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Zusammenfassung

Heterogene Bakterienpopulationen stehen unter dem ständigen Einfluss stochastischer Effekte,
welche deren Diversität sowohl erhöhen, als auch zerstören können. In meiner Dissertation
präsentiere ich drei verschiedenen Projekte, in denen ich auf unterschiedlichen Ebenen diese
Einflüssse untersucht habe.
. Nichtselektive Evolution wachsender Populationen
mit Karl Wienand, Felix Becker, Heinrich Jung, und Erwin Frey.
In unserem ersten Projekt haben wir die nicht-selektive Evolution zweier Spezies untersucht.

In der bisherigen Forschung wurde dabei stets eine konstante Populationsgröße angenommen,
wodurch eine der beiden Spezies letztendlich ausstirbt. Mit Hilfe eines Pólya-Urnenmodells
untersuchten wir den realistischeren Fall einer exponentiell wachsenden Population. Unse-
re Ergebnisse zeigen, dass die Zusammensetzung von Populationen unter exponentiellem
Wachstum nicht fixiert, sondern gegen einen zufälligen Grenzwert konvergiert. Wir konnten
diese Grenzwerte sowie die Zeitentwicklung der ersten drei Momente ermitteln, und unsere
Ergebnisse experimentell bestätigen. Dieses Projekt hat zu einer Publikation geführt, die
dieser Doktorarbeit angefügt ist.
. Post-transkriptionelle Regulation der ColicinE-Expression in Escherichia Coli
mit Mathias Schwarz, Alexandra Götz, Madeleine Opitz, und Erwin Frey.
ColicinE2 ist ein Bakterientoxin, welches nach Stress-Signalen produziert und durch Zell-

Lyse freigesetzt wird. In diesem Projekt haben wir das Regulationsnetzwerk für die Produktion
und Freisetzung von ColicinE2 mathematisch modelliert, und seine Reaktion auf stochasti-
sche Effekte untersucht. Dabei zeigte sich, dass die hierarchische Struktur der regulierenden
Komponenten einen bisher unbekannten Mechanismus zur Unterdrückung von Fluktuatio-
nen darstellt. Danach koppelten wir unser Modell an stochastische Stress-Signale. Dies hat
eine, auch im Experiment beobachtete, breite Verteilung an Lysezeiten zur Folge, die wir
quantitativ bestimmt haben. Im zweiten Teil dieses Projektes unterstützten wir mit unserem
Modell den erstmaligen experimentellen Nachweis einer regulierende Funktion von single-
stranded DNA (ssDNA). Die Ergebnisse dieses Projektes haben zu einer Publikation geführt,
die dieser Doktorarbeit angefügt ist. Eine weitere Publikation ist in Vorbereitung.
. Optimale Zeitverteilungen für lysebasierte Toxin-Sekretionmit Erwin Frey.
Ausgehend von unseren Arbeiten über ColicinE2 untersuchten wir die Frage, welche Vertei-

lung der ColicinE2-Lysezeiten ideal ist, um Konkurrenten abzuwehren, und welche Faktoren
dies beeinflussen. Dazu entwickelten wir ein einfaches, konzeptionelles Modell, um mittels
eines genetischen Algorithmus die optimalen Verteilungen zu ermitteln. Die anschließenden
numerischen Simulationen zeigen, dass breite Verteilungen mit positiver Schiefe in allen
untersuchten Parameter-Konstellationen die beste Lyse-Strategie darstellen. Diese generel-
le Form zeigt sich auch in experimentell beobachteten Verteilungen. Eine Publikation der
Ergebnisse ist in Vorbereitung.
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Summary

My thesis deals with the interplay of heterogeneity and stochasticity in growing bacterial
populations. This interplay is an important factor in the evolution of microbial organisms,
and proves to be relevant from the population level down to protein synthesis in cells. We
worked with two different model systems in three projects, which also structure this thesis
into three chapters. Each chapter starts with a short project abstract, which I reprint here to
give a short initial summary of this thesis.

 Non-Selective Evolution of Growing Populations
with Karl Wienand, Felix Becker, Heinrich Jung, and Erwin Frey.
In this joint theoretical and experimental project, we focussed on populations of two species

with equal growth rates. This non-selective form of evolution has been previously studied,
but only for the special case of fixed population size. It was shown using Wright-Fisher
models that, in this case of fixed populations, demographic fluctuations (genetic drift, see
subsection 1.1.1) eventually lead to the fixation of one species, and thus to the loss of diversity
in the population. Together with KarlWienand and Erwin Frey, I studied the more general
case of growing populations using a Pólya urn model approach (subsection 1.1.2). We found
that, after a short initial genetic drift, the population composition “freezes” to a non-fixated
steady state. Consequently, genetic diversity is maintained. Our theoretical results were
experimentally verified by Felix Becker and Heinrich Jung. This joint work has been
published in the research paper “Non-Selective Evolution of Growing Populations”, which is
reprinted in section 1.5 (and is also reprinted in the PhD theses of Karl Wienand and Felix
Becker).

 Post-transcriptional Regulation of ColicinE Expression in Escherichia Coli
with Mathias Schwarz, Alexandra Götz, Madeleine Opitz, and Erwin Frey.
The secretion of toxins is a potent mechanism for bacteria to kill other strains in the

competition for resources. In this project, I analysed (together with Mathias Schwarz
and Erwin Frey) the regulatory network (see 2.1.2) of the toxin ColicinE2. The ColicinE2
system is activated by stochastic SOS responses (see 2.1.3), and regulates the production and
release of the toxin using three hierarchically ordered components (see 2.1.4). We developed
a rate equation model for this system by introducing effective quantities and reducing the
complexity of the regulatory network with a time scale separation approach. A parameter
analysis of the resulting system revealed that the hierarchical nature of the network reduces
internal fluctuations, and allows for a fine-tuned response to SOS signals. Moreover, we
coupled our reduced system to a stochastic SOS response model and reproduced broad lysis
time distributions. These distributions are also found in experiments from the group of
Madeleine Opitz. Our work on this model and its analysis have been published in the
research paper “Hierarchical Post-transcriptional Regulation of Colicin E2 Expression in
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Escherichia coli”, which is reprinted in section 2.5. In a subsequent experimental study on
five different strains containing the ColicinE2 system, Alexandra Götz and Madeleine
Opitz found experimental evidence that single stranded DNA (ssDNA) in the cells acts as
fourth regulative component. Together with Erwin Frey, I extended the model for ColicinE2
regulation with this fourth component, and could show that the additional regulator is indeed
necessary to reproduce the experimental results. Moreover, we complemented the model
analysis by investigating the influence of the different plasmid compositions in the investigated
strains. The extension of the model with ssDNA, as well as the analysis of the experimental
and theoretical results, are detailed in the paper draft “CsrA and its regulators control the
time-point of ColicinE2 release in Escherichia coli”, which is reprinted in section 2.6 (and also
in the PhD thesis of Alexandra Götz).

 Optimal Time Distributions for Lysis-based Toxin Release
with Erwin Frey.
This follow-up project on the ColicinE2 system investigates, which toxin release distribution

is optimal to fend off competitors, and how this result is determined by the parameters of
the system. In chapter 2, we found that changes in parameters of our model for ColicinE2
regulation alter the resulting lysis time distribution. As the toxins are released to defend
their producers against competitors, this raises the question as to which distribution is best
in killing other bacteria. To identify the factors affecting the distribution, I created a con-
ceptual model for the self-destructive toxin release of bacteria (with Erwin Frey). Using
this model in combination with a genetic algorithm (see 3.1.2), we determined optimal lysis
time distributions for given parameter sets, and analysed our results in context of phenotypic
heterogeneity (see 3.1.1). The optimal distributions were then successfully put to the test on a
stochastic lattice-gas model. The detailed development of our model and the full presentation
of the results are given in the paper draft “Optimal Time-Distributions for Lysis-based Toxin
Release”, which is reprinted in section 3.5.
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Introduction

When we think of bacterial growth, we most likely imagine a large population of genetically
identical bacteria growing isolated on or in a medium. It is easy to understand why this idea
was conceived: Both experimental and theoretical studies are much easier to set up, analyse,
interpret and replicate if only one type of organism is involved. In nature, however, such
homogeneous conditions are rare, and heterogeneous populations are the rule.
In the human large intestine, for instance, the microbiome of a single human comprises

more than 500 different bacterial strains [1], which all compete for the same space and
resources. The ubiquity of heterogeneity also means that many bacteria co-evolved with each
other, and thus developed a variety of mechanisms for interaction. This comprises means to
gain advantages over competing strains, like the production of toxins, but also cooperative
phenomena such as public goods or division of labour.
Another important aspect for researching growing populations is stochasticity, which is also

directly connected to heterogeneity: random mutations in the genome [2] or, for instance,
noisy expression of proteins [3], are major causes for diversity in bacterial colonies. Random
genetic drift, however, has been shown to produce homogeneous populations [4]. This com-
plex interplay between the different components, in concert with the stochastic interactions,
makes heterogeneous populations particularly attractive for physicists.
In the following, I present my work on three projects with two bacterial systems that exhibit

different forms of heterogeneous populations. While the projects deal with effects on very
different levels (bacterial populations, post-transcriptional regulation within a cell) , they all
present different viewpoints of the overarching question of this thesis: What mechanisms
maintain diverse populations in the interplay between heterogeneity and stochasticity?
In this thesis, I address each of the three projects in a separate chapter. The main content

of my research is given in form of papers or paper drafts, which are reprinted in full at
the end of each chapter. Beforehand, I give an abstract of the project, along with a short
introduction to biological and mathematical background topics, which might be less familiar
to a general physicist audience. This is followed by a summary of the results, and a more
detailed conclusion, which discusses our results as well as their relevance to current and future
studies.
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Part I

Neutral Growth of Bacteria
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1Non-Selective Evolution of Growing Populations

Abstract and Contributions In this joint theoretical and experimental project, we focussed
on populations of two species with equal growth rates. This non-selective form of evolution
has been previously studied, but only for the special case of fixed population size. It was shown
usingWright-Fishermodels that, in this case of fixed populations, demographic fluctuations
(genetic drift, see subsection 1.1.1) eventually lead to the fixation of one species, and thus to the
loss of diversity in the population. Together with Karl Wienand and Erwin Frey, I studied
the more general case of growing populations using a Pólya urn model approach (subsection
1.1.2). We found that, after a short initial genetic drift, the population composition “freezes”
to a non-fixated steady state. Consequently, genetic diversity is maintained. Our theoretical
results were experimentally verified by Felix Becker and Heinrich Jung. This joint work
has been published in the research paper “Non-Selective Evolution of Growing Populations”,
which is reprinted in section 1.5 (and is also reprinted in the PhD theses of Karl Wienand
and Felix Becker).
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1 Non-Selective Evolution of Growing Populations

. Background

.. Selection and Neutral Evolution

Formany years after the release of Charles Darwin’s “On the origin of species” [5], evolution
has been primarily considered in the form of natural selection. This theory comprises threenatural

selection essential principles: Mutations create a (1) variation of traits within a population, which are
(2) inherited to each trait’s offspring, but show (3) different survival rates (fitnesses). This
last principle is most characteristic for natural selection, and interestingly contrasts with
the first: Mutations are stochastic, and thus create new traits at random, while selection
eventually removes less fit traits from the population. The interplay of these forces shapes the
composition of populations, and “directs” them towards adaptation to the environment.
However, this interplay relies on the fact that the different traits indeed have a differentneutral

evolution fitness. The color of a prey animal, for instance, is a very important selective trait if its predators
have good vision, but becomes completely irrelevant if all predators in its habitat are blind
(e.g. underground). For such neutral settings, natural selection theory is not able to predict
the outcome of evolution. This gap was closed in the 1950s and 1960s by Motoo Kimura’s
theory of neutral evolution [6]. His work highlighted the influence of stochastic effects to
evolution, and started an ongoing debate on whether selective or neutral forces are dominant
(see, for instance, Ref. [7]).

Particularly, he studied genetic drift1 in finite populations [4] due to random samplinggenetic
drift (which corresponds to demographic fluctuations in population dynamics). This neutral theory

relies on three main assumptions: Only two traits/species, A and B, exist in the population
(that is, no mutations), none of the traits has a selective advantage, and the population size
N = NA+NB is fixed. The evolution of this population occurs via joint birth/death events, inWright-Fisher

model particular, as aWright-Fishermodel [2, 8, 9]: A random individual is selected and produces
an offspring of its own trait, which then replaces a random individual in the population. This
is often analysed using an urn model analogy, mapping individuals to coloured marbles and
the population to an urn. The state of the population can be represented by x = NA/N, the
fraction ofA individuals in the population. Then, the evolution of the population is equivalent
to a random walk between the boundaries 0 and 1. If the population fraction reaches one of
the boundaries, the population fixates: All individuals are either A (if x = 1) or B (if x = 0).fixation

As also all offspring will keep this trait, the boundaries are absorbing.
For a more detailed study on the stochastics of genetic drift, Kimura considered distribu-

tions of population compositions, P(x, t), and derived a Fokker-Planck equation for their
evolution, which readsdiffusion

equation
∂

∂t
P(x, t) = 1

4N
∂2

∂x2
[x(1− x)P(x, t)] . (1.1)

As perfectly neutral conditions are assumed, it is a diffusion equation with no additional
terms. The analysis of this equations shows that any initial coexistence state ofA and B decays
exponentially to fixation. More specifically, during this evolution, any initial probability

1From a physicists perspective, the naming convention “drift” is unfortunate, as the Fokker-Planck equation
describing this phenomenon, eq. (1.1), only contains a diffusion, but no drift term.
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1.2 Motivation and Research Question

distribution P(x, t0) quickly flattens out, and turns to a U-shape. Like all phenomena based
on demographic fluctuations, these effects become smaller when the population size N is
increased, because then single birth/death events affect x less.

.. Pólya UrnModel

In our work, we make use of a well-studied variant of the Wright-Fisher urn model: the
Pólya urn model [10, 11]. It describes the same setup as the Wright-Fisher model, but Pólya urns

differs in one crucial step: When the “offspring marble” is added to the population, it does
not replace an existing marble. Each birth event thus increases the population sizeN by 1.
Due to the lack of death events, Pólya urns have interesting properties: First, and most

simply, no trait can fixate. Second, they constitute self-reinforcing processes, as every marble
extraction increases the share of the selected trait in the population, thereby increasing the
chance of another extraction. However, the impact of noise from the stochastic birth events
constantly decreases, as the population size grows. Third, while the population sizeN grows,
the urn composition x converges to a limit value x∗, which is a random variable. The limit
distribution has been shown to be a beta-binomial distribution [12].

. Motivation and Research Question

Previous research in our group dealt with the co-evolution of two bacterial strains in the
context of the “dilemma of cooperation” [13–15]. These studies considered very small sub-
populations in liquid medium, all consisting of different, randomly pipetted compositions of
the two strains. Indeed, situations like this occur frequently in nature (often referred to as
founder effect [2, 16]), for instance, when random pathogens from a host reservoir spread to a
new host. Despite the focus on selective evolution in these studies, the experimental testing
of the models required an initial phase of neutral growth to increase . However, it was unclear
how the composition of these sub-populations evolves: The growth conditions are neutral, and
thus, the theory of genetic drift (see above) should apply; yet, the fact that the populations are
growing violates a fundamental assumption of Kimura’s theory (fixed population size). There
are concepts for effective population sizes [17] which solve this problem approximately, but
they break down when the population grows over several orders of magnitude for a prolonged
time. This gave rise to the research question of this project:

How does exponential growth affect genetic drift?

. Summary of Results

Stochastically initialised Pólya urn model for experimental setting. To find a model for
non-selectively growing bacteria in our experimental setting, we first focussed on the initial
condition. The specific pipetting procedure in the experiment is resembled by drawing the
initial abundances of A and B from Poisson distributions, with meansN0x0 andN0(1− x0),
respectively. We apply this initialisation method to a large ensemble of populations, which
then grow according to a Pólya urn process. The waiting times between the birth events are

7



1 Non-Selective Evolution of Growing Populations

assumed to follow a exponential distribution (Poissonisation). With this assumption, the
probability of findingNA individuals of type A in a population at time t follows the master
equation

d

dt
P(NA, t) = (NA−1)P(NA−1, t)−NAP(NA, t). (1.2)

For B, an analogous equation holds.

Growth freezes genetic drift. We implemented our model in numerical simulations, which
ran on large ensembles of stochastically initialised populations. The results show that the
distribution of x initially broadens (like in Kimura’s genetic drift model), but then quickly
freezes to a steady state. In particular, the populations do not fixate (except for populations
that already started fixated), contrary to their behaviour for genetic drift.

Approximative solution for time evolution of moments. To see how the distribution of x
evolves over time for arbitrary N0 and x0, we determined an approximate solution for the
first three moments of x. These can be computed using the first three moments forNA and
NB, which we obtained from (1.2) and its B counterpart, employing a generating function
approach. The first moment, 〈x〉, the mean of x, remains constant. If this were not the case,
the process would be selective, and not neutral. The second moment reads

Var(x) = 2− e−t

N
x(1− x). (1.3)

It changes over time (in particular, it increases initially), but converges exponentially to a limit
value. These features also hold for the skewness, which has a more complicated expression.

Exact solution for limit value of moments. With a different approach, relying on properties
of Pólya urns and the beta-binomial distribution, we obtained exact solutions for the steady
state of x. From this distribution, we could derive exact expressions for the average and
variance of x. In the limit of largeN, the latter reads

Var(x) → 2
N
x(1− x), (1.4)

which is the t → ∞ limit of eq. (1.3)

Experiments confirm numerical simulations following our model Our co-authors Felix
Becker and Heinrich Jung tested the numerical predictions for the steady state distri-
bution with stochastically pipetted Pseudomonas putida cultures. The experimental results
matched our predictions.
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1.4 Conclusion

. Conclusion

Non-selective (or neutral) evolution is a fundamental mechanism, in which stochasticity
rather than selection shapes the composition of populations. Its most prominent paradigm is
genetic drift: Demographic fluctuations in a heterogeneous population result in the fixation
of a single trait. This seminal result was shown by M. Kimura for populations of constant
size using the Wright-Fisher model.
In this project, we revisited neutral evolution from a new, more realistic perspective: How

does exponential growth affect genetic drift? To answer this question, we replaced the
Wright-Fisher model with the concept of Pólya urns. Our work showed that, in stark con-
trast to having a constant population size, exponential growth freezes genetic drift, and thus
maintains genetic diversity. The term “freezes” becomes clear when we look at the detailed
evolution of a population: Initially, the composition changes due to demographic fluctuations,
but the more the population size grows, the smaller the changes become. Eventually, the
composition of the population converges to a random limit value, but never fixates.
Howmuch this “freezing” behaviour affects a distribution of compositions in an ensemble of

populations depends on the initial conditions. This is again a difference from fixed population
size. To investigate this dependence in more detail, we considered the special case of Poisson
initial conditions, which commonly appears in natural systems. Using this initial condition, we
were able to derive exact expressions for the steady state of the distribution, and approximate
formulas for the time evolution of the moments. Using these expressions, we found that, for
very small or very large populations, the final distribution is already largely determined by
the initial compositions. For populations of intermediate size, however, the stochastic effects
of growth dominate. This result highlights that randomness in populations has two sources:
initial sampling and demographic fluctuations.
Because of these insights on the neutral evolution of composition distributions, we believe

that our research has important implications for both experimental and conceptual studies
on genetically diverse populations. Previous studies have highlighted the importance of het-
erogeneous populations as starting point for many aspects of evolution [18, 19]. In particular,
we expect that our research is important for the study of cyclic metapopulations, in which
basic concepts rely on very small, diverse sub-populations [13–15].

9
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1.5 Publication in PLoS ONE: Non-selective evolution of growing populations

. Publication Reprint

Non-selective evolution of growing populations

by

K. Wienand,*1 M. Lechner,*1, F. Becker,*2 H. Jung,2 and E. Frey1

* Contributed equally to this work
1Department of Physics, Arnold Sommerfeld Center for Theoretical Physics and Center for

NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333
München, Germany,

2 Department of Biology 1, Microbiology, Ludwig- Maximilians-Universität, Grosshaderner
Straße 2-4 82152, Martinsried, Germany

reprinted from

PLoS ONE 10(8), e0134300 (2015),
doi: 10.1371/journal.pone.0134300.

Published under CC-BY License
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RESEARCH ARTICLE

Non-Selective Evolution of Growing
Populations
Karl Wienand1☯, Matthias Lechner1☯, Felix Becker2☯, Heinrich Jung2, Erwin Frey1*

1 Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Physics Department,
Ludwig-Maximilians-Universität, Munich, Germany, 2 Department of Biology 1, Microbiology, Ludwig-
Maximilians-Universität, Martinsried, Germany

☯ These authors contributed equally to this work.
* frey@lmu.de

Abstract
Non-selective effects, like genetic drift, are an important factor in modern conceptions of

evolution, and have been extensively studied for constant population sizes (Kimura, 1955;

Otto andWhitlock, 1997). Here, we consider non-selective evolution in the case of growing

populations that are of small size and have varying trait compositions (e.g. after a population

bottleneck). We find that, in these conditions, populations never fixate to a trait, but tend to a

random limit composition, and that the distribution of compositions “freezes” to a steady

state. This final state is crucially influenced by the initial conditions. We obtain these findings

from a combined theoretical and experimental approach, using multiple mixed subpopula-

tions of two Pseudomonas putida strains in non-selective growth conditions (Matthijs et al,

2009) as model system. The experimental results for the population dynamics match the

theoretical predictions based on the Pólya urn model (Eggenberger and Pólya, 1923) for all

analyzed parameter regimes. In summary, we show that exponential growth stops genetic

drift. This result contrasts with previous theoretical analyses of non-selective evolution (e.g.

genetic drift), which investigated how traits spread and eventually take over populations (fix-

ate) (Kimura, 1955; Otto and Whitlock, 1997). Moreover, our work highlights how deeply

growth influences non-selective evolution, and how it plays a key role in maintaining genetic

variability. Consequently, it is of particular importance in life-cycles models (Melbinger et al,

2010; Cremer et al, 2011; Cremer et al, 2012) of periodically shrinking and expanding

populations.

Introduction
Stochastic effects play an important role in population dynamics [8–11], particularly when
competition between individuals is non-selective. Most previous theoretical analyses have stud-
ied how a non-selectively evolving trait can spread and eventually replace all other variants
(fixate) under conditions in which the population size remains constant [2, 12, 13]. However,
both natural and laboratory populations frequently experience exponential growth. Here we
show that genetic diversity in growing populations is maintained despite demographic noise,
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and reaches a stationary but random limit. We used a well-controlled model system in which
well-mixed co-cultures of a wild-type Pseudomonas putida strain and an isogenic mutant were
grown under non-selective conditions. Multiple subpopulations were generated, each contain-
ing a random number of individuals of each strain. Depending on the average initial popula-
tion size and the strain ratio, we observed distinct stationary probability distributions for their
genetic composition. Moreover, we showed that the dynamics of growing populations can be
mapped to Pólya urn models [4], permitting the observed maintenance of genetic diversity to
be understood as the random limit property of a fair game between individual strains. General-
izing the Pólya urn model to include the effects of random initial sampling and exponential
growth allowed us to predict the evolution of the composition distribution. Using numerical
and analytical methods we found that the distribution broadens at first but quickly “freezes” to
a stationary distribution, which agrees with the experimental findings. Our results provide new
insights into the role of demographic noise in growing populations.

Results and Discussion
Evolutionary dynamics is driven by the complex interplay between selective and non-selective
(or neutral) effects. The paradigm of non-selective evolution originates from the seminal work
of Kimura [1], in which he solved the Wright-Fisher model, thus showing that non-selective
effects—and specifically genetic drift—can have a determinant role in evolution. His results
sparked an ongoing debate about the nature and potency of randomness as a fundamental evo-
lutionary force [13–15]. For very small populations genetic drift is generally considered an
important factor [13], as the theory successfully predicts the outcomes of neutral evolution
experiments [9, 16].

In most theoretical analyses, constant (or effectively constant) population sizes are assumed,
and the role of population growth is neglected. Bacterial populations, however, often undergo
rapid growth—especially when they are small. For example, as few as 10 individuals of some
highly virulent pathogens (e.g. enterohemorrhagic Escherichia coli or Shigella dysenteriae) suf-
fice to initiate a deadly infection in a human host [17, 18]. Another case of small, growing pop-
ulations are water-borne bacteria that feed on phytoplankton products. Due to nutrient
limitation in open water, these bacteria typically live in small populations in close proximity to
the planktonic organism [19]. During spring blooms, the phytoplankton releases more organic
material, boosting the bacterial growth rate [19–21]. In nature, such small populations often
form by adventitious dispersal from a larger reservoir population [22]. A typical example is the
spreading of pathogens from host to host. This random “sampling” from a reservoir yields
small populations whose genetic compositions differ from that of the reservoir (a phenomenon
known as the founder effect [23]). Recent studies also showed that the combination of popula-
tion growth and stochastic fluctuations can have a major impact on the evolution [5–7, 24] and
genetics [25] of small populations.

To probe how population growth shapes genetic diversity, we used a well-characterized
microbial model system, namely the soil bacterium Pseudomonas putida KT2440 [3, 29, 27].
The wild-type strain KT2440 produces pyoverdine, an iron-scavenging molecule that supports
growth when iron becomes scarce in the environment. Here we consider co-cultures of two
genetically distinct strains: the wild-type, pyoverdine-producing strain KT2440 (strain A) and
the mutant non-producer strain 3E2 (strain B). We set up conditions of non-selective competi-
tion between these strains by using an iron-replete medium (casamino acids, supplemented
with 200 μM FeCl3). In this medium, production of pyoverdine is effectively repressed [27],
such that both strains have the same growth rate and neither has an advantage (see S2 Table).
Producer (KT2440 wild type) and non-producer (3E2) strains were first mixed and diluted to
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yield Poisson dilution conditions. Then we initiated a large number of subpopulations from
this reservoir by pipetting aliquots of the cell suspension into the wells of a 96-well plate,
thereby generating a large ensemble of subpopulations with a random distribution of initial cell
number N0 and producer fraction x0 (Fig 1). Use of shaken liquid cultures ensured homoge-
neous well-mixed conditions for all cells in the same well (access to nutrients, oxygen, etc.),
and exponential growth was observed in all cases (see S2 Fig).

This experimental setting is well described within the mathematical framework of a Pólya
urn model. Consider each bacterium in the population as a marble in an urn, and its genotype
as the color of the marble (e.g. red for strain A, and blue for strain B). Population growth results
from single reproduction events in which an individual randomly divides. This is mathemati-
cally equivalent to a stochastic event in which a marble is chosen at random from the urn and
put back, together with another one of the same color. This random process, introduced by
Eggenberger and Pólya [4], exhibits several important properties [28–31]. It is self-reinforcing:
each time a marble is extracted, another one of the same color is added, increasing the likeli-
hood of extracting a marble of that color again. In the context of bacterial populations, this
means that every birth event for one strain makes it more likely that further birth events of that
same strain will occur in the future. Note, however, that fixation, i.e., complete loss of one type

Fig 1. Schematic depiction of urn sampling and growth. (a) Schematic illustration of the random initial
conditions. An infinite reservoir contains a diluted mixture of bacteria, a fraction �x0 of which are of strain A. We
draw small volumes of liquid from the reservoir containing small, random numbers of individuals, which
conform to a Poisson distribution with mean (determined by the dilution of the reservoir population). A certain
fraction of this initial population is of strain A. The mean value of this fraction is equal to �x0. We use these
individuals to initiate populations in the wells of a microtiter plate, so that each population starts with a random
sizeN0 and a random fraction of A-individuals x0. (b) Illustration of the Pólya urn model. If a bacterial
population is represented as an urn, each individual as a marble and each bacterial strain as a color, this urn
model captures the essentials of bacterial reproduction in our populations. At each iteration, a marble is
drawn at random and returned to the urn, together with another one of the same color. The probability of
extracting a marble of either color is determined solely by its relative abundance, making the process non-
selective (since no strain has inherent advantages, see S2 Table). The rate of growth in population size can
be rendered exponential (see S2 Fig) by letting the waiting time between successive iterations be
exponentially distributed (also known as Poissonization).

doi:10.1371/journal.pone.0134300.g001
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of marble from the population, cannot occur, simply because in the Pólya urn model marbles
are neither removed nor do they change their color. This fully reflects the experimental condi-
tions: During exponential growth, rates of cell death are negligible, and within the observation
time mutations will be extremely rare, given the population sizes considered. The bacteria in
each well reproduce randomly at a per-capita (average) rate μ. To translate this to the urn
model, drawing of a marble is assumed to be a stochastic Poisson process, with a “per-marble”
rate μ (a procedure known as Poissonization or embedding [32, 33]). Mathematically, the
growth process in then described by a Master Equation: The time evolution for the probability
P(NA, t) of finding NA individuals of strain A at time t reads

d
dt

PðNA; tÞ ¼ ðNA � 1ÞPðNA � 1; tÞ � NAPðNA; tÞ ; ð1Þ

where we have set the growth rate to μ = 1 in order to fix the time scale (for an introduction to
the mathematical concepts see, e.g., [34]); the corresponding Master equation for individuals of
strain B is of identical form. To study the composition of the populations, we use the more con-
venient quantities N = NA + NB (total size) and x = NA/N (fraction of individuals of strain A).

To start the experiment, we inoculated the wells of 96-well-plates by drawing small volumes
of diluted liquid bacterial culture from a large reservoir (Fig 1(a)). Each volume contains a ran-
dom number of bacteria whose mean value is controlled by the dilution of the reservoir. The
fraction of bacteria of strain A (wild type) in that volume is also random, with its mean value
�x0 given by the fraction of strain A in the reservoir. In the mathematical formulation, this setup
corresponds to stochastic initial conditions for the Pólya urn model: the initial population size
N0 for each well is given by a Poisson distribution with mean �N 0, and each individual is
assigned to strain A or B with probability �x0 and 1� �x0), respectively. This procedure is also
equivalent to treating the initial numbers of A- and B-individuals as independent, Poisson-
distributed random variables with mean values �N 0�x0 and �N 0ð1� �x0Þ), respectively [6].

Fig 2 shows a time series of the histogram for the composition x of all subpopulations con-
sidered, as obtained from a stochastic simulation of the Master Eq (1) for a given random initial
condition (with �N 0 ¼ 10 and �x0 ¼ 0:33). Surprisingly, the distribution first broadens, but then
quickly “freezes” to a steady state (see S1 Video). This is genuinely different from Kimura“s
result for populations with constant size [1] (or similar results with effectively constant size
[2]) where the balance between stochastic birth and death events leads to genetic drift, and
thereby eventually to the extinction of one of the two strains. In contrast, for a growing popula-
tion, death events are negligible, and therefore there is no fixation of the population during
growth. Instead, fixation arises as a direct consequence of the initial sampling process, as can
be seen from the heights of the black bins in the histogram (at x = 0 and x = 1), which remain
constant over time (Fig 2). During growth, the composition of each subpopulation, instead of
drifting to fixation at either x = 0 or x = 1, reaches a stationary limit value x�, where it remains
thereafter [35]. This limit value is random: starting several subpopulations (urns) from the
exact same initial composition of strain A and B (blue and red marbles), each reaches a limit,
but in general these limits differ from one another. Once all of the subpopulations in an ensem-
ble reach their limit, the distribution of the population composition freezes to a steady state,
which is equal to the probability distribution of x�. Similar random limit properties appear in
other fields, with lock-in in economics as the best-known example [30].

The inset in Fig 2 shows approximate solutions for the time evolution of mean, standard
deviation, and skewness of the composition x, which we obtained by analytically solving the
Master Eq (1) (see S2 Text). The analytical results agree well with their numerical counterparts.
In particular, the mean value remains constant over time, as it must for a non-selective process.
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For the time evolution of the variance, which is a measure for the spread of a distribution, we
obtain to leading order in population size

Varpoi½x�ðtÞ ¼
2� e�t

�N 0

�x0ð1� �x0Þ : ð2Þ

The broadening and freezing of the distribution is reflected in the exponential decay term of
the variance. Note that the skewness increases as well, because growth is self-reinforcing (see
inset in Fig 2). To further test the validity of the stochastic simulations, we also calculated the
limit values of the average and variance after extended periods of evolution exactly, and found
that they match the numerical solutions of the Master Equation perfectly (see S1 Text).

We tested these theoretical predictions using P. putida as a bacterial model system. We
mixed the wild-type and mutant strains in order to obtain different initial fractions �x0. The
degree of dilution of the mixture determines the average initial cell number �N 0, with which we
inoculated 120 wells per experiment (96-well plate format). In order to compare the experi-
mental data with our model, we set up simulations that matched the experimental configura-
tion by initializing �N 0 and �x0 with the same values as measured in the experiments. We
simulated the time evolution of about 104 populations, grouped in “virtual plates” of 120 wells
each. Every virtual plate produced a histogram like the one we obtained from experiments. We
then generated an average histogram of the virtual plates and used its values to compute the

Fig 2. Time series for the simulated distribution of the population composition x. The distribution
initially broadens, then freezes to a steady state (see S1 Video). The fraction of populations that have x = 0 or
x = 1 (indicated by the black bins) remains constant during the time evolution, as expected for a Pólya urn
process, and in contrast to expectations from genetic drift (see S1 Table). In each well the population follows
a stochastic path and reaches a (random) limit composition, and the distribution freezes only when all
populations reached their limit. The parameter values used in the simulation are �N0 ¼ 10 and �x0 ¼ 0:33 The
inset shows the mean, standard deviation and skewness as a function of the number of generations, with
symbols denoting numerical simulations, and the solid lines corresponding to the theoretical prediction of Eq
(2) (and also those in S2 Text). Analytical and numerical values agree. The mean hxi remains constant
throughout the evolution, as expected for a non-selective process; standard deviation and skewness saturate
to limit values, confirming the freezing of the distribution.

doi:10.1371/journal.pone.0134300.g002
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binomial confidence intervals [36] for the count in each bin, and compared those with the
experimental distribution.

Fig 3(a) shows a representative experimental histogram of the initial population sizes N0 for
strong dilution with �N 0 ¼ 2:55. It is well approximated by a Poisson distribution, and agrees
with the simulation results within statistical errors (blue line and shaded gray areas in Fig 3(a)).
Fig 3(b) shows the probability distribution of the corresponding initial compositions x0 of the
populations, where again theoretical and experimental values agree well within statistical error.
Note also that in every well the composition x0 must be a simple fraction; this means that only
a few numerical values are possible for small initial population sizes N0. This small-number
effect explains why the distribution of x0 in Fig 3(b) is so ragged. The distribution becomes
much smoother for larger initial population sizes (see S3 Fig). Taken together, these results for
the distribution of initial population size and composition confirm that the inoculation of the
individual wells is a stochastic sampling process with Poissonian statistics.

Next, we were interested in how the composition of the bacterial population would evolve
under non-selective (neutral) growth conditions. To this end we let the 120 populations grow
for an 11-hour period, during which they remained in exponential growth phase (see S2 Fig).
Then we measured the population size N(t) in each well by counting colony-forming units, and
x(t) by counting the pyoverdine-producing colonies (see Materials and Methods). Fig 4 shows
the final outcome for four different initial conditions, i.e. combinations of the initial average
population size �N 0 and composition �x0. We first wanted to know what determines the number
of wells that contain only individuals of either strain A or strain B, i.e. that are fixated. To this
end we compared the experimentally observed values with the corresponding predictions from
the numerical simulations of the Pólya urn model (Fig 4). Since both results agree within statis-
tical error, we conclude that fixation of a population is a consequence of the initial sampling
process and is not due to fixation during population growth (see also S1 Table). This is espe-
cially obvious for small average initial population size or compositions close to x = 0 or x = 1,
where a large fraction of the wells contains cells of strain A or B only (Fig 4(a) and 4(d)). Next
we wished to learn how the final distribution of the population composition (i.e. the random
limits, x�) depends on the initial average composition �x0. For �x0 ¼ 0:5, we observed both by
experiment and theoretically that the initial distribution significantly broadened (by a factor

Fig 3. Initial distributions for population sizeN0 and composition x0 (parameter values �N0 ¼ 2:55,
�x0 ¼ 0:45). The experimental distributions (bars) for N0 (panel (a)) and x0 (panel (b)) are measured from
120-well ensembles. The average �N0 and �x0 calculated from the measured values determine the parameters
for the simulated distributions. The theoretical average distribution (solid blue line) is the average of the same
distributions generated for 84 sets of 120 wells. Using that average we calculate theWilson binomial
confidence intervals (gray areas) for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The measured and simulated distributions agree well within statistical error, confirming our
assumption that individuals of strain A and B in the experiments start Poisson-distributed with mean �N0

�x0 and
�N0ð1� �x0Þ, respectively. The ragged distribution of x0 derives from a small-number effect, and disappears at
larger values of N0 (see main text, and also S3 Fig).

doi:10.1371/journal.pone.0134300.g003
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) but remained symmetrical (Fig 4(c) and S1 Fig). In contrast, starting from distributions
with average values below or above 0.5 caused the final distribution to broaden and also
become skewed towards smaller or larger values of x, respectively (Fig 4(b) and 4(d)). More-
over, we found quantitative agreement between experiment and numerical simulations within
statistical errors in all analyzed parameter regimes (see blue lines and shaded areas in Fig 4):
most experimental histograms fall within the first confidence interval of the prediction (darkest
gray areas, between dashed lines), and almost all fall within the 99.73% confidence interval.

Taken together, our combined theoretical and experimental analysis gives a coherent pic-
ture of evolution during non-selective (exponential) growth. We have shown, experimentally
and by analogy with the Pólya urn model, that for each well-mixed population the composition
of the population reaches a random stationary limit, and, unlike populations with constant
size, generally does not fixate. For a large ensemble of populations, this implies that the proba-
bility distribution for the population composition converges to limit distributions (Figs 2 and
4), which are nothing like Kimura“s result for constant-sized populations. Our result is also
quite different from that obtained in range expansion experiments [37] or other settings featur-
ing population growth without death on two-dimensional substrates. There, monoclonal sec-
toring patterns arise as a consequence of random genetic drift, which drives population
differentiation along the expanding fronts of bacterial colonies, unlike our well-mixed popula-
tions that freeze to coexistence.

Our study also shows that, in a growing population with stochastic initial conditions, demo-
graphic noise has two possible sources: the initial sampling process by which subpopulations
are formed, and the subsequent growth process. The initial average population size �N 0 sets

Fig 4. Steady-state distributions of population composition x for different initial conditions. The
experimental distribution (bars) is the result of growth on 120 independent wells. We use the measured
average x0 andN0 from the experiments to initialize the simulations of several 120-well ensembles. After
growth, we compute the histogram for each of these ensembles and obtain the average theoretical
distribution (blue line). Using the values from this distribution, we compute the three confidence intervals
(shaded gray areas) for each bin for 68% (between dashed lines), 95% (between dotted lines) and 99.73%
confidence. The two sets of data match: most experimental data agree with the first prediction confidence
region, practically all with the second one. The limit distributions are clearly different from the initial ones (see
S1 Fig). The importance of growth in changing the distributions depends on the initial size N0 (see main text,
and S1 Fig). Parameter values: �N0 ¼ 2:9, �x0 ¼ 0:32 (panel (a)); �N0 ¼ 18:4, �x0 ¼ 0:22 (panel (b)); �N0 ¼ 19:6,
�x0 ¼ 0:52 (panel (c)); �N0 ¼ 14:5, �x0 ¼ 0:71 (panel (d)).

doi:10.1371/journal.pone.0134300.g004

Non-Selective Evolution of Growing Populations

PLOS ONE | DOI:10.1371/journal.pone.0134300 August 14, 2015 7 / 13



their relative weight (see S3 Text and S1 Fig). For very small �N 0, of the order of one or two indi-
viduals, the formation process already determines the final composition distribution: most
populations start off fixated, many with just a single founder individual, and the composition
of each well remains the same during growth. For very large �N 0, of the order of a few hundreds,
the sampling process is again central: the composition distribution changes very little before
freezing, and growth generates only a very limited amount of variation. In these two limiting
regimes, neglecting stochastic effects during growth leaves the evolutionary outcome practically
unchanged. In contrast, for small founder colonies such as those typically found during popu-
lation bottlenecks [18, 19, 38] ( �N 0 � 10), population growth is responsible for the major part
of the variation observed in the final distribution.

Moreover, our results reveal that a growing population reaches a random limit composition
much faster than genetic drift leads to fixation in populations of constant size. Typical fixation
times for genetic drift increase logarithmically with the population size [11], while the time
scale for freezing is independent of population size. This has important consequences for the
role of stochastic effects when a population passes from exponential growth phase to stationary
phase, in which growth rate and death rate are equal. Then, the composition of the population
shows both freezing and fixation, albeit at quite distinct times because the relevant time scales
differ markedly. During growth the composition distribution quickly freezes, as described
above. Once the population reaches its stationary size, it slowly drifts to fixation, following
Kimura-like dynamics.

We also believe that our results have a broad range of applications since growing populations
are ubiquitous in nature. For example, experimental studies of P. aeruginosa [22, 39] have
shown that typical life cycles pass through different steps with regularly occurring dispersal
events being followed by the formation of new colonies. As initial colony sizes are typically
small, such dispersal events coincide with population bottlenecks and subsequent exponential
growth. During these phases of the life cycle, population dynamics is often selectively neutral
and hence falls within the framework of the present work. The degree of diversity generated dur-
ing these population bottlenecks has been shown to be crucial for some proposed mechanisms
for the evolution of cooperation under selective pressure [5–7, 40–42]. Our analysis quantifies
the ensuing degree of diversity and points to the relative importance of sampling versus growth
for long-term behavior of the reservoirs. This may have important consequences for the degree
of genetic diversity observed in natural populations with life-cycle structures [38].

Materials and Methods

Strains and cultivation conditions
The P. putida strains KT2440 (wild type) and 3E2 (mutant with defective pyoverdine synthesis)
[3] were used as pyoverdine producers and non-producers, respectively. Cells were grown in
casamino acid medium (CAA) containing per liter: 5 g casamino acids, 0.8445 g K2HPO4,
0.1404g MgSO4•(H2O) [3]. The CAA medium was supplemented with 200 μM FeCl3
(CAA-Fe) to suppress pyoverdine production (see S2 Table). Overnight cultures of the individ-
ual strains in CAA-Fe medium were adjusted to an OD600 of 1, diluted 10

-2 fold, mixed to yield
the desired producer fraction, and further diluted to create Poisson distribution conditions.
Producer/non-producer co-cultures were started by inoculating the central 60 wells of two
96-well plates thereby adjusting the average initial cell number �N 0 to values between 2 and 25
cells/150 μL. Wells at the border of the plates were filled with water to minimize evaporation
from central wells. For non-selective growth, co-cultures were grown in CAA-Fe medium shak-
ing at 30°C for given periods of time. Due to the random distribution of initial cell number N0

and producer faction x0 in the 120 wells, each experiment was unique. An experiment was
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limited to 120 wells to allow initiation of the analysis of the subpopulations in the individual
wells without uncontrolled changes of growth parameters during analysis. The experiment
duration was set to 11h to allow evolution to act for a significant number of generations (see S1
Table), while leaving bacteria in exponential growth phase (see S2 Fig)

Determination of growth parameters
Cell numbers N0 and N(t) were determined by counting the colony forming units (cfu) of indi-
vidual wells. For this purpose 100μL aliquots of the individual wells were plated on cetrimide
[43] or King’s B agar (contains per liter: 20 g peptone, 10 g glycerol, 1.965 g K2HPO4(3H2O),
0.842 g MgSO4(H2O) [44]. Producer fractions x0 and x(t) were determined based on the capa-
bility of cells to produce the green fluorescent pyoverdine either by direct counting of fluores-
cent and non-fluorescent colonies on the plates or after growth in iron-limited CAA medium.
The fraction of dead cells was determined by life/dead staining with propidium iodide [45],
and was always<0.02 of the total cell number under the experimental conditions.

Simulation of growing populations
We performed simulations of 10080 wells using a Gillespie algorithm [46]. The initial numbers
of “cells” per well were drawn at random from a Poisson distribution with a mean value of �N 0

measured in the corresponding experiment. The strain assigned to every individual in each
well was determined by the outcome of a Bernoulli trial (i.e., coin-flip-like process) and the
probability of assignment to strain A was set to the value of �x0 measured in the experiment.
After initialization, wells were grouped into 84 virtual 120-well “plates”, and a random waiting
time was selected for each well, drawn from an exponential distribution with the population
size as parameter. The Gillespie algorithm was run until the average size across all wells
matched the average size measured at the end of the growth experiments, or until a specified
time had elapsed (see S2 Fig).

