 

Antibody  Manufacturer Species Dilution 

Alexa Flour 488 donkey-

anti-mouse IgG (H+L) 

Life Technologies,  

Darmstadt 

donkey 1:250 

Alexa Flour 488 goat-

anti-rabbit IgG (H+L) 

Life Technologies,  

Darmstadt 

goat 1:250 
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Antibody  Manufacturer Species Dilution 

Alexa Flour 594 donkey-

anti-rabbit IgG (H+L) 

Life Technologies,  

Darmstadt 

donkey 1:250 

Alexa Flour 594 goat-

anti-mouse IgG (H+L) 

Life Technologies, 

Darmstadt 

goat 1:250 

 

3.1.7.2 FACS Antibodies 

Antibody  Manufacturer Species Dilution 

APC Mouse Anti-

Human CD44 [G44-26] 

Becton-Dickinson, 

Heidelberg 

mouse 1:25 

FITC Mouse Anti-

Human CD24 [ML5] 

Becton-Dickinson, 

Heidelberg 

mouse 1:12.5 

FITC Mouse Anti-

Human CD326, EpCAM 

[VU-1D9] 

Biozol, Eching mouse 1:20 

FITC Mouse Anti-

Human 

Trop2/TACSTD2 [01] 

Sino Biological Inc., 

North Wales (UK) 

mouse 1:20 

 

3.1.7.3 ChIP Antibodies 

Antibody Manufacturer Species 

ERα [HC-20, sc-543] Santa Cruz, Santa Cruz (USA) rabbit 

IgG [ab37415] Abcam, Cambrideg (USA) rabbit 

 

3.1.7.4 Western Blot Antibodies 

3.1.7.4.1 Primary Antibodies 

Antibody Manufacturer Species Dilution 

Phospho-Smad2 

(Ser465/467)/Smad3 

(Ser423/425) [D27F4] 

Cell signaling, Danvers 

(USA) 

rabbit 1:1000 

Smad 2/3 [D7G7] XP  Cell signaling, Danvers 

(USA) 

rabbit 1:1000 
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Antibody Manufacturer Species Dilution 

Twist1 [Twist2C1a] Santa Cruz, Santa Cruz 

(USA) 

mouse 1:200 

ZEB1 [H-102] Santa Cruz, Santa Cruz 

(USA) 

rabbit 1:200 

β-Actin [AC-15] Sigma, St. Louis (USA) mouse 1:6000 

 

3.1.7.4.2 Secondary Antibodies 

Antibody Manufacturer Species Dilution 

Anti-mouse IgG (H+L) 

peroxidase conjugated 

Jackson ImmunoResearch goat 1:12.500 

Anti-rabbit IgG (H+L) 

peroxidase conjugated 

Jackson ImmunoResearch goat 1:12.500 

 

3.1.8 Cell culture medium 

Medium Ingredients 

Freezing medium PC Medium, 20% FCS, 10% DMSO 

PC medium Mammary epithelial growth medium, 0.004 ml/ml 

bovine pituitary extract, 10 ng/ml EGF, 5 µg/ml 

hydrocortisone and 1% (v/v) Penicillin/Streptomycin 

(10.000 U/ml; 10 µg/ml)  

Mammosphere medium 

(MS medium) 

DMEM/F-12, 5 ng/ml EGF, 20 ng/ml bFGF, 0.5 μg/ml 

hydrocortisone, 10 μg/ml insulin, 4 μg/ml heparin, 1x 

B27, 0.3% methylcellulose 

sterile cultivation 

medium for mouse lung 

slices 

DMEM/Ham’s F12; penicillin (100 U/ml), streptomycin 

(100 μg/ml), amphotericin B (2.5 μg/ml)· 

 

3.1.9 Software 

Software Manufacturer/Source 

CARMAweb Medical University Innsbruck (Austria) 

FlowJo V10 FlowJo, LLC, Ashland (USA) 
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Software Manufacturer/Source 

FV10-ASW Olympus, Shinjuku (Japan) 

Genomatix Pathway 

System (GePS) 

Genomatix, München 

Image Lab™ Bio-Rad, Hercules (USA) 

Photoshop CS5 Adobe, San Jose´ (USA) 

Progenesis QI Software Nonlinear Dynamics, Newcastle (UK) 

QuantStudio 12K Flex Life Technologies, Darmstadt 

statistical programming 

environment R 

R Development Core Team 

MikroWin, Version 4.41 Mikrotek Laborsysteme GmbH, Overath 

ImageJ 1.48 NIH 

FACS Diva 6.0 Becton-Dickinson, Heidelberg 

Flowing Software 2.5 Cell Imaging Core, Turku Centre for Biotechnology, 

Finland 

Axiovision Rel 4.7 Carl Zeiss, Jena 

 

3.1.10 Kits 

Kit Manufacturer 

Amersham™ ECL 

Advance Western 

Blotting Detection Kit 

GE Healthcare, Fairfield (USA) 

Biorad DC Protein 

Assay Kit 

Bio-Rad, Hercules (USA)  

EasyScript Plus Applied Biological Materials, Richmond (Canada) 

Hemacolor Rapid 

staining Set 

Merck, Darmstadt 

miRNeasy Mini Kit Qiagen, Hilden 

Ovation Pico WTA 

System V2 

NuGEN, San Carlos (USA) 

Plasmid Midi Kit Qiagen, Hilden 

RNase-Free DNase Set Qiagen, Hilden 
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Kit Manufacturer 

RNasy Mini Kit Qiagen, Hilden 

 

3.2 Cell Biological Methods  

3.2.1 Maintenance of cell lines 

Cell lines were cultured in 6-well plates or 10 cm cell culture dishes at 37°C and 

5% CO2 in a Heracell 240i CO2 incubator. HMLE-Twist1-ER cells were 

propagated in PC medium supplemented with blasticidin at a final concentration 

of 10 µg/ml. HEK 293T cells were propagated in DMEM supplemented with 10% 

FCS and 1% Penicillin/Streptomycin. Cells were passaged every 2-3 days using 

0.15% Trypsin-EDTA. For HMLE-Twist1-ER cells Trypsin reaction was stopped 

with TNS in a 3:1 ratio, for HEK 293T cells Trypsin reaction was stopped with 

medium containing FCS in a 10:1 ration. For the induction of the transcription 

factor Twist1 in HMLE-Twist1-ER cells, cells were treated with 4-

hydroxytamoxifen (TAM) at a final concentration of 20 nM for the indicated 

number of days.  

3.2.2 Isolation of Single Cell Clones (SCCs) 

To study effects of Twist1 at the single cell level, HMLE-Twist1-ER CD24high cells 

were diluted to a cell number of 3 cells per 1 ml PC medium supplemented with 

blasticidin at a final concentration of 10 µg/ml. Cell suspension was plated into 

96-well plate (100 µl/well = 0.3 cells/well). Each well was checked by eye for 

single cells. Only wells including one single cell were further passaged and cells 

were expanded to a minimum of 1x106 cells. Isolation of the SCCs was done in 

collaboration with Dr. Benjamin Hirschi.  

3.2.3 Immunofluorescence 

Immunofluorescence is a method to detect localization and relative abundance of 

proteins of interest using specific antibodies.  

Cells were grown on poly-D-lysine-coated cover glasses for a minimum of 

24 hours. Medium was removed, cells were washed once with PBS and either 

fixed with 4% PBS-buffered formaldehyde at RT for 12 min or ice-cold methanol 

at RT for 5 min. Then, cells were washed 3 times with PBS, permeabilized with 
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0.2% PBS buffered Triton-X-100 at RT for 2 min, again washed 3 times with PBS 

and blocked with PBS-buffered blocking solution at RT for 1 hour. Afterwards, 

cells were washed 3 times with PBS and stained with primary antibodies (see 

3.1.7.1.1) diluted in PBS-buffered blocking solution at 4°C in a moisturized 

chamber protected from light overnight. The following day, cells were washed 

with PBS and stained with secondary antibodies (see 3.1.7.1.2) diluted in PBS-

buffered blocking solution at RT in a moisturized chamber protected from light for 

1-3 hours. Then, cells were washed 3-5 times with PBS, cell nuclei were stained 

with PBS-buffered DAPI solution (167 ng/ml) for 1 min. Afterwards cells were 

washed once with PBS and once with MilliQ water. Finally, cover glasses were 

mounted with AQUA-POLY/MOUNT mounting medium on microscope slides. 

Microscope slides were air-dried and either directly imaged using an Axioplan 2 

imaging light/fluorescence microscope (20-fold magnification) or stored at 20°C. 

Images were processed with Axiovision Rel 4.7 and Adobe Photoshop CS5 

software. In this study, each immunofluorescence staining was repeated 

independently at least three times. 

3.2.4 Transwell Migration Assay (Boyden Chamber Assay) 

To measure single cell migration 2.5x104 cells were plated into 24-well culture 

inserts with 8 µm pores. After 24 hours non-migrated cells were removed from 

the upper side of the insert using a cotton swab. Migrated cells that had 

squeezed through the pores and were subsequently located on the lower side of 

the insert were fixed and stained with the Hemacolor Rapid staining Set, which is 

based on the principle of Pappenheim staining, according to manufacturer´s 

instruction. The stained cells were counted on a Leica DM IL LED light 

microscope using a 10-fold magnification. For each condition triplicates were 

plated and each transwell migration assay was repeated independently at least 

three times in this study. 

3.2.5 Mammosphere Assay 

To determine anchorage-independent growth at clonal density, mammosphere 

assays were performed as previously described by Dontu et al. with 

modifications (Dontu et al., 2003). Cells were trypsinized, filtered through a 

40 µm cell strainer and counted in triplicates. 100 or less cells per well were 
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plated in an ultra-low attachment 96-well plate with MS medium. MS medium 

was either supplemented or not supplemented with TAM (final concentration of 

20 nM). Mammospheres were counted 7-10 days after initial plating. For each 

cell line 10-20 replicates were plated per condition and each mammosphere 

assays was repeated independently at least three times in this study. 

3.2.5.1 Serial Passaging 

For serial passaging mammospheres were collected, spun down at 1500 rpm for 

5 min, dissociated into single cells by trypsinization, filtered through a 40 µm cell 

strainer and re-plated as described in 3.2.5. 

3.2.5.2 Immunofluorescence of Mammosphere Sections 

For immunofluorescence of mammosphere sections, mammospheres were 

collected, spun down at 1500 rpm for 5 min, fixed with 4% PBS-buffered 

formaldehyde at RT for 15 min, embedded in TissueTek® O.C.T Compound and 

frozen to 80°C. 10 µm sections were prepared using the Leica CM3050 S 

Research Cryostat and placed on Superfrost ultra plus microscope slides. The 

sections were air-dried and either stored at −80°C or directly used for 

immunofluorescence staining according to standard protocol as described in 

3.2.3.  

3.2.6 Anoikis Assay 

To determine survival in anchorage-independence, anoikis assays were 

performed as previously described by Onder et al. with modifications (Onder et 

al., 2008). In contrast to the mammosphere assay, cells were kept as single cells 

by permanent rotation of the cell suspension instead of using viscous 

methylcellulose. In addition, cells were not supplied with nutrients during this 

assay. 

Cells were trypsinized and filtered through a 40 µm cell strainer. 5x104 cells were 

suspended in 50 ml DMEM/F12 in a 50 ml conical tube and rotated at 37°C for 

24 hours. For each condition triplicates were performed. Surviving cells were 

spun down at 1500 rpm for 5 min and plated in 6-well plates with PC medium. 

After 4-6 days cells were fixed and stained with Hemacolor Rapid staining Set, 

which is based on the principle of Pappenheim staining, according to 
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manufacturer´s instruction. Colonies were counted on a Leica DM IL LED light 

microscope using a 10-fold magnification. Each anoikis assay was repeated 

independently at least three times in this study. 

3.2.7 Proliferation Assay 

To measure cell proliferation 2x10³-2.5x10³ cells were plated in white polystyrene 

96-well plates in PC medium supplemented with blasticidin at a final 

concentration of 10 µg/ml. For each condition 5-10 replicates were plated. Cell 

proliferation was monitored for a period of 72 hours, adding fresh medium every 

24 hours. The viability of the cells was measured every day using the WST-1 

reagent: 10 µl WST-1 was added per well and cells were incubated at 37°C for 1 

hour. Afterwards, absorbance at 450 nm was measured on an iMark Microplate 

Absorbance Reader. Wavelength 595 nm was used as reference. Data were 

normalized to respective control at day 0. Each proliferation assay was repeated 

independently at least three times in this study.  

3.2.8 Culture in 3D-floating Collagen Gels 

3D-floating collagen gels were prepared as previously described by Linnemann 

et al. with modifications (Linnemann et al., 2015). Cells were trypsinized, filtered 

through a 40 µm cell strainer and counted in triplicates. Desired cell number was 

suspended in corresponding media and mixed with neutralizing solution and 

collagen I at a final collagen-concentration of 1.3 mg/ml. The mixture was plated 

into siloxane-coated 24- (400 µl/well) or 6- (2 ml/well) wells. Gels were allowed to 

polymerize at 37°C for 1 hour. Afterwards, gels were detached from the well and 

corresponding medium was added. Medium was changed every 2-3 days. 

Measurements of proliferation or colonization as well as immunofluorescences 

staining of 3D collagen cultures were performed 7-10 days after initial plating. 

For each condition, cultivation of HMLE cells in 3D-floating collagen gels and 

subsequent analyses were repeated independently at least three times in this 

study. 

3.2.8.1 Proliferation measurement 

To measure cell proliferation of cells grown in 3D-floating collagen gels, gels 

were digested with Collagenase I (300 U/ml) at 37°C for 1 hour. Then, cells were 
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spun down at 300 g for 5 min, trypsinized and counted. The cell number was 

normalized to initial plating density. The number of doublings (n) was calculated 

using following formula: 2n = (number of cells at endpoint / number of initially 

plated cells).  

3.2.8.2 Colony formation 

To measure colony formation of cells grown in 3D-floating collagen gels, gels 

were washed with PBS for 10 min, fixed with 4% PBS-buffered formaldehyde for 

15 min and washed again with PBS for 10 min. To quench the formaldehyde gels 

were incubated in 0.15 M Glycine for 10 min followed by a final washing step 

with PBS for 10 min. Gels were stained with carmine staining solution at RT 

overnight. All washing, fixation, quenching and staining steps were performed 

using an orbital shaker. Colonies were imaged using a Zeiss SteREO Lumar.V12 

microscope with a NeoLumar S 0.8x objective (10- to 20-fold magnification) and 

counted with the ImageJ 1.48 software. 

3.2.8.3 Immunofluorescence staining 

For immunofluorescence staining of cells grown in 3D-floating collagen gels, gels 

were fixed as described in 3.2.8.2. Immunofluorescence staining was performed 

as described in 3.2.3 with modifications: the cells were permeabilized for 10 min, 

incubated in blocking solution at 4°C overnight and stained with primary 

antibodies at 4°C overnight. All washing steps were performed on an orbital 

shaker for 10 min. After immunofluorescence staining and mounting, slides were 

air-dried overnight, sealed and either directly imaged using an FV1000 inverted 

confocal laser scanning microscope or stored at 20°C. Images were processed 

with FV-10-ASW 1.7 Viewer and Adobe Photoshop CS5 software. 

3.2.9 Murine Lung Slice Culture 

To mimic colonization and proliferation at distant metastases HMLE cells were 

grown on murine lung slices. Murine lung slice culture and each subsequent 

analysis were repeated independently three times in this study. 

3.2.9.1 Preparation of murine lung slices 

All steps were performed by the laboratory of Dr. Dr. Melanie Königshoff from the 

Comprehensive Pneumoloy Center at the Helmholtz Center Munich. 3D-lung 
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tissue cultures (3D-LTCs) were generated as previously described (Uhl et al., 

2015). Briefly, C57BL6/N mice of 8-12 weeks were intubated and after the 

dissection of the diaphragm, lungs were flushed through the heart with sterile 

sodium chloride solution. Using a syringe pump, lungs were filled with low gelling 

temperature agarose (2% by weight, kept at 40°C) in sterile cultivation medium. 

Separated lobes were cut with a Hyrax V55 vibratome to a thickness of 300 μm 

using a speed of 10–12 μm/sec, a frequency of 80 Hz and an amplitude of 1 mm. 

The 3D-LTCs were cultivated in sterile cultivation medium containing 0.1% FCS. 

3.2.9.2 Co-culture of murine lung slices and HMLE cells 

For culture on murine lung slices HMLE cells were lentiviral transduced with 

pRRL-cPPT-CMV-GFP-W (EMT resistant Clone #3) or pRRL-cPPT-CMV-

mCherry-W (EMT competent Clone #3) as described in 3.5.3. Cells were 

trypsinized, filtered through a 40 µm cell strainer and counted in triplicates. 

Subsequent, cells were suspended in PC medium to a final concentration of 

2x104 cells per ml. Medium was removed from the murine lung slices and 1 ml 

cell-suspension was added on top of the slices. The following day murine lung 

slices with cells on top were transferred to a fresh 24-well and 1 ml fresh PC-

medium was added. Murine lung slices and cells were cultured for 5 days, 

changing the medium every day. Afterwards murine lung slices and cells were 

fixed with 4% PBS-buffered formaldehyde as described for 3D-floating collagen 

gels in 3.2.8.2 and afterwards either stored at 4°C or directly used for 

immunofluorescence staining. 

3.2.9.3 Immunofluorescence staining  

Immunofluorescence staining of murine lung slice cultures was performed as 

described for 3D-floating collagen gels in 3.2.8.3. To quantify the proliferation of 

the HMLE cells, the DAPI fluorescence was assessed using the ImageJ 1.48 

software. Afterwards corrected total cell fluorescence (CTCF) of DAPI was 

calculated using following formula: CTCF = integrated density – (area of selected 

cells x mean fluorescence of background readings).  

3.2.9.4 Paraffin sections and H&E staining 

Murine Lung slices were fixed with 4% PBS-buffered formaldehyde as described 

for 3D-floating collagen gels in 3.2.8.2. All subsequent steps were performed by 
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the laboratory of Prof. Dr. Thomas Kirchner from the Institute of Pathology at the 

Ludwig Maximilian University Munich. Paraffin sections (3 µm) were prepared 

according to standard protocols using a Leica RM2125 RTS microtome. Sections 

were stained H&E (Haematoxylin&Eosin) according to standard protocols.  

