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1 Summary 

While rabies virus (RABV) is the causative agent of the rabies disease that kills approximately 

59,000 people per year, RABV is also a superb tool to reveal neural circuits due to its exclusive 

spread to presynaptically connected neurons. Since the mechanism behind the anterograde 

transport of RABV to dendrites and the exclusive retrograde transsynaptic spread of RABV in the 

CNS are still poorly understood, this thesis aimed to provide an insight into the molecular 

mechanism of the neuronal virus transmission, which would have a tremendous impact in terms 

of improving RABV as a neuronal tracer, understanding the RABV pathology and developing 

therapeutic strategies to fight RABV infection. 

The first and overarching aim of this thesis was the introduction of a high quality, feeder-free mESC 

culture system, followed by the establishment of a highly reliable differentiation protocol of 

mESCs into a nearly homogenous neuronal cell population of glutamatergic pyramidal neurons, 

forming chemical synapses. Further, by generating a neuronal mix population, which contains a 

small portion of mESC-derived neurons that enable the primary infection of this neuron with an 

EnvA pseudotyped G-gene deficient RABV and the in situ trans-complementation of the G-gene 

deficient RABV, an in vitro model to investigate the mono- transsynaptic spread of RABV ΔG was 

established. 

Using the mESC-derived neurons and reverse genetics to generate a recombinant RABV encoding 

for a mutated late domain within the matrix protein (M) it was shown that the ESCRT system is 

involved in the neuronal transfer of RABV. Further, this thesis provides some evidence that 

34PPPEYVPL41 represents rather an extended motif of the PPEY late domain, than overlapping late 

domains consisting of PPEY and YVPL. In a second approach, which included recombinant RABVs 

encoding for dominant-negative syntaxins and the transduction of mESC-derived neurons with 

lentiviral vectors encoding for neurotoxin light chains a participation of SNARE proteins in the 

transsynaptic spread of RABV was illustrated. 

Since the retrograde axonal transport of RABV is G-dependent, an insertion site for external 

trafficking signals within G should be identified in order to change G trafficking and thereby the 

subcellular localization of G. While modifications of the ectodomain destroyed the functionality 

of G, the insertion of the kinesin light-chain binding sequence (KBS) downstream of the 

transmembrane domain resulted in infectious virus particles. Further, the recombinant SAD G-TM-

3xKBS-RT virus was able to infect and spread in mESC-derived neurons. Remarkably, G-TM-3xKBS-
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RT exhibited a homogeneous distribution, which differed clearly from granular, probably PSD-

associated distribution of G wildtype. Thus, G-TM-3xKBS-RT might be the first step to generate an 

redirected anterograde transsynaptic tracer. 

In order to evolve a less cytotoxic SAD virus for long-term studies of infected neurons, a persistent 

infection model for SAD in HEK293T cells, which usually succumb to viral infection, was generated. 

The following analysis of the virus pool produced by the surviving HEK293T cells by NGS revealed 

only six notable mutations that occur in different frequencies, reflecting the existence of a mixed 

virus population. Interestingly, two point mutations within the non-coding leader region were 

sufficient to turn SAD eGFP into a non-cytotoxic virus, not only in HEK293T cells but also in mESC-

derived neurons. 

In summary, this thesis provides an insight into the molecular mechanism behind the transsynaptic 

spread of RABV, creates first hints for generating an anterograde transsynaptic tracing model, and 

generates a less-cytotoxic RABV.  
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2 Introduction 

2.1 Rabies virus 

2.1.1 Rabies disease 

Numerous writings which date back until the antique describe dogs and humans suffering from 

rabies disease, most likely due to its disturbing symptoms, its long period of suffering and its 

fatality after the onset of symptoms (Wilkinson, 1977). Already Hippocrates described supposedly 

human rabies as he wrote, “persons in a frenzy drink very little, are disturbed and frightened, 

tremble at the least noise, or are seized by convulsion” (Jackson, 2013). Aristotle wrote that the 

disease drives the dog mad, is fatal to the afflicted dog itself and any animal, which was bitten by 

the dog. Wrongly, Aristotle wrote that humans are not affected by the disease (Jackson, 2013; 

Wilkinson, 1977). Celsus already introduced the term hydrophobia as a symptom of rabies in 

humans and he identified that the causative agent of rabies is in the saliva of the biting animal 

(Jackson, 2013).  

Nowadays it is well-known, that rabies is a viral zoonotic disease caused by RABV, which still kills 

approximately 59000 people per year according to the center of disease control and prevention 

(CDC.) With the exception of the Antarctica, rabies is distributed all over the world. Whereas all 

mammals are susceptible to RABV infection, Carnivora and Chiroptera represent the main 

reservoirs of the virus (reviewed in (Rupprecht et al., 2002)).  

In most cases, humans are infected with RABV through an animal bite or scratch, which leads to 

the exposure of muscle cells with the RABV containing saliva (Davis et al., 2015). After the 

exposure to RABV, rabies exhibits a mean incubation period of one up to two months. However, 

extreme incubation periods of as short as seven days (after a dog bite into the brachial plexus) up 

to more than six years (after ABLV infection) are documented (Hemachudha et al., 2002). The 

incubation period depends probably on the virus load, virus type and the site of infection. 

Nevertheless, incubation times of up to six years are still puzzling. 

The pre-exposure vaccination (an active immunization) or the post-exposure prophylaxis (PEP), 

which consists of wound cleansing, passive vaccination with human rabies immune globulin and 

active vaccination with cell culture rabies vaccine, protects efficiently against RABV (Manning et 

al., 2008). However, if RABV exposed humans are not vaccinated and the PEP is not carried out 

before the virus enters the central nervous system (CNS), which comes along with the onset of 
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symptoms, rabies proceeds to almost 100 % fatal (Koyuncu et al., 2013). Until now, only a single 

patient, which had neither a pre-exposure vaccination nor a PEP, survived a RABV infection after 

the onset of symptoms (Willoughby et al., 2005). 

According to the progression of the acute neurological phase, rabies is grouped into classic rabies 

and non-classic rabies. The classic human rabies is subdivided into furious (encephalitic) rabies 

and paralytic (dumb) rabies (Hemachudha et al., 2002). Two-thirds of the classic human rabies 

cases are furious rabies cases, which lead to death within seven days after the onset of symptoms. 

The symptoms of the furious rabies start with hyperactivity, which is intensified by thirst, fear, 

light, noise and other stimuli (Hemachudha et al., 2002). The disease progresses with the onset of 

fluctuating consciousness, phobic or inspiratory spasm (hydrophobia, aerophobia), and autonomic 

dysfunction (hypersalivation, sweating) (Hemachudha et al., 2002). The victims die because of 

cardiac arrest, circulatory insufficiency, or respiratory failure (Davis et al., 2015). The paralytic 

rabies kills the patients within 14 days on average (Hemachudha et al., 2002). It causes an 

ascending paralysis, followed by coma and death (Davis et al., 2015).  

The non-classic rabies occurs in patients, which were infected by bats or in patients, which were 

infected by a dog-bite in Thailand. The non-classic rabies has no characteristic features, however 

observed clinical features include neuropathic pain and radicular pain (reviewed in (Hemachudha 

et al., 2002)).  

2.1.2 Taxonomy of RABV 

The RABV genome is a single stranded, non-segmented, negative-sense ribonucleic acid (RNA) 

genome. RABV belongs to the order Mononegavirales, which is also designated as non-segmented 

negative strand RNA viruses (NNSV), and is a prototype of the Rhabdoviridae family. However, 

recently the family Rhabdoviridae was expanded by genera Dichorhavirus and Varicosavirus, 

which are bi-segmented plant viruses (Afonso et al., 2016; Shi et al., 2018). 

The order Mononegavirales is subdivided into the families Bornaviridae, Filoviridae, 

Mymonaviridae, Nyamiviridae, Paramyxoviridae, Pneumoviridae, and Rhabdoviridae 

(International Committee on Taxonomy of Viruses (ICTV) 28.11.2017). Since RABV virions have a 

bullet-/rod-shaped structure (Figure 1C) it is grouped into the family Rhabdoviridae, deduced from 

the greek word rhabdos, meaning rod (Wunner and Conzelmann, 2013).  

The family Rhabdoviridae is subdivided into 18 genera named Almendravirus, Curiovirus, 

Cytorhabdovirus, Dichorhavirus, Ephemerovirus, Hapavirus, Ledantevirus, Lyssavirus, 

Novirhabdovirus, Nucleorhabdovirus, Perhabdovirus, Sigmavirus, Sprivivirus, Sripuvirus, 

Tibrovirus, Tupavirus, Varicosavirus and Vesiculovirus (ICTV 28.11.2017). RABV is the prototype of 
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the genus Lyssavirus. This name has its origin in the greek mythology since Lyssa (meaning “rage”) 

was the goddess of madness (reviewed in (Wunner and Conzelmann, 2013)).  

Dependent on the passaging history, RABV strains are subdivided into street strains (wildtype) and 

fixed strains. Street strains are isolated directly out of infected animals or humans, whereas fixed 

strains were generated by passaging the viruses repeatedly in cell culture or in animals (Davis et 

al., 2015). 

In this thesis, all RABV constructs are based on the fixed Street Alabama Dufferin (SAD) L16 strain, 

which was the first negative-sensed RNA virus generated by reverse genetics. Indeed, SAD L16 

virus emerges from the cDNA encoding for SAD B19 (Schnell et al., 1994). SAD virus was isolated 

from a rabid dog, passaged on mouse brain cells, and adapted on BHK-21 cells. The passaging of 

SAD, which was initially passaged on mouse brain cells, on a cloned BSR cell line resulted in SAD 

B19, which is used as a live vaccine virus (Vos et al., 1999). Another fixed RABV strain, which was 

used in this work is CVS-N2c. CVS-N2c was generated by passaging the mouse adapted fixed strain 

CVS-24 (challenged virus standard) on a mouse neuroblastoma cell line. CVS-N2c exhibits a higher 

neurotropism as well as a reduced cytotoxicity compared to SAD B19 (Morimoto et al., 1998; 

Reardon et al., 2016). Another strain used in this thesis, is the street strain THA, which was isolated 

from a human bitten by a rabid dog, and passaged only for a few times on a mouse neuroblastoma 

cell line (Thongcharoen et al., 1990).  

2.1.3 Route of RABV infection 

In most of the human rabies cases, people are exposed to RABV by a bite or scratch of a rabid 

animal (Davis et al., 2015). Thereby, RABV containing saliva gets in contact with the peripheral 

muscle tissue. RABV can bind to the muscular nicotinic acetylcholin receptor (nAChR), which is 

located at the postsynaptic membrane of a neuron muscular junction (NMJ), and enter the muscle 

cell via a receptor-mediated endocytosis (Kalamida et al., 2007; Lafon, 2005). The presence of the 

nAChR at the postsynaptic membrane of the NMJ indicates that not motor neurons, but muscle 

cells are the primarily infected cells. Presumably, the infection of muscle cells enables the 

amplification of RABV. The additional replication cycle might increase the probability for a 

successful infection of the motor neuron (Lafon, 2005). After virus transcription and replication, 

RABV is released into the synaptic cleft of a NMJ, binds to the p75 nerve growth factor receptor 

(p75NTR) or the neuronal cell adhesion molecule (NCAM) on the surface of the presynaptic motor 

neuron and internalizes via receptor-mediated endocytosis into the first order neuron (Ugolini, 

2011). In the motor neuron, the entire enveloped virus travels within an endosomal vesicle along 

microtubules by a directed retrograde axonal transport to the cell body (Klingen et al., 2008). 

Remarkably, the p75NTR-dependent retrograde axonal transport of RABV loaded vesicles is faster 
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than the transport of a standard p75NTR-vesicle. Further, a p75NTR-knockdown in dorsal root 

ganglions suggested that the p75NTR-dependent RABV transport is faster and more directed than 

the p75NTR-independent axonal transport of RABV (Gluska et al., 2014).  

The acidification of the endosomal lumen causes the glycoprotein-dependent fusion of the viral 

membrane with the endosomal membrane and results in the release of the ribonucleoprotein 

(RNP) complex into the cytoplasm of the host cell (Gaudin, 2000; Roche and Gaudin, 2004). After 

the release of the RNP into the cytoplasm, viral transcription and replication takes place within 

spherical cytoplasmic inclusion bodies named Negri bodies (Lahaye et al., 2009; Nikolic et al., 

2017). Finally, new RABV particles assemble and spread to presynaptically connected neurons. 

The retrograde transport directs RABV directly to the CNS. After the invasion of the CNS, at late 

stage of disease, RABV spreads centrifugally from the CNS to extraneuronal organs like the heart 

or salivary glands (Jackson et al., 1999; Ugolini, 2011).  

2.1.4 Virion structure and protein function 

RABV virions have an average length of 180 nm, an average diameter of 75 nm and form a bullet-

shaped structure (Figure 1C). The genome is a single-stranded, non-segmented, negative-sense 

RNA genome. It is 12 kb long and has an unmodified 3´-hydroxyl end and a 5´-triphosphate end 

(Wunner and Conzelmann, 2013). The genome encodes for five monocistronic genes in the 

following order: nucleoprotein (N), phosphoprotein (P), matrix protein (M), glycoprotein (G) and 

the RNA-dependent RNA polymerase, also named large protein (L). The 3´-end of the viral genome 

is flanked by a non-coding leader (Le) RNA region and the 5´-end is flanked by a non-coding trailer 

(Tr) RNA region.  
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Figure 1: Organization of a Rabies virus particle. 

A, Schematic representation of the 12 kb long, negative-sense RNA genome with its triphosphorylated 5´-

end (adapted from (Ghanem and Conzelmann, 2016)). B, Schematic representation of the bullet-shaped 

RABV virion (adapted from dissertation of Marco Wachowius, 2016). C, SAD L16 virions were purified via 

sucrose cushion centrifugation and were subjected to uranyl acetate negative staining, followed by 

transmission electron microscopy. The pictures were taken together with Daniel Aberle in collaboration with 

Otto Beringhausen (LMU, Gene Center). 

 

The RABV genome organization 

The RABV genome order 3´-Le-N-P-M-G-L-Tr-5´ is conserved in the family Rhabdoviridae and in 

the order of Mononegavirales (reviewed in (Pfaller et al., 2015)). However, many rhabdoviruses 

and other virus families of the Mononegavirales can encode for accessory genes (Davis et al., 2015; 

Pfaller et al., 2015). Within the RABV genome, the five monocistronic genes are separated by 

conserved gene border signals, which encode for a transcription stop signal, a polyadenylation 

signal for the upstream gene, an intergenic sequence (IGS) and a transcription restart signal for 

the downstream gene (reviewed in (Wunner and Conzelmann, 2013)).  

 

The nucleoprotein (RABV N) 

The nucleoprotein is 450 amino acids long and has a molecular weight of about 57 kDa (Wunner 

and Conzelmann, 2013). RABV N enwraps the viral genome into a permanent, helical nucleocapsid 

and thereby shields the viral RNA from nucleases and the recognition by the immune system, e.g. 

the Toll-like receptors and RIG-I like receptors during the virus entry (Albertini et al., 2006). 

Additionally, exclusively the N-RNA complex serves as template for the viral transcription and 
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replication by the viral RNA-dependent-RNA polymerase, which is a complex of RABV L and its 

cofactor RABV P. Moreover, the amount of RABV N plays an important role in the transition from 

viral transcription to replication (reviewed in (Albertini et al., 2008)). 

 

The phosphoprotein (RABV P) 

The phosphoprotein is 297 amino acids in size, exhibits in SDS-PAGE a molecular weight of 37 kDa 

and fulfills multiple functions. First, RABV P is the noncatalytic cofactor of the RNA-dependent RNA 

Polymerase RABV L. Second, RABV P binds freshly synthesized RABV N (N0), prevents RABV N 

polymerization and unspecific binding to cellular RNA. Thus, RABV P enables the interaction of N0 

with the freshly transcribed viral RNA (reviewed in (Wunner and Conzelmann, 2013)). Third, RABV 

P suppresses innate immune signaling in infected cells by interfering with the induction of 

interferon and by the inhibition of interferon signaling. The current model is that RABV P blocks 

on the one hand the phosphorylation of the transcription factor IRF-3 by TBK1 and IKKε, thereby 

inhibiting the transcription of type I interferon genes (Brzozka et al., 2005; Marschalek et al., 

2009). On the other hand, RABV P blocks the interferon signaling by retaining the activated STATs 

in the cytoplasm. Thus, P inhibits the transcription of the antiviral interferon-stimulated genes 

(ISGs) (Brzozka et al., 2006). 

 

The large protein (RABV L) 

RABV L is 2127 amino acids long and exhibits a molecular weight of 244 kDa. Together with its 

noncatalytic cofactor P, RABV L forms the active RNA-dependent RNA polymerase, which is 

responsible for the viral transcription, the cotranscriptional modifications (5´-capping, 

methylation and 3´-polyadenylation of the mRNA) and the viral replication (reviewed in (Wunner 

and Conzelmann, 2013)). 

 

The matrix protein (RABV M) 

The matrix protein is 202 amino acids in size and has a molecular weight of 25 kDa. RABV M is a 

peripheral membrane protein, which is located under the lipid bilayer envelope and bridges G with 

the RNP complex. It is a multifunctional viral protein. Its tasks include the regulation of viral RNA 

synthesis, virus assembly, formation of the typical bullet-shape structure, virus budding and 

interaction with cellular proteins like Nedd4 (neuronal precursor cell-expressed developmentally 

gene 4) (Finke et al., 2003; Harty et al., 1999; Mebatsion et al., 1999). See below for a more 

detailed description of RABV M. 
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The glycoprotein (RABV G) 

The mature RABV G is 505 amino acids long, highly glycosylated and has a molecular weight of 65 

kDa in SDS-PAGE. RABV G is a type I transmembrane protein, which enables receptor binding and 

pH-dependent fusion of viral membrane with endosomal membrane. See below for a more 

detailed description of the functions of RABV G. 

2.1.5 RABV transcription and replication  

Negri bodies are spherical cytoplasmic inclusion bodies that resemble liquid organelles (Nikolic et 

al., 2017). They contain, next to cellular proteins, particularly the viral proteins N, P, L, all five viral 

messenger RNAs (mRNAs), genomic RNA and antigenomic RNA. The presence of these viral 

components indicate that Negri bodies represent the site of viral transcription and replication 

(Lahaye et al., 2009). 

As mentioned above, the RNP complex represents the template for viral transcription and 

replication. The 3´-end leader region represents the genomic promoter for the transcription of 

monocistronic mRNAs and the replication of the antigenome/complementary RNA (cRNA). 

However, in the antigenome the 3´-end trailer region acts as the antigenomic promoter that 

directs exclusively the replication of the full-length vRNA (reviewed in (Wunner and Conzelmann, 

2013)). The primary transcription starts by binding of the RNA-dependent RNA polymerase 

complex (L-P complex) to the genomic promoter, followed by the transcription of the 58 

nucleotides (nts) long, non-coding, 5´-triphosphorylated, non-polyadenylated leader RNA. 

Subsequently, the monocistronic mRNAs of N, P, M, G and L are transcribed into 5´-end capped 

and 3´-end polyadenylated mRNAs (reviewed in (Wunner and Conzelmann, 2013)). The 

transcription of the genes downstream of N (P, M, G and L) depend on the reinitiation of the 

transcriptase after the IGS at the transcription restart signal. The decreasing probability for the 

transcriptional reinitiation results in a gradient of viral mRNA transcripts, according to the gene 

order in the genome. The steepness in mRNA levels in RABV is more striking than in other 

Rhabdoviridae (e.g. vesicular stomatitis virus), since the length of IGS increase in RABV from a 

dinucleotide in between N-P, to pentanucleotides between P-M and M-G, up to 19-28 nucleotides 

between G-L. This causes a steeper mRNA gradient compared to VSV, which has only two 

nucleotides long IGSs in each gene border (reviewed in (Wunner and Conzelmann, 2013)). 
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Figure 2: Rabies virus replication cycle. 

The schematic representation of the RABV transcription and replication cycle was adapted from the 

dissertations of Alexander Ghanem (2012) and Marco Wachowius (2016). First, the non-segmented 

negative-sense genomic vRNA is transcribed. The transcription starts at the 3´-end of the vRNA and 

generates a non-coding, 5´-end triphosphorylated, non-polyadenylated leader RNA, followed by the 

transcription of five monocistronic 5´-end capped and 3´-end polyadenylated mRNAs. In between the viral 

genes are non-coding regions, which encode for a transcriptional stop signal, a polyadenylation signal, an 

IGS and a transcription restart signal. The decreasing chance of reinitiation of the L-P complex at the 

transcription restart signal, in combination with the increasing length of IGSs results in a transcriptional 

gradient. RABV N and RABV M concentrations regulate the transition from transcription to replication, 

which results in the antigenome (cRNA). The stronger antigenomic promoter in the trailer leads to a more 

efficient replication of the cRNA, leading to a vRNA/cRNA ratio of 49:1 that is indicated by the bold 

replication arrow. 

 

The transition from transcription to replication, in which the cis-acting elements in the gene 

borders must be skipped, is still topic of ongoing research and the gained knowledge bases 

especially on the vesicular stomatitis virus (VSV). The nucleoprotein concentration seems to play 

an important role in the regulation of the transition from transcription to replication. The binding 

of nucleoproteins to the nascent leader RNA results in a skipping of the transcriptional stop and 

start signals and an N-encapsidation of the nascent cRNA (Blumberg et al., 1981). Furthermore, 

the existence of a tripartite replicase complex is discussed, consisting of N, P and L, which initiates 

the replication at the genome 3´-end (Banerjee, 2008; Curran and Kolakofsky, 2008; Whelan, 

2008). Next to the nucleoprotein concentration, Finke and colleagues demonstrated that the 

increasing concentrations of matrix protein causes a downregulation of the transcription and 

promotes the viral replication (Finke et al., 2003). 
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In the cRNA, the antigenomic promoter is located within the trailer region. Interestingly, the 

antigenomic promoter exhibits a much stronger signal for replication than the genomic promoter 

of the vRNA. That leads to a ratio of genome to antigenome of 49:1 (Finke and Conzelmann, 1997). 

In turn, the vRNA is used for further transcription, replication, and virus assembly. In Figure 2, the 

RABV replication cycle is schematically illustrated. 

2.1.6 The envelope proteins 

The matrix protein and the glycoprotein form together with the host cell derived double 

membrane the envelope of RABV. Both proteins are multifunctional. In the following, the 

functions of M and G, especially concerning budding and transsynaptic spread, are explained in 

more detail.  

2.1.6.1 The matrix protein 

RABV M is 202 amino acids long and has a molecular weight of about 25 kDa. The matrix protein 

is located on the cytoplasmic site of the viral envelope (Mebatsion et al., 1999). For VSV M, the 

binding of the matrix protein to the lipid bilayer bases on electrostatic as well as hydrophobic 

interactions (Ye et al., 1994). In the case of RABV M, an additional palmitoylation anchor might 

contribute to the binding of M to the membrane (Gaudin et al., 1991).  

Cryo-electron microscopy studies of VSV virions have shown that the matrix protein forms a helical 

mesh, in which a matrix protein is located within a groove of the helical nucleocapsid. Inside of 

that groove, the matrix protein interacts with nucleoproteins of the upper and lower helical turn 

and thereby stabilizes the RNP. Additional homotypic interactions between the matrix protein and 

its lateral neighbor as well as with the matrix protein of the upper helical turn have stabilizing 

effects for the condensed RNP complex (Ge et al., 2010). Furthermore, RABV M interacts with the 

cytoplasmic tail of the glycoprotein and thus links the glycoprotein with the RNP complex 

(Mebatsion et al., 1999).  

As already mentioned above, RABV M regulates the transition of viral transcription to replication. 

Finke and colleagues showed that the transcription rate is enhanced in M gene-deletion mutants 

and that the transcription rate is regulated in an M dose-dependent manner (Finke et al., 2003). 

Furthermore, they identified aa R58 as a critical residue concerning the downregulation of viral 

transcription and activation of viral replication (Finke and Conzelmann, 2003). Remarkably, the 

ability of supporting virus assembly and budding is not impaired by a R58G mutation, indicating 

that the regulation of viral RNA synthesis and the support of virus assembly and budding are two 

independent functions of RABV M (Finke and Conzelmann, 2003).  
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Mebatsion and colleagues demonstrated that the deletion of the M gene (SAD ΔM) results in a 

500.000-fold reduction of virus titers in the supernatant of infected BSR cells. In addition, the few 

released SAD ΔM virions do not exhibit the normal bullet-shape structure, but a long rod-shape 

structure, which could be compensated by the trans-complementation with M, pointing out the 

important role of the matrix protein in the condensation of the RNP complex (Mebatsion et al., 

1999). Interestingly, the deletion of the glycoprotein (SAD ΔG) caused only a 30-fold reduction in 

virus titers and the virions exhibited the typical bullet-shape structure (Mebatsion et al., 1996). 

These findings emphasize the central role of RABV M in virus assembly and budding.  

With PPxY and YxxL, two late domain (L-domain) motifs could be identified in the matrix protein, 

which overlap as followed: 35PPEYVPL41 (Okumura and Harty, 2011). The PPxY motif interacts with 

the HECT E3 ubiquitin ligase Nedd4 and the YxxL motif usually mediates an interaction with the 

ESCRT-III associated adaptor protein ALIX (apoptosis-linked gene 2-interacting protein X) (Chen 

and Lamb, 2008). However, Wirblich et al. 2008 suggested that exclusively the PPxY motif plays a 

crucial role in the RABV release (Wirblich et al., 2008).  

2.1.6.2 The glycoprotein  

The RABV glycoprotein is translated as a 524 aa long precursor protein, which comprises a 19 aa 

long signal peptide (SP) that is cleaved off in the ER lumen. Further, the ectodomain is N-

glycosylated depending on the RABV strain on one up to three sites, followed by oligomerization 

to a homotrimer in the Golgi apparatus. The final mature glycoprotein is a type I transmembrane 

protein, consisting of an N-terminal, highly glycosylated ectodomain (aa 1 -439), a hydrophobic 22 

aa long transmembrane domain that anchors the trimeric spikes in the plasma membrane and 

after budding in the virion envelope, and a 44 aa long cytoplasmic domain (Conzelmann et al., 

1990; Tordo et al., 1986; Whitt et al., 1991; Wunner and Conzelmann, 2013). 

The correct folding and thereby the functionality and stability of the RABV G is dependent on the 

correct glycosylation. Especially the N-glycosylation of Asparagine 319, which is conserved among 

all Lyssaviruses is essential for correct folding and the transport to the plasma membrane (Wojczyk 

et al., 2005; Wunner and Conzelmann, 2013). 

During the entry process, three different RABV G conformations have been identified. First, RABV 

G binds to one of its cell receptors in its native pre-fusion conformation (pH 7). After receptor-

mediated endocytosis, the acidification in the early endosome leads to the transition of RABV G 

into the activated conformation, in which a hydrophobic part in the glycoprotein is able to interact 

with the host cell membrane. During the endosomal maturation, the endosome lumen gets more 

acidic causing the transition from the active conformation to the post-fusion conformation, 
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resulting in the G-mediated fusion of the virus membrane with the endosomal membrane. 

Remarkably, by incubation of the post-fusion state glycoprotein at a pH above 7, G can revert into 

the pre-fusion conformation of the glycoprotein. That is a unique feature of the rhabdoviral 

glycoproteins (reviewed (Albertini et al., 2012)). 

 

Ectodomain of RABV G 

As mentioned above, the N-glycosylated ectodomain is responsible for receptor binding, low pH-

dependent fusion of the viral membrane with the endosomal membrane, the retrograde axonal 

transport and the transsynaptic spread of RABV (Etessami et al., 2000; Mazarakis et al., 2001; 

Wunner and Conzelmann, 2013) 

Until now, the muscular nicotinic acetylcholine receptor (nAChR) (Lentz et al., 1983), the neural 

cell adhesion molecule (NCAM) (Thoulouze et al., 1998) and the p75 neurotrophin receptor 

(p75NTR) (Tuffereau et al., 1998) have been described as RABV receptors (Lafon 2005). However, 

the role of each single receptor in the RABV life cycle is still highly controversially discussed. The 

muscle-type nAChRs are located almost exclusively at the postsynaptic membrane of 

neuromuscular junctions (NMJ) (Kalamida et al., 2007; Lentz et al., 1983). However, in the brain 

the neuronal nAChRs are located in presynaptic, perisynaptic and postsynaptic areas (Kalamida et 

al., 2007). NCAM is concentrated in synaptic regions and at the NMJs (Lafon, 2005), where it is 

located at the presynaptic membrane as well as at postsynaptic membranes within junctional folds 

of NMJ (reviewed in (Lafon, 2005)). It plays a central role in the invasion of the nervous system 

through RABV. p75NTR is expressed in neuronal tissues, is located at the presynaptic membrane 

and is suggested to be involved in the trafficking of RABV (reviewed in (Lafon, 2005). Furthermore, 

highly sialylated gangliosides, phospholipids, glycolipids and glycoproteins might play a role in the 

attachment and entry of RABV in fibroblasts (Lafon, 2005; Superti et al., 1984; Superti et al., 1986; 

Wunner et al., 1984).  

The ectodomain comprises two major so called “antigenic sites”, which are the main targets for 

virus neutralizing antibodies. Antigenic site II is a discontinuous epitope that is composed out of 

two clusters. The first cluster is located between aa 34-42 and the second cluster between aa 198-

200 (Prehaud et al., 1988). Antigenic site III is a continuous epitope, which is located between aa 

330 and aa 338 (Seif et al., 1985). Interestingly, substitution experiments have shown that R333 

of the antigenic site III is responsible for the pathogenicity of RABV (Coulon et al., 1998; Seif et al., 

1985). Another noteworthy prominent site in the RABV G is the nAChR binding site. The nAChR 

binding site was identified with help of an alignment with snake venom curaremimetic 

neurotoxins - a potent nAChR antagonist – and an antagonist assay of the binding of α-

bungarotoxin (a snake venom neurotoxin) to nAChR. The 29-mer of RABV G (aa 175- 203) inhibits 
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competitively the binding of α-bungarotoxin to nAChR and therefore might represent the nAChR 

binding site of RABV G (Lentz, 1990; Lentz et al., 1983; Lentz et al., 1987; Lentz et al., 1984)  

 

Transmembrane domain and C-tail of RABV G 

The 22 aa long hydrophobic, single alpha-helical transmembrane (TM) domain contains a 

palmitoylation site at Cys 461 that most likely stabilizes the trimeric anchor. It is also discussed 

that the palmitic acid might support virus budding by enabling the interaction of the C-tail with 

the matrix protein (reviewed in (Wunner and Conzelmann, 2013)). 

The C-terminal, cytoplasmic domain (C-tail) interacts with the M mesh and supports the virion 

assembly (Mebatsion et al., 1999). Nevertheless, Mebatsion et al. demonstrated that a 

recombinant virus lacking the glycoprotein C-tail was still able to spread (Mebatsion et al., 1996). 

However, the C-tail contains a specific signal that is crucial for efficient G-incorporation and 

therefore used for pseudotyping of RABV with chimeric glycoproteins e.g. HIV-1 Env with RABV C-

tail (Mebatsion and Conzelmann, 1996).  

2.1.7 Retrograde axonal transport, transsynaptic spread and monosynaptic tracing 

of RABV  

The first hint for a microtubule dependent axonal transport of RABV was the observation that 

colchicine blocks the axonal transport of RABV (Ceccaldi et al., 1989). Interestingly, a direct 

interaction of RABV P and LC8 dynein light chain– a component of the dynein motor protein 

complex, which moves along microtubules to the minus end – was detected (Raux et al., 2000). 

However, closer examinations revealed that the deletion of the LC8 binding site in the 

phosphoprotein had no effect on retrograde axonal transport of the virus, rather on attenuation 

of primary transcription and replication in neurons (Mebatsion, 2001; Tan et al., 2007). 

Pseudotyping of lentiviral vectors with RABV G resulted in a retrograde axonal transport of the 

lentiviral vectors, demonstrating that RABV G is responsible and sufficient for the retrograde 

axonal transport (Mazarakis et al., 2001). Further analyses showed that the complete RABV 

particle is transported within an endosomal vesicle along microtubules in the retrograde direction, 

although this does not exclude the transport of single viral components along the axon (Klingen 

et al., 2008).  

