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SUMMARY 

In eukaryotes, cellular identity is regulated by a complex interplay between epigenetic 

modifications, transcription factors, and the spatiotemporal organization of chromatin. 

Dissecting this network requires tools that precisely target desired functions to defined 

genomic sequences. So far, these tools were predominantly based on polydactyl zinc finger 

proteins (PZFs) and transcription activator-like effectors (TALEs). Yet, designing sequence-

specific PZFs and TALEs for new target sequences remains challenging. 

Since 2012, the emergence of the CRISPR/Cas system revolutionized the way of site-specific 

genome targeting. The endonuclease Cas9, the main component of the type II CRISPR/Cas 

system, can be recruited to defined sequences by a single guide RNA (sgRNA) and therefore 

has been extensively used for genome engineering approaches. Importantly, a mutated variant 

of Cas9 (dCas9) lacks enzymatic activity and can be guided to specific loci without inducing 

DNA double strand breaks at the underlying sequence. 

To test the applicability of the CRISPR/Cas system as tool to visualize chromatin dynamics, 

we designed sgRNAs to recruit a fluorescently tagged dCas9 to major and minor satellite 

sequences, as well as telomeric repeats. We demonstrated that dCas9-eGFP labeled nuclear 

foci coincide with known target associated proteins and expanded this approach to reveal 

chromatin conformation via super resolution microscopy. 

Moreover, we repurposed the CRISPR/Cas system to direct GFP-tagged epigenetic effector 

proteins to pericentric major satellites. Based on this approach, we showed that prevalent 

epigenetic modifications, such as cytosine methylation and hydroxymethylation can be erased 

or set de novo by recruiting the catalytic domains of TET1 and DNMT3A, respectively. 

Finally, we developed a novel method to determine the protein composition of specific 

genomic elements. We combined the programmable DNA-recognition of dCas9 with the 

promiscuous biotin ligase activity of BirA* to biotinylate target-associated proteins, which 

were subsequently identified via tandem mass spectrometry. This approach allowed us to 

identify known and previously uncharacterized proteins, located at the close proximity of 

telomeres, major satellites, and minor satellites. 

In conclusion, by exploiting dCas9 as a programmable DNA-binding platform, we developed 

novel tools for site-specific chromatin visualization, epigenome manipulation and 

determination of local protein composition. We anticipate that these methods provide new 

means to elucidate functional chromatin architecture. 
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ZUSAMMENFASSUNG 

Die zelluläre Identität eukaryotischer Zellen wird über komplexe Wechselwirkungen zwischen 

epigenetischen Modifikationen, Transkriptionsfaktoren und dynamischer 

Chromatinorganisation reguliert. Die Entschlüsselung dieses Netzwerks erfordert präzise 

molekularbiologische Methoden, die die gezielte Rekrutierung bestimmter Funktionen zu 

definierten genomischen Sequenzen ermöglichen. Bis vor Kurzem basierten diese Methoden 

auf Zinkfingerproteinen (PZFs) oder transcription activator-like effectors (TALEs). Es ist 

jedoch sehr zeit- und kostenintensiv sequenzspezifische PZFs und TALEs für neue 

Zielsequenzen zu entwerfen und herzustellen. 

Im Jahr 2012 revolutionierte die Veröffentlichung des CRISPR/Cas Systems die 

sequenzspezifische Modifikation des Genoms. Die Endonuklease Cas9, als die 

Hauptkomponente des Typ II CRISPR/Cas Systems, kann mit Hilfe einer single guide RNA 

(sgRNA) zu beinahe jeder benutzerdefinierten DNA-Sequenz rekrutiert werden und wurde 

deshalb exzessiv für gezieltes Genom-Engineering verwendet. Zudem kann eine katalytisch 

inaktive Form des Cas9-Proteins (dCas9) an definierte Sequenzen rekrutiert werden, ohne 

dabei DNA-Doppelstrangbrüche zu induzieren. 

Um die gezielte Visualisierung bestimmter Chromatinabschnitte mit Hilfe des CRISPR/Cas 

Systems zu testen, haben wir sgRNAs entworfen, über die ein fluoreszierend markiertes 

dCas9-Protein zu Telomeren, sowie zu Minor- und Major Satellite Sequenzen rekrutiert 

werden kann. Wir konnten zeigen, dass mit dCas9-eGFP markierte Foci mit Proteinen 

kolokalisieren, die an den entsprechenden Sequenzen angereichert sind. Darüber hinaus haben 

wir diese Methode für hochauflösende Mikroskopie adaptiert und konnten somit die 

Ultrastruktur von Telomeren und Minor Satellites enthüllen. 

Durch weitere Anpassungen des CRISPR/Cas Systems konnten wir GFP-markierte 

epigenetische Effektoren zu definierten Sequenzen rekrutieren. Hierbei konnten wir zeigen, 

dass durch die Rekrutierung der katalytischen Domänen von TET1 und DNMT3A zu 

perizentromerischen Major Satellite Sequenzen bestehende DNA-Modifikationen entfernt 

bzw. neu gesetzt werden können. 

Zudem haben wir eine neue Methode zur Identifikation locus-assoziierter Proteine entwickelt. 

Durch die Kombination der sequenzspezifischen DNA-Bindung von dCas9 mit der 

ungerichteten Biotinligaseaktivität von BirA* konnten wir Proteine biotinylieren, die mit der 

Zielsequenz assoziiert sind. Durch die darauffolgende massenspekrometrische Analyse dieser 

biotinylierten Proteine konnten wir sowohl bekannte, als auch unbekannte Faktoren von 

Telomeren, Major und Minor Satellites bestimmen. 
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Zusammenfassend haben wir, basierend auf dem CRISPR/Cas System, neue Methoden 

entwickelt um definierte DNA-Sequenzen zu visualisieren, deren epigenetische 

Modifikationen gezielt zu verändern, sowie ihre Proteinzusammensetzung zu entschlüsseln. 

Wir erwarten, dass diese Methoden zur weiteren Charakterisierung funktioneller 

Chromatinarchitektur beitragen werden. 
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1 INTRODUCTION 

1.1 Epigenetic information 

Decades after Friedrich Miescher first isolated DNA from leukocytes in 1869 [Dahm, 2008], it 

was still widely thought that genetic information is stored and passed on to the next 

generation by the huge variety of proteins, present in all cells. However, the notion that a 

molecule that lacks the complexity of proteins cannot be responsible for heredity was proven 

to be false in the first half of the 20th century. With their groundbreaking experiments, Avery 

and colleagues [Avery et al., 1944] and later Hershey and Chase [Hershey & Chase, 1952] 

identified DNA as the “transforming principle” which accounts for the propagation of 

hereditary traits. Building up on the work of Chargaff, Wilkins and Franklin, Watson and 

Crick then provided the first model, which could adequately explain, how DNA was 

structured, duplicated and inherited by a daughter cell [Watson & Crick, 1953a; Watson & 

Crick, 1953b]. Taken together, these findings laid the foundation for the “central dogma of 

molecular biology”: genetic information is first transcribed from DNA into messenger RNA 

(mRNA), which in turn is translated into a sequence of amino acids that forms a protein 

[Crick, 1958; Crick, 1970]. 

The discovery that DNA is the carrier of genetic information is considered one of the major 

breakthroughs in modern biology. Yet, the “central dogma” does not explain how 

differentiated cells of a multicellular organism, a vast majority of them sharing the same 

genome, differ so fundamentally in shape and function. For this, a second layer of information 

is necessary, which determines cell type-specific gene expression profiles and does not change 

the underlying DNA sequence. As this type of information does not alter the genetic 

background but rather is superimposed to the genetic code, it is termed epigenetic (epí: Greek 

for over, above) [Waddington, 1942]. In general, epigenetic mechanisms comprise the chemical 

modification of cytosines, posttranslational histone modifications, replacement of canonical 

histones with histone variants, as well as chromatin remodeling and non-coding RNAs (Figure 

1). During the course of development, it is the epigenetic machinery, which shapes chromatin 

structure and thereby promotes a plastic gene expression as a response to interior and exterior 

cues [Jaenisch & Bird, 2003; Bernstein et al., 2007]. Moreover, the inheritance of stable 

epigenetic marks defines the so called “epigenetic landscape” i.e. the identity of differentiated 

cells [Waddington, 1957; Ringrose & Paro, 2004]. It is now clear that individual epigenetic 

pathways do not act independently, but rather form a complex network, which regulates the 
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functional outcome of the genetic code [Dobosy & Selker, 2001; Chow & Heard, 2009; 

Hawkins et al., 2010; Bannister & Kouzarides, 2011]. 

 

 
Figure 1: Overview of epigenetic modifications and mechanisms. Epigenetic modifications occur either on the DNA 

itself (DNA methylation (1)) or on histone tails (2). Individual canonical histones can also be exchanged by special histone 

variants (3). Non-coding RNAs are involved in chromatin modification and transcriptional gene silencing (4). Chromatin 

remodeling by rearranging nucleosomes can alter the general accessibility of chromatin (5). 

 

1.2 General genome architecture 

1.2.1 Hierarchical genome organization 

To meet the spatial confinements of the nucleus and to allow regulated gene expression, 

eukaryotic genomic DNA is in a complex with proteins and non-coding RNAs to form 

chromatin. This higher order structure, at its core, is built up by nucleosomes. Each 

nucleosome is composed by approximately 147 base pairs (bp) of DNA wrapped around a 

histone octamer [Finch et al., 1977; Luger et al., 1997; Richmond & Davey, 2003]. This 

octamer comprises two heterodimers of H2A and H2B, which tightly interact with two 

heterodimers of H3 and H4. Despite their sequence heterogeneity, all core histones share a 

common tertiary structure motif: three α-helices (α1 – α3) are separated by two disordered 

linkers (L1 and L2) and form a characteristic histone-fold. By providing a hydrophobic 

surface, these globular regions are responsible for the pairing of H2A-H2B and H3-H4 

heterodimers, respectively (Figure 2) [Arents & Moudrianakis, 1995; Luger et al., 1997]. In 

addition, each core histone is rich in the basic amino acids lysine and arginine, which are 

essential for the interaction with the negatively charged phosphodiester backbone of DNA. 

Individual nucleosomes are linearly connected by 20 – 90 bp of linker DNA, leading to a 

“beads on a string”-like structure [Olins & Olins, 1974; Oudet et al., 1975]. Interactions 

between linker DNA, nucleosomes and the linker histone H1 promotes further compaction of 

this 11-nm fiber into secondary structure chromatin. The nature of this “30-nm fiber” has 

been under debate for decades [Woodcock, 2005; Tremethick, 2007]. However, a low 

resolution crystal structure of a tetranucleosome favors a zigzag-like configuration over a 

solenoidal model [Schalch et al., 2005]. Metaphase chromosomes and, to some extent, 
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specialized chromatin loops like enhancers and insulators represent a tertiary chromatin 

structure. This higher-order chromatin organization is formed by long-distance contacts 

between secondary structure fibers but, similar to the 30-nm fiber, the exact organization and 

packaging of tertiary chromatin remains elusive [Woodcock & Dimitrov, 2001; Woodcock & 

Ghosh, 2010]. 

 

 
Figure 2: Domain architecture of histones and assembly of nucleosomes. A) The histone fold is a commonly shared 

motif of all eukaryotic histones. It comprises three α-helices, which are connected by flexible linkers. Additionally, each 

histone also harbors a largely unstructured N-terminal tail, which protrudes from the nucleosome. B) Heterodimerization of 

histones is mediated by their histone fold (only H3 (blue) and H4 (green) are shown as an example). C) Two heterodimers 

each of H2A-H2B and H3-H4, together with 147 bp of DNA form the barrel-shaped nucleosome particle (PDB 1AOI). 

 

1.2.2 Eu- and heterochromatin 

In addition to its hierarchical order of compaction, chromatin is also categorized in 

transcriptionally active eu- and inactive heterochromatin. Historically, these two forms of 

chromatin have been distinguished by their staining properties in interphase nuclei. Whereas 

euchromatin displays a more open and loosely packed conformation, heterochromatin is 

highly compacted [Heitz, 1928]. Since then, it became apparent that eu- and heterochromatin 

also differ in their classes of repetitive genomic elements, gene density and GC-content 

[Korenberg & Rykowski, 1988; Bickmore & Sumner, 1989; Gardiner, 1995]. 

In general, euchromatin is defined by harboring predominantly transcriptionally active genes, 

irregular spaced nucleosomes and short interspersed nuclear elements (SINEs) [Caron et al., 
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2001; Ozsolak et al., 2007]. In particular, these SINEs belong to the Alu (human, ~ 300 bp) 

and B1 (mouse, ~140 bp) families and originated from a duplication and fusion of the 7SL 

RNA gene [Vassetzky et al., 2003; Tsirigos & Rigoutsos, 2009]. In metaphase chromosomes, 

euchromatin coincides with GC-rich R-bands, when reversely stained with Giemsa dye 

[Bickmore & Sumner, 1989]. Heterochromatin, on the other hand, denotes a transcriptionally 

inert state, which is characterized by regular nucleosomal arrays, low gene- and GC-content 

and the presence of long interspersed nuclear elements (LINEs) [Korenberg & Rykowski, 

1988; Wallrath & Elgin, 1995]. Moreover, heterochromatin is commonly subdivided into 

facultative and constitutive heterochromatin (fHC and cHC, respectively). Despite being 

transcriptionally silent, fHC retains its capability to interconvert between eu- and 

heterochromatin by reshaping chromatin structure. Formation of fHC is essential in both 

silencing developmentally regulated homeobox (Hox) genes during the course of 

differentiation and ensuring dosage compensation in mammalian female cells by establishing 

an inactive X chromosome. In addition, fHC contains differentially expressed tissue specific 

genes [Trojer & Reinberg, 2007]. Whereas fHC is critical for regulatory aspects, cHC plays an 

important role in the structural integrity of chromatin and remains condensed throughout the 

cell cycle. It is mainly composed of tandemly arranged repeats and located at the 

pericentromeric, centromeric and telomeric regions (Figure 3) [Grewal & Jia, 2007; Saksouk et 

al., 2015]. 

Telomeres are specialized ribonucleoprotein complexes that form at the end of linear 

chromosomes and protect them from being recognized as DNA double-strand breaks (DSB) 

and thus subjected to the cellular repair machinery. Inappropriate repairing of chromosomal 

ends would result in chromosome fusions and unequal distribution of the genetic material 

during cell division [McClintock, 1938; Blasco et al., 1997]. Vertebrate telomeric DNA is 

composed of repeating units of a highly conserved motif (5´-TTAGGG3´), ranging from 9 – 

15 kilobases (kb) in human and up to 100 kb in mice [Meyne et al., 1989; O'Sullivan & 

Karlseder, 2010]. These long tracts of telomeric DNA are recognized by a complex of six 

shelterin proteins (TRF1, TRF2, POP1, TPP1, TIN2 and RAP1), which have been suggested 

to promote a cap-like structure (T-loop) at chromosomal ends and thereby mask them from 

DNA damage response [Griffith et al., 1999; Stansel et al., 2001]. 

Centromeres appear as a constriction in metaphase chromosomes and act as nucleation site 

for kinetochore assembly during mitosis [Pluta et al., 1995]. Despite their conserved cellular 

function, centromeres display a varying composition between species. In human cells, 

centromeric DNA is based on tandemly repeated 171 bp monomers of α-satellites [Mitchell et 

al., 1985]. A set number of monomers give rise to a higher order repeat (HOR), which itself is 
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reiterated so that centromeres span 0.2 – 5 megabases (Mb). Notably, the sequence 

composition between individual monomers as well as the organization of HORs is highly 

heterogeneous and chromosome-specific [Willard, 1985; Alexandrov et al., 1988; Aldrup-

Macdonald & Sullivan, 2014]. Mouse centromeres, in contrast, are formed by ~120 bp minor 

satellite (MiS) units, which cluster in 0.6 Mb stretches and are located proximal to the 

telomere, resulting in acrocentric chromosomes [Pietras et al., 1983; Wong & Rattner, 1988; 

Kipling et al., 1991]. Similar to centromeric DNA, the pericentromeric region differs in 

sequence arrangement between species. Murine pericentromeric arrays are formed by 

tandemly arranged 234 bp major satellite (MaS) repeats and comprise up to ~ 6 Mb of DNA 

[Vissel & Choo, 1989; Choo, 1997]. Remarkably, MaS-repeats of several chromosomes cluster 

during interphase in so-called “chromocenters” (CC). MiS-sequences, however, are visible as 

single entities at the periphery of CCs, demonstrating the distinct three-dimensional 

organization of major and minor satellites [Guenatri et al., 2004]. Human pericentromeric 

regions, on the other hand, are predominantly composed of stretches of unordered 

monomeric α-satellites. In contrast to alphoid DNA of centromeres, pericentromeric sections 

of chromosomes do not form higher order repeats and are frequently disrupted by LINEs, 

SINEs and simple repeats [Gosden et al., 1975; Manuelidis, 1978; Schueler et al., 2005; 

Saksouk et al., 2015]. 

 

 
Figure 3: Heterochromatic repeat organization in mouse and human metaphase chromosomes. A) Schematic 

representation of a typical mouse acrocentric chromosome. Centromeric DNA (dark blue) is composed of tandemly arranged 

120 bp minor satellite (MiS) repeats, whereas the pericentromeric region (light blue) comprises 234 bp major satellite repeats. 
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B) Depiction of a human metacentric chromosome. The centromere (dark blue) is constituted by 171 bp α-satellite 

monomers, which are organized in higher order repeats (HOR). Sequence variations of α-satellites are indicated by different 

gray values. Pericentromeric DNA contains unordered α-satellites, which are disrupted by simple repeats (SR), LINEs and 

SINEs. Peri: pericentromere; cen: centromere. 

 

1.3 Epigenetic regulation of chromatin organization 

A complex and highly interconnected network of epigenetic mechanisms acts synergistically 

with transcription factors (TFs) and other non-histone proteins to establish and maintain a 

differential compaction of chromatin. As a result, chromatin accessibility by the transcription 

machinery is regulated, shaping the transcriptional activity of the genome and thus cellular 

identity [Dillon & Festenstein, 2002; Kouzarides, 2007; Lopes Novo & Rugg-Gunn, 2016]. 

1.3.1 DNA methylation dynamics 

The postreplicative addition of a methyl-group at the C5 position of cytosine (5mC) is the first 

epigenetic modification, which has been shown to directly influence gene expression [McGhee 

& Ginder, 1979]. In mammals, 5mC is predominantly found within the context of CpG 

dinucleotides. In human embryonic stem cells (hESCs), however, nearly a quarter of global 

5mC has been reported for non-CpG dinucleotides [Lister et al., 2009]. To a lower extent this 

phenomenon has also been observed in somatic cells, like neurons [Varley et al., 2013]. 

Spontaneous deamination of cytosines generates uracil and leads to a U:G mismatch, which 

can be repaired by the base excision repair (BER) machinery [Duncan & Miller, 1980]. 

Methylated cytosines, however, are particularly prone for hydrolytic or enzymatic deamination, 

resulting in high rates of cytosine to thymidine transitions. This inherent mutagenic potential 

is thought to have resulted in an evolutionary depletion of CpG sites [Sved & Bird, 1990; 

Jurkowska et al., 2011]. Nevertheless, 70 – 80 % of all CpGs in mammalian DNA are 

methylated [Ehrlich et al., 1982; Bird et al., 1985]. CpG dinucleotides are unevenly distributed 

throughout the genome. While they are almost absent in inter- and intragenic regions, CpGs 

show elevated densities in promoter sequences. In fact, approximately 70 % of human 

promoters are characterized by a strikingly high abundances of CpG dinucleotides [Saxonov et 

al., 2006]. Such clusters of CpG sites are referred to as CpG islands (CGIs) and defined as 

patches of ~1 kb in length, within which CpG dinucleotides occur close to their expected 

frequency [Suzuki & Bird, 2008]. Reflecting the potential mutability of CpG dinucleotides, 

most CGIs prevail in a hypomethylated state. Hypermethylated CGIs are associated with 

stable gene repression and play key roles in both development and genome integrity. For 

example, DNA methylation is required for X inactivation, genomic imprinting and silencing of 
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transposable elements [Li et al., 1993; Woodcock et al., 1997; Gendrel et al., 2012; Barau et al., 

2016]. 

While DNA methylation in promoter regions is generally associated with transcriptional 

silencing, methylation of the gene body correlates with gene expression [Wolf et al., 1984; 

Yang et al., 2014]. The exact functional consequences of this seemingly paradox situation are 

unknown. However, there is emerging evidence that methylation marks in gene bodies 

suppress cryptic transcriptional start sites and thereby minimize transcriptional noise [Bird, 

1995; Suzuki et al., 2007]. Moreover, it has been shown that introns are less methylated than 

exons and excessive methylation of introns decreases polymerization speed of RNA 

polymerase II (RNAPII). As splicing is influenced by RNAPII kinetics, DNA methylation and 

cotranscriptional splicing might be linked [Laurent et al., 2010; Shukla et al., 2011]. 

A family of enzymes, termed DNA (cytosine C5) methyltransferases (DNMTs), catalyzes the 

covalent attachment of a methyl-group to the C5-position of cytosine. In mammals, the DNA 

methylation machinery is composed of four enzymes (DNMT1, DNMT3A, DNMT3B and 

DNMT3C) and one cofactor (DNMT3L) [Rottach et al., 2009; Barau et al., 2016]. The 

process of transferring the methyl-group is highly conserved among different species and has 

been described in detail for prokaryotic 5mC methyltransferases (MTases), such as M.HhaI 

[Klimasauskas et al., 1994]. Strikingly, the crystal structure of M.HhaI, bound to its target 

sequence, revealed that MTases form a covalent complex with their substrate, leading to an 

increased reactivity of the C5 atom of cytosine. Furthermore, the target base is “flipped” out 

of the DNA double helix (“base flipping”). The whole catalytic reaction involves the following 

steps: substrate recognition, base flipping, forming of a covalent bond between the C6-

position of cytosine and the sulfhydryl-group of cysteine in a conserved proline-cysteine motif 

of the DNMT, transfer of the methyl-group from S-adenosyl-L-methionine (SAM) to the 

activated C5 atom and subsequent release of the enzyme via β-elimination [Cheng & 

Blumenthal, 2008]. 

Historically, CpG methylation has been classified into the two different types de novo and 

maintenance methylation. During embryonic development and cell differentiation, 

methylation marks have to be set up de novo by DNMT3 family members in order to establish 

lineage-specific gene expression patterns [Okano et al., 1999]. As methylation of cytosines is a 

postreplicative modification, these marks would be lost after several rounds of DNA 

replication. Therefore, the so-called maintenance DNMT (DNMT1) specifically modifies 

hemimethylated DNA, thus ensuring that CpG methylation is faithfully transmitted from one 

generation of cells to the next [Hermann et al., 2004]. This strict separation of de novo and 

maintenance methylation, however, seems to be an oversimplified model. In fact, numerous 



Introduction 

 12 

studies provide evidence that de novo methylation during embryogenesis occurs by the 

combined activities of DNMT3 and DNMT1 enzymes. DNMT3 enzymes show selective 

binding preferences for CpG-flanking sequences. Moreover, DNMT3A binds to DNA in a 

tilted fashion, which allows methylation of two adjacent CpGs but prohibits enzymatic activity 

on the complementary strand. Sequence specificity, as well as the mode of action result in the 

accumulation of hemimethylated sites, which in turn represent an ideal substrate for DNMT1 

[Fatemi et al., 2002; Kim et al., 2002; Handa & Jeltsch, 2005; Jia et al., 2007]. Furthermore, 

residual DNA methylation has been observed in DNMT3A/DNMT3B double-knockout 

mouse embryos, suggesting that DNMT1 possesses de novo methylation activity [Okano et al., 

1999]. 

Although 5mC is generally considered a stable epigenetic mark, it has been known for a long 

time that DNA methylation is a dynamic process and editing of previously set methylation 

marks is particularly important during mammalian embryogenesis. Upon fertilization, the 

paternal pronucleus is subject to extensive epigenetic reprogramming via genome-wide 

demethylation. Since the removal of the methyl-group is independent from DNA replication, 

this process cannot be explained by a passive demethylation [Mayer et al., 2000]. Mechanisms, 

however, which underlie active demethylation have remained controversial [Schär & Fritsch, 

2011]. It has been known for over two decades that members of the order Trypanosoma possess 

a base J (β-D-glucosyl-hydroxymethyluracil), which is produced by the sequential hydroxylation 

and glucosylation of the methyl group of thymine [Borst & Sabatini, 2008]. In this context, it 

has been proposed that JBP1 and JBP2 (J-binding protein 1 and 2), members of the 2-

oxoglutarate (2OG)- and Fe(II)- dependent oxygenase superfamily of enzymes, are involved in 

oxidizing thymine into hydroxymethyluracil [Yu et al., 2007]. Recently, searching for 

mammalian homologs of JBP1 and JBP2, Tahiliani and colleagues discovered that human 

TET1 (Ten-eleven translocation 1) is capable of oxidizing 5mC into 5-hydroxymethylcytosine 

(5hmC) [Tahiliani et al., 2009]. Since then, it has been shown that the other members of the 

TET family, namely TET2 and TET3, are also capable of performing this reaction. Moreover, 

it was demonstrated that this class of enzymes is responsible for further oxidization of 5hmC 

to 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) [Ito et al., 2011]. To date, two 

functional roles have been proposed for 5hmC and its further oxidized states 5fC and 5caC. 

On the one hand, 5hmC and its oxidized derivatives might be intermediates in active 

demethylation and thus play an important role in DNA methylation dynamics. For instance, 

5hmC has been suggested as a target for deamination by the AID (activation-induced 

deaminase)/APOBEC (apolipoprotein B mRNA-editing enzyme complex) family of cytidine 

deaminases. According to this, the resulting 5-hydroxymethyluracil is subsequently removed 
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by the BER pathway [Guo et al., 2011]. Furthermore, 5fC and 5caC are specifically recognized 

and excised by thymine DNA glycosylase (TDG) in vitro and in vivo [He et al., 2011; 

Pfaffeneder et al., 2011; Zhang et al., 2012a; Müller et al., 2014; Weber et al., 2016]. On the 

other hand, the presence of 5hmC itself may represent an epigenetic mark, as it has been 

detected in stable amounts in ESCs, which would contradict its role as a sole intermediate in 

DNA methylation [Dawlaty et al., 2011; Ficz et al., 2011; Pastor et al., 2011]. 

 

1.3.2 Histone posttranslational modifications (PTMs) 

In addition to DNA methylation, epigenetic information is encoded in post-translational 

modifications (PTMs) of histones. As mentioned above, individual histones comprise a 

histone fold motif, as well as a largely unstructured 20 – 35 amino acids long N-terminal 

peptide, which protrudes from the nucleosome core particle [Luger et al., 1997]. These so-

called histone-tails, and to a lesser extent the globular histone fold, are subject to a plethora of 

PTMs, including acetylation, phosphorylation, ubiquitination, sumoylation, ADP ribosylation, 

proline isomerization, deimination and methylation [Kouzarides, 2007]. Besides their function 

in other DNA-based processes such as repair, recombination and replication, histone PTMs 

play a crucial role in altering chromatin compaction and thereby regulate gene expression 

[Strahl & Allis, 2000; Taverna et al., 2007]. Whereas PTMs located at the histone fold domain 

directly affect histone-histone and histone-DNA interactions [Simon et al., 2011], post-

translational modifications of the histone tail indirectly act on chromatin compaction by 

recruiting reader proteins. Notably, distribution and type of PTMs form a signature (often 

referred to as “histone code”), which is indicative for the chromatin state of a given locus. In 

the following, acetylation and methylation of histones are presented in more detail. 