3.3 Fluorescence Activated Cell Sorting (FACS) 

Fluorescence Activated Cell Sorting (FACS) is a technique that allows detection 

and sorting of pre-labelled cells.  

 
3.3.1 Sample preparation 

Cells were trypsinized, counted and suspended in FACS buffer to a final 

concentration of 1x106 cells per ml. For cell surface marker analyses 1x105 cells 

were suspended in 100 µl FACS buffer. Cells were stained with FACS antibodies 

(see 3.1.7.2) on ice protected from light for 45 min. Cells that were sorted for 

GFP or mCherry were not stained with any antibody. Afterwards cells were 

washed with PBS, suspended in FACS buffer to a maximum concentration of 

1x107 cells per ml and filtered through a 35 µM cell strainer into a 5 ml round-

bottom FACS tube. Prior to sorting or analyses, 7AAD was added to distinguish 

dead and live cells. For controls, cells were either single stained for 

corresponding antibody, 7AAD or processed without any staining. Cells that were 

not transduced with GFP or mCherry vector served as a control for sorting of 

GFPpos or mCherrypos cells.  

3.3.2 Cell sorting 

Cells were sorted on a BD FACSAriaIIIu using the 70 µM nozzle. FITC 

fluorescence of CD24, CD326, Trop2 or GFP were analyzed with the 488 nm 

laser and detected by the 530/30 nm filter. APC fluorescence of CD44 was 

analyzed with the 633 nm laser and detected by the 660/20 nm filter. mCherry 

fluorescence was analyzed with the 561 nm laser and detected by the 610/20 nm 

filter. 7AAD was analyzed with the 488 nm laser and detected by the 695/40 nm 

filter. Forward and side scatter were used to gate for single cells. In addition, live 

cells were discriminated by absence of 7AAD fluorescence. Positive and 

negative gates were set using unstained and single stained controls as 

references. Using the “4-way purity” sort mode, cells were sorted into highly 
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purified populations. Sorted populations were first collected in tubes containing 

PC medium and then plated into 6-well plates for further expansion.  

3.3.3 Cell surface marker analysis 

Cells were analyzed on a BD FACSAriaIIIu using the same settings as described 

in 3.3.2. For each sample 1x104 to 1x105 events were recorded and further 

analyzed with FlowJoV10 or Flowing Software 2.5. Each cell surface marker 

analyses were repeated independently at least three times in this study. 

3.4 Molecular and Biochemical Biology Methods 

3.4.1 Gene Expression Analysis 

3.4.1.1 RNA Isolation and Reverse Transcription 

For RNA isolation, cells were grown in 6-well plates or 10 cm cell culture dishes 

to a maximum of 80% confluency. Cells were washed once with PBS and lysed 

either with RLT/βMercaptoethanol (for mRNA only) or QIAzol Lysis reagent (for 

total RNA). Then, RNA was isolated using either RNeasy Mini Kit (for mRNA 

only) or miRNeasy Mini Kit (for total RNA) according to manufacturer´s 

instructions. In both cases, RNA was isolated via a silica-membrane-based 

purification. In addition, a DNA digestion step was included using the RNase-

Free DNase Set according to manufacturer´s instructions. Concentration of 

isolated RNA was determined using the NanoDrop® ND 1000 

Spectrophotometer at 260 nm and RNA was stored at 80°C.  

Reverse transcription of 1 µg RNA was performed using the EasyScriptPlus 

cDNA Synthesis Kit according to manufacturer´s instructions. cDNA was stored 

at 20°C. 

3.4.1.2 Quantitative Real Time-Polymerase Chain Reaction (qRT-PCR) 

To measure relative expression levels of the genes of interest, qRT-PCR was 

performed. This method links the amplification of double-stranded nucleic acid 

molecules to the generation of a fluorescence signal which is monitored during 

each PCR cycle.  

For cDNA amplification 100 ng cDNA was mixed with corresponding forward and 

reverse primer as well as Power SYBR Green PCR Master Mix (for details see 

Table 1). The housekeeping gene RPL32 was used as a loading control and 



Material and Methods 

51 
 

each primer was run in a water control. Primer sequences used for the 

experiments are listed in 3.1.3.1. 

Table 1: qRT-PCR reaction mixture 

Components  

Forward Primer (20 µM) 0.25 µl 

Reverse Primer (20 µM) 0.25 µl 

Power SBYR Green PCR Master Mix 5 µl 

RNase/DNase free water 2.5 µl 

cDNA 100 ng 

Total reaction volume 10 µl 

Samples were run in triplicates on a QuantStudio 12K Flex qPCR System using 

the cycling protocol shown in Table 2. Afterwards, a melting curve was 

performed to check for primer-dimer artifacts and to ensure reaction specificity.  

Table 2: Cycling protocol for qRT-PCR of cDNA 

Step Duration of cycles Temperature Number of cycles 

Initial Activation 10 min 95°C 1x 

Denaturation 15 sec 95°C  

Annealing 30 sec 60°C 

Extension 16 sec 72°C 

 

To compare expression levels of different genes of interest relative to an internal 

control (RPL32) data were processed using the Ct method as described 

previously (Yang et al., 2004). In detail, first the threshold cycle Ct for each gene 

was defined as that PCR cycle at which the fluorescence signal (SYBR Green) 

crosses an arbitrarily set threshold that is slightly above the background. Next, 

the Ct value was defined. Meaning, gene expression of the gene of interest was 

normalized to gene expression of the internal control gene by subtracting its Ct 

value from the Ct value of the internal control gene (Ct=Ct(internal 

control)Ct(gene of interest)). Finally, fold expression of gene of interest 

compared to control gene expression was calculated by the formula 2Ct. Each 

qRT-PCR analysis was repeated independently at least three times in this study. 

40x 
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3.4.1.3 Expression profiling and statistical transcriptome analysis 

Total RNA of three independent biological replicates for each condition was 

isolated as described in 3.4.1.1. All subsequent steps were performed in 

collaboration with Prof. Dr. Johannes Beckers and Dr. Martin Irmler from the 

Institute of Experimental Genetics at the Helmholtz Center Munich. In detail, total 

RNA (about 30 ng) was amplified using the Ovation Pico WTA System V2 in 

combination with the Encore Biotin Module (Nugen). Amplified cDNA was 

hybridized on an Affymetrix Human Gene 2.0 ST arrays. Staining and scanning 

was done according to the Affymetrix expression protocol including minor 

modifications as suggested in the Encore Biotion protocol. Expression console 

(v.1.3.0.187, Affymetrix) was used for quality control and to obtain annotated 

normalized RMA gene-level data (standard settings including median polish and 

sketch-quantile normalization). Statistical analyses were performed by utilizing 

the statistical programming environment R (R Development Core Team (2008)) 

implemented in CARMAweb (Rainer et al. (2006). Genewise testing for 

differential expression was done employing the (limma) t-test and Benjamini-

Hochberg multiple testing correction (FDR <10%). Heatmaps were generated 

with CARMAweb and cluster dendrograms with R scripts (hclust, agnes, diana). 

Sets of regulated genes were defined based on limma t-test p-value<0.05, fold 

change>1.3x and average expression in at least one group>10 arbitrary units. To 

define the 189 gene set a filter for higher expression (FC>1.3x) in the three 

groups (Snail ms, Twist ms, +/-Twist) versus +Twist was applied. GO term and 

pathway enrichment analyses (p<0.01) were done with GePS (Genomatix, 

Germany). Array data has been submitted to GEO (GSE61206). 

3.4.1.4 Principal Component Analysis (PCA) 

Principal Component Analysis was performed by Prof. Dr. Fabian Theis and Dr. 

Steffen Sass from the Institute for Computational Biology (ICB) at the Helmholtz 

Center Munich. PCA was performed using the prcomp function within the R 

environment for statistical computing (R Development Core Team; 2008). 

3.4.2 Chromatin Immunoprecipitation (ChIP) 

ChIP is a technique that allows detection of protein-DNA interactions. In brief, 

proteins are crosslinked to DNA. After fragmentation of the chromatin, including 
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protein-DNA complexes, protein of interest is purified via an antibody-based 

retrieval. Finally, DNA sequences bound by the protein of interest can be 

amplified by PCR.  

Cells were grown on 10 cm cell culture dishes to a confluency of 90%. Cells 

were washed with PBS and proteins were crosslinked by incubating cells with 

1% PBS-buffered formaldehyde for 20 min at RT. Formaldehyde was quenched 

with 125 mM Glycine for 5 min on a slowly rotating shaker. Cells were washed 

twice with ice-cold PBS, then scraped from the culture dish and collected in 1 ml 

ice-cold PBS. All subsequent steps were performed in collaboration with Prof. Dr. 

Steven A. Johnson, Dr. Vivek K. Mishra and Vijayalakshmi Kari from the 

Department of General, Visceral and Pediatric Surgery at the University Medical 

Center Göttingen according to a previously published protocol (Nagarajan et al., 

2014). Antibodies used for these experiments are listed in 3.1.7.3. Primer 

sequences used for these experiments are listed in 3.1.3.2.  

3.4.3 Protein Expression Analysis 

3.4.3.1 Whole Cell Lysate Preparation 

For protein isolation cells were grown on 6-well plates to a confluence of 100%. 

Cells were washed with PBS and lysed with RIPA buffer (150 µl per 6-well) on 

ice for 5 min. Cells were scraped from the culture dish, collected and incubated 

on ice for 5-10 min. Cell lysates were centrifuged at 14.000 g and 4°C for 10 min. 

Supernatant containing protein fraction was stored at 80°C. 

3.4.3.2 Protein Concentration Measurement 

Protein concentration was measured using the Biorad DC Protein Assay Kit 

according to manufacturer´s instructions. This assay is a colorimetric protein 

assay based on the Lowry method.  

For each sample 5 µl isolated protein solution was used for the assay and 

absorbance was measured in duplicates at 750 nm using an iMarkTM Microplate 

Absorbance Reader. Protein standards of 50 µg, 25 µg, 10 µg, 7.5 µg, 5 µg, 

2.5 µg, 1.25 µg and 0.625 µg BSA in RIPA buffer were used as reference and 

RIPA buffer only was used as blank.  
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3.4.3.3 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis  

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis or short SDS-Page 

is a technique to separate proteins according to their size. By binding to the 

proteins SDS denatures their primary structure and confers a negative charge on 

them. Thus protein-SDS complexes migrate to the positive electrode during gel 

electrophoresis and proteins become separated.  

To separate proteins according to their size 10-40 µg of each protein lysate was 

mixed with 5x SDS loading buffer, incubated at 95°C for 5 min and loaded on a 

SDS gel. The percentage of the separating gel was chosen depending on the 

size of the protein of interest. SDS gels were prepared according to Table 3. 

Table 3: Composition of separating and stacking gel of 10% and 12.5% SDS gels 

Reagent 
Separating Gel Stacking 

Gel 10% (30-200 kDa) 12.5% (10-120 kDa) 

Rotiphorese® Gel 30 

(37.5:1) 
3.3 ml 3.9 ml 833 µl 

MilliQ water 6.1 ml 5.5 ml 3.46 ml 

1 M Tris pH 6.8 --- --- 625 µl 

1 M Tris pH 8.8 2.5 ml 2.5 ml --- 

SDS (10%) 100 µl 100 µl 50 µl 

Temed 7.5 µl 7.5 µl 5 µl 

APS (10%) 75 µl 75 µl 25 µl 

 

In addition to the samples, 8 µl of PageRuler Prestained Protein Ladder was 

loaded on the SDS gel. Electrophoresis was performed at 120 V for 1 hour.  

3.4.3.4 Immunoblotting 

After separating proteins by SDS gel electrophoresis, proteins were transferred 

to a PVDF blotting membrane using Wet/Tank Blotting procedure. Proteins were 

transferred to a PVDF membrane at 2 mA per cm² of membrane for 1.5 hours. 

After transferring proteins to a PVDF membrane, membrane was washed with 

TBS/T for 2 min and incubated in blocking solution at RT for 1 hour. Then, the 

membrane was incubated with primary antibody (see 3.1.7.4.1) diluted in 

blocking solution at 4°C overnight. The following day, membrane was washed 
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3 times with TBS/T for 10 min each. Then, the membrane was incubated with 

secondary antibody (see 3.1.7.4.2) diluted in blocking solution at RT for 1 hour. 

Afterwards, the membrane was washed 3 times with TBS/T for 10 min each and 

once with TBS for 5 min. The membrane was developed using ECL Western 

Blotting Detection Kit according to manufacturer´s instructions. Finally, 

chemiluminescence was detected using the ChemiDoc System from Bio-Rad. 

Protein expression levels were quantified using the ImageJ 1.48 software. Each 

immunoblotting was repeated independently at least three times in this study. 

3.4.3.5 Proteomics analysis of cell surface proteins 

Glycosyl residues on intact cells were labelled with aminooxy-biotin under mild 

oxidative conditions as described before (Graessel et al. 2015; Grosche et al. 

2015). All subsequent steps were performed in collaboration with the laboratory 

of Dr. Stefanie Hauck from the Research Unit Protein Science at the Helmholtz 

Center Munich. In detail, after cell lysis, glycosylated cell surface proteins were 

enriched with streptavidin beads. After stringent washing steps, proteins were 

on-bead proteolysed with trypsin, followed by deglycosylation with PNGase F. 

Eluted peptides were combined, acidified and directly used for analysis on a 

LTQ-OrbitrapXL connected with an Ultimate 3000 nano HPLC system as 

described (Hauck et al., 2010). The full-scan MS spectra were acquired in the 

Orbitrap with a resolution of 60,000 and up to 10 most abundant peptide ions 

were selected for fragmentation in the linear ion trap. Peptides were identified 

and quantified using the Progenesis QI software and the Mascot search 

algorithm with the Ensembl Human public database as described (Graessel et al. 

2015; Hauck et al. 2010; Grosche et al. 2015). Identified peptides were filtered 

for following criteria: peptide count ≥5, confidence score >100, E/M ration 

(TAM) >1 and additionally E/M ration (+TAM) >1. Finally, peptides were sorted 

by size of E/M ration (+TAM).  

3.5 shRNA mediated Knockdown of ZEB1 

3.5.1 Plasmid Preparation 

3.5.1.1 Transformation of XL10-Gold Ultracompetent Cells 

pGIPZ vectors encoding for shRNAs targeting ZEB1 or a non-targeting control 

(nt), each additionally encoding for GFP, were purchased as glycerol stocks from 
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Dharmacon or Thermo Scientific. Plasmid-DNA was cloned by transformation 

into XL10-Gold Ultracompetent Cells from Agilent Technologies according to 

manufacturer’s instructions. In brief, XL10-Gold Ultracompetent Cells were gently 

mixed with 0.5 -1 µg plasmid-DNA, incubated on ice for 30 min and then heat-

shocked for 45 sec at 42°C. Afterwards, the suspension was incubated on ice for 

2 min and then mixed with LB medium. Subsequently, the suspension was 

plated on a selective plate containing antibiotics (100 µg/ml ampicillin) and 

incubated at 37°C overnight.  

3.5.1.2 Isolation of pGIPZ plasmid DNA 

3 ml LB medium containing antibiotics (100 µg/ml ampicillin) were inoculated with 

single bacterial colony picked from selective plate (see 3.5.1.1) and incubated at 

37°C and 300 rpm for 6-8 hours. Afterwards, inoculated LB medium was 

transferred to a chicane flask containing additional 100 ml of LB medium with 

antibiotics (100 µg/ml ampicillin) and incubated at 37°C and 250 rpm for 

16 hours. Bacterial cells were harvested by centrifugation at 6000 g and 4°C for 

15 min. Plasmid isolation from bacterial cells was done using the Plasmid Midi 

Kit from QIAGEN® according to manufacturer’s instructions. This Kit combines 

alkaline lysis procedure, followed by binding of plasmid DNA to a resin column 

under low-salt and pH conditions. After washing steps under medium-salt 

conditions plasmid DNA is eluted under high-salt concentration and finally 

precipitated by isopropanol. 

Afterwards, DNA concentration was determined with NanoDrop® ND 1000 

Spectrophotometer at 260 nm and DNA was stored at 20°C. 

3.5.2 Transfection of Virus-Producing HEK293T cells 

Transfection is the process by which naked nucleic acids (DNA or RNA) are 

introduced into eukaryotic cells.  

For the production of lentivirus the human embryonic kidney cell line HEK293T 

(DuBridge et al., 1987) was simultaneously transfected with isolated plasmid 

DNA (see 3.5.1.2), envelope protein encoding plasmid pCMV-VSV-G and 

packaging plasmid pCMV-dR8.2 dvpr using x-treme GENE reagent.  

Transfection mix was prepared according to Table 4 and incubated at RT for 

15 min. 
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Table 4: Composition of Transfection mix 

Components (for one 10 cm culture dish)  

plasmid-DNA 2.5 µg 

pCMV-dR8.2 dvpr 2.25 µg 

pCMV-VSV-G 0.25 µg 

x-treme GENE 15 µl 

DMEM w/o supplements X µl 

Total reaction volume 500 µl 

 

Transfection mix was added dropwise to medium of HEK293T cells growing in 

cell culture dish and cells were incubated at 37°C for 16 hours. Afterwards, 

medium was removed and replaced by PC medium. 24 hours after medium 

change, PC medium (= virus supernatant containing lentiviral particles) was 

collected, filtered through a PVDF filter (pore size of 0.45 µm) and either directly 

used for lentiviral transduction or frozen at 80°C. These steps were repeated 

after additional 24 hours.  

3.5.3 Lentiviral Transduction 

Lentiviral transduction is the infection of eukaryotic cells by replication-deficient 

lentivirus containing DNA sequence of interest. During transduction, replicates of 

the sequence of interest become more or less randomly integrated into genome 

of target cells. The number of integrations is dependent on the virus titer.  

Target cells were incubated with virus supernatant (see 3.5.2) at 37°C for 6-

8 hours. Afterwards medium containing viral particles was replaced by fresh PC 

medium and cells were incubated at 37°C overnight. The following day medium 

was replaced by virus supernatant (see 3.5.2), cells were incubated for 6-8 hours 

until medium was replaced by fresh PC medium again.  

