
Rekonstruktion des Magnetfeldes der
Milchstraße

Reconstructing the Galactic Magnetic
Field

Theo Steininger

München 2018

Rekonstruktion des Magnetfeldes der
Milchstraße

Reconstructing the Galactic Magnetic
Field

Theo Steininger

Dissertation
an der Fakultät für Physik

der Ludwig–Maximilians–Universität
München

vorgelegt von
Theo Steininger

aus Landau a.d. Isar

München, den 26.02.2018

Erstgutachter: PD Dr. Torsten A. Enßlin
Zweitgutachter: Prof. Dr. Jochen Weller
Tag der mündlichen Prüfung: 09.05.2018

Für Hannah, Magda und Gabriel

vi

Contents

Zusammenfassung xv

Summary xvii

1 Introduction 1
1.1 The Milky Way . 1

1.1.1 The Galactic Magnetic Field . 2
1.1.2 Constituents of Interest . 5

1.2 Physical Effects . 7
1.2.1 Emission Processes . 7
1.2.2 Dispersion . 7
1.2.3 Synchrotron Emission . 8
1.2.4 Faraday Rotation & Depolarization . 10
1.2.5 Dust Absorption and Emission . 12

1.3 Chain of Inference . 15
1.3.1 Inferring the Thermal Electron Density 15
1.3.2 Inferring the Magnetic Field . 16

1.4 Models of the Galactic Magnetic Field . 16
1.5 Information Theory . 17
1.6 Outline of this thesis . 18

2 IMAGINE 21
2.1 Introduction . 22
2.2 Bayesian Parameter Inference and Model Comparison 23
2.3 Galactic Variance . 24
2.4 The Imagine Framework . 24

2.4.1 Components and Overall Structure . 26
2.4.2 Using Sampling Methods for Uncertainty Quantification 27
2.4.3 Magnetic Field Models . 29
2.4.4 Hammurabi . 30
2.4.5 Observables . 32
2.4.6 Likelihood . 34

2.5 Application . 36

viii CONTENTS

2.5.1 Mock Data Based Tests . 37
2.5.2 Application to Real Data . 42

2.6 Conclusion & Outlook . 44

3 D2O 59
3.1 Introduction . 60

3.1.1 Background . 60
3.1.2 Aim . 60
3.1.3 Alternative Packages . 61

3.2 Code Architecture . 62
3.2.1 Choosing the Right Level of Parallelization 62
3.2.2 d2o as Layer of Abstraction . 64
3.2.3 Choosing a Parallelization Environment 64
3.2.4 Internal Structure . 65

3.3 Basic Usage . 68
3.3.1 Initialization . 68
3.3.2 Arithmetics . 68
3.3.3 Array Indexing . 69
3.3.4 Distribution Strategies . 70
3.3.5 Distributed Arrays . 71

3.4 Performance and Scalability . 72
3.4.1 Scaling the Array Size . 73
3.4.2 Weak Scaling: Proportional Number of Processes and Size of Data 75
3.4.3 Strong Scaling: Varying Number of Processes with a Fixed Size of Data . 76
3.4.4 Strong Scaling: Comparison with DistArray 77
3.4.5 Strong Scaling: Real-World Application Speedup – the Wiener filter . . . 80

3.5 Summary & Outlook . 82

4 NIFTy 3 83
4.1 Introduction . 84
4.2 Problem Description . 85

4.2.1 Information Field Theory . 85
4.2.2 Wiener Filter Theory . 86
4.2.3 Interacting Information Field Theory 87
4.2.4 Manifold Independence & Discretized Continuum 89
4.2.5 Data Representation . 89
4.2.6 Implicit vs. Explicit Operators . 90
4.2.7 Reference Projects . 90

4.3 Limitations of NIFTy 1 . 91
4.3.1 Combined Manifolds & Field Types . 91
4.3.2 Scalability & Parallelizability . 92
4.3.3 Refactoring the Code Structure . 92

4.4 The Structure of NIFTy 3 . 94

Inhaltsverzeichnis ix

4.4.1 Domain Objects and Fields . 94
4.4.2 Linear Operators . 103
4.4.3 Operator Inversion . 108
4.4.4 Probing . 109
4.4.5 Energy Object & Minimization . 109
4.4.6 Parallelization & Cluster Compatibility 109

4.5 Application: Wiener Filter Reconstructions . 110
4.5.1 Case 1: Single Space Geometry . 110
4.5.2 Case 2: Cartesian Product Space Geometry 110

4.6 Conclusion . 113

5 Further Work 117
5.1 Field dynamics inference via spectral density estimation 117
5.2 Search for quasi-periodic signals in magnetar giant flares 117
5.3 Inference of signals with unknown correlation structure from nonlinear measure-

ments . 118

Conclusion and Outlook 119

A D2O Appendix 121
A.1 Advanced Usage and Functional Behavior . 121

A.1.1 Distribution Strategies . 121
A.1.2 Initialization . 124
A.1.3 Getting and Setting Data . 125
A.1.4 Local Keys . 126
A.1.5 The d2o Librarian . 128
A.1.6 Copy Methods . 130
A.1.7 Fast Iterators . 130

A.2 Iterator Performance . 131

Danksagung 146

x Inhaltsverzeichnis

List of Figures

1.1 An illustration of the Milky Way . 2
1.2 Logical dependencies between constituents, physical effects and observables. . . 4
1.3 Dispersion measure map based on YMW16 . 9
1.4 Comparison of synchrotron emission maps . 11
1.5 Rotation measure map . 13
1.6 Orientation of angular momentum w.r.t. a dust grain’s symmetry axes 15
1.7 Components of the Galatic magnetic field . 17

2.1 The building blocks of the Imagine framework. 25
2.2 The structure of the Imagine data processing and interpretation. 25
2.3 Simulated synchrotron emission difference maps 37
2.4 Mock data ω1: Scans through parameter space 46
2.5 Mock data ω1: Marginalized posterior plots . 47
2.5 Mock data ω2: Scans through parameter space 49
2.6 Mock data ω2, likelihood without determinant term: Scans through parameter

space . 50
2.7 Mock data ω2: Marginalized posterior and projected pairwise correlation plots . . 51
2.8 Mock data ω2 with χ2 likelihood: Marginalized posterior and projected pairwise

correlation plots . 52
2.9 Synchrotron data, purely ordered WMAP LSA magnetic field: Marginalized pos-

terior and projected pairwise correlation plots 53
2.10 Faraday rotation data, purely ordered WMAP LSA magnetic field: Marginalized

posterior and projected pairwise correlation plots 54
2.11 Comparison of Faraday depth maps . 55
2.12 Streamplot of the WMAP LSA model . 56
2.13 Synchrotron radiation data, WMAP LSA plus random magnetic field: Marginal-

ized posterior and projected pairwise correlation plots 57
2.14 Faraday rotation data, WMAP LSA plus random magnetic field: Marginalized

posterior and projected pairwise correlation plots 58

3.1 D2O object structure . 67
3.2 Wiener filter reconstruction . 81

xii Abbildungsverzeichnis

4.1 Minimal example for a Wiener filter reconstruction 88
4.2 UML diagram for DomainObject and its descendants 95
4.3 UML diagram for the inheritance structure for the NIFTy Operators 105
4.4 Input field smoothing . 108
4.5 A full-feature Wiener filter implementation in NIFTy 3 111
4.6 Illustration of Wiener filter reconstruction . 112
4.7 Illustration of a Wiener filter reconstruction in the context of Cartesian product

spaces . 114

List of Tables

2.1 Mock data ω1: Log-likelihood maximizing parameter values 39
2.2 Log-likelihood maximizing parameter values for mock data ω2 41
2.3 Mock data ω2: Sample parameter means and log-evidence 42

3.1 Strong Scaling Behavior . 77
3.2 Overhead costs: d2o’s relative performance to numpy 78
3.3 Weak scaling: d2o’s relative performance to a single-process 78
3.4 Strong scaling: d2o’s relative performance to a single process 79
3.5 Strong scaling comparison: d2o’s relative performance compared to DistArray . . 79
3.6 Execution time scaling . 80

4.1 Overview of provided Operators, inherited from LinearOperator 104

xiv Tabellenverzeichnis

Zusammenfassung

Diese Dissertation befasst sich mit der Rekonstruktion des Magnetfeldes der Milchstraße (GMF
für Galaktisches Magnetfeld). Eine genaue Beschreibung des Magnetfeldes ist für mehrere Fra-
gestellungen der Astrophysik relevant. Erstens spielt es eine wichtige Rolle dabei, wie sich
die Struktur der Milchstraße entwickelt, da die Ströme von interstellarem Gas und kosmischer
Strahlung durch das GMF abgelenkt werden. Zweitens stört es die Messung und Analyse von
Strahlung extra-galaktischer Quellen. Drittens lenkt es ultra-hoch-energetische kosmische Stra-
hung (UHECR) derartig stark ab, dass die Zuordnung von gemessenen UHECR zu potentiellen
Quellen nicht ohne Korrekturrechnung möglich ist. Viertens kann mit dem GMF ein kosmischer
Dynamo-Prozess inklusive dessen innerer Strukturen studiert werden. Im Gegensatz zum GMF
ist bei Sternen und Planeten nur das äußere Magnetfeld zugänglich und messbar.
So großen Einfluss das GMF auf eine Vielzahl von Effekten hat, genauso schwer ist es auch zu er-
mitteln. Der Grund dafür ist, dass das Magnetfeld nicht direkt, sondern nur durch seinen Einfluss
auf verschiedene physikalische Observablen messbar ist. Messungen dieser Observablen liefern
für eine konkrete Sichtlinie ihren gesamt-akkumulierten Wert. Aufgrund der festen Position des
Sonnensystems in der Milchstraße ist es daher eine Herausforderung der gemessenen Wirkung
des Magnetfelds einer räumlichen Tiefe zuzuordnen.
Als Informationsquelle dienen vor allem Messungen der Intensität und Polarisation von Radio-
und Mikrowellen, sowohl für den gesamten Himmel, als auch für einzelne Sterne, deren Posi-
tion im Raum bekannt ist. Durch die Betrachtung der zugrunde liegenden physikalischen Pro-
zesse wie Synchrotronemission und Faraday Rotation kann auf das GMF rückgeschlossen wer-
den. Voraussetzung dafür sind jedoch dreidimensionale Dichte-Karten anderer Konstituenten der
Milchstraße, beispielsweise der thermischen Elektronen oder des interstellaren Staubes. Für die
Erstellung dieser Hilfskarten sind physikalische Prozesse wie Dispersion und Staubabsorption
von entscheidender Bedeutung.
Um das GMF anhand der vorhandenen Messdaten zu rekonstruieren, gibt es im Wesentlichen
zwei Herangehensweisen. Zum einen benutzt man den phänomenologischen Ansatz parame-
trischer Magnetfeld-Modelle. Dabei wird die Struktur des Magnetfeldes durch analytische For-
meln mit einer begrenzten Anzahl von Parametern festgelegt. Diese Modelle beinhalten die ge-
nerelle Morphologie des Magnetfeldes, wie etwa Galaxie-Arme und Feld-Umkehrungen, aber
auch lokale Charakteristika wie Nebel in der Nachbarschaft des Sonnensystems. Gegeben ei-
nem Satz Messdaten versucht man nun, jene Modellparameter zu finden, die eine möglichst gute
Übereinstimmung mit den Observablen ergeben. Zu diesem Zweck wurde im Rahmen dieser
Doktorarbeit Imagine, die Interstellar MAGnetic field INference Engine, entwickelt. Aufgrund

xvi Zusammenfassung

der verhältnismäßig geringen Anzahl an Parametern ist eine Parameteranpassung auch mit ro-
busten all-sky maps möglich, auch wenn diese keine Tiefen-Information enthalten. Allerdings
gibt es bei der Herangehensweise über parametrische Modelle das Problem der Beliebigkeit:
es gibt eine Vielzahl an Modellen verschiedenster Komplexität, die sich darüber hinaus häufig
gegenseitig widersprechen. In der Vergangenheit wurden dann meist auch noch die Unsicher-
heit der Parameter-Rekonstruktionen unterschätzt. Im Gegensatz dazu ermöglicht eine rigorose
Bayes’sche Analyse, beispielsweise mit dem in dieser Doktorarbeit entwickelten Imagine, eine
verlässliche Bestimmung der Modellparameter.
Neben parametrischen Modellen kann das GMF auch über einen nicht-parametrischen Ansatz
rekonstruiert werden. Dabei hat jedes Raumvoxel zwei unabhängige Freiheitsgrade für das Ma-
gnetfeld. Diese Art der Rekonstruktion stellt deutlich höhere Ansprüche an die Datenmenge
und -qualität, die Algorithmik, und die Rechenkapazität. Aufgrund der hohen Anzahl an Frei-
heitsgraden werden Messdaten benötigt, die direkte (Parallax-Messungen) oder indirekte (über
das Hertzsprung Russel Diagramm) Tiefeninformation beinhalten. Zudem sind starke Prior für
jene Raumbereiche notwendig, die von den Daten nur schwach abgedeckt werden. Einfache
Bayes’sche Methoden reichen hierfür nicht mehr aus. Vielmehr ist nun Informationsfeldtheorie
(IFT) nötig, um die verschiedenen Informationsquellen korrekt zu kombinieren, und verlässliche
Unsicherheiten zu erhalten. Für diese Aufgabe ist das Python Framework NIFTy (Numerical In-
formation Field Theory) prädestiniert. In seiner ersten Release-Version war NIFTy jedoch noch
nicht für Magnetfeldrekonstruktionen und die benötigten Größenordnungen geeignet. Um die
Datenmengen verarbeiten zu können wurde daher zunächst d2o als eigenständiges Werkzeug für
Daten-Parallelisierung entwickelt. Damit kann parallelisierter Code entwickelt werden, ohne das
die eigentliche Entwicklungsarbeit behindert wird. Da im Grunde alle numerischen Disziplinen
mit großen Datensätzen, die sich nicht in Teilmengen zerlegen lassen davon profitieren können,
wurde d2o als eigenständiges Paket veröffentlicht.
Darüber hinaus wurde NIFTy so umfassend in seinem Funktionsumfang und seiner Struktur
überarbeitet, sodass nun unter anderem auch hochaufgelöste Magnetfeldrekonstruktionen durch-
geführt werden können. Außerdem ist es jetzt mit NIFTy auch möglich Karten der thermischen
Elektronendichte und des interstellaren Staubes auf Basis neuer und gleichzeitig auch sehr großer
Datensätze zu erstellen. Damit wurde der Weg zu einer nicht-parametrischen Rekonstruktionen
des GMF geebnet.

Summary

This thesis deals with the reconstruction of the magnetic field of the Milky Way (GMF for Galac-
tic Magnetic Field). A detailed description of the magnetic field is relevant for several problems
in astrophysics. First, it plays an important role in how the structure of the Milky Way develops
as the currents of interstellar gas and cosmic rays are deflected by the GMF. Second, it interferes
with the measurement and analysis of radiation from extra-galactic sources. Third, it deflects
ultra-high energetic cosmic rays (UHECR) to such an extent that the assignment of measured
UHECR to potential sources is not possible without a correcting calculations. Fourth, the GMF
can be used to study a cosmic dynamo process including its internal structures. In contrast to the
GMF, normally only the outer magnetic field of stars and planets is accessible and measurable.
As much as the GMF has an impact on a variety of effects, it is just as difficult to determine. The
reason for this is that the magnetic field cannot be measured directly, but only by its influence on
various physical observables. Measurements of these observables yield their total accumulated
value for a certain line of sight. Due to the fixed position of the solar system in the Milky Way,
it is therefore a challenge to map the measured effect of the magnetic field to a spatial depth.
Measurements of the intensity and polarization of radio and microwaves, both for the entire sky
and for individual stars whose position in space is known, serve as a source of information.
Based on physical processes such as synchrotron emission and Faraday rotation, the GMF can
be deduced. However, this requires three-dimensional density maps of other constituents of the
Milky Way, such as thermal electrons or interstellar dust. Physical processes like dispersion and
dust absorption are crucial for the creation of these auxiliary maps.
To reconstruct the GMF on the basis of existing measurement data, there are basically two ap-
proaches. On the one hand, the phenomenological approach of parametric magnetic field models
can be used. This involves defining the structure of the magnetic field using analytical formulas
with a limited number of parameters. These models include the general morphology of the mag-
netic field, such as galaxy arms and field reversals, but also local characteristics like nebulae in
the solar system’s neighbourhood. If a set of measurement data is given, one tries to find those
model parameter values that are in concordance with the observables as closely as possible. For
this purpose, within the course of this doctoral thesis Imagine, the Interstellar MAGnetic field IN-
ference Engine was developed. Due to parametric model’s relatively small number of parameters,
a fit is also possible with robust all-sky maps, even if they do not contain any depth information.
However, there is the problem of arbitrariness in the approach of parametric models: there is
a large number of models of different complexity available, which on top of that often contra-
dict each other. In the past, the reconstructed parameter’s uncertainty was often underestimated.

xviii Summary

In contrast, a rigorous Bayesian analysis, as for example developed in this doctoral thesis with
Imagine, provides a reliable analysis.
On the other hand, in addition to parametric models the GMF can also be reconstructed follow-
ing a non-parametric approach. In this case, each space voxel has two independent degrees of
freedom for the magnetic field. Hence, this type of reconstruction places much higher demands
on the amount and quality of data, the algorithms, and the computing capacity. Due to the high
number of degrees of freedom, measurement data are required which contain direct (parallax
measurements) or indirect (by means of the Russel diagram) depth information. In addition,
strong priors are necessary for those areas of space that are only weakly covered by the data.
Simple Bayesian methods are no longer sufficient for this. Rather, information field theory (IFT)
is now needed to combine the various sources of information correctly and to obtain reliable un-
certainties. The Python framework NIFTy (Numerical Information Field Theory) is predestined
for this task. In its first release version, however, NIFTy was not yet natively capable of recon-
structing a magnetic field and dealing with the order of magnitude of the problem’s data. To be
able to process given data, d2o was developed as an independent tool for data parallelization.
With d2o parallel code can be developed without any hindrance of the actual development work.
Basically all numeric disciplines with large datasets that cannot be broken down into subsets can
benefit from this, which is the reason why d2o has been released as an independent package.
In addition, NIFTy has been comprehensively revised in its functional scope and structure, so
that now, among other things, high-resolution magnetic field reconstructions can be carried out.
With NIFTy it is now also possible to create maps of thermal electron density and interstellar
dust on the basis of new and at the same time very large datasets. This paved the way for a
non-parametric reconstruction of the GMF.

Chapter 1

Introduction

1.1 The Milky Way
Our solar system is part of the Milky Way, a spiral galaxy, illustrated in Fig. 1.1. The shape of
spiral galaxies is dominated by a disk, which typically possesses several spiral arms and contains
most of the galaxy’s stars, gas and dust. The spirals are caused by gravity (Lin and Shu, 1964)
and the resulting density waves (Francis and Anderson, 2009). The matter density within the
disk follows a double exponential fall off profile

ρ(r, z) ≈ ρ0 exp
(−r

r0

)
exp

(−|z|
z0

)
(1.1)

with r and z being Galacto-centric cylindric coordinates, and ρ0 the density in the Galactic center.
Within the disk, one can distinguish a stellar disk and a disk made up of gas and dust. For
both the characteristic radius is r0 ≈ 3.5 kpc, while the characteristic height is zstellar

0 ≈ 330 pc
and zdust

0 ≈ 160 pc, respectively (Maoz, 2007). Further constituents of the Milky way are the
Galactic center, the bulge, a gas and star halo, and a dark halo. At the Galactic center there is a
compact stationary object with almost no luminosity, a mass of 4 × 106 M�, and a size around 1
astronomical unit (AU). We assume that this object, called Sagittarius A*, is a supermassive black
hole. Around the Galactic center there is a spheroidal stellar bulge with a radius of rbulge ≈ 1 kpc.
The matter density within the bulge scales with the inverse cubic power of the distance to the
center. The gas and star halo follows a cubic fall off profile, too, and 90% of the halo’s stars lie
within 30 kpc around the Galactic center (Harris, 1996). Using the virial theorem Zwicky (1937)
concluded that the visible mass in the Galaxy is not sufficient to explain the stellar velocities.
Today we are certain that only a small fraction of the Galaxy’s total mass is visible (Battaglia
et al., 2005, Battaglia et al., 2006, Kafle et al., 2014). A popular model for this dark matter is a
dark halo following a Navarro-Frenk-White (NFW) profile:

ρ(r) =
ρ0

r
r0

(
1 + r

r0

)2 (1.2)

Fitting a NFW profile to stellar velocities leads to an estimate for the dark halo mass of 6 × 1011

to 3 × 1012 M�. Since the luminous matter amounts to 9 × 1010 M�, 95% of the Galaxy’s mass

2 1. Introduction

Figure 1.1: An illustration of the Milky Way taken from Maoz (2007).

are not visible (Battaglia et al., 2005, Battaglia et al., 2006, Kafle et al., 2014).
The solar system is located z� = 30 pc above the mid plane and roughly r� = (8.0 ± 0.5) kpc away
from the Galactic center Maoz (2007). As the characteristic radius for the disk is r0 ≈ 3.5 kpc
the sun belongs to the outer regions of the Galaxy.

1.1.1 The Galactic Magnetic Field

The Galactic magnetic field (GMF) has a significant influence on the structure of the Milky
way, as its energy density is on a par with that of the turbulent gas or cosmic rays (CR). To be
specifc, the interstellar medium (ISM) continuously gets sheared due to the differential rotation
in the Galatic disk. Furthermore, supernovae cause turbulent gas circulation. Thus, the energy
density of the magnetic field is constantly replenished by the accompanying dynamo processes.
At the same time, magnetic energy is lost through Galactic outflows and winds, but also by
relaxation and reconnection processes of the magnetic field. The equilibrium between these
opposing processes often leads to characteristic magnetic field configurations: The magnetic field
orientation may follow the spiral structure of the galaxy, but field reversals and complex three-
dimensional structures are also possible. Charged particles can move freely along magnetic field
lines. However, the Lorentz force suppresses movements that traverse orthogonal to a magnetic
field. Through this mechanism, the galactic magnetic field influences the structure of the ISM
of the Milky Way. Likewise, the opposite influence is as important: from transport phenomena
such as the outflow of hot gas or relativistic particle populations from the Galactic disk into the
circum- and extra-Galactic space, we can deduce where Galactic magnetic field lines open up
into the extra-galactic space. The thermal conductivity of the ISM along and across the magnetic
field lines differs dramatically. Therefore, phases of the ISM with different temperatures are
partially isolated from each other if not connected by field lines. Due to their influence on the
gas movements, the magnetic fields are also involved in the angular momentum transport and the

1.1 The Milky Way 3

radial gas flow within the Galactic disk. They therefore play an important role in the question of
where new stars form and how gas masses are transported to the central black hole of the Galaxy.
In addition to its great influence on the structure and dynamics of the ISM, the GMF is also im-
portant for a number of problems in astro- and astroparticle physics. The magnetic field deflects
ultra-high-energy cosmic rays (UHECR) that are measured on the basis of the particle showers
they cause in the Earth’s atmosphere (Dawson et al., 2017, Farrar et al., 2013, Giacinti et al.,
2013). This makes it difficult to identify astronomical sources that are still unknown. Relativistic
electrons traveling through the GMF generate polarized radio synchrotron radiation. In addition,
dust grains align with the magnetic field which causes thermal dust emission to be polarized.
Together, this radiation contaminates the sensitive measurements of polarization in the cosmic
microwave background (CMB), which is a tracer for early universe phenomena like primordial
sound and gravitational waves. The study of extragalactic sources is disturbed by GMF-induced
Faraday rotation as this effect alters the polarization direction of radiation from extragalactic pho-
ton sources (Bell and Enßlin, 2012, Bell et al., 2011, Oppermann et al., 2011, 2012, 2015). It is
desirable to be able to distinguish the contribution of the Galactic Faraday rotation well from the
extra-Galactic one, since the latter is to be used for the study of magnetic fields in intergalactic
space. Thus, it is very desirable to have a description of the GMF that is as accurate as possible.
Fig. 1.2 illustrates the entangled denpendencies between the constituents of the Galaxy and which
component of the GMF influences them, respectively. Since the number of influential factors is
considerable, below we first give an overview of the involved Galactic constituents, then discuss
the relevant physical processes, and finally discuss the chain of inference.

4
1.Introduction

ethermalerelativistic ~B‖

~B⊥ Pulsars

Dust

Stars

Scattering

Recombination

Dispersion

Faraday
Rotation

Bremsstrahlung

Thermal
Emission

Polarized
Absorption

Total
Absorption

free-free
emission

Hα

Dispersion
Measure

Rotation
Measure

Synchrotron:
Polarization

Synchrotron:
Tot.Intensity

ThermalRadiation:
Polarization

Starlight
Polarization

Starlight
Intensity

extra-galactic
radiosources

Figure1.2:IllustrationofthelogicaldependenciesbetweenconstituentsoftheGalaxy(e.g.Pulsars),theinvolvedphysicaleffects
(e.g.Faradayrotation),andthemeasurableobservables(e.g.dispersionmeasure),respectively.

1.1 The Milky Way 5

1.1.2 Constituents of Interest
As discussed above, the GMF plays a role in various astrophyiscal processes. Hence, measuring
those gives us insight in the structure of the GMF. The involved constituents of the Milky way
are briefly discussed in the following.

1.1.2.1 Thermal Electrons

In contrast to relativistic cosmic rays, the free electrons in the thermally ionized interstellar
plasma are called thermal electrons. Their distribution is influenced by turbulent motions and
shock fronts, e.g. from supernovae. On a large scale the morphology of the interstellar plasma
should follow the disk and spiral arms of the Milky Way. However, as discussed in Sec. 1.1.1,
the thermal electrons are heavily influenced by the GMF and vice-versa. In the past, huge effort
has been made to construct at least parametric models of the thermal electron density. The first
rather complex 3D approach was made by Taylor and Cordes (1993). In the course of this,
radio observations of ionized hydrogen were used to get location information about the spiral
arms. Pulsar dispersion measure data, c.f. Sec. 1.2.2, was used for constraining the model’s
parameters. As of today, the most widely used model is the NE2001 model by Cordes and Lazio
(2002) which is based on Taylor and Cordes (1993). Its improvements are based on a larger DM
data set that became available in the meantime, on the fact that Hα measurement data has now
been used, and that information about the local solar neighborhood was taken into account. At
the same time NE2001 has a major weak point: it is highly heuristic and contains inconsistencies
like cut-out regions that just wouldn’t fit the data. As a consequence, NE2001 never got published
in a peer-reviewed journal; and yet its preprint version is often quoted. But in turn, NE2001 was
also improved: YMW16 (Yao et al., 2017) serves as one example. Being highly non-trivial, the
ways to infer the thermal electron density is discussed in Sec. 1.3.1.

1.1.2.2 Cosmic Rays

The number distribution of cosmic rays is dominated by relativistic protons, followed by 10 %
alpha-particles and less than that massive nuclei (Schlickeiser, 2002). The abundance roughly
matches the element abundance in the solar system, except for lithium, beryllium and boron, be-
cause of spallation processes when crossing interstellar matter. Their energy density (1 eV/cm3)
is comparable to the one of the GMF (B2/(2µ0) ≈ 0.3 eV/cm3). CRs primarily get accelerated by
first-order Fermi processes in strong shocks caused by supernovae and then traverse the Galaxy.
In addition to diffusion, CRs are affected by convection with the plasma and also interaction with
background photons must be taken into account (Matarrese et al., 1986). Furthermore, while
propagating through the ISM CRs resonantly excite Alfvén waves. Those Alfvén waves in turn
scatter CRs which partly isotropizes the velocity distribution in the wave’s rest frame. As a result,
low-energy cosmic rays stream down the wave’s gradient (Zweibel, 2013).
While propagating through the Galaxy, CRs produce secondary particles like electrons, positrons,
(anti-)protons, and also heavier nuclei via hadronic interaction. While also pions are produced,
gamma-rays are emitted during their decay. Comparing observations with modeled primary
and calculated secondary fluxes, one can particularily infer the density of cosmic ray electrons.

6 1. Introduction

As discussed in Sec. 1.2.3, this is crucial information when extracting information regarding the
GMF from synchrotron data. At the same time, the propagation of CRs is influenced by the GMF
as they gyrate around the field lines of the GMF and therefore are confined by it. This illustrates
that for a sophisticated deduction of the GMF also CR dynamics must jointly be considered.
Both fields should be inferred together.

1.1.2.3 Pulsars

While burning, stars produce ever heavier elements. However, nuclear fusion is exothermic only
until iron is reached. Because of this, heavy stars (> 12 M�) steadily build up an iron core
that collapses once it reaches the Chandrasekhar limit (1.4 M�). Beyond this limit, the elec-
tron degeneracy pressure in the core is insufficient to counteract the gravitational self-attraction.
When collapsing, protons and electrons merge into neutrons via inverse beta decay (Lieb and
Yau, 1987). During this supernova explosion the outer shells are blown away into a ionized gas
nebula and a highly compact remnant remains: a neutron star. According to established mod-
els Neutron stars have masses from 1.44 M� up to 3 M�. Below that, there is no collapse and
they become a white dwarf. Above that, the models predict that the supernova becomes a black
hole. Despite their mass, neutron stars have a radius of about 10 km, which is only twice of their
Scharzschild radius. At the same time, the angular momentum is preserved during the collapse
and as a consequence, the neutron star is rapidly spinning. The neutron star with the highest
measured frequency so far is PSR J1748-2446ad spinning at 716 Hz (Hessels et al., 2006). In
addition to the angular momentum, also the magnetic moment is preserved during the collapse,
resulting in typical magnetic field strengths of 108 T. If the axis of the magnetic dipole is not
aligned with the rotation axis, the ionized plasma gets excited by the ever-changing magnetic
field and emits radiation. Since charged particles in a strong magnetic field can move freely only
along the field lines, the radiation is aligned with the magnetic dipole axis (Gold, 1968, Pacini,
1968). As this axis is subject to the pulsar’s rotation a stationary observer sees the radiation, if at
all, as periodic pulses.

1.1.2.4 Dust

Stars and the ISM are in constant interaction: new stars form from interstellar clouds, and at
the end of their lives, many stars eject a substantial fraction of their mass back into the ISM.
During their active time those stars produced heavier elements from hydrogen and helium by
nuclear fusion. As a consequence, the abundance of heavier elements in the ISM increases over
time. A major fraction of these heavier atoms compose solid particles of less than 10−6 m in size
(Whittet, 2002). Those dust grains make up roughly 1 % of the ISM’s mass but are the main
reason for its opacity. They are so effective at scattering, absorbing and re-emitting starlight that,
despite their small mass fraction, they have a decisive influence on our view of Galaxy. By way
of illustration, at visible wavelengths only one photon in every 1012 that has been emitted in the
center of our galaxy is received by us. The energy absorbed by the dust is re-emitted in the form
of infrared radiation, which accounts for 20 % of the total bolometric luminosity of the Milky
Way (Whittet, 2002). Note that the dust grains cannot reasonably be assumed to be spherical.

1.2 Physical Effects 7

Physically, non-spherical dust grains are much more reasonable as they are also made of, among
other things, anisotropic crystalline material. For example, graphite particles have a minimum
free energy when flattened (Draine, 1989).

1.2 Physical Effects

1.2.1 Emission Processes

The warm ionized ISM emits radiation due to both, recombination and scattering between elec-
trons and ions. Since the most common element in the ISM is hydrogen, it is worthwhile to study
its spectral lines. Two wildly used ones are the following: First, the Hα line with a wavelength of
λ = 656 nm, which corresponds to the transition from the n = 3 to the n = 2 level. This spectral
line can clearly be identified in the corresponding observational data, although being subject to
dust. Second, the HI hyperfine transition line of hydrogen’s ground state with a wavelength of
21 cm. The latter has the advantage that the scattering cross section with the ISM is rather low.
By means of a Doppler analysis, HI yields information about the speed of the corresponding
hydrogen clouds. Combining this with models of the Galaxy’s velocity profile one can also infer
the cloud’s location in space (Kerr, 1969).
In addition to recombination effects, there is also an important scattering effect. The thermal
electrons in the ISM scatter off each other and off ions. Because of this acceleration, the electrons
emit bremstrahlung; the so-called free-free emission. In contrast to the spectral lines discussed
above, the spectrum of free-free emission is continuous. The emitted power per unit frequency
bin is inversely proportional to the frequency squared. Similarly to Hα, at free-free emission pairs
of electrons and ions, respectively, need to interact. Hence, both types of emission processes are
proportional to the free electron density squared. Thereby, the quantity of interest is its line-of-
sight integral, called emission measure (EM)

EM =

∫ d

0
dl n2

e , (1.3)

as discussed in, e.g., Reynolds et al. (1974) and Finkbeiner (2003).

1.2.2 Dispersion

When electromagnetic radiation passes through free electrons, e.g., those of the interstellar
plasma, it induces oscillations of them. This leads to a dielectric constant, and therefore to a
refractive index. The effective speed of light cphase(ν) in this medium is frequency dependend and
is given by

cphase(ν) = c

√
1 − ν

2
p

ν2 , (1.4)

8 1. Introduction

where νp is the plasma frequency, and c is the speed of light in vacuum. The plasma frequency
reads

νp =

√
nee2

πme
, (1.5)

where ne is the electron density, e is the elementary charge, and me is the electron mass. Hence,
the speed of light increases with the radiation’s frequency. In the case of pulsars this means,
that high frequencies in the spectrum of a pulse reach the observer before the low ones. Given
Eq. (1.5) and the electron densities in the warm ionized gas in the ISM, the plasma frequency
stays below 100 kHz. We analyze the radiation of pulsars in the MHz and GHz regime which
means that Eq. (1.4) can be linearized in ν2

p and thus also in ne. Using this linear approximation,
given a source at a distance d, the time for the radiation to arrive at the observers place is

t =
d
c

+
kDM

ν2

∫ d

0
dl ne (1.6)

with

kDM =
e2

2πmec
. (1.7)

The line-integral over ne is called dispersion measure (Rybicki and Lightman, 2008):

DM =

∫ d

0
dl ne (1.8)

Eq. (1.6), or its derivative with respect to ν, respectively, can be fitted to the observed pulses’
frequency profile. By this, if the distance d is known, one can infer DM for the specific positions
of the pulsars in space.
Fig. 1.3 shows the results of a sky map simulation conducted with Hammurabi X using the
YMW16 (Yao et al., 2017) Galactic thermal electron density model, as used in Chap. 2.

1.2.3 Synchrotron Emission

When charged particles move orthogonally to a magnetic field, they are deflected by the Lorentz
force. As a consequence they gyrate around the field lines and emit synchrotron radiation. Due
to relativistic beaming effects the radiation is not emitted isotropically, but rather within a narrow
forward-oriented cone. Embedded in the GMF, relativistic electrons emit synchrotron radiation
in the MHz and GHz range. For a relativistic velocity v, the gyration frequency reads

νg =
eB

2πγmec
, (1.9)

with the Lorentz factor
1
γ

=

√
1 − v2

c2 . (1.10)

1.2 Physical Effects 9

0 1500pc/cm3

Figure 1.3: Map of the Galactic dispersion measure produced with Hammurabi X based on the
YMW16 (Yao et al., 2017) thermal electron model. In addition to the Galactic disk, also local
features of the model can be seen; all in front the Gum Nebula that appears as a noticeable ring.

10 1. Introduction

The intensity of the synchrotron radiation is determined by the intensity of the acceleration the
electron experiences. a⊥ may denote the part of the acceleration that is orthogonal to the elec-
tron’s velocity vector; it can be written as

a⊥ = 2πνgv⊥ (1.11)

whereby v⊥ is the component of the electron’s velocity that is perpendicular to the magnetic field.
As shown by, e.g. Rybicki and Lightman (2008), the power of the emitted synchrotron radiation
is given by

P =
2e2

3c3γ
4a2
⊥ =

2
3
γ2e4

m2
ec5 B2v2. (1.12)

When assuming that the electrons’ velocity distribution is isotropic, averaging over all possible
orientations yields

P =

(
2
3

)2
γ2e4

m2
ec5 B2v2. (1.13)

Synchrotron radiation is to a high degree linearly polarized, to be precise, orthogonally with
respect to the magnetic field. This makes it a valuable source of information for B⊥; that part of
the magnetic field which is orthogonal to the lines-of-sight.
Fig. 1.4 shows the results of a synchrotron emission simulation conducted with Hammurabi X,
as used in Chap. 2. Except for an overall factor, the two maps of total intensity at 1 GHz and
30 GHz are structurally identical; note the different color scales. In contrast, the maps showing
the polarized intensity differ heavily. This is due to Faraday depolarization, which will be dis-
cussed in the upcoming section: Sec. 1.2.4. As illustrated in Fig. 1.2, polarized intensity maps
of synchrotron emission are therefore examples for observables that are shaped by two physical
processes.

1.2.4 Faraday Rotation & Depolarization
In the presence of free electrons and a magnetic field parallel to the direction of propagation,
the polarization of an electromagnetic wave is rotated; this effect is known as Faraday rotation.
Note that linear polarization can be regarded as the superposition of according left- and right-
handed circular polarization. The mechanism behind Faraday rotation is that the wave’s electric
field induces gyration movements of the electrons. With the magnetic field being present, the
electric conductivity, thus the dieletric constant, and therefore the individual speed of light of
the two circular polarization modes depends on their rotational sense. The left- and right-handed
component of a linearly polarized electric field vector are rotated by the angle (Schlickeiser,
2002)

φr/l(ν) =

∫ L

0
dl

2πν
c

√
1 − ν2

p

ν(ν ± νc)
(1.14)

after traversing a distance L. This depends on the plasma frequency

νp =

√
nee2

πme
, (1.15)

1.2 Physical Effects 11

-5 0.2ln(K)

(a) Total intensity at 1 GHz

-15 -10ln(K)

(b) Total intensity at 30 GHz

-7 -1ln(K)

(c) Polarized intensity at 1 GHz

-16 -10ln(K)

(d) Polarized intensity at 30 GHz

Figure 1.4: Comparison of synchrotron emission maps of total and polarized intensity at 1 GHz
and 30 GHz based on the YMW16 (Yao et al., 2017) model and the WMAP LSA (Page et al.,
2007) model for the thermal electron density and the Galactic magnetic field, respectively. The
WMAP LSA model’s parameters were set to B0 = 1.2 µG, ψ0 = 27.0◦, ψ1 = 0.9◦, and χ0 = 25.0◦,
following Page et al. (2007). To the regular WMAP LSA model, an isotropic random magnetic
field was added with a characteristic strength of 0.8 µG, cf. Sec. 1.4 and Sec. 2.4.3 for details.

12 1. Introduction

and the cyclotron frequency

νc =
eB

2πmec
. (1.16)

Hence, the polarization angle of the linear polarized wave got rotated by

∆φ = (φr − φl)/2. (1.17)

In the limit of ν � νc and ν � νp the square root in Eq. (1.14) can be linearized which yields for
∆φ

∆φ =
e3λ2

2πm2
ec4

∫ L

0
ne~B · d~l. (1.18)

Finally, taking out the wavelength-dependence, one gets to the definition of Faraday depth:

Φ =
e3

2πm2
ec4

∫ L

0
ne~B · d~l (1.19)

Fig. 1.5 illustrates the effect of Faraday rotation for the YMW16 (Yao et al., 2017) and WMAP
LSA (Page et al., 2007) models. The dependency on the thermal electron density in Eq. (1.19)
can be clearly seen, as the Gum Nebula is as traceable in Fig. 1.5 as in Fig. 1.3.
There are several effects how Faraday rotation reduces the measured degree of polarization. We
discuss the two most important. First, as discussed above, Faraday rotation depends on the
wavelength. If a source emits polarized but not perfectly monochromatic radiation, the measured
degree of polarization gets reduced as every detector has a finite frequency window. This effect
is important for frequencies ν . 1 GHz. Second, if there are many sources (or one elongated
source) along the line-of-sight, the distance from the observer to each source and therefore the
Faraday depth is different, respectively. Hence, even if all sources initially emitted radiation
with the same polarization angle, the measured Faraday rotation will be smeared out. The sum
of all those effects is called Faraday depolarization. Fig. 1.4 illustrates the effect of Faraday
depolarization and its dependence on the wavelength, cf. Eq. (1.18).

