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Zusammenfassung 
 
    Idiopathische pulmonale Fibrose (IPF) ist eine progressive und tödliche 

Lungenerkrankung unbekannter Ätiologie. Charakterisiert wird sie durch die 

Schädigung der Alveolarepithelzellen, durch eine übermäßige Ablagerung der 

extrazellulären Matrix (EZM) im Lungeninterstitium und durch die verstärkte 

Aktivierung und Proliferation von Fibroblasten. Letzten Endes führt dies zur 

strukturellen Veränderung der Lungenarchitektur und den Verlust der Gas-

Austausch-Funktion. Zwei wichtige zelluläre Spieler für die Reparatur des Gewebes 

und für die Fibrose sind Makrophagen und Fibroblasten. Fibroblasten proliferieren 

und migrieren in die Wundstelle, werden aktiviert und differenzieren zu 

Myofibroblasten. Die aktivierten Fibroblasten erzeugen dann, in erster Linie in Form 

von Kollagen, große Mengen an EZM. Makrophagen zeigen hingegen 

unterschiedliche Aktivierungszustände. Die häufigsten Phänotypen sind die 

klassisch aktivierten (M1) und die alternativ aktivierten (M2) Makrophagen. 

Entzündungen und Gewebeverletzungen werden den pro-inflammatorischen M1-

Makrophagen zugeschrieben. Die anti-inflammatorischen M2-Makrophagen 

hingegen werden durch die Sekretion von profibrotischen Faktoren mit der 

Gewebereparatur und der Fibrose assoziiert. Die profibrotischen Faktoren induzieren 

möglicherweise zu einem späteren Zeitpunkt die Proliferation und Aktivierung von 

Fibroblasten. Neben der bereits bekannten Funktion von Makrophagen und 

Fibroblasten in der Gewebshomöostase muss die Rolle der von den M2-

Alveolarmakrophagen sezernierten parakrinen Faktoren sowie deren Effekt auf die 

Fibroblasten der Lunge noch weiter erforscht werden, um neue therapeutische Ziele 

zu finden. 

    In der vorliegenden Arbeit wurden diesbezüglich MHV-68-infizierte IFN-γR-/- 

Mäuse als Modell für die Untersuchung der IPF-Pathogenese verwendet. Hierfür 

wurden Microarray-Analysen von Lungen infizierter IFN-γR-/- und C57BL/6 Mäuse zu 

unterschiedlichen Zeitpunkten nach der Infektion durchgeführt, um einen 

allgemeinen Überblick über die transkriptionelle Antwort der Lunge während der 

akuten und chronischen Infektion zu erhalten und bisher unbekannte, unterschiedlich 

regulierte Gene, welche an einer pulmonalen Fibrose beteiligt sind, zu identifizieren. 

Elf potentielle Zielgene wurden ausgewählt und durch qRT-PCR bestätigt. Zusätzlich 

wurden eine systematische Datenbank-Analyse (PubMed) und ein Vergleich mit 
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anderen IPF-Tiermodellen durchgeführt. Im Ergebnis wurde das Gen S100a4 für 

weitere Untersuchungen ausgewählt. Die Untersuchung des gesamten 

Lungengewebes mittels Western Blot sowie die Analyse der bronchoalveolären 

Lavage (BAL) Flüssigkeit via ELISA zeigten sowohl in IFN-γR-/- als auch in C57BL/6-

Mäusen eine erhöhte Expression von S100a4-Protein während der akuten 

Entzündungsphase, die während der fibrotischen Phase bei Wildtyp-Mäusen auf das 

Kontrollniveau zurückging, während sie bei IFN-γR-/- Mäusen erhöht blieb. Darüber 

hinaus zeigte die Untersuchung der BAL-Flüssigkeit von Bleomycin-behandelten 

C57BL/6-Mäusen ebenfalls eine erhöhte Expression von S100a4. Die 

immunohistochemische Färbung des fibrotischen Lungengewebes zeigte, dass 

S100a4 von M2-polarisierten Alveolarmakrophagen produziert wurde. Folglich 

wollten wir untersuchen, ob und wie endogenes S100a4 eine profibrogene Funktion 

ausübt. In vitro Experimente zeigten, dass durch die Stimulation mit rekombinantem 

S100a4 eine Proliferation und Aktivierung von Lungen-Fibroblasten induziert wird. 

Darüber hinaus konnte, einhergehend mit den bereits vorausgegangenen 

Untersuchungen, gezeigt werden, dass Lungen-Fibroblasten, welche konditioniertem 

Medium von M2-polarisierten primären Alveolarmakrophagen ausgesetzt wurden, 

eine verstärkte Zellproliferation zeigen. Mit konditioniertem Medium von M2- 

Makrophagen, die in Anwesenheit einer anti-S100a4 siRNA polarisiert wurden, war 

dieser Effekt geringer ausgeprägt. Zudem neutralisierten wir das im M2-

konditionierten Medium enthaltene S100a4 Protein mit einem anti-S100a4-

Antikörper. Die Neutralisation durch den Antikörper führte ebenfalls zu einer 

Reduktion der Proliferation der Lungen-Fibroblasten. Dies war nicht mit dem mit 

Isotyp-Kontroll-Antikörper behandeltem M2-konditioniertem Medium der Fall. 

Zusammenfassend deuten die Daten daraufhin, dass S100a4 eine wichtige Rolle bei 

der Proliferation und Aktivierung von Lungen-Fibroblasten spielt. Weitere in vitro 

Experimente zeigten, dass Calcimycin und Niclosamid, zwei S100a4 Transkriptions-

Inhibitoren, die S100a4 mRNA Expression in Alveolarmakrophagen während der 

M2- Polarisation signifikant reduzierten. 

    Zusammenfassend zeigt die Arbeit, dass das von M2-polarisierten 

Alveolarmakrophagen produzierte S100a4 eine profibrogene Funktion - durch die 

Erhöhung der Proliferation und Aktivierung der Lungen-Fibroblasten - ausübt. Dies 

lässt vermuten, dass eine Hemmung von S100a4 eine potentielle therapeutische 

Strategie zur Behandlung der idiopathischen pulmonalen Fibrose sein könnte. 
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Summary 

 

    Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease of 

unknown etiology. It is characterized by the damage of alveolar epithelial cells, 

excessive deposition of extracellular matrix (ECM) in the lung interstitium, and 

enhanced activation and proliferation of fibroblasts, which ultimately leads to the 

distortion of normal lung architecture and loss of gas-exchanging function. 

Macrophages and fibroblasts are two major cellular players in tissue repair and 

fibrosis. Fibroblasts proliferate and migrate into the wound site, and some of these 

fibroblasts become activated and differentiate into myofibroblasts, which produce 

large amounts of ECM, primarily in the form of collagen. Macrophages display 

various activation states, and the main activation phenotypes are classically 

activated (M1) and alternatively activated (M2) macrophages. The pro-inflammatory 

M1 macrophages are often associated with inflammation and tissue injury, whereas 

the anti-inflammatory M2 macrophages are associated with tissue repair and fibrosis 

by secreting profibrotic factors. The latter may induce the proliferation and activation 

of fibroblasts.  Despite the known association of macrophages and fibroblasts in 

tissue homeostasis, the role of paracrine factors secreted by M2 alveolar 

macrophages and their effects on lung fibroblasts still needs to be further 

investigated in order to determine novel therapeutic targets. 

    In this thesis, MHV-68-infected IFN-γR-/- mice were used as a model to study the 

pathogenesis of pulmonary fibrosis. Microarray analysis was performed in MHV-68-

infected IFN-γR-/- mice and C57BL/6 wild-type mice at different times post infection in 

order to obtain a global view of transcriptional responses of the lung during acute 

and chronic infection, and to identify differentially regulated genes that were sofar not 

known to be involved in pulmonary fibrosis. Subsequently, eleven potential target 

genes were selected and validated by qRT-PCR. In parallel with the statistical 

analysis of the microarray data, a systematic search in the PubMed literature and a 

comparison with other IPF animal models were also conducted. As a result, the gene 

S100a4 was selected for further investigation. Western blot analysis of whole lung 

tissue and ELISA analysis of bronchoalveolar lavage (BAL) fluids demonstrated that 

S100a4 was highly expressed during acute inflammation in both IFN-γR-/- mice and 

C57BL/6 mice, but then declined to the control level in wild-type mice during the 

fibrotic phase whilst remaining high in IFN-γR-/- mice. In addition, ELISA analysis of 



 

4 

BAL fluids from bleomycin treated C57BL/6 mice also showed high expression levels 

of S100a4. Immunohistochemistry staining of fibrotic lung tissue revealed that 

S100a4 was produced by M2 polarized alveolar macrophages. Accordingly, whether 

and how endogenous S100a4 exerts profibrogenic functions was investigated. In 

vitro experiments revealed that stimulation with recombinant S100a4 induces 

proliferation and activation of lung fibroblasts. Additionally, lung fibroblasts exposed 

to conditioned medium from M2 alveolar macrophages showed enhanced cell 

proliferation. In contrast, conditioned medium generated from M2 macrophages 

polarized in the presence of anti-S100A4-siRNA showed less proliferation activity. 

Moreover, neutralization of S100a4 protein in the M2 conditioned medium with an 

anti-S100a4-antibody also resulted in less proliferation of lung fibroblasts, a 

phenomenon which was not observed with the isotype control antibody treated M2 

conditioned medium. Collectively, all these data suggested that S100a4 plays an 

important role in lung fibroblast proliferation and activation. Furthermore, in vitro 

experiments using two transcriptional inhibitors of S100a4, calcimycin and 

niclosamide, showed that 1μM calcimycin or 0.3μM niclosamide significantly reduced 

the S100a4 mRNA expression level in alveolar macrophages during M2 polarization. 

    In summary, the study demonstrates that S100a4, produced by M2 polarized 

alveolar macrophages, exerts profibrogenic functions by enhancing the proliferation 

and activation of lung fibroblasts. These data suggest that inhibition of S100a4 might 

represent a potential therapeutic strategy for idiopathic pulmonary fibrosis. 
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1. Introduction     

 

1.1 Idiopathic Pulmonary Fibrosis  

 

1.1.1 Definitions  

    Idiopathic pulmonary fibrosis (IPF) is a chronic, fibroproliferative and irreversible 

interstitial pneumonia of unknown etiology and the most devastating form of 

interstitial lung diseases (ILDs) (1). The hallmarks of IPF are the increased 

extracellular matrix (ECM) deposition, fibroblastic foci (activated fibroblasts) and 

honeycombing predominantly in the subpleural interstitial space suggestive of 

abnormal tissue repair and aberrant wound healing responses (2-4). When this 

critical area is saturated with ECM deposition or inflammatory cells, the gas-

exchanging function is eliminated and finally results in respiratory failure and death 

(5). The definite diagnosis of IPF requires the identification of usual interstitial 

pneumonia (UIP) on surgical lung biopsy (1, 6).  

    Collectively, lung diseases affecting the interstitium are termed interstitial lung 

diseases (ILDs) (also known as diffuse parenchymal lung diseases (DPLDs)), and 

were initially reported by Hamman and Rich in 1944 (7). ILDs are a heterogeneous 

group of more than 100 distinct disorders resulting in injuries to the lung 

parenchyma, and frequently share similar clinical presentations and physiological 

abnormalities (8). The causes of ILDs have been well characterized; they include 

environmental factors (organic dust or allergens), autoimmune diseases, drug 

toxicity and sarcoidosis (9). However, a large number of ILDs are of unidentified 

origin and are categorized as idiopathic interstitial pneumonias (IIPs) (8, 10).  

    Although there are diverse mechanisms underlying IIPs, many of them possess 

similar radiological and/or histopathological characteristics. This led the American 

Thoracic Society and the European Respiratory Society to introduce the criteria for 

the international classification and diagnosis of IIPs in 2002 (11), and an official 

update of the guidelines published in 2013 (10) (Table 1.1). 
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Table 1.1 Revised American Thoracic Society/European Respiratory Society 

Classification of Idiopathic Interstitial Pneumonias. Adapted from (10). 

Major idiopathic interstitial pneumonias 

    Idiopathic pulmonary fibrosis 

    Idiopathic nonspecific interstitial pneumonia 

    Respiratory bronchiolitis–interstitial lung disease 

    Desquamative interstitial pneumonia 

    Cryptogenic organizing pneumonia 

    Acute interstitial pneumonia 

Rare idiopathic interstitial pneumonias 

    Idiopathic lymphoid interstitial pneumonia 

    Idiopathic pleuroparenchymal fibroelastosis 

    Unclassifiable idiopathic interstitial pneumonias 

 

1.1.2 Epidemiology and Risk Factors 

    Because of the rarity and complexity in diagnostic practices of IPF, there are no 

substantial studies of the prevalence of IPF. A recent study from the United States 

estimated the incidence rate of 14.6 per 100,000 persons/year by utilizing three 

algorithms to analyze the database of HealthCore Integrated Research (12). Another 

study reported that the overall incidence rate was around 4 cases per 100,000 

inhabitants/year in the United Kingdom based on the figures for the whole 

population, and the incidence is rising by 5% per year (13). The occurrence of IPF is 

higher in males (10.7 cases per 100 000/year) when compared to females (7.4 cases 

per 100 000/year) and the incidence or prevalence increases with age (14). The 

disease is extremely rare in young people, but is primarily seen in people aged 50 

years or older with an approximate three-year median survival duration after 

diagnosis, which is the worst prognosis among the IIPs (9, 15).   

Although IPF is, by definition, a disease of unknown etiology and of unknown 

molecular mechanisms, several potential risk factors have been described: cigarette 

smoking (16), environmental exposures (metal/wood dust, plant/animal dust) (17-

19), gastroesophageal reflux (20), microbial agents (21, 22), and genetic 

predisposition (23, 24). 
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1.2 Pathogenesis of IPF 

    The limited understanding of the mechanisms of IPF is reflected by the lack of 

effective therapies. Initially, investigations led to the assumption that a chronic 

inflammatory response to an unclear insult was the possible cause of this disease 

(25, 26). In the past decade, a new hypothesis has been put forward with a focus on 

the origins of myofibroblasts, the ultimate effector cells in the pathogenesis of 

fibrosis. They are morphologically characterized by an elongated spindle or stellate 

shape and an intermediate feature between smooth muscle cells and fibroblasts, 

with abundant  expression of stress fibers consisting of α-SMA, indicating a role in 

contractile activity (27, 28). Once the myofibroblasts accumulate in the wound area, 

they sustain a contractile activity for a long time, and the contraction is maintained by 

secretion of extracellular matrix, primarily type I collagen, elastins and proteoglycans 

(29). Moreover, they also play roles in releasing inflammatory cytokines and in 

epithelial injury. All of these make them the key cells responsible in perpetuating the 

cycle of wound healing and pathologic lung fibrosis, and the accumulation of 

myofibroblasts is considered the hallmark of IPF (30). Therefore, a better knowledge 

of the cellular origin of these cells is thought to be of great significance in order to 

enhance understanding of fibrosis development and for the development of new 

therapeutic treatments. Three main potential cellular sources in IPF are proposed: 

transdifferentiation of epithelial cells to mesenchymal cells (31), activation of resident 

fibroblasts (32) and recruitment of bone marrow-derived fibrocytes (33). In addition, it 

is suggested that resident fibroblasts, which comprise 30%-40% of pulmonary cells 

and function as scaffolds to support alveolar structure by secretion of ECM, are the 

primary precursors of myofibroblasts (34, 35). However, the precise mechanism 

underlying IPF remains enigmatic and further elucidation is required to understand 

the de novo genesis of the myofibroblasts. The following mechanisms regarding to 

the current viewpoints are represented below (Figure 1.1).  
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Figure 1.1 Origins of myofibroblasts in IPF. Copied from (36). 
Myofibroblasts, the key effector cell type in IPF, are considered to originate from the 
following: (1) proliferation and differentiation of resident fibroblasts; (2) epithelial-
mesenchymal transition (EMT); (3) recruitment of circulating fibrocytes. Diverse cytokines, 
growth factors, and signaling pathways are involved in these processes. 
 

1.2.1 Epithelium in Fibrosis 

    An average adult breathes approximate 11,000 liters of air every day. This air not 

only carries oxygen, but also noxious stimuli like dust or microbial agents that can 

potentially result in persistent damage to the lung. The alveolar epithelium is the 

primary site that is exposed to toxic substances or pathogens. The current 

consensus is that persistent epithelial damage leads to a non-reversing destruction 

of lung architecture, dysregulation of repair and altered epithelial-mesenchymal 

crosstalk (37, 38). 

    Two distinct types of alveolar epithelial cells (AECs) populate the epithelial 

component of the alveoli, known as alveolar type I and type II cells (Figure 1.2) (39, 

40). The type I pneumocytes are squamous, large and flattened cells covering more 

than 95% of the alveolar surface lining, although they only comprise about one-third 

of the total AECs. These cells are highly attenuated and branched, forming an 

interface with pulmonary capillaries through which gaseous exchanges take place. 

Type I pneumocytes, acting as sentinels, have the ability to sense microbial factors 

or products and generate inflammatory mediators to recruit or activate immune cells 

(41, 42). The type II pneumocytes, on the other hand, constitute approximately 15% 
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of total alveolar cells and make up the remaining 5% of the alveolar surface area. 

These cells, morphologically appearing as large and cuboidal, are found localized in 

the corners of alveoli between the type I pneumocytes and contain typical lamellar 

inclusion bodies and stubby microvilli. The type II pneumocytes are multifunctional 

cells, and they are the only type of cells which produce, assemble and secret 

pulmonary surfactant, a lipid-protein complex, to lower the surface tension of the 

alveolus so that alveolar collapse or overdistension is prevented (43). The type II 

pneumocytes are also involved in the regulation of alveolar fluid balance both in the 

normal or pathological lungs (44). In addition, these cells are responsible for lung 

defense by producing immunomodulatory proteins, including complement, lysozyme 

and surfactant proteins (SP). SP-A and SP-D, belonging to the “soluble C-type lectin” 

family, contribute to clearance of diverse microorganisms and resolution of lung 

inflammation, while SP-B and SP-C exert their functions in reducing alveolar surface 

tension (43, 45).  

 

 

 

 

 

 

 

 

 

 

 
Figure 1.2 Schematic view of the lung alveolus. Copied from (40). 
 

    It is commonly assumed that type I pneumocytes are fully differentiated cells and 

are not able to self-repair when damaged. Type II pneumocytes, on the contrary, are 

characterized by the potential of both self-maintenance and differentiation and 

function as progenitor cells for type I pneumocytes (46, 47). Both type I and type II 

pneumocytes are involved in host defense; however, IPF studies have focused 

exclusively on type II pneumocytes due to their multiple roles in the immune 

response.  
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    Repetitive and chronic injury occurring to AECs negatively affects the re-

epithelialization process and induces hyperplastic proliferation as well as alterations 

in the phenotype of type II pneumocytes. The impaired alveolar epithelium serves as 

a prominent resource of profibrotic mediators, including transforming growth factor-

β1 (TGF-β1) (48), tumor necrosis factor-α (TNF-α) (48, 49), endothelin-1 (ET-1) (50) 

and chemokine (C-C motif) ligand 2 (CCL2) (51). These factors ultimately contribute 

to the pathogenesis of fibrosis by influencing neighbouring fibroblasts’ proliferation 

and differentiation, ECM deposition or polarization of alveolar macrophages. 

Furthermore, activated fibroblasts in turn induce injury and apoptosis in alveolar 

epithelium by secretion of Fas and angiotensin II in vivo (52, 53). The alveolar 

epithelial cells, on the other hand, also respond to TGF-β1 stimulation, which 

induces apoptosis in type I pneumocytes, whereas type II pneumocytes undergo 

epithelial to mesenchymal transition (54). In this process, epithelial cells lose their 

apical-basal polarity, markers such as E-cadherin, and tight junctions Zona 

Occludens 1 (ZO-1), and acquire mesenchymal markers including α-smooth muscle 

actin (α-SMA), Vimentin and Fibronectin (55). EMT has been confirmed both in 

experimental IPF models and in patients that possess a subtype of fibroblasts in the 

fibrotic lesions, which were demonstrated to be of epithelial origin using co-staining 

of epithelial and mesenchymal markers (31). Additionally, injured epithelial cells may 

also secret matrix metalloproteinases (MMPs). These enzymes are able to degrade 

the varieties of connective tissue matrixes and play a pivotal role in cell proliferation, 

migration and differentiation (56). 

 

1.2.2 Fibroblasts in Fibrosis 

    It is believed that persistent epithelial injury might be the initial factor for 

fibrogenesis. During the normal resolution phase of wound healing, injured type I 

pneumocytes were replaced by type II pneumocytes to reconstitute the epithelial 

barrier and cover the exposed basement membrane. However, in IPF, this repairing 

process is driven by mesenchymal cells such as activated fibroblasts, termed 

myofibroblasts, that migrate into the alveolar wound area where they contribute to 

abnormal re-epithelialization, continuously secreting collagen-rich ECMs and forming 

fibroblastic foci. The uncontrollable increase in numbers of fibroblastic foci indicates 

a poor prognosis of IPF (57, 58). It has been reported that the myofibroblast is the 

pathologic fibroblast in IPF (36). Myofibroblasts can degrade basement membranes 
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through the synthesis of gelatinases A and B (MMP-2 and MMP-9, respectively), 

consequently leading to the failure of repair of type I pneumocytes and enhancing 

the migration of fibroblasts (59). Fibroblasts isolated from IPF patients represent 

increased migration ability and capacity of profibrotic factors production when 

compared with fibroblasts obtained from healthy lungs (60). Pierce and colleagues 

revealed that lung fibroblasts from IPF patients possess the property of causing the 

development of pulmonary fibrosis in immunodeficient mice by adoptive transfer; 

transfer of normal lung fibroblasts did not cause the development of IPF (61). 