Supporting Information
S1 Video. Time evolution of composition distribution. The distribution of compositions x
first broadens due to demographic noise, but soon “freezes” to a steady state. The steady state

form is maintained as long as the populations grow. Parameter values are �N0 ¼ 10, �x0 ¼ 0:33

(as for Fig 2).
(MP4)

S1 Text. Exact calculations for steady-state composition distribution and moments. Using
the theory of Pólya urns, we calculate exactly the steady state values of: (i) the distribution of
population compositions x, (ii) its mean value, and (iii) its variance.
(PDF)

S2 Text. Approximate calculations for the time evolution of the distribution moments.We
use the Master equation of the growth process (Eq (1)) to determine the time evolution of vari-
ance and skewness of the composition distribution. These values are used in Eq (2) and Fig 2.
(PDF)

S1 Fig. Initial and steady state distributions, relative entropy. Panels (a),(b),(c): Initial and

final distributions of x for three regimes of �N0. When �N0 is very small or very large (panels (a)
and (b)), the evolutionary fate of the population is largely determined by the initial population
sampling. Therefore, the initial distribution (red bars) and the steady-state one (green bars)

look qualitatively very similar. For intermediate values of �N0, however, population growth

Non-Selective Evolution of Growing Populations

PLOS ONE | DOI:10.1371/journal.pone.0134300 August 14, 2015 9 / 13



becomes more important, and the distributions look very different. The amount of composi-
tion values the population can access through growth can be quantified looking at the “unpre-
dictability” of the steady-state composition, once the initial one is known: the more
unpredictable, the more are made accessible by growth. Mathematically, the measure for this is
called conditional entropy: the higher the entropy, the more unpredictable the outcome. Panel

(d) shows the conditional entropy as function of �N0. Indeed, very small or very large initial
populations experience little to no additional noise from growth, while in populations with

intermediate values of �N0 (�N0 ’ 15) growth is a major source of demographic noise. (Parame-

ter values: �N0 ¼ 2 (a), �N0 ¼ 2000 (b), �N0 ¼ 20 (c); �x0 ¼ 0:25 in all panels)
(TIF)

S3 Text. Comparison of initial and steady-state distributions of x, and entropy of the
steady state distribution conditioned on the initial one.We use conditional entropy to ana-
lyze the impact of growth on the distribution of compositions x. The results are also depicted
in S1(d) Fig
(PDF)

S2 Fig. Growth curve of a mixed population. The population consists of pyoverdine producer
(P. putida KT2440) and non-producer (P. putida 3E2) under non-selective (iron replete) con-
ditions. Individual precultures of the strains were mixed and diluted in iron replete medium to

yield �N0 ¼ 4 (in 150 μL), and �x0 ¼ 0:5. Cells were grown aerobically at 30°C for 24 hours. The
dots represent the mean N(t) of three independent replications, the bars the corresponding
standard deviation. After a lag phase of about 2 hours, the cells start to grow exponentially and
reach the stationary phase after about 14 h of growth. For the non-selective growth experi-
ments used to test the predictions of the Pólya urn model, cells were grown for 11.5 h to ensure
exponential growth conditions.
(TIF)

S3 Fig. Additional initial conditions measurements. The experimental distributions (bars)
are measured from 120-well ensembles, the average N0 and x0 from those sets the parameters
for the simulated distributions. The theoretical average distribution (solid line) is the average
of the same distributions generated for 84 sets of 120 wells. Using that average we calculate
three Wilson binomial confidence intervals (gray areas). Experiments and theory agree within
statistical error: the distribution of sizes (panels (a) and (c)) follows a Poisson distribution. The

raggedness of the distribution of x for at small �N0 (see panel (b) and Fig 3(b) in main text) is
due to a small size effect: since xmust be a simple fraction, when N0 is small only a few values

are available (see main text). This effect disappears for average initial sizes �N0 ’ 10 (see panel

(d)). Parameter values: �N0 ¼ 5:75, �x0 ¼ 0:43 (a) and (b); �N0 ¼ 26:49, �x0 ¼ 0:45 (c) and (d).
(TIF)

S1 Table. Comparison between results from our experiments and those in [9].While experi-
ments for constant-sized populations of Drosophila observe significant fixations within the
first tens of generations, we instead observe freezing of the probability distribution for the pop-
ulation composition, without any fixation.
(PDF)

S2 Table. Comparison of growth and pyoverdine production per cell of P. putida KT2440
and 3E2. Separate cultures of producer (P. putida KT2440) and non-producer (P. putida 3E2)
were grown in iron-limiting (no addition of FeCl3) and iron-replete medium (addition of
200 μM FeCl3) at 30°C. The cell density was measured at 600 nm, and specific growth rates
were calculated from density values of the exponential phase. The pyoverdine production was
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determined by fluorescence emission measurements (excitation 400 nm, emission at 460 nm).
The pyoverdine production per cell represents the ratio of pyoverdine fluorescence and optical
density measured after 24 h of growth. The values in the table are averages over a minimum of
five experiments, with the corresponding standard deviation. The fluorescence value for the
non-producing mutant in iron-limiting medium is 0 because the culture failed to grow.
(PDF)
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Video: Time evolution of composition distribution.

https://vimeo.com/108884249
The distribution of compositions x first broadens due to demographic noise, but soon “freezes” to a steady

state. The steady state form is maintained as long as the populations grow. Parameter values are N̄0 = 10,
x̄0 = 0.33 (as for Fig. 2).

Exact calculations for steady-state composition distribution and moments.

Calculation of probability distribution.

Each population in the ensemble is initialized with A0 individuals of type A and B0 of type B. In the
general case, A0 and B0 are independent random variables for each population with distributions P (A0) and
P (B0). All populations evolve for ∆N reproduction events, of which a random amount ∆A generate new
A-individuals. From the mathematical literature [35], it is well-known that ∆A follows a beta-binomial, with
A0, B0 and ∆N as parameters. The fraction of A-individuals x, then follows the probability

P (x) =
∑

A0,B0

P (A0)P (B0)P (∆A = x(A0 +B0 + ∆N)−A0|A0, B0,∆N) , (3)

where the sums run over all allowed values of their respective indices. P (∆A = k|A0, B0,∆N) is the
probability of ∆A being equal to k, given the values of A0, B0 and ∆N . The sum may easily be performed
numerically. For the moments of the distribution there are, however, also closed-form analytic expressions.

Exact calculation of asymptotic moment values

Let 〈·〉0 be the average over the initial conditions, 〈·〉∆A be an average over ∆A, and 〈·〉 be an average over
both quantities. From the properties of the beta-binomial distribution we know that, for a given initial
condition, we have

〈∆A〉∆A =
∆NA0

A0 +B0
, (4)

Var[∆A] =
∆NA0B0(A0 +B0 + ∆N)

(A0 +B0)2(A0 +B0 + 1)
. (5)

For the mean of 〈x〉, one obtains

〈x〉 (4)
= 〈x0〉0 = x̄0 .

Hence, the average composition is exactly conserved throughout the time evolution of the populations. In
other words, the stochastic process is a martingale.
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For the variance we obtain

Var[x] =

〈(
A0 + ∆A

A0 +B0 + ∆N

)2
〉
− 〈x0〉20 (6)

=

〈
A2

0 + 2A0 〈∆A〉∆A + Var[∆A] + 〈∆A〉2∆A

(A0 +B0 + ∆N)2

〉

0

− 〈x0〉20 (7)

(4)
=

〈(
A0

A0 +B0

)2

+
Var[∆A]

(A0 +B0 + ∆N)2

〉

0

− 〈x0〉20 (8)

(5)
= Var[x0] +

〈
∆NA0B0

(A0 +B0)2(A0 +B0 + ∆N)2(A0 +B0 + 1)

〉

0

(9)

= Var[x0] + 〈x0(1− x0)〉0
〈

1

N0 + 1

∆N

N0 + ∆N

〉

0

. (10)

For long times (i.e., ∆N � 1), ∆N +N0 ' ∆N and (10) reduces to

Var[x]→ Var[x0] +

〈
1

N0 + 1

〉

0

〈x0(1− x0)〉0 . (11)

The argument up to here is completely independent of the particular choice of initial conditions. If the initial
distribution is known, we may even make the value of the variance more explicit. In particular, consider the
distribution we obtain from experiments: in each well, N0 is Poisson-distributed with mean N̄0. Then one
gets 〈

1

N0 + 1

〉

0

=
1− e−N̄0

N̄0
. (12)

Within each well of (random) size N0 there is an initial random number A0 of A-individuals, which follows a
Binomial distribution with parameters N0 and x̄0. For this choice of distribution, it is possible that N0 = 0,
which would lead to an undetermined value of x0 = A0/N0, and therefore also for the average 〈x0〉. We can
solve this problem by redefining x0:

x0 :=

{
x̄0 , N0 = 0
A0
N0

, otherwise
(13)

so that x0 and its average have definite values, and 〈x0〉0 = x̄0. With this we can compute the second
moment of x0:

〈x2
0〉0 =

∞∑

N0=1

e−N̄0
N̄N0

0

N0!





N0∑

A0=0

(
N0

A0

)
x̄A0

0 (1− x̄0)N0−A0
A2

0

N2
0



+ x̄2

0e−N̄0 . (14)

The sum inside the braces can be solved using exponential and binomial series and yields

〈x2
0〉0 = x̄2

0 + x̄0(1− x̄0)e−N̄0

∞∑

N0=1

N̄N0
0

N0!N0
. (15)

The remaining series is an exponential integral (Ei), and therefore

Var[x0] = x̄0(1− x̄0)e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
=: x̄0(1− x̄0)ϕ(N̄0) , (16)

where we defined ϕ(N̄0) := e−N̄0
[
Ei(N̄0)− γ − ln(N̄0)

]
. Then the variance of x reads

Var[x] = Var[x0] +
1− e−N̄0

N̄0
〈x0(1− x0)〉 (17)

= x̄0(1− x̄0)

[
ϕ(N̄0) +

1− e−N̄0

N̄0

(
1− ϕ(N̄0)

)
]
. (18)
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For large N̄0, through an asymptotic expansion [47],

Ei ' 1

N̄0
eN̄0

N̄0−1∑

m=0

m!N̄−m0 − 1

3

√
2π

N̄0
, (19)

ϕ(N̄0) can be approximated by

ϕ(N̄0) ' 1

N̄0

N̄0−1∑

m=0

m!N̄−m0 − e−N̄0

[
1

3

√
2π

N̄0
− γ − ln(N̄0)

]
. (20)

To leading order in N̄0, then, the variance of x becomes

Var[x] = x̄0(1− x̄0)
2

N̄0
,

in perfect agreement with our approximate results based on Master equations (Eq. (2) in main text, see also
below).

Approximate calculations for the time evolution of the distribution mo-
ments

Using the Master Equation for the number of individuals of each strain (1), we are able to obtain the time
evolution of the first three moments of the distribution of x. Equation (1) is sometimes called “Simple Growth
Equation” and can be exactly solved (see, for example, [38]) using generating functions like

F (a, t) :=
∑

NA

aNA P (NA, t). (21)

To approximate the time evolution of the first three moments of x, however, we do not need the full
solution, but only the first three moments of NA and NB. To this end, we insert the Master Equation (Eq.
(1) in main text) in the definition of the generating function to get the time derivative for F (a, t):

d

dt
F (a, t) =

(
−a+ a2

)
∂aF (a, t). (22)

To obtain the time evolution of the nth moment, we apply the nth derivative with respect to a on both sides
of equation (22), and solve for the corresponding moment. For the first three moments, the solution is

〈NA〉 = etK1 , (23)

〈N2
A〉 = et(et − 1)K1 + e2tK2 , (24)

〈N3
A〉 = et

(
−3et + 2e2t + 1

)
K1 + 3e2t

(
et − 1

)
K2 + e3tK3 . (25)

K1,K2,K3 are integration constants, which depend on the initial conditions. We consider the case of Poisson
initial conditions. This means that the initial number of A is Poisson-distributed with mean value N̄A,0,

〈NA(t = 0)〉 !
= N̄A,0 , (26)

and, since for the Poisson distribution the variance equals the mean, we get
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VarNA(t = 0)
!

= N̄A,0 . (27)

Employing these conditions in the solutions of the differential equations we found in Eq. (23) and (24), we
get

〈NA〉 = etN̄A,0 , (28)
VarNA = et(2et − 1)N̄A,0. (29)

By the known properties of the Poisson distribution, the skewness of our initial distribution equals to
1/
√
N̄A,0. Using Eqs. (25), (28), and the definition of the skewness, we obtain the general time evolu-

tion of the skewness

v(NA) =
N̄A,0

(
6e2t − 6et + 1

)
et

(
N̄A,0 (2et − 1) et

)3/2
. (30)

For NB, the calculations are analogous. Note also that all calculations were exact so far.
With the moments of NA and NB we can find the (approximate) time evolution of variance and skewness

of x = NA/(NA + NB). For the mean of x we have already seen in the exact calculation (see Eq. (6)) that
it does not change with time, and hence its time evolution is already known.

To calculate the time evolution of the variance of x, we consider x as a function of NA and NB:

x(NA, NB) =
NA

NA +NB
. (31)

Using the time independence of the mean (〈x(NA, NB)〉 = x(〈NA〉, 〈NB〉)), a bivariate Taylor expansion
around (〈NA〉, 〈NB〉), and the time evolution of the moments, Eqs. (28) and (30), we get for the variance of
x:

Varx = 〈[x(NA, NB)− 〈x(NA, NB)〉]2〉 (32)

=
〈

[x(NA, NB)− x(〈NA〉, 〈NB〉)]2
〉

(33)

= 〈[x′NA
(〈NA〉, 〈NB〉)(NA − 〈NA〉)+ (34)

+ x′NB
(〈NA〉, 〈NB〉)(NB − 〈NB〉) +O

(
N−2

A , N−2
B

)
]2〉 (35)

=
〈NB〉2
〈N〉4 VarNA +

〈NA〉2
〈N〉4 VarNB +O

(
N−2

A , N−2
B

)
(36)

=
(2− e−t)
N4

0

NB,0NA,0 (NA,0 +NB,0) +O
(
N−2

A , N−2
B

)
(37)

=
2− e−t

N̄0
x̄0(1− x̄0) (38)

−→
t→∞

2

N̄0
x̄0(1− x̄0) (39)

From this we obtained Eq. (2) in main text. For infinite times the approximate result for the variance
matches the exact one of Eq. (11).

The skewness of the x distribution is calculated analogously:
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v(x) =

〈(
x(NA, NB)− x(〈NA〉, 〈NB〉)√

Varx

)3
〉

(40)

=
x0e
−2t
(
12x2

0e
2t − 12x2

0e
t + 2x2

0

)

N2
0

(
x0
N0

(−2x0et + x0 + 2et − 1) e−t
)1.5

+
x0e
−2t
(
−18x0e

2t + 18x0e
t − 3x0 + 6e2t − 6et + 1

)

N2
0

(
x0
N0

(−2x0et + x0 + 2et − 1) e−t
)1.5 +O

(
N−2

A , N−2
B

)
. (41)

Comparison of initial and steady-state distributions of x, and entropy of
the steady state distribution conditioned on the initial one.

Figure 5: Initial and steady state distributions, relative entropy. Panels (a),(b),(c): Initial and
final distributions of x for three regimes of N̄0. When N̄0 is very small or very large (panels (a) and (b)),
the evolutionary fate of the population is largely determined by the initial population sampling. Therefore,
the initial distribution (red bars) and the steady-state one (green bars) look qualitatively very similar. For
intermediate values of N̄0, however, population growth becomes more important, and the distributions look
very different. The amount of composition values the population can access through growth can be quantified
looking at the “unpredictability” of the steady-state composition, once the initial one is known: the more
unpredictable, the more are made accessible by growth. Mathematically, the measure for this is called
conditional entropy : the higher the entropy, the more unpredictable the outcome. Panel (d) shows the
conditional entropy as function of N̄0. Indeed, very small or very large initial populations experience little to
no additional noise from growth, while in populations with intermediate values of N̄0 (N̄0 ' 15) growth is a
major source of demographic noise. (Parameter values: N̄0 = 2 (a), N̄0 = 2000 (b), N̄0 = 20 (c); x̄0 = 0.25
in all panels)
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We simulate an ensemble of populations starting from Poisson initial conditions, and track their time
evolution until the x distribution freezes. Once it freezes, we can build a joint histogram of initial and final
compositions, which approximates the joint distribution Pjoint(x0, xf ). From Pjoint we can obtain the initial
and final distributions as its marginal distributions, integrating over all values of xf and x0, respectively.
The joint information (Shannon) entropy is defined as [48]

Hjoint(x0, xf ) = −
∫ 1

0
dx0dxfPjoint(x0, xf ) log(Pjoint(x0, xf )) . (42)

The marginal entropies H(x0) and H(xf ) are defined, analogously, through integrals only of P (x0) over x0,
and P (xf ) over xf , respectively. The conditional entropy of the final distribution given the initial is defined
as

H(xf |x0) = Hjoint(x0, xf )−H(x0) . (43)

It measures the amount of information necessary to describe the final distribution, once all information
about the distribution of x0 is known. Therefore, H(xf |x0) provides a measure of how entropic (or “noisy”)
growth itself is [49]—or, in other words, how many different final compositions are possible given the initial
condition. Figure 5(d) shows H(xf |x0) from repeated simulations, all with the same initial distribution
form, the same x̄0, but different N̄0. For very small N̄0 (of the order of one or two individuals) the group
formation almost completely determines the fate of populations: most populations start fixated, many with
just a single founder individual, and the composition of each well remains the same during growth. The
path followed by x in each population during time is a straight line, as the compositions stay constant.
Therefore, x for different populations follow in time paths that do not cross or “mix”. Growth produces very
little demographic noise, and its conditional entropy tends to zero. For very large N̄0 (of the order of a few
hundreds), the group sampling is again central to determine the final distribution. Very large populations,
in fact, all start with similar compositions (according to the Law of Large Numbers), and their compositions
are difficult to change, as each individual event has little impact. The composition distribution changes
very little before freezing; time evolution paths of different populations “mix” very little. Entropy in this
regime saturates for increasing initial sizes, and is rather low. Between the small size regime (where paths
do not “mix”) and the large size regime (where size limits “mixing”), we find a window where populations are
small enough to significantly change their composition, but also large enough to not start fixated. This is
the region where the conditional entropy peaks, and growth is the most important in determining the final
distribution.

Intuitively, the difference in variance between initial and final distribution could provide an alternative
measure of the noise introduced by growth. However, of all x distributions between 0 and 1 with fixed
x̄0, the one with maximal variance is the one for which x is only 0 or 1, i.e., when all populations start
off fixated. In this case, the compositions never change during growth and the variance stays constant.
Moreover, independently on the choice of initial distribution, the difference between initial and steady-state
variance decreases for increasing N̄0 (see Eq.(11)). Therefore, all considerations on noise sources based on
variance would indicate that growth matters more when initial populations are smaller, in contrast with our
observations.

Drosophila P.Putida
# of populations 107 120
Initial pop. size 16 ∼ 10
Max. # of generations 19 16
Pop. size Constant Growing
Outcome Increasing number of fixations No fixation, freezing

Table 1: Comparison between results from our experiments and those in [9].While experiments for
constant-sized populations of Drosophila observe significant fixations within the first tens of generations, we
instead observe freezing of the probability distribution for the population composition, without any fixation.
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Figure 6: Growth curve of a mixed population. The population consists of pyoverdine producer (P.
putida KT2440) and non-producer (P. putida 3E2) under non-selective (iron replete) conditions. Individual
precultures of the strains were mixed and diluted in iron replete medium to yield N̄0 = 4 (in 150 µL), and
x̄0 = 0.5. Cells were grown aerobically at 30°C for 24 hours. The dots represent the mean N(t) of three
independent replications, the bars the corresponding standard deviation. After a lag phase of about 2 hours,
the cells start to grow exponentially and reach the stationary phase after about 14 h of growth. For the
non-selective growth experiments used to test the predictions of the Pólya urn model, cells were grown for
11.5 h to ensure exponential growth conditions.

Specific growth rate (h−1) Fluorescence per cell (a.u.)
Iron conc. (µM) KT2440 3E2 KT2440 3E2

0 0.058±0.006 no growth 244.00 ± 21.3 0 ± 0
200 0.152±0.026 0.146±0.017 1.56 ± 0.27 0.93 ± 0.10

Table 2: Comparison of growth and pyoverdine production per cell of P. putida KT2440 and 3E2.
Separate cultures of producer (P. putida KT2440) and non-producer (P. putida 3E2) were grown in iron-
limiting (no addition of FeCl3) and iron-replete medium (addition of 200 µM FeCl3) at 30°C. The cell density
was measured at 600 nm, and specific growth rates were calculated from density values of the exponential
phase. The pyoverdine production was determined by fluorescence emission measurements (excitation 400
nm, emission at 460 nm). The pyoverdine production per cell represents the ratio of pyoverdine fluorescence
and optical density measured after 24 h of growth. The values in the table are averages over a minimum of
five experiments, with the corresponding standard deviation. The fluorescence value for the non-producing
mutant in iron-limiting medium is 0 because the culture failed to grow.

7



Figure 7: Additional initial conditions measurements. The experimental distributions (bars) are mea-
sured from 120-well ensembles, the average N0 and x0 from those sets the parameters for the simulated
distributions. The theoretical average distribution (solid line) is the average of the same distributions gen-
erated for 84 sets of 120 wells. Using that average we calculate three Wilson binomial confidence intervals
(gray areas). Experiments and theory agree within statistical error: the distribution of sizes (panels (a) and
(c)) follows a Poisson distribution. The raggedness of the distribution of x for at small N̄0 (see panel (b)
and Fig. 3(b) in main text) is due to a small size effect: since x must be a simple fraction, when N0 is small
only a few values are available (see main text). This effect disappears for average initial sizes N̄0 ' 10 (see
panel (d)). Parameter values: N̄0 = 5.75, x̄0 = 0.43 (a) and (b); N̄0 = 26.49, x̄0 = 0.45 (c) and (d).
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Part II

Phenotypic Heterogeneity in ColicinE
Release
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2Post-transcriptional Regulation of ColicinE
Expression in Escherichia Coli

Project Abstract and Contributions The secretion of toxins is a potent mechanism for bac-
teria to kill other strains in the competition for resources. In this project, I analysed (together
with Mathias Schwarz and Erwin Frey) the regulatory network (see 2.1.2) of the toxin
ColicinE2. The ColicinE2 system is activated by stochastic SOS responses (see 2.1.3), and
regulates the production and release of the toxin using three hierarchically ordered compo-
nents (see 2.1.4). We developed a rate equation model for this system by introducing effective
quantities and reducing the complexity of the regulatory network with a time scale separation
approach. A parameter analysis of the resulting system revealed that the hierarchical nature of
the network reduces internal fluctuations, and allows for a fine-tuned response to SOS signals.
Moreover, we coupled our reduced system to a stochastic SOS responsemodel and reproduced
broad lysis time distributions. These distributions are also found in experiments from the
group of Madeleine Opitz. Our work on this model and its analysis have been published in
the research paper “Hierarchical Post-transcriptional Regulation of Colicin E2 Expression in
Escherichia coli”, which is reprinted in section 2.5. In a subsequent experimental study on
five different strains containing the ColicinE2 system, Alexandra Götz and Madeleine
Opitz found experimental evidence that single stranded DNA (ssDNA) in the cells acts as
fourth regulative component. Together with Erwin Frey, I extended the model for ColicinE2
regulation with this fourth component, and could show that the additional regulator is indeed
necessary to reproduce the experimental results. Moreover, we complemented the model
analysis by investigating the influence of the different plasmid compositions in the investigated
strains. The extension of the model with ssDNA, as well as the analysis of the experimental
and theoretical results, are detailed in the paper draft “CsrA and its regulators control the
time-point of ColicinE2 release in Escherichia coli”, which is reprinted in section 2.6 (and also
in the PhD thesis of Alexandra Götz).
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2 Post-transcriptional Regulation of ColicinE2 Expression in Escherichia Coli

Figure . |Graphical abstract of this project: (A) SOS responses (see 2.1.3) trigger tran-
scription in the ColicinE2 system (for details, see 2.1.4), which produces two different
mRNA transscripts. (B) This transcript is hierarchically regulated by CsrA (see 2.1.4) and,
as we show later, also sRNA. Starting from these interactions, we developed the (C) reduced
ColicinE2 model (see 2.3), which we finally (D) coupled to a stochastic SOS response
system. Triggering this system with an SOS signal resulted in a broad distribution of lysis
times (see 2.3).

. Background

.. Gene Expression in Prokaryotes

Proteins play a fundamental role in virtually every process in living cells [20]. Despite the large
number of different proteins, all are built from only 20 different amino acids. The “building
plan” to create a protein from these “building blocks” is stored on DNA in form of genes. In
bacteria, which are our object of study here, DNA is either located in the nucleoid, or in form
of small DNA rings called plasmids. For many functions in cells, several proteins are required.plasmid

Therefore, the necessary genes are often grouped together on the DNA, and form a functional
unit known as operon.operon
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2.1 Background

The synthesis of proteins from the genetic information occurs in a complex process, which
is called gene expression. It comprises two main steps: First, the gene sequence is transcribed
to a mRNAmolecule, which then is translated into the protein. Transcription starts when transcription

the enyzme RNA polymerase binds to the so called promoter region, which lies at the begin-
ning of every operon. It then moves along the DNA, producing a mRNA transcript of the
DNA sequences it passes. The RNA polymerase continues until it reaches a transcriptional
terminator, where the mRNA is released to the cytosol. The translation of this mRNA to a translation

protein then happens in ribosomes [20]

.. Gene Regulation

The aforementioned fundamental role of proteins makes it obvious that their production
needs to be regulated. To make sure that the right amount of proteins is synthesised at the
right time, a plethora of gene regulatory mechanisms exists. These mechanisms fall into two
categories: They either act transcriptional, or post-transcriptional [20].
Transcriptional regulation controls the production of mRNA transcripts. An important transcriptional

example are repressor proteins, which bind to the promoter region and thus prevent or impede repressor

the polymerase from binding to the DNA. Post-transcriptional mechanisms, however, act on post-transcriptional
already produced mRNA. A common example are proteins binding to mRNA, often referred
to as sequestration. The resulting mRNA-protein complexes then cannot be translated to sequestration

proteins anymore.
In general, several regulatory mechanisms act in concert to synthesize the correct amount

of proteins needed in the cell. Once produced, the proteins can act in turn as regulators of
gene expression, including their own. The interactions of various regulating proteins can regulatory network

become very complex, and include structures like feedback loops. An example for such a so
called regulatory network is the SOS Response System.

.. SOS Response System

Gene regulation mechanisms play a crucial role in the reaction to environmental signals like
nutrient availability, radiation or population density. Here, we consider the SOS response SOS response

system [22], which is activated when the cell suffers DNA damage due to severe environmental
stress, and triggers repair and defence mechanisms in the cell (for an example, see 2.1.4).
The system involves two proteins, RecA and LexA [23, 24]. LexA acts as a transcriptional
repressor to both itself and RecA, but it also represses the expression of several repair and
defence systems (see Fig. 2.2). Therefore, when the cell is in a normal non-SOS state, LexA
keeps its level just high enough to keep RecA as well as the repair and defence proteins on a
low basal level.
In the case of DNA damage, however, RecA proteins become catalysts for LexA cleavage [21,

23], causing the LexA levels to go down. Consequently, the cell starts to react to the stress,
as the levels of LexA-repressed proteins go up. This includes RecA, thus reinforcing the
catalytic effect. As LexA is autoregulated, its production also increases. Eventually, LexA
production becomes so high that the RecA catalysis saturates, and LexA pushes the synthesis
of all involved proteins back to the initial level. This cycle continues as long as the DNA is
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2 Post-transcriptional Regulation of ColicinE2 Expression in Escherichia Coli

Figure . | Diagram of the regulatory network of the SOS response system: The reg-
ulatory network consists of the proteins LexA and RecA, and the corresponding genes,
lexA and recA. Flat-headed arrows represent negative regulation, normal arrows represent
production. For a detailed description of the dynamics, see 2.1.3. Image detail taken from
Ref. [21]

damaged.
From these regulatory interactions we can see the interesting property that, during SOS

responses, the systems repressed by LexA are not activated continuously, but in bursts. Exper-
iments [25] (and ensuing mathematical models [21]) also showed that these bursts indeed
occur stochastically when the SOS system is triggered.

.. The Bacteriocin ColicinE and its Production and Release System

In the subsection 2.1.3 we discussed how SOS responses trigger repair and defence mech-
anisms. An important class of defence mechanisms is the release of toxins, referred to as
bacteriocins [26]. These are proteins (or peptides) produced by bacteria and released to the
environment to kill closely related bacteria. Along with the toxin, every bacteriocin producing
cell also has to synthesize immunity proteins, which prevent them from poisoning themselves
and cells of their own strain.
In this project, we consider the bacteriocin ColicinE2, which is produced by some strains of

E. coli [27]. The genetic information for the ColicinE2 system is located in a single operon on
specific plasmids[28] (see also Fig. 2.1A). The promoter of the ColicinE2 operon is repressed
by LexA, and thus connected to the SOS response system. Downstream from the promoter, the
operon contains three genes: First, the gene for the toxin itself, second a gene for the immunity
protein, and third a gene for a protein inducing cell lysis [29]. The latter is necessary as
ColicinE2 cannot be secreted through the cell wall (like many other colicins). This means that
ColcinE2 producing cells must die when they want to release their toxin into the environment.
Apart from the promoter and the genes, the operon also has two transcriptional terminators,
located before and after the lysis gene. Therefore, two different mRNA are produced during
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2.2 Motivation and Research Question

transcription: A short mRNA with the toxin and immunity protein genes, and a long mRNA
containing all three genes [30]. Most of the transscripts are short mRNA.
As the transcription of the long mRNA has fatal consequences for the cell, its translation

is strongly regulated (in contrast to the short mRNA). This happens via a specific DNA
sequence (Shine-Dalgarno sequence), to which the regulator protein CsrA binds [30] (see also
Fig. 2.1B). CsrA is highly abundant in E. coli cells, as it plays a major role in many regulatory
networks[31, 32]. Previous studies found that the main sequestering element of CsrA are
short RNA molecules (sRNA), which thus act as regulator of CsrA [31–36]. This means that
long mRNA is subject to a hierarchical form of regulation: It is regulated by CsrA, which itself
is regulated by sRNAs [37].

. Motivation and Research Question

In the group of Madeleine Opitz, various aspects of ColicinE2 producing bacteria have been
studied, for instance in the context of range expansions of cyclic dominant strains [38].The
regulatory networkwas also investigated, with a particular focus onhow the amount of released
toxin is connected to the lysis protein [39]. These studies highlighted that, in many situations,
ColicinE2 release exhibits stochastic effects like heterogeneous lysis times. Moreover, as
alreadymentioned in subsection 2.1.3, the SOS response system is known to produce stochastic
signals to the cell, rather then continuous activation. It was not known how such a stochastic
signal is transduced through the regulatory network of ColicinE2, and what consequences
this has for the release of the toxins. This raised the first main research question of this project:

How does stochasticity affect ColicinE2 regulation?

As pointed out in 2.1.4, the genetic code for ColicinE2 is located on plasmids. During the ex-
periments for different ColicinE2-related projects, strains with different plasmid compositions
were created. Interestingly, these strains exhibited differences in the delays between toxin and
lysis protein production, even though they were genetically identical otherwise. This result
suggested that ssDNA, which accumulates as an intermediate in the plasmid replication [40],
could be a so far unknown regulator in the ColicinE2 system, leading to our second research
question:

What is the role of ssDNA in ColicinE2 regulation?

. Summary of Results

Simplified, comprehensive mathematical model. We collected the known interactions of
the ColicinE2 regulatory network and formulated it as coupled rate equations of the regulatory
elements and their complexes. As the resulting system of equations is very large and unhandy,
we simplified it in several steps. First, we determined the mean number of occupied binding
sites of the sRNAs, and broke the sRNAs up into effective sRNAs with a single binding site.
Second, we assumed fast complex equilibration, and introduced a coupled degradation rates,
kM and kS, for the complex formation with CsrA. This accounts for the fact that components
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2 Post-transcriptional Regulation of ColicinE2 Expression in Escherichia Coli

bound in complexes cannot function in regulation any more. The result was a simplified
model involving only three dynamical components (long mRNSM, CsrA A, and effective
sRNA S), but which still captures the hierarchical regulation:

∂tM = αM − δMM− kMM ·A,
∂tS = αS − δSS− kSS ·A,
∂tA = αA − δAA− kMM ·A− kSS ·A.

The degradation rates δA,M,S and kM,S are already known from previous work or could
be measured, such that only the production rates α needed to be fitted to experimental
abundance measurements [41]. Note that some parameter values are different in 2.5 and 2.6;
this originates from more precise measurements for kM,S in the latter publication. Moreover,
we added an A-dependent growth rate for S in 2.6. This step was motivated by studies
reporting this regulatory interaction [41] and provided more realistic fitting results.

Thresholdbehaviour in steady state. We employed the three-component model to calculate
the steady state abundances for a broad range of long mRNA and effective sRNA synthesis
rates (with fixed CsrA production). This parameter study resulted in a threshold behaviour
which is already known from other systems [42, 43]: The long mRNA production rate needs
to exceed a threshold value for free long mRNA to exist in the system. More specifically,
below a threshold mRNA production rate, the long mRNA production is so low that almost
immediately free CsrA binds to it; above the threshold, the roles reverse, and only free long
mRNA exists. The threshold is reduced with increasing sRNA production, as the sRNA is
also binding free CsrA. Adjusting the sRNA production thus means adjusting the threshold.

Third component dampens fluctuations. To investigate the intrinsic fluctuation of the three-
component model, we reformulated the rate equations as master equations. We then used
a van-Kampen approximation approach [44, 45] to calculate the first two moments, which
allowed us to to obtain the Fano factor (variance divided by mean) [3] of the long mRNA
abundance (for the same range of long mRNA and effective sRNA synthesis rates as we used
for our steady state results). We find that, close to the threshold long mRNA production
rate, fluctuations are the largest, which agrees with previous results on gene expression
thresholds [46, 47]. When the sRNA production is increased, this general behaviour remains,
but the fluctuation size decreases. This means that the presence of the CsrA regulator sRNA
helps reducing internal fluctuations.

Broad lysis time distributions We created a stochastic simulation for the three component
model [48, 49], and coupled it to the stochastic model for the SOS response by Shimoni et
al [21]. For our simulation runs, we considered a system that starts in normal state and is
then subjected to an SOS state for a well-defined, prolonged time, after which it switches back
to normal state. In the normal state, few long mRNAmolecules are produced, but noise in
the SOS system creates short and random production peaks. These are filtered out by the
regulatory network, as it takes time to reduce existing free CsrA buffer. During the SOS signals,
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2.4 Conclusions

the buffer shrink quickly. Consequently, stochastic bursts of activity create significant peaks of
long mRNA abundance, which we consider as large enough for lysis. Due to the stochasticity
of the peaks and stochastic abundances in the ColicinE2 system, each simulation run exhibits
a different lysis time. We analysed an ensemble of runs, resembling an ensemble of bacteria,
and found a broad lysis time distribution that qualitatively agrees with experimental results.

Plasmid composition affects delay time distributions The studies on ssDNA as regulator
required the creation of five genetically identical strains, which only differ in their plasmid
composition. We recreated the five different strains in our model by adjusting the plasmid
abundance parameter, and repeated the above simulation scheme for a SOS response. To be
able to replicate the experimental results, we did not compare the lysis times, but the delay
between the production of toxin and lysis protein. Increasing plasmid abundance leads to
more CsrA sequestering long mRNAs being produced, which results in a decrease of the
average delay time. However, it was impossible to bring the experimental observations in
accordance with simulation results, in particular for strains containing the original ColicinE2
plasmid. This suggested the existence of an additional, unknown regulator.

ssDNA is another regulator of CsrA Experimental results indicated that ssDNA, which are
intermediates in ColicinE2 plasmid replication, could also sequester CsrA. To analyse the role
of ssDNA as a CsrA-regulator, we introduced it as a fourth component to our system of rate
equations. To this end, we made the same assumption of fast complex equilibration as we did
for long mRNA and sRNA. We also included the ssDNA accordingly to our stochastic model,
and performed ensemble simulations to obtain distributions for the delays between toxin
production and lysis. These delay distributions allowed to be compared with experimental
measurements, which agreed both qualitatively and quantitatively. Moreover, the simulations
could predict delay distributions for wild-type bacteria, which are experimentally inaccessible.

. Conclusions

The production and release of toxins is a powerful mechanism for bacteria to increase their
fitness against competitors. A prominent example for this mechanism is the ColicinE2 system,
in which stochastic SOS signals trigger production of toxins that can only be released by
cell lysis. Because of this fatal form of toxin secretion, the release is tightly regulated on
both the transcriptional and post-transcriptional level in a well-studied regulatory network:
Long mRNA, coding for the lysis protein, is regulated by the protein CsrA, which itself is
sequestrated by sRNAs. However, the dynamical behaviour of the regulatory components
was unclear, especially in context of the stochastic SOS signals and intrinsic noise. The
first research question of this project thus was: How does stochasticity affect ColicinE2
regulation?
Stochasticity in form of noise is potentially harmful for toxin producers, as it might result in

an erroneous or premature release of toxins. This is particularly the case for ColicinE2, as its
release entails the death of its producer. One source of such unwanted noise are fluctuations
of component abundances in the regulatory network. We studied the stochastic dynamics
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2 Post-transcriptional Regulation of ColicinE2 Expression in Escherichia Coli

of the ColicinE2 system by developing a simplified, yet comprehensive model for the three
components long mRNA, CsrA and sRNA. Specifically, the model captures the hierarchical
order of the components: CsrA binds long mRNA, and sRNA binds CsrA, rendering sRNA
as the “regulator’s regulator”.
Our steady state analysis of this model showed that, for the expression of lysis proteins, the

long mRNA production needs to exceed a threshold, which is adjusted by sRNA production.
This threshold mechanism is known from similar regulatory systems [43, 50], and protects
the cell from unwanted lysis due to fluctuations or short-lived SOS signals. However, this
mechanism is prone to strong fluctuations just above its threshold value [46, 47]. When
investigating the sRNA dependence of long mRNA fluctuations, we found that, in addition to
the threshold mechanism, the hierarchical regulation reduces intrinsic fluctuations in the
component abundances. More precisely, our results show that the effectiveness of this novel
mechanism increases with the sRNA production rate, and that it disappears in the absence of
sRNA (and thus the absence of hierarchical regulation). The fluctuation-dampening effect
is particularly strong above the threshold, indicating that it has two functions here: First, to
preserve the “sharpness” (that is, the position) of the threshold, and second, to reduce the
fluctuations beyond the scope of the threshold mechanism.
These effects do not rely on specific properties of the regulating agents. We therefore

expect that hierarchical regulation poses a general mechanism to safeguard critical regulatory
networks against internal noise. The component CsrA, for instance, is a global regulator in
E. coli cells, and binds to hundreds of mRNA targets. It is therefore reasonable to assume
that the effects of hierarchical regulation are also relevant to many other post-transcriptional
regulation systems, in particular in combinations with gene expression thresholds. Moreover,
we expect that more complex hierarchical networks exist, involving more than two layers of
regulation or more than one target. Finding such networks and investigating the fluctuations
in them could be the starting point of future research.
To investigate the additional stochastic effects of the SOS response system, we implemented

a stochastic simulation of our ColicinE2 system, and connected it to a stochastic model
for the LexA-RecA system. Simulating a SOS response using this combined system then
showed that the random SOS signal peaks from the SOS system are transduced through
the regulatory network, and together with stochastic abundances in the ColicinE2 system
create heterogeneous lysis times in a population of bacteria. Thus, in the context of our
overarching question, this poses anothermechanism that creates diverse populations. Previous
studies already indicated this connection between the SOS response system and heterogeneous
expression [51, 52]; however, by simulating an ensemble of bacteria, our model allows a more
quantified view on the lysis times: We find that the lysis times in fact are broadly distributed.
As the release of toxins is triggered by environmental stress, this broad distribution enables
differentiated reactions like bet hedging to external signals. The lysis time distribution was
also the study subject of a follow-up project, see Chapter 3.
In the second part of this project, our model for the ColicinE2 system helped to identify

ssDNA as novel regulator for CsrA. Specifically, we were interested in the question: What is
the role of ssDNA inColicinE2 regulation? As the individual lysis times are hard tomeasure
in experiments, we considered the delay between the production of toxin and lysis protein in
this part of the project.
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As a first step, we used stochastic simulations of our ColicinE2 model to obtain the delay
distributions (and thus, also the average delay times) of five different strains. These strains
were genetically identical, but contained different numbers of reporter and ColicinE2 plas-
mids. In experiments, the five strains differed significantly in their average delays. These
differences could not be recreated by our model in the simulations. More specifically, the
strains containing ColicinE2 plasmids exhibited particularly short delays, indicating that this
plasmid creates a so far unknown regulatory interaction. Our conjecture was confirmed, as
experiments identified ssDNA to be a possible regulator of CsrA, which is an intermediate
in the replication of ColicinE2 plasmids. We introduced ssDNA as fourth component to
our model, and repeated the simulations for the five strains. The relations and values of the
resulting average delay times were in good agreement with the experiments, and therefore
support the experimental findings that ssDNA binds and thus regulates CsrA. Our results
show that experimental measurements allow predictions from numerical models, which
then in turn can support experimental hypotheses. It thus constitutes a nice example for a
fruitful cooperation between theory and experiment. However, while the extended model
predicted abundances that were within plausible ranges, it was not able to exactly reproduce all
quantitative relations found in previous experimental studies. We attribute this to the fact that
the model is limited to a small subsystem of E. coli gene regulation; many of its components
are integral parts of other regulatory networks. This particularly holds true for CsrA, which is
a major regulator for several functions in E. coli. Consequently, the experimental results are
also affected by interactions that our model does not account for.
To our knowledge, this study is the first time that ssDNA has been reported to be part of a

regulatory network. This discovery thus has possible implications for many CsrA regulated
systems in cells containing ColicinE2 plasmids. Moreover, we expect the regulatory effects
of ssDNA also to be relevant for other post-transcriptionally regulated systems that involve
plasmids with the same replication mechanism [53, 54] as ColicinE2; this is because ssDNA
contains the same genes and thus the same binding motifs as the mRNA transcripts.
The results from this project suggest that the abundance of plasmids can play a crucial

role in regulatory networks. For simplicity, we always kept the number of plasmids in our
analysis constant. However, even though the plasmid copy number controlled by a separate
system [55], the interplay of a growing plasmid number with the ColicinE2 system can have a
significant effect on the lysis time distribution. Investigating these consequences of plasmid
dynamics thus poses an interesting challenge for future studies.
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Abstract

Post-transcriptional regulation of gene expression plays a crucial role in many bacterial path-

ways. In particular, the translation of mRNA can be regulated by trans-acting, small, non-cod-

ing RNAs (sRNAs) or mRNA-binding proteins, each of which has been successfully treated

theoretically using two-component models. An important system that includes a combination

of these modes of post-transcriptional regulation is the Colicin E2 system. DNA damage, by

triggering the SOS response, leads to the heterogeneous expression of the Colicin E2

operon including the cea gene encoding the toxin colicin E2, and the cel gene that codes for

the induction of cell lysis and release of colicin. Although previous studies have uncovered

the system’s basic regulatory interactions, its dynamical behavior is still unknown. Here, we

develop a simple, yet comprehensive, mathematical model of the colicin E2 regulatory net-

work, and study its dynamics. Its post-transcriptional regulation can be reduced to three hier-

archically ordered components: the mRNA including the cel gene, the mRNA-binding protein

CsrA, and an effective sRNA that regulates CsrA. We demonstrate that the stationary state

of this system exhibits a pronounced threshold in the abundance of free mRNA. As post-tran-

scriptional regulation is known to be noisy, we performed a detailed stochastic analysis, and

found fluctuations to be largest at production rates close to the threshold. The magnitude of

fluctuations can be tuned by the rate of production of the sRNA. To study the dynamics in

response to an SOS signal, we incorporated the LexA-RecA SOS response network into our

model. We found that CsrA regulation filtered out short-lived activation peaks and caused a

delay in lysis gene expression for prolonged SOS signals, which is also seen in experiments.

Moreover, we showed that a stochastic SOS signal creates a broad lysis time distribution.

Our model thus theoretically describes Colicin E2 expression dynamics in detail and reveals

the importance of the specific regulatory components for the timing of toxin release.

Author Summary

Gene expression is a fundamental biological process, in which living cells use genetic

information to synthesize functional products like proteins. To control this process, cells
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make use of many different mechanisms. A well-studied example is the binding of expres-

sion intermediates by a cellular component in order to delay the synthesis. This mecha-

nism is known to regulate the stress-induced release of the toxin colicin E2 by E. coli
bacteria. However, experimental studies have shown that this system is not regulated by

just one component, but the interplay of several cellular components, in which the hierar-

chically ordered main components interact. Here, we create a mathematical model for the

interaction network of colicin E2 release, and study how the component levels evolve. We

show that the system is able to delay the release of the toxin. Additional components allow

to fine-tune the delay and dampen fluctuations in gene expression that would lead to pre-

mature toxin release. A comprehensive analysis of the time evolution reveals a broad dis-

tribution of toxin release times, which is also observed in experiments. This rich

dynamical behavior emerges from the interplay of regulatory components, and, due to its

generality, may also be transferred to similar regulatory networks, in particular toxin

expression systems.

