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Zusammenfassung

Diese Dissertation befasst sich mit nicht-Gaussförmigen Signaturen in Gravitationswellen
(GW), die während der Phase der Inflation erzeugt wurden, sowie in den gegenwärtigen
Materie-, Galaxiendichte- und Geschwindigkeitsfeldern im Universum. Wir zeigen, dass
die nicht-Gaussianität primordialer GW wichtige Hinweise auf ihre Entstehung liefert und
dazu verwendet werden kann, den Energiedichteanteil von “spectator” Eichfeldern zu bes-
timmen, falls die GW durch solche erzeugt worden sind. Als Beispiel betrachten wir ein
Inflationsmodell, das aus einem skalaren Inflaton, einem “spectator” Axion und SU(2)
Eichfeldern besteht. Axion und Eichfelder sind durch eine Chern-Simons-ähnliche Wech-
selwirkung gekoppelt. Dieser Kopplung induziert eine tachyonische Instabilität der Eich-
felder während der Inflation und bewirkt deren Verstärkung. Die SU(2) Eichfelder be-
sitzen einen Tensor-Freiheitsgrad der als Quelle von helikalen GW agiert, die eine starke
Skalenabhängigkeit aufweisen können. Ihre Amplitude kann die der Vakuumfluktuatio-
nen der Metrik deutlich übersteigen. In der vorliegenden Arbeit beschränken wir uns
auf von diesem Modell beschriebene skalenunabhängige GW. Wir untersuchen ihr Bis-
pektrum und stellen fest, dass sie in erster Linie durch eine Selbstinteraktion der Eich-
felder produziert werden. Für 3 . mQ . 4 wird das Tensor Bispektrum durch Beiträge
bei näherungsweise gleichseitigen Konfigurationen dominiert; mQ ist hier die effektive di-
mensionlose Masse des SU(2) Eichfeldes, normalisiert durch die Hubble Expansionsrate
während der inflationären Phase. Die nicht-Gaussianität der Tensormoden, beschrieben
durch das Verhältnis Bh/P

2
h , ist umgekehrt proportional zum Anteil des Eichfeldes an

der Energiedichte. Dieses Verhältnis kann die Größenordnung eins deutlich überschreiten,
etwa dem Wert des Verhältnisses, den wir für die Vakuumfluktuationen der Metrik ermit-
teln. Messungen des Bispektrums sind insbesondere dazu geeignet, den Parameterraum
bei großen Werten von mQ zu untersuchen, während das Leistungsspektrum bei kleinen
mQ effektiver ist.

Durch den Einfluss von nichtlinearen gravitativen Effekten in ihrer Entwicklungs-
geschichte sind gegenwärtige kosmische Dichte- und Geschwindigkeitsfelder im Univer-
sum ebenfalls hochgradig nicht-Gaussförmig. Unter der Annahme einer logarithmischen
Normalverteilung für Materie- und Galaxienverteilung und für ein linear von der Ma-
teriedichte erzeugtes Geschwindigkeitsfeld zeigen wir, dass die Verteilung der paarweisen
Geschwindigkeiten entlang der Sichtline von logarithmisch Normalverteilten Feldern nicht-
Gaussförmig ist und qualitativ mit der von Mehrkörpersimulationen übereinstimmt. Mit
diesen Vereinfachungen können die Momente der Wahrscheinlichkeitsdichtefunktion (PDF)
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x Zusammenfassung

paarweiser Geschwindigkeiten prinzipiell analytisch berechnet werden, was eine genauere
Modellierung ihrer PDF erlaubt. Wir vergleichen das Mono- und Quadrupol Leistungsspek-
trum unserer Simulationen im Rotverschiebungsraum mit der Vorhersage von Kaiser auf
großen Skalen und finden eine gute Übereinstimmung. Wir veröffentlichen ein Computer-
programm, das dazu benutzt werden kann, logarithmisch Normalverteilte Galaxienkataloge
im Rotverschiebungsraum zu erzeugen die dazu geeignet sind, die Kreuzkorrelation zwis-
chen Galaxienpositionen und Gravitationslinseneffekten zu untersuchen, sowie Kovarianz-
matrizen für Leistungs- und Bispektra im Real- und Rotverschiebungsraum zu generieren,
eine nützliche Eigenschaft für zukünftige Experimente wie PFS und Euclid.



Abstract

We study non-Gaussianity of primordial gravitational waves (GWs) generated during infla-
tion, and of present-day matter and galaxy density and velocity fields in the Universe. We
show that non-Gaussianity of primordial GWs is a crucial test of their origin and can be
used to constrain the energy density fraction of spectator gauge fields in the early Universe
if the primordial GWs are sourced by a spectator sector. We consider a particular inflation
model containing a scalar inflaton, and spectator axion and SU(2) gauge fields. The axion
and the gauge fields are coupled to each other via a Chern-Simons like interaction. Because
of this coupling, the gauge fields experience a tachyonic instability during inflation and get
amplified. The SU(2) gauge fields have a tensor degree of freedom which linearly sources
GWs that are helical, and can be strongly scale-dependent. Moreover, their amplitude can
be much larger than vacuum fluctuations of the metric. In this thesis however, we focus on
scale-independent GWs produced in this model. We study the bispectrum of these scale-
independent GWs, and find that its production is dominated by the self-interaction of the
gauge fields. The shape of the tensor bispectrum is approximately an equilateral shape for
3 . mQ . 4, where mQ is an effective dimensionless mass of the SU(2) field normalised
by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the
tensor modes, characterised by the ratio Bh/P

2
h , is inversely proportional to the energy

density fraction of the gauge field. This ratio can be much greater than unity, whereas
we show that the ratio from the vacuum fluctuation of the metric is of order unity. The
bispectrum is effective at constraining large mQ regions of the parameter space, whereas
the power spectrum constrains small mQ regions.

The present-day cosmic density and velocity fields in the Universe are also highly non-
Gaussian due to non-linear gravitational evolution. By assuming the matter and galaxy
density distributions to be log-normal, and the velocity field to be linearly generated from
the matter density field, we show that the pairwise line-of-sight velocity distribution of
log-normal fields is non-Gaussian and looks qualitatively similar to that measured from
N-body simulations. The moments of the pairwise velocity PDF can in principle be ana-
lytically calculated for this simple setting, giving us a handle on modelling of the full PDF.
We compare the redshift space monopole and quadrupole power spectrum for our mock
catalogs, finding a good match with the Kaiser prediction on large scales. We present a
public code to generate log-normal mock catalogs of galaxies in redshift space which can
be used to study the cross-correlation between galaxy positions and weak lensing fields.
Our code is also being used to study power spectrum and bispectrum covariance matrices

xi
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in real and redshift space, which will be useful for upcoming galaxy surveys such as PFS
and Euclid.



Chapter 1

Introduction

1.1 Generating Non-Gaussianity

The observable Universe is homogeneous and isotropic on large scales. It is not only so
smooth today, but was also so far back in the past. Observations of the cosmic microwave
background (CMB) made by the COBE satellite (161; 26) in the 90s, and subsequently by
WMAP (27) and Planck (5), have all confirmed that even when the Universe was only about
400,000 years old (the present age is almost 14 billion years), it was also smooth, in fact
much smoother than today. The small inhomogeneities present at that time, grew in time
by accretion of more matter, to form the structures we see around us today. We can learn
about the composition of the Universe and the nature of gravity by modelling the processes
that lead to amplification of initial inhomogeneities and comparing our predictions with
observations of the CMB and the late time Universe. Accordingly, CMB and the large-
scale structure (LSS) of the Universe serve as two of the main probes of cosmology. In this
thesis, we focus on both of these probes, and explore some pieces of information that can
be extracted using them.

Planck (5) has provided us with precise measurements of the CMB temperature and
polarisation over the whole sky. These measurements are so precise, that we can use them
to determine fluctuations of the temperature or polarisation around their mean value,
even when they are ∼ 10−5 times smaller. According to our current understanding, these
fluctuations represent the fluctuations in density at the time of recombination, which arose
out of quantum fluctuations of a field in the very early Universe (124).

If quantum fluctuations did give rise to the primordial density perturbations, then
these would be expected to be Gaussian. This follows directly from the observation that
the ground state of a quantum harmonic oscillator is a Gaussian (147). Any quantum
field in 3-dimensional space can be written as a sum of quantum harmonic oscillators (at
linear order. If the field is free, i.e. its potential can be written as that of a harmonic
oscillator, this is always true) (140). Because each harmonic oscillator has an amplitude
which is normally distributed, their sum is also normally distributed. Thus, the amplitude
of the quantum field should obey a Gaussian distribution at the lowest order. As long

1



2 CHAPTER 1. INTRODUCTION

as the primordial density fluctuation depends linearly on this quantum field, it should
also obey a Gaussian distribution. Hence, by measuring the deviations of the primordial
density fluctuations from a Gaussian distribution, we can learn about the interactions and
non-linearities of the fields that seeded them during inflation.

The preceding discussion also tells us under what conditions we can expect deviations
from Gaussianity (94; 92). If the quantum field has interactions, either with itself, or with
other fields, such that its potential can no longer be approximated by a harmonic oscillator
potential, we would expect a non-Gaussian distribution. Another way non-Gaussianity can
arise is if the density fluctuations depend non-linearly on the inflaton fluctuations. Finally,
because we do not observe the density fluctuations themselves but their imprint on the
CMB temperature at recombination, non-Gaussianity might also arise if the temperature
is a non-linear function of the density. By studying non-Gaussianity we can probe each
of these possibilities. Nevertheless, the temperature fluctuations of the CMB are actually
almost perfectly Gaussian (5). We will later consider in more detail how this conclusion is
arrived at.

Having understood how non-Gaussianity might arise in temperature or density fluctu-
ations at recombination, let us now consider how non-Gaussianity arises in the late-time
Universe. The late-time Universe is evidently non-Gaussian. The number of regions with
high densities such as galaxies, is much smaller than the number of regions with low den-
sities, a fact confirmed by the emptiness of space. How do we get such a non-Gaussian
distribution starting with the near-perfect Gaussian density distribution at recombina-
tion? The answer is gravity! The density field obeys a non-linear equation of motion
under gravity. Because of this non-linearity, the initial Gaussian field gets converted to a
non-Gaussian field at later times. Let us now see what kind of observables we can use to
test Gaussianity.

1.2 Measuring Non-Gaussianity

A Gaussian distribution can be completely characterised by specifying its mean and disper-
sion. For a real-valued field F (x) in configuration space, this is equivalent to specifying the
mean, 〈F (x)〉, and the 2-point function, 〈F (x1)F (x2)〉. Their Fourier space equivalents
are given by 〈F (k)〉 and the power spectrum, 〈F (k)F ∗(k)〉. A non-Gaussian distribution
is characterised using the higher order moments of the field, namely, the n-point correla-
tion function, for n ≥ 3. The Fourier space equivalents are called bispectrum for n = 3,
trispectrum for n = 4, and so on. In particular, the bispectrum B(k1,k2,k3), is defined as

〈F (k1)F (k2)F (k3)〉 = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3) , (1.1)

where the delta function δD arises from homogeneity of the Universe (see for example (28)
for a detailed discussion of moments of non-Gaussian distributions and their application to
LSS). The argument of the delta function ensures that the three wave vectors that enter the
bispectrum form a closed triangle. Depending on the shape of this triangle, the bispectrum
is assigned a “shape”. The different possible shapes are shown in figure 1.1. Different
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Figure 1.1: Different physical processes during inflation generate non-zero bispectrum in
different shapes (93). Hence, by measuring the amplitude of the bispectrum in different
shapes, we can learn about the physical processes.

shapes arise from different physical processes. For instance, local processes, such as non-
linear sourcing of a field by a Gaussian field give rise to a bispectrum that is peaked in the
squeezed limit (94). This is the case for vacuum fluctuations of the metric ((108; 109; 64);
also chapter 2). On the other hand, processes that involve higher derivative interactions of
Gaussian fields, typically produce an equilateral shape for the bispectrum, as the sources
become negligible after horizon crossing (see, for example (22), for a comprehensive review
on different shapes of non-Gaussianity produced in different models). Thus, the shape of
the bispectrum contains information about the physics of inflation.

The bispectrum is the first non-zero moment for a non-Gaussian distribution, in the
sense that if the bispectrum is non-zero the distribution is non-Gaussian. Note that the
converse is not necessarily true. Thus, if we measure a non-zero bispectrum, we can be sure
that the distribution is non-Gaussian. Even restricting ourselves to the bispectrum, a zero
value for the bispectrum of one shape does not rule out a non-zero bispectrum for other
shapes. Moreover, accounting for the triangle condition still leaves us with 3 parameters
that characterise the bispectrum, corresponding to the three variables required to describe
the triangle k1 + k2 + k3 = 0. If we have N bins in k for the power spectrum, we can
measure ∼ N3 values for the bispectrum. For a CMB experiment like Planck N & 102

while a similar number is expected for future galaxy redshift surveys such as Euclid. Thus,
the full bispectrum will be characterised by & 106 values. Therefore, measurement of the
bispectrum is typically much more difficult than measuring the power spectrum. This is one
reason why most of our current constraints in cosmology come from the power spectrum.

One way to simplify the measurement of bispectra is to use templates (94; 17). Tem-



4 CHAPTER 1. INTRODUCTION

plates are just approximations to the predicted bispectrum, which are separable into prod-
ucts of the side lengths, to enable easier numerical manipulation when going from a 3D
Universe to the 2D projection of the CMB. We can “match” these templates against the ob-
served bispectrum, to obtain the amplitude of the bispectrum. This amplitude is typically
denoted by fNL (94) and is a measure of the skewness of the distribution. For instance,
the curvature perturbation generated during inflation, Φ(x) can be written as (94)

Φ(x) = φ(x) + fNL[φ2(x)−
〈
φ2(x)

〉
] (1.2)

where φ(x) is a Gaussian field with zero mean, typically the quantum fluctuation δφ(x),
of the inflaton. From equation (1.2), we see that the skewness of Φ(x) ≡ 〈(Φ(x))3〉 is
∝ fNL. Template-matching works quite well for CMB observables as the perturbations are
small and so tree-level perturbation theory can be used to obtain templates. For LSS, non-
linear gravitational evolution means that tree-level perturbation theory must break down
at some scale and so a reliable template is hard to obtain. Even when one has a tree-level
prediction, there are issues such as bias (51) and redshift space distortions (80; 85; 60; 148),
which complicate the matching of observations to templates.

Hence, the gold standard for analysing the non-Gaussian distribution of late-time cos-
mic density and velocity fields is N-body simulations (see (18; 50) for comprehensive re-
views). These are simulations that trace the non-linear dynamics of dark matter parti-
cles through cosmic time, as they cluster into dark matter halos, pancakes or filaments.
The starting point of such simulations is typically a Gaussian distribution of dark mat-
ter particles, as observed in the CMB, figure 1.2, with velocities set by either the linear
continuity equation (equation (4.8)) (184) or by 2nd order Lagrangian Perturbation The-
ory (157). Figures (1.3)–(1.4) show slices through such a simulation. On large scales,
the matter distribution maintains its Gaussianity because of linear evolution. On smaller
scales (figures (1.3)–(1.4)), non-Gaussianity starts becoming visible, even by eye. N-body
simulations have been extensively used to study properties of halo clustering and mo-
tions (30; 2; 12; 42; 58) and lensing of light as it passes through the cosmic web (2). In
recent years, they have also been used to tackle the particle nature of dark matter, by
exploring imprints of dark matter mass on, for instance, its clustering properties (160).

For the purposes of this thesis, the most striking feature of N-body simulations is the
pronounced non-Gaussianity of the dark matter distribution. Even comparing figure 1.2
and figure 1.3 by eye, convinces one of the non-linear nature of cosmological gravity. It
is instructive to also compare this to the observed distribution of galaxies from the Sloan
Digital Sky Survey (SDSS) (103), figure 1.5. Although there are a bunch of caveats in
inferring the dark matter distribution from a galaxy map (such as redshift space distor-
tions which we review in chapters 2, 4 and appendix D, or bias (51)), on large scales we
expect them to trace each other. We can recognise features such as big groups of galaxies,
which correspond to massive halos, and extended structure corresponding to pancakes and
filaments. This correspondence gives us some confidence that our basic model starting
with the initial conditions set at recombination is consistent.

Having a set of N-body simulations at hand, we can now try to describe the non-
Gaussianity in the dark matter/halo distrbution. Once again we can measure the bispec-
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Figure 1.2: Rectangular projection of the whole CMB sky as seen by Planck. Temperature
anisotropies of the CMB at recombination almost perfectly obey a Gaussian distribu-
tion (5). This can be seen in the almost equal number of hot (red) and cold (blue) spots
on any scale. (Of course, any symmetric distribution would produce equal numbers of hot
and cold spots. Nevertheless, this is a rudimentary check of Gaussianity).

Figure 1.3: Cosmic web as output in the Millennium simulation at z = 0 (165), for a
1500 × 1125 (Mpc/h)2 slice. We see the non-Gaussian distribution of dark matter, in
contrast to that seen in the CMB temperature map in figure 1.2.
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Figure 1.4: Zoom-in version of figure 1.3 (165), for a 94 × 70 (Mpc/h)2 slice. The bright
central region shows a dark matter halo, while the long, extended pink lines denote fila-
ments. We also see dark spots, which correspond to voids, or regions where matter density
is less than the average density in the Universe.

Figure 1.5: Distribution of galaxies out to z = 0.15 as measured by the SDSS (103).
Comparing to figure 1.3 we see a qualitatively similar distribution.
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Figure 1.6: Log-normal fit (black solid) to 1-point PDF of matter density as measured
from N-body simulations (points). Left panel shows a Gaussian smoothing, while right
panel shows a top-hat smoothing function, applied to the density field. Different colours
show different values of the smoothing radius, R = 2h−1Mpc (cyan), 6h−1Mpc (red) and
18h−1Mpc (green) (88). Dashed lines show the log-normal fit using σnl predicted from a
fitting formula by Peacock and Dodds (133).

trum. The dark matter and halo (galaxy) bispectrum has been measured from N-body
simulations (62) (redshift surveys (66; 67; 159; 158)). However, because of the systematics
mentioned above in inferring the dark matter clustering from galaxies, it is much more dif-
ficult to obtain constraints on cosmology from such measurements on observations. Also,
the non-Gaussianity in matter distributions is much larger than in CMB. Consequently,
the trispectrum and higher order correlation functions are also important. It might then
be more useful to choose a different approach to describe the non-Gaussianity in this case.
We can do this for example, by using a simple non-Gaussian distribution to characterise
the density field. In chapter 4 we use a log-normal distribution. As shown in figure 1.6, this
is a good description of the matter and halo density fields obtained in N-body simulations.
Our choice of the log-normal distribution is also motivated by the fact that a log-normal
field is quite simpy related to a Gaussian field, which is easy to simulate.

1.3 Why measure Non-Gaussianity?

Finally, let us consider why we want to measure non-Gaussianity at all. Whether from
CMB or from LSS, the primary questions of interest in cosmology are - what constitutes
our Universe? How did it begin? How will it end? In addition, we do not yet know
what exactly caused inflation, and if in fact it did happen. An answer to these questions
can be given if we can measure fNL ∼ 1 and tensor-to-scalar ratio r > 0. Temperature
measurements of the CMB have been exhausted to their cosmic variance limits in the
Planck analysis (5). Once B-modes have been observed, as we show in chapter 3, it will
be crucial to verify that they originate from vacuum fluctuations of the metric, if we want
to claim that they were generated during single scalar field slow roll inflation.
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Figure 1.7: Temperature power spectrum measured by Planck (5). The overall ampli-
tude, tilt, relative heights and locations of the peaks are used to derive constraints on
cosmological parameters.

By measuring the power spectrum of temperature fluctuations in the CMB (figure 1.7),
and of galaxy density fluctuations in LSS (figure 1.8), we have now arrived at what can be
called a concordance model of cosmology, the ΛCDM model. According to this model, the
Universe consists of about 5% baryonic matter which is what all stuff around us is made
of, 27% dark matter which interacts only gravitationally and is necessary to explain galaxy
rotation curves, and the rest dark energy (139; 143), which acts like “repulsive” gravity
and is responsible for the present-day accelerated expansion of the Universe. However, we
still do not know anything about the particle content of either dark matter or energy. One
way to progress in this regard is to make more precise measurements of their properties,
such as equation of state for dark energy, or mass of dark matter particles. Figure 1.9
shows the improvement in constraints obtained when using the bispectrum alone, or in
combination with the power spectrum. We can see that constraints can improve by almost
as large as 70%, for some parameters. This is not entirely surprising, since a 3-dimensional
function should contain more information than a 1-dimensional function.

The rest of this thesis is organised as follows : in chapter 2 we lay out the basics of single
field slow roll (SFSR) inflation and generation of scalar and tensor perturbations during
SFSR inflation. We also describe the bispectrum of tensor modes expected from non-linear
self-interactions in GR. At the end, we briefly consider the evolution of matter density and
velocity fields in the late-time Universe, and elaborate on the differences between observed
and true positions of galaxies due to their peculiar velocity.

Chapter 3 explores the imprint of spectator fields on tensor metric perturbations during
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Figure 1.8: Baryon Acoustic Oscillations in the monopole of the CMASS galaxy power
spectrum measured by the BOSS collaboration (16) for 3 years of analysis. The shape of
the oscillatory feature is used to derive constraints on cosmological parameters.
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Figure 1.9: Using the bispectrum alone can also significantly improve constraints compared
to using the power spectrum alone. However, combining both power spectrum and bispec-
trum can significantly shrink contours, for example as for σ8 − ΩΛ, or break degeneracies,
as for b1 − ΩΛ. In addition, some parameters, such as the second order bias b2, cannot be
measured using the power spectrum alone (150).
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inflation. We show that a large amplitude of helical, scale-invariant tensor modes can be
generated by spectator SU(2) gauge fields during inflation in a model containing a scalar
inflaton, a pseudoscalar axion and SU(2) gauge fields, at linear order. We also calculate
the bispectrum of these tensor modes. A large bispectrum is generated in this model at
tree-level as the gauge fields contain a tensor degree of freedom, and its production is
dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian
gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape
for 3 . mQ . 4, where mQ is an effective dimensionless mass of the SU(2) field normalised
by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the
tensor modes, characterised by the ratio Bh/P

2
h , is inversely proportional to the energy

density fraction of the gauge field. This ratio can be much greater than unity, whereas
the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum
is effective at constraining large mQ regions of the parameter space, whereas the power
spectrum constrains small mQ regions.

In chapter 4, we present a public code to generate log-normal realisations of galaxy
density fields in redshift space. We draw galaxies by Poisson-sampling the log-normal
field, and calculate the velocity field from the linearised continuity equation of matter
fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields
that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog,
showing that the measured two-point correlation function and power spectrum in real
space agree with the input precisely. We find that a linear bias relation in the power
spectrum does not guarantee a linear bias relation in the density contrasts, leading to a
cross-correlation coefficient of matter and galaxies deviating from unity on small scales.
We also find that linearising the Jacobian of the real-to-redshift space mapping provides a
poor model for the two-point statistics in redshift space. That is, non-linear redshift-space
distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift
space shows a damping on small scales that is qualitatively similar to that of the well-
known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal
mock does not include random velocities. This damping is a consequence of non-linearity
in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG,
as commonly done in the literature, is misleading.

In chapter 5 we summarize this dissertation and present the outlook.





Chapter 2

Theory

In this chapter, we will consider how inflation generates primordial fluctuations and what
their observational consequences are. We first briefly review homogeneous cosmology and
inflation, before moving on to generation of tensor perturbations by inflation. We also
include a small section on the dynamics of perturbations of a scalar field in a de-Sitter
Universe, to give an idea of how inflation stabilises quantum fluctuations. In general quan-
tum fluctuations exist even in flat spacetime. However, they are generated and decay
spontaneously. Because of the accelerated expansion of the Universe during inflation how-
ever, they can be sustained and give rise to structure in the Universe. This is what we
mean by stabilisation of quantum fluctuations in this chapter. Towards the end, we discuss
the present-day cosmic density and velocity fields. Most of this discussion can be found in
standard textbooks on cosmology, such as (123; 23).

2.1 Homogeneous Cosmology

The field equations for gravity are given by the Einstein equation,

Gµν =
Tµν
M2

P

, (2.1)

where MP ≡ 1/
√

8πG is the reduced Planck mass and G is Newton’s gravitational constant
and we have set the speed of light c = 1. Gµν is called the Einstein tensor, and is made up of
second (and smaller) derivatives of the metric tensor gµν . As a very rough approximation,
it represents the curvature of spacetime. The energy-momentum Tµν of a system acts
as a source for the gravitational field. We also need to know how particles move on a
curved spacetime. This information is also encoded in equation (2.1). From the Bianchi
identities, we know that Gµν;ν = 0. The semi-colon here denotes the covariant derivative,
and repeated indices need to be summer over. This implies Tµν;ν = 0, which is just a
statement about conservation of energy-momentum and leads to the geodesic equation for
particles. Equation (2.1) then says that the energy-momentum of a system curves spacetime
which determines how particles move on it and in turn modify the energy-momentum. This

13
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equation can be obtained by varying the action S

S =

∫
d4x
√
−g
[M2

P

2
R + Lm

]
(2.2)

where g is the determinant of the metric tensor which is required to make the volume
element

√
−g d4x co-ordinate invariant, and Lm denotes the Lagrangian density of matter

and R is the Ricci scalar.
For a homogeneous and isotropic Universe, the spacetime interval between two events

can be written as

ds2 = −dt2 + a2(t)δijdx
idxj (2.3)

where a(t) represents the scale factor, and describes the expansion or contraction of spatial
hypersurfaces. For such a Universe, there’s only one variable in the Ricci scalar, a(t). For
the matter part of the Lagrangian density, we can approximate matter as a perfect fluid
on large scales. In this case, it can be characterised using its energy density ρ, pressure p,
and its 4-velocity, uµ. The energy-momentum tensor of a perfect fluid is written as

T µν = (ρ+ p)uµuν − pδµν (2.4)

where the equation of state w = p(ρ)/ρ depends on the properties of matter and must be
specified separately. For instance for radiation w = 1/3 while for matter w ≈ 0 as the
energy density of matter (which consists of the rest-mass energy too) is much larger than
its pressure. Again, for a homogeneous and isotropic Universe, ρ = ρ(t) is a function of
time only and does not depend on position. Thus, varying equation (2.1) w.r.t. the scale
factor a and the energy density ρ we arrive at the Friedmann equations,( ȧ

a

)2

+
K

a2
=

ρ(t)

3M2
P

, (2.5)

ρ̇(t) = −3
ȧ

a
(ρ(t) + p(t)) , (2.6)

where ȧ
a
≡ H(t) is called the Hubble parameter, and K is a constant proportional to the

curvature of spatial hypersurfaces. It’s value is very close to 0 today, indicating a flat
Universe. We set it to 0 for the rest of this thesis.

For a homogeneous background, these equations are sufficient to describe the evolution
of the Universe, once we set the initial conditions. This is typically done, by setting
the present day value of the scale factor a(t0) = 1, where a ‘0’ in the subscript denotes
quantities evaluated at the current epoch. We can also measure the present value of
H(t0) ≡ H0 = 100h km s−1Mpc−1, with h ∼ 0.7 at present. Since the Universe is currently
expanding and H0 > 0, a(t) must have been smaller in the past. If the equation of state w
is a constant, one can solve the equations (2.5)–(2.6) to arrive at

ρ(t) ∝ a(t)−3(1+w) , (2.7)
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from which we conclude that the energy density of radiation falls off as ργ ∝ a−4 while
that of matter falls off as ρm ∝ a−3. Consequently, if we look back far enough into the
past, the Universe is dominated by radiation.

