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General Introduction

In our everyday life, we search all the time. Wergph a lot of time searching for our
keys, our reading glasses or a subway stop. Vs&aakhes are the most prominent
task the visual system has to cope with (Wolfe,8l98nagine searching for the
book you are reading. If the book happens to layaur bed, the search is quite
easy: it pops out from its environment. But if thaok is on the bookshelf among
many oher books, the search is comparably hard. In the 1980°s, Anne Treisman, in
fact, suggested, that there are two different kiofdsearches: parallel searches and
serial searches. In parallel searches, the seargbttpops out from the environment
so that you are always able to find it instantdgardless of how many distracting
objects are in the scene. In contrast, if the $etaxget does not pop out, as is the
case in serial searches, you have to individuallps=ch object in the scene to know
whether it is your target object or not. In thise€athe more distracting objects
comprise the scene, the harder the search is.thngarallel and feature searches,
the first initial search is characterized by thiiatites of the search target. In our
example, it depends on the color and artwork obibek, the title, and the author.
However, subsequent searches are additionallymyets location in space. If you
remember that you put your book on the top shal,information can guide your
efforts to this region and thereby make search ndffieient. This process of
attending preferably to certain regions of the deaspace is calledocation

probability cueing

Crucially, preferring the top shelf implies thatuyoan either focus your attention
on the top shelf or actively ignore the bottom Eimebrder to not get distracted by
similar looking books in the bottom shelf. The citiye mechanisms behind this
probability cueing of distractor locations are pgounderstood and form the
rationale for this thesis. This line of studieserfore, probed into the cognitive

mechanisms underlying location probability cueiffgats:



1. Is the effect spatial in nature or bound to chamastics of the tde
suppressed object? In specific, does the suppressiechanism
depend on the feature/dimension relationship betwee prominent
distractor and the tbe-attended search target?

2. Is the probability cueing effect persistent ovenaR After training on
the first day, will we still see a bias towards tfoemer frequent
distractor region after 24 hours, even if the @distor is now evenly
distributed?

3. Isthiskind of statistical learning reflected metamplitude of the N2pc,
a common EEG/ERP marker for shifts in spatial atoer?

Before addressing these questions, the introductiotiines guided search a
prominent model of visual search and how attengets captured by distracting
objects in visual searchesearch on location probability cueing and thmnratle of

this thesis.

Theory of Visual Search

Theories of visual search (Treisman & Gelade, 1980jfe 1994) typically split
search up into two phases. The first sweep oféhech scene is described as being
pre-attentive. This means, that it is based onlpbysical stimulus properties and
no recruitment of attention is required. A veryibagarch would be described by
a visual scene comprising of several simple objethe observer has to decide
whether there is also a specific target object agnibie rest of the objects, i.e. the
distractors. In basic search displays, the featafélse distractors can differ from
the target in only one visual dimension, like forshape or orientationsifigle-
featuresearch). For example, the search target is a cidmile all the distractors
are squares. This type of search is considerec tlast because the target is very

prominent and pops out among the distractors.dosulated that it is possible t



scan all items in the search scengamallel. In a slightly more complex search, the
target differs from the distractors by a conjunectmf two or more basic features
(feature-conjunction searghFor example, the distractors are either largeses or
small triangles, while the search target is theydanige triangle. In this case, the
target does not pop out among the distractors ttedt#on is required to guide the
searcthseriallythrough the display to find the conjunction oftfe@s that defiethe
target. This thesis focuses on the former parsdiatches in which the search target
pops out from the rest of the objects. In parakgrches, visual stimulsaliency
plays an important role in where attention is aled (Wolfe, 1994). Saliency is
usually referring to a local feature contrast bemvthe target object and distracting
objects (Yantis, 1996). The higher this contrdsg,more salient the target object is.
Further, an object that uniquely differs from otludxjects in the scene in one or
more feature dimensions (e.g. color, shape, oriemthis called deature singleton
because you can select this object unambiguouslgdban a single feature (for
example a red square among blue and green sqularegual search, selection of
single features based on stimulus saliency is sgmrtative of one mechanism
underlying visual search behavior generally reférte asbottomup attentional
capture. These bottom-up processes are foundedeophysical properties of the

stimuli in the scene.

In every-day searches, we know what we are lookimg Searches are directed
towards a specific goal (like finding our wallednd this guides our attention and
thereby influences search behavior. These influraegenerally referred totap-
down processes However, when we actively search for a specibgat, it is not
uncommon that we get distracted by something ute@ld=or example, you are
looking for your friend in a crowd of people butdslenly you focus your attention
on the stranger in a unicorn costume next to ydus involuntary attentional
capture is empirically investigated using variants of thdditional-singleton

paradigm (see Yantis, 1996, 2000, for a discussitr® search display typically



consists of one singleton target among several lyggmaus non-targets while some
of the scenes also include a singleton distracidre scenes are normally
constructed in a way that the distractor is moliersethan the target. For example,
a search display could comprise of several vetyicaiented bars as non-targets.
Your task is to find the bar that is slightly tdtéy 10°. However, your attention

might get captured by the horizontally oriented ,baecause its local feature
contrast is higher compared to the search target i{iis more salient). Such

attentional shifts are considered involuntary beeahey interfere with the task of

producing a fast response to the target.

The interference caused by these salient additisimngleton distractors can be
reduced in some situations (f.e. Muller, Geyer, éfditner, & Krummenacher,

2009) In the study of Mller and colleagues (2009),avlisrs started with a block
of trials that contained a shape-defined targetatier no distractor or a distractor
always defined by color. The subsequent blocksiohetl varying ratios of distractor
to no-distractor trials. The results showed thatrdctor interference varied

depending on both the amount of initial exposureligtractors and the ratio of
distractors in the subsequent blocks: they causgtieh interference when

participants had no prior exposure to distractors when the ratio of distractors
was low (the latter reducing the incentive to eregaglistractor suppression). This
indicates that observers can acquire some efficitretegy to suppress color-

defined distractors when searching for shape-défiaegets

But exactly how this suppression of distractorgriplemented in the functional
architecture of search guidance remains uncleaa.duoite recent study, Liesefeld
et al. (2017) used distractor bars that were tiigdt5° and target bars that were
titted by 12°. They found that distractors could be suppressed in this case as the
interference remained maximal over the course efakperiment. Therefore, it
seems that when searching for an orientation- (@ps-) defined target, the

interference caused by a salient singleton distrazn be effectively reduced when



the distractor is color-defined (i.e., when it idifferent-dimensiomistractor), but
not when it is also orientation- (or shape-) ddiifiee., when it is same-dimension
distractor). In fact, this pattern is predicted thg dimension-weighting account
(DWA) developed by Miller and colleagues (e.g., Found&ller, 1996). In
essence, DWA is a variation of tliauided Searchmodel (e.g., Wolfe, 1994). It
assumes that the allocation of spatial attentionlgjects in visual search is based
on aspatial priority map that is computed pre-atteriyive the first sweep of the
visual scene (later referred to msaster saliency mapDn the lowest level of the
cognitive hierarchy, the stimulus saliency of &ktobjects in the scene is coded
based on their local feature contrast. This cohtias then be enhanced for features
that define the search target or reduced for tergteivant features via goal-directed
top-down modulation. The feature contrast signalsguted this way are then
integrated across dimensions on the master salieragy and subsequently drive
spatial object selection. At the heart of DWA ig thotion that this integration on
the master saliency map operates in a dimensionalighted fashion. This means
that d signals from specific dimensions may be assignegteater or a lesser
influence on guiding the allocation of attentionamhall signals from other
dimensions. Accordingly, on the DWA, the non-splatisual selection is primarily
dimension-based, rather than feature-based, butlament of feature-based

selection is still possible.

Location probability cueing

Commonly, we do not only search for objects by rtHeatures or local feature
contrast. A major asset guiding our endeavorsaddbation in space. For example,
if you are looking for a book, it is plausible thatu might find it more likely on the

bookshelf than on the floor. A similar logic holtsie if you search for the same

book repeatedly. Imagine you are reading a comyelichook on statistics and you



put it back on the shelf after each reading sesgifiar two months, you look for it
again. You vaguely remember that you put it onttyeright shelf, consequently
search in this region first and quickly find itagtd differently: you find the book
fast ifit is in the location where you expectdtiie and slow when it is in a different
location. Geng and Behrman (2002) showed thatistatso true for more artificial
search settings. They presented participants witi different letters distributed
over six fixed locations on the screen. The se#aopet was more likely to appear
on one side (80%) than on the other (20%) but Hr&é@pants were not instructed
about this manipulation. Participants respondetbug®0 ms faster on trials where
the search target appeared in the expected (i.e probable) locations compared
to the unexpected (i.e. less probable) locatiom&ifTexperiment was the first to
empirically show that observers can use unequgktadocation distributions to
their advantage. This location probability cueiegults in the so-callgarobability
cueingeffect and was since then shown consistently,inlsbher paradigms (Geng
and Behrmann, 2005; Fecteau et al., 2009; Andegsbmuker, 2010). On top of
that, a debate has been started about the mechbhelsmd this probability cueing

effect.

The first explanation attributed the effect to adeterm statistical learning of the
uneven distractor distribution (Geng and Behrma20(2, 2005; Anderson &
Druker, 2010). However, as pointed out by Goschy emlleagues (2014), previous
investigations had been contaminated by short-tater-trial facilitation effects.
If a search target appears more likely in one $pdocation, it is also more likely
that it appears at this location twice in a rowémtrial target repetition). Such
target repetitions have been shown to facilitatarcde (e.g. Maljkovic and
Nakayama, 1996; Kumada and Humphreys, 2002; Geydr, D7) but the effects
are only applicable on atridly-trial basis and do not contribute to overall stad¢al
learning. Goschy and colleagues (2014) were abghtav two things: First, after

varying the location probability distribution of additional singleton distractor



instead of the target, observers were able to fgspthe distractor in the region
where it appeared more often (90% of the timejlilegito decreased response times
compared to the region where it appeared less ¢1@% of the time). Thus, they
showed that the probability cueing effect not oafyplies to search target but
extends to salient, task-irrelevant distractor digie Second, by systematically
manipulating the possibility of inter-trial targahd distractor repetitions, they
showed that the probability cueing effect was htttable to both short-term inter-
trial effects and longer-term statistical learnwfghe distractor distribution. But
how does the distractor get learned and suppressadtiime? This thesis focuses
on how the visual system learns to shield the fatence generated by the salient
distractors and how this is implemented in its d¢bga architecture of search

guidance

Rationale of thisthesis

We know that when we manipulate the distractorrihistion in such a way, that
the distractor appears much more likely in one aeg{90%,;frequent regioh
compared to the other (10%&re region), response times are much lower when it
appears in the region where it appears more of8emthe mechanisms underlying
this location probability cueing are poorly undexsi. Generally, there are three

possible ways distractor suppression in the fretdetractor region could work.

1. Global spatial suppression Distractors appearing in the frequent region
might not be directly suppressed. Rather, the reduaterference (or
increased suppression) of those distractors iatable to a global bias,
which inhibits the allocation of attention to theeduent region. Stated
differently, saliency signals arising in this regicare globally down-
regulated. If this is the case, the processingeafch targets appearing in

this spatially suppressed region should be impai@al Importantly, this
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impairment should even be evident on trials on Whio distractor is
present because statistically learned, persistlaiagsuppression of the
frequent distractor region would operate on adiisriAdditionally, it would

be independent of whether the distractor is defingtie same- or different

dimension.

Feature-based spatial suppressianAlternatively, spatial shielding may
operate at a level below the master saliency mhprefeatures and feature
contrast signals are computed. Distractor suppressiuld operate on the
feature maps, down-modulating the distractor-definfeature directly,
with stronger down-modulation applied to the fregueesgion as compared
to the rare region. Suppressing a distractor featignal in the frequent
region (more than in the rare region) would deaeats influence when
transferred to the corresponding locations on theter saliency map. The
resulting saliency signal is thereby decreased,imgathe distractor less
competitive for the allocation of spatial attentidhsuch a direct feature-
suppression is the general mechanism by whichdhgelworks, it would
predict no impairment of processing for searchats @ the frequent versus
the rare distractor region, whether the distragalefined in the same or a
different dimension to the target (as in both casely the distractor feature

is suppressed).

Dimension-based spatial suppressia®r, as assumed by the DWA, spatial
shielding could operate on the dimension-specégtdre-contrast map,
down-regulating the strength of any feature-cortraignals in the
dimension in which the distractor is singled owinfrthe non-targets, more
so for the frequent as compared to the rare regiocording to dimension-
based spatial suppression, a dissociation wouldeXmected between
conditions with distractors defined in the samesuera different dimension

to the target (cf. Mller et al., 2009; Zehetleiteeal., 2012): Impairment of
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target processing in the frequent as compareddadhe distractor region
would not be expected when the distractor is ddfinme a different
dimension to the target, in which case any sigfir@m the distractor
dimension can be suppressed without impacting Eginam the target
dimension. But impairment would be expected if th&tractor is defined
within the same dimension as the target: in theechecause of dimensional
coupling, applying dimension-based suppression @onnpact target as

well as distractor signals.

We tested these hypotheses by comparing and ctinfgabe effects of same-
dimension versus different-dimension distractore Wére the first to employ a
distractor probability cueing paradigm with botimsadimension distractors and
different-dimension distractors to directly compadédferences in distractor
interference and target location effects. As mergabove, while the probability
cueing effect is attributable to both statistiedrining and inter-trial facilitation,
this thesis focuses on statistical learning. In fingt study, we realized this
distinction by recruiting a large sample of 184 tmgpants and then
computationally removed all trials related to intgal effects. We found decisive
differences in the probability cueing effects fastdactors defined in the same
dimension as the target compared to distractonaeikin a different dimension.
Based on our conclusion that different cognitivechmnisms are involved in the
statistical learning depending on the distractpetyve tested whether the learning
IS persistent over time and still evident afterda @vaiting period (study 3). At the
same time, we looked for common neurophysiologmalkkers of this learned
distractor suppression with electroencephalograpiore precisely in the event-
related potentials N2pc and PD (study 2) and prdbedh generalization of the

revealed medmisms in the luminance dimension (study 4).
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Abstract

Shielding visual search against interference frafiest distractors becomes more
efficient over time for display regions where désttors appear more frequently,
rather than only rarely (Goschy et al., 2014). Wedthesized that the locus of this
learnt distractor probability-cueing effect dependshe dimensional relationship
of the tobeinhibited distractor relative to the toe-attended target. If they are
defined in different visual dimensions (e.g., cettefined distractor and
orientation-defined target, as in Goschy et all4&0distractors may be efficiently
suppressed by down-weighting feature contrast 8gnathe distractor-defining
dimension (Zehetleitner et al., 2012), with strandewn-weighting applied to the
frequent vs. the rare distractor region. Howevaverg dimensionally coupled
feature contrast signal weighting (cf. Muller et 4995), this dimension-(down-
)weighting strategy would not be effective when thmget and the distractors are
defined within the same dimension. In this casgypsassion may operate
differently: by inhibiting the entire frequent diattor region on the search-guiding
master saliency map. The downside of inhibitiothé level is that, while it reduces
distractor interference in the inhibited (frequéditractor) region, it also impairs
target processing in that regiereven when no distractor is actually present in the
display. This predictedqualitative difference between same- and different-
dimension distractors was confirmed in the presendy (with 184 participants)
thus, furthering our understanding of the functiomachitecture of search
guidance, especially regarding the mechanisms wedoin shielding search from

the interference of distractors that consistentlyus in certain display regions.

Keywordsvisual search, perceptual learning, attentionalwag location

probability cueing, location suppression, dimensigighting
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Introduction

When looking for a unique target object within ehrvisual scene, there are often
other objects that stand out from the backgrounuoof-target items and that may
capture attention before the target is attendegubh visuapop-outsearch tasks,
observers become more efficient, over time, in miging the interference
generated by such salient but task-irrelevant aistrs when these are consistently
occurring in certain regions of the search displ®pschy, Bakos, Miller, &
Zehetleitner, 2014)However, the mechanisms underlying this learninfgcef
termedprobability cueing of distractor location&Goschy et al., 2014), are poorly
understood: Do observers learn to suppress distrabased on their likely location
alone? Or does space-based suppression combinteaiitite- or dimension-based
suppression mechanisms in some circumstancesA¥krah there are no effective
means of object-based suppression, does space-sggakssion become so strong
that it affects processing of the search targatriter the intention) as well as of the
distractor? These questions were addressed in thsempt study.- Before
developing these questions and considering in ldetav probability cueing of
distractor locations may work, we review some kegtions concerning the
functional architecture underlying the competitmunique,singletontarget and

distractor objects in otherwise homogeneous seamelys.
Modulation of interference in involuntary attentional capture

Attentional capture by task-irrelevant objectsssally investigated using variants
of theadditional-singleton paradigniTheeuwes, 1992; see Yantis, 1996, 2000, for a
discussion). While the search display consistsrod ¢task-relevant) singleton-
feature target amongst homogeneous non-targets sorall displays include an
additional (task-irrelevant) singleton-feature dastor. Typically, the additional
singleton is more salient than the targdtequently, as in Theeuwes (1992), the

target is defined by a unique shape (e.g., a di@mamong circles) and the
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distractor by a unique color (e.g., a red circleoaip green shapes) so that,
generally, it is highly likely to capture the observer’s attention before the target is
selected, thereby prolonging reaction times. Sutdnéional shifts are considered
involuntary because they interfere with the tasgreiducing a speeded response to

the target.

This interference of salient additional-singletastdactors can be reduced in some
situations (e.g., Gaspelin, Leonhard, & Luck, 202617; Leber & Egeth, 2006a,
2006b; Muller, Geyer, Zehetleitner, & Krummenach@Q09) Additionally,
Zehetleitner, Goschy, and Miuller (2012) showed ttat interference reduction
does not critically depend on teearch modécf. Bacon & Egeth, 1994) adopted by
observers (whethdeatureor singleton search mo@ldout on distractor practice (see
also Vatterott & Vecera, 2012, and Gaspelin & Luzl7, for the role of practice
for reducing distractor interference). This indesthat observers can acquire some
efficient strategy to suppress color-defined diswestvhen searching for a shape-
(or orientation-) defined target. But exactly holwst exclusion of distractors is

implemented in the functional architecture of shagaidance remains unclear.

One clue to answering this question is providetlibyefeld, Liesefeld, Téliner, and
Mduller (2017). Instead of using a color-definedtdistor, both distractor and target
were defined by orientation: the (less salientyéamwas defined by a 12° tilt from
the vertical, and the (more salient) distractomlb® tilt in the opposite direction
to the target. Using these stimuli, Liesefeld et(aD17) observed massive and
persistent distractor interference (of 225 ms) aengthy EEG experiment. There
was no evidence that observers could reduce taetaihal capture by the singleton
distractor. Rather, the distractors attracted apattention- as evidenced by a
distractor N2pc wave, a negative EEG deflection patsterior electrodes
contralateral to the distractor. Generally, the dlBptaken to reflect the allocation
of attention to an object in the search displag.{éuck & Hillyard, 1994; Eimer,
1996; Woodman & Luck, 1999, 2003; Téliner, Range&Willer, 2012). Crucially,

16



the distractor N2pc was elicited prior to a shift attention to the target, as
evidenced by a delayed target N2pc. Such a sigaapattern of successive
distractor- and target-related N2pc waves had neleen consistently
demonstrated before. A reason for this might bé phavious studies focusing on
the N2pc typically used shape-defined targets afataefined distractors, making
it easy to selectively up-weight target and/or demight distractor signals
(Hickey, McDonald, & Theeuwes, 2006; Kiss, Grubététersen, & Eimer, 2012;
Jannati, Gaspar, & McDonald, 2013; Burra & Ker2€l13; Wykowska & Schubd,
2011; among the exceptions are studies with batietaand distractor defined in

the color dimension, which will be considered fuattin the General Discussion).

The role of dimension weighting in involuntary attentional capture.

Thus, it would appear that when searching for aendation- (or shape-) defined
target, the interference caused by a salient sioigldistractor can be effectively
reduced when the distractor is color-defined (when it is adifferent-dimension
distractor), but not when it is also orientationr §hape-) defined (i.e., when it is a
same-dimensiomlistractor). In fact, this pattern is predicted thye dimension-
weighting accountDW A) developed by Mduller and colleagues (e.g., Found &
Miller, 1996; Muller, Heller, & Ziegler, 1995; Migi, Reimann, & Krummenacher,
2003; Krummenacher, Muller, Zehetleiter, & GeyedD?). In essence, DWA is a
variation of theGuided Searchmodel (e.g., Wolfe, 1994; Wolfe, 2007), which
assumes that the allocation of focal attentiortéms in visual search is based on a
pre-attentively computed spatial priority map (hefiocth referred to amaster
saliency map)items achieving the highest overall-saliency attended with
priority. The saliency that items take on on thiapndepends on their feature
contrast to other items in their local surroundthwi all pertinent feature
dimensions (e.g., color and orientation contrasiditionally, this contrast can be
top-down enhanced for features that define thecheal-for target and possibly

also reduced for task-irrelevant featuresshere the down-weighting of specific
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features would correspond fost-order feature suppressioim the terminology
recently introduced by Gaspelin and Ludk pres$. The feature contrast signals
thus computed are then integrated across dimensioriBe master saliency map
and subsequently drive spatial selection. At therhef DWA (and the critical
difference to the original Guided Search modethis notion that this integration
operates in a dimensionally weighted fashion (imtcast to simple saliency
summation models, such as Guided Search, whichmessnon-weighted
integration and to models assuming only featuresifipaveighting). All feature
contrast signals from specific dimensions may lsgagd a greater or a lesser
influence on guiding the allocation of attentioramhall feature contrast signals
from other dimensions. This down-weighting of ahfure contrast signals from
one dimension would, in a sense, be similar torsgeorder feature suppression in
Gaspelin and Luck’s (in press) terminology (i.e., suppression of a feature
discontinuityon a specific feature dimension, e.g., a colocahsinuity, without
affecting feature discontinuities in other dimemsplike shape or orientation).
Accordingly, on the DWA, non-spatial visual selectiis primarily dimension-
based, rather than feature-based, without denymglement of feature-based

selection (see General Discussion for further tgtai
Role of dimension weighting in the probability cueng of distractor locations

The present study was designed to examine whetteefuinctional architecture
envisaged by DWA (see above) would also help uststdnd how the probability
cueing of distractor locations is mediated. Besige®cesses of location-
independent attentional selection as discussedeabesarch performance is greatly
influenced by the spatial distribution of targetslalistractors in the search array.
It is well-established that observers can learrexploit uneven distributions of
target locations in order to facilitate searchgéds are detected faster at locations
where they appear more frequently (e.g., Andersor&ker, 2010; Fecteau,

Korjoukov, & Roelfsema, 2009; Geng & Behrmann, 2005), which Geng and
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Behrmann (2002) termed target location probability cueing effecBimilarly,
observers can learn to exploit the statistical rdistion of task-irrelevant
distractors to improve performance: over time, thegome better at suppressing
locations where distractors appear frequently ,(&elley & Yantis, 2009; Leber,
Gwinn, Hong, & O’Toole, 2016; Reder, Weber, Shang, & Vanyukov, 2003). Note,
though, that the relevant demonstrations were déichib sparse visual displays that
contained only a few target and distractor stimwith a very limited number of
possible distractor locationsGoschy et al. (2014) showed that distractor locati
probability learning does generalize from singiedfic locations to entire regions
of dense search displays. They presented a slighitdgd gray target bar (i.e., an
orientation-singleton) among 36 vertical gray nanget bars. In half of the search
arrays, one of the vertical non-targets was red/irsg as a highly salient color-
defined (i.e., different-dimension) distractor. WWihgresent, distractors appeared
with 90% probability in one half of the displaydfiuent distractor region) and with
10% in the other half (rare distractor region). &uoset al. (2014) found that the
distractor captured less attention when it occumeithe frequent as compared to
the rare region. This result suggests that (att l@ath different-dimension
distractors) we can exploit uneven spatial distradistributions to facilitate search

performance. However, it remains unclear exactlyvhthis suppression is

! Reder et al. (2003) used a variation of tregative-primingparadigm (adapted from Tipper,
Brehaut, & Driver, 1990): displays consisted ofiget and 1 distractor, with 4 possible locations,
one of which was most likely to contain a distracta Kelley and Yantis (2009), the task-relevant
red-green dot pattern consistently appeared inispay center, and a distractor (composed of the
same colors) could appear at one of two, equahliperipheral locations. Leber et al. (2016) used
a variation of theontingent-capturearadigm (e.g., Folk, Remington, & Johnston, 198®re were

4 display locations/items (arranged in the fornaaguare), with the distractor display preceding
the target display; distractors (which were singted from the background stimuli by the same
feature as the target: the color red) were mostyliko appear at one location, defined by a fixed
relationship with the likely target location thaasvindicated by a central arrow at the start oizh t
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implemented, and whether it works in the same witly same- as with different-

dimension distractors.
Rationale of the present study

In principle, there are three possibilities of hepatial shielding from distractor
interference may work: spatially selective suppogssat (i) the global, master

saliency level, (ii) the specific feature level,(on) the dimensional level.