Introduction

Regulation of gene expression occurs at transcriptional and post-transcriptional levels, and has

been studied intensively both experimentally and theoretically [1–10]. Bacterial stress

responses, such as the well-studied production and release of the toxin colicin E2 in Escherichia
coli, represent one setting in which post-transcriptional control is crucial [11–15].

Colicins are toxic proteins produced by certain E. coli strains in response to stress as a

means to kill bacteria that compete with them for the same resources. More specificly, colicin

E2 is a bacteriocin, which damages the DNA of bacterial cells that absorb it (a DNAse). Once

synthesized, colicin E2 forms a complex with an immunity protein, thus protecting its pro-

ducer from its otherwise lethal action [14, 16, 17]. The toxin is released only upon cell lysis,

which is triggered by the synthesis of a dedicated lysis protein [15, 18–20]. As this inevitably

entails the death of the producer cell [19], it is vital for the persistence of the population that

only a fraction of its members actually releases the toxin [14]. The genes for the colicin, immu-

nity protein and lysis protein are organized into the colicin E2 operon, which is depicted in Fig

1, together with the interaction network that controls colicin E2 expression and release.

Each of the three components is encoded by a single gene—the colicin by cea, the colicin-

specific immunity protein by cei, and the lysis factor by cel— and three regulatory regions

control their transcription: an SOS promoter upstream of the cea gene [21], and two tran-

scriptional terminators T1 and T2, located upstream and downstream of the cel gene, respec-

tively [22]. The key transcriptional regulator of the SOS operon is the LexA protein

(reviewed in [23]), marked in orange in Fig 1. LexA dimers repress the SOS promoter region

of the ColE2 operon, but also block the transcription of over 30 other SOS genes [24, 25],

many of which play an important role in DNA repair [26]. In the event of DNA damage, the

LexA dimer undergoes auto-cleavage upon interaction with RecA [27], and the transcription

of SOS genes begins. The presence of the two transcriptional terminators in the ColE2

operon results in the production of two different mRNAs: A shorter transcript (short

mRNA, marked purple in Fig 1) that encompasses only the genes for the toxin colicin E2 and

the immunity protein, and a longer transcript (long mRNA, marked green in Fig 1), which

additionally includes the lysis gene [14, 28, 29–32]. Hence, lysis can only be initiated after the

translation of long mRNA [18], and this crucial operation is regulated at the post-transcrip-

tional level, as described below.

Hierarchical Regulation of Colicin E2 Expression
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Post-transcriptional regulation makes use of many different mechanisms. Recent studies

emphasize the particular importance of non-coding sRNAs [33] for various processes in E.
coli, especially because of their ability to introduce delays and set up thresholds for transla-

tion [34–37]. This is done either directly, by sRNAs pairing with their target mRNA (sRNA-

mRNA interaction), or indirectly, by sequestering of specific mRNA-binding proteins

(mRNA-protein interaction) [2, 38, 39]. For the latter form of regulation, recent studies

highlighted the importance of the production rates of regulatory components [40]. In the

case of the ColE2 system, the translation of the long mRNA is regulated by the carbon storage

regulator protein CsrA [28], marked red in Fig 1. CsrA dimers destabilize target mRNAs by

binding to a region that includes the ribosome-binding site (Shine-Dalgarno sequence) [41].

Masking of the ribosome-binding site by CsrA thus not only represses translation of the lysis

gene but also promotes degradation of the long mRNA. However, CsrA is also recognized by

two specific sRNAs, CsrB and CsrC [42], marked blue in Fig 1. These sRNAs can therefore

sequester CsrA dimers, preventing them from binding to target mRNAs [43–45]. Thus,

translation of the ColE2 lysis gene is indirectly regulated by sequestration of CsrA. This pro-

cess, also known as “molecular titration”, exhibits ultrasensitive thresholds and has been

extensively studied [46, 47].

Fig 1. Regulation of colicin E2 expression and release. The interaction scheme is a generalized adaption of that presented by Yang

[28]. Under normal conditions, the SOS response system (yellow box) maintains a constant level of LexA dimers, which repress the SOS

promoter of the colicin E2 system (gray box). In the event of DNA damage, RecA is activated and promotes auto-cleavage of LexA. This

permits the transcription of two different mRNAs: Short mRNA codes for components of colicin immunity complexes (colicin gene cea,

immunity gene cei), whereas long mRNA additionally encodes the protein that triggers cell lysis. Translation of long mRNA is regulated by

binding of the protein CsrA to its Shine-Dalgarno sequence (SD). CsrA itself is regulated by the two sRNAs CsrB and CsrC.

Other elements: Psos: SOS promoter; T1 and T2: transcriptional terminators.

doi:10.1371/journal.pcbi.1005243.g001
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The basic interaction network that controls the ColE2 regulatory network has been stud-

ied in great detail in previous works [48–51], and many of its functional characteristics, in

particular the threshold behavior, were described for a wide range of both bacterial and

eukaryotic systems [52]. However, a detailed theoretical description of the dynamics leading

to the release of colicin is still missing, in particular the role of the hierarchically ordered

regulation involving CsrB and CsrC. In this work, we have formulated this post-transcrip-

tional network in a detailed mathematical model, constructed by analogy to studies of sim-

pler sRNA-regulated systems (for example, [33, 34, 36]). We then simplified the model by

assuming fast complex equilibration, and combining the sRNAs CsrB and CsrC into a single,

effective sRNA (see S1 Text for details). This reduced the regulation network to three rele-

vant components: free long mRNA, free CsrA and the effective sRNA (see Fig 2). We then

analyzed this simplified network in detail. In contrast to previous work [36], we give a gen-

eral analytical solution for the three component system, and derive a precise approximation

for fast and clear analysis. This analytic solution exhibits a pronounced threshold in mRNA

production due to CsrA-dependent regulation, which was also confirmed using numeric

simulations. We investigated, how this threshold depends on system parameters, and how it

affects the actual biological system. Furthermore, we have analyzed the role of fluctuations

in the post-transcriptional regulation network and how fluctuations in long mRNA expres-

sion may be dampened by sRNA. Finally, we extended our model by including the transcrip-

tional regulation, and analyzed how the system behaves during a realistic SOS response.

Previous studies have shown discrete activation peaks in LexA-repressed promoters [26]

that can lead to large fluctuations close to the threshold of mRNA expression [9]. In a sto-

chastic simulation of the complete model, we were able to reproduce this phenomenon.

Comparison with experimental data on lysis time distributions [48] also shows that our

model can explain the delayed and broadly distributed release times of colicin complexes.

This underlines the importance of stochasticity for the heterogeneous expression of colicin

E2 in E. coli populations.

Fig 2. Simplified interaction scheme for post-transcriptional regulation of long mRNA. M,A,S:

molecule numbers of free long mRNA, free CsrA dimers and the free effective sRNA; α: production rates; δ:

degradation rates; k: effective rate of coupled degradation. The interaction network (see S1 Fig) of the

regulatory system depicted in Fig 1 was reduced to a three component system. In both figures, the

corresponding components have the same colors. In particular, we combined the complex dynamics (binding,

dissociation, degradation) into an effective coupled degradation. The dynamics of sRNA complexes with N

binding sites for CsrA and production rate αS were simplified to the dynamics of an effective sRNA with one

CsrA binding site but N-times higher production rate (S1 Text).

doi:10.1371/journal.pcbi.1005243.g002
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Results

A mathematical model for post-transcriptional regulation of colicin E2

release

For our theoretical analysis, we initially developed a detailed mathematical model for the post-

transcriptional regulation of colicin E2 release. To this end, we derived a set of coupled, deter-

ministic rate equations from the interaction network depicted in Fig 1, with the corresponding

rates for transcription, degradation, binding interactions etc. as parameters. In the following,

we briefly review how we reduced the network to its core components, which comprise the

theoretical model. The interaction scheme underlying the complete model is presented in S1

Fig and further explanations can be found in the Supporting Information, where we also detail

how our model can account for sequestration by other targets of the global regulator CsrA.

As we wished to study the post-transcriptional regulation of colicin E2 expression, we

included in the model only those components that are relevant at that stage. The model there-

fore omits the short mRNA and its products. However, the rate of transcription of the long

mRNA is a crucial parameter, which is influenced by the kinetics of activation of the SOS pro-

moter, and thus by the processing of its repressor LexA. Upon DNA damage, RecA promotes

auto-cleavage of LexA dimers, thus removing inhibition of the SOS response (marked in red

in Fig 1). The LexA-RecA interaction network has recently been modeled stochastically [53].

Before including this detailed network in our final model, we focused on understanding the

post-transcriptional dynamics. To this end, we initially assumed that activation of the SOS pro-

moter occurs rapidly relative to the rates of production and degradation of the long mRNA

[54], which allowed us to approximate the transcription rate of long mRNA by an effective rate

αM (Materials and Methods). With respect to post-transcriptionally relevant components, we

were then left with long mRNA, CsrA, and the two sRNAs CsrB and CsrC, and the

mRNA-CsrA-, CsrA-CsrB-, and CsrA-CsrC-complexes.

CsrB and CsrC regulate CsrA by forming complexes with it. The two sRNAs each have sev-

eral (on average: N) CsrA binding sites, and if every occupation state of the sRNAs were to be

modeled as a separate component, a large number of coupled rate equations would need to be

added to the model. However, due to the fast dynamics of the CsrA-CsrB- and CsrA-CsrC-

complexes, and their virtually identical biochemical behavior, we were able to reduce the

sRNA interaction to a single equation for an effective sRNA, with only one binding site and

transcription rate NαS (see Materials and Methods). As a result, the mechanisms of complex

formation, dissociation and degradation are replaced by an effective coupled degradation of

complex partners. Despite the different processes that are integrated to effective ones, the effec-

tive sRNA still resembles the dynamical behavior of CsrB/CsrC. A detailed derivation of the

simplified system of rate equations can be found in S1 Text. The final post-transcriptional

model is thus reduced to a set of three coupled, deterministic rate equations that capture the

behavior of the free long mRNA (M), free CsrA dimers (A), and an effective free sRNA (S)

component with a single CsrA binding site:

_M ¼ aM � dMM � kMMA; ð1Þ

_A ¼ aA � dAA � kMpMMA � kSpSAS; ð2Þ

_S ¼ NaS � dSS � AkSS; ð3Þ

where (1 − pM) and (1 − pS) are the probabilities for CsrA to survive the coupled degradation.

A graphical illustration of this differential equation system is depicted in Fig 2. Note that in the
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model the quantitiesM, A and S represent the abundance of the corresponding free compo-

nents. Once a long mRNA, sRNA, or CsrA dimer binds to some other component, it loses its

function and is thus removed from the model system.

For the analysis of our model, we had to determine production, degradation and binding

rates. The particular values used are listed in S1 Table. As far as possible, we chose values that

are measured in studies on either the same or comparable systems (see S1 Text for details). In

the other cases, we tried to derive plausible parameters from known factors that influence the

particular rate. A detailed motivation and derivation of these rates is given in chapter 2 of S1

Text.

Post-transcriptional regulation yields a tunable rate threshold in mRNA

abundance

We analyzed the reduced post-transcriptional model by first calculating its steady state. In

order to obtain a cleaner and simpler result, we derived an approximation (see Materials and

Methods) for the steady state solution, which agreed very well with the results of numerical

simulations (see S2 Fig). Using these simplified equations, we then investigated the impact of

the rates of production of long mRNA (αM) and sRNA (αS) on the levels of the three compo-

nents. The results (see Fig 3) reveal a linear threshold that appears at the same position for all

three components. The threshold divides the parameter space into two regimes, in which

either CsrA or long mRNA and sRNA have a non-zero abundance. This is due to the coupling

between the degradation of CsrA and the abundance of both long mRNA and sRNA, such that

the presence of CsrA dimers excludes that of long mRNA and sRNA, and vice versa. This

mechanism in turn controls the release of colicin-immunity complexes, since a sufficiency of

CsrA dimers ensures reliable repression of the long mRNA and prevents synthesis of the lysis

protein.

From the aforementioned analytic solution we calculated the threshold position as a func-

tion of the system parameters (S1 Text). We found that the threshold for non-zero levels of

long mRNA lies exactly at the point where the production rate of CsrA αA is equal to the sum

of transcription rates for long mRNA αM and sRNA αS (S1 Text). Thus, we observed no

expression of long mRNA in the regime αM + αS< αA, as shown in Figs 3A and 4. We find the

threshold to be sharp, and attribute this to the very slow degradation of CsrA compared to

long mRNA and sRNA [55, 56].

Apart from the threshold itself, we find that the levels of free CsrA and free sRNA predicted

by our steady state analysis are consistent with experimental in-vivo values determined by pre-

vious studies [43, 57]. Moreover, our results are also consistent with the total amount of CsrA

as well as its ratio to sRNA (S1 Text).

So far, we have demonstrated that our three-component system is capable of producing a

threshold behavior. However, it has been shown previously that a mutually exclusive produc-

tion of sRNA and a target mRNA is possible with just two components [36]. The question thus

arises why a third component is needed at all. One possible explanation is that the sRNA

makes it easier to trigger lysis, as an increase in sRNA production induces an increase in the

abundance of long mRNA (Fig 3).

After SOS signals, the sRNA controls and accelerates the degradation of CsrA (see section

on expression dynamics below), eventually leading to the expression of the lysis protein.

sRNA controls fluctuations close to thresholds

In a next step, we analyzed the stochastic dynamics of the post-transcriptional regulation net-

work. To this end, we switched to a stochastic description, calculated the Fano factor
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(VarM/hMi) for the abundance of long mRNA (see Materials and Methods), and depicted it as

heatmap in Fig 4. The Fano factor measures the relative magnitude of fluctuations, and has

already been applied to gene regulatory networks in previous studies [58]. It can also be under-

stood as a quantified comparison with the pure birth process (Poisson process), which has the

Fano factor F = 1.

We found that fluctuations in mRNA were most pronounced close to the threshold posi-

tion, with the largest fluctuations occurring slightly above the threshold (Fig 4). Moreover,

Fig 4 also shows that the fluctuations became larger as sRNA production decreases. Thus, the

Fig 3. Approximate stationary solutions for (A) long mRNA, (B) CsrA dimers and (C) sRNA. The stationary solutions are given as a

function of the effective transcription rate αM of long mRNA and the production rate αS of sRNA. The production rate of CsrA dimers was set to

αA = 58.52. All other system parameters are given in S1 Table. For values of αM and αS below the threshold, the abundances of free long

mRNA and sRNA are zero, as any newly produced component quickly forms a complex with the highly abundant CsrA. At sufficiently large

production or transcription rates, sRNA and long mRNA titrate all available CsrA molecules and can thus attain non-zero molecule numbers,

The white line gives the transition between two approximate analytical solutions (Materials and Methods).

doi:10.1371/journal.pcbi.1005243.g003

Fig 4. Fluctuations in long mRNA abundance. The fluctuations are quantified by the Fano factor (see main

text) and depicted as heatmap in the plot. They are most pronounced at the threshold, and fade for parameter

sets above the threshold. With an increase in sRNA production (NαS), the fluctuations become smaller and

more localized to the threshold. This illustrates how the third component sRNA acts as a means to reduce

intrinsic fluctuations. The production rate of CsrA dimers was again set to αA = 58.52, and all other system

parameters are given in S1 Table.

doi:10.1371/journal.pcbi.1005243.g004
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third component (sRNA) in the post-transcriptional regulation network also enables signifi-

cant dampening of fluctuations in long mRNA.

To understand why the fluctuations are localized to the region near threshold, one must

take the characteristics of this parameter regime into account. Around the threshold, molecule

numbers are close to zero, which has a direct affect on the relative size of fluctuations: the lower

the abundance, the larger the fluctuations (stochastic regime). Moreover, the threshold is the

only regime in which all three components, CsrA, mRNA and sRNA, can coexist and interact

with each other: An increase in the level of CsrA will lead to a decrease in the abundance of

long mRNA and sRNA, owing to increased complex formation and subsequent degradation.

Analogously, an increase in long mRNA and sRNA molecule numbers leads to a decrease in

CsrA abundance. Therefore, the abundance of CsrA dimers is anti-correlated with the abun-

dance of both long mRNA and sRNA. It has been shown for a two-component system, that

anti-correlated components can create anomalously large fluctuations [59] if degradation rates

are small compared to turnover (ratio of production rate to abundance). For long mRNA, this

is exactly the case close to threshold, where the long mRNA abundance is still very low.

These results show that a third component can reduce intrinsic fluctuations of a hierar-

chically ordered regulatory network.

Modeling colicin E2 expression dynamics in response to an SOS signal

To study the dynamical response of the ColE2 system to an SOS signal, we extended the post-

transcriptional network by including the LexA-RecA regulatory network [53] (Fig 1). LexA

not only represses the SOS promoter, it is also an auto-repressor, as well as being a repressor of

RecA production. As outlined in the Introduction, RecA forms filaments after DNA damage,

which then induce auto-cleavage of LexA dimers. Consequently, the levels of RecA, LexA and

the colicin mRNAs increase, as repression due to LexA is relaxed. A stochastic model of this

network has been introduced recently [53]. In that study, promoter activity in the LexA-RecA

system was found to occur in ordered bursts that result from fluctuations and the particular

structure of the RecA-LexA feedback loop.

In our analysis of the ColE2 post-transcriptional regulation network so far (see above), we

have assumed the dynamics of SOS promoter activation to be so fast that we could use an effec-

tive transcription rate αM for long mRNA. To link the LexA regulatory network to the post-

transcriptional regulation network, we must drop this assumption and explicitly model the

dynamics of LexA dimers, which connect the two networks. In the biological system, this

involves the binding and dissociation of LexA dimers to and from the SOS promoter in the

ColE2 operon. Long mRNA and short mRNA are transcribed only from the derepressed pro-

moter at rates αMl
and αMs

, respectively. Thus, the transcription rates of long mRNA and short

mRNA are proportional to the number of open SOS promoters in the bacterium. The majority

of transcripts are short mRNAs. The mathematical implementation of the integrated regula-

tion network is again a system of coupled rate equations, which we describe in S1 Text. The

additional parameters of the LexA-RecA regulation network are to be found in S2 Table.

We simulated the SOS signal by temporarily up-regulating the coupling parameter cp,
which quantifies the ability of RecA to induce cleavage of LexA (Fig 1). In the uninduced state

before and after the SOS signal, the auto-cleavage parameter was set to cp = 0. Under SOS stress

cp was increased to cp = 6. This increase in cp subsequently boosts the long mRNA production,

and therefore relates to a transition from a sub-threshold state (gray area below the white line

in Fig 3A) to a super-threshold state (green area above the white line in Fig 3A). Due to the sto-

chasticity in the LexA-RecA network and the resulting stochastic promoter dynamics, the

overall transcription rate αMl
of long mRNA is not constant, but fluctuates about a mean value.

Hierarchical Regulation of Colicin E2 Expression
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The production rate of sRNA was held constant at αS = 57.5. Fig 5 shows the dynamics of short

and long mRNA levels and the abundance of CsrA dimers and sRNA in response to transient

SOS signaling. When we compared a stochastic realization using Gillespie simulations (Mate-

rials and Methods) with a numerical solution of the deterministic rate-equation system, we

observed significant qualitative and quantitative differences. First, the stochastic realization

exhibited significant fluctuations that manifested themselves in abrupt, short-lived changes in

the abundance of short mRNA over the whole time-course (Fig 5A). Second, the average over

500 stochastic realizations deviated from the deterministically predicted value. Both phenom-

ena arise from the intrinsic stochasticity of the LexA-RecA-regulatory network, as explained

by Shimoni [53]. Fluctuations may lead to a spontaneous dip in the number of LexA dimers

which releases all LexA-regulated genes, including the lexA gene itself, from repression. This

consequently leads to a sudden rise in the abundance of short mRNA. The open lexA and recA
promoters will then generate a burst of newly produced LexA and RecA proteins, which block

and regulate the promoters for the next burst.

Focusing on the dynamics of mRNA transcription, we found that, due to initial simulation

parameters, only small numbers of the short mRNA are produced in the uninduced state.

After up-regulation of the LexA auto-cleavage parameter cp at t = 200 min, the abundance of

short mRNA rises and the aforementioned large bursts appear. The amount of long mRNA,

however, follows a completely different trajectory, conditioned by post-transcriptional regula-

tion. Before the SOS signal, expression of long mRNA is almost completely repressed by CsrA

(Fig 5B). Even the bursts of SOS promoter activity reflected in fluctuating amounts of the short

mRNA have little or no impact on the long mRNA. This filtering effect is biologically relevant,

as it ensures that noisy promoter activity does not erroneously trigger lysis. After induction of

the SOS signal, the deterministic dynamics of the underlying rate equations predicted that,

after a delay of about 40 min, the abundance of long mRNA should rapidly rise to a saturation

value (black dashed line in Fig 5B). However, a mean of 500 realizations deviated significantly

from this prediction (Fig 5B). In particular, the average number of long mRNA molecules

increased more slowly than predicted by deterministic dynamics. Hence the abundance satu-

rated at a much lower value. An appreciable delay between SOS signal induction and expres-

sion of long mRNA was still observed, but lasted for only 15 min.

Studying the dynamics of a single stochastic realization, we observed that the number of

long mRNA molecules underwent large fluctuations, which were followed by periods of no

expression at all. Moreover, the timing of these bursts varied considerably between different

realizations. This constitutes a significant qualitative difference compared to the average over

500 realizations and to the deterministic dynamics (Fig 5), both of which exhibit a smooth and

continuous temporal behavior. Fig 5B and 5C indicates the origin of this behavior: The abun-

dance of long mRNA can only grow if the number of free CsrA dimers is low. The same holds

for the abundance of sRNA, which supports the degradation of CsrA and also can only reach

non-zero abundances if there is no CsrA left (Fig 5D). Thus, before any long mRNA can be

expressed, the free CsrA concentration must drop to very low values due to degradation or

complex formation. The delay between SOS signal induction and the first burst of long mRNA

synthesis therefore depends on the amount of CsrA available. We went on to study the precise

timing of the first burst in long mRNA abundance, since it is crucial for the time-point of

release of colicin-immunity complexes. To this end, we calculated the probability distribution

for the first peak from an ensemble of 500 stochastic realizations. The probability of a peak in

long mRNA abundance rose quickly and reached its maximum approximately 60 min after

induction of the SOS signal (Fig 6A). This phenomenon is also seen in experimental systems:

time-lapse studies with colicin-producing bacteria revealed that their lysis time is broadly dis-

tributed [48]. The distribution depicted in Fig 6A matches qualitatively with comparable
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Fig 5. Dynamical behavior before and after a realistic SOS response. We simulated an SOS signal by

temporarily up-regulating the LexA auto-cleavage parameter from cp = 0.0 to cp = 6.0 between the two dashed

vertical lines at t = 200 min and t = 500 min. The parameter cp gives the rate at which LexA dimers degrade

due to the presence of RecA. During the simulation, we tracked the abundance of (A) free short mRNA, (B)

free long mRNA, (C) free CsrA dimers and (D)free sRNA over time. In each panel, the fluctuating colored
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curve represents a single realization of the stochastic system as implemented by a Gillespie simulation. The

smoother darker-colored curve shows the average of 500 different realizations. The black dashed curve

depicts the results found by numerical integration of the deterministic rate equations, which neglects

fluctuations. In general, the stochastic realizations deviated significantly from both the simulation average and

the deterministic solution, as they exhibited large spontaneous bursts. As the short mRNA is not post-

transcriptionally regulated, its abundance level can serve as a proxy for the SOS promoter activity. Comparing

the free short mRNA abundance with free long mRNA shows that short promoter activity peaks were reliably

filtered out by post-transcriptional regulation. After an up-regulation of the LexA auto-cleavage parameter cp at

t = 200 min, the abundance of short mRNA rose and is expressed in large bursts. After some time delay,

during which all newly produced long mRNAs immediately sequestered CsrA dimers, discrete bursts of free

long mRNA are seen, which were followed by periods of no production at all. The timing of the bursts varied

considerably between different realizations. A comparison with (C) shows that the abundance of free long

mRNA is anti-correlated with the molecule number of all free CsrA. Hence, free long mRNA is only present if

the number of free CsrA dimers is low. In the simulation, the production rate of CsrA dimers was set to αA =

58.52 and the transcription rate of sRNA to αS = 57.5. All other parameters are given in S1 and S2 Tables.

doi:10.1371/journal.pcbi.1005243.g005

Fig 6. Probability distribution of the first peak in long mRNA abundance and survival function. We simulated an

SOS signal by temporarily up-regulating the LexA auto-cleavage parameter from cp = 0.0 to cp = 6.0 between the two

dashed vertical lines at t = 200 min and t = 500 min (see also Fig 5). The parameter cp gives the rate at which LexA

dimers degrade due to the presence of RecA. (A) With the parameters defined in S1 and S2 Tables, the timing of the

first peak in long mRNA abundance is broadly distributed with maximal probability approximately 60 min after induction

of the SOS signal. (B) The survival function is defined as the fraction of E. coli cells in a population that exhibited no

peak in long mRNA abundance, and thus would not release colicin. The fraction of cells releasing colicin increased

smoothly after induction up to 100%. This heterogeneous response of a bacterial population to an SOS signal is also

observed in nature. In the simulation, the production rate of CsrA dimers was set to αA = 58.52 and the transcription rate

of sRNA to αS = 57.5. All other parameters are given in S1 and S2 Tables.

doi:10.1371/journal.pcbi.1005243.g006
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datasets from these experiments. Moreover, our model is able to numerically predict average

lysis times in dependence on different SOS signal strengths (see S5 Fig). From the probability

distribution of the timing of the initial peak in long mRNA abundance we calculated the sur-

vival function, i.e. the probability with respect to time that a cell will not release toxin. Here we

assumed that this first burst provides enough long mRNA in the cell to produce the lysis pro-

tein, which then induces its lysis with concomitant release of colicin-immunity complexes into

the surrounding medium. The function of lysed cells plotted in Fig 6B shows that the number

of cells that release the toxin rises with the duration of the SOS signal.

Incorporation of the LexA-RecA regulatory network allowed us to model the colicin E2

expression dynamics in response to a realistic SOS signal, and the results presented above

highlight the importance of CsrA for colicin release.

Discussion

Gene expression is a process that allows for various forms of regulation at all levels. In theoreti-

cal studies of post-transcriptional regulation of several biological systems, modulation of

mRNA production by proteins or sRNA has been shown to create, for instance, temporal

thresholds for mRNA translation [9, 35, 36]. Proteins have also been shown to regulate the

expression of the toxin colicin E2 [28] in the context of an SOS response to environmental

stress. Experimental studies have elucidated the detailed interaction network responsible for

the production and release of the colicin [28]. However, the dynamics of this system, in partic-

ular at the post-transcriptional level, have remained elusive. In close analogy to previous two-

component models, we developed a mathematical model for this hierarchically ordered post-

transcriptional regulation of colicin E2 release. Interestingly, the known interaction network

for this system necessitated the modeling of three, not two, components: the long mRNA

which is necessary for colicin release, its negative regulator CsrA, and sRNA, which in turn

negatively regulates CsrA. Contrary to previous studies [9, 35, 36, 60], the sRNAs do not regu-

late the mRNA directly, but control the level of the regulator protein CsrA. Thus, the sRNA

acts as the “regulator’s regulator”.

In our analysis of the model, we used rate constants that were determined from experimen-

tal systems (see chapter 2 of S1 Text for details). Comparing the predicted CsrA levels before

the SOS signal (see Fig 5C) with in-vivo measurements of E. coli [57] shows that our model

results in a pre-SOS free CsrA abundance that agrees with actual bacterial systems (for other

abundances, see S1 Text). Moreover, the model is not just able to predict steady state abun-

dances, but also reproduces the reaction to varying external stress levels as seen in experiments

(see S5 Fig).

Investigation of the dynamics revealed that the model exhibits a time delay in the produc-

tion of free long mRNAs. This delay is due to the high abundance of CsrA in the non-SOS

state of the cell, which causes CsrA to quickly bind to free long mRNA and thus prevents its

transcription. Only during an SOS signal, which indicates external stress for the cell, the

level of CsrA gets steadily reduced. The time this process takes to get CsrA levels so low that

fluctuations in long mRNA production result in free long mRNA, causes a delay in colicin

release. As colicin release is coupled to cell lysis, the delay is therefore a mechanism for fil-

tering out transient SOS signals that might erroneously lead to synthesis of the lysis protein.

Moreover, also intrinsic fluctuations, for instance in sRNA production, are filtered out by

this mechanism: Even if a large and sudden burst in sRNA were strong enough to drop

CsrA abundance close to zero, the CsrA buffer gets restored quickly due to the large produc-

tion rate of CsrA. This rate is only effectively lowered during a SOS signal, which increases

the production of the CsrA-sequestering long mRNA. The fact that lysis is regulated by a
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threshold mechanism of a global regulator protein like CsrA might also be a guarding mech-

anism for the cell: only prolongued extreme situations will cause the abundance of these reg-

ulators to drop to low molecule numbers.

However, delays and similar threshold behavior also emerge in two-component systems,

raising the question why a third component is necessary here. Strikingly, we found that the

third component (sRNA) in the post-transcriptional interaction network enables the cell to

tune the duration of the delay by sequestering CsrA. In the case of the ColE2 system, this

means that cells are able to adjust the (average) time between a SOS signal and the onset of cell

lysis leading to colicin release.

Furthermore, previous studies of systems with slow, bursting promoter kinetics have also

uncovered a major limitation of two-component sRNA-based regulation compared to regula-

tion based on transcription factors: Two-component systems are subject to significantly higher

levels of intrinsic noise [9]. However, Fig 4 (panels A,C,D) shows that, in the post-transcrip-

tional regulation of colicin E2 release, fluctuations become smaller at higher values of αS. The

sRNA might therefore allow for significant dampening of these fluctuations. This idea is sup-

ported by the fact that the relatively high degradation rate of sRNA makes it less susceptible to

induced fluctuations.

In bacteria, these mechanisms could have several functions: First, a comparison of different

sRNA production rates (S4 Fig) indicates that the sequestration of CsrA by the sRNA could

indeed be crucial for fast release of the colicin, as CsrA degradation rates cannot be arbitrarily

increased in bacterial systems. Second, they can tune the reaction to external stress at the pop-

ulation level. Experimental studies have shown that, in the absence of stress, 3% of colicin pro-

ducing cells release the toxin during the stationary phase; but this fraction can be increased up

to eventually 100% if an external SOS stress is applied [14, 48]. Previous experimental studies

also found that colicin systems exhibit heterogenous expression times, which originate from

the stochasticity of the SOS signal [49, 50]. Recent time-lapse experiments with colicin E2 pro-

ducing bacteria showed that this lysis time distribution also depends on the strength of the

SOS signal [48]. We reproduced these experiments with stochastic simulations, in which we

created different stress levels by different values of the RecA degradation rate parameter cp.
Our predictions for lysis time distributions (Fig 6A and S5 Fig) show qualitative agreement

with these time-lapse experiments. Moreover, the ability of the sRNA to tune the average dura-

tion of the delay might serve as a mechanism to adjust the cell lysis to different stress levels.

Altering the sRNA level could be an additional mechanism, apart from the stochastic SOS sig-

nal, by which bacterial populations can adjust the fraction of cells releasing the toxin depend-

ing on the strength and duration of the external stress. Finally, the co-option of sRNA makes

the cells less susceptible to lysis due to adventitious fluctuations in promoter activity. This is

particularly important considering the bursting behavior and large-scale fluctuations seen in

the LexA-RecA-regulatory system, which are readily observed in experiments and reproduced

by stochastic models [53].

In order to focus on the interplay between the LexA-RecA system and the hierarchical regu-

lation of long mRNA by CsrA and sRNA, we kept the plasmid number constant. If we consid-

ered random, Poisson-distributed plasmid numbers instead, the effect would be very small, as

shown in S4B Fig. This fact demonstrates that the colicin plasmid copy number only has

minor influence on the lysis time distribution (see S1 Text for details).

In conclusion, we have provided here the first detailed theoretical description of colicin E2

production and release, and used it to study the dynamical behavior of this system. Moreover,

the general three-component model described here should be applicable to many other sys-

tems of toxin production in microorganisms.

Hierarchical Regulation of Colicin E2 Expression
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Materials and Methods

Derivation of effective long mRNA transcription rate αM

In most models of prokaryotic gene expression, it is assumed that promoter kinetics are fast

compared to RNA production and degradation rates. In that case, the promoter state is well

approximated by its steady state [54]. In the analysis of the post-transcriptional regulation net-

work, the promoter status affects the transcription rate of the (long) mRNA. Thus, we replaced

it by an effective transcription rate for (long) mRNA, which takes into account the probability

of a gene being blocked. In the literature this procedure is referred to as “adiabatic elimination

of fast variables” (see for example [61]). For this effective rate we also took into account that

the colicin operon is located on a plasmid [62], of which approximately 20 copies exist in each

cell [14] (see S1 Text).

Reduction of CsrB and CsrC to an effective sRNA

The two sRNAs CsrB and CsrC regulate CsrA via complex formation. More specifically, each

CsrB molecule has approximately 22 binding sites for CsrA, with 9 CsrA dimers being attached

on average [63, 64]. CsrC interacts in the same way, but has fewer CsrA binding sites [63]. As a

first step, we therefore replaced the two sRNA types by a single effective one, which has N

binding sites. However, all of the N + 1 sRNA configurations still enter the interaction network

as separate components, since the binding and dissociation probabilities change with the num-

ber of free binding sites. By investigating the dynamics of the CsrA-sRNA complexes, we dis-

covered that the probability distribution for occupied CsrA binding sites on the sRNAs

reaches its stationary state on a time scale that is proportional to the rate of complex-(un)bind-

ing. Since binding and unbinding events are biochemically much simpler processes than tran-

scription, translation or degradation, it is very likely that the dynamics of CsrA-sRNA

complexes is much faster than all other reaction rates in the system. Following the line of

Levine [36] and Legewie [34], we therefore assumed rapid complex dynamics, and replaced

the different binding site occupations by an effective sRNA, with only one binding site and

transcription rate NαS (see S1 Text for details on the calculation).

Approximate solution of the reduced three-component model

For the calculations of the abundances of the three components (for example, to obtain the

plots of Fig 3), we began by assuming the stationary state. Solving for the abundance of one

component then gives a cubic equation, for which the exact, general solution is very lengthy

and cumbersome to analyze. Therefore, we considered the cubic equation for the cases of very

large and very small molecule numbers, and ignored terms that became negligible. This

resulted in two easily solvable quadratic equations. Comparisons with numerical solutions of

the cubic equations proved that the quadratic solutions approximate the general solution well

in their respective abundance regime. Equating the terms omited in the approximation yields

a criterion for the transition between the two approximations (see S1 Text). The transition is

depicted as a white line in Fig 3. That this transition lies close to the threshold is coincidental.

Comparison with the exact, numerical solutions showed that the threshold is not an approxi-

mation artifact. S2 Fig illustrates the precision of the approximation by comparing its predic-

tion for long mRNA abundance to that from numerical simulations.

Calculation of the Fano factor using linear noise approximation

We started the analysis of noise properties by reformulating the simplified three-component

system as a Master equation. As Master equations are typically impossible to solve

Hierarchical Regulation of Colicin E2 Expression
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analytically, we performed a general van Kampen expansion in multiple variables (compo-

nents). Our analysis included all higher orders, and not only lowest order terms as is com-

monly found in textbooks [61, 65]. With van Kampen’s expansion we were able to derive

general formulas for the first up to the fourth moment of the random variable representing

the fluctuations of the system around the stationary solution of the rate equations. The

terms of each equation were classified in first order terms (dominant terms) and higher

order terms (second order, third order, etc), according to the scaling behavior of each term

with the system size. We used different methods to calculate the Fano factor for long mRNA.

The most reliable results were obtained by implementing only first order terms in the calcu-

lations of second moments. This reproduced the shape of the Fano factor well, but it overes-

timates fluctuations in the vicinity of the threshold. S3 Fig illustrates the degree of

agreement between analytical calculations of the Fano factor agree with the results from Gil-

lespie simulations.

Gillespie simulations

To verify how well our analytical results of the deterministic rate equations coincide with the

actual mean molecule numbers, we set up a Gillespie simulation [66]. The Gillespie algorithm

generates a statistically correct realization of the master equation behind the rate equations.

The core of the algorithm lies in using random numbers to determine which next reaction will

occur and the waiting time prior to the succeeding reaction. The reactions simulated by the

Gillespie approach are listed in S1 Text. To quantify the delay between SOS signal induction

and the first burst in long mRNA abundance, we defined the beginning of the first peak as the

point when the number of long mRNA molecules exceeds 8 for the first time. The time of the

peak itself was set to the point at which that number reached a maximum. We then calculated

the probability distribution from an ensemble of 500 stochastic realizations, using the parame-

ters defined in S1 and S2 Tables.

Supporting Information

S1 Table. Parameter values for the post-transcriptional dynamics modeled by the rate

equations and Gillespie simulations. Rates are given in molecules per cell volume VEC =

0.65μm3 per minute. The number of ColE2 plasmids is nsos = 20. The literature values can be

found in [28, 55, 56].

(PDF)

S2 Table. Additional parameter values for the SOS response network, modeled by the rate

equations and Gillespie simulations. Rates are given in molecules per cell volume VEC =

0.65μm3 per minute. The number of ColE2 plasmids is nsos = 20. R, Le,Col,L: number of RecA

proteins, LexA dimers, colicin proteins and lysis proteins.Ml,Mr,Ms,M: number of lexA, recA,

short mRNAs and long mRNAs. Bl Br,Bsos: number of LexA dimers bound to the lexA, recA
and SOS promoters. All literature values are taken from [53].

(PDF)

S1 Fig. Detailed interaction scheme of post-transcriptional regulation network. The inter-

action scheme is mathematically formulated as N + 5 coupled rate equations. M,A,S,L and

Cma give the numbers of long mRNA, CsrA dimers, sRNA, lysis protein and long

mRNA-CsrA complexes. Cn gives the number of sRNA molecules with n CsrA dimers

bound. The rates of a reaction is expressed by the formula next to the arrows. α: production

rates; δ: degradation rates; v−,k−: Complex dissociation rates; v+,k+: Complex formation

rates. To illustrate the complex dynamics between CsrA dimers and sRNA we depict the
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reaction rates of CsrA with an sRNA that has already bound n 2 [0, 1, . . ., N] CsrA dimers.

For more details see S1 Text.

(EPS)

S2 Fig. Comparison of the stationary solution for long mRNA abundance M� with the

time-average hMi. The stationary solution M� was calculated using rate equations, the time-

average hMi was obtained by Gillespie simulations. We show two cuts through the surface

of Fig 3A at αS = 20 and αS = 40. The points indicate the result of Gillespie simulations,

whereas the lines show the analytical result obtained from the approximated steady state

equations. The production rate of CsrA dimers was chosen to be αA = 58.52, all other

parameters are given in Table S1 Table.

(EPS)

S3 Fig. Comparison of the analytically calculated Fano factor with corresponding Gillespie

simulations. The production rate of CsrA dimers was set to αA = 58.52. All other parameters

are given in S1 Table. For both parameter sets, αS = 20 and αS = 40, the analytic calculations

using van Kampen’s system size expansion reproduced the shape of the fluctuations obtained

by Gillespie simulations well. In the threshold regime the analytic result overestimated the

fluctuations slightly.

(EPS)

S4 Fig. Effects of parameters on the lysis time distribution. (A) shows the lysis time distribu-

tion as in Fig 6A for comparison. (B) This distribution hardly changes if the number of plas-

mids, nSOS, follows a Poisson distribution. (C) Lowering the sRNA production rate to αS = 56

shifts the lysis distribution towards later times, whereas (D) doubling it to αS = 58 causes sev-

eral cells to lyse even before (and hence independent of) the SOS signal. This illustrates that

the sRNA is a possible means of controlling cell lysis.

(EPS)

S5 Fig. Average lysis times for different stress levels. To illustrate the predictive possibilities

of our three component model, we compare the results of numerical simulations using our

model with experimental data [48]. The experiment measured the average lysis time for three

different concentrations of the antibiotic Mitomycin C (0.05, 0.25 and 0.70 μg/ml). In the

numerical simulations, we used the parameter set defined in S1 and S2 Tables, and varied the

parameter cp (values: 1, 3, 6, 12, 15, 20, 30, 90) to emulate the stress levels. To fit the data, we

only applied a scaling factor to map the Mitomycin concentration to values of cp, and shifted

the theoretical delays by a constant value. The last step is necessary, as the numerical simula-

tions also account for the constant time between SOS signal and first appearance of short

mRNA, which is not the case in the experiments.

(EPS)

S1 Text. Supplementary information on calculations and numerical simulations. Detailed

derivations of the (simplified) rate equations and the linear noise approximation, as well as the

detailed reaction scheme used in the Gillespie simulations.

(PDF)
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Chapter 1

Rate Equations

1.1 Initial mathematical model

The precise interactions in the regulation network of Colicin E2 release were presented
in the results part of the main article. Here we show how we derived the simplified rate
equations from the detailed regulation network. The following assumptions underly this
process:

1. CsrC interacts with CsrA in the same way as CsrB [1]. There are only minor
quantitative differences: At 37◦C, the half-life of small RNAs CsrB and CsrC are
1.6 min and 4.1 min, respectively [2]. Furthermore, CsrB has more binding sites
than CsrC, and it is unknown if the complex-binding kinetics are different for the
two sRNAs. However, we assume these differences to be so small that we can
describe the qualitative regulation mechanism of the two sRNAs by one effective
sRNA. The biological parameters of the effective sRNA are then adapted to the
biological parameters of CsrB and CsrC.

2. For the analysis of the post-transcriptional regulation of Colicin E2 release, we
will neglect the regulation of transcription and translation concerning long mRNA,
CsrA and sRNAs. In most models of prokaryotic gene expression it is assumed
that promoter kinetics are fast compared to production and degradation rates,
such that the promoter state is well approximated by its steady state [3]. Thus,
an effective transcription rate can be introduced that takes into account the
probability of a promoter being blocked. The effective rate is smaller than the
original rate. In literature this procedure is referred to as adiabatic elimination of
fast variables, see for example [4].

3. The system is considered homogeneous, i.e. reaction rates depend only on the
total amount of molecule numbers and not on the local concentration of specific
molecules.

4. The exact mechanism of CsrA complex degradation is not known. To keep our
model as general as possible we will allow for CsrA dimers to survive degradation
of the complexes with probability (1− pM ) in the case of mRNA complexes and
with probability (1− pS) for sRNA complexes. We choose CsrA to possibly
survive complex degradation, since proteins usually have a much longer lifetime.
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Notation

� L,M,A: Number of lysis proteins, free long mRNAs and CsrA dimers.

� CMA: Number of long mRNA-CsrA complexes.

� Cn: Number of CsrA-sRNA complexes with n CsrA dimers bound.

� S: Total number of sRNAs (sum over all Cn).

� αM , αA, αS , αL: Effective production of the component denoted by the subscript.

� δM , δA, δS , δL, δCma : Degradation rates of the component denoted by the
subscript.

� k+
M , k

−
M , k

+, k−: Binding rates (+) and unbinding rates (−) of CsrA with mRNAs
and sRNAs.

In general, one sRNA has at most N binding sites for CsrA dimers. The total number
of sRNAs S(t) is given by the sum over all numbers of complexes Cn(t) with n CsrA
dimers bound:

S(t) =
N∑
n=0

Cn(t) (1.1)

Rate equations

From the interaction scheme described in the main text we deduce the following rate
equations:

L̇ = αLM − δLL (1.2)

Ṁ = αM − δMM − kM+MA+ kM
−CMA (1.3)

Ȧ = αA − δAA− kM+MA+ kM
−CMA + δCMA

CMA(1− pM )

−Ak+
N∑
n=0

Cn(N − n) + k−
N∑
n=0

Cnn+
N∑
n=0

δSCnn(1− pS)
(1.4)

˙CMA = kM
+MA− kM−CMA − δCmaCMA (1.5)

Ċn = αSδn,0 + Cn−1Ak
+(N − (n− 1)) + Cn+1k

−(n+ 1) (1.6)

− Cn
[
Ak+(N − n) + k−n+ δS

]
C−1 = CN+1 = 0 (1.7)

With the definition of the total number of sRNA molecules in equation (1.1) we find:

Ṡ(t) = αS − δSS (1.8)

1.2 Analysis of sRNA complex dynamics

The rate equations (1.2)-(1.7) give a precise mathematical description. Yet, the
coupling of N + 1 differential equations for sRNA complexes to the dynamics of CsrA
makes it hard to analyze the system. In this section, we will calculate the first and
second moment of the distribution of occupied binding sites. We will find out that the
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time scale at which the stationary distribution is approached is fast compared to
production and degradation processes. Consequently, we can simplify the N + 1 rate
equations for the CsrA-sRNA complexes to one effective differential equation. A very
helpful tool for this task will be the definition of a generating function.

