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Abbreviations used 
µm Micrometer 
ANOVA Analyses of variance 
ATP Adenosine triphosphate 
B2M Beta-2-microglobulin 
BMP Bone morphogenetic protein 
cDNA complementary DNA  
cm2 Square centimeter 
CO2 Carbon dioxide 
DMEM Dulbecco’s Modified Eagle Medium  
DMSO Dimethylsulfoxid 
DNA Desoxyribonucleic acid  
DTT Dithiotreitol 
EDTA Ethylenediaminetetraacetic acid 
ELISA Enzyme-Linked Immunosorbent Assay 
FBS Fetal bovine serum 
g Constant of gravity; 9.81 m/s2 
g/cm2 Gram per square centimeter 
GCF Gingival crevicular fluid 
h Hour 
hOB human osteoblasts 
hPDLF human periodontal ligament fibroblasts 
IL1$ Interleukin 1D 
IL1% Interleukin 1E 
IL6 Interleukin 6 
LCD liquid-crystal display 
MEM Minimum Essential Medium 
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mL Milliliter 
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P2RX7 Purinergic receptor P2RX7 
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PDL Periodontal ligament 
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PTGS2 Prostaglandin-endoperoxide synthase 2 (= cyclooxygenase 2) 
RANKL Receptor activator of NF-kappaB ligand 
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1 Introduction 

Orthodontic tooth movement (OTM) is accomplished by application of external forces 

on a tooth or a group of teeth and is accompanied by extensive bone remodeling: bone 

resorption on the compression side and bone formation on the tension side of force 

application (Kim et al. 2006; Liu et al. 2009; Long et al. 2001; Mayahara et al. 2012). 

Three main cell types, osteoblasts, osteoclasts and periodontal ligament 

fibroblasts, are involved in this remodeling process. In orthodontic therapy, 

mechanical forces are loaded onto teeth. These forces are transmitted primarily to 

periodontal ligament fibroblasts (PDLF). The PDLF response to this force and interact 

with other cell types within the periodontal tissue to regulate the remodeling of the 

bone matrix (Kanzaki et al. 2002; Lekic and McCulloch 1996). Without PDLF tooth 

cannot be moved in the alveolar bone under orthodontic mechanical force (Mitchell 

and West 1975). Osteoblasts are responsible for bone matrix formation relevant to 

bone differentiation and resorption (Garlet et al. 2007; Grimm et al. 2015). 

 Numerous studies evidenced that cytokines play pivotal roles in bone 

remodeling and bone homeostasis (Jacobs et al. 2014; Kanzaki et al. 2002; Mah et al. 

2014). Specifically, either physical or chemical factors stimulate periodontal tissue 

cells to produce cytokines and growth factors which then regulate the micro 

environment surrounding the tooth (Li et al. 2013a; Ren and Vissink 2008).  

  



 

  2 

2 Literature Review 

2.1 Orthodontic tooth movement 

Orthodontic tooth movement (OTM) is achieved by sequential bone remodeling 

(Figure 1): bone resorption on the compressive side and bone formation on the tension 

side during orthodontic therapy (Wang et al. 2012). Periodontal tissues including 

periodontal ligament, gingival tissues and alveolar bone are involved in this process. 

Inflammatory response in the periodontal tissue occurs upon mechanical force 

stimulation. The inflammatory reaction varies depending on the force magnitudes and 

force types (Koyama et al. 2008), and it finally regulates bone reconstruction (Koyama 

et al. 2008; Krishnan and Davidovitch 2006). 

 

 
Figure 1. Bone remodeling during orthodontic force application: (A) orthodontic force is 
loaded on a tooth. (B) Osteoblasts accumulate on the tension side and osteoclasts on the 
compression side. (C) Bone remodeling occurs by a sequential bone resorption on the 
compressive side and bone formation on the tensile side (redrawn and modified after Kitaura 
et al. 2014). 

 

According to Krishnan and Davidovitch (2006, p. 469.e17), OTM includes the 

following sequence of events: 

1. “Movement of PDL fluids from areas of compression into areas of tension. 
2. A gradual development of strain in cells and ECM in involved paradental tissues. 
3. Direct transduction of mechanical forces to the nucleus of strained cells through 

the cytoskeleton, leading to activation of specific genes. 
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4. Release of neuropeptides (nociceptive and vasoactive) from paradental afferent 
nerve endings. 

5. Interaction of vasoactive neuropeptides with endothelial cells in strained 
paradental tissues. 

6. Adhesion of circulating leukocyte to activated endothelial cells. 
7. Plasma extravasation from dilated blood vessels. 
8. Migration by diapedesis of leukocytes into the extravascular space. 
9. Synthesis and release of signal molecules (cytokines, growth factors, and CSFs) 

by the leukocytes that have migrated into the strained paradental tissues. 
10. Interaction of various types of paradental cells with the signal molecules released 

by the migratory leukocytes. 
11. Activation of the cells to participate in the modeling and remodeling of the 

paradental tissues.” 

2.2 Periodontal tissues involved in orthodontic tooth movement 

2.2.1 Periodontal ligament fibroblasts 

In periodontal tissue, the periodontal ligament (PDL), a connective ligament tissue, is 

located between cementum and alveolar bone. It can be regarded as a specialized 

connector joining tooth and bone (Berkovitz 1990; Li et al. 2013b; Sodek and 

Limeback 1979). To maintain integrity and stability of tooth, PDL distributes and 

buffers force loaded by masticatory or external forces (Lekic and McCulloch 1996). 

Orthodontic tooth movement relies on biological reactions in the PDL and 

alveolar bone to mechanical force. Without PDL, tooth cannot be moved during 

orthodontic therapy (Mitchell and West 1975), a situation found in “ankylosed teeth” 

for example. These are teeth that are fused with the alveolar bone due to missing PDL. 

The first step in tooth movement is the transduction of orthodontic forces 

applied to the tooth. Due to its anatomical location situated between teeth and alveolar 

bone, PDL acts like a transmitter of external forces from the teeth to the surrounding 

tissue (Reitan 1960). Here, osteoblasts, osteoclasts and other cells in the surrounding 

tissue react regulating the resorption and formation of bone matrix (Kanjanamekanant 

et al. 2013; Kanzaki et al. 2002; Lekic and McCulloch 1996). Upregulation of several 

inflammatory factors associated with osteogenesis and bone degradation are detectable 
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in the PDL fibroblasts (PDLF) after mechanical force stimulations (Kanzaki et al. 

2002; Kook et al. 2009). This is closely linked to physiological changes of osteoblasts 

and osteoclasts during orthodontic tooth movement (Davidovitch 1991; Long et al. 

2001; Maeda et al. 2007; Shimizu et al. 1994). 

2.2.2 Osteoblasts 

Bone plays an important supportive role of the whole body. In the oral cavity, alveolar 

bone maintains teeth in their positions to drive their normal physiological function. On 

the other hand, alveolar bone shows plasticity under mechanical force stimulation 

(Katagiri and Takahashi 2002). Previous studies showed that with mechanical forces 

applied osteoblasts produce various cytokines. This contributes to the mechano-

transduction process (Ducy et al. 2000; Li et al. 2007) leading to the remodeling of 

periodontal tissues. Osteoblasts also play a role in the balance of the PDL and its 

surrounding cells during alveolar bone remodeling (Beertsen et al. 1997; Yamazaki et 

al. 2014). 

However, osteoblast regulation after mechanical force application is not yet 

fully understood; in particular, how different magnitudes of force influence this 

process and how PDL is involved in this. 

2.3 Factors involved in orthodontic tooth movement 

The significance of the mechanical loading for bone resorption and bone formation is 

undisputed. Extracellular matrix molecules, ion channels, signal molecules and 

integrin play active roles in mechanic transduction (Kanzaki et al. 2002; Maeda et al. 

2007). On the other hand, the mechanisms of transduction on cellular and subcellular 

level in bone remodeling are still not fully understood (Nakao et al. 2007). 

 During orthodontic tooth movement (OTM), different inflammatory cytokines, 

including interleukin 6 (IL6) (Jacobs et al. 2014), interleukin 1E (IL1%) (Shimizu et al. 

1994), prostaglandin-endoperoxide synthase 2 (PTGS2; previous name: cyclooxy-

genase-2, COX2) (Shimizu et al. 1998), tumor necrosis factor (TNF) (Kim et al. 2013), 

receptor activator of NF-N% ligand (RANKL) (Yamaguchi 2009), the runt-related 
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transcription factor 2 (RUNX2) (Baumert et al. 2004; Ziros et al. 2002) and the 

purinergic receptor/ion channel P2RX7 in periodontal tissue (Kanjanamekanant et al. 

2013; Viecilli et al. 2009). 

The cytokines mentioned above are either released by periodontal tissue cells 

(i.e. PDL, osteoblasts and osteoclasts) or were shown to be regulated (i.e., RUNX2, 

P2RX7) by mechanical force stimulation and thus play regulatory roles in alveolar 

bone reconstructions during tooth movement (Kanjanamekanant et al. 2013; Li et al. 

2013a; Mayahara et al. 2012). 

2.3.1 Prostaglandin-endoperoxide synthase 2 (PTGS2) and 

Prostaglandin E2 (PGE2) 

The isoenzymes of prostaglandin-endoperoxide synthase (PTGS), PTGS1 

(cyclooxygenase 1, “COX1”) and PTGS2 (cyclooxygenase 2, “COX2”), are widely 

studied as key enzymes in prostaglandin biosynthesis (O'Neill and Ford-Hutchinson 

1993). Prostaglandins are part of several pathways leading to the activation and 

secretion of pro-inflammatory mediators, like cytokines, mitogens, and 

lipopolysaccharides (Hla and Neilson 1992; Jones et al. 1993; Lee et al. 1992), and 

were shown to accelerate bone resorption in the alveolar bone during orthodontic 

therapy (Klein and Raisz 1970). In the initial stage of orthodontic therapy, PDLF 

produce prostaglandin-related acute inflammatory factors in response to orthodontic 

mechanical stimulation. PTGS2 is induced in periodontal tissue cells, including 

osteoblasts, osteoclasts, gingival fibroblasts, cementoblasts and PDLF (Römer et al. 

2013; Yucel-Lindberg et al. 2006), leading to prostaglandin E2 (PGE2) secretion 

(Kraemer et al. 1992; Kujubu and Herschman 1992). PTGS2 gene expression is 

closely correlated with PGE2 biosynthesis during inflammatory reactions. PGE2 is 

detectable after orthodontic force loading in periodontal tissues; it is known as a pro-

inflammatory intermediary, an effective factor for inducing osteoclasts (Mayahara et al. 

2012; Römer et al. 2013; Saito et al. 1991). Additionally, it was shown that PGE2 

secretion in response to mechanical force changes along with PTGS2 enzyme activity 

under mechanical load (Shimizu et al. 1998). 
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2.3.2 Interleukin 6 (IL6) 

Interleukin 6 (IL6) is a cytokine associated with changes of bone mass (Bakker et al. 

2014). Overexpression of IL6 accelerates bone reconstruction by decreasing bone 

resorption and increasing bone formation (Baker et al. 1999). Differentiation of 

progenitor cells to osteoblasts is also facilitated by IL6 (Bellido et al. 1997). In 

contrast, lack of IL6 lowers bone mass via reducing the numbers of osteoblasts (Balto 

et al. 2001; Yang et al. 2007). Periodontal tissue remodeling during inflammatory 

response and orthodontic tooth movement is affected by IL6 (Alhashimi et al. 2001). 

Differential expression of IL6 were detected in gingival crevicular fluid and PDLF 

after orthodontic force loading, indicating IL6 might play a role in the bone 

remodeling process after mechanical stimuli (Madureira et al. 2015; Ren et al. 2007).  

2.3.3 Runt-related transcription factor 2 (RUNX2) 

Runt-related transcription factor 2 (RUNX2) promotes the differentiation of progenitor 

cells into mature osteoblasts. In general, RUNX2 plays an important role in bone 

growth equilibrium and bone remodeling. RUNX2 knockout mice show a complete 

lack of bone formation (Komori et al. 1997) and heterozygous RUNX2 mutations lead 

to cleidocranial dysplasia (Baumert et al. 2005). RUNX2, thereby, is considered as a 

“master gene” or “pacemaker gene” for bone development and is part of several 

signaling pathways in osteoblastic differentiation (Ducy et al. 1999). 

 RUNX2 itself is induced by bone morphogenetic proteins (BMP) in cells of the 

osteoblast lineage in advance of osteoblast differentiation (Ducy et al. 1997). In the 

promoter region of many osteogenic specific genes (i.e. osteocalcin, alkaline 

phosphatase, type-I collagen) RUNX2 binding sites exist (Colden et al. 2017; Kern et 

al. 2001; Zhang et al. 2017). 

2.3.4 Purinergic receptor/ion channel P2RX7 

P2RX7 receptor is an adenosine triphosphate (ATP)-dependent ion channel and plays 

a crucial role in bone biology and inflammation (North 2002). Mechanical forces 

induce the increase of extracellular ATP concentration, which is considered a cellular 

stress signal (Kanjanamekanant et al. 2013). Upon binding extracellular ATP, the 
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P2RX7 ion channel opens and Ca2+ enter the cell (Kariya et al. 2015; Schneider et al. 

2006; Trubiani et al. 2014; Viecilli et al. 2009). This leads to accumulation of 

intracellular calcium and liberation of fundamental inflammatory mediators, like TNF, 

IL6, IL1$, and IL1%, which regulate bone physiology (Ferrari et al. 2006; Lister et al. 

2007). Another major function of P2RX7 is to accelerate necrotic tissue metabolism. 

However, it is still unclear concerning the effects of P2RX7 on bone remodeling and 

tooth movement (Viecilli et al. 2009). 

2.3.5 Tumor Necrosis Factor (TNF) 

The tumor necrosis factor (TNF� is a pro-inflammatory cytokine which can induce 

apoptosis in PDLF and osteoblasts (Alikhani et al. 2004; Pavalko et al. 2003). 

Increased levels of TNF were discovered in osteoporosis and periodontitis patients 

(Ralston et al. 1990), as well as in PDL on tension or compression side after 

mechanical force load during orthodontic tooth movement (Uematsu et al. 1996). This 

leads to a stimulation of osteoclastogenesis and an inhibition of bone formation and 

thus to an adjustment in bone remodeling (Bertolini et al. 1986; Tan et al. 2006). 

2.4 Experimental designs to simulate orthodontic tooth 

movement in vitro 

In vivo studies on orthodontic tooth movement are conducted in human and animal 

models (e.g. rat, beagle dogs, and mice). Analysis of tissue reactions are mostly 

limited to the screening of cytokines released to the gingival crevicular fluids, and 

histologic dissections of tissue reactions due to force application (Thilander et al. 2005; 

von Böhl et al. 2004). Due to the complexity of the tissues involved in orthodontic 

tooth movement, subcellular investigations specific to individual cell types is 

performed using in vivo studies. These exclude non-experimental tissues and cell 

interference thus alleviating the examination of specific intra- and intercellular signal 

transduction pathways (Kim et al. 2006). 
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2.4.1 Influence of mechanical force 

Mechanical force is considered not only a main element in regulating bone 

homeostasis, but also a morphological determinant in bone development and 

reconstruction (Kook et al. 2009; Meazzini et al. 1998; Yokoya et al. 1997). Various 

aspects, such as osteogenic differentiation, bone morphology, gene expression, 

osteocyte proliferation and apoptosis are analyzed (Hughes-Fulford and Lewis 1996; 

Li et al. 2007; Meazzini et al. 1998). 

 During orthodontic tooth movement, mechanical forces are transmitted to the 

periodontal tissue (see also Section 2.1). In this process, spatial and temporal changes 

occur in parallel in different cell types of periodontal tissue. For example, cell damage 

due to tissue injury happens along with cellular reactions based on force stimulation. 

Additionally, sequential intra- and intercellular changes induce bone resorption 

(Chambers et al. 1993; Lanyon 1992; Rubin et al. 1995). A suitable mechanical force 

is essential for inducing physiological bone changes instead of damaging teeth or 

periodontal tissues (Koyama et al. 2008; Mayahara et al. 2012).  

 To simulate the condition during orthodontic force loading as near as possible 

to the in vivo situation, experimental studies used different setups to produce 

mechanical force on adherent cells in vitro (Figure 2). Clinically, two types of force, 

tension and pressure, are mainly involved in orthodontic tooth movement. Pressure 

narrows the width of the PDL. This induces the expression of bone remodeling 

markers. Histological alteration on the compressive side in the periodontal tissues are 

detectable (Otero et al. 2016). 

 

Concerning sampling, two different sampling procedures are applied in studies related 

to compressive force application: “direct sampling” and “pulse-chase sampling”. In 

“direct sampling” biological samples (i.e. supernatant, protein lysate, cell lysate) are 

drawn directly after force application stopped (e.g. Morikawa et al. 2016; Redlich et al. 

2004a). The procedure of “pulse chase sampling” involves the application of a force 

(i.e. the “pulse”) to the specimen for a defined period of time. Then, samples are 

drawn at defined time intervals after force application stopped (e.g. Baumert et al. 
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2004). Both sampling procedures in common is the “pulse” step; the difference is the 

time point when samples are drawn for further analysis. With “direct sampling” only a 

small “time window” is available for analysis. The position of this “window” in 

relation to the time point of force release is not stated in any publication. “Pulse chase 

sampling”, on the other hand, enables to study the effect of a stress application over a 

longer period of time. Gene expression and translation take time and this time differs 

between different genes. Some genes are rapidly transcribed after stimulation 

(“primary” or “early” response genes) and some genes are slowly induced (“secondary” 

or “late” response genes) (Sandoval et al. 2016). “Pulse chase sampling” is therefore 

suitable for screening purposes. 

2.4.2 In vitro culture systems 

A variety of methods to study the mechanical responses of periodontal tissue cells in 

vitro were applied using cell type-specific experimental designs (Baumert et al. 2004; 

Redlich et al. 2004a; Römer et al. 2013; Ziros et al. 2002). In the in vivo situation, 

intercellular communication between the different cells and cell types of the 

periodontal tissues is taking place. Adaptation of the in vivo situation to in vitro 

models would therefore involve force application not only on one cell type but on two 

 

Figure 2. Summary of 
experimental methods to 
apply different types of force 
related to OTM on adherent 
cells in vitro (image 
contributed by Dr. Baumert). 
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or more different cell types simultaneously, thus enabling communication between 

these different cell types during force application. 

Currently, intercellular communication cannot be fully elucidated during 

mechanical loading in vivo. A possible way to investigate intercellular communication 

between cells is a special kind of in vitro cell culture system that is called “co-culture” 

(Figure 3). 

 

 
Figure 3. The two types of “co-culture”: (A) “Direct contact co-culture”: cell types A and B 
share the same space and grow next to each other. (B) “Indirect contact co-culture”: cell 
type B is growing on a permeable membrane sharing the same culture medium as cell type A 
without touching each other. 