Puromycin selection of successfully transduced HMLE-Twist1-ER cells was not 

possible since these cells were already puromycin resistant. Therefore 

successfully transduced cells were purified using FACS (see 3.3). HMLE-Twist1-

ER cells successfully transduced with shRNAs targeting ZEB1, non-targeting 

control or CMV-GFP, respectively, were GFPpos. HMLE-Twist1-ER cells 

successfully transduced with CMV-Cherry were Cherrypos.  
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3.6 Statistical analysis 

Data are presented as mean ± standard error (SEM) or mean ± standard 

deviation (SD). The student´s t test (two-tailed) was used to compare two 

groups. A p-value p<0.05 was considered significant. 
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4 Results 

4.1 Separation of the HMLE-Twist1-ER bulk cells into three distinct 

subpopulations 

The initial aim of my project was to determine whether the process of Epithelial-

Mesenchymal-Transition (EMT) and the acquisition of stem cell (sc)-like traits, 

such as mammosphere (MS) formation, are directly linked to each other. 

Therefore, functional consequences of the EMT-transcription factor (TF) Twist1 

were studied using the HMLE-Twist1-ER cell line. These are immortalized 

human mammary epithelial cells (HMLE) transduced with a retroviral construct 

containing Twist1 cDNA fused to a mutated estrogen receptor (ER) ligand 

binding domain (Casas et al., 2011; Elenbaas et al., 2001). Upon 4-

hydroxytamoxifen (TAM) treatment, the Twist1-ER fusion protein undergoes a 

conformational change that allows binding to DNA and hence, TF-activity. 

Importantly, HMLE-Twist1-ER bulk cells are heterogeneous and contain pre-

existing subpopulations that are phenotypically and functionally distinct.  

Besides CD44pos cells expressing a variable range of the epithelial surface 

marker CD24, HMLE-Twist1-ER cells were found to contain a small 

CD44high/CD24neg, mesenchymal subpopulation enriched for sc-like traits (Mani 

et al., 2008).  

To prevent selection for this pre-existing mesenchymal CD44high/CD24neg 

population and address the impact of the epithelial surface marker CD24 on 

mesenchymal transdifferentiation and acquisition of MS-forming ability, the 

heterogeneity of the HMLE-Twist1-ER cells was unraveled. For this purpose, 

cells were sorted by Fluorescence Activated Cell Sorting (FACS) into the 

following three subpopulations based on the expression of the surface markers 

CD44 and CD24: i) CD44high/CD24neg, ii) CD44pos/CD24low and iii) 

CD44pos/CD24high (Figure 2A). In 2D culture following cell sorting, the 

CD44high/CD24neg cells presented as single, scattered, spindle-shaped cells with 

a front-to-back polarized morphology, indicating a mesenchymal phenotype. In 

contrast, CD44pos cells additionally expressing high or low levels of the surface 

marker CD24 (24high and 24low) grew in closely adhering islands and showed a 

cobblestone-like morphology, indicating an epithelial phenotype (Figure 2B). 
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Importantly, post-sort analysis confirmed successful separation of the CD44pos 

cells into subpopulations with different CD24 expression levels (Figure 2C).  

 

Figure 2: Separation of the HMLE-Twist1-ER bulk cells into three distinct subpopulations. 
(A) FACS sorting strategy of HMLE-Twist1-ER cells based on the CD44 and CD24 surface 
marker (left panel) and post-sort analysis of the sorted subpopulations after 3 days in culture 
(right panel). (B) Representative bright-field microscopic pictures of FACS-purified HMLE-Twist1-
ER subpopulations after 3 days in culture. Scale bar: 100 μm. (C) Overlaid histograms of the 
CD24 or CD44 marker of FACS-purified 24

high
 (grey) and 24

low
 (blue) cells after 3 days in culture.  

 

Taken together, based on expression of the surface markers CD44 and CD24 

HMLE-Twist1-ER bulk cells were separated into a pure mesenchymal 

CD44high/CD24neg and two distinct epithelial subpopulations (CD44pos/CD24low 

and CD44pos/CD24high). All further experiments described below were performed 

using the purified epithelial subpopulations, referred to as 24high and 24low. 

 

4.2 Twist1-activation induces Epithelial-Mesenchymal Transition (EMT) in 

purified epithelial, CD24pos HMLE cells 

To determine whether Twist1 induces mesenchymal transdifferentiation in 

purified epithelial subpopulations, 24high and 24low cells were treated with TAM for 

a period of 15 days, adding TAM to the cells every 48 hours. During this period, 

expression of epithelial and mesenchymal markers was monitored at protein and 

transcriptional level by immunofluorescence and qRT-PCR analysis. At the 

protein level both, 24high and 24low cells showed progressive loss of E-cadherin 

(epithelial marker) expression as well as upregulation and re-organization of 

vimentin (mesenchymal marker), starting at day 6 after Twist1-activation (Figure 

3A). Consistently, E-cadherin expression was downregulated at the 



Results 

61 
 

transcriptional level (Figure 3B). By contrast, transcript levels of the 

mesenchymal markers N-cadherin, ZEB1, FOXC2 and Wnt5a were upregulated. 

Consequently, both 24high and 24low cells completely transdifferentiated from their 

initially epithelial to a mesenchymal phenotype. Since single-cell migration is a 

functional hallmark of mesenchymal cells, cells were assessed for their motility 

before and after Twist1-activation using the transwell migration assay (Boyden 

chamber assay). Twist1-activation for 15 days significantly increased the number 

of migrating cells, further confirming the acquisition of a mesenchymal phenotype 

(Figures 3C and 3D). Previously, it was described for the bulk HMLE-Twist1-ER 

cells that all of these cells acquired a CD44high/CD24neg surface marker profile 

upon TAM-treatment (Mani et al., 2008). To determine the dynamics of the CD44 

and CD24 marker expression in purified 24high and 24low cells upon TAM-

treatment, cells were treated with TAM for 15 days and analyzed by FACS. 

During TAM-treatment, the number of CD44high cells increased compared to 

untreated control cells in both 24high and 24low cells (Figures 3E and 2A). 

However, dynamics of CD24 marker expression differed between the two 

subpopulations: whereas 94% of the 24low cells acquired a CD24neg profile during 

EMT, 78% of the CD24high cells still expressed the epithelial marker CD24 after 

15 days of TAM-treatment.  

Together, these data revealed that long-term (15 days) Twist1-activation induced 

EMT in purified epithelial, CD24pos HMLE cells. However, whereas the majority of 

the 24low cells lost CD24 expression during Twist1-induced EMT, 24high cells 

retained expression of this epithelial marker. 
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Figure 3: Twist1-activation for 15 days induces EMT in purified epithelial, CD24
pos

 HMLE 
cells.  
(A) Immunofluorescence staining of E-cadherin (green), vimentin (red) and DAPI (blue) of FACS-

purified 24
high

 and 24
low

 control cells () or cells treated with 4-hydroxytamoxifen (TAM) for 
indicated number of days. Scale bar: 20 µm. (B) Relative mRNA expression of E-cadherin, N-
cadherin, ZEB1, FOXC2, Wnt5a of 24

high
 and 24

low
 control cells (green) and cells treated with 

TAM for 15 days (red). n=3. (C) Quantification of migration ability of 24
high

 (grey) and 24
low 

(blue) 

control cells () and cells treated with TAM for 15 days (+). n=3. *p<0.05, **p<0.005, ***p<0.0005. 
(D) Representative bright-field microscopic pictures of stained, migrated 24

high
 and 24

low
 cells. 

Arrow indicates one representative, migrated cell. Scale bar: 100 µm. (E) FACS analysis based 
on the CD44 and CD24 surface marker of 24

high
 and 24

low 
cells treated with TAM for 15 days. 

 
Data are presented as mean ± SEM. 
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4.3 Transient Twist1-activation induces mammosphere-forming ability in 

CD24pos HMLE cells 

To determine whether Twist1 induces sc-like traits in addition to EMT, 24high and 

24low cells were plated into the mammosphere (MS)-assay. This assay was 

initially adapted from the neurosphere assay and is often used as a proxy-assay 

to measure self-renewal in mammary epithelial cells as well as tumorigenicity in 

breast cancer cells (Dontu et al., 2003; Reynolds and Weiss, 1992, 1996). 

Functionally, the MS-assay tests the ability of cells to proliferate in anchorage 

independence (suspension culture) at clonal density. MS forming ability was 

determined for 24high and 24low cells cultured as depicted in Figure 4A. 

Specifically, in condition 1) cells were not treated with TAM (), in condition 2) 

cells were pre-treated with TAM for 15 days followed by either continued 

treatment (+) or in condition 3) with no further treatment with TAM upon plating 

into the MS-assay (+/). Untreated control cells () within both populations did 

not give rise to MS. In addition, cells continuously treated with TAM during the 

MS-assay (+) did not generate any MS either. By contrast, cells pre-treated in 2D 

and not further treated during the MS-assay (+/) generated MS. Under this 

condition, MS forming ability of 24high cells was 6-fold higher than that of 24low 

cells (Figure 4B). Of note, two types of multicellular clusters were observed in the 

MS-assay, tight, round spheres and loose, planar sheets of cells (Figure 4C).  

Since emergence of MS-formation was only observed after transient Twist1-

activation (i.e. following Twist1-deactivation), I hypothesized that a prolonged 

period of TAM-withdrawal might further increase the frequency of MS-forming 

cells. To test this hypothesis, 24high and 24low cells were cultured as depicted in 

Figure 4D. Specifically, in condition 1) cells were not treated with TAM () and in 

condition 2) cells were pre-treated with TAM for 15 days and not further treated 

with TAM upon plating into the MS-assay (+/). Finally, in condition 3) cells were 

pre-treated with TAM for 15 days, then TAM was withdrawn and cells were 

further cultured for additional 9 days in 2D prior to plating into the MS-assay 

(+/ 9d). Whereas prolonged TAM-withdrawal in 2D did not influence MS-forming 

ability of 24low cells, the frequency of MS-forming cells was 20-fold increased for 

24high cells. Of note, the number of both compact and loose MS increased to a 

similar extent (Figure 4E). To quantify the MS-forming efficiency more precisely, 
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serial passaging in limiting dilution was performed using 24high cells (Rota et al., 

2012). After four passages, the number of MS-forming cells was increased from 

1 out of 15 cells to 1 out of 3 cells, indicating acquisition of long-term 

repopulating ability (Figure 4F).  

In summary, these data indicated that transient, but not continuous Twist1-

activation induced stable MS-forming ability of CD24pos HMLE cells. 

Furthermore, these data revealed that the frequency of MS-forming cells 

generated by transient Twist1-activation was enriched in the 24high subpopulation 

of HMLE cells.  



Results 

65 
 

 

Figure 4: Transient Twist1-activation induces mammosphere-forming ability in CD24
pos

 
HMLE cells.  

(A) Experimental setup for MS-assay: 24
high 

or 24
low

 cells were either not treated with TAM () or 
pre-treated with TAM for 15 days prior to plating. Upon plating TAM-treatment was either 

continued (+) or discontinued (+/). (B) Quantification of MS formed by 24
high

 (grey) or 24
low
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(blue) cells treated as described in (A). n.d.= not detectable. n=20. (C) Representative bright-field 
microscopic pictures and quantification of compact (filled bars) and loose (striped bars) MS 
formed by 24

high
 (grey) or 24

low
 (blue) cells. Cells were treated as described in (A). n.d.= not 

detectable. n=20. Scale bar: 100 µm. (D) Modified experimental setup for MS-assay: 24
high

 or 
24

low
 cells were treated as described in (A) or cells were cultured without TAM for 9 days prior 

plating (+/9d). : cells were directly transferred to mammosphere assay after 2D culture for 15 
days. (E) Quantification of total number of MS and quantification of compact (filled bars) and 
loose (striped bars) MS formed by 24

high
 (grey) or 24

low
 (blue) cells treated as described in (D). 

n.d.= not detectable. n=20. *p<0.05, **p<0.005, ***p<0.0005. (F) Limiting dilution analysis of 
24

high
 cells serially passaged for 4 generations. Cells were treated for 15 days with TAM followed 

by 9 days of TAM-withdrawal prior to plating into MS-assay. n=10/generation. 
 
Data are presented as mean ± SEM. 

 

4.4 The capacity of HMLE cells to undergo Mesenchymal-Epithelial-

Transition (MET) following transient Twist1-activation is contained 

within the 24high HMLE cell population 

Following TAM-withdrawal, a small subset of 24high cells, but not 24low cells was 

observed to revert back to an epithelial phenotype in 2D culture. To confirm that 

24high cells underwent MET, immunofluorescence and qRT-PCR analysis were 

performed. As determined by immunofluorescence, 20% of the 24high cells re-

expressed E-cadherin and downregulated vimentin protein expression. By 

contrast, 100% of the 24low population maintained high vimentin protein 

expression and total loss of E-cadherin (Figure 5A). Consistently, at the 

transcriptional level, 24high cells showed E-cadherin up-regulation to levels 

comparable to untreated control cells, while transcript levels of the mesenchymal 

markers N-cadherin, ZEB1, FOXC2 decreased after TAM-withdrawal. 

Importantly, downregulation of the direct Twist1 target gene Wnt5a to 

transcriptional levels comparable to untreated control confirmed Twist1-

deactivation (Shi et al., 2014) (Figure 5B). To investigate, whether differences 

between 24high and 24low cells upon TAM-withdrawal were due to different Twist1 

protein levels, localization or activity, cells were analyzed by 

immunofluorescence. However, before, during and after TAM-treatment Twist1 

protein expression was similarly heterogeneous at the single-cell level in both 

24high and 24low cells (Figure 5C). 

In summary, these data indicated that a proportion of HMLE cells residing within 

the 24high subpopulation were able to undergo MET after Twist1-deactivation. In 
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contrast, all HMLE cells residing within the 24neg subpopulation retained a 

mesenchymal phenotype.  

 

Figure 5: The capacity of HMLE cells to undergo MET following transient Twist1-activation 
is contained within the 24

high
 HMLE cell population.  

(A) Immunofluorescence staining of E-cadherin (green), vimentin (red) and DAPI (blue) of 24
high

 

and 24
low

 control cells (TAM) or cells treated with TAM for 15 days (+TAM) or cells treated for 15 

days followed by 9 days of TAM-withdrawal (+/9d TAM). Scale bar: 100 µm. (B) Relative mRNA 
expression of E-cadherin, N-cadherin, ZEB1, FOXC2, Wnt5a in 24

high
 control cells (green), cells 
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treated with TAM for 15 days (red) and cells treated for 15 days followed by 9 days of TAM-
withdrawal (blue). n=3. (C) Immunofluorescence staining of E-cadherin (green), Twist1 (red) and 

DAPI (blue) of 24
high

 and 24
low 

treated as described in (A). Scale bar: 50 µm. 

Data are presented as mean ± SEM. 

 

4.5 Mammosphere-forming 24high HMLE cells display epithelial-

mesenchymal plasticity 

As described before, a subset of 24high cells underwent MET after Twist1-

deactivation, whereas the majority of cells retained a mesenchymal phenotype 

(Figure 5A). Moreover, only 1 out of 15 cells generated MS after transient 

Twist1-activation as determined by limiting dilution (Figure 4F). Therefore, it was 

unclear which cells exactly acquired MS-forming ability during transient Twist1-

activation: MS-forming cells could be contained within those cells that were able 

to revert back to an epithelial phenotype or those that had transdifferentiated to a 

stable mesenchymal phenotype. To determine which cells within the 24high cell 

population gave rise to MS, Twist1 was transiently activated in 24high cells. 

Specifically, 24high cells were pre-treated with TAM for 15 days, afterwards TAM 

was withdrawn and cells were cultured for additional 9 days in 2D culture 

(+/−9d). Subsequently, differential trypsinization was performed as illustrated in 

Figure 6A. Thereby, three different fractions of cells were obtained: one fraction 

of mesenchymal cells (M), one fraction mainly consisting of epithelial cells with 5-

10% mesenchymal cells (E) and one strongly trypsin-resistant pure epithelial 

fraction (E+). Mesenchymal or epithelial phenotype was confirmed at protein and 

transcriptional level using immunofluorescence and qRT-PCR analysis (Figures 

6A and 6B). When plated into the MS-assay, cells of the E fraction were detected 

to be highly enriched for MS-forming cells. Specifically, 9% of the cells residing 

within the E fraction formed MS, whereas only 1% of the E+ and 0.1% of the M 

fraction cells were able to do so (Figure 6C). To further characterize which cell 

state enabled MS-forming ability, MS (originated from 24high cells) were analyzed 

for expression of epithelial and mesenchymal markers at the protein and 

transcriptional level. Immunofluorescence revealed E-cadherin- and vimentin-

positive cells in both, loose and compact MS (Figure 6D). At the transcriptional 

level, MS-derived cells expressed E-cadherin, but also the mesenchymal 

markers ZEB1 and FOXC2. Moreover, transcript levels of these markers were 
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between epithelial control cells (TAM) and mesenchymal cells (+TAM). 

Importantly, Wnt5a transcript levels were comparable to epithelial control cells, 

indicating that Twist1 was not active in MS-derived cells (Figure 6E).  

 

 

 

Figure 6: MS-forming 24high HMLE cells display epithelial-mesenchymal plasticity.  

(A) Experimental setup of differential trypsinization: 24
high 

cells were treated for 15 days with 

TAM, followed by 9 days of TAM-withdrawal (+/9d TAM). 24
high 

(+/9d TAM) cells were 
trypsinized for 5 min at RT, detached cells were collected and re-seeded in 2D culture (M), 
remaining cells were trypsinized for additional 4 min at 37°C and detached cells were collected 
and re-seeded in 2D culture (E). Still remaining cells were trypsinized for additional 5 min at 
37°C, collected and re-seeded in 2D culture (E+). Also shown, immunofluorescence staining of 
E-cadherin (green), vimentin (red) and DAPI (blue) of cells before differential trypsinization and of 
cells of the M, E and E+ fraction. Scale bar: 20 µm. (B) Relative mRNA expression of E-cadherin, 
N-cadherin, ZEB1 and FOXC2 of 24

high
 untreated control cells (green) and cells of M (dark grey), 

E (middle grey) and E+ (light grey) fraction. n=3. (C) Quantification of MS formed by cells of M, E 
and E+ fraction. n=20. *p<0.05, **p<0.005, ***p<0.0005. (D) Immunofluorescence staining of E-
cadherin (green), vimentin (red) and DAPI (blue) of compact and loose MS. Scale bar: 100 µm. 
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(E) Relative mRNA expression of E-cadherin, N-cadherin, ZEB1, FOXC2 and Wnt5a of 24
high

 
control cells (green), cells treated with TAM for 15 days (red) and MS-derived cells (blue). n=3.  