However, the mechanisms of the enhanced migration and aggressive phenotype 

remain poorly understood. It is suggested that it may correlate with  the expression 

of α-SMA. 

    Quiescent resident lung fibroblasts activate, proliferate, and transdifferentiate into 

myofibroblasts in response to several profibrotic factors, such as TGF-β, IL-4, IL-13 

and PDGFs (34, 62, 63).  

    TGF-β is a well characterized mediator of pulmonary fibrosis (64, 65). TGF-β 

elicits a diverse range of cellular specific responses, including regulation of 

inflammation, cell proliferation and differentiation, tissue remodeling, and synthesis 

of ECM (66). Increased expression of TGF-β is detected in the broncho-alveolar 

lavage (BAL) fluid and interstitial matrix both in IPF patients and experimental animal 

model of fibrosis (67-69). Besides injured alveolar epithelial cells, activated alveolar 

macrophages are the primary source that secrete a TGF-β in fibrotic lung tissues 

(70, 71). TGF-β regulates fibroblast differentiation through Sma- and Mad-related 

protein 3 (Smad3), one of the key effectors of the Smad signaling pathway, to 

regulate the expression of α-SMA. TGF-β is secreted in a latent form, and the 

integrin αVβ6, expressed in AECs, is essential for activation of latent TGF-β into 

bioactive TGF-β (72). The active TGF-β first binds to the TGF-β receptor type II 

(TBRII), which recruits and phosphorylates TGF-β receptor type I (TBRI) (Figure 

1.3). In the canonical TGF-β-Smad pathway, TBRI then phosphorylates Smad 

component proteins (Smad2 and Smad3), which subsequently bind to Smad4 and 

form heterodimeric complexes (Smad2/4 or Smad3/4). These complexes then 

translocate into the nucleus where they serve as transcription factors by binding to 

the promoter regions of various profibrotic genes (for instance, α-SMA, collagen type 

I and fibronectin) (73). Moreover, the non-canonical and Mitogen-activated protein 

kinases (MAPK)-dependent TGF-β pathway is also involved in fibroblast 
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differentiation. The MAPK family, including extracellular signal-regulated kinases 

(ERKs), c-Jun amino-terminal kinases (JNKs) and p38, regulates diverse cellular 

responses, such as proliferation, differentiation, survival, cytokine secretion as well 

as apoptosis (74, 75). The activated p38 can induce expression of α-SMA and 

fibronectin (76). In lung fibroblasts, ERK- and p38-dependent TGF-β signaling 

pathways have been demonstrated to be involved in the induction of α-SMA and 

collagens (74). Additionally, TGF-β can also trigger the Wnt-β-catenin-, nuclear 

factor kB (NF-kB)-and PI3-AKT-signaling pathways (66). Overall, TGF-β plays a 

central role in the process of lung fibroblast differentiation.  

    Furthermore, IL-4 and IL-13 are two major Th2 cytokines that are mainly 

expressed by polarized alveolar macrophages or activated CD4+ T-cells in the 

fibrotic lung tissue. They stimulate fibroblast differentiation by interfering with the 

synthesis of prostaglandin E2 (PGE2) generator cyclooxygenase 2 (COX-2) (77). 

Moreover, platelet-derived growth factors (PDGFs) are potent mitogens and 

chemoattractants for cells of mesenchymal origin. In fibrotic lung tissues, PDGFs are 

generated by alveolar macrophages and promote fibroblast proliferation and the 

expression of ECM. PDGFs exert their functions via ligand-dimerization and 

phosphorylation of PDGFRα and/or PDGFRβ, which activate downstream the 

MAPK/ERK signaling pathway (34). 

 
Figure 1.3 TGF-β signaling pathway. Copied from (66). 
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1.2.3 Fibrocytes in Fibrosis 

    Fibrocytes, the bone marrow-derived mesenchymal cells, can be recognized in 

circulation (78, 79) or in the lung parenchyma (80) of IPF patients by the 

hematopoietic precursor markers CD45 and CD34 along with mesenchymal markers 

such as α-SMA, collagen I and fibronectin (81). These spindle-shaped cells may 

home to the injured sites and differentiate into myofibroblasts; hence, fibrocytes 

contribute to the relentless progression of fibrosis by enhancing ECM deposition 

(33). Prior investigation has demonstrated that IPF patients have an increased 

amount of circulating fibrocytes (78-80). The elevated percentage of circulating 

fibrocytes in total circulating blood leukocytes correlates with exacerbations of IPF 

(81). Some studies using bone marrow chimeric mice, in which the donated bone 

marrow cells were labeled with green fluorescent protein (GFP) for tracking 

purposes, found that after bleomycin instillation more than 20% of the cells in the 

fibrotic lung tissue were bone marrow-derived (82). Recruitment of fibrocytes is likely 

mediated via chemokines or cytokines which are expressed by injured tissues, such 

as CCL2 (83), CCL12 (84), and IL-10 (85). However, the ability of bone marrow-

derived fibrocytes to differentiate into myofibroblasts in the fibrotic area still remains 

controversial. Utilizing α-SMA promoter-driven GFP bone marrow chimeric mice, 

Yokota and colleagues demonstrated that the bone marrow was unlikely to generate 

myofibroblasts (86). 

 

2.2.4 Alveolar Macrophages in Fibrosis 

 

1.2.4.1 Origin and Heterogeneity of Alveolar Macrophages 

    In IPF patients and experimental models, varieties of immune cells were observed 

in the lung by histological analysis, including alveolar macrophages, lymphocytes, 

and neutrophils. These cells are thought to contribute to the pathogenesis of fibrosis 

through secreting numerous profibrotic mediators and play significant modulatory 

roles in fibrogenesis at different stages of this disease (8). A sampling of the lower 

respiratory tract reveals that alveolar macrophages account for almost 95% of 

airspace leukocytes, while lymphocytes and neutrophils represent only 4% and 1%, 

respectively (87). Therefore, under physiological conditions, alveolar macrophages 

are the predominant sentinel phagocytic cells of the pulmonary innate immune 

system which form the first line of host immune defense against any inhaled 
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xenobiotics, including microorganisms and environmental pollutants. Furthermore, as 

shown in Table 1.2, regardless of the diverse fibrotic mouse models, alveolar 

macrophages are the prominent inflammatory cells in injured lungs (88). 

 
Table 1.2 BAL Analysis of Inflammatory Cell Recruitment Following Lung Injury 

Agent Route 
Alveolar 

macrophages 
Neutrophils Lymphocytes 

Asbestos Aerosol 3 2 1 

Asbestos IT 3 2 1 

Bleomycin IN 3 2 1 

Bleomycin IP 3 1 2 

Bleomycin IT 3 2 1 

Bleomycin IV 3 1 2 

FITC IT 3 2 1 

Radiation Thoracic 3 1 2 

Silica Aspiration 3 2 1 

Silica IN 3 3 1 

Silica IT 3 2 1 

 
Least (1) to most numerous (3), IN, intranasal; IT, intratracheal; IP, intraperitoneal; IV, 
intravenous. Adapted from (88). 
     

    Generally, two anatomically distinct macrophage populations are identified in the 

lower respiratory tract: alveolar macrophages and interstitial macrophages (89). The 

functions of pulmonary macrophages need to be tailored to their specific micro-

anatomical niche. Alveolar macrophages mostly inhabit the alveoli lumen, and it is 

this unique microenvironment that leads to them possessing a distinct phenotype 

when compared with interstitial macrophages (90). The alveolar macrophages 

display a great phagocytic activity and play a vital role in the inflammatory response 

in the alveoli, but these cells have been shown to be unable to induce T cell antigen-

specific responsiveness because of poor antigen presentation competence (91-94). 

The interstitial macrophages, on the other hand, reside within the parenchymal 

space (interstitium) where they interact with interstitial lymphocytes and dendritic 

cells. In contrast to alveolar macrophages, interstitial macrophages are considered to 
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facilitate an immune response by presenting antigens to T cells (95). However, both 

types of macrophages can induce inflammatory responses against a broad range of 

stimuli and share similar morphological phenotypes. Alveolar macrophages can be 

easily distinguished from interstitial macrophages by surface markers in mice (Table 

1.3).  

 
Table 1.3 The phenotypes of mouse macrophages from different sites. Adapted from 
(96). 

Surface marker Interstitial macrophage Alveolar macrophage 

CD11b Intermediate expression Not expressed 

CD11c Not expressed High expression 

CD14 Intermediate expression Low expression 

CD200R Intermediate expression High expression 

DEC205 Expression unknown Intermediate expression 

F4/80 Low expression Low expression 

Mannose receptor Intermediate expression High expression 

MHC class II Intermediate expression Low expression 

SIGLEC-F Not expressed High expression 
 

    It has long been a controversial issue whether alveolar macrophages originate 

from bone marrow-derived circulating blood monocytes (97, 98). The current 

paradigm indicates that tissue macrophages, including alveolar macrophages, derive 

from embryonic precursor monocytes that seed within the organs and obtain stable 

phenotypes during the neonatal period responding to instructive cytokines (99-101). 

Moreover, alveolar macrophages are long-lived cells with a substantial turnover rate 

of only 40% in 1 year, and like many other tissue macrophages, they autonomously 

self-renew by homeostatic proliferation through their life (102, 103). However, the 

signals and molecular mechanisms that underlie the differentiation of fetal 

monocytes into alveolar macrophages have not yet been completely understood. 

Schneider and colleagues demonstrated that in the absence of the cytokine 

granulocyte-macrophage colony stimulating factor (GM-SCF), differentiation of 

alveolar macrophage precursor cells is abrogated in embryonic lungs, which 

indicates that GM-CSF is employed in alveolar macrophage development. Moreover, 
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in the mouse embryo, GM-CSF induced activation of the nuclear receptor PPAR-γ, 

which is associated with the maturation and differentiation of alveolar macrophages 

via cholesterol metabolism, lipid transport, storage and degradation (100). 

 

1.2.4.2 Macrophage Activation and Polarization 

    Macrophages are a heterogeneous group of innate myeloid cells distributed 

throughout tissues, where they exert their multiple functions in homeostasis, host 

defense, response to foreign pathogens, and tissue remodeling via their dynamic 

activities in phagocytosis and bridging innate and adaptive immunity (104-106). To 

fulfill those functions, macrophages of different origins, including monocytes and 

tissue resident macrophages, acquire a myriad of phenotypes in response to various 

stimuli and also depending on their unique physiological compartments. This 

divergent response by macrophages is termed macrophage polarization. Two 

distinct subpopulations of macrophages are categorized based upon their functions 

and distinct cytokine expression profiles, which are classically activated 

macrophages (M1) and alternatively activated macrophages (M2) (107) (Figure 1.4). 

It is worth noting that classification of M1/M2 paradigms is analogized with T helper 1 

(Th1)/T helper 2 (Th2) dichotomy.  

    M1 macrophages are induced by pro-inflammatory Th1 cytokines, IFNγ and TNFα, 

or by bacterial byproducts, such as lipopolysaccharide (LPS, which induces TNFα 

expression). M1 macrophages have strong anti-microbial functions by generating 

nitric oxide (NO) and reactive oxygen species (ROS) to stimulate expression of 

inducible nitric oxide synthase (iNOS) and promoting Th1 immune responses by 

releasing numerous pro-inflammatory cytokines including IL-1β, TNFα, IL-12 and IL-

6 (108). Thus, M1 polarization is mainly presented in acute infectious diseases and 

inflammation. Nevertheless, ongoing M1 polarization causes excessive inflammation, 

which leads to increased tissue damage (109). M2 macrophages, comprising of 

many phenotypes, are further subclassified into M2a (induced by Th2 cytokines, IL-4 

and IL-13), M2b (upon exposure to immune complexes in combination with IL-1β or 

LPS) and M2c (induced by IL-10, TGF-β or glucocorticoids) (110, 111). Putatively, 

M2 macrophages play a critical role in wound healing, tissue remodeling and 

resolution of inflammation due to their strong anti-inflammatory activities and high 

endocytic clearance capacities. This can be beneficial to limit the later stages of 

inflammatory responses but may also permit chronic infection when associated with 
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fibrosis or tumors (112, 113). IL-4 or IL-13 are the prototypical inductors of M2a 

macrophages. They are released by diverse innate cells, such as Th2 cells, mast 

cells, eosinophils, and even macrophages themselves (114, 115). M2a macrophages 

are considered to be involved in helminth infestation, tumor progression and tissue 

remodeling through secretion of anti-inflammatory cytokines (111). They can 

produce arginase 1, the hallmark of M2a macrophages, which lessens inflammation 

by inhibiting the expression of proinflammatory NO (116). It has also been reported 

that they can generate MMP-9, facilitating tumor metastasis (117, 118). M2b and 

M2c macrophages, also termed M2-like macrophages, are polarized by LPS/IL-1β 

and IL-10/TGF-β, respectively (119). Both of them exhibit capacities of immune 

regulation and anti-inflammation. Finally, it has been shown that M2c rather than 

M2a macrophages induce regulatory T cells (Tregs) from CD4+CD25- T cells in vitro. 

Therefore, M2c macrophages are more vigorous than M2a macrophages in 

protecting against tissue injury (120).      

    In addition, some of the biomarkers used to define M1 or M2 macrophages differ 

between human and mouse, and most information has emerged from mouse studies 

(121). For instance, IL-4 or IL-13 elicit up-regulation of arginase 1 (Arg1), chitinase-

3-like protein 3/4 (Ym1 and Ym2) and resistin-like molecule α (Fizz1) in mouse M2 

macrophages which make them applicable markers. However, they do not have 

homologs in human M2 macrophages (122). Recently, it has been demonstrated that 

mannose receptor C type1 (MRC1, CD206) and multifunctional enzyme 

transglutaminase 2 (TGM2) are conserved biomarkers for both human and mouse 

M2 macrophages. By the combination of MRC1, TGM2, as well as human specific 

M2 macrophage markers CD206 (123) and CD68, it is now feasible to identify 

human M2 macrophages. Moreover, extensive studies have illustrated that M1 and 

M2 macrophages regulate immune responses and inflammation by expressing a 

broad repertoire of chemokines and chemokine receptors that recruit other immune 

cells. Typically, M1 macrophages secrete the chemokines CXCL9 and CXCL10 

attracting Th1 cells, and M2 macrophages secrete CCL2, CCL17, CCL22, and 

CCL24 (124, 125). A list of M1 and M2 markers is provided in Table 1.4. 
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Table 1.4 A selection of M1 and M2 markers of macrophages. Adapted from (126). 

  M1 (IFN-γ) M2 (IL-4/IL-13) 

Human CD64, IDO, SOCS1, CXCL10 MRC1, TGM2, CD23, CCL22 

Mouse Cxcl9, Cxcl10, Cxcl11, Nos2 Mrc1, Tgm2, Fizz1, Ym1/2, Arg1 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.4 Schematic representation of the three macrophage phenotypes and their 
characteristics (127).  
 

1.2.4.3 Alternatively Activated Macrophages and IPF 

    During the development of pulmonary fibrosis, the plasticity of alveolar 

macrophages is required to enable them to polarize into distinct phenotypes 

responding to the dynamic micro-environment changes in airways. Previously, 

limited studies investigated the role of M1 alveolar macrophages in IPF. In the initial 

phases of tissue injury, damaged epithelial or endothelial cells may produce 

inflammatory factors to promote classical activation of alveolar macrophages. These 

M1 macrophages release Th1 cytokines and oxygen radicals, which might contribute 

to the development of fibrosis by their potential capacity to amplify the inflammatory 

response and cause further tissue injury (127). 

    Since Th2 inflammatory responses unequivocally play a crucial role in the 

development of pulmonary fibrosis, substantial studies have illustrated the role of 

alternatively activated alveolar macrophages in the fibrotic phase of pulmonary 

fibrosis. Several IPF animal models imply that alveolar macrophages display an 
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identical phenotype of alternative activation (113, 128, 129). As observed in MHV-68 

infected IFN-γR-/- mice, alveolar macrophages accumulated in injured lung and 

exhibited high Arg1, Ym1/2, Fizz1 and fibronectin, yet were not observed in MHV-68 

infected wild-type mice (113).  

    Likewise, in patients with IPF, high levels of IL-13 are detected in the BAL fluid, 

correlating with disease severity (129). The clinical data amply indicate that alveolar 

macrophages disclose an alternatively activated phenotype with high expression 

levels of CD206 and the pro-inflammatory chemokines CCL17, CCL18 and CCL22, 

associated with recruitment of CCR4+ T cells (130-132). Furthermore, both human 

and animal studies have demonstrated that alveolar macrophages are involved in all 

stages of the perpetuating fibrotic processes owing to their robust roles in pulmonary 

fibroblast recruitment and activation (133). Alternatively activated macrophages are 

found to be located in close proximity with ECM-secreting myofibroblasts, and they 

are an important source of pro-fibrotic mediators, including TGF-β1, PDGF, IL-4 and 

IL-13, which induce proliferation and activation of resident pulmonary fibroblasts 

(134). A co-culture system of activated alveolar macrophages obtained from IPF 

patients with lung fibroblasts evidenced a higher amount of ECMs than those co-

cultures with normal alveolar macrophage controls (130). Additionally, alternatively 

activated macrophages facilitate migration of resident fibroblasts via continuous 

productions of specific matrix metalloproteinases (135).  

    Given the significant contributions of alternatively activated macrophages to the 

development of pulmonary fibrosis, plenty of work has sought to identify a new 

strategy of therapies by blocking alternative macrophage activation and their 

products. Administration of antibodies or shRNA against these pro-fibrotic cytokines 

and cytokine receptor antagonists have been shown to be effective in preventing the 

development of pulmonary lesions and fibrosis in the experimental models (136). 

One study demonstrated that application of the IL-13 neutralizing antibody protected 

mice from bleomycin-induced lung fibrosis (137). Another study revealed that 

administration of TD139, a novel inhibitor of galactin-3, to bleomycin-treated mice 

partially attenuated pulmonary fibrosis by inhibiting TGF-β-induced β-catenin 

activation both in vitro and in vivo (138). 

    However, there are also some findings highlighting an anti-fibrotic role of M2 

macrophages through suppression and resolution of fibrosis as well as elimination of 

ECM components. A study has shown that arginase-1 and Fizz1 actually 
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ameliorated pulmonary fibrosis by negatively regulating Th2-dependent inflammation 

and fibrosis (139). Degradation of ECM components is mediated by different 

mannose receptors which has been identified in bleomycin-induced fibrosis (139, 

140).  

    To summarize, the above findings demonstrate that both M1 and M2 alveolar 

macrophages are indispensable in the pathogenesis of fibrotic lung diseases. M1 

macrophages are required in the early inflammatory phase, but their presence does 

not influence the subsequent fibrotic phase, while M2 macrophages play a 

mechanistic and determined role during the fibrotic phase. Therefore, a thorough 

understanding how these two phenotypes contribute to different stages of IPF will 

augment our understanding of this disease and will potentially reveal novel 

treatments.  

 

1.3 S100a4  

 

1.3.1 Biology of S100a4  

    The S100a4 gene was discovered independently by several groups and 

consequently has various names including fibroblast-specific protein 1 (FSP1), 

metastasis 1 (Mst1), calcium placental protein (CAPL) and murine placental 

homolog, 18A2, 42A, p9Ka, pEL98 and calvasculin (141). S100a4 belongs to the 

S100 superfamily of EF-hand calcium-binding proteins, which presently is composed 

of 24 members that usually exist as homo- or hetero-dimers in cells, possessing low 

molecular mass (10-20kd) (142, 143). “S100” refers to their capacity to be soluble in 

100% ammonium sulphate.  

    The human S100a4 gene is located, along with other S100 family members, in a 

frequently rearranged region on chromosome 1q21, and consists of four exons, 

which are capable of forming two calcium-binding EF-hands after translation (144, 

145). Upon the Ca2+ loading on the C- and N-terminal, S100a4 undergoes a 

conformational transformation and forms two major hydrophobic binding sites, which 

are essential for recognition and interaction with its potential target proteins and for 

generating a biological effect (146, 147). Several studies reveal that the 

transcriptional regulation of S100a4 varies between cell types. In human cells, 

several upstream regulatory elements such as β-catenin, methylation status and 

extracellular factors have been characterized to influence the expression of S100a4 



Introduction 
 

21 

(148, 149).  

  

1.3.2 Biological Function of S100a4  

    S100a4, like other S100 family members, has no enzymatic activity but a broad 

range of functions both intracellularly and extracellularly by interacting with other 

target proteins (Figure 1.5). The intracellular S100a4 is associated with calcium 

transport and cell homeostasis, including cytoskeletal rearrangement, transcriptional 

activity, protein phosphorylation, cell cycle and migration (150). Moreover, a wide 

variety of binding partners has been characterized. Direct interactions of S100a4 

with intracellular cytoskeletal proteins including actin, non-muscle myosin IIA and IIB 

(151), liprin-β and E-cadherin (152) and tropomyosin (153) facilitate the remodeling 

of actin-myosin filaments and alter cell adhesion, thereby enhancing cell motility. For 

instance, non-muscle myosin II-A is a chemo-mechanical cytoskeleton protein that is 

involved in cell motility and division. In vitro studies demonstrate that S100a4 

selectively binds to the myosin II-A in a calcium-dependent manner and thereby 

inhibits the assembly of myosin II-A monomers into filaments promoting the 

monomeric, unassembled state (151, 154). The interactions between S100a4 and 

methionine aminopeptidase 2 (155) or CNN3 (156) have been reported to promote 

cell proliferation and differentiation. Moreover, the tumor suppressor protein p53 is a 

newly validated target for S100a4. Co-localization of nuclear S100a4 and p53 was 

observed in a human colon cancer line, indicating that S100a4 may play a potential 

role in proliferation and tumor development (157, 158).  