Active genes are generally enriched in histone acetylation. Histone H3, acetylated on lysine 9 

(H3K9ac) and H4K16ac are both found at the promoters and/or enhancers of actively 

transcribed genes, whereas H3K27ac is located at the transcriptional start site (TSS) [Nishida 

et al., 2006; Wang et al., 2008; Taylor et al., 2013]. Furthermore, various degrees of methylated 

lysines on histone H3 also correlate with euchromatin. Monomethylated H3K4 (H3K4me1) 

shows high levels along enhancer sequences, whereas H3K4me2/3 marks active promoters 

[Heintzman et al., 2007]. Additionally, H3K36me3 displays a distinctive distribution pattern: it 

is enriched in the 3´-end of gene bodies and gradually decreases towards the 5´-end [Bannister 

et al., 2005]. In contrast, cHC is marked by repressive PTMs such as H3K9me3 and 

H4K20me3 [Schotta et al., 2004], whereas fHC is enriched in H3K27me3 [Trojer & Reinberg, 

2007]. 
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Writers of histone PTMs 

Similar to PTMs themselves, the protein machineries that write, read and remove histone 

modifications have become central figures in studying chromatin organization (Figure 4). 

Histone PTMs are set by a group of enzymes, termed “writers”. Depending on the type of 

modification that is catalyzed, they are categorized as histone acetyltransferase (HAT) or 

methyltransferase (HMT). 

HATs utilize the co-factor acetyl-CoA to catalyze the transfer of an acetyl-group to the ε-
amino-group of lysine residues. Based on their subcellular localization, HATs are categorized 

into two major classes. The highly conserved type-B HATs are predominantly cytoplasmatic 

and acetylate newly synthesized histones, facilitating their assembly into nucleosomes 

[Richman et al., 1988; Parthun, 2007]. Type-A HATs, on the other hand, comprise the more 

diverse families of GNAT (Gcn5-related N-acetyltransferases), MYST (named after their 

founding members MOZ, Ybf2, Sas2 and Tip60) and p300/CBP (adenoviral E1A-associated 

protein of 300 kDa/CREB-binding protein) [Yang & Seto, 2007]. Type-A HATs mainly 

acetylate histone tails within nucleosomes and are often found associated in multiprotein 

complexes, which regulate substrate recognition and enzyme activity [Bannister & Kouzarides, 

2011]. Interestingly, the interaction of p300/CBP HATs with the transcription factor CREB 

(cAMP response element-binding protein) demonstrates a direct link between histone 

acetylation and transcriptional activation [Shiama, 1997]. 

Although methylated glutamines and aspartates have been described [Biterge et al., 2014; 

Tessarz et al., 2014], histone methylation mainly occurs on lysine (mono-, di- or trimethylated) 

and arginine (mono-, symmetrically or asymmetrically dimethylated) residues. Depending on 

their substrate, HMTs are subdivided into histone lysine methyltransferases or histone 

arginine methyltransferases (HKMTs and PRMTs, respectively). Both classes contain several 

enzymes, which are characterized by both their substrate-specificity and the extent of 

methylation. For instance, the HKMT DIM5 specifically trimethylates H3K9 [Tamaru et al., 

2003], whereas SET7/9 only monomethylates H3K4 [Xiao et al., 2003]. Similarly, type-I 

PRMTs generate monomethylated (Rme1) and asymmetrically dimethylated arginines, while 

type-II enzymes produce Rme1 and symmetrically dimethylated arginines. Yet, HKMTs, as 

well as PRMTs share SAM as a common methyl-group donor [Bannister & Kouzarides, 2011]. 

 

Erasers of histone PTMs 

Chromatin is a dynamic environment, which is able to differentially compact as a reaction to 

external and developmental stimuli. In line with that, histone PTMs are highly dynamic and 

subject to regulation by the opposing activities of writers and erasers. Histone deacetylases 
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(HDACs) catalyze the removal of acetyl-groups and are generally considered to be 

transcriptional repressors. Based on sequence homology to yeast Rpd3 (reduced potassium 

dependency 3), Hda1 (histone deacetylase 1) and Sir2 (silent information regulator 2), 

mammalian HDACs are grouped in three different classes [Yang & Seto, 2003]. Besides 

sequence divergences, HDACs differ in their reaction mechanisms. Rpd3- and Hda1-like 

deacetylases require Zn2+ for deacetylase activity, whereas Sir2-related HDACs depend on 

NAD+ as co-factor [Blander & Guarente, 2004; Lombardi et al., 2011]. In general, HDACs 

only demonstrate a low substrate specificity and even act on non-histone proteins [Sterner et 

al., 1979; Luo et al., 2000; Hubbert et al., 2002]. It has been shown, however, that human 

SIRT1 preferentially deacetylates H4K16 [Vaquero et al., 2004]. Studying substrate specificity 

is complicated by the fact that often multiple HDACs are part of diverse multiprotein 

complexes. For example, HDAC1 and HDAC2 are both subunits of CoREST, Sin3 and 

NuRD complexes [Yang & Seto, 2008]. 

Histone methylation has long been regarded as a stable modification [Bannister et al., 2002]. 

Indeed, comparable turnover rates between bulk histones and methylated lysine residues 

within them, suggested that histone methylation is not reversible [Byvoet et al., 1972; Duerre 

& Lee, 1974]. Moreover, H3K9me3 is necessary to form permanently silenced chromatin 

regions such as pericentric heterochromatin, suggesting that it is a static mark [Bannister et al., 

2002]. However, with the discovery of the flavin-dependent KDM (lysine demethylase) LSD1 

and later LSD2 (lysine-specific demethylase 1 and 2, respectively), this dogma has been 

changed [Shi et al., 2004; Karytinos et al., 2009]. Due to the formation of an imine 

intermediate in the oxidation reaction, these flavin-dependent KDMs are only capable to act 

on mono- or dimethylated lysine residues [Anand & Marmorstein, 2007]. Soon after the 

description of LSD1, a second class of KDMs has been discovered. This class is characterized 

by a Jumonji C (JmjC)-domain, catalyzes the removal of methyl-groups in a Fe2+/2-

oxoglutarate (2-OG) dependent manner and thus is capable to also target trimethylated lysines 

[Whetstine et al., 2006]. In contrast to lysine demethylation, mechanisms that result in arginine 

demethylation are still controversial [Böttger et al., 2015]. Yet, a recent study suggested that 

JmjC KDMs oxidize methylated arginines in vitro [Walport et al., 2016]. 

 

Readers of histone PTMs 

In essence, histone PTMs can regulate chromatin structure and accessibility in two ways. Cis-

acting PTMs such as acetylation and phosphorylation neutralize the basic charge of histones 

and thereby weaken the electrostatic interaction of histones with the negatively charged DNA 

backbone, which is thought to result in a less compact chromatin structure. In fact, genes of 
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the β-globin locus, as well as many enhancer and promoter elements throughout the genome 

reside within a hyperacetylated chromatin environment, which presumably facilitates a 

transcriptionally competent chromatin state [Kiefer et al., 2008; Wang et al., 2008]. Yet, the 

presence of multiple acetylated sites seems not to be a prerequisite for conformational change, 

as specific acetylation of H4K16 significantly perturbs the formation of compact higher order 

chromatin structures [Shogren-Knaak et al., 2006]. 

The majority of evidence, however, suggests that PTMs act in trans by promoting or inhibiting 

the recruitment of a large variety of regulatory proteins to the nucleosomes. Those effector 

proteins are characterized by special domains, which confer substrate specificity. 

Methylated lysines are recognized by numerous domain types, including PHD (plant 

homeodomain) fingers and the so-called Tudor “royal” family of domains, which comprise 

chromodomains (chromatin organization modifier) (Figure 4B), Tudor, PWWP (Pro-Trp-Trp-

Pro) and MBT (malignant brain tumor) domains [Maurer-Stroh et al., 2003; Kim et al., 2006; 

Champagne & Kutateladze, 2009]. Although these binding domains are sensitive to the degree 

of methylation, they share aromatic cage structures, typically formed by two to four aromatic 

amino acids, as a common recognition motif [Musselman et al., 2012]. Similar to writers of 

histone arginine methylation, insights into how this mark is recognized remain sparse. 

However, a recent study suggests that the Tudor domain of TDRD3 binds to H3R17 and 

H4R3, when the respective residues are asymmetrically dimethylated [Yang et al., 2010]. 

Contrary to the plethora of domains that bind to methylated lysines, only two domains have 

been shown to recognize acetylated lysines. Most prominently, bromodomains are found in 

HATs and form a conserved four-helix bundle (BRD-fold). Notably, the inter-helical loops 

constitute a hydrophobic pocket, capable of recognizing acetyl-lysine (Figure 4C) [Sanchez & 

Zhou, 2009]. More recently, it has been demonstrated that acetylated lysines can also be 

bound by tandem PHD domain-containing proteins such as DPF3 [Zeng et al., 2010]. 
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Figure 4: Histone writers, readers and erasers. A) Histone PTMs are dynamic marks that are set up by writer enzymes 

(e.g. HATs and HMTs), interpreted by reader proteins (e.g. bromo- or chromodomain-containing proteins) and removed by 

eraser-proteins (e.g. HDACs and KDMs). B) Crystal structure of D. melanogaster HP1 chromodomain in complex with 

H3K9me3. Aromatic residues of tyrosine and tryptophan form a cage (blue), which is able to recognize K9me3 (green) (PDB 

1KNE). C) Solution structure of human CBP bromodomain bound to H4K20ac. The bromodomain is composed of four α-

helices. Inter-helical loops form a hydrophobic pocket, which accommodates acetyl-lysine (green) (PDB 2RNY). 

 

1.3.3 Crosstalk between epigenetic mechanisms: establishment of eu- and heterochromatin 

Embryonic stem cells are characterized by an open and transcriptional permissive chromatin 

conformation. During differentiation, DNA methylation and histone PTMs act in an 

interconnected way to set up differentially compacted chromatin environments and thereby 

ensure cell type specific gene expression patterns [Meshorer & Misteli, 2006; Cedar & 

Bergman, 2009]. 

As mentioned earlier, the paternal genome of pre-implantation embryos is subject to a TET3-

dependent wave of active DNA demethylation. Although TET3 is also expressed in the 

maternal pronucleus, the maternal genome relies on a replication-dependent passive 

mechanism. Recently, it was demonstrated that PGC7 binds to H3K9me2, set by the HKMT 

G9a, and thereby blocks TET3-activity at adjacent mCpG-sites. In the paternal pronucleus, on 

the other hand, histones are widely replaced by protamines, which lack the H3K9me2 mark. 

Hence, methylated CpGs are not protected from TET3-mediated oxidation [Nakamura et al., 

2007; Nakamura et al., 2012]. 
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After implantation, embryos re-establish a bimodal DNA methylation pattern, that is, high 

methylation levels of interspersed CpG-sites and unmethylated CGIs. In this context, it has 

been suggested that RNAPII recruits H3K4-specific HKMTs of the trithorax family [Hughes 

et al., 2004; Guenther et al., 2007]. Since RNAPII is predominantly located at CGI-containing 

promoters, only these regions are marked by methylated H3K4. In turn, H3K4me3 impairs 

the binding of DNMT3L, which interacts with DNMT3A/B and is an essential co-factor for 

de novo methylation [Ooi et al., 2007]. Similarly, unmethylated CGIs are bound by CFP1 

(CXXC finger protein 1), which in turn recruits H3K4 methyltransferases [Thomson et al., 

2010]. These models are supported by the fact that DNA-methylation and H3K4-methylation 

generally show a strong anti-correlation [Meissner et al., 2008; Mohn et al., 2008]. 

During the course of embryonic development, targeted silencing of pluripotency-associated 

factors, such as Oct3/4 is an essential step in the establishment of tissue-specific cell lineages 

[Gidekel & Bergman, 2002]. Transcriptional silencing of the Oct3/4 gene is achieved by a 

multi-step process. First, transcription is reversibly repressed by GCNF (germ cell nuclear 

factor)-mediated recruitment of transcriptional co-repressors to the promoter [Fuhrmann et 

al., 2001]. This is followed by the binding of a complex, containing G9a and HDAC. 

Subsequently, the euchromatic mark H3K9ac is removed and replaced with H3K9me3. This 

modification, in turn, is recognized by the chromodomain of HP1. Local 

heterochromatinization is probably facilitated by dimerization of HP1, thus linking adjacent 

nucleosomes [Ruthenburg et al., 2007]. As a last step, G9a has been shown to recruit 

DNMT3A and DNMT3B, leading to de novo methylation and permanent silencing [Feldman et 

al., 2006; Epsztejn-Litman et al., 2008]. 

Formation of constitutive heterochromatin, such as pericentromeric satellite repeats, is 

dependent on the SET domain-containing HKMTs SUV39H1 and SUV39H2. These enzymes 

catalyze the formation of H3K9me3, which again is bound by HP1, leading to a further 

chromatin compaction. Additionally, SUV39 enzymes also recruit DNMT3A/B, which results 

in de novo methylation of these satellite sequences [Cedar & Bergman, 2009; Saksouk et al., 

2015]. Interestingly, initial recruitment of HKMTs to satellite repeats seems to be mediated by 

non-coding RNA-duplexes, which naturally form at satellite sequences. These RNA-duplexes 

are processed by the RNA endonuclease Dicer, resulting in an RNA-induced silencing 

complex (RISC), which is targeted back to pericentromeric regions, where it is thought to 

interact with SUV39H1 and SUV39H2 [Fukagawa et al., 2004; Sugiyama et al., 2005] 

Similar to cHC, establishment of an inactive X chromosome (Xi) in mammalian female cells 

also depends on non-coding RNA. Transcription of the XIC (X inactivation center) results in 

the 17 kb non-coding RNA Xist (X-inactive specific transcript). RepA, a 1.6 kb region within 
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Xist, has been shown to recruit PRC2 (Polycomb repressive complex 2) to Xi in cis via its 

interaction with EZH2, the catalytic subunit of PRC2. EZH2 contains a SET domain and 

catalyzes trimethylation of H3K27 on surrounding nucleosomes [Zhao et al., 2008]. This mark 

is bound by HPC (heterochromatin-like chromodomain protein), which is a subunit of PRC1 

(Polycomb repressive complex 1) and has been implicated in further heterochromatinization 

by catalyzing ubiquitination of H2AK119 [Plath et al., 2004; Schwartz & Pirrotta, 2008]. 

Finally, hypermethylation of X-linked promoter CGIs is thought to be achieved by 

recruitment of de novo methyltransferases by EZH2 [Norris et al., 1991; Vire et al., 2006]. 

Bivalent domains represent a special case in ESCs and are characterized by large repressing 

H3K27me3-enriched regions, harboring smaller activating H3K4me3 patches. In ES cells, 

these domains tend to coincide with promoters of developmentally regulated TF-genes, which 

are expressed at low levels. This bivalent modification pattern is predicted to keep TF-genes in 

a poised state that can be resolved to either an activated (H3K4me3) or fully repressed 

(H3K27me3) chromatin conformation [Azuara et al., 2006; Bernstein et al., 2006]. 

 

1.4 3D-Organization of the genome 

Besides rather local eu- and heterochromatic regions, mammalian genomes in interphase 

nuclei are organized in a complex topological hierarchy. Historically, methods to decipher 

structural and topological properties of interphase chromosomes mainly relied on elaborate 

fluorescence in situ hybridization (FISH) techniques. More recently, chromosome 

conformation capture (3C) and its modifications (4C, 5C and Hi-C) provided local or genome-

wide maps of intra- and inter-chromosomal contacts, expanding the understanding of nuclear 

architecture. These methods are based on mild formaldehyde crosslinking of chromatin, 

followed by fragmentation, ligation of DNA-fragments and subsequent detection by either 

PCR or next-generation sequencing [Dekker et al., 2013]. 

 

1.4.1 Chromosome territories 

Utilizing fluorescence in situ hybridization (FISH) and microirradiation, early experiments have 

demonstrated that individual chromosomes are not randomly distributed, but rather occupy 

distinct territories (chromosome territories, CTs) within interphase nuclei (Figure 5) [Cremer 

et al., 1982; Lichter et al., 1988]. According to this model, individual CTs are separated by an 

almost chromatin-free interchromatin domain (ICD), into which actively transcribed genes 

occasionally loop out and form inter- and intra-chromosomal contacts [Cremer & Cremer, 

2001; Scheuermann et al., 2004]. This observation could be confirmed with 3C-based 
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approaches. Most chromatin contacts are found within individual chromosomes and active 

loci predominantly form contacts among themselves [Simonis et al., 2006]. In addition, 

inactive genomic regions are spatially restricted to their own CT, whereas transcribed regions 

can also form inter-chromosomal contacts [Lieberman-Aiden et al., 2009; Kalhor et al., 2011; 

Zhang et al., 2012b]. Besides its purpose in functionally clustering transcribed loci, this 

intermingling between CTs is also thought to be a hot-spot for chromosomal translocations 

[Branco & Pombo, 2006; Zhang et al., 2012b]. 

Furthermore, chromosome painting and bleaching approaches demonstrate that the relative 

spatial distribution of individual CTs is confined during interphase but experiences a high 

variability between cell-types and from one interphase to the next [Walter et al., 2003; Mayer 

et al., 2005]. Yet, it has been shown that gene density and, to a lower extent, DNA content of 

chromosomes determine the spatial distribution of CTs. Whereas small, gene-rich 

chromosomes predominantly localize towards the nuclear interior, bigger and gene-poor 

chromosomes are found in vicinity of the nuclear periphery. This radial distribution of CTs is 

exemplified by human chromosomes 18 and 19. Although both chromosomes are similar in 

size, CTs of the gene-poor chromosome 18 were typically found at the nuclear periphery, 

whereas the gene-rich chromosome 19 preferentially localized at the nuclear interior [Croft et 

al., 1999; Cremer et al., 2001]. Similarly, individual CTs experience a polarized distribution of 

gene density. While gene-poor segments tend to localize on the surface of CTs, gene-rich 

segments, on the other hand, preferentially localize in the interior of CTs [Kupper et al., 

2007]. 

 

1.4.2 Subchromosomal compartments and chromosomal domains 

The radial distribution of CTs, as well as the spatial separation of euchromatic and 

heterochromatic regions within them, indicates that nuclear architecture is based on functional 

compartmentalization of chromatin [Fraser & Bickmore, 2007; Misteli, 2007]. Indeed, 3C-

based methods confirmed the presence of subchromosomal compartments. By mapping the 

genome-wide contact-frequency of chromosomes in interphase cells, two different 

subchromosomal compartments (A and B) were detected, which correspond to eu- and 

heterochromatin, respectively (Figure 5). Loci clustered in A compartments are generally gene-

rich, transcriptionally active and experience hypersensitivity to DNaseI, which suggests an 

open chromatin conformation. Loci that are found in B compartments, however, are relatively 

gene-poor, transcriptionally inert and insensitive to DNaseI treatment, which indicates a 

closed chromatin conformation. Hence, these compartments relate to gene expression and, 

therefore, are cell-type specific [Lieberman-Aiden et al., 2009; Zhang et al., 2012b]. Both A 
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and B compartments are constituted by groups of chromosomal domains (CDs), which 

mainly form intrachromosomal contacts. Yet, interchromosomal contacts have been reported, 

which probably reflect zones of chromosomal intermingling [Branco & Pombo, 2006; Dixon 

et al., 2012; Gibcus & Dekker, 2013]. The size of CDs varies drastically between species, 

ranging from tens of kbs to several Mbs (~100 kb in D. melanogaster, ~1 Mb in human and ~3 

Mb in mouse) [Cavalli & Misteli, 2013; Gibcus & Dekker, 2013]. Notably, compartments are 

defined by groups of CDs with similar activities, resulting in blocks of alternate transcriptional 

activity (i.e. active or inactive) on mitotic chromosomes. Yet, these blocks do not represent 

simple on and off states, but rather a continuum of different transcriptional activities [Imakaev 

et al., 2012]. 

A special class of CDs is formed by genomic regions that interact with relatively fixed 

structures of the nucleus. In all eukaryotes, chromatin is spatially confined by the nuclear 

envelope (NE), formed by a lipid bilayer. Embedded in the NE are nuclear pores, which are 

large and highly organized structures that mediate communication between nucleo- and 

cytoplasm [Dingwall & Laskey, 1992]. Interestingly, the inner membrane of the NE is lined 

with a filamentous mesh, constituted by lamin proteins, termed nuclear lamina (NL) 

[Goldman et al., 2002; Prokocimer et al., 2009]. Besides ensuring the nuclear integrity, the NL 

serves as anchor point for interactions between chromatin and the nuclear periphery. 

Chromosomal domains that specifically interact with the NL have been detected via DamID. 

This approach utilizes the bacterial DNA adenine methyltransferase (Dam), which is fused to 

a protein of the NL (e.g. lamin B1). Thereby, interacting chromatin regions are marked with a 

novel DNA modification. Subsequently, adenine-methylated DNA fragments are isolated and 

mapped using a microarray [Pickersgill et al., 2006; Guelen et al., 2008; Peric-Hupkes et al., 

2010]. These lamina-associated domains (LADs) are generally gene-poor and are highly 

enriched for the heterochromatic marks H3K27me3 and, to a lesser degree, H3K9me2. In 

human cells over 1000 LADs were identified, which span between 0.1 and 100 Mb and 

collectively cover ~40 % of the genome. In addition, LADs are marked by distinct borders, 

which show an enrichment of binding sites for the insulator protein CTCF (CCCTC-binding 

factor) and promoters, driving transcription away from LADs [Guelen et al., 2008]. Given the 

fact that during differentiation some LADs loose their connection to the NL and that these 

changes correlate with altered gene expression profiles, LADs are further classified in 

facultative and constitutive LADs (fLADs and cLADs, respectively). Notably, fLADs are cell-

type specific, whereas AT-rich cLADs are maintained between a range of cell-types and are 

conserved among species [Peric-Hupkes et al., 2010; Meuleman et al., 2013]. The nucleolus 

represents the second subnuclear structure that forms contacts with distinct chromosomal 
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domains. In addition to the expected ribosomal DNA genes (rDNA), AT-rich, 

transcriptionally inactive sequences across all chromosomes have been described to associate 

with nucleoli in a domain-like pattern [Nemeth et al., 2010; van Koningsbruggen et al., 2010]. 

Interestingly, these sequences, termed nucleolar-associated domains (NADs), experience a 

substantial overlap with cLAD patterns. Hence, it has been suggested that NADs and cLADs 

comprise the same type of repressive chromatin, which is randomly distributed between the 

NL and the nucleolar periphery after mitosis. This model is supported by the observation that 

some CDs that associate with the nucleolus in a mother cell are repositioned to the NL in 

daughter cells [van Koningsbruggen et al., 2010]. 

Recent Hi-C and 5C studies uncovered a third type of chromosomal domains, referred to as 

topologically associated domains (TADs). These megabase-sized domains are characterized by 

a high interaction-frequency of loci located within one domain, but less pronounced 

associations of loci located within two adjacent domains (Figure 5) [Dixon et al., 2012; Nora 

et al., 2012; Sexton et al., 2012]. Interestingly, individual TADs display a high degree of 

alignment with either active (H3K4me3) or inactive (H3K27me3) histone PTMs and therefore 

can be assigned to A and B compartments, respectively [Nora et al., 2012]. However, the fact 

that TADs occupy 91 % of the genome in mice and show a high level of conservation 

between species and cell-types, suggests that TADs do not represent transcriptional entities 

per se, but rather form a basic building block for 3D organization of chromosomes [Dixon et 

al., 2012; Hou et al., 2012; Sexton et al., 2012]. This is substantiated by the observation that 

TADs persist in ESCs, lacking the HKMT Eed [Nora et al., 2012]. Similar to LADs, 

boundaries between TADs display high levels of the architectural protein CTCF. In addition, 

enrichment of genomic insulator elements, such as transfer RNA (tRNA) genes and SINES 

was detected [Lunyak et al., 2007; Raab et al., 2011; Dixon et al., 2012]. Besides its function as 

boundary protein between TADs, the insulator CTCF, together with cohesin and Mediator, is 

thought to mediate loop-formation at a sub-TAD level, as well as long-range enhancer/gene 

interactions [Phillips-Cremins et al., 2013]. 
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Figure 5: Hierarchical levels of chromatin organization in interphase nuclei. Top left) Chromosomes occupy distinct 

territories. Top right) Chromatin is organized in the two compartments A (light-gray) and B (dark-gray), which correspond to 

eu- and heterochromatin, respectively. Bottom) A and B compartments comprise transcriptionally active (green) and 

repressed (red) TADs, respectively. TADs are formed by local DNA contacts (e.g. enhancer/promoter loops). 

 

1.5 Chromatin dynamics 

1.5.1 Short- and long-range motility of chromatin 

Although being restricted to distinct chromosome territories, chromatin does not represent a 

static, but rather dynamic structure [Lanctot et al., 2007; Soutoglou & Misteli, 2007]. 

Chromatin is subject to a plethora of epigenetic marks, which results in differentially 

compacted regions and thus provides a dynamic balance between genome packing and 

accessibility to the underlying DNA sequence. Therefore, TFs, in combination with adenosine 

triphosphate (ATP)-dependent chromatin remodeling complexes, have to induce local 

chromatin decompaction in order to bind heterochromatic regions [Luo & Dean, 1999; 

Clapier & Cairns, 2009] 

In addition to dynamic chromatin states and fluctuations in composition, chromatin also 

displays frequent, short-range movements. These movements are locally restrained within 

approximately 1 µm by rigid chromatin structures (e.g. the centromere) as well as by the 

presence or interaction with nuclear substructures (e.g. the NE, nucleoli or nuclear speckles) 

[Shelby et al., 1996; Hemmerich et al., 2011; Kind et al., 2013]. Moreover, short-range motility 

occurs in a random walk and depends on both ATP and temperature [Tumbar & Belmont, 

2001; Vazquez et al., 2001; Dion & Gasser, 2013]. On a global scale, chromatin motion is 
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confined to long-range movements, which occur less frequently and require passage through 

mitosis [Soutoglou & Misteli, 2007]. Except for early G1-phase, at which substantial 

rearrangements of subchromosomal domains can occur, chromatin motility is restricted to 

short-range movements during the cell cycle [Walter et al., 2003; Soutoglou & Misteli, 2007; 

Kind et al., 2013]. 

Notably, long-range chromatin movement correlates with transcriptional control. According 

to this model, loci move to either A or B compartments depending to their transcriptional 

status. Whereas in hematopoietic precursor cells, silent IgH- and Igκ-genes are located at the 

repressive nuclear periphery, these loci are internalized upon their activation in B-cells [Kosak 

et al., 2002]. Similarly, targeted transcriptional activation of a transgene results in a long-range 

movement to the nuclear interior in an actin/myosin dependent manner [Tumbar & Belmont, 

2001; Chuang et al., 2006]. In addition, lineage specification of ESCs provides a striking 

example of large-scale chromatin rearrangement. During differentiation, a large subset of 

genes switch from A to B compartments and defined heterochromatic regions are formed, 

resulting in diminished genome plasticity [Hiratani et al., 2008; Dixon et al., 2015]. 