Next to the active axonal transport, the glycoprotein is essential for the transsynaptic spread of 

RABV, which occurs exclusively at chemical synapses and not at electrical synapses via gap 

junctions (Ugolini, 2011). However, the exact molecular mechanism of the transsynaptic spread 

of RABV is still puzzling. 
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The specific unidirectional retrograde transsynaptic spread of RABV via exclusively chemical 

synapses make RABV to an ideal tool for neuronal tracing.  

The major problem of the usage of non-modified RABV as a transsynaptic tracer is its capability of 

unlimited transsynaptic spread (Ghanem and Conzelmann, 2016).  

In 2007 Wickersham and colleagues established a system for mono-transsynaptic (also termed 

monosynaptic) tracing, which has become the gold standard for mapping direct synaptic 

connections. The system is based on an EnvA pseudotyped G gene-deficient RABV virus and a 

starter cell that expresses the EnvA receptor TVA (tumor virus A), the RABV glycoprotein and the 

red fluorescent protein (DsRed2) (Wickersham et al., 2007b). EnvA is the glycoprotein of the avian 

sarcoma leucosis virus (ASLV) that infects avian cells via its receptor TVA. Pseudotyping of SAD ΔG 

eGFP (EnvA) guarantees the specific targeting of the TVA-expressing mammalian neuronal starter 

cells, as TVA is naturally not expressed in mammals (Wickersham et al., 2007b). After the primary 

infection, the starter neuron expresses next to DsRed2 also the virus encoded eGFP, which enables 

an identification of the starter cell. The G gene-deficient virus is trans-complemented within the 

starter cell and infects presynaptically connected neurons of the starter cell. The monosynaptically 

connected neurons can be identified by the eGFP fluorescence and the absence of the DsRed2 

fluorescence. Since the secondary infected neurons do not express the glycoprotein, which is 

essential for the transsynaptic spread of SAD ΔG eGFP, no further round of transsynaptic spread 

occurs, resulting in a retrograde monosynaptic tracing system (Wickersham et al., 2007b) 

(reviewed in (Ghanem and Conzelmann, 2016)). 
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2.2 Membrane scission and fusion machineries 

2.2.1 The ESCRT machinery 

The endosomal sorting complex required for transport (ESCRT) complex regulates budding events 

away from the cytoplasm. Its most prominent functions are in the biogenesis of multivesicular 

bodies (MVBs), the cell abscission during cytokinesis and the budding of enveloped viruses like 

HIV-1 (Hurley, 2015). The ESCRT machinery, which is responsible for the MVB biogenesis is 

composed of the peripheral membrane protein complexes ESCRT-0,-I, -II and –III, ALIX and the 

AAA+ ATPase vacuolar protein-sorting associated protein 4 (VPS4) (reviewed in (Hurley and 

Hanson, 2010)).  

ESCRT-0 is responsible for the clustering of ubiquitinated cargos, ESCRT-I and ESCRT-II are 

responsible for budding (meaning vesicle is still attached to the membrane) and ESCRT-III is 

essential for membrane scission (reviewed in (Hurley and Hanson, 2010)). 

During MVB biogenesis the heterotetramers ESCRT-0, ESCRT-I and ESCRT-II bind 

monoubiquitinated membrane proteins at the endosomal membrane. ESCRT-I and ESCRT-II form 

a bud neck, followed by recruitment of ESCRT-III. ESCRT-III in turn recruits deubiquitinases and 

catalyzes the scission of the vesicle (reviewed in (Hurley and Hanson, 2010; Schmidt and Teis, 

2012)). Additionally, ESCRT-III recruits VPS4, which disassembles the ESCRT-III complex by ATP 

hydrolysis, releases ESCRT subunits into the cytoplasm, and thereby recovers the ESCRT machinery 

for further budding and scission events (Hurley and Hanson, 2010).  
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Figure 3: The ESCRT machinery 

The illustration above was adapted form (Bieniasz, 2006; Chen and Lamb, 2008) and the dissertation of 

Anika Kern (2011). Schematic representation of the ESCRT components, which are involved in the MVB 

biogenesis and which are hijacked by the late domain of multiple enveloped viruses. Grey arrows indicate 

interactions of ESCRT components, green arrows indicate the interaction between the respective late 

domain and its ESCRT component, and black arrows indicate the interaction of ubiquitinated cargos and the 

ESCRT machinery. See text above for a detailed description of the illustration. 

 

Interestingly, only for the MVB formation all five ESCRT complexes are necessary, while for the 

separation of two daughter cells or the egress of HIV ESCRT-I, ESCRT-III, VPS4 and ALIX are 

sufficient (Hurley and Hanson, 2010). 

As already mentioned, many enveloped viruses use the ESCRT machinery for viral budding. It was 

shown that four peptide motifs (P(S/T)AP, YP(x)nL, PPxY and FPIV) can mediate the interaction with 

specific components of the ESCRT machinery and thereby support the ESCRT-dependent virus 

budding (Figure 3). As these motifs play a role in the late stage of the virus life cycle, they are 

named late (L) domains (reviewed in (Chen and Lamb, 2008; Freed, 2002; Votteler and Sundquist, 

2013)). Interestingly, some viruses like EBOV encode for overlapping late domains (PTAPPEY) 

(Chen and Lamb, 2008). It is also suggested that RABV with PPEYVPL encodes for an overlapping 

late domain, which is composed of PPxY that binds Nedd4 and YxxL that binds ALIX (Okumura and 

Harty, 2011). Another interesting feature of late domains is that some of them are exchangeable. 

Parent et al. demonstrated that the late domains of the retroviruses RSV and HIV are exchangeable 

(Parent et al., 1995).  
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The late domain PTAP of HIV-1 is located in the p6 region of the precursor polyprotein Gag 

(Gottlinger et al., 1991; Huang et al., 1995). It was shown that PTAP binds Tsg101 (a subunit of 

ESCRT-I), thereby recruits ESCRT-I, ESCRT-III and VPS4 to the site of viral budding at the plasma 

membrane, followed by the release of the HIV virions (Pornillos et al., 2003) (reviewed in (Chen 

and Lamb, 2008; Votteler and Sundquist, 2013). The tetrapeptide FPIV was identified in the matrix 

protein of the parainfluenza virus-5. It was demonstrated that FPIV can replace PTAP in HIV-1 

(Schmitt et al., 2005). However, the cellular interaction partner of FPIV motif is unknown (Chen 

and Lamb, 2008). The YP(x)nL motif was identified by Puffer and colleagues in the Gag p9 region 

of the equine infectious anemia virus (EIAV), which is the only lentivirus that does not contain the 

P(S/T)AP motif (Puffer et al., 1997; Strack et al., 2003). YP(x)nL binds ALIX/AIP1, which in turn 

interacts with Tsg101 (ESCRT-I subunit) and CHMP4 (ESCRT-III subunit) and thereby enables the 

EIAV budding (Strack et al., 2003). The PPxY late domain was first described in the Gag p2 region 

of the rous sarcoma virus (RSV) (Xiang et al., 1996). PPxY interacts with the membrane-localized 

Nedd4, a HECT E3 ubiquitin ligase. Nedd4 ubiquitinates cargo proteins and thereby directs them 

to the MVB sorting pathway (Sette et al., 2010). The binding of Nedd4 to the viral matrix protein 

via the PPxY late domain, causes the mono-ubiquitination of the viral matrix proteins, as well as 

the recruitment of the ESCRT machinery and the virus release (Han et al., 2014; Harty et al., 2001). 

Like the majority of the Retroviridae, also matrix proteins of the Filoviridae and Rhabdoviridae 

contain the PPxY late domain. Interestingly, the EBOV VP40 matrix protein contains overlapping 

late domain sequences, consisting of PTAP and PPxY (PTAPPxY). In 2004, Irie and colleagues 

demonstrated that the VSV (PPPY) late domain can be replaced by the overlapping EBOV late 

domains (PTAPPEY), resulting in an 11-fold higher budding of VSV virus-like particles (VLPs), 

indicating that L domains are exchangeable in terms of the efficiency to hijack the cellular ESCRT 

machinery (Irie et al., 2004). The knockdown of Tsg101 and the overexpression of a dominant-

negative VPS4A, which does not bind and does not hydrolyze ATP, reduced the budding efficiency 

of VSV VLPs with the EBOV late domain. However, neither the knockdown of Tsg101 nor the 

overexpression of the dominant-negative VPS4A resulted in a reduction of VSV VLPs with its 

natural PPxY late domain (Irie et al., 2004). 

In contrast, Kielian and colleagues suggested that dominant-negative VPS4, in this approach 

expressed by an inducible cell line, inhibits the viral budding of the VSV (30-fold). Additionally, 

they showed that the proteasome inhibitor MG-132 that decreases the level of free ubiquitin in 

the cell causes a 300-fold reduced budding of VSV, which indicates that VSV buds in an ubiquitin-

dependent way (Taylor et al., 2007). The effect of MG-132 is in agreement with previous 

observations by Harty et. al., who also detected a 20 –fold reduction of VSV titers and a 16-fold 

reduction of RABV viral titers after MG-132 treatment (Harty et al., 2001).  
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RABV contains an overlapping late domain near the N-terminus, which is composed of the PPxY 

(interacts with Nedd4) motif and the YxxL (interacts with ALIX/AP1) motif. The entire overlapping 

late domain is the heptapeptide 35PPEYVPL41. Wirblich and colleagues demonstrated that aa P35 

is the most important residue for the late domain activity since mutation of this residue caused a 

nearly 100-fold reduction in infectious viral titers, whereas the point mutations of P36, Y38, L41A, 

and the mutations of all four aa in one construct caused at the most a 10-fold reduction. 

Additionally, these data point out that the YxxL motif has no beneficial effect for RABV budding 

(Wirblich et al., 2008). In summary, regardless of the conflicting findings of Harty and Kilian with 

respect to the participation of VPS4 in RABV budding, Wirblich demonstrated an important role of 

the PPEY motif in RABV budding. 

2.2.2 SNARE proteins 

Cellular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins 

are essential for the attachment and fusion of vesicles in general. In neurons, SNARE proteins are 

essential for the presynaptic vesicle fusion and therewith e.g. the neurotransmitter release as well 

as postsynaptic vesicle fusion, which is important for the postsynaptic plasticity (Harris et al., 2016; 

Jurado et al., 2013). 

Until now, the human SNARE protein superfamily consists of 38 members (Hong and Lev, 2014). 

Interestingly, 31 out of the 38 SNARE proteins have a C-terminal transmembrane domain, while 

the remaining SNARE proteins are located to the membrane by a palmitoylation (SNAP25, Snap23, 

Stx9/19 and Stx11), prenylation (YKT6), or via interactions with other membrane bound SNARE 

proteins (SNAP29, SNAP47) (Hong, 2005; Hong and Lev, 2014). However, all SNARE proteins 

contain a 60-70 aa long, coiled-coil SNARE motif (Lou and Shin, 2016). A SNARE complex is 

composed of four SNARE motifs, which assemble to a four-helix bundle (Lou and Shin, 2016). The 

four-helix bundle is composed of 15 layers of interacting hydrophobic amino acids and a conserved 

hydrophilic layer (0-layer) in its center, which is composed of three glutamines (Q) and one 

arginine (R) residue (Lou and Shin, 2016; Sudhof and Rizo, 2011).  

According to the presence of the hydrophilic residue of the SNARE motif in the center of the four-

helix bundle, SNARE motifs are grouped into Qa-SNAREs, Qb-SNAREs, Qc-SNAREs, and R-SNAREs. 

The syntaxin family is specified as Qa-SNARE, the SNAP25 family is referred to as Qbc-SNARE, since 

it has two SNARE motifs, and the VAMP family is referred to as R-SNARE (Hong, 2005; Lou and 

Shin, 2016). 

However, the SNARE proteins can be also functionally categorized into vesicular SNAREs (v-

SNAREs) and target-membrane SNAREs (t-SNAREs) (Sudhof and Rizo, 2011). The v-SNARE 
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subfamily consists of VAMPs and its relatives. The t-SNAREs can be subdivided into the subfamily 

of syntaxins and the subfamily of SNAP25 (Hong, 2005).  

The syntaxin family (t-SNAREs/Qa-SNAREs) consists of 15 members. Syntaxins are type II 

transmembrane proteins with the exception of syntaxin-19 and syntaxin-11, which have no 

transmembrane domain (Hong and Lev, 2014; Teng et al., 2001). All syntaxins exhibit a specific 

cellular localization, e.g. endosomes, TGN, plasma membrane. Syntaxin-1, -2, -3 and -4 are located 

at the plasma membrane (Bennett et al., 1993; Teng et al., 2001). Interestingly, in the peripheral 

nervous system (PNS) and CNS two isoforms of syntaxin-1 are coexpressed (syntaxin-1A and 

syntaxin-1B) (Bennett et al., 1992; Bennett et al., 1993). While syntaxin-1A knockout mouse 

exhibited a normal life span, the knockout of syntaxin-1B is lethal (Wu et al., 2015). 

Whereas the presynaptic membrane of neurons is already well characterized with respect to the 

SNARE composition, very little is known about the postsynaptic membrane. However, during the 

last few years, postsynaptic functions for syntaxin-4 (Kennedy et al., 2010), syntaxin-3 (Jurado et 

al., 2013) and syntaxin-1 (Hussain et al., 2016) were documented.  

The synaptosome-associated protein of 25 kDa (SNAP25) subfamily (t-SNAREs) is classified as Qbc-

SNAREs since the family members have two SNARE motifs (Qb and Qc). The SNAP25 subfamily is 

composed of Snap23, -25, -29, and -47. As already mentioned, Snap25 and Snap23 are associated 

with the target membrane by multiple palmitoylations, whereas SNAP29 and SNAP47 have no 

palmitoylation site and bind by interactions with other SNARE proteins to the target membrane 

(Holt et al., 2006; Steegmaier et al., 1998).  

The v-SNAREs (Vamp1, -2, -3, -4, -5, -7, -8) and the t-SNAREs YKT6 and Sec22b are structurally 

classified into R-SNAREs. Vamp1, -2, -3, -4, -5, -7, and -8 exhibit an N-terminal R-SNARE motif, a 

transmembrane domain and an intravesicular tail (Filippini et al., 2001). The Vamps can be 

subdivided into brevins and longins. Whereas brevins exhibit a short, non-conserved N-terminal 

region (Vamp1, -2, -3, -4, -5, -8), longins exhibit an approximately 110 aa long, highly conserved 

longin-domain. The longin Vamps can be subdivided into the three subfamilies Vamp7, Ykt6 and 

Sec22b (Daste et al., 2015; Filippini et al., 2001).  

A SNARE complex assembly requires one of each structural SNARE motifs (R-, Qa-, Qb- and Qc-

SNARE) for a heterotypic membrane fusion (Sudhof and Rothman, 2009). The first and best 

characterized SNARE complex is located at the presynaptic membrane, responsible for the 

neurotransmitter release into the synaptic cleft and consists of the R-SNARE Vamp2, the Qa-

SNARE syntaxin-1 and the Qbc-SNARE Snap25. Briefly, the N-terminal end of the R-SNARE motif of 

Vamp2 interacts with the N-terminal end of the Qa-SNARE motif of syntaxin-1 and the two SNARE-

motifs of the Qbc-SNARE Snap25, resulting in a trans-SNARE complex. The following zippering of 

the SNARE motifs from the N-terminus to the C-terminus pulls the opposing membranes together, 
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lower the energy barrier, and thereby enables the membrane fusion (van den Bogaart et al., 2013; 

Zhang, 2017). The membrane fusion transforms the trans-SNARE complex to a cis-SNARE complex, 

which in turn is disassembled by the ATPase NSF. R-SNAREs and Q-SNAREs are recycled and ready 

for a new membrane fusion cycle (reviewed in (Lou and Shin, 2016; Sudhof and Rizo, 2011; Sudhof 

and Rothman, 2009)). However, the fusion of synaptic vesicles with the membrane is a highly 

complex process in that is not only regulated by SNARE proteins, but also by SM proteins 

(Sec1/Munc18), Rab GTPases (Ras-related in brain GTPase), tethering factors, complexin and 

synaptotagmin to mention only the most prominent (Baker and Hughson, 2016; Baker et al., 2015; 

Stenmark and Olkkonen, 2001)  

 

 

Figure 4: Illustration of the formation of a cis-SNARE complex. 

Simplified illustration of the formation of a cis-SNARE complex at the presynaptic membrane adapted from 

(Dulubova et al., 2007). The cylinders represent the SNARE motifs. The synaptic vesicle interacts via the N-

terminal end of the R-SNARE motif of Vamp2 with the N-terminus of the Qa-SNARE motif of Stx1 and the 

Qb,c-SNARE motifs of Snap25 resulting in a trans-SNARE complex (not depicted). The zippering of the four 

SNARE-motifs pulls the synaptic vesicle and the presynaptic membrane together, decreases the energy 

barrier and herewith drives the membrane fusion, resulting in a transformation of the trans-SNARE complex 

into a cis-SNARE complex. The components of the cis-SNARE complex are disassembled and recycled by the 

ATPase NSF and the vesicles are recycled and refilled with neurotransmitters(not depicted) (Sudhof and 

Rizo, 2011).  

 

2.2.3 Neurotoxins  

Clostridium botulinum toxins and tetanus toxin are bacterial neurotoxins that are described as 

powerful tools for studying synaptic vesicle exocytosis, as they inhibit the fusion of synaptic 

vesicles with the presynaptic membrane without changing the morphological structure of the 

synapse (Sudhof and Rizo, 2011). Additionally, studies using neurotoxins delivered the first hint 

that SNAREs are also located at the postsynaptic membrane since the toxins disrupted the 
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postsynaptic plasticity at excitatory synapses (Kennedy et al., 2010; Lledo et al., 1998; Lu et al., 

2001). 

The seven botulinum neurotoxins (BoNT/A-H) and the tetanus neurotoxin (TeNT) form the family 

of Clostridial neurotoxins (CNTs). With LD50 values between 0.1 up to 1 ng/kg body weight, CNTs 

represent the most toxic substances. CNTs are zinc metalloproteases, which hydrolyze specific 

peptide bonds of SNARE proteins and thereby causing a blockade of neurotransmission (Binz et 

al., 2010; Schiavo et al., 2000). CNTs are heterodimers consisting of a heavy chain (HC) and a light 

chain (LC), which are connected by a disulfide bond. The HC is responsible for receptor binding 

and translocation of the LC into the cytoplasm. The LC harbors the metalloprotease activity (Peng 

et al., 2013). TeNT-LC hydrolyses the peptide bond between Gln76 and Phe77 of Vamp1, -2, and -

3, BoNT/A-LC cleaves Snap25 at position Gln197-Arg198 and BoNT/C-LC leads to the proteolysis 

of Snap25 at position Arg198-Ala199 as well as of syntaxin-1A and syntaxin-1B between amino 

acids Lys253-Ala254 and Lys252-Ala253, respectively (see Figure 5) (Schiavo et al., 1992; Wheeler 

and Smith, 2013). 

 

 

Figure 5: Cleavage site of CNTs at the neuronal SNARE complex. 

Schematic representation of a synaptic vesicle at the presynaptic membrane and the cleavage sites of the 

CNTs TeNT, BoNT/A and BoNT/C (adapted from (Pirazzini et al., 2017)). 
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2.3 mESCs and mESC-derived neurons at a glance 

2.3.1 mESCs at a glance 

During the mouse embryogenesis, three different stages of potency are passed: totipotency, 

pluripotency and multipotency.  

Totipotent stem cells can give rise to an entire functional organism. During mouse embryogenesis, 

cells are totipotent beginning with the fertilization of the oocyte, resulting in a zygote, up to the 

eight-cell stage of the morula. The morula evolves to a blastocyst, which consists of the outer 

trophoblast cells and undifferentiated, pluripotent inner cells, named the inner cell mass (ICM). 

The pluripotent mouse embryonic stem cells (mESCs) are isolated out of the ICM. Pluripotent stem 

cells can differentiate into the three primary germ layers (ectoderm, mesoderm, and endoderm) 

and into primordial germ cells. However, pluripotent stem cells cannot form an entire organism 

by themselves. Pluripotent stem cells differentiate into multipotent stem cells, which differentiate 

to more restricted specialized cells (reviewed in (Biehl and Russell, 2009)).  

First, mESCs were cultured on mitotic inactivated mouse fibroblasts (feeder layer) in the presence 

of calf serum. However, this conditions are very different from the physiological environment of 

the cells. Further, nearly all pluripotent ES cell “lines”, which were derived by the cultivation on 

feeder cells in the presence of calf serum, derived from the mouse strain 129 or its hybrids 

(reviewed in (Martello and Smith, 2014)). Over the last decades, the requirements to keep 

pluripotent, self-renewing mESC in culture were revealed. The first discovered differentiation 

inhibitor was the leukemia inhibitor factor (LIF). LIF is produced by the feeder cells, where it is 

mainly located at the cell surface. It activates the transcription factor Stat3 and thereby promotes 

the mESC self-renewal property. However, in a feeder-free culture system with calf serum and LIF, 

the ES cell culture contains some differentiated cells, which were absent in the presence of feeder 

cells, indicating that feeder cells provided another important factor for the ES cell self-renewal. In 

addition, the withdraw of the calf serum results within six days in the differentiation of mostly 

neural precursors and neurons. A little bit conflicting seems the finding that LIF also activates 

Janus-associated kinases (JAKs), which activates the extracellular signal-related kinase (Erk) that is 

antagonistic to the ES self-renewal. Interestingly, the combination of LIF with the bone 

morphogenetic protein (BMP) was able to inhibit the differentiation of the self-renewal ES cells in 

absence of feeders and serum. Further investigations identified the fibroblast growth factor 4 

(FGF4) as an autoinductive stimulation factor of the mitogen-activated protein kinase (ERK1/2). 

Furthermore, the Wnt signaling pathway plays an important role in the ES cell self-renewal as it 

enhances the ES cell growth, the ES cell viability and it suppresses the differentiation. Ying et al 
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demonstrated that ES cells could be cultivated in the absence of serum and LIF using two-small-

molecule inhibitors (2i) (Ying et al., 2008). PD0325901 inhibits MEK1 and MEK2 of the MEK/ERK 

signaling pathway that would stimulate the differentiation of the ES cells. CHIR99021 inhibits the 

glycogen synthase kinase-3 (GSK3) of the Wnt signaling pathway, thereby prevents the 

phosphorylation of β-Catenin, which accumulates in the nucleus, binds the transcription repressor 

Tcf3 and dissociates it from its binding site and leads to the expression of pluripotency factors. 

The combination of LIF, PD0325901 and CHIR99021 (2i+LIF) results in a very robust cultivation of 

self-renewal, naive pluripotent mESCs (reviewed in (Martello and Smith, 2014; Nichols and Smith, 

2012; Wray et al., 2010)). 

2.3.2 Introduction of mESC-derived neurons 

The chance to study RABV in vitro in immortalized cell lines enabled big achievements regarding 

the decipherment of the RABV biology. Fundamental insights into the RABV transcription, 

replication, the functional characterization of the viral proteins and the suppression of the innate 

immune system by RABV were gained. However, several specific aspects of the RABV biology, e.g 

neuronal transfer, can only be addressed in neurons, which represent the natural target cells of 

the neurotropic virus.  

A difficulty in addressing neurobiological and neurovirological questions in vitro is the post-mitotic 

nature of neurons. That is the reason why people use undifferentiated or differentiated 

neuroblastoma cell lines (mouse N2A, human NS20Y), primary neuronal cells, or brain slices for 

their investigations in vitro. 

In 1995, three groups independently of each other reported that cultured mESCs can be 

differentiated into neurons and glial cells (reviewed in (Wobus and Boheler, 2005)). Unfortunately, 

mESCs tend to differentiate spontaneously even in the presence of LIF, which makes it quite 

difficult to differentiation mESCs into a homogenous neuronal cell population (Bibel et al., 2007). 

In most cases, the differentiation of mESCs into neuronal cultures results in a heterogeneous cell 

population, which is composed of different neuronal subtypes and non-neuronal cells (Bibel et al., 

2004). However, over the last years big achievements were made regarding the development of 

numerous in vitro differentiation protocols of mESC into distinct neuronal subtypes (reviewed in 

(Garcia et al., 2012b)). It is now possible to differentiate mESCs into GABAergic neurons, 

dopaminergic neurons, glutamatergic neurons, motor neurons, as well as non-neuronal cells. The 

characterization of the mESC-derived neurons with molecular markers and electrophysiological 

examinations demonstrated that the mESC-derived neurons resemble neurons of the intact brain 

tissues regarding its action potentials and neurochemical profiles. Further, it was shown that 

mESC-derived neurons are able to form functional synapses with primary neurons and slice 
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explants in vitro (Garcia et al., 2012a; Plachta et al., 2004) (reviewed in (Garcia et al., 2012b)). 

However, the in vitro differentiation of mESCs into neurons is still a delicate process.  

Due to the similarity of mESC-derived neurons with neurons in vivo, mESC-derived neurons 

represent a powerful tool to investigate neurobiological questions in general as well as in this 

thesis particularly the biology of RABV in its natural target cells in vitro.  
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3 Material and Methods 

3.1 Materials 

3.1.1 Laboratory equipment 

Equipment  Name Manufacturer 

Centrifuge 5418 Eppendorf 

 5804 R Eppendorf 

 Varifuge 3.0R Heraeus 

 Allegra X-22R Beckman Coulter 

 Optima L-80 xp ultracentrifuge Beckman Coulter 

Microscope Axiovert 200M Zeiss 

 Light microscope TMS Nikon 

 UV-Light microscope IX71 Olympus 

Miscellaneous T3 Thermocycler Biometra 

 Chemiluminescence developing 

system (Fusion FX7 ) 
Vilber-Lourmat 

 Luminometer Centro LB 960  Berthold  

 Magnetic stirrer/heater VELP Scientifica 

 pH-meter VWR International 

 PIPETBOY acu IBS 

 Pipettes (2/10/200/1000 µL) Eppendorf; Gilson 

 Polyacrylamid gel electrophoresis 

system 
Peqlab 

 Agarose gel electrophoresis system Peqlab 

 Roller mixer SRT2 Stuart 

 Semi-Dry blotting system Peqlab 

 Spectrophotometer Nanodrop ND-

1000 
Peqlab 

 Thermocycler T3  Biometra 

 Thermomixer 5436  Eppendorf 
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 Thermostated hot-block 5320  Eppendorf 

 Horizontal shaker Swip SM-25 Edmund Bühler GmbH 

 Digital Sonifier® Cell Disruptor Branson 

 GJ Balance Kern 

 LUNA Automated Cell Counter Logos biosystems 

 Cell Strainer 40 µM Nylon strainer Corning 

3.1.2 Dishes, well plates and miscellaneous 

Miscellaneous   Manufacturer  

Cell culture flasks (T25/T75) Falcon 

Cell culture plates (6-well, 12-well, 24-well, 

96-well) 
Sarstedt 

Cryo tube 1.8 mL Sarstedt 

6-cm dish Falcon 

10-cm dish Sarstedt 

10-cm bacteriological petri dish Greiner (cat. no. 633102) 

1.5/2.0 mL reaction tube Eppendorf 

15/50 mL reaction tube Sarstedt 

Tube, Thinwall, Polypropylene, 17 mL/38.5 mL Beckman coulter 

µ-Dish 35mm, high, standard bottom ibidi 

µ-Dish 35 mm, high, glass Bottom ibidi 

Clarity Western ECL Blotting Substrats  Biorad 

Microscope slides, frosted end Roth 

Microscope cover glasses, 12 mm Ø Roth 

Mr. Frosty Freezing Container  ThermoFisher 

Vectashield HardSet Antifade Mounting 

Medium 
Vector Laboratories 

1 kb DNA ladder New England Biolabs 

PCR Marker New England Biolabs 
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3.1.3 Cell lines and Bacteria strains 

Cell line  Description  Medium Source 

BSR-T7/5 BHK-21-derived cells, stably 

expressing phage T7 RNA 

Polymerase 

G-MEM 4+ 

Every 2nd passage, 

add 1 M G-418. 

(Buchholz et al., 

1999) 

HEK 293T HEK-293-derived cells stably 

expressing the simian virus 40 

(SV40) large T antigen. 

D-MEM 3+ ATCC 

 

HeLa Human cervix carcinoma cell line 

(epithelial cells)  

D-MEM 3+ ATCC 

N2A Mouse neuroblastoma cell line D-MEM 3+ ATCC 

129/SvJ 

mESC  

Stem cell line derived from 

129/SvJ mouse. 

LIF/2i medium Benjamin R. Arenkiel 

ROSA26-

tomRITVA 

mESC 

tdTomato, RABV G and TVA 

introduced into the ROSA26 locus 

of 129/SvJ mESC. 

LIF/2i medium (Garcia et al., 2012a) 

MGon136 BSR-derived cells, which express 

more SAD M as SAD G under 

control of Tetracycline inducible 

promoter. Induction with 

doxycyclin (1µg/mL). 

G-MEM 4+ 

Every 2nd passage, 

add 1 M G-418 

and 0.5 mg/mL 

hygromycin B 

(Finke and 

Conzelmann, 2003)  

MGon139 BSR-derived cells, which express 

more RABV G as RABV M under 

control of Tetracycline inducible 

promoter. Induction with 

doxycyclin (1µg/mL). 

G-MEM 4+ Stefan Finke (in 

house) 

BHK EnvA BSR-derived cells, stably 

expressing the avian sarcoma 

envelope protein (EnvA). 

GMEM 4+ (Wickersham et al., 

2007b) 
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3.1.4 Chemicals 

Chemical Manufacturer 

Acetic acid, 100 % Roth 

Acetone, Rotipuran 99.8 % Roth 

Acrylamide Rotiphorese® Gel 30 (37.5 : 1) Roth 

Agar BD 

Agarose, UltraPure  Invitrogen 

Ammonium chloride  Merck 

Ammonium persulfate Sigma-Aldrich 

Ampicillin sodium salt  Roth 

Bis-Tris Santa Cruz Biotech. 

Bromophenole blue  Sigma-Aldrich 

Dimethyl sulfoxide  Roth 

Dimethylformamide Merck 

Disodium hydrogen phosphate Merck 

Ethanol Merck 

Ethidium bromide solution 1 %  Roth 

Ethylenediamine tetraacetic acid  Sigma 

Geneticin (G418) Roth 

Glycerol , Rotipuran 99.5 %  Roth 

HEPES Roth 

Hydrochloric acid, Rotipuran 37 % Merck 

Imidazole  Merck 

Isopropanol Merck 

Kanamycin monofulfate Sigma-Aldrich 

Magnesium sulfate heptahydrate  Merck 

Methanol Roth 

Milk powder, blotting grade Roth 

3-(N-morpholino)propanesulfonic acid  Roth 

Orange G Fluka 

ortho-Phosphoric acid, 85 % Merck 

Paraformaldehyde  Merck 

Poly-D-lysine hydrobromide Sigma-Aldrich 
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Polyethylenimine, branched Sigma-Aldrich 

Potassium acetate, extra pure  Merck 

Potassium chloride  Merck 

Potassium dihydrogen phosphate Merck 

Sodium bisulfite Sigma 

Sodium chloride Merck 

Sodium dihydrogen phosphate Merck 

Sodium dodecyl sulfate Serva 

Sodium hydroxide VWR Chemicals 

Tetramethylethylenediamine Roth 

Tris, Pufferan 99.9 %  Roth 

Triton X-100 Merck 

Tryptone BD 

Tween-20  Roth 

β-Mercaptoethanol  Sigma-Aldrich 

3.1.5 Buffers and solutions 

In the following, the different buffers and solutions, which were used in this thesis, are listed. If 

not specifically mentioned, all buffers and solutions were stored at RT. 

Agarose gel electrophoresis  

10 x TAE 2 M Tris-HCl, (pH 7.8) 

0.25 M Sodium acetate trihydrate 

0.25 M EDTA 

10 x TEN 50 mM Tris-HCl (pH 7.4) 

1 mM EDTA  

150 mM NaCl 

1 x TAE + EtBr 200 mL 10 x TAE 

1800 mL ddH2O 

120 µL Ethidium bromide solution (1%) 

OG loading buffer 50 % (v/v) 10x TAE  

15 % (w/v) Ficoll 400  

0.125 % (w/v) Orange G  

Store at -20°C, after thawing 4 °C 



3 - Material and Methods 

31 

 

Immunofluorescence   

80 % Aceton 800 mL Aceton p.a. 