There is growing evidence that S100 family members also possess extracellular 

functions, although the mechanism of secretion has not yet been elucidated (159). 

When secreted into the extracellular space, S100a4 functions as a cytokine, and 

several lines of evidence suggest that S100a4 regulates gene expression through 

activation of transcription factor NF-κB or modulation of MAP kinases, p38, JNK and 

ERK (158, 160, 161). Extracellular application of S100a4 stimulates MMPs’ 

expression, angiogenesis and cell proliferation, and serves as a moderate 

prometastatic factor of tumor cells (141). Cell invasion is further facilitated by MMPs 

which mediate the proteolytic cleavage of ECM proteins. In the mouse, endothelial 

cells respond to recombinant S100a4 through expression and secretion of MMP-13, 

thereby influencing the remodeling of ECM and increasing cell invasion (162). Down-

regulation of S100a4 in osteosarcoma and neuroblastoma cells was concomitant 



Introduction 
 

22 

with reduced expression of MMP-2 and membrane-type 1 MMP, accompanied by 

impaired cell invasion (163, 164). In addition, an in vitro study indicated that 

administration of oligomeric S100a4 promotes the invasion ability of human prostate 

cancer cells, which is mediated by S100a4 inducing activation of MMP-9 (165). The 

stimulation of the release of MMPs by extracellular S100a4 is dependent on 

membrane associated receptors (Figure 1.5). One well characterised receptor is the 

receptor for advanced glycation endproducts (RAGE). S100a4-RAGE mediates cell 

motility in human colorectal cancer cells via hyperactivated MAPK/ERK and hypoxia 

signaling (166), and this effect can be arrested by the addition of soluble RAGE, 

which prevents S100a4 from binding to membrane-associated RAGE (167). 

However, the capacity of inducing cell invasion by extracellular S100a4 in RAGE-

negative cells is still not fully understood, and more cell surface receptors need to be 

defined (168). 

 

 
 
Figure 1.5 Molecular mechanisms associated with intracellular and extracellular 
S100a4. Copied from (236). 
 

1.3.3 S100a4 and Fibrosis  

    S100a4 was first characterized a decade ago and its biological function has been 

studied most intensively with respect to its role in enhancing cancer metastasis; 

specifically its ability to enhance cell invasion. Excessive expression of S100a4 has 

been evidenced in most metastatic cancers such as pancreatic (169), ovarian (170), 

breast (171), prostate (172), colorectal (173), pulmonary (174), bladder (175) and 

gastric (176) cancers; thus, expression of S100a4 is considered as a marker of poor 
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survival prognosis in diverse cancer types.  

    Current studies on S100a4 reveal the novel significant facets of its contribution in 

non-malignant diseases, particularly in promoting the development of fibrosis. High 

levels of S100a4 were detected in patients with various fibrotic diseases (177-179). 

The role of S100a4 might be very similar to that in cancer metastasis, specifically 

during the early induction of EMT (180, 181). The expression of S100a4 can be 

induced by growth factors, including TGF-β1, epidermal growth factor and fibroblast 

growth factor-2 (180, 182). On the transcriptional level, S100a4 is regulated by 

several regulatory elements and transcription factors, such as β-catenin and KRAB-

associated protein 1 (149, 183). However, the mechanism of S100a4 secretion 

remains yet unknown. Curiously, TGF-β1 and epidermal growth factor both elicit the 

expression of S100a4 in renal proximal tubular epithelial cells in vitro, and also 

promote the concomitant loss of epithelial markers, thus enhance cell motility. When 

cells are pretreated with S100a4 siRNA, the cell motility induced by TGF-β1 and 

epidermal growth factor, is restricted (180). Additionally, TGF-β1 induces EMT in 

mouse kidneys with a continuous increase of S100a4. This may be reversed by 

treatment with BMP7, an antagonistic protein to TGF-β1, via activation of Smad 

proteins (184). Furthermore, increased expression of S100a4 was observed in 

inflammatory myopathies where it might serve as a cytokine-like factor that causes 

muscle fiber injuries via stimulating the release of pro-inflammatory cytokines from 

mononuclear cells (177).  

 

1.4 Animal models of Pulmonary Fibrosis 

Due to the lack of effective treatment for IPF, animal models are of great 

importance for identifying and validating new therapeutic targets. Although no current 

animal model recapitulates all aspects of human pulmonary fibrosis, investigations 

utilizing murine models have allowed the dissection of mechanisms relevant to 

fibrogenesis, and theses models have identified many fibrotic mediators and key 

cells that are presumably involved in humans as well (185). Detailed advantages and 

disadvantages of each of the available animal models are summarized in Table 1.5 

(186). Among these, the virus model is elaborated in details, the other models are 

feasible but were not employed in the present research.  
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Table 1.5 Advantages and disadvantages of various animal models of fibrosis. 
Adapted from (186). 
Model Advantages Disadvantages 

Bleomycin ● Most well-characterized 
● Can be delivered intratracheally, 
intravenously. intraperitoneally, or 
intranasally 
● Clinically relevant 
● Time frame for development of fibrosis 
is 14–28 days 

● Fibrosis is reported to be self-limiting 
after 28 days in the intratracheal model 
● Development of fibrosis is limited to 
Balb/c mice 
● Expense 

FITC ● Ability to visualize areas of lung injury 
by characteristic green fluorescence 
● Time frame for development of fibrosis 
is 14–28 days 
● Fibrotic response persists for at least 6 
months 
● Can be used in both C57Bl/6 and 
Balb/c mice 
● Persistent nature of the fibrotic 
response makes it amenable for studying 
viral exacerbations of fibrosis post-FITC 

● Response can vary depending on the 
lot of FITC 
● Solution must be made fresh each day 
and vortexed before each injection 
● Model is not clinically relevant 

Irradiation ● Clinically relevant 
● C57Bl/6 mice are irradiation-fibrosis 
prone 

● Fibrosis can take more than 30 wk to 
develop 
● Expensive per diem costs 
● C3H/HeJ and CBA/J mice are 
irradiation-fibrosis resistant 

Silica ● Fibrotic nodules resemble those seen 
in humans exposed to occupational dusts 
and particulates 
● Persistent fibrotic stimulus 

● Fibrosis can take 12–16 wk to develop 
● Balb/c mice are resistant 
● Special instrumentation is needed if 
delivered via aerosol 

Transgenic ● Can study the overexpression of a 
particular molecule 
● Can be expressed under inducible 
promoters, which allows expression only 
in adult mice 

● Compensations may occur in mice that 
constitutively express a transgene 
throughout development 
● Amount of product produced may not 
be physiological 

Viral vectors ● Can be used to deliver fibrotic or 
antifibrotic mediators 
● Lentivirus vectors can infect many cell 
types 

● Immune response may prevent 
repeated dosing with adenoviral vectors 
● Adenoviral vectors have tropism only 
for epithelial cells 

Adoptive 
transfer of 
human 
fibroblasts 
into immune 
deficient 
mice 

● Can study fibroblasts from various 
human fibrotic diseases 

● Expense of immunodeficient mice 
required for adoptive transfer of human 
cells 

MHV-68 ● See below (1.4.2) ● See below (1.4.2) 
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1.4.1 Gammaherpesviruses  

    Herpesviruses are double-stranded DNA viruses with relatively large linear 

genomes. They are ubiquitous viruses that widely establish infection in most 

vertebrates and persist for the whole life of hosts and cannot be cleared (187). The 

life cycles of all herpesviruses in their natural host can be divided into lytic and latent 

infections. The lytic infections can be either asymptomatic or present with severe 

symptoms, followed by the establishment of latent infection in which the complete 

viral genetic information persists without production of infectious virions and cell 

destruction. The latent virus can reactivate or switch to a lytic phase of replication 

under certain circumstances such as immunosuppression or stressful conditions.  

    The herpesviruses are divided into three subfamilies: α-, β- and γ-herpesviruses, 

based on their biological properties such as hosts, reproductive cycle and latency 

sites (188). The γ-herpesviruses are initially identified by their cellular tropism for 

lymphocytes and variable length of reproductive cycles (189). The γ-herpesvirus 

family possesses double-stranded DNA genomes, enclosed in an icosapentahedral 

capsid which is comprised of capsomers, and finally is surrounded by tegument and 

a glycoprotein envelope. The most well-known members are Epstein-Barr Virus 

(EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), because of their 

significant roles in lymphomas and fibrotic disease (21, 190). However, in vivo 

studies of the pathogenesis of these viruses are difficult and limited because of their 

restricted host range. Therefore, animal models are needed. Sunil-Chandra and 

colleagues established the experimental model of murine γ-herpesvirus-68 (MHV-68) 

to study the pathogenesis of γ-herpesviruses (191). Importantly, chronic pulmonary 

infection of mice with MHV-68 provides a relevant model to investigate the clinical 

pathologies of IPF. 

    MHV-68 is a natural pathogen of murid rodents, and is genetically co-linear with 

EBV sharing about 80% homology. MHV-68 displays similar infection patterns 

compared to EBV: epithelial and B cell tropism, virus-induced B cell activation and 

proliferation, as well as symptoms such as splenomegaly (192). However, the natural 

routes of infection are not clear in the mouse model; MHV-68 allegedly enters the 

host via lung epithelial cells after intranasal inoculation, where the viruses initiate 

replication and protein production, thereby causing acute infection. Thus, viral 

infection may result in extensive epithelial cell injury and may subsequently provoke 

inflammatory responses that can lead to the alveolar collapse that, under certain 
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conditions, would trigger abnormal remodeling of lung architecture similar to those 

observed in the early stage of IPF patients (193). The lytic infection is cleared around 

day 10 post infection in immunocompetent mice. Subsequently, viruses migrate to 

the spleen via the lymph nodes and switch to a dormant state to establish life-long 

latency in B lymphocytes, and viral latency reaches peak levels around day 14 post 

infection (194). Except for splenic B cells, studies also suggest lung epithelial cells, 

macrophages and dendritic cells as major sites of latent infection (195). In addition, 

immunosuppression is considered to be a primary trigger for viral reactivation.  

 

1.4.2 MHV-68-induced Animal Model of Lung Fibrosis  

    There is accumulating evidence suggesting that approximately >95% of IPF 

patients are undergoing chronic pulmonary infections with viruses, particularly with 

herpesviruses (196). A number of studies have implied that DNA or proteins of 

herpesviruses, such as Epstein-Barr Virus (EBV), Kaposi’s sarcoma-associated 

herpesvirus (KSHV) and Cytomegalovirus (CMV), are commonly detected in the 

lungs of patients by qPCR or immunohistochemistry, and 40–60% of IPF patients 

have evidence of chronic infection with at least two different types of herpesviruses 

(21, 197). It has been reported that replicating EBV, KSHV and CMV were detected 

at high frequency in alveolar epithelial cells of IPF patients but none in the control 

specimens (198). Furthermore, detection of latent membrane protein 1 (LMP-1) of 

EBV is thought to associate with a poor outcome and high mortality in IPF patients 

(199). It has also been postulated that occult infection was identified as a potential 

explanation for acute exacerbation of IPF (200).  

    C57BL/6 background transgenic mice lacking the IFN-γ receptor, termed Th2- 

biased mice, develop pulmonary fibrosis following infection with MHV-68 (201). This 

is intriguing in light of the fact that IFN-γ deficient mice mimic the imbalance between 

Th1 and Th2 immune responses detected in IPF patients, who exhibited lower levels 

of IFN-γ than controls (202-204). The virus is persistently replicating in the lungs of 

immunocompromised mice, resulting in dramatically increased collagen deposition in 

lung tissue, upregulation of TGF-β, IL-10, IL-4 and IL-13 in serum or BAL fluid and 

accumulation of myofibroblasts. A detailed comparison of MHV-68-induced IPF in 

mice and patients with IPF is shown in Table 1.6  (201). 
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Table 1.6 Comparison of histological patterns and features between IPF patients and 
MHV-68 chronic infection in IFN- ︎γR-/- mice. Adapted from (201). 

 IPF MHV-68 IFN-γR-/- Mice 

Patchy interstitial inflammation yes yes 

Patchy interstitial fibrosis yes yes 

Subpleural, peripheral, and paraseptal 
distribution of fibrosis yes yes 

Honeycomb yes no 

Increased TGF-β expression yes yes 

Myofibroblasts yes yes 

Hyperplasia of type II lung epithelial 
cells yes yes 

Imbalance of Th1/Th2 cytokines yes yes 

Alteration of surfactant proteins yes yes 

Vascular changes yes yes 
 

    This animal model supports the viewpoint that skewed immune responses create 

a profibrotic microenvironment in the lung tissue and contribute to fibrogenesis as 

cofactors. Thus, MHV-68 provides an applicable animal model for the dissection of 

mechanisms involved in clinical fibrotic processes. Further studies are needed in 

order to investigate the precise roles of γ-herpesviruses in fibrosis development of 

patients with IPF. 

 

1.5 The MHV-68-induced IPF Model in the Laboratory of Prof. Dr. Adler 

    Prior to the beginning of this thesis, the MHV-68-induced IPF model, which has 

been first described by Mora et al. (201), was established in the laboratory of Prof. 

Dr. Adler by a former postdoctoral fellow, Dr. Shinji Ohno. 

    In order to investigate the process of fibrogenesis, IFN-γ R-/- and C57BL/6 wild-

type mice were intranasally infected with 1×105 pfu of MHV-68, and the mice were 

sacrificed at days 14 (acute phase), 45 and 100 (chronic phases) post infection (p.i.) 

(Figure 1.6A). Uninfected mice served as a control. To determine fibrosis and 

architectural changes in the lungs after viral infection, the lungs were harvested at 

days 14, 45 and 100 p.i. and examined by H&E staining (Figure 1.6B). C57BL/6 wild-



Introduction 
 

28 

type mice showed moderate immunocyte infiltrates during the acute phase, and by 

day 45 p.i., these mice showed complete resolution of inflammation. In contrast, IFN-

γR-/- mice demonstrated severe interstitial inflammation as well as immunocyte 

infiltrates during the acute phase, and began to show evidence of fibrosis at day 45 

p.i., which further increased at day 100 p.i.. To confirm collagen deposition, 

picrosirius-red staining and immunostaining against Collagen 1 was performed 

(Figure 1.6C and D). Only minimal deposition of collagen was found around alveoli 

or large airways in uninfected mice and MHV-68 infected C57BL/6 mice. In contrast, 

virus infected IFN-γR-/- mice demonstrated an excessive deposition of collagen in the 

interstitium. The abnormal transdifferentiation of pulmonary fibroblasts to 

myofibroblasts was evidenced by immunohistochemical staining of α-SMA, which is 

a typical marker of myofibroblasts. Positive α-SMA immunostaining was restricted to 

perivascular areas in MHV-68 infected C57BL/6 mice at day 100 p.i., while intensive 

α-SMA-characterized myofibroblasts were present in interstitial areas and along 

alveolar walls in IFN-γR-/- mice infected with MHV-68 at day 100 p.i (Figure 1.6E).  

    Figure 1.6F presents the total cell counts from BAL fluids obtained from 

experimental mice. The number of total cells between C57BL/6 and IFN-γR-/- mice 

was comparable in the uninfected groups. However, during the acute phase, the total 

cell counts increased four to seven times compared with uninfected animals in both 

mice stains. In chronically infected mice, the number of cells in BAL fluids remained 

at a high level in IFN-γR-/- mice; whereas, the number of cell counts decreased to the 

base line from day 45 p.i. in C57BL/6 mice. In addition, the expression of TGF-β, the 

hallmark of IPF, was determined in BAL fluid by ELISA. A significant increase of 

TGF-β in IFN-γR-/- mice at day 45 p.i. and later was observed, whereas an 

unchanged and minimal expression was found in C57BL/6 mice (Figure 1.6G). 

    Taken all together, the MHV-68-induced IPF model was successfully established 

by Dr. Ohno. Using this model, microarray analysis was performed to analyze global 

gene expression and to elucidate potential mechanisms of disease development. 

The raw data set originating from their microarray analysis was the starting point of 

this thesis. 
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Figure 1.6. Establishment of the MHV-68-induced IPF mouse model. 
(A) The schematic presentation of the MHV-68-induced IPF mouse model. C57BL/6 and 
IFN-γR-/- mice were infected with 1×105 pfu of MHV-68 intranasally on day 0; the uninfected 
mice served as negative controls. Subsequently, mice were sacrificed at days 14 (acute 
phase), 45 and 100 (chronic phases) p.i.. (B) Histological analysis of H&E-stained lung 
sections from C57BL/6 and IFN-γR-/- mice sacrificed at day 0, 15, 45 and 100 p.i.. Severe 
inflammatory infiltrates were observed in IFN-γR-/- mice from day 14 p.i. and persisted during 
the chronic phase of infection, notably significant at day 100 p.i.. In contrast, the C57BL/6 
wild-type mice showed moderate immunocytes infiltrate during the acute phase, and by day 
45 p.i., these mice showed complete resolution of inflammation. (C) Picrosirius-red stained 
lung sections from C57BL/6 and IFN-γR-/- mice. Normal presence of collagen around airways 
is depicted by red staining in the uninfected mice and MHV-68 infected C57BL/6 mice. 
Extensive expression of collagen was detected in virus infected IFN-γR-/- mice at day 100 
p.i.. (D) Immunostaining of collagen 1. The collagen fibers were indicated in red, and the 
nuclei were stained blue. Pervasive collagen was only detected in lung interstitium of virus 
infected IFN-γR-/- mice at day 100 p.i.. (E) Immunohistochemical staining of α-SMA. Positive 
α-SMA immunostainings were often detected in the areas of lung interstitium in the MHV-68 
infected IFN-γR-/- mice at day 100 p.i., but were absent in infected C57BL/6 wild-type mice. 
(F) Total cell counts in BAL fluids after infection. Cells were obtained from the BAL fluids of 
uninfected controls and MHV-68 infected C57BL/6 and IFN-γR-/- mice, stained with Trypan 
blue and counted using a hemocytometer. MHV-68 infected IFN-γR-/- mice exhibited 
significantly more cells in the airways compared to C57BL/6 mice both in the acute and 
chronic phase. Results are derived from 8 to 21 mice per group and shown as mean ± SD. 
Unpaired t-test was performed for statistical analysis (* denotes p<0.05; ** denotes p<0.01; 
***denotes p < 0.001; ****denotes p < 0.0001). (G) The level of TGF-β was measured in BAL 
fluids by ELISA. Abundant expression of TGF-β in IFN-γR-/- mice starting from day 45 p.i. 
was observed, while the levels of TGF-β in C57BL/6 mice remained low. Results are derived 
from 8 to 21 mice per group and shown as mean ± SD. (* denotes p<0.05; ** denotes 
p<0.01; ***denotes p < 0.001; ****denotes p < 0.0001). 
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1.6 Aims of the Thesis 

 

    Idiopathic pulmonary fibrosis (IPF) is the most devastating form of interstitial lung 

disease with unknown etiology. Although the precise molecular mechanisms that 

drive the pathogenesis of IPF remains elusive, increasing clinic evidence suggests 

that viral infection, particularly with γ-herpesviruses, is an important factor in the 

initiation and/or perpetuation of the development of IPF. Therefore, in this thesis, 

MHV-68-infected IFN-γR-/- mice were used as a model to study mechanisms of 

pulmonary fibrosis.  