 

“Co-culture” describes various techniques where different types of cell 

populations are cultivated near to each other in the same cell culture environment 

(Figure 3). At present, two types of co-culture systems are used: “direct contact co-

culture” and “indirect contact co-culture”. In “direct contact co-culture”, two types of 

cells are cultivated directly next to each other (Figure 3A). Direct cell-cell contacts can 

be established as well as paracrine signaling pathways (Jones et al. 2009). However, 

some drawbacks exist with this mixed co-culture model: 

1. If one cell type outgrowths the other one and thus occupying most of the limited 

growth space, it might cause massive cell death. 

2. The analysis of gene expression in both cell types separately is technically 

demanding in this totally mixed environment. 



 

  11 

Taken together, with direct-contact co-culture it is not possible to analyze the effects 

of long-term force application or to conduct gene expression studies on each cell type 

separately. 

 These issues can be solved in the “indirect contact co-culture system”. In this 

system, two types of cells share the same growth environment without contacting each 

other directly (Figure 3B). Intercellular communication via the release of cytokines 

and growth factors is still possible. The indirect contact co-culture system is 

established using a double-chamber that is formed by inserting cell culture inserts into 

suitable cell culture plates. The separation is achieved by a porous membrane that 

forms the bottom of the cell culture inserts. Its pore size inhibits cell migration through 

the membrane but enables molecules (i.e. from the cultivation medium, signaling 

molecules or metabolites) to pass through. Using this setup, two different kinds of 

cells can be cultivated using the identical medium without physically contact to each 

other. Afterwards, these cell types can be analyzed and evaluated separately by 

moving the inserts to another suitable plate (Hatherell et al. 2011). 

 

In summary, previous studies have several technical drawbacks: (1) Force is applied 

mostly on cells in mono-culture. (2) Co-culture models are used but not with force 

applied. (3) During force application, physiological conditions like temperature are 

not controlled. (4) “Direct sampling” procedures are used and the duration of 

sampling is not reported. 
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3 Aim of the study 

Aim of this study, therefore, was to establish an in vitro method to investigate the 

intercellular communication between cells during orthodontic tooth movement 

meeting the following prerequisites: 

• Compressive force application to hPDLF and hOB in co-culture; 

• Access to both cell types after centrifugation without cross-contamination; 

• Application of force at physiological conditions; 

• Application of a stringent “pulse chase” sampling regime. 

 

To meet the prerequisites, compressive force was applied onto both hPDLF and hOB 

in indirect co-culture using a laboratory centrifuge for 1, 2 and 4 h. Due to the 

technical limitations of the available centrifuge force application took place at a 

reduced temperature at 30 °C instead of 37 °C. Reproducibility and validity of the 

setup was evaluated by testing cell viability and apoptosis induction. The temperature 

conditions were monitored in all experimental conditions (force magnitude, force 

duration, culture condition) for both experimental groups and negative control groups. 

Genes or metabolites known to be regulated in intercellular communication during 

orthodontic tooth movement were further analyzed in hPDLF and hOB at 2, 4, 8 and 

16 min after compressive force application, i.e. IL6, TNF, PTGS2, RUNX2, P2RX7 

and PGE2. The experiments were repeated with mono-cultured cells for direct 

comparison. 

 To make the results of the “pulse chase” sampling more comparable with 

previous published studies applying “direct” sampling, the results of both the gene 

expression analysis and the ELISA testing are presented in two different ways: (1) 

“direct” sampling: measurements from 2 and 4 min chase are combined; (2) “pulse 

chase” sampling as is. 
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4 Materials and Methods 

4.1 Materials 

4.1.1 Chemicals 

All chemicals were purchased at the highest available purity from the companies listed. 

Reagent kits are listed below and are described in the relevant methods section. 

Chemicals name Supplier 

Agarose LE Agarose (Biozym, Hessisch Oldendorf) 

Apoptosis kit Multi-Parameter Apoptosis Assay Kit (Cayman, Ann Arbor, 
USA) 

cDNA synthesis kit SuperScript® IV First-Strand Synthesis System (Thermo, 
Munich) 

Cell culture medium • MEM-Alpha-Medium (Thermo, Munich) 
• Dulbecco´s Modified Eagle´s Medium/Nutrient Mixture 

F-12 Ham (Sigma Aldrich, Steinheim) 
• Dulbecco's MEM (Biochrom, Berlin) 

Dimethylsulfoxid (DMSO) Cell culture grade (AppliChem, Darmstadt) 

Dithiothreitol (DTT) 1 M solution (AppliChem, Darmstadt) 

DNA ladder Thermo, Munich: 

• GeneRuler 100bp Plus DNA Ladder 
• GeneRuler Low Range DNA Ladder 

DNA loading buffer 6× Loading Buffer with orange G (Genaxxon, Ulm) 

ELISA kits R&D Systems, Minneapolis, USA: 

• Human IL6 Duo Set 
• Human IL6 Quantikine Kit 
• PGE2 Parameter Assay 
• Human TNFα Duo Set 

Ethanol For disinfection: 70% denatured (CLM GmbH, 
Niederhummel) 

For Zymo kit application: 99.8%, denatured (Carl Roth, 
Karlsruhe) 

Ethidium bromide Ethidium bromide solution (0.07%) “Dropper-Bottle” 
(Applichem, Darmstadt) 

FBS Fetal Bovine Serum Low in Endotoxin (Sigma Aldrich, 
Steinheim) 

Glutamine 200 mM L-Glutamin solution, sterile-filered (BioXtra, Sigma 
Aldrich, Steinheim) 

Incidin Incidin®Liquid (Ecolab, Monheim am Rhein) 

MEM-Vitamines MEM-Vitamine Solution (100×) (Biochrom, Berlin) 

Mycoplasma Test PCR Mycoplasma Test Kit I/C (Promokine, Heidelberg) 

PBS-Buffer PBS Dulbecco without Ca2+ w/o Mg2+ (Biochrom, Berlin) 
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Chemicals name Supplier 

PCR primers Synthesis by Metabion, Planegg: IL6, PTGS2, RUNX2, 
P2RX7, B2M, TNF 

PCR water Aqua ad iniectabilia (Braun, Melsungen) 

qPCR-Mastermix Luminaris Color HiGreen qPCR-Mastermix (Thermo, 
Munich) 

Resazurin Resazurin sodium salt (Sigma Aldrich, Steinheim) 

RNA isolation kit Quick-RNATM MicroPrep (Zymo Research, USA) 

RNA lysis buffer RNA Lysis Buffer (Zymo Research, Irvine, USA) 

RNase inhibitor Recombinant RNasin® Ribonuclease Inhibitor (Promega, 
Madison, USA) 

TAE-Buffer TAE buffer (50×) Molecular biology grade (AppliChem, 
Darmstadt) 

Trypan blue Trypan Blue Solution (0.4%) (Sigma Aldrich, Steinheim) 

Trypsin Trypsin/EDTA-Solution (0.05% / 0.02%) (Biochrom, Berlin) 

 

4.1.1 Apparatus 
Type of apparatus Exact apparatus name, company 

Agarose electrophoresis chamber EasyPhor Horizontal Agarose Gel System (Biozym, Hess. 
Oldendorf): 

• EasyPhor Midi 
• EasyPhor Maxi 

Autoclave Tuttnauer-Laborautoklav 3150 EL (Tuttnauer, Gießen) 

Balance Satorius, Göttingen: 

• TE 1502S 
• MSA2203P-000-DE 

Cell culture safety cabinet HERA safe KS (ThermoScientific, Langenselbold) 

Centrifuge • Refrigerated Centrifuge 4-16K (Sigma Aldrich, Osterode 
am Harz) 

• Centrifuge Mikro 200R (Hettich, Tuttlingen) 
• Sprout mini centrifuge with SnapSpinTM Rotors 

(Healthrow Scientific®, Vernon Hills, USA) 

CO2 cell culture incubators CellIncubator 120 & CellIncubator 250 (Thermo, Munich) 

Dishwasher Laboratory Dish Washer G7883 (Miele, Gütersloh) 

ELISA reader Varioscan (Thermo Electron Corporation, Vantaa, Finland) 

Fluorescence microscope EVOS® fl Color (Invitrogen, Carlsbad, CA) 

Image Anaysis System LIAS (Avegene Life Science, Taiwan, China) 

Magnetic hotplate stirrer RCT classic IKAMAG® (IKA®-Werke GmbH &Co. KG, 
Staufen) 

Microbiological incubator Incubator BD23 (Binder, Tuttlingen) 

Microwave oven Microwave R-939-A (Sharp Electronics, Hamburg) 

Mixing Block Mixing Block MB-107 (Biozym, Hessisch Oldendorf) 
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Type of apparatus Exact apparatus name, company 

PCR machines • TProfessional Thermocycler (Biometra, Göttingen) 
• LightCycler480 (Roche, Basel, Switzerland) 

pH Meter HI 2210 pH Meter (Hanna Instruments, Vöhringen) 

Pipetman Eppendorf Easypet® 4432 (Eppendorf, Hamburg) 

Pipettes Eppendorf, Hamburg: 

• Eppendorf Research® 
• Eppendorf Reference® 
• Multipette® stream 

Proline® Plus (Biohit, Helsinki, Finnland) 

Power supply EV202 (Consort, Turnhout, Belgium) 

Refrigerator • 4 °C Refrigerator (Liebherr, Ochsenhausen) 
• -20 °C Refrigerator (Siemens, Munich) 
• -80 °C Refrigerator (Thermo Fisher Scientific, Munich) 

Shaker  Lab dancer (vwr, Darmstadt) 

Spectrophotometer Nanodrop 1000 (Peqlab, Erlangen) 

Sterilizatior APT.lineTM ED (E2) (Binder, Tuttlingen) 

Temperature date logger From Elektronik Fuchs (Weingarten): 

DS1921H-F5 Thermochron iButton® 

1-Wire Network Cable 

Thermo printer Video Graphic Printer (Sony, Tokio, Japan) 

Ultra-pure water machine Arium® 611VF (Sartorius, Göttingen) 

Vortexer Vortex-Genie®2 (Si Scientific Industries, Inc., Bohemia, USA)  

Water bath LAUDA Aqualine (Lauda, Lauda-Königshofen) 

 

4.1.2 Consumables 
Consumable item Supplier 

“Eppendorf” tips Sarstedt, Nümbrecht: 

• Biosphere® Fil. Tip: 20 µL, 100 µL 
• Biosphere® Fil. Tip 1250 µL, Long 
• Pipette tips 1250 µL, Long 
• Pipette tips 250 µL 

Adhesive film Optical clear adhesive sealing tape for PCR (Sarstedt, 
Nümbrecht) 

Cell counting chamber G-Slide Neubauer (C-Chip) (Kisker, Steinfurt) 

Cell culture flask From Sarstedt (Nümbrecht): 

• Cell culture flask T-25 
• Cell culture flask T-75 

Cell culture inserts ThinCert cell culture inserts for 12-well plates (Greiner Bio-
One, Frickenhausen) 
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Consumable item Supplier 

Labels From Diverified Biotech (Dedham, USA): 

• Teeny Tough-Tags® 
• Cryo-Babies® 
• Microtube Tough-Tags® 

Multi-pipette tip From Eppendorf (Hamburg): 

• Combitips advanced®, 5.0 mL, Farbcode blue 
• Eppendorf Quality™ Combitips 10 mL 

Multiwell plates • Cell culture multiwell plate (12 well) (Greiner Bio-One, 
Frickenhausen) 

• 384 Well Lightcycler plate (Sarstedt, Nümbrecht) 

Pipette Serological Pipette (2 mL, 5 mL, 10 mL, 25 mL) (Sarstedt, 
Nümbrecht) 

QIA shredder QIA shredder (Qiagen, Hilden) 

Reaction tubes Sarstedt, Nümbrecht: 

• Micro Tube: 0.5 mL, 1.5 mL, 2.0 mL 
• 15 mL centrifuge tube (“Falcon” type) 
• 50 mL centrifuge tube (“Falcon” type) 

Cryo.s™ 2 ml (Greiner Bio-One, Frickenhausen) 

Quali-PCR-Tubes 0.2 mL (Kisker, Steinfurt) 

Syringe BD, Heidelberg: 

• BD Discardit™ II Syringe 5 mL 
• BD Microlance™ 3 Needle 
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4.2 Cell culture 

4.2.1 Cells used 

Human periodontal ligament fibroblasts (HPDLF) and human osteoblasts (hOB) were 

obtained from healthy tissue of patients undergoing surgery for orthodontic reasons 

with informed consent (Ethics Committee LMU Munich Medical Center, registration 

number: 045-09). The following in-house established human primary cells were used: 

 

Type of 
cell 

Patient Id. Age Gender Orthodontic 
treatment 

Medium 

hPDLF 170946 31 female Unknown DMEM, 10% FBS, 2% 
L-glutamine 

hOB 379583 20 male Pretreatment DMEM/F12 (1:1), 10% 
FBS, 2% MEM 

vitamins 

 

The primary cells were prepared using explant culture techniques according to Ng and 

Schantz (2010) with the following modifications. Freshly extracted teeth or bone 

biopsies were collected separately in sterile 50 mL centrifuge tubes (“Falcon tubes”) 

containing transport medium: PBS with 2u antibiotics/antimycotic mixture (Life 

TechnologiesTM, Darmstadt, Germany) and 2u gentamycin (Biochrom, Berlin, 

Germany). The samples were processed directly after collection. 

 hPDLF: The teeth were washed with transport medium. The middle third of 

the tooth root surface was scraped off using a sterile surgical blade and the 

periodontal ligament explants were placed in 6-well plates and cultivated with 

Dulbecco’s Modified Eagle’s medium (Biochrom, Berlin, Germany) supplemented 

with 10% fetal bovine serum (FBS) (Sigma-Aldrich, Steinheim, Germany), 2% L-

glutamine (Sigma-Aldrich, Steinheim, Germany) and 1u antibiotics/antimycotic 

mixture (Life TechnologiesTM, Darmstadt, Germany). 

 Bone: Bone biopsies from alveolar bone were diced into small pieces and 

washed three times with transport medium. Afterwards, they were three times 

digested with collagenase II, each time for 30 min at 37 °C. Cells from the last 
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digestion step were cultivated using Dulbecco’s Modified Eagle’s Medium/Nutrient 

Mixture F-12 Ham (DMEM/F-12; Sigma-Aldrich, Steinheim, Germany) with 10% 

FBS and 2% MEM-vitamins (Biochrom, Berlin, Germany) and 1u 

antibiotics/antimycotic mixture (Life TechnologiesTM, Darmstadt, Germany). The 

bone pieces were washed again in transport medium, placed in 6 well plates and 

covered with the same medium. 

 Both explant cultures, from hPDLF and hOB were placed in the CO2 incubator 

with 5 % CO2 at 37 °C in humidified atmosphere and incubated until the cells started 

outgrowing (“E1”). Upon reaching confluency, they were passaged (split ratio 1:3) 

and cultivated in the corresponding medium using 0.05 % trypsin-EDTA solution 

(Biochrom, Berlin, Germany). Cells at the fifth passage were used for processing the 

experiments. 

 The human osteosarcoma cell line SaOS-2 (bought from DSMZ) was used for 

evaluation and testing purposes. Cultivation was done using the same medium and 

procedures as described for human osteoblasts. 

4.2.2 Mycoplasma assay 

Regularly, cell culture supernatants are tested for mycoplasma infection. For 

mycoplasma testing, cell culture supernatants were collected from growing cell 

cultures at confluency. The supernatants were processed using the PCR Mycoplasma 

Test Kit I/C (PromoKine, Heidelberg, Germany) according to the manufacturer’s 

instructions.  

Specifically, testing samples (sample tube, 23 µl rehydration buffer and 2 µl 

sample), positive control (positive tube, 23 µl rehydration and 2 µl DNA-free water) 

and negative control (negative tube, 23 µl rehydration and 2 µl DNA-free water) were 

prepared. Then PCR was performed according to the manufacturers’s protocol. Tubes 

were placed in the TProfessional Thermocycler (Biometra, Göttingen, Germany) 

machine. The PCR program consisted of the following steps: denaturation for 2 min 

at 95 °C; 40 cycles of 30 s denaturation at 94 °C, 30 s primer annealing at 55 °C, 40 s 

primer extension at 72 °C, and cooling to 4 - 8 °C. 
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PCR products were separated on a 1.5% standard agarose as described in Section 

4.4.5: 8 µl of each PCR product and 5 µl of molecular weight marker per lane were 

loaded. Separation was done using agarose electrophoresis for 45 min at 90 V in 2% 

agarose, 1u TAE buffer. 

4.2.3 Cell counting 

When cells reached confluence, they were digested using 0.05 % trypsin-EDTA 

solution at 37 °C and 5% CO2 for 5 min. Digestion was stopped using the respective 

cell culture medium. Cell counting was done using single-use Neugebaur counting 

chamber (Kisker Biotech, Steinfurt, Germany) and an inverted microscope (EVOSfl, 

Invitrogen, Carlsbad, USA). Cell suspension and trypan blue solution (0.4%) (Sigma-

Aldrich, Steinheim, Germany) were mixed 1:1. Ten microliters of this mixture was 

pipetted into each side of the counting chamber. Cells were counted at 10× 

magnification under the phase contrast microscope. Cells at four corner quadrants of 

each side of the chamber were counted as described in the documentation of the 

counting chamber used. 

4.3 Force application 

After cell preparation, compressive force (CF) was applied to hPDLF and hOB 

respectively using centrifugation according to Redlich et al. (1998), with modifications 

from Baumert et al. (2004). This model resembled clinical orthodontic force. 

4.3.1 Pretesting temperature stability and apoptosis induction 

In pre-experiments the temperature stability during centrifugation was examined and 

a workflow for CF application was established. To test the effect of temperature 

(30 °C vs 37 °C) an assay was used to test apoptosis induction. 

4.3.1.1 Temperature stability during centrifugation 

Long-term temperature stability during centrifugation was monitored using the 

Thermochrom iButton® data logger DS1921H-F5 (Maxim Integrated, San Jose, USA). 
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These data logger measure the temperature within a range of 0 to 46 °C with an 

accuracy of ±1 °C and measuring intervals from 1 to 255 minutes. 

 The data logger was programmed and read-out using the OneWireViewer 

program, version 0.3.17.44 (Maxim Integrated, San Jose, USA) together with the 1-

Wire Network Cable, DS1402D-DR8 (Maxim Integrated, San Jose, USA) (Figure 4). 

 Force application was done using the SIGMA 4-16K centrifuge (Sigma, 

Osterode am Harz, Germany). Speed, time and temperature are adjustable and read via 

a LCD display in front of the centrifuge. In parallel to the centrifugation cells, cells 

serving as negative controls are incubated in a microbiological incubator (Binder 

Incubator BD 23, Binder, Tuttlingen, Germany). 