Before concluding this section, let us also briefly define the notion of horizons. We
will frequently use the notion of the Hubble horizon or just horizon. This is given simply
by 1/H(t), and is a measure of the curvature scale of the whole Universe. Processes that
happen on length scales much smaller than this scale are not affected by general relativistic
effects and so can be treated in a Newtonian approximation. We will make frequent use of
this scale later on. Another horizon is the (comoving) particle horizon. This represents the
maximum distance that a photon can travel between an initial time ti and final time tf .

It is given as, ∆r =
∫ tf
ti
dt/a(t). If we choose ti = 0, i.e. at the beginning of the Universe,

this distance represents the maximum distance that a photon could have travelled till the
time tf . Thus, it is a measure of the length scales up to which causal processes can operate
in the Universe.

2.2 Inflation

The theory of inflation arose out of attempts to solve the so-called horizon and flatness
problems among some others (71; 166; 102; 13). Let us briefly look at these problems.

Equations (2.5)–(2.6) imply that the rate at which the scale factor changes in a homo-
geneous Universe is given as

ä

a
= Ḣ +H2 = − 1

6M2
P

(ρ+ 3p). (2.8)

If the Universe consists of matter/radiation for which w is always > −1/3, then ρ +
3p > 0, and ȧ is always decreasing in time. The horizon problem arises from causality
considerations of the CMB. As remarked in chapter 1, the CMB appears to be isotropic
on scales of the size of the observable Universe (∼ 3000h−1 Mpc), and shows non-zero
correlations even on such large scales. Why might this be a problem? The size of the
(comoving) particle horizon at recombination is given as

∆rrec =

∫ trec

0

dt

a(t)
=

∫ arec

0

da

a(aH)
(2.9)

where (aH)−1 ∝ a(1+3w)/2 for a Universe dominated by a fluid with equation of state w and
arec is the scale factor of the Universe at recombination. Using this, we find that ∆rrec =

2
1+3w

a
(3w+1)/2
rec rhomo, where rhomo ≡ c/H0 is the (comoving) size of the homogeneous region at

recombination, needed to produce the homogeneous region of the size we see today (which
stays constant and so, is just the size of the Universe today). From observations of the CMB
we know that arec ≈ 1/1100 and so the size of the particle horizon at recombination is always
smaller than the required homogeneous region at recombination, as long as w � −1/3.
Therefore, it is not possible to have any causal contact at recombination between the
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Figure 2.1: The horizon problem and its inflationary solution (23). Without inflation,
light cones for different patches on the CMB sky do not intersect in the past. With an
inflationary stage, the comoving Hubble horizon expands going back in past, bringing the
two light cones in contact.

regions which appear to us at the same temperature today. This is also illustrated in
figure 2.1, which also gives us a hint of how to solve the horizon problem. We will see
below that inflation increases the size of the particle horizon long before recombination,
so that even points which were not in causal contact at recombination, were still causally
connected earlier on.

Next we have the flatness problem. From the Friedmann equation, equation (2.5) we
can write the spatial curvature constant as

K = a2H2
[ ρ

3H2M2
P

− 1
]
≡ ȧ2[ΩT − 1], (2.10)

where we have defined ΩT as the ratio of the total energy density of the Universe to the
critical energy density, ρcr = 3H2M2

P . Because K is a constant, we can use the above

equation to get |ΩT − 1|0 = ȧ(t)2

ȧ2
0
|ΩT (t) − 1|. We also know from equation (2.8) that

ȧ is decreasing in time if w > −1/3. In this case, any deviation from flatness grows
with time. However, observations show that the Universe is almost exactly flat today
and ΩK ≡ 1 − ΩT = 0.000 ± 0.005 (95%, PlanckTT+low P+lensing+BAO) (5). This
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implies that the early Universe must have been very flat in order to see the current level
of curvature. The flatness problem is then, what caused the early Universe to be this flat?

It is evident from the above discussion that all these problems can be alleviated if we
have a dominant energy component in the Universe for which w < −1/3. If this is the
case, we also see from equation (2.8) that the Universe actually undergoes an accelerated
expansion. This stage of accelerated expansion is called inflation. If w < −1/3 then

∆rrec = 2a
(3w+1)/2
rec /(1 + 3w)rhomo can be equal to or greater than rhomo, thus solving the

horizon problem. Also, in this case, ȧ can increase in time and so even if we start off
with a non-zero curvature of the Universe, we can end up with a flat Universe as ȧ(t)/ȧ0

might be � 1. The conditions that the horizon and flatness be successfully resolved lead
to conditions on the length of a phase of accelerated expansion of the Universe. It can be
shown that inflation must last more than 60 e-folds, i.e. the Universe gets expanded by a
factor of e60 during inflation. One of the most interesting features of inflation is that it also
provides a natural mechanism to generate primordial perturbations in the Universe (124).

We can anticipate that if there are some density perturbations in the Universe, gravity
will cause them to get amplified as overdense regions will attract matter causing them to
become more overdense with regard to the average Universe. Thus, once perturbations
are laid down, they get amplified and can give rise to all the structure in the Universe
via gravitational evolution. Inflation helps in this regard by providing a mechanism for
quantum fluctuations of the metric to become stable and thus seed the structure of matter
in the Universe. We will study those in more detail in the next section.

2.2.1 Single Scalar Field Slow-Roll Inflation

Let us briefly understand how a state of accelerated expansion can be achieved. In the most
common models, it is achieved using a scalar field, called the inflaton and which we denote
by φ(t,x). We can write the inflaton field as φ(t,x) = φ̄(t) + δφ(t,x), where φ̄(t) is the
background value which is only dependent on time, and δφ is a small perturbation around
the background value, which is a function of both time and position. This perturbation
will be assumed to be of quantum origin. Assuming a potential V (φ) for the inflaton, we
can write the action as

S =

∫
d4x
√
−g
[M2

P

2
R− 1

2
gµν∂

µφ∂νφ− V (φ)
]

(2.11)

from which we find the equation of motion for φ as

�φ̄ = V,φ ⇒ ¨̄φ(t) + 3H ˙̄φ+ V,φ = 0 (2.12)

which is just the Klein-Gordon equation for a time-dependent (only) scalar field, written in

an expanding spacetime. Here V,φ ≡ dV (φ̄)
dφ

. This represents the equation of a damped har-
monic oscillator, with the damping term proportional to H. The expansion of the Universe
acts as a “frictional” force acting against the “velocity” of the field, or opposing change in
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Figure 2.2: The inflaton field (red) rolls down its potential (23). A period of inflation
can be realised in either of the two regions shown by arrows under the x-axis, where the
potential energy is � than the kinetic energy of the inflaton. The flatness of the potential
controls the duration of inflation. A flatter potential allows for a longer duration, resulting
in a flatter Universe, and a bigger causal region at the beginning of inflation, needed to
solve the horizon and flatness problems.

the value of the field. It is this feature that also stabilises the quantum fluctuations of the
field. But more on that in the next section.

Figure 2.2 shows a schematic representation of the inflaton as it “rolls” down its po-
tential. The energy-momentum tensor for a field φ is given by

T µν =
∂L

∂(∂µφ)
∂νφ− Lδµν (2.13)

which for a homogeneous and isotropic scalar field, reduces to the energy-momentum tensor
of a perfect fluid with pressure pφ and energy density ρφ given as,

pφ =
φ̇2

2
− V (φ) , ρφ =

φ̇2

2
+ V (φ) , (2.14)

so that the equation of state

wφ =
φ̇2

2
− V (φ)

φ̇2

2
+ V (φ)

. (2.15)

If the inflaton is slowly-rolling, then φ̇2/2 � V (φ), and wφ → −1, which leads to the
accelerated expansion of the Universe. In figure 2.2, the regions shown by arrows under
the x-axis correspond to epochs where this condition is satisfied, and inflation happens.
We will assume throughout that the inflaton is slowly-rolling and dominates the energy
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density of the Universe. In the next chapter, we consider the observational consequences
of spectator gauge fields present in the Universe during inflation. There we will not specify
the form of the potential V (φ) but assume that a scalar inflaton exists and drives the
accelerated expansion of the Universe.

2.3 Quantum Fluctuations during Inflation

The study of quantum fluctuations during inflation can be most easily divided into study
of three components - scalar, vector and tensor fluctuations. These are defined by their
transformation properties under rotations on a 3-dimensional spatial hypersurface. Because
of the decomposition theorem, these three types are completely decoupled from each other
at the linear level (or first order). Thus, scalar fluctuations are only sourced by the scalar
part of the energy-momentum tensor, tensor fluctuations by the tensor part and so on. In
general however, if no source exists, vector perturbations decay as 1/a(t) because of the
expansion of the Universe and so we can neglect them. In this section we closely follow
the treatment laid out in (22).

2.3.1 Scalar Fluctuations

A thorough study of scalar fluctuations is fascinating but tedious. Also, in this thesis we
do not consider the details of scalar perturbations at all, so we only explore the dynam-
ics of scalar field fluctuations on a de-Sitter background briefly, to understand how an
accelerating Universe stabilises quantum fluctuations.

We first introduce the new perturbation variable δ̃φ ≡ aδφ, which is the canonical
degree of freedom in an FRW background. If the perturbation δ̃φ represents quantum
fluctuations, we need to promote this variable to an operator and decompose it into its
Fourier components, defined on the comoving background,

ˆ̃δφ(η,x) =

∫
d3k

(2π)3/2
[uk(η)âke

ik·x + u∗k(η)â†−ke
−ik·x] (2.16)

where η is conformal time and âk, â†k are the annihilation and creation operators for a

mode k, which satisfy the commutation relations [âk, â
†
k′ ] = δ(3)(k − k′), [âk, âk′ ] = 0. uk

are called mode functions of the field δ̃φ.
At first order in the perturbations, the Klein-Gordon equation (equation (2.12)) remains

a linear equation in δφ, so we can just write,

�δφ(t,x) =
∂2V

∂δφ2
(2.17)

from which we get

u′′k +

(
k2 − a′′

a
+m2

φa
2

)
uk = 0 (2.18)
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where m2
φ ≡ ∂2V/∂φ2 is the effective mass of the inflaton and ′ denotes derivative w.r.t.

the conformal time η. For a de-Sitter background, the Hubble parameter H is exactly
constant, so that a(η) = −1/Hη, and

a′′

a
−m2

φa
2 =

2

η2

(
1− 1

2

m2
φ

H2

)
. (2.19)

Using this in equation (2.18), we get

u′′k +

(
k2 −

ν2
φ − 1/4

η2

)
uk = 0 (2.20)

where we have introduced ν2
φ ≡

(
9
4
− m2

φ

H2

)
. If νφ is constant in time, which is expected

for a flat enough potential, equation (2.20) is a Bessel equation, whose general solution for
real νφ reads

uk(η) =
√
−η [c1(k)H(1)

νφ
(−kη) + c2(k)H(2)

νφ
(−kη)] (2.21)

where H
(1)
νφ and H

(2)
νφ are Hankel functions of the first and second kind respectively, and

c1(k) and c2(k) are functions set by the initial conditions.
The initial conditions are set by requiring that far enough in the past the mode functions

have a very short wavelength, i.e. k/aH → ∞, and so do not “see” the curvature of the
spacetime, essentially behaving as vacuum fluctuations in a Minkowski spacetime. We
know that these should look like

uk(η) =
1√
2k
e−ikη , (2.22)

so that c2(k) = 0 and c1(k) =
√
π/2 ei(νφ+1/2)π/2. Thus the full solution for the mode

function becomes

uk(η) =

√
π

2
ei(νφ+1/2)π/2

√
−ηH(1)

νφ
(−kη) . (2.23)

From this we can write the power spectrum of the scalar field fluctuations in the super-
horizon limit (kη → 0) as

Pu = 2(2νφ−3)

[
Γ(νφ)

Γ(3/2)

]2
1

4π2

(
k

aH

)(3−2νφ)

, (2.24)

where Γ(x) is the gamma function at x, and Pu is the dimensionless power spectrum of uk.
Equation (2.24) shows that the power spectrum of quantum fluctuations has a power law
dependence on wavenumber, and a blue tilt - namely, fluctuations with a large wavenumber
have larger amplitude and vice versa. This solution only holds when mφ ≤ 3H/2. When the
inflaton is heavier than (3/2 times) the Hubble scale, the power spectrum gets exponentially

suppressed by a factor e−2m2
φ/H

2

, and quantum fluctuations are not amplified. Thus, if
H = 0 we cannot have amplification of quantum fluctuations (of massive particles).
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Although we obtained a blue tilt in this section, this result does not hold during infla-
tion because the Hubble parameter H is not exactly constant during inflation and metric
perturbations are not exactly 0. What do we get when we allow for non-zero values for
the time variation of both of these? It turns out that in this case the effective mass of
the scalar field becomes negative due to its gravitational interactions with the background

and the metric fluctuation (92; 125), m2
eff(η) = −H

φ̇

d2(φ̇/H)
dη2 '

(
d2V (φ)
dφ2 + 9dH

dt

)
. Using the

slow-roll condition, we obtain dH/dt ≈ −1/6V (dV/dφ)2 = −m2
φ/3. Thus the effective

mass of the scalar field fluctuations becomes m2
eff = −2m2

φ. The tilt of the spectrum is
controlled by the sign of m2

eff, and so becomes negative too, with the magnitude being
controlled by the intrinsic mass of the scalar field. This is what is observed in the CMB,
and the scalar spectral index ns = 0.96 (5). A spectral index of 0.96 was predicted already
in the 1980s (124) and its discovery constitutes one of the strongest proofs of a quantum
origin of the Universe.

2.3.2 Tensor Fluctuations

Now we consider tensor fluctuations during inflation. Quantum fluctuations of the scalar
inflaton cannot source tensor perturbations of the metric at first order. They do source
them at second order, but their magnitude is quite small (25). In this section we will
just consider the quantum mechanical generation of tensor metric perturbations, and their
properties. To study the generation of primordial GWs from inflation, we first start with
a perturbed metric in a Cartesian co-ordinate system,

ds2 = −dt2 + a(t)2[δij + hij(t,x)]dxidxj (2.25)

where hij denotes the perturbation to the spatial part of the metric. In general, for a
symmetric metric, hij contains 6 independent components. However, the irreducible tensor
perturbations are transverse, hij,i = hij,j = 0 and traceless, δijhij = hii = 0. By using these
conditions, we can eliminate 4 of the 6 components in hij to get 2 independent components.
It is these perturbations that we observe as GWs. By homogeneity and isotropy of the
Universe, we can choose to orient our axes such that the GWs always propagate in the
z-direction. In this case, the 3x3 tensor has elements hzz = 1, hxz = hyz = 0, so that
it has only 4 independent components which, by transversality and tracelessness, reduce
to 2 independent components. These two components represent the two polarisations of
GWs. These polarisations produce different squeezing and stretching actions on a ring of
particles, arranged perpendicular to their propagation, as shown in figure 2.3.

Substituting the above metric into the Einstein equation, it can be shown that the
metric perturbation hij obeys the following equation of motion in Fourier space,

h′′ij(η,x) + 2H(η)h′ij(η,x)−∇2hij(η,x) = 0 (2.26)

where H ≡ a′/a and hij ≡ hij(k, η) and the Laplacian is w.r.t. the comoving co-ordinates.
We can decompose the tensor perturbations into a left- and right-handed polarisation as

hij(η,x) =

∫
d3k

(2π)3
eik·x[hL(η,k)eLij(k) + hR(η,k)eRij(k)] (2.27)
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Figure 2.3: Gravitational waves come in two polarisations. They are distinguished by their
action on a ring of particles as they pass perpendicular to the plane of the ring. The ’+’
(plus) polarisation (top) causes stretching and squeezing of the ring in the ’+’ direction,
while the ’x’ (cross) polarisation (bottom) deforms it in the ’x’ direction (99).
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where e
L/R
ij (k) are time-independent polarisation tensors in the direction k̂, whose prop-

erties are summarised in appendix B. Using this decomposition in equation (2.26) we
find that each of the modes obeys it independently. If these modes correspond to quan-
tum fluctuations, we can once again promote them to operators as before, and write
ĥα(η,k) = (2/aMP )[ψαk (η)âk + ψ∗αk (η)â†−k], where α = L/R and the pre-factor arises
from requiring a correct normalisation of the mode functions. Substituting this in equa-
tion (2.26), we find

ψ′′α +

(
k2 − a′′

a

)
ψα = 0 (2.28)

which is once again the equation of a harmonic oscillator. The rest of the analysis is
parallel to that of the scalar field (section 2.3.1) , with mφ = 0, as GWs are massless in
GR. In particular, the mode functions are given as (the mode functions are the same for
both polarisations - vacuum fluctuations generate parity-invariant GWs)

ψα(η,k) =
e−ikη√

2k

[
1− i

kη

]
(2.29)

and accounting for both polarisations, the power spectrum of GWs is given as

Pψ =
(aH)2

4π2
. (2.30)

From equation (2.30) we see that the power spectrum of GWs from vacuum fluctuations
is exactly scale-independent in a de-Sitter Universe, and its amplitude gives us a measure
of H, the Hubble parameter during inflation. Thus, once the scalar power spectrum is
measured, measurement of the tensor-to-scalar ratio gives us a measure of the energy scale
of inflation, provided the GWs originate from vacuum fluctuations of the metric. Again,
if H decreases slowly, the power spectrum actually takes on a slightly red tilt.

2.3.3 Bispectrum of GWs in GR

In this thesis we use the Green’s function method to calculate tensor bispectra in all the
chapters. Alternatively, one can use the in-in formalism. The results derived in this section
have been derived previously using the in-in formalism in (109; 108; 64). To calculate
the bispectrum, we need to expand the action (equation (2.11)) to third order in hij or
equivalently ψij ≡ aMPhij/2. The action, third order in ψij, is given as,

S(3) =

∫
d4x

2

aMP

[
ψik,lψjlψij,k −

1

2
ψij,lψklψij,k

]
, (2.31)

which can be derived by a simple but lengthy calculation. Because the Euler-Lagrange
equation is linear in L, we can just add the equation of motion following from the third-
order action to the one from second-order action, equation (2.28), to get

ψ′′pq +

(
−∇2− a

′′

a

)
ψpq = − 2

aMP

[
ψpj,qrψjr +ψpr,lψql,r−ψpq,lrψlr−ψik,qψip,k +

1

2
ψij,qψij,p

]
,

(2.32)
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where all the ψs are functions of (η,x). Following the same method as laid out in detail
in chapter 3, for the right-handed polarisation we find

ψ̂R2 (τ,k) =

∫ τ

−∞
dη G

(2)
ψ (τ, η, k)Ŝpq(η,k)eLpq(k) (2.33)

where G
(2)
ψ (τ, η, k) is the Green’s function for the second order perturbation and is the

same as given in equation (3.27), Ŝpq is a function of two first order tensor perturbations,

ψ̂,

Ŝpq(η,k) = −
∫
d3p1d

3p2

(2π)6
δD(p1 + p2 − k)

2H

MP

ηψ̂p1(η)ψ̂p2(η)Qpq(p1,p2) , (2.34)

with

Qpq(p1,p2) ≡ − eRpl(p1)eRlr(p2)p1qp1r − eRpr(p1)eRql(p2)p1lp2r

+ eRpq(p1)eRlr(p2)p1lp1r + eRlr(p1)eRlp(p2)p1qp2r −
1

2
eRrl(p1)eRrl(p2)p1pp2q . (2.35)

The tree-level bispectrum of right-handed tensor modes is then given by〈
ψ̂R(τ,k1)ψ̂R(τ,k2)ψ̂R(τ,k3)

〉
=
〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
+
〈
ψ̂R1 (τ,k1)ψ̂R2 (τ,k2)ψ̂R1 (τ,k3)

〉
+
〈
ψ̂R2 (τ,k1)ψ̂R1 (τ,k2)ψ̂R1 (τ,k3)

〉
. (2.36)

Let us work out one of these terms in detail. Using equation (2.33), we find

〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
=

H

MP

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)

∫
d3p1d

3p2

(2π)6

δD(p1 + p2 − k3) QRR
pq (p1,p2)eLpq(k3)

〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R1 (η,p1)ψ̂R1 (η,p2)

〉
, (2.37)

where we only use QRR
pq because there are only right-handed first-order operators in the

expectation value (see appendix A for more details). The expectation value is calculated
as〈

ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R1 (η,p1)ψ̂R1 (η,p2)
〉

=
〈
âRk1

âRk2
âR†−p1

âR†−p2

〉
ΨR

1 (τ,k1)ΨR
1 (τ,k2)Ψ∗R1 (η,p1)Ψ∗R1 (η,p2) (2.38)

= (2π)6
[
δk1p1δk2p2 + δk2p1δk2p1

]
ΨR

1 (τ,k1)ΨR
1 (τ,k2)Ψ∗R1 (η,p1)Ψ∗R1 (η,p2) , (2.39)
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where we have defined δk1p1 ≡ δD(k1 + p1). Substituting this expectation value in equa-
tion (2.37) and integrating over the delta functions, we get〈

ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)
〉

= (2π)3δD(k1 + k2 + k3)
H

MP∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)

[
eLpq(k3)QRR

pq (−k1,−k2) + eLpq(k3)QRR
pq (−k2,−k1)

]
ΨR

1 (τ,k1)ΨR
1 (τ,k2)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) . (2.40)

The contraction of the polarisation tensors is given by (appendix A)[
eLpq(k3)QRR

pq (−k1,−k2) + eLpq(k3)QRR
pq (−k2,−k1)

]
= k2

1 Ξ̃2 Ξ , (2.41)

where

Ξ̃ = 1 + r2 + r3 , Ξ =
(1 + r2 + r3)3

64r2
2r

2
3

(r2 + r3 − 1)(r2 − r3 + 1)(−r2 + r3 + 1) , (2.42)

with r2 ≡ k2/k1 and r3 = k3/k1 (11). We find that this contraction remains the same
regardless of the order in which the different k’s appear, and so is common to all three
contributions to the bispectrum in equation (2.36). Note that it is also independent of the
conformal time, so we can take it out of the η integral. This gives us〈

ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)
〉

= (2π)3δD(k1 + k2 + k3)
H

MP

k2
1 Ξ̃2 Ξ

ΨR
1 (τ,k1)ΨR

1 (τ,k2)

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) . (2.43)

We now substitute the first-order mode functions, equation (2.29), into the above equation
to get

ΨR
1 (τ,k1)ΨR

1 (τ,k2)

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) =

e−ik1τ

√
2k1

[
1− i

k1τ

]e−ik2τ

√
2k2

[
1− i

k2τ

] ∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)

eik1η

√
2k1

[
1 +

i

k1η

] eik2η

√
2k2

[
1 +

i

k2η

]
.

(2.44)

Taking −i/kjτ and −i/kjη out from the mode functions we get

ΨR
1 (τ,k1)ΨR

1 (τ,k2)

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) =

e−i(k1+k2)τ

4(k1k2)3τ 2
[1 + ik1τ ][1 + ik2τ ]

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)

ei(k1+k2)η

η2
[1− ik1η][1− ik2η] . (2.45)
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Using equation (3.27), we can substitute Green’s function,

ΨR
1 (τ,k1)ΨR

1 (τ,k2)

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) =

e−i(k1+k2)τ

4(k1k2k3)3τ 3
[1 + ik1τ ][1 + ik2τ ]

∫ 0

−∞

dη

η2
G̃

(2)
ψ (τ, η, k3)

ei(k1+k2)η

η2
[1− ik1η][1− ik2η] . (2.46)

Then the bispectrum of GWs is given as〈
ĥR1 (τ,k1)ĥR1 (τ,k2)ĥR2 (τ,k3)

〉
= (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2 e−i(k1+k2)τ

(k1k2k3)3
[1 + ik1τ ][1 + ik2τ ]

∫ 0

−∞

dη

η2
G̃

(2)
ψ (τ, η, k3)ei(k1+k2)η[1− ik1η][1− ik2η] , (2.47)

where we have used ψij(τ,k) ≡ aMPhij(τ,k)/2. Equation (2.47) is valid for any time
τ . However, to make contact with observations we need to take the super-horizon limit,
kiτ → 0, for all three modes. The function G̃ψ in this limit becomes (equation (3.27))

G̃
(2)
ψ (0, η, k) = Θ(−η)[kη cos(kη)− sin(kη)] , (2.48)

which we can re-write as

G̃
(2)
ψ (0, η, k) =

iΘ(−η)

2

[
eikη(1− ikη)− e−ikη(1 + ikη)] . (2.49)

Taking the super-horizon limit, kiτ → 0, of equation (2.47) and substituting equation (2.49)
in it, the bispectrum becomes〈

ĥR1 (τ,k1)ĥR1 (τ,k2)ĥR2 (τ,k3)
〉

= (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2

(k1k2k3)3∫ 0

−∞

dη

η2

i

2

[
eik3η(1− ik3η)− e−ik3η(1 + ik3η)]ei(k1+k2)η[1− ik1η][1− ik2η] . (2.50)

Following the same procedure as above, we find for the other two terms in equation (2.36)

〈
ĥR1 (τ,k1)ĥR2 (τ,k2)ĥR1 (τ,k3)

〉
= (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2

(k1k2k3)3∫ 0

−∞

dη

η2

i

2

[
eik2η(1− ik2η)− e−ik2η(1 + ik2η)]ei(k1−k3)η[1− ik1η][1 + ik3η] , (2.51)

and〈
ĥR2 (τ,k1)ĥR1 (τ,k2)ĥR1 (τ,k3)

〉
= (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2

(k1k2k3)3∫ 0

−∞

dη

η2

i

2

[
eik1η(1− ik1η)− e−ik1η(1 + ik1η)]e−i(k2+k3)η[1 + ik2η][1 + ik3η] . (2.52)
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Adding equations (2.50)–(2.52), the first term of equation (2.51) is cancelled by the second
term of equation (2.50) while the second term is cancelled by the first term in equa-
tion (2.52) so that we find

〈
ĥR(τ,k1)ĥR(τ,k2)ĥR(τ,k3)

〉
= (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2

(k1k2k3)3

∫ 0

−∞

dη

η2

[ i
2
ei(k1+k2+k3)η(1− ik1η)(1− ik2η)(1− ik3η) + c.c.

]
, (2.53)

which we can simplify to get

BRRR
h (k1, k2, k3) = (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1 Ξ̃2 Ξ

2

(k1k2k3)3
Re

[∫ 0

−∞
i
dη

η2
ei(k1+k2+k3)η(1− ik1η)(1− ik2η)(1− ik3η)

]
, (2.54)

where Re[z] denotes the real part of the complex number z. This is the same result as
obtained via the in-in formalism (108; 109; 64). The integral can be evaluated by choosing
the integration contour to go from −∞(1 + iε) to 0, with ε � 1, to get a convergent
result (108; 109; 64),

(k1k2k3)2BRRR
h (k1, k2, k3) = (2π)3δD(k1 + k2 + k3)

(
H

MP

)4
2 Ξ̃2 Ξ

r2r3

[
Ξ̃−

∑
i>j rirj

Ξ̃
− r2r3

Ξ̃2

]
,

(2.55)
where ri ≡ ki/k1. Note that this choice of the integration contour corresponds to pro-
jecting the vacuum of the interacting theory on to that of the free theory in the in-in
formalism (108; 180). The same choice needs to be made also in the Green’s function
approach. In retrospect, this is not surprising.