    The following objectives were persued: 

a. Use microarray analysis to obtain a global view of transcriptional responses of the 

lung during acute and chronic infection.   

b. Identify differentially regulated genes that were hitherto not known to be involved 

in pulmonary fibrosis.  

c. Determine the role of dysregulated target genes in fibrotic lung disease. 

d. Analyze the effects of antifibrotic drug treatment toward the target gene.  
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2. Materials and Methods 

 

2.1 Materials 

 

2.1.1 Laboratory Equipments 

Device/Hardware Manufacturer 
0.2ml, 1.5 ml and 2ml Tubes Eppendorf, Hamburg, Germany 

100 μm cell strainer BD Falcon, Heidelberg, Germany 

15 ml and 50 ml Tubes BD Falcon, Heidelberg, Germany 

25 cm2 and 75 cm2 cell culture flasks 

Greiner bio-one, Frickenhausen, 

Germany 

5417C table-top centrifuge Eppendorf, Hamburg, Germany 

6-, 12-, 24-, 96-well cell culture plates TPP, Trasadingen, Switzerland 

Axiovert 25 microscope Carl Zeiss, Oberkochen, Germany 

Electrophoresis power supply Peqlab, Erlangen, Germany 

FastPrep-24 Lysator 

MP Biomedicals, Illkirch Cedex, 

France 

Gel Doc 2000 Imaging System Bio-Rad, Hercules, USA 

Heracell™ 150i Incubators 

Thermo Fisher Scientific, Waltham, 

MA, USA 

Herasafe KS safety cabinet 

Thermo Fisher Scientific, Waltham, 

MA, USA 

Histostar embedding workstation 

Thermo Fisher Scientific, Waltham, 

MA, USA 

Inverse microscope Carl Zeiss, Oberkochen, Germany 

Mastercycler gradient PCR machine Eppendorf, Hamburg, Germany 

Megafuge 1.0R 

Thermo Fisher Scientific, Waltham, 

MA, USA 

MicroAmp® Fast Optical 96-Well reaction 

plates Applied Biosystems, Foster City, USA 

Microscope slide cover glasses Leica, Wetzlar, Germany 

Microtome HYRAX M55 Carl Zeiss, Oberkochen, Germany 
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Mirax micro digital slide scanner Carl Zeiss, Oberkochen, Germany 

Molecular Imager ChemiDoc™ XRS+ 

system Bio-Rad, Hercules, USA 

NanoDrop® ND-1000 spectrophotometer 

Thermo Scientific, Wilmington, MA, 

USA 

Neubauer counting chamber 

Carl Roth GmbH & Co, Karlsruhe, 

Germany 

PAGE-electrophoresis Bio-Rad, Hercules, USA 

Pipette Eppendorf, Hamburg, Germany 

Real-Time PCR System 7300 (TaqMan) Applied Biosystems, Foster City, USA 

Semi-enclosed Benchtop Tissue 

Processor Leica, Wetzlar, Germany 

Tank-blotting chamber Bio-Rad, Hercules, USA 

 

2.1.2 Commercially Available Kits 

Name Company 
Cell proliferation kit II (XTT) Roche, Basel, Switzerland 

DNA Mini kit Qiagen, Hilden, Germany 

Fast SYBR® Green Master Mix Applied Biosystems, Foster City, USA 

Pierce ECL Western Blotting Substrate Thermo Scientific, Wilmington, USA 

QIAGEN DNeasy tissue kit Qiagen, Hilden, Germany 

RNeasy Mini Kit Qiagen, Hilden, Germany 

Superscript™ III Reverse Transcriptase kit Invitrogen, Carlsbad, USA 

 

2.1.3 Recombinant Proteins 

Name Company 
Recombinant murine IFN-γ Immuno Tools, Friesoythe, Germany 

Recombinant murine IL-4 Immuno Tools, Friesoythe, Germany 

Recombinant murine IL-13 Immuno Tools, Friesoythe, Germany 

Lipopolysaccharides (LPS) from E.coli 

Sigma-Aldrich, Deisenhofen, 

Germany 

Recombinant murine S100a4  R&D System, Minneapolis, MN 
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2.1.4 Chemicals 

Dulbecco's Phosphate buffered saline (DPBS), Dulbecco's Modified Eagle Medium/ 

F-12 Nutrient mixture (Ham) (DMEM/F-12), RPMI Medium 1640 (1×), Glasgow 

modified eagle’s medium, Fetal Bovine Serum (FBS), HEPES 1 M, L-Glutamine 200 

mM (100×), 0.05% Trypsin-EDTA (1×), 2-Mercaptoethanol (50 mM) and antibiotics 

were purchased from Gibco (Life Technologies, Warrington, UK), Bioconcept 

(Allschwil, Switzerland) and PAN Biotech (Aidenbach, Germany). All chemicals were 

purchased from Invitrogen (Karlsruhe, Germany), Sigma-Aldrich (Deisenhofen, 

Germany), Roche (Mannheim, Germany), Bio-Rad (Munich, Germany), Fluka 

(Deisenhofen, Germany), Merck (Darmstadt, Germany) and Carl Roth (Karlsruhe, 

Germany) unless otherwise specified. 

 

2.1.5 Commonly Used Buffers and Stock Solutions 

Laemmli SDS loading buffer 

(2×) 

100 mM Tris/HCl, pH 6.8 

4% (w/v)  SDS 

20% (v/v) Glycerol 

0.2% (w/v)  Bromophenol blue 

20 mM 2- Mercaptoethanol 

RIPA buffer (for protein lysates) 

50 mM Tris-HCl (pH 7.5) 

150 mM NaCl 

1 mM Na2EDTA 

1% NP-40 

1% Sodium deoxycholate 

1 mM ß-glycerophosphate 

PBS buffer (10×) 

137 mM NaCl 

2.7 mM KCl 

10 mM Na2HPO4 

2 mM KH2PO4 

Wash buffer (TBS-T) 
1 l PBS/TBS 

0.05% Tween-20 

Electrophoresis buffer (5×) 

15,1 g Tris 

94 g Glycine 

50 ml 10% SDS 
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Transfer buffer (1×) 
3,02 g Tris/HCl, pH 7.5 

14,4 g Methanol 

10% PAGE (4 gels) Resolving 

15,9 ml H2O 

13,3 ml 30% Acrylamid 

10,0 ml 1.5M Tris, pH 8.8 

400 µl 10% SDS 

400 µl 10% APS 

16 µl TEMED 

5% PAGE (4 gels) Stacking 

13,6 ml H2O 

3,4 ml 30% Acrylamid 

2,5 ml 1M Tris, pH 6.8 

200 µl 10% SDS 

200 µl 10% APS 

20 µl TEMED 

Wash buffer (PBS-T) 
1 l PBS 

0.05% Tween-20 

Assay buffer (ELISA) 
1 g BSA 

100 ml 1×PBS 

Stopping solution (ELISA) 0.18 M H2SO4 

H2O2 buffer (IHC) 

6 ml 30% H2O2 

80 ml Methanol 

14 ml Distilled H2O 

Target retrieval solution 
30 ml Citrate buffer, pH 6.0 

270 ml Distilled H2O 

 

2.1.6 Cell Culture Medium 

Cells Medium 

Primary alveolar macrophages 

RPMI-1640 

10% FBS 

1% Penicillin/Streptomycin 

50 mM 2-Mercaptoethanol 

1% L-Glutamin 
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Primary lung fibroblasts DMEM/F12 

15% FBS 

1% Penicillin/Streptomycin 

1% HEPES 

BHK-21 

Glasgow MEM (BHK-21) 

5% FBS 

1% Penicillin/Streptomycin 

5% TPB 

1% L-Glutamin 

Cell storage medium 
90% FCS 

10% DMSO 

 

2.1.7 Enzymes 

Enzymes Company 

Proteinase K (for Genotyping) Qiagen, Hilden, Germany 

DNase I Qiagen, Hilden, Germany 

Collagenase A Roche, Basel, Switzerland 

Taq Polymerase NEB, Frankfurt, Germany 

 

2.2 Methods 

 

2.2.1 Virus Preparation 

 

2.2.1.1 MHV-68 Virus Stock Preparation  

    The original virus stock of MHV-68 (clone G2.4) was kindly provided by J. 

Stewart and A. Nash (University of Edinburgh, Edinburgh, United Kingdom). 

Working stocks of virus were prepared in baby hamster kidney cells (BHK-21) with 

Glasgow modified eagle’s medium (Pan Biotech) supplemented with 10% FBS, 

2mM L-glutamine, 5% tryptose phosphate broth (TPB), penicillin (100 U/ml) and 

streptomycin (100 mg/ml) as previously described (205). Briefly, MHV-68 was 

amplified in BHK-21 cells by infection at a multiplicity of infection (MOI) of 0.1, 

followed by incubation at 37°C until cytopathic effect (CPE) was complete. Virus 

stocks were prepared by freezing and thawing the cells twice, and the supernatant 
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was collected and cleared of cell debris by centrifugation at 1300×g for 20 minutes 

at 4°C. Subsequently, virus was pelleted at 26000×g for 2 hours at 4°C. The pellet 

was resuspended in 1 ml (dependent on the amount) complete medium, 

homogenized and stored in aliquots at -80°C. 

 

2.2.1.2 Virus Titration  

    Titers of virus were determined by plaque assay on BHK-21 cells in 24-well 

plates (5×104/well). Stocked virus was 10-fold serially diluted in complete medium 

from 10-1 to 10-8, 0.9 ml each, and adsorbed onto BHK-21 cells, followed by 

incubation at 37°C for 90 minutes. Each well was overlayed with complete medium 

containing 1.5% carboxymethylcellulose. Cells were stained with 0.1% crystal violet 

solution after 5 days and the numbers of plaques were counted. Virus titer was 

calculated by the following equation:  

Titer (pfu/ml) = n (plaque count per well) / 0.9 (volume of diluted virus) × viral 

dilution 

 

2.2.2 In vivo Experiments 

 

2.2.2.1 Experimental Animals and Husbandry  

    C57BL/6 and IFN-γR-/- mice on C57BL/6 background were purchased from 

Charles River Laboratories (Sulzfeld, Germany) and/or the Jackson Laboratory (Bar 

harbor, Maine, USA), bred and maintained in the Helmholtz Zentrum München. The 

mice had free-choice access to drinking water as well as chow diet. Mice were 

maintained at constant temperature (20-24°C) with 45% to 65% relative humidity 

and a 12/12-hour light-dark cycle. Before experimental treatments, mice were 

allowed to adapt to the new environment for at least 7 days. 

    Mice were housed in individually ventilated cages during the MHV-68 infection 

period. All animal experiments were performed in accordance with the local Animal 

Care and Use Committee (District Government of Upper Bavaria; permission 

number 124/08).  

 

2.2.2.2 Genotyping  

    Tissue from IFN-γR-/- mice or C57BL/6 mice was incubated in Buffer ALT 

containing 20 μl proteinase K (QIAamp DNA Mini Kit) for 1 to 3 hours at 56°C with 
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occasional vortexing until the tissue was completely lysed. Genomic DNA was then 

isolated according to the manufacturer’s instruction and subsequently used for PCR 

assays in 25 μl reaction volumes, containing 10 ng whole genome DNA, 5 μl 5× 

reaction buffer (NEB Q5 high-fidelity DNA polymerase reaction buffer), 0.5 μl 10 mM 

dNTP (Thermo Scientific), 0.5 μl of each primer, 0.25 μl DNA polymerase (NEB Q5 

high-fidelity DNA polymerase) and sterile distilled water. Primer sequences are 

shown in Table 3.1. The cycling conditions were according to the recommendations 

from the Jackson Laboratory (https://www.jax.org/strain/003288).   

 
Table 2.1 Primer sequences for mice genotyping 

Accession Number Primer (5’-3’ ) 

oIMR0587 CCCATTTAGATCCTACATACGAAACATACGG 

oIMR0588 TTTCTGTCATCATGGAAAGGAGGGATACAG  

oIMR6916 CTTGGGTGGAGAGGCTAT TC 

oIMR6917 AGGTGAGATGACAGGAGATC 

 

2.2.2.3 Infection of Mice 

    Eight- to ten-week-old, age and sex matched IFN-γR-/- or C57BL/6 mice were 

anesthetized with ketamine/xylazine and inoculated intranasally with 1×105 plaque 

forming units (PFU) of MHV-68 diluted in PBS in a total volume of 30 μl. Mock-

infected mice were treated with PBS without virus. The mice were immediately 

euthanized and aborted from the study if they showed severe symptoms such as 

scrubby furs, loss of weight, or bent back. At the predetermined time points, mice 

were sacrificed by inhalation of carbon dioxide (CO2). Subsequently, bronchoalveolar 

lavage was performed and lung tissues were quartered and processed for the 

following experiments: the left lobe was inflated and fixed in 10% buffered formalin 

for histologic and immunohistochemical examination; the remaining lobes were 

stored at -80°C and used for RNA isolation for microarray analysis and qRT-PCR to 

determine the gene expression profiles, or for the preparation of whole lung tissue 

protein extracts and western blot analysis.  

 

2.2.2.4 Bronchoalveolar Lavage (BAL) 

    Immediately after euthanasia, bronchoalveolar lavage (BAL) was conducted via 

the introduction of a cannula into the trachea. A 1 ml aliquot of ice-cold Dulbecco’s 
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Phosphate Buffered Saline (DPBS) was flushed into the airway and gently aspirated 

via a syringe and the tracheal cannula. After the first BAL fluid (BALF) was 

collected, the BAL continued with seven times of 1.5 ml aliquots of PBS until an 

additional 7 ml of BALF was collected. The initial BALF was then centrifuged at 

1500 rpm for 5 minutes at 4°C, and the supernatant was collected and decanted 

into a new 1.5 ml microcentrifuge tube and stored at -80°C for biochemical 

measurements such as cytokine concentration. The remaining lavage fluid was 

pooled and centrifuged to remove the supernatant. The sedimented cells together 

with remnant cell pellets from the first lavage wash were subsequently resuspended 

in 1 ml PBS. Finally, the number of living cells was counted on a standard 

hemocytometer in the presence of 0.4% trypan blue (Sigma-Aldrich).  

 

2.2.3 Histologic and Immunohistochemical Analysis  

 

2.2.3.1 Histopathological Examination 

    After BAL harvesting, either the whole lung or the left lobe was inflated by 5 ml 

10% phosphate buffered formaldehyde solution (PFA) (AppliChem) and then gently 

removed and immersed in 10% PFA. An average of three mice per group at each 

experimental time point was used for histopathological analysis. After fixation for 24 

hours, dissected lung tissues were dehydrated through a series of solution with 

increasing concentrations of ethanol and subsequently embedded in paraffin blocks. 

3 μm thick adjacent sections were cut by the microtome (Carl Zeiss), so that all 

parts of the samples were represented on the slides. Prior to hematoxylin and eosin 

(H&E) staining, slides were baked at 60°C for 30 minutes. Subsequently, lung 

sections were prepared for histopathological staining by deparaffinization in Xylene, 

and rehydration in a decreasing ethanol series (100%, 90%, 80%, 70%) and 

distilled water. Slides were then stained with hematoxylin and eosin according to the 

manufacturer’s protocols to determine histopathological changes and fibrosis. 

Briefly, lung sections were incubated in Mayer's Hemalaun solution (Carl Roth) for 8 

minutes, rinsed quickly in 0.3% acid-alcohol solution, washed and then transferred 

into 0.5% Eosin G solution (Carl Roth) for 8 minutes. Sections were washed in tap 

water and dehydrated in a graded ethanol series and covered with Entellan 

(Millipore). 
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2.2.3.2 Picrosirius Red Staining for Collagen  

    Additionally, serial sections were also subjected to picrosirius red staining to 

visualize collagen deposition. Slides were deparaffinized in xylene and rehydrated 

through decreasing grades of ethanol as described above. Slides were then stained 

in saturated Picric acid with 0.1% (W/V) Sirius red F3BA (Sigma-Aldrich) solution for 

1 hour at room temperature. This was followed by washing briefly with distilled 

water, staining with Mayer's Hemalaun solution (Carl Roth) for 8 minutes to depict 

nuclei, differentiation in 0.01 N hydrochloric acid (HCl), alkalinization with distilled 

water, dehydration through graded ethanol and finally mounting.   

 

2.2.3.3 Immunohistochemistry (IHC) Procedure 

    Briefly, serial lung tissue sections were processed as follows: slides were 

deparaffinized and incubated with 3% hydrogen peroxide (H2O2) (Spectrum) in 

100% methanol for 20 minutes at room temperature to quench endogenous 

peroxidase activity. Heat-induced antigen retrieval was performed with 0.05% citrate 

buffer pH 6.0 (Dako REAL Target Retrieval Solution) for 30 seconds at 125°C and 

10 seconds at 90°C. Subsequently, blocking was performed with Roden Block M 

buffer (Biocare Medical, Zytomed) for 1 hour at room temperature to avoid non-

specific antibody binding. To identify myofibroblasts or macrophages and products 

of alternatively activated macrophages, primary antibodies used were against α-

smooth muscle actin (α-SMA), arginase I and S100a4, according to the 

manufacturer’s instructions. The slides were incubated with corresponding 

secondary antibodies for 30 minutes at room temperature. Vulcan Fast Red 

Chromogen Kit (Biocare Medical, Zytomed) was used to visualize the positive 

stained cells and hematoxylin was used as counterstaining for nuclei. Isotype 

controls were routinely applied. 

    The primary antibodies used for IHC staining were mouse anti-α-SMA 

monoclonal antibody (Sigma-Aldrich) diluted at 1:200 in antibody diluent (Zytomed 

Systems), rabbit anti-arginase I polyclonal antibody (Santa Cruz Biotechnology Inc.) 

at 1:200 dilution and rabbit anti-S100a4 polyclonal antibody (Abcam) at 1: 250 

dilution. The secondary antibody applied was the Rabbit-on-Rodent alkaline 

phosphatase (AP) polymer (Biocare Medical, Zytomed) and mouse-on-mouse AP-

polymer (Biocare Medical, Zytomed). 
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2.2.4 Gene Expression Analysis 

 

2.2.4.1 RNA Isolation from Lung Tissue 

    Approximate 20 mg frozen lung tissue was disrupted and completely 

homogenized in 350 μl TissueLyser LT buffer through the FastPrep-24 Lysator (MP 

Biomedicals). Total RNA was extracted and purified utilizing the RNeasy Mini Kit 

(Qiagen) as per the manufacturer’s instruction. The concentration and purity of RNA 

samples were quantified by a Nanodrop ND-1000 spectrophotometer (Thermo 

Scientific). RNA was stored at -80°C for microarray analysis and quantitative real-

time RT-PCR. 

 

2.2.4.2 Microarray Analysis 

For each condition, three biological replicates were used:  

C57BL/6 mice IFN-γR-/- mice 

Mock-infected Mock-infected 

Day 14 post infection Day 14 post infection 

Day 45 post infection Day 45 post infection 

 

    Total RNA was isolated and subjected to the mouse experimental array ME430 

2.0 (Affymetrix) by the Affymetrix Core Facility of the Technical University of 

Munich. Data analysis was carried out using the Qlucore Omics Explorer software 

(Qlucore). Differentially expressed genes were identified by Multi Group 

Comparison (F-test) and visualized by hierarchical clustering and a heat map. 

 

2.2.4.3 cDNA Synthesis 

    cDNA was generated from total RNA utilizing SuperScript RT III kit (Invitrogen) in 

a total volume of 20 μl. First-strand synthesis was performed in a total volume of 

13.5 μl with 1 μg RNA, 1 μl 10 mM dNTP (NEB), 1 μl random hexamers (50 μM) 

and RNase-free distilled water. The mixture was incubated at 65°C for 5 minutes 

and then chilled on ice immediately for at least 1 minute. Thereafter, the following 

reagents were added to the RNA/hexamers mixture: 4 μl 5×first-strand buffer, 2 μl 

0.1 mM DTT and 0.5 μl of Superscript III (200 units). The obtained solution was 

incubated at 42°C for 1 hour and reverse transcriptase was inactivated by 
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incubating at 70°C for 10 minutes. cDNA was either stored at -20°C or subjected to 

quantitative real-time PCR analysis (diluted 1:10 with H2O before use). 
 
2.2.4.4 Quantitative Real-Time PCR  

    Quantitative real-time PCR (qPCR) was conducted to verify the microarray data 

using the ABI Prism 7300 Real-Time PCR System (Applied Biosystems, Life 

Technologies). Specific primers for the genes of interest were custom designed 

through the online PrimerBank database (pga.mgh.harvard.edu/primerbank/) and 

synthesized by Metabion (Martinsried, Germany). The housekeeping genes 

ribosomal protein l8 (rpl8) or β-actin were used to normalize for the input of loaded 

cDNA. 1 μl of cDNA was mixed with the appropriate 100 nmol/ml primers and 

2×SYBR Green Master Mix (Applied Biosystems, Life Technologies) in a total 

volume of 25 μl. The sequences of primers are given in Table 2.2. Each qPCR 

reaction was carried out in a 96-well plate in duplicate with the following program: 

95°C for 10 minutes for initial denaturation, 40 cycles of amplification as follows: 1) 

denaturation at 95°C for 15 seconds, 2) annealing and elongation at 60°C for 1 

minute. Melting curve analysis was also done with a continuous temperature 

increasing from 60°C to 95°C with a rate of 0.1°C/second to assess the specificity of 

the amplification process. 

    Relative gene expression levels were calculated using the comparative Ct (ΔΔCt) 

method (206). ΔCt corresponds to the difference between the threshold cycle (Ct) value 

for the gene of interest (CtGOI) and the Ct value for the housekeeping gene (CtHG) which 

is:  

ΔCtGOI = CtGOI - CtHG   

ΔCtcontrol = Ctcontrol - CtHG  

ΔΔCt reveals the relative quantitation between ΔCtGOI and ΔCtcontrol: 
ΔΔCt= ΔCtGOI - ΔCtcontrol 

Relative expression was then calculated as 2ΔΔCt. 

 

 

 

 

 

 



Materials and Methods 
 

43 

Table 2.2 Primer sequences of genes of interest (GOI). 

Target  
gene 

Forward primer (5’-3’) Reverse primer (5’-3’) 

Actb TCCATCATGAAGTGTGACGT GAGCAATGATCTTGATCTTCAT 

Arg1 GGAACCCAGAGAGAGCATGA TTTTTCCAGCAGACCAGCTT 

Tnf CACCACGCTCTTCTGTCT GGCTACAGGCTTGTCACTC 

Rpl8 AAGGCGCGGGTTCTGTTTT GCTCTGTCCGCTTCTTGAATC 

S100a4 TCAGCACTTCCTCTCTCTTGG AACTTGTCACCCTCTTTGCC 

  

2.2.5 Protein Analysis  

 

2.2.5.1 Protein Isolation 

    Total protein was extracted from lung tissue with precooled RIPA buffer (10mM 

Tris, 150mM NaCl, 5mM EDTA, 1% sodium deoxycholate, 1% Triton X-100, 1% 

SDS supplemented freshly with 1 tablet complete protease inhibitor cocktail (Roche) 

per 10 ml. Samples were homogenized by the FastPrep-24 Lysator (MP 

Biomedicals) and placed on ice for 30 minutes with vigorous vortexing every 10 

minutes. All samples were centrifuged at 14,000 rpm for 15 minutes at 4°C, and 

supernatants were collected and decanted in new microcentrifuge tubes and stored 

at -80°C. 