To establish a stable temperature during centrifugation, pretesting was done 

measuring by iButton devices. One iButton device was put on bench for measuring the 

room temperature, one was installed in the microbiological incubator (set at 30 °C) 

and another two were placed into the centrifuge at beginning (one for temperature 

measurement, the other for equilibrium). Different combinations of centrifugation 

speed, temperature preset and (with the aid of the technical service of the manufacturer) 

temperature offset (in the manufacturer settings of the centrifuge) were evaluated to 

achieve a constant and reproducible temperature regime.  
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Figure 4. The interface of OneWireViewer program, version 0.3.17.44. (A) Programming for 
iButton device. (B) Read-out of iButton device. 

4.3.1.2 Apoptosis assay 

Cellular apoptosis was examined to test cell viability after incubation at 30 °C for up 

to 4 h in comparison to 37 °C. HPDLF and hOB were seeded in 12-well plates with 

1×105 cells/ well, followed by overnight incubation at 37 °C with 5% CO2. Plates 

representing the experimental group were incubated at 30 °C in a microbiological 

incubator. Control plates were kept at 37 °C and 5 % CO2. After 1, 2 and 4 h of 

incubation, the cells were stained using the Multi-Parameter Apoptosis Assay Kit 
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(Cayman, Ann Arbor, USA) according to the manufacturer’s protocol. Nuclear 

fragmentation was detected by Hoechst Dye staining, reversal of the mitochondrial 

membrane potential with TMRE and the flipping of the membrane lipids using 

Annexin V-FITC. Immediately after staining, the cells were examined using a 

fluorescence microscope (EVOSfl, Invitrogen, Carlsbad, USA). These assays were 

repeated three times for both cell types. 

4.3.1.3 Procedure for compressive force application 

All CF applications were monitored using iButton devices as follows: two iButton 

devices were used to monitor the room temperature and the temperature of the 

negative controls placed into the microbiological incubator. The centrifugation 

temperature was set to 30 °C and the temperature offset to -2.3. After positioning a 

third iButton device into the centrifuge, the centrifuge was pre-run at 800×g until the 

centrifuge reached the pre-set temperature of 30 °C shown on the centrifuge’s display. 

Cells seeded in 12-well plates were placed in the centrifuge and the fourth iButton 

device was placed in the counter-weight plate. All centrifugations were done on the 

same day at 200×g and all centrifugations (1, 2, and 4 h) were monitored using iButton 

devices. The negative controls were kept in the microbiological incubator at 30 °C for 

the same durations as centrifugation (Figure 5). 
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Figure 5. Temperature profile of a typical experiment running in total over 8 h. The 
temperatures (centrifuge, biological incubator and room temperature) were monitored using 
iButton® temperature data loggers. The centrifuge was pre-run at 800ug to reach the required 
temperature (30 °C) quickly. Then the experiments were performed at 200ug. 

 

 The cells were centrifuged at 200ug, 30 °C for 1, 2 and 4 h, respectively. 

Different levels of force (47.4 and 73.7 g/cm2) were adjusted by adjusting the volume 

of cell culture medium within each well according to the following formula (Redlich 

et al. 2004a; Redlich et al. 2004b): 
 

𝑃 =  𝑚 × 𝑟 × 𝑟𝑝𝑚2 × 𝜋2

𝐴 × 9.8 × 900  

 
Force (P): 47.4 g/cm2 73.7 g/cm2 
Mass of medium [m]: 0.9 g (~900 µL) 1.4 g (~1,400 µL) 
Radius of centrifuge rotor (r): 0.16 m 0.16 m 
Speed of centrifuge [rpm]: 970 rpm 970 rpm 
Growth area of cells (A): 3.8 cm2 3.8 cm2 
 

Cells in the microbiological incubator at 30 °C served as negative controls. For each 

cell type/culture combination six samples were used. Thereafter, CF was applied to the 

co-cultured hPDLF and hOB in the same way as mono-cultured, described previously. 
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4.3.2 Seeding of mono-culture setup 

HPDLF and hOB were cultured in their specific culture media with 37 °C and 5% CO2 

in humidified atmosphere. Both cell types, hPDLF and hOB, were seeded the same 

way: in each well of a 12-well plate 105 cells/well were seeded with 900 or 1400 µL 

culture medium. For 1, 2 and 4 h experimental durations, three plates were prepared as 

described above: one will be placed into the centrifuge for CF application 

(“experimental group”), one in the biological incubator (30 °C) as negative control and 

one will be used as blank control (T0) (Figure 6). After attachment (about 6 h) in 37 °C 

and 5% CO2, cell culture medium was replaced with cell culture medium containing 1% 

FBS (“serum starvation”). The plates were placed back to the 37 °C/ 5% CO2 and 

incubated overnight for 10 h. 

 
Figure 6. Cells were seeded in 12-well plates with 1u105 cells/well. The same seeding 
condition for both cell types (hPDLF and hOB). (A) Plates were seeded for CF application in 
the centrifuge, (B) negative control in biological incubator and (C) blank control (T0) in cell 
culture incubator, respectively. This seeding was proceeded for each duration period (1, 2 and 
4 h). 

4.3.2.1 Cell culture inserts 

ThinCert™ cell culture inserts (Greiner Bio-One, Frickenhausen, Germany) (Figure 7) 

is a device for indirect contact co-culture; different cell populations can be cultivated 

in the same cell culture environment. The advantage of this insert is that it keeps the 

two co-cultured cell populations separated from each other via a porous membrane 

made from a polyethylene terephthalate capillary pore membrane tightly sealed to the 

polystyrene housings. The pore size of the optical transparent membrane is 1.0 µm 

with 2 u 106 pores/cm2. Due to its physical and chemical properties, the cell culture 
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inserts are applicable for light microscopy, electron microscopy, fluorescence 

microscopy, immunocytochemistry and co-culture experiments. The cell culture 

surface of a 12-well insert is 113.1 mm2 with an inner diameter 13.85 mm, an outer 

diameter 15.85 mm and an overall height of 16.25 mm. The working volume is 0.3 -

 1.0 ml per insert. 

 Using the cell culture inserts, two cell populations can be co-cultivated, one in 

the insert and the other one in the well. They are physically separated sharing the same 

culture environment. Paracrine communication is possible via the pores of the 

membrane.  

 
Figure 7. Cell culture inserts used: (A) Greiner ThinCert™ cell culture insert; (B, C) Inserts in 
12-well plate. 

 

4.3.2.2 Co-culture of human PDL fibroblasts and human osteoblasts 

HPDLF and hOB were co-cultured. In hPDLF setup, hPDLF was seeded in 12-well 

plates at a density of 1×105 cells per well (Figure 8A). HOBs were seeded in 

ThinCert™ cell culture inserts (Greiner Bio-One, Frickenhausen, Germany) at a 

density of 5u104 cells per insert (Figure 8B). After attachment (about 6 h), cell culture 

media were removed. DMEM/F-12 containing 1% FBS was added to the wells. The 

seeded inserts were placed into the corresponding wells (Figure 8C) and also filled 

with DMEM/F-12 giving a total volume of 900 µL or 1400 µL. They were co-

cultivated for at least 10 h. Then, CF was applied to co-cultured hPDLF and hOB in 

the same way as mono-cultured force loading. In hOB setup, the positions of cell types 

were switched (Figure 8D-F). Same amount of plates was seeded as mono-culture. 
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Figure 8. Co-culture setup. (A) hPDLF was seeded in the wells of 12-well plates. (B) hOB was 
seeded in the cell culture inserts. (C) Cell culture inserts were placed into wells at least 10 h 
before CF application. (D) hOB was seeded in the wells of 12-well plates. (E) hPDLF was 
seeded in the cell culture inserts. (F) Cell culture inserts were placed into wells at least 10 h 
before CF application. 

 

4.3.2.3 Pulse chase multi-sampling 

After each centrifugation and incubation, samples were collected at 2, 4, 8, and 16 min. 

Time was counted strictly with timer and three biological replications were performed 

for every chase point. From each sample 800 µl of cell culture supernatant was 

collected, centrifuged at 15,000 rpm, 4 °C for 10 min and then transferred to a fresh 

Eppendorf tube. These samples were used for ELISA analysis of PGE2, IL6 and TNF���

After removal of the cell culture supernatants from each well, hPDLF and hOB 

were lysed using a total amount of 750 μL RNA lysis buffer (Zymo Research, Irvine, 

America) with 40 mM dithiotreitol (DTT) (AppliChem, Darmstadt). The cell lysates 

from each well were transferred to fresh, sterile 1.5 ml Eppendorf tubes and stored 

at-80 °C until further processing. These lysates were used for gene expression analysis 

of IL6, TNF��RUNX2, P2RX7, and PTGS2. After rigorously testing several potential 

genes, B2M was selected as the reference gene (see below). 
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4.4 Gene expression analysis 

All samples from one experimental condition (cell type, force magnitude, force 

duration, culture condition) were processed and analyzed in parallel. 

4.4.1 RNA Purification 

The required RNA lysates were defrosted. Before continuing RNA isolation, all cell 

lysates were vortexed and spun down briefly. All further procedures were carried out 

at room temperature. First, the cell lysates were passed through individual 

QIAshredder columns (Qiagen, Germany) to fragment high molecular weight genomic 

DNA and other high molecular cellular components. This is fundamental for a 

successful RNA isolation. Afterwards, total RNA was isolated using the Quick-

RNATM MicroPrep Kit (Zymo Research, Irvine, America) according to the instruction 

manual as following: 

1. An equal volume of ethanol (95-100 %) was added to the sample and mixed. 

2. The mixture was transferred to a Zymo-Spin IC Column placed into a collection 

tube and centrifuged for 30 seconds. The flow-through was discarded. To process 

samples >800 µL, samples were stepwise loaded onto the same Zymo-Spin 

columns. 

3. RNA Wash Buffer was added to the column and centrifuged for 30 seconds. 

Flow-through was discarded. 

4. For in-column DNase I treatment the DNase I reaction mix provided by the 

manufacturer was added directly to the column matrix, incubated at room 

temperature for 30 minutes and then centrifuged for 30 seconds. 

5. RNA Prep Buffer was added to the column and centrifuged for 30 seconds. Flow-

through was discarded. 

6. RNA Wash Buffer was added to the column and centrifuged for 30 seconds. 

Flow-through was discarded. 

7. RNA Wash Buffer was added and centrifuged the column for 2 minutes to ensure 

complete removal of the wash buffer. 
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8. The column was placed into an RNase-free tube. DNase/RNase-Free Water 

(15 µL, preheated to 95 °C) was added directly to the column matrix and 

centrifuged at 15,000 rpm for 30 seconds. 

9. RNAsin® ribonuclease inhibitor (Promega, Madison, USA) was added to the total 

RNA preparation to give a final concentration of 1U/µL: for 15 µL total RNA 

solution 0.375 µL RNAsin® was added. 

10. The processed RNA samples were stored at -80°C until further use. 

4.4.2 Quality and quantification of total RNA 

Total RNA yields were quantified using the NanoDrop1000 photometer (Peqlab, 

Erlangen, Germany) directly after purification. All samples were vortexed and spun 

down for a few seconds. One microliter of each sample was used for RNA quality and 

quantification examination using the absorbance readings at 230 nm, 260 nm and 

280 nm. Pure RNA preparations have a A260/A280 in the range of 2.0-2.2 (Green and 

Sambrook 2012, pp. 365-366). Ratios below indicate contamination with proteins or 

phenol. The ratio A260/A230 is used to evaluate possible contamination with organic 

compounds or chaotropic salts. For pure RNA a A260/A230 ratio of 2.0 should be 

expected (Green and Sambrook 2012, pp. 365-366). 

4.4.3 Complementary DNA (cDNA) synthesis 

From each RNA sample 600 ng total RNA was reverse transcribed into cDNA using 

the SuperScript® IV First-Strand Synthesis System (Thermo Fisher Scientific, 

Waltham, USA) in a TProfessional Thermocycler (Biometra, Göttingen, Germany). 

cDNA synthesis process was performed according to the instruction manual: 

1. To remove possible secondary structures in the RNA and to ease primer annealing, 

600 ng total RNA (volume depending on RNA concentration), random hexamers 

(50 ng/µL), 10 mM dNTP mix in a total volume of 13 µL are heated to 65 °C for 

5 min and then rapidly cooled down on ice. 

2. After addition of SSIV buffer (5u), DTT (100 mM), 2.0 U/µL RNase inhibitor and 

200 U/µL reverse transcriptase, incubation continues according to the following 

temperature profile: 10 min at 23 °C; 10 min at 50 °C; 10 min at 80 °C 
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3. After completion, RNA was eliminated from the reaction mixture with the addition 

of 1 µL RNase H and further incubation for 20 min at 37 °C. 

4. The cDNA was stored at -20 °C and diluted 1:5 for gene quantification using 

quantitative real-time PCR. 

4.4.4 PCR primer design 

Potential PCR primers derived from the literature or bought from 

Realtimeprimers.com (with purchase of a primer pair the relevant primer sequences 

were made available) were evaluated using the following workflow adapted from 

Thornton and Basu (2015) exemplified for human PTGS2 in the appendix: 

x “HomoloGene”1 at NCBI was used for selection of the current version of the 

mRNA reference sequence and checking for splice variants. 

x “Electronic PCR”2 (Rotmistrovsky et al. 2004) was used to test the specificity of 

mRNA/cDNA amplification and possible genomic DNA co-amplifications due to 

genomic DNA contamination of the samples. The size deviation of transcriptome 

was chosen up to 200 base pairs and genome up to 500 base pairs. A maximum of 

2 mismatches and 2 gaps were allowed. “Electronic PCR” is now defunct and 

replaced by “Primer Blast”3 (Ye et al. 2012). 

x Energy considerations of PCR products were checked using the “UNAFold” 

implementation at IDTdna4 (maximum sequence length allowed: 255 bp) using the 

following settings: nucleotide type “DNA”; sequence type “linear”; temperature at 

60 °C; Na+ concentration at 50 mM; Mg2+ concentration at 3 mM; all the others 

were left with default. 

x “Beacon Designer Free Edition”5 (Premier Biosoft, Palo Alto, America) was used 

for energy evaluation. The web service was used with the default settings. 

                                                 
1 URL: http://www.ncbi.nlm.nih.gov/homologene/ (Date accessed: 06-12-2017) 
2 URL: http://www.ncbi.nlm.nih.gov/projects/e-pcr/reverse.cgi (not available anymore!) 
3 URL: http://www.ncbi.nlm.nih.gov/BLAST/ (Date accessed: 06-12-2017) 
4 URL: http://eu.idtdna.com/UNAFold (Date accessed: 06-12-2017) 
5 URL: http://www.premierbiosoft.com/qOligo/Oligo.jsp?PID=1 (Date accessed: 06-12-2017) 
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x De novo PCR primer design was applied using “Primer3plus”6 with the following 

settings: reference mRNA sequence file with GenBank accession number; product 

size ranges from 90 to 200; primer size with 18-20-27; primer Tm with 58-60-62; 

Maximum Tm difference with 2; Mispriming/Repeat library “HUMAN”. 

 

Forward and reverse primers (Table 1) were synthesized by Metabion (Planegg, 

Germany) and delivered separately as 100 µM solutions in 10 mM Tris-EDTA (TE) 

buffer. Primer pairs from Realtimeprimers.com were delivered already diluted to 

0.1 µM. 

4.4.5 Quantitative real-time reverse transcriptase polymerase chain 

reaction (RT-PCR) 

The sequences of the gene-specific primers are listed in Table 1. Quantitative real-

time RT-PCR was carried out using the Luminaris Color HiGreen qPCR-Mastermix 

(Thermo Scientific, Schwerte, Germany) in a LightCycler 480 PCR (Roche, Basel, 

Switzerland) according to the instructions of manufacturer. Each PCR reaction (final 

volume: 20 µL) consisted of 

x 2 μL of diluted cDNA, 

x 10 μL of qPCR-MasterMix, 

x 0.3 μM of each forward and reverse primer (synthesized primers) or 

0.2 µM of Realtimeprimers.com primer solution, 

x 6.8 μL of deionized water. 

The RT-PCR was started with a pretreatment step for 2 min at 50 °C and followed by 

an initial denaturation step for 10 min at 95 °C. Then amplification of 45 PCR cycles 

had been done, which contained 15 s denaturation at 95 °C, 30 s primer annealing at 

primer specific temperatures (Table 1), 30 s primer extension at 72 °C, and additional 

data acquisition step at 5 °C below specific gene melting point (Table 1) for 5 s. The 

                                                 
6 URL: http://primer3plus.com/cgi-bin/dev/primer3plus.cgi (Date accessed: 06-12-2017) 
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PCR products of each gene were further tested by electrophoresis on a 2% agarose gel 

to ensure the specificity of each primer and PCR fragment. 

 

Table 1: The gene-specific primer sequences for the forward (f) and reverse (r) primers and 
the specific reaction conditions of B2M, PTGS2, IL6, RUNX2, P2RX7 and TNF. 

 

Primer efficiency was evaluated for all primer pairs as follows: total RNA preparations 

from SaOS-2 cells generated during pre-tests of the force application protocol were 

used. Serial dilutions of cDNA were prepared: undiluted, 1:10, 1:100, 1:1000, and 

1:10000. Quantitative real-time RT-PCR was carried out as described above. Standard 

curves were generated using the LightCycler® 480 software (version 1.5.1) and the 

primer efficiency was calculated. This is exemplified for B2M primer efficiency 

determination in Figure 9. 

 

Gene Primer sequence or order information Reference 
sequence 
[GenBank 
accession 
number] 

Ampli-
con 
length 
[bp] 

Annea–
ling 
temp. 
[°C] 

Data 
acqui–
sition 
temp. 
[°C] 

Primer 
efficiency 

B2M Realtimeprimers.com: HHK-1 NM_004048.2 86 58 77 1.887 
PTGS2 f: AAG CCT TCT CTA ACC TCT CC 

r: GCC CTC GCT TAT GAT CTG TC 
NM_000963.3 234 58 77 1.921 

IL6 f: TGG CAG AAA ACA ACC TGA ACC 
r: TGG CTT GTT CCT CAC TAC TCT C 

NM_000600 168 58 76 1.85 

RUNX2 f: GCG CAT TCC TCA TCC CAG TA 
r: GGC TCA GGT AGG AGG GGT AA 

NM_001015051 176 58 81 1.875 

P2RX7 f: AGT GCG AGT CCA TTG TGG AG 
r: CAT CGC AGG TCT TGG GAC TT 

NM_002562 143 58 78 1.916 

TNF Realtimeprimers.com: VHPS-9415 NM_000594 173 58 79 1.933 
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Figure 9. B2M primer efficiency was determined after quantitative real-time RT-PCR. (A) 
Amplification curves of serial dilutions of cDNA were shown. (B) Standard curve was 
calculated. 