In our approach, the time evolution is carried entirely by the second-order operator,
equation (2.33), while states remain stationary. So, the expectation value in equation (2.36)
needs to be evaluated in the vacuum of the interacting theory, the so-called “in” state.
On the other hand, the creation and annihilation operators, âpk and â†pk , are defined in
the vacuum of the free theory, where the higher order source terms (Spq with powers of
ψ ≥ 2) in the equation of motion for ψpq are 0 over all of spacetime. As a result, when

evaluating the expectation values using âpk and â†pk in equation (2.38), we need to project
the “in” state on to the vacuum of the free theory. How do we achieve that? Looking
at equation (2.33) and considering the Heaviside function Θ(τ − η) in Green’s function
(equation (3.27)), we see that as τ → −∞ the second-order operator → 0 (which is
equivalent to the interaction Hamiltonian → 0 in the in-in formalism). Thus, at past
infinity the vacuum of the interacting theory is essentially that of the free theory, and the
projection prescription then follows from that of the in-in formalism (108; 180).
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Figure 2.4: 3D plot of (k1k2k3)2BRRR
h /(PRh )2 for right-handed vacuum fluctuations of the

metric. We only show r3 ≤ r2 and the triangle condition implies that the bispectrum is
non-zero only for r2 + r3 ≥ 1.

In refs. (10; 11) right-handed tensor perturbations are chirally amplified by tachyonic
instability of an SU(2) gauge field, which leads to highly non-Gaussian GWs. There, non-
Gaussianity is characterised using the ratio BRRR

h (k, k, k)/(PR
h (k))2. We can now evaluate

the same ratio for the case of vacuum fluctuations,

BRRR
h,vac(k, k, k)

(PR
h,vac(k))2

= 3.586 , (2.56)

which is of order unity and much smaller than that generated in models with specta-
tor gauge fields (10; 11; 47; 19). Figure 2.4 shows the shape of the tensor bispec-
trum, equation (2.55), normalised by the square of the dimensionless power spectrum,
(k1k2k3)2BRRR

h /(PRh )2, as a function of r2 and r3. We find that it peaks in the squeezed
limit, r3 � r2 ≈ 1, and it is zero in the folded limit, r2 + r3 = 1.
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2.3.4 Mixed Bispectrum of Right- and Left-Handed Vacuum Fluc-
tuations

Parity invariance means that BRRR
h = BLLL

h , BRRL
h = BLLR

h , BRLR
h = BLRL

h , and BLRR
h =

BRLL
h , so that one only needs to calculate 4 out of 8 possible bispectra. As a concrete

illustration, let us now explicitly evaluate BRRL
h (k1, k2, k3) using Green’s functions. We

have, analogous to equation (2.36),〈
ψ̂R(τ,k1)ψ̂R(τ,k2)ψ̂L(τ,k3)

〉
=
〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂L2 (τ,k3)

〉
+
〈
ψ̂R1 (τ,k1)ψ̂R2 (τ,k2)ψ̂L1 (τ,k3)

〉
+
〈
ψ̂R2 (τ,k1)ψ̂R1 (τ,k2)ψ̂L1 (τ,k3)

〉
. (2.57)

Now we need to evaluate all three terms separately. The calculation proceeds exactly as
before

〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂L2 (τ,k3)

〉
=

H

MP

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)

∫
d3p1d

3p2

(2π)6

δD(p1 + p2 − k3) QRR
pq (p1,p2)eRpq(k3)

〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R1 (η,p1)ψ̂R1 (η,p2)

〉
, (2.58)

where we only needed QRR
pq because we have two right-handed operators at first-order in

the bispectrum. Note that we now use eRpq(k) to calculate the second-order operator for
the left-handed polarisation. The expectation value of the first-order fields is given by
equation (2.38). Using that we can write

〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂L2 (τ,k3)

〉
=

H

MP

(2π)3δD(k1 + k2 + k3)[
eRpq(k3)QRR

pq (−k1,−k2) + eRpq(k3)QRR
pq (−k2,−k1)

]
ΨR

1 (τ,k1)ΨR
1 (τ,k2)∫ 0

−∞
dη η G

(2)
ψ (τ, η, k3)Ψ∗R1 (η,−k1)Ψ∗R1 (η,−k2) . (2.59)

For the second term in equation (2.57) we have

〈
ψ̂R1 (τ,k1)ψ̂R2 (τ,k2)ψ̂L1 (τ,k3)

〉
=

H

MP

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k2)

∫
d3p1d

3p2

(2π)6

δD(p1 + p2 − k2) eLpq(k2)
〈
ψ̂R1 (τ,k1)

[
QLR
pq (p1,p2)ψ̂L1 (η,p1)ψ̂R1 (η,p2)

+QRL
pq (p1,p2)ψ̂R1 (η,p1)ψ̂L1 (η,p2)

]
ψ̂L1 (τ,k3)

〉
, (2.60)

where we now use terms containing QLR
pq and QRL

pq in the source function (appendix A)
as we have one right-handed and one left-handed mode in our bispectrum. This can be
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simplified using
〈
ψ̂L1 ψ̂

R
1

〉
=
〈
ψ̂R1 ψ̂

L
1

〉
= 0 to get

〈
ψ̂R1 (τ,k1)ψ̂R2 (τ,k2)ψ̂L1 (τ,k3)

〉
=

H

MP

(2π)3δD(k1 + k2 + k3)

eLpq(k2)
[
QLR
pq (−k3,−k1) +QRL

pq (−k1,−k3)
]
ΨR

1 (τ,k1)Ψ∗L1 (τ,−k3)∫ 0

−∞
dη η G

(2)
ψ (τ, η, k2) Ψ∗R1 (η,−k1)ΨL

1 (η,−k3) . (2.61)

Similarly, for the third term in equation (2.57) we get

〈
ψ̂R2 (τ,k1)ψ̂R1 (τ,k2)ψ̂L1 (τ,k3)

〉
=

H

MP

∫ 0

−∞
dη η G

(2)
ψ (τ, η, k2)

∫
d3p1d

3p2

(2π)6

δD(p1 + p2 − k2) eLpq(k1)
〈[
QLR
pq (p1,p2)ψ̂L1 (η,p1)ψ̂R1 (η,p2)

+QRL
pq (p1,p2)ψ̂R1 (η,p1)ψ̂L1 (η,p2)

]
ψ̂R1 (τ,k2)ψ̂L1 (τ,k3)

〉
, (2.62)

where again we need QLR
pq and QRL

pq . This can be simplified to get

〈
ψ̂R2 (τ,k1)ψ̂R1 (τ,k2)ψ̂L1 (τ,k3)

〉
=

H

MP

(2π)3δD(k1 + k2 + k3)

eLpq(k1)
[
QLR
pq (−k3,−k2) +QRL

pq (−k2,−k3)
]
Ψ∗R1 (τ,−k2)Ψ∗L1 (τ,−k3)∫ 0

−∞
dη η G

(2)
ψ (τ, η, k2) ΨR

1 (η,k2)ΨL
1 (η,k3) . (2.63)

The contraction of polarisation tensors is again found to be the same for all three terms,
and is given by

k2
1

Ξ

Ξ̃2
(1 + r2 − r3)4 , (2.64)

which can be taken out of all the three terms. The minus sign in front of r3 reflects the
breaking of the symmetry inherent in equation (2.57). Then, note that the remaining terms
containing the first order mode functions are exactly the same as in section 3.3, since the
first-order mode functions are the same for left- and right-handed polarisations. Thus, we
obtain

BRRL
h (k1, k2, k3) = (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

k2
1

Ξ

Ξ̃2
(1 + r2 − r3)4

2

(k1k2k3)3
Re

[∫ 0

−∞
i
dη

η2
ei(k1+k2+k3)η(1− ik1η)(1− ik2η)(1− ik3η)

]
, (2.65)
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which, after evaluating the integral, yields

(k1k2k3)2BRRL
h (k1, k2, k3) = (2π)3δD(k1 + k2 + k3)

(
H

MP

)4

2 Ξ

Ξ̃2

(1 + r2 − r3)4

r2r3

[
Ξ̃−

∑
i>j rirj

Ξ̃
− r2r3

Ξ̃2

]
, (2.66)

which is again the same as that in the in-in formalism (108; 109; 64). Figure 2.5 shows
the shape of the mixed bispectrum, equation (2.66), normalised by the power spectrum,
as in figure 2.4. Note that we show the full range of 0 ≤ r2 ≤ 1 because the bispectrum
is no longer symmetric in r2 and r3. While the bispectrum of three right-handed modes
has large values over most of the r3 − r2 plane, the mixed bispectrum is much closer to
zero for most of the plane, and has a rather sharp peak in the squeezed limit. The ratio
of the mixed bispectrum to the “pure” one can also be calculated (equation (2.66) and
equation (2.55))

BRRL
h (k1, k2, k3)

BRRR
h (k1, k2, k3)

=
(1 + r2 − r3)4

Ξ̃4
=

(1 + r2 − r3)4

(1 + r2 + r3)4
, (2.67)

which in the equilateral configuration, r2 = r3 = 1, evaluates to 1/81, and approaches 1 in
the squeezed limit, r3 � r2 ≈ 1 (64). Note however, that in the opposite squeezed limit,
r2 � r3 ≈ 1, the bispectrum approaches 0. This is because when the left-handed mode has
a wavelength much larger than the other two, the bispectrum is essentially produced by
small-scale self-interactions between two right-handed modes, which are highly correlated.
In the other limit, the bispectrum arises from interactions between a left- and right-handed
mode, which are much less correlated. We also note that this ratio is close to 0 for the whole
plane in models with spectator gauge fields (19; 47; 127; 10; 11), where tensor fluctuations
are dominated by sourced modes of a single helicity, in contrast to vacuum fluctuations.

2.4 Large Scale Structure of the Universe

Once inflation ends, the inflaton settles into the bottom of its potential well, and starts
oscillating about its minimum, losing energy to other fields, giving rise to the standard
matter we see around us today. This phase is known as reheating, but we do not consider
it in further detail here. At the end of reheating, the Universe enters a radiation dominated
phase, and it experiences decelerated expansion. In this phase, the scale factor grows as
a(t) ∝ t1/2 so that the comoving horizon starts growing as (aH)−1 ∝ t1/2. As a result,
modes that exit the horizon during inflation, start re-entering and start accreting matter via
gravitational attraction. However, the Universe is still sufficiently hot that the photons and
baryons are tightly coupled to each other via electromagnetic interactions. Dark matter,
on the other hand, is at most weakly coupled to the rest of the primordial fluid, and can
start clustering as soon it becomes non-relativistic. When recombination occurs, and the
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Figure 2.5: 3D plot of (k1k2k3)2BRRL
h /(PRh )2. We do not restrict to r3 ≤ r2 as the bis-

pectrum is not symmetric in r2 and r3. The tensor bispectrum has a sharp peak in the
squeezed limit, r3 � r2 ≈ 1, but is quite small for most of the r3 − r2 plane.
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baryons decouple from radiation, they cluster into the dark matter potential wells which
are by now sufficiently amplified. In the rest of this section, we consider the equations
describing the process of clustering of dark matter, ignoring effects of radiation or baryons.
This is a reasonably good approximation on large scales (see (56) and references therein).

To describe the dynamics of dark matter, we make use of its distribution function,
f(x,p, η), which represents the number density of dark matter particles at (comoving) po-
sition x, moving with a (comoving) momentum p at some (conformal) time η, and assume
that it is collisionless (this is a good approximation on large scales. However, collisional
dark matter might resolve some small-scale inconsistencies in the ΛCDM paradigm (164;
172; 183)). In this regime, phase-space conservation implies (28),

∂f

∂η
+
p

ma
· ∇f −ma∇Φ

∂f

∂p
= 0 (2.68)

where m denotes the mass of dark matter particles, and Φ is the gravitational potential
at x. This equation is also called the Valsov equation. In general, this equation is quite
difficult to solve as it is a non-linear equation, because Φ is sourced by the density which
is the integral of the distribution function over momentum. One way to make progress is
using the moments of the distribution function.

The moments of the distribution function are defined by integrals over momentum,

Di,j,k,... ≡
∫
d3pid

3pjd
3pk . . .

(2π)3n

pi
ma

pj
ma

pk
ma

. . . f(x,p, η) (2.69)

where n denotes the number of momentum variables integrated over. In particular, the
integral of the distribution function over momentum, without any factors of p/ma gives
the local mass density of the particles, ρ(x, η) ≡ ¯ρ(η)[1+δ(η,x)], which we decompose into
the sum of a homogeneous background value and an inhomogeneous component; n = 1
(ρ(x, η)vi(x, η)) defines the peculiar velocity, vi(x, η), and n = 2 (ρ(x, η)vi(x, η)vj(x, η) +
Πij(x, η)) defines the anisotropic or shear stress, Πij(x, η). The full distribution is then
characterised in principle by an infinite hierarchy of moments, called the Boltzmann hier-
archy. On large scales, dark matter can be treated as a perfect fluid. A perfect fluid is
characterised only by its rest frame mass density, and isotropic pressure. In particular, the
shear stresses in the fluid, described by, Πij(x,p, η) = 0.

Taking moments of the Vlasov equation (equation (2.68)), we find that the equations
for the zeroth and first order moments are given as

∂δ(x, η)

∂η
+∇ · [(1 + δ(x, η))v(x, η)] = 0, (2.70)

∂v(x, η)

∂η
+H(η)v(x, η) + v(x, η) · ∇v(x, η)

= −∇Φ(x, η)− 1

ρ(x, η)
∇j(ρ(x, η)Πij(x, η)) (2.71)
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which are the familiar continuity and Euler equations representing conservation of mass
and momentum respectively. Note that in general, the equation for any moment depends
on the next higher moment. For dark matter however, as long as shell-crossing does not
occur, Πij ≈ 0, and so we can close this system of equations already at this point. The
gravitational potential Φ(x, η) is provided by the Poisson equation,

∇2Φ(x, η) =
3

2
Ωm(η)H(η)2δ(x, η). (2.72)

The set of equations (2.70)–(2.72) then allows us to solve for the evolution of dark matter
density and velocity, and the gravitational potential, once initial conditions are specified.
For initial conditions, we use the fact that at recombination, density fluctuations were of
the order of δ ∼ 10−5, and that they were normally distributed (as set by inflation).

From equation (2.70) and equation (2.71), we see that the density and velocity fields
actually obey non-linear equations. As a result, the initial Gaussian field gets transformed
to a non-Gaussian field as time goes by. In particular, the present day density and velocity
fields are highly non-Gaussian, with locations such as inside galaxies, where the overdensity
is extremely large being much fewer than regions where the overdensity is close to zero or
lesser. From a mathematical point of view as well, we do not expect the distribution
of overdensities to remain Gaussian at all times, as by its definition the overdensity is
constrained to be ≥ −1, while there is no upper limit to it.

What then is the distribution of δ today? To get some hint, let us re-write equa-
tion (2.70) as (43)

∂[1 + δ(x, η)]

∂η
+ v · ∇[1 + δ(x, η)] + [1 + δ(x, η)]∇ · v(x, η) = 0. (2.73)

We can write the partial derivative w.r.t. η as a total derivative to get

d[1 + δ(x, η)]

dη
+ [1 + δ(x, η)]∇ · v(x, η) = 0. (2.74)

Now if the velocity divergence, ∇ · v(x, η) is assumed to be a Gaussian field, it follows
that the density field ρ(x, η) will be a log-normal field. In fact, as we show in chapter 4,
this turns out to be a pretty good approximation for the density fields obtained in N-body
simulations, which solve the full non-linear equations for δ and v. Note that although we
have shown that if the velocity divergence is Gaussian the density will be log-normal, the
converse is not necessarily true. That is, if the density distribution is log-normal this does
not imply that the velocity divergence will be Gaussian. In fact, the velocity divergence is
not Gaussian.

Figure 2.6 shows the 1-point disribution of (volume-weighted) dark matter velocity
divergence measured from an N-body simulation at z = 0 in red (72). We can see clearly
that it is not Gaussian. This is again a signature of the non-linear evolution. It also
means that the density distribution is not likely to be perfectly log-normal. Nevertheless,
when smoothed over sufficiently large scales, the observed galaxy distribution is found to
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Figure 2.6: 1-point PDF of velocity divergence measured from N-body simulations, with
different box lengths (‘L’), resolutions (‘N’) and dark matter models (‘W’ for warm), in-
dicated by different colours (72). The velocity divergence attains its expected maximum
value (dashed) for a void with δ = −1, as it is negative of the overdensity δ in linear theory.
Higher values are signatures of non-linearities.
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Figure 2.7: Count-in-cell of galaxies measured in the DES Science Verification data (blue
points) (41), for different smoothing radii (increasing from left to right), along with their
log-normal (black solid) and Gaussian (magenta) fits. As the smoothing radius increases,
the distribution becomes more Gaussian (cf. figures (1.3)–(1.4)).

be log-normal, as shown in figure 2.7. This is expected because when smoothed over large
scales, the velocity divergence becomes closer to Gaussian, as a consequence of the central
limit theorem.

2.5 Real and Redshift Space

Galaxy redshift surveys, mapping the three-dimensional distribution of galaxies, have been
one of the most powerful tools in modern cosmology (see, for example, (137)). Specifically,
measurements of the galaxy two-point correlation function or its Fourier counterpart, power
spectrum, allow us to extract cosmological information via, e.g., baryon acoustic oscillations
and the redshift-space distortion.

However, the observed galaxy correlation function is not equal to the underlying one,
because of the peculiar motion of galaxies. We observe galaxies using the light emitted by
them. The redshift information from the spectrum of this light can be used to infer the
relative velocity of the galaxy along the line of sight (l.o.s.). This velocity is a sum of two
components - the Hubble velocity from the homogeneous and istotropic expansion of the
Universe and the peculiar velocity, from local gravitational attraction.

Figure 2.8 shows the apparent distribution of a quartet of galaxies to an observer. We
see that galaxies that move perpendicular to the l.o.s. appear in their actual location, but
those that move parallel to the l.o.s. appear shifted depending on the magnitude of their
peculiar velocities. Consequently, the observed clustering of galaxies changes along the
l.o.s. and we use “redshift space” to denote the space where galaxies occupy their observed
positions. In chapter 4, we consider the redshift space 2-point correlation function of log-
normal galaxy distributions, that source peculiar velocities linearly and show the pairwise
velocity PDFs for such a distribution. But before that, in the next chapter, we consider
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Figure 2.8: Redshift space distortion of a system of galaxies as apparent to an observer
(credits: Donghui Jeong). Galaxies ‘1’ and ‘3’ move perpendicular to the line-of-sight
(l.o.s.) and so do not affect their observed redshift. Galaxies ‘2’ and ‘4’ move parallel
to the l.o.s. changing their observed redshift. This makes the isotropic distribution in
real space, anisotropic in redshift space. Depending on the magnitude of velocities, the
distribution appears to be either squashed along the l.o.s. in redshift space (left, Kaiser
effect (85)) or elongated (right, Finger-of-God effect (80)).

the imprints of spectator fields during inflation, on CMB polarisation.





Chapter 3

Tensor Non-Gaussianity from
Axion-Gauge-Fields Dynamics

3.1 Model Setup

The simplest (and most widely studied) models of inflation rely on a scalar field called the
inflaton to achieve a state of accelerated expansion of the Universe. These models have been
extremely successful in predicting CMB temperature and polarisation anisotropies (5; 6;
95; 78). However, the observable Universe contains only one known scalar field - the Higgs
field. The Higgs field can act as the inflaton, but it needs to be either non-minimally coupled
to gravity (31), or its parameters need to be extremely fine tuned (107), to achieve the
level of inhomogeneity observed in the CMB. Thus, for almost all models of inflation, the
primordial Universe cannot consist of an isolated scalar field. These other fields, which do
not participate in inflation (owing to their sub-dominant contribution to the homogeneous
energy density), are called spectator fields. It is natural to ask what happens to spectator
fields as the Universe inflates, and if one can learn something about them via their imprint
on observables. In this chapter, we consider one such field set up, containing a scalar
inflaton field, and spectator axion and SU(2) gauge fields (52). This model was inspired
by the Chromo-Natural Inflation (CNI) model (9).

Chromo-Natural inflation attempts to solve the η-problem in inflation. Homogeneity
and isotropy constraints from the CMB require that the inflaton potential be extremely
flat (|η| ∼ |V ′′/V | � 1, being the slow-roll parameter), for a long period of the field’s
excursion. If one considers a scalar field that drives inflation, the flatness of the potential
is not protected against quantum corrections (which are necessary to explain the CMB
anisotropies), due to lack of any symmetries. Natural inflation (61) was proposed as a
mechanism to overcome this problem by driving inflation with an axion, which naturally
has a flat potential. But reconciling natural inflation with CMB observations requires
a Planckian decay constant of the axion. In Chromo-Natural inflation (9), the inflating
axion is additionally coupled to non-Abelian gauge fields, which allows for a smaller decay
constant of the axion. However, owing to this five-dimensional coupling between gauge

39
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fields and the inflating axion, CNI is unable to simultaneously satisfy the bounds on the
scalar spectral index ns, and tensor-to-scalar ratio r, from Planck (7). On the other hand,
if the inflaton is only coupled to an axion and gauge fields via gravity, it can be shown
that the resulting system does not violate the constraints on the scalar spectral index, ns,
and r (52). In ref. (10), the tensor bispectrum was calculated in such a setup, proposed by
Dimastrogiovanni, Fasiello and Fujita (52), using a particular set of model parameters. In
this chapter we give more detailed derivations of the bispectrum and present the results for
wider parameter space. The rest of the chapter is organised as follows : in section 3.1 we
present details of the model that we consider. In section 3.2 we present the second-order
Lagrangian for the tensor perturbations in our model and their imprint on the B-mode
power spectrum. The third-order Lagrangian is presented in section 3.3 and is used to
calculate the bispectrum of metric fluctuations. A detailed discussion of the deviation of
the bispectrum from the equilateral shape is given in section 3.4. In section 3.5 we explore
parameter regions of the model, which can be potentially observed in upcoming CMB
missions. We conclude in section 3.7.

In the model of ref. (52), inflation is driven by a scalar inflaton φ, which is only min-
imally coupled to a pseudoscalar axion χ and SU(2) gauge fields, Aaµ. The SU(2) gauge
fields and the axion have negligible energy densities compared to the inflaton, and thus are
called “spectator fields”. They are coupled to each other by a Chern-Simons like interaction
χFF̃ . The Lagrangian is then given as,

L = LGR + Lφ + Lspec, (3.1)

Lspec = −1

2
(∂χ)2 − V (χ)− 1

4
F a
µνF

aµν +
λχ

4f
F a
µνF̃

aµν , (3.2)

where Einstein gravity LGR = M2
PlR/2 is assumed, the Lagrangian of the inflaton Lφ is not

specified, and Lspec denotes the Lagrangian of the spectator fields. V (χ) is the potential of
the axion field with the canonical kinetic term −(∂χ)2/2, the gauge field strength tensor
F a
µν is written in terms of the gauge fields as F a

µν = ∂µA
a
ν − ∂νAaµ− gεabcAbµAcν with g being

the self-coupling constant, a dimensionless parameter λ controls the strength of the Chern-
Simons interaction, f is a decay constant of the axion field, and F̃ aµν ≡ εµνρσF a

ρσ/(2
√
−g)

is the dual of F a
µν . In the rest of this section, we discuss the background dynamics, while

perturbations will be studied in the following sections.
In this chapter, we do not solve for the inflaton φ(t), but consider dynamics of the

spectator fields in a de Sitter universe, where the Hubble expansion rate is constant. We
also leave the axion potential V (χ) unspecified by assuming that it supports slow-roll of
the background axion χ0(t) with the aid of the coupling to the SU(2) fields. While these
assumptions are far from generic, they still capture the essence of physics of generation
of non-Gaussianity, and are observationally relevant because they produce scale-invariant
GWs.

As shown in (9; 111), while the background axion slowly evolves, the homogeneous
background component of the gauge fields has an attractor configuration which respects
isotropy of the universe,

Aa0 = 0 , Aai = δai a(t)Q(t), (3.3)
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where a(t) is the scale factor. Then we decompose these spectator fields into the background
and the perturbation components as

χ(t,x) = χ0(t) + δχ(t,x), Aai (t,x) = δai a(t)Q(t) + δAai (t,x). (3.4)

There also exist non-dynamical components δAa0 that we integrate out. The equations of
motion (EoM) for the background fields are given by

χ̈0 + 3Hχ̇0 + ∂χV (χ0) = −3gλ

f
Q2
(
Q̇+HQ

)
, (3.5)

Q̈+ 3HQ̇+
(
Ḣ + 2H2

)
Q+ 2g2Q3 =

gλ

f
Q2χ̇0, (3.6)

where the dots denote cosmic time derivatives ∂t and H ≡ ȧ/a is the Hubble expansion
rate. The terms on the right hand side of eq. (3.5) slow down the time evolution of χ0(t)
in addition to the Hubble friction term 3Hχ̇0, because a non-zero background value Q(t)
is sustained by energy transfer from the kinetic energy of χ0 through the coupling. Here
we introduce two dimensionless parameters;

mQ(t) ≡ gQ

H
, Λ(t) ≡ λQ

f
. (3.7)

Here, mQ is the effective mass of the SU(2) field around its vacuum expectation value (vev)
normalized by the Hubble scale, and Λ characterizes the coupling strength between χ0 and
Q. Note that the right hand side of eqs. (3.5) and (3.6) are proportional to mQΛ. We
consider the slow-roll regime, mQ & 1 and Λ� 1, in which Q is stabilized by its effective
mass and χ0 is significantly slowed down by the coupling. We can then drop all the terms
with time derivatives in the EoMs except for the r.h.s. of eq. (3.6) and find (9)

mQ '
(
−g2f∂χV (χ0)

3λH4

) 1
3

, (3.8)

ξ ≡ λχ̇0

2fH
' mQ +m−1

Q . (3.9)

The Einstein equations at the background yield

3M2
PlH

2 = ρφ +
1

2
χ̇0 + V (χ0) +

3

2
(Q̇+HQ)2 +

3

2
g2Q4, (3.10)

− Ḣ

H2
= εφ + εχ + εB + εE, (3.11)

where ρφ is the energy density of the inflaton and the slow-roll parameters are defined as
εφ ≡ −ρ̇φ/6M2

PlH
3, εχ = χ̇2/2M2

PlH
2, εE ≡ (Q̇ + HQ)2/M2

PlH
2, and εB ≡ g2Q4/M2

PlH
2.

We shall assume that ρφ dominates in eq. (3.10). In the slow-roll regime, Q̇ � HQ, one
finds

εE '
εB
m2
Q

. (3.12)
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The background fields appear only through H,mQ, ξ, εE and εB in the EoMs for the per-
turbations. Using the relationships, eqs. (3.9) and (3.12), one can eliminate ξ and εE.
Furthermore, in the slow-roll regime, one can disregard the time variations of H,mQ and
εB in the leading order approximation. Therefore we have three relevant background pa-
rameters H,mQ and εB which are approximated to be constant in this chapter.1

3.2 Amplification of Gravitational Waves

In this section, we study the tensor perturbations at linear level. Only the tensor pertur-
bations are amplified due to tachyonic instability, while scalar and vector perturbations
are not amplified for mQ >

√
2 in this model (53). Although the scalar perturbations of

χ and Aai are generated from the vacuum fluctuations, their contribution to the curvature
perturbation ζ is negligible, unless the energy density of χ becomes comparable to that of
the inflaton after inflation (52).2 The vector perturbations decay on super-horizon scales in
any case. Therefore in this chapter, we assume that the observed curvature perturbation
was produced from the inflaton fluctuation δφ and concentrate on the tensor perturbations
from the gauge fields.