Master-map-based suppressiorOne possibility is that the reduced interference
from distractors in the frequent distractor regi®ddue to a global bias against the
allocation of spatial attention to this region.tBrms of search architecture, this
would be implemented at the level of the searcltigg master saliency map of the
search array (in Gaspelin & Luck’s, in pressterminology, this is similar tglobal-
salience suppressipnote, though, that they take this to refer to sepgion being
reactively applied to the most salient item on ¢lobal saliency map, rather than
anticipatory suppression of a whole region). Supgiom at this level entails that if
the frequent distractor region was inhibited on thaster saliency map, the
processing of search targets appearing in thisalyatuppressed region should be
impaired, too. This impairment should even be aviden trials on which no
distractor is present, because learned, persigtebal suppression of the frequent
distractor region would operate on all trials, wiest or not a distractor appears.
Additionally, it would be independent of whetheetdistractor is defined in the

same or a different dimension to the target

Feature-based suppressioAlternatively, spatial shielding may operate aeweel
below the search-guiding master saliency map, wieateires and feature contrast
signals are computed, which are then integrated ithe master saliency map.
Distractor suppression could operate on the featuap, down-modulating the
distractordefining feature directly (in Goschy et al., 2014: the feature ‘red’), with

stronger down-modulation applied to the frequentcaaspared to the rare region.
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This is essentially a spatially selective versidfirst-order feature suppression (cf.
Gaspelin & Luck,in pres$. Suppressing distractor feature signals in tleguient

distractor region (more than in the rare regionyldattenuate their weight when
transferred to the corresponding locations on tlester saliency map, making
them less competitive for the allocation of foceation. If such a direct feature
weighting is the general mechanism by which shimediorks, it would predicho

impairment of processing for targets in the frequeersus the rare distractor
region, whether the distractor is defined in thesar a different dimension to the

target (as in both cases, only the distractor feaigisuppressed).

Dimension-based suppressioAlternatively, as assumed by the DWA, spatial
shielding could operate on the dimension-specéd&idre-contrast map, down-
modulating the strength of any feature-contrastagin the dimension in which
the distractor is singled out from the non-tardetsGoschy et al.: the dimension
‘color’), more so for the frequent as compared to the rare region. This is essentially

a spatially selective version of second-order featsuppression (cf. Gaspelin &
Luck, 2017). Accordingly, a dissociation would bpected between conditions
with distractors defined in the same versus a iffée dimension to the target (cf.
Miller et al., 2009; Zehetleitner et al., 2012)pgarment of target processing in the
frequent as compared to the rare distractor regiounld not be expected when the
distractor is defined in a different dimension lte target, in which case any signals
from the distractor dimension can be suppressedowit impacting signals from
the target dimension. But impairment would be exped the distractor is defined
within the same dimension as the target: in thisecdecause of dimensional
coupling, applying dimension-based suppression @vomlpact target as well as

distractor signals.

2 An alternative strategy to dimension-based sumiwes(which might be deemed counter-
productive, as the target can be detected onlyerbasis of signals in the single critical dimenjio
might be to resort to inhibition at the level oktmaster saliency map. But this would again lower
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Based on the DWA, our working hypothesis was devi@: probability cueing (i.e.,

effectively stronger suppression applied to thedient as compared to the rare
distractor region) operates at the dimension-sgelgfel when distractors are

defined in a different dimension to the targétaving target processing unaffected.
But when distractors are defined within the sammatision as the target, space-
based shielding operates (if it can operate ated@lfjer at the dimension-specific
level or at the level of the master map; both wdwddassociated with a cost (i.e., a
cost additive to any distractor-probability-cueirifget) for target processing in the

frequent region as compared to the rare region.

We tested this hypothesis by comparing and contrgghe effects of same-
dimension and different-dimension distractors. istor type was manipulated
between subjects (i.e., in separate experimén$pecifically, we examined (i)
whether a distractor probability cueing effect wbalso be observed with same-
dimension distractors (rather than only with diffiet-dimension distractors); (ii)
whether adaptation to the unequal distractor distron (i.e., frequent vs. the rare
distractor region) would also impact target proragsand (iii) whether any such
impact would qualitatively differ between the samand different-dimension

distractor conditions.

In order to isolate pure distractor location prabigicueing effects, the data need

to be cleaned from short-term inter-trial repetiteffects and effects of the distance

the response of saliency units to the target (dlsasehe distractor) in the frequent (suppressed)
region - in line with global spatial shielding (see abovAkcordingly, with same-dimension
distractors, a target location effect (slowed regfing to targets within the frequent vs. the rare
distractor region) would be expected in both cases.

3 The aim of the study was to examine focal hypatheggarding the effects of target position
(dependent on the type of distractor) in distragosbability cueing. These hypotheses weog
examined by Goschy et al. (2014), who ignored thf ‘target position’. We combined Goschy et

al’s (2014, Experiment 1) data with newly acquired sets of data to raise experimental power and
support generalizability. The only difference ime®of these new experiments was the non-target
color, which was blue instead of gray. Of note, ftarget color made no difference to the results,
and even without the Goschy et al. (2014) datar¢Belts are essentially the same.
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between the target and the distractor in the searchy, both of which can
influence visual search and both of which may diffetween the frequent and rare
distractor regions. How we dealt with both typepofential confounds, and what
impact they actually have on search performanceeicribed in detail in the
Appendix. Note that eliminating potentially confading trials is costly in terms of
the number of trials, or participants, required. Bf#ed for recruiting a larger
sample of participants while keeping the number of trials manageable and
consistent with Experiment 1 of Goschy et al. (3018y combining the data from

several experiments with, in all important respgadsntical design.

Method

Participants

One hundred and eighty-four (122 female, 62 madgtrhanded observers, with a
median age of 26 (range:-J&b) years, participated in the main experimenhaf t
study. They were recruited from participant panats Ludwig Maximilian
University Munich and Birkbeck College, Universitf London. All of them
reported normal or correctad-normal (color) vision and gave prior informed
consent. They received 8 € (or the GBP equivalent) per hour in compensation. Note
that partial results based on the data of 25 o$dhgarticipants were already
reported in Goschy et al. (2014). One subject loaoketremoved from analyses for

missing data (see Appendix).
Apparatus

The experiment was conducted in a sound-reducedgenately lit test chamber.
The search displays were presented on a CRT moatith24 px x 768 px screen
resolution and a refresh rate of 120 Hz. Stimulrevgenerated using either the

Experiment Toolbox (Reutter & Zehetleitner, 20Mth a Psychophysics Toolbox
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3.0.9 (Brainard, 1997; Kleiner et al, 2007) extensfor MATLAB R2007a (The
MathWorks®Inc) or OpenSesame 3.0 (Math6t, Sch&gljheeuwes, 2012) using a
PsychoPy (Peirce, 2007) backend. The observansdstheir responses using a
QWERTZ [QUERTY] keyboard by pressing the “y” [“z”] or “m” key with their left-

or right-hand index finger, respectively.
Stimuli

The stimulus displays were presented on a bladkgraand. They consisted of gray
(RGB: 127, 127, 127; CIE [Yxy]: 21.22, 0.32, 0.8%; 112 participants) or light blue
(RGB: 0, 140, 209; CIE [Yxy]: 57.3, 0.20, 0.20; fti2 participants) vertical non-target
bars (0.25° of visual angle wide, 1.35° high), witheir centers equidistantly
arranged on three imaginary concentric circles widldii of 2°, 4°, and 6°,
comprising of 6, 12, and 18 bars, respectivelyuter bar occupied the position
in the center of the three circles. In every bhaeré was a gap of 0.25° in height,
which was randomly located 0.25° from the top ottéwm of the bar. The target
differed from the non-targets by its unique orie¢ioia, randomly assigned on each
trial: it was tilted 12° to either the right or theft. Note that 12° tilted targets
(amongst vertical nontargets) produce reliable ‘pop-out’, as evidenced by a flat
search RT/set size function (with a slope near em) for such targets (Liesefeld,

Moran, Usher, Mlller & Zehetleitnrg2016), indicative of ‘efficient’ search.

If a singleton distractor was present, one of then-targets was tilted 90°
(horizontal; same-dimension distractor) instealemg vertical; or one of the non-
targets was red (RGB: 255, 33, 51; CIE [Yxy]: 5680%0, 0.32) instead of gray

(different-dimension distractor).

Note that the singleton target and (if presentédd $ingleton distractor could
appear only at one of the 12 locations on the megtiate circle (i.e., singleton
eccentricity was held constant). The non-targehsti on the outer and inner

circles (together with those on the intermediatel€) essentially served to equate
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local feature contrast amongst the various singlepositions (e.g., Bravo &

Nakayama, 1992; Nothdurft, 1993).

Figure 1. Example of a stimulus display. The search targahée 12°-

position, and the (same-dimension) distractorés%°_

Design

The type of the singleton distractor (same- andedfit-dimension) was
introduced as a between-subject factor, with 5@oless in the same-dimension
condition and 128 in the different-dimension corafit(including 25 from Goschy

et al., 2014, Experiment 1).

In addition to the type of distractor, the frequemiestribution of the singleton

distractor across the top and bottom halves o$#aech displaysvas manipulated

“In Experiment 1 of Goschy et al. (2014), in adiitio the top/bottom manipulation of distractor
frequency as described here, there was also a left/right manipulation. Importantly, both ‘polarity’
manipulations produced comparable patterns ofatitbr interference effects, that is, there were no
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as a between-

on the intermediate circle (see Figure 1). For ledlthe participants, the top

for the other half, the bottom semicircle was tteg f

assigned to the frequent or rare area. A distrages present in a random 50% of

the displays per block. If a distractor was presergppeared in the frequent area

n in both areas, with an
equal probability for all 10 possible positionsthunever occurred at the same
position as the distractor. The order of the twéthin each block was randomized.
The experiment consisted of 800 trials in totabdivided into 8 blocks of 100 trials

each.

Procedure

The experimental procedure was identical to thatdusy Goschy et al. (2014) in
their Experiment 1. All observers were instructedairiting and orally that their

task was to discern whether the target bar wasrupéed (by a gap) at the top or

informed that on some trials, there would be a #wrtal (same-dimension
condition) or, respectively, a red (different-dinseon condition) distractor bar
which they should simply ignore, as it would beslevant to their task. Note that

the distractor-defining feature was deliberatelgd, to permit observers to operate

manipulation was used in further sampling for thesent study.
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a feature- -
Observers were not informed that the distractorldidse more likely to appear in

one particular semi-circle.

Each trial started with a white fixation cross lmetmiddle of the screen presented
for a random duration between 700 ms and 1100 rhenTthe search display

appeared and stayed on until the observer gavesgomee indicating the gap

the center of the screen for 500 ms. Then the miakistarted with the onset of the
central fixation cross. After each block of triadbservers received RT and accuracy

feedback and were free to take a short break bedsteming the experiment.

After completing the experiment, participants @lie a brief questionnaire, which

was intended to establish whether they had gaimgdeaplicit knowledge of the
le.:

were distractors equally likely in all display psdr were they more likely in the

upper, lower, left, or right display half?).
Analysis

For the RT analyses presented below, we perfornoeffurther) outlier rejection
and computed median RT values d to assess

effect sizes. Apart from classical frequentist nueas, to address issues raised by

acknowledged by 90% of scientists (Baker, 2016)fuwgher report for our critical
t tests (i) 95% highest-posterior-

package (Plummer et al., 2006) for R (R Core Te2ith4) as the credibility interval,
which is a Bayesian parameter estimate (similacaiofidence intervals), and (ii)
standard JZS prior BF-Bayes factors (Rouder et al., 2009) computed i

BayesFactor package (Morey & Rouder, 2015) forRs §ives the relative evidence
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in the data in favor of | as compared to §that is, the likelihood to which H

predicts the observed data better thar{dde also Wagenmakers, 2007).

Results

In order to examine for pure statistical learnirfipats (here: learning of the
distractor frequency distribution), potentially donnding effects arising from (i)
certain inter-trial transitions as well as (ii)ezfts attributable to differential target-
to-distractor distances between critical conditiomsist be eliminated from the
data set. Such effects were indeed observed arglsueisequently eliminated. They
exhibited interesting differential patterns betwetre same- and different-
dimension distractor conditions. Although these&# are tangential to our main
findings, we feel that they are of significant madlelogical importance and
theoretical interest. Therefore, we report all gsed in detail in th&upplementary

Resultssection and discuss the major findings in the Gari2iscussion.

Analysis of distractor-interference effects

Our main prediction, deriving from the dimensionigiging account, was that the
mechanisms underlying the distractor probabilitgiog effect (evidenced by
reduced interference by distractors in the frequenthe rare area) would give rise
to impaired target processing only for targetsrtsdiwithin the same dimension as
(but not targets defined in a different dimensioi the distractor and only for
same-dimension targets located in the frequent (mtt targets in the rare)
distractor region. To examine for this effect patteve first conducted an overall-
ANOVA over the whole data set to establish intamactpatterns. Based on these,
we examined for the existence of the probabilitging effect for both same- and
different-dimension distractors, with a focus orffedential target-(position-

)related effects between the frequent and rareatiir areas. Finally, for a strong
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test of differential target-related effects, weedilty examined for the predicted
pattern on distractor-absent trials, specificalyould target processing be
(differentially) impaired in the frequent distractieegion even though there is no

distractor in the display that could actually caimderference?

Figure 2.

frequent vs. rare distractor region as a functidrthe@ distractor condition (absent distractor,
distractor in the frequent distractor region, distor in the rare distractor region) in the same-
dimension distractor (horizontal, orientation-defin distractor; panel A) and the different-
dimension distractor condition (red, color-defing$tractor; panel B). In both conditions,eth
distractor bar was presented among gray vertiaal &ad a slightly tilted gray target bar. Errordar
depict the within-subject SEM (Morey, 2008).

® (for confound-free trials; see Appendix) weretfirs
subjected to an overall (mixed-design) ANOVA witlaim terms for distractor type
(same- vs. different-dimension), distractor locat{distractor in frequent area, in

rare area, absent), and target location (targéteimquent distractor area, in rare

5 Note that the error rates (overall error rate%d.5vere not influenced by distractor type (same-

dimension vs. different-dimensiort}1,181) = 1.50p 2,=.01, distractor location (frequent
area, rare area, abserfi§2,362) = 0.135p 2, = .00, or target location (frequent area, rare
area)F(1,181) = 0.175p 2,=.00. Also, none of the interactions was significa
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distractor area). This analysis revealed all m#eces and two of the three two-way
interactions importantly, both involving the factor distractoype to be
significant (for visualization, see Figure 2). To elucidatee thrigins of the
significant two-way interactions, the same- andedé@nt-dimension distractor
conditions were examined in two separate (repeatedsures) ANOVAs with the
factors distractor condition (distractor in frequeagion, in rare region, absent)

and target location (target in frequent distraction, in rare distractor region).

Effects for same-dimension distractors.For same-dimension distractors, the
ANOVA revealed both main effects to be significaistractor locationk(2,110) =
200.35p<.001, % =.78, and target locatioR(1,55) = 13.68p < .001, 2, =.20; the

interaction was not significanf(2,110) = 1.74p = .181, %, =.03.

To ascertain that distractors generally causedference, we directly compared
RTs on distractor-present trials with those onrdidior-absent trials: RTs were
overall slower, by 94 ms, when a distractor was@néthan when it was absent (761
ms vs. 667 md(55) = 14.94p <.001,d; = 2.00, 95% HPD [81 ms, 106 M8 =
8.80 x 10". To directly test for a probability-cueing effeate contrasted the
frequent versus rare distractor-present conditi®Ts were indeed faster, by 87
ms, when a distractor was presented in the freqalesa compared to the rare area
(761 ms vs. 848 ms)(55) = -9.40p <.001,d, = 1.26, 95% HPD [-116 ms, -73 ms],
BF, = 3.27 x 1€). Finally, we examined the net distractor-inteefece effect with
reference to distractor-absent trials for the flexgfuand rare areas separately. Both
effects were significant (distractors in rare afdé&t mst(55) = 15.02p < .001,d, =
2.01, 95% HPD [158 ms, 205 ms],BE 1.12 x 1€, distractors in frequent area: 84

6 Main effects: distractor typé;(1,181) = 30.34p 2, = .14; distractor locatiork(2,362) =
220.16,p 2, = .55; and target locatior(1,181) = 9.62p %z, = .05. Interactions:
distractor type x distractor locatioR(2,362) = 91.71p 2,=.34; and distractor type x target
location,F(1,181) = 9.38p 2,=.05. The interactions distractor condition xgggrlocation,
F(2,362) = 0.75p 2,=.00, and distractor type x distractor locatiorarget locationf(2,362)
=1.53p % = .01, were not significant.
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ms;t(55) = 13.75p <.001,d, = 1.84, 95% HPD [72 ms, 96 ms], BE 2.59 x 1),
with distractors in the rare area causing great@rference than distractors in the

frequent area.

Although the distractor condition x target locatiomeraction was not significant
indicative of an additive target-location effeat &ll three distractor conditions
, the target-location effect was numerically snralben a distractor was absent in
the display (25 ms) compared to when one was ptésdhe frequent or the rare
distractor region (53 and 55 ms, respectively).ditesdbeing reduced, the effect on
distractor-absent trials was significant: RTs waosver to targets appearing in the
frequent versus the rare region (682 ms vs. 65 (®s) = 3.70p < .001,d, = .49,
95% HPD [38 ms, 12 msBF, = 51).

Thus, as expected (on the DWA), there was a saamifi effect of target location,
with slower RTs when the target appeared in thgufeat as compared to the rare
distractor area. Importantly, this effect was ewideven when distractors were
absent, that is, when there could not be any digiranterference. This pattern
provides strong support for the frequent distraar@a being suppressed as a result
of distractor (distribution) probability learningffecting the processing of the

target as well as that of the distractor.

Effects for different-dimension distractors. For different-dimension distractors,
the ANOVA also revealed a significant main effeor fdistractor condition
(F(2,252) = 61.64p < .001, % = .33), but (in contrast to same-dimension
distractors) not for target locatior~((,126) = 0.92p = .339, % = .01); the

interaction was also not significar(@,252) = 0.19p < .827, %, = .00).

Distractors again caused general interference (mefé@ct of distractor condition):
RTs were slightly, but significantly, slower ovdrah distractor-present compared
to distractor-absent trials (656 ms vs. 642 1f126) = 6.73p < .001,d, = 0.60, 95%

HPD [10 ms, 18 msBFo = 1.76 x 10); note that this interference effect was much
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smaller compared to that with same-dimension distras (14 ms vs. 94 ms).
Furthermore, a comparison of the frequent versies rdre distractor-present
condition revealed RTs to be indeed faster wherstaattor was presented in the
frequent area compared to the rare area (654 689sns){(126) = -6.10p < .001,

d; = 0.54, 95% HPD [-46 ms, -23 ms], BE 1.73 x 16), though this probability-
cueing effect, too, was much smaller compared &t thith same-dimension
distractors (35 ms vs. 87 ms). Finally, as expediee net distractor interference
effect with reference to distractor-absent triads\greater for distractors in the rare
area (47 mg(126) = 7.74p <.001,d, = 0.69, 95% HPD [34 ms, 59 m§Fo = 2.79

x 1) than for distractors in the frequent area (11tfi27) = 5.93p <.001,d, =
0.53, 95% HPD [7 ms, 15 ms], BE 4.05 x 160); these net effects of 47 ms (rare
area) and 11 ms (frequent area) compare with 18andsrespectively, 84 ms for

same-dimension distractors.

Concerning the (non-significant) target-locatiorfeef, RTs were overall only
slightly slower to targets in the frequent versargeéts in the rare distractor area.
This effect was non-significant for all three dattor conditions (distractor absent:
647 vs. 640 mg{126) = 1.43p = .154,d, = 0.13, 95% HPD [15 ms, -2 ms], BE
0.27; distractor in frequent area: 657 ms vs. 654h26) = 0.56p = .580,d, = 0.04,
95% HPD [12 ms, -8 ms], B= 0.11); distractor in rare area: 702 ms vs. 683 m

t(126) = 0.69,p = .493,d; = 0.06, 95% HPD [34 ms, -17 ms], BE 0.12).

Distractor-absent trials. Arguably, the strongest evidence for learnedsigtent
spatial suppression on the master saliency mapgdack of it, would derived from
the distractor-absent trials, for which spatial gtgssion of target processing can
be assessed in its pure form, without any effeet @dmpeting distractor. Thus, to
examine for differential suppression patterns betwesame- and different-
dimension distractors, we directly compared andm@asted the effects of the two
distractor types in the distractor-absent conditiona distractor type x target

location (mixed-design) ANOVA. This analysis re\eila significant main effect
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for target positionK(1,181) = 10.71p = .001, 2, = .06), whereas the main effect of
distractor type was non-significant((,181) = 3.11,p = .079, % = .01).
Importantly, the effect of target location was sigantly modulated by the
distractor type F(1,181) = 5.58p = .019, 2, = .03). Given this interaction, we
compared the target-location effects (i.e., the me#ferences between the two
target-location conditions) between same- and mdiffedimension distractors.
The results were in line with our hypothesis: tlaeget-location effect (the
disadvantage for targets appearing in the frequerhe rare area) was significantly
larger with same-dimension (26 ms) than with dédfe-dimension distractors (6
ms): t(181) = 2.36,p = .019,d = 0.38, 95% HPD [8 ms, 24 msBF, = 4.4.
Additionally, the target-location effect differed sificantly from 0 for same-
dimension distractorg(65) = 3.70p < .001,d, = .49, 95% HPD [11 ms, 39 ms],
BFo = 51), but not for different-dimension distract¢n@26) = 1.43p = .154,d, =

0.13, 95% HPD [-2 ms, 15 m$Fw = 0.27).

Post-experiment questionnaires

We also examined whether the interference redudtonhe frequent versus the

distribution. If so, this would imply that the sumgsion of distractors in the
frequent area might have relied on a consciougteffo the post-experimental
questionnaire, 43 out of the 183 (23%) participamdicated the distractor
frequency distribution correctly. While this wouseé chance level (recall that there

were five response alternatives, so chance levaldMoe 20%), it should be noted,

on in which distractors were

(believed to be) likely. When committing to a specific response, the cadrrec

7

awareness-test procedure of Goschy et al. (2014).
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distractor region was significantly more likely b@ chosen than any of the three
alternatives (55%vs. 45% [= 3 x 15%(1)=30.73p <.001) indicative of a degree

of awareness of the actual distractor distributitmportantly, the degree of

-distri
with same- and different-dimension distractors,peesively. Of those who
committed to a specific response, 48% (same-dinoendistractors,?(1)= 4.15,p
=.042) and 57% (different-dimension distractof§l)= 23.76,p < .001) answeik

correctly.

Comparing participants who answered correctly wittose who responded
awareness (correct/incorrect answer) x distractgpet (same-/different-
dimension) x distractor location (frequent/rareadarANOVA of the median RTs
revealed no two-way interactions involving awaren@svareness x distractor type,
F(1,179) = 1.75=.188, % = .01; awareness x distractor locatib(t, 179) = 3.21,
p=.075, % =.02), but the three-way interaction was sigatfit; F(1, 179) = 7.5
= .007, % = .04. Follow-up ANOVAs, with the factors awares@sd distractor
location, calculated separately for each distratype condition, failed to reveal
significant main effects of awareness for both edéht-dimension and same-
dimension distractors (different-dimension distoastF(1, 125) = 0.03p = .858,
2,=.00; same-dimension distractdf§l, 54) = 2.65p = .110, % = .05). However,
for same-dimension distractors (but not differemtrension distractor$;(1, 125)
= 0.01,p = .915, %, = .00), the awareness x distractor location irdiéoa was
significant:F(1, 54) = 9.49p = .003, %, = .15, reflecting the fact th
participants showed a larger probability- -
participants (158 ms vs 83 nt§h4) = 3.08p = .003,d, = 1.04, 95% HPD [91 ms,
141 ms], B = 12). Given that the overall RT speed was comigarbetween the

- t(54) = 0.77p = .443,d, = 0.26,
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95% HPD [720 ms, 793 ms], B~ 0.408), the larger probability-cueing effect for
-dimension (but not

with different-dimension) distractors, the probdpicueing effect may be

(strategically) enhanced as a result of observegpicély recognizing the display

half in which the distractor was more or, respatyivess likely to appear.

Discussion

The present study revealed a paramount differenteamprobability-cueing effect
between same- (orientation-) and different- (cgldimension distractors in visual
singleton search. While both distractor-type grosipswed significant learning of
the spatial distractor distribution (as evidencedrbduced interference from
distractors that appeared in the frequent, as coedp@ the rare, distractor area),
the interference was higher overaly a factor of at least 4with same- relative to
different-dimension distractors. In addition, thevas a qualitative difference in
the interference pattern caused by same- versteseafit-dimension distractors.
Search under conditions of same-dimension distracteas associated with a
target-location effect (i.e., slowed respondindamets appearing in the frequent
vs. the rare distractor region). This was obsereeh for displays that did not
contain a distractor. No target-location effect wagdent in search under
conditions of different-dimension distractors. Wl discuss the implications of
these effects in turn, while also touching upon idseie of the nature implicit

versus explicit of distractor probability learning.
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Same-dimension distractors cause greater interferer® than different-

dimension distractors

The differential magnitude of interference betweame- and different dimension
distractors is in line with previous reports thatchctors that are similar to the
search target cause more interference to begin(@igh,DW A: Miiller et al., 2009;

Zehetleitner et al., 201Zmbiguity accountOlivers & Meeter, 2006; Meeter &
Olivers, 2006; Pashler, 1987Additionally, the present data show that shigjdin
from the interference generated by distractorsuesdly occurring in a particular
display areacannotbe learned as effectively with target-similar ashwarget-

dissimilar distractors: same-dimension distractosatinued to produce strong
interference even in the frequent distractor amdaich compares with weak

interference by frequent-area distractors in tliferdint-dimension condition.