Data are presented as mean ± SEM. 

 

Together, these observations indicated that neither cells with a fixed epithelial 

(enriched in the E+ fraction) nor a fixed mesenchymal cell phenotype (enriched 

in M fraction) were enriched for MS-forming ability. Otherwise, the majority of 

MS-forming cells would have been expected to be found within the E+ or M, but 

not in the E fraction. Moreover, these data revealed MS-forming cells to 

simultaneously express epithelial and mesenchymal markers and thus 

suggested MS-forming cells to be characterized by epithelial-mesenchymal 

plasticity. 

 

4.6 High expression of the epithelial surface marker CD24 predicts MS-

formation and the ability of 24high HMLE cells to undergo MET 

As shown in Figure 4, MS-forming cells were found to be enriched in the 24high 

subpopulation of HMLE cells. Furthermore, FACS analysis showed that the 

majority of 24high cells retained expression of the epithelial cell surface marker 

CD24 during Twist1-induced EMT (Figure 3E).  

Therefore, I set out to investigate whether expression of CD24 predicts MS-

forming ability. For this purpose, 24high cells, treated with TAM for 15 days, were 

separated by FACS into CD24neg and CD24high cells (Figure 7A). Subsequently, 

cells were plated into the MS-assay and in 2D culture. The MS-assay revealed 

MS-forming cells to be 8-fold enriched in CD24high cells compared to CD24neg 

cells (Figure 7B). Of note, FACS analysis of MS-derived cells (originating from 

24high cells) showed that CD24 expression was retained after plating into the MS-

assay (Figure 7C). Interestingly, in 2D culture, CD24neg cells retained a 

mesenchymal phenotype while CD24high cells underwent MET (Figure 7D).  

Together, these data revealed MS-forming cells to be characterized by 

expression of the epithelial surface marker CD24. Moreover, these observations 

demonstrated MS-forming cells to be contained in HMLE cells that retain 

expression of CD24 during EMT and undergo MET after Twist1-deactivation.  
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Figure 7: High expression of the epithelial surface marker CD24 predicts MS-formation 
and the ability of 24

high
 HMLE cells to undergo MET.  

(A) FACS sorting strategy based on the CD44 and CD24 surface marker of 24
high

 cells treated 
with TAM for 15 days. (B) Quantification of MS formed by CD44

high
/CD24

neg
 and 

CD44
pos

/CD24
high

 cells, purified by FACS sorting according to (A). n=20. *p<0.05, **p<0.005, 
***p<0.0005. (C) FACS analysis based on the CD44 and CD24 surface marker of MS. (D) 
Representative bright-field microscopic pictures of FACS-sorted CD44

high
/CD24

neg
 and 

CD44
pos

/CD24
high

 cells after 7 days in 2D culture. Scale bar: 50 µm. 

Data are presented as mean ± SEM. 

 

4.7 Twist1 induces MS-forming ability independently of EMT in 24high 

HMLE cells 

Based on the results shown in Figure 6 and 7, I hypothesized that maintenance 

of epithelial marker expression (e.g. CD24) during Twist1-induced EMT enables 

24high HMLE cells to undergo MET once Twist1 is deactivated. Additionally, I 

hypothesized that reversion to an epithelial phenotype favors MS-forming ability. 

Consequently, this raised the question whether generation of MS-forming cells 

necessitated passage through a complete EMT at all.  

Since the progressive loss of E-cadherin and the upregulation of vimentin protein 

expression were not observed until day 6 after Twist1-activation, I set out to 

investigate MS-forming ability early after Twist1-activation. For this purpose, 

24high HMLE cells were treated for 24, 48 or 72 hours with TAM and then plated 

directly into the MS-assay (referred to as direct). As a second approach cells 

were treated for 24, 48 or 72 hours with TAM. Afterwards TAM was withdrawn 
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and cells were further cultured for 9 days in 2D prior to plating into the MS-assay 

(referred to as delay) (Figure 8A).  

Functionally, no MS-formation was detected in 24high cells directly plated into the 

MS-assay. However, 48 hours of TAM-treatment followed by 9 days of TAM-

withdrawal elicited MS-forming capacity: 20% of the wells contained at least one 

MS. Moreover, the number of MS doubled when cells were treated for 72 hours 

prior to TAM-withdrawal (Figure 8B). Finally, to determine whether short-term 

Twist1-activation induced MS-forming capacity as a stable trait as long-term 

Twist1-activation did, MS were serially passaged. Indeed, MS-formation was 

stable over several passages and the percentage of wells containing at least one 

MS increased from passage 1° to 3°, from 20% to 100% (Figure 8C).  

To verify that cells had not undergone EMT prior to plating into the MS-assay, 

immunofluorescence and qRT-PCR analysis were performed. Following Twist1-

activation and subsequent deactivation, all cells retained high levels of 

membranous E-cadherin and low vimentin protein expression, indicating an 

epithelial phenotype (Figure 8D). Consistently, E-cadherin and N-cadherin 

transcript levels were comparable to untreated control cells. Transcript levels of 

the EMT-TF ZEB1 were upregulated by transient Twist1-activation: cells treated 

with TAM for 72 hours (directly or delayed plated into the MS-assay) expressed 

10-fold higher levels compared to control cells. Since directly plated cells did not 

form MS, these data suggested that ZEB1 did not contribute to MS-formation. Of 

note, expression level of the direct Twist1 target gene Wnt5a confirmed 

successful Twist1-activation and deactivation (Figure 8E).  

Taken together, these data indicated that short-term Twist1-activation was 

sufficient to induce stable MS-forming ability in a subset of 24high HMLE cells. 

However, as observed for long-term Twist1-activation, MS-forming ability 

exclusively arose after TAM-withdrawal. Importantly, passage through an EMT 

did not appear to be required for Twist1 to induce MS-forming ability in 24high 

HMLE cells, suggesting that Twist1 induced this trait independently of EMT.  
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Figure 8: Twist1 induces MS-forming ability independently of EMT in 24
high

 HMLE cells. 
(A) Experimental setup for MS-assay: 24

high 
cells were not treated with TAM (−), pre-treated with 

TAM for 24, 48 or 72 hours in 2D and either directly plated into the MS-assay without further 
TAM-treatment (direct) or TAM was withdrawn for 9 days in 2D culture prior to plating (delay). : 
cells were directly transferred to mammosphere assay after 2D culture for 15 days. (B) 
Quantification of MS formed by 24

high
 cells treated as described in (A). n=20. *p<0.05, **p<0.005, 

***p<0.0005. (C) Quantification of 1
st
, 2

nd
 and 3

rd
 generation of MS formed by 24

high
 cells treated 

with TAM for 48 or 72 hours followed by 9 days of TAM-withdrawal prior to plating into MS-assay. 
n=30/generation. *p<0.05, **p<0.005, ***p<0.0005. (D) Immunofluorescence staining of E-
cadherin (green), vimentin (red) and DAPI (blue) of 24

high 
 cells treated as described in (A). Scale 

bar: 20 µm. (E) Relative mRNA expression of E-cadherin, N-cadherin, ZEB1 and Wnt5a of 24
high

 
cells treated as described in (A) and cells treated with TAM for 15 days (+). n=3.  

Data are presented as mean ± SEM.  
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4.8 Continuous Twist1-activity inhibits proliferation of 24high HMLE cells in 

a 3D environment 

Figure 4B and 8B showed that transient TAM-treatment was required to induce 

MS-forming ability in HMLE cells. Moreover, no MS-formation was observed in 

HMLE cells during continuous TAM-treatment upon plating into the MS-assay. 

Therefore, I hypothesized that Twist1-activation was required to prime HMLE 

cells for MS-forming ability. However, this trait subsequently emerged only 

following Twist1-deactivation.  

Since the MS-assay functionally tests two parameters: 1) survival in anchorage-

independence and 2) proliferation at clonal density, I set out to separate these 

functional aspects and determine which one depends specifically on transient 

Twist1-activation. First, survival in anchorage-independence was assessed using 

a modified anoikis assay as previously described (Onder et al., 2008; Figure 9A). 

Anoikis as a form of programmed cell death was shown to be initiated upon 

disruption of epithelial cell-matrix interactions, while EMT was implicated 

conferring anoikis resistance (Frisch and Francis, 1994; Onder et al., 2008). To 

induce anchorage-independence, single-cell suspensions were rotated in Falcon 

tubes overnight. The following day, surviving cells were collected by 

centrifugation and plated in 2D culture without continuing TAM-treatment. 

Subsequently, colonies generated by anoikis-surviving cells were counted. 

Whereas untreated control cells did not form any colonies, 1.2% of cells with 

active Twist1 and 0.4% of cells assessed after transient Twist1-activation 

showed colony forming ability after the anoikis assay (Figure 9B). Consequently, 

Twist1-activity induced survival in anchorage independence, and this trait was 

partially maintained once Twist1 was deactivated.  

Next, I determined whether lack of MS-formation in the presence of active Twist1 

was due to a lack of proliferation. Since 24high HMLE cells with active Twist1 

robustly proliferated in 2D culture, I hypothesized that proliferation was 

specifically inhibited by active Twist1 in a 3D environment (Figure 9C). To test 

this hypothesis, cells were plated in floating collagen gels (Linnemann et al., 

2015). Since collagen is an abundant component of the extracellular matrix in 

breast stroma, collagen gels provided a physiologically relevant 3D environment 

(Lo et al., 2012). The following cells were assessed for their colony formation at 
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different plating densities: 1) untreated 24high control cells, 2) 24high cells treated 

for 15 days with TAM in 2D, followed by TAM-treatment during 3D culture (i.e. 

cells with active Twist1), and 3) MS-derived cells (i.e. cells after transient Twist1-

activation). To visualize colonies and quantify colony formation, carmine staining 

was performed. Untreated control 24high cells and MS-derived cells formed 

similar numbers of colonies while colony formation was strongly suppressed in 

cells with active Twist1. Of note, at low plating densities no colonies were 

generated by cells with active Twist1 at all (Figures 9D and 9E). Thus, 

differences in colony formation demonstrated a lack of proliferation in 3D. To 

quantify proliferation more precisely, cells were isolated from the gels and the 

total cell number was counted. As depicted in Figure 9F, both control and MS-

derived cells had undergone 12-fold more cell doublings during 3D culture than 

cells with active Twist1. 

In summary, these data indicated that Twist1 induced survival under anchorage-

independence in 24high HMLE cells and this trait was maintained after Twist1-

deactivation. Moreover, active Twist1 was shown to inhibit proliferation under 3D 

conditions. Consequently, the lack of MS-formation in the presence of active 

Twist1 was due to a lack of proliferation upon plating into the MS-assay.  
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Figure 9: Continuous Twist1-activity inhibits proliferation of 24
high

 HMLE cells in a 3D 
environment.  
(A) Experimental setup for the Anoikis assay. GF=growth factor. (B) Quantification of Anoikis 

assay: colony forming units (CFU) of 24
high

 cells either not treated with TAM () or pre-treated 

with TAM for 15 days (+) or pre-treated for 15 days followed by 3 days of TAM withdrawal (+/) 
prior to Anoikis assay. n=3. *p<0.05, **p<0.005, ***p<0.0005. (C) Quantification of proliferation 

over a period of 3 days in 2D culture. 24
high

 cells were either not treated with TAM (), pre-treated 

for 15 days and further treated (+) or pre-treated for 15 days and not further treated (+/) during 
this period. n=10. (D) Representative bright-field microscopic pictures of carmine stained colonies 

formed by 24
high

 cells either not treated with TAM (TAM) or pre-treated for 15 days and further 
treated during 3D culture (+TAM) or by MS-derived cells not treated with TAM during 3D culture. 
Plating density: 1000 cells per gel. n=3. (E) Quantification of carmine stained colonies formed by 
24

high
 cells treated as described in (D). n.d.=not detectable. n=3. (F) Quantification of the number 

of cell doublings in 3D culture. 24
high

 cells were treated as described in (D). Plating density: 1000 
cells per gel. n=3. *p<0.05, **p<0.005, ***p<0.0005.  

Data are presented as mean ± SEM. 
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4.9 MS-forming 24high HMLE cells display invasive growth in 3D-collagen 

gels 

During quantification of the colony formation in 3D collagen gels, I discovered 

that colonies formed by untreated 24high control cells and MS-derived cells 

markedly differed in their morphology: untreated control cells formed colonies 

with clearly defined edges while MS-derived cells generated colonies 

characterized by diffuse margins. To investigate the morphologies of colonies 

formed by untreated 24high control and MS-derived cells more precisely, 

immunofluorescence staining for the basement membrane-component laminin-1 

and subsequent confocal microscopy was performed. Colonies generated by 

untreated 24high control cells displayed smooth margins with continuous laminin-1 

expression, indicating non-invasive 3D-growth. In contrast, colonies formed by 

MS-derived cells showed patchy laminin-1 expression and cell-clumps as well as 

single cells detaching from the margins, indicating invasive 3D-growth (Figure 

10).  

In summary, these data revealed that transient Twist1-activation induced 

invasive traits of 24high HMLE cells in 3D culture. Moreover, these results, 

together with the observations from the MS-assay, demonstrated that transient 

Twist1 permanently altered functional traits of 24high HMLE cells.  

 

Figure 10: MS-forming 24
high

 HMLE cells display invasive growth in 3D collagen gels. 
Immunofluorescence staining of laminin-1 (green) and DAPI (blue) of colonies formed by 

untreated 24
high

 control cells (TAM) or MS-derived cells. Scale bar: 100 µm. 

 

4.10  24high HMLE cells display epithelial-mesenchymal plasticity in 3D 

collagen gels after transient Twist1-activation 

Since invasive traits are often linked to a mesenchymal cell state and non-

invasive traits are often linked to an epithelial cell state, 24high HMLE cells 

growing in 3D collagen gels were characterized for expression of epithelial and 

mesenchymal markers by immunofluorescence and subsequent confocal 
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microscopy. In detail, 1) untreated 24high control cells, 2) 24high cells with active 

Twist1 and 3) 24high cells transiently treated with TAM (15 days treated with TAM 

in 2D followed by TAM-withdrawal upon plating into 3D collagen gels) were 

analyzed for the expression of following markers: A) E-cadherin, B) vimentin, C) 

the tight-junction component ZO-1 (epithelial marker) and D) F-actin. Of note, 

cortical organization of actin filaments is characteristic for epithelial cells while 

mesenchymal cells display actin stress fibers. (Confocal microscopy for E-

cadherin and vimentin were performed in collaboration with Diana Dragoi, PhD 

student in the Scheel group). 

 

Figure 11: 24
high

 HMLE cells display epithelial-mesenchymal plasticity in 3D collagen gels 
after transient Twist1-activation.  
(A) Immunofluorescence staining of E-cadherin (green), vimentin (red) and DAPI (blue) of 

colonies formed by untreated 24
high

 control cells (TAM) or 24
high 

cells treated with TAM for 15 
days and further treated in 3D culture (+TAM) or 24

high
 cells treated with TAM for 15 days and not 

further treated with TAM in 3D culture (+/TAM). Scale bar: 50 µm. (B) Immunofluorescence 
staining of F-actin (white), ZO-1 (red) and DAPI (blue) of colonies formed by cells treated as 
described in (A). Scale bar: 50 µm.  

 

Untreated 24high control cells generated colonies characterized by a basal layer 

of E-cadherin- and vimentin-positive cells. In addition, untreated 24high control 

cells showed expression of the tight-junction component ZO-1 and cortical F-

actin. 24high HMLE cells with active Twist1 were characterized by high vimentin 

protein expression as well as actin stress fibers and a lack of E-cadherin and 

ZO-1 expression. In contrast, 24high HMLE cells transiently treated with TAM 

displayed E-cadherin, high vimentin as well as ZO-1 expression. Moreover, 
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colonies generated by these cells contained both, cortical F-actin localization and 

actin stress fibers (Figures 11A and 11B).  

Taken together, colonies formed by untreated control 24high HMLE cells harbored 

cells characterized by an epithelial cell state. 24high HMLE cells with active Twist1 

were characterized by a mesenchymal cell state. In contrast, colonies generated 

by transiently treated 24high HMLE cells were composed of cells simultaneously 

expressing epithelial and mesenchymal markers. Consequently, these 

observations confirmed the findings from the MS-assay (Figures 6D and 6E), 

suggesting that transient Twist1-activation induces epithelial-mesenchymal 

plasticity in 24high HMLE cells.  

 

4.11 Transient Twist1-activation permanently alters gene expression 

profile of HMLE cells 

As described in Figure 9, 10 and 11, 24high HMLE cells growing in a 3D 

environment showed different traits depending on Twist1-activity: 1) before 

Twist1-activation cells displayed a proliferative, non-invasive, epithelial 

phenotype, 2) during Twist1-activation cells showed a non-proliferative, invasive, 

mesenchymal phenotype and 3) after transient Twist1-activation cells were 

characterized by a proliferative, invasive phenotype with epithelial-mesenchymal 

plasticity, a hitherto unknown cell state.  

For further characterization of this novel cell state, gene expression profiling was 

performed in collaboration with Dr. Martin Irmler from the Institute of 

Experimental Genetics at the Helmholtz Center Munich for. The gene expression 

profiles of 1) 24low and 24high cells before Twist1-activation (TAM), 2) 24low and 

24high cells during Twist1-activation (15 days +TAM), 3) 24high cells after transient 

Twist1-activation (+/TAM) and MS-derived cells were assessed. Our group 

recently showed that not only Twist1 but also the EMT-TF Snail1 primed 24high 

HMLE cells for stable MS-forming capacity and epithelial-mesenchymal plasticity 

(Master Thesis Elena Panzilius, 2013; Schmidt et al., 2015). Intending to derive a 

common plasticity gene signature, the gene expression profiles of HMLE-Snail1-

ER 24high cells before Snail1-activation (TAM) and of MS-derived cells of MS 

formed by HMLE-Snail1-ER 24high cells were included in the analysis (Figure 



Results 

80 
 

12A). Following unsupervised clustering, principle component analysis (PCA) 

was performed in collaboration with Dr. Steffen Sass from the Institute for 

Computational Biology (ICB) at the Helmholtz Center Munich (Figure 12B). With 

respect to principal component (PC) 2, all analyzed cell populations fell into three 

different clusters characteristic for: 1) an epithelial cell state (untreated 24low and 

24high HMLE-Twist1-ER cells and untreated 24high HMLE-Snail1-ER cells), 2) a 

mesenchymal cell state (24low and 24high HMLE-Twist1-ER treated with TAM) and 

3) a cell state in-between (cells after transient Twist1-activation and MS-derived 

cells). Thus, in accordance with my functional findings, 24high HMLE cells were 

found to differ in their gene expression profile depending on EMT-TF-activity. 