200 mL ddH2O 

Store at 4 °C 

3 % PFA 1 x PBS 

3 % (w/v) Paraformaldehyd 

NH4Cl in PBS  1x PBS  

50 mM NH4Cl  

0.1 % Triton X-100 1x PBS  

0.1 % (v/v) Triton X-100  

2.5 % milk in PBS  1x PBS  

2.5 % (w/v) milk powder  

 

Mini preparation   

Flexi I 100 mM Tris-HCl pH 7.5  

10 mM EDTA  

200 μg/mL RNase  

Stored at 4 °C  

Flexi II 200 mM NaOH  

1 % (w/v) SDS  

Flexi III 3 M potassium acetate  

2 M acetic acid, pH 5.75  

 

SDS-PAGE  

APS 10 % APS (w/v) 

Appropriate volume ddH2O 

Store at -20 °C, after thawing at 4 °C 

3.5 x Bis-Tris 1.25 M Bis-Tris HCl pH 6.8 

20 x MOPS buffer 1 M Tris 

1 M MOPS 

20 mM EDTA 

2 % SDS 

1 x MOPS buffer (running buffer)  50 mL 20 x MOPS 

2 mL 2.5 M Sodium Bisulfite 
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948 mL ddH2O 

SDS sample buffer 62 nm Tris/HCl pH 6.8 

10 % SDS 

15 % β-mercaptoethanol 

30 % Glycerol 

0.012 % Bromophenol blue 

Separation gel mix (10 %) 1 x Bis-Tris 

10 % acrylamide/bisacrylamide 37.5:1 

ddH2O appropriate volume 

Separation gel Separating gel mix (10 %) 

1 % APS (v/v) 

0.4 % TEMED (v/v) 

Stacking gel mix (6 %) 1 x Bis-Tris 

6 % acrylamide/bisacrylamide 37.5:1 

ddH2O appropriate volume 

Stacking gel Stacking gel mix (6 %) 

1 % APS 

0.1 % TEMED 

 

Western blotting   

Extra-Dry blotting buffer 48 mM Tris 

20 mM Hepes 

1 mM EDTA 

1.3 mM Sodium Bisulfite 

1.3 mM Dimethylformamide 

TBS 50 mM Tris 

150 mM NaCl 

pH 7.4 (adjusted with HCl) 

TBS-T TBS 

0.05 % Tween-20 

2.5 % milk in TBS  1x TBS  

2.5 % (w/v) milk powder  
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3.1.6 Medium and cell culture additives 

Bacteria growth medium  

LB 85 mM NaCl 

0.5 % (w/v) Bacto yeast extract 

1 % (w/v) Bactotryptone 

1 mM MgSO4 

Stored at 4 °C 

LB Amp 1 x LB 

25 mg/mL Ampicillin 

Stored at 4 °C 

LB ++  1 x LB 

20 mM MgSO4 

10 mM KCl 

 

Components of cell culture medium manufacturer 

ara-C Sigma-Aldrich 

B27 supplement serum free (50x) Gibco 

D-MEM (L-Glutamine, high glucose) Gibco 

Knockout DMEM (No L-glutamine, high glucose)  Gibco 

Pansera ES PAN-Biotech 

FBS Premium PAN-Biotech 

G-MEM (L-Glutamine, high glucose) Gibco 

DPBS (no calcium, no magnesium) Gibco 

L-Glutamine Gibco 

GlutaMAX Gibco 

Gentamicin (50mg/mL) Gibco 

MEM Amino Acids Gibco 

MEM NEAA Gibco 

Neurobasal medium (no Aspartic Acid, no Glutamic 

Acid, serum free) 

Gibco 

Tryptose Phosphate Broth Gibco 

Penicillin-Streptomycin Gibco 

Trypsin-EDTA 0.25 % Gibco 
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Stem Pro Accutase Gibco 

PD0325901 Selleckchem 

CHIR-99021 Selleckchem 

Leukemia Inhibitory Factor Merck Millipore 

 

cell culture medium Composition of media 

D-MEM 3+ 450 mL D-MEM  

50 mL FBS 

5 mL L-Glutamine 

2 mL Pen-Strep 

Stored at 4 °C 

G-MEM 4+  450 mL G-MEM (Invitrogen) 

50 mL Fetal calf serum 

4.5 mL Tryptose-phosphate (Invitrogen) 

10 mL MEM amino acids (Invitrogen) 

2 mL Pen-Strep (Invitrogen) 

Stored at 4 °C 

EB medium 217 mL Knockout DMEM 

125 mL Pansera ES 

0.1 mM β-mercaptoethanol 

2.5 mL NEAA 

2.5 mL GlutaMAX 

2.5 mL Pen/Strep 

Stored at 4 °C 

mESC LIF/2i medium mESC without LIF/2i 

1 x 106 U/mL LIF 

5 mM PD0325901 

15 mM CHIR 99021 

Stored at 4 °C 

mESC LIF medium  mESC without LIF/2i 

1 x 106 U/mL LIF 

Stored at 4 °C 

Neuron medium  97 mL Neurobasal medium 

2 mL B27 
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1 mL GlutaMAX 

1µL Gentamicin (50 mg/mL) 

Stored at 4 °C 

Neuron medium +FBS 92 mL Neurobasal medium 

5 mL Pansera ES 

2 mL B27 

1 mL GlutaMAX 

1 µL Gentamicin (50 mg/mL) 

Stored at 4 °C 

3.1.7 Kits 

Purpose Kit Manufacturer 

DNA purification QIAquick PCR Purification Kit QIAGEN 

 QIAquick Gel Extraction Kit QIAGEN 

RNA isolation RNeasy Mini Kit QIAGEN 

Transfection Mammalian Transfection Kit  Stratagene 

 Lipofectamine 2000 Invitrogen 

 FuGene HD Promega 

3.1.8 Enzymes 

Enzyme Manufacturer 

Restriction Enzymes New England Biolabs 

Phusion DNA Polymerase NEB/Thermo Fisher Scientific 

T4 DNA ligase New England Biolabs 

Alkaline Phosphatase, Calf Intestinal (CIAP) New England Biolabs 

Instant Sticky-End Ligase Master Mix New England Biolabs 

DNase, RNase-free Qiagen 

Transcriptor Reverse Transcriptase Roche 

RNase Macherey-Nagel 

3.1.9 Primary antibodies 

Epitope Host Dilution Manufacturer 

Actin (20-33)) Rabbit 1/1000 Sigma-Aldrich 

RABV P (160-5) Rabbit 1/50000 In house 
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RABV G (HCA0501) Rabbit 1/1000 In house 

RABV M (M2D4) Rabbit 1/1000 In house 

RABV N (S50) Rabbit 1/25000 In house 

Oct4 Mouse 1/1000 Merck Millipore  

Nestin Mouse 1/1000 Santa-Cruz 

β-III Tubulin Mouse 1/1000 Merck Millipore 

MAP2 Rabbit 1/1000 Synaptic Systems 

MAP2 Mouse 1/1000 Sigma-Aldrich 

NF H Rabbit 1/1000 Synaptic Systems 

PSD-95 Rabbit 1/1000 Synaptic Systems 

Syntaxin-1 Mouse 1/1000 Santa Cruz 

Syntaxin-3 Rabbit 1/1000 Abcam 

Syntaxin-4 Mouse 1/1000 Abcam 

VAMP1 Rabbit 1/1000 Abcam 

VAMP2 Rabbit 1/1000 Abcam 

VAMP3 Rabbit 1/1000 Novus 

GFP Rabbit 1/1000 Cell signaling 

CytoPainter Phalloidin-

iFluor 555 

 1/1000 Abcam 

To-Pro3  1/1000 Invitrogen 

3.1.10 Secondary antibodies 

Horseradish-peroxidase (HRP) coupled secondary antibodies were used for Western blotting and 

Alex Fluor labeled secondary antibodies were used for immunostaining in confocal microscopy. 

Epitope Conjugate Host Dilution Manufacturer 

Rabbit IgG HRP Goat 1/20000 Jackson ImmuoResarch Laboratories 

Mouse IgG HRP Goat 1/20000 Jackson ImmuoResarch Laboratories 

Rabbit IgG Alexa-488 Goat 1/200 Invitrogen 

Rabbit IgG Alexa-555 Goat 1/200 Invitrogen 

Mouse IgG  Alexa-488 Goat 1/200 Invitrogen 

Mouse IgG Alexa-555 Goat 1/200 Invitrogen 
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3.1.11 Oligonucleotides 

The DNA oligonucleotides used in this thesis were ordered from Eurofins Genomics. The 

sequences are listed in the appendix (see section 6.1). 

3.1.12 Plasmids 

Plasmid Source if not this 

thesis 

Description 

eGFP Stx4 ΔTM 
(Kennedy et al., 

2010) 

eGFP was fused to the N-terminus 

of the cytoplasmic domain of Stx4  

mCherry Stx1 ΔTM 

(Kennedy et al., 

2010) 

mCherry was fused to the N-

terminus of the cytoplasmic domain 

of Stx1A 

mCherry Stx3 ΔTM 

(Kennedy et al., 

2010) 

mCherry was fused to the N-

terminus of the cytoplasmic domain 

of Stx3 

pCAGGS 
(Niwa et al., 1991) Eukaryotic expression vector with 

chicken-β-actin promoter  

pCAGGS-G Anika Kern RABV G in pCAGGS vector 

pCAGGS-M Anika Kern RABV M in pCAGGS vector 

pCAGGS-M34AAA 
 RABV M with indicated mutated aa 

(34PPP36  AAA) in pCAGGS vector 

pCAGGS-M35AA 
 RABV M with indicated mutated aa 

(34PP35  AAA) in pCAGGS vector 

pCAGGS-SADG-ΔnAChbinding site 
 SAD G in which nAChR binding site 

is replaced by SP  

pCAGGS-SADG-ΔnAChRbs-(SP) 
 SAD G with deleted nAChR binding 

site (ᐃaa194-204)  

pCAGGS-SADG-ᐃ-siteIII 
 SAD G with antigenic site III 

(ᐃaa349-357) 

pCAGGS-SADG-ᐃ-siteIII [(GS)2-SP-

(GS)2] 

 SAD G in which antigenic site III is 

replaced by SP 

pCAGGS-G-TM-3xKBS-RT 
 SAD G with three copies of KBS on 

the C-terminus of TM  



3 - Material and Methods 

38 

 

pCAGGS-SADG 3xKBS 
 SAD G with three copies of KBS on 

the C-terminus of the C-tail  

pCMV LC-A Thomas Binz 
Light chain of BoNT/A in CMV 

expression vector 

pCMV LC-C Thomas Binz 
Light chain of BoNT/C in CMV 

expression vector 

pCMV LC TeNT Thomas Binz 
Light chain of TeNT in CMV 

expression vector 

pCR3-eGFP-BoNT/A-LC 
 Light chain of BoNT/A with an N-

terminal eGFP tag  

pCR3-eGFP-BoNT/C-LC 
 Light chain of BoNT/C with an N-

terminal eGFP tag  

pCR3-eGFP-TeNT/LC 
 Light chain of TeNT with an N-

terminal eGFP tag  

pTIT-G 
(Finke et al., 2003) T7-Pol and EMCV IRES dependent 

expression of RABV G 

pTIT-L 
(Buchholz et al., 

1999) 

T7-Pol and EMCV IRES dependent 

expression of RABV L 

pTIT-M 
(Finke et al., 2003) T7-Pol and EMCV IRES dependent 

expression of RABV M 

pTIT-N 
(Buchholz et al., 

1999) 

T7-Pol and EMCV IRES dependent 

expression of RABV N 

pTIT-P 
(Buchholz et al., 

1999) 

T7-Pol and EMCV IRES dependent 

expression of RABV P 

Full-length RABV constructs 

pCVS-N2c 
Mathias Schnell Full-length cDNA of RABV CVS-N2c 

strain 

pSAD eGFP 

Alexander Ghanem Full-length cDNA of RABV SAD L16 

in the T7-HHRz-SC with an extra 

transcription unit in between G and 

L with an N/P gene border followed 

by eGFP 

pSAD eGFPStx4DN 
 Dominant-negative Stx4 with N-

terminal eGFP-tag in an extra 
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transcription unit in pSAD L16 (N/P 

gene border) 

pSAD eGFPStx4DN/Stx3DN 

 Dominant-negative Stx4 with N-

terminal eGFP-tag in an extra 

transcription unit in pSAD L16 (N/P 

gene border) followed by an 

additional M/G gene border and 

dominant-negative Stx3 

pSAD G-TM-3xKBS-RTeGFP 

 pSAD with SADG-TM-3KBS-RT 

instead of SADG 

pSAD L(I30T) eGFP 
 pSAD eGFP with point mutation in 

RABV L at the indicated aa.  

pSAD L(stop) eGFP 

 pSAD eGFP with point mutation in 

RABV L introducing an in frame stop 

codon at aa 935 

pSAD mchStx1ADN 

 Dominant-negative Stx1 with N-

terminal mCherry-tag in an extra 

transcription unit in pSAD L16 (N/P 

gene border) 

pSAD mChStx3DN 

 Dominant-negative Stx3 with N-

terminal mCherry-tag in an extra 

transcription unit in pSAD L16 (N/P 

gene border) 

pSAD M34AAA 

Christine 

Schnellhammer 

pSAD with mutations at the 

indicated positions of SAD M: 

34PPP36  AAA 

pSAD M35AA 

Christine 

Schnellhammer 

pSAD with mutations at the 

indicated positions of SAD M: 35PP36 

 AA 

pSAD M34AAA eGFP 

 pSAD eGFP with mutations at the 

indicated positions of SAD M: 

34PPP36  AAA 

pSAD mut52/54 eGFP 
Alexander Ghanem pSAD eGFP with two mutations in 

the leader: A52T and A54G 
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pSAD mut52/54/12845 eGFP 

Alexander Ghanem pSAD eGFP with two mutations in 

the leader and one mutation in the 

trailer: A52T, A54G, A12845G 

pSAD mut12845 eGFP 
Alexander Ghanem pSAD eGFP one mutation in the 

trailer: A12845G 

pSAD N2CM 
 pSAD in which SAD M is replaced by 

N2C M 

pSAD N2c M34AAA 

 pSAD N2C M with mutations at the 

indicated positions of N2C M: 

34PPP36  AAA 

pSAD P(M83R) eGFP 

 pSAD eGFP with point mutation in 

RABV P at the indicated aa, 

mutating the start codon of P4 

pTHA Hervé Bourhy Plasmid encoding for THA strain 

Recombinant SAD deletion mutants 

pSAD ΔG eGFP 

Alexander Ghanem G gene-deficient pSAD, in which the 

glycoprotein encoding gene is 

replaced by eGFP encoding gene 

pSAD ΔG eGFP-TeNT-LC 

 G gene-deficient pSAD, in which the 

glycoprotein encoding gene is 

replaced by eGFP-TeNT-LC 

encoding gene 

pSAD ΔM eGFP  M gene-deficient pSAD eGFP 

 

The cloning strategies of the plasmids, which were cloned in this thesis are listed in section 6.2.  
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3.1.13 Recombinant viruses 

The following recombinant viruses were generated from cDNA by reverse genetics (Ghanem et al., 

2012; Schnell et al., 1994). 

Virus If not rescued in this thesis, nicely provided by 

Recombinant full-length viruses 

CVS-N2c Chloé Scordel 

SAD eGFP  

SAD eGFPStx4DN  

SAD eGFPStx4DN/Stx3DN  

  SAD G-TM-3xKBS-RTeGFP  

SAD L(I30T) eGFP  

SAD L(stop) eGFP  

SAD mchStx1ADN  

SAD mChStx3DN  

SAD M34AAA eGFP  

SAD mut52/54 eGFP Alexander Ghanem 

SAD mut52/54/12845 eGFP Alexander Ghanem 

SAD mut12845 eGFP Alexander Ghanem 

SAD N2CM  

SAD N2c M34AAA  

SAD P(M83R) eGFP  

THA Chloé Scordel 

Recombinant deletion-mutant viruses 

SAD ΔG eGFP  

SAD ΔG eGFP-TeNT-LC  

SAD ΔM eGFP  
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3.2 Methods 

3.2.1 Working with DNA  

In the following, the methods for working with DNA are explained. 

3.2.1.1 Polymerase Chain Reaction (PCR) 

The PCR enables the amplification of a defined DNA fragment for cloning or alternatively for 

sequencing of cDNA. Therefore, template specific primers, which frame the 5´- and 3´-end of the 

DNA fragment of interest and prolong the amplicon with adequate restriction sites or insert the 

desired nucleotide sequence, were designed. 

The standard PCR was prepared according to the instruction manual of the Phusion High-Fidelity 

PCR Kit from NEB. 

 

Component Amount  Final concentration 

Template 1 µL 1 pg -10 ng 

5x Phusion HF Buffer 10 µL 1 x 

10 mM dNTPs 1 µL 200 µM 

10µM forward Primer 2.5 µL 0.5 µM 

10µM reverse Primer 2.5 µL 0.5 µM 

DMSO 1.5 µL 3 % 

Phusion DNA Polymerase 0.5 µL 1 units/50 µL PCR 

H2Odd 31 µL - 
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PCR reactions were performed in a T3 Thermocycler (Biometra). The lid was preheated up to 105 

°C. The standard PCR-program was as follows. 

 

Step Temperature  Duration  

1. Denaturation 98°C 2 min  

2. Denaturation 98°C 30 sec  

3. Primer annealing 50°C -65°C (Mostly 

5°C below the lowest 

Tm ) 

30sec  

30x 

4. Elongation 72°C 15sec/1000nt   

5. Final elongation 72°C 10 min  

6. End 4 °C pause  

 

To confirm the correct size of the PCR product, 5 % of the sample were analyzed by agarose gel 

electrophoresis. The remaining 95 % of the PCR product were purified according to the QIAquick 

PCR Purification Kit (QIAGEN). 

3.2.1.2 Agarose gel electrophoresis 

The agarose gel electrophoresis was executed to analyze the length of PCR products (analytic gel) 

or to separate DNA fragments, which resulted from the digestion of DNA with restriction 

endonucleases (preparative gel).  

Therefore, dependent on the size of the DNA fragment a 1 % - 2 % (w/v) agarose gel in 1 x TAE-

buffer was prepared. After the gel was solid, it was placed into an agarose gel electrophoresis 

chamber. The running buffer composed of 1 x TAE and 0.075 % ethidium bromide, which enables 

the detection of nucleic acid under UV light. DNA samples were mixed with 5 x Orange G loading 

buffer and loaded into the pockets of the gel. The standard electrophoresis was performed for 30 

– 60 min at 120 V and 400 mA. The gels were analyzed with the Biorad GelDoc System.  

3.2.1.3 Restriction enzyme digestion 

Restriction endonuclease digestion of DNA was used for analytic or preparative purpose.  

The following digestions were prepared according to the suggestions of the enzyme supplier New 

England Biolab.  
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An analytic digestion was performed in a total volume of 20 µL containing up to 1 µg DNA, 5 U of 

each restriction enzyme, the corresponding 10 x NEB buffer and H2Odd. The reaction mix was 

incubated for 1 h at 37 °C. The product size was analyzed by agarose gel electrophoresis. 

A preparative digestion was performed for 1.5 h at 37 °C in a total volume of 50 µL. The reaction 

mix contained three up to five µg DNA, 20 U of each restriction enzyme, the corresponding 10 x 

NEB buffer and H2Odd.  

To prevent religation of a linearized vector, the 5´-end of the digested vector was 

dephosphorylated with the alkaline phosphatase Calf intestine phosphatase (CIP) immediately 

after the digestion. Therefore, 10 U CIP were added directly to the reaction mix and incubated for 

another 30 min at 37°C. 

Finally, the products were purified via the agarose gel electrophoresis, followed by QIAquick Gel 

Extraction Kit (Qiagen). 

3.2.1.4 Gel purification of DNA fragments 

After PCR products and vectors were subject to a preparative digestion, they were undergone an 

agarose gel electrophoresis. The DNA fragment of the correct size was cut out from the agarose 

gel and the favored DNA was extracted out of the gel with the QIAquick Gel extraction kit 

(QIAGEN). The DNA extraction was performed according to the instruction manual of QIAGEN. 

3.2.1.5 Ligation of DNA fragments 

The T4 DNA Ligase was used to ligate a cohesive or blunt-ended DNA fragment with a linearized, 

cohesive, or blunt-ended vector. The T4 DNA Ligase catalyzes the formation of a phosphodiester 

bond between the hydroxyl group on the 3´-end and the phosphate group on the 5´-end, which 

leads to the formation of a circular plasmid. For the calculation of the molar ratios, the 

NEBiocalculatorTM was used. The ratio of vector to insert was 1 to 3. As a control for vector 

religation, the insert was replaced by water.  

 

Component Volume 

T4 DNA Ligase buffer 10x 2 µL 

Vector 0.04 pmol 

Insert 0.12 pmol 

T4 DNA Ligase 1 µL 

H2Odd To 20 µL 

The ligation reaction was incubated for 1 h at RT or overnight at 16 °C. 
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3.2.1.6 Transformation of plasmid DNA into competent bacteria 

For transformation, 50 µL of the chemical-competent E. coli strain XL1-Blue were thawed on ice. 

Then 10 µL of the ligation mix or 100 ng of plasmid (retransformation) were added to the XL1-Blue 

bacteria. This mixture was incubated for 20 min on ice, followed by a 2 min heat shock at 42 °C 

and a 2 min cooling step on ice. Subsequently, 200 µL LB++ medium were added to the 

transformed XL1-Blue bacteria. The suspension was incubated on a Thermoshaker at 37 °C, 800 

rpm for 45 min. Finally, the transformed bacteria were plated onto a LB-agar plate containing the 

appropriate antibiotic (ampicillin, kanamycin, streptomycin). The LB-agar plate was incubated 

overnight at 37 °C. 

3.2.1.7 Mini preparation of plasmid DNA from bacteria 

For DNA plasmid isolation out of bacteria, the alkaline lysis was used.  

Single colonies, which were grown overnight on selective LB-plates, were picked and used to 

inoculate 1 mL selective LB-medium. Then the bacteria suspension was incubated on a shaker, 

overnight at 37 °C. The bacteria were pelleted by centrifugation for 1 min at 14000 rpm. The 

pellets were resuspended in 200 µL RNAse containing Flexi I. Afterwards, 200 µL Flexi II were 

added, to burst the bacteria and to denature the DNA. After 5 min 200 µL Flexi III were added to 

renature the plasmid by neutralizing the suspension. 5 min later, the cell debris and the bacterial 

DNA were pelleted by centrifugation for 7 min at 14000 rpm. The plasmid DNA containing 

supernatant was added to 400 µL isopropanol and centrifuged (RT, 10 min, 14000 rpm). The 

supernatant was discarded, the plasmid DNA pellets were air dried at RT and finally dissolved in 

50 µL H2Odd. 

Mini preparations were analyzed by an analytic digestion. The bacterial clones, which showed the 

correct DNA fragment pattern in the agarose gel, were used for retransformation. 

3.2.1.8 Midi preparation of plasmid DNA from bacteria 

After retransformation of a mini preparation, a single colony was picked and used to inoculate 50 

mL selective LB-medium. The bacterial suspension was incubated in a rotary shaker, overnight at 

37 °C and 800 rpm. The bacteria were harvested by centrifugation (RT, 20 min, 3500 rpm). 

The plasmid DNA was extracted according to the instruction manual of the NucleoBond® Xtra 

Midi/Maxi Kit (Machery & Nagel). 

The DNA concentration was measured with the UV-Vis Spectrophotometer Nanodrop ND-1000. 
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3.2.1.9 Sequencing of DNA 

For sequencing, sequence specific primers, DNA plasmids and linear DNA fragments were diluted 

according to the guidelines of GATC Biotech, which performed a Sanger Sequencing. The resulting 

sequences were analyzed with the software SnapGene 2.6.2. 

3.2.2 Cell culture 

In the following, the cell culture of mammalian adherent cell lines and pluripotent mESC is listed. 

3.2.2.1 Cultivation of mammalian adherent cell lines 

The mammalian adherent cell lines were cultured under sterile conditions in T25 or T75 cell culture 

flasks, in the appropriate growth medium at 37 °C and at 5 % CO2. Cells were passaged every three 

up to four days. First, the adherent cells were detached by trypsinization with Trypsin-EDTA 0.25% 

(Gibco). Dependent on the cell growth rate of each cell line, the cells were split 1/4 up to 1/12. If 

needed, antibiotics were added every second passage for selection. 

To seed the correct amount of the cells for an experiment, the cell concentration (cells/mL) was 

determined with the LUNA™ Automated Cell Counter (logos Biosystems) or calculated based on 

the estimated number of cells in a T25 cell culture flask (3.1x106cells/T25). Afterwards, the 

appropriate number of cells was seeded per well or dish. 

3.2.2.2 Cultivation of mESC in a feeder free culture 

To keep mESC as long as possible pluripotent, a high quality mESC culture was performed. 

Therefore, mESC were cultured under sterile conditions, in mESC LIF/2i growth medium, in a 

freshly 0.1 % gelatine coated 6-well plate at 37 °C and 5 % CO2. The basic medium (EB medium) 

and the mESC LIF/2i medium were stored at 4 °C for up to two weeks. Since the repeatedly 

warming of the inhibitor-containing LIF/2i medium turns the pH basic, only small volumes (25 mL 

- 50 mL) of the mESC LIF/2i medium were prepared.  

For the in vitro cultivation of mESCs in a feeder-free systems, a 6-Well was coated with about 1.5 

mL 0.1 % gelatine at 37 °C. After 20 min the gelatine solution was removed and 475000 mESCs 

were seeded per 6-Well (5 x 104 cells/cm2). About 30 h post seeding, the medium was carefully 

replaced with chilled LIF/2i medium. Another 14 h post medium exchange, the mESCs were 

washed twice with PBS and enzymatically detached from the dish by incubating the cells for 5 min 

at 37 °C with Stem Pro Accutase (350 µL/6–Well). Subsequently, the Stem Pro Accutase was 

diluted with 1 mL chilled EB medium, the cell suspension was carefully resuspended, transferred 

into 1.5 mL reaction tube and pelleted by a centrifugation step (160 g, 5 min, RT). The cell pellet 
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was carefully resuspended to a single cell suspension and split 1/4 up to 1/6 (equates to 5 x 104 

cells/cm2) into a 0.1 % gelatine coated 6-Well. The mESCs were cultured as long as they formed 

the characteristic dome-shaped clusters. 

3.2.3 Freezing and thawing of mESCs  

Freezing of mESCs 

To produce a lot of mESCs for freezing, the cells were expanded to 10-cm dishes. After the cells 

were dissociated into a single cell suspension, as described above, a cell suspension of 5.5 x 106 

cells/mL was adjusted in chilled EB medium. Just before freezing, 10 % DMSO were slowly added 

to the cell suspension. Subsequent, 1 mL aliquots were transferred into the Mr. Frosty Freezing 

container and frozen at - 80 °C. After 24 h, the tubes were transferred to a liquid nitrogen tank.  

 

Thawing of mESCs 

The cryo tube was thawed in a water bath (37 °C). During the thawing, the tube was slewed to 

enable a homogenous warming of the cell suspension. To remove the DMSO containing medium, 

the cell suspension was diluted with 9 mL EB medium, centrifuged (160 g, 5 min, RT), carefully 

resuspended in LIF/2i medium and plated into a gelatine coated 6-Well. 

3.2.4 Transfection 

In this thesis, eukaryotic cells were transfected with plasmid DNA using Polyethylenimine (PEI), 

LipofectaminTM 2000, FuGENE HD or Calcium Phosphate. In the following, the different 

transfection protocols are described. 

 

Transfection with Polyethylimin (PEI) 

PEI was used to transfect one plasmid per HEK293T cell. For a standard PEI transfection, HEK293T 

cells were seeded about 16 h prior to transfection into a 6-Well plate to have them to the time 

point of transfection about 75 % confluent. The used ratio of DNA to PEI was 1 µg DNA to 2.5 µL 

PEI (1 mg/mL). The DNA and the adequate volume of PEI were diluted separately in 100 µL DMEM 

per 6-well. After an incubation time of 5 min at RT, the two dilutions were mixed and incubated 

for another 20 min at RT. Finally, the transfection mix was added dropwise onto the cells. 

Dependent on the experiment, the medium was exchanged 6 h or 24 h post transfection.  
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Transfection with Lipofectamin 2000 (Invitrogen) 

Lipofectamin 2000 was used transfect N2A cells, mESC-derived neurons or to cotransfect at least 

two plasmids per cell. The standard Lipofectamin 2000 transfection protocol followed the PEI 

transfection protocol. 

 

Transfection with FuGENE HD (Promega) 

In this thesis, FuGENE was exclusively used for the transfection of already Calcium Phosphate 

transfected BSR-T7 cells. The FuGENE HD transfection protocol followed the PEI transfection 

protocol.  

 

Transfection with Calcium Phosphate (Stratagene Mammalian Transfection Kit) 

The Calcium Phosphate transfection was performed in a 6-Well. About 3 x 105 BSR-T7 cells were 

seeded 16 h pre transfection to have them at a confluency of approximately 90 % to the time point 

of transfection. One hour prior transfection 2 mL GMEM 4+ were aspirated, the BSR-T7 cells were 

washed twice with DMEM and incubated for 1 h in DMEM in the incubator. During the incubation 

time, 20 µg DNA per 6-Well were in diluted in a total volume of 90 µL ddH2O. After 30 min 10 µL 

of solution 1 from the Mammalian Transfection CaPO4 Kit (Stratagene) were added to 90 µL DNA 

solution, mixed by pipetting thoroughly up and down, and incubated for 5 min on ice. 

Subsequently, 100 µL of solution 2 from the Mammalian Transfection CaPO4 Kit (Stratagene) were 

added to DNA-solution 1 reaction mix. The transfection mix was incubated for 20 min at RT, before 

it was added dropwise onto the BSR-T7 cells. The cells with the transfection mix were put back 

into the incubator for 3.5 hours. Finally, the transfected cells were washed twice with 2 mL GMEM 

4+, 2 mL GMEM 4+ were added onto the transfected cells and the plate was returned into the 

incubator.  

3.2.5 Immunofluorescence imaging 

Seeding of cells for immunofluorescence 

The immunofluorescence of mESC-derived neurons was performed on ibidi µ-dishes, which were 

coated overnight at 37 °C with 0.1 mg/mL PDL, or on coverslips, which were coated overnight at 

37 °C with 1 mg/mL PDL. On the following day, the dish was washed twice with H2O and once with 

PBS. Subsequently, 1.5 x 105/cm2 dissociated neurospheres were seeded and the last steps of the 

differentiation protocol were performed as described in section 4.1.1.5.  

The immunofluorescence of naive pluripotent stem cells (mESCs), primed pluripotent stem cells 

(mEpiSCs), EBs and neurospheres was performed in ibidi µ-dish. To this, the ibidi µ-dish was coated 
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for 20 min with 0.1 mg/mL gelatine solution. For the IF of mESCs and mEpiSCs mESCs, 5 x 104 

cells/cm2 were seeded per dish. Two days post seeding the immunofluorescence protocol was 

executed. For the IF of the floating EBs and neurospheres, 500 µL of the respective cell suspension 

were seeded per dish. Then 1.5 mL of the respective medium was added. Three hours post seeding 

the EBs and neurospheres passively settled down, attached to the coated dish and it could be 

proceeded with the immunofluorescence protocol. 

 

Fixation and immunofluorescence staining of the cells 

After the cells were washed twice with PBS, the cells were fixed with 3 % PFA (RT, 20 min). 

Subsequently, the fixed cells were washed once with PBS, quenched with 50 mM NH4Cl in PBS (RT, 

10 min), permeablized with 0.5 % Triton X-100 in PBS (RT, 15 min), washed thrice with PBS and 

finally blocked with 2.5 % milk in PBS (RT, 30 min). Afterwards, the cells were washed with PBS 

and incubated with primary antibodies overnight at 4 °C or for two hours at 37 °C. After the 

incubation with the primary antibody, the cells were washed three times with PBS, followed by 

the incubation (RT, 2 h, in the dark) with the secondary antibody that is conjugated to a fluorescent 

dye. If the staining of the nucleus was desired, the cells were stained in parallel to the secondary 

antibodies with To-Pro3. After the staining with the secondary antibody, the samples were washed 

twice with PBS and once with deionized water. The ibidi µm dishes were directly stored at 4 °C, 

whereas the coverslips were mounted to the object holder with Vectashield HardSet Antifade 

Mounting Medium (Vector Laboratories), before they were stored at 4 °C. Finally, the samples 

were analyzed with the Axiovert 35 confocal laser scanning microscope (Zeiss). 