Yet, there is accumulating evidence, suggesting that radial positioning of genes lacks a direct 

causality to the transcriptional status. For example, many gene loci remain at the same radial 

position, even though their expression level changes [Hewitt et al., 2004; Zink et al., 2004; 

Meaburn & Misteli, 2008]. Vice versa, some genes are repositioned without detectable changes 

of their transcriptional output [Williams et al., 2005; Meaburn & Misteli, 2008]. 

1.5.2 Visualization of chromatin dynamics 

Besides emerging 3C approaches, fluorescence microscopy-based methods are essential for 

deciphering the dynamics and spatiotemporal organization of chromatin. Direct imaging of 

nuclear proteins can be achieved by genetically fusing them to fluorescent proteins (FPs; e.g. 

GFP). Additionally, chromatin-associated proteins are indirectly visualized via FP-tagged 

camelid antibodies. These heavy-chain antibodies can be raised against virtually any epitope 

and fold readily in eukaryotic cells [Rothbauer et al., 2006; Romer et al., 2011]. Further, 

indirect visualization can also be accomplished by fusing the protein of interest to a SunTag 

(SUperNova tag). This short peptide tag is recognized by a co-expressed single-chain antibody 

(scFv), conjugated to a FP [Tanenbaum et al., 2014]. 

In vivo dynamics of labeled proteins can then be assessed via diverse live-cell imaging 

techniques, such as fluorescence recovery after photobleaching (FRAP), fluorescence loss in 

photobleaching (FLIP) and fluorescence correlation spectroscopy (FCS). For FRAP and 

FLIP, FP-tagged proteins within a region of interest (ROI) are irreversibly bleached by a 

short, strong laser pulse. Subsequently, the change of fluorescence intensity at the ROI 
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(FRAP) or at a defined region around the ROI (FLIP) is measured over time. FCS, in 

contrast, is a single-molecule detection method, which measures the fluctuations around the 

mean of fluorescence within a confocal volume [Weiss, 2008]. These measurements provide 

information about the kinetics of protein diffusion that depend on protein size but also on 

protein-chromatin interactions [Voss & Hager, 2008]. 

Sequence-specific visualization of chromatin mainly relies on FISH-based approaches. Here, 

the target sequence is detected via complementary base pairing with an epitope- or 

fluorophore-labeled nucleic acid probe after the genomic DNA has been denatured. Using 

this technique on fixed cells, entire chromosomes, chromosome arms or single loci can be 

visualized. Moreover, by combining different fluorophores, simultaneous detection of several 

loci or even all chromosomes can be achieved [Bolzer et al., 2005]. 

In contrast to analyzing nuclear protein dynamics, in vivo visualization of chromatin is rather 

limited. Replication foci have been observed by incorporation of fluorescently labeled 

nucleotides, which revealed different replication times for eu- and heterochromatin [Bornfleth 

et al., 1999; Schermelleh et al., 2001]. Further, tandem insertion of the lac operator (LacO) at 

specific genomic sites and subsequent detection via FP-tagged lac repressor (LacI) has been 

used to study repositioning of chromatin domains and mobility of telomeres [Robinett et al., 

1996; Tumbar & Belmont, 2001; Chuang et al., 2006; Jegou et al., 2009].  

Specific chromatin regions can also be indirectly visualized via associated proteins. For 

instance, FP-tagged histone variant CENP-B binds to CENP-boxes and specifically localizes 

to centromeres [Shelby et al., 1996]. Similarly, a FP-fusion of the telomere-specific protein 

TRF1 has been utilized to study telomere dynamics in living cells [Krawczyk et al., 2012]. 

Although these methods allow for in vivo visualization of chromatin dynamics, target sites are 

limited. 

1.5.3 Modular DNA binding proteins 

Zinc finger proteins 

Recognition of user-defined sequences was first realized utilizing zinc finger (ZnF) proteins 

[Gersbach & Perez-Pinera, 2014]. This highly diverse group of proteins serves a large variety 

of biological functions, including transcriptional activation, protein folding, regulation of 

apoptosis and nucleic acid binding [Laity et al., 2001]. Notably, the classic Cys2His2 ZnF 

structural motif, which was first described in the transcription factor IIIA from Xenopus laevis, 

is conserved among higher eukaryotes and represents the predominant DNA-binding domain 

in humans [Miller et al., 1985; Rubin et al., 2000; Tupler et al., 2001]. 

Individual Cys2His2 ZnF domains comprise ~30 amino acids, forming a ββα-motif, in which 

two cysteines and histidines coordinate a single Zn2+ ion (Figure 6A). Target recognition is 
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predominantly facilitated by the α-helix, which establishes contact to three bases within the 

major groove of the DNA via amino acid residues at positions -1, 3 and 6 [Pavletich & Pabo, 

1991; Elrod-Erickson et al., 1996]. Since each ZnF motif recognizes a distinct base triplet, 

tandem arrangement of up to six modules into a polydactyl ZnF protein (PZF) enables the 

recognition of unique genomic loci [Liu et al., 1997]. Yet, it has been demonstrated that 

individual zinc fingers display a preference for GC-rich substrates and that neighboring 

modules affect each other’s target specificity. Hence, target sequence prediction is limited and 

newly designed PZFs have to be subjected to a rigorous selection process, rendering this 

approach laborious and expensive [Segal et al., 1999; Ramirez et al., 2008; DeFrancesco, 2011]. 

 

 
Figure 6: Substrate recognition by modular DNA-binding proteins. A) Left: Crystal structure of two tandem ZnF 

proteins (Zif268) in complex with DNA. Individual ZnF modules are represented in different colors and the Zn2+ ion is 

denoted as a gray sphere. Right: Single ZnF module from Zif268. Alpha-helical amino acid residues -1, 3, 6 and contacted 

bases in the major groove are highlighted in red and blue, respectively (PDB: 1P47). B) Left: Crystal structure of the TALE 

PthXo1 bound to its target sequence. The central repeat domain forms a right-handed superhelix, which is wrapped around 

the major groove. Right: Individual repeat, containing a HD-RVD. Amino acids 12 and 13 are marked in red and the bound 

base (C) is highlighted in blue (PDB: 3UGM). 
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Transcription activator-like effectors (TALEs) 

Due to their inherent unfavorable features, PZFs have been widely replaced by designer 

transcription activator-like effectors (dTALEs). 

TALEs represent the major class of virulence factors in the bacterial plant pathogen 

Xanthomonas spp., which is known to cause diseases in more than 200 plant families, among 

them many agriculturally important crops. Key to the pathogenicity of this bacterial genus is 

an Hrp-type III secretion system (T3S), enabling the injection of bacterial effector proteins 

into the plant cell [Buttner & Bonas, 2010]. Xanthomonas strains typically express and secrete a 

mixture of 20 – 40 effector proteins with functions ranging from suppressing the hosts 

defense mechanisms to modulation of the plants transcriptome. Interestingly, the largest 

family of effector proteins, termed transcription activator-like (TAL) effectors, was found to 

mimic plant specific TFs [Kay et al., 2007]. 

TALEs are characterized by a conserved domain architecture. The N-terminal domain harbors 

a translocation signal peptide, which, in combination with the T3S system, mediates the 

translocation in the plant host cell [Szurek et al., 2002]. The C-terminal domain, on the other 

hand, contains nuclear localization signals (NLSs), as well as an acidic activation domain (AD), 

which are required for the translocation into the host nucleus and activation of target genes, 

respectively [Van den Ackerveken et al., 1996; Zhu et al., 1998]. Importantly, target 

recognition is mediated by a central repeat domain. In general, this central DNA-binding 

domain is composed of tandemly arranged conserved repeats, each comprising 33 – 35 amino 

acids. Alignment of various TALEs demonstrated that individual repeats only differ in 

residues 12 and 13, thus called repeat variable diresidues (RVDs). Furthermore, the length of 

the central repeat domain of different TAL effectors may vary from 1.5 to 33.5 repeats. 

However, the majority of analyzed TALEs exhibit 15.5 to 19.5 repeats [Boch & Bonas, 2010]. 

Crystal structures of TALEs in complex with their target sequence and biochemical studies 

revealed that DNA binding is mediated by the RVDs, whereas each RVD recognizes one base 

pair [Boch et al., 2009; Moscou & Bogdanove, 2009]. Strikingly, RVD-DNA interaction 

follows a simple cipher. Accordingly, NG, NI and HD display a strong preference for T, A 

and C, respectively. In contrast, other RVDs bind to two different bases (NN binds to G and 

A) or are non-selective (NS recognizes A, C, G and T) [Scholze & Boch, 2010]. TALEs bind 

to DNA by forming a right-handed superhelical structure along the major groove (Figure 6B). 

One repeat of TAL effectors comprises two α-helices, which are connected by an RVD-

containing loop. Interestingly, sequence-specific contacts are solely established by residue 13, 

which protrudes from the RVD, while residue 12 stabilizes the loop [Deng et al., 2012; Mak et 

al., 2012]. 
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Due to its modular composition, the central repeat domain of TALEs can be rearranged to 

create dTALEs, which can be targeted to virtually any genomic sequence. TALEs have been 

demonstrated to be powerful tools in genome engineering [Miller et al., 2011; Mussolino et al., 

2011], transcription modulation [Zhang et al., 2011; Bultmann et al., 2012; Mahfouz et al., 

2012] and in vivo labeling of specific genomic sequences [Ma et al., 2013; Miyanari et al., 2013; 

Thanisch et al., 2014]. Yet, this highly repetitive structure also necessitates the use of elaborate 

and time-consuming cloning techniques [Morbitzer et al., 2011]. 

 

1.6 The CRISPR/Cas system 

Prokaryotes employ a variety of innate defense mechanisms against foreign viral or plasmid 

DNA, including restriction/modification systems and blocking of phage adsorption [Samson 

et al., 2013]. In recent years, it became apparent that prokaryotes additionally possess means 

that confer adaptive immunity against invading genomic elements [Barrangou et al., 2007]. 

 

1.6.1 CRISPR/Cas mediated adaptive immunity 

First observed in Escherichia coli, approximately half of bacteria (~ 45 %) and nearly all archaea 

(~ 84 %) are equipped with a sophisticated adaptive defense mechanisms called clustered 

regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) [Ishino et 

al., 1987; Grissa et al., 2007; Wiedenheft et al., 2012]. Interestingly, these systems rely on small 

CRISPR-RNAs (crRNAs) to guide nucleases to foreign nucleic acids. All CRISPR/Cas 

systems comprise a set of cas genes, organized in operons, and a CRISPR-locus, harboring an 

array of genome-targeting sequences (termed spacers), which are derived from foreign DNA 

and are flanked by identical direct repeats [Ratner et al., 2016]. 

In general, CRISPR/Cas mediated adaptive immunity occurs in the following steps. First, 

upon phage infection or plasmid uptake, short stretches (~ 30 bp) of exogenous DNA 

(termed protospacer) are recognized and integrated into the CRIPSR-array. This array is then 

transcribed, resulting in a pre-CRISPR-RNA (pre-crRNA), which is subsequently processed 

into small mature crRNAs. Notably, each crRNA contains a portion of the direct repeat 

sequence and the spacer. As a last step, the crRNA forms a ribonucleoprotein-complex with 

Cas protein(s) and, in some cases, a trans-activating crRNA (tracrRNA). Mediated by the 

complementarity between the spacer of the crRNA and the protospacer of the invading DNA, 

this complex then binds to and degrades its target. Importantly, target recognition is highly 

dependent on a short protospacer-adjacent motif (PAM) [Ratner et al., 2016]. 
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Based on the presence of unique Cas proteins, the modes of crRNA maturation and RNA-

guided interference, CRISPR/Cas systems are subdivided into three main types (type I, II and 

III). Type I systems utilize the endonucleases Cas6 or Cas5d to cleave the pre-crRNA within 

the repeat sequences and thereby facilitate the maturation of crRNA [Carte et al., 2008; 

Garside et al., 2012; Nam et al., 2012]. Subsequently, crRNA interacts with a complex of five 

Cas proteins (CasA – E) called Cascade (CRISPR-associated complex for antiviral defense) 

and mediates target recognition via complementary base pairing [Jore et al., 2011]. Upon target 

binding, conformational changes (R-loop formation) lead to the recruitment of the nuclease 

Cas3, which facilitates DNA degradation [Westra et al., 2012]. 

Similar to type I systems, type III systems also rely on Cas6 for crRNA maturation. However, 

in these systems, Cascade is replaced by a complex consisting of repeat units of Csm or Cmr 

proteins and target degradation requires Cas10 [Hrle et al., 2013; Staals et al., 2013; Staals et 

al., 2014; Samai et al., 2015]. Interestingly, type III systems are capable to target both DNA 

and RNA. Co-transcriptional RNA degradation is thought to ensure robust immunity against 

viral infections, when, due to mutations in protospacer sequences, DNA cleavage is abrogated 

[Jiang et al., 2016]. 

Contrary to type I and III, type II CRISPR/Cas systems only require a single endonuclease, 

Cas9, for crRNA maturation and target degradation. In the following the major steps for type 

II mediated adaptive immunity are presented in more detail (Figure 7). 
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Figure 7: Type II CRISPR/Cas mediated adaptive immunity: Upon phage infection (1), Cas9 in complex with Cas1, 

Cas2, Csn2 and tracrRNA, scans the invasive genetic element and selects protospacers, which contain an appropriate PAM 

(5´-NGG-3´ for Staphylococcus pyogenes Cas9). The newly acquired spacer is then integrated into the CRISPR-array in a 

Cas1/Cas2-dependent manner (2). Following transcription of the CRISPR-array, the resulting pre-crRNA is bound by 

tracrRNA, by forming a repeat:anti-repeat duplex and processed into mature crRNA via RNase III in the presence of Cas9 

(3). The mature crRNA stays in complex with tracrRNA and Cas9 (4) and mediates target recognition and degradation by 

complementarity between spacer and protospacer sequences (5). 

 

Spacer-acquisition in type II CRISPR/Cas systems 

Upon infection, CRISPR/Cas systems must select appropriate spacer sequences in a manner 

that prevents autoimmunity, i.e. the cleavage of spacers after they have been integrated into 

the hosts CRISPR-array [Stern et al., 2010; Heler et al., 2015]. In type II (and type I) systems 

autoimmunity is avoided by the fact that Cas-mediated nuclease activity requires a specific 

nucleotide sequence, located immediately downstream of the protospacer (protospacer 

adjacent motif; PAM). During spacer-acquisition, Cas9 interacts with Cas1, Cas2, Csn2 and a 

tracrRNA and is thought to select invasive protospacers via its C-terminally PAM-interacting 

domain (PI) [Jinek et al., 2014; Nishimasu et al., 2014; Heler et al., 2015; Wei et al., 2015]. 

Interestingly, mutations in the PI do not abolish spacer-acquisition, but rather result in 

incorporation of spacers into the CRISPR-array, which are not adjacent to a PAM in the 

protospacer [Heler et al., 2015]. Moreover, nuclease activity of Cas9 is dispensable during the 
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acquisition of new spacers. This indicates that Cas9 is solely required for selecting the PAM 

and binding the protospacer, whereas Cas1 cleaves the adjacent sequence [Heler et al., 2015]. 

Subsequently, Cas1 and Cas2 facilitate the integration of the newly acquired spacer sequence 

into the CRISPR-array by interacting with the secondary structure of the CRISPR repeat. This 

is then followed by nicking the repeat sequence at the 3´-end and ligation of the free hydroxyl-

group to the spacer sequence. However, the exact mechanism of this process remains elusive 

[Nunez et al., 2015]. 

 

CRISPR-RNA maturation in type II systems 

Following transcription of the CRISPR-array, the resulting pre-crRNA is processed, yielding 

mature crRNAs, each of them specific for one protospacer sequence. Processing of pre-

crRNA requires the base pairing of every repeat sequence with a small non-coding tracrRNA, 

which is encoded in the vicinity of the cas genes and the CRISPR-array [Deltcheva et al., 2011]. 

Once formed, Cas9 interacts with these tracrRNA:pre-crRNA duplexes, probably protecting 

the spacer sequence from endonucleolytic cleavage by host RNases. Yet, this interaction is 

thought to be required for the recruitment of RNase III, which subsequently cleaves both 

strands of RNA within the double stranded repeat region, resulting in intermediate crRNAs 

composed of repeat-spacer-repeat sequences [Deltcheva et al., 2011; Chylinski et al., 2013]. In 

an elusive, second maturation event, these intermediate crRNAs are further trimmed, yielding 

spacer-repeat containing crRNAs. Notably, each mature crRNA remains in complex with the 

processed tracrRNA and the endonuclease Cas9, forming a ternary silencing complex [Jinek et 

al., 2012]. 

 

Target interference in type II systems 

Due to extensive biochemical and crystallographic studies, the mode of target recognition and 

interference of Cas9 endonucleases is well established. Cas9 forms a bi-lobed structure with a 

larger recognition lobe (REC lobe) and a smaller nuclease lobe (NUC lobe), which are bridged 

by a α-helix (bridge helix; BH). Additionally, the C-terminus contains a PAM-interacting 

domain (PI) (Figure 8A, B). The two lobes form a clam-like shape with a positively charged 

central channel, which accommodates both the tracrRNA:crRNA duplex and the target DNA, 

eventually [Jinek et al., 2014; Nishimasu et al., 2014]. 

Cas9 first interacts with the repeat:anti-repeat sequences of the tracrRNA:crRNA duplex via a 

positively charged, arginine-rich motif, located at the inner surface of the REC lobe (Figure 

8B, C). RNA-binding is then followed by a conformational change of the NUC lobe, which is 

reoriented towards the REC lobe. Thus, the central channel is formed and the two nuclease 
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domains (RuvC and HNH) are positioned in a favorable way for subsequent target cleavage 

[Jinek et al., 2014; Nishimasu et al., 2014]. 

Finally, this ribonucleoprotein complex scans DNA to facilitate target cleavage. Notably, Cas9 

constantly associates and disassociates from the DNA, until the PI domain encounters an 

appropriate PAM, which is directly associated with the target sequence [Sternberg et al., 2014; 

Knight et al., 2015]. In Staphylococcus pyogenes Cas9, the PI tightly binds to a GG dinucleotide 

within the PAM via two conserved tryptophan residues (W476 and W1126) [Jinek et al., 2014]. 

Interaction with the PAM is thought to lead to destabilization and local unwinding of the 

adjacent double-stranded DNA [Anders et al., 2014]. Subsequently, Cas9 is fully loaded onto 

the DNA, whereas the crRNA spacer displaces the non-complementary strand (R-loop) and 

forms a RNA:DNA heteroduplex. Interestingly, mismatches between crRNA and target DNA 

at the 5´-region of the spacer seem to be tolerated to some extent [Kabadi & Gersbach, 2014]. 

The separation of the DNA strands leads to their placement into the active sites of the two 

nuclease domains. The RuvC domain subsequently cleaves the non-complementary strand, 

whereas the HNH domain targets the complementary strand 3 bp upstream of the PAM 

[Jinek et al., 2014; Nishimasu et al., 2014; Sternberg et al., 2015]. 

 

 
Figure 8: Target recognition in type II CRISPR systems. A) Domain organization of Streptococcus pyogenes Cas9. The 

endonuclease contains a recognition (REC, red) and a nuclease (NUC, blue) lobe. The nuclease domains RuvC I – III and 

HNH are highlighted in light- and dark-blue, respectively. The C-terminally located PAM-interacting (PI, dark-green) domain 

mediates PAM-recognition and prevents autoimmunity. NUC and REC lobe are connected by a bridge helix (BH, light-

green). B) Crystal structure of S. pyogenes Cas9. Color-coding of Cas9 as in A). The two lobes form a clam-like structure with a 

central channel, which accommodates the target DNA (black) and the sgRNA (blue and gray). C) Crystal structure of sgRNA, 

binding its target DNA (black) via Watson-Crick base pairing. The tracrRNA:crRNA duplex is synthetically connected by a 

tetraloop (light-gray) to form a single guide RNA (sgRNA) (PDB: 4OO8). 
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1.6.2 The Cas9 toolbox 

Due to the fact that Cas9 recognizes its genomic target via Watson-Crick base pairing, this 

system can be reprogrammed to bind to user-defined sequences, by simply exchanging the 

spacer sequence of the crRNA. CRISPR/Cas9 genome targeting systems can be even further 

simplified, by replacing the two RNA components, which have to be expressed separately, by 

a synthetic fusion of tracrRNA and crRNA, named single guide RNA (sgRNA) (Figure 8C). 

By introducing a tetraloop-linker between the crRNA and tracrRNA, this chimeric sgRNA 

retains the double stranded repeat:anti-repeat duplex and structural features that are necessary 

for Cas9 interaction but can be transcribed from a single promoter [Jinek et al., 2012]. 

The RNA-guided endonuclease Cas9 has been adapted as a tool for genome engineering in a 

great variety of cell types and organisms, including human, mouse, fly, worm and zebrafish 

[Mali et al., 2013; Dickinson & Goldstein, 2016; Henao-Mejia et al., 2016; Housden & 

Perrimon, 2016; Vejnar et al., 2016]. For genome engineering purposes, Cas9 is utilized to 

introduce a DNA double strand break (DSB) at the desired locus. Mediated by the hosts 

repair machinery, DSBs are either resolved by non-homologous end joining (NHEJ) or 

homology-directed repair (HDR). The error-prone NHEJ-pathway results in a high frequency 

of insertions or deletions (indels) near the break-site, causing premature stop codons or other 

frame shift mutations and eventually a knock-out of gene function. Yet, in the presence of a 

homologous donor DNA, DSBs can be repaired, while introducing defined sequences [Lieber, 

2010]. To increase the likelihood of HDR, a partially mutated Cas9 has been used. Engineered 

point mutations in either of nuclease domains (D10A and H840A for RuvC and HNH, 

respectively), convert Cas9 into a nicking enzyme. This decreases the frequency of NHEJ and 

single strand breaks are preferentially repaired by HDR [Jinek et al., 2012; Cong et al., 2013]. 

Importantly, by mutating both nuclease domains, Cas9 can be engineered into a RNA-guided 

DNA-binding platform [Jinek et al., 2012; Qi et al., 2013]. This catalytically dead Cas9 (dCas9) 

still binds DNA in a sequence-specific manner but without cleaving the underlying target. 

Hence, the CRISPR/Cas9 system can be repurposed to manipulate gene expression. In this 

context, it has been demonstrated that dCas9 bound to a promoter sequence efficiently 

represses either transcription initiation by blocking TF and RNA polymerase (RNAP) binding 

or transcription elongation by inhibiting RNAP progression [Qi et al., 2013]. Similarly, 

transcription of a specific gene can also be repressed by fusing dCas9 to a transcriptional 

repressor, such as KRAB or SID4X [Gilbert et al., 2013; Konermann et al., 2013]. In addition 

to transcriptional silencing, dCas9, fused to transcriptional activators has been successfully 

employed to substantially increase transcription of targeted genes [Bikard et al., 2013; Cheng 

et al., 2013; Kearns et al., 2013; Perez-Pinera et al., 2013]. Furthermore, the transcriptional 
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output of specific genes has been manipulated by fusing dCas9 to epigenetic effector proteins. 

For instance, dCas9 fused to the human HAT p300 is able to specifically target H3K27 

acetylation to distal enhancers or promoter regions of the OCT4 gene, resulting in an 

increased mRNA level [Hilton et al., 2015]. Targeted de novo methylation via a dCas9-

DNMT3A fusion, on the other hand, was used to silence the IL6ST gene in human cells 

[Vojta et al., 2016]. 

Taken together, these results highlight the versatility of CRISPR/Cas9-based approaches in 

both genome engineering and manipulation of transcription. 
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1.8 Aims of this work 

Despite the fact that the genomes of many organisms have been sequenced, labeling and 

tracing of specific sequences in living cells has been a major challenge in studying the 

spatiotemporal dynamics of native chromatin. To date, tools to investigate nuclear 

organization either rely on prior fixation (FISH), or are based on DNA binding properties of 

fluorescently tagged proteins, such as PZFs or dTALEs. Designing sequence-specific PZFs 

and dTALEs for new target sequences, however, remains challenging. 

Since 2012, the emergence of the CRISPR/Cas system opened new experimental possibilities 

for sequence-specific DNA recognition. The endonuclease Cas9 plays a vital role in the type 

II CRISPR/Cas system and can be recruited to endogenous loci by a sgRNA, whereas target 

specificity is mediated by complementarity between ~20 bp of the sgRNA and the 

corresponding DNA sequence. Importantly, a catalytic mutant of Cas9 (dCas9) that retains its 

DNA-binding capability without inducing DSBs at the target sequence, was described. 

The first objective of this work was to harness dCas9 as a programmable DNA-binding 

platform for the visualization of distinct genomic loci in vivo. For this, we constructed a dCas9-

eGFP protein and co-expressed it with sgRNAs, which were specific for endogenous 

repetitive sequences. To test the target-specificity of this new approach, we validated the 

signals, obtained by CRISPR imaging, with FISH and immunofluorescence microscopy. 

Besides the spatiotemporal localization, the function of individual genomic loci is determined 

by their epigenetic status. To elucidate whether the CRISPR/Cas system is a suitable tool for 

epigenetic studies, we set out to target epigenetic modifications to specific sites. For this aim, 

we fused dCas9 to a GFP-binding protein (GBP). This setup enabled us to recruit GFP-

tagged epigenetic effectors to a genomic region of interest and to investigate their functions in 

a defined environment. 

As a third objective, we aimed to explore the local chromatin composition of defined genomic 

elements. To this end, we combined the programmable DNA-binding of dCas9 with a 

promiscuous biotin ligase (BirA*). By targeting the BirA*-dCas9 fusion to defined genomic 

loci, we aimed to achieve biotinylation of target-associated proteins, which can be precipitated 

and identified via tandem mass spectrometry. 
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2.1 Visualization of specific DNA sequences with a programmable fluorescent 

CRISPR/Cas system 
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Introduction

Almost one hundred and fifty years since the original 
description of chromosomes, many genomes have been fully 
sequenced. While our knowledge of DNA sequences has reached 
base pair (bp) resolution, detailed information on the positioning, 
nuclear arrangement and interactions of specific gene loci in 
living cells is still limited.

Despite the absence of internal membranes, the nucleus is a 
highly organized organelle. With fluorescent in situ hybridization 
(FISH) all chromosomes in an interphase nucleus were mapped 
and shown to occupy distinct territories.1 Additionally, gene rich 
chromosomes were found to be preferably located in the center 
of the nucleus, whereas gene poor chromosomes reside mostly in 
proximity to the nuclear periphery reflecting a functional nuclear 
organization.2,3 Clearly, FISH represents an important tool to 
label specific DNA sequences and to study nuclear architecture, 
but it is restricted to fixed specimens.

By now, several methods have been employed to label DNA 
in vivo4 and to investigate chromatin spatiotemporal dynamics, 

for instance by the incorporation of fluorescently tagged 
chromatin proteins, like H2B-GFP.5 However, these methods do 
not distinguish specific genomic sequences. To overcome these 
limitations, the lac operator and/or repressor recognition system 
has been developed.6 This system, however, relies on artificially 
introduced sequences and does not provide information on 
endogenous genomic loci.