With respect to PC1, the gene expression profile of MS-derived cells was 

different from those of all other cell populations. Thus, 3D culture conditions 

influenced the gene expression profile of HMLE cells. To identify genes within a 

specific plasticity gene signature, genes were filtered for those genes expressed 

in 2D and 3D independent of cell culture conditions and specifically expressed in 

HMLE cells after transient EMT-TF-activation, but not in a fixed epithelial or 

mesenchymal cell state. Indeed a subset of 189 genes representing a unique 

plasticity gene signature was identified consisting of genes associated with 

intracellular protein kinase signaling (Figures 12C, 12D and 12E).  

Together, these data suggested that transient Twist1- or Snail1-activation 

permanently altered the cell state of 24high HMLE cells. The acquired cell state 

was characterized by a unique gene expression profile represented by a 189-

genes signature.  
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Figure 12: Transient Twist1-activation permanently alters gene expression profile of HMLE 
cells.  
(A) Schematic overview of cells (for each n=3) included in the gene expression profiling: 24

high 

(24
hi
; rhomb) or 24

low
 (24

lo
; circle) HMLE-Twist1-ER or 24

high 
HMLE-Snail1-ER cells (triangle) 

either not treated with TAM (green) or treated with TAM for 15 days (red) or treated with TAM for 
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15 days followed by 9 days of TAM-withdrawal (blue) or MS-derived cells (purple). (B) Principal 
Component Analysis (PCA) after unsupervised clustering of the gene expression profiles of the 
cells described in (A). (C) Venn diagram of differentially expressed genes in MS-derived cells 
from MS formed by HMLE-Snail1-ER or HMLE-Twist1-ER cells and in HMLE-Twist1-ER cells 
after transient Twist1-activation. The 189-gene signature represents the overlap of differentially 
regulated genes shared by these three groups. rest = HMLE-Twist1-ER or HMLE-Snail1-ER cells 
not treated with TAM and HMLE-Twist1-ER cells treated with TAM for 15 days. (D) Heatmap 
showing the top 15 up- and downregulated expression values of the 189-gene signature 
described in (C). Samples are labeled as described in (A). Red (high) and blue (low) indicates 
log2 expression values. Scale bar in log2. (E) Top 10 upregulated genes of the 189-gene 
signature generated as described in (C). The corresponding fold-changes are shown for MS-
derived cells from MS formed by HMLE-Twist1-ER cells. (F) Significantly enriched GO-terms 
containing the top 10-upregulated genes of the 189-gene signature generated as described in 
(C). 

 

4.12 Summary of the first part 

In the first part of my thesis, I showed that Twist1-activation induced 

mesenchymal transdifferentiation and MS-forming ability in purified epithelial 

cells (24neg and 24high). Importantly, these traits were induced independently of 

each other and MS-formation only emerged after subsequent Twist1-

deactivation. In addition, I discovered that whereas most of the 24high HMLE cells 

retained a mesenchymal phenotype, a small subset of the cells underwent MET 

and acquired a hitherto unknown cell state: this cell state neither resembled 

those of epithelial cells before Twist1-activation nor those of mesenchymal cells 

with active Twist1 (Figure 13). Specifically, this subset of 24high HMLE cells was 

characterized by epithelial-mesenchymal plasticity, invasive traits in 3D collagen 

gels as well as a unique gene expression profile consisting of 189 genes. Since 

only a subset of 24high HMLE cells underwent MET and acquired the described 

“novel” cell state, I concluded that there exists cellular heterogeneity even within 

the FACS purified 24high HMLE subpopulation. Moreover, I hypothesized that a 

pre-existing cell state might determine how a cell responds to transient Twist1-

activation.  

 

Figure 13: Summary of the first part.  
Schematic representation: Before Twist1-activation HMLE 24

high
 cells show an epithelial 

phenotype (E). During Twist1-activation for 15 days all 24
high

 cells undergo EMT and acquire a 
mesenchymal phenotype (M). After subsequent Twist1-deactivation for 9 days a subset of 24

high
 

cells undergoes MET and acquires a unique cell state (E
*
). 
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4.13 Single-cell cloning of 24high HMLE cells reveals resistance to Twist1-

induced EMT 

As common metastatic models suggest that MET is required for outgrowth of 

cancer cells at metastatic sites (colonization), I sought to study the molecular 

process predisposing a cell to undergo MET. For this purpose, I set out to 

identify those 24high HMLE cells that were able to undergo MET after Twist1-

deactivation. Since, I discovered in the first part of my thesis that even the FACS 

purified 24high subpopulation was heterogeneous with respect to Twist1-

responsiveness, I wished to further unravel cellular heterogeneity and study the 

effects of Twist1 at the single cell level. 

For this purpose, single-cell clones (SCCs) were isolated from the purified 24high 

subpopulation. Next, Twist1 was activated for 15 days in 32 isolated SCCs. 

During this period, 23 SCCs started to scatter and acquire a spindle-shaped, 

front-to-back polarized morphology, indicating transdifferentiation to a 

mesenchymal cell state (M-SCCs). In contrast, five SCCs retained an epithelial, 

cobblestone-like morphology (E-SCCs) and four SCCs (D-SCCs) died upon 

Twist1-activation. During subsequent Twist1-deactivation for 9 days, the E-SCCs 

maintained an epithelial morphology. Remarkably, all M-SSCs retained a 

mesenchymal morphology after TAM-withdrawal, indicating that, in contrast to 

bulk 24high HMLE cells, none of these SCCs underwent MET (Figure 14A).  

In addition, ten representative SCCs (five E-SCCs and five M-SCCs) were 

analyzed by immunofluorescence 1) before Twist1-activation (TAM), 2) after 

Twist1-activation (15d+TAM) and 3) after transient Twist1-activation 

(+/9d TAM). Before Twist1-activation, SCCs showed high levels of 

membranous E-cadherin and low vimentin protein expression. Thus, all SCCs 

displayed an epithelial phenotype before TAM-treatment. After Twist1-activation 

for a period of 15 days, M-SCCs had lost membranous E-cadherin and gained 

high vimentin protein expression, confirming transdifferentiation to a 

mesenchymal phenotype. In contrast, E-SCCs retained membranous E-cadherin 

and low vimentin protein expression, confirming maintenance of an epithelial 

phenotype. After subsequent Twist1-deactivation for 9 days, none of the M-

SCCs showed re-expression and membranous localization of E-cadherin or 
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downregulation of vimentin protein expression, indicating a stable mesenchymal 

transdifferentiation. E-cadherin and vimentin protein levels of the E-SCCs were 

not influenced by TAM-withdrawal (Figure 14B).  

 

 

Figure 14: Single-cell cloning of 24
high

 HMLE cells reveals resistance to Twist1-induced 
EMT.  
(A) Representative bright-field microscopic pictures of single cell clones (SCCs) isolated from 

purified 24
high

 HMLE-Twist1-ER cells. Cells were not treated with TAM (), treated with TAM for 
15 days (+TAM) or treated with TAM for 15 days followed by 9 days of TAM-withdrawal. Scale 
bar: 100 μm. (B) Immunofluorescence staining of E-cadherin (green), vimentin (red) and DAPI 
(blue) of five isolated EMT resistant (E-SCC) and five isolated EMT competent (M-SCC) SCCs. 
Cells were treated as described in (A). Scale bar: 20 µm.  

 

Taken together, these data showed that Twist1 elicited different effects in SCCs 

isolated from 24high HMLE cells compared to 24high HMLE bulk cells. Whereas M-

SCCs underwent Twist1-induced EMT and acquired a stable mesenchymal cell 

state (referred to as “EMT competence”), E-SCCs resisted Twist1-induced EMT 
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and retained an epithelial cell state (referred to as “EMT resistance”). 

Consequently, these data raised three main questions: 1) why did the isolated 

SCCs respond differentially to TAM-treatment, 2) why was EMT resistance not 

observed in the bulk 24high HMLE cells and 3) why was MET not detected in the 

isolated M-SCCs? 

 

4.14 Twist1 expression levels and Twist1 TF-activity do not differ between 

E-SCCs and M-SCCs 

First, I focused on the question why isolated SCCs responded differentially to 

TAM-treatment. The HMLE-Twist1-ER cell line was originally generated by 

retroviral transduction of HMLE cells with the pWZL-mTwist1-ER plasmid (Casas 

et al., 2011). During retroviral transductions, the copy-number and the integration 

sites of the plasmid DNA into the target genome are random. Based on that, I 

hypothesized that the isolated 24high HMLE SCCs might respond differentially to 

TAM-treatment due to different Twist1 expression levels. Additionally, I 

hypothesized that M-SCCs might express higher Twist1 levels compared to E-

SCCs. To test these hypotheses, I analyzed Twist1 expression in ten 

representative SCCs (five E-SCCs and five M-SCCs) at transcriptional and 

protein level by qRT-PCR and Western-blot analysis. At the transcriptional level, 

Twist1 levels varied in-between the ten SCCs. However, Twist1 transcript levels 

were not consistently lower in E-SCCs and higher in M-SCCs. For instance, E-

SCC 3, 4 and M-SCC 4 showed comparable Twist1 transcript levels (Figure 

15A). Similarly, Twist1 protein levels varied in-between the ten SCCs, but were 

not generally higher in the EMT competent M-SCCs (Figure 15B). Thus, Twist1 

expression levels did not correlate with different abilities of E-SCCs and M-SCCs 

to undergo EMT in response to TAM-treatment.  

Upon TAM-treatment, the Twist1-ER fusion protein undergoes a conformational 

change that allows DNA binding and thereby TF-activity. Therefore, I set out to 

investigate whether Twist1 target gene expression might differ in E-SCCs and M-

SCCs upon TAM-treatment. For this purpose, expression levels of the direct 

Twist1 target gene Wnt5a were assessed by qRT-PCR analysis before and after 

TAM-treatment (Shi et al., 2014). To quantify Wnt5a up-regulation, the fold 

changes of Wnt5a transcript levels were calculated. Upon TAM-treatment, all 
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SCCs showed upregulation of the direct Twist1 target gene Wnt5a. However, 

fold-changes in Wnt5a expression did not correlate with EMT resistance (E-

SCCs) or EMT competence (M-SCCs) (Figure 15C).  

Together, these data suggested that differences between E-SCCs and M-SCCs 

upon TAM-treatment did neither result from different Twist1 transcript or protein 

levels nor from general disparities in Twist1 TF-activity.  

 

Figure 15: Twist1 expression levels and Twist1 TF-activity do not differ between E-SCCs 
and M-SCCs.  
(A) Relative mRNA expression of Twist1 of E-SCCs and M-SCCs. Cells were not treated with 
TAM. n=3. (B) Western-blot analysis of Twist1-ER and β-actin in E-SCCs and M-SCCs. Cells 
were not treated with TAM. Twist1-ER protein levels were quantified relatively to β-actin. (C) Fold 
change of the cDNA level of Wnt5a of E-SCCs and M-SCCs not treated (−) versus treated with 
TAM for 7 days (+). n=3. 

Data are presented as mean ± SEM. 

 

4.15 Transcriptional programs in E-SCCs and M-SCCs are differentially 

activated upon TAM-treatment 

Not only Twist1, but a set of additional EMT-TFs are involved in the regulation of 

the EMT-program and coordinate repression of epithelial markers (e.g. E-

cadherin) as well as induction of mesenchymal markers. Since Twist1 TF-activity 

was equally induced in both, E-SCCs and M-SCCs, I set out to investigate 
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whether components of the EMT-transcriptional program might not be initiated in 

E-SCCs in contrast to M-SCCs.  

For this purpose, the transcriptional programs of E-SCCs and M-SCCs were 

analyzed by qRT-PCR. Consequently, ten representative SCCs (five E-SCCs 

and five M-SCCs) were examined 1) before (TAM), 2) during (7d+TAM) and 3) 

after long-term Twist1-activation (14d+TAM). Specifically, transcript levels of the 

adherens junction proteins E-cadherin and N-cadherin, the EMT-TFs ZEB1 and 

Slug as well as the Ovo-like zinc finger 2 TF (Ovol2) were assessed (Figure 

16A). ZEB1 and Slug are direct repressors of E-cadherin, while Ovol2 represents 

a transcriptional repressor of the EMT-TF ZEB1 and was found to induce MET in 

human cancer (Roca et al., 2013; Watanabe et al., 2014). Before Twist1-

activation, all SCCs expressed high levels of E-cadherin, Slug and Ovol2. ZEB1 

transcript levels were nearly undetectable for all SCCs and N-cadherin transcript 

levels varied in-between the SCCs but did not correlate with E-SCC- or M-SCC-

cell-state. Thus, with respect to these markers E-SCCs and M-SCCs did not 

differ from each other before Twist1-activation. During TAM-treatment, transcript 

levels of N-cadherin (except E-SCC 3) and Slug were consistently up-regulated 

in both E-SCCs and M-SCCs: after Twist1-activation for 14 days, N-cadherin 

transcript levels were increased by 5- to 10-fold and Slug transcript levels by 10-

fold compared to untreated control cells. In contrast, E-cadherin, Ovol2 and 

ZEB1 transcript levels changed differentially in E-SCCs and M-SCCs upon TAM-

treatment. After Twist1-activation for 14 days, E-SCCs still expressed high levels 

of the epithelial makers E-cadherin and Ovol2 while M-SCCs showed a 10- to 

1000-fold downregulation of these markers compared to untreated control cells. 

Although all SCCs displayed up-regulation of ZEB1 transcript levels (100- to 

1000-fold) during Twist1-activation for 14 days, ZEB1 transcript levels strongly 

varied between E-SCCs and M-SCCS at day 7 after Twist1-activation (Figure 

16A). To quantify ZEB1 up-regulation at day 7 more precisely, fold-changes of 

ZEB1 transcript levels were calculated. Whereas ZEB1 transcript levels 

increased 3- to 6-fold in E-SCCs, a 30- to 70-fold increase of ZEB1 levels was 

revealed in M-SCCs upon TAM-treatment (Figure 16B). Next, I investigated 

whether differences in ZEB1 up-regulation between E-SCCs and M-SCCs were 

detectable at the protein level as well. For this purpose, Western-blot analysis 
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was performed for ten SCCs after TAM-treatment for 7 days. None of the E-

SCCs showed ZEB1 protein expression. In contrast, M-SCCs (except M-SCC 1) 

showed robust ZEB1 expression at the protein level (Figure 16C). Of note, ZEB1 

protein levels correlated with ZEB1 transcript levels (Figure 16A).  

In summary, qRT-PCR analysis indicated that the transcriptional programs of 

EMT resistant (E-SCCs) and EMT competent (M-SCCs) SCCs are activated 

differentially upon Twist1-activation. Loss of E-cadherin and Ovol2 expression as 

well as strong ZEB1 up-regulation (at day 7) correlated with mesenchymal 

transdifferentiation, while maintenance of high E-cadherin and Ovol2 transcript 

levels as well as delayed ZEB1 up-regulation correlated with EMT resistance.  
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Figure 16: Transcriptional programs in E-SCCs and M-SCCs are differentially activated 
upon TAM-treatment.  
(A) Relative mRNA expression of E-cadherin, N-cadherin, ZEB1, Slug and Ovol2 of E-SCCs (left 

panel) and M-SCCs (right panel). Cells were not treated (TAM; light green/red) or treated with 
TAM for 7 days (7d+TAM; middle green/red) or 14 days (14d+TAM; dark green/red). n=3. (B) 
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Fold changes of the cDNA levels of ZEB1 of E-SCCs and M-SCCs not treated (−) versus treated 
with TAM for 7 days (+). n=3. (C) Western-blot analysis of ZEB1 and β-actin of E-SCCs and M-
SCCs treated with TAM for 7 days (7d+TAM). ZEB1 protein levels were quantified relatively to β-
actin. 

Data are presented as mean ± SEM. 

 

4.16 By morphology, EMT resistant cells cannot be distinguished from 

EMT competent cells in co-culture  

Next, I focused on the following questions: 1) why could EMT resistant cells not 

be detected in the 24high HMLE bulk population cells during Twist1-activation for 

a period of 15 days and 2) why was MET not observed in the isolated M-SCCs 

after transient Twist1-activation.  

Since the majority of isolated SCCs were M-SCCs (23 of 32 SCCs), I assumed 

that more M-SCCs than E-SCCs existed within the bulk 24high HMLE population. 

Based on this consideration, I developed the following hypothesis (Figure 17A): a 

single EMT resistant cell (*) is surrounded by EMT competent cells. Before 

Twist1-activation, all HMLE cells express E-cadherin allowing the assembly of 

adherens junctions (I). Of note, E-cadherin protein stability is provided through 

heterotypic interactions with other cells expressing E-cadherin. Otherwise, 

adherens junctions cannot be established. I speculated that during TAM-

treatment, E-cadherin expression is downregulated in EMT competent cells, 

which surround EMT resistant cells. Adherens junctions are dissolved and both, 

EMT competent and EMT resistant cells gain a single-cell state (II and III). After 

subsequent Twist1-deactivation, EMT resistant cells reassemble adherens 

junctions with their respective daughter cells and become morphologically 

distinguishable from surrounding mesenchymal cells (IV and V). To test this 

hypothesis, one representative E-SCC (E3) was transduced lentivirally with the 

pRRL-cPPT-CMV-GFP-W vector and mixed with one unlabeled representative 

M-SCC (M3) at a ratio of one E-SCC cell (GFPpos) per ten M-SCC cells (GFPneg) 

(Figure 17B). First, cells were analyzed by immunofluorescence before (TAM) 

and after Twist1-activation (14d+TAM). Before Twist1-activation, GFPpos and 

GFPneg cells showed membranous E-cadherin and low vimentin protein 

expression. During TAM-treatment, both GFPpos and GFPneg cells acquired a 
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spindle-shaped morphology and high vimentin protein expression, while E-

cadherin expression was lost (Figure 17C).  