This effect pattern argues against feature-baseduads, according to which
distractor suppression is achieved by the independi@vn -weighting of distractor
features (first-order order feature suppressiond/an up-weighting of target
features. In theory (cf. Wolfe, Friedman-

Horowitz, 2017), independent weighting of (tardegtures should work effectively
as long as the features are clearly separabl&dptesent study, this was the case
not only in the different-dimension condition, balso in the same-dimension
condition: the distractor was consistently rotated 90° from the vertical as

compared to a variable (left or right) target aift12°. According to Wolfe et al.

Apparently, however, this categorical differenceuldo not be exploited by

8 While this pattern can be describedsimilarity (or ambiguity terms, we propose it reflects
fundamental, dimension-based constraints in thectfanal architecture of search guidance.
Further research is necessary to discriminate lagtwbe essentially continuous similarity (or
ambiguity) vs. discrete dimension-based accounts.
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participants in the same-dimension distractor cbowlj effectively ruling out a

strict, feature-based account (at least for themdation dimension).

Instead, a straightforward, mechanistic accounthef differential interference
between same- and different-dimension distractifests is provided by the DWA:
due to the (assumed) hierarchical organization adierscy computation and
dimensionally coupled weighting of feature-contiaghals (e.g., Zehetleitner et al.,
2012), it is harder to suppress known distract@findd by features in the same
dimension as the target, compared to featurediffexent dimension. As will be
detailed below, DWA readily explains why distractorterference is greatly
increased overall in the same-, as compared tdiffeeent-, dimension condition
(94 vs. 14 ms). Interference effects approachir@r@ suggest that attention was
actually captured by the distractor on a large migjoof trials (consistent with
Liesefeld, Liesefeld, et al., 2017, who also usadrdation-defined distractors and

targets).

Differential mechanisms underlie the probability-cweing effects in same- versus

different-dimension distractors

The differential pattern of distractor location pebility-cueing effects
specifically, the differential target location effe between the same- and different-
dimension conditionscannot be explained by spatially selective versmiresther
feature-based (or first-order feature) suppressiwodels or master-map-based
suppression models. Masterapbased suppression would predichpaired
processing of targets in the frequent distractgiore, regardless of whether the
distractor is defined in the same or a differemhelmsion to the target. Feature-
based suppression models would always prediain pairedprocessing of targets
in the frequent distractor region, regardless oéthier distractors are defined in

the same or a different dimension to the targee fHat that target processing in
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the frequent region was slowed only in the samex, ot in the different-
dimension distractor condition effectively ruled thiat either of these mechanisms

can account for the present set of findings opws.

But this pattern is consistent with the DWA, acdéogdto which the distractor-
defining dimension can be suppressed as a whdle gmeater suppression applied
to the frequent than to the rare distractor areawéVer, dimension-based (or
second-order feature) suppression would leave tgngecessing unaffected only
when the distractor is defined in a different dirsien to the target. By contrast,
when the distractor is defined in the same dimenamthe target, two strategies of
reducing distractor interference would be availabimension-based suppression
or mastermap-based suppression, in both cases with stronggrsgpion assigned
to the frequent than to the rare distractor regitimat, however, would both impair
target processing. With both strategies, the paetistractors appearing in the
frequent area to capture attention would be redumd pared to distractorsin the
rare area, giving rise to probability-cueing efle@ut the downside would be that
targets falling in the frequent (i.e., suppressegd)on are responded stowerthan
targets in the rare region. Both these effects weidenced by the data, consistent

with either of the two strategies.

With same-dimension distractors, dimension-baseggpession would appear to
be a less plausible strategy than mast@p-based suppression, as any down-
weighting of the orientation dimension would coctfivith the task of finding the
orientation-defined targétHowever, no such conflict would arise if the down-

modulation is applied to the (spatial) master s@&jemap. This representation is

°To solve the task, observers would have to agtivelintain a template of the orientation target in
visual working memory, to decide whether a stimuligt summons attention is a target (rather
than a distractor), as well as to top-down biasctetowards stimuli matching the target description
(e.g., Soto, Hodsoll, Rotshtein, & Humphreys, 2@DByers, Peters, Houtkamp, & Roelfsema, 2011).
There would thus be a goal conflict with observatghe same time, attempting to keep any signals
from the orientation dimension out of the searctl sglectively enhancing the target orientation.
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assumed to be feature- and dimension-less. Masdpraativations as such convey
no information as to how, by which feature and ihickh dimension, they were
produced. Rather, post-selective back-trackingteet, dimension- and feature-
coding, levels may be required to extract thisiinfation (e.g., Téllner , Rangelov,
& Miller, 2012). Given this, applying spatial inftion at this level would conflict
less with the goal of finding and responding to @mentation-defined target.
Additionally, the target-location effect was evesdent on distractor-absent trials,

strongly supporting spatially selective masteap-based suppression.

With different-dimension distractors, distractortdrference can be rather
effectively reduced by dimension-based suppressias a result of which feature-
contrast signals from this dimension arrive attéadat the saliency summation
stage (the master map), reducing their power toucemttention. Importantly, to

explain the probability-cueing effect (35 ms fag®dis to targets in the frequent vs.
the rare area), one would have to additionally@ssthat, as a result of probability
learning, the dimension-based down-modulation afufee-contrast signals from

the distractor dimension becomes stronger for tieguent than for the rare
distractor area. Stronger down-modulation of feataontrast signals from the
distractor dimension within the frequent area wolddve target signals from

another dimension unaffected. Consistent with tRiEs werenot significantly

slower to targets in the frequent area than toetarigp the rare area.

Of note, this qualitative difference between the thistractor-type conditions is

even seen in a comparison of tistractor-absentrials, on which cannot be any

no reliable target location effect with differenitveension distractors, but a
significant (26-ms) effect with same-dimension distors despite generally
similar RT levels on distractor-absent trials (ohiet the displays were identical

for the two groups).
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Implications for the cognitive architecture underlying distractor probability

cueing

These results have implications for drawing conolus about the cognitive
architecture mediating the distractor probabildis{ribution) learning effects (see
Figure 3): Suppression different-dimensiordistractors operates at a level below
the master saliency map (Figure 3A). Interferingjdee-contrast signals from the
distractor-defining dimension are down-modulatedigat their contribution to
overall-saliency signaling is effectively reducegielding lower distractor
interference overall; at the same time, featuret@st signals from the target
dimension are left unaffected. By contrastme-dimensiodistractors generate a
comparatively large interference effect, and Rlessagnificantly slowed when the
target appears in the frequent as compared toatteedistractor areaeven when
no distractor (that could cause interference) tealy present in the display. The
latter effect is readily explained by assuming tthegt frequent distractor region is
suppressed either at the super-ordinate levekofitaster saliency map (Figure 1B;
our preferred account), or, alternatively, at el of the orientation-dimension

map, which in both cases would affect target asagallistractor signals.
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Figure 3. Schematic representations of the two seggon models involved in the probability

cueing of distractor locations, which are suppotgdhe data: (A) dimension-based suppression
for different-dimension distractors and (B) masteap-based suppression for same-dimension
distractors. The search display depicted at theobobf each panel contains an orientation-defined
target (12° tilted relative to vertical non-targetsid (A) a color-defined (red bar) and (B) an

orientation-defined (horizontal bar) distractor €lihap in the middle of each figure represents the
dimension map at which feature contrast signal€anebined for separable feature dimensions (in
the example, color and orientation). The map degliett the top of each figure is the search-guiding

In dimension-based suppression, the weightingrgitsand distractor signals occurs at the level of
the dimension maps; i.e., feature weighting is disi@enally coupled, so that distractor signals can
be down-weighted without affecting target signaldyovhen target and distractor are defined in
different dimensions. Note that, in (A), the comddnfeature contrast signals from the color
dimension are negatively weighted on their transfethe master salience map, reducing their
impact on overall-saliency coding. Distractor prbitisy cueing could be explained by greater
down-weighting of signals from the distractor-déifig dimension for the frequent (lower display
half) compared to the rare distractor region (ugpaf); note that this differential down-weighting
is not depicted in the figure. (B) For same-dimenslistractors, distractor probability cueing could
operate by spatially selective suppression of alevtamion of the search display (in the example, th
lower half) operating at the level of master salemap. With both mechanisms depicted,
interference would be reduced for distractors appgan the frequent as compared to the rare
distractor region. See text for further explanasion

However, while the present findings are in linehwihe DWA (the only general
account predicting a dissociation between same- different-dimension
distract!), further work for instance, with luminance-, color-, and motidefined
targets (and distractors defined in either the sarmane of the other dimensions)
Is necessary for the DWA to be established asily general account of the
asymmetry revealed in the present study. Of nb&gtis evidence that, within the
color dimension, salient singletons mismatching theget color (i.e., same-
dimension distractors) may fail to capture attemtidbhis has been demonstrated
in contingent-capture studies, with temporally sepad presentation of the
singleton distractor and target displays (Folk,d©l& Egeth, 2002; Lien, Ruthruff,
& Cornett, 2010; Lien, Ruthruff, & Johnston, 201@nd in additional-singleton
studies, with target and distractor in the sampldys(e.g., Gaspar & McDonald,
2014, Gaspar, Christie, Prime, Jolicoeur, & McDahaP016). In additional-
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singleton studies, non-matching colors usuallyrifeted relatively littlé°, though
there are exceptions; for instance, Kandel, FeldmW@histefeld, and Schubd (2017)
observed that, once participants had learned ttesingand blue singletons were
response-relevant in a categorization task (greefblue response), they showed
substantial interference, of 37 ms, by a red (nen-target-colored) additional-
singleton distractor in a compound-search taskna@lavith ERP indices of
attentional capture (see also Feldmann-Wdustefelehdder, & Schubd, 2015).
Similarly, in the contingent-capture literature,il@hmis-matching colors usually
produced relatively little interference, a moreeamcstudy revealed that with a
target that could be either red or green, distraato a non-target color (blue) led
to a comparably-sized capture effect to target+enlalistractors (whereas motion-
defined distractors failed to capture attentiontritaBecker, & Remington, 2015).
Despite these exceptions (which are consistent dithension-based attentional
settings), on the balance of evidence, it wouldegpphat the suppression of color
distractors does involve an element of feature-dbasppression (see also Gaspelin,
Leonard, & Luck, 2015, and Gaspelin & Luck, 201, évidence of first-order, as
opposed to second-order, color feature suppredssioa paradigm with shape
targets and color distractors, where the distractmolor was either
constant/predictable [Gaspelin et al., 2015] oialde/non-predictable [Gaspelin
& Luck, 2017] across trials). This picture is aaty consistent with previous studies
of dimension weighting (with combinations of colanotion, and orientation

targets), in which color proved to be special: @swhe only dimension producing

0 For instance, in Gaspar & McDonald (2014, Experniink yellow target, red distractor, presented
amongst green non-targets), the color distractoegged significant interference of 18 ms; while it
produced no N2pc (which would have been indicabivattentional capture), it elicited & Fi.e.,
with a midline target, the ERP waveform was moraifie contralateral vs. ipsilateral to the
distractor 250300 ms post display onset), which is thought ttecef in this case: feature-based
distractor suppression (e.g., Hickey, Di Lollo, &Blonald, 2009; Sawaki, Geng, & Luck, 2012). Note
though that a significantoRvas evident only on fast-response trials, butaroslow-response trials,
suggesting failure of distractor suppression onepmoportion of (slow-response) trials.

42



significant feature-specific inter-trial priming artrial-wise pre-cueing effeéts
(e.g., Found & Miiller, 1996; Muller et al., 2003gWiner, Pollmann, Muller, & von
Cramon, 2002)

-Hill, 1995).
Accordingly, feature-based distractor suppressi@ay be possible, to some extent,
with color distractors (which produce relatively @i intra-dimensional
interference effects; e.g., Gaspar & McDonald, 2@4dspar et al., 2016), while it
does not appear to be possible with orientatiotraisors (which produce large
intra-dimensional interference effects; e.g., lielsk Liesefeld, et al., 2017, and
present study). Nevertheless, given the availabideace from dimension-
weighting studies, we would predict dimension-basfiects to outweigh feature-
based effects even with color distractors. Purpesigned studies, with carefully
calibrated color and orientation stimuli, as we#i generalization to other
combinations of singleton (target and distractome&hsions involving luminance,
color, and motion stimuli, would be necessary tameie this prediction. This is

beyond the scope of the present study.

Assuming reasonable generalizability, note thatsdwrch architecture envisaged
by DWA does not exclude feature-based selectiavhich is, after all, assumed to

be the prime principle of non-spatial selectionimually all models of visual search

1 For instance, Found & Miiller (1996) found thatcimior/orientation pop-out search, repetition
of the precise target color feature across trialy. (red Zred) conferred an advantage over a color
switch (e.g., blueEred), with the latter yielding an advantage coneplaio a dimension switch (e.g.,
right-tilted Zred). With orientation-defined targets, by contrasly a dimension-specific switch
effect was seen. Similarly, Muller et al. (2003)ifal that when a particular target color was precued
to be likely at the start of a trial (e.g., redeaalidity p=.79), there was a significant advaetéay
targets singled out by this feature compared tgetardefined by another color feature (e.g., blue,
p=.07) or by an orientation feature (45° left- @hit-tilt, each p=.07). Of note, there was also some
advantage for targets defined by the non-cued delture (i.e., blue when the cue indicated red;
same-dimension feature) compared to the two oriemtdeatures (different-dimension features)
even though all non-cued features were equallkelyliFor orientation-defined targets, by contrast,
there was no significant feature-specific cueirfgatfi.e., no graded advantage for the cued es. th
non-cued orientation feature. These results pairat greater role of feature-specific coding for the
color dimension compared to the orientation dimensi
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and selective attentiorGuided Searche.g., Wolfe, 2007tem plate-based guidance
e.g., Duncan & Humphreys, 1992). DWA only claimsittiior features defined
within the same dimension, one cannot independemibgdulate one feature-
contrast signal (e.g., the target signal) from aeoft(e.g., the distractor signal) as
regards their cross-dimensioniakegration/summation weightisy units of the
master saliency map. While some theorists havieigead DWA for being unable
to account for findings of feature selectivity, osteaightforward extension would
be to assume a combination of independent intrd-caoss-dimensional weights:
intra-dimensional weights would ensure that one tasome extent, up-modulate
the target feature and/or down-modulate the distrdeature in the computation
of dimension-specific (i.e., within-dimensions)tigee contrast signals (as assumed
by, e.g., Guided Search). However, both theseyfeatveighted) signals would then
be multiplied by the same dimensional weight omfbedransferred to the master
saliency map. Such a scheme would ensure an eleofiédture selectivity, while
also maintaining the principle of dimensional weigloupling which is at the

heart of DWAI

Distractor probability cueing: explicit or implicit in nature?

In previous studies of distractor location probigpitueing (Goschy et al., 2014;
Leber et al.,, 2016), participants were typicallyable, at the end of a lengthy
experiment, to tell at above-chance level at whodations distractors were likely
to appear. This was taken to suggest that theadistr probability cueing effect is
essentially implicit in nature (Reder et al., 2068, assume that theiregative

location priming effect operates outside conscious awareness, theudgpout

having examined for this). However, all these sts@mployed only relatively small
numbers observers (e.g., 19 participants in Gostha)., 2014; 26 participants in

Leber et al., 2016), making it hard to actuallyabtish above-chance recognition of



the likely distractor locations. Given our largengde, we had reasonable power to
determine whether participants could tell abovendean which display region a
distractor was most likely to appear. While resgsrepppeared to be at chance when
looking at the proportion of participants who cathe selected the frequent
distractor region (out of the total number of olvses), a more detailed analysis
revealed significant above-chance performance antloogge participants who did
not chose anon- -distr

participants had performed the task under thereiffe or the same-dimension
distractor condition. As same-dimension distracttagsed massive interference,
one could have surmised that a majority of obserueight have become aware of

the unequal distribution which was, however, not borne out by the data.

-examining the probability-cueing effect as a

-dimension
-cueing effect (157
without responding significantly slower. This woulttgue that (perhaps the
majority of) these 11 observers became genuinefy@wf the distractor frequency
distribution, which made them increase the inhibitibay applied to the frequent
distractor area. Of note this would predict thateavparticipants also exhibit an
enlarged target position effecthich is, at least numerically, borne out by tla¢ed
Note, however, that above chance performance doesneogssarily imply

awareness, and further studies are necessary tdveethis question (ideally

Thus, our data provide some indication (at variamnitk Goschy et al., 2014, who

had only a small sample of participants compareth& analyzed in the present
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bability cueing might reflect, at least to
some extent, an explicit learning effect. This wbplace distractor probability
cueing with other, perceptual-learning effects lre tsearch literature, notably
contextual cueing an effect that is similarly associated with a (ted) degree of
explicit awareness of repeatedly encountered tamgetarget configurations
(Smyth & Shanks, 2008, and Vadillo, Konstantini&ishanks, 2015; though see
Chun & Jiang, 2003; Colagiuri & Livesey, 2016; Gowij& Thorpe, 2015). Note,
though, that whether conscious awareness drivésadisr probability cueing is
another matter: conceivably, the effect may be iaitpl driven, while being
associated with (a degree of) explicit awareness (yer, Mller, Assumpcao, &
Gais, 2013, with regard to contextual cueing). Hawe with same-dimension
distractors which require enhanced cognitive control to de#dhwapture events
observers who became consciously aware of theagdtsir distribution appeared
to adjust the strength of spatial suppression aliogty. No such adaptation was
evident with different-dimension distractors, pmesbly because these require a

lesser degree of cognitive control to be filtered effectively.

Location-specific inter-trial and lateral-inhibition effects

The supplementary analyses (see Appendix for dgtagdvealed significant
modulations of RTs by positional inter-trial effectin particular, expedited RTs
when the current (trial) target appeared at the location of the previtual (1-1)
target T2 Tn transition) in line with thepositionatpriming literature in visual
search (e.g., Maljkovic & Nakayama, 1996; Kumad&&mphreys, 2002; Geyer,
Miller, & Krummenacher, 2007). This is interestibgcause we used relatively
dense displays (with 36 items), whereas hithertaitpmal inter-trial effects have
been investigated and reported mainly with rel&tigparse displays (as with the

priming of pop-ouparadigm, where displays typically consist onljtoke relatively
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widely spaced items). On the other hand, positiartal-trial priming effects have
been reported by Krummenacher et al. (2009) foh sigleton detection and
compound-search tasks (both with dense displays:vikere expedited to targets
on trialn that appeared at (roughly) the same position etatget on triah-1, and
this effect was more marked for compound-search foasimple detection tasks,
even though the target singleton was exactly tmeesan both cases. Related to
distractor probability cueing, Goschy et al. (2044) found evidence that, to some
extent, the interference reduction for the frequéms compared to the rare)
distractor area was due to positional inter-trifdats, in particular: interference
was reduced when the distractor on the currentdceurred at the same location
as the previous distractoD{.. T, transition) a finding confirmed in the present
study. Additionally, the present, more comprehemditer-trial analysis showed
that if a target appears at the same locationeaksh distractorl§,.. T, transition)
or if a distractor occurs at the same locationhaslast targetT... D, transition),
RTs are slowed. Given that such repetition effeeise much more likely to happen
in the frequent as compared to the rare distraatea, they would have affected
both areas differentially and thereby confoundeel tbsults. This highlights the
necessity to control for positional inter-trial exfts when examining effects of

distractor location probability cueing.

Theoretically of potential importance, the intetattransition effects that is, both
the (inter-trial) distractor-location inhibition (@ T, trials: 53 ms vs. 13 ms;.D

D, trials: -32 ms vs. -2 ms), and to some extent disatarget-location facilitation
(at least on 1 T, trials: -70 ms vs. -49 ms)were greatly increased in the same-
relative to the different-dimension, condition (d&ctor-location inhibition was

increased by a factor of at least 4!).

In addition to positional inter-trial effects, tls&ipplementary analyses revealed
significant intra-trial modulations of RTs by thpagial distance of the target

relative to the distractor. It is thought that whansalient distractor captures
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attention, it must be (actively) suppressed foafattention to move on to the next
most salient item, the target (see, e.g., Liesefasefeld, et al., 2017), and this
suppression affects not only the distractor locatieelf, but spreads laterally to the
surrounding region, tailing off gradually with ireasing distance from the
distractor location (e.g., Gaspar & McDonald, 20#4thot, Hickey, & Theeuwes,

2010; Mounts, 2000Y.

Importantly, in the present study, this intra-tiatleral inhibition effect centered
on the distractor position was also greatly incedaby a factor of three, for same-
dimension compared to different-dimension distres{oneasured in terms of the
rate of RT decrease as a function of the distafhteeatarget from the distractor: -
12.99 msvs. -4.72 ms per degree of visual anfle}. pattern mirrors the increased
cross-trial distractor location inhibition with samas compared to different-
dimension distractors, suggesting that it is th@hbition brought to bear on the
distractor on a given (distractor-present) triattis then carried over into the next

trial.

Overall, this pattern is consistent with the idbattthe harder the search and,
particularly, the harder it is to shield from dattor interference, the greater the
positional intra- and inter-trial effect. Concergithhe intra-trial inhibition (and the
cross-trial carry-over of inhibition) of the disttar location, the more likely it is
that the distractor captures attention, the gretersuppression applied. There
may be two explanations for this: One is that, ogiven trial, the amount of
inhibition placed on the distractor location isrieased in the different-, compared
to the same-, dimension distractor condition. Alagively, the amount of

inhibition is the same on a single-trial basis, lgiten that same-dimension

12 Attentional capture by the distractor may not afdijube necessary for targed-distractor
distance effects to manifest. For instance, Gagpalr McDonald (2014) observed a behavioral
distance effect (of maximally 55 ms) even thoughtheir event-related analysis of the EEG, they
found no N2pc to the distractor.
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distractors generate capture more frequently fre.a greater number of trials),
these also have to be actively suppressed moredraty (on a greater number of
trials), giving rise to an, on average (i.e., asrwils), increased inhibition effect in

this condition. The idea is that a distractor thaptured attention (once it is
established by a post-selective analysis processittis a distractor, rather than a
target) must be actively inhibited (see Lieseféli@sefeld, et al., 2017, for ERP

evidence for this sequence of events), so thataseho longer compete for selection.
The amount of inhibition may either be adjustedtte difficulty of keeping the

distractor out of the search, or it may be a fibedount per capture incident
regardless of this difficulty. Future work is reped to distinguish between these

possibilities.

Conclusions

While same-dimension distractors cause four time=atgr interference than
different-dimension distractors, the probabilityecug effect (i.e., reduced
interference by distractors in the frequent vs.rdre region) is evident with both
types of distractors. However, the effect is muttorsger for same-dimension
distractors, which also display a robust targetdmn effect (slower responses to
targets appearing in the frequent versus the resteadtor region). The latter is
indicative of a strong component of general, spati@pression of the frequent
distractor region, which we propose, operates atl¢hel of the master saliency
map, on top of any feature-based modulations. WHifierent-dimension
distractors, by contrast, there was a probabilitgheg effect but no target-location
effect. While the probability-cueing effect is alsttributable to an element of
differential spatial suppression between the frequend rare distractor regions,
this operates at a level prior to the search-ggaiaster saliency map, selectively

down-modulating feature-contrast signals from the diswaatimension so that

49



they register only weakly on the master saliencypmihe improved ability to
suppress distractors in the frequent region apptare acquired implicitly,
without observers being consciously aware of thequal distractor distribution;
though, with very salient distractors, at least sarbhservers may become aware of
the unequal distractor distribution and deliberatglcrease the amount of
frequent-region suppression. Given this, open dgorestfor future work concern
whether explicit information about the distributicman modulate the effect,
whether the current explanatory framework genesslio other dimensions, and
whether possible alternative explanations can bsodiated via direct tracking of
attention allocations and suppression mechanismsnbgns of event-related

potentials.
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Appendix

Supplementary Introduction

When examining for distractor probability cueirtgsiimportant to make sure that
there is an effect of statistical learning of splatues over and above that of mere
inter-trial repetitions. For instance, it is knowmat in, singleton-search episodes,
distractor locations are inhibited or negativelgged, increasing the time it takes
for a feature contrast signal at such a locatiore&eh the level of salience required
to summon attention (Cepeda, Cave, Bichot & KinQ& Xumada, 1999; see also
Dent, Allen, Braithwaite & Humphreys, 2012). Thgsjen that inhibitory tagging
of previous distractor locations is, by definitianpre likely in the region where
distractors occur frequently, a (subsequent) distrafetibng in this region would
be more likely affected compared to a distractothe rare distractor region
mimicking a learnt probability-cueing effect andetkby reducing distractor
interference, when, in fact, the effect is driveargly by (passive) inter-trial
dynamics. Goschy et al. (2014) attempted to cordrahis type of inter-trial effect

in a dedicated experiment (their Experiment 3) ol the distractor on triai
(Dn) could, by design, not fall on the location of tthistractor on triah-1 (Dn.y;
inter-trial transition .. D,). Goschy et al. indeed found that the differential
interference between the frequent and rare disirateas was reduced as a result
of ruling out D1 D, transitions, but there remained a robust effectkaiteble to
the learning of probability cues. However, chandihg design of the experiment
(as Goschy et al.,, 2014, did to exclude distragboation repetitions) may have led
to a change in participants

For this reason, we opted for another approachnorate inter-trial effects: in the
present study, we allowed all possible cross-{tialation) transitions to occur, but
partialed out the iter-trial effects by excluding potentially affectedals post-hoc
from analysis. A further advantage conferred byg griocedure is that it permitted

us to quantify the inter-trial effects (i.e., thaent to which they account for the
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-cuei

changing the experimental design).