To calculate the power spectrum and bispectrum of GWs we need to expand the action,
equation (3.1), up to second and third order in perturbations, respectively. We write the
tensor perturbations of the metric and the SU(2) gauge field (53; 8) as:

gij = −a2(δij + hij) , δAai = tai + · · · , (3.13)

where · · · represents the scalar and vector perturbations of the SU(2) gauge fields which
we neglect in this chapter. We have imposed the transverse and traceless conditions on
hij and tij, δ

ijTij = ∂iTij = ∂jTij = 0 (T = h and t). The inverse metric is given by
gij = −a−2(δij − hij + hikhkj +O(h3)) . For later convenience, we redefine hij as

ψij =
1

2
aMPlhij. (3.14)

Precisely speaking tai is not a tensor, since the index a is not a spatial index but the label of
SU(2) gauge. Nonetheless, under the background configuration of eq. (3.3), tai transforms
as a tensor in practice, because the gauge index a is identified with a spatial index.

1In ref. (52), the background dynamics is numerically solved, and the perturbations are also solved with
the time varying background quantities, mQ(t), εB(t) and H(t). They find that mQ, εB , H ≈ const. is a
very good approximation for a sufficiently strong coupling, especially when one is interested in the range
of wavenumbers observable by CMB.

2The scalar perturbations of χ and Aai directly contribute to ζ through the density perturbation
(e.g. δρχ ' ∂χV δχ). This channel is negligible, for instance, if χ reaches its potential minimum (i.e.
V (χ), ∂χV (χ) → 0) during inflation. If χ0 acquires a non-negligible energy fraction after inflation, how-
ever, the contribution to ζ from δχ may be relevant. This implies that the spectator sector can produce
ζ in a way similar to the curvaton mechanism (106; 105). We leave this intriguing possibility for future
work.
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Substituting these in equation (3.1), and expanding up to third order, we obtain the
Lagrangian of the tensor perturbations as

Stensor =

∫
dτd3x

√
−g
[
L2 + L

(i)
3 + L

(ii)
3 + L

(iii)
3

]
, (3.15)

with (129)

L2 =
1

2
ψ′ijψ

′
ij −

1

2
∂kψij∂kψij +

1

τ 2
ψijψij +

1

2
t′ijt
′
ij −

1

2
∂ltij∂ltij +

2mQ +m−1
Q

τ
εijktil∂jtkl

−
m2
Q + 1

τ 2
tijtij +

2
√
εB
τ

[
1

mQ

ψijt
′
ij − ψjmεaij∂itam +

mQ

τ
ψijtij

]
, (3.16)

where τ ' −1/aH is the conformal time, prime denotes the derivative with respect to τ
and we neglect terms suppressed by slow-roll parameters. The cubic Lagrangian L3 will
be discussed in the next section.

From the quadratic Lagrangian above, we obtain the following EoMs for GWs ψij(τ,x)
and tensor perturbations of the SU(2) gauge field tij(τ,x),

ψ′′ij − ∂2
kψij −

2

τ 2
ψij =

2
√
εB

mQτ
t′ij +

2
√
εB
τ

εapi∂ptaj +
2
√
εBmQ

τ 2
tij , (3.17)

t′′ij − ∂2
ktij +

2(2mQ +m−1
Q )

τ
εlkj∂ktil +

2(m2
Q + 1)

τ 2
tij = O(ψij) . (3.18)

Although terms linear in ψij also source the gauge field tij, ψij is not as substantially
amplified as tij (8; 7; 110; 52), and so we ignore its contribution as a source for tij. To solve
the dynamics of ψij and tij, it is useful to decompose them with the circular polarisation
tensors,

Xij(τ,x) =

∫
d3k

(2π)3
eik·x

[
eRij(k)XR

k (τ) + eLij(k)XL
k (τ)

]
, (3.19)

where X = ψ, t and the properties of the polarisation tensors are summarized in ap-
pendix. B. Note that we normalize epij such that eRij(k)eRij(−k) = eLij(k)eLij(−k) = 1.

To proceed further, we quantize ψ and t and expand them in a perturbative series
as (149)

X̂p
k(τ) = X̂p

1 (τ,k) + X̂p
2 (τ,k) + . . . . (3.20)

The first order components are written as

t̂p1(τ,k) = T p1 (τ, k) âpk + T p∗1 (τ, k) âp†−k, (3.21)

ψ̂p1(τ,k) = Ψp
1(τ, k) âpk + Ψp∗

1 (τ, k) âp†−k, (3.22)

with the creation/annihilation operators, âpk and âp†k , satisfying [âpk, â
q†
−k′ ] = (2π)3δpqδ(k +

k′). We only consider GWs sourced by the gauge field in this chapter, and assign ψ̂1 the
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same quantum operator as t̂1. The mode functions of X̂p
1 satisfy linearised EoMs and their

solutions induce the second order fields X̂p
2 through non-linear terms in the EoMs.

In Fourier space the EoMs for the linear mode functions can be written as,

∂2
xT

R/L
1 +

[
1∓

2(2mQ +m−1
Q )

x
+

2(m2
Q + 1)

x2

]
T
R/L
1 = O

(
Ψ
R/L
1

)
, (3.23)

∂2
xΨ

R/L
1 +

[
1− 2

x2

]
Ψ
R/L
1 =

2
√
εB

mQx
∂xT

R/L
1 ∓

2
√
εB
x

T
R/L
1 +

2
√
εBmQ

x2
T
R/L
1 , (3.24)

where x ≡ −kτ . The minus and plus signs are for right- (R) and left-handed (L) modes,
respectively. Only TR1 undergoes an instability and it sources only ΨR

1 (110; 112; 7; 9),
provided that mQ is positive. Therefore, we only consider the right-handed polarisation in
the rest of the chapter. The homogeneous solution for TR1 can be analytically calculated
and is expressed in terms of the Whittaker function Wβ,α(z) as

TR1 (τ, k) =
1√
2k
e
π
2

(2mQ+m−1
Q )Wβ,α(2ikτ) , (3.25)

where α ≡ −i
√

2m2
Q + 7/4 and β ≡ −i(2mQ+m−1

Q ) (112; 8; 52). ΨR
1 can then be calculated

using Green’s function method,

ΨR
1 (τ,k) =

∫ ∞
−∞

dη Gψ(τ, η, k)D(η, k)TR1 (η, k), (3.26)

with

Gψ(τ, η, k) =
Θ(τ − η)

k3τη

[
k(η − τ) cos

(
k(τ − η)

)
+ (1 + k2τη) sin

(
k(τ − η)

)]
, (3.27)

D(η, k) =
2
√
εB

mQη
∂η +

2
√
εB
η2

(mQ + kη) , (3.28)

where Θ(x) is the unit Heaviside function of x. In figure 3.1, we plot TR1 , the source term
DTR1 , Green’s function Gψ in the super-horizon limit and the sourced gravitational wave
ΨR

1 . The time integral of the source term DTR1 multiplied by Gψ yields ΨR
1 . The source

term DTR1 peaks around the horizon crossing and Green’s function stops oscillating there.
As a result, ΨR

1 is mainly produced around the horizon crossing as well, as seen in the right
panel.

Equation (3.26) can also be analytically solved and in the super-horizon limit we obtain,

lim
|kτ |→ 0

ΨR
1 (τ,k) =

√
εB√

2kkτ
F(mQ) , (3.29)

from which we obtain the power spectrum of h in the super-horizon limit (52)

k3

2π2
P sourced
h =

εBH
2

π2M2
P

|F(mQ)|2 , (3.30)
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Figure 3.1: (Left panel) We plot the linear gauge tensor mode function
√

2k|TR1 (η, k)|
(blue dashed), the source terms

√
2k|m−1

Q η∂ηT1 + (mQ + kη)T1| (yellow solid) and
10|kη cos(kη)− sin(kη)| which is proportional to Green’s function Gψ(τ, η, k) in the super-
horizon limit, −kτ → 0, multiplied by 10 for illustrative purpose (green solid). (Right
panel) The sourced linear gravitational wave

√
2k |kτΨR

1 (τ, k)| is shown. |ΨR
1 | grows signif-

icantly around the horizon-crossing (−kτ ∼ 1) and stays constant on super-horizon scales.
In both panels, we set mQ = 3.15 and εB = 3× 10−4.

where F is a function of mQ, whose exact expression is given in (52) (F(mQ) here is
FB+FE/mQ there). Note that eq. (3.30) is derived under the assumption of (mQ, εB, H) =
const. However, as long as the time variations of these background quantities are slow,
eq. (3.30) with mQ(t), εB(t), H(t) at the horizon crossing time k = a(t)H(t) gives a good
approximation of P sourced

h (k). It should be also noted that only the right-handed polarisa-
tion modes contribute to the above P sourced

h (k).

3.3 Bispectrum of Gravitational Waves

In this section, we calculate the tensor bispectrum of the right-handed GWs, BRRR
h , in the

super-horizon limit:

(2π)3δ (k1 + k2 + k3)BRRR
h (k1, k2, k3) = lim

τ→0

〈
ĥR(τ,k1)ĥR(τ,k2)ĥR(τ,k3)

〉
,

= lim
τ→0

(
2

aMPl

)3 〈
ψ̂R(τ,k1)ψ̂R(τ,k2)ψ̂R(τ,k3)

〉
.

(3.31)

The three-point correlator of the right-handed GWs ψ̂R = ψ̂R1 + ψ̂R2 can be written as〈
ψ̂R(τ,k1)ψ̂R(τ,k2)ψ̂R(τ,k3)

〉
=
〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
+
〈
ψ̂R1 (τ,k1)ψ̂R2 (τ,k2)ψ̂R1 (τ,k3)

〉
+
〈
ψ̂R2 (τ,k1)ψ̂R1 (τ,k2)ψ̂R1 (τ,k3)

〉
, (3.32)

because ψ̂R1 satisfies Gaussian statistics. We calculate ψ̂2 using the second order EoMs for
the tensor perturbations which are derived from the cubic Lagrangian.
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The cubic tensor Lagrangians introduced in eq. (3.15) are given by

L
(i)
3 = c(i)

[
εabctaitbj

(
∂itcj −

m2
Q + 1

3mQτ
εijktck

)
− mQ

τ
tijtjltli

]
, (3.33)

L
(ii)
3 = c(ii)ψij

[
τ

2mQ

{
t′ilt
′
jl − ∂itkl(∂jtkl − 2∂ktjl)− ∂ktil∂ktjl

}
− εiabtal (∂jtbl − ∂ltbj)− εlabtai∂ltbj −

3mQ

2τ
tiltjl

]
, (3.34)

L
(iii)
3 = c(iii)ψij

[
1

mQ

ψjkt
′
ik + εajmψlm∂ital − ψjkεakl∂ltai

]
, (3.35)

where we organize terms such that L
(i)
3 = O(t3), L

(ii)
3 = O(ψt2) and L

(iii)
3 = O(ψ2t) and we

neglect the O(ψ3) terms. The coefficients of the cubic Lagrangians are

c(i) = g =
m2
QH√
εBMPl

, c(ii) =
2mQH

MPl

, c(iii) =
4
√
εBH

MPl

. (3.36)

They satisfy a hierarchical relationship,

c(ii)

c(i)
=
c(iii)

c(ii)
=

2
√
εB

mQ

� 1. (3.37)

The tree-level contributions from L
(i)
3 , L

(ii)
3 and L

(iii)
3 to the tensor bispectrum are illustrated

as Feynman diagrams in figure 3.2. As we see below, the contributions from the three
diagrams to the gravitational wave bispectrum are also hierarchical, (i) > (ii)� (iii).3 In
what follows, we calculate these three contributions in order. When we show plots in this
section, we use the following parameters as an example,

H = 8× 1012GeV, mQ = 3.15, εB = 3× 10−4. (3.38)

The viable parameter space will be explored in section. 3.5.

3.3.1 Diagram (i)

This diagram arises from the self-interaction of the SU(2) gauge field, and thus is absent
in Abelian theory. Here, the second order gravitational wave ψ̂R2 is sourced linearly by t̂R2 ,
but the second order gauge field perturbation t̂R2 is produced by t̂R1 via non-linearity. The

cubic Lagrangian L
(i)
3 gives the source term S(i)

ij in the EoM for the second order gauge

3The diagram (ii) includes only two circled crosses which carry a small parameter
√
εB , while the dia-

gram (i) includes three. Hence, in spite of the hierarchical vertex coefficients c(i) � c(ii), their contributions
are comparable.
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(iii) (i)  (ii)

Figure 3.2: Feynman diagrams illustrating the tree-level contributions from the cubic in-
teractions L

(i)
3 , L

(ii)
3 and L

(iii)
3 to the bispectrum of GWs. The straight and wavy lines show

ψij and tij, respectively. The black dots show the vertices of the three-point interactions,
while the circled crosses show the mixing between ψij and tij (the last term in Eq. (3.16)).

field perturbation,

t′′ij(τ,x)− ∂2
ktij(τ,x) +

2(2mQ +m−1
Q )

τ
εlkj∂ktil(τ,x) +

2(m2
Q +m−1

Q )

τ 2
tij(τ,x) = S(i)

ij ,

(3.39)

S(i)
ij =

δL
(i)
3

δtij
= 2gεaictal∂ltcj − gεaictal∂jtcl −

3gmQ

τ
tiptpj −

gξ

τ
εibcεjmntbmtcn , (3.40)

where the source term S(i)
ij is evaluated with the first order solution t̂R1 (τ,k). Although

in second order it is no longer true that the right-handed polarisation is sourced only by
the right-handed tensors, the exponential amplification of the right-handed modes ensures
that terms containing the left-handed modes are exponentially smaller. Thus we only use
the right-handed polarisation of the gauge field perturbation to evaluate the source term.
Note that this source term contains g explicitly because of the non-Abelian nature of the
vertex.

Expanding the tensor perturbation with the tensor polarisation as before, one finds the
EoM in Fourier space as

t̂
′′R
2 (τ,k) +

(
1 +

2(m2
Q +m−1

Q )

τ 2
+ 2k

2mQ +m−1
Q

τ

)
t̂R2 (τ,k) =

geLij(k)

∫ ∫
d3q1

(2π)3

d3q2

(2π)3
δD(q1 + q2 − k)Q

(i)
ij (q1, q2, τ)t̂R1 (q1, τ)t̂R1 (q2, τ) , (3.41)

where we have substituted [eRij(k)]−1 = eLij(k) and

Q
(i)
ij (q1, q2, τ) = 2iεaiceRal(q1)eRcj(q2)q2l − iεaiceRal(q1)eRcl(q2)q2j

− 3mQ

τ
eRik(q1)eRkj(q2)−

mQ +m−1
Q

τ
εibcεjmneRbm(q1)eRcn(q2). (3.42)
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Using the homogeneous solution, equation (3.25), Green’s function for equation (3.41) can
be written as (149),

Gt(τ, η, k) = iΘ(τ − η)
[
TR1 (τ,k)T ∗R1 (η,k)− T ∗R1 (τ,k)TR1 (η,k)

]
, (3.43)

=
1

k
Θ(τ − η)eπ(2mQ+m−1

Q )Im[W ∗
β,α(2ikτ)Wβ,α(2ikη)] , (3.44)

where Im(z) denotes an imaginary part of a complex number z. Dependence of Green’s
function on the homogeneous solution also ensures that the second order left-handed po-
larisation of the gauge field is sub-dominant, even if sourced by the first order right-handed
polarisation.

Then, the second order gauge field is given as

t̂R2 (τ,k) = geLij(k)

∫ ∞
−∞

dη Gt(τ, η, k)

×
∫
d3q1 d

3q2

(2π)6
δD(q1 + q2 − k)Q

(i)
ij (q1, q2, η)t̂R1 (η, q1)t̂R1 (η, q2) , (3.45)

which yields the second order sourced metric perturbation (c.f. equation (3.20)) as

ψ̂R2 (τ,k) =

∫ ∞
−∞

dη Gψ(τ, η, k)D(η, k)t̂R2 (η, k) . (3.46)

Substituting ψ̂R1 and the above expression for ψ̂R2 into eq. (3.32), we obtain〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
=

=

∫ 3∏
i=1

(
dηiGψ(τ, ηi, ki)D(ηi, ki)

) 〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂R2 (η3,k3)

〉
,

=

∫ 3∏
i=1

(
dηiGψ(τ, ηi, ki)D(ηi, ki)

)
TR1 (η1, k1)TR1 (η2, k2)geLjl(k3)

∫
dη Gt(η3, η, k3)

×
∫
d3q1 d

3q2

(2π)6
δD(q1 + q2 − k3)Qjl(q1, q2, η3)T ∗R1 (η, q1)T ∗R1 (η, q2)

〈
âRk1

âRk2
âR†−q1

âR†−q2

〉
,

= (2π)3δD(k1 + k2 + k3) gΨR
1 (τ, k1)ΨR

1 (τ, k2)

∫
dη3Gψ(τ, η3, k3)D(η3, k3)

×
∫
dη Gt(η3, η, k3)eLij(k3)

[
Qij(−k1,−k2, η) +Qij(−k2,−k1, η)

]
T ∗R1 (η, k1)T ∗R1 (η, k2) .

(3.47)

As discussed in appendix. B, contraction of the polarisation tensors is calculated as

eLij(k3)
[
Q

(i)
ij (−k1,−k2, η) +Q

(i)
ij (−k2,−k1, η)

]
= −2k1Ξ

[
Ξ̃ + (3mQ + 2ξ)/η

]
, (3.48)
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where we have defined

Ξ̃ = 1 + r2 + r3 , Ξ =
(1 + r2 + r3)3

64r2
2r

2
3

(r2 + r3 − 1)(r2 − r3 + 1)(−r2 + r3 + 1) , (3.49)

with r2 ≡ k2/k1 and r3 = k3/k1. Using this, we obtain〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
= (2π)3δD(k1 + k2 + k3) (−2gΞk1) ΨR

1 (τ, k1)ΨR
1 (τ, k2)

×
∫
dη3Gψ(τ, η3, k3)D(η3, k3)

∫
dη Gt(η3, η, k3)

[
Ξ̃ +

(5mQ + 2m−1
Q )

k1η

]
T ∗R1 (η, k1)T ∗R1 (η, k2) .

(3.50)

Since we are interested in the bispectrum in the super-horizon limit kτ → 0, Green’s
function Gψ(τ, η3, k3) can be reduced. By changing the integration variables from η3 and
η to y ≡ −k1η3 and z ≡ −k1η, we obtain

lim
|k3τ |→0

∫
dη3Gψ(τ, η3, k3)D(η3, k3)

∫
dη Gt(η3, η, k3)

[
Ξ̃ +

(3mQ + 2ξ)

k1η

]
T ∗R1 (η, k1)T ∗R1 (η, k2)

=

√
εBe

2π(2mQ+m−1
Q )

√
r2r4

3k
4
1τ

∫ xmax

0

dy

y2

[
r3y cos(r3y)− sin(r3y)

](
m−1
Q ∂y +

mQ

y
− r3

)
×
∫ xmax

y

dz Im
[
W ∗
β,α(−2ir3y)Wβ,α(−2ir3z)

](
Ξ̃−

(5mQ + 2m−1
Q )

z

)
W ∗
β,α(−2iz)W ∗

β,α(−2ir2z),

≡
√
εBe

2π(2mQ+m−1
Q )

√
r2r4

3k
4
1τ

N3, (3.51)

where we have introduced the UV cutoff xmax ≡ 2mQ +m−1
Q +

√
2m2

Q + 2 +m−2
Q , at which

tR1 starts undergoing a tachyonic instability, to avoid incorporating unphysical vacuum
contributions. The integration result is not sensitive to the precise value of the cutoff.
Using the super horizon solution for ΨR

1 , equation (3.29), and ψij = aMPhij/2 we finally
obtain〈

ĥR1 (τ,k1)ĥR1 (τ,k2)ĥR2 (τ,k3)
〉

= (2π)3δD(k1 + k2 + k3)
8gΞε

3/2
B

k2
1k

2
2k

2
3

(
H

MPl

)3

r−2
3 F2N3 .

(3.52)

The factor of δD(k1 + k2 + k3) ensures the triangle condition, namely that the three wave
vectors k1, k2, and k3 form a closed triangle. This is a consequence of homogeneity and
isotropy of the Universe. In the same way, the other two terms in eq. (3.32) can be
calculated. Combining them, we obtain the contribution from the diagram (i) as (10),

B
(i)
h (k1, k2, k3) =

8m2
QΞεB

k2
1k

2
2k

2
3

e2π(2mQ+m−1
Q )

(
H

MPl

)4[
F∗2N1 + r−2

2 |F|2N2 + r−2
3 F2N3

]
, (3.53)
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Figure 3.3: 3D plot of (k1k2k3)2B
(i)
h contributed by the diagram (i). We show only r3 ≤ r2

and the triangle condition implies a bispectrum is non-zero only for r2 + r3 ≥ 1. This
shape has a plateau around 0.6 . r2 ' r3 ≤ 1. The parameters are H = 8 × 1012GeV,
mQ = 3.15, and εB = 3× 10−4.

with

Ni ≡
∫ xmax

0

dy

y2
[riy cos(riy)− sin(riy)]

(
m−1
Q ∂y +mQy

−1 − ri
)

×
∫ xmax

y

dz Im[W ∗
β,α(−2iriy)Wβ,α(−2iriz)]

(
1 + r2 + r3 −

5mQ + 2m−1
Q

z

)
Wi(z),

(3.54)

whereW1(z) = Wβ,α(−2ir2z)Wβ,α(−2ir3z),W2(z) = W ∗
β,α(−2iz)Wβ,α(−2ir3z), andW3(z) =

W ∗
β,α(−2ir2z)W ∗

β,α(−2iz).

Figure 3.3 shows the tensor bispectrum from the diagram (i). We shall discuss the
shape of the bispectrum in detail in section 3.4.
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3.3.2 Diagram (ii)

The bispectrum from the diagram (ii) is generated by a non-linear sourcing of the gravita-

tional wave via the O(ψtt) terms in the Lagrangian, L
(ii)
3 . The EoM for the second order

gravitational wave with the corresponding source terms in Fourier space is given by

[
∂2
τ + k2 − 2

τ 2

]
ψ̂R2 (τ,k) =

H

MPl

[eRij(k)]−1S
(ii)
ij (τ,k) , (3.55)

where the source term is written as the sum of two parts,

S(ii)
ij (τ,k) ≡

∫
d3x e−ik·x

δL
(ii)
3

δψij(τ,x)
,

=

∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k)

[
S(ii)

1ij (τ, q1, q2) + S(ii)
2ij (τ, q1, q2)

]
. (3.56)

S(ii)
1ij has terms without time derivatives,

S(ii)
1ij (τ, q1, q2) =

[
3m2

Q

τ
eRci(q1)eRcj(q2)− 2mQ

{
εacpeRpj(q1)eRai(q2)iq2c

+ εapjeRpc(q1)eRai(q2)iq2c − εapjeRpc(q1)eRac(q2)iq2i

}
+ τ
{
eRai(q1)eRaj(q2)q1cq2c

+ eRac(q1)eRac(q2)q1iq2j − 2eRai(q1)eRac(q2)q1cq2j

}]
t̂R1 (τ, q1)t̂R1 (τ, q2)

≡ Q
(ii)
1ij (τ, q1, q2)t̂R1 (τ, q1)t̂R1 (τ, q2) , (3.57)

whereas S(ii)
2ij comes from time derivatives of t̂R1 ,

S(ii)
2ij (τ, q1, q2) =τeRai(q1)eRaj(q2)t̂

′R
1 (τ, q1)t̂

′R
1 (τ, q2)

≡Q(ii)
2ij (τ, q1, q2)t̂

′R
1 (τ, q1)t̂

′R
1 (τ, q2) . (3.58)

The second order gravitational wave is given using Green’s function,

ψ̂R2 (τ,k) =
H

MPl

∫ ∞
−∞

dη Gψ(τ, η, k)

∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k)

× eLij(k)
[
Q

(ii)
1ij (η, q1, q2)t̂R1 (η, q1)t̂R1 (η, q2) +Q

(ii)
2ij (η, q1, q2)t̂

′R
1 (η, q1)t̂

′R
1 (η, q2)

]
. (3.59)
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We can now compute the first term in eq. (3.32) produced via the diagram (ii) as〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
=

H

MPl

∫ 2∏
i=1

(
dηiGψ(τ, ηi, ki)D(ηi, ki)

)∫
dη3Gψ(τ, η3, k3)

∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k3)

× eLjl(k)
[ 〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂R1 (η3, q1)t̂R1 (η3, q2)

〉
Q

(ii)
1jl (η3, q1, q2)

+
〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂

′R
1 (η3, q1)t̂

′R
1 (η3, q2)

〉
Q

(ii)
2jl (η3, q1, q2)

]
. (3.60)

The expectation values of the 4-point functions are given by〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂R1 (η3, q1)t̂R1 (η3, q2)

〉
= (2π)6(δk1q1δk2q2 + δk1q2δk2q1)TR1 (η1, k1)TR1 (η2, k2)T ∗R1 (η3, q1)T ∗R1 (η3, q2) , (3.61)〈

t̂R1 (η1,k1)t̂R1 (η2,k2)t̂
′R
1 (η3, q1)t̂

′R
1 (η3, q2)

〉
= (2π)6(δk1q1δk2q2 + δk1q2δk2q1)TR1 (η1, k1)TR1 (η2, k2)T

′∗R
1 (η3, q1)T

′∗R
1 (η3, q2) , (3.62)

where δk1q1 ≡ δD(k1 + q1). Note that these functions are invariant under interchange of
q1 ↔ q2. As a result, upon integrating the Dirac delta functions, the polarisation factors
in equation (3.60) yield

eLij(k3)
[
Q

(ii)
1ij (η3,−k1,−k2) +Q

(ii)
1ij (η3,−k2,−k1)

]
= 2 Ξ

[
3m2

Q

η3

+ k2
1r2η3 +mQk1(1 + r2)

]
,

(3.63)

eLij(k3)
[
Q

(ii)
2ij (η3,−k1,−k2) +Q

(ii)
2ij (η3,−k2,−k1)

]
= 2 Ξ η3 , (3.64)

where Ξ ≡ Ξ(r2, r3) has been defined in equation (3.49). Substituting this in equa-
tion (3.60), we obtain〈

ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)
〉

= (2π)3δD(k1 + k2 + k3)

× 2 Ξ ΨR
1 (τ,k1)ΨR

1 (τ,k2)
H

MPl

∫
dη3Gψ(τ, η3, k3)

[
η3T

′∗R
1 (η3, k1)T

′∗R
1 (η3, k2)

+
{
r2k

2
1η3 +mQk1(1 + r2) +

3m2
Q

η3

}
T ∗R1 (η3, k1)T ∗R1 (η3, k2)

]
. (3.65)

We can similarly evaluate the other two terms in eq. (3.32) contributed from L
(ii)
3 . Taking

the super-horizon limit, we obtain (10),

k2
1k

2
2k

2
3B

(ii)
h (k1, k2, k3) = 4ΞεBe

π(2mQ+m−1
Q )

(
H

MPl

)4 [
F∗2Ñ1 + r−1

2 |F|2Ñ2 + r−1
3 F2Ñ3

]
,

(3.66)
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Figure 3.4: 3D plot of (k1k2k3)2B
(ii)
h for diagram 2. Note that the z-axis has been reversed

to show negative values.

with

Ñi ≡
∫ xmax

0

dy

y
[riy cos(riy)− sin(riy)]

[
yW̃i(y)

+
(r1r2r3

ri
y − (r1 + r2 + r3 − ri)mQ +

3m2
Q

y

)
Wi(y)

]
, (3.67)

where W̃1(y) = ∂yWβ,α(−2ir2y)∂yWβ,α(−2ir3y), W̃2(y) = ∂yW
∗
β,α(−2iy)∂yWβ,α(−2ir3y),

W̃3(y) = ∂yW
∗
β,α(−2ir2y)∂yW

∗
β,α(−2iy), and as before, we have introduced y ≡ −k1τ .