1.2.5 Dust Absorption and Emission
Dust absorption and emission can provide valuable information on the Galactic magnetic field.
However, they have not been used in this work, hence the underlying concepts should be dis-
cussed only briefly. In this section we mainly follow Whittet (2002).
Extinction occurs whenever electromagnetic radiation propagates through a medium that con-
tains small particles. In principle there are two extinction processes: absorption and scattering.
When dust absorbs light, it incorporates its energy, which is converted into heat. This thermal
energy causes the dust to emit thermal radiation. If the dust has an anisotropic geometry and
is uniformly aligned, partially absorbed as well as thermally emitted light has a non-vanishing
polarization.
As a start, we analyze the case of spherical dust. Although this is a great simplification, also as-
pherical dust can effectively be approximated by spherical dust if it is not aligned or polarization

1.2 Physical Effects 13

-500 500rad/m2

Figure 1.5: Map of the Galactic rotation measure produced with Hammurabi X based on the
YMW16 (Yao et al., 2017) model and the WMAP LSA (Page et al., 2007) model for the thermal
electron density and the Galactic magnetic field, respectively. The WMAP LSA model’s param-
eters were set to B0 = 1.2 µG, ψ0 = 27.0◦, ψ1 = 0.9◦, and χ0 = 25.0◦, following Page et al.
(2007). To the regular WMAP LSA model, an isotropic random magnetic field was added with
a characteristic strength of 0.8 µG, cf. Sec. 1.4 and Sec. 2.4.3 for details.

14 1. Introduction

is not considered. Assuming dust with a density of n and an extinction cross section Cext, the
attenuation of the starlight intensity per line of sight increment dL reads

dI
I

= −nCextdL. (1.20)

Integrating Eq. (1.20) over the full line-of-sight of a star with original brightness I0, one gets

I = I0e−τ, (1.21)

whereby τ is the optical depth of extinction

τ =

∫
dL nCext. (1.22)

Usually the extinction is given in magnitudes A:

A = −2.5 log
(

I
I0

)
(1.23)

The absorption of starlight by dust can lead to its partial linear polarization. Likewise, thermal
dust emission can be polarized linearly, too. There are mainly two reasons for this. First, the dust
grains have an isotropic geometry, but are in themselves – like graphite – optically anisotropic.
For a net polarization, the optical axes would have to align uniformly, which is very unlikely
to happen because of their isotropic geometry. The second possible reason that can lead to
polarizing dust absorption is that the grains have an anisotropic geometry. It is the subject of
active research into why anisotropic dust aligns itself in a magnetic field. A simple model for
this is explained in the following.
Interstellar dust rotates due to random collisions. While doing so, elongated and disk-shaped
dust particles rotate around the prinicpal axis of inertia, cf. Fig. 1.6. Because of the Barnett
effect, the atomic magnetic dipoles within the dust grains align themselves uniformly, causing a
net magnetic moment. Hence, the rotation axes of the dust particles align themselves with the
magnetic field. This alignment of the dust ensures anisotropy of the extinction cross section and
thus partial polarization of translucent light. Measuring the intensity for the different polarization
angles, one gets a minimum and a maximum intensity of I: Imin and Imax, respectively. Based on
that, the degree of polarization P is usually expressed as a percentage

P = 100%
Imax − Imin

Imax + Imin
. (1.24)

Based on a certain model for a dust geometry distribution, it can be calculated how strong the
inherent rotation of the dust, the induced magnetic moment and thus the alignment to the GMF is.
In addition, the extinction cross section can be calculated. Thus, the strength of the magnetic field
orthogonal to the line of sight can be determined from the measured polarized dust extinction.
Touching the topic of dust only briefly, we only note that the extinction cross section depends
on the light’s wavelength: the shorter its wavelength, the more it gets absorbed, leading to the
so-called reddening.

1.3 Chain of Inference 15

Figure 1.6: Illustration of the orientation of angular momentum J with respect to the grain’s
symmetry axis A; taken from Whittet (2002).

1.3 Chain of Inference
As shown in Fig. 1.2 the Galactic thermal electron density plays a crucial role for reconstructing
the GMF, especially because it significantly affects Faraday rotation.

1.3.1 Inferring the Thermal Electron Density
For the reconstruction of the thermal electron density there are several sources of information
available: the most prominent are dispersion pulsed radiation, free-free emission and hydrogen
emission lines. However, the inference is mainly based on dispersion, but not the latter two, as we
discuss in the following: First, free-free emission is a problematic source of information because
it does not dominate the sky’s electromagnetic energy spectrum at any frequency. Hence, it must
be inferred by combining data at different frequencies using spectral information (Bennett et al.,
2003). For this in turn, the temperature of the thermal electrons Te must be known. Practically,
one uses the mean value of the temperature of the ionized warm medium (8000 K). However, this
is only a rough estimate as Te is expected to vary in space and especially along a line-of-sight.
Second, in contrast to free-free emission, Hydrogen emission lines are easier to extract from the
data due to the distinct shape of the spectral lines. However, radiation with a wavelength of
656 nm is subject to dust absorption. Hence, one needs a reliable dust map to account for the
extincted radiation. Thus, in principle free-free and Hα can be used as long as the interrelated
information is available. Nonetheless, conceptually a huge disadvantage remains: measurement
data of free-free emission as well as emission lines is available in the form of all-sky maps,
which as such do not contain any depth information. In contrast, with pulsars one has probes
distributed in space which is a prerequisite for a sophisticated 3D reconstruction. This is what
makes dispersion measure data from pulsars so valuable, though the measurement of their dis-
tance is challenging. For this it is advisable to use parallaxes, even if this involves uncertainties
of several ten percent. Distressingly enough, in practice for the inference of the thermal electron
density, often (e.g. Cordes and Lazio (2002)) distance information is used that itself is based on

16 1. Introduction

a dispersion measure analysis that in turn includes an assumed certain thermal electron density
model. This is highly critical circular reasoning yielding unreliable results.
Using only pulsar data with independent distance estimates, Schnitzeler (2012) finds that with
the data available at that time there is no support for excessively complex thermal electron mod-
els. Hence, up to then, no detailed features could be resolved. In 2016, Greiner et al. (2016)
demonstrated how to make a non-parameteric reconstruction based on a Pulsar driven dispersion
measure analysis. If the 3D position of pulsars is roughly known, a true 3D reconstruction be-
comes possible, whereby matter density power spectrum and Galactic profile are learned on the
fly. It is very likely that the SKA will yield data with which a highly informative reconstruction
of the Galactic thermal electron density will become possible.

1.3.2 Inferring the Magnetic Field
Once one decided for a map of the Galactic thermal electron density field, the effect of Faraday
rotation on the polarization of pulsar emission and extra-galactic radio sources can be analyzed.
Note that in contrast to sources within the Galaxy, extra-Galactic sources have the downside of
not providing any depth information. With respect to the Galactic magnetic field, as discussed
in Sec. 1.2.4, Faraday rotation provides insight in B‖, the component of the GMF which is par-
allel to the observer’s lines-of-sight. Mainly a disturbance contribution, Faraday rotation also
has an influence on the polarization angle of the synchrotron radiation that is emitted by rel-
ativistic electrons and cosmic rays. For B⊥, the direction of the GMF that runs orthogonal to
the observer’s lines-of-sight, synchrotron radiation is the primary source of information, as dis-
cussed in Sec. 1.2.3. However, just as one needs the thermal electron map for Faraday rotation
analyses, one needs a map of the relativistic electrons erelativistic when utilizing synchrotron ra-
diation. In practice, those maps are based on either excessively simple models, or on forward
simulations codes like CRPropa3 (Alves Batista et al., 2016), Picard (Kissmann, 2014), Gal-
prop (Moskalenko, 2012), or Dragon2 (Evoli et al., 2017) Hereby, the problem is that those
codes need a (at least large-scale) GMF as input. This means that in principle one has to perform
a joint analysis of the GMF and erelativistic, which is much harder than taking a map for erelativistic

for granted1. Finally, it should be noted that thermal dust emission and starlight absorption can
be used as sources of information to constrain B⊥, too.

1.4 Models of the Galactic Magnetic Field
The GMF can be subdivided into three components (Jaffe et al., 2010) using the following sys-
tematics: a large-scale, an isotropic random, and an anisotropic field, cf. Fig. 1.7. The first one
has correlation lengths on kpc scales and is likely caused by a Galactic dynamo. Thereby, a
small initial seed field is amplified by the conversion of mechanical energy of turbulent gas flows
(Brandenburg and Subramanian, 2005). The isotropic random or turbulent field is assumed to

1Due to the chaotic nature of cosmic ray trajectories, it is not possible to do backward evaluations of the particle
propagator. Since only forward evaluations can be used during the inference, this means that the number of applica-
ble analysis methods is heavily restricted.

1.5 Information Theory 17

Ordered
Anisotropic random /

Straited
Isotropic random

Figure 1.7: Illustrations of the three components of the Galactic magnetic field: an ordered, an
anisotropic random or straited, and an isotropic random field.

originate from supernova outflows and turbulent motions of the magnetized interstellar plasma.
Its strength as well as orientation varies from place to place in space. The third component is re-
ferred to as anisotropic, ordered random, or straited random field. This special kind of magnetic
field is created if a magnetized medium that possesses an isotropic field gets heavily compressed,
e.g. by a supernova shock. There are a variety of parametric GMF models in the literature. While
the simplest ones have an axisymmetric spiral shape, the complicated models combine the three
aforementioned models. See Sec. 2.4.3 for more information.

1.5 Information Theory
In the field of statistics there are two different approaches to calculate probabilities and uncer-
tainties. On the one hand there is the frequentistic approach, where the probability of an event is
determined by repetition of a corresponding experiment (Hogg and Tanis, 2010). By doing so,
the challenge is to formulate clearly which assumptions were made when constructing the entire
event-space, which is considered possible. On the other hand, there is the Bayesian approach
that is used in this work, where probabilities are consistently formulated as subjective degrees of
belief. This makes it possible to formulate all assumptions, but also previous knowledge about an
experiment or model in terms of probability densities. For a detailed discussion see Cox (1946)
and Jaynes and Baierlein (2004).
The key element of Bayesian inference is Bayes’ theorem, which is derived from the product
rule for conditional probabilities and for two statements A and B reads as follows:

P(B|A) =
P(A|B)P(B)

P(A)
. (1.25)

The posterior probability P(B|A) is thus the product of the likelihood P(A|B) and Prior P(B) di-
vided by the evidence P(A). Subsequential updating of the posterior probability is possible by
concatenated application of Bayes theorem. Furthermore, Lemm (2003) showed that Bayesian
logic can be combined with field theory. Later, Enßlin et al. (2009) named this approach Informa-
tion Field Theory (IFT). Using IFT, it is possible to infer on the basis of measurement data entire

18 1. Introduction

fields of quantities of interest, for example two-dimensional celestial maps or three-dimensional
volume reconstructions of the electron density as well as the galactic magnetic field.
In addition to the fact that the use of Bayesian inference is generally recommended, concretely
it offers significant advantages for this work. In both parametric and non-parametric magnetic
field reconstruction, the treatment of statistical uncertainty is very important, which can be easily
achieved with Bayesian inference. In the case of parametric reconstruction, this is reflected in the
example of the galactic variance. Further, the concept of evidence makes it possible to compare
two completely different models. In the case of non-parameteric magnetic field reconstructions,
the correct treatment of uncertainties and error propagation of, for example, distances determined
with paralax measurements is very important, as these uncertainties are very high, namely often
throughout in the double-digit percentage range. Further information is given in Sec. 2.2 and
Sec. 4.2.1.

1.6 Outline of this thesis
As discussed in Sec. 1.4, modelling the GMF can be divided into two classes: the parametric
and the non-parametric approaches. At present, there is a vivid scientific community building
parametric magnetic field models and fitting them to the available measurement data. In Chap. 2
we present Imagine, a framework for comprehensible GMF model inference. Thereby, handling
uncertainties properly is especially important for GMF models that also include random GMF
components. For that purpose, we present the concept of Galactic variance in Sec. 2.3. After
describing the Imagine framework in Sec. 2.4 we show in Sec. 2.5 how the framework eases
Bayesian parameter estimation and model comparison. This chapter has been submitted as an
independent publication to the journal Astronomy & Astrophysics. The arxiv print can be found
here: https://arxiv.org/abs/1801.04341.
The long-term perspective for information theoretically reliable magnetic field models are non-
parametric models. Combined with a Bayesian analysis, preferably formulated in the language
of information field theory, they are the only way to truly let the data speak and precisely control
which extra information is added to the inference. The difficulty with non-parametric reconstruc-
tions, however, lies in the high computational effort that has to be made. Thus, as long as the
reconstructions would have to be calculated on a single shared-memory computer, memory size
and processor performance are limiting factors. The structure of the inference problem causes
that otherwise common methods like subdividing the data into smaller chunks cannot be applied
here. This made it necessary to develop a data parallelisation solution that takes into account
the needs of the given class of inference. In Chap. 3 we present our solution to this problem:
d2o, a Python module for cluster-distributed multi-dimensional numerical arrays. We show how
one can use d2o to develop parallelized code without the need to have prior knowledge of tech-
nologies such as OpenMPI or OpenMP, and without being distracted by them. This chapter, as
well as Chap. A have been published as an independent publication in the Journal of Big Data
(Steininger et al., 2016).
To implement inference algorithms efficiently the inference framework NIFTy was developed.
The need to make it possible to do non-parametric reconstructions of magnetic fields, was the

https://arxiv.org/abs/1801.04341

1.6 Outline of this thesis 19

trigger for a complete rebuild of NIFTy. Among other things, NIFTy 3 now supports arbi-
trarily complex tensor fields and thus particularly the reconstruction of non-parametric three-
dimensional magnetic fields. Using d2o as the basis of parallelization, cf. Sec. 4.4.6, now high-
performance computing clusters can be used despite the complex field structures that are in-
volved. But in general, cf. Sec. 4.4, there are a number of other improvements that make NIFTy 3
an even more valuable system. This chapter has been submitted as an independent publication to
the journal PLOS ONE. The arxiv print can be found here: https://arxiv.org/abs/1708.01073.
Finally, we conclude this work and give a brief outlook on future challenges.

https://arxiv.org/abs/1708.01073

20 1. Introduction

Chapter 2

Inferring Galactic magnetic field model
parameters using IMAGINE - An
Interstellar MAGnetic field INference
Engine

This chapter is additionally used as a journal publication submitted to Astronomy & Astro-
physics (Steininger et al., 2018).
I am the principal researcher of the research described in this chapter. My contributions include
the primal idea for the design and the implementation of the presented software framework, the
primal idea for the presented likelihood, the conception and conduction of the performance and
consistency tests, and the conception and conduction of the productive runs of the pipeline. To-
gether with Torsten A. Enßlin (TE), Tess Jaffe (TJ), Ellert van der Velden (EV), Jiaxin Wang (JW),
Marijke Haverkorn (MH), Jörg R. Hörandel (JH), Jens Jasche (JJ) and Jörg P. Rachen (JR) I
developed the primal idea of IMAGINE and developed and refined the work’s objective. TE, TJ,
EV, JW, MH, JH, JJ, and JR helped to focus the work such that it has a high added-value in
real-world applications. EV and JW helped implementing and working out the conceptual struc-
ture of the software package. Maksim Greiner helped elaborating the debugging of the presented
likelihood and, together with JJ, the sampling. TJ helped conceptioning the consistency tests and
supported the productive runs. I wrote this chapter for the most part. TE, TJ, EV and JW helped
drafting the manuscript by language editing. Additionally, EV contributed approximately 30%
to Sec. 2.4.2, and 50% to Sec. 2.4.5. JW contributed approximately 50% to Sec. 2.4.3, and 70%
to Sec. 2.4.4. TJ contributed approximately 70% to Sec. 2.6. Furthermore, TE also fulfilled the
role of a principal investigator as he is my PhD supervisor. All authors read, commented, and
approved the final manuscript.

22 2. IMAGINE

Abstract
The Galactic magnetic field (GMF) has a huge impact on the evolution of the Milky Way. Yet
currently there exists no standard model for it, as its structure is not fully understood. In the
past many parametric GMF models of varying complexity have been developed that all have
been fitted to an individual set of observational data complicating comparability. Our goal is to
systematize parameter inference of GMF models. We want to enable a statistical comparison of
different models in the future, allow for simple refitting with respect to newly available data sets
and thereby increase the research area’s transparency. We aim to make state-of-the-art Bayesian
methods easily available and in particular to treat the statistics related to the random compo-
nents of the GMF correctly. To achieve our goals, we built Imagine, the Interstellar Magnetic
Field Inference Engine. It is a modular open source framework for doing inference on generic
parametric models of the Galaxy. We combine highly optimized tools and technology such as
the MultiNest sampler and the information field theory framework NIFTy in order to leverage
existing expertise. We demonstrate the steps needed for robust parameter inference and model
comparison. Our results show how important the combination of complementary observables
like synchrotron emission and Faraday depth is while building a model and fitting its parameters
to data. Imagine is open-source software available under the GNU General Public License v3
(GPL-3) at: https://gitlab.mpcdf.mpg.de/ift/IMAGINE

2.1 Introduction
The interstellar magnetic field in galaxies plays a key role in processes at various scales from
star formation up to overall galactic evolution. Its energy density is comparable to that of the
turbulent gas or cosmic rays (CRs), and therefore the dynamical feedback on the interstellar
medium (ISM) must not be ignored. Galactic magnetic fields affect in- and outflows of the ISM
that already exist as well as the formation of new ones. They influence the propagation of CRs,
which gyrate along the field lines. Though these effects are all important, it is challenging to infer
the field, since it is only accessible via indirect detection methods. Additionally, since our Solar
System is located within the Galactic plane, the tracers of the Galactic magnetic field (GMF) in
our own Milky Way are highly degenerate as they are line-of-sight integrated quantities. This
also means that the view of the opposite side of the Galaxy is obstructed by the intervening ISM.
Because of all this, the GMF is currently mainly modeled via heuristic parametric models that
have physically motivated features. The degrees of freedom in those models are morphological
properties, field strengths (of possibly individual spatial components) of the magnetic field and
the strength and characteristics of random contributions. Significant progress has been made
here, which is the reason why a rather large number of GMF models is available today. At the
same time the available data becomes better and better. Hence, there is need for a standardized
platform that allows systematic parameter estimation and model comparison for a continuously
expanding abundance of models and data.

https://gitlab.mpcdf.mpg.de/ift/IMAGINE

2.2 Bayesian Parameter Inference and Model Comparison 23

2.2 Bayesian Parameter Inference and Model Comparison

The GMF can naturally be thought of as a vector field with an infinite number of degrees of free-
dom: under the constraint of zero divergence the magnetic field can have an individual strength
and direction at every point in space. This view corresponds to the most generic model pos-
sible, where the model’s parameters are the field’s degrees of freedom. To infer the GMF one
must simplify this most generic model, for example, by discretizing space. Doing so reduces
the model parameters to a finite but still huge number, namely twice the number of voxels of
the considered volume. However, now one can try to concretely infer the magnetic field voxel
by voxel, a method known as non-parametric modelling. Generally speaking, constraining those
non-parametric models is certainly hard, because the huge number of degrees of freedom often
are counteracted by a limited amount of data. Because of this, one often builds a simpler model
with a heavily reduced number of parameters, which therefore only covers a tiny slice in the full
parameter space but still represents the most important features of the modeled quantity. In the
case of the GMF, various models have been developed that differ greatly in their complexity: the
number of parameters varies between only a few and up to 40. Given a model and observational
data one must find an estimate for a set of the model’s parameters that explains the observed data
well. However, in addition to the parameter estimation of a given model, there is also the task of
comparing the plausibility of different models. In the case of GMF inference this is especially
important since so far there is no standard model available.
In terms of Bayesian inference, parameter estimation and model comparison can be described by
the following components: a given model m that has a set of parameters θ shall be constrained by
data d. This means, that we are interested in the posterior probability density P(θ|d,m). Bayes’
theorem provides us with a calculation prescription

P(θ|d,m) =
P(d|θ,m)P(θ|m)

P(d|m)
, (2.1)

where P(d|θ,m) is the likelihood of the data, P(θ|m) is the parameter prior, and P(d|m) is the
model’s evidence. The latter guarantees the posterior’s normalization and is given by

Z = P(d|m) =

∫
Ωθ

P(d|θ,m)P(θ|m)dθ. (2.2)

For parameter estimation with one model, the evidence can be neglected, hence it is sufficient to
maximize the product of the likelihood and the prior. However, for comparing different models,
e.g., m1 and m2, one needs normalized posteriors to form the ratio

R =
P(m1|d)
P(m2|d)

=
P(d|m1)P(m1)
P(d|m2)P(m2)

=
Z1P(m1)
Z2P(m2)

. (2.3)

Often there is no strong a priori reason for preferring one model over the other which corresponds
to setting the model prior ratio P(m1)/P(m2) to unity. In this case, the model’s evidence is the
only source of information for model selection.

24 2. IMAGINE

2.3 Galactic Variance

The likelihood P(d|θ,m) describes the probability to measure the data d if reality was given by θ
and m. By modeling the physical system this probability can be explicitly calculated for certain
sets (θ, m). For this, one uses a forward simulation code to compute observables like sky-maps
of Faraday rotation, synchrotron emission, and thermal dust emission. Given measured data, by
modeling the noise characteristics of the detector, a probability can be assigned to the calculated
maps, which is in principle a standard approach. However, when analyzing parametric models
of the GMF one must be careful at this step because of how those models describe small scale
structure of the magnetic field. Generally speaking, parametric models specify the large scale
structure of the magnetic field explicitly by parameterizing the geometry of its components – for
example, the disk and possibly its arms, the halo, X-shaped components, et cetera – and the field
strength therein. Together, these components form the so-called regular field. Small scale struc-
ture, in contrast, is modeled in terms of its statistical properties rather than an explicit realization.
This means, that when for a given parameter set θ a model instance is created, a random magnetic
field is generated and added to the regular field. Depending on the model, the random magnetic
field obeys, for example, a certain power spectrum, is locally proportional to the regular field,
or shows a certain degree of anisotropy. As a consequence, the set (θ, m) corresponds not only
to one, but rather infinitely many possible field realizations. For the calculation of a likelihood
this means that the measured observables must be compared with the ensemble average, which
in practice is the simulated mean of a yet finite set of observable realizations that result from
the magnetic field realizations. In theory one can work out the effect of various types of random
fields on the used observables; for example, the total intensity of synchrotron emission does not
depend on whether the structure of the magnetic field is ordered or completely random. Hence,
one could use fudge factors to calculate the observable’s mean directly without having to create
numerous samples. However, to do a proper uncertainty quantification one must not neglect the
so-called Galactic variance, a term introduced in Jaffe et al. (2010). This variance measures
how strong the influence of the random magnetic field on the individual pixels of an observable’s
sky-map is. Regions where the influence is high, that is where the observable’s variance is high,
must be down-weighted when being compared to measured data, in contrast to regions were
the randomness of the magnetic field has little influence on the observable’s randomness. This
makes it again necessary to calculate instances of (θ, m) to be able to construct an estimate for
the Galactic variance. See Sec. 2.4.6 for details.

2.4 The Imagine Framework

As mentioned in Sec. 2.1, the number of available GMF models and the abundance and quality of
observational data are continuously increasing. The goal of Imagine is to provide scientists with
a standardized framework to analyze the probability distributions of model parameters based
on physical observables. In doing so, Bayesian statistics is used to judge the mismatch between
measured data and model prediction. It is important to note that Imagine’s inference is not limited
to magnetic field models. Rather, Imagine creates an instance of the Milky Way based on a set

2.4 The Imagine Framework 25

IMAGINE

NIFTy Hammurabi PyMultiNest

MultiNest

HEALPix

NumPy
FFTW3

D2O
Figure 2.1: The building blocks of the Imagine framework.

SamplerPrior Repository

Pipeline Sample

Galaxy-Generator

Galaxy-Instance Observable-
Generator

Observables

Likelihood

Figure 2.2: The structure of the Imagine data processing and interpretation.

26 2. IMAGINE

of parameters. It is irrelevant for the framework whether the parameters are controlling the
appearance of the GMF or, for example, the properties of the free electron density or the dust
density. Nevertheless, for the time being, we focus on the GMF and keep all other components
fixed.
It is desirable to have a flexible and open framework available when doing parameter inference.
The magnetic field in particular must be analyzed indirectly via observables like synchrotron
emission, Faraday rotation, dust absorption, or thermal dust emission since there is no direct
detection method. This implies that the inference depends on the assumptions that were made
regarding further constituents of the Milky Way, for example the free electron density, the pop-
ulation of cosmic rays, or the dust density. Hence, it is very likely that once the self-consistent
analysis of a magnetic field model is finished, new insights regarding one or more other compo-
nents make it necessary to redo the calculations with the new set-up. An example for this is the
NE2001 model for the Galaxy’s free electron density (Cordes, 2004). Today, updated versions
like the YMW16 model (Yao et al., 2017) are available, and it would be very interesting to update
parameter estimates from the past. In practice, either this does not happen at all or only with a
huge time delay; inference pipelines are usually not made public and the originator may not have
the necessary resources anymore. A standardized and open inference framework can help here
to speed up scientific progress and make scientific results more transparent.
Imagine is built on the programming language Python to ensure flexibility, and several external
libraries for numerical efficiency, cf. Fig. 2.1. Here, Python is primarily used as glue to connect
individual components and external libraries. A strictly object-oriented design makes it easy to
extend its functionality from existing base-classes. The configuration of the inference runs is also
done in Python. No configuration files are used as the needs for future derived custom classes
can not be foreseen today. Instead, the scientist instantiates the individual components in the
main Python script which are ultimately embraced by the Imagine-pipeline.

2.4.1 Components and Overall Structure
The structure of Imagine is shown in Fig. 2.2 and discussed here. The Pipeline object plays
the key-role as it embraces all other objects and orchestrates their function calls. Its partner is
the Sampler, with a functional interface for likelihood evaluations. The pipeline hides physical
units and scales from the sampler. This means that the former exposes the latter N variables
ranging from 0 to 1, each. In this way, the sampler can operate very generically on this unit cube
[0 . . . 1]N without the need to know any internal details on the Galaxy models.
The likelihood evaluation inside the pipeline consists of the following steps. The Sampler yields
a point from [0 . . . 1]N . Hence, first, the Galaxy-Generator maps those variables to physical
parameters. Note that N does not need to be the full number of all parameters a model has. All
parameters that are not marked as active in the Pipeline are set to their individually config-
urable default value. The Galaxy-Generator then uses these parameters to generate a certain
Galaxy model realization. This means to set up all constituents of the abstract Galaxy model
including, e.g., the regular and the random magnetic field, the thermal electron density field,
the dust-density field, et cetera. Next, the Observable-Generator, for example Hammurabi
(Waelkens et al., 2009), processes the Galaxy instance and computes physical Observables,

2.4 The Imagine Framework 27

like sky-maps of the Faraday depth, synchrotron emission, or thermal dust emission. Those
simulated quantities are then compared with measured data by the Likelihood, which in turn
consists of sub-likelihoods for the individual observables. Together, parameters, Galaxy model,
observables and likelihood values form a Sample. Finally, the pipeline can be configured to store
those Samples in a repository for post-processing and caching before the likelihood value is re-
turned to the sampler. Together with the prior, the sampler can then determine which variable
configuration should be evaluated next.
As described in Sec. 2.3 the GMF models may consist of a random field component to model
the small scale structure stochastically. To deal with the resulting Galactic variance, instead of a
single simulation, a set of realizations is created for a certain parameterization. The members of
that set are processed in parallel by the Observable-Generator such that horizontal scaling,
i.e. using multiple computers as a cluster, can be exploited to compensate for the massively in-
creased computational costs one has compared to approaches which ignore the Galactic variance.
For this purpose, the Imagine framework uses the software packages NIFTy 3 (Steininger et al.,
2017) and D2O (Steininger et al., 2016) for convenient data processing and efficient data paral-
lelization, respectively. D2O is based on the Message Passing Interface standard (MPI) (Message
Passing Interface Forum, 1994, 1998) and in particular on mpi4py (Dalcı́n et al., 2005). In com-
bination with OpenMP threading (Dagum and Menon, 1998) of the Observable-Generator
and the accompanying vertical scaling, Imagine efficiently exploits the parallel architecture of a
modern high performance computing cluster as a whole as well as its nodes.

2.4.2 Using Sampling Methods for Uncertainty Quantification
The goal of the Imagine framework is to provide deep probabilistic insights into Galaxy mod-
els given observational data. Because of the complexity of the problem, it is not sufficient to
calculate point estimates like a maximum a-posteriori approximation. We expect very counter
intuitive interdependencies among the model parameters and hence need a thorough uncertainty
quantification in order to correctly interpret the observations.
To achieve this, Imagine uses Markov Chain Monte Carlo (MCMC) methods as described by Gel-
man et al. (2014). As depicted in Sec. 2.2, we seek to perform parameter estimation for a given
model as well as Bayesian hypothesis testing when comparing models. Because of its modular-
ity, the Imagine framework can easily make use of the full arsenal of the Bayesian methodology,
since it is straightforward to plug in different MCMC libraries and to write interfaces for new
ones.
Over the years, various sampling methods based on MCMC have been created. In the following,
we briefly discuss the concepts of Metropolis-Hastings, Hamiltonian Monte Carlo and Nested
sampling.

2.4.2.1 Metropolis-Hasting Sampling

The Metropolis-Hastings (MH) algorithm (Hastings, 1970, Metropolis et al., 1953) creates a
biased random walk through the parameter space. If the random walk is ergodic and its transi-
tion probabilities obey detailed balance, P

(
~x→ ~x′

)
P(~x) = P

(
~x′ → ~x

)
P(~x′), the samples gener-

28 2. IMAGINE

ated by the random walk follow the probability distribution P(~x). Typically, this is achieved
by combining a suggestion step with symmetric transition probabilities between any pair of
locations from an unbiased random walk with a rejection step that ensures detailed balance,
Paccept = min

{
1, P(~xproposed)/P(~xold)

}
.

During the walk the samples in the chain must decorrelate from the starting position. Hence,
the efficiency of an MCMC algorithm is crucial. Choosing a small step length for that purpose
indeed means a lower rejection ratio. However, because of the small steps the chain does not
move. In contrast, a large step length yields a high rejection ratio and therefore a chain that does
not move, either. This relationship gets worse with higher dimensions. An approach to achieve
high acceptance rates is Hamiltonian Monte Carlo sampling.

2.4.2.2 Hamiltonian Monte Carlo Sampling

Hamiltonian Monte Carlo (HMC) sampling (also known as Hybrid Monte Carlo sampling) is a
unique MCMC algorithm that introduces an auxiliary Gaussian random variable ~p of the same
dimensionality as the original parameters ~x, cf. Betancourt (2017), Brooks et al. (2011).
The auxiliary variable plays the role of a momentum, the original parameters the role of a position
in equations of motion from Hamiltonian mechanics. The negative log-probability corresponds
to an energy. A new position in parameter space of position and momentum is generated by
integrating the Hamiltonian equations of motion in time. This new position is then treated as the
result of a proposal step in the sense of the MH algorithm. Since the Newtonian equations of
motions conserve energy the proposed parameters should be accepted 100% of the time, while
at the same time being far away from the initial parameters to ensure decorrelation of ~x. This
makes HMC sampling much more efficient in exploring the parameter space than MH sampling.
Although this makes an HMC sampler move much faster than an ordinary MH sampler it has
a downside: it requires the gradient field of the desired probability density function (PDF). Es-
pecially when dealing with a high number of dimensions, this can pose a problem if finite dif-
ferencing must be used for gradient computation. Furthermore, some GMF models exhibit dis-
continuities that result in non-smooth likelihood landscapes, which makes gradients even more
problematic. Hence, the Imagine pipeline primarily uses nested sampling which does not require
gradient information and allows for model comparison, cf. Sec. 2.2, too.

2.4.2.3 Nested Sampling

Nested sampling is an MCMC method developed by Skilling (2006), that is capable of directly
estimating the relation between the likelihood function and the prior mass. It is unique in the fact
that nested sampling is specifically made for usage in Bayesian problems, giving the evidence as
its primary result instead of the posterior probability.
Nested sampling works with a set of live-points. In each iteration, the point that has the lowest
likelihood value gets replaced by a new one with a higher likelihood value. As this method pro-
gresses, the new points sample a smaller and smaller prior volume. The algorithm thus traverses
through nested shells of the likelihood.

2.4 The Imagine Framework 29

2.4.3 Magnetic Field Models
There are many parametric field models in the literature, from relatively simple axisymmetric
spirals to complex multi-component models. In addition to defining the parametrized structure
of a magnetic field model, estimates for the values of those parameters must be made. Usually,
the term model is used for both the analytical structure of the magnetic field and for a certain
parameter fit. Note that in the context of Imagine, model refers to the analytical structure only,
since the goal is to investigate its parameter space. It is more straightforward to denote two
samples from the same parameter space as belonging to the same model instead of constituting
distinct models themselves, especially when doing Bayesian model comparison.
In addition to the models’ intrinsic complexities, the analyses in the literature also vary with
respect to how many observables and datasets were used in the optimization. An example
for a rather simple magnetic field model that was fitted to only one observable is the WMAP
logarithmic-spiral-arm (LSA) model (Page et al., 2007). In a Galacto-centric cylindrical frame
this regular GMF model is given as

~B(r, φ, z) = B0

[
sin(ψ) cos(χ)~̂r + cos(ψ) cos(χ)~̂φ + sin(χ)~̂z

]
, (2.4)

ψ = ψ0 + ψ1 ln
(

r
R0

)
,

χ = χ0 tanh
(

z
z0

)
,

where ψ represents the pitch angle of the magnetic field spiral arm which varies according to ψ1

and a logarithmic dependency on the radial distance r. R0 is the distance between the Galactic
center and the Sun, and ψ0 defines the local regular field orientation. The parameter χ corre-
sponds to the off-disk tilting of the Galactic field, and z0 characterizes the vertical scale height of
the poloidal field strength modulation. This simple LSA model for the coherent field was fitted
to synchrotron polarization data at 23 GHz by Page et al. (2007). Since the observable intensity
of the synchrotron radiation depends on both B0 and the cosmic ray electron (CRE) density in a
degenerate way, only the other three parameters were fitted.
At the more complicated end is the Jansson and Farrar (2012) model (JF12 hereafter) with dozens
of parameters describing independent spiral arm segments for regular and random fields and
thin and thick disks, an X-shaped halo, and more. JF12 was optimized against both Faraday
rotation measures (RM) and synchrotron total and polarized intensity. The model of Jaffe et al.
(2013) (and references therein, Jaffe13 hereafter) is in between in terms of number of parameters,
with fewer fitted parameters compared to JF12 though originally optimized against the same
observables.
Some analyses in the literature include only a coherent field component, while some additionally
study the random component from the turbulent ISM in a variety of ways. The JF12 model
includes an analytic expression for the average amount of each observable that would result
from the given turbulence model. Jaffe13 is notable in that it uniquely includes the effect of the
Galactic variance described in Sec. 2.3 explicitly in the likelihood. That analysis used a set of
numerical realizations of each model to quantify not only the average amount of emission but

30 2. IMAGINE

also its variations for a given point in parameter space, which is a necessary step for an unbiased
likelihood analysis as described in Sec. 2.4.6.
A further complication to this sort of analysis is how to treat the anisotropy in the random com-
ponent. As described in Jaffe et al. (2010), from an observational point of view, the GMF can
be divided into three components: coherent, isotropic random, and a third variously called the
ordered random, the anisotropic random, or the striated component. This third component is
expected to arise in the turbulent ISM due to both shocks and shears on large scales. The JF12
model includes a scalar fudge-factor to adjust the synchrotron polarization amplitude from the
coherent field to estimate this striated component. In contrast, Jaffe13 explicitly models it by
projecting the numerically simulated isotropic random component onto the coherent component
to generate an additional anisotropic component. These are complementary methods to model
phenomenologically the effect of anisotropic, turbulent, magnetohydrodynamical processes that
are computationally expensive to model physically.
On an abstract level, the regular and random components of a magnetic field model are indepen-
dent. Because of this, Imagine distinguishes them such that the user can combine any regular with
any random field model. This is made possible not least through recent developments related to
Imagine’s primary observable generator Hammurabi.

2.4.4 Hammurabi

The Hammurabi code (Waelkens et al., 2009) was built for simulating Galactic polarized fore-
ground emission, absorption, and polarization rotation. Its core functionality is to produce 2D
observables in terms of HEALPix1 maps (Górski et al., 2005) based on 3D physical field config-
urations in the Galaxy, e.g., the magnetic, cosmic ray and free electron fields. To analyze various
different models, Hammurabi is able to construct physical fields both analytically and numeri-
cally. Both regular and random fields covering Galactic scales can be generated with built-in
field generators. The observables are produced through line-of-sight integration, including syn-
chrotron and polarized dust emission, Faraday depth, and dispersion measure. In the course of
the integration, radiative transfer and polarization rotation are evaluated by accumulating ab-
sorption and rotation effects backwards from the observer to the emitter. Technically speaking,
the line-of-sight integration is conducted on a set of nested HEALPix shells. Given R as the
maximum simulation radius, the nth shell out of N total shells covers the radial distance from
2(n−N−1)R to 2(n−N)R, except for the first shell which starts at the observer. The angular resolu-
tion in each shell is set by HEALPix’s Nside parameter. The nth shell is by default set up with
Nside = 2(n−1)M, where M represents the lowest simulation resolution at the first shell. Accu-
mulation of observables among shells is carried out by standard HEALPix interpolation. Within
each shell, physical quantities are estimated from inside out on discrete radial bins, where the
radial bin number is proportional to the radial thickness of the corresponding shell. Since the
observables and the physical fields are constructed and evaluated in different coordinate frames,
a trilinear interpolation method is used to retrieve information from the physical fields during the
line-of-sight integration.

1http://healpix.sourceforge.net

 http://healpix.sourceforge.net

2.4 The Imagine Framework 31

2.4.4.1 Random Magnetic Field Generation

While exploring a magnetic field model’s parameter space, the likelihood must be evaluated very
often. Hence, Hammurabi and especially its random field generator must be swift to preserve
computational feasibility. To accomplish Imagine’s scientific goals, Hammurabi was recently
redesigned; the new version is called Hammurabi X2 hereafter.
In addition to numerous small to medium sized improvements, Hammurabi X provides two novel
solutions for random magnetic field configurations on global, i.e. Galactic, and local, i.e. So-
lar neighborhood scales, respectively. In the case of global field generation, the focus lies on
computational efficiency. Hence, a triple Fourier transform approach is used to do anisotropy en-
forcement, field strength rescaling and divergence cleaning. For a given power spectrum, P(k), a
random magnetic field, ~̃B(~k), is created in the harmonic Fourier base. The first Fourier transform
translates ~̃B(~k) into the spatial domain ~B(~x). There, anisotropy that may depend on the alignment
of the regular magnetic field is introduced. Additionally, a template field strength scaling can be
included in terms of a function S (x) as

~B(~x)→ ~B(~x)
√

S (~x). (2.5)

An example for such a scaling function is

S (~x) = S (r, φ, z) = exp
(
− r

hr
− |z|

hz

)
, (2.6)

where hr and hz are the characteristic scales of the radial and vertical profiles, respectively. The
second Fourier transform translates the re-profiled field ~B(x) back into harmonic space, where a
Gram-Schmidt procedure is used to clean up the divergence:

~̃B→
~̃B − (~k · ~̃B)~k/k2∣∣∣∣ ~̃B − (~k · ~̃B)~k/k2

∣∣∣∣ | ~̃B| . (2.7)

Finally, a last Fourier transform is applied to retrieve the desired ~B(~x). Hence, the anisotropic
random magnetic field is drawn from a one-dimensional power spectrum which in contrast corre-
sponds to statistical homogeneity and isotropy. Breaking the isotropy with subsequent divergence
cleaning results in a field that does not precisely obey the original power spectrum P(k) anymore.
In contrast to the global method, for local scale simulations a strict method including vector
decomposition of the power spectrum tensor is available in Hammurabi X. This method is not
prone to the inaccuracies described above. Details with respect to the local field generator are
beyond the scope of this paper but are available in the release publication of HammurabiX (Wang
et al., in prep.).

2https://bitbucket.org/hammurabicode/hamx

https://bitbucket.org/hammurabicode/hamx

32 2. IMAGINE

2.4.5 Observables
Magnetic fields cannot be measured directly. Instead, their properties need to be inferred indi-
rectly via observables (also referred to as tracers). The most commonly used observables include
Faraday rotation, synchrotron radiation, dust absorption and emission to probe properties of the
GMF, as well as dispersion measure to probe the thermal electron density. These observables are
briefly described below.

2.4.5.1 Faraday Rotation

Faraday rotation can be described as a double refraction effect when linearly polarized light
travels through a magnetized, ionized medium. The polarization angle of the Faraday rotation is
given by

θ = θ0 + Φλ2, (2.8)

with θ being the observed polarization angle, θ0 the original polarization angle, Φ the Faraday
depth and λ the wavelength of the light ray. The Faraday depth is given by a line-of-sight integral
over a distance l0 to an observer,

Φ

rad m−2 = 0.812
∫ 0

l0

ne(l)
cm−3

B‖(l)
µG

dl
pc
, (2.9)

with ne(l) and B‖(l) being the thermal electron density and strength of the parallel magnetic field,
respectively, at distance l away from the observer. Φ is positive (negative) when the magnetic
field is pointing towards (away from) the observer by convention. Assuming the emitted polar-
ization angle θ0 is constant for a specific source, the Faraday depth gives information about the
average strength of the line-of-sight (i.e., parallel) component of the magnetic field.