3.2.6 Denaturing polyacrylamide gel electrophoresis (SDS-PAGE) 

To separate proteins by their molecular weight, a SDS-PAGE (sodium dodecyl sulfate 

polyacrylamide gel elecotrophoresis) in a Bis-Tris polyacrylamide gel was performed. 

The concentration of the separation gel was adapted to the molecular weight of the desired 

protein. The polyacrylamide concentration of a standard separation gel was 10 % (gel composition 

see section 3.1.5). After the liquid separation gel mix was casted in between two glass plates, it 

was carefully overlaid with deionized water to allow the polymerization of the separation gel 

without drying out. After polymerization, the deionized water was removed, a 6 % stacking gel 

was casted on top of the separation gel and a comb with 15 up to 25 pockets was inserted.  

The glass plates were installed in an electrophoresis chamber (Peqlab gel), which was filled with 

the running buffer (1 x MOPS). Afterwards, in SDS sample buffer lysed samples were heated for 

10 min at 95 °C and loaded into the pockets of the stacking gel. For the determination of the size 

of the respective protein bands, the Precision Plus Protein Standard (Biorad) was loaded. After the 
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electrophoresis chamber was connected to a water cooling system, the gels were run for about 

three hours at 180 V. Subsequently, the Bis-Tris polyacrylamide gel was washed with extra-dry 

buffer and the proteins were visualized via immunostaining by Western blotting. 

3.2.7 Western Blotting 

The separated proteins were transferred by Western blotting from a polyacrylamide gel onto a 

methanol activated PVDF-membrane (Millipore) by a semi-dry blotting system (Peqlab). 

The arrangement in the semi-dry blotting system was as followed. On top of the lower with extra-

dry buffer moistened anode plate were three layers of Whatman paper, which were soaked in 

extra-dry buffer, followed by the methanol activated and in extra-dry buffer washed PVDF-

membrane, the polyacrylamide gel (washed in extra-dry buffer), another three layers of soaked 

Whatman paper and the cathode plate. A standard gel was blotted for 45 min at 400 A. After the 

electroblotting, the PVDF-membrane was blocked with 2.5 % milk in TBS-T for at least 30 min at 

RT in order to minimize unspecific binding of antibodies during immunodetection. 

3.2.8 Immunodetection 

After Western blotting and blocking, the PVDF-membrane was washed three times for 10 min in 

PBS-T at RT. The respective primary antibody was diluted in TBS-T according to the supplier 

recommendation and the PVDF-membrane was incubated with the primary antibody solution on 

a shaker or alternatively on a rolling incubator overnight at 4 °C. On the next day, the membrane 

was washed thrice for 10 min in TBS-T at RT, followed by an incubation (RT, 2 h) with the 

appropriate secondary antibody, which was conjugated to a horseradish peroxidase. After the 

incubation with the secondary antibody solution, the PVDF-membrane was washed thrice with 

TBS-T. Finally, the Clarity Western ECL Blotting Substrates (Biorad) was applied to the membrane 

and the chemiluminescent was monitored with the Fusion FX7 system (Viber Lourmat). 

3.2.9 Generation of recombinant rabies virus by reverse genetics (virus rescue) 

Revers genetics enables the de novo generation of recombinant RABV from cDNA. The first rescue 

of RABV was described by Schnell et al. 1994 (Schnell et al., 1994). In the meantime, several 

improvements have been done (Buchholz et al., 1999; Ghanem et al., 2012). In the following, the 

RABV rescue system is described briefly. 

A plasmid encoding for the viral cDNA and three “helper” plasmids containing a T7-promoter and 

an encephalomyocarditis virus (EMCV) internal ribosome entry site (IRES) element were 

transfected into BSR-T7 cells, which constitutively express the bacteriophage T7 RNA polymerase 
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(Buchholz et al., 1999). The T7 RNA polymerase transcribes the cDNA into an antigenome-like RNA. 

Further, it transcribes the helper plasmids into IRES containing helper genes encoding for the 

helper proteins N, P and L. The EMCV IRES of the helper gene transcripts is recognized by 

ribosomes, leading to the translation of the viral proteins N, P and L. The introduction of highly 

efficient self-processing ribozymes on the 5´-end and 3´-end of the viral cDNA generates an 

antigenome-like genome with an exact 5´-end and 3´-end, which is crucial for a successful rescue, 

since additional nucleotides especially on the 3´-end hinder the replication (Collins et al., 1991; De 

and Banerjee, 1993; Ghanem et al., 2012; Pattnaik et al., 1992). After the encapsidation of the 

antigenome by the nucleoprotein, the N-RNA complex serves as template for the L-P driven 

replication of the antigenome to the negative-sense RNA genome. Finally, the plasmid-expressed 

L-P complex transcribes all five viral proteins and thereby initiates the first infectious cycle 

(Ghanem et al., 2012).  

3.2.9.1 Rescue of recombinant full-length SAD 

For the generation of a recombinant full-length SAD by reverse genetics, 10 µg of the full-length 

cDNA, 5 µg pTIT-N, 2.5 µg pTIT-P and 2.5 µg pTIT-L were cotransfected in BSR-T7 cells by of 

Ca3(PO4)2 transfection (day 2).  

On day 5, the supernatant was purified by centrifugation (1800 rpm, 5 min, 4 °C) and added onto 

fresh BSR-T7 cells in a 6-Well (supernatant passage 1). Fresh GMEM 4+ was added onto the 

transfected BSR-T7 cells. On day 8, the supernatant passage 1 was fixed with 80 % acetone 

followed by staining for RABV N, to control if the rescue was positive. After a second supernatant 

passage was performed, the transfected BSR-T7 cells were detached by the addition of 1 mL 

Trypsin/EDTA. 750 µL of the cell suspension were transferred into a T25 cell culture flask 

containing 7.25 mL GMEM 4+. The remaining 250 µL were seeded into a fresh 6-Well (cell passage 

1). On day 11, supernatant passage 2 and cell passage 1 were fixed with 80 % acetone and stained 

for RABV N to examine whether infectious virus was already in the supernatant passage 2, or if 

the virus spread in the transfected BSR-T7 cells. If the RABV N staining of supernatant passage 2 

was positive, the 8 mL of the T25 cell culture flask were cleared of cell debris, aliquoted and stored 

at – 80 °C (rescue harvest 1; day 11) and GMEM 4+ was added to the T25 cell culture flask. Three 

days later, the supernatant was harvested, purified, and stored as described above (rescue harvest 

2). After the viral titers of rescue harvest 1 and 2 were determined by titration, they were used 

for the stock production of the recombinant RABV.  
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The supernatant passages as well as cell passages were not performed, when the recombinant 

RABV expressed a fluorescent protein, since the fluorescent protein enabled directly the 

monitoring of success of the virus rescue.  

3.2.9.2 Rescue of recombinant SAD ΔM eGFP  

The RABV matrix protein is a multifunctional protein, which plays an important role in the balance 

of virus transcription and replication, RABV assembly and budding. Thus to generated an M gene-

deficient SAD ΔM eGFP by reverse genetics, the deletion mutant has to be trans-complemented 

with M.  

According to the standard protocol 10 µg of the viral cDNA encoding SAD ΔM eGFP and the three 

“helper” plasmids pTIT-N, pTIT-P and pTIT-L were cotransfected in BSR-T7 cells (see 3.2.9.1). On 

day 2 and 3 (24 h and 48 h post transfection), 2 µg pTIT-M were transfected into the BSR-T7 cells 

using FuGENE HD transfection. On day 7, the success of the rescue was monitored the eGFP 

expression by fluorescence microscopy. If the rescue was positive, the transfected BSR-T7 cells 

were detached by trypsinization, transferred into a T25 cell culture flask, and mixed with about 5 

x 105 MGon136 cells. After the cells settled down, the expression of the matrix protein and the 

glycoprotein, which are under the control of a tetracycline inducible promoter, were induced by 

the addition of 1 µg/mL doxycycline. On day 9, the medium was replaced by fresh GMEM 4+ that 

contained, in addition to 1 µg/mL doxycycline, 4 mg/mL Hygromycin B in order to eliminate the 

BSR-T7 cells. To remove the dead BSR-T7 cells, the medium was replaced on day 10 by a fresh 

Hygromycin B and doxycycline containing GMEM 4+. The spread of SAD ΔM eGFP in MGon136 cells 

was monitored by fluorescence microscopy. As soon as the cell layer was completely infected, the 

supernatant was cleared of cell debris by centrifugation, aliquoted and stored at – 80 °C. After the 

titer was determined by titration on BSR-T7 cells, the rescue was used for the stock production of 

SAD ΔM eGFP on MGon136 cells. 

3.2.9.3 Rescue of recombinant SAD ΔG eGFP (SAD G) 

The RABV glycoprotein is essential for cell attachment, receptor-mediated endocytosis and the 

pH-dependent release of the RNP-complex into the cytoplasm. In order to rescue an infectious 

recombinant G gene-deficient SAD (SAD ΔG eGFP), the virus has to be trans-complemented with 

the glycoprotein. 

BSR-T7 cells were transfected according to the standard rescue protocol (see 3.2.9.1). 24 h and 48 

h post transfection, the FuGENE HD transfection kit was used to transfect 2.5 µg pTIT-G into the 

transfected BSR-T7 cells. On day 7, the success of the rescue was checked by monitoring the eGFP 
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expression by fluorescence microscopy. If the rescue was successful, the transfected BSR-T7 cells 

were detached by Trypsinization, transferred into a T25 cell culture flask and mixed with 5 x 105 

MGon139 cells which express in contrast to MGon136 cells more G than M. After the cells were 

settled down, the MGon139 cells were induced with 1 µg/mL doxycycline. To kill the BSR-T7 cells, 

the medium was replace by doxycycline and 4 mg/mL Hygromycin B containing medium. On the 

next day the dead BSR-T7 cells were replaced by fresh doxycycline and Hygromycin B containing 

GMEM 4+. As soon as all cells were infected, the supernatant was purified of cell debris, aliquoted 

and stored at - 80 °C. The rescue was titrated on BSR-T7 cells and used to inoculate MGon139 cells 

for the generation of the recombinant G gene-deficient SAD.  

3.2.10 Virus stock production 

In the following, the stock productions of full-length SAD, M gene-deficient SAD ΔM eGFP and G 

gene-deficient SAD ΔG eGFP (SAD G) are explained.  

For the stock production of full-length SAD, 7.5 x 105 up to 1 x 106 BSR-T7 cells were seeded in a 

T25 cell culture flask. Two hours post seeding, after the cells settled down, BSR-T7 cells were 

infected with the virus rescue at a MOI of 0.01. Four days after infection, the supernatant (harvest 

1) was replaced by fresh GMEM 4+ and the first harvest was purified from cell debris by 

centrifugation, aliquoted and stored at - 80 °C. On day 8, the supernatant was harvested, purified 

and aliquoted for a second time. The viral titers were analyzed by titration on BSR-T7 cells. If the 

recombinant virus was highly attenuated, the infected BSR-T7 cells were expanded into a T75 cell 

culture flask and the virus was harvested to a later time point. Furthermore, the virus supernatant 

was concentrated by an ultracentrifugation step (see section 3.2.15).  

The M gene-deficient SAD ΔM eGFP and the G gene-deficient SAD ΔG eGFP (SAD G), were 

produced on doxycycline induced MGon136 cells or MGon139 cells. MGon139 cells were induced 

already 4-6 h post infection with 1 µg/mL doxycycline, whereas MGON136 cells were induced 24 h 

post infection with 1 µg/mL doxycycline. Otherwise, the protocol was identical to the above 

described stock production of full-length SAD. Also the titrations were performed on BSR-T7 cells.  

3.2.11 Titration of virus 

In order to analyze the amount of infectious virus particles in the supernatant, the focus forming 

unit per mL (ffu/mL) was determined by titration. 

First, 100 µL of an about 1.5 x 105cells/mL BSR-T7 cell suspension were seeded per 96-well. Two 

hours post seeding, the titration was performed. Therefore, frozen virus supernatants were 

thawed and a serial dilution consisting of seven 1/10 dilution steps ranging from 10-2 up to 10-8 
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were prepared in GMEM medium. Finally, the BSR-T7 cells were infected in duplicates with 100 

µL of each dilution including the non-diluted supernatant. 

48 h post infection with full-length virus or 72 h after the infection with G gene-/M gene- deficient 

virus, the supernatant was discarded, the cells were fixed with chilled 80 % acetone and stained 

with Centocor, which is a FITC-conjugated antibody against RABV N. Subsequently, the cells were 

washed three times with PBS and the foci of the full-length virus infected cells or the infected 

single cells, which resulted from the infection with G gene-deficient SAD, were counted by 

fluorescence microscopy. Finally, the ffu/mL were calculated. 

3.2.12 Fluorescence labeling of RABV positive cells 

The following procedure was used for the evaluation of infectious virus titers and for visualization 

of RABV infected mESC-derived neurons. 

First, the supernatant was discarded or in the case of neurons carefully aspirated, washed once 

carefully with PBS, once with chilled 80 % acetone and finally fixed with 80 % chilled acetone at 4 

°C for 20 min. Afterwards, acetone was removed and the fixed cells were air dried for up to 30 

min. Subsequently, the cells were incubated for two hours at 37 °C with the FITC Anti-Rabies 

Monoclonal Globulin (Fujirebio Diagnostics). Lastly, the FITC-conjugated antibody solution was 

aspirated, the cells were washed twice with PBS and evaluated by fluorescence microscopy. 

3.2.13 Multistep growth curves 

The growth kinetics of recombinant viruses were determined by a multistep growth curve. 

Therefore, 1 x 106 BSR-T7 cells, N2A cells or HEK293T cells were seeded per T25 cell culture flask. 

Two hours post seeding, the cells were infected with the recombinant virus at a MOI of 0.01. Four 

hours post infection, the cells were washed twice with the appropriate medium and finally 

covered with 8 mL medium. 4.5 h post infection the first sample was taken. Therefore, two 500 µL 

samples were taken, cleared from cell debris by centrifugation (1600 rpm, 4 °C, 10 min) and stored 

at - 80 °C. Afterwards 1 mL fresh medium was added to the cells. Further samples were taken 24 

h, 48 h and 72 h post infection. At last, the virus titers were determined by titration. 

3.2.14 Generation of SAD ∆G (EnvA)  

To pseudotype SAD ΔG with the envelope protein of the avian sarcoma and leucosis virus (EnvA), 

BHK EnvA cells were seeded in a 10 cm dishes (5-10 plates). On the next day (day 2), the cells were 

infected with SAD ΔG (SAD G) at a MOI of one. Six hours post infection, the cells were washed 

thrice with GMEM 4+, followed by trypsinization (5 min at 37 °C) and subsequent inactivation of 
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Trypsin with GMEM 4+. The cell suspension was centrifuged (1600 rpm, 4 °C, 10 min), the cell 

pellet was resuspended in fresh GMEM 4+ medium and split 1/1.5. On day three, the cells were 

washed once with GMEM 4+. Another three days later (day 6) the supernatant was harvested and 

cleared from cell debris by centrifugation (1600 rpm, 4 °C, 10 min). Fresh GMEM 4+ medium was 

added onto the cells to enable a second harvest another three days later (day 9). To increase the 

virus titer, the virions were concentrated by an ultracentrifugation step.  

3.2.15 Virion purification by ultracentrifugation  

Virus purification via a 20 % Sucrose solution 

Virions were purified and accumulated by ultracentrifugation. Therefore, 3.5 mL of a chilled 20 % 

Sucrose solution were overlaid with 12 mL of a cleared virus suspension, in a Beckman Coulter 

centrifuge tube. The tubes were transferred into chilled buckets. The ultracentrifugation was 

performed at 24000 rpm (104838 g), 2 h and 4 °C. Afterwards, the medium and the 20 % Sucrose 

were carefully aspirated and 100 µL of the desired medium or PBS was added. The pelleted virus 

was soaked for two hours up to overnight at 4 °C, before the virus pellet was resuspended by 

carefully pipetting up and down. The virus suspension was aliquoted and stored at – 80°C. Finally, 

the virus titer was determined by titration. 

 

Virion purification via Sucrose cushion ultracentrifugation 

For EM studies, the virions were purified via a sucrose cushion ultracentrifugation in order to 

remove debris and pellet the virions as gentle as possible. Therefore, a 1 mL of a 60 % sucrose 

solution was put under 4 mL of a 20 % sucrose solution, which was in turn overlaid with the cleared 

virus suspension in a Beckman Coulter centrifuge tube. The ultracentrifugation was performed at 

24000 rpm, 2 h and 4 °C. Afterwards, exclusively the virion comprising intermediate layer was 

aspirated with a hollow needle. The virus suspension was aliquoted, stored at – 80 °C and the 

ffu/mL was determined by titration. 

3.2.16 Trans-complementation of SAD ∆G 

The trans-complementation assays of SAD ΔG were performed in HEK293T cells. To investigate 

the incorporation of the recombinant glycoproteins into the virus 1.5 x 106 HEK293T cells were 

seeded into a 10 cm dish. On the next day, 10 µg DNA/10 cm dish were transfected according to 

the PEI transfection protocol. 24 h post transfection, the cells were washed twice with DMEM 3+, 

followed by the infection with G gene-deficient virus at a MOI of one up to three. At 16 h post 

infection, the cells were washed once with DMEM 3+ and subsequently trypsinized (5 min, 37 °C). 
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After 5 min, the Trypsin was inactivated by the addition of DMEM 3+, the cells were pelleted (1600 

rpm, 4 °C, 10 min) and split 1/1.5. 48 h post infection, the supernatant was cleared from cell debris 

and samples of the supernatant were taken and stored at - 80 °C to evaluate the infectious titer 

by titration. The remaining supernatant was undergone an ultracentrifugation step, in order to 

accumulate the virions. The pelleted virions were lysed in 100 µL lysis buffer and the incorporation 

of the glycoprotein into the virion was examined by SDS-PAGE, Western blotting and 

immunostaining. Further, to investigate the transfection efficiency as well as the expression of the 

recombinant glycoproteins, 1/10 of the transfected cells were lysed in lysis buffer and analyzed in 

parallel to the virion lysate by SDS-PAGE, Western blotting and immunostaining. 

3.2.17 Sequencing of virus 

In the following, the different steps to sequence a recombinant virus are listed. 

3.2.17.1 RNA Isolation 

500.000 BSR-T7 cells were seeded in a 6-well. Two hours post seeding, the cells were infected with 

virus at a MOI of 0.1. Two days post infection, the supernatant was aspirated, the cells were lysed 

in 350 µL RLT buffer with 1 % β-mercaptoethanol and stored at –80 °C. The RNA of the infected 

cells was extracted according to the RNeasy Mini Kit instruction manual.  

3.2.17.2 Reverse transcription 

The RNA was transcribed into cDNA using the Transcriptor Reverse Transcriptase kit (Roche). 

Therefore, 1 µg RNA was diluted in 6.6 µL RNAse free water and annealed with an adequate primer 

(0.3 M) for 10 min at 65 °C in a Thermocycler. After the annealing step, the samples were cooled 

down to 4 °C. Subsequently, 2 µL of the 5 x buffer, 0.25 µL RNAsin, 0.4 µL dNTPs (25 mM) and 0.25 

µL RT were added and incubated for 30 min at 55 °C (cDNA polymerization), followed by heat 

inactivation of the reverse Transcriptase (5 min, 85 °C). Finally, the reaction mix was cooled down 

to 4 °C and the cDNA sample was stored at -20 °C.  

At last, the cDNA was amplified by PCR with adequate primers, the PCR product was purified and 

analyzed by Sanger Sequencing, which was performed by GATC Biotech. 
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4 Results 

4.1 Generation of an in vitro model to investigate RABV in neurons in a 

mouse free system 

RABV is a highly neurotropic virus, which spreads from the site of infection along neurons of the 

PNS to the CNS. Nevertheless, most in vitro studies of RABV were performed in non-neuronal cells, 

neuroblastoma cell lines or neuroblastoma cells differentiated into neurons, while biochemical 

investigations of RABV in its natural target cells were missing. Therefore, an in vitro model for the 

investigation of RABV in neurons of the CNS is needed. 

In this thesis, first, the cultivation of mESCs in a feeder-free culture system was introduced. 

Second, a highly reliable differentiation protocol of mESCs into glutamatergic pyramidal neurons 

was established. Pyramidal neurons exhibit a pyramidal or teardrop shaped soma, a single axon 

emerging from the base of the soma, multiple short basal dendrites and one large apical dendrite 

which connects the cell body with a tuft of dendrites (Spruston, 2008). They are found in the 

cerebral cortex, hippocampus, and amygdala (Spruston, 2008). Since RABV infects pyramidal 

neurons of cortex and hippocampus, the mESC-derived glutamatergic pyramidal neurons 

represent a perfect model to investigate RABV in vitro (Jackson and Fu, 2013). 

4.1.1 Differentiation of mESCs into glutamatergic pyramidal neurons 

The following feeder-free mESC culture system and neuronal differentiation protocol of mESCs to 

glutamatergic pyramidal neurons is based on published data (Bibel et al., 2004; Garcia et al., 

2012a; Silva et al., 2008) and the consulting of Fabio Spada (LMU, Department of Chemistry and 

Pharmacology). 

The protocol was performed with mouse strain 129/SvJ mESCs and its transgenic ROSA-tom-R-I-

TVA mESCs, which were provided by Benjamin Arenkiel (Baylor College of Medicine, Houston, 

Texas, US). During the whole process, the mESCs were cultured at 37 °C and 5 % CO2. 

The workflow for the differentiation of mESCs into glutamatergic pyramidal neurons is depicted 

in Figure 6. 
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Figure 6: Differentiation of mESCs into glutamatergic pyramidal neurons. 

The workflow of the differentiation process is depicted schematically, including the particular medium and 

representative photographies of each differentiation state. The last photography shows fixed mESC-derived 

neurons, stained with To-Pro3 and monitored by confocal laser scanning microscopy.  

 

4.1.1.1 Feeder free mESC culture system 

Freshly thawed mESCs were cultured for two passages (Figure 6 day 1-6) in LIF/2i mESC medium 

before the differentiation was started (section 3.2.2.2). Briefly, LIF leads to the receptor-mediated 

stimulation of JAK and the activation of the transcription factor STAT3 and thereby supports the 

self-renewal of mESCs (reviewed in (Nichols and Smith, 2012; Ying and Smith, 2017)). In addition 

to LIF, two inhibitors (2i) were added to the medium. One of the inhibitors is CHIR99021, which 

inhibits GSK3 of the Wnt signaling pathway, thus stabilizes β-Catenin that interacts in the nucleus 

with the repressor Tcf3, dissociates the repressor from its DNA binding site and leads therewith 

to the transcription of pluripotency factors (reviewed in (Nichols and Smith, 2012)). The other 

inhibitor is PD0325901, which inhibits the ERK pathway by blocking MEK1/2 and thereby blocking 

the differentiation of the naive pluripotent mESCs (Van der Jeught et al., 2013; Ying and Smith, 

2017). Even the 2i are sufficient to keep the mESCs in the naive pluripotent state by blocking the 

differentiation pathways and conserving the intrinsic metabolic and proliferative program of the 

mESCs, the combination of LIF and 2i leads to an even better clonal propagation of the naive 

pluripotent mESCs (reviewed in (Ying and Smith, 2017)). The resulting mESCs formed characteristic 

round, dome-shaped colonies, which represented the inner cell mass-like pluripotent state (Figure 

7A). The LIF/2i mESC medium was replaced approximately 30 h post splitting and the mESCs were 

split every 48 h (Hanna et al., 2010; Park et al., 2013). 

The pluripotency of the cultured mESCs was confirmed by immunostaining for the pluripotency 

marker Oct4. Filamentous actin was stained with CytoPainter Phalloidin-iFluor 555 in order to 

discriminate the different single cells in the cell cluster. The nuclei were stained with To-Pro3 

(Figure 7A). The mESCs formed clusters exhibited the characteristic small diameter between 10-

12 µm, a big nucleus, only little cytoplasm and were Oct4 positive (Totey, 2009; Zeineddine et al., 

2014). 

4.1.1.2 “Priming” of naive pluripotent mESCs 

To make the naive pluripotent mESCs susceptible for the differentiation, they have to be 

converted into mouse epiblast stem cells (mEpiSCs), also named primed pluripotent stem cells 

(Nichols and Smith, 2009). The transformation of naive pluripotent mESCs into primed pluripotent 

stem cells was induced by the withdrawal of the 2i and the cultivation of the cells for two passages 
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in LIF mESC medium (Figure 6 day 6-10). To examine whether the mESCs transformed into primed 

pluripotent stem cells, the cell morphology, and the Oct4 expression were investigated by 

microscopy (Figure 7A). The primed pluripotent stem cells grew in a characteristic flattened 

monolayer, the diameter of the cells increased, the nucleus to cytoplasm ratio was still large (as it 

is in mESCs) and the cells were still Oct4 positive. These observations indicated that the naive 

pluripotent mESCs were transformed successfully into mEpiSCs (Nichols and Smith, 2009). 

4.1.1.3 Formation of embryoid bodies 

The next step of the differentiation is the transformation of the mEpiSCs to embryoid bodies (EBs). 

Therefore, three million mEpiSCs cells were seeded into a specific non-adhesive 10-cm petri dish 

(Greiner cat. no. 633102). The non-adhesive petri dish enabled mEpiSCs to float and thus allowed 

the formation of EBs, which had still the potential to differentiate into one of the three germ layers 

(Rungarunlert et al., 2009). The EBs were cultured in 15 mL EB medium per 10 cm petri dish, since 

previous experiments had shown that smaller volume caused attachment and unspecific 

differentiation of EBs. On day 12, the floating two days old EBs (EBI) were selectively transferred 

with a 25 mL pipette into a 50 mL reaction tube. The EBs were passively settled down for 5 min at 

RT, the supernatant was aspirated, EBs were carefully resuspended in prewarmed EB medium with 

a 10 mL pipette by pipetting up and down twice and finally split 1/2 up to 1/4 with prewarmed EB 

medium into a fresh non-adhesive 10-cm petri dish.  

On day 14, the differentiation process was only proceeded with plates in which less than 10 % of 

the four days old EBs (EBII) attached to the dish. Since attached cells were considered 

unspecifically predifferentiated, a high number of them would have resulted in neuronal cultures 

with a high content of non-neuronal cells. Exclusively the floating EBs were split 1/1 up to 1/4, as 

described above.  

4.1.1.4 Transformation of EBs to neurospheres  

The transformation of the four days old EBs into neurospheres was induced on day 14 by the 

supplementation of the EB medium with 5 µM retinoic acid (RA). RA is a morphogenic and 

teratogenic compound, which induces differentiation in vitro. All-trans RA activates a retinoic acid 

receptor (RAR), which is a ligand-dependent transcription factor. After activation, RAR binds to a 

retinoic acid response element and leads to the transcription of target genes (Rohwedel et al., 

1999). Most likely, all-trans RA induces the transcription of Wnt antagonist Dickkopf-1, which 

blocks the Wnt signaling pathway and induces neural differentiation (Xu et al., 2012).  
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RA treated cells were handled as far as possible under the exclusion of light, to avoid the 

metabolization of cis-retinoic acid, which binds in addition to RARs also to retinoic acid X receptors 

(RXRs), probably leading to the transcription of unwanted target genes (Rohwedel et al., 1999).  

On day 16, the all-trans RA-treated neurospheres (NSI) were, dependent on their cell density, split 

1/1 up to 1/3 into a fresh non-adhesive 10-cm petri dish, followed by a second round of treatment 

with 5 µM RA for another 48 h (NSII). 

To monitor the transition of EBs to neurospheres, an immunostaining for the pluripotency marker 

Oct4 and the neural progenitor marker Nestin was performed (Figure 7B). The size of the spherical 

cluster doubled at least from EBI to NSII. The Oct4 staining was in the periphery of EBI cluster as 

well as in NSII cluster, more prominent than in the center, but there was no big difference in the 

fluorescence intensity of Oct4 in EBI or NSII, indicating that the pluripotency marker was expressed 

in both differentiation states equally. However, the staining with the neural progenitor marker 

Nestin increased tremendously from EBI to NSII. These observations indicated that the RA driven 

transformation of embryoid bodies to neurospheres was successful.  
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Figure 7: Characterization of naive pluripotent mESCs, mEpiSCs, EBs and neurospheres. 

The cells were stained with the indicated markers and examined by confocal laser scanning microscopy. A, 

mESCs and mEpiSCs were stained with the pluripotency marker Oct4, the actin marker CytoPainter 

Phalloidin-iFluor 555, and the nucleus marker To-Pro3. B, Two days old EBs (EBI) and four days old 

neurospheres (NSII) were stained with Oct4, the neural progenitor marker Nestin and To-Pro3.  
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4.1.1.5 Differentiation of neurospheres to glutamatergic pyramidal neurons 

The success and efficiency of the differentiation depends on the quality of the neurospheres. Small 

and dark neurospheres were considered nonspecifically predifferentiated and unusable. Hence, 

only plates with less than 10 % attached neurospheres, containing large neurospheres with a 

bright or only slightly dark center were used for the differentiation.  

One day before differentiation, the desired amount of plastic dishes were coated with 0.1 mg/mL 

PDL and glass-bottom dishes were coated with 1 mg/mL PDL overnight at 37 °C. On the next 

morning (day 18), the aqueous PDL solution was aspirated and the plates were carefully washed 

with water twice. After the second wash step, PBS was added and the plates were stored at 37 °C. 

On day 18, the neurospheres were passively settled down, the old medium was aspirated and the 

four days old all-trans RA treated neurospheres were dissociated chemically by incubating the cell 

pellet with 1 mL Stem Pro Accutase for 5 min at 37 °C, followed by an additional mechanical 

dissociation step. Therefore, the Stem Pro Accutase treated cells were pipetted up and down 15-

20 times with a 1000 µL pipette while it was ensured that the pipette tip was very close to the 

bottom of the reaction tube and no bubbles were produced. The milky 1 mL cell suspension was 

diluted in 9 mL prewarmed EB medium, followed by centrifugation (RT, 160 g and 5 min). The 

pelleted cells were resuspended in prewarmed Neurobasal/B27/FBS medium and the remaining 

cell clusters were removed by filtration of the cell suspension through a 40-µm Nylon cell strainer. 

Since only single neurosphere cells result in an efficient differentiation, the dissociation of the 

neurospheres represents a crucial step during the differentiation.  

A suspension with the desired cell concentration was prepared (in most cases 6 x 105 cells/mL as 

the ideal volume in a 12-Well is 1 mL), followed by the aspiration of PBS from the PDL coated 

dishes, and seeding of 1.5 x 105 cells per cm2 into the dishes. Two hours post seeding the medium 

was carefully exchanged.  

While FBS is essential for the differentiation of neurons during the first two days (at least in our 

system), it causes the differentiation of non-neuronal cells. For the elimination of non-neuronal 

cells, the Neurobasal/B27/FBS medium was replaced by Neurobasal/B27/10 µM ara-C medium. 

The withdrawal of FBS in combination with the application of ara-C, which is a pyrimidine 

nucleoside analog, kills exclusively dividing cells. The Neurobasal/B27/10 µM ara-C medium was 

replaced after 48 h by Neurobasal/B27 medium. Finally, an almost pure ready-to-use culture of 

glutamatergic pyramidal neurons was generated. In order to conserve the neuronal network, only 

50 % of the medium were renewed every second day. By this treatment, the neuronal network 

survived up to three weeks. 
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4.1.1.6 Characterization of mESC derived neurons 

To characterize the mESC-derived neurons, immunostainings for a neuronal marker, an axonal 

marker, a dendritic marker, and a marker for the postsynaptic density were performed (Figure 

8A). The staining for the neuronal marker β-III Tubulin revealed that the cells were differentiated 

into neurons. The costaining for the dendritic marker MAP2 and the axonal marker NF-H 

demonstrated the existence of a neuronal network that is composed of axons and dendrites 

(neurites). Moreover, as the staining was not overlapping, it could be concluded that the protein 

sorting of axonal and somatodendritic proteins was strict. The costaining of MAP2, To-Pro3 and 

PSD-95 revealed a teardrop-shaped soma with one apical dendritic tree and several basal 

dendritic trees. This morphology, in combination with the PSD-95 staining strongly suggests that 

this are the desired glutamatergic pyramidal neurons ((Sheng and Kim, 2011; Spruston, 2008; 

Tiffany et al., 2000; Vyas and Montgomery, 2016).  