Figure 3.4 shows the gravitational wave bispectrum from the diagram (ii). The mag-
nitude of this bispectrum is smaller than that of the diagram (i) by a factor of a few, and
they have the opposite signs. The bispectrum from the diagram (ii) peaks in the equilateral
configuration, r2 = r3 = 1.
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3.3.3 Diagram (iii)

For the diagram (iii), we consider the second order gravitational wave ψ̂R2 sourced by a
first order gauge field perturbation t̂R1 and a first order metric perturbation ψ̂R1 . The EoM

for ψ̂R2 is derived from L
(iii)
3 to be,[

∂2
τ + k2 − 2

τ 2

]
ψ̂R2 (τ,k) =

H

MPl

[eRij(k)]−1S(iii)
ij (τ,k) , (3.68)

where the source term is again written as the sum of two parts,

S(iii)
ij (τ,k) ≡

∫
d3x e−ik·x

δL
(iii)
3

δψij(τ,x)
,

=

∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k) 4

√
εB

[
S(iii)

1ij (τ, q1, q2) + S(iii)
2ij (τ, q1, q2)

]
. (3.69)

The first part depends on the fields without time derivatives,

S(iii)
1ij (τ, q1, q2) = −t̂R1 (τ, q1)ψ̂R1 (τ, q2)

[
2 |q1| eRai(q1)eRaj(q2)

+ iεapjeRai(q1)eRlp(q2)q1l + iεajpeRal(q1)eRlp(q2)q1i

]
, (3.70)

whereas the second part includes time derivatives of the gauge field perturbation,

S(iii)
2ij (τ, q1, q2) = m−1

Q eRai(q1)eRaj(q2) t̂
′R
1 (τ, q1)ψ̂R1 (τ, q2) . (3.71)

However, we find that the first part multiplied by the polarisation factor vanishes: eLij(k3)S(iii)
1ij (τ,−k1,−k2) =

0, for all the permutations of k1,k2, and k3. Hence we consider only the second part. With
Green’s function, we find the second order gravitational wave as

ψ̂R2 (τ,k) =
4
√
εB

mQ

H

MPl

∫ ∞
−∞

dη Gψ(τ, η, k)

∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k)

×
[
t̂
′R
1 (η, q1)ψ̂R1 (η, q2) eLij(k)eRia(q1)eRaj(q2)

]
. (3.72)

The first term in eq. (3.32) from the diagram (iii) yields〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
=

4
√
εB

mQ

H

MPl

∫ 2∏
i=1

(dηiGψ(τ, ηi, ki)D(ηi, ki))

∫
dη3Gψ(τ, η3, k3)

×
∫
d3q1d

3q2

(2π)6
δD(q1 + q2 − k3)

〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂

′R
1 (η3, q1)ψ̂R1 (η3, q2)

〉
eLjl(k3)eRja(q1)eRal(q2) .

(3.73)

The expected value is calculated as〈
t̂R1 (η1,k1)t̂R1 (η2,k2)t̂

′R
1 (η3, q1)ψ̂R1 (η3, q2)

〉
= (2π)6(δk1q1δk2q2 + δk1q2δk2q1)

× TR1 (η1, k1)TR1 (η2, k2)T
′∗R
1 (η3, q1)Ψ∗R1 (η3, q2) . (3.74)
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Then, equation (3.73) reads〈
ψ̂R1 (τ,k1)ψ̂R1 (τ,k2)ψ̂R2 (τ,k3)

〉
= (2π)3 δD(k1 + k2 + k3) ΨR

1 (τ, k1)ΨR
1 (τ, k2)

4
√
εBΞ

mQ

H

MPl

∫
dη3Gψ(τ, η3, k3)

[
T
′∗R
1 (η3, k1)Ψ∗R1 (η3, k2) + T

′∗R
1 (η3, k2)Ψ∗R1 (η3, k1)

]
. (3.75)

Combining with the other two terms in eq. (3.32), we obtain the bispectrum from the
diagram (iii) as

k2
1k

2
2k

2
3B

(iii)
h (k1, k2, k3) =16Ξ

ε2B
mQ

eπ(2mQ+m−1
Q )

(
H

MPl

)4 [
F∗2N̆1 + r−1

2 |F|2N̆2 + r−1
3 F2N̆3

]
,

(3.76)

with

N̆i ≡
∫ xmax

0

dy

y
[riy cos(riy)− sin(riy)]W̆i(y), (3.77)

where we define W̆1(y) = ∂yWβ,α(−2ir2y)Φ(−2ir3y)+∂yWβ,α(−2ir3y)Φ(−2ir2y), W̆2(y) =

∂yW
∗
β,α(−2iy)Φ(−2ir3y) + ∂yW

∗
β,α(−2ir3y)Φ(−2iy), W̆3(y) = ∂yW

∗
β,α(−2iy)Φ∗(−2ir2y) +

∂yW
∗
β,α(−2ir2y)Φ∗(−2iy), y ≡ −k1τ , and

Φ(−2iriy) ≡ 1

riy

∫ xmax

riy

dz

z
[(z − riy) cos (z − riy)− (1 + zriy) sin (z − riy)]

×
[
∂z
mQz

+
mQ − z
z2

]
Wβ,α(−2iz). (3.78)

Figure 3.5 shows the momentum dependence of the bispectrum from the diagram (iii).
We find that the contribution from the diagram (iii) is almost 7 orders of magnitude smaller
than that of the diagram (i) and (ii), justifying that we neglected its contribution in our
previous work (10). This diagram is also zero in the folded limit and the bispectrum peaks
in the equilateral configuration. The contribution from this diagram is so small that we
do not compare the templates to it.

3.3.4 Total bispectrum

Combining the three contributions which we have calculated in the previous subsections,
eqs. (3.53), (3.66) and (3.76), we obtain the total bispectrum of the sourced GWs in our
model as

BRRR
h (k1, k2, k3) = B

(i)
h +B

(ii)
h +B

(iii)
h ,

=
εB Ξ(r2, r3)

k2
1k

2
2k

2
3

(
H

MPl

)4

Υ(mQ, r2, r3), (3.79)
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h , shown in figures 3.3 and 3.4, respectively.
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Figure 3.7: Similarity of the shapes of an equilateral bispectrum and our tensor bispectrum
BRRR
h , eq. (3.79), which is calculated as the “cosine” (see appendix C for definition).

with

Υ(mQ, r2, r3) ≡ 8m2
Qe

2π(2mQ+m−1
Q )
[
F∗2N1 + r−2

2 |F|2N2 + r−2
3 F2N3

]
+ 4eπ(2mQ+m−1

Q )
[
F∗2Ñ1 + r−1

2 |F|2Ñ2 + r−1
3 F2Ñ3

]
+ 16

εB
mQ

eπ(2mQ+m−1
Q )
[
F∗2N̆1 + r−1

2 |F|2N̆2 + r−1
3 F2N̆3

]
. (3.80)

The εB dependence of Υ is weak, since the third line in eq.(3.80) from the diagram (iii) is
negligible compared to the others. In figure 3.6, we show the shape of the total bispectrum
(k1k2k3)2BRRR

h (k1, k2, k3). We find a mild peak around r2 ' r3 ≈ 0.6 as a result of the

combination of the plateau of B
(i)
h and the negative slope of B

(ii)
h on the r2 = r3 plane.

Aside from some interesting local features, the shape of our bispectrum BRRR
h looks

similar to the equilateral shape shown in figure C.1. To quantitatively measure similarity,
we calculate the “cosine” between the shape of our bispectrum and the equilateral shape,
cos(Bh · Feq) (17). Definition of the cosine is described in appendix C. In figure 3.7, the
cosine is shown as a function of mQ. Note that the cosine depends only on mQ, because
H and εB change only the overall amplitude as long as the diagram (iii) is negligible. We
find that the cosine is around 0.9 and it varies up to 1% for the parameter range of interest
(see section 3.5).

Around 90% similarity to the equilateral shape implies that our gravitational wave
bispectrum is reasonably characterized by the amplitude at the equilateral limit, r2 = r3 =
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Figure 3.8: Υeq(mQ) defined in eq. (3.82) and its fitting formula (eq. (3.83)) are plotted as
the red dots and blue line, respectively.

1. In the equilateral limit, the factors in the bispectrum become

Ξ(r2 = r3 = 1) =
27

64
(3.81)

and

Υeq(mQ) ≡ Υ(mQ, 1, 1)

' 8m2
Qe

2π(2mQ+m−1
Q )
[
|F|2N2 + 2 Re[F2N3]

]
+ 4eπ(2mQ+m−1

Q )
[
|F|2 Ñ2 + 2 Re[F2Ñ3]

]
, (3.82)

where Re[z] denotes a real part of a complex number z, and the small contribution from
the diagram (iii) is ignored. In figure 3.8, we plot Υeq. For 3 . mQ . 5, Υeq is well
approximated by the following expression:

Υeq ' exp[0.1377m3
Q − 2.128m2

Q + 18.96mQ − 12.8], (2.8 ≤ mQ ≤ 4.8). (3.83)

Here, the relative error of this fitting formula is less than 1%.
The ratio of the bispectrum to the squared power spectrum of GWs from the vacuum

fluctuation of the metric, Bvac
h /(P vac

h )2, is of order unity (108; 109). The ratio for the
sourced GWs can be much greater than unity. From eqs. (3.30) and (3.79), the ratio in
the equilateral limit is given by

Bsourced
h (k, k, k)(
P sourced
h (k)

)2 =
33Υeq(mQ)

28|F(mQ)|4
ε−1
B . (3.84)
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Figure 3.9: Ratio of the sourced tensor bispectrum to the sourced tensor power spectrum
squared (normalised by εB) as a function of the parameter mQ, along with its fitting formula
(eq. (3.85)), plotted as the red dots and blue line respectively. It rises exponentially as
mQ increases. Since the y-axis shows the ratio normalised by the energy density fraction
of the gauge field, εB, the ratio of the correlation functions can be very large for allowed
values of εB.
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In figure 3.9, we plot εB B
sourced
h /(P sourced

h )2 in which steep exponential dependence of the
bispectrum and power spectrum on mQ cancels out, though milder exponential dependence
remains. We find a simple relation for a specific range of mQ; for instance,

Bsourced
h (k, k, k)(
P sourced
h (k)

)2 ≈
1.816 e0.841mQ

εB
' 0.908 e0.841mQ

ΩA

, (3 . mQ . 5), (3.85)

where ΩA ≡ (εB + εE)/2 ' (1 + m−2
Q )εB/2 (see eq. (3.10)) is the energy density fraction

of the background SU(2) gauge field.
Dependence on the energy density fraction of the gauge fields in eq. (3.85) is analogous

to the curvaton mechanism (106; 105), where a similar relation holds for the scalar non-
Gaussianity parameter, fNL ∼ Ω−1

σ . Ωσ is the energy density fraction of the curvaton field
at its decay time. Therefore the origin of the dependence in eq. (3.85) may be understood
in a similar way as the curvaton case (96): suppose that the metric perturbation h is given
by h = c1t where t is the mode function of the gauge field. At the same time, t is expanded
as t = t(1) + t(2) +O(t(3)) such that t(2) = c2(t(1))2. Then Bh/P

2
h ∼ c2/c1. From equations

(3.14) and (3.17), we see that c1 ∝
√
εBH/MPl. We also see from equation (3.39) that

c2 ∝ g. Thus Bh/P
2
h ∼ gMPl/(

√
εBH) = m2

Q/εB. It should be noted, however, that this
relation only holds when the gauge field has the dominant contribution to both the tensor
power spectrum and bispectrum, and thus, is not valid in the limit εB → 0.

3.4 Peak of Bispectrum

The total tensor bispectrum given in eq. (3.79) has a peak not at the equilateral limit
r2 = r3 = 1 but at r2 = r3 ≈ 0.6 (see figure. 3.6). In this section, we study why this
happens, by looking into the evolution of the tensor perturbations of the SU(2) gauge field
tij.

The shape of the tensor bispectrum is determined byNi(mQ, r2, r3) and Ñi(mQ, r2, r3) (i =

1, 2, 3) as well as Ξ(r2, r3) in eq. (3.79), while the contributions from N̆i(mQ, r2, r3) are neg-
ligible. For our current purpose, it suffices to focus on the case with r2 = r3 in which the
three momenta, k1,k2,k3, form an obtuse-angled isosceles triangle. In other words, we
concentrate on a cross-section surface of the 3D plot, figure 3.6. For r ≡ r2 = r3, the r
dependence of Ni(mQ, r) and Ñi(mQ, r) is shown in figure 3.10. We do not plot |N3| and
|Ñ3| which are the same as |N2| and |Ñ2| for r2 = r3, respectively. We find that only
N1 grows significantly as r decreases, while the others have moderate dependences. To
understand its behaviour, we look closely at the second line of N1 in eq. (3.54) for r2 = r3,

I1(mQ, r, y) ≡
∫ xmax

y

dz

z
Im[W ∗

β,α(−2iy)Wβ,α(−2iz)]
(
z(1 + 2r)− 5mQ − 2m−1

Q

)
W1(z).

(3.86)
In the integrand of I1, the first part, Im[W ∗

β,α(−2iy)Wβ,α(−2iz)], represents Green’s func-

tion for tR2 given in eq. (3.44), and the second part,
(
z(1 + 2r)− 5mQ − 2m−1

Q

)
W1(z),
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Figure 3.10: (Left panel) Absolute values of Ni and Ñi normalized by their values at
r = 1 are shown, namely |N1(r)|/|N1(r = 1)| (blue), r−2|N2(r)|/|N2(r = 1)| (yellow),
|Ñ1(r)|/|Ñ1(r = 1)| (green) and r−1|Ñ2(r)|/|Ñ2(r = 1)| (red dashed). (Right panel)
Absolute value of the source term part in the integrand of I1, namely |(z(1 + 2r)− 5mQ−
2m−1

Q )W1(z)|, is shown for r = 1 (blue) and r = 0.5 (yellow). Its Green’s function part,
|Im[W ∗

β,α(−2iy)Wβ,α(−2iz)]|, for y = 1 is also plotted as the green line. In both panels we
set mQ = 3.15.

represents the non-linear source term from the first order tensor perturbations, tR1 × tR1 .
They are plotted in figure 3.10 for r = 1 and r = 0.5. Basically the second part is shifted
by a factor of ≈ 2 along the z-axis, as r is reduced to the half. However, Green’s func-
tion has a bigger amplitude at larger z without oscillations up to z ' 10. Note that the
non-linear source term contains W1(z) ≡ Wβ,α(−2ir2z)Wβ,α(−2ir3z), indicating that the
two sourcing modes tR1 have momenta k2 = k3 = rk1 in the case of r ≡ r2 = r3, while
the momentum of the sourced mode tR2 is k1 in the process of N1. The fact that Green’s
function for tR2 is larger on sub-horizon scales implies that the source effect from tR1 × tR1 to
tR2 is more efficient when the sourcing modes tR1 (rk1) have lower momenta (i.e. a smaller
r) and get amplified before tR2 (k1) crosses the horizon. In other words, N1 becomes larger
for a smaller r, because atypical Green’s function Gt allows the sourcing effect to be active
deep inside the horizon.

This non-linear sourcing process of t2 through the diagram (i) shows clear contrast from
the linear sourcing process from t1 to ψ1 discussed in section 3.2. There, Green’s function
for ψ, Gψ, rapidly oscillates inside the horizon and does not allow t1 to induce ψ1 on sub-
horizon scales, as shown in figure 3.1. In cases where only such normal Green’s functions
are involved, the shape of the bispectrum is typically equilateral, since all the modes are
mainly produced around the horizon crossing. Nonetheless, in our case, Green’s function
for tR is peculiar due to tachyonic instability, and the peak of the bispectrum deviates from
the equilateral limit.

The total contribution to the bispectrum from Ni and Ñi is maximal in the folded limit
r = 0.5. However, Ξ(r2, r3) arising from the tensor polarisations is also an important factor
determining the shape of the tensor bispectrum. Ξ is multiplied to the total bispectrum
eq. (3.79) as an overall factor and it vanishes at r2 = r3 = 0.5. In figure 3.11, we illustrate
how Ξ changes the shape of the bispectrum on the r2 = r3 plane. Ξ suppresses the
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h ) is plotted as solid green line as an function of r ≡ r2 = r3.

The peak is located at r ≈ 0.6 and the deviation from the equilateral shape (red dotted) is

remarkable. The blue dashed line shows the case without Ξ, namely 10−1(k1k2k3)2(B
(i)
h +

B
(ii)
h )/Ξ which is multiplied by 0.1 for illustrative purpose. The parameters are given in

eq. (3.38).

bispectrum at lower r and vanishes at r = 0.5. In fact, Ξ vanishes not only at r2 = r3 = 0.5,
but at all points on the line r2 + r3 = 1 (i.e. the folded limit), because of conservation of
angular momentum. The Feynman diagrams in figure 3.2 can be seen as processes in which
two spin-2 particles collide and one spin-2 particle comes out. In particular, in the case of
a head-on collision, which corresponds to the folded limit, k2 + k3 = k1, the cross-section
vanishes, because the angular momentum is contributed only by spins (i.e. no orbital
angular momentum) and the spin of the system cannot be conserved as 2± 2 6= ±2.

In summary, the peak of the tensor bispectrum Bh is located at r ≡ r2 = r3 ≈ 0.6 for the
following two reasons - (i) Among several contributions to the sourced tensor bispectrum
BRRR
h , the biggest one comes from 〈ψ̂R2 (k1)ψ̂R1 (k2)ψ̂R1 (k3)〉 ∝ N1 in which the two linear

perturbations of SU(2) gauge field t̂R1 (k = rk1) non-linearly induce the second order one
t̂R2 (k1) and subsequently t̂R2 (k1) sources the second order GW ψ̂R2 (k1). In this process, the
amplitude of the second order fluctuations is larger when the momentum of the first order
perturbations, rk1, is smaller, because in this case tR1 gets amplified when the second order
tR2 is still deep inside the horizon where the source effect is more efficient (i.e. Green’s
function Gt has a bigger amplitude). Hence, N1, which dominates the tensor bispectrum,
is a decreasing function of r (see figure 3.10). (ii) The polarisation tensors also yield a r
dependence as an overall factor Ξ(r) to the total bispectrum. Ξ(r) is a growing function
of r and vanishes at r = 0.5. Multiplying Ξ(r) changes the blue dashed line into the green
line in figure 3.11. As the result of (i) and (ii), we obtain the bispectrum with a peak at
r ' 0.6.
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3.5 Parameter Search

In this section, we constrain the parameter regions from present observations and self-
consistency of the model. We also clarify the parameter regions where the power spectrum
or bispectrum of the sourced GWs will be detectable by upcoming CMB observations.
Note that there remain four parameters, H,mQ, εB and g, and one relationship g2εBM

2
Pl =

m4
QH

2. Eliminating g, we are left with three free parameters, H,mQ and εB, in our model.

3.5.1 Tensor-to-scalar ratio

Currently the CMB observations put an upper bound on the tensor-to-scalar ratio r as

r ≡ Ph(kCMB)

Pζ(kCMB)
< 0.07, (95% C.L.), (3.87)

where Pζ is the power spectrum of the curvature perturbation and kCMB = 0.05 Mpc−1.
In our model, not only the vacuum fluctuation of the metric but also the sourced GWs
contribute to Ph. Substituting eq. (3.30), the total tensor-to-scalar ratio is given as

r =
∆h

vac

∆ζ

(
1 +

εB
2
|F(mQ)|2

)
, (3.88)

where the dimensionless scalar power spectrum, ∆ζ ≡ k3Pζ/2π
2 ≈ 2.2×10−9 (5), and that

of the tensor metric vacuum fluctuation, ∆h
vac ≡ k3P vac

h /2π2 = 2H2/π2M2
P , are introduced.

Translating the upper bound on r into the constraint on our model parameters, we obtain

εB <
(0.07

rvac

− 1
) 2

|F(mQ)|2
, (3.89)

where the conventional tensor-to-scalar ratio contributed only from the tensor metric vac-
uum fluctuation is defined by

rvac ≡
∆h

vac

∆ζ

≈ 1

2.2× 10−9

2H2

π2M2
Pl

. (3.90)

Since the upcoming CMB B-mode polarisation observation missions aim to achieve a
sensitivity r ≈ 103, the parameter region predicting r ≥ 10−3 is particularly interesting.
In our model, we find

r ≥ 10−3 ⇐⇒ εB ≥
(10−3

rvac

− 1
) 2

|F(mQ)|2
. (3.91)
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3.5.2 Tensor bispectrum

The constraint on the tensor bispectrum in the equilateral limit is also reported as a bound
on f tens

NL (5);4

−1100 < f tens
NL ≡

BRRR
h (k, k, k)

2
√

2F eq
ζ (k)

< 1900 , (68% C.L.), (3.92)

where BRRR
h (k1, k2, k3) is defined in eq. (3.31) and F eq

ζ (k) ≡ (18/5)P 2
ζ (k), evaluated at the

pivot scale, kCMB = 0.05 Mpc−1 (5). Our model should satisfy these two observational
constraints.

From the constraint on f tens
NL we find,

εB ≥
64M4

Pl

27H4

1100 · 18 ·∆2
ζ · 4π4 · 2

√
2

−5 ·Υeq(mQ)
, (3.93)

εB ≤
64M4

Pl

27H4

1900 · 18 ·∆2
ζ · 4π4 · 2

√
2

5 ·Υeq(mQ)
, (3.94)

where the first constraint applies when Υeq < 0 and the second when Υeq > 0.

3.5.3 Consistency of the model

In addition to these observational constraints, we discuss the restriction imposed by self-
consistency of the model. Scalar perturbations of the spectator sector have a fatal instabil-
ity on sub-horizon scale if mQ <

√
2 (53). Hence we demand mQ >

√
2 in our model. Since

εB approximately indicates the energy density fraction of the background SU(2) gauge field,

ΩA ≡
ρQ

3M2
PlH

2
=

(Q̇+HQ)2 + g2Q4

2M2
PlH

2
'

1 +m2
Q

2m2
Q

εB, (3.95)

εB is positive and small. As found in (63), if εB is too large, its effect on the evolution of
the inflaton perturbation significantly alters the spectral index ns, because εB contributes
to Ḣ through eq. (3.11). To keep this effect negligible, it is required

εB(t∗) < 2× 10−2 , (3.96)

where t∗ is the time at which CMB modes leave the horizon. On the other hand, since
εB can be rewritten as εB = m4

QH
2/(g2M2

Pl), if one lowers εB by fixing mQ and H, one
would confront a large self-coupling constant g of the SU(2) gauge fields which leads to a
non-negligible backreaction from SU(2) tensor perturbations to the background dynamics.
In order to avoid large backreaction, we need to have (52)

εB >
m2
Q[B + B̃/(mQ +m−1

Q )]

24π2

( H

MPl

)2

, (3.97)

4The factor of 2
√

2 in the denominator comes from the difference of the normalisation of the polarisation
tensors. In (5), eRij(k)eRij(−k) = 2 is adopted.
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where B and B̃ are functions of mQ given by

B(mQ) =

∫ xmax

0

dx x
∣∣iβWβ,α(−2ix)

∣∣2 , B̃(mQ) =

∫ xmax

0

dx x2
∣∣iβWβ,α(−2ix)

∣∣2 . (3.98)

We also find that equation (3.97) ensures g � 1 as well, which is preferred for validity
of the perturbation series.5

3.5.4 Allowed parameter regions

Equations (3.87)–(3.97), together with mQ >
√

2, give the set of constraints we employ
to define the regions in εB-mQ plane that are interesting for future CMB experiments.
Figures (3.12)–(3.14) show the allowed regions for 3 different choices of H or equivalently
rvac = 10−4, 10−3 and 10−2. As rvac increases, the allowed parameter space shrinks. This is
because the upper bound on r implies that the power in the sourced tensor modes cannot
be very large if rvac is large.

The bottom right corners in these figures (i.e. regions with a large mQ and small
εB) are shaded as the parameter spaces with non-negligible backreaction, although this
does not mean that these regions are excluded. Rather, it indicates that one needs to
perform numerical calculations to take into account backreaction, to study this parameter
space (52) (see ref. (63) where the backreaction is numerically incorporated).

We find that there’s a general trend in the constraining power of tensor power spectrum
and bispectrum. While the power spectrum is better at constraining small mQ regions,
the bispectrum is better at constraining large mQ regions. This happens because Bh is

exponentially more sensitive to mQ (it has an extra factor of e2π(2mQ+m−1
Q ) compared to r),

and so, a small change in mQ can easily change Bh by a large factor (∼ e4π∆mQ). This also
has interesting consequences for detectability of the tensor bispectrum, as a large range of
bispectra can be generated even for the small range of values of interest,

√
2 < mQ > 4,

making a detection of the tensor bispectrum (in this model) possible in the near future,
even if r is small (see figures (3.12)–(3.14)). While even the current constraints on f tens

NL are
useful for ruling out the top right corners in the figures (i.e. regions with a large mQ and
large εB), there remains parameter space in which the tensor bispectrum can be observed in
the future. It is then natural to ask what range of parameters can be probed in upcoming
CMB missions.

To that end we also plot the line for σ(f tens
NL ) = 1 in figures (3.12)–(3.14), which is

expected to be the target sensitivity of LiteBIRD (M. Shiraishi, private communication).
We see that this improved sensitivity will allow us to probe a significant portion of the
parameter space with large mQ and small εB, which is inaccessible to measurements of
r, even if we can measure r = 10−4 (figure 3.12, bottom right). Although our present
calculation does not ensure that this conclusion stays unchanged when we account for

5Strictly speaking, since our setup does not include any SU(2) charged particle, a large g itself is not
necessarily problematic. However, if one considers a charged particle, g & 1 causes a strong coupling
problem in that loop effects would alter dynamics of the SU(2) gauge fields.
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the backreaction, it might still be true when backreaction is included. We also show
the line corresponding to rsource = rvac. Regions to the left of this line denote regions
where the amplitude of the sourced tensor modes is smaller than the amplitude of vacuum
tensor of the metric. From figure 3.14 we see that if rvac = 10−2, there is a region of
intermediate εB and mQ values for which f tens

NL > 1, also if rsource < rvac. This regime is
particularly interesting because one can learn about both vacuum fluctuations of the metric
and spectator fields during inflation, by combining the power spectrum and bispectrum.
On the other hand, if rvac is smaller, a small rsource is accompanied by a small tensor
bispectrum as well.

3.6 Scalar perturbations

The SU(2) field can also contribute to ζ. In flat gauge ζ is given by

ζ =

∑
i δρi

3
∑

i(ρi + Pi)
≈ Ωφδρφ/ρφ + Ωχδρχ/ρχ + ΩAδρA/ρA

2ε
, (3.99)

where ρi, Pi, δρi, and Ωi = ρi/3H
2M2

Pl are the energy density, pressure, energy density
perturbation, and energy density fraction of i = (φ, χ,A). We have used ρφ + Pφ = φ̇2 =
2εH2M2

Pl and ignored the terms related to the axion and gauge fields in the denominator.
The third term in the numerator is suppressed by ΩA and will be negligible once χ settles
into the potential minimum and stops producing SU(2), i.e., ΩA → 0. The SU(2) field
produces axion perturbations via tij+tij → δχ which, in turn, produces ζ in two ways. One
is via the second term in the numerator, and is negligible after inflation as Ωχ → 0. Another
channel is production of δφ from δχ, producing ζ via the first term in the numerator. This
can in principle make a sizeable contribution if mQ is large; however, for our choice of
3 < mQ < 4 the contribution is several orders of magnitude smaller than the vacuum
contribution of inflaton. A rough order estimate can be given as below.