    For isolation of whole cell extracts, cells were washed with precooled PBS and 

lysed with cold RIPA buffer for 30 minutes on ice. Cell debris was pelleted at 14,000 

rpm for 15 minutes at 4°C and the supernatant was harvested and stored at -80°C.   

 

2.2.5.2 Protein Quantification 

    Protein concentrations were measured by Bradford assay with coomassie protein 

assay reagent (Thermo Scientific) according to manufacturer’s instructions with 

BSA (Thermo Scientific) as standards (0, 25, 125, 250, 500, 750, 1000, 1500 and 

2000 μg/ml). Absorption at OD 595 was measured with a microplate absorbance 

reader (TECAN SUNRISE), and the BSA standard curve was applied to calculate 

concentrations of samples.  
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2.2.5.3 Western Blot Analysis 

Western blot was performed as previously described (207). In brief, 25-50 μg 

total protein extract per sample was diluted in 4×Laemmli Buffer (Biorad) 

supplemented with 5% β-mercaptoethanol and incubated for 5 minutes at 95 °C. 

Samples were resolved in 5-15% sodiumdodecylsulphate polyacrylamide gels 

(SDS-PAGE) for 90 minutes at 120V in Tris-glycine running buffer in an 

electrophoresis tank (Bio-Rad). The pre-stained full-range rainbow molecular weight 

marker (GE Healthcare, Life Science) was used to indicate the protein size. 

Proteins were transferred to the nitrocellulose membrane (GE Healthcare, Life 

Science) in blotting buffer at 300 mA for 60 minutes in a Hoefer TE22 Mini Tank 

(GE Healthcare, Life Science). The membrane was then soaked in 5% milk in TBS-

T blocking buffer for 1 hour at room temperature to prevent non-specific binding. 

Primary antibodies were diluted in 1% milk blocking buffer and incubated overnight 

at 4°C with agitation in a 50 ml falcon tube. After washing 3 times with TBS-T buffer, 

the membrane was incubated with the appropriate secondary antibody for 1 hour at 

room temperature. The membrane was washed three times with TBS-T buffer, and 

the resulting signals were visualized and captured with Pierce ECL western blotting 

substrate (Thermo Scientific) and Bio-Rad imaging system (Thermo Scientific). If 

necessary, initial antibodies could be stripped with Restore Stripping Solution 

(Thermo Scientific) for 8 to 15 minutes at room temperature. The nitrocellulose 

membrane was then washed with TBS-T, blocked with 5% milk in TBS-T and 

reprobed with other antibodies as described above. The antibodies and dilutions 

employed are shown in Table 2.3.  
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Table 2.3 Antibodies utilized in western blot assays 

Name Dilution Company 
Rabbit polyclonal anti-S100a4 antibody 1:1000 Abcam, ab27957 

Mouse monoclonal anti-S100a4 antibody 1:1000 Abcam, ab93283 

Rabbit polyclonal anti-ArginaseI antibody 1:1000 Santa Cruz, sc-20150 

Rabbit polyclonal anti-GAPDH antibody 1:1000 Abcam, ab37168 

Rabbit polyclonal anti-STAT6 antibody 1:1000 Cell Signaling, #9362 

Rabbit polyclonal anti-pSTAT6 antibody 1:1000 Cell Signaling, #9361 

Mouse monoclonal anti-β-actin-HRP-

conjugated antibody 
1:50000 Sigma-Aldrich, A3854 

HRP-conjugated anti-mouse IgG 

secondary antibody 
1:5000 GE Health care, 9597364 

HRP-conjugated anti-rabbit IgG 1:5000 GE Health care, 356938 

 

2.2.5.4 Enzyme-Linked Immunosorbent Assay (ELISA) 

    In order to quantify the levels of active TGF-β1 in BALF, the Human TGF-β 

CytoSetTM (Invitrogen) was utilized according to manufacturer’s manual. 

Specifically, 96-well NUNC MaxiSorp microplates (NUNCTM, Thermo Scientific) 

were coated with 2 μg/ml TGF-β capture antibody in PBS at 4°C overnight. Plates 

were blocked with assay buffer (PBS + 5% BSA) for 1 hour at room temperature. In 

parallel, standard samples were prepared by dilution of recombinant human TGF-β 

(2000, 1000, 500, 250, 125 and 62.5 pg/ml) and BALF was treated with 1 N HCl at 

room temperature for 15 minutes and then neutralized with 1 N NaOH. All samples 

were transferred into designed wells and incubated for 2 hours at 37°C. After 

washing three times with washing buffer, 0.64 μg/ml detection antibody (Anti-human 

TGF-β biotin antibody), diluted in assay buffer, was added and incubated at room 

temperature with continuous shaking (700 rpm). Subsequently, wash three times 

with washing buffer, and add streptavidin-HRP solution (R&D systems). For 

colorimetric quantification, TMB substrate reagent (BD Biosciences) was added to 

each well and reactions were stopped with 2 N H2SO4. Absorbance at 450 nm was 

measured by a microplate absorbance reader (TECAN SUNRISE), and the 

standard curve was applied to calculate concentrations of samples.  

    Secreted S100a4 in cell culture supernatants was measured by a sandwich 

ELISA as described (179). Briefly, 96-well NUNC MaxiSorp microplates (NUNCTM, 
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Thermo Scientific) were coated with 1 μg/ml mouse anti-S100a4 monoclonal 

antibody (Abcam) at 4°C overnight. After blocking with assay buffer (PBS + 5% 

BSA), samples were added and incubated for 2 hours at 37°C, followed by 

incubation with 1 μg/ml rabbit polyclonal anti-S100a4 antibody (Abcam) at room 

temperature with continuous shaking (700 rpm). Next, a secondary HRP-conjugated 

anti-rabbit IgG (GE Healthcare, Life Science) was applied and proteins were 

detected by TMB substrate.  

 

2.2.6 Cell Culture and Treatments of Cells 

 

2.2.6.1 BHK-21 

    Baby hamster kidney cells (BHK-21) were maintained in Glasgow modified 

eagle’s medium (Pan Biotech) supplemented with 5% FBS, 2 mM L-glutamine, 5% 

tryptose phosphate broth (TPB), penicillin (100 U/ml) and streptomycin (100 mg/ml) 

at 37°C in 5% CO2. To subculture the cells, the medium was discarded and 

monolayer cells were washed with PBS once, followed by incubation with 0.25% 

trypsin (Gibco) until cells were detached from the surface of the flask. A comparable 

volume of complete medium was used to neutralize the trypsin, and cells were split 

at a ratio of 1:5 every 3-4 days.  

 

2.2.6.2 Isolation of Mouse Primary Resident Alveolar Macrophages (AMs)  

    To isolate lung tissue alveolar macrophages, C57BL/6 wild type mice were 

anesthetized by injection of xylazine (4.1 mg/kg body weight) and ketamine (188.3 

mg/kg body weight) intraperitoneally and killed by exsanguination (209). The 

trachea was exposed, cannulated and the lungs were serially washed with 1 ml 

sterile PBS 10 times as described previously to harvest lavage fluid. Cell pellets 

were obtained by centrifugation at 1500 rpm for 10 minutes at 4°C, and 5×105 cells 

per well were seeded in 24-well plates in complete RPMI-1640 medium (Gibco) and 

incubated at 37°C and 5% CO2 atmosphere. Cells were allowed to adhere for 60 to 

90 minutes and then non-adherent cells were removed by washing twice with PBS. 

 

2.2.6.3 Isolation and Cell Culture of Mouse Primary Lung Fibroblasts 

C57BL/6 mice were euthanatized by exsanguination as described above. 15 ml 

cold PBS was perfused smoothly into the right heart ventricle until the lung got 
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cleared of blood. The whole lung was removed and rinsed in pre-warmed DMEM/F-

12 (Gibco) medium supplemented with 1% penicillin/streptomycin (Gibco), 1% 

HEPES buffer (Gibco) and 15% FBS (PAA). The lung was diced into 1-2 mm pieces 

and digested with 0.1 mg/ml Collagenase A (Roche) at 37°C for 2 hours. Digested 

tissue was then minced using a 100 μm cell strainer (BD, Biosciences). After 

washing and centrifuging, cells were resuspended in complete DMEM/F-12 medium 

and incubated at 37°C with 5% CO2. The culture medium was changed every two to 

three days to remove unattached cells. After reaching 80–90% confluence, cells 

were detached by 0.25% Trypsin (Gibco), split at 1:4 and applied to experiments at 

passages not higher than three. 

 

2.2.6.4 Macrophage Activation Experiments 

    Isolated primary alveolar macrophages were cultured in 24 well plates (5×105 

cells/well) in RPMI-1640 medium (Gibco) supplemented with 1% 

penicillin/streptomycin (Gibco) and 10% FBS (PAA) overnight. The cells were 

stimulated with LPS (100 ng/ml, Sigma) and/or IFN-γ (20 ng/ml, Immuno Tools) to 

produce M1 macrophages, or with IL-4 (20 ng/ml, Immuno Tools) to induce M2 

macrophage polarization. The application of a 72-hour time course (6, 24, 48 and 

72 hours) and increasing doses of IL-4 (10, 20, 50, 100, 200 ng/ml) allowed for the 

accurate analysis of gene expression profiles and cytokine release without medium 

change or repeated administration of stimuli. Untreated macrophages incubated in 

culture medium served as controls. For the analysis of cytokines, supernatants were 

collected and subjected to ELISA for measurement of S100a4 as described above. 

Adherent cells were washed with ice-cold PBS and then harvested for total RNA or 

protein isolation.  

 

2.2.6.5 Immunocytofluorescence Staining 

    For immunocytofluorescence staining of Arginase I and S100a4, primary alveolar 

macrophages were seeded on a 24-well plate containing sterile round glass 

coverslips at a density of 5×105 cells/well and cultured in the absence or presence 

of IL-4 (20 ng/ml). At 48 hours after the initiation of stimulation, adherent cells were 

washed with precooled PBS and fixed with cold methanol for 10 minutes at room 

temperature. After washing three times in PBS for 5 minutes, cells were covered 

with blocking solution (1% BSA in PBS) for 30 minutes at room temperature, and 
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then incubated with a mixture of mouse anti-S100a4 monoclonal antibody (Abcam) 

at 1: 300 dilution and rabbit anti-Arginase I polyclonal antibody (Santa Cruz 

Biotechnology Inc.) at 1: 250 dilution for 1 hour at room temperature. This was 

followed by an exposure to a mixture of secondary antibodies, a goat anti-mouse 

IgG Alexa Fluor® 488 secondary antibody (Thermo Scientific) and a goat anti-rabbit 

IgG Alexa Fluor® 633 secondary antibody (Thermo Scientific), at 1: 500 dilution, in 

the dark for 1 hour. Stained cells were mounted with Mowiol which contains 4′,6-

diamidino-2-phenylindole (DAPI) (Dako) to visualize the nuclei, and images were 

captured by a fluorescence microscope (LSM 700, Carl Zeiss). The appropriate 

irrelevant isotype-matched immunoglobulins were employed as negative controls. 

 

2.2.6.6 Cell Proliferation Assay 

    Cell proliferation was evaluated after different treatments by utilizing the cell 

proliferation kit II (XTT) (Roche) according to the manufacturer’s instructions. 

Briefly, primary lung fibroblast cells were plated into 96-well plates (3×103 cells/well) 

in complete DMEM/F-12 medium (Gibco) and allowed to accommodate overnight 

before quiescing by replacing with serum-free medium for a further 12 hours. 

Subsequently, cells were incubated in 2% FBS DMEM/F-12 medium with or without 

recombinant S100a4 protein (2 μg/ml) or together with the anti-S100a4 antibody (3 

μg/ml) (R&D Systems) for 72 hours. Prior to harvesting, cells were treated with XTT 

labeling mixture for 4 hours, and the absorbance was quantified at 450 nm with a 

reference wave length at 650 nm by using a microplate absorbance reader (TECAN 

SUNRISE).  

    To verify whether the inhibition of S100a4 in M2 macrophages influence the pro-

proliferative effect, M2 macrophage conditioned medium was incubated with 

S100a4 antibody (3 μg/ml) for 1 hour at room temperature, and then applied on pre-

starved primary lung fibroblast cells. Additionly, the conditioned medium from 

S100a4-siRNA transfected M2 macrophages was also applied on pre-starved cells. 

After 48 hours, proliferation was evaluated by cell proliferation kit II (XTT) 

mentioned above. 

 

2.2.6.7 Wound Healing Assay 

    Cell migration was determined by wound healing assay. Initially, 5×104 cells were 

seeded into a 24-well plate and allowed to adhere overnight until reaching about 
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70% confluence. Cell monolayers were inflicted by manually scraping with a 200 μl 

pipette tip and cell debris was removed by washing with PBS. Subsequently, cells 

were treated with the recombinant S100a4 protein (2 μg/ml) or that pre-incubated 

with the anti-S100a4 antibody (3 μg/ml) in culture medium supplemented with 2% 

FBS. Microphotographs were taken at 0 and 24 hours after treatments with an 

Axiovert microscope (Carl Zeiss). The wound areas were subsequently measured, 

and each wound healing assay was conducted in triplicates. Finally, the cells were 

harvested for further analysis.  

 

2.2.6.8 Transfection of Primary Alveolar Macrophages with siRNA 

    For specific knockdown of the S100a4 gene in primary alveolar macrophages, a 

set of three siRNAs (1, 2, 3) as well as a non-targeting negative control was 

purchased from Riboxx (Radebeul, Germany) (NM_011311.2). Prior to the 

experiments, the siRNA powder was reconstituted with RNase-free water in order to 

obtain the working solution with a final concentration of 600 nM. Primary alveolar 

macrophages were prepared as described above and seeded in 24-well plates at a 

density of 150,000 cells/well approximately 24 hours before transfection. Cells were 

transfected in duplicates as follows: 3 μl riboxx®FECT transfection reagent diluted 

in 37 μl Opti-MEM (Gibco) were added to the 20 μl siRNA in 40 μl Opti-MEM. The 

reaction mixtures were incubated at room temperature for 15 minutes. In the mean 

time, the cell culture medium was aspirated and replaced with 500 μl fresh complete 

medium. Then, the mixture was added to each designed well to a final siRNA 

concentration of 20 nM/well. After transfection for 72 hours, supernatants were 

harvested for further experiments, and cells were harvested for RNA extraction and 

subsequent quantitative RT-PCR analysis. 

 

2.2.7 Drugs and Treatments 

 

2.2.7.1 Cytotoxicity assay 

    The inhibitors of S100a4, calcimycin and niclosamide (2',5-dichloro-4'-

nitrosalicylanilide), were purchased from Sigma and were solubilized in dimethyl 

sulfoxide (DMSO) for in vitro experiments. To exclude adverse effects caused by 

DMSO, control cells were treated with the equal amount of solvent. Analysis of cell 

cytotoxicity was performed with the cell proliferation kit II (XTT) (Roche) according to 
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the manufacturer’s instructions. Briefly, cells were seeded at 1x104 cells/well in a 96-

well-plate and allowed to accommodate overnight. The cells were exposed to a 

series of different concentrations of calcimycin or niclosamide for 24 hours. 

Subsequently, cells were treated with XTT labeling mixture for 4 hours, and the 

absorbance was quantified at 450 nm with a reference wave length at 650 nm by 

using a microplate absorbance reader (TECAN SUNRISE). Cell viability was 

determined by dividing the absorbance ratio of drug treated cells by the ratio 

obtained from untreated cells which was defined as 100% cell viability. 

 

2.2.8 Statistical Analysis 

    All statistics and calculations were conducted with GraphPad Prism version 6.0. 

Values are shown as mean ± SD of at least 3 animals or 3 individual samples in 

each group if not otherwise indicated. The comparison of two groups was examined 

by unpaired Student’s t-test, and comparisons between several experimental groups 

were performed by analysis of variance (ANOVA). All significance tests were two-

tailed and P values were expressed as follows: 0.05 > p > 0.01 as *; 0.01 > p > 0.001 

as **; p < 0.001 as ***; p < 0.0001 as ****. 
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3. Results    

 

3.1 Gene Expression Profiles of Normal and Fibrotic Lung Tissues 

 

3.1.1 Experimental Approach for Characterization of Differentially Regulated Genes 

during Pulmonary Fibrosis 

    Despite intensive research efforts, the underlying mechanisms of idiopathic 

pulmonary fibrosis remain poorly understood, and there are currently inefficient 

therapeutic options for this serious complication. While a number of hypothesis-

driven investigations have characterized potential profibrotic genes, translation of 

these into therapeutic targets has been so far mostly disappointing. The 

characterization of more effective targets in pulmonary fibrosis can be addressed 

using DNA microarrays. In general, most of these studies have focused on 

characterizing gene expression in the bleomycin-induced pulmonary fibrosis model.  

In this thesis, genes that are involved in the initiation and progression of IPF were 

identified in the MHV-68-induced fibrosis model, which is the most closely related to 

human disease.  

     Previous studies suggested that MHV-68 infection causes pneumonia in both 

IFN-γR-/- and C57BL/6 wild-type mice during the acute phase of the infection (<14 

days post infection (d.p.i.)). However, during the chronic phase, (>45 d.p.i.), wild-type 

mice had complete resolution of interstitial pneumonia; only the IFN-γR-/- mice 

started to establish progressive pulmonary fibrosis (113). To uncover the potential 

molecular mechanisms underlying the pathogenesis of pulmonary fibrosis, a whole 

genome transcriptional analysis using microarrays was performed at different time 

points of disease progression in the animal model of MHV-68-induced pulmonary 

inflammation and fibrosis. Eight- to ten-week-old IFN-γR-/- or C57BL/6 mice were 

randomly divided into several groups (n=3 for each group), and inoculated 

intranasally with 1×105 plaque forming units (PFU) of MHV-68 or were left uninfected. 

The mice were sacrificed and RNA from lung samples was isolated at 14 (acute 

phase) and 45 (chronic phase) days post infection, corresponding to the 

inflammatory and fibrotic phases of the disease.  

    As a control, RNA of lung samples was isolated from uninfected littermate mice. 

After statistical selection of differentially regulated genes, results were compared 
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with other published microarray data in IPF, both from mice and humans, thus 

generating a list of likely disease mediators. Furthermore, qRT-PCR, western blot, 

ELISA and immunohistochemical analysis were performed, respectively. An 

overview of the experimental approach to identify the differentially expressed genes 

is represented in Figure 3.1. 

 
Figure 3.1 Schematic diagram illustrating the characterization and verification of 
differentially regulated genes in the pathogenesis of pulmonary fibrosis.   
Both IFN-γR-/- or C57BL/6 mice were randomly divided into several groups (n=3 for each 
group). Age and sex matched mice were inoculated intranasally with 1×105 PFU of MHV-68 
or were left uninfected. At days 14 and 45 post infection, mice were sacrificed and lung 
tissues and BAL fluid were collected and processed for the following experiments: The left 
lobe was inflated and fixed in 10% buffered formalin for histologic and immunohistochemical 
examination; the remaining lobes were used for RNA isolation for microarray analysis and 
qRT-PCR to determine the gene expression profiles or for the preparation of whole lung 
tissue protein extracts for Western blot analysis; additionally, protein was measured in the 
BAL fluid. 
 

3.1.2 Microarray Analysis 

    The comparison of gene expression profiles between MHV-68 infected IFN-γR-/-  

and C57BL/6 wild-type mice, together with respective uninfected mice, during acute 

(day 14) and chronic phase (day 45), was carried out with a multiple group 

comparison (F test) with a threshold of p ≤ 0.001 by the software Qlucore (Qlucore 

bioinformatics company, Sweden). This analysis resulted in 216 genes which were 

found to be differentially expressed (Figure 3.2A). The identified gene clusters were 

then further illustrated in separate panels (Figure 3.2B-H). Some of the identified 
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genes were consistently and highly expressed in IFN-γR-/- mice while lowly 

expressed in C57BL/6 mice or vice versa (Figure 3.2B and C). Although these genes 

had significant variation between IFN-γR-/- and C57BL/6 wild-type mice due to the 

genotype of the mice, expression of these genes was not regulated during 

pulmonary inflammation and fibrosis. Genes in group D and E represented a 

homogeneous expression pattern. Several genes in these groups are involved in the 

regulation of the cell cycle, such as Ccnb1, Rrm2, Uhrf1, Tacc3, Ccna2 and Shcbp1. 

Group F contains a number of genes that were significantly upregulated in the 

C57BL/6 mice but not in IFN-γR-/- mice. Most of these genes were involved in the 

IFN-γ signaling pathway, such as Tap1, Sata1, CXCL10, CXCL9, Ido1 and Wars. 

However, in IFN-γ-receptor-deficient mice, those genes were not able to respond to 

the induction of IFN-γ. In groups G and H, 38 genes were shown to be differentially 

expressed during pulmonary inflammation and fibrosis between the IFN-γR-/- and 

C57BL/6 mice. 35 genes were highly expressed in both strains of mice by day 14 

p.i., while they returned to baseline expression levels by day 45 p.i. in C57BL/6 mice 

but remained elevated above baseline values in the IFN-γR-/- mice (Figure 3.2G). 