 

 Five potential genes (PGK1, PPIA, RPL, B2M and TFRC) from 

realtimeprimers.com “housekeeping panel” HHK-1 were examined to serve as a 

potential reference gene for relative quantitative real-time PCR. To do so, cDNA from 

both negative control and experimental condition, drawn during the validation of the 

centrifugation model, were prepared as described above. Quantitative real-time PCR 

was done as shown above and the results were evaluated. A “reference gene” (also 

called “housekeeping gene”) is a gene that is neither regulated in the negative controls 

A

B
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nor in the experimental condition. Therefore, it has to be established for each 

experimental condition separately. B2M was selected as the reference gene, because it 

showed the most stable gene expression within an experiment independently of being 

negative control, T0 or experimental condition (Figure 10).  

 
Figure 10. The boxplots show the Cq raw values generated by LightCycler480 software in 
automatic modus. Each experiment consisted of three sample sets: samples from negative 
control, T0 and experimental condition. Experiments A to C were mono-cultures. Experiments 
D and E were co-cultures with changed cell types in well and cell culture insert. 

 

 After each PCR, the specificity and size of the PCR products was evaluated 

using 2 % agarose gels. These gels were prepared according to the manufacturer of the 

agarose gel apparatus (EasyPhor Midi, Biozym, Hess. Oldendorf, Germany): 

1. The running buffer was prepared from 50uTAE buffer by dilution to 1uTAE 

buffer using distilled water. 

2. To prepare a 2 % agarose solution, 1 g agarose was dissolved in 50 mL 1uTAE 

with boiling in the microwave oven. This amount is enough, to pour one agarose 

gel of 10u10 cm2 size. 

3. After cooling down to ca. 50 °C, two drops of 0.07 % ethidium bromide 

(Applichem, Darmstadt, Germany) were added. 

4. The gel was poured according to the manufacturer’s instructions and the sample 

loading combs were inserted. After solidification, the gel was transferred to the 

tank and prepared according to the manufacturer’s instructions. 
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5. From each individual PCR reaction 10 µL PCR product and 2 µL DNA loading 

buffer (containing Orange G) were mixed. 

6. After the gel was solidified, 8 μL of each prepared sample and 5 µL of DNA 

molecular weight marker (“GeneRuler 100bp Plus DNA Ladder”, “GeneRuler 

Low Range DNA Ladder”) were loaded onto the gel. 

7. Then the gel was run at 90 V for 45 minutes. 

8. Visualization of the DNA pattern was done using the LIAS image analysis system 

(Avegene Life Science, Chinese Taipei). Printouts were prepared using a thermos 

printer (Video Graphic Printer, Sony, Tokyo, Japan). 

 

4.5 Analysis of cell culture supernatants using enzyme-linked 

immunosorbent assays 

HPDLF and hOB cells were subjected to CF at 30 °C for 1, 2 and 4 h in two different 

setups (mono- and co-culture). After each experimental condition, 800 µl cell culture 

supernatant was collected at 2, 4, 8 and 16 min. To remove cell debris and other 

particular material all samples were centrifuged at 15,000 rpm for 10 minutes at 4 °C. 

The clear cell culture supernatant was then transferred into a fresh tube and stored at 

80 °C. These samples were used for enzyme-linked immunosorbent assay (ELISA) for 

IL6, TNF, and PGE2 concentration determination. 

4.5.1 Measurement of IL6 protein concentration 

Samples of cell culture medium supernatants stored at -80 °C were defrosted. IL6 

protein concentration in the supernatants was measured using the “Human IL6 Duo 

Set ELISA kit” (R&D Systems, Minneapolis, USA) according to the manufacturer’s 

instruction. In short, the specific procedure was performed as follows: 

1. The 96-well plate was coated with diluted capture antibodies overnight at room 

temperature.  

2. The next morning, the 96-well plate was washed three times with diluted wash 

buffer.  
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3. Then, the plate was blocked with reagent diluent for 1.5 h at room temperature.  

4. Afterwards, the plate was washed again three times with diluted wash buffer.  

5. The IL6 standard provided with the kit was prepared according to the 

manufacturer’s instructions by serial dilution using reagent diluent solution: 
 

 
 

6. Sample and standards were added in to defined wells and incubated at room 

temperature for 2 h. 

7. The plate was washed three times with diluted wash buffer. 

8. Diluted detection antibody was added to each well and incubated at room 

temperature for 2 h. 

9. The plate was washed three times with diluted wash buffer. 

10. Streptavidin-HRP was diluted as stated in the protocol. The diluted Streptavidin-

HRP was then added to each well and incubated for 20 min at room temperature 

11. The plate was washed three times with diluted wash buffer. 

12. Substrate Solution was added to each well and incubated for 20 min at room 

temperature. 

13. Stop Solution was added to each well.  

14. Optical density of each well was determined immediately using a microplate 

reader at 450 nm and 540 nm. 

15. IL6 concentration was determined using a four-parameter logistic (4-PL) curve 

using the IL6 standards included in each measurement. 

 



 

  36 

4.5.2 Measurement of TNF protein levels 

TNF protein concentrations in cell culture medium was measured using the “Human 

TNFD Duo Set ELISA kit” (R&D Systems, Minneapolis, USA) according to the 

manufacturer’s instruction. The procedure follows the same steps as exemplified with 

the “IL6 Duo Set ELISA kit” from the same manufacturer (see above). 

4.5.3 Measurement of PGE2 levels 

Samples of cell culture medium supernatants stored at -80 °C were defrosted. PGE2-

ELISA was carried out for all samples from both negative controls and experimental 

conditions. The “PGE2 Parameter Assay kit” (R & D Systems, Minneapolis, USA) 

was used according to the manufacturer’s protocol: 

1. Wash buffer and substrate solution were prepared in advance.  

2. PGE2 standards were prepared according to the manufacturer’s instructions: 

 

 
 

3. Calibrator Diluent RD5-56 (200 μL) was added to the non-specific binding (NSB) 

wells. Calibrator Diluent RD5-56 (150 μL), standards (150 μL) and samples 

(150 μL) were added to the zero standard (B0) and remaining wells respectively.  

4. Primary antibody solution was added into each well excluding the NSB and 

incubated for 1 h at room temperature on a shaker (IKA®-Werke GmbH &Co. 

KG, Staufen, Germany). 

5. PGE2 conjugate was added to each well and followed by 2 h of incubation at room 

temperature on the shaker.  
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6. The whole plate was washed four times with wash buffer.  

7. Substrate solution was added to each well and incubated 30 min at room 

temperature in the dark.  

8. Stop solution was added to each well. 

9. Optical density was determined at 450 nm and 540 nm using a microplate reader. 

10. PGE2 concentration was determined using a four-parameter logistic (4-PL) curve 

using the standards included in each measurement. 

4.6 Statistical analysis 

To evaluate significant changes between negative control and experimental condition 

the independent-samples Mann-Whitney U test was applied using IBM SPSS 

Statistics 24 (IBM Corp., Armonk, N.Y.). The p < 0.05 was considered as a 

statistically significant difference. 
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5 Results 

An experimental setup was established to enable compressive force (CF) application 

on cells in co-culture enabling variations in force magnitude and force duration. This 

new model differed from previously established models in two ways: (1) force was 

applied to cells in mono- and co-culture using a temperature adjusted centrifuge 

running at 30 °C and (2) for durations of 1, 2 and 4 h. 

The performance of this model was controlled using a set of temperature data 

loggers to monitor temperature stability and a microscopic apoptosis assay to evaluate 

the influence of temperature (30 °C vs. 37 °C) on cell viability. These results are 

presented in Section 5.1. 

Human periodontal ligament fibroblasts (hPDLF) and human primary 

osteoblasts (hOB) were cultivated in mono- and co-culture and subjected to 

centrifugation forces for different durations. Gene expression for TNF, IL6, PTGS2, 

RUNX2 and P2RX7 was evaluated using quantitative real-time PCR (qPCR), protein 

secretion into the cell culture supernatant was determined using ELISA for PGE2, IL6 

and TNF. Results from mono- and co-culture were compared. To mimic “direct 

sampling”, measurements from 2 and 4 min chase are combined and presented in 

Section 5.2. “Pulse chase” sampling results are shown as is in Section 5.3. 

5.1 Validation of the in vitro model for compressive force 

application 

To evaluate the effect of the reduced temperature during centrifugation, apoptosis 

assays were used. HPDLF and hOB seeded in 12-well plates were incubated at 30 °C 

(experimental groups) and at 37 °C (control groups) for 4 h. The assay was a multi 

parameter assay detecting different stages of apoptosis in the same sample. 

Defragmentation of nuclei was assessed using Hoechst Dye staining, mitochondrial 

membrane potential break-down was detected using TMRE staining and flipping of 

membrane lipids was detected using annexin V-FITC antibody labeling. The results of 

a representative experiment are shown in Figure 11. Both, the experimental group at 
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30 °C as well as the control group at 37 °C present identical findings: after up to 4 h of 

incubation at 30 °C in comparison to 37 °C no signs of apoptosis were detectible. 

Hoechst staining showed that all the cells presented round and intact nuclei 

(Figure 11, a4-d4), TMRE staining revealed that cells had undisrupted mitochondrial 

membrane (Figure 11, a3-d3) and all the cells were annexin V negative (Figure 11, a2-

d2). 

  

 

hP
D

LF
 

30
 °C

 
37

 °C
 

hO
B

 
30

 °C
 

37
 °C

 

Figure 11: Apoptosis staining of hPDLF (a, b) and hOB (c, d) incubated at 30 °C (a, c) or 37 °C 
(b, d) for 4 h. Cells were stained with TMRE/Hoechst Dye and annexin V-FITC. Phase contrast 
(a1-d1), annexin V (a2-d2), mitochondrial membrane potential (a3-d3), DNA fragmentation 
(a4-d4) and overlay (a5-d5) images are shown. Scale bar: 200 µm. 
 

 To evaluate temperature stability during force application with centrifugation, 

temperature data loggers were used to monitor the temperatures during centrifugation 
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in the centrifuge and in the microbiological incubator used for the controls. 

Additionally, the room temperature during centrifugation was measured. The 

temperature was recorded throughout all experiments. Figure 5 shows the 

measurements during an experimental cycle: force applications for 1, 2 and 4 h were 

applied in order on the same day. The room temperature was constant at 23±1 °C 

during the experiments. To shorten total centrifugation time and to reach a stable 

temperature of 30 °C, the centrifuge was set to 800ug for 47 min. Afterwards, the 

centrifuge was set to 200ug and this setting was then used for all three consecutive 

experimental force applications. The data shows, that the temperature within the 

centrifuge was stable at 30.5±1 °C (Figure 5). Identical temperature profiles were 

recorded in all experiments. 

5.2 “Direct sampling” 

5.2.1 Gene expression in mono-cultured cells after low mechanical 

force application 

Tumor necrosis factor (TNF) gene expression was slightly upregulated in human 

periodontal ligament fibroblasts (hPDLF) (Figure 12A) after 1, 2 and 4 h of CF 

application. Prostaglandin-endoperoxide synthase 2 (PTGS2) gene expression 

increased significantly 2.25-fold (p = 0.001) after 1 h of CF and this increase was even 

more pronounced (4.86-fold) (p < 0.001) after 2 h of CF (Figure 12C). Interleukin 6 

(IL6) gene expression showed a significant 1.34-fold (p < 0.001) upregulation after 1 h, 

1.41-fold (p < 0.001) upregulation after 2 h and 1.13-fold upregulation after 4 h of CF 

application (Figure 12E). Runt-related transcription factor 2 (RUNX2) gene expression 

increased significantly after 1, 2 and 4 h of CF durations in hPDLF (Figure 12G). 

Gene expression of the purinergic ion channel/receptor P2RX7 increased after 

2 (p = 0.005) and 4 h (p = 0.012) of CF in hPDLF (Figure 12I). 

 In human osteoblasts (hOB), TNF gene expression significantly increased 4-

fold (p < 0.001) after 1 h of CF but remained unchanged after 2 and 4 h CF application 

(Figure 12B). PTGS2 gene expression showed a 2.5-fold upregulation (p < 0.001) after 
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1 and 2 h of CF application, and continuously increased to 4.37-fold (p < 0.001) after 

4 h of CF application (Figure 12D). A similar pattern was observed for IL6 gene 

expression: only a small but significant increase in IL6 gene expression after 

1 (p<0.001) and 2 h (p<0.001) of CF but 5.15-fold (p<0.001) after 4 h of CF 

application (Figure 12F). RUNX2 gene expression was upregulated after 1 (p < 0.001) 

and 2 h (p < 0.001) of CF (Figure 12H), and P2RX7 gene expression increased after 

1 h (p = 0.01) but decreased after 4 h (p < 0.001) of CF (Figure 12J). 
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5.2.2 Gene expression in mono-cultured cells after higher mechanical 

force application 

HPDLF and hOB were also subjected to 73.7 g/cm2 CF in mono-cultured setup. After 

1, 2 and 4 h force application, gene expression of TNF, PTGS2, IL6, RUNX2 and 

P2RX7 in hPDLF and hOB were measured using quantitative real-time PCR. 

Presented in Figure 13, TNF was upregulated after 1 (p < 0.001) and 4 h of CF, but 

slightly decreased after 2 h of CF in hPDLF (Figure 13A). PTGS2 and IL6 gene 

expression showed significant increase after 1, 2 and 4 h of CF durations (p < 0.001) 

in hPDLF (Figures 13C, 13E). As shown, RUNX2 (p = 0.003) (Figure 13G) and 

P2RX7 (p = 0.002) (Figure 13I) gene expression were increased remarkable after 1 h 

of CF in hPDLF. 

 In hOB, the gene expression of TNF was no regulated after 1 h of CF in 

hPDLF. Whereas it was decreased after 2 h (p < 0.001) and increased significantly 

after 4 h (p < 0.001) of CF in hPDLF (Figure 13B). Both PTGS2 and IL6 gene 

expression were significantly upregulated after 1, 2 and 4 h of CF durations (p < 0.001) 

(Figures 13D, 13F). No significant regulation of RUNX2 and P2RX7 gene expression 

was observed after 1, 2 and 4 h of CF durations (Figures 13H, 13J). 
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5.2.3 Gene expression in co-cultured cells after lower mechanical force 

application 

Lower (47.4 g/cm2) CF was applied on co-cultured hPDLF and hOB and gene 

expression was analyzed using quantitative real-time PCR. In hPDLF, no significant 

gene expression regulation was detected for TNF (Figure 14A). PTGS2 gene 

expression was upregulated 1.89-fold (p = 0.005) after 1 h of CF. However, it 

decreased significantly (p < 0.001) after 4 h of CF (Figure 14C). IL6 gene expression 

showed significant decrease after 4 h of CF (p = 0.001), but no significant difference 

was found after 1 and 2 h of CF (Figure 14E). RUNX2 gene expression was 

downregulated after 4 h of CF (p = 0.001) (Figure 14G). P2RX7 gene expression was 

upregulated after 1 (p < 0.001) and 4 h of CF (p = 0.004) (Figure 14I). 

 In hOB, TNF gene expression slightly increased 1.74-fold (p = 0.002) after 2 h 

of CF (Figure 14B). PTGS2 gene expression significantly increased after 1 h of CF 

(1.41-fold; p < 0.001) and 2 h of CF (2.87-fold; p < 0.001) but reduced to control level 

after 4 h of CF (Figure 14D). IL6 gene expression was upregulated 2.91-fold 

(p = 0.001) after 2 h and 1.39-fold (p = 0.005) after 4 h of CF (Figure 14F). Both 

RUNX2 and P2RX7 gene expression showed significant decrease after 2 and 4 h of CF 

(Figures 14H, 14J). 
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5.2.4 Effects of compressive force on PGE2, IL6 and TNF production 

after mechanical force application 

TNF, PGE2 and IL6 concentrations in mono- and co-cultured supernatants were 

measured after CF application of 1, 2 and 4 h using analytic specific ELISA. 

Additionally, the ratio between PGE2 concentration after centrifugation and the 

corresponding control was calculated. 

 TNF production in the cell culture supernatant was determined using a TNF 

specific ELISA. In both setups (mono- and co-culture), TNF concentration was below 

the detection limit of the assay applied at any points after all force durations. 

 In mono-culture hPDLF, PGE2 concentration was upregulated after 1, 2 and 

4 h of CF application in comparison to the corresponding controls (Figure 15A). After 

1 h (p = 0.016) and 4 h (p = 0.004) of CF application, PGE2 increased significantly 

(Figure 15A). In hOB, the PGE2 production increased after 1 (p = 0.038) and 2 h 

(p = 0.038) of CF application, but decreased after 4 h of CF (Figure 15B). Additionally, 

IL6 production in hPDLF was significantly higher than controls after 2 h (p = 0.002) 

and 4 h (p = 0.041) of CF application (Figure 15C), but no significant difference was 

found in hOB after 1, 2 and 4 h of CF application (Figure 15D). 
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Figure 15. PGE2 (A, B) and IL6 (C, D) concentrations in mono-cultured supernatants 
of hPDLF (A, C) and (B, D) hOB after 1, 2 and 4 h of CF at 47.4 g/cm2 were 
measured using ELISA. Control groups were not subjected to CF. Values were 
presented as mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001). F: Control; J: CF. 

 

 In co-culture, the production of PGE2 was significantly lower than controls 

when hPDLF were exposed to 1 (p = 0.002), 2 and 4 h (p = 0.002) of CF (Figure 16A). 

In hOB, the PGE2 significantly increased after 2 h (p = 0.038) of CF but was smaller 

after 1 h and 4 h of CF (Figure 16B). Concerning IL6 production, decrease was found 

in hPDLF after 1 h (p = 0.026) and 2 h of CF application (Figure 16C). However, in 

hOB, IL6 production showed a significant decrease after 1 h (p = 0.041) of CF, but 

increase was observed after 2 (p = 0.015) and 4 h of CF (Figure 16D). 
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Figure 16. PGE2 (A, B) and IL6 (C, D) concentration in co-cultured supernatants of 
hPDLF (A, C) and hOB (B, D) after 1, 2 and 4 h of CF at 47.4 g/cm2 was measured 
using ELISA. Control groups were not subjected to CF. Values were presented as 
mean ± SEM (*p < 0.05, **p < 0.01, ***p < 0.001). F: Control; J: CF. 

 

5.2.5 Comparison of the force induced changes in gene and protein 

expression according to culture conditions 

Gene expression changes induced by CF showed considerable dependency on the 

culturing conditions. With exception of the TNF gene expression at 1 h the co-

culturing of both tested cell types significantly attenuated the CF induced 

augmentation of TNF, PTGS2 and IL6 gene expression as well as the PGE2 and IL6 

protein expression in hPDLF in comparison to the separate culturing method 

(Table 2). A comparable reduction of the force induced changes in gene and protein 

expression was also found in hOB, but not for the samples that have been exposed to 
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CF for 2 h and for the protein expression of IL6 at 4 h. Likewise, except the P2RX7 

gene expression of hPDLF at 1 h, RUNX2 and P2RX7 showed subdued gene 

expression in both cell types when they were co-cultured in comparison to that in 

mono-culture. 