Considering the exponential dependence tij ≈ e2mQ (which includes mQ dependence of
the Whittaker function) and a vertex gΛ/2(∂ηδχ)tijtij (where Λ ≡ λQ/f (129; 52)), the
power spectrum of χ is evaluated as k3P tt

δχ/H
2 ≈ g2(Λ/2)2e8mQ . (The vertices that are

not proportional to g do not involve one δχ and two tensors.) In addition, the gravita-
tional coupling between δφ and δχ is suppressed by

√
εφεχ. Then we obtain k3P tt

δφ/H
2 ≈

εφεχg
2(Λ/2)2e8mQ ≈ 7.5 × 10−3, where εφ = 10−4, εχ = 10−8, g = 10−2, and mQ = 3.45

((52), see eq.(3.2) and Fig.2). Therefore this model can produce a significant amount of
GWs over a wide range in wavenumbers, while simultaneously satisfying stringent obser-
vational constraints on the scalar curvature power spectrum.
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Figure 3.12: Parameter space for gravitational wave production in our model, for rvac =
10−4, and for scale-invariant GWs. The blue and magenta shaded regions are excluded
by the current upper bound on f tens

NL and r (5), respectively. The light red shaded region
is not necessarily ruled out but a significant backreaction requires a dedicated numerical
treatment to obtain the predictions. In the orange shaded region, the system confronts a
strong coupling problem, if one considers SU(2) charged particle. We also show f tens

NL = 1
as the dashed blue line, because an error of order unity σ(f tens

NL ) ∼ 1 would be achieved
by upcoming CMB B-mode missions. The solid lines denote r = 10−2 (blue), 10−3 (green)
and 10−4 (yellow).



3.6. SCALAR PERTURBATIONS 69

Figure 3.13: Same as figure 3.12 but for rvac = 10−3. The black star denotes the parameter
choice given in eq. (3.38).
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Figure 3.14: Same as figure 3.12 but for rvac = 10−2.
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3.7 Conclusion

Unification of gravity with the Standard Model has been one of the most sought-after
goals of physics for decades now (144). The hope is that all fundamental forces can be
subsumed into one grand unified theory (GUT) at high energies, which, in the low-energy
limit, reduces to the four different interactions. Such a theory though, is still missing (179)
owing to our inability to quantize gravity, in contrast to the three other forces - strong, weak
and electromagnetic, which have been successfully quantized. A theory of quantum gravity
has been elusive because of various issues, including non-renormalizability (for QFT-like
quantum gravity) or other theoretical issues (string theory or loop quantum gravity (35)).
Cosmology presents a very powerful (and probably the only) probe of quantum gravity, in
the cosmic microwave background (CMB).

Although, we do not yet know how to quantize gravity over an entire spacetime, as
detailed in chapter 2, we can quantize its perturbations around a specified background. In
this case, the degrees of freedom of the gravitational field, including the transverse traceless
tensor modes of the metric, should have ground state vacuum fluctuations (69; 166). These
can be found in B-mode polarisation of the cosmic microwave background (CMB) (152; 86);
thus, a detection of non-zero (primordial) B-modes is evidence for tensor fluctuations of
the metric.

So far, no such evidence has been found (4). CMB experiments provide constraints
on the tensor-to-scalar ratio r, which is defined as the ratio of the power in tensor modes
(Ph(k0)) to the power in scalar modes (Pζ(k0)), at some wavenumber k0, r ≡ Ph(k0)/Pζ(k0).
Currently, this ratio is constrained to be r < 0.07 (95 % C.L.) (4) at k0 = 0.05 Mpc−1.

In this chapter we showed that a detection of B-mode polarisation in the CMB is
evidence for primordial tensor perturbations, but is not necessarily evidence for the vacuum
fluctuation in the tensor metric. For the standard scenario of single-field slow-roll inflation,
the tensor fluctuations of the metric, hij, obey the equation

�hij(t,x) = 0 , (3.100)

where � is the d’Alembertian operator in 4-dimensions. Equation (3.100) shows that if
we find evidence for tensor fluctuations, in the absence of anything that can source them,
they have to be necessarily quantum.

However, there is no a priori reason to ignore sources in the right hand side of Equa-
tion (3.100). It is reasonable to think that there are (many) more than one field during
inflation. While their energy density may be much smaller than that of the dominant
inflaton field, they can still act as sources of perturbations. In general, we write

�hij(t,x) = Πij(t,x) , (3.101)

and tensor perturbations are sourced by the anisotropic stress-energy Πij, which is provided
by quantum fluctuations of a field other than the metric. These sourced tensor fluctuations
can be much larger than the vacuum one and can generate observable B-modes, invalidating
the claim that B-modes are evidence for vacuum fluctuations of the metric. Consequently,
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there have been intense efforts to build inflation models where a sizeable r can be generated
from sources, without violating stringent observational constraints on the scalar perturba-
tion. The sources include scalars (46; 36; 32; 154), U(1) gauge fields (162; 15; 20; 19; 136),
and SU(2) gauge fields (112; 54; 8; 7; 110; 52).

In particular, in this chapter we have calculated the bispectrum of tensor perturbations
sourced by spectator SU(2) gauge fields during inflation (52). The primary contribution to
the bispectrum comes from the self-interaction of the SU(2) gauge fields; thus, it is unique
to non-Abelian gauge theory. We find that the amplitude of the bispectrum parametrised
by its ratio to the (squared) power spectrum, Bh/P

2
h , is very large, ∼ 1/εB (10). Since

εB � 1, this is much larger than ∼ 1 which is predicted for quantum fluctuations of the
metric (108; 109).

We also explored parameter space of the model relevant to future CMB missions. Even
with an rvac as low as 10−4, large parameter space remains consistent theoretically as well
as with the current CMB observations. However, the exponential sensitivity of the power
spectrum and bispectrum on model parameters makes it difficult to completely eliminate
all the parameter space of the model on the basis of just these observations.

Upcoming CMB missions such as LiteBIRD (117) will measure the CMB polarisation
to unprecedented accuracy. This will allow us to not only detect B-modes but also to char-
acterise them, hence testing one of our most ambitious claims about our origins. Vacuum
fluctuations of the metric are usually almost scale invariant, with a slightly red tilt (see (87)
for the latest review). On the other hand, B-modes from sources can have a red or blue tilt
or completely non-power-law spectra such as bumps, depending upon model parameters.
Moreover, the tensor fluctuations produced by sources can be chiral (see section 3.2), and so
can be seen as a non-vanishing TB/EB correlation in the CMB (145; 127; 171; 104; 68; 65),
whereas vacuum fluctuations produce parity-even B-modes. Finally, these modes can be
highly non-Gaussian (10). Because tensor modes from vacuum fluctuations of the met-
ric are almost Gaussian (108; 109), non-Gaussianity provides strong evidence for sourced
tensor modes. Therefore, if the primordial B-modes arise from quantum fluctuations of
the metric, we will find them to be parity invariant, near scale-invariant, and weakly non-
Gaussian. If not, we will use the deviations to constrain the fraction of energy density in
spectator gauge fields in the inflationary Universe (47; 127; 156; 10).



Chapter 4

Generating Log-normal Mocks in
Redshift Space

4.1 Introduction

Deducing robust cosmological constraints from galaxy surveys requires an accurate mod-
elling of the observed two-point correlation function and power spectrum along with
their covariance matrices. This is a challenging task because of non-linearity and non-
Gaussianity of the galaxy density field. First, non-linear gravitational evolution transforms
a nearly Gaussian initial density field into a non-Gaussian one (28), and the galaxy density
field is related non-linearly to this non-Gaussian matter density field (galaxy bias; see (51)
for a review). In addition, the observed galaxy density field differs from the underlying
one because of systematics due to peculiar velocity (RSD) and variations in observing
conditions across the survey area (window function effect).

Due to these various non-linearities, unlike for the CMB analysis, the Gaussian approx-
imation is no longer valid for computing the covariance matrix of the galaxy two-point
statistics. Going beyond the Gaussian approximation, a method based on non-linear per-
turbation theory including contributions from connected four-point functions can model
the non-linear covariance matrix on quasi-linear scales (120; 21). Perturbative approaches
break down on small scales where non-linearities are too strong. The gravitational am-
plification and galaxy bias in these non-linear scales may be fitted by a number of free
parameters of effective field theory (24; 37). However, treatment of the mode-coupling ef-
fect due to the survey window function (for example, due to sparse sampling of the survey
area (39)) requires a full account of modes down to the resolution scale of the survey, set by
the number density of the sample: n̄g & 1/P (k), P (k) ≡ |δ(k)|2 being the power spectrum
of the overdensity field δ(x).

Cosmological N-body simulations have been the gold standard in modelling non-linearity
in the large-scale structure. As phenomena in a wide range of scales are involved in the
formation and evolution of galaxies, simulating all the relevant physics of the formation
and evolution of galaxies is impractical. Instead, the usual practice is to “paint” galaxies

73
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onto the halos in matter-only simulations by using the halo-occupation distribution (HOD)
function estimated from, for example, the angular clustering of the survey (e.g., (70)), or by
using Subhalo Abundance Matching (SHAM) with the observed stellar mass function (e.g.,
(146). With these mock galaxy samples from the simulation at hand, the galaxy correlation
functions and their covariance matrices can be measured directly from a suite of N-body
simulations including various selection effects of the surveys. Even for these matter-only
N-body simulations, however, a robust cosmological parameter estimation may demand too
large computational resources. This is because estimating the covariance matrix from N-
body simulations hampers the cosmological parameter estimation by a factor of 1+Nb/Ns,
where Ns is the number of N-body simulations and Nb is the number of independent bins
used for the estimation of parameters (55). If we were to achieve a percent precision on
the covariance matrix, we would need Nb/Ns = 10−2. As Nb ≈ 102 for typical survey data,
Ns ≈ 104 would be required. This requirement would become more severe in estimating
the inverse covariance matrix and its associated errors (see e.g., (75; 137; 153)).

One pragmatic way of bypassing this problem is to simulate gravitational evolution
by adopting a set of simplified assumptions. In this approach, one trades accuracy for
speed of simulations, especially on small scales. For example, the Zel’dovich simulation
(184) captures correct density and velocity fields on large scales where non-linearities are
modest; the higher order Lagrangian perturbation theory (LPT (122; 34; 38)) simulations
capture non-linearities on progressively smaller scales (44; 119; 89; 170; 128; 90). We refer
the readers to Ref. (121) for a recent review and to Refs. (118; 40; 126) for comparisons
between different approaches.

In this chapter, we shall take a different approach: instead of modelling the non-linear
density evolution, we exploit statistical properties of the non-linear galaxy density field.
Specifically, we generate a mock galaxy catalog with the assumption that the probability
density function (PDF) of galaxy density fields follows a log-normal distribution. This
assumption is based upon the observation that the PDF of log-transformed density fields,
ln(1 + δ) with δ ≡ n/n̄− 1 being the density contrast, measured from N-body simulations
roughly matches a Gaussian PDF (43; 45; 91; 29; 173; 155). The evidence for a log-normal
PDF does not only come from the matter density fields in simulations, but also from
the Dark Energy Survey (DES) science verification data (41) and earlier measurements
(79; 181).

Note that log-normality is not merely a statement about the one-point PDF, but it
means that the log-transformed field ln(1 + δ) is a multi-variate Gaussian random field
whose statistics are completely specified by its two-point correlation function. For this,
the N-body simulation of Ref. (88) has confirmed that the two-point correlation function
of matter density fields also roughly matches the prediction of log-normality well into fairly
non-linear regime.

In addition, the log-normal mock generator presents the following practical advantages
that further motivate our pursuing this approach:

1. It is fast. Since the relation between the density fields and the Gaussian (log-
transformed) fields is given by a local transformation (see section 4.3 for more de-
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tails), the log-normal mock generator is almost as fast as generating three-dimensional
Gaussian random fields. This allows us to quickly generate a large number of mock
galaxy distributions.

2. It is direct. The log-normal mock generator takes the observed galaxy two-point
correlation function as an input so that we can avoid post-processing steps (halo
finding, HOD, for example) connecting the non-linear density field to mock galaxies.

3. It is instructive. Upon assuming log-normal PDF of the galaxy density field, all
higher-order correlation functions are given in terms of the two-point correlation
function of the log-transformed field (43). This allows us to quantitatively study
highly non-linear mode-coupling effects in both the signal and covariance matrix that
demand knowledge about the density field on non-linear scales. One such example is
mode-coupling due to the survey window function. By using a thousand log-normal
mock catalogs, Ref. (39) has quantified the effect from a duplicated, sparse (instead
of contiguous) angular selection function, and deduced the optimal analysis strategy.

In this chapter, we extend the real-space log-normal mock generator presented in
Ref. (39) by including the velocity field in a consistent manner. We then generate the
log-normal mock in redshift space by applying the real-to-redshift space mapping. Again,
equipped with perfect knowledge about the statistical properties of the galaxy density and
velocity fields, such a mock catalog serves as an excellent test bed for modelling RSD due
to this non-linear mapping (148). To test the RSD effect on the two-point statistics of the
log-normal mock catalog, we begin with the real-space galaxy two-point correlation func-
tion as an input. We use a log-normal PDF to generate a three-dimensional galaxy density
field, as well as a matter density field. Finally, we generate a velocity field consistent with
the matter density field by using the linearised continuity equation (see section 4.3 for more
details). We then measure the galaxy two-point statistics (correlation function and power
spectrum) both in real and redshift space, and the pairwise line-of-sight velocity PDFs
from the log-normal mock catalog. We also calculate the mean pairwise velocity using
log-normal statistics and show that it agrees with the measurement from the catalog.

Our implementation of log-normal galaxy density and velocity fields differs from other
log-normal codes such as FLASK (182), CoLoRe (14) and (134). FLASK does not have a
prescription for producing a velocity field; hence one has to provide an anisotropic power
spectrum when generating density fields in redshift space. CoLoRe generates a velocity
field by using linear theory velocities corresponding to the log-transformed field, so the
resulting velocities follow a Gaussian PDF. Note that the fact that the velocity field follows
a Gaussian PDF does not imply that the pairwise line-of-sight velocity PDF is Gaussian
because the pairwise line-of-sight velocity PDF is a pair-weighted quantity (see section 4.2
for more details). In contrast, in this chapter, we use the linearised continuity equation to
ensure mass conservation with little additional computing cost compared to the CoLoRe
method.

The rest of the chapter is organized as follows. In section 4.2 we present an overview
of redshift-space statistics including the two-point correlation function and the pairwise
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line-of-sight velocity PDF. In section 4.3 we introduce our method to generate log-normal
density and velocity fields. In section 4.4 we present measurements from our log-normal
mock catalogs, including two-point statistics in real space (sec. 4.4.1), the cross-correlation
coefficient between matter and galaxy fields (sec. 4.4.1), two-point statistics in redshift
space (sec. 4.4.2), and pairwise line-of-sight velocity PDFs (sec. 4.4.3); in sec. 4.4.4 we
discuss how the streaming model reduces to the Kaiser limit at large separations. We sum-
marize the results in section 4.5. In appendix D, we present a derivation of the streaming
model for RSD. In appendix E, we lay out the method that we use to correct for the binning
effect when measuring power spectra. In appendix F, we present the details of calculating
the mean pairwise line-of-sight velocity from the log-normal mock catalogs. Throughout,
we use the following Fourier convention:

f(k) =

∫
d3xf(x)e−ik·x, f(x) =

∫
d3k

(2π)3
f(k)eik·x . (4.1)

In this chapter, the term real space refers to the contrast with redshift space, and the term
configuration space refers to the contrast with Fourier space.

4.2 Review of RSD

In spectroscopic galaxy redshift surveys, radial distances to galaxies are inferred from
observed spectral shifts containing both the Hubble expansion and peculiar velocities of
galaxies along the line-of-sight. The observed positions (redshift space) of galaxies are
related to the true positions (real space) of galaxies by

s = x+
1

H
v(x) · ˆ̀. (4.2)

Here, x and s are the comoving coordinates, respectively, in real and redshift space, H
is defined by H ≡ aH with H being the Hubble expansion rate and a being the scale
factor of the universe, v = dx/dη is the peculiar velocity of the galaxy with η being the
conformal time (related to the time coordinate by dη = dt/a(t)), and ˆ̀ is the line-of-sight
direction of the galaxy. In this chapter, we shall take the plane-parallel (distant-observer)
approximation such that ˆ̀≡ ẑ is fixed for all galaxies in the survey.

As a result of the shift in the line-of-sight distance given by equation (4.2), the observed
galaxy distribution in redshift space is anisotropically distorted from the underlying real-
space distribution. It is anisotropic because the distortion happens only along the line-of-
sight direction. Since the number of galaxies in real and redshift space must be the same,
we have

[1 + δsg(s)]d3s = [1 + δg(x)]d3x , (4.3)

where δg ≡ ng/n̄g−1 and δsg ≡ nsg/n̄
s
g−1 are the galaxy density contrasts in real and redshift

space, respectively. Here, we ignore the time evolution of the mean number density of
galaxies so that n̄g = n̄sg; this would induce the evolution bias (be) contribution in Ref. (83)
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which is small for kr � 1. We then relate the redshift-space density contrast δsg to the real
space one δg as

δsg(s) = [1 + δg(x)]J(x)− 1, (4.4)

with the Jacobian of the coordinate transformation

J(x) =

∣∣∣∣d3x

d3s

∣∣∣∣ =

[
1 +

1

H
∂vz(x)

∂z

]−1

, (4.5)

where z refers to the line-of-sight coordinate. Note that the relation above only works
when the distant-observer approximation is valid and when the real-to-redshift coordinate
mapping [equation (4.2)] is one-to-one; otherwise, the Jacobian would be infinite.

There are two sources of non-linearity in the relationship between real- and redshift-
space density contrasts. First, the Jacobian of the mapping, equation (4.5), is a non-
linear function of the velocity field. Second, the velocity field itself is non-linear due to
gravitational evolution at late times. Ignoring the velocity bias (51) that only affects at
galaxy formation scales, we assume that the peculiar velocity is sourced by the underlying
matter density fluctuation and that galaxies are moving with the same velocity as matter.
With this assumption, the peculiar velocity field is governed by the continuity equation for
matter density contrast

∂δm(x)

∂η
+∇ · {[1 + δm(x)]v(x)} = 0 , (4.6)

and the Euler equation,

∂v(x)

∂η
+Hv(x) + v(x) · ∇v(x) = −3

2
H2∇−1δ(x) . (4.7)

In the large-scale limit, in which the density contrast and the peculiar velocity are
small, we can linearise both the Jacobian and the continuity equation to obtain

δsg(s) = bδLm(x)− 1

H
∂vz(x)

∂z
, v(k) = iHf k

k2
δLm(k) , (4.8)

where δLm is the linear matter density contrast, f = d lnD/d ln a is the logarithmic growth
rate with D being the linear growth factor, and b is the linear bias factor. Then the linear
redshift-space galaxy power spectrum P s

gg(k, µk) becomes

P s
gg(k, µk) =

(
b+ fµ2

k

)2
PL
m(k) , (4.9)

where µk = k̂ · ẑ is the cosine of the angle between the line-of-sight and the wave vector
k, and PL

m is the linear matter power spectrum. This is the so-called Kaiser formula (85).
It is useful to expand the redshift-space power spectrum using the Legendre polynomials
L`(µk),

P s
gg(k, µk) =

∑
`

P s
gg,`(k)L`(µk). (4.10)
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Non-zero components are monopole, quadrupole, and hexadecapole, which are given re-
spectively by

P s
gg,`=0(k) =

(
b2 +

2

3
bf +

1

5
f 2

)
PL
m(k) ,

P s
gg,`=2(k) =

(
4

3
bf +

4

7
f 2

)
PL
m(k) ,

P s
gg,`=4(k) =

8

35
f 2PL

m(k) . (4.11)

The corresponding galaxy two-point correlation function is given in a similar manner as
(73; 74):

ξsgg(s, µ) =

(
b2 +

2

3
bf +

1

5
f 2

)
ξ0(s)−

(
4

3
bf +

4

7
f 2

)
L2(µ)ξ2(s) +

8

35
f 2L4(µ)ξ4(s), (4.12)

with

ξ`(s) ≡
∫

dk

2π2
k2PL

m(k)j`(ks) . (4.13)

On very small scales, corresponding to the interior of virialized objects such as galaxy
clusters, peculiar velocities are randomly oriented. As a result, the clustering amplitude is
reduced along the line-of-sight; this effect is called Fingers-of-God (FoG; (80)), as clusters
appear elongated along the line-of-sight direction. The small-scale damping of the power
spectrum due to FoG is often modelled by introducing an exponential or a Lorentzian
damping factor motivated by the pairwise line-of-sight velocity PDF measured from N-
body simulations (148).

On intermediate scales, the Jacobian and the continuity equation cannot be linearised,
and galaxies are not in random motion in virialised objects. We thus need to take into
account the non-linear effects in the velocity field as well as in the Jacobian. Modelling
non-linear RSD has been studied extensively in the literature for the past decade including,
for example, standard (Eulerian) perturbation theory (76; 28), Lagrangian perturbation
theory (114; 113; 115; 116; 167), effective field theory (101; 138), and the distribution
function approach (151; 132; 131; 175; 176; 130). All these methods are based on non-linear
perturbation theory and treat both non-linearities in the velocity field and the Jacobian
perturbatively. The resummation approaches (169; 177), and the streaming model (135;
49; 60; 148; 174), on the other hand, can accommodate the full non-linearities in the
Jacobian. Here, we focus on the streaming model.

The streaming model describes RSD in the galaxy two-point correlation function as a
mapping between galaxy pairs in real and redshift space. This method aligns well with the
interpretation that the galaxy two-point correlation function is the excess number of pairs
over the cosmic mean. Mathematically, denoting the pairwise line-of-sight velocity PDF
as P(s‖ − r‖, r), that is, in terms of the change in the line-of-sight separation r‖ − s‖ ≡
−∆vz/H, the redshift-space galaxy two-point correlation function ξsgg can be written as

1 + ξsgg(s‖, s⊥) =

∫
dr‖ [1 + ξgg(r)]P(s‖ − r‖, r) , (4.14)
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where ξgg is the real-space galaxy correlation function. We show a derivation of the stream-
ing model in appendix D, assuming only number conservation and statistical homogeneity
of the Universe. Once the pairwise line-of-sight velocity PDF P(s‖ − r‖, r) is known
accurately, one can map the real-space correlation function into redshift space by equa-
tion (4.14). Of course, the linearised streaming model reproduces the linear theory result
(60; 82).

The key characteristic of the pairwise line-of-sight velocity PDF is that it is a pair-
weighted quantity. Ref. (148) (also see appendix D) shows the moment generating function
of the pairwise line-of-sight velocity PDF as

P(s‖ − r‖, r) =

∫
dγ

2π
eiγ(s‖−r‖)M(−iγ, r), (4.15)

M(λ, r) =

〈
eλ(vz(x1)−vz(x2))/H [1 + δg(x1)] [1 + δg(x2)]

〉
1 + ξgg(r)

, (4.16)

where r = x1 − x2. We show in figure 4.1 the pairwise line-of-sight velocity PDF of dark
matter halos averaged over 160 N-body simulations (141). The box size is 2400 h−1 Mpc on
a side, and the redshift is z = 0. We find that the PDF has a negative mean (vertical dotted
lines) and a negative skewness, and the trend is more obvious for smaller separations. In
our sign convention, this means that there are more approaching pairs than recessing pairs,
which is a consequence of the attractive nature of gravity. For larger separations, linear
theory applies so that both the mean pairwise velocity and the skewness get smaller, and
the distribution becomes more symmetric. We also find that the mean of the PDF is more
negative for larger mass halos.

Several attempts have been made in the literature (33; 174; 178; 142) to model the
redshift-space galaxy two-point correlation function by calculating P(s‖−r‖, r) analytically.
It is still difficult to predict redshift-space two-point correlation function on all scales
without the aid of free parameters. The key issue in modelling the pairwise line-of-sight
velocity PDF is its non-Gaussianity; as shown in Ref. (148; 60), the PDF is non-Gaussian
even when the density and velocity field follow a Gaussian distribution. As discussed in
section 4.4.3, we also find this non-Gaussianity in the log-normal mock catalogs. The
pairwise line-of-sight velocity PDFs that we measure from the log-normal catalogs show
qualitatively the same features as those from N-body simulations. In both cases we recover
the Kaiser limit on large scales. In section 4.4.4 we quantitatively discuss how the streaming
model reduces to the Kaiser limit at large separations, for our log-normal mocks, making
use of the moments of the measured pairwise line-of-sight velocity PDF.

4.3 Log-normal Catalog Generation

The log-normal distributed density contrast δ(x) is related to a Gaussian (log-transformed)
field G(x) ≡ ln [1 + δ(x)]− 〈ln [1 + δ(x)]〉 as

δ(x) = e−σ
2
G+G(x) − 1 , (4.17)
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Figure 4.1: Pairwise line-of-sight velocity PDFs averaged over 160 N-body simulations
along the line-of-sight (0.99 ≤ µ ≤ 1.0) for four separations of galaxy pairs: 5.25 h−1 Mpc
(top left), 20.25 h−1 Mpc (top right), 50.25 h−1 Mpc (bottom left), and 100.25 h−1 Mpc
(bottom right). The simulation volume is (2400 h−1 Mpc)3 and the output is at z = 0.
The red solid and blue dashed lines denote the PDFs for low-mass (5 × 1013 − 6.5 × 1013

h−1M�) and high-mass (1 × 1014 − 2.5 × 1014 h−1M�) halos, for which the average halo
biases are b = 1.8 and 2.5, respectively. Negative (positive) velocities denote galaxy pairs
moving towards (away from) each other. The red and blue dashed vertical lines denote the
mean pairwise line-of-sight velocity for low-mass and high-mass halos respectively. The
PDFs have been normalised to unity, and rescaled such that the maximum of the red lines
is unity. For small separations (top panels), there is a small but significant shift towards
more negative values for PDFs with a higher mass; for larger separations (bottom panels),
the PDFs become more symmetric. However, the mean velocity is still not zero even at
separations of ∼ 100h−1 Mpc.
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where the pre-factor with the variance of the Gaussian field σ2
G ≡ 〈G2〉 ensures that the

mean of δ(x) vanishes. Note that the log-normal density fields follow the natural constraint
δ(x) ≥ −1 of density contrasts by definition. This is not the case for simulations that gen-
erate the linear density contrast from Gaussian realisations, although the violation rarely
occurs when the variance is small at, e.g., high redshift for setting up the initial conditions
of simulations. Applying equation (4.17), one can relate the two-point correlation function
of the Gaussian field ξG(r) to the two-point correlation function of the density field ξ(r)
as (43)

ξG(r) = ln [1 + ξ(r)] . (4.18)

Since Gaussian fields of different Fourier modes are uncorrelated, we generate G in
Fourier space. To generate a log-normal density field with a given power spectrum P (k),
we first Fourier transform the power spectrum to get the target two-point correlation
function ξ(r). We then calculate the two-point correlation function of the Gaussian field
ξG(r) by equation (4.18), and Fourier transform ξG(r) to get the power spectrum PG(k)
of G. The Fourier space Gaussian field G(k) is generated with (81)

G(k) =

√
PG(k)V

2
(θr + iθi) , (4.19)

where θr and θi are Gaussian random variables with unit variance and zero mean, and V is
the volume of the simulation. We also enforce G(−k) = G∗(k) so that the Gaussian field
in configuration space G(x) is real. After G(k) is generated at each point in the Fourier
grid, we use FFTW library (1) to Fourier-transform G(k) and obtain G(x) on regular cells
in configuration space. We then use equation (4.17) to transform G(x) into the desired
log-normal density contrast δ(x) on each cell, with the variance σG measured from G(x)
in all cells. The resulting density fluctuation δ(x) follows a log-normal distribution with
the target power spectrum P (k).