 

Figure 17 By morphology, EMT resistant cells cannot be distinguished from EMT 
competent cells in co-culture. 
(A) Schematic representation: I) Before Twist1-activation, all 24

high
 HMLE cells show an epithelial 

phenotype (* indicates an EMT resistant cell). II) During Twist1-activation, EMT competent cells 

undergo EMT and cell-cell contacts become degraded. III) After 14 days of Twist1-activation, 
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EMT resistant and EMT competent cells are morphologically indistinguishable. IV) and V) After 

Twist1-deactivation EMT competent cells retain a mesenchymal phenotype and EMT resistant 

cells become morphologically distinguishable. (B) Representative bright-field microscopic 

pictures of the co-culture of GFP-labeled EMT resistant cells (green, E-SCC) and un-labeled 

(GFP
neg

) EMT competent cells (M-SCC) not treated with TAM (TAM). (plating ratio: one E-SCC 

cell per ten M-SCC cells). Scale bar: 100 µm. (C) Immunofluorescence staining of E-cadherin 

(red; left panel) or vimentin (red; right panel) and DAPI (blue) of co-cultured E-SCC (green; 

indicated by *) and M-SCC cells (plating ratio: one E-SCC cell per ten M-SCC cells). Cells were 

not treated (−TAM) or treated with TAM for 14 days (14d+TAM) Scale bar: 20 µm. (D) 

Immunofluorescence staining of E-cadherin (red; upper panel) or vimentin (red; lower panel) and 

DAPI (blue) of one E-SCC (green; indicated by *) and one M-SCC cultured alone. Cells were 

treated as described in (C). Scale bar: 20 µm. (E) Relative mRNA expression of E-cadherin, 

Ovol2 and ZEB1 of SCCs treated as described in (C). Cells were either cultured alone or together 

(plating ratio: one E-SCC cell per ten M-SCC cells). n=3. 

Data are presented as mean ± SEM. 

 

In addition, unlabeled GFPneg M-SSC and labeled GFPpos E-SCC cells were 

separately cultured as controls and monitored during Twist1-activation. During 

TAM-treatment, separately cultured GFPpos E-SCC cells retained high E-

cadherin expression and low vimentin protein expression. In contrast, separately 

cultured GFPneg M-SCC cells lost E-cadherin expression and obtained high 

vimentin protein expression (Figure 17D). In addition, cells were analyzed for 

transcript levels of E-cadherin, Ovol2 and ZEB1 after 14 days of TAM-treatment. 

For this purpose, co-cultured GFPpos E-SCC and GFPneg M-SCC cells were 

separated by FACS prior to RNA extraction, cDNA synthesis and qRT-PCR 

analysis. Transcript levels of E-cadherin, Ovol2 and ZEB1 did not differ between 

co-cultured or separately cultured M-SCC cells after Twist1-activation for 14 

days. Thus, M-SCC cells were not inhibited in their ability to undergo EMT by the 

presence of E-SCC cells. By contrast, transcript levels of E-cadherin and Ovol2 

were reduced by 50% in E-SCC cells when co-cultured with M-SCC cells during 

Twist1-activation. Moreover, co-cultured E-SCC cells showed 10-fold higher 

ZEB1 transcript levels than separately cultured E-SCC cells after Twist1-

activation for 14 days. In conclusion, expression of E-cadherin, Ovol2 and ZEB1 

were influenced by co-culture of E-SCC with M-SCC cells. Specifically, these 

markers were regulated in the same direction as in M-SCC cells, but to a lesser 

extent. Thus, even after co-culture, ZEB1 transcript levels merely increased to 

20% of the level observed for the M-SCC (Figure 17E).  
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The second part of the hypothesis suggested that EMT resistant cells grow out 

after Twist1-deactivation and become distinguishable from surrounding 

mesenchymal cells. To test this part of the hypothesis, co-cultured cells were 

analyzed after transient Twist1-activation (14d+TAM and 9dTAM) by 

immunofluorescence. After TAM-withdrawal, only GFPpos cells acquired a 

cobblestone-like morphology and were detected to grow in epithelial islands. 

Moreover, GFPpos cells re-expressed E-cadherin and showed reduced vimentin 

protein expression. In contrast, GFPneg M-SCC cells retained a spindle-shaped 

morphology, lack of E-cadherin expression and high vimentin protein expression 

(Figure 18).  

 

Figure 18: EMT resistant cells reappear as epithelial islands after Twist1-deactivation. 
Immunofluorescence staining of E-cadherin (red; upper panel) or vimentin (red; lower panel) and 
DAPI (blue) of co-cultured E-SCC (green; indicated by *) and M-SCC cells (plating ratio: one E-
SCC cell per ten M-SCC cells). Cells were treated with TAM for 14 days followed by 9 days of 

TAM-withdrawal (+/9d TAM). 

 

Together, these data suggested that EMT resistant cells were present but not 

detectable within the 24high HMLE bulk population as they were morphologically 

indistinguishable from surrounding EMT competent cells following Twist1-

activation. Moreover, these data indicated that the transcriptional EMT-program 

(ZEB1 up-regulation and E-cadherin as well as Ovol2 down-regulation) was not 

induced in E-SCCs to the same extent as in M-SCCs. Therefore, EMT resistant 

cells partially retained their epithelial cell state during Twist1-activation. Finally, 

“reappearance” of epithelial islands, consisting of E-SCC cells, suggested that 

MET observed for the bulk 24high cells was based on EMT resistant cells that 

became morphologically distinguishable once more after Twist1-deactivation. 
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4.17 ZEB1-induction is required for Twist1-mediated EMT in 24high HMLE 

cells 

Figure 16 showed that the EMT-TF ZEB1 was highly up-regulated at the 

transcriptional and protein level in M-SCCs but not in E-SCCs after TAM-

treatment for 7 days. Moreover, co-culture with EMT competent cells did not 

increase ZEB1 transcript levels of E-SCCs to the same extent as observed for M-

SCCs (Figure 17E). Therefore, I hypothesized that ZEB1-induction might be 

required for Twist1-mediated EMT in 24high HMLE cells. To test this hypothesis, a 

shRNA-mediated knockdown of ZEB1 was performed. Since M-SCC 2 showed 

the highest ZEB1 protein levels amongst the five M-SCCs (7 days after Twist-

activation), this clone was chosen as a representative. M-SCC cells were 

transduced lentivirally with plasmid DNA encoding GFP and additionally either a 

shRNA targeting ZEB1 (sh1, sh2) or a non-targeting control shRNA (sh-nt). Of 

note, even in the absence of Twist1-activity, cells expressing the non-targeting 

shRNA showed a spindle-shaped morphology, suggesting that either the 

lentiviral transduction process itself or the non-targeting shRNA induced 

mesenchymal transdifferentiation of these cells. Importantly, M-SCC cells 

expressing shRNAs targeting ZEB1 retained an epithelial morphology (Figure 

19A). To determine knockdown efficiency of the shRNAs targeting ZEB1, qRT-

PCR and Western-blot analysis were performed. Cells expressing shRNAs 

targeting ZEB1 showed a greater than 90% reduction in ZEB1 transcript levels 

compared to cells expressing the non-targeting shRNA (Figure 19B). 

Accordingly, at the protein level, cells expressing sh1 or sh2 showed ZEB1 

protein reduction by about 90% compared to cells expressing the non-targeting 

shRNA (Figure 19C). In addition, lentivirally transduced cells were analyzed for 

E-cadherin and vimentin protein expression by immunofluorescence. Cells 

expressing a shRNA targeting ZEB1 (sh1 or sh2) showed high levels of 

membranous E-cadherin and low vimentin protein expression. In contrast, cells 

expressing the non-targeting shRNA did not express E-cadherin, but displayed 

high vimentin protein expression (Figure 19D). During Twist1-activation for 14 

days, cells expressing shRNAs targeting ZEB1 (sh1 or sh2) retained high E-

cadherin and low vimentin protein expression, while cells expressing the non-

targeting control shRNA retained lack of E-cadherin expression and high 

vimentin protein levels (Figure 19E).  
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Figure 19: ZEB1-induction is required for Twist1-mediated EMT in 24
high

 HMLE cells.  
(A) Representative bright-field microscopic pictures of one M-SCC expressing non-targeting 
control shRNA (sh-nt) or shRNA targeting ZEB1 (sh1 or sh2). Cells were not treated with TAM 

(TAM). Scale bar: 50 µm. (B) Relative mRNA expression of ZEB1 of one M-SCC expressing 
shRNA targeting ZEB1 (sh1 or sh2) or non-targeting control shRNA (sh-nt). Cells were not 
treated with TAM. n=3. Percentages indicate ZEB1 knockdown compared to non-targeting 
control. (C) Western-blot analysis of ZEB1 and β-actin of one M-SCC expressing shRNA 
targeting ZEB1 (sh1 or sh2) or non-targeting control (sh-nt). Cells were not treated with TAM. 
ZEB1 protein levels were quantified relatively to β-actin. (D) Immunofluorescence staining of E-
cadherin (red; left panel) or vimentin (red; right panel) and DAPI (blue) of one M-SCC expressing 
shRNA targeting ZEB1 (sh1 or sh2) or non-targeting control shRNA (sh-nt). shRNA expressing 
cells are labeled with GFP. Cells were not treated with TAM. Scale bar: 20 µm. (E) 
Immunofluorescence staining of E-cadherin (red; left panel) or vimentin (red; right panel) and 
DAPI (blue) of one M-SCC expressing shRNA targeting ZEB1 (sh1 or sh2) or non-targeting 
control shRNA (sh-nt). shRNA expressing cells are labeled with GFP. Cells were treated with 
TAM for 14 days. Scale bar: 20 µm.  

Data are presented as mean ± SEM. 
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In summary, these results showed that knockdown of ZEB1 was sufficient to 

prevent Twist1-induced EMT and demonstrated that upregulation of ZEB1 was 

required for Twist1-induced EMT. Consequently, these data raised the question 

why ZEB1 expression was differentially upregulated in M-SCCs and E-SCCs. 

 

4.18 Twist1-binding to a putative enhancer region of ZEB1 differs in M-

SCCs and E-SCCs  

Using the HMLE-Twist1-ER cell line, our group recently discovered that Twist1 

binds to a region 7.2 kb upstream of the transcriptional start site (TSS) of ZEB1, 

thereby inducing ZEB1 transcription and EMT (Dragoi et al., 2016). Of note, this 

region upstream of the TSS of ZEB1 was identified through a recently published 

ChIP-sequencing data set of Twist1 (Chang et al., 2015). Based on these 

observations, I hypothesized that Twist1 might differentially bind to this putative 

enhancer region of ZEB1 in M-SCCs and E-SCCs. To address this hypothesis, 

chromatin immunoprecipitation (ChIP) analysis was performed in collaboration 

with Dr. Vivek K. Mishra from the Department of General, Visceral and Pediatric 

Surgery at the University Medical Center Göttingen. ChIP analysis was 

performed for three E-SCCs and three M-SCCs, each before and after 7 days of 

Twist1-activation. To quantify Twist1-occupancy at the described region 

upstream of the ZEB1 TSS, qRT-PCR analysis was performed for a DNA locus 

around this region (ZEB1_+ve site). As a control, qRT-PCR analysis was 

performed for a DNA locus, not described to be bound by Twist1 (ZEB1_ve 

site). In untreated SCCs, ChIP did not enrich for the ZEB1_+ve site, indicating 

that Twist1 was not bound to this region. In TAM-treated SCCs, ChIP enriched 

for the ZEB1_ve+site (0.03% of the input for the E-SCCs and 0.12% of the input 

for the M-SCCs). Specifically, TAM-treatment increased Twist1-occupancy at the 

ZEB1_+ve site 4-fold more in the M-SCCs than E-SCCs. At the ZEB1_ve site, 

no detectable differences between the analyzed conditions were detected 

(Figure 20).  

 

In summary, these data suggested that Twist1-binding to a putative enhancer 

region of ZEB1 was different for E-SCCs and M-SCCs: after TAM-treatment for 7 

days, Twist1 was binding to this region more efficiently in M-SCCs compared to 
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E-SCCs. Based on that observation, I concluded that differential Twist1-binding 

to a putative enhancer region of ZEB1 resulted in differential up-regulation of 

ZEB1 and thereby either in EMT resistance or mesenchymal transdifferentiation. 

 

Figure 20: Twist1-binding to a putative enhancer region of ZEB1 differs in M-SCCs and E-
SCCs.  
Chromatin Immunoprecipitation analyses of E-SCCs and M-SCCs not treated (light green/red) or 
treated with TAM (dark green/red) for 7 days. Data indicate percentage (%) of input. For each E-
SCC and M-SCC the mean of three SCCs is shown.  

Data are presented as mean ± SD. 

 

4.19 E-SCCs and M-SCCs do not respond differentially to TGFβ1 

Figure 20 suggested Twist1 to be differentially bound to a putative enhancer 

region of ZEB1 in M-SCCs and E-SCCs upon TAM-treatment. Therefore, I set 

out to investigate why more Twist1 was bound to this region in M-SCCs 

compared to E-SCCs. In addition to the discovery that Twist1 binds to this region 

upstream of the ZEB1 TSS in HMLE cells, our group recently determined that 

Twist1-binding depends on active TGFβ-signaling and could be increased by 

adding additional recombinant TGFβ1 (Dragoi, et al., 2016). Based on these 

data, I hypothesized that responsiveness to TGFβ-ligand might differ in M-SCCs 

and E-SCCs. To test this hypothesis, three E-SCCs and three M-SCCs were 

treated with recombinant TGFβ1 for 30 minutes or 3 hours and phosphorylation 

of Smad2/3 (p-Smad2/3) was assessed by Western-blot analysis. TGFβ1-

treatment for 30 minutes strongly increased Smad2/3-phosophorylation in all 

representative SCCs, while p-Smad2/3 levels decreased in all SCCs 3 hours 

after TGFβ1-treatment (Figure 21A). In addition, I analyzed whether expression 

of TGFβ target genes was equally induced in E-SCCs and M-SCCs. For this 

purpose, transcript levels of fibronectin and N-cadherin were determined by qRT-
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PCR analysis in one representative E-SCC (E3) and one representative M-SCC 

(M3) treated with TGFβ1 for 7 days. In both SCCs, TGFβ1-treatment increased 

transcript levels of fibronectin and N-cadherin 10-fold compared to untreated 

control cells (Figure 21B).  

 

Figure 21: E-SCCs and M-SCCs do not respond differentially to TGFβ1.  
(A) Western-blot analysis of phospho-Smad2/3 (p-Smad2/3), total Smad2/3 (t-Smad2/3) and β-
actin of E-SCCs (left panel) and M-SCCs (right panel) not treated, treated for 30 min or treated 
for 3 hours with TGFβ1. (B) Relative mRNA expression of fibronectin and N-cadherin of one E-
SCC (green) and one M-SCC (red) not treated (−TGFβ1, filled bars) or treated with TGFβ1 
(+TGFβ1, striped bars) for 7 days. n=3.  

Data are presented as mean ± SEM. 

 

Together, these results suggested that E-SCCs and M-SCCs did not respond 

differentially to TGFβ1-treatment. More precisely, Smad-dependent TGFβ-

signaling was activated to a comparable degree in both E-SCCs and M-SCCs. 

Therefore, I concluded that differential Twist1-binding to the putative enhancer 

region of ZEB1 was not based on different induction of the Smad-dependent 

TGFβ-signaling in E-SCCs and M-SCCs. Consequently, the question remained 

which factor(s) mediate differentially binding of Twist1 to this region in E-SCCs 

and M-SCCs. There are multiple scenarios that might mechanistically explain the 

differential Twist1-binding in E-SCCs and M-SCCs. For instance, differences in 

the epigenetic landscape or Smad-independent signaling could result in 

differential Twist1-binding. These possibilities were not addressed in this thesis, 

but will be examined in future studies. 
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4.20 EMT resistant and EMT competent cells show differential expression 

of cell surface proteins  

Upstream of epigenetic regulation and regulation by transcription factors, the 

transcriptional program of cells is often influenced by extracellular signaling, 

which might depend on ligand-receptor interactions or on interaction of cell-

surface proteins present on different cells. Based on these considerations, I set 

out to determine whether differential extracellular signaling might provide an 

explanation for the differential response of E-SCCs and M-SCCs to Twist1-

activation.  

To examine which cell surface proteins might be differentially expressed in E-

SCCs and M-SCCs, cell surface protein expression was determined for three E-

SCCs and three M-SCCs, each before and after 7 days of Twist1-activation. For 

this purpose, glycosyl residues of cell-surface proteins were labelled and 

enriched with streptavidin beads. Cell surface proteomics were performed in 

collaboration with the laboratory of Dr. Stefanie Hauck from the Research Unit 

Protein Science at the Helmholtz Center Munich. In this approach, a total of 961 

different cell surface proteins were identified on E-SCCs and M-SCCs. The data 

were filtered for those proteins that were already higher expressed on E-SCCs 

than M-SCCs before Twist1-activation (E/M ratio (TAM) >1) and remained 

higher expressed on E-SCCs compared to M-SCCs upon TAM-treatment (E/M 

ratio (+TAM) >1). To identify proteins that were persistently differentially 

expressed on E-SCCs compared to M-SCCs, (even after Twist1-activation) 

proteins were sorted for E/M ratio (+TAM) (Figure 22A). Amongst the most 

differentially expressed proteins the epithelial cell adhesion molecules EpCAM 

and TACSTD2 (also named trophoblast antigen 2, Trop2) as well as desmoglein 

3 (Dsg3), a glycoprotein component of desmosomes, were identified. 

Interestingly, for EpCAM and Dsg3 the E/M ratio increased by 55% and 67%, 

respectively, upon TAM-treatment. Thus, these proteins were differentially 

regulated in E-SCCs and M-SCCs after Twist1-activation. For validation, FACS 

analyses were performed for one E-SCC (E3) and one M-SCC (M3) before and 

after 7 days of Twist1-activation. For both EpCAM as well as TACSTD2, FACS 

staining confirmed higher expression on the E-SCC than M-SCC before and after 
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TAM-treatment (Figure 22B). FACS analysis for Dsg3 will be performed in future 

studies.  