2.4.5.2 Synchrotron Radiation

The synchrotron radiation that is used for the GMF inference is caused by the acceleration of
relativistic electrons within this very magnetic field. This linearly polarized electromagnetic
radiation is emitted radially to the acceleration. Its intensity is given by

Is ∝ N (E) Bx
⊥, (2.10)

with N(E) being the density of relativistic electrons in the relevant energy range, E. The index
x depends on the energy spectrum of these electrons, typically x ≈ 1.8. Even though the inten-
sity of synchrotron radiation is degenerate with other emission components, like free-free and
spinning dust in the microwave band, Stokes Q and U still provide information regarding the
magnetic field. The other components are assumed to be unpolarized. The random components
of the GMF depolarize the synchrotron radiation; see the classic paper by Burn (1966). The
strength of this depolarization depends on the degree of ordering in the field, which can be writ-
ten as B2

⊥,r/B2
⊥ with B⊥,r being the regular part of B⊥. Using the Stokes I, Q, and U together, we

2.4 The Imagine Framework 33

can calculate the strength of the magnetic field perpendicular to the line-of-sight B⊥ (using the
intensity I) and the fraction of the total magnetic field that is regular B2

⊥,r/B2
⊥ (using the polarized

intensity PI). This makes it a useful tool for studying the random component of magnetic fields.
In addition, the lines-of-sight for an extended source with a per se constant polarization angle
traverse space with a different field configuration each. This results in varying polarization an-
gles within the instrument beam, known as Faraday beam depolarization which provides further
information.

2.4.5.3 Dust Absorption and Emission

Starlight polarization is caused by rotating dust grains absorbing certain polarizations of light.
In a magnetic field, a dust grain tends to align its long axis perpendicular to the direction of
the local magnetic field (see Davis and Greenstein (1951) and references therein). If the field
is perpendicular to the line-of-sight, certain polarizations of the light-ray get blocked, viz. dust
absorption of background starlight. The resulting observed light-ray is thus polarized, which
gives information about the direction of the magnetic field perpendicular to the line-of-sight
between the observer and the star.
The approach above works well for low-density dust clouds. In high-density dust clouds, the
probability that a light-ray gets completely absorbed along the way is fairly high. However, dust
heats up if it absorbs a lot of radiation, which in return will be re-emitted in the infrared. This
emitted infrared light is also polarized according to the dust grain’s geometry, viz. polarized
thermal dust emission. Since as already mentioned the dust grains are aligned in the magnetic
field, the polarized dust emission provides complementary information about the direction of B⊥.

2.4.5.4 Dispersion Measure

When a neutron star forms in the course of a supernova collapse the preserved angular momen-
tum causes the neutron star to rotate rapidly. Along the neutron star’s magnetic axis, a highly
focused beam of radiation is emitted, and the rotational and magnetic axes are not necessarily
the same. Since the beam is highly focused, from an observer’s point of view this may result in a
blinking pattern, which is why those stars are called pulsars. The group and phase velocity of the
emitted radiation are not the same in the interstellar medium because of its ionized components,
mainly free electrons. Because of this, higher frequencies arrive earlier than lower ones. This
extra time delay added at a frequency ν is given by

t (ν) =
e2

2πmec
DM
ν2 , (2.11)

with DM being the so-called dispersion measure. The DM itself is given by the line-of-sight
integral,

DM =

∫ l0

0
ne(l) dl. (2.12)

34 2. IMAGINE

If one has information on the thermal electron density, the DM solely depends on the distance l0

between the source and the observer.
The dispersion measure, although it does not give any information on magnetic field properties,
is still a very important observable. With DM, the thermal electron density can be inferred, which
in turn is needed for the inference of Faraday rotation, as described in Ekers et al. (1969). Using
a combination of Faraday rotation, synchrotron radiation, starlight polarization and dispersion
measure data is key for inferring the constituents of the Galaxy.

2.4.6 Likelihood
The likelihood is the probability P(d|θ,m) to obtain the data d from a measurement under the
assumption that reality is given by the model m that in turn is configured by the parameters θ. It
is the key element to rate the probability of a stochastic sample. Assuming the generic case of a
measurement with linear response function R of a signal s which involves additive noise n, the
corresponding equation for the data d reads

d = R(s) + n. (2.13)

If the measurement device is assumed to exhibit Gaussian noise characteristics with a covariance
matrix N, i.e.

n←↩ G(n,N) =
1

|2πN|1/2 exp
(
−1

2
n†N−1n

)
(2.14)

the log-likelihood for a simulated signal that is the result of the evaluation of a model m with
parameters θ, i.e. s′ = m(θ), to have produced the measured data d is

L(d|s′) = −1
2

(
d − R(s′)

)† N−1 (
d − R(s′)

) − 1
2

ln (|N |) . (2.15)

In the context of Imagine, as discussed in Sec. 2.3, the GMF models posses random components
that are described by (m, θ) only stochastically. Marginalizing over those random degrees of
freedom results in a modification of the effective covariance term in Eq. (2.15), namely that the
Galactic variance must be added to the data’s noise covariance. During the further discussion we
consider the following quantities:

• The individual GMF samples within an ensemble of size Nens are named Bi, with i ∈
[1,Nens].

• The process of creating observables from Bi is encoded in the response R.

• The simulated observables are denoted by ci = R(Bi).

• The measured observable’s data is named d.

Denoting furthermore the data’s noise covariance by A, the Galactic covariance by C, and the
dimensionality of observables by Ndim the log-likelihood reads

L(d|c) = −1
2

(d − c̄)†(A + C)−1(d − c̄) − 1
2

ln (|A + C|) (2.16)

2.4 The Imagine Framework 35

with the ensemble mean of c

c̄ =
1

Nens

Nens∑
i=1

ci. (2.17)

As discussed in Sec. 2.3 the Galactic covariance C reflects the fact that the observables posses an
intrinsic variance because of the random parts of the GMF. For example, the higher the intrinsic
variance, the more the likelihood will be flattened by the (A + C)−1 term. This means that the
likelihood is less responsive to deviations from the ensemble mean for regions of high variance.
Hence, there is the risk of overestimating random field contributions, since they are favored by the
likelihood. However, this is compensated by the second summand in Eq. (2.16): the covariance
matrix’ log-determinant ln (|A + C|). In Eq. (2.15) the covariance matrix and thus its determinant
are constant and therefore can be neglected as we are not interested in the absolute scales of the
likelihood. In contrast, for Eq. (2.16) we have to consider it as this determinant varies from point
to point in parameter space.
The Galactic covariance C is not known, hence, we must estimate it. A classic approach for C is
to evaluate the dyadic product of the samples’ deviations from their mean:

Ccl =
Ndim

Nens

Nens∑
i=1

(ci − c̄)(ci − c̄)† =
1

Nens

Nens∑
i=1

uiui† (2.18)

with
ui =

√
Ndim

(
ci − c̄

)
. (2.19)

Since the number of samples in an ensemble is much smaller than the number of dimensions
this classical estimator for the covariance matrix is insufficient. Most of its eigenvalues are zero,
making an operator-inversion impossible. Hence, it is better to use a sophisticated estimator
using a shrinkage target (e.g., a diagonal matrix) and a shrinkage factor. Here, we use the Oracle
Approximating Shrinkage (OAS) estimator by Chen et al. (2011):

C = µρ 1 + (1 − ρ) Ccl. (2.20)

The specific quantities needed to compute the OAS estimator are

µ =
1

Ndim
tr (Ccl) =

1
NdimNens

Nens∑
i=1

ui†ui (2.21)

a = tr
(
C†clCcl

)
=

1
N2

ens

Nens∑
i=1

Nens∑
j=1

(
ui†u j

)2
(2.22)

r = min
{

1,
(1 − 2/Ndim) a + N2

dimµ
2

(Nens + 1 − 2/Ndim)
(
a − Ndimµ2)} . (2.23)

In the likelihood one needs to apply the inverse of the sum of A and C, (A + C)−1. Since we do
not know a basis in which A + C is diagonal, the inversion of this operator is a nontrivial task.

36 2. IMAGINE

However, because of its structure, we can use the Sherman-Morrison-Woodbury matrix identity
(Sherman and Morrison, 1950, Woodbury, 1950) by re-sorting

A + C = (A + µr 1) + (1 − r)Ccl = B + VV† (2.24)

with

B = A + µr 1 and V =

√
1 − r
Nens

U. (2.25)

Namely,
(B + VV†)−1 = B−1 − B−1V(1 + V†B−1V)−1V†B−1. (2.26)

With this formula only a matrix of size N2
ens instead of N2

dim must be inverted.
For computing the log-determinant ln (|A + C|) one could use the result of the OAS estimator and
apply the generalized form of the matrix determinant lemma (Harville, 2008) to it. Its structure
is closely related to the Sherman-Morrison-Woodburry matrix identity: it turns the problem into
the calculation of the determinant of a matrix of size N2

ens instead of N2
dim. For our case it reads:

|A + C| =
∣∣∣B + VV†

∣∣∣ = |B| ·
∣∣∣1 + V†B−1V

∣∣∣ (2.27)

However, the OAS estimator has been designed for and is good at approximating covariance ma-
trices in terms of quadratic forms; using it for determinant estimation yields rather poor results.
And in fact, it can be shown that it is not possible to construct a general purpose estimator from
covariance matrix samples if the number of samples is lower than the number of dimensions
(Cai et al., 2015). Nevertheless, heuristic as well as Bayesian estimators have been developed
trying to cover special cases, as for example the case of sparse or diagonally dominated covari-
ance matrices (Fitzsimons et al., 2017, Hu et al., 2017). For the time being we approximate the
determinant |A + C| by its diagonal:

ln (|A + C|) ≈ 1
Ndim

tr

ln A +
1

Nens

Nens∑
i=1

(
ci − c̄

)2
 . (2.28)

This approximation serves the purpose of regularizing the random magnetic field strength. Fu-
ture improvements could include the usage of one of the widely used shrinkage estimators as
discussed in Hu et al. (2017). They work similarly to the OAS estimator, though exhibiting
shrinkage coefficients and targets tailor made for covariance determinant approximation. For
those, then Eq. (2.27) can be used for efficient computation. In either case, the inversion of the
covariance matrix as well as the calculation of its determinant can be done explicitly, if approxi-
mately, which therefore allows us to evaluate the ensemble likelihood in Eq. (2.16) efficiently.

2.5 Application
In the following we discuss possible usage scenarios of the Imagine pipeline. Regardless of
parameter estimation or model comparison, first, a Galaxy model must be set up. Below we

2.5 Application 37

Ttot(0 = 10o) Ttot(0 = 40o)

-500 500

Q(0 = 10o) Q(0 = 40o)

-0.005 0.005

Tpol(0 = 10o) Tpol(0 = 40o)

Ttot(0 = 10o) Ttot(0 = 40o)

-500 500

Q(0 = 10o) Q(0 = 40o)

-0.005 0.005

Tpol(0 = 10o) Tpol(0 = 40o)

Figure 2.3: Simulated synchrotron emission difference maps (including 408 MHz total intensity
Ttot at northern hemisphere, 30 GHz Stokes Q and polarized intensity Tpol in mK) with different
ψ0 or χ0 settings. ψ0 has influence mainly along Galactic longitude while χ0 affects more the
latitude direction.

will use Imagine to analyze the following scenario. Our Galaxy model consists of the WMAP
logarithmic-spiral-arm (LSA) magnetic field model (Page et al., 2007) in combination with an
isotropic Gaussian random field as described in Sec. 2.4.4.1. In HammurabiX, the random field’s
normalization is chosen such that its RMS field strength at the Sun’s position is given by τ. We
denote the spectral index of the random field’s power spectrum as α. Furthermore, we choose
the YMW16 model (Yao et al., 2017) for the thermal electron density. Here, our goal is to infer
the parameters of the magnetic field model, so the thermal electron density we assume to be
fixed. For the input data, we consider polarized synchrotron emission at 1.41 GHz (Stokes Q
and U) following Wolleben et al. (2006), 408 MHz (Stokes I) and at 30 GHz (Stokes Q and U)
following (Planck Collaboration et al., 2016a), and the Faraday depth map following Oppermann
et al. (2012).

2.5.1 Mock Data Based Tests

It is advisable, before starting a large likelihood exploration, to check if the chosen observables
(tracers) are sensitive to the model parameters that are about to be inferred. In principle, all
observables used here are sensitive to the GMF configuration especially near the Solar neigh-
borhood. In terms of the WMAP LSA model, the influence of ψ0 on polarized synchrotron
emission is expected to be the most noticeable feature, cf. Fig. 2.3. By definition of the model,
ψ1 has greater influence than ψ0 and χ0 on the field’s configuration when r < R0/e. We therefore
expect the observables to be more sensitive to ψ1 at low Galactic latitudes where line-of-sight
integration accumulates information through the Galactic center. However, Faraday depolariza-
tion at low Galactic latitudes and low frequencies diminishes constraining power of polarized
synchrotron emission on ψ1.

38 2. IMAGINE

2.5.1.1 Mock Data Configuration

During the development of the IMAGINE framework, initial mock data tests were performed
on the base of the JF12 model and are described in van der Velden (2017). One result of that
work was an increased appreciation for the difficulty working with such a complex model. The
first (ω1) is solely a regular WMAP field, while the second (ω2) additionally possesses a random
component as described in Sec. 2.4.4.1. To test the pipeline with a parameter set that is as
realistic as possible, we used the best fit estimates for the WMAP LSA model given in Page et al.
(2007), except for ψ1 which would be 0.9◦. To conduct proper tests it is helpful if the mock data
generating parameter values are not located at the boundaries of parameter space, so we set ψ1 to
7.95◦. Since B0 is not given in Page et al. (2007) we use Beck and Krause (2005) as a reference
and set it to 6 µG. Furthermore, for ω2 we set the random magnetic field’s strength around the
Sun τ to 2 µG. The spectral index is set to α = 1.7 ≈ 5/3 (Kolmogorov). The precise mock data
parameter values and the boundaries of the tested parameter volume are given as follows

B0 = 6.00 ∈ [0.3, 11.7] µG (2.29)
χ0 = 25.0 ∈ [1.0, 49.0]◦ (2.30)
ψ0 = 27.0 ∈ [6.0, 48.0]◦ (2.31)
ψ1 = 7.95 ∈ [0, 15.9]◦ (2.32)
τ = 2.00 ∈ [0.2, 3.8] µG (2.33)
α = 1.7 ∈ [0.2, 3.2] (2.34)

After processing the mock magnetic fields with Hammurabi X, we add individual random noise
samples with the variances given in Oppermann et al. (2012), Planck Collaboration et al. (2016a),
Wolleben et al. (2006) to the calculated observables. For the Oppermann Faraday depth map
there is an uncertainty map available which is based on a Bayesian Wiener filter reconstruction.
Since the pixel-wise noise is uncorrelated on small scales, we downscale the uncertainty map to
Nside = 32 to estimate the total noise power correctly. Since we produce the sample simulations
with Nside = 32 as well, no further adaption of this noise map is necessary. For the Planck and
Wolleben synchrotron (Stokes Q and U in each case) we take a constant statistical uncertainty
of 2.12 µK (Planck Collaboration et al., 2016b, Tab. 10) and 12 mK (Wolleben et al., 2006, Sec.
5.2). For the Stokes I map at 408 MHz an uncertainty map is given. We downgrade all four data
sets to our simulation resolution of Nside = 32.
For the inference below, the ensemble size was set to Nens = 64. Our tests showed that for the
resolution Nside = 32 this is the ensemble size where the classical covariance term in the ensemble
likelihood becomes dominant over the shrinkage target, i.e. r falls below 0.5, cf. Sec. 2.4.6.
To make likelihood maximization and sampling possible, it is also necessary to stabilize the
likelihood by fixing the ensemble member’s random seed. This introduces a bias, which we
found, however, to be already negligible in the case of Nens = 64 compared to the emerging
Galactic variance. In the future, one could try to enhance existing sampling techniques already
including simulated annealing (Kirkpatrick et al., 1983) to become capable of treating the noisy
likelihood surface directly.

2.5 Application 39

B0 [µG] ψ0 [◦] ψ1 [◦] χ0 [◦]

Mock values 6.0 27.0 7.95 25.0
Reconstruction 5.999 26.99 7.943 25.003

Table 2.1: Log-likelihood maximizing parameter values for mock data ω1 inferred with a Nelder-
Mead optimizer; showing the first significant digit of deviation.

2.5.1.2 Regular Magnetic Field

First, we consider the first mock data set ω1 that does not contain random field components. For
this data set we perform one-dimensional likelihood scans through the parameter space, as this is
a systematic way to check the observables’ sensitivity with respect to the model parameters. In
doing so, we vary only one parameter at a time while keeping all others fixed to the mock data’s
generating values.
Fig. 2.4 shows how well the different observables yield peaks in the likelihood. Since there is no
random magnetic field, the ensemble likelihood simplifies to a standard χ2 likelihood. Several
comments are in order. First, one sees that the total log-likelihood exhibits clear peaks very near
to the true mock data values for all four WMAP LSA parameters. Second, as expected, B0 shows
the strongest dependence, followed by ψ0 and χ0; ψ1 affects the observables as well but much
more weakly than the other three parameters. Third, it is remarkable that for all parameters the
total log-likelihood is dominated by synchrotron emission Stokes Q & U at 30 GHz and Stokes
I at 408 MHz. Faraday rotation also adds some information, but synchrotron data at 1.41 GHz
yields four to six orders of magnitude weaker signals in the log-likelihood. This is because of the
signal-to-noise ration which is better for the Planck than for the Wolleben data set. Furthermore,
due to the depolarization effects that have a huge impact on low-frequency polarized synchrotron
data, we see sharp peaks for 1.41 GHz synchrotron data, as the morphology of the observable
map tremendously changes when varying the magnetic field. If the GMF were regular, this would
allow us to constrain the GMF parameters very precisely. However, the presence of random
magnetic fields and Faraday depolarization effects render this frequency uninformative for this
analysis. We therefore exclude the 1.41 GHz data from the subsequent analysis.
After examining the one-dimensional parameter scans, we then check whether it is possible to
infer the input parameters from the mock data set with simple minimization. Tab. 2.1 shows the
values a Nelder-Mead minimizer (Nelder and Mead, 1965) yields when operating with the mock
data set ω1. As mentioned above, only Faraday depth and synchrotron data at 408 MHz and
30 GHz were used according to the insights we drew from the parameter scans.
The minimizer is able to reliably find the correct parameter values, which suggests that the like-
lihood surface is well-behaved throughout the parameter space volume and not only along the
optimum-intersecting axes. Note that in general it is advisable to use a gradient-free minimiza-
tion scheme like Nelder-Mead due to possible non-smooth transitions that are particularly part
of more complex magnetic field models.
Finally, we use PyMultiNest (Buchner et al., 2014) to explore the likelihood surface of the

40 2. IMAGINE

mock data ω1. Fig. 2.5 shows the marginalized probability density functions as well as pairwise
correlation plots. As expected, B0 is inferred with the highest precision; followed by ψ0 and χ0,
and finally ψ1. In the course of this, the addition of mock noise causes the inferred parameter
means to be shifted with respect to the true values. Different random seeds for the noise yield
varying offsets. The likelihood is insensitive to these deviations, however, since we knew the
true noise covariance matrix and take it into account. With the high signal-to-noise ratios, the 2σ
intervals are narrow and cover the ω1’s true parameter values. This means that the likelihood is
consistent with the process of mock data creation and mock noise generation.

2.5.1.3 Regular and Random Magnetic Field

In the following we repeat the steps from the previous section for mock data set ω2: scanning the
parameter space, finding optimal parameter values with Nelder-Mead minimization and doing a
full sampling with PyMultiNest. Fig. 2.5 shows that including a random magnetic field reduces
the sensitivity of the ensemble likelihood considerably. In contrast to Fig. 2.4, now the log-
likelihood values vary over one to three instead over eight orders of magnitude. As before, the
signal for B0 is strongest, followed by ψ0 and χ0, and finally ψ1. With respect to the parameters
of the random magnetic field component we see that τ, the parameter for the random magnetic
field’s strength, and α, the random field’s spectral index, exhibit a slight peak at their true values.
However, as foreseen in Sec. 2.4.6, τ’s likelihood flattens significantly for large values. The fact
that for α the likelihood has its maximum near the true mock data value is the incidental result
of combining contrarily biased Faraday rotation and synchrotron radiation likelihoods. It should
be noted that such shifts are not unexpected, since the mock data include a single realization
of the Galactic and noise variance that can cause such chance alignment with slightly shifted
parameters. Finally, we note that Faraday rotation data would not be able to constrain τ and α
reasonably. The total likelihood’s shape around the true mock data value is rather flat for τ and α.
Their influence on the likelihood is comparably small in this mock scenario, but would increase
with the strength of the random field component; here the setting is B0 = 6 µG vs. τ = 2 µG. ψ1,
τ, and α get traced by the observables – at least slightly – which is why we keep them for the
further inference. At this point the importance of this sensitivity analysis becomes evident, as
we can draw the following conclusions: If we find a parameter which has completely negligible
or even misleading influence on the likelihood it should be excluded from inference. It would
solely increase the dimensionality of the problem and with respect to minimizers and samplers
behave in the best case as a noisy contribution and therefore disturb convergence.
For completeness, we visualize the importance of the regularizing determinant in Eq. (2.16).
Fig. 2.6 shows that without the determinant the ensemble likelihood favors too high random field
strengths and spectral indices.
As in Sec. 2.5.1.2, we continue by inferring the parameter values of ω2 using a Nelder-Mead
minimizer. Tab. 2.2 shows the results of the optimization whereby we see that as expected the
accuracy is significantly lower than without a random magnetic field component, cf. Tab. 2.1.
One can also see the trend that τ gets overestimated, which already became apparent in the
parameter scan, cf. Fig. 2.5.
Finally, Fig. 2.7 shows the marginal plots based on a PyMultiNest run on the mock data set ω2.

2.5 Application 41

B0 [µG] ψ0 [◦] ψ1 [◦] χ0 [◦] τ [µG] α

Mock values 6.0 27.0 7.95 25.0 2.0 1.7
Reconstruction 6.063 26.86 8.38 23.9 2.11 1.698

Table 2.2: Log-likelihood maximizing parameter values for mock data ω2 inferred with a Nelder-
Mead optimizer; showing two significant digits of deviation.

First, we recognize that the Galactic variance caused rather broad uncertainties. Nevertheless,
the uncertainty intervals are highly reasonable: for example, although the sample mean value for
B0 lies rather precisely at 6 µG, the maximum likelihood value is significantly shifted to the right.
Furthermore, one sees that the Galactic variance washes out almost all predictive power on ψ1.
The fact that the sample mean matches the mock data’s generating parameter is mainly due to the
fact that the true value is at the center of the prior volume. As seen before, τ gets overestimated,
while 2 µG still lies within the 2σ interval. Interestingly enough, looking at the joint probability
density plot for τ and α, one sees that for larger τ also larger α become more likely. This is on the
one hand an indicator for an unsurprising degeneracy between the total strength and the spectral
index. On the other hand, we expect that the predictive power on one of the parameters can be
increased by fixing the other by the use of strong prior information.
Note, that a naive χ2 likelihood which, unlike the ensemble likelihood, does not reflect the Galac-
tic variance massively underestimates the uncertainties introduced by the random magnetic field.
Fig. 2.8 shows the result of PyMultiNest maximizing a χ2 likelihood on the ω2 mock data set.
The spectral index is pushed to a small value of α = 0.202 making the random magnetic field
rather white. As a consequence, in the ensemble mean the influence of the random magnetic
field maximally cancels out as the set of samples in the ensemble is finite. The other parameters
then heavily over-fit the variations in the mock-data which come from its specific random mag-
netic field realization. This illustrates the importance of taking the Galactic variance into account
when doing model parameter inference.

2.5.1.4 Model Comparison

One strength of sampling methods like MultiNest is that they produce an estimate for the ev-
idence. As discussed in Sec. 2.2, the evidence is crucial for model selection. To illustrate the
procedure, we set up the following scenario: Given the prevailing mock data set ω2, we compare
two models that are both trivial versions of the WMAP LSA model. The only free parameter is
now B0. For model M1 the values for the hidden parameters are equal to those of the mock data,
while for model M2 they are fixed to ψ0 = 3.0◦, ψ1 = 25.0◦, and χ0 = 7.0◦. Tab. 2.3 shows that
the log-evidence for M1 is significantly higher than for M2, corresponding to a massive Bayes
factor of R = 2.47 · 1010. But besides the quality of fit the evidence also takes the model’s com-
plexity into account. The fewer parameters a model has, the smaller is its total parameter space
volume. Hence, even if a rather complicated model has a better best-fit estimate than a simpler
one, if over-fitting occurs its evidence value will be worse. Tab. 2.3 also shows the log-evidence

42 2. IMAGINE

Log-Evidence B0 [µG] ψ0 [◦] ψ1 [◦] χ0 [◦]

Mock values 6.0 27.0 7.95 25.0
M0 13.66 ± 0.20 6.10 ± 0.253 26.89 ± 3.42 8.43 ± 4.39 23.92 ± 6.12
M1 15.09 ± 0.18 6.10 ± 0.212 27.0∗ 7.95∗ 25.0∗

M2 −8.84 ± 0.15 6.229 ± 0.232 3.0∗ 25.0∗ 7.0∗

Table 2.3: Sample mean and log-evidence values from PyMultiNest for different WMAP LSA
plus random magnetic field models based on the mock data set ω2. At M0 all four WMAP
parameters are flexible; at M1 and M2 only B0 is adjustable. An asterisk (∗) indicates a fixed
value. In any case, the random magnetic field’s parameters were kept at their mock data’s default
value τ = 2 µG, and α = 1.7

for the full four-parameter WMAP LSA model (M0). The log-evidence for M0 lies in between
those of M1 and M2; the Bayes factor between M0 and M1 is R = 4.18, which means that there is
substantial evidence that M1 is more likely (Jeffreys, 1998). Thus, one sees the penalty coming
from M0’s larger parameter space volume compared to M1. However, the improvements of a
better parameter fit may compensate for this penalty as the comparison with M2 shows.

2.5.2 Application to Real Data

In Sec. 2.5.1, we verified that the Imagine pipeline produces self-consistent results for the WMAP
LSA model in combination with the chosen observables. Now we analyze the likelihood structure
for the real synchrotron data at 408 MHz and 30 GHz (Planck Collaboration et al., 2016a), and the
Faraday depth data (Oppermann et al., 2012)3 Generally, it is advisable to thoroughly prepare the
input data by masking regions in the sky obviously perturbed by local phenomena, for example
supernova remnants. However, for this paper this is beyond the scope, as the goal is to illustrate
the concepts behind Imagine rather than producing high-precision estimates. First, we use the
synchrotron data to constrain the parameters of the purely ordered WMAP LSA model; so far
no random fields are included in the magnetic field nor in the likelihood. The result is shown in
Fig. 2.9.
The resulting uncertainties are quantitatively consistent with the mock-data results, cf. Fig. 2.5.
Qualitatively speaking, B0 is determined with the highest accuracy, followed by ψ0 and χ0, and
finally ψ1. Also the inferred magnetic field strength B0 = 4.44 µG is of a reasonable order of
magnitude (Han, 2006, Ruiz-Granados et al., 2010). ψ0 = 6.69◦ lies within the wide range of
estimates one can find in literature, e.g., 8◦ (Beck, 2001, Han, 2006) and 35◦ (Page et al., 2007).
However, ψ1 = 34.4◦ and χ0 = 78.6◦ are far off from the best-fit values given in Page et al.
(2007), namely ψ1 = 0.9◦ and χ0 = 25◦. This, in combination with the very small uncertainties,
indicates that an inference neglecting the influence of random components in the magnetic field
as well as the likelihood is making matters too easy.

3For using Imagine in production it is advisable to use the raw data compiled by Oppermann et al. (2012) as this
ensures that there is no alteration of the noise information by a Wiener filter.

2.5 Application 43

When using Faraday depth instead of synchrotron data (Oppermann et al., 2012) for a parameter
fit, cf. Fig. 2.10, the limited capabilities of the WMAP LSA model become clear. Even though
the WMAP LSA model was designed for fitting synchrotron radiation but not Faraday depth
data, it is nevertheless remarkable how incompatible they are. Not only are the estimates for
ψ0 = 280◦ and ψ1 = 330◦ far off their reference values, the magnetic field strength is pushed to
values near zero. The latter indicates a general incompatibility between the model and the data.
Furthermore, the best fit value for B0 is negative, which in our case means that the direction of
the magnetic field is reversed compared to Page et al. (2007). Fig. 2.11 illustrates the issue. In
the data, one can locate a dipole as well as a quadrupole moment both being aligned with the
Galactic plane. Because of its simple structure, the WMAP LSA model cannot account for the
double anti-axisymmetric quadrupole structure. That is expected, and if such a feature is needed
one can use more complex models like JF12 (Jansson and Farrar, 2012) or Jaffe13 (Jaffe et al.,
2013). But, beyond this, Fig. 2.11 in combination with Fig. 2.12 reveals that the likelihood peak
at ψ1 = 330.2◦ corresponds to a configuration where the model exhibits field reversals to fit the
structure in the Galactic plane. Although the Faraday rotation map compares well to the data,
such a parameter configuration is the result of a simple model fitted to a complicated dataset
and is not necessarily the most physically realistic solution. This demonstrates another possible
pitfall and also how important it is to incorporate physical priors for the model parameters when
doing a real-life analysis. Imagine provides the structure for comprehensive studies that are
not only built on powerful algorithms such as MultiNest that will find parameter estimates in
any case but also regularizes them and points out problems in the reconstruction. Furthermore,
irrespective of the quadrupole, for the reference parameter values also the dipole does not fit; it
has the wrong sign. This means that the overall field orientation itself in the WMAP LSA model
cannot be correct. This is a fact that does not become apparent when solely using synchrotron
data, since even though synchrotron emission is sensitive to the magnetic field’s direction, it
is not to its orientation. Using the Imagine pipeline for parameter estimation, it is economic to
include various data sets from different observables, since the Imagine data repository is open and
will grow through collaborative contribution. Such obvious contradictions can then be avoided
by a more comprehensive approach.
Going a step further, we try to find parameter estimates for the WMAP LSA plus random mag-
netic field model that we previously used for the mock data tests in Sec. 2.5.1. The results are
shown in Fig. 2.13. With respect to the random magnetic field, we limit ourselves to the inference
of τ, the strength of the random magnetic field. For the sampling we used a wide prior volume,
especially for the angular parameters ψ0, ψ1 and χ0 ∈ [0, 360]◦, each. Note that only ψ0 is a
truly circular parameter, cf. Eq. (2.4), and thus was setup as such in PyMultiNest. Comparing
the results of a fit based purely on synchrotron emission, given in Fig. 2.13, to the scenario in
Fig. 2.9 with only an ordered field provides several insights. First of all, we see how approaches
that neglect the Galactic variance tremendously underestimate uncertainties when doing param-
eter estimation. The estimate for B0 is smeared out the least, but the predictive power for ψ0, ψ1

and χ0 disappears when taking the Galactic variance into account correctly. In the light of the
above, it is noteworthy how clear the prediction for the strength of the random magnetic field
turns out to be. All in all, despite their weak predictive power, the results shown in Fig. 2.13 are
consistent with those in Fig. 2.9. For the former, the regular magnetic field strength B0 is smaller

44 2. IMAGINE

compared to the latter as now the random magnetic field also contains magnetic field power in τ.
Also note the reasonable anti-correlation between B0 and τ. The overall order of magnitude of τ
is compatible with Han (2006). Since ψ0 is a circular parameter it is necessary to consider cir-
cular definitions of mean and standard-deviation (Watson, 1983), which yield ψ0 = 0.66± 2.60◦.
Hence, the estimate for ψ0 points towards the same order of magnitude as ψ0 = 6.69◦ shown in
Fig. 2.9. Furthermore, for χ0 we see a peak around 80◦ which can be interpreted to correspond
to the previous best fit value χ0 = 78.6◦. The second peak around χ0 = 260◦ is less clear and is
likely to be a morphological degeneracy. As synchrotron emission is sensitive to the magnetic
field’s direction but not to its orientation, considering Eq. (2.4), we expect a diffuse degeneracy
in χ0, which gets disturbed by the factor tanh (z/z0).
Repeating this analysis for Faraday rotation data from Oppermann et al. (2012), results shown
in Fig. 2.14, underlines what has been seen in Fig. 2.10. The WMAP LSA model is inherently
incompatible to Faraday rotation observations: B0 is pushed to values near zero and an increasing
τ solely broadens B0’s likelihood as discussed in Sec. 2.4.6 but does not add anything to the
intrinsic quality of fit. The likelihoods for ψ0, ψ1 and χ0 don’t posses any clear peaks nor pairwise
correlations.
All in all, this simple example of the WMAP LSA model augmented with a random magnetic
field already illustrates how challenging it is to create models of the constituents of the Galaxy
with consistent geometry and to find reliable estimates for their parameters. While the example
in this section was rather academic due to the model’s simplicity, the presented steps similarly
apply when analyzing more complex models such as JF12 and Jaffe13.

2.6 Conclusion & Outlook
In this paper we presented Imagine, a framework for GMF model parameter inference. We have
discussed the motivation behind Bayesian parameter inference and model comparison as well as
the importance of the Galactic variance. We then described the modular structure and extensi-
bility of the Imagine framework. Its most important building blocks are:

• state-of-the-art parametric GMF models,

• a varied set of complementary observables,

• the new and improved Hammurabi X simulator, and

• the different sampling algorithms that can be used within Imagine.

In Sec. 2.5, we showed with mock data that the pipeline works self-consistently, we illustrated
the concept of Bayesian model comparison, and we then applied the pipeline to real data. In
the course of this, we showed the importance of multi-observable based parameter fitting. This
analysis was, however, a simple proof-of-concept to demonstrate the capabilities of the Imagine
pipeline. Now, more sophisticated analyses are in order to gain as much scientific insight from
existing data sets and GMF models as possible. Since Imagine is uniquely suited to handle the
random component of the GMF and its uncertainties correctly, it can be adapted into a powerful
tool to study the turbulent ISM by, e.g., adding a structure function analysis to the likelihood

2.6 Conclusion & Outlook 45

in order to constrain the turbulent spectral index. All those insights should be used to build
improved models and to keep the models’ best-fit parameter estimates up-to-date with respect to
the ever improving data. Within this paper we solely inferred the parameters of the GMF while
keeping the thermal electron density fixed. With an extended list of observables (e.g., the DM),
more informative datasets, and better models, we can extend this work to a joint inference of
the magnetic field, the thermal electron density, the cosmic ray population, and even the dust
model parameters. The Imagine pipeline is ready to help tackle this challenge and is available at:
https://gitlab.mpcdf.mpg.de/ift/IMAGINE

Acknowledgements
We thank François Boulanger, Martin Reinecke, Luiz F. S. Rodrigues, and Anvar Shukurov for
fruitful discussions and valuable suggestions. Part of this work was supported by the Studiens-
tiftung des deutschen Volkes. The original concept of Imagine arose from two International Team
meetings4 hosted by the International Space Science Institute in Bern. We also acknowledge sup-
port and hospitality of the Lorentz Center in Leiden, where the Imagine project was further dis-
cussed and refined.5 We acknowledge the support by the DFG Cluster of Excellence ”Origin and
Structure of the Universe”. The computations have been carried out on the computing facilities
of the Computational Center for Particle and Astrophysics (C2PAP) and the Radboud Univer-
sity, Nijmegen, respectively. This research has been partly supported by the DFG Research Unit
1254 and has made use of the NASA/IPAC Infrared Science Archive, which is operated by the
Jet Propulsion Laboratory, California Institute of Technology, under contract with the National
Aeronautics and Space Administration. Some of the results in this paper have been derived using
the HEALPix package (Górski et al., 2005). The corner plots where made using the corner
Python package (Foreman-Mackey, 2016).

4http://www.issibern.ch/teams/bayesianmodel/
5http://www.lorentzcenter.nl/lc/web/2017/880/info.php3?wsid=880

https://gitlab.mpcdf.mpg.de/ift/IMAGINE
http://www.issibern.ch/teams/bayesianmodel/
http://www.lorentzcenter.nl/lc/web/2017/880/info.php3?wsid=880

46 2. IMAGINE

0 5 10
−4

−3

−2

−1

0
·108

B0 [µG]

L
og

-L
ik

el
ih

oo
d

0 5 10
−1

−0.5

0
·106

B0 [µG]
0 2 4 6 8

−200

−150

−100

−50

0

B0 [µG]

20 40
−6

−4

−2

0
·107

ψ0 [◦]

L
og

-L
ik

el
ih

oo
d

20 40

−1

−0.5

0
·105

ψ0 [◦]
20 40

−100

−50

0

ψ0 [◦]

0 5 10 15

−6

−4

−2

0
·105

ψ1 [◦]

L
og

-L
ik

el
ih

oo
d

0 5 10 15
−1.5

−1

−0.5

0
·103

ψ1 [◦]
0 5 10 15

−60

−40

−20

0

ψ1 [◦]

0 20 40
−4

−3

−2

−1

0
·106

χ0 [◦]

L
og

-L
ik

el
ih

oo
d

0 20 40

−4

−2

0
·104

χ0 [◦]
0 20 40

−40

−20

0

χ0 [◦]

Synchr. 408 MHz (I) Synchr. 30 GHz (Q) Synchr. 30 GHz (U) Total
Faraday depth Synchr. 1.41 GHz (Q) Synchr. 1.41 GHz (U)

Figure 2.4: Mock data ω1: Scans through the parameter space of the WMAP LSA regular
magnetic field model, including simulated additive measurement noise according to Oppermann
et al. (2012), Planck Collaboration et al. (2016a), Wolleben et al. (2006). The mock data input
parameter values are at the very center of each abscissa and indicated by the vertical line. Since
the Planck synchrotron data dominates the overall likelihood, we show the total likelihood in the
leftmost plot. Note that the log-likelihood varies over several orders of magnitude.

2.6 Conclusion & Outlook 47

B0 = 5.9998+0.0001
0.0001

0.0
05

0.0
00

0.0
05

0.0
10

0

+2.7e1

0 = 26.9960+0.0024
0.0020

7.9
30

7.9
45

7.9
60

7.9
75

1

1 = 7.9539+0.0082
0.0067

5.9
99

5
6.0

00
0

6.0
00

5
6.0

01
0

B0

0.0
05

0.0
00

0.0
05

0.0
10

0

+2.5e1

0.0
05

0.0
00

0.0
05

0.0
10

0 +2.7e1
7.9

30
7.9

45
7.9

60
7.9

75

1

0.0
05

0.0
00

0.0
05

0.0
10

0 +2.5e1

0 = 24.9977+0.0028
0.0038

Figure 2.5: Mock data ω1: Marginalized posterior plots and projected pairwise correlation plots
from applying PyMultiNest to mock data ω1. The dashed lines represent the 16%, 50% and
84% quantiles, respectively. The parameters for the mock data, indicated by the solid lines, were
set to B0 = 6.0 µG, ψ0 = 27.0◦, ψ1 = 7.95◦, and χ0 = 25◦.

48 2. IMAGINE

5 10
−100

−50

0

B0 [µG]

L
og

-L
ik

el
ih

oo
d

0 5 10

−40

−20

0

B0 [µG]
4 6 8 10

−100

−50

0

B0 [µG]

20 40

−6

−4

−2

0

ψ0 [◦]

L
og

-L
ik

el
ih

oo
d

20 40
−6

−4

−2

0

ψ0 [◦]
20 40

−20

−10

0

ψ0 [◦]

0 5 10 15
−10

−5

0
·10−2

ψ1 [◦]

L
og

-L
ik

el
ih

oo
d

0 5 10 15

−10

−5

0
·10−2

ψ1 [◦]
0 5 10 15

−0.4

−0.3

−0.2

−0.1

0

ψ1 [◦]

0 20 40
−6

−4

−2

0

χ0 [◦]

L
og

-L
ik

el
ih

oo
d

0 20 40

−0.3

−0.2

−0.1

0

χ0 [◦]
0 20 40

−8

−6

−4

−2

0

χ0 [◦]

Synchr. 408 MHz (I) Synchr. 30 GHz (Q) Synchr. 30 GHz (U)
Faraday depth Total

2.6 Conclusion & Outlook 49

1 2 3 4
−2

−1.5

−1

−0.5

0

τ [µG]

L
og

-L
ik

el
ih

oo
d

1 2 3 4
−2

−1

0

τ [µG]
1 2 3 4

−4

−3

−2

−1

0

τ [µG]

0 1 2 3

−5

0

·10−2

α

L
og

-L
ik

el
ih

oo
d

0 1 2 3

−0.4

−0.2

0

α
0 1 2 3

−0.4

−0.2

0

α

Synchr. 408 MHz (I) Synchr. 30 GHz (Q) Synchr. 30 GHz (U)
Faraday depth Total

Figure 2.5: Mock data ω2: Scans through the parameter space of the WMAP LSA regular
plus isotropic random magnetic field model, including simulated additive measurement noise
according to Oppermann et al. (2012), Planck Collaboration et al. (2016a). The mock data input
parameter values are indicated by the vertical line. Note that the plot of the total likelihood does
not include the synchrotron data at 1.41 GHz.