A second caveat concerns examination for the prediitarget-position effect (in
the same-dimension condition). It is thought thaew a salient distractor captures
attention, it must be (actively) suppressed foafattention to move on to the next
most salient item, the target (see, e.g., Lieselaesefeld, et al., 2017), and this
suppression affects not only the distractor locatiself, but spreads laterally to the
surrounding region, tailing off gradually with ireasing distance from the
distractor location (e.g., Gaspar & McDonald, 2084thot, Hickey, & Theeuwes,
2010; Mounts, 2000). Now (with the display arrangeinrealized in Goschy et al.,
2014, and the present study; see Figure 1), witistaactor in the frequent area, a
target in the frequent area would, on average,dser to the distractor than a
target in the rare area (in the present designeflsaw that of Goschy et al., 2014,
the target-distractor separation around the coclevhich the two singletons were
arranged varied between 1 unit [target and disbraatljacent] and 4 units [target
and distractor separated by three intervening dtiomuthe circle] when target and
distractor were located in the same area, but [@t\eand 6 units when they were
located in different areas). That is, a targethi@ $ame area as the distractor would
be more likely affected by lateral inhibition thartarget in a different area to the
distractor, giving rise to slower reaction timesdogets in the frequent as compared
to the rare region. Critically, an additional targeosition effect in the same
direction is also predicted by our DWA-based hypsithiér the same-dimension

distractor condition? Thus, to remove any confound with this effectenns of

13 Note, however, that, on the DWA, the additionalts effect should occur exclusively for same-
dimension, but not different-dimension, distract@rsd it should occur even for distractor-absent
trials, on which there is no distractor in the dagithat would need to be inhibited for focal atien

to be allocated to the target. The lateral-inhditeffect, by contrast, would occur equally witimga
and with different-dimension distractors, but only distractor-present, not on distractor-absent,
trials. Furthermore, with a distractor in the rarea, a target in the rare area would, on avebage,
nearer to the distractor than a target in the feequarea and thus be more affected by lateral
inhibition. While this would again predict a targebsition effect (RTs to rare-area targets being
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lateral inhibition, analysis must be restricted(bmly) such trials for which the
target-distractor distance is equated between tomdiwith a distractor located in
the frequent area and those with a distractor éréne area. In the present study,
this was done by restricting analyses to separatid3 units (9.85° of visual angle)

and 4 units (12.07°) only (there were too few trigith a separation of 2 units).

Supplementary Results

As elaborated above, in order to examine for ptaBssical learning effects (here:
learning of the distractor frequency distributiopdtentially confounding effects
specifically, effects arising from (i) certain imttrial transition effects as well as (ii)
effects attributable to differential targii-distractor distances between critical
conditions were eliminated from the data set. Such effecksbébed interesting
differential patterns between the same- and diffecdmension distractor

conditions, as detailed in the following two senso

Inter-trial effects. A major confound is likely given by (current) tisan which the
distractor, I, appears at the location of the last distractor; I such Q.1 D
transitions, the current distractor falls on a tawathat is inhibitorily tagged (as a
result of the distractor on the previous trialgriglon this position) and is therefore
less potent in attracting attention and causingrietence. As such transitions are
more likely for the frequent than for the rare dastor area, they would enhance
any differential interference effects between tremjfient and the rare distractor
region that might arise from statistical learniAg.indicated by Goschy et al. (2014;

comparison of their Experiment 2 with Experiment 4)significant part of the

slower than RTs to frequent-area targets), thecteffeactually in the opposite direction to that
predicted by the DWA-based account. On the laR&s to frequent-area targets should be generally
slower than RTs to rare-area targets, even onatisir-absent trials and no matter whether the
distractor is located in the frequent or the ra@agion on target-present trials.
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differential interference effects between distrastion the frequent versus the rare
area is indeed attributable to such..[D, transitions. However, there are other
inter-trial transitions (besides. D, transitions the only ones controlled for by
Goschy et al., 2014, in their Experiment 3) thatynaffect the magnitude of
distractor interference, notably, (i) a (curreraget falling at the same position as
the previous distractor (B T,) and (ii) a (current) distractor falling at tharsa
position as the previous target,(TD,). Concerning case (i), given carry-over of
inhibitory tagging, a (current) target falling dttet same position as the previous
distractor would make the current target less pofee., it would take longer to
achieve salience and attract focal attention).n&sances of type D T, would be
much more likely for the frequent distractor artas could also skew the results
regarding statistical learning of distractor fregog distributions, though in the
opposite direction to P, D, transitions: .1 T, transitions would reduce the
differential distractor interference between theqfient and the rare area.
Concerning case (i), there is evidence of positagging (and carry-over) of the
target location on a given trial (e.g., Krumenackeral, 2009). Accordingly, a
(current) distractor falling on the previous tarlgetation(T,.. D,) would be more
potent, that is, achieve salience faster and tleumbre competitive for attracting
focal attention. As such instances, too, are miksdylfor the frequent distractor
area, they would again skew the results: agaitménopposite direction toQ D,

transitionst*

All these effects were evident in the present data For instance, on distractor-
present trials (i.e., on which the current distoadtad the potential to produce
interference), RTs (to the target) were slower wtientarget appeared at the same

location as the last distractor {b T,) as compared to a different location (728 ms

1 Note that target location repetitions across sssiee trials (}.1 Tn) were balanced between the
frequent and rare distractor areas; accordinglsh sepetitions should not impact any differential
distractor interference effects between the frejaen rare regions.
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vs. 704 mst(183) = 6.72p < .001,d, = 0.50, 95% HPD [17 ms, 33 ms], BE 3.5 x
10"), and when a distractor appeared at the samadocas the last target (T D»)

as compared to a different location (716 ms vs.rm64(183) = 3.92p < .001,d, =
0.29, 95% HPD [6 ms, 17 m$BF,, = 116). Finally, RTs (to the target) were faster
when the distractor appeared at the same locatidhelast distractor (0 Dn),

as compared to a different location (693 ms vs.i84(183) = -4.34p < .001,d,

= .32, 95% HPD [-15 ms, -5 m$Fo = 575).

Interestingly, these inter-trial effects differedtiween the two distractor types. An
ANOVA with the factors inter-trial transition tydeo location repetition, Py Th,
Dn-1 Dn, Taa Dn, T Ta) and distractor type (same-dimension vs. different
dimension) revealed, besides main effects of ditbratype,F(1,182) = 44.52p <
.001, 2% = .20, and inter-trial transitior(4,728) = 110.47p < .001, 2, = .38, the
interaction to be significank(4,728) = 18.01p < .001, 2,=.09. In follow-upt tests,
the RTs of the four inter- -
-dimension distractors. For
different-dimensiondistractors, compared to the baseline (668 msks R&re
slightly slowed, by a little over 10 ms, to targafgpearing at a previous distractor
location (Dv.1 Ta: 681 mst(127) = 3.50p <.001,d, = .31, 95% HPD [6 ms, 20 ms],
BFo = 31), or when the current distractor appearedmevious target location (T
1 Dn: 680 ms}(127) = 4.14p < .001,d, = 0.37, 95% HPD [7 ms, 19 ms], BE 263).
There was little facilitation (-2 ms) when the cemt distractor appeared at the
previous distractor location (Q D,: 666 ms}(127) = -0.46p = .644,d, = .04, 95%
HPD [-6 ms, 5 ms], Blg = 0.11), but substantial facilitation (-49 ms) whthe
current target appeared at the previous targetitoté619 mst(127) = -11.08p <
.001,d, = .98, 95% HPD [-57 ms, -40 ms], BE 2.21 x 16€). For same-dimension
distractors, compared to the baseline (789 ms), e substantially slowed, by
over 50 ms, when the current target appeared apténvdgous distractor location

(Dn1 Th: 842 msi(55) = 6.85p < .001,d; = .91, 95% HPD [37 ms, 69 ms], BF =
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1795702), while there waslatively little slowing (9 ms) when the currenstdactor
appeared at the previous target locatiop:(Dn: 798 mst(55) = 1.35p = .182,d,

= 0.18, 95% HPD [-5 ms, 22 ms], BE 0.34). There was sizeable facilitation (-32
ms) when the current distractor appeared at théqare distractor location (B

Dn: 757 msi(55) = -6.69,p < .001,d, = 0.89, 95% HPD [-40 ms, -21 ms], BE
1019639), and even greater facilitatio@@d ms) when the current target appeared
at the previous target location (I T.: 719 msi(55) = -8.08p < .001,d, = 1.08,
95% HPD [-85 ms, -50 ms], BF= 1.54 x 16). Thus, the interaction effect derives
from the fact that especially the (inter-trial) tdéctor-location inhibition (1 T,
trials: 53 ms vs. 13 ms;Q D, trials: -32 ms vs. -2 ms), and to some extent aleo th
target-location facilitation (at least on.T Ty, trials: -49 ms vs. -70 ms), was greatly
increased in the same-, relative to the differesithension condition (distractor-

location inhibition was increased by a factor ofeaist 4!).

As already said, location transitions involving thistractor happened more often
in the frequent distractor area (therefore confangdhe results). On average
across participants, a target appeared at the lsmat@n as the previous distractor
absolutely more often in the frequerN € 30) compared to the rare distractor
region (N = 4); a distractor appeared at the same locasdheprevious distractor
much more often in the freque € 59) than in the rare distractor regidv= 1);
also, a distractor appeared in the same locaticeprevious target absolutely
(and relatively somewhat) more often in the frequeistractor region N = 39)
than in the rare distractor regioN € 4). Given their distribution imbalances, alll

these inter-trial transitions should band, in the present study, werexcluded

15

15 Note that, in the present study, the results ragdhsimilar after removal, which is because the
two effects of distractor-distractor transitions,(DD,) facilitating processing and distractor-target
transitions (.1 Tn) impairing processing (in the frequent area) Irgancel each other out. Also
note that target-targefT{. T.) transitions do not affect the probability-cueieffect, as such
transitions are equally likely in both (the frequi@nd the rare) distractor areas.
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Target-to-distractor distance effectsAnother confound in the present study may
be that targets are subject to differential amowohiateral inhibition (arising from
the suppression of distractors that captured attlehtlepending on whether they
are located within the same area as the distrdceoy both in the frequent or the
rare distractor area, in which case the averagartdis of the target to the distractor
would be smaller and therefore the inhibitory iefice larger) or in different areas
(in which case the average distance would be laager therefore the inhibitory
influence smaller). Such lateral-inhibition effect®uld conceivably add to
(distractor in frequent area) or take away fronst@ictor in rare area) the target-
position effect predicted on the DWA-based accounthough only under

distractor-present conditions!

Figure A1 Mean RTs as a function of targetdistractor distance (in degrees of visual andd),
each of the combinations of distractor locatiors{idictor located in frequent vs. rare region: left-
vs. right-hand panels) x target location (targetated in frequent vs. rare distractor region),
separately for the two distractor types (samediferent-dimension: upper vs. lower panels).
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For the present data, the lateral-inhibition efemte depicted in Figure Al. Each
panel presents RT as a function of the distancelégrees of visual angle) of the
target from the distractor, separately for tar¢mtated in the frequent and targets
located in the rare distractor area; these funstame shown separately for same-
and different-dimension distractors (upper and lowanels) appearing in the
frequent and rare distractor areas (left and mpgimels), respectively. As can be seen
from the (fairly linear) decreases in RTs with ieasing target-distractor
separation, lateral-inhibition effects do manifestll conditions'® Furthermore,
the amount of lateral inhibition, measured in tewwhthe rate of RT decrease per
unit of distance (i.e., degrees of visual angl@pears overall more marked for
same- than for different-dimension distractors 992ms/° vs -4.72 ms/t{72.73)

=-6.1,p<.001d,=1.18,95%HPD [-9.897 ms/°, -7.582 ms/°], BF1D £93e+09).

To make sure we compare like with like in the catianalyses of distractor-
interference effects, we went on to examine RTafasiction of distractor location
(distractorin-frequent- vs. distractoin-rare-area) x targetlistractor distance
(9.85° vs. 12.07°) x target position (same vs. @ipoarea with respect to
distractor). The latter variable was included as)aeivably, the gradient of the
inhibition applied might differ between the two wdlactor areas in which case
lateral inhibition would vary even for equivalenistdnces. Distractor location x
distance x target position (repeated-measures) ANperformed separately for
same- and different-dimension distractors failedet@al any interactions between
target position and distance (target position xtagise:F(1,47) = 0.71 and,

respectivelyF(1,89) = 0.02ps > .1, distractor location x target position xtdsce:

16 This pattern is consistent across the range ¢&miées for conditions with a distractor in the
frequent area, for which we have relatively rekabstimates. The one deviant value for the greatest
separation with a same-dimension distractor irréine area and a target in the frequent area Iy like
attributable to a measurement error, given thetféals available for this extreme, distractio-
rare-area condition.

17 Slopes calculated excluding the most extreme wiégtaf 13.93°.

65



F(1,47) = 0.04 and, respectivei(1,89) = 1.22p = .272)*® That is, there was no
evidence of a modulation of any target-positiore@f by distractote-target
distance (the main effect of target position wgsigicant for the same-dimension,
but not for the different-dimension conditid#(1,47) = 11.29p = .002, vsF(1,89)

= 0.30,p = .585). Restated, for equivalent distractoitarget distances (and for a
given type of distractor appearing in a given areapetposition effects, if any, are
simply additive to the lateral-inhibition effectBhus, by including in the analysis
of target-

effects on target processing revealed are not cordfed by differential amounts of
lateral inhibition when the target is located witline same versus the opposite area

to the distractor.

Accordingly, prior to analysis of the distractotenference effects reported below,
we dealt with (potentialinter-trial transition confoundby eliminating all trials on
which (i) the current distractor appeared at thecegame position as the previous
distractor (B.1 Dy); (ii) the current target appeared at the exactesposition as
the previous distractor (R T.); and (iii) the current distractor appears atekact
same position as the previous target.A(D.,) which resulted in the removal of
17% of the trials. Furthermore, to deal witteral-inhibition confoundswe only
included (distractote-target) distances in the analysis that were commoacthe
conditions with targets in the frequent and targetshe rare distractor area
specifically, distances of 9.85° and 12.07°, fdrdastractor-type x distractor-
position combinations. The latter two distancesemercluded because missing
values were minimal at these distances (only omaggzant had to be excluded)
and the distances could be effectively equated dmtwhe targein-frequent- and

targetin-rare-distractor-area conditions. Including onlyesh two, equated

8 Due to missing values, the number of observers ¢thald be entered into these analyses was
reduced from 56 to 48 in the same-dimension distracondition and from 128 to 90 in the
different-dimension condition.
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distances in the distractor-interference analgsigd the omission of a further 26%

of the trials
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Abstract

Observers in a search task can exploit unevenildigions of target locations in
order to facilitate search performance (f.e. GenBefirmann, 2002). A study by
Sauter et al. (accepted) investigated the mechanismierlying this probability
cueing of distractor locations and found a coupbhgpace- and dimension-based
suppression mechanisms depending on whether thmadsr is defined in the
same or different visual dimension as comparetieddrget. If target and distractor
are defined in the same dimension, global spaceebsisppression dominates and
if they are defined in different dimensions, a maeecific dimension-based
suppression mechanism can be employed. The prsseiht sought to investigate
whether the learned suppression of the frequemitagi®r region, that is spatial in
nature, will be reflected in event-related potelstiapecifically, the N2pc andpP
components. The N2pc is a common neurophysiolognaaiker to measure the
allocation of visuospatial attention (Luck and ihlld, 1994) and the related B

a positive going deflection elicited shortly afegtention is allocated to a distractor
and interpreted as evidence of active distractgrpsession (Hickey, Lollo, &
McDonald, 2009). The present study reveals thahditin was allocated to frequent
and rare distractors, but more consistently toueed distractors. There was a
distractor-B elicited for both frequent and rare distractomsgljcative of active top-
down suppression. The N2pc amplitude was also ddogdrequent distractors as
compared to rare distractors, which could indi@targer amount of attentional
resources required to attend to the distractor wdtishin the region which is
suppressed on a global-salience level. The resuitergdly speak in favor of a more
efficient global-salience distractor-handling to hecruitable for learned

distractors.

Keywordsprobability cueing, location suppression, N2pc
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Introduction

In visual pop-out search, it is well-establishedttbbservers can exploit uneven
distributions of target locations in order to faatle search performance: targets are
detected faster at locations where they appear nrexpently (Anderson &
Druker, 2010; Fecteau, Korjoukov, & Roelfsema, 2088ng & Behrmann, 2002;
2005) providing evidence for what has been termed locapirobability cueing
(Geng & Behrmann, 2002). Likewise, task-irrelevatistractors can be better
suppressed at locations where they appear more.dftea typical probability-
cueing study (Goschy et al, 2014, Sauter et akpecl), the authors present a
slightly tilted (f.e., orientation-defined) grayrget bar among vertical gray non-
targets arranged around concentric circles. In dfalfie search arrays, one of the
vertical non-targets is red, serving as a highlesacolor-defined distractor. The
distribution of the distractor location is manipt@d in such a way that distractors
appeared with 90% probability in one half of thepday (frequent region) and with
10% in the other (rare region). They find distractderference to be significantly
reduced when the distractor was presented in #ggpént compared to the rare
region. This finding suggests that we cannot onkpl@t uneven spatial
distributions when they are directly related to tbgponse-relevant target but also

in shielding from distracting influences from taiskelevant non-targets.

The study by Sauter et al. (accepted) investigdtednechanisms underlying this
probability cueing of distractor locations and faua coupling of space- and
dimension-based suppression mechanisms dependinether the distractor is
defined in the same or different dimension as camghdo the target. Using a
different-dimension (i.e. color) distractor, theglp found the distractor to be
suppressed on a dimensional level while using aesdimension distractor, they
found spatial suppression for the entire displaya®. This means that the search

target was also suppressed when appearing indis:.
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A common neurophysiological marker to measure tlozation of visuospatial
attention is the N2pc component of the event-rdlaietential (Luck and Hillyard,
1994), manifested as a negative-going deflectiothénEEG signal contralateral to
the stimulus. A related component is the ®hich is a positive going deflection
elicited shortly after attention is allocated todstractor (often instead of a
distractor-N2pc). It is interpreted as evidenceaofive distractor suppression
(Hickey, Lollo, & McDonald, 2009). In an investigah using the additional
singleton paradigm, Hickey et al. (2006) showed eolers search displays
containing the target stimulus on the one hemifigldle a distractor was in the
other hemifield. They found that both stimuli dkéxd N2pc waves. Importantly, the
distractor N2pc appeared before the target-N2pdjiag to the conclusion that the
distractor first attracted attention, before it wasallocated to the target. Recently,
another study (Liesefeld, Liesefeld, Toliner andliet) 2017) tracked capture and
re-allocation dynamics including a modified approathey showed either target
or distractor laterally in one hemifield while tbeher one appeared on the vertical
midline (similar to Hickey et al., 2006). An objemnt the midline does not elicit an
N2pc, so it is possible to isolate distractor-redeactivity. They found that attention
was reliably allocated to the distractor (distragh®pc), which was subsequently
suppressed @. Additionally, they revealed that suppressionha distractor and
attentional allocation towards the target seemeldajmpen in parallel rather than

serially.

The present study ought to investigate how the g@diby cueing of distractor
locations manifests in the N2pc angl Bince the frequent distractor region seems
to be suppressed on a global-

region, we did not expect this to influence the blamplitude per se. Also, it is not
clear whether the amplitude of these ERP componesitscts the degree of
suppression, its efficiency or whether it is purelgcumstantial. For example,

research into N2pc amplitude has shown that closgimity between target and
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distractor may decrease the N2pc amplitude (Hien2009). A close proximity
between target and distractor is more appareritarfrequent distractor region, so
possibly N2pc amplitude in this region will be degsed. However, another study
did not find amplitude to be influenced by proxiyniMazza et al., 2008), indicating
this effect might be task-dependent. It is plawesthiat the EEG correlates with the
behavioral data. Based on the faster response tiareBequent distractors as
compared to rare distractors, it could be thatptoeess of allocating attention to
the frequent distractor (in order to suppressng aubsequently re-allocate to the

target is faster or starts earlier.

We investigated these possibilities employing draes paradigm used by Liesefeld
et al. (2017) with an additional distractor freqagmanipulation. This means,
while EEG was recorded, participants completedrmpmund search task looking
for a slightly tilted target, while a (highly salig horizontal distractor appeared on
50% of the displays. On distractor-present tridls,distractor appeared on the top
semicircle with a probability of 90% and on thetibot semicircle with a probability
of 10% (counterbalanced across participants). altosved us to directly compare
N2pc and PD components elicited by target and absbrs in the learned (i.e.

suppressed) frequent region and in the rare (asuppressed) region.

Methods

Participants

One participant had to be excluded because of teghproblems during recording.
Thus, 15 (12 female, 3 male) right-handed obserweith a median age of 25
(range: 1938) years were included in the final analysis. Tiveye recruited at the

Ludwig Maximilian University Munich. All of them m@orted normal or corrected-
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to-normal (color) vision and gave prior inf

hour or course credit in compensation.
Apparatus

The experiment was conducted in a sound-reducedgenately lit test chamber.
The search displays were presented on a CRT moatitb®24 pxx 768 px screen
resolution and a refresh rate of 120 Hz. Stimuliexgenerated using OpenSesame
3.0 (Mathét, S., Schreij, D., & Theeuwes, J., 2018)ng a PsychoPy (Peirce, 2007)
backend. The observers issued their responseg asiegular mouse by pressing
utton with their left- or right-hand thumb, respeety

(counterbalanced across participants).
Stimuli

The stimulus displays were presented on a blackdgraond. They consisted of
light blue (RGB: 127, 127, 127; CIE [Yxy]: 20.223@, 0.34) vertical non-target bars
(0.125, of visual angle wide, 0.67%high), with their centers equidistantly arranged
on four imaginary concentric circles with radii@6°, 1°, 2° and 3°, comprising of
6, 12, 18 and 24 bars, respectively. The centahefcircles was occupied by a
fixation cross. In every bar, there was a gap 2% in height, which was randomly
located 0.125° from the top or bottom of the bdre Target differed from the non-
targets by its unigue orientation, randomly assigae each trial: it was tilted 12°
to either the right or the left. If a singleton td&ctor was present, one of the non-

targets was tilted 90° (horizontal) instead of it
Design

The experiment consisted of 2000 trials in 20 béodkhe frequency distribution of
the distractor was manipulated as a between-sulajettir. Distractor frequencies
were differently distributed in the top and thetoot half of the display, ranging

from
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positions on the second inner circle (see Figur&d) half of the participants, the

and for the other half, the bottom semicircle was trequent distractor area (4

unambiguously assigned to the frequent or rare & eastractor was present in a

random 50% of the displays per block. If a distoastas present, it appeared in the

about 10% of the ti

distractor, either the distractor or the targetegypd in a middle position (i.e. 12

often in both areas, with an equal probability &ir10 possible positions, but it
never occurred at the same position as the distrgethich is impossible by

design). The trial sequence within each block vaasilomized.

Procedure

All observers were instructed that their task vegisitige whether the target bar was

interrupted (by a gap) at the top or the bottom.ewit was interrupted at the

erbalanced between participants).
They were informed that on some trials, there wdngc horizontal distractor bar,
which they should simply ignore, as it would beslevant to their task. They were
not informed that the distractor would be morelyik® appear in one particular

semi-circle.

All trials started with a white fixation cross iheg middle of the screen for arandom
duration between 700 ms and 1100 ms. Then thelsdélay appeared and stayed
on until the observer responded. If the answer

appeared in the center of the screen for 500 me.nExt trial started without a
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delay. After each block of trials, observers reediRT and accuracy feedback and
could resume the experiment at their own discretidter 10 blocks, they had to
take a longer break of at least 10 minutes. Aftempleting the computer
experiment, participants filled in a brief questi@ire to check whether they had
frequency

distribution.

Analysis

Behavioral

from classical frequentist measures, to addressesssaised by the ongoing

t posterior density intervals (HPD)

credibility interval which is a Bayesian paramegstimate (similar to confidence
intervals) and report JZS BFBayes factors (Rouder et al, 2009) with the

BayesFactor package (Morey and Rouder, 2015) for Bur critical t-tests.

EEG

The electroencephalogram (EEG) was recorded coatisly via 58 Ag/AgCl
electrodes positioned according to the internatid0al0 system. A left-mastoid
reference was used during recording, and signals reereferenced offline to the
average of both mastoids. Vertical and horizontallar artefacts were monitored
via four additional electrodes above and belowl¢ifteeye and at the outer canthi
of both eyes. Allimpedances were kept below 10 &ignals were amplified (250-
Hz low-pass filter, 10-s time constant; BrainAmp DBrainProducts, Munich,
Germany) and sampled at 1,000 Hz. EEG data werepsed with custom-written
Matlab (The Mathworks, Natick, MA) code using fulecis from EEGLAB
(Delorme and Makeig, 2004) and Fieldtrip (OostedyeFries, Maris, and

Schoffelen, 2011). We applied 0.5-Hz high-pass 48déHz low-pass FIR filters
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(EEGLAB default), ran an independent component yamal(ICA; EEGLAB,
extended mode) and removed ICA components repliageblinks or horizontal

eye movements. After these pre-processing stepiseocontinuous EEG, data were

baseline-corrected with respect to the pre-stimintesval. Trials with artefacts in
the analysed channels (PO7/8; voltage steps léinger 50 V per sampling point,
activity changes less than 0.5/ within a 500-ms time window, or absolute
amplitude exceeding £ 30V), horizontal eye movements (detected prior to the

ICA), or incorrect responses were excluded (6.7&sal).