1.2.1 Generating function

A probability distribution can be characterized by its moments (if they are finite). The
moments of the probability distribution of occupied CsrA binding sites
p(n, t) = Cn(t)/S(t) are defined as:

〈ni〉 =
N∑
n=0

Cn
S
ni with i = 1, 2, . . . (1.9)

A powerful tool to investigate the moments of a probability distribution is to define a
probability generating function. In our case, we chose:

G(x, t) =
N∑
n=0

Cn
S
xn (1.10)

The useful property of a generating function is that it encodes the information of all
p(n) in one variable x. Consequently, the N + 1 coupled rate equations for sRNA
dynamics are simplified to one differential equation of G(x, t) in the variable x. Once
we have found the solution of the generating function, we can calculate the mean
number and the variance of occupied binding sites via:

〈n(t)〉 = ∂xG(x, t)|x=1 (1.11)

〈n2(t)〉 = ∂x(x∂xG(x, t))|x=1 (1.12)

Furthermore, we can calculate the probability that n CsrA binding sites are occupied:

p(n) =
Cn(t)

S(t)
=

1

n!
∂nxG(x, t)|x=0 (1.13)

Our next goal is to set up a differential equation for G(x, t) and to solve this equation.
Afterwards, we will infer on the result to obtain information on the probability
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distribution p(n). The time evolution for G(x, t) reads as follows:

d

dt
G(x, t) =

N∑
n=0

d

dt

(
Cn
S

)
xn =

N∑
n=0

(
Ċn
S
− Cn(αS − δSS)

S2

)
xn

=
1

S

N∑
n=0

(
αSδn,0 + Cn−1Ak

+(N − (n− 1)) + Cn+1k
−(n+ 1)

− Cn
[
Ak+(N − n) + k−n+ δS

]
− Cn

αS
S

+ CnδS

)
xn

(1.7)
=

1

S

N∑
n=0

(
αSδn,0 + CnAk

+(N − n)x+ Cnk
−n

1

x

− Cn
[
Ak+(N − n) + k−n

]
− Cn

αS
S

)
xn

=

N∑
n=0

(
αS
Cn

δn,0 +Ak+(N − n)(x− 1) + k−n

(
1

x
− 1

)
− αS

S

)
Cn
S
xn

=
N∑
n=0

(
αS
Cn

δn,0 +Ak+(x− 1)(N − x∂x) + k−(1− x)∂x −
αS
S

)
Cn
S
xn

d

dt
G(x, t) =

(
Ak+(x− 1)(N − x∂x) + k−(1− x)∂x −

αS
S(t)

)
G(x, t) +

αS
S(t)

(1.14)

The differential equation (1.14) may be solved using the methods of characteristics. To
this end we rewrite equation (1.14):(

− αS
S(t)

+Ak+(x(t)− 1)N

)
G(x(t), t) +

αS
S(t)︸ ︷︷ ︸

d
dtG(x(t),t)

=

(Ak+x(t) + k−)(x(t)− 1)︸ ︷︷ ︸
dx(t)
dt

∂xG(x(t), t) + ∂tG(x(t), t)

We end up with two differential equations of the form:

dx(t)

dt
= (Ak+x(t) + k−)(x(t)− 1) (1.15)

d

dt
G(x(t), t) =

(
− αS
S(t)

+Ak+(x(t)− 1)N

)
G(x(t), t) +

αS
S(t)

(1.16)

1.2.2 Solving the differential equation of the generating
function

Without loss of generality we set t0 = 0.

7



Differential equation in x(t)

The differential equation (1.15) can readily be solved by separation of variables:∫ t

0

dt = t =

∫ x

x0

dx′

(x′ − 1)(k+Ax′ + k−)

=
1

k− +Ak+
log

(
|x− 1|

k− +Ak+x

k− +Ak+x0

|x0 − 1|

)
x(t) =

k− + et(k
−+Ak+) (x0 − 1) k− +Ax0k

+

k− +A
(
x0 − et(k−+Ak+) (x0 − 1)

)
k+

(1.17)

x0 =
(x− 1)k− + et(k

−+Ak+) (k− +Axk+)

−A(x− 1)k+ + et(k−+Ak+) (k− +Axk+)
(1.18)

Note here that both choices for |x− 1| = x− 1 or 1− x and |x0 − 1| = x0 − 1 or 1− x0

yield the same result if we use the same sign convention for x and x0.

Differential equation in G(x, t)

Solving equation (1.16) is more tedious, since it contains the time-dependent
inhomogeneity αS/S(t). The general solution of such an inhomogeneous differential
equation is given by the sum of the general solution Gh(x, t) of the homogeneous
differential equation, which neglects the inhomogeneity αS/S(t), and a particular solution
Gp(x, t) of the inhomogeneous differential equation, which takes into account the
inhomogeneity. Thus, we have:

G(x, t) = Gh(x, t) +Gp(x, t) (1.19)

Homogeneous solution

We start by solving the homogeneous differential equation:

d

dt
Gh(x(t), t) =

(
− αS
S(t)

+Ak+(x(t)− 1)N

)
Gh(x(t), t) (1.20)

We can set as initial condition G0
!
= xn0

0 , meaning that at t0 = 0 there are only
complexes with n0 CsrAs bound to it. Since there is one degree of freedom in the choice
of Gp(x(t), t) (we may add Gh(x, t) multiplied by an arbitrary constant), we can choose

Gp(x0, 0) = 0→ G0 = Gh(x0, 0) = G(x0, 0)
!
= xn0

0 . It follows:∫ G

G0

dG′h
G′h

=

∫ t

0

dt′
(
− αS
S(t′)

+Ak+(x(t′)− 1)N

)

Gh(x, t) = e−u(t)(k− +Ak+)Nxn0
0

(
e(k−+Ak+)t(k− +Ak+)2

Ak+(1− x) + (k− +Ak+x)e(k−+Ak+)t

)−N

= e−u(t)
(
k− +Ak+

)N ( (x− 1)k− + et(k
−+Ak+) (k− +Axk+)

A(1− x)k+ + et(k−+Ak+) (k− +Axk+)

)n0

·

·

(
e(k−+Ak+)t(k− +Ak+)2

Ak+(1− x) + (k− +Ak+x)e(k−+Ak+)t

)−N
(1.21)
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u(t) =

∫ t

0

dt′
αS
S(t′)

(1.22)

For the integration over time we have introduced x(t) explicitly. Following integration
we have replaced every x0 by the right-hand side of equation (1.18). The term u(t) is
the integral over the inhomogeneity that we leave untouched for the moment. When we
look at the long-time limit, u(t) will simplify significantly.

To simplify equation (1.21), we set n0 = 0. This choice will not limit our analysis,
because we are only interested in the stationary binding site distribution and in the
time scale at which the stationary binding site distribution is approached. Both objects
of interest are independent of n0. Hence, the general homogeneous solution is given by:

Gh(x, t) = e−u(t)

(
et(k

−+Ak+) (k− +Ak+)

−A(−1 + x)k+ + et(k−+Ak+) (k− +Axk+)

)−N
(1.23)

Gh(x0, t) = e−u(t)

(
k− +Ak+

k− +A
(
−et(k−+Ak+) (x0 − 1) + x0

)
k+

)N
(1.24)

Particular solution

As commonly done, we choose the ansatz Gp(x(t), t) = Gpp(t)Gh(t) for the particular
solution of equation (1.16). This ansatz leads to a differential equation for the
time-dependent parameter Gpp(t):

d

dt
Gpp(x(t), t) =

αS
S(t)Gh(x(t), t)

(1.25)

Thus, we find:

Gpp(x(t), t) =

∫ t

0

dt′
αS
S(t′)

eu(t′)︸ ︷︷ ︸
d

dt′ e
u(t′)

(
et(k

−+Ak+) (k− +Ak+)

A(x(t)− 1)k+ + et(k−+Ak+) (k− +Ax(t)k+)

)N

Gpp(x0, t) =

∫ t

0

dt′
[
d

dt′

(
eu(t′)

)]k− +A
(
−et(k

−+Ak+) (x0 − 1) + x0

)
k+

k− +Ak+

N

PI
=

eu(t′)

(
k− +Ak+x0 +Ak+(1− x0)e(k−+Ak+)t′

k− +Ak+

)Nt
0

−
∫ t

0

dt′eu(t′) d

dt′

(
k− +Ak+x0 +Ak+(1− x0)e(k−+Ak+)t′

k− +Ak+

)N

=

N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
([
eu(t′)e(k−+Ak+)nt′

]t
0
−
∫ t

0

dt′eu(t′)(k− +Ak+)ne(k−+Ak+)nt′
)

(1.26)
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In order to proceed with the calculations we have to specify u(t). Since
lim
t→∞

S(t) = S∞ = αS

δS
, we may calculate u(t) as follows:

u(t) =

∫ t

0

dt′
αS
S(t)

=

∫ t

0

dt′
(
αS
S∞

+ δu(t)

)
= δSt+

∫ t

0

dt′δu(t) (1.27)

Since S(t) converges exponentially fast towards S∞, we know that δu(t) has to go
exponentially fast to zero as well and we end up with a finite integral

∫∞
0
dt′δu(t) = ∆u.

Thus, for times larger than the time scale given by the degradation of sRNA, we may
approximate:

u(t) ≈ δSt+ ∆u (1.28)

It follows that for large times larger than 1/δS:

Gpp(x0, t) =
N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
([
eu(t)e(k−+Ak+)nt − 1

]
−
[

(k− +Ak+)n

(k− +Ak+)n+ δS
eδSt

′+∆ue(k−+Ak+)nt′
]t

0

)

=
N∑
n=0

(
N

n

)(
k− +Ak+x0

k− +Ak+

)N−n(
Ak+(1− x0)

k− +Ak+

)n
(

1− (k− +Ak+)n

(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)

(1.29)

Gpp(x, t) =
N∑
n=0

(
N

n

)(
(k− +Ak+x)e(k−+Ak+)t

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)N−n
(

Ak+(1− x)

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)n
(

δS
(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)
(1.30)

General solution for n0 = 0

Taking everything together we have:

G(x, t) = Gh(x, t)(1 +Gpp(x, t)) (1.31)

Gh(x, t) = e−u(t)

(
(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

e(k−+Ak+)t(k− +Ak+)

)N
(1.32)

Gpp(x, t) =
N∑
n=0

(
N

n

)(
(k− +Ak+x)e(k−+Ak+)t

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)N−n
(

Ak+(1− x)

(k− +Ak+x)e(k−+Ak+)t −Ak+(x− 1)

)n
(

δS
(k− +Ak+)n+ δS

)(
eu(t)e(k−+Ak+)nt − 1

)
(1.33)
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1.2.3 Calculating mean and variance

With the general solution of the generating function at hand, we can evaluate the mean
and the variance of n occupied binding sites:

〈n(t)〉 = ∂xG(x, t)|x=1 = [(1 +Gpp(x, t))∂xGh(x, t) +Gh(x, t)∂xGpp(x, t)]x=1

(1.34)

〈(n(t))2〉 = ∂x(x∂xG(x, t))|x=1 = ∂xG(x, t)|x=1 + x
[
(1 +Gpp(x, t))∂

2
xGh(x, t)+

+2∂xGh(x, t)∂xGpp(x, t) +Gh(x, t)∂2
xGpp(x, t)

]
x=1

(1.35)

Inserting equations (1.31)-(1.33) into equation (1.34) and equation (1.35) yields:

〈n(t)〉 =
ANk+

δs + k− +Ak+

(
1− e−(k−+Ak+)t−u(t)

)
(1.36)

〈n∞〉 =
ANk+

δs + k− +Ak+

=
ANk+

k− +Ak+

[
1− δs

k− +Ak+
+O

((
δs

k− +Ak+

)2
)] (1.37)

〈n2
∞〉 =

ANk+ (δs + 2 (k− +ANk+))

(δS + k− +Ak+) (δs + 2 (k− +Ak+))

=
ANk+ (k− +ANk+)

(k− +Ak+)
2 − (ANk+ (2k− +A(−1 + 3N)k+)) δs

2 (k− +Ak+)
3

+O

((
δs

(k− +Ak+)2

)2
) (1.38)

1.2.4 Discussion

From equation (1.36) we obtain an important result. Again taking u(t) ≈ δSt+ ∆u, we
find that the mean number of occupied binding sites relaxes with the rate
δS + k− +Ak+ to its stationary value, which is faster than the relaxation of sRNA
abundance, happening with rate δS . The degradation of sRNA happens on a time scale
of several minutes, whereas binding and unbinding of molecules occurs within several
seconds. Thus, δS � k− +Ak+ most likely holds, which has important consequences:
The relaxation of occupied binding sites towards its equilibrium value is so fast that it
can be considered in quasi-equilibrium compared to production and degradation processes.
Consequently, the dynamics of sRNA complexes may be approximated by its equilibrium
distribution.

If δS � k− +Ak+, the 0th order term in δs/(k−+Ak+) in equation (1.37) dominates and
we end up with the results for a simple random walk on N sites with hopping

probability p = Ak+

k−+Ak+ to the right and hopping probability q = k−

k−+Ak+ to the left.

For such a process, we have: 〈n〉 = Np and Var[n] = 〈n2〉 − 〈n〉2 = Npq, which is
reproduced by the 0th order term in equation (1.38).

The mean number of occupied binding sites decreases with increasing δS . This makes
sense, since an sRNA is always produced with no CsrA dimer bound, i.e. the source of
sRNAs pulls the mean towards lower values.
The faster sRNAs degrade, the less molecules are able to bind multiple CsrA molecules
before they degrade.
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1.3 Simplified mathematical model

With the results from above we can significantly simplify the rate equations (1.2)-(1.7).
First, we note that the rate equation for lysis proteins (1.2) is a linear differential
equation that depends only on the number of long mRNA molecules, the translation
rate αL and the degradation rate δL. Thus, once we understand the dynamics of M , we
comprehend the dynamics of L as well. That is why we ignore equation (1.2), leaving us
with the following set of equations:

Ṁ = αM − δMM − kM+MA+ kM
−CMA (1.39)

Ȧ = αA − δAA− kM+MA+ kM
−CMA + δCMA

CMA(1− pM )

−Ak+
N∑
n=0

Cn(N − n) + k−
N∑
n=0

Cnn+
N∑
n=0

δSCnn(1− pS)
(1.40)

˙CMA = kM
+MA− kM−CMA − δCmaCMA (1.41)

Ċn = αSδn,0 + Cn−1Ak
+(N − (n− 1)) + Cn+1k

−(n+ 1)

− Cn
[
Ak+(N − n) + k−n+ δS

] (1.42)

Ṡ = αS − δSS (1.43)

In section 1.2.4 we found that the probability distribution of occupied CsrA binding
sites on sRNA is approached on the time scale δS + k− +Ak+. As in the work of
Levine [5] and Legewie [6] we assume now rapid equilibrium of complex dynamics and
approximate the quasi-equilibrated CsrA binding sites distribution by a single, effective
complex configuration that has exactly 〈n∞〉 molecules bound:

C0, C1, . . . , CN → C〈n∞〉 with 〈n∞〉 =
ANk+

δS + k− +Ak+
(1.44)

As all sRNAs are assumed to have this distribution, it holds

C〈n∞〉 ≡ S (1.45)

The number of CsrA-mRNA complexes relaxes as well on a time scale proportional to
the complex binding and unbinding rates AkM

+ and kM
−. Consequently, we set the

left-hand side of equation (1.41) equal to zero:

˙CMA = 0 : CMA =
kM

+MA

kM
− + δCMA

=
kMMA

δCMA

(1.46)

For a clear notation, we defined the lumped complex dynamic parameters:

kM =
kM

+δCMA

kM
− + δCMA

(1.47)

k =
k+δS
k− + δS

(1.48)

These lumped parameters can be understood as the effectiveness of coupled degradation,
for it is the ratio of binding rate times degradation rate divided by the unbinding rate of
the complex. k will be used later on. Taking everything together, we find:

Ṁ = αM − δMM − kMMA (1.49)

Ȧ = αA − δAA− pMkMMA− pS
δSk

+

δS + k− +Ak+
NC〈n∞〉A (1.50)

Ṡ ≡ Ċ〈n∞〉 = αS − δSC〈n∞〉 (1.51)
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Since we switched to a description in which all sRNAs have the same effective binding
site occupation, we can perform another simplifying step: Instead of considering
S ≡ C〈n∞〉 sRNAs with N binding sites each, we change to NC〈n∞〉 sRNAs with a
single binding site. In other words, we consider each binding site a separate particle.
Then, the total number of sRNAs can then be written as sum of free (unbound) sRNAs
(Sfree) and sRNA-CsrA complexes(CAS).

NC〈n∞〉 = Sfree + CAS . (1.52)

By “adding a zero”, we can write the time derivative of NĊ〈n∞〉 as:

NĊ〈n∞〉 = Ṡfree + ĊAS (1.53)

Ṡfree = CASk
− − SfreeAk

+ +NαS − δSSfree (1.54)

ĊAS = −CASk− + SfreeAk
+ − δSCAS (1.55)

Assuming fast complex dynamics, we find:

ĊAS = 0 −→ CAS =
SfreeAk

+

k− + δS
(1.56)

Ṡfree = NαS − kASfree − δSSfree (1.57)

Then it follows:

δSk
+

δS + k− +Ak+
NC〈n∞〉 =

δSk
+

δS + k− +Ak+
(Sfree + CAS) (1.58)

=
δSk

+

δS + k− +Ak+
Sfree

k− + δS +Ak+

k− + δS
(1.59)

=
k+δS
k− + δS

Sfree = kSfree (1.60)

To obtain a clear and concise notation, we redefine Sfree → S and k → kS , which leads
to the very simple rate equations:

Ṁ = αM − δMM − kMMA

Ȧ = αA − δAA− kMpMMA− kSpSAS
Ṡ = NαS − δSS −AkSS

(1.61)

(1.62)

(1.63)

1.4 Dimensionless form of the rate equations

It proved beneficial to work with a dimensionless form of the rate equations (3.9)-(3.11).
We start by introducing characteristic time and molecule numbers
t = τtc, M = mmc, A = aac, S = ssc and find:

m′ = αM
tc
mc
− δM tc ·m− kM tcac ·ma (1.64)

a′ = αA
tc
ac
− δAtc · a− pMkM tcmc ·ma− pSkStcsc · as (1.65)

s′ = αS
tc
sc
− δStc · s− kStcac · as (1.66)
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Building on these equations, we have various possibilities to proceed. There are 10
parameters, which we could reduce to 6 parameter combinations. Yet, we would still
like to count molecule numbers in the same units, i.e. mc = ac = sc. Hence, the number
of lumped parameters will decrease by two to a final number of 8.

As a next step, we reduce the number of free parameters even further by dividing the
differential equations by suitable parameters. This is also an opportunity to introduce
small ratios that can be used for an expansion later on. In particular, we take
advantage of the fact that sRNAs, mRNAs and proteins in the regulation network have
quite different degradation rates. We choose tc = 1

δM
, which will lead to a small ratio

δam := δA
δM

. Later on, we will use this ratio as an expansion parameter.

Furthermore we would like to simplify the interaction terms and choose
mc = ac = sc = δM

kM
, which results in:

m′ =
αMkM

δM
2 −m−ma (1.67)

a′ =
αAkM

δM
2 −

δA
δM

a− pMam− pS
kS
kM

as (1.68)

s′ =
αSkS

δM
2 −

δS
δM

s− kS
kM

as (1.69)

To further simplify we define αm := αMkM
δM 2 , αa := αAkM

δM 2 , αs := αMkM
δM 2 and ksm = kS

kM
.

Thus, we find

m′ = αm −m−ma
a′ = αa − δama− pMam− pSksmas
s′ = αs − δsms− ksmas

(1.70)

(1.71)

(1.72)

The coupled equations (1.70)-(1.72) are easier to analyze, compared to the original rate
equations, but we have to be aware of the dependencies of our newly defined parameters
αm, αa and αs on kM and δM .

1.5 Stationary solution of free long mRNA
abundance

We start with equations (1.71) and (1.72) and solve the resulting quadratic equation.
We discard the solution with negative molecule numbers and find:

a∗ =
1

2ksm(δam +m∗pM )

[
− αsksmpS + αaksm − δamδsm − δsmm∗pM+

+
√

(αsksmpS − αaksm + δamδsm + δsmm∗pM )2 + 4αaδsmksm(δam +m∗pM )

]
(1.73)

s∗ =
1

2δsmksmpS

[
αsksmpS − αaksm − δamδsm − δsmm∗pM+

+
√

(αsksmpS − αaksm + δamδsm + δsmm∗pM )2 + 4αaδsmksm(δam +m∗pM )

]
(1.74)
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Inserting equation (1.73) into equation (1.70) leaves us with a radical equation for m∗.
Isolating the square root and taking the square on both sides yields:

0 = ksm(δam +m∗pM )
[
αsksmm

∗pS(αm −m∗)+
(αmksm +m∗(δsm − ksm))(αm(δam +m∗pM )−m∗(αa + δam +m∗pM ))

] (1.75)

Since δam > 0 and m∗ ≥ 0, we can discard the solution m∗ = −δam as unphysical and
divide by this solution. We now expand the equation and sort the terms in the order of
m∗:

0 = (m∗)3pM (ksm − δsm)+

(m∗)2[δsm(αmpM − αa − δam) + ksm(αa − 2αmpM − αspS + δam)]+

(m∗)1αm[ksm(αmpM + αspS − αa) + δam(δsm − 2ksm)]+

(m∗)0α2
mδamksm

=: (m∗)3M3 + (m∗)2M2 + (m∗)1M1 +M0

(1.76)

The solutions of this cubic equation can be calculated exactly. Solutions that do not
satisfy the original radical solution then have to be discarded. However, the general
solution of a cubic equation is very lengthy, and its explicit form does not reveal much
of physics or lead to a deeper understanding. That is why we would like to find an
easier, approximate solution that allows us to analyze the analytic findings.

1.5.1 Approximation for small and large molecule numbers

For small molecule numbers of long mRNA we can neglect the cubic term in equation
(1.76). This leaves us with a quadratic equation whose solution is given by:

m∗� =
1

−2M2

(
M1 +

√
M2

1 − 4M2M0

)
(1.77)

For large m∗, we neglect the term (m∗)0 = 1 in equation (1.76):

m∗� =
1

2M3

(
−M2 −

√
M2

2 − 4M3M1

)
(1.78)

1.5.2 Combined solution

Having found two solutions for the two regimes m∗ � 1 and m∗ � 1, the question
arises how these solutions may be combined to form one function that describes the
stationary solution of m∗ over the whole parameter range. In the two limiting cases, we
neglected for small molecule numbers the cubic term M3(m∗)3, and for larger molecule
numbers the term M0. When M3(m∗trans)

3 =M0, these two terms have exactly the
same magnitude and, as a consequence, yield exactly the same result for m∗. We use
this fact to introduce a transition from m∗� to m∗� and define:

m∗ :=

{
m∗� ;m∗� < m∗trans

m∗� ; else
for δsm < ksm (1.79)

m∗trans =

(
M0

M3

)1/3

=

(
α2
mδamksm

pM (ksm − δsm)

)1/3

(1.80)
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With the solution of m∗ and equations (1.73) and (1.74), we obtain a∗ and s∗.

There is a minor setback, since in the regime δsm > ksm the transition molecule number
m∗trans becomes negative. That is why equation (1.79) is only defined for δsm < ksm.

In the regime δsm > ksm we have to follow a different approach. So far, we derived a
cubic equation for m∗, but we can also do the same for s∗. Following the same steps as
above, while interchanging the roles of m and s, gives rise to another cubic equation:

0 = (s∗)3δsmksmpS(δsm − ksm)+

(s∗)2(ksm(−αmδsmpM + αspS(ksm − 2δsm) + αa(δsm − ksm)) + δamδsm(δsm − ksm))+

(s∗)1αs(ksm(αmpM + αspS − αa) + δam(ksm − 2δsm))+

(s∗)0α2
sδam

=: (s∗)3S3 + (s∗)2S2 + (s∗)1S1 + S0

(1.81)

In the same way as for the cubic equation in m∗, we can now calculate two limiting
solutions for s∗ � 1 and s∗ � 1 that we call s∗� and s∗�:

s∗� =
1

−2S2

(
S1 +

√
S2

1 − 4S2S0

)
(1.82)

s∗� =
1

−2S3

(
S2 +

√
S2

2 − 4S3S1

)
(1.83)

The transition between these solutions takes place at:

s∗trans =

(
α2
sδam

δsmksmpS(δsm − ksm)

)1/3

(1.84)

which is positive for δsm > ksm, as opposed to m∗trans. We further define:

s∗ :=

{
s∗� ; s∗� < s∗trans

s∗� ; else
for δsm > ksm (1.85)

From s∗ we may than calculate a∗, and finally m∗. Thus, we are able to find an
approximate analytic solution for the whole range of parameters (δsm ≷ ksm).
Comparison with the numerical solution of the cubic equation shows that the
approximation is very exact.

The advantage of our approximate solution compared to the exact solution of the cubic
equation (1.76) is twofold. First, due to its simple form we are able to understand the
equation and are in the position to predict, for example, the dependence of the
threshold on specific parameters (see section 1.6). Second, when studying fluctuations
we have to deal with long equations that contain the stationary solutions m∗, a∗, s∗ as
parameters. The simpler the stationary solutions, the quicker are the calculations.

1.6 Threshold properties of long mRNA expression

In the main text we found a distinct threshold in the expression of long mRNA. In this
section we will study the threshold properties of the stationary solution m∗ in great
detail. The analysis will be based on equation (1.79) in general and equation (1.77) in
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particular. Equation (1.77) describes well the stationary solution below threshold, from
which we can deduce threshold properties. We already defined:

M3 = pM (ksm − δsm) (1.86)

M2 = [δsm(αmpM − αa − δam) + ksm(αa − 2αmpM − αspS + δam)] (1.87)

M1 = αm[ksm(αmpM + αspS − αa) + δam(δsm − 2ksm)] (1.88)

M0 = α2
mδamksm (1.89)

The solution given by (1.79) is only valid in the regime δsm < ksm. In the regime
δsm > ksm, we would have to work with the approximate solution of s∗

(equation (1.85)), which complicates the threshold analysis in m∗. However, there is no
obvious reason why the dependence of threshold properties should be different in the
two parameter ranges δsm < ksm and δsm > ksm.

1.6.1 Threshold position

For small αM and αS , the terms M1 and M2 are negative. The negative M1-term in
front of the square root is compensated by the same term squared under the root.
Neglecting the second term under the square root, this would result in m∗ = 0 for
M1 < 0 and linear increase of m∗ once M1 becomes positive. This is how the threshold
is encoded in the equations, and we find the threshold position at M1 = 0:

αm,th =
1

pM

[
αa − αspS + δam

(
2− δsm

ksm

)]
≈ 1

pM
[αa − αspS ] (1.90)

αa,th = αmpM + αspS − δam
(

2− δsm
ksm

)
≈ αmpM + αspS (1.91)

From this expression we can deduce that we can shift the threshold to larger αm if

pM , pS↘: (1− pM ) and (1− pS) are the probabilities that a CsrA dimer survives the
degradation of an mRNA-CsrA complex and a CsrA-sRNA complex, respectively.
If pM = 1 (pS = 1) the regulation is called non-catalytic. If pM = 0 (pS = 0) the
regulation is called catalytic, for in this case CsrA acts as a catalyst for the
degradation of its binding partners. Then, the threshold value αm,th is
proportional to 1/pM , since 1/pM is the number of long mRNA molecules that are
degraded along with 1 CsrA dimer.

αa↗: Increasing αA leads to a build-up of a larger CsrA buffer that has a greater
capability to down-regulate long mRNA expression.

αs↘: For smaller αS less sRNA molecules are produced. It follows that less sRNA
molecules may interfere with CsrA dimers.

Since equation (1.90) is linear in all production rates, the statement above holds true
not only for dimensionless rates αs, αa but as well for dimensionful rates αM , αA.

1.7 Comparison with Gillespie simulations

We compared the stationary solution of the rate equations with Gillespie simulations. In
all Gillespie simulations the starting molecule numbers where set to M = A = S = 0.
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We observed that the system needs less than Noffset = 3000 reactions to relax to
equilibrium. We obtained the mean molecule number 〈M〉 by time averaging the
molecule number M over one run between reaction number Noffset and Nmax = 1000000.
Each molecule number M was weighted by the waiting time to the next reaction and
summed up. At the end, the result was divided by the total time it took between
reaction Noffset and Nmax. This can be expressed as:

〈M〉 =
1

T

Nmax−1∑
i=Noffset

∆tiMi (1.92)

Var[M ] =
1

T

Nmax−1∑
i=Noffset

∆tiM
2
i − 〈M〉2 (1.93)

where ∆ti = ti+1 − ti and T = tNmax − tNoffset
.

The stationary solution M∗ might be different from 〈M〉:

〈Ṁ〉 = 0 = 〈αM 〉 − 〈δMM〉 − 〈kMMA〉
= αM − δM 〈M〉 − kM 〈[〈M〉+ δM ][〈A〉+ δA]〉
= αM − δM 〈M〉 − kM 〈M〉〈A〉︸ ︷︷ ︸

stationary solution of rate equation

−kM [〈M〉〈δA〉+ 〈A〉〈δM 〉+ 〈δAδM 〉] (1.94)

S2 Figure shows very good agreement between the approximative analytical stationary
solution of long mRNA abundance and the mean molecule number of mRNA obtained
by Gillespie simulations.

1.8 Accounting for additional targets of CsrA

Our study focuses on gene regulation of Colicin E2 release. Therefore, we did not
explicitly consider other targets of CsrA (or any component in the E. coli cell),
although we are aware that CsrA alone can bind to at least over 700 different mRNA
targets. The question of how to obtain a simplified biochemical network despite the
thousands of different proteins in a living cell, is of very fundamental nature, and
remains unsolved. This is particularly critical in our case, since CsrA is a master
regulator protein in E. coli. However, we still think that it is possible to reduce these
system, and want to illustrate, how such a reduction can be done.

In section 1.3 of this Supporting Information, we derived the reduced model from a
simplified biochemical network (see S1 Fig). This network comprises five components:
The regulator CsrA (A), its target long mRNA (M), the “regulator’s regulator” sRNA
(S), and the complexes of CsrA with both the long mRNA (CMA) and the sRNA (CSA).
For the two types of sRNA (CsrB and CsrC), we derived an effective sRNA, which
contains only a single binding site (instead of N binding sites) and thus considerably
simplifies the equations (see section 1.3 of the Supporting Information). Employing the
effective sRNAs, the biochemical network can be written as the following set of ordinary
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differential equations:

CsrA : Ȧ = αA + k−S CSA + k−MCMA+

+ δCSA
CSA(1− pS) + δCMA

CMA(1− pM )

− δAA− k+
MMA− k+

S SA, (1.95)

long mRNA : Ṁ = αM + k−MCMA − δMM − k+
MMA, (1.96)

long mRNA-CsrA complex : ˙CMA = k+
MMA− k−MCMA − δCmaCMA, (1.97)

sRNA : Ṡ = NαS + k−S CSA − δSS − k
+
S SA, (1.98)

sRNA-CsrA complex : ĊSA = k+
S SA− k

−
S CSA − δCSA

CSA. (1.99)

These five differential equations describe the temporal change in the abundance of the
corresponding quantity. They all contain terms that describe production (α) or
degradation (δ) of components, or the formation (k+) and breaking (k+) of complexes.
Let us shortly recapitulate the biochemical significance of these terms. The first line in
the dynamical equation for CsrA (eq. (1.95)) comprises the rate of CsrA production
(αA), and two terms accounting for the increase in CsrA due to CsrA-sRNA- and
CsrA-mRNA-complexes breaking up, respectively. The next line contains two terms
describing the CsrA increase by the degradation of these two complexes, and include the
parameters pM and pS , which describe the probability for CsrA to be co-degraded with
the complex. Finally, the last line describes terms which reduce CsrA abundance: CsrA
decreases either by degradation of CsrA (δA), or by forming complexes with long mRNA
or sRNA, respectively. The equations for long mRNA and sRNA, eq. (1.96) and (1.98),
describe analogous biochemical processes. As the formation of a complex means a
decrease in the abundance of the respective complex partners, we find in the equations
of the complexes, eq. (1.97) and (1.99), that terms with positive sign in the dynamical
equations of A,M or S appear with negative sign the equations for complexes, and vice
versa.

In order to account for a new target, we assume that its qualitative behavior is that of
long mRNA. This means that in the model its differential equation has the very same
structure as that for the long mRNA, but of course with rate parameters specific to the
corresponding target. As it would be very unhandy to add over 700 targets to the
model, we introduce a single, effective target, T . This additional effective target is an
“average” mRNA target, which forms complexes with CsrA. Therefore, accounting for
such an effective target adds dynamic equations for the abundance of the target as well
as for its complexes,

eff. target : Ṫ = αT + k−T CTA − k
+
TAT − δTT (1.100)

target-CsrA complex : ĊTA = k+
T TA− k

−
T CTA − δCTA

CTA, (1.101)

and also adds new terms to the dynamic equation for CsrA, eq. (1.95):

CsrA : Ȧ = [r.h.s. of (1.95)]− k+
T TA+ k−T CTA + δCTA

CTA(1− pT ). (1.102)

As stated above, the structure of its terms is analogous to those found in the dynamics
of the long mRNA: The effective target is produced at rate αT and degraded at rate
δTT . Note that αT is chosen such that the target abundance in the cell matches the
combined abundance of the 700 different targets. As with long mRNA, the abundances
of A and T get reduced by the formation of CsrA-target-complex (−k+

T TA), and
increased once these complexes either break apart (+k−T CTA) or get degraded
(+δCTA

CTA(1− pT )). In the equation for the CsrA-target-complexes, the last three
rates appear again with opposite signs.
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Eqs.(1.96)-(1.102) now define our initial biochemical network, extended with an effective
additional target and its complex with CsrA. We proceed by first considering this
system in the steady state. From this state, we can calculate the component abundances.
In a second step, we make the simplifying assumptions that all complexes and, in a
third step, also the target abundance equilibrate fast compared to other components of
the reduced model. This fast-equilibrium-assumption eliminates the affected
biochemical processes, and allows us to finally reduce the model to three components.

Steady State. In order to compare the abundances predicted by the extended
biochemical network with experimental data, we start by considering the steady state of
the system. The steady state is defined as the state, in which no abundance is subject
to changes with time. It is obtained by setting the left hand sides of eqs.(1.96)-(1.102)
to zero (i.e. Ȧ = 0, Ṁ = 0, ...). We begin with the equations for the complexes,
eqs. (1.97), (1.99) and (1.101). For CMA (eq. (1.97)), we get from Ċ = 0,

CMA =
k+
M ·M ·A

k−M + δCMA

=
kM ·M ·A
δCMA

, (1.103)

where we introduced the effective binding parameters

kM :=
k+
MδCMA

k−M + δCMA

. (1.104)

As the equations of the complexes, eqs. (1.97), (1.99) and (1.101), have all the very
same structure, we can find equations and effective parameters for the sRNA/CsrA- and
target/CsrA-complexes analogously. Taken together, these equations read

CMA =
kM ·M ·A
δCMA

, kM :=
k+
MδCMA

k−M + δCMA

, (1.105)

CSA =
kS · S ·A
δCSA

, kS :=
k+
S δCSA

k−S + δCSA

, (1.106)

CTA =
kT · T ·A
δCTA

, kT :=
k+
T δCTA

k−T + δCTA

. (1.107)

Inserting these equations to the (steady state) differential equations for A,S,M and T ,
we obtain an set of coupled equations that is independent of the complex abundances:

0 = αA − δAA− kMpMM ·A− kSpSS ·A− kT pTA · T, (1.108)

0 = αM − δMM − kMM ·A, (1.109)

0 = NαS − δSS − kSS ·A, (1.110)

0 = αT − δTT − kTT ·A. (1.111)

These four equations describe the steady state of the free components A,S,M and T .
Note that by employing eqs. (1.105)-(1.107), we were able to combine for each
component complex degradation and (un)binding of the complex partners to an
effective “coupled degradation” term, e.g. −kMpMMA for long mRNA. This step
reduces the complexity: The equations for M,S and T now contain only three terms,
one each for production (α), degradation (δ) and complex formation with CsrA (k).
The dynamic equation for CsrA has the same structure, but a special coupled
degradation term: As CsrA forms complexes with each of the three other components
(M,S and T ), it also has three coupled degradation terms.
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Solving our system of equations, eqs. (1.108)-(1.111) numerically allows us to calculate
the steady state abundances of the system. To this end, we need to estimate the
production, degradation, and binding rates of all the components. We motivate our
estimations in chapter 2. Moreover, we assumed pM = pS = pT = 1, as CsrA dimers,
even if they survive complex degradation, are unlikely to form a complex again after
prolonged binding. More specifically, we used the following parameters (in the units
molecules/min, 1/min, 1/(molecules · min) for α, γ, k, respectively):

M: αM = 1 δM = 0.04 kM = 0.5 pM = 1 δCM
= δM (1.112)

S: NαS = 57.5 δS = 0.023 kS = 0.5 pM = 1 δCS
= δS (1.113)

T: αT = 350 δT = 0.04 kT = 0.5 pT = 1 δCT
= δT (1.114)

A: αA = 408.45 δA = 0.00007 (1.115)

Note that the production rates α of the components are unknown (see also chapter 2),
and are thus treated as free parameters. We chose them such that the numerical solution
of eqs. (1.108)-(1.111) with the other parameters in eqs. (1.112)-(1.115) results in

M = 0.01, S = 0.29, T = 1.77, A = 395.45,

CMA = 24.99, CTA = 8748.23, CSA = 2499.71.

We find that our model consistently predicts not only the abundance of free CsrA (A)
as found by Taniguchi et al. [7](474 ± 191 free CsrA molecules), but also its total
abundance A+ CMA + CTA + CSA and the sRNA ratio, which are given by Gudapathy
et al. (11.000-33.000 CsrA molecules in total, 16-32% bound to sRNA [8]). This shows
that the abundances in our model reconcile with abundances found in experiments.
Moreover, the model extended with the effective targets produced the same abundance
of free CsrA as our reduced model. From this we learn that it is indeed justifiable to use
a reduced model, which does not account for all possible targets, as the abundance of
free CsrA is sufficient to describe our specific regulatory system.

Dynamics. The next steps, which reduce the number of components in the model,
are more difficult, and require us to make assumptions on the speed of equilibration of a
subset of biochemical processes. Specifically, we assume fast complex equilibration (i.e.
ĊSA = 0, ...). This assumption is well established in the literature (see, for instance, [9]),
and has already been employed in our derivation of the reduced model. It allows us to
use eqs. (1.105)-(1.107):

CMA =
kM ·M ·A
δCMA

,

CSA =
kS · S ·A
δCSA

,

CTA =
kT · T ·A
δCTA

,

This yields the following set of equations

Ȧ = αA − δAA− kMMA− kSSA− kTAT, (1.116)

Ṁ = αM − δMM − kMMA, (1.117)

Ṡ = NαS − δSS − kSSA, (1.118)

Ṫ = αT − δTT − kTTA. (1.119)
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Note that the right hand side of these equations is identical to the right hand side of the
steady state equations, eqs.(1.96)-(1.102). These four equations describe the dynamics
of our reduced model (as presented in our paper), interacting with a second, effective
target for CsrA.

So far, we have showed how it is possible to account for additional targets in a cell in
the form of a single, effective target, and derived a reduced four-component model,
eqs. (1.116)-(1.119). In order to work with these equations, we must specify the
dynamics of the effective target. However, the corresponding rates for most targets are
not known, and can only be estimated roughly. It is therefore not useful to explicitly
account for these targets in the model. In the following paragraph, we will use the
aforementioned rough estimates to reduce eqs. (1.116)-(1.119) back to our
three-component model, as the additional terms for the target turn out to be constant
above a threshold value of A.

Elimination of the Target Dynamics. In order to eliminate T from
eqs. (1.116)-(1.119), we proceed analogous to the elimination of the complexes and
make the additional assumption that also the target abundance equilibrates fast. This
means that we assume Ṫ = 0 in eq. (1.119), and, just as with the complexes (see, e.g.,
eq. (1.103)), solve for the target abundance:

T =
αT

δT + kTA
. (1.120)

We then insert this solution in the differential equation for A, eq. (1.116):

Ȧ = αA − δAA− kMMA− kSSA− kT ·A ·
αT

δCT + kTA
. (1.121)

The equation for A is now independent of T , and eqs. (1.121),(1.117) and (1.118)
comprise a closed system of differential equations for three components (just as in our
reduced model presented in our main text). If we compare it to our reduced model, we
find that the models differ only by a single degradation term in the equation for CsrA.
The term reads

−kT ·A ·
αT

δCT + kTA
= −A · αT

δCT

kT
+A

, (1.122)

and is special for two reasons: First, it is the only term that contains the parameters for
the effective targets, and thus describes their influence on the dynamics. Second, its
dependence on the parameter A is more complex than for the other terms in eq. (1.121),
as it has it has a Langmuir-like dependence on A. Because of the Langmuir functional
form, the ratio of δCT and kT determines whether the term depends on A or not: If
δCT /kT is significantly larger than A, it dominates the denominator in eq. (1.122), and
the term becomes linearly dependent on A. In the opposite case, if A dominates the
denominator, it cancels with the linear A-dependence, rendering the term constant.
These two limiting scenarios can be summarized as follows:

δCT
kT
� A : A · αT

δCT

kT
+A

≈ A · αT
A

= αT , (1.123)

δCT
kT
� A : A · αT

δCT

kT
+A

≈ A · αT
δCT

kT

= A · αT kT
δCT

. (1.124)

If the parameter sets used in our simulations fall into one of the two limiting scenarios,
we could approximate the Langmuir-like term by either eq.(1.123) or (1.124). This
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would then simplify the analysis of the equations, and allows us to absorb the term
eq. (1.122) into an effective rate of production or degradation, respectively.

Using the parameters defined in eq. (1.114), we find δCT

kT
= 0.08. For steady state

calculations before an SOS signal, that is, when A� 1, we can thus assume δCT

kT
� A.

This means that eq.(1.123) can be applied, and eq. (1.122), becomes the constant αT .
We insert it to eq. (1.121) to get:

Ȧ = αA − δAA− kMMA− kSAS − kT ·A ·
αT

δCT + kTA
(1.125)

≈ αA − δAA− kMMA− kSAS − αT (1.126)

= (αA − αT )− δAA− kMMA− kSAS (1.127)

= αA,eff − δAA− kMMA− kSAS. (1.128)

In these steps, we approximated the Langmuir-like term by the constant limiting case,
as described above. We then eliminated this now constant term by adding it to the
(also constant) production rate αA, thus defining a new, effective production rate

αA,eff = αA − αT .

Calculating this effective production rate from the parameters defined in eqs. (1.115)
and (1.114), we get αA,eff = 58.45. If we use this value to numerically solve the steady
state eqs. (1.128),(1.117) and (1.118), we find that αA,eff does not reproduce the correct
steady state abundances. However, to get the correct values, we have to slightly increase
this value to 58.52. This slight difference stems from the approximation of the
Langmuir-like term.

With the correction, we get for our three-component system

M = 0.01, S = 0.30, A = 386.44,

CMA = 24.99, CSA = 2499.7,

which matches the abundances found in the steady state solution with the targets again
very well.

In summary, we derived the three-component system from our main text,

Ṁ = αM − δMM − kMMA,

Ȧ = αA − δAA− kMpMMA− kSpSAS,
Ṡ = NαS − δSS −AkSS,

from our initial biochemical network, eqs. (1.95)-(1.99), which now also accounted for
additional targets, eqs.(1.100) and (1.101). We found, that the following set of rate
parameters (in the units molecules/min, 1/min, 1/(molecules · min) for α, γ, k,
respectively):

M: αM = 1 δM = 0.04 kM = 0.5 pM = 1 δCM
= δM

S: NαS = 57.5 δS = 0.023 kS = 0.5 pM = 1 δCS
= δS

A: αA = 58.52 δA = 0.00007

the model is able to reproduce experimentally observed abundances.
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Chapter 2

Biological parameter values in
post-transcriptional regulation

The goal of this chapter is to find meaningful parameter values. We follow a three step
procedure. First, literature is searched for experimental measurements. Second, if there
are no experimental measurements, we will estimate the range of parameter values by
looking at similar regulation systems in bacteria. Third, considering the explicit
biological processes involved in expression, we will find rough estimates for parameter
values and we will check if these values agree with the biological range found in step two.