50 2. IMAGINE

1 2 3 4
−2

−1

0

τ [µG]

L
og

-L
ik

el
ih

oo
d

1 2 3 4
−2

−1

0

τ [µG]
2 3 4

−4

−2

0

τ [µG]

0 1 2 3

−0.2

0

α

L
og

-L
ik

el
ih

oo
d

0 1 2 3
−0.6

−0.4

−0.2

0

0.2

α
0 1 2 3

−1.5

−1

−0.5

0

0.5

α

Synchr. 408 MHz (I) Synchr. 30 GHz (Q) Synchr. 30 GHz (U)
Faraday depth Total

Figure 2.6: Mock data ω2, without determinant term: Scans through the parameter space
of the WMAP LSA regular plus isotropic random magnetic field model, including simulated
additive measurement noise according to Oppermann et al. (2012), Planck Collaboration et al.
(2016a), Wolleben et al. (2006). For these plots the ensemble likelihood was evaluated without
the determinant term. The mock data input parameter values are indicated by the vertical line.
Note that the plot of the total likelihood does not include the synchrotron data at 1.41 GHz.

2.6 Conclusion & Outlook 51

B0 = 6.0255+0.2857
0.2986

18

24

30

36

42

0

0 = 26.8177+4.4070
4.4468

3

6

9

12

15

1

1 = 8.1895+4.8698
5.2569

10

20

30

40

0

0 = 23.2077+8.5445
8.2916

2.0

2.5

3.0

3.5

 = 3.0017+0.5109
0.6159

5.2 5.6 6.0 6.4 6.8

B0

0.6

1.2

1.8

2.4

3.0

18 24 30 36 42

0

3 6 9 12 15

1

10 20 30 40

0

2.0 2.5 3.0 3.5 0.6 1.2 1.8 2.4 3.0

 = 2.0444+0.7654
1.1499

Figure 2.7: Mock data ω2: Marginalized posterior plots and projected pairwise correlation plots
from applying PyMultiNest to mock data ω2. The dashed lines represent the 16%, 50% and
84% quantiles, respectively. The parameters for the mock data, indicated by the solid lines, were
set to B0 = 6.0 µG, ψ0 = 27.0◦, ψ1 = 7.95◦, χ0 = 25◦, τ = 2 µG, and α = 1.7.

52 2. IMAGINE

B0 = 6.1402+0.0000
0.0001

26
.70

26
.85

27
.00

27
.15

0

0 = 26.8561+0.0125
0.0004

6.8

7.2

7.6

8.0

8.4

1

1 = 7.0040+0.0015
0.0395

22
.4

23
.2

24
.0

24
.8

25
.6

0

0 = 23.2948+0.0014
0.0575

1.9
2

2.0
0

2.0
8

2.1
6

 = 2.1122+0.0031
0.0001

5.9
4

6.0
0

6.0
6

6.1
2

6.1
8

B0

0.4

0.8

1.2

1.6

2.0

26
.70

26
.85

27
.00

27
.15

0

6.8 7.2 7.6 8.0 8.4

1

22
.4

23
.2

24
.0

24
.8

25
.6

0

1.9
2

2.0
0

2.0
8

2.1
6 0.4 0.8 1.2 1.6 2.0

 = 0.2018+0.0000
0.0007

Figure 2.8: Mock data ω2 in combination with a χ2 likelihood: Marginalized posterior plots
and projected pairwise correlation plots from applying PyMultiNest to mock data ω2 using a
simple χ2 likelihood that not reflects the influence of the Galactic variance. The dashed lines
represent the 16%, 50% and 84% quantiles, respectively. The parameters for the mock data,
indicated by the solid lines, were set to B0 = 6.0 µG, ψ0 = 27.0◦, ψ1 = 7.95◦, χ0 = 25◦,
τ = 2 µG, and α = 1.7.

2.6 Conclusion & Outlook 53

B0 = 4.4392+0.0002
0.0002

6.5
6

6.6
4

6.7
2

6.8
0

0

0 = 6.6900+0.0074
0.0076

34
.2

34
.4

34
.6

34
.8

1

1 = 34.4352+0.0191
0.0193

4.4
36

5
4.4

38
0

4.4
39

5
4.4

41
0

B0

78
.48

78
.56

78
.64

78
.72

0

6.5
6

6.6
4

6.7
2

6.8
0

0

34
.2

34
.4

34
.6

34
.8

1

78
.48

78
.56

78
.64

78
.72

0

0 = 78.5798+0.0079
0.0081

Figure 2.9: Synchrotron data, purely ordered WMAP LSA magnetic field: Marginalized
posterior plots and projected pairwise correlation plots from applying PyMultiNest to 408 MHz
and 30 GHz synchrotron data from Planck Collaboration et al. (2016a). The dashed lines repre-
sent the 16%, 50% and 84% quantiles, respectively.

54 2. IMAGINE

B0 = 0.5110+0.0073
0.0069

27
0

27
6

28
2

28
8

29
4

0

0 = 280.4312+0.6769
0.6401

28
0

30
0

32
0

34
0

36
0

1

1 = 330.2488+3.7755
3.6653

0.6
0

0.5
4

0.4
8

0.4
2

B0

16

24

32

40

48

0

27
0

27
6

28
2

28
8

29
4

0

28
0

30
0

32
0

34
0

36
0

1

16 24 32 40 48

0

0 = 30.2961+0.8934
0.9208

Figure 2.10: Faraday rotation data, purely ordered WMAP LSA magnetic field: Marginal-
ized posterior plots and projected pairwise correlation plots from applying PyMultiNest to Fara-
day rotation data from Oppermann et al. (2012). The dashed lines represent the 16%, 50% and
84% quantiles, respectively.

2.6 Conclusion & Outlook 55

-500 500

(a) Map of the Galactic Faraday depth given by Oppermann et al. (2012) in rad/m2.

-500 500

(b) Map of the Galactic Faraday depth pro-
duced with Hammurabi X based on the WMAP
LSA model in rad/m2. The model’s parame-
ters were set to B0 = 1.5 µG, ψ0 = 27.0◦,
ψ1 = 0.9◦, and χ0 = 25.0◦, following Page
et al. (2007).

-500 500

(c) Map of the Galactic Faraday depth pro-
duced with Hammurabi X based on the WMAP
LSA model in rad/m2. The model’s parame-
ters were set to B0 = −0.51 µG, ψ0 = 280◦,
ψ1 = 330◦, and χ0 = 30.3◦.

Figure 2.11: Comparison of Faraday depth maps in rad/m2.

56 2. IMAGINE

20 15 10 5 0 5 10 15 20
20

15

10

5

0

5

10

15

20

y
[k

pc
]

x-y plane at z=0.00

20 15 10 5 0 5 10 15 20
x [kpc]

4

2

0

2

4

z [
kp

c]

x-z plane at y=0.00

20 15 10 5 0 5 10 15 20
y [kpc]

4

2

0

2

4

z [
kp

c]

y-z plane at x=0.00

WMAP LSA

Figure 2.12: Streamplot of the WMAP LSA model for B0 = −0.51 µG, ψ0 = 280◦, ψ1 = 330◦,
and χ0 = 30.3◦.

2.6 Conclusion & Outlook 57

B0 = 2.1766+1.6142
1.4709

80

16
0

24
0

32
0

0

0 = 175.4581+132.7069
131.8077

80

16
0

24
0

32
0

1

1 = 192.8189+103.5407
129.0273

80

16
0

24
0

32
0

0

0 = 202.7614+99.8222
131.5343

1.5 3.0 4.5 6.0

B0

3

6

9

12

15

80 16
0

24
0

32
0

0

80 16
0

24
0

32
0

1

80 16
0

24
0

32
0

0

3 6 9 12 15

 = 8.9100+1.8394
1.2987

Figure 2.13: Synchrotron radiation data, WMAP LSA plus random magnetic field:
Marginalized posterior plots and projected pairwise correlation plots from applying PyMulti-
Nest to 408 MHz and 30 GHz synchrotron data from Planck Collaboration et al. (2016a). The
dashed lines represent the 16%, 50% and 84% quantiles, respectively.

58 2. IMAGINE

B0 = 0.0741+2.6199
2.6590

80

16
0

24
0

32
0

0

0 = 189.2054+116.6778
129.0451

80

16
0

24
0

32
0

1

1 = 195.0638+109.8785
128.3471

80

16
0

24
0

32
0

0

0 = 184.1044+115.9966
120.4723

5.0 2.5 0.0 2.5 5.0

B0

4

8

12

16

80 16
0

24
0

32
0

0

80 16
0

24
0

32
0

1

80 16
0

24
0

32
0

0

4 8 12 16

 = 9.1467+4.3934
4.2122

Figure 2.14: Faraday rotation data, WMAP LSA plus random magnetic field: Marginalized
posterior plots and projected pairwise correlation plots from applying PyMultiNest to Faraday
rotation data from Oppermann et al. (2012). The dashed lines represent the 16%, 50% and 84%
quantiles, respectively.

Chapter 3

D2O - a distributed data object for parallel
high-performance computing in Python

This chapter, as well as Appendix A, are additionally used as a journal publication in the
SpringerOpen Journal of Big Data (Steininger et al., 2016).
I am the principal researcher of the research described in this chapter. My contributions include
the primal idea, the implementation of presented software package, and the conduction of the
performance tests. Furthermore, I wrote this chapter. Maksim Greiner (MG), Frederik Beau-
jean (FB) and Torsten Enßlin (TE) helped working out the conceptual structure of the software
package, and drafting the chapter by doing language editing. FB also played a pivotal role for
executing the performance tests. TE also fulfilled the role of a principal investigator as he is my
PhD supervisor. All authors read, commented, and approved the final manuscript.

Abstract

We introduce d2o, a Python module for cluster-distributed multi-dimensional numerical arrays.
It acts as a layer of abstraction between the algorithm code and the data-distribution logic. The
main goal is to achieve usability without losing numerical performance and scalability. d2o’s
global interface is similar to the one of a numpy.ndarray, whereas the cluster node’s local
data is directly accessible for use in customized high-performance modules. d2o is written in
pure Python which makes it portable and easy to use and modify. Expensive operations are
carried out by dedicated external libraries like numpy and mpi4py. The performance of d2o is
on a par with numpy for serial applications and scales well when moving to an MPI cluster.
d2o is open-source software available under the GNU General Public License v3 (GPL-3) at
https://gitlab.mpcdf.mpg.de/ift/D2O.

https://gitlab.mpcdf.mpg.de/ift/D2O

60 3. D2O

3.1 Introduction

3.1.1 Background
Data sets in simulation and signal-reconstruction applications easily reach sizes too large for a
single computer’s random access memory (RAM). A reasonable grid size for such tasks like
galactic density reconstructions (Greiner et al., 2016) or multi-frequency imaging in radio as-
tronomy (Junklewitz et al., 2016) is a cube with a side resolution of 2048. Such a cube contains
20483 ≈ 8.6 · 109 voxels. Storing a 64-bit double for every voxel therefore consumes 64 GiB.
In practice one has to handle several or even many instances of those arrays which ultimately
prohibits the use of single shared memory machines. Apart from merely holding the arrays’ data
in memory, parallelization is needed to process those huge arrays within reasonable time. This
applies to basic arithmetics like addition and multiplication as well as to complex operations like
Fourier transformation and advanced linear algebra, e.g. operator inversions or singular value
decompositions. Thus parallelization is highly advisable for code projects that must be scaled to
high resolutions.
To be specific, the initial purpose of d2o was to provide parallelization to the package for Nu-
merical Information Field Theory (NIFTy)(Selig et al., 2013), which permits the abstract and
efficient implementation of sophisticated signal processing methods. Typically, those methods
are so complex on their own that a NIFTy user should not need to bother with parallelization
details in addition to that. It turned out that providing a generic encapsulation for parallelization
to NIFTy is not straightforward as the applications NIFTy is used for are highly diversified. The
challenge hereby is that, despite all their peculiarities, for those applications numerical efficiency
is absolutely crucial. Hence, for encapsulating the parallelization effort in NIFTy we needed an
approach that is flexible enough to adapt to those different applications such that numerical effi-
ciency can be preserved: d2o.
d2o is implemented in Python. As a high-level language with a low-entry barrier Python is widely
used in computational science. It has a huge standard library and an active community for 3rd
party packages. For computationally demanding applications Python is predominantly used as a
steering language for external compiled modules because Python itself is slow for numerics.
This article is structured as follows. Sec. 3.1.2 gives the aims of d2o, and Sec. 3.1.3 describes
alternative data distribution packages. We dicuss the code architecture in Sec. 3.2 , the basic
usage of d2o in Sec. 3.3, and the numerical scaling behavior in Sec. 3.4. Sec. 3.5 contains our
conclusion and Sec. A.1 describes the detailed usage of d2o.

3.1.2 Aim
As most scientists are not fully skilled software engineers, for them the hurdle for developing
parallelized code is high. Our goal is to provide data scientists with a numpy array-like object
(cf. numpy (van der Walt et al., 2011)) that distributes data among several nodes of a cluster in
a user-controllable way. The user, however, shall not need to have profound knowledge about
parallel programming with a system like MPI (Message Passing Interface Forum, 1994, 1998)
to achieve this. The transition to use distributed data objects instead of numpy arrays in exist-

3.1 Introduction 61

ing code must be as straightforward as possible. Hence, d2o shall in principle run – at least in
a non-parallelized manner – with standard-library dependencies available; the packages needed
for parallel usage should be easily available. Whilst providing a global-minded interface, the
node’s local data should be directly accessible in order to enable the usage in specialized high-
performance modules. This approach matches with the theme of DistArray (Enthought, 2016):
“Think globally, act locally”. Regarding d2o’s architecture we do not want to make any a-priori
assumptions about the specific distribution strategy, but retain flexibility: it shall be possible to
adapt to specific constraints induced from third-party libraries a user may incorporate. For ex-
ample, a library for fast Fourier transformations like FFTW (Frigo, 1999) may rely on a different
data-distribution model than a package for linear algebra operations like ScaLAPACK (Blackford
et al., 1997)1. In the same manner it shall not matter whether a new distribution scheme stores
data redundantly or not, e.g. when a node is storing not only a distinct piece of a global array,
but also its neighboring (ghost) cells (Dadone and Grossman, 2004).
Our main focus is on rendering extremely costly computations possible in the first place; not on
improving the speed of simple computations that can be done serially. Although primarily geared
towards weak scaling, it turns out that d2o performs very well in strong-scaling scenarios, too;
see Sec. 3.4 for details.

3.1.3 Alternative Packages
There are several alternatives to d2o. We discuss the differences to d2o and why the alternatives
are not sufficient for our needs.

3.1.3.1 DistArray

DistArray (Enthought, 2016) is very mature and powerful. Its approach is very similar to d2o: It
mimics the interface of a multi dimensional numpy array while distributing the data among nodes
in a cluster. However, DistArray involves a design decision that makes it inapt for our purposes:
it has a strict client-worker architecture. DistArray either needs an ipython ipcluster (Pérez and
Granger, 2007) as back end or must be run with two or more MPI processes. The former must be
started before an interactive ipython session is launched. This at least complicates the workflow
in the prototyping phase and at most is not practical for batch system based computing on a
cluster. The latter enforces tool-developers who build on top of DistArray to demand that their
code always is run parallelized. Both scenarios conflict with our goal of minimal second order
dependencies and maximal flexibility, cf. Sec. 3.1.2. Nevertheless, its theme also applies to d2o:
“Think globally, act locally”.

3.1.3.2 scalapy (ScaLAPACK)

scalapy is a Python wrapper around ScaLAPACK (Blackford et al., 1997), which is “a library
of high-performance linear algebra routines for parallel distributed memory machines” (Team,
2016b). The scalapy.DistributedMatrix class essentially uses the routines from ScaLA-

1FFTW distributes slices of data, while ScaLAPACK uses a block-cyclic distribution pattern.

62 3. D2O

PACK and therefore is limited to the functionality of that: two-dimensional arrays and very
specific block-cyclic distribution strategies that optimize numerical efficiency in the context of
linear algebra problems. In contrast, we are interested in n-dimensional arrays whose distribution
scheme shall be arbitrary in the first place. Therefore scalapy is not extensive enough for us.

3.1.3.3 petsc4py (PETSc)

petsc4py is a Python wrapper around PETSc, which “is a suite of data structures and routines
for the scalable (parallel) solution of scientific applications modeled by partial differential equa-
tions” (Balay et al., 2015). Regarding distributed arrays its scope is as focused as scalapy to its
certain problem domain – here: solving partial differential equations. The class for distributed
arrays petsc4py.PETSc.DMDA is limited to one, two and three dimensions as PETSc uses a
highly problem-fitted distribution scheme. We in contrast need n-dimensional arrays with arbi-
trary distribution schemes. Hence, petsc4py is not suitable for us.

3.2 Code Architecture

3.2.1 Choosing the Right Level of Parallelization
d2o distributes numerical arrays over a cluster in order to parallelize and therefore to speed up
operations on the arrays themselves. An application that is built on top of d2o can profit from its
fast array operations that may be performed on a cluster. However, there are various approaches
how to deploy an algorithm on a cluster and d2o implements only one of them. In order to un-
derstand the design decisions of d2o and its position respective to other packages, cf. Sec. 3.1.3,
we will now discuss the general problem setting of parallelization and possible approaches for
that. Thereby we reenact the decision process which led to the characteristics d2o has today.

3.2.1.1 Vertical & Horizontal Scaling

Suppose we want to solve an expensive numerical problem which involves operations on data
arrays. To reduce the computation time one can in principle do two things. Either use a faster
machine – vertical scaling – or use more than one machine – horizontal scaling. Vertical scaling
has the advantage that existing code does not need to be changed2, but in many cases this is not
appropriate. Maybe one already uses the fastest possible machine, scaling up is not affordable or
even the fastest machine available is still too slow. Because of this, we choose horizontal scaling.

3.2.1.2 High- & Low-Level Parallelization

With horizontal scaling we again face two choices: high- and low-level parallelization. With
high-level parallelization, many replicas of the algorithm run simultaneously, potentially on mul-

2This is true if scaling up does not involve a change of the processor architecture.

3.2 Code Architecture 63

tiple machines. Each instance then works independently if possible, solving an isolated part of
the global problem. At the end, the individual results get collected and merged. The python
framework pathos (McKerns et al., 2012) provides functionality for this kind of procedure.
An example of high-level parallelization is a sample generator which draws from a probability
distribution. Using high-level parallelization many instances of the generator produce their own
samples, which involves very little communication overhead. The sample production process
itself, however, is not sped up.
In low-level parallelization, several nodes work together on one basic task at a time. For the
above sample generator, this means that all nodes work on the same sample at a time. Hence,
the time needed for producing individual samples is reduced; they are serially generated by the
cluster as a whole.

3.2.1.3 Downsides

Both of these approaches have their drawbacks. For high-level parallelization the algorithm itself
must be parallelizable. Every finite algorithm has a maximum degree of intrinsic parallelization3.
If this degree is lower than the desired number of processes then high-level parallelization reaches
its limits. This is particularly true for algorithms that cannot be parallelized by themselves,
like iterative schemes. Furthermore, there can be an additional complication: if the numerical
problem deals with extremely large objects it may be the case that it is not at all solvable by one
machine alone4.
Now let us consider low-level parallelization. As stated above, we assume that the solution of
the given numerical problem involves operations on data arrays. Examples for those are unary5,
binary6 or sorting operations, but also more advanced procedures like Fourier transformations
or (other) linear algebra operations. Theoretically, the absolute maximum degree of intrinsic
parallelization for an array operation is equal to the array’s number of elements. For comparison,
the problems we want to tackle involve at least 108 elements but most of the TOP500 (Strohmaier
et al., 2015) supercomputers possess 106 cores or less. At first glance this seems promising. But
with an increasing number of nodes that participate in one operation the computational efficiency
may decrease considerably. This happens if the cost of the actual numerical operations becomes
comparable to the generic program and inter-node communication overhead. The ratios highly
depend on the specific cluster hardware and the array operations performed.

3.2.1.4 Problem Sizes

Due to our background in signal reconstruction and grid-based simulations, we decide to use
low-level parallelization for the following reasons. First, we have to speed up problems that one

3For the exemplary sample generator the maximum degree of parallelization is the total number of requested
samples.

4In case of the sample generator this would be the case if even one sample would be too large for an individual
machine’s RAM.

5E.g. the positive, negative or absolute values of the array’s individual elements or the maximum, minimum,
median or mean of all its elements.

6E.g. the sum, difference or product of two data arrays.

64 3. D2O

cannot parallelize algorithmically, like fixed-point iterations or step-wise simulations. Second,
we want to scale our algorithms to higher resolutions while keeping the computing time at least
constant. Thereby the involved data arrays become so big that a single computer would be
oversubscribed. Because of this, the ratio of array size to desired degree of parallelization does
not become such that the computational efficiency would decrease considerably. In practice we
experience a good scaling behavior with up to ≈ 103 processes7 for problems of size 81922, cf.
Sec. 3.4. Hence, for our applications the advantages of low-level parallelization clearly outweigh
its drawbacks.

3.2.2 d2o as Layer of Abstraction
Compared to high-level parallelization, the low-level approach is more complicated to imple-
ment. In the best case, for the former one simply runs the serial code in parallel on the individual
machines; when finished one collects and combines the results. For the latter, when doing the
explicit coding one deals with local data portions of the global data array on the individual nodes
of the cluster. Hence, one has to keep track of additional information: for example, given a distri-
bution scheme, which portion of the global data is stored on which node of the cluster? Keeping
the number of cluster nodes, the size and the dimensionality of the data arrays arbitrary implies
a considerable complication for indexing purposes. By this, while implementing an application
one has to take care of two non-trivial tasks. On the one hand, one must program the logic of
distributing and collecting the data; i.e. the data handling. On the other hand, one must imple-
ment the application’s actual (abstract) algorithm. Those two tasks are conceptually completely
different and therefore a mixture of implementations should be avoided. Otherwise there is the
risk that features of an initial implementation – like the data distribution scheme – become hard-
wired to the algorithm, inhibiting its further evolution. Thus it makes sense to insert a layer of
abstraction between the algorithm code and the data distribution logic. Then the abstract algo-
rithm can be written in a serial style from which all knowledge and methodology regarding the
data distribution is encapsulated. This layer of abstraction is d2o.

3.2.3 Choosing a Parallelization Environment
To make the application spectrum of d2o as wide as possible we want to maximize its portability
and reduce its dependencies. This implies that – despite its parallel architecture – d2o must just
as well run within a single-process environment for cases when no elaborate parallelization back
end is available. But nevertheless, d2o must be massively scalable. This relates to the question
of which distribution environment should be used. There are several alternatives:

• Threading and multiprocessing: These two options limit the application to a single ma-
chine which conflicts with the aim of massive scalability.

• (py)Spark (Zaharia et al., 2010) and hadoop (Apache Software Foundation, 2016): These
modern frameworks are very powerful but regrettably too abstract for our purposes, as they

7This was the maximum number of processes available for testing.

3.2 Code Architecture 65

prescind the location of individual portions of the full data. Building a numpy-like interface
would be disproportionately hard or even unfeasible. In addition to that, implementing a
low-level interface for highly optimized applications which interact with the node’s local
data is not convenient within pySpark. Lastly, those frameworks are usually not installed
as standard dependencies on scientific HPC clusters.

• MPI (Message Passing Interface Forum, 1994, 1998): The Message Passing Interface
is available on virtually every HPC cluster via well-tested implementations like Open-
MPI (Gabriel et al., 2004), MPICH2 (Team, 2016a) or Intel MPI (Corporation, 2016). The
open implementations are also available on commodity multicore hardware like desktops
or laptops. A Python interface to MPI is given by the Python module mpi4py (Dalcı́n
et al., 2005). MPI furthermore offers the right level of abstraction for hands-on control of
distribution strategies for the package developers.

Given these features we decide to use MPI as the parallelization environment for d2o. We stress
that in order to fully utilize d2o on multiple cores, a user does not need to know how to program
in MPI; it is only necessary to execute the program via MPI as shown in the example in Sec. 3.3.5.

3.2.4 Internal Structure

3.2.4.1 Composed Object

A main goal for the design of d2o was to make no a-priori assumptions about the specific dis-
tribution strategies that will be used in order to spread array data across the nodes of a cluster.
Because of this, d2o’s distributed array – d2o.distributed_data_object – is a composed
object; cf. Fig. 3.1.
The distributed data object itself provides a rich user interface, and makes sanity and consis-
tency checks regarding the user input. In addition to that, the distributed data object possesses
an attribute called data. Here the MPI processes’ local portion of the global array data is stored,
even though the distributed data object itself will never make any assumptions about its specific
content since the distribution strategy is arbitrary in the first place. The distributed data object
is the only object of the d2o library that a casual user would interact with.
Every distributed data object possesses an instance of a d2o.distributor subclass for all
tasks that require knowledge about the certain distribution strategy. This object stores all the
distribution-scheme and cluster related information it needs in order to scatter (gather) data to
(from) the nodes and to serve for special methods, e.g. the array-cumulative sum. The dis-
tributed data object builds its rich user interface on top of those abstracted methods of its dis-
tributor.
The benefit of this strict separation is that the user interface becomes fully detached from the
distribution strategy; may it be block-cyclic or slicing, or have neighbor ghost cells or not, et
cetera. Currently there are two fundamental distributors available: a generic slicing-8 and a not-

8The slicing is done along the first array axis.

66 3. D2O

distributor. From the former, three special slicing distributors are derived: fftw9, equal10 and
freeform11. The latter, the not-distributor, does not do any data-distribution or -collection but
stores the full data on every node redundantly.

3.2.4.2 Advantages of a Global View Interface

d2o’s global view interface makes it possible to build software that remains completely indepen-
dent from the distribution strategy and the used number of cluster processes. This in turn enables
the development of 3rd party libraries that are very end-use-case independent. An example for
this may be a mathematical optimizer; an object which tries to find for a given scalar function f
an input vector ~x such that the output y = f (~x) becomes minimal. It is interesting to note that
many optimization algorithms solely use basic arithmetics like vector addition or scalar multipli-
cation when acting on ~x. As such operations act locally on the elements of an array, there is no
preference for one distribution scheme over another when distributing ~x among nodes in a clus-
ter. Two different distribution schemes will yield the same performance if their load-balancing is
on a par with each other. Further assume that f is built on d2o, too. On this basis, one could now
build an application that uses the minimizer but indeed has a preference for a certain distribution
scheme. This may be the case if the load-balancing of the used operations is non-trivial and
therefore only a certain distribution scheme guarantees high evaluation speeds. While the appli-
cation’s developer therefore enforces this scheme, the minimizer remains completely unaffected
by this as it is agnostic of the array’s distribution strategy.

9The fftw-distributor uses routines from the pyFFTW (Frigo, 1999, Gomersall, 2016) package (Frigo, 1999) for
the data partitioning.

10The equal-distributor tries to split the data in preferably equal-sized parts.
11The local data array’s first axis is of arbitrary length for the freeform-distributor.

3.2
C

ode
A

rchitecture
67

obj1

Attributes:
• data: <numpy.ndarray>

• index: 1

• shape: (256, 256)

• distribution strategy: ’equal’

• distributor: equal distributor 1

• . . .

obj2

Attributes:
• data: <numpy.ndarray>

• index: 2

• shape: (256, 256)

• distribution strategy: ’equal’

• distributor: equal distributor 1

• . . .

obj3

Attributes:
• data: <numpy.ndarray>

• index: 3

• shape: (4, 4, 4)

• distribution strategy: ’not’

• distributor: not distributor 1

• . . .

equal distributor 1

Attributes:

• global shape: (256, 256)

• local shape: (64, 256)

• . . .

not distributor 1

Attributes:

• global shape: (4, 4, 4)

• local shape: (4, 4, 4)

• . . .

d2o librarian

Attributes:
• library:

– 1: obj1

– 2: obj2

– 3: obj3

– . . .

distributor factory

Attributes:
• distributor store:

– equal distributor 1

– not distributor 1

– . . .

Figure 3.1: Here the main object composition structure of d2o is shown. distributed data objects are composed objects, cf.
Sec. 3.2.4.1. All tasks that need information related to the distribution strategy are outsourced to a distributor. In this figure,
three distributed data objects are shown where obj1 and obj2 share the same distributor. This is possible because they are
essentially identical: they have the same global shape, datatype, and distribution strategy. Since it is expensive to instantiate
new distributors, the distributed data objects get their instance from the distributor factory that takes care of caching those
distributors that have already been created. Furthermore, we illustrate the d2o librarian that keeps weak references to the
individual distributed data objects and assigns a unique cluster-wide identifier to them: the index.

68 3. D2O

3.3 Basic Usage
In the subsequent sections we will illustrate the basic usage of d2o in order to explain its func-
tionality and behavior. A more extended discussion is given in Sec. A.1. Our naming conventions
are:

• instances of the numpy.ndarray class are labeled a and b,

• instances of d2o.distributed_data_object are labeled obj and p.

In addition to these examples, the interested reader is encouraged to have a look into the dis-
tributed data object method’s docstrings for further information; cf. the project’s web page
https://gitlab.mpcdf.mpg.de/ift/D2O.

3.3.1 Initialization
Here we discuss how to initialize a distributed data object and compare some of its basic func-
tionality to that of a numpy.ndarray. First we import the packages.

1 In [1]: import numpy as np

2 In [2]: from d2o import distributed_data_object

Now we set up some test data using numpy.

1 In [3]: a = np.arange(12).reshape((3, 4))

2 In [4]: a

3 Out[4]: array([[0, 1, 2, 3],

4 [4, 5, 6, 7],

5 [8, 9, 10, 11]])

One way to initialize a distributed data object is to pass an existing numpy array.

1 In [5]: obj = distributed_data_object(a)

2 In [6]: obj

3 Out[6]: <distributed_data_object >

4 array([[0, 1, 2, 3],

5 [4, 5, 6, 7],

6 [8, 9, 10, 11]])

The output of the obj call shows the local portion of the global data available in this process.

3.3.2 Arithmetics
Simple arithmetics and point-wise comparison work as expected from a numpy array.

1 In [7]: (2 ∗ obj, obj ∗ ∗ 3, obj >= 5)
2 Out[7]: (<distributed_data_object >

3 array([[0, 2, 4, 6],

https://gitlab.mpcdf.mpg.de/ift/D2O

3.3 Basic Usage 69

4 [8, 10, 12, 14],

5 [16, 18, 20, 22]]),

6 <distributed_data_object >

7 array([[0, 1, 8, 27],

8 [64, 125, 216, 343],

9 [512, 729, 1000, 1331]]),

10 <distributed_data_object >

11 array([[False, False, False, False],

12 [False, True, True, True],

13 [True, True, True, True]], dtype=bool))

Please note that the distributed data object tries to avoid inter-process communication when-
ever possible. Therefore the returned objects of those arithmetic operations are instances of
distributed data object, too. However, the d2o user must be careful when combining numpy ar-
rays with distributed data objects. If one combines two objects with a binary operator in Python
(like +, -, *, \, % or **) it will try to call the respective method (__add__, __sub__, etc...)
of the first object. If this fails, i.e. if it throws an exception, Python will try to call the reverse
methods of the second object (__radd__, __rsub__, etc...):

1 In [8]: a + 1; # calls a.__add__(1) -> returns a numpy array

2 In [9]: 1 + a; # 1.__add__ not existing -> a.__radd__(1)

Depending on the conjunction’s ordering, the return type may vary when combining numpy
arrays with distributed data objects. If the numpy array is in the first place, numpy will try to
extract the second object’s array data using its __array__method. This invokes the distributed -
data object’s get_full_data method that communicates the full data to every process. For
large arrays this is extremely inefficient and should be avoided by all means. Hence, it is crucial
for performance to assure that the distributed data object’s methods will be called by Python.
In this case, the locally relevant parts of the array are extracted from the numpy array and then
efficiently processed as a whole.

1 In [10]: a + obj # numpy converts obj -> inefficient

2 Out[10]: array([[0, 2, 4, 6], # note: numpy.ndarray

3 [8, 10, 12, 14],

4 [16, 18, 20, 22]])

5

6 In [11]: obj + a # obj processes a -> efficient

7 Out[11]: <distributed_data_object >

8 array([[0, 2, 4, 6],

9 [8, 10, 12, 14],

10 [16, 18, 20, 22]])

3.3.3 Array Indexing
The distributed data object supports most of numpy’s indexing functionality, so it is possible
to work with scalars, tuples, lists, numpy arrays and distributed data objects as input data. Ev-

70 3. D2O

ery process will extract its locally relevant part of the given data-object and then store it; cf.
Sec. A.1.3.

1 In [12]: obj

2 Out[12]: <distributed_data_object >

3 array([[0, 1, 2, 3],

4 [4, 5, 6, 7],

5 [8, 9, 10, 11]])

6

7 In [13]: obj[1] # extract a row

8 Out[13]: <distributed_data_object >

9 array([4, 5, 6, 7])

10

11 In [14]: obj[1,-2] # extract single entry

12 Out[14]: 6

13

14 In [15]: obj[::2, 1::2] # slicing notation

15 Out[15]: <distributed_data_object >

16 array([[1, 3],

17 [9, 11]])

18

19 # sets data using slicing

20 In [16]: obj[::2, 1::2] = [[111, 222], [333, 444]]

21 In [17]: obj

22 Out[17]: <distributed_data_object >

23 array([[0, 111, 2, 222],

24 [4, 5, 6, 7],

25 [8, 333, 10, 444]])

By default it is assumed that all processes use the same key-object when accessing data. See
Sec. A.1.4 for more details regarding process-individual indexing.

3.3.4 Distribution Strategies

In order to specify the distribution strategy explicitly one may use the “distribution_strategy”
keyword:

1 In [18]: obj = distributed_data_object(

2 a, distribution_strategy=’equal’)

3 In [19]: obj.distribution_strategy

4 Out[19]: ’equal’

See Sec. A.1.1 for more information on distribution strategies.

3.3 Basic Usage 71

3.3.5 Distributed Arrays
To use d2o in a distributed manner, one has to create an MPI job. This example shows how four
MPI processes hold individual parts of the global data and how distributed read & write access
works. The script is started via the command:

mpirun -n 4 python get_set_data.py

1 # get_set_data.py

2 from mpi4py import MPI

3 import numpy as np

4 from d2o import distributed_data_object

5 # Get the process’ rank number (0,1,2,3) from MPI

6 rank = MPI.COMM_WORLD.rank

7

8 # Initialize some data

9 a = np.arange(16).reshape((4,4))

10 # Initialize the distributed_data_object

11 obj = distributed_data_object(a)

12

13 # Print the process’ local data

14 print (rank, obj.get_local_data())

15 # extract data via slicing

16 print (rank, obj[0:3:2, 1:3].get_local_data())

17

18 b = -np.arange(4).reshape((2,2))

19 obj[2:4,1:3] = b # Write b into obj

20

21 # Print the process’ local data

22 print (rank, obj.get_local_data())

23

24 # Consolidate the data

25 full_data = obj.get_full_data()

26 if rank == 0: print (rank, full_data)

The distributed data object gets initialized in line 11 with the following array:

array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

Here, the script is run in four MPI processes; cf. mpirun -n 4 [...]. The data is split along
the first axis; the print statement in line 14 yields the four pieces:

(0, array([[0, 1, 2, 3]]))

(1, array([[4, 5, 6, 7]]))

72 3. D2O

(2, array([[8, 9, 10, 11]]))

(3, array([[12, 13, 14, 15]]))

The second print statement (line 16) illustrates the behavior of data extraction; obj[0:3:2, 1:3]
is slicing notation for the entries 1, 2, 9 and 1012. This expression returns a distributed data -
object where the processes possess the individual portion of the requested data. This means that
the distribution strategy of the new (sub-)array is determined by and aligned to that of the original
array.

(0, array([[1, 2]]))

(1, array([], shape=(0, 2), dtype=int64)) # empty

(2, array([[9, 10]]))

(3, array([], shape=(0, 2), dtype=int64)) # empty

The result is a distributed data object where the processes 1 and 3 do not possess any data as
they had no data to contribute to the slice in obj[0:3:2, 1:3]. In line 19 we store a small 2x2
block b in the lower middle of obj. The process’ local data reads:

(0, array([[0, 1, 2, 3]]))

(1, array([[4, 5, 6, 7]]))

(2, array([[8, 0, -1, 11]]))

(3, array([[12, -2, -3, 15]]))

Finally, in line 25 we use obj.get_full_data() in order to consolidate the distributed data;
i.e. to communicate the individual pieces between the processes and merge them into a single
numpy array.

(0, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 0, -1, 11],

[12, -2, -3, 15]]))

3.4 Performance and Scalability
In this section we examine the scaling behavior of a distributed data object that uses the equal
distribution strategy. The timing measurements were performed on the C2PAP Computing Clus-
ter (Universe, 2016)13. The software stack was built upon Intel MPI 5.1, mpi4py 2.0, numpy 1.11
and python 2.7.11. For measuring the individual timings we used the Python standard library
module timeit with a fixed number of 100 repetitions.

12This notation can be decoded as follows. The numbers in a slice correspond to start:stop:step with stop
being exclusive. obj[0:3:2, 1:3]means to take every second line from the lines 0, 1 and 2, and to then take from
this the elements in collumns 1 and 2.

13The C2PAP computing cluster consists of 128 nodes, each possessing two Intel Xeon CPU E5-2680 (8 cores
2.70 GHz + hyper-threading, 64 KiB L1 per core, 256 KiB L2 cache per core, 20 MiB L3 cache shared for all 8

3.4 Performance and Scalability 73

Please note that d2o comes with an extensive suite of unit tests featuring a high code-coverage
rate. By this we assure d2o’s continuous code development to be very robust and provide the
users with a reliable interface definition.
Regarding d2o’s performance there are two important scaling directions: the size of the array
data and the number of MPI processes. One may distinguish three different contributions to the
overall computational cost. First, there is data management effort that every process has to cover
itself. Second, there are the costs for inter-MPI-process communication. And third, there are the
actual numerical costs.
d2o has size-independent management overhead compared to numpy. Hence, the larger the ar-
rays are for which d2o is used, the more efficient the computations become. We will see below
that there is a certain array size per node – roughly 216 elements – from which on d2o’s man-
agement overhead becomes negligible compared to the purely numerical costs. This size cor-
responds to a two-dimensional grid with a resolution of 256 × 256 or equivalently 0.5 MiB of
64-bit doubles. In Sec. 3.4.1 we focus on this very ratio of management overhead to numerical
costs.
d2o raises the claim to be able to operate well running with a single process as well as in a
highly parallelized regime. In Sec. 3.4.2, the scaling analysis regarding the MPI process count
is done with a fixed local array size for which the process overhead is negligible compared to
the numerical costs. For this weak scaling analysis we are interested in the costs arising from
inter-process communication compared to those of actual numerics.
In the following three sections, we study the strong scaling of d2o, where the performance is
a result of the combination of all three cost contributions. Sec. 3.4.3 covers the case in which
the number of MPI processes is increased while the array size is left constant. In Sec. 3.4.4
we compare d2o’s to DistArray’s (Enthought, 2016) performance and finally, in Sec. 3.4.5 we
benchmark d2o’s strong-scaling behavior when applied to a real-world application: a Wiener
filter signal reconstruction.
A discussion on d2o’s efficient Python iterators can be found in Sec. A.2.

3.4.1 Scaling the Array Size

One may think of d2o as a layer of abstraction that is added to numpy arrays in order to take care
of data distribution and collection among multiple MPI processes. This abstraction comes with
inherent Python overhead, separately for each MPI process. Therefore, if one wants to analyze
how the ratio of management overhead to actual numerical effort varies with the data size, only
the individual process’ data size is important. Because of this, all timing tests for this subsection
were carried out with one MPI process only.
A common task during almost all numerical operations is to create a new array object for storing
its results14. Hence, the speed of object creation can be crucial for overall performance there.
Note that in contrast to a numpy array which basically just allocates RAM, several things must be
done during the initialization of a distributed data object. The Python object instance itself must

cores) and 64 GiB RAM each. The nodes are connected via Mellanox Infiniband 40 Gbits/s
14Exceptions to this are inplace operations which reuse the input array for the output data.