To extract ERPs, EEG epochs from each conditioreveseraged separately for
contralateral and ipsilateral electrodes (relativehe distractor in the midline-
target/lateral-distractor condition and relativehe target in all other conditions),
and the resulting individual ipsilateral ERPs wanbtracted from the contralateral
ERPs. Lateralized components were analysed in thilseence waves at electrode
sites PO7/8. For component latency estimation, sexl lb0%-area latency (Luck,
2005, pp. 239242), where component area was defined as therrdgianded by
the ERP, a threshold set at 30% of the componantfgitude, and the two time
points where the ERP crossed the threshold (on- cifsgét of the respective
component). The search for on- and offsets statélde highest local peak within
the search interval and proceeded towards botlels@arervals. If no on- or offset
was found, the respective search interval bordeedeas the boundaryinstead. The
pattern of results (including all decisions on istatal significance) was the same
with 30%-amplitude latency (component onset). Weorearea latency, because it
IS more representative for the distribution of teties. Whereas onset latency is
biased towards the earliest component onsets, lateacy reflects the median

latency of a component.

To determine analysis windows for amplitudes of tbenponents of interest, we

performedb0% area latency detection on the strongest compoofehe respective
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polarity in the respective grand-average differemaee and defined amplitudes as
the mean activity in a 30-ms window centered ors¢hténe points. For statistical
tests on differences in component latencies, thesacies were determined for
each participant within a common time window encasging on- and offsets of
allanalysed components (168816 ms). As we had strong a- priori hypotheses tibou
the direction of effects (e.g., we predicted thdataralized target would elicit a
negative component [the target N2pc] in the diffexewave and that the target
N2pc would be delayed on distractor-present triaisgsts were performed one-
tailed, except for tests predicted to be non-sigaift or calculated post hoc (as

indicated).

Results

Behavioral

Our main prediction for the behavioral results, wiaat the probability-cueing
effect (evidenced by reduced interference by distra in the frequent vs. the rare
area) will be replicated in the present study. Mearor rates were influenced by
distractor condition (frequent area, rare areagt)sH2,28) = 8.14p = .005 but

not target positionk(1,14) = 0.90p = .360. Error rates were highest in the rare area
(5.9%) and higher in the frequent area (5.1%) camghao absent distractors
(3.7%). Because this trend is the same for readtiops (see below), a condition-
specific speed-accuracy trade-off cannot explameffect. All error trials were then

excluded from further analysis (4.5%).

To ascertain that distractors generally causedference (c.f. Figure 1), we directly
compared RTs on distractor-present trials with ¢hos distractor-absent trials:
RTs for trials when a distractor was present wéye/ey compared to when the

distractor was absent (710 ms vs. 607 ms; t(14).831 p < .001, g= 3.1, BRo =
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2074116, 95% HPD [80 ms2@ ms]). To directly test for a probability cueieffect,

we contrasted the frequent versus rare distraatesgmt conditions: RTs were
slower when the distractor was in the rare areapared to the frequent area (746
ms, 674 ms; t(14) = 7.50, p < .001,71.94, B, = 13572, 95% HPD [48 ms, 89

ms]).

Figure 1.Response times as a function of the distractoditmm (absent vs. distractor in frequent
region vs. distractor in rare region). Error bardicate within-subject standard error of the mean
(SEM; Morey, 2008).

Event-related potentials

First, we tested whether the orientation distraataptured attention in both
distractor conditions (frequent region vs. rareiory Indeed, a prominent
distractor N2pc emerged in the midline-target/lakelistractor condition for
15 V; t(14) = -4.20, p < .001, d = -1.08) but
there was only a small trend for distractors in tdwe area(-0.42V; t(14) = -1.52,
p = .075, d = -0.39). Importantly, the frequenttiistor N2pc had a significantly
higher amplitude than the rare distractor N2pc30V,; t(14) = 1.93, p = .037,d =
0.50) and emerged earlier (-56 ms; t(14) = -2.6%, P09, d = -0.69). Further, a
prominent distractor PD emerged on midline-targétHal-distractor trials,

importantly, both for frequent distractors (1.13; t(14) = 3.81, p = .001, d = 0.98)
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and rare distractors (1.22/; t(14) = 3.15, p = .004, d = 0.81). For frequent
distractors, the PD emerged clearly later (94 maptthe N2pc, t(14) = 4.17,p <
.001, d = 1.08. But for rare distractors there maglear (54 ms) latency shift, t(14)
= 1.63, p =.063, d = 0.42. There was also no rmdiffee in PD amplitude between

frequent and rare distractors (0.04; t(14) = 0.17, p = .434, dz = 0.04).

In the distractor-absent condition, the lateraj¢aelicited a pronounced N2pc for
targets that appeared in the frequent distracigione(-1.43 ), t(14) =-4.67,p <
.001,d=-1.21
t(14) = -2.65, p = .010, d = -0.68, indicating tlspatial attention was consistently
directed to the target. Such a target N2pc alsargedeon lateral-target/midline-
distractor trials for both targets that appearethim frequent distractor region (-
-3.52, p =.002, d = -0.91, and targets that apggkar the rare
distractor region (- t(14) = -4.03, p = .001, d = -1.04. Lastly, whdret
distractor was absent, there was no latency diffsen the N2pc components of
frequent versus rare distractors (1 ms; t(14) 4,ol= .458, dz = 0.03). When a
distractor was present, the target-N2pc was deldye®7 ms for targets that
appeared in the frequent distractor region (t(14%.89, p < .001, d = -1.81) but
was not delayed for targets that appeared in theediatractor region (19 ms; t(14)
=-1.23,p =.120, d = -0.32). Additionally, the pt2for targets that appeared in the
frequent region was generally delayed by 67 ms wtmmpared to targets that

appeared in the rare distractor region, t(14) 2,37~ .001, d = 0.96.

We predicted that in distractor-present displagtgrdion would be allocated first
to the (more salient) distractor and only afterveatal the (less salient) target. To
examine whether the distractor was indeed attebdtate the target, we compared
the latency of the distractor N2pc in the midliraegfet/lateral-distractor condition
to the latency of the target N2pc in the lateragé&/midline-distractor condition.

The distractor N2pc preceded the target N2pc (complae respective N2pcs in
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Fig. 2A and Fig. 2B) for frequent distractors by 1fis, t(14) = -5.08, p <.001, dz =
-1.31 but not for rare distractors (16 ms; t(14P58, p = .286, dz = 0.15.

Figure 2.Difference waves in microvolt (contralateral minipsilateral) at the electrodes PO7/PO8
for the three conditions (A-C). The blue line capends to the distractor (A) or target (B, C)
appearing in the frequent distractor region andrégeline corresponds to the stimuli appearing in
the rare distractor region. X-axis numerals indica@tne in milliseconds, the vertical striped line

indicates onset of the search display.
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Discussion

The present study sought to investigate whetherlghmmed suppression of the
frequent distractor region, that is spatial in mafwill be reflected in the N2pc
component in some way. The behavioral results atdichat frequent and rare
distractors both reliably captured attention an@ thequent/rare distractor
distribution was learned: There was a probabilitging effect of 74 ms, which is
smaller compared to the effects found by Sauter eokkbagues (2018) but
importantly, is attributable to statistical leargialone, as short-term inter-trial

repetition effects were rendered impossible byetkgerimental design.

Along the lines of Liesefeld et al. (2017), we fauthat attention was allocated to
the distractors as we found the N2pc componenetelibited reliably for frequent
distractors and as a statistical trend for rargaasors. In line with our hypotheses,
the N2pc for frequent distractors as comparedrt®destractors was elicited earlier.
This speaks in favor of a reliable mechanism fgtrdictor-interferece-handling to

be in place.

There was a consistent distractay diicited for both frequent and rare distractors,
meaning that active top-down suppression was resplerfor continuing with the
next, less salient, item in the search displaysBuipports more evidence for the
only study reporting a distractoryRollowing a distractor-N2pc (Liesefeld et al.,
2017). The actual distractor suppression, as regtday the distractor4? seems to
happen later for distractors in the frequent redi®f ms after distractor-N2pc)
compared to distractors in the rare region (54 fres distractor-N2pc; although
only numerically), but since it still appears earlin the frequent region (318 ms)
than in the rare region (335 ms) after stimulusebnthis cannot be seen as

conflicting evidence to the global-salience supgi@sexplanation.

The N2pc amplitude was also larger for frequentrdiors as compared to rare

distractors, which could potentially indicate ager amount of attentional
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resources required to attend to the distractor wdtishin the region which is
suppressed on a global-salience level. In contodstis is an investigation by An et
al. (2012) that showed the N2pc amplitude is ingedaby perceptual learning in
the learned region compared to the unlearned regoliowing this logic, it might
be that the N2pc amplitude is indirectly reflectirag global salience-based
mechanism that is able to act long-term on alldrj@ossibly even when a distractor

is absent.

In conclusion, in this study, we investigated tlhex®ophysiological markers for
distractor suppression in statistically learned @ugpressed distractors versus
unlearned distractors. We found that distractorgha frequent (suppressed)
region, elicit larger and earlier N2pc componeiitse results generally speak in
favor of a more efficient global-salience distraeb@ndling to be recruitable for
learned distractors. However, the results shouldséen as first hypothesis-
generating explorations rather than conclusiveevig as they lack convincing
statistical significances in some key compariséisther research should include
a contralateral target/distractor setup to diremiypare latency shifts for the N2pc

components within a single trial.
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Abstract

It was shown previously that observers can learrexjploit an uneven spatial
distribution of singleton distractors (90% in orafh10% in the other half of the
display) to better shield visual search from distioas in the frequent versus the rare
region (i.e.distractor location probability cuein@auter et al., accepted). However,
with distractors defined in the same dimensionhassearch target, this comes at
the cost of impaired detection of targets in thegfrent region. In three
experiments, the present study investigated thenileg and unlearning of
distractor location probability cueingnd the carry-over of cueing effects from
same+to different-dimension distractors. All experimentsalved visual search for
an orientation-defined singletararget in the presence of either a more salient
color-defined (different-dimension) or orientatioefined (same-dimension)
distractorsingleton, and all were divided into a learningssen and a subsequent
test session. The present study showed that wittesdimension (but not with
different-dimension) distractors, the acquired ngesffect persists over a 24-hour
break between the training and test session ares tedveral hundred trials to be
unlearned when the distribution is changed to €8086/50%) in the test session.
Furthermore, the cueing effect (and the targettionaeffect) carries over from
learning with same-dimension distractors to testhwdifferent-dimension
distractors. This pattern indicates that the ledistractor suppression effects are
implemented at different levels in the hierarchmalhitecture of search guidance:
the master-saliency map with same-dimension digirac/s. a dimension-based

level below the saliency map with different-dimersdistractors.
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Introduction

In visual search for singleton, pop-out targetsewsters are able to learn, over time,

statistical regularities in the locations of higkajlient but task-irrelevant singletons

selection. This learning effect is expressed iruced interference, that is, relatively

faster reaction times (RTs), when the distractoraagiven trial occurs at/within

Ferrante, Patacca, Di Caro, Della Libera, Santamd®eChelazzi, 2018; Goschy,
Bakos, Miiller, & Zehetleitner, 2014; Leber, Gwinn

likely target locations in

visual search).

Typically in these so- -

are quite distinct from those defining the tardetthe majority of studies since

shape, orientation), whereas the distractor wamekkfby color, that is, in a
different visual dimension to the targétn Goschy et al. (2014), the 34 non-target
items were all vertical grey bars. The target wasdnly bar having a 12° tilt to the
left or the right from the vertical (i.e., it wagientation-defined), while the
distractor was the only red (vertical) bar (i.ewas color-defined and thus, relative

to the target- - 20 More

1% This applies, for instance, to most of the elechrysiological studies of attentional capture (e.g.,
Hickey, McDonald, & Theeuwes, 2006; Kiss, Grubrtersen, & Eimer, 2012; Jannati, Gaspar, &
McDonald, 2013; Burra & Kerzel, 2013; Wykowska &sb o, 2011).

20 See also Wang & Theeuwes (2018) and Ferrante @GI8), who examined search for a shape
singleton target in the presence of a color-defined different-dimension, distractor that was
highly likely to appear at one specific (frequensrdctor) location. In Goschy et al. (2014), by
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(2014) paradigm to distractors defined in the sameal dimension as the target
by replacing the color-defineded vertical) distractor by an orientation-defined (a
horizontalgray) distractor. Given that the orientation diffiece of the distractor to
the non-targets (horizontal vs. vertical) was latgan that of the target (12° tilt vs.
vertical), the distractor was more salient than taeget (with the latter still

- -size-independent search; see Liesefeld, Moranet)sh

Miller, & Zehetleitner, 2016). Although Sauter ét(accepted -

caused by different-dimension distractors), pgotaits nevertheless learned to
reduce the interference generated by distractoas dppeared in the frequent
distractor region compared to distractors in thee na@egion. Additionally, with
same-dimension distractors, while the interferecaesed by distractors in the
frequent region was reduced, there was also aicdastms of the speed of target
processing: RTs were slower to targets in the feequegion compared to targets
in the rare region. Crucially, this was even thgegan trials on which no distractor
was actually present in the display (distractorealbsrials). This effect pattern did
not exist with different-dimension distractors, f@hnich there was just a reduction
of interference for distractors in the frequent@aspared to the rare region. Sauter
et al. (accepted) took this differential effecttpat to conclude that interference
reduction relies on fundamentally different meclsam with same- as compared

to different-dimension distractors.

In principle, the interference reduction might lzséd on stronger suppression on
any of three levels: inhibition afistractor-defining featurewithin the frequent (as
compared to the rare) distractor area, down-modaunaif feature-contrast signals

in thedistractor-defining dimension - and feature-

contrast, color-defined distractors were more jikelappear in a whole display region
(encompassing multiple possible locations).
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saliency signals on thsearch-guiding attenti

The fact that, with same-dimension distractors, tleduction of distractor
interference was accompanied by impaired targetgmsing rules out feature-
based suppression as a general account of thenfjadif the distractor-defining
feature could be selectively inhibited, it shouldt have mattered whether the
distractor was defined in a different or the sanmeashsion as the target. Likewise,
the fact that, with different-dimension distractodistractor interference was
reducedwithout affecting target processing rules out master nmdyibition as a
general account of the findings: if the master msamhibited, target processing
should be impaired not only with same-, but alsahwiifferent-dimension
distractors. By contrast, dimension-based suppresg.g., Muller et al., 2009;

Zehetleitner et al., 2012) could account for timelings. The notion of dimension-

Miiller and colleagués On this account, local feature contrast signaigiing, e.g.,
the orientation difference of a horizontal barhe vertical bars in its surround) are
transferred in @imensionally weightetashion to the (supra-dimensional) master

saliency map, which sums the dimensionally weigtsigdals to determine overall-

2L This account, developed by Miller and colleagess (Found & Mller, 1996; Krummenacher,
Mduller, & Heller, 2001, 2002; Muller, Heller, & Zgger, 1995; Miller, Reimann, & Krummenacher,
2003), assumes that the allocation of attentiolodations in the search display is driven by an
overall-saliency map (cf. Wolfe, 2007) which intatgs feature contrast signals from the various
stimulus dimensions (i.e., orientation, luminaro®or, motion, etc.). The DWA posits that the
feature contrast signals are weighted by dimen@iather than by individual features within a
given dimension) in this saliency summation proc€hksis, it is possible to down-weight a single
dimension selectively, but, because of dimensigreallpled feature weighting, one cannot down-
weight a specific feature in a given dimension withalso down-weighting other features in this
dimension. Thus, for instance in a task with orégioin-defined targets and color-defined (i.e.,
different-dimension) distractors, one can down-\Wweitpe color dimension, reducing the saliency
of color signals at the level of the overall-satigmap. If the down-weighting is strong enough, as
it might be in the display region where the distoas appear more frequently, such (color)
distractors will have less power to capture attemind cause less interference compared to
(color) distractors occurring in the rare distracioea (where the down-weighting is less strong).
However, when the distractors are defined in tieesdimension as the target (e.g., the
orientation dimension), this weighting strategy slaet work as efficiently, because down-
weighting distractor (orientation) signals alsoasheweights the target (orientation) signals. This
the likely reason why attentional capture is extenmard to avoid with salient same-dimension
distractors (Liesefeld, Liesefeld, Tollner, & Mirlj@017).
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saliency. Accordingly, down-modulating the weightt the distractor-defining
dimension would not only down-modulate the distoagfeature contrast) signal
in this dimension (reducing interference), but dlse target signal if the target is
defined within the same dimension (slowing targdéction). By contrast, if the
target feature is defined within a different dimiems target processing is
unaffected by the down-modulation of the distraadefining dimension. This
could explain the pattern of results observed hyt&aet al. (accepted): impaired
processing of an orientation-defined target whea distractor was orientation-
defined (same dimension), but not when it was cdiefined (different dimension).
On the other hand, in the former case (with sammeedision distractors), strategic
down-modulation of the orientation dimension whée target, too, is defined
within this dimension would give rise to a confligth the goal of detecting a target
in this dimension. To circumvent such a conflidiservers may instead resort to a
space-based inhibition strategy: suppressing algnsg signals in the frequent
distractor area at the master map level. This, vomyld yield impaired tarde
processing in this area (while avoiding a goal tonf That is, while distractor
saliency (and thereby distractor interference) woo reduced for the frequent
distractor region, target saliency would likewiserbduced, resulting in slower RTs
to targets appearing in the frequent compared ® rdre distractor region.
Importantly, based on the results of Sauter dtaatepted), one cannot tell which
of these two alternatives is correctThe present study was designed to decide this
issue, by examining the learning and unlearnindistiractor location probability
cueing and the carry-over of cueing effects froomeato different-dimension

distractors.

Rationale and Overview of the Present Study

The study followed a two-stage logic. In the firsgtance, it was designed to test the

hypothesis that distractor location probability rleag is ultimately better
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consolidated with same-dimension distractors aggared to different-dimension
distractors. Muller et al. (2009) considered thielsling of search from distraction
as a skill, that is: a set of learned, executivetires to either avoid attentional
capture or efficiently deal with its consequen€eBlow assume that same-
dimension distractors give rise to greater systemernal conflict than different-
dimension distractors (evidenced by the fact tleag,, in Sauter et al., 2018,
interference, measured against the distractor-aldssseline, was increased by a

factor of at least 4 for same- vs. different-dimenglistractors), engaging a greater

consolidate ways (or control routines) to minintize interference (e.g., operating
a strategy that combines space-based inhibitiom feature-(template-)based
activation). In the present paradigm, we predicteds would ultimately lead to
deeper spatial learning of where distractors akelylito appear with same-
dimension as compared to different-dimension distna?® Different-dimension
distractors, by contrast, produce little conflacs,we have effective routines to deal
with such distractors such as dimension-based suppressiaeadily available;
consequently, different-dimension distractors wolddd to relatively shallow

spatial learning.

One way to probe the depth of learning (in our cstseistical learning) is to assess

how strong and persistent an acquired behaviosglogition, or attentional bias, is

a statistical bias in some task-critical eventyamoved (Leber & Egeth, 2006a,

2 This was based on the finding that consistent sxpmto, or prior practice, with distractor
displays was a major factor in reducing distragtoerference (see also Zehetleitner et al., 2012).
Also, with a low probability of a distractor occirg, interference was high on a given (distractor-
present) trial when it was preceded by one or nd@tactor-absent trials, but it was reduced
when it followed a distractor-present trial. Militral. (2009) took this pattern to suggest that
when the appropriate shielding routines are acdby encountering a distractor on a given
trial), this control set remains in an active sfatea while, permitting a distractor on the nexalt

to be dealt with efficiently.

Z Consistent with this, Sauter et #1018 also found stronger evidence of explicit knowlea

the distractor distribution with same- than witlffetient-dimension distractors.
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2006bZellin, Conci, von Muhlenen, & Miller, 2013; Zellimon Muhlenen, Mdller,
& Conci, 2014. In a comparable study to the present one, Fegretral. (2018), for
example, observed that the learnt attentional eodraent of a frequent target

location (in search for a shape-defined singletargdt) did persist during an

and in which the target appeared equally likelyaath display location. By contrast,
suppression of a location at which a (color-defin@idtractor singleton appeared
frequently during learning was no longer significam the extinction epoch (in
which the distractor appeared equally frequentlyeath display location)
indicating that, at least with the different-dimemsdistractor used by Ferrante et

al. (2018), a spatial bias in distractor suppresgainlearnt rapidly.

Adopting this logic, Experiment 1 was designed tole the strength of learnt
spatial suppression by examining for carry-oveeaf of distractor location
probability learning from one day (day 1: learniplgase) to the next (day 2, some
24 hours later: test phase), separately for a gmfugame-dimension distractor
participants and one of different-dimension didtoagarticipants. Importantly,
participants were presented with an uneven distiobuof distractors (90% of
distractors in frequent area, 10% in rare areay dafing the learning phase (day
1). In the test phase (day 2), the distribution a@sal (50% in frequent area, 50%
in rare area), so as not to provide any incentiveré-learning (and, instead, to
permit unlearning to be examined). We expectedeatgr carry-over effect from
day 1 to day 2 for same- (than for different-) dimsien learners, as well as a greater
number of trials necessary to unlearn the unevstmibution on day 2. The results
were in line with this prediction: there was a #igant carry-over effect only with
same-dimension distractors, but not with differdimiension distractors.
Experiment 2 went on to examine whether the faikarénd a significant carry-
over effect with different-dimension distractorsswhue to the length of the interval

between the learning and the test phase, thatasidva carry-over effect be
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discernible when the interval is reduced (from 24ts plus) to 5 minutes? The
answer was negative, indicating that unlearningioed rather rapidly, within the
first few blocks of encountering an even distrilbatiof different-dimension

distractors, whereas it took at least double thenbber of blocks with same-

dimension distractors.

Given these differential (un-)learning effects, Exment 3 was designed to
examine whether whatever strategy is acquired énl¢arning phase (on day 1) to
deal with same-dimension distractors would be edrover and applied, in the test
phase (on day 2), to search displays that excllysoantain different-dimension
distractors (i.e., the type of distractor was st from day 1 to day 2, in addition
to the change from an uneven to an even distratsbribution). Recall, that only
same-dimension distractors produce a target lotatfiect: impaired processing of
targets appearing in the frequent versus the riateadtor area. If this effect carries
over from same-dimension distractor learning (oy Hao the test with different-
dimension distractors (on day 2), this would hawplications for locus of the
target location effect in the search architectlitee answer is: there was indeed a
carry-over effect (including carry-over of the tatrdocation effect), indicative of
spatial distractor suppression operating at a reiffe level with same- versus
different-dimension distractors: the master saljanap versus a dimension-based

level below the saliency map.

Experiment 1

Experiment 1 was designed to test whether distrdotmtion probability cueing
carries over from one day (training) to the nexs(}, even if the test condition
provides no (longer an) incentive to apply mordrditor suppression to one as
compared to the other half of the search display.tke reasons set out above, we

hypothesized that there would be a stronger cavey-effect in terms of reduced
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distractor interference for the previously frequesrtsus the previously rare display

region (in the test session)with same- than with different-dimension distrasto

Methods

Participants. 48 (28 female, 20 maRYyight-handed observers, all students at LMU
Munich, with a median age of 28 (range: 38) years, participated in Experiment

1. All of them reported normal or correctéothormal vision (including normal

hour or course credits in compensation.

Set-up. The experiment was conducted in a sound-reducedienately lit test
chamber. The search displays were presented orR4pt(x 768px screen, at a
refresh rate of 60Hz. Stimuli were generated wige@Sesame 3.1 (Mathoét, Schreij,

& Theeuwes, 2012) using a Psychopy backend (Pied0&) 20 bservers issued their

left- or right-hand index finger, respectively. Tegmulus displays were identical
to those used in the study of Sauter et al. (204B)ch, in terms of the present
design, consisted of only an initial learning phésgéhout a subsequent test or
unlearning phaséy. The screen background was black. The search gsspla
(illustrated in Figure 1) consisted of gray (RGB71127, 127; CIE [Yxy]: 13.6, 0.28,
0.32) vertical non-target bars (0.28f visual angle wide, 1.38high), with their
geometric centers equidistantly arranged on thireadinary) concentric circles

with radii of 2°, 4°, and 6°, comprising 6, 12, ah8 bars, respectively. A further

2 Recruitment of 24 participants per distractor dtind was based on the original study of
Goschy et al. (2014), who demonstrated a convindistyactor locatia probability cueing effect

, different-dimension distractor condition with @servers. Distractor

e-

dimension distractor condition compared in Sauted.€2018). Note that one participant had to
be excluded from analysis of the same-dimensioritimm owing to a loss of data.
% |n fact, data from the learning session was phth@larger data set analyzed in the context of
the Sauter et al2018 study.
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gray bar occupied the position in the center ofttiree circles. In every bar, there
was a gap 0.25° in size, which was randomly loc&@@%° from the top or the
bottom of the bar. The singleton target (presenewery trial) differed from the
non-targets by its unique orientation: it was (ramdy) tilted 12° to either the left

or the right.