2.1 Experimental values

At 37◦C the half-life of small RNAs CsrB and CsrC are 1.6 min and 4.1 min,
respectively [2]. Since the relation between degradation rates and half-life is
δ = 1/τ = ln 2/t1/2, we find δCsrB ≈ 0.43 min−1 and δCsrC ≈ 0.17 min−1. However, these
values have been measured in experimental conditions that suggest the presence of
CsrD, which was shown to be responsible for the degradation of the sRNAs CsrB and
CsrC. Recent studies show that CsrB/C decay is activated by the presence of glucose,
because glucose leads finally to activation of CsrD [10]. Another recent study
demonstrated, that only the unphosphorylated form of EIIAglc (the glucose specific
permease of the PTS system) is able to bind to CsrD and activate CsrB/C
degradation [11]. In this regard, [12] found that in glucose media, EIIA is
unphosphorylated, but phosphorylated in glycerol media. As we want to compare the
results of our model to experiments which employ glycerol as the only carbon source,
CsrD will not be activated. This implies that we can consider the half-life of the sRNA
to be about 30 min [13], which corresponds to δS = 0.023 min−1.

Long mRNA decays with a half-life of 18± 1.5 min [14], which leads to
δM ≈ 0.04 min−1.

For proteins in E. coli we know that ”[o]nly a limited portion of the cellular protein is
subject to rapid degradation. It decays with a half-life of approximately 1 hour and
constitutes 2 to 7% of the total cellular protein” [15]. This classification was refined one
year later [16]:

24



1. 2%− 7% of all proteins in E. coli degrade quickly with a half-life of approximately
one hour, meaning δfast ≈ 0.012 min−1.

2. The remainder, i.e. 93%− 98% of all proteins in E . coli, degrades

(a) under starvation at a rate of 2.5%− 6% of proteins per hour. Since
N(t) = N0e

−δt, it follows that
δstarve = − ln(0.98− 0.935) hr−1 = (0.0034− 0.001) min−1.

(b) without starvation at a rate of 0.2%− 0.6% of proteins per hour. It follows
that δslow = (0.000034− 0.0001) min−1.

Since we are not interested in conditions under starvation, we have to choose either the
degradation rate of fast degrading proteins with δfast ≈ 0.01 min−1, or that of slowly
degrading proteins with δslow ≈ 0.00007 min−1. Since CsrA is generally described as
very stable [13], we assume δA = 0.00007 min−1.

In summary, we set the degradation rates as

δM = 0.04 min−1 δA = 0.00007 min−1 δS = 0.023 min−1

2.2 Estimations from similar system

In [6] a cyanobacterial iron stress response was analyzed and analytic calculations were
fitted to experimental data. This lead to an estimate of complex binding parameters.
The best-fit parameters for an up-regulated system are as follows:

k =
konδC

koff + δC
≈ konδC

koff
≈ 4.4 nM−1min−1.

In [5] the target gene sodB was regulated by an sRNA, RyhB, that is involved in iron
homeostasis of E. coli. The complex binding parameters were estimated to

k = 0.02 nM−1min−1.

The estimates for complex binding parameters deviate in the two different systems by
two orders of magnitudes. We will use these results as the biological range for these
parameters in our model of post-transcriptional regulation. We choose the mean order
of magnitude and take:

kM = kS = 0.5 min−1molecule−1.

Cooperative Binding. We are aware of the fact that some studies (like dscussed
in [17,18]) suggest that CsrB and CsrC are subject to positive cooperative binding, that
is, an increase in binding affinity of a sRNA the more CsrA molecules bind to it.
However, we were not able to find reliable quantitative data, which would clearly show
that our assumption of fast complex equilibration is void. Indirect ways of analyzing the
binding rates, particularly the measurement of KD values, produce highly varying
results, depending on the particular experimental condition used [19,20]. Since clear
evidence for highly cooperative binding interfering with our assumptions is missing, we
did not include this phenomenon in our model. In the case that future studies would
show that cooperative binding effects of CsrA to sRNA are indeed crucial, our model is
still valid, but has to be slightly extended: As the CsrA-sRNA-complexes cannot be
considered to equilibrate fast anymore, their abundance CSA must be included explicitly
in the model. This would turn the three-component-model to a four-component one.
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2.3 Biological estimations

Conversion of units

First, we have to find a conversion between the unit nanomolar (nM), as found in
experimental papers, and molecules per cell, as we have used for our estimations. The
cell volume of E. coli is VEC = (0.6− 0.7)µm3 [21]. Therefore,

1nM = 10−9 mol
dm3 = 10−9 0.65

1
6.02·1023 molecules

0.65·1015µm3 ≈ 0.4 molecules
0.65µm3 = 0.4 molecules

VEC
.

Production rates

The production rates of CsrA, the sRNAs and the long mRNA, αA, αS and αM , have
not been measured, and are thus unknown. In order to obtain plausible values, we fit
them such that our model produces component abundances that are found in the
literature.

For CsrA, Taniguchi [7] finds an abundance of free molecules of 474 ± 191 per cell. In
the reduced model, this value is reached in the steady state if we set
αA = 58.52 molecules/min. We show in section 1.8 of this Supporting Information, that
this number is in good agreement with an extended model, which also accounts for
additional targets of CsrA and correctly reproduces the total CsrA abundance in the
cell.

For sRNA, Gudapathy et al. [8] find an abundance of about Sexp = 250 CsrB molecules
per cell. Moreover, they assume that all of these molecules have formed a complex with
CsrA molecules (that is, there is no free sRNA in the system), and that for each sRNA
all binding sites are occupied with CsrA. The CsrB molecule is known to have
approximately 22 binding sites for CsrA, with N ≈ 10 CsrA dimers being attached on
average [1, 22]. Since our model uses an effective sRNA with only a single binding site,
we have to fit the sRNA production rate, NαS , such that our model produces the
N -fold amount of sRNAs compared to the abundance found in experiments. In order to
get N · Sexp = 10 · 250 sRNA complexes, we need to set NαS = 57.5 molecules/min.

For the long mRNA, the abundance in the cell has not been measured yet. Since the
gene of long mRNA (2335 nucleotides [23]) is about one order of magnitude larger than
the ones of CsrA (183 nucleotides [23]) and the sRNAs (369 nucleotides and 245 nt [23]),
the transcription of long mRNA will take longer. Consequently, we assumed αM to be
significantly smaller than the production rates of CsrA and sRNA. In our model, we
assumed it to be αM = 1.

In summary, we defined the following production rates for long mRNA, CsrA and sRNA:

αM = 1 molecules/min αA = 58.52 molecules/min αS = 57.5 molecules/min

Plasmid numbers

Previous studies showed that in a single E. coli cell there are approximately nsos = 20
copies of the plasmid containing the colicin operon. The variation in the colcin plasmid
number from cell to cell is caused by colicin E2 plasmids being steadily replicated in the
cell by a rolling circle replication mechanism. The plasmid copy number enters our
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model via the total (per cell) production rate of long mRNA (αM ) as a multiplicative
factor: αM = αMl

· (nsos −BSOS) (where BSOS denotes the number of plasmids with
respressed colicin promoter). Therefore, changes in the plasmid copy number affect our
model by either increasing (fewer plasmids) or decreasing (more plasmids) the delay
between SOS signal and lysis. However, since most colicin promoters are repressed, even
during an SOS signal, the consequences of this effect are limited, compared to changes
in the rate parameters. To show the effects of varying plasmid copy numbers, we briefly
discuss the lysis time distribution of a population, in which the plasmid copy number is
Poisson-distributed with mean nsos = 20 (see S4 Fig B). Compared to its counterpart
with fixed nsos, S4 Fig A, we find that the distribution in S4 Fig B is wider. This is due
to the effects of variation in nsos we described above: As the population contains cells
with plasmid levels both above and below the average, the distribution gets shifted in
both directions. However, the comparison with S4 Fig A also shows that the widening
of the distribution is rather weak, and that the overall shape of the distribution is
largely conserved. This illustrates that variations in plasmid copy number affect the
lysis time distribution only weakly. Moreover, the replication of plasmids is the only
mechanism that affects their copy number, and happens much slower than any other
process considered by our model. Hence, the effect of variation in plasmid copy number
on lysis time distributions is expected to be only minor. In order to keep the focus on
effects happening on the timescale of SOS responses, we kept the number of colicin
plasmids constant, and chose their abundance to be the average value.
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Chapter 3

Gillespie simulations

We define the following notation:

� R,Le,Col, L: number of RecA proteins, LexA dimers, Colicin proteins and lysis
proteins.

� MrMl,Ms,M : number of lexA, recA, short mRNAs and long mRNAs.

� S: number of effective sRNAs with one CsrA binding site.

� BrBl, Bsos: number of LexA dimers bound to the lexA, recA and SOS promoter.

� αMr , αMl
, αR, αLe, Bsos, αMs , αM , αA, αS , αL: Production rates (α) of the

component denoted by the subscript.

� δMr
, δMl

, δLe, δR, δMs
, δM , δA, δS , δL: Degradation rate of the component denoted

by the subscript.

� k+
r , k

+
l , k

+
sos, k

−
r , k

−
l , k

−
sos: Binding rates (+) and unbinding rates (−) of LexA

dimers to recA, lexA and SOS promoter sites. The subscript denotes the
component.

� kM , kS : coupled degradation parameters for the complexes of mRNA and sRNA,
respectively

� cp: Rate of LexA auto-cleavage due to RecA protein.

� nsos: number of ColE2 plasmids.

� 1− pM : Probability of CsrA dimers surviving degradation of sRNA-CsrA
complexes.

� 1− pS : Probability of CsrA dimers surviving degradation of mRNA-CsrA
complexes.
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3.1 Rate equations

With the defined interaction scheme and notation we are now able to introduce the rate
equations used by Shimoni [24]:

Ṁr = αMr
(1−Br)− δMr

Mr (3.1)

Ṁl = αMl
(1−Bl)− δMl

Ml (3.2)

Ṙ = αRMr − δRR (3.3)

L̇e = αLeMl − δLeLe− k+
l (1−Bl)Le+ k−l Bl − k

+
r (1−Br)Le+ k−r Br

− k+
sos(1−Bsos)Le+ k−sosBsos − cpRLe

(3.4)

Ḃr = k+
r (1−Br)Le− k−r Br (3.5)

Ḃl = k+
l (1−Bl)Le− k−l Bl (3.6)

˙Bsos = k+
sos(nsos −Bsos)Le− k−sosBsos (3.7)

Ṁs = αMs(nsos −Bsos)− δMsMs (3.8)

Ṁ = αMl
(nsos −Bsos)− δMM − kMMA (3.9)

Ȧ = αA − δAA− kMpMMA− kSpSAS (3.10)

Ṡ = αS − δSS −AkSS (3.11)

3.2 Gillespie simulations

From the rate equations (3.1)-(3.11) we set up a Gillespie simulation [25] with the
following reactions:

1. Mr
αMr (1−Br)−−−−−−−−→Mr + 1

2. Ml

αMl
(1−Bl)−−−−−−−→Ml + 1

3. R
αRMr−−−−→ R+ 1

4. Le
αLeMl−−−−→ Le+ 1

5. Mr
δMrMr−−−−−→Mr − 1

6. Ml

δMl
Ml−−−−→Ml − 1

7. R
δRR−−−→ R− 1

8. Le
δLeLe−−−−→ Le− 1

9. Le,Br
k+r (1−Br)Le−−−−−−−−→ Le− 1, Br + 1

10. Le,Bl
k+l (1−Bl)Le−−−−−−−−→ Le− 1, Bl + 1

11. Le,Br
k−r Br−−−−→ Le+ 1, Br − 1

12. Le,Bl
k−l Bl−−−→ Le+ 1, Bl − 1

13. Le
cpRLe−−−−→ Le− 1

14. Le,Bsos
k+sos(nsos−Bsos)Le−−−−−−−−−−−−→

Le− 1, Bsos + 1

15. Le,Bsos
k−sosBsos−−−−−→ Le+ 1, Bsos − 1

16. Ms
αMs (nsos−Bsos)−−−−−−−−−−→Ms + 1

17. Ms
δMsMs−−−−−→Ms − 1

18. M
αMl

(nsos−Bsos)−−−−−−−−−−→M + 1

19. M
δMM−−−→M − 1
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20. A
αA−−→ A+ 1

21. A
δAA−−−→ A− 1

22. S
αS−−→ S + 1

23. S
δSS−−→ S − 1

24. (M,A)
kMpMMA−−−−−−−→ (M − 1, A− 1)

25. (M,A)
kM (1−pM )MA−−−−−−−−−−→ (M − 1, A)

26. (A,S)
kSpSAS−−−−−→ (A− 1, S − 1)

27. (A,S)
kS(1−pS)AS−−−−−−−−→ (A,S − 1)

The parameter values are shown in S1 Table. The values from literature in this table
were taken from [2,14–16,24,26]. Estimated parameter values were chosen according
to [5, 6, 24]. For the transcription rates of long mRNA, CsrA and sRNA we calculated a
rough estimate using the transcription rate of RNA polymerase [27] and the length of
the individual genes [23], taking into account the number of Colicin plasmids, CsrA
binding sites on CsrB, and the translational burst size for CsrA. All parameters are
given in the unit of molecules per cell and minute.
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Chapter 4

Linear noise approximation

4.1 Definitions

The state vector ~x = (X1, X2, . . . , XN )
T

gives the copy numbers of the N components
involved.

There are M reactions with rates ~W (~x) = (W1(~x),W2(~x), . . . ,WM (~x))
T

.

The matrix A with components aij gives the change in copy number of component i
following reaction j.

4.2 Master equation and rate equation

With the definitions above the master equation is given by:

d

dt
P (~x, t) =

M∑
j=1

[Wj(~x− ~aj)P (~x− ~aj , t)−Wj(~x)P (~x, t)] (4.1)

The Master equation 4.1 gives rise to the time evolution of the first moment:

〈~̇x〉 = 〈A ~W (~x)〉 ≈ A ~W (〈~x〉) (4.2)

In the last step we have neglected correlations. If all reaction rates in vector ~W were
linear, an equal sign would hold true. Equation (4.2) with neglected correlations is the
deterministic rate equation of the system.

4.3 Kramers-Moyal expansion and van Kampen’s
expansion

The master equation (4.1) is a set of Nx coupled ordinary differential equations (ODEs),
where Nx is the number of states in the system. There is a large number of states, since
each set of copy numbers corresponds to one individual state. This makes it very hard
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to acquire useful information directly from the master equation. A master equation is
often approximated by a Kramers-Moyal expansion, which converts the set of Nx
coupled ODEs to one partial differential equation of order imax:

d

dt
P (~x, t) = ∂tP (~x, t) ≈

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂xkj )

 i∏
j=1

(akj l)Wl(~x)P (~x, t)

 (4.3)

For the sake of concise notation, we define ~X = 〈~x〉, so ∂t ~X = A ~W ( ~X ). Next, we

introduce a new random variable ~ξ, which gives the fluctuations around the
deterministic trajectory given by the rate equations:

~x = ~X + ~ξ with ~ξ = O
(√
|~x|
)

(4.4)

It is important that fluctuations scale with the square root of the mean, because van
Kampen’s expansion is only valid if fluctuations are in the vicinity of the deterministic
rate equation. Contrary to the van Kampen expansion typically found in
textbooks [4, 28], we neglect the system size parameter Ω used for scaling arguments at
this point. The reasons will become clear in section 4.6.

The probability density in the new random variable ~ξ relates to the probability density
in the random variable ~x as

π(~ξ, t) = P (~x, t) = P ( ~X (t) + ~ξ, t). (4.5)

Consequently, we find:

∂tπ(~ξ, t) = ∂xiP (~x, t)
dxi(t)

dt
+ ∂tP (~x, t)

= ∂xi
P (~x, t)

dXi(t)
dt

+

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂xkj )

 i∏
j=1

(akj l)Wl(~x)P (~x, t)


= ∂ξiπ(~ξ, t)aijWj( ~X )

+

imax∑
i=1

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)


= −∂ξi

([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)
+

imax∑
i=2

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)

 .

(4.6)

To perform these calculations, we used several times the equality

∂ξi

[
π(~ξ, t)f(~x(~ξ))

]
= ∂ξi

[
P (~x(~ξ), t)f(~x(~ξ))

]
= ∂xj

[P (~x, t)f(~x)]
dxj
dξi︸︷︷︸
δi,j

= ∂xi
[P (~x, t)f(~x)] .

(4.7)

The basic assumption here is that fluctuations ~ξ around the mean ~X are expected to
scale with the square root of the mean as denoted in equation (4.4). It follows that for

large ~ξ and a sufficiently smooth reaction rate vector, we may perform a Taylor
expansion:

Wl( ~X + ~ξ) =
∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )

u∏
v=1

(ξkv ). (4.8)
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4.4 Simplification for post-transcriptional
regulation of Colicin release

So far, the analysis holds true for all systems that can be cast into the form defined in
section 4.1. Let us now turn to our specific model of post-transcriptional regulation of
Colicin release. With the reactions defined in chapter 1.7 we find:

A =

 1 −1 0 0 0 0 −1 −1 0 0
0 0 1 −1 0 0 −1 0 −1 0
0 0 0 0 1 −1 0 0 −1 −1

 (4.9)

~W (M,A, S) = (αM , δMM,αA, δAA,αS , δSS, kMpMMA,

kM (1− pM )MA, kSpSAS, kS(1− pS)AS)T
(4.10)

From equation (4.10) we see that all derivatives higher than second order must vanish,
which simplifies the sum in (4.8) significantly, i.e. u can take the values 0, 1 or 2.

4.5 Calculation of moments

With equation (4.6) we are in the position to calculate the moments of the random

variable ~ξ. We do so by integrating equation (4.6) multiplied by the random variables

whose moment is calculated by parts. Terms containing the expression
∏i
j=1(∂ξkj ) have

to be integrated by parts i times. After integration, only a few terms are non-zero. For
the first two moments we obtain:

∂t〈〈ξb〉〉 =

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξb =

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )〉〉 (4.11)

∂t 〈〈ξbξc〉〉︸ ︷︷ ︸
symm in b,c

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξc =

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )ξc〉〉 (4.12)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )ξb〉〉 (4.13)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )〈〈

u∏
v=1

(ξkv )〉〉 (4.14)
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To calculate the third moments, we will need the following relations:

∂ξi(ξbξcξd) = δibξcξd + δicξbξd + δidξbξc (4.15)

2∏
j=1

(∂ξkj )(ξbξcξd) = ξb(δk1cδk2d + δk2cδk1d) + ξc(δk1bδk2d + δk2bδk1d)

+ ξd(δk1bδk2c + δk2bδk1c)

(4.16)

3∏
j=1

(∂ξkj )(ξbξcξd) =
∑

P̂(b,c,d)

δk1bδk2cδk3d (4.17)

4∏
j=1

(∂ξkj )(ξbξcξd) = 0 (4.18)

The operator P̂ (b, c, d) signifies all permutations in (b, c, d). It follows:

∂t� ξbξcξd �︸ ︷︷ ︸
symm in b,c,d

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξcξd

= −
∫ ∞
−∞

d~ξ∂ξi

([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)
ξbξcξd

+

∫ ∞
−∞

d~ξ
∞∑
i=2

 (−1)i

i!

i∏
j=1

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)

 ξbξcξd

PI
=

∫ ∞
−∞

d~ξ∂ξi(ξbξcξd)
([
ailWl( ~X + ~ξ)− ailWl( ~X )

]
π(~ξ, t)

)

+

∫ ∞
−∞

d~ξ

2∏
j=1

(∂ξkj )(ξbξcξd)

1

2

2∏
j=1

(akj l)︸ ︷︷ ︸
symm in k1,k2

Wl( ~X + ~ξ)π(~ξ, t)



+

∫ ∞
−∞

d~ξ
3∏
j=1

(∂ξkj )(ξbξcξd)

1

6

3∏
j=1

(akj l)︸ ︷︷ ︸
symm in k1,k2,k3

Wl( ~X + ~ξ)π(~ξ, t)


+

∫ ∞
−∞

d~ξ
4∏
j=1

(∂ξkj )(ξbξcξd)

∞∑
i=4

 (−1)i

i!

i∏
j=5

(∂ξkj )

 i∏
j=1

(akj l)Wl( ~X + ~ξ)π(~ξ, t)


= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξd � (4.19)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξd � (4.20)

+ adl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξc � (4.21)

+ acladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξb � (4.22)
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+ abladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξc � (4.23)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξd � (4.24)

+ ablacladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )� (4.25)

The same steps of calculation can be applied to the fourth moment as well. To avoid
too longish expressions, we just state the result:

∂t� ξbξcξdξe �︸ ︷︷ ︸
symm in b,c,d,e

=

∫ ∞
−∞

dξ1dξ2 . . . dξn∂tπ(~ξ, t)ξbξcξdξe

= abl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξdξe � (4.26)

+ acl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξd � (4.27)

+ adl

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξe � (4.28)

+ ael

∞∑
u=1

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξcξd � (4.29)

+ ablacl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξdξe � (4.30)

+ abladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξe � (4.31)

+ ablael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξcξd � (4.32)

+ acladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξe � (4.33)

+ aclael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξd � (4.34)

+ adlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξbξc � (4.35)

+ ablacladl

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξe � (4.36)

+ ablaclael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξd � (4.37)

+ abladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξc � (4.38)

+ acladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )ξb � (4.39)
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+ ablacladlael

∞∑
u=0

1

u!

u∏
v=1

(∂Xkv
)Wl( ~X )�

u∏
v=1

(ξkv )� (4.40)

4.6 Scaling of terms in the equations of moments

We have neglected the system size parameter Ω so far, which in fact seems odd, since
van Kampen’s expansion is also known as the Ω-expansion. There are two important
points why we have followed this procedure:

1. It is indeed possible to find a parameter Ω that fulfills the requirement needed for
an Ω-expansion, namely (Ṁ, Ȧ, Ṡ)T = ~F (M,A, S) = Ω~f(M/Ω,A/Ω, S/Ω). Ω has to
be a large quantity proportional to the system size. However, inserting real
parameters, we find Ω� 1. We conclude, that the parameter Ω is not well-defined
in our model, but would be only an artificial construct.

2. When looking at the scaling properties of 〈〈ξ〉〉, 〈〈ξ2〉〉, . . . we cannot simply group

all terms of the same order in
√

Ω
i
, i ∈ N, since all of these terms come in

combination with 〈〈ξ〉〉, 〈〈ξ2〉〉, . . . terms which in turn have a specific scaling
property, as we shall see.

In the following, we define the system size parameter Ω̃ as the total number of
molecules present in the system. With this definition we will work out the scaling
properties of 〈〈ξ〉〉, 〈〈ξ2〉〉, 〈〈ξ3〉〉 and 〈〈ξ4〉〉 in the system size parameter Ω̃ as well as the
significance of each term in the equations for the moments.

Scaling of specific terms:

� The stoichiometric matrix Abl scales with O(1).

� The reaction rate matrix is quadratic in the molecule numbers, such that ~W ( ~X )
scales with O(Ω̃2).

� Each derivative with respect to Xi introduces a factor O(1/Ω̃).

The equations derived for the moments (see section 4.5) may be classified into terms
with equal scaling behavior. The scaling behavior depends on u (0, 1 or 2) and the order
of the moment. Since we are interested in the stationary values of fluctuations, we can
set all derivatives with respect to time equal to zero, and find:

Equations u=0 u=1 u=2

(4.11) - O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉
Table 4.1. Scaling of terms for first moments

Equations u=0 u=1 u=2

(4.12)-(4.13) - O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.14) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.2. Scaling of terms for second moments
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Equations u=0 u=1 u=2

(4.19)-(4.21) - O(Ω̃)〈〈ξ3〉〉 O(1)〈〈ξ4〉〉
(4.22)-(4.24) O(Ω̃2)〈〈ξ〉〉 O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.25) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.3. Scaling of terms for third moments

Equations u=0 u=1 u=2

(4.26)-(4.29) - O(Ω̃)〈〈ξ4〉〉 O(1)〈〈ξ5〉〉
(4.30)-(4.35) O(Ω̃2)〈〈ξ2〉〉 O(Ω̃)〈〈ξ3〉〉 O(1)〈〈ξ4〉〉
(4.36)-(4.39) O(Ω̃2)〈〈ξ〉〉 O(Ω̃)〈〈ξ2〉〉 O(1)〈〈ξ3〉〉
(4.40) O(Ω̃2) O(Ω̃)〈〈ξ〉〉 O(1)〈〈ξ2〉〉

Table 4.4. Scaling of terms for fourth moments

Looking at the dominant terms in the tables 4.1, 4.2, 4.3 and 4.4, we deduce:

〈〈ξ〉〉 = O(1/Ω̃)〈〈ξ2〉〉 (4.41)

〈〈ξ2〉〉 = O(Ω̃) +O(1/Ω̃)〈〈ξ3〉〉 (4.42)

〈〈ξ3〉〉 = O(Ω̃) +O(1)〈〈ξ2〉〉+O(1/Ω̃)〈〈ξ4〉〉 (4.43)

〈〈ξ4〉〉 = O(Ω̃)〈〈ξ2〉〉+O(1/Ω̃)〈〈ξ5〉〉 (4.44)

Since van Kampen’s expansion is only valid for small noise, we expect ξ to be of order
O
√

(Ω̃) and thus 〈〈ξ5〉〉 is smaller than of order O(Ω̃3).

Hence, we find: 〈〈ξ〉〉 = O(1), 〈〈ξ2〉〉 = O(Ω̃), 〈〈ξ3〉〉 = O(Ω̃), 〈〈ξ4〉〉 = O(Ω̃2) .

Using this result, we marked all terms in the tables above of order O(Ω̃3) in green, all
terms of order O(Ω̃2) in blue and all terms of order O(Ω̃) in red. In each of the
tables 4.1, 4.2, 4.3 and 4.4, we will call the dominant terms first order terms, followed by
second order terms that are of order O(Ω̃) smaller than first order terms. Consequently,
third order terms are of order O(Ω̃2) smaller than first order terms and so on.

4.7 Calculation of the Fano factor of long mRNA

The scaling behavior of all terms that are necessary to calculate fluctuations, i.e. second
moments, are given in table 4.2. The two dominating terms are marked blue. Thus, in
first order it is sufficient to take only these two terms into account. This procedure is in
fact the standard procedure used in the literature [4, 28,29]. Due to nonlinear reaction
rates, we get u = 2 terms, which mediate the coupling to higher moments. If we want to
calculate fluctuations to higher than just first order, we have to take into consideration
both red and blue terms in table 4.2. It follows that we have to include first moments
(table 4.1) and third moments (table 4.3). First moments are simple to implement,
because they couple only to second moments. To calculate third moments, however, we
have to consider all dominant terms (blue) in table 4.3. Unfortunately, these terms
include also fourth moments, which we would have to calculate via the green terms in
table 4.4.

Hence, if we want to consider higher order terms in our calculation of fluctuations, we
have to either work out the coupled equations from first moments up to fourth
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moments, or truncate the coupled equations by introducing a suitable closure-relation.
Furthermore, in the threshold region, where the coupling has its largest influence, copy
numbers are pretty low, which could bias all order arguments we have used so far.
Nonetheless, we would like to test how well the calculated results fit to data obtained by
Gillespie simulations. To this end we started from first order calculations and work our
way up to higher order calculations.

We began with the standard procedure by considering only the two dominant terms
(blue) in table 4.2. Comparing with the result of Gillespie simulations (see S3 Fig)
shows an adequate match, which overestimates fluctuations in the vicinity of the
threshold. When studying different parameter sets, it can be seen that, although
fluctuations are overestimated, the shape of the surface is well matched. We continued
and included higher moments, both by an adequate closure relation after the second
moment, as well as by actually implementing all terms of table 4.1, all terms of 4.2, all
blue terms of table 4.3 and all green terms of 4.4. However, the results for these
methods were (in general) worse than those from considering the dominant terms only.
Thus, we chose the first order method to calculate the Fano factor.
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Abstract  
The bacterial SOS response is a cellular reaction to DNA damage, that, among other actions,
triggers the expression of Colicins - toxic bacteriocins in Escherichia coli that are released to
kill close relatives competing for resources. However, it is largely unkown, how the complex
network  regulating  toxin  expression  controls  the  time-point  of  toxin  release  to  prevent
premature release of inefficient protein concentrations. 
Here,  we study how different  regulatory mechanisms affect  production and release of the
bacteriocin  ColicinE2  in  Escherichia  coli.  Combining  experimental  and  theoretical
approaches,  we  demonstrate  that  the  global  carbon  storage  regulator  CsrA controls  the
duration of the delay between toxin production and release and emphasize the importance of
CsrA sequestering elements for the timing of ColicinE2 release. Here, mRNA produced from
the  ColicinE2  operon  upon  SOS  response  and  binding  to  CsrA  has  the  largest  effect.
Furthermore,  we  show  that  CsrA  additionally  binds  to  and  is  sequestrated  by  ssDNA
originating  from rolling-circle  replication  of  the  toxin-producing  plasmid.  Our  theoretical
analysis emphasizes that ssDNA is essential in ColicinE2-producing wild-type strain to enable
toxin release, by reducing the amount of free CsrA molecules in the bacterial cell.
Taken  together,  our  findings  show  that  CsrA times  ColicinE2  release  and  reveal  a  dual
function for CsrA as a ssDNA and mRNA-binding protein, introducing ssDNA as a potential
post-transcriptional gene regulatory element.
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Author Summary
Chemical warfare by bacteriocin production is one means of pathogenic bacteria to dominate
their habitat, thus increasing their potential to infect a human host. The timing of toxin release
is highly relevant, as it ensures the competitive success of its producer. Here, we show that the
time-point of ColicinE2 release is tightly regulated by the global carbon storage regulator
CsrA.  Furthermore,  we  demonstrate  that  CsrA  can  bind  to  ssDNA,  an  intermediate  of
autonomous  pColE2-P9-plasmid  replication.  Hence,  we  suggest  ssDNA as  a  new  CsrA
sequestering element, that in addition to known regulators such as the sRNAs CsrB and CsrC
or mRNAs carrying a CsrA binding site, can affect the amount of free CsrA in the bacterial
cell.

Main text 

Introduction
Many pathogenic bacteria outcompete close relatives by the secretion of toxic bacteriocins (1-
3), thereby increasing their own ability to dominate bacterial populations and thus increase
their  potential to infect a human host (3, 4). The well  studied  Escherichia coli ColicinE2
system (5-8) represents a paradigmatic model for the study of regulatory mechanisms relevant
for  toxin  production.  Here,  transcriptional  and post-transcriptional  regulation  mechanisms
control ColicinE2 expression (9). However, it is not known how this regulatory network (Fig
1a)  times  ColicinE2  production  and  release,  to  ensure  the  production  of  effective  toxin
concentrations  (cea  gene  expression)  and  to  prevent  premature  toxin  release  (cel  gene
expression) in the wild-type strain CWT.
Bacteriocins, including ColicinE2, are plasmid encoded and heterogeneously expressed (10-
13) from operons  under  the  control  of  an  SOS promoter  (9,  14) in  response  to  external
stresses. The ColicinE2 operon consists of three genes: cea (the colicin activity gene), cei (the
immunity gene) and cel (the lysis gene) (Fig 1a). Upon induction of the SOS response, RecA
induces  autocleavage of  LexA dimers,  which permits the production of two mRNAs: the
‘short’ transcript including cea and cei, and the ‘long’ one comprising all three genes (9). Co-
expression of the genes cea and cei is necessary, since the immunity protein ensures that the
colicin remains inactive for as long as the colicin-immunity protein complex is present within
the cell. This complex (15) is secreted upon cel gene expression (16), which leads to the death
of  the  bacterial  cell,  secreting  the  colicin.  Translation  of  the  cel  gene  is  regulated  post-
transcriptionally by the mRNA binding protein CsrA (17, 18).  The abundance of CsrA is
further regulated by the two CsrA binding sRNAs CsrB and CsrC (19). 
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Results 
To study how the ColicinE2 regulatory network controls the timing of toxin expression, we
investigated the dynamics of toxin production and release using a combined experimental and
theoretical approach. In order to clearly distinguish toxin-expressing cells from cells that did
not produce and release the toxin or only at basal levels, we introduced an additional multi-
copy reporter plasmid (pMO3,  Methods) into the wild-type strain CWT, in which the genes
cea and  cel are replaced by sequences encoding Yellow and Cerulean fluorescence proteins
(YFP and CFP), respectively (Methods), resulting in the reporter strain CREP1. This double
reporter  plasmid  carries  all  genetic  sequences  relevant  for  transcriptional  and  post-
transcriptional regulation found in the original ColicinE2 operon (Fig 1a,b). This ensures that
the expression of the YFP and CFP directly reflects the normal expression patterns of the cea
(toxin production) and cel (toxin release) genes (13). Using single-cell time-lapse microscopy
(Methods,  Fig  S1)  (13),  we  found  that  CREP1 expresses  the  cea  and  cel  genes  nearly
simultaneously (Fig 1c-d), with an insignificant delay of 4 ± 2 min. 
This observation, however, is biologically implausible, as it would prevent the accumulation
of effective toxin concentrations. In addition, theoretical investigations (20) of the ColicinE2
network predicted a significant delay between cea and cel gene expression. These conflicting
results  thus  suggested  that  the  introduction  of  the  multi-copy  reporter  plasmid  somehow
affected the cea-cel delay, potentially by interfering with regulatory mechanisms derived from
or otherwise linked to the ColicinE2-P9 plasmid of the wild-type strain CWT, controlling the
timing of cea and cel expression. 
To address this question, we created a second reporter strain, SREP1, which only carries the
double reporter plasmid, but lacks the original pColE2-P9 plasmid (Table S2, Fig S1). In this
strain, we find a significant delay of 75 ± 6 min between cea and cel gene expression, with a
slight decrease in delay times at higher stress levels, imposed by increasing the level of the
SOS response-inducing agent Mitomycin C (MitC) in the medium (Fig 1c,d). This indicated
that the original pColE2-P9 plasmid in the CREP1 strain, which the SREP1 strain lacks, contains
additional regulatory elements that are responsible for the reduction of the cea-cel delay in the
CREP1 strain. 
To disentangle the roles of the various regulatory elements controlling the cea-cel delay, we
first  analysed the roles  of known transcriptional  and post-transcriptional  regulators  of the
ColicinE2 network. In the second step, we studied further regulatory elements present on the
original  ColicinE2-P9  plasmid.  Finally,  we  integrated  the  observations  made  in  these
experiments into a theoretical model, to uncover the major regulatory elements controlling the
cea-cel delay in CWT.
In the first step, we asked whether and how the cea-cel delay observed in the SREP1 strain is
affected by individual regulatory modules (transcriptional and post-transcriptional), starting
with the role of the transcriptional repressor LexA.  To assess the impact of transcriptional
regulation by LexA on the duration of the delay between  cea and  cel  gene expression, we
created two SREP1 strain mutants in which the LexA binding sites on the reporter plasmid had
been altered, such that LexA binding was expected to increase (LexA1) or decrease (LexA2)
(Methods).  As  expected,  the  maximal  fluorescence  intensity  (FImax)  and  the  fraction  of
ColicinE2 expressing cells (% ON) were decreased in the LexA1 mutant (Fig S2), while the
delay time did not differ significantly from that of the SREP1 strain, indicating that stronger
LexA binding does not affect the delay between cea and cel gene expression.
In contrast to our expectations, however, the values for FImax and % ON were also lower in the
LexA2 mutant. Moreover, the cea-cel delay was also markedly affected, falling to 36 ± 6 min
in comparison to 75 ± 6 min for the SREP1 strain (Fig S2). This decrease is accounted for by the
shift in the tON distribution for cea expression to later time-points (the time-point tON marks the

3



onset of the 'ON' state,  Methods,  Fig S2), indicating the absence of a post-transcriptional
regulation effect. Kamensek  et al.(21) report that an additional protein, AsnC, controls the
temporal induction of the ColicinE2 operon in concert with LexA. As the AsnC protein also
binds within the LexA binding sites (21, 22), changes in the LexA binding site could also alter
AsnC binding, thus affecting the initiation of ColicinE2 transcription. Hence, we conclude
that the delay between cea and cel gene expression can be shortened by altering the timing of
the onset of  cea expression (tONcea), but that it is difficult to determine which transcriptional
protein (LexA or AsnC) is causing the shift in tONcea. However, the observed reduction of the
cea-cel delay in the LexA2 mutant was insufficient to explain the simultaneous expression of
cea and cel genes in the CREP1 strain.
A second regulatory element essential for ColicinE2 expression is the global carbon storage
regulator  CsrA,  which  inhibits  cel expression  by  binding  to  the  Shine-Dalgarno  (S-D)
sequence  present  in  the  long  mRNA (Fig  1a).  To investigate  the  influence  of  the  post-
transcriptional regulator CsrA on the ColicinE2 expression dynamics, we created two SREP1

strain mutants with altered CsrA binding sites on the pMO3 reporter plasmid (Methods), such
that CsrA binding to the S-D sequence was either increased (CsrA1) or reduced (CsrA2) (Fig
2).  As expected,  cea expression was unaffected in both mutants (Fig 2a-c).  In the CsrA1
mutant, the fraction of cells expressing the cel  gene (% ON), and the maximal fluorescence
intensity (FImax) of the cells in the ON state, was reduced. In contrast, FImax and % ON were
increased in the CsrA2 mutant (Fig 2a,b). While the CsrA1 mutant showed an increased mean
cea-cel delay with 94 ± 6 min, the CsrA2 mutant displayed a markedly shorter delay of 12 ± 2
min in comparison to the SREP1 strain (Fig 2e). This shortening of the cea-cel delay is due to
the earlier onset of cel gene expression (tONcel), while the timing of cea gene expression (tONcea)
is nearly unaffected (Fig 2c). 
To elucidate the role of CsrA theoretically, we extended our previous mathematical model
(20). This generalized model emulates the complex dynamical behaviour of the regulatory
components and accounts for all regulatory interactions discussed here, including the different
plasmid compositions and abundances that characterize the three strains CREP1, SREP1 and CWT

(Fig S3, Table S5, please see SI for details of the theoretical model). As the model enables us
to  study  various  parameter  values  of  these  interactions,  it  gives  us  a  controlled  way  to
investigate  the  influence  of  the  different  regulatory  components  and  mechanisms  on  the
production and release of ColicinE2. To show that our model is indeed valid, we employed
parameters  motivated  by experimental  studies  (see  SI for  details)  to  reproduce  the  delay
distribution of the SREP1 strain (Figs. 2e, 2f). In agreement with the above experiment, we also
find that alteration of kM, which quantifies binding of CsrA to long mRNA resulted either in an
increase (kM = 0,0125) or a decrease (kM = 0.0018) of the mean cea-cel delay in the SREP1 strain
(Fig 2f). Hence, our combined experimental and theoretical analysis demonstrates that CsrA
mediates the delay between toxin production and release.
While CsrA directly affects the  cea-cel delay by deferring  cel gene expression, regulatory
elements that sequester CsrA can indirectly affect the duration of the delay by controlling the
abundance of the free CsrA protein. Two known CsrA-sequestering elements are the sRNAs
CsrB and CsrC (23-25). Hence, deletion of these sRNAs should lead to a strong increase in
CsrA abundance and consequently extend the cea-cel delay. To investigate the role of these
sRNAs in ColicinE2 expression, we first created a knock-out SREP1 strain mutant (Methods)
lacking the sRNA CsrB, which includes 18  imperfect repeat sequences that serve as CsrA
binding  sites  (in  comparison  to  only  9  in  CsrC)(24).  We find  that  neither  cea nor  cel
expression is significantly altered in the mutant (Fig S2). This finding was confirmed in long-
term experiments, where a decrease in FImax  was observed only in the very late stationary
phase (Methods, Fig S4) - which can be explained by a compensatory effect of the second
sRNA CsrC(24). Accordingly, the delay was only slightly decreased (to 68  ± 6 min)  in the
CsrB mutant (Fig S2). In contrast to our expectations, a double sRNA knock-out in the SREP1
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strain (deletion of both CsrB and CsrC) showed increased FImax (Figs S2 and S4) and slightly
altered % ON values for both  cea and  cel  gene expression (Fig S2). Interestingly, also the
delay between cea and cel gene expression was significantly reduced (to 36 ± 5 min) relative
to the SREP1 strain (Fig S2). In addition, the onset of expression, tON, was shifted to earlier time-
points for both  cea and  cel (Fig S2),  indicating that  transcription of the entire  ColicinE2
operon was prematurely induced,  due to  the increased availability  of  CsrA.  A connection
between  CsrA  abundance  and  the  LexA-RecA  network  was  previously  described  for
ColicinE7  expression(26).  The  reduction  of  the  cea-cel delay  was  primarily  due  to  the
pronounced shift of tONcel to earlier time points in comparison to the small shift in tONcea. Hence,
our data imply that while deletion of a single sRNA does not affect ColicinE2 expression
significantly (Figs S2 and S4), deletion of both sRNAs (CsrB and CsrC) leads to premature
production and release of ColicinE2 (Fig S2). This result points to the intervention of yet
unknown regulatory mechanisms.Up to now, we have considered the impact on ColicinE2
expression of regulatory factors that are present in both SREP1 and CREP1 strains. However, it
was still unclear which regulatory element deriving from the original pColicinE2-P9 plasmid
(Fig S5) reduces the cea-cel delay in the CREP1 strain. The observed differences in the cea-cel
delay in the CREP1 versus SREP1 strain could be due to the additional 20 pColE2-P9 plasmids in
the CREP1 strain, increasing the plasmid copy number in this strain to 75 compared to 55 in the
SREP1 strain (SI). As the plasmid copy number correlates with the amount of long mRNA in the
presence of an SOS response, consequently, a higher amount of long mRNA able to sequester
CsrA is present in CREP1. To estimate the effect of the plasmid copy number/amount of long
mRNA on the cea-cel delay, we accounted for the exact plasmid composition for each strain
in  the  theoretical  modelling  (SI).  As  described  above,  for  the  SREP1 strain  the  theoretical
analysis accurately retrieved the experimentally observed cea-cel delay of 67 min (Fig. 2e,f
and Fig S6). For CREP1 the theoretical model predicted a delay of about 24 min (Fig S6) that
was significantly longer than the experimentally observed delay of 4 min (Fig. 1d). To further
study the impact of the plasmid copy number on the cea-cel delay, we changed the origin of
replication of the reporter plasmid in the way, that now only ~ 13 reporter plasmids per cell
are produced, resulting in strains CREP2 and SREP2  (Methods, Table S2). A reduction of the
plasmid copy number should extend the cea-cel delay, as now less long mRNA is produced
and consequently more free CsrA molecules are able to bind at the S-D sequence of the cel
gene. Indeed, the XREP2 strains with a decreased amount in total plasmid copy number show
increased  delay  times  compared  to  their  corresponding  XREP1 strain.  For  CREP2  with  ~  33
plasmid copies in total (Methods) we obtain a cea-cel delay of 25 ±  4 min. For SREP2 with ~13
plasmid copies we find a delay of > 101 min, as here 67% of the cells do not express the cel
gene and consequently do not lyse during the time frame of the experiment.   Hence,  the
higher amount of long mRNA due to an increased plasmid copy number explains a strong
reduction in the  cea-cel delay. However, it  cannot  explain the discrepancy in delay times
between the C and S strains, with the C strains having delay times much shorter as expected
with regard to their plasmid copy number.
Consequently,  we investigated genetic elements on or deriving from the pColE2-P9 plasmid
that  might  affect  ColicinE2  expression.  We  sequenced  the  entire  pColE2-P9  plasmid
(Methods,  Fig  S5a,  Genbank  accession  number  KY348421)  and  performed  a  homology
comparison of genes present on this plasmid with part of the closely related plasmid pColE3-
CA38  (Table  S1).  As  in  pColE3-CA38,  most  genes  on  pColE2-P9  are  involved  in
autonomous plasmid replication (SI), but we could not find a link between these genes and
regulatory elements affecting ColicinE2 expression. At this point, we recalled that rolling-
circle replication (SI) can lead to the accumulation of a ssDNA intermediate, as was shown
for pColE3-CA38 (27). This ssDNA could interact with other regulatory elements affecting
ColicinE2  expression,  e.g.  sequester  the  global  regulatory  protein  CsrA,  thereby  further
reducing the cea-cel delay in the CREP strains. To address this hypothesis, we first confirmed
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the accumulation of ssDNA for cells carrying the pColE2-P9 plasmid (Fig 3) in the absence
and presence of the SOS inducing agent MitC (Fig S5b). Secondly, we performed gel shift
analysis to investigate the binding of CsrA to both long mRNA and ssDNA (Methods,  SI).
We find that CsrA binds to a RNA oligo carrying the original nucleotide sequence of the long
mRNA with a Kd of  22  ± 13 nM, which is  in good accordance with values described in
literature (17, 28). Furthermore, we found that the mRNA binding protein CsrA is able to bind
to ssDNA with a Kd of  991 ±164  nM (Methods, Fig S5c,d). The binding strength of CsrA to
ssDNA is therefore by a factor of 45 lower as the binding strength of CsrA to sRNA (Fig. 2d).
This  finding,  that  CsrA can  bind  both  sRNA as  well  as  ssDNA was  in  accordance  with
previous studies revealing that CsrA possesses a KH domain (29),  a domain that is known to
enable proteins to bind to mRNA as well as ssDNA (30, 31).  To investigate if CsrA binds
ssDNA at the known CsrA binding sites (Table S4) for CsrA-RNA interaction (17, 32), we
studied the binding of CsrA to ssDNA with altered CsrA binding sites. We introduced the
same changes in the CsrA binding site as done before for the RNA (Fig. 2d, Table S4). As
seen for CsrA binding to RNA, we find that CsrA binds stronger to the sequence that should
allow for stronger CsrA binding (Methods, CsrA1 sequence), and that CsrA binds weaker to
the  sequence  that  should  weaken CsrA binding due  to  impaired  formation  of  the  second
hairpin harbouring the second CsrA binding site (Fig S5d, Methods, CsrA2 sequence). This
indicates that CsrA uses the same binding motives on the ssDNA as on the RNA - namely the
GGA motive, with the neighbouring bases enabling the establishment of a hairpin structure
exposing the GGA motive to allow for accurate CsrA binding(32). However, binding of CsrA
to ssDNA is by a factor of 45 less efficient than binding of CsrA to RNA. Still, ssDNA can
serve as an additional CsrA sequestering element, as ssDNA is produced continuously during
the bacterial cell cycle and accumulates in the cell to very high numbers (Fig. 3, Fig S5b). In
contrast,  long  mRNA  sequestering  CsrA  is  produced  only  upon  induction  of  the  SOS
response.
To support  our  hypothesis  that  ssDNA as  an  additional  CsrA sequestering  element  could
further reduce the cea-cel delay in the CREP strains but also in the CWT strain, we incorporated
this additional regulatory element into the theoretical model (SI, Figs S6 and S7). We find
that the presence of ssDNA additionally reduces CsrA abundance in the CREP and CWT strains.
Furthermore, the presence of ssDNA in combination with the high amount of long mRNA
totally suppresses the  cea-cel delay due to the increased plasmid copy number in the CREP1

strain by CsrA sequestration (Fig 4). For the natural CWT strain carrying only the 20 pColE2-
P9  plasmids,  our  model  predicts  that  the  cea-cel delay  lasts  approximately  one  hour.
Furthermore, the cea-cel delay is broadly distributed in the wild-type strain CWT. Importantly,
cel gene expression and consequently toxin release in the CWT strain only occurs within the
time-frame of our experimental studies if ssDNA is present (Fig 4, Fig S8). Hence, the delay
time of a particular strain that is determined by the abundance of free CsrA is controlled by
three CrsA sequestering components (Fig. 5a). First, the action of the sRNAs that are present
in all strains studied in this work. Second, the amount of long mRNA that depends on the type
and number of plasmid present in the particular strain (Fig. 5b, SI, Table S5) and third, the
additional accumulation of ssDNA in strains carrying the pColE2-P9 plasmid (C strains, Fig.
5b).  Notably,  the  effect  of  these  three  CsrA sequestering  elements  differs  due  to  their
occurrence  (SI);  e.g.  while  long  mRNA is  only  produced  upon  induction  via  the  SOS
response, ssDNA is produced independently due to  autonomous rolling circle replication in
the presence and absence of an SOS response (Fig S5b).