 

Figure 22: EMT resistant and EMT competent cells show differential expression of cell 
surface proteins.  
(A) Top 10 upregulated cell surface proteins according to proteomics screen. Data were filtered 
for a peptide count of at least five, proteins with confidence score less than 100 were excluded 
and data were sorted for those proteins with a ratio >1 between E-SCCs versus M-SCCs before 
and after TAM-treatment. Values represent mean ratios for three E-SCCs or three M-SCCs, 
respectively. (B) Overlaid histogram of FACS analysis based on the surface protein EpCAM (left 
panel) or TACSTD2 (right panel) of one E-SCC and one M-SCC not treated with TAM (upper 
panel) or treated with TAM for 7 days (lower panel). Gates were set according to unstained 
negative control (not shown).  

 

In summary, by cell surface proteomics I was able to identify cell surface proteins 

that were differentially expressed in E-SCCs and M-SCCs before and after 

Twist1-activation. The functional relevance of these identified cell-surface 

proteins will be addressed in future studies.  
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4.21 Functional relevance  

In parallel to mechanistic studies, I performed functional studies on EMT 

resistant and EMT competent SCCs. Based on the findings in the first part of my 

thesis, showing that 24high HMLE bulk cells lost colony forming ability in 3D 

collagen gels upon transdifferentiation to a stable mesenchymal cell state, I 

hypothesized that EMT resistant but not EMT competent SCCs might maintain 

proliferation and colony forming ability in 3D environments during Twist1-

activation.  

4.21.1 Maintenance of an epithelial cell state is required for colony 

formation of 24high HMLE cells in 3D collagen gels 

To test the hypothesis that EMT resistant but not EMT competent SCCs maintain 

proliferation in 3D environments during Twist1-activation, five E-SCCs and five 

M-SCCs were analyzed for colony formation in collagen gels before and after 

Twist1-activation. For quantification of colony forming cells, carmine staining was 

performed (Figure 23A). Before Twist1-activation, both E-SCC and M-SCC cells 

colonized the collagen gels with similar efficiency. After Twist1-activation, E-SCC 

cells still formed colonies in 3D. In contrast, all M-SCCs completely lost colony 

forming ability (Figure 23B). In addition, I wished to analyze whether loss of 

colony forming ability of the M-SCCs was due to stable mesenchymal 

transdifferentiation during Twist1-activation. Moreover, I sought to investigate 

whether transient Twist1-activation induced invasive traits in SCCs as observed 

for the bulk 24high HMLE cells. For this purpose, colonies generated by E-SCC 

and M-SCC cells were assessed by immunofluorescence and subsequent 

confocal microscopy for expression of the mesenchymal markers vimentin and 

ZEB1. Before Twist1-activation, colonies formed by E-SCCs showed smooth 

margins and a basal layer of vimentin positive cells, suggesting a non-invasive 

cell state. In contrast, colonies formed by M-SCCs differed slightly: highly 

vimentin positive single cells were detected to detach from the margins of the 

colonies. Thus some M-SCC cells displayed invasive traits even before Twist1-

activation (Figure 23C). Moreover, neither E-SCC nor M-SCC control cells 

showed ZEB1 expression (Figure 23D). Since ZEB1 is marker for mesenchymal 

cells, these data suggested that both, E-SCCs and M-SCCs displayed an 

epithelial cell state before Twist1-activation. After transient Twist1-activation, 
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colonies formed by E-SCCs were still characterized by a basal layer of vimentin 

positive cells. However, I also detected single cells, detaching from the margins 

of the E-SCC colonies, characterized by strong vimentin protein expression 

(Figure 23C). Consequently, transient Twist1 induced invasive traits in E-SCC 

cells. M-SCC cells were detected as dispersed, single cells displaying high 

vimentin protein expression. Moreover, single invading M-SCC cells showed high 

protein expression of ZEB1, while no ZEB1 protein expression was detectable 

for E-SCC cells, indicating that M-SCC cells were characterized by a 

mesenchymal cell state while even invasive E-SCC cells did not display a 

mesenchymal phenotype (Figure 23D).  

Together, these data suggested that EMT resistance enabled 24high HMLE cells 

to retain colony forming ability and acquire invasive traits in 3D collagen gels 

after Twist1-activation. In contrast, EMT competence resulted in increased 

invasiveness but a lack of 3D colony formation. Consequently, these results 

confirmed the observations form the bulk 24high HMLE cells, demonstrating that 

stable mesenchymal transdifferentiation resulted in invasive traits and a loss of 

3D colony formation, while (partial) maintenance of an epithelial cell state 

resulted in invasive 3D growth after Twist1-activation.  
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Figure 23: Maintenance of an epithelial cell state is required for colony formation of 24
high 

HMLE cells in 3D collagen gels.  
(A) Representative bright-field images of carmine stained colonies in 3D collagen gels formed by 
E-SCCs (upper panel) and M-SCCs (lower panel). Cells were not treated with TAM (−TAM) or 
treated with TAM for 14 days (+/−TAM) prior to plating. Cells were not further treated with TAM 
after plating. Plating density: 300 cells per gel. (B) Quantification of colony forming cells of E-
SCCs (left panel) and M-SCCs (right panel) in 3D collagen gels. Cells were treated as described 
in A. n=3. CFC= colony forming cells. (C) Immunofluorescence staining of vimentin (red) and 
DAPI (blue) of colonies in 3D collagen gels formed by one representative M-SCC or one 
representative E-SCC. Cells were treated as described in A. Scale bar: 50 µm. (D) 
Immunofluorescence staining of ZEB1 (green) and DAPI (blue) of colonies in 3D collagen gels 
formed by one representative M-SCC (left panel) or one representative E-SCC (right panel). Cells 
were treated as described in A. Scale bar: 50 µm.  

Data are presented as mean ± SD. 
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4.21.2 Maintenance of an epithelial cell state is required for colony 

formation of 24high HMLE cells on murine lung slices 

Since collagen is highly abundant in breast stroma, colony-formation in 3D 

collagen gels can be seen as a model for primary tumor formation. However, in 

more than 90% of breast cancer patients not the primary tumor, but distant 

metastases are the main cause of cancer related death (Weinberg, 2013). Since 

lung metastases are frequently diagnosed in breast cancer patients, I utilized 

murine lung slice cultures as an in vitro model to study metastatic outgrowth 

(colony formation) (Weigelt et al., 2005). Vital, 300 µm thick lung slices were 

obtained from the laboratory of Dr. Dr. Melanie Königshoff from the 

Comprehensive Pneumoloy Center at the Helmholtz Center Munich. To 

discriminate between lung and HMLE cells, one representative E-SCC (E3) was 

transduced lentivirally with the pRRL-cPPT-CMV-GFP-W and one representative 

M-SCC (M3) was transduced lentivirally with pRRL-cPPT-CMV-mCherry-W 

plasmid. Prior to plating, SCCs were either treated with TAM for a period of 14 

days or not treated with TAM as a control. Five days after plating, colony 

formation was assessed by immunofluorescence and subsequent confocal 

microscopy. Moreover, murine lung slices were embedded in paraffin, then 

sectioned and stained with H&E in collaboration with Dr. Harald Bartsch from the 

Institute of Pathology at the Ludwig Maximilian University Munich. Whereas E-

SCC control cells formed compact, round colonies, M-SCC control cells formed 

planar/flat colonies (Figures 24A and 24B). To quantify the cell number of the 

colonies, the intensity of DAPI stained nuclei was determined on confocal 

microscopy images. Corrected total cell fluorescence (CTCF) of DAPI was 1.5-

fold higher for the untreated E-SCC compared to the untreated M-SCC (Figures 

24C and 24D). After transient Twist1-activation, E-SCC cells still formed 

compact, round colonies, whereas M-SCC cells were detected as dispersed 

single cells (Figures 24A and 24B). Moreover, CTCF of DAPI increased by 30% 

for the E-SCCs while CTCF of DAPI decreased by 50% for the M-SCC. Thus, 

CTCF of DAPI was 4-fold higher for the E-SCC compared to the M-SCC after 

transient Twist1-activation (Figures 24C and 24D).  
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Figure 24: Maintenance of an epithelial cell state is required for colony formation of 24
high

 
HMLE cells on murine lung slices.  
(A) Immunofluorescence staining of DAPI of colonies on murine lung slices formed by one 
representative E-SCC (GFP

pos
; left panel) and immunofluorescence staining of vimentin (green) 

and DAPI (blue) of one M-SCC (right panel). Cells were not treated with TAM (−TAM) or treated 
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with TAM for 14 days (+/−TAM) prior to plating. Cells were not further treated with TAM after 
plating. Plating density: 20.000 cells per slice. Scale bar: 50 µm. (B) HE staining of cross 
sections of murine lung slices and colonies formed by one representative E-SCC or M-SCC. 
Cells were treated as described in (A). Scale bar: 50 µm. (C) Quantification of DAPI intensity of 
representative images of colonies on murine lung slices formed by E-SCC or M-SCC cells. Cells 
were treated as described in A. n=4. CFCT=Corrected Total Cell Fluorescence. *p<0.05, 
**p<0.005, ***p<0.0005. (D) Representative images of immunofluorescence staining of DAPI 
(blue) of murine lung slices with E-SCC or M-SCC cells used for quantification of DAPI intensity. 
Cells were treated as described in A. CFCT=Corrected Total Cell Fluorescence. Scale bar: 
50 µm. 

Data are presented as mean ± SD. 

 

In summary, these results indicated that EMT resistance enabled 24high HMLE 

cells to retain colony forming ability on murine lung slices, while mesenchymal 

transdifferentiation resulted in a decrease of colony forming ability. Moreover, 

these data suggested that E-SCC cells already possessed a proliferative 

advantage before transient Twist1-activation that was even increased by 

transient Twist1. In contrast, M-SCCs already proliferated less before Twist-

activation and proliferative capacity was decreased by transient Twist1-

activation.  

 

4.22 Summary of the second part 

In the second part of my thesis, I discovered that Twist1 elicited different effects 

in SCCs isolated from 24high HMLE cells: EMT competent M-SCCs acquired a 

stable mesenchymal cell state and did not undergo MET after Twist1-activation. 

EMT resistant E-SCCs resisted Twist1-induced EMT and retained an epithelial 

cell state. Although these observations initially appeared to be in conflict with 

those made in 24high HMLE bulk cells (no EMT resistance, but MET 

competence), co-culture experiments revealed that EMT resistant cells are 

contained within bulk cells, but become morphologically indistinguishable from 

EMT competent cells during Twist1-activation. Moreover, EMT resistant cells 

were discovered to grow as epithelial islands again, once Twist1 was 

deactivated, suggesting that EMT resistant and MET competent HMLE cells are 

the same cells within the 24high HMLE bulk cells. Mechanistic studies identified 

three key players (ZEB1, E-cadherin, Ovol2) that correlated with EMT 

competence or EMT resistance: loss of E-cadherin and Ovol2 expression and 

fast (7 days after Twist1-activation) ZEB1 up-regulation correlated with 
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mesenchymal transdifferentiation, while maintenance of E-cadherin and Ovol2 

transcript levels as well as delayed ZEB1 up-regulation correlated with EMT 

resistance. Moreover, sh-RNA mediated knockdown experiments revealed that 

ZEB1-expression was required for Twist1-induced EMT and even directly 

regulated by Twist1-binding to a putative enhancer region upstream of the ZEB1 

TSS. Finally, cell surface proteomics analysis identified cell surface proteins 

specifically higher expressed on EMT resistant cells before and after Twist1-

activation. In parallel, functional studies of the SCCs suggested that 

maintenance of epithelial identity was required for proliferation and thus colony 

formation in 3D environments.  
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5 Discussion 

Epithelial-Mesenchymal Transition (EMT) is a developmental program that 

converts epithelial cells to highly migratory mesenchymal cells. These 

morphological changes are accompanied by the dissolution of strong cell-cell 

adhesions, mainly by down-regulation of the adherens junction protein E-

cadherin. Thus, observations linking the EMT program and the acquisition of 

aggressive traits by breast cancer cells (such as the ability to invade and 

intravasate) were not unexpected. However, studies connecting the EMT 

program to the acquisition of tumor-initiating traits (stem cell (sc)-like traits) were 

rather unexpected since breast cancer metastases are composed of epithelial 

cells with strong cell-cell adhesions (Kowalski et al., 2003). Importantly, recent 

studies only implicated, but did not provide evidence for a direct molecular link 

between EMT and acquisition of sc-like traits: only a minority of immortalized 

human mammary epithelial (HMLE) cells that transdifferentiated to a 

mesenchymal cell state additionally acquired tumor-initiating traits upon 

overexpression of the EMT-TF Snail or Twist1 (Mani et al., 2008; Morel et al., 

2008). Thus, one could hypothesize that the EMT program might be involved but 

might not be sufficient for generation of sc-like traits. More precisely, acquisition 

of sc-like traits might be cell-specific effects of EMT inducing stimuli.  

5.1 Twist1 induces mesenchymal transdifferentiation and mammosphere 

(MS)-formation independently of each other 

Recent studies suggesting a link between EMT and the acquisition of sc-like 

traits (measured as MS-forming ability) were carried out using bulk populations 

of immortalized human mammary epithelial cells (HMLE) (Elenbaas et al., 2001; 

Mani et al., 2008). Importantly, HMLE bulk cells, additionally expressing an 

inducible construct of the EMT-TF Twist1 (HMLE-Twist1-ER), are heterogeneous 

and contain pre-existing subpopulations that are phenotypically and functionally 

distinct: besides epithelial cells, HMLE-Twist1-ER cells contain a small 

mesenchymal subpopulation enriched for sc-like traits (Mani et al., 2008; Scheel 

et al., 2011). Interestingly, this small CD44high/CD24neg, mesenchymal 

subpopulation was shown to arise spontaneously from bulk HMLE cells (Chaffer 

et al., 2011). Thus, one cannot distinguish whether EMT generates 
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mesenchymal, MS-forming cells de novo or whether the EMT process selects 

and expands pre-exiting mesenchymal, MS-forming cells.  

In this thesis, the heterogeneous character of the bulk HMLE cell-line was 

considered. By FACS sorting, phenotypically and functionally distinct 

subpopulations (24neg, 24low, 24high) within the HMLE-Twist1-ER cell-line were 

separated prior to Twist1-activation. I discovered that Twist1-activity induced a 

complete mesenchymal transdifferentiation and MS-forming ability in purified 

CD24pos epithelial HMLE cells. Consequently, my studies provided evidence that 

activation of the EMT-TF Twist1 does not only select for pre-existing 

mesenchymal MS-forming cells, but that Twist1-activtiy is sufficient to induce 

both, conversion from epithelial to mesenchymal phenotype and conversion from 

non-MS-forming to MS-forming cells. 

More importantly, I was able to elucidate that EMT and MS-forming ability were 

induced sequentially and independently of each other: 1) short-term Twist1-

induction in 24high HMLE cells did not result in mesenchymal transdifferentiation 

but MS-forming capacity and 2) long-term Twist1-activation for 15 days switched 

all 24high HMLE cells to a mesenchymal phenotype, while only a small subset of 

them gained MS-forming ability. For the first time, I demonstrated that Twist1 

conveys mesenchymal transdifferentiation and sc-like traits via distinct 

downstream signaling axes. Moreover, my studies provided evidence that 

passage through an EMT was not required for the acquisition of sc-like traits, 

while in turn Twist1-activity was not sufficient to induce these traits in each cell.  

As mentioned in the results part of my thesis (Chapter 4), the MS-assay 

measures two functional parameters: 1) anoikis resistance (a form of 

programmed cell death/apoptosis) and 2) proliferation at clonal density (Frisch 

and Francis, 1994; Onder et al., 2008). One could hypothesize that MS-forming 

cells need to overcome apoptosis and to escape from cell cycle control. A recent 

review summarizes possible explanations on how Twist1 might induce these 

traits not necessarily linked to mesenchymal transdifferentiation (Puisieux et al., 

2014). In detail, Maestro and colleagues showed that Twist is involved in 

inhibiting apoptosis by interfering with the p53 pathway (Maestro et al., 1999). 

Moreover, TWIST proteins were described to repress the transcription of 

p16INK4A, thereby allowing escape from RB-mediated cell cycle control (Ansieau 

et al., 2008; Valsesia-Wittmann et al., 2004). Although these studies give an idea 
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on how Twist1 creates the foundation of MS-forming ability, the question remains 

why Twist1 was not sufficient to induce sc-like traits in each cell. One plausible 

explanation for the heterogeneous responses to Twist1-activation might be a 

cell-specific predisposition. For instance, presence or absence of specific 

signaling pathways, TFs or Twist1-interacting partners might determine whether 

Twist1-activity is sufficient to induce sc-like traits or not. In my studies, I 

discovered one important pre-requisite for Twist1-induced tumourigenicity: 

cellular plasticity (e.g. MET competence). The definition of cellular plasticity, the 

molecular background as well as functional consequences will be addressed in 

the following sections.  

5.2 Twist1-deactivation results in a novel, hitherto unknown permanent 

cell state 

While monitoring the consequences of Twist1-activity in 24pos HMLE cells I 

observed that MS-formation only emerged after subsequent Twist1-deactivation 

and that pro-longed Twist1-deactivation increased MS-formation in 24high HMLE 

cells. Simultaneously, I detected that some 24high HMLE cells underwent MET in 

2D culture after Twist1-deactivation. From these observations I initially 

concluded that HMLE cells needed to revert to their initial epithelial cell state in 

order to grow out as MS. However, when attempting to identify and enrich for 

MS-forming cells, I discovered that these cells were neither characterized by a 

fixed epithelial nor a fixed mesenchymal cell state. Instead, MS-forming cells 

displayed epithelial-mesenchymal plasticity, characterized by a unique gene 

expression profile (defined as the plasticity signature) (Schmidt et al, 2015). By 

identification of this unique plasticity signature I was able to provide evidence 

that transient EMT-TF activation primes HMLE cells for a novel permanent cell 

state. Even though recent in vivo studies suggested Twist1-deactivation and 

MET to be required for outgrowth at metastatic site in mouse models, these 

earlier studies did not focus on the precise cell state after MET (Ocana et al., 

2012; Stankic et al., 2013; Tsai et al., 2012). My studies demonstrated for the 

first time that cells undergoing MET do not necessarily revert back to their 

original cell state. One possible explanation for the acquisition of a permanently 

altered cell state might be epigenetic modulation, which leaves a molecular 

footprint: epigenetic reprogramming was previously described for HMLE cells 
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during Twist1-induced EMT while EMT-TFs were shown to be capable of 

recruiting chromatin modifiers, such as Bmi1 or BRD4 (Bedi at al., 2014; Malouf 

et al., 2013; Shi et al., 2014; Yang et al., 2010;).  