A singleton distractor was present in 50% of thiald¢r For one group of 23
participants, one of the (gray vertical) non-tasgets rotated from vertical to 90°
(i.e., a horizontal bar; distractor defined in #aene dimension as the target). This
orientation contrast modulation ensured that thigetawas less salient (12° vs.
vertical) than the distractor (horizontal vs. veatj see Liesefeld et al., 2016, 2017).
For the other group of 24 participants, one of hlo@-targets was changed from
gray to red (distractor defined in a different dims®n, namely color, to the
orientation-defined target). Targets and distraxtoere presented exclusively at
positions on the intermediate circle, to ensureswiant feature contrast toeh
non-targets in their surround (e.g., Rangelov, BNl Zehetleitner, 2013, 2017;
Nothdurft, 1993; Liesefeld et al., 2016, 2017).
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Figure 1.Example of a stimulus display. The search target is theWW2°OWHG EDU DW WKH RTFORFI

position, and the (same-dimension) distractor is the WOB-OWHG EDU DW WKH RTFORFN SRVLYV

Design. The type of the singleton distractor (same vseddfit dimension) was
introduced as a between-subject factor. The digiratistribution in the learning

session was also manipulated between subjectsdiBlractor frequency differed

(see Figure 1). For half of the participants witleiach
group, the top semi-circle was the frequent andkb&om semi-circle the rare
distractor area, and vice versa for the other (sakt below). Neither the distractor
nor the target could appear at t
positions could not be unambiguously assigned &ttp or bottom area of the

search display.

The learning session consisted of a total of 14ilst separated into 12 blocks. A
distractor was present in half the trials and absemhe other half. If a distractor
was present, it appeared in the frequent area 9@Bedime and in the rare area
10% of the time. The target appeared equally oiiteboth areas, with an equal
probability for all 10 possible positions, but gver occurred at the same position
as the distractor. The test session also consgdté@ blocks with a total of 1440
trials. Importantly, in the test session, targetd distractors occurred equally likely
in the (previously, i.e., in the learning sessifnreguent and the (previously) rare
display region. The order of the trials within eabtfock was completely

randomized.

Procedure. The experimental procedure was identical to Expent 1 of Sauter et
al. (2018). Observers were instructed, in writimgl arally, that their task was to

discern whether the target bar was interrupteda(bsp) at the top or the bottom.
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interrupted at the top, they had to

some trials, there would be a horizontal (same-dsitn group) or, respectively, a
red (different-dimension group) distractor bar whibey should simply ignore as
it would be irrelevant to the task. They were ndbrmed that the distractor was
more likely to appear in one particular region {lire top or bottom half of the

display).

Each trial started with a white fixation crosslireimiddle of the screen for arandom
duration between 700ms and 1100ms. Then the sd#jlay appeared and stayed

on until the observer gave a response indicatieggdp position in the target bar.

the center of the screen for 500ms. Thereaftem#éxétrial started without a delay.
After each block of trials, observers received R accuracy feedback and could

resume the experiment at their discretion.

Each participant performed both the learning aredéist session, with a separation
of about 24 hours between the two sessions. Afierpdeting each of the sessions,

participants filled in a brief questionnaire, whishs intended to gage whether they

(frequency) distribution.

Analysis. d to assess effect
sizes. Apart from classical frequentist measuresrder to address issues raised by
cf. Open Science Collaboration, 2015), we further

report 95% highest posterior density (HDP) intesvé&ssentially a Bayesian

et al.,, 2006) for R (R Core Team, 2014); and weorepZS Bk, Bayes factors

(Rouder et al., 2009) with standard priors (i.ethwa scaling factor of 0.707),
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calculated using the BayesFactor package (MoreydRo& Jamil, 2014) for R, for

hypothesis-guided t-tests.

Results

To examine for carry-over of probability learninfieets from day 1 to day 2, and
specifically differential carry-over effects betwedhe same- and different-
dimension distractor groups, we assessed (i) thecéssful) establishment of the

probability-cueing effect for both same- and défet-dimension distractors in the

learning phase, and (ii) whether or not there wilsa area bias (i.e., probability-
cueing effect) during early blocks of the seconssgm (despite the fact that the
distractor distribution was now equal between thevipusly frequent and rare

areas).

The results areillustrated in Figure 2 for the sessions (panel A, learning session;
panel B, test session); each panel presents themedrrect RTs as a function of
the distractor condition (in frequent area vs.anerarea vs. absent) and distractor

type (same-dimension vs. different-dimension).

Prior to more hypothesis-driven analysis (usingdts; see below), we examined the
RT data by means of a repeated-measures ANOVAs thehfactors distractor
condition (frequent vs. rare vs. absent), targeiitpm (frequent distractor region
vs. rare distractor region), and session (trainmgest), separately for same- and
different-dimension distractors. For same-dimensaistractors, the ANOVA
revealed all main effects to be significant: distoa condition £(2, 44) = 116.34p

< .001, = .84), indicative of significant distractor interénce, and differential
interference dependent on the region in which tistrattor occurred; target
position (F(1, 22) = 5.69, p = .02€%= 0.21), due to slower RTs to targets in the

frequent as compared to the rare distractor regiod;session (F(1, 22) = 51.24, p
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< .001, = 0.7), reflecting faster responding in sessionhdnt in session 1.
Furthermore, the following interactions were sigrant: distractor condition x
target position (F(2, 44) = 10.24, p < .0@§,= 0.32); distractor condition x session
(F(2, 44) = 81.79, p < .0012= 0.7), with reduced distractor interference (and
equivalent interference between the two distracegions) in session 2 than in
session 1; target position x session (F(1, 22).84 < .001,%= 0.66), reflecting

a target position effect in session 1, but not,(he longer) in session 2; and (the
three-way interaction) distractor condition x tdrgesition x session (F(2, 44) =

8.87, p = .001£=0.29).

For different-dimension distractors, there wereo agynificant main effects of
distractor condition (F(2, 46) = 73.18, p < .0@g= 0.76) and session (F(1, 23) =
14.14, p = .0012 = 0.38), the distractor condition x session wgaificant (F(2,
46) = 18.11, p < .001[F = 0.44) as well as the interaction distractor ctiodi x
target position (F(2, 46) = 8.42, p = .00&= 0.27). Crucially, however, there were
no other reliable effects involving target positignain effect: F(1, 23) = 0, p = .947,
2= 0; interaction target position x session: F(1), 29.18, p = .672[£= 0.01;
three-way interaction distractor condition x targesition x session: F(2, 46) =

0.94, p = .4,[£=0.04).
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Figure 2 Reaction times as a function of the distractor condition (in frequenvaraarare area
vs. absent) and distractor type (same-dimension in gralifferent-dimension in white) for both

the learning session (A) and the test session (B) of Experiment 1.

Effects in the learning session: establishing therpbability-cueing effect.

To ascertain that distractors caused interferendeagorobability-cueing effect was
successfully established, we first examined fos #ffect pattern for the learning
session (in which there was a 90/10 distributioflso, we examined for the
presence (same-dimension condition) versus absduld&erent-dimension

condition) of a target position effect.

Same-dimension distractors. Same-dimension distractors caused considerable
interference: RTs were 92 ms slower when a distragas present (averaged across
trials with distractors in the frequent and rargioas) versus absent (717 ms vs.
625 ms}(22) = 10.6p < .001,d, = 2.21, 95% HPD [71 ms, 108 ms],BE 50 x 16,

In addition, there was a large probability-cueiffgat: RTs were 90 ms faster when

a distractor was presented in the frequent aregeoed to the rare area (707 ms
vs. 797 ms; t(22) = -10.83, p < .0QlL= 2.26, 95% HPD [-107 ms, -72 ms], BE

7.379 x 10). In line with this, distractor interference (ri@ to the distractor-
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absent baseline) was reduced for distractors irfrdggient rare area (81 ms; t(22)
=10.18, p <.001d, = 2.12, 95% HPD [64 ms, 96 ms], BE 1.25 x 10 compared
to distractors in the rare area (171 ms; t(22) £2,3 < .001d, = 2.71, 95% HPD
[140 ms, 198 ms], Bb= 1.012 x 1. Additionally, there was a significant target
location effect: targets were responded to slowethie frequent distractor region
compared to the rare region (687 ms vs. 646 m2) £23.39, p = .001,.0= 0.71,
95% HPD [13 ms, 61 ms], Bf= 30)2°

The same pattern was evident in the last blockhefttaining session, which,
arguably, provides the most appropriate refereeelition for examining for a
carry-over effect to the test session (see bel®¥ks were 189 ms faster when a
distractor was present in the frequent comparelddmare area (664 ms vs. 853 ms;
t(22) = -3.46, p = .001g, = 0.72, 95% HPD [-289 ms, -65 ms], BE 35), and
distractor interference was greatly reduced (thostdghsignificant) for distractors
in the frequent rare area (55 ms; t(22) = 6, p04,dz = 1.25, 95% HPD [35 ms, 72
ms], BRo = 4224) compared to distractors in the rare a2d4 (ns; t(22) = 4.2, p <
.001,d, = 0.88, 95% HPD [112 ms, 337 ms],:BE 86). Moreover, targets were
responded to slower in the frequent distractorargiompared to the rare region
(656 ms vs. 618 ms; t(22) = 3.43, p = .0815 0.72, 95% HPD [12 ms, 56 ms], BF
= 33).

Different-dimension distractors. Different-dimensions distractors, too, caused

general interference: RTs were slightly, but sigaifitly, slower overall on

% Note that the target-

intertrial and targete-distractor distance effects (see Supplement inie®aat al., 2018, for

details). Importantly, Sauter et al. (2018) showeat, in the same-dimension condition, the target
location effect survives the various correctionattimay be considered necessary for estimating the

larger set examined by Sauter et al., 2018; seafte 7) is not feasible as this would involve the
loss of too many data points for the condition véttistractor appearing in the rare region. For
the present purposes, it is sufficient to note thate is a significant (raw) target location efffiec
the same-dimension distractor condition, but ndewte of such an effect in the different-
dimension distractor conditionreplicating, in this subsample, the pattern tteatt&r et al. (2018)
established for the complete data set.
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distractor-present compared to distractor-abseéalstf617 ms vs. 602 ms; t(23) =
6.67, p <.001g, = 1.36, 95% HPD [9 ms, 19 ms], BE 42240). Further, different-
dimension distractors too led to location prob&pléarning: RTs were faster when
a distractor appeared in the frequent as comparédetrare area (615 ms vs. 636
ms; t(23) = -4.94, p < .001, dz = 1.01, 95% HPDO[#8s, -12 ms], B = 930
though, again, this effect (of 21 ms) was much @nahan that with same-
dimension distractors (90 ms). Accordingly, the distractor interference (with
reference to the distractor-absent baseline) wdsiaed for distractors in the
frequent area (13 ms; t(23) = 6.21, p < .@OF 1.27, 95% HPD [8 ms, 16 ms], BF
= 7802) compared to distractors in the rare aréar(8; t(23) = 6.64, p < .00d, =
1.36, 95% HPD [21 ms, 43 ms], BE 19880). Additionally, in contrast to the same-
dimension condition, there was no target locatifface rather, with differat-
dimension distractors, targets were responded t@lggfast in the frequent and
the rare distractor region (612 ms vs. 610 ms)t£28.23, p = .409, = 0.05, 95%
HPD [0 ms, 16 ms], B= 0.2583).

A similar pattern was also evident by the end (e tast block) of the training
session. RTs were 32 ms faster when a distractermpnesent in the frequent area
compared to the rare area (596 ms vs. 630 ms; {2322, p = .003], = 0.66, 95%
HPD [-52 ms, -10 ms], B&= 22). And while distractor interference (relatteethe
distractor-absent baseline) had been effectivelylistied for distractors in the
frequent area (4 ms; t(23) = 0.63, p = .584; 0.13, 95% HPD [-9 ms, 15 ms], BF
= 0.26), interference remained significant for distors in the rare area (38 ms;
t(23) = 2.96, p = .00d, = 0.6, 95% HPD [11 ms, 60 ms], BE 7). There was also
no target location effect: RTs were equally fastaets in the frequent and rare
distractor areas (596 ms vs. 593 ms; t(23) = 0.44,.838,d, = 0.09, 95% HPD [0

ms, 15 ms], Bk = 0.31)

We thus established that both types of distraagjerserated the crucial, expected

probability-cuing effect in the learning sessionthwa larger effect for same-
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compared to different-dimension distractors. Aduhiflly, distractor location
probability cueing was associated with a markeddtlocation effect in the same-
dimension distractor condition, but the absenceuch an effect in the different-
dimension condition. Note that this is a complegplication of the findings of

Sauter et al. (2018).

Distractor interference in the test session: is the carry-over of probability

cueing from the learning to the test session?

Recall that the probability distribution in the ttesession was changed (from
uneven, 90/10, in the learning session) to everd5(0for the two distractor
regions. Thus, given that the previously frequert the previously rare area were
now equally likely to contain a distractor, thereudd no longer be a benefit in
suppressing one half of the display more than thero Also, there cannot be any
renewed learning of the previous, uneven distriautiwhich might instead be
unlearned based on the sampling of the now evemilalision. Thus, given the
likelihood of unlearning (brought about by the cbed, even distribution), we
examined for carry-over by comparing performandevben the last block of trials
in the learning session, which can be taken tecefhaximum learning (see results
above), with the first block in the test sessioar{prmed at least 24 hours after the
last block of the training session!), which invavainimum unlearning. See Figure
3 for a depiction of the RT data (last block ofteag session and first block of test

session).

Same-dimension distractors. In the first block of the test session, a probapili
cueing effect was still evident: RTs were stilltéas by 29 ms, when a distractor was
presented in the (previously) frequent area conptwehe (previously) rare area
(728 msvs. 757 ms; t(22) = -2.63, p = .0f)8; 0.55, 95% HPD [-46 ms, -6 ms], BF
= 6.761). This goes along with the net distractaeiference effect (with reference

to the distractor-absent baseline) being still $endbr distractors in the frequent
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area (109 ms; t(22) = 8.45, p < .00l = 1.76, 95% HPD [79 ms, 131 ms], BE
5.723 x 10) compared to distractorsin the rare area (138({@2) = 10.45, p <.001,
d; = 2.18, 95% HPD [108 ms, 165 ms],:BE 1.978 x 10. There was also a small
numerical, though non-significant target-locatidfe& (676 vs. 665 ms; t(22) =
0.86, p = .200¢, = 0.18, 95% HPD [0 ms, 31 ms], BE 0.4803).

Different-dimension distractors. The probability-cueing effect was no longer
significant in the first block of the test sessitimat is, there was no longer an RT
advantage for distractors appearing in the (preshgufrequent versus the
(previously) rare area (607 ms vs. 615 ms; t(23).2, p = .12¢d, = 0.25, 95% HPD
[-19 ms, 0 ms], Bk = 0.71). This also means that the (significant) aistractor
interference effects were comparable between d@istra in the frequent area (27
ms; t(23) = 4.53, p < .00H; = 0.92, 95% HPD [14 ms, 38 ms], BE 187) and
distractors in the rare area (35 ms;t(23) = 52,@01,d, = 1.06, 95% HPD [20 ms,
47 ms], Bho = 833).
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Figure 3 Reaction times as a function of the distractor condition (absent vsefregrea vs. rare
area) for the last block of the learning session (light gray) anfitshelock of the test session

(dark gray) for same-dimension (top panel) and differentdsion distractors (bottom panel).

Distractor location probability cueing: learning and unlearning.

Figure 4 depicts the development of distractor plolity cueing over time in the
training (learning) and the test sessions (unleayine-learning); that is, the
probability-cueing effect (RT difference with diattors in rare minus frequent
area) is de

the effect across two consecutive trial blockssitmoth a more noisy, block-wise

developmental pattern. As can be seen, learningreaquite rapidly essentially

105



within the first epoch with both same- and different-dimension distrastor
Concerning unlearning, residual effects of the wwmewdistribution (during
learning) appears to reduce gradually, over thesmaf four to five epochs (960 to
1200 trials) with the even distribution, with samierension distractors. With
different-dimension distractors, by contrast, umd@ag of the old, uneven
distribution appears to happen relatively quicldithin one epoch (240 trials) the
most (recall that there was no significant carrgrosffect into the first block of the
test session, suggesting that adaptation to theevam distribution occurs within

120 trials).

27 Distractor position (frequent, rare region) x epoch ANOVAs failed to reveal thadtiter to be
significant, both with same-dimension distractors, F(5, 105y%,p = .125,[£= 0.08, and with
different-dimension distractors F(5, 115) = 2.02, p = .(#$%,0.08.
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Figure 4 Development of the probability cueing effect over the learning sesg@tow; uneven,
90/10, distractor distributigrand test session (green; even, 50/50, distractor distribution) for
same{A) and different dimensio(B) distractors. Error bars indicate within-subject SEM (Morey,

2008).

Discussion

Taken together, Experiment 1 replicated the findirog Sauter et al. (2018),
confirming differential distractor location probéty-cueing effects between same-
and different dimension distractors. With both type distractor, though, the
learning of the spatial distractor distribution oo®d rather rapidly, within the
first few hundred (if not tens) of trials, yieldirognly minor, if any, increases in the
cueing effect beyond the first epoch. This findafgapid spatial learning is in line
with other studies, such as Ferrante et al. (ZH8also Jiang, Swallow, Rosenbaum,
& Herzig, 2013), that used much sparser displagsspecific locations (e.g., four-
item displays with a single likely distractor loiwat) rather than probability cueing

of larger display regions.

Our main goal, however, was to test how persidtiease learning effects would be
when distractors in the second (test) session quelly likely to appear in the
previously frequent and the previously rare dispkgion (i.e., after the removal of
the biased distractor distribution) and whethes thould differ between the two
types of distractors. In agreement with Ferrantal.ef2018) who used a shape-
defined target singleton and a color-defined d@tasingleton Experiment 1
revealed near- stractor location cueing effect with
different-dimension distractors (orientation-definetarget, color-defined

distractor).
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For same-dimension distractéy$y contrast, the probability-cueing effect wak st
evident (significant) in the second session (2¢.hours plus after initial learning)
indicating relatively robust long-term learning thie likely distractor locations.
This effect was, however, significantly reducedatiee to the last block of the

training session, likely owing to the time elapsexi well as (potentially rapid)

induced probability-cueing effect remained for kgdst) one epoch of some 400
trials, indicating that some training is needeguocessfully adapt to (i.e., re-learn)

the new distribution for same-dimension distractors

The differential carry-over effect with same- vesslifferent-dimension distractors
isin line with our hypothesis: deeper learningwdifferent-dimension distractors,
which distract more and thus involve increaseduiarent of cognitive control to
mitigate the interference they cause (Liesefela.ef017). That is, there is a greater
incentive to retain the learnt suppression routivgsich then still tend to be
retrieved (invoked by aspects of the search displayen if the learnt distractor
distribution does not apply any longer (in Experirhé&: in the test session), and
unlearning takes several 100 (400+) trials to ad@pthe even distribution.
Different-dimension distractors, by contrast, aasier to deal with, as effective
routines (such as dimension-based suppression)mayee readily available.
Accordingly, there is a reduced need for long-teetention and/or fast, effectively

instantaneous, adaptation to the changed distobuti

Experiment 2

In Experiment 1, carry-over of probability cueimgrh the learning and to the test

session, conducted after a gap of at least 24 haasobserved only with same-

2 Note that Ferrante et al. (2018) did not examisarae-dimension distractor condition, so their
findings tell us nothing about unlearning in thasdition.
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dimension distractors in both sessions, but nothwiifferent-dimension
distractors. The latter result leaves it open whetlwith different-dimension
distractors, forgetting of the initially learnt, equal distractor distribution
occurred more or less immediately or whether iktadonger delay (of up to 24-
plus hours) for between initial learning and test forgetting to manifest.
Experiment 1 was designed to examine this by rugthe learning and test phases
consecutively on one and the same day, with obiyranute break in between. The
question, thus, was whether, with the immediatengea(from the uneven
distribution during learning) to the even distrilaunt during test, there would be
discernible carry-over of the initially learnt di&tution for some time (i.e.,
experimental blocks or epochs) before the cueifegteis effectively abolished by
the acquisition of the new distribution, and fomhmany epochs such a carry-over
effect could be demonstrated. Accordingly, Expenm2focused on the different-
dimension (distractor) condition. However, in orderestablish any differences
unlearning/relearning relative to the same-dimeamsimondition (for which
Experiment 1 had shown long-lasting and robustedfef the initial distribution,
even though this was no longer reinforced by tisgrdctor location probabilities in

the test session), we also included a same-dimermsindition in Experiment 2.

Methods

The design of Experiment was essentially the sasnta of Experiment 1, with
two exceptions. First, and most importantly, theak between the learning and
test phases was only 5 minutes. Second, to makexgeriment doable within one,
extended experimental session, we reduced the nuofb&cks per session (from
12 in Experiment 1) to 4 in Experiment 2. This agel to be justified given that
learning of the uneven distractor distribution wasy swift in the different-
dimension condition, occurring with the maximum iageeffect achieved within

two trial blocks (first epoch; see also Ferrantalgt2018; Jiang et al., 2013).
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Participants. 47 (25 female, 22 male) right-handed observerseatuited from the
LMU Munich subject pool, with a median age of 2@Gr(ge: 1839) years,
participated in Experiment 2 (24 participants wsime-dimension distractors; 23
participants with different-dimension distractors)l &f them reported normal or

correctedto-normal vision (including normal color vision) angave prior

Results

All analyses were analogous to those of Experinieifihe results are illustrated in
Figure 5 for the two sessions (panel A, leaningises panel B, test session); each
panel presents the median correct RTs as a funofitme distractor condition (in
frequent area vs. in rare area vs. absent) anchdist type (same-dimension vs.

different-dimension).

Figure 5 Reaction times as a function of the distractor condition (in frequentsréarare area
vs. absent) and distractor type (same-dimension in gralifferent-dimension in white) for both

the learning session (A) and the test session (B) of Experiment 2.
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As can be seen from Figure 5, the results l&arning sessions (with uneven
distractor distribution) perfectly replicated thag&xperiment 1: Same-dimension
distractors caused more interference overall thffarent-dimension distractors
(relative to the respective baseline: 39 ms vsmi8y Also, while there was a (learnt)
distractor location probability cueing effect inthalistractor conditions, this effect
was much more pronounced, by a factor of 5, withesalimension relative to
different-dimension distractors (same-dimensiorsirdctor in frequent vs. rare
area: 708 ms vs. 808 ms, t(23) = -6.65, p < .00%,1.36, 95% HPD [-128 ms, -65
ms], BRo = 40300; different-dimension: 643 vs. 665 ms, Y(221.98, p = .03¢, =
0.41, 95% HPD [-39 ms, -1 ms], BE 2.20). Note, that the net interference effect
for conditions with distractors in the frequent ar@elative to the baseline
conditions) were reliable both for the same-dimengB4-ms interference; 84 ms;
t(23) = 9.54, p <.00M, = 1.95, 95% HPD [65 ms, 102 ms], BE 6.254 x 1¢) and
for the different-dimension condition (28-ms inndnce; t(22) = 5.74, p < .004,,
=1.2,95% HPD [16 ms, 37 ms], BE 2410). Finally, there was a differential target
position effect between the two distractor condhip for same-dimension
distractors, responses were slower to targetsghiaared in the frequent distractor
area compared to targets in the rare area (70-ifesatice: 704 ms vs. 634 ms, t(23)
= 3.8, p <.001¢, = 0.78, 95% HPD [26 ms, 100 ms], BE 76), whereas there was
no such effect with different-dimension distract¢r&-ms difference: 629 ms vs.

630 ms, t(22) = -0.07, p = .52, = 0.01, 95% HPD [0 ms, 23 ms], BE 0.208).

For thetest session@ith even distractor distributions), the reswallso turned out
very similar to Experiment 1. Differential interéarce from distractors in the
(previously) frequent versus the rare region wal etident for the same-
dimension distractor condition (676 msvs. 707128) = -2.50, p =.01@, = 0.51,
95% HPD [-51 ms, -5 ms], BF= 5.39), but being completely abolished for the
different-dimension distractor condition (623 ms&24 ms, t(22) = -0.4, p = .347,

d, = 0.08, 95% HPD [-8 ms, -0 ms], BE 0.304). In other words, there was carry-
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over of the learnt distractor distribution from tlearning to the test session in the
same-dimension condition (despite the fact thahlbegions were equally likely to
contain a distractor in the test session), but aoryeover in the different-
dimension condition. Also, there remained a roltasget location effect (with
slower RTs to targets in the previously frequenttie rare distractor area) in the
same-dimension: 36-ms difference (653 ms vs. 61,4(®3) = 2.26, p = .014, =
0.46, 95% HPD [4 ms, 62 ms], BE 3.47), which compares with a 70-ms difference
in the learning session. In the different-dimenssondition, by contrast there was
no such effect (13ms difference, 606 ms vs. 619 ms, t(22) = -1.2%, 88,d, =
0.25, 95% HPD [0 ms, 16 ms], B= 0.11); recall that there was also no target
location effect in the learning sessioril{ms difference). This differential pattern
indicates that not only the distractor locationeetfwas carried over from the
learning to the test session in the same-dimenauition, but also, coupled with
this, the target position effect. (As there wadarget position effect in the learning
session of the different-dimension condition, nolseffect could be carried over

to the test session.)
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Figure 6.Reaction times as a function of the distractor condition (absent vseffiegpea vs. rare
area) for the last block of the learning session (light gray) anfirshelock of the test session

(dark gray) for same-dimension (top panel) and differenedsion distractors (bottom panel).
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Figure 7.Development of the probability cueing effect over the learning sessionwy8d10
distribution) and test session (green; 50/50 distribution) for safexnd different dimension (B)

distractors. Error bars indicate within-subject SEM (Morey, 2008).

Looking at the carry-over effects in an epoch-wisgnner (see Figure 7; see also
Figure 6 for a depiction of the carry-over effebetween the last block of the
learning session and the first block of the tessism), it appears that there was
relatively little unlearning of the initially acqued distractor distribution over time
(i.e., experience with the even distribution) irettest session with the same-
dimension condition: The carry-over effects w@Band 19 ms in the first and the

second epoch of the test session, respective @poch: 690 ms vs. 723 ms; t(23)
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= -2.66, p = .007d, = 0.54, 95% HPD [-53 ms, -7 ms], BE 7.315; second epoch,
670 ms vs. 690 ms; t(23) = -1.48, p = .0d65 0.3, 95% HPD [-39 ms, -0 ms], BF
=1.023).