To date, targeting of specific endogenous genomic loci has 
been based on the sequence specific binding of Cys

2
His

2
 zinc 

finger modules (ZF),7-9 where individual ZFs bind to a distinct 
trinucleotide sequence and are combined into polydactyl zinc 
finger proteins (PZF). It has been shown, however, that the target 
specificity of ZFs can be affected by their neighboring modules, 
which requires evaluation of every newly designed PZF.10,11 PZFs 
have been widely replaced by designer transcription activator-like 
effectors (dTALEs), which have proven to be a powerful tool for 
genome engineering,12,13 influencing gene transcription14-16 and 
were recently applied for labeling genomic sequences in vivo.17-19 
Yet, the fact that DNA binding of dTALEs is mediated by tandemly 
arranged repeats, whereby every repeat only differs in two residues, 
necessitates the use of elaborate cloning techniques.20,21
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Labeling and tracing of specific sequences in living cells has been a major challenge in studying the spatiotemporal 
dynamics of native chromatin. Here we repurposed the prokaryotic CRISPR/Cas adaptive immunity system to specifically 
detect endogenous genomic loci in mouse embryonic stem cells. We constructed a catalytically inactive version of the Cas9 
endonuclease, fused it with eGFP (dCas9-eGFP) and co-expressed small guide RNAs (gRNAs) to target pericentric, centric, 
and telomeric repeats, which are enriched in distinct nuclear structures. With major satellite specific gRNAs we obtained 
a characteristic chromocenter (CC) pattern, while gRNAs targeting minor satellites and telomeres highlighted smaller foci 
coinciding with centromere protein B (CENP-B) and telomeric repeat-binding factor 2 (TRF2), respectively. DNA sequence 
specific labeling by gRNA/dCas9-eGFP complexes was directly shown with 3D-fluorescent in situ hybridization (3D-FISH). 
Structured illumination microscopy (3D-SIM) of gRNA/dCas9-eGFP expressing cells revealed chromatin ultrastructures and 
demonstrated the potential of this approach for chromatin conformation studies by super resolution microscopy. This 
programmable dCas9 labeling system opens new perspectives to study functional nuclear architecture.
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New experimental options became available with the discovery 
of the type II CRISPR/Cas system that is composed of clustered 
regularly interspaced short palindromic repeats (CRISPR) as 
well as CRISPR-associated (Cas) proteins and plays a vital role in 
prokaryotic adaptive immunity. Upon viral infection or plasmid 
uptake, short stretches (~30 bp) of foreign DNA (termed spacers) 
are incorporated between identical direct repeats into CRISPR 
arrays. Transcription of these arrays results in pre-CRISPR 
RNA (pre-crRNA), which subsequently interacts with a trans-
activating crRNA (tracrRNA). This pre-crRNA/tracrRNA 
duplex forms a complex with the endonuclease Cas9, followed 
by further processing of pre-crRNA into crRNA. Endonuclease 
target-specificity is determined by the complementarity between 
spacer (crRNA) and protospacer (viral or plasmid) sequences.22 
As an important step toward the applicability of this system, a 
crRNA:tracrRNA chimera, named guide RNA (gRNA), has 
been shown to be able to replace the two RNA components and 
to specifically target Cas9 to user-defined DNA sequences.23,24 
The CRISPR/Cas system has recently been applied as a versatile 
tool for genome editing in a wide range of organisms.25-29

Here, we present an approach for labeling specific endogenous 
genomic loci in living murine embryonic stem cells based on a 
modified CRISPR/Cas system.

Results

Adapting the CRISPR/Cas system for tracing specific DNA 
sequences in living cells

The CRISPR/Cas system features easily programmable 
sequence recognition, but combines it with an endonuclease 
activity. We, therefore, introduced mutations to inactivate the 
endonuclease activity of Cas930-32 and fused it to the enhanced 
variant of GFP (eGFP) (Fig. 1A). By co-transfecting a plasmid 
encoding this eGFP-tagged, nuclease deficient Cas9 (dCas9-
eGFP) together with a gRNA expression vector, we aimed to 
target specific genomic loci in mouse embryonic stem cells. In 
this way, we expected to achieve specific targeting of dCas9-
eGFP without cleavage of the underlying sequences (Fig. 1B).

To test the feasibility of our method, we chose tandemly 
arranged repetitive DNA sequences, which enabled us to target 
dCas9-eGFP to extended genomic loci with a single gRNA 
construct. To this end, gRNAs directed to major (MaSgRNA) 
and minor satellite (MiSgRNA) repeats, as well as telomeres 
(TelgRNA) were designed. In mice, major satellite repeats consist 
of 234 bp repeat units that span within a 6 Mb region, whereas 

minor satellite repeats range between 0.6 to 1.2 Mb and consist 
of 120 bp repeat units.33-36 Telomeric repeats vary in length 
reflecting the cell’s replicative potential37 and in mouse amount 
to approximately 20–30 kb with the 6 bp repeat sequence 
TTAGGG (Fig. 1C).

Effective tracing of repetitive DNA sequences using the 
CRISPR/Cas system

Mouse chromosomes are acrocentric as depicted in Figure 1C. 
Fluorescent in situ hybridization (FISH) experiments on 
metaphase chromosomes have shown that minor satellites 
are centromeric, whereas major satellite repeats occupy the 
subcentromeric part of the chromosome and are implicated in 
heterochromatin formation and sister chromatid cohesion.38-41 
In interphase nuclei, centromeres cluster and form distinct 
chromocenters (CCs),41,42 which can be readily distinguished by 
enhanced DAPI-staining intensity due to their AT-richness.

J1 mouse embryonic stem cells were co-transfected with 
dCas9-eGFP and MaSgRNA encoding plasmids and imaged 
48 h post-transfection. As depicted in Figure 1D, the CCs of 
MaSgRNA/dCas9-eGFP expressing cells show a bright eGFP 
signal, verifying the successful targeting of genomic DNA. 
The distribution exhibits remarkable specificity with very low 
background signals from freely diffusing dCas9-eGFP.

MiS repeats have been observed as individual focal entities at 
the periphery of CCs.41 We were able to observe this characteristic 
distribution as eGFP fluorescent foci in the corresponding regions 
of MiSgRNA/dCas9-eGFP expressing cells (Fig. 1E).

Telomeres are capping the ends of chromosomes and have 
been found localized throughout the nucleus.43 Due to the 
acrocentric nature of mouse chromosomes, telomeres located at 
the acrocentric end can also be detected in the direct vicinity of 
CCs apart from remote nuclear sites. By expressing TelgRNA/
dCas9-eGFP in J1 cells, small foci, often in the vicinity of CCs, 
were visible. The observed variable size of labeled telomeres is 
consistent with the fact that telomeres may form clusters44 
(Fig. 1F). In some TelgRNA/dCas9-eGFP expressing cells, 
an elongated and fiber-like telomere-related eGFP signal was 
apparent, which was not observed in cells expressing MaS- or 
MiSgRNA/dCas9-eGFP. Taken together our results show that 
for all three targeted DNA sequences distinct labeling patterns 
were observed.

Combined gRNA/dCas9-eGFP labeling and 3D DNA-FISH
To validate the sequence specificity of the dCas9 labeling 

system, we verified the accurate targeting of all live-cell introduced 
fluorescent genomic tags by 3D DNA-FISH experiments. For this 
purpose, FISH probes specific for MaS, MiS and telomeric repeats 

Figure 1 (See opposite page). Labeling genomic loci with specific dCas9-eGFP/gRNA complexes. (A) Schematic representation of the dCas9-eGFP 
expression construct. A chicken β-actin promoter with a CMV enhancer (CAG, blue triangle) drives the expression of dCas9-eGFP. Inactivation of RuvC1 
and HNH (red crosses) by amino acid substitutions (D10A and H840A within RuvC1 and HNH, respectively) is indicated. A second nuclear localization 
signal (NLS) (beige) is introduced upstream of the eGFP coding sequence (green). (B) Outline of the experimental design. dCas9-eGFP interacts with a 
co-expressed gRNA and is thereby guided to the genomic target sequence. Note that the presence of a protospacer adjacent motif (PAM) is a prerequisite 
for dCas9 binding. (C) Schematic representation of a mouse acrocentric chromosome. gRNAs were designed to target 20 bp protospacer sequences 
of telomeres (Tel, green), major satellites (MaS, yellow) and minor satellites (MiS, red) as indicated. (D, E, F) Co-expression of dCas9-eGFP and gRNAs 
complementary to MaS repeats (MaSgRNA, D), MiS (MiSgRNA, E) and Tel gRNAs (TelgRNA, F) in J1 mouse embryonic stem cells. MaSgRNA recruits dCas9-
eGFP to chromocenters (CCs), MiSgRNA/dCas9-eGFP signals are observed in the periphery of CCs, while targeting of TelgRNA/dCas9-eGFP to telomeres 
results in distinct dCas9-eGFP foci, which can be detected throughout the nucleoplasm. Bar: 5 μm.
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were generated and immuno-FISH experiments were performed. 
We used a protocol optimized for eGFP epitope preservation and 

efficient probe hybridization,45 yielding robust and homogeneous 
signals (Fig. 2). As it can readily be seen in Figure 2A, the probe 

Figure 1. For figure legend, see page 164.
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for MaS repeats shows confined localization at the CCs, while 
MaSgRNA/dCas9-eGFP complexes exhibit strict co-localization 
with the probe. Accordingly, immuno-FISH experiments showed 
correct localization of MiSgRNA/dCas9-eGFP at MiS repeats 
(Fig. 2B). Moreover, simultaneous hybridization with MaS and 
MiS probes showed that the gRNA/dCas9-eGFP complexes 
specifically labeled their respective target structure and did not 
affect the spatial integrity of neighboring structures (Fig. 2C). In 
immuno-FISH of TelgRNA/dCas9-eGFP expressing cells, FISH 
probe and dCas9-eGFP were fully co-localized and exhibited 
the same variety of signal intensities with brighter foci possibly 
representing longer telomeres or telomere clusters (Fig. 2D).

In each case, neighboring non-transfected cells in our 
specimens served as an internal control for the visualization 
of normal distribution of the FISH probes and comparison of 
signal strength. It must be noted here that on some occasions 
FISH probes did not fully penetrate to the core of well-associated 
stem cell colonies, while dCas9-eGFP signal was detected. Our 
observations confirm the specific and restricted localization of 
dCas9-eGFP to their targeted DNA sequences.

gRNAs/dCas9-eGFP complexes remain associated with 
mitotic chromosomes

During cell division, chromatin undergoes dramatic structural 
changes in order for chromosomes to compact and segregate 
properly. This chromatin rearrangement could possibly affect 
binding of recombinant macromolecular complexes. In addition, 
the targeted MiS repeats, forming the centromeres, are the 
sites of kinetochore formation and ensure normal chromosome 
segregation.46 Likewise, pericentromeric regions, containing MaS 
repeats, play an important role in mitotic progression, as they 
have been linked to sister-chromatid cohesion.47-49 Furthermore, 
telomeric dysfunction has been shown to promote chromosome 
fusions, anaphase bridges and genome reorganization.50-52 
Therefore, targeting of dCas9-eGFP at these essential regulatory 
sequences could potentially perturb chromosome arrangements 
and mitotic progression. Hence, we investigated, whether 
dCas9-eGFP stably maintained its association to targeted DNA 
sequences during mitosis. We were able to observe MaS, MiS, 
and TelgRNA/dCas9-eGFP expressing cells in different mitotic 
stages. A metaphase for the MaSgRNA/dCas9-eGFP targeting is 
depicted in Figure 3A, showing the robust labeling of the MaS 
domains and its restricted localization to the highly condensed 
CC regions. Similarly, two optical sections of a metaphase plate 
(z1, z2) showed that TelgRNA/dCas9-eGFP labeled both ends 
of mitotic chromosomes and multicolor FISH confirmed the 
pericentromeric and centromeric arrangement of MaS and MiS 
repeats, respectively (Fig. 3B).

For a more detailed investigation of the MiS signals, we 
applied 3D-SIM microscopy and examined metaphases in 
MiSgRNA/dCas9-eGFP expressing cells (Fig. 3C). We were able 
to distinguish distinct dCas9-eGFP foci in every chromosome 
and strict co-localization with the MiS probe. Using conventional 
microscopy, MiS clusters appear as diffraction-limited foci. With 
3D-SIM, these clusters displayed ultrastructural organization, 
visible by FISH probe, as well as dCas9-eGFP labeling (Fig. 3C, 
magnification insets).

Application of CRISPR/Cas labeling in super resolution 
studies

Next, we investigated whether the coverage of dCas9-
eGFP labeling correlated with known proteins bound at these 
genomic loci, perturbed the canonical distribution of these 
proteins or prevented antibody binding. For this purpose, J1 
cells expressing MiSgRNA/dCas9-eGFP were immunolabeled 
with anti-centromere protein-B (CENP-B) antibodies. CENP-B 
is a constitutive centromere protein located at the primary 
constriction by direct binding to MiS repeats at the CENP-B 
box.53-55 In mitosis it forms a link between the kinetochore and 
the underlying centromeric repeats56,57 and regulates centromere 
formation.58,59 In interphase it has been visualized in association 
with MiS repeat clusters at the periphery of the CCs.41

In MiSgRNA/dCas9-eGFP expressing cells, distinct CENP-B 
foci were consistently associated with dCas9-eGFP clusters 
(Fig. 4A), suggesting that incorporation of the gRNA/dCas9-
eGFP does neither interfere with the recruitment of CENP-B to 
MiS repeats, nor antibody binding upon fixation. Compared with 
wide-field deconvolution (wf), where MiS domains appeared 
as diffraction-limited foci, 3D-SIM revealed a sub-structural 
organization of the targeted repeats (Fig. 4A, blowups 3D-SIM 
compared with wf).

Consistent with the above findings, in TelgRNA/dCas9-
eGFP expressing cells, the incorporation of the complexes to 
telomeric repeats allowed binding of anti-telomeric repeat-
binding factor 2 (TRF2) antibodies (Fig. 4B). Telomeric DNA 
sequences have been shown to form a T-loop structure, which 
is thought to protect the 3′-overhangs and regulate telomerase 
activity.60,61 By conventional fluorescence microscopy, telomeres 
are detected as diffraction-limited foci. In a recent study 
applying 3D-STORM, FISH detected telomeres appeared as 
ovoid clusters with an average diameter of 180 nm.62 Although 
SIM does not offer the localization accuracy of STORM,63 high-
resolution microscopy of telomeres using the dCas9 labeling 
system revealed a consistent morphology to the above-mentioned 
study (Fig. 4B).

With dCas9 labeling, we were able to visualize repetitive 
DNA sequences on fixed cells without the need of FISH probes 
and thus avoided flattening or destruction of chromatin due to 
sample denaturation. Furthermore, combination of 3D-SIM with 
immunostaining and dCas9 labeling highlighted ultrastructural 
properties of targeted MiS and Tel repeats.

Discussion

For modern cytogenetics and diagnostics, fluorescent in 
situ hybridization (FISH) has proven to be an indispensable 
method, but its application is still limited, due to its complexity 
and variability. Since its original introduction, numerous 
scientific publications have dealt with the optimization of 
probe and sample preparation. Although improvements have 
been made, harsh treatments, such as heat denaturation are 
required for probe hybridization that may compromise sample 
integrity.64,65 Furthermore, combining 3D-FISH with protein 
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immunofluorescent detection remains a challenge and on 
occasion is not feasible due to detrimental effects on epitopes.66 
Therefore, even at the fixed cell level, live-cell genomic labeling 
systems offer superior sample preservation and their use is far 
less laborious compared with FISH probe creation and long 
hybridization and/or detection procedures. Noteworthy is the 
fact that at the dense stem cell colony level, we observed on 
occasion that FISH probes did not penetrate efficiently the core 
of the colony. In these cells, dCas9 labeling was uniform thereby 
rendering this method more efficient than FISH.

Here we report the successful labeling of endogenous centric, 
pericentric and telomeric chromatin loci in living mouse 
embryonic stem cells by repurposing the prokaryotic CRISPR/
Cas system. During the preparation of this manuscript, a similar 
study has been published,67 which showed that, besides repetitive 
sequences, also individual genes can be labeled by a catalytically 
inactive Cas9 endonuclease, confirming the potential of the 
dCas9 system to label genomic DNA in vivo. While their study 
focused on detection sensitivity, we performed a thorough 
comparison with 3D-FISH and immunolabeling methods. 

Figure 2. 3D-FISH shows precise targeting of dCas9-eGFP. (A, B, C, D) Immuno-FISH experiments in gRNA/dCas9-eGFP expressing cells. Hybridization of 
probes designed to target MaS (A, red and C, blue), MiS (B-C, red), Tel (D, red) demonstrate that dCas9-eGFP co-localizes with the respective sequences. 
Multicolor immuno-FISH in C (MiS, red; MaS, blue) highlights the restricted targeting of MiSgRNA/dCas9-eGFP and demonstrates that non-targeted 
neighboring nuclear structures maintain their integrity. Bars, 5 μm; insets, 1 μm.
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In addition we demonstrated potential applications in high 
resolution microscopy studies.

So far, dTALE based approaches are commonly applied as 
powerful tools for genome manipulation and live-cell tracing of 
chromatin. However, large-scale studies of nuclear organization 
require the design of dTALEs specific for many different target 
sequences including single copy genes. Due to laborious cloning 
procedures, large-scale production of these DNA binding proteins 
still remains a challenge. In contrast, the target specificity of the 
dCas9 labeling system relies on small and easily exchangeable 

gRNAs, which greatly expands the range of possible targets and 
is the basis for the convenience of dCas9 labeling. Moreover, 
combining dCas9 labeling with 3D-SIM microscopy enabled us to 
visualize the ultrastructure of diffraction limited chromatin clusters 
and their spatial relationship with known associated proteins.

Clearly, this programmable dCas9 DNA labeling system 
represents a powerful tool to monitor the spatiotemporal dynamics 
of endogenous genomic loci during cell cycle progression and 
differentiation and opens new perspectives to study functional 
nuclear architecture.

Figure 3. Association of gRNA/dCas9-eGFP to chromatin in mitotic cells. (A) Confocal optical section of a metaphase plate shows successful targeting of 
MaSgRNA/dCas9-eGFP. Note the robust eGFP signals at the CCs (DAPI bright regions, middle panel). Bar, 5 μm. (B) Two confocal optical sections (z1, z2) 
of a multicolor immuno-FISH stained metaphase show TelgRNA/dCas9-eGFP signals at the ends of chromosomes. The Integrity of (peri-) centromeric 
chromatin (MaS, MiS) is not compromised. Bar, 5 μm; insets, 1 μm. (C) Metaphase plate of a MiSgRNA/dCas9-eGFP expressing cell after immuno-FISH 
with MiS probe (red) acquired via 3D-SIM. Note the overlap between MiS probe and dCas9-eGFP. Bar, 5 μm; inset, 1 μm.
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Materials and Methods

Cell culture and transfection
J1 embryonic stem cells (ESCs)68 were cultivated at  

37 °C and 5% CO
2
 on gelatin-coated petri dishes in Dulbecco’s 

modified Eagle’s medium supplemented with 16% fetal bovine 
serum (Biochrom), 0.1 mM β-mercaptoethanol (Invitrogen), 
2 mM L-glutamine, 1x MEM non-essential amino acids,  
100 U/ml penicillin, 100 μg/ml streptomycin (PAA Laboratories 
GmbH), 1000 U/ml recombinant mouse LIF (Millipore), 
1 μM PD032501, and 3 μM CHIR99021 (Axon Medchem). 
Transfection of J1 cells was performed using Lipofectamin 
2000 (Invitrogen) according to the manufacturer’s instructions. 
For FISH experiments 2.5 × 105, for all other experiments  
5 × 105 cells were transfected. Cells were analyzed 48 h 
post-transfection.

Plasmid generation
For generating the dCas9-eGFP construct, plasmid hCas9_

D10A was purchased from Addgene (addgene ID: 4181624). 
Inactivation of the second nuclease domain (H840A) was 
performed by site-directed mutagenesis using primers dCas1-F, 
dCas2-R, dCas2-F, and dCas3-R. The resulting PCR-product 
(dCas9) was digested with BsrGI and XbaI and ligated into 
pCAG.69,70 The NLS-eGFP-sequence was amplified by PCR 
using primers eGFP1 and eGFP2, digested with AsiSI and 
NotI and ligated downstream of dCas9. pEX-A-U6-gRNA was 
synthesized at Eurofins MWG Operon according to Mali et al.24 

gRNA-expression vectors were generated by amplifying pEX-A-
U6-gRNA with forward and reverse primers, which introduced 
the protospacer sequence for minor satellites repeats (MiS), major 
satellites repeats (MaS) and telomeres (Tel), respectively.

Nucleotide sequences:
dCas1-F: 5′-aaagcgatcg ctctagaatg gacaagaagt actccattgg g-3′
dCas2-R: 5′-ctggggcacg atagcatcca cgtcg-3′
dCas2-F: 5′-cgacgtggat gctatcgtgc cccag-3′
dCas3-R: 5′-tttgcggccg ctcattgtac aatcaccttc ctcttcttct tggggtc-3′
eGFP1: 5′-aaagcgatcg catccaaaga agaagagaaa ggtcatggtg 

agcaagggcg agg-3′
eGFP2: 5′-tttgcggccg cttacttgta cagctcgtcc atgcc-3′
MaSgRNA-F: 5′-ggcaagaaaa ctgaaaatca gttttagagc tagaaatagc 

aag-3′
MaSgRNA-R: 5′-tgattttcag ttttcttgcc cggtgtttcg tcctttccac -3′
TelgRNA-F: 5′-tagggttagg gttagggtta gttttagagc tagaaatagc 

aag-3′
TelgRNA-R: 5′-taaccctaac cctaacccta cggtgtttcg tcctttccac -3′
MiSgRNA-F: 5′-acactgaaaaa cacattcgtg ttttagagct agaaatagca 

ag-3′
MiSgRNA-R: 5′-acgaatgtgt ttttcagtgt cggtgtttcgt cctttccac- 3′
pEX-A-U6-gRNA: Sequence is available upon request.

Immunofluorescence staining (IF) and fluorescent in situ 
hybridization (FISH)

Immunostaining and FISH experiments were performed as 
described previously.45,64 Briefly, J1 ESCs grown on coverslips 
were washed 48 h post-transfection with phosphate buffered 

Figure 4. 3D-SIM highlights the ultrastructure of MiS and Tel repeats. (A) Left panel depicts a mid z-section of a DAPI stained nucleus (gray) in MiSgRNA/
dCas9-eGFP (green) expressing cells immunolabeled with anti-CENP-B antibodies (red). Four × magnifications of boxed areas (mid gallery) show the 
spatial association of dCas9-eGFP decorated domains to CENP-B assemblies. Wide-field (wf) deconvolved simulations of the corresponding 3D-SIM 
magnifications are shown for comparison (far right gallery). Bar, 5 μm; magnifications, 500 nm. (B) Left panel depicts a mid z-section of a DAPI stained 
nucleus (gray) in TelgRNA/dCas9-eGFP (green) expressing cells immunolabeled with anti-TRF2 antibodies (red). Four × magnifications of boxed areas 
(mid gallery) show overlapping pattern of dCas9-eGFP signals with TRF2. Wide-field (wf) deconvolved simulations of the corresponding 3D-SIM 
magnifications are shown for comparison (far right gallery). Note the elucidation of interconnected ovoid intensities within the telomere-cluster (mid-
gallery, lower panel, and dCas9-eGFP). Bar, 5 μm; magnifications, 500 nm.
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saline (PBS) and fixed with 4% formaldehyde for 10 min. After 
permeabilization with 0.5% Triton X-100 in PBS, cells were 
incubated with PBST (PBS. 0.02% Tween) supplemented with 
2% BSA and 0.5% fish skin gelatin (blocking buffer) for 1 h. 
Both primary and secondary antibodies were diluted in blocking 
buffer and cells were incubated with the respective antibodies 
for 1 h in a dark humidified chamber at room temperature. 
Washings were performed with PBST. For immuno-FISH 
detection, cells were first incubated with primary (anti-GFP, 
Roche) and secondary antibodies, followed by postfixation and 
pre-treatment for hybridization. Hybridization was performed 
overnight at 37 °C. Following post-hybridization washings 
were performed with 2xSaline Sodium Citrate (SSC) at  
37 °C and 0.1xSSC at 61 °C.64 FISH probes for MiS and MaS 
were generated by PCR using mouse Cot1 DNA (Invitrogen) 
as a template (MaS-primers: 5′-GCG AGA AAA CTG AAA 
ATC AC-3′ and 5′-TCA AGT CGT CAA GTG GAT G-3′; 
MiS-primers: 5′-CAT GGA AAA TGA TAA AAA CC-3′ 
and 5′-CAT CTA ATA TGT TCT ACA GTG TGG-3′). 
The probe for telomeric repeats was produced by using self-
annealing primers in the PCR (5′-TTA GGG TTA GGG 
TTA GGG TTA GGG TTA GGG-3′ and 5′-CCC TAA CCC 
TAA CCC TAA CCC TAA CCC TAA-3′). All probes were 
directly labeled by nick translation with Texas Red-dUTP 
or Cy3-dUTP and dissolved in hybridization mixture (50% 
formamide, 10% dextran sulfate, 1xSSC) at a concentration of 
10–20 ng/ml. Cells were counterstained with 4′,6-diamidino-
2-phenylindole (DAPI), mounted with antifade medium 
(Vectashield, Vector Laboratories) and sealed with Covergrip 
sealant (Biotium). Primary antibodies used in this study were: 
anti-GFP (1:400; Roche 11814460001), anti-TRF2 (1:250, 
Abcam ab13579), anti-CENP-B (1:500, Abcam ab84489). The 
secondary antibodies were anti-rabbit conjugated to DyLight 
594 (Jackson ImmunoResearch, 711-505-152), anti-mouse 
conjugated to Alexa 488 (Invitrogen, A21202) and anti-mouse 

conjugated to Alexa 594 (Invitrogen, A11032). Cells for 
3D-SIM were grown on precision cover glass, thickness no. 1.5H  
(170 μm ± 5 μm; Marienfeld Superior) using immersion oil with 
a refractive index of 1.514 to minimize spherical aberration.

Microscopy and image acquisition
Optical sections for Figure 1D were acquired with 

an UltraVIEW VoX spinning disk confocal microscope 
(PerkinElmer), which was operated with the Volocity® software. 
For Figure 1E-F, 2, and 3A-B, single optical sections or stacks 
of optical sections were collected with a Leica TCS SP5 confocal 
microscope using a Plan Apo 63×/1.4 NA oil immersion objective. 
High-resolution images (Fig. 3C and 4) were obtained with a 
DeltaVision OMX V3 3D-SIM microscope (Applied Precision 
Imaging, GE Healthcare), equipped with a 60×/1.42 NA 
PlanApo oil objective and sCMOS cameras (Olympus). Images 
were acquired with a z-step size of 125 nm. Reconstruction and 
image deconvolution was applied to the SI raw data using the 
SoftWorX 4.0 software package (Applied Precision). Image 
processing and assembly was performed with FIJI and Photoshop 
CS5.1 (Adobe), respectively. Stacks of confocal optical sections 
were corrected for chromatic shifts with ImageJ plugins.71
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    Chapter 25   

 Visualization of Genomic Loci in Living Cells 
with a Fluorescent CRISPR/Cas9 System                     

     Tobias     Anton    ,     Heinrich     Leonhardt     , and     Yolanda     Markaki     

  Abstract 

   The discovery that the RNA guided bacterial endonuclease Cas9 can be harnessed to target and manipu-
late user-defi ned genomic sequences has greatly infl uenced the fi eld of genome engineering. Interestingly, 
a catalytically dead Cas9 (dCas9) can be employed as a targeted DNA-binding platform to alter gene 
expression. By fusing this dCas9 to eGFP, we and others could show that the CRISPR/Cas9 system can 
be further expanded to label and trace genomic loci in living cells. We demonstrated that by exchanging 
the sgRNA, dCas9-eGFP could be specifi cally directed to various heterochromatic sequences within the 
nucleus. Here, we provide a basic protocol for this versatile tool and describe how to verify new dCas9-
eGFP targets.  