Discussion
In this study, we investigated regulatory factors controlling ColicinE2 production and release
in response to an SOS signal and demonstrate that the global carbon storage regulator CsrA
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controls the time-point of ColicinE2 release in Escherichia coli.  The mRNA binding protein
CsrA is  highly  abundant  in  the  E.  coli  cell,  with  11.000-33.000 CsrA molecules  in  total
(bound and unbound) (18). However, Taniguchi et al., report that only a small fraction of 474
CrsA molecules  per  cell  are  freely  available  (33).  This  indicates  that  CsrA sequestering
elements can strongly affect the amount of free CsrA in the bacterial cell. 
Two well studied CsrA sequestering components are the sRNAs CsrB and CsrC (18, 24, 25).
It was shown that CsrB alone can bind up to 32% of CsrA present in the bacterial cell (18). In
this study, we were able to show that besides these sRNAs, also mRNAs that carry a CsrA
binding site (34) can strongly reduce the abundance of free CsrA. Furthermore, we verified
that CsrA is able to bind to ssDNA originating from autonomously replicating plasmids. Our
data indicate that CsrA is thereby binding to the GGA motive exposed in the second hairpin
loop present in both ssDNA and long mRNA deriving from the pColE2-P9. This demonstrates
the dual role of CsrA as an mRNA and ssDNA binding protein. In addition, our study shows
that in  E. coli cells  carrying autonomously replicating plasmids with a CsrA binding site,
ssDNA deriving from these plasmids can serve as an additional CsrA sequestering element.
We speculate that ssDNA accumulating in bacterial cells could play an important regulatory
role  in  other  protein-expressing  networks  that  rely  on  the  expression  of  proteins  from
autonomously replicating plasmids, as is the case for many bacteriocin-producing networks. 
With  regard  to  the  ColicinE2  system,  our  combined  experimental  and  theoretical  efforts
allowed us to disentangle the different regulatory mechanisms affecting the delay between
toxin  production  and  release.  We revealed  that  the  interplay  between  CsrA and  ssDNA,
sRNAs and long mRNA, times toxin release upon induction of the SOS response (Fig 5). In
particular, our theoretical investigations emphasized that the presence of ssDNA can enable
the toxin producer to release the toxin within few hours once an SOS response has been
triggered. From an evolutionary perspective, a short delay might be important for the toxin
producing colony to respond quickly to changing environmental conditions and to increase its
competitive success.

Material and Methods 

Creation of bacterial strains used in this study
All strains used in this study are listed in SI (Table S2). The strain CWT represents the original
wild-type strain, which carries the toxin-producing plasmid pColE2-P9. The CREP1 strain and
the SREP1 strain (EMO3-C and EMO3-S, respectively) were constructed as described in Mader
et al (13). Both strains carry the double reporter plasmid pMO3 (13). This plasmid, pMO3,
harbours the entire ColicinE2 operon, in which the genes cea and cel have been replaced by
genes  coding  for  the  fluorescence  proteins  (FP)  mVenus  (YFP)  and  mCerulean  (CFP),
respectively (Fig 1).  Hence,  this  plasmid retains  all  regulatory sequences relevant  for  the
binding of LexA to the SOS box of the ColicinE2 operon, and of CsrA to the Shine-Dalgarno
sequence on the resulting long mRNA. To investigate the role of specific regulatory elements
on the duration of the delay between cea  and cel expression, all mutant strains used in this
study are  derived from EMO3-S,  the  SREP1 strain.  Construction  of  these mutant  strains  is
described in the following.
To investigate the impact of the transcriptional repressor LexA on Colicin E2 expression, we
altered the LexA binding site on the pMO3 reporter plasmid using site-directed mutagenesis
with  the  Quick  ChangeII  kit  (Agilent  Technologies).  According  to  Lewis  et  al.  (30),  the
strength of LexA binding to the two overlapping SOS boxes (LexA binding sites) can be
estimated from the HI index. Based on these estimations, we created two LexA mutants (SI):
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LexA1 was created using primer pair P1/P2 (SI). The base exchange AT-to-TA on pMO3 (SI)
is expected to lead to tighter LexA binding, with a HI factor of 8.6 for the first SOS box,
which is the more important for LexA binding (35). The resulting plasmid was named pMO4
(SI). LexA2 was created using the primer pair P3/P4 (SI). The base exchange of CTG-to-
CCC in the first SOS box on pMO3 (SI) is expected to weaken LexA binding, with a HI index
of 21.13 for the mutant sequence. The resulting plasmid was named pMO5 (SI).
To analyze the post-transcriptional impact of the mRNA-binding protein CsrA on ColicinE2
expression,  we  altered  the  CsrA binding  site  on  the  pMO3  reporter  using  site-directed
mutagenesis as described above. In the first mutant strain (CsrA1), we introduced a mutation
(GTC to TGT) in the second CsrA binding site  (SI) within the Shine-Dalgarno sequence of
the  cel/cfp gene on pMO3 using the primers P5 and P6 (SI), generating the plasmid pMO6
(SI). This mutation optimizes the CsrA binding site (32) and therefore increases CsrA binding
to  pMO6 relative  to  pMO3 (Fig  2a).  In  the  second  mutant  (CsrA2),  CsrA binding  was
decreased (32, 36) (Fig 2a) by using the primer pair P7/P8 (SI) to alter AC to TT in the
second CsrA binding site in the Shine-Dalgarno sequence of the cel/cfp gene on pMO3, thus
inhibiting  formation of the second mRNA hairpin. The resulting plasmid was named pMO7
(SI). 
To understand the roles of the sRNAs CsrB and CsrC in CsrA sequestration and consequently
in ColicinE2 expression, single and double knock-out mutants for these sRNAs were created
using the Quick&Easy E.coli Gene Deletion Kit Nr.6 (Gene Bridges, Heidelberg, Germany).
The gene coding for the sRNA CsrB was replaced in strain BZB 1011 with a kanamycin
resistance cassette using the primer pair P9/P10  (SI). The resulting strain was named BZB
1011::CsrB,  and  the  reporter  plasmid  pMO3 was  transformed  into  this  strain  to  produce
EMO3::CsrB (CsrB) (SI).  The single knock-out mutant  of  CsrC was created in  a similar
manner (primer P11/P12, SI), and was also used for the double sRNA knock-out. Here, the
genomic region coding for the sRNA CsrC was replaced by a kanamycin resistance cassette.
In  next  step,  the  primers  P9  and  P10  (SI) were  used  to  replace  the  CsrB  gene  with  a
chloramphenicol resistance cassette. This strain was named BZB 1011::CsrB/C, and it too was
transformed with the plasmid pMO3 to generate EMO3::CsrB/C (CsrB/C) (SI).  

Creation of CREP2 and SREP2

The reporter plasmid of the XREP2 strains was created by a PCR of the plasmid pMO3 with the
primer P25 and P26, which delete the ORI of the pMO3 plasmid. The new ORI p15A was
replicated via PCR using primer P27 and P28 from the Vector pZA11MCS (EXPRESSYS).
After gel purification of the vector using the Freeze 'N Squeeze™ DNA Gel Extraction Spin
Columns (bio-rad), both, the vector and the ORI p15A were cut with the enzymes SalI-HF and
SphI-HF (NEB) and ligated in a 1:5 ratio of vector:insert using an ElectroLigase® (NEB).
The resulting plasmid pMO8 was transformed into an E.coli strain (XL1) for replication using
an MicroPilaser Electroporation Apparatus (bio-rad) and selected on ampicillin plates. After
purification of the pMO8 plasmid using a QIAprep Spin Miniprep Kit (Qiagen), the reporter
strains SREP2 and CREP2 were created via transformation of pMO8 into BZB 1011 and CWT,

respectively, with the bio-rad electroporator. 
To verify the copy number of the pMO3 and pMO8 plasmids in the SREP1 and SREP2 strains,
respectively, the bacteria were grown in M63 medium with antibiotic over night at 37°C and
300rpm. The cultures were then diluted to OD600 in an equal volume and the plasmids were
purified using the QIAprep Spin Miniprep Kit (Qiagen). The concentration of the DNA was
measured using the NANODROP 1000 instrument (ThermoScientific). This lead to a copy
number of 55 ± 11 and 13 ± 4 plasmids per cell for the SREP1 and SREP2 strain, respectively.
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Fluorescence microscopy 
Bacteria were grown overnight at 37°C in M63 minimal medium supplemented with 0.5%
glycerol as a carbon source, and with 100 µg/ml ampicillin (Carl Roth, Germany) if required.
Overnight cultures were diluted to an OD600 of 0.05 and grown to an OD600 of 0.2, which
represents the beginning of the exponential growth phase. Aliquots (50 µl) of these cultures
were  allowed to  attach  to  poly-L-lysine  (BIOCHROM, Berlin)-coated  Ibidi  µ-slides  VI0.4

(Ibidi GmbH, Munich) for 7.5 min and rinsed to remove unattached bacteria(13). For time-
lapse experiments,  slides  were then  transferred to  an inverse  microscope,  Axiovert  200M
(Carl  Zeiss,  Germany)  equipped  with  an  Andor  camera  and  a  Zeiss  EC  Plan-Neofluar
100x/1.3  oil-immersion  objective.  A filter  set  with  a  beam splitter  BS520,  an  excitation
bandpass HC500/24 and an emission bandpass HC 542/27 was used for YFP detection. The
HC filter set for CFP detection consisted of an emission filter 483/32, a beam splitter BS458
and an excitation filter 438/24. To minimize fluorescence variations deriving from day-to-day
fluctuations of the excitation source,  the stability  of the absolute fluorescence values was
verified daily using a microscope image intensity calibration kit (Invitrogen, FokalCheck™
fluorescence  microscope  test  slide  #3)  and  data  sets  were  corrected  accordingly.
Micromanager, an open-source program (version 1.3), was used for image acquisition (37).
After  the  first  image,  the  chamber  was  flushed  with  medium containing  the  appropriate
concentration  of  mitomycin  C (MitC,  Carl  Roth,  Germany).  Subsequently, an image was
taken every 15 min over a period of 300 min. Images were analyzed using the Cell Evaluator
plug-in (38) for ImageJ. Only live cells lying within the bright-field image were considered.
General data analysis was performed using IgorPRO 6.22, Matlab (R2013b) and Adobe CS5
Software.  FImax  represents  the  average  maximal  fluorescence  intensity  of  single  cells
expressing the Colicin E2 operon. To quantify the numbers of cells expressing the FPs YFP
and CFP (cea and cel gene expression, respectively) a threshold level was set to distinguish
expressors  from non-expressors,  as  described  earlier  (13).  The  resulting  fraction  of  cells
expressing either  cea  or  cel is given as the cumulative fraction. The time-point tON which
marks the onset of the 'ON' state is defined as the time at which fluorescence exceeds this
switching threshold. The delay time between cea and cel gene expression was then calculated
as the mean of the tONcel - tONcea values for individual cells expressing both cea and cel. Upon
induction with MitC, the parameters FImax, % ON (Fig S1) and delay time (Fig 1c) show only
little  variation  with  MitC  concentration  (0.1,  0.25  and  0.4  µg/ml).  Consequently,  data
presented  in  Fig  2,  and  Fig  S2 represent  the  average  values  of  these  three  MitC
concentrations to allow for better comparability and to improve statistics. 

Long-term analysis of fluorescence development
To investigate the role of sRNA knock-outs on cea and cel gene expression on a longer time-
scale, experiments were performed with the Fluostar Optima Plate Reader (BMG Labtech).  A
500-µl  aliquot  of  a  starter  culture  at  OD600 0.2  was  induced  with  the  appropriate  MitC
concentration as described above. To prevent cultures from drying out, the plate was sealed
with an O2 permeable foil. Antibiotics were added as required, ampicillin at 100 µg/ml (Carl
Roth,  Germany),  kanamycin at  50 µg/ml (Carl  Roth,  Germany) and chloramphenicol at  5
µg/ml (Carl Roth, Germany). Bacterial growth (absorbance) and YFP and CFP fluorescence
development (representing cea and cel expression, respectively) was followed over a period
of 16 h at 37°C, with shaking at 300 rpm. 

ssDNA accumulation and purification
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Bacterial strains were grown overnight at 37°C in shaken cultures. The overnight cultures
were induced for approximately 75 min with 0.25 µg/ml MitC. Plasmid/ssDNA extraction
was performed using the Miniprep Kit (Qiagen, Germany), and 1 µg each of CWT  and SREP1

strain extracts was cleaved with PvuI (New England Biolabs (NEB), Germany). Then 300 ng
of  both  cut  and uncut  CWT and  SREP1 strain  extracts  were  applied  to  an  1% agarose  gel,
prestained with EtBr. To validate the presence of ssDNA, single-stranded circular Phi174 and
M13mp18 viral DNAs (NEB, Germany) were also applied to the gel (Fig 3).

Sequencing and homology analysis
Sequencing  of  the  6757-bp  pColE2-P9  was  performed  by  MWG  Eurofins  Genomics
(Germany) using an ABI 3730XL sequencing instrument and the sequencing primers (P13-
P24)  listed in the  SI. The sequences of specific segments such as the 2640-bp ColicinE2
operon (Genbank M29885) and the Rep protein region (Genbank D30054) were verified. In
all,  1754 bp were  sequenced  de  novo,  and  the  resulting  plasmid  map  of  the  completely
sequenced  pColicinE2-P9  is  given  in  Fig  S5a.  The  pColicinE2-P9  sequence  has  been
deposited in GenBank (accession number  KY348421). We also used the NCBI online tool
BLAST to compare the sequences of genes in the pColE2-P9 plasmid with their homologues
in pColE3-CA38, for which ssDNA accumulation was shown previously (27). The sequence
homologies are given in Table S1.

Gel shift analysis
To determine the affinities of CsrA for three different RNA constructs representing the CsrA
binding sites present in pMO3, pMO6 und pMO7 (SI, Table S4)  we performed gel  shift
analysis.  The N-terminal  6xHis-tagged CsrA protein used for  gel  shift  measurements  was
obtained from Biozol (Germany). The folding structures of the oligos, were analyzed using
the Mfold web server (39), and showed the expected double-hairpin structure that facilitates
CsrA binding in the RNAs derived from pMO3, pMO6 and the ssDNA. The RNA of pMO7
however lacks this structure. The RNA was folded for 3.5 min at 85°C in 10 mM Tris-HCl, 1
mM EDTA, 200 mM KCl, 20 mM MgCl2 buffer. ssDNA folding was performed under the
same conditions but with 90°C. 
For the gel shift analysis of RNA binding to CsrA (Fig S5c), serial 2-fold dilutions were made
from a  6600 nM stock solution of CsrA (down to approximately 0.8nM CsrA). 
To verify binding of CsrA to ssDNA we performed the same gel shift analysis as done for the
sRNA oligos, with sequences of 89-bp ssDNA oligos equivalent to pMO3, pMO6 and pMO7
(SI, Table S4). The samples for ssDNA gel shift analysis were prepared by doing a serial
dilution  starting  with  33.3µM  CsrA stock  solution  (to  a  minimal  CsrA concentration  of
approx. 4nM CsrA). 
The binding reaction was performed  in a buffer containing 15 mM Tris-HCl, 0.5 mM EDTA,
250  mM  NaCl,  50mM  KCl,  5  mM  MgCl2,  3.25  ng/µl  yeast  RNA,  4U  RNase  inhibitor
(Ambion) and 10% glycerol buffer and incubated at 37°C for 30min.
Gel  shift  measurements  were  performed  at  room temperature  with  precast  4–20% Mini-
PROTEAN® TGX™ Precast Protein Gels (bio-rad) in Tris/Glycine Buffer (bio-rad) and run
at 85V for 1h. Pictures of the gel shift were taken with the gel chamber ChemiDocTM  MP
Imaging System (bio-rad) using filters for Cy5 labels. 
Using the ImageJ software the intensity decrease in the unbound band of RNA and ssDNA for
increasing CsrA concentrations was analysed for all gel shifts and plotted with IgorPro 7.04.
The curves were then fitted using the following equation that was adapted from (40).

()[ √( )
❑

❑ ]
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Here FI is the measured fluorescence intensity of the RNA/ssDNA unbound band, m is the
maximum  FI,  b  the  basal  FI,  R  the  used  RNA/ssDNA  concentration  and  P  the  CsrA
concentration. The Kd for CsrA binding to ssDNA and RNA was determined on three separate
days.  

Theoretical modelling
For the theoretical analysis performed in this study we refer the reader to the SI.

Supplementary Information (SI): SI appendix (description of theoretical investigations and
further experimental results and methods, eight supplementary figures and five supplementary
tables) have been provided to support this article.
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Figure captions

Fig 1: Time between toxin production and release. A) The regulatory network controlling
the delay between ColicinE2 production (cea) and release (cel) in CWT. The operon expresses
the genes cea (ColicinE2), cei (immunity protein) and cel (protein inducing cell lysis). In the
reporter  plasmid,  the  genes  cea and  cel are  replaced  by  genes  encoding  the  fluorescent
proteins YFP and CFP, respectively. The transcriptional repressor LexA inhibits expression of
the operon. Cell stress causes RecA-mediated auto-cleavage of LexA dimers. Subsequently, a
short  cea-cei and  a  long  cea-cei-cel mRNA are  produced.  Expression  of  cel is  further
regulated  post-transcriptionally  by binding of  CsrA to  the  Shine-Dalgarno sequence  (SD)
within the T1 transcriptional terminator. CsrA itself is regulated by two sRNAs, CsrB and
CsrC. B) Plasmids present in the two reporter strains CREP1 and SREP1. The CREP1 strain carries
both the reporter plasmid pMO3 and pColE2-P9. The SREP1 strain carries only the reporter
plasmid.  C) Dependence of the delay between ColicinE2 production and release by CREP1

(black) and SREP1 (grey) on the level of external stress (MitC concentration). D) Average delay
between ColicinE2 production and release by CREP1 (black) and SREP1 strains (grey). Error bars
depict the standard error of the mean (SEM).
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Fig 2: CsrA regulates the delay between ColicinE2 production (cea) and release (cel). A-
C)  Yellow: cea gene expression, blue cel gene expression of cells expressing the ColicinE2
operon in the SREP1 strain in comparison to mutant strains CsrA1 and CsrA2. Error bars depict
the standard error of the mean (SEM).  A) Maximal fluorescence intensity,  B) Cumulative
fraction  of  cells  expressing  the  ColicinE2  operon,  C) TON times  for  cea and  cel gene
expression. D) Dissociation constants (Kd) for the binding of CsrA to various RNA oligos
(SI).  E) Experimentally observed  cea-cel delay.  F) Theoretically determined mean  cea-cel
delay. CREP1 (kM = 0,007), SREP1 (kM = 0. 0,007), CsrA1 (kM = 0,0125), CsrA2 (kM = 0.0018).
kM is the theoretical binding rate constant for CsrA binding to the long mRNA.
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Figure 3: Accumulation of ssDNA in CWT. Agarose gel of plasmid and ssDNAs extracted
from CWT and SREP1 strains. Lanes 1-4 and 9-12 were loaded with the indicated markers: 1-kb
ladder,  super-coiled  ladder;  7249-bp  ssDNA ring  (M13mp18),  and  5386-bp  ssDNA ring
(PhiX174). Lane 5: uncleaved CWT DNA showing the 6800-bp pColE2-P9 dsDNA (blue) and
ssDNA (red). Lane 6: CWT DNA cleaved with PvuI, showing the linearized ds pColE2-P9
plasmid (yellow). Lane 7: uncleaved SREP1 strain DNA showing the 5600-bp reporter plasmid
(blue).  Lane 8:  SREP1 strain  DNA cut  with  PvuI,  showing the  linearized  reporter  plasmid
(yellow).
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Figure 4: Theoretical analysis emphasizes the importance of the sequestering of CsrA by
ssDNA for toxin release in CWT. A) Plasmids and ssDNA (grey loops) present in the  SREPx,
CREPx and CWT strains. B,C) Theoretical analysis of the cea-cel delay for all strains emphasizes
the importance of ssDNA for the timing of toxin release in the colicin-producing strains (CREPx

and CWT). B: no ssDNA present. C: ssDNA present with D = 7. The orange line indicates the
mean  experimental  delay  for  the  corresponding  strain,  the  blue  line  the  corresponding
theoretical value. The red bar on the right depicts the fraction of cells not undergoing cell lysis
in the theoretical model..
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Fig.  5:  Time-point  of  ColicinE2  release  is  regulated  by  the  global  carbon  storage
regulator CsrA. A)  CsrA controls  the  delay  between  toxin  production  and release.  This
mechanism prevents premature release of ineffective toxin concentrations. CsrA abundance is
regulated by several components: the long mRNA transcribed from the pColE2-P9 plasmid
and  the  reporter  plasmid  pMO3 (or  pMO8),  the  sRNAs  CsrB and  CsrC,  and  the  newly
discovered regulatory element ssDNA originating and accumulating from autonomous rolling
circle plasmid replication. B) Our experimental and theoretical data emphasize the importance
of the amount of long mRNA that correlates with the plasmid copy number, as well as the
presence of ssDNA as CsrA sequestering elements affecting the  cea-cel delay. C strains are
shown in black,  S strains  are  shown in grey. The grey  scatched area depicts  the  area of
expected delay times of all strains in dependence to the plasmid copy number only. Please
note that due to the fact that at low plasmid copy numbers many cells don't lyse (nl) these
delay times cannot be given as an exact value, but are estimated to lie in the depicted grey
area. Red dots represent the values of the theoretical analysis in the absence of ssDNA (so
plasmid  copy  number  effect  only),  green  markers  represent  the  theoretical  values  in  the
presence of ssDNA, which is the case for all C strains. 
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Supplementary Information (experimental) 

Accumulation of single-stranded DNA (ssDNA) 

Recently, Morales et al.(1), detected the accumulation of ssDNA in Escherichia coli cells 

carrying any one of the plasmids pColE3-CA38, pColE9 and pColE5. This ssDNA originates 

from rolling-circle replication(1, 2). This type of replication enables an autonomous plasmid 

to replicate independently of the bacterial cell cycle and cell division(3). The replicons of the 

plasmids pColE2-P9 and pColE3-CA38 are closely related(4), indicating that asymmetric 

rolling-circle replication(5) of the pColE2-P9 plasmid (Fig S5a) could also lead to ssDNA 

accumulation, as shown in Fig 3 and Fig S5b. Furthermore, sequencing of pColE2-P9 and an 

analysis of its homology with pColE3-CA38 (Table S1) confirms the close relationship 

between the two plasmids. The Rep protein binds to the ColE2 ori to initiate rolling-circle 

replication(3), leading to ssDNA synthesis(2). The concentration of the Rep protein is held 

constant by the action of an anti-sense sRNA (the inkA gene product) that binds to the 5'- 

untranslated region of the mRNA encoding the Rep protein(6).  

Please note that the reporter plasmid pMO3(7) used in this study is a derivative of pBAD24. 

Its replication mode(8) differs from that of pColE2-P9 and does not lead to the accumulation 

of ssDNA (Fig 3)(1). 

 

 

 

 

Supplementary Methods 

In the following, additional information relating to the construction of the specific mutant 

strains used in this study is given, together with a description of RNA and ssDNA oligos used 

for CsrA binding studies. Table S2 provides an overview of all (mutant) strains used in this 

study. Table S3 summarizes all primers used, including those employed in the construction of 

the mutant strains listed in Table S4 and in sequencing of pColE2-P9. Table S4 lists the base-

pair changes introduced into the plasmid pMO3 that resulted in plasmids pMO4, pMO5, 

pMO6, pMO7, as well as the sequences of RNA and ssDNA oligos used for CsrA-binding 

studies as described in the Methods section of the main text. 

 

 

 

 



Supplementary Tables 

Table S1: Sequence homology of genes present on the plasmids pColE2-P9 and pColE3-

CA38. Numbers in red indicate that the gene extends past the base-pair designated as position 

1. 

Gene Sequence position 

on pColicinE2-P9 

Sequence position 

on pColE3-CA38 

Homology 

E2/E3 

rep 3073-3792 3344-4258 97% 

ssi 4084-4159 4376-4451 100% 

mob 4182-4456 4475-4750 98% 

tra 4636-6757,1-98 4929-7118,1-30 97% 

incA 2943-3057 3214-3328 100% 

colE2/E3 ori 3966-3997 4257-4289 94% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2: Bacterial strains used in this study 

Bacterial strain Strain description Genetic modification/information Reference 

BZB 1011   (9) 

CWT                  

(BZB 1011 E2C) 

 Carries pColE2-P9 (9) 

CREP1 (EMO3-C) BZB 1011 E2C 

pMO3 

Carries pColE2-P9 and the reporter 

plasmid pMO3 

(7) 

SREP1 (EMO3-S) BZB 1011 pMO3 Same as EMO3-C without the 

Colicin E2 plasmid 

(7) 

LexA1 BZB 1011 pMO4 

Derivative of SREP1 

LexA binding sequence altered on 

pMO3 to achieve stronger LexA 

binding, resulting in pMO4 

This study 

LexA2 BZB 1011 pMO5 

Derivative of SREP1 

LexA binding sequence altered on 

pMO3 to achieve weaker LexA 

binding, resulting in pMO5 

This study 

CsrA1 BZB 1011 pMO6 

Derivative of SREP1 

CsrA binding sequence on pMO3 

altered to achieve stronger CsrA 

binding, resulting in pMO6 

This study 

CsrA2 BZB 1011 pMO7 

Derivative of SREP1 

CsrA binding sequence on pMO3 

altered to achieve weaker CsrA 

binding, resulting in pMO7 

This study 

CsrB 

(EMO3::CsrB) 

BZB 1011 

CsrB::Kan pMO3 

Derivative of SREP1 

CsrB::Kan, in-frame replacement of 

CsrB by a kanamycin resistance 

This study 

CsrC 

(EMO3::CsrC) 

BZB 1011 

CsrC::Kan pMO3 

Derivative of SREP1 

CsrC::Kan, in-frame replacement of 

CsrC with a kanamycin resistance 

This study 

CsrBC 

(EMO3::CsrBC) 

BZB 1011 

CsrB::Cam 

CsrC::Kan  pMO3  

Derivative of SREP1 

CsrC::Kan, CsrB::Cam, in-frame 

replacement of CsrC by a kanamycin 

resistance and of CsrB by a 

chloramphenicol resistance cassette 

This study 

CREP2 BZB 1011 E2C 

pMO8 

Same as CREP1, only the origin of 

replication on pMO3 has been 

changed to p15A to achieve a lower 

copy number of 13 copies per cell - 

pMO8 

This study 

SREP2 BZB 1011 pMO8 Same as SREP1, only the origin of 

replication on pMO3 has been 

changed to p15A to achieve a lower 

copy number of 13 copies per cell -> 

pMO8 

This study 

 

 

 

 



 

Table S3: Primers used in this study. Primers P1-P12 were used for construction of the 

mutant strains listed in Table S2. Primers P13-P24 were used for sequencing pColE2-P9. 

Primer pairs P25/P26 and P27/28 were used to create the low copy plasmid pMO8. 

Name Sequence Purpose 
P1 5´- GACGGGTACTTTTTGTACTGTACATAAAACCAGTGG - 3´ LexA1 [fwd] cloning 

P2 5´- CCACTGGTTTTATGTACAGTACAAAAAGTACCCGTC- 3´ LexA1 [rev] cloning 

P3 5´- GACGGGTACTTTTTGATCCCTACATAAAACCAGTGG- 3´ LexA2 [fwd] cloning 

P4 5´- CCACTGGTTTTATGTAGGGATCAAAAAGTACCCGTC- 3´ LexA2 [rev] cloning 

P5 5´- GGCATTCTTTCACATTAAGGAGTCGTTATG - 3´ CsrA1 [fwd] cloning 

P6 5´- CATAACGACTCCTTAATGTGAAAGAATGCC- 3´ CsrA1 [rev] cloning 

P7 5´- GCATTCTTTCACAACAAGGATGTGTTATGAAAAAAATAACCGG-3´ CsrA2 [fwd] cloning 

P8 5´- CCGGTTATTTTTTTCATAACACATCCTTGTTGTGAAAGAATGC- 3´ CsrA2 [rev] cloning 

P9 5´GTGGTCATAAAGCAACCTCAATAAGAAAAACTGCCGCGAA 

GGATAGCAGG AATTAACCCTCACTAAAGGGCG 3´ 

ΔCsrB [fwd] cloning 

P10 5´TTGTCTGTAAGCGCCTTGTAAGACTTCGCGAAAAAGACGATTCTATCT

TCTAATACGACTCACTATAGGGCTC 3´ 

ΔCsrB [rev] cloning 

P11 5´ ACTGATGGCG GTTGATTGTT TGTTTAAAGCAAAGGCGTAA 

AGTAGCACCCAATTAACCCTCACTAAAGGGCG 3´ 

ΔCsrC [fwd] cloning 

P12 5´GCCGTTTTATTCAGTATAGATTTGCGGCGGAATCTAACAGAAAGCAA

GCATAATACGACTCACTATAGGGCTC 3´ 

ΔCsrC [rev] cloning 

   

P13 5´- ACCGTATCTCCGTCATCAAC -3´ ColE2-1 [fwd] sequencing 

P14 5´- CTTCCTGTGAGAACTGC -3´ ColE2-2 [fwd] sequencing 

P15 5´- GTAGCGAGCGAATGAG -3´ ColE2-3 [fwd] sequencing 

P16 5´- CATGATTGCCGATGTGG -3´ ColE2-4 [fwd] sequencing 

P17 5´- GTGGAATACGTGGATTGC -3´ ColE2-5 [fwd] sequencing 

P18 5´- GGAGAAGCTATAAACCATG -3´ ColE2-6 [fwd] sequencing 

P19 5´- TCTGCTCATGTTTGACAGCTT -3´ ColE2-7 [fwd] sequencing 

P20 5´- CTCTGTTCGCATGGTCAG -3´ ColE2-8 [rev] sequencing 

P21 5´- CACGTTCGATGTCGTTC -3´ ColE2-9 [rev] sequencing 

P22 5´- GAATACATTCTCACACGCTC -3´ ColE2-10 [rev] sequencing 

P23 5´- CGTTGTTGTTGCCTGTG -3´ ColE2-11 [rev] sequencing 

P24 5´- TCATCCGCCAAAACAGCC -3´ ColE2-12 [rev] sequencing 

   

P25 5´- ATTAAGTCGACGAAGATCCTTTGATCTTTTC -3´ pMO3_noORI SalI [rev]  

Cloning pMO3 vector 

without ORI  

P26 5´- ATTAAGCATGCAACGCCAGCAACGC -3´ pMO3_noORI SphI[fwd]  

Cloning pMO3 vector 

without ORI 

P27 5´- ATTAAGTCGACTTGAGATCGTTTTGG -3´ p15A ORI SalI [rev] 

cloning 

P28 5´- ATTAAGCATGCTTTCCATAGGCTCCG -3´ p15A ORI SphI [fwd] 

cloning 

 

 

 

 

 

 

 



 

Table S4. Sequences of genetic elements. The first three rows depict sequence changes in 

the LexA binding site (two overlapping LexA binding SOS boxes) on the pMO3 reporter 

plasmid, leading to altered LexA binding (pMO4, pMO5). The following three rows show the 

changes made in the CsrA binding site within the second mRNA loop (which also includes 

the ribosome binding site of the cel gene and the GGA motif recognized by CsrA) that 

potentiate (pMO6) or weaken (pMO7) CsrA binding (Fig 2d). The following three rows list 

the sequences of RNA oligos used for CsrA binding studies (Methods, Fig 2d) and include 

the alterations in the CsrA binding site mentioned above. The last three rows give the 

sequences of the 89-bp ssDNA oligos used to study binding of CsrA to ssDNA by gel shift 

analysis (Methods). Bases highlighted in green correspond to sequence changes. Bases 

shown in boldface highlight the GGA motif required for CsrA binding as present within the 

second mRNA (plasmid), RNA oligo or ssDNA oligo loop. We confirmed the appropriate 

formation of secondary structures of these oligos using Mfold(10) (Methods). 

 

Name Sequence Description 
pMO3 5‘-TTGATCTGTACATAAAACCAGTGGTTTTATGTACAGTATTAA-3‘ LexA binding site 

pMO4 5‘-TTGTACTGTACATAAAACCAGTGGTTTTATGTACAGTATTAA-3‘ LexA binding site 

pMO5 5‘-TTGATCCCTACATAAAACCAGTGGTTTTATGTACAGTATTAA-3‘ LexA binding site 

pMO3 5' - CACAACAAGGAGTCGTTATG  - 3' CsrA binding site 

second loop 

pMO6 5' - CACAACAAGGATGTGTTATG - 3' CsrA binding site 

second loop 

pMO7 5' - CACATTAAGGAGTCGTTATG - 3'  CsrA binding site 

second loop 

RNA Oligo 

equivalent to 

sequence of 

pMO3 

5‘-Cy5- AUUUAAACAGGGCUGAAAUAUGAAUGCCGGUUGUUUAU 

GGAUGAAUGGCUGGCAUUCUUUCACAACAAGGAGUCGUUAUGA

AAAAAUA -3‘ 

RNA Oligo with 

both CsrA binding 

sites (GGA) 

RNA Oligo 

equivalent to 

sequence of 

pMO6 

5‘-Cy5- AUUUAAACAGGGCUGAAAUAUGAAUGCCGGUUGUUUAU 

GGAUGAAUGGCUGGCAUUCUUUCACAACAAGGAUGUGUUAUGA

AAAAAUA -3‘ 

RNA Oligo with 

both CsrA binding 

sites (GGA) 

RNA Oligo 

equivalent to 

sequence of 

pMO7 

5‘-Cy5- AUUUAAACAGGGCUGAAAUAUGAAUGCCGGUUGUUUAU 

GGAUGAAUGGCUGGCAUUCUUUCACAUUAAGGAGUCGUUAUG 

AAAAAAUA -3‘ 

RNA Oligo with 

both CsrA binding 

sites (GGA) 

ssDNA Oligo 

equivalent to 

sequence of 

pMO3 

5‘-Cy5- ATTTAAACAGGGCTGAAATATGAATGCCGGTTGTTTAT 

GGATGAATGGCTGGCATTCTTTCACAACAAGGAGTCGTTATG 

AAAAAAATA - 3‘ 

ssDNA Oligo with 

both CsrA binding 

sites (GGA) 

ssDNA Oligo 

equivalent to 

sequence of 

pMO6 

5‘-Cy5-ATTTAAACAGGGCTGAAATATGAATGCCGGTTGTTTAT 

GGATGAATGGCTGGCATTCTTTCACAACAAGGATGTGTTATG 

AAAAAATA -3‘ 

ssDNA Oligo with 

both CsrA binding 

sites (GGA) 

ssDNA Oligo 

equivalent to 

sequence of 

pMO7 

5‘-Cy5- ATTTAAACAGGGCTGAAATATGAATGCCGGTTGTTTAT 

GGATGAATGGCTGGCATTCTTTCACATTAAGGAGTCGTTATG 

AAAAAATA -3‘ 

ssDNA Oligo with 

both CsrA binding 

sites (GGA) 

 

 



 

Supplementary Figures  

 

 

Fig S1: Dependence of the maximal fluorescence intensity, cumulative fraction and time-

point of expression start of cells expressing the ColicinE2 operon in the CREP1 and SREP1 

strains on the MitC concentration. Yellow: cea gene expression (colicin production), blue: 

cel gene expression (colicin release). Data shown here represent average values obtained from 

single-cell time-lapse microscopy experiments. A-C) CREP1, D-F) SREP1, A,D) Maximal 

fluorescence intensity of the cells that express the ColicinE2 operon. B,E) Cumulative 

fraction of cells expressing the ColicinE2 operon. C,F) Onset (tON) of cea and cel gene 

expression. 

 

 



 

 

Fig S2: Impact of alteration of the LexA binding site or absence of sRNAs on ColicinE2 

expression in SREP1 cells. A-C) Yellow: cea gene expression (colicin production), blue: cel 

gene expression (colicin release). A) Mean maximal expression of the colicin operon (relative 

to the SREP1 strain) in mutant reporter strains bearing altered LexA binding sites (LexA1 and 

LexA2, SI, Methods), or lacking the sRNA CsrB (CsrB), or missing both sRNAs CsrB and 

CsrC (CsrCB). B) Cumulative fraction of cells expressing the colicin operon. C) TON times 

for cea and cel gene expression. D) Delay between cea and cel gene expression. 

 

 

 

 

 

 

 

 



 

Fig S3: Biochemical network involved in the post-transcriptional regulation of 

ColicinE2. The top part shows the complete network, involving all interactions and 

components considered in this work. This complex description of the network can be reduced 

to the set of effective interactions shown in the lower panel. The derivation of these effective 

descriptions is given in section 2 of the theory part of the SI. 



 

 

Fig S4: Effect of sRNA knock-out on Colicin E2 expression in long-term experiments 

(0.25 µg/ml MitC). To determine the importance of sRNA regulation for ColicinE2 

expression over a longer period, plate-reader experiments were performed as described in 

Methods. A) Absorbance, B) Fluorescence intensity of cells expressing cea (YFP, colicin 

production), C) Fluorescence intensity of cells expressing cel (CFP, colicin release). Red: 

SREP1 strain, Blue: CsrC single sRNA knock-out, Green: CsrB single sRNA knock-out, 

Black: CsrB/C double sRNA knock-out. 

 



 

 

Fig S5: ssDNA accumulation in bacteria carrying pColE2-P9 and binding of CsrA to 

ssDNA. A) Map of pColE2-P9. The plasmid map was created using Vector NTI Expression 

Version 1.6.0. The plasmid sequence can be accessed via Genbank accession number 

KY348421. B) Accumulation of ssDNA in CWT is independent of the presence of MitC. 

Agarose gel of plasmid and ssDNAs extracted from CWT. Lanes 1-3 and 9-11 were loaded 

with the indicated markers: 1-kb ladder, 7249-bp ssDNA ring (M13mp18), and 5386-bp 

ssDNA ring (PhiX174). Lane 4-8: uncleaved CWT DNA showing the 6800-bp pColE2-P9 

dsDNA (blue) and ssDNA (red) at different concentrations of the SOS inducing agent MitC. 

The staining substance ETBR binds optimal to dsDNA and only to ssDNA if secondary 

structures (ds part of ssDNA) are present. Hence, binding of ETBR to ssDNA is much lower 

than to dsDNA. Consequently, the brighter ssDNA bands reflect the high amount of ssDNA 

accumulated in the bacterial cells. C) Gel-shift analysis of CsrA binding to RNA or ssDNA 

oligos equivalent to the RNA corresponding to pMO3 (Methods, SI), verifying binding of 1 

or 2 CsrA molecules to single RNA and ssDNA oligos (first and second shift, respectively). In 

the first lane for comparison no CsrA is added. RNA or ssDNA was applied at 5 nM. D) 

Dissociation constants (Kd) for the binding of CsrA to various ssDNA oligos (SI). CsrA1 = 

stronger CsrA binding, CsrA2 = weaker CsrA binding. 

 

 



 

 

 

Fig S6: cea-cel delay-time distributions and average cea-cel delay-times for different 

ssDNA production rates and strains. The SREP1 strain does not produce ssDNA, and is 

plotted (in green) only for the purpose of direct comparison with the CREP1 strain. If no 

ssDNA is produced (D = 0), we find that the CREP1 strain shows a broader cea-cel delay-time 

distribution, compared to the cases with ssDNA production. The wild-type strain CWT does 

not lyse at all during the SOS signal for D = 0. If we increase the ssDNA production rate, we 

find the experimentally observed behaviour that the CREP1 strain shows very short cea-cel 

delays. In the wild-type strain, a certain threshold rate of ssDNA production is required to 

induce a significant level of lysis, emphasizing the importance of ssDNA for toxin release. 

Ensemble size: 2000 realisations. 

 

 

 

 

 



 

 

Fig S7: Average of the time evolution of the CsrA and long mRNA abundance for 

different ssDNA production rates and strains. Between t=200 and t=500, the system is 

subject to an SOS signal. In all cases, the SOS signal initiates a decrease in CsrA abundance 

from a previously stable level. This level is determined by the production, binding, and 

degradation rates of CsrA and its complex partners. As higher CsrA levels take longer and are 

also less likely to decrease to zero, they also directly affect the duration of the average cea-cel 

delay-time. The three plots for D = 0 also show a single trajectory of long mRNA and CsrA 

in light green and light red, respectively. Ensemble size: 2000 realisations. 

 

 

 

 

 



 

 

Fig S8: Cell lysis after induction with 0.25 µg/ml MitC. CREP1 lyses on average 87 (± 3.9) 

min after induction with MitC, CWT lyses considerably later at 150 (± 6.9) min. For CREP1, 

mean cell lysis nearly coincides with the TONcea at 69.71 ± 0.77 min(7) (red line). This 

interval between TONcea constitutes the delay between the SOS signal (MitC induction) and 

the start of cea gene expression. In our theoretical model, this initial delay is very short, as 

the system here switches directly from the pre-SOS signal 'OFF' state into the post-SOS 

signal 'ON' state. Hence, the red line also depicts the time-point of this switch (0 min in Fig 

4). 