In the different-dimension condition, there was a numerical, but non-significant,
probability cueing effect, of 11 ms, in the first epoch of the test session (621 ms
vs. 632 ms; t(22) = -1.65, p = .05¥%,= 0.34, 95% HPD [-21 ms, 0 ms], BE

1.317), and there was no evidence of any effect for the second epoch (626 ms vs.

622 ms; t(22) = 1.05, p = .848, = 0.22, 95% HPD [-6 ms, 0 ms], BF= 0.12.

Discussion

Thus, overall, Experiment 2 essentially replicaegeriment 1 in virtually all
respects. That is, even with an immediate swit@mfrthe learning (uneven
distractor distribution) to the test session (egi&tribution), there is a significant
carry-over effect of the learnt distractor disttilom (along with the associated
target location effect) only for the same-dimensmndition, but not for the
different dimension condition. In the latter, theechanisms underlying the
distractor suppression adapt more or less immdditiethe changed distractor
statistics. By contrast, although there is an efenoéunlearning (instigated by the
changed distractor distribution) in the same-dinn@m€ondition (the distractor
location effect is overall weaker in the test sessiompared to the learning session,
and there is some evidence of a decrease in teet @ftross blocks in the former
session), it is safe to conclude that it takesrsgéVeindred trials of exposure to the
new distribution for the distractor location cuegftgct to be completely abolished.
Across the whole test session in the same-dimensoition, the cueing effect
remained at 31 ms, which compares with ~20 mslfocks 1 to 4 in Experiment 1,
in which the test session was conducted at leakb24s after the learning session.

This suggests that there is actually very littleg&iting as a function of the time
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between learning and test (at least within a one-

largely attributable to unlearning by exposure bh@ hew statistical distractor
distribution. The fact that the initially acquiredeing effect is less robust in face of
the changed distribution (i.e., the effect dissggatnuch more rapidly) in the
different-dimension distractor condition providesrther evidence that the
underlying mechanism is (qualitatively) differendtih that in the same-dimension

condition.

Experiment 3

In Experiments 1 and 2, carry-over of probabilityemg from the learning and to
the test session was observed only with same-dimerisstractors, but not with
different-dimension distractors. Experiment 3 wasilar in design to Experiment
1 (with a 24-plus hour gap between the learning #mal test sessions), but it
examined for a new carry-over effect: participanexe presented with same-
dimension distractors in the learning session @@iktribution), followed by a
switch to different-dimension distractors in thetteession (50/50 distribution).
That is, the question was: would there also beyeaver of distractor location
probability learning from same- to different-dimersdistractors? As outlined in
the Introduction, the answer has implications ffeg ocus of the probability-cueing
effect in the same-dimension condition. Assumingf thhat is learnt in the same-
dimension condition is dimension-based suppressien stronger suppression of
any orientation contrast signals in the frequenttvs rare distractor region), we
would not expect a carry-over of probability cueiingm same-dimension (i.e.,
orientation-defined) distractors at learning tofetiént-dimension (i.e., color-
defined) distractors at test. Concretely, if papants learn to down-weight
orientation signals (more so signals in the frequempared to the rare distractor

area) in the learning session, this learnt weigktt should not modulate the
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weighting of distractors defined in a differentpmely, the color dimension in the
test session (because participants did not leadotin-weight color signals). By
contrast, carry-over would be expected if, with sadimension distractors at
learning, participants develop a strategy of sgaased suppression (stronger fo
the frequent vs. the rare region) operating atate of the search-guiding master
saliency map. That is, if, with same-dimension rdistors, participants learn to
(strongly) suppress any master map signal (in teguent distractor area), this
suppressive set which Experiment 1 revealed is carried over tol¢ast the first
block of) the test sessionshould (after the switch) also apply to signalgiaating
from a different dimension. The reason is that, tmeéhe summing of feature
contrast signals across dimensions, overall- -
location that differs (to a certain degree) frome tibjects in its surround, but they
do not indicate what constitutes the difference;ifistance, whether it is a color
difference (rather than an orientation differenaedl, if so, whether the odd-one-
-over of distractor probability
cueing from same-dimension to different-dimensiastrdctors would manifest
only if the locus of the learning is the overalliacy map (rather than learning

being implemented at a dimension-specific level).

Methods

Participants. 24 observers (9 female, 15 male; all right-han@dvith normal or
correctedto-normal vision, including normal color vision; madi age 28, range:

21 39, years) participated in this experiment. Alltbem gave prior informed

Apparatus,design, stimuliand procedure. The apparatus, the stimuli, and the design

and procedure were exactly the same as in Expetirhefhe only difference to
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Experiment 1 was that distractors were consistarigntation-defined in the first,
learning sessiorhprizontal[gray] bar, differing from the vertical [gray] netargets
in the same dimension as th&2° tilted [gray] target bar), and consistently color-
defined in the test sessiored [vertical] bar, differing from the gray [verticatjon-

targets in a different dimension to the [gray] fiéd target bar).

Results

Figure 8 Reaction times as a function of the distractor condition (in frequentvaraarare area
vs. absent) for both the learning session with same-dimensioactiiss, and the test session with
different dimension distractors. Error bars indicate the within-subjectasthedror of the mean

(Morey, 2008).

Figure 8 presents the median correct RTs as aiamof the distractor condition
(in frequent area vs. in rare area vs. absent)tHerlearning session with same-
dimension distractors and for the test session eiffarent-dimension distractors.

In thelearningsession, as in (the same-dimension conditionxgdeEment 1, there
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is both distractor interference (i.e., slower Rfisdistractor-present vs. distractor-
absent trials) and probability cueing (i.e., refelly faster RTs, and less interference,
with a distractor in the frequent vs. a distraabathe rare region). In thiest session
there too is evidence of distractor interferenad(ced relative to the learning
session, owing to the switch from same- to différéimension distractors);
however, across the whole test session, thereaist svidence of any distractor
location probability-cueing effect. [These diffete effects were confirmed by an
RT ANOVA, with the factors distractor condition (irequent area vs. in rare area
vs. absent) and session (learning vs. test), whiekides the two main effects,
revealed the interaction to be significant: distoacondition, F(2, 46) = 111.68, p
<.001, [£= 0.83; session, F(1, 23) = 25.31, p < .0085 0.52; interaction, F(2, 46)
= 70.86, p < .001[£ = 0.75.] Given the possibility of relatively rapichlearning of
the previous distractor distribution (after the mba from a 90/10 to a 50/50
distribution) and given the overall reduced intezfece with different-dimension
distractors, carry-over effects would be expectebd obtained only (if at all) early
during the test session. Given this, following tbenfirmation of distractor
interference and the establishment of probabilitgicg in the learning session, a

more detailed examination of the test sessionfegllis on the first block(s) only.

Distractor interference in the training session. A comparison of RTs on distractor-
present trials versus those on distractor-abseéls$ trevealed significant distractor
interference: RTs were 83 ms slower overall wheahistractor was present rather
than absent (702 ms vs. 619 ms; t(23) = 9.08,q0%,d, = 1.85, 95% HPD [62 ms,
101 ms], B = 5.36 x 16). Furthermore, the probability-cueing effect was
significant: RTs were 88 ms faster when a distnaatas presented in the frequent
area as compared to the rare area (707 ms vs. g9420) = -7.6, p < .00, =
1.66, 95% HPD [-109 ms, -60 ms], BE 1.258 x 16). Given the same distractor-
absent baseline, this also means that distracterference in the frequent area (75

ms; t(20) = 7.49, p <.00d; = 1.63, 95% HPD [50 ms, 93 ms], BE 51430) caused
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less interference than distractors in the rare €62 ms; t(20) = 9.51, p <.00d,

= 2.07, 95% HPD [126 ms, 193 ms],BE 1.679 x 16). Additionally, there was a
significant target location effect, with targetsinge responded to slower in the
frequent than in the rare region (668 ms vs. 645(83) = 2.79, p = .00%), = 0.57,
95% HPD [5 ms, 38 ms], Bi= 9.28).

Distractor interference in the test session. To examine whether traces of the
probability-cueing effect established in the leasession would still be left after
the change of the probability distribution (from/80 to 50/50) and the type of
distractor (from same- to different dimension) lre test session, we focused our
analysis on the first block of the second sess@se. Figure 9, which depicts the
transition between the last block of the learnirggs®n (same-dimension
distractors, 90/10 distribution) and the first Moof test session (different-
dimesnion distractors, 50/50 distribution). Agduohfferent-dimension) distractors
were found to generally cause interference: RTeweerall slower, by 47 ms, when
a distractor was present as compared to absenn{66&. 616 ms; t(23) = 7.2, p <
.001,d, = 1.47, 95% HPD [32 ms, 59 ms], BE 1.3 x 10). In addition, there was
still a significant probability-cueing effect: RTigere still faster, by 17 ms (654 ms
vs. 671 ms;t(23) =-2.00, p =.02R= 0.41, 95% HPD RP9ms, 0 ms], B = 2.265%°,
and distractor interference (relative to the distva-absent baseline) remained
reduced, when a distractor was presented in tige &t area compared to the rare
area (net interference frequent area: 38 ms; 283564, p < .001d, = 1.13, 95%
HPD [23 ms, 54 ms], BE= 1.80; net interference rare area: 55 ms; t(2B)15, p <
.001,d, = 1.46, 95% HPD [37 ms, 69 ms], BE 59). Additionally, there was a

significant target-location effect, 650 ms vs. 626 (t(23) = 1.73, p = .048, = 0.35,

291n case the Bayes factor, BE 2.265, might not be considered convincing, we calculated the
critical probability- cueing effect across all 12 blocks of the test sessidegihsf only the first
block). Including all blocks is conservative with regard to our hypathbecause the acquired
spatial suppression is unlearned over trials. Still, RTs were significantly f@ttetistractors
appearing in the frequent compared to the rare distractor area (606618 vss; t(23) = -3.4, p =
.001,d; = 0.69, 95% HPD [-9 ms, -2 ms], BF= 32).
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95% HPD [0 ms, 44 ms|, BF= 1.48), though not entirely convincing under

Bayesian scrutin$f.

Figure 9.Reaction times as a function of the distractor condition (absent vseffiegpea vs. rare
area) for the last block of the learning session (light gray) wittesdimension distractors and the

first block of the test session (dark gray) with different-dimendistractors.

Discussion

Thus, Experiment 3 demonstrates that a probalilitging effect established with

same-dimension distractors in the learning sessmwas carry over (after 24 plus
hours) to the test session with different-dimensilestractors. This was the case
even though distractors were equally likely to acou each of the previously

frequent and rare regions on the second day, thaibiservers could not have
learned the uneven distribution anew with differeithension distractors. We take
this to mean that a special space-based suppressairgy developed to deal with
same-dimension distractors (namely: suppressidhefrequent area at the level

of the master map) continues (at least initially)be applied even to different-

%With the changed (i.e., different-dimension) distior during the test session as well as the even
distractor distribution, unlearning of the cueirfig&t (acquired with same-dimension distractors)
occurred then quite rapidlgprobability cueing effect, or target location effagas no longer
discernible statistically from the second block @nels.
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dimension distractors, even though the latter et would, normally be dealt

with using a dimension-based suppression strategy.

General Discussion

The present results show that a distractor locaoabability-cueing effect
developed during a learning session carries ovex tiest session (even when the
latter is conducted some 24 hours after the legrmsigssion) only with same-
dimension distractors, but not with different-dinsem distractors (Experiments
1 and 2). Only for same-dimension distractors,rddor interference in the test
session remained reduced for the (previously) feequlistractor area, compared
to the (previously) rare distractor area, even giodistractors were distributed
evenly in the test sessiomaffording no opportunity for re-learning of thesprous
(uneven) distribution. However, even with same-digien distractors, the effect
was reduced in the first block of the test sessmmpared to the last block of the
training session, indicative of relatively fast eaining of the old (and new learning
of the changed) distribution, though it took sorB6 Blus trials (i.e., 4 plus epochs)
of practice with the changed distribution for tHfee to be completely unlearnt
(see Figure 4). We take this overall-pattern tadatk that practice with an uneven
distribution of same-dimension distractors (whicause a greater degree of
conflict) yields deeper and thus better consolidated and persisteptobability

learning effect than practice with different-dimmmsdistractors.

Given the differential manifestation of target-ltoa effects between same- and
different-dimension distractors (only the formeuf not the latter, were associated
with slowed responding to targets in the frequent@mpared to the rare region;
see also Sauter et al., 2018), we hypothesised ttteatiearning is not just of
differential depth, but also implemented at a défe level in the hierarchical

architecture of search guidance: the superordimagster map level (same-
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dimension distractors) as compared to the subotdindimensional level

(different-dimension distractors).

To test for this, Experiment 3 examined for carmgioof (acquired) probability
cueing from learning with same-dimension distrastto test with different-
dimension distractors. If, with same-dimension mdistors (with which there is
carry-over of leaning, as revealed by Experimentant 2), the learning is
implemented at the master map level, then it shgefteralize to a new situation
with a change in the type of distractor (to a défet dimension) in the test session
(Hypothesis A). The reason is that, due to the simgrof feature contrast signals
across dimensions, overall- - -

saliency signals only indicate that there is aneabpt a particular location that
differs (to a certain degree) from the objectst;isurround, without providing
information about the dimension or specific feafgy¢hat constitute the difference
(e.g., Toliner et al., 2014). Thus, if learnt suggsion continues to be applied to the
(previously) frequent distractor area at the lesethe master map, any signal
should be suppressed in this region whether iefmdd in the same-dimension as
the target (which was tested and confirmed in Bxpent 1) or in a different
dimension (which was examined in Experiment 3)eAiatively, if the learning is
dimension-specific (inhibiting feature contrast mats within the distractor
dimension, more strongly so in the frequent thartdre area), there should be no
carry-over when the dimension of the distractothef distractor is switched from
learning to test: if one learns to specifically pugss orientation-defined distractors,
one has not learnt to suppress color-defined diira (Hypothesis B). The results
of Experiment 3 are in line with Hypothesis 1: eettefined distractors continued
to cause less interference in the (previously)diegq distractor area when the initial
learning had occurred with same-dimension distrac{&xperiment 3), but not

when learning occurred with different-dimensiontdistors (Experiment 1).
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Two further questions arise from these findingsst-iwhy would suppression of
same-dimension distractors operate at the madiensgamap level, when it could,

in principle, be equally implemented at the dimensil level? (Recall that the latter
could also explain the target location effect véitime-dimension distractors, but it
fails to explain the carry-over effect from samedifferent dimension distractors)?
At present, only a speculative answer is possitfleSauter et al., 2018): Perhaps,
with same-dimension distractors, dimension-basqupiession is a less viable
strategy than master map suppression, as any daighting of the orientation

dimension would conflict with the task of findingd orientation-defined target.

There would thus be a goal conflict with observatshe same time, attempting to
keep any signals from the orientation dimensionafthe search and selectively
enhancing the target orientation. Operating sugwesat the master map level
would avoid such a goal conflict. Further workegjuired to examine the merits of
this reasoning, along with answering whether thellef suppression is a strategic

choice, or selected automatically based on comgs @trinsic to the stimuli.

A second question to be addressed concerns wh#tkeeaccount offered here
(essentially a further development of the dimensimghting account/DWA) is a
general one? That is, is the present pattern ectsfispecific to the stimuli used in
the present experiments (orientation-defined tacgeipled with an orientation-
defined vs. color-defined distractor), or doesehegralize to other dimensions of
target- and distractor-defining features? Whilephesent findings are in line with
the DWA (the only general account predicting a @isstion between same- and
different-dimension distractors!), further workfor instance, with luminance-
color-, and motion-defined targets and distracti@fsed in either the same or one
of the other dimensions is necessary for the DWA to be established asilg tr
general account of the asymmetry revealed in thsgut study. In particular, would
there be a location probability cueing effect, glavith a target-location effect, with

allkinds of same-dimension distractors, includiopr distractors (for which there

124



is good evidence of, at least a degree of, feabased suppressioff) And would
these effects transfer (after a distractor switchther (i.e., differen)-distractor
dimensions? Purpose-designed studies, with cadiirstimulus (saliency) settings

for the various dimensions involved, are requirednswer this question.

A final note concerns an intriguing pattern diséelnin the transition from an
uneven (last block of test session) to an eveniapdistractor distribution (first
block of test session), as the established digirdatation probability cueing effect
starts to become unlearnt: relative to the lastkolf learning session, RTs in firs
block of the test session exhibit an increase digitractors located in the frequent
region and a decrease, of a similar magnitude, digtractors located in the rare
regiorn’?. This pattern can be seen in both ExperimentsdlZa¢see Figures 3 and
6), with both types of distractor: With same-dimemsaistractors, RTs increased
by 58 ms (collapsed across Experiments 1 and 2hwadistractor appeared in the
(previously) frequent region (t(46) = -4.83, p €10d. = 0.7, 95% HPD [-79 ms, -
32 ms], B = 1283) and they decreased by 65 ms when a distrappeared in the
(previously) rare region; t(46) = 2.02, p = .04%=d.29, 95% HPD [-1 ms, 122 ms],

BF, = 1.018). With different-dimension distractorsetpattern is qualitatively

% There is good evidence that, within the color dirsien, salient singletons mismatching the
target color (i.e., same-dimension distractors) fadyo capture attention (contingent-capture
studies: e.g., Folk, Leber, & Egeth, 2002; Lienthruff, & Cornett, 2010; Lien, Ruthruff, &
Johnston, 2010; additional-singleton studies: &gspar & McDonald, 2014; Gaspar, Christie,
Prime, Jolicoeur, & McDonald, 2016). Even thoughrthare exceptions consistent with the DWA
(contingent-capture paradigm: Harris, Becker, & Regton, 2015; additional-singleton paradigm:
Feldmann-Wistefeld, Uengoer, & Schubg, 2015; Kdgsmann-Wistefeld, & Schubdg, 2017), on
thebalance of evidence, it would appear that the sesgion of color distractors does involve an
element of feature-based suppression (see alscelBgdeonard, & Luck, 2015, and Gaspelin &
Luck, 2017). This picture is actually consistenthyprevious studies of dimension weighting (with
combinations of color, motion, and orientation &g}, in which color proved to be special: it was
the only dimension producing significant featuredfic inter-trial priming and trial-wise pre-
cueing effects (e.g., Found & Miuller, 1996; Miligral., 2003; Weidner, Pollmann, Muller, & von
Cramon, 2002), though with dimension-based effeatsveighing feature-based effects even with
color targets.

%2 Given that, in addition to distractor distributi@arning, there are procedural learning effects
as evidenced by a general speed-up of RTs witleasing practice (seen in pure form on
distractor-absent trials)in the present task, the most apt comparison améxe for this pattern

is that between adjacent blocks, which minimizesithpact of general learning effects.
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similar, though not reliable (7-ms increase witkginent-region distractors, t(46) =
-0.89, p = .381; 9-ms decrease with rare-regiotraitors, t(46) = 0.72, p = .477)
which may simply be owing to the comparatively dmdiktractor location
probability cueing effect in this condition, makitlge differences hard to resolve
statistically. This pattern is theoretically intstiag because, at least with same-
dimension-distractors, it suggests a trade-off patsl inhibition between the
frequent and rare distractors regions: more intoibigpplied to the frequent region
is associated with less inhibition for the rareioag consistent with the idea that
there is a limited pool of inhibitory resourcesttisan be distributed, unevenly or
evenly, across the search array. Further workasseary to corroborate this pattern
and establish whether it holds not only for samraatision (inhibition at the level
of the overall-saliency map), but also for differehmension distractors

(dimension-based inhibition).

To sum up: The differential carry-over effects betw the distractor types (same-
dimension: orientation; different-dimension: col@)pports our hypothesis that
region-selective suppression of same-dimensiomratigirs is based on different
mechanisms than the suppression of different-dimoandistractors. In particular,
with same-dimension distractors, participants leswn(strongly) suppress any
signal at the level of the overall-saliency maptfie frequent distractor area) and
this suppressive set also applies to signals aigig from a different dimension
(after the switch from same-dimension to differeimiension distractors in
Experiment 3). By contrast, with different-dimensidistractors, the learning is
dimension-specific: suppressing any feature cohtigaals (exclusively) from the

distractor-defining dimension.

In conclusion, we take our findings to show thatewlthe probability cueing is
learnt through spatial suppression mechanisms@mtster saliency map, it is not
only more persistent over time but also more rasisto unfre-learning. This isin

contrast to the more shallow learning of differelension distractors, which is
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not implemented on the overall-saliency map, butrenfeature contrast maps for

specific dimensions.
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Abstract

It is well-established that, in visual pop-out sgrobservers can exploit uneven
distributions of item locations in order to fa@lie search performance: at locations
where they appear more often, targets are detéaster (f.e. Geng & Behrmann,
2002; 2005) and task-irrelevant distractors cabdteer suppressed (Goschy et al,
2014, Sauter et al, 2016; accepted). There are fila@sible mechanisms of how the
suppression of frequent distractors might work (i&fis & Luck, 2017)First-order
feature suppression modalssume that objects are suppressed on the basispé
feature values (e.g., e Second-order feature
suppression modelassume that objects are suppressed on the badocalf
discontinuities within feature dimensions, rathleart feature values (effectively
this means that distractor-defining dimensionssaigpressed, e.g., everything that
is colored differently than the search target gatppressed)Global-salience
suppression modessume that objects are not directly suppresssedban their
features or feature dimensions, but rather thesral/salience is reduced. Evidence
in favor of first-order feature suppression modslsisually limited to the color
domain (c.f. Gaspelin & Luck, 2017) and a geneadign of the results might not
be possible, as in the orientation dimension irtatercircumstances, there is no
distractor learning (Liesefeld et al., 2017) andewtthere is learning, there are
consistent target-location effects indicative aflgll-salience suppression (Sauter
& Miller, 2017). The purpose of the present studgthe generalization from the
orientation dimension to the luminance dimensiaartieipants had to search for
a luminance-defined singleton target in displays dontained luminance-defined
distractors (same-dimension) or orientation-defindistractors (different-
dimension). Similar to Sauter and colleagues (aetBpwe found massive target-
location effects for same-dimension (luminancejrditors, but not for different-

dimension (orientation) distractors. The resulesthrerefore only consistent with
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second-order feature suppression models, such asdimension-weighting

account.

Keywords: probability cueing, location suppression, lumingnsecond-order

feature suppression, dimension-weighting account

Introduction

It is well-established that, in visual pop-out sgrobservers can exploit uneven
distributions of target locations in order to faeile search performance:targets are
detected faster at locations where they appear nfrecgiently (Anderson &
Druker, 2010; Fecteau, Korjoukov, & Roelfsema, 2088ng & Behrmann, 2002;
2005) providing evidence for probability cueing effediGeng & Behrmann, 2002)
Likewise, task-irrelevant distractors can be bet@ppressed at locations where
they appear more often. In a typical probabilitying study (Goschy et al, 2014,
Sauter et al, 2016; accepted), the authors preserdightly tilted (i.e., orientation-
defined) gray target bar among vertical gray namgdts arranged around several
concentric circles. In half of the search arrays of the vertical non-targets was
red, serving as a highly salient color-defined rdistor. The distribution of the
distractor location was manipulated in such a wWeat distractors appeared with
90% probability in one half of the display (frequeregion) and with 10% in the
other (rare region). Goschy et al. (2014) foundtrdidor interference to be
significantly reduced when the distractor was pmése in the frequent compared
to the rare region. This finding suggests that aenot only exploit uneven spatial
distributions when they are directly related to tbgponse-relevant target but also

in shielding search from distracting influencesiréask-irrelevant non-targets.

In the literature, there is a growing debate abthd cognitive mechanism

underlying attentional capture of task-irrelevamtictor singletons. There are
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three plausible mechanisms (Gaspelin & Luck, 2CHirt-order feature suppression
modelsassume that objects are suppressed on the basismé feature values (e.g.,
Second-order feature suppression modsisime
that objects are suppressed on the basis of lasabwitinuities within feature
dimensions, rather than feature values (effectithig means that distractor-
defining dimensions are suppressed, e.g., everytimiat is colored differently than
the search target gets suppress€étbal-salience suppression modatsume that
objects are not directly suppressed based on tbatiures or feature dimensions,
but rather their overall salience is reduced. mdtudy of Gaspelin and Luck (2017),
observers had to look for color singletons in abg-@amplified attentional capture
paradigm. By varying the relative frequency of eadmgleton distractors, Gaspelin
and Luck (2017) found that distractor suppressias @nly possible when the color
values were predictable. This provides evidencdiffst-order feature suppression
models. However, Liesefeld et al. (2017) conducesimilar investigation in the
orientation dimension. While singleton target baese tilted 12° from the vertical,
distractors were always tilted 45°. The distractavere therefore perfectly
predictable. However, their results indicate thetractor suppression was not
possible as no learning (i.e., interference redmdtiook place over the course of
the experiment. Additionally, a study by Sauteale{accepted) directly contrasted
samedimension distractors (90° tilted from the verbiand different-dimension
distractors (red items instead of gray) when olmmrhad to search for an
orientation target (12° titled). The results reedah massive difference in distractor

interference effects between same- and differemedision distractors.