Moreover, the expression levels of Slc5a12, Crispld2 and Gria1 in group H were 

suppressed in both strains of mice during the acute inflammatory phase (14 d.p.i.) 

and increased to the baseline expression levels during the chronic phase (45 d.p.i.) 

in C57BL/6 mice, but remained low and unchanged in the IFN-γR-/- mice during the 

chronic phase (45 d.p.i.). The expression profiles prioritized these genes in group G 

and H for further studies. 
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Figure 3.2 Heat map analysis of genes differentially expressed in MHV-68 infected 
C57BL/6 wild type and IFN-γR-/- mice.  
(A) Gene expression profiles were analyzed by whole genome expression analysis via 
Qlucore software using RNA isolated from mock or MHV-68 infected mouse lungs at 14 or 
45 days post virus inoculation. 216 differentially expressed genes were clustered across all 
mouse samples. Red and green denote increased and decreased gene expression levels, 
respectively. Each column represents an individual mouse (n=3 for each group), and each 
row is a separate gene. Groups (left to right) are IFN-γR-/- uninfected mice, IFN-γR-/- mice at 
days 14 and 45 post infection; C57BL/6 uninfected mice, C57BL/6 mice at days 14 and 45 
post infection. (B&C) Genes that are consistently and highly expressed in IFN-γR-/- mice 
while lowly expressed in C57BL/6 mice or vice versa. (D&E) Genes exhibit the same 
expression pattern in IFN-γR-/- and C57BL/6 mice. (F-H) Genes that are differentially 
regulated in IFN-γR-/- and C57BL/6 mice during inflammatory and fibrotic phases. 
 

3.1.2 GO and Pathway Analysis 

    In parallel with the bioinformatic identification of differentially regulated genes, the 

216 genes were annotated in the form of GO terms, in the categories of Molecular 

Function and Biological Process, in order to infer deregulated biological functions 

from the gene list and define functional criteria for further gene selection. GO term 

frequencies in the selected gene list were then analyzed and their statistical 

significance (identified as a P value) were estimated through their hypergeometric 

distribution (Gene Ontology Consortium). As shown in Table 3.1, a number of well-

expected processes and functions were found to be deregulated during the 

pathogenesis of MHV-68-induced pulmonary inflammation and fibrosis, such as 

chemokine activity, regulation of leukocyte activation, myeloid leukocyte activation, 

and regulation of cell proliferation. As anticipated, GO analysis indicated disorders of 

the immune system as a pathogenic insult that could lead to (or exacerbate) 

pulmonary fibrosis.  

    Moreover, the Panther Pathways software (http://pantherdb.org/pathway/) was 

used for automated gene expression data integration in cellular canonical pathways. 

The genes were examined for their participation in canonical pathways, followed by a 

frequencies calculation. The top 12 clustered pathways are shown in Table 3.2. A 

number of pathways were identified to be deregulated, such as Wnt signaling 

pathway, angiogenesis and T cell activation. Notably, the inflammation mediated by 

chemokine and cytokine signaling pathways was ranked first in the list, further 

supporting the GO analysis results. 
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Table 3.1 Gene ontology analysis of differentially regulated genes. 

Annotation P value 
GO: molecular function 

     protein binding 6.16E-14 
    binding 3.29E-07 
    chemokine receptor binding 5.15E-04 
    chemokine activity 2.09E-03 
    carbohydrate derivative binding 2.23E-03 
    antigen binding 2.30E-03 
    protein kinase binding 3.83E-03 
    kinase binding 4.01E-03 
    identical protein binding 9.21E-03 
    CXCR3 chemokine receptor binding  1.73E-02 
    protein complex binding 2.58E-02 
GO: Biological process 

     response to other organism 1.15E-08 
    response to external biotic stimulus 1.15E-08 
    leukocyte differentiation 1.15E-07 
    single organism cell adhesion 1.27E-05 
    positive regulation of leukocyte activation 1.08E-04 
    regulation of cell proliferation 1.11E-03 
    regulation of microtubule cytoskeleton 
organization  1.02E-02 
    response to molecule of bacterial origin 1.08E-02 
    negative regulation of cellular process 1.08E-02 
    myeloid leukocyte activation 1.11E-02 
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Table 3.2 Pathway analysis of differentially regulated genes. 

Pathway Frequencies 
Inflammation mediated by chemokine and cytokine 

signaling pathway 
17 % 

T cell activation 7 % 

Angiogenesis 5 % 

Interleukin signaling pathway 4 % 

Interferon-gamma signaling pathway 4 % 

Heterotrimeric G-protein signaling pathway-Gq alpha 

and Go alpha mediated pathway 
4 % 

Heterotrimeric G-protein signaling pathway-Gi alpha 

and Gs alpha mediated pathway  
4 % 

Wnt signaling pathway 4 % 

B cell activation 4 % 

Apoptosis signaling pathway 3 % 

p53 pathway 3 % 

EGF receptor signaling pathway 3 % 

 

3.1.3 Verification of Microarray Data Using qRT-PCR 

    In order to assess the validity of the gene expression differences identified by the 

microarray analysis, the expression levels of eleven selected genes, including 

immune regulators, transporters, and cell surface receptor were assessed by qRT-

PCR in our original samples used in the microarray study. Figure 3.3 shows that the 

great majority of these genes (S100a4, Scara5, Bpifb1, LPNX, Muc5b, Cle4n, Slc5a, 

C1qa, Gria1, Ctss, and Crispld2) demonstrated good correlations between data 

obtained with the two techniques.  

     To further identify novel candidates for disease-related differentially regulated 

genes, we evaluated the genes that were not highlighted or well-studied in the 

inflammatory response. A very extensive manual literature search with PubMed and 

a comprehensive comparison of published expression profiling results from other IPF 

animal models as well as from human patients were performed (208). Most of the 

inflammation related genes have been well characterized in the regulation of 

pulmonary fibrosis, such as CXCR3 and its ligands CXCL9 and CXCL10 (209). 

Noticeably, the gene termed S100a4 has been found to be highly expressed in the 
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bleomycin-induced acute lung injury and pulmonary fibrosis dataset with fold 

changes of 2.4 and 3.7, respectively, compared with mice from control groups (208). 

Its upregulation across multiple IPF animal models suggested that it may play a role 

in the common features of disease pathogenesis. In addition, S100a4 was also 

found to play roles in the immune response (163, 210-212). 
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Figure 3.3 qRT-PCR verification of microarray results.  
Expression levels of eleven genes selected from the microarray data were measured by 
qRT-PCR in homogenates from uninfected or MHV-68 infected IFN-γR-/- (k.o) and C57BL/6 
wild-type (w.t) mice at days 14 and 45 p.i.. Relative fold changes of selected genes, S100a4, 
Scara5, Ctss, Bpifb1, LPXN, Muc5b, Clec4n, Slc5a, C1qa, Gria1, Ctss, and Crispld2 were 
analyzed by qRT-PCR. For each sample, the microarray data are plotted on the left with 
white columns, while the qRT-PCR results are plotted on the right with black columns. The 
qRT-PCR expression levels were normalized to l8. Results are derived from 3 mice per 
group and shown as mean ± SD. 
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3.2 S100a4 Positive Cells Increase during Fibrogenesis 

 

3.2.1 Expression Analysis of S100a4 by Western Blot 

    As indicated by microarray analysis, S100a4 was extensively expressed at day 14 

p.i. (acute inflammation phase) in both IFN-γR-/- and C57BL/6 wild-type mice, then 

declined to the control level in the wild-type mice at day 45 p.i. (fibrotic phase), whilst 

remaining high in the IFN-γR-/- mice. Thus, we next assessed whether the changes 

in S100a4 mRNA level also resulted in respective changes at the protein level. 

Western blot analysis was performed in an independent set of freshly homogenized 

lung tissues. The results confirmed the microarray and qRT-PCR analysis. High 

expression of S100a4 only occurs during the progression phase in both strains of 

mice, and disappears rapidly at the resolution phase of lung fibrosis in the wild-type 

mice but not in IFN-γR-/- mice (Figure 3.4). 

 
 

Figure 3.4 Increased S100a4 expression in MHV-68-induced pulmonary inflammation 
and fibrosis. 
Lung homogenates from uninfected mice and MHV-68-infected mice at the indicated time 
points were subjected to western blot analysis for the S100a4 protein (3 mice per group). 
Blots were either incubated with an anti-S100a4-antibody or an anti-GAPDH antibody as 
loading control.  
 

3.2.2 Expression Analysis of S100a4 by ELISA 

It has been reported that S100a4 could be secreted extracellularly (159) and 

therefore ELISA was performed to further analyze the secreted S100a4 protein in the 

BAL fluid isolated from uninfected and MHV-68 infected IFN-γR-/- and C57BL/6 wild-

type mice at indicated time points (Figure 3.5A). As expected, the S100a4 protein 
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detected in the BAL fluid was in accordance with the western blot analysis: the level 

of soluble S100a4 protein was elevated during the pulmonary inflammation (day 20 

p.i.) in both stains of mice, and remained high during the fibrotic phase (> day 60 p.i.) 

in IFN-γR-/- mice (k.o), while decreasing in wild-type mice (w.t). In addition, the 

amount of S100a4 protein was also quantified in BAL fluid obtained from PBS- or 

bleomycin-treated C57BL/6 mice at 14 days after instillation (Figure 3.5B). An 

elevated expression level of S100a4 was also observed in the bleomycin-treated 

mice. These results indicated that a significantly increased level of S100a4 protein in 

the lung is a common phenomenon during fibrogenesis, independent of the 

experimental mouse model. 

 
Figure 3.5 Up-regulation of S100a4 protein in BAL fluid of fibrotic mice.  
(A) S100a4 protein was measured in BAL fluids from uninfected or MHV-68 infected IFN-γR-/- 
(ko) and C57BL/6 mice (wt) at days 20, 63 and 100 p.i.. Each symbol represents a mouse. 
Results are derived from 3 mice per group and shown as mean ± SD. Unpaired t-test was 
performed for statistical analysis (* denotes p<0.05; ** denotes p<0.01). (B) Protein levels of 
S100a4 were measured in BAL fluid from PBS or bleomycin-treated C57BL/6 mice at 14 
days after instillation (n=9 per group). Each symbol represents a mouse. Results are derived 
from 9 mice per group and shown as mean ± SD. Unpaired t-test was performed for 
statistical analysis (***denotes p < 0.001). 
 

3.2.3 Immunohistochemistry Localizes S100a4 to Alveolar Macrophages in Fibrotic 

Lungs 

    In previous studies, S100a4 was considered as a marker of fibroblasts in different 

organs undergoing tissue remodeling including kidney, lung, liver and heart. 

Additionally, S100a4 is commonly used to demonstrate the EMT process in several 

tissues during fibrogenesis (213). However, it remains elusive what the origin of 
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S100a4 secreting cells in the fibrotic lungs is. Österreicher and colleagues reported 

that S100a4 identifies an inflammatory subpopulation of macrophages in the injured 

liver (214). In order to characterize the origin of S100a4 in the fibrotic lung tissue, the 

S100a4 protein was characterized by immunohistochemical staining of consecutive 

sections. Representative images of immunohistochemical staining of S100a4 are 

shown in Figure 3.6. In uninfected IFN-γR-/- mice, S100a4 was detected only in a few 

cells. In contrast, in the sections of fibrotic lungs, S100a4-positive stained cells were 

widely observed in perivascular lymphocytic infiltrates, areas around small or 

medium vessels and injured alveoli or airways with enhanced staining of 

monocytes/macrophages in the early (day 17 p.i.) and advanced stages (day 45 p.i.) 

of lung fibrosis (Figure 3.6A).  

    Prior investigations have suggested that alveolar macrophages are the 

predominant immune cells of the pulmonary innate immune system and play an 

important role in driving the fibrogenesis process. Additionally, recruited alveolar 

macrophages showed high expression of Ym1/2, FIZZ1 and Arg1, which indicates 

that the macrophages were activated by an alternative pathway (113). Hence, we 

hypothesized that S100a4 was secreted by alternatively activated macrophages. To 

confirm the above concept, immunohistochemical staining of S100a4 and Arg1 on 

consecutive lung sections was performed. Careful inspection of serially stained 

sections demonstrated that S100a4 positive cells were closely localized with Arg1 

positive cells at the beginning of fibrosis (Day 45) and also in the remodeling phase 

(Day 90) (Figure 3.6B), which confirmed our hypothesis that S100a4 co-localized 

with Arg1 in macrophages. 
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Figure 3.6 Co-localization of S100a4 with alternatively activated macrophages in 
tissue sections from fibrotic mice. 
(A) Representative images of immunohistochemical staining for S100a4 are shown from 
lung sections of uninfected and MHV-68 infected IFN-γR-/-  mice at day 17 and day 45 p.i.. 
The S100a4 positive cells are denoted by red staining. Positive staining was found in 
monocytes/macrophages from infected animals. (B) Serial section staining of S100a4 and 
Arg1 (M2 macrophages) in MHV-68 infected IFN-γR-/-  mice at days 45 and 90 p.i.. Arrows 
and frames indicate co-staining. 
 

    Moreover, accumulation of S100a4 positive cells with the characteristic 

morphology of monocytes/macrophages during fibrosis progression was also found 

in the bleomycin induced IPF mouse model (Figure 3.7A), and co-localization of 

S100a4 and Arg1 were also substantiated by immunohistochemical staining of serial 

lung sections (Figure 3.7B). The bleomycin lung sections were kindly provided by Dr. 

Melanie Königshoff, CPC. 
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Figure 3.7 Localization of S100a4 in lung tissues of PBS and bleomycin-treated mice. 
(A) Immunohistochemical staining for S100a4 was performed on lung sections of PBS and 
bleomycin-treated mice at day 14 after instillation. The S100a4 positive cells are denoted by 
red staining. (B) Co-staining of S100a4 and Arg1 (M2 macrophages) on the lung serial 
sections of bleomycin-treated mice at day 14 after instillation. Arrows indicate co-staining. 
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3.2.4 Expression Analysis of S100a4 in Alveolar Macrophages Isolated from Control 

or Fibrotic Mice by qRT-PCR  

    To confirm that S100a4 is expressed by alternatively activated alveolar 

macrophages, qRT-PCR was performed on freshly isolated alveolar macrophages 

from uninfected and MHV-68 infected IFN-γR-/- mice when lung fibrosis was well 

established (days 45 and 90 p.i.). Significant increases of S100a4 (5-fold) and Arg1, 

the alternatively activated macrophage marker, as well as a decrease of Tnf, the 

typical marker of classically activated macrophages, were found in alveolar 

macrophages derived from virus infected mice compared with macrophages derived 

from uninfected mice with equivalent numbers of cells (Figure 3.8A). Furthermore, 

mRNA levels of S100a4, Arg1 and Tnf were also analyzed in the alveolar 

macrophages isolated from PBS or bleomycin-treated mice. Alveolar macrophages 

isolated from bleomycin treated mice highly expressed S100a4 and Arg1 but lowly 

expressed Tnf. These findings suggest that S100a4 originates from alternatively 

activated macrophages during lung fibrosis (Figure 3.8B). 
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Figure 3.8 Increased S100a4 expression in alveolar macrophages in experimental lung 
fibrosis.  
(A) qRT-PCR was used to determine the levels of S100a4, Arg1 (M2 marker) and Tnf (M1 
marker) transcripts in alveolar macrophages of uninfected or MHV-68 infected IFN-γR-/- mice 
at days 45 and 90 p.i.. Expression of target genes was normalized to β-actin. Each symbol 
represents a mouse (n = 4 uninfected group; n = 5 or 4 infected group). Results are shown 
as mean ± SD. Unpaired t-test was performed for statistical analysis (** denotes p<0.01; 
***denotes p < 0.001). (B) Relative mRNA levels of S100a4, Arg1 and Tnf in alveolar 
macrophages isolated from PBS or bleomycin challenged C57BL/6 mice were assessed. 
Expression of target genes was normalized to β-actin. Each symbol represents a mouse 
(n=3 PBS group; n=8 bleomycin-treated group). Results are shown as mean ± SD. Unpaired 
t-test was performed for statistical analysis (* denotes p<0.05; ** denotes p<0.01). 
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3.2.5 Analysis of S100a4 Gene Expression in Polarized Alveolar Macrophages by 

qRT-PCR 

Recently, the group of Dr. Tobias Stöger (CPC) has demonstrated that the 

alveolar macrophage, like other subpopulations of tissue macrophages, can be 

polarized into respective M1 (classically activated) and M2 (alternatively activated) 

phenotypes in vitro (215). To investigate the association of S100a4 and polarized 

alveolar macrophages, freshly isolated alveolar macrophages were treated either 

with LPS (1 μg/ml) and IFNγ (20 ng/ml) to induce M1-like phenotypes or with IL-4 (20 

ng/ml) to induce M2 polarization. Cells were harvested for total RNA isolation and 

qRT-PCR was performed. The expression profile of S100a4 in polarized alveolar 

macrophages was in accordance with Arg1, the M2 marker. Both S100a4 and Arg1 

were significantly elevated in M2 polarized alveolar macrophages, when compared 

to the control M0 and M1 polarized macrophages (Figure 3.9). 

 
Figure 3.9  Expression profile of S100a4 in polarized alveolar macrophages.   
Alveolar macrophages isolated from C57BL/6 mice were treated with LPS (1 μg/ml) and 
IFNγ (20 ng/ml) or IL-4 (20 ng/ml) for 24 hours and relative mRNA levels of S100a4, Arg1 
(M2 marker) and Tnf (M1 marker) were assessed using qRT-PCR. Expression of target 
genes was normalized to β-actin. qRT-PCR results are representative of two independent 
experiments with similar results. Shown are mean ± SD of triplicate samples from one of two 
representative experiments. Unpaired t-test was performed for statistical analysis (** denotes 
p<0.01; ***denotes p < 0.001). 
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expression of S100a4 during IL-4-driven alveolar macrophage polarization, primary 

macrophages were treated with IL-4 (20 ng/ml) for 6, 24, 48 and 72 hours, 

respectively. The gene expression analysis by qRT-PCR revealed an elevated trend 

of expression of S100a4 from 6 to 72 hours after IL-4 treatment, which reached the 

maximal level at 72 hours (Figure 3.10A). Additionally, we also determined whether 

the expression of S100a4 is IL-4 dose-dependent or not. Primary alveolar 

macrophages were treated with increasing amounts (10 ng/ml, 20 ng/ml, 50 ng/ml, 

100 ng/ml and 200 ng/ml) of IL-4 for 24 hours. Expression levels of S100a4 were 

estimated by qRT-PCR, which demonstrated IL-4 stimulated S100a4 expression in a 

concentration-dependent manner, reaching peak expression at 20 ng/ml. (Figure 

3.10B).  

 

 
Figure 3.10 Gene expression analysis of S100a4 during primary alveolar macrophage 
polarization by qRT-PCR 

(A) Primary alveolar macrophages from C57BL/6 mice were treated with IL-4 (20 ng/ml). for 
6, 24, 48 and 72 hours, respectively, and relative mRNA levels of S100a4 were analyzed by 
qRT-PCR. Results are normalized to β-actin expression. (B) Primary alveolar macrophages 
from C57BL/6 mice were treated with 10 ng/ml, 20 ng/ml, 50 ng/ml, 100 ng/ml and 200 ng/ml 
IL-4, respectively, and relative mRNA levels of S100a4 were analyzed by qRT-PCR. Results 
are normalized to β-actin expression. Shown are mean ± SD of triplicate samples from one 
experiment. 
 
3.2.7 Analysis of S100a4 protein Expression during Alveolar Macrophage 

Polarization by Western Blot 

    Following the mRNA profile, we also investigated protein expression of S100a4 in 

primary alveolar macrophages. Cells were treated with LPS (1 μg/ml) or IFNγ (20 

ng/ml) and IL-4 (20 ng/ml) or IL-13 (20 ng/ml)  for 6, 24, 48 and 72 hours, 

respectively. It has been well described that the effects of IL-13 on activation of 
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(216). Additionally, both of them can induce the phosphorylation of STAT6 as they 

share the common receptor IL-4Ra (217). Thus, phosphorylated STAT6 is used as a 

marker of M2 polarization. As expected, the S100a4 protein was both detected by 48 

hours after IL-4 or IL-13 induced M2 polarization and increased further to 72 hours, 

but was not detected in M0 or M1 polarized macrophages (Figure 3.11 A and B). 

 
 

Figure 3.11 Analysis of S100a4 protein expression during alveolar macrophage 
polarization by Western blot 
Primary alveolar macrophages isolated from C57BL/6 mice were treated with LPS (1 μg/ml) 
or IFNγ (20 ng/ml) and IL-4 (20 ng/ml) or IL-13 (20 ng/ml)  for 6, 24, 48 and 72 hours, 
respectively. Protein expression of S100a4 and phosphorylation of STAT-6 were determined 
by western blot assay. The phosphorylated STATA6 was used as an indicator for IL-4 or Il-
13 induced M2 macrophage polarization. Blots were incubated with an anti-β-actin antibody 
as loading control. Results are representative of two independent experiments. The control 
(c) reflects unstimulated alveolar macrophages at 24 hours. 
 

3.2.8 Analysis of S100a4 Protein Expression during Alveolar Macrophage 

Polarization by ELISA 

To confirm that S100a4 is secreted by M2 polarized macrophages, we 

subsequently performed ELISA tests on supernatants of IL-4 treated primary alveolar 

macrophages from both IFN-γR-/-  and C57BL/6 mice 72 hours after stimulation. The 
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soluble S100a4 in the supernatant from IL-4 treated macrophages increased five to 

seven times compared with untreated cells (Figure 3.12). It is notable that 

significantly higher S100a4 production was found in M2 polarized alveolar 

macrophages from IFN-γR-/- mice compared to C57BL/6 mice, which indicated that 

macrophages from IFN-γR-/- mice possess an enhanced capacity for IL-4 stimulation. 