Next, it was examined whether the mESC-derived neurons form functional synapses. Since RABV 

propagates exclusively via chemical synapses, the virus was used to confirm that the neurons were 

connected this way (reviewed in (Ugolini, 2011)). Hence, neurons were infected with SAD mCherry 

at a MOI of 0.0001. At 24 h post infection, only single infected neurons were detected. Already 48 

h post infection, multiple synaptically connected neurons were infected, indicating that SAD 

mCherry infected neighboring cells via transsynaptic spread (Figure 8B). 
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Figure 8: Characterization of mESC-derived glutamatergic pyramidal neurons. 

A, Fixed mESC-derived neurons were stained the neuronal marker β-III Tubulin, the dendritic marker MAP2, 

the axonal marker NF-H, the postsynaptic density marker PSD95 and To-Pro3 and subsequently investigated 

by confocal laser scanning microscopy. The white scale bar represents 10 µm. B, mESC-derived neurons 

were infected with SAD mCherry at a MOI of 0.0001. RABV spread was examined to the indicated time points 

by monitoring the expression of virus encoded mCherry. The white scale bar represents 100 µm. 

 

4.1.2 Generation of an in vitro model to study the monosynaptic spread of RABV  

RABV is a neurotropic virus, which is used for retrograde poly-transsynaptic tracing (Astic et al., 

1993; Kelly and Strick, 2000). By using a glycoprotein gene-deficient RABV (RABV ΔG) that is 

pseudotyped with the envelope protein of the avian sarcoma and leucosis virus (EnvA), a defined 

TVA-expressing starter cell can be infected. The in situ trans-complementation of RABV ΔG with 

the RABV glycoprotein enables the spread of RABV ΔG to monosynaptically connected neurons, 

resulting in the retrograde monosynaptic tracing model, which is a milestone in revealing neuronal 

circuits in vivo and in explanted tissue (Wickersham et al., 2007a; Wickersham et al., 2007b) 

(reviewed in (Callaway and Luo, 2015)).  

However, there is no mouse free in vitro model described to study monosynaptic spread of RABV 

in a pure cell culture system. 

Using gene targeting, Garcia and colleagues generated the transgenic 129/SvJ ROSA-tom-R-I-TVA 

mESCs (Garcia et al., 2012a). As the name indicates, the DNA construct is targeted to the ROSA26 

locus. The DNA construct consists of an EF1α promoter, followed by a tdTomato reporter that is 

fused to a self-cleaving P2A peptide, followed by a G gene. The G sequence is followed by an IRES, 

a Neomycin resistance gene, a second IRES and finally a TVA gene. The organization of that DNA 

construct results in a simultaneously expression of all four genes (Figure 9A) (Garcia et al., 2012a).  
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Like the parental 129/SvJ mESCs, the transgenic ROSA-tom-R-I-TVA mESCs were cultured, primed, 

transformed to EBs and induced by RA to form neurospheres. After the neurospheres were 

dissociated chemically and mechanically, 99.9 % of the parental 129/SvJ were mixed with 0.1 % of 

dissociated transgenic ROSA-tom-R-I-TVA neurospheres. That resulted in a neuronal network in 

which one neuron of 1000 neurons was permissive for the infection with an EnvA pseudotyped G-

gene deficient virus. 

A model of the retrograde monosynaptic tracing is depicted in Figure 9B.  

To investigate if the mixed population of neurons fulfilled the requirements for a reliable mono-

transsynaptic spread model, it was examined whether (I) SAD ΔG eGFP (EnvA) exclusively infected 

tom-R-I-TVA neurons, (II) the starter cells provided sufficient glycoproteins for the trans-

complementation of SAD ΔG eGFP and (III) the transgenic ROSA-tom-R-I-TVA neurons formed 

chemical synapses with the parental 129/SvJ neurons.  

Thus, a neuronal mix population was infected with SAD ΔG eGFP (EnvA) at a MOI of one. At 24 h 

post infection, SAD ΔG eGFP (EnvA) infected exclusively the TVA expressing starter cells, since all 

eGFP positive cells were also tdTomato positive, leading to yellow starter cells. At 48 h post 

infection, next to 22 yellow starter cells, 64 exclusively green neurons, which represent the 

monosynaptically connected second order neurons, were detected in the representative 

photography. As expected, in a population of only parental neurons, which were infected with 

SAD ΔG eGFP (EnvA) at a MOI of one, no green cell could be detected, even 48 h post infection 

(Figure 9C).  

Taken together, these data indicate that SAD ΔG eGFP (EnvA) exclusively infected TVA expressing 

transgenic neurons. It was further shown that tom-R-I-TVA neurons expressed sufficient G 

proteins for the trans-complementation of SAD ΔG eGFP and that chemical synapses were formed 

between the transgenic tom-R-I-TVA and the parental 129/SvJ cells. Hence, a solid mouse free in 

vitro system was established for the investigation of the monosynaptic spread of RABV. 
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Figure 9: monosynaptic tracing in mESC-derived neurons. 

A, Schematic representation of the Rosa26 locus of the transgenic ROSA-tom-R-I-TVA mESCs. B, Sketch of 

the monosynaptic tracing model in a neuronal mix population (detailed described in section 2.1.7). C, A 

neuronal mix population consisting of 99.9 % 129/SvJ and 0.1 % tom-R-I-TVA neurons and a neuronal culture 
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of only parental neurons were infected with of SAD ΔG eGFP (EnvA) at a MOI of one. The eGFP fluorescence 

and the tdTomato fluorescence were monitored at the indicated time points. In the upper two rows, 

photographies of the infected neuronal mix population and in the lower two rows, photographies of the 

infected parental 129/SvJ neurons are depicted. The white scale bar represents 250 µm. 

 

 

 

 

4.2 Transsynaptic spread of RABV 

RABV is a neurotropic virus, which spreads in the nervous system exclusively via chemical synaptic 

connections. In this thesis, mESC-derived glutamatergic pyramidal neurons were used as an 

appropriate mouse free in vitro model, to study the neuronal transfer of RABV.  

4.2.1 Role of RABV M in transsynaptic spread 

In 1999, Mebatsion and colleagues have shown in BSR cells that the RABV matrix protein is crucial 

for the assembly and budding RABV, since an M gene-deficient RABV was unable to bud of the cell 

membrane, leading to a 500,000-fold reduction in cell-free infectious virus titers (Mebatsion et 

al., 1999). However, the role of the matrix protein in neuronal transfer of RABV is still unknown.  

To enable a direct detection of SAD ΔM infected cells by fluorescence an M gene-deficient, and 

eGFP encoding recombinant SAD was generated (Figure 10A). 



4 - Results 

69 

 

 

Figure 10: The neuronal transfer of RABV is dependent on the matrix protein. 

A, Schematic representation of the genome of SAD eGFP and the M-gene deficient SAD ΔM eGFP. B, mESC-

derived neurons were infected with SAD eGFP and SAD ΔM eGFP at a MOI of 0.001. The infected neurons 

were fixed and stained for RABV N protein at the indicated time points. BF represents the bright field images. 

The white scale bar represents 100 µm. 

  

After the successful generation of SAD ΔM eGFP by reverse genetics, it was investigated whether 

the matrix protein is crucial for the transsynaptic spread of SAD. Therefore, mESC-derived neurons 

were infected with SAD eGFP or SAD ΔM eGFP at a MOI of 0.001. The infected neurons were fixed 

with chilled 80 % acetone 36 h, 60 h or 84 h post infection. Finally, the neurons were stained for 
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RABV N. In contrast to SAD eGFP, SAD ΔM eGFP exhibited a severe defect concerning the neuronal 

transfer, since the M gene-deficient virus hardly infected synaptically connected neurons, even 84 

h post infection. This indicates that the matrix protein plays also in neurons a crucial role for RABV 

budding and thus for the neuronal transfer of RABV (Figure 10B). 

4.2.2 Role of the ESCRT machinery in the neuronal transfer of RABV 

The ESCRT machinery has numerous cellular functions like the biogenesis of MVBs or the protein 

sorting from the endosome to the lysosome and cytokinesis. Furthermore, several enveloped virus 

utilize the ESCRT machinery for virus budding. The interaction between a component of the ESCRT 

machinery and a viral protein is mediated by a late domain (Votteler and Sundquist, 2013). The 

RABV matrix protein contains two late domains, which are overlapping. Wirblich and colleagues 

demonstrated that the 38YVPL41 motif had no effect on RABV spread, whereas the disruption of 

the 35PPEY38 motif led to an approximately 100-fold reduction of viral titers in a single step growth 

curve in NA cells and BSR cells (Wirblich et al., 2008).  

With the aim of analyzing the role of the 35PPEY38 motif in the transsynaptic spread of RABV, I used 

the two recombinant matrix proteins M34AAA and M35AA. In M34AAA three prolines, including 

the proline in front of the late domain (P34) were replaced by alanines and in M35AA only the two 

prolines of the late domain were substituted by alanines.  

First, it was examined which late domain mutant has the biggest negative impact in terms of the 

budding of RABV in HEK293T cells. Thus a trans-complementation assay of M gene-deficient SAD 

was performed. Since M regulates also the transition from transcription to replication, an 

overexpression of the matrix protein before the infection would inhibit the viral transcription and 

stimulate viral replication, before enough viral proteins and consequently enough RNPs are 

produced (Finke et al., 2003). Thus, HEK293T cells were infected first with SAD ΔM eGFP at a MOI 

of one. Three days post infection, the M gene-deficient virus was trans-complemented by 

transfecting M-wt, M35AA or M34AAA. Two days post transfection, the virus containing 

supernatants were harvested for an endpoint titration, and the cells were harvested in order to 

control the protein expression levels of the M variants by SDS-PAGE, Western blotting and 

immunostaining against M.  

As illustrated in Figure 11A, M35AA and M34AAA were slightly better expressed than M-wt. The 

trans-complementation of SAD ΔM eGFP with M35AA resulted only in a modest reduction in virus 

release, whereas M34AAA caused a 10-fold reduction of infectious virus titers compared to M-wt. 

In comparison to the negative control, whose titer was only 100-fold reduced, the 10-fold 

reduction of M34AAA represents a solid effect. Interestingly, P34A appears to play an important 

role in RABV budding, even it is not part of the late domain motif. 
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To gain a deeper insight into the effect of the late domain mutant M34AAA on the release of RABV 

in non-neuronal cells and to study particularly the effect of M34AAA on the neuronal transfer of 

RABV, reverse genetics was used to generate the recombinant virus SAD M34AAA eGFP. As a 

control for the rescue, SAD eGFP was rescued in parallel. Interestingly, the rescue of SAD M34AAA 

eGFP resulted in an increased cell-cell fusion activity of the infected cells (Figure 11B), a phenotype 

which was previously described for SAD ΔM infected BSR cells (Mebatsion et al., 1999). Since the 

rescue of SAD M34AAA eGFP resulted in a very low titer, the stock production was performed on 

MGon136 cells, which express M under the control of a Tetracycline regulated inducible promoter.  

The growth kinetics of SAD M34AAA eGFP were characterized by multistep growth curves in BSR-

T7 cells, HEK293T cells and N2A cells in order to rule out a cell line dependent effect. In each cell 

line, SAD M34AAA eGFP exhibited a strong attenuation in the viral growth kinetics compared to 

SAD eGFP (Figure 11C). These data indicate, in agreement with the published data, that the spread 

of SAD was dependent on the late domain and the ESCRT pathway, albeit no total blockade of the 

virus release was detected. Remarkably, SAD M34AAA eGFP exhibited a 10-fold up to 100-fold 

stronger budding defect compared to the published phenotype of SPBN M35S (Wirblich et al., 

2008), which is also a SAD strain, indicating that P34 plays an important role in virus release, 

although it is not part of the canonical PPEY late domain motif.  
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Figure 11: The budding of the late domain mutant M34AAA is more strikingly impaired than of M35AA. 

A, Trans-complementation assay of SAD ΔM eGFP in HEK293T cells. HEK293T cells were infected with SAD 

ΔM eGFP at a MOI of one. Three days post infection the cells were transfected with the annotated M 

constructs. Another two days post transfection the supernatants were harvested and titrated on BSR-T7 

cells. The protein expression levels of the M constructs were evaluated by SDS-PAGE, Western blotting and 

immunostaining for the indicated antibodies. B, Representative photographies of foci in BSR-T7 cells, which 

were taken five days post transfection of the rescue. The white scale bar represents 100 µm. C, Multistep 

growth curves of SAD M34AAA eGFP in comparison to SAD eGFP in HEK293T cells, BSR-T7 cells and N2A 

cells. The samples were taken to the indicated time points and titrated on BSR-T7 cells. 
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After confirmation of the budding defect of SAD M34AAA eGFP in non-polarized cell lines, it was 

investigated whether the disruption of the late domain also has an effect on the spread of SAD in 

mESC-derived neurons. Therefore, mESC-derived neurons were infected with SAD M34AAA eGFP 

and SAD eGFP at a very low MOI. At the indicated time points, one plate of neurons was fixed with 

chilled 80 % acetone and stained with Centocor for RABV N. Subsequently, the total number of 

RABV N positive neurons in a 12-well was evaluated. Note that the 44 h value of SAD eGFP infected 

neurons was determined by screening the entire well with 128 photos, since the virus already 

infected too many neurons. Because of that, single infected cells could be hardly directly 

identified. Thus, it might be that the total number of SAD eGFP infected neurons at 44 h p.i. is 

even higher. Already at 38 h p.i., SAD M34AAA eGFP infected 1.4-fold less neurons than SAD eGFP. 

At 44 h post infection, SAD eGFP infected at least two-fold more neurons compared to SAD 

M34AAA eGFP. The reduced neuronal transfer of SAD M34AAA eGFP suggests that the ESCRT 

system is involved in the neuronal spread of RABV. However, like in BSR-T7 cells, HEK293T cells 

and N2A cells, no total blockade of the RABV transmission could be detected.  

 

Figure 12: The ESCRT machinery is involved in the neuronal transfer of RABV.  

A, Schematic illustration of the experimental setup to determine the neuronal transfer efficiency of 

recombinant RABV. mESC-derived neurons were infected with a very low MOI. The cells were fixed to the 

indicated time points, stained for RABV N and the number of infected cells was evaluated by fluorescence 

microscopy. B, Evaluation of the number of RABV N positive neurons to the indicated time points in an entire 

12-well. The pointed line of SAD eGFP infected neurons indicates that the actual number of infected neurons 

for the 44 h p.i. value might be even higher, as this value represents the number of infected neurons in 128 

photographies (objective 20x). For a detailed explanation see above. 
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The current knowledge of the impact of the late domain on RABV budding is based on SAD L16 

and SPBN, which differs only in two restriction sites from SAD L16 (Schnell et al., 2000). SAD L16 

is a recombinant clone of SAD B19, an attenuated vaccine strain that was adapted on BHK cells. It 

is unknown, whether the late domain in more neurotropic and virulent viruses, e.g. CVS-N2c, is as 

important as in the attenuated SAD virus. To address to the question, reverse genetics was used 

to replace SAD M by N2c M and N2c M34AAA, respectively, resulting in the chimeric SAD N2c M 

virus or SAD N2c M34AAA virus. Whereas rescue experiments for SAD N2c M resulted in titers of 

107 ffu/mL already seven days post transfection, the titers of SAD N2c M34AAA were only in the 

range of 101 ffu/mL, indicating a severe budding defect of SAD N2c M34AAA. While the stocks of 

SAD N2c M were produced according to the standard protocol in BST-T7 cells, the SAD N2c 

M34AAA stocks were produced on MGON136 cells, in order to trans-complement the chimeric virus 

with SAD M.  

The growth kinetics of SAD N2c M and SAD N2c M34AAA were examined by multistep growth 

curves in N2A cells and BSR-T7 cells. In both cell lines, SAD N2c M34AAA was attenuated compared 

to SAD N2c M. Interestingly, the level of attenuation between SAD N2c M and SAD N2c M34AAA 

was in a slightly smaller range than of SAD eGFP and SAD M34AAA eGFP (Figure 11A and Figure 

13A). 
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Figure 13: ESCRT-dependent budding of the chimeric SAD N2CM. 

A, Multistep growth kinetics of the chimeric SAD N2c M34AAA in comparison to and SAD N2c M in BSR-T7 

cells and N2A cells. The focus forming units per mL were determined on BSR-T7 cells. B, Evaluation of the 

transsynaptic spread of SAD, the chimeric SAD N2c M and their respective late domain mutants in mESC-

derived neurons. 

 

In order to investigate the effect of the disrupted late domain in the chimeric SAD N2c M on the 

neuronal transfer, mESC-derived neurons were infected with SAD eGFP, SAD eGFP M34AAA, SAD 

N2c M and SAD N2c M34AAA at a MOI of 0.00001. SAD N2c M spread much more effective than 

SAD eGFP (Figure 13B). Interestingly, the disruption of the late domain in N2c M protein caused a 

bigger attenuation of the virus in mESC-derived neurons than the disruption of the late domain in 

SAD M protein.  
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4.2.3 Role of the SNARE machinery in the transsynaptic spread of RABV 

The data shown so far provide some evidence for an involvement of the M-late domain and the 

ESCRT system in the neuronal transfer of RABV. Nevertheless, the disruption of late domain does 

not completely block the neuronal spread of RABV. 

SNARE proteins are essential for the attachment and fusion of vesicles in general. Further, specific 

SNARE proteins are essential for the fusion of synaptic vesicles with the presynaptic membrane 

and the resulting anterograde signal transmission. SNARE proteins are also located at the 

postsynaptic membrane, where they realize important tasks e.g. regulation of postsynaptic 

plasticity (reviewed in (Kennedy and Ehlers, 2011)). Since RABV spreads from a postsynaptic 

neuron to a presynaptic neuron by a transsynaptic spread, the SNARE machineries at the 

postsynaptic membrane might be involved in the budding and spread of RABV.  

In the following, a potential involvement of SNARE proteins in the transsynaptic spread of RABV 

in mESC-derived neurons was investigated. 

4.2.3.1 Effect of dominant-negative Syntaxin-1, -3 and -4 on the transsynaptic spread of 

RABV 

The syntaxin family consists of 15 members but only syntaxin-1, that comprises two isoforms (A 

and B) (Bennett et al., 1992; Bennett et al., 1993), syntaxin-2, syntaxin-3, and syntaxin-4 are 

located at the plasma membrane (Hussain et al., 2016; Teng et al., 2001). By the deletion of the 

transmembrane domain, a dominant-negative syntaxin is produced, which still binds to its cognate 

SNARE complex, but is unable to drive the membrane fusion (Kennedy et al., 2010; Olson et al., 

1997). 

In 2010, Kennedy and colleagues published that the dendritic exocytosis of the glutamate receptor 

AMPA is dependent on syntaxin-4 during LTP (Kennedy et al., 2010). Three years later Jurado and 

colleagues published that not syntaxin-4, but syntaxin-3 is an essential Q-SNARE for the 

postsynaptic fusion machinery during LTP (Jurado et al., 2013). In 2016, Hussain and colleagues 

showed that syntaxin-1 is not only localized at the active zone but also at the opposite site of the 

synapse, at the PSD (Hussain et al., 2016). Taken together, syntaxin-4, syntaxin-3 and syntaxin-1 

might be good targets to addressee to the question if the SNARE machinery plays a critical role in 

the neuronal transfer of RABV. 

The investigation of the effect of the dominant-negative syntaxins in the transsynaptic spread of 

RABV faced two problems. First, mESC-derived neurons are hardly transfectable and second it had 

to be ensured that every RABV infected neuron expressed the dominant-negative syntaxin. To 

meet those requirements, recombinant viruses were generated by reverse genetics. These 



4 - Results 

77 

 

recombinant viruses had an extra transcription unit that encodes for a dominant-negative human 

syntaxin with an N-terminal fluorescent tag (expression plasmid was kindly provided by Ehlers) 

(Figure 14). Additionally to viruses expressing individual dominant-negative variants of Stx1A, Stx3 

and Stx4, a recombinant virus encoding for dominant-negative eGFPStx4 and dominant-negative 

Stx3 was generated. 

 

Figure 14: Schematic representation of N-terminal tagged, dominant-negative syntaxin and schematic 

representations of the genome organization of SAD with an extra transcription unit. 

A, Schematic representation of the syntaxins is adopted from (Hong and Lev, 2014). Functional syntaxins 

consists of an N-terminal peptide (N-Pep) that interacts with SM proteins, a Habc region that can fold back 

onto its own SNARE motif (Rathore et al., 2010) and therewith leads to the closed conformation, a SNARE 

motif, and a transmembrane domain. The deletion of the transmembrane domain results in a dominant-

negative syntaxin (StxDN). The StxDN constructs were fused N-terminally with a fluorescent tag (eGFP or 

mCherry) B, Schematic representation of a viral genome with an extra transcription unit encoding for StxDN. 

 

Before SAD mChStx1ADN, SAD mChStx3DN, SAD eGFPStx4DN, SAD eGFPStx4DN/Stx3DN were 

analyzed in neurons, the recombinant viruses were characterized in cell lines. 

To confirm the expression of the dominant-negative syntaxins by the recombinant virus, BSR-T7 

cells were infected with the respective recombinant full-length virus at a MOI of 0.01. Three days 

post infection, the infected cells were lysed in SDS sample buffer and examined by SDS-PAGE, 

Western blotting and immunostaining. The infected cells expressed the respective dominant-

negative, N-terminally tagged syntaxin of the correct size (Figure 15A). Note that SAD 

eGFPStx4DN/Stx3DN infected BSR-T7 cells expressed much more eGFPStx4DN than Stx3DN. 

Subsequently, the growth kinetics of the recombinant dominant-negative syntaxin expressing 

viruses were investigated by a multistep growth curve in the neuroblastoma cell line N2A (Figure 

15B). At 4.5 h post infection, titers were nearly identical, indicating that the cells were infected 

with the same amount of virus. At 24 h post infection, the biggest difference could be monitored. 

While SAD eGFP grew to a normal titer of 3 x 104 ffu/mL, the titer of SAD mChStx1ADN was 10-

fold lower and SAD mChStx3DN, SAD eGFPStx4DN and SAD eGFPStx4DN/Stx3DN grew even 100-

fold slower than SAD eGFP. However, the growth defect of SAD mChStx1ADN, SAD mChStx3DN 

and SAD eGFPStx4DN was compensated after 48 h and 72 h post infection, as they grew to nearly 
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the same titers as SAD eGFP. Only the recombinant virus coexpressing eGFPStx4DN and Stx3DN 

was 40-fold attenuated compared to SAD eGFP at 48 h post infection. At 72 h p.i., also SAD 

eGFPStx4DN/Stx3DN caught up and showed nearly the same titers as SAD eGFP. These data 

indicated that the expression of dominant-negative syntaxins has no big effect with respect to 

viral spread, at least in N2A cells. 

 

Figure 15: Characterization of recombinant, dominant-negative syntaxin expressing RABV. 

A, BSR-T7 cells were infected with SAD mChStx1ADN, SAD mChStx3DN, SAD eGFPStx4DN, SAD 

eGFPStx4DN/Stx3DN at a MOI of 0.01. The cells were harvested at 72 h post infection and the cell lysates 

were subjected to SDS-PAGE, Western blotting and immunostaining for the indicated antibodies. B, 

Multistep growth curves for indicated recombinant viruses in N2A cells. The samples were taken to the 

indicated time points and titrated on BSR-T7 cells. C, mESC-derived neurons were infected with the indicated 

recombinant viruses at a very low MOI. The infected neurons were fixed to the indicated time points, stained 

for RABV N and the number of N positive neurons was evaluated. 

 

The next step was to investigate, whether the dominant-negative syntaxins could prohibit or slow 

down the neuronal transfer of RABV in neurons. For this purpose, three plates of mESC-derived 

neurons, one plate for each time point, were prepared. The neurons were infected with SAD eGFP, 

SAD mChStx1ADN, SAD mChStx3DN, SAD eGFPStx4DN or SAD eGFPStx4DN/Stx3DN at a very low 

MOI, corresponding theoretically to six virus particles per neurons in a 12-Well. At 24 h, 36 h and 

48 h post infection neurons were fixed and stained with Centocor for RABV N. While the number 
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of infected cells was counted in an entire 12-well at 24 h p.i., the 12-wells were screened with 43 

photos (10 x objective) at 36 h p.i. and 48 h p.i. since SAD eGFP infected already too many neurons, 

which made the identification of single infected neurons by direct counting impossible.  

The primary infected cells could be detected at 24 h p.i.. All five recombinant viruses led to the 

infection of four up to seven neurons and thereby confirmed that the neurons were infected with 

an equal MOI. After 36 h p.i. and 48 h p.i. the dominant-negative syntaxin expressing viruses 

infected less neurons compared to SAD eGFP (Figure 15C). Of the recombinant viruses encoding 

for a single dominant-negative syntaxin, SAD mChStx1ADN exhibited the strongest attenuation 

since it infected 4.2-fold less neurons than SAD eGFP at 48 hp.i.. SAD mChStx3DN and SAD 

eGFPStx4DN exhibited a moderate attenuation, as they infected 3-fold respectively 2.5-fold less 

neurons than SAD eGFP. Interestingly, at 48 h p.i. the recombinant SAD coexpressing eGFPStx4DN 

and Stx3DN infected even 8.5-fold less neurons than SAD eGFP and exhibited therewith the most 

striking decline regarding the neuronal transfer of SAD. These data indicate that the syntaxins play 

an important role in the neuronal spread of SAD. 

4.2.3.2 Effect of neurotoxins on transsynaptic spread of SAD 

Clostridium botulinum neurotoxins (BoNT/A-H) and tetanus neurotoxins (TeNT) are zinc 

metalloproteases, which hydrolyze specific peptide bonds of SNARE proteins and therewith inhibit 

the fusion of synaptic vesicles at the presynaptic membrane. However, CNTs are also active at the 

postsynaptic membrane. Therefore, CNTs may provide a good insight into the role of the SNARE 

machinery in the virus release and transsynaptic spread at the postsynaptic membrane. 

The CNTs are heterodimers, which are composed of a heavy chain (HC) that is responsible for 

receptor binding and translocation of the light chain (LC) form the synaptic vesicle into the cytosol 

(Blum et al., 2014), and a light chain that harbors the metalloprotease activity.  

To investigate the role of synaptobrevin-1/2 (VAMP1/2) and cellubrevin (VAMP3) in the 

transsynaptic spread of RABV in mESC-derived neurons, a recombinant G gene-deficient virus 

encoding for the LC of TeNT with an N-terminal eGFP-tag (GFP-TeNT-LC) was generated by reverse 

genetics (Figure 16A). 

Before SAD ΔG eGFP-TeNT-LC was used in mESC-derived neurons, the proteolytic activity of eGFP-

TeNT-LC was confirmed in N2A cells. N2A cells were infected with SAD ΔG eGFP-TeNT-LC at a high 

MOI. Two days post infection, the infected N2A cells were harvested and subjected a SDS-PAGE, 

Western blotting and immunostaining against Vamp3, eGFP and actin. As illustrated in Figure 16B, 

eGFP-TeNT was expressed and led to an effective cleavage of Vamp3 since no uncleaved Vamp3 

could be detected. 
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In order to investigate the dependency of the transsynaptic spread of RABV on Vamp1, -2 and -3, 

the monosynaptic tracing in vitro model, which was established in this thesis, was used. The 

neuronal mixed population consisting of 99.9 % 129/SvJ cells and 0.1 % Tom-RITVA cells was 

infected with SAD ΔG eGFP-TeNT-LC (EnvA) or SAD ΔG eGFP (EnvA) at a MOI of 0.5. Four days post 

infection, the number of yellow neurons (starter cells) and the number of green neurons (2nd order 

neurons) was evaluated. On average, SAD ΔG eGFP spread from a yellow starter cell to 6.8 green 

monosynaptically connected cells, while SAD ΔG eGFP-TeNT-LC infected 6.4 monosynaptically 

connected neurons (Figure 16C). The results indicate that the cleavage of Vamp1, -2 and -3 has no 

obvious effect on the neuronal spread of SAD, at least in this model.  

 

Figure 16: The monosynaptic spread of SAD ΔG eGFP-TeNT-LC is as efficient as of SAD ΔG eGFP. 

A, Schematic representation of the genomic organization of SAD ΔG eGFP-TeNT-LC. B, N2A cells were 

infected with SAD ΔG eGFP-TeNT-LC at a MOI of three. The infected N2A cells were harvested at 72 h p.i., 

and the cell lysates were subjected to SDS-PAGE, Western blotting and immunostaining for the indicated 

antibodies. C, A mESC-derived neuronal mix population was infected with SAD ΔG eGFP (EnvA) and SAD ΔG 

eGFP-TeNT-LC (EnvA) at a MOI of 0.5. The diagram shows the average number of mono-synaptically infected 

neurons per yellow starter cell four days post infection.  

 

A major drawback of the usage of SAD itself as a vector for the eGFP-TeNT-LC expression might 

be, that TeNT-LC is expressed contemporaneous with the viral proteins. Thus, it is possible that at 

the time point of the viral spread, not all Vamp1, -2 and -3 proteins were cleaved. Therefore, 

although SAD ΔG eGFP-TeNT-LC was still able to spread in neurons, a participation of Vamps in the 

neuronal spread of SAD could not be excluded.  

Because of the just described disadvantages of the expression of the neurotoxin by the virus itself 

and in regard to the possibility that other components of the SNARE complex e.g. SNAP25 are 
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more important for the transsynaptic spread of RABV, lentiviral vectors (LV) encoding for the light 

chain of TeNT, BoNT/A or BoNT/C were produced in collaboration with Alexandra Lepier (Faculty 

of medicine, LMU). To enable an efficient translation of BoNT/A-LC and BoNT/C-LC in mammalian 

cells, codon optimization was performed. The constructs were synthesized by Genscript. The 

codon optimized BoNTs-LC and TeNT-LC were additionally fused with eGFP on their N-terminus to 

enable the detection of transduced neurons.  

The required volume of each LV for an efficient cleavage of its target proteins was determined by 

transduction of mESC-derived neurons with different concentrations of LV. At 60 h post 

transduction, eGFP expression was evaluated by fluorescence microscopy, and the cleavage of its 

target protein was monitored by SDS-PAGE, Western blotting and immunostaining (data not 

shown).  

To investigate the dependency of the neuronal spread of different RABV strains on SNARE 

proteins, mESC-derived neurons were transduced with purified LV-eGFP, LV-eGFP-BoNT/A-LC, LV-

eGFP-BoNT/C-LC or LV-eGFP-TeNT-LC. In addition to one plate of mESC-derived neurons for each 

time point, an extra plate of mESC-derived neurons was prepared to control the enzymatic activity 

of the neurotoxins by SDS-PAGE, Western blotting and immunostaining. 60 hours post 

transduction, one plate of transduced neurons was harvested to analyze if eGFP-BoNT/A-LC 

cleaved all Snap25 and eGFP-TeNT-LC cleaved all Vamp1, -2 and -3. The remaining plates with the 

transduced neurons were infected with (I) the attenuated, on BHK cells adapted recombinant SAD 

eGFP strain, (II) the neurotropic, on mouse neuroblastoma cells adapted N2c strain, or (III) the 

street stain THA at a very low MOI. At 24 h post infection and at 36 h post infection one plate of 

neurons was fixed and stained with Centocor for RABV N. Subsequently, the transsynaptic spread 

of SAD eGFP and THA were analyzed by counting all RABV N positive cells per well. Since N2c is 

perfectly adapted to neuronal cells, it exhibited an extremely efficient transsynaptic transfer, what 

made it impossible to count the infected neurons directly. Thus, each well of a 12-well plate was 

screened with 121 photographies (objective 20x). The number of infected neurons was used to 

evaluate the neuronal transfer of the respective RABV strain in dependence on BoNT/A-LC or 

TeNT-LC.  