In the current literature, empirical evidence tisain favor of first-order feature
suppression models is overwhelmingly shown withrdesargets defined by shape
and distractors defined by color, or vice versay.(dheeuwes, 2006; Hickey,
McDonald, & Theeuwes, 2006; Kiss, Grubert, Petersgeiimer, 2012; Jannati,
Gaspar, & McDonald, 2013; Burra & Kerzel, 2013; Wykska & Schubo, 2011).
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Based on this literature, it would appear plausthiet an element of first-order
feature suppression is involved in reducing interiee from color distractors (see
also Gaspelin, Leonard, & Luck, 2015). In accordamgth this are studies in
conducted to examine the dimension-weighting actqan inclusive second-
order feature suppression model; e.g., Found & &{ill996) in which the color
dimension proved to be special. It was the onlya@iitbe tested dimensions (color,
motion, orientation) showing feature-specific inteal priming and trial-wise -
cueing effects (e.g., Muller et al., 2003; Weidrgsllmann, Miiller, & von Cramon,
2002). This argues in favor of the notion that albfeatures and feature dimensions
are equal (Nothdurft, 1993; Wolfe, Chun, & Friedmidil, 1995). Accordingly,
generalizing from one feature dimension to othespecially if the claims drive

from work on the color dimension, checonsidered to be problematic.

On this background, the purpose of the presentysiiad the generalization from
the results of Sauter et al. (accepted) from thiendation dimension to the
luminance dimension. Participants had to search fominance-defined singleton
target in displays that could luminance-definedrditors (same-dimension) or
orientation-defined distractors (different-dimemgioBased on the prior results
(which are in line with the dimension-weighting aaat), we expected distractor
interference to begreater for same-dimension distractors than for bfie-
dimension distractors; in addition, there wouldabiarget-location effect, (likely)
indicative of global salience-based suppressiansdme-dimension distractors but
not for different-dimension distractors. Restatexdir hypotheses were the

following:

1. Distractor interference (the difference in resporisees between
distractor-present and distractabsent trials) will be significantly
larger when the distractors are defined by lumirahan when they are

defined by orientation.
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2. Target-location effects (faster RTs for the rastrdictor region than for
the frequent distractor region) will be evident leminance distractors

only.

In order to test these hypotheses, we used esthetiiasame paradigm as Sauter
and colleagues (accepted), but instead of an atiemt-defined target, we
introduced a luminance-defined target and the (amdhl singleton) distractors
were either luminance-defined (same-dimension gyrauporientation-defined

(different-dimension group).

Methods

Participants

26° (12 female, 14 male) right-handed observers, withedian age of 26 (range:
18 40) years, participated in this experiment. Theyewveecruited from the
participant pool of the LMU Munich. All of them repted normal or correctetb-
normal vision (including normal color vision) andwg prior informed consent.

Theyrec

Setup

The experiment was conducted in a moderatelyditled. The search displays were

presented on a 1024px x 768px screen, at a refilaghof 60Hz. Stimuli were

generated with OpenSesame 3.1 (Math6t, Schreij,h&eliwes, 2012) using a

Psychopy backend (Pierce, 2007). Observers isshe@ tesponses using a
- or right-

hand index finger, respectively. The screen baakgdowas black. The stimulus

33 We recruited 41 subjects but excluded 15 of theesause they did not show a probability
cueing effect, thereby not interesting for our gs@s, which require successful learning.
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displays were similar to those used by Sauter.dtatepted). They (illustrated in
Figure 1) consisted of gray (RGB: 120, 120, 12E& {Xxy]: 46.6, 0.31, 0.32) vertical
non-target bars (0.25° of visual angle wide, 1t8§h), with their geometric centers
equidistantly arranged on three (imaginary) congertircles with radii of 2°, 4°,
and 6°, comprising 6, 12, and 18 bars, respectielyrther gray bar occupied the
position in the center of the three circles. Inrg\@ar, there was a gap 0.25° in size,
which was randomly located 0.25° from the top oe tiottom of the bar. The
singleton target (present on every trial) diffefiemin the non-targets by its unique
luminance: either it was slightly darker than tlemrtargets (RGB: 60, 60, 60; CIE
[Yxy]: 11.0, 0.31, 0.32) or slightly brighter thalme non-targets (RGB: 180, 180, 180;
CIE [Yxy]: 103.2, 0.31, 0.32).

A singleton distractor was present in 50% of thialdsr For one group of 14
participants, one of the (vertical) non-targets wgsemely bright (RGB: 240, 240,
240; CIE [Yxy]: 192.0, 0.31, 0.32) instead of gr@e., a distractor defined in the
same dimension as the target). This luminance ashimodulation ensured that
the target was less salient than the distractor (X.0 or 103.2 vs. Y = 192.0). For
the other group of 12 participants, one of the nanmgets was tilted by 90° from the
vertical (i.e. horizontal bar, a distractor definiada different dimension than the
luminance target). Targets and distractors wersgmted exclusively at positions
on the intermediate circle, to ensure consistestufee contrast to the non-targets

in their surround.

Design

The type of the singleton distractor (same vseddfit dimension) was introduced
as a between-subject factor. The distractor distram (90% vs. 10%) was also

manipulated between subjects. The distractor frequeliffered between the top

intermediate circle) and the bottom half
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position) (see Figure 1). For half of the participawithin each group, the top semi-
circle was the frequent and the bottom semi-citoéerare distractor area, and vice

versa for the other half (see below). Neither tierector nor the target could

unambiguously assigned to the frequent or rare area

The experiment consisted of a total 768 trials,spn¢ed in 8 blocks. When a
distractor was present, it appeared in the freqaeaa with a probability of 90%
and in the rare area with a probability of 10%. Térget appeared equally often in
both areas, with an equal probability for all 10sgible positions, but it never
occurred at the same position as the distractoe.orider of the trials within each

block was completely randomized.

Procedure

The experimental procedure was identical to Saateal. (accepted). Observers
were instructed, in writing and orally, that th&sk was to discern whethtre

target bar was interrupted (by a gap) at the totherbottom. If it was interrupted

on some trials, there would
be an extremely bright (same-dimension group) espectively, a horizontal
(different-dimension group) distractor bar whickeyrshould simply ignore as it
would be irrelevant to the task. They were notiinfed that the distractor was more

likely to appear in one particular region.

Each trial started with a gray fixation cross ie thiddle of the screen for a random
duration between 700ms and 1100ms. Then the sdasplay appeared and stayed

on until the observer gave a response indicatieggdp position in the target bar.

for 500ms. Thereafter, the next trial started witha delay. After each block of
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trials, observers received RT and accuracy feedlmo#t could resume the

experiment at their discretion.

After completing the experiment, participants @lim a brief questionnaire, which
was intended to gage whether they had any exiioitwledge of the singleton

nce and spatial (frequency) distribution.

Analysis

dto assess effect sizes. Apart
from classical frequentist measures, we furtheore®5% highest posterior density
(HDP) intervals (essentially a Bayesian equivaléat confidence intervals),
R (R Core Team,
2014); and we report JZS BMBayes factors (Rouder et al., 2009) with standard
priors, calculated using the BayesFactor package éyl& Rouder, 2015) for R, for

hypothesis-guided t-tests.

Results

Results are being reported along the lines of $aettal. (accepted) to allow for
direct comparison. First, the median correct RT4Y3errors excluded) were
subjected to repeated-measures ANOVAs with thefadistractor condition and

target location for both distractor types indivitiya

Our main prediction, deriving from the dimensionigitging account, was that the
mechanisms underlying the distractor probabilitging effect (evidenced by
reduced interference by distractors in the freqwsnthe rare area) would give rise
to impaired target processing only for targetsroadi within the same dimension

as, but not targets defined in a different dimengio, the distractor and only for
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same-dimension targets located in the frequent, rntt targets in the rare,

distractor region.

same-dimension distractor different-dimension distractor

Figure 2.Mean RTs (calculated across participafit$® H GRTB) @r targets appearing in the
frequent vs. rare distractor region as a functibthe distractor condition (distractor absent,
distractor in frequent region, distractor in raegion) for same-dimension distractors (horizontal,
orientation-defined; panel A) and different-dimemsdistractors (red, color-defined distractor;
panel B). Error bars depict the within-subject SEWbrey, 2008).

Effects for same-dimension distractors

For same-dimension distractors, the ANOVA revediedh main effects to be
significant (for visualization, see Figure 2): dasttor location, F(2, 26) = 16.97, p <
.001, = 0.57, and target location, F(1, 13) = 11.73, p065, > = 0.47; the

interaction was also significant, F(2, 26) = 424, .025, ,>= 0.25.

To ascertain that distractors generally causedference, we directly compared
RTs on distractor-present trials with those onrddior-absent trials: RTs were
overall slower when a distractor was present thhemnit was absent (769 ms vs.
750 ms; t(13) = 2.72, p = .009, dz = 0.73, 95% HBDns, 29 ms], Bb = 7). To
directly test for a probability-cueing effect, wentrasted the frequent versus rare
distractor-present conditions: RTs were indeecefasty 82 ms, when a distractor

was presented in the frequent area compared tratkeearea (760 ms vs. 842 ms),
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t(13) = -4.72, p <.001, dz = 1.26, 95% HPD [-11¢, i38 ms], BF10 = 171). Finally,
we examined the net distractor-interference efiith reference to distractor-
absent trials for the frequent and rare areas agggrWhile distractors in the rare
distractor caused significant interference (92 t(i3) = 5.63, p < .001, dz = 1.5,
95% HPD [49 ms, 121 ms], BF= 342), distractors in the frequent region did not
(10 ms; t(13) = 1.5, p = .157, dz = 0.4, 95% HPBs, 22.13 ms], BF= 0.6776).
The latter, null-effect suggests that shieldingedrch from interference was near-

perfect when distractors appeared in the likelyareg.

Next, we tested the target-location effect sepérater all three distractor
conditions. For all three distractor conditionssR® targets in the frequent region
were a substantially slower than to targets inrére region (absent distractors: -
156 ms; t(13) = -3.34, p = .005, dz = 0.89, 95% HFI26.3 ms, -32.14 ms], BF10 =
10; frequent distractors: -156 ms; t(13) = -3.4, ©05, dz = 0.91, 95% HPD [-232
ms, -45 ms], BF10 = 11; rare distractors: -2271fi8) = -3.28, p = .006, dz = 0.88,
95% HPD [-348 ms, -68 ms], BF10 = 8.726). Imporhgrthis effect was evident,
and strong, even when distractors were absentighahen there could not be any
distractor interferenc®.This pattern is (qualitatively) similar to thats#vved with
same-dimension distractors in the orientation disn@n It indicates that the
mechanism responsible for the suppression the émigdistractor area affects not

only the processing of the (same-dimension) disbrabut also that of the target.
Effects for different-dimension distractors

For different-dimension distractors, the ANOVA alstvealed a significant main

effect for distractor condition F(2, 22) = 18.31s 001, 2= 0.62), but (in contrast

% The significant interaction was due to the factttthe target-location effect was increased for the
rare distractor area. Given that the RT estimatéhis conditions are based on the smallest
number of observation (and thus likely associati the largest measurement error), we refrain
from interpreting this effect.
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to same-dimension distractors) not for target lloca{F(1, 11) = 0.91, p = .36,°=

0.08); the interaction was also not significan®2(FA2) = 0.53, p = .595,%= 0.05).

Distractors again caused general interference (reféact of distractor condition):
RTs were slower on distractor-present comparedstoattor-absent trials (776 ms
vs. 754 ms; t(11) = 3.55, p = .002, dz = 1.02, $5P® [6 ms, 33 ms], B = 22);
note that this interference effect was comparablenagnitude to that of same-
dimension distractors. Furthermore, a comparisotheffrequent versus the rare
distractor-present condition revealed RTs to be@tdfaster when a distractor was
presented in the frequent area compared to thearaee(772 ms vs. 816 ms), t(11)
=-4.79, p <.001, dz = 1.38, 95% HPD [-61.39 26,07 ms], BF10 = 130), though
this probability-cueing effect, was much smallemgrared to that with same-
dimension distractors (44 ms vs. 82 ms). Finakyeapected, the net distractor
interference effect with reference to distractoseait trials was greater for
distractors in the rare area (62 ms; t(11) = 19,001, dz = 1.5, 95% HPD [29 ms,
82 ms], BF10 = 112) than for distractors in thejfrent area (18 ms; t(11) = 3.14, p
=.009, dz = 0.91, 95% HPD [4 ms, 30 ms], BF10 = 6)

Concerning the (non-significant) target-locatiorfeef, RTs were numerically
somewhat slower to targets in the frequent veraxgets in the rare distractor area.
This effect was non-significant for all three dattor conditions (distractor absent:
-52 ms; t(11) = -0.99, p = .345, dz = 0.29, 95% HPIA1 ms, 63 ms], BF10 = 0.4322;
distractor in frequent area: -59 ms; t(11) = -193,.323, dz = 0.3, 95% HPD [-148
ms, 57 ms], BF10 = 0.4489); distractor in rare ar8a ms; t(11) = -0.75, p = .471,
dz = 0.22, 95% HPD [-123 ms, 62 ms], BF10 = 0.3645)
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Discussion

The present study revealed differences in the pitibacueing effect between
same- and different-dimension distractors whencéeag for a luminance target,
but also similarities. Both distractor types shagn#icant interference effects.
Interestingly, these interference effects aremilar magnitude, which was not the
case in the orientation dimension (Sauter et etepted). When searching for an
orientation target, the (same-dimension) orientatidistractor interfered
massively compared to the interference caused éydiiferent-dimension) color
distractor. One reason for this might lie in theesecy. In the present study, the
same-dimension distractor was darker than the mogets and thus less
discriminable from the black background, possiblyéring its saliency. However,
since saliency is hypothesized to reflect localuea contrast, rather than specific
feature value, of an item (Wolfe, 2006), this idikely the only explanation, as local
feature contrast incorporates targeitarget contrast on top of target-background
contrast. Independently of this, an issue with lonamce distractors is that
balancing four different luminance values (backgrdunontargets, target, and

same-dimension distractor) can be a challengirigttasptimize.

Unexpectedly, we found near-perfect learning inftequent distractor region for
same-dimension distractors: there was no significafference to the distractor-
absent condition anymore. This shows that it faat possible to nullify attentional
capture by distractors purely by applying top-dosearch strategies in the

present case, applying sufficient suppression ® ftequent distractor region
(though not to the rare region). This is at vareawith earlier, influential views that

this is impossible (Theeuwes, 2004).

In a similar fashion to the study by Sauter andeegues (accepted), we found
massive target-location effects for same-dimeng@iominance) distractors, but not

for different-dimension (orientation) distractorBhese differences cannot be
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explained by spatial versions of pure first-ordetéire suppression models or pure
global-salience based models: the former would ipt&a target-location effects at
all, whereas the latter would predict target-lomateffects for both distractor types.
The results are therefore only consistent with sdeorder feature suppression
models, such as the dimension-weighting accounthbse, the suppression of
feature dimensions (or feature discontinuitiesydsaarget processing unaffected
(i.e., without giving rise to a target-location esff) if and only if the target and
distractor are defined in different dimensionsthéy are defined in the same
dimension, in line with the dimension-weighting @acgat, there would be two
possible suppression mechanisms: dimension-baggoression or a fallback to
global-salience based suppression. Both of theategies can effectively suppress
the distractor. However, because neither stratagydifferentiate between target
and distractor, they both give rise to a targetpsepsion effect in the frequent

region, where the most suppression is applied.

In conclusion, while both distractor-type groupsowkd similar amounts of
learning of the spatial distractor distribution éxgdenced by reduced interference
from distractors that appeared in the frequentoaspared to the rare, distractor
area), same-dimension distractors caused masgigettmcation effects, while
different-dimension distractors did not. The resutierefore are interpreted in
favor of second-order feature suppression modets,the dimension-weighting
account. Importantly, the results show that fortijggrants who show location
probability learning, effects are qualitatively cparable across dimensions.
Therefore, observers might apply similar mechanigmssippress same-dimension
or different-dimension distractors irrespective tbe actual target dimension,
implying that the validity of second-order featuseppression models, like the
dimension-weighting account, could potentially bé&own across visual

dimensions.
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General Conclusi on

This thesis set out to investigate the mechanismaerlying the probability cueing

effect of distractor locations, that is, the agilib selectively, or better, suppress
distracting objects in a region where they appeastroften, compared to a region
where they appear only rarely. In the beginningjdestified three possible ways
in which such a spatially selective distractor sugsgion might be implemented in

the hierarchical organization of the visual system.

1. Global spatial suppression Spatial shielding might operate at the level of
the master saliency map. Reduced interference foistractors in a
frequent region is attributable to a global biakick inhibits the allocation
of attention to this region. Put differently, salay signals arising in this
region are globally down-regulated, that is, or matrongly down-

regulated compared to rare distractor regions.

2. Feature-based spatial suppressianSpatial shielding might operate at a
level below the master saliency map, where lo@dlfiee contrast signals are
computed. Distractor suppression could operate o feature maps,
down-modulating the distractor-defining featureegdtty, with stronger

down-modulation applied to the frequent as compéaodtie rare region.

3. Dimension-based spatial suppressiargpatial shielding might operate at a
level below the master saliency map, which intezggafeature-contrast
signals across the various stimulus dimensionscifsgaly, distractor
suppression would be realized by down-modulating strength of all
feature-contrast signals in the dimension in wtiloh distractor is singled
out from the non-targets, with stronger down-motlafaof signals in the
frequent versus the rare distractor region. Thikéspossibility envisioned

by the dimensionweighting account, and formed our working hypothesis.
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We tested this hypothesis by comparing and contrgqghe effects of same-
dimension versus different-dimension distractorsereral studies employing the
(distractor location) probability cueing paradi Region-
based shielding of visual search from salient didtiors: Target detection is impaired
with same- but not different-dimension distractre were the first to employ a
distractor location probability cueing paradigm lwiboth same-dimension and
different-dimension distractors, to directly examifor differential distractor
interference and target location effects. Participdnad to look for a slightly tilted
target bar among other vertical bars (orientatiefingd target). In half of the trials,
there was no distractor (distractor-absent triisjhe other half, one of the non-
targets was red (different-dimension distractotyween-participant variable) or
horizontal (same-dimension distractor, betweeniggent variable). The results
revealed massive distractor interference effectdersame-dimension distractor
condition, as compared to much smaller interferancehe different-dimension
distractor condition. In addition, a distractordtion probability cueing effect (i.e.,
reduced interference by distractors in the freqwsnthe rare region) was acquired
in both conditions, though this effect was much enonarked for the same-

dimension, as compared to the different-dimenstongdition.

Crucially, also, for same-dimension distractorsgéss were responded to slower
when they appeared in the frequent distractor regad this was the case even on
distractor-absent trials. By contrast, no suchdalgcation effect was evident for
different-dimension distractors. This qualitativéfetence between same- and
different-dimension distractors was reliably essdt#d in the present study (with
184 participants), furthering our understandinghad functional architecture of
search guidance: Given this pattern, it is mostigilde to conclude that same-
dimension distractors are largely suppressed bplzabspace-based mechanism
(operating at the level of the master saliency mdpere one region may be more

inhibited than another region), while suppressioh different-dimension
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distractors operates at a dimension-based leee| fgature-contrast signals from
the distractor-defining dimension are down-weightetl so contribute less to
master map activation, with stronger down-weightfgignals in the frequent vs.

the rare distractor region).

Assuming that same-

evidenced by 4 times higher interference) tharedgffit-dimension distractors, it is

Shiffrin, 1977; Shiffrin & Schneider, 1977) to esiah and optimize control
routines to minimize distractor interference. Wedicted this would ultimately
lead to deeper learning and better long-term meratwwhere distractors are likely

to appear with same-dimension as compared to difftedimension distractors.

Based on this conjecture, we examined whether éhening (of the distractor
distribution) is persistent over time and stillgemt after a 24h waiting periodin
Location probability cueing persists over time game-
dimension but not different-dimension distractfree study followed a two-stage
logic. First, it was designed to test the hypoth#sat distractor location probability
learning is ultimately better consolidated in loegm memory with same-

dimension distractors as compared to different-disien distractors. Participants

session, and we then assessed whether there wiildd a probability cueing effect

in the second session after 24 hours, in whichdikteactor distribution was even,
that is, distractors were equally likely to occarthe previously frequent and rare
regions (i.e., there could not be any reinforcentdnihe uneven distribution, only
unlearning of this distribution by the new, evestrctor statistics). The results
showed that the probability cueing effect refldotsg-term learning of the likely

distractor locations: the effect increased gragwdth time on the task and was still
evident in the second session (i.e., 24 hours afies initial learning) critically

however: only with same-dimension distractors (gigant cueing effect), but not

149



with different-dimension distractors (non-significaftect). This means that for
same-dimension distractors, the acquired suppressias (acquired under a
controlled mental set) is more deeply engrained tredcorresponding control
routines still tend to be retrieved even when théaially learned distractor
distribution does no longer apply (in the testisggs and unlearning takes several

hundred trials to adapt to the even distribution.

Second, we went on to examine whether whatevetegfyas acquired on day 1 to
deal with same-dimension distractors would be irethelent of the learned object
(i.e. the specific same-dimension distractor). Tlesults demonstrated that a
probability cueing effect established with same-giision distractors in the
learning session does carry over (after 24 plusr$)oto the test session with
different-dimension distractors. This carry-over across the thigbractor types
(same-dimension& different dimension) supports our working hypoibkdbat
region-selective suppression of same-dimensiomatisirs is based on a different
mechanism than the suppression of different-dinemsdistractors. We take this
carry-over effect to corroborate that with same-glrsion distractors, the acquired
distractor location probability cueing effect isplamented in terms of differential
suppression applied to the (frequent vs. rare regio the) master saliency map;
this implementation is not only more persistentrdiree (and so more resistant to
un- or re-learning), but also transfers to distrastbefined in another dimension
because the overall-saliency map is a supra-diroeaski(i.e., dimension- and
feature-blind) representation. This is in contrtasthe shallower learning of (the
distribution of) different-dimension distractorshieh is not implemented on the
overall-saliency map, but on the specific featunatcast maps for the (different)

distractor dimensions.

In the attentional-capture literature, evidencefavor of first-order feature
suppression models is usually limited to the calomain (c.f. Gaspelin & Luck,

2017). However, a generalization of this conclustonother stimulus domains
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might not be possible, as in the orientation din@amgsinder certain circumstances,
there is only very limited shielding from distracdceven after extensive practice
(Liesefeld et al., 2017), and when shielding roesinare acquired, there are
consistent target-location effects indicative aflgll-salience suppression (Sauter
et al, accepted Location probability cueing of
luminance distractor§vas to generalize this pattern from the orientatonension
to the luminance dimension. Among moderately brigbhtargets, participants
had to search for a slightly darker target. In lo&the trials, one of the nontargets
was a very bright distractor (same-dimension caad)jtor a horizontal distractor
(different-dimension distractor). Similar to ourvestigations in the orientation
dimension, we found massive target-location effebds same-dimension
(luminance) distractors, but not for different-dimseén (orientation) distractors.
The results are therefore more, or only, consisteth second-order feature
suppression models (rather than first-order sugmesmodels), such as the

dimension-weighting account.

In parallel to the previous investigations, we @et to elucidate the mechanisms
involved in the probability cueing effect by mearfigvent-related potential analysis
The location probability cueing effect is revealeg ERP

component§The N2pc is a negative-going deflection, at ab@00 ms after the
onset of the search display, which is elicited calateral to the target item
(predominantly) at posterior electrodes. It is ipteted as a common
neurophysiological marker for the allocation ofuas

(Luck and Hillyard, 1994). The related; s a positive-going deflection elicited
shortly after attention is allocated to a distragtdten seen instead of a distractor-
N2pc) and interpreted as evidence of active disbrasuppression (Hickey, Lollo,
& McDonald, 2009). Our (ERP) study (which focused same-dimension,
orientation-defined distractors only) revealed, swat unexpectedly, that

distractors in both the frequent and rare distractygions elicited an N2pc
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component, though only as a statistical trenddoe distractors. The interpretation
would be that attention was allocated to both feegu and rare-area distractors,
though more consistently to distractors in the drexgt region. Additionally, a
distractor-B was elicited for both frequent- and rare-arearddbrs, indicative of
active top-down suppression recruited to mitigagtrdctor interference in both
situations. The N2pc amplitude was also largerffequent-area (vs. rare-area)
distractors, which might indicate that a larger amiof attentional resources is
required to attend to the distractor stimulus ia tlgion that is suppressed at the
global-salience level. This pattern of results gafig argues in favor of a more
efficient distractor handling process (at the gledsience level) that can be

recruited for dealing with learned distractors.

In conclusion, the research conducted as parti®fhD project was a first look at
the mechanisms of learned distractor shielding isual search. The results
demonstrated that suppression of same-dimensiotradisrs differs from

suppression of different-dimension distractorshwsame-dimension distractors
defined in both the orientation dimension and thmihance dimension (vs.

different dimension-distractors defined in the coland, respectively, the

orientation dimension). Same-dimension distract@a/e rise to massive
interference, a conclusive target-location effeghsistent N2pc-components in the
frequent region, long-term persistence (over a @drtperiod), and carry-over to
another distractor-defining dimension, indicativé a strong component of

general, spatial suppression of the frequent vdtseisare distractor region, which
we propose operates at the level of the mastenggimap. For different-dimension
distractors, there was less interference overall, arget-location effect, and no
long-term persistence. While the probability-cuegifgct is also attributable to an
element of differential spatial suppression betwdmenfrequent and rare distractor

regions, it operates at a level prior to the seangiting master saliency map,
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selectively down-modulating feature-contrast signdtom the distractor

dimension so that they register only weakly onrttester saliency map.
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