In addition, enhanced production of S100a4 in M2 macrophages from IFN-γR-/- mice 

is in accord with previous studies showing that IFN-γ suppressed S100a4 

transcription in diverse cancer cell lines (218, 219), and is also consistent with our in 

vivo data (Figure 3.4 and 3.5). 

 
Figure 3.12 Analysis of S100a4 protein secretion during alveolar macrophage 
polarization by ELISA.  
Primary alveolar macrophages from IFN-γR-/- and C57BL/6 mice were treated with IL-4 (20 
ng/ml) for 72 hours. The supernatant was collected for the ELISA assay. Results are 
representative of two independent experiments with similar results. Shown are mean ± SD of 
triplicate samples from one experiment. Unpaired t-test was performed for statistical analysis 
(***denotes p < 0.001). 
 

3.2.9 Co-localization of S100a4 and Arg1 in M2 Polarized Alveolar Macrophages 

    To further confirm that all S100a4-expressing alveolar macrophages are indeed 

M2 macrophages expressing Arg1, we performed double immunofluorescence 

staining of S100a4 and Arg1 on M2 polarized macrophages (Figure 3.13). These 

results verified that S100a4 co-localized with Arg1 in each M2 macrophage. Hence, 

the expression of S100a4 was substantiated by qRT-PCR, Western blot, ELISA and 
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S100a4 is produced by M2 polarized alveolar macrophages. 
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Figure 3.13 S100a4 co-localized with Arg1 in M2 polarized alveolar macrophages.  
Primary alveolar macrophages from C57BL/6 mice were seeded on coverslips and polarized 
with IL-4 (20 ng/ml) for 48 hours. Green and red fluorescences reflect S100a4 and Arg1, 
respectively. Yellow indicates co-localization of these two proteins, whereas DAPI depicts 
nuclei. Results are representative of three independent experiments. 
 
3.3 Functional Analysis of S100a4 Protein  

 

3.3.1 Effect of S100a4 on the Activation of Primary Lung Fibroblasts 

    It has been shown in both rodent pulmonary fibrosis models and in IPF patients 

that alveolar macrophages are alternatively rather than classically activated. An 

imbalance between T helper 1 and 2 cytokines is evidenced in fibrotic lungs, with 

Th2 cytokines (IL-4, IL-5, IL-10, IL-3) playing a pivotal role in the pathogenesis of 

pulmonary fibrosis (115). M2 macrophages secrete Th2 cytokines to promote 

fibrogenesis via enhancing collagen deposition, angiogenesis and fibroproliferation 

(220). Therefore, we hypothesized that S100a4 may serve as a cytokine-like factor 

indirectly promoting the pathogenesis of lung fibrosis. 

To investigate the influence of the extracellular S100a4 on lung fibroblasts, 

primary mouse lung fibroblasts isolated from C57BL/6 mice were starved in 

DMEM/F-12 medium for 12 hours followed by treatment with S100a4, ranging from 0 
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to 3 μg/ml for 24 hours. As shown in Figure 3.14A, 0.1 μg/ml to 3 μg/ml S100a4 

induced significant expression of alpha-smooth muscle actin (α-SMA, a marker for 

myofibroblasts) in a concentration-dependent manner. The maximal effect was noted 

with ≥ 2 μg/ml S100a4, and we chose a concentration of 2 μg/ml as the optimal 

dose for the following experiments. Furthermore, primary mouse lung fibroblasts 

were cultured in the presence of recombinant S100a4 protein or with recombinant 

S100a4 protein in the presence of a S100a4 neutralizing antibody. After 24 and 48 

hours, cells were harvested for western blot analysis of α-SMA and collagen1a 

(mainly generated and deposited by myofibroblasts during tissue remodeling), 

respectively. As illustrated in Figure 3.14B, expression levels of α-SMA and 

collagen1a were elevated after exposure to S100a4 compared with control cells. 

This effect was blocked by neutralization of S100a4 with specific antibody. These 

results indicate that S100a4 promotes activation of lung fibroblasts.  
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Figure 3.14 S100a4 promotes activation of lung fibroblasts.  
(A) Primary lung fibroblasts were treated with various concentrations of recombinant S100a4 
(0-3 μg/ml) for 24 hours, and expression of α-SMA was assessed by qRT-PCR. Results are 
mean ± SD of duplicate samples from one experiment. (B) Cells were treated with 2 μg/ml 
recombinant S100a4 or with recombinant S100a4 in the presence of a S100a4 neutralizing 
antibody for 24 and 48 hours, respectively. Cells were harvested and analyzed for 
expression of α-SMA and collagen1a by western blot. S100a4 neutralization eliminated 
activation of lung fibroblasts. Results are representative of three independent experiments 
with similar results.  
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    To investigate the effect of S100a4 protein on lung fibroblast proliferation, we 
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compared to the control and antibody treated cells, and neutralization of S100a4 

blocked this effect.  

 
Figure 3.15 S100a4 accelerates lung fibroblasts proliferation. 
Primary lung fibroblasts were treated with 2 μg/ml recombinant S100a4 or with recombinant 
S100a4 in the presence of a S100a4 neutralizing antibody or with antibody alone for 72 
hours. Cell proliferation was analyzed using the XTT kit. Results are representative of three 
independent experiments with similar results. Shown are mean ± SD of five replicates from 
one experiment. Unpaired t-test was performed for statistical analysis (***denotes p < 0.001). 
 

3.3.3 Effect of S100a4 on Wound Healing in Primary Lung Fibroblasts 

    In fibrotic diseases, fibroblasts migrate to the wound site and participate in the 

construction of scar tissue. This so-called remodeling is considered to be the vital 

procedure for the development of fibrosis (221). The role of S100a4 in facilitating 

migration of a diversity of cancer cells has been broadly reported (178, 222). Hence, 

we performed the wound healing assay to investigate the influence of S100a4 on the 

migration of lung fibroblasts. Enhanced cell migration ability was observed in 

pulmonary fibroblasts after treatment with recombinant S100a4. Additionally, the 

S100a4-induced cell migration was significantly reduced by blockade with S100a4 

neutralizing antibody, which confirmed that S100a4 plays a critical role in cell 

migration (Figure 3.16).  
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Figure 3.16 S100a4 enhances lung fibroblasts migration in the wound-healing assay. 
Direct migration of primary lung fibroblasts in the presence of 2 μg/ml recombinant S100a4 
or recombinant S100a4 in the presence of the S100a4 neutralizing antibody was analyzed 
by wound healing assay. Wound closure was determined 24 hours after scratching. 
Representative phase-contrast pictures of the cells at 0 (immediately after the scratch) and 
24 hours after the scratch are shown. The assay was performed three times: one 
representative experiment is presented. For quantifications, the wound area was measured 
using ImageJ and normalized to control at 0 hour. Results are representative of three 
independent experiments with similar results. Shown are mean ± SD of triplicate samples 
from one experiment. The effect of stimulation by S100a4 was statistically significant in 
comparison to the control sample, as evaluated by the unpaired t-test (** denotes p<0.01; 
***denotes p < 0.001).  
 

3.4 Inhibition of S100a4 in M2 polarized Alveolar Macrophages 

 

3.4.1 Experimental Approach for Investigation of the Effect of S100a4 Produced by  

M2 Macrophages on Primary Lung Fibroblasts  

    Macrophages and fibroblasts are two major cell populations involved in tissue 
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repair and fibrosis (223). During the proliferation phase of wound healing, fibroblasts 

proliferate and migrate to the wound site to form granulation tissue; some of these 

fibroblasts also differentiate into myofibroblasts which chiefly produce ECM and 

contribute to fibrogenesis (224). Moreover, M2 macrophages are also related to 

tissue repair and fibrosis through the secretion of paracrine factors (225). However, 

only limited knowledge is available with regard to the influence of alternatively 

activated macrophages on the properties of primary lung fibroblasts. Most previous 

data in the literature has been generated using cell lines (226, 227).  

The above experiments have demonstrated that S100a4 is secreted by M2 

polarized macrophages during fibrogenesis, and that recombinant S100a4 promotes 

the proliferation and activation of primary lung fibroblasts. In order to investigate the 

roles of endogenous S100a4 produced by M2 macrophages on primary lung 

fibroblasts with respect to proliferation and myofibroblast differentiation, as well as to 

determine potential therapeutic approaches, the following experiment was performed 

(Figure 3.17). Alveolar macrophages were isolated ex vivo and polarized into M2 

macrophages by IL-4 treatment in the presence of anti-S100a4 siRNA or as a control, 

in the presence of a scrambled siRNA. After 72 hours, the supernatant was 

harvested and transferred to primary lung fibroblasts. Subsequently, the proliferation 

of the primary lung fibroblasts was analyzed. 

 

 
 

Figure 3.17 Schematic presentation of the experiment for investigation of endogenous 
S100a4 produced by M2 Macrophages on primary lung fibroblasts. 
Diagram shows the conditioned medium transfer system. A total of 3×105 freshly isolated 
alveolar macrophages, isolated from C57BL/6 mice, were plated in a 24-well plate, polarized 
by IL-4, and transfected with anti-S100a4 siRNA or scrambled control siRNA. The 
supernatant (conditioned medium) was collected after 72 hours and transferred to primary 
lung fibroblasts. The proliferation of the primary lung fibroblasts was subsequently analyzed. 
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 3.4.2 Knockdown of S100a4 by siRNA does not interfere with M2-polarization  

Since S100a4 is secreted by M2 polarized alveolar macrophages and induced the 

proliferation and activation of lung fibroblasts, we attempted to downregulate S100a4 

production during M2 polarization in vitro. For this purpose, transfection of alveolar 

macrophages with anti-S100a4 siRNAs was employed. Figure 3.18A shows primary 

alveolar macrophages which were transfected with S100a4-specific siRNA or 

nonspecific scrambled control siRNA during M2 polarization. It is apparent that the 

amount of S100a4 mRNA was efficiently downregulated after 72 hours by transient 

transfection with S100a4 specific siRNAs compared with nonspecific scrambled 

control siRNA transfection and untransinfected M2 polarized alveolar macrophages. 

Furthermore, the amount of S100a4 protein in the supernatants of M2 macrophages 

was also efficiently downregulated after 72 hours by the S100a4 specific siRNAs 

which is in accordance with the qRT-PCR results (Figure 3.18B). We next 

investigated whether the reduced amount of S100a4 were duo to a reduced 

production, or to interference with the macrophage polarization into M2-

macrohoages. As shown in Figure 3.18C, inhibition of S100a4 during M2 polarization 

did not interfere with the expression of Arg1, which suggests that S100a4 is not 

involved in the polarization of macrophages. 
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Figure 3.18. Knockdown of S100a4 by siRNA in M2 polarized alveolar macrophages. 
M2 polarized alveolar macrophages were transfected with nonspecific scrambled control 
siRNA or S100a4-specific siRNA for 72 hours, and the levels of S100a4 were measured to 
examine knockdown efficiency. RT-PCR (A and C) was performed for S100a4 and Arg1 
mRNA expression analyses. ELISA (B) was performed to measure the amount of S100a4 
protein in culture medium. Results are representative of two independent experiments with 
similar results. Shown are mean ± SD of triplicate samples from one experiment. Unpaired t-
test was performed for statistical analysis (* denotes p<0.05; ** denotes p<0.01; n.s denotes 
non-significance). 
 

4.4.3 Proliferation of Primary Lung Fibroblasts is Attenuated after Treatment with    

Conditioned Medium from anti-S100a4 siRNA Transfected M2 Macrophages  

    It was reported previously that the co-culture of fibroblasts and M2 macrophages 

can promote the proliferation of fibroblasts, and soluble profibrotic factors secreted 

by M2 macrophages mediate such an effect, for example IL-4, IL-13 and TGF-β 

(228). Additionally, the most recent study manifests that S100a4 amplifies TGF-β-

induced fibroblast activation and proliferation (229). Therefore, we wanted to 

investigate the role of S100a4 produced by M2 macrophages on primary lung 

fibroblasts with respect to proliferation and finally determine potential therapeutic 

approaches. To address this question, conditioned supernatants from control M2 
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macrophages or anti-S100a4 siRNA transfected M2 macrophages were transferred 

to primary lung fibroblast cultures, and the effect on proliferation was evaluated after 

24 hours. 

The conditioned medium from anti-S100a4 siRNA transfected M2 macrophages 

caused significantly less proliferation of lung fibroblasts when compared with 

conditioned medium from scrambled siRNA transfected M2 macrophages. In 

addition, to confirm the role of S100a4 in cell proliferation and to show that the 

proliferation is caused by S100a4 contained in the conditioned medium, we first  

neutralized S100a4 protein in the conditioned medium of M2 macrophages with 

specific antibody, and then applied it on lung fibroblasts. Neutralization with the 

specific antibody resulted in reduced proliferation, while the addition of the same 

amount of control rabbit serum (negative control) had no effect (Figure 3.19). These 

observations suggested that S100a4 is one of the soluble factors produced by M2 

polarized alveolar macrophages which are able to enhance the proliferation of 

fibroblasts. 

 
Figure 3.19 Effect of conditioned medium on lung fibroblast proliferation. 
Primary lung fibroblasts were treated with conditioned medium (C.M.) from M0, M2 and M2 
macrophages transfected with scrambled or S100a4 specific siRNA. In addition, specific 
S100a4 antibody or isotype control rabbit serum pre-treated M2 conditioned medium were 
used to stimulate lung fibroblasts. Cell proliferation was analyzed by using XTT kit after 48 
hours of treatments. Results are representative of two independent experiments with similar 
results. Shown are mean ± SD of five replicates from one experiment. Unpaired t-test was 
performed for statistical analysis (** denotes p<0.01; ****denotes p < 0.0001). 
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3.5 Pharmacologic Inhibition of S100a4 Expression  

 

3.5.1 Calcimycin and Niclosamide Interfere with Cell Viability 

    Previous studies reported that calcimycin and niclosamide, as transcriptional 

inhibitors of S100a4, bore a great potential to block S100a4 expression in colon 

cancer cells and therefore hindered cancer metastasis (230, 231). Calcimycin and 

niclosamide treatment can inhibit cell migration, invasion, wound healing and 

proliferation capabilities in a S100a4-specific manner in colon cancer cells. Both 

inhibitors interfere with the constitutively active Wnt pathway. Inhibiting the Wnt/β-

catenin pathway activity by calcimycin or interfering with the β-catenin/TCF 

transcription activating complex by niclosamide resulted in reduced Wnt target gene 

transcription, among them S100a4 (230, 231). This potential and the applicability of 

the two small compounds also suggest a novel therapeutic strategy for patients with 

IPF. 

To analyze the inhibitory potential of calcimycin and niclosamide on the 

expression of S100a4 in alveolar macrophages, we first determined the 

concentration at which the inhibitors were applicable to MH-S cells, an alveolar 

macrophage cell line. To cover a broad concentration range, MH-S cells were 

exposed to thirteen two-fold dilutions of calcimycin and niclosamide, beginning with 

200 μM. Cell viability was measured at 24 hours post treatment via XTT kit. Both 

calcimycin and niclosamide treatment influenced the viability of MH-S cells in a 

concentration-dependent manner. The half maximal inhibitory concentration (IC50), 

representing the concentration at which cell viability was decreased to 50%, was 

calculated to be 5.2μM (95% confidence interval, 4.8-5.7μM) for calcimycin and 

0.8μM (95% confidence interval, 0.5-1μM) for niclosamide (Figure 3.20).  
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Figure 3.20 Calcimycin and Niclosamide interfere with cell viability in a concentration-
dependent manner.  
MH-S cells were exposed to increasing concentrations of calcimycin (A), niclosamide (B) or 
the respective amount of solvent. Cell viability was determined after 24 hours via XTT kit. 
The IC50s for calcimycin and niclosamide were calculated to be 5.2 μM and 0.8 μM, 
respectively. Results are representative of two independent experiments with similar results. 
Shown are mean ± SD of 6 replicates from one experiment. 
 

3.5.2 Inhibition of S100a4 Expression in MH-S cells by Calcimycin and Niclosamide 

We next analyzed the capability of calcimycin or niclosamide to reduce the 

endogenous S100a4 expression in MH-S cells. Exposure of MH-S cells to increasing 

concentrations of calcimycin or niclosamide for 24 hours resulted in a concentration-

dependent reduction of S100a4 mRNA. The concentration of more than 1uM 

calcimycin significantly reduced the endogenous S100a4 mRNA amount to less than 

40% of the solvent treated control (Figure 3.21A). No apparent change in the 

expression level of S100a4 in MH-S cells was observed when the cells were treated 

with a concentration lower than 0.5uM calcimycin. Similar to the effects seen for 

calcimycin, a reduction of the S100a4 mRNA level to about 50% of the solvent 

treated control was observed when MH-S cells were treated with 0.3uM niclosamide 

(Figure 3.21B). For further investigation, a concentration with a minimal effect on cell 

viability and a maximized inhibitory effect on S100a4 expression was selected. A 

concentration of 1μM calcimycin and 0.3μM niclosamide was sufficient to restrict 

S100a4 expression to less than 50% of the solvent control. In addition, calcimycin or 

niclosamide treatment of MH-S cells at those concentrations did not strongly affect 

cell viability. 
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Figure 3.21 Calcimycin and Niclosamide inhibit expression of S100a4 in a 
concentration-dependent manner.  
MH-S cells were exposed to increasing concentrations of calcimycin (A), niclosamide (B) or 
the respective amount of solvent for 24 hours. mRNA levels of S100a4 were determined by 
qRT-PCR. 1μM calcimycin or 0.3μM niclosamide were sufficient to inhibit S100a4 
expression to less than 50% of solvent-treated cells. Results are representative of two 
independent experiments with similar results. Shown are mean ± SD of 6 replicates from one 
experiment. 
 

3.5.3 Inhibition of S100a4 in M2 Polarized Alveolar Macrophages 

    With the concentrations determined before, we examined the inhibitory effect on 

S100a4 expression by calcimycin and niclosamide in M2 polarized primary alveolar 

macrophages. 1μM calcimycin and 0.3μM niclosamide were applied to primary 

alveolar macrophages during M2 polarization, respectively. Both compounds 

significantly reduced the S100a4 mRNA expression level (Figure 3.22A). 

Furthermore, we analyzed the expression of Arg1 in calcimycin or Niclosamide 

treated primary alveolar macrophages during M2 polarization. As shown in Figure 

3.22B, expression of Arg1 was not affected by the treatment with both inhibitors. 
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Figure 3.22 Calcimycin and Niclosamide Inhibit expression of S100a4 during M2 
polarization.  
Alveolar macrophages were treated with IL-4 (20 ng/ml) and 1μM calcimycin or 0.3 μM 
niclosamide, respectively, for 24 hours. mRNA levels of S100a4 (A) and Arg1 (B) were 
determined by qRT-PCR. Results are normalized to β-actin expression. Results are 
representative of two independent experiments with similar results. Shown are mean ± SD of 
duplicates or triplicates from one experiment. (* denotes p<0.05; n.s denotes non-
significance). 
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4. Discussion 

 

IPF is the most devastating interstitial lung disease, which is more deadly than most 

cancers, and death usually ensues 2-5 years after diagnosis due to respiratory failure. 

Most recently, FDA approved Ofev (nintedanib) and Esbriet (pirfenidone) as two 

important therapies for the treatment of patients (232, 233). However, new medicines 

with fewer adverse effects and more efficient attainment of therapeutic outcomes are in 

short supply. Although the precise molecular mechanisms that drive the pathogenesis 

of IPF remains elusive, increasing evidence suggests that viral infection, particularly 

with γ-herpesviruses, is an important factor in the initiation and/or perpetuation of the 

development of IPF, as EBV protein and DNA are consistently detected in the lung 

tissue of most cases of IPF patients (21, 199). Moreover, an imbalance between type 1 

and type 2 immune responses in the lungs of IPF patients is also observed by the 

predominance of Th2 cytokines over Th1 cytokines. For example, low levels of IFN-γ 

have been found in IPF patients (234). Given previous findings, the MHV-68-induced 

IPF mouse model was established by inoculation of MHV-68 into the respiratory tract of 

Th2-biased mice, i.e. IFN-γ-receptor-knockout mice. This model recapitulates most 

histopathological features of pulmonary fibrosis such as emergence of myofibroblast 

foci, imbalance of Th1 and Th2 cytokines, inflammatory cell infiltrates, excessive 

deposition of ECM and increased TGF-β. Compared to other animal models, 

advantages of the MHV-68-induced IPF mouse model are their close relevance to 

clinical studies and irreversibility. We believe this model will help to reveal pathways 

involved in the initiation and exacerbation of fibrosis induced by infection.  

 

4.1 Comparative Gene Expression Profiling in the MHV-68-induced IPF model 

 

High-throughput gene expression profiling technology, such as microarrays, is one of 

the most promising approaches to simultaneously measure the changes in the RNA 

quantity and to identify key regulatory molecules underlying the disease. Particularly in 

the cases of complex diseases that associate with altered interactions among 

numerous genes, expression profiling becomes a prerequisite for the generation of 

novel hypotheses on mechanisms of diseases and the prioritization of diagnostic and 

therapeutic candidates. While many hypothesis-driven studies on the mechanisms of 

IPF were generated in the bleomycin-induced lung fibrosis mouse model, this animal 
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model is not completely representative of IPF due to the rapid development and 

resolution with time. Besides, the translation of the current findings into therapeutic 

candidates has so far been disappointing. Therefore, the generation and verification of 

novel hypotheses from a more clinically relevant mouse model are of great importance. 