74 3. D2O

be created, a distributor must be initialized which involves parsing of user input, RAM must be
allocated, the distributed data object must be registered with the d2o librarian (cf. Sec. A.1.5),
and, if activated, inter-MPI-process communication must be done for performing sanity checks
on the user input.
By default the initialization requires 60 µs to complete for a distributed data object with a shape
of (1,) when run within one single MPI process. Using this trivial shape makes the costs for
memory allocation negligible compared to the others tasks. Hence, those 60 µs represent d2o’s
constant overhead compared to numpy, since a comparable numpy array requires ≈ 0.4 µs for
initialization.
In order to speed up the initialization process one may disable all sanity checks on the user input
that require MPI communication, e.g. if the same datatype was specified in all MPI processes.
Even when run with one single process, skipping those checks reduces the costs by 27 µs from
60 µs to 33 µs.
Because of the high costs, it is important to avoid building distributed data objects from scratch
over and over again. A simple measure against this is to use inplace operations like obj += 1
instead of obj = obj + 1 whenever possible. This is generally a favorable thing to do – also
for numpy arrays – as this saves the costs for repeated memory allocation. Nonetheless, also
non-inplace operations can be improved in many cases, as often the produced and the initial
distributed data object have all of their attributes in common, except for their data: they are of
the same shape and datatype, and use the same distribution strategy and MPI communicator;
cf. p = obj + 1. With obj.copy() and obj.copy_empty() there exist two cloning methods
that we implemented to be as fast as allowed by pure Python. Those methods reuse as much
already initialized components as possible and are therefore faster than a fresh initialization: for
the distributed data object from above obj.copy() and obj.copy_empty() consume 7.9 µs
and 4.3 µs, respectively.
Tab. 3.2 shows the performance ratio in percent between serial d2o and numpy. The array sizes
range from 20 = 1 to 225 ≈ 3.3 · 107 elements. In the table, 100% would mean that d2o is as fast
as numpy.
The previous section already suggested that for tasks that primarily consist of initialization work
– like array creation or copy_empty – d2o will clearly follow behind numpy. However, increas-
ing the array size from 220 to 222 elements implies a considerable performance drop for numpy’s
memory allocation. This in turn means that for arrays with more than 222 elements d2o’s relative
overhead becomes less significant: e.g. np.copy_empty is then only a factor of four faster than
obj.copy_empty().
Functions like max and sum return a scalar number; no expensive return-array must be created.
Hence, d2o’s overhead is quite modest: even for size 1 arrays, d2o’s relative performance lies
above 50%. Once the size is greater than 218 elements the performance is higher than 95%.
obj[::-2] is slicing syntax for “take every second element from the array in reverse order”.
It illustrates the costs of the data-distribution and collection logic that even plays a significant
role if there is no inter-process communication involved. Again, with a large-enough array size,
d2o’s efficiency becomes comparable to that of numpy.
Similarly, to obj[::-2], the remaining functions in the table return a distributed data object as
their result and therefore suffer from its initialization costs. However, with an array size of 216

3.4 Performance and Scalability 75

elements and larger d2o’s relative performance is at least greater than approximately 65%.
An interesting phenomenon can be observed for obj + 0 and obj + obj: As for the other
functions, their relative performance starts to increase significantly when an array size of 216 is
reached. However, in contrast to obj += obj which then immediately scales up above 95%, the
relative performance of the non-inplace additions temporarily decreases with increasing array
size. This may be due to the fact that given our test scenario 218 elements almost take up half of
the cache of C2PAP’s Intel E5-2680 CPUs. d2o’s memory overhead is now responsible for the
fact, that its non-inplace operations – which need twice the initial memory – cannot profit that
strongly from the cache anymore, whereas the numpy array still operates fast. Once the array
size is above 222 elements numpy’s just as d2o’s array-object is too large for profiting from the
cache and therefore become comparably fast again: the relative performance is then greater than
98%.
Thus, when run within a single process, d2o is ideally used for arrays larger than 216 = 65536
elements which corresponds to 512 KiB. From there the management overhead becomes less
significant than the actual numerical costs.

3.4.2 Weak Scaling: Proportional Number of Processes and Size of Data

Now we analyze the scaling behavior of d2o when run with several MPI processes. Repeating
the beginning of Sec. 3.4, there are three contributions to the execution time. First, the fixed
management overhead that every process has to cover itself, second, the communication overhead
and third, the actual numerical costs. In order to filter out the effect of a changing contribution of
management overhead, in this section we fix the MPI processes’ local array size to a fixed value.
Hence, now the global data size is proportional to the number of MPI processes.
Tab. 3.3 shows the performance of various array operations normalized to the time d2o needs
when running with one process only. Assuming that d2o had no communication overhead and
an operation scaled perfectly linearly with array size, the performance would be rated at 100%.
In theory, operations that do not inherently require inter-process communication like point-
wise array addition or subtraction ideally scale linearly. And in fact, d2o scales excellently
with the number of processes involved for those functions: here we tested copy, copy_empty,
sum(axis=1), obj + 0, obj + obj, obj += obj and sqrt.
Comparing sum(axis=0) with sum(axis=1) illustrates the performance difference between
those operations that involve inter-process communication and those that don’t: the equal distri-
bution strategy slices the global array along its first axis in order to distribute the data among the
individual MPI processes. Hence, sum(axis=0) – which means to take the sum along the first
axis – does intrinsically involve inter-process communication whereas sum(axis=1) does not.
Similarly to sum(axis=0), also the remaining functions in Tab. 3.3 are affected by an increasing
number of processes as they involve inter-process communication.
But still, even if – for example in case of sum(axis=0) – the relative performance may drop
to 28.2% when using 256 processes, this means that the operation just took 3.5 times longer
than the single-process run, whereat the array size has been increased by a factor of 256. This
corresponds to a speedup factor of 72.2.

76 3. D2O

3.4.3 Strong Scaling: Varying Number of Processes with a Fixed Size of
Data

Similarly to the previous Sec. 3.4.2, we vary the number of processes but now fix the data size
globally instead of locally. This corresponds to the real-life scenario in which the problem size
and resolution are already set – maybe by environmental conditions – and now one tries to re-
duce the run time by using more cores. Since the size of the local data varies with the number
of processes, the overall scaling behavior is now a mixture of the varying ratio between manage-
ment overhead and process-individual numerical costs, and the fact that an increasing amount
of CPU cache becomes available at the expense of increased communication effort. Tab. 3.4
shows the benchmarking results for the same set of operations as used in the previous section on
weak scaling and the results are reasonable. Those operations in the list that inherently cannot
scale strongly as they consist of purely node-individual work, namely the initialization and
copy_empty, show that their performance just does not increase with the number of processes.
In contrast, operations without communication effort benefit strongly from the increasing total
amount of CPU cache combined with smaller local arrays; above all copy which is about 3 times
faster than what one would expect from linear scaling to 256 processes15.
In theory, the strong-scaling behavior is the combination of the size- and weak-scaling we dis-
cussed in Sec. 3.4.1 and Sec. 3.4.2. In order to verify whether the strong-scaling behavior makes
sense, we estimate the strong-scaling performance using the information from size- and weak-
scaling.
We choose the sum() method as our test case. During the reduction phase, the n MPI-processes
exchange their local results with each other. This corresponds to adding n times a fixed amount
of communication time to the total computing time needed. Hence, we perform a linear fit to
the weak-scaling data; cf. Tab. 3.3. Furthermore, we assume that the local computation time
is roughly proportional to the local-array size. This is true for sufficiently large array sizes,
since then numpy scales linearly and d2o is in a good efficiency regime, cf. Tab. 3.2. Again we
performed a linear fit but now on the size-scaling timing data. Combining those two linear fits
leads to the following run-time formula for applying sum() to an array with shape (4096, 4096):

t(n) = (0.0065n + 1.57/n) s (3.1)

In the case of linear scaling, t(n) is expected to be equal to t(1)/n. Hence, the relative performance
p(n) is the ratio between the two:

p(n)estimated =
t(1)/n

t(n)
=

241.8
240.8 + n2 (3.2)

Comparing the estimate with the actually measured relative performance – cf. Tab. 3.4 – Tab. 3.1
shows that even under those rough assumptions the strong scaling behavior of sum() can be
explained as the combination of size- and weak scaling within about 20 % accuracy.

15This very strong scaling is indeed realistic: when analyzing pure numpy arrays one gets speedups in the order
of magnitude of even 800 %.

3.4 Performance and Scalability 77

Table 3.1: Strong Scaling Behavior: Estimate vs. Measurement

#processes : n 1 4 8 16 32 64 128 256
p(n)estimated 100 % 94.2 % 79.3 % 48.7 % 19.1 % 5.58 % 1.45 % 0.37 %
p(n)measured 100 % 91.7 % 74.1 % 60.9 % 24.4 % 7.05 % 1.82 % 0.45 %

3.4.4 Strong Scaling: Comparison with DistArray
In Sec. 3.1.3 we discussed several competitors to d2o. Because of their similarities, we conducted
the strong scaling tests – as far as possible16 – also with DistArray and compare the performance.
In Tab. 3.5 the results are shown for the subset of all operations from the previous sections that
where available for DistArray, too.
While being at least on a par for numerical operations when being run single-threaded, d2o
outperforms DistArray more and more with an increasing number of processes. Furthermore,
it is conspicuous that DistArray does not seem to support inplace array operations. Because of
this, the inplace addition obj+=obj is way slower with DistArray than with d2o which is on a
par with numpy in most cases, cf. Tab. 3.2, Tab. 3.3 and Tab. 3.4.
The fact that d2o is way more efficient when doing numerics on very small arrays – like obj+0
using 256 processes – indicates that d2o’s organizatorial overhead is much smaller than that
of DistArray. Supporting evidence for this is that the initialization of an empty DistArray
(copy_empty) becomes disproportionately costly when increasing the number of processes used.

16DistArray does, for example, not support negative step-sizes for slicing ([::-2]) and also the special method
bincount is not available.

78
3.D

2Oarraysize2022242628(2KiB)210212214(128KiB)216218220(8MiB)222223224(128MiB)225

initialization0.65%0.64%0.69%0.69%0.71%0.71%0.74%0.72%0.75%0.74%0.75%5.41%5.58%5.83%6.00%
copyempty3.77%3.86%4.00%4.12%4.57%3.92%3.95%3.98%4.01%4.10%4.15%25.0%24.2%25.3%26.0%
max56.2%56.0%54.4%55.5%56.0%56.9%62.6%79.2%91.7%97.5%99.4%99.4%99.9%99.8%99.9%
sum59.7%59.0%57.5%60.1%58.6%59.8%62.5%74.8%88.4%95.9%99.0%99.3%99.7%99.7%100.0%
obj[::-2]1.18%1.17%1.20%1.24%1.34%1.50%2.14%4.77%15.0%22.2%28.7%24.1%45.8%47.3%47.7%
copy8.16%8.86%9.30%9.72%9.66%10.4%14.8%26.7%65.8%95.5%98.7%99.1%99.9%99.4%98.4%
obj+06.58%6.48%6.67%7.08%7.37%9.51%16.2%35.0%65.2%34.7%44.7%98.7%99.7%96.5%100.0%
obj+obj3.07%3.10%3.24%3.59%3.98%5.70%13.3%31.9%64.0%34.6%45.0%98.7%99.9%99.5%99.8%
obj+=obj5.17%5.35%5.41%6.02%6.66%11.3%22.8%46.4%75.3%91.9%97.8%98.0%99.8%99.3%99.7%
sqrt3.25%3.17%3.26%3.50%4.42%7.49%18.7%45.6%75.8%65.2%83.2%98.8%99.4%99.6%99.8%
bincount3.57%3.35%3.76%4.04%4.97%7.54%16.5%35.4%58.0%75.1%78.0%76.8%78.9%82.1%83.2%

Table3.2:Overheadcosts:d2o’srelativeperformancetonumpywhenscalingthearraysizeandbeingrunwithoneMPI-process.
“100%”correspondstothecasewhend2oisasfastasnumpy.Inordertoguidetheeye,values<30%areprinteditalic,values
≥90%areprintedbold.PleaseseeSec.3.4.1fordiscussion.

processcount12348163264128256

initialization100.0%90.9%87.9%87.8%74.6%67.6%54.9%45.7%34.6%19.9%
copyempty100.0%97.5%96.2%97.5%97.6%103.6%97.8%97.7%97.6%95.1%
max100.0%97.5%96.6%95.6%90.9%84.0%72.1%56.2%39.1%24.3%
sum100.0%98.0%95.3%93.5%87.3%79.2%65.1%48.3%32.2%19.2%
sum(axis=0)100.0%100.2%96.7%96.5%90.9%78.1%74.6%58.0%42.7%28.2%
sum(axis=1)100.0%105.2%103.2%102.2%100.6%100.0%98.3%95.8%93.2%88.6%
obj[::-2]100.0%70.4%65.9%64.0%46.2%46.6%42.8%33.6%31.1%25.3%
copy100.0%104.7%103.1%101.3%101.3%105.3%101.4%101.2%101.3%101.5%
obj+0100.0%105.1%102.6%100.6%99.9%103.5%100.2%100.0%99.7%100.1%
obj+obj100.0%105.2%102.5%100.1%100.0%103.7%100.1%100.1%99.8%100.2%
obj+=obj100.0%102.3%99.3%98.6%98.2%101.8%98.2%98.2%98.2%98.4%
sqrt100.0%102.0%100.6%100.1%99.6%99.1%99.2%99.2%98.6%98.0%
bincount100.0%103.0%101.2%99.9%98.8%97.6%94.1%88.3%79.4%65.8%

Table3.3:Weakscaling:d2o’srelativeperformancetothesingle-processcasewhenincreasingboth,thenumberofprocessesand
theglobalarraysizeproportionally.Thearraysusedforthistestshadtheglobalshape(n∗2048,2048)withnbeingthenumber
ofprocesses.Bythisthelocaldatasizewasfixedto222elements,whichisequalto32MiB.“100%”inthetablecorrespondsto
thecasewerethespeedupisequaltothenumberofprocesses.Example:the95.1%forcopyemptyon256processescorrespond
toaspeedup-factorof243.5.Inordertoguidetheeye,values<30%areprinteditalic,values≥90%areprintedbold.Pleasesee
Sec.3.4.2fordiscussion.

3.4
Perform

ance
and

Scalability
79

processes (local size) 1 (128 MiB) 2 (64 MiB) 3 (42.7 MiB) 4 (32 MiB) 8 (16 MiB) 16 (8 MiB) 32 (4 MiB) 64 (2 MiB) 128 (1 MiB) 256 (512 KiB)

initialization 100.0% 40.3% 23.7% 17.1% 6.80% 2.55% 0.89% 0.29% 0.10% 0.03%
copy empty 100.0% 47.8% 33.5% 26.3% 23.2% 12.1% 6.16% 3.09% 1.55% 0.79%
max 100.0% 99.0% 96.7% 94.0% 80.1% 64.3% 29.6% 9.10% 2.41% 0.60%
sum 100.0% 100.4% 95.4% 91.7% 74.1% 60.9% 24.4% 7.05% 1.82% 0.45%
sum(axis=0) 100.0% 98.0% 94.2% 89.9% 62.2% 45.3% 19.8% 6.34% 1.78% 0.45%
sum(axis=1) 100.0% 100.5% 92.3% 92.6% 79.0% 77.7% 47.1% 20.6% 4.27% 1.25%
obj[::-2] 100.0% 65.4% 62.4% 58.5% 40.7% 33.1% 26.6% 18.3% 8.78% 3.25%
copy 100.0% 103.6% 105.9% 98.0% 145.1% 156.4% 155.3% 152.3% 157.5% 306.7%
obj + 0 100.0% 105.9% 109.1% 100.4% 59.0% 97.3% 75.7% 79.2% 79.4% 149.8%
obj + obj 100.0% 106.2% 109.2% 100.3% 59.0% 97.6% 74.9% 79.0% 80.1% 150.2%
obj += obj 100.0% 103.1% 101.3% 98.0% 97.8% 124.0% 122.8% 117.9% 108.1% 94.4%
sqrt 100.0% 101.8% 99.4% 98.7% 95.7% 88.8% 76.0% 56.0% 37.1% 16.4%
bincount 100.0% 102.3% 99.5% 98.0% 111.1% 107.3% 84.2% 40.5% 13.2% 3.57%

Table 3.4: Strong scaling: d2o’s relative performance to a single process when increasing the number of processes while fixing
the global array size to (4096, 4096) = 128 MiB. “100%” corresponds to the case were the speedup is equal to the number of
processes. Example: the 94.4% for obj+=obj on 256 processes correspond to a speedup-factor of 241.7. In order to guide the
eye, values < 30% are printed italic, values ≥ 90% are printed bold. Please see Sec. 3.4.3 for discussion.

processes (local size) 1 (128 MiB) 2 (64 MiB) 3 (42.7 MiB) 4 (32 MiB) 8 (16 MiB) 16 (8 MiB) 32 (4 MiB) 64 (2 MiB) 128 (1 MiB) 256 (512 KiB)

copy empty 23.49 27.70 33.99 40.03 1.11 · 102 1.12 · 103 1.06 · 103 1.91 · 103 5.57 · 103 1.90 · 104

max 1.05 1.11 1.16 1.20 1.34 5.00 4.74 3.77 3.25 4.17
sum 1.07 1.20 1.25 1.33 1.48 6.57 5.57 4.20 3.55 4.61
sum(axis=0) 1.02 1.09 1.12 1.22 1.03 3.61 3.35 2.75 2.42 3.06
sum(axis=1) 1.03 1.15 1.15 1.28 1.63 11.35 12.56 19.29 22.55 42.48
obj + 0 1.02 1.09 1.20 1.15 0.44 2.88 4.24 7.81 33.94 3.78 · 102

obj + obj 1.02 1.09 1.20 1.16 0.44 2.90 4.23 8.08 34.40 3.81 · 102

obj += obj 2.27 2.38 2.51 2.53 1.60 8.23 14.89 26.24 1.04 · 102 5.35 · 102

sqrt 1.00 1.03 1.03 1.04 0.81 1.57 2.06 2.59 6.66 16.77

Table 3.5: Strong scaling comparison: d2o’s relative performance compared to DistArray (Enthought, 2016) when increasing the
number of processes while fixing the global array size to (4096, 4096) = 128 MiB. “2” corresponds to the case were d2o is twice
as fast as DistArray. Please see Sec. 3.4.4 for discussion.

80 3. D2O

3.4.5 Strong Scaling: Real-World Application Speedup – the Wiener filter
d2o was initially developed for NIFTy(Selig et al., 2013), a library for building signal infer-
ence algorithms in the framework of information field theory (IFT) (Enßlin et al., 2009). Within
NIFTy v2 all of the parallelization is done via d2o; the code of NIFTy itself is almost completely
agnostic of the parallelization and completely agnostic of MPI.
A standard computational operation in IFT-based signal reconstruction is the Wiener filter (Wiener,
1949). For this performance test, we use a Wiener filter implemented in NIFTy to reconstruct the
realization of a Gaussian random field – called the signal. Assume we performed a hypothetical
measurement which produced some data. The data model is

data = R(signal) + noise (3.3)

where R is a smoothing operator and noise is additive Gaussian noise. In Fig. 3.2 one sees the
three steps:

• the true signal we try to reconstruct,

• the data one gets from the hypothetical measurement, and

• the reconstructed signal field that according to the Wiener filter has most likely produced
the data.

Tab. 3.6 shows the scaling behavior of the reconstruction code, run with a resolution of 8192 ×
8192. Here, n is the number of used processes and tn the respective execution time. The relative
speedup sn = 2t2/tn

17 is the ratio of execution times: parallel versus serial. In the case of exactly
linear scaling sn is equal to n. Furthermore we define the scaling quality q = 1/(1 + log(n/sn)),
which compares sn with linear scaling in terms of orders of magnitude. A value q = 1 represents
linear scaling and q ≥ 1 super-linear scaling.

Table 3.6: Execution time scaling of a Wiener filter reconstruction on a grid of size 8192× 8192.

#nodes 1 1 1 1 2 4 8 16 32
#processes : n 1 2 3 4 8 16 32 64 128

t[s] 1618 622.0 404.2 364.2 181.7 94.50 46.79 18.74 8.56
sn = 2t2/tn 0.769 2.00 3.08 3.42 6.85 13.2 26.6 66.4 145

qn =1/(1+log(n
sn

)) 0.900 1.00 1.01 0.94 0.94 0.92 0.93 1.02 1.06

This benchmark illustrates that even in a real-life application super-linear scaling is possible
to achieve for a sufficiently large number of processes. This is due to the operations that are
needed in order to perform the Wiener filtering: basic point-wise arithmetics that do not in-
volve any inter-process communication and Fourier transformations that are handled by the high-
performance library FFTW (Frigo and Johnson, 2005). While the problem size remains constant,
the amount of available CPU cache increases with the number of processes, which explains the
super-linear scaling, cf. Sec. 3.4.3.

17Since the combination of NIFTy and pyfftw exhibits an unexpected speed malus for one process, we chose the

3.4 Performance and Scalability 81

Figure 3.2: Wiener filter reconstruction. Top left: True signal to be reconstructed. Top right: Data
which is the result of smoothing the signal and adding Gaussian noise. Bottom: reconstructed
maximum of the posterior (conditional) probability density function for the signal given the data
P(signal|data).

82 3. D2O

3.5 Summary & Outlook
We introduced d2o, a Python module for cluster-distributed multi-dimensional numerical ar-
rays. It can be understood as a layer of abstraction between abstract algorithm code and actual
data-distribution logic. We argued why we developed d2o as a package following a low-level
parallelization ansatz and why we built it on MPI. Compared to other packages available for
data parallelization, d2o has the advantage of being ready for action on one as well as several
hundreds of CPUs, of being highly portable and customizable as it is built with Python, that it is
faster in many circumstances, and that it is able to treat arrays of arbitrary dimension.
For the future, we plan to cover more of numpy’s interface such that working with d2o becomes
even more convenient. Furthermore we evaluate the option to build a d2o distributor in order to
support scalapy’s block-cyclic distribution strategy directly. This will open up a whole new class
of applications d2o then can be used for.
d2o is open source software licensed under the GNU General Public License v3 (GPL-3) and is
available by https://gitlab.mpcdf.mpg.de/ift/D2O.

Competing interests
The authors declare that they have no competing interests.

Author’s contributions
TS is the principal researcher for the work proposed in this article. His contributions include
the primal idea, the implementation of presented software package, the conduction of the perfor-
mance tests and the writing of the article. MG, FB and TE helped working out the conceptual
structure of the software package and drafting the manuscript. FB also played a pivotal role for
executing the performance tests. Furthermore, TE also fulfilled the role of the principal investi-
gator. All authors read and approved the final manuscript.

Acknowledgments
We want to thank Jait Dixit, Philipp Franck, Reimar Leike, Fotis Megas, Martin Reinecke
and Csongor Varady for useful discussions and support. We acknowledge the support by the
DFG Cluster of Excellence ”Origin and Structure of the Universe” and the Studienstiftung des
deutschen Volkes. The performance tests have been carried out on the computing facilities of the
Computational Center for Particle and Astrophysics (C2PAP). We are grateful for the support by
Dr. Alexey Krukau through the Computational Center for Particle and Astrophysics (C2PAP).

two-process timing as the benchmark’s baseline.

https://gitlab.mpcdf.mpg.de/ift/D2O

Chapter 4

NIFTy 3 - Numerical Information Field
Theory - A Python framework for
multicomponent signal inference on HPC
clusters

This chapter is additionally used as a journal publication submitted to PLOS ONE (Steininger
et al., 2017).
I am the principal researcher of the research described in this chapter. My contributions in-
clude the primal idea for the design and the implementation of presented software package, the
conduction of the performance tests and the writing of the chapter. Jait Dixit (JD), Maksim
Greiner (MG), Daniel Pumpe (DP), Martin Reinecke (MR), and Csongor Varady (CV) helped
working out the conceptual structure of the software package. JD, Philipp Frank (PF), Sebastian
Hutschenreuter (SH), Jakob Knollmüller (JK), Reimar Leike (RL), Natalia Porqueres (NP), DP,
MR, Matevž Šraml (MS), and CV helped implementing and especially documenting the code,
and, together with Torsten Enßlin (TE) helped to focus the work such that it has a high added-
value in real-world applications. JD, MG, JK, RL, NP, DP, MR, CV and TE helped drafting
the article: Specifically, MG contributed approximately 50% to Sec. 4.1. TE contributed ap-
proximately 90% to Sec. 4.2.1, Sec. 4.2.2, and Sec. 4.2.3. JK contributed approximately 50% to
Sec. 4.3.3.1. RL, NP, and MR contributed approximately 5% to Sec. 4.4.1, each. JD, DP, and CV
contributed approximately 5% to Sec. 4.4.2, each. Furthermore, TE also fulfilled the role of a
principal investigator as he is my PhD supervisor. All authors read, commented, and approved
the final manuscript.

Abstract
NIFTy, “Numerical Information Field Theory”, is a software framework designed to ease the
development and implementation of field inference algorithms especially – but not solely – used
in astrophysics. Field equations of the quantities of interest are formulated independently of the

84 4. NIFTy 3

underlying spatial geometry allowing the user to focus on the algorithmic design. Under the
hood, NIFTy ensures that the discretization of the implemented equations is consistent. This
enables the user to prototype an algorithm rapidly in 1D and then apply it to high-dimensional
real-world problems. This paper introduces NIFTy 3, a major upgrade to the original NIFTy
framework. NIFTy 3 allows the user to run inference algorithms on massively parallel high
performance computing clusters without changing the implementation of the field equations. It
supports n-dimensional Cartesian spaces, spherical spaces, power spaces, and product spaces as
well as transforms to their harmonic counterparts. Furthermore, NIFTy 3 is able to treat non-
scalar fields. The functionality and performance of the software package is demonstrated with
example code, which implements a real inference algorithm from the realm of information field
theory. NIFTy 3 is open-source software available under the GNU General Public License v3
(GPL-3) at https://gitlab.mpcdf.mpg.de/ift/NIFTy/.

4.1 Introduction
Physical quantities are only accessible to the observer via measurements. Those measurements
are never a perfect mapping of the quantity of interest, the so-called signal. They are virtually
always subject to noise, which cannot be distinguished from the signal. Usually measurements
capture the quantity of interest only indirectly, be it by event rates, receiver voltages, absorption
or reflection patterns, or photon counts. Such indirect measurements cannot capture all proper-
ties of the signal.
There are two ends from which this shortcoming can be approached. The first one is to improve
the measurement itself. This includes the development of more precise instruments, better ob-
servation strategies, and completely new experimental designs. The second one is to improve the
processing of the data, i.e. the way how the signal is estimated once the data have been taken.
This is the domain of information theory.
Modern information theory is based on the work of Cox (1946), Shannon (1948) and Wiener
(1949). It has seen tremendous advances since the development of computers, which allow the
calculation of statistical estimates in the absence of closed form solutions through methods such
as gradient descent (e.g. Fletcher and Powell, 1963) and sampling (e.g. Metropolis et al., 1953).
In the last decades, data sets have become larger and larger, which makes their processing feasi-
ble only on a computer, even if a closed form solution is available.
Many physical signals are fields, quantities that are described as functions over a continuous do-
main (e.g. time or space). Applying the rules of information theory to fields means applying the
calculus of probabilities to functional spaces. This leads to a statistical field theory, which we call
information field theory (IFT) (Enßlin and Weig, 2010, Enßlin et al., 2009). Since fields have an
infinite amount of degrees of freedom by nature, the calculations cannot directly be implemented
on a computer, which can only store and process a finite amount of bits. Careful considerations
have to be made in discretizing the continuous equations to calculate statistical estimates that
are independent of the chosen resolution, as long as all scales that are imprinted in the data are
resolved. These considerations led to the development of NIFTy (Selig et al., 2013).
NIFTy – “Numerical Information Field Theory” – is a software framework in which algorithms

https://gitlab.mpcdf.mpg.de/ift/NIFTy/

4.2 Problem Description 85

for information extraction from data and signal reconstruction are implemented. Its purpose is to
ease the technical as well as conceptual difficulties which arise when working with IFT. To that
end NIFTywas designed in a way that equations involving fields are formulated independently of
the underlying spatial geometry and discretization. Thus, an algorithm implemented with NIFTy
to infer a field living on a sphere, can be transformed to infer a field living in a three-dimensional
Cartesian space by the change of a single line of code. NIFTy is a development framework writ-
ten in Python1. The structure NIFTy brings in terms of a development framework is bundled
with the power of external compiled-language modules for numerical efficiency.
As it greatly reduced the complexity of implementing algorithms for field inference, many ap-
plications of IFT have been implemented using NIFTy, most notably the reconstruction of the
primordial scalar potential (Dorn et al., 2015b), the estimation of extragalactic Faraday rotation
(Oppermann et al., 2015), and the denoised, deconvolved, and decomposed Fermi γ-ray sky
(Selig et al., 2015). However, more and more complex and ambitious field inference projects
brought the original NIFTy package to its limits. To advance further, the capability to make use
of massively parallel high performance computing clusters, treat products of spaces, and work
with non-scalar fields is needed. These requirements have led to a complete redesign of NIFTy.
This new software framework, NIFTy 3, which additionally includes also numerous minor ad-
vances, is presented here and is available at https://gitlab.mpcdf.mpg.de/ift/NIFTy.

4.2 Problem Description

4.2.1 Information Field Theory
In general, a signal inference problem tries to invert a measurement equation

d = f (s, n), (4.1)

that describes how the obtained data d depends on the unknown signal s and further nuisance
parameters n. Actually, we want to know s and are not interested in n, but the latter also influences
the measurement outcome. The problem is that the function f is not necessarily invertible in s,
and that the nuisance parameters may not be known.
This problem is particularly severe when the signal is a field, viz. a continuous function s(x) over
a manifold Ω. In this case the number of unknowns is infinite, whereas the number of knowns,
the components of the data vector, is finite. The reconstruction of a field from finite data therefore
always requires the usage of additional information. Optimally this is given in the form of a joint
probability distribution P(s, n) for all the unknowns. Hence, this induces a joint probability for
data and signal,

P(d, s) =

∫
DnP(d|s, n)P(s, n)

=

∫
Dn δ(d − f (s, n))P(s, n), (4.2)

1Python homepage http://www.python.org/

https://gitlab.mpcdf.mpg.de/ift/NIFTy
http://www.python.org/

86 4. NIFTy 3

where
∫
Dn denotes the integration over all degrees of freedom of n. The posterior distribution

for the unknown signal is then given by Bayes’ theorem:

P(s|d) =
P(d, s)
P(d)

=
e−H(d,s)

Z(d)
, (4.3)

where we introduced the language of statistical field theory by defining

H(d, s) := − lnP(d, s) and (4.4)

Z(d) := P(d) =

∫
Ds e−H(d,s). (4.5)

Hereafter we focus on a special case that leads to the well-known Wiener filter theory.

4.2.2 Wiener Filter Theory
A simple example for an inference problem is given by a linear measurement of a signal s with
additive and signal independent noise n

d = Rs + n (4.6)

of a Gaussian signal

s←↩ P(s) = G(s, S) =
1

|2πS | 12
exp

(
−1

2
s†S −1s

)
(4.7)

with additive and signal independent Gaussian noise n ←↩ P(n|s) = G(n,N) and known signal
and noise covariances S = 〈s s†〉(s) and N = 〈n n†〉(n). † denotes transposition and complex
conjugation so that s†t =

∫
Ω

dx s∗(x) t(x) is a scalar and 〈 f (x)〉(x|y) =
∫
DxP(x|y) f (x) is the

expectation of f (x) over P(x|y).
The response R maps the continuous field s onto a discrete data vector d. For individual entries
of this data vector Eq. (4.6) reads

di =

∫
Ω

dx Ri(x)s(x) + ni (4.8)

Here, i ∈ {1, . . . ,Ndata} with Ndata ∈ N is the index of the data vector’s entries. Ω is the physical
manifold the signal is defined on.
Since Eq. (4.6) maps a continuous space with infinitely many degrees of freedom onto a finite-
dimensional data vector and involves an additive stochastic noise term, the problem is not uniquely
invertible. This means that many combinations of s- and n-realizations can result in the same data
vector. One can now apply an inference algorithm to find the ‘best’2 estimate for s. One pos-
sibility here is the Wiener filter, which provides the posterior mean signal as the field estimate,

m =
(
S −1 + R†N−1R

)−1
R†N−1d, (4.9)

2The exact meaning of ‘best’ depends on the algorithm.

4.2 Problem Description 87

where S is the covariance of the signal and N the covariance of the noise. The superscript †
denotes complex conjugation and transposition. Spelled out, this means the equation∫

Ω

dy

S −1(x, y) +

Ndata∑
i, j=1

Ri(x)N−1
i j R j(y)

 m(y) =

N∑
i, j=1

Ri(x)N−1
i j d j (4.10)

is solved for the estimate m(x).
Eq. (4.8) already shows the three main components of data equations in the area of signal re-
construction: operators (R) that act on fields (s) which are defined on a space (Ω). The signal
posterior is also a Gaussian,

P(s|d) = G(s − m,D) with (4.11)

D =
(
S −1 + R†N−1R

)−1
, (4.12)

m = D j, and (4.13)
j = R†N−1d. (4.14)

The signal posterior mean m = 〈s〉(s|d) is obtained from the data by projecting it into the data
space as j = R†N−1d after inverse noise weighting and then by operating on it with the so called
information propagator D. The operation that turns the data into the signal estimate m = FWd,

FW =
(
S −1 + R†N−1R

)−1
R†N−1, (4.15)

is called the Wiener filter (Wiener, 1949). The posterior signal uncertainty 〈(s − m) (s − m)†〉(s|d)

is also given by D, which is also called Wiener variance.
Eq. (4.15) illustrates the complexity operators can have. They are composed of a number of
operators that act on different spaces that often need to be inverted as well. Since the number of
pixels used to represent fields can be large, an explicit storage of such operators is prohibitive.
They have to be represented by computer routines that perform their actions. This, however,
makes it difficult to access the entries of an operator, for example to examine the uncertainty of
the Wiener filter reconstruction, which is encoded in the entries of D.
The building blocks of D, the signal and noise covariances S and N, might be diagonal in har-
monic spaces. In contrast, the response is usually best described in position space. Thus, the
representation of D−1 = S −1 + R†N−1R requires harmonic transforms, e.g. Fourier transforms,
and the application of D to j requires the solving of the linear system D−1m = j, which asks for
many evaluations of such transforms.
In Fig. 4.1 a minimal Wiener filter implementation in NIFTy 3 is shown. Thereby, an exemplary
geometry is set up in the beginning and in the end the Wiener filter is applied explicitly. In the
middle part the definition and initialization of the data (d), the signal- and noise-covariances (S
and N), and the response operator (R) are left out, since this step is highly problem specific. Please
refer to Sec. 4.5 for an exhaustive discussion of a Wiener filter implementation.

4.2.3 Interacting Information Field Theory
If any of the simplifying assumptions of the Wiener filter problem is violated, e.g. if signal or
noise are not Gaussian, the noise depends on the signal, or one of the operators R, S , and N is

88 4. NIFTy 3

1 # Import NIFTy package

2 import nifty as ift

3

4 # Import Wiener filter from nifty.library

5 from ift.library import WienerFilterCurvature

6

7 # Setting up...

8 # ...position space (RGSpace as an example)

9 s_space = RGSpace([512, 512])

10 # ...an operator for harmonic transforms

11 fft = FFTOperator(s_space)

12 # ...harmonic space

13 h_space = fft.target[0]

14 # ...power space

15 p_space = PowerSpace(h_space)

16

17 # Define specific components here

18 d, S, N, R = ...

19

20 # Compute the "information source"

21 j = R.adjoint_times(N.inverse_times(d))

22

23 # Setting up (the inverse of) the propagator

24 C = WienerFilterCurvature(S=S, N=N, R=R)

25

26 # Apply the Wiener filter

27 m = C.inverse_times(j)

Figure 4.1: Minimal example for a Wiener filter reconstruction in two dimensions, whereby the
instantiation of problem specific components is omitted.

4.2 Problem Description 89

not known a priori, the inference problem becomes much more difficult and the posterior mean
is not obtained by a linear transformation of the data.
However, even then an information Hamiltonian H(d, s) = − lnP(d, s) can be defined, which
encodes all the information on the field. One might want to minimize this Hamiltonian with
respect to the field s to obtain the maximum a posteriori estimate for it. Or one uses this Hamil-
tonian within a variational Bayes scheme, in which an approximate posterior P̃(s|d) (usually a
Gaussian) is matched to the full posterior via their Kullback-Leibler distance

KL(P̃,P) =

∫
Ds P̃(s|d) ln

P̃(s|d)
P(s|d)


=

〈
H(s|d) − H̃(s|d)

〉
P̃(s|d)

. (4.16)

Therefore, dedicated numerical infrastructure is required to minimize such functionals efficiently.

4.2.4 Manifold Independence & Discretized Continuum
It is remarkable that the abstract algorithm for the inference of s (e.g. Eq. (4.9)) is independent of
the choice of Ω. In a concrete implementation, however, a discretization of Ω must be provided,
since classical computers perform only discrete arithmetic. Still, because of this independence of
Ω, the implementation should be modular with respect to it. NIFTy 1 was specifically designed
for separating the inference algorithm from the problem’s manifold. For this the concept of
space- and field-objects was introduced: spaces describe the geometrical properties of physical
space, whereas fields are defined on spaces and carry actual data. As a consequence, algorithms
implemented within the NIFTy framework are by design manifold and resolution independent.
Particularly, NIFTy takes care of correctly including volume factors (V) whenever scalar products
or, generally speaking, index contractions between tensors are performed. Volume factors are a
direct consequence of the discretization of Ω. Giving an example, the scalar product of two
signal fields s and u on Ω behaves like

s†u =

∫
Ω

dx s∗(x)u(x) ≈
Q∑

q=1

Vq s∗quq. (4.17)

Compare Selig et al. (2013, chapter 2.2) for more details.

For completeness, two further key concepts of NIFTy are discussed.

4.2.5 Data Representation
For many signal reconstruction problems one can assume that the signal s is statistically homoge-
neous and isotropic. This means that the statistical properties of s(x) are independent of position
in Ω for the former, and from direction for the latter. Such fields have the remarkable property
that their correlation structure can be described by a one-dimensional power spectrum which is

90 4. NIFTy 3

diagonal in a harmonic basis of Ω. Hence, it is very beneficial to perform covariance-related cal-
culations in the harmonic basis, since the involved Fourier transforms scale3 likeO(Npix log(Npix))
and therefore are cheap compared to full rank matrix multiplications scaling like O(N2

pix), where
Npix is the cardinality of Ω’s pixelization. NIFTy has representations for its supported manifolds
in signal as well as harmonic bases, and transforming fields from one representation to another
is done via efficient external libraries (Frigo and Johnson, 2005, Gorski et al., 2005).

4.2.6 Implicit vs. Explicit Operators

In the previous section we have seen that in many cases one can choose a basis for which the co-
variance operators are diagonal. However, in general an arbitrary measurement device’s response
is not a square operator and therefore is not diagonalizable. Expressing the operator explicitly as
a matrix of shape (Npix,Ndata) leads to problems if Npix is large: first, matrix multiplications will
slow down the reconstruction algorithm as they scale like O(N2

pix) and second, the operator may
simply not fit into main memory. Because of this, operators in NIFTy are almost always stored
as implicit objects. This means that instead of storing every entry of an operator’s matrix rep-
resentation explicitly, only its action is implemented. However, expressing operators implicitly
has the drawback that properties like the operator’s diagonal, trace or determinant can – within
reasonable computing time – only be determined approximately by probing (Hutchinson, 1989)
that might be combined with an inference step (Dorn and Enßlin, 2015, Selig et al., 2012). Also,
the inverse of an implicitly defined operator must be computed using numerical inversion algo-
rithms like the conjugate gradient method (Hestenes and Stiefel, 1952), whenever it is applied
to a vector. To overcome those inconveniences, NIFTy has the built-in functionality to compute
those properties and actions transparently for the user.

4.2.7 Reference Projects

The NIFTy framework provides rich structure in terms of a class hierarchy and built-in function-
ality, while at the same time custom objects – first and foremost operators – can be implemented
easily. Therefore, it is well suited for rapidly prototyping new inference algorithms, as well as
for building full-grown signal reconstruction applications. Because of this, since its release in
2013, NIFTy 1 has been used in various published scientific codes and papers. Some noteworthy
examples are:

• Estimating galactic and extragalactic Faraday rotation
(Oppermann et al., 2012, 2015, Vacca et al., 2016)

• D3PO for photo count imaging (Selig and Enßlin, 2015)

• Signal inference with unknown response (Dorn et al., 2015a)

• Cosmic expansion history reconstruction from SNe Ia data (Porqueres et al., 2017)

3Note that for regular grids fast Fourier transforms exist that scale with the aforementioned O(Npix log(Npix)).
On curved manifolds like the sphere and for non-regular spaced discretizations the costs may be higher.

4.3 Limitations of NIFTy 1 91

• Dynamic system classifier (Pumpe et al., 2016)

• PySESA for geospatial data analysis (Buscombe, 2016)

• RESOLVE for radio interferometry (Junklewitz et al., 2016)

• Tomography of the Galactic free electron density (Greiner et al., 2016)

• Bayesian weak lensing tomography (Böhm et al., 2017)

• Noisy independent component analysis of auto-correlated components
(Knollmüller and Enßlin, 2017)

4.3 Limitations of NIFTy 1
Despite all its strengths, NIFTy 1 has some considerable limitations which were the cause for
developing NIFTy 3. Those limitations are discussed in the following.