As expected, only the neurons transduced with LV-eGFP-BoNT/C-LC, which cleaves Snap25 and 

Stx1, were dead 60 h post transduction (Figure 17A). The examination of the enzymatic activity of 

TeNT-LC and BoNT/A-LC by SDS-PAGE, Western blotting and immunostaining revealed, that 60 h 

post transduction Vamp1, -2 and -3 were cleaved highly efficiently, since no Vamp could be 

detected, and Snap25 shifted completely from 25 kDa to 22 kDa, indicating that all Snap25 

proteins were cleaved, too (Figure 17B). 
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At 24 h post infection neither for SAD eGFP nor THA or N2c a difference in numbers of RABV 

infected neurons was detected, indicating that the entry of the different RABV strains is not 

affected by the neurotoxins (Figure 17C). At 36 h post infection, in LV-eGFP-TeNT-LC transduced 

neurons THA infected 1.8-fold less neurons, N2c infected 2.3-fold less neurons and SAD eGFP 

infected 3.8-fold less mESC-derived neurons compared to the neuronal spread in LV-eGFP 

transduced mESC-derived neurons. The proteolysis of Snap25 in LV-eGFP-BoNT/A-LC transduced 

neurons resulted in 1.3-fold less N2c infected cells, 2.0-fold less THA infected neurons and 2.3-fold 

less SAD eGFP infected cells than in LV-eGFP transduced neurons. 

Interestingly, the attenuated SAD strain appeared to be most sensitive to the disruption of Vamps 

and Snap25, while BoNT/A-LC and TeNT-LC exhibited only minor effects on the neuronal spread 

of the neurotropic N2c and the wildtype isolate THA.  
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Figure 17: The neuronal spread of SAD eGFP, N2c and THA is sensitive to the expression of TeNT-LC and 

BoNT/A-LC. 

mESC-derived neurons, which were transduced with LV-eGFP, LV-eGFP-TeNT-LC or LV-eGFP-BoNT/A-LC, 

were infected 60 h post transduction with SAD eGFP, N2c and THA at a very low MOI. A, mESC-derived 

neurons are depicted 60 h post transduction. The white rectangle represents the area of the magnification. 

B, At 60 h post transduction neurons were harvested and the activity of the respective neurotoxin light chain 

was monitored by SDS-PAGE, Western blotting, and immunostaining for the indicated antibodies. C, 

Evaluation of the effect of eGFP-TeNT-LC and eGFP-BoNT/A-LC on the neuronal transfer of RABV to the 

indicated time points.  
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4.2.4 EM studies to visualize the transsynaptic spread of RABV 

The previous experiments provided some evidence that the ESCRT machinery as well as SNARE 

complexes might be involved in the release of RABV at the postsynaptic membrane. Electron 

microscopy might be a powerful tool to reveal the subcellular localization of RABV transcription 

and replication, the transport of RABV to the postsynaptic membrane (e.g. association of the RNP 

on synaptic vesicles or transport of a complete virus within a vesicle), the localization of virus 

assembly (e.g. at the plasma membrane, at synaptic vesicles) and the place of virus budding (e.g. 

PSD) in an infected neuron.  

To address the aforementioned questions by electron microscopy, we started a collaboration with 

Andreas Klingl (Faculty of Biology, LMU). To enable the operational steps of the sample 

preparation for EM, the mESC-derived neurons were differentiated on ibidi glass bottom dishes, 

which were coated with 1 mg/mL PDL. The neurons were infected with SAD eGFP at a MOI of one. 

Two days post infection, the infected neurons were fixed by the addition of PFA and 

glutaraldehyde directly to the Neuron medium. The final concentration was 4 % PFA and of 2 % 

glutaraldehyde. The samples were stored at 4 °C. The following fixation with 1 % OsO4, the 2 % 

uranyl acetate staining, the drain of the samples with acetone, the embedding of the samples in 

resin, the sample preparation with a microtome as well as the monitoring of the samples by a TEM 

(Zeiss EM 912) was performed by our collaboration partner. 

 

Figure 18 TEM of SAD eGFP infected mESC derived neurons (in collaboration with Andreas Klingl) 

The white and black arrows point to virus particles. The black scale bar represents 500 nm. 

 

In Figure 18A, the white arrow points to a virus particle, which is probably within a vesicle that is 

most likely associated via a motor protein complex to a microtubule within an axon. In Figure 18B, 

RABV particles were released in bundles or the extracellular virions tend to form clusters after 

their release. In Figure 18C the black arrow points to a RABV particle, which is most likely within a 

MVB, and the white arrow points to a single virus particle that is still associated with the plasma 

membrane.   
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4.3 Manipulation of the RABV glycoprotein 

The RABV glycoprotein (G) is a type I transmembrane protein, thus consisting of an N-terminal 

glycosylated ectodomain (aa 1 -439), a hydrophobic 22 aa long transmembrane anchor domain 

and a 44 aa long cytoplasmic domain. RABV G forms homotrimers, resulting in trimeric spikes on 

the virion surface. It is responsible for receptor-mediated endocytosis, low pH-dependent fusion 

of the viral membrane with the endosomal membrane, retrograde axonal transport of virus 

particles and the transsynaptic spread of RABV (reviewed in (Wunner and Conzelmann, 2013)). 

Although it is well accepted that RABV G is responsible for the exclusive retrograde transsynaptic 

spread in the CNS, the molecular mechanisms involved are still unknown (Ghanem and 

Conzelmann, 2016).  

The aim of this part of the thesis was the identification of a site within the glycoprotein that is 

permissive for the insertion of external trafficking signals for rerouting the subcellular localization 

of the glycoprotein, or retargeting RABV to alternative receptors, without interfering with the 

essential functions of the glycoprotein. Thus, well-described sites within the ectodomain as well 

as the cytoplasmic domain were manipulated and analyzed concerning their functionality and 

impact in RABV G rerouting.  

4.3.1 Manipulation of the SAD G ectodomain 

The ectodomain of SAD G was analyzed by deletion mutants and by replacement of the deleted 

sequence with substance P (SP). Substance P is an eleven aa long neuropeptide that binds to 

tachykinin receptors like NK1R (Martinez and Philipp, 2016). Due to its small size and its natural 

presence in neurons, SP is a good candidate to investigate whether the insertion of a short peptide 

into the ectodomain of G still results in an infectious virus particle (Martinez and Philipp, 2016). 

Furthermore, SP might provide an additional binding site to the NK1 receptor, which could lead to 

an altered cell entry or transport of RABV. 

Since at the beginning of this project, no structure and even no structure prediction of RABV G 

was available, I looked for sites which were described to be on the surface of the glycoprotein. 

Therefore, the nAChR binding site and the antigenic site III were selected for deletion or 

replacement with SP. In Figure 19, schematical representations of the different recombinant 

glycoproteins are depicted.  
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Figure 19: Schematic representation of the different SAD glycoproteins with a manipulated ectodomain. 

The grey box with the label sp represents the signal peptide, nAChR bs within the blue oval stands for the 

nAChR binding site, the green square represents the antigenic site III and the orange oval with the label TM 

represents the transmembrane domain. Deletions are indicated by a dotted link and replacements of the 

respective sites are indicated by the exchange of the original label with li-SP-li, which stands for Substance 

P with an N-terminal and a C-terminal GSGS-linker sequence. 

 

Constructs encoding G-ΔnAChR bs, G-ΔnAChR bs(SP), G-ΔsiteIII and G-ΔsiteIII (SP) were cloned in 

an expression vector and examined with respect to their protein expression, their incorporation 

into virions and the infectiousness of their virions. To this end, a trans-complementation assay 

with SAD ΔG was performed. To determine whether the recombinant proteins are expressed and 

incorporated into the virion, the transfected HEK293T cells were lysed and the supernatant of the 

transfected cells was pelleted by an ultracentrifugation step and subsequently the virion pellet 

was lysed. The lysed cells as well as the lysed supernatant virions were analyzed by SDS-PAGE, 

Western blotting and immunostaining. The infectivity of the trans-complemented virions was 

examined by endpoint titration of virus containing cell supernatants. 

As monitored by SDS-PAGE, Western blotting and immunostaining of the cell lysates, all 

recombinant glycoproteins were expressed and probably glycosylated, since they exhibited the 

expected molecular weight. However, the examination of virion lysates revealed that only the 

unmodified G was incorporated at detectable levels into the G gene-deficient SAD ΔG. Accordingly, 

the endpoint titration demonstrated that only the G trans-complemented viruses were infectious 

(Figure 21).  

  



4 - Results 

88 

 

4.3.2 Manipulation of the cytoplasmic tail 

In 2015, Farias and colleagues demonstrated that the fusion of three copies of kinesin-light-chain-

binding sequence (KBS) of the cargo adaptor protein SKIP to the C-terminus of the Nipah Virus F 

glycoprotein (NiV-F) directs NiV-F, which is usually sorted into somatodendritic vesicles, to the 

axon tips. They showed that NiV-F binds via KBS to the axonally-directed kinesin (e.g. KIF5), 

resulting in the transport of the NiV-F-KBS containing somatodendritic vesicle through the “pre-

axonal exclusion zone” (PAEZ) to the distal axons (Farias et al., 2015). In order to redirect the RABV 

glycoprotein from the postsynaptic membrane to the axon tips, three copies of KBS were fused 

directly downstream of the transmembrane domain, or alternatively at the C-terminus of G (Figure 

20). 

 

Figure 20: Schematic representation of the different G glycoproteins with manipulated cytoplasmic domain. 

The grey box with the label sp represents the signal peptide, nAChR bs within the blue oval stands for the 

nAChR binding site, the square represents the antigenic site III and the orange oval with the label TM 

represents the transmembrane domain. One pink rectangle with the label KBS represents one copy of the 

kinesin-light chain-binding site. 

 

To investigate whether the recombinant G-KBS variants were expressed, incorporated into virions 

and led to infectious virions, a trans-complementation assay, followed by SDS-PAGE, Western 

blotting and immunostaining of the cell lysates as well as the pelleted virion lysates and an 

endpoint titration of the supernatant of the transfected cells was performed. Unfortunately, G-

3xKBS could not be detected by immunostaining, most likely because the G antibody used binds 

to the terminal 13 aa of the C-tail, which were probably not accessible for the antibody due to the 

KBS-tag. However, G-TM-3xKBS-RT was detected in the lysate of the transfected HEK293T cells 

and the molecular weight of G-TM-3xKBS-RT indicated that the recombinant protein was also 

glycosylated. Notably, the examination of the trans-complemented, pelleted virion lysates by 

Western blotting and immunostaining indicated that G-TM-3xKBS-RT was also incorporated into 

the SAD ΔG virions (Figure 21A).  
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Next, it was analyzed by endpoint titration on BSR-T7 cells, whether the trans-complemented SAD 

ΔG (G-TM-3xKBS-RT) virions were infectious as well. While the positive control with the 

unmodified G resulted in an infectious titer of 1x107 ffu/mL, the trans-complementation with G-

TM-3xKBS-RT led to a titer of 3 x 105 ffu/mL, indicating that the recombinant G-TM-3xKBS-RT was 

able to support all steps during the infection of BSR-T7 cells (Figure 21B). The lower titer of G-TM-

3xKBS-RT compared to the unmodified G could be explained partially by the slightly reduced 

expression level of G-TM-3xKBS-RT. Notably, also the trans-complementation with G-3xKBS 

resulted in an infectious titer of 8.5x102 ffu/mL. Since our antibody could not detect G-3xKBS and 

the trans-complementation resulted in a much lower titer than with G-TM-3xKBS-RT, following 

experiments focused on the recombinant G-TM-3xKBS-RT.  

 

Figure 21: Trans-complementation of SAD ΔG eGFP with G-TM-3xKBS-RT results in infectious virus particles. 

SAD ΔG eGFP was trans-complemented in HEK293T cells with the annotated recombinant glycoproteins. 

The transfected HEK293T cells and the supernatant were harvested 48 h post infection. A, SDS-PAGE, 
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Western blotting and immunostaining of the transfected cell lysates and the purified virions with the 

indicated antibodies. B, Evaluation of the number of infectious virus particles in supernatant of the 

transfected HEK293T cells by titration on BSR-T7 cells.  

 

Next, a recombinant SAD eGFP virus was generated by reverse genetics, in which the glycoprotein 

was replaced by G-TM-3xKBS-RT. In the following, it is referred to as SAD G-TM-3xKBS-RT eGFP. 

First, the growth kinetics of SAD G-TM-3xKBS-RTeGFP was evaluated by performing a multistep 

growth curve in BSR-T7 cells. At 24 h post infection, SAD G-TM-3xKBS-RTeGFP resulted in a 10-fold 

lower titer compared to SAD eGFP. The slower growth kinetics of SAD G-TM-3xKBS-RTeGFP 

became even more prominent during the next 48 h, which resulted at 72 h p.i. in a 100-fold 

reduction in infectious virus titers (Figure 22A).  

To get a first clue whether G-TM-3xKBS-RT influenced the virion composition, BSR-T7 cells were 

infected with SAD eGFP or SAD G-TM-3xKBS-RTeGFP at a MOI of 0.1. After two days, the infected 

cells were lysed and the supernatants were pelleted by an ultracentrifugation step and the 

pelleted virions were subsequently lysed. The virus protein content of the infected cells and the 

composition of virions was examined by SDS-PAGE, Western blotting and immunostaining against 

N, M, P and G (Figure 22B). Finally, the protein expression levels of N, P, G and M were quantified 

using ImageJ and normalized to the respective N protein level (Table 1). According to the staining 

against actin, equal amounts of SAD eGFP and SAD G-TM-3xKBS-RTeGFP infected cells were 

loaded. It seems like the viral protein levels of SAD G-TM-3xKBS-RTeGFP infected cells were lower 

compared to SAD eGFP infected cells. The normalization of the viral protein levels showed that 

the composition of the viral proteins was also different. While the ratios of the RNP proteins N 

and P in the lysates of the infected cells were quite similar, the portions of the envelope proteins 

M and G in SAD G-TM-3xKBS-RTeGFP were two-fold and four-fold diminished, respectively. The 

examination of the virion composition demonstrated that the ratios of the RNP proteins N and P 

were nearly the same again, whereas differences were detected for M/N and G/N ratios. 

Interestingly, it seems like SAD G-TM-3xKBS-RTeGFP virions contained slightly more M and G than 

SAD eGFP. 
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Figure 22: Characterization of SAD G-TM-3xKBS-RT eGFP. 

A, Multistep growth curve of SAD eGFP and SAD G-TM-3xKBS-RTeGFP on BSR-T7 cells. Samples were taken 

to the indicated time points and titrated on BSR-T7 cells. B, BSR-T7 cells were infected with SAD eGFP and 

SAD G-TM-3xKBS-RTeGFP at a MOI of 0.1. Two days post infection, the infected cells and the purified virions 

were lysed and analyzed by SDS-PAGE, Western blotting and immunostaining against the indicated 

antibodies. 

 

 

Table 1: Quantification of the viral proteins in SAD eGFP and SAD G-TM-3xKBS-RT eGFP infected BSR-T7 cells 

and their respective. 

Protein bands of the immunostaining, depicted in Figure 22B, were quantified with the software ImageJ and 

normalized against N. 

 

4.3.3 Characterization of SAD G-TM-3xKBS-RTeGFP in mESC-derived neurons 

First, it was investigated whether SAD G-TM-3xKBS-RTeGFP was also able to infect neurons and 

whether the G-TM-3xKBS-RT protein could support the transsynaptic spread of RABV in mESC-

derived neurons. Thus, neurons were infected with SAD eGFP or SAD G-TM-3xKBS-RTeGFP at a 

very low MOI. The spread was investigated in living neurons by monitoring the eGFP expression 

of the recombinant viruses two days, three days and four days post infection (Figure 23). SAD G-
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TM-3xKBS-RTeGFP spread was slightly slower compared to that of SAD eGFP, which already 

infected nearly each cell at 72 h p.i..  

 

Figure 23: Transsynaptic spread of SAD G-TM-3xKBS-RTeGFP. 

mESC-derived neurons were infected with SAD eGFP and SAD G-TM-3xKBS-RTeGFP at a very low MOI. The 

spread was evaluated by monitoring the eGFP fluorescence to the indicated time points. BF indicates bright 

field illumination. The white scale bar represents 250 µm. 

 

Next, the influence of the KBS-tag on the intracellular distribution of G in infected mESC-derived 

neurons was investigated. To this end, neurons differentiated on glass coverslips were infected 

with SAD eGFP or SAD G(KBS)eGFP at a MOI of 0.1. Three days post infection, the neurons were 

fixed and stained for G. In order to distinguish between axons and dendrites, co-immunostainings 

for G and the axonal marker neurofilament H (NF-H), or the dendritic marker microtubule 

associated protein 2 (MAP2) were performed (Figure 24).  

Interestingly, the staining of G in SAD eGFP infected mESC-derived neurons revealed a granular 

distribution, which could resemble the distribution of PSDs. In contrast, the staining of G-TM-
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3xKBS-RT in SAD G-TM-3xKBS-RT eGFP-infected neurons indicated a more homogenous G 

distribution. However, the co-staining with the axonal marker NF-H or the dendritic marker MAP2 

demonstrated that at least in mESC-derived neurons no clear-cut difference between the 

intracellular distribution of G and G-TM-3xKBS-RT could be detected, as even G was also 

unexpectedly located in axons.  

 

Figure 24: Distribution of G in SAD eGFP and SAD G-TM-3xKBS-RT eGFP infected mESC-derived neurons. 

mESC-derived neurons, differentiated on PDL coated coverslips, were infected with SAD eGFP or SAD G-TM-

3xKBS-RTeGFP at a MOI of 0.01. At 72 h p.i. neurons were fixed and stained with the indicated antibodies 

and monitored by confocal laser scanning microscopy. MAP2 is a dendritic antibody and NF-H is an axonal 

antibody. The white scale bar represents 10 µm. 
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4.4 Generation of a less cytotoxic RABV for long-term studies of RABV 

infected neurons in vitro and in vivo 

The following project and experiments were performed in collaboration with Alexander Ghanem.  

Although RABV has only a mild cytopathic effect (CPE), culture cells and neurons infected with the 

SAD virus eventually die of the infection. The molecular mechanism behind the cell death of SAD 

virus infected culture cells and neurons is unknown. The availability of a non-toxic RABV would be 

of great interest for long-term studies of RABV infected neurons in vitro and in vivo. Thus, an in 

vitro evolution experiment was performed in order to possibly generate a virus with an attenuated 

or at best a non-toxic SAD eGFP. 

4.4.1 Generation of persistently infected HEK293T cells 

The experimental approach for the in vitro evolution of SAD eGFP is schematically depicted in 

Figure 25A. First, HEK293T cells were infected with SAD eGFP with a MOI of three to ensure that 

every cell is infected. Three days post infection the cells were split 1/4 (passage 2) which led to 

the death of most infected HEK293T cells within two days post splitting. However, a few infected 

cells survived. The dead cells were removed carefully by repeated medium exchange. 15 days post 

infection, the living cells were trypsinized and replated in a fresh plate (passage 3). Interestingly, 

although the fluorescence of the individual HEK293T cells varied it nevertheless seemed like all 

cells were still eGFP positive, indicating that they were still infected with eGFP-expressing virus. 

The medium was replaced by fresh medium twice per week. The cells recovered slowly over time 

and remained persistently infected, since the HEK293T were still eGFP positive. On day 35, the 

cells were split for the first time 1/6 (passage 4) (Figure 25B). From passage 4 on the cells started 

to divide faster and could be split one week later (day 42) for a second time 1/6 (passage 5). 

Beginning with passage 5 on (day 42), the eGFP expressing cells could be split twice per week 1/6 

and the fluorescence intensity of the infected cells became more homogenous. The infected cells 

resembled more and more uninfected HEK293T cells, in terms of morphology and cell growth. 

From passage 13 on, the infected cells were split twice per week 1/8 up to 1/10. By comparison, 

uninfected HEK293T cells were split twice per week 1/10 up to 1/12. From passage 5 on, every 

second supernatant passage was harvested, purified from cell debris, and stored at - 80 °C for 

further analyses. Also cells from every second passage were harvested, resuspended in DMEM 3+ 

that contained 10 % DMSO and stored at - 80 °C. The frozen cells could be thawed and expanded 

just like HEK293T cells. The cells were still eGFP positive, indicating that they were still infected 

(data not shown).  
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Figure 25: In vitro evolution of SAD eGFP in HEK293T cells. 

A, Schematic representation of the SAD eGFP in vitro evolution experiment. B, Bright field images and 

fluorescence images of the different stages of the infected HEK293T cells during the in vitro evolution 

experiment. The photography of passage three was kindly provided by Alexander Ghanem. 

 

4.4.2 Characterization of non-cytotoxic SAD eGFP 

After it was confirmed that the supernatant of passage 15 was still infectious (data not shown), it 

was used for a stock production on BSR-T7 cells in order to amplify the virus (SAD eGFP p15). The 

growth kinetics of the SAD eGFP p15 stock was examined by a multistep growth curve in BSR-T7 

cells. As can be seen Figure 26A, SAD eGFP p15 grew as fast as the parental SAD eGFP (SAD eGFP 

wt), indicating that SAD eGFP p15 was not attenuated. 

In order to investigate the cytotoxicity of SAD eGFP p15 virus for HEK293T cells, cells were infected 

with the SAD eGFP p15 stock or the parental SAD eGFP at MOI of three. One day post infection, 

all infected cells were eGFP positive and exhibited the same morphology as mock infected cells. 

However, the eGFP fluorescence of SAD eGFP p15 infected cells was slightly reduced compared to 

the eGFP fluorescence of parental SAD eGFP infected cells. Note that the photographies were 

taken with the same light exposure time, therefore the eGFP fluorescence should correlate with 

the eGFP expression. Interestingly, already 48 h p.i. the parental SAD eGFP infected cells were 

dying while HEK293T cells, which were infected with SAD eGFP p15, were as viable as mock cells. 

Furthermore, the eGFP fluorescence in SAD eGFP p15 infected HEK293T cells was as intense as in 

parental SAD eGFP infected cells at that time point. Already three days post infection, almost all 
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SAD eGFP infected cells were dead, whereas SAD eGFP p15 infected cells were still eGFP positive 

and exhibited the same morphology as the mock cells (Figure 26B). These data suggest that the 

lack of cell death in the selection experiment was due to changes in the virus genome and not due 

to the selection of more resistant HEK293T cells.  
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Figure 26: SAD eGFP p15 exhibits the same growth kinetics but an attenuated cytotoxicity compared to 

parental SAD eGFP 

A, Multistep growth curve of SAD eGFP p15 and SAD eGFP on BSR-T7 cells. Supernatant samples were 

harvested at the indicated time points. The titers (ffu/mL) of the samples were determined by titration on 

BSR-T7 cells. B, HEK293T cells were infected with parental SAD eGFP or SAD eGFP p15 at a MOI of three. 

The eGFP fluorescence intensity as well as the cytotoxicity of the viruses were monitored at the indicated 

time points. The white scale bar represents 250 µm. 

 

4.4.3 Deep sequencing of non-cytotoxic SAD eGFP 

For the identification of the mutations, which could cause the reduced cytotoxicity of SAD eGFP 

p15, the viral genomes were analyzed by deep sequencing. Therefore, 6 x 106 BSR-T7 cells were 

seeded into a T175 flask. Two hours post seeding, the BSR-T7 cells were infected with SAD eGFP 

p15 or the parental SAD eGFP at MOI of 0.1. After two days, when all cells were infected, the 

supernatants were harvested, cleared of cell debris and purified by an ultracentrifugation step. 

Then, each virus pellets was lysed in 350 µL RLT buffer, containing 1 % β-Mercaptethanol. 

Subsequently, it was proceeded according to the RNA-isolation protocol (RNeasy Mini Kit). Finally 

6.8 ng/µL RNA with a 260/280 ratio of 2.03 of the parental SAD eGFP virus and 6.9 ng/µL RNA with 

a 260/280 ratio of 2.19 of SAD eGFP p15 virus were isolated. The samples were stored at - 80 °C.  

The next generation sequencing of viral genomic RNA was performed by Stefan Krebs (LAFUGA 

Gene Center, LMU) and the evaluation of the data was performed together with Konstantin 

Sparrer.  

As depicted in Figure 27A, only six prevalent mutations were identified. With A52G and A54T two 

mutations were located in the leader region. They were present in 85 % and 67 % of the reads, 

respectively. The mutation T1761G located in the phosphoprotein gene occurred in 32 % of the 

reads and resulted in an aa exchange from Met to Arg, causing a loss of the P4 isoform start codon. 

In the RNA-dependent RNA polymerase L gene two mutations were located. The first mutation 

T6431C occurred in 61 % of the respective reads and resulted in a point mutation of the 

hydrophobic Ile to the hydrophilic Thr aa residue. The second mutation in L (G9149A) was present 

in 78 % of the reads and led to the introduction of an in frame stop codon. The mutation in the 

trailer region A12845G was the most prevalent among the six mutations and occurred in 94 % of 

the reads. In order to investigate which mutation caused the non-cytotoxic phenotype, reverse 

genetics was used to generate viruses with specific mutations, namely SAD eGFP carrying 

P(M83R), L(I30T), L(stop), mut52/54, mut12845 and mut52/54/12845 (Figure 27B). SAD mut52/54 

eGFP, SAD mut52/54/12845 eGFP and SAD mut12845 eGFP were cloned and produced by 

Alexander Ghanem. All viruses were generated in BSR-T7 cells. 
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Figure 27: Schematic representation of the NGS results of the in vitro evolution experiment and the genomes 

of the recombinant viruses encoding for a single mutated region. 

A, Viral genome of SAD eGFP, the sites of the mutations, and the percentage share of reads, in which the 

mutations were detected are depicted. B, Schematic representation of the genomes of the recombinant 

viruses that were generated in order to investigate, which mutated region caused the non-cytotoxic 

phenotype of SAD eGFP p15. Each black arrow marks one point mutation. 
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4.4.4 Characterization of potential non-cytotoxic viruses 

First, the growth kinetics of the six recombinant viruses and SAD eGFP were determined in 

HEK293T cells by multistep growth curves, followed by a titration on BSR-T7 cells. Since previous 

experiments demonstrated that SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP grow slower 

compared to SAD eGFP, the titrations of these two viruses were fixed and stained after 72 h, not 

after 48 h as usual. 4.5 h post infection, the titers were within one log range, indicating that the 

amount of input virus were nearly the same. Interestingly, SAD P(M83R) eGFP, SAD L(I30) eGFP, 

SAD L(stop) eGFP and SAD mut12845 eGFP exhibited nearly the same titers as SAD eGFP at all time 

points. In contrast, SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP grew tremendously 

slower during the first 24 h (133-fold and 12000-fold) (Figure 28A). However, 72 h post infection 

SAD mut52/54 eGFP reached nearly the same titer as SAD eGFP and the titer of SAD 

mut52/54/12845 eGFP was finally only 13-fold reduced. 

Next, the cytotoxicity of SAD P(M83R) eGFP, SAD L(I30T) eGFP, SAD mut52/54 eGFP, SAD 

mut12845 eGFP and SAD mut52/54/12845 eGFP was investigated. The cytotoxicity of SAD L(stop) 

eGFP was not analyzed, since previous experiments had shown that the virus did not express 

detectable eGFP levels, although it exhibited normal growth kinetics. 

To investigate the cytotoxicity of the different viruses, 1.25 x 105 HEK293T cells were seeded per 

12-well. Two hours post seeding, the cells were infected with one of the respective recombinant 

viruses with a MOI of three. After two days, the cell viability was assessed by microscopy. 

Subsequently, the infected cells were split 1/4 and the cell viability was monitored again another 

24 h later (72 h p.i.). 

Two days post infection, SAD mut52/54 eGFP, SAD P(M83R), SAD L(I30T) eGFP and SAD 

mut52/54/12845 eGFP infected HEK293T cells exhibited the same morphology and grew as fast 

as the non-infected mock cells (Figure 28B). Only SAD mut12845 eGFP and SAD eGFP infected cells 

grew slower, but the cell morphology was still indistinguishable from mock cells. Interestingly, 

while the eGFP fluorescence in SAD mut12845 eGFP, SAD P(M83R) eGFP, SAD L(I30T) eGFP and 

SAD eGFP infected cells was equal, SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP showed 

a weaker eGFP fluorescence. Note, the eGFP fluorescence should correlate with the expression, 

since each photo was taken with the same light exposure time.  

Three days post infection and 24 h post splitting SAD eGFP, SAD mut12845 eGFP, SAD L(I30T) eGFP, 

and SAD P(M83R) eGFP infected cells were dying, but SAD mut52/54 eGFP and SAD 

mut52/54/12845 infected HEK293T cells were growing like the uninfected mock cells. 

Interestingly, the eGFP fluorescence of these two viruses were still reduced compared to SAD eGFP 

infected HEK293T cells. 
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Figure 28: Evaluation of the growth kinetics and the cytotoxicity of the recombinant SAD P(M83R) eGFP, 

SAD L(I30T) eGFP, SAD mut52/54 eGFP, SAD mut12845 eGFP and SAD mut52/54/12845 eGFP. 

A, Multistep growth curve in HEK293T cells. Supernatant samples were taken to the indicated time points 

and the ffu/mL were determined by titration on BSR-T7 cells. B, HEK293T cells were infected with the 

recombinant viruses at a MOI of three. After two days, the infected cells were split ¼. The cell morphology 

and the eGFP fluorescence were monitored 48 h p.i. and 24 h post splitting (72 h p.i.). The white scale bar 

represents 250 µm. 

 

4.4.5 Reduced cytotoxicity of SAD mut52/54 eGFP and SAD mut52/54/12845 in 

mESC-derived neurons 

It has been shown that SAD mut52/54 eGFP and SAD mut52/54/12845 have a reduced cytotoxicity 

in HEK293T cells. Next, it was investigated whether these recombinant viruses show a reduced 

cytotoxicity also in mESC-derived neurons. Therefore, mESC-derived neurons were infected with 

SAD P(M83R) eGFP, SAD L(I30T) eGFP, SAD mut52/54 eGFP, SAD mut12845 eGFP and SAD 

mut52/54/12845 eGFP at a MOI of two. The cell viability was monitored by observing the shape 

of the axons and dendrites by light microscopy. To reduce artificial cytotoxic effects, which might 

occur during the examination of the infected neurons with the microscope, e.g. exposure to 

oxygen or temperature fluctuation, separate plates of neurons were infected per time point. 

Additionally the virus stocks were purified by an ultracentrifugation step and the virus pellets were 

resuspended in Neurobasal medium. Hereby, it was ensured that the neurons wouldn´t be harmed 

by non-neuronal medium or any undesired cellular factors present in the virus supernatants. 

During the experiment 50 % of medium was replaced by prewarmed neuron medium every second 

day, in order to preserve the neuronal network. 

To determine the cell viability, the neurite degeneration and the cell body distribution were 

documented. The morphology of the axons and dendrites was classified in the following four 

categories. In category (+++) the neuron culture exhibited an intact network and the cell bodies 

were not clustered. This category represents young and healthy neurons. The categorie (++-) 

represents older neurons that start looking non-healthy. The neuronal neurites are fine, but the 

cell bodies form clusters. As soon as the neurite degeneration started, the neurons were classified 

as dying cells in category (+--). When the neurites were degenerated, meaning that axons and 

dendrites were fragmented, the neurons were classified as dead cells (---). In the following a 

representative photography for each category is depicted (Figure 29). 
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Figure 29: Classification of the neuron fitness. 

Representative photos of the four stages of the neuronal cell viability. Young and healthy neurons are 

classified as (+++). Older or non-healthy neurons are categorized as (++-). Dying cells are represented by (+-

-) and dead cells are classified as (---). For a detailed description see above. 
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Dependent on the quality of neuron preparations, the experiments run between ten to 14 days. 

Initial experiments with all five recombinant viruses demonstrated that SAD P(M83R) eGFP, SAD 

L(I30T) eGFP, SAD mut12845 eGFP did exhibit a comparable cytotoxicity as SAD eGFP. Hence, the 

experiment depicted in table 2 was only performed with SAD eGFP SAD mut52/54 eGFP and SAD 

mut52/54/12845 eGFP.  

 

Day Mock SAD eGFP SAD mut52/54 eGFP SAD mut52/54/12845 eGFP 

8 +++ ++- +++ +++ 

10 ++- --- +++ +++ 

12 ++- --- +++ ++- 

14 +-- --- +-- ++- 

Table 2: Evalution of a representative experiment, for the investigation of the cytotoxicity of different 

recombinant viruses in mESC-derived neurons 

For the evaluation of the toxicity of the three virus, the morphology of the axons and dendrites was 

monitored to the indicated time points and classified in healthy neurons (+++), non-healthy neurons (++-), 

dying neurons (+--) and dead neurons (---).  