Table 2. Comparison of co-culture vs. mono-culture gene expression and ELISA results for 
hPDLF and hOB. Given are the ratios of CF/control and co-/mono-culture, P values from the 
Mann-Whitney U test and significance levels (*p < 0.05, **p < 0.01, ***p < 0.001). ↑ = increase; 
↓ = decrease. 

Method Gene, 
gene 
product, 
metabolite 

Cell type Time Ratio CF/control Compari-
son (co--/ 
mono-
culture) 

P 
values 

Signifi-
cance Mono-

culture 
Co-
culture 

qPCR TNF hPDLF 1 h 1.19 1.29 ↑ 0.887  
   2 h 1.74 1.15 ↓ 0.198  
   4 h 1.19 0.73 ↓ 0.089  
  hOB 1 h 4.00 1.19 ↓ <0.001 *** 
   2 h 1.14 1.72 ↑ 0.014 ** 
   4 h 1.03 0.87 ↓ 0.078  
 PTGS2 hPDLF 1 h 2.23 1.89 ↓ 0.219  
  2 h 4.86 1.16 ↓ <0.001 *** 
   4 h 1.37 0.40 ↓ <0.001 *** 
  hOB 1 h 2.45 1.41 ↓ <0.001 *** 
   2 h 2.56 2.87 ↑ 0.799  
   4 h 4.37 1.06 ↓ <0.001 *** 
 IL6 hPDLF 1 h 1.33 0.91 ↓ <0.001 *** 
   2 h 1.40 1.14 ↓ 0.033 * 
   4 h 1.13 0.76 ↓ 0.024 * 
  hOB 1 h 1.56 1.11 ↓ 0.003 ** 
   2 h 1.47 2.91 ↑ 0.114  
   4 h 5.15 1.39 ↓ <0.001 *** 
 RUNX2 hPDLF 1 h 1.29 1.13 ↓ 0.114  
   2 h 1.35 1.01 ↓ 0.005 ** 
   4 h 1.76 0.88 ↓ 0.005 ** 
  hOB 1 h 1.50 0.98 ↓ <0.001 *** 
   2 h 1.13 0.87 ↓ <0.001 *** 
   4 h 0.95 0.78 ↓ 0.020 * 
 P2RX7 hPDLF 1 h 1.04 1.16 ↑ 0.843  
   2 h 1.30 1.07 ↓ 0.008 ** 
   4 h 1.26 1.13 ↓ 0.178  
  hOB 1 h 1.24 1.03 ↓ 0.089  
   2 h 1.00 0.77 ↓ 0.001 ** 
   4 h 0.80 0.77 ↓ 0.443  

ELISA PGE2 hPDLF 1 h 7.29 0.39 ↓ 0.010 ** 
   2 h 3.79 0.74 ↓ 0.002 ** 
   4 h 6.33 0.26 ↓ 0.002 ** 
  hOB 1 h 3.39 0.29 ↓ 0.024 * 
   2 h 1.85 4.29 ↑ 0.009 ** 
   4 h 0.67 0.34 ↓ 0.381  
 IL6 hPDLF 1 h 1.01 0.78 ↓ 0.010 ** 
   2 h 1.36 0.88 ↓ 0.002 ** 
   4 h 1.20 0.99 ↓ 0.015 * 
  hOB 1 h 0.95 0.75 ↓ 0.024 * 
   2 h 1.03 1.49 ↑ 0.015 * 
   4 h 1.15 1.33 ↑ 0.714  
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5.3 “Pulse chase sampling” 

5.3.1 Lower compressive force on mono-cultured cells 

After mono-cultured cells were subjected to CF at 47.4 g/cm2, the total RNA was 

isolated at 2, 4, 8 and 16 min. Gene expressions of TNF, PTGS2, IL6, RUNX2 and 

P2RX7 were measured using quantitative real-time PCR. 

TNF gene expression in hPDLF increased at 2 min after 1 h (p = 0.002) of CF, 

decreased at 4, 8, 16 min. After 2 h of CF, increase was observed at 2 (p = 0.002) and 

8 min. After 4 h of CF, TNF gene expression was downregulated at 2 min (p = 0.002), 

and upregulated at 4 (p = 0.002), 8 (p = 0.004), and 16 min (p = 0.002) (Figure 17A). 

PTGS2 gene expression in hPDLF was increased at different chase points after 

1 and 2 h of CF. After 4 h of CF, slight increase of PTGS2 gene expression only 

observed at 4 and 8 min in hPDLF (Figure 17C). 

The increase of IL6 gene expression in hPDLF was observed at different chase 

points except 16 min after 1 h of CF and 2 min after 4 h of CF (Figure 17E). 

RUNX2 gene expression in hPDLF after 1 and 2 h of CF increased 

significantly at 2 min (p = 0.002) and diminished at the following chase points. 

However, after the application of 4 h of CF, it dramatically upregulated at 4 min 

(p = 0.002) and slipped slightly at 8 min (p = 0.002) (Figure 17G). 

Application of CF increased the P2RX7 gene expression at 2 min after 1 

(p = 0.004) and 2 h (p = 0.002) of CF in hPDLF. An upregulation was observed at 

4 min (p = 0.015) after 4 h of CF but it rapidly dropped back to control level at 8 min 

(p = 0.026) and 16 min (Figure 17I). 
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 In hOB, TNF gene expression was no change at different chase points after 

2 and 4 h of CF. However, an upregulation was observed at 2 min (p = 0.002) and this 

variation even higher at 4 min (p = 0.002) after 1 h of CF. But it dropped back control 

level at 8 and 16 min (p = 0.002) (Figure 17B). Upregulation of PTGS2 and IL6 gene 

expression showed at all chases points (2, 4, 8 and 16 min) after 1, 2 and 4 h of CF 

duration. However, the ratio of upregulations of both genes after 4 h was higher than 1 

and 2 h (Figures 17D, 17F). RUNX2 gene expression increased significantly at 

2 (p = 0.002) and 4 min (p = 0.009) after 1 h of CF. Besides, a significant increase at 

16 min (p = 0.002) after 2 h of CF and a mild decrease at 8 min (p = 0.002) after 4 h of 

CF emerged (Figure 17H). The application of CF upregulated P2RX7 at 2 (p = 0.009) 

and 4 min after 1 h of CF and at 16 min (p = 0.002) after 2 h of CF. But 

downregulation was detected at 4 and 8 min (p = 0.002) after 4 h of CF (Figure 17J). 

 

5.3.2 Higher compressive force on mono-cultured cells 

Total RNA of 2, 4, 8 and 16 min was isolated after 73.7 g/cm2 loaded on mono-

cultured cells. Gene expression of TNF, PTGS2, IL6, RUNX2 and P2RX7 was 

examined using quantitative real-time PCR. 

In hPDLF, the TNF gene expression was dramatically increased at 2 (p = 0.002) 

and 4 min (p = 0.002) and decreased at 8 min (p = 0.002) after 1 h of CF. After 2 h of 

CF, the gene expression was decreased at 2 min (p = 0.002) and increased at 4, 8 

(p = 0.002) and 16 min. And after 4 h of CF, TNF gene expression was increased at 2 

and 4 min but decrease at 8 (p = 0.002) and 16 min (p = 0.026) (Figure 18A).  

Significant increase of PTGS2 gene expression in hPDLF was observed at all 

chase points independent of the CF durations (Figure 18C).  

For IL6 gene expression in hPDLF, the upregulation emerged at different chase 

points after 1, 2 and 4 h of CF durations excepted 8 min after 4 h of CF (Figure 18E).  

RUNX2 gene expression in hPDLF showed upregulation at different chase 

points excepted 8 min after 1 h and 4 min after 2 h of CF (Figure 18G).  
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Concerning P2RX7 hPDLF, the application of CF only induced the gene 

expression significantly at 4 min (p = 0.002) after 1 h of CF (Figure 18I). 

 In hOB, significant decrease at 2 (p = 0.002) and 4 min (p = 0.002) after 2 h 

and increase at 4 (p = 0.002) and 8 min (p = 0.002) after 4 h was observed in TNF 

gene expression (Figure 18B). 

PTGS2 and IL6 gene expression presented upregulated at every chase point 

after 1, 2 and 4 h of CF durations in hOB (Figure 18D, 18F). 

A slight increase was observed at 8 (p = 0.002) and 16 min (p = 0.026) after 

2 h of CF as well as at 2 min (p = 0.002) after 4 h of CF for RUNX2 gene expression 

in hOB. No significant RUNX2 gene expression was detected at all the other chase 

points (Figure 18H). 

P2RX7 gene expression was significantly increased at 16 min (p = 0.002) after 

2 h and at 2 min (p = 0.009) after 4 h of CF in hOB (Figure 18J). 
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5.3.3 Lower compressive force on co-cultured cells 

The pulse chase protocol was also applied to cells in co-culture submitted to a 

compressive force of 47.4 g/cm2. Total RNA was isolated at 2, 4, 8 and 16 min after 

CF loaded. And gene expressions of TNF, PTGS2, IL6, RUNX2 and P2RX7 were 

measured using quantitative real-time PCR. 

In hPDLF, TNF gene expression increased at 2 and 4 min and decrease at 8 and 

16 min (p = 0.015) after the 1 h of CF. It was increased at 2 min and decreased at 4, 8 

and 16 min (p = 0.002) after 2 h of CF. After 4 h, TNF gene expression was decreased 

at 2 min (p = 0.002) and increased at 8 and 16 min (Figure 19A). 

PTGS2 gene expression was upregulated at different chase points after 1 h of 

CF. At 2 (p = 0.002), 4 and 16 min, PTGS2 gene expression was decreased after 4 h of 

CF. And it showed significant increase at 2 min (p = 0.002) and decrease at 4 

(p < 0.002) and 16 min (p < 0.002) after 2 h of CF in hPDLF (Figure 19C).  

IL6 gene expression increased at 2 (p = 0.004) and 8 min after 2 h of CF and 

decreased at four chase points after 4 h and at 4 min after 1 h of CF in hPDLF 

(Figure 19E). 

RUNX2 gene expression in hPDLF was downregulated at 8 and 16 min after 

1 h of CF, at 8 min (p = 0.002) after 2 h of CF and at 2 min (p = 0.002) after 4 h of CF 

(Figure 19G). 

Concerning P2RX7 in hPDLF, the application of CF induced the gene 

expression at 2 and 4 min (p = 0.002) after 1 h, at 2 min (p = 0.041) after 2 h and at 2 

and 4 min (p = 0.015) after 4 h of CF (Figure 19I). 
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 In hOB, TNF gene expression showed significantly upregulated at 2 min 

(p = 0.002) after 2 h and 8 (p = 0.002) and 16 min (p = 0.002) after 4 h of CF. But it 

was downregulated at 16 min after 1 (p = 0.002) and 2 h (p = 0.004) and 4 min (p = 

0.002) after 4 h of CF (Figure 19B). PTGS2 gene expression was increased at all the 

chase points after 1 h and 2, 4 and 8 min after 2 h of CF (Figure 19D). The IL6 gene 

expression was upregulated at different chase points after 1, 2 and 4 h of CF durations 

except the 2 min after 1 h and 8 min after 4 h of CF (Figure 19F). Concerning the gene 

expression of RUNX2 and P2RX7, slight decrease was observed at different chase 

points independent of the CF durations except the 2 min after 1 h of CF (Figures 19H 

and 19J).  
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6 Discussion 

The effect of mechanical force on bone remodeling during orthodontic tooth 

movement is yet mostly studied using mono-cultured cells in vitro (Jacobs et al. 2014; 

Koyama et al. 2008). However, in vivo, the periodontal tissue represents a 

heterogeneous population of different cell types which might be functionally closely 

interrelated (Li et al. 2013a). During orthodontic tooth movement, these cells are 

subjected to mechanical force simultaneously leading to more or less intensive 

intercellular communication in this complex tissue microenvironment (Krishnan and 

Davidovitch 2006; Morikawa et al. 2016). Therefore, co-culturing of various cell 

types together seems more appropriate since it reflects the real physiological 

conditions more closer and, in addition, enables the investigation of intercellular 

communication in vitro (Hatherell et al. 2011). In this study, indirect-contact co-

culture was applied to identify any kind of communication between various 

periodontal cell types, i.e. human periodontal ligament fibroblasts (hPDLF) and 

human osteoblasts (hOB) when subjected to static compressive force (CF) application. 

The indirect-contact co-culture model as used herein separated the hPDLF from the 

hOB with a porous membrane but kept both cell types under common growth 

conditions allowing signaling molecules and other mediators, e.g. cytokines, growth 

factors and metabolites to pass the membrane unrestrictedly. 

 

6.1 Technical aspects of the experimental design 

6.1.1 Force application 

Cellular and molecular responses occurred under orthodontic forces during 

orthodontic therapy result in tooth movement. The bone remodeling markers and 

histological changes and performs in different pattern in the compression side and 

tension side of PDL (Otero et al. 2016). In orthodontic tooth movement, CF is an 

essential factor for bone resorption (Wise and King 2008). In previous in vitro studies, 

CF was applied using different methods such as hydrostatic pressure (Nakago-Matsuo 
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et al. 1996), direct weight application (Kanzaki et al. 2002), or even micro-gravity 

(Carmeliet et al. 1998). Additionally, centrifugation for in vitro mechanical 

stimulation of cells was also described (Baumert et al. 2004; Fitzgerald and Hughes-

Fulford 1999; Inoue et al. 1993; Redlich et al. 1998; Theilig et al. 2001).  

 In this study, centrifuge was used as the device to produce CF on mono- and 

co-cultured primary cells (hPDLF and hOB). The force calculation was based on the 

formula published by Redlich et al. (2004a; 2004b). Since growth area and the radius 

of the centrifuge must be considered constant, force magnitudes can be varied via 

changing centrifugation speed or volume (i.e. weight) of cell culture medium. In this 

experimental setup, compressive forces of 47.4 and 73.7 g/cm2 were applied by 

variation of the cell culture medium within each well of mono-cultured cells. These 

forces are in the range of orthodontic force during tooth movement (Ren et al. 2003; 

Wichelhaus 2017). The relevant inflammatory factors were measured and analyzed for 

1, 2 and 4 h of force application. In mono-culture the induction of inflammatory 

factors was more pronounced with the application of 47.4 g/cm2. Therefore, this CF 

was chosen for the co-culture study (see below). 

6.1.2 Cell viability 

In this study, pressure type of force was applied using a conventional laboratory 

centrifuge. This setup has been successfully applied in other studies (Baumert et al. 

2004; Redlich et al. 1998) to impose CF on cells in vitro. Nevertheless, one of the 

most important parameters for cell growth is the culture temperature. In in vitro 

studies, most mammalian cells are cultivated at 37 °C to simulate the body 

environment. Cultivation at temperatures below 37 °C will first slow down cell 

metabolism (“Q10 rule”) and over longer periods of time will most probably induce 

apoptosis and cell death. Only a few studies took this into account in their 

experimental setup (Hacopian et al. 2011; Ueda et al. 2016). 

 The centrifuge used in these experiments operated at ranges between +4 °C and 

+25 °C with active cooling. The temperature inside this centrifuge mainly depends on 

the mass of the rotor, its speed, and factors such as the amount and mass of the 
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samples to be centrifuged and the intraday room temperature in the laboratory. After 

longer periods of centrifugation the temperature within the centrifuge reached 30 °C, 

but not in a constant and predictable manner. In agreement with the manufacturer we 

tested several centrifuge presets using temperature data loggers to monitor and record 

the temperature data within the centrifuge during centrifugation. Here, the 

experimental temperature should fulfill two conditions: (1) a temperature closer to 

physiological characteristic of the cells used and (2) a stable temperature during 

centrifugation at predefined forces. Finally, CF was applied to cells with 

centrifugation using the protocol shown in Section 4.3.1.3. Within the limitations of 

the centrifuge, all experiments were run at 30 °C. The centrifuge was equilibrated to 

this temperature using an additional pre-step (50 min at 800ug) before cells were 

exposed to CF by centrifugation at 30 °C for 1, 2 and 4 h.  

 As mentioned above, decreased temperature can induce metabolic changes in 

the cells. If this occurs over longer periods of time, apoptosis is induced. Apoptosis, 

also known as “programmed cell death”, is accompanied by a series of characteristic 

morphological and metabolic changes in cells undergoing apoptosis (Kerr et al. 1972; 

McCance et al. 2010). Apoptosis is a naturally occurring process and basis of 

differentiation and growth (Hale et al. 1996) and influences many physiological 

processes, such as the immune system, embryonic development, metamorphosis and 

hormone dependent atrophy, and of course cell death (Cohen et al. 1992; McCance et 

al. 2010). 

Apoptosis is divided into seven steps (Abcam 2017): 1. loss of membrane 

asymmetry; 2. caspase, calpain and cathepsin activation; 3. mitochondrial membrane 

potential and cytochrome c release; 4. nuclear condensation; 5. DNA fragmentation; 6. 

Sub G1 population increase; 7. Cell membrane blabbing. These steps happen in 

parallel and many of them overlap. “Loss of membrane asymmetry or initiation of 

caspase cascade are biochemical features of apoptosis which do not necessarily lead 

to cell death. However, other downstream features such as decrease of the 

mitochondrial membrane potential and concomitant release of cytochrome C into the 

cytosol, are generally considered points of no return, after which it is very unlikely the 
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cell will survive.” (Abcam 2017; p. 7) In this study, loss of membrane asymmetry, 

change of the mitochondrial membrane potential and DNA fragmentation were 

determined by annexin V-FITC, TMRE and Hoechst dye staining, respectively. 

The influence of temperature on cell viability of hPDLF and hOB were tested 

within the experimental conditions applied (at 30 °C, up to 4 h). In comparison to the 

negative control (at 37 °C, up to 4 h), no apoptosis signs were observed after 4 h 

incubation at 30 °C. The cells maintained their physiological characteristics during the 

experimental conditions in this study. Hence, an experimental temperature at 30 °C is 

feasible for in vitro experiments up to 4 h. This observation is in correspondence with 

previous studies on PDLF viability after traumatic avulsion of permanent teeth (Souza 

et al. 2010). 

6.1.3 In vitro co-culture 

Co-culture is an appropriate design reflecting a situation closer to physiology and thus 

enabling the investigation of intra- and intercellular communication in vitro (Hatherell 

et al. 2011; Morikawa et al. 2016). Two types of co-culture systems have been 

reported: direct and indirect contact co-culture systems. Both are applied to co-

incubate two types of cells in the same optimal cell culture environment, which can 

create a native functional condition to maintain cell features in vitro. In direct contact 

system two types of cells get into contact with each other thus allowing to establish 

direct cell-cell contacts and thus enabling intercellular communication (Jones et al. 