4.3.1 Combined Manifolds & Field Types
As discussed in Sec. 4.2.4, NIFTy separates the domain on which a field lives from the field
itself. The code architecture was designed for natively supporting only scalar fields on domains
consisting of only one space. However, there are many physical applications where this is too
limiting.
For example, the D3PO code (Selig and Enßlin, 2015) performs a reconstruction of the diffuse
and point-like γ-ray sky emissivity for a given set of photon counts. This can be done for photon
counts at arbitrary energies permitting the construction of sky images in distinct energy bands.
However, the individual energy bands are reconstructed separately so far; i.e. for a fixed pixel and
fixed energy band the relevant information from nearby energy bands is not exploited. The next
logical step is to reconstruct and decompose the true sky emissivity for all energy bands jointly
within one single reconstruction. In this scenario information about the energy correlation func-
tion should be used for linking and letting the information cross-talk between the energy bands.
This involves fields living on a domain which is the combination, viz. the Cartesian product, of
the geometrical space (the celestial sphere) and the energy dimension (a one-dimensional Carte-
sian space).
Another example is the reconstruction of the Galactic free electron density by Greiner et al.
(2016). The algorithm was initially built for reconstructing scalar quantities. But in principle the
algorithm can be used for reconstructing vector fields, e.g. magnetic fields, or even tensor fields
as well. This makes it necessary to be able to specify fields of arbitrary type; e.g. scalar, vector
or tensor type.
Independently of its technical challenges, dealing with power spectra on domains being the Eu-
clidean product of single spaces is a conceptually non-trivial task. Analyzing power spectra, as
well as drawing random samples from given spectra for such domains, requires high diligence,
as the statistical normalization and the field’s Hermitianity are broken when using naive standard
approaches. In Sec. 4.4.1, and especially in Sec. 4.4.1.7 and Sec. 4.4.1.8 it is discussed how
NIFTy 3 tackles those challenges.

92 4. NIFTy 3

4.3.2 Scalability & Parallelizability
Signal reconstruction problems easily reach sizes where one mainly runs into two problems.
First, given a reconstruction algorithm, the individual steps of this algorithm scale at best linearly
(O(Ndata)) with the size Ndata of the data set. For example, adding 1024 MiB of array data takes
twice as long as adding 512 MiB4. Fourier transforms scale with O(Ndatalog(Ndata)) at best and
explicit matrix-vector multiplications even only with O(N2

data). Hence, with large data sets one
easily reaches unacceptable computational run-times.
Second, for large problems the quantities of interest may not fit into a single computer’s memory
anymore. For example, for the reconstruction of the Milky Way’s dust density in terms of a
cubic volume, a side resolution of 2048 is a reasonable degree of refinement. This cube contains
20483 ≈ 8.6 · 109 voxels. Hence, a scalar field on this cube containing 64-bit floating point
numbers consumes 64 GiB, and in practice one needs to handle several field instances at the
same time. Thus, even if runtime was not a problem, the reconstruction for such a field simply
does not fit onto an affordable shared memory machine.
Hence, NIFTy 1, which does not provide parallelization to the core, reaches its limits for large
reconstruction problems. In Sec. 4.4.6 it is described how NIFTy 3 makes use of the software
packages D2O (Steininger et al., 2016) to achieve scalability and parallelizability, and keepers5

for cluster compatibility.

4.3.3 Refactoring the Code Structure
In addition to the issues addressed in the previous Sec. 4.3.1 and Sec. 4.3.2, a whole set of
further modifications was due, to ensure that the NIFTy framework and the codes being built
with it remain robust and modular in the future.

4.3.3.1 Energy Functionals

In almost all realistic applications an energy functional, for example the information Hamilto-
nian,

H(d, s) = − lnP(d, s) (4.18)

must be minimized to reconstruct a sought-after signal. See Oppermann et al. (2015), Selig and
Enßlin (2015), or Greiner et al. (2016) as examples. When minimizing the information Hamil-
tonian in the context of IFT, one has the advantage that its analytic form is known. Hence, in
contrast to most common minimization settings, the gradient, curvature and any other derivative
of the energy functional are directly accessible and can be used by appropriate minimizers6. Be-
cause of this structure, evaluating the energy functional at a certain location naturally means to
consecutively calculate the functional’s derivatives with decreasing degree and reusing the pre-

4For very small data arrays, a doubled array size can result in less than the doubled time because of constant-
time overheads.

5https://gitlab.mpcdf.mpg.de/ift/keepers
6The gradient can be used directly in gradient-based methods like steepest-descent or LBFGS (Byrd et al., 1995,

Liu and Nocedal, 1989); additionally, the true curvature can be used in Newton minimization schemes.

https://gitlab.mpcdf.mpg.de/ift/keepers

4.3 Limitations of NIFTy 1 93

vious information.
As an example, for a simple Wiener filter (Wiener, 1949) this looks as follows. Given a linear
measurement of a signal s←↩ G(s, S) with an instrument having a response R and additive noise
n←↩ G(n,N), the data equation reads

d = R(s) + n (4.19)

(cf. Eq. (4.6)). The maximum-a-posteriori solution given by a Wiener filter is represented by the
minimum of the following information Hamiltonian

H(d, s) =
1
2

s†D−1s − j†s + const, (4.20)

where
D = (S −1 + R†N−1R)−1 and j = R†N−1d. (4.21)

When evaluatingH(x), one computes the components of its derivatives along the way, too:

∂sx∂syH(d, s) = (D−1)xy and ∂sxH = D−1s − j (4.22)

Hence, for computation efficiency it is crucial to reuse those very building blocks to avoid dupli-
cate calculations. A minimizer, for example, will start with evaluating the functional’s value at
the given current position in parameter space. Afterwards, it will need the gradient and (depend-
ing on the algorithm) maybe the curvature. When storing the right portions of information, those
queries can be answered immediately, speeding up the minimization process as a whole.
So far NIFTy was missing structure which supported the efficient implementation of information
Hamiltonians. This changed with NIFTy 3, cf. Sec. 4.4.5.

4.3.3.2 Modularity of Minimizers and Probers

Real-life information Hamiltonians are hard to minimize since they may be ill-conditioned,
multi-modal, non-convex and exhibit plateaus. This makes it all the more important to freely
choose a minimization algorithm and maybe even sequentially combine several of them. Sec. 4.4.5
shows how generality and modularity have been improved for NIFTy 3.
As described in Sec. 4.2.6, probing is necessary to infer quantities like the trace or diagonal of an
arbitrary implicitly represented operator. Since probing an operator can become the most costly
part of an inference algorithm, it is crucial that this task is carried out wisely. In Sec. 4.2.6 an
overview is given how NIFTy 3 supports the user in this respect.

4.3.3.3 Meta-Information on Power Spectra

Power spectra are crucial quantities in most inferences that are built with NIFTy, as they encode
the statistical information which is used to overcome the limited and noisy nature of measurement
data. However, in NIFTy 1 power spectra are simply stored as un-augmented arrays, putting
the burden on the users to manage all the meta-information like band structures, links to the
harmonic partner space, or binning information. In Sec. 4.4.1.6 it is described how NIFTy 3 uses
the concept of PowerSpaces to confine all of this interrelated information in one place.

94 4. NIFTy 3

4.4 The Structure of NIFTy 3
In this section we discuss how NIFTy 3 meets the requirements stated in Sec. 4.2.

4.4.1 Domain Objects and Fields
Fields are the main data carriers in NIFTy. Beside its data array, a field instance also stores
information about its data’s domain. A domain object can either be a Space or FieldType
instance and it contains the information and functionality a field needs to know about the data
it holds. A space in NIFTy 3 defines a spatial geometry, or to be precise, it represents the finite
resolution discretization of a certain continuous and compact manifold. Additionally, NIFTy 3
also provides a field-type class, which is the base class for all bundles that may be put on top
of the manifold: vectors, tensors, or just lists of numbers7. This illustrates how the concept of
spaces from NIFTy 1 has been extended to a new base class called DomainObject. The class
tree is shown in Fig. 4.2.
A crucial feature of NIFTy 3 is that the domain of a field is a tuple of domain objects instead

of a single space, i.e. in general the domain is the Cartesian product of spaces and field-types.
Actually, the domain attribute of a field can contain an arbitrary amount of spaces and field types,
including zero. This makes it a very general concept which naturally covers various use cases.
The conventional use case is a field which is defined over one single space, for example a two-
dimensional regular grid space.

1 In [1]: f = ift.Field(domain=ift.RGSpace(shape=(4, 4)),

2 val=1))

3 In [2]: f.domain

4 Out[2]: (RGSpace(shape=(4, 4),

5 zerocenter=(False, False),

6 distances=(0.25, 0.25),

7 harmonic=False),)

8 In [3]: f.val

9 Out[3]: <distributed_data_object >

10 array([[1, 1, 1, 1],

11 [1, 1, 1, 1],

12 [1, 1, 1, 1],

13 [1, 1, 1, 1]])

Note that, as described above, for consistency with multi-domain fields f.domain returns a tuple
of space(s) even though f was defined on a single space.
The second example shows a field that is defined over the Cartesian product of a HEALPix sphere
(Gorski et al., 2005) and a one-dimensional regular grid space.

1 In [4]: f = ift.Field(domain=(ift.HPSpace(nside=64),

2 ift.RGSpace(shape=(128,))))

3 In [5]: f.shape

7The FieldArray class represents a collection of numbers with a certain shape, but without any further structure.

4.4 The Structure of NIFTy 3 95

DomainObject

*shape: tuple

*dim: int
*weight(data, ...)

pre_cast(data, axes)

post_cast(data, axes)

Space

*harmonic: boolean

*total_volume: int
*copy()

*hermitian_decomposition(data, ...)

*get_distance_array(distribution_strategy)

*get_fft_smoothing_kernel_function(sigma)

RGSpace

zerocenter: tuple

distances: tuple

HPSpace

nside: int

GLSpace

nlat: int

nlon: int

LMSpace

lmax: int

mmax: int

PowerSpace

config: dict

harmonic_partner: Space

kindex, pundex, rho: np.ndarray

pindex, k_array: distributed_data_object

FieldType

weight(data, ...)

FieldArray

Figure 4.2: UML diagram that shows DomainObject and its descendants. For the derived classes
only added attributes and methods are given. All superordinate attributes and methods apply im-
plicitly to the child classes, too, since NIFTy 3 strictly obeys the Liskov substitution principle.
Abstract attributes and methods are denoted with a *; Unless specified explicitly, they are imple-
mented only by the leafs of the inheritance tree.

4 Out[5]: (49152, 128)

5

6 In [6]: f.dof

7 Out[6]: 6291456

This can be used for a combined analysis of 128 energy bands for each pixel on a sphere. Note
that the shape of f’s data array is composed of the shape of a single HEALPix sphere (49152)
and the regular grid space. Hence, the field has 6291456 degrees of freedom in total.

96 4. NIFTy 3

The way to store data8 in NIFTy 3 is to define a field which lives on no geometric space at all.

1 In [7]: f = ift.Field(domain=ift.FieldArray((128,)))

2

3 In [8]: f.shape

4 Out[8]: (128,)

The domain concept generalizes so far that one can even define a field whose domain is empty:

1 In [9]: f = ift.Field(domain=(), val=123.)

2

3 In [10]: f.shape

4 Out[10]: ()

5

6 In [11]: f.val

7 Out[11]: <distributed_data_object >

8 array(123.)

This represents a single scalar, without any further information; neither geometrical nor struc-
tural.

4.4.1.1 Separation of Responsibilities

In contrast to NIFTy 1, domain objects in NIFTy 3 only contain information and functionality
regarding the geometry they define, e.g., grid distances and pixel volumes. Actually, in NIFTy 1
the field class was conceptually agnostic regarding the data object it possessed, as all numerical
work was done by the space instances. In NIFTy 3 fields are defined on a tuple of domain-objects
and therefore numerical operations affect the structure as a whole. Hence, the responsibility for
numerical operations had to be elevated from the space objects. To be precise, this means that the
responsibility for, e.g., arithmetics, power spectrum analysis, and random sample generation was
moved into the field class. Functionality for, e.g., harmonic transforms, smoothing, and plotting
was realized in terms of new dedicated operators. This change was an important step to better
obey the single responsibility principle (Martin, 2003), which is why the code is now much more
modular, stable and extendable.

The NIFTy standard-library contains the following spaces.

4.4.1.2 RGSpace

The RGSpace (Regular Grid Space) represents an n-dimensional toroidal manifold, i.e. the
Cartesian product of n circles (S 1 × ... × S 1). Since the grid is regular, each pixel has the same
volume weight, which in turn is given by the pixels’ edge lengths, i.e. the distances attribute.
The harmonic partner space of an RGSpace is again an RGSpace with identical shape but differ-
ent grid lengths. Actually, the harmonic space’s grid is the reciprocal lattice of the signal space’s

8Here, data stands for the manifold-free result of a measurement in the sense of Eq. (4.1): d = f (s, n).

4.4 The Structure of NIFTy 3 97

grid. Hence, the pixels’ edge lengths in the harmonic grid are given by the inverse of the longest
distances in the signal space grid9.

1 In [12]: signal_space = ift.RGSpace(shape=(4, 5), distances=(0.8,

0.4))

2 In [13]: fft = ift.FFTOperator(signal_space)

3 In [14]: f = ift.Field(signal_space , val=np.arange(20.))

4 In [15]: g = fft(f)

5 In [16]: g.domain

6 Out[16]: (RGSpace(shape=(4, 5),

7 zerocenter=(False, False),

8 distances=(0.3125, 0.5),

9 harmonic=True),)

10 In [17]: f.norm()

11 Out[17]: 28.114053425288926

12

13 In [18]: g.norm()

14 Out[18]: 28.114053425288926

Note that the scalar product and therefore the norm remains invariant, irrespective of whether the
field was represented in the signal or the harmonic basis.
Additionally, the RGSpace class has the degree of freedom, whether the data should be stored
zerocentered or not. If the zerocenter attribute is set to true for a certain axis, the origin is
put at the center of the data array. This means that in case of a one-dimensional zero-centered
harmonic space with 6 pixels the values for k are placed like:

{k−3, k−2, k−1, k0, k1, k2} for ki with i ∈ [−3, ..., 2] (4.23)

In contrast, non-zero-centered ordering yields

{k0, k1, k2, k−3, k−2, k−1} for ki with i ∈ [−3, ..., 2] (4.24)

Albeit being less convenient when looking at a spectrum by eye, fft libraries like FFTW (Frigo
and Johnson, 2005) usually follow the non-zero-centered convention. NIFTy 3 can handle both
conventions and performs the mediation with respect to those external libraries.

4.4.1.3 HPSpace

The HPSpace (HEALPix Space (Gorski et al., 2005)) represents a unit 2-sphere. The HEALPix
pixelation subdivides the surface of a sphere into pixels of equal area. Those pixels reside on
iso-latitude circles, with equal spacing on each circle. In NIFTy the represented sphere has a
fixed radius of 1. Hence, the only remaining parameter for HPSpace is the HEALPix resolution
parameter nside. The harmonic partner space for HPSpace is the LMSpace.

9Since the RGSpace represents an n-dimensional torus, the longest distances are given by the circumferences of
the individual circles the torus is made of.

98 4. NIFTy 3

4.4.1.4 GLSpace

Similar to the HPSpace, the GLSpace (Gauss-Legendre Space) is a discretization of the unit 2-
sphere. It consists of nlat iso-latitude rings containing nlon pixels each. The pixels are equidistant
in azimuth on every ring, and the ring latitudes coincide with the roots of the Legendre poly-
nomial of degree nlat. Within each ring the pixel weights are identical. However, the individual
weights for the different rings are chosen such that a numerical integration is a Gauss quadrature
that is exact for all spherical harmonics Ylm with l < nlat and |m| ≤ (nlon − 1)/2. The harmonic
partner of a GLSpace is the LMSpace.

4.4.1.5 LMSpace

The LMSpace is the harmonic partner domain for a pixelization of the unit 2-sphere. Its name is
derived from the typically employed indices of the spherical harmonics Ylm. A LMSpace instance
holds a value for every Ylm with −l ≤ m ≤ l and 0 ≤ l ≤ lmax where lmax is the cutoff frequency.
It can be a harmonic partner to either the HPSpace or the GLSpace. There is a unique projection
from LMSpace to HPSpace and to GLSpace, respectively. However, this projection is not nec-
essarily invertible; see Sec. 4.4.2.1 for details. The volume weight is 1 for each of the pixels in
LMSpace.

4.4.1.6 PowerSpace

The PowerSpace is used to condense the k-modes of a harmonic space into a one-dimensional
space, the discrete isotropic power spectrum. This is a natural step when analyzing statistically
homogeneous and isotropic fields, and the PowerSpace class provides a rich functionality for
this kind of analysis (cf. Sec. 4.4.1.7). The PowerSpace condenses the information of a har-
monic space of arbitrary dimension into a one-dimensional space by defining bins into which
the different k-modes are aggregated. By this, it enables data scientists to write algorithms that
are independent of the underlying space. The PowerSpace keeps information about the relation
to its harmonic partner space for both numerical efficiency and enabling field synthetization (cf.
Sec. 4.4.1.8).
Note that depending on the application there is an ambiguity to what the correct volume weight-
ing for this space should be, cf. Sec. 4.2.4. The first weighting is induced by the harmonic partner
space and uses the multiplicity ρ of the modes in each bin as weights. This weighting is highly
dependent on the structure of the harmonic partner space. The second weighting is induced by
regarding the power space as a one-dimensional space on a (potentially) irregular grid, which
induces a volume factor equal to the bin size. The third weighting is obtained analogously to
the second but differs by using a logarithmic axis log(k). It is used when calculating smoothness
on a log-log scale, which is required when a prior that favors power law spectra is wanted (cf.
Weig and Enßlin 2010). Finally, there is a trivial fourth weighting where the volume factors are
constantly set to one. This is, for example, needed in the critical filter (cf. Enßlin and Frommert
2011).

4.4 The Structure of NIFTy 3 99

4.4.1.7 Power Spectrum Analysis

In this section we describe how the one-dimensional power spectrum for a given field is com-
puted. As mentioned in Sec. 4.2.5, this one-dimensional quantity fully describes the correlation
structure of statistically homogeneous and isotropic fields. The reason for this is that for such
fields the statistical properties in the harmonic space solely depend on the distance to the origin,
but not the direction.
The following example is in order: Let s be the discretization of a two-dimensional Cartesian
space and f a field on s:

1 In [19]: s = ift.RGSpace(shape=(4,4), zerocenter=True)

2 In [20]: s

3 Out[20]: RGSpace(shape=(4, 4),

4 zerocenter=(True, True),

5 distances=(0.25, 0.25),

6 harmonic=False)

7 In [21]: f = ift.Field(domain=s, val=1.)

s has a total volume of 1 by default, which is the reason why the edge length of s’s pixels is
equal to 0.25. To compute its power spectrum, f first must be transformed to the harmonic basis.

1 In [22]: fft = ift.FFTOperator(s)

2 In [23]: f_h = fft(f)

3 In [24]: s_h = f_h.domain[0]

4 In [25]: s_h

5 Out[25]: RGSpace(shape=(4, 4),

6 zerocenter=(True, True),

7 distances=(1.0, 1.0),

8 harmonic=True)

Now, the power spectrum can be computed by:

1 In [26]: f_p = f_h.power_analyze()

Note that the domain of f is a PowerSpace instance, viz. a one-dimensional irregularly gridded
space with 6 pixels:

1 In [27]: s_p = f_p.domain[0]

2 In [28]: s_p

3 Out[28]: PowerSpace(

4 harmonic_partner=RGSpace(shape=(4, 4),

5 zerocenter=(True, True),

6 distances=(1.0, 1.0),

7 harmonic=True),

8 distribution_strategy=’not’,

9 logarithmic=False,

10 nbin=None,

11 binbounds=None)

12 In [29]: f_p.shape

13 Out[29]: (6,)

100 4. NIFTy 3

Let’s discuss what happened during the f_h.power_analyze() call. Recall that f_h is defined
on a 4 × 4 grid. First of all, s_h is asked for the distances with respect to the center:

1 In [30]: s_h.get_distance_array(’not’)

2 Out[30]:

3 <distributed_data_object >

4 array([[2.82, 2.23, 2. , 2.23],

5 [2.23, 1.41, 1. , 1.41],

6 [2. , 1. , 0. , 1.],

7 [2.23, 1.41, 1. , 1.41]])

There are several pixels which have the same distance to the center. Those pixels together con-
stitute a bin; hence, there are six bins in total. A pixel’s bin-affiliation is stored in the so-called
pindex array:

1 In [31]: s_p.pindex

2 Out[31]: <distributed_data_object >

3 array([[5, 4, 3, 4],

4 [4, 2, 1, 2],

5 [3, 1, 0, 1],

6 [4, 2, 1, 2]])

The multiplicity of each bin is given by rho; its distance to the grid center by kindex:

1 In [32]: s_p.rho

2 Out[32]: array([1, 4, 4, 2, 4, 1])

3 In [33]: s_p.kindex

4 Out[33]:

5 array([0., 1., 1.41, 2., 2.24, 2.83])

Concretely, calculating the power spectrum of f_h now means accumulating the absolute squared
of f_h’s pixel values in their respective bins and divide by rho to form the average. Assuming
the artificial case that f_h has the following values

1 In [34]: f_h.val

2 Out[34]:

3 <distributed_data_object >

4 array([[-1.+3.j, 4.+5.j, 2.+4.j, 0.+2.j],

5 [-3.+6.j,-3.+1.j,-4.+2.j, 3.+3.j],

6 [1.+4.j, 2.+7.j,-4.+1.j, 4.+5.j],

7 [3.+5.j,-2.+0.j,-3.+6.j,-3.+1.j]])

this results in

1 In [35]: f_p = f_h.power_analyze()

2 In [36]: f_p.val

3 Out[36]:

4 <distributed_data_object >

5 array([17., 39.75, 10.5, 18.5, 31., 10.])

4.4 The Structure of NIFTy 3 101

Note that the power spectra we have discussed so far are always real. However, if a field’s domain
is the Cartesian product of multiple spaces, it can be necessary to keep track of the real and
imaginary part of f in the position basis separately. In NIFTy 3, this can be controlled with the
keep_phase_information keyword in power_analyze. If it is set to true, the resulting power
spectrum will be complex. Its real (imaginary) part is constructed from the real (imaginary)
part of f. To avoid harmonic transforms whenever possible, the decomposition is done using
Hermitian symmetry constraints, see Sec. 4.4.1.9 for details.

4.4.1.8 Power Spectrum Synthesis

It is very important to be able to create random samples for a given power spectrum. For a field
f_p in NIFTy 3, this can be done using the method f_p.power_synthesize(). This routine
draws a Gaussian random field with zero mean and unit variance in the harmonic partner space
of the power space. Afterwards, the modes are weighted according to the power spectrum that is
stored in f_p.
Note that it is non-trivial to create the Gaussian random field sample in case of real-valued signal-
space fields. This is because the result of Fourier-transforming a real-valued signal space field (f)
has a point symmetry with respect to the origin in the harmonic basis. This becomes particularly
exigent if one synthesizes a random field from a multi-dimensional power spectrum which is
associated with the Cartesian product of two or more spaces. In this case one needs a well-
engineered approach for handling the aforementioned field’s symmetry. This so-called Hermitian
decomposition is discussed in the next section.

4.4.1.9 Hermitian Decomposition

Hermitian decomposition is needed for both, power spectrum analysis and synthesis. Hence, in
the following its rationale is discussed.
The result of a harmonic transform of a real-valued field is in general complex-valued.10 How-
ever, the degrees of freedom are the same for both representations, since – as noticed in the
previous section – in the harmonic basis the field exhibits a point symmetry modulo complex
conjugation. Therefore, it is called Hermitian symmetry. Because of the complex conjugation,
the imaginary part of the reflection’s fixed points vanishes. For power spectrum analysis we need
the functionality to decompose a field into its Hermitian and anti-Hermitian part. In addition,
for power-spectrum synthesis of real fields, one needs normally distributed Hermitian random
samples.
In the following example the harmonic representation of a real-valued random field is shown.
The fixed points of the Hermitian symmetry, where only real numbers should appear, are marked
red.

1 In [37]: s = ift.RGSpace((4, 4))

2 In [38]: f = ift.Field(s, val=np.random.random((4, 4)))

10This is true if the customary transformation kernels are used; e.g. for flat manifolds this is e−2πikx. However, in
principle also sine and cosine kernels are applicable, where the real/imaginary part of the field in position space gets
mapped onto the real/imaginary part of the field in harmonic space, respectively.

102 4. NIFTy 3

3 In [39]: f ∗= 10.
4 In [40]: f.val

5 Out[40]: <distributed_data_object >

6 array([[0.7, 9.5, 9.7, 8.1],

7 [0.3, 1.0, 6.8, 4.4],

8 [1.2, 5.0, 0.3, 9.1],

9 [2.6, 6.6, 3.1, 5.2]])

10 In [41]: fft = ift.FFTOperator(s)

11 In [42]: fft(f).val

12 <distributed_data_object >

13 array(

14 [[4.8+0.j ,-0.8+0.3j,-1.3+0.j ,-0.8-0.3j],

15 [0.8+0.1j,-0.3-0.1j, 0.3-0.7j,-0.9+0.6j],

16 [0.7+0.j ,-0.2+0.j ,-1.1+0.j ,-0.2-0.j],

17 [0.8-0.1j,-0.9-0.6j, 0.3+0.7j,-0.3+0.1j]])

Please note that, for example, the entry at position (2, 4) with value (−0.9 + 0.6i) is the complex
conjugated partner of position (4, 2) with value (−0.9 − 0.6i).
As mentioned in Sec. 4.4.1.7, for power-spectrum analysis it can be necessary to decompose a
complex-valued position-space field into its real and imaginary part. However, for signal infer-
ence often the native basis is a field’s harmonic space. In this case, one certainly could transform
the field from its harmonic into its position space basis, split real and imaginary parts there,
and, finally, transform back. Nevertheless, one ought to avoid harmonic transforms whenever
possible, since they are at least either computationally expensive, or even inherently inexact, cf.
Sec. 4.4.2.1. Luckily, as seen in the example above, the real part of a position-space field cor-
responds to the Hermitian symmetric part of the harmonic-space partner field. Since harmonic
transforms are linear operations, the imaginary part corresponds to the anti-symmetric part of the
field, analogously. Hence, splitting a position-space field into real and imaginary part is equiva-
lent to splitting the harmonic-space field into its Hermitian and anti-Hermitian part.
For synthetization of fields from power spectra, as discussed in Sec. 4.4.1.8, it is necessary to cre-
ate a normal random field that lives in harmonic space and has zero mean and unit variance. If the
position space field shall be real, there are two approaches that correspond to those of the former
paragraph. First, a real-valued sample can be drawn in position space which is then transformed
into the harmonic basis. For the reasons set out above, this approach is sub-optimal. Second, a
random sample can be created in harmonic space directly, from which the anti-Hermitian part is
removed. By this, again, any harmonic transforms are avoided. However, particular diligence is
needed in order to preserve the correct variances.
In the following it is discussed how a field can be decomposed into its (anti-)Hermitian parts.
A straightforward approach is to use a reflection or flipping operator γ which performs a point
reflection with respect to a space’s center. Therefore for a given field f , the Hermitian and anti-

4.4 The Structure of NIFTy 3 103

Hermitian parts fh and fa, respectively, are given by the half-sum and half-difference

fh =
1
2

(f + γ(f)∗) (4.25)

fa =
1
2

(f − γ(f)∗) , (4.26)

where
f = fh + fa. (4.27)

This works perfectly fine for individual spaces and also generalizes for the Cartesian products
of spaces. Assuming a field f whose domain is (s1, s2), the individual flips must be applied
consecutively before applying the complex conjugation.

fh =
1
2

(f + γ1(γ2(f))∗) (4.28)

fa =
1
2

(f − γ1(γ2(f))∗) (4.29)

Correcting the variance When drawing samples for a given power spectrum it is necessary to
create random samples with zero mean and unit variance. However, when forming the half-sums
and -differences of a Gaussian random field with the mirrored version of itself, its variance must
be corrected by a factor of

√
211. However, a priori the correction only applies to those pixels that

got mapped to different pixels via the flipping. The pixels which the flip maps onto themselves,
i.e. the fixed points of the flip, are averaged with themselves and therefore do not need a variance
correction factor. But once the sample is complex valued, the involved complex conjugation will
eliminate the fixed point’s imaginary part in case of the Hermitian portion. To compensate this
loss of power, in this case the fixed points after all need a correction factor of

√
2, too.

4.4.2 Linear Operators
Up to now we have introduced fields as well as their domain-objects. In the following paragraph
we will show how linear and implicitly defined operators act on fields and how they are imple-
mented.
Every operator in NIFTy is obliged to be linear and therefore inherits from the abstract base
class LinearOperator. This base class provides the user with a blueprint for any elaborated
operator. A generic operator A is defined by its input and target domains, the boolean whether
it is unitary or not, and its actual action. With these properties at hand, the application of A
on a given field s, viz. A (s), is split into a generic and a specific part. The generic part in-
volves consistency checks, e.g. whether the domain of s and A match, while the specific part
is the individual operator’s action. More specifically, the application of A (s) is implemented
as A(s) or equivalently as A.times(s). Here, times basically first calls the internal method
_check_input_compatibility, which performs the domain compatibility check for s and A.

11Recap that the sum of two Gaussian distributions is again a Gaussian distribution.

104 4. NIFTy 3

NIFTy Operator description
↪→ ComposedOperator represents a container of LinearOperators which are ap-

plied in sequence.
↪→ EndomorphicOperator represents all operators with equal domain and target.

↪→ DiagonalOperator represents a diagonal matrix in specified domain.
↪→ LaplaceOperator represents the discrete second derivative for 1D spaces.
↪→ ProjectionOperator projects the input onto a NIFTy field.
↪→ SmoothingOperator convolves the input with a Gaussian kernel.
↪→ SmoothnessOperator measures the smoothness of the input by applying the

LaplaceOperator twice.
↪→ FFTOperator implementation of harmonic transforms of fields between

different domains.
↪→ ResponseOperator represents an exemplary response including convolutional

smoothing and exposure.

Table 4.1: Overview of provided Operators, inherited from LinearOperator

This is followed by the implementation of the operator’s action in _times.
In case s is defined over multiple domain-objects but A is not, and A is supposed to act on a spe-
cific domain-object of s, one pins the action of A to a certain space of s’s domain tuple. This is
done by passing the information along with times, e.g. A.times(s, spaces=0), or by using
the default_spaces keyword argument during the operator’s initialization. The output of A(s)
may live on a different domain, depending on the target of A.
As one often needs more than the pure forward application of an operator on a field, i.e. .times,
NIFTy allows the user to further implement _adjoint_times, _inverse_times, and if needed
also _adjoint_inverse_times. In case an operator is unitary, one only needs to imple-
ment _inverse_times or _adjoint_times, as NIFTy 3 does a mapping of methods internally.
NIFTy 3 provides the user with a set of often reappearing operators. An overview can be found
in Tab. 4.1 and Fig. 4.3.
In the following, two especially mentionable operators will be described: the FFTOperator and
SmoothingOperator.

4.4
T

he
Structure

ofN
IFT
y3

105
LinearOperator

*domain: tuple of DomainObjects

*target: tuple of DomainObjects

*unitary: bool

†times(data, ...)
†inverse_times(data, ...)
†adjoint_times(data, ...)
†adjoint_inverse_times(data, ...)
†inverse_adjoint_times(data, ...)

FFTOperator

times(data, ...)

adjoint_times(data, ...)

ComposedOperator

times(data, ...)

. . .

inverse_adjoint_times(...)

ResponseOperator

times(data, ...)

adjoint_times(data, ...)

EndomorphicOperator

target := domain

*self_adjoint: tuple

inverse_times(data, ...)

adjoint_times(data, ...)

adjoint_inverse_times(data, ...)

inverse_adjoint_times(data, ...)

SmoothingOperator

sigma: float

log_distances: bool

times(data, ...)

inverse_times(data, ...)

SmoothnessOperator

strength: float

logarithmic: bool

times(data, ...)

LaplaceOperator

times(data, ...)

adjoint_times(data, ...)

ProjectionOperator

projection_field: Field

times(data, ...)

inverse_times(data, ...)

DiagonalOperator

diagonal: Field

times(data, ...)

inverse_times(data, ...)

adjoint_times(data, ...)

adjoint_inverse_times(data, ...)

Figure 4.3: UML diagram that shows the inheritance structure for the NIFTy Operators. For the derived classes only added
attributes and methods are given. All superordinate attributes and methods apply implicitly to the child classes, too, since NIFTy 3
strictly obeys the Liskov substitution principle. Abstract attributes and methods are denoted with a *; Unless specified explicitly,
they are implemented only by the leafs of the inheritance tree. For the LinearOperator class, the † signals, that the methods are
defined, though not implemented.

106 4. NIFTy 3

4.4.2.1 FFTOperator

The purpose of this operator is the conversion of data from the spatial domain to the frequency
domain and vice versa. For data living on equidistant Cartesian grids (i.e. RGSpaces) this is
more or less straightforward to do: every configuration in position or frequency domain has a
unique corresponding configuration in the other domain. The conversion between both sides is
done efficiently – and without information loss – using an FFT algorithm.
For data living on the 2-sphere, things are more complicated: first of all, it is not possible to
define pairs of equivalent spaces in the sense that data conversion is lossless in both directions
for arbitrary maps. However, for any given LMSpace L a GLSpace G can be found, such that
any data set living on L can be converted to G and back without losing information12. In contrast,
it is not possible to find an LMSpace that can hold the harmonic equivalent of all possible data
sets living on a GLSpace. Hence, the set of band-limited functions on the sphere, which can be
transformed without loss in both directions, is only a tiny subset of all possible functions that can
live on a GLSpace grid. When solving problems on the sphere, it is therefore advantageous to
formulate them primarily in harmonic space.
For the HEALPix discretization of the sphere, things are somewhat worse still: since no analytic
quadrature rule for this set of pixels exists, any transform from LMSpace to HPSpace and back
will only produce an approximation of the input data. In many situations this is acceptable given
the other advantages of this pixelization, like equal-area pixels. But this imperfection must be
kept in mind when choosing pixelizations on which to solve a problem.
In NIFTy 1 harmonic transformations are performed using a method of the particular field in-
stance f, viz. f.transform(). This is a source of confusion and suggests general invertibility
of the harmonic transform, since one could naively assume that f.transform().transform()
is equal to f – which is, incidentally, actually true for RGSpaces. In NIFTy 3 the FFTOperator
solely implements the times and adjoint_times methods. The inverse_times is available
if and only if a certain transform path is explicitly marked to be unitary. This structure makes it
very apparent when there is the risk of information loss.

4.4.2.2 Smoothing Operator

This operator convolves a field with a Gaussian smoothing kernel. The preferred approach is
to apply the convolution in position space as a point-wise multiplication in harmonic space if
possible. The PowerSpace is in general non-regularly gridded, which makes harmonic trans-
formations hard, albeit not impossible. But it is not periodic either, which is why convolutional
smoothing cannot be applied to it. For this case, the SmoothingOperator will perform its
smoothing explicitly in position space.

4.4.2.3 Harmonic Smoothing Operator

This operator exploits the fact that a convolution in the spatial domain is equivalent to multiplica-
tion in the frequency domain. Hence, the input field is first transformed using the FFTOperator.

12Numerical noise caused by the finite precision of floating-point algebra can slightly break invertibility, though.

4.4 The Structure of NIFTy 3 107

The Gaussian kernel to be multiplied is generated with a standard deviation σ, given in the units
of the domain’s geometry. The result after multiplying the transformed input data is reverted
to the position domain by calling FFTOperator’s adjoint_times method. Thus, the caveats
pertaining to transformations mentioned in the Sec. 4.4.2.1 for FFTOperator apply here as well.
Convolutional smoothing is available for all position spaces, i.e. RGSpace, GLSpace and HPSpace.
Internally, a method called get_fft_smoothing_kernel_function is needed for the respec-
tive harmonic partner domain; it returns a function which is used to construct the kernel and is
therefore defined on RGSpace and LMSpace. Note that the correct Gaussian kernel function for
smoothing on the sphere is given by

Ksphere(l) = exp(−1
2

l(l + 1)σ2) (4.30)

instead of the standard frequency response of a Gaussian filter

K(k) = exp(−2(πkσ)2), (4.31)

since one has to take into account the sphere’s curvature (cf. Challinor et al. 2000).

4.4.2.4 Direct Smoothing Operator

The main motivation behind this operator is the aforementioned PowerSpace from Sec. 4.4.1.6,
which is based on a non-regular grid. Since it is not periodic, this approach does not do a trans-
formation into harmonic space but applies smoothing directly. A point-by-point convolution is
done on the space with a 1-dimensional Gaussian kernel with standard deviation σ.
In a normal case of convolution with a kernel of window length w (assume as odd for centered
symmetric kernels) the result is shorter than the original data by w − 1 points, losing (w − 1)/2
points on each end of the data vector. Since this behavior is unsuitable as a solution for NIFTy,
the convolution at the beginning and end of the array, is carried out with partial Gaussian kernels.
Although this method is less accurate at the ends of the data, it does not sacrifice information
resolution at each smoothing. Also note that, since the SmoothingOperator must conserve
the sum of all field entries, on a non-regular grid the exact smoothing behavior depends on
the location within the grid. The denser a certain pixel’s neighborhood, the larger the num-
ber of weight receptors and therefore the lower the resulting Gaussian bell, when applying the
SmoothingOperator on single peaks. An illustration for this behavior is given in Fig. 4.4.
There, the result of smoothing a constant field with three dedicated peaks is shown. Since the
smoothing happens on a logarithmic scale, the peak’s weight is distributed to a different number
of pixels for each peak. The code that was used to produce the plots in Fig. 4.4 is given by

1 import nifty as ift

2 power_space = ift.PowerSpace(ift.RGSpace((2048),

3 harmonic=True))

4 f = ift.Field(power_space , val=1.)

5 f.val[[50, 100, 500]] = 10

6 sm = ift.SmoothingOperator(power_space ,

108 4. NIFTy 3

(a) Unsmoothed field with three peaks.
(b) Smoothed field with different height for each
peak.

Figure 4.4: Illustration of the behavior of smoothing an input field (a) on a non-regular grid or on
a non-regular scale, respectively, which yields (b). Here, the field was smoothed on a logarithmic
scale.

7 sigma=0.1,

8 log_distances=True)

9 plotter = ift.plotting.PowerPlotter()

10 plotter.figure.xaxis.label = ’Pixel index’

11 plotter.figure.yaxis.label = ’Field value’

12 plotter(f, path=’unsmoothed.html’)

13 plotter(sm(f), path=’smoothed.html’)

4.4.3 Operator Inversion

There are cases in which the inverse action of an operator is needed, but not analytically acces-
sible and therefore not directly implementable. An example for this is the propagator operator
in the Wiener filter (cf. Eq. (4.15)), where the quantity D−1 =

(
S −1 + R†N−1R

)
must be inverted.

For such cases NIFTy 3 provides a robust implementation of the conjugate gradient method, fol-
lowing Nocedal and Wright (2006).
Additionally, NIFTy 3 supplies the user with the special class InvertibleOperatorMixin. In
conjunction with multiple inheritance, this mixin-class (cf. Lutz 2010, p. 599), can be used to
equip a custom operator with missing *_times methods. For example, if solely the inverse -
times of a custom operator is implemented, the mixin-class will provide the times via conjugate
gradient.

4.4 The Structure of NIFTy 3 109

4.4.4 Probing
NIFTy 1 already provided a class for probing the trace and diagonal of an implicitly defined
operator A by evaluating the following expressions:

tr[A] ≈
〈
ξ†Aξ

〉
{ξ} =

∑
pq

Apq

〈
ξpξq

〉
{ξ} →

∑
p

App, (4.32)(
diag[A]

)
p
≈

(
〈ξ ∗ Aξ〉{ξ}

)
p

=
∑

q

Apq

〈
ξpξq

〉
{ξ} → App, (4.33)

where 〈 · 〉{ξ} is the sample average of fields ξ which have the property
〈
ξpξq

〉
{ξ} → δpq for

#{ξ} → ∞, and ∗ denotes component-wise multiplication (Selig et al., 2013, sec. 3.4). How-
ever, especially if the operator evaluation involves a conjugate gradient, the probing can account
for the majority of an algorithm’s computational costs, which is why several heuristics turned
out to be useful in practice. Namely, in iterative schemes, it can be beneficial to reuse some or
even all probes {ξ} and/or utilize the former results as starting points for the conjugate gradient
runs. To naturally allow for such heuristics, the prober class has been completely rewritten for
NIFTy 3: now it exhibits special call-hooks for customization.