In this study, we report for the first time genome-wide lung gene expression profiles in 

the MHV-68-induced IPF mouse model and thereby provide a first step towards a 

comprehensive view of the complex molecular landscape of initiation and perpetuation 

of IPF. Allowing robust analysis and statistical selection, a number of differentially 

regulated genes were identified (Figure 3.2). The composition of this set of genes was 

analyzed with respect to its association with molecular mechanisms. To dissect 

processes involved in IPF pathophysiology, we performed various GO and pathway 

analyses to identify deregulated functions, processes, and pathways (Table 3.1 and 

3.2). Enrichment analyses allowed us to pinpoint processes overrepresented among 

IPF-relevant genes. Consistent with previous studies in the bleomycin-induced IPF 

mouse model, the result revealed a couple of genes that have been known to be 

relevant to the pathogenesis of pulmonary fibrosis, such as angiogenesis associated 

genes. Moreover, there were significant alterations in the expression of many 

inflammation-related genes including chemokines and cytokines. Interestingly, the 

upregulation of the chemokines fCXCL9 and CXCL10, that are known to be IFN-γ-

inducible and ligands of CXCR3, in C57BL/6 mice but not in IFN-γ deficiency mice, 

supports the notion that IPF is mediated by a Th2 host response. However, IFN-γ 

treatment in IPF patients has failed to show a survival benefit (235). In order to identify 

novel candidates for disease-related differentially expressed genes, each gene was 

prioritized according to the publicly available information in either IPF patients or 

various animal models, and further analyzed systematically in the literature. Besides the 

well-known or anticipated IFN-γ-related genes and pathways, a few novel hypotheses 

have emerged. The gene named S100a4, which has been reported as highly 

expressed in liver fibrosis, dermal fibrosis and kidney fibrosis, attracted our interest. 

 

4.2 Origin of S100a4-positive Cells in Pulmonary Fibrosis 

 

    S100a4, a metastasis-associated gene, is known to be involved in cancer cell motility 

by virtue of its ability to bind and activate nonmuscle myosin IIA and IIB and actin (236). 

However, its function in the context of lung injury, repair and fibrosis is unknown. Strong 
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induction of S100a4 was observed in both IFN-γR-/- and C57BL/6 mice as early as day 

14 after MHV-68 infection, and persisted up to day 45 in IFN-γR-/- mice but disappeared 

in C57BL/6 mice. This induction of S100a4 expression, as detected by microarray 

analysis, was confirmed by qRT- PCR and western blot in whole lung tissue (Figure 3.3 

and 3.4).   

    S100a4, also termed “fibroblast-specific protein-1”, was considered as a protein that 

was specifically expressed by fibroblasts but not by other cells, although the protein 

was known to be highly expressed in cancer cells (180). It was reported that only some 

S100a4-positive cells were observed in healthy kidneys, while in animal models of renal 

fibrosis or in patients, a massive increase of S100a4-positive cells in the interstitum and 

in tubular epithelia was observed, which indicated that fibroblasts, the main ECM 

producer cells, originated from tubular epithelial cells undergoing EMT (237). Thus, this 

work introduced S100a4 for identification of fibroblasts in order to demonstrate EMT in 

many fibrotic diseases. However, in light of our current knowledge, the use of S100a4 

as a specific fibroblast marker is not tenable. As a matter of fact, the interstitium of 

healthy kidneys contains abundant fibroblasts; additionally, myofibroblasts do not 

express S100a4 (238). Most recently, a similar result was observed in liver fibrosis. In 

healthy livers from both human and mouse, a few S100a4 cells are found scattered 

throughout the parenchyma. In contrast, the number of S100a4-positive cells is 

increased in human and experimental liver fibrosis with scant cytoplasm typically 

located along fibrotic septa (179, 214). To identify the cellular lineage of S100a4-

positive cells, the authors used S100a4-GFP reporter mice. Interestingly, no 

colocalization of S100a4 and α-SMA or demin, two classical myofibroblast markers, 

was observed, and the S100a4 positive cells in the injured liver did not synthesize 

collagen. Instead, S100a4-positive cells clustered with peritoneal macrophages in livers 

undergoing tissue remodelling (214). Flow cytometry showed that S100a4-positive cells 

in the mouse model of kidney injury express macrophage-1 antigen (Mac1, also known 

as CD11b), macrophage-2 antigen (Mac2, also known as Lgals3), macrophage-3 

antigen (Mac3, also known as LAMP2), CD45 and CD68 (239). Another group 

observed coexpression of CD11b, CD68 and F4/80 with S100a4 in mice undergoing 

unilateral ureteral obstruction (240). A most recent study analyzed S100a4-positive 

cells at the progression phase of liver fibrosis. These cells expressed the markers of 

myeloid cells, but not B cells (CD19) or T cells (CD4 and CD8). Immunohistochemistry 

of fibrotic liver samples confirmed that S100a4-positive cells possess the characteristic 
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morphology of macrophages (179). In addition, S100a4-positive macrophages have 

also been reported in various diseases such as peritonitis, cancer and autoimmune 

encephalitis (241, 242). Our data are in line with these findings. IHC staining of lung 

sections showed only a few S100a4-positive cells in controls. In the fibrotic lungs, the 

S100a4-positive cells were widely observed in the lung interstitium. Furthermore, 

staining of serial lung sections demonstrated that S100a4-positive cells colocalized with 

Arg1 expressing M2 alveolar macrophages (Figure 3.6 and 3.7). Besides, S100a4 was 

found to be strongly up-regulated in BALF of IPF experimental mice as compared with 

controls (Figure 3.5). In vitro studies also demonstrated that induction of S100a4 in 

primary alveolar macrophages via IL-4 or IL-13 was both time and concentration 

dependent (Figure 3.10). Moreover, expression of S100a4 decreased in LPS or IFN-γ 

induced M1 macrophages (Figure 3.11). 

    A Th2-dominant immune response was evidenced in lung tissue from γ-herpesvirus 

mediated lung fibrosis. Th2 cytokines contributed to the activation of macrophages and 

differentiation of fibroblasts, and promoted the production of extracellular matrix (201). 

High expression levels of IL-13 have been reported in BALF from bleomycin-treated 

mice, and IL-13-deficient mice displayed diminished fibrosis (243).  

    It is well known that lung fibrosis mediated by chronic herpesvirus infection is 

associated with the recruitment of alveolar macrophages to the injured lung. These 

macrophages were exposed to a Th2-dominant immune response environment, 

activated by the alternative pathway, and expressed a repertoire of pro-fibrotic 

mediators, such as arginase I, IL-4, IL-13 and TGF-β. Activation of alveolar 

macrophages via the alternative pathway is considered as an important molecular 

mechanism promoting the fibrotic process. M2 macrophages produce copious amounts 

of chemokines, cytokines and growth factors that facilitate the recruitment of multiple 

cell types involved in damaged tissue repair. In IPF patients, these repair processes 

failed to restore and resulted in persistent M2 activation and ongoing wound healing 

responses. Levels of IL-4 and IL-13 are higher in IPF experimental models and patients 

as compared with controls, and macrophages isolated from fibrotic lungs produce more 

IL-4 and IL-13 than those isolated from healthy lungs (244). Besides, IL-4 and IL-13 are 

upstream of STAT6. STAT6 is activated by those cytokines, and promotes IL-4/IL-13-

mediated alternative activation of macrophages by producing multiple other wound 

healing/profibrotic phenotype genes, including the well known TGF-β1 and PDGF, 

which contribute to proliferation and activation of fibroblasts and enhance expression of 
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tissue inhibitors of metalloproteinases (TIMPs) that control ECM turnover (245). 

Moreover, increased multiple products of M2 macrophages have been found in 

pulmonary fibrosis. Galectin-3, a carbohydrate-binding lectin, which is essential for 

macrophages alternative activation, was upregulated in BALF from IPF patients 

compared with that from controls. Galectin-3 is implicated in diverse fibrotic diseases 

including liver and lung fibrosis. This lectin promotes myofibroblast activation and 

migration and procollagen 1 synthesis in vitro and in vivo (246, 247). Studies of 

macrophage involvement in IPF patients tend to be mostly descriptive, examining the 

macrophages in samples from patients compared to healthy controls. A more detailed 

description of M2 macrophages in lung fibrosis was done in experimental models. 

Depletion of macrophages during the fibrotic phase attenuated the progress of fibrosis. 

Expression levels of Arg1 and Ym1, M2 markers, were compared before and after 

depletion of macrophages in the IPF animal model. Depletion of macrophages reduced 

the expression levels of these two genes. In contrast, iNOS, the M1 marker, did not 

show a reduction, suggesting that M2 macrophages are essentially responsible for the 

pathogenesis of fibrosis (248). 

 

4.3 Role of S100a4 in Pulmonary Fibrosis 

 

    Extensive studies revealed that S100a4 has both intracellular as well as extracellular 

functions. Intracellular S100a4 plays a dynamic role in numerous biological processes 

that are fundamental for cell homeostasis and differentiation including cell growth and 

survival, cell migration, proliferation and cytoskeletal rearrangement. When secreted 

extracellularly, S100a4 serves as a cytokine that regulates cell survival and migration, 

cell differentiation and remodelling of ECM in cancer cells (236). Therefore, in this study, 

we determined whether the extracellular S100a4 has similar effects on pulmonary 

fibroblasts, which are the most prominent cellular players in the production of ECM, 

such as collagen and fibronectin, in the lung. We provided the following lines of 

evidence to demonstrate the profibrotic role of extracellular S100a4 in pulmonary 

fibrosis: i) Recombinant S100a4 protein had cell growth-promoting properties on lung 

fibroblasts. ii) We also found that S100a4 induced the expression of the mesenchymal 

markers α-SMA and Collagen 1a, indicating that S100a4 promoted lung fibroblasts 

transition to myofibroblasts which, in turn, synthesized elevated levels of ECM. 

Therefore, S100a4 might promote pulmonary fibrosis through inducing lung fibroblasts 
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production of collagen and transition to myofibroblasts. It was noted that blockage of 

S100a4 with a neutralizing antibody reduced those effects (Figure 3.14). Our results are 

in agreement with a study by Lin et al, reporting S100a4 induced activation of hepatic 

stellate cells to promote liver fibrosis (179).  

Previous studies have investigated the gross mechanisms involved in cell migration 

caused by extracellular S100a4. Extracellular S100a4 induced migration and 

proliferation of human pulmonary artery smooth muscle cells through interaction with 

receptor for advanced glycation end products (RAGE) (249). RAGE is a member of the 

immunoglobulin superfamily of cell surface molecules, which binds diverse molecules 

like HMGB1, advanced glycation end products (AGE), and S100 proteins, and plays a 

potent role in innate immunity (250). The interaction of S100a4 and RAGE resulted in 

activation of NF-κB, ERK and JNK signaling pathways and is required for cell motility by 

inducing MMP2 activity (249, 251). Besides S100a4, several other S100 family 

members (S100A12, S100B, and S100P) were also shown to interact with RAGE. Most 

recently, Lin and colleagues found that the extracellular S100a4 promoted activation of 

hepatic stellate cells though upregulation of c-myb, a helix-turn-helix transcription factor 

that binds to the promoter E box of the α-SMA gene (179).  

 

4.4 Inhibition of S100a4 Attenuates Lung Fibroblasts Proliferation in vitro  

 

    The aforementioned has illustrated that macrophages and fibroblasts are primary 

effector cells acting in concert in pulmonary inflammation and fibrosis. Macrophages 

and fibroblasts communicate via soluble autocrine and paracrine signals or juxtacrine 

signals associated with direct cell contacts. Therefore, both chemical and physical 

mediators exchanged between macrophages and fibroblasts may modulate wound 

healing processes such as fibroblast migration and proliferation in the pathogenesis of 

pulmonary fibrosis. Fibroblasts, reacting to mediators from macrophages, are thought to 

synthesize extracellular matrix, particularly collagens, resulting ultimately in fibrosis. 

Both in vitro and in vivo evidence has demonstrated that classically activated 

macrophages inhibited fibrogenic properties of fibroblasts by providing antifibrogenic 

factors, while alternatively activated macrophages enhanced fibrogenesis of fibroblasts 

by releasing profibrogenic factors such as TGF-β, PDGF, IL-4 and IL-13 (226). Most 

recently, it was reported that S100a4 is required for TGF-β-induced fibroblast activation 

(229). Moreover, in vivo experiments revealed that S100a4 deficient mice were 
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protected from liver fibrosis with a reduced accumulation of collagen and a decreased 

expression level of α-SMA (179). Despite the relevance of macrophages and fibroblasts 

in tissue homeostasis, the precise role of alternatively activated alveolar macrophages 

endogenous S100a4 in pulmonary fibrosis has not been fully elucidated to date. 

Therefore, we performed in vitro proliferation assays of lung fibroblasts with conditioned 

medium from M2 polarized primary alveolar macrophages either left untransfected or 

transfected with anti-S100a4-siRNA and scrambled control siRNA, respectively. As 

shown in Figure 3.19, fibroblasts exposed to conditioned medium from M2 

macrophages showed increased proliferation, which was in accordance with previous 

findings (226). In contrast, the conditioned medium from anti-S100a4-siRNA-

transfected M2 macrophages induced a significantly lower proliferation rate in lung 

fibroblasts when compared with conditioned medium from M2 macrophages or control-

siRNA-transfected M2 macrophages. In addition, we also neutralized the S100a4 

protein in the M2 conditioned medium with an anti-S100a4-antibody. Neutralization with 

the antibody also reduced the proliferation of the fibroblasts, although not as strong as 

after siRNA-mediated inhibition. Neutralization with an isotype control antibody had no 

effect. Based on these findings, we asked whether S100a4 might alter the polarization 

of macrophages and thereby abrogated the proliferation of lung fibroblast cells. To test 

this hypothesis, we performed qPCR analysis to determine the expression of Arg1 in 

alveolar macrophages after knockdown of S100a4 during M2 polarization. As shown in 

Figure 3.18, no significant change was observed, which indicated that the protein 

S100a4 was not required for in vitro macrophage polarization. It has also been reported 

that S100a4 induced alterations in the Th1/Th2 polarization balance in vivo. T cells 

challenged with soluble S100a4 displayed a reduced proportion of Th1-polarized cells, 

shifting the Th1/Th2 balance towards Th2. The imbalance was shown to be the result of 

S100a4-mediated inhibition of Th1 polarization rather than to be a direct effect on Th2 

cell differentiation (252). While M1/M2 paradigms are analogized with Th1/Th2 

dichotomy, further studies are necessary to reveal the in vivo role of S100a4 in 

modulating the polarization of macrophages and to get a better understanding of how 

S100a4 could orchestrate fibrotic remodeling in IPF. Taken together, all these data 

provided direct evidence that S100a4 produced by M2 macrophages has a prominent 

profibrogenic effect on the proliferation properties of lung fibroblast cells. 

Since the discovery of S100a4, many studies have proven the central role of S100a4 

in metastasis formation or fibrogenesis. Hence, targeting S100a4 expression provides a 
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promising strategy for rational therapies. Previous research showed that inhibition of 

S100a4 expression in cancer cell lines suppressed cell invasion in vitro (254). In vivo 

treatment with anti-S100a4-shRNA or S100a4-neutralizing antibody in fibrotic mice 

reduced accumulation of myofibroblasts, suppressed deposition of collagen and 

therefore ameliorated the development of liver fibrosis (179). Furthermore, Sack and 

colleagues performed high-throughput screening of 1280 pharmacologically active 

compounds to identify a transcription inhibitor of S100a4 using a human colon cancer 

cell line. Niclosamide and calcimycin were identified as potential candidates (230, 231). 

Niclosamide (5-chloro-N-(2-chloro-4-nitrophenyl)-2-hydroxybenzamide) is an FDA-

approved anti-helminthic compound used both in humans and animals for the treatment 

of tapeworm infection since more than forty years (255). Niclosamide is receiving 

renewed attention due to antiviral effects against severe acute respiratory syndrome 

virus (SARS) (256). It was reported that Niclosamide inhibited the constitutively active 

WNT/CTNNB1 signaling pathway by hindering the formation of CTNNB1/TCF 

transcription activating complex at the S100a4 promoter, thus inhibiting the expression 

of S100a4 at the transcriptional level. In vitro treatment with niclosamide inhibited 

S100a4-induced migration and proliferation of human colon cancer cells. Besides, 

niclosamide treatment also attenuated S100a4-induced metastasis formation in vivo 

(231). Calcimycin is one of few natural ionophore antibiotics that specifically transport 

divalent cations such as calcium and magnesium (257). It has been shown that 

calcimycin treatment inhibited the constitutively active WNT/β-catenin pathway, thus 

hindering S100a4 expression and attenuating the S100a4 induced cell migration and 

invasion both in vitro and in vivo. Moreover, calcimycin has been reported to reduce the 

expression of S100a4 at the mRNA level in human monocytes and lymphocytes (258). 

In line with these findings, both niclosamide and calcimycin suppressed S100a4 in MH-

S cells, an alveolar macrophage cell line, in a concentration-dependent manner (Figure 

3.21). Moreover, with the determined concentrations, niclosamide and calcimycin were 

also able to abrogate the expression of S100a4 during M2 polarization without 

influencing the polarization of macrophages (Figure 3.22). 

 

4.5 Conclusions and Future Perspectives 
 

Our present study provides direct evidence that S100a4 has a significant impact on 

the proliferation properties of lung fibroblasts. S100a4 could also promote the 
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differentiation of lung fibroblasts to myofibroblasts and the production of collagen. 

Moreover, these effects can be attenuated by blockade of S100a4. These results 

indicate a crucial role of S100a4 in the pathogenesis of lung fibrosis and suggest a 

novel potential therapeutic target for the treatment of IPF. 

Further investigation is required in order to obtain more information about the 

molecular mechanisms and functions of S100a4 in lung fibroblast cells. It is worth 

noting that Xu and co-workers have reported that S100A9, a member of the S100 

family proteins, promoted human lung fibroblast cells activation and proliferation 

through RAGE-dependent signaling and subsequent phosphorylation of ERK1/2 MAP-

kinase and NF-κB dependent pathways (253). This offers us a clue to the investigation 

of S100a4 in future studies. 

In addition, the possibility that S100a4 is linked to other pathways apart from the 

RAGE-dependent signaling pathway, such as the Wnt signaling pathway, cannot be 

excluded. Of much interest in relation to the S100A4 linkup with Wnt signaling is the 

finding that niclosamide promoted the degradation of the Wnt co-receptor LRP6 (231). 

Thus, a complex network of signaling cascades that contribute to fibrogenesis is 

suggested. Therefore, investigation of the role of S100a4 in the Wnt signaling pathway 

would be necessary and would yield further information about the detailed function of 

S100a4 in the development of pulmonary fibrosis. 

The last but not least, much work is still required to evaluate in vivo effects of 

calcimycin and niclosamide in experimental models. The bleomycin-induced IPF mouse 

model will provide a powerful tool for investigating the in vivo functions of calcimycin 

and niclosamide. These investigations will further help to clarify the potential benefits of 

the clinical application of calcimycin and niclosamide in patients with IPF. 
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5. Appendix 

 

5.1 Abbreviations  

 

°C degrees celsius 
α-SMA alpha-smooth muscle actin 
µl Microliter 
µM micromolar 
Ab antibody 
Actb Actin, beta 
AECs alveolar epithelial cells 
ALI acute lung injury 
AMs aveloar macrophages 
ANG angiotensin 
Arg1 arginase 1 
BAL bronchoalveolar lavage 
ccl chemokine (C-C motif) ligand 
cDNA complementary DNA 
Ct threshold cycle 
DMEM Dulbecco's Modified Eagle Medium  
DNA Deoxyribonucleic acid 
d.p.i days post infection 
DPLDs diffuse parenchymal lung diseases 
EBV Epstein-Barr Virus 
ECM extracellular matrix 
EDTA Ethyldiaminetetraacetate 
ELISA Enzyme-linked immunosorbent assay 
EMT epithelial-mesenchymal transition 
ET endothelin 
FBS fetal bovine serum 
g gram 
GM-SCF granulocyte-macrophage colony stimulating factor 
H&E staining hematoxylin and eosin staining 
HRP horseradish peroxidase 
IFN-γ interferon gamma 
IIPs idiopathic interstitial pneumonias 
IL-4 interleukin-4 
ILDs interstitial lung diseases 
iNOS inducible nitric oxide synthase 
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IPF idiopathic pulmonary fibrosis 
KO, -/- knock out 
KSHV Kaposi’s sarcoma-associated herpesvirus 
L liter 
LPS lipopolysaccharides 
M1 macrophages classically activated macrophages 
M2 macrophages alternatively activated macrophages 
MHV-68 Murine gamma-herpesvirus 68 
ml milliliter 
mm millimeter 
MMP matrix metalloproteinases 
NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells 
OD optical density  
PBS Phosphate buffer saline 
PBST Phosphate buffered saline with Tween 20 
PCR Polymerase chain reaction 
PFA phosphate buffered formaldehyde solution 
PFU plaque forming units 
PS pulmonary surfactant 
qPCR quantitative real-time polymerase chain reaction  
RAGE receptor for advanced glycation end products 
RIPA radioimmunoprecipitation assay buffer 
RT-PCR Reverse transcription PCR 
S100a4 S100 calcium-binding protein A4 
SDS-PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis 
SD standard  
SP surfactant proteins 
STAT signal transducer and activator of transcription 
TGF transforming growth factor 
Th1 cells T helper cells type 1 
Tnf tumor necrosis factors 
UIP usual interstitial pneumonia 
WT Wild type 
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