 

 

 

 

 

 



Supplementary References (experimental) 

1. Morales M, Attai H, Troy K, Bermudes D. Accumulation of single-stranded DNA in Escherichia 
coli carrying the colicin plasmid pColE3-CA38. Plasmid. 2015;77:7-16. Epub 2014/12/03. 
2. Khan SA. Plasmid rolling-circle replication: highlights of two decades of research. Plasmid. 
2005;53(2):126-36. Epub 2005/03/02. 
3. Yagura M, Nishio SY, Kurozumi H, Wang CF, Itoh T. Anatomy of the replication origin of 
plasmid ColE2-P9. Journal of bacteriology. 2006;188(3):999-1010. Epub 2006/01/24. 
4. Aoki K, Shinohara M, Itoh T. Distinct functions of the two specificity determinants in 
replication initiation of plasmids ColE2-P9 and ColE3-CA38. Journal of bacteriology. 
2007;189(6):2392-400. Epub 2007/01/24. 
5. del Solar G, Kramer G, Ballester S, Espinosa M. Replication of the promiscuous plasmid pLS1: 
a region encompassing the minus origin of replication is associated with stable plasmid inheritance. 
Mol Gen Genet. 1993;241(1-2):97-105. Epub 1993/10/01. 
6. Sugiyama T, Itoh T. Control of ColE2 DNA replication: in vitro binding of the antisense RNA to 
the Rep mRNA. Nucleic acids research. 1993;21(25):5972-7. Epub 1993/12/25. 
7. Mader A, von Bronk B, Ewald B, Kesel S, Schnetz K, Frey E, et al. Amount of colicin release in 
Escherichia coli is regulated by lysis gene expression of the colicin E2 operon. PLoS One. 
2015;10(3):e0119124. Epub 2015/03/10. 
8. del Solar G, Giraldo R, Ruiz-Echevarria MJ, Espinosa M, Diaz-Orejas R. Replication and control 
of circular bacterial plasmids. Microbiol Mol Biol Rev. 1998;62(2):434-64. Epub 1998/06/10. 
9. Kerr B, Riley MA, Feldman MW, Bohannan BJ. Local dispersal promotes biodiversity in a real-
life game of rock-paper-scissors. Nature. 2002;418(6894):171-4. Epub 2002/07/12. 
10. Zuker M. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids 
research. 2003;31(13):3406-15. Epub 2003/06/26. 

 

 



Supplementary Information (Theory):
Theoretical Model for ColicinE2 Expression
Including the additional CsrA sequestering

Element ssDNA

1 The biological system

The biological phenomenon we wish to describe by means of a quantitative
theoretical model is the regulation of ColicinE2 release in E. coli. ColicinE2
is a bacterial toxin encoded by the gene cea, which is part of the ColicinE2
operon located on a plasmid. This operon also contains genes for an
immunity protein (cei gene) and a lysis protein (cel gene). The lysis protein
is part of the operon as cell lysis is the only way to release the toxin
into the environment. Since lysis also means the death of the cell, the
release of ColicinE2 is highly regulated. Previous studies have revealed the
regulatory components controlling ColicinE2 production and release on
both the transcriptional and post-transcriptional levels:

• The transcription of the operon is regulated by the operon’s repressor
LexA, which is part of the E. coli SOS response regulatory network [1,
2]. Stressful events, such as DNA damage activate a SOS response sys-
tem [1], which stochastically triggers the transcription of the operon
by degradation of LexA. Once transcription starts, two mRNA tran-
scripts are produced: short mRNA, containing only the toxin and
immunity protein, and long mRNA, which contains also the lysis
protein [3].

• The post-transcriptional regulation (see Fig. 1 and also Fig. S3) acts
on the long mRNA only. To our knowledge, its only regulator is
the protein CsrA, which binds to the Shine-Dalgarno sequence that
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is located on the long mRNA between the sequences coding for the
immunity and lysis proteins [3]. When a CsrA protein binds to long
mRNA and thus forms a complex with it, the gene for the lysis
protein can no longer be translated, and thus the cell does not lyse [3].
By preventing lysis protein expression, CsrA regulates the release of
ColicinE2. The abundance of CsrA itself is known to be regulated
by the two CsrA-sequestering short RNAs (sRNAs) CsrB and CsrC,
which both have several CsrA binding sites [4, 5]. Our current study
suggests that, in addition, rings of single-stranded DNA (ssDNA)
also sequester CsrA, and therefore represent a novel CsrA regulator.
This ssDNA is created as an intermediate during the rolling circle
replication of the ColicinE2 plasmids.

A particular example for the importance of these regulatory interactions is
the delay between production and release of ColicinE2, which has recently
been studied experimentally [6]: The translation of lysis proteins from
long mRNA (and therefore lysis itself) can only start if there are free long
mRNAs, that is, long mRNAs that are not bound to CsrA. From what
is known about CsrA interactions, we assume in our biochemical model
that a CsrA molecule can no longer regulate long mRNA when it is either
sequestered, or degraded. Previous studies [7] show that CsrA is highly
abundant during growth phase, mainly in form of CsrA complexes. When
an SOS response is triggered, however, the production of long mRNA
increases such that free CsrA abundance decreases, and eventually lysis
proteins are translated from free long mRNA. This process does not happen
instantaneously: Due to stochasticity in the SOS response system and the
time it takes to produce, bind or degrade the regulatory components
involved, we find a delay between the expression of the unregulated cea
gene (part of the short mRNA) and the CsrA-regulated cel gene (part
of the long mRNA). This delay is presumably not just a byproduct of
regulation, but has also a biological function: It gives the cell time to
accumulate ColicinE2, and thus allows for higher toxin concentrations
upon the release. Moreover, it presumably also acts as a safety buffer,
which prevents premature cell lysis, for instance due to fluctuations in the
system [6].

In contrast to the abundances of the regulatory components, the cea-cel-
delay is a quantity that can readily be measured experimentally by reporter
plasmids inserted in the E. coli cells. These reporter plasmids carry the
ColicinE2 operon, but the toxin (cea) and lysis (cel) gene are replaced by two
different fluorescence protein genes (CFP and YFP). Since only these two
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number of number of
strain reporter plasmids pColE2P9 plasmids ssDNA
SREP1 ≈ 55 – –
SREP2 ≈ 13 – –
CREP1 ≈ 55 ≈ 20 accumulates
CREP2 ≈ 13 ≈ 20 accumulates
CWT – ≈ 20 accumulates

Table S5: The five different strains and the abundance of the genetic
elements that differentiate them [8].

genes are replaced, the reporter plasmids have the same promoter as the
ColicinE2 plasmid, and the long mRNA transcript of the reporter plasmid
has the same CsrA binding site as the original long mRNA. Consequently,
a reporter plasmid behaves like the ColicinE2 plasmid, but produces two
types of fluorescence proteins instead of toxin and lysis proteins. Therefore,
upon introducing reporter plasmids to an E. coli cell, one can measure the
time points of production of the corresponding fluorescence proteins; these
measured time points then coincide with the time points of toxin and lysis
protein production. In this study, we use two reporter plasmid types, which
differ by their mean abundance in the cell: type 1 (pMO3) accumulates
to about 55 plasmids per cell, whereas type 2 (pMO8) only to about 13
plasmids per cell.

With three different plasmid types, the original and the two reporter
plasmids, we can construct five different strains (see also Table S5): First,
the wild-type strain, CWT, which carries only ColicinE2 plasmids. Inserting
reporter plasmids to this strain creates, depending on the reporter plasmid
type inserted, either a strain called CREP1 or a strain called CREP2. Com-
pletely replacing the ColE2 plasmid with one of the reporter plasmid types
creates another two strains, referred to as SREP1 and SREP2. Our experiments
show that the plasmid types also differ in the production of ssDNA: cells
carrying the ColicinE2 plasmid do accumulate ssDNA (see Fig. 3), while
this is not the case for the SREP1 and SREP2 strain cells, which only contain
reporter plasmids (see Fig. 3 and Supplementary Information).

As discussed in detail in section 2, we will use mathematical modelling
to infer the delay of the wild-type strain from the delay measured in
the other strains containing the reporter plasmid. Before doing so, we
recapitulate the main experimental findings on the delay-times in the
bacterial strains containing the reporter plasmid.

In our experiments (see main text) we found that the CREP1 strain shows
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no significant delay between cea and cel gene expression, whereas the SREP1

strain has a significant mean delay of 75 minutes. Moreover, we observed
that the SREP1 strain has a broad delay-time distribution around this mean
value. This raised the question as to the source of this difference. The CREP1

and SREP1 strains differ only in their plasmid composition and are both
genetically identical (see Table S5). From this we conclude that the presence
of ColicinE2 plasmids in the CREP1 strain introduces further regulatory
elements (compared to the reporter plasmids), which are responsible for
the shorter cea-cel delay times compared to the SREP1 strain. The reporter
and the ColicinE2 plasmids contain the same regulatory sequences (see
Methods), which means that the additional regulatory elements cannot be
different mRNA transcripts specifically produced by the ColicinE2 plasmid.
From what is known about the two plasmids and the regulatory network
of ColicinE2 (see above), two mechanisms could in principle account for
the shorter delay times in CREP1, which are: First, additional production
of CsrA sequestering long mRNA due to the larger plasmid copy number,
and second, the accumulation of ssDNA which, as our study shows, can
also sequester CsrA.

2 Mathematical model of the ColicinE2 release

In the following, we develop a mathematical model that enables us to in-
vestigate the regulation of ColicinE2 release in all five strains (CREP1, CREP2,
CWT, SREP1, and SREP2). The model accounts for all necessary regulatory
components, including the ssDNA and the different plasmid compositions.
We validate this model by reproducing the experimentally observed delay
time distributions for the SREP1 strain. Variation of ssDNA production in
the model then allows us to quantify the impact of ssDNA production and
plasmid copy number on the cea-cel delay. Moreover, the model enables
us to infer the behaviour of the CWT strain, for which the cea-cel delay
cannot be directly measured experimentally. The inferred behaviour can be
validated by comparison with experimentally measured lysis times, see Fig.
S8.

Several experimental studies defined and probed the regulatory net-
works and components involved in E. coli SOS responses, as well as Col-
icinE2 production and release [1, 3, 6, 8]. Starting from these experimental
results, the regulatory interactions have also been studied using mathemati-
cal models [2, 9–11]: For the transcriptional regulation network of the E. coli
SOS response system, a stochastic model has been presented, which is able
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to reproduce the distribution of stochastic SOS activity peaks [2]. For the
post-transcriptional regulation of ColicinE2 release, we recently introduced
a hierarchical three-component model [9] involving long mRNA, CsrA, and
an effective sRNA. This model was also combined with the stochastic SOS
signal model from Ref. [2] to emulate the response of ColicinE2-producing
bacteria to external stress. With this combined approach, the model shows
that sRNA reduces internal fluctuations and helps controlling the level
of CsrA. Moreover, the model predicts stochastically distributed delays
between SOS signal and lysis, which is also seen in experiments with the
SREP1 strain.

In this section, we extend our previous model [9], taking into account
the new experimental findings presented in the main text. In particular,
we incorporate the additional regulator ssDNA as well as the different
plasmid copy numbers and types. For this step, it is important to know
the derivation of the previous, three-component model, which is why we
outline the derivation of the previous model as we develop our new model
from scratch. For a detailed derivation of the three-component model, we
refer the reader to Ref. [9].

2.1 Regulatory network

Our goal is to design a stochastic model that enables us to investigate the
dynamics of the regulatory networks involved the SOS response and the
ensuing synthesis and release of ColicinE2. To this end, we first formulate
the interactions of the regulatory components as a set of (deterministic)
differential equations, that is, as a mass-action model. This approach
disregards any spatial effects and consider the system as well mixed.

Extending our previous study [9], we build a mass-action model for the
SOS response, and the regulatory network for ColicinE2 production and
release from the following assumptions and properties of the components
(see also Fig. S3):

• The abundances of long mRNA, CsrA and effective single-binding-
site sRNA (see below) are denoted by M,A and S, respectively. These
abundances give the number of free components, that is, the number
of long mRNA, CsrA and sRNA molecules that are not bound in
a complex. Moreover, PCOL and PREP denote the copy number of
ColicinE2 and the reporter plasmids, respectively (there is no need to
distinguish between the two reporter plasmid types for PREP as they
do not occur in the same cell at the same time).
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• The response to external stress (“SOS response”) is regulated by the
LexA/RecA system [1], which we incorporate into our model using
the differential equations given in Ref. [2]. This model accounts for
the production, degradation and (un)binding of the proteins LexA
(L) and RecA (R), the mRNAs they are translated from (Ml and Mr,
respectively), as well as the number of repressed promoters control-
ling the transcription of these mRNAs (Bl and Br, respectively). In
this system, LexA acts as repressor: as long as a LexA protein is
bound to the promoter region of the RecA or LexA operon, no mRNA
is produced. The number of repressed RecA and LexA promoters
increases if LexA binds to an unrepressed promoter, and decreases as
it unbinds. Therefore, the differential equations for Bl and Br contain
two terms each: a production term proportional to the abundances of
LexA and unrepressed promoters, and a degradation term propor-
tional to the number of repressed promoters. In an E. coli cell, there
is only one promoter for each LexA and RecA, which means that Bl
and Br can take either the values 0 or 1. The differential equations
then read

∂tBr = k
+
r (1 −Br)L− k

−
r Br, (1)

∂tBl = k
+
l (1 −Bl)L− k

−
l Bl, (2)

where the k± denote the attachment and detachment rates of LexA
to/from the promoter indicated by the subscript. From unrepressed
promoters the respective mRNA is transcribed, and hence, the mRNA
production depends linearly on the number of unrepressed promoters.
Once produced, the mRNA can spontaneously degrade. Therefore,
the differential equations for the mRNAs also contain two terms each,
and read:

∂tMr = αMr
(1 −Br) − δMr

Mr, (3)

∂tMl = αMl
(1 −Bl) − δMl

Ml, (4)

where α and δ give the per capita production and degradation rate
of the component indicated by the subscript. These mRNAs are
translated to RecA and LexA proteins, respectively. Hence, the pro-
duction terms of the two proteins are proportional to the respective
mRNA abundance. The number of proteins decreases by spontaneous
degradation. As the abundance of RecA is only affected by these two
processes, its differential equation reads:

∂tR = αRMr − δRR, (5)
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where αR and δR denote the per capita production and degradation
rate of RecA. Since LexA acts as regulator in the LexA/RecA-system,
its abundance is also affected by the interactions with the promoters.
Consequently, the terms from eqs. (1) and (2) appear in the differen-
tial equation for LexA, but with opposite sign. Moreover, in case of an
SOS signal, RecA depletes LexA, motivating an additional degrada-
tion term bilinear in L and R, with the degradation constant cp. Apart
from these interactions with the LexA/RecA-system, LexA is also
the repressor of the colicin operon. Therefore, the LexA/RecA SOS
response system interacts with the regulatory system of ColicinE2
production and release via B, the number of repressed promoters of
the ColicinE2 operon. Its differential equation contains two terms
analogous to the LexA and RecA promoters:

∂tB = k+P (PCOL + PREP −B)L− k−PB, (6)

where the k±P denote the attachment and detachment rates of LexA
repressor to/from the ColicinE2 promoter. Unlike Br and Bl, B
can take values between 0 and PCOL + PREP. The terms from eq. (6)
apppear, again with opposite sign, also in the differential equation
for LexA, which, altogether, reads

∂tL = αLMl − δLL− k
+
l (1 −Bl)L+ k

−
l Bl − k

+
r (1 −Br)L

+ k−r Br − k
+
P (PCOL + PREP −B)L+ k−PB− cpRL, (7)

where αL and δL give the per capita production and degradation
rate of LexA. For a detailed discussion of these equations, we refer
to Ref. [2]. Note that the SOS response system, eqs. (1)-(7), interacts
with the ColicinE2 regulatory network only through the parameter B
(see also next bullet point).

• The total production rate of long mRNA in the cell is proportional
to the number of unrepressed ColicinE2 promoters in the cell. This
number is given by the total number of plasmids in the cell, PCOL +

PREP, minus B, the number of promoters with the repressor LexA
bound to it. Hence, the production rate of long mRNA reads

αM(PCOL + PREP −B), (8)

where αM is the production rate per unrepressed promoter. Note
that considering different plasmid types generalizes our earlier work
presented in Ref. [9].

7



• CsrA is produced at a constant rate, αA.

• The ColicinE2 system has two different regulatory sRNAs: CsrB
and CsrC. Apart from having different numbers of CsrA binding
sites and slightly different half-lifes, their mode of binding with
CsrA is very similar. Hence, we assume that we can describe their
regulatory impact by a single effective sRNA with corresponding
effective parameters (see Ref. [9] for details). Using effective sRNAs
in a mathematical model is indeed supported by experiments, which
show that the knock-out of either CsrB or CsrC causes a compensating
overproduction of the other sRNA (see the main text, and Ref. [5]).
This compensation is a natural consequence of a positive regulatory
effect of CsrA abundance to sRNA production (see bullet point below),
and highlights the functional equivalence of CsrB and CsrC. In Ref. [9]
we also showed that this effective sRNA, which contains N ≈ 10 CsrA
binding sites is equivalent to N effective single-binding-site sRNAs. This
drastically reduces the mathematical complexity of the model.

• Several studies found that the production of CsrB and CsrC is in-
directly regulated by the abundance of CsrA via the BarA/UvrY-
system [3–5]. Since the details of this interaction are largely unknown,
we model this positive regulation with an sRNA production rate that
is a linear function of the CsrA abundance. In addition to this linear
term, we also introduce a constant baseline production term, since
studies show that sRNAs are also produced (at very low levels) in
the absence of free CsrA [5]. Both production terms contain a factor
N, as we consider effective single-binding-site sRNAs in our model
(see the previous bullet point). The production term of the effective
single-binding-site sRNAs thus reads

αS,0N+αS,cA ·N,

with the baseline production rate αS,0, the linear coupling coefficient
αS,c, and the abundance of CsrA proteins A. Note that we did
not consider the positive feedback of CsrA on sRNA production in
Ref. [9].

• The degradation rates of long mRNA, CsrA and the effective sRNA
are each proportional to their respective abundance, and read δMM,
δAA and δSS, respectively.

• CsrA can bind to both long mRNA and the effective sRNA, and thus
forms CsrA-long mRNA and CsrA-sRNA complexes (CMA and CSA,
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respectively). In line with previous studies [12, 13] and our three-
component model [9], we assume that the formation and disassembly
of these complexes is much faster than the other processes involved in
post-transcriptional regulation. Therefore, we can employ adiabatic
elimination, ∂tCMA ≡ 0 and ∂tCSA ≡ 0. In Ref. [9], we show that this
enables us to combine the formation, disassembly and degradation
of the complexes into effective binding parameters, kM and kS. As
a consequence, we can solve for the complex abundances, CMA and
CSA, and eliminate them from our set of differential equations (see
Ref. [9] for details).

• The precise mechanism for the degradation of CsrA-sRNA and CsrA-
long mRNA complexes is not known. Here, we assume that CsrA
dimers are always degraded once their complex partner is degraded (in other
words: CsrA cannot “survive” the degradation of its partner).

• CsrA is a main regulator in growing E. coli cells, which is known
to bind to over 700 different targets [14, 15]. In the Supplementary
Information of Ref. [9] we show how one can eliminate the many
targets of CsrA to obtain a reduced system, which contains only the
components that are changed by the processes the model focusses
on (in this case: SOS-induced production and release of ColicinE2).
In the mathematical model presented in this section, we reduce the
system to three CsrA targets: long mRNA, sRNA, and (see below)
ssDNA. In agreement with experiments [7], the production rate of the
effective sRNA is large compared to the production of long mRNA
and ssDNA, such that the vast majority of sequestered CsrA proteins
is bound to sRNA.

• The short mRNA is not regulated by CsrA, and hence not part of the
regulatory network. However, our experiments use the translation
of short mRNA (specifically, the translation of the cea gene) as proxy
for promoter activity in the SREP1, SREP2, CREP1, and CREP2 strain.
To enable the experimental validation of our model, we include the
production of short mRNA in our model. Due to the lack of regulation,
the corresponding differential equation is decoupled from M,A and
S, and reads (with ∂Mshort

∂t ≡ ∂tMshort)

∂tMshort = αMshort − δMshortMshort, (9)

where αMshort and δMshort are the rate constants for production and
per-capita degradation, respectively.
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The properties and assumptions of the SOS response and the ColicinE2
regulatory system we listed above have already been used (if not stated oth-
erwise) in the combined model for SOS response and ColicinE2 regulation
presented in Ref. [9].

ssDNA as regulatory component: In the main text, we show experi-
mentally that single-stranded DNA (ssDNA) serves as a component of
post-transcriptional regulation of ColicinE2 production and release. Since
this is a novel and, so far, an undocumented role of ssDNA, we briefly
discuss how it acts as a regulator for CsrA in an E. coli cell.

ssDNA is an intermediate in the rolling circle replication mechanism
of the ColicinE2 plasmid: The plasmid consists of double-stranded DNA
(dsDNA). The first step in its replication is the production of a ring-shaped
ssDNA transcript. These transcripts are produced both in absence and
presence of an SOS signal (Fig. S5), which means that ssDNA production is
constant. It is assumed that once a ring of ssDNA is completed, it detaches
from the plasmid and diffuses freely through the cell. During this time,
it is converted to double-stranded DNA, which eventually results in a
new plasmid. Between the detachment of the single-stranded ring and the
formation of a new plasmid, the ssDNA acts as a regulator of CsrA: Since
the ssDNA includes the coding sequences present in the long mRNA, CsrA
can bind to the Shine-Dalgarno sequence of the cel gene located on the
ssDNA, and thus forms an ssDNA-CsrA complex. This allows the ssDNA
to regulate free CsrA levels by sequestration, similar to the CsrA regulation
by sRNA.

In our mathematical model, we account for these properties of ssDNA
as follows:

• The production rate of ssDNA is assumed to be proportional to the
number of ColicinE2 plasmids, PCOL, as it is an intermediate product
of the rolling circle replication mechanism of the ColicinE2 plasmid.
It reads

αD · PCOL, (10)

with the per plasmid production rate constant αD.

• The degradation of ssDNA is proportional to the ssDNA abundance,
D, and thus reads

δD ·D, (11)

with the per capita degradation rate constant is δD.
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• The ssDNA has two binding sites for a CsrA dimer (see Methods of
the main text), and thus can form a complex, CDA, with it. Com-
plex formation occurs with rate k+D, and the complexes dissociate
into ssDNA and a CsrA dimer with rate k−D. Apart from disassem-
bly, we also include the possibility that a CsrA-ssDNA-complex can
spontaneously degrade (meaning that both CsrA and ssDNA are
degraded at the same time) by introducing the per capita rate δDA.
The abundance of complexes is denoted by CDA.

Taken together, we can now formulate a set of differential equations, which
allows us to quantify these interactions. These interactions are also illus-
trated as a biochemical network in Fig. S3.

We begin with the differential equation for the time evolution of the
long mRNA, M. From the properties collected above, we conclude that this
equation must contain three terms: The first term describes the produc-
tion of long mRNA, which is proportional to the number of unrepressed
promoters. This number is calculated from the difference between the
total plasmid copy number, PCOL + PREP, and the number of repressed
promoters, B. The abundance of long mRNA is reduced by a second and a
third term: The second term describes the spontaneous degradation of long
mRNA, and is proportional to its abundance, M. The third term is bi-linear
(that is, it is proportional to A and M) and represents the effective coupled
degradation of long mRNA in complexes with CsrA. This term combines
the binding of CsrA to long mRNA, the dissociation of this complex, and
its degradation in an effective binding parameter kM. The three terms read:

∂tM = αM(PCOL + PREP −B) − δMM− kMM ·A. (12)

The derivation of the effective coupled degradation in the third term is
described in detail in Ref. [9]; an analogous derivation for the ssDNA is
given below. The B in the first term is determined by the LexA/RecA
subsystem of the SOS response, in particular by eq. (6).

The differential equation for the time evolution of the effective single-
binding-site sRNA, S, consists of terms very similar to that for long mRNA.
Two terms account for spontaneous and effective coupled degradation,
respectively, and are structurally the same as in eq. (12). This is due to
the fact that the sRNAs regulate CsrA in the same way as CsrA regulates
the long mRNA, by forming complexes. The production term is, however,
different, and contains two parts: The first part, αS,0, describes a constant
baseline production, which ensures the production of sRNAs in the absence
of CsrA. The second part depends linearly on the abundance of free CsrA,
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and thus accounts for the positive regulatory function of CsrA for the
sRNAs. Taken together, these four terms give the differential equation for
S:

∂tS = αS,0N+αS,cN ·A− δSS− kSS ·A. (13)

Having described the two partners of CsrA, we now turn to the dif-
ferential equation for CsrA itself. Again, this equation has a very similar
structure to eqs. (12) and (13): An, in this case constant, production term,
as well as a term for spontaneous degradation. Here, however, we have
more than one coupled degradation term, since CsrA can bind to more
than one component: long mRNA (M), sRNAs (S), and ssDNA (D). The
effective coupled degradation terms for long mRNA and sRNA are ex-
actly the same as in eqs. (12) and (13), respectively. This reflects the fact
that the formation of a long-mRNA/CsrA- or sRNA/CsrA-complex has
for both complex partners the same consequence, that is, it reduces the
abundance of free CsrA by 1. The coupled degradation part is also re-
sponsible for the hierarchical regulation, which we discussed in [9]: The
actual regulation target, long mRNA (M), exclusively binds to CsrA; the
sRNAs affects the free long mRNA level only indirectly by sequestering
the CsrA and thus “regulating the regulator”. Moreover, we also have
to account for ssDNA/CsrA-complexes. Since we have not derived an
effective coupled degradation for this complex yet, we explicitly account
for its formation and disassembly. This means that we have to include
two terms that account for the decrease of free CsrA due to the formation
of ssDNA/CsrA-complexes and the increase of free CsrA when such a
complex disassembles. Altogether, the differential equation for CsrA reads

∂tA = αA − δAA− kMM ·A− kSA · S− k+DD ·A+ k−DCDA, (14)

where CDA is the abundance of ssDNA/CsrA-complexes, and k±D the
complex binding and disassembly rate, and the terms containing the novel
regulator ssDNA are highlighted in red. Note that we consider the ssDNA
to have only one binding site for CsrA in our model. We account for the
second binding site analogously to the many binding sites of the sRNA,
that is by assuming D to be an effective, single binding site ssDNA, with
an effective production rate fitted to experimental data.

The two ssDNA terms highlighted in red also appear in the differential
equation for D, since the formation and disassembly of ssDNA/CsrA-
complexes in- and decreases also the abundances of ssDNA. The sponta-
neous degradation is accounted for by a separate degradation term, already
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known from the differential equations of the other components. The pro-
duction term of ssDNA is proportional to PCOL, the number of ColicinE2
plasmids in the cell, since ssDNA is an intermediate of the ColicinE2
plasmid replication. The differential equation for ssDNA therefore reads

∂tD = αDPCOL − δDD− k+DD ·A+ k−DCDA. (15)

We are still left with the dynamics of the ssDNA-CsrA-complexes, CDA.
The “production” term of the ssDNA/CsrA-complexes is the binding term
already known from eqs. (15) and (14), but in this case with a positive sign.
The number of complexes is reduced by complex disassembly, which is
accounted for by the term k−DCDA that also appears in eqs. (15) and (14)
with a different sign. Apart from complex disassembly, the complexes can
be degraded (in the sense that the complexes and their components are
destroyed) spontaneously, which is given by a spontaneous degradation
term. Taken together, the differential equation for ssDNA reads

∂tCDA = k+DD ·A− k−DCDA − δCDACDA. (16)

Effective coupled degradation of ssDNA and CsrA: In the discussion
of the ssDNA properties, we saw that ssDNA also has a Shine-Dalgarno
sequence, just as the long mRNA. This suggests that we can make the
same assumptions for the CsrA-ssDNA-complex as we did for the CsrA-
long-mRNA-complex. In the following, we proceed analogously to the
simplification of the hierarchical three component model (see Ref. [9]), and
assume fast dynamics of complexes. Adiabatic elimination (∂tCDA ≡ 0)
yields

CDA =
k+DDA

k−D + δCDA
=
kDDA

δCDA
, (17)

with the effective binding parameter

kD :=
k+DδCDA
k−D + δCDA

.

By inserting eq. (17) into eqs. (14)-(16), we get our final set of differential
equations, which includes all four components:

∂tM = αM(PCOL + PREP −B) − δMM− kMM ·A, (18)

∂tS = αS,0N+αS,cN ·A− δSS− kSS ·A, (19)

∂tA = αA − δAA− kMM ·A− kSS ·A− kDD ·A (20)

∂tD = αDPCOL − δDD− kDD ·A. (21)
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The new regulative component ssDNA acts in the same fashion as the
sRNA by binding CsrA. Compared to the original three component system,
eqs. (12)-(14), the extension with ssDNA therefore resulted in a system
of equations with the same types of terms (source term, spontaneous
degradation, coupled degradation). We use eqs. (18)-(21) to study gene
expression dynamics for all three different strains. This is done by adjusting
the corresponding values for PCOL and PREP, see section 3. Moreover, we
investigate the impact of ssDNA on the regulation of ColicinE2 production
and release.

3 Parameter values

For the parameters associated with long mRNA, CsrA and the effective
sRNA, we adjusted the values that we determined in our previous study
([9]) according to new measurements. In particular, they were chosen such
that they are in accordance with our own experimental measurements (kM
and kS) or other studies (see below). In particular, the rates read (given
per E. coli cell volume, and using the shorthand notation “#” for molecule
numbers):

rate const. value unit description
αM 0.05 min−1 production of long mRNA
αS,0N 0.1 min−1 baseline production of eff. sRNA
αS,cN 0.07 min−1·#−1 production factor of eff. sRNA
αA 4.5 min−1 production of CsrA
δM 0.04 min−1·#−1 degradation of long mRNA
δS 0.023 min−1·#−1 degradation of effective sRNA
δA 0.00007 min−1·#−1 degradation of CsrA
kM 0.007 min−1·#−2 eff. binding of CsrA to long mRNA
kS 0.011 min−1·#−2 eff. binding of CsrA to sRNA

The three degradation rates (δM, δS, δA) were determined in previous,
experimental studies [5, 7]. The production rates (αA,αS,c,αM) were
fitted such that they reproduce component abundances from experimental
studies [7]. The baseline production for the sRNAs, αS,0N, is set to a low
value, as only few sRNAs are produced in the absence of CsrA [5].

In Ref. [9] we showed that a Poisson-distributed plasmid copy number
gives very similar results to a fixed plasmid copy number. This is due
to the fact that plasmid replication happens on larger timescales than the
regulatory interactions considered in our model. We retain this simplifying
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assumption, and set the number of ColicinE2 plasmids constant at PCOL =

20, which is the average value [8]. For the reporter plasmids in the CREP1,
CREP2, SREP1 and SREP2 strains, we take for type 1 the average copy number
PREP = 55 [17], and for type 2 the average copy number PREP = 13, which
we both also assume constant.

Adding ssDNA dynamics to the system introduces three new effective
rates, αD, δD, and kD. We assume that the ssDNA and the mRNA are
equally stable, and therefore use the same degradation rate constants for
both:

δD ≡ δM = 0.04 min−1 · #−1.

In combination with the KD-value measurements for ssDNA we could
determine the coupled degradation constant to

kD = 0.0001 min−1 · #−2.

Finally, we have to define the value for the production rate constant of
ssDNA, αD, which has not been explicitly measured yet. However, our
experimental data suggests that ssDNA accumulates abundances about
an order of magnitude larger than long mRNA. From fitting the ssDNA
production to this rough abundance relation, and also to measured delay-
times, we obtain

αD = 7 min−1 · plasmid−1.

To study the influence of ssDNA on the cea-cel delay, we varied the value
of αD between 0 and 9, see Fig. S6 and S7. For the validation of our model,
we also tested various values of αS,c and αM (data not shown). These tests
showed that, in general, the model is robust to parameter variations, in the
sense that changing a parameter value by a few percent only had minor
consequences for the resulting delay times and component abundances.

4 Simulation results

The differential equations eqs. (18)-(21) give, in combination with the
SOS response model, eqs. (1)-(7) (see [2]), a description of the regulatory
interactions governing ColicinE2 production. They enable us to study
steady states and the deterministic dynamics of gene expression for all five
strains. However, the SOS response [2] shows an inherent stochasticity:
The ColicinE2 promoter is not activated permanently during an SOS signal,
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but in stochastically appearing bursts of activity. Moreover, most of the
regulatory components like long mRNA occur in low abundances, such that
also intrinsic demographic fluctuations in the ColicinE2 regulatory system
become important. We can study stochastic effects like these by formulating
the deterministic dynamics described in eqs. (1)-(7) and eqs. (18)-(21) as a
stochastic process. To this end, we consider each component (M,S,A andD,
as well as the components of the SOS response system) as random variables
that are changed by stochastic events like production or degradation of
molecules. Each of these events occurs at an average rate that equals the
corresponding term in the mass action model. For instance, the effective
coupled degradation of a long mRNA and CsrA happens at a rate kMM ·A
(see eq. (18)), which decreases both the abundance of long mRNA (M)
and the abundance of CsrA (A) by 1. By defining all remaining stochastic
production, degradation and binding events in the system this way, we
obtain a description of the SOS response and ColicinE2 regulatory system
as a stochastic (Markov) process. We then use the Gillespie algorithm [18] to
implement the stochastic process as a stochastic simulation. This simulation
enables us to produce stochastically correct realisations of the temporal
evolution of the system’s random variables. The results from sufficiently
large ensembles of these realisations is then the basis for the validation of
the theory by experimental data.

In our simulations, we followed the scheme already developed in
Ref. [9]: We initiate the system in a non-SOS state, where the parame-
ter cp in eq. (6) of the SOS response system (see also Ref. [2]) is set to 0, that
is, RecA does not cleave LexA. Therefore, B, the number of unrepressed
promoters, is low (1 for SREP2, 2 for CWT, 3 for CREP2, 4 for SREP1, and 5 for
CREP1). After 200 minutes, we mimic the effect of an SOS signal by increas-
ing the parameter cp, such that RecA catalyses the degradation of LexA,
which acts as repressor for the ColicinE2 operon. This has the effect that
the production of both long and short mRNA immediately increases. The
SOS signal is stopped again at t = 500 minutes. For each set of parameters,
this scheme is repeated 2000 times in order to obtain an ensemble of 2000
realisations.

To be able to compare these simulation results with experiments, we
have to give an appropriate definition of the cea-cel delay in the simulations.
As the beginning of “cea expression”, we define the point in time at which
the short mRNA level rises to two times its value before the SOS signal
started. Our simulations show that the CsrA abundance decreases during
the SOS signal, as more CsrA-sequestering long mRNA is produced. Once
there is no free CsrA left, we find free long mRNA in the system. We
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define the first point in time at which more than 8 free long mRNAs exist
in the system as “cel expression”. This definition accounts for the fact
that in general fewer lysis proteins are produced than toxin proteins [8].
In the experiment, the expression of cea and cel are defined by the point
in time the respective fluorescence intensity reaches five times its basal
(i.e. pre-SOS) level. Therefore, the expression times are determined by the
appearance of proteins in the experiment, but by the appearance of mRNAs
in the stochastic simulations. We choose the different definition of the delay
in the simulations, as the specific biochemical rates of many processes
involving the mRNAs and proteins are largely unknown, and have to be
fitted according to observed abundances. If we included the translation
of short and long mRNA to toxin, lysis and fluorescence proteins used
in the experimental study into our model as well, we would add several
new parameters that require fitting to our mathematical model, without
getting a more precise definition of the thresholds that determine the delay.
Moreover, comparing a delay in the production of mRNAs with a delay
in the production of proteins is valid in our case, since both fluorescence
proteins have very similar maturation times [6], and since we are interested
in the relative rather than the absolute times of protein expression.

For the CWT strain, we cannot compare the cea-cel delay-time from our
simulations with experimental results due to the lack of reporter plasmids
(see main text). To still be able to validate our stochastic simulations with
experimental data in this case, we use the time between the beginning of
the SOS response and cell lysis (referred to as “lysis time”), which we also
measured in experiments (see Fig. S8). The absolute values of the lysis time
will differ between our simulations and experiments, as the simulations do
not account for maturation times and other processes of equal duration in
all three strains. Therefore, we do not compare lysis times themselves, but
the differences of the CREP1 and CWT strain’s lysis times, which eliminates
these constant factors.

In the following, we discuss the results of our stochastic simulations for
the experiments presented in the main text.

4.1 The role of CsrA

As a first step to validate the mathematical model for the SREP1 strain (that
is, with no ssDNA in the system), we test the role of CsrA for the cea-cel
delay. The corresponding experiment varied the binding affinity of CsrA
to long mRNA, see Fig. 2E in the main text. Specifically, the experiment
measured the average cea-cel delay-time for the original SREP1 strain, and
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for two mutant strains (CsrA1 and CsrA2) with higher and lower CsrA
binding affinity, respectively. The results of these experiments (see Fig. 2E)
showed that an increased CsrA binding affinity leads to longer average cea-
cel delay-times, since the regulation of long mRNA by CsrA sequestration
happens more effectively with stronger CsrA binding. Consequently, we
found a much shorter average cea-cel delay for the mutant with lower
binding affinity. In our mathematical model defined by eqs. (18)-(21), the
binding affinity of CsrA for long mRNA relates to the parameter k+M, which

appears in the effective coupled degradation parameter, kM =
k+MδCMA
k−M+δCMA

(see Ref. [9] for details on this equation). However, the experiments do
not measure the rates k+M and k−M, bute their ratio k−M/k

+
M, known as KD

value (see Fig. 2D of the main text). Since the degradation rate of the
complexes is much lower than the dissociation rate (this follows from the
fast complex equilibration assumption), we can determine kM from the
complex degradation and the KD values:

kM =
k+MδCMA
k−M + δCMA

≈
k+MδCMA
k−M

=
δCMA
KD

(22)

We used eq. (22) and KD values given in Fig. 2D to determine the binding
parameter constants kM for the SREP1 strain and its two mutants CsrA1
and CsrA2. Using these results, we then performed a set of numerical
simulations, and recorded the cea-cel delay-times. The mean delay times
for different values of kM are shown in main text Fig. 2F, where we also
give the parameter values. For the cea-cel delay-times we find the same
behaviour as in the experiments: higher values of kM result in broader
delay time distributions with a larger average delay time, whereas smaller
values give a narrow delay time distribution with an average delay close
to the start of the SOS signal. Our results show that the binding of CsrA
to long mRNA has a key influence on the delay time distribution. This
highlights the critical role of CsrA for the delay between toxin production
and release. Therefore, we expect regulative components affecting the
abundance of CsrA to have an indirect effect on the duration of the cea-cel
delay.

4.2 cea-cel delay in the five different strains

The experiments discussed in the main text show that the CREP1,CREP2, CWT,
SREP1 and SREP2 all have very different cea-cel delay times: The CREP1 strain,
for instance, lyses almost immediately after cea expression, whereas the
SREP1 strain shows a significant cea-cel delay. In this section, we employ
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stochastic simulations of the model described in eqs. (18)-(21) to study the
origin of this difference and the effects of ssDNA production. Moreover, we
infer the cea-cel delay in the CWT strain from this analysis, which cannot be
measured directly in experiments. To this end, we modelled the five strains
in our simulations by setting PCOL and PREP to the corresponding values
(see Table S5): PCOL = 20 and PREP = 0 for CWT, PCOL = 20 and PREP = 55
for CREP1, PCOL = 20 and PREP = 13 for CREP2, PCOL = 0 and PREP = 55
for the SREP1 strain, and PCOL = 0 and PREP = 13 for the SREP2 strain. For
each strain, we simulated 2000 realisations for different ssDNA production
rates (αD) to investigate the role of this novel regulatory component. The
results of these simulations are depicted in the form of cea-cel delay-time
histograms in Fig. S6, in which we, for a clear and concise discussion, only
depict the results for the CREP1, SREP1, and CWT strains.

As we showed in section 1, only two factors can in principle be responsi-
ble for the different cea-cel delays: The total plasmid copy number, and the
production of ssDNA. To separately study the influence of total plasmid
copy number in the strains, we first analyse the case of no ssDNA produc-
tion (αD = 0). The delay-time histograms of the three strains for this case
are depicted in the first column of Fig. S6. Comparing the histograms, we
find that the total plasmid copy number has a significant effect: The cea-cel
delay distribution of the CREP1 strain (75 plasmids in total) is more skewed
to the right compared to the distribution of the SREP1 strain (55 plasmids in
total), and the CWT strain (with only 20 plasmids) shows almost no lysis
at all. The average delay-time of the SREP1 strain (68 minutes) is in good
agreement with experimental values (see Fig. 2E). For the other strains,
however, the results do not match: The CREP1 strain has a mean delay time
of 24.1minutes, which is significantly larger than the value we find in our
experiments. Our experiments also find that the wild-type indeed does
lyse after SOS responses (see Fig. S8), while the histogram of CWT predicts
no lysis. These results for αD = 0 show that the plasmid copy number does
not suffice to explain the quantitative and (for the wild-type) qualitative
behaviour found in our experiments. However, it already accounts for
significant differences in the cea-cel delay-time distributions between the
strains.

Before we study the additional effects of ssDNA, we discuss the origin
of these differences in the cea-cel delay-time distributions. To this end, we
consider the time evolution of the average levels of free CsrA and long
mRNA, which are depicted for αD = 0 in the first column of Fig. S7. We
find for all three strains that, after the initial equilibration, the average
number of CsrA molecules remains at a constant value before an SOS
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response (t < 200 min), which results from the interactions of CsrA with
all its binding partners. Before an SOS signal, the three strains exhibit
roughly the same average CsrA level. This changes after the response to
an SOS signal (200 min < t < 500 min), which reduces the average CsrA
level in all three strains: The CREP1 strain, containing 75 plasmids, has the
lowest CsrA levels, whereas the wild-type strain with only 20 plasmids has
a significantly higher level.

Comparing the CsrA and long mRNA levels with the corresponding cea-
cel delay-time distributions in Fig. S6 shows that the different cea-cel delay
time distributions are correlated with the average levels of free CsrA (and
free long mRNA): The lower the average CsrA level during a SOS signal,
the shorter the average cea-cel delay-time, and the narrower the delay-time
distribution. We can explain this correlation in our mathematical model by
the fact that long mRNA production increases in form of stochastic bursts
during SOS responses (see section 2). The long mRNAs produced during
these bursts must first sequester free CsrA, before their abundance is high
enough to produce lysis proteins from it. For the CWT strain, the CsrA level
during the SOS response is too high to be sequestered enough by stochastic
long mRNA bursts (see Fig. S7 and Fig. S6). For the SREP1 and the CREP1

strain, however, CsrA levels reach a sufficiently low average abundance
during an SOS response that stochastic bursts of free long mRNA are
possible, and eventually lysis protein is produced. The average level of free
CsrA therefore determines the probability and hence the timing of lysis.

In Fig. S7 we can also see that the single trajectories of CsrA abundance
differ qualitatively between the three strains: The trajectories of the CREP1

strain show large and abrupt deviations from the mean value, whereas the
abundance of CsrA is closer to the mean in the CWT strain. The reason
for this difference is the plasmid copy number in each strain: The more
plasmids with LexA-regulated promoters, the more CsrA-sequestering
elements are produced during an SOS response, and thus the more suscep-
tible the system will be to stochastic bursts in the SOS response, increasing
the probability of lysis. We already discussed in the previous paragraph
that the number of plasmids also strongly affects the average level of free
CsrA, as more plasmids cause a larger average number of promoters to
be unrepressed. This effect is due to the fact that the repressor of the
ColicinE2 operon, LexA, stochastically binds to and dissociates from the
promoter, and thus triggers long mRNA production for short times even
in the absence of an SOS signal. The more plasmids present, the larger
the number of (transiently) derepressed promoters, and hence the more
CsrA-sequestering long mRNA the cell contains. These relations explain

20



the differences in the cea-cel delay between the three strains.
Finally, in order to characterise the additional effect of ssDNA, we

consider the plots with ssDNA production (that is, with αD > 0) in Fig. S6.
As the ssDNA production rate αD increases from 0, the average delay times
in the CREP1 and CWT strain decrease, and also several cells in the CWT strain
lyse (see the CWT histogram for αD = 1 in Fig. S6). We attribute this to the
fact that increasing αD results in lower average CsrA levels in the CREP1

and CWT strain, see Fig. S7. Consequently, the average cea-cel delay-times
in Fig. S6 decrease, and lysis of CWT bacteria becomes possible. The SREP1

strain, which contains no ssDNA-producing ColicinE2 plasmid, but only
reporter plasmids, is not affected by the increase of this parameter. The
experimentally observed difference in mean delay times of the CREP1 and
SREP1 strain occur when the ssDNA production rate reaches αD = 7 (see
Fig. S6). At this rate, also the CWT shows a broad cea-cel delay distribution.
For the CWT strain, we cannot compare the average cea-cel delay-time from
our simulations with experimental results, but have to use the lysis time.
For αD = 7, this difference is in the same order of magnitude as the
experimental results (see Fig. S8). If the ssDNA production rate becomes
too high, large fractions of the cell ensemble lyse even in the absence of an
SOS signal, which is not seen for the CREP1 strain in experiments.