2009). However, this may cause massive cell death of one cell type if the other one is 

growing faster and thus outgrows the other. From the experimental point of view, 

direct co-culture imposes technical challenges to isolate and purify a specific cell type 

from a mixed co-culture cell population. Therefore, indirect contact co-culture models 

were established to overcome this limitation. Both cell types are grown separately 

from each other but share the same cell culture environment (Figure 3). In this study, 

hPDLF and hOB are grown using the indirect co-culture method. Cell culture inserts 

with a membrane containing pores small enough, that cells cannot migrate through, 

were combined with 12-well plates to the reconstruct the co-culture system. HPDLF 
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and hOB share the same nourishment from two different areas: the insert itself and the 

wells. Intercellular communication is taking place via releasing cytokines and growth 

factors into the chamber and through the porous membrane. Both cell types can be 

analyzed and assessed separately after mechanical stimulation. In this setup, 

equivalent CF were loaded on two different types of cells simultaneously. According 

to the calculation in Redlich et al. (1998), the CF loading on cells was 47.4 g/cm2 in 

the well and 49.1 g/cm2 on cell culture insert respectively: 

 

𝑃 =  𝑚 × 𝑟 × 𝑟𝑝𝑚2 × 𝜋2

𝐴 × 9.8 × 900  

 
Force (P): 47.4 g/cm2 49.1 g/cm2 
Mass of medium (m): 0.9 g (~900 µL) 0.28 g (~280 µL) 
Radius of centrifuge rotor (r): 0.160 m 0.1585 m 
Speed of centrifuge (rpm): 970 rpm 970 rpm 
Growth area of cells (A): 3.8 cm2 1.131 cm2 

 

6.1.4 Sampling procedure 

Two different sampling procedures are applied in studies related to CF application: (1) 

samples are drawn directly after force application (“direct sampling”) or (2) “pulse 

chase sampling”. With “pulse chase sampling”, force (i.e. the “pulse”) is applied to the 

specimen for a defined period of time. Then, samples are drawn at defined time 

intervals after force application stopped.  

“Direct sampling” after force application is easy to handle and widely used in 

many studies (e.g. Morikawa et al. 2016; Redlich et al. 2004a). Since duration of 

sampling is not stated in any publication, results are not comparable between studies. 

“Pulse chase sampling”, on the other hand, enables to study the effect of a stress 

application over a longer period of time (Baumert et al. 2004). Gene expression and 

translation takes time and this time differs between different genes. Some genes are 

rapidly transcribed after stimulation, so called “primary” or “early” response genes, 

such as EGR1, ATF3, IL1B. Some genes are induced more slowly and are called 
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“secondary” or “late” response gene, such as IL6 and TNF (Sandoval et al. 2016). This 

can be exemplified by two different studies, both applying “pulse-chase” sampling. 

Matsunaga et al. (2016) applied 12 h constant pressure on human cementoblasts using 

the weight approach. At 0, 7, 14 and 21 days after force release, they collected samples 

and analyzed gene expression of RUNX2, WNT5A, ALP, and SPON1. Baumert et al. 

(2004), on the other hand, applied centrifugation force on human osteoblasts for 45 

and 90 min. Sampling took place at 2, 4, 8, 16 and 32 min after centrifugation stopped 

and RUNX2 expression was analyzed in these samples. 

 In this study, samples were collected at 2, 4, 8 and 16 min after 1, 2 and 4 h of 

centrifugation/incubation. The results showed that gene expression always varies at 

different time points after mechanical force in both mono- and co-culture setups. 

Namely, the changes of gene expression and protein synthesis sustain even after CF 

application. Hence, the pulse chase multi-sampling would be necessary in future 

studies to monitor a dynamic process of gene expression and protein synthesis after 

mechanical stimulation. 

6.2 Expression of genes and metabolites 

Orthodontic tooth movement is a process of bone remodeling under mechanical force 

stimulation. Periodontal tissue cells surrounding tooth release some inflammatory 

factors which affect formation and absorption of bone via regulating gene expression 

and protein synthesis during this process. In this study, mechanical forces were applied 

on mono- (47.4 and 73.7 g/cm2) and co-cultured (47.4 g/cm2) hPDLF and hOB. Gene 

expression of several related inflammatory factors (TNF� IL6, PTGS2), the 

transcription factor RUNX2 and the purinergic receptor P2RX7, were analyzed using 

quantitative real-time PCR for the different experimental conditions. After evaluation 

of different reference genes for qRT-PCR, B2M was selected as the reference gene. 

Protein synthesis (IL6, TNF) or metabolite production (PGE2) were determined using 

ELISA. 
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6.2.1 TNF, IL6, PTGS2 and PGE2 

Cytokines regulate the inflammatory reaction after orthodontic force application on 

periodontal tissue cells (Li et al. 2013b). In this study, we found that the inflammatory 

cytokines TNF, PTGS2 and IL6 were regulated after CF application in a duration and 

culture type depending manner under the CF of 47.4 g/cm2. Gene expression of TNF, 

PTGS2 and IL6 after all three durations (1, 2 and 4 h) of CF is upregulated in mono-

cultured hPDLF and hOB, as well as the production of PGE2 and IL6. With one 

exception (2 h CF in hOB), gene expression downregulation and decreased ratios of 

CF vs. control were found for TNF, PTGS2 and IL6 in co-cultured hPDLF and hOB 

compared to mono-culture. This correlates with the results of PGE2 and IL6 ELISA 

measurements. In light of these findings, CF did increase the gene expression of 

TNF�� PTGS2 and IL6 after 1, 2 and 4 h of CF in mono-culture setup and most of 

durations in co-culture setup in both cell types. Similar findings were reported in 

other studies (Kanzaki et al. 2002; Koyama et al. 2008; Mayahara et al. 2007; Römer 

et al. 2013). In contrast, after 2 h of CF application in hOB co-cultured with hPDLF, 

increased ratios of CF vs. control were found in TNF, PTGS2 and IL6 gene expression, 

compared to the mono-culture situation (Table 2). These findings are supported by 

ELISA measurements of PGE2 and IL6. Previous studies applying co-culture showed 

that this cultivation technique promotes the expression of inflammatory cytokines 

after mechanical force (Morikawa et al. 2016). Therefore, intercellular 

communication might facilitate the gene expression of TNF, PTGS2 and IL6 in hOB 

co-cultured with hPDLF. 

 The aforementioned inflammatory cytokines are part of the TNF signaling 

pathway (KEGG pathway #ko04668; Manyam et al. 2015) regulating bone remodeling. 

More specifically, TNF is as a pro-inflammatory cytokine. It inhibits osteoblastic bone 

formation, enhances osteoclastic bone resorption and induces bone loss accordingly 

(Koyama et al. 2008; Kuno et al. 1994). PTGS2 is an enzyme involved in periodontal 

inflammatory responses (Römer et al. 2013) and its gene expression is upregulated 

after force application (Kanzaki et al. 2002). PTGS2 plays a central role in PGE2 

biosynthesis and is therefore relevant to the formation of PGE2 during inflammatory 
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reaction (Kanzaki et al. 2002). In a previous study, the authors suggested that PGE2 

production in response to mechanical force can be contributed to the upregulation of 

PTGS2 gene expression after force application (Shimizu et al. 1998). Additionally, IL6 

is a critical regulatory factor affecting the development of skeleton (De Benedetti et al. 

2006). Lack of IL6 can lower bone mass (Baker et al. 1999) via reducing numbers of 

osteoblasts (Bakker et al. 2014; Yang et al. 2007). Exogenous IL6 can enhance 

osteogenic differentiation of osteoblasts by affecting signaling molecule production 

(Bakker et al. 2014). Additionally, appropriate levels of mechanical force induce the 

secretion of IL6 (Jacobs et al. 2014; Koyama et al. 2008) which reduces bone loss 

(Baker et al. 1999). 

 Taken together, the reported in vitro findings support the establishment of 

bone resorption at the compression side during orthodontic tooth movement (Wise 

and King 2008). However, due to the considerable differences between mono- and co-

culture results, intercellular communication (Kim et al. 2006; Kook et al. 2009; 

Mayahara et al. 2012) might exist between co-cultured hPDLF and hOB, leading to a 

downregulation of TNF, PTGS2 and IL6 gene expression after CF application. This 

downregulation in co-culture setup might, to some extent, influence the speed of bone 

resorption during orthodontic tooth movement. 

 Concerning the “pulse chase” design applied gene expression of TNF, PTGS2 

and IL6 in both hPDLF and hOB varies from chase to chase after 1, 2 and 4 h of CF 

durations in mono- and co-cultured setups. Namely, the application of CF could 

induce gene regulation of TNF, PTGS2 and IL6, and this was still detectable up to 

16 min. These findings show that “pulse chase” sampling is a feasible way to explore 

delayed reactions over time in cells after experimental stimulations. 

6.2.2 Runt-related transcription factor 2 (RUNX2) 

RUNX2, one of the major genes of bone growth equilibrium, is essential for the 

differentiation of osteoblasts from uniform progenitor cells. Loss of RUNX2 hinders 

the differentiation of osteoblast (Komori et al. 1997). RUNX2, thereby, is considered 

as a main gene for bone development and contributes a lot on signal transduction 
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pathways (Ducy et al. 1997). Additionally, RUNX2 influences bone matrix deposition 

and factors like BMP growth factor group in differentiated osteoblasts (Ducy et al. 

1999). RUNX2 binding sites exist in regulatory parts of some major osteoblast-

specific genes, such as osteocalcin, alkaline phosphatase, and the type-I collagen 

(Ducy et al. 1997; Harada et al. 1999; Kern et al. 2001). 

 In this study, gene expression of RUNX2 was analyzed with quantitative real-

time PCR after application of different magnitude of force (47.4 and 73.7 g/cm2) in 

mono- and co-cultured hPDLF and hOB. The results demonstrate nearly no variations 

independent of force magnitude and cell type. Only after 4 h of CF application in 

hPDLF, the RUNX2 gene expression increased apparently, and this upregulation was 

more obvious under 47.4 g/cm2 CF. Taken together, the presented results show, that 

mechanical force influenced the RUNX2 gene expression, and a lighter CF was more 

efficient than a heavier one. It may indicate that mechanical force affects the bone 

remodeling in a certain extent, lower force can improve the efficiency of this process. 

In co-culture, RUNX2 gene expression decreased in comparison to mono-culture setup 

independent of force durations or cell types. Applying the “pulse chase” design, 

samples were analyzed at 2, 4, 8 and 16 min after 1, 2 and 4 h of CF application on 

cells in mono- and co-culture. No clear pattern in relation to force magnitude in 

RUNX2 gene expression was detectable, neither in mono- nor in co-culture or between 

the different force durations. 

6.2.3 Purinergic receptor P2RX7 

P2RX7 receptor is an adenosine triphosphate (ATP)-gated ionotropic channel and 

plays a crucial role in bone biology and inflammation (North 2002). After binding of 

extracellular ATP, a cellular stress signal that is also released with mechanical stress, 

P2RX7 can be activated (Brough et al. 2003; Li et al. 2005; Milner et al. 1990; 

Schneider et al. 2006). This process leads to accumulation of intracellular calcium and 

the release of fundamental inflammatory mediators, such as PGE2, IL1A, and IL1B, 

which regulate bone physiology (Ferrari et al. 2006; Lister et al. 2007). Another major 

function of P2RX7 is to accelerate necrotic tissue metabolism. However, the role of 
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P2RX7 in bone remodeling during orthodontic tooth movement is still unclear 

(Viecilli et al. 2009). 

 In this study, P2RX7 gene expression of was analyzed with quantitative real-

time PCR after force application on hPDLF and hOB in mono- (47.4 and 73.7 g/cm2) 

and co-culture (47.4 g/cm2). In mono-culture, P2RX7 gene expression in both cell 

types showed very slight upregulation after all three force durations under both 

magnitude of force. A higher level of P2RX7 gene expression was found at 47.4 g/cm2 

CF in comparison to 73.7 g/cm2 CF application. It can be concluded, that mechanical 

force application influences P2RX7 gene expression and this effect is stronger under 

lower CF. Comparing both culture conditions, P2RX7 gene expression either 

decreased or remained at the same level in co-culture if the same CF was applied. In 

co-culture P2RX7 gene expression might therefore be regulated by a paracrine 

mechanism, e.g. by increasing extracellular ATP concentration (Brough et al. 2003; Li 

et al. 2005; Milner et al. 1990; Schneider et al. 2006). 

 Concerning pulse chase measurements, samples were analyzed at 2, 4, 8 and 

16 min after CF application. P2RX7 gene expression showed similar changes as 

RUNX2 gene expression. In this case also, clear patterns related to force magnitude, 

force duration or culture conditions were not detectable. 

6.3 Outlook 
There are still some limitations in this study that can be further developed. Firstly, co-

cultured two types of primary cells (hPDLF and hOB) were investigated in this study. 

Other types of cells, however, including osteoclasts, blood cells and bone marrow 

cells, also participate in bone remodeling during orthodontic tooth movement. 

Thereby, multi-culture setup would be considered in further studies. Secondly, in the 

present study, centrifuge was used for CF loading. Both temperature condition and 

force magnitude are related to the rolling speed of the centrifuge. It is limited to 

maintain the temperature at 37 °C with a demanding magnitude of force. Therefore, 

an innovative way could be developed to equilibrate the conditions for an optimal 

study setup.  
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7 Conclusion 

Primary cells, human periodontal ligament fibroblasts (hPDLF) and osteoblasts (hOB) 

can survive at least for 4 h at 30 °C. Hence, culture temperature at 30 °C would be 

available for in vitro experiment within 4 h. 

 Mechanical force induces inflammatory reaction accompanied by sequence of 

cytokine regulations. These regulations influence bone remodeling which is the base 

of orthodontic tooth movement. Therefore, an optimal mechanical force for an 

effective tooth movement without side effects is desirable. 

 Our data indicate CF can induce the gene expression of TNF, PTGS2, IL6, 

RUNX2 and P2RX7 and protein synthesis of PGE2 and IL6 in hPDLF and hOB. 

Communication might exist between co-cultured hPDLF and hOB subjected to CF to 

some extent, leading to a dominant inhibition effect on TNF, PTGS2, IL6, RUNX2 and 

P2RX7 gene expression and PGE2 and IL6 protein synthesis compared to that in 

mono-cultured setup. 

 Cell reactions could be observed at least 16 min after stimulations. Namely, 

gene expression and protein synthesis keep varying for a period of time even after the 

termination of stimulation. Accordingly pulse chase setup is a feasible way to 

investigate the delayed reactions. Moreover, a fixed time point for collecting samples 

after mechanical stimulation is essential to make results comparable between different 

studies. 

 



 

  70 

8 Summary 

This study established an in vitro model to investigate the intra- and intercellular 
communication in co-cultured human periodontal ligament fibroblasts (hPDLF) and 
osteoblasts (hOB) and the changes in gene expression for selected genes after 
mechanical force loading. Identical procedures were applied to both cell types in 
mono-culture for comparison purposes. 
 Mono- and co-cultured hPDLF and hOB were subjected to CF (47.4 or 

73.7 g/cm2) for 1, 2 and 4 h at 30 °C respectively. Control cells received same 
treatment in parallel without force application. After each centrifugation/incubation, 
samples (i.e. cell culture supernatants, cell lysates) were collected at 2, 4, 8, and 
16 min. From each of the cell lysates, total RNA was isolated and reverse transcribed 
to cDNA. Gene expression of tumor necrosis factor alpha (TNF), prostaglandin-
endoperoxide synthase 2 (PTGS2), interleukin 6 (IL6), runt-related transcription factor 
2 (RUNX2) and purinergic receptor P2RX7 were determined using quantitative real-
time polymerase chain reaction. Productions of TNF, IL6 and Prostaglandin E2 (PGE2) 
were determined using enzyme-linked immunosorbent assay (ELISA). 
 The results show, that (1) an in vitro model applicable to both in mono- and co-
culture setups was successfully established. Within the experimental conditions 
applied, no significant induction of apoptosis within 4 h at 30 °C in comparison to 
37 °C was detected. (2) Mechanical force induces gene expression in several 
inflammatory reaction-related cytokines and other genes of interest, which may 
influence orthodontic tooth movement. (3) Intercellular communication (paracrine 
regulation) between co-cultured hPDLF and hOB subjected to mechanical stimulation 
may exist. (4) Gene expression and protein synthesis of those genes and their gene 
products/metabolites analyzed varied even after termination of mechanical stimulation. 

In future in vitro studies, the experimental temperature should be carefully 
considered and monitored. The developed and established indirect co-culture model is 
an innovative way to simulate a situation close to the physiological condition. “Pulse 
chase” sampling should be applied to investigate more precisely the dynamics in gene 
expression and protein synthesis after mechanical stimulation. 
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9 Zusammenfassung 

In der vorgelegten Studie wurde ein in vitro Modell zur Untersuchung der intra- und 
interzellulären Kommunikation in ko-kultivierten humanen parodontalen 
Ligamentzellen (hPDLF) und Osteoblasten (hOB) etabliert und die Genexpression 
ausgewählter Gene nach Kraftapplikation untersucht. Zur Kontrolle wurden beide 
Zelltypen in Mono-Kultur denselben Kräften unterworfen. Die anschließende Analyse 
erfolge analog. 
 Mono- und ko-kultivierte hPDLF und hOB wurden zentrifugalem Druck (47,4 
bzw. 73,7 g/cm2) für 1, 2 und 4 Stunden bei 30 °C ausgesetzt. Als Kontrolle dienen 
Zellen, die den gleichen Kultivierungs- und Temperaturbedingungen unterworfen 
wurden, aber keinem Druck ausgesetzt waren. Vor der eigentlichen Zentrifugation 
und 2, 4, 8 und 16 Minuten nach jeder Zentrifugation bzw. Inkubation wurden Proben 
(Zelllysat, Zellkulturüberstand) genommen. Aus den Zelllysaten wurde die Gesamt-
RNA isoliert und in cDNA umgeschrieben. Die Genexpression von 
Tumornekrosefaktor-α (TNF), Prostaglandinsynthase-2 (PTGS2), Interleukin 6 (IL6), 
Runt-related Transkriptionsfaktor 2 (RUNX2) und P2X-Purinorezeptor 7 (P2RX7) 
wurden mittels quantitativer Realtime-PCR bestimmt. Die Produktion von IL6, TNF 
und Prostaglandin E2 (PGE2) wurden mittel ELISA („Enzyme-Linked ImmunoSorbent 
Assay“) ermittelt. 
 Die Ergebnisse zeigen, dass (1) ein in vitro Modell erfolgreich entwickelt 
wurde, das sowohl für Zellen in Mono- als auch Ko-Kultur angewandt werden kann. 
Innerhalb der experimentellen Parameter wurde keine Apoptose-Induktion innerhalb 
von 4 Stunden bei 30 °C im Vergleich zu 37 °C beobachtet. (2) Mechanische 
Druckeinwirkung induziert die Genexpression mehrere an der Entzündungsreaktion 
beteiligter Zyktokine und andere Gene von Interesse. Dies könnte die 
kieferorthopädische Zahnbewegung beeinflussen. (3) Die Ergebnisse deuten auf eine 
interzelluläre Kommunikation (parakrine Regulation) zwischen ko-kultivierten Zellen 
unterschiedlichen Typs hin, die beide einer mechanischen Stimulation ausgesetzt 
waren. (4) Genexpression und Proteinsynthese der untersuchten Gene bzw. 
Metabolite variieren nach Abschluss der mechanischen Stimulation. 