4.4.5 Energy Object & Minimization
Inferring posterior parameters typically requires the minimization of some energy functional,
such as the Information Hamiltonian or a Kullback-Leibler divergence. The Energy class pro-
vides the structure required for efficient implementation of such functionals. Its interface pro-
vides the current value, its gradient and curvature at its position. To avoid multiple evaluations of
the same quantity, intermediate results can be memorized and reused later. To ensure consistency
when reusing intermediate results, an Energy class instance in NIFTy 3 is fixed to one certain
position. Setting a new position therefore creates a new instance of the class. Energy instances
are passed to minimizers, which perform the actual numerical minimization. The position of the
passed instance is used as the starting point of the minimization.
NIFTy 3 provides implementations for steepest descent, VL-BFGS (Chen et al., 2014) and a re-
laxed Newton scheme. Those methods differ in how the descent direction is determined. Steep-
est descent just follows the downhill gradient. VL-BFGS incorporates prior steps to estimate the
curvature of the energy landscape, suggesting an improved direction. The relaxed Newton min-
imizer makes use of the full local curvature, additionally providing an estimate of the step size
which is optimal in a quadratic potential. After calculating the descent direction, a line search
along this very direction is done to determine the – with respect to the the Wolfe conditions –
optimal step size. This is iterated until the convergence criterion is satisfied or the maximum
number of steps has been reached.

4.4.6 Parallelization & Cluster Compatibility
The software package D2O (Steininger et al., 2016) was originally developed for massively par-
allelizing NIFTy by distributing the fields’ data arrays among multiple nodes in a MPI cluster. If

110 4. NIFTy 3

two fields are distributed with the same distribution strategy individual nodes hold the same part
of each of the fields’ arrays. With this ansatz, numerical operations like adding two fields involve
no communication and hence exhibit excellent scaling behavior. Please refer to Steininger et al.
(2016) for an exhaustive discussion. As a consequence, in contrast to NIFTy 1 the arrays in
NIFTy 3 are distributed_data_objects, rather than numpy.ndarrays. Due to this strong
encapsulation, most of its code base and the work with NIFTy 3 is agnostic of parallelization. By
utilizing D2O, NIFTy can operate on high performance computing clusters and thus terabytes of
RAM. This renders a large quantity of new applications possible, like high-resolution runs of 3D
reconstructions, cf. (Böhm et al., 2017, Greiner et al., 2016), and Faraday synthesis algorithms
(Bell and Enßlin, 2012).
Another side product of NIFTy 3 is the keepers package13, which is aimed at making scientific
research on clusters as convenient as possible. To be precise, this involves classes and functional-
ity for cluster-compatible logging, convenient algorithm parametrization, storing NIFTy objects
to disk in a versioned fashion and therefore allowing for restartable jobs.

4.5 Application: Wiener Filter Reconstructions

4.5.1 Case 1: Single Space Geometry
Fig. 4.5 shows an exemplary implementation of the Wiener filter with NIFTy 3. First, the param-
eters that characterize the mock signal’s correlation structure are set up (lines 3ff.). Then, starting
with line 12, the domain geometry is specified: here, a single regular gridded two-dimensional
Cartesian space is used. Afterwards, in lines 19ff., a signal covariance is defined to create the
mock signal that shall be reconstructed by the Wiener filter later. In line 27 an exemplary re-
sponse operator is set up which acts via smoothing and masking on the input signal. After
setting up a noise covariance and creating a noise sample, in line 34 the mock data is created.
In line 39 the actual Wiener filter is performed by applying the propagator operator D, which
coincides with the inverse of the information Hamiltonian’s curvature. Once the reconstruction
is done, an uncertainty map is computed (lines 40ff.). Therefore, a prober class with the desired
probing-targets – here only the diagonal – is constructed via multiple inheritance. After this, a
prober instance is created, which is then applied to the Wiener filter curvature operator. Because
the wiener_curvature operates in harmonic space, but the probes must be evaluated in posi-
tion space, Fourier transforms are wrapped around the operator in line 43. Please note that the
reconstruction’s variance is given by the bare diagonal entries, viz. no volume factors included,
of the inverse curvature, which is the reason for the inverse weighting in line 45. Finally, the
lines 47ff. produce the plots that are shown in Fig. 4.6.

4.5.2 Case 2: Cartesian Product Space Geometry
As discussed in Sec. 4.4.1, one of the crucial features of NIFTy 3 is that fields can be defined on
the Cartesian product of multiple individual spaces. This makes it possible to easily implement

13https://gitlab.mpcdf.mpg.de/ift/keepers

https://gitlab.mpcdf.mpg.de/ift/keepers

4.5 Application: Wiener Filter Reconstructions 111

1 import nifty as ift; import numpy as np; from keepers import Repository

2

3 # Setting up parameters

4 correlation_length_scale = 1. # Typical distance over which the field is correlated

5 fluctuation_scale = 2. # Variance of field in position space

6 response_sigma = 0.05 # Smoothing length of response (in same unit as L)

7 signal_to_noise = 1.5 # The signal to noise ratio

8 np.random.seed(43) # Fixing the random seed

9 def power_spectrum(k): # Defining the power spectrum

10 a = 4 ∗ correlation_length_scale ∗ fluctuation_scale ∗ ∗ 2
11 return a / (1 + (k ∗ correlation_length_scale) ∗ ∗ 2) ∗ ∗ 2
12 # Setting up the geometry

13 L = 2. # Total side-length of the domain

14 N_pixels = 512 # Grid resolution (pixels per axis)

15 signal_space = ift.RGSpace([N_pixels, N_pixels], distances=L/N_pixels)

16 harmonic_space = ift.FFTOperator.get_default_codomain(signal_space)

17 fft = ift.FFTOperator(harmonic_space , target=signal_space , target_dtype=np.float)

18 power_space = ift.PowerSpace(harmonic_space)

19 # Creating the mock signal

20 S = ift.create_power_operator(harmonic_space , power_spectrum=power_spectrum)

21 mock_power = ift.Field(power_space , val=power_spectrum)

22 mock_signal = fft(mock_power.power_synthesize(real_signal=True))

23

24 # Setting up an exemplary response

25 mask = ift.Field(signal_space , val=1.); N10 = int(N_pixels/10)

26 mask.val[N10 ∗ 5:N10 ∗ 9, N10 ∗ 5:N10 ∗ 9] = 0.
27 R = ift.ResponseOperator(signal_space , sigma=(response_sigma ,), exposure=(mask,))

28 data_domain = R.target[0]

29 R_harmonic = ift.ComposedOperator([fft, R], default_spaces=[0, 0])

30 # Setting up the noise covariance and drawing a random noise realization

31 N = ift.DiagonalOperator(data_domain , diagonal=mock_signal.var()/signal_to_noise , bare=True)

32 noise = ift.Field.from_random(domain=data_domain , random_type=’normal’,

33 std=mock_signal.std()/np.sqrt(signal_to_noise), mean=0)

34 data = R(mock_signal) + noise

35

36 # Wiener filter

37 j = R_harmonic.adjoint_times(N.inverse_times(data))

38 wiener_curvature = ift.library.WienerFilterCurvature(S=S, N=N, R=R_harmonic)

39 m_k = wiener_curvature.inverse_times(j); m = fft(m_k)

40 # Probing the uncertainty

41 class Proby(ift.DiagonalProberMixin , ift.Prober): pass

42 proby = Proby(signal_space , probe_count=800)

43 proby(lambda z: fft(wiener_curvature.inverse_times(fft.inverse_times(z))))

44 sm = ift.SmoothingOperator(signal_space , sigma=0.03)

45 variance = ift.sqrt(sm(proby.diagonal.weight(-1)))

46

47 # Plotting

48 plotter = ift.plotting.RG2DPlotter(color_map=plotting.colormaps.PlankCmap())

49 plotter.figure.xaxis = ift.plotting.Axis(label=’Pixel Index’)

50 plotter.figure.yaxis = ift.plotting.Axis(label=’Pixel Index’)

51 plotter.plot.zmax = variance.max(); plotter.plot.zmin = 0

52 plotter(variance , path = ’uncertainty.html’)

53 plotter.plot.zmax = mock_signal.max(); plotter.plot.zmin = mock_signal.min()

54 plotter(mock_signal , path=’mock_signal.html’)

55 plotter(ift.Field(signal_space , val=data.val), path=’data.html’)

56 plotter(m, path=’map.html’)

Figure 4.5: A full-feature Wiener filter implementation in NIFTy 3, including mock-data cre-
ation, signal reconstruction, uncertainty estimation, and plotting of the results.

112 4. NIFTy 3

(a) Mock signal.
(b) Data, which is the result of smoothing, masking
and additive noise.

(c) Maximum a-posteriori reconstruction. (d) Uncertainty map.

Figure 4.6: Illustration of a Wiener filter reconstruction. The labeling of the axes shows pixel
numbers.

4.6 Conclusion 113

inference algorithms that reconstruct signals which have a mixed correlation structure. In the
above case, a Wiener filter was applied in the context of a two-dimensional regular grid geometry.
With NIFTy 3 this can easily be extended to, for example, the case of the Cartesian product of
two one-dimensional regular grid spaces, shown in Fig. 4.7. Now the power spectrum for each
space-component of the signal field differs. Additionally, the response operator has individual
smoothing lengths and masks for each of the spaces. In this example, the power spectrum of the
space drawn on the vertical axis is steeper than the one of the horizontal space. As a consequence,
the field possesses small scale structure primarily in the horizontal direction. A remarkable
consequence of this is reflected in the uncertainty map. Although the occlusion mask is equally
broad for each space, the uncertainty is much higher in the direction of the horizontal space.
There, the Wiener filter is not able to interpolate as well as for the large scale dominated vertical
space.
Since the structure of the code for the case of a Cartesian product of spaces is very similar to the
one in Fig. 4.5 – actually, one mainly has to define the two individual geometries respectively –
the code is not shown explicitly here. For interested readers, the code that was used to produce
the plots given in Fig. 4.7 is available as a demo in the NIFTy 3 code release, which is available
here: https://gitlab.mpcdf.mpg.de/ift/NIFTy.

4.6 Conclusion
NIFTy 3 allows the programming of field equations independent of the underlying geometry or
resolution. This freedom is particularly desirable in the implementation of inference algorithms
of continuous quantities. This behavior is achieved by an object-oriented structure which cleanly
separates the abstract mathematical operations from the underlying numerical calculations. By
using layers of abstraction the operations are kept general and simple while preserving the con-
tinuum limit. Normalizations are applied automatically without the need of specification by the
user. NIFTy 3 comes with full support of n-dimensional Cartesian spaces, the surface of the
sphere and product spaces generated from them. Other geometries can be included in a straight-
forward fashion due to the layers of abstraction in NIFTy 3.
Algorithms implemented with NIFTy 3 are suitable to be run on HPC clusters with (almost) no
MPI awareness needed from the user. With NIFTy 3 formulas can be transformed easily into
code and, conversely, code can be easily read as formulas. This allows both, rapid prototyping
and the implementation of large-scale algorithms.
NIFTy 3 has been developed to ease the implementation of inference algorithms on continuous
quantities. Therefore, it is applicable in various areas. The first version of NIFTy already enabled
numerous inference projects including many imaging algorithms performing interferometry, to-
mography (both astronomical and medical) or deconvolution, but also more abstract inference
algorithms such as the estimation of cosmological parameters or instrument calibration. With
the additional power of NIFTy 3 it can already be observed that this variety now grows even
further.
NIFTy 3 is open-source software available under the GNU General Public License v3 (GPL-3)
at https://gitlab.mpcdf.mpg.de/ift/NIFTy/.

https://gitlab.mpcdf.mpg.de/ift/NIFTy
https://gitlab.mpcdf.mpg.de/ift/NIFTy/

114 4. NIFTy 3

(a) Mock signal with two individual power
spectra for each space.

(b) Data, which is the result of smoothing, masking
and additive noise.

(c) Maximum a-posteriori reconstruction. (d) Uncertainty map shown on a logarithmic scale.

Figure 4.7: Illustration of a Wiener filter reconstruction in the context of the Cartesian product
of two one-dimensional regular grid spaces. The labeling of the axes shows pixel numbers.

4.6 Conclusion 115

Acknowledgements
Part of this work was supported by the Studienstiftung des deutschen Volkes.

116 4. NIFTy 3

Chapter 5

Further Work

This chapter lists all further publications I have been part of. As my contributions to those are
marginal these publications are not shown in their full extend, only their abstracts.

5.1 Field dynamics inference via spectral density estimation
This section is used additionally as a journal publication in Physical Review E (Frank et al.,
2017)

Stochastic differential equations (SDEs) are of utmost importance in various scientific and in-
dustrial areas. They are the natural description of dynamical processes whose precise equations
of motion are either not known or too expensive to solve, e.g., when modeling Brownian mo-
tion. In some cases, the equations governing the dynamics of a physical system on macroscopic
scales occur to be unknown since they typically cannot be deduced from general principles. In
this work, we describe how the underlying laws of a stochastic process can be approximated
by the spectral density of the corresponding process. Furthermore, we show how the density
can be inferred from possibly very noisy and incomplete measurements of the dynamical field.
Generally, inverse problems like these can be tackled with the help of Information Field Theory
(IFT). For now, we restrict to linear and autonomous processes. Though, this is a non-conceptual
limitation that may be omitted in future work. To demonstrate its applicability we employ our
reconstruction algorithm on a time-series and spatio-temporal processes.

5.2 Search for quasi-periodic signals in magnetar giant flares
This section is used additionally as a journal publication in Astronomy & Astrophysics (Pumpe
et al., 2017)

Quasi-periodic oscillations (QPOs) discovered in the decaying tails of giant flares of magnetars
are believed to be torsional oscillations of neutron stars. These QPOs have a high potential
to constrain properties of high-density matter. In search for quasi-periodic signals, we study

118 5. Further Work

the light curves of the giant flares of SGR 1806-20 and SGR 1900+14, with a non-parametric
Bayesian signal inference method called D3PO. The D3PO algorithm models the raw photon
counts as a continuous flux and takes the Poissonian shot noise as well as all instrument effects
into account. It reconstructs the logarithmic flux and its power spectrum from the data. Using
this fully noise-aware method, we do not confirm previously reported frequency lines at ν &
17 Hz because they fall into the noise-dominated regime. However, we find two new potential
candidates for oscillations at 9.2 Hz (SGR 1806-20) and 7.7 Hz (SGR 1900+14). If these are real
and the fundamental magneto-elastic oscillations of the magnetars, current theoretical models
would favour relatively weak magnetic fields B̄ ∼ 6 × 1013 − 3 × 1014 G (SGR 1806-20) and a
relatively low shear velocity inside the crust compared to previous findings.

5.3 Inference of signals with unknown correlation structure
from nonlinear measurements

This section is used additionally as a publication submitted to the Journal of Machine Learning
Research (Knollmüller et al., 2017)

We present a method to reconstruct autocorrelated signals together with their autocorrelation
structure from nonlinear, noisy measurements for arbitrary monotonous nonlinear instrument re-
sponse. In the presented formulation the algorithm provides a significant speedup compared to
prior implementations, allowing for a wider range of application. The nonlinearity can be used
to model instrument characteristics or to enforce properties on the underlying signal, such as
positivity. Uncertainties on any posterior quantities can be provided due to independent sam-
ples from an approximate posterior distribution. We demonstrate the methods applicability via
simulated and real measurements, using different measurement instruments, nonlinearities and
dimensionality.

Conclusion and Outlook

We have paved the way for future parametric as well as non-parametric magnetic field inference.
With Imagine, there is now a research platform that allows to sustainably build parametric models
of the Milky Way by allowing to easily keep their parameter fits up to date in the future. The
magnetic field models that were analyzed with Imagine can easily be compared via Bayesian
model comparison. Furthermore, Imagine provides a generic ansatz to treat Galactic variance
correctly, regardless of the individual peculiarities of the specific GMF models. The results are
honest statistical statements, the value of which we have shown on the basis of mock data as well
as real data. Ignoring the galactic variance leads to considerable inaccuracies and misinterpreta-
tions, which can be seen in the fact that with new data becoming available in the past, support for
certain properties of GMF models have changed dramatically. With Imagine it is now possible to
produce much more steady inference results.
For sophisticated non-parametric inference of large 3D fields, there has been a need to catch up
with respect to the available methods as well as the available data. With the development of d2o
and the subsequent advances in NIFTy, the basis for high-resolution and entangled inference, in
which several fields such as dust density, thermal electron density, and the GMF are inferred at
the same time, is now available. Based on recent starlight extinction data like Pan-STARRS 1, or
the soon to be expected Gaia data release 2, as a next step the creation of a 3D dust map should be
conducted. Further, parametric just as well as non-parametric reconstructions should be set up as
joint analyses of the thermal electron density and the GMF to resolve the degeneracies between
the fields. NIFTy now offers structure that allows scaling existing 3D tomography algorithms to
joint scalar/vector field reconstructions, that were previously used for reconstructing the thermal
electron density only. With respect to parametric inference, Imagine allows for carrying out joint-
reconstructions right away. Now the Imagine data library must be continuously extended. Due
to the high complexity and interdependence of the physical quantities to be reconstructed, high
data quality is all the more important. First a combination of the upcoming next-generation data
releases, such as the Gaia DR 2 or the SKA data release mentioned above, will make it possible
to fully exploit the potential of the methods created.
In addition to the challenge of reconstructing the GMF, the research and developments carried
out in this work, especially in terms of NIFTy, also add value to many other applications: Nu-
merous projects in the fields of interferometry, tomography (both astronomical and medical)
and deconvolution, but also more abstract inference algorithms such as the estimation of cos-
mological parameters have only been made possible by NIFTy 3, cf. e.g., Frank et al. (2017),
Knollmüller et al. (2017), Pumpe et al. (2017, 2018). Thus, the surplus value of this work does

120 5. Further Work

not only extend to the question of GMF inference, but goes far beyond that.

Appendix A

D2O Appendix

A.1 Advanced Usage and Functional Behavior
Here we discuss specifics regarding the design and functional behavior of d2o. We set things up
by importing numpy and d2o.distributed_data_object:

1 In [1]: import numpy as np

2 In [2]: from d2o import distributed_data_object

A.1.1 Distribution Strategies
In order to see the effect of different distribution strategies one may run the following script us-
ing three MPI processes. In lines 13 and 19, the distribution_strategy keyword is used for
explicit specification of the strategy.

mpirun -n 3 python distribution_schemes.py

1 # distribution_schemes.py

2 from mpi4py import MPI

3 import numpy as np

4 from d2o import distributed_data_object

5 rank = MPI.COMM_WORLD.rank

6

7 a = np.arange(16).reshape((4, 4))

8 if rank == 0: print((rank, a))

9

10 # use ’not’, ’equal’ and ’fftw’

11 for strategy in [’not’, ’equal’, ’fftw’]:

12 obj = distributed_data_object(

13 a, distribution_strategy=strategy)

14 print (rank, strategy, obj.get_local_data())

122 A. D2O Appendix

15

16 # use the ’freeform’ slicer

17 a += rank

18 obj = distributed_data_object(

19 local_data=a, distribution_strategy=’freeform’)

20 print (rank, ’freeform’, obj.get_local_data())

21

22 full_data = obj.get_full_data()

23 if rank == 0: print (rank, ’freeform’, full_data)

The printout in line 8 shows the a array.

(0, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

The “not” distribution strategy stores full copies of the data on every node:

(0, ’not’, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

(1, ’not’, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

(2, ’not’, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

The “equal”, “fftw” and “freeform” distribution strategies are all subtypes of the slicing
distributor that cuts the global array along its first axis. Therefore they only differ by the lengths
of their subdivisions. The “equal” scheme tries to distribute the global array as equally as
possible among the processes. If the array’s size makes it necessary, the first processes will get
an additional row. In this example the first array axis has a length of four but there are three MPI
processes; hence, one gets a distribution of (2, 1, 1):

(0, ’equal’, array([[0, 1, 2, 3],

[4, 5, 6, 7]]))

(1, ’equal’, array([[8, 9, 10, 11]]))

(2, ’equal’, array([[12, 13, 14, 15]]))

The “fftw” distribution strategy is very similar to “equal” but uses functions from FFTWFrigo
(1999). If the length of the first array axis is large compared to the number of processes they

A.1 Advanced Usage and Functional Behavior 123

will practically yield the same distribution pattern but for small arrays they may differ. For
performance reasons FFTW prefers multiples of two over a uniform distribution, hence one gets
(2, 2, 0):

(0, ’fftw’, array([[0, 1, 2, 3],

[4, 5, 6, 7]]))

(1, ’fftw’, array([[8, 9, 10, 11],

[12, 13, 14, 15]]))

(2, ’fftw’, array([], shape=(0, 4), dtype=int64))

A “freeform” array is built from a process-local perspective: each process gets its individual
local data. In our example, we use a+rank as the local data arrays – each being of shape (4, 4)
– during the initialization of the distributed data object. By this, a global shape of (12, 4) is
produced. The local data reads:

(0, ’freeform’, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15]]))

(1, ’freeform’, array([[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 16]]))

(2, ’freeform’, array([[2, 3, 4, 5],

[6, 7, 8, 9],

[10, 11, 12, 13],

[14, 15, 16, 17]]))

This yields a global shape of (12, 4). In oder to consolidate the data the method obj.get full -
data() is used, cf. section Sec. A.1.3.

(0, ’freeform’, array([[0, 1, 2, 3],

[4, 5, 6, 7],

[8, 9, 10, 11],

[12, 13, 14, 15],

[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12],

[13, 14, 15, 16],

[2, 3, 4, 5],

[6, 7, 8, 9],

[10, 11, 12, 13],

[14, 15, 16, 17]]))

124 A. D2O Appendix

A.1.2 Initialization
There are several different ways of initializing a distributed data object. In all cases its shape
and data type must be specified implicitly or explicitly. In the previous section we encountered
the basic way of supplying an initial data array which then gets distributed:

1 In [3]: a = np.arange(12).reshape((3, 4))

2 In [4]: obj = distributed_data_object(a)

3 # equivalent to line above

4 In [5]: obj = distributed_data_object(global_data=a)

The initial data is interpreted as global data. The default distribution strategy1 is a global-type
strategy, which means that the distributor which is constructed at initialization time derives its
concrete data partitioning from the desired global shape and data type. A more explicit example
for an initialization is:

1 In [6]: obj = distributed_data_object(global_data=a,

2 dtype=np.complex)

In contrast to a’s data type which is integer we enforce the distributed data object to be complex.
Without initial data – cf. np.empty – one may use the global_shape keyword argument:

1 In [7]: obj = distributed_data_object(global_shape=(2,3),

2 dtype=np.float)

3 # equivalent to line above

4 In [8]: obj = distributed_data_object(global_shape=(2,3))

If the data type is specified neither implicitly by some initial data nor explicitly via dtype, dis-
tributed data object uses float as a default2. In contrast to global-type, local-type distribution
strategies like “freeform” are defined by local shape information. The aptly named analoga to
global_data and global_shape are local_data and local_shape, cf. section Sec. A.1.1:

1 In [9]: obj = distributed_data_object(

2 local_data=a,

3 distribution_strategy=’freeform’)

If redundant but conflicting information is provided – like integer-type initialization array vs.
dtype=complex – the explicit information gained from dtype is preferred over implicit infor-
mation provided by global_data/local_data. On the contrary, if data is provided, explicit
information from global_shape/local_shape is discarded. In summary, dtype takes prece-
dence over global data/local data which in turn takes precedence over global shape/
local shape.
Please note that besides numpy arrays, distributed data objects are valid input for global -
data/local data, too. If necessary, a redistribution of data will be performed internally. When
using global_data this will be the case if the distribution strategies of the input and ouput
distributed data objects do not match. When distributed data objects are used as local_data

1Depending on whether pyfftw is available or not, the equal- or the fftw-distribution strategy is used, respectively;
cf. section Sec. A.1.1.

2This mimics numpys behavior.

A.1 Advanced Usage and Functional Behavior 125

their full content will be concentrated on the individual processes. This means that if one uses
the same distributed data object as local_data in, for example, two processes, the resulting
distributed data object will have twice the memory footprint.

A.1.3 Getting and Setting Data
There exist three different methods for getting and setting a distributed data object’s data:

• get_full_data consolidates the full data into a numpy array,

• set_full_data distributes a given full-size array,

• get_data extracts a part of the data and returns it packed in a new distributed data object

• set_data modifies parts of the distributed data object’s data,

• get_local_data returns the process’ local data,

• set_local_data directly modifies the process’ local data.

In principle, one could mimic the behavior of set_full_data with set_data but the former is
faster since there are no indexing checks involved. distributed data objects support large parts of
numpy’s indexing functionality, via the methods get_data and set_data3. This includes sim-
ple and advanced indexing, slicing and boolean extraction. Note that multidimensional advanced
indexing is currently not supported by the slicing distributor: something like

obj[(np.array([[1,2], [0,1]]), np.array([[0,1], [2,3]]))]

will throw an exception.

1 In [10]: a = np.arange(12).reshape(3, 4)

2 In [11]: obj = distributed_data_object(a)

3 In [12]: obj

4 Out[12]: <distributed_data_object >

5 array([[0, 1, 2, 3],

6 [4, 5, 6, 7],

7 [8, 9, 10, 11]])

8

9 # Simple indexing

10 In [13]: obj[2,1]

11 Out[13]: 9

12

13 # Advanced indexing

14 In [14]: index_tuple = (np.array([1, 1, 2, 2, 2, 2]),

15 np.array([2, 3, 0, 1, 2, 3]))

16 In [15]: obj[index_tuple]

17 Out[15]: <distributed_data_object >

18 array([6, 7, 8, 9, 10, 11])

3These are the methods getting called through Python’s obj[...]=... notation.

126 A. D2O Appendix

19

20 # Slicing

21 In [16]: obj[:, ::-2]

22 Out[16]: <distributed_data_object >

23 array([[3, 1],

24 [7, 5],

25 [11, 9]])

26

27 # Boolean extraction

28 In [17]: obj[obj>5]

29 Out[17]: <distributed_data_object >

30 array([6, 7, 8, 9, 10, 11])

All those indexing variants can also be used for setting array data, for example:

1 In [18]: a = np.arange(12).reshape(3, 4)

2 In [19]: obj = distributed_data_object(a)

3 In [20]: obj[obj>5] = [11, 22, 33, 44, 55, 66]

4 In [21]: obj

5 Out[21]: <distributed_data_object >

6 array([[0, 1, 2, 3],

7 [4, 5, 11, 22],

8 [33, 44, 55, 66]])

Allowed types for input data are scalars, tuples, lists, numpy ndarrays and distributed data -
objects. Internally the individual processes then extract the locally relevant portion of it.
As it is extremely costly, d2o tries to avoid inter-process communication whenever possible.
Therefore, when using the get_data method the returned data portions remain on their pro-
cesses. In case of a distributed data object with a slicing distribution strategy the freeform dis-
tributor is used for this, cf. section Sec. A.1.1.

A.1.4 Local Keys
The distributed nature of d2o adds an additional degree of freedom when getting (setting) data
from (to) a distributed data object. The indexing discussed in section Sec. A.1.3 is based on
the assumption that the involved key- and data-objects are the same for every MPI node. But in
addition to that, d2o allows the user to specify node-individual keys and data. This, for example,
can be useful when data stored as a distributed data object must be piped into a software module
which needs very specific portions of the data on each MPI process. If one is able to describe
those data portions as array-indexing keys – like slices – then the user can do this data redistri-
bution within a single line. The following script – executed by two MPI processes – illustrates
the point of local keys.

mpirun -n 2 python local_keys.py

1 # local_keys.py

A.1 Advanced Usage and Functional Behavior 127

2 from mpi4py import MPI

3 import numpy as np

4 from d2o import distributed_data_object

5 rank = MPI.COMM_WORLD.rank

6

7 # initializing some data

8 obj = distributed_data_object(np.arange(16) ∗ 2)
9

10 print (rank, obj)

11

12 # getting data using the same slice on both processes

13 print (rank, obj.get_data(key=slice(None, None, 2)))

14

15 # getting data using different slices

16 print (rank, obj.get_data(key=slice(None, None, 2+rank),

17 local_keys=True))

18

19 # getting data using different distributed_data_objects

20 key_tuple = (distributed_data_object([1, 3, 5, 7]),

21 distributed_data_object([2, 4, 6, 8]))

22 key = key_tuple[rank]

23 print (rank, obj.get_data(key=key, local_keys=True))

The first print statement shows the starting data: the even numbers ranging from 0 to 30:

(0, <distributed_data_object>

array([0, 2, 4, 6, 8, 10, 12, 14]))

(1, <distributed_data_object>

array([16, 18, 20, 22, 24, 26, 28, 30]))

In line 13 we extract every second entry from obj using slice(None, None, 2). Here, no
inter-process communication is involved; the yielded data remains on the original node. The
output of the print statement reads:

(0, <distributed_data_object>

array([0, 4, 8, 12]))

(1, <distributed_data_object>

array([16, 20, 24, 28]))

In line 17 the processes ask for different slices of the global data using the keyword local keys
= True: process 0 requests every second element whereas process 1 requests every third element
from obj. Now communication is required to redistribute the data and the results are stored in
the individual processes.

(0, <distributed_data_object>

array([0, 4, 8, 12, 16, 20, 24, 28]))

(1, <distributed_data_object>

array([0, 6, 12, 18, 24, 30]))

128 A. D2O Appendix

In line 23 we use distributed data objects as indexing objects. Process 0 requests the elements
at positions 1, 3, 5 and 7; process 1 for those at 2, 4, 6 and 8. The peculiarity here is that the
keys are not passed to obj as a complete set of local distributed data object instances. In fact,
the processes only hand over their very local instance of the keys. d2o is aware of this and uses
the d2o_librarian in order to reassemble them, cf. section Sec. A.1.5. The output reads:

(0, <distributed_data_object>

array([2, 6, 10, 14]))

(1, <distributed_data_object>

array([4, 8, 12, 16]))

The local_keys keyword is also available for the set_data method. In this case the keys as
well as the data updates will be considered local objects. The behaviour is analogous to the one
of get_data: The individual processes store the locally relevant part of the to_key using their
distinct data[from_key].

A.1.5 The d2o Librarian
A distributed data object as an abstract entity in fact consists of a set of Python objects that
reside in memory of each MPI process. Global operations on a distributed data object neces-
sitate that all those local instances of a distributed data object receive the same function calls;
otherwise unpredictable behavior or a deadlock could happen. Let us discuss an illustrating ex-
ample, the case of extracting a certain piece of data from a distributed data object using slices,
cf. section Sec. A.1.3. Given a request for a slice of data, the MPI processes check which part
of their data is covered by the slice, and build a new distributed data object from that. Thereby
they communicate the size of their local data, maybe make sanity checks, and more. If this
get_data(slice(...)) function call is not made on every process of the cluster, a deadlock
will occur as the ‘called’ processes wait for the ‘uncalled’ ones. However, especially when using
the local_keys functionality described in section Sec. A.1.4 algorithmically one would like to
work with different, i.e. node-individual distributed data objects at the same time. This raises the
question: given only one local Python object instance, how could one make a global call on the
complete distributed data object entity it belongs to? For this the d2o_librarian exists. Dur-
ing initialization every distributed data object registers itself with the d2o_librarian which
returns a unique index. Later, this index can be used to assemble the full distributed data object
from just a single local instance. The following code illustrates the workflow.

mpirun -n 4 python librarian.py

1 # librarian.py

2 from mpi4py import MPI

3 import numpy as np

4 from d2o import distributed_data_object , d2o_librarian

5

6 comm = MPI.COMM_WORLD

A.1 Advanced Usage and Functional Behavior 129

7 rank = comm.rank

8

9 # initialize four different distributed_data_objects

10 obj = distributed_data_object(np.arange(16).reshape((4,4)))

11 obj_list = (obj, 2 ∗ obj, 3 ∗ obj, 4 ∗ obj)
12

13 # every process gets its part of the respective full array

14 individual_object = obj_list[rank]

15 individual_index = individual_object.index

16 index_list = comm.allgather(individual_index)

17

18 for index in index_list:

19 # resemble the current d2o on every node

20 current_object = d2o_librarian[index]

21 if rank == 0: print(’Index: ’ + str(index))

22 # take a slice of data

23 print (rank, current_object[:, 2:4].get_local_data())

The output reads:

Index: 1

(0, array([[2, 3]]))

(1, array([[6, 7]]))

(2, array([[10, 11]]))

(3, array([[14, 15]]))

Index: 2

(0, array([[4, 6]]))

(1, array([[12, 14]]))

(2, array([[20, 22]]))

(3, array([[28, 30]]))

Index: 3

(0, array([[6, 9]]))

(1, array([[18, 21]]))

(2, array([[30, 33]]))

(3, array([[42, 45]]))

Index: 4

(0, array([[8, 12]]))

(1, array([[24, 28]]))

(2, array([[40, 44]]))

(3, array([[56, 60]]))

The d2o-librarian’s core-component is a weak dictionary wherein weak references to the local
distributed data object instances are stored. Its peculiarity is that those weak references do not
prevent Python’s garbage collector from deleting the object once no regular references to it are
left. By this, the librarian can keep track of the distributed data objects without, at the same
time, being a reason to hold them in memory.

130 A. D2O Appendix

A.1.6 Copy Methods
d2o’s array copy methods were designed to avoid as much Python overhead as possible. Never-
theless, there is a speed penalty compared to pure numpy arrays for a single process; cf. section
Sec. 3.4 for details. This is important as binary operations like addition or multiplication of an
array need a copy for returning the results. A special feature of d2o is that during a full copy one
may change certain array properties such as the data type and the distribution strategy:

1 In [22]: a = np.arange(4)

2 In [23]: obj = distributed_data_object(a) # dtype == np.int

3 In [24]: p = obj.copy(dtype=np.float,

4 distribution_strategy=’not’)

5 In [25]: (p.distribution_strategy , p)

6 Out[25]: (’not’, <distributed_data_object >

7 array([0., 1., 2., 3.]))

When making empty copies one can also change the global or local shape:

1 In [26]: obj = distributed_data_object(global_shape=(4,4),

2 dtype=np.float)

3 # only the shape gets changed

4 In [27]: obj.copy_empty(global_shape=(2,2))

5 Out[27]: <distributed_data_object >

6 array([[6.90860823e-310, 9.88131292e-324],

7 [9.88131292e-324, 1.97626258e-323]])

A.1.7 Fast Iterators
A large class of problems requires iteration over the elements of an array one by one Ka-Ping Yee
(2016). Whenever possible, Python uses special iterators for this in order to keep computational
costs at a minimum. A toy example is

1 In [28]: l = [9, 8, 7, 6]

2 In [29]: for item in l:

3 print item

4:

5 9

6 8

7 7

8 6

Inside Python, the for loop requests an iterator object from the list l. Then the loop pulls
elements from this iterator until it is exhausted. If an object is not able to return an iterator,
the for loop will extract the elements using __getitem__ over and over again. In the case
of distributed data objects the latter would be extremely inefficient as every __getitem__ call
incorporates a significant amount of communication. In order to circumvent this, the iterators
of distributed data objects communicate the process’ data in chunks that are as big as possible.

A.2 Iterator Performance 131

Thereby we exploit the knowledge that the array elements will be fetched one after another by
the iterator. An examination of the performance difference is done in appendix Sec. A.2.

A.2 Iterator Performance
As discussed in section Sec. A.1.7, iterators are a standard tool in Python by which objects control
their behavior in for loops and list comprehensions Ka-Ping Yee (2016). In order to speed up
the iteration process, distributed data objects communicate their data as chunks chosen to be as
big as possible. Thereby d2o builds upon the knowledge that elements will be fetched one after
another by the iterator as long as further elements are requested.4 Additionally, by its custom
iterator interface d2o avoids that the full data consolidation logic is invoked for every entry.
Because of this, the performance gain is roughly a factor of 30 even for single-process scenarios
as demonstrated in the following example:

1 In [1]: length = 1000

2 In [2]: obj = distributed_data_object(np.arange(length))

3

4 In [3]: def using_iterators(obj):

5 for i in obj:

6 pass

7

8 In [4]: def not_using_iterators(obj):

9 for j in xrange(length):

10 obj[j]

11

12 In [5]: %timeit not_using_iterators(obj)

13 10 loops, best of 3: 104 ms per loop

14

15 In [6]: %timeit using_iterators(obj)

16 100 loops, best of 3: 2.92 ms per loop

4This has the downside, that if the iteration was stopped prematurely, data has been communicated in vain.

132 A. D2O Appendix

Bibliography

R. Alves Batista, A. Dundovic, M. Erdmann, K.-H. Kampert, D. Kuempel, G. Müller, G. Sigl,
A. van Vliet, D. Walz, and T. Winchen. CRPropa 3 - a public astrophysical simulation frame-
work for propagating extraterrestrial ultra-high energy particles. J. Cosmology Astropart.
Phys., 5:038, May 2016. doi: 10.1088/1475-7516/2016/05/038.

Apache Software Foundation. Hadoop, 2016. URL https://hadoop.apache.org.

Satish Balay, Shrirang Abhyankar, Mark F. Adams, Jed Brown, Peter Brune, Kris Buschelman,
Lisandro Dalcin, Victor Eijkhout, William D. Gropp, Dinesh Kaushik, Matthew G. Knepley,
Lois Curfman McInnes, Karl Rupp, Barry F. Smith, Stefano Zampini, and Hong Zhang. PETSc
Web page. http://www.mcs.anl.gov/petsc, 2015. URL http://www.mcs.anl.gov/
petsc.

G. Battaglia, A. Helmi, H. Morrison, P. Harding, E. W. Olszewski, M. Mateo, K. C. Freeman,
J. Norris, and S. A. Shectman. The radial velocity dispersion profile of the Galactic halo:
constraining the density profile of the dark halo of the Milky Way. MNRAS, 364:433–442,
December 2005. doi: 10.1111/j.1365-2966.2005.09367.x.

Giuseppina Battaglia, Amina Helmi, Heather Morrison, Paul Harding, Edward W. Olszewski,
Mario Mateo, Kenneth C. Freeman, John Norris, and Stephen A. Shectman. Erratum: The
radial velocity dispersion profile of the galactic halo: constraining the density profile of the
dark halo of the milky way. Monthly Notices of the Royal Astronomical Society, 370(2):
1055–1056, 2006. doi: 10.1111/j.1365-2966.2006.10688.x. URL +http://dx.doi.org/
10.1111/j.1365-2966.2006.10688.x.

Rainer Beck. Galactic and extragalactic magnetic fields. Space Science Reviews, 99(1):243–260,
Oct 2001. ISSN 1572-9672. doi: 10.1023/A:1013805401252. URL https://doi.org/10.
1023/A:1013805401252.

Rainer Beck and Marita Krause. Revised equipartition & minimum energy formula for magnetic
field strength estimates from radio synchrotron observations. Astron. Nachr., 326:414–427,
2005. doi: 10.1002/asna.200510366.

M. R. Bell and T. A. Enßlin. Faraday synthesis. The synergy of aperture and rotation measure
synthesis. A&A, 540:A80, April 2012. doi: 10.1051/0004-6361/201118672.

https://hadoop.apache.org
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc
+ http://dx.doi.org/10.1111/j.1365-2966.2006.10688.x
+ http://dx.doi.org/10.1111/j.1365-2966.2006.10688.x
https://doi.org/10.1023/A:1013805401252
https://doi.org/10.1023/A:1013805401252

134 BIBLIOGRAPHY

M. R. Bell, H. Junklewitz, and T. A. Enßlin. Faraday caustics. Singularities in the Faraday
spectrum and their utility as probes of magnetic field properties. aap, 535:A85, November
2011. doi: 10.1051/0004-6361/201117254.

C. L. Bennett, R. S. Hill, G. Hinshaw, M. R. Nolta, N. Odegard, L. Page, D. N. Spergel, J. L.
Weiland, E. L. Wright, M. Halpern, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker,
and E. Wollack. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:
Foreground Emission. ApJS, 148:97–117, September 2003. doi: 10.1086/377252.

M. Betancourt. A Conceptual Introduction to Hamiltonian Monte Carlo. ArXiv e-prints, January
2017.

L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Ham-
marling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK Users’
Guide. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997. ISBN 0-
89871-397-8 (paperback).

Vanessa Böhm, Stefan Hilbert, Maksim Greiner, and Torsten A. Enßlin. Bayesian weak lensing
tomography: Reconstructing the 3d large-scale distribution of matter with a lognormal prior.
Phys. Rev. D, 96:123510, Dec 2017. doi: 10.1103/PhysRevD.96.123510. URL https://
link.aps.org/doi/10.1103/PhysRevD.96.123510.

A. Brandenburg and K. Subramanian. Astrophysical magnetic fields and nonlinear dynamo the-
ory. Phys. Rep., 417:1–209, October 2005. doi: 10.1016/j.physrep.2005.06.005.