Taken together, these results show that the additional sequestration
of CsrA by ssDNA is required for cell lysis in the CWT strain, and hence
necessary to produce the experimentally observed cea-cel delays. Therefore,
ssDNA plays a key role in the regulation of ColicinE2 release.

4.3 sRNA knock-out mutants

In the main text we also discuss experiments with different sRNA knock-
out mutant strains, see Fig. S4. While the two single knock-out cases
(no CsrB or no CsrC) are automatically accounted for by the effective
sRNA (see the bullet points on sRNA in section 2), the special case of the
double sRNA knock-out mutant corresponds to setting αS,0 ≡ αS,c ≡ 0
in eq. (19) of our model. This means that no sRNA would be produced,
which is the main CsrA-sequestering element in our mathematical model.
Therefore, our model predicts a large abundance of free CsrA for the
double sRNA knock-out case, and hence a significantly larger cea-cel delay.
However, we do not see this behaviour in our experiments (see Figs. S2
and S4), which in contrast show shorter average cea-cel delay-times in the
double knock-out mutant. These experimental results indicate that, in the
absence of the two sRNAs, yet unknown regulatory mechanisms become
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important. In the derivation of our mathematical model (see section 2),
we eliminated any subordinate targets for CsrA, and focussed on the
main CsrA-sequestering elements in E. coli, the sRNAs CsrB and CsrC [7].
Hence, adjusting our model for the double sRNA knock-out mutant would
first require to experimentally investigate the detailed interactions and
components of the yet unknown regulatory mechanisms, and then to
replace the S component and its interactions correspondingly in the model.
As the double knock-out mutant is not part of our investigation of the
cea-cel delay-time in the main text, we do not further extend our model for
this very special case. In all other strains and mutants discussed in the
main text and the Supplementary Information, sRNAs are produced and
also are the main CsrA regulator. Therefore, the aforementioned differences
between theoretical model and experimental observations that arise with
the double sRNA knock-out mutant do not affect any statements we derive
for the single knock-out or original strains using our model, eqs. (18)-(21).
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3Optimal Time Distributions for Lysis-based
Toxin Release

Project Abstract and Contributions This follow-up project on the ColicinE2 system inves-
tigates, which toxin release distribution is optimal to fend off competitors, and how this
result is determined by the parameters of the system. In chapter 2, we found that changes in
parameters of our model for ColicinE2 regulation alter the resulting lysis time distribution. As
the toxins are released to defend their producers against competitors, this raises the question
as to which distribution is best in killing other bacteria. To identify the factors affecting the
distribution, I created a conceptual model for the self-destructive toxin release of bacteria
(with Erwin Frey). Using this model in combination with a genetic algorithm (see 3.1.2),
we determined optimal lysis time distributions for given parameter sets, and analysed our
results in context of phenotypic heterogeneity (see 3.1.1). The optimal distributions were
then successfully put to the test on a stochastic lattice-gas model. The detailed development
of our model and the full presentation of the results are given in the paper draft “Optimal
Time-Distributions for Lysis-based Toxin Release”, which is reprinted in section 3.5.
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3 Optimal Time Distributions for Lysis-based Toxin Release

. Background

.. Phenotypic Heterogeneity

As the title of this thesis suggests, all of the projects discussed here deal with heterogeneous
bacterial systems. The classic source of heterogeneity in bacterial populations are different
strains, or mutants of the same strain. These two examples have in common that their differ-
ences manifest in their genome: A deletion mutant, for example, does not produce the deleted
protein in a given situation, because it lacks the necessary genetic information. Apart from
this heterogeneity in the genotype, there exists a second form: phenotypic heterogeneity [56–
58]. The central difference to its genotypic counterpart is that a different behaviour in the
population is not due to variations in the genome, but occurs among genetically identical
individuals. The origin of these phenotypic variations can be manifold, and often stems from
fluctuations in gene expression [3, 59] or other stochastic effects [60].
A prominent example are persister cells [61, 62]: In some species of bacteria, a small

fraction of cells (the persisters) permanently lives in a dormant state, and as such grows much
slower than other cells in their population. This behaviour seems odd from an evolutionary
perspective, as it means extremely slow reproduction. In high stress environments, however,
this dormant state becomes an advantage, and only the persisters survive, eventually starting
a new population after the stress. This form of phenotypic heterogeneity is often referred to as
bet hedging [56, 63, 64], as the population maintains diversity in order to have at least somebet hedging

survivors in severe environmental changes.
Another common example for phenotypic heterogeneity are division of labour strategies [65,

66]: Some bacteria in a population specialise, for instance, on producing one ofmany necessary
metabolites, which they secrete and thus provide as public good to their population. These
examples show that phenotypic heterogeneity is an important factor that increases the fitness
of a bacterial strain in a variety of environments.

.. Genetic Algorithms

As already pointed out in 1.1.1, natural selection comprises three principles: variation, se-
lection, and inheritance. These principles cause the stepwise adaptation of organisms to
their environment, or, in other words, their optimisation for given conditions. The fact that
this optimisation mechanism works in the complex and multifactorial environments nature
poses, motivated researchers to transfer the idea of natural selection to general optimisation
problems, for which the variables to mutate and inherit are not genes on DNA. Currently,
there exist many applications for these evolutionary or genetic algorithms [67], ranging from
biology [68] to engineering [69]. We briefly explain the core concepts with the example of
the well-known travelling salesman problem (TSP) [67, 70].
In this paradigmatic problem, we consider a salesman who needs to visit all cities in his

district; the goal is to find the shortest route for his trip. For the application of a genetic
algorithm it is necessary to first find a genetic representation of the possible solutions in form
of an array. In our example, this array is filled with the cities in the order the salesman visits
them (first entry: first city to visit, second entry: second city to visit, etc.). In other words,
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3.2 Motivation and Research Question

the array represents the route of the salesman. Furthermore, it is necessary to define a fitness
function, which allows us to evaluate different routes and compare them. For the TSP, this is
the total distance of the trip. We can now generate an initial population of, in our case, random
routes. For each population member, we then determine the fitness (here: total distance),
according to which the most successful population subset is selected. Finally, the population
of the next generation is created from the members of this subset, after genetic operations like
mutations or crossovers were applied. In our example, this would correspond to, for instance,
flipping the position of random cities in the route. This scheme is then repeated for a large
number of generations, thereby optimising the result according to the fitness function.
It is important to note that genetic algorithms are – like their natural counterpart – heuris-

tic methods. This means that the result of an evolutionary optimisation algorithm is only
“optimal” in the sense that it is better than the variants tested during its execution. While
mutations can indeed explore large parameter spaces, they can get trapped in local minima.
This problem can be reduced by, for instance, repeated optimisation runs.

. Motivation and Research Question

In the previous study on the regulatory network of ColicinE2 production and release, we
found that a broad distribution of lysis times emerged due to the stochastic peaks of the SOS
response and stochastic abundances in the ColicinE2 system. Moreover, this distribution was
positively skewed (that is, skewed to the right).
Our parameter studies also showed that varying rates like, for instance, the sRNA produc-

tion within reasonable limits may result in different distributions. In natural systems, such
variations might occur as consequence of mutations, and are thus subject to evolution. This
suggests that the observed lysis distribution might be the evolutionary optimal solution for a
given condition. However, it remains unclear if such an evolutionary optimisation process
would yield the observed distribution, and what parameters it should optimise for, leading to
the question:

Which lysis time distribution is optimal, and what parameters shape this result?

. Summary of Results

Conceptual single compartment model and key parameters We consider a single compart-
ment of producers at the interface to an invading non-producer colony. The producers defend
themselves with toxins that require self-destruction for their release. For this setup, we derived
a conceptual model comprising only toxin and non-producer abundance. To achieve this
reduced form, we argued for a simultaneous switch to the SOS state and consolidated several
processes into effective ones. The population dynamics are formulated as rate equations,
whereas the toxin increase is modelled explicitly by stochastic lysis events. These events
followed a lysis time distribution, which is given as a parameter to the system. The time
evolution of the system can be solved numerically using a stepwise integration scheme. We
then non-dimensionalised the system; this allowed us identify the toxin degradation and
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3 Optimal Time Distributions for Lysis-based Toxin Release

the product of toxin binding with the toxin production as the key parameters of the model’s
dynamics. Furthermore, the time scale was defined by the non-producer production rate
(generation time).

Optimal distributions are broad andhavepositive skewness For nine exemplary parameter
sets we determined the optimal distributions using a genetic optimisation algorithm in
combination with the aforementioned stepwise integration scheme. We used the cumulative
abundance of non-producers as the fitness function. While the resulting distributions showed
a strong dependence on the parameters, their general shape was broad and positively skewed
(that is, more weight at short lysis times). For low toxin degradation and high toxin ef-
fectiveness, the resulting distributions showed a pronounced peak at short lysis times. The
higher the toxin degradation and the lower its effectiveness, themore weight of the distribution
is shifted towards larger lysis times, at the expense of the pronounced peak. We analysed
the corresponding toxin production, and showed that all distributions quickly established
a significant and rather constant toxin level in the population. Moreover, we could show
that reducing in the initial producer number as well as increasing the maximal time of toxin
production also cause a shift towards larger lysis times at the expense of shorter ones.

Conceptual compartment model correctly predicts spatial results We created a detailed
stochastic lattice-gas model mimicking two colliding bacterial fronts to test the predictions of
our simple single compartmentmodel. To this end, we considered a lattice of coupled compart-
ments, and explicitly accounted for the birth, death and interaction rates of all components.
In the simulations, one of the two competing strains is able to release toxins self-destructively
according to a given lysis distribution, whereas the other exhibits an increased growth rate.
We picked two exemplary parameter sets, which represent easy and hard conditions for toxins
(low degradation/high effectiveness and high degradation/low effectiveness, respectively), and
determined the optimal distributions for each case. The two resulting optimal distributions
were then both simulated in both conditions, and we tracked the front line positions in each
of the four cases. Our results show that the single compartment model is indeed capable of
producing distributions that outperform less adapted distributions in realistic scenarios.
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3.4 Conclusion

. Conclusion

In this project, we continued ourwork on theColicinE2 system, and focussed on the broad lysis
time distributions created by the stochastic SOS response. Both the experiments as well as our
correspondingly parametrized ColicinE2 model exhibited broad lysis time distributions with
positive skewness. As it is the purpose of toxins to kill other bacteria, we were interested in the
question: Which lysis time distribution is optimal for this purpose, and what parameters
shape this result?
To this end, we considered a small compartment at the front of a producer population, and

developed a conceptual model for this compartment being invaded by toxin-sensitive bacteria.
Non-dimensionalisation of the model revealed that the key parameters of this model are the
toxin degradation and the product of toxin production multiplied by the binding to non-
producers. We then employed a genetic algorithm to determine which distribution is most
effective at killing the non-producers for different combinations of the key parameters. Our
results indicated that broad lysis time distributions with positive skewness are optimal.
This agrees with the general shape we found in natural systems [39], suggesting that the
distributions seen in experiments are the product of natural selection. Moreover, we found
for all investigated parameter regimes that the optimal distributions create and maintain a
relatively constant level of toxins in the compartment. We therefore conclude that it is more
efficient to attack the invaders steadily over a prolonged time, than, for instance, releasing a
large amount of toxins in a concerted action.
Our parameter studies also showed that the specific shape of the distribution is gov-

erned by the toxin degradation and the product of toxin production multiplied by the
binding to non-producers. More specifically, in conditions with high degradation and low
production/binding rates, the distributions exhibit a great number of large lysis times, and
consequently only a low positive skewness. This is due to the aforementioned rates, which
cause the toxins to quickly disappear from the compartment and to only weakly interact with
the invaders. As the toxins accumulate in the cells, it becomes favourable for producers to
release late, that is, at larger numbers. Consequently, as we decrease toxin degradation and
increase toxin production/binding, more and more late lysis time points get shifted to the left,
and build a prominent peak at short lysis times. In another parameter study, we reduced the
number of producers in the compartment, which “forces” the population to economize the
lysis events. In the resulting distributions, only the number of short lysis times decreased,
indicating that the cells lysing at later time points have the greatest share at killing invaders.
From this result we conclude that the broad distributions can be understood as a form of
“division of labour”: Early lysing cells keep the invading non-producers low, such that the
highly effective late-lysing cells can kill them off more easily.
In order to test the predictions of our single compartment model, we developed a detailed

spatial model of two colliding bacterial colonies. Because of computational constraints,
however, it was not possible to implement the evolutionary algorithm for the spatial model. To
test the single compartment model nevertheless, we took optimal distributions from selected
parameters in the parameter scan. Then, using the same parameters and the spatial model,
we simulated the collision of a producer colony employing this distribution with a colony
of non-producers. Repeating these simulations with different, non-optimised distributions
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3 Optimal Time Distributions for Lysis-based Toxin Release

and comparing the results showed that the single compartment model indeed predicted
the most successful distribution also in the spatial case. However, we expect that the single
compartment model is only able to make qualitative statements for optimal distributions
in the spatial case. The reason for this originates in the new role of toxin diffusion in the
spatial model: Apart from just removing toxins from the compartments (which is captured
by the toxin degradation in the single compartment model), the toxins spread out to other
compartments, in which they either support toxin production or even create a toxin presence
before SOS signals are received. These effects rely on spatial degrees of freedom, and thus
cannot readily be accounted for by the single compartment model. Investigating this aspect of
diffusion and how it affects the optimal distributions for the spatial model poses an interesting
challenge for follow-up research in this project.
In summary, our single compartment model gave insights into basic principles and mecha-

nisms that shape lysis time distributions. While our model was developed with the ColicinE2
in mind, only three key characteristics of this system actually enter our model: The accumula-
tion of toxin in the cells, the broadly distributed release times, and the “fatality” of the release
events. We therefore expect that the rationales we found in this project can be transferred to
other cases of self-destructive substance release such as public goods [59].
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Optimal Time-Distributions for Lysis-based
Toxin Release

Matthias Lechner and Erwin Frey

1 Introduction

The various forms of bacterial behaviour are heavily shaped by evolution in
hostile environments. During their constant battle for resources like space
or nutrients, bacteria developed a wide range of means to gain advantages
over competitors. A well-studied and potent example are bacteriocins.
These toxins are released by bacteria and diffuse into their environment,
where they then kill or inhibit competing bacterial strains. The toxin
producing strain is immune to the toxin. Complex regulatory networks
control the toxin synthesis, and ensure a timely production, for instance,
after DNA damage.

The release of toxins to the environment typically happens via suitable
structures in the cell wall. However, for some toxins, such structures do not
exist, and the cells can only secrete the toxins by lysis. Examples for this
fatal release mechanism are pneumolysin produced in S. pneumoniae [1],
virulence factors in S. typhimurium [2] and colicin E2 in E.coli [3]. As the
self-destructive toxin secretion always means that the cell “sacrifices” its life
to the “benefit” of its population, this mechanism also has been discussed
in the context of “cooperation” [2]. Apart from the ensuing cell death, this
toxin release mechanism differs from the non-lethal transport through cell
walls in another, very significant point: A bacterium can release toxin only
once, at a single time point. Toxins are thus not released continuously, but
accumulate in the cell and are released only simultaneously during lysis.
Therefore, the later the lysis happens, the more toxin will be freed to the
environment.

From the perspective of a bacterium, this limitation to a single release
time point poses a dilemma: A short lysis time results in a fast reaction
against competitors, but also in lower and possibly ineffective toxin doses.
Larger lysis times, on the other hand, release large amounts of toxins, but
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might come too late. For a cell, the ideal reaction to a given competitive
situation is in general not foreseeable, and once lysed, it cannot correct its
choice any more. A possible solution to this dilemma is heterogeneous
lysis in a population of toxin producing bacteria. This phenomenon indeed
occurs in some of the aforementioned systems: S. typhimurium, for instance,
exhibits noisy self-destructive toxin release, which might play a crucial
role in bacterial pathogenesis [2]. Another example is the production and
release of colicin E2 [3, 4, 5], which also exhibits stochastic expression in
fluctuating conditions [6]. In this system, heterogeneity can also appear in
the lysis itself, as the production of toxin and lysis proteins is triggered by
a noisy SOS response system. The regulatory networks of the two proteins,
in combination with the noise in the SOS response, then result in a broad
distribution of lysis times.

In two recent studies, we experimentally measured this distribution [7]
and presented a stochastic model for the regulatory components [8]. Our
analysis of the stochastic model showed that variations in the production or
degradation rates of the regulatory components may result in distributions
of very different shape. Consequently, mutations in the regulatory system
could present a means to alter the lysis time distributions of bacteria, and
thus pose an evolutionary mechanism to optimize the distribution for
typical competitive scenarios.

We are interested in understanding which lysis time distribution is best
in killing off competitor strains, and how this distribution depends on the
system parameters. Moreover, we would like to develop a simple method
to determine the optimal distribution for given set of parameters. To this
end, we present here a simple, conceptual model for a compartment at
the boundary of a bacterial population that is invaded by competitors. We
analyse the model to determine the key parameters for defence with toxins,
and present an evolutionary algorithm that produces the optimal lysis time
distribution for a given set of parameters. Finally, we create a detailed
lattice-gas model of two bacterial fronts growing towards each other, and
use it to test the results of our single compartment model.
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2 Models & Results

In the following, we present a conceptual model, which allows us to study
the impact of different self-destructive toxin-release time distributions in a
reduced, simplified setting. To this end, we specifically focus on a situation
that puts cells into an SOS state, namely the stress resulting from a collision
of two bacterial colonies. Our goal is to identify which properties of the
bacteria and of the environment are important, and how these properties
shape the optimal distribution. Moreover, we aim to give at least qualitative
predictions on the shape of the ideal distribution for a given condition.

We consider two bacterial strains, of which one (the producer) produces
a toxin that is released via lysis. This toxin is lethal to bacteria of the other
strain (called the non-producer, or sensitive strain), but not for producer
individuals. The model is motivated by the ColicinE2 system [8], however,
its results can readily be transferred to other self-destructive toxin release
systems.

Each of the two strains forms a large bacterial colony, which grows
towards the other (see Fig. 1A ). When the two colonies eventually meet, the
first interaction between the two strains will happen at their boundaries. To
study this interaction, we do not consider the whole colony in our model,
but only a compartment at the expanding producer front.

2.1 single compartment model

The size of the compartment (in terms of cell numbers) is chosen such that
its extension is small enough to be considered well-mixed (i.e. all molecules
and cells interact equally likely with each other), yet large enough such that
fluctuations do not matter. These choices justify formulating the population
dynamics in the compartment as rate equations.

As the two colonies meet, sensitive bacteria are pushed into this com-
partment and start to reproduce (see Fig. 1B). We assume that non-producer
cells invade the compartment at a constant rate ιN, and reproduce with rate
βNN, where βN is their per-capita growth rate and N the non-producer
abundance in the compartment. Similar to reproduction, also the spon-
taneous degradation of non-producers, δNN, as well as their flux out of
the compartment, ωNN, are described in form of rates proportional to
N (but appear with a negative sign in the equation, as they reduce N).
However, for the situation of colliding fronts of growing bacteria, these
decreasing processes have significantly lower rate constants than the repro-
duction rate (see, for instance, [8]). To obtain a concise description of the
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Figure 1: The single compartment model. A: We consider a compartment (grey
box) at the boundary of the producer colony (grey circles), where non-producers
(purple) are pushed into it. B: Our model accounts for the processes inside the
compartment. Producer cells (grey circles) synthesise toxins (green triangles),
and release them each at a specific time (green-shaded segment). The toxins can
diffuse out of the compartment, and also kill non-producers (purple circles). In
contrast to the producers, the non-producers reproduce, and are also pushed into
the compartment.

system combine these processes to a effective reproduction rate constant,
µN = βN − δN −ωN.

In natural systems, toxin production is often triggered by a SOS re-
sponse, which itself is activated by external stress signals [9]. We choose
reaching a critical non-producer abundance, Ncrit, as such a stress signal,
and refer to the point in time at which the cells switch to SOS state as tSOS.
The relation of Ncrit ≡ N(tSOS) to the compartment size P(tSOS) quantifies
the stress: the smaller N(tSOS), the larger the competitive stress created by
the invaders. Because we consider a well-mixed system, we assume that all
producer cells in the compartment immediately and simultaneously switch
to the SOS state: The producers stop growing and start producing toxins
within their cells [4, 10], while the non-producers continue growing and
invading the compartment. The toxins accumulate within the cells, and are
only released to the compartment when a producer cell lyses (dies) [3].

The specific time at which a producer lyses is drawn from a common
lysis time distribution, which is our major study subject. A lysis event
increases the number of (released) toxins in the compartment, T , by an
amount µT (t− tSOS). This function µT is monotonically increasing with
time due to the accumulation of toxin in cells, and depends on the time
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since the cell entered the SOS state, t− tSOS, as tSOS marks the (common)
starting point of toxin production.

The toxin, however, cannot be produced arbitrarily long: Cells only
switch to the SOS state when they are severely damaged, and can only
survive this damage for a limited amount of time [7]. To account for
this, the lysis time distribution is bounded by a maximal time of toxin
production, tmax. Its specific value has to be chosen in relation to other
parameter values: From experiments we know, that cells in the SOS state
maximally survive about 10 generations [7].

As the compartment is the only part of the colony in contact with
non-producers, we assume that no toxins flow into it from the outside, and
hence that producer cell lysis is the only process increasing toxin abundance.
However, toxins can diffuse out of the compartment at rate ωTT , and
also spontaneously degrade at rate δTT . For a compact description, we
proceed analogously to the non-producer abundance and join the rates for
these two processes into an effective per-capita degradation rate constant
εT = ωT + δT , resulting in the effective degradation rate, εTT . Apart
from being released into the compartment or being degraded, the toxin
molecules can also hit and kill non-producer cells. We assume that this
process does not change the toxin abundance, but decreases N with a rate
kNT ·N · T , where kNT is the toxin binding constant.

Finally, we take the aforementioned terms together to formulate a
system of rate equations. As the initial time point of our model, t0 ≡ 0,
we choose the simultaneous switching to the SOS state, t0 := tSOS, which
marks the beginning of toxin production. This choice has the advantage
that the dynamics of the producer abundance, P, must not be explicitly
accounted for in our model: From tSOS on, the producers do not reproduce,
and thus only the P(tSOS) := P0 cells already present can add toxin to the
compartment. We are left with only two dynamic variables describing
the system: N and T . Collecting all terms that affect the non-producer
abundance, we get a rate equation for N,

dN

dt
= ιN + µN ·N− kNT ·N · T . (1)

For the toxin abundance, we have to proceed differently, as we can
formulate only the toxin degradation as a rate equation:

dT

dt
= −εTT . (2)

The toxin release by the P0 producer cells happens according to a stochastic
(point) process ∆t of exactly P0 lysis time points τl, which are drawn from
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Figure 2: Illustration of the stochastic process and the underlying distribution.
The point process ∆t distributes P0 lysis time points τl on the interval [0, tmax].
We visualise such distributions using histograms (lower part).

a specific lysis time distribution on the interval [0, tmax]. At each lysis time
point τl, the time-dependent increment reads µT (τl). Since it is the lysis
time distribution that we want to study here, we consider ∆t explicitly.

Before we discuss how to analyse this set of equations, we first want to
identify the key factors that influence the dynamics of the system. To this
end, we non-dimensionalise the equations by rescaling the variables:

t ′ = µN t, N ′ = ιN
µN
N, T ′ = µN

kNT
T , (3)

and also α ′
T (t

′) =
µT (t

′)
µN

and ε ′T = εT
µN

. We can then set the timescale to the
reproduction of non-producers, 1 ≡ 1

µN
. This simplifies eqs. (1) and (2) to

the following form:

dN ′

dt ′
= 1 +N ′ −N ′ · T ′, (4)

dT ′

dt ′
= −ε ′TT

′. (5)

The increments µT (t) of the stochastic process ∆t have to be rescaled in the
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same way as eq. (2), and thus reads

kNTµ
′
T (t

′). (6)

For a clear and concise description, we will only use rescaled quantities in
the following, and drop the prime in the notation.

With these non-dimensionalised equations (and increment) at hand,
we can now investigate the effects of different lysis time distributions. To
this end, we have to define a criterion by which we can compare different
distributions with each other. In the situation discussed here, the produc-
ers are threatened by non-producers invading their habitat and possibly
outgrowing them. In our model, both reproduction and degradation of the
non-producers are proportional to the non-producer abundance. For pro-
ducers, it is hence favourable to reduce this abundance of non-producers
as much and as soon as possible, to minimize the penetration of non-
producers into the producer colony. Consequently, a distribution which
results in a lower N over time is better than one which causes larger values.
We therefore choose the cumulative non-producer abundance,∫tmax

t0

Ndt, (7)

as comparison criterion, where tmax <∞ is again the latest time point at
which a cell can release toxin (see above) . We consider a distribution as
“better” than another one if it results in a lower cumulative non-producer
abundance. Hence, to compare two distributions with each other, we have
to calculate the cumulative non-producer abundance for each distribution,
and then compare the result.

However, as the toxin abundance increments as a stochastic process,
kNTµT (t) ·∆t, we cannot simply solve the coupled system of equations (4)
and (5) numerically, which would be necessary to obtain the cumulative
non-producer abundance, eq. (7). To find a solution nevertheless, we
consider the properties of the specific stochastic process (see also Fig. 2):
∆t is a point process of exactly P0 discrete, independently and identically
distributed lysis time points τl at which the toxin abundance increases. If
we now want to compare arbitrary distributions for the τl, it is hard to
find a general solution of eqs. (4) and (5), as these distributions could in
principle not even be described in a closed functional form like, for instance
Gamma distributions. For a given empirical distribution (that is, {τl}, a
given set of lysis time points), however, we can calculate the cumulated
non-producer abundance with the following scheme: First, we numerically
solve the system of rate equations (4) and (5) (without the stochastic term)
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between t0 and the first sample in the point process, τ1. Then, the number
of toxins is increased by the increment kNTµT (τ1), and we continue by
numerically solving the system up to τ2. This procedure is repeated for all
the P0 lysis times τl up to tmax. From the resulting solutions for N we can
then obtain the cumulated non-producer abundance.

The piecewise integration procedure not only enables us to compare
different distributions, but is also the basis to determine the optimal distri-
bution for a given set of parameters. To this end, we employ an evolutionary
algorithm, in which an ensemble of compartments (each with a different ly-
sis time distribution) undergoes repeated mutation, evolution, and selection.
More specifically, the algorithm comprises the following steps:

1. Initialize each compartment of the ensemble with an initial distribu-
tion (here: all lyse at t = tmax/2)

2. For all ensemble compartments (but one), mutate the distribution
according to a mutation rate m: From the P0 lysis times in the distri-
bution, select m random ones, and add a random shift value, drawn
from a normal distribution, to them.

3. Calculate the cumulative non-producer abundance for each compart-
ment in the ensemble with the procedure described above.

4. Take the results of all compartments in the ensemble, and select the
two distributions with the lowest cumulative non-producer abun-
dance.

5. For one half of the ensemble, replace each distribution with the best
distribution, for the other half the second best. This reduces the
chance to get stuck in a local optimum.

6. Go back to step 1. The best and second best distributions are now the
new initial distributions.

A more detailed description of the algorithm and its concrete implemen-
tation is given in the section “Detailed Evolutionary Algorithm” of the
Supporting Information.

2.2 results and discussion of single compartment model

Before we employ the evolutionary algorithm to determine the optimal
distribution, we first discuss the model parameters. For the increment
function µT (t), we assume a simple linear function, µT (t) = αT · t, where
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αT is a proportionality constant. With this definition, we immediately
see from eqs. (4), (5) and (6) that εT and kNTαT are the key parameters
of the system, which we will investigate in the following. Moreover, we
set tmax, as discussed above, to 10 generations of N, a value motivated
from experimental studies [7]. To meet the conditions on the compartment
size explained in 2.1, we set P0 = 500; the non-producers are assumed to
create a high stress level, and trigger the SOS signal already with N0 = 100
individuals in the compartment. The optimal distributions for nine
exemplary parameter sets are depicted as (blue) histograms in Fig. 3. These
results also enable us to analyse the dependence of the optimal distribution
on εT and kNTαT .

For all nine cases, the optimal distribution is rather broad, meaning
that the lysis times are not limited to a narrow regime. Moreover, all distri-
butions show a positive skewness. In other words, optimal distributions
span a wide range of lysis times, but earlier ones have a larger weight
than later ones. This general shape of the distributions has interesting
consequences for the toxin abundance (see orange lines in Fig. 3): it builds
up early and then maintains a relatively constant level. In particular, we
find no pronounced peaks in toxin abundance; the noisiness of the toxin
levels in Fig. 3 is due to the toxin not being released continuously, but at
discrete lysis events.

The form of the optimal distributions therefore shows that to efficiently
reduce the non-producer population, it is necessary to have a significant
level of toxins in the compartment over an extended time span (rather than,
for instance, a concerted burst of toxins at a specific point in time). Conse-
quently, it is necessary to build up the significant toxin level fast, since the
non-producer death rate is proportional to the toxin abundance. However,
the faster a cell lyses, the fewer toxin it can release, as toxins need to accu-
mulate in the cells. To reach the same level of toxins, thus more fast-lysing
cells are needed than cells with larger lysis times. A distribution that
produces a constant significant toxin level must therefore have a positive
skewness (in other words: more weight at short lysis times). To ensure that
this level is maintained while the toxins are constantly removed from the
compartment, lysis events must also occur over a wide span of lysis times,
which is facilitated by the broadness of the optimal distributions.

While we observe the positive skewness for all investigated parame-
ter combinations, we also find that the specific shape of the distribution
depends on the toxin degradation εT and toxin effectiveness kNTαT . The
larger εT , the more weight of the distribution is at higher lysis times (see
Fig. 3). In these cases of large εT , the quickly released low toxin doses
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hardly build up a significant level, as the toxins quickly leave the compart-
ment. Therefore, delaying the creation of a specific toxin level to later time
points at which more toxin has been produced in the cells is beneficial for
producers. For small values of εT , the situation is different: already low
levels of toxin pay off for the producers, as the toxins then remain longer
in the compartment.

For increasing kNTαT , we find that the weight of the distributions
shifts to shorter lysis times. The larger toxin binding and production rates
increase the chance of toxins killing non-producers, rendering an earlier
lysis beneficial. In particular, very high values of kNTαT (see last row in
Fig. 3) result in an extremely pronounced peak at very low lysis times.
In these cases, the toxin is so effective that even low toxin levels almost
completely eradicate the non-producers.

In the discussion above, we argued that optimal distributions are
“broad”, in the sense that indeed the tails of the distributions stretch out to
tmax (see Fig. 3). This raises the question on the influence of the parameter
tmax. Its value is experimentally motivated, but may vary between species
and environments. Hence, we compared histograms with different tmax

but fixed combinations of εT and kNTαT , see Fig. 4. We find that the
distribution shapes are qualitatively similar, but increasing tmax results in
longer tails at the expense of shorter lysis times. This becomes particularly
evident when the parameters are unfavourable for the producers (large
εT and low kNTαT ), where a gap emerges at short lysis times . We find
similar changes to the resulting optimal distributions also when the number
of lysing producers, P0, varies: the smaller P0, the less weight distributions
have at short release times (see Fig. 5). To understand this similarity,
we recall that the parameter P0 determines how many cells can lyse, and
consequently, how many lysis events can be distributed. Lower values of
P0 then mean fewer events to distribute over the investigated timespan.
However, the same situation occurs when increasing the timespan, while
P0 remains at its original value: The difference between the old and new
(larger) timespan is filled up with lysis events at the expense of shorter
lysis times of the distribution. The length of the timespan is defined by
tmax, which explains the connection between P0 and tmax.

Our results on varying tmax also give insight to the role of the different
lysis time regimes: For large tmax (or low P0), only few lysis events are
distributed over the timespan, and thus have to be economized. The
resulting distributions then show lysis events only in the large lysis time
regime. Due to the low number of producer cells, it is in this case optimal
to produce rather more toxin than to react fast. Interestingly, if more
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lysis events can be distributed, it becomes more efficient if some cells lyse
early. While the “early lysers” cannot kill the sensitive strain as effective
as with later toxin release, they inhibit the growth of its abundance in
the population. This makes the lysis events that occur later more efficient.
Therefore, the purpose of the early lysis regime is to keep the non-producer
abundance at such low levels that late lysis events have higher impact.

Taken together, we find that broad distributions with positive skewness
are the most efficient in competition with sensitive bacteria. This shape
of the distribution creates a constant, significant level of toxins in the
population, which is necessary to kill sensitive bacteria as fast as possible.
Further analysis revealed the role of different lysis regimes: Fast lysing
cells inhibit the growth of the non-producer, and thus make the more
massive toxin release by late lysing cells more effective. We were able to
determine the optimal distributions for given toxin degradation εT and
toxin effectiveness kNTαT , using our single compartment model and a
evolutionary algorithm. However, it remains unclear if the results of this
conceptional model indeed hold in a more realistic scenario, as many
processes including diffusion are only treated effectively. To answer this
question, we develop a detailed spatial model of two colliding bacterial
colonies in the following, and, for corresponding parameter sets, put our
optimal distributions to the test.
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Figure 3: Optimal lysis time histograms for different values of the two model
parameters. These histograms are the result of the evolutionary optimisation
algorithm applied to the rescaled eqs. (4) and (5) after 20,000 generations, averaged
over 20 distributions. The (rescaled) toxin concentration resulting from a single,
exemplary distribution is plotted in orange. The smaller εT and the larger kNTαT ,
the more favourable are the parameter conditions for toxin production.
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Figure 4: Two example parameter sets, that show how for different values of tmax

(indicted by colored vertical lines) influence the optimal distribution. In both cases,
the distribution is stretched out to tmax at the expense of shorter lysis times. If not
specified otherwise, the same parameters as in Fig. 3 are used.
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Figure 5: Lysis time histograms for the same parameters as in Fig. 3, but with
P0 = 200. Compared to results depicted in Fig. 3 (P0 = 500), the lysis time
distributions are qualitatively similar, but have less weight at short lysis times.
These histograms are the result of the evolutionary optimisation algorithm after
20,000 generations. The (rescaled) toxin concentration is plotted in orange.
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Figure 6: The setup of the spatial model, just before the colonies collide. The
producer strain is depicted in blue, the non-producer in red. The front lines are
depicted in corresponding colours. The green and yellow dots represent toxins
and metabolic excretes, respectively. Parameters: βP = 1,βN = 2, δP,N = 0.05,
DP,N = 1 DT ,M = 15, δT ,M = 0.1,αT = 0.5,kNT = 0.1

2.3 spatial model

For the spatial model, we consider two bacterial colonies growing on a
solid medium (that is, the bacteria are attached to the medium). As with
the single compartment model, we are interested in the case of colliding
fronts. However, we no do not consider just a single compartment, but a
large set of compartments in the collision region of the two colonies. The
compartments are arranged on a square lattice and each compartment is
connected to its four nearest neighbours. We analyse a rectangular stripe,
which is 200 compartments long and 50 compartments wide (see Fig. 6).
As initial condition, the colonies populate opposite sites of the stripe, and
are initially separated by an unpopulated gap in between. Moreover, we
assume periodic boundary conditions for the long side of the stripe (that is,
the stripe is the surface of an open cylinder).

We again consider two bacterial species, labelled P andN, of which only
P produces toxins, T . However, the N strain produces metabolic excretes,
M, which allow the produce strain to sense the presence of its competitor.
The production of toxins is thus not triggered by a simultaneous switch
to the SOS state within the compartment, but individually by a producer
having contact to a molecule of the excrete . The time between start and
release of toxins is again determined by a specific distribution.

In order to obtain a more realistic description for the dynamics inside
the compartments we will lift many of the simplifying assumptions made
for the single compartment model. In particular, since we now consider a
stochastic process, all rates are now considered separately: We explicitly
account for birth, death and hopping rates of the two strains, βP,N, δP,N

and DP,N, respectively. Analogously, we now also consider the diffusion
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rate of the toxins and excretes, DT ,M, separately from their spontaneous
degradation, δT ,M. Moreover, we assume that a low percentage of sponta-
neously degrading producer cells also releases a small amount of toxins.
This process is observed in experiments. The metabolic excretes are released
exclusively via this mechanism.

As stated above, we aim to model bacteria that stick to the surface of a
solid medium. In this situation, both the cells and the toxins can move on
the lattice, but in different ways. The bacteria are attached to the surface
of the medium. Therefore, they do not diffuse, but are pushed towards the
outside of the colony by growing bacteria in the inside. We implement this
pushing by selecting bacteria at a per capita rate DP,N, and letting them
hop according to abundance gradients along the growth direction of the
colony. More specifically, we compare the abundance of the compartment
behind and in front of the selected compartment (relative to the growth
direction of its strain): If the front compartment has a lower abundance,
the cell hops into it, whereas, if the front compartment has equal or larger
abundance, the cell hops into the compartments either right or left of the
front compartment. If these compartments also have a larger abundance,
the bacterium hops backwards.

As the toxins and metabolic excretes are significantly smaller than the
bacteria, it is reasonable to assume that they diffuse freely in any direction.
This process is implemented as a per-capita diffusion rate DT ,M, by which
toxins and excretes hop from their current compartment to one of the four
neighbouring compartments.

2.4 Results and Discussion of Spatial Model Test

Because of computational limitations, we cannot employ the genetic algo-
rithm for the spatial model. We therefore do not determine the optimal
distribution for the spatial model, but compare the optimal distribution
(determined using the single compartment model) with other distribution
for given parameter sets. We consider two distinct parameter sets: one,
which poses hard conditions for toxin efficiency (high toxin degradation
and low toxin binding: εT = 15,kNT = 0.1), and a second one with low
degradation and high binding (εT = 1,kNT = 0.5), which are favourable
for toxin producers. The toxin production is in both cases set to αT = 0.5,
which enables us to use the corresponding optimal distributions with
the values kNTαT = 0.05 and kNTαT = 0.25 determined from the single
compartment model in Fig. 31. In the favourable conditions, the optimal

1All remaining parameters are the same as given in Fig. 6
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distribution shows a large peak at short lysis times, whereas it is much
broader with more weight at large lysis times in hard conditions.

To compare the effect of these two distributions, we first set up two sim-
ulations with favourable conditions, that is, εT = 1 and kNT = 0.5. In the
first simulation, the producer releases toxins according to the distribution
optimised for hard environments, in the second one, toxin release events
are drawn from the distribution for easy conditions During the simulation
runs, we recorded for both distributions each strain’s front line positions
over time (Fig. 7A). We find that for both distributions, the producing
strain A is able to repel the sensitive one. Apart from this general ad-
vantage due to toxin production, our results confirm the conclusions from
the single compartment model: The distribution optimized for favourable
conditions indeed outperforms its counterpart (Fig. 7A). This is because
the large peak at short lysis times allows the efficient toxins to act early on.
We repeated the aforementioned testing scheme also for hard conditions
(Fig. 7B). With the change of conditions, also the roles reverse: now the
distribution optimised for low toxin/non-producer interaction and high
degradation performs best, as now larger toxin concentrations (and thus
later lysis times) are necessary to effectively reduce the sensitive strain.
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Figure 7: Testing the results of the well-mixed model. Both plots show the front
lines, which are defined as the column where at least half of the compartments
contain at least one cell of the corresponding species. We consider two exemplary
parameter sets. The first (A) is favourable for toxins, meaning that is has low
toxin degradation (εT = 1) and high toxin-interaction (kT = 0.5), whereas the
second (B) is the opposite (εT = 15,kT = 0.1). We use the corresponding optimal
distributions from Fig. 3 for this parameter sets, and let both compete against
a non-producing strain in both conditions. The results support our findings
from the single compartment model: Each optimized distribution outperforms its
counterpart in its own optimal conditions.
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3 Summary and Outlook

In this manuscript, we have studied the role of distributions underlying the
stochastic release of bacterial toxins. We considered a boundary compart-
ment of a toxin producing colony during a collision with a toxin-sensitive
non-producer colony. For this scenario, we developed a simple model
using only the toxin and non-producer abundance as dynamic variables,
with the toxin being released according to a specific lysis time distribution.
Non-dimensionalisation of the resulting equations revealed that the effec-
tive toxin degradation εT , as well as the product of toxin synthesis rate
and interaction with the sensitive strain, kNTαT , are the key parameters
affecting the system. Using an evolutionary algorithm, we determined the
optimal lysis time distributions for different sets of εT and kNTαT . For
two exemplary parameter sets, we tested the optimal distributions with a
lattice-gas model of two colliding colonies, and showed that the results of
our conceptual model also hold qualitatively for a more realistic system.

The distributions resulting from the evolutionary optimisation process
show a clear dependency on the toxin production, εT , and the product of
toxin binding and production rate, kNTαT . If kNTαT , is high, the optimal
lysis time distributions have a large, pronounced peak at short lysis times,
as the toxins then can effectively kill the sensitive strain already quite early.
A remaining small amount of lysis events distributed over the timespan
up to tmax then ensure that further incoming or surviving non-producers
are kept at low levels. In the case of a low binding and production product
kNTαT , however, this peak disappears, and more weight is put to later
lysis times, where it is more broadly distributed. This is because now more
toxin needs to accumulate in the cells to counteract the non-producers. A
large value of toxin diffusion, εT , increases this effect, as it determines how
long (on average) a toxin can act against sensitive bacteria.

Our results present another example of how heterogeneous pheno-
types provide benefits for a bacterial population. For the special case of
heterogeneous lysis, previous work focused on heterogeneity in the sense
that only a fraction of the population produces toxin [2, 6]. Here, however,
we have investigated heterogeneity in the timing of self-destructive toxin
release, and studied its consequences to bacteria in competitive situations.
To keep the model simple and focus on the relevant factors, we make the
assumption that all cells subject to stress will produce toxins and lyse
eventually. This also agrees with previous experiments [7], which show
that above a certain threshold stress level the SOS response is irreversible
and all affected cells lyse.
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One of the general results of this study is that the optimal distributions
are always broad, meaning that they span almost the whole range of
possible lysis times. A naive interpretation of this property might have
been bet hedging, since broad distributions let at least some bacteria lyse
at the respective optimal time point for a given condition. Bet hedging
has indeed been discussed in the context of phenotypic heterogeneity of
bacteria before [11, 6]. However, our study shows that the distributions
can rather be understood as a form of division of labour: the fast-lysing
bacteria in the population react quickly to stress imposed by competitors,
and minimise their abundance and dispersal. This gives bacteria that lyse
later the time necessary to produce effective amounts of toxins, which then
can kill off and thus repel the non-producing strain.

In this manuscript, we discussed the consequences of heterogeneity
in the release of toxins. Our research was motivated from experimental
studies on ColicinE2 prosuction and release, which is triggered by an SOS
response system. The model in this study, however, relies only on few, and
very general conditions. Therefore, our results are independent from the
underlying SOS system, and can also be transferred to other self-destructive
bacterial toxin release systems. Taken together, we presented a general
model to analyse the effects and effectiveness of toxin release distributions,
which enables the study of a new aspect of phenotypic heterogeneity.
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Supporting Information

Detailed Evolutionary Algorithm

Here, we describe in detail the evolutionary algorithm we implemented to
obtain the optimal distribution for a given set of parameters. The algorithm
runs on an ensemble of 40 compartments, each with a distribution of P0

lysis time points. On this ensemble, it performs the following steps:

1. Initialize each compartment of the ensemble with an initial distribu-
tion. We chose all producer cells to lyse at half the maximal time (that
is, a delta peak at t = 5) as the first initial distribution.

2. For all ensemble compartments (but one), mutate the distribution
according to a mutation rate m: From the P0 lysis times in the distri-
bution, select m random ones. For each of the selected waiting times,
determine a normal distributed random number, and add it to the
waiting time, resulting in a new waiting time. If this waiting time
is below 0 or above tmax, reflective boundaries apply. We leave one
compartment unmutated, to make sure that the mutated ones are
better than the current state.

3. Calculate the cumulative non-producer abundance for each compart-
ment in the ensemble with the procedure described in the main text.

4. Take the results of all compartments in the ensemble, and select the
two distributions with the lowest cumulative non-producer abun-
dance. Taking two instead of just the first one reduces the likelihood
to get trapped in local minima.

5. For one half of the ensemble, replace each distribution with the best
distribution, for the other half the second best.

6. Go back to step 2 to start the next generation. The best and second
best distributions are now the new initial distributions.

For the optimal distributions presented in the results section, we simu-
lated 20,000 generations for 20 times, and determined the optimal histogram
from the sum of the resulting optimal distributions. In each simulation
run, we started with a high mutation rate of 100 mutations (of 500 produc-
ers in total) to explore a broad “landscape” of distributions. After 2000
generations, we reduced this rate to 10 mutations.
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