At each cell in configuration space, we calculate the expectation value for the number of
galaxies Ng(x) = n̄g[1 + δ(x)]Vcell, where n̄g is the global mean galaxy number density and
Vcell is the volume of the cell. As Ng(x) is not an integer, we draw a Poisson random number
with the mean Ng(x) to obtain the integer number of galaxies in the cell and populate
galaxies randomly within the cell. This discretisation is consistent with the nearest-grid-
point (NGP) density assignment in the sense that the galaxies are equally spread over the
cell.

We next assign velocities to galaxies. For our mock catalogs, we estimate velocities by
using the linearised continuity equation of the matter fields:

∂δm(x)

∂η
+∇ · v(x) = 0 , or v(k) = iHf k

k2
δm(k) . (4.20)

As the velocity bias can be ignored at the leading order (51), the velocity of a galaxy
follows the local matter velocity. We implement this equation as follows. We take the
target matter power spectrum to compute δm(k) on Fourier cells following the procedures
described above, use equation (4.20) to compute v(k) on each Fourier grid, and then
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Fourier-transform v(k) back into configuration space to obtain v(x) on each cell. To
ensure that the galaxy overdensities and velocities are correlated, we use the same random
seed for G of galaxies and matter. Namely, the phases of Gg(k) and Gm(k) are identical;
however, this does not imply that the phases of δg(k) and δm(k) are identical, as we show
in section 4.4.1. Finally, we assign the same velocity to all galaxies within one cell.

The target galaxy and matter power spectra can be chosen freely. We need a galaxy
bias model (51) to find the matter power spectrum that is consistent with the chosen
galaxy power spectrum. In this chapter, we use a linear bias relation between the matter
and galaxy power spectra, Pgg(k) = b2Pmm(k), with the linear bias parameter b. One
important feature of the log-normal catalogs is that even though the target galaxy and
matter power spectra are linearly related, the density fields are not proportional to each
other (see section 4.4.1). Also, while the galaxy power spectrum and the matter power
spectrum are linearly related, the power spectra of their corresponding Gaussian fields are
not proportional to each other because

ln[1 + b2ξ(r)] 6= b2 ln[1 + ξ(r)] . (4.21)

We generate 50 log-normal mock catalogs in a cubic volume with Lbox = 1000 h−1 Mpc,
and 10243 grids for the Fourier transformation. This corresponds to the Nyquist frequency
of kNy = 3.22 h Mpc−1. The catalogs are generated at z = 1.3, and each catalog contains
roughly 2.1 million galaxies. We compute the input galaxy power spectrum from the linear
matter power spectrum using Eisenstein and Hu’s fitting function (57) and the linear
galaxy bias b = 1.455. We assume a flat ΛCDM model with Ωm = 0.272, ns = 0.963,
A = 2.1 × 10−9. The outcome of this mock generator is a set of positions and velocities
of galaxies in three-dimensional space with the target galaxy power spectrum. We shall
present detailed tests on the output catalogs in section 4.4.

4.4 Validation of the Log-normal Mocks

In this section, we present the results of the log-normal mock generator. We start from
the two-point statistics in real space (section 4.4.1) and then move onto the redshift space
correlation function (section 4.4.2), the pairwise velocity PDF (section 4.4.3) and recovery
of the Kaiser limit on large scales (section 4.4.4).

4.4.1 Real-space density statistics

Two-point Statistics

We first measure the real-space two-point statistics: power spectrum and two-point corre-
lation function. As we have pointed out earlier, our log-normal catalogs populate galaxies
randomly in each cell, and this is equivalent to adopting the NGP mass assignment scheme.
To be consistent, we use NGP with the same grid number to estimate the galaxy density
contrast for Fast Fourier Transform (FFT). In this way, we recover the input target power
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Figure 4.2: (Top) Mean of the real-space galaxy power spectrum measured from 50 log-
normal catalogs (solid) and the input power spectrum (dashed). We show k2P (k). (Bot-
tom) Ratio of the two. The band shows the error on the mean estimated from 50 realisa-
tions. The Nyquist frequency for these measurements is kNy = 3.22h Mpc−1.

spectrum (having subtracted a constant shot noise = 1/N̄ , N̄ denoting the number density
of galaxies), without needing to deconvolve the window function due to the density assign-
ment (84). Should we use a different mesh number or density assignment scheme (such as
Cloud-In-Cell), we would have to correct for the window function effects by applying an
appropriate deconvolution.

Figure 4.2 shows the comparison between the input power spectrum and the power
spectrum averaged over 50 log-normal realisations (top), and the ratio of the two (bottom).
The band shows the error on the mean estimated from 50 realisations. We find an excellent
agreement between the measured and input power spectra for k . 2 h Mpc−1. Note that,
when comparing the measurement and prediction we need to take special care to calculate
the correct effective wavenumber by which each bin of the measured power spectrum is
represented; this is because the binned power spectrum is averaged over many different
wavenumbers that fall into the binning criteria. This effect is particularly important on
large scales where the number of Fourier modes is small. We present the details of this
correction in appendix E.

We measure the galaxy two-point correlation function by using the Landy-Szalay esti-
mator (97)

ξ(r) =
DD(r)− 2DR(r) +RR(r)

RR(r)
, (4.22)

where DD(r), DR(r), and RR(r) are the number of galaxy-galaxy, galaxy-random, and
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Figure 4.3: Same as figure 4.2 but for the correlation function. We show r2ξ(r). The spikes
at r ≈ 120 − 130 h−1 Mpc in the bottom panel corresponds to the zero crossing of the
correlation function so a small deviation in the mean of the measured correlation function
leads to a large ratio. We use a bin size of 1h−1 Mpc.

random-random pairs, respectively. The Landy-Szalay estimator cancels the leading order
uncertainties in estimating the mean number density. Figure 4.3 shows the average of the
measured correlation function (top) and the ratio to the input (bottom). We also find
an excellent agreement between the measured and input correlation functions over a wide
range of scales.

Cross-Correlation Coefficient

We next examine the cross-correlation coefficient

r(k) =
Pgm(k)√

Pgg(k)Pmm(k)
, (4.23)

between matter and galaxy density contrasts in real space. Here, Pgm(k) denotes the cross
power spectrum of galaxy and matter. In figure 4.4, the red solid line in the top panel
shows the measured cross-correlation coefficient r(k) from the log-normal mock catalogs.
The measured cross-correlation coefficient approaches unity on large scales, but decreases
on small scales with high significance, despite the fact that we have imposed a linear bias
relation between the galaxy and matter power spectra, Pgg(k) = b2Pmm(k), and that the
random realisations of Gg and Gm have been drawn from an identical random seed. This
result is a generic feature of log-normal fields that the proportionality relation in power
spectra does not guarantee the proportionality of the fields (182).
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Figure 4.4: (Top) Measured (red solid) and predicted (blue dashed) cross-correlation co-
efficient as a function of the wavenumber. The red band shows the error on the mean
measured from 50 log-normal mock catalogs. (Bottom) Ratio of the measured to the
predicted cross-correlation coefficients.

Because, in our mock, the Gaussian (log-transformed) fields of galaxy and matter have
the same random numbers (θr + iθi in equation (4.19)), they are related to each other in
every Fourier cell as

Gg(k)

Gm(k)
=

√
PG
gg(k)

PG
mm(k)

, (4.24)

where PG
mm(k) and PG

gg(k) are the power spectra of Gm and Gg, respectively. Indeed, it is
the cross-correlation coefficient between Gm and Gg that is equal to unity. On the other
hand, the galaxy and matter density fields δg(x) and δm(x) are exponentially related to
Gg(x) and Gm(x). That is, δg(k) and δm(k) are not linearly related to each other so
that the cross-correlation coefficient must deviate from one (182). On large scales where
the correlation functions are small, the cross-correlation approaches unity because δ’s are
approximately the same as G’s.

We can compute r(k) analytically for log-normal density fields. Specifically, using the
one-dimensional Fourier transform we first compute the galaxy-matter cross spectrum as

Pgm(k) =

∫
dr r2ξgm(r)j0(kr) =

∫
dr r2

[
eξ
G
gm(r) − 1

]
j0(kr) , (4.25)

where j0(x) is the spherical Bessel function of the zeroth order, and ξgm(r) = 〈δg(x +
r)δm(x)〉 and ξGgm(r) = 〈Gg(x + r)Gm(x)〉. The relation between ξgm(r) and ξGgm(r) is
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analogous to equation (4.18). We then compute ξGgm(r) as

ξGgm(r) =

∫
d3k1

(2π)3

d3k2

(2π)3
〈Gg(k1)G∗m(k2)〉ei[k1·(x+r)−k2·x]

=

∫
d3k1

(2π)3

d3k2

(2π)3

√
PG
gg(k1)

PG
mm(k1)

〈Gm(k1)G∗m(k2)〉ei[(k1−k2)·x+k1·r]

=

∫
dk

2π2
k2
√
PG
gg(k)PG

mm(k)j0(kr) . (4.26)

Combining equations (4.25)–(4.26), r(k) can be evaluated. The blue dashed line in the
top panel of figure 4.4 shows the prediction, whereas the bottom panel shows the ratio
between the measurement and the prediction. We find an excellent agreement between the
measurement and the prediction.

4.4.2 Redshift-space density statistics

We now present the measurements of the two-point statistics in redshift space. We obtain
the redshift-space mock catalogs from the real-space ones by mapping real-space positions
of galaxies to redshift-space positions by equation (4.2). We use the periodic boundary
condition along the z-direction for galaxies that move out of the box by this mapping. Mea-
surements of the power spectrum or correlation function for these redshift-space catalogs
proceed in the same manner as in real space.

As described in section 4.2, when linearising the Jacobian, the redshift-space power
spectrum is given by

P s
gg(k, µk) = Pgg(k) + 2µ2

kfPgm(k) + µ4
kf

2Pmm(k). (4.27)

When using linear theory (that we shall call “Kaiser”), we relate the galaxy-galaxy power
spectrum and galaxy-matter power spectrum to the matter-matter power spectrum as
Pgg(k) = b2Pmm(k) and Pgm(k) = bPmm(k). We stress, however, that the galaxy-matter
cross power spectrum Pgm(k) is not equal to bPmm(k) for the log-normal density fields, as
shown in section 4.4.1. Therefore, in order to highlight the effect from non-linearity in the
Jacobian, we calculate the redshift-space galaxy power spectrum with equation (4.27) but
use the cross power spectrum in section 4.4.1 (that we call “linear Jacobian”).

Figures (4.5)–(4.6) show the measured monopole and quadrupole power spectra, com-
pared with the Kaiser (with Pgm(k) = bPmm(k)) and the linear Jacobian (with measured
Pgm(k)) predictions. On large scales (small k), we find a good agreement for all three cases
as expected. On small scales, the linear Jacobian calculation deviates from the Kaiser
value due to the non-unity cross-correlation between the matter and galaxy (section 4.4.1).
The deviation is smaller than what we find in figure 4.4 because f/b = 0.616 is less than
unity.

Both the Kaiser and linear Jacobian calculations fail to model the measured monopole
and quadrupole power spectra on small scales. As we use the real-space power spectrum
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Figure 4.5: (Top) Monopole redshift-space power spectrum. The red solid line shows the
measurement averaged over 50 log-normal mock catalogs. The blue dashed line shows the
Kaiser prediction while the green dash-dotted line shows the linear Jacobian prediction. We
show k2P0(k) to enhance differences at large k. (Bottom) Ratio of the measured monopole
power to the Kaiser and linear Jacobian predictions. The band shows the error on the mean
estimated from 50 realisations. We find a sub-1% agreement on scales k > 0.1 h Mpc−1.

used to generate the log-normal catalog in each term in equation (4.27), any discrepancy
that we find in figures (4.5)–(4.6) is due to non-linearity in the mapping between real
and redshift space. That is, when densities and velocities become large, the Jacobian
cannot be linearised, and so the linear Jacobian approximation is no longer valid. For
example, the measured monopole power spectrum in figure 4.5 is smaller than the linear
Jacobian calculation on small scales (k > 0.3hMpc−1). This behaviour is qualitatively
similar to the FoG damping effect, which is usually attributed to RSD of random motion
within bigger halos. In our log-normal mock catalog, however, the damping cannot be the
FoG effect because we do not include any random component when generating peculiar
velocities. Rather, the power suppression we see here originates solely from non-linearity
in the Jacobian of real-to-redshift mapping due to coherent peculiar velocity fields given
by the continuity equation.

Mathematically, combining equations (4.4)–(4.5) yields the the non-linear mapping
between the real- and redshift-space density contrasts

1 + δsg(s) =
1 + δg(x)∣∣∣1 + 1
H
∂vz(x)
∂z

∣∣∣ , (4.28)
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Figure 4.6: Same as figure 4.5, but for the quadrupole power spectrum.

which turns to, in Fourier space (169),

δsg(k) =

∫
d3x e−ik·x

[
δg(x)− 1

H
∂vz(x)

∂z

]
eikzvz(x)/H . (4.29)

As long as velocities are small, i.e. kzvz � 1, the exponential factor in equation (4.29)
can be approximated to unity, leading to the linear Jacobian formula. However, on small
scales, this approximation breaks down, and the exponential factor leads to the non-linear
Jacobian effects (169).

We show the configuration-space two-point correlation function in figures (4.7)–(4.8),
and compare them with the linearised Jacobian prediction:

δsg(s) = δg(x)− 1

H
∂

∂z
vz(x) . (4.30)

Combining with the linear continuity equation that we use to generate the velocity field,

v(x) = −Hf∇
[
∇−2δm(x)

]
, (4.31)

we find the configuration space expression for the redshift-space density contrast:

δsg(s) = δg + f

(
∂

∂z

)2 [
∇−2δm(x)

]
, (4.32)

from which we calculate

ξsgg(s, µ) =

[
ξgg(s) +

2

3
fξgm(s) +

1

5
f 2ξmm(s)

]
−
[

4

3
fξgm,2(s) +

4

7
f 2ξmm,2(s)

]
L2(µ) +

8

35
f 2ξmm,4(s)L4(µ). (4.33)
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Figure 4.7: (Top) Monopole redshift-space two-point correlation function. The meaning
of the lines is the same as in figure 4.5. We show s2ξ0(s) to enhance differences on large
separations. (Bottom) Ratio of the measured monopole correlation function to the Kaiser
and linear Jacobian predictions.

Just like the case for the power spectrum, the expression reduces to the linear Kaiser
prediction (equation (4.13)) when we set ξgm(r) = bξmm(r), but we must take into account
non-unity cross-correlation function for the log-normal catalog.

While the Kaiser and linear Jacobian models are reproduced in the power spectrum
at k . 0.1 h Mpc−1, they are not well reproduced in the correlation functions at all
separations. This indicates that the correlation functions at large separations are sensitive
to non-linearity in the Jacobian.

4.4.3 Pairwise Line-of-Sight Velocity PDFs

How do we incorporate non-linearity in the Jacobian into the model? As discussed in
section 4.2, the pairwise line-of-sight velocity PDF fully describes the mapping from the
real-space two-point correlation function to the redshift-space one.

We show in figure 4.9 the PDFs of pairwise line-of-sight velocity averaged over 50 log-
normal mock catalogs, for four different separations between galaxy pairs (From top left
to bottom right, 5.25, 20.25, 50.25, and 100.25 h−1 Mpc) along the line-of-sight direction
(0.99 ≤ µ ≤ 1). We show the pairwise line-of-sight velocity PDFs along the line-of-sight
direction because the relative peculiar velocities are at their maximum (i.e., no perpendic-
ular component). For the streaming model, we need the relative velocity PDFs for galaxy
pairs along all directions.
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Figure 4.8: Same as figure 4.7, but for the quadrupole two-point correlation function. We
show −s2ξ2(s).

We show the measured pairwise line-of-sight velocity PDFs for two different linear bi-
ases b = 1.455 (low-mass) and 2 (high-mass) as, respectively, the blue dashed lines and the
red solid lines. Note that we use the same phases (that is, the same sequence of random
numbers) for generating velocity fields for both cases; thus, galaxies in the same cell have
identical velocities regardless of the assumed bias parameter. Overall, we find that the
pairwise line-of-sight velocity PDFs from our log-normal mock catalogs capture qualita-
tive features that we have seen in N-body simulations (figure 4.1). Namely, both PDFs
have negative mean velocity and negative skewness for smaller separations (top panels of
figure 4.9 and figure 4.1) and approach a symmetric PDF for larger separations. Also, the
tendency is more obvious for high-mass (high-bias) galaxies. The log-normal catalogs show
larger velocity dispersion than N-body simulations especially at small separations.

Our results show that the coherent irrotational velocity given by the linearised conti-
nuity equation can explain a part of the non-linear features in the pairwise line-of-sight
velocity PDF. We stress, again, that we do not include any random velocities. Also note
that we have assigned the same velocity to all galaxies in the same cell, and the veloc-
ity field is exactly the same for the high-mass and low-mass samples. Nevertheless, the
pairwise line-of-sight velocity PDF for galaxies with different biases are still different due
to pair weighting: velocities of galaxies with high (low) bias are weighted higher (lower)
density regions.

While successful at a qualitative level, the PDFs from log-normal catalogs and those
from N-body simulations are different in detail. For example, the velocity field in our log-
normal mock catalogs only reflects non-Gaussianity of the log-normal density fields, which
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Figure 4.9: Same as figure 4.1, but for PDFs averaged over 50 log-normal mock catalogs.
The simulation volume is (1000 h−1 Mpc)3 and the output is at z = 1.3. The biases of
low- and high-mass catalogs are b = 1.455 (red) and 2 (blue), respectively. The triangles
on the horizontal axes show the calculations from equation (4.35).

is not the same as that in N-body simulations where the complete non-linear gravitational
evolution is encoded.

Strong non-Gaussianity in the pairwise line-of-sight velocity PDF makes it challenging
to analytically compute its full moments, even if the velocity field is assumed to follow the
linear continuity equation. Nevertheless, we can still compute the mean pairwise line-of-
sight velocity (that is, the first moment) as follows. Using the linearised continuity equation
(equation (4.8)), the parallel component of relative velocity for galaxies separated by r is
given by

v1z − v2z = iHf
∫

d3k

(2π)3

kz
k2
δm(k)

(
eik·x1 − eik·x2

)
. (4.34)

Because the parallel relative velocity is the exponent in the velocity generating function
(equation (4.15)), the mean pairwise line-of-sight velocity can be calculated from

〈∆vz〉 = H ∂M(λ, r)

∂λ

∣∣∣∣
λ=0

=
〈(v1z − v2z) [1 + δg1] [1 + δg2]〉

1 + ξgg(r)

= iHf
∫
d3x′q(x′1,x

′
2) 〈[1 + δg1] [1 + δg2] δm3〉
1 + ξgg(r)

, (4.35)

where x′i ≡ xi − x′, δm3 = δm(x′), and

q(x′1,x
′
2) ≡

∫
d3k

(2π)3

kz
k2

(
eik·x

′
1 − eik·x′2

)
. (4.36)
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The triangles on the horizontal axes in figure 4.9 show the predictions computed from
equation (4.35). We find that they are in an excellent agreement with the measurements.
As shown in equation (4.35) the mean of the pairwise line-of-sight velocity depends on the
integral of the three-point function of the log-normal fields. We present the details of this
calculation in appendix F.

Likewise, in order to compute the nth-order moments of the pairwise line-of-sight ve-
locity we need to integrate over (n+ 2)-point correlation functions of the log-normal fields.
Thus, it is impractical to compute all the moments of the pairwise line-of-sight velocity
PDF, even though the statistics of log-normal fields are known. On the other hand, should
we assume a Gaussian PDF for the pairwise line-of-sight velocity distribution, all the
higher-order moments but the first two would be ignored; thus, we miss the non-Gaussian
effects coming from non-linear evolution of the Universe as well as the pair weighting effect.

4.4.4 Recovery of Kaiser limit

Even though the pairwise velocity PDF in our log-normal mocks does not precisely repro-
duce the velocity PDF from N-body simulations, the redshift space power spectrum from
both matches the Kaiser prediction on large scales (k . 0.1h Mpc−1). To understand
why this happens, we now consider the redshift space two-point correlation function in the
large-scale limit, i.e. separations such that only the linear order terms contribute.

The large-scale limit of the redshift space two-point correlation function (to linear order)
is given as (60)

ξsgg(s‖, s⊥) = ξgg(s)−
d

dr‖

[
v12(r)

r‖
r

]∣∣∣
r‖=s‖

+
1

2

d2

dr2
‖

[
σ2

12(r, µ)
]∣∣∣
r‖=s‖

, (4.37)

where s2 ≡ s2
‖ + s2

⊥, r2 ≡ s2
⊥ + r2

‖, v12(r) is the mean of the radial pairwise velocity (which
is the relative velocity projected along the line joining the pair of particles; we call the
remaining component tangential pairwise velocity), and σ2

12(r, µ) is the variance of the
line-of-sight pairwise velocities, with µ ≡ r‖/r.

In linear theory, the mean and variance can be calculated as

v12(r) = −Hfb
π2

∫
dkkPmm(k)j1(kr) , (4.38)

σ2
12(r, µ) = 2[σ2

v − µ2Ψ‖ − (1− µ2)Ψ⊥] , (4.39)

Ψ‖(r) =
H2f 2

2π2

∫
dkPmm(k)

[
j0(kr)− 2j1(kr)

kr

]
, (4.40)

Ψ⊥(r) =
H2f 2

2π2

∫
dkPmm(k)

j1(kr)

kr
, (4.41)

where σ2
v ≡ 〈v(x) · v(x)〉 /3 is the one-dimensional velocity variance, Pmm(k) is the matter

power spectrum in real space, Ψ‖ is the variance of the radial pairwise velocities, Ψ⊥ is the
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Figure 4.10: Mean radial pairwise velocity (solid) measured from our log-normal mocks
(red) as well as that predicted by linear theory (green). Derivative w.r.t. separation r
(dotted). Red band denotes the error on the mean measured from 50 realisations. They
agree at separations & 140h−1 Mpc.

variance of the tangential pairwise velocities, and jn denotes the spherical Bessel function
of the nth order. As shown in refs. (60; 142),

− d

dr‖

[
v12(r)

r‖
r

]∣∣∣
r‖=s‖

=
v12(r)

r
(µ2 − 1)− v′12(r)µ2 , (4.42)

1

2

d2

dr2
‖

[
σ2

12(r, µ)
]∣∣∣
r‖=s‖

= (2− 10µ2 + 8µ4)
Ψ⊥ −Ψ‖

r2
+ (5µ4 − 5µ2)

Ψ′‖
r

+ (−1 + 6µ2 − 5µ4)
Ψ′⊥
r
− µ4Ψ′′‖ + (µ4 − µ2)Ψ′′⊥ , (4.43)

so that the Kaiser limit of the redshift space two-point correlation function does not depend
on any constant or the isotropic dispersion of the pairwise line-of-sight velocities. In this
section ′ denotes d/dr.

In figures (4.10)–(4.12) we show the different terms that contribute to the Kaiser limit
of the two-point correlation function, namely, v12/r, v

′
12, (Ψ⊥ − Ψ‖)/r

2, Ψ′‖/r, Ψ′⊥/r, Ψ′′‖,

and Ψ′′⊥ for our log-normal mocks (we choose b = 1.8 which is the average linear bias for
halos in the mass range 5×1013−6.5×1013 h−1M� at z = 0), and linear theory predictions.
They agree at large separations, which ensures that the Kaiser limit is attained. This is
because only the spatial derivatives of the first two moments of the pairwise velocity PDF
contribute to the lowest-order redshift space correlation function in the large-scale limit
(60; 148; 142), as we confirm. So, even though the PDF from our log-normal mocks shows



94 CHAPTER 4. GENERATING LOG-NORMAL MOCKS IN REDSHIFT SPACE

60 80 100 120 140 160

r [h−1 Mpc]

2

4

6

8

10

12

Ψ
−

Ψ
||

r2

log-normal

linear theory

Figure 4.11: Same as figure 4.10 but for difference of radial (Ψ‖) and tangential (Ψ⊥)
pairwise velocity variances. They agree at separations & 140h−1 Mpc.

a non-zero excess kurtosis on large scales and the dispersion is larger than the one from the
N-body simulations (by a scale-independent constant), we find agreement with the Kaiser
prediction on large scales.

4.5 Conclusions

In this chapter, we have presented a new public code for generating log-normal realisations
including velocity fields satisfying the linear continuity equation. The log-normal realisa-
tions provide not only a fast and easy way to generate mock galaxy catalogs but also an
excellent test bed for studying non-linear effects such as the window function and RSD.

We have verified that the real-space two-point correlation functions measured from
our log-normal mock galaxy catalogs are in excellent agreement with the input. We find
that the cross-correlation coefficients between the matter and galaxy density fields are not
unity (182). Non-linear (exponential, to be specific) transformation of perfectly correlated
Gaussian fields induces a deviation of the cross-correlation coefficient from unity. We
analytically compute the cross-correlation coefficient that matches the measurement to a
sub-percent level.

We have also shown measurements from our log-normal mock catalogs in redshift space.
The redshift-space power spectrum is commonly modelled as a combination of a “squash-
ing” term (in the Kaiser limit, arising from coherent large-scale flows) and a damping term
(FoG from random virial motion on small scales). Using our log-normal mock catalogs, we
have investigated the redshift-space power spectrum and found a good agreement with the
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pairwise velocity variances. The second derivatives are noisy but they seem to agree with
linear theory predictions at separations & 120h−1 Mpc.

squashing term on large scales (k > 0.1h−1 Mpc) as expected. On small scales, we find
a damping which is qualitatively similar to the FoG; the damping we observe, however,
does not come from random motion, as we do not include any random virial motion in
our mock generator. Rather, the damping comes from non-linearity in the Jacobian of the
real-to-redshift space mapping, and from the coherent peculiar velocity field. Attributing
all of the damping to the FoG, as commonly done in the literature, is thus misleading.
The configuration space two-point correlation function calculated with the linear Jacobian
approximation cannot reproduce the measurement at all separations; thus, the correlation
function is sensitive to non-linearity in the Jacobian even at large separations.

The streaming model can take into account the full non-linearity of the real-to-redshift
space mapping. In this model a fundamental entity in predicting the redshift-space two-
point statistics is the pairwise line-of-sight velocity PDF, which is notoriously hard to
predict owing to its pairwise nature. We find that the problem persists even with our,
rather simpler, setting: the PDF of the density field is exactly known to be log-normal,
and the velocity is linearly related to the density field. We nevertheless have made some
progress in a couple of areas in modelling the pairwise line-of-sight velocity PDF. First,
we show that the pairwise line-of-sight velocity PDF from our log-normal mock catalogs
qualitatively captures features of the PDF from full N-body simulations, such as a negative
skewness for small separations and the shift of the PDF towards more negative velocities
for higher mass halos. We find these features even when the same coherent velocity field is
assigned to galaxy fields with different biases, i.e., galaxies with different biases move with
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the same velocities, but pair-weighting makes the pairwise velocity PDF depend on the
galaxy bias. Second, for the log-normal setting, one can in principle predict the moments of
the pairwise line-of-sight velocity PDF, as we explicitly demonstrate for the mean pairwise
line-of-sight velocity. We have compared the predicted mean velocity to the one measured
from the catalogs, and find an excellent match between the two. Likewise, although very
demanding, we envisage that the analytical calculation can also be done for the higher
order moments.