S. Brooks, A. Gelman, G. Jones, and X.L. Meng. Handbook of Markov Chain Monte Carlo.
Chapman & Hall/CRC Handbooks of Modern Statistical Methods. CRC Press, 2011. ISBN
9781420079425. URL https://books.google.de/books?id=qfRsAIKZ4rIC.

J. Buchner, A. Georgakakis, K. Nandra, L. Hsu, C. Rangel, M. Brightman, A. Merloni, M. Sal-
vato, J. Donley, and D. Kocevski. X-ray spectral modelling of the AGN obscuring region
in the CDFS: Bayesian model selection and catalogue. A&A, 564:A125, April 2014. doi:
10.1051/0004-6361/201322971.

B. J. Burn. On the depolarization of discrete radio sources by Faraday dispersion. MNRAS, 133:
67, 1966. doi: 10.1093/mnras/133.1.67.

D. Buscombe. Spatially explicit spectral analysis of point clouds and geospatial data. Computers
and Geosciences, 86:92–108, January 2016. doi: 10.1016/j.cageo.2015.10.004.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A limited memory algorithm for
bound constrained optimization. SIAM J. Sci. Comput., 16(5):1190–1208, September 1995.
ISSN 1064-8275. doi: 10.1137/0916069. URL http://dx.doi.org/10.1137/0916069.

T. Tony Cai, Tengyuan Liang, and Harrison H. Zhou. Law of log determinant of sam-
ple covariance matrix and optimal estimation of differential entropy for high-dimensional

https://link.aps.org/doi/10.1103/PhysRevD.96.123510
https://link.aps.org/doi/10.1103/PhysRevD.96.123510
https://books.google.de/books?id=qfRsAIKZ4rIC
http://dx.doi.org/10.1137/0916069

BIBLIOGRAPHY 135

gaussian distributions. Journal of Multivariate Analysis, 137(Supplement C):161 – 172,
2015. ISSN 0047-259X. doi: https://doi.org/10.1016/j.jmva.2015.02.003. URL http:
//www.sciencedirect.com/science/article/pii/S0047259X1500038X.

Anthony Challinor, Pablo Fosalba, Daniel Mortlock, Mark Ashdown, Benjamin Wandelt, and
Krzysztof Gorski. All-sky convolution for polarimetry experiments. Physical Review D, 62
(12), November 2000. ISSN 0556-2821, 1089-4918. doi: 10.1103/PhysRevD.62.123002.
URL http://arxiv.org/abs/astro-ph/0008228.

Weizhu Chen, Zhenghao Wang, and Jingren Zhou. Large-scale l-bfgs using mapre-
duce. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
1332–1340. Curran Associates, Inc., 2014. URL http://papers.nips.cc/paper/
5333-large-scale-l-bfgs-using-mapreduce.pdf.

Y. Chen, A. Wiesel, and A. O. Hero. Robust Shrinkage Estimation of High-Dimensional Co-
variance Matrices. IEEE Transactions on Signal Processing, 59:4097–4107, September 2011.
doi: 10.1109/TSP.2011.2138698.

J. M. Cordes. NE2001: A New Model for the Galactic Electron Density and its Fluctuations.
In D. Clemens, R. Shah, and T. Brainerd, editors, Milky Way Surveys: The Structure and
Evolution of our Galaxy, volume 317 of Astronomical Society of the Pacific Conference Series,
page 211, December 2004.

J. M. Cordes and T. J. W. Lazio. NE2001.I. A New Model for the Galactic Distribution of Free
Electrons and its Fluctuations. ArXiv Astrophysics e-prints, July 2002.

Intel Corporation. Intel mpi library, 2016. URL https://software.intel.com/en-us/
intel-mpi-library.

R. T. Cox. Probability, frequency and reasonable expectation. American Journal of Physics, 14
(1):1–13, January 1946. doi: 10.1119/1.1990764. URL http://dx.doi.org/10.1119/1.
1990764.

A. Dadone and B. Grossman. Ghost-Cell Method for Inviscid Two-Dimensional Flows on Carte-
sian Grids. AIAA Journal, 42:2499–2507, December 2004. doi: 10.2514/1.697.

Leonardo Dagum and Ramesh Menon. Openmp: an industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

Lisandro Dalcı́n, Rodrigo Paz, and Mario Storti. {MPI} for python. Journal of Parallel and
Distributed Computing, 65(9):1108 – 1115, 2005. ISSN 0743-7315. doi: http://dx.doi.org/

10.1016/j.jpdc.2005.03.010. URL http://www.sciencedirect.com/science/article/
pii/S0743731505000560.

L. Davis, Jr. and J. L. Greenstein. The Polarization of Starlight by Aligned Dust Grains. ApJ,
114:206, September 1951. doi: 10.1086/145464.

http://www.sciencedirect.com/science/article/pii/S0047259X1500038X
http://www.sciencedirect.com/science/article/pii/S0047259X1500038X
http://arxiv.org/abs/astro-ph/0008228
http://papers.nips.cc/paper/5333-large-scale-l-bfgs-using-mapreduce.pdf
http://papers.nips.cc/paper/5333-large-scale-l-bfgs-using-mapreduce.pdf
https://software.intel.com/en-us/intel-mpi-library
https://software.intel.com/en-us/intel-mpi-library
http://dx.doi.org/10.1119/1.1990764
http://dx.doi.org/10.1119/1.1990764
http://www.sciencedirect.com/science/article/pii/S0743731505000560
http://www.sciencedirect.com/science/article/pii/S0743731505000560

136 BIBLIOGRAPHY

B R Dawson, M Fukushima, and P Sokolsky. Past, present, and future of uhecr observations.
Progress of Theoretical and Experimental Physics, 2017(12):12A101, 2017. doi: 10.1093/

ptep/ptx054. URL +http://dx.doi.org/10.1093/ptep/ptx054.

S. Dorn and T. A. Enßlin. Stochastic determination of matrix determinants. Phys. Rev. E, 92(1):
013302, July 2015. doi: 10.1103/PhysRevE.92.013302.

S. Dorn, T. A. Enßlin, M. Greiner, M. Selig, and V. Boehm. Signal inference with unknown re-
sponse: Calibration-uncertainty renormalized estimator. Phys. Rev. E, 91(1):013311, January
2015a. doi: 10.1103/PhysRevE.91.013311.

S. Dorn, M. Greiner, and T. A. Enßlin. All-sky reconstruction of the primordial scalar potential
from WMAP temperature data. J. Cosmology Astropart. Phys., 2:041, February 2015b. doi:
10.1088/1475-7516/2015/02/041.

B. Draine. On the Interpretation of the λ 2175 Å Feature. In L. J. Allamandola and A. G. G. M.
Tielens, editors, Interstellar Dust, volume 135 of IAU Symposium, page 313, 1989.

R. D. Ekers, J. Lequeux, A. T. Moffet, and G. A. Seielstad. A Measurement of the Galactic
Magnetic Field Using the Pulsating Radio Source PSR 0833-45. ApJ, 156:L21, April 1969.
doi: 10.1086/180341.

T. A. Enßlin and C. Weig. Inference with minimal Gibbs free energy in information field theory.
Phys. Rev. E, 82(5):051112, November 2010. doi: 10.1103/PhysRevE.82.051112.

T. A. Enßlin, M. Frommert, and F. S. Kitaura. Information field theory for cosmological pertur-
bation reconstruction and nonlinear signal analysis. Phys. Rev. D, 80(10):105005, November
2009. doi: 10.1103/PhysRevD.80.105005.

Torsten A Enßlin and Mona Frommert. Reconstruction of signals with unknown spectra in in-
formation field theory with parameter uncertainty. Physical Review D, 83(10):105014, May
2011. doi: 10.1103/PhysRevD.83.105014.

Inc. Enthought. Distarray: Think globally, act locally, 2016. URL http://docs.enthought.
com/distarray/.

C. Evoli, D. Gaggero, A. Vittino, G. Di Bernardo, M. Di Mauro, A. Ligorini, P. Ullio, and
D. Grasso. Cosmic-ray propagation with DRAGON2: I. numerical solver and astrophysical
ingredients. J. Cosmology Astropart. Phys., 2:015, February 2017. doi: 10.1088/1475-7516/

2017/02/015.

G. R. Farrar, R. Jansson, I. J. Feain, and B. M. Gaensler. Galactic magnetic deflections and
Centaurus A as a UHECR source. Journal of Cosmology and Astro-Particle Physics, 1:023,
January 2013. doi: 10.1088/1475-7516/2013/01/023.

Douglas P. Finkbeiner. A full-sky h-alpha template for microwave foreground prediction. The

+ http://dx.doi.org/10.1093/ptep/ptx054
http://docs.enthought.com/distarray/
http://docs.enthought.com/distarray/

BIBLIOGRAPHY 137

Astrophysical Journal Supplement Series, 146(2):407, 2003. URL http://stacks.iop.
org/0067-0049/146/i=2/a=407.

J. Fitzsimons, K. Cutajar, M. Osborne, S. Roberts, and M. Filippone. Bayesian Inference of Log
Determinants. ArXiv e-prints, April 2017.

R. Fletcher and M. J. D. Powell. A rapidly convergent descent method for minimization.
The Computer Journal, 6(2):163–168, 1963. URL http://www3.oup.co.uk/computer_
journal/hdb/Volume_06/Issue_02/060163.sgm.abs.html.

Daniel Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal of Open
Source Software, 24, 2016. doi: 10.21105/joss.00024. URL http://dx.doi.org/10.5281/
zenodo.45906.

Charles Francis and Erik Anderson. Galactic spiral structure. Proceedings of the Royal So-
ciety of London A: Mathematical, Physical and Engineering Sciences, 465(2111):3425–
3446, 2009. ISSN 1364-5021. doi: 10.1098/rspa.2009.0036. URL http://rspa.
royalsocietypublishing.org/content/465/2111/3425.

P. Frank, T. Steininger, and T. A. Enßlin. Field dynamics inference via spectral density estima-
tion. Phys. Rev. E, 96(5):052104, November 2017. doi: 10.1103/PhysRevE.96.052104.

Matteo Frigo. A fast fourier transform compiler. In Proceedings of the ACM SIGPLAN 1999
Conference on Programming Language Design and Implementation, PLDI ’99, pages 169–
180, New York, NY, USA, 1999. ACM. ISBN 1-58113-094-5. doi: 10.1145/301618.301661.
URL http://doi.acm.org/10.1145/301618.301661.

Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings
of the IEEE, 93(2):216–231, 2005. Special issue on “Program Generation, Optimization, and
Platform Adaptation”.

Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Dongarra, Jeffrey M.
Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett, Andrew Lumsdaine, Ralph H.
Castain, David J. Daniel, Richard L. Graham, and Timothy S. Woodall. Open MPI: Goals,
concept, and design of a next generation MPI implementation. In Proceedings, 11th European
PVM/MPI Users’ Group Meeting, pages 97–104, Budapest, Hungary, September 2004.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B Rubin.
Bayesian data analysis, volume 2. CRC press Boca Raton, FL, 2014.

G. Giacinti, M. Kachelrieß, D. Semikoz, and G. Sigl. Deflection of ultra-high energy heavy
nuclei in the Galactic magnetic field. In European Physical Journal Web of Conferences,
volume 53 of European Physical Journal Web of Conferences, page 6004, June 2013. doi:
10.1051/epjconf/20135306004.

T. Gold. Rotating Neutron Stars as the Origin of the Pulsating Radio Sources. Nature, 218:
731–732, May 1968. doi: 10.1038/218731a0.

http://stacks.iop.org/0067-0049/146/i=2/a=407
http://stacks.iop.org/0067-0049/146/i=2/a=407
http://www3.oup.co.uk/computer_journal/hdb/Volume_06/Issue_02/060163.sgm.abs.html
http://www3.oup.co.uk/computer_journal/hdb/Volume_06/Issue_02/060163.sgm.abs.html
http://dx.doi.org/10.5281/zenodo.45906
http://dx.doi.org/10.5281/zenodo.45906
http://rspa.royalsocietypublishing.org/content/465/2111/3425
http://rspa.royalsocietypublishing.org/content/465/2111/3425
http://doi.acm.org/10.1145/301618.301661

138 BIBLIOGRAPHY

Henry Gomersall. pyfftw: a pythonic wrapper around fftw, 2016. URL https://hgomersall.
github.io/pyFFTW. We use the mpi branch available at https://github.com/fredRos/
pyFFTW.

K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and M. Bartel-
mann. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data
Distributed on the Sphere. ApJ, 622:759–771, April 2005. doi: 10.1086/427976.

Krzysztof M Gorski, Eric Hivon, AJ Banday, Benjamin D Wandelt, Frode K Hansen, Mstvos
Reinecke, and Matthia Bartelmann. Healpix: a framework for high-resolution discretization
and fast analysis of data distributed on the sphere. The Astrophysical Journal, 622(2):759,
2005.

M. Greiner, D. H. F. M. Schnitzeler, and T. A. Enßlin. Tomography of the Galactic free electron
density with the Square Kilometer Array. A&A, 590:A59, May 2016. doi: 10.1051/0004-6361/

201526717.

J. L. Han. Magnetic Fields in Our Galaxy: How much do we know? III. Progress in the Last
Decade. Chinese Journal of Astronomy and Astrophysics Supplement, 6(2):211–217, Decem-
ber 2006.

W. E. Harris. A Catalog of Parameters for Globular Clusters in the Milky Way. AJ, 112:1487,
October 1996. doi: 10.1086/118116.

D.A. Harville. Matrix Algebra From a Statistician’s Perspective. Springer New York, 2008.
ISBN 9780387783567. URL https://books.google.de/books?id=kZGBQijgGV8C.

W. K. Hastings. Monte carlo sampling methods using markov chains and their applications.
Biometrika, 57:97–109, 1970.

Jason W. T. Hessels, Scott M. Ransom, Ingrid H. Stairs, Paulo C. C. Freire, Victoria M.
Kaspi, and Fernando Camilo. A radio pulsar spinning at 716 hz. Science, 311(5769):1901–
1904, 2006. ISSN 0036-8075. doi: 10.1126/science.1123430. URL http://science.
sciencemag.org/content/311/5769/1901.

M. R. Hestenes and E. Stiefel. Methods of conjugate gradients for solving linear systems. Journal
of Research of the National Bureau of Standards, 49(49):409–436, 1952.

R.V. Hogg and E.A. Tanis. Probability and Statistical Inference. Number Bd. 978,Nr. 0-58475
in Probability and Statistical Inference. Pearson/Prentice Hall, 2010. ISBN 9780321584755.
URL https://books.google.de/books?id=ihyyQwAACAAJ.

Zongliang Hu, Kai Dong, Wenlin Dai, and Tiejun Tong. A comparison of methods for esti-
mating the determinant of high-dimensional covariance matrix. The international journal of
biostatistics, 13(2), 2017.

https://hgomersall.github.io/pyFFTW
https://hgomersall.github.io/pyFFTW
https://github.com/fredRos/pyFFTW
https://github.com/fredRos/pyFFTW
https://books.google.de/books?id=kZGBQijgGV8C
http://science.sciencemag.org/content/311/5769/1901
http://science.sciencemag.org/content/311/5769/1901
https://books.google.de/books?id=ihyyQwAACAAJ

BIBLIOGRAPHY 139

M.F. Hutchinson. A stochastic estimator of the trace of the influence matrix for laplacian
smoothing splines. Communications in Statistics - Simulation and Computation, 18(3):1059–
1076, 1989. doi: 10.1080/03610918908812806. URL http://dx.doi.org/10.1080/
03610918908812806.

T R Jaffe, J P Leahy, A J Banday, S M Leach, S R Lowe, and A Wilkinson. Modelling the
Galactic magnetic field on the plane in two dimensions. MNRAS, 401(2):1013–1028, January
2010. doi: 10.1111/j.1365-2966.2009.15745.x. URL http://mnras.oxfordjournals.
org/cgi/doi/10.1111/j.1365-2966.2009.15745.x.

T R Jaffe, K M Ferrière, A J Banday, A W Strong, E Orlando, J F Macias-Perez,
L Fauvet, C Combet, and E Falgarone. Comparing polarized synchrotron and ther-
mal dust emission in the Galactic plane. MNRAS, 431(1):683–694, May 2013. doi:
10.1093/mnras/stt200. URL http://adsabs.harvard.edu/cgi-bin/nph-data_query?
bibcode=2013MNRAS.431..683J&link_type=ABSTRACT.

Ronnie Jansson and Glennys R Farrar. The Galactic Magnetic Field. ApJL, 761(1):L11, De-
cember 2012. doi: 10.1088/2041-8205/761/1/L11. URL http://adsabs.harvard.edu/
cgi-bin/nph-data_query?bibcode=2012ApJ...761L..11J&link_type=ABSTRACT.

E. T. Jaynes and R. Baierlein. Probability Theory: The Logic of Science. Physics Today, 57:
76–77, October 2004. doi: 10.1063/1.1825273.

H. Jeffreys. The Theory of Probability. Oxford Classic Texts in the Physical Sciences. OUP
Oxford, 1998. ISBN 9780191589676. URL https://books.google.de/books?id=
vh9Act9rtzQC.

H. Junklewitz, M. R. Bell, M. Selig, and T. A. Enßlin. RESOLVE: A new algorithm for aperture
synthesis imaging of extended emission in radio astronomy. A&A, 586:A76, February 2016.
doi: 10.1051/0004-6361/201323094.

Guido van Rossum Ka-Ping Yee. Pep 234 – iterators, 2016. URL https://www.python.org/
dev/peps/pep-0234/.

P. R. Kafle, S. Sharma, G. F. Lewis, and J. Bland-Hawthorn. On the Shoulders of Giants: Prop-
erties of the Stellar Halo and the Milky Way Mass Distribution. ApJ, 794:59, October 2014.
doi: 10.1088/0004-637X/794/1/59.

F. J. Kerr. The Large-Scale Distribution of Hydrogen in the Galaxy. ARA&A, 7:39, 1969. doi:
10.1146/annurev.aa.07.090169.000351.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by Simulated Annealing. Science,
220:671–680, May 1983. doi: 10.1126/science.220.4598.671.

R. Kissmann. PICARD: A novel code for the Galactic Cosmic Ray propagation problem. As-
troparticle Physics, 55:37–50, March 2014. doi: 10.1016/j.astropartphys.2014.02.002.

http://dx.doi.org/10.1080/03610918908812806
http://dx.doi.org/10.1080/03610918908812806
http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2009.15745.x
http://mnras.oxfordjournals.org/cgi/doi/10.1111/j.1365-2966.2009.15745.x
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013MNRAS.431..683J&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2013MNRAS.431..683J&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012ApJ...761L..11J&link_type=ABSTRACT
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2012ApJ...761L..11J&link_type=ABSTRACT
https://books.google.de/books?id=vh9Act9rtzQC
https://books.google.de/books?id=vh9Act9rtzQC
https://www.python.org/dev/peps/pep-0234/
https://www.python.org/dev/peps/pep-0234/

140 BIBLIOGRAPHY

J. Knollmüller, T. Steininger, and T. A. Enßlin. Inference of signals with unknown correlation
structure from nonlinear measurements. ArXiv e-prints, November 2017.

Jakob Knollmüller and Torsten A. Enßlin. Noisy independent component analysis of autocorre-
lated components. Phys. Rev. E, 96:042114, Oct 2017. doi: 10.1103/PhysRevE.96.042114.
URL https://link.aps.org/doi/10.1103/PhysRevE.96.042114.

J.C. Lemm. Bayesian Field Theory. Bayesian Field Theory. Johns Hopkins University Press,
2003. ISBN 9780801877971.

E. H. Lieb and H.-T. Yau. A rigorous examination of the Chandrasekhar theory of stellar collapse.
ApJ, 323:140–144, December 1987. doi: 10.1086/165813.

C. C. Lin and F. H. Shu. On the Spiral Structure of Disk Galaxies. ApJ, 140:646, August 1964.
doi: 10.1086/147955.

Dong C. Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical Programming, 45(1):503–528, Aug 1989. ISSN 1436-4646. doi: 10.1007/

BF01589116. URL http://dx.doi.org/10.1007/BF01589116.

M. Lutz. Programming Python: Powerful Object-Oriented Programming. O’Reilly Media, 2010.
ISBN 9781449302757. URL https://books.google.de/books?id=q8W3WQbNWmkC.

D. Maoz. Astrophysics in a Nutshell. In a Nutshell. Princeton University Press, 2007. ISBN
9780691125848. URL https://books.google.de/books?id=UTytFkQTLFkC.

R.C. Martin. Agile Software Development: Principles, Patterns, and Practices. Alan Apt se-
ries. Pearson Education, 2003. ISBN 9780135974445. URL https://books.google.de/
books?id=0HYhAQAAIAAJ.

S. Matarrese, F. Lucchin, and S. A. Bonometto. A path-integral approach to large-scale matter
distribution originated by non-Gaussian fluctuations. ApJ, 310:L21–L26, November 1986.
doi: 10.1086/184774.

Michael M. McKerns, Leif Strand, Tim Sullivan, Alta Fang, and Michael A. G. Aivazis. Building
a framework for predictive science. CoRR, abs/1202.1056, 2012. URL http://arxiv.org/
abs/1202.1056.

Message Passing Interface Forum. MPI: A message passing interface standard. International
Journal of Supercomputer Applications, 8(3–4):159–416, 1994.

Message Passing Interface Forum. MPI2: A message passing interface standard. High Perfor-
mance Computing Applications, 12(1–2):1–299, 1998.

Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth, Augusta H. Teller, and
Edward Teller. Equation of State Calculations by Fast Computing Machines. The Journal
of Chemical Physics, 21(6):1087–1092, June 1953. doi: 10.1063/1.1699114. URL http:
//dx.doi.org/10.1063/1.1699114.

https://link.aps.org/doi/10.1103/PhysRevE.96.042114
http://dx.doi.org/10.1007/BF01589116
https://books.google.de/books?id=q8W3WQbNWmkC
https://books.google.de/books?id=UTytFkQTLFkC
https://books.google.de/books?id=0HYhAQAAIAAJ
https://books.google.de/books?id=0HYhAQAAIAAJ
http://arxiv.org/abs/1202.1056
http://arxiv.org/abs/1202.1056
http://dx.doi.org/10.1063/1.1699114
http://dx.doi.org/10.1063/1.1699114

BIBLIOGRAPHY 141

I. Moskalenko. Modeling cosmic ray propagation and associated interstellar emissions. In 39th
COSPAR Scientific Assembly, volume 39 of COSPAR Meeting, page 1281, July 2012.

J. A. Nelder and R. Mead. A Simplex Method for Function Minimization. Comput. J., 7:308–
313, 1965. doi: 10.1093/comjnl/7.4.308.

J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations Research
and Financial Engineering. Springer New York, 2006. ISBN 9780387303031. URL https:
//books.google.de/books?id=eNlPAAAAMAAJ.

N. Oppermann, H. Junklewitz, G. Robbers, and T. A. Enßlin. Probing magnetic helic-
ity with synchrotron radiation and Faraday rotation. A&A, 530:A89+, June 2011. doi:
10.1051/0004-6361/201015545.

N. Oppermann, H. Junklewitz, G. Robbers, M. R. Bell, T. A. Enßlin, A. Bonafede, R. Braun,
J. C. Brown, T. E. Clarke, I. J. Feain, B. M. Gaensler, A. Hammond, L. Harvey-Smith,
G. Heald, M. Johnston-Hollitt, U. Klein, P. P. Kronberg, S. A. Mao, N. M. McClure-Griffiths,
S. P. O’Sullivan, L. Pratley, T. Robishaw, S. Roy, D. H. F. M. Schnitzeler, C. Sotomayor-
Beltran, J. Stevens, J. M. Stil, C. Sunstrum, A. Tanna, A. R. Taylor, and C. L. Van
Eck. An improved map of the Galactic Faraday sky. A&A, 542:A93, June 2012. doi:
10.1051/0004-6361/201118526.

N. Oppermann, H. Junklewitz, M. Greiner, T. A. Enßlin, T. Akahori, E. Carretti, B. M. Gaensler,
A. Goobar, L. Harvey-Smith, M. Johnston-Hollitt, L. Pratley, D. H. F. M. Schnitzeler, J. M.
Stil, and V. Vacca. Estimating extragalactic Faraday rotation. A&A, 575:A118, March 2015.
doi: 10.1051/0004-6361/201423995.

F. Pacini. Rotating Neutron Stars, Pulsars and Supernova Remnants. Nature, 219:145–146, July
1968. doi: 10.1038/219145a0.

L Page, G Hinshaw, E Komatsu, M R Nolta, D N Spergel, C L Bennett, C Barnes, R Bean,
O Doré, J Dunkley, and M Halpern. Three-Year Wilkinson Microwave Anisotropy Probe
(WMAP) Observations: Polarization Analysis. ApJS, 170:335–376, 2007. doi: 10.1086/

513699. URL http://adsabs.harvard.edu/abs/2007ApJS..170..335P.

Fernando Pérez and Brian E. Granger. IPython: a system for interactive scientific computing.
Computing in Science and Engineering, 9(3):21–29, May 2007. ISSN 1521-9615. doi: 10.
1109/MCSE.2007.53. URL http://ipython.org.

Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, Y. Akrami, M. I. R. Alves,
F. Argüeso, M. Arnaud, F. Arroja, M. Ashdown, and et al. Planck 2015 results. I. Overview
of products and scientific results. A&A, 594:A1, September 2016a. doi: 10.1051/0004-6361/

201527101.

Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. I. R. Alves, M. Arnaud, M. Ash-
down, J. Aumont, C. Baccigalupi, A. J. Banday, and et al. Planck 2015 results. X. Dif-

https://books.google.de/books?id=eNlPAAAAMAAJ
https://books.google.de/books?id=eNlPAAAAMAAJ
http://adsabs.harvard.edu/abs/2007ApJS..170..335P
http://ipython.org

142 BIBLIOGRAPHY

fuse component separation: Foreground maps. A&A, 594:A10, September 2016b. doi:
10.1051/0004-6361/201525967.

Natàlia Porqueres, Torsten A. Enßlin, Maksim Greiner, Vanessa Böhm, Sebastian Dorn, Pi-
lar Ruiz-Lapuente, and Alberto Manrique. Cosmic expansion history from SNe Ia data
via information field theory – the charm code. Astron. Astrophys., 599:A92, 2017. doi:
10.1051/0004-6361/201629527.

D. Pumpe, M. Greiner, E. Müller, and T. A. Enßlin. Dynamic system classifier. Phys. Rev. E, 94
(1):012132, July 2016. doi: 10.1103/PhysRevE.94.012132.

D. Pumpe, M. Gabler, T. Steininger, and T. A. Enßlin. Search for quasi-periodic signals in
magnetar giant flares. ArXiv e-prints, August 2017.

D. Pumpe, M. Reinecke, and T. A. Enßlin. Denoising, Deconvolving and Decomposing multi-
Dimensional Photon Observations- The D4PO Algorithm. ArXiv e-prints, February 2018.

R. J. Reynolds, F. L. Roesler, and F. Scherb. The Intensity Distribution of Diffuse Galactic Hα
Emission. ApJ, 192:L53, September 1974. doi: 10.1086/181589.

B. Ruiz-Granados, J. A. Rubiño-Martı́n, and E. Battaner. Constraining the regular Galactic
magnetic field with the 5-year WMAP polarization measurements at 22 GHz. A&A, 522:A73,
November 2010. doi: 10.1051/0004-6361/200912733.

G.B. Rybicki and A.P. Lightman. Radiative Processes in Astrophysics. Physics textbook.
Wiley, 2008. ISBN 9783527618187. URL https://books.google.de/books?id=
eswe2StAspsC.

R. Schlickeiser. Cosmic Ray Astrophysics. Springer, 2002.

D. H. F. M. Schnitzeler. Modelling the Galactic distribution of free electrons. MNRAS, 427:
664–678, November 2012. doi: 10.1111/j.1365-2966.2012.21869.x.

M. Selig and T. A. Enßlin. Denoising, deconvolving, and decomposing photon observations.
Derivation of the D3PO algorithm. A&A, 574:A74, February 2015. doi: 10.1051/0004-6361/

201323006.

M. Selig, N. Oppermann, and T. A. Enßlin. Improving stochastic estimates with inference
methods: Calculating matrix diagonals. Phys. Rev. E, 85(2):021134, February 2012. doi:
10.1103/PhysRevE.85.021134.

M. Selig, M. R. Bell, H. Junklewitz, N. Oppermann, M. Reinecke, M. Greiner, C. Pachajoa, and
T. A. Enßlin. NIFTY - Numerical Information Field Theory. A versatile PYTHON library for
signal inference. A&A, 554:A26, June 2013. doi: 10.1051/0004-6361/201321236.

M. Selig, V. Vacca, N. Oppermann, and T. A. Enßlin. The denoised, deconvolved, and decom-
posed Fermi γ-ray sky. An application of the D3PO algorithm. A&A, 581:A126, September
2015. doi: 10.1051/0004-6361/201425172.

https://books.google.de/books?id=eswe2StAspsC
https://books.google.de/books?id=eswe2StAspsC

BIBLIOGRAPHY 143

C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27(3):
379–423, 1948. ISSN 1538-7305. doi: 10.1002/j.1538-7305.1948.tb01338.x. URL http:
//dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x.

Jack Sherman and Winifred J. Morrison. Adjustment of an inverse matrix corresponding to a
change in one element of a given matrix. Ann. Math. Statist., 21(1):124–127, 03 1950. doi:
10.1214/aoms/1177729893. URL https://doi.org/10.1214/aoms/1177729893.

J. Skilling. Nested sampling for general bayesian computation. Bayesian Analysis, 1:833–860,
2006.

T. Steininger, J. Dixit, P. Frank, M. Greiner, S. Hutschenreuter, J. Knollmüller, R. Leike, N. Por-
queres, D. Pumpe, M. Reinecke, M. Šraml, C. Varady, and T. Enßlin. NIFTy 3 - Numerical
Information Field Theory - A Python framework for multicomponent signal inference on HPC
clusters. ArXiv e-prints, August 2017.

T. Steininger, T. A. Enßlin, M. Greiner, T. Jaffe, E. van der Velden, J. Wang, M. Haverkorn, J. R.
Hörandel, J. Jasche, and J. P. Rachen. Inferring Galactic magnetic field model parameters
using IMAGINE - An Interstellar MAGnetic field INference Engine. ArXiv e-prints, January
2018.

Theo Steininger, Maksim Greiner, Frederik Beaujean, and Torsten Enßlin. d2o: a distributed
data object for parallel high-performance computing in python. Journal of Big Data, 3(1):17,
Sep 2016. ISSN 2196-1115. doi: 10.1186/s40537-016-0052-5. URL https://doi.org/
10.1186/s40537-016-0052-5.

Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. The top500 project, 2015.
URL http://www.top500.org/lists/2015/11/.

J. H. Taylor and J. M. Cordes. Pulsar distances and the galactic distribution of free electrons.
ApJ, 411:674–684, July 1993. doi: 10.1086/172870.

MPICH Team. Mpich2: High-performance portable mpi, 2016a. URL www.mcs.anl.gov/
mpich2.

ScaLAPACK Team. Scalapack web page, 2016b. URL www.netlib.org/scalapack/.

Excellence Cluster Universe. Excellence cluster universe, 2016. URL http://www.
universe-cluster.de/c2pap.

V. Vacca, N. Oppermann, T. Enßlin, J. Jasche, M. Selig, M. Greiner, H. Junklewitz, M. Rei-
necke, M. Brüggen, E. Carretti, L. Feretti, C. Ferrari, C. A. Hales, C. Horellou, S. Ideguchi,
M. Johnston-Hollitt, R. F. Pizzo, H. Röttgering, T. W. Shimwell, and K. Takahashi. Using
rotation measure grids to detect cosmological magnetic fields: A Bayesian approach. A&A,
591:A13, June 2016. doi: 10.1051/0004-6361/201527291.

http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1214/aoms/1177729893
https://doi.org/10.1186/s40537-016-0052-5
https://doi.org/10.1186/s40537-016-0052-5
http://www.top500.org/lists/2015/11/
www.mcs.anl.gov/mpich2
www.mcs.anl.gov/mpich2
www.netlib.org/scalapack/
http://www.universe-cluster.de/c2pap
http://www.universe-cluster.de/c2pap

144 BIBLIOGRAPHY

Ellert van der Velden. Imagine: Testing a bayesian pipeline for galactic magnetic field model
optimization. Master’s thesis, Radboud University, Nijmegen, The Netherlands, 2017.

Stefan van der Walt, S. Chris Colbert, and Gael Varoquaux. The numpy array: A structure for
efficient numerical computation. Computing in Science and Engineering, 13(2):22–30, 2011.
ISSN 1521-9615. doi: http://doi.ieeecomputersociety.org/10.1109/MCSE.2011.37.

A Waelkens, T Jaffe, M Reinecke, F S Kitaura, and T A Enßlin. Simulating po-
larized Galactic synchrotron emission at all frequencies. The Hammurabi code.
A&A, 495(2):697–706, February 2009. doi: 10.1051/0004-6361:200810564. URL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009A%26A...

495..697W&link_type=EJOURNAL.

G.S. Watson. Statistics on spheres. University of Arkansas lecture notes in the mathematical
sciences. Wiley, 1983. ISBN 9780471888666. URL https://books.google.de/books?
id=tBjvAAAAMAAJ.

Cornelius Weig and Torsten A. Enßlin. Bayesian analysis of spatially distorted cosmic signals
from poissonian data. Monthly Notices of the Royal Astronomical Society, 409(4):1393–1411,
2010. doi: 10.1111/j.1365-2966.2010.17122.x. URL +http://dx.doi.org/10.1111/j.
1365-2966.2010.17122.x.

D.C.B. Whittet. Dust in the Galactic Environment, 2nd Edition. Series in Astronomy and As-
trophysics. Taylor & Francis, 2002. ISBN 9780750306249. URL https://books.google.
de/books?id=k21lk4sORpEC.

N. Wiener. Extrapolation, Interpolation and Smoothing of Stationary Time Series, with Engi-
neering Applications. Technology Press and Wiley, New York, 1949. note: Originally issued
in Feb 1942 as a classified Nat. Defense Res. Council Rep.

M. Wolleben, T. L. Landecker, W. Reich, and R. Wielebinski. An absolutely calibrated survey of
polarized emission from the northern sky at 1.4 GHz. Observations and data reduction. A&A,
448:411–424, March 2006. doi: 10.1051/0004-6361:20053851.

Max A. Woodbury. Inverting modified matrices. Statistical Research Group, Princeton Univer-
sity, Princeton, N. J., Memo. Rep.(42):4pp, 1950.

J. M. Yao, R. N. Manchester, and N. Wang. A New Electron-density Model for Estimation of
Pulsar and FRB Distances. ApJ, 835:29, January 2017. doi: 10.3847/1538-4357/835/1/29.

Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Stoica. Spark:
Cluster computing with working sets. In Proceedings of the 2Nd USENIX Conference on Hot
Topics in Cloud Computing, HotCloud’10, pages 10–10, Berkeley, CA, USA, 2010. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1863103.1863113.

E. G. Zweibel. The microphysics and macrophysics of cosmic raysa). Physics of Plasmas, 20
(5):055501, May 2013. doi: 10.1063/1.4807033.

http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009A%26A...495..697W&link_type=EJOURNAL
http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=2009A%26A...495..697W&link_type=EJOURNAL
https://books.google.de/books?id=tBjvAAAAMAAJ
https://books.google.de/books?id=tBjvAAAAMAAJ
+ http://dx.doi.org/10.1111/j.1365-2966.2010.17122.x
+ http://dx.doi.org/10.1111/j.1365-2966.2010.17122.x
https://books.google.de/books?id=k21lk4sORpEC
https://books.google.de/books?id=k21lk4sORpEC
http://dl.acm.org/citation.cfm?id=1863103.1863113

BIBLIOGRAPHY 145

F. Zwicky. On the Masses of Nebulae and of Clusters of Nebulae. ApJ, 86:217, October 1937.
doi: 10.1086/143864.

146

Danksagung

Mein größter Dank gilt Torsten Enßlin. Als Betreuer hat er sich in einem Maß für diese Ar-
beit und mich eingesetzt, das weit über das Selbstverständliche hinaus geht. Sowohl seine Art
der wissenschaftlichen Arbeit, als auch der Führungsstil mit dem er seine Arbeitsgruppe leitet,
sind nach wie vor für mich inspirierend und haben mir optimale Arbeitsbedingungen geschaffen.
Fachlich wie persönlich konnte in den letzten Jahren vieles von ihm lernen; sein Einfluss hat mich
dauerhaft geprägt. Seine Kultur der hilfsbereiten Zusammenarbeit spiegelt sich in der Arbeits-
gruppe wider und so wurde ich von meinen Kollegen herzlich aufgenommen und insbesondere
in der Anfangszeit bestens unterstützt. Hier gilt mein Dank Vanessa Böhm, Sebastian Dorn,
Niels Oppermann, Martin Reinecke, Marco Selig, Valentina Vacca und ganz besonders Maksim
Greiner. Auch mit meinen späteren Kollegen Philipp Frank, Sebastian Hutschenreuter, Jakob
Knollmüller, Reimar Leike, Natalia Porqueres, Daniel Pumpe und Matevž Šraml war es eine
Freude zusammenzuarbeiten und ich konnte vieles von ihnen lernen. Außerdem danke ich auch
Frederik Beaujean und Jens Jasche (Exzellenzcluster Universe), Marjike Haverkorn (Radboud-
Universität Nijmegen) und ganz besonders Tess Jaffe (NASA Goddard Space Flight Center),
Ellert van der Velden (Swinburne University of Technology) und Jiaxin Wang (SISSA) für ihre
überragende Unterstützung. Im Rahmen dieser Arbeit hatte ich die Ehre eine Reihe von Studen-
ten mitbetreuen zu dürfen. Dabei danke ich Adnan Akhundov, Mihai Baltac, Jait Dixit, Max-
imilian Kurthen, Stephan Rabanser, Csongor Várady und Sebastian Weiß für die vielen tollen
Stunden der intensiven Zusammenarbeit. Ferner danke ich Eiichiro Kumatsu und Thorsten Naab
für die Unterstützung als Mitglieder in meinem PhD committee.
Mein besonderer Dank gilt meiner Familie, die mich über die gesamte Zeit dieser Arbeit un-
terstützt hat. Ich bin unendlich dankbar, euch als Eltern, Schwestern, Kinder und zur Frau zu
haben.

	Zusammenfassung
	Summary
	Introduction
	The Milky Way
	The Galactic Magnetic Field
	Constituents of Interest

	Physical Effects
	Emission Processes
	Dispersion
	Synchrotron Emission
	Faraday Rotation & Depolarization
	Dust Absorption and Emission

	Chain of Inference
	Inferring the Thermal Electron Density
	Inferring the Magnetic Field

	Models of the Galactic Magnetic Field
	Information Theory
	Outline of this thesis

	IMAGINE
	Introduction
	Bayesian Parameter Inference and Model Comparison
	Galactic Variance
	The Imagine Framework
	Components and Overall Structure
	Using Sampling Methods for Uncertainty Quantification
	Magnetic Field Models
	Hammurabi
	Observables
	Likelihood

	Application
	Mock Data Based Tests
	Application to Real Data

	Conclusion & Outlook

	D2O
	Introduction
	Background
	Aim
	Alternative Packages

	Code Architecture
	Choosing the Right Level of Parallelization
	d2o as Layer of Abstraction
	Choosing a Parallelization Environment
	Internal Structure

	Basic Usage
	Initialization
	Arithmetics
	Array Indexing
	Distribution Strategies
	Distributed Arrays

	Performance and Scalability
	Scaling the Array Size
	Weak Scaling: Proportional Number of Processes and Size of Data
	Strong Scaling: Varying Number of Processes with a Fixed Size of Data
	Strong Scaling: Comparison with DistArray
	Strong Scaling: Real-World Application Speedup – the Wiener filter

	Summary & Outlook

	NIFTy 3
	Introduction
	Problem Description
	Information Field Theory
	Wiener Filter Theory
	Interacting Information Field Theory
	Manifold Independence & Discretized Continuum
	Data Representation
	Implicit vs. Explicit Operators
	Reference Projects

	Limitations of NIFTy1
	Combined Manifolds & Field Types
	Scalability & Parallelizability
	Refactoring the Code Structure

	The Structure of NIFTy3
	Domain Objects and Fields
	Linear Operators
	Operator Inversion
	Probing
	Energy Object & Minimization
	Parallelization & Cluster Compatibility

	Application: Wiener Filter Reconstructions
	Case 1: Single Space Geometry
	Case 2: Cartesian Product Space Geometry

	Conclusion

	Further Work
	Field dynamics inference via spectral density estimation
	Search for quasi-periodic signals in magnetar giant flares
	Inference of signals with unknown correlation structure from nonlinear measurements

	Conclusion and Outlook
	D2O Appendix
	Advanced Usage and Functional Behavior
	Distribution Strategies
	Initialization
	Getting and Setting Data
	Local Keys
	The d2o Librarian
	Copy Methods
	Fast Iterators

	Iterator Performance

	Danksagung