In zukünftigen Forschungsprojekten sollte die Temperatur ein bedeutender 
Faktor bei der Durchführung von in vitro Experimenten sein. Das indirekte Ko-
Kulturmodell ist ein innovativer und praktischer Weg, um die in vivo Situation zu 
simulieren. Probenahme nach dem „pulse chase“-Prozedere ermöglicht präzisere 
zeitliche Aussagen bezüglich der Dynamik von Genexpression und Proteinsynthese 
nach mechanischer Stimulation. 

 



 

  72 

10 References 

Abcam (2017). Apoptosis - Tools for cell death series 1 Cambridge, UK: Abcam plc. URL: 
www.abcam.com/apoptosis (19-02-2018). 

Alhashimi N, Frithiof L, Brudvik P, Bakhiet M (2001). Orthodontic tooth movement and de novo 
synthesis of proinflammatory cytokines. Am J Orthod Dentofacial Orthop; 119(3):307-12. 

Alikhani M, Alikhani Z, Raptis M, Graves DT (2004). TNF-D in vivo stimulates apoptosis in fibroblasts 
through caspase-8 activation and modulates the expression of pro-apoptotic genes. J Cell 
Physiol; 201(3):341-8. 

Baker PJ, Dixon M, Evans RT, Dufour L, E. J, D.C. R (1999). CD4+ T cells and the proinflammatory 
cytokines gamma interferon and interleukin-6 contribute to alveolar bone loss in mice. Infect 
Immun; 67:2804-2809. 

Bakker AD, Kulkarni RN, Klein-Nulend J, Lems WF (2014). IL-6 alters osteocyte signaling toward 
osteoblasts but not osteoclasts. J Dent Res; 93(4):394-9. 

Balto K, Sasaki H, Stashenko P (2001). Interleukin-6 deficiency increases inflammatory bone 
destruction. Infect Immun; 69(2):744-50. 

Baumert U, Golan I, Becker B, Hrala BP, Redlich M, Roos HA, Reichenberg E, Palmon A, Müßig D (2004). 
Pressure simulation of orthodontic force in osteoblasts: a pilot study. Orthod Craniofacial Res 
7:3-9. 

Baumert U, Golan I, Redlich M, Aknin JJ, Muessig D (2005). Cleidocranial dysplasia: molecular genetic 
analysis and phenotypic-based description of a Middle European patient group. Am J Med 
Genet A; 139A(2):78-85. 

Beertsen W, McCulloch CA, Sodek J (1997). The periodontal ligament: a unique, multifunctional 
connective tissue. Periodontol 2000; 13:20-40. 

Bellido T, Borba VZ, Roberson P, Manolagas SC (1997). Activation of the Janus kinase/STAT (signal 
transducer and activator of transcription) signal transduction pathway by interleukin-6-type 
cytokines promotes osteoblast differentiation. Endocrinology; 138(9):3666-76. 

Berkovitz BK (1990). The structure of the periodontal ligament: an update. Eur J Orthod; 12(1):51-76. 
Bertolini DR, Nedwin GE, Bringman TS, Smith DD, Mundy GR (1986). Stimulation of bone resorption 

and inhibition of bone formation in vitro by human tumour necrosis factors. Nature 319:516-
518. 

Brough D, Le Feuvre RA, Wheeler RD, Solovyova N, Hilfiker S, Rothwell NJ, Verkhratsky A (2003). Ca2+ 

stores and Ca2+ entry differentially contribute to the release of IL-1E and IL-1D from murine 
macrophages. J Immunol; 170(6):3029-36. 

Carmeliet G, Nys G, Stockmans I, Bouillon R (1998). Gene expression related to the differentiation of 
osteoblastic cells is altered by microgravity. Bone; 22(5 Suppl):139S-143S. 

Chambers TJ, Evans M, Gardner TN, Turner-Smith A, Chow JWM (1993). Induction of bone formation 
in rat tail vertebrae by mechanical loading. Bone Miner; 20(2):167-178. 

Cohen JJ, Duke RC, Fadok VA, Sellins KS (1992). Apoptosis and programmed cell death in immunity. 
Annu Rev Immunol; 10:267-293. 

Colden M, Dar AA, Saini S, Dahiya PV, Shahryari V, Yamamura S, Tanaka Y, Stein G, Dahiya R, Majid S 
(2017). MicroRNA-466 inhibits tumor growth and bone metastasis in prostate cancer by 
direct regulation of osteogenic transcription factor RUNX2. Cell Death Dis; 8(1):e2572. 

Davidovitch Z (1991). Tooth movement. Crit Rev Oral Biol Med 2(4):411- 450. 



 

  73 

De Benedetti F, Rucci N, Del Fattore A, Peruzzi B, Paro R, Longo M, Vivarelli M, Muratori F, Berni S, 
Ballanti P, Ferrari S, Teti A (2006). Impaired skeletal development in interleukin-6-transgenic 
mice: a model for the impact of chronic inflammation on the growing skeletal system. 
Arthritis Rheum; 54(11):3551-63. 

Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997). Osf2/Cbfa1: a transcriptional activator of 
osteoblast differentiation. Cell; 89:747-754. 

Ducy P, Starbuck M, Priemel M, Shen J, Pinero G, Geoffroy V (1999). A Cbfa1-dependent genetic 
pathway controls bone formation beyond embryonic development. Genes Dev; 13:1025–
1036. 

Ducy P, Schinke T, Karsenty G (2000). The osteoblast: a sophisticated fibroblast under central 
surveillance. Science; 289:1501–1504. 

Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Di Virgilio F (2006). The P2X7 
receptor: a key player in IL-1 processing and release. J Immunol; 176(7):3877-3883. 

Fitzgerald J, Hughes-Fulford M (1999). Mechanically induced c-fos expression is mediated by cAMP in 
MC3T3-E1 osteoblasts. FASEB J; 13(3):553-7. 

Garlet TP, Coelho U, Silva JS, Garlet GP (2007). Cytokine expression pattern in compression and 
tension sides of the periodontal ligament during orthodontic tooth movement in humans. 
Eur J Oral Sci; 115:355–362. 

Green MR, Sambrook J (2012). Molecular Cloning: A Laboratory Manual; Volume 1. 4th Ed. Cold Spring 
Harbor, New York: Cold Spring Harbor Laboratory Press. 

Grimm S, Walter C, Pabst A, Goldschmitt J, Wehrbein H, Jacobs C (2015). Effect of compressive loading 
and incubation with clodronate on the RANKL/OPG system of human osteoblasts. J Orofac 
Orthop; 76(6):531-42. 

Hacopian N, Nik TH, Ghahremani MH, Rahimi HR, Ostad SN (2011). Effects of Continuous and 
Interrupted Forces on Gene Transcription in Periodontal Ligament Cells in Vitro. Acta Medica 
Iranica; 49(10):643-649. 

Hale AJ, Smith CA, Sutherland LC, Stoneman VE, Longthorne V, Culhane AC, Williams GT (1996). 
Apoptosis: molecular regulation of cell death. Eur J Biochem; 236(3):1-26. 

Harada H, Tagashira S, Fujiwara M, Ogawa S, Katsumata T, Yamaguchi A (1999). Cbfa1 isoforms exert 
functional differences in osteoblast differentiation. J Biol Chem 274:6972–6978. 

Hatherell K, Couraud PO, Romero IA, Weksler B, Pilkington GJ (2011). Development of a three-
dimensional, all-human in vitro model of the blood-brain barrier using mono-, co-, and tri-
cultivation Transwell models. J Neurosci Methods; 199(2):223-9. 

Hla T, Neilson K (1992). Human cyclooxygenase-2 cDNA. Proc Natl Acad Sci U S A; 89(16):7384-8. 
Hughes-Fulford M, Lewis ML (1996). Effects of microgravity on osteoblast growth activation. Exp Cell 

Res; 224(1):103-9. 
Inoue H, Nakamura O, Duan Y, Hiraki Y, Sakuda M (1993). Effect of centrifugal force on growth of 

mouse osteoblastic MC3T3-E1 cells in vitro. J Dent Res; 72(9):1351-5. 
Jacobs C, Walter C, Ziebart T, Grimm S, Meila D, Krieger E, Wehrbein H (2014). Induction of IL-6 and 

MMP-8 in human periodontal fibroblasts by static tensile strain. Clin Oral Investig; 18(3):901-
8. 

Jones DA, Carlton DP, Mclntyre TM, Zimmerman GA, Prescott SM (1993). Molecular cloning of human 
Prostaglandin endoperoxide synthase type II and demonstration of expression in response to 
cytokines. J Biol Chem; 268:9049-9054. 



 

  74 

Jones GL, Motta A, Marshall MJ, El Haj AJ, Cartmell SH (2009). Osteoblast: osteoclast co-cultures on 
silk fibroin, chitosan and PLLA films. Biomaterials; 30(29):5376-84. 

Kanjanamekanant K, Luckprom P, Pavasant P (2013). Mechanical stress-induced interleukin-1beta 
expression through adenosine triphosphate/P2X7 receptor activation in human periodontal 
ligament cells. J Periodontal Res; 48(2):169-76. 

Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002). Periodontal ligament cells under mechanical stress 
induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation 
via prostaglandin E2 synthesis. J Bone Miner Res; 17(2):210–220. 

Kariya T, Tanabe N, Shionome C, Manaka S, Kawato T, Zhao N, Maeno M, Suzuki N, Shimizu N (2015). 
Tension force-induced ATP promotes osteogenesis through P2X7 receptor in osteoblasts. J 
Cell Biochem; 116(1):12-21. 

Katagiri T, Takahashi N (2002). Regulatory mechanisms of osteoblast and osteoclast differentiation. 
Oral Dis; 8(3):147-59. 

Kern B, Shen J, Starbuck M, Karsenty G (2001). Cbfa1 contributes to the osteoblast-specific expression 
of type I collagen genes. J Biol Chem; 276(10):7101-7. 

Kerr JFR, Wyllie AH, Currie AR (1972). Apoptosis: a basic biological phenomenon with wide-ranging 
implications in tissue kiinetics Br J Cancer; 26(4):239-257. 

Kim CH, You L, Yellowley CE, Jacobs CR (2006). Oscillatory fluid flow-induced shear stress decreases 
osteoclastogenesis through RANKL and OPG signaling. Bone; 39(5):1043-7. 

Kim SJ, Park KH, Park YG, Lee SW, Kang YG (2013). Compressive stress induced the up-regulation of M-

CSF, RANKL, TNF-D expression and the down-regulation of OPG expression in PDL cells via the 
integrin-FAK pathway. Arch Oral Biol; 58(6):707-16. 

Kitaura H, Kimura K, Ishida M, Sugisawa H, Kohara H, Yoshimatsu M, Takano-Yamamoto T (2014). 
Effect of cytokines on osteoclast formation and bone resorption during mechanical force 
loading of the periodontal membrane. ScientificWorldJournal; 2014:617032. 

Klein DC, Raisz LG (1970). Prostaglandins: stimulation of bone resorption in tissue culture. 
Endocrinology; 86(6):1436-40. 

Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K (1997). Targeted disruption of Cbfa1 
results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell 
89:755–764. 

Kook SH, Son YO, Hwang JM, Kim EM, Lee CB, Jeon YM, Kim JG, Lee JC (2009). Mechanical force 
inhibits osteoclastogenic potential of human periodontal ligament fibroblasts through OPG 
production and ERK-mediated signaling. J Cell Biochem; 106(6):1010-9. 

Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, Shimizu N, Maeno M (2008). Effect 
of compressive force on the expression of inflammatory cytokines and their receptors in 
osteoblastic Saos-2 cells. Arch Oral Biol; 53(5):488-96. 

Kraemer SA, Meade EA, DeWitt DL (1992). Prostaglandin endoperoxide synthase gene structure: 
identification of the transcriptional start site and 5'-flanking regulatory sequences. Arch 
Biochem Biophys; 293(2):391-400. 

Krishnan V, Davidovitch Z (2006). Cellular, molecular, and tissue-level reactions to orthodontic force. 
Am J Orthod Dentofacial Orthop; 129(4):469 e1-32. 

Kujubu DA, Herschman HR (1992). Dexamethasone inhibits mitogen induction of the TIS 10 
prostaglandin synthase/cyclooxygenase gene. J Biol Chem 267:7991-7994. 

Kuno H, Kurian SM, Hendy GN, White J, deLuca HF, Evans CO, Nanes MS (1994). Inhibition of 1,25-



 

  75 

dihydroxyvitamin D3 stimulated osteocalcin gene transcription by tumor necrosis factor-D: 
structural determinants within the vitamin D response element. Endocrinology; 134(6):2524-
31. 

Lanyon LE (1992). The success and failure of the adaptive response to functional load-bearing in 
averting bone fracture. Bone; 13 Suppl 2:S17-21. 

Lee SH, Soyoola E, Chanmugam R (1992). Selective expression of mitogen-inducible cyclooxygenase in 
macrophages stimulated with lipopolysaccharide. J Biol Chem; 267:25934-25938. 

Lekic P, McCulloch CA (1996). Periodontal ligament cell population: the central role of fibroblasts in 
creating a unique tissue. Anat Rec; 245(2):327-41. 

Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005). The P2X7 nucleotide receptor mediates skeletal 
mechanotransduction. J Biol Chem; 280(52):42952-9. 

Li J, Chen G, Zheng L, Luo S, Zhao Z (2007). Osteoblast cytoskeletal modulation in response to 
compressive stress at physiological levels. Mol Cell Biochem; 304(1-2):45-52. 

Li J, Wan Z, Liu H, Li H, Liu L, Li R, Guo Y, Chen W, Zhang X, Zhang X (2013a). Osteoblasts subjected to 
mechanical strain inhibit osteoclastic differentiation and bone resorption in a co-culture 
system. Ann Biomed Eng; 41(10):2056-66. 

Li Y, Li M, Tan L, Huang S, Zhao L, Tang T, Liu J, Zhao Z (2013b). Analysis of time-course gene expression 
profiles of a periodontal ligament tissue model under compression. Arch Oral Biol; 58(5):511-
22. 

Lister MF, Sharkey J, Sawatzky DA, Hodgkiss JP, Davidson DJ, Rossi AG, Finlayson K (2007). The role of 
the purinergic P2X7 receptor in inflammation. J Inflamm (Lond); 4:5. 

Liu J, Zhao Z, Zou L, Li J, Wang F, Li X, Zhang J, Liu Y, Chen S, Zhi M, Wang J (2009). Pressure-loaded 
MSCs during early osteodifferentiation promote osteoclastogenesis by increase of 
RANKL/OPG ratio. Ann Biomed Eng; 37(4):794-802. 

Long P, Hu J, Piesco N, Buckley M, Agarwal S (2001). Low magnitude of tensile strain inhibits IL-1E-
dependent induction of pro-inflammatory cytokines and induces synthesis of IL-10 in human 
periodontal ligament cells in vitro. J Dent Res; 80(5):1416-20. 

Madureira DF, da Silva JM, Teixeira AL, Abreu MH, Pretti H, Lages EM, da Silva TA (2015). Cytokine 
measurements in gingival crevicular fluid and periodontal ligament: Are they correlated? Am 
J Orthod Dentofacial Orthop; 148(2):293-301. 

Maeda A, Soejima K, Bandow K, Kuroe K, Kakimoto K, Miyawaki S, Okamoto A, Matsuguchi T (2007). 
Force-induced IL-8 from periodontal ligament cells requires IL-1beta. J Dent Res; 86(7):629-
34. 

Mah S-J, Lee Y, Chun Y-S, Lim WH (2014). Expression of MMP-9 and -13 on the Pressure Side under 
Orthodontic Loading. Open Journal of Stomatology; 04(08):412-417. 

Manyam G, Birerdinc A, Baranova A (2015). KPP: KEGG Pathway Painter. BMC Syst Biol; 9 Suppl 2:S3. 
Matsunaga K, Ito C, Nakakogawa K, Sugiuchi A, Sako R, Furusawa M, Muramatsu T (2016). Response to 

light compressive force in human cementoblasts in vitro. Biomedical Research 37(5):293–
298. 

Mayahara K, Kobayashi Y, Takimoto K, Suzuki N, Mitsui N, Shimizu N (2007). Aging stimulates 
cyclooxygenase-2 expression and prostaglandin E2 production in human periodontal ligament 
cells after the application of compressive force. J Periodontal Res; 42(1):8-14. 

Mayahara K, Yamaguchi A, Takenouchi H, Kariya T, Taguchi H, Shimizu N (2012). Osteoblasts stimulate 
osteoclastogenesis via RANKL expression more strongly than periodontal ligament cells do in 



 

  76 

response to PGE2. Arch Oral Biol; 57(10):1377-84. 
McCance KL, Huether SE, Brashers VL, Rote NS (2010). Pathophysiology - The Biologic Basis for Disease 

in Adults and Children. 6th Ed. Maryland Heights, Missouri, USA: Mosby Elsevier. 
Meazzini MC, Toma CD, Schaffer JL (1998). Osteoblast cytoskeletal modulation in response to 

mechanical strain in vitro. J Orthop Res 16:170–180. 
Milner P, Bodin P, Loesch A, Burnstock G (1990). Rapid release of endothelin and ATP from isolated 

aortic endothelial cells exposed to increased flow. Biochem Biophys Res Commun; 
170(2):649-56. 

Mitchell DL, West JD (1975). Attempted orthodontic movement in the presence of suspected 
ankylosis. Am J Orthod; 68(4):404-11. 

Morikawa T, Matsuzaka K, Nakajima K, Yasumura T, Sueishi K, Inoue T (2016). Dental pulp cells 

promote the expression of receptor activator of nuclear factor-NB ligand, prostaglandin E2 
and substance P in mechanically stressed periodontal ligament cells. Arch Oral Biol; 70:158-
164. 

Nakago-Matsuo C, Matsuo T, Nakago T (1996). Intracellular calcium response to hydraulic pressure in 
human periodontal ligament fibroblasts. Am J Orthod Dentofacial Orthop; 109(3):244-8. 

Nakao K, Goto T, Gunjigake KK, Konoo T, Kobayashi S, Yamaguchi K (2007). Intermittent force induces 
high RANKL expression in human periodontal ligament cells. J Dent Res; 86(7):623-8. 

Ng KW, Schantz J-T (2010). A Manual for Primary Human Cell Culture. [Manuals in Biomedical 
Research; 6] 2nd Ed. New Jersey: World Scientific. 