Our log-normal generator has been used extensively to help design the on-going and
planned galaxy redshift surveys such as HETDEX (Hobby-Eberly Telescope Dark Energy
Experiment) (77), PFS (Prime Focus Spectrograph) (168), and WFIRST-AFTA (Wide
Field Infrared Survey Telescope Astrophysics-Focused Telescope Assets) (163). It should
also be equally useful for DESI (Dark Energy Spectroscopic Instrument) (100), LSST
(Large Synoptic Survey Telescope) (3), and Euclid (98).



Chapter 5

Summary and Outlook

The central theme of this thesis has been non-Gaussianity. As we discussed in chapter
1, most of our current understanding of the Universe comes from analysis of the power
spectrum of primordial (via their imprint on CMB temperature), and late-time (via their
imprint on galaxy clustering) density fields. However, we also saw that the power spec-
trum is not sufficient to characterise non-Gaussian fields. In fact, it does not capture
any information arising from the non-linear evolution of density and velocity fields under
gravity. To constrain the nature of gravity on length and time scales of the size and age
of the Universe, we simply cannot do without measurement of non-Gaussian statistics.
Given this importance of studying non-Gaussianity, we studied the first non-zero statistic
for a non-Gaussian distribution, the bispectrum, for primordial GWs, and considered an
approximate non-Gaussian model for matter and galaxy density fields in the Universe.

In chapter 2, we laid out the current paradigm for structure formation in the Universe,
starting from quantum fluctuations during an inflationary stage of the Universe, and ending
at formation of dark matter halos, into which galaxies, stars, planets, etc. form. We
discussed the origin of primordial GWs and their characteristics, such as scale-independence
and mild non-Gaussianity. We then used the initial conditions set by these quantum
fluctuations to solve for the density and velocity fields at later time in the Universe. Because
the field equations for gravity are non-linear, the Gaussian primordial fields become non-
Gaussian, under the action of gravity.

The inflationary Universe might have contained other fields, which have sub-dominant
contributions to the energy density, so that they do not affect the background evolution.
We considered the possible imprints of such fields on present-day observables in chapter
3. In particular, if the spectator sector consists of a pseudoscalar axion, and SU(2) gauge
fields, such that the two are coupled to each other via a Chern-Simons like interaction,
the gauge field experiences a tachyonic instability. Because the SU(2) gauge field has
a tensor degree of freedom as well, it can linearly source GWs. These sourced GWs
can be strongly scale-dependent, or scale-independent like those from vacuum fluctuations
of the metric. In contrast to vacuum fluctuations however, they are chiral, since the
pseudoscalar axion violates parity, and they are highly non-Gaussian. We also showed
that the non-Gaussianity, characterised by the ratio of the bispectrum to the square of the
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power spectrum, is inversely proportional to the energy density fraction of the gauge fields.
Since the gauge fields are spectator fields, this fraction can be quite small, leading to a
large non-Gaussianity. As a consequence, we argued that non-Gaussianity is a definitive
test for the origin of primordial GWs. We also showed that the tensor non-Gaussianity
can be easily observed in upcoming CMB missions such as LiteBIRD (117).

The non-linear gravitational evolution of Gaussian fluctuations, sourced during infla-
tion, makes them non-Gaussian. In chapter 4, we presented a public code to generate
log-normal realisations of matter and galaxy density fields. Non-Gaussian peculiar veloci-
ties were generated from the log-normal matter field using the linear continuity equation.
We showed that the redshift space power spectra agree with the Kaiser predictions on large
scales as expected. We also computed the cross correlation coefficient, and measured the
pairwise velocity PDFs. These PDFs show a non-zero skewness and kurtosis, as has been
seen previously in pairwise velocity PDFs from N-body simulations. Our code has been
used to also model lensing, and to study covariance matrices for future surveys such as
PFS, WFIRST and Euclid.

Looking ahead, the era of precision cosmology using the power spectrum is mature.
Planck (5) has obtained a cosmic variance limited map of the CMB temperature anisotropies.
Polarisation is undoubtedly the next frontier for CMB experiments. There, a non-zero de-
tection of primordial B-modes will be exciting, but we would still need to ensure that
the bispectrum is small, in accordance with the estimates presented in chapter 2, before
claiming vacuum fluctuations of the metric, or “first evidence for quantum gravity”. Large
scale structure surveys have recently also started coming of age, and now match the CMB
in their precision. For galaxy redshift surveys, the bispectrum is definitely the observable
to look for, as the constraining power is greatly enhanced and it is an important signature
of non-linear gravitational evolution.

From a mathematical perspective, it is a bit unsatisfactory that we need to rely on
moments of the distribution to characterize non-Gaussian distributions. As argued in
chapter 1, if the bispectrum is non-zero we can claim that a distribution is non-Gaussian,
but if it is zero we cannot claim that the distribution is Gaussian. This would necessitate
us having to measure the trispectrum, the 5-point function, and so on. There are an
infinite number of moments which are non-zero for non-Gaussian distributions, and it is
not clear where to stop. To that end, it would be interesting to consider other methods
of parametrizing non-Gaussianity (such as Minkowski functionals), and understand if a
finite set of observables that capture the most essential features of non-Gaussianity can be
developed. At any rate, non-Gaussianity is here to stay!



Appendix A

Source Function at Second-Order

In this appendix, we present the source function at second-order, in terms of the contribu-
tions from different polarisations of the first-order modes. The source function is given by
the right hand side of equation (2.32),

Spq(τ,x) =
H

MP

τ
[
2ψpl,qr(τ,x)ψlr(τ,x) + 2ψpr,l(τ,x)ψql,r(τ,x)

+ ψlr,q(τ,x)ψlr,p(τ,x)− 2ψpq,lr(τ,x)ψlr(τ,x)− 2ψlr,q(τ,x)ψlp,r(τ,x)
]
, (A.1)

which in Fourier space gives,

Spq(τ,k) =
H

MP

τ

∫
d3p1 d

3p2

(2π)6
δD(p1 + p2 − k)

[
2p1qp1rψpl(τ,p1)ψlr(τ,p2)

+ 2p1lp2rψpr(τ,p1)ψql(τ,p2) + p1qp2pψlr(τ,p1)ψlr(τ,p2)

− 2p1lp1rψpq(τ,p1)ψlr(τ,p2)− 2p1qp2rψlr(τ,p1)ψlp(τ,p2)
]
, (A.2)

where we have defined (c.f. equation (??))

ψij(τ,pn) ≡
[
eRij(pn)ψRpn(τ) + eLij(pn)ψLpn(τ)

]
=
∑
c=L,R

ecij(pn)ψcpn(τ) , (A.3)

with n = 1 or 2. Substituting this in equation (A.2) we find

Spq(τ,k) =
H

MP

τ

∫
d3p1 d

3p2

(2π)6
δD(p1 + p2 − k)

[
SLLpq + SLRpq + SRLpq + SRRpq

]
, (A.4)
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with the different parts given as

SLLpq = ψLp1
ψLp2

[
2eLpl(p1)eLlr(p2)p1qp1r + 2eLpr(p1)eLql(p2)p1lp2r + eLrl(p1)eLrl(p2)p1pp2q

− 2eLpq(p1)eLlr(p2)p1lp1r − 2eLlr(p1)eLlp(p2)p1qp2r

]
≡ ψLp1

ψLp2
QLL
pq , (A.5)

SLRpq = ψLp1
ψRp2

[
2eLpl(p1)eRlr(p2)p1qp1r + 2eLpr(p1)eRql(p2)p1lp2r + eLrl(p1)eRrl(p2)p1pp2q

− 2eLpq(p1)eRlr(p2)p1lp1r − 2eLlr(p1)eRlp(p2)p1qp2r

]
≡ ψLp1

ψRp2
QLR
pq , (A.6)

SRLpq = ψRp1
ψLp2

[
2eRpl(p1)eLlr(p2)p1qp1r + 2eRpr(p1)eLql(p2)p1lp2r + eRrl(p1)eLrl(p2)p1pp2q

− 2eRpq(p1)eLlr(p2)p1lp1r − 2eRlr(p1)eLlp(p2)p1qp2r

]
≡ ψRp1

ψLp2
QRL
pq , (A.7)

SRRpq = ψRp1
ψRp2

[
2eRpl(p1)eRlr(p2)p1qp1r + 2eRpr(p1)eRql(p2)p1lp2r + eRrl(p1)eRrl(p2)p1pp2q

− 2eRpq(p1)eRlr(p2)p1lp1r − 2eRlr(p1)eRlp(p2)p1qp2r

]
≡ ψRp1

ψRp2
QRR
pq , (A.8)

where we have separated the factors containing the polarisation tensors as Qc1c2
pq , since they

are not quantized. Then, in order to obtain correlation functions of GWs generated from
quantum fluctuations, we quantize the fields ψcp(τ) → ψ̂c1(τ,p), and use the condition of

Gaussianity on ψ̂1 so that Wick’s theorem can be used, and that at first-order, different

polarisations are uncorrelated,
〈
ψ̂L1 ψ̂

R
1

〉
=
〈
ψ̂R1 ψ̂

L
1

〉
= 0. As a consequence of this, we

see that whenever we want to evaluate a bispectrum with two other first-order modes, the
only non-zero contributions arise from parts of Spq containing the same number of left- and
right-handed modes as the other two.



Appendix B

Polarisation Tensor

In this appendix, we construct the left and right-handed transverse and traceless polar-
isation tensors. We start with the left and right-handed polarisation vector whose wave
number is parallel to the z-axis,

εL/R(ẑ) =
1√
2

 1
±i
0

 . (B.1)

The plus and minus signs are for left- (L) and right-handed (R) polarisation vectors,
respectively. From now on, ± means + for L and − for R, whereas ∓ means − for L and
+ for R. To obtain the polarisation vector with a general wave number k̂ which points
in the direction of (θ, ϕ) in polar coordinate, we use the following rotation matrix which
transforms ẑ into k̂:

S(k̂) =

cos θ cosϕ − sinϕ sin θ cosϕ
cos θ sinϕ cosϕ sin θ sinϕ
− sin θ 0 cos θ

 . (B.2)

Then we find

εL/R(k̂) = S(k̂)εL/R(ẑ) =
1√
2

cos θ cosϕ∓ i sinϕ
cos θ sinϕ± i cosϕ

− sin θ

 . (B.3)

These polarisation vectors satisfy

k · εL/R(k̂) = 0, εL/R∗(k̂) = εR/L(k̂) = εL/R(−k̂),

εL/R(k̂) · εR/L(k̂) = 1, εL/R(k̂) · εL/R(k̂) = 0. (B.4)

The polarisation tensor e
L/R
ij (k̂) can be constructed from the polarisation vectors,

e
L/R
ij (k̂) = ε

L/R
i (k̂) ε

L/R
j (k̂). (B.5)
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These polarisation tensors are transverse and traceless and satisfy

eLij(−k̂) = eL∗ij (k̂) = eRij(k̂), iεijkkie
L/R
jl (k̂) = ±keL/Rkl (k̂), eLij(ẑ) =

1

2

 1 i 0
i −1 0
0 0 0

 .

(B.6)

Although the general expression for e
L/R
ij (k̂) is rather complicated, we can fix θ in the

current case. This is because we calculate three polarisation tensors with three different
wavenumbers, eRij(k̂1)eRkl(k̂2)eRnm(k̂3) whose indices are somehow contracted, and these wave
vectors are on the same plane due to momentum conservation, δ(k1 + k2 + k3). In that
case, we can set θ = π/2 and let these vectors, k1,k2,k3, move only on the x-y plane. For
θ = π/2, the polarisation tensors become

e
L/R
ij

(
θ =

π

2
, ϕ
)

=
1

2

 − sin2 ϕ cosϕ sinϕ ±i sinϕ
cosϕ sinϕ − cos2 ϕ ∓i cosϕ
±i sinϕ ∓i cosϕ 1

 . (B.7)

Now we have three angles, ϕ1, ϕ2, ϕ3, associated with wavenumbers, k1,k2,k3, respectively.
Without loss of generality, we can set ϕ1 = 0. Furthermore, these trigonometric functions of
ϕ2 and ϕ3 can be rewritten as functions of r2 ≡ k2/k1 and r3 ≡ k3/k1. Using k1 +k2 +k3 =
0, we find

k2
3 = |k1 + k2|2 = k2

1 + k2
2 + 2k1k2 cosϕ2 =⇒ cosϕ2 =

r2
3 − r2

2 − 1

2r2

. (B.8)

In the same way, we also find cosϕ3 = (r2
2 − r2

3 − 1)/(2r3). With this notation, we find

{1,2,3}∑
{I,J,K}

iεabc kiKe
R
ai(k̂I)e

R
bj(k̂J)eRcj(k̂K) = −2k1Ξ Ξ̃ , (B.9)

eRij(k̂1)eRjl(k̂2)eRli (k̂3) = Ξ, εabcεijk eRai(k̂1)eRbj(k̂2)eRck(k̂3) = 2 Ξ , (B.10)

where

Ξ ≡ (1 + r2 + r3)3

64r2
2r

2
3

(r2 + r3 − 1)(1 + r2 − r3)(1 + r3 − r2) , (B.11)

Ξ̃ ≡ 1 + r2 + r3. (B.12)∑{1,2,3}
{I,J,K} denotes summation of all the permutation, {I, J,K} = {Perm(1, 2, 3)}.



Appendix C

Equilateral Shape

To measure similarity of the shapes of bispectra, the cosine between two shapes is intro-
duced as (17),

cos(Bh, Fref) ≡
Bh · Fref√

(Bh ·Bh)(Fref · Fref)
, (C.1)

where the dot product is defined as

X · Y ≡
∫ 1

0

dr2

∫ 1

0

dr3(r2r3)4X(1, r2, r3)Y (1, r2, r3). (C.2)

Here Fref is the reference template to which the similarity is measured. In chapter 3 we
have used the equilateral template (48)

Feq(k1, k2, k3) =

[
− 1

k3
1k

3
2

− 1

k3
1k

3
3

− 1

k3
2k

3
3

− 2

k2
1k

2
2k

2
3

+
1

k1k2
2k

2
3

+ (5 perm)

]
. (C.3)

Figure C.1 shows the shape of this template as a function of r2 and r3.
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Figure C.1: 3D plot of (k1k2k3)2Feq, equation (C.3).



Appendix D

Derivation of the streaming model in
configuration space

In this appendix, we re-derive the streaming model (135; 49; 60; 148; 174), which equates
the redshift-space two-point correlation function ξsgg to the real-space two-point correlation
function ξgg re-mapped by the pairwise line-of-sight velocity PDF P as

1 + ξsgg(s) =

∫
dr‖P

(
s‖ − r‖; r

)
[1 + ξgg(r)] . (D.1)

Here, s and r are, respectively, the separations in redshift space and real space. To the best
of our knowledge, the streaming model in the form of equation (D.1) has first appeared
in (135), and the later studies (49; 60; 148; 174) have improved the modelling and inter-
pretation of the pairwise line-of-sight velocity PDF. For example, Ref. (60) incorporates
the scale-dependence of the velocity dispersion to reproduce the Kaiser (85) prediction;
Ref. (148) finds the expression for the pairwise line-of-sight velocity PDF and its moment
generating function with an assumption that the velocity field v(r) is a single-valued func-
tion of positions (we shall call this single-stream case). More recently, Ref. (174) generalizes
the results to the multi-stream case where there are multiple velocity components (streams)
at a single position; this is, for example, the case for the shell crossing in the spherical col-
lapse. Here, we shall closely follow the result of Ref. (174) so that derivation we present
here works for the multi-streaming case.

Starting from the galaxy number conservation between the real and redshift space
(equation (4.3)), and using the general phase space function f(x,v), we may write the
redshift-space density contrast as (151):

1 + δsg(s) =

∫
d3x

∫
d3v f(x,v)δD

(
x+

v‖
H

ˆ̀− s
)
, (D.2)

where δD is the Dirac-delta operator. The redshift-space two-point correlation function is
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then given as

〈[
1 + δsg(s1)

] [
1 + δsg(s2)

]〉
=

∫
d3x1

∫
d3x2

∫
d3v1

∫
d3v2〈

δD
(
x1 − s1 +

v1,‖

H
ˆ̀
)
δD
(
x2 − s2 +

v2,‖

H
ˆ̀
)
f(x1,v1)f(x2,v2)

〉
. (D.3)

As is apparent from equation (4.2), the RSD only applies to the line-of-sight quantities,
so it is helpful to explicitly indicate the line-of-sight quantities with the subscript ‖ and
perpendicular quantities with the subscript ⊥. Then, equation (D.3) becomes

〈[
1 + δsg

(
s1,‖, s1,⊥

)] [
1 + δsg

(
s2,‖, s2,⊥

)]〉
=

∫
dx1,‖

∫
dx2,‖

∫
d3v1

∫
d3v2〈

δD
(
x1,‖ − s1,‖ +

v1,‖

H

)
δD
(
x2,‖ − s2,‖ +

v2,‖

H

)
f(x1,‖, s1,⊥,v1)f(x2,‖, s2,⊥,v2)

〉
. (D.4)

Here, we keep the Dirac-delta operators inside the ensemble average as they contain the pe-
culiar velocity field. We then use the definition of the Dirac-delta δD(x) = (2π)−1

∫∞
−∞ dγe

−iγx,
to transform equation (D.4) as

〈[
1 + δsg

(
s1,‖, s1,⊥

)] [
1 + δsg

(
s2,‖, s2,⊥

)]〉
=

∫
dx1,‖

∫
dx2,‖

∫
dγ1

2π

∫
dγ2

2π
e−iγ1(x1,‖−s1,‖)

e−iγ2(x2,‖−s2,‖) ×
∫
d3v1

∫
d3v2

〈
e−iγ1

v1,‖
H e−iγ2

v2,‖
H f(x1,‖, s1,⊥,v1)f(x2,‖, s2,⊥,v2)

〉
. (D.5)

Because of statistical homogeneity of the Universe, the ensemble average must depend only
on the separation. We make it explicit by introducing new variables R‖ = (x1,‖ + x2,‖)/2
and r‖ = x1,‖ − x2,‖, with which the right-hand side of the equation above becomes〈[

1 + δsg
(
s1,‖, s1,⊥

)] [
1 + δsg

(
s2,‖, s2,⊥

)]〉
=

∫
dr‖

∫
dγ1

2π

∫
dγ2

[∫
dR‖
2π

e−iR‖(γ1+γ2)

]
e−

i
2
r‖(γ1−γ2)ei(γ1s1,‖+γ2s2,‖)

×
∫
d3v1

∫
d3v2

〈
e−iγ1

v1,‖
H e−iγ2

v2,‖
H f(x1,‖, s1,⊥,v1)f(x2,‖, s2,⊥,v2)

〉
=

∫
dr‖

∫
dγ1

2π

∫
dγ2δ

D(γ1 + γ2)e−
i
2
r‖(γ1−γ2)ei(γ1s1,‖+γ2s2,‖)

×
∫
d3v1

∫
d3v2

〈
e−iγ1

v1,‖
H e−iγ2

v2,‖
H f(x1,‖, s1,⊥,v1)f(x2,‖, s2,⊥,v2)

〉
. (D.6)

Finally, integrating the Dirac-delta yields

1 + ξsgg(s‖, s⊥) =

∫
dr‖

∫
dγ1

2π
e−iγ1(r‖−s‖)

∫
d3v1

∫
d3v2

〈
e−iγ1

∆v‖
H f(x1,‖, s1,⊥,v1)f(x2,‖, s2,⊥,v2)

〉
,

(D.7)



107

with ∆v‖ = v1,‖ − v2,‖. Again, note that the ensemble average must depend only on the
separation. Following Ref. (148), we define the pairwise line-of-sight velocity PDF as

P(r‖ − s‖, r) =

∫
dγ

2π
e−iγ(r‖−s‖)M(−iγ, r), (D.8)

where r = x1 − x2 and M(λ, r) is the generating function associated with the pairwise
line-of-sight velocity PDF:

[1 + ξgg(r)]M(λ, r) ≡
∫
d3v1

∫
d3v2

〈
eλ

∆v‖
H f(x1,v1)f(x2,v2)

〉
. (D.9)

This leads to the streaming model:

1 + ξsgg(s‖, s⊥) =

∫
dr‖P(r‖ − s‖; r) [1 + ξgg(r)] , (D.10)

where r⊥ = s⊥, and the real space two-point correlation function is given as

1 + ξgg(r) ≡
∫
d3v1

∫
d3v2 〈f(x1,v1)f(x2,v2)〉 . (D.11)

Along the course of the derivation, we have only used the homogeneity of the Universe. We,
therefore, conclude that the streaming model is an exact expression for the redshift-space
two-point correlation function, following from the number conservation and the statistical
homogeneity.

Note that for the single streaming case, where the distribution function may be written
as f(x,v) = [1 + δg(x)] δD(v − v̄(x)) with the bulk velocity v̄(x) uniquely defined at the
position x, equation (D.9) reduces to the the result of (148):

[1 + ξgg(r)]M(λ, r)
single stream

=
〈
eλ∆v̄‖/H [1 + δg(x1)] [1 + δg(x2)]

〉
. (D.12)

The general formula, equation (D.9), must be used whenever multiple velocities are assigned
to single spatial elements. That happens, for example, when coarse-graining the galaxy
density field.





Appendix E

Binning effect of the power spectrum
measurement

For a density field in a cubic volume of V = L3, we estimate the power spectrum at k = nkF
(n is an integer and kF ≡ 2π/L is the fundamental wavenumber) by taking the average
over the amplitudes of Fourier modes around k (59; 81):

P (kFn) =
V

N6

 1

Nk

∑
|nk−n|≤1/2

|δFFTW(nk)|2
 , (E.1)

where δFFTW is the density field in Fourier space, N is the number of one-dimensional grid
so that H3 = V/N3 becomes the volume of one grid Fourier cell, and Nk is the number of
discrete Fourier modes falling into the bin. Because of the binning, the estimated power
spectrum at k in equation (E.1) may differ from the true power spectrum P (nkF ); we call
it a binning effect. This effect is particularly important on large scales, where the number
of Fourier modes is small. To make accurate comparison between the measurement and
prediction, we need to take this effect into account. In the following, we explore three
methods to account for the binning effect.

1. Compute the prediction by volume-averaging the input power spectrum Pinp(k), i.e.,

Psmooth(k) =

∫ kmax

kmin
dkk2 Pinp(k)

(k3
max − k3

min) /3
, (E.2)

where kmax and kmin denote the boundaries of the particular k bin. We shall refer to
this as “smoothed”.

2. Volume-average the wavenumber to compute an effective wavenumber for each k bin

keff =

∫ kmax

kmin
dkk2 k

(k3
max − k3

min) /3
=

3

4

(k4
max − k4

min)

(k3
max − k3

min)
, (E.3)
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and interpolate the input power spectrum at this effective wavenumber P (keff). We
shall refer to this as “k-smoothed”.

3. Interpolate the input power spectrum on each k grid, and then bin this interpolated
power spectrum. Namely,

Pdiscrete(kFn1) =
V

N6

 1

Nk

∑
|nk−n1|≤1/2

Pinp(nkkF )

 , (E.4)

and we shall refer to this as “discrete”.

Figure E.1 shows the ratio of the measured power spectrum to the input power spectrum
computed using the above three methods. The top and bottom panels show binning sizes
of 0.05 and = 0.006 h Mpc−1 (which is the fundamental frequency), respectively. For the
large k bin, the smoothed method is inaccurate but the k-smoothed and discrete methods
agree well with the measurement; for the small k bin, all methods perform similarly, with
the discrete method performing slightly better at k . 0.02 h Mpc−1. Thus, in chapter 4
we have used the discrete method for computing the prediction.
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Figure E.1: Ratio of the measured power spectrum to the input for three different methods
of accounting for the binning effect. (Top) Bin size of 0.05 h Mpc−1. (Bottom) Bin size
of 0.006 h Mpc−1, which is the fundamental frequency in our mock catalog. The three
methods are shown in the red solid (discrete), cyan dotted (smoothed), and green dashed
(k-smoothed) lines. The band denotes the error on the mean measured from 50 realisations.
The cyan and green bands overlap in the bottom panel.





Appendix F

Mean pairwise line-of-sight velocity
in log-normal mock catalog

From equation (4.35), we find that the mean of the pairwise line-of-sight velocity is given
by

[1 + ξgg(r)] 〈∆vz〉 = 〈v1zδg2〉 − 〈v2zδg1〉+ 〈v1zδg1δg2〉 − 〈v2zδg2δg1〉 , (F.1)

where we use 〈v1z〉 = 〈v2z〉 and 〈v1zδg1〉 = 〈v2zδg2〉 from homogeneity and isotropy. Thus,
to compute the mean of the pairwise line-of-sight velocity, we need the contributions from
both two- and three-point functions.

The two-point function contribution is given by

〈vizδgj〉 = iHf
∫

d3k

(2π)3

kz
k2
Pgm(k)eik·rij = iHfµ

∫
dk

2π2
kPgm(k)j1(krij) , (F.2)

where rij ≡ xi − xj, µ ≡ ẑ · r̂ij and j1(x) is the spherical Bessel function of the first
order. Note that this product is anti-symmetric under the exchange of i and j, hence
〈v1zδg2〉 − 〈v2zδg1〉 = 2 〈v1zδg2〉. Using equations (4.25)–(4.26), equation (F.2) can be eval-
uated numerically as a function of r and µ. The blue dashed line in figure F.1 shows
its contribution to the mean pairwise line-of-sight velocity for µ = 0.995. We find that
as the separation approaches to zero, this contribution drops to zero since j1(x) → 0 for
x → 0. The contribution also decreases with increasing separation, which is a generic
feature following the trend of the density two-point correlation function.

For the three-point function contribution, we have

〈vizδgiδgj〉 = iHf
∫
d3xp

d3k

(2π)3

kz
k2
eik·rij 〈δm(xp)δg(xi)δg(xj)〉 , (F.3)

which is an integral over the three-point function of the (matter and galaxy) density fields.
As the velocity field is linearly related to the density field in Fourier space and the three-
point function is only calculated easily in configuration space, we need to introduce another
vector variable xp to evaluate this contribution.1 If the density fields are Gaussian, then

1It follows that for each power of velocity in the moment, we need to introduce one vector variable and
integrate over this variable, which makes this calculation impractical for higher moments.
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Figure F.1: Calculation of the mean pairwise line-of-sight (µ = 0.995) velocity in our
log-normal mock catalogs. The magenta dotted, blue dashed, and red solid lines show
the contributions from three-point function alone, two-point function alone, and two- and
three-point functions, respectively. The black points show the measurement from the log-
normal mock catalogs.

this term vanishes and we do not get any contribution. However, for log-normal fields this
term is non-zero and is given by (43)

〈δm(xp)δg(xi)δg(xj)〉 = ξgm(rpi)ξgm(rpj)ξgg(rij)+

ξgm(rpi)ξgg(rij) + ξgm(rpj)ξgg(rij) + ξgm(rpi)ξgm(rpj) , (F.4)

which can be evaluated for our mock catalogs. The magenta dotted line in figure F.1 shows
this contribution. We find that the contribution decreases with increasing separation, with
an upturn at around the BAO scale. The two-point function contribution dominates on
most scales except on very small scales.

Combining the contributions from both two- and three-point functions, we find good
agreement between the analytic prediction and the measurement in the log-normal mock
catalogs, as demonstrated in figure 4.9.
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