The fact that cells undergoing MET do not revert back to their original cell state 

might harbor dangerous consequences regarding breast cancer progression and 

therapy: although tumor cells that have transiently seen Twist1-activity are not 

detectable by morphology (or Twist1-expression), these cells might have gained 

tumor-initiating traits (sc-like traits) that persist after Twist1 is no longer active. 

The gene expression profile discovered in my thesis represents a potential tool 

to specifically detect these potentially metastatic cells. The identified gene 

expression profile could help to differ between tumors predisposed to 

metastasize and tumors that will not metastasize. Thus, these findings might 

help to improve patients´ treatment by avoiding “over“- or “under-treatment”. 

Moreover, based on the fact that the MS-assay measures anchorage 

independent proliferation at clonal density (traits shown by metastatic cells), I 

hypothesize that genes specifically expressed by MS-forming cells encode for 

proteins involved in molecular mechanisms required for metastatic capacity. 

Interfering with these mechanisms might represent a point of vantage for 

prevention of breast cancer progression.  

5.3 24high HMLE cells predisposed to undergo MET retain expression of 

epithelial genes during Twist1-activation 

Given the fact that my results suggested MET to be required for MS-forming 

ability, I wished to elucidate the molecular mechanisms predisposing cells to 

undergo MET. Since the FACS purified 24high HMLE cells were heterogeneous 

with respect to Twist1-responsiveness I isolated single cell clones (SCCs) and 

studied the effects of Twist1 at the single cell level. Unexpectedly and 

contradictory to the observations from the 24high HMLE bulk cells, I identified 

“EMT competent” (M-SCCs) and “EMT resistant” HMLE cell clones (E-SCCs). 

Even more surprisingly, I did not detect any M-SCC that underwent MET after 

Twist1-deactivation. Studying these SCCs in more detail, I discovered that EMT 

resistance and EMT competence were correlated with specific changes of the 

transcriptional program. Specifically, I identified three key players correlated with 

EMT competence or EMT resistance: 1) the EMT-TF ZEB1, 2) the adherens 



Discussion 

112 
 

junction protein E-cadherin and 3) the Ovo-like zinc finger TF 2 (Ovol2). In detail, 

loss of E-cadherin and Ovol2 expression as well as strong and early ZEB1 up-

regulation (at day 7) correlated with mesenchymal transdifferentiation, while 

maintenance of high E-cadherin and Ovol2 transcript levels as well as delayed 

ZEB1 up-regulation correlated with EMT resistance.  

For reconciliation of the conflicting observations obtained from bulk 24high HMLE 

cells and isolated SCCs, I co-cultured E-SCC and M-SCC cells. Thereby, I 

discovered that E-SCCs and M-SCCs were morphologically not distinguishable 

(E-SCCs and M-SCCs represented as single scattered cells) as long as Twist1 

was active, but became distinguishable after Twist1-deactivation (E-SCCs grew 

in epithelial islands while M-SCCs retained as single, scattered cells). 

Importantly, when SCCs from co-culture experiments were analyzed for their 

transcriptional program, I observed that E-SCC cells retained expression of E-

cadherin and Ovol2. Based on these observations I concluded that cells 

predisposed for MET are characterized by the ability to maintain epithelial gene 

expression even in the presence of ZEB1 up-regulation.  

5.4 Expression of ZEB1 is directly regulated by Twist1 in 24high HMLE 

cells 

As described in the section above, early ZEB1 up-regulation (at day 7) correlated 

with mesenchymal transdifferentiation, while delayed ZEB1 up-regulation 

correlated with EMT-resistance. Using CD24pos HMLE-Twist1-ER cells, Diana 

Dragoi, a PhD student from the Scheel laboratory determined that Twist1 binds 

to a putative enhancer region in a TGFβ-type-I receptor (TGFBR1)-dependent 

manner, thereby inducing ZEB1 transcription and EMT (Chang et al., 2015; 

Dragoi et al., 2016). In my studies I examined whether Twist1 differentially binds 

to this region in M-SCCs and E-SCCs resulting in stronger and faster ZEB1-

upregulation in M-SCCs compared to E-SCCs. By Immunoprecipitation (ChIP) 

analysis I discovered that Twist1-occupancy was higher in M-SCCs than E-SCCs 

at the putative enhancer region of ZEB1 upon TAM-treatment.  

Multiple scenarios might mechanistically explain the differential Twist1-binding in 

E-SCCs and M-SCCs. For instance, differences in Twist1-binding might be a 

result of epigenetic regulatory mechanisms: closed chromatin (heterochromatin) 

prevents access of transcriptional regulators to DNA, while open chromatin 
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(euchromatin) allows assembling of the transcriptional machinery and thereby 

gene expression (Wolffe and Matzke, 1999). Based on that, one could 

hypothesize that the chromatin within the putative enhancer region upstream of 

the ZEB1 TSS is closed in E-SCCs, while open in M-SCCs. In future studies, it 

will be investigated whether E-SCCs and M-SCCs differ in chromatin marks 

either corresponding to active chromatin, such as H3K9 acetylation, or 

heterochromatin marks like H3K9 methylation. 

In addition to differences in chromatin status, it is possible that E-SCCs and M-

SCC might differ in their expression of (a) Twist1 interaction partner(s). Twist1 

belongs to the basic Helix-loop-helix (bHLH) TFs. Activity of bHLH TFs is mainly 

regulated by the availability of dimerization partners and the formation of distinct 

homo- or heterodimers (Ellenberger et al., 1994). For example, human Twist1 

was discovered to bind exclusively to E-box sequences after heterodimerization 

with an E-protein while Twist1 homodimers lack this ability (Chang et al., 2015). 

Thus, it might be conceivable that heterodimerization of Twist1 with a hitherto not 

identified partner, present in M-SCCs but not in E-SCCs, is prerequisite for 

Twist1-binding to the putative enhance region of ZEB1. It might also be vice 

versa: Twist1-binding might be negatively influenced by a dimerization partner, 

present in E-SCCs but not in M-SCCs. For instance, binding of Id proteins to 

class I or II bHLH TFs influences their function in a dominant-negative manner as 

Id proteins lack the DNA binding domain (Massari and Murre, 2000). Id4 was 

recently described to suppress invasion of glioblastoma cells by direct inhibitory 

interaction with Twist1 (Rahme and Israel, 2015). In addition, Id1 was found to 

oppose Twist1 protein activity in breast cancer cells (Stankic et al., 2013). 

Besides dimerization with partners belonging to the bHLH-TF family, Twist1 

interacts with proteins involved in chromatin remodeling (Shi et al., 2014; Yang et 

al., 2010). Moreover, Twist1 contains a highly conserved domain at the carboxy-

terminus (WR domain) that was found to allow interaction with proteins such as 

the TF RUNX2 or the NF-κB subunit p65 (Bialek et al., 2004; Castanon and 

Baylies, 2002; Li et al., 2012).  

In future studies, Co-immunoprecipitation analyses will help to identify potential 

Twist1-binding partners that might participate in the regulation of Twist1-binding 

to the putative enhancer region of ZEB1. 
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5.5 Does Ovol2 represent the central brake holder of Twist1-induced 

EMT? 

Although ZEB1 expression in EMT resistant cells was not up-regulated as rapid 

and strong as in EMT competent cells, a significant increase of ZEB1 transcript 

levels was detectable after long-term Twist1-activation. There are multiple 

scenarios that might explain why ZEB1 upregulation in E-SCCs was not 

sufficient to repress epithelial gene expression and therefore was not sufficient to 

mediate EMT. An explanation could be the existence of EMT-inhibiting regulatory 

networks, specifically present in E-SCCs. As described above, E-SCCs retained 

expression of the Ovo-like zinc finger TF 2 (Ovol2) during long-term Twist1 

activation. Interestingly, increasing evidence indicates Ovol2 to represent a 

brake holder of EMT by direct inhibition of ZEB1 (Jia et al., 2015; Hong et al., 

2015; Watanabe et al., 2014). Recently, Roca and colleagues identified gene 

expression changes induced by Ovol2 overexpression to closely overlap with 

those induced by ZEB1-shRNA expression, suggesting a cross-regulation of 

these TFs (Roca et al., 2013). Moreover, Ovol2 might indirectly restrict ZEB1-

activity by induction of miR-200 family members (Roca et al., 2013). ZEB1 and 

the miR-200 family are known to repress each other in a negative feedback loop 

(Bracken et al., 2008; Burk et al., 2008). Furthermore, Ovol2 might act as an 

EMT inhibitory factor by upregulating epithelial splicing regulatory proteins 1 and 

2 (ESRP1, ESRP2). ESRP1 and ESRP2 were described to be critical for the 

isoform switch of the cell surface marker CD44 and thereby for EMT (Brown et 

al., 2004). Besides the described EMT-inhibitory networks regulated by Ovol2, a 

lack of ZEB1 interacting proteins might explain differential responses of E-SCCs 

and M-SCCs. For instance, the co-repressor C-terminal binding protein 1 

(CTBP1) as well as the chromatin remodeling protein BRG1 were described to 

be required for efficient E-cadherin repression by ZEB1 (Grooteclaes and Frisch, 

2000; Shánchez-Tilló et al., 2010, Shi et al., 2003).  

The question, to what extent Ovol2 represents a critical gatekeeper for epithelial 

identity and to what extent the described EMT-inhibitory networks or the lack of 

ZEB1 interacting proteins are involved in EMT resistance will be addressed in 

future studies. In this thesis, I set out to identify regulatory mechanisms 

influenced by extracellular signaling, that might provide an explanation for the 

differential response of E-SCCs and M-SCCs to Twist1-activation (see 5.7).  
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5.6 EMT resistance is required for proliferation at primary tumor and 

metastatic site 

Since collagen is an abundant component of the extracellular matrix in human 

breast stroma, colony formation in 3D collagen gels can been seen as a model 

for primary tumor formation (Linnemann et al., 2015; Lo et al., 2012). In this 

study, I discovered that transient Twist1-activation induced invasive traits in 

24high bulk HMLE cells while permanent Twist1-activity retained cells in a 

mesenchymal, non-proliferating cell state. When the isolated SCCs were grown 

in 3D collagen gels E-SCCs retained proliferative capacity and acquired 

invasiveness while M-SCCs lost proliferative capacity and represented as single 

cells invading the collagen gels after transient Twist1-activation. In summary, I 

was able to demonstrate that transient Twist1-activation elicited a proliferative 

and invasive cell state in EMT resistant cells, while stable mesenchymal 

transdifferentiation inhibited 3D growth. These data were in line with my 

observations from the MS-assay: as long as cells were fixed in a mesenchymal 

cell state (in this case by active Twist1) cells were not able to proliferate.  

Based on the fact that in the majority of breast cancer patients (90%) not the 

primary tumor, but distant metastases are the main cause of cancer related 

death, I developed an in vitro model for metastatic outgrowth (Weinberg, 2013). 

In collaboration with the laboratory of Dr. Dr. Melanie Königshoff I established a 

method to culture HMLE cells on murine lung slices. I discovered that EMT-

resistance (E-SCCs) enabled 24high HMLE cells to retain colony forming ability on 

murine lung slices, while mesenchymal transdifferentiation (M-SCCs) resulted in 

a decrease of colony forming ability. Importantly, decrease in colony formation 

was due to a lack of proliferation. In summary, the observations obtained from 

3D-collagen gels and murine lung slice cultures imply that mesenchymal 

transdifferentiation decreases proliferative ability in an environment mimicking 

the primary tumor as well as an exemplary metastatic site.  

Regarding cancer progression and metastasis many efforts have focused on 

targeting mesenchymal breast cancer cells in the past (Gupta et al., 2009; 

Pattabiraman et al., 2016; Tam et al., 2013). However, my studies and other 

observations caution against strategies targeting mesenchymal cancer cells 

(Celia-Terrassa et al., 2012; Korpal et al., 2011; Tran et al., 2014b). Whereas 

cells fixed in a mesenchymal cell state might remain non-proliferative and will not 
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grow out at metastatic site, enforced reversion to an epithelial or intermediate 

phenotype might harbor dangerous outcomes: 1) this approach might rather 

promote than prevent proliferation at primary tumor and metastatic site and 2) 

cells might be converted to a plastic state, enabling them to switch back and 

forth between different states and thereby adapt to various environments. 

Interestingly, recent discoveries from EMT lineage tracing strategies support the 

idea that EMT is not required for successful metastasis: in breast cancer mouse 

models, Kari and colleagues demonstrated that lung metastasis was driven by 

tumor cells persisting in an epithelial phenotype during the whole process 

(Fischer et al., 2015). In mouse models of pancreatic ductal adenocarcinoma 

(PDAC) loss of Twist1 or Snail1 did not influence tumor formation or metastasis 

to lung and liver, but suppressed EMT in the primary tumor. Moreover, EMT 

resulted in suppression of tumor cell proliferation (Zheng et al., 2015).  

5.7 Does extracellular signaling explain differential response of E-SCCs 

and M-SCCs?  

Upstream of epigenetic regulation and regulation by transcription factors, the 

transcriptional program of cells is also influenced by extracellular signaling. 

Based on these considerations, I hypothesized that differential extracellular 

signaling might provide an explanation for the differential response of E-SCCs 

and M-SCCs to Twist1-activation. Since our group recently determined that 

Twist1-binding depends on active TGFβ-signaling, I investigated the influence of 

Smad-dependent TGFβ-signaling in a first approach (Dragoi, et al., 2016). As I 

did not discover significant differences in Smad-dependent TGFβ-signaling, a 

cell surface proteomics screen was performed. Thereby, I identified a set of 961 

cell surface proteins that were differentially expressed in E-SCCs and M-SCCs 

before and after Twist1-activation. Amongst proteins persistently higher 

expressed on EMT resistant cells (before and after Twist1-activation), the tumor-

associated calcium signal transducer 2 (TACSTD2), also known as trophoblast 

antigen 2 (Trop2), and the epithelial cell adhesion molecule (EpCAM) were 

found. Interestingly, both, Trop2 and EpCAM are highly expressed in variant 

epithelial cancers and their aberrant expression is linked to higher frequencies of 

metastasis (Cubas et al., 2009). Association of EpCAM and Trop2 

overexpression with poor patient outcome might be explained by their ability to 
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stimulate tumor cell proliferation (Trzpis et al., 2007): EpCAM regulates cell cycle 

progression by influencing cyclin D1 expression and its overexpression was 

found to increase cell proliferation in vitro and in vivo (Chaves-Perez et al., 2013; 

Munz et al., 2004; Wenqi et al., 2009). Similarly, inhibition of Trop2 was shown to 

inhibit breast cancer growth in vitro and in vivo (Lin et al., 2014). Consequently, 

E-SCCs, expressing higher levels of EpCAM and Trop2 compared to M-SCCs, 

might benefit from pro-proliferative effects of these proteins. Interestingly, loss of 

EpCAM expression in M-SCCs during Twist1-activation might result from ZEB1 

up-regulation in these cells: Vannier and colleagues discovered that ZEB1 

directly represses EpCAM-expression in human pancreatic and breast cancer 

cell lines (Vannier et al., 2013).  

Although overexpression of EpCAM and Trop2 might explain why M-SCC and E-

SCC differ in their proliferation and thus colony forming capacity, the question 

remains why E-SCCs and M-SCCs respond differentially to Twist1-activation. 

Based on the discovery that Twist1 was differently bound to a region upstream of 

the ZEB1 TSS in M-SCCs compared to E-SCCs 7 days after Twist1-activation, 

one possible scenario could be differences in the chromatin status. Interestingly, 

EpCAM as well as the desmosomal protein desmoglein 3 (Dsg3), also identified 

by the proteomics screen, were found to interact with the actin cytoskeleton: the 

cytoplasmic EpCAM domain contains two α-actinin binding sites conferring 

interaction between EpCAM and actin cytoskeleton (Guillemot et al., 2001). Dsg3 

was shown to interact with the actin cytoskeleton and promotes cytoskeleton 

organization in epithelial cells (Tsang et al., 2012). Based on that one could 

hypothesize that different levels of EpCAM and Dsg3 favor different cytoskeleton 

organizations, which might influence chromatin composition: Ramdas and 

Shivashankar recently discovered that the cytoskeleton modulates nuclear 

morphology, heterochromatin localization as well as chromatin dynamics and 

thereby gene expression (Ramdas and Shivashankar, 2015). Future studies 

investigating the importance of Trop2, EpCAM or Dsg3 on EMT resistance and 

metastatic competence will be performed.  

5.8 Closing remarks  

The results of my study clearly emphasize that mesenchymal transdifferentiation, 

tumorigenicity and metastatic capability are not necessarily linked to each other. 
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While transdifferentiation to a stable mesenchymal cell state might prevent 

metastatic outgrowth, maintenance of an epithelial or intermediate/plastic cell 

state might facilitate metastatic outgrowth. Moreover, the discovery that cells 

undergoing MET after transient Twist1-activity do not revert back to their original 

cell state might harbor dangerous consequences: these cells are not detectable 

by morphology but might have gained tumor-initiating traits (sc-like traits) that 

persist after Twist1 is no longer active. Consequently, this study illustrates the 

urgent need of considering EMT-independent molecular mechanisms, mediated 

by EMT-TFs, in order to develop new therapeutic strategies for breast cancer 

eradication. Moreover, my data clearly show the need for diagnostic tools to 

detect those tumor cells that have transiently seen EMT-TF activity and might 

thus represent potentially metastatic cells. My study provides two promising 

datasets for the development of new diagnostic criteria: a unique gene 

expression profile specifically expressed in MS-forming cells and a set of 961 cell 

surface proteins differentially expressed in “metastatic” and “non-metastatic” 

HMLE clones.  
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