  Key words     CRISPR/Cas9  ,   sgRNA  ,   In vivo labeling  ,   Repetitive sequences  

1      Introduction 

 To study nuclear architecture and the spatiotemporal organization 
of chromatin, it is essential to have tools that allow visualization of 
proteins as well as specifi c genomic loci. Whereas nuclear proteins 
can be readily imaged in living cells by fusing the target protein to 
a fl uorescent tag, in vivo visualization of DNA sequences has been 
challenging. Fluorescent in situ  hybridization   ( FISH  ) represents a 
very reliable and prominent tool to label specifi c loci. However, 
this method relies on fi xed samples and thereby only represents a 
“snapshot” in cellular development. Moreover, the relatively harsh 
 fi xation   and  denaturation   of DNA may potentially alter the native 
context of the targeted locus [ 1 ]. To overcome these limitations, 
fl uorescently tagged proteins can be employed, which recognize 
DNA in a sequence specifi c manner. For example, it has been 
shown that individual Cys 2 His 2  zinc fi nger modules, each recog-
nizing 3 bp, can be tandemly arranged to form a polydactyl zinc 
fi ner protein (PZF), which in turn recognizes a user-defi ned DNA 
sequence [ 2 – 4 ]. Yet testing PZFs for their target specifi city 
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renders this method very time-consuming [ 5 ,  6 ]. Similar to PZFs, 
designer TAL (transcription activator-like) effectors (dTALEs) 
have been used to label distinct sequences in live cells [ 7 – 9 ]. Here, 
repeat variable diresidues (RVDs), located in the central repeat 
domain of the protein, confer target specifi city [ 10 ]. However, 
due to the tandemly arrangement of these  repeats  , designing new 
dTALEs can be tedious and often requires multistep  cloning   
approaches [ 11 ,  12 ]. 

 In this chapter, we describe a novel method to label and trace 
endogenous  repetitive sequence  s (Fig.  1 ) [ 13 – 15 ], which is based 
on the bacterial  CRISPR/Cas9   adaptive immune system [ 16 ]. 
Whereas in dTALE or PZF based approaches the protein itself 
confers target specifi city, in this case an inactive version of the 
endonuclease Cas9 (dCas9) is directed to its target by homolo-
gous base pairing between a single guide RNA ( sgRNA  ) and the 
respective genomic sequence [ 17 ,  18 ]. The fact that the sgRNA, 
and with it the sequence to be targeted, is easily interchangeable, 
greatly enhances the practicality of this system by minimizing 
 cloning   efforts.

  Fig. 1    Schematic overview of the CRISPR labeling approach.  dCas9-eGFP   is guided to the desired locus by a 
co-transfected  sgRNA  . Note that target specifi city is mediated by homologous base pairing between DNA 
( black ) and RNA ( red ). Due to the repetitive organization of this locus, one specifi c sgRNA is suffi cient to ensure 
bright signals       
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2       Materials 

       1.    Dulbecco’s modifi ed Eagle’s medium (DMEM).   
   2.    Fetal bovine serum (FBS).   
   3.    200 mM  L -glutamine.   
   4.    100× penicillin–streptomycin (Pen–Strep).   
   5.    Trypsin (0.25 % trypsin–EDTA solution).   
   6.    Phosphate-buffered saline (PBS).   
   7.    Blasticidin S (10 mg/mL) (optional).      

   C2C12 medium: 390 mL DMEM supplemented with 100 mL 
FBS (fi nal concentration: 20 %), 5 mL  L -glutamine (fi nal concen-
tration: 2 mM), and 5 mL Pen–Strep (fi nal concentration: 1×).  

       1.     Lipofectamine   ®  3000 reagent.   
   2.    Opti-MEM serum-free medium.   
   3.    CAG- dCas9-eGFP    pla  smid [ 14 ].   
   4.    U6-MaSgRNA  pla  smid [ 14 ] (optional).   
   5.    U6-MiSgRNA  pla  smid [ 14 ] (optional).   
   6.    U6-TelgRNA  pla  smid [ 14 ] (optional).      

       1.    20× PBS: 2.74 M NaCl, 53.7 mM KCl, 130 mM Na 2 HPO 4 , 
35 mM KH 2 PO 4 . For working dilution (1×): dilute 1:20 in 
ddH 2 O.   

   2.     Fixation   solution: 4 % formaldehyde in 1× PBS (4 % FA).   
   3.     Permeabilization   solution: 0.5 % Triton X-100 in 1× PBS.   
   4.    PBST: 0.02 % Tween 20 in 1× PBS.   
   5.     Immunofl uorescence    blocking   solution: 2 % bovine serum 

albumin (BSA), 0.5 % fi sh skin gelatin (FSG) in PBST.   
   6.    20 % glycerol solution in 1× PBS.   
   7.    0.1 N HCl.   
   8.    20× saline-sodium citrate (20× SSC) pH 7: 3 M NaCl, 0.3 M 

sodium citrate, pH 7.   
   9.    4× SSCT: dilute 20× SSC 1:5 in ddH 2 O and supplement with 

0.02 % Tween 20.   
   10.    2× SSC: dilute 20× SSC 1:10 with ddH 2 O.   
   11.    0.1× SSC: dilute 20× SSC 1:200 with ddH 2 O.   
   12.    50 % formamide in 2× SSC: 50 mL 20× SSC, 250 mL for-

mamide, 200 mL ddH 2 O. Adjust pH to 7 and store at −20 °C.   
   13.    DAPI counterstaining solution: 2 μg/mL DAPI in 1× PBST.      

2.1  Cell Culture

2.2  Medium

2.3   Transfection   
( See   Note 1 )

2.4  Buffers 
and Solutions 
for Immuno-  FISH  

In vivo Labeling of Repetitive Genomic Sequences
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   While many imaging setups would work, a standard fl uorescence 
microscope should suffi ce. Ideally, the microscope should be 
equipped with a CCD camera, a 63×/1.4 NA oil immersion objec-
tive and fi lters for eGFP excitation/emission. When CRISPR 
imaging is combined with Immuno- FISH   or any other  immuno-
fl uorescence   detection method, appropriate fi lter sets should be 
installed. For live cell experiments the microscope should addition-
ally be equipped with a live cell chamber, which guarantees stable 
conditions (37 °C, 5 % CO 2 ) ( see   Note 2 ).

    1.    Image analysis software.    

         1.    U6-gRNA  pla  smid [ 14 ].   
   2.    Restriction enzymes: DpnI, SacI, and NsiI.   
   3.    dNTPs (2,5 mM each).   
   4.    100 % dimethyl sulfoxide (DMSO).   
   5.    Phusion High Fidelity polymerase ( see   Note 3 ).   
   6.    DNA purifi cation kit.      

       1.    p100 cell culture plates.   
   2.    Six-well cell culture plates.   
   3.    12-well cell culture plates.   
   4.     FACS   machine (optional).   
   5.     PCR   cycler.   
   6.    Fine-tip forceps.   
   7.    Borosilicate coverslips (# 1.5).   
   8.    Glass microscope slides.   
   9.    Dewar container for liquid N 2  transport.   
   10.    Heating block with fl at surface for microscope slides.   
   11.    Water bath.   
   12.    Humidifi ed chamber.   
   13.    Heated incubation chamber.   
   14.    Shaking platform.   
   15.    Floating tin box.   
   16.    Soft tissue paper.   
   17.    Rubber cement.   
   18.    Non-hardening antifade  mounting   medium (e.g., Vectashield).   
   19.    Transparent nail polish.   
   20.    Parafi lm.       

2.5  Microscopy

2.6   Cloning  

2.7  General 
Laboratory Equipment

Tobias Anton et al.
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3    Methods 

          1.    Choose appropriate  dCas9-eGFP   target sequence (N 17-28 NGG) 
( see   Notes 4  and  5 ; Fig.  2 ).

       2.    Order HPSF purifi ed DNA oligonucleotides (for comparison, 
 see   Note 6 ; Fig.  2 ):
   Forward: 5′-N 17-28  GTTTTAGAGCTAGAAATAGCAAG-3′  
  Reverse: 5′-N 17-28 (rev. comp.)  CGGTGTTTCGTCCTTTCCAC-3′.         

       1.    Set up  PCR   mix for  sgRNA    pla  smid with new target sequence, 
as shown in Table  1 :

       2.    Run rolling cycle  PCR   with the following program: 1 cycle of 
98 °C for 2 min; 30 cycles of: 98 °C for 15 s, 62 °C for 15 s 
and 72° for 1.5 min; 1 cycle of 72 °C for 2 min; 4 °C hold.   

   3.    Purify  PCR   product to remove DMSO.   
   4.    Digest up to 2 μg of purifi ed  PCR   product with  Dpn I for at 

least 1 h at 37 °C. This step ensures the removal of any residual 
PCR  template, which would lead to a smaller number of posi-
tive clones after transformation.   

3.1   Cloning  

3.1.1  Primer Design

3.1.2   PCR   
and Transformation

  Fig. 2    Overview of gRNA design. ( a ) Example of a repetitive genomic locus (telomeres). Indicated are the basic 
repeat unit ( blue ), the target sequence ( green ), and the PAM ( gray , NGG). ( b ) Schematic representation of the 
U6-gRNA  pla  smid. Primers are designed in a way that the target sequence is included in non-annealing 
regions. After  PCR   and transformation, the  Nsi I cassette is exchanged by the target sequence       
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   5.    Heat-inactivate restriction enzyme according to manufacturer´s 
instructions.   

   6.    Use up to 5 μL of heat-inactivated reaction to transform 50 μL 
chemically competent   E. coli    culture. Refer to standard trans-
formation protocols and plate bacteria on LB agar containing 
ampicillin (100 μg/mL). Incubate the bacteria over night at 
37 °C.   

   7.    Pick 3–12 colonies and inoculate 2 mL LB-medium supple-
mented with 100 μg/mL ampicillin. Incubate cultures over 
night at 37 °C while shaking at 200 rpm.   

   8.    Perform  pla  smid preparation according to standard protocols 
and digest plasmid DNA with  Sac I and  Nsi I. Run digested 
DNA on a 1 %  agarose   gel ( see   Note 7 ).       

       1.    Culture C2C12 cells at 37 °C and 5 % CO 2  on p100 plates in 
10 mL C2C12 medium.   

   2.    Split cells every 2–3 days, typically in ratio of 1:6 to 1:8. For 
this, aspirate medium and wash cells with 10 mL PBS. Add 1 
mL of trypsin solution and incubate for 5 min at 37 °C. After 
trypsinization, resuspend cells in fresh medium and transfer an 
appropriate amount to a new  culture dish  . Add medium to a 
fi nal volume of 10 mL.      

   In general, any  transfection   reagent may be used. However, we 
recommend testing the transfection effi ciency beforehand. 
According to our experience, cells grown to a confl uency of ~60–
80 % are most suitable for transfection and result in > 20 % trans-
fected cells. 

3.2  Cell Culture

3.3   Transfection  

   Table 1  
  Set up of  PCR   mix   

 Component  Volume in μL (fi nal conc.) 

 H 2 O  32.5 

 5× buffer  10 (1×) 

 DMSO  2.5 (5 %) 

 Forward primer  1 (0.2 μM) 

 Reverse primer  1 (0.2 μM) 

 U6-gRNA  plas  mid  1 (1 ng) 

 dNTPs  1 (50 μM) 

 Polymerase  1 (1 μ) 

Tobias Anton et al.



413

       1.    Seed cells 1 day prior to  transfection   in a six-well plate. For 
fi xed- cell experiments, seed the cells on coverslips.   

   2.    Co-transfect cells according to manufacturer’s instructions 
with the CAG- dCas9-eGFP    pla  smid and a U6- sgRNA   plas-
mid, which encodes the desired target sequence.   

   3.    Collect images 24–48 h post- transfection  .      

   As the  dCas9-eGFP   target is easily exchanged by switching the 
 sgRNA  , it might be preferable to establish a cell line, which stably 
expresses dCas9-eGFP (Fig.  3 ).

     1.    Seed cells 1 day prior to  transfection   in a p100 plate.   
   2.    Transfect cells according to manufacturer’s instructions with 

the CAG- dCas9-eGFP    pla  smid.   
   3.    After 24 h, supplement medium with 10 μg/mL blasticidin S.   
   4.     FACS   sort  GFP  -positive cells 2–3 weeks after  transfection  . 

Time of sorting depends on recovery of blasticidin resistant 
cells, after an initial wave of cell death.   

   5.    Culture sorted cells in C2C12 medium supplemented with 5 
μg/mL blasticidin S.    

3.3.1  Transient 
 Transfection  

3.3.2  Stably  dCas9- eGFP   
Expressing Cells (Optional)

  Fig. 3    Example data set for verifi cation of CRISPR labeling via Immuno- FISH  . C2C12 cells, stably expressing 
 dCas9-eGFP   ( green ) were transfected with ( a ) TelgRNA, ( b ) MiSgRNA or ( c ) MaSgRNA. Cells were FISH-treated 
with the corresponding probes ( red ) and counterstained with DAPI ( gray ). Galleries show 4× magnifi cations of 
boxed areas. Scale bar, 5 μm; scale bar in magnifi cations, 1 μm       
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      When  dCas9-eGFP   targeting has to be confi rmed by  FISH  , we 
recommend seeding and transfect the cells in a 12-well cell culture 
plate on coverslips (Fig.  3 ). The cells should be fi xed 24–48 h after 
 transfection  . For FISH- probe   generation,  see  refs. [ 19 ,  20 ]. A 
modifi ed Immuno-FISH protocol is presented below [ 1 ]. Unless 
otherwise noted, all washing steps are performed with 1 mL of 
buffer/solution.

    1.    Wash cells three times with 1× PBS.   
   2.    Fix cells with 4 % FA for 10 min at room temperature (RT).   
   3.    Stepwise exchange fi xative with PBST: add an equal amount of 

PBST directly to the fi xative and gradually remove the solution 
from the well. Do not remove all the solution as fi xed samples 
are prone to drying out, which may lead to a deformed cell 
morphology. Repeat this step three times, until the fi xative has 
been completely exchanged with PBST.   

   4.    Permeabilize cells with  permeabilization   solution for 15 min at 
RT.   

   5.    Incubate coverslip for at least 1 h in 20 % glycerol solution at 
RT.   

   6.    Snap-freeze coverslip in liquid nitrogen. Dip the coverslip into 
a Styrofoam-box fi lled with liquid N 2  using the fi ne-tip for-
ceps. Place the coverslip (cell-side up) for a few seconds on a 
soft tissue paper to defreeze. Return the coverslip to the well 
containing the 20 % glycerol solution. Repeat this step three 
times.   

   7.    Wash three times with PBST.   
   8.    Incubate coverslips in IF  blocking   buffer for 1 h at RT to block 

unspecifi c binding sites.   
   9.    Incubate the coverslip in a dark humidifi ed chamber with pri-

mary  antibody   (anti- GFP  ) for 1 h at RT. For this, fi rmly attach 
Parafi lm on a smooth surface (e.g., lid of a six-well cell culture 
plate), place a drop (~50 μL) of diluted antibody onto the 
Parafi lm and carefully place the coverslip (cell-side facing 
downwards) onto the drop.   

   10.    Wash four times with PBST.   
   11.    Incubate the coverslip in humidifi ed chamber with appropriate 

secondary  antibody   (e.g., coupled to Alexa 488) as described 
in  step 9 .   

   12.    Wash four times with PBST.   
   13.    Post-fi x the sample with  fi xation   solution for 10 min at RT.   
   14.    Wash twice with 1× PBS.   
   15.    Denature samples with 0.1 N HCl for 5 min at RT.   
   16.    Wash twice with 1× PBS.   

3.4  Immuno- FISH  
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   17.    Wash three times with 2× SSC for 3 min.   
   18.    Incubate coverslips for 1 h at 37 °C with pre-warmed 50 % 

formamide in 2× SSC.   
   19.    Denature  FISH  - probe   at 94 °C for 3 min and place probe on 

ice.   
   20.    Place a drop of  FISH  - probe   on a clean microscope slide and 

mount coverslip.   
   21.    Seal coverslip with rubber cement.   
   22.    Denature the slide for 2 min at 76 °C.   
   23.    Transfer the slide to a fl oating tin box and hybridize the  probe   

over night at 37 °C in a water bath.   
   24.    Carefully unmount coverslip by rehydrating with 2× SSC 

dropped around the edges of the coverslip.   
   25.    Wash three times with 2× SSC for 15 min at RT.   
   26.    Wash with preheated 0.1× SSC (60 °C). Repeat this step three 

times.   
   27.    Wash three times with 4× SSCT.   
   28.    Wash twice with PBST.   
   29.    Counterstain nuclei with 2 μg/mL DAPI for 5–8 min at RT.   
   30.    Wash two times with PBST   
   31.    Mount coverslips on a drop of Vectashield (~10 μL) placed on 

a clean microscope slide.   
   32.    Seal with see-through nail polish.    

4       Notes 

     1.    sgRNAs targeting MaS, MiS, and Tel may be used as positive 
controls to test labeling and  transfection   effi ciency. For design-
ing new sgRNAs,  see  Subheading  3.1 .   

   2.    Turn live cell chamber on at least 4 h prior to imaging session. 
This is done to ensure that CO 2  fl ux and temperature are 
stable.   

   3.    We recommend using a High Fidelity polymerase to minimize 
the risk of incorrect incorporated nucleotides.   

   4.    Preferentially, the genomic target sequence is highly repetitive 
(e.g., telomeric  repeats   or LINEs) to ensure bright signals. 
However, it has been shown that ~30 consecutive repeats are 
suffi cient to visualize a genomic locus [ 13 ].   

   5.    Although it is necessary that a transcript driven by the U6 pro-
moter starts with a G, this base does not have to be part of the 
target sequence, as it is already included in the reverse primer 
sequence.   
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   6.    Forward and reverse primer for TelgRNA. The  telomere   target 
sequence is underlined. The part of the primer which anneals to 
the U6-gRNA  PCR   template is written in  italic  letters (Fig.  2 ). 
 Forward: 5′-  TAGGGTTAGGGTTAGGGTTA   GTTTTAGAG
CTAGAAATAGCAAG  -3′ 
 Reverse: 5′-  TAACCCTAACCCTAACCCTA   CGGTGTTTCG
TCCTTTCCAC  -3′   

   7.    Since the  Nsi I cassette of the U6-gRNA  pla  smid is exchanged 
by the target sequence, positive clones show a linearized band 
at ~2.9 kb. In  contrast  , negative clones show two bands at 
~2.6 kb and ~0.35 kb.         
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Abstract 

Dissecting the complex network of epigenetic modifications requires tools that combine 

precise recognition of DNA sequences with the capability to modify epigenetic marks. The 

CRISPR/Cas system has been proven to be a valuable addition to existing methodologies that 

fulfill these tasks. So far, sequence-specific editing of epigenetic modifications such as DNA 

methylation and histone posttranslational modifications relied on direct fusions of 

enzymatically inactivated Cas9 (dCas9) with epigenetic effectors. Here, we report a novel, 

modular system that facilitates the recruitment of any GFP-tagged protein to desired genomic 

loci. By fusing dCas9 to a GFP-binding nanobody (GBP) we demonstrate that prevalent 

epigenetic modifications at mouse major satellite repeats can be erased or set de novo by 

recruiting GFP-coupled catalytic domains of TET1 and DNMT3A, respectively. Furthermore, 

we construct an inducible expression system that enables a temporally controlled expression 

of both GBP-dCas9 and the effector protein. Thus, our approach further expands the 

CRISPR/Cas toolbox for site-specific manipulation of epigenetic modifications with a 

modular and easy-to-use system. 

 

Introduction 

Eukaryotic gene expression is controlled by a complex network of epigenetic mechanisms that 

include the posttranslational modification of histones as well as covalent DNA modifications1. 

Dissection of this network using knockout or overexpression studies have greatly advanced 

our understanding of how epigenetic modifications contribute to transcriptional regulation. 

However, using traditional techniques, the complex relationships and feedback circuits that 

interconnect epigenetic pathways make it difficult to differentiate direct consequences of 

epigenetic modifications on transcription from secondary effects. Site-specific manipulation of 

epigenetic marks therefore represents a highly desirable tool to study and understand their 

direct functional relevance on gene expression and genome organization.  

Previously, tools that direct the enzymatic activity of epigenetic effectors to specific loci were 

based on zinc finger proteins (ZFPs)2-6 or transcription activator-like effectors (TALEs)6-8. 

However, custom design and engineering of ZFPs and TALEs is based on the rearrangement 

of their modular DNA-binding domains, requiring elaborate cloning techniques and rigorous 

testing9-12. In contrast, the RNA-guided endonuclease Cas9 of the type II CRISPR/Cas 

(clustered regularly interspaced short palindromic repeats/CRISPR-associated) system 

recognizes specific loci via Watson-Crick base pairing between a readily exchangeable 20 bp 

sequence of the single guide RNA (sgRNA) and the target DNA in the direct vicinity of a 

PAM (protospacer adjacent motif)13-15. Due to this ease of use, Cas9-based approaches have 
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been rapidly adopted for genome engineering strategies in a wide variety of cell types and 

organisms16-20. 

Importantly, engineering of a catalytically inactive variant of Cas9 (dCas9) facilitates RNA-

guided genome targeting in a sequence specific manner, without cleaving the underlying 

DNA13, 21. We and others have previously demonstrated that this programmable DNA-binding 

platform can be harnessed for in vivo visualization of specific genomic regions22-24 as well as for 

determination of local chromatin composition25-26. In addition, fusion of dCas9 with the 

methyltransferase DNMT3A enables targeted transcriptional repression by catalyzing de novo 

methylation at gene regulatory regions27-28. Vice versa, dCas9 mediated targeting of ten-eleven 

translocation methylcytosine dioxygenase 1 (TET1) to regulatory elements results in up-

regulation of silenced genes via active DNA demethylation29-31. Similarly, transcriptional 

modulation has also been reported by targeting histone acetylase32 and histone demethylase 

activities33 via dCas9, highlighting the versatility of this approach. 

Here, we introduce a modular CRISPR/Cas9 system, which combines the sequence specificity 

of dCas9 with stringent recruitment of GFP-coupled epigenetic effectors via a GFP-binding 

nanobody (GBP)34. We show that this versatile setup can be exploited to control the levels of 

DNA modifications at target loci using GFP fusions of DNA methyltransferases and 

methylcytosine dioxygenases. Furthermore, using a bidirectional doxycycline-inducible 

promoter we develop a single vector system that allows the timed expression and targeted 

recruitment of GBP-Cas9 and GFP-fusion proteins.  

 

Results and Discussion 

We first set out to assess, whether GFP can be recruited to a defined genomic locus via 

dCas9. To this end, we constructed a GBP-dCas9-mRFP construct, which enabled us to 

simultaneously visualize dCas9 and GFP localization (Figure 1A). Since heterochromatic 

chromocenters (CCs) are distinct subnuclear regions, which can be readily distinguished and 

are characterized by well-defined epigenetic marks35-36, we decided to tether GBP-dCas9-

mRFP to these loci via a major satellite specific sgRNA (MaSgRNA). 

Transient co-transfection of mouse embryonic stem cells ESCs (wt J1) with GBP-dCas9-

mRFP and MaSgRNA resulted in a specific enrichment of GBP-dCas9-mRFP at CCs. 

Importantly, when we additionally transfected a GFP-encoding plasmid, we observed co-

localization of GFP with GBP-dCas9-mRFP at CCs (Figure 1B and C). This experiment 

confirms the functionality of the GBP-dCas9-mRFP construct in facilitating the recruitment 

of GFP to target loci. 
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Figure 1: Targeted recruitment of GFP to major satellites. A) Schematic outline of dCas9-mediated effector recruitment. 

GBP-dCas9-mRFP is guided to a desired locus by a sgRNA and interacts with a GFP-coupled epigenetic effector via GBP. 

Subsequently, the effector modifies the underlying DNA. B-C) Representative confocal images of ESCs, co-transfected with 

GBP-dCas9-mRFP and major satellite specific sgRNA. GBP-dCas9-mRFP specifically localizes at CCs and recruits GFP, 

when it is additionally co-transfected (C). Line plots represent the signal intensity of the different channels along the indicated 

chromocenter (solid white line). White dashed lines indicate the nuclear border. Scale bar: 10 µm. 

 

Next, we aimed to target GFP-tagged epigenetic effector proteins to chromocenters via GBP-

dCas9-mRFP. To test the feasibility of such an approach we used the catalytic domains of the 

methylcytosine dioxygenase TET1 and the de novo methyltransferase DNMT3A coupled to 
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GFP (GFP-TET1CD and GFP-DNMT3ACD, respectively). DNMT3A catalyzes the 

methylation of cytosine generating 5-methylcytosine (5mC), a repressive epigenetic mark 

enriched at CCs36. In contrast, TET1 oxidizes 5mC to 5-hydroxymethylcytosine (5hmC), a 

DNA modification generally found in euchromatin and depleted at the heterochromatic 

CCs37.  

Similar to GFP alone, GFP-TET1CD was successfully recruited to CCs in cells, which co-

expressed GBP-dCas9-mRFP and MaSgRNA. Notably, TET1CD recruitment to the highly 

methylated CCs in wt ESCs, resulted in an ectopic enrichment of 5hmC at these sites (Figure 

2A). To test the feasibility of GFP-DNMT3ACD recruitment to CCs we used DNMT triple 

knock-out (TKO) cells38, which are virtually devoid of genomic DNA methylation. In TKO 

cells, which co-expressed GBP-dCas9-mRFP and MaSgRNA GFP-DNMT3ACD was 

successfully recruited to CCs, leading to a dramatic increase of 5mC at CCs (Figure 2B). Taken 

together, these data show that GBP-dCas9-mRFP is capable of directing the enzymatic 

activity of epigenetic factors to targeted genomic regions. 
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Figure 2: Targeted recruitment of GFP-tagged effector proteins. A) GBP-dCas9-mRFP recruits GFP-TET1CD to 

chromocenters. Recruited GFP-TET1CD oxidizes 5mC to 5hmC at CCs in transfected ESCs. In untransfected cells, no 

5hmC signal was detected. B) When targeted to CCs, GFP-DNMT3ACD mediates de novo DNA methylation in TKO cells, 

which was not observed in untransfected control cells. Line plots represent the signal intensity of the different channels along 

the indicated chromocenter (solid white line). White dashed lines indicate the nuclear border. Scale bar: 10 µm. C) Schematic 

representation of the inducible vector system. A bi-directional promoter drives the expression of GBP-dCas9-mRFP as well 

as GFP. The vector additionally encodes a transcriptional repressor (tTR) and a transcriptional activator (rtTA). In the 
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absence of doxycycline (Dox), tTR binds to a tetracycline response element (TRE) within the promoter sequence and 

represses transcription. Upon addition of Dox to the culture medium, rtTA replaces tTR and induces gene transcription. 