 

SAD mut52/54 eGFP and SAD mut52/54/12845-infected neurons lived as long as non-infected 

cells. Remarkably, it seems that SAD mut52/54/12845 eGFP is even less toxic to the neurons than 

SAD mut52/54 eGFP, possibly reflecting the slower growth kinetics monitored in HEK293T cells 

(Figure 28A). 

A publication that includes the findings of the in vitro evolution experiment, together with findings 

arising from that project, but which were not part of this thesis, is in preparation.  
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5 Discussion 

RABV is a highly neurotropic virus that apparently enters neurons almost exclusively at the 

presynaptic membrane by a G-dependent receptor-mediated endocytosis. Once in the neuron, 

the entire virus particles travels within vesicles retrogradly, in a G-dependent manner, along 

microtubules to the cell body. Subsequently, a pH-dependent conformational change of G (during 

the endosomal maturation) induces the fusion of the viral membrane with the endosomal 

membrane and leads to the release of the RNP complex into the cytoplasm. After viral 

transcription and replication, taking place in Negri bodies, the RNPs, the matrix proteins, and the 

glycoproteins or entire virus particles are transported by unknown mechanisms in the anterograde 

direction to the dendrites. RABV buds from the postsynaptic membrane and infects exclusively 

presynaptically connected neurons (reviewed in (Davis et al., 2015)).  

The G-dependent transsynaptic spread to exclusively presynaptically connected neurons is unique 

for viruses and predestine RABV as a widely used tool to map neuronal connections, which is a 

pillar of modern neuroscience. Especially mono-transsynaptic tracing, using pseudotyped G-gene 

deficient RABV for the infection of defined starter cells and subsequently in situ trans-

complementation with RABV glycoprotein, resulting in a single transsynaptic transfer of RABV ΔG 

has become a popular tool for monosynaptic circuit tracing (reviewed in (Callaway and Luo, 2015; 

Ghanem and Conzelmann, 2016)).  

However, while practically applied, the molecular mechanisms behind the anterograde transport 

of RABV in dendrites and the exclusive retrograde transsynaptic spread of RABV in the CNS are 

still not revealed. The discovery of the cellular machineries and mechanisms, which direct the 

retrograde transsynaptic spread, would be of great interest in order to optimize RABV neuronal 

tracers, and more importantly, to gain a better insight in the RABV biology and pathogenesis and 

to devise therapeutic strategies for RABV infection. 

The first and overarching aim of this thesis was the establishment of a feeder-free mESC culture 

system and the establishment of a reliable differentiation protocol of mESCs into mESC-derived 

glutamatergic pyramidal neurons, to generate an in vitro model that allows the examination of 

the RABV biology in its natural target cells, avoiding extensive animal experiments. While the 

mESC/neuron system was used in this thesis to study different recombinant RABV, it also provides 

access to genetically modified neurons by applying CRISPR/Cas9 editing to mESCs, and to derive 

gene knock-out neurons, as recently demonstrated in our group (unpublished). 
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Here, the mESC-derived neurons were used for the investigation of the neuronal transfer of RABV. 

Using reverse genetics to generate recombinant RABVs the influence of the RABV matrix protein, 

and its interactions with the cellular ESCRT-system on the neuronal transfer of RABV was 

investigated. Further, recombinant RABVs were generated in order to examine the impact of the 

SNARE machinery on the transsynaptic spread of RABV.  

In addition, engineered G proteins were investigated. Specifically, a site within G that is suitable 

for the insertion of a trafficking signal should be identified, in order to reroute G and to explore 

the possibility to generate anterograde travelling viruses in neurons. The possibility to use RABV 

as an anterograde transsynaptic tracer would greatly extend the applications of RABV for 

transsynaptic tracing. To this end, specific sites of the ectodomain and the cytoplasmic domain of 

G were mutated or deleted and the functionality of the resulting G proteins in terms of 

incorporation into the virion and infectivity were investigated. A recombinant virus was generated 

by reverse genetics, and the neuronal phenotype of the recombinant virus was investigated in 

mESC-derived neurons. 

Finally, less cytotoxic RABV should be generated which may be useful for long-term studies of 

RABV infected neurons in vitro and in vivo. To this end an in vitro evolution experiment of SAD 

eGFP in HEK293T was performed. The genomes of the resulting non-cytotoxic virus mix population 

were analyzed by NGS, recombinant viruses encoding for some of the identified mutations were 

generated by reverse genetics and their toxicity was investigated in mESC-derived neurons. 
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5.1 Establishment of a feeder-free mESC culture and a differentiation 

protocol of mESCs into mESC-derived glutamatergic pyramidal 

neurons 

The subject matter of this thesis was the successful establishment of a feeder-free mESC culture 

system and the establishment of a reliable differentiation protocol of mESCs into glutamatergic 

pyramidal neurons in order to create an in vitro model that enables the investigation of the RABV 

biology in its natural target cells under exclusion of animal experiments. 

This was achieved by combining published work, collecting unpublished experience and trial and 

error approaches. Finally, a reliable protocol for the differentiation of mESCs into glutamatergic 

pyramidal neurons could be established. 

The various states of differentiation were analyzed, using specific markers and observing the 

morphological changes of the cells. The mESC colonies exhibited the typical round and dome-

shaped structure, an increased nucleus to cytoplasm ratio and expressed the pluripotency marker 

Oct4. The fact that mESCs of passage 28 could be still differentiated efficiently into neurons 

emphasizes the high-quality mESC culture system that was established in this thesis. The 

transformation of naive pluripotent mESCs into primed pluripotent mESCs led to Oct4 positive 

cells that exhibit the characteristic flattened monolayer colonies, indicating that the naive 

pluripotent mESCs could be successfully transformed into mEpiSC (Figure 7A). The following 

transformation of mEpiSCs into EBs and neurospheres led to a tremendous increase of the Nestin 

expression, demonstrating that the cells started to differentiate into neural progenitor cells 

(Figure 7B). The differentiated neurons exhibited a teardrop-shaped cell body, a single apical 

dendritic tree, and several basal dendritic trees, leading to the assumption that the mESC-derived 

neurons were the desired pyramidal neurons (Figure 8A) (Spruston, 2008). Additionally, the non-

overlapping staining for an axonal and a dendritic marker indicates a strict sorting of axonal and 

somatodendritic proteins (Figure 8A). Further, the neurons expressed a marker, which exclusively 

localizes at glutamatergic synapses (Figure 8A), indicating the mESCs were differentiated into 

glutamatergic pyramidal neurons (Hunt et al., 1996; Prange et al., 2004). Finally, due to RABV 

spread within the mESC-derived glutamatergic pyramidal neuron culture (Figure 8B), it can be 

expected that the mESC-derived neurons were connected via chemical synapsis, as RABV spreads 

exclusively via chemical synapses(Ugolini, 2011). 

In summary, the established feeder-free mESC culture system and the established differentiation 

protocol enabled a highly reliable production of almost pure, mESC-derived glutamatergic 

pyramidal neurons, which represent a great model to study the RABV biology in its natural target 

cells. 
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5.2 Transsynaptic spread of RABV 

5.2.1 M-dependent spread of RABV in neurons 

The entire knowledge in respect to the role of the matrix protein in the virus egress is based on 

studies in immortalized non-neuronal cells or neuroblastoma cells. Hence, the influence of M on 

the neuronal transfer of RABV in mESC-derived neurons that represents to this date the best in 

vitro model for neurons of the CNS, was investigated. 

To this end, mESC-derived neurons were initially infected with an M gene-deficient virus (Figure 

10B). In contrast to the observations in non-neuronal non-polarized cell culture cells, SAD ΔM did 

not exhibit an enhanced CPE. This might be consistent with the neuroprotective effect of the 

glycoprotein that is described for different RABV strains (Conzelmann, 2011; Prehaud et al., 2010). 

Another explanation might be that the neurons were not directly in contact with each other. Thus, 

the possible enrichment of glycoproteins on the cell surface, which was described for SAD ΔM in 

BSR cells (Mebatsion et al., 1999), did not result in an increased cell-cell fusion activity. Besides, it 

is conceivable that the mESC-derived neurons are more resistant to the induced cell death 

pathway that kills SAD ΔM infected BSR cells.  

Moreover, the M-deletion mutant exhibited a tremendously impaired neuronal transfer, which 

most likely was due to a severe budding defect. These findings point out the essential role of the 

matrix protein in virus budding in neurons and consequently in the neuronal transfer of RABV.  

5.2.2 The ESCRT machinery contributes to the neuronal spread of RABV 

The RABV matrix protein encodes for the overlapping late domain motif sequence 35PPEYVPL41, 

but only PPEY is essential for the RABV budding, as was shown in NA cells and BSR cells (Wirblich 

et al., 2008). However, whether the ESCRT machinery is involved in the neuronal transfer of RABV 

is unknown.  

I started the investigation of the impact of the late domain on the budding of RABV by performing 

trans-complementation assays of M-gene deficient RABV with two different M mutants, in which 

the late domain was mutated by alanine substitutions. The trans-complementation of the M-gene 

deficient virus with M35AA (34PAAEY38) resulted in a minor reduction of infectious virus titers 

compared to the striking reduction observed with M34AAA (34AAAEY38) (Figure 11A). Probably 

P34, which was not described as part of the late domain, has an overlooked strong supporting 

effect in respect to the late domain-dependent, ESCRT-mediated virus release. Indeed, in the 

epithelial sodium channel (ENaC) the PY-motif PPxY is defined as core motif, which has an N-

terminal and a C-terminal extension. The consensus sequence PPPxYxxL is conserved in many 
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mammalian ENaCs. The three prolines form a poly-proline type II helix and the tyrosine and leucine 

form a helical turn. Thereby, PPPxYxxL allows a high affinity binding of ENaC to the WW3 of human 

Nedd4 isoforms (Bobby et al., 2013; Henry et al., 2003). Perhaps, the 35PPEYVPL41 motif of M does 

not represent overlapping late domains but rather an elongated PPxY-motif, as observed in ENaC. 

This theory is supported by the finding that the recruitment of ALIX by YxxL is not involved in RABV 

budding (Wirblich et al., 2008), indicating that the late domain motif YVPL in 35PPEYVPL41 does not 

act as an independent late domain, but as an important elongation of the PPEY late domain motif. 

The extended PPEY-motif may enable a high affinity binding of the RABV matrix protein to Nedd4 

and thereby supports a highly efficient recruitment of the ESCRT machinery. Perhaps, additional 

mutations of tyrosine (Y38) and leucine (L41) would result in an even more severe reduction in 

the ESCRT-dependent virus release of RABV.  

In order to study M34AAA in the viral context, recombinant SAD M34AAA eGFP virus was 

generated. Interestingly, SAD M34AAA eGFP infected hamster BSR-T7 cells and mouse N2A cells 

formed multinucleated syncytia, which probably resulted from an increased cell-cell fusion activity 

(data not shown). Wirblich et al. did not observe an increased cell-cell fusion activity for one of 

their late domain mutants, although they performed the infection experiments also in BSR-T7 cells 

and neuroblastoma cells (Wirblich et al., 2008). However, Mebatsion et al. described the 

formation of syncytia in M gene-deficient SAD infected BSR cells (Mebatsion et al., 1999). These 

authors explained the cell-cell fusion activity of SAD ΔM as an effect of the accumulation of 

glycoproteins on the cell surface of the infected cells (Mebatsion et al., 1999). Perhaps, the 

inefficient recruitment of Nedd4 via the disturbed late domain of SAD M34AAA, resulted in an 

accumulation of glycoproteins at the plasma membrane, leading due to the G fusion activity to 

the cell-cell fusion of neighboring cells. Supposedly, the previously published RABV M late domain 

mutations had a higher rest-activity in terms of Nedd4 binding, resulting in a faster recruitment of 

the ESCRT machinery and a quicker virus budding. Hence, probably not enough glycoproteins 

accumulated at the plasma membrane and therewith no cell-cell fusion activity could be observed. 

The examination of the viral growth kinetics of SAD M34AAA eGFP demonstrated a cell line-

independent up to 1000-fold reduction of infectious virus titers in non-polarized cell lines (Figure 

11C). In comparison, the M35S single mutant and the M4 multi-mutant exhibited at the most a 

100-fold slower growth kinetics (Wirblich et al., 2008). These data support the hypothesis that the 

extended late domain has a beneficial effect in terms of efficient virus egress.  

Since SAD is an attenuated vaccine strain adapted on BHK cells, it is less neurotropic compared to 

the CVS-N2c strain, which was adapted in mouse brains and on a mouse neuroblastoma cell line 

(Morimoto et al., 1998; Morimoto et al., 1999; Reardon et al., 2016). To analyze which of the 

matrix proteins is more severely affected by the disruption of the late domain, a chimeric SAD in 
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which the SAD M gene was replaced by the CVS-N2c M gene or by the CVS-N2c M34AAA gene was 

generated. In BSR-T7 cells and N2A cells, the disruption of the late domain in N2c M caused a 

milder reduction in terms of the viral growth kinetics (Figure 13A) compared to the disruption of 

the late domain in SAD M (Figure 11C).  

The comparison of SAD eGFP and SAD N2c M and the respective late domain mutants in terms of 

the neuronal transfer in mESC-derived neurons, however, revealed that the chimeric SAD N2c M 

spread much more efficiently than SAD eGFP (Figure 13B). This indicates that the matrix protein 

of the highly neurotropic, fixed RABV strain CVS-N2c is better adapted for the budding in neurons, 

whereas the less neurotropic, attenuated vaccine strain SAD is adjusted to the efficient budding 

in non-neuronal cells. These date imply that, next to the glycoprotein, the matrix protein might be 

an important factor for an efficient transsynaptic spread of RABV. Most importantly, the 

disruption of the late domain in the chimeric SAD N2c M resulted in a more striking blockade of 

the neuronal transfer compared to the mutation of the late domain in SAD eGFP. After all, also 

the chimeric SAD N2c M34AAA was still able to spread, albeit poorly, to synaptically connected 

neurons.  

In summary, these data imply that the matrix protein of the neurotropic CVS-N2c supports the 

neuronal transfer of SAD better than the SAD M protein. Further, it seems like the neuronal spread 

of the chimeric SAD N2c M is much more adapted and dependent on the ESCRT machinery than 

SAD eGFP, whereas in non-polarized cell culture lines, the opposite applies. These observations 

could be interpreted such that RABV may use different budding mechanism in neurons and non-

neuronal cells or non-polarized neuroblastoma cells.  

It is tempting to speculate that in neurons especially the ESCRT machinery is highly important for 

RABV to spread to synaptically connected neurons. This might explain why the chimeric SAD with 

the neuron adapted N2c M spreads more efficiently than the wildtype SAD. Additionally, it might 

explain why the mutation of the late domain affects the transsynaptic spread of SAD N2c M more 

severely than that of SAD wildtype. In contrast, the observation that disruption of the N2c M late 

domain had a minor effect on virus release in BSR-T7 cells and N2A cells compared to the 

disruption of the SAD M protein late domain might indicate the presence of alternative 

mechanisms in those cells. Perhaps, the generation of a non-chimeric CVS-N2c M34AAA virus 

might provide a more consistent insight in terms of the effect of the late domain in the neurotropic 

CVS-N2c, as chimeric viruses may behave different from the parental virus.  
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5.2.3 Destruction of SNARE complexes attenuates transsynaptic spread of RABV 

5.2.3.1 Dominant-negative syntaxin-1, -3, and -4 hinder the neuronal transfer of SAD 

In light of the essential role of SNARE complexes in ubiquitous vesicle fusion events, members of 

the SNARE family are obvious candidates for RABV egress.  

To examine whether one of the plasma membrane located syntaxins is crucial for the spread of 

RABV in neurons, recombinant SAD encoding for N-terminally fluorescence tagged, dominant-

negative syntaxin-1A, -3, -4 and -4/-3 were generated by reverse genetics. Interestingly, in N2A 

cells only SAD eGFPStx4DN/Stx3DN was moderately attenuated (Figure 15B). 

In contrast, in mESC-derived neurons, it seems that the expression of each dominant-negative 

syntaxin hinder the neuronal transfer of the respective recombinant virus (Figure 15C). Among the 

recombinant viruses encoding for a single dominant-negative syntaxin, SAD mChStx1ADN showed 

the strongest defect in neuronal transfer, whereas SAD mChStx3DN and SAD eGFPStx4DN 

exhibited a rather moderate reduction. Remarkably, the transsynaptic spread of SAD 

eGFPStx4DN/Stx3DN was at least two-times stronger impaired than the spread of recombinant 

viruses encoding only for a single dominant-negative syntaxin. Of note, the expression of the 

dominant-negative syntaxins did not affect the viability of the neurons, indicating that the reduced 

neuronal transfer is not caused by neurodegeneration, rather by the blockade of the membrane 

fusion of the cognate SNARE complexes by the respective dominant-negative syntaxin. 

Appropriate controls to verify the integrity of synapses would include electrophysiological assays, 

which were not available in the laboratory. 

In summary, these data indicate that syntaxin-1A, -3 and -4, which are located at the pre- and 

postsynaptic membrane (Hussain et al., 2016; Kennedy et al., 2010), might play a role in the 

neuronal transfer of SAD. Since every dominant-negative syntaxin reduce the neuronal spread of 

SAD and as the expression of two dominant-negative syntaxins caused an at least two-fold 

stronger inhibition of the neuronal transfer than the expression of a single dominant-negative 

syntaxin, it seems possible that SAD is able to alternatively use all three syntaxins and their 

respective cognate SNARE complexes for the neuronal spread. Therefore, it might be interesting 

to investigate the effect of the expression of all three dominant-negative syntaxins in parallel, 

which should result in the blockade of nearly all SNARE complexes (except SNARE complexes 

which are composed of syntaxin-1B and syntaxin-2), on the neuronal transfer of SAD. Moreover, 

the effect of the syntaxin-1B isoform on the neuronal transfer of RABV should be investigated. 

Keeping in mind that the constitutive knockout of syntaxin-1B in mice is lethal (Wu et al., 2015) 

the use of conditional interference is emphasized. Furthermore, syntaxin-2, which is distributed 

homogenously at the pre- and postsynaptic compartment, should be included in future studies as 
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another potential candidate that might support the neuronal transfer of RABV (Kennedy et al., 

2010). 

5.2.3.2 TeNT and BoNT/A hinder the neuronal transfer of RABV  

Using the in vitro model for monosynaptic tracing, established in this thesis, and a recombinant G 

gene-deficient virus encoding for the Vamp-cleaving TeNT-LC, also the involvement of vSNAREs 

(VAMPs) in the neuronal transfer of RABV was addressed. Surprisingly, the mono-transsynaptic 

spread of SAD ΔG eGFP-TeNT-LC was as efficient as of SAD ΔG eGFP, indicating that SNARE 

complexes consisting of the toxin-targeted Vamp1, -2 or -3 do not participate in the neuronal 

transfer of SAD (Figure 16). However, a potential drawback of using the virus itself as a vector to 

deliver the TeNT-LC into the neuron is that the neurotoxin is expressed simultaneously with the 

viral proteins. This might result in a still insufficient cleavage of the Vamps at the time point of 

viral spread, thus pretending a false negative result in terms of a potential involvement of the 

three Vamps.  

To bypass this problem, neurons were transduced with lentiviruses encoding for eGFP-TeNT-LC to 

cleave Vamp1, -2 and -3 or encoding for eGFP-BoNT/A-LC to cleave Snap25. Another advantage of 

this approach was that next to the vaccine strain SAD, also the neurotropic CVS-N2c and the 

wildtype strain THA could be tested with respect to their sensitivity to these neurotoxins. 

Interestingly, the transsynaptic spread of the attenuated SAD was most sensitive to the disruption 

of Vamps and Snap25 (50 % less infected neurons), whereas the neurotropic CVS-N2c and THA 

were less affected by the cleavage of Snap25 and Vamp1, -2 and -3. In any case, the neuronal 

transfer of the three virus strains were only slightly reduced in the presence of BoNT/A-LC or TeNT-

LC (Figure 17C). 

In summary, these data imply that Vamp1, -2 and -3 as well as Snap25 (i.e. fusion of vesicles to 

the postsynaptic membrane, or release of neurotransmitters from the presynaptic membrane) 

have only little effect on the neuronal transfer of SAD, THA and CVS-N2c.  

The incomplete blockade of the neuronal transfer might be explained by the presence of 

uncleaved Vamps and Snap25, which were under the detection limit of Western blotting (Figure 

17B). As a control for the neurotoxin kinetics, neurons were also transduced in parallel with an 

eGFP-BoNT/C-LC encoding lentiviruses. BoNT/C-LC cleaves Snap25 as well as syntaxin-1 and 

causes rapid neurodegeneration in vivo and in vitro as soon as nearly all syntaxin-1 proteins and 

Snap25 proteins are cleaved (Peng et al., 2013). Since the mESC-derived neurons were dead at 60 

h post transduction with BoNT/C-LC (Figure 17A) it can be assumed that to the time point of 
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infection with RABV (60 h post transduction), the target proteins of TeNT-LC and BoNT/A-LC were 

nearly completely cleaved, as also indicated by Western blotting experiments (Figure 17B). 

Since Fasshauer et al. demonstrated that SNAREs of the same subclass can substitute each other 

to a certain extent, the cleaved Vamps or Snap25 might have been complemented by neurotoxin-

insensitive R-SNAREs or Qb,c-SNAREs, leading to non-cognate SNARE complexes that support the 

vesicle fusion and therewith virus budding (Fasshauer et al., 1999; Holt et al., 2006; Yang et al., 

1999).  

Specifically Snap25 might be replaced by Snap23, Snap29 or Snap47, since all three are resistant 

to BoNT/A (reviewed in (Verderio et al., 2006).  

Snap29 is able to interact with a broad range of syntaxins (Steegmaier et al., 1998). However, 

Snap29 is not palmitoylated and it is localized at intracellular membranes e.g. Golgi (Steegmaier 

et al., 1998). Therefore, it is unlikely that Snap29 substitutes Snap25. 

Snap47 is distributed in neurons at intracellular membranes and in synaptic vesicle fractions 

where it exhibits a similar distribution as VAMP2 (Holt et al., 2006). Murine Snap47 preferentially 

exhibits a somatic and postsynaptic localization (Munster-Wandowski et al., 2017). Additionally, 

Snap47 is able to substitute Snap25 in vitro (Holt et al., 2006). Because of the postsynaptic location 

and its ability to substitute Snap25 at least in vitro, Snap47 might substitute Snap25 and thereby 

promote the spread of RABV in the absence of uncleaved Snap25. However, since Snap47 is not 

palmitoylated it is less likely that Snap47 rescues the loss of functional Snap25. 

Suh et al. demonstrated that Snap23 is enriched in dendritic spines and colocalizes with 

constituents of the PSD (Suh et al., 2010). Furthermore, exogenous Snap23 is able to compensate 

the cleavage of Snap25 by BoNT/E in neurons (Peng et al., 2013). Since Snap23 is like Snap25 

palmitoylated (Vogel and Roche, 1999), located at the postsynaptic membrane (Suh et al., 2010), 

cleaved only inefficiently by BoNT /A (Vaidyanathan et al., 1999) and able to substitute Snap25 

(Peng et al., 2013), it might be a good candidate for the substitution of Snap25. However, at least 

in hippocampal neurons, Snap25 and Snap23 exhibit a different subcellular distribution pattern 

(Suh et al., 2010). 

Possible candidates for the substitution of the tetanusneurotoxin-sensitive Vamp1, -2 and -3 are 

the tetanusneurotoxin-insensitive Vamp4, -5, -7 and -8. 

Since Vamp5 is expressed mainly in muscle cells and it is unable to form a SNARE complex with 

syntaxin-1 and Snap25 or syntaxin-4 and Snap25 it is unlikely that Vamp5 substitutes the cleaved 

Vamps and thus enables the neuronal spread of RABV (Hasan et al., 2010).  

Vamp8 plays an important role especially in exocrine tissues but not in neurons, making it unlikely 

that Vamp8 substitutes the cleaved VAMPs in neurons, even it is able to form complexes with 

syntaxin-1 and Snap25 or syntaxin-4 and Snap25 (Hasan et al., 2010; Wang et al., 2007).  
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Vamp4 interacts like Vamp2 with syntaxin-1 and Snap25 as well as with syntaxin-4 and Snap25, 

albeit it exhibits a reduced fusion activity (Hasan et al., 2010). However, it was shown that Vamp4 

is present in presynaptic terminals (Raingo et al., 2012), if Vamp4 is also present in the 

postsynaptic terminals is unknown. 

The tetanusneurotoxin-insensitive VAMP (TI-VAMP/VAMP7) is located amongst others in the 

somatodendritic compartment (Coco et al., 1999). VAMP7 is able to form a functional SNARE 

complex with syntaxin-1 and Snap25 as well as with syntaxin-4 and Snap25. However, it exhibits a 

reduced fusion activity compared to VAMP1, -2 or -3. That might explain why RABV spreads slower 

in the presence of TeNT-LC (Hasan et al., 2010). Due to that, Vamp7 might be a good candidate 

for the substitution of the Vamp1, -2 and -3.  

Taken together, it seems like the SNARE machinery participates in the neuronal spread of RABV. 

Since all dominant-negative syntaxins caused a reduction in respect to viral spread of SAD, which 

was greatest after simultaneous expression of dominant-negative syntaxin-4 and syntaxin-3, it 

seems like the neuronal transfer of RABV is dependent on SNARE complexes, which are composed 

of one of the three syntaxins. However, a participation of syntaxin-1B or syntaxin-2 is also possible. 

Further, it seems like SNARE complexes, which consists of Snap25 or Vamp1, -2 or -3 play a role in 

the spread of RABV. However, a major problem to be solved is that members of a SNARE-subclass 

can substitute each other. That might explain why there is no total elimination of the RABV spread 

despite the expression of TeNT-LC or BoNT/A-LC. Considering the subcellular localization and their 

ability to substitute the respective SNARE-subclass, the most likely candidates for the substitution 

of Vamp1, -2 and -3 is probably Vamp7 and for the substitution of Snap25 it is probably Snap23.  

Interestingly, it seems that there is no noteworthy difference in the influence of the SNARE 

machinery on the neuronal spread of the attenuated SAD, the neurotropic CVS-N2c and the 

wildtype THA, although CVS-N2c spreads in mESC-derived neurons much more efficiently than 

THA or SAD. 

5.2.4 Visualization of the spread of RABV in neurons by EM 

Since previous results indicated that the ESCRT machinery and the SNARE machinery are involved 

in the neuronal spread of SAD, EM studies were performed in order to visualize the subcellular 

localization of SAD during the post-replicative transport of the virus to the postsynaptic membrane 

and during the budding process. Our preliminary EM data showed probably a bullet shaped SAD 

particle within an MVB (Figure 18C). This observation would support a working hypothesis in which 

SAD hijacks MVBs in an ESCRT-dependent manner, followed by a SNARE-driven fusion of the MVB 

with the plasma membrane. 
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Notably, in the same cell a single SAD particle was found associated with the plasma membrane 

(Figure 18C), indicating that SAD might bud by alternative routes. This observation might support 

a model proposed by Bauer et al. (Bauer et al., 2014) in which the glycoprotein of RABV is 

embedded in the membrane of a postsynaptic vesicles like an AMPA containing endosome (Jurado 

et al., 2013). The vesicle with the embedded G proteins, the associated M proteins, and RNP 

travels to the membrane, and fuses in a SNARE-dependent mechanism with the plasma 

membrane. Finally, the matrix protein recruits the ESCRT machinery, which drives the budding of 

SAD into the synaptic cleft.  

The preliminary EM studies of SAD infected mESC-derived neurons indicate that SAD can use at 

least two different routes to bud out of the cell. Interestingly, it seems like SNARE proteins as well 

as the ESCRT system are involved in the budding of SAD in mESC-derived neurons. 

5.2.5 Prospective approaches for studying the neuronal transfer of RABV 

The results of this thesis indicate that the extended 34PPPEYVPL41 late domain plays an important 

role in the neuronal transfer of SAD. Further, the results suggest that the neurotropic CVS-N2c 

strain predominantly exploits the ESCRT complex, since the disruption of the late domain of N2c 

M affected the neuronal spread of SAD N2c M much more severely than the spread of SAD, which 

was only moderately affected by the disruption of the late domain. That finding suggests that SAD 

has a better alternative for budding than the ESCRT machinery. Further, the non-mutated chimeric 

SAD N2c M spread much more efficiently compared to the parental SAD. It might be interesting 

to additionally mutate Y38 and L41 (M34AAAEAVPA), since these mutations should further 

decrease the binding affinity of the extended late domain to Nedd4 (Henry et al., 2003), possibly 

leading to a stronger blockade of the neuronal spread of SAD and SAD N2c M than M34AAA. 

Moreover, it might be interesting to monitor by EM studies, whether the disruption of the 

extended late domain causes a different subcellular localization of the matrix protein and thereby 

a different location of virus assembly sites in mESC-derived neurons. Perhaps, the disrupted late 

domain causes an enrichment of RNPs at the cytoplasmic face of MVBs, since the mutated matrix 

protein is unable drive the ESCRT-dependent budding into MVBs. Further, an even stronger 

enrichment of membrane-associated viruses particles at the plasma membrane, as previously 

described in HeLa cells (Wirblich et al., 2008), could be expected since the interaction of this M 

late domain-mutant with Nedd4 should be completely impaired, resulting in an inhibition of RABV 

budding. 

Since the most dramatic reduction of the neuronal transfer of RABV was observed for the 

recombinant virus encoding for dominant-negative Stx4 and Stx3, it might be interesting to 

investigate the neuronal spread of RABV in the presence of dominant-negative Stx1A, 3 and 4. To 
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ensure that SNARE complexes are already blocked before virus assembly, the neurons should be 

transduced with lentivirus encoding for the respective dominant-negative syntaxins. Further, Stx2 

and syntaxin-1B should be included in the studies as further potential components of the SNARE-

complex used for the neuronal spread of RABV. As SNARE complexes are essential for neuron 

survival, it remains to be investigated whether neurons would survive the simultaneous 

expression of three, four or even five different dominant-negative syntaxins, which would reduce 

the amount fusion capable SNARE complexes at the plasma membrane dramatically. Especially 

the expression of dominant-negative syntaxin-1B might be toxic to the cells (Wu et al., 2015). 

Furthermore, the investigation of the neuronal transfer of RABV in neurons, which were 

transduced with dominant-negative VAMPs, Snaps or combinations of dominant-negative 

syntaxins, Vamps and Snaps might provide a good insight into the exact composition of a 

potentially favored SNARE complex used by RABV for the transsynaptic spread. However, 

especially Vamp2 and Snap25 are the most interesting candidates because of their postsynaptic 

localization (Antonucci et al., 2016; Hussain and Davanger, 2015).  

If none of the above mentioned approaches regarding the participation of SNAREs and ESCRT led 

to a nearly total blockade of neuronal transfer of RABV, this might support the model that the 

SNARE proteins and the ESCRT machinery provide two independent routines for virus egress. This 

model could be addressed by analyzing the transsynaptic spread of RABV, bearing the mutated 

extended late domain M34AAAEAVPA, in mESC-derived neurons, which were transduced with 

lentiviruses encoding for different combinations of dominant-negative SNARE proteins.  

5.2.6 Working hypothesis for the neuronal transfer of RABV 

Indeed there are now three working hypothesis for the RABV budding at the postsynaptic 

membrane. In the first model a virus particle buds in an ESCRT-dependent mechanism into a 

exocytotic vesicle (e.g. AMPA-containing endosome) that is sorted to the postsynaptic membrane, 

the vesicle fuses in a SNARE-driven process with the plasma membrane and the entire virion is 

released into the synaptic cleft (Bauer et al., 2014). In the second model, RABV buds into a MVB 

in an ESCRT-dependent way, followed by a SNARE-dependent fusion of the MVB with the 

presynaptic membrane. One component of the SNARE complex is probably the tetanus 

neurotoxin-insensitive Vamp7, as it participates in the fusion of the MVB with the plasma 

membrane (Fader et al., 2009). In the third model, RABV glycoproteins are embedded into the 

membrane of an exocytotic vesicle that is sorted to the postsynaptic membrane. The cytoplasmic 

RNP-complex is associated via matrix proteins with the glycoproteins (Bauer et al., 2014). The 

vesicle travels to the postsynaptic membrane. After a SNARE-drive fusion of the vesicle with the 

plasma membrane, the G is embedded into the plasma membrane and the cytoplasmic RNP-
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complex is still associated via M with G. The matrix protein recruits the ESCRT-machinery and 

thereby initiates the ESCRT-dependent virus budding into the synaptic cleft. 