North RA (2002). Molecular physiology of P2X receptors. Physiol Rev; 82(4):1013-67. 
O'Neill GP, Ford-Hutchinson AW (1993). Expression of mRNA for cyclooxygenase-1 and 

cyclooxygenase-2 in human tissues. FEBS Lett; 330(2):156-60. 
Otero L, Garcia DA, Wilches-Buitrago L (2016). Expression and Presence of OPG and RANKL mRNA and 

Protein in Human Periodontal Ligament with Orthodontic Force. Gene Regul Syst Bio; 10:15-
20. 

Pavalko FM, Gerard RL, Ponik SM, Gallagher PJ, Jin Y, Norvell SM (2003). Fluid shear stress inhibits TNF-
alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-
kinase and inhibition of caspase-3. J Cell Physiol; 194(2):194-205. 

Ralston SH, Russell RG, Gowen M (1990). Estrogen inhibits release of tumor necrosis factor from 
peripheral blood mononuclear cells in postmenopausal women. J Bone Miner Res; 5(9):983-
8. 

Redlich M, Palmon A, Zaks B, Geremi E, Rayzman S, Shoshan S (1998). The effect of centrifugal force 
on the transcription levels of collagen type I and collagenase in cultured canine gingival 
fibroblasts. Arch Oral Biol (43):313–316. 

Redlich M, Asher Roos H, Reichenberg E, Zaks B, Mussig D, Baumert U, Golan I, Palmon A (2004a). 
Expression of tropoelastin in human periodontal ligament fibroblasts after simulation of 
orthodontic force. Arch Oral Biol; 49(2):119-24. 

Redlich M, Roos H, Reichenberg E, Zaks B, Grosskop A, Bar Kana I, Pitaru S, Palmon A (2004b). The 
effect of centrifugal force on mRNA levels of collagenase, collagen type-I, tissue inhibitors of 
metalloproteinases and b-actin in cultured human periodontal ligament fibroblasts. J 
Periodontal Res; 39:27-32. 

Reitan K (1960). Tissue behavior during orthodontic tooth movement. Am J Orthod; 46(12):881-900. 
Ren Y, Maltha JC, Kuijpers-Jagtman AM (2003). Optimum Force Magnitude for Orthodontic Tooth 



 

  77 

Movement: A Systematic Literature Review. Angle Orthodontist; 73(1):86-92. 
Ren Y, Hazemeijer H, de Haan B, Qu N, de Vos P (2007). Cytokine profiles in crevicular fluid during 

orthodontic tooth movement of short and long durations. J Periodontol; 78(3):453-8. 
Ren Y, Vissink A (2008). Cytokines in crevicular fluid and orthodontic tooth movement. Eur J Oral Sci; 

116(2):89-97. 
Römer P, Köstler J, Koretsi V, Proff P (2013). Endotoxins potentiate COX-2 and RANKL expression in 

compressed PDL cells. Clin Oral Investig; 17(9):2041-8. 
Rotmistrovsky K, Jang W, Schuler GD (2004). A web server for performing electronic PCR. Nucleic Acids 

Res; 32(Web Server issue):W108-12. 
Rubin CT, Gross TS, McLeod KJ, Bain SD (1995). Morphologic stages in lamellar bone formation 

stimulated by a potent mechanical stimulus. J Bone Miner Res; 10(3):488-95. 
Saito S, Ngan P, Rosol T, Saito M, Shimizu H, Shinjo N, Shanfeld J, Davidovitch Z (1991). Involvement of 

PGE synthesis in the effect of intermittent pressure and interleukin-1E on bone resorption. J 
Dent Res; 70(1):27-33. 

Sandoval J, Pereda J, Perez S, Finamor I, Vallet-Sanchez A, Rodriguez JL, Franco L, Sastre J, Lopez-Rodas 
G (2016). Epigenetic Regulation of Early- and Late-Response Genes in Acute Pancreatitis. J 
Immunol; 197:4137-4150. 

Schneider EM, Vorlaender K, Ma X, Du W, Weiss M (2006). Role of ATP in trauma-associated cytokine 
release and apoptosis by P2X7 ion channel stimulation. Ann N Y Acad Sci; 1090:245-52. 

Shimizu N, Yamaguchi M, Goseki T, Ozawa Y, Saito K, Takiguchi H, Iwasawa T, Abiko Y (1994). Cyclic-

tension force stimulates interleukin-1E production by human periodontal ligament cells. J 
Periodontal Res; 29(5):328-33. 

Shimizu N, Ozawa Y, Yamaguchi M, Goseki T, Ohzeki K, Abiko Y (1998). Induction of COX-2 expression 
by mechanical tension force in human periodontal ligament cells. J Periodontol; 69(6):670-7. 

Sodek J, Limeback HF (1979). Comparison of the rates of synthesis, conversion, and maturation of type 
I and type III collagens in rat periodontal tissues. J Biol Chem; 254(20):10496-502. 

Souza BD, Lückemeyer DD, Felippe WT, Simões CM, Felippe MC (2010). Effect of temperature and 
storage media on human periodontal ligament fibroblast viability. Dent Traumatol; 26(3):271-
5. 

Tan SD, Kuijpers-Jagtman AM, Semeins CM, Bronckers ALJJ, Maltha JC, Von den Hoff JW, Everts V, 

Klein-Nulend J (2006). Fluid shear stress inhibits TNFD-induced osteocyte apoptosis. J Dent 
Res; 85(10):905-909. 

Theilig C, Bernd A, Leyhausen G, Kaufmann R, Geurtsen W (2001). Effects of mechanical force on 
primary human fibroblasts derived from the gingiva and the periodontal ligament. J Dent Res; 
80(8):1777-80. 

Thilander B, Rygh P, Reitan K (2005). Tissue reactions in orthodontics. In: Graber TM, Vanarsdall RL, Jr., 
Vig KWL (Eds.). Orthodontics: Current Principles & Techniques.] 4th Ed. St. Louis: Elsevier 
Mosby; pp. 145-219. 

Thornton B, Basu C (2015). Rapid and simple method of qPCR primer design. In: Basu C (Ed.). PCR 
Primer Design. [Methods in Molecular Biology; 1275] 2nd Ed. New York: Humana Press; pp. 
173-179. 

Trubiani O, Horenstein AL, Caciagli F, Caputi S, Malavasi F, Ballerini P (2014). Expression of P2X7 ATP 
receptor mediating the IL8 and CCL20 release in human periodontal ligament stem cells. J 
Cell Biochem; 115(6):1138-46. 



 

  78 

Ueda M, Goto T, Kuroishi KN, Gunjigake KK, Ikeda E, Kataoka S, Nakatomi M, Toyono T, Seta Y, 
Kawamoto T (2016). Asporin in compressed periodontal ligament cells inhibits bone 
formation. Archives of Oral Biology; 62:86-92. 

Uematsu S, Mogi M, Deguchi T (1996). Interleukin (IL)-1E, IL-6, tumor necrosis factor-D, epidermal 
growth factor, and E2-microglobulin levels are elevated in gingival crevicular fluid during 
human orthodontic tooth movement. J Dent Res; 75(1):562-567. 

Viecilli RF, Katona TR, Chen J, Hartsfield JK, Jr., Roberts WE (2009). Orthodontic mechanotransduction 
and the role of the P2X7 receptor. Am J Orthod Dentofacial Orthop; 135(6):694.e1-16; 
discussion 694-5. 

von Böhl M, Maltha J, Von den Hoff H, Kuijpers-Jagtman AM (2004). Changes in the periodontal 
ligament after experimental tooth movement using high and low continuous forces in beagle 
dogs. Angle Orthod; 74(1):16-25. 

Wang Y, Wang XX, Zhang LN, Jin SM, Zhang J (2012). Effects of traditional Chinese medicine on bone 
remodeling during orthodontic tooth movement. J Ethnopharmacol; 141(2):642-6. 

Wichelhaus A (2017). Orthodontic Therapy - Fundamental Treatment Concepts. New York: Thieme. 
Wise GE, King GJ (2008). Mechanisms of tooth eruption and orthodontic tooth movement. J Dent Res; 

87(5):414-34. 
Yamaguchi M (2009). RANK/RANKL/OPG during orthodontic tooth movement. Orthod Craniofac Res; 

12(2):113-9. 
Yamazaki MO, Yamaguchi M, Kikuta J, Shimizu M (2014). Jagged1 stimulates bone resorption during 

orthodontic tooth movement. Int J Oral-Med Sci; 13(2):59-65. 
Yang X, Ricciardi BF, Hernandez-Soria A, Shi Y, Pleshko Camacho N, Bostrom MP (2007). Callus 

mineralization and maturation are delayed during fracture healing in interleukin-6 knockout 
mice. Bone; 41(6):928-36. 

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012). Primer-BLAST: a tool to 
design target-specific primers for polymerase chain reaction. BMC Bioinformatics; 13:134. 

Yokoya K, Sasaki T, Shibasaki Y (1997). Distributional changes of osteoclasts and pre-osteoclastic cells 
in periodontal tissues during experimental tooth movement as revealed by quantitative 
immunohistochemistry of H+-ATPase. J Dent Res; 76(1):580-7. 

Yucel-Lindberg T, Olsson T, Kawakami T (2006). Signal pathways involved in the regulation of 
prostaglandin E synthase-1 in human gingival fibroblasts. Cell Signal; 18(12):2131-42. 

Zhang Y, Gao Y, Cai L, Li F, Lou Y, Xu N, Kang Y, Yang H (2017). MicroRNA-221 is involved in the 
regulation of osteoporosis through regulates RUNX2 protein expression and osteoblast 
differentiation. Am J Transl Res; 9(1):126-135. 

Ziros PG, Gil AP, Georgakopoulos T, Habeos I, Kletsas D, Basdra EK, Papavassiliou AG (2002). The bone-
specific transcriptional regulator Cbfa1 is a target of mechanical signals in osteoblastic cells. J 
Biol Chem; 277(26):23934-41. 



 

  79 

11 Appendix - Example of bioinformatics primer testing 

1. Genomic structure of the human PTGS2 gene: 
Gene-Id: 5743 
mRNA reference sequence NM_000963.3 
Genomic reference sequence NG_028206.2 
Ensemble Id: 
 

ENSG00000073756 

Splice variants (Ensmbl):  

 

 

2. Potential primers 
Primer no Forward Reverse Product size 
1 GGAACACAACAGAGTCTGAG AAGGGGATGGCCAGTGTATAGA  
2 AGAACTGGTACATCAGCAAG GAGTTTACAGGAAGCAGACA  
3 AAGCCTTCTCTAACCTCTCC GCCCTCGCTTATGATCTGTC 234 bp (514-747) 

Reference sequence used is GenBank accession number NM_00096.3 
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3. Testing primer specificy with “electronic PCR” (“ePCR”) and Primer-BLAST. 
Since the “ePCR” service is not provided anymore, only Primer-BLAST results 
are shown. 

For Primers #1 and #2, Primer-BLAST output generated was: “Specified left primer cannot be 
found in template...make sure this primer is on the plus strand of your template.” 

For Primer #3 the following output was generated showing the primer binding side 
with respect to the gene’s exon structure: 

 

Primer pair 1 
 Sequence (5'->3') Template 

strand 

Length Start Stop Tm GC% Self-

comple-

mentarity 

Self 3' 

comple-

mentarity 

Forw. AAGCCTTCTCTAACCTCTCC Plus 20 514 533 55.95 50.00 5.00 0.00 

Rev.  GCCCTCGCTTATGATCTGTC Minus 20 747 728 58.21 55.00 4.00 1.00 

Product length  234       

 
Products on intended target 
>NM_000963.3 Homo sapiens prostaglandin-endoperoxide synthase 2 

(prostaglandin G/H synthase and cyclooxygenase) (PTGS2), mRNA  

product length = 234 

Forward primer  1    AAGCCTTCTCTAACCTCTCC  20 

Template        514  ....................  533 

 

Reverse primer  1    GCCCTCGCTTATGATCTGTC  20 

Template        747  ....................  728 

 

Products on potentially unintended templates 
>XM_011520202.1 PREDICTED: Homo sapiens solute carrier family 35 

(GDP-fucose transporter), member C1 (SLC35C1), transcript variant X1, 

mRNA  

product length = 231 

Forward primer  1    AAGCCTTCTCTAACCTCTCC  20 

Template        915  ..C.........T......G  934 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        1145  ...G....C.A.C.......  1126 

 
>NM_001145266.1 Homo sapiens solute carrier family 35 (GDP-fucose 

transporter), member C1 (SLC35C1), transcript variant 3, mRNA  
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product length = 231 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        1661  ..C.........T......G  1680 

 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        1891  ...G....C.A.C.......  1872 

 
>NM_001145265.1 Homo sapiens solute carrier family 35 (GDP-fucose 

transporter), member C1 (SLC35C1), transcript variant 2, mRNA  

product length = 231 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        1758  ..C.........T......G  1777 

 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        1988  ...G....C.A.C.......  1969 

 
>NM_018389.4 Homo sapiens solute carrier family 35 (GDP-fucose 

transporter), member C1 (SLC35C1), transcript variant 1, mRNA  

product length = 231 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        2032  ..C.........T......G  2051 

 

Forward primer  1     AAGCCTTCTCTAACCTCTCC  20 

Template        2262  ...G....C.A.C.......  2243 

 
 
4. Energy considerations on the PCR product using UNAfold service at IDT. For 

Primers #1 and #2 the following error message was generated: “PRIMERQUEST 
ERROR: Specified forward primer not in sequence; Specified reverse primer not 
in sequence”. 

With Primer #3 the following amplification product from mRNA/cDNA is produced. 
The primers are shown here with underlines: 
 

AAGCCTTCTCTAACCTCTCCTATTATACTAGAGCCCTTCCTCCTGTGCCTGATGATTGCCCG

ACTCCCTTGGGTGTCAAAGGTAAAAAGCAGCTTCCTGATTCAAATGAGATTGTGGAAAAATT

GCTTCTAAGAAGAAAGTTCATCCCTGATCCCCAGGGCTCAAACATGATGTTTGCATTCTTTG

CCCAGCACTTCACGCATCAGTTTTTCAAGACAGATCATAAGCGAGGGC 
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The following energy considerations were generated: 
Structure Name 'G (kcal mol-1) TM (°C) 'H (kcal mol-1) 'S (cal K-1 mol-1) 
1 -1.06 69 -40.5 -118.38 
2 -0.65 62.6 -83.7 -249.3 
3 -0.27 61.4 -61.6 -184.1 
 
5. “Beacon Designer Free Edition” was additionally used for energy considerations. 

For Primer #3 the following output was generated: 
 
Name: PTGS2_P3 Assay Type:SYBR®Green 

Nucleic Acid Concentration (nM) 0.25 Monovalent Concentration (mM) 50 

Free Mg++ Concentration (mM) 3 Total Na+ Concentration (mM) 269.09  

Sense Primer: AAGCCTTCTCTAACCTCTCC 
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Length (bp) Tm (°C) GC%  GC Clamp Cross Dimer (ΔG) Self-Dimer (ΔG) Hairpin (ΔG) 

20 52.87  50 2  -2.9 -0.5 0.0 

Anti-sense Primer: GCCCTCGCTTATGATCTGTC 

Length (bp) Tm (°C) GC%  GC Clamp Cross Dimer (ΔG) Self Dimer (ΔG) Hairpin (ΔG) 

20 55.23 55 2  -2.9  -2.0 0.0 
 

Secondary Structures for Sense Primer 
Dimer:- 
             5' AAGCCTTCTCTAACCTCTCC 3' 
                ||| ¦¦¦                  
3' CCTCTCCAATCTCTTCCGAA 5'                                    -0.5 

Hairpin:-   Not Found  
 
Secondary Structures for Anti-Sense Primer 
Dimer:- 
5' GCCCTCGCTTATGATCTGTC 3' 
               ||||                 
        3' CTGTCTAGTATTCGCTCCCG 5'                             -2.0 

Hairpin:-   Not Found  
 
Cross Dimer 
Cross Dimer between Sense Primer and Anti-sense Primer:- 
          5' AAGCCTTCTCTAACCTCTCC 3' 
              ||||     ¦ 
 3' CTGTCTAGTATTCGCTCCCG 5'                                     -2.9 
 
5' AAGCCTTCTCTAACCTCTCC 3' 
      ¦      ||| ¦ 
 3' CTGTCTAGTATTCGCTCCCG 5'                                      0.3 

 
6. Final check with Primer3plus for Primer #3 

 Left 
Primer 1:   

Start: 
514 

Length: 
20 bp 

Tm: 
55.9 C  

GC: 
50.0 % 

Any: 
0.0 

End: 
0.0 

TB: 
7.0 

HP: 
0.0 

3' 
Stab: 
3.7 

Penalty: 
4.054 

Library Mispriming:  13.00, reverse MLT1R MLT1-Mammalian LTR retrotransposon 
internal sequence - a consensus 
Problems Temperature too low; Similarity to non-template sequence too high 
 Right 
Primer 1:   

Start: 
747 

Length: 
20 bp 

Tm: 
58.2 C  

GC: 
55.0 % 

Any: 
0.0 

End: 
0.0 

TB: 
8.0 

HP: 
0.0 

3' 
Stab: 
3.5 

Penalty:1.790 

Library Mispriming:  12.00, MSTAR MSTa-Mammalian LTR internal 
retrotransposon sequence - a consensus 

AAGCCTTCTCTAACCTCTCC

GCCCTCGCTTATGATCTGTC
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Pair:    Produc
t Size:   234 bp   

Any: 
0.0 

End: 
0.0 

TB: 
15.0   

Penalty: 
5.844 

Library 
Mispriming: 

21.00, L1 Human L1 interspersed repetitive sequence - full length 
copy 

 
1   GACCAATTGT CATACGACTT GCAGTGAGCG TCAGGAGCAC GTCCAGGAAC 

[…deleted…] 
451   CCAGATCACA TTTGATTGAC AGTCCACCAA CTTACAATGC TGACTATGGC 

501   TACAAAAGCT GGGAAGCCTT CTCTAACCTC TCCTATTATA CTAGAGCCCT 

551   TCCTCCTGTG CCTGATGATT GCCCGACTCC CTTGGGTGTC AAAGGTAAAA 

601   AGCAGCTTCC TGATTCAAAT GAGATTGTGG AAAAATTGCT TCTAAGAAGA 

651   AAGTTCATCC CTGATCCCCA GGGCTCAAAC ATGATGTTTG CATTCTTTGC 

701   CCAGCACTTC ACGCATCAGT TTTTCAAGAC AGATCATAAG CGAGGGCCAG 

751   CTTTCACCAA CGGGCTGGGC CATGGGGTGG ACTTAAATCA TATTTACGGT 

801   GAAACTCTGG CTAGACAGCG TAAACTGCGC CTTTTCAAGG ATGGAAAAAT 

[…deleted…] 
4451   TTATTTTTGT ACTATTTAAA AATTGACAGA TCTTTTCTGA AGAAAAAAAA 

4501   AAAAAAA 

Statistics: Left Primer:   considered 1, unacceptable product size 1, tm diff too large 1, 
primer in pair overlaps a primer in a better pair 1, ok 1 
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