 

Besides targeted recruitment, control over the timing of site-specific epigenetic editing is 

crucial for the dissection of direct functional consequences resulting from local epigenetic 

perturbations. To this end, we constructed an inducible system for GBP-dCas9-mRFP and 

GFP/GFP-effector expression. We used an Epstein-Barr virus (EBV) derived episomal 

expression plasmid (pRTS), which harbors a doxycycline-inducible bi-directional promoter 

and additionally encodes a tet-transcriptional (tTR) repressor as well as a tet-transcriptional 

activator (rtTA)39-40. Conditional transcriptional activation is achieved in the presence of 

doxycycline (Dox) by the rtTA, whereas tTR mediates active repression in Dox-free 

conditions. This single vector system allows tight control over the timing and expression level 

of GBP-dCas9-mRFP as well as a GFP-fusion protein (pRTS-GBP-dCas9-mRFP; Figure 2C). 

Moreover, using a bidirectional promoter ensures that both proteins are expressed at 

comparable levels reducing the amount of freely diffusing GFP-fusion protein, thereby 

minimizing off-target effects. We first tested the inducible system in mouse myoblast (C2C12) 

using a pRTS-GBP-dCas9-mRFP, additionally harboring either GFP alone or GFP-TET1CD. 

Both GFP and GFP-TET1CD were expressed and specifically recruited to CCs in a strictly 

sgRNA- and Dox-dependent manner (Figure 3A and B; Figure S1A; Figure S2A and B). 

Similar to co-transfections performed in wt ESCs, GFP-TET1CD recruitment resulted in a 

drastic increase of hmC at myoblast CCs (Figure 3B). Comparably, transfection of pRTS-

GBP-dCas9-mRFP harboring GFP-DNMT3ACD into TKO cells led to a specific, Dox-

dependent enrichment of 5mC at CCs (Figure 3C; Figure S1B; Figure S2C). 
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Figure 3: Doxycycline-dependent, coordinated expression of GBP-dCas9-mRFP and GFP-tagged effectors. Cells 

were co-transfected with MaSgRNA and pRTS-GBP-dCas9-mRFP, additionally encoding GFP (A), GFP-TET1CD (B) or 

GFP-DNMT3ACD (C). Upon induction with doxycycline both GBP-dCas9-mRFP and the corresponding GFP-tagged 

effector are expressed, resulting in the oxidation of 5mC (5hmC; B) or de novo methylation of CCs (5mC; C). White dashed 

lines indicate the nuclear border. Scale bar: 10 µm. 
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In summary, we demonstrated that our modular system can be used to edit prevalent 

epigenetic marks such as DNA methylation at heterochromatic chromocenters in a timely 

controlled manner. While we used repetitive target sequences, which allow a fast and simple 

readout of efficient effector recruitment by microscopy, it is in principle possible to apply our 

system for the epigenetic modification of single target loci. Using multiple gene/target specific 

sgRNAs in parallel will also enable the modification of multiple loci at once or the 

visualization of a single copy locus22. The bidirectional, inducible system offers the added 

advantage to titrate of the amount of epigenetic modifier and Cas9 protein simultaneously, 

greatly reducing the possibility of off-target effects. Furthermore, our GBP-based approach 

for dCas9-assisted targeted recruitment can be combined with virtually any GFP-tagged 

protein. Considering the widespread use of GFP-fusions in cell lines and animal models, this 

system will help to facilitate the systematic dissection of biological processes in basic and 

biomedical research. 

 

Material and methods 

Cell culture and transient transfections 

J1 ESCs and TKO cells were cultivated at 37 °C and 5% CO2 on gelatin-coated dishes in 

Dulbecco´s modified Eagle´s medium (DMEM, Sigma), supplemented with 16 % fetal bovine 

serum (FBS, Biochrom), 0.1 mM β-mercaptoethanol (Invitrogen), 2 mM L-glutamine, 1x 

MEM non-essential amino acids, 100 U/ml penicillin, 100 µg/ml streptomycin (PAA 

Laboratories GmbH), 1000 U/ml recombinant mouse LIF (Millipore), 1 µM PD032501 and 3 

µM CHIR99021 (Axon Medchem). C2C12 cells were cultured at 37 °C and 5 % CO2 in 

DMEM, supplemented with 20 % FBS, 2 mM L-glutamine, 100 U/ml penicillin and 100 

µg/ml streptomycin. For conditional transcription activation, the culture medium was 

additionally supplemented with 1.5 µg/ml doxycycline for 24 hours. Transient transfections 

were performed using Lipofectamine® 3000 (Thermo Fisher Scientific) according to the 

manufacturer´s instructions and cells were analyzed 24 – 48 hrs post-transfection. 

 

Plasmid generation 

For generating the GBP-dCas9-mRFP expression plasmid, the GBP and mRFP coding 

sequences were amplified from pGFPbinderImR41 and cloned into pCAG-dCas923 via XbaI 

and AsiSI/NotI, respectively. The expression constructs for GFP-TET1CD and MaSgRNA 

were described previously23, 42. GFP-DNMT3ACD was constructed by amplifying the catalytic 

domain of DNMT3A from pCAG-GMT3a43. Subsequently TET1CD was exchanged by 

DNMT3ACD using AsiSI and NotI restriction enzymes. The doxycycline-inducible 
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expression system is based on the pRTS plasmid described previously39. The GBP-dCas9-

mRFP coding sequence was cloned into pRTS via SfiI, whereas TET1CD and DNMT3ACD, 

respectively, were inserted upstream of GFP via SmiI. 

Constructs generated for this study are available via Addgene. 

 

Immunofluorescence staining and microscopy 

Immunofluorescence staining was performed as described previously44. Briefly, cells were 

grown on coverslips (thickness 1.5H, 170 µm ± 5 µm; Marienfeld Superior) and transfected 

with the respective expression plasmids. 24 – 48 hours after transfection, cells were washed 

with phosphate buffered saline (PBS), fixed with 3.7 % formaldehyde for 10 min and 

permeabilized with 0.5 % Triton X-100 in PBS. For 5mC and 5hmC detection, DNA was first 

denatured with 1 N HCl for 15 min and then neutralized with 150 mM TRIS-HCl (pH 8.5). 

Subsequently, cells were transferred into blocking buffer (0.02 % Tween and 2 % bovine 

serum albumin in PBS) for 1 hour. Both primary and secondary antibodies were diluted in 

blocking buffer and cells were incubated in a dark, humidified chamber for 1 hour at room 

temperature. Nuclei were counterstained with 0.2 µg/ml DAPI in PBS or SiR-DNA 

(Spirochrome). Coverslips were mounted with antifade medium (Vectashield, Vector 

Laboratories) and sealed with colorless nail polish. Primary antibodies used in this study were: 

GFP- and RFP-booster conjugated to Atto 488 and Atto 593, respectively (1:200; 

Chromotek), anti-5hmC (1:250; Active Motif) and anti-5mC (1:500, Diagenode). The 

secondary antibodies were: anti-rabbit IgG conjugated to Alexa 647, anti-mouse IgG 

conjugated to Alexa 647 (1:400; Thermo Fisher Scientific) and anti-mouse IgG conjugated to 

Alexa 405 (1:400; Invitrogen). 

Confocal images were acquired with a Leica TCS SP5 microscope equipped with a Plan Apo 

63x/1.4 NA oil immersion objective. Image processing and assembly of figures was 

performed with FIJI and Photoshop CS5.1 (Adobe), respectively. 
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Supplementary information 

 

 
Figure S1: Site-specific recruitment of GFP-tagged proteins is Dox- and sgRNA-dependent. TKO cells were 

transfected with pRTS-GBP-dCas9-mRFP harboring either GFP (A) or GFP-DNMT3A (B). Where indicated, MaSgRNA 

was co-transfected and culture medium was supplemented with Dox. While Dox is required for gene expression, lack of a 
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sequence-specific sgRNA results in disperse nuclear and cytoplasmatic localization of GBP-dCas9-mRFP and GFP/GFP-

DNMT3ACD. White dashed lines represent nuclear border. Scale bar: 10 µm. 

 



Manuscript in press 

 80 

 
Figure S2: Signal intensities of GBP-dCas9-mRFP and effector proteins at chromocenters. A-C) Quantification of 

signal intensities at CCs for images shown in Figure 3. In each cell, two CCs were analyzed and line plots represent signal 
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intensity along the indicated CCs (white solid lines). Expression of GBP-dCas9-mRFP and effector proteins was only 

observed after induction with Dox. White dashed lines represent nuclear border. Scale bar: 10 µm. 
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ABSTRACT
Chromatin structure and function are determined by a plethora of proteins whose genome-wide
distribution is typically assessed by immunoprecipitation (ChIP). Here, we developed a novel tool to
investigate the local chromatin environment at specific DNA sequences. We combined the
programmable DNA binding of dCas9 with the promiscuous biotin ligase BirA� (CasID) to biotinylate
proteins in the direct vicinity of specific loci. Subsequent streptavidin-mediated precipitation and
mass spectrometry identified both known and previously unknown chromatin factors associated
with repetitive telomeric, major satellite and minor satellite DNA. With super-resolution microscopy,
we confirmed the localization of the putative transcription factor ZNF512 at chromocenters. The
versatility of CasID facilitates the systematic elucidation of functional protein complexes and locus-
specific chromatin composition.
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Introduction

Regulation of gene expression involves a yet undeter-
mined number of nuclear proteins ranging from tightly
bound histones to loosely attached or transiently inter-
acting factors that directly and indirectly bind DNA
sequences along the genome. Establishment, mainte-
nance and alteration of functional DNA states during
development and disease requires dynamic changes in
local enrichment and posttranslational modification of
chromatin proteins. The genome-wide distribution of a
given protein is traditionally determined by chromatin
immunoprecipitation (ChIP) and subsequent sequenc-
ing of co-precipitated DNA fragments. However, ChIP
experiments rely on the availability of suitable antibod-
ies and provide data on global antigen distribution
rather than local chromatin composition.

Previously described strategies to directly analyze
chromatin complexes such as HyCCaPP (Hybridiza-
tion Capture of Chromatin Associated Proteins for
Proteomics)1 and PICh (Proteomic Isolation of Chro-
matin fragments)2 were based on chemical crosslink-
ing and precipitation with complementary DNA

probes. Alternatively, DNA binding proteins were
used for chromatin precipitation and subsequent anal-
ysis by mass spectrometry.3-5

For visualization and manipulation, specific geno-
mic loci can be targeted by different recombinant
DNA binding proteins such as engineered polydactyl
zinc finger proteins (PZFs),6 designer transcription
activator-like effectors (dTALEs)7,8 or an enzymati-
cally dead Cas9 (dCas9).9-11 Whereas target specific-
ity of PZFs and dTALEs is determined by their
amino acid sequence, DNA binding of dCas9 is pro-
grammed by an easily exchangeable single guide
RNA (sgRNA).12

Here, we exploited the RNA-programmable DNA
binding of dCas9 to direct a biotin ligase to specific
genomic sites and mark adjacent chromatin proteins
for subsequent identification by mass spectrometry.
Proximity-dependent biotin identification (BioID)
employs a promiscuous biotin ligase (BirA�) fused to
a target protein for biotinylation of proteins within a
10 nm range.13,14 Biotinylated proteins can then be
identified by robust streptavidin-mediated capture

CONTACT Heinrich Leonhardt h.leonhardt@lmu.de Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), LMU Munich,
Martinsried, Germany.
yThe authors wish it to be known that, in their opinion, the first 2 authors should be regarded as joint First Authors.

Supplemental data for this article can be accessed on the publisher’s website.
© 2016 Elisabeth Schmidtmann, Tobias Anton, Pascaline Rombaut, Franz Herzog, and Heinrich Leonhardt. Published with license by Taylor & Francis.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which per-
mits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been
asserted.

NUCLEUS
2016, VOL. 7, NO. 5, 476–484
http://dx.doi.org/10.1080/19491034.2016.1239000



and subsequent mass spectrometry. Based on BirA�

and dCas9 we developed a hybrid approach (CasID)
to elucidate chromatin composition at specific DNA
sequences.

Results and discussion

Immunofluorescence microscopy reveals protein
biotinylation at targeted loci

To evaluate whether the CasID approach is suited to
biotinylate proteins at specific genomic loci we con-
structed a BirA�-dCas9-eGFP fusion (Fig. 1). We
co-transfected C2C12 myoblasts with this BirA�-
dCas9-eGFP construct and a sgRNA plasmid, target-
ing dCas9 to either telomeres, major or minor satellite
sequences. We previously showed that all sgRNAs
used in this study successfully target dCas9-eGFP to
the desired loci.10 Although here dCas9 is tagged on
both N- (BirA�) and C-terminus (eGFP), we observed
specific recruitment to the designated sequences (Sup-
plementary Fig. 1). In control cells without sgRNA
expression, BirA�-dCas9-eGFP shows a diffuse locali-
zation throughout the cell and a nucleolar enrichment
(Supplementary Fig. 1). Importantly, in the presence

of functional sgRNAs, BirA�-dCas9-eGFP was tar-
geted to the respective loci and co-localized with a
strong biotin signal, when the growth medium was
supplemented with exogenous biotin (Fig. 2). These
results demonstrate that the promiscuous biotin ligase
BirA� can be directed to endogenous loci via dCas9.

Determination of local chromatin composition at
distinct genomic loci by mass spectrometry

To identify proteins associated with distinct genomic
regions, cells stably expressing BirA�-dCas9-eGFP tar-
geted to either telomeric regions, minor satellite
repeats or major satellite repeats were supplemented
with 50 mM biotin for 24 h, representing standard
BioID conditions.13 We enriched for biotinylated pro-
teins from crude nuclear extract with streptavidin-
coated magnetic beads and analyzed them via tandem
mass spectrometry (LC-MS/MS, Fig. 1). With label
free quantification, we compared protein levels in
pulldowns from cells expressing both BirA�-dCas9-
eGFP and a sgRNA with control samples of cells stably
expressing untargeted BirA�-dCas9-eGFP (without
any sgRNA). Common BioID contaminants,15 like

Figure 1. Workflow for CasID. BirA�-dCas9-eGFP/sgRNA expressing cells are cultured in growth medium without exogenous biotin. The
BirA�-dCas9-eGFP fusion is directed to the desired target by sequence complementarity between sgRNA and the genomic locus. Upon
addition of biotin to the medium, BirA� ligates biotin to lysine residues of proteins in close proximity. Successful biotinylation of locus-
associated proteins can directly be visualized via immunofluorescence microscopy. For mass-spectrometric analysis, cells are harvested,
followed by isolation of crude nuclei. After a denaturing lysis, biotinylated proteins can be pulled from the lysate with streptavidin and
subjected to mass spectrometry. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 mm.
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Figure 2. Targeted biotinylation of telomeres, major and minor satellites. Representative confocal images of C2C12 cells, co-
transfected with CAG-BirA�-dCas9-eGFP and a plasmid encoding either telomere- (A, TelgRNA), minor satellite- (B, MiSgRNA) or
major satellite-specific sgRNA (C, MaSgRNA). Nuclear enrichment of biotin at targeted sequences is only detectable after addi-
tion of exogenous biotin. White dashed lines indicate the border between nucleus and cytoplasm. Scale bar: 10 mm.
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endogenously biotinylated mitochondrial carboxylases
were found in all pulldowns including the negative
control (Supplementary Table S1). Besides proteins
predicted to associate with DNA, we also detected
numerous unexpected proteins in our dataset (Supple-
mentary Table S1) providing a basis for the identifica-
tion of new chromatin factors and their future
comprehensive characterization. For statistical analy-
sis in a two-sided Student’s T-test, only proteins pres-
ent in at least 3 out of 4 biological replicates were
included.

First, we targeted telomeric regions and observed
a strong enrichment of several proteins when com-
pared to pulldowns from control cells (Fig. 3A).
Most prominent among these significantly enriched
proteins were TERF2, TINF2 and ACD which are
components of the shelterin complex known to
directly bind telomeric DNA.16 We did not identify
additional shelterin components which could be
explained by sterical hindrances leading to an selec-
tive labeling of complex subunits. Altogether, these
data show that CasID is suitable to investigate the

Figure 3. Chromatin composition of distinct genomic loci determined by mass spectrometry. Volcano plots of proteins enriched at telo-
meric regions (A), major satellites (B) and minor satellites (C), respectively. Black: significantly enriched/de-enriched proteins relative to
BirA�-dCas9-eGFP control cells without sgRNA. FDR D 0.01, S0 D 0.1, n D 4. (See Table S1.) (D) Overlap between proteins identified at
major satellites by CasID and candidates from PICh analysis.17 (E) Overlap between proteins significantly enriched at minor and major
satellite repeats. (F) Localization of ZNF512-eGFP at major satellite repeats in transiently transfected C2C12 cells. Blow-ups depict DAPI
and eGFP signal of boxed regions. Conventional confocal microscopy (upper panel) shows a homogeneous and strong association of
ZNF512 at heterochromatin and high-resolution microscopy (3D-SIM, lower panel) reveals a network-like structure. Scale bars: 10 mm
(confocal) and 5 mm (3D-SIM). Scale bars in blow-ups: 2 mm (confocal) and 1 mm (3D-SIM).
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native protein environment at specific genomic loci
in mammalian cells.

Second, we investigated the local protein environ-
ment at major satellite repeats. Here, we find not only
known heterochromatic proteins such as MECP2,
SMCHD1 and HP1BP3 but also previously uncharac-
terized proteins like ZNF512 (Fig. 3B). We validated
the localization of ZNF512 by recombinantly express-
ing a GFP fusion (ZNF512-eGFP) which showed a
distinct signal at heterochromatic loci in C2C12 cells
(Fig. 3F). ZNF512 strongly associates with the major
satellites also during mitosis (Supplementary Fig. 2),
hinting at a structural or regulatory role for this pro-
tein throughout the cell cycle. One third of the pro-
teins significantly enriched at major satellite repeats
were also found in a data set obtained by PICh in
mouse embryonic stem cells17 (Fig. 3D). Proteins
found in both studies as well as those exclusively
detected by CasID are categorized as DNA and RNA
binding proteins or repressors (Supplementary
Fig. 3A). In contrast to PICh, CasID requires BirA�-
dCas9 to be introduced in target cells, yet it can be
performed with considerably smaller sample sizes
(»4 £ 107 vs. »8 £ 108 cells per sample17) rendering
CasID feasible and cost-effective. In total, fewer pro-
teins were considered significant with CasID, which
may be caused by a stringent statistical cutoff (FDR D
0.01) as well as the proximity-dependent nature of the
CasID strategy. Collectively, these results validate
CasID as a novel method to study local chromatin
composition.

Third, we explored proteins in close proximity to
minor satellite repeats and obtained both enriched
and de-enriched proteins (Fig. 3C). To our knowledge,
this is the first data set describing the protein environ-
ment of this genomic element. Among the signifi-
cantly enriched proteins 12 annotated repressors or
chromatin regulators and 25 DNA binding- or zinc
finger motif containing-proteins were identified (Sup-
plementary Fig. 3B). Furthermore, we find the known
centromere-associated proteins CENPC18 and
PCM1,19 which may reflect the close proximity of
minor satellite repeats and centromeric regions or
functions of these factors outside centromeres. Nota-
bly, the overlap between minor satellites and major
satellite-associated proteins comprises only 9 out of 96
proteins (Fig. 3E), suggesting a distinct protein land-
scape of these two heterochromatic regions.

In summary, with CasID we developed a simple
and robust workflow for in vivo labeling and system-
atic elucidation of locus specific chromatin composi-
tion that does not require prior cell fixation or protein
cross-linking. We validated CasID for repetitive
sequences where multiple Cas9 molecules are
recruited to one target site. This approach could be
extended to single copy loci by either using multiple
sgRNAs, larger sample sizes and/or adapted pulldown
conditions. In general, CasID experiments could be
further fine-tuned by varying concentration and dura-
tion of biotin pulses and the use of a smaller biotin
ligase (BioID2)20 with various linker lengths. While
traditional ChIP techniques produce data on genome-
wide distribution of specific antigens, CasID allows to
study local chromatin composition including the iden-
tification of new factors. Therefore, ChIP and CasID
are complementary approaches that bring together
global and local views of dynamic and functional
chromatin complexes and thus help to reveal how
these complexes control structure and function of the
genome and how they change during development
and disease.

Material and methods

Cell culture and transfection

C2C12 cells21 were cultured at 37�C and 5 % CO2 in
Dulbecco’s modified Eagle’s medium (DMEM,
Sigma), supplemented with 20 % fetal bovine serum
(FBS, Biochrom), 2 mM L-glutamine (Sigma), 100 U/
ml penicillin and 100 mg/ml streptomycin (Sigma).
For the CasID assay the culture medium was addition-
ally supplemented with 50 mM biotin (Sigma) one day
prior to analysis. For transfections, »5 £ 105 cells
were seeded in a p35 plate one day prior of transfec-
tion and transfections were performed with Lip-
ofectamine� 3000 (Thermo Fisher Scientific)
according to the manufacturer’s instructions.

Plasmid generation

All plasmid and primer sequences can be found in
Supplementary Tables S2 and S3, respectively. To gen-
erate the BirA�-dCas9-eGFP construct, BirA� was
amplified from pcDNA3.1-mycBioID13 (Addgene
plasmid #35700) with primers BirA�-F and BirA�-R.
The resulting PCR product was ligated into the XbaI
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site of pCAG-dCas9-eGFP10 via Gibson Assembly
(New England Biolabs). To generate the pEX-A-U6-
sgRNA-PuroR plasmid, the PGK-PuroR cassette was
amplified from pPthc-Oct3/422 and ligated into the
SacI site of pEX-A-sgRNA10 via Gibson Assembly.
sgRNA protospacer sequences were introduced into
pEX-A-U6-sgRNA-PuroR by circular amplification as
described previously.10 The Znf512-sequence was
amplified from wt E14 cDNA with gene specific pri-
mers and cloned between the AsiSI/NotI sites of
pCAG-eGFP23 via Gibson Assembly. The H2B-mRFP
expression plasmid was described previously.24

Generation of stable cell lines

C2C12 cells were transfected with pCAG-BirA�-
dCas9-eGFP using Lipofectamine� 3000 according to
the manufacturer’s instructions. Twenty-four h after
transfection, the culture medium was supplemented
with 10 mg/ml blasticidin S (Thermo Fisher Scientific).
After twoweeks of selection, eGFP-positive cells were sin-
gle-cell sorted with a FACS Aria II (Becton Dickinson). A
clonal cell line, stably expressing BirA�-dCas9-eGFP was
used as entry cell line for transfections with sgRNA plas-
mids. Twenty-four h after transfection, the medium was
supplemented with 2 mg/ml puromycin (Applichem).
Two weeks after the start of selection, puromycin
resistant cells were single-cell sorted. Individual clones
(C2C12BirA

�-dCas9-eGFP/sgRNA) were checked for correct
BirA�-dCas9-eGFP localization by epifluorescence
microscopy.

Immunofluorescence staining and image acquisition

Immunofluorescence staining was performed as
described previously.25 Briefly, C2C12 cells transfected
with pCAG-BirA�-dCas9-eGFP and the respective
sgRNA were grown on coverslips (thickness 1.5H,
170 mm § 5 mm; Marienfeld Superior), washed with
phosphate buffered saline (PBS) 24 h after addition of
50 mM biotin and fixed with 3.7 % formaldehyde for
10 min. After permeabilization with 0.5 % Triton X-
100 in PBS, cells were transferred into blocking buffer
(0.02 % Tween, 2 % bovine serum albumin and 0.5 %
fish skin gelatin in PBS) and incubated for 1 h. Anti-
bodies were diluted in blocking buffer and cells were
incubated with antibodies in a dark, humidified cham-
ber for 1 h at room temperature (RT). Nuclei were
counterstained with DAPI (200 ng/ml in PBS, 1 mg/ml
in PBS for 3D-SIM). Coverslips were mounted with

antifade medium (Vectashield, Vector Laboratories)
and sealed with nail polish. Immuno-fluorescence in
situ hybridization (FISH) detection of telomeres was
performed as described previously.10 Primary antibod-
ies used in this study were: anti-GFP (1:400, Roche),
anti-H3K9me3 (1:500, Active Motif), anti-CENP-B
(1:500, Abcam), Streptavidin conjugated to Alexa 594
(1:800, Dianova) and GFP-booster conjugated to Atto
488 (1:200, Chromotek). Secondary antibodies used in
this study were: anti-rabbit IgG conjugated to Alexa
594 (1:400, Thermo Fisher Scientific) and anti-mouse
IgG conjugated to Alexa 488 (1:300, Invitrogen).

Single optical sections or stacks of optical sections
were acquired with a Leica TCS SP5 confocal micro-
scope using a Plan Apo 63x/1.4 NA oil immersion
objective. Super-resolution images were acquired with
a DeltaVision OMX V3 3D-SIM microscope (Applied
Precision Imaging, GE Healthcare), equipped with a
100x/1.4 Plan Apo oil immersion objective and Cas-
cade II EMCCD cameras (Photometrics). Optical sec-
tions were acquired with a z-step size of 125 nm using
405 and 488 nm laser lines and SI raw data were
reconstructed using the SoftWorX 4.0 software
(Applied Precision). For long-term imaging experi-
ments, C2C12 cells were seeded on 8-well chamber
slides (ibidi) and transfected with ZNF512-eGFP and
H2B-mRFP. Images were obtained with an Ultra-
VIEW VoX spinning disc microscope (PerkinElmer),
equipped with a 63x/1.4 NA Plan-Apochromat oil
immersion objective and a heated environmental
chamber set to 37�C and 5 % CO2. Confocal z-stacks
of 12 mm with a step size of 2 mm were recorded every
30 min for »20 h. Image processing and assembly of
the figures was performed with FIJI26 and Photoshop
CS5.1 (Adobe), respectively.

Denaturing pulldown of biotinylated proteins and
sample preparation for mass spectrometry

Four £ 107 C2C12BirA
�-dCas9-eGFP/sgRNA cells incubated

for 24 h with 50 mM biotin were processed as
described previously.27-29 In brief, cells were washed
once in buffer A (10 mM HEPES/KOH pH 7.9,
10 mM KCl, 1.5 mM MgCl2, 0.15 % NP-40, 1£ prote-
ase inhibitor (SERVA)), then lysed in buffer A and
homogenized using a pellet pestle. After centrifugation
(15 min, 3200 rcf, 4�C), the pellet was washed once
with PBS. Crude nuclei were resuspended in BioID
lysis buffer (0.2 % SDS, 50 mM Tris/HCl pH 7.4,
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500 mMNaCl, 1 mM DTT, 1£ protease inhibitor), 0.2
% Triton-X100 was added and proteins were solubi-
lized via sonication (Diagenode Bioruptor�, 200 W,
15 min, 30 s “on,” 1 min “off”). Lysates were 2-fold
diluted with 50 mM Tris/HCl pH 7.4, centrifuged
(10 min, 16000 rcf, 4�C) and the supernatant was
incubated with 50 ml M-280 Streptavidin Dynabeads
(Life Technologies) overnight at 4�C with rotation. A
total of 5 washing steps were performed: once with
wash buffer 1 (2 % SDS), wash buffer 2 (0.1 % desoxy-
cholic acid, 1 % Triton X-100, 1 mM EDTA, 500 mM
NaCl, 50 mM HEPES/KOH pH 7.5), wash buffer 3
(0.5 % desoxycholic acid, 0.5 % NP-40, 1 mM EDTA,
500 mM NaCl, 10 mM Tris/HCl pH 7.4) and twice
with 50 mM Tris/HCl pH 7.4. Proteins bound to the
streptavidin beads were digested as previously
described.29 Beads were resuspended in digestion
buffer (2 M Urea in Tris/HCl pH 7.5), reduced with
10 mM DTT and subsequently alkylated with 50 mM
chloroacetamide. A total of 0.35 mg trypsin (Pierce,
Thermo Scientific) was used for overnight digestion at
RT. Desalting of peptides prior to LC-MS/MS analysis
was performed via StageTips.30

LC-MS/MS analysis

Tandem mass spectrometry analysis was performed as
described previously.27 In brief, reconstituted peptides
(20 ml mobile phase A: 2% v/v acetonitrile, 0.1% v/v
formic acid) were analyzed using a EASY-nLC 1000
nano-HPLC system connected to a LTQ Orbitrap Elite
mass spectrometer (Thermo Fisher Scientific). For
peptide separation, a PepMap RSLC column (75 mm
ID, 150 mm length, C18 stationary phase with 2 mm
particle size and 100 A

�
pore size, Thermo Fisher Sci-

entific) was used, running a gradient from 5% to 35%
mobile phase B (98% v/v acetonitrile, 0.1% v/v formic
acid) at a flow rate of 300 nl/min. For data-dependent
acquisition, up to 10 precursors from a MS1 scan (res-
olution D 60,000) in the range of m/z 250-1800 were
selected for collision-induced dissociation (CID:
10 ms, 35% normalized collision energy, activation q
of 0.25).

Computational analysis

Raw data files were searched against the UniprotKB
mouse proteome database (Swissprot)31 using Max-
Quant (Version 1.5.2.8)32 with the MaxLFQ label free
quantification algorithm.33 Additionally to common

contaminants specified in the MaxQuant “contami-
nants.fasta” file, a custom-made file containing
sequences of BirA�-dCas9 and fluorescence proteins
was included in the database search. Trypsin/P
derived peptides with a maximum of 3 missed clea-
vages and a protein false discovery rate of 1 % were set
as analysis parameters. Carbamidomethylation of cys-
teine residues was considered a fixed modification,
while oxidation of methionine, protein N-terminal
acetylation and biotinylation were defined as variable
modifications.

For evaluation of the identified protein groups, Per-
seus (Version 1.5.2.6) was used.32 The data set was fil-
tered for common contaminants classified by the
MaxQuant algorithm and only proteins quantified in
at least 3 out of 4 replicates per cell line were subjected
to statistical analysis. For minor satellite repeats, the
dataset was further filtered to exclude proteins only
detected in the control sample. Missing values were
replaced by a constant value of 17 for significance test-
ing with a two-sided Student’s T-test and a permuta-
tion based FDR calculation. Venn diagrams were
obtained using the Webtool of the University of Gent
(http://bioinformatics.psb.ugent.be/webtools/Venn/).
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sgRNA single guide RNA
Tel telomere

Disclosure of potential conflicts of interest
No potential conflicts of interest were disclosed.

Acknowledgments
The authors would like to thank Joel Ryan (LMU Munich) and
Susanne Leidescher (LMU Munich) for help with live cell and
super-resolution imaging, suggestions on the manuscript and
FISH staining. T.A., E.S. and P.R. are members of the DFG

482 E. SCHMIDTMANN ET AL.



Graduiertenkolleg GRK1721. E.S. gratefully acknowledges the
International Max Planck Research School for Molecular and
Cellular Life Sciences.

Funding
This work was supported by the Deutsche Forschungsgemein-
schaft [SFB1064 and SFB646 to H.L.] and the European
Research Council [MolStruKT StG no. 638218 to F.H.]. Fund-
ing for open access charge: Deutsche Forschungsgemeinschaft.

ORCID
Heinrich Leonhardt http://orcid.org/0000-0002-5086-6449

References

[1] Kennedy-Darling J, Guillen-Ahlers H, Shortreed MR,
Scalf M, Frey BL, Kendziorski C, Olivier M, Gasch AP,
Smith LM. Discovery of Chromatin-Associated proteins
via sequence-specific capture and mass spectrometric
protein identification in saccharomyces cerevisiae. J Pro-
teome Res 2014; 13:3810-25; PMID:24999558; http://dx.
doi.org/10.1021/pr5004938

[2] Dejardin J, Kingston RE. Purification of proteins associated
with specific genomic Loci. Cell 2009; 136:175-86;
PMID:19135898; http://dx.doi.org/10.1016/j.cell.2008.11.045

[3] Fujita T, Asano Y, Ohtsuka J, Takada Y, Saito K, Ohki R,
Fujii H. Identification of telomere-associated molecules
by engineered DNA-binding molecule-mediated chro-
matin immunoprecipitation (enChIP). Scientific Reports
2013; 3:3171; PMID:24201379

[4] Waldrip ZJ, Byrum SD, Storey AJ, Gao J, Byrd AK,
Mackintosh SG, Wahls WP, Taverna SD, Raney KD,
Tackett AJ. A CRISPR-based approach for proteomic
analysis of a single genomic locus. Epigenetics 2014;
9:1207-11; PMID:25147920; http://dx.doi.org/10.4161/
epi.29919

[5] Grolimund L, Aeby E, Hamelin R, Armand F, Chiappe D,
Moniatte M, Lingner J. A quantitative telomeric chroma-
tin isolation protocol identifies different telomeric states.
Nat Commun 2013; 4:2848; PMID:24270157; http://dx.
doi.org/10.1038/ncomms3848

[6] Klug A. The discovery of zinc fingers and their develop-
ment for practical applications in gene regulation and
genome manipulation. Quarterly Rev Biophys 2010;
43:1-21; PMID:20478078; http://dx.doi.org/10.1017/
S0033583510000089

[7] Miyanari Y, Ziegler-Birling C, Torres-Padilla ME. Live
visualization of chromatin dynamics with fluorescent
TALEs. Nat Structural Mol Biol 2013; 20:1321-4;
PMID:24096363; http://dx.doi.org/10.1038/nsmb.2680

[8] Thanisch K, Schneider K, Morbitzer R, Solovei I, Lahaye
T, Bultmann S, Leonhardt H. Targeting and tracing of
specific DNA sequences with dTALEs in living cells.
Nucleic Acids Res 2013; PMID:24371265

[9] Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang
W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS,
et al. Dynamic imaging of genomic loci in living human
cells by an optimized CRISPR/Cas system. Cell 2013;
155:1479-91; PMID:24360272; http://dx.doi.org/10.1016/
j.cell.2013.12.001

[10] Anton T, Bultmann S, Leonhardt H, Markaki Y. Visuali-
zation of specific DNA sequences in living mouse embry-
onic stem cells with a programmable fluorescent
CRISPR/Cas system. Nucleus (Austin, Tex) 2014; 5:163-
72; PMID:24637835

[11] Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS,
Arkin AP, Lim WA. Repurposing CRISPR as an RNA-
guided platform for sequence-specific control of gene
expression. Cell 2013; 152:1173-83; PMID:23452860;
http://dx.doi.org/10.1016/j.cell.2013.02.022

[12] Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE,
Norville JE, Church GM. RNA-guided human genome engi-
neering via Cas9. Science 2013; 339:823-6; PMID:23287722;
http://dx.doi.org/10.1126/science.1232033

[13] Roux KJ, Kim DI, Raida M, Burke B. A promiscuous bio-
tin ligase fusion protein identifies proximal and interact-
ing proteins in mammalian cells. J Cell Biol 2012;
196:801-10; PMID:22412018; http://dx.doi.org/10.1083/
jcb.201112098

[14] Kim DI, Birendra KC, Zhu W, Motamedchaboki K, Doye
V, Roux KJ. Probing nuclear pore complex architecture
with proximity-dependent biotinylation. Proc Natl Acad
Sci U S A 2014; 111:E2453-61; PMID:24927568; http://
dx.doi.org/10.1073/pnas.1406459111

[15] Lambert JP, Tucholska M, Go C, Knight JD, Gingras AC.
Proximity biotinylation and affinity purification are com-
plementary approaches for the interactome mapping of
chromatin-associated protein complexes. J Proteomics
2015; 118:81-94; PMID:25281560; http://dx.doi.org/
10.1016/j.jprot.2014.09.011

[16] Liu D, O’Connor MS, Qin J, Songyang Z. Telosome, a
Mammalian Telomere-associated complex formed by
multiple telomeric proteins. J Biol Chem 2004;
279:51338-42; PMID:15383534; http://dx.doi.org/
10.1074/jbc.M409293200

[17] Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A,
Rey E, Mateos-Langerak J, Urbach S, ReikW, Torres-Padilla
ME, et al. Redundant mechanisms to form silent chromatin
at pericentromeric regions rely on BEND3 and DNA meth-
ylation. Mol Cell 2014; 56:580-94; PMID:25457167; http://
dx.doi.org/10.1016/j.molcel.2014.10.001

[18] Guenatri M, Bailly D, Maison C, Almouzni G. Mouse cen-
tric and pericentric satellite repeats form distinct functional
heterochromatin. J Cell Biol 2004; 166:493-505;
PMID:15302854; http://dx.doi.org/10.1083/jcb.200403109

[19] Balczon R, Bao L, Zimmer W. PCM-1, A 228-kD centro-
some autoantigen with a distinct cell cycle distribution. J
Cell Biol 1994; 124:783-93; PMID:8120099; http://dx.doi.
org/10.1083/jcb.124.5.783

[20] Kim DI, Jensen SC, Noble KA, Kc B, Roux KH, Mota-
medchaboki K, Roux KJ. An improved smaller biotin

NUCLEUS 483



ligase for BioID proximity labeling. Mol Biol Cell 2016;
27(8):1188-96

[21] Yaffe D, Saxel O. Serial passaging and differentiation of
myogenic cells isolated from dystrophic mouse muscle.
Nature 1977; 270:725-7; PMID:563524; http://dx.doi.org/
10.1038/270725a0

[22] Masui S, Shimosato D, Toyooka Y, Yagi R, Takahashi K,
Niwa H. An efficient system to establish multiple embry-
onic stem cell lines carrying an inducible expression unit.
Nucleic Acids Res 2005; 33:e43; PMID:15741176; http://
dx.doi.org/10.1093/nar/gni043

[23] Meilinger D, Fellinger K, Bultmann S, Rothbauer U,
Bonapace IM, Klinkert WE, Spada F, Leonhardt H. Np95
interacts with de novo DNA methyltransferases, Dnmt3a
and Dnmt3b, and mediates epigenetic silencing of the
viral CMV promoter in embryonic stem cells. EMBO
Rep 2009; 10:1259-64; PMID:19798101; http://dx.doi.
org/10.1038/embor.2009.201

[24] Martin RM, Cardoso MC. Chromatin condensation
modulates access and binding of nuclear proteins. FASEB
J 2010; 24:1066-72; PMID:19897663; http://dx.doi.org/
10.1096/fj.08-128959

[25] Solovei I, Cremer M. 3D-FISH on cultured cells com-
bined with immunostaining. Methods Mol Biol 2010;
659:117-26; http://dx.doi.org/10.1007/978-1-60761-789-
1_8

[26] Schindelin J, Arganda-Carreras I, Frise E, Kaynig V,
Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S,
Schmid B, et al. Fiji: an open-source platform for biologi-
cal-image analysis. Nat Methods 2012; 9:676-82;
PMID:22743772; http://dx.doi.org/10.1038/nmeth.2019

[27] Mulholland CB, Smets M, Schmidtmann E, Leidescher S,
Markaki Y, Hofweber M, Qin W, Manzo M, Kremmer E,
Thanisch K, et al. A modular open platform for system-
atic functional studies under physiological conditions.
Nucleic Acids Res 2015; PMID:26007658

[28] Roux KJ, Kim DI, Burke B. BioID: A screen for protein-
protein interactions. Curr Protoc Protein Sci 2013; 19
(23):1-19.23.14; PMID:24510646

[29] Baymaz HI, Spruijt CG, Vermeulen M. Identifying
nuclear protein-protein interactions using GFP affinity
purification and SILAC-based quantitative mass spec-
trometry. Meth Mol Biol 2014; 1188:207-26; http://dx.
doi.org/10.1007/978-1-4939-1142-4_15

[30] Rappsilber J, Mann M, Ishihama Y. Protocol for micro-
purification, enrichment, pre-fractionation and storage of
peptides for proteomics using StageTips. Nat Protocols
2007; 2:1896-906; PMID:17703201; http://dx.doi.org/
10.1038/nprot.2007.261

[31] Consortium TU. UniProt: a hub for protein information.
Nucleic Acids Res 2015; 43:D204-D12; PMID:25348405;
http://dx.doi.org/10.1093/nar/gku989

[32] Cox J, Mann M. MaxQuant enables high peptide identifi-
cation rates, individualized p.p.b.-range mass accuracies
and proteome-wide protein quantification. Nat Biotech
2008; 26:1367-72; http://dx.doi.org/10.1038/nbt.1511

[33] Cox J, Hein MY, Luber CA, Paron I, Nagaraj N,
Mann M. Accurate Proteome-wide label-free quantifi-
cation by delayed normalization and maximal peptide
ratio extraction, termed MaxLFQ. Mol Cell Proteo-
mics 2014; 13:2513-26; http://dx.doi.org/10.1074/mcp.
M113.031591

484 E. SCHMIDTMANN ET AL.



 

 

Supplementary Figure 1 | Sub-cellular localization of BirA*-dCas9-eGFP. (A) Without a 
sgRNA, BirA*-dCas9-eGFP shows a disperse localization throughout the cell and an enrichment 
at nucleoli. Cells were incubated with 50 M biotin (Bio) for 24 hours. (B-C) When co-expressed 
with a sequence-specific sgRNA, BirA*-dCas9-eGFP is recruited to distinct loci. Correct 
localization is confirmed by either immunofluorescence of H3K9me3 (B), CENP-B (C) or 
fluorescence in situ hybridization with a telomere-specific probe (D). Scale bar: 10 m. Scale 
bar in blow-ups: 2 m. 



 

Supplementary Figure 2 | Sub-nuclear localization of ZNF512-eGFP during the cell cycle. 
Time lapse imaging of C2C12 cells, transfected with H2B-mRFP and ZNF512-eGFP. Images 
were acquired every 30 min. Scale bar: 5 m. 



  

 

 

Supplementary Figure 3 | Uniprot (Keyword) annotations of proteins. (A) major satellite 
associated proteins. bold: proteins exclusively identified in CasID (B) minor satellite associated 
proteins. 

 

 



Table S1 | Proteins identified in CasID pulldowns. Significantly enriched proteins (Student’s 
T-test, FDR = 0.01) are highlighted in color. Common BioID contaminants are marked in grey.  

 Table_S1.xlsx 

Table S2 | Plasmid sequences of constructs used in this study. 

 Table_S2.docx 

Table S3 | Sequences of oligonucleotides used in this study. 

 

Primer Sequence 5'-3'
BirA*-F GGCGTGTGACCGGCGGCTatggaacaaaaactcatc
BirA*-R GAGTACTTCTTGTCCATTCCgctaccgctgccgctaccGCGGTTTAAACTTAAGC
PuroR-F catatgggtaccgagcttaCCGGGTAGGGGAGGCG
PuroR-R gcttgcggccgcgagctgttCCGCCTCAGAAGCCATAG
MaSgRNA-F GGCAAGAAAACTGAAAATCAgttttagagctagaaatagcaag
MaSgRNA-R TGATTTTCAGTTTTCTTGCCcggtgtttcgtcctttccac
MiSgRNA-F ACACTGAAAAACACATTCGTgttttagagctagaaatagcaag
MiSgRNA-R ACGAATGTGTTTTTCAGTGTcggtgtttcgtcctttccac
TelgRNA-F TAGGGTTAGGGTTAGGGTTAgttttagagctagaaatagcaag
TelgRNA-R TAACCCTAACCCTAACCCTAcggtgtttcgtcctttccac
Znf512-F CGCCACCATGGgcgatATGTCTTCCAGACTCGGTG
Znf512-R GGAATTCGTTAACTgcCTACTTCCTCCCTCGTTTGTG
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3 DISCUSSION 

3.1 The CRISPR/Cas system as a tool to visualize chromatin 

The spatiotemporal organization of the genome within the nucleus, as well as its interactions 

with epigenetic factors and other cellular components play a fundamental role in regulating 

cellular functions such as gene expression and genome integrity. Yet, the exact mechanisms of 

how chromatin is packaged in the physical space of the nucleus remain largely elusive. To 

investigate the spatial relationship between chromatin segments, 3C and derived methods such 

as Hi-C have been successfully employed. These approaches have provided new insights into 

folding principles of chromatin and uncovered, among others, the existence of TADs as one 

of the major building blocks of higher chromatin organization. On a larger scale, FISH-based 

approaches allowed to examine morphological characteristics of chromosomes. For instance, 

FISH-probes, designed to label whole chromosomes, revealed that individual chromosomes 

are not randomly distributed within the nucleus, but rather occupy distinct chromosome 

territories. Moreover, it was demonstrated that in many cases the radial positioning of 

chromosome territories reflects chromosomal gene density, that is gene-poor chromosomes 

are predominantly located at the nuclear periphery, whereas gene-rich chromosomes cluster 

towards the center of the nucleus. However, both methodologies rely on fixed specimens and 

thus only present a snapshot of nuclear organization. In addition, chromatin conformation 

capture is performed on bulk chromatin, hence single cell resolution is limited. FISH on the 

other hand, allows to directly visualize the spatial organization of chromatin in individual cells, 

yet probe hybridization requires harsh DNA denaturation and can obstruct the ultra-structure 

of native chromatin arrangements. Notably, although data acquired by FISH and 3C-based 

approaches are generally considered to be concordant, a study, comparing both methods to 

investigate the HoxD locus in mouse ESCs at different developmental stages, demonstrated 

that high resolution 3C interaction maps do not always reflect the chromatin topography as it 

is visualized by FISH [Williamson et al., 2014]. Taken together, these drawbacks highlight the 

necessity to test hypotheses about genome organization with independent methods. In this 

context, live-cell imaging approaches are essential to visualize spatiotemporal chromatin 

dynamics and to corroborate the static snapshots provided by FISH and 3C-based methods. 

The discovery that the bacterial protein Cas9 can be harnessed as a RNA-guided endonuclease 

in prokaryotic, as well as eukaryotic cells enabled CRISPR/Cas-based genome engineering 

approaches and widely replaced previous types of sequence-specific nucleases, such as zinc 

finger- or TALE nucleases [Haeussler & Concordet, 2016]. In line with that, also the nuclease 
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deficient mutant of Cas9, dCas9, has been utilized to target specific loci without cleaving the 

underlying genomic sequence. By fusing dCas9 to regulatory domains, it has been shown that 

the CRISPR/Cas system is a versatile tool to manipulate endogenous gene expression. To 

further expand the CRISPR/Cas toolkit, we and others aimed to utilize dCas9 as an RNA-

guided DNA-binding platform to visualize defined genomic regions in living cells. 

In our proof-of-principle study, we decided to target an eGFP-tagged dCas9 to the 

heterochromatic sequences of telomeres, minor and major satellites in mouse ESCs. Since 

these genomic elements are predominantly composed of repetitive sequences, this approach 

enabled us to recruit dCas9-eGFP to large stretches of DNA and thereby enrich the eGFP-

signal with only one sgRNA per target. By combining dCas9-based labeling (CRISPR imaging) 

of these loci with FISH and immunofluorescence detection, we confirmed that dCas9-eGFP 

efficiently and specifically labels repetitive sequences in living cells. Moreover, we 

demonstrated that CRISPR imaging can be adopted for high-resolution microscopy, enabling 

us to resolve the ultrastructure of diffraction limited chromatin clusters such as telomeres. 

Notably, our approach could be implemented in future correlative microscopy studies. This 

would include to first trace the dynamics of a targeted chromatin region in vivo at a lower 

resolution via live-cell microscopy. Subsequently, the cells could be fixed and processed for 

high-resolution microscopy, allowing to correlate insights of spatiotemporal and structural 

characteristics of the same locus. 

Although to date CRISPR imaging is mainly limited to repetitive sequences, one study could 

demonstrate that by co-expressing ~30 different sgRNAs, tracing of a single-copy locus is 

feasible [Chen et al., 2013]. The prospect of visualizing the 3D organization of two distinct 

loci in living cells is particularly interesting as it offers means to substantiate results, which 

were obtained by 3C and related methods. During development, for instance, gene expression 

profiles have been shown to be tightly regulated by the formation of distal 

enhancer/promoter loops [Phillips-Cremins et al., 2013]. In this context, CRISPR imaging 

could be used to investigate, when and under what circumstances these distally located regions 

come into contact. Similarly, it is known that TADs are absent in mitotic cells. However, it 

remains elusive, how these chromatin domains are reestablished after cells enter G1-phase 

[Dekker, 2014]. Here, specific labeling of sequences at TAD-boundaries is likely to shed light 

on this question. 

3.1.1 CRISPR imaging in comparison to modular DNA-binding proteins 

In living cells, bulk chromatin can be visualized by cell-permeable DNA-dyes (e.g. DRAQ5), 

fluorescently labeled nucleotides (e.g. Cy5-dUTP) or histones fused to fluorescent proteins 

(e.g. H2B-GFP) [Kanda et al., 1998; Manders et al., 1999; Martin et al., 2005]. Furthermore, 
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specific genomic sequences that are characterized by a defined protein composition, such as 

centromeres or telomeres can be traced by fluorescently tagging their associated binding 

proteins [Shelby et al., 1996; Krawczyk et al., 2012]. Since loci, which meet this requirement 

are limited, lac or tet operator repeats were introduced at specific genomic regions via genome 

engineering. These sequences can then be recognized by Lac- or Tet-repressor proteins, 

respectively, fused to fluorescent proteins [Robinett et al., 1996; Roukos et al., 2013]. 

However, since these large artificial sequences might interfere with chromatin dynamics, this 

method only provides indirect information about the native locus. Hence, live-cell approaches 

to examine the spatiotemporal dynamics of endogenous loci rely on DNA-interacting 

proteins, which bind their target in a sequence-specific manner (Figure 9). 

Fused to GFP, PZFs were the first modular DNA-binding proteins, which were used to 

visualize repetitive genomic sequences in vivo [Lindhout et al., 2007]. It was shown that PZFs 

can be harnessed to trace major satellite sequences in mouse cells, as well as centromeric 

repeats in Arabidopsis, demonstrating that this method can be applied in different organisms. 

Although PZFs have additionally been successfully employed for genome editing and 

transcriptional regulation, cross-talk between adjacent zinc finger modules can alter the 

binding preference towards the target sequence. Hence, newly designed PZFs have to be 

tested thoroughly, rendering this approach time-consuming and expensive [Ramirez et al., 

2008]. 

To overcome these limitations, fluorescently tagged dTALEs have been employed to 

substitute PZFs [Ma et al., 2013; Miyanari et al., 2013; Thanisch et al., 2014; Yuan et al., 2014; 

Ren et al., 2017]. Contrary to PZFs, target recognition via dTALEs is facilitated via a simple 

RVD-based code. The fact that one RVD specifically recognizes one nucleotide greatly 

simplifies the process of designing new dTALEs. Importantly, dTALEs are characterized by a 

high target specificity and in fact, were shown to distinguish 1 – 2 nt differences on the target 

sequence [Boch et al., 2009]. Hence, fluorescent dTALEs allow to detect individual 

chromosomes by single nucleotide polymorphisms (SNPs) [Miyanari et al., 2013]. Despite 

these evident advantages over PZFs, the highly repetitive central domain of dTALEs has been 

suggested to cause self-assembly and formation of protein aggregates, preventing an effective 

binding of the cognate target DNA. To this end, a recent study demonstrated that fusion of 

dTALEs to the chaperone-like protein thioredoxin (TRX) enhances their solubility in human 

cells [Ren et al., 2017]. However, the repetitive nature of the DNA-recognition domain 

renders it difficult to reassemble dTALEs for different sequences and necessitates the use of 

laborious cloning techniques [Morbitzer et al., 2011; Reyon et al., 2012; Schmid-Burgk et al., 

2013]. Since the target specificity of dTALEs is mediated by the protein itself, simultaneous 
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tracing of multiple genomic elements can be easily achieved by tagging different site-specific 

dTALEs with different fluorescent proteins. Using this approach, it was shown that 

centromeres and telomeres can be visualized independently within the same nucleus [Ma et al., 

2013]. Importantly, also sequences, which are located in close proximity to one another, such 

as minor and major satellites can be resolved [Miyanari et al., 2013]. Elucidating the 

spatiotemporal organization of chromatin is of key importance in understanding how gene 

expression is regulated. To this end, multicolor imaging via dTALEs is likely to play a crucial 

role. 

CRISPR imaging can be regarded as the next generation of tools to study chromatin dynamics 

in living cells. Contrary to PZF- or dTALE-based approaches, target specificity is solely 

mediated by the sgRNA. Therefore, CRISPR imaging can easily be customized to visualize 

new sequences by simply exchanging the sgRNA without the need to replace the protein itself. 

By employing CRISPR imaging, we and others successfully labeled repetitive sequences. 

Although such tandem repeats are present in virtually all eukaryotes, it might prove difficult to 

find one near a locus of interest. Tracing of single-copy loci, therefore, requires targeting of 

many different consecutive sequences in order to enrich the signal over background levels. In 

this context, CRISPR imaging is likely to be superior, as it only requires the introduction of 

small RNAs, whereas for dTALE- or PZF-based approaches, different proteins for each 

target sequence have to be expressed. This is illustrated by the fact that labeling of a non-

repetitive sequence via dTALEs has not been realized, so far. Moreover, a recent study 

presented a method that employs a cocktail of restriction enzymes to generate a genome-wide 

library of sgRNAs [Lane et al., 2015]. Further refinement of this method could allow to 

produce sgRNA-libraries, which are specific for whole chromosomes or non-repetitive 

subsets of chromosomes. Together with suitable means to deliver these libraries into living 

cells (e.g. via lentiviral transduction), CRISPR imaging could facilitate to monitor the 

spatiotemporal dynamics of chromosomes in real time. 

To study the spatiotemporal dynamics of a distinct locus, continuous labeling throughout the 

cell-cycle is crucial. To this end, we assessed, whether dCas9-eGFP associates with telomeres, 

minor and major satellites during mitosis. We found that the dramatic structural changes, to 

which mitotic chromosomes are subjected to, do not perturb dCas9-eGFP binding. This is 

particularly striking, since most endogenous DNA-binding proteins, such as sequence-specific 

transcription factors and co-factors are removed from mitotic chromatin [Kadauke & Blobel, 

2013]. Interestingly, to date only two out of five studies, in which dTALEs were employed to 

visualize repetitive sequences could demonstrate that dTALEs remain associated to their 

cognate target sequence during mitosis [Miyanari et al., 2013; Ren et al., 2017]. 
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An important aspect of labeling DNA in living cells is whether the employed system disturbs 

the function and integrity of the targeted locus. Since the sgRNA forms a heteroduplex with 

the targeted DNA-strand, binding of dCas9 results in the local unwinding of the DNA double 

helix. This could potentially interfere with nucleosome positioning and the recruitment of 

other DNA-binding proteins [Costantino & Koshland, 2015]. In line with that, it was 

observed that the presence of nucleosomes at the target sequence impedes the DNA 

recognition of Cas9 in vitro and in vivo [Horlbeck et al., 2016; Isaac et al., 2016]. Interestingly, in 

our experiments the compact, heterochromatic conformation of repetitive elements did not 

impair dCas9 binding. However, we detected rare events of elongated and fiber-like structures, 

when we visualized telomeres by CRISPR imaging. This suggests that, in some cases, dCas9-

eGFP recruitment to telomeric tandem repeats might forestall T-loop formation. However, 

the vast majority of observed telomeres displayed characteristic spot-like structural features 

and an independent study confirmed unaltered dynamics of dCas9-labeled telomeres [Chen et 

al., 2013]. Moreover, the structural integrity of both minor and major satellite repeats was not 

affected by CRISPR imaging. Contrary to dCas9, dTALEs do not induce DNA-unwinding, 

but rather bind directly along the major groove. Conceivably, this mode of DNA-detection 

could lead to a sterical clash between abundant nucleosomes and the dTALE. Yet, expression 

of a major satellite-specific dTALE resulted in unchanged histone H3 and H3K9me3 

occupancies at the pericentromere, suggesting that dTALEs do not affect chromatin 

configuration [Miyanari et al., 2013]. 

 

 
Figure 9: Sequence-specific iin  v ivo  visualization of distinct loci via DNA-binding proteins. Modular DNA-binding 

proteins (PZFs and dTALEs), as well as a catalytically inactive Cas9 (dCas9) bind to genomic DNA in a sequence-specific 

manner. When fused to a fluorescent protein (GFP, green), these systems can guide the fluorescence signal to pre-defined 

genomic elements. Targeting heterochromatic tandem repeats or repetitive sequences within protein-coding genes, leads to 

local enrichment of the signal, which can be readily imaged in living cells. Modified from [Chen et al., 2016a]. 
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Collectively, CRISPR imaging offers high flexibility and represents a time- and cost-effective 

alternative to visualization techniques, based on modular DNA-binding proteins. Especially 

the potential to trace non-repetitive sequences renders CRISPR imaging a versatile tool to 

study chromatin dynamics. Yet, considering recent advances such as TRX-coupled dTALEs 

and the fact that dTALEs are independent from a PAM-sequence, indicates that dTALE-

based genome visualization and CRISPR imaging are complementary approaches in labeling 

repetitive genomic elements. 

 

3.1.2 Expanding the CRISPR imaging toolkit 

Since the first demonstration of CRISPR imaging, great effort has been made to further 

optimize this system (Figure 10). One issue of visualizing single-copy loci via CRISPR imaging 

is a rather low signal-to-noise ratio, caused by freely diffusing dCas9-eGFP molecules. To this 

end, it has been recently demonstrated that the SunTag (SUperNova tag) is suitable to 

significantly amplify the fluorescence signal at targeted loci (Figure 10A) [Tanenbaum et al., 

2014]. This system comprises a peptide, which contains up to 24 tandemly arranged copies of 

a short peptide epitope (GCN4), and a GFP-tagged cognate single-chain antibody (scFv). By 

combining the SunTag with CRISPR imaging of telomeres, it was shown that a ~20-fold 

signal enhancement is possible. Due to this bright signal, it would be feasible to visualize 

genomic loci with lower light illumination, thus reducing phototoxic effects during long-term 

imaging. As this system has only been tested on repetitive sequences, however, it would be 

interesting to assess its functionality on single-copy loci. 

Similar to the SunTag, a split version of super-folder GFP (sfGFP) has been adopted as an 

epitope tag for signal enhancement in targeted gene activation and fluorescence imaging 

(Figure 10B) [Kamiyama et al., 2016]. For this approach, sfGFP is split between the 10th and 

11th β-strand, resulting in the non-fluorescent sfGFP1–10 and sfGFP11, which serves as a 

short epitope. A tandem array, comprising up to seven repeats of the sfGFP11 epitope, can be 

fused to a protein of interest (POI) and subsequently recognized by the co-expressed 

sfGFP1–10 fragment. Upon self-complementation, the chromophore matures and sfGFP 

regains its fluorescence [Cabantous et al., 2005]. By expressing dCas9-sfGFP11x7 together with 

VP64-sfGFP1–10, it was demonstrated that this system is capable to drastically increase the 

expression level of the targeted CXCR4-locus. Hence, it would be interesting to evaluate, 

whether the sfGFP11-tag can be adopted for CRISPR imaging. Whereas the SunTag system 

still might cause background fluorescence due to unbound scFv-GFP molecules, this GFP-

derived epitope tag would be particularly promising, since sfGFP1–10 can be overexpressed 

without causing background signals. 
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In comparison to dTALE-based visualization of genomic elements, one inherent drawback of 

the original CRISPR imaging technique is the fact that simultaneous multi-color labeling of 

several loci is not feasible. To overcome this limitation, orthogonal dCas9 proteins from the 

three different bacterial species S. pyogenes (Sp-dCas9), Neisseria meningitidis (Nm-dCas9) and 

Streptococcus thermophilus (St1-dCas9) were harnessed (Figure 10C) [Ma et al., 2015]. Importantly, 

target recognition of these dCas9 variants is constrained by different PAM sequences, 

enabling multiplexed sgRNA-guided recruitment to multiple genomic sites [Esvelt et al., 

2013]. Hence, by simultaneously co-expressing differently tagged dCas9 orthologs with their 

cognate sgRNAs, each specific for a distinct locus, it was possible to resolve the inter- and 

intrachromosomal distances between two repetitive sequences in living human cells. In 

addition, another study repurposed the small Cas9 ortholog from Staphylococcus aureus (Sa-

dCas9) for multiplexed CRISPR imaging and demonstrated that a combination of Sp-dCas9-

eGFP and Sa-dCas9-mCherry is capable to resolve two different loci, which are separated by 

less than 300 kb [Chen et al., 2016b]. 

Although representing a significant improvement in CRISPR imaging, orthogonal 

CRISPR/Cas systems are characterized by more complex PAM requirements. For instance, 

whereas Sp-dCas9 recognizes a 5´-NGG-3´-sequence, Nm-dCas9 is only targeted to 

sequences followed by a 5´-NNNNGGTT-3´ motif, thus restricting the flexibility towards 

target sequences. To circumvent this issue, a second strategy for multi-color CRISPR imaging 

has been developed (Figure 10D). Here, the S. pyogenes sgRNA is fused to the RNA aptamers 

MS2 or PP7 that are specifically bound by the bacteriophage coat proteins MCP (MS2 coat 

protein) and PCP (PP7 coat protein), respectively [Fu et al., 2016; Wang et al., 2016]. The 

resulting scaffold RNA (scRNA) is still capable to guide dCas9 to the desired target and can 

be detected by fluorescently tagged coat proteins. A similar approach combined dCas9-

mediated DNA-recognition with Pumilio-assisted RNA-binding (Figure 10E) [Cheng et al., 

2016]. This technique, termed Casilio, utilizes the fact that the RNA-binding domain of the 

Drosophila protein Pumilio (PUF) can be reprogrammed to bind specific 8-mer RNA 

sequences (PUF-binding site, PBS) [Chen & Varani, 2013]. Therefore, appending different 

sgRNAs with PUF-binding sites, specific for differently tagged PUF domains, facilitates 

simultaneous tracing of multiple genomic loci. 
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Figure 10: Expanding the CRISPR imaging toolkit. A-B) To enhance the signal-to-noise ratio of CRISPR imaging, dCas9 

is fused to arrays of small peptide epitopes (GCN4 and sfGFP11). These epitopes then either recruit fluorescent molecules 

(scFv-GFP) or are complemented (sfGFP1–10), reconstituting fluorescence. C-E) Multi-color CRISPR imaging can be 

achieved by either co-expressing differentially labeled orthogonal dCas9 proteins (Sp-dCas9-GFP and Nm-dCas9-RFP) or by 

fusion of RNA aptamers (PP7 or MS2) to the sgRNA and co-expressing the cognate, fluorescently tagged binding proteins 

(PCP-GFP and MCP-GFP, respectively). Moreover, sgRNAs can be appended by PUF-binding sites (PBS1 or PBS2, 

respectively). These sites are then recognized by differentially tagged PUF proteins (PUF1-GFP and PUF2-RFP). F) By 

substituting the PAM sequence in the form of an oligonucleotide (PAMmer), dCas9 can be targeted to single stranded RNA 

molecules. 

 

Recently, the scope of CRISPR imaging has been further expanded by demonstrating that 

dCas9 can be harnessed as a tool to visualize endogenous, unmodified RNAs (Figure 10F) 

[Nelles et al., 2016]. Although the CRISPR/Cas system has evolved to target double-stranded 

DNA, Cas9 can be guided to RNA, when the PAM is provided in trans by an oligomer 

(PAMmer) that is partially complementary to the targeted RNA [O'Connell et al., 2014]. 

However, due to high background signals, so far RNA could only be visualized, when large 
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quantities accumulated within stress granules. In this case, fusing dCas9 to the aforementioned 

sfGFP11-tag is likely to enhance the signal-to-noise ratio, thus facilitating the tracking of less 

abundant RNAs. 

 

3.2 Editing of epigenetic marks via the CRISPR/Cas system 

The eukaryotic transcriptional landscape is regulated by a complex network of epigenetic 

modifications, transcription factors and chromatin organization. To dissect cause and 

consequence of any of these factors, it is crucial to have tools at hand that allow their precise 

manipulation. Since the first description of Cas9-mediated genome engineering, the 

CRISPR/Cas system has been in parallel refined for site-specific DNA visualization and 

manipulation of epigenetic marks and thus represents a powerful tool to interrogate the 

mechanistic relationship between chromatin state and regulation of gene expression. 

Direct fusions of dCas9 with epigenome editing factors have been successfully employed to 

activate transcription of previously silenced genes. For instance, recruiting the catalytic core of 

the human acetyltransferase p300 to promoters or enhancers leads to robust transcriptional 

activation and directly implicates H3K27ac in this process [Hilton et al., 2015]. Additionally, 

targeted DNA demethylation, mediated by dCas9-TET1 fusions results in gene reactivation 

[Choudhury et al., 2016; Liu et al., 2016; Xu et al., 2016]. Analogous to targeted activation, the 

CRISPR/Cas system has been utilized to recruit DNA de novo methyltransferases or histone 

demethylases to specific gene regulatory regions, resulting in a local repressive epigenetic state 

and thus gene silencing [Kearns et al., 2015; McDonald et al., 2016; Vojta et al., 2016]. 

Based on these results, we set out to further optimize the CRISPR/Cas system as a precise 

and flexible tool for epigenetic modulation. To this end, we constructed a fusion of dCas9 

with a GFP-binding nanobody (GBP) [Helma et al., 2015], which enabled us to direct virtually 

any GFP-tagged effector to distinct target sequences. In our proof-of-concept study, we 

demonstrated that this modular system facilitates the recruitment of GFP-coupled catalytic 

domains of TET1 and DNMT3A to major satellite repeats. Furthermore, we confirmed 

preceding results, suggesting that by recruiting the catalytic activities of TET1 and DNMT3A, 

prevalent epigenetic marks can be erased or set de novo, respectively. In addition to site-specific 

targeting, control over the timing of epigenetic editing is crucial to distinguish direct 

consequences from local epigenetic perturbations. Therefore, we utilized an inducible system, 

which facilitated expression of both GBP-dCas9 and the GFP-tagged effector in a timely 

controlled manner. 
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For future studies it would be interesting to assess, whether our modular recruitment system is 

applicable to target epigenetic effector proteins, which are expressed at physiological levels. 

For this, the multifunctional integrase (MIN) tag could be used to label an effector of interest 

[Mulholland et al., 2015]. This strategy requires to first insert a phage attachment (attP) site 

directly downstream of the start codon or upstream of the stop codon via CRISPR/Cas-

mediated genome engineering. This attP sequence then serves as an entry site for Bxb1-

assisted integration of a GFP-coding sequence. Notably, this approach would ensure that 

expression of the GFP-tagged effector is driven by the endogenous promoter, which would 

minimize potential artificial effects, caused by overexpression. Moreover, it would be possible 

to knock-in a cassette, which encodes GFP-tagged, mutated variants of the effector of 

interest, enabling to directly determine their consequences at targeted loci. To further expand 

our approach, multiplexed recruitment of fluorescently tagged effectors could be tested. By 

fusing a dCas9 ortholog (e.g. Nm-dCas9) with an RFP-specific nanobody and co-expressing it 

with GBP-dCas9, two differently tagged effector proteins could be simultaneously recruited to 

distinct genomic elements. 

3.3 Probing chromatin composition by CasID 

Besides visualizing the spatiotemporal dynamics of chromatin, it is crucial to also assess its 

protein composition to fully decipher the structure and function of chromatin. To this end, 

numerous methods have been developed that facilitate the profiling of genome-wide or local 

binding sites of chromatin proteins, as well as protein-protein associations (Figure 11). 

 

Chromatin immunoprecipitation (ChIP) 

ChIP represents a well established and powerful method to study the distribution of a DNA-

binding POI along the genome. For this, DNA-protein complexes are crosslinked in vivo by 

treating the cells with formaldehyde [Jackson, 1978]. Subsequently, the chromatin is 

fragmented by either sonication or digestion with micrococcal nuclease (MNase). An antibody, 

which is specific for the POI is used to immunoprecipitate chromatin fragments. Finally, 

DNA-POI crosslinks are reversed and the released DNA is assayed by next-generation 

sequencing (ChIP-seq), PCR (ChIP-qPCR) or microarray (ChIP-chip) to determine the 

sequences bound by the POI [Collas, 2010]. Using refined bioinformatics algorithms, these 

sequences are aligned to a reference genome, which allows to call enrichments of POI-DNA 

interactions (Figure 11A) [Wilbanks & Facciotti, 2010]. 
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Proteomics of isolated chromatin segments (PICh) 

Contrary to ChIP-based approaches, PICh enables the analysis of the overall protein 

composition of a specific locus without prior knowledge of the identity of bound proteins 

(Figure 11B) [Déjardin & Kingston, 2009]. Here, chromatin is thoroughly crosslinked and 

subsequently sheared via sonication. Purification of specific loci is based on ~25 nt long 

nucleic acid probes, which are complementary to the targeted locus and contain approximately 

50 % locked nucleic acid (LNA) residues. Due to their altered backbone, these LNA residues 

favor base stacking and thereby increase the melting temperature of DNA-LNA hybrids, 

resulting in increased hybrid stability [Vester & Wengel, 2004]. Moreover, these probes are 

linked to desthiobiotin at their 5´-end, which facilitates the capture of LNA-chromatin hybrids 

via avidin-coated magnetic beads [Hirsch et al., 2002; Morocho et al., 2005]. Finally, locus-

specific proteins are identified via mass spectrometry (MS). Initially developed to study the 

protein composition of human telomeres, PICh has since been successfully applied to 

determine associated proteins of other repetitive genomic elements (MaS), as well as more 

complex targets, such as ribosomal RNA gene promoters and telomere-associated sequences 

(TAS) [Déjardin & Kingston, 2009; Antão et al., 2012; Saksouk et al., 2014; Ide & Dejardin, 

2015]. 

 

 
Figure 11: Schematic representation of methods to study chromatin composition. A) With ChIP, the DNA-binding 

profile of a POI at a given time or condition can be assessed. For this, the chromatin is first crosslinked and fragmented, 

followed by affinity purification via a POI-specific antibody. The crosslinks are then reversed and the released DNA is 

sequenced. B) PICh is a method that aims to determine the total protein composition at a specific locus. Here, crosslinked 

chromatin fragments are recognized by short LNA capture probes with a defined sequence. These oligos are linked to 
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desthiobiotin, which is used to specifically capture LNA-chromatin hybrids. Finally, affinity purified proteins are identified via 

tandem MS. C) Contrary to ChIP and PICh, BioID requires the expression of a POI fused to the promiscuous biotin ligase 

BirA*. After the culture medium has been supplemented with exogenous biotin, BirA* catalyzes the addition of biotin to 

proteins, which are in close proximity to the POI-BirA* fusion protein. Lysis of the cells and denaturation of proteins is then 

followed by affinity purification of biotinylated peptides, which are analyzed via tandem MS. 

 

Proximity-dependent biotin identification (BioID) 

Whereas both ChIP and PICh rely on harsh crosslinking of chromatin to preserve protein-

DNA and protein-protein interactions, BioID takes advantage of the biotin ligase BirA to 

mark proteins, which interact with, or are located in the vicinity of a POI (Figure 11C) [Roux 

et al., 2012]. In Escherichia coli, this DNA-binding biotin protein ligase regulates the 

biotinylation of a biotin acceptor tag (BAT) of an acetyl-CoA carboxylase and thereby acts as a 

transcriptional repressor for the biotin biosynthetic (bio) operon [Chapman-Smith & Cronan 

Jr, 1999]. The crystal structure of BirA revealed that the protein comprises three distinct 

domains (Figure 12A): upon binding to biotin, the C-terminal domain mediates the 

dimerization of BirA, whereas the N-terminal domain facilitates binding to the 40 bp bio-

operator sequence [Streaker & Beckett, 1998; Chakravartty & Cronan, 2013]. The central 

domain is essential for the two-step biotinylation reaction (Figure 12B): first BirA binds biotin 

and ATP to synthesize biotinyl-AMP with the release of pyrophosphate (PPi). In a second 

step, a conserved lysine residue within the BAT acts as a nucleophile and attacks the mixed 

anhydride bond, resulting in AMP and a biotinylated protein. To circumvent the stringent 

target selectivity of BirA, a promiscuous biotin ligase is used for BioID. This R118G mutant 

BirA (BirA*), which is defective in both self-association and DNA-binding, displays a lower 

affinity for biotinyl-AMP [Kwon & Beckett, 2000]. Importantly, BirA* promiscuously 

biotinylates proteins at primary amines in a proximity dependent manner [Choi-Rhee et al., 

2004; Cronan, 2005]. For BioID, a POI is fused to BirA* and ectopically expressed. Addition 

of excess biotin to the culture medium leads to the selective biotinylation of proteins in close 

proximity of this fusion protein. Subsequently, the cells are lysed and proteins are stringently 

denatured. Finally, biotinylated proteins are subjected to affinity purification via streptavidin- 

or avidin-coupled beads and identified by MS. 
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Figure 12: Crystal structure of BirA and biotin ligase reaction. A) Crystal structure of E. coli BirA monomer. BirA is 

composed of three distinct domains. The C- (dark-green) and N-terminal (light-green) domains mediate dimerization and 

DNA-binding, respectively. The central catalytic domain (light-blue) mediates the formation of activated biotin (biotinyl-

AMP, orange) (PDB: 2EWN). B) Two-step biotinylation reaction as catalyzed by BirA. First, BirA binds to biotin and ATP to 

synthesize biotinyl-AMP. In a second step, this intermediate reacts with the amine group of a lysine residue. 

 

CRISPR/Cas-mediated biotin identification (CasID) 

BioID is a powerful tool to determine dynamic interactions of both DNA-bound and 

unbound proteins. Yet, the original design of this method renders it challenging to probe the 

protein composition of a defined genomic locus if interacting proteins are elusive. Hence, we 

combined the programmable DNA-binding of dCas9 with the promiscuous biotinylation 

activity of BirA*. 

To test the feasibility of our approach, we first targeted BirA* to telomeres as they represent a 

genomic locus, where associated proteins are well-documented [Liu et al., 2004]. While we 

were able to identify the shelterin components TRF2, TIN2 and ACD, we did not detect 

additional proteins of the shelterin complex. One possible explanation for this could be that 

binding of dCas9 to telomeres leads to a sterical clash, which results in selective labeling or 

eviction of individual shelterin subunits. 

We then expanded our method to investigate the local protein composition of MaS sequences. 

Besides known heterochromatic proteins such as MECP2 (methyl-CpG binding protein 2), 

SMCHD1 (structural maintenance of chromosomes flexible hinge domain containing 1) and 

HP1BP3 (heterochromatin protein 1 binding protein 3), we identified the previously 

uncharacterized protein ZNF512 (zinc finger protein 512). Life-cell imaging of an 

overexpressed ZNF512-eGFP fusion revealed that this protein remains associated with MaS 

sequences throughout the cell cycle. Although zinc finger proteins represent a major class of 

mammalian transcription factors [Mitchell & Tjian, 1989], this strong local confinement of 

ZNF512 at transcriptionally inactive mitotic chromosomes, suggests a structural role, rather 
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than transcriptional activation. Additionally, a recent study correlated down-regulation of 

ZNF512 with a poor survival rate of patients with lung adenocarcinoma [Bao et al., 2016]. 

Future research, however, is needed to elucidate the function of this protein. 

 

 
Figure 13: Principle and design of split-CasID. Splitting E. coli BirA* at Q141 results in two catalytically inactive 

fragments (light-green and light-blue). The N- and C-terminally fragment could be fused to Nm-dCas9 and Sp-dCas9, 

respectively. Target-recognition would result in complementation of the BirA*-fragments, reconstituting the biotin ligase 

activity. This approach is likely to drastically reduce background biotinylation (PDB: 2EWN). 

 

Finally, we employed our CasID approach to generate the first dataset that describes the 

protein environment of minor satellite sequences in myoblasts. Notably, we could detect the 

known centromere-associated proteins CENPC (centromere protein C) and PCM1 

(pericentriolar material 1), reflecting the close proximity of centromeres and minor satellites. 

Moreover, comparison of minor- and major satellite associated proteins revealed only a small 

overlap, suggesting a distinct protein composition for either of these repetitive loci. 

Future refinements of the CasID technique could benefit from the recent discovery of a biotin 

ligase from the thermophilic bacterium Aquifex aeolicus (BioID2) [Kim et al., 2016]. Although 

the biotin ligases from both E. coli and A. aeolicus share a similar overall structure, the latter 

lacks a DNA-binding domain and thus is substantially smaller. This difference in size was 
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shown to improve localization of proteins, fused to BioID2. Moreover, it was demonstrated 

that by modulating the length of the linker, connecting BioID2 and the POI, the radius, 

within which the biotinylation reaction occurs, can be adjusted. Hence, fine-tuning of CasID 

experiments is feasible. 

Another critical improvement of CasID could be achieved by the utilization of a split-BirA* 

variant (Figure 13) [De Munter et al., 2017]. Splitting BirA* within a surface-loop at position 

Q141 of the catalytic domain results in two enzymatically inactive fragments. Importantly, it 

was previously demonstrated that forced heterodimerization of these fragments reconstitutes 

the biotinylation activity. Therefore, it is conceivable that orthogonal dCas9 proteins, each of 

them programmed to target consecutive sequences within the same locus and fused to either 

the N- or C-terminal fragment of split-BirA*, could mediate biotinylation of target-associated 

proteins. Although the original design of CasID allows to eliminate background biotinylation 

from the dataset by subtracting all biotinylated proteins that were also identified in a control 

sample, high levels of unspecific biotinylation potentially mask signals from low-abundant 

target proteins. In this context, it is likely that a split-BirA* drastically reduces unspecific 

biotinylation, resulting from unbound dCas9-BirA* molecules. 
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4.2 Abbreviations 

 

2-OG  2-oxoglutarate 

3C  Chromosome conformation capture 

5caC  5-carboxylcytosine 

5fC  5-formylcytosine 

5hmC  5-hydroxymethylcytosine 

5mC  5-methylcytosine 

ac  Acetylation  

AID  Activation-induced deaminase 

APOBEC Apolipoprotein B mRNA-editing enzyme complex  

ATP  Adenosine triphosphate 

BAT  Biotin acceptor tag 

BER  Base excision repair 

BioID  Proximity-dependent biotin identification 

BirA  Bifunctional ligase/repressor 

bp  Base pair 

Cas  CRISPR associated 

CasID  CRISPR/Cas-mediated biotin identification 

CC  Chromocenter 

CD  Chromosomal domain 

CGI  CpG island 

cHC  Constitutive heterochromatin 

ChIP  Chromatin immunoprecipitation 

cLAD  Constitutive LAD 

CRISPR Clustered regularly interspaced short palindromic repeats 

crRNA  CRISPR-RNA 

CT  Chromosome territory 

Dam  DNA adenine methyltransferase 

dCas9  Catalytically dead Cas9 

DNA  Deoxyribonucleic acid 

DNMT DNA methyltransferase 

DSB  DNA double-strand break 

eGFP  Enhanced GFP 

ESC  Embryonic stem cell 
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FCS  Fluorescence correlation spectroscopy 

fHC  Facultative heterochromatin 

FISH  Fluorescence in situ hybridization 

fLAD  Facultative LAD 

FLIP  Fluorescence loss in photobleaching 

FP  Fluorescent protein 

FRAP  Fluorescence recovery after photobleaching 

GBP  GFP-binding protein 

GFP  Green fluorescent protein 

HAT  Histone acetyltransferase 

HDAC  Histone deacetylase 

HDR  Homology-directed repair 

HKMT  Histone lysine methyltransferase 

HMT  Histone methyltransferase 

HOR  Higher order repeat 

HP1  Heterochromatin protein 1 

KDM  Lysine demethylase 

LAD  Lamina-associated domain 

LINE  Long interspersed nuclear element 

MaS  Major Satellite 

Mb  Megabase 

me  Methylation 

MiS  Minor satellite 

MS  Mass spectrometry 

NAD  Nucleolar-associated domain 

NE  Nuclear envelope 

NHEJ  Non-homologous end joining 

NL  Nuclear lamina 

NLS  Nuclear localization signal 

NUC  Nuclease lobe 

PAM  Protospacer-adjacent motif 

PBS  PUF-binding site 

PI  PAM-interacting domain 

PICh  Proteomics of isolated chromatin segments 

PRC  Polycomb repressive complex 
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PRMT  Histone arginine methyltransferase 

PTM  Posttranslational modification 

PUF  Pumilio 

PZF  Polydactyl ZnF protein 

REC  Recognition lobe 

RNA  Ribonucleic acid 

RNAPII RNA polymerase II 

RVD  Repeat variable diresidue 

SAM  S-adenosyl-L-methionine 

scRNA  Scaffold RNA 

sfGFP  Super-folder GFP 

sgRNA  Single guide RNA 

SINE  Short interspersed nuclear element 

SunTag  SUperNova tag 

TAD  Topologically-associated domain 

TALE  Transcription activator-like effector 

TDG  Thymine DNA glycosylase 

TET  Ten-eleven translocation 

TF  Transcription factor 

tracrRNA Trans-activating crRNA 

TRF1  Telomeric repeat-binding factor 1 

TRF2  Telomeric repeat-binding factor 2 

TRX  Thioredoxin 

TSS  Transcriptional start site 

Xi  Inactive X chromosome 

XIC  X inactivation center 

ZnF  Zinc finger 
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