 

 

 

5.3 Insertion of a trafficking signal downstream of the transmembrane 

domain is a potential site for rerouting SAD G 

The aim of the this part of the thesis was the identification of permissive sites within the SAD 

glycoprotein for the insertion of external trafficking signals in order to change the subcellular 

distribution of G, or to retarget RABV to alternative receptors. 

The first approach was the insertion of the eleven aa long neuropeptide Substance P into the 

nAChR binding site or the antigenic site III within the ectodomain of G. However, neither of the 

recombinant glycoproteins in which these sites were deleted or substituted by SP were 

incorporated into virus particles. Probably, each of the mutations interfered with the correct 

folding of the glycoprotein and thereby prevented the correct trafficking, glycosylation and/or 

incorporation into the viral membrane (Figure 21). 

Since the ectodomain appeared too sensitive for modifications, the cytoplasmic domain of G was 

targeted for the insertion of a trafficking signal. Three copies of KBS were inserted directly 

downstream of the transmembrane domain (G-3xKBS) or at the C-terminus of the C-tail (G-TM-

3xKBS-RT). The latter was incorporated effectively into the virion and led to the formation of 

infectious virus particles (Figure 21). While the recombinant SAD G-TM-3xKBS-RT eGFP was in BSR-

T7 cells clearly attenuated (Figure 22A), it exhibited only a mildly reduced transsynaptic spread 

compared to SAD eGFP (Figure 23). Since the glycoprotein should not have an effect on viral 

transcription or replication, the slower growth kinetics in BSR-T7 cells as well as the slightly 

reduced neuronal transfer in mESC-derived neurons indicate a less efficient virus assembly, 

budding, attachment, or entry of SAD G-TM-3xKBS-RT eGFP. Analysis of the protein composition 

of the SAD G-TM-3xKBS-RTeGFP virions showed an enrichment of the envelope proteins M and G, 

which was not reflected in the cellular expression level of the infected cells (Table 1). Keeping in 

mind that the virions were pelleted by an ultracentrifugation step it cannot be excluded that the 

pellet contained extracellular vesicles like exosomes and microvesicles. Perhaps, the KBS copies 

downstream of the transmembrane domain reduced the interaction of the cytoplasmic tail with 

the matrix protein and thereby with the RNP complex, resulting in a less efficient virus release, 

which would explain the slower growth kinetics. Furthermore, it might lead to the release of G 

and M containing vesicles into the supernatant, which would be an explanation for the enrichment 
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of G and M in the pelleted supernatant. To gain a more sophisticated insight into the composition 

of the virions, the supernatant of infected cells should be subjected to a gradient 

ultracentrifugation to separate virions and extracellular vesicles, followed by SDS-PAGE, Western 

blotting and immunostaining of the virion fraction and the extracellular vesicle-containing 

fraction.  

Regarding the rerouting of the G-TM-3xKBS-RT in mESC-derived neurons, no notable difference 

concerning dendritic and axonal distribution could be identified (Figure 24). Notably, even the 

staining for wildtype G that was expected to be restricted to the somatodendritic compartment, 

overlapped with the staining for an axonal marker. Since axonal and dendritic marker did not 

overlap, it might be that the mESC-derived neurons have a less clear-cut sorting at the PAEZ for 

the glycoprotein than primary hippocampal neuronal cultures, which were used by Farias et al. 

(Farias et al., 2015). Another explanation for the less efficient sorting at the PAEZ might be that 

Farias transfected the NiV-F-KBS constructs, while in this thesis the neurons were infected with 

the recombinant virus.  

However, whereas the staining of G revealed a granular distribution, which might resemble the 

distribution of PSDs, the staining for G-TM-3xKBS-RT was homogenous, indicating that the 

trafficking signal does change the distribution of G in mESC-derived neurons. Therefore, it might 

be interesting to monitor the distribution of G-TM-3xKBS-RT in primary hippocampal neuronal 

cultures, in which the axonal transport of NiF-KBS was demonstrated. Perhaps, these cells exhibit 

a more strict sorting of the glycoprotein as mESC-derived neurons, which could result in a more 

distinct axonal sorting of G-TM-3xKBS-RT. Furthermore, it would be interesting to address the 

question whether G-TM-3xKBS-RT is able to change the subcellular localization of the matrix 

protein and/or the RNP-complex or another control protein. If not, it should be considered to tag 

M and the RNP proteins (N, P, and L) with KBS in order to direct them to the presynaptic 

membrane. In case this can be achieved, it must be investigated, whether the virus is able to bud 

from the presynaptic membrane and can infect postsynaptically connected neurons. It might be 

that additional components of the postsynaptic density, which are absent at the presynaptic 

membrane, are needed for the virus budding. However, the SNARE and the ESCRT machinery are 

also located at the presynaptic membrane, which could be sufficient to drive the virus budding. 

Further, it has to be clarified if RABV can enter neurons of the CNS at the postsynaptic membrane 

by receptor-mediated endocytosis. However, previous work already demonstrated that RABV can 

travel anterogradely in peripheral sensory neurons and from peripheral neurons to the CNS (Astic 

et al., 1993; Bauer et al., 2014; Zampieri et al., 2014). Taken together, G-TM-3xKBS-RT might be 

the first step in a very long journey towards an anterograde transsynaptic tracing model, which 

would be a powerful tool to investigate neuronal circuits in the CNS.   
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5.4 In vitro evolution experiment of SAD eGFP  

In contrast to virulent RABV street viruses, the attenuated SAD L16 exhibits a more pronounced 

cytopathogenicity. An in vitro evolution experiment of SAD eGFP in HEK293T cells was performed 

in order to identify non-cytotoxic SAD variants and to study a persistently infected cell culture 

system. For this approach, it was expected that toxic SAD eGFP kills infected cells, while mutated, 

non-toxic viruses do not kill the cells and therefore could be enriched by cell passaging. However, 

survival of the cells could be caused by mutations in the cell genome, which make the cells less 

sensitive to the toxic effect of SAD eGFP, too.  

5.4.1 SAD eGFP in vitro evolution resulted in a non-cytotoxic virus 

The in vitro evolution experiment resulted in virus producing HEK293T cells, whose viruses were 

still infectious for fresh cells. Investigation of the growth kinetics and cytotoxicity of the virus pool 

SAD eGFP p15 in fresh cells revealed that SAD eGFP p15 stock grew as fast as the parental SAD 

eGFP, but SAD eGFP p15 exhibited a strikingly reduced cytotoxicity in HEK293T cells (Figure 26). 

The loss of the cytotoxicity of SAD eGFP p15 indicates that the cells of the in vitro evolution 

experiment survived most likely due to mutations in virus genome, rather than mutations in the 

cell genome. However, an additional adaption of the HEK293T cells cannot be excluded.  

The next generation sequencing of the viral genome demonstrated that only six mutations had an 

incidence rate of at least 30 %. The six mutations appeared in a diversified frequency, reflecting 

the existence of a mixed SAD eGFP p15 population. Two mutations are located within the non-

coding but transcribed leader region, one mutation is located in the non-coding and non-

transcribed trailer region, another one is located within the phosphoprotein gene, and two point 

mutations were identified within the RNA-dependent RNA polymerase L.  

To clarify, whether the non-cytotoxic phenotype of SAD eGFP p15 can be attributed to a single 

mutated region, recombinant viruses encoding for a single mutated region and a recombinant 

virus containing the mutated leader and trailer region were generated and characterized in terms 

of growth kinetics, eGFP fluorescence, and cytotoxicity in HEK293T cells (Figure 28).  

The mutation of the phosphoprotein caused a loss of the P4 start codon and therewith probably 

a loss of the transcription variant P4. However, eGFP fluorescence, growth kinetics, and 

cytotoxicity were comparable with the parental SAD eGFP virus. Since it is already known that the 

P4 isoform is not essential for the virus life cycle these findings are not surprising (Brzozka et al., 

2005). The first mutation within the L-gene caused a mutation of hydrophilic Ile into the 

hydrophobic Thr. However, SAD L(I30T) eGFP exhibited the same growth kinetics, eGFP 

fluorescence and cytotoxicity as the parental SAD eGFP, suggesting that the point mutation within 
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the RNA-dependent RNA polymerase does not affect neither the viral transcription nor the viral 

replication. The second mutation within the L-gene led to an introduction of an in frame stop 

codon within the L-gene. However, SAD L(stop) eGFP exhibited the same growth kinetics as the 

non-passaged SAD eGFP virus, but SAD L(stop) eGFP was defect for eGFP expression, such that the 

identity and the sequence of the virus has to be reexamined. As the virus grew as fast as the non-

passaged virus, it is implausible that the virus had a defect concerning gene expression. However, 

since this virus was not of immediate interest for the purpose of this thesis, it was not further 

addressed. The trailer-mutation was the most frequent mutation, which was present in 94 % of all 

NGS reads. It exhibited a comparable eGFP fluorescence, grew as fast as the parental virus, and 

was as cytotoxic as the parental SAD eGFP in HEK293T cells.  

Notably, the recombinant viruses SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP exhibited 

a milder cytotoxicity in HEK293T cells and slower viral growth kinetics, which was associated with 

a reduced eGFP fluorescence. These observations might be explained by a reduced transcription 

and/or replication activity of these two viruses. Since the triple mutant SAD mut52/54/12845 

eGFP behaves like SAD mut52/54 eGFP, it seems like the mutations in the leader region are 

dominant, since the trailer-mutation alone does not change the phenotype of the virus. Since the 

trailer-mutation is the most prominent mutation, it might be interesting to investigate whether 

the trailer-mutation supported the evolution of the less frequently mutated leader region.  

Final investigations of the cytotoxicity of the recombinant viruses in mESC-derived neurons 

revealed that SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP infected neurons lived as long 

as non-infected neuronal cultures and thus much longer than mESC-derived neurons infected with 

the parental SAD eGFP. The eGFP expression levels of SAD mut52/54 eGFP and SAD 

mut52/54/12845 eGFP infected neurons were up to five days post infection slightly reduced (data 

not shown), indicating that the two recombinant viruses exhibited also in neurons a reduced viral 

transcription and probably a reduced viral replication rate.  

In summary, SAD mut52/54 and SAD mut52/54/12845 exhibited compared to parental SAD eGFP 

a strongly reduced cytotoxicity in non-neuronal HEK293T cells as well as in mESC-derived neurons. 

The low cytotoxicity of SAD mut52/54 eGFP and SAD mut52/54/12845 eGFP in neurons and 

HEK293T cells might be attributed to their reduced gene expression, which is represented by their 

reduced eGFP protein level. Morimoto et al described a direct correlation between the induction 

of apoptosis and increasing amounts of RABV glycoproteins (Morimoto et al., 1999). It would be 

imaginable that the reduced gene expression rate leads to a reduced glycoprotein level, which 

might act in an anti-apoptotic fashion.  

Another theory, which is supported by data from Alexander Ghanem, might be that the reduced 

cytotoxicity of the two viruses in HEK293T cells and mESC-derived neurons might be due to a 
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reduced synthesis of viral RNAs and the reduced production of RNA products. Thereby, less 

cytosolic 5´triphosphate dsRNAs would be present within the cell. The 5´triphosphate dsRNAs is 

usually recognized by RIG-I that in turn leads to the induction of type I interferon genes or 

eventually programmed cell death in order to elimante severe infections (Hornung et al., 2006; 

Wang et al., 2016). Perhaps, the RNA levels of both leader mutants are too low, to induce the 

programmed cell death.  

5.4.2 Future outlook 

To characterize the exact effects of the leader mutations in terms of viral transcription, it would 

be necessary to evaluate and compare the transcription levels and RNA products of SAD mut52/54 

eGFP or SAD mut52/54/12845 eGFP with the parental SAD eGFP virus using Northern blotting and 

RT-qPCR. In particular, the presence or enrichment of defective interfering particles and RNAs 

could be evaluated by these methods. Furthermore, knockout screens could be performed in 

order to identify how exactly RABV kills the cells and why the leader mutants exhibit a reduced 

neuronal toxicity.  

Furthermore, the findings of this thesis imply the generation of a chimeric SAD virus comprising 

of SAD mut52/54 and the N2c matrix protein. The chimeric G-gene deficient SAD mut52/54 N2cM 

ΔG might be a tracer that is superior to SAD ΔG in transsynaptic transmission due to the N2c matrix 

protein and less toxic than SAD ΔG because of the leader mutations. In addition, SAD mut52/54 

N2c M ΔG might be superior to N2c ΔG in terms of protein expression.  
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6 Appendix 

6.1 List of oligonucleotide sequences 

Name (numerical order) Sequence (5´- 3´)  

MEP6fw ATAGCTAGCGCCACCATGGTGAGCAAGGGC 

MEP6rv ATATGCGGCC GCTTATTTCT TCTTCCTCGC 

MEP7fw ATAGCTAGCACCGCCATGGTGAGCAAGGGC 

MEP7rev ATAGCTAGCACCGCCATGGTGAGCAAGGGC 

MEP8rev TATGCGGCCG CCTATTTCTT CCGGCGCGCC 

MEP25rv TATGCGGCCG CTTATTATAT AATGATCTAC C 

MEP27fw ATAGCGGCCGCTGTGAAAAAAACTATTAACATCCCTCAAAAGACTCAAGGAAA

GGCTAGCGCCACCATGAAGGACCGTCTGGAGCAGC 

MEP27rv TATCCGCGGTTACTGACTCTGGTATTTCACAGC 

MEP31fw ATAGCTAGCGCCACCATGGTGAGCAAGGGCG 

MEP43fw 
ATAGAATTCGCCACCATGGTTCCTCAGGC 

MEP43rv 
TATCTCGAGT TACAGTCTGG TCTC 

MEP46fw GTGTCTTCTACCTACTGCTCCACTAACCACGATAGACCCAAGCCTCAGCAGTTCT

TTGGATTAATGGGGATGTCTTGTGACATTTTTACCAATAGTAGAG 

MEP46rv CTCTACTATTGGTAAAAATGTCACAAGACATCCCCATTAATCCAAAGAACTGCT

GAGGCTTGGGTCTATCGTGGTTAGTGGAGCAGTAGGTAGAAGACAC 

MEP47fw 
CCTACTGCTCCACTAACCACGATGGGATGTCTTGTGACATTTTTACC 

MEP47rv 
GGTAAAAATGTCACAAGACATCCCATCGTGGTTAGTGGAGCAGTAGG 

MEP-59fw 
ataATCGATCAGAACCTACGCAACAC 

MEP60fw 
CCATTGTCCCCAACACCTTGAGGAACTCTG 

MEP60rv 
CAGAGTTCCTCAAGGTGTTGGGGACAATGG 

MEP62fw 
CGAGAGGACTTTCAGAGAGATGAAGGAGAGGATCC 

MEP62rv 
GGATCCTCTCCTTCATCTCTCTGAAAGTCCTCTCG 

MEP64fw 
GCTCCCAAGAGTCCTAGATTCACGCGTTGTGTC 

MEP-64rev 
GACACAACGCGTGAATCTAGGACTCTTGGGAGC 

MEP69fw 
ctgaGCGGCCGCCACCGCG 

MEP69rv 
ATCGAAAGTGCATTCCTTGATATTCTCTCC 

ME70fw 
TCAAGGAATGCACTTTCGATATACAGAGCC 

ME70rv- 
GAGCACCGGTTGCCCACTGAAC 
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MEP80fw CCCAAGCCTCAGCAGTTCTTTGGATTAATGggcagcggaCTCCCTTCAAAAGGGtgt

ttaag 

MEP80rv AATCCAAAGAACTGCTGAGGCTTGGGTCTgcttccggagccGTAGTGAGCATCGGc

ttcc 

MEP83fw GCCGATGCTCACTACCTCCCTTCAAAAGGG 

MEP83rv CCCTTTTGAAGGGAGGTAGTGAGCATCGGC 

MEP88fw TATAACCCTAGGAAAGGCTCCCG 

MEP103fw ataGAATTCgccaccATGAACCTCCTACGTAAGATAG 

MEP103rv ataGCTAGCTTATTCTAGAAGCAGAGAGG 

MEP108rv GtcccaTtccagAttTgtaccaatcgcactgtcatcccactccaggttggtAGATCCCAGGCTCA

GTCTGGTCTCACCCCCAC 

MEP109rv tatGCTAGCTTAaatcgcactgtcatcccactccaggttggttccGAtTgcGGAAtcGtcccaTtc

cagAttTgtaccaatcg 

MEP110Afw ataGCATGCAAACTCAAGTTATGTGG 

MEP110Brv cccactccaggttggtAGATCCCAGGCTACAACATGTCATCAGG 

MEP110Crv tccGAtTgcGGAAtcGtcccaTtccagAttTgtaccaatcgcactgtcatcccactccaggttggt 

MEP110Drv tatGCTAGCTTACAGTCTGGTCTCACCC 

MEP110Efw gtgggatgacagtgcgattAGAAGAGTCAATCGATCAG 

MEP110Ffw ggaAtgggaCgaTTCCgcAaTCggaaccaacctggagtgggatgacagtgcgattAG 

ME111Afw ataACTCGAGGGTCTTCCCTAGCG 

ME111Brv tatATCGATTGACTCTTCTaatcg 

MEP112rv tatgctagcCAGATCCGAAAGGAG 

MEP115Afw ataGGCGCGCCTAATACGACTCAC 

MEP115Brv CAGCGGGACATATTCcgctgcagcAAGCCACAGGTCATCGMEP 

MEP115Cfw CGATGACCTGTGGCTTgctgcagcgGAATATGTCCCGCTG 

MEP115Drv TTTGTATACCCAGTTCATGCCCTCAGG 

ME120Arv CTTGCGTAGAACGTTCATTTTATCAGTGGTGTTGCCTGTTTTTTTC 

MEP120B fw GAAAAAAACAGGCAACACCACTGATAAAATGAACGTTCTACGCAAGATA 

MEP120B rv 
GTGATAAATTTGCGGGATATAATCTGATTATTCTAGAAGCAGAGAAGAGTCTTT

G 

ME120C fw CAAAGACTCTTCTCTGCTTCTAGAATAATCAGATTATATCCCGCAAATTTATCAC 

ME120C rv GAAGACCCTCGAGTGAAGGGATCTGTC 
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6.2 Cloning strategies of plasmids produced in this thesis 

Plasmid (alphabetical order) Description 

pCAGGS-M34AAA 

M34AAA was amplified from pSAD M34AAA and prolonged by 

adequate restriction sites using primer MEP103fw and 

MEP103rv. The PCR product and the pCAGGS vector were 

digested with EcoRI and NheI and subsequently ligated.  

pCAGGS-M35AA 

M35AA was amplified from pSAD M35AA and prolonged by 

adequate restriction sites using primer MEP103fw and 

MEP103rv. The PCR product and the pCAGGS vector were 

digested with EcoRI and NheI and subsequently ligated. 

pCAGGS-SADG-

ΔNAChbinding site 

The glycoprotein sequence downstream of the nAChR binding 

site was amplified from pCAGGS G using primer MEP43fw and 

MEP47rv (product A). The sequence upstream of the nAChR 

binding site was amplified from pCAGGS G using primer 

MEP47fw and MEP43rv (product B). The PCR products were 

fused by a PCR using MEP43fw and MEP43rv. The PCR product 

AB and the pCAGGS G vector were digested with EcoRI and XhoI 

and subsequently ligated. 

pCAGGS-SADG-

ΔNAChbinding site-(SP) 

The nAChR binding site was substituted with SP using an 

overlap PCR. The glycoprotein sequence downstream of site III 

was amplified from pCAGGS G and prolonged by the linker-SP-

linker sequence using primer MEP43fw and MEP46rv (product 

A) and the sequence upstream of the nAChR binding site was 

amplified and prolonged by the linker-SP-linker sequence using 

primer MEP46fw and MEP43rv (product B). The PCR products 

were fused by a PCR using MEP43fw and MEP43rv. The 

resulting PCR product and the pCAGGS G vector were digested 

with EcoRI and XhoI and subsequently ligated. 

pCAGGS-SADG-ᐃ-siteIII 

The glycoprotein sequence downstream of the antigenic site III 

site was amplified from pCAGGS G using primer MEP43fw and 

MEP83rv (product A). The sequence upstream of the site III was 

amplified from pCAGGSG using primer MEP83fw and MEP43rv 

(product B). The PCR products were fused by a PCR using 

MEP43fw and MEP43rv. The PCR product AB and the pCAGGS 
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G vector were digested with EcoRI and XhoI and subsequently 

ligated. 

pCAGGS-SADG-ᐃ-siteIII 

[(GS)2-SP-(GS)2] 

The antigenic site III was substituted with SP using an overlap 

PCR. The glycoprotein sequence downstream of the antigenic 

site III site was amplified from pCAGGS G and prolonged by 

linker-SP-linker sequence using primer MEP43fw and MEP80rv 

(product A). The sequence upstream of the site III was 

amplified from pCAGGS G and prolonged by linker-SP-linker 

using primer MEP80fw and MEP43rv (product B). The PCR 

products were fused by a PCR using MEP43fw and MEP43rv. 

The PCR product AB and the pCAGGS G vector were digested 

with EcoRI and XhoI and subsequently ligated. 

pCAGGS-G-TM-3xKBS-RT 

The transmembrane domain was amplified from pCAGGS G 

and prolonged with linker-3xKBS with MEP110Afw, 

MEP110Brv, MEP110Crv and ME109rv. The cytoplasmic tail 

was amplified and prolonged upstream of the C-tail with 

ME110Efw, MEP110Ffw and MEP110Drev. The two PCR 

products were fused by a PCR with MEP110Afw and 

MEP110Drv. The PCR product and the vector pCAGGS G were 

digested with SphI and NheI and subsequently ligated. 

pCAGGS-SADG 3xKBS 

The linker and the three KBS copies were inserted downstream 

of the cytoplasmic tail by amplification from pCAGGS G and 

prolonged with linker and three KBS copies using MEP43fw, 

MEP108rv and MEP109rv. The PCR product and the pCAGGS 

vector were digested with EcoRI and NheI and subsequently 

ligated. 

Full-length RABV constructs 

pN2c M34AAA 

N2c M34AAA was mutagenized with an overlap PCR using 

MEP115Afw and MEP115Brv for PCR A and MEP115Cfw and 

MEP115Drv for PCR B. The products were fused by PCR with 

oligos MEP115Afw and MEP115Drv. PCR product AB and vector 

pN2C were digested with AscI and BstZ17I and subsequently 

ligated. 
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pSAD eGFPStx4DN 

eGFP-Stx4DN was amplified from eGFP Stx4 ΔTM (Ehlers) and 

prolonged with adequate restriction sites using MEP6fw and 

MEP6rv. PCR product and vector pSAD eGFP were digested 

with NheI and NotI and subsequently ligated. 

pSAD eGFPStx4DN/Stx3DN 

Stx3DN was amplified from pSAD-mChStx3DN and prolonged 

by the M/G gene border and adequate restriction sites using 

oligos MEP27fw and MEP27rv. The PCR product and the pSAD-

eGFPStx4DN were digested with NotI and SacII and 

subsequently ligated 

pSAD G-TM-3xKBS-RTeGFP 

C-tail was amplified from pSAD eGFP and prolonged by 

adequate restriction sites using primer MEP59fw and 

MEP112rv (product B). Parts of the ecotdomain, TM and KBS 

were amplified and prolonged by adequate restriction sites 

from pCAGGS-SADG(1-480)-3KBS-RT (product A) with primer 

MEP111fw and MEP111rv. Product A was digested with PspXI 

and ClaI, product B with ClaI and NheI and the vector pSAD 

eGFP with PspXI and NheI, followed by ligation.  

pSAD L(I30T) eGFP 

pSAD eGFP was mutagenized to pSAD L(I30T) eGFP by an 

overlap PCR, using oligos MEP69fw/MEP60rv (PCR product A) 

and MEP60fw/MEP69rv(PCR product B). The PCR products 

were fused using MEP69fw and MEP69rv (PCR product AB). 

Vector pSAD eGFP and PCR product AB were digested with NotI 

and BsmI and subsequently ligated.  

pSAD L(stop) eGFP 

pSAD eGFP was mutagenized to pSAD L(stop) eGFP by an 

overlap PCR, using oligos MEP70fw/MEP64rv (PCR product A) 

and MEP64fw/MEP70rv(PCR product B). The PCR products 

were fused using MEP64fw and MEP64rv (PCR product AB). 

Vector pSAD eGFP and PCR product AB were digested with 

BsmI and AgeI and subsequently ligated. 

pSAD mchStx1ADN 

mCh-Stx1DN was amplified from mCherry Stx1 ΔTM (Ehlers) 

and prolonged with adequate restriction sites using MEP7fw 

and MEP8rv. PCR product and vector pSAD eGFP were digested 

with NheI and NotI and subsequently ligated. 



6 - Appendix 

127 

 

pSAD mChStx3DN 

mCh-Stx3DN was amplified from mCherry Stx3 ΔTM (Ehlers) 

and prolonged with adequate restriction sites using MEP7fw 

and MEP7rv. PCR product and vector pSAD eGFP were digested 

with NheI and NotI 

and subsequently ligated. 

pSAD M34AAA eGFP 
M34AAA was cut out from pCAGGS M34AAA with SnabI and 

BstZ17I and ligated with the digested pSAD eGFP vector.  

pSAD N2CM 

pSAD N2CM was generated by a triple fragment overlap PCR. 

pSAD L16 was the template for PCR A (MEP88fw/MEP120Arv) 

and PCR C (MEP120Cfw/MEP120Crv). N2CM was amplified 

from pN2C with MEP120Bfw and MEP120Brv. The fragments 

were fused by a PCR reaction with all three fragments using 

MEP88fw and MEP120Crv. The PCR product ABC and the vector 

pSAD L16 were digested with BstBI and subsequently ligated. 

pSAD N2c M34AAA 

pSAD N2c M34AAA was generated by a triple fragment overlap 

PCR. pSAD L16 was the template for PCR A 

(MEP88fw/MEP120Arv) and PCR C (MEP120Cfw/MEP120Crv). 

N2c M34AAA was amplified from pN2c M34AAA with 

MEP120Bfw and MEP120Brv. The fragments were fused by a 

PCR using oligos MEP88fw and MEP120Crv. The PCR product 

ABC and the vector pSAD L16 were digested with BstBI and 

subsequently ligated. 

pSAD P(M83R) eGFP 

Mutagenization of P(M83R) in a pCAGGS-N-P-part vector using 

oligos MEP62fw/MEP62rv. Subsequently, PCR product and 

pSAD L16 vector were digested with SnabI and NcoI, followed 

by ligation. P(M83R) were cut out with AvrII and SnabI and 

ligated with the digested pSAD eGFP vector. 

Recombinant SAD deletion mutants 

pSAD ΔG eGFP-TeNT-LC 

eGFP was amplified form pCAGGS eGFP and prolonged with 

adequate restriction sites and an overhang with 5´end of TeNT-

LC using primer MEP31fw and MEP26rev. TeNT-LC was 

amplified from pCMV-TeNT-LC and prolonged with adequate 

restriction sites and an overhang with the 3´end of eGFP. 

Finally, the PCR products were fused by a PCR reaction using 
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MEP31fw and MEP26rev, digested with NheI and NotI and 

ligated with the digested vector pSAD ΔG eGFP. 

pSAD ΔM eGFP 
The ΔM region was cut out from pSADΔM with AvrII and PspXI 

and ligated with digested pSAD eGFP vector. 

 

6.3 List of abbreviations 

In the following table, the abbreviations used in this thesis are listed. 

Abbreviation Description 

% per cent 

2i Two inhibitors 

α anti 

Δ delta-, deletion 

5´-ppp 5´-triphosphate 

A  adenine 

Aa amino acid 

ABLV Australian bat lyssavirus 

ALIX apoptosis-linked gene 2-interacting protein X 

Amp ampicllin 

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acis  

APS ammonium persulfate 

ATP  Adenosine triphosphate  

BF Bright field 

BMP bone morphogenetic protein 

BoNT/A Clostridium botulinum neurotoxin A 

BoNT/C Clostridium Botulinum neurotoxin C 

bp base pair 

C Cytosine 

CDC center of disease control and prevention 

cDNA complementary DNA 

CNS central nervous system 

CNT Clostridial neurotoxin 

CPE cytopathic effect 

cRNA  Complementary RNA 
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C-tail Cytoplasmic domain 

CTD C-terminal domain 

C-terminal carboxyterminal 

CVS  Challenged virus 

d day 

Da 
dalton 

ddH2O 
bidestilled water 

DMSO 
Dimethyl sulfoxid 

DNA 
Deoxyribonucleic acid 

dNTP  
deoxyribonucleotide 

dsRNA 
double stranded RNA 

EBOV 
Ebola virus 

eGFP 
Enhanced green fluorescent protein 

EIAV 
Equine infectious anemia virus 

EM 
electron microscopy 

EMCV 
Encephalomyocarditis virus IRES 

EnvA 
Envelope protein A 

ESCRT 
Endosomal sorting complexes required for transport 

ERK 
extracellular signal-related kinase 

EV 
empty vector 

FCS 
fetal calf serum  

ffu 
focus forming unit 

FGF 
fibroblast growth factor 

G 
glycoprotein 

G 
Guanine 

GSK3 
glycogen synthase kinase-3 

h 
hour 

HC 
Heavy chain 

ICM 
Inner cell mass 

ICTV 
International Committee on Taxonomy of Viruses 

IGS 
intergenic sequence 

IRES 
Internal ribosomal entry site 

ISG 
interferon-stimulated genes 
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HIV 
Human immunodeficiency viurs 

HRP 
horseradish peroxidase 

HTLV 
Human T-lymphotropic virus 

IF 
immunofluorescence 

JAK 
Janus kinase 

KBS 
Kinesin-light chain binding sequence 

L 
Large protein 

LC  
Light chain 

LD50 
Lethal dose, 50% 

Le 
leader 

LIF 
Leukemia inhibitory factor 

LV 
Lentiviral vector 

M 
Matrix protein 

M 
molar 

mESC  
Mouse embryonic stem cells 

mEpiSCs 
Mouse epiblast stem cells 

MOI 
multiplicity of infection 

mRNA 
messenger RNA 

MVB 
multivesicular bodies 

N  
nucleoprotein 

nAChR 
Nicotinic Acetylcholin receptor 

NCAM 
Neuronal Cell Adhesion Molecule 

Nedd4 
neuronal precursor cell-expressed developmentally gene 4 

NGS 
Next-generation sequencing 

NMJ  
Neuron Muscular Junction 

NNSV 
non-segmented negative strand RNA viruse 

nt 
nucleotide 

N-terminal 
aminoterminal 

P 
Phosphoprotein  

p75NTR 
p75 Nerve Growth Factor receptor 

PNS 
Peripheral nervous system 

PSD 
Postsynaptic density  

RA 
Retinoic acid 
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RNA 
ribonucleic acid 

RSV  
Respiratory syncytial virus 

SDS 
Sodium dodecyl sulfate  

SNARE 
Soluble N-ehtlymaleimide-sensitive-factor attachment receptor 

T 
thymidine 

TeNT 
Tetanus neurotoxin 

TM 
Transmembrane domain 

PEP 
post exposure prophylaxis 

p.i. 
post infection 

PAGE 
polyacrylamide gel electrophoresis 

PBS 
phosphate buffered saline 

PCR 
polymerase chain reaction 

PEI 
polyethylenimine 

PVDF 
polyvinylidene fluoride 

pH 
Potential of hydrogen 

RA 
Retinoic acid 

RABV  
Rabies virus 

RABV G 
Rabies virus glycoprotein 

RABV L 
Rabies virus large protein 

RABV M Rabies virus matrix protein 

RABV N Rabies virus nucleoprotein 

RABV P Rabies virus phosphoprotein 

RFP Red fluorescent protein 

RIG-I Retinoic acid inducible I 

RNP ribonucleoprotein 

RT room temperature  

SAD Street Alabama Dufferin 

SeV  Sendai virus 

Snap25 synaptosome-associated protein of 25 kDa 

SP Substance P 

SP Signal peptide 

ssRNA single strand RNA 

STAT Signal transducer and activator of transcription 
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T7-Pol T7 RNA polymerase 

Tr trailer 

t-SNARE target-membrane SNARE 

U unit 

VAMP Vesicle associated membrane protein 

VPS4 vacuolar protein-sorting associated protein 4 

v-SNARE vesicular SNARE 

VSV Vesicular stomatitis virus 

WB Western blotting 

wt